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Abstract 

Airborne-Pseudolite (A-PL) systems have been proposed to augment Global Navigation 

Satellite Systems (GNSSs) in difficult service areas. One of the challenges in realising 

such a system is to determine the precise positions of the A-PLs. Commonly used methods 

based on the inverted GNSS principle or the differential GNSS (DGNSS) technique 

suffers from delay in monitoring the A-PLs, or the requirement for ground reference 

stations. To address such problems the A-PLs can be positioned using the GNSS Precise 

Point Positioning (PPP) technique. This thesis focuses on improving the A-PL positioning 

performance based on GNSS PPP. The main contributions are: 

1. A-PL distributed positioning based on real-time GNSS PPP combined with inter-PL 

range measurements was studied for A-PLs in GNSS challenged areas. The short-

term predictions of precise orbit and satellite clock corrections with different 

prediction models were analysed. Simulation tests have demonstrated that the A-PL 

using GNSS PPP combined with the processing of inter-PL range measurements is 

able to achieve better positioning performance than using the GNSS PPP-only 

approach. The prediction models for short-term orbit and satellite clock correction 

predictions can effectively reduce the impact of a disruption of communications on 

GNSS PPP positioning. 

2. To deal with the unmodelled measurement errors for GNSS PPP two model-learning 

based Kalman filter (KF) algorithms were studied: least-squares support vector 

machine (LS-SVM) and Gaussian process regression (GPR). These two algorithms 

were evaluated using both static and kinematic experiments. The results confirm that 

both algorithms can effectively reduce the effect of unmodelled measurement errors 

on the positioning performance of GNSS PPP.  

3. To realise the optimal integration and stable positioning performance for multi-GNSS 

PPP, two types of stochastic models for real-time multi-GNSS PPP were assessed by 

a static experiment: the a priori stochastic models based on real-time precise multi-

GNSS signal-in-space ranging error (SISRE) and satellite elevation angle, and the 

real-time estimated variance methods. The experimental results indicate that the a 

priori stochastic models based on real-time SISRE and real-time estimated stochastic 

models could all achieve better performance than the stochastic model based on 

satellite elevation angle, as used in conventional multi-GNSS PPP. 



 

II 
 

4. To select the optimal subset of satellites (and therefore measurements) for multi-

constellation GNSS, an end-to-end deep learning network for satellite selection was 

proposed. An experiment was conducted with training and validation data from 220 

International GNSS Service stations. It was shown that the trained models are capable 

of selecting most of the contributing satellites with less computational time compared 

with the brute force approach of satellite selection. 
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Chapter 1 Introduction 

  Background and Motivation 

A pseudolite (PL) based navigation system can be designed to provide suitably equipped 

users their position, velocity, or timing, based on PLs transmitting GPS-like signals. Such 

systems have been proposed as a method of Global Navigation Satellite System (GNSS) 

augmentation in signal-shaded areas, or as an independent backup system operated in 

areas where satellite signals cannot be observed at all (Kim et al., 2008). One can 

distinguish between ground-based and airborne pseudolite (G-PL and A-PL) systems. 

With the PLs mounted on aircraft, airships, or unmanned aerial vehicles (UAVs), the A-

PL system has advantages compared to the G-PL system, principally because of reduced 

“near-far” signal issues, lessened multipath disturbance, larger coverage area and better 

vertical component observability (Lee et al., 2015). However, to realise such an A-PL 

system, one of the challenges is determining the precise positions of the A-PLs in a real-

time continuous mode (Chandu et al., 2007; Crespillo et al., 2015; Kang et al., 2013; 

Tsujii et al., 2001). Commonly used methods are based on the “inverted GNSS” principle, 

with ground stations monitoring the PLs, or the Real-Time Kinematic (RTK) technique 

with one or more ground reference stations (Lee et al., 2016; Tsujii et al., 2001). However, 

the inverted GNSS method introduces delay for user positioning, while RTK has stringent 

requirements that include simultaneous measurements made by both the PL(s) and the 

reference station(s), and a limitation on the distance between PL(s) and reference 

station(s).  

Precise Point Positioning (PPP) has attracted considerable attention in the GNSS industry 

and academia, and has been demonstrated to be an efficient tool for applications in 

geodesy and geodynamics. By using precise GNSS orbits and satellite clock correction 

products, the PPP technique can, under appropriate conditions, deliver centimetre-level 

positioning accuracy with high computational efficiency, good long-term repeatability 

and consistency, and without the requirement of nearby reference station(s). Therefore it 

is worthwhile investigating a GNSS PPP based A-PL positioning system. However, there 

are some problems in using real-time GNSS PPP for A-PL positioning. For example, in 

general GNSS PPP requires a long convergence time to achieve a stable and comparable 

accuracy to differential GNSS RTK solutions (Li and Zhang, 2014). To improve PPP 
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positioning accuracy and reduce the solution convergence time, a variety of methods 

based on GNSS PPP augmentation have been proposed; such as adding more observations 

using multiple frequency and/or multiple GNSS constellations (Tegedor et al., 2014), 

integrating with a different navigation sensor technology such as an Inertial Navigation 

System (INS) (Gao et al., 2017; Liu et al., 2016), introducing atmospheric constraints (de 

Oliveira et al., 2017; Geng et al., 2010; Teunissen and Khodabandeh, 2015), and others. 

To enhance PPP performance for A-PL positioning, the combination of inter-PL ranges 

with GNSS measurements has been investigated. In addition, considering that real-time 

GNSS PPP relies on the use of precise satellite orbit and clock information, these real-

time error corrections may not always be available, especially for A-PLs moving in 

challenging environments where signal outages may occur. To ensure continuous A-PL 

positioning based on GNSS PPP it is desirable to predict these error corrections during 

outages. 

A comprehensive measurement model is essential to achieve unbiased estimation for 

GNSS positioning. However, the GNSS observations suffer from unmodelled errors 

resulting from multipath, signal interference, etc., which are difficult (even impossible) 

to model using parametric models. Two commonly used non-parametric algorithms, 

including least-squares support vector machine (LS-SVM) and Gaussian Processes 

regression (GPR), were investigated in this research. 

Multi-constellation GNSS PPP has been widely studied because of its better performance 

in terms of positioning accuracy, stability and convergence time compared to GNSS PPP 

with a single GNSS. To achieve the optimal integration for multi-GNSS PPP, an 

appropriate stochastic model to appropriately weight observations from different GNSS 

is required for the positioning algorithm. However, due to limited tracking receiver 

channels and power consumption, and other issues, it may be not possible, or desirable, 

to use all satellites in view for multi-GNSS PPP positioning. The optimal subset is 

generally selected from all possible satellite combinations to minimise either Geometric 

Dilution of Precision (GDOP) or weighted GDOP (WGDOP), which is difficult to 

implement in real-time applications due to the time- and power-consuming calculation of 

the DOP values. An end-to-end deep learning network for satellite selection based on the 

PointNet and VoxelNet networks is proposed.  
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 Thesis Objectives 

The major aim of this research is to study A-PL positioning based on an implementation 

of the real-time GNSS PPP technique. To improve the positioning performance of GNSS 

PPP for A-PL positioning this research has focussed on the following topics: 

• Investigating the contribution that can be made to positioning solutions of including 

inter-PL range measurements with real-time GNSS PPP. To process the inter-PL 

ranges, a distributed algorithm based on a split covariance intersection filter (SCIF) 

was proposed. Three commonly used means of implementing the SCIF algorithm 

were analysed. To maintain A-PL positioning accuracy using GNSS PPP when the 

correction message communication links are disrupted, different short-term 

prediction models for orbit and clock error corrections were investigated. 

• Evaluating two non-parametric model-learning based Kalman filter (KF) algorithms, 

including LS-SVM and GPR, to deal with the unmodelled errors in GNSS 

observations. To enable the real-time modelling necessary for these two algorithms, 

more than one forward step sliding window for input training points was proposed. 

These two non-parametric model learning algorithms for GNSS PPP were verified 

with both static and kinematic experiments.  

• Assessing two commonly used types of stochastic models for multi-GNSS PPP in 

real-time, including the a priori stochastic models based on satellite elevation angle 

and real-time signal-in-space ranging error (SISRE), and real-time estimated 

stochastic model based on Helmert variance component estimation (HVCE) and real-

time variance estimation for pseudorange noise and multipath. Real-time multi-GNSS 

PPP performance in terms of positioning accuracy, repeatability and estimated zenith 

tropospheric delay (ZTD) accuracy with the different stochastic models was 

compared. 

• Developing an end-to-end deep learning network for satellite selection using 

GDOP/WGDOP criteria. The satellite selection problem is converted to a satellite 

segmentation problem, with specified input channel for each satellite and two class 

labels, one for selected satellites and the other for those not selected. The proposed 

satellite segmentation network was validated with training and validation data from 

220 International GNSS Service (IGS) stations. 
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 Contributions of the Research 

The following are the contributions of this research: 

• A-PL distributed positioning based on real-time GNSS PPP combined with inter-PL 

range measurements has been investigated. In addition, different prediction models for 

the short-term predictions of precise orbit and satellite clock corrections have been 

analysed. A test was conducted to evaluate the A-PL positioning based on GNSS PPP 

and inter-PL ranges, as well as the performance of error prediction modelling. The 

results demonstrate the advantage of A-PL positioning using GNSS PPP combined 

with inter-PL range measurements in terms of accuracy and convergence times 

compared with the GNSS PPP-only approach.  

• Two model-learning based Kalman filter algorithms have been developed to deal with 

the unmodelled measurement errors in GNSS observations, and evaluated using both 

static and kinematic experiments.  

• Two types of stochastic models for real-time multi-GNSS PPP have been developed 

and assessed by a static experiment. A comparison of all the stochastic models has 

confirmed that there is better performance using the a priori stochastic model based on 

real-time SISRE and real-time variance estimation. 

• An end-to-end deep learning network for satellite selection has been developed to select 

the optimal subset of satellites for multi-constellation GNSS using GDOP and WGDOP 

criteria.  

 Thesis Outline 

This thesis consists of seven chapters. 

Chapter 1 provides a background and introduction to the hypothetical PL system, and to 

the GNSS PPP technique. The research motivation and objectives are described, as well 

as the contributions and outline of the thesis structure. 

Chapter 2 reviews generic G-PL and A-PL systems, the GNSS PPP positioning 

technology and algorithm, two commonly used estimation algorithms for GNSS 

positioning, strategies to enhance GNSS PPP performance, as well as cooperative 

positioning algorithms. 
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Chapter 3 describes the hypothetical A-PL system configuration and proposes an A-PL 

positioning concept based on real-time GNSS PPP. The inter-PL ranges are used to 

enhance A-PL positioning performance. These relative measurements are processed using 

SCIF algorithms to account for cross-correlations of all A-PL estimated states. Three 

types of SCIF implementation are described and investigated. In addition, the short-term 

prediction of precise orbit and satellite clock corrections with different prediction models 

are analysed. 

Chapter 4 describes two non-parametric model-learning based KF algorithms that are able 

to deal with the unmodelled errors in GNSS observations. Independent LS-SVM/GPR 

models are trained in real-time for all observed satellites using the corresponding 

measurement residuals calculated in the KF. The GNSS PPP with LS-SVM/GPR for 

GNSS navigation was evaluated using both static and kinematic experiments. 

Chapter 5 investigates two types of stochastic models for real-time multi-GNSS PPP, 

including the a priori stochastic model and real-time variance estimation methods. A 

static experiment with data from 14 IGS stations was conducted to assess performance in 

terms of positioning accuracy, repeatability and estimated ZTD accuracy for all the 

stochastic models. 

Chapter 6 presents an end-to-end deep learning network for multi-GNSS satellite 

selection using GDOP and WGDOP criteria. The proposed algorithm was evaluated using 

an experiment with training and validation data from 220 IGS stations. 

Chapter 7 summarises the findings of the thesis research, and presents concluding 

remarks and recommendations for future work. 
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Chapter 2 Review of Pseudolite System and Navigation Technologies 

 Overview of PL System 

PL-based systems transmit GPS/GNSS-like signals, that when range measurements are 

made and processed, provide users, with suitably equipped receivers, position, velocity, 

or timing information. By either augmenting GNSS, or operating independently, such 

systems have been proposed for a number of application areas, such as indoor positioning, 

deformation monitoring, and where GNSS navigation is precluded due to poor satellite 

visibility and bad reception conditions, such as in deep open-cut mines, container ports, 

urban areas, etc (Kim et al., 2008). There are two basic types of PL system identified in 

the literature: G-PL systems and A-PL systems. 

 G-PL System 

The first G-PL system can be traced back to the late 1970s, established before the launch 

of the GPS satellites (Harrington and Dolloff, 1976). There were four ground transmitters 

at fixed locations used to test GPS receivers by transmitting GPS L1 signals with only PL 

locations carried in the navigation message. In the mid-1980s, the signal specifications 

for a PL were developed by the Radio Technical Commission for Maritime Services 

(RTCM) (Stansell Jr, 1986). The PL signals using the GPS frequency band for correction 

transmission should not interfere with the reception of GPS signals. Message Type 8 was 

designated for the PL almanac, including PL locations, signal generating code, and health 

of a number of PLs (Kalafus et al., 1986). With the development of the PL techniques, G-

PL systems have been proposed to improve availability, reliability, integrity and 

positioning accuracy for a number of GNSS-based applications. 

In the 1990s, Stanford University proposed to solve the real-time unknown integer cycle 

ambiguities for aircraft precision landing using GNSS carrier phase by combining 

differential carrier phase measurements with some G-PLs placed under the aircraft 

approach path (Cohen et al., 1994; Pervan and Parkinson, 1997). The G-PL was also 

proposed to improve performance of a GPS-based deformation monitoring system in 

terms of ambiguity resolution and positioning accuracy by providing additional PL range 

observations (Dai et al., 2000). Unlike the GPS satellites, when using the fixed G-PLs, 

some additional factors have to be considered, such as the “near-far” problem, multipath 
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effects, tropospheric delay modelling, G-PLs clock synchronisation, and others. The 

influence of these factors on the performance improvement with G-PL system has been 

analysed. In general a modified GNSS receiver is able to track and process the PL signals 

due to the high-power PLs transmitting signals being on the same L-band frequency as 

the GNSS signals. However, in principle, PLs can also transmit their signals on different 

frequencies. “Locata” has been under development as a terrestrial ranging system by the 

Locata Corporation since 2002 (Rizos et al., 2010). It can be considered an example of a 

G-PL system except that it has some unique characteristics. For example, the Locata 

system transmits the ranging signals at frequencies in the 2.4GHz Industrial, Scientific, 

and Medical (ISM) band. Such a system contains a number of transmitters known as 

“LocataLites” located within or around a defined service area, which are all time-

synchronised to each other. With the synchronised transmission, the “near-far” problem 

can be solved using tightly controlled pulsed signals. It has been shown that the Locata 

technology can be used for a wide range of positioning applications with centimetre-level 

positioning accuracy, such as slow structural displacement monitoring (Choudhury and 

Rizos, 2010), kinematic maritime navigation by integrating with GNSS PPP (Jiang et al., 

2015a), and even precise indoor positioning (Jiang et al., 2015c; Rizos et al. 2010). 

However, there are some limitations of the G-PL systems, such as low vertical component 

determination accuracy, susceptibility to multipath effects, and limited service area.  

 A-PL System   

To address some of the limitations of G-PL systems, an A-PL system could be used with 

the PLs mounted on aircraft, airships, or UAVs (Lee et al., 2015; Pallavicini et al., 2001; 

Raquet et al., 1996; Tsujii et al., 2001). The first application of an A-PL was suggested 

by Raquet et al. (1996). However, the focus of that research was on A-PL positioning in 

a “reverse” mode, with some receivers deployed at known points. In the early 2000s, high 

altitude platforms systems (HAPS) have been suggested for providing differential 

correction data or telecommunications and surveillance services (Pallavicini et al., 2001). 

Tsujii et al. (2001) introduced a concept of a GPS augmentation system with PLs mounted 

on stratospheric platforms (SPF) at an altitude of about 20km to improve the accuracy, 

availability, and integrity of GPS-based positioning systems across all of Japan (Figure 

2.1). The PLs in such a GPS augmentation system are stationary. The PL positions have 

to be precisely determined due to their significant effect on user navigation. Three 
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schemes based on inverted-GPS to estimate the PLs positions were described: RTK and 

attitude information, inverted-GPS, and GPS-transceiver. 

 

Figure 2.1 Navigation service using PLs on SPF 

The European project “HeliNet - Network of High Altitude Long Endurance (HALE) 

unmanned solar SPF for traffic monitoring, environmental surveillance and broadband 

services” has also been proposed as an augmentation to GNSS navigation (Pallavicini et 

al., 2001; Ozimek et al., 2004). The HeliNet not only broadcasts differential corrections 

generated by a terrestrial reference station, it is also able to transmit GNSS-like ranging 

signals. The HALE platform is also sometimes referred to as a stratospheric pseudolite 

(stratolite), which flies at a height of about 17km. The architecture of the proposed 

stratolite augmentation system is shown in Figure 2.2. To realise such an augmentation 

system, there must be a capability for stratolite localisation. Two approaches were 

proposed to determine the stratolite positions by Pallavicini et al. (2001): code-phase 

DGPS method with a metre-level positioning accuracy, and kinematic carrier phase based 

techniques with higher accuracy. 



 

10 
 

 

Figure 2.2 Stratolite augmentation system 

Park et al. (2008) proposed an airborne transceiver system independent of GPS system. 

Mobile PLs at high altitude were introduced due to their high visibility and flexibility in 

deployment, which could move to any location. To position the mobile PLs in real-time, 

a trilateration method using bidirectional range measurements was proposed, which could 

be applied to any A-PL platform, including highly manoeuvrable UAVs or stationary SPF. 

Hence, one of the challenges to realise an A-PL system for providing navigation services 

is precise A-PL positioning in real-time. The commonly used “inverted-GPS” methods 

need monitoring from ground stations, which can cause performance degradation. 

