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Abstract

One of the classic problems in operator algebra theory is the question whether every

derivation from an algebra N into an N -bimodule J is automatically inner [56,63].

In the present thesis, we study derivations with values into ideals of a semifinite

von Neumann algebra M. Precisely, we characterise the symmetric ideals J of M
such that every derivation from an arbitrary C∗-subalgebra (resp. von Neumann

subalgebra) of M into J is automatically inner.
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Introduction

A corner stone of classical analysis is the theory of differentiability. During the
twentieth century, a great effort was made in attempt to establish the theory of
differential operators in various classes of spaces. In abstract algebra, a derivation is
a mapping on an algebra A over C which generalises certain features of a differential
operator. Precisely, if J is an A-bimodule, a linear map δ : A → J that satisfies
the Leibniz law is called a derivation, that is,

δ(ab) = δ(a)b+ aδ(b), ∀a, b ∈ A.

In particular, if k ∈ J , then δk(x) := kx − xk, x ∈ A, is a derivation. Such
derivations implemented by elements in J are called inner [7, 125].

Derivations appeared for the first time at a fairly early stage in the field of
C∗-algebras and were initiated in the 1950s, by Kaplansky [83], by Singer and
Wermer [126], and later by Sakai etc [118,119]. The study of derivations in operator
algebras continues to be one of the central branches in the field [121]. During the
late 1960s and early 1970s, a great deal of work was done (by Kadison, Johnson and
Ringrose etc.) in developing the theory of derivations, which also led to the study of
Hochschild cohomology of C∗-algebras (see e.g. [63,64,66,72–74,74–76]). The most
famous result in this field is the so-called Kadison–Sakai theorem [70, 119], which
shows that every derivation from a von Neumann algebra into itself is inner. We
provide a short survery of the theory of derivations in operator algebras in Chapter 3.

The present thesis concentrates on derivations having values into ideals of a von
Neumann algebra M and identifies those ideals J of M such that every derivation
δ : A → J is necessarily inner for any C∗-/von Neumann subalgebra A of M.

A beautiful extension of the Kadison–Sakai theorem was obtained recently by
Ber and Sukochev [16, 17], who showed that for a von Neumann algebra M and
an arbitrary ideal J of M, every derivation from M into J is automatically inner.
However, the case for general subalgebras ofM is more complicated and requires new
techniques/ideas. In 1972, Johnson and Parrott [67] showed that derivations from an
abelian/properly infinite von Neumann subalgebra of B(H) into the algebra K(H)
of all compact operators on H are inner. However, they failed to resolve the case
when A is a type II1 von Neumann algebra, which remained open until resolved by
Popa [110] in 1987. This result is now known as the so-called the Johnson–Parrott–
Popa theorem.

Theorem (Johnson–Parrott–Popa). Every derivation from an arbitrary von Neu-

mann algebra A of B(H) into the algebra K(H) is inner.

A natural development of the Johnson–Parrott–Popa theorem is to establish a
suitable semifinite version of the result. In 1985, Kaftal and Weiss [81] considered
Johnson and Parrott’s derivation problem in a more general setting where B(H)
is replaced with a semifinite von Neumann algebra M and K(H) is replaced with
the uniform norm closed ideal J (M) generated by all finite projections in M. It is
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shown in [81] that if A is an abelian (or properly infinite) von Neumann subalgebra
of M containing the center Z(M) of M, then any derivation

δ : A → J (M)

is inner. This result was latter extended by Popa and Rădulescu [112] in 1988.
In particular, they showed that the result by Kaftal and Weiss holds if A is an
arbitrary type II1 (or properly infinite) subalgebra ofM. However, for an arbitrary
von Neumann subalgebra A ofM, any derivation δ : A → J (M) is inner only under
additional condition on the center of A and M (see precise condition in Theorem
3.2.2). In particular, Popa and Rădulescu established the existence of non-inner
derivations

δ : A → J (M)

for a specific semifinite von Neumann algebra M and an abelian von Neumann
subalgebra A of M, which is the first example of non-inner derivations in von
Neumann algebras.

In 1987, Christensen [24] introduced the notion of generalized compacts asso-
ciated with a von Neumann algebra and showed that derivations from a properly
infinite von Neumann algebra into the generalized compacts associated with this von
Neumann algebra are inner. However, the question whether derivations from a type
II1 von Neumann algebra into the generalized compacts associated with this von
Neumann algebra are inner was left open, which was recently answered in affirmative
by Galatan and Popa [49].

One of the main results of the present thesis is the Johnson–Parrott–Popa
theorem for another type of semifinite version of the ideal K(H), namely the ideal
C0(M, τ) of τ -compact operators, which is the uniform norm closure of the linear
span of all τ -finite projections in a semifinite von Neumann algebra M equipped
with a semifinite faithful normal trace τ .

Theorem (Theorem 5.6.1). Let A be a von Neumann subalgebra of a semifinite von

Neumann algebra (M, τ). Then every derivation δ : A → C0(M, τ) is necessarily

inner.

Even though C0(M, τ) and J (M) are similar in many respects (see Theo-
rem 2.5.7), our result is in strong contrast with the result by Popa and Rădulescu [112],
since we do not impose any additional condition on the von Neumann subalgebra
A.

Some attempts have been made to extend the Johnson–Parrott–Popa theorem
in another direction, i.e., replacing K(H) with some other ideals in B(H). The
Schatten p-classes Cp(H) introduced in [122] are important examples of ideals in
B(H), which are the noncommutative counterpart of lp-sequence spaces in the sense
of Calkin [52,98]. In 1977, Hoover [56] used the Ryll-Nardzewski fixed point theorem
(as suggested by Johnson [63,67]) and the reflexivity of the ideals Cp(H), 1 < p <∞,
to show that every derivation from a C∗-subalgebra of B(H) into Cp(H) is inner.
Hoover [56] also resolved the special case when p = 1 by a completely different
approach (see also [4] for a new proof).

However, when B(H) is replaced by a general semifinite von Neumann algebra
M, the corresponding ideal Cp(M, τ) is not necessarily reflexive even for 1 < p <∞
and therefore the Ryll-Nardzewski fixed point theorem can not be applied directly
(the method used in [4] is not applicable, either). In 1985, using Johnson and
Parrott’s trick [67], Kaftal and Weiss [81] showed that every derivation from an
abelian (or properly infinite) von Neumann subalgebra of M into Cp(M, τ) is inner
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when 1 ≤ p < ∞. However, the case for general von Neumann subalgebra of M
was left unanswered. The second main result of the thesis provides sharp conditions
(we demonstrate the sharpness of our result in Theorem 4.2.1) on a symmetric ideal
E of M such that any derivation from an arbitrary C∗-subalgebra of M into E is
inner. Namely, we prove the following result (see Chapter 2 for definitions), which, in
particular, fully resolves the untreated cases for derivations with values in Cp(M, τ)
in the paper [81] by Kaftal and Weiss.

Theorem (Theorem 4.1.4). Let A be a C∗-subalgebra of M and let E(0,∞) be a

fully symmetric space on (0,∞) having the Fatou property and order continuous

norm, i.e, E(0,∞) is a KB-space. Then every derivation δ from A into the

corresponding symmetric ideal E(M, τ) of M is inner.

The thesis is structured such that the first two chapters consist of the necessary
background material of noncommutative analysis. The classical results of derivations
are surveyed in Chapter 3. In Chapter 4, we study derivation δ from a C∗-subalgebra
A of a semifinite von Neumann algebra M into the symmetric ideals of M. The
main tools are the Ryll-Nardzewski fixed point theorem [96] and the properties of
the so-called p-convexifications of a noncommutative symmetric space developed by
P. Dodds, T. Dodds and B. de Pagter [38]. In Chapter 5, we show that derivations
from an arbitrary von Neumann subalgebra of M into C0(M, τ) are necessarily
inner. As an application of this result, we show that derivations from an arbitrary
von Neumann subalgebra of M into E are necessarily inner for a wide class of
symmetric ideals E ofM, which unifies the Johnson–Parrott–Popa theorem [67,110]
and results by Kaftal and Weiss [81] with a substantial extension.

The main results in this thesis all stem from the articles Derivations with values in
ideals of semifinite von Neumann algebras [11] and Derivations with values in the
ideal of τ -compact operators affiliated with a semifinite von Neumann algebra [12].
These results have been presented in:

1. The International Workshop on Operator Theory and Applications (IWOTA),
Shanghai, 23-27 July 2018.

2. Mini Workshop on Noncommutative Analysis, Central South University,
Changsha, 18 July 2018.

3. The fifth Annual Postgraduate Conference (Session chair), UNSW, Sydney, 8
June 2018.

4. The 61st annual meeting of the Australian Mathematical Society, Macquarie
University, Sydney, 12-15 December 2017.

5. The fourth Annual Postgraduate Conference (Plenary Speaker), UNSW,
Sydney, 7 June 2017.





Contents

Preface v

1 von Neumann algebras 1
1.1 Algebras with an involution . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 C∗-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Topologies on B(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 von Neumann algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Supports of projections . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Comparison of projections . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Type decomposition of von Neumann algebras . . . . . . . . . . . . . 7
1.8 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Symmetric spaces 11
2.1 Closed linear operators . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The ∗-algebra of τ -measurable operators . . . . . . . . . . . . . . . . 13
2.3 Properties of submajorisations . . . . . . . . . . . . . . . . . . . . . 17
2.4 Symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 τ -compact operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Derivations of operator algebras: review and general properties 25
3.1 Derivations on algebras of bounded operators . . . . . . . . . . . . . 26
3.2 The Johnson–Parrott–Popa theorem . . . . . . . . . . . . . . . . . . 28
3.3 Derivations with values into symmetric spaces . . . . . . . . . . . . . 31
3.4 General properties results of derivations . . . . . . . . . . . . . . . . 33

4 Derivations on C∗-subalgebras of a semifinite von Neumann algebra 37
4.1 Derivations with values in symmetric ideals . . . . . . . . . . . . . . 37
4.2 Non-inner derivations . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Derivations on von Neumann subalgebras of a semifinite von
Neumann algebra 45
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 The abelian case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 The properly infinite Case . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 The type I case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 The type II1 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Conclusions and applications . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 69

ix





Chapter 1

von Neumann algebras

Von Neumann algebras were originally introduced by John von Neumann [97] in

1929, motivated by his study of single operators, group representations, ergodic

theory and quantum mechanics. He and Francis Murray developed the basic theory,

under the original name of rings of operators, in a series of papers written in the

1930s and 1940s [93–95,99–102]. In this section, we recall some notions of the theory

of von Neumann algebras. For details on von Neumann algebra theory, the reader

is referred to e.g. [34], [77, 78] or [132]. The book by Connes [29] discusses more

advanced topics.

1.1 Algebras with an involution

Let A be an algebra over the complex numbers (the set of all complex numbers is

denoted by C). The mapping x 7→ x∗ from A into itself is said to be an involution if

1. (x+ y)∗ = x∗ + y∗;

2. (λx)∗ = λ̄x∗;

3. (xy)∗ = y∗x∗;

4. (x∗)∗ = x,

whenever x, y ∈ A and λ ∈ C. An algebra equipped with an involution is called a

∗-algebra. An element x ∈ A is called self-adjoint (or hermitian) if x∗ = x. The

set of all self-adjoint elements in A is denoted by Ah, which is clearly a real linear

subspace of A. If x, y ∈ Ah, then xy ∈ Ah if and only if xy = yx. Note furthermore

that x∗x and xx∗ belong to Ah for every x ∈ A. For x ∈ A, we set

Re(x) =
1

2
(x+ x∗), Im(x) =

1

2i
(x− x∗).

Clearly, Re(x), Im(x) ∈ Ah and x = Re(x) + i Im(x) for all x ∈ A. Conversely, if for

a given x ∈ A, we have x = x1 + ix2 with x1, x2 ∈ Ah, then necessarily x1 = Re(x)

and x2 = Im(x).

The ∗-algebra is called unital if it possesses a multiplicative identity, a unit

element, denoted by 1 = 1A. Note that 1∗ = 1. An element x in the unital algebra

1



2 1. von Neumann algebras

A is said to be invertible if there exists y ∈ A such that xy = yx = 1; in this case,

the element y is unique and denoted by x−1, the inverse of x. It is easy to see that

x ∈ A is invertible if and only if x∗ is invertible and, in this case, (x−1)∗ = (x∗)−1.

An element x ∈ A is called normal if x∗x = xx∗. Furthermore, u ∈ A is said

to be unitary if u∗u = uu∗ = 1 (equivalently, u is invertible and u∗ = u−1). All

unitary elements in A form a (multiplicative) group, which we shall denote by U(A).

An element p ∈ A is said to be a projection if p2 = p and p∗ = p. The set of all

projections in A is denoted by P(A).

A subset S of a ∗-algebra A is called self-adjoint if x∗ ∈ S whenever x ∈ S. A

self-adjoint subalgebra S of A is said to be a ∗-subalgebra of A and, in this case, S
itself is a ∗-algebra with respect to the algebraic operations and involution inherited

from A.

1.2 C∗-algebras

An algebra A equipped with a norm ‖·‖A such that A is a Banach space and

(i) ‖xy‖A ≤ ‖x‖A ‖y‖A for all x, y ∈ A,

is called a Banach algebra. If A has a unit element 1, then we assume that ‖1‖A = 1.

If A is a ∗-algebra and the norm also satisfies

(ii) ‖x∗‖A = ‖x‖A for all x, y ∈ A,

then A is called a Banach ∗-algebra.

A C∗-algebra is a ∗-algebra A equipped with a norm ‖·‖A, such that A is a

Banach algebra and

(iii) ‖x∗x‖A = ‖x‖2A for all x, y ∈ A.

If A is a C∗-algebra, then it is easy to see that the norm also satisfies condition

(i). So, any C∗-algebra is a Banach ∗-algebra. Moreover, if the C∗-algebra has a

unit element 1, then the equality ‖1‖A = 1 is automatically satisfied.

Proposition 1.2.1 (see e.g. [18, II,3.2.12]). Every element of a unital C∗-algebra

A is a linear combination of four unitary elements of A. In fact, if x = x∗ ∈ A and

‖x‖A ≤ 2, then x is a sum of two unitary elements of U(A).

If A is a C∗-algebra and A1 is a closed ∗-subalgebra of A, then A1 is C∗-algebra

with respect to the structure inherited from A and we say that A1 is a C∗-subalgebra

of A.

We recall also the classical unitalization result for C∗-algebras [113].

Theorem 1.2.2. Let A be a C∗-algebra. There exists a C∗-algebra A1 which is

unital, contain A as a closed two-sided ideal and A1/A ∼= C. Moreover, this C∗-

algebra is unique.
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1.3 Topologies on B(H)

In what follows, H is a Hilbert space and B(H) is the ∗-algebra of all bounded linear

operators on H equipped with the uniform norm ‖·‖∞, and 1 is the identity operator

on H.

In addition to the uniform norm topology, there are a number of other important

topologies on B(H).

For every η ∈ H, we define the semi-norm ρη on B(H) by ρη(x) = ‖Tη‖H,

x ∈ B(H). The locally convex Hausdorff topology on B(H) generated by the family

of semi-norms {ρη : η ∈ H} is called the strong operator topology (shortly, so-

topology). A net {Tα} in B(H) so-converges to an operator T ∈ B(H), denoted by

Tα →so T , if and only if

‖Tαη − Tη‖H → 0

for all η ∈ H. Multiplication in B(H) is continuous with respect to the so-

topology in each factor separately, but in general not jointly so-continuous (however,

multiplication is jointly so-continuous when restricted to norm bounded sets). The

mapping T 7→ T ∗ is not so-continuous (unless H is finite dimensional).

For η, ξ ∈ H, we define the semi-norm ρη,ξ by

ρη,ξ(T ) = |〈Tη, ξ〉|, T ∈ B(H).

The locally convex Hausdorff topology on B(H) generated by the family of semi-

norms {ρη,ξ : η, ξ ∈ H} is called the weak operator topology (shortly, wo-topology).

A net {Tα} in B(H) wo-converges to an operator T ∈ B(H), denoted by Tα →wo T ,

if and only if

〈Tαη, ξ〉 → 〈Tη, ξ〉, ∀η, ξ ∈ H.

It is clear that the wo-topology is weaker than the so-topology and coincides with

the latter only if H is finite dimensional. However, for a convex subset of B(H), its

wo-closure coincides with its so-closure.

Proposition 1.3.1 (see e.g. [31, Chapter IX, Corollary 5.2]). If S is a convex subset

of B(H), then the wo-closure of S equals the so-closure of S.

Multiplication is wo-continuous in each factor separately, but is not jointly wo-

continuous (unless H is finite dimensional). The mapping x 7→ x∗ is clearly wo-

continuous.

A useful property of the wo-topology is given in the next theorem.

Theorem 1.3.2 (see e.g. [31, Chapter IX, Proposition 5.5]). The closed unit ball

B(H)1 of B(H) is compact in the weak operator topology.

Next, we consider the locally convex Hausdorff topology on B(H) generated by

the family of semi-norms defined by ρ{ηi},{ξi}(T ) = |
∑∞

i=1〈Tηi, ξi〉|, where {ηi}∞i=1

and {ξi}∞i=1 are sequences in H satisfying
∑∞

i=1 ‖ηi‖
2
H < ∞ and

∑∞
i=1 ‖ξi‖

2
H < ∞.

This topology is called the ultra-weak operator topology (shortly, uwo-topology) or
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σ-weak topology or weak∗ operator topology. The ultra-weak operator topology is

stronger than the wo-topology. On norm bounded subsets of B(H), the uwo- and

wo- topology coincide [132, Chapter II]. In particularly, B(H)1 is uwo-compact.

Given a sequence {ηi} in H satisfying
∑∞

i=1 ‖ηi‖
2
H <∞, the semi-norm ρ{ηi} on

B(H) is defined by

ρ{ηi}(T ) =

( ∞∑
i=1

‖Tηi‖2H

) 1
2

.

The locally convex Hausdorff topology on B(H) generated by the family of semi-

norms given by ρ{ηi} is called the ultra-strong operator topology (briefly, uso-

topology). The ultra-strong operator topology is stronger than the so- and the

uwo-topologies and is weaker than the norm topology. On norm bounded subsets of

B(H), the uso- and so- topology coincide [132, Chapter II].

1.4 von Neumann algebras

Given a non-empty subset S of B(H), the commutant S ′ of S is defined by

S ′ = {X ∈ B(H) : XY = Y X ∀Y ∈ S},

which is a (wo)-closed unital subalgebra of B(H). If S is self-adjoint, then S ′ is a

(wo)-closed unital C∗-subalgebra of B(H). Defining the bi-commutant S ′′ of S by

S ′′ = (S ′)′, it is clear that S ⊂ S ′′ and S ′ = S ′′′.

Definition 1.4.1. A ∗-subalgebra M of B(H) is said to be a von Neumann algebra

if M =M′′.

If M is a von Neumann algebra, then M is a wo-closed unital C∗-subalgebra of

B(H). The simplest examples of von Neumann algebras are given by the algebra

B(H) itself and the subalgebra C1 = {λ1 : λ ∈ C}. For any non-empty subset

S of B(H), the commutant S ′ is a von Neumann algebra. Similarly, S ′′ is a von

Neumann algebra. Actually, S ′′ is the von Neuamnna algebra generated by S, that

is, the smallest von Neumann algebra containing S.

The center Z(M) of a von Neumann algebra M is defined by

Z(M) = {X ∈M : XY = Y X, ∀Y ∈M}.

Since Z(M) = M∩M′, it follows that Z(M) is a von Neumann algebra, which

is clearly commutative. Note that Z(M′) = Z(M). If Z(M) = C, then the von

Neumann algebra M said to be a factor. Since B(H)′ = CH , it follows that B(H)

is a factor.

The following is the famous Double Commutant Theorem of J. von Neumann.

Theorem 1.4.2. Let M be a unital ∗-subalgebra of B(H) and let M1 be its unit

ball (with respect to the operator norm). The following statements are equivalent.

(1). M is a von Neumann algebra, that is, M =M′′.
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(2). M is wo-closed (or, equivalently, so-, uwo-, uso-closed).

(3). M1 is wo-closed (or, equivalently, so-, uwo-, uso-closed).

If M is a von Neumann algebra, then M1 = M∩ B(H)1 is wo-compact and

hence,M1 is uwo-compact, as the wo- and uwo-topology coincide on norm bounded

subsets of B(H).

Let P ∈ M and Q ∈ M′. The algebra MP := PMP = {PXP : X ∈ M}
is called the reduced von Neumann algebra of M with respect to P ∈ P(M). The

algebra MQ := QMQ = {QXQ : X ∈ M} is called the induced von Neumann

algebra by M on Q(H).

In what follows, we shall frequently use the following notation concerning partial

ordering. Let (X,≤) be a partially ordered set. If D is a non-empty subset of

X for which the least upper bounded (or, supremum) exists, then this least upper

bound is denoted by supD or ∨D. Similarly, inf D or ∧D denotes the greatest lower

bounded (or infimum) or D whenever it exists. In the case when D = {x, y}, we

also write supD = x ∨ y and inf D = x ∧ y. A net {xα}α∈Γ is called increasing (or,

upwards directed) if xα ≤ xβ whenever α ≤ β in Λ (notation as xα ↑). If {xα}α∈Λ is

increasing and x = supα xα exists, then we write xα ↑ x. Decreasing nets are defined

similarly and xα ↓ x means that the decreasing net {xα} has infimum x.

A self-adjoint operator A ∈ B(H) is called positive if 〈Aξ, ξ〉 ≥ 0 for all ξ ∈ H.

The collection of all positive elements of B(H) is denoted by B(H)+. This set is a

proper closed cone in B(H) and it induces a partial ordering in the set of all self-

adjoint operators from B(H) by setting A ≤ B if and only if B − A ∈ B(H)+. For

a given von Neumann algebra M, we set M+ := M∩ B(H)+, which is called the

positive part (or positive cone) of M.

Vigier’s theorem states that von Neumann algebras have the least upper bound

property.

Theorem 1.4.3. If {Ai}i∈I is an increasing net in M+, bounded from above by B

in B(H), then there exists A ∈ M+ such that Ai ↑ A in strong operator topology

and A ≤ B.

1.5 Supports of projections

In this section,M is a von Neumann algebra on the Hilbert space H. We denote by

P(M) the collection of all (orthogonal) projections belonging to M, that is,

P(M) = {P ∈M : P 2 = P, P ∗ = P}.

Evidently, P(M) ⊂ P(B(H)). For every P ∈ P(M), we denote by P⊥ := 1−P the

complement of P .

For any X ∈ M, the range and kernel of a linear operator X are denoted by

Ran(X) and Ker(X), respectively.

Definition 1.5.1. Let X ∈ B(H). We define
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• the projection onto Ker(X) is called the null projection of X, denote by n(X);

• the projection onto Ran(X) is called the range projection of X, denote by

r(X);

• the projection 1−n(X), which is the projection onto Ran(X∗) , is called the

support projection of X, denote by s(X).

For any X ∈ M, the support projection s(X) and the range projection r(X)

both belong to P(M). Therefore, s(X) (respectively, r(X)) is the smallest of all

projections P ∈ P(M) satisfying X = XP (respectively, X = PX).

Projections belonging to the center Z(M) ofM are called central projections in

M.

Definition 1.5.2. For X ∈M, the central support z(X) ∈ P(Z(M)) is defined by

z(X) = inf{P ∈ P(Z(M)) : X = XP}.

Note that X = Xz(X), so the above infimum is actually a minimal projection.

For P ∈ P(Z(M)), the conditions X = XP and X∗ = X∗P are equivalent. Hence,

z(X) = z(X∗) for all x ∈M. Note furthermore that, for any Q ∈ P(M), we have

z(Q) = inf{P ∈ P(Z(M)) : P ≤ Q}.

In particular, z(X) = z(s(X)) = z(r(X)).

1.6 Comparison of projections

Recall that an operator V ∈ B(H) is called a partial isometry if ‖V ξ‖H = ‖ξ‖H for

all ξ ∈ Ker(V )⊥.

Definition 1.6.1. Let P,Q ∈ P(M) be given.

• The projections P and Q are said to be equivalent (relative to the von Neumann

algebra M) if there exists a partial isometry V ∈ M with initial projection P

and final projection Q (that is, P = V ∗V and Q = V V ∗). This is denoted by

P ∼ Q (or by P
M∼ Q, if it is necessary to emphasize the von Neumann algebra

relative to which the projections are equivalent).

• The projection P is said to be majorized by Q (relative to M) if there exists

a projection P1 ∈ P(M) such that P1 ≤ P and P ∼ Q. This is denoted by

Q - P (or P -M Q).

