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Abstract

The bootstrap is a computationally intensive data analysis technique. It is particu-

larly useful for analysing small datasets, and for estimating the sampling distribu-

tion of a statistic when it is intractable. We focus on bootstrap hypothesis testing

of linear models. In this context, at present, various versions of the bootstrap are

available, and it is not entirely clear from the literature which method is optimal for

each situation.

The existing literature on bootstrapping linear models was reviewed, and three

“rules” were found in the literature. We confirmed these via simulation. We also

identified two outstanding issues. Firstly, which variance estimator should be used

when constructing a bootstrap test statistic? Secondly, if resampling residuals,

should this be done using the model that was fitted under the null hypothesis (“null

model”) or under the alternative hypothesis (“full model”)? To our knowledge,

these two questions have not been previously addressed. We provided theoretical

results to answer these questions, and subsequently confirmed these via simulation.

Our simulations were designed to evaluate both the size and (size-adjusted) power

characteristics of the proposed bootstrap schemes.

We proposed the use of a sandwich variance estimator for case and score re-

sampling, rather than the naive statistic that is commonly used in practice. Via

simulation, we showed that bootstrap test statistics using the sandwich estimator

tend to have superior Type I error for case and score resampling, but there was

still an issue of which estimator (naive or sandwich) to use for the observed test

statistic (t). Best results were achieved when using t-naive for score resampling and

t-sandwich for case resampling. One possible explanation for this result is that score

vii



viii ABSTRACT

resampling conditions on X whereas case resampling does not, and instead treats

X as random.

We also studied full versus null model residual resampling. We showed that null

model resampling has better Type I error in theory, having an asymptotic correlation

of one with a “true bootstrap” procedure, analogous to a result derived in the

permutation testing case by Anderson & Robinson (2001). However in practice, this

superiority holds only for non-pivotal statistics: for pivotal statistics, both null and

full model resampling had accurate Type I error, a discrepancy which we were able

to explain theoretically.



Chapter 1

Introduction

1.1 Overview of the bootstrap technique for data

analysis

The bootstrap is a computationally intensive statistical technique that depends on

modern computing power. It is a generally applicable technique that is particularly

useful for making inferences about a statistic that has an unknown sampling dis-

tribution. A particular case where this arises is in analysing small datasets, when

distributional assumptions are not (or may not be) satisfied. The method is widely

used and several introductory texts have been written on the topic (for example,

Davison & Hinkley, 1997; Manly, 1997; Chernick, 2008). The basic idea is to treat

the empirical distribution from the data as the true distribution, and then to resam-

ple from this distribution to estimate the sampling distribution of any statistic of

interest. There are many different variations on the bootstrap method, which resam-

ple different quantities in different ways. For example, in case resampling (Davison

& Hinkley, 1997), the observations from the original dataset are resampled, whereas

in residual resampling (Davison & Hinkley, 1997), the objects being resampled are

residuals obtained from some model fitted to the original dataset. Different methods

make different assumptions and have different properties, a topic which will be ex-

plained in this thesis. In some sense, case resampling is less restrictive than residual

resampling, because case resampling does not assume a particular distribution for

1



2 CHAPTER 1. INTRODUCTION

the residuals, while residual resampling assumes that the residuals are exchangeable

and thus come from the same distribution.

Many papers have been written on applying the bootstrap to practical problems,

and on the behaviour of the bootstrap when applied to linear models, generalized

linear models (GLM’s) and even more general classes of models. Some key references

for this thesis are as follows. Davison & Hinkley (1997) describe the theoretical ba-

sis and the practical application of the bootstrap, including discussing situations in

which the bootstrap may be applied. Hall & Wilson (1991) present some guidelines

to follow in constructing test statistics and using the bootstrap to evaluate signifi-

cance. Wu (1986) compares the bootstrap with the jackknife and other resampling

methods in regression analysis, and proposes “score resampling”, a method for han-

dling heteroscedasticity. Friedl & Stadlober (1997) describe resampling methods

in the GLM context that may be used to analyse environmental datasets. Both

Freedman (1981), and Moulton & Zeger (1991), investigate the theoretical, and in

particular the asymptotic, behaviour of the bootstrap, when applied to linear re-

gression models and GLM’s respectively. Another paper of interest is Anderson &

Robinson (2001), who provide theoretical properties of different permutation testing

methods for linear models, as well as presenting results of simulations. This thesis

focuses on bootstrap methods for linear models.

1.2 Definition of linear models

We consider the general linear model

Y = Xβ + ε

where Y is the vector of responses, Y = [Y1, . . . , YN ]T , X is the design matrix with

1× p row vector Xi containing explanatory variables for the ith case, i = 1, . . . , N ,

β is a p × 1 vector of unknown parameters, and ε is a vector of residual errors,

ε = [ε1, . . . , εN ]T , which are assumed to be mutually independent and to have mean

zero. The distribution of the εi is unknown, and they may have constant variance

(homoscedastic) or non-constant variance (heteroscedastic).
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The theory of linear models has been well developed, and we use it as a starting

point for an examination of three different bootstrap resampling strategies (residual,

case and score resampling, to be defined in Section 1.3). The theoretical properties

of these bootstrap techniques will be compared to results obtained by simulation.

This thesis focuses on hypothesis testing for linear models, and specifically on

“partial tests” of the form H0 : βk = 0 for some k. In this setting, there is generally

no exact permutation test available, contrary to H0 : β1 = β2 = . . . = βk = 0 (An-

derson & Robinson, 2001), and surprisingly, there are many unanswered questions

in how to construct such tests.

The aims of the thesis are:

• To present a review of the current literature concerning bootstrapping linear

models (Chapter 2).

• To confirm the validity of three “known” rules for bootstrap hypothesis testing

already in the literature (Chapter 3).

• To identify which variance estimator should be used with which resampling

method in the construction of pivotal statistics (Chapter 4).

• To compare the performance of residuals from the “full” (that is, under H1)

and “null” (that is, under H0) models, in residual resampling (Chapter 5).

1.3 Linear model bootstrap methods

In this section, we review the definitions and some properties of the different resam-

pling methods. We follow the terminology of Davison & Hinkley (1997).

1.3.1 Case resampling

Case resampling is the most intuitive of the bootstrap methods. It involves re-

sampling cases from the original dataset, and then fitting linear models to these

bootstrap resamples.
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We define case resampling mathematically as follows. Let i∗ be a vector of

length N with elements obtained by randomly resampling with replacement from

{1, 2, . . . , N}. Let i∗j be the jth element of i∗. Then Y∗ = (Yi∗1 , Yi∗2 , . . . , Yi∗N )T and

the jth row of X∗ is (Xi∗1 , Xi∗2 , . . . , Xi∗N ).

The case resample estimate of β̂ is obtained as:

β̂∗ = (XT
∗ X∗)−1XT

∗ Y∗.

It has been shown by Davison & Hinkley (1997) that in general, case resampling

is less efficient than residual resampling, but that it is more robust against variance

heteroscedasticity and model misspecification.

This is often thought of as the “correlation model” (Freedman, 1981). Note that

by definition the design matrix X is not held fixed, and so inference based upon it

is not conditional on the design points.

1.3.2 Residual resampling

Residual resampling involves resampling the residuals from the fitted model:

Y∗ = Xβ̂ + r∗

where each element of r∗ has probability 1/N of taking each value in r1, . . . , rN .

In the context of hypothesis testing, the linear model from which the residuals

are obtained may be the full (alternative) model, which will be referred to as full

model residual resampling, or may be the null model (i.e. the model estimated under

the null hypothesis), which will be referred to as null model residual resampling.

One issue this thesis considers is the choice between full and null model residual

resampling.

Another issue that arises in residual resampling is whether raw or modified resid-

uals should be used. If the raw (or unmodified) residuals are denoted by ri, then

the modified residuals mi are defined as:

mi = ri/
√

1− hi,
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where hi is the ith diagonal element of the hat matrix H = X(XT X)−1XT (Seber,

1977).

The consequences of using raw versus modified residuals are considered in Chap-

ter 3.

Residual resampling assumes that the error terms in the model are independently

and identically distributed (i.i.d.). Thus residual resampling has been shown to be

not robust against error variance heteroscedasticity (for example, Liu & Singh, 1992;

Bose & Chatterjee, 2002).

1.3.3 Score resampling

Score resampling multiplies the residuals by a random variable t∗ which has mean

zero and variance one. That is:

Y∗ = Xβ̂ + diag(r)t∗

where E(t∗) = 0 and var(t∗) = I.

These t∗ may be standard normally distributed, or may be resampled from the

standardized residuals themselves, or from another suitable distribution. We used

the two former choices for the distibution of t∗i , the second of these suggested by

Wu (1986), and the first used by Friedl & Stadlober (1997) in their simulation

studies. Score resampling is essentially a trick to produce variance estimates that are

unbiased and to ensure robustness against error variance heteroscedasticity: in fact,

it was specially devised for the heteroscedastic error case. This can be understood

intuitively by noting that the ith residual is retained with the ith observation (i.e.

the ith fitted value) in resamples. The method is named score resampling because it

is based on a linear estimate of the score equations. It is useful for hypothesis testing,

but not for prediction of individual observations. This is because in the prediction

setting, the distribution of resampled residuals is critical, but the distribution of t∗

is arbitrary.
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Wu (1986) investigated the method now known as score resampling, under the

label “A general method for resampling residuals”, in comparison with other resam-

pling methods, in both homoscedastic and heteroscedastic simulations, as well as

comparing their theoretical properties.

1.4 Resampling notation

In this thesis, expectations and variances will sometimes be taken with respect to

the sampling distribution of the data, (i.e. the distribution of Y ), and at other

times with respect to the resampling distribution (conditional on a set of observed

Y ). These two cases will be distinguished using conventional conditional probability

notation, for example E(β̂) with respect to the sampling distribution, or E(β̂|Y )

with respect to the bootstrap distribution.

If the resampling method is clear from the context, whether it be residual, score or

case resampling, we use ∗ to denote this resampling method. In this thesis, we have

taken care to clarify the resampling method in any context, but if the resampling

method is in doubt, assume case or score resampling in Chapter 4 and residual

resampling in Chapter 5. We would like to be able to distinguish objects which have

been resampled directly (for example, the residuals in residual resampling) from

objects that are functions of resampled objects (for example, β̂∗,k for a bootstrap

sample). Hence, a superscript ∗ (for example, r∗) denotes a bootstrap resample of a

certain random variable or matrix, while a subscript ∗ (for example, β̂∗ or t∗) denotes

a test statistic or random variable that is a function of resampled values. Further,

we use Y∗ to denote a case resample of Y , because in case resampling Y and X are

resampled jointly, and we also use Y∗ to denote a residual or score resample of Y .



Chapter 2

Guidelines for applying the

bootstrap

The aim of this Chapter is to review the literature and draw on it to provide guide-

lines for the linear model bootstrap, and also the reasons for these guidelines. Hence

in Section 2.1 we will present the theoretical properties of the three resampling meth-

ods (residual, case, score). We describe the assumptions made by each method, and

thus define the proper application of each method. In Section 2.2, we describe some

currently-known issues in bootstrap hypothesis testing for linear models, based on

existing literature. In Section 2.3, we summarize the previous work into three known

“rules” for the bootstrapping of linear models, which we will verify via simulation

in Chapter 3.

2.1 Properties of the different resampling meth-

ods

When resampling, we would like to mimic properties of β̂, since we use the resam-

pling distribution of β̂∗ to estimate the sampling distribution of β̂. It is well known

7
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Table 2.1: Summary of the properties of the different resampling methods

Resampling Design Robust to Assumptions E(β̂∗) =

method heteroscedasticity β̂

Case X random yes independent cases no

Residual X fixed no i.i.d. residuals yes

Score X fixed yes independent yes

residuals

that for the “true model” Y = Xβ + ε, E(β̂) = β and:

var(β̂) =





σ2(XT X)−1 homoscedastic, var(εi) = σ2

(XT X)−1XT diag(σ2
i )X(XT X)−1 heteroscedastic, var(εi) = σ2

i

and a Central Limit Theorem argument can be used to show that for each j:

β̂j − βj

se(β̂j)

D→ N (0, 1)

for ε from any distribution with finite variance. Ideally, we would like the chosen

resampling method to also have these properties, and will review the properties of

β̂∗ under different resampling methods as currently understood.

A summary of the properties of the different resampling methods (case, residual

and score) is presented in Table 2.1.

2.1.1 Residual resampling

Recall that residual resampling is defined as: Y∗ = Xβ̂ + r∗. Conditional on the

data, residual resampling can be shown to have E(β̂∗) equal to β̂ and var(β̂∗) equal

to (1/N)
∑N

i=1 r2
i (X

T X)−1.

These two statements can be shown as follows.

E(β̂∗|Y ) = E((XT X)−1XT Y ∗)

= E((XT X)−1XT (Xβ̂ + r∗))

= β̂
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since E(r∗) = 0.

varresidual(β̂∗|Y ) = (XT X)−1XT var(r∗)X(XT X)−1

= (XT X)−1XT

[
(1/N)

N∑
i=1

r2
i

]
IX(XT X)−1

(since the empirical distribution function puts mass (1/N) at each ri)

=
1

N

N∑
i=1

r2
i (X

T X)−1 (2.1)

= σ̂2(XT X)−1

if modified residuals are used

We write the variance (and expectation) as conditional on data Y because, when

resampling, the data are the sampling “universe”. Also, the two statements may

be found in Moulton & Zeger (1991) and elsewhere. What β̂ is and what ri are,

depend on whether full/null resampling is being applied and whether modified/raw

residuals are being used. It follows from equation (2.1) that the variance estimator

is biased when raw residuals are used, but that the bias is removed when modified

residuals are used instead.

2.1.2 Case resampling

Recall that case resampling selects elements of Y and rows of X using a vector

i∗ obtained by resampling with replacement from {1, 2, . . . , N}. Freedman (1981)

showed that:

√
N(β̂∗ − β̂)

d→ N (0, J−1MJ−1),

where J = E(XT
i Xi) and M = E(XT

i Xir
2
i ),

and Xi is defined to be the ith row of X. Note that in the definitions of J and M ,

we could replace Xi with X∗,i because of the definition of case resampling.

An outline of the proof is given in Appendix A.2. Although Freedman’s result

gives the asymptotic distribution of β̂∗ it does not give any indication of how quickly

β̂∗ approaches this distribution, with increasing sample size. Moulton & Zeger (1991)
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addressed this, at least for var(β̂∗), when they stated that the rate of convergence is

of order N−2. That is, they stated that:

varcase(β̂∗) = (XT X)−1XT diag(r2
i )X(XT X)−1 + O(N−2).

This is shown in Appendix A.

One key difference from residual resampling is that E(β̂∗) is only approximately

β̂, not exact. One way to see this is to consider small N , for which there is a positive

chance that the matrix (XT
∗ X∗) is singular, and (XT

∗ X∗)−1 is undefined. In this

thesis, the case resampling scheme was constructed so that the singular cases were

excluded. Nevertheless, even without the presence of a singular case, the estimator

β̂∗ is a biased estimator (Figure 2.1). Figure 2.1 plots β̂∗ versus β̂ for case resampling

and full model residual resampling, in comparison with the line y = x. Note that

for case resampling, the points generally do not lie on the line y = x, but instead

hover around the line, while for residual resampling, the points are statistically

indistinguishable from the line y = x. Thus, E(β̂∗) is only approximately β̂ for case

resampling, but is exactly β̂ for residual resampling.

Another difference is that X is treated as random, whereas residual resampling

(and conventional regression) condition on X. Hall (1992) relates the “regression

model” to residual resampling, and the “correlation model” to case resampling. On

page 168 of Hall (1992), the regression model is defined to be inference conditional

on the design points (design points are fixed or random but conditioned upon)

and errors are random i.i.d.. The correlation model is defined to be inference on

slope, with the property that (Xi, Yi), i = 1, . . . , N are independent pairs of random

vectors, and to be unconditional inference (with the special case of independent

errors). Hall (1992, page 183) shows that in regression models, bootstrap confidence

interval (C.I.) methods for slope parameters have a special property that for the

percentile method, C.I.’s are second-order correct (usually first-order), while for the

percentile-t method, the order is smaller than N−1 (usually N−1). The reason given

is the symmetry of the regression model:

E(N−1

N∑
i=1

(xi − x̄)ej
i ) = 0.
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Figure 2.1: Plot of β̂∗ versus β̂ for (A) case resampling (left hand plot) and (B) full

model residual resampling (right hand plot), with error bars. The simulation used a

sample size (N) of 16, exponential(1) distributions for all covariates and true errors,

a total of 50 simulations (different points), and a resample size of B = 10000. At

each point, a vertical error bar (that is, a small vertical line) was drawn (assuming

an approximate normal distribution) to see if the error bar crossed the line y = x.

Note that E(β̂∗) is only approximately β̂ for case resampling, but is exactly β̂ for

residual resampling.
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However, the correlation model is not symmetric unless errors are independent (so

the above unusual properties of bootstrap C.I.’s in regression are not available under

the correlation model but do emerge under correlation with independent errors).

With independent errors, the special properties are available for the correlation

model: however in this case, the assumptions for residual resampling are satisfied,

and various sources (for example, Liu & Singh, 1992) confirm the higher efficiency of

residual resampling. Thus for linear models, if errors are i.i.d., residual resampling

is expected to have more accurate Type I error than case resampling, as seen in Liu

& Singh (1992) for example.

Hjorth (1994) states (p187) that case (vector) resampling is crude, since the fact

that the bootstrap design matrix X∗ becomes random leads to estimates that will

typically exhibit more variability. However, it is sometimes the only feasible method,

and exaggerated uncertainties may lead to conservative estimates of the variances.

It is claimed (Hjorth, 1994) that case resampling, but not residual resampling, is

robust against heteroscedasticity or the presence of non-linearity that is not properly

modelled. It is stated (Hjorth, 1994) that case resampling works well for large

datasets without very influential observations, while residual resampling is better for

smaller datasets, or data with influential observations. If there is heteroscedasticity,

score resampling may be used also, but residual resampling may be feasible within

groups for which variances are known a priori to be constant within that group. Score

and case resampling tend to need a lot of data for good performance in estimating

variance.