Chandu et al. (2007) have analysed the effect of movements of the pseudolites and their 

monitoring time on the accuracy of user positioning. Crespillo et al. (2015) has also 

identified the factors that could cause user position error, including the positioning and 

timing precision of the A-PL, their motion and ephemerides transmitting rate. To solve 

the challenge of A-PL monitoring, Lee et al. (2015) proposed an airborne relay-based 

positioning system as shown in Figure 2.3.  
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Figure 2.3 Configuration of an airborne relay-based positioning system 

The positioning system consists of a master station, several ground reference stations, 

airborne relays, and the user. The master station is used for providing the time reference 

for the other ground stations. The reference stations periodically broadcast navigation 

signals to airborne relays, and the airborne relays then transmit the navigation signals to 

the user. Once the user tracks and decodes the navigation signals, it calculates both the 

airborne relays and its own position. However, this system certainly has increased user 

position estimation complexity and reduced performance robustness, for example, when 

one or more reference stations cease operations. 

 Overview of GNSS Positioning Technology 

 GNSS Introduction 

GNSS technology has undergone enormous developments over the last three decades. 

Besides the first operational (and currently being modernised) GNSSs of GPS and 

GLONASS, two additional new GNSSs are being deployed: Galileo and BeiDou.  

The USA’s GPS is the first globally operational GNSS. As of December 2018, 31 GPS 

satellites were operational, of differing “generations”, including 12 Block IIR, 7 Block 

IIR-M and 12 Block IIF. The modernised GPS satellites transmit in three frequency bands: 

L1 ~ centre frequency 1575.42MHz, L2 ~ centre frequency 1227.6MHz and L5 ~ centre 

frequency 1176.45MHz. L1 C/A, the legacy ranging signal, is broadcast by all satellites. 
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The Block IIR-M satellites transmit a new military ranging signal and a more robust 

civilian signal, known as L2C. L2C is easier for the user to track and is able to deliver 

improved navigation accuracy. The third civil GPS frequency (L5) at 1176.45MHz was 

introduced in the most recently launched Block IIF satellites, which could provide signal 

redundancy, improved signal accuracy and interference rejection. It is planned that there 

will be 24 Block IIF satellites in orbit by 2021. The third generation GPS satellites – 

Block III, including Block IIIA and Block IIIF series – incorporating new signals and 

broadcasting at higher power levels will be launched in the coming years. The first launch 

of GPS Block IIIA satellites was on December 23, 2018. Block IIIF launches are expected 

to begin no earlier than 2025 and continue through to year 2034.   

The Russian Federation’s GLONASS constellation reached Full Operational Capability 

(FOC) in October 2011 with 24 satellites in orbit, enabling full global coverage. 

GLONASS satellites transmit navigational signals on two frequency sub-bands (L1 ~ 

1602MHz and L2 ~ 1246MHz). Different from Code Division Multiple Access (CDMA) 

modulating signal technique used by the other GNSSs, Frequency Division Multiple 

Access (FDMA) technique is employed by GLONASS. To provide better positioning 

accuracy, multipath resistance and interoperability with GPS and other GNSSs, the 

GLONASS system is undergoing modernisation with the second generation of 

GLONASS satellites. L3 CDMA signal centred at 1207.14MHz has already been 

transmitted after the launch of the first GLONASS K1 satellite. New GLONASS-K 

satellites deployed in the future will transmit four additional CDMA signals on L1, L2 

and L3 bands along the traditional FDMA signals. Two of them are for military uses and 

the other two are for civil applications. 

The EU’s Galileo, the third GNSS interoperable with GPS, aims to provide a continuous 

and precise positioning service under civilian control. There are four frequency bands 

centred at E5a ~ 1176.45MHz, E5b ~ 1207.14MHz, E6 ~ 1278.75MHz and E1 ~ 

1575.42MHz bands transmitted by the Galileo navigation signals. The Galileo has offered 

initial services since December 15, 2016. Until now there have been four successfully 

launched In-Orbit Validation (IOV) satellites. Currently Galileo’s IOV phase is 

concluded and its FOC phase is underway and expected to be completed by 2020 (Odijk 

and Teunissen, 2013). 30 satellites in Medium Earth Orbit (MEO) will be placed for the 

full operational Galileo constellation. 
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China’s BeiDou Navigation Satellite System, also known as COMPASS or BeiDou-2, 

has been providing continuous positioning, navigation and timing (PNT) services for the 

Asia-Pacific region since December 2012. In 2015, the third generation BeiDou system 

known as BeiDou-3, began to be deployed so as to ultimately provide global coverage. 

BeiDou satellites transmit signals in three frequency bands (B1 ~ 1561.1MHz, B2 ~ 

1207.14MHz, B3 ~ 1268.52MHz). To date 33 satellites – 6 in geostationary orbits (GEO), 

6 in inclined geosynchronous orbits (IGSO) and 21 in MEO – are operational, and 6 other 

satellites – including 3 in MEO, 1 in GEO and 2 in IGSO – are undergoing testing or 

commissioning. By the end of 2020, FOC of BeiDou will be achieved with 3 GEO, 3 

IGSO and 24 MEO satellites (Odijk et al., 2015).  

 GNSS PPP 

GNSS PPP technology has attracted much attention within the GNSS scientific and 

applications communities. PPP has demonstrated to be an efficient tool for a variety 

geodetic and geodynamic applications. By using precise satellite orbit and clock 

correction products, for example from the IGS, the PPP technique can deliver decimetre-

level positioning accuracy with lower computational burden, better long-term 

repeatability, and without the requirements for nearby ground reference stations, in 

comparison with the well-known RTK technique. To realise PPP in a single receiver, 

rigorous measurement bias models must be developed. For a satellite 𝑠 observed by the 

receiver 𝑟 for signal 𝐶𝑖 on frequency 𝑖, the undifferenced pseudorange and carrier phase 

observations are commonly modelled as: 

 
𝑃𝑟,𝐶𝑖
𝑠 = 𝜌𝑟

𝑠 + 𝑐(𝑑𝑡𝑟 − 𝑑𝑡
𝑠) + 𝑇𝑟

𝑠 + 𝛾𝑖𝐼𝑟
𝑠 + 𝐵𝑟,𝐶𝑖

𝑠 + 𝑒𝑟,𝐶𝑖
𝑠

𝐿𝑟,𝐶𝑖
𝑠 = 𝜌𝑟

𝑠 + 𝑐(𝑑𝑡𝑟 − 𝑑𝑡
𝑠) + 𝑇𝑟

𝑠 − 𝛾𝑖𝐼𝑟
𝑠 + 𝜆𝑖(𝑁𝑟,𝐶𝑖

𝑠 + 𝑏𝑟,𝐶𝑖
𝑠 ) + 𝜀𝑟,𝐶𝑖

𝑠  (2.1) 

where 

𝜌𝑟
𝑠 denotes the receiver-satellite geometric range; 

𝑐 is the vacuum speed of light;   

𝑑𝑡𝑟 and 𝑑𝑡𝑠 are the clock offsets of receiver and satellite (in seconds), respectively; 

𝑇𝑟
𝑠 is the slant troposphere delay; 
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𝐼𝑟
𝑠 is the ionospheric delay for a reference frequency, e.g. L1 for GPS; 

𝛾𝑖 =
𝑓𝐶1
2

𝑓𝐶𝑖
2  the frequency-dependent coefficient of ionosphere; 

𝑁𝑟,𝐶𝑖
𝑠  is the integer ambiguity; 

𝐵𝑟,𝐶𝑖
𝑠 = 𝐵𝑟,𝐶𝑖 − 𝐵𝐶𝑖

𝑠  is the receiver-satellite hardware bias on frequency i; 

𝑏𝑟,𝐶𝑖
𝑠 = 𝑏𝑟,𝐶𝑖 − 𝑏𝐶𝑖

𝑠  is the receiver-satellite uncalibrated phase delay (UPD); 

𝜆𝑖 is the wavelength for frequency i; and 

𝑒𝑟,𝐶𝑖
𝑠  and 𝜀𝑟,𝐶𝑖

𝑠  are measurement noise and multipath of the code and phase 

measurements, respectively. 

The ionospheric delay error can be eliminated, to first order, using an ionosphere-free (IF) 

measurement combination derived from any dual frequency measurements (Ge et al., 

2008): 

 𝛷𝑟,𝐼𝐹(𝐶1,𝐶2)
𝑠 =

𝑓𝐶1
2

𝑓𝐶1
2 − 𝑓𝐶2

2 𝛷𝑟,𝐶1
𝑠 −

𝑓𝐶2
2

𝑓𝐶1
2 − 𝑓𝐶2

2 𝛷𝑟,𝐶2
𝑠  (2.2) 

The tropospheric delay is usually modelled as a function of the tropospheric zenith 

hydrostatic and wet delay (Gao and Shen, 2002): 

 𝑇𝑟
𝑠 = 𝑚𝐻(𝐸𝑙𝑟

𝑠)𝑍𝐻 +𝑚(𝐸𝑙𝑟
𝑠)(𝑍𝑇 − 𝑍𝐻) (2.3) 

where 

𝑍𝑇  and 𝑍𝐻  are the tropospheric zenith total delay and hydrostatic delay, 

respectively; and 

𝑚𝐻(𝐸𝑙𝑟
𝑠) and 𝑚(𝐸𝑙𝑟

𝑠) are the mapping functions associated with the elevation 

angle 𝐸𝑙𝑟
𝑠 of the receiver to the satellite.  

Precise orbit and clock corrections for satellites, and antenna phase centre offset and 

variation information, can be obtained from the IGS. Even with rigorous modelling of 
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different measurement errors and the precise input products, there are still some residual 

measurement errors resulting from multipath, measurement noises, and unmodelled 

atmospheric errors, which could deteriorate PPP positioning accuracy (Bisnath and 

Collins, 2012). In addition, due to the presence of UPD originating in the receiver and 

satellites, the GNSS PPP requires a long convergence time to achieve the desired 

positioning accuracy (Ge et al., 2008). 

 Estimation Algorithms for GNSS Positioning 

To process the GNSS measurements, there are two commonly used estimation algorithms: 

least-squares-(LS) based and KF-based estimation methods. 

2.2.3.1 LS-based Estimation Algorithm 

LS estimation is a common method for solving a system of linear equations where the 

number of measurements is greater than the number of unknowns. As the GNSS 

measurement model is nonlinear, it has to be linearised to use LS estimation. Suppose 

that the linearised relationship between unknown parameter vector 𝒙 ∈ 𝑹𝑛  and GNSS 

measurement vector 𝒛 can be expressed as: 

 𝒛 = 𝑯𝒙 + 𝜺 (2.4) 

where 

𝑯 is the design matrix; and 

𝜺 denotes the vector of measurement error with zero mean and covariance 𝑹.  

Based on LS the most probable value of 𝒙 is obtained by minimising the sum of squared 

measurement residuals (Marquardt, 1963): 

 
𝑚𝑖𝑛: (𝒛 − 𝑯𝒙̂)𝑇(𝒛 − 𝑯𝒙̂)

𝒙̂ = (𝑯𝑇𝑯)−1𝑯𝑇𝒛
 (2.5) 

where 𝑯𝑇𝑯 is a positive definite matrix with a rank of 𝑛. LS is an unbiased estimator, i.e.  

 𝐸(𝒙̃) = 𝟎,    𝒙̃ = 𝒙 − 𝒙̂ (2.6) 
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where 𝒙 is the estimated error with variance-covariance of estimated parameters: 

 𝐸[𝒙𝒙̃𝑇] = (𝑯𝑇𝑯)−1𝑯𝑇𝑹𝑯(𝑯𝑇𝑯)−1 (2.7) 

It is not optimal to equally treat all the GNSS measurements in the estimation due to 

different levels of measurement errors. Hence, the weighted LS is generally used, with 

the “weight” equal to the inverse of covariance 𝑹 (Strutz, 2016):  

 
𝒙̂ = (𝑯𝑇𝑹−1𝑯)−1𝑯𝑇𝑹−1𝒛

𝐸[𝒙̃𝒙̃𝑇] = (𝑯𝑇𝑹−1𝑯)−1
 (2.8) 

As can be seen from the LS estimation, only the measurement model is involved in the 

optimal estimated solutions. One limitation of this estimation algorithm is that when the 

number of available measurements is less than that of the unknown parameters, it is not 

possible to obtain the solution. 

2.2.3.2 KF-based Estimation Algorithm 

As opposed to LS estimation, KF-based estimation combines the information from both 

dynamic and measurement models to generate the optimal estimations. In this study, the 

unknown parameters considered for the A-PL include position, velocity, acceleration, and 

other unknowns that need to be estimated for GNSS PPP, which are defined as: 

 𝒙 = [𝒓 𝒗 𝒂 𝑑𝑡 𝑇𝑟 𝑵] (2.9) 

where  

𝒓 = [𝑥 𝑦 𝑧] is the A-PL position vector; 

𝒗 = [𝑣𝑥 𝑣𝑦 𝑣𝑧] is the corresponding velocity vector; 

𝒂 = [𝑎𝑥 𝑎𝑦 𝑎𝑧] is the corresponding acceleration vector; 

𝑑𝑡 is the receiver clock errors; 

𝑇𝑟 is the tropospheric zenith total delay; and 

𝑵 = [𝑁𝑠1 𝑁𝑠2 ⋯ 𝑁𝑠𝑚] denotes the PL-to-satellite carrier phase ambiguities, 
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which are preserved as "float" values in the estimation process. 

The velocity and acceleration parameters are used to establish the A-PL dynamic model. 

The A-PL acceleration parameters are modelled as a first-order Gauss-Markov process, 

while the other unknown parameters are modelled as random walk processes (Jiang et al., 

2015b). The discrete A-PL dynamic model can be expressed as:  

 

{
 
 
 

 
 
 

𝒓𝑘 = 𝒓𝑘−1 + 𝑇⋅ 𝒗𝑘−1
𝒗𝑘 = 𝒗𝑘−1 + 𝑇⋅ 𝒂𝑘−1

𝒂𝑘 = (1 −
𝑇

𝑇𝑐
)𝒂𝑘−1 +𝒘𝒂𝑘−1

𝑑𝑡𝑘 = 𝑑𝑡𝑘−1 + 𝑤𝑑𝑡𝑘−1
𝑇𝑟𝑘 = 𝑇𝑟𝑘−1 + 𝑤𝑇𝑟𝑘−1
𝑵𝑘 = 𝑵𝑘−1 +𝒘𝑵𝑘−1

 (2.10) 

where  

𝑘 denotes the epoch number;𝑇 and 𝑇𝑐 are the sampling time and correlation time 

constant, respectively; and  

𝑤⋅𝑘 is the corresponding parameter white noise model.  

Equation (2.10) can also be written as: 

 𝒙𝑘 = 𝜱𝑘|𝑘−1𝒙𝑘−1 +𝒘𝑘 (2.11) 

where 𝜱𝑘|𝑘−1 represents the state transition matrix from the state at (𝑘 − 1)th epoch to 

𝑘th epoch; and 𝝎𝑘  denotes the process noise with known covariances 𝑸𝑘 . The initial 

estimate of the system state can be obtained with the LS method using pseudorange 

measurements, which has metre-level accuracy. Similar to LS estimation algorithm, the 

measurement model has to be linearised as shown in equation (2.4). Then the KF-based 

algorithm can be recursively implemented in the following two steps (Ristic et al., 2004): 

1. Propagation step: 

 
𝒙̂𝒌|𝒌−𝟏 = 𝜱𝒌|𝒌−𝟏𝒙̂𝒌|𝒌−𝟏

𝑷𝒌|𝒌−𝟏 = 𝜱𝒌|𝒌−𝟏𝑷𝒌−𝟏|𝒌−𝟏𝜱𝒌|𝒌−𝟏
𝑻 + 𝑸𝒌 

 (2.12) 

2. Update step: 
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𝑲𝒌 = 𝑷𝒌|𝒌−𝟏𝑯𝒌
𝑻(𝑯𝒌𝑷𝒌|𝒌−𝟏𝑯𝒌

𝑻 + 𝑹𝒌)
−𝟏

𝒙̂𝒌|𝒌 = 𝒙̂𝒌|𝒌−𝟏 +𝑲𝒌(𝒛𝒌 −𝑯𝒌𝒙̂𝒌|𝒌−𝟏)

𝑷𝒌|𝒌 = (𝑰 − 𝑲𝒌𝑯𝒌)𝑷𝒌|𝒌−𝟏

 
(2.13

) 

where 

𝒙̂𝑘|𝑘−1 and 𝑷𝑘|𝑘−1 denote the predicted state vector and its associated covariance 

matrix, respectively; 

𝑰 is the identity matrix; 

𝑲𝑘 is the Kalman gain matrix; and 

𝒙̂𝑘|𝑘 and 𝑷𝑘|𝑘 denote the KF estimated state and its associated covariance matrix, 

respectively. 

 Strategies for Real-time GNSS PPP Performance Improvement 

For real-time positioning applications based on GNSS PPP it is necessary to provide 

satisfactory performance in terms of positioning accuracy and convergence time. To 

improve GNSS PPP performance, there have been many strategies proposed, such as PPP 

with ambiguity resolution (AR) (Ge et al., 2008; Li et al., 2013; Li et al., 2016; Li and 

Zhang, 2015; Liu et al., 2017; Shi, 2012), PPP with atmospheric constraints (Banville et 

al., 2014; Elsobeiey and El-Rabbany, 2011; Juan et al., 2012; Li et al., 2014; Lou et al., 

2016; Lu et al., 2016; Shi et al., 2014; Zhang et al., 2013), PPP with multi-frequency and 

multi-GNSSs (Elsobeiey, 2015; Deo and El-Mowafy, 2018; Li  et al., 2013; Li et al., 2015; 

Pan et al., 2017; Wang et al., 2017; Zhou et al., 2018), and PPP integrated with other 

positioning systems, such as INS and Locata (Du and Gao, 2012; Gao et al., 2016; Gao 

et al., 2017; Han et al, 2016; Jiang et al., 2015a, 2015b; Li et al., 2017; Zhang et al., 2018; 

Zhao, 2017).        

2.2.4.1 GNSS PPP with AR 

Due to the existence of UPD, the zero-difference (ZD) satellite-receiver ambiguity or the 

between-satellite single-difference (BSSD) ambiguity is not an integer value. The key to 
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successful AR for PPP is to cancel out the UPD component and then to recover the integer 

value of the estimated ambiguity term.  