If X ∈ M with polar decomposition X = V |X|, then V ∈ M and V ∗V = s(X)

and vv∗ = r(X). Evidently, if M is an abelian von Neumann algebra and P,Q ∈
P(M), then P ∼ Q if and only if P = Q, and P - Q if and only if P ≤ Q. In the

next proposition, we list some of the properties of the relation ∼.

Proposition 1.6.2. (i). If X ∈M, then s(X) ∼ r(X).
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(ii). If P,Q ∈ P(M), then P ∨ Q − Q ∼ P − P ∧ Q. In particular, if P ∧ Q = 0,

then P - Q⊥.

(iii). If P,Q ∈ P(M) and P ∼ Q, then z(P ) = z(Q).

(iv). Given P,Q ∈ P(M), there exist P1, Q1 ∈ P(M) such that P1 ≤ P , Q1 ≤ Q

and P ∼ Q if and only if z(P )z(Q) 6= 0 (equivalently, there exists X ∈ M
such that PXQ 6= 0).

(v). If P,Q ∈ P(M) such that P ∼ Q, then PZ ∼ QZ for all Z ∈ P(Z(M)).

(vi). Suppose that {Pi}i∈I and {Qi}i∈I are two families of pairwise orthogonal

projections in P(M). If Pi ∼ Qi for all i ∈ I, then
∑

i∈I Pi ∼
∑

i∈I Qi.

Some properties of the relation - are collected in the following proposition.

Proposition 1.6.3. (i). If P,Q,R ∈ P(M) are such that P - Q and Q - R,

then P - R.

(ii). If P,Q ∈ P(M) are such that P - Q and Q - P , then P ∼ Q.

(iii). Suppose that {Pi}i∈I and {Qi}i∈I are two families of pairwise orthogonal

projections in P(M). If Pi - Qi for all i ∈ I, then
∑

i∈I Pi -
∑

i∈I Qi.

(iv). If P,Q ∈ P(M), then there exists a central projection Z ∈ P(Z(M)) such that

PZ - QZ and P⊥Z - Q⊥Z.

(v). Suppose that M is a factor. For P,Q ∈ P(M), we have either P - Q or

Q - P .

1.7 Type decomposition of von Neumann algebras

Definition 1.7.1. Let M be a von Neumann algebra on the Hilbert space H.

1. A projection P ∈ P(M) is said to be finite (relative to M) if it follows from

Q ∈ P(M), P ∼ Q and Q ≤ P that P = Q. If P is not finite, then we say

that P is infinite.

2. A projection P ∈ P(M) is said to be properly infinite (relative toM) if P 6= 0

and for every Q ∈ P(Z(M)), either PQ = 0 or PQ is infinite.

We recall that a projection P ∈ P(M) is said to be countably decomposable (also

called σ-finite or of countable type) if every system of {Pα} of non-zero pairwise

orthogonal projections in P(M), satisfying Pα ≤ P for all α, is at most countable.

On a separable Hilbert space, every P ∈ P(M) is clearly countably decomposable.

Definition 1.7.2. A projection P ∈ P(M) is said to be abelian if the reduced von

Neumann algebra MP is abelian.

Now, we discuss the type decomposition of von Neumann algebras.
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Definition 1.7.3. Let M be a von Neumann algebra on the Hilbert space H.

(i). M is of type I if there exists an abelian projection P ∈ P(M) with z(P ) = 1.

(ii). M is of type II if M does not contain any non-zero abelian projections and

there exists a finite projection P ∈ P(M) such that z(P ) = 1.

(iii). M is of type III if M does not contain any non-zero finite projection.

(iv). M is of type In, where n is a cardinal number satisfying 1 ≤ n ≤ dimH, if 1

is the sum of n mutually equivalent abelian projections in P(M).

(v). If M is of type II, then M is said to be of type II1 (respectively, type II∞), if

1 is a finite projection (respectively, 1 is a properly infinite projection).

Type I von Neumann algebras are also called discrete and type III von Neumann

algebras are also known as purely infinite von Neumann algebras. Observe that any

von Neumann algebra M of type In, for some n, is also of type I.

Theorem 1.7.4 (Type decomposition). Suppose that M is a von Neumann algebra

on a Hilbert space H.

(1). There exist unique, pairwise orthogonal, central projections PI , PII , PIII ∈
P(Z(M)), satisfying PI + PII + PIII = 1, such that MPI is of type I or

Pi = 0, MPII is of type II or PII = 0, and MPIII is of type III or PIII = 0.

(2). Suppose that M is of type I. There exists a unique system {Pn : 1 ≤ n ≤
dimH} of pairwise orthogonal projections in P(Z(M)), satisfying

∑
n Pn = 1,

such that MPn is of type In or Pn = 0, for each n.

(3). Suppose that M is of type II. There exist unique, mutually orthogonal

projections P1, P∞ ∈ P(Z(M)), with P1 + P∞ = 1, such that MP1 is of

type II1 or P1 = 0, and MP∞ is of type II∞ or P∞ = 0.

Corollary 1.7.5. A factor is either of type In (for a unique cardinal n satisfying

1 ≤ n ≤ dimH), or type II1, or type II∞, or type III.

We introduce some further terminology.

Definition 1.7.6. We use the notation introduced in Theorem 1.7.4.

(i). If PIII = 0, then M is said to be a semifinite von Neumann algebra.

(ii). If PI = 0, then M is called a continuous von Neumann algebra.

(iii). If 1 is a finite projection, then M is called a finite von Neumann algebra.

(iv). If 1 is a properly infinite projection, then M is called a properly infinite von

Neumann algebra.

(v). M is said to be of type Ifin if M is of type I and M is finite.
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(vi). M is said to be of type I∞ if M is of type I and M is properly infinite.

(vii). 1 is a countably decomposable, then M is said to be countably decomposable

(or, σ-finite).

1.8 Traces

Let M be a von Neumann algebra with the positive cone M+.

Definition 1.8.1. A weight on a von Neumann algebra M is a function τ on the

positive cone M+ with values in the extended positive reals [0,∞] satisfying

(i). τ(A+B) = τ(A) + τ(B) for all A,B ∈M+;

(ii). τ(λA) = λτ(A) for all A ∈ M+ and 0 ≤ λ ∈ R (with the convention that

0 · ∞ = 0).

If τ has the additional property that

(iii). τ(U∗AU) = τ(A) whenever A ∈M+ and U ∈ U(M),

then τ is called a trace (or, tracial weight) on M+.

If τ :M+ → [0,∞] is a weight, then it follows immediately from (i) in the above

definition that τ(A) ≤ τ(B) whenever A ≤ B in M+. Furthermore, observe that a

weight τ is a trace if and only if

τ(X∗X) = τ(XX∗)

for all X ∈M.

Definition 1.8.2. A weight τ :M+ → [0,∞] is called

(i). finite if τ(1) <∞;

(ii). semifinite if

τ(A) = sup{τ(B) : B ∈M+, B ≤ A, τ(B) <∞}

for all A ∈M+;

(iii). faithful if A ∈M+ and τ(A) = 0 imply that A = 0;

(iv). normal if Aβ ↑ A in M+ implies that τ(Aβ) ↑ τ(A).

The following theorem characterizes finite and semifinite von Neumann algebras

in terms of traces.

Theorem 1.8.3. Let M be a von Neumann algebra.

1. M is finite if and only if for every non-zero X ∈ M+, there exists a finite

trace τ on M+ such that τ(X) > 0.
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2. M is semifinite if and only if there exists a faithful normal semifinite trace τ

on M+.

In this thesis, we exclusively deal with semifinite von Neumann algebras. The

following lemma provides a useful tool.

Lemma 1.8.4. Let M be a semifinite von Neumann algebra equipped with a

semifinite faithful normal trace τ . If {Ti} ⊂ M is a uniformly bounded net of

self-adjoint operators converging to T ∈M in the strong operator topology, then

lim inf
i

τ(ETi(ε,∞)) ≥ τ(ET (ε,∞))

for any ε ∈ R.

Proof. Consider the characteristic function χ(ε,∞). There exists a sequence of

positive continuous functions fk with compact support such that fk ↑ χ(ε,∞)

pointwise. By [132, Lemma II 4.3], we have fk(Ti)→so fk(T ) for all k ∈ N. Since τ

is lower semicontinuous in the weak operator topology on a uniformly bounded set

(see e.g. [132, Lemma II 2.5] and [133, Theorem VII 1.11]), it follows that

τ(fk(T )) ≤ lim inf
i

τ(fk(Ti)) ≤ lim inf
i

τ(χ(ε,∞)(Ti)) = lim inf
i

τ(ETi(ε,∞)).

Note that fk ↑ χ(ε,∞) implies supk fk(T ) = χ(ε,∞)(T ) = ET (ε,∞). Hence, using the

normality of the trace τ , we conclude that

τ(ET (ε,∞)) = sup
k∈N

τ(fk(T )) ≤ lim inf
i

τ(ETi(ε,∞)).

The following proposition gives a necessary and sufficient condition for a von

Neumann algebra being countably decomposable [103, Proposition 1.3.5 or Theorem

1.3.6].

Proposition 1.8.5. For a von Neumann algebraM on a Hilbert space, the following

are equivalent:

(i). M is countably decomposable;

(ii). M admits a finite normal faithful weight.



Chapter 2

Symmetric spaces

In this chapter, we introduce the theory of noncommutative Banach function spaces.

General facts concerning measurable operators may be found in [92], [124] (see

also [133, Chapter IX] and the forthcoming book [45]).

In this theory, the notion of a measure space is replaced by the lattice of

projections of a semifinite von Neumann algebra, the integral by a faithful normal

semifinite trace, and measurable function by a (so-called) measurable operator,

which is an operator (in general unbounded) affiliated with the underlying von

Neumann algebra. The special case of noncommutative Lp-spaces was initiated by

Dixmier [33] and Segal [124]. In particular, if the underlying von Neumann algebra is

B(H) for some Hilbert space, then these noncommutative Lp-spaces are special cases

of the so-called trace ideals investigated by Schatten [122]. In this case, the seminal

ideas may be traced back to a paper on n × n-matrices due to von Neumann [98]

and the principal features of this theory may be found in the book of Gohberg and

Krein [52].

Initial contributions to the study of general symmetric spaces of measurable

operators include those of Ovčinnikov [104] and Yeadon [139,140], based on methods

from classical real analysis related to rearrangements and these methods continue to

play a significant role in the present theory of noncommutative symmetric spaces. By

special choice of the underlying von Neumann algebra, this study unifies important

aspects of the classical theory of rearrangement-invariant normed Köthe spaces (as

given in [89,141]) with the theory of trace ideals given in [52] as well as the general

features of the classical theory of the non-commutative Lp-spaces of Dixmier [33]

and Segal [124].

2.1 Closed linear operators

Many of the linear operators we encounter are not bounded and are only defined on a

(dense) subspace of the Hilbert space H. Here we introduce the necessary notions to

deal with such operators. For details on unbounded operators, the reader is referred

to [123] and [45, Chapter I]. A linear operator X in H is a linear mapping from its

domain D(X), which is a linear subspace of H, into the space H. Given two such

11
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linear operator X and Y in H, the operator Y is said to be an extension of X (or,

X is a restriction of Y ), if D(X) ⊂ D(Y ) and Xξ = Y ξ for all ξ ∈ D(X). This is

denoted as X ⊂ Y . If X ⊂ Y as well as Y ⊂ X, then X = Y . The range and kernel

of a linear operator X are denoted by Ran(X) and Ker(X) respectively.

We introduce the algebraic operations of scalar multiplication, addition and

multiplication for linear operators as follows. Given linear operators X,Y in H
and λ ∈ C, we define

• λX by setting D(λX) = D(X) and (λX)ξ = λ(Xξ) for all ξ ∈ D(λX);

• X + Y by setting D(X + Y ) = D(X)∩D(Y ) and (X + Y )ξ = Xξ+ Y ξ for all

ξ ∈ D(X + Y );

• XY by setting D(XY ) = {ξ ∈ D(Y ) : Y ξ ∈ D(X)} and (XY )ξ = X(Y ξ) for

all ξ ∈ D(XY );

• the inverse operator X−1 whenever X is injective, by setting D(X−1) =

Ran(X) and X−1ξ = η whenever ξ = Xη for some η ∈ D(X).

We note that in general it may happen that D(X + Y ) = {0} or D(XY ) = {0}.
For a linear operator X in H the graph Γ(X) is defined to be the linear subspace

of H×H given by Γ(X) := {(ξ,Xξ) : ξ ∈ D(X)}. Note that X ⊂ Y is equivalent to

Γ(X) ⊂ Γ(Y ). A linear operator X is called closed if Γ(X) is a closed subspace of

H ×H (equipped with the natural product topology). In other words, X is closed

if and only if it follows from {ξn}∞n=1 ⊂ D(X), ξ, η ∈ H, ξn → ξ and Xξn → η as

n→∞, that ξ ∈ D(X) and Xξ = η. If X is closed, then Ker(X) is a closed subspace

of H. It is clear that any bounded linear operator in H is closed. Conversely, if X

is a closed linear operator and if the domain D(X) is a closed subspace of H, then

it follows from the Closed Graph Theorem that X is bounded on its domain D(X).

This applies in particular if D(X) = H. Furthermore, if X is a closed injective linear

operator in H, then its inverse X−1 is also closed. Consequently, if X is in addition

surjective, then D(X−1) = Ran(X) = H and so, X−1 ∈ B(H).

A linear operator X in H is called densely defined if D(X) is a dense subspace

of H. Note that if X is a closed and densely defined operator, then X is bounded if

and only if D(X) = H. Now suppose that X is a densely defined operator in H and

consider the linear subspace D of H given by

D := {η ∈ H : ∃ζ ∈ H such that 〈Xξ, η〉 = 〈ξ, ζ〉, ∀ξ ∈ D(X)}.

If η ∈ D, then the element ζ ∈ H satisfying 〈Xξ, η〉 = 〈ξ, ζ〉 is uniquely determined

by η, as D(X) is dense in H. Therefore, we may define the mapping X∗ : η 7→ ζ

from D into H. It is readily verified that X∗ is a linear operator in H with domain

D(X∗) = D. The operator X∗ is called the adjoint of X. Note that, be definition,

we have

〈Xξ, η〉 = 〈ξ,X∗η〉, ξ ∈ D(X), η ∈ D(X∗).

It is evident that X∗ is closed.
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A densely defined linear operator A in H is called self-adjoint if A = A∗. A

self-adjoint operator A in H is called positive if 〈Aξ, ξ〉 ≥ 0 for all ξ ∈ D(A). This

is denoted by A ≥ 0. Furthermore, as in the case of bounded linear operators

on H, a closed and densely defined linear operator X in H is called normal when

X∗X = X∗X. The σ-algebra of all Borel subsets of C is denoted by B(C). Suppose

that Ω is a non-empty set and that A is a σ-algebra of subsets of Ω, so (Ω,A) is a

measurable space.

Definition 2.1.1. A spectral measure on (Ω,A) is a mapping E : A → B(H) such

that

(1). E(δ) is a projection in H for each δ ∈ A;

(2). E(∅) = 0 and E(Ω) = 1;

(3). E(δ1 ∩ δ2) = e(δ1)e(δ2) for all δ1, δ ∈ A;

(4). if δj ∈ A (j = 1, 2, · · · ) are pairwise disjoint, then E(∪∞j=1δj) =
∑∞

j=1E(δj),

where the series converges in the strong operator topology.

Theorem 2.1.2. If X : D(X) → H is a normal operator, then there exists a

uniquely determined spectral measure EX : B(C)→ B(H) such that

X =

∫
C
λdEX(λ).

Definition 2.1.3. Given a normal operator X : D(X) → H with spectral measure

EX : B(C)→ B(H), we define

f(X) =

∫
C
f(λ)dEX(λ).

2.2 The ∗-algebra of τ-measurable operators

From now on, we always assume that M is a semifinite von Neumann algebra

equipped with a fixed semifinite faithful normal trace τ .

A closed, densely defined operator X : D (X)→ H with the domain D (X) is said

to be affiliated with M if Y X ⊆ XY for all Y ∈ M′, where M′ is the commutant

of M. A closed, densely defined operator X : D (X)→ H affiliated with M is said

to be measurable if there exists a sequence {Pn}∞n=1 ⊂ P (M), such that Pn ↑ 1,

Pn(H) ⊆ D (X) and 1−Pn is a finite projection (with respect toM) for all n. The

collection of all measurable operators with respect toM is denoted by S (M), which

is a unital ∗-algebra with respect to strong sums and products (denoted simply by

X + Y and XY for all X,Y ∈ S (M)) [43,45,123].

Let X be a self-adjoint operator affiliated with M. We denote its spectral

measure by {EX}. It is well known that if X is an operator affiliated with M with

the polar decomposition X = U |X|, then U ∈ M and E ∈ M for all projections

E ∈ {E|X|}. Moreover, X ∈ S(M) if and only if E|X|(λ,∞) is a finite projection
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for some λ > 0. It follows immediately that in the case when M is a von Neumann

algebra of type III or a type I factor, we have S(M) = M. For type II von

Neumann algebras, this is no longer true. From now on, let M be a semifinite von

Neumann algebra equipped with a faithful normal semifinite trace τ .

An operator X ∈ S (M) is called τ -measurable if there exists a sequence {Pn}∞n=1

in P (M) such that Pn ↑ 1, Pn (H) ⊆ D (X) and τ(1 − Pn) < ∞ for all n. The

collection S (M, τ) of all τ -measurable operators is a unital ∗-subalgebra of S (M).

It is well known that a linear operatorX belongs to S (M, τ) if and only ifX ∈ S(M)

and there exists λ > 0 such that τ(E|X|(λ,∞)) < ∞. Alternatively, an unbounded

operator X affiliated with M is τ -measurable (see [48]) if and only if

τ
(
E|X|

(
n,∞

))
→ 0, n→∞.

Definition 2.2.1. Let a semifinite von Neumann algebra M be equipped with a

faithful normal semi-finite trace τ and let X ∈ S(M, τ). The generalized singular

value function µ(X) : t→ µ(t;X) of the operator X is defined by setting

µ(s;X) = inf{‖XP‖ : P ∈ P(M) with τ(1− P ) ≤ s}.

An equivalent definition in terms of the distribution function of the operator X

is the following. For every self-adjoint operator X ∈ S(M, τ), setting

dX(t) = τ(EX(t,∞)), t > 0,

we have (see e.g. [48])

µ(t;X) = inf{s ≥ 0 : d|X|(s) ≤ t}. (2.1)

It is well-known that d|X|(·) and µ(·;X) are right-continuous.

2.2.1 Measure topology and local measure topology

For convenience of the reader, we also recall the definition of the measure topology

tτ on the algebra S(M, τ). For every ε, δ > 0, we define the set

V (ε, δ) = {X ∈ S(M, τ) : ∃P ∈ P (M) such that ‖X(1− P )‖∞ ≤ ε, τ(P ) ≤ δ}

= {X ∈ S(M, τ) : τ(E|X|(ε,∞)) ≤ δ}

= {X ∈ S(M, τ) : µ(δ;X) ≤ δ}.

The topology generated by the sets V (ε, δ), ε, δ > 0, is called the measure topology

tτ on S(M, τ) [35, 45, 48, 92]. It is well known that the algebra S(M, τ) equipped

with the measure topology is a complete metrizable topological algebra [60, 92]. A

net {Xα}∞n=1 ⊂ S(M, τ) converges to zero with respect to measure topology tτ if

and only if τ
(
E|Xα|(ε,∞)

)
→α 0 for all ε > 0 [45], or equivalently, µ(t;Xα) →α 0

for all t > 0.

Another important vector topology on S(M, τ) is the local measure topology.

For convenience we denote by Pfin(M) the collection of all τ -finite projections in
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M, that is the set of all P ∈ P(M) satisfying τ(P ) < ∞. A neighbourhood base

for this topology is given by the sets V (ε, δ;P ), ε, δ > 0, P ∈ Pfin(M), where

V (ε, δ;P ) = {X ∈ S(M, τ) : PXP ∈ V (ε, δ)}.

Obviously, local measure topology is weaker than measure topology [43]. It is clear

that, if τ(1) < ∞, then the measure topology coincides with the local measure

topology. However, if τ(1) = ∞, then S(M, τ) need not be complete for the local

measure topology, even in the case when M is commutative. We note here, that

the local measure topology used in the present thesis differs from the local measure

topology defined in e.g. [9, 10].

In general, local measure topology is not metrisable and multiplication in

S(M, τ) is not jointly continuous with respect to local measure topology. However,

if {Xα} ⊂ S(M, τ) is a net and if Xα → X ∈ S(M, τ) in local measure topology,

then Y Xα → Y X and XαY → XY in local measure topology for all Y ∈ S(M, τ).

If M = B(H) equipped with the canonical trace Tr, then the measure topology

coincides with the operator norm topology while the local measure topology coincides

with the weak operator topology.

2.2.2 Properties of generalized singular value functions

We collect some properties of generalized singular value functions below [43,87].

Proposition 2.2.2. If A ∈ S(M, τ), then

(1). The function t 7→ µ(t;A), t > 0, is decreasing and right-continuous.

(2). µ(t;A)→ ‖A‖∞ when t→ 0 for bounded A and µ(t;A)→∞ when t→ 0 for

unbounded A.

(3). µ(t;A) = µ(t; |A|) for all t > 0.

(4). If α ∈ C, then µ(t;αA) = |α|µ(t;A) for all t > 0.

(5). If 0 ≤ B ≤ A, then µ(t;B) ≤ µ(t;A) for all t > 0.

(6). If τ(1) = 1, then µ(t;A) = 0 for all t > 1.

(7). If B,C ∈M, then

µ(t;BAC) ≤ ‖B‖∞‖C‖∞µ(t;A), µ(t;A∗) = µ(t;A) (2.2)

(8). Let B ∈ S(M, τ) and t, s > 0. Then,

µ(t+ s;A+B) ≤ µ(t;A) + µ(s;B),

and

µ(t+ s;AB) ≤ µ(t;A)µ(s;B).
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(9). If A ≥ 0 and if f : R+ → R+ is a continuous and increasing function, then

µ(f(A)) = f(µ(A)).

(10). The operation A → µ(t;A) is continuous in the uniform norm on M. More

precisely,

|µ(s;A)− µ(s;B)| ≤ ‖A−B‖∞ , ∀A,B ∈M, ∀s > 0.

Lemma 2.2.3. For every X ∈ S(M, τ) and t > 0, τ(E|X|(a,∞)) > t if and only if

µ(s;X) > a for all s ∈ [0, t].

Proof. Necessity. By (2.1), we have µ(t;X) = inf{s ≥ 0 : τ(E|X|(s,∞)) ≤ t}.
Assume by contradiction that µ(t;X) ≤ a, then inf{s ≥ 0 : τ(E|X|(s,∞)) ≤ t} ≤ a

and therefore τ(E|X|(a + ε,∞)) ≤ t for any ε > 0. Since the distribution function

d|X|(·) is right-continuous (see e.g. [48]), it follows that τ(E|X|(a,∞)) ≤ t, which is

a contradiction.

Sufficiency. By assumption, we have that µ(t;X) > a. Using again (2.1), we

obtain that inf{s ≥ 0 : τ(E|X|(s,∞)) ≤ t} > a, and therefore τ(E|X|(a,∞)) > t.

Suppose that X ∈ S(M, τ). If 0 < α ∈ R and E = E|X|(α,∞), then

µ(|X|E) = µ(X)χ[0,τ(E)) (2.3)

and

µ(t; |X|E⊥) = µ(t+ τ(E);X) (2.4)

for all t ≥ 0 whenever τ(E) <∞.

Consider the algebra M = L∞(0,∞) of all Lebesgue measurable essentially

bounded functions on (0,∞). The algebraM can be seen as an abelian von Neumann

algebra acting via multiplication on the Hilbert space H = L2(0,∞), with the trace

given by integration with respect to Lebesgue measure m. It is easy to see that the

algebra of all τ -measurable operators affiliated with M can be identified with the

subalgebra S(0,∞) of the algebra of Lebesgue measurable functions L0(0,∞) which

consists of all functions x such that m({|x| > s}) is finite for some s > 0. It should

also be pointed out that the generalized singular value function µ(x) is precisely the

decreasing rearrangement µ(x) of the function |x| (see e.g. [86]) defined by

µ(t;x) = inf{s ≥ 0 : m({|x| ≥ s}) ≤ t}.

IfM = B(H) (respectively, l∞) and τ is the standard trace Tr (respectively, the

counting measure on N), then it is not difficult to see that S(M) = S(M, τ) =M.

In this case, for X ∈ S(M, τ) we have

µ(n;X) = µ(t;X), t ∈ [n, n+ 1), n ≥ 0.