2.1.3 Score resampling

Recall that score resampling is defined as: Y∗ = Xβ̂ + diag(r)t∗, where E(t∗) = 0

and var(t∗) = I. Conditional on the data, score resampling can be shown to have

E(β̂∗) equal to β̂ and var(β̂∗) equal to (XT X)−1XT diag(r2)X(XT X)−1. The two
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statements can be shown as follows.

E(β̂∗|Y ) = E((XT X)−1XT (Xβ̂ + diag(r)t∗))

= (XT X)−1XT Xβ̂ + (XT X)−1XT diag(r)E(t∗|Y )

= β̂

since E(t∗|Y ) = 0. Also:

varscore(β̂∗|Y ) = (XT X)−1XT var(diag(r)t∗)X(XT X)−1

= (XT X)−1XT diag(r)var(t∗)diag(r)X(XT X)−1

= (XT X)−1XT diag(r2)X(XT X)−1

since var(t∗) = I.

According to Wu (1986), the variance estimate taking the above variance form, is

bias-robust against error variance heteroscedasticity. This is because no homoscedas-

ticity assumption was made in deriving E(β̂∗) and var(β̂∗). This can also be un-

derstood intuitively by studying the resampling scheme: the ri remain fixed under

resampling and hence no assumption of homoscedasticity is made. This is in con-

trast to residual resampling, where the ri are not fixed but are treated as i.i.d.,

and so residual resampling is not bias-robust against heteroscedasticity. For both

score and residual resampling, β̂∗ is unbiased for β̂. However, in the presence of

heteroscedasticity, the variance estimator is unbiased for score resampling, but is

biased for residual resampling.

Note that any t∗ with mean 0 and variance I gives the above properties, and

there is no guidance on how to choose t∗ beyond this. Hence we are assuming that

the first and second moments of t∗ are all that matters.

2.2 Issues in hypothesis testing for linear models

While there is an abundance of literature on bootstrapping, and even bootstrapping

linear models, there is considerably less literature specifically related to the hypoth-

esis testing context. However, there is a symmetry between hypothesis testing and
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confidence intervals: a Wald test of H0 : βk = 0 at significance level α is equivalent

to checking if βk is in a 100(1− α)-percent confidence interval for βk (Seber, 1977).

Hence literature on bootstrap confidence intervals can further our understanding.

In the permutation-testing context, some previous authors have studied hypoth-

esis testing of linear models. The most notable of these is Anderson & Robinson

(2001), which describes the theoretical properties of different permutation-testing

methods, as well as presenting the results of various simulations. Anderson & Leg-

endre (1999) also provides the results of various simulations, and is therefore mainly

empirical. We will extensively use Anderson & Robinson (2001) in Chapter 5 when

we compare full and null model residual resampling.

Hall & Wilson (1991) present two “rules” for bootstrapping: to always use pivotal

statistics (covered in Section 2.3.1), and to “bootstrap to reflect the null hypothesis”.

In regard to the second point, if H0 : βk = 0 and E(β̂∗,k) = β̂k, construct the

bootstrap using P∗(|β̂∗,k−β̂k| > |β̂k|) and not using P∗(|β̂∗,k| > |β̂k|). Or alternatively

resample under the null hypothesis, such that E(β̂∗,k) = 0. These ideas were used

throughout the thesis, in particular in the construction of non-pivotal and pivotal

statistics for each type of resampling method.

In the literature, three general rules of bootstrap hypothesis testing have emerged,

as presented in the Section 2.3.

2.3 Three rules of bootstrap hypothesis testing

The three “known” rules of bootstrap hypothesis testing for improving the perfor-

mance of the test are:

1. Always use a pivotal statistic. (For better Type I error.)

2. For residual and score resampling, use modified rather than raw residuals (For

better variance estimation, hence, better Type I error.)

3. For homoscedastic data, use residual resampling. For heteroscedastic data,

use case or score resampling. (Residual resampling is more efficient for ho-
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moscedastic data, but not robust against heteroscedasticity.)

The reason for these rules will be explained below. We did not include Hall &

Wilson (1991)’s second rule in the list, but note that it is essential to bootstrap to

reflect the null hypothesis, in order to obtain a valid test.

2.3.1 Always use a pivotal statistic

A pivotal statistic is a statistic whose (asymptotic) distribution is not a function

of the model parameters. In this thesis, the pivotal statistic takes the form t∗ =

(β̂∗ − a)/ŝe∗(β̂∗) where a = 0 for resampling methods where E(β̂∗) = 0 and a = β̂

for resampling methods where E(β̂∗) = β̂ (exactly or approximately). This statistic

is pivotal for linear models in the sense that t∗
D→ N (0, 1). Any consistent estimator

of se(β̂∗) can be used as ŝe∗(β̂∗). In Chapter 3, we use the form σ̂2
∗(X

T X)−1 for

residual and score resampling, while we also consider the form σ̂2
∗(X

T
∗ X∗)−1 for case

resampling. We will consider another choice for standard error estimation in Chapter

4, and we will define the actual bootstrap P -values in Chapter 3.

We expect pivotal statistics to have better Type I properties than non-pivotal

statistics, for example as stated in Hall & Wilson (1991). Davison & Hinkley

(1997) provide an insight as to why this is the case. Davison & Hinkley (1997)

assert that bootstrap-t (i.e. pivotal statistics) have better approximation of cov-

erage probability than the percentile method (i.e. non-pivotal statistics), because

the bootstrap-t is second-order accurate (i.e. the coverage probability is accurate to

within O(N−1)), while the percentile method is only first-order accurate, although

equi-tailed confidence intervals (i.e. 2-tailed non-pivotal statistics) are second-order

accurate. They state that the special case of equi-tailed confidence intervals for

the percentile method is second-order accurate only because the first-order (N−1/2)

terms cancel out (zα and z1−α). Thus for a 1-tailed C.I. (or a 1-tailed test), the per-

centile method is only first-order accurate (O(N−1/2)). Also, Hall (1992) showed that

for linear models, pivotal statistics have Type I error accurate to within O(N−3/2),

whereas non-pivotal statistics only have Type I error accurate to within O(N−1).
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2.3.2 Use modified rather than raw residuals

In Section 2.1.1 we showed that varresidual(β̂∗) = (1/N)
∑N

i=1 r2
i (X

T X)−1 where ri

may be raw or modified residuals. In Section 2.1.3 we showed that

varscore(β̂∗) = (XT X)−1XT diag(r2)X(XT X)−1.

However, if the ri are raw residuals, then these variance estimators are biased.

These variance estimators are biased because var(ri) = σ2(1− hi) for the raw resid-

uals ri and hence:

E

(
1

N

N∑
i=1

r2
i

)
=

1

N
σ2

N∑
i=1

(1− hi)

=
N − p

N
σ2

In the context of residual resampling, the un-biased estimator would use instead

1
N−p

∑N
i=1 r2

i . In the context of score resampling, the un-biased estimator would use

instead XT diag(r2)(I − H)−1X, where H is the hat-matrix X(XT X)−1XT (Seber

(1977)). However, if modified residuals mi = ri√
1−hi

are used instead, where hi

is the ith diagonal element of H, then since (1/N)
∑N

i=1 m2
i = 1

N−p

∑N
i=1 r2

i and

XT diag(m2)X = XT diag(r2)(I −H)−1X, then the variance estimators become un-

biased.

That is, using modified residuals mi = ri/
√

1− hi, we have:

E(m2
i ) = E(r2

i [1− hi]
−1)

= (1− hi)
−1E(r2

i )

= (1− hi)
−1σ2(1− hi)

= σ2

The above equation holds for homoscedastic errors. For possibly heteroscedastic

errors, we have similarly:

E(m2
i ) = σ2

i .
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Thus we have varresidual(β̂∗) = (1/N)
∑N

i=1(m
2
i )(X

T X)−1 which is unbiased, since:

E[varresidual(β̂∗)] = E[(1/N)
N∑

i=1

(m2
i )(X

T X)−1]

= (1/N)Nσ2(XT X)−1

= σ2(XT X)−1

Also we have varscore(β̂∗) = (XT X)−1XT diag(m2
i )X(XT X)−1 which is unbiased,

since:

E[varscore(β̂∗)] = E[(XT X)−1XT diag(m2
i )X(XT X)−1]

= (XT X)−1XT diag(E[m2
i ])X(XT X)−1

= (XT X)−1XT diag(σ2
i )X(XT X)−1

for possibly heteroscedastic errors

= (XT X)−1XT σ2IX(XT X)−1

for homoscedastic errors

= σ2(XT X)−1

Hence for better Type I error of (non-pivotal) statistics, use modified residuals.

Note that since N−p
N

→ 1 and (I − H)I−1 → I as N → ∞, for large N , the

choice of modified versus raw residuals does not matter.

2.3.3 Use residual for homoscedastic data, but case/score

for heteroscedastic data

Liu & Singh (1992) state that bootstrap methods are either type E (efficient) or type

R (robust versus heteroscedasticity). They state that residual resampling is type E,

while case and score resampling are type R. In the homoscedastic case, the asymp-

totic variance of R-type is larger than that of E-type, so asymptotic relative efficiency

(ARE) is larger than 1, and ARE − 1 → 0 if and only if var(xi) → c as N → ∞.

However, in the heteroscedastic case, the true variance is different from the limit of

the E-type variance estimators, so E-type estimators are inconsistent and R-type es-

timators are actually
√

N -consistent and have asymptotic normal distribution. Liu
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& Singh (1992) show that these results can be extended/applied to general linear

regression (e.g. Theorem 5, p379). The variance estimators on page 373 imply the

use of the correct formula under heteroscedasticity, where the correct or sandwich

formula refers to the form of var(β̂) under heteroscedasticity, and the naive formula

refers to the form of var(β̂) if errors are i.i.d.. Refer to Chapter 4 of this thesis.

Thus, residual resampling should not be used if heteroscedasticity is suspected.

We expect that in this situation, score resampling should outperform case resampling

if the data are unbalanced, that is, if there are outliers in the data. According

to Wu (1986), case resampling neglects the unbalanced nature of regression data

(meaning, presumably, the presence of outliers and/or influential points). This

statement is supported by Hjorth (1994). According to Bose & Chatterjee (2002),

for case resampling, asymptotic results require the assumption that an influential

design point cannot alter the asymptotics. The reason is heuristically clear: if there

is an extreme outlier, results will depend on whether that observation is chosen

in the case resampling bootstrap resample. However, unbalanced data should not

affect score resampling. Bose & Chatterjee (2002) agree with Liu & Singh (1992)

that under homoscedastic errors, type E is more efficient than type R, and they state

that since both case and score resampling are type R, and have the same asymptotic

properties, they are difficult to compare without assuming extra conditions.

In Chapter 3, we will use simulation to assess these rules.



Chapter 3

Verifying the three bootstrap

“rules”

3.1 Introduction

The aim of this Chapter is to verify the three known “rules” of the bootstrap,

identified in Chapter 2, via simulation. These three “rules” are:

1. Use pivotal rather than non-pivotal statistics. (For better Type I error.)

2. For residual (and score) resampling, use modified rather than raw residuals.

(For better Type I error.)

3. Residual (E-type) versus case/score (R-type): if data are homoscedastic, use

residual rather than case/score resampling (residual resampling is more effi-

cient for homoscedastic data), but if data are heteroscedastic, use case/score

rather than residual resampling (residual resampling is less robust to het-

eroscedasticity).

3.2 Expectations

Note that to confirm “rule” 2, we only consider residual resampling, since the same

argument for the superiority of using modified residuals over raw residuals applies

19
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to score resampling, and further we only consider null model residual resampling,

since we will consider full versus null model residual resampling in Chapter 5.

We expect to find the following simulation results concerning the three known

“rules” (note that the reasons for the expectations are provided in Section 2.3):

1. We expect pivotal statistics to have accurate Type I error, and non-pivotal

statistics to have inflated Type I error. (The latter at least for small sample

size (N).)

2. We expect the non-pivotal statistic for null model residual resampling with

raw residuals to have inflated Type I error, while we expect the same but

with modified residuals to have more accurate Type I error, at least for small

sample size (N). This is because the variance of β̂∗ is biased for the variance

of β̂, in the sense of being smaller, if raw residuals are used, but the bias is

removed if modified residuals are used instead.

3. We expect residual resampling to be more efficient (that is, to have greater

size-adjusted power, defined in Section 3.4) than case/score resampling for

homoscedastic data, but we expect residual resampling to have less accurate

Type I error than case/score resampling for heteroscedastic data.

3.3 Simulation design

We conducted simulations to compare the performance of different test statistics and

different resampling methods in different situations. We conducted the simulation

on R version 2.9.2. Simulations were computationally intensive, and took a total of

around 200 hours computing time on my University desktop machine.

In all our simulations, the true form of the model was Y = 4 + 3X0 + β1X1 + ε,

where ε are the “true errors”, where we are testing H0 : β1 = 0, and β1 took the

value 0 for Type I simulations and the value 0.5 for Type II simulations.

For each simulation, we generated 1000 random datasets to estimate error rates

and power. We also used 1000 resamples to estimate the significance level for each
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dataset. These parameters ensure reasonable accuracy of Type I error and power

results based on bootstrap P -values. A total of 18 simulations in a 2×3×3 orthogonal

design were conducted, varying the following data properties:

• errors: homoscedastic or heteroscedastic

• X design: regular, normal uncorrelated or normal correlated X, as below.

• sample size: N = 16, 32, 64

We consider three X designs: regular, normal uncorrelated and normal corre-

lated X. The definition of the regular X design follows. Let Xbase = (1, 2, 3, 4)T ,

N = length of the response variable = number of rows of X. For N = 16, X =

[X0 X1] = [Xbase ⊗ 14×1 14×1 ⊗Xbase]

For N = 32, X = [X0 X1] = [Xbase ⊗ 18×1 18×1 ⊗Xbase]

For N = 64, X = [X0 X1] = [Xbase ⊗ 116×1 116×1 ⊗Xbase]

In the normal uncorrelated design, X was comprised of two independent “random”

vectors sampled from a N (0, var = 1.25) distribution, and in the normal corre-

lated design, X was comprised of two correlated “random” vectors sampled from

a N (0, var = 1.25 × (1 − 0.82)−0.25) distribution, with a correlation of 0.8. The

variances of normal X designs were chosen in such a way that det(E(XT X)) was

the same across the three X designs.

For the homoscedastic simulations, the true errors were defined as ε ∼ N (0, var =

4), whereas for the heteroscedastic simulations, the true errors were defined as ε =

max(1, X1) × N (0, var = 4/a) where a = 7.5 for regular X, a = 7.551 for normal

uncorrelated X and a = 8.413 for normal correlated X. Note that a was chosen so

that E(a2 × max(1, X1)
2) = 4, such that average error variance was the same for

heteroscedastic and homoscedastic simulations.

We consider three resampling methods: residual, score and case resampling.

Both raw and modified residuals were considered for residual resampling. Two

methods of score resampling were considered: t∗ ∼ N (0, 1) or t∗ randomly chosen

from the set of modified residuals with equal probability. Results were very similar

and so only the results for standard normal score resampling are presented here.
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Note that for score resampling, only modified residuals were considered for resam-

pling. For case resampling, we considered statistics based on using design X and

X∗ in standard error estimation in the calculation of pivotal statistics, but results

were similar and so we chose to present results based on design X∗.

For all three resampling methods, we calculated two types of statistics, non-

pivotal and pivotal. The pivotal statistic is t∗ = (β̂∗−a)/ŝe∗(β̂∗), where a = 0 for null

model residual resampling and a = β̂ for all other resampling methods, and ŝe∗(β̂∗)

has the form σ̂2
∗(X

T X)−1 for residual or score resampling, or the form σ̂2
∗(X

T
∗ X∗)−1

for case resampling (although another choice will be considered in Chapter 4). We

also define t to be t = β̂/ŝe(β̂), where ŝe(β̂) has the form σ̂2(XT X)−1, as usual. Then

the P -value of the pivotal statistic is defined as p = ][|t∗| ≥ |t|]/B. The P -value of

the non-pivotal statistic is defined as p = ][|β̂∗ − a| ≥ |β̂|]/B where a = 0 for null

model residual resampling and a = β̂ for all other resampling methods.

To summarize, for each simulation, we studied the properties of 3 resampling

methods (residual, case or score) × 2 resample statistics (non-pivotal or pivotal).

We considered both Type I error and power simulations.

3.4 Simulation analyses

This section explains the graphical and numerical analysis methods we have em-

ployed when comparing the different resampling methods in particular types of sim-

ulations.

Error rates have been estimated using Monte Carlo methods from 1000 datasets.

This means that at the 0.05 level, for example, the standard error of the Type I error

of an exact test is
√

p(1− p)/n, where p = 0.05 and n is the number of observations.

To aid in interpretation, we have included 95 percent CI bands for a Type I error of

0.05, within which an exact test would fall 95 percent of the time.

To obtain an overall assessment of the accuracy of Type I error across a set of sim-

ulations, we applied a global test to the set of P -values from the Type I simulations

of a statistic, testing the hypothesis that in each simulation the number of rejections
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at 0.05 level is Binomial(1000,0.05). Arranging the number of rejections/retentions

of H0 in a 2×k contingency table (for k simulations), we can calculate a chi-square

statistic, denoted as X2, with k degrees of freedom, to test if Type I error rate is

0.05 for each simulation. We applied this test across all 9 homoscedastic (or some-

times 9 heteroscedastic) simulations to get an overall sense of whether there was any

evidence of departure from a test size of 0.05.

In our Type II simulations, the unadjusted power at level 0.05 is simply the

proportion of the P -values generated by the simulation which are less than or equal

to 0.05. However, this measure is influenced by the size of a test, so we defined size-

adjusted power as the proportion of P -values which are less than or equal to the lower

five-percent quantile of the P -values from the corresponding Type I simulation. In

this way, power is adjusted to the true size of the corresponding Type I simulation,

as suggested in Lloyd (2005).

To compare (size-adjusted) power between two statistics for a Type II simula-

tion, we applied McNemar’s test to the two sets of p-values. We used the “mcne-

mar.test()” function in R, with continuity correction. We also applied McNemar’s

test across multiple simulations by summing McNemar statistics and degrees of

freedom for “global” inference of power difference across multiple simulations. As

previously, this was done to make global inference across all 9 homoscedastic simu-

lations, or sometimes, across all 9 heteroscedastic simulations.