Ge et al. (2008) found that the UPD can be estimated with high accuracy and reliability 

due to its comparative stability in time and space. PPP AR can be realised by firstly 

estimating the fractional parts of the BSSD UPDs using the wide-lane and narrow-lane 

observables from a global reference network, and correcting SD ambiguities with the 

obtained BSSD UPDs. It has been demonstrated with static station positioning that PPP 

AR could achieve improved positioning performance in terms of repeatability and 

accuracy compared with PPP with float-valued ambiguities. Laurichesse el al. (2009) 

estimated wide-lane and narrow-lane UPDs of the ZD ambiguities in order to resolve the 

integer values of the ambiguities. However, the narrow-lane UPD was not directly 

estimated but merged into clock estimates, which was similar to the decoupled clock 

model with different pseudorange and carrier phase clocks proposed by Collins et al. 

(2010). With the estimated carrier phase clocks, it is possible to determine the integer 

values of the narrow-lane ambiguities. It has also been validated that this AR strategy is 

able to provide centimetre-level PPP positioning accuracy. In addition, Li et al. (2016) 

proposed a cascaded orbit error separation method for PPP to separate the effect of the 

orbit’s line-of-sight errors on narrow-lane UPD estimations. The narrow-lane UPDs were 

modelled with one direction-independent component and three directional-dependent 

components per satellite. With the new UPD estimation method, more narrow-lane 

ambiguities were able to be reliably fixed, resulting in more accurate ambiguity-fixed 

PPP solutions.  

2.2.4.2 GNSS PPP with Atmospheric Constraints 

Although PPP AR is able to achieve the same positioning accuracy as standard PPP, but 

with less observation time, both PPP techniques suffer from inaccurately modelled 

atmospheric delays in the observations, slowing down the convergence of the ambiguities 

before they can be reliably fixed to integer values. To reduce the convergence time of 

PPP one popular strategy is to introduce atmospheric constraints.   

For example, to eliminate the influence of the high-order ionospheric delay on the 

convergence of PPP solutions, Elsobeiey and El-Rabbany (2011) suggested rigorous 

modelling of the second-order ionospheric delay. By using the estimated GPS satellite 
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clock and orbit corrections generated with the second-order ionosphere-corrected raw 

GPS measurements, it was found that the convergence time of PPP was reduced by 15%. 

As an alternative to the above strategy, Li et al. (2013) proposed a different PPP 

processing scheme by treating slant ionospheric delays as unknown parameters. 

Constraints for the ionospheric delays with a real-time model based on global ionospheric 

maps and empirical spatial and temporal ionospheric variations were introduced as 

pseudo-observations. The effect of this proposed approach was to reduce the convergence 

and observation time for reliable AR, and has been validated in both kinematic and static 

positioning modes. In addition, the tropospheric delay constrained GNSS PPP method 

has been proposed for shortening the convergence time and improving positioning 

accuracy. Lu et al. (2016) have developed a numerical weather model (NWM) 

constrained PPP using the tropospheric delay parameters derived from the European 

Centre for Medium-Range Weather Forecasts. 

2.2.4.3 GNSS PPP with Multi-Frequency and Multi-GNSS Systems  

With the two new GNSS constellations of Galileo and BeiDou, as well as the ongoing 

modernisation of GPS and GLONASS, multi-frequency and multi-constellation PPP is a 

possibility, and is another popular way to improve the positioning performance of PPP 

(Afifi and El-Rabbany, 2015a, 2015b; Rabbou and El-Rabbany, 2015). Such an 

integration of measurements from multiple GNSSs could introduce additional biases, 

such as time offsets and inter-system biases (ISB) due to the different frequencies and 

signal structures used for each GNSS system (Li et al., 2015). In addition, because FDMA 

is used for GLONASS satellites, inter-frequency biases (IFB) are also introduced into the 

models of the measurements. Due to the fact that these biases are usually stable during a 

typical observation period of a few hours or so, they are often lumped with the ambiguities. 

As a result, these biases, coupled with code observation biases and noise, could result in 

a lengthening of the convergence time for the solution to reach centimetre-level 

positioning accuracy. To reduce the influence of these biases on multi-GNSS PPP, they 

have to be treated carefully, either by correcting the observations or by estimating them 

in the measurement processing.  

Geng and Bock (2013) have proposed triple-frequency GPS PPP with rapid AR, and 

simulation results have indicated that the AR for the triple-frequency case was more 
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efficient than that for dual-frequency PPP. Cai and Gao (2013) integrated GPS and 

GLONASS measurements into a PPP algorithm and reported an improvement of about 

24% in positioning accuracy. Based on the method proposed by Cai and Gao (2013), Li 

and Zhang (2014) proposed a BSSD PPP model to combine raw dual-frequency carrier 

phase measurements of GPS and GLONASS and showed that much less convergence 

time was required than for the case of GPS alone. Li et al. (2015) performed real-time 

multi-GNSS PPP combining GPS, GLONASS, BeiDou and Galileo measurements. The 

authors found that multi-GNSS PPP had faster convergence and better positioning 

accuracy solutions than GPS-only PPP due to the increased number of observed satellites 

and the improved positional dilution of precision (PDOP) values.  

2.2.4.4 GNSS PPP Integrated with Other Positioning Systems 

To improve the reliability and robustness of GNSS PPP positioning, researchers have 

proposed an integrated multi-sensor navigation system. The integration of GNSS PPP and 

INS has been widely studied. Two forms of integration are described in the literature: 

loosely-coupled and tightly-coupled integration. For loosely-coupled integration, the 

positions estimated by the GNSS PPP are combined with the INS-generated solutions. 

On the other hand, in the case of tightly-coupled integration, raw GNSS and inertial 

measurements are jointly processed in a common parameter adjustment. Tightly-coupled 

integration is preferred due to its possibility to update the integrated solution for scenarios 

where there are limited GNSS observations (Falco et al., 2017). There have been many 

studies that have demonstrated that an integrated GNSS PPP and INS system is able to 

provide better positioning performance than standalone GNSS PPP.  

Gao et al. (2017) studied the challenge of tightly-coupled integration of multi-GNSS PPP 

and INS, and their solution has been validated with a land vehicle experiment. Liu et al. 

(2016) proposed a tightly-coupled ambiguity-fixed PPP/INS integration. Such an 

integration was able to achieve stable centimetre-level positioning after the first-fixed 

solution. In addition, INS could assist rapid re-convergence and re-fixing following 

GNSS signal outages. Zhang et al. (2018) analysed the different levels of performance 

improvement in INS-aided ambiguity re-fixing for kinematic GNSS PPP with different 

periods of GNSS signal outages. It was also found that INS information could bridge the 

data gaps and achieve fast ambiguity re-fixing. To further exploit the integration model, 
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Rabbou and El-Rabbany (2015) proposed a new processing scheme for GPS PPP and INS 

with both undifferenced and BSSD ionosphere-free (IF) linear combinations of 

pseudorange and carrier phase measurements. It was shown that decimetre-level 

positioning accuracy could be achieved with both undifferenced and BSSD integrated 

systems. To further improve the robustness of the integration of GNSS and INS with 

respect to the error accumulation problem of an INS and the susceptibility of GNSS 

signals to interference, Jiang et al. (2015a) proposed a triple-integration of GNSS, INS 

and Locata. It has been shown that the triple-integrated system was able to continuously 

provide centimetre-level accuracy even when one of the subsystems became unavailable. 

 Cooperative Positioning Algorithm 

For positioning of vehicular networks in GNSS-challenged environments (where GNSS 

signals suffer from degradation or blockage), GNSS positioning performance in terms of 

accuracy and availability will deteriorate. To improve GNSS positioning performance, 

inter-vehicle range-based cooperative positioning methods have been proposed (Alam et 

al., 2011; Caceres et al., 2011; Rui and Chitre, 2010; Yao et al., 2011). By sharing the 

positioning information among the vehicular network, multiple vehicles are able to 

perform localisation cooperatively. In this study, the inter-PL ranges are proposed to be 

measured by each A-PL to enhance A-PL positioning based on GNSS PPP. Each A-PL 

is able to transmit its positions and receive positions of the observed A-PLs. To process 

the inter-PL ranges, cross-correlations among the estimated states introduced during the 

measurement processing when using KF-based estimation methods have to be accounted 

for. There are two commonly used cooperative algorithms to address this problem: 

centralised and decentralised approaches.  

 Centralised Algorithm 

A straightforward method to keep track of the cross-correlation terms among all the 

estimated states is to employ a centralised processing scheme (Bailey et al., 2011; Goel 

et al., 2017; Howard et al., 2002; Mensing and Nielsen, 2010). The centralised algorithm 

is often implemented with a master vehicle or a fusion centre (FC) or central processor, 

gathering and processing information from all vehicles in the network at every time 

instant. Then the FC broadcasts back the estimated positions to each vehicle. Assuming 

that there are 𝑁  vehicles in the network, the maximum number of inter-vehicle 
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measurements per epoch can reach 𝑂(𝑁2). Therefore, when the nonlinear KF-based 

estimation methods are used to process each measurement, such as the EKF, the 

computational cost is 𝑂(𝑁2) leading to an overall cost of 𝑂(𝑁4) per time step (Carrillo-

Arce et al., 2013). With an increase in the number of vehicles in the network, the high 

computational complexity makes the centralised algorithm difficult to implement for real-

time applications. In addition, all-to-all communications at each time step is required. 

Each vehicle has to transmit its measurement information to the FC, which results in a 

communication cost of 𝑂(𝑁) for each time epoch. However, it may not be possible for a 

single FC to communicate with all the vehicles when the communication bandwidth is 

constrained. Moreover the centralised algorithm is susceptible to a single point of failure.   

 Decentralised Algorithm 

To address the shortcomings of centralised algorithms, decentralised algorithms can be 

used instead (Leung et al., 2010; Li and Nashashibi, 2013; Kia et al., 2014; Nerurkar et 

al., 2009; Vásárhelyi et al., 2014; Wanasinghe et al., 2014). These algorithms can be 

divided into two categories: one is the class of tightly-coupled methods, i.e. centralised-

equivalent algorithms; and the other is the class of loosely-coupled decentralised methods 

(Kia et al., 2016). For the tightly-coupled methods, the computational load of the 

centralised algorithm is distributed among the entire network and the cross-correlations 

can be accurately tracked. However, such algorithms still suffer from relatively high 

computational, communications and data storage costs (Kia et al., 2016; Nerurkar et al., 

2009; Roumeliotis and Bekey, 2002). In loosely-coupled decentralised algorithms, the 

exact cross-correlations are not maintained. To obtain estimation consistency, the 

commonly used covariance intersection filter (CIF) and SCIF algorithms are reviewed 

below (Carrillo-Arce et al., 2013; Goel et al., 2017; Li and Nashashibi, 2013; Wanasinghe 

et al., 2014).  

2.3.2.1 CIF Algorithm 

Consider a pair of state estimates {𝒙̂𝑖 , 𝑷𝑖}, where 𝑖 = {1,2}, and 𝒙̂𝑖 and 𝑷𝑖 represent the 

estimated state vector and the corresponding error covariance matrix, respectively. If the 

two estimates are independent from one another, the fused state and its corresponding 

error covariance can be derived from the general Kalman filter relations (Julier and 

Uhlmann, 1997): 
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𝑷 = (𝑷𝟏

−𝟏 + 𝑷𝟐
−𝟏)

−𝟏

𝒙̂ = 𝑷(𝑷𝟏
−𝟏𝒙̂𝟏 + 𝑷𝟐

−𝟏𝒙̂𝟐) 
 (2.14) 

Otherwise, when there is correlation between these two estimates, the fused results in 

equation (2.14) would be inconsistent and there would be optimistic measures of their 

quality (Carrillo-Arce et al., 2013). To deal with the correlation of two estimates, the CIF 

uses a convex combination of the means and covariances of the two estimates, which 

theoretically yields a consistent estimate for any degree of correlation between the two 

input estimates:  

 
𝑷−1 = 𝜔𝑷1

−1 + (1 − 𝜔)𝑷2
−1

𝒙̂ = 𝑷[𝜔𝑷1
−1𝒙̂1 + (1 − 𝜔)𝑷2

−1𝒙̂2]
 (2.15) 

where 𝜔 ∈ [0,1]. The update can be optimised with respect to different criteria, such as 

minimising the trace or the determinant of 𝑷. One problem when using the CIF algorithm 

is that it treats all estimates as being correlated. 

2.3.2.2 SCIF Algorithm 

The SCIF algorithm, on the other hand, is able to maintain the known independent 

information in the estimates. Consider two vehicles in a network of 𝑁 moving vehicles 

with states at time instant 𝑘 denoted as 𝒙𝑘
𝑖  and 𝒙𝑘

𝑗
, and their corresponding covariance 

matrices 𝑷𝑘
𝑖  and 𝑷𝑘

𝑗
. The range measurement between these two vehicles can be 

expressed as (Carrillo-Arce et al., 2013):  

 𝒛𝑘
𝑖,𝑗
= 𝑯𝑘

𝑖,𝑗
(𝒙𝑘

𝑖 − 𝒙𝑘
𝑗
) + 𝒏𝑘

𝑖,𝑗
 (2.16) 

where 

𝒛𝑘
𝑖,𝑗

 denotes the measurement vector; 

𝑯𝑘
𝑖,𝑗

 is an orthogonal matrix which enables the state of either vehicle to be 

expressed in terms of the other vehicle’s state; and 

𝒏𝑘
𝑖,𝑗

 is the zero-mean white Gaussian measurement noise vector with covariance 
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matrix 𝑹𝑘
𝑖,𝑗

.  

The ith vehicle is assumed to be the one of interest and has the prediction state vector 

𝒙̂𝑘|𝑘−1
𝑖  and corresponding covariance matrix 𝑷𝑘|𝑘−1

𝑖  derived using standard KF-based 

methods. When the measurement from the jth vehicle is received by the ith vehicle the 

information on state 𝒙𝑘|𝑘−1
𝑗

 and covariance 𝑷𝑘|𝑘−1
𝑗

 of the jth vehicle are also shared with 

the ith vehicle. With the received information the ith vehicle can directly generate an 

estimate (and corresponding covariance) from the inter-vehicle measurement: 

 {
𝒙̂𝑘
𝑖∗ = 𝒙̂𝑘|𝑘−1

𝑗
+ (𝑯𝑘

𝑖,𝑗
)
𝑇
𝒛𝑘
𝑖,𝑗

𝑷𝑘
𝑖∗ = 𝑷𝑘|𝑘−1

𝑗
+𝑯𝑘

𝑖,𝑗
𝑹𝑘
𝑖,𝑗
(𝑯𝑘

𝑖,𝑗
)
𝑇 (2.17) 

At this instant two pairs of state and corresponding covariance of the ith vehicle, one from 

the time update and one from the measurement update, are derived. The fusion of these 

two pairs of estimates can then be performed using equation (2.15). However, the 

measurement cannot always be expressed as in equation (2.16) with an orthogonal matrix 

𝑯𝑘
𝑖,𝑗

, which is often in a nonlinear form. When 𝑯𝑘
𝑖,𝑗

 is in any other form it is not possible 

to directly calculate 𝒙𝑘
𝑖∗  in equation (2.17). To use the inter-vehicle measurement to 

update the propagated state and covariance, a transformation of the measurement needs 

to be carried out. 𝒙𝑘,𝑚
𝑖 = 𝑯𝑘

𝑖,𝑗
𝒙𝑘
𝑖 + 𝒏𝑘

𝑖,𝑗
 can be derived from equation (2.16) using the 

transformation (Li and Nashashibi, 2013):  

 𝒙𝑘,𝑚
𝑖 = 𝑯𝑘

𝑖,𝑗
𝒙̂𝑘|𝑘−1
𝑗

+ 𝒛𝑘
𝑖,𝑗

 (2.18) 

The covariance corresponding to 𝒙𝑘,𝑚
𝑖  is given by 𝑷𝑘,𝑚

𝑖 = 𝑯𝑘
𝑖,𝑗
𝑷𝑘|𝑘−1
𝑗

(𝑯𝑘
𝑖,𝑗
)
𝑇
+ 𝑹𝑘

𝑖,𝑗
. The 

fusion can be performed after the measurement update in KF methods as follows: 

 

𝑲𝑘
∗ = 𝑷𝑘|𝑘−1

𝑖 (𝑯𝑘
𝑖,𝑗
)
𝑇
[𝑯𝑘

𝑖,𝑗
𝑷𝑘|𝑘−1
𝑖 (𝑯𝑘

𝑖,𝑗
)
𝑇
+ 𝑷𝑘,𝑚

𝑖 ]
−1

𝒙̂𝑘|𝑘
𝑖,∗ = 𝒙̂𝑘|𝑘−1

𝑖 +𝑲𝑘
∗ (𝒙𝑘,𝑚

𝑖 −𝑯𝑘
𝑖,𝑗
𝒙̂𝑘|𝑘−1
𝑖 )

𝑷𝑘|𝑘
𝑖,∗ = (𝑰 − 𝑲𝑘𝑯𝑘

𝑖,𝑗
)𝑷𝑘|𝑘−1

𝑖

 (2.19) 

where 𝒙𝑘|𝑘
𝑖,∗

 and 𝑷𝑘|𝑘
𝑖,∗

 are the updated state vector of the ith vehicle and its corresponding 

covariance matrix without considering the correlation introduced by the jth vehicle. Then, 
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as in equation (2.17), the propagated and updated states can be fused using equation 

(2.15). This fusion can also be performed during the measurement update in a standard 

KF-based algorithm (Goel et al., 2017): 

 

𝑲𝑘 = 𝑷𝑘|𝑘−1
𝑖,𝑠𝑐𝑎 (𝑯𝑘

𝑖,𝑗
)
𝑇
[𝑯𝑘

𝑖,𝑗
𝑷𝑘|𝑘−1
𝑖,𝑠𝑐𝑎 (𝑯𝑘

𝑖,𝑗
)
𝑇
+ 𝑷𝑘,𝑚

𝑖,𝑠𝑐𝑎]
−1

𝒙𝑘|𝑘
𝑖 = 𝒙̂𝑘|𝑘−1

𝑖 +𝑲𝑘(𝒙𝑘,𝑚
𝑖 −𝑯𝑘

𝑖,𝑗
𝒙̂𝑘|𝑘−1
𝑖 )