The sequence {µ(n;X)}n≥0 is just the sequence of singular values of the operator

X.
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2.3 Properties of submajorisations

We collect some properties of submajorisation below. For detailed on the theory of

submajorisation, the reader is referred to [43,45,48,91]. For the sake of convenience,

we denote

(L1 + L∞)(M, τ) :=
{
X ∈ S(M, τ) : µ(X)χ(0,1) ∈ L1(0, 1)

}
.

Proposition 2.3.1. Let A,B ∈ (L1 + L∞)(M, τ). We have

(i). µ(A+B) ≺≺ µ(A) + µ(B).

(ii). If A,B ≥ 0, then µ(A) + µ(B) ≺≺ 2σ1/2µ(A+B).

(iii). µ(A)− µ(B) ≺≺ µ(A+B).

Proposition 2.3.2. (i). [61,131] Assume that 0 ≤ A ∈ (L1 + L∞)(M, τ) and B

is self-adjoint in ∈ (L1 + L∞)(M, τ). If −A ≤ B ≤ A, then B ≺≺ A.

(ii). [44, Lemma 6.1] Assume that X ∈ S(M, τ) and P1, P2, · · · , Pn ∈ M are

projections with PiPj = 0, i 6= j. We have

P1XP1 + P2XP2 + · · ·+ PnXPn ≺≺ X. (2.5)

(iii). [87, Lemma 3.3.5] Let 0 ≤ Ak ∈ (L1 +L∞)(M, τ), k ∈ N Let αk ∈ R+, k ∈ N,

be such that
∑∞

k=1 αk ≤ 1. We have

∞∑
k=1

∫ αka

0
µ(s;Ak)ds ≤

∫ a

0
µ(s;

∞∑
k=1

Ak)ds, ∀a > 0. (2.6)

Here, we assume that the series
∑∞

k=1Ak converges in (L1 + L∞)(M, τ).

The following proposition is an easy consequence of (2.5) and (2.6).

Proposition 2.3.3. Assume that P1, P2, · · · , Pn ∈M are projections with PiPj = 0,

i 6= j. Let αi > 0, i ∈ N, be such that
∑n

i=1 αi ≤ 1. For every X ∈ (L1 +L∞)(M, τ),

we have∫ a

0
µ(t;X)dt ≥

n∑
i=1

∫ αia

0
µ(t; |PiXPi|)dt =

n∑
i=1

∫ αia

0
µ(t;PiXPi)dt, ∀a > 0. (2.7)

Proof. Since Pi are pairwise disjoint, it follows that

µ(P1XP1 + P2XP2 + · · ·+ PnXPn) = µ(|P1XP1 + P2XP2 + · · ·+ PnXPn|)

= µ(|P1XP1|+ |P2XP2|+ · · ·+ |PnXPn|).

Therefore, by (2.5), we obtain that∫ a

0
µ(t; |P1XP1|+ |P2XP2|+ · · ·+ |PnXPn|)dt ≤

∫ a

0
µ(t;X)dt.

The validity of (2.7) follows from (2.6).



18 2. Symmetric spaces

2.4 Symmetric spaces

Definition 2.4.1. A linear subspace E(M, τ) of S(M, τ) equipped with a complete

norm ‖·‖E, is called symmetric space (of τ -measurable operators) if X ∈ S(M, τ),

Y ∈ E(M, τ) and µ(X) ≤ µ(Y ) imply that X ∈ E and ‖X‖E ≤ ‖Y ‖E.

It is well-known that any symmetric space E is a normed M-bimodule, that

is AXB ∈ E(M, τ) for any X ∈ E(M, τ), A,B ∈ M and ‖AXB‖E ≤
‖A‖∞ ‖B‖∞ ‖X‖E [43, 45, 128]. Further, ‖X‖E = ‖X∗‖E = ‖|X|‖E . Moreover, the

embedding of E(M, τ) in S(M, τ) is continuous with respect to the norm topology

in E(M, τ) and the measure topology in S(M, τ) (see [43], see also [58,129]).

If X,Y ∈ S(M, τ), then X is said to be submajorised (in the sense of Hardy–

Littlewood–Polya) by Y , denoted by X ≺≺ Y , if∫ t

0
µ(s;X)ds ≤

∫ t

0
µ(s;Y )ds

for all t ≥ 0.

A symmetric space E(M, τ) ⊂ S(M, τ) is called strongly symmetric if its norm

‖ · ‖E has the additional property that ‖X‖E ≤ ‖Y ‖E whenever X,Y ∈ E(M, τ)

satisfy X ≺≺ Y . In addition, if X ∈ S(M, τ), Y ∈ E(M, τ) and X ≺≺ Y imply

that X ∈ E(M, τ) and ‖X‖E ≤ ‖Y ‖E , then E(M, τ) is called fully symmetric space

(of τ -measurable operators).

A symmetric space E(M, τ) is said to have the Fatou property if for every

upwards directed net {Xβ} in E(M, τ)+, satisfying supβ ‖Xβ‖E < ∞, there exists

an element X ∈ E(M, τ)+ such that Xβ ↑ X in E(M, τ) and ‖X‖E = supβ ‖Xβ‖E .

Examples such as Schatten-von Neumann operator ideals, Lorentz operator ideals,

Orlicz operator ideals, etc. all have symmetric norms which have the Fatou property.

If E ⊂ S(M, τ) is a symmetric space, then the norm ‖·‖E is called order continuous

if ‖Xα‖E → 0 whenever {Xα} is a downwards directed net in E+ satisfying Xα ↓ 0.

The classical noncommutative Lp-space Lp(M, τ), p ≥ 1, is the symmetric space

corresponding to the classical Lp-space of functions Lp(0,∞), that is

Lp(M, τ) = {X ∈ S(M, τ) : µ(X) ∈ Lp(0,∞)}.

This space can be also described as the space of all τ -measurable operator X, such

that τ(|X|p) < ∞. It is well-known [43] that L∞(M, τ) has the Fatou property,

and, for all 1 ≤ p < ∞, the symmetric space Lp(M, τ) is fully symmetric, has

Fatou property and order continuous norm. In addition, for 1 < p < ∞, the space

Lp(M, τ) is reflexive [109].

If E(M, τ) is a symmetric space, then the carrier projection cE ∈ P(M) is

defined by setting

cE =
∨
{P : P ∈ P (M), P ∈ E(M, τ)}.

If E(M, τ) is a symmetric space, then the Köthe dual E(M, τ)× of E(M, τ) is

defined by

E(M, τ)× = {X ∈ S(M, τ) : sup
‖Y ‖E≤1,Y ∈E

τ(|XY |) <∞},
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and for everyX ∈ E(M, τ)×, we set ‖X‖E× = sup{τ(|Y X|) : Y ∈ E(M, τ), ‖Y ‖E ≤
1} (see e.g. [43, Section 5.2], see also [39,87]). It is well-known that ‖·‖E× is a norm

on E(M, τ)× if and only if the carrier projection cE of E(M, τ) is equal to 1. In

this case, for a strongly symmetric space E(M, τ), the following statements are

equivalent [41,43].

• E(M, τ) has the Fatou property.

• E(M, τ)×× = E(M, τ) and ‖X‖E = ‖X‖E×× for all X ∈ E(M, τ).

• The norm closed unit ball BE of E(M, τ) is closed in S(M, τ) with respect to

the local measure topology .

Reflexivity of strongly symmetric spaces may be characterised as follows.

Theorem 2.4.2. A strongly symmetric space E(M, τ) is reflexive if and only if

(i). The space E has the Fatou property.

(ii). The norms on E and E× are order continuous.

A fully symmetric space is called a Kantorovich-Banach space (or KB-space)

if it has order continuous norm and the Fatou property. It is clear that the

noncommutative Lp-spaces are KB-spaces for all p ∈ [1,∞).

Definition 2.4.3. A linear subspace E(M, τ) of S(M, τ) is called a Calkin operator

space if B ∈ E(M, τ) whenever B ∈ S(M, τ) and µ(B) ≤ µ(A) for some A ∈
E(M, τ).

A Calkin function (respectively, sequence) space is the term reserved for a Calkin

operator space when M = L∞(0, 1) or M = L∞(0,∞) (respectively, M = l∞).

The following theorem extends the Calkin correspondence between two-sided

ideals of B(H) and their Calkin sequence spaces by showing that the singular value

function maps bijectively Calkin operator spaces to Calkin function spaces.

Theorem 2.4.4. Let M be an atomless (or atomic) von Neumann algebra equipped

with a faithful normal semifinite trace τ . If E(M, τ) is a Calkin operator space,

then

E := {x ∈ S : µ(x) = µ(A), A ∈ E(M, τ)}

is a Calkin function (or sequence) space, where S = S(0, τ(1)) (or l∞). If E is a

Calkin function (or sequence) space, then

E(M, τ) := {A ∈ S(M, τ) : µ(A) ∈ E}

is a Calkin operator space.

A wide class of symmetric operator spaces associated with the von Neumman

algebra M can be constructed from concrete symmetric function spaces studied
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extensively in e.g. [86]. Let (E(0,∞), ‖·‖E(0,∞)) be a symmetric function space on

the semi-axis (0,∞). One can construct an operator space by defining

E(M, τ) = {X ∈ S(M, τ) : µ(X) ∈ E(0,∞)}, ‖X‖E(M,τ) := ‖µ(X)‖E(0,∞).

If E(0,∞) is a strongly/fully symmetric function space on (0,∞), then it is clear that

E(M, τ) is also a strongly/fully symmetric space [36, 37]. However, when E(0,∞)

is symmetric rather than strongly/fully symmetric, the question as to whether ‖·‖E
is a norm, and not merely a quasi-norm turns out to be highly non-trivial and was

solved only recently by Kalton and Sukochev [82] (see also [87]). In the case when

(M, τ) = (B(H),Tr), we use notation E(H).

Theorem 2.4.5. If E(0,∞) is a symmetric function space, then the functional

‖·‖E(M,τ) is a complete norm on E(M, τ). In particular, cE = 1.

Further, for any symmetric space E(0,∞), we have

L1 ∩ L∞(M, τ) ⊂ E(M, τ) ⊂ (L1 + L∞)(M, τ).

For convenience, we denote ‖·‖E(M,τ) by ‖·‖E . Many properties of symmetric

spaces, such as reflexivity, Fatou property, order continuity of the norm as well

as Köthe duality carry over from commutative symmetric function space E(0,∞) to

its noncommutative counterpart E(M, τ) (see e.g. [41, 43,46]).

2.5 τ-compact operators

A projection P ∈ P(M) is called τ -finite if τ(P ) < ∞. If P ∈ P(M) is τ -finite,

then P is a finite projection. The two-sided ideal F(M, τ) in M consisting of all

elements of τ -finite range is defined by setting

F(M, τ) = {X ∈M : τ(r(X)) <∞} = {X ∈M : τ(s(X)) <∞}.

Definition 2.5.1 (see e.g. [87, Definition 2.6.8]). The set C0(M, τ) of all τ -compact

bounded operators is the closure in the norm ‖·‖∞ of the linear span of all τ -finite

projections.

This notion is a direct generalization of the ideal of compact operators on a

Hilbert space H. If τ is finite, then every projection is τ -finite and, therefore,

C0(M, τ) =M (see e.g. [87, Page 64]). The next lemma shows that C0(M, τ) is the

noncommutative counterpart of the algebra C0(0,∞) of bounded functions vanishing

at infinity.

Proposition 2.5.2 (see e.g. [87, Lemma 2.6.9]). The space C0(M, τ) is associated

to the ideal of essentially bounded functions vanishing at infinity (see [87, Lemma

2.6.9]), that is,

C0(M, τ) = {A ∈ S(M, τ) : µ(A) ∈ L∞(0,∞), µ(∞;A) := lim
t→∞

µ(t;A) = 0}.
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Proof. Let A ∈ M and let µ(∞;A) = 0. Let A = U |A| be the polar decomposition

for A. For a given n ∈ N, define An ∈M by setting

An := U

n−1∑
k=1

k ‖A‖∞
n

E|A|(
k ‖A‖∞

n
,
(k + 1) ‖A‖∞

n
].

By the spectral theorem, An → A uniformly in M. Since An ∈ C0(M, τ), it follows

that A ∈ C0(M, τ).

Conversely, A ∈ C0(M, τ) and let An, n ∈ N, be a finite linear combination of τ -

finite projections such that An → A inM. If an = τ(EAn(0,∞)), then µ(t;An) = 0

for t ≥ an. It follows from Proposition 2.2.2 that

µ(∞;A) ≤ µ(an;A) = |µ(an;A)− µ(an;An)| ≤ ‖A−An‖∞ .

Since An → A uniformly in M, it follows that µ(∞;A) = 0.

Equivalently, C0(M, τ) is set of all elements X ∈ M such that τ(E|X|(λ,∞)) <

∞ for every λ > 0 (see e.g. Lemma 2.2.3). By (2.2), C0(M, τ) is a two-sided ideal

of M.

Definition 2.5.3. The space S0(M, τ) of τ -compact operators is the space associated

to the algebra of functions from S(0,∞) vanishing at infinity [39, 43, 127], that is,

S0(M, τ) = {A ∈ S(M, τ) : µ(∞;A) = 0}.

S0(M, τ) is a two-sided ideal in S(M, τ) [43, 45] and, clearly, C0(M, τ) =

S0(M, τ) ∩ M. It is known that every symmetric space having order continuous

norm is a subspace of S0(M, τ) (see e.g. [45, Chapter IV, Lemma 8.5] or [61, Remark

2.9]). For the sake of completeness, we provide a short proof below.

Proposition 2.5.4. If E(M, τ) is a symmetric space having order continuous norm,

then E(M, τ) ⊂ S0(M, τ).

Proof. It is clear that S0(M, τ) = S(M, τ) if τ is finite. Without loss of generality,

we may assume that τ is infinite.

Assume by contradiction that E(M, τ) * S0(M, τ). Then, there exists an

operator T ∈ E(M, τ) such that µ(∞;T ) = c > 0. Since µ(c1) = c ≤ µ(T ),

it follows from Definition 2.4.1 that c1 ∈ E(M, τ), and, therefore, 1 ∈ E(M, τ).

Since τ is a semifinite trace, it follows that there exists an increasing net Pi with

τ(Pi) < ∞ and ∨Pi = 1. Since ‖·‖E is an order continuous norm, it follows that

‖1− Pi‖E → 0. However, since τ(Pi) < ∞, it follows that µ(1) = µ(1 − Pi) for

every i. Hence, ‖1− Pi‖E = ‖1‖E , which is a contradiction.

The following lemma provides a sufficient condition for an operator X ∈ M to

be not τ -compact. This condition plays a crucial role in the proof of Theorem 5.2.2.
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Lemma 2.5.5. Let X ∈ (L1 + L∞)(M, τ) and {αi > 0}i be an arbitrary sequence

of real numbers increasing to infinity. If there exists a number c > 0 such that∫ αi

0
µ(t;X)dt ≥ αic

for every αi, then µ(t;X) ≥ c for all t > 0, that is, X is not τ -compact. In other

words, if µ(X) �� c, then µ(X) ≥ c.

Proof. Assume by contradiction that µ(n0;X) < c for some n0 > 0 and therefore,

µ(t;X) ≤ µ(n0;X) < c for every t ≥ n0. By the assumption that X ∈ (L1 +

L∞)(M, τ), we have

∞ >

∫ n0

0
µ(t;X)dt+ (αi − n0)µ(n0;X) ≥

∫ n0

0
µ(t;X)dt+

∫ αi

n0

µ(t;X)dt

=

∫ αi

0
µ(t;X)dt ≥ αic

for any αi ≥ n0. It follows that µ(n0;X) ≥ αic−
∫ n0
0 µ(t;X)dt
αi−n0

for every αi ≥ n0. By

assumption, we have that αi →i ∞ as i→∞, and therefore, µ(n0;X) ≥ c, which is

a contradiction. Thus, µ(t;X) ≥ c for all t > 0, which implies that the operator X

is not τ -compact.

Recall that J (M) is the uniform norm closure of the linear span of all finite

projections in M, which was first studied by Kaftal [79, 80] (see also [111, 112]).

Note that C0(M, τ) ⊂ J (M) for any semifinite algebra M because every τ -finite

projection is finite. It is known that C0(M, τ) = J (M) wheneverM is a factor (see

e.g. [112, 2.1.1.]).

Remark 2.5.6. LetM be a semifinite von Neumann algebra equipped with a faithful

normal semifinite trace τ . It is easy to see that C0(M, τ) 6= J (M) if and only if there

exists a finite projection P ∈M such that τ(P ) =∞ (see e.g. [79, Theorem 1.3]).

We end this section with the following theorem, which gives a necessary and

sufficient condition on the algebraM for the existence of a faithful normal semifinite

trace τ on M with C0(M, τ) $ J (M).

Theorem 2.5.7. Let M be a semifinite von Neumann algebra. The following

conditions are equivalent:

(i). There exists a faithful normal semifinite trace τ onM such that C0(M, τ) 6=
J (M);

(ii). dim(Z(M)) =∞.

Proof. (i)⇒(ii). Assume by contradiction that dim(Z(M)) < ∞. We denote by

E1, . . . , En, n ∈ N, the finite family of atoms in Z(M). It is clear that MEk is a

semifinite factor for all k = 1, . . . , n. For every k = 1, . . . , n, fix a trace τk on MEk .

It is clear that τ(X) =
∑n

k=1 αkτk(XEk) for some αk > 0.
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By Remark 2.5.6, we can find a finite projection P ∈ P(M) such that τ(P ) =∞.

Therefore, τk(PEk) =∞ for some k. However, this is impossible since PEk is a finite

projection in the factor MEk . This contradiction shows that dim(Z(M)) =∞.

(ii)⇒(i). Let τ ′ be an arbitrary faithful normal semifinite trace on M. By

the assumption, there exists a sequence of pairwise disjoint non-zero projections

{En}∞n=1 ⊂ Z(M) such that
∨∞
n=1En = 1. In every algebra MEn , n = 1, 2, 3, · · · ,

there exists a non-zero finite projection Pn. If for some n we have that τ ′(Pn) =∞,

then the assertion follows from Remark 2.5.6.

Assume that τ ′(Pn) <∞ for all n. Since Pn ∈MEn and En are pairwise disjoint,

it follows that the central supports of Pn are pairwise disjoint. Hence, P :=
∨∞
n=1 Pn

is also a finite projections. Set τ(X) :=
∑∞

n=1 nτ
′(XEn)/τ ′(Pn). Clearly, τ is a

faithful normal semifinite trace on M and τ(P ) =∞. By Remark 2.5.6, we obtain

the validity of (i).

Example 2.5.8. Let M be the algebra L∞(0,∞) of all Lebesgue measurable

essentially bounded functions on (0,∞). Since L∞(0,∞) is a commutative von

Neumann algebra, it follows that it is a finite von Neumann algebra, and therefore,

M = J (M). However, when M is equipped with the standard trace, C0(M, τ)

coincides with the set C0(0,∞) of bounded functions whose singular value functions

vanish at infinity.
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Chapter 3

Derivations of operator

algebras: review and general

properties

Let A be an algebra over C. An additive abelian group G is called an A-bimodule

if there exist mappings A× G → G and G × A → G, (written as ag and ga, a ∈ A,

g ∈ G respectively), satisfies the following:

1. a(g1 + g2) = ag1 + ag2 and (g1 + g2)a = g1a+ g2a;

2. (a1 + a2)g = a1g + a2g and g(a1 + a2) = ga1 + ga2;

3. a1(a2g) = (a1a2)g and (ga1)a2 = g(a1a2).

In addition, if G is a Banach space and there exists a constant M such that

‖agb‖ ≤M ‖a‖A ‖b‖A ‖g‖G ,

then G is called a Banach A-bimodule [63, 125].

A derivation is a function on an algebra A over C which generalised certain

features of the derivative operator. Namely, if J is an A-bimodule, a linear map

δ : A → J that satisfies the Leibniz law is called a derivation, that is,

δ(ab) = δ(a)b+ aδ(b), ∀a, b ∈ A.

In particular, if k ∈ J , then δk(x) := kx − xk is a derivation. Such derivations

implemented by elements in J are called inner [7, 125].

Recall that a Banach A-bimodule X is called a dual A-bimodule if X is

isometrically isomorphic to the dual space of a Banach space X∗ [32, 125]. If A
is a C∗-algebra acting on a Hilbert space H and, for each x ∈ X, the mappings

A 7→ Ax, A 7→ xA

are ultraweak-weak∗ continuous, we describe X as a dual normal A-bimodule (see

e.g. [66, p. 75] and [63]. A Banach algebra A is called amenable if the derivations

25
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from A into an arbitrary dual A-bimodules X are all inner (see [63, Section 5],

see also [21, 28, 53, 64, 66, 90]. A von Neuamnn algebra A is said to be amenable

if, for every dual normal Banach A-bimodule X, the derivations from A into X

are all inner (see [29, Chapter 5, Section 7], see also [27, 125]). The amenability

is one of the most essential topics in the study of von Neumann algebras. In

particular, Johnson, Kadison and Ringrose showed that all approximately finite

dimensional von Neumann algebras are amenable (see [66], see also [125, Theorem

2.4.3] and [32, Theorem 10.8]). It is proved by Connes [27] that there are several

equivalent conditions for a von Neumann algebra acting on a separable Hilbert space

to be approximately finite. In particular, Connes [27] showed (see also [29, p. 505])

that a von Neumann algebraA on a separable Hilbert spaceH is approximately finite

dimensional if and only if it is amenable. On the other hand, for an arbitrary given

Banach algebra (or, more generally, a group [63, Section 10.11]) A, it is desirable to

identify those bimodules X such that every derivation δ : A → X is automatically

inner. During the past decades, a number of important special cases have been

resolved (see e.g. [4, 63, 67, 88, 110, 117] for more details). For more details of the

theory of derivations in operator algebras, we refer to [63, 84, 115, 116, 121] and the

forthcoming book [7]. In this chapter, we concentrate on the following question (see

e.g. [56, 63]):

Let A be a C∗-algebra and J be an A-bimodule. Is every derivation

from A into J necessarily inner?

This chapter presents a survey of some results of the theory of derivations.

3.1 Derivations on algebras of bounded operators

In 1953, Kaplansky [83] showed that every derivation from a commutative C∗-algebra

into itself is identically 0, which was later extended by Singer and Wermer [126], who

showed that every derivation from a semi-simple commutative Banach algebra into

itself is identically 0. Moreover, the authors of [126] also studied derivations from

a Banach algebra into an larger algebra [126]. The early study of derivations by

Kaplansky [83], Singer and Wermer [126] inspired the so-called derivation problem,

which is one of the oldest unsettled problems in operator algebra theory. Let A ⊂
B(H) be a C∗-algebra. The so-called derivation problem is the following question.

Question 3.1.1. Is every derivation δ : A → B(H) necessarily inner? That is, can

we find a T ∈ B(H) such that δ(·) = δT (·) = [T, ·].

For details of the study of the derivation problem, we refer to [22, 25, 108, 125].

Since any inner derivation is necessarily continuous (in the norm topology), the

natural step in the study of the derivation problem is the question of automatic

continuity of derivations. It was conjecture by Kaplansky [83], and proved by

Sakai [118], that a derivation δ from a C∗-algebra into itself is automatically norm

continuous. From this, Kadison [70, Lemma 3] deduced that δ is continuous also in
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the ultraweak topology, when the algebra is represented as an algebra of operators

acting on a Hilbert space. Subsequently, Johnson and Sinclair [68] proved the

automatic norm continuity of derivations of a semi-simple Banach algebra.

The results of Sakai [118] and Kadison [70] was further generalised by Ringrose [114]

to a very general form (Ber, Chilin and Levitina [5] generalised Ringrose’s theorem

to the case of quasi-Banach A-bimodules ).

Theorem 3.1.2. Every derivation from a C∗-algebra (A, ‖·‖) into a (quasi-)Banach

A-bimodule (J , ‖·‖J ) is automatically continuous.

It is known that every derivation from a C∗-algebra A ⊂ B(H) into B(H) is also

continuous in the ultraweak topology [66, 67]. Therefore, the derivation problem is

equivalent to the following.

Question 3.1.3. Is every derivation from a von Neumann subalgebra A of B(H)

into B(H) necessarily inner?

Even though the derivation problem is still open, there are results giving

affirmative answers to it under some additional conditions on the subalgebra

A [22,25,26,32,108,125]. In all known cases, the derivation problem has affirmative

answers. In particular, the case when A is of type Ifin is an immediate consequence

of the property of approximately finite von Neumann algebras (see e.g. [66, 125]

or [32, Chapter 8]). The properly infinite case was proved by Christensen [22].

Indeed, the only remaining situation to consider is a type II1 von Neumann

subalgebra A with a type II∞ commutant [125].