3.5 Results

We obtained similar results across X design simulations (but not across homoscedas-

tic versus heteroscedastic simulations), so results were averaged in graphs across the

3 simulation designs (for example, for Type I error graphs, the arithmetical mean

of the 3 sizes was plotted at each sample size N), and in reporting global tests of

Type I error accuracy and power differences, results were combined across the 9

simulations in each of homoscedastic and heteroscedastic scenarios.

Figure 3.1 shows that for homoscedastic data, in general, for all the resampling
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Figure 3.1: A comparison of Type I error of non-pivotal versus pivotal statistics for

each of the resampling methods, for combined homoscedastic simulations. Note that

in each case, the pivotal statistic is closer to the nominal value (0.05).



3.5. RESULTS 25

0.01

0.02

0.05

sample size (N)

ty
pe

 I 
er

ro
r 

[lo
g 

sc
al

e]

16 32 64

0.01

0.05

0.09

non−pivotal
pivotal

Modified

0.01

0.02

0.05

sample size (N)

ty
pe

 I 
er

ro
r 

[lo
g 

sc
al

e]

16 32 64

0.01

0.05

0.09

non−pivotal
pivotal

Raw

Figure 3.2: A comparison of modified versus raw residual resampling, with regard

to Type I error, for homoscedastic data. Note that there is little difference for the

pivotal statistics, but the non-pivotal statistic for modified residual resampling has

accurate Type I error, while the non-pivotal statistic for raw residual resampling

has inflated Type I error
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Figure 3.3: A comparison for homoscedastic and heteroscedastic simulations of: (a)

Type I error for the pivotal statistics of each resampling method, (b) size-adjusted

power (that is, power ratios) of residual versus case resampling and residual versus

score resampling (power of residual/power of case and power of residual/power of

score). From (a), note that residual resampling has more accurate Type I error

for homoscedastic simulations, but less accurate Type I error for heteroscedastic

simulations. From (b), note that residual residual resampling has greater power

than case/score resampling for homoscedastic simulations (so is more efficient), but

has less power for heteroscedastic simulations.
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types, pivotal statistics have better Type I error accuracy than non-pivotal statistics.

In fact, when we combine results across all 9000 homoscedastic simulation datasets,

there is no evidence of significant departure from 0.05 level for the pivotal statistic

of residual resampling (X2
9 = 8.337, p = 0.501), while there is strong evidence of

inflation for the non-pivotal statistic (X2
9 = 32.842, p = 0.000). For case resampling,

there is evidence of departure from 0.05 level for the pivotal statistic (X2
9 = 27.305,

p = 0.001), as well as the non-pivotal statistic (X2
9 = 58.168, p = 0.000), but there

is greater Type I error inflation in the non-pivotal statistic (Figure 3.1). Similarly,

for score resampling, there is evidence of departure from 0.05 level for the pivotal

statistic (X2
9 = 99.326, p = 0.000), as well as the non-pivotal statistic (X2

9 = 225.179,

p = 0.000), but there is greater Type I error inflation in the non-pivotal statistic

(Figure 3.1). This demonstrates the better Type I error characteristics of pivotal

statistics for homoscedastic data.

Turning now to the results for heteroscedastic data, when we combine results

across all 9000 heteroscedastic simulation datasets, there is evidence of significant

departure from 0.05 level for the pivotal statistics for score and case resampling (note

that “rule” 3 implies that we do not consider residual resampling for heteroscedastic

data in this discussion), but the global test results show that the deviation from 0.05

level is smaller for the pivotal statistics than for the non-pivotal statistics. That is,

for case resampling, we have (X2
9 = 70.926, p = 0.000) for the pivotal statistic, but

(X2
9 = 100.190, p = 0.000) for the non-pivotal statistic. Similarly we have, for score

resampling (X2
9 = 156.168, p = 0.000) for the pivotal statistic, but (X2

9 = 283.642,

p = 0.000) for the non-pivotal statistic. Thus pivotal statistics also have better

Type I error for heteroscedastic data.

Figure 3.2 shows that for the non-pivotal statistic, for residual resampling and

homoscedastic data, using modified residuals leads to better Type I error than using

raw residuals, at least for small sample sizes. It also shows that for the pivotal

statistic, both using modified and raw residuals leads to accurate Type I error. In

fact, when we combine results across all 9000 homoscedastic simulation datasets,

there is no evidence of significant departure from 0.05 level for the pivotal statistics

of both modified (X2
9 = 7.368, p = 0.599) and raw (X2

9 = 8.337, p = 0.501)
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residual resampling, while for the non-pivotal statistics, there is no evidence of

significant departure from 0.05 level for the non-pivotal statistic of modified residual

resampling (X2
9 = 5.663, p = 0.773), while there is evidence of significant departure

from 0.05 level for the non-pivotal statistic of raw residual resampling (X2
9 = 32.842,

p = 0.000). Again, we do not consider heteroscedastic data in this discussion because

of rule 3.

Figure 3.3 (a) shows that for homoscedastic data, residual resampling tends

to have more accurate Type I error than case and score resampling. In fact, as

previously noted, there is no evidence of departure from 0.05 level for the pivotal

statistic for residual resampling (X2
9 = 7.368, p = 0.599), while there is evidence of

departure from 0.05 level for the pivotal statistic for case resampling (X2
9 = 27.305,

p = 0.001) and score resampling (X2
9 = 99.326, p = 0.000). Thus for homoscedastic

data, residual resampling has more accurate Type I error.

Figure 3.3 (a) also shows that this pattern does not hold for heteroscedastic data.

Residual resampling no longer has accurate Type I error, demonstrating a lack of

robustness to heteroscedasticity. Residual resampling (X2
9 = 154.463, p = 0.000)

tends to be further from nominal size (0.05) than case resampling (X2
9 = 70.926,

p = 0.000). While residual resampling is not further than score resampling (X2
9 =

156.168, p = 0.000) here, in Chapter 4 we will propose an improvement on the pivotal

statistic for score resampling, such that it also outperforms residual resampling for

heteroscedastic data.

Figure 3.3 (b) shows that for homoscedastic data, residual resampling has greater

power than both case and score resampling, after adjusting for size, demonstrating

greater efficiency. This is especially true for non-pivotal statistics, but for simplicity,

we only present the results for pivotal statistics. At N = 16 the residual over case

power ratio was approximately 112 percent and the residual over score power ratio

was approximately 101 percent. At N = 32 the residual over case power ratio was

approximately 104 percent and the residual over score power ratio was approximately

103 percent. At N = 64 both power ratios were approximately 105 percent. A

global McNemar test across all 9 homoscedastic simulations suggests that residual

resampling had significantly greater power than case resampling (X2
9 = 59.819,
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p = 0.000), and also greater power than score resampling (X2
9 = 28.939, p = 0.001).

So residual resampling seems to have higher size-adjusted power than case and score

resampling for homoscedastic simulations. Interestingly, Figure 3.3 (b) also shows

that residual resampling has clearly lower size-adjusted power than case and score

resampling for heteroscedastic simulations, but this is technically beyond the realm

of rule 3.

3.6 Discussion

From the literature, we were able to find three known “rules” for the bootstrap. Sim-

ulations have shown the benefit of using pivotal statistics in correcting inflated Type

I error for non-pivotal statistics to accurate Type I error, at least for homoscedas-

tic simulations. Simulations have also shown the benefit of using modified residuals

rather than raw residuals in residual resampling, at least for the non-pivotal statistic.

Finally, simulations have shown the benefit of using residual resampling (rather than

case/score resampling) for homoscedastic data, but not for heteroscedastic data.

We expected raw residual resampling to have inflated Type I error (for the non-

pivotal statistic) since (1/N)
∑N

i=1 r2
i is biased (smaller than) σ2, while we expected

modified residual resampling to have better Type I error (for the non-pivotal statis-

tic) since (1/N)
∑N

i=1 m2
i = (1/(N − 2))

∑N
i=1 r2

i > (1/N)
∑N

i=1 r2
i is un-biased for

σ2. However, for the pivotal statistic, there is little difference in Type I error ac-

curacy, presumably because of “rule” 1 and because the pivotal statistics for both

modified and raw null model residual resampling have standard normal asymptotic

distribution.

An interesting pattern in results was that “rule 2”, as defined in Section 3.1,

only applied for non-pivotal statistics (as expected in Section 3.2, because “rule 1”

implies that pivotal statistics generally have accurate size). Using a pivotal statistic

appeared to correct for other problems in resampling or construction of test statistic.

This pattern will also be seen in Chapter 5, and it suggests that pivoting a test

statistic can make a test approximately valid in a range of conditions.
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While we have identified the importance of using a pivotal statistic, a question

that remains is how to construct one. This question is studied in detail in Chapter

4. Another question that remains is whether residuals from the null model (that is,

under H0) or from the full model (that is, under H1) should be used for residual

resampling, which is studied in detail in Chapter 5.



Chapter 4

“Naive” or “Sandwich” variance

estimator?

4.1 Introduction

In Chapter 3, it was shown that pivotal statistics have better Type I error than

non-pivotal statistics. A pivotal statistic calculated on a bootstrap sample has the

general form t = (β̂∗ − a)/

√
var(β̂∗) where a = β̂ for full model resampling and

a = 0 for null model resampling (note that we only consider null model residual

resampling and not null model case/score resampling). In this Chapter, we focus

on the use of pivotal statistics, and consider the question: which standard error

estimator should be used when constructing a bootstrap pivotal statistic?

Two choices of estimators of var(β̂∗) are:

• naive var(β̂∗) = σ̂2
∗(X

T X)−1

• sandwich var(β̂∗) = (XT X)−1XT diag(r2
∗,i)X(XT X)−1

Here X represents the design matrix, r∗,i the ith residual, and σ̂2
∗ the estimated error

variance for a bootstrap sample.

The essential difference between these two estimators is that the naive estimator

assumes that residuals are homoscedastic, whereas the sandwich estimator does not.

31
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Previously, choice of standard error was considered to be dependent on data. For

example, Bose & Chatterjee (2002); Wu (1986); Freedman (1981); Moulton & Zeger

(1991); Friedl & Stadlober (1997) recommend the sandwich estimator for robustness

to heteroscedasticity. Here, we argue that choice of standard error estimate when

bootstrapping depends on resampling method.

The aim of this chapter is to determine which variance estimator should be used

for each resampling method, and whether this also depends on properties of the

data. Details of a new proposal for how it depends on resampling are in Subsection

4.2, and simulation results evaluating this proposal are in Subsection 4.3.

4.2 New proposal

We now propose a “fourth rule” for bootstrapping in regression situations:

Only use a naive standard error estimator when using a resampling

method that resamples residuals independently of explanatory variables.

Otherwise, use a sandwich standard error estimator.

Hence for score or case resampling linear models, one should use the “sandwich”

variance estimator that does not assume independence of residuals and explana-

tory variables. But for residual resampling, one should use the “naive” variance

estimator.

Note that the proposed rule applies irrespective of actual data properties- that

is, the sandwich variance estimator should be used for case/score resampling even

for homoscedastic data. We believe this to be a novel result.

The reasoning behind the proposed rule comes from studying the properties of

β̂∗ for different resampling methods, as defined in Davison & Hinkley (1997) and

Wu (1986).

Note that in Chapter 2, it was shown that for case and score resampling, the

resampling variance takes the form of the sandwich estimator, while for residual

resampling, the resampling variance takes the form of the naive estimator. These
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Table 4.1: Summary of the properties of the variance estimators of the different

resampling methods

Resampling method var(β̂∗) reference

Score (XT X)−1XT diag(r2)X(XT X)−1 Wu (1986)

Case (XT X)−1XT diag(r2)X(XT X)−1 + O(N−2) Moulton & Zeger (1991)

Residual σ̂2(XT X)−1 Moulton & Zeger (1991)

results have long been known in the literature (for example, Moulton & Zeger, 1991;

Wu, 1986). Hence the novelty of this Chapter is not the standard error results

themselves, but their application in bootstrap inference.

The properties of the variance estimators of each resampling method are sum-

marized in Table 4.1.

Note that in deriving the variance results of Chapter 2 (Table 4.1), no assump-

tions were made about data properties. The variance estimators are conditional on

the data and hence true for both homoscedastic and heteroscedastic data.

In Figure 4.1 we use simulation to illustrate the ideas of Table 4.1: that for score

resampling, the true variance of β̂∗ is the sandwich estimated variance (not the naive

estimated variance), while for case resampling, the true variance of β̂∗ is closer to

the sandwich estimated variance than the naive estimated variance, and that the

sandwich estimated variance approaches the true variance as N increases. These

simulations are for homoscedastic data: hence (counterintuitively) the sandwich

estimator for case/score resampling is correct even though data are homoscedastic.

We also illustrate that for residual resampling, the true variance of β̂∗ is the naive

estimated variance (not the sandwich estimated variance).

Given that the variance of β̂∗ is well-known (Bose & Chatterjee, 2002; Wu, 1986;

Freedman, 1981; Moulton & Zeger, 1991; Friedl & Stadlober, 1997), theory to the

effect of our proposed fourth rule has been available in the literature for some time.

However, it appears that, when heteroscedasticity is not suspected, the “naive”

standard error estimate is currently used for the pivotal statistic for score and case

resampling, and equivalently in constructing bootstrap-t confidence intervals, in
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Figure 4.1: A comparison of naive and sandwich estimators to the observed variance

of β̂∗, for different resampling methods. 50 homoscedastic datasets were generated,

and the variance of β̂∗ was estimated from 10000 resamples. Note that for score

resampling, v̂arsandwich(β̂∗) = var(β̂∗), for residual resampling v̂arnaive(β̂∗) = var(β̂∗),

and for case resampling, v̂arsandwich(β̂∗) ≈ var(β̂∗) when N is large.
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Davison & Hinkley (1997, pages 262,264), Hjorth (1994, page 188), MacKinnon

(2006, page S8) and Mammen (1993, pages 268,270).

Here previous literature relates variance estimation to data properties, whereas

we argue that the key decision between use of a naive or a sandwich estimator rests

with the method of resampling that is used and not on properties of the observed

data.

How are the sandwich and naive variance estimators related? We have argued

that a sandwich estimator should at times be used in place of the naive estimator,

but will this make any difference? In the below, we briefly discuss the relationship

between the two estimators.

Under a homoscedastic model, the sandwich and naive estimators are asymp-

totically equivalent, while under a heteroscedastic model, the sandwich estimator is

consistent whereas the naive estimator is not consistent (Freedman, 1981). Hence,

for homoscedastic data, for large N , use of sandwich versus naive estimator might

not matter. But for small sample sizes, the naive and sandwich estimators can be

very different (Figure 4.1). Hence we might expect quite different performance of

the two estimators for small samples, or for heteroscedastic data. And we would

expect it to make more difference for score resampling than case resampling (based

on Figure 4.1).

Another relationship between sandwich and naive estimators is that if we calcu-

late the unconditional expected value of the variances of β̂∗, assuming homoscedas-

ticity, they equal the naive estimator in all cases. Note that the expectation is for

the sampling distribution (with respect to Y ), not for the resampling distribution,

so in this situation the resampling method that has been applied is irrelevant.
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EY [v̂arsandwich(β̂∗|Y )] = (XT X)−1XT EY [diag(r2
i )]X(XT X)−1

= (XT X)−1XT σ2IX(XT X)−1

assuming data are homoscedastic and mod. residuals mi

are used

= σ2(XT X)−1

The final object in the above equation has the form of a naive variance. Note

however that it is the actual, that is, conditional variance that is of greater rele-

vance as seen in Figure 4.1, but what this result shows is that we expect sandwich

estimators to be centred around the same value as their naive counterparts.

Note that Kauermann and Carroll (2001) have shown that for homoscedastic

data, the naive variance estimator is more efficient than the sandwich estimator,

in the sense that the variance of the former estimator is less than the variance of

the latter estimator. However, for heteroscedastic data, the sandwich estimator is

consistent whereas the naive estimator is not. So the sandwich variance estimator

gains robustness at the cost of efficiency.

4.3 Simulation results

Simulations were conducted to explore the effect of choice of standard error estimator

on Type I error of pivotal statistics.

4.3.1 Simulation design

The same simulation design was used as in Chapter 3. However, we only considered

case and score resampling. Also, while we only considered naive pivotal statistics in

Chapter 3, we consider both naive and sandwich pivotal statistics in this Chapter.

In addition, we do not investigate non-pivotal statistics here, and we do not investi-

gate residual resampling because the sandwich estimator is not appropriate for this

resampling method. We only considered Type I error simulations.
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While in Chapter 3, we only considered naive statistics for both t∗ and t in the

construction of pivotal statistics, here we considered sandwich and naive statistics

for both t∗ and t. So we define t∗(naive) = (β̂∗ − a)/ŝe∗(naive)(β̂∗) where a = β̂ for this

Chapter. Similarly, we define t∗(sandwich) = (β̂∗ − a)/ŝe∗(sandwich)(β̂∗) where a = β̂.

Also, tnaive = β̂/ŝenaive(β̂) and tsandwich = β̂/ŝesandwich(β̂). The pivotal statistic P -

value is still defined as p = ][abs(t∗) ≥ abs(t)]/B, but now both t∗ and t may take

both naive and sandwich form.

Thus, to summarize, for each simulation, we considered 2 resampling methods

(case or score) × 2 resample statistics (naive pivotal or sandwich pivotal) × 2 sample

statistics (naive or sandwich), and we only considered Type I simulations.

As previously, we generated 1000 random datasets to estimate error rates and

power. We also used 1000 resamples to estimate the significance level for each

dataset. Since we considered three designs for X and three sample sizes N , it

follows that the homoscedastic simulations consist of 9000 datasets, and also the

heteroscedastic simulations consist of 9000 datasets.

4.3.2 Results

Figure 4.2 displays the Type I error rates for score resampling (Score) and case

resampling (Case), averaged across all three homoscedastic designs (Figure 4.2 (a))

and all three heteroscedastic designs (Figure 4.2 (b)). The figure compares the

pivotal statistics based on the sandwich and naive variance estimators. There were

similar results for all X designs, hence averages are reported here.