𝑷𝑘|𝑘
𝑖 = (𝑰 − 𝑲𝑘𝑯𝑘

𝑖,𝑗
)𝑷𝑘|𝑘−1

𝑖,𝑠𝑐𝑎

 (2.20) 

where 𝑷𝑘|𝑘−1
𝑖,𝑠𝑐𝑎 = 𝑷𝑘|𝑘−1

𝑖 /𝜔  and 𝑷𝑘,𝑚
𝑖,𝑠𝑐𝑎 = 𝑷𝑘,𝑚

𝑖 /(1 − 𝜔)  are two scaled covariance 

matrices. Another way of performing the fusion during the measurement update is given 

by (Mokhtarzadeh and Gebre-Egziabher, 2014): 

 

𝑷𝑘|𝑘
𝑖 = [𝜔(𝑷𝑘|𝑘−1

𝑖 )
−1
+ (1 − 𝜔)(𝑯𝑘

𝑖,𝑗
)
𝑇
(𝑷𝑘,𝑚

𝑖 )
−1
𝑯𝑘
𝑖,𝑗
]
−1

𝑲𝑘 = (1 − 𝜔)𝑷𝑘|𝑘
𝑖 (𝑯𝑘

𝑖,𝑗
)
𝑇
(𝑷𝑘,𝑚

𝑖 )
−1

𝒙̂𝑘|𝑘
𝑖 = 𝒙̂𝑘|𝑘−1

𝑖 +𝑲𝑘(𝒙𝑘,𝑚
𝑖 −𝑯𝑘

𝑖,𝑗
𝒙̂𝑘|𝑘−1
𝑖 )

 (2.21) 

These two ways of accounting for the correlations have less computational cost than the 

one with fusion performed after the measurement update. When the measurement used is 

in the form of inter-vehicle ranges, the correlated covariance components are limited to 

the states involved in the inter-vehicle ranges. To incorporate known independent 

information in the estimates based on the above algorithms, they need to be modified 

using the following relations (Li and Nashashibi 2013):  

 

𝑷1 = 𝑷1𝑑 𝜔⁄ + 𝑷1𝑖
𝑷1 = 𝑷2𝑑 (1 − 𝜔)⁄ + 𝑷2𝑖

𝑷−1 = 𝑷1
−1 + 𝑷2

−1

𝒙̂ = 𝑷[𝑷1
−1𝒙̂1 + 𝑷2

−1𝒙̂2]

 (2.22) 

where 𝑷1𝑖 and 𝑷2𝑖 are covariance matrix components with known absolute independence 

and 𝑷1𝑑 and 𝑷2𝑑 are two correlated covariance matrix components. Therefore to use the 

SCIF algorithm, the scaled covariances in equation (2.20) and (2.21) have to be added to 

the independent component before the measurement update. For example, equation (2.20) 

can be changed to: 



 

27 
 

 

𝑲𝑘 = 𝑷𝑘|𝑘−1
𝑖,𝑎𝑙𝑙 (𝑯𝑘

𝑖,𝑗
)
𝑇
[𝑯𝑘

𝑖,𝑗
𝑷𝑘|𝑘−1
𝑖,𝑎𝑙𝑙 (𝑯𝑘

𝑖,𝑗
)
𝑇
+ 𝑷𝑘,𝑚

𝑖,𝑎𝑙𝑙]
−1

𝒙̂𝑘|𝑘
𝑖 = 𝒙̂𝑘|𝑘−1

𝑖 +𝑲𝑘(𝒙𝑘,𝑚
𝑖 −𝑯𝑘

𝑖,𝑗
𝒙̂𝑘|𝑘−1
𝑖 )

𝑷𝑘|𝑘
𝑖 = (𝑰 − 𝑲𝑘𝑯𝑘

𝑖,𝑗
)𝑷𝑘|𝑘−1

𝑖,𝑎𝑙𝑙

 (2.23) 

where 𝑷𝑘|𝑘−1
𝑖,𝑎𝑙𝑙 = 𝑷𝑘|𝑘−1

𝑖,𝑠𝑐𝑎 + 𝑷𝑘|𝑘−1
𝑖,𝑖𝑑

 and 𝑷𝑘,𝑚
𝑖,𝑎𝑙𝑙 = 𝑷𝑘,𝑚

𝑖,𝑠𝑐𝑎 + 𝑷𝑘,𝑚
𝑖,𝑖𝑑

 consist of two covariance 

matrix components 𝑷𝑖,𝑠𝑐𝑎  and 𝑷𝑖,𝑖𝑑  representing the correlated and independent 

covariance matrix components, respectively. 
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Chapter 3 A-PL Distributed Positioning Based on Real-time GNSS PPP 

 Introduction 

A-PL systems have been proposed as a means of augmenting GNSS in difficult areas 

where GNSS-only navigation cannot be guaranteed, due to signal blockages, signal 

jamming, etc. The A-PLs are generally configured to be either station-keeping (that is, 

hovering or keeping a near-stationary position in the sky) or flying around the service 

area (for example, following some pre-defined trajectory) (Crespillo et al., 2015; He et 

al., 2016; Lee et al., 2018). To realise such an A-PL system, one of the challenges to be 

addressed is to precisely determine the positions of the A-PLs on a continuous basis. A 

number of positioning methods based on GNSS have been proposed. For example, based 

on the “Inverted GNSS” (IGNSS) principle, the A-PLs could be monitored by a network 

of ground stations (Tsujii et al., 2001). To accurately position the A-PL in a real-time 

continuous mode, the RTK technique with one or more reference stations would be 

typically used (Lee et al., 2016). As an alternative approach, real-time PPP has also been 

proposed for continuous positioning (Gross et al., 2016). This method does not have 

stringent requirements for simultaneous measurements made by the A-PLs and ground-

based reference stations, or limitations on maintaining a comparatively short baseline to 

ground reference stations (typically of the order of several tens of kilometres). 

Furthermore, the PPP method is able to deliver comparable positioning accuracy, with 

lower computational burden and better long-term repeatability than RTK-based methods 

(Bisnath and Gao, 2009). However, there are some problems in using real-time GNSS 

PPP when there is GNSS signal degradation or blockage, such as longer convergence 

time, loss of precise orbit and clock correction data, etc. To reduce the convergence time 

there have been a number of methods proposed by augmenting GNSS PPP with additional 

information. For example, one of the most commonly used GNSS PPP augmentation is 

by adding more observations, with multiple frequency and/or GNSS constellations, 

including BDS, Galileo, modernised GPS and GLONASS (Tegedor et al., 2014), or 

tightly integrating with an inertial navigation system (INS) (Gao et al., 2017; Liu et al., 

2016). Another strategy is to enable integer ambiguity resolution with precise (externally 

provided) atmospheric corrections to realise rapid convergence (de Oliveira et al., 2017; 

Geng et al., 2010; Teunissen and Khodabandeh, 2015). 



 

29 
 

In this chapter, an A-PL system consisting of A-PLs and G-PLs is proposed, where the A-

PLs are positioned using the real-time GNSS PPP technique. For the proposed A-PL 

system all the A-PLs regularly broadcast their positions to the user in real-time without 

the need for monitoring by the ground stations. To enhance PPP performance for the A-

PL in GNSS challenged areas, inter-PL range measurements could be combined with 

GNSS measurements. To process such “relative” measurements, cross-correlations 

among the A-PL estimated states introduced during the measurement updates have to be 

accounted for in order to obtain consistent parameter estimates. There are two commonly 

used strategies to address this problem: the centralised approach and the decentralised 

approach. The centralised algorithm is implemented with a master A-PL, or at a FC or 

central processor, gathering and processing information from all A-PLs in the network at 

every time instant (Howard et al., 2002). Then the FC broadcasts back the estimated 

positions to each A-PL. This approach suffers from high computational and 

communication costs. Moreover, it is susceptible to a single point of failure. To avoid 

communicating with a master A-PL or FC, and reducing the communication bandwidth, 

decentralised algorithms have been developed. The decentralised algorithms can also be 

divided into two categories (Kia et al., 2016). One is the tightly-coupled class of 

algorithms, often referred to as the centralised-equivalent approach, which has the 

computational load of the centralised algorithm distributed among the entire network and 

accurately tracks the cross-correlations. However, such algorithms still suffer from 

relatively high computational, communication and data storage costs, as a synchronous 

communication network for information exchange is required (Kia et al., 2016). The other 

category is the loosely-coupled class of algorithms. Although the exact cross-correlations 

are not maintained for this type of decentralised algorithm, the drawbacks in the tightly-

coupled decentralised algorithms can be addressed. To obtain estimation consistency, CIF 

and SCIF algorithms can be used (Li and Nashashibi, 2013; Wanasinghe et al., 2014; Wu 

et al., 2017). The SCIF algorithm is able to maintain the known independent information 

in the estimates, which is treated as correlated with all estimates among the network by 

the CIF. Therefore, the decentralised algorithm based on the SCIF is more suitable to use 

for the A-PL distributed positioning, as only the states involved in the inter-PL ranges are 

known to be correlated with each other.   

Free-to-air, real-time GNSS PPP depends on receiving IGS Real-Time Service (RTS) 

products – such as precise orbit and satellite clock corrections – transmitted continuously 
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using, for example, the Network Transport of RTCM by Internet Protocol (NTRIP). 

Unfortunately, the availability of these real-time corrections is often not 100% (Hadas 

and Bosy, 2015). It can be worse for moving A-PLs in challenging environments where 

an outage of a caster connection is often likely to occur. To maintain the A-PL positioning 

accuracy based on GNSS PPP during periods of interruption, the real-time orbit and clock 

corrections can be predicted using appropriate models. The orbit prediction models are 

generally based on polynomial models with different orders (El-Mowafy et al., 2017; 

Hadas and Bosy, 2015). It has been demonstrated that this type of fitting model is able to 

predict short-term IGS RTS orbit corrections with better than 10cm accuracy. For long-

term orbit predictions it has been proposed to use IGS Ultra-rapid (IGU) orbit corrections 

as a substitute for RTS orbit corrections, as these two IGS products are numerically 

compatible with each other (El-Mowafy, 2017). Unlike the orbit corrections, the satellite 

clock corrections have more complex characteristics, including both periodic and 

stochastic variations (Heo et al., 2010; Huang et al., 2014). The clock prediction models 

generally consist of two parts. One part models the linear or nonlinear coupling 

characteristics of the clock corrections using a polynomial model. The other part is often 

in sinusoidal form, and describes the periodic variation behaviour of the clock. These 

models can be used for long-term clock predictions over a few hours and even for a day. 

However, these models need long-term fitting data. In this chapter only short-term 

predictions of orbit and satellite clock corrections are studied with fitting data for periods 

less than 15 min in length, as this can be implemented online with A-PL positioning 

without storing the long-term fitting data. 

In this chapter, the configuration of the proposed system is first described in section 3.2. 

Then the A-PL positioning method based on GNSS PPP combined with inter-PL ranges 

using the SCIF algorithm is introduced in section 3.3. In section 3.4, the short-term 

predictions of orbit and satellite clock corrections using different models are described. 

To evaluate the A-PL positioning performance, the results of a “semi-simulation” are 

analysed in section 3.5. The chapter summary is presented in section 3.6. 

 A-PL System Configuration 

For the proposed A-PL system, the power consumption issues related to the GNSS 

receiver, a PL receiver for receiving signals from other PLs, a PL transmitter for 
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broadcasting its own signals, a computer controller component, and other sensors to 

facilitate A-PL navigation and control, must be considered. A propulsion system could 

use state-of-the-art solar electric propulsion technology for long flights (more than 10 

hour mission durations) to minimise A-PL operations and maintenance complexity. The 

A-PL flying height also affects its endurance, as well as introducing other operational 

constraints. The flying height could be above the weather and commercial air traffic (i.e. 

generally above 10-20km) or below (around 6km above mean sea level) (Tsujii, et al., 

2001). If the flying height is around 20km, the A-PL can be assumed to stay (more or less) 

stationary and be mounted on a balloon or airship. For an A-PL at a lower altitude the 

platform typically would be a UAV. The communication range between the A-PL and 

ground control stations can be realised over more than 100km of range by using radios 

with frequency at the licence-free 2.4GHz band, transmitting at suitably high power (Amt 

and Raquet, 2007; Li et al., 2016). The cruise airspeed of A-PLs at different flying heights 

can be assumed to be from 50km/h to 100km/h, according to the capabilities of off-the-

shelf UAVs. The A-PL flight paths need to be designed to ensure good overall geometry 

of the combined GNSS and A-PL system, with the A-PL signals assumed to be 

transmitting at lower elevation and higher power with respect to users having restricted 

satellite availability. In this study it is assumed the so-called “near-far” problem has 

already been solved using some form of signal pulsing scheme (Amt and Raquet, 2007). 

To ensure good GDOP the proposed A-PL system could consist of both A-PLs and G-

PLs. The conceptual A-PL system design is shown in Figure 3.1. 
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Figure 3.1 Proposed A-PL system configuration 

To configure such an A-PL system, the application environment has to be taken into 

account. For example, considering the scenario of an urban canyon where users cannot 

receive satellite signals with low elevation angles, the A-PLs can therefore be designed 

to fly in a circular trajectory with elevation angles above 10∘, depending on the specific 

environment scenario as well as the size of the proposed service area. The other factors 

to be considered include A-PL flying height(s), A-PL flight trajectory(ies), G-PL 

distribution, and the number of A-PLs and G-PLs in use. The A-PLs will fly at lower 

altitude to increase the application flexibility, but they may fly different trajectories at 

different heights to further improve GDOP. The G-PLs are fixed on the ground, such as 

on high buildings or towers, and could be distributed around the service area so as they 

could be viewed by some A-PLs in order to relay the time base for transmission 

synchronisation as well as to facilitate user positioning. 

 A-PL Distributed Positioning Based on SCIF Algorithm 

All the A-PLs are assumed to be time-synchronised. The time synchronisation can be 

realised by chronologically synchronising the positioning signals of all the A-PLs to the 

time base of a designated reference transmitter with a kinematic Time Lock Loop (TTL) 

(Small, 2017). The reference transmitter can be synchronised to any A-PL or to a GPS 

satellite. The kinematic TTL is implemented by repeatedly adjusting frequency and time 
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differences between the A-PL of interest and the reference transmitter with the self-

monitored trajectory data, including location, velocity and acceleration. The time 

synchronisation among all the A-PLs can also be realised using the two-way time and 

frequency transfer method, by calculating the clock difference of ranging differential 

delay and error compensating between the A-PL of interest and one master A-PL as the 

reference without the need for A-PL accurate positions (He et al., 2016). In this chapter, 

the A-PL system is assumed to be able to maintain time synchronisation during the entire 

mission. Each A-PL can be positioned using a GNSS receiver for receiving and 

processing signals from satellites, and a PL receiver for receiving and processing signals 

from other PLs. 

GNSS PPP using the dual-frequency IF measurement combination is used for the 

proposed A-PL absolute positioning algorithm. Since these GNSS measurements are 

independent of the A-PL’s previous state estimates they are processed using standard KF 

methods. 

 

Figure 3.2 A-PL positioning scheme 

Figure 3.2 is a schematic diagram for the proposed A-PL positioning scheme. PLi makes 

GNSS measurements at time 𝑡𝑘−1,𝐴 and 𝑡𝑘,𝐴, and obtains relative measurements from PLj 

at time 𝑡𝑘−1,𝑅 and 𝑡𝑘,𝑅. During 𝑡𝑘−1,𝑅, 𝑡𝑘−1,𝐴, 𝑡𝑘,𝑅 and 𝑡𝑘,𝐴, the state of PLi is propagated 

with its corresponding dynamic model, i.e. via the time update. In addition, other sensors 
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such as an INS, barometer or magnetometer, can be integrated to enhance the propagated 

state solution. If the A-PL in the network with no GNSS signal access only propagates its 

positions using the motion equation (2.10), the state estimate error drifts due to the noise 

𝒘⋅𝑘  which grows with time without bound. To reduce the error growth, relative 

measurements between the A-PLs can be used. When the relative measurements are 

obtained the propagated state of the A-PL can be updated. The relative measurements for 

the A-PL positioning are the inter-PL ranges: 

 𝑧𝑘,𝑅
𝑖,𝑗
= √(𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
+ 𝑛𝑘

𝑖,𝑗
 (3.1) 

where [𝑥𝑗 𝑦𝑗 𝑧𝑗] is the PLj position. To perform the relative measurement update for 

PLi, PLj has to share its propagated position vector and the corresponding covariance 

matrix ( 𝒙̂𝑘|𝑘−1
𝑗

 and 𝑷𝑘|𝑘−1
𝑗

) with PLi. PLi has to predict the position of PLj at the 

transmitting time of relative range signal according to the dynamic model in equation 

(2.10). Assuming that the shared trajectory data of PLj at time 𝑡𝑘,𝑗 is received by PLi at 

𝑡𝑘,𝑅 along with the relative measurement 𝑧𝑘,𝑅
𝑖,𝑗

, the predicted position for PLj is: 

 𝒓𝑡𝑘,𝑅
𝑗

= 𝒓𝑡𝑘,𝑗 + 𝑡 ⋅ 𝒗𝑡𝑘,𝑗 (3.2) 

with 𝑡 = 𝑡𝑘,𝑅 − 𝑡𝑘,𝑗. The corresponding covariance matrix 𝑷𝑘|𝑘−1
𝑗

 is updated according 

to equation (3.2). If PLi and PLj are separated by a large distance it is desirable to also 

take into account the signal travel time, and then 𝑡 can be calculated as: 

 𝑡 = 𝑡𝑘,𝑅 − 𝑡𝑘,𝑗 −
𝑧𝑘,𝑅
𝑖,𝑗

𝑐
 (3.3) 

where 𝑐 is the speed of electromagnetic radiation in a vacuum. 

With all the necessary information PLi then updates its propagated state using the SCIF 

algorithm as described in chapter 2. On the other hand, the GNSS measurements are 

processed using standard KF methods. 
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Figure 3.3 A-PL positioning based on SCIF approach 

Since each A-PL determines its position in a distributed way, there is no requirement for 

continuous all-to-all communications, as would be necessary using the centralised 

approach, to keep track of the cross-correlations between different A-PLs state estimates. 