Christensen [23] (see also [25]) established the characterisation of the inner

derivations from A into B(H) in terms of complete boundedness of derivations. Let

A and B be two C∗-algebras. LetMn be the space of all n×n matrices. The operator

norms on B(H⊕ · · · ⊕ H) induce C∗-algebra norms on the matrix algebras Mn(A)

over A. Any linear map ϕ : A → B gives a family {ϕn : Mn(A) → Mn(B)} defined

by ϕn(aij) = (ϕ(aij)) for each n×n matrix (aij) ∈Mn(A). We say that ϕ : A → B is

completely bounded, if the sequence {‖ϕn‖}∞n=1 is uniformly bounded [125, Chapter

1.2].

Theorem 3.1.4. Let A be a C∗-subalgebra of B(H). A derivation δ : A → B(H)

is inner if and only if it is completely bounded.

The derivation problem has several equivalent formulations. One of them is the

so-called similarity problem raised by Kadison [69].

Question 3.1.5. Let A ⊂ B(H) be a C∗-algebra and π : A → B(H) be a unital

homomorphism with ‖π‖ < ∞. Does there exist an invertible element S in B(H)

such that Sπ(·)S−1 is a ∗-homomorphism.

Kirchberg [85] proved the following equivalence.

Theorem 3.1.6. Let A be an arbitrary C∗-algebra. The similarity problem for A
and the derivation problem for A are equivalent.
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A natural generalisation of the derivation problem is the following.

Question 3.1.7. Let A be a C∗-subalgebra of a von Neumann algebra M. Is every

derivation δ : A → M necessarily inner? That is, does there exist a T ∈ M such

that δ = δT ?

The classical result in this field is the following theorem due to Kadison [70] and

Sakai [119] (see also [120, 121]), which should be considered as the first attack to

Question 3.1.7.

Theorem 3.1.8. Every derivation from a von Neumann algebra M into itself is

automatically inner.

However, when one considers more general algebras (for examples, C∗-algebras),

there are examples of non-inner derivations from this algebra into itself.

Example 3.1.9 (see e.g. [120, Example 4.1.8]). Let K(H) be the C∗-algebra of all

compact operators on H. Let A ∈ B(H) with A /∈ K(H) +C1. Then, δA defined by

δA(X) = [A,X], X ∈ K(H) is not an inner derivation from K(H) into K(H).

For the general case when A 6= M, very little is known for Question 3.1.7. So

far, the best result in this area is the following theorem, which is a corollary of a

result by Johnson, Kadison and Ringrose [66] (see also [27,29], [125, Theorem 2.4.3]

or [22, Corollary 5.6]).

Theorem 3.1.10. Every derivation from an approximately finite von Neumann

subalgebra of M into M is automatically inner.

Since every abelian von Neumann algebra is approximately finite [32, Lemma

8.4], the above theorem yields that every derivation from an abelian von Neumann

subalgebra of M into M is inner.

Using the Ryll-Nardzewski fixed point theorem (see Theorem 3.3.2), Chris-

tensen [22] showed that Question 3.1.7 has an affirmative answer for finite von

Neumann algebras M.

Theorem 3.1.11. Let M be a finite von Neumann algebra. Then, every derivation

from a C∗-subalgebra of M into M is inner.

3.2 The Johnson–Parrott–Popa theorem

A special type of Question 3.1.7 is the case when a derivation takes values in a

proper ideal of the von Neumann algebra M. The first result in this direction is

due to Johnson and Parrott [67], who considered the special case of Question 3.1.3

when the range of δ is contained in K(H), the ideal of all compact operators on H.

In that paper, the authors proved that if A is an abelian von Neumman subalgebra

of M, then every derivation δ from A to K(H) is automatically inner. As an easy

consequence, they were also able to treat the case when A has no certain type II1
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factors as direct summands. The remaining case, when A is a von Neumann algebra

of type II1 was later resolved by Popa [110] by transforming the noncommutative

framework of the problem into a commutative one. The results in [67] and [110] can

be therefore formulated as follows.

Theorem 3.2.1 (Johnson–Parrott–Popa). Let A be a von Neumann subalgebra of

B(H). Then, every derivation

δ : A → K(H)

is inner.

Note that the Johnson–Parrott–Popa theorem can not be extended to the case

of C∗-subalgebras of B(H) (see Example 3.1.9).

The semifinite version of the result by Johnson and Parrott [67] was first studied

by Kaftal and Weiss [81]. Precisely, they considered the case when B(H) is replaced

with a semifinite von Neumann algebra M and K(H) is replaced with the uniform

norm closed ideal J (M) generated by all finite projections in M. It is shown

in [81] that if A is an abelian (or properly infinite) von Neumann subalgebra of M
containing the center Z(M) of M, then any derivation of A into J (M) is inner.

This result was later extended to the case when the type Ifin direct sum of A is

locally compatible with the center of M [112]. Recall that a subalgebra N of M
is locally compatible with the center Z(M) of M, if there exists a partition of the

unity {Pi}i∈I in the center Z(N ) of N such that for each i, we have either

Z(N )Pi ⊂ Z(M)Pi or Z(M)Pi ⊂ Z(N )Pi.

Theorem 3.2.2. Let M be a semifinite von Neumann algebra and J (M) be the

uniform norm closed ideal generated by all finite projections in M. Let A ⊂ M be

a weak operator closed ∗-subalgebra of M and suppose the finite type I summand of

N is locally compatible with Z(M). Then, for any derivation δ : A → J (M), there

exists K ∈ J (M), ‖K‖∞ ≤ 2 ‖δ‖A→J (M) with δ = δK .

In particular, every derivation δ : A → J (M) is inner if A is of type II1 or

properly infinite. Popa and Rădulescu also established the existence of non-inner

derivations δ : A → J (M) for some specific semifinite von Neumann algebra M
and abelian von Neumann subalgebra A of M (see [112, Theorem 1.2 and Section

8]), which is somehow unexpected and is the first example of non-inner derivations

in von Neumann algebras.

Example 3.2.3. let M = L∞([0, 1], λ)⊗B(L2(T, µ)), A = 1⊗L∞(T, µ) ⊂ M,

where µ is the Lebesgue measure on the torus T and λ is the Lebesgue measure on

the unit interval [0, 1]. There exists an operator T ∈M such that δT is a derivation

from A into J (M) which is not inner, i.e., there exists no elements K ∈ J (M)

such that δT = δK .
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Another semifinite version of the Johnson–Parrott–Popa theorem was initiated

by Christensen [24], who introduced the notion of generalized compacts (see

also [137]).

Let X ∈ B(H) and let M be a von Neumann algebra. Then X is said to be a

weakly compact multiplier of M if the operator rX and lX of M into B(H), given

by rXM = MX and lXM = XM , are weakly compact. The so-called generalized

compacts C(M) associated with M is the set of weakly compact multipliers of M.

If M = B(H), then the set C(M) coincides with K(H).

Christensen [24] showed that every derivation from M into C(M) is inner ifM
is a properly inifinite von Neumann algebra. However, the case when M is a type

II1 von Neumann algebra was left open in [24] and was resolved by Galatan and

Popa [49] in 2017.

There are some other extensions of the result by Johnson and Parrott [67]. In

1977, Hoover [56] obtained the following result where the algebra K(H) in the

Johnson–Parrott–Popa theorem was replaced by the Schatten p-class.

Theorem 3.2.4. Let A be a unital C∗-subalgebra of B(H) and let Cp(H) be the

Schatten p-class, 1 ≤ p < ∞. If δ : A → Cp(H) is a derivation, then there exists a

T ∈ Cp(H) such that δ = δT .

Since Cp(H), 1 < p < ∞, is reflexive, it is a straightforward application of

the Ryll-Nardzewski fixed point theorem (see [31, 96], see also Section 3.3) or the

celebrated result by Johnson [63, Proposition 3.7] (see also Theorem 4.1.1). Ideas

used by Hoover in the proof for the special case when p = 1 (the ideal coincides with

the predual of B(H)) are subtle and the proof relies on the fact that C1(H) ⊂ Cp(H)

for any p ≥ 1. However, when B(H) is replaced by a general semifinite von Neumann

algebraM, the corresponding ideal Cp(M, τ) is not necessarily a reflexive space and

therefore the Ryll-Nardzewski fixed point theorem can not be applied directly. In

1985, adapting the proof in [67], Kaftal and Weiss [81] obtained the following result

on derivations into an Lp-ideal Cp(M, τ) (:= Lp(M, τ) ∩M) of M, 1 ≤ p <∞.

Theorem 3.2.5. Let M be a semifinite von Neumann algebra equipped with a

semifinite faithful normal trace τ and let p ∈ [1,∞). Assume that A is an

abelian/properly infinite von Neumann subalgebra of M. Then, every derivation

δ : A → Cp(M, τ)

is necessarily inner. That is, there exists T ∈ Cp(M, τ) such that δ = δT .

However, the cases of type I and type II1 von Neumann subalgebras were left

unresolved in [81], which led to the following question.

Question 3.2.6. Let M be a semifinite von Neumann algebra equipped with a

semifinite faithful normal trace τ and let p ∈ [1,∞). Assume that A is an arbitrary

von Neumann subalgebra of M. Is every derivation

δ : A → Cp(M, τ)

automatically inner?
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In the special case when von Neumann subalgebra A coincides with M, then

Question 3.2.6 has an affirmative answer. Indeed, Ber and Sukochev [16, 17] have

proved the following highly non-trivial result, which generalised the Kadison-Sakai

Theorem (see Theorem 3.1.8) significantly.

Theorem 3.2.7. Let M be a von Neumann algebra and J be an arbitrary ideal of

M. Then, every derivation from M into J is inner.

In Chapter 4, we consider a question more general than Question 3.2.6. In

particular, we resolve Question 3.2.6 affirmatively. An alternative proof is provided

in Chapter 5.

3.3 Derivations with values into symmetric spaces

In this section, we collect some results on derivations into more general bimodules.

The so-call Ryll-Nardzewski Fixed Point Theorem is very important in this

field. Before introducing the Ryll-Nardzewski Fixed Point Theorem, we recall the

definition of noncontracting family of maps.

Definition 3.3.1. Let X be a locally convex space and let Q be a nonempty subset

of X. If G is a family of maps (not necessarily linear) of Q into Q, then G is said

to be a noncontracting family of maps if for any two distinct points x and y in Q,

0 is not in the closure of

{T (x)− T (y) : T ∈ G}.

Theorem 3.3.2 (Ryll-Nardzewski Fixed Point Theorem). If X is a locally convex

space, Q is a weakly compact convex subset of X, and G is a noncontracting semigroup

of weakly continuous affine maps of Q into Q, then there is a point x0 in Q such

that T (x0) = x0 for every T ∈ G.

The following theorem, due to Johnson [63] (see also [11, 15, 56, 136]), is a

straightforward application of the Ryll-Nardzewski Fixed Point Theorem. We note

that the assumption of a unit element in the C∗-algebra in [63] is omitted. The full

proof of the following theorem can be founded in Chapter 4 (see Theorem 4.1.1).

Theorem 3.3.3. Let A be a C∗-algebra and let J be a reflexive A-bimodule. Then,

for every derivation δ : A → J , there exists a T ∈ J such that δ = δT and

‖T‖J ≤ ‖δ‖A→J . Moreover, T ∈ co{δ(U)U∗ : U ∈ U(A)}‖·‖J , where co(S) denotes

the convex hull of a set S.

Throughout this section, we assume thatM is a semifinite von Neumann algebra

equipped with a semifinite faithful normal trace τ . As a corollary of Theorem 4.1.1,

we immediately obtain the following result.

Corollary 3.3.4. Let A be a C∗-subalgebra of M and let E(M, τ) be a reflexive

symmetric space. Then, for every derivation δ : A → E(M, τ), there exists

a T ∈ E(M, τ) such that δ = δT and ‖T‖E ≤ ‖δ‖A→E. Moreover, T ∈
co{δ(U)U∗ : U ∈ U(A)}‖·‖E .
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Noting that Lp(M, τ) is reflexive when p > 1, we obtain the following corollary.

Corollary 3.3.5. Let A be a unital C∗-subalgebra of M and δ : A → Lp(M, τ),

p ≥ 1, be a derivation. Then, there exists an element T ∈ Lp(M, τ) such that δ = δT

and ‖T‖Lp ≤ ‖δ‖A→Lp.

One should note that Corollary 3.3.5 does not recover Theorem 3.2.5 since

derivation δ takes the value in the symmetric space Lp(M, τ) (of possibly unbounded

operators), while Kaftal and Weiss showed (under some additional assumptions on

the von Neumann subalgebra A) that every derivation into the symmetric ideal

Cp(M, τ) := Lp(M, τ) ∩M is inner, and so there exists a bounded T ∈ Lp(M, τ),

such that δ = δT .

It is well-known that L1(M, τ) is not reflexive unlessM is finite-dimensional. It

was a long-standing open question whether every derivation a C∗-subalgebra of M
into L1(M, τ) is inner. The special case whenM = B(H) was proved by Hoover (see

Theorem 3.2.4). The case whenM is a finite von Neumann algebra was resolved by

Bunce and Paschke [20]. Recently, the question was resolved completely by Bader,

Gelander and Monod [4]. Since the unit ball of L1 is not weakly compact, the

Ryll-Nardzewski Fixed Point Theorem can not be applied directly. Bader, Gelander

and Monod considered the so-called Chebyshev center (which is weakly compact) in

L1(M, τ) rather than the ‖·‖1-closure of convex hull of δ(U)U∗ as in Theorem 4.1.1.

Consequently, the Ryll-Nardzewski Fixed Point Theorem can be applied to this set,

and the long standing open question on derivations with values in L1(M, τ) was

resolved.

Theorem 3.3.6. [4] Let N be a von Neumann algebra and A be a C∗-subalgebra

of N . Every derivation from A into the predual of N is inner.

Remark 3.3.7. Pfitzner (see [107, Theorem 8.2]) indicated that the above theorem

can be proved by applying an earlier result by Japón [62]. Moreover, the element

implementing the derivation can be found in the closure (in the sense of the so-

called abstract measure topology) of the convex hull of δ(U)U∗.

The special case when A =M has been studied by Ber, Chilin and Sukochev [9,

10,15]. In particular, they proved the following result.

Theorem 3.3.8. Let M be a semifinite von Neumann algebra with a faithful

semifinite normal trace τ and E be a Banach M-bimodule (in particular, symmetric

spaces) of τ -measurable operators. Every derivation from M into E is inner.

Remark 3.3.9. One may consider derivations from the ∗-algebra S(M, τ) into

itself. However, it is shown in [8] that a derivation δ : S(M, τ) → S(M, τ) is not

necessarily inner even when M is commutative. When M is a type I von Neumann

algebra, a complete description of all derivations δ : S(M, τ) → S(M, τ) has been

obtained in [1]. The case when M is a properly infinite von Neumann algebra was

established in [10].
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It is a long-standing open question whether every derivation δ : S(M, τ) →
S(M, τ) is inner when M is of type II1 [72, 73]. The complete resolution of this

question was recently obtained by Ber, Kudaybergenov and Sukochev [13]. Precisely,

they proved that every derivation from S(M, τ) into S(M, τ) is inner if and only if

the type Ifin summand of M is atomic.

3.4 General properties results of derivations

Let δ be a derivation from a C∗-subalgebra A of a semifinite von Neumann algebra

M into S(M, τ), i.e., δ : A → S(M, τ) is a linear mapping satisfying the Leibniz

law. The derivation δ is said to be skew-adjoint if δ = −δ∗, where δ∗ is a derivation

defined by δ∗(X) = (δ(X∗))∗, x ∈ A. Actually, we can assume that the derivation δ

is skew-adjoint because every derivation δ : A → S(M, τ) can be decomposed into

skew-adjoint components δ = δ1 + i · δ2, where

δ1(X) :=
δ(X)− δ(X∗)∗

2
and δ2(X) :=

δ(X) + δ(X∗)∗

2i
.

Remark 3.4.1. Assume that there exists an operator T ∈ S(M, τ) such that the

skew-adjoint derivation δ = δT = [·, T ]. For every X ∈ A, we have

[X,T − T ∗] = [X,T ]− [X,T ∗] = [X,T ] + [X∗, T ]∗ = δ(X) + (δ(X∗))∗ = 0,

which implies that Im(T ) = T−T ∗
2i ∈ A′. Thus, for every X ∈ A, we have

δ(X) = [X,T ] = [X,Re(T ) + i Im(T )] = [X,Re(T )].

Hence, without loss of generality, we can always assume that the operator T

implementing a skew-adjoint derivation δ is self-adjoint.

In the following, we consider several types of reductions of a given derivation δ

from A into anM-bimodule J of τ -measurable operators. The first one is reduction

of δ by a given central projection Z in the algebra M. Recall that JZ := {ZX ∈
S(MZ , τ) : X ∈ J } = ZJZ (see e.g. [43, p. 215]).

Lemma 3.4.2. Let δ : A → J be a derivation and let Z ∈ Z(M) be a projection.

The mapping δ(Z) : AZ → JZ given by δ(Z)(XZ) = Zδ(X)Z, X ∈ A, is a well-

defined derivation from the induced von Neumann algebra AZ into JZ .

Proof. If A,B ∈ A such that AZ = BZ, then

δ(Z)(AZ)− δ(Z)(BZ) = Zδ(A)Z − Zδ(B)Z

= Zδ((A−B)E|A−B|(0,∞))Z

= Zδ(A−B) · E|A−B|(0,∞)Z + Z(A−B) · δ(E|A−B|(0,∞))Z

= Zδ(A−B) · E|A−B|(0,∞)Z.

Since Z ∈ Z(M), it follows that E|A−B|(0,∞)Z is a projection with E|A−B|(0,∞)Z ≤
E|A−B|(0,∞). However, the assumption, (A − B)E|A−B|(0,∞)Z = (A − B)Z = 0
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implies that E|A−B|(0,∞)Z = 0 and therefore δ(Z)(AZ) = δ(Z)(BZ). For every

X,Y ∈ A, we write

δ(Z)(ZXZ · ZY Z) = δ(Z)(ZXY Z) = Zδ(XY )Z

= Zδ(X)Y Z + ZXδ(Y )Z

= Zδ(X)Z · ZY Z + ZXZ · Zδ(Y )Z

= δ(Z)(ZXZ)ZY Z + ZXZδ(Z)(ZY Z),

which implies that δ(Z) is a well-defined derivation.

Remark 3.4.3. It is clear that if δ is skew-adjoint, then δ(Z) is also skew-adjoint.

From now on, we always assume that A is a von Neumann subalgebra of M.

Remark 3.4.4. In the special case when A = M, derivations δ : M → J always

vanish on P(Z(M)) (see e.g. [10, Lemma 3.1]). However, it is not true for the

general case when A 6=M.

The other reduction of δ : A → J we intend to use depends on the type of

the algebra A with an additional assumption that δ|P(Z(A)) vanishes. For every

Z ∈ P(Z(A)), the mapping Zδ(·)Z is a derivation from A into J . Moreover, if δ

vanishes on P(Z(A)), then Zδ(·)Z is a derivation from AZ into JZ , which coincides

with δ(·) on AZ . Let Z1, Z2 be two projections in M such that Z1Z2 = 0. For

elements X1 ∈ MZ1 = Z1MZ1 and X2 ∈ MZ2 = Z2MZ2, we frequently identify

X1 +X2 with X1 ⊕X2.

Lemma 3.4.5. Let δ : A → J be a derivation such that δ|P(Z(A)) = 0. If

for Z1, Z2 ∈ P(Z(A)) with Z1Z2 = 0, δ|AZ1
and δ|AZ2

are inner derivations

implemented by T1 ∈ JZ1 and T2 ∈ JZ2, then δ|AZ1+Z2
is implemented by T1 ⊕ T2.

Proof. For every X ∈ AZ1+Z2 , we have

δ(X) = δ(XZ1 +XZ2) = δ(XZ1) + δ(XZ2) = δT1(XZ1) + δT2(XZ2)

= [XZ1, T1] + [XZ2, T2] = [X,T1 + T2] = δT1+T2(X),

which completes the proof.

Lemma 3.4.5 allows us to make the following reduction of the problem considered

in Chapter 5.

Remark 3.4.6. Let P1, P2, P3 ∈ Z(A) be the central partition of unity (some of

Pi can be zero), such that AP1 is of type Ifin, AP2 is of type II1, AP3 is properly

infinite. Assume that δ : A → J vanishes on Z(A). By reducing δ to the algebras

APi, i = 1, 2, 3, to prove that δ is inner derivation, it is sufficient to consider

separately the cases when A is type I, type II1 or properly infinite.

As we show in Section 5.2 (see Remark 5.2.4), the assumption that δ : A →
C0(M, τ) vanishes on Z(A) can be imposed without loss of generality.
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Next, we introduce a special subset Kδ of the algebraM generated by derivation

δ : A → M. As we prove later in Chapter 5, for any derivation δ : A → C0(M, τ),

Kδ contains the operator implementing δ.

Definition 3.4.7. For a skew-adjoint derivation δ : A → M, we define by Kδ

the weak∗ (or ultraweak) operator closure of co{Uδ(U∗) | U ∈ U(A)}, where co(S)

denotes the convex hull of a set S.

Remark 3.4.8. Recall that, in Theorem 4.1.1, the operator implementing the

derivation is in the ‖·‖J -closure of co{Uδ(U∗) | U ∈ U(A)}.

Remark 3.4.9. Recall that the strong operator closure, the weak operator closure

and the weak∗ operator closure of the convex hull of a uniformly bounded set in M
coincide (see e.g. [132, Chapter II, Lemma 2.5] and [31, Chapter IX, Corollary 5.2]).

By Ringrose’s theorem (see Theorem 3.1.2), derivation δ : A →M is bounded and

therefore, the set {δ(U) | U ∈ U(A)} is uniformly bounded. Thus,

Kδ = cowo{Uδ(U∗) | U ∈ U(A)} = coso{Uδ(U∗) | U ∈ U(A)}, (3.1)

where coso(S) (respectively, cowo(S)) denotes the strong operator closure (respective-

ly, weak operator closure) of convex hull of a set S. In particular, ‖X‖∞ ≤ ‖δ‖A→M
for every X ∈ Kδ. Furthermore, since δ is assumed to be skew-adjoint, using Leibniz

rule, for any unitary U ∈ A, we have

(Uδ(U∗))∗ = −δ(U)U∗ = Uδ(U∗)− δ(1) = Uδ(U∗),

which implies that every element in Kδ is self-adjoint.

Remark 3.4.10. Let Z1, Z2, · · · , Zn ∈ Z(A) be mutually disjoint projections such

that δ(Zi) = 0 for i = 1, 2, · · · , n. For every Zi, we have

KδZi = cowo{Uδ(U∗) | U ∈ U(A)}Zi = cowo{Uδ(U∗)Zi | U ∈ U(A)}

= cowo{UZiδ(U∗Zi) | U ∈ U(A)} = cowo{Uδ(U∗) | U ∈ U(AZi)}.

Since δ(1) = 0, it follows that δ(1−
∑n

i=1 Zi) = 0. Therefore, since Zi are mutually

disjoint, for every U1, U2, · · ·Un ∈ U(A), we have that

n∑
i=1

UiZiδ(U
∗
i Zi) = (

n∑
i=1

UiZi)δ(

n∑
i=1

UiZi)

= (

n∑
i=1

UiZi + 1−
n∑
i=1

Zi)δ(

n∑
i=1

UiZi + 1−
n∑
i=1

Zi).

Note that
∑n

i=1 UiZi+1−
∑n

i=1 Zi ∈ U(A). Thus,
∑n

i=1 UiZiδ(U
∗
i Zi) ∈ Kδ. For any

X1 ∈ KδZ1, there is a net in co{U1Z1δ(U
∗
1Z1)} converging to X1 in the weak operator

topology. Hence, X1 ⊕ (⊕ni=2UiZiδ(U
∗
i Zi)) ∈ Kδ. By mathematical induction, we

obtain that ⊕ni=1Xi ∈ Kδ for any Xi ∈ KδZi. That is,
∑n

i=1KδZi ⊂ Kδ.

In the following proposition, we provide an auxiliary result which allows us to

use Lemma 2.5.5 in the proof of Theorem 5.2.2.
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Proposition 3.4.11. Let T ∈ Kδ and let ε, s > 0. If 0 < s ≤ τ(E|T |(ε,∞)), then

there is a unitary element U ∈ U(A) such that∫ s/2

0
µ(t; δ(U))dt >

s

2
ε.