Figure 4.2 (a) shows that for homoscedastic simulations, for tnaive, for score

resampling, the bootstrap pivotal statistic based on the naive estimator (t∗(naive))

has inflated Type I error, while the bootstrap pivotal statistic based on the sandwich

estimator (t∗(sandwich)) has quite accurate Type I error. In fact, combining results

across all 9000 homoscedastic simulation datasets, there is no evidence of significant

departure from 0.05 level (X2
9 = 11.474, p = 0.245) for the sandwich statistic, in

contrast to strong evidence of inflation for the naive statistic (X2
9 = 99.326 p =

0.000).
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Figure 4.2: A comparison of naive and sandwich estimators for normal score resam-

pling and case resampling for (a) homoscedastic designs and (b) heteroscedastic de-

signs. For both score and case resampling, we consider both tnaive and tsandwich. Note

that for score resampling and using tnaive, the sandwich bootstrap pivotal statistic

has more accurate Type I error, but for case resampling, the naive bootstrap pivotal

statistic has more accurate Type I error (for tnaive). However, if using tsandwich, the

sandwich bootstrap pivotal statistic has more accurate Type I error.
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Figure 4.2 (a) also shows that for homoscedastic simulations, for case resam-

pling (for tnaive), the bootstrap pivotal statistic based on the sandwich estima-

tor (t∗(sandwich)) has conservative Type I error, while the bootstrap pivotal statis-

tic based on the naive estimator (t∗(naive)) has surprisingly accurate Type I error.

When we combine results across all 9000 homoscedastic simulation datasets, there is

strong evidence of departure from 0.05 level (X2
9 = 27.305, p = 0.001) for the naive

statistic, while there is strong evidence of conservatism for the sandwich statistic

(X2
9 = 105.810 p = 0.000). In the case of the naive statistic, the magnitude of the

departure from 0.05 level appeared to be small (Figure 4.2 (a)).

However, irrespective of whether the sandwich or the naive estimator was used

in resampling, the observed test statistic t used the naive estimator in both above

cases. If instead the sandwich estimator was used for observed t as well as for t∗,

we obtain the opposite result for case resampling. Figure 4.2 (a) shows that for

homoscedastic simulations, for case resampling (for tsandwich), the bootstrap pivotal

statistic based on the sandwich estimator (t∗(sandwich)) has generally accurate Type

I error. When we combine results across all 9000 homoscedastic simulations, there

is strong evidence of a departure from 0.05 level (X2
9 = 20.884, p = 0.013), but the

magnitude of this departure is small (Figure 4.2 (a)). We do not report results for

tsandwich and t∗(naive), because we cannot see any situations in which it would make

sense to use that approach.

The above results were based on homoscedastic simulations. When we consider

the heteroscedastic simulations, the difference between naive and sandwich pivotal

statistics disappears for score resampling (with both having inflated Type I error)

while the result for case resampling remains the same as previously.

Figure 4.2 (b) shows that for the heteroscedastic simulations, for tnaive, for score

resampling, the naive and sandwich bootstrap statistics both have inflated Type

I error and both perform similarly. There is strong evidence of inflation for both

the naive (X2
9 = 156.168 p = 0.000) and the sandwich (X2

9 = 130.737 p = 0.000)

statistics.

Figure 4.2 (b) also shows that for the heteroscedastic simulations, for score resam-

pling, use of a sandwich bootstrap pivotal statistic (t∗(sandwich)) and a sandwich esti-
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mator for observed t (tsandwich) does not lead to accurate Type I error (X2
9 = 146.000

p = 0.000). In fact, Figure 4.2 shows that use of a sandwich pivotal statistic with

sandwich for observed t does not lead to accurate Type I error even for the ho-

moscedastic simulations (X2
9 = 172.695 p = 0.000). This is the opposite result from

that for case resampling.

Figure 4.2 (b) shows that for the heteroscedastic simulations, for tnaive, for case

resampling, the sandwich bootstrap pivotal statistic has conservative Type I error,

while the naive bootstrap pivotal statistic has moderately accurate Type I error.

Combining results over all 9000 heteroscedastic simulation datasets, there is only

moderate evidence of departure from 0.05 level for the naive statistic(X2
9 = 70.926

p = 0.000), while there is strong evidence of conservatism for the sandwich statistic

(X2
9 = 117.179 p = 0.000).

If instead, for the heteroscedastic simulations, we use the sandwich estimator for

observed t, we again obtain the opposite result. Figure 4.2 (b) again shows that the

sandwich bootstrap pivotal statistic has generally accurate Type I error. When we

combine results across all 9000 heteroscedastic simulations, there is only moderate

evidence of departure from 0.05 level (X2
9 = 57.495, p = 0.000). Again, note that

it would not make sense to use the sandwich estimator for observed t but the naive

estimator in resampling.

4.4 Discussion

In the Chapter, we have proposed a fourth “rule”, that for case and score resampling,

use of a sandwich estimator in the bootstrap pivotal statistic will improve Type I

error. Simulations have shown the benefit of this approach for score resampling,

in correcting from inflated Type I error for naive statistic to reasonably accurate

Type I error for the sandwich statistic, at least in the homoscedastic simulations.

Why this approach did not improve Type I error for heteroscedastic simulations is

unclear, and is a possible field for future research. For case resampling, a sandwich

estimator did not improve the size accuracy of the test, unless the observed statistic

was also of sandwich form. A possible reason for this may be that for case resam-
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pling, a correlation model (with random X) applies (Freedman, 1981), in which

case the sandwich is the correct sample variance of β̂ (Seber, 1977). Whereas for

score resampling, a regression model (conditional on X) applies (Freedman, 1981;

Wu, 1986), so the naive variance is the correct form for var(β̂) for homoscedastic

simulations.

4.5 Conclusions.

Theory (Table 4.1) suggested that one should use the sandwich variance estimator

in the resampled pivotal statistic. Simulations (Figure 4.2) have borne this out to

some extent; for score resampling for homoscedastic data, and for case resampling for

both homoscedastic and heteroscedastic data, a pivotal statistic using the sandwich

variance estimator preserves Type I error closest to 0.05.

An issue however is the choice of standard error estimator for the observed test

statistic t. In view of our simulation results (Figure 4.2), we recommend the naive

estimator for score (conditional on X) and sandwich for case (random X).

Hence we recommend the use of the sandwich estimator for score resampling in

general. For case resampling, one should use a sandwich variance estimator in the

pivotal statistic if one uses a sandwich estimator of se(β̂). Here, we did not discuss

power, because theory suggests that method of bootstrapping might affect power

more so than method of pivoting.
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Chapter 5

Resampling from the full or null

model?

In residual resampling, recall that we resample residuals. But in hypothesis testing,

there are two types of residuals: those calculated under the full model (assuming H1

is true) and those calculated under the null model (assuming H0 is true). A natural

question is: do we resample residuals under the full model (under H1) or the null

model (under H0)?

In this Chapter, we will change notation to be consistent with Anderson &

Robinson (2001), a paper which we will follow closely. We write the linear model

as:

Y = a1X + bZ + ε

where X and Z are vectors and Y , X and Z have been centred (so no intercept

term), and we are testing H0 : b = 0.

Let RZ|X be the residuals from a linear regression of Z on X. A useful “trick”

of Anderson & Robinson (2001) is that the above linear model is equivalent to:

Y = aX + bRZ|X + ε

where we are testing H0 : b = 0. We use X and RZ|X rather than X and Z, because

X and RZ|X are orthogonal, which simplifies later working.

Let RY |XZ be the residuals from a linear regression of Y on both X and Z (or

43
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equivalently on both X and RZ|X). Let RY |X be the residuals from a linear regression

of Y on X alone.

In this Chapter, the “true model” is Y = aX+bRZ|X +ε, and since we are mainly

interested in Type I error (although Subsection 5.4 discusses power properties), we

may assume b = 0. Also, the “fitted” null model is Y = âX +RY |X , and the “fitted”

full model is Y = âX + b̂RZ|X + RY |XZ .

Hence full model resampling is defined as:

Y∗(full) = âX + b̂RZ|X + R∗
Y |XZ

and null model resampling is defined as:

Y∗(null) = âX + R∗
Y |X .

We noted in Chapter 2 that, for full model residual resampling, E(β̂∗) = β̂. In

the current notation, for full model residual resampling, E(b̂∗) = b̂, and for null

model residual resampling, E(b̂∗) = 0.

These are both approximations to “true model resampling”, defined as:

Y∗(true) = aX + ε∗Y |X

where εY |X = Y − aX and a is the coefficient of X in the “true” model (defined

above). Since a is generally unknown, true model resampling is a theoretical con-

struct.

We will be primarily interested in t∗(null), t∗(full) and t∗(true), test statistics of the

form b̂∗√
v̂ar∗(naive)(b̂∗)

based on Y∗(null), Y∗(full) and Y∗(true), where v̂ar∗(naive)(b̂∗) is the

naive variance estimator of b̂∗ for a given bootstrap sample.

The aim of this chapter is to determine what type of residuals (residuals from

the null model or residuals from the full model) should be used for resampling.

We specifically consider residual resampling, but the same problem arises in score

resampling.

This chapter focuses on the properties of pivotal and non-pivotal statistics un-

der full versus null model residual resampling, in particular on the asymptotic cor-

relations of t-statistics generated by the two methods, compared to an ideal “true
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bootstrap test” (defined in Appendix B). This work closely follows Anderson &

Robinson (2001) who studied properties of different methods of permutation testing

for linear models. We will extend the results of Anderson & Robinson (2001) to the

bootstrapping context.

Since this Chapter mainly deals with asymptotic results, we make the assumption

that limN→∞(1/N)
∑

X2 and limN→∞(1/N)
∑

R2
Z|X are of order Op(1) (Brzezniak

& Zastawniak, 1999; Serfling, 1980), and also that ε has finite variance σ2. Since

(N − 2)/N → 1 as N →∞, our results hold whether raw or modified residuals are

used, but in the following working we use raw residuals.

5.1 Equivalence of r and t statistics under permu-

tation testing

In Anderson & Robinson (2001), π is used to denote permutation, and may be further

specified to denote exact, full, or null permutation. For our bootstrap results, we

use ∗ to denote bootstrap resampling, i.e. we replace permutation π by bootstrap

resample ∗.

Anderson & Robinson (2001) compared three key permutation methods, when

using the correlation coefficient as the test statistic:

(1) r2
π(true) =

(
∑

(Yπ(T ) − aπ(T )X)RZ|X)2

∑
(Yπ(T ) − aπ(T )X)2

∑
R2

Z|X

where aπ(T ) =
∑

Yπ(T )X/
∑

X2 and Yπ(T )−aπ(T )X is the residual of Yπ(T ) removing

the effect of X and Yπ(T ) = aX + επ. Note that they called it the “exact” method.

(2) r2
π(null) =

(
∑

(Yπ(F ) − aπ(F )X)RZ|X)2

∑
(Yπ(F ) − aπ(F )X)2

∑
R2

Z|X

where aπ(F ) =
∑

Yπ(F )X/
∑

X2 and Yπ(F ) = âX + Rπ
Y |X . This statistic was at-

tributed to Freedman & Lane (1983), hence they called it r2
π(FreedmanLane).

(3) r2
π(full) =

(
∑

(Rπ
Y |XZ − kπX)RZ|X)2

∑
(Rπ

Y |XZ − kπX)2
∑

R2
Z|X
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where kπ =
∑

Rπ
Y |XZX/

∑
X2 and Rπ

Y |XZ are the permuted least-squares residuals

of the full model. This statistic was attributed to ter Braak (1992), hence they

called it r2
π(terBraak).

Theorem 1. Let f(r) = sign(r)
√

(N−p)r2

1−r2 , which is a monotonic function. Let

t = b̂/ŝe(b̂) and let tπ(null) and tπ(full) be as defined in Appendix B. Then (A) t = f(r),

(B) tπ(null) = f(rπ(null)), (C) tπ(full) = f(rπ(full)), (D) tπ(true) = f(rπ(true)). Hence the

t-statistics are equivalent to their r-statistic counterparts.

Proof: see Appendix B.

Anderson & Robinson (2001) found that for the permutation test, the Freedman

& Lane (1983) statistic (r2
π(null)) has asymptotic correlation one with the true method

statistic (r2
π(true)), but the ter Braak (1992) statistic (r2

π(full)) does not.

In particular, they showed the following result.

The statistics
√

Nrπ(null),
√

Nrπ(full),
√

Nrπ(true) all converge in distribu-

tion to N (0, 1), and:




1 1
√

1− r2

1 1
√

1− r2

√
1− r2

√
1− r2 1




−1

cor(rπ(true), rπ(null), rπ(full)) → I

(5.1)

where r is the partial correlation calculated from the original sample.

These results were derived by finding expressions for rnull and rfull in terms of

a third quantity, rKennedy. The method of Kennedy (1995) is an approximation to

null model resampling of theoretical interest. The Kennedy (1995) method does

not account for all sources of uncertainty, and thus produces inflated Type I error.

However, Anderson & Robinson (2001) used rKennedy as part of the working for

relating rnull and rfull, but in our analogous proofs for the bootstrap case, we relate

t∗(null) and t∗(full) directly.
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5.2 Relation between permutation-testing t-statistics

The Delta method can be used to show how tπ(null), tπ(full) and tπ(true) are asymptot-

ically related for permutation testing, building on the Anderson & Robinson (2001)

results quoted in the above Subsection.

Corollary 1.




1 1
√

1− r2

1 1
√

1− r2

√
1− r2

√
1− r2 1




−1

cor(tπ(true), tπ(null), tπ(full)) → I

Proof. From the Delta Method, we know that:

var(f(x)) ≈ f ′(x)2var(x)

cov(f(x), f(y)) ≈ f ′(x)f ′(y)cov(x, y)

Thus for any monotonic differentiable function f ,

correlation(f(x), f(y)) = cov(f(x), f(y))/
√

var(f(x))var(f(y))

≈ f ′(x)f ′(y)cov(x, y)/
√

f ′(x)2var(x)f ′(y)2var(y)

= cov(x, y)/
√

var(x)var(y)

= correlation(x, y)

Hence the Anderson & Robinson (2001) result of equation 5.1 applies to t-statistics.

This Corollary implies that for permutation testing, the t-statistics for true model

and null model permutation have asymptotic correlation one, whereas the t-statistics

for null model and full model permutation do not. Anderson & Robinson (2001)

argued that null model permutation is in this sense “superior” to full model permu-

tation.

But note that we are interested in the bootstrap, considered in the following

section.
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5.3 Application to the bootstrap

Having shown the asymptotic correlation for permutation t-statistics, we now con-

sider the asymptotic correlation of bootstrap t-statistics.

Theorem 2. t∗(true), t∗(null), t∗(full)
D→ N (0, 1) with correlation matrix:




1 1
√

1− r2

1 1
√

1− r2

√
1− r2

√
1− r2 1




−1

cor(t∗(true), t∗(null), t∗(full)) → I

This is the same result as Anderson and Robinson’s for r2-type statistics under

permutation testing, which we have already extended to permutation t-statistics

using the Delta Method in the previous subsection.

For Theorem 2 however we derived the result from first principles rather than

building on the results of Anderson & Robinson (2001).

For the following, let all t-statistics refer to the bootstrap context. An outline of

the proof follows. See Appendix B for full details.

First, we use the Central Limit Theorem to show that b̂∗
se(b̂∗)

D→ N (0, 1) for true,

null and full resampling (Appendix B , “Proof of Theorem 2”). Since ŝe∗(b̂∗)
se(b̂∗)

p→ 1

in each case (Appendix B, Lemma 1), we use Slutsky’s Theorem to show that

t∗
D→ N (0, 1) for true, null and full resampling. An important difference however for

t∗(full) is that se(b̂∗(full)) = (1/N)
∑

R2
Y |X∑

R2
Z|X

(1 − r2) whereas se(b̂∗(null)) = (1/N)
∑

R2
Y |X∑

R2
Z|X

(Appendix B, Lemma 1).

Next, we compute the correlation matrix after deriving identities relating t∗(null)

to both t∗(full) and t∗(true) (Appendix B, Lemma 2). That is, we first show that t∗(null)

is related to t∗(full) by the identity:

t∗(full) = t∗(null) ×
ŝe∗(b̂∗(null))

ŝe∗(b̂∗(full))
− b̂

∑
R∗

Z|XRZ|X∑
R2

Z|X × ŝe∗(b̂∗(full))
. (5.2)

And similarly, t∗(null) is related to t∗(true) by the identity:

t∗(true) = t∗(null)

ŝe∗(b̂∗(null))

ŝe∗(b̂∗(true))
+ (â− a)

∑
X∗RZ|X

ŝe∗(b̂∗(true))
. (5.3)
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In computing cor(t∗(null), t∗(full)) = E(t∗(null)t∗(full)), we substituted the following

convergence results into equation (5.2), giving the desired result:

ŝe∗(b̂∗(null))

ŝe∗(b̂∗(full))

√
1− r2 p→ 1

and

E(t∗(null) ×
b̂
∑

R∗
Z|XRZ|X∑

R2
Z|X ŝe∗(b̂∗(full))

)

√
1− r2

r2

p→ 1.

Hence we derived cor(t∗(null), t∗(full))
1√

1−r2

p→ 1.

For cor(t∗(null), t∗(true)) = E(t∗(null)t∗(true)), however, we derived the following con-

vergence results:

ŝe∗(b̂∗(null))

ŝe∗(b̂∗(true))

p→ 1

and

(â− a)E(
(
∑

R∗
Y |XRZ|X)(

∑
X∗RZ|X)

ŝe∗(b̂∗(null))× ŝe∗(b̂∗(true))
)

p→ 0.

Substituting these into equation (5.3), we derived cor(t∗(null), t∗(true))
p→ 1.

The outline of the proof is now complete.

Note that we used the same strategy (relate t∗(null) and t∗(full) and then calculate

correlation) as Anderson & Robinson (2001), but different detail. Also, some results

used in permutation testing (
∑

Rπ2 =
∑

R2) only apply asymptotically for the

bootstrap (
∑

R∗2/N
p→ ∑

R2/N). The end result is identical: as for Anderson &

Robinson (2001), t∗(null) has asymptotic correlation 1 with t∗(true) but t∗(full) does not,

which Anderson & Robinson (2001) argue makes null model resampling superior.