The A-PL can update its state using the SCIF whenever the inter-PL relative measurement 

is made. The detailed steps to realise the distributed localisation algorithm for A-PL 

positioning are illustrated in Figure 3.3. In this algorithm two independent updates are 

involved, one from the relative measurement update and the other from the absolute 

positioning measurement update. The fusion is performed after the relative measurement 

update. 

 Predictions of Orbit and Satellite Clock Corrections 

Real-time GNSS PPP is dependent on precise and available orbit and satellite clock 

corrections. An A-PL moving in a GNSS-challenged environment may suffer from 

disruptions of communication links carrying the required messages. To maintain GNSS 

PPP positioning performance, the orbit and clock corrections can be predicted using 

appropriate models when there is a disrupted connection. 
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 Real-time Orbit and Clock Corrections 

IGS RTS correction streams are transmitted to users via NTRIP. They are formatted 

according to the RTCM Services-State Space Representation message format. The RTS 

orbit corrections 𝛿𝑶 are expressed as radial (𝛿𝑂𝑟), along-track (𝛿𝑂𝑎) and cross-track (𝛿𝑂𝑐) 

components. Each component has a correction term 𝛿𝑂 along with its rate-of-change 𝛿𝑂̇. 

The orbit correction at time 𝑡 can be calculated as (El-Mowafy et al., 2017): 

 𝛿𝑶 = [𝛿𝑂𝑟 𝛿𝑂𝑎 𝛿𝑂𝑐]
𝑇 + [𝛿𝑂̇𝑟 𝛿𝑂̇𝑎 𝛿𝑂̇𝑐]

𝑇(𝑡 − 𝑡0) (3.4) 

where 𝑡0 is the reference time included in the RTS message. To apply the corrections to 

the broadcast orbit 𝑿𝑏, the raw RTS corrections have to be transformed to geocentric 

corrections by using the radial, along-track and cross-track unit vectors (𝑒𝑟, 𝑒𝑎, and 𝑒𝑐): 

 𝑿𝑝 = 𝑿𝑏 + [𝑒𝑟 𝑒𝑎 𝑒𝑐]𝛿𝑶  (3.5) 

where 𝑿𝑝  is the precise orbit vector. The RTS clock correction 𝛿𝐶  is provided as a 

correction to the broadcast satellite clock offset. This consists of the correction quantity 

and its rate-of-change: 

 𝛿𝐶 = 𝐶0 + 𝐶1(𝑡 − 𝑡0) + 𝐶2(𝑡 − 𝑡0)
2 (3.6) 

where 𝐶0, 𝐶1 and 𝐶2 are polynomial coefficients. Then, the corrected satellite clock offset 

𝑡𝑠𝑎𝑡 is computed as: 

 𝑡𝑠𝑎𝑡 = 𝑡𝑏
𝑠𝑎𝑡 +

𝛿𝐶

𝑐
 (3.7) 

where 𝑡𝑏
𝑠𝑎𝑡 is the broadcast satellite clock offset. 

 Prediction of Orbit and Clock Corrections 

The availability of the RTS corrections has a significant influence on GNSS PPP 

positioning. When a correction communication link interruption occurs, the orbit and 

satellite clock corrections need to be predicted using appropriate models. Since the time 

series of orbit corrections between each Issue Of Data Ephemeris (IODE) change often 

exhibit a polynomial pattern, it is possible to represent (and predict) the orbit corrections 



 

37 
 

by using polynomial models (Hadas and Bosy, 2015). For a short period of less than ten 

minutes, the polynomial models of order two to four with a few minutes of fitting data 

are able to achieve orbit prediction accuracy of the order of 10cm. For periods longer than 

one hour, it is practical to use the most recent IGU orbit corrections, which are compatible 

with RTS orbit corrections (El-Mowafy, 2017). However, the IGU clock correction is not 

good enough to be used as an alternative for the RTS clock correction during RTS outages 

(Nie et al., 2018). The RTS clock corrections are often predicted as a time series with 

both polynomial and periodic terms (Heo et al., 2010). The commonly used models for 

clock prediction are in the following form (Huang et al., 2014): 

 𝛿𝑡 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 +∑𝐴𝑖 𝑠𝑖𝑛(𝜔𝑖𝑡 + 𝜙𝑖)

𝑘

𝑖=1

  (3.8) 

where  

𝑡 is the time since start of modelling; 

𝑎0 , 𝑎1  and 𝑎2  represent the bias, drift and drift-rate of the clock corrections, 

respectively; 

𝑘 is the number of periodic terms; and  

𝐴𝑖 , 𝜔𝑖  and 𝜙𝑖  denote the amplitude, frequency and phase of the corresponding 

periodic term, respectively.  

𝑎0, 𝑎1, 𝑎2, 𝐴𝑖  and 𝜙𝑖  are parameters that can be estimated. The quadratic polynomial 

term can be neglected for current GPS satellites (Nie et al., 2018). Four main sinusoidal 

periods, including 15 min, 30 min, 3 h and 12 h, are found with fast Fourier transform 

(FFT) analysis (El-Mowafy et al., 2017). Therefore, equation (3.8) can be changed to: 

 𝛿𝑡 = 𝑎0 + 𝑎1𝑡 +∑𝐴𝑖 𝑠𝑖𝑛 (
2𝜋

𝑇𝑖
𝑡 + 𝜙𝑖)

4

𝑖=1

 (3.9) 

where 𝑇𝑖 is the period. In this chapter the scenario of short-term prediction of orbit and 

clock corrections with a fitting data period of less than 15 min is considered, and hence 

only one sinusoidal term is used for the clock prediction model. To account for the phase 
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𝜙𝑖 within the sinusoidal term, a transform can be implemented: 

 𝛿𝑡 = 𝑎0 + 𝑎1𝑡 + 𝐴𝑠 𝑠𝑖𝑛 (
2𝜋

𝑇1
𝑡) + 𝐴𝑐 𝑐𝑜𝑠 (

2𝜋

𝑇1
𝑡) (3.10) 

where 𝐴𝑠 = 𝐴1 𝑐𝑜𝑠(𝜙1) and 𝐴𝑐 = 𝐴1 𝑠𝑖𝑛(𝜙1). To predict the orbit and clock corrections, 

the fitting data used for building the prediction models have to be free of outliers. To 

detect outliers in the orbit fitting data, one simple strategy is to check the differences 

between the orbit corrections and corresponding values calculated with the polynomial 

fitting model (El-Mowafy et al., 2017). The outlier can be iteratively detected and 

removed if the corresponding difference satisfies the following condition: 

 |𝛥𝛿𝑂 − 𝜇| > 𝑓 ∙ 𝜎  (3.11) 

where  

𝜇 and 𝜎 represent the average and standard deviation (STD) of the orbit difference 

𝛥𝛿𝑂, respectively; and 

𝑓 is a scalar threshold, which is recommended to be set to the value of 3 with a 

99.7% confidence level.   

However, this strategy is not suitable for outlier detection of clock correction because the 

RTS clock correction suffers from abrupt jumps resulting from changes in reference time 

used by different analysis centres (Chen et al., 2017; El-Mowafy, 2017). To detect the 

jumps in the clock fitting data, epoch-differenced RTS clock corrections can be used. As 

with the exclusion condition for orbit corrections, the average and STD of the epoch-

differenced RTS clock corrections are calculated. The epoch-differenced RTS clock 

correction 𝛥𝛿𝑡 is flagged as an outlier if the absolute deviation around the average is 

larger than three times the STD. An outlier is detected if the 𝛥𝛿𝑡 of two consecutive 

epochs 𝑡𝑛−1 and 𝑡𝑛 both satisfy the condition and have opposite signs. Then the clock 

correction at 𝑡𝑛−1 is removed from the clock fitting data. However, if the clock correction 

at 𝑡𝑛 does not meet the exclusion condition, a jump may exist at . To identify the jump, 

the 𝛥𝛿𝑡 with an extended period of time from 𝑡𝑛+1 to 𝑡𝑛+𝑇 needs to be examined. 𝑇 is 

recommended to be set as 120s (Chen et al., 2017). If all 𝛥𝛿𝑡  does not satisfy the 
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exclusion condition, a jump at  is identified. Then the fitting data for clock prediction 

model have to be reinitialised from 𝑡𝑛−1.  

 Semi-simulation Results and Analysis 

To simulate an A-PL system with the A-PLs flying in a circular trajectory, a “semi-

simulation” test was performed by walking on the University of New South Wales 

(UNSW) campus as shown in Figure 3.4 with a handheld user terminal MagicUT. This 

device was designed to be used on the Australia-New Zealand Space-Based 

Augmentation System (SBAS) Testbed. This is a second generation SBAS with Dual-

Frequency Multi-Constellation (DFMC) capability. It is able to perform positioning using 

a PPP service in real-time. More information can be found at 

http://www.ga.gov.au/scientific-topics/positioning-navigation/positioning-for-the-

future/satellite-based-augmentation-system. Raw L1 and L2 dual-frequency GPS 

measurements were collected for post-processing. 

 

Figure 3.4 A-PL trajectory for the UNSW test 

The MagicUT system has several positioning modes: SBAS L1-only, SBAS DFMC, and 

carrier phase-based PPP. The PPP mode was chosen for the analysis reported here. There 

are two modes of PPP positioning: ColdStart and QuickStart. The ColdStart needs at least 

10 min for the PPP solution to converge to within 40cm, while the QuickStart uses a 

precisely surveyed point to ensure almost instantaneous convergence. The QuickStart 

mode was used for the PPP initialisation at a pre-surveyed point. To provide the “ground 

truth” for the A-PL trajectory, the Piksi Multi, a multi-band multi-constellation RTK 

1nt −

http://www.ga.gov.au/scientific-topics/positioning-navigation/positioning-for-the-future/satellite-based-augmentation-system
http://www.ga.gov.au/scientific-topics/positioning-navigation/positioning-for-the-future/satellite-based-augmentation-system
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GNSS receiver capable of centimetre-level accuracy, was set up alongside the MagicUT 

so as to use the same antenna, as shown in Figure 3.5. Approximately 30 min of 1Hz GPS 

measurements were collected. The data were post-processed in a float-ambiguity PPP 

solution with real-time IGS combined corrections (IGC), IGC01, which is one of the RTS 

solutions generated by decoding the real-time product streams with latency of 25s. 

 

Figure 3.5 MagicUT and Piksi Multi hardware setup 

 Simulation Assumptions 

It is assumed that there were four A-PLs moving along predefined paths. The initial 

positions of the A-PLs were evenly distributed on a circular trajectory. Each A-PL can 

measure inter-PL ranges from other A-PLs, as well as make GNSS measurements. For 

this simulation the data rate of inter-PL ranges was assumed to be 10Hz. The inter-PL 

ranges were generated with the “ground truth” provided by the Piksi Multi. The accuracy 

of the inter-PL range was assumed to be 5cm and simulated by adding the corresponding 

magnitude of white noise. 𝑇𝑐  used for the A-PL dynamic model was set to 50. The 

covariance values of the carrier phase and pseudorange noise used in KF were set to 0.032 

and 32, respectively; and the covariance values of acceleration and tropospheric wet delay 

noise were set to empirical values 10−8 and 10−14, respectively. 

 A-PL Positioning Performance  

To evaluate the contribution of inter-PL ranges to A-PL GNSS PPP positioning, two 

scenarios for A-PL positioning were simulated. The first scenario was that the A-PL of 
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interest was able to retain the converged GNSS PPP positioning accuracy after the initial 

setup through the entire mission, referred to as Scenario 1. Since the experiment was 

performed on the university campus with some trees impacting the simulated A-PL 

trajectory, some GNSS signals were intermittently disrupted. To obtain converged GNSS 

PPP positioning accuracy for this scenario, the height component solutions provided by 

the Piksi Multi (with 10cm accuracy) were used to constrain GNSS PPP positioning 

accuracy. The second scenario was that A-PL GNSS PPP positioning has to converge to 

the desired accuracy during movement, referred to as Scenario 2. To simulate this 

scenario, the PPP initialisation with the pre-surveyed point was not used. The A-PL of 

interest was randomly chosen from the four simulated A-PLs, is referred to as A-PL 1, in 

the following simulation. The other three A-PLs, i.e. observed A-PLs, were designated 

A-PL 2, 3 and 4. The influence of the observed A-PL trajectory data on A-PL GNSS PPP 

positioning with inter-PL ranges was also investigated. As was the case for A-PL 1, the 

other three A-PLs were simulated with two same GNSS PPP positioning scenarios. For 

the simulation, the transmitted trajectory data of the observed A-PLs were assumed to be 

estimated positions at the previous instant of the received relative measurements. The 

positions of observed A-PLs were predicted with the state dynamic model before the 

relative measurement update. The three-dimensional (3D) positioning error achieved by 

A-PL 1 and the other three A-PLs’ GNSS PPP for the two scenarios are shown in Figure 

3.6. The converged accuracies calculated from 600s in terms of root mean squared error 

(RMSE) are listed in Table 3.1. 
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Figure 3.6 A-PL GNSS PPP positioning results 

Table 3.1 A-PL GNSS PPP positioning accuracy 

Scenarios 

Positioning Errors (m) 

A-PL 1 
Observed A-PLs 

(A-PL 2, 3 and 4) 

1 0.39 0.40 

2 0.51 0.55 

To process the inter-PL range measurements, the SCIF-based distributed positioning 

algorithms were evaluated and compared with the centralised algorithm. All three forms 

of the SCIF algorithm with the fusion implemented during and after relative measurement 

update based on equations (2.19), (2.20) and (2.21) are referred to in the following 

simulations as SCIF1, SCIF2 and SCIF3, respectively. An EKF was implemented locally 

on each A-PL to estimate the A-PL positions for the SCIF-based distributed algorithms. 

The optimum values of 𝜔  used in the distributed algorithms were determined by 

minimising the trace of the fused covariance. In addition, the centralised algorithm was 

operated with the same simulation conditions as the distributed algorithms. This estimates 

a joint state composed of states of all the A-PLs and tracks the cross-correlations among 

all the states. The estimated positioning error and corresponding variances, represented 

by the diagonal components of the 𝑷 matrix calculated during the EKF, for the two 

positioning scenarios for A-PL 1 with two different observed A-PLs scenarios are shown 

in Figure 3.7. The estimated positioning variances in theory reflect the real positioning 

error. However, they could be affected by the inaccurate predefined covariances of process 
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and measurement noises. Table 3.2 lists the corresponding converged accuracies and 

STDs of the estimated positioning errors for all simulated scenarios. 

  

(Scenario 1 for A-PL 1) 
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(Scenario 2 for A-PL 1) 

Figure 3.7 A-PL positioning accuracy of UNSW trial using different algorithms 

Table 3.2 A-PL positioning accuracy using different algorithms 

Algorithms  

Scenario 1 for A-PL 1 Scenario 2 for A-PL 1 

Observed A-PLs 

Scenario 1 

Observed A-

PLs Scenario 2 

Observed A-

PLs Scenario 1 

Observed A-

PLs Scenario 2 

RMSE 

(m) 

STD 

(dm) 

RMSE 

(m) 

STD 

(dm) 

RMSE 

(m) 

STD 

(dm) 

RMSE 

(m) 

STD 

(dm) 

GNSS PPP-

only 
0.39 0.27 0.39 0.25 0.51 0.71 0.51 0.71 
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Centralised 

algorithm 
0.39 0.28 0.40 0.26 0.40 0.82 0.59 0.72 

SCIF1 0.39 0.27 0.40 0.31 0.45 0.92 0.55 0.70 

SCIF2 0.39 0.27 0.40 0.30 0.45 0.92 0.55 0.71 

SCIF3 0.39 0.27 0.40 0.31 0.45 0.91 0.55 0.71 

From the positioning performance comparison of Scenario 1 for A-PL 1, it can be seen 

that the A-PL with both GNSS and inter-PL range measurements has almost the same 

performance in terms of positioning accuracy and smoothness as that for GNSS PPP when 

the A-PLs with 0.4m GNSS PPP accuracies are observed. However, when the observed 

A-PLs have to initialise during the movement, utilising the inter-PL ranges could degrade 

the A-PL GNSS PPP positioning performance, as can be seen in the bottom figure of 

Scenario 1 for A-PL 1. Both the centralised and distributed algorithms have to re-converge 

at the beginning and give slightly worse converged positioning accuracy than in the GNSS 

PPP-only case. The contribution of inter-PL ranges to A-PL GNSS PPP positioning is 

further demonstrated by the comparison in Scenario 2 for A-PL 1. It can be seen that by 

observing A-PLs with 0.4m GNSS PPP positioning accuracies the algorithms combining 

GNSS PPP with inter-PL ranges achieved better converged accuracies than for the GNSS 

PPP-only case. There is also a tendency for a reduction in GNSS PPP convergence time, 

as indicated by the positioning results and estimated variances. When the trajectory data 

of the observed A-PLs degrades, the algorithms with both GNSS and inter-PL range 

measurements reduce the convergence time of GNSS PPP, except that they converge to 

worse positioning accuracies. Therefore, to ensure the enhancement of inter-PL ranges in 

practical applications, it is necessary to first check the integrity of the transmitted 

trajectory data. Interested readers are referred to Goel et al. (2017) for methods of 

monitoring transmitted information integrity. Furthermore, when more observed A-PLs 

with good GDOP could be included, there will be a reduction in convergence time for 

GNSS PPP when adding inter-PL range measurements. 