Proof. Since T ∈ Kδ, it follows from (3.1) that there is a net {Bα}α with

Bα :=

nα∑
i=1

λ(i)
α U

(i)
α δ((U (i)

α )∗), 1 ≤ nα <∞, U (i)
α ∈ U(A),

nα∑
i=1

λ(i)
α = 1,

converging to T in the strong operator topology. Note that every Bα is self-

adjoint. By [106, Proposition 2.3.2], we have |Bα| →so |T |, and therefore, employing

Lemma 1.8.4, we infer that there exists a Bα such that τ(E|Bα|(ε,∞)) > s
2 . Hence,

Lemma 2.2.3 implies that

µ
(
t;

nα∑
i=1

λ(i)
α U

(i)
α δ((U (i)

α )∗)
)

= µ(t;Bα) > ε, t ∈ [0,
s

2
]. (3.2)

Now, it follows from [87, Theorem 3.3.3] (see also Proposition 2.3.1) that

nα∑
i=1

λ(i)
α

∫ s
2

0
µ(t;U (i)

α δ((U (i)
α )∗))dt ≥

∫ s
2

0
µ(t;

nα∑
i=1

λ(i)
α U

(i)
α δ((U (i)

α )∗))dt
(3.2)
>

s

2
ε.

Thus, there exists U
(i)
α ∈ U(A) such that∫ s

2

0
µ(t; δ((U (i)

α )∗))dt
(2.2)

≥
∫ s

2

0
µ(t;U (i)

α δ((U (i)
α )∗))dt >

s

2
ε.



Chapter 4

Derivations on C∗-subalgebras

of a semifinite von Neumann

algebra

Throughout this chapter, M is a semifinite von Neumann algebra equipped with a

semifinite faithful normal trace τ . The main result of this chapter characterises the

ideals of M such that every derivation from an arbitrary C∗-subalgebra into J is

inner. In particular, we answer to Question 3.2.6 in affirmative.

Theorem 4.1.4 is the main result of the present chapter, which substantially

extends [81, Theorem 14] (see Theorem 3.2.5). The prototype of the proof of the

following theorem for the case of Schatten ideals Cp when the Hilbert space H is

separable can be found in [56]. The main result of this chapter generalises Theorem

3.2.5 in two directions. Firstly, instead of imposing additional condition on the von

Neumann subalgebra A, we consider the case when A is an arbitrary C∗-algebra.

Secondly, we extend significantly the class of symmetric ideals associated withM for

which the result is applicable. We also demonstrate the sharpness of our assumptions

on the symmetric ideals.

We note that throughout this chapter we denote symmetric space (of possible

unbounded operators) affiliated withM by (E(M, τ), ‖·‖E), while the corresponding

ideal inM by E(M, τ) := E(M, τ)∩M. The latter ideal is equipped with the norm

‖·‖E , however no assumption on completeness of E(M, τ) with respect to ‖·‖E is

imposed.

The main result (Theorem 4.1.4) of this chapter is taken from the joint paper

Derivations with values in ideals of semifinite von Neumann algebras [11].

4.1 Derivations with values in symmetric ideals

Before proceeding to the proof of the main result of this chapter, we provide a

complete proof for Theorem 3.3.3. We note that the assumption of a unit element

in the C∗-algebra in [63] can be omitted. We present the full proof for completeness

37
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of exposition.

Theorem 4.1.1. Let A be a C∗-algebra and let J be a reflexive A-bimodule. Then,

for every derivation δ : A → J , there exists a T ∈ J such that δ = δT and

‖T‖J ≤ ‖δ‖A→J . Moreover, T ∈ co{δ(U)U∗ : U ∈ U(A)}‖·‖J , where co(S) denotes

the convex hull of a set S.

Proof. We firstly consider the case when A is unital.

By Ringrose’s theorem (see Theorem 3.1.2), the derivation δ : (A, ‖ · ‖∞) →
(J , ‖ · ‖J ) is bounded. Let us define the sets K00 := {δ(U)U∗ : U ∈ U(A)} ⊂ J
and K0 := co(K00). It is clear that K00, and therefore K0, lie in the ball of radius

‖δ‖A→J in J .

We set K := K0
‖·‖J . Note that K is weakly closed in J (see e.g. [31, Chapter

V, Theorem 1.4]). Since J is reflexive, it follows that K is a convex weakly compact

subset of J (see [31, Chapter V, Theorem 4.2]), contained in the ball of radius

‖δ‖A→J .

For every U ∈ U(A), we have δ(U) ∈ J , and therefore we can define the mapping

αU : J −→ J , by setting

αU (X) := UXU∗ + δ(U)U∗.

For every U, V ∈ U(A), we have

αU (αV (X)) = UV XV ∗U∗ + Uδ(V )V ∗U∗ + δ(U)U∗

= (UV )X(UV )∗ + Uδ(V )V ∗U∗ + δ(U)V V ∗U∗

= (UV )X(UV )∗ + δ(UV )(UV )∗ = αUV (X).

In addition, the equality δ(1) = δ(12) = 2δ(1) implies that δ(1) = 0, and therefore

α1(X) = X, X ∈ J . Thus, α is an action of the group U(A) on J .

We claim that the set K is invariant with respect to α. Since δ(U)U∗ = αU (0),

it follows that K00 is an orbit of 0 with respect to α, and therefore, is an invariant

subset with respect to α. In addition, for any positive scalars s and t with s+ t = 1,

we have

αU (sX + tY ) = sUXU∗ + tUY U∗ + (s+ t)δ(U)U∗

= sαU (X) + tαU (Y ), X, Y ∈ J .

Hence, for every U ∈ U(A) the mapping αU is affine, which implies that K0 =

co(K00) is also an invariant subset with respect to α. Now, the equality αU (X) −
αU (Y ) = U(X − Y )U∗, X, Y ∈ J implies that every αU , U ∈ U(A), is an isometry

on J . Hence, K is an invariant subset with respect to α.

Furthermore, the fact that αU is an isometry implies that the family {αU :

U ∈ U(A)} is a noncontracting family of affine mappings (see e.g. [31, Chapter V,

Lemma 10.7]). Clearly, αU is weakly continuous for every U ∈ U(A). Thus, the

set K and the family {αU : U ∈ U(A)} satisfy the assumptions of Theorem 3.3.2.

Hence, there exists a point T ∈ K fixed with respect to α, that is, we have T =
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αU (T ) = UTU∗ + δ(U)U∗ for every U ∈ U(A) and ‖T‖J ≤ ‖δ‖A→J . Therefore

TU = UT + δ(U) for every U ∈ U(A). Thus, δ(U) = [T,U ] for every U ∈ U(A).

Since every element X ∈ A is a linear combination of four elements from U(A), we

obtain that δ = δT on A and complete the proof for the case when A is unital.

Next, if A is not unital, then we define A1 := C⊕A, which is a unital C∗-algebra

equipped with the norm

‖(λ,A)‖1 = |λ|+ ‖A‖A , λ ∈ C, A ∈ A.

For every X ∈ J and A1 = (α,A), B1 = (β,B) ∈ A, we define

A1X = (α,A)X = αX +AX,

and

XB1 = (β,B)X = βX +XB.

Define δ1 : A1 → J by δ1((α,A)) = δ(A), A ∈ A and α ∈ C. It is clear that δ1 is

a derivation from a unital C∗-subalgebra A1 into J . Hence, the assertion follows

from the proved above.

Recall that, for every reflexive symmetric function space E(0,∞), the corre-

sponding operator space E(M, τ) is also reflexive [39, Corollary 5.16] (see also [43,

Theorem 54]).

Proposition 4.1.2. Let A be a C∗-subalgebra of M and let E(M, τ) be a reflexive

symmetric space affiliated with M. Then, for every derivation δ : A → E(M, τ) :=

E(M, τ) ∩M, there exists an element T ∈ E(M, τ) such that δ = δT with ‖T‖E ≤
‖δ‖A→E and ‖T‖∞ ≤ ‖δ‖A→M.

Proof. Since E(M, τ) is reflexive, Theorem 4.1.1 implies that there exists a T ∈
E(M, τ) such that δ = δT and ‖T‖E ≤ ‖δ‖A→E . Therefore, it remains to show that

T ∈M and ‖T‖∞ ≤ ‖δ‖A→M.

By the Ringrose’s theorem (see Theorem 3.1.2), we have that δ : (A, ‖·‖∞) →
(M, ‖·‖∞) is a bounded mapping. Hence, K0 := co{δ(U)U∗ : U ∈ U(A)} lies

in the ball of radius ‖δ‖A→M in M. By Theorem 4.1.1, we have T ∈ K0
‖·‖E .

Let {Xn} ⊂ K0 be such that ‖T − Xn‖E → 0. By [43, Proposition 11] (see also

Section 2.4), we have Xn → T in local measure topology. Since M has Fatou

property (see Section 2.4), it follows that the closed ball in (M, ‖ · ‖M) with radius

‖δ‖A→M is closed with respect to the local measure topology (see e.g. Section 2.4

or [41, Theorem 4.1]). Noting that ‖Xn‖M ≤ ‖δ‖A→M and Xn → T in local measure

topology, we conclude that T ∈M with ‖T‖∞ ≤ ‖δ‖A→M .

Let E(0,∞) be a symmetric function space on (0,∞) and let (E(M, τ), ‖·‖E)

be the corresponding noncommutative operator space. Following the notation

introduced in [138], for 1 < p <∞, we set

E(M, τ)(p) = {X ∈ S(M, τ) : |X|p ∈ E}, ‖X‖E(p) = ‖|X|p‖1/pE .
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It is well-known (see e.g. [40, Proposition 3.1]) that E(p)(M, τ) = E(M, τ)(p), where

E(p)(M, τ) is the symmetric space corresponding to the p-convexification E(p)(0,∞)

of the symmetric function space E(0,∞).

Theorem 4.1.3. [38, 40, 45] Let E(0,∞) be a strongly symmetric space. Then,

(i). E(p)(M, τ) is a strongly symmetric space.

(ii). If E(0,∞) has the Fatou property, then E(p)(M, τ) has the Fatou property.

(iii). If E(0,∞) has order continuous norm, then E(p)(M, τ) has order continuous

norm.

(iv). If p > 1 and E(0,∞) is a KB-space (a fully symmetric space has order

continuous norm and the Fatou property), then E(p)(M, τ) is reflexive.

As mentioned before, L1(M, τ) is (usually) not reflexive. Therefore, Proposition

4.1.2 does not cover the case for C1(M, τ). Theorem 4.1.4 is the main result of the

present chapter, which covers the case for C1(M, τ). In fact, we substantially enlarge

the class of symmetric ideals to which the result is applicable.

Theorem 4.1.4. Let A be a C∗-subalgebra of M and let E be a fully symmetric

function space on (0,∞) having Fatou property and order continuous norm. Then

every derivation δ : A → E(M, τ) is inner, that is there exists an element T ∈
E(M, τ) such that δ = δT with ‖T‖∞ ≤ ‖δ‖A→M and ‖T‖E ≤ ‖δ‖A→E.

Proof. Without loss of generality, we may assume that ‖δ‖A→M ≤ 1.

Since E(M, τ) ⊂ M, it follows that |X|q is a bounded operator for every X ∈
E(M, τ) and q ≥ 0. Therefore, for p ≥ p′ ≥ 1 and every X ∈ E(p′)(M, τ) =

E(p′)(M, τ) ∩M we have that

|X|p = |X|p′ · |X|p−p′ ∈ E(M, τ),

that is X ∈ E(p)(M, τ) = E(p)(M, τ) ∩M. Thus,

E(p′)(M, τ) ⊂ E(p)(M, τ), p ≥ p′ ≥ 1. (4.1)

In particular, from inclusion (4.1) we have that E(M, τ) ⊂ E(p)(M, τ) for every

p > 1. Hence the derivation δ can be considered as a derivation defined on A
with values in the symmetric ideal E(p)(M, τ). By Theorem 4.1.3 (see also [38,

Propostion 5.3]), every E(p)(M, τ), p > 1, is reflexive and therefore, it follows from

Proposition 4.1.2 that there exists a Tp ∈ E(p)(M, τ) such that δ = δTp on A with

‖Tp‖∞ ≤ ‖δ‖A→M and ‖Tp‖E(p) ≤ ‖δ‖A→E(p) .

We note that for p, p′ > 1 with p ≥ p′, inclusions Tp′ ∈ E(p′)(M, τ) and (4.1)
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imply that Tp′ ∈ E(p)(M, τ). Moreover, since ‖Tp′‖∞ ≤ ‖δ‖A→M ≤ 1, we have that

‖Tp′‖pE(p) =
∥∥ |Tp′ |p∥∥E ≤ ∥∥ |Tp′ |p′∥∥E · ∥∥ |Tp′ |p−p′∥∥∞

≤ ‖Tp′‖p
′

E(p′) ≤ ‖δ‖
p′

A→E(p′) = sup
X∈A,‖X‖∞=1

∥∥∥|δ(X)|p′
∥∥∥
E

≤ sup
X∈A,‖X‖∞=1

‖δ(X)‖E · ‖δ(X)‖p′−1
∞ (4.2)

≤ sup
X∈A,‖X‖∞=1

‖δ(X)‖E · ‖δ‖p
′−1
A→M ≤ ‖δ‖A→E .

We define M := {T1+ 1
m
}m∈N. Since 1 + 1

m ≤ 2,m ∈ N, inclusion (4.1) implies

that M ⊂ E(2)(M, τ). Now, let us construct inductively a subsequence {Tn,m}m of

M for every n ≥ 1 such that

(i) for every fixed n ≥ 1, Tn,m ⊂ E(1+ 1
n

)(M, τ),m ∈ N and Tn,m → Sn ∈
E(1+ 1

n
)(M, τ) as m → ∞ in the weak topology of E(1+ 1

n
)(M, τ) with

‖Sn‖
1+ 1

n

E(1+ 1
n )
≤ ‖δ‖A→E .

(ii) {Tn+1,m}m ⊂ {Tn,m}m for every n ≥ 1.

Let M1,0 := M ⊂ E(2)(M, τ) and M1 := co(M1,0)
‖·‖

E(2)
. It follows from [31,

Chapter V, Theorem 1.4 and Theorem 4.2] that M1 is a convex weakly compact

subset of E(2)(M, τ). Hence, by the Eberlein-S̆mulian Theorem (see e.g. [31, Chapter

V, Section 13]), there is a subsequence {T1,m} of M1,0 converging to an element S1 ∈
M1 ⊂ E(2)(M, τ) in the weak topology of E(2)(M, τ). Since S1 ∈M1 and M1 is the

‖ · ‖E(2)-norm closure of co(M1,0), inequality (4.2) implies that ‖S1‖2E(2) ≤ ‖δ‖A→E .

Assume that the construction up to n − 1, n ≥ 2, is completed. We let Mn,0 =

{Tn−1,m}m∩{T1+ 1
m

: m ≥ n,m ∈ N} ⊂ E(1+ 1
n

)(M, τ). Note, that this intersection is

non-empty (and infinite) as the elements of {Tn−1,m}m are chosen from the sequence

{T1+ 1
m
}m∈N. We set Mn := co(Mn,0)

‖·‖
E
(1+ 1

n ) . It follows again from [31, Chapter

V, Theorem 1.4 and Theorem 4.2] that Mn is a convex weakly compact subset of

E(1+ 1
n

)(M, τ). Then, by the Eberlein-S̆mulian Theorem [31, Chapter V, Section 13],

there is a subsequence {Tn,m}m of Mn,0 converging to an Sn ∈Mn ⊂ E(1+ 1
n

)(M, τ)

in the weak topology of E(1+ 1
n

)(M, τ), in particular, ‖Sn‖
1+ 1

n

E(1+ 1
n )
≤ ‖δ‖A→E , which

completes the induction.

Now, we show that every Sn belongs toM. For every n ≥ 1, there is a sequence

{Xn,m} ⊂ co(Mn,0) such that ‖Xn,m − Sn‖
E(1+ 1

n ) → 0 as m → ∞. Hence, by [43,

Proposition 11] (see also Section 2.4), we have Xn,m → Sn as m → ∞ in local

measure topology. It follows from [41, Theorem 4.1] (see also Section 2.4) that the

closed ball of radius ‖δ‖A→M of (M, ‖·‖∞) is closed with respect to the local measure

topology. Since co(Mn,0) lies in the closed ball of radius ‖δ‖A→M of (M, ‖ · ‖∞), it

follows that Sn ∈M and ‖Sn‖∞ ≤ ‖δ‖A→M.
We claim that all of the Sn are the same. Since Sn and Sn+1 are τ -compact

operators, the operator Sn − Sn+1 is also τ -compact. Let Sn − Sn+1 = U |Sn −
Sn+1| be the polar decomposition. Then, for any ε > 0, E|Sn−Sn+1|(ε,∞) is a τ -

finite projection. Hence, by [43, Proposition 23 and Lemma 25 (ii)] we have that
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E|Sn−Sn+1|(ε,∞) ∈ E(1+ 1
n

)(M, τ)× for every n ∈ N. Since the Köthe dual space

E(1+ 1
n

)(M, τ)× can be identified with the subspace of the Banach dual, conditions

(i) and (ii) imply that

τ(SnE
|Sn−Sn+1|(ε,∞)U∗)

(i)
= lim

m→∞
τ(Tn,mE

|Sn−Sn+1|(ε,∞)U∗)

(ii)
= lim

m→∞
τ(Tn+1,mE

|Sn−Sn+1|(ε,∞)U∗)

(i)
= τ(Sn+1E

|Sn−Sn+1|(ε,∞)U∗)

and therefore

τ(|Sn − Sn+1|E|Sn−Sn+1|(ε,∞)) = τ(U∗(Sn − Sn+1)E|Sn−Sn+1|(ε,∞)) = 0

for any ε > 0, which implies that Sn = Sn+1. In what follows we denote Sn by T .

In particular, we have ‖T‖∞ ≤ ‖δ‖A→M and ‖T‖p
E(p) ≤ ‖δ‖A→E for every p ∈ (1, 2].

Next, we claim that δ = δT . Consider E(M, τ) as a subspace of E(2)(M, τ). For

every X ∈ A, δTp(X) = δ(X) for every p > 1. By condition (i) above, we have

T1,m → T in weak topology of E(2)(M, τ). Thus, for every f ∈ (E(2)(M, τ))∗ and

X ∈ A, we have f(T1,mX) → f(TX) and f(XT1,m) → f(XT ) as m → ∞, which

implies that f(δT1,m(X)) → f(δT (X)) as m → ∞. That is, δT1,m(X) → δT (X) in

the weak topology of E(2)(M, τ) as m → ∞. On the other hand, every δT1,m(X),

m ∈ N, is equal to δ(X), and therefore, we conclude that δ(X) = δT1,m(X) = δT (X)

for every m, and therefore δ = δT on A.

By the construction of T , we have that T ∈ ∩p>1E
(p)(M, τ) and ‖|T |p‖E =

‖T‖p
E(p) ≤ ‖δ‖A→E for every p ∈ (1, 2] . Since ‖T‖∞ ≤ ‖δ‖A→M ≤ 1, we have

|T |p ↑ |T | as p ↓ 1. Since (E(M, τ), ‖·‖E) has Fatou property, we have T ∈ E(M, τ)

with ‖T‖E ≤ ‖δ‖A→E , which completes our proof.

It is well-known that the space Lp(0,∞) is fully symmetric and has Fatou

property and order continuous norm. Therefore, as an immediate corollary of

Theorem 4.1.4, we obtain the following result extending the earlier results by Kaftal

and Weiss [81]. In particular, we answer Question 3.2.6 in affirmative.

Corollary 4.1.5. Let A be a C∗-subalgebra of M and let δ : A → Cp(M, τ), p ≥ 1,

be a derivation. Then, there exists an element T ∈ Cp(M, τ) such that δ = δT and

‖T‖p ≤ ‖δ‖A→Lp.

Remark 4.1.6. We note that the assumption that the derivation δ takes values

in an ideal of M is crucial for the proof of Theorem 4.1.4. The technique applied

there is not applicable for the extension of Theorem 4.1.1 and Corollary 3.3.5 to the

case of more general symmetric operator spaces (of possibly unbounded) operators

affiliated with M.

We provide an alternative proof by the following extension of Proposition 4.1.2.

Theorem 4.1.7. Let A be a C∗-subalgebra of M and let E(M, τ) be a reflexive

symmetric space affiliated with M. Assume that F (M, τ) is a strongly symmetric
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space having the Fatou property. Then, for any derivation δ : A → F (M, τ) ∩
E(M, τ), there exists an element T ∈ F (M, τ) ∩ E(M, τ) such that δ = δT with

‖T‖F ≤ ‖δ‖A→F and ‖T‖F ≤ ‖δ‖A→E.

Proof. Note that δ : A → F (M, τ) can be considered as a derivation defined on

A with values in E(M, τ). Since E(M, τ) is reflexive, Theorem 4.1.1 implies that

there exists a T ∈ E(M, τ) such that δ = δT and ‖T‖E ≤ ‖δ‖A→E . Therefore, it

remains to show that T ∈ F (M, τ) and ‖T‖∞ ≤ ‖δ‖A→F .

By the Ringrose’s theorem (see Theorem 3.1.2), we have that δ : (A, ‖·‖∞) →
(F (M, τ), ‖·‖F ) is a bounded mapping. Hence, K0 := co{δ(U)U∗ : U ∈ U(A)}
lies in the ball of radius ‖δ‖A→F in M. By Theorem 4.1.1, we have T ∈ K0

‖·‖E .

Let {Xn} ⊂ K0 be such that ‖T − Xn‖E −→ 0. By [43, Proposition 11] (see also

Section 2.4), we have Xn −→ T in local measure topology. Since F (M, τ) has Fatou

property (see Section 2.4), it follows that the closed ball in (F (M, τ), ‖·‖F ) with

radius ‖δ‖A→F is closed with respect to the local measure topology (see e.g. Section

2.4 or [43, Theorem 32]). Noting that ‖Xn‖F ≤ ‖δ‖A→F and Xn −→ T in local

measure topology, we conclude that T ∈M with ‖T‖∞ ≤ ‖δ‖A→F .

Theorem 4.1.4 is an straightforward consequence of Theorem 4.1.7. Indeed, recall

that if E(0,∞) is a fully symmetric KB-space, then the p-convexification E(p)(M, τ)

of E(M, τ) is reflexive. By (4.1), we have E(M, τ) ⊂ E(p)(M, τ) for any 1 < p <∞.

To apply Theorem 4.1.7, one only need to notice that E(M, τ) equipped with the

norm ‖X‖E := max{‖X‖∞ , ‖X‖E} is a strongly symmetric space having the Fatou

property.

4.2 Non-inner derivations

In conclusion we consider special cases, where by omitting various assumptions on

the space E(M, τ) and considering a smaller space, we construct examples of non-

inner derivations, which extends Example 3.1.9.

Let E(M, τ) be a symmetric space. In the following theorem, we consid-

er E0(M, τ), which is the ‖·‖E-closure of all operators of τ -finite rank (the

range/support projection is τ -finite) in E(M, τ) (see e.g. [43]). We note that

E0(M, τ) = E(M, τ) if E(M, τ) has order continuous norm, and E0(M, τ) has

no Fatou property whenever E0(M, τ) 6= E(M, τ). For examples of sequence spaces

when E0(M, τ) 6= E(M, τ), we refer the reader to [52, Chapter III, Section 6].

Theorem 4.2.1. 1 LetM be a semifinite non-finite factor. If E0(M, τ) 6= E(M, τ),

then we can always find a non-inner derivation from a C∗-subalgebra of M into

E0(M, τ) ∩M.

Proof. We claim that E0(M, τ) ⊂ S0(M, τ). Assume by contradiction that

E0(M, τ) * S0(M, τ). Then, there exists an operator T ∈ E0(M, τ) with

1The original statement in [11, Theorem 3.8] requires the assumption that the symmetric space
E(M, τ) is τ -compact. However, in Theorem 4.2.1, this assumption is omitted.
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T /∈ S0(M, τ). That is, µ(∞;T ) > 0. By the definition of symmetric spaces, we

obtain thatM⊂ E0(M, τ). For every X ∈ E(M, τ), there exists an n > 0 such that

XE|X|(n,∞) of τ -finite rank. Hence, X = XE|X|(n,∞) +XE|X|(0, n] ⊂ E0(M, τ).

That is, E0(M, τ) = E(M, τ), which is a contradiction.

Let T ∈ M ∩ (E(M, τ) \ (E0(M, τ) + C1)). We assert that such an element

T exists. Assume that E(M, τ) ⊂ S0(M, τ) and X ∈ E(M, τ) \ E0(M, τ). For

every n > 0, XE|X|(n,∞) ∈ E0(M, τ) and therefore, XE|X|(0, n] /∈ E0(M, τ). In

this case, we define T := XE|X|(0, n], which is a bounded τ -compact operator and

not in E0(M, τ) + C1. If E(M, τ) ⊃ M, then T can be chosen as any operator in

M\ (C0(M, τ) + C1).