5.4 Power of full versus null model residual re-

sampling

As a consequence of the above working, we predict that full model residual resam-

pling will have greater power than null model residual resampling, at least for the

non-pivotal statistic, which would suggest that full model residual resampling is

preferable to null model residual resampling.
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The reason we know this is that in Appendix B, Lemma 1:

se(b̂∗(full))

se(b̂∗(null))

1√
1− r2

p→ 1

meaning that se(b̂∗(full)) is smaller than se(b̂∗(null)) by a factor of
√

1− r2 for Type II

simulations.

So we predict that when non-pivotal statistics are used, the test based on null

model residual resampling is less powerful than that based on full model residual

resampling. However, when pivotal statistics are used, since they have the same

asymptotic distribution, we expect no difference in power.

5.5 Application from pivotal to non-pivotal statis-

tics

While the results of Anderson & Robinson (2001) for permutation testing apply to

pivotal statistics, and our bootstrap results apply also to pivotal statistics, we now

show that the correlation result of Theorem 2 also applies to non-pivotal statistics.

In fact, as in Chapter 3, differences between resampling methods often occur for

non-pivotal rather than pivotal statistics, as will be shown in the simulation sections

below.

Corollary 2.




1 1
√

1− r2

1 1
√

1− r2

√
1− r2

√
1− r2 1




−1

cor(b̂∗(true), b̂∗(null), (b̂∗(full) − b̂)) → I

Proof. The argument is as follows. We showed in the proof of Theorem 2 that
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b̂∗
se(b̂∗)

D→ N (0, 1). Hence:

cor

(
b̂∗(null)

se(b̂∗(null))
,

b̂∗(full)

se(b̂∗(full))

)
= E

(
b̂∗(null)

se(b̂∗(null))
× b̂∗(full)

se(b̂∗(full))

)

= E

(
t∗(null) × t∗(full) ×

ŝe∗(b̂∗(null))

se(b̂∗(null))
× ŝe∗(b̂∗(full))

se(b̂∗(full))

)

p→ E(t∗(null) × t∗(full)) by Slutsky’s Theorem

= cor(t∗(null), t∗(full))

We finally note that the LHS refers to the correlation of non-pivotal statistics, while

the RHS, being the correlation of pivotal statistics, uses the correlation result of

Theorem 2. A similar argument also applies for null versus true model resampling.

5.6 Simulation results

Simulations were conducted to explore the effect of choice of residual (full/null

model) in residual resampling on Type I error and power of pivotal and non-pivotal

statistics.

This point is pertinent because we predict that full model resampling will be

more computationally efficient than null model resampling if one wishes to test many

different null hypotheses with the same alternate hypothesis. Also, our theoretical

results suggest that null model resampling should have better Type I properties

than full model resampling, based on being closer to the ideal true bootstrap test.

With regard to power, our working predicts that full model resampling should have

greater power than null model resampling.

5.6.1 Simulation design

The same simulation design is used as explained in Chapter 3, but note that we

will only consider the nine homoscedastic simulations here: 3 sample sizes (N =

16, 32, 64) × 3 design matrices (regular, normal uncorrelated, normal correlated).
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Because residual resampling is not appropriate for heteroscedastic data (Rule 3), we

do not consider heteroscedastic simulations.

As before, raw power is defined as the rate of rejections at level 0.05 for Type

II simulations, while adjusted power is defined as the rate of rejections for Type II

simulations at the level defined as the lower 5 percent quantile of the corresponding

Type I simulation (where we test H0: b = 0), along the lines of Lloyd (2005), as in

Chapter 3. Both pivotal and non-pivotal statistics were compared.

5.6.2 Results

Figure 5.1 displays the Type I error rates, the raw power ratios, and the size-adjusted

power ratios for null and full model resampling for the homoscedastic simulations

(i.e. averaged over the homoscedastic simulations).

Figure 5.1 (a) shows that with regard to Type I error, the pivotal statistics for

both full and null model resampling have quite accurate size. In fact, combining

results across all 9000 homoscedastic datasets, there is no evidence of significant

departure from 0.05 level for either full (X2
9 = 6.968, p = 0.640) or null model

(X2
9 = 7.368, p = 0.599) resampling. So there is little difference in size-accuracy

between the pivotal statistics for full and null model resampling.

However, Figure 5.1 (a) shows that with regard to Type I error, the non-pivotal

statistic for null model resampling had quite accurate size but the non-pivotal statis-

tic for full model resampling had inflated size. In fact, combining results across all

9000 homoscedastic datasets, there is no evidence of any significant departure from

0.05 level for null model resampling (X2
9 = 5.663, p = 0.773), but there is strong evi-

dence of significant departure from 0.05 level for full model resampling (X2
9 = 69.011,

p = 0.000), with Type I error tending to be inflated by about 50 percent for small

sample sizes. So for the non-pivotal statistic, null model resampling has clearly

better Type I error than full model resampling.

Figure 5.1 (b) also shows that with regard to raw power, there was no evidence

of a difference for the pivotal statistics. In fact combining results across all 9000

homoscedastic datasets, there is no evidence of a significant difference in power
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Figure 5.1: A comparison of null versus full model residual resampling, with regard

to (a) Type I error, (b) raw power and (c) size-adjusted power. Ratios of power

are presented (power for null/power for full) for clarity. Note that: (a) only the

non-pivotal statistic for full model resampling has inaccurate size; (b) full model re-

sampling has greater raw power for the non-pivotal statistic; (c) after size correction

the power increase is very small.
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(X2
9 = 2.122, p = 0.989).

However, Figure 5.1 (b) shows that the non-pivotal statistic for full model re-

sampling had significantly greater raw power than for null model resampling. In fact

combining results across all 9000 homoscedastic datasets, there is strong evidence of

significant difference in power (X2
9 = 250.328, p = 0.000). At N = 16 the null over

full power ratio was approximately 72 percent, while at N = 32, the null over full

power ratio was approximately 90 percent. This is not unexpected given the higher

Type I error rate of full model resampling.

When adjusting for differences in Type I error, the power advantage of full model

resampling almost disappeared, as in Figure 5.1 (c). Overall, there was a slight

increase in power (At N = 16, null/full was approximately 99 percent, at N = 32,

null/full was approximately 96 percent) which was however significant (X2
9 = 40.648,

p = 0.000). But while there were significant differences, there was no general pattern:

for example, for the normal uncorrelated simulations, the size-adjusted powers for

N = 16, 32, 64 were:

full model, non-pivotal: 0.109, 0.313, 0.547

null model, non-pivotal: 0.117, 0.281, 0.555

Thus for these simulations, full model resampling had slightly higher power (average

for full: 0.323, average for null: 0.318), but null model resampling had higher power

for N = 16, 64. These small differences in power look to be due to sample variation,

but were significant on McNemar’s test (X2
3 = 32.73693, p = 0.000). The reason

we think this happened is that adjusted P -values are calculated as a function of a

sample quantile from Type I simulations (proportion of P -values less than or equal

to the lower 5 percent quantile), which introduces sample variation not accounted

for in McNemar’s test.

Hence the difference in raw power for non-pivotal statistics observed in Figure 5.1

(b) is most likely entirely due to Type I error inflation of full model resampling.
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5.7 New theorem for non-pivotal statistics

Our simulations showed that with regard to Type I error, the pivotal statistics

of both null and full model resampling had accurate size, while the non-pivotal

statistic of null model resampling had accurate size, but the non-pivotal statistic of

full model resampling had inflated size. This result was not expected for the pivotal

statistics, given our asymptotic correlation results. To explain this, we re-considered

the situation, and we now present a Theorem which proposes that Type I error

accuracy depends not on the asymptotic correlation with the ideal true bootstrap

test, but on the asymptotic (marginal) distribution of the test statistic.

Theorem 3. Under H0 : b = 0, while t∗(null), t∗(full)
D→ t and

b̂∗(null)

se(b̂)

D→ b̂

se(b̂)
,

b̂∗(full)−b̂

se(b̂)

1√
1−r2

D→ b̂

se(b̂)
.

Hence, under H0 : b = 0, while the resampling distributions of t∗ and
b̂∗(null)

se(b̂)
are

consistent for the null distribution of t and b̂

se(b̂)
respectively, the distribution of the

non-pivotal statistic under full model resampling differs from its desired null distri-

bution by a factor of
√

1− r2.

Proof. Note that Theorem 3 only applies under the condition H0 : b = 0.

We know from the Central Limit Theorem (and Slutsky’s Theorem) that t has

asymptotic standard normal distribution, while we showed in the proof of Theorem

2 that t∗(null) and t∗(full) also have asymptotic standard normal distribution, that is

t∗(null), t∗(full)
D→ t.

However, the situation is different for the non-pivotal statistic. We know from the

Central Limit Theorem that b̂

se(b̂)
has asymptotic standard normal distribution. We

now show that
b̂∗(null)

se(b̂)
has asymptotic standard normal distribution, while

b̂∗(full)−b̂

se(b̂)
×

1√
1−r2 has asymptotic N (0, 1) distribution.

In the following, we use the result (R1) that var(b̂) = σ2/
∑

R2
Z|X , from Seber

(1977), but adjusted to the notation of this chapter. We also use Result 3 and

Lemma 1 of Appendix B, see this appendix for more details. Now, for null model
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resampling:

v̂ar∗(b̂∗(null))

var(b̂)

p→
(1/N)

∑
R2

Y |X/
∑

R2
Z|X

var(b̂)
Lemma 1 Part 1

=
(1/N)

∑
R2

Y |X/
∑

R2
Z|X

σ2/
∑

R2
Z|X

from (R1)

p→
(1/N)

∑
ε2
Y |X

σ2
Result 3

p→ 1 by Weak Law of Large Numbers

Noting that
b̂∗(null)

se(b̂)
= t∗(null)× ŝe∗(b̂∗(null))

se(b̂)
, and using Slutsky’s Theorem, it follows that

since t∗(null) has an asymptotic standard normal distribution, so does
b̂∗(null)

se(b̂)
. Hence

b̂∗(null)

se(b̂)

D→ b̂

se(b̂)
.

However, for full model resampling:

v̂ar∗(b̂∗(full) − b̂)

var(b̂)

1

1− r2

p→
(1/N)

∑
R2

Y |X/
∑

R2
Z|X

var(b̂)
Lemma 1 Part 2

=
(1/N)

∑
R2

Y |X/
∑

R2
Z|X

σ2/
∑

R2
Z|X

from (R1)

p→
(1/N)

∑
ε2
Y |X

σ2
Result 3

p→ 1 by Weak Law of Large Numbers

Noting that
b̂∗(full)−b̂

se(b̂)
= t∗(full) × ŝe∗(b̂∗(full)−b̂)

se(b̂)
, and using Slutsky’s Theorem, it follows

that, since t∗(full) has an asymptotic standard normal distribution,
b̂∗(full)−b̂

se(b̂)

1√
1−r2 has

an asymptotic N (0, 1) distribution. Hence
b̂∗(full)−b̂

se(b̂)

1√
1−r2

D→ b̂

se(b̂)
.

We have now derived all the asymptotic distribution results necessary for the

proof.

A consequence of the above Theorem is that we expect the pivotal statistics of

both null and full model resampling to have accurate Type I error, while we expect

the non-pivotal statistic for null model resampling to have accurate Type I error,

but the non-pivotal statistic for full model resampling to have inflated Type I error.

Since this was observed in the simulations, we believe that size-accuracy depends

more on the asymptotic (marginal) distribution of the test statistic, and less on the

correlation of the test statistic with the ideal true bootstrap method.
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The argument follows. The definition of the P -values for the pivotal statistics of

null and full model resampling are ](|t∗(null)| ≥ |t|)/B and ](|t∗(full)| ≥ |t|)/B, where t

is the observed test statistic. Accurate Type I error is achieved if the LHS and RHS

of the inequalities have the same (asymptotic) distribution. We showed in Theorem

3 that this condition holds, so we expect accurate Type I error in this case.

The definition of the P -values for the non-pivotal statistics of null and full model

resampling are:

P∗(null) = ](|b̂∗(null)| ≥ |b̂|)/B

= ]

(
|b̂∗(null)|
se(b̂)

≥ |b̂|
se(b̂)

)
/B

And:

P∗(full) = ](|b̂∗(full) − b̂| ≥ |b̂|)/B

= ]

(
|b̂∗(full) − b̂|

se(b̂)
≥ |b̂|

se(b̂)

)
/B

From Theorem 3, we know that the LHS of the inequality of the definition of

the P -value of the non-pivotal statistic for null model resampling, has the same

asymptotic distribution as the RHS of the inequality, so we expect accurate Type I

error.

But for full model resampling, from Theorem 3, we know that the LHS of the

inequality of the definition of the P -value of the non-pivotal statistic for full model

resampling does not have the same asymptotic distribution as the RHS of the in-

equality. Noting that the variance of the LHS of the inequality is less than the

variance of the RHS of the inequality, since 1 − r2 < 1, we expect inflated Type I

error. These observations are consistent with what we saw via simulation.

5.8 Discussion

As expected, full model resampling had inflated Type I error for the non-pivotal

statistic. This is predicted by theory since the (asymptotic) variance of b̂∗ for full
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model resampling is less than that for null (and the “near-exact” true) model resam-

pling. Contrary to expectation, we did not find the expected Type I error advantage

of null over full, for pivotal statistics. We believe that there is negligible practical

difference, having found none in 9000 simulation datasets, and given that this was

also found for permutation testing by Anderson & Robinson (2001) and Anderson

& Legendre (1999).

We propose that having a correct (marginal) asymptotic distribution may be

more important than having better correlation with an exact test, in determining

size accuracy. It was differences in asymptotic marginal distribution that explains

the pattern in the simulation results (with null and full model resampling different

only for the non-pivotal statistic), not asymptotic correlation.

A problem with our approach, and that of Anderson & Robinson (2001), is that

for Type I simulations, r → 0 as N →∞. Hence the factor of
√

1− r2, the key point

of difference between null and full model resampling in Theorems 2 and 3, disappears

in large samples: cor(t∗(null), t∗(full)) →
√

1− r2 → 1 and b̂∗(full)− b̂ → √
1− r2b̂ → b̂,

so it could be argued that these theorems do not imply any difference in asymptotic

properties between null and full model resampling. Perhaps future research may

involve deriving the order of approximation of Type I error for the non-pivotal

statistics of null and full model resampling, as it is likely that the
√

1− r2 factor in

b̂∗(full) − b̂ implies a lower order of approximation in the full model resampling case.

Finally, there seems to be little difference in size-adjusted power for the two

methods, for both pivotal and non-pivotal statistics. Our argument predicted greater

power for full model resampling, but a possible reason as stated above is that null

and full resampling have similar asymptotic properties. Another possible reason is

that the argument was based on the relative size of ŝe∗(b̂∗(full)) and ŝe∗(b̂∗(null)), which

can evidently be handled via size-correction.
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5.9 Conclusions

If using pivotal statistics, you can use either full or null model residual resampling.

In other settings beyond linear models where pivoting may be difficult, null model

resampling is advised.
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Chapter 6

Conclusions

The objective of the thesis was to establish “rules” for the bootstrapping of linear

models: to determine which resampling method is optimal for each situation.

The existing literature on bootstrapping linear models was reviewed, and three

“rules” were found in the literature. We confirmed these via simulation. We also

identified two outstanding issues. Firstly, which variance estimator should be used

when constructing a bootstrap test statistic? Secondly, if resampling residuals,

should this be done using the model that was fitted under the null hypothesis (“null

model”) or under the alternative hypothesis (“full model”)? To our knowledge,

these two questions have not been previously addressed. We provided theoretical

results to answer these questions, and subsequently confirmed these via simulation.

Our simulations were designed to evaluate both the size and (size-adjusted) power

characteristics of the proposed bootstrap schemes.

We proposed the use of a sandwich variance estimator for case and score re-

sampling, rather than the naive statistic that is commonly used in practice. Via

simulation, we showed that bootstrap test statistics using the sandwich estimator

tend to have superior Type I error for case and score resampling, but there was

still an issue of which estimator (naive or sandwich) to use for the observed test

statistic (t). Best results were achieved when using t-naive for score resampling and

t-sandwich for case resampling. One possible explanation for this result is that score

resampling conditions on X whereas case resampling does not, and instead treats
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X as random.

We also studied full versus null model residual resampling. We showed that null

model resampling has better Type I error in theory, having an asymptotic correlation

of one with a “true bootstrap” procedure, analogous to a result derived in the

permutation testing case by Anderson & Robinson (2001). However in practice, this

superiority holds only for non-pivotal statistics: for pivotal statistics, both null and

full model resampling had accurate Type I error. We showed that the reason for this

is to do with the asymptotic distribution of the test statistic: it appears that the

critical issue for test size is the (marginal) asymptotic distribution of the statistic

and not its correlation with an ideal test.

When this thesis was reviewed, an examiner mentioned a method described in

Huh & Jhun (2001). While they focussed on permutation testing, they also briefly

discussed the bootstrap. We now briefly discuss this method and its advantages.

The key to their method is to use a N by (N − p) matrix of orthogonal columns

V , where V is defined to satisfy V V T = IN − X(XT X)−1XT = I − H. The key

difference between our residual resampling method and theirs is that they resample

V T r rather than r. In the case where the null hypothesis is not that all βk = 0, they

suggest resampling V T r = V T (Y −Xβ̂) giving Y∗ = Xβ̂ + V (V T r)∗. Therefore, the

method of Huh & Jhun (2001) is to use null model residual resampling with V T r

instead of r.

The two differences between their method and our thesis method are that we

standardized residuals to have equal variance, whereas they standardized them to

have equal variance and be uncorrelated (which is an advantage), and that they back-

transform their resampled residuals to re-introduce unequal variance and correlation,

where we did not (which is also an advantage). Interestingly, the simulations of Huh

& Jhun (2001) show that their method compares well with the bootstrap pivotal

test, thus showing no improvement over the null model residual resampling bootstrap

pivotal statistic. Thus we emphasize that their method shows no improvement over

the pivotal bootstrap statistics considered in the thesis.