By comparing the positioning and estimated variance results of the centralised and three 

SCIF-based distributed algorithms as shown in Figure 3.7, it can be seen that the 

centralised algorithm generates a smoother positioning result and has faster convergence 

due to the precisely tracked cross-correlations among the A-PL states. The top figure of 

Scenario 2 for A-PL 1 illustrates this performance difference. As listed in Table 3.2, 

compared with the GNSS PPP-only case, around 20% and 10% improvement in 
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converged positioning accuracy is achieved by the centralised and SCIF-based distributed 

algorithms, respectively. However, when the observed A-PLs could not provide the 

trajectory information with satisfactory accuracy, as shown in the bottom figure of 

scenario 2 for A-PL 1, the converged accuracy of the centralised algorithm is even worse 

than that of the distributed algorithms. In this case, the distributed algorithms tend to be 

more robust in dealing with the deteriorated trajectory data of the observed A-PLs. The 

difference in positioning performance between the centralised and SCIF-based algorithms 

with Scenario 1 for A-PL 1 is much smaller than that with Scenario 2 for the A-PL 1. The 

SCIF-based algorithms can achieve almost the same positioning performance as the 

centralised algorithm when the GNSS PPP-only is generated by a converged solution. In 

the case of the three different SCIF-based distributed algorithms, all achieve almost the 

same positioning performance as shown by all the simulated scenarios. In principle, any 

one of the three SCIF-based algorithms can be used for A-PL positioning, if the slightly 

higher computational cost of SCIF1 is not an issue. The positioning performance of GNSS 

PPP combined with the inter-PL ranges achieved in the simulations could be further 

improved when the inter-PL ranges and GNSS measurements are processed 

simultaneously in a tightly combined mode as there is no need to perform one more 

propagation step, which indirectly degrades accuracy of the observed A-PLs’ transmitted 

trajectory data.  

 Analysis of Predictions of Orbit and Satellite Clock Corrections 

To evaluate the fitting models for short-term RTS correction predictions, the accuracy of 

IGC predictions with a sliding time window was investigated. The prediction errors were 

derived from the difference between the predicted values and their known IGC correction 

values during the prediction period. The periods of the fitting and prediction data were 

set as 10 min and 30 min, respectively. Three polynomial models with different orders – 

including first, second and third order – were investigated. The clock corrections were 

predicted using the model with linear and sinusoidal terms or only a linear term. For the 

clock prediction model, the period of the sinusoidal term was first estimated using the 

FFT. Other parameters involved in the prediction models for the orbit and clock 

corrections were estimated with a built-in “fittype” function in Matlab.  

Table 3.3 Mean prediction error of RTS corrections for G17 
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Models 

Prediction 

error (cm) 

Mean STD 

3D orbit 

(𝑎0, 𝑎1, 𝑎2, 𝑎3) 

Poly with order 1 

(1.02, 4.01 × 10−4) 
10.3 5.9 

Poly with order 2 

(0.99, 5.03 × 10−4, −5.75 ×
10−8) 

5.8 4.1 

Poly with order 3 

(1.01, 3.36 × 10−4, 1.79 × 10−7, 

−8.92 × 10−11) 

22.8 15.9 

Clock 

(𝑎0, 𝑎1, 𝐴𝑠, 𝐴𝑐) 

Linear and sinusoidal terms 

(7.28, 2.95 × 10−4, 0.03, 0.14) 
12.2 7.7 

Only a linear term 

(7.42, −1.38 × 10−4) 
13.2 8.8 

Table 3.3 shows one example of the prediction performance for GPS satellite PRN17. 

The estimated coefficients of all the models are also listed in Table 3.3. The mean and 

STD prediction errors represent the mean and STD value of all the prediction errors 

calculated with a sliding window. Since the IGC corrections are not always available, the 

amount of fitting data in the sliding window may vary, which has to be at least larger than 

five. The orbit and clock prediction errors only include those calculated before each IODE 

change and clock jump, respectively. Figure 3.8 shows the variation of all prediction 

errors. It can be seen that the worst model for orbit prediction is the one with order three. 

The second-order polynomial model achieves the best orbit prediction performance with 

the smallest mean and STD prediction errors. For satellite clock corrections, the model 

with linear and sinusoidal terms could obtain slightly better performance than that with 

only a linear term. The mean prediction error of clock corrections for different types of 

GPS satellites are also given in Table 3.4. It can be seen that better performance can be 

achieved by the prediction model with linear and sinusoidal terms compared with that 

using only a linear term for all different types of GPS satellites. The performance 

difference of these two prediction models is less in block IIF than that of older blocks 

IIR-M and IIR. 
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Figure 3.8 Correction prediction comparison 

Table 3.4 Mean prediction error of clock corrections for all GPS satellites 

Satellites 

Models 

Linear and sinusoidal 

terms 

Only a linear 

term 

Block IIR 
Mean (cm) 11.4 12.8 

STD (cm) 7.9 8.4 

Block IIR-M 
Mean (cm) 11.6 14.5 

STD (cm) 8.5 9.9 
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Block IIF 
Mean (cm) 6.0 6.1 

STD (cm) 4.7 4.6 

To investigate the effect of correction prediction on A-PL positioning, it was assumed 

that there was one break in receiving the correction messages added to the A-PL 

measurements, which lasted around 10 min. The second-order polynomial and linear and 

sinusoidal models were used for orbit and satellite clock predictions, respectively. The A-

PL positioning performance with the correction prediction was compared with the results 

of PPP without predictions and without breaks, as shown in Figure 3.9. Table 3.5 

summarises these results. The PPP results obtained with correction predictions are almost 

the same as those without breaks, which demonstrates the effectiveness of the correction 

prediction models. 

 

Figure 3.9 A-PL positioning performance 

Table 3.5 A-PL positioning accuracy 

Modes  
Positioning Errors 

(m) 

PPP with predictions 0.54 

PPP without breaks 0.53 

PPP without 

predictions 
0.58 
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 Summary  

In this chapter an A-PL positioning concept based on real-time GNSS PPP has been 

proposed. The inter-PL ranges are used to enhance A-PL positioning. These “relative” 

measurements are processed using SCIF algorithms to account for cross-correlations of 

all A-PL estimated states. SCIF algorithms implemented in three forms were described 

and investigated. In addition, the short-term prediction of precise orbit and satellite clock 

corrections with different prediction models was analysed and compared when the 

correction message communication links were assumed to have been disrupted. 

Simulations have been performed to investigate the A-PL positioning performance. The 

simulation results demonstrate that when the A-PL has to initialise during movement 

GNSS PPP combining with inter-PL range measurements is able to achieve faster 

convergence and 20% improvement in converged positioning accuracy compared with 

GNSS PPP-only approach. However, the degree of improvement due to the use of inter-

PL ranges is limited by the initialisation or re-initialisation of the A-PL and its observed 

A-PLs. To ensure the enhancement of inter-PL ranges, the transmitted trajectory data of 

observed A-PLs have to be provided with well-converged accuracy. Although the SCIF-

based distributed algorithms indicate limited improvement compared with the centralised 

algorithm, they are more robust in dealing with degraded transmitted trajectory data of 

the observed A-PLs. In addition, the second-order polynomial model is preferable for 

short-term orbit correction predictions compared with the first- or third-order models. The 

satellite clock corrections can be predicted using either the linear model or one with linear 

and sinusoidal terms. The prediction models have been shown to be able to effectively 

reduce the impact of disruption of communication links, and hence to maintain PPP 

accuracy. 
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Chapter 4 Model-learning Based KF Algorithms for GNSS PPP with Unmodelled 

Measurement Error 

 Introduction  

A precise measurement model is essential for unbiased estimation of GNSS positioning 

with KF based filters. However, there are some errors in the GNSS observations, such as 

multipath and signal interference, that are difficult to model, or do not cancel out by 

differencing, or cannot be accounted for using bias service products. To account for these 

errors one commonly used strategy is to augment the filter state with the unmodelled 

errors and estimate them along with user position (and other navigational parameters) 

(Chang, 2014; Hu et al., 2010; Zhou et al., 2017). However, a priori knowledge about the 

unmodelled errors in terms of their dynamic model or statistical characteristics is assumed 

known. Furthermore, if there is no error present in the observations, such a model 

augmentation approach could result in an unstable system. Another way to deal with such 

errors is by directly modelling them using parametric or non-parametric models (Lee and 

Johnson, 2017; Lv et al., 2015; Ko and Fox, 2009; Ko et al., 2007; Zhou et al., 2016). 

Parametric models include autoregressive (AR), moving average (MA), autoregressive-

moving average (ARMA), etc. Non-parametric models include artificial neural networks 

(ANNs), support vector machine (SVM), GPR, etc. The disadvantage of parametric 

models is that substantial domain expertise is required to build these models, that are 

nevertheless often simplified representations (Lee and Johnson, 2017). Non-parametric 

models are able to flexibly approximate unknown nonlinearities with less restrictiveness 

than the parametric models. Two commonly used non-parametric model-learning 

methods – including SVM and GPR-based modelling approaches – were studied in this 

research. LS-SVM is one popular variant of the standard SVM, which is able to estimate 

highly nonlinear functions and solve noisy “black-box” modelling problems (Suykens 

and Vandewalle, 1999). This method has been used to estimate the unmodelled bias of 

dynamic models in the KF-based methods. By training the relationship of the unmodelled 

biases among current and previous epochs, it is able to predict, and compensate for, the 

bias in the KF. The LS-SVM algorithm has demonstrated its effectiveness to adapt to a 

time-variant dynamic model. However this algorithm cannot provide the prediction 

precision directly, as it has to calculate the variance of the prediction separately to account 

for its uncertainty in the KF. In addition, to determine the optimal parameters to be used 
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in the LS-SVM, there have been many approaches proposed, such as a priori knowledge, 

statistical theory of SVM, the grid search with cross-validation, genetic algorithm, scale 

space theory, analytical method, and others (Cherkassky and Ma, 2004). The cross-

validation based techniques are often used to select the parameters. However, this 

approach often has high computational cost with requirements for re-sampling data sets. 

To be able to set the parameters directly from the training data without resorting to re-

sampling, the analytical approach based on the well-known theory of SVM regression 

was used in this research. Unlike the LS-SVM algorithm, the GPR-based algorithm can 

not only directly provide the mean function value prediction of interest, but also 

uncertainty estimates for the prediction. By taking both noise and regression uncertainty 

into account, the GPR can automatically increase its uncertainty when there is not enough 

training data. Furthermore, models such as AR, MA, and ARMA can be seen as special 

cases of GPR (Zhou et al., 2017). However, both the LS-SVM and GPR modelling 

approaches usually perform model-learning offline using large volumes of training data. 

To be able to adapt the LS-SVM/GPR modelling to changes in the environment and in 

the system configuration, a LS-SVM/GPR-based KF algorithm is proposed. By using 

training data derived from previous historical measurement residuals calculated with 

predicted measurements with the known states and real observations in the KF, the LS-

SVM/GPR can be trained in real-time. With the trained model the unmodelled 

measurement error can then be predicted and compensated for in the KF. In this research, 

a nonlinear autoregressive model was used to train the LS-SVM/GPR model. One major 

limitation to training the LS-SVM/GPR model online is its high computational cost 

resulting from inverse matrix calculation for query point predictions. In addition, the 

computational burden will be increased by 𝛰(𝑚3) when applied to the GNSS positioning 

with m-dimensional satellite observations. To reduce the computational cost, each output 

dimension is trained using a different LS-SVM/GPR model, assuming the satellite 

observations are independent of each other. To improve reliability of the training points 

and further reduce the computational burden, a sliding window with more than one 

forward step for the input training points and model training is proposed. To avoid over-

prediction of query data and to improve the robustness of the online LS-SVM/GPR model 

training due to its limited effectiveness, a constraint on the query data is also introduced. 

This chapter is structured as follows. First, the problem of KF with unmodelled 

measurement error is discussed in section 4.2. In section 4.3, the standard GPR and the 
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proposed online GPR-KF algorithm are described. To evaluate the proposed online GPR-

KF algorithm for GNSS navigation, both static and kinematic experiment results and 

analyses are presented in section 4.4. Finally, the chapter summary is given in section 4.5. 

 KF with Unmodelled Measurement Error 

Consider a linear measurement function model with unmodelled measurement error 

𝛥𝒛𝑘: 

 𝒛𝑘 = 𝑯𝑘𝒙𝑘 + 𝛥𝒛𝑘 + 𝜺𝑘 (4.1) 

The conventional KF without considering term 𝛥𝒛𝑘 is described in chapter 2 with two 

recursively implemented propagation and measurement update steps. There are several 

ways to take into account 𝛥𝒛𝑘 in KF. For example, one commonly used approach is to 

augment the state with 𝛥𝒛𝑘  and allow its estimation along with 𝒙𝑘 . However this 

approach assumes the process model of 𝛥𝒛𝑘  or a priori knowledge of its statistical 

characteristics is known. In this chapter, the approach via directly modelling of 𝛥𝒛𝑘 is 

studied. Therefore the update step in KF can be modified accordingly as follows 

(Hamilton, 1994):  

 
𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯𝑘

𝑇 (𝑯𝑘𝑷𝑘|𝑘−1𝑯𝑘
𝑇 + 𝑷𝛥𝒛̂𝑘|𝑘−1)

−1

𝒙̂𝑘|𝑘 = 𝒙̂𝑘|𝑘−1 +𝑲𝑘(𝒛𝑘 −𝑯𝑘𝒙̂𝑘|𝑘−1 − 𝛥𝒛̂𝑘|𝑘−1) 
 (4.2) 

where  

𝒙̂𝑘|𝑘−1 and 𝑷𝑘|𝑘−1 denote the predicted state vector and its associated covariance 

matrix, respectively; 

𝑲𝑘 is the Kalman gain matrix; 

𝒙̂𝑘|𝑘 denotes the KF estimated state vector; and  

𝛥𝒛̂𝑘|𝑘−1  and 𝑷𝛥𝒛̂𝑘|𝑘−1  denote the estimated unmodelled error vector and its 

associated covariance matrix, respectively.  

Since the expectation of the measurement residual is: 
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 𝐸(𝒛𝑘 −𝑯𝑘𝒙̂𝑘|𝑘) = 𝑯𝑘𝐸(𝒙𝑘 − 𝒙̂𝑘|𝑘) + 𝐸(𝜺𝑘) + 𝐸(𝛥𝒛𝑘) ≈ 𝐸(𝛥𝒛𝑘) (4.3) 

To estimate 𝛥𝒛̂𝑘|𝑘−1, modelling methods such as AR, MA, ARMA, SVM and GPR-based 

techniques can be used. These methods can be divided into two categories: parametric 

models and non-parametric models. Non-parametric models have less restrictiveness than 

the parametric models, hence they have a more flexible capability for approximating 

unknown nonlinearities. In this research two commonly used non-parametric model-

learning methods for 𝛥𝒛̂𝑘|𝑘−1 estimation were studied: LS-SVM and GPR. LS-SVM is 

an invariant of the standard SVM with a quadratic cost function, the optimisation of which 

is simple, requiring the solution of a set of linear equations. It has been shown good 

generalisation performance for highly nonlinear function regression. One drawback of 

this algorithm is that the prediction precision with the trained LS-SVM model has to be 

calculated separately. This could impede its real-time application due to the increased 

computational cost. On the other hand the GPR-based model-learning method provides 

not only the mean function value prediction of interest but also uncertainty estimates for 

the prediction. In addition, some parametric models, such as AR, MA, and ARMA, can 

be seen as special cases of GPR. In order to take full advantage of such non-parametric 

model-learning methods the LS-SVM/GPR-based KF algorithm with model training 

online is demanding as it must adapt to changes in the environment and in the system 

configuration. 

 Non-parametric Model-learning Based KF Algorithms 

 LS-SVM Based KF Algorithm 

Assuming a set of 𝑛 training data {𝒙𝑖, 𝑦𝑖}𝑖=1
𝑛  drawn from the noisy process, the model 

based on SVM can be written as (Suykens and Vandewalle, 1999): 

 𝑦 = 𝝎T𝜑(𝒙) + 𝑏 (4.4) 

where 

𝒙 and 𝑦 denote the input and output of the SVM based model, respectively; 

𝝎 is the weight vector; 
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𝜑(𝒙) is the nonlinear function that maps the input to a high-dimensional feature 

space; and 

𝑏 is the bias term. 

The LS-SVM for the regression is an optimisation of a quadratic problem with equality 

constraints, which can be described by the following cost function: 

 
𝐦𝐢𝐧
𝝎,𝑏,𝒆

𝑱(𝝎, 𝒆) =
1

2
𝝎T𝝎+

1

2
𝛾∑𝑒𝑖

2

𝑛

𝑖=1

𝑠. 𝑡.  𝑦𝑖 = 𝝎
T𝜑(𝒙𝑖) + 𝑏 + 𝑒𝑖

 (4.5) 

where  

𝑒 is the model error, also referred as the slack variable; and 

𝛾 denotes the regularisation parameter that adjusts the relative importance of the 

terms in equation (4.5), and is a positive real constant.  

Large  𝛾  values increase the importance of the empirical risk, hence it improves the 

learned model but also increases its complexity. On the other hand, small 𝛾 values could 

avoid overfitting and result in decreased model complexity with deteriorated model 

accuracy. To solve the optimisation of equation (4.5), the Lagrangian function is generally 

used: 

 𝐿(𝝎, 𝑏, 𝑒, 𝛼) =
1

2
𝝎T𝝎+

1

2
𝛾∑𝑒𝑖

2 −∑𝛼𝑖[ 𝝎
T𝜑(𝒙𝑖) + 𝑏 + 𝑒𝑖−𝑦𝑖]

𝑛

𝑖=1

𝑛

𝑖=1

 (4.6) 

where 𝛼𝑖 is the Lagrange multiplier. With the optimality conditions for equation (4.6), 

one can obtain 𝜶 = [𝛼1  𝛼2   ⋯  𝛼𝑛]
T and 𝑏 solution after eliminating 𝝎 and 𝑒: 

 [

𝟎 𝟏𝑛
𝑇

𝟏𝑛 𝛙𝑛 +
𝑰𝑛
𝛾

] [
𝑏
𝜶
] = [

𝟎
𝒚
] (4.7) 

where  
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𝟏𝑛 is a n-dimensional vector with elements 1; 

𝛙𝑛 is a 𝑛 × 𝑛 matrix with the element 𝛙(𝒙𝑖, 𝒙𝑗) at the ith row and the jth column; 

and 

𝒚 = [𝑦1  𝑦2   ⋯  𝑦𝑛]
T.  