We claim that δT is a non-inner derivation from some C∗-subalgebra of M into

E0(M, τ)∩M. Consider δT acting on C0(M, τ). For everyX ∈ C0(M, τ), E|X|(ε,∞)

is τ -finite for every ε > 0. Thus,

‖TX − TXE|X|(ε,∞)‖E ≤ ‖TXE|X|(0, ε]‖E ≤ ε‖T‖E

implies that TX ∈ E0(M, τ). Similarly, XT ∈ E0(M, τ) and therefore δT (C0(M, τ)) ⊂
E0(M, τ). Moreover, T ∈ M and C0(M, τ) ⊂ M imply that δT (C0(M, τ)) ⊂
E0(M, τ) ∩M. Finally, if there exists an operator K ∈ E0(M, τ) ∩M such that

δT = δK , then T −K ∈ C0(M, τ)′. For every B ∈ C0(M, τ) and A ∈ C0(M, τ)′, we

have BA = AB. Then, noticing thatM is the weak operator closure of C0(M, τ) (see

e.g. [87, Definition 2.6.8]), we have BA = AB for every B ∈ M and A ∈ C0(M, τ)′

and therefore C0(M, τ)′ ⊂ M′. Since M′ ⊂ C0(M, τ)′, we have C0(M, τ)′ = M′.
However, M is a factor and therefore T − K ∈ C1, which is a contradiction with

the choice of T .

Let H be a separable infinite dimensional Hilbert space. Noticing that K(H) has

order continuous norm, one can see from Example 3.1.9 that the assumption that

E(0,∞) has Fatou property in Theorem 4.1.4 can not be omitted.



Chapter 5

Derivations on von Neumann

subalgebras of a semifinite von

Neumann algebra

One of the main results in this chapter is a semifinite version of the Johnson–

Parrott–Popa theorem (see Theorem 3.2.1). The first attempt of establishing a

semifinite Johnson–Parrott–Popa theorem was due to Kaftal and Weiss [81]. They

considered derivations with values in the compact ideal J (M) of a semifinite von

Neumann algebra M, which is generated by all finite projections of M. This result

was later extended by Popa and Rădulescu [112]. Moreover, Popa and Rădulescu

showed that there exist non-inner derivations into J (M). However, for a general

semifinite von Neumann algebraM, there is another notion of compactness, so-called

τ -compactness, which comes from a semifinite faithful normal trace τ defined onM
(see Section 2.5). In this chapter, we consider derivations into the τ -compact ideal

C0(M, τ) ofM. Although, the ideals C0(M, τ) and J (M) are quite similar in many

respects, the main result (Theorem 5.6.1) of this chapter is in strong contrast with

Example 3.2.3, which is somewhat unexpected. Namely, the additional assumption

on the type I summand of the von Neumann subalgebra which plays an important

role in the proof of Theorem 3.2.2 could be dispensed with in our current setting.

For an arbitrary von Neumann algebraM and any (not necessarily closed) ideal

E of M, it is known that any derivation δ : M → E is inner (see Theorem 3.2.7).

For a semifinite von Neumann algebraM equipped with a faithful normal semifinite

trace τ , and a C∗-subalgebra A of M, it is proved that a derivation δ defined on

A is necessarily inner provided that the values δ belong to the ideal E(M, τ) ∩M
generated by a fully symmetric KB-space E(0,∞) (see Theorem 4.1.4). So, it is

natural to ask whether every derivation acting on a von Neumann subalgebra A of

M into an arbitrary proper ideal of M is inner. Popa and Rădulescu (see Example

3.2.3) constructed an example showing that this question has a negative answer.

The main object of this chapter is to characterise the symmetric ideals of M
such that the following question has an affirmative answer.
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Question 5.0.1. Assume that M is a semifinite von Neumann algebra equipped

with a faithful normal semifinite trace τ . Let E be a symmetric ideal of M and let

A be a von Neumann subalgebra of M. Is every derivation δ from A into E inner?

As an application of Theorem 5.6.1, we gives an affirmative answer to Question

5.0.1 for ‘almost’ every proper symmetric ideal E in M (see Theorem 5.6.3), that

is, for most proper symmetric ideals E in M, derivations from an arbitrary von

Neumann subalgebra of M into E are automatically inner. In particular, Theorem

5.6.3 is a unification of the Johnson–Parrott–Popa theorem (see Theorem 3.2.1) and

the result by Kaftal and Weiss (Theorem 3.2.5) with significant extension, which

also answer Question 3.2.6 in affirmative.

One should note that the class of symmetric ideals characterized in this chapter

(see Theorem 5.6.3) covers almost every ideal E corresponding to a symmetric

function space in the sense of Calkin (see [82,87]). In the meantime, the ideal J (M)

of all compact operators inM does not correspond to any symmetric function space

whenever M 6= J (M) 6= C0(M, τ) (see e.g. [112, Section 8] or Example 3.2.3).

The main result of this chapter is taken from the joint paper Derivations with

values in the ideal of τ -compact operators affiliated with a semifinite von Neumann

algebra [12].

5.1 Preliminaries

Throughout this chapter, we assume that M is a semifinite von Neumann

algebra equipped with a semifinite faithful normal trace τ . In this section, we

consider derivations δ from an arbitrary von Neumann subalgebra A of M into

C0(M, τ). Without loss of generality, we always assume that δ is skew-adjoint (see

Section 3.4.5).

Recall that our aim is to show that any derivation δ : A → C0(M, τ) inner.

Hence, if we have a central partition of unity {Zi} of A such that δ is inner

on every AZi and is implemented by Ki ∈ ZiC0(M, τ)Zi, then a natural choice

of element implementing δ on A is ⊕iKi (see Lemma 3.4.5). However, it can

happen that Ki ∈ ZiC0(M, τ)Zi, but ⊕iKi /∈ C0(M, τ) (as an example, consider

the algebra M = L∞(0,∞) and partition {Zi} = {χ(i,i+1]}). The latter fact

is in direct contrast with [112, 2.11.], since if {Zi}i is a central partition of the

identity of M, then the direct sum of a family of uniformly bounded operators

Ki ∈ J (MZi) is also in J (M). We tackle this issue for τ -compact operators, by

showing that under additional assumption that every operator Ki is chosen from

ZiKδ (see Definition 3.4.7), the direct sum K := ⊕iKi is also τ -compact.

Theorem 5.1.1. Let A be a von Neumann subalgebra of M and let {Zi ∈ P(A)}i
be a central partition of the unity in A. Assume that δ(Z) = 0 for every Z ∈ Z(A).

If there exists Ki ∈ C0(MZi , τ) ∩ ZiKδ such that δ = δKi on AZi for every i, then

K := ⊕iKi ∈ C0(M, τ) ∩Kδ with δ = δK on A.
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Proof. Note that the operators Ki and K are self-adjoint. Since δ(Zi) = 0 for every i,

it follows that Ziδ(X) = δ(ZiXZi) = Ziδ(X)Zi = δ(X)Zi for every X ∈ A. Hence,

the fact that {Zi} is a central partition of unity, together with the assumption that

δ = δKi on AZi implies that for every X ∈ A, we have

δ(X) = ⊕i(Ziδ(X)) = ⊕i(Ziδ(X)Zi) = ⊕iδ(ZiXZi)

= ⊕iδKi(ZiXZi) = ⊕iδKi(X) = δK(X).

We assert that K ∈ Kδ. Let τZ(A) be a semifinite faithful normal trace Z(A). It

follows that there is an increasing net {Rλ} ⊂ {Z(A)} of τZ(A)-finite projections

such that Rλ ↑ 1. Since Rλ is τZ(A)-finite, it follows that the reduced von Neumann

algebra Z(A)Rλ is finite and countably decomposable for every Rλ (see e.g. [103,

Theorem 1.3.6] for a proof of this fact). Thus, for every fixed λ, there are only

countably many Zi such that ZiRλ 6= 0. We denote the sequence consists of non-

zero elements from {ZiRλ} by {Pn}∞n=1. Note that for every k, we have

PkKPk ∈ PkKδPk.

By Remark 3.4.10, ⊕nk=1PkKPk ∈ KδRλ for every n. Since
∑∞

k=1 Pk = Rλ, it follows

that

RλKRλ = ⊕∞k=1PkKPk ∈ KδRλ.

Since Rλ ∈ Z(A), by Remark 3.4.10 again, we have that

RλKRλ ∈ KδRλ ⊂ Kδ.

Since RλKRλ →so K, we obtain that K ∈ Kδ.

Now, we prove that K is τ -compact. If the net {Zi} consists of finitely many

projections, then K is clearly τ -compact. We assume that {Zi} contains infinitely

many projections and K /∈ C0(M, τ). By the definition of C0(M, τ), there exists

an ε > 0 such that ∞ = τ(E|K|(ε,∞)) = τ(E⊕i|Ki|(ε,∞)). Noting that τ is

completely additive (see e.g. [133, Chapter VII, Theorem 1.11]), we obtain that∑
i τ(E|Ki|(ε,∞)) =∞. Hence, we can choose countably many distinct Tj := Ki(j)

from {Ki} such that

τ(E⊕
∞
j=1|Tj |(ε,∞)) =

∞∑
j=1

τ(E|Tj |(ε,∞)) =
∞∑
j=1

tj =∞,

where tj := τ(E|Tj |(ε,∞)) ∈ (0,∞), 1 ≤ j <∞. We denote Zi(j) by Qj .

Note that for every 1 ≤ j <∞, we have

Tj ∈ coso{Uδ(U∗)|U ∈ U(AQj )}.

For every j, by Proposition 3.4.11, we can choose a Uj ∈ U(AQj ) such that

∫ tj
2

0
µ(t; δ(Uj))dt >

tj
2
ε. (5.1)
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Let U := ⊕∞j=1Uj ∈ A. Since δ vanishes on {Qj}, it follows that δ(Uj) = δ(QjUQj) =

Qjδ(U)Qj . Thus, for every n, we have

∫ ∑n
j=1

tj
2

0
µ(t; δ(U))dt

(2.7)

≥
n∑
j=1

∫ tj
2

0
µ(t; δ(Uj))dt

(5.1)

≥
n∑
j=1

tj
2
ε.

Noticing that δ(U) ∈M and recalling that
∑∞

j=1 tj =∞, by Lemma 2.5.5, we obtain

that δ(U) is not τ -compact, which is a contradiction and hence K ∈ C0(M, τ).

We end this section by showing a fine property of inner derivations δ : A →
C0(M, τ), which is related to the set Kδ. As we show in Proposition 5.1.2 below,

for any inner derivation δ : A → C0(M, τ), there exists an operator T ′ ∈ Kδ

implementing δ. We note that analogous property for inner derivations from A
into J (M) is established in [112], however, our approach is completely different

from that used in the proof of [112, Lemma 4.6]. Furthermore, our result holds if

the assumption on A is relaxed to a weaker assumption that A is a unital (that is,

1A = 1M) C∗-subalgebra of M.

Proposition 5.1.2. Let N be a unital C∗-subalgebra ofM and let δ : N → C0(M, τ)

be a derivation. If there exists T ∈ C0(M, τ) such that δ = δT , then there exists an

element T ′ ∈ Kδ = cowo{Uδ(U∗) | U ∈ U(N )} such that δ = δT ′.

Proof. Let Pn := E|T |( 1
n ,∞) and let Tn := TPn. For every n ∈ N , the projection

Pn is τ -finite and ‖T − Tn‖∞ ≤ 1
n . In particular, Tn ∈ L2(M, τ), where L2(M, τ)

denotes the noncommutative L2-space affiliated with M. Hence, δTn has range

inside L2(M, τ) ∩M and therefore, by Theorem 4.1.1 (see also [11, Theorem 3.1

and Proposition 3.4]), there exists

T ′n ∈ co{UδTn(U∗) | U ∈ U(N )}‖·‖2 = co{Tn − UTnU∗ | U ∈ U(N )}‖·‖2

such that ‖T ′n‖∞ ≤ ‖δTn‖∞ ≤ 2‖Tn‖∞ ≤ 2‖T‖∞ and δTn = δT ′n . Hence, by [31,

Chapter IX, Proposition 5.5], there is a (wo)-cluster point T ′ ∈ ∩n{T ′n, T ′n+1, · · · }
wo

for the sequence {T ′n} in the ball of radius 2‖T‖∞ in M.

Since ‖·‖2 induces the strong operator topology, and the strong operator closure

and the weak operator closure of the convex hull of a uniformly bounded set coincide,

it follows that T ′n ∈ cowo{Tn − UTnU∗ | U ∈ U(N )}. Since ‖Tn − UTnU∗ − (T −
UTU∗)‖∞ ≤ 2

n , it follows from the Kaplansky density theorem (see e.g. [132, Chapter

II, Theorem 4.8]) that there is an element Bn ∈ cowo{T −UTU∗ | U ∈ U(N )} = Kδ

such that

‖T ′n −Bn‖∞ ≤
2

n
.

Thus, T ′ is a (wo)-cluster point of {Bn} and therefore T ′ ∈ Kδ.

For every X ∈ N , η, ξ ∈ H, we set ω(·) = 〈·Xη, ξ〉 and ρ(·) = 〈·η,X∗ξ〉 on M.

For every ε > 0, there exists N > 2/ε such that

|ω(T ′ − T ′N )|, |ρ(T ′ − T ′N )| < ε.
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Recall that δTN = δT ′N . We have

|〈[T − T ′, X]η, ξ〉| ≤ |〈[T − TN , X]η, ξ〉|+ |〈[TN − T ′N , X]η, ξ〉|+ |〈[T ′N − T ′, X]η, ξ〉|

≤ |〈[T − TN , X]η, ξ〉|+ |〈[T ′N − T ′, X]η, ξ〉|

≤ |〈(T − TN )Xη, ξ)〉|+ |〈X(T − TN )η, ξ)〉|

+ |ω(T ′N − T ′)|+ |ρ(T ′N − T ′)|

≤ 2

N
‖X‖∞‖η‖H‖ξ‖H + 2ε ≤ ε‖X‖∞‖η‖H‖ξ‖H + 2ε.

Since ε is arbitrary, we infer that [T−T ′, X] = 0 for everyX ∈ N . Hence, T−T ′ ∈ N ′

and therefore δ = δT = δT ′ .

5.2 The abelian case

In this section, we consider derivations δ : A → C0(M, τ), where A is an abelian von

Neumann subalgebra of M. We show that in this case, any derivation δ is inner.

In particular, this result allows us to assume in the following sections that we work

with derivations vanishing on the center of the subalgebra A of M.

We note that even though C0(M, τ) ⊂ J (M) and C0(M, τ) behaves somewhat

like J (M), the additional restrictions to the abelian subalgebra A in [81, 112] are

no longer required. Moreover, since C0(M, τ) is not necessarily the dual space of

a Banach space, the techniques used in [81, Theorem 14] are not applicable in this

case.

Throughout this section, we assume that A is an abelian von Neumann

subalgebra of M.

Let δ : A →M be a derivation. The following result is well-known (see e.g. [81,

Section 3] and [67, Theorem 2.1]).

Proposition 5.2.1. If A is an abelian von Neumann subalgebra of M, then every

derivation δ from A into M is inner. That is, δ = δT for some T ∈M.

In what follows, we consider derivations δ : A → C0(M, τ). Since C0(M, τ) ⊂M,

δ is a derivation from A intoM and therefore there exists an operator T ∈M such

that δ = δT . Thus, our aim in this section is to show that T can be chosen to be

τ -compact.

Recall that an expectation Φ is a norm one projection from B(H) onto a

von Neumann algebra (see [32, Section 8]). Motivated by the idea related to an

expectation from B(H) onto A′ used in [32, Theorem 10.9], we prove the main

theorem of this section by techniques different from those used in [81], extending

the results in [81] to the case of C0(M, τ).

Theorem 5.2.2. Assume that A is an abelian von Neumann subalgebra of M. For

every derivation δ : A → C0(M, τ), there exists K ∈ C0(M, τ)∩Kδ such that δ = δK .

In particular, δ is inner.
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Proof. Without loss of generality, we may assume that δ is a skew-adjoint derivation

from A into M (see Section 5.1). Proposition 5.2.1 guarantees that there exists

T ∈ M such that δ = δT . In particular, we may assume that T is self-adjoint (see

Remark 3.4.1). Let Φ be an expectation from B(H) onto A′ given by [32, Theorem

8.3]. By the construction of Φ (see [32, Theorem 8.3], see also [81]), we have that

Φ(T ) belongs to the weak∗ operator closed convex hull of {UTU∗ : U ∈ U(A)}. In

particular, Φ(T ) ∈ M. Set K := T − Φ(T ) ∈ M. It is clear that δ = δK and K

belongs to the weak∗ operator closure of the convex hull of {Uδ(U∗) | U ∈ U(A)}.
It suffices to prove that K ∈ C0(M, τ). Since T is self-adjoint, it follows that K is

also self-adjoint.

Assume by contradiction that K /∈ C0(M, τ), i.e., there is an ε > 0 such that

µ(∞;K) > ε. We claim that there exists A ∈ A such that δ(A) is not τ -compact.

To this end, we intend to use Lemma 2.5.5. For convenience, we divide the proof

into several steps.

(a) Let

P := {P ∈ P(A) | µ(∞;PKP ) > ε}.

We claim that there is a maximal downwards directed chain {Pγ} of infinitely many

elements in P which satisfies P0 := inf{Pγ} /∈ P and Pγ − P0 ∈ P for every γ.

It is clear that P is not empty as 1 ∈ P. We note, in addition, that τ(P ) =∞ for

any P ∈ P. Take an arbitrary P ∈ P. Assume that P is minimal in A. Note that

PTP = 0 (see e.g. the argument in the proof of [81, Lemma 8]). Since P ∈ A ⊂ A′,
it follows from [32, Theorem 8.1] that

PKP = PTP − PΦ(T )P = PTP − Φ(PTP ) = 0,

which is a contradiction to P ∈ P. Thus, P contains no minimal element in A.

Now, let Q ∈ P(A) be such that 0 6= Q � P and let Q1 = Q,Q2 = P −Q. We

have

PKP = Q1KQ1 +Q2KQ2 +Q1KQ2 +Q2KQ1

= Q1KQ1 +Q2KQ2 + δ(Q1)Q2 + δ(Q2)Q1, (5.2)

where we used the fact that Q1 ⊥ Q2 and δ = δK for the second equality. Since

µ(∞;PKP ) > ε, Theorem 2.2.2 (see also [87, Corollary 2.3.16]) implies that

µ(t;Q1KQ1 +Q2KQ2) + µ(s1; δ(Q1)Q2) + µ(s2; δ(Q2)Q1)

≥ µ(t+ s1 + s2;PKP ) ≥ µ(∞;PKP ) > ε

for all t, s1, s2 > 0. Let ε1 be such that µ(∞;PKP ) > ε1 > ε. Since

µ(s1; δ(Q1)Q2), µ(s2; δ(Q2)Q1)→ 0 as s1, s2 →∞, we have

µ(t;Q1KQ1 +Q2KQ2) > ε1 > ε, t ∈ [0,∞). (5.3)

Assume that both projections E|Q1KQ1|(ε1,∞) and E|Q2KQ2|(ε1,∞) are τ -

finite. Since Q1 ⊥ Q2, it follows that E|Q1KQ1|(ε1,∞) + E|Q2KQ2|(ε1,∞) =
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E|Q1KQ1+Q2KQ2|(ε1,∞), and therefore

τ(E|Q1KQ1+Q2KQ2|(ε1,∞)) = τ(E|Q1KQ1|+|Q2KQ2|(ε1,∞))

= τ(E|Q1KQ1|(ε1,∞)) + τ(E|Q2KQ2|(ε1,∞)) <∞.

By Lemma 2.2.3, this is a contradiction to (5.3). Hence, either τ(E|Q1KQ1|(ε1,∞)) =

∞ or τ(E|Q2KQ2|(ε1,∞)) = ∞. By Lemma 2.2.3, either µ(∞;Q1KQ1) ≥ ε1 > ε

or µ(∞;Q2KQ2) ≥ ε1 > ε, which implies that either Q1 or Q2 belongs to P. This

shows that P has no minimal elements, that is, for every element P ∈ P, we can

always find an element Q ∈ P such that Q ≤ P . Moreover, if P ∈ P and Q ∈ P(A)

such that Q ≤ P , then either Q or P −Q belongs to P.

Let {Pγ} be a maximal downwards directed chain in P and let P0 = inf{Pγ}.
Obviously, P0 /∈ P. Otherwise, there exists a P � P0 with P ∈ P, which contradicts

the maximality of {Pγ}. By the property stated in the above paragraph, either

Pγ − P0 or P0 must belong to P. However, P0 /∈ P. Thus, Pγ − P0 ∈ P.

(b) Now, let us construct a sequence γ1 � γ2 � · · · such that the projection

Qk := Pγk − Pγk+1
satisfies

µ(t;QkKQk) > ε, t ∈ [0, 2]. (5.4)

Take an arbitrary γ and set γ1 = γ. Assume that the sequence γ1 ≺ γ2 ≺ · · · ≺ γn

is constructed for some n ∈ N. Let An := (Pγn − P0)K(Pγn − P0). We have that

A∗n = An. Furthermore, since Pγ − P0 ∈ P, it follows that µ(∞;An) > ε, which

guarantees that τ(E|An|(ε,∞)) = ∞ (see Lemma 2.2.3). Since 1 − Pγ + P0 ↑ 1, it

follows from [106, Proposition 2.3.2] that

so− lim
γ
|(1− Pγ + P0)An(1− Pγ + P0)| = |An|.

Then, by Lemma 1.8.4, we have

lim inf
γ

τ(E|(1−Pγ+P0)An(1−Pγ+P0)|(ε,∞)) ≥ τ(E|An|(ε,∞)) =∞.

Hence, we can find γn+1 � γn such that τ(E|(1−Pγn+1+P0)An(1−Pγn+1+P0)|(ε,∞)) > 2,

and therefore, by Lemma 2.2.3, we have

µ(t; (1− Pγn+1 + P0)An(1− Pγn+1 + P0)) > ε, t ∈ [0, 2]. (5.5)

Since Pγ ↓, it follows that (Pγn−P0)(1−Pγn+1 +P0) = (Pγn−Pγn+1), which implies

that, setting Qn := Pγn − Pγn+1 , we obtain that µ(t;QnKQn) > ε for all t ∈ [0, 2].

(c) We claim that for every k ∈ N, there is a Uk ∈ U(A) such that∫ 1

0
µ(t;Qkδ(Uk)Qk)dt > ε. (5.6)

Since Φ(K) = Φ(T − Φ(T )) = 0, by [32, Theorem 8.3], the operator

QkKQk = Qk(K − Φ(K))Qk
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belongs to the weak∗ operator closure of

co{Qk(K − UKU∗)Qk : U ∈ U(A)} = co{QkUδ(U∗)Qk : U ∈ U(A)}.

Since A is abelian, it follows that Qkδ(·)Qk is a derivation from A into C0(M, τ)

(see Section 5.1). Thus, QkKQk ∈ KQkδ(·)Qk . By the construction of Qk and

Proposition 3.4.11, we conclude that Uk ∈ U(A) satisfying (5.6) exists.

(d) Finally, since Qk, Uk ∈ A, Qi ⊥ Qj (i 6= j) and A is abelian, the series∑∞
k=1QkUk converges in A in the strong operator topology. We define

A :=
∞∑
k=1

QkUk.

Since A is abelian, it follows that

Qkδ(Q
⊥
kX)Qk = Qkδ(Q

⊥
kXQ

⊥
k )Qk = QkQ

⊥
kXδ(Q

⊥
k )Qk +Qkδ(Q

⊥
kX)Q⊥k Qk = 0

for every X ∈ A, and therefore,

Qkδ(A)Qk = Qkδ(QkA)Qk +Qkδ(Q
⊥
k A)Qk

= Qkδ(QkUk)Qk

= Qkδ(QkUk)Qk +Qkδ(Q
⊥
k Uk)Qk

= Qkδ(Uk)Qk. (5.7)

Hence, we obtain∫ 1

0
µ(t;Qkδ(A)Qk)dt

(5.7)
=

∫ 1

0
µ(t;Qkδ(Uk)Qk)dt

(5.6)
> ε. (5.8)

Take an arbitrary n ≥ 1. Since Qi ⊥ Qj for i 6= j, it follows that∫ n

0
µ(t; δ(A))dt

(2.7)

≥
n∑
i=1

∫ 1

0
µ(t;Qiδ(A)Qi)dt

(5.8)
> n · ε.

Now, by Lemma 2.5.5, we obtain that δ(A) is not τ -compact, which is a

contradiction. Thus, K ∈ C0(M, τ) as requipred.