The thesis considered linear models with two explanatory variables, where the

aim is to test a hypothesis about the relationship of one explanatory variable with
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the response, that is, a hypothesis test concerning a one-dimensional parameter. A

slightly more general model was considered in the investigation of variance estima-

tors, although the hypothesis test still involved a one-dimensional parameter. We

expect that our results apply more generally to models containing multi-dimensional

parameter components, but we have not done theory or simulation for this case. This

would be one area in which the research could usefully be extended. Another limi-

tation was that in our power comparisons, we dealt with the problem of comparing

methods with different Type I error by adjusting for test size, but other methods

could be investigated (Lloyd, 2005).

Another possible field of further study is extending the results to generalized

linear model resampling. In this context the definition of residuals is less straight-

forward, so the issue of which type of residual to use would need to be addressed.
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Appendix A

Properties of β̂∗ under case

resampling

In this Appendix, we derive some properties of β̂∗ under case resampling, originally

due to Freedman (1981) and Moulton & Zeger (1991).

A.1 Asymptotic distribution of β̂∗

We wish to prove the result from Freedman (1981) that under case resampling:

√
N(β̂∗ − β̂)

d→ N (0, J−1MJ−1)

where J and M are defined as:

J = E(XT
∗,iX∗,i)

M = E(XT
∗,iX∗,ir2

∗,i)

An outline of the convergence part of the proof follows.

1.
√

N(β̂∗ − β̂) =
√

N((XT
∗ X∗)−1XT

∗ Y∗ − (XT
∗ X∗)−1XT

∗ X∗β̂)

=
√

N(XT
∗ X∗)−1XT

∗ (Y∗ −X∗β̂)

=
√

N(XT
∗ X∗)−1XT

∗ r∗

= ((1/N)XT
∗ X∗)−1.((1/

√
N)XT

∗ r∗)

= W−1
∗(p×p).Z∗(p×1) (A.1)
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where W∗ = (1/N)XT
∗ X∗ and Z∗ = (1/

√
N)XT

∗ r∗.

2. Now E(W∗) = J and W∗ is a sample mean, so by the Weak Law of Large

Numbers,

W∗
p→ J (A.2)

3. We derive the expected value and variance of Z∗:

E(Z∗) = (1/
√

N)
N∑

i=1

E(XT
∗,ir∗,i)

=
√

N(1/N)
N∑

i=1

XT
i ri

= 0 by orthogonality

Also:

var(Z∗) = (1/N)
N∑

i=1

E(XT
∗,iX∗,ir2

∗,i)

= E(XT
∗,iX∗,ir2

∗,i)

= M

And so by the Central Limit Theorem:

Z∗ = (1/
√

N)XT
∗ r∗

D→ N (0,M) (A.3)

4. From equation (A.1),

√
N(β̂∗ − β̂) = W−1

∗ Z∗

and from equations (A.2) and (A.3),

D→ J−1N (0,M)

∼ N (0, J−1MJ−1)

using Slutsky’s Theorem (Serfling, 1980).
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A.2 Proof of Moulton and Zeger result for case

resampling

We want to prove the result from Moulton & Zeger (1991) that:

varcase(β̂∗) = (XT X)−1XT diag(r2)X(XT X)−1 + O(N−2)

We know that, from the Central Limit Theorem:

A∗ :=
1

N
(XT

∗ X∗)

=
1

N
(XT X) + Op(N

−1/2)

Because A∗ has the form of a mean of N terms. Since A∗ is a matrix, we mean that

the (i, j)th element of A∗ converges to the (i, j)th element of (1/N)(XT X) at rate

Op(N
−1/2).

Also, by the Central Limit Theorem:

B∗ :=
1

N
XT
∗ diag(r2

∗)X∗

=
1

N
XT diag(r2)X + Op(N

−1/2)

Because B∗ has the form of a mean of N terms. Note that the same meaning of

stochastic convergence of a matrix applies, as in the note attached to the corre-

sponding equation for A∗.

In order to apply the Central Limit Theorem, we must show that A∗ and B∗ have

finite variance. But A∗ may be written as (1/N)
∑

i X
T
∗,iX∗,i, where X∗,i is the ith

row of X∗, and we can assume that XT
∗,iX∗,i has finite variance. Similarly, B∗ may

be written as (1/N)
∑

i X
T
∗,ir

2
∗,iX∗,i, and we can assume that XT

∗,ir
2
∗,iX∗,i has finite

variance. Thus the use of the Central Limit Theorem is justified in this case.

Then:

S :=
1

N
A−1
∗ B∗A−1

∗

= (1/N)N(XT
∗ X∗)−1(1/N)XT

∗ diag(r2
∗)X∗N(XT

∗ X∗)−1

= (XT
∗ X∗)−1XT

∗ diag(r2
∗)X∗(XT

∗ X∗)−1

= varcase(β̂∗)
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But:

S :=
1

N
A−1
∗ B∗A−1

∗

=
1

N
[N(XT X)−1 + O(N−1/2)][

1

N
XT diag(r2)X + O(N−1/2)][N(XT X)−1 + O(N−1/2)]

= (XT X)−1XT diag(r2)X(XT X)−1 + (1/N)O(N−1)

= (XT X)−1XT diag(r2)X(XT X)−1 + O(N−2)

From which we deduce that:

varcase(β̂∗) = (XT X)−1XT diag(r2)X(XT X)−1 + O(N−2)

.



Appendix B

Proofs of Chapter 5 results

In this appendix, we present proofs of asymptotic relations between null and full t∗

of Chapter 5.

We relate null and full model resampling directly, in contrast to Anderson &

Robinson (2001), who related them via the Kennedy (1995) method for permutation

testing. Note, however, that the extension from pivotal to non-pivotal statistics still

applies.

B.1 Definitions

Recall that under Chapter 5 notation, the true model being assumed is: Y =

aX + bRZ|X + ε where X and Y are centred.

We will relate test statistics for three resampling methods: full, null and true,

defined as follows:

Full model:

Y = âX + b̂RZ|X + RY |XZ (B.1)

Full model residual resampling:

Y∗(full) = âX + b̂RZ|X + R∗
Y |XZ (B.2)

= â∗(full)X + b̂∗(full)RZ|X + RY∗|XZ (B.3)
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Null model: Y = âX + RY |X

Null model residual resampling:

Y∗(null) = âX + R∗
Y |X (B.4)

= â∗(null)X + b̂∗(null)RZ|X + RY∗|XZ (B.5)

True model: Y = aX + εY |X

True model residual resampling:

Y∗(true) = aX + ε∗Y |X

= â∗(true)X + b̂∗(true)RZ|X + RY∗|XZ

The pivotal statistics for true, null and full model residual resampling are defined

as:

t∗(full) =
b̂∗(full) − b̂

ŝe∗(b̂∗(full))

Similarly,

t∗(null) =
b̂∗(null)

ŝe∗(b̂∗(null))

And:

t∗(true) =
b̂∗(true)

ŝe∗(b̂∗(true))

And in each case, ŝe∗(b̂∗) =

√ ∑
R2

Y∗|XZ

(N−2)
∑

R2
Z|X

.

Since Theorem 2 concerns asymptotic results, we now make the following as-

sumptions:

• limN→∞(1/N)
∑

R2
Z|X , limN→∞(1/N)

∑
X2 = Op(1).

• ε has finite variance σ2 > 0.

Since our results are asymptotic, they apply whether raw or modified residuals are

used (since N−2
N

→ 1) but in the following raw residuals are assumed.
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B.2 Statement of Main Theorems

Theorem 1. Let f(r) = sign(r)
√

(N−p)r2

1−r2 , which is a monotonic function. Then (A)

t = f(r), (B) tπ(null) = f(rπ(null)), (C) tπ(full) = f(rπ(full)), (D) tπ(true) = f(rπ(true)).

Hence the t-statistics are equivalent to their r-statistic counterparts.

Theorem 2. t∗(true), t∗(null), t∗(full)
D→ N (0, 1) with correlation matrix:




1 1
√

1− r2

1 1
√

1− r2

√
1− r2

√
1− r2 1




−1

cor(t∗(true), t∗(null), t∗(full)) → I

B.3 Useful results

Before proving the Theorems, we state some useful algebraic and convergence results

which will be used in deriving the Theorem proofs.

Result 1. Note that due to orthogonality,
∑

RY |XZX =
∑

RY |XX = 0.

Result 2. For full model resampling,

â∗ − â =

∑
R∗

Y |XZX∑
X2

and b̂∗ − b̂ =

∑
R∗

Y |XZRZ|X∑
R2

Z|X
.

For null model resampling,

â∗ − â =

∑
R∗

Y |XX∑
X2

and b̂∗ =

∑
R∗

Y |XRZ|X∑
R2

Z|X
.

For true model resampling,

â∗ − a =

∑
ε∗Y |XX∑

X2
and b̂∗ =

∑
ε∗Y |XRZ|X∑

R2
Z|X

.

Proof. For full model resampling,

â∗ − â =

∑
(Y∗ − Y )X∑

X2

=

∑
(R∗

Y |XZ −RY |XZ)X∑
X2

from (B.1) and (B.2)

=

∑
R∗

Y |XZX∑
X2

since
∑

RY |XZX = 0 (Result 1)
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Similarly for the other cases.

Result 3.
∑

ε2
Y |X∑

R2
Y |X

p→ 1

Proof.

∑
ε2
Y |X =

∑
(RY |X + (â− a)X)2 =

∑
R2

Y |X + (â− a)2
∑

X2.

But
√∑

X2(â− a) =
∑

εY |XX√∑
X2

D→ N (0, σ2).

So
∑

ε2
Y |X∑

R2
Y |X

= 1 + Op(1)∑
R2

Y |X

p→ 1.

Result 4. If a =
∑

Y X∑
X2 then

∑
(Y − aX)2 =

∑
Y 2 − (

∑
Y X)2∑
X2 . Similarly, if b =

∑
Y RZ|X∑
R2

Z|X
then

∑
(Y − bRZ|X)2 =

∑
Y 2 − (

∑
Y RZ|X)2∑

R2
Z|X

.

Proof.

∑
(Y − aX)2 =

∑
[Y 2 + a2X2 − 2aY X]

=
∑

Y 2 +
(
∑

Y X)2

(
∑

X2)2

∑
X2 − 2

∑
Y X∑
X2

∑
Y X

=
∑

Y 2 − (
∑

Y X)2

∑
X2

by cancellation. A similar proof applies for the second part of the Result.

Result 5.

RY |XZ = RY |X − b̂RZ|X ,

where: b̂ =
∑

RY |XRZ|X/
∑

R2
Z|X .

This is an important result used in later proofs. It is stated and used in Anderson

& Robinson (2001).

Proof. Note that
∑

XRZ|X = 0, by construction of linear model Z = γX + RZ|X .
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 â

b̂


 =


 XT X XT RZ|X

RT
Z|XX RT

Z|XRZ|X



−1 

 XT Y

RT
Z|XY




=


 XT X 0

0 RT
Z|XRZ|X



−1 

 XT Y

RT
Z|XY




=


 (XT X)−1XT Y

(RT
Z|XRZ|X)−1RT

Z|XY




But note that â = (XT X)−1XT Y is the estimated coefficient of X in the null model,

so under both the null and the full model, the estimated coefficient of X is â.

Therefore:

Y = âX + b̂RZ|X + RY |XZ

= âX + RY |X

From which the result follows.

B.4 Proof of Theorem 1

Proof of Part (A).

First note that the relationship between t and r is well-known for linear models,

as in for example Draper & Smith (1966) and Seber (1977).

Note:

t2 =

(
b̂

ŝe(b̂)

)2

= (N − 2)
(
∑

Y RZ|X)2

∑
R2

Y |XZ

∑
R2

Z|X
(B.6)
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Now the numerator of (B.6), ignoring the factor N − 2, is:

(
∑

Y RZ|X)2 = (
∑

(Y − âX)RZ|X)2

= (
∑

RY |XRZ|X)2 Result 1

Also, the denominator (B.6) is:

∑
R2

Y |XZ

∑
R2

Z|X =
∑

(RY |X − b̂RZ|X)2
∑

R2
Z|X from Result 5

= (
∑

R2
Y |X − (

∑
RY |XRZ|X)2/

∑
R2

Z|X)
∑

R2
Z|X

from Result 4, since b̂ =
∑

Y RZ|X/
∑

R2
Z|X

=
∑

R2
Y |X

∑
R2

Z|X − (
∑

RY |XRZ|X)2

Therefore (B.6) can be written as:

t2 = (N − 2)
(
∑

RY |XRZ|X)2

∑
R2

Y |X
∑

R2
Z|X − (

∑
RY |XRZ|X)2

= (N − 2)
r2

1− r2

since r2 =
(
∑

RY |XRZ|X)2∑
R2

Y |X
∑

R2
Z|X

.

Proof of Part (B).

We want to show the equivalence of the Freedman & Lane (1983) method and

tπ(null) for permutation testing. That is:

t2π(null) = (N − 2)
r2
π(null)

(1− r2
π(null))

Note:

t2π(null) =

(
b̂π(null)

ŝeπ(b̂π(null))

)2

= (N − 2)
(
∑

Yπ(null)RZ|X)2

∑
R2

Yπ(null)|XZ

∑
R2

Z|X
(B.7)

Now the numerator of (B.7), ignoring the factor N − 2, is:

(
∑

Yπ(null)RZ|X)2 = [
∑

(Yπ(null) − aπ(null)X)RZ|X ]2,
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from Result 1.

Also, the denominator of (B.7) is:

∑
R2

Yπ(null)|XZ

∑
R2

Z|X =
∑

(RYπ(null)|X − b̂π(null)RZ|X)2
∑

R2
Z|X

from Result 5

=
∑

({Yπ(null) − aπ(null)X} − b̂π(null)RZ|X)2
∑

R2
Z|X

= [
∑

{Yπ(null) − aπ(null)X}2

−(
∑

{Yπ(null) − aπ(null)X}RZ|X)2/
∑

R2
Z|X ]

∑
R2

Z|X

from Result 4

Since b̂π(null) =
∑

Yπ(null)RZ|X∑
R2

Z|X
=

{∑ Yπ(null)−aπ(null)X}RZ|X∑
R2

Z|X

from Result 1.

So:

∑
R2

Yπ(null)|XZ

∑
R2

Z|X =
∑

{Yπ(null)−aπ(null)X}2
∑

R2
Z|X−(

∑
{Yπ(null)−aπ(null)X}RZ|X)2

Therefore, (B.7) can be written as:

t2π(null) = (N − 2)
(
∑{Yπ(null) − aπ(null)X}RZ|X)2

∑{Yπ(null) − aπ(null)X}2
∑

R2
Z|X − (

∑{Yπ(null) − aπ(null)X}RZ|X)2

= (N − 2)
r2
π(null)

1− r2
π(null)

Since r2
π(null) =

(
∑{Yπ(null)−aπ(null)X}RZ|X)2∑{Yπ(null)−aπ(null)X}2

∑
R2

Z|X
from the definition in Anderson & Robinson

(2001).

Proof of Part (C).

We want to show the equivalence of the ter Braak (1992) method and tfull for

permutation testing. That is:

t2π(full) = (N − 2)
r2
π(full)

(1− r2
π(full))

Note that:

tπ(full) = (b̂π(full) − b̂)/ŝeπ(b̂π(full))

=
√

N − 2

∑
(Yπ(full) − Y )RZ|X√∑
R2

Yπ(full)|XZ

∑
R2

Z|X
(B.8)
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This proof is more algebraically complicated than that for null model permuta-

tion testing, hence it will divided into six steps.

1. We define objects Aπ and kπ critical for the proof.

2. We show that the numerator of B.8, ignoring the factor
√

N − 2, may be

written as
∑

AπRZ|X .

3. We show that RYπ(full)|XZ may be written as Aπ + (b̂− b̂π)RZ|X .

4. We state a simplification for
∑

(Aπ + (b̂− b̂π)RZ|X)2.

5. We use steps 3 and 4 to show that the square of the denominator of B.8 may

be written as:
∑

A2
π

∑
R2

Z|X − (
∑

AπRZ|X)2.

6. We use steps 2 and 5 to complete the proof.

Step 1.

We now define Aπ and kπ.

Aπ = Rπ
Y |XZ − kπX

kπ =
∑

Rπ
Y |XZX/

∑
X2

Step 2.

∑
AπRZ|X =

∑
(Rπ

Y |XZ − kπX)RZ|X

=
∑

Rπ
Y |XZRZ|X since

∑
XRZ|X = 0 by Result 1

=
∑

(Yπ(full) − âX − b̂RZ|X)RZ|X

=
∑

Yπ(full)RZ|X − b̂
∑

R2
Z|X since

∑
XRZ|X = 0 by Result 1

=
∑

(Yπ(full) − Y )RZ|X since Y = âX + b̂RZ|X + RY |XZ (B.9)

Note that the last line in the above equation is the numerator of (B.8), ignoring the

factor
√

N − 2.

Step 3.

First, we show that kπ = âπ − â. Note that âπ − â =
∑

(Yπ(full) − Y )X/
∑

X2 and
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kπ =
∑

Rπ
Y |XZX/

∑
X2. Now:

∑
(Yπ(full) − Y )X =

∑
(Rπ

Y |XZ −RY |XZ)X

=
∑

Rπ
Y |XZX because

∑
RY |XZX = 0 from Result 1

Thus kπ = âπ − â is proven.

Then, we relate Aπ to RYπ(full)|XZ :

RYπ(full)|XZ = Aπ + (b̂− b̂π)RZ|X + (â− âπ)X + kπX

= Aπ + (b̂− b̂π)RZ|X

Step 4.

It can be shown that the following simplification holds.

∑
(Aπ + (b̂− b̂π)RZ|X)2

=
∑

(Aπ + b̂RZ|X)2 − (
∑

(Aπ + b̂RZ|X)RZ|X)2/
∑

R2
Z|X

= [(
∑

(Aπ + b̂RZ|X)2)(
∑

R2
Z|X)− (

∑
(Aπ + b̂RZ|X)RZ|X)2]/

∑
R2

Z|X

= [
∑

A2
π

∑
R2

Z|X − (
∑

AπRZ|X)2]/
∑

R2
Z|X

Step 5.

From steps 3 and 4, the square of the denominator of (B.8) may be written as:

∑
R2

Yπ(full)|XZ

∑
R2

Z|X =
∑

[Aπ + (b̂− b̂π)RZ|X ]2(
∑

R2
Z|X)

=
∑

A2
π

∑
R2

Z|X − (
∑

AπRZ|X)2 (B.10)

where the first equality is from step 3 and the second equality is from step 4.