According to Mercer’s condition, one can choose a kernel function such that:  

  𝛙(𝒙𝑖, 𝒙𝑗) = 𝜑(𝒙𝑖)
T𝜑(𝒙𝑗), 𝑖, 𝑗 = 1,⋯ , 𝑛 (4.8) 

Then the solution of 𝜶 and 𝑏 can be written as: 

 

𝑏 =
𝟏𝑛
𝑇 [𝛙𝑛 +

𝑰𝑛
𝛾 ]

−1

𝒚

𝟏𝑛𝑇 [𝛙𝑛 +
𝑰𝑛
𝛾 ]

−1

𝟏𝑛

𝜶 = [𝛙𝑛 +
𝑰𝑛
𝛾
]
−1

𝒚 − [𝛙𝑛 +
𝑰𝑛
𝛾
]
−1

𝟏𝑛𝑏

 (4.9) 

As a result, the LS-SVM model for function estimation can then be expressed as: 

 𝑦 =∑𝛼𝑖 𝛙(𝒙, 𝒙𝒊)

𝑛

𝑖=1

+ 𝑏 (4.10) 

In this chapter, the radial basis function (RBF) kernel function is utilised, which can be 

expressed as: 

 𝛙(𝒙𝒊, 𝒙𝒋) = 𝑒𝑥𝑝(−
‖𝒙𝑖 − 𝒙𝑗‖2

2

2𝜎2
) (4.11) 

where 𝜎 denotes the kernel width, which has to be carefully chosen to avoid overfitting 

or underfitting. Iterative methods are often implemented to calculate 𝜶  and 𝑏 . Its 

convergence speed depends on the values of 𝛾 and 𝜎. To determine the values of these 

two parameters without recourse to re-sampling data sets, an analytical selection can be 

used. Since the kernel function is based on RBF, the width parameter 𝜎 should reflect the 

distribution/range of 𝒙 values of the training data. It can be set to: 
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 {
𝜎~(0.1 − 0.5) ∙ range(𝒙) 𝒙 ∈ 𝑹

𝜎𝑑~(0.1 − 0.5) 𝒙 ∈ 𝑹𝑑
 (4.12) 

where 𝑑 denotes the dimension of the input training data. The input training data need to 

be pre-scaled to [0,1] range. 𝛾 can be determined by directly relating it to the output 

values of the training data, which can be calculated as: 

 𝛾 = 𝑚𝑎𝑥(|𝑦̅ + 3𝜎𝑦| |𝑦̅ − 3𝜎𝑦|) (4.13) 

where 𝑦̅  and 𝜎𝑦  are the mean and STD of the output values of the training data, 

respectively. As can be seen from equation (4.9), there is 𝛰(𝑛3)  computational 

complexity by calculating the inverse of matrix [𝛙𝑛 +
𝑰𝑛

𝛾
]. For m-dimensional outputs, 

the computational cost would increase to 𝛰(𝑚3𝑛3). The computational complexity for 

the LS-SVM model training will be further increased with the number of iterations in its 

implementation. In order to reduce the computational cost for the GNSS PPP application, 

it is assumed that the output dimensions are independent of each other. In this way the 

computational cost can be reduced to 𝛰(𝑚𝑛3). To predict the unmodelled measurement 

error 𝛥𝒛𝑘  based on LS-SVM in the KF, the model of 𝛥𝒛𝑘  used is assumed to be a 

nonlinear autoregressive model: 

 𝛥𝒛𝑘 = 𝑓(𝛥𝒛𝑘−1, ⋯ , 𝛥𝒛𝑘−𝑝) + 𝜂𝑘 (4.14) 

where  

𝑝 is the number of lags used to represent the unmodelled measurement error; and 

𝜂𝑘 is white Gaussian noise.  

To train this model the training points of inputs 𝑿 and outputs 𝒚 can be obtained using 

the estimated 𝛥𝒛̂𝑘 of previous epochs. To improve the reliability of the training points, 

the input training points can use a sliding window with more than one forward step: 
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𝑿 = [

𝛥𝒛̂𝑘−𝑝−(𝑛−1)∙𝑠|𝑘−𝑝−(𝑛−1)∙𝑠 ⋯ 𝛥𝒛̂𝑘−(𝑛−1)∙𝑠−1|𝑘−(𝑛−1)∙𝑠−1
⋮ ⋱ ⋮

𝛥𝒛̂𝑘−𝑝|𝑘−𝑝 ⋯ 𝛥𝒛̂𝑘−1|𝑘−1

]

𝒚 =

[
 
 
 
𝛥𝒛̂𝑘−(𝑛−1)∙𝑠|𝑘−(𝑛−1)𝑠
𝛥𝒛̂𝑘−𝑛∙𝑠|𝑘−𝑝−𝑛∙𝑠

⋯
𝛥𝒛̂𝑘|𝑘 ]

 
 
 

 (4.15) 

where 𝑠 is the forward step size. With the trained model of 𝛥𝒛𝑘, the prediction of 𝛥𝒛̂𝑘+1|𝑘 

can be obtained by treating 𝒙∗,𝑘 = [𝛥𝒛̂𝑘−𝑝+1|𝑘−𝑝+1 𝛥𝒛̂𝑘−𝑝+2|𝑘−𝑝+2 ⋯ 𝛥𝒛̂𝑘|𝑘]𝑇  as 

the query point. Here the training points 𝑿 and the query point 𝒙∗,𝑘 only represent a one-

dimensional output of 𝛥𝒛𝑘. This strategy will increase the demand for memory. To further 

reduce the computational cost of 𝛥𝒛̂𝑘+1|𝑘  prediction, the trained LS-SVM model also 

uses a sliding window with 𝑞 steps forward after the first modelling. During the next 𝑞 

epochs, 𝛥𝒛𝑘 is only predicted in the KF using the last trained model for the first 𝑙 epochs 

and for the last 𝑞 − 𝑙  epochs KF without 𝛥𝒛𝑘  correction is performed. Therefore the 

query points for every 𝑞 epochs contains: 

 𝒙∗ = [𝒙∗,𝑘     𝒙∗,𝑘+1    ⋯   𝒙∗,𝑘+𝑙] (4.16) 

To avoid over-prediction of 𝑙 epochs query data, and to improve the robustness of the 

online trained LS-SVM model due to its limited effectiveness, a constraint is introduced: 

 {
𝛥𝒛̂𝑘+1|𝑘, 𝑷𝛥𝒛̂𝑘+1|𝑘 𝑛𝑜𝑟𝑚(𝑿𝑖 − 𝒙∗,𝑗) < 𝑑𝑡ℎ

𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖 = 1,⋯ , 𝑛 𝑗 = 𝑘,⋯ , 𝑘 + 𝑙 (4.17) 

where 

𝑿𝑖 is the ith training data;  

𝒙∗,𝑗 is the jth query data; and  

𝑑𝑡ℎ is the threshold for Euclidean distance between the training data and the query 

data.  

When the Euclidean distance between the training data and the query data is smaller than 

the threshold, prediction is implemented, otherwise conventional KF is performed. When 
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there is no unmodelled error 𝛥𝒛𝑘  the LS-SVM based KF algorithm is reduced to the 

conventional KF as 𝛥𝒛𝑘  derived from the measurement residual will have the same 

distribution as the noise 𝜺𝑘 in the measurement with zero-mean and covariance 𝑹𝑘. Since 

the LS-SVM cannot directly output the variance 𝑷𝛥𝒛̂𝑘+1|𝑘 for the predicted 𝛥𝒛̂𝑘+1|𝑘, it has 

to be calculated separately. Due to the trained nonlinear LS-SVM model, the variance 

estimation method based on unscented transformation (UT) technique is used in this 

research. Assume that the variance of the query point 𝒙∗,𝑘 is represented by 𝑷𝒙∗,𝑘. Then 

the predicted vector 𝛥𝒛̂𝑘+1|𝑘 and its corresponding covariance matrix 𝑷𝛥𝒛̂𝑘+1|𝑘 with the 

trained LS-SVM model 𝑓(𝒙) can be approximated by 2𝑛𝒙 + 1 weighted sigma points: 

 

𝝌0,𝑘 = 𝒙∗,𝑘, 𝑤0 = 𝜏/(𝑛 + 𝜏)

𝝌𝒓,𝒌 = 𝒙∗,𝑘 +√𝑛𝒙 + 𝝉(√𝑷𝒙∗,𝑘)
𝒓

, 𝒘𝒓 = 𝟏/[𝟐(𝑛𝒙 + 𝝉)]

𝜒𝒓+𝒏,𝒌 = 𝒙∗,𝑘 −√𝑛𝒙 + 𝝉(√𝑷𝒙∗,𝑘)
𝒓

, 𝒘𝒓+𝒏 = 𝟏/[𝟐(𝑛𝒙 + 𝝉)]

 (4.18) 

where  

𝜏 is a scaling parameter; 

𝑛𝒙 is the query point dimension; 

(√𝑷𝒙∗,𝑘)
𝑟

 is the 𝑟th row of the column of the matrix square root of 𝑷𝒙∗,𝑘; and  

𝑤𝑟 is the weight associated with the 𝑟th sigma point.  

The transformed covariance matrix 𝑷𝛥𝒛̂𝑘+1|𝑘  is then given by the weighted outer product 

of the transformed points: 

 

𝝌𝑟,𝑘+1|𝑘 = 𝑓(𝝌𝒓,𝒌)

𝛥𝒛̂𝑘+1|𝑘 =∑𝑤𝑖𝝌𝑖,𝑘+1|𝑘

2𝑛𝒙

𝑖=0

𝑷𝛥𝒛̂𝑘+1|𝑘 =∑𝑤𝑖

2𝑛𝒙

𝑖=0

[𝝌𝑖,𝑘+1|𝑘 − 𝛥𝒛̂𝑘+1|𝑘][𝝌𝑖,𝑘+1|𝑘 − 𝛥𝒛̂𝑘+1|𝑘]
𝑇

 (4.19) 
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However, directly using 𝑷𝛥𝒛̂𝑘|𝑘−1 in the LS-SVM based KF could cause fluctuations in 

the estimation, and even lead to divergence due to rapid changes of the training data. 

Therefore in order to further improve the robustness of the LS-SVM based KF algorithm 

the Kalman gain 𝑲𝑘 can be adjusted by a scale factor 𝑓:  

 𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯𝑘
𝑇 [𝑯𝑘𝑷𝑘|𝑘−1𝑯𝑘

𝑇 +
𝑷𝛥𝒛̂𝑘|𝑘−1 + 𝑹𝑘

𝑓
]

−1

 (4.20) 

If the 𝑷𝛥𝒛̂𝑘|𝑘−1  is predicted precisely, then 
(𝑷𝛥𝒛̂𝑘|𝑘−1

+𝑹𝑘)

𝑓
 with 𝑓  set to the value 2 is 

equivalent to 𝑷𝛥𝒛̂𝑘|𝑘−1 which contains both the propagated covariance of the unmodelled 

error and the measurement noise. 

 GPR Based KF Algorithm 

A GPR can be thought of as a “Gaussian over functions” (Nguyen-Tuong et al., 2009; 

Rasmussen and Williams, 2004). A GP is fully specified by its mean and covariance 

functions. The observed targets can be described by a zero-mean multivariate Gaussian 

distribution: 

 𝒚~𝑁(𝟎,𝐾(𝑿, 𝑿) + 𝜎𝑛
2𝑰) (4.21) 

where 

𝒚 is the aggregated output vector 𝒚 = [𝑦1 𝑦2 ⋯ 𝑦𝑛]𝑇; 

𝑿 is the aggregated input matrix 𝑿 = [𝒙1
𝑇 𝒙2

𝑇 ⋯ 𝒙𝑛
𝑇]𝑇; 

𝐾(𝑿,𝑿) is the covariance matrix; and 

𝜎𝑛 is the variance of output noise. 

To calculate the 𝐾𝑖,𝑗  elements of 𝐾(𝑿,𝑿), a kernel function in the form of a squared 

exponential (SE) is commonly used: 

 𝑘(𝒙, 𝒙′) = 𝜎𝑠
2 𝑒𝑥𝑝 (−

1

2
(𝒙 − 𝒙′)𝑾(𝒙 − 𝒙′)𝑇) (4.22) 
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where 𝜎𝑠
2 is the signal variance and 𝑾 is a diagonal matrix of the length scales of each 

input dimension. The optimal value of hyperparameters of a GP with SE can be derived 

by maximising the log marginal likelihood 𝑎𝑟𝑔𝑚𝑎𝑥
𝜽

{𝑙𝑜𝑔(𝑝(𝒚|𝑿, 𝜽))} (Rasmussen and 

Williams, 2006). The joint distribution of the observed target values and predicted value 

for a query point 𝒙∗ is given by: 

 [
𝒚
𝑦∗
] ~𝑁 (0, [

𝐾(𝑿, 𝑿) + 𝜎𝑛
2𝑰 𝑘(𝑿, 𝒙∗)

𝑘(𝒙∗, 𝑿) 𝑘(𝒙∗, 𝒙∗)
]) (4.23) 

Thus, the predictive distribution over the output 𝑦∗ becomes: 

 𝑝(𝑦∗|𝒙∗, 𝑿, 𝒚)~𝑁(𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝑰)−1𝒚, 𝑘∗∗ − 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝑰)−1𝑘∗) (4.24) 

with 𝑘∗ = 𝑘(𝒙∗, 𝑿), 𝑘∗∗ = 𝑘(𝒙∗, 𝒙∗), and 𝐾 = 𝐾(𝑿,𝑿). The mean prediction of 𝑦∗ and 

its uncertainty are 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝑰)−1𝒚 and 𝑘∗∗ − 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝑰)−1𝑘∗, respectively. 

As with the LS-SVM based KF algorithm, the major limitation of training the GPR model 

online is its expensive computation of the inverse matrix (𝐾 + 𝜎𝑛
2𝑰)−1 which yields a cost 

of 𝛰(𝑛3). Thus, the same strategies used in LS-SVM based KF algorithm to reduce the 

computational cost are also utilised to train GPR models. The flowchart and detailed 

procedure for the model-training based KF algorithms are presented in Figure 4.1 and 

Table 4.1, respectively. This method can be readily extended to nonlinear KF methods, 

such as EKF, UKF and CKF, since the measurement residual sequences for the error 

model training are calculated after the update step of all the nonlinear KF methods and 

the unmodelled error correction can be seen as new measurement noise with 𝛥𝒛̂𝑘|𝑘−1 

mean and covariance 𝑷𝛥𝒛̂𝑘|𝑘−1 . Since both the LS-SVM and GPR algorithms use the 

historical measurement residuals to predict the unmodelled measurement error, they can 

only be effective for the A-PL with smooth changes in the environment and in the system 

configuration. 
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or number of computed residual 
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KF with        correction 

Number of        correction using the 

last learned model is less than l
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z
k

z
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Figure 4.1 Model-learning based KF algorithm flowchart 

Table 4.1 Model-learning based KF algorithm 

1: Sequentially perform KF without 𝛥𝒛𝑘 correction 

𝑖 < (𝑛 − 1) ∙ 𝑠 + 𝑝 𝑜𝑟 𝑘 + 𝑙 ∙ 𝑠 < 𝑖 < 𝑘 + 𝑞 ∙ 𝑠 𝑤ℎ𝑒𝑛   𝑘 > (𝑛 − 1) ∙ 𝑠 + 𝑝 

2: Compute and save measurement residuals 𝛥𝒛̂𝑖|𝑖 

3: LS-SVM/GPR model training using (𝑛 − 1) ∙ 𝑠 + 𝑝 training data 

4: Predict 𝛥𝒛̂𝑖+1|𝑖 and 𝑷𝛥𝒛̂𝑖+1|𝑖 based on the last trained model (𝑘 < 𝑖 ≤ 𝑘 + 𝑙 ∙ 𝑠) 

5: Perform KF with 𝛥𝒛𝑘 correction 

6: If there is no observation lost and the 𝑞 ∙ 𝑠 measurement residuals have been 

calculated since the last trained model, update training data and jump to step 3; 

otherwise, jump to step 1 

 Experiment Results and Analysis 

Both static and kinematic scenarios were investigated to validate the efficiency of the LS-

SVM/GPR-based EKF algorithm for the A-PL with environment and system 

configuration changes. GPS observations from one of the IGS stations, with added 

coloured noise, were tested for the static scenario. In the case of the kinematic scenario 

GPS observations from a UAV experiment were used. 
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 Static Experiment 

GPS measurements at 30s intervals from the ALIC IGS station during the period day-of-

year 277 and 278 in 2016 were selected for the static experiment. The data were processed 

using the GNSS PPP technique with float-ambiguity in the quasi-real-time mode. The 

parameters used for the LS-SVM/GPR-based KF were 𝑝=3, 𝑛 = 15, 𝑞 = 10, 𝑙 = 6, 𝑓 =

3, and 𝑠 = 2. The width parameter 𝜎 in the LS-SVM was set to a value of 0.65. LS-

SVM/GPR modelling for each observed satellite was assumed to be independent. To 

validate the effectiveness of the LS-SVM/GPR-based KF algorithm, all carrier phase 

measurements contaminated with coloured noise of different magnitudes were processed, 

as indicated in Table 4.2. The coloured noise was generated with a built-in 

“dsp.ColoredNoise” function in Matlab and directly added to the GNSS measurements. 

The noise magnitude added to pseudorange measurements was 3 orders of magnitude 

larger than that in the carrier phase measurements. The added coloured noise should not 

cause the measurement innovations to diverge. The measurement innovations are the 

difference between the measured and estimated ranges calculated with the propagated 

states. Thresholds 𝑑𝑡ℎ  for pseudorange and carrier phase were set at 20 and 0.5, 

respectively. All the parameters involved in the model training were empirical values. 