Remark 5.2.3. Note that the so-called locally compatible condition on the abelian

von Neumann subalgebra A of M is required in studying derivations from A into

J (M) (see [112, Proposition 4.3], see also [81]). When this condition is not fulfilled,

derivations from A into J (M) are not necessarily inner (see Example 3.2.3).

However, the “locally compatible” condition is redundant in our present setting,

that is, the result of Theorem 5.2.2 holds without any additional assumption on

the abelian subalgebra A of M.

Remark 5.2.4. Assume that A is a von Neumann subalgebra of M. By

Theorem 5.2.2, for every derivation δ : A → C0(M, τ), δ|Z(A) is implemented by a

τ -compact operator K. Hence, in the study of derivations δ : A → C0(M, τ), we can

consider linear mapping δ−δK which is a derivation from A into C0(M, τ) vanishing

on Z(A). That is, without loss of generality, we may assume that derivation δ

vanishes on Z(A).
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5.3 The properly infinite Case

In this section, we show that any derivation δ on a properly infinite von Neumann

subalgebra A of M with values in the ideal C0(M, τ) is necessarily inner. We note,

that the result for derivations from an abelian subalgebra ofM (see Theorem 5.2.2)

allows us to use the same approach for properly infinite algebras as in [81] (see

also [67] and [32]).

Recall that if A is properly infinite von Neumann subalgebra of a semifinite

von Neumann algebra M, then there is an infinite countable decomposition of the

identity into mutually orthogonal projections of A, all equivalent in A to 1, and

thus a fortiori equivalent inM to 1 [34, Part III, Chapter 8, Section 6, Corollary 2]

(see also [78]).

Let H0 = `2(Z). By [34, Part I, Section 2.4, Proposition 5], there is a spatial

isomorphism

φ :M→ M̃ =M⊗B(H0) (5.9)

with

φ(A) = Ã = A⊗B(H0).

It is well-known [34, Section 1.5, Proposition 8] that a spatial isomorphism is

isometric and is normal, i.e., for every bounded increasing net {Xi ∈M+}i satisfying

Xi ↑ X, we have φ(Xi) ↑ φ(X). Recall also that the elements B ∈ M̃ (or Ã) are

represented by matrices [Bij ], i, j ∈ Z, with entries in M(or A) by the formula

(1⊗ Eij)B(1⊗ Ekl) = Bjk ⊗ Eil,

where Eij is the canonical matrix unit of B(H0). In particular, if L (respectively,

D) is the maximal abelian subalgebras of B(H0) of Laurent (respectively, diagonal)

matrices, then B ∈M⊗L (respectively, B ∈M⊗D) if and only if [Bij ] is a Laurent

(respectively, a diagonal) matrix with entries in M, i.e., Bij = Bi−j (respectively,

Bij = δijBii, where δij stands for the Kronecker Delta), i, j ∈ Z, where Bk denotes

the entry along the kth diagonal for all k ∈ Z.

Let τ0 be the standard trace on B(H0) and τ̃ := τ ⊗ τ0. For the properties of

tensor products of von Neumann algebras, we refer the reader to [133, Chapter IV].

It is well-known that the isomorphism φ introduced in (5.9) is trace-preserving.

Before we proceed to the proof of the main result of this section (see Theo-

rem 5.3.3 below), we establish several properties of the isomorphism φ introduced

in (5.9) related to the generalised singular value functions and τ -compact operators.

Proposition 5.3.1. Let φ be the spatial isomorphism from M onto M̃ introduced

in (5.9) . Then, for any X ∈M, we have

(i). µ(X) = µ(φ(X)).

(ii). µ(X) = µ(X ⊗ E00).
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Proof. (i). Since φ is an isometric, trace-preserving isomorphism from M onto M̃,

it follows from the definition of generalised singular value function (see Definition

2.2.1) that

µ(t;X) = inf{‖XP‖∞ : P ∈ P(M), τ(1− P ) ≤ t}

= inf{‖φ(X)φ(P )‖∞ : P ∈ P(M), τ(1− P ) ≤ t}

= inf{‖φ(X)P̃‖∞ : P̃ ∈ P(M̃), τ̃(1− P̃ ) ≤ t} = µ(t;φ(X)).

(ii). For every t > 0, we have

d|X⊗E00|(t) = τ̃(E|X⊗E00|(t,∞))

= τ̃(E|X|⊗E00(t,∞))

= τ̃(E|X|(t,∞)⊗ E00)

= τ(E|X|(t,∞)) = d|X|(t).

Thus, by (2.1), we have µ(t;X ⊗ E00) = µ(t;X).

Proposition 5.3.2. Let φ be the spatial isomorphism from M onto M̃ as in (5.9).

We have that

(i). C0(M̃, τ̃) = φ(C0(M, τ));

(ii). If K ⊗ E00 ∈ C0(M̃, τ̃), then K ∈ C0(M, τ);

(iii). (M⊗L) ∩ C0(M̃, τ̃) = {0}.

Proof. Part (i) immediately follows from Proposition 5.3.1.

(ii). Suppose that K ⊗ E00 ∈ C0(M̃, τ̃). On one hand, part (i) guarantees that

φ−1(K ⊗ E00) ∈ C0(M, τ). On the other hand, by Proposition 5.3.1, we have that

µ(φ−1(K ⊗ E00)) = µ(K). Hence, we conclude that K ∈ C0(M, τ).

(iii). Let J (M̃) be the norm closure of the linear space of all finite projections

of M̃. Since C0(M̃, τ̃) ⊂ J (M̃) (see section 2), it follows from [81, Lemma 12 (b)]

that (M⊗L) ∩ C0(M̃, τ̃) = {0}.

The lifting technique used in [81] (see also [32,67]) and the already proven abelian

case play crucial roles in proving Theorem 5.3.3. However, we can simplify the proof

since the condition that A contains the center of M imposed in [81, Theorem 4] is

not required in Theorem 5.2.2.

Theorem 5.3.3. Let A be a properly infinite von Neumann subalgebra of M. For

every derivation δ : A → C0(M, τ), there exists T ∈ C0(M, τ)∩Kδ such that δ = δT

on A.

Proof. Let δ̃ = φ ◦ δ ◦ φ−1, where φ is a spatial isomorphism as in (5.9). Clearly, δ̃

is also a derivation, and, by Proposition 5.3.2, we have that

δ̃ : Ã → φ(C0(M, τ)) = C0(M̃, τ̃).

Let us define the following von Neumann algebras:

Ã1 = 1⊗ L, A1 = φ−1(Ã1), Ã2 = A⊗ L and Ã3 = A1 ⊗D.
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By [132, Chapter IV, Theorem 5.9 and Corollary 5.10], we have

Ã′1 ∩ C0(M̃, τ̃) = (1⊗ L)′ ∩ ((M⊗B(H0) ∩ C0(M̃, τ̃))

= (M⊗L′) ∩ C0(M̃, τ̃)

= (M⊗L) ∩ C0(M̃, τ̃)

P. 5.3.2 (iii)
= {0}. (5.10)

Since the isomorphism φ is spatial, we infer that

A′1 ∩ C0(M, τ) = φ−1(Ã′1) ∩ C0(M, τ) = φ−1
(
Ã′1 ∩ C0(M̃, τ̃)

)
= {0}. (5.11)

We now study derivation δ̃ on each of the algebras Ãj , j = 1, 2, 3, separately.

Since Ã1 is abelian, Theorem 5.2.2 applied to the derivation δ̃|Ã1
guarantees the

existence of T1 ∈ C0(M̃, τ̃) such that

δ̃1 := δ̃ − δT1

vanishes on Ã1. Moreover, T1 ∈ cowo{Uδ̃(U∗) | U ∈ U(Ã1)}.
Note that Ã2 = A⊗L ⊂M⊗L ⊂ 1′ ⊗L = Ã′1. For any A1 ∈ Ã1 and A2 ∈ Ã2,

we have

A1δ̃1(A2) = δ̃1(A1A2) = δ̃1(A2A1) = δ̃1(A2)A1,

that is, δ̃1(A2) ∈ Ã′1. Therefore, it follows from (5.10) that

δ̃1(Ã2) ⊂ Ã′1 ∩ C0(M̃, τ̃) = {0},

which implies that the derivation δ̃1 also vanishes on Ã2.

Next, we consider δ̃1 on the algebra Ã3. Since Ã1 is abelian, it follows that A1

is also abelian and therefore, Ã3 is also abelian. Thus, we can apply Theorem 5.2.2

to the derivation δ̃1|Ã3
to infer that there is a T2 ∈ C0(M̃, τ̃) such that δ̃1 = δT2 on

Ã3. We claim that T2 = 0, that is, δ̃1 vanishes on Ã3.

Since A1 ⊗ 1 ⊂ A ⊗ 1 ⊂ A ⊗ L = Ã2, A1 ⊗ 1 ⊂ Ã3 and δ̃1 vanishes on Ã2, we

have δT2 vanishes on A1 ⊗ 1, i.e.,

T2 ∈ (A1 ⊗ 1)′ ∩ C0(M̃, τ̃) = (A′1 ⊗B(H0)) ∩ C0(M̃, τ̃).

Hence, for all i, j ∈ Z, we have that (T2)ij ∈ A′1 and

(T2)ij ⊗ E00 = (1⊗ E0i)T2(1⊗ Ej0) ∈ C0(M̃, τ̃).

By Proposition 5.3.2 (ii), the latter condition implies that (T2)ij ∈ C0(M, τ) and

therefore, (T2)ij ∈ A′1 ∩ C0(M, τ) for all i, j ∈ Z. Appealing to (5.11), we conclude

that (T2)ij = 0 for all i, j ∈ Z, so T2 = 0. Thus, the derivation δ̃1 vanishes on Ã3.

In particular, δ̃1 vanishes on 1⊗D.

Finally, we claim that δ̃1 vanishes on Ã, which would imply that δ̃ = δT1 . Since

L and D generate B(H0) in weak∗ operator topology, we have Ã2 = A ⊗ L and

1⊗D generate Ã in weak∗ operator topology. Since δ̃ is weak∗ topology continuous
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(see [67, Lemma 1.3]), it follows that δ̃1 = δ̃ − δT1 = 0, i.e., δ̃ = δT1 on Ã. Then, for

every X ∈ Ã, we have

φ(δ(φ−1(X))) = δ̃(X) = δT1(X) = XT1 − T1X

and therefore

δ(φ−1(X)) = φ−1(XT1 − T1X) = φ−1(X)φ−1(T1)− φ−1(T1)φ−1(X). (5.12)

Since φ is a isomorphism from A onto Ã, (5.12) implies that δ(Y ) = δφ−1(T1)(Y )

for every Y ∈ A. Since T1 ∈ C0(M̃, τ̃) ∩ cowo{Uδ̃(U∗) | U ∈ U(Ã1)}, we have

that φ−1(T1) ∈ C0(M, τ) and φ−1(T1) ∈ cowo{Uδ(U∗) | U ∈ U(A1)} ⊂ Kδ, which

completes the proof.

5.4 The type I case

In this section, we consider the case when A is an arbitrary type I von Neumann

subalgebra of M. Before we proceed to the proof for the type I case, we need the

following proposition.

Proposition 5.4.1. Let A be a type In von Neumann subalgebra of M, n ∈ N.

Then, every derivation δ from A into C0(M, τ) is inner, i.e., δ = δE for some

E ∈ C0(M, τ). Moreover, E ∈ co{Uδ(U∗) | U ∈ U(A)}.

Proof. By [120, Theorem 2.3.3], we have A = Mn ⊗Z(A), where Mn stands for the

algebra of all n×n matrices. For the sake of convenience, we denote A = Mn⊗Z(A)

by Mn(Z(A)), and Eij ⊗ 1A by Bij , where Eij is the standard matrix units of Mn.

In particular, every A ∈ A is in the form of
∑n

i,j=1AijBij , Aij ∈ Z(A).

We define

D1 =
n∑
i=1

Bi1δ(B1i).

Since every δ(B1i) is τ -compact, it follows that D1 is a τ -compact operator.

Equality δ(1A) = 0 together with the Leibniz rule implies that

D1 =

n∑
i=1

(
δ(Bi1B1i)− δ(Bi1)B1i

)
=

n∑
i=1

(
δ(Bii)− δ(Bi1)B1i

)
= δ(1A)−

n∑
i=1

δ(Bi1)B1i = −
n∑
i=1

δ(Bi1)B1i. (5.13)

Then, for every k, l = 1, . . . , n we have

[Bkl, D1] = BklD1 −D1Bkl
(5.13)

= Bkl

n∑
i=1

Bi1δ(B1i) +
( n∑
i=1

δ(Bi1)B1i

)
Bkl

= Bk1δ(B1l) + δ(Bk1)B1l = δ(Bk1B1l) = δ(Bkl). (5.14)
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Now, consider X =
∑n

i,j=1XijBij ∈ A, Xij ∈ Z(A). Since
∑n

k=1XijBkk ∈ Z(A),

we have that δ
(∑n

k=1XijBkk
)

= 0 (see Remark 5.2.4). Hence, using the Leibniz

rule, we write

δ(X) =

n∑
i,j=1

δ(XijBij) =

n∑
i,j=1

δ
(

(

n∑
k=1

XijBkk)Bij

)
=

n∑
i,j=1

δ
( n∑
k=1

XijBkk
)
Bij +

n∑
i,j=1

( n∑
k=1

XijBkk
)
δ(Bij)

=
n∑

i,j=1

( n∑
k=1

XijBkk
)
δ(Bij).

Therefore, referring to (5.14), we obtain that

δ(X) =
n∑

i,j=1

( n∑
k=1

XijBkk
)
[Bij , D1].

Since
∑n

k=1XijBkk ∈ Z(A) and δ(Z(A)) = 0, it follows from the definition of D1

that
∑n

k=1XijBkk commutes with D1. Hence, we obtain that

δ(X) =
n∑

i,j=1

( n∑
k=1

XijBkk
)
[Bij , D1] =

n∑
i,j=1

[
XijBij , D1] = [X,D1].

Arguing similarly, one can show that Dj :=
∑n

i=1Bijδ(Bji) such that δ = δDj
for every j. Define

E :=
1

n

n∑
j=1

Dj =
1

n

∑
i,j

Bijδ(Bji). (5.15)

Then, δ = 1
n

∑n
j=1 δDj = δE . To complete the proof, it suffices to show that E ∈

co{Uδ(U∗) | U ∈ U(A)}.
We denote by S the collection of all (possibly empty) subsets of {1, · · · , n}.

There are 2n sets in S. For i ∈ {1, · · · , n} and K ∈ S, we set eiK = 1 if i ∈ K and

eiK = −1 if i /∈ K. Let

aij :=
∑
K∈S

eiKe
j
K . (5.16)

Clearly, aii =
∑

K 1 = 2n.

Let i 6= j. We denote by S1 the subset of S, such that every K ∈ S1 satisfies

K ⊃ {i, j} and denote by S2 the subset of S such that every K ∈ S2 satisfies that

K ∩ {i, j} = ∅. Clearly, there are 2n−2 sets in S1 and 2n−2 sets in S2. For every

K ∈ S1 ∪ S2, we have eiKe
j
K = 1. Note that there are 2n−1 sets in S \ (S1 ∪ S2) and

eiKe
j
K = −1 for every K ∈ S \ (S1 ∪ S2). Hence, for i 6= j, we have

aij =
∑
K∈S

eiKe
j
K =

∑
K∈S1∪S2

eiKe
j
K +

∑
K∈S\(S1∪S2)

eiKe
j
K = 2n−1 − 2n−1 = 0. (5.17)
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For σ ∈ S(n), the set of all permutations of {1, 2, · · · , n}, and K ∈ S, we define a

unitary operator

UKσ :=

n∑
i=1

eiKBi,σ(i).

Then, by (5.16) and (5.17), we have∑
σ∈S(n)

∑
K∈S

UKσ δ((U
K
σ )∗) =

∑
σ∈S(n)

∑
K∈S

∑
i,j

eiKe
j
KBj,σ(j)δ(Bσ(i),i)

=
∑
σ∈S(n)

∑
i,j

Bj,σ(j)δ(Bσ(i),i)
∑
K∈S

eiKe
j
K

=
∑
σ∈S(n)

∑
i

Bi,σ(i)δ(Bσ(i),i)aii

= 2n
∑
i

∑
σ∈S(n)

Bi,σ(i)δ(Bσ(i),i).

For every i, j, there are (n− 1)! permutations taking i to j. Then, we obtain that∑
σ∈S(n)

∑
K∈S

UKσ δ((U
K
σ )∗) = 2n(n− 1)!

∑
i,j

Bijδ(Bji) = 2n
n!

n

∑
i,j

Bijδ(Bji)
(5.15)

= 2nn!E,

which implies that E ∈ co{Uδ(U∗) | U ∈ U(A)}.

The following theorem is the main result of this section, which is a semifinite

version of the so-called Johnson–Parrott theorem [67] (see also [32, Chapter 10]).

Another semifinite version of the Johnson–Parrott theorem (see [112]) shows that

derivations from a type I von Neumann subalgebra of M into J (M), the ideal of

all compact operators in M, are not necessarily inner. However, in the following

theorem, we show that derivations from an arbitrary type I von Neumann subalgebra

of M into C0(M, τ) are necessarily inner.

Theorem 5.4.2. If A is a type I von Neumann subalgebra of M, then for every

derivation δ : A → C0(M, τ), there exists K ∈ C0(M, τ) ∩Kδ such that δ = δK .

Proof. Since A is a type I von Neumann algebra, there exists a central partition of

unity {Zn : n ∈ N} such that ZnA is of type In and Z0A is properly infinite. Recall

that we may always assume that δ|Z(A) = 0 (see Remark 5.2.4). We have δ(ZnA) ⊂
ZnC0(M, τ)Zn for all n ≥ 0. Since for n ≥ 1, the algebra ZnA is of type In, it follows

from Proposition 5.4.1 that δ|ZnA = δKn for some Kn ∈ ZnC0(M, τ)Zn ∩ ZnKδ. In

addition, by Theorem 5.3.3, there exists K0 ∈ Z0C0(M, τ)Z0 ∩ Z0Kδ such that

δ|Z0A = δK0 . Set K =
∑∞

n=0 ZnKn. Appealing to Theorem 5.1.1, we conclude that

that δ = δK and K ∈ C0(M, τ) ∩Kδ.

5.5 The type II1 case

As before, we assume that M is a semifinite von Neumann algebra with a faithful

normal semifinite trace τ . Let A be a von Neumann subalgebra of M and let
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δ : A → C0(M, τ) be a derivation. As we showed in Theorems 5.3.3 and 5.4.2, the

derivation δ is inner provided that A is properly infinite or of type I. Hence, by

Remark 3.4.6, to complete the proof of Theorem 5.6.1, it remains to consider the

case when A is of type II1. We cover this remaining case in the present section.

In the setting of the present section, we consider a derivation δ : A → C0(M, τ),

where A is a type II1 algebra. Since C0(M, τ) ⊂ J (M), the main result of [112]

guarantees that there exists T ∈ J (M) such that δ = δT . Hence, to prove that

δ : A → C0(M, τ) is inner, it is sufficient to show that there exists T ′ ∈ A′ such that

T − T ′ ∈ C0(M, τ).

5.5.1 Some preliminaries

Recall that C2(M, τ) := {X ∈M | τ(X∗X) <∞} is the Hilbert-Schmidt class ideal

in M equipped with the norm ‖X‖τ = τ(X∗X)
1
2 , X ∈ C2(M, τ). Let Hτ be the

Hilbert space completion of C2(M, τ) in the norm ‖·‖τ , that is, Hτ = L2(M, τ). M
is always regarded in its standard representation, acting onHτ by left multiplication.

In what follows, we introduce norms |||·||| and |||·|||ess on M. The norms |||·||| and

|||·|||ess play similar roles in this chapter as the uniform and usual essential norms do

in [67] and [110] (see also [32, Chapter 10]).

By the well-known Holmstedt formula (see e.g. [57, Theorem 4.1]), ‖·‖L2+L∞

defined by ‖f‖L2+L∞ = (
∫ 1

0 µ(t; f)2dt)1/2, f ∈ L2(0,∞) + L∞(0,∞), is a complete

norm on L2(0,∞) + L∞(0,∞). It follows immediately from the definition of the

norm ‖·‖L2+L∞
that (L2+L∞)(0,∞) equipped with the norm ‖·‖L2+L∞

is a strongly

symmetric space. Hence, (L2 + L∞)(M, τ) is a strongly symmetric operator space

equipped with norm ‖·‖L2+L∞
defined by ‖T‖L2+L∞

= (
∫ 1

0 µ(t;T )2dt)1/2, T ∈ (L2 +

L∞)(M, τ) (see Chapter 2.4, see also [43,45,82]).

Definition 5.5.1. For every T ∈ M, we define |||T ||| := ‖T‖L2+L∞. It is clear that

|||T ||| ≤ ‖T‖∞.

The following proposition follows immediately from the fact that (L2+L∞)(M, τ)

is a symmetric space (see 2.4).

Proposition 5.5.2. If T1, T2, T ∈ M, then |||T1TT2||| ≤ ‖T1‖∞|||T |||‖T2‖∞ and

|||T ||| = |||T ∗||| = ||||T ||||.

Lemma 5.5.3. Let K ∈ C0(M, τ) and {En} be a sequence of mutually orthogonal

projections in M. Then, we have |||KEn||| →n 0 and |||EnK||| →n 0.

Proof. By Proposition 5.5.2, we have |||EkK||| = |||K∗Ek|||. Therefore, it is sufficient

to show that |||KEk||| →k 0.

Since K is a τ -compact operator, the projection E|K|(ε,∞) is τ -finite for every

ε > 0. In particular, KE|K|(ε,∞) ∈ F(M, τ). Since
∣∣∣∣∣∣K −KE|K|(ε,∞)

∣∣∣∣∣∣ ≤
(
∫ 1

0 ε
2dt)1/2 = ε, it follows that K ∈ F(M, τ)

|||·|||
. Then, [43, Proposition 56] together

with [42, Theorem 6.13 (iii)] implies that |||K(∨n≥kEn)||| →k 0. By Proposition 5.5.2,

we have |||KEk||| ≤ |||K(∨n≥kEn)||| →k 0.
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Theorem 5.5.4. |||·||| is inferior semicontinuous with respect to the weak operator

topology, that is, if a net {Ti} converges T in the weak operator topology, then

|||T ||| ≤ lim supi |||Ti|||.

Proof. By [87, Lemma 2.3.18], we may assume without loss of generality that M
is atomless. We have that µ(T )2 = µ(|T |)2 = µ(|T |2) (see Proposition 2.2.2).

Therefore, by [87, Lemma 3.3.2], we have that∫ 1

0
µ(s;T )2ds =

∫ 1

0
µ(s; |T |2)ds = sup{‖TP‖2τ : P ∈ P(M), τ(P ) ≤ 1}. (5.18)

and, similarly,∫ 1

0
µ(s;Ti)

2ds =

∫ 1

0
µ(s; |Ti|2)ds = sup{‖TiP‖2τ : P ∈ P(M), τ(P ) ≤ 1}. (5.19)

Let P ∈ P(M) be such that τ(P ) ≤ 1. Since |τ(PT ∗TiP )| ≤ ‖TiP‖τ‖TP‖τ ,

it follows that ‖TP‖2τ = τ(PT ∗TP ) = limi |τ(PT ∗TiP )| ≤ lim supi ‖TiP‖τ‖TP‖τ .

Hence, we have

‖TP‖τ ≤ lim sup
i
‖TiP‖τ

(5.19)

≤ lim sup
i
|||Ti|||,

which together with (5.18) implies that |||T ||| ≤ lim supi |||Ti|||.

Definition 5.5.5. For T ∈M, we define |||T |||ess := inf{|||T −K||| | K ∈ C0(M, τ)}.

The norm |||·|||ess can be described in terms of the singular value function.

Proposition 5.5.6. |||T |||ess = µ(∞;T ) for every T ∈M.

Proof. If T ∈ C0(M, τ), then, by definition, |||T |||ess = 0 and µ(∞;T ) = 0. Hence,

we may assume that µ(∞;T ) = ε for some ε > 0. For any K ∈ C0(M, τ) and

∆ > 0, there exists t0 > 0 such that µ(t;T )− µ(t;K) ≥ ε−∆ for every t > t0. By

Proposition 2.3.1, we obtain that

ε−∆ ≺≺ µ(T )− µ(K) ≺≺ µ(T −K)

for any K ∈ C0(M, τ) and ∆ > 0. By Lemma 2.5.5, the latter condition guarantees

that µ(T −K) ≥ ε −∆. Thus, |||T −K||| = (
∫ 1

0 µ(t;T −K)2dt)1/2 ≥ ε −∆. Since

K and ∆ are arbitrary, it follows that |||T |||ess ≥ ε.
To prove the converse inequality, assume that ∆ > 0 and choose t > 0 such

that µ(t;T ) ≤ ε + ∆. By Lemma 2.2.3, E|T |(ε + ∆,∞) is τ -finite. In particular,

TE|T |(ε+ ∆,∞) ∈ C0(M, τ). It follows from the definition of |||·|||ess that

|||T |||ess ≤
∣∣∣∣∣∣∣∣∣T − TE|T |(ε+ ∆,∞)

∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣∣∣∣TE|T |[0, ε+ ∆]

∣∣∣∣∣∣∣∣∣
=

(∫ 1

0
µ(t;TE|T |[0, ε+ ∆])2dt

)1/2

≤ ε+ ∆.