Step 6.
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Therefore combining equations (B.9) (step 2) and (B.10) (step 5) into equation (B.8):

tπ(full) =

√
N − 2

∑
(Yπ(full) − Y )RZ|X√∑

R2
Yπ(full)|XZ

∑
R2

Z|X

=

√
N − 2

∑
AπRZ|X√∑

A2
π

∑
R2

Z|X − (
∑

AπRZ|X)2
from (B.9) and (B.10)

=
√

N − 2

√√√√ r2
π(full)

1− r2
π(full)

because r2
π(full) =

(
∑

AπRZ|X)2∑
A2

π

∑
R2

Z|X
=

(
∑{Rπ

Y |XZ
−kπX}RZ|X)2∑{Rπ

Y |XZ
−kπX}2 ∑

R2
Z|X

, from definition of Aπ and

Anderson & Robinson (2001).

Proof of Part (D).

We want to show the equivalence of rπ(true) and tπ(true) for permutation testing.

But the same proof as for null model permutation test holds for the true permutation

test, with π(null) replaced by π(true). So t2π(true) = (N − 2)
r2
π(true)

1−r2
π(true)

as required.

So Parts (A), (B), (C) and (D) have been proven. QED.

B.5 Introduction to Proof of Theorem 2

We now prove Theorem 2, for the bootstrap. In Lemma 1, we show that N v̂ar∗(b̂∗(a))
p→

Nvar(b̂∗(a)) where a denotes true, null or full resampling. In Lemma 2, we derive

direct relations between t∗(null) and t∗(full) and between t∗(null) and t∗(true). In “Proof

of Theorem 2”, we show that t∗(true), t∗(null), and t∗(full) all converge in distribution to

a standard normal. Then we show that the asymptotic correlation between t∗(null)

and t∗(full) is
√

1− r2, where r is the partial correlation from the original dataset,

while the asymptotic correlation between t∗(null) and t∗(true) is one, thus completing

the proof.

B.6 Convergence results for variance estimators

Lemma 1. The following convergence results hold.
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1. N ˆvar∗(b̂∗(null))
p→

∑
R2

Y |X∑
R2

Z|X
= Nvar(b̂∗(null))

2. N ˆvar∗(b̂∗(full))
p→

∑
R2

Y |X∑
R2

Z|X
(1− r2) = Nvar(b̂∗(full))

3. N ˆvar∗(b̂∗(true))
p→

∑
ε2
Y |X∑

R2
Z|X

= Nvar(b̂∗(true))

Proof. Part 1:

v̂ar∗(b̂∗(null)) =
1

N − 2

∑
[(Y∗ − â∗X − b̂∗RZ|X)2]

1∑
R2

Z|X

But b̂∗(null) =
∑

(Y∗−â∗X)RZ|X∑
R2

Z|X
where Y∗ = âX + R∗

Y |X so we can apply Result 4:

(N − 2)(
∑

R2
Z|X)v̂ar∗(b̂∗(null)) =

1

N − 2

(∑
{(Y∗ − â∗X)2} − {∑(Y∗ − â∗X)RZ|X}2

∑
R2

Z|X

)

=
∑

{(â− â∗)X + R∗
Y |X}2

− 1∑
R2

Z|X

(∑
{(â− â∗)X + R∗

Y |X}RZ|X
)2

From equations (B.4) and (B.5) from the Definitions section.

But â∗ − â =
∑

R∗
Y |XX∑
X2 from Result 2 and

∑
XRZ|X = 0 from Result 1, so we

simplify the above as follows:

Applying Result 4,
∑{(â− â∗)X + R∗

Y |X}2 =
∑

R∗2
Y |X −

(
∑

R∗
Y |XX)2∑
X2 .

Applying Result 1, 1∑
R2

Z|X
[
∑{((â− â∗)X + R∗

Y |X)RZ|X}]2 = 1∑
R2

Z|X
(
∑

R∗
Y |XRZ|X)2

because the
∑

XRZ|X term is zero. So:

(N − 2)v̂ar∗(b̂∗(null)) =

∑
R∗2

Y |X∑
R2

Z|X
− 1∑

R2
Z|X

(
∑

R∗
Y |XX)2

∑
X2

− 1∑
R2

Z|X

(
∑

R∗
Y |XRZ|X)2

∑
R2

Z|X
.

But
∑

R∗
Y |XX√∑

X2
,

∑
R∗

Y |XRZ|X√∑
R2

Z|X

D→ N (0, (1/N)
∑

R2
Y |X) by the Central Limit Theorem,

and so:
(
∑

R∗
Y |XX)2∑
X2 ,

(
∑

R∗
Y |XRZ|X)2∑

R2
Z|X

= Op(1), and these terms vanish when divided by
∑

R2
Z|X , as N increases.
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Whereas:
∑

R∗2
Y |X∑

R2
Z|X

=
(1/N)

∑
R∗2

Y |X
(1/N)

∑
R2

Z|X

p→
∑

R2
Y |X∑

R2
Z|X

by the Weak Law of Large Numbers.

Therefore:

(N − 2)v̂ar∗(b̂∗(null))
p→

∑
R2

Y |X∑
R2

Z|X
.

Noting that (N − 2)/N → 1, the convergence result in Part 1 follows.

Also: b̂∗(null) =
∑

Y∗RZ|X∑
R2

Z|X
=

∑
R∗

Y |XRZ|X∑
R2

Z|X
so E(b̂∗(null)) =

∑
E(R∗

Y |X)RZ|X∑
R2

Z|X
= 0 and:

var(b̂∗(null)) = E(
∑

i

R∗2
Y |X,iR

2
Z|X,i +

∑
i

∑

j 6=i

R∗
Y |X,iRZ|X,iR

∗
Y |X,jRZ|X,j)/(

∑
R2

Z|X)2

= (1/N)
∑

R2
Y |X

∑
R2

Z|X
(
∑

R2
Z|X)2

= (1/N)

∑
R2

Y |X∑
R2

Z|X

So N v̂ar∗(b̂∗(null))
p→ Nvar(b̂∗(null)).

Part 2:

Y∗ − â∗X − b̂∗RZ|X = (â− â∗)X + (b̂− b̂∗)RZ|X + R∗
Y |XZ .

Therefore, using the same approach as for null model resampling:

(N − 2)(
∑

R2
Z|X)v̂ar∗(b̂∗(full)) =

∑
(Y∗ − â∗X − b̂∗RZ|X)2

− [
∑

(Y∗ − â∗X − b̂∗RZ|X)RZ|X ]2∑
R2

Z|X

=
∑

[(â− â∗)X + (b̂− b̂∗)RZ|X + R∗
Y |XZ ]2

− 1∑
R2

Z|X

(∑
{(â− â∗)X + (b̂− b̂∗)RZ|X + R∗

Y |XZ}RZ|X
)2

from equations (B.2) and (B.3) from the Definitions Section.

Recall Result 2: â∗ − â =
∑

R∗
Y |XZ

X∑
X2 and b̂∗ − b̂ =

∑
R∗

Y |XZ
RZ|X∑

R2
Z|X

. So we can apply

Result 4 and Result 1, using a similar argument as for null, but with R∗
Y |X replaced

by R∗
Y |XZ :

(N−2)v̂ar∗(b̂∗(full)) =

∑
R∗2

Y |XZ∑
R2

Z|X
− 1∑

R2
Z|X

(
∑

R∗
Y |XZX)2

∑
X2

− 1∑
R2

Z|X

(
∑

R∗
Y |XZRZ|X)2

∑
R2

Z|X
.
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But as before,
(
∑

R∗
Y |XZ

X)2∑
X2 ,

(
∑

R∗
Y |XZ

RZ|X)2∑
R2

Z|X
are Op(1), so these terms vanish when

divided by
∑

R2
Z|X as N increases.

Whereas:
∑

R∗2
Y |XZ∑

R2
Z|X

=
(1/N)

∑
R∗2

Y |XZ

(1/N)
∑

R2
Z|X

p→
∑

R2
Y |XZ∑

R2
Z|X

by Weak Law of Large Numbers.

Therefore:

(N − 2)v̂ar∗(b̂∗(full))
p→

∑
R2

Y |XZ∑
R2

Z|X
.

From the RHS:

∑
R2

Y |XZ∑
R2

Z|X
=

∑
(RY |X − b̂RZ|X)2

∑
R2

Z|X

=
1∑
R2

Z|X

(∑
R2

Y |X −
(
∑

RY |XRZ|X)2

∑
R2

Z|X

)

=

∑
R2

Y |X∑
R2

Z|X
(1− r2)

This completes the convergence result stated in part 2.

Also: b̂∗(full) − b̂ =
∑

(Y∗−Y )RZ|X∑
R2

Z|X
=

∑
R∗

Y |XZ
RZ|X∑

R2
Z|X

from Lemma 2 so E(b̂∗(full) − b̂) =
∑

E(R∗
Y |XZ

)RZ|X∑
R2

Z|X
= 0 and:

var(b̂∗(full)) = E

{∑
i

R∗2
Y |XZ,iR

2
Z|X,i +

∑
i

∑

j 6=i

R∗
Y |XZ,iRZ|X,iR

∗
Y |XZ,jRZ|X,j

}
/
(∑

R2
Z|X

)2

= (1/N)
∑

R2
Y |XZ

∑
R2

Z|X
(
∑

R2
Z|X)2

= (1/N)

∑
R2

Y |XZ∑
R2

Z|X

So N v̂ar∗(b̂∗(full))
p→ Nvar(b̂∗(full)).

Part 3:

We use the same argument as for null model resampling, but with â replaced by a

and RY |X replaced by εY |X . Again, we use Result 4 and Result 1.

Therefore:

(N − 2)v̂ar∗(b̂∗(true)) =

∑
ε∗2Y |X∑
R2

Z|X
− 1∑

R2
Z|X

(
∑

ε∗Y |XX)2

∑
X2

− 1∑
R2

Z|X

(
∑

ε∗Y |XRZ|X)2

∑
R2

Z|X
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Using the same argument as before:

(
∑

ε∗Y |XX)2

∑
X2

,
(
∑

ε∗Y |XRZ|X)2

∑
R2

Z|X
= Op(1),

so the second and third terms vanish when divided through by
∑

R2
Z|X as N in-

creases.

Again using the Weak Law of Large Numbers:

(N − 2)v̂ar∗(b̂∗(true))
p→

∑
ε∗2Y |X∑
R2

Z|X

p→
∑

ε2
Y |X∑

R2
Z|X

.

This completes the convergence result stated in part 3.

Using the same argument as for null model resampling,

var(b̂∗(true)) = (1/N)

∑
ε2
Y |X∑

R2
Z|X

So N v̂ar∗(b̂∗(true))
p→ Nvar(b̂∗(true)). And so parts 1,2 and 3 are proven.

B.7 Relations between statistics

Lemma 2. The following relations between statistics hold.

1. t∗(full) = t∗(null) × ŝe∗(b̂∗(null))

ŝe∗(b̂∗(full))
− b̂

∑
R∗

Z|XRZ|X∑
R2

Z|X×ŝe∗(b̂∗(full))

2. t∗(true) = t∗(null)
ŝe∗(b̂∗(null))

ŝe∗(b̂∗(true))
+ (â− a)

∑
X∗RZ|X

ŝe∗(b̂∗(true))

Proof. Part 1:
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t∗(full) =

∑{R∗
Y |XZ − (â− â∗)X}RZ|X/

∑
R2

Z|X
ŝe∗(b̂∗(full))

=

∑
R∗

Y |XZRZ|X∑
R2

Z|X × ŝe∗(b̂∗(full))

=

∑
(R∗

Y |X − b̂R∗
Z|X)RZ|X∑

R2
Z|X × ŝe∗(b̂∗(full))

= t∗(null) ×
ŝe∗(b̂∗(null))

ŝe∗(b̂∗(full))
− b̂

∑
R∗

Z|XRZ|X∑
R2

Z|X × ŝe∗(b̂∗(full))

Part 2:

t∗(true) =

∑
ε∗Y |XRZ|X

ŝe∗(b̂∗(true))

=

∑{RY |X + (â− a)X}∗RZ|X
ŝe∗(b̂∗(true))

=

∑
R∗

Y |XRZ|X

ŝe∗(b̂∗(true))
+ (â− a)

∑
X∗RZ|X

ŝe∗(b̂∗(true))

= t∗(null)

ŝe∗(b̂∗(null))

ŝe∗(b̂∗(true))
+ (â− a)

∑
X∗RZ|X

ŝe∗(b̂∗(true))

B.8 Proof of Theorem 2

First we will show that t∗(null), t∗(full), t∗(true)
D→ N (0, 1).

We know from the Central Limit Theorem that for null model resampling,

b̂∗(null)
D→ N (0, var(b̂∗(null)) and so

b̂∗(null)

se(b̂∗(null))

D→ N (0, 1). Exactly the same argu-

ment applies for true model resampling, and for full model resampling, we note that

E(b̂∗(null))− b̂ = 0.

We know from linear model theory that if the linear model is correct, then the

variance estimate is consistent for the true variance. This is confirmed in Lemma 1

for bootstrap samples. So from Lemma 1,
ŝe∗(b̂∗(null))

se(b̂∗(null))

p→ 1, and similarly for full and
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true model resampling. Therefore from Slutsky’s Theorem, t∗(null), t∗(full), t∗(true)
D→

N (0, 1).

Now we will find the correlation matrix of t∗(null), t∗(full), t∗(true).

Following from Lemma 2:

cor(t∗(null), t∗(full)) = E(t∗(null) × t∗(full))

= E

{
t∗(null) ×

[
t∗(null) ×

ŝe∗(b̂∗(null))

ŝe∗(b̂∗(full))
− b̂

∑
R∗

Z|XRZ|X∑
R2

Z|X ŝe∗(b̂∗(full))

]}

=
ŝe∗(b̂∗(null))

ŝe∗(b̂∗(full))
E(t2∗(null))− E

{
t∗(null) ×

b̂
∑

R∗
Z|XRZ|X∑

R2
Z|X ŝe∗(b̂∗(full))

}

=
ŝe∗(b̂∗(null))

ŝe∗(b̂∗(full))
E(t2∗(null))− E

[
b̂
∑

R∗
Y |XRZ|X

∑
R∗

Z|XRZ|X

(
∑

R2
Z|X)2ŝe∗(b̂∗(null))ŝe∗(b̂∗(full))

]

from Result 2

p→ 1√
1− r2

E(t2∗(null))−
1√

1− r2

b̂

(1/N)
∑

R2
Y |X

∑
R2

Z|X

×E
(∑

R∗
Y |XRZ|X

∑
R∗

Z|XRZ|X
)

from Lemma 1

=
1√

1− r2
− 1√

1− r2

b̂

(1/N)
∑

R2
Y |X

∑
R2

Z|X

×{
∑ (

1

N

∑
RY |XRZ|X

)
R2

Z|X

+
∑

i

(
1

N

∑
RY |X

)
RZ|X,i ×

∑

j 6=i

(
1

N

∑
RZ|X

)
RZ|X,j}

=
1√

1− r2

{
1− b̂

(1/N)
∑

R2
Y |X

∑
R2

Z|X

}

×
∑

RY |XRZ|X
∑

R2
Z|X

N

=
1√

1− r2

(
1− (

∑
RY |XRZ|X)2

∑
R2

Y |X
∑

R2
Z|X

)

Since:

b̂ =

∑
(âX + RY |X)RZ|X∑

R2
Z|X

=

∑
RY |XRZ|X∑

R2
Z|X

(Result 1)
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So:

cor(t∗(null), t∗(full))
1√

1− r2

p→ 1

1− r2

(
1− (

∑
RY |XRZ|X)2

∑
R2

Y |X
∑

R2
Z|X

)

= 1

From the definition of r.