Since ∆ is arbitrary, we conclude that |||T |||ess = ε.
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Let T1, T2 ∈ M be two operators which are disjoint from the left and the right,

that is, (s(T1)∨ r(T1)) ⊥ (s(T2)∨ r(T2)). The essential norm of T1 +T2 with respect

to J (M) (see [112, Definition 2.6]) does not necessarily equal the maximum of the

essential norms of T1 and T2 with respect to J (M) (see [112, Section 2.7]). However,

similar to the usual essential norm in B(H) (see e.g. [67] and [32, Chapter 10]), the

essential norm with respect to C0(M, τ) has the following property for disjointly

supported operators.

Proposition 5.5.7. Let T ∈ M and let P1, P2 be mutually orthogonal projections

in M. We have

max
i
|||PiTPi|||ess = |||P1TP1 + P2TP2|||ess. (5.20)

Proof. Without loss of generality, we assume that both P1TP1 and P2TP2 are not

τ -compact with ε1 := µ(∞;P1TP1) ≥ µ(∞;P2TP2) =: ε2. By Lemma 2.2.3, for

every ∆ > 0, we have

τ(E|P1TP1+P2TP2|(ε1 + ∆,∞)) = τ(E|P1TP1|(ε1 + ∆,∞)) + τ(E|P2TP2|(ε1 + ∆,∞))

= M <∞

for some M > 0. Hence, using again Lemma 2.2.3, we obtain that

µ(∞;P1TP1 + P2TP2) ≤ µ(M ;P1TP1 + P2TP2) ≤ ε1 + ∆.

Moreover, since |P1TP1| ≤ |P1TP1|+ |P2TP2| = |P1TP1 + P2TP2|, it follows that

ε1 = µ(∞;P1TP1) ≤ µ(∞;P1TP1 + P2TP2).

Since ∆ is arbitrary, we conclude that µ(∞;P1TP1 + P2TP2) = ε1. The assertion

now follows from Proposition 5.5.6.

Remark 5.5.8. Note that for any semifinite von Neumann algebra A there

exist pairwise orthogonal central projections Pi with
∑

i Pi = 1 such that each

Z(A)Pi is countably decomposable. Hence, combining Theorem 5.1.1 together with

Theorem 5.2.2, we may assume, without loss of generality, that the center Z(A) of

the von Neumann subalgebra A ofM is countably decomposable. In particular, since

A is of type II1, we can always assume that A is a countably decomposable type II1

von Neumann algebra (see e.g. [78, Corollary 8.2.9]).

5.5.2 Some continuity results

In this subsection, we study the continuity of derivations δ : A → C0(M, τ). Similar

results with respect to the ideal J (M) can be found in [112, Section 4]. In this

subsection, unless otherwise stated, we always assume that algebra A is a countably

decomposable type II1 von Neumann subalgebra ofM and therefore A has a normal

faithful finite trace τA. For every X ∈ A, we denote

‖X‖2 := τA(X∗X)1/2.
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Proposition 5.5.9. Let δ : A → C0(M, τ) be a derivation. Then, δ is continuous

from the unit ball of A with the strong operator topology into C0(M, τ) equipped with

the norm |||·|||.

Proof. By Ringrose’s theorem (see Theorem 3.1.2), the mapping δ : (A, ‖ · ‖∞) →
(C0(M, τ), |||·|||) is continuous. Hence, denoting by ‖δ‖ the operator norm this

mapping, we can assume that ‖δ‖ ≤ 1.

We firstly prove that if {Pn}n∈N is a sequence of projections in A with τA(Pn)→
0, then |||δ(Pn)||| → 0. Suppose that |||δ(Pn)||| does not converge to 0. Passing to a

subsequence, if necessary, we may assume that |||δ(Pn)||| ≥ c for some c > 0 for all n

and that
∑
τA(Pn) <∞. Define Gn := ∨k≥nPk. We have

τA(Gn) ≤
∑
k≥n

τA(Pk)→ 0

as n → ∞. Denote by Sn,m the support of PmGnPm. It is clear that Sn,m ≤ Pm.

Moreover, since Sn,m = l(PmGnPm) = r(PmGnPm), it follows that l(PmGnPm) ≤
l(PmGn) ∼ r(PmGn) ≤ Gn, i.e. Sn,m � Gn. Therefore, τA(Sn,m) ≤ τA(Gn) →n 0

for each m. Since {Gn}n is decreasing, it follows that for every fixed m, the sequence

{PmGnPm}n is decreasing, and so, {Sn,m} is decreasing, too. In particular, Sn,m ↓0
as n → ∞. Thus, {Pm − Sn,m}n increases to Pm. Since δ is continuous in weak∗

operator topology (see [67, Lemma 1.3]), we obtain that {δ(Pm − Sn,m)} converges

to δ(Pm) in the weak∗ operator topology. By the inferior semicontinuity of the norm

|||·||| (see Theorem 5.5.4), it follows that for a fixed m, we can find a sufficiently large

n such that

|||δ(Pm − Sn,m)||| ≥ c

2
.

Thus, by induction, we can find an increasing sequence of integers n1, n2, ... such

that for every k, the projection Hk := Pnk − Snk+1,nk satisfies |||δ(Hk)||| ≥ c
2 . These

projections also satisfy τA(Hk) ≤ τA(Pnk) →k 0. Moreover, since Hk ≤ Pnk and

Snk+1,nk is the support of PnkGnk+1
Pnk , by the definition of Hk we get

HkGnk+1
Hk = HkPnkGnk+1

PnkHk = HkPnkGnk+1
PnkSnk+1,nkHk = 0,

which implies that HkGnk+1
= 0. Recalling that Gn = ∨k≥nPk, we conclude that

HkHl = 0 for every l ≥ k + 1, which means that Hk are mutually orthogonal

projections.

Denote by B the abelian von Neumann subalgebra of A generated by {Hk}. By

considering δ as a derivation from B into C0(M, τ), we can apply Theorem 5.2.2

to obtain the existence of K ∈ C0(M, τ), such that δ(Hk) = δK(Hk) for k ∈ N.

On one hand, |||δ(Hk)||| ≥ c
2 . On the other hand, since Hn are mutually orthogonal

projections, Lemma 5.5.3 implies that |||δ(Hk)||| = |||δK(Hk)||| ≤ |||KHk|||+|||HkK||| →
0, which is a contradiction.

Now, we turn to the general case. It is well-known that ‖ · ‖2 induces the strong

operator topology on the unit ball of A. Hence, it suffices to prove that if {Xn}n is a

bounded sequence in A with ‖Xn‖2 →n 0 , then |||δ(Xn)||| →n 0. Since ‖Xn‖2 →n 0,
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it follows that the ‖(Re(Xn))+‖2 →n 0, ‖(Re(Xn))−‖2 →n 0, ‖(Im(Xn))+‖2 →n 0

and ‖(Im(Xn))−‖2 →n 0. Hence, without loss of generality, we may assume that

every element in {Xn} is positive and ‖Xn‖∞ ≤ 1.

Let 0 ≤ X ≤ 1 be arbitrary. Let Am = ∪2m−1

i=1 ((2i − 1)/2m, 2i/2m], m ≥ 1. We

define

km := χAm , m ≥ 1.

Note that for every λ ∈ [0, 1], we have λ =
∑

m≥1 2−mkm(λ). By functional calculus,

we have

X =

∫
λdEXλ =

∫ ∑
m≥1

2−mkm(λ)dEXλ

=
∑
m≥1

2−m
∫
km(λ)dEXλ =

∑
m≥1

2−mEXAm .

Thus, for every Xn, we can write the dyadic decomposition

Xn :=
∑
m≥1

2−menm,

where enm := EXnAm .

Since ‖Xn‖2 →n 0, it follows that τA(enm) →n 0 for each m ≥ 1. Let ε > 0 be

fixed and choose m0 ≥ 1 such that 2−m0 ≤ ε
2 . By the first part of the proof, there

exists n0 such that for every n ≥ n0, |||δ(enm)||| < ε
2 for any m ≤ m0. Recall that

‖δ‖ ≤ 1. For n ≥ n0, we infer that

|||δ(Xn)||| ≤
m0∑
m=1

2−m|||δ(enm)|||+ ‖δ‖ ·
∥∥∥ ∑
m>m0

2−menm

∥∥∥
∞

≤
m0∑
m=1

2−m|||δ(enm)|||+ ‖δ‖ ·
∑
m>m0

2−m

≤
( m0∑
m=1

2−m
)ε

2
+ 1 · ε

2
·
∞∑
m=1

2−m

≤ ε,

which completes the proof.

Recall that Kδ = cowo{Uδ(U∗) | U ∈ U(A)} (see Section 3.4). Proposition 5.5.9

immediately implies the following corollary.

Corollary 5.5.10. Given β > 0, there exists α > 0 such that

|||TX||| ≤ β and |||XT ||| ≤ β

for all T ∈ Kδ and X ∈ A, ‖X‖∞ ≤ 1, ‖X‖2 ≤ α.

Proof. By Proposition 5.5.9, there exists α > 0 such that |||δ(X)||| < β/3 for every

X ∈ A with ‖X‖∞ ≤ 1 and ‖X‖2 < α. For a unitary element U in A, we have

Uδ(U∗)X = Uδ(U∗X)− δ(X) and ‖U∗X‖2 = ‖X‖2, which implies that

|||Uδ(U∗)X||| ≤ |||Uδ(U∗X)|||+ |||δ(X)||| < 2

3
β.
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By taking convex combinations of Uδ(U∗) and using the inferior semi-continuity of

norm |||·||| in the weak operator topology (see Theorem 5.5.4), we get |||TX||| ≤ β for

all T ∈ Kδ. The symmetricity of the norm |||·||| (see Proposition 5.5.2) implies that

|||XT ||| ≤ β.

The following proposition is the main result of the present subsection, which is

the key in the proof of Theorem 5.5.13 below.

Proposition 5.5.11. Let δ : A → C0(M, τ) be a derivation. If T ∈ Kδ is such that

δ = δT on A, then T ∈ C0(M, τ).

Proof. Since A is of type II1, there exists a decreasing sequence of projections

{En}n≥0 in A with E0 = 1, En+1 ∼ En − En+1 for all n ≥ 0 (see e.g. [78, Lemma

6.5.6]).

Using mathematical induction, we show that |||EnTEn|||ess = |||T |||ess for all n.

For n = 0, the assertion is trivial. Assume that |||EkTEk|||ess = |||T |||ess for all k ≤ n
for some fixed n ≥ 0. For every n, by [134, Chapter XIV, Lemma 2.1], there is a

unitary element Un ∈ A such that

U∗nEn+1Un = En − En+1. (5.21)

Since δ = δT , it follows that that U∗nTUn − T = δ(U∗)U ∈ C0(M, τ). Therefore, by

Proposition 5.5.6 and Definition 5.5.5, we have

|||En+1TEn+1|||ess = |||UnEn+1TEn+1U
∗
n|||ess

= |||UnEn+1U
∗
nTUnEn+1U

∗
n|||ess (5.22)

(5.21)
= |||(En − En+1)T (En − En+1)|||ess.

Now, using now Proposition 5.5.7, we infer that

|||EnTEn|||ess = |||En+1TEn+1 + (En − En+1)T (En − En+1)

+ δ(En+1)(En − En+1) + δ(En − En+1)En+1|||ess
= |||En+1TEn+1 + (En − En+1)T (En − En+1)|||ess

(5.20)
= max{|||En+1TEn+1|||ess, |||(En − En+1)T (En − En+1)|||ess}

(5.22)
= |||En+1TEn+1|||ess.

Therefore, |||T ||| = |||EnTEn|||ess = |||En+1TEn+1|||ess, which concludes the induction

argument.

Assume now that T /∈ C0(M, τ), that is,

|||EnTEn|||ess = |||T |||ess =: c > 0 (5.23)

for all n.

Since ∨k≥nEk ↓n 0, we have τA(En) ≤ τA(∨k≥nEk) →n 0. Since T ∈ Kδ and

‖En‖2 → 0, Proposition 5.5.2 and Corollary 5.5.10 imply that

|||EnTEn||| ≤ |||TEn||| →n 0,

which is a contradiction to (5.23). Thus, T ∈ C0(M, τ), as required.
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5.5.3 The proof for the main result: the type II1 case

Before proceeding to the proof of Theorem 5.5.13, we prove the special case when

Z(M) is of countable type by using the auxiliary results obtained in Section 5.5.2

and [112, Section 7.4]. To prove the case for J (M), several reductions are needed

in [112, Section 7]. However, rather than repeating the proof in [112, Section 7], we

use the main result of [112] in the proof of the following proposition, which makes

our proof more efficient.

Proposition 5.5.12. If the center Z(M) of M is countably decomposable, then

every derivation δ from a type II1 von Neumann subalgebra A of M into C0(M, τ)

is inner. Moreover, the element T ∈ C0(M, τ) implementing δ lies in Kδ.

Proof. It is proved in [112] that every derivation from a type II1 von Neumann

subalgebra A into J (M) is implemented by some element in J (M). Noticing that

C0(M, τ) ⊂ J (M), we conclude that there exists an element K ∈ J (M) such that

δ = δK . Since Z(M) is countably decomposable, by [112, Lemma 4.6] (note that

this lemma requires the condition that Z(M) is countably decomposable), there is

a T ∈ cowo{δ(U)U∗ | U ∈ U(A)} = −Kδ such that δ(·) = [T , ·] = δ−T (·). Now,

let T = −T . Then, T ∈ Kδ with δ = δT . It follows from Proposition 5.5.11 that

T ∈ C0(M, τ).

In the following theorem, we remove the condition that Z(M) is countably

decomposable imposed in Proposition 5.5.12, proving the main result of this section.

Theorem 5.5.13. Every derivation δ from a type II1 von Neumann subalgebra A
of M into C0(M, τ) is inner. Moreover, the element implementing δ lies in Kδ.

Proof. Let {Zi ∈ Z(M)} be a net of projections increasing to 1 such that

Z(MZi) = Z(M)Zi is countably decomposable. Since A is assumed to be countably

decomposable (see Remark 5.5.8), it follows thatAZi is also countably decomposable.

Define δi : AZi → ZiC0(M, τ)Zi = C0(MZi , τ) by δi(XZi) = Ziδ(X)Zi for every

X ∈ A. Since Zi ∈ Z(M), it follows from Lemma 3.4.2 that δi are well-defined

derivations.

By Proposition 5.5.12, there exists Ki ∈ C0(MZi , τ) with Ki ∈ Kδi such that

δi = δKi on AZi . Since U(AZi) = U(A)Zi (see e.g. [77, Proposition 5.5.5]), it follows

that

Ki ∈ Kδi = cowo{Uδi(U∗) | U ∈ U(AZi)} = cowo{UZiδi(U∗Zi) | U ∈ U(A)}

= cowo{UZiδ(U∗)Zi | U ∈ U(A)} = KδZi.

Hence, for every i, there exists Ti ∈ Kδ such that Ki = ZiTiZi.

Note that Kδ is compact in the weak operator topology (see [31, Chapter IX,

Proposition 5.5]). Let T ∈ Kδ be a limit point of a subnet of {Ti}i in the weak

operator topology. Without loss of generality, we assume that Ti →wo T . For every

X ∈ A, we have that

Ziδ(X)Zi = δKi(X) = δZiTiZi(X).
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On one hand, since Zi ↑ 1, it follows that Ziδ(X)Zi = Ziδ(X) →so δ(X) and

therefore a fortiori Ziδ(X)Zi →wo δ(X). On the other hand, since ‖Uδ(U∗)‖∞ ≤
‖δ‖(A,‖·‖∞)→(C0(M,τ),‖·‖∞) < ∞ (see Theorem 3.1.2) and Ti ∈ Kδ, it follows that

‖Ti‖∞ ≤ ‖δ‖(A,‖·‖∞)→(C0(M,τ),‖·‖∞) < ∞ for every i. Hence, ZiTiZi →wo T .

Combining these two convergences, we conclude that

δ(X) = wo- lim
i
Ziδ(X)Zi = wo- lim

i
δZiTiZi(X) = δT (X),

that is, δ = δT on A. Since T ∈ Kδ, it follows from Proposition 5.5.11 that T ∈
C0(M, τ).

5.6 Conclusions and applications

The following theorem is the main result of the present chapter.

Theorem 5.6.1. Every derivation δ from a von Neumann subalgebra A of M into

the ideal C0(M, τ) of all τ -compact operators is inner.

Proof. By Theorem 5.2.2, there exists T ∈ C0(M, τ) such that δ|Z(A) = δT .

Replacing δ with δ− δT , we can assume that δ vanishes on Z(A). By Remark 3.4.6,

it suffices to prove the assertion in the case when A is of type I, type II1 and

properly infinite, separately. Hence, appealing to Theorem 5.4.2, Theorem 5.5.13

and Theorem 5.3.3, we conclude the proof.

In the particular case when M = B(H) and τ is the standard trace, our result

recovers the Johnson–Parrott–Popa theorem (see Theorem 3.2.1, see also [67,110]).

Furthermore, in the case of an arbitrary von Neumann algebra M equipped with a

faithful normal finite trace τ , we have that C0(M, τ) = M (see e.g. [87, Page 64]),

and therefore, Theorem 5.6.1 guarantees that any derivation δ : A → M is inner

if M is equipped with a faithful normal finite trace. In the following corollary, we

extend this result to a general finite von Neumann algebra M, recovering the main

result of [22, Section 5] using completely different approach.

Corollary 5.6.2. Every derivation δ from a von Neumann subalgebra A of a

finite von Neumann algebra M into M is inner. Moreover, the element K ∈ M
implementing δ can be chosen from Kδ.

Proof. Since M is finite, it follows that there is a net {Pi} of projections in Z(M)

with Pi ↑ 1 such that MPi is countably decomposable (see e.g. [78, Corollary 8.2.9]

and Proposition 1.8.5). Hence, MPi has a faithful normal finite trace τi (see e.g.

Proposition 1.8.5), that is, MPi = C0(MPi , τi). Therefore, by Theorem 5.6.1, the

derivation δi : APi → MPi defined by δi(XPi) = δ(X)Pi is inner, that is, there

exists Ti ∈MPi such that δi = δTi on APi . By Proposition 5.1.2, there exists

Ki ∈ Kδi = cowo{Uδi(U∗) | U ∈ U(APi)} = cowo{UPiδi(U∗Pi) | U ∈ U(A)}

= cowo{Uδ(U)Pi | U ∈ U(A)} = KδPi
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such that δi = δKi on APi and there is a K ′i ∈ Kδ such that Ki = K ′iPi. Since Kδ is

compact in the weak operator topology (see e.g. [31, Chapter IX, Proposition 5.5]),

there is a limit point K ∈ Kδ of a subnet of {K ′i} in the weak operator topology.

Without loss of generality, we denote that K ′i →wo K. We have

δ(X)Pi = δi(X) = δKi(X) = δK′iPi(X)

for every X ∈ A. Since {Pi} converges strongly to the identity, it follows that δ = δK

on A.

We conclude this chapter with an application of Theorem 5.6.1 to derivations

with values in a class of ideals of M. We characterize a wide class of ideals E of M
such that derivations with values in these ideals are automatically inner.

We note that the Fatou property is an analogue of the so-called “dual normal”

property of bimodules over von Neumann algebras. It is known that every derivation

from a hyperfinite von Neumann algebra A into a dual normal A-bimodule is

inner (see e.g. [114, Theorem 2] and [125, Theorem 2.4.3]). However, no additional

conditions on the von Neumann subalgebra are needed in our setting.

Theorem 5.6.3. Let M be a semifinite von Neumann algebra equipped with a

faithful normal semifinite trace τ , let E(M, τ) be a strongly symmetric space with

the Fatou property and let A be a von Neumann subalgebra of M. Then every

derivation δ from A into E(M, τ) ∩ C0(M, τ) is necessarily inner, that is, there

exists T ∈ E(M, τ) ∩ C0(M, τ) such that δ = δT .

Proof. For any symmetric space E(M, τ) such that E(M, τ) * S0(M, τ), there

exists an element X ∈ E(M, τ) such that µ(X) ≥ αχ(0,∞) ≥ αµ(1) for some

α > 0 (see Section 2.5 and Definition 2.2.1). By Definition 2.4.1, we obtain that

1 ∈ E(M, τ), which implies that C0(M, τ) ⊂M ⊂ E(M, τ) (see Section 2.4). That

is, E(M, τ) ∩ C0(M, τ) = C0(M, τ). By Theorem 5.6.1, it is sufficient to prove the

case when E(M, τ) ⊂ S0(M, τ). In particular, E(M, τ)∩C0(M, τ) = E(M, τ)∩M.

We first assume that the carrier projection of E(M, τ) is 1 (see also Section 2.4).

By [43, Theorem 32], we have that E(M, τ) = E(M, τ)××, that is, E(M, τ) is

the Köthe dual of E(M, τ)×. Since E(M, τ) ∩ M ⊂ C0(M, τ), it follows from

Theorem 5.6.1 and Proposition 5.1.2 that there is a T ∈ Kδ such that δ = δT .

Hence, there exists a net {Ti} ⊂ co{Uδ(U∗) | U ∈ U(A)} ⊂ E(M, τ) ∩ C0(M, τ)

such that Ti →so T with

sup
i
τ(|TiX|) ≤ sup

i
‖Ti‖E ≤ ‖δ‖A→E <∞ (5.24)

for every X in the unit ball of E(M, τ)× (see Section 2.4 and [114, Theorem 2]).

Fix X ∈ E(M, τ)× with ‖X‖E× ≤ 1. Let Z be an arbitrary operator in

L1(M, τ) ∩ M such that Z ≺≺ X. Since E(M, τ)× is a fully symmetric space

(see e.g. [43, Theorem 27] or [42, Proposition 3.7]), it follows that Z ∈ E(M, τ)×

and ‖Z‖E× ≤ 1. Hence, ‖TiZ‖1 = τ(|TiZ|)
(5.24)

≤ ‖δ‖A→E < ∞. Since ‖Ti‖∞ ≤
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‖δ‖A→M <∞ (see Theorem 3.1.2 or [114, Theorem 2]) and Z ∈ L1(M, τ), it follows

from [3, Lemma 2.5] that TZ ∈ L1(M, τ) with ‖TZ‖1 ≤ ‖δ‖A→E <∞. Noting that

X,T ∈ L1(M, τ) +M (see e.g. [43, Lemma 25]), it follows from [39, Theorems 3.10

and 4.12] that

τ(|TX|) ≤ sup{τ(|TZ|) : Z ∈ L1(M, τ) ∩M, Z ≺≺ X} ≤ ‖δ‖A→E .

Since X ∈ E×(M, τ), ‖X‖E× ≤ 1, is arbitrary and E(M, τ) = (E(M, τ)×)×, it

follows that T ∈ E(M, τ), as required.

Now, consider the general case. Let cE be the carrier projection of E(M, τ).

Then, McE is a von Neumann algebra with identity cE . By Corollary 5.6.2, there

is a T ∈ C0(M, τ) such that δ = δT on A. Note that cE is a central projection in

M (see [43, Corollary 6]). Hence, E(McE , τ) := E(M, τ) ⊂ S(McE , τ) is a strongly

symmetric space having the Fatou property and δT : AcE → E(McE , τ) ∩McE is

also a derivation. By the first part of the proof, there is a K ∈ E(McE , τ) ∩McE

such that δT = δK on AcE . For every X ∈ A, we have δT (X) ∈ E(M, τ) and

therefore cEδT (X) = δT (X) (see [43, Corollary 6]). Hence, for every X ∈ A, we

have δT (c⊥EX) = c⊥EδT (X) = c⊥EcEδT (X) = 0 and therefore,

δ(X) = δT (X) = δT ((cE + c⊥E)X) = δT (cEX) + δT (c⊥EX) = δK(cEX).

Since cE is a central projection in M and cEK = K = KcE , it follows that δ(X) =

δK(cEX) = δK(X). Noting that K ∈ E(McE , τ) ∩ McE = E(M, τ) ∩ M, we

complete the proof.
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