Using Result 3,
∑

ε2
Y |X∑

R2
Y |X

p→ 1, we can infer that (using Slutsky’s Theorem):

N v̂ar∗(b̂∗(true))
p→

∑
R2

Y |X∑
R2

Z|X
(B.11)

From Lemma 2:

cor(t∗(null), t∗(true)) = E(t∗(null) × t∗(true))

= E

(
t2∗(null)

ŝe∗(b̂∗(null))

ŝe∗(b̂∗(true))

)
+ (â− a)E

(
(
∑

R∗
Y |XRZ|X)(

∑
X∗RZ|X)

ŝe∗(b̂∗(null))× ŝe∗(b̂∗(true))

)

But
ŝe∗(b̂∗(null))

ŝe∗(b̂∗(true))

p→ 1 (from Lemma 1 and (B.11), and:

√
N ŝe∗(b̂∗(null)),

√
N ŝe∗(b̂∗(true))

p→
√

(1/N)
∑

R2
Y |X∑

R2
Z|X

(from Lemma 1 and (B.11)) so:

cor(t∗(null), t∗(true))
p→ 1 + N(â− a)

∑
R2

Y |X∑
R2

Z|X
× E

(
(
∑

R∗
Y |XRZ|X)(

∑
X∗RZ|X)

)

= 1 + N(â− a)

∑
R2

Y |X∑
R2

Z|X
× {

∑
i

E(RY |XX)∗R2
Z|X

+
∑

i

∑

j 6=i

E(R∗
Yi|Xi

X∗
j )RZi|Xi

RZj |Xj
}

= 1

The proof of the Theorem 2 is now complete.
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Appendix C

Bootstrap and simulation code

C.1 Bootstrap and simulation definition code

### case resampling ###

boot.cases <- function(R, y, x1, x2, resid.type, het, eps=1.e-8)

{

n <- length(y)

fit.alt <- lm(y~x1+x2)

raw.resid <- resid(fit.alt)

sigma.hat <- summary(fit.alt)$sigma

mod.resid <- sigma.hat * rstandard(fit.alt)

if (resid.type==0) {used.resid <- raw.resid}

if (resid.type==1) {used.resid <- mod.resid}

x.dat <- cbind(1,x1,x2)

xtx.inv <- solve(t(x.dat)%*%x.dat)

h2 <- ( xtx.inv %*% t(x.dat) )^2

se.sand <- sqrt( h2[3,] %*% used.resid^2 ) #faster sandwich est

b.star <- rep(NA,R)

se.sand.star <- rep(NA,R)

87
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se.sand.x <- rep(NA,R)

se.naive.star <- rep(NA,R)

se.naive.x <- rep(NA,R)

# Generate matrix of random indices before loop

set <- 1:n

ivec <- matrix( sample(set,n*R,replace=TRUE), n, R)

r <- 1

while (r <= R)

{

y.star <- y[ ivec[,r] ]

x1.star <- x1[ ivec[,r] ]

x2.star <- x2[ ivec[,r] ]

fit.star <- lm(y.star~x1.star+x2.star)

b.star[r] <- coef(fit.star)[3]

x.dat.star <- x.dat[ ivec[,r] , ]

xtx.inv.star <- solve( t(x.dat.star) %*% x.dat.star )

sigma.hat.star <- summary(fit.star)$sigma

if (resid.type==0) {s.i.star <- resid(fit.star)}

if (resid.type==1)

{

mod.resid.star <- sigma.hat.star * rstandard(fit.star)

s.i.star <- mod.resid.star

}

se.sand.star[r] <- sqrt((xtx.inv.star%*%t(x.dat.star)%*%diag(s.i.star^2)

%*%x.dat.star%*%xtx.inv.star)[3,3])

se.sand.x[r] <- sqrt( h2[3,] %*% (s.i.star^2) )

se.naive.star[r] <- sigma.hat.star * sqrt( xtx.inv.star[3,3] )

se.naive.x[r] <- sigma.hat.star * sqrt( xtx.inv[3,3])

if (is.na(b.star[r])==FALSE) r <- r + 1

}

b.hat <- coef(fit.alt)[3]
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if (het==TRUE) { z.0 <- as.vector(b.hat/se.sand) }

else { z.0 <- summary(fit.alt)$coef[3,3] }

p.case.non <- mean( abs(b.star-b.hat) > abs(b.hat)-eps )

z.sand.star <- (b.star - b.hat)/se.sand.star

p.case.sand <- mean( abs(z.sand.star) > abs(z.0)-eps )

z.sand.x <- (b.star - b.hat)/se.sand.x

p.case.sand.x <- mean( abs(z.sand.x) > abs(z.0)-eps )

z.naive.star <- (b.star - b.hat)/se.naive.star

p.case.naive <- mean( abs(z.naive.star) > abs(z.0)-eps )

z.naive.x <- (b.star - b.hat)/se.naive.x

p.case.naive.x <- mean( abs(z.naive.x) > abs(z.0)-eps )

c( p.case.non, p.case.sand, p.case.sand.x, p.case.naive, p.case.naive.x )

}

### residual resampling ###

boot.resid <- function(R, y, x1, x2, resid.type=0, het=F, reduced=FALSE, eps=1.e-8)

{

n <- length(y)

fit.alt <- lm(y~x1+x2)

if (reduced==TRUE)

{

fit <- lm(y~x1)

}
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else

{

fit <- fit.alt

}

fit.fitted <- fit$fitted

sigma.hat <- summary(fit)$sigma

x.dat <- cbind(1,x1,x2)

xtx.inv <- solve( t(x.dat) %*% x.dat )

b.hat <- coef(fit.alt)[3]

if (resid.type==1)

{

resid.vector <- sigma.hat * rstandard(fit)

}

else

{

resid.vector <- resid(fit)

}

fitted.mat <- matrix( rep(fit.fitted,R), nrow=n )

r.star.mat <- matrix( sample(resid.vector, n*R, replace=TRUE), nrow=n )

y.star.mat <- fitted.mat + r.star.mat

fit.star <- lm(y.star.mat~x1+x2)

b.star <- coef(fit.star)[3,]

resids <- resid(fit.star)

sigmasq <- colSums(resids^2) / (n-3)

se.naive.star <- sqrt( sigmasq*xtx.inv[3,3] )

if (reduced==FALSE)

{

p.resid.non <- mean( abs( b.star - b.hat ) > abs(b.hat) - eps )
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z.star.one <- ( b.star - b.hat ) / se.naive.star

}

if (reduced==TRUE)

{

p.resid.non <- mean( abs(b.star) > abs(b.hat) - eps )

z.star.one <- ( b.star - 0 ) / se.naive.star

}

if (het==TRUE) {

if (resid.type==1)

{

sigma.hat <- summary(fit.alt)$sigma

resid.vector <- sigma.hat * rstandard(fit.alt)

}

else

{

resid.vector <- resid(fit.alt)

}

cov.mat.estimator <-

xtx.inv%*%t(x.dat)%*%diag(resid.vector^2)%*%x.dat%*%xtx.inv

se.sand <- sqrt(cov.mat.estimator[3,3])

z.0 <- as.vector(b.hat / se.sand)

}

else

{

z.0 <- summary(fit.alt)$coef[3,3]

}

p.resid.naive <- mean( abs(z.star.one) > abs(z.0) - eps )

c(p.resid.non, p.resid.naive)

}
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### score resampling ###

boot.score <- function(R, y, x1, x2, t.type, het, eps=1.e-8)

{

n <- length(y)

fit.alt <- lm(y~x1+x2)

b.hat <- coef(fit.alt)[3]

sigma.hat <- summary(fit.alt)$sigma

mod.resid <- sigma.hat * rstandard(fit.alt)

x.dat <- cbind(1,x1,x2)

xtx.inv <- solve(t(x.dat)%*%x.dat)

h2 <- ( xtx.inv %*% t(x.dat) )^2

se.sand <- sqrt( h2[3,] %*% mod.resid^2 ) #faster sand est

#generate resampled t* hence y*

if (t.type==1)

{

t.star <- matrix(rnorm(n*R,mean=0,sd=1),nrow=n)

}

else

{

aj <- mod.resid/sqrt((1/n)*sum(mod.resid^2))

t.star <- matrix(sample(aj,n*R,replace=TRUE),nrow=n)

}

fitted.mat <- matrix( rep( fitted(fit.alt), R ), nrow=n )

r.mat <- matrix( rep( mod.resid, R), nrow=n )

y.star <- fitted.mat + r.mat * t.star

#fit model and store stats

fit.regress.full <- lm(y.star~x1+x2)
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b.star <- coef(fit.regress.full)[3,]

resids <- resid(fit.regress.full)

sigmasq <- colSums(resids^2) / (n-3)

se.naive.star <- sqrt( sigmasq*xtx.inv[3,3] )

H <- diag(rep(1,n)) - x.dat %*% xtx.inv %*% t(x.dat)

mod.resids <- diag( 1/sqrt( diag(H) ) ) %*% resids

se.sand.star <- sqrt( h2[3,] %*% mod.resids^2 ) #faster sand est

#get p-values

if (het==TRUE) { z.0 <- as.vector(b.hat/se.sand) }

else { z.0 <- summary(fit.alt)$coef[3,3] }

p.score.non <- mean( abs( b.star - b.hat ) > abs(b.hat) - eps )

z.star.naive <- (b.star - b.hat) / se.naive.star

p.score.naive <- mean( abs(z.star.naive) > abs(z.0) - eps)

z.star.sand <- (b.star - b.hat) / se.sand.star

p.score.sand <- mean( abs(z.star.sand) > abs(z.0) - eps )

c(p.score.non, p.score.naive, p.score.sand)

}

### simulation design ####

explore.diff <- function(R,nsim,beta.two,sed=0,n,fixed,correlated,het)

{

if (sed > 0) { set.seed(sed) }

if (fixed==TRUE)

{
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nrep <- n/16

x1 <- c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)

x2 <- c(1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4)

x1 <- rep(x1,nrep)

x2 <- rep(x2,nrep)

}

if (fixed==FALSE)

{

x1 <- rnorm(n,mean=0,sd=1)

x2 <- rnorm(n,mean=0,sd=1)

a <- sqrt(1.25)

if (correlated==TRUE)

{

alpha <- 0.8

x2 <- alpha*x1 + sqrt(1-alpha^2)*x2

a <- a * (1-alpha^2)^(-0.25) #to ensure that det(X’X) is constant

}

x1 <- a*x1 + 2.5

x2 <- a*x2 + 2.5

}

if (het==FALSE)

{

error <- rnorm((nsim*n),mean=0,sd=2)

}

if (het==TRUE)

{

if (fixed==TRUE)

{ error <- rep(pmax(1,x2),nsim) * rnorm((nsim*n),mean=0,sd=(2/sqrt(7.5))) }

if (fixed==FALSE & correlated==FALSE)
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{ error <- rep(pmax(1,x2),nsim) *

rnorm((nsim*n),mean=0,sd=(2/sqrt(7.550634))) }

if (fixed==FALSE & correlated==TRUE)

{ error <- rep(pmax(1,x2),nsim) *

rnorm((nsim*n),mean=0,sd=(2/sqrt(8.41257))) }

}

y.mat <- 4 + 3*rep(x1,nsim) + beta.two*rep(x2,nsim)+ error

y.mat <- matrix(y.mat,nrow=n,ncol=nsim)

p.value.mat <- array(NA,c(nsim,17,2))

dimnames(p.value.mat)[[2]]=c("case.non","case.sand",

"case.sand.x","case.naive","case.naive.x","resid.full.non",

"resid.full.naive","resid.null.non","resid.null.naive","score.non",

"score.naive","score.sand","scoreR.non","scoreR.naive","scoreR.sand",

"resid.raw.null.non","resid.raw.null.naive")

for (j in 1:nsim)

{

y <- y.mat[,j]

p.value.mat[j,1:5,1] <- boot.cases(R,y,x1,x2,resid.type=0,het=F)

p.value.mat[j,6:7,1] <- boot.resid(R,y,x1,x2,resid.type=1,het=F,

reduced=FALSE)

p.value.mat[j,8:9,1] <- boot.resid(R,y,x1,x2,resid.type=1,het=F,

reduced=TRUE)

p.value.mat[j,10:12,1] <- boot.score(R,y,x1,x2,t.type=1,het=F)

p.value.mat[j,13:15,1] <- boot.score(R,y,x1,x2,t.type=0,het=F)

p.value.mat[j,16:17,1] <- boot.resid(R,y,x1,x2,resid.type=0,het=F,

reduced=TRUE)

p.value.mat[j,1:5,2] <- boot.cases(R,y,x1,x2,resid.type=0,het=T)

p.value.mat[j,10:12,2] <- boot.score(R,y,x1,x2,t.type=1,het=T)

p.value.mat[j,13:15,2] <- boot.score(R,y,x1,x2,t.type=0,het=T)
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}

p.value.mat

}

C.2 Simulation execution code

# example script file for running bootstrap simulations

source("sim.functions.R")

test.run = explore.diff(2,2,0,1,16,TRUE, FALSE,FALSE) #To get the

dimensions and names of columns of output

R=1000 nsim=1000 n=c(16,32,64) options = c(TRUE, FALSE, FALSE)

fix.homo.I = array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(fix.homo.I)=colnames(test.run)

fix.homo.I[,,,1] = explore.diff(R,nsim,0,1+10,n[1],options[1],options[2],options[3])

fix.homo.I[,,,2] = explore.diff(R,nsim,0,2+10,n[2],options[1],options[2],options[3])

fix.homo.I[,,,3] = explore.diff(R,nsim,0,3+10,n[3],options[1],options[2],options[3])

fix.homo.II = array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(fix.homo.II)=colnames(test.run)

fix.homo.II[,,,1] = explore.diff(R,nsim,0.5,4+10,n[1],options[1],options[2],

options[3])

fix.homo.II[,,,2] = explore.diff(R,nsim,0.5,5+10,n[2],options[1],options[2],

options[3])

fix.homo.II[,,,3] = explore.diff(R,nsim,0.5,6+10,n[3],options[1],options[2],

options[3])

save(fix.homo.I, fix.homo.II, nsim, R, n, options,
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file="fix.homo.run2.RData")

# randu

options = c(FALSE, FALSE, FALSE)

randu.homo.I = array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(randu.homo.I)=colnames(test.run)

randu.homo.I[,,,1] = explore.diff(R,nsim,0,11+10,n[1],options[1],options[2],

options[3])

randu.homo.I[,,,2] = explore.diff(R,nsim,0,12+10,n[2],options[1],options[2],

options[3])

randu.homo.I[,,,3] = explore.diff(R,nsim,0,13+10,n[3],options[1],options[2],

options[3])

randu.homo.II = array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(randu.homo.II)=colnames(test.run)

randu.homo.II[,,,1] = explore.diff(R,nsim,0.5,14+10,n[1],options[1],

options[2],options[3])

randu.homo.II[,,,2] = explore.diff(R,nsim,0.5,15+10,n[2],options[1],

options[2],options[3])

randu.homo.II[,,,3] = explore.diff(R,nsim,0.5,16+10,n[3],options[1],

options[2],options[3])

save(randu.homo.I, randu.homo.II, nsim, R, n, options,

file="randu.homo.run2.RData")

# randc

options = c(FALSE, TRUE, FALSE) randc.homo.I =

array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(randc.homo.I)=colnames(test.run) randc.homo.I[,,,1] =

explore.diff(R,nsim,0,21+10,n[1],options[1],options[2],options[3])
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randc.homo.I[,,,2] =

explore.diff(R,nsim,0,22+10,n[2],options[1],options[2],options[3])

randc.homo.I[,,,3] =

explore.diff(R,nsim,0,23+10,n[3],options[1],options[2],options[3])

randc.homo.II = array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(randc.homo.II)=colnames(test.run) randc.homo.II[,,,1] =

explore.diff(R,nsim,0.5,24+10,n[1],options[1],options[2],options[3])

randc.homo.II[,,,2] =

explore.diff(R,nsim,0.5,25+10,n[2],options[1],options[2],options[3])

randc.homo.II[,,,3] =

explore.diff(R,nsim,0.5,26+10,n[3],options[1],options[2],options[3])

save(randc.homo.I, randc.homo.II, nsim, R, n, options,

file="randc.homo.run2.RData")

# fixedh

options = c(TRUE, FALSE, TRUE) fix.het.I =

array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(fix.het.I)=colnames(test.run) fix.het.I[,,,1] =

explore.diff(R,nsim,0,31+10,n[1],options[1],options[2],options[3])

fix.het.I[,,,2] =

explore.diff(R,nsim,0,32+10,n[2],options[1],options[2],options[3])

fix.het.I[,,,3] =

explore.diff(R,nsim,0,33+10,n[3],options[1],options[2],options[3])

fix.het.II = array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(fix.het.II)=colnames(test.run) fix.het.II[,,,1] =

explore.diff(R,nsim,0.5,34+10,n[1],options[1],options[2],options[3])

fix.het.II[,,,2] =

explore.diff(R,nsim,0.5,35+10,n[2],options[1],options[2],options[3])
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fix.het.II[,,,3] =

explore.diff(R,nsim,0.5,36+10,n[3],options[1],options[2],options[3])

save(fix.het.I, fix.het.II, nsim, R, n, options,

file="fix.het.run2.RData")

# randuh

options = c(FALSE, FALSE, TRUE) randu.het.I =

array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(randu.het.I)=colnames(test.run) randu.het.I[,,,1] =

explore.diff(R,nsim,0,41+10,n[1],options[1],options[2],options[3])

randu.het.I[,,,2] =

explore.diff(R,nsim,0,42+10,n[2],options[1],options[2],options[3])

randu.het.I[,,,3] =

explore.diff(R,nsim,0,43+10,n[3],options[1],options[2],options[3])

randu.het.II = array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(randu.het.II)=colnames(test.run) randu.het.II[,,,1] =

explore.diff(R,nsim,0.5,44+10,n[1],options[1],options[2],options[3])

randu.het.II[,,,2] =

explore.diff(R,nsim,0.5,45+10,n[2],options[1],options[2],options[3])

randu.het.II[,,,3] =

explore.diff(R,nsim,0.5,46+10,n[3],options[1],options[2],options[3])

save(randu.het.I, randu.het.II, nsim, R, n, options,

file="randu.het.run2.RData")

# randch

options = c(FALSE, TRUE, TRUE) randc.het.I =

array(NA,c(nsim,dim(test.run)[2:3],3))
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colnames(randc.het.I)=colnames(test.run) randc.het.I[,,,1] =

explore.diff(R,nsim,0,51+10,n[1],options[1],options[2],options[3])

randc.het.I[,,,2] =

explore.diff(R,nsim,0,52+10,n[2],options[1],options[2],options[3])

randc.het.I[,,,3] =

explore.diff(R,nsim,0,53+10,n[3],options[1],options[2],options[3])

randc.het.II = array(NA,c(nsim,dim(test.run)[2:3],3))

colnames(randc.het.II)=colnames(test.run) randc.het.II[,,,1] =

explore.diff(R,nsim,0.5,54+10,n[1],options[1],options[2],options[3])

randc.het.II[,,,2] =

explore.diff(R,nsim,0.5,55+10,n[2],options[1],options[2],options[3])

randc.het.II[,,,3] =

explore.diff(R,nsim,0.5,56+10,n[3],options[1],options[2],options[3])

save(randc.het.I, randc.het.II, nsim, R, n, options,

file="randc.het.run2.RData")
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Simulation results

The following tables present simulation results from the 18 different simulations

described in Chapter 3. Results are reported for Type I error, raw power, and

adjusted power.

Results are reported for 17 different resampling test statistics, as follows:

Case resampling non-pivotal (non), sandwich estimator calculated from X∗ (sand)

and calculated from the original design matrix X (sand.x ), naive estimator

calculated from X∗ (naive) and calculated from the original design matrix X

(naive.x ).

Residual resampling full model non-pivotal (full.non) and naive estimator (full.naive),

null model non-pivotal (null.non) and naive estimator (null.naive), (null model)

raw residual non-pivotal (raw.non) and naive estimator (raw.naive).

Score resampling normal method non-pivotal (non), naive estimator (naive) and

sandwich estimator (sand), modified residuals method non-pivotal (R.non),

naive estimator (R.naive) and sandwich estimator (R.sand).

When using pivotal statistics for case and score resampling, the observed test

statistic was calculated using either the naive estimator (naive-t) or the sandwich

estimator (sand-t). This was not done for residual resampling because in that case

the true variance estimator takes the form of the naive estimator.

101
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]à

] ^
]\

] ^
]a
c

] ^
]\
c

] ^
]\̀

] ^
]à
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aà

^ _
a]

^ _
ac̀

^ _
a]
]

^ _
â
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