The station positioning errors obtained by conventional PPP, PPP with LS-SVM and PPP 

with GPR, were compared with the IGS weekly solutions as shown in Figure 4.2. As can 

be seen from Figure 4.2, PPP with LS-SVM/GPR reduces the positioning fluctuations 

resulting from the rapid changing coloured noise, especially when the positioning 

accuracy has a tendency to decrease compared with the conventional PPP. The RMSE 

and STD representing positioning repeatability of the station position estimation 

calculated from 10h for all the algorithms are listed in Table 4.2. It can be seen that the 

performance in terms of positioning accuracy and repeatability derived from the PPP with 

LS-SVM/GPR is better than that from conventional PPP. However, the performance 

improvement for both the LS-SVM and GPR algorithms decreases with the increase of 

added noise magnitude. This is because that it becomes more difficult for the 

measurement residuals calculated in real-time to reflect the unmodelled errors when the 

coloured noises change more rapidly. In addition, PPP with LS-SVM has almost the same 

positioning performance as PPP with GPR. Considering the computational complexity 

resulting from the prediction uncertainty calculation, PPP with GPR is more promising 

to use for real-time applications than PPP with LS-SVM. 
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Figure 4.2 Positioning errors with different noise magnitudes 

Table 4.2 Positioning accuracy with different noise magnitudes 

Noise 

Magnitudes 

(cm) 

Algorithms 

Conventional 

PPP  
PPP with LS-SVM PPP with GPR 

RMSE 

(cm) 

STD 

(cm) 

RMSE 

(cm) 

STD 

(cm) 

RMSE 

(cm) 

STD 

(cm) 

0 4 2 2 1 2 1 

< 10 7 4 6 3 6 1 

< 20 14 3 12 3 11 3 

< 30 27 6 23 3 23 4 

In theory, if there is no unmodelled error in the measurement model, the measurement 

innovations should have a zero-mean Gaussian distribution. This property of the 

innovations is a measure of filter performance. Therefore, to further validate the 

effectiveness of PPP with LS-SVM/GPR, the averaged mean and STD of GNSS 

measurement innovations over all observed satellites obtained by all the algorithms with 

no added noise are compared, as shown in Figure 4.3. The top plot in Figure 4.3 is the 

pseudorange innovations of all observed satellites, and the bottom plot is for carrier phase 

innovations. It can be seen that the pseudorange innovations obtained by PPP with LS-

SVM/GPR have smaller mean than in the case of conventional PPP, which are more like 

zero-mean normally distributed quantities. The STD of pseudorange innovations 
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achieved by PPP with GPR has the smallest value. PPP with LS-SVM barely changes the 

STD of pseudorange innovations compared with conventional PPP. As for the statistics 

of innovations of carrier phase, all three algorithms have almost the same mean and STD 

values. Thus, PPP with LS-SVM and GPR mainly improves the pseudorange innovations’ 

whiteness property. This can be attributed to the lower accuracy of pseudorange 

measurements and their vulnerability to errors resulting from the changing environment 

and unstable dynamics compared with carrier phase measurements. To illustrate the 

comparison of pseudorange and carrier phase innovation zero-mean Gaussian 

distributions achieved by the three algorithms, one example for satellite PRN 20 is shown 

in Figure 4.4. 

 

Figure 4.3 Measurement innovation statistics comparison 
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Table 4.3 Averaged innovation comparison of three algorithms 

Algorithm 

Pseudorange 

Innovation 

Carrier Phase 

Innovation 

Mean 

(m) 
STD (m) 

Mean 

(cm) 
STD (m) 

Conventional 

PPP 
0.15 0.87 0.39 0.17 

PPP with LS-

SVM 
0.09 0.88 0.40 0.17 

PPP with 

GPR 
0.10 0.80 0.41 0.17 

 

Figure 4.4 Distribution of measurement innovations 
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 Kinematic Experiment 

To investigate the efficiency of the LS-SVM/GPR-based KF algorithm for kinematic 

GNSS PPP scenarios a UAV experiment was carried out. Dual-frequency GPS data was 

collected by an OEM617 GPS receiver with sampling rate 10Hz. Figure 4.5 shows the 

UAV’s horizontal trajectory. All three PPP algorithms were implemented epoch-by-

epoch in post-processing mode. The parameters used in the kinematic experiment are the 

same as in the static experiment. Thresholds 𝑑𝑡ℎ for pseudorange and carrier phase are 

set as 10 and 0.1, respectively. 

  

Figure 4.5 Horizontal motion trajectory 

To compare the performance of the three PPP algorithms, the post-processed GPS-RTK 

positioning results were used as reference. Figure 4.6 is the comparison of the positioning 

error results of the three PPP algorithms. Table 4.4 gives the detailed positioning accuracy 

comparison calculated after 20 min into the flight. It can be seen that the positioning 

accuracy achieved by PPP with the LS-SVM and GPR algorithms are higher than for the 

conventional PPP, due to its ability to effectively reduce the deteriorated positioning 

accuracy as shown in Figure 4.6 at around the 8 min time tag. 

Table 4.4 Positioning accuracy comparison 

Algorithm Positioning Errors (cm) 

Conventional PPP 28 
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PPP with LS-SVM 22 

PPP with GPR 20 

  

Figure 4.6 Positioning error comparison 

The pseudorange and carrier phase innovation statistics of all observed GPS satellites 

from all three PPP algorithms are compared in Figure 4.7. The comparison of the 

measurement innovation distribution for satellite PRN 12 is shown as a typical example 

in Figure 4.8. It can be seen that the whiteness properties of both the pseudorange and 

carrier phase innovations are improved by PPP with LS-SVM and GPR. The 

improvement achieved for pseudorange measurements is higher than for carrier phase. In 

addition, it can be seen that PPP with GPR has a slightly higher improvement compared 

with PPP with LS-SVM, which further suggests that it is preferable to use GPR-based KF 

algorithm for real-time GNSS PPP applications. 
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Figure 4.7 Measurement innovation statistics comparison 

Table 4.5 Averaged innovation comparison of three algorithms   

Algorithm 

Pseudorange 

Innovation 

Carrier-Phase 

Innovation 

Mean (m) STD (m) Mean (m) STD (m) 

Conventional 

PPP 
0.45 0.42 0.10 0.09 

PPP with LS-

SVM 
0.34 0.30 0.08 0.07 

PPP with GPR 0.32 0.28 0.07 0.07 
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Figure 4.8 Distribution of measurement innovations 

 Summary 

This chapter described two non-parametric model-learning based KF algorithms to deal 

with the unmodelled errors in GNSS observations. Independent LS-SVM/GPR models 

were trained in real-time for all observed satellites using the corresponding measurement 

residuals calculated in the KF. Due to the high computational cost of LS-SVM/GPR 

modelling resulting from inverse matrix calculation and limited training data, a more than 

one step sliding window was used. To avoid over-prediction using the trained LS-

SVM/GPR model, a constraint on the query point was introduced. The PPP with LS-

SVM/GPR for GNSS navigation was evaluated with both static and kinematic 
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experiments. The results reveal that PPP with LS-SVM and GPR algorithms both 

effectively reduce the effect of unmodelled errors and do achieve better positioning 

performance compared with the conventional GNSS navigation algorithms. In addition, 

the GPR-based KF algorithm is more promising for real-time GNSS PPP applications due 

to its slightly better positioning performance and the fact that there is no requirement for 

a separate prediction uncertainty calculation. 



 

72 
 

Chapter 5 Assessment of Stochastic Models for Real-time Multi-GNSS PPP 

 Introduction 

The GNSS PPP technique has been widely studied in recent years due to its capability for 

providing centimetre-to-decimetre level positioning accuracy with a single receiver (Ge 

et al., 2008; Geng et al., 2010; Knoop et al., 2017; Zumberge et al., 1997). However, this 

technique needs a long solution convergence time to achieve the desired accuracy, which 

makes it difficult for real-time positioning applications. Currently, the modernised GPS 

and GLONASS constellations, as well as the two new emerging constellations BeiDou 

and Galileo, make it possible to use a multi-constellation GNSS PPP technique, which 

has the potential to reduce the convergence time and improve positioning accuracy 

compared with PPP using a single GNSS. To facilitate the incorporation of new and 

modernised systems, the IGS initiated the Multi-GNSS Experiment (MGEX) in mid 2011 

(Montenbruck et al. 2017). Various IGS Analysis Centres (ACs) and agencies have been 

routinely providing precise satellite orbit and clock products for BeiDou, Galileo, QZSS, 

in addition to GPS and GLONASS. Currently, the Centre National d’Études Spatiales 

(CNES) freely provides corrections for the GPS, GLONASS, Galileo, and BeiDou 

constellations, which facilitates real-time multi-GNSS PPP (Kazmierski et al., 2018). 

There have been a number of published studies focusing on further improving the 

performance of multi-GNSS PPP. For example, instead of using IF observations, multi-

GNSS PPP with raw observations has demonstrated better performance in terms of 

convergence time and positioning accuracy (Liu et al., 2017; Lou et al., 2016). In addition, 

multi-GNSS PPP with AR has also been widely studied, a technique which is also able to 

shorten the convergence time and improve positioning accuracy compared to PPP AR 

using a single GNSS (Li et al., 2017; Odijk et al., 2015). The stochastic models used in 

these multi-GNSS PPP studies are all based on satellite elevation angle with fixed a priori 

variance that treat observations from different GNSSs equally, or pre-fixing the weight 

ratios for all the GNSSs to some empirical values (Gao et al., 2016; Li et al., 2015; 

Satirapod and Luansang, 2008; Zheng and Guo, 2016). However, these weighting 

strategies may not be adequate for real-time multi-GNSS PPP since the precision of 

observations from each GNSS are different. This is due to the heterogeneous real-time 

satellite orbit and clock products, the different signal structures, different levels of 

multipath and measurement noises, and atmospheric errors that are not elevation-angle 
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dependent, and others (Zhang et al., 2018). To mitigate the influence of these unmodelled 

observation errors and achieve the best unbiased estimation of the unknown solution 

parameters, an appropriate stochastic model is essential, especially for real-time GNSS 

positioning applications. The stochastic model is often represented by a variance-

covariance matrix (Aquino et al., 2009; Li et al., 2017; Shu et al., 2017; Wang, 1999). 

To determine the optimal stochastic model for GNSS positioning adjustment, the a 

posteriori variance component estimation (VCE) based methods; such as the minimum 

norm quadratic unbiased estimator (MINQUE), best invariant quadratic unbiased 

estimates (BIQUE), restricted maximum likelihood (REML), least-squares VCE (LS-

VCE) and Helmert VCE (HVCE), have been proposed (Amiri-Simkooei 2007; Amiri-

Simkooei et al. 2013; Teunissen and Amiri-Simkooei 2008; Tiberius and Kenselaar 2000). 

BIQUE, MINQUE, REML, LS-VCE and HVCE have been shown to be identical with 

each other under the assumption of Gaussian distribution (Amiri-Simkooei 2007). In the 

VCE based methods, the stochastic model is generally assumed to be a linear combination 

of some known cofactor matrices with coefficients as the unknown variance components. 

The redundant measurement residuals that contain all the unmodelled errors calculated 

during positioning adjustment are used to estimate the variances of different types of 

GNSS observations. The estimated variances can then be used to scale the weight 

matrices with the corresponding weight ratios. However, the VCE based methods are 

often used for post-processed stochastic model estimation. To determine the stochastic 

model for real-time multi-GNSS PPP, the HVCE based method is investigated in this 

chapter.  

As an alternative to VCE based methods that estimate the variances using measurement 

residuals, the stochastic model based on SISRE has been proposed for real-time GNSS 

PPP (Kazmierski et al., 2018). It takes into account the real-time satellite orbit and clock 

products by using a real-time SISRE as an observation quality indicator for the different 

GNSSs. However, the real-time SISRE based stochastic model was only assessed at the 

GNSS constellation level. The real-time SISRE based stochastic model at the level of 

individual satellites is also assessed in this chapter. In addition, to account for the varying 

measurement noise and multipath errors, the variance estimation of measurement noise 

and multipath has been widely studied. However this type of variance estimation method 

is often used for a single GNSS (Bisnath and Langley, 2001; Seepersad and Bisnath, 2015; 
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Spangenberg et al., 2010). In this chapter its application to real-time multi-constellation 

GNSS PPP is investigated.   

 Multi-GNSS PPP Function Model 

In this chapter dual-frequency IF combinations of pseudorange 𝑃𝐼𝐹 and carrier phase 𝐿𝐼𝐹 

are used for real-time multi-GNSS PPP: 

 
𝑃𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑐(𝑡𝑟 − 𝑡
𝑠) + 𝑚𝑟

𝑠𝑍𝑇𝐷𝑟 + 𝑏𝑟,𝐼𝐹
𝑠 + 𝑒𝑟,𝐼𝐹

𝑠

𝐿𝑟,𝐼𝐹
𝑠 = 𝜌𝑟

𝑠 + 𝑐(𝑡𝑟 − 𝑡
𝑠) + 𝑚𝑟

𝑠𝑍𝑇𝐷𝑟 + 𝜆𝐼𝐹
𝑠 (𝑁𝑟,𝐼𝐹

𝑠 + 𝐵𝑟,𝐼𝐹
𝑠 ) + 𝜀𝑟,𝐼𝐹

𝑠  (5.1) 

where 

𝜌𝑟
𝑠 denotes the geometric range from receiver 𝑟 to satellite 𝑠; 

𝑐 is the vacuum speed of light; 

𝑡𝑟 and 𝑡𝑠 are the clock errors of receiver and satellite (in seconds), respectively; 

𝑍𝑇𝐷𝑟 is the ZTD and 𝑚𝑟
𝑠 is the corresponding mapping function; 

𝑏𝑟,𝐼𝐹
𝑠 = 𝑏𝑟,𝐼𝐹 − 𝑏𝐼𝐹

𝑠  is the code hardware delay with receiver and satellite code 

hardware delays represented by 𝑏𝑟,𝐼𝐹 and 𝑏𝐼𝐹
𝑠 , respectively; 

𝐵𝑟,𝐼𝐹
𝑠 = 𝐵𝑟,𝐼𝐹 − 𝐵𝐼𝐹

𝑠  is the UPD with receiver and satellite UPD denoted as 𝐵𝑟,𝐼𝐹 

and 𝐵𝐼𝐹
𝑠 , respectively; 

𝑁𝑟
𝑠 is the integer ambiguity; 

𝜆𝐼𝐹
𝑠  is the wavelength of the IF combination (in metres); and 

𝑒𝑟
𝑠  and 𝜀𝑟

𝑠  denote measurement noise and multipath for the pseudorange and 

carrier phase measurements, respectively. 

Due to different frequencies and signal structures for each GNSS, the receiver biases for 

different GNSSs are different in a multi-GNSS receiver (Li et al., 2015). By treating GPS 

as the reference constellation, ISBs are introduced for other GNSSs and estimated as 

constants along with other parameters. For GLONASS satellites with different frequency 
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factors, IFBs have also to be considered in the PPP algorithm. They are generally 

modelled as frequency-specific parameters. To get the full rank function model, 

GLONASS receiver code biases can be modelled as a linear function of the frequency 

numbers (Liu et al. 2017): 

 𝑏𝑟
𝑠𝑅𝑘 = 𝑏𝑟

𝑠𝑅0 + 𝑘 ∙ Ω𝑟
𝑠𝑅  (5.2) 

where Ω𝑟
𝑠𝑅  is the new code IFB on the corresponding frequency band and 𝑏𝑟

𝑠𝑅0  is the code 

hardware delay for GLONASS satellite with frequency number 0.  

The above IF observation function model can be linearised as follows: 

 
𝛥𝑃𝑟,𝐼𝐹

𝑠 = 𝑒𝑟
𝑠 ⋅ 𝛥𝒙 + 𝑐(𝑡𝑟 − 𝑡

𝑠) + 𝑚𝑟
𝑠𝑍𝑇𝐷𝑟 + 𝑏𝑟,𝐼𝐹

𝑠 + 𝑒𝑟,𝐼𝐹
𝑠

𝐿𝑟,𝐼𝐹
𝑠 = 𝑒𝑟

𝑠 ⋅ 𝛥𝒙 + 𝑐(𝑡𝑟 − 𝑡
𝑠) + 𝑚𝑟

𝑠𝑍𝑇𝐷𝑟 + 𝜆𝐼𝐹
𝑠 (𝑁𝑟,𝐼𝐹

𝑠 + 𝐵𝑟,𝐼𝐹
𝑠 ) + 𝜀𝑟,𝐼𝐹

𝑠  (5.3) 

where 

𝛥𝑃𝑟,𝐼𝐹
𝑠  and 𝛥𝐿𝑟,𝐼𝐹

𝑠  are the observed-minus-predicted code and phase observations, 

respectively; 𝑒𝑟
𝑠 is the unit vector from satellite 𝑠∙ to receiver 𝑟; and  

𝛥𝒙 is the coordinate increment with respect to an approximate value. 

The linearised observation model can also be written in the following matrix form:  

 𝒁𝑘 = 𝑯𝑘𝑿𝑘 + 𝜼𝑘 (5.4) 

where  

𝒁𝑘 denotes the vector of observed-minus-predicted GNSS measurements; 

𝑯𝑘 denotes the design matrix of unknown parameters 𝑿𝑘 at epoch 𝑘; and 

𝜼𝑘 represents the observation noise with the variance-covariance matrix 𝑹𝒁𝑘. 

𝑹𝒁𝑘  reflects the precision and correlation of different types of observations, i.e. the 

stochastic model for GNSS observables. To achieve the best unbiased estimation of the 
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unknown parameters for real-time multi-GNSS PPP based on the LS- or KF-based 

methods, it is necessary to use an appropriate variance-covariance matrix.  

 Stochastic Models for Real-Time Multi-GNSS PPP 

Two types of stochastic models for real-time multi-GNSS PPP were investigated: the a 

priori model and the real-time estimated stochastic model. To limit the increase in 

computational complexity for real-time stochastic model estimation and to facilitate the 

performance comparison of these two types of stochastic models, time correlation and 

cross-correlation between different frequencies and types of observations are ignored. 

Only variances among different GNSSs and observations are taken into account. 

Therefore the stochastic model can be expressed as in the following form: 

 𝑹𝒁𝑖 = 𝜎𝑖
2𝑷𝒁𝑖

−1 =

[
 
 
 
 
𝜎𝐺
2𝑷𝒁𝐺

−1 0 0 0

0 𝜎𝑅
2𝑷𝒁𝑅

−1 0 0

0 0 𝜎𝐸
2𝑷𝒁𝐸

−1 0

0 0 0 𝜎𝐶
2𝑷𝒁𝐶

−1
]
 
 
 
 

, 𝑖 = 𝐺, 𝑅, 𝐸, 𝐶  (5.5) 

where 𝜎𝑖
2  and 𝑷𝒁𝑖  are the a priori variance of unit weight and the weight matrix, 

respectively. They are also referred as the variance factor 𝜎𝑖
2 and cofactor matrix 𝑷𝒁𝑖 in 

the literature. In the case of LS-based estimation methods the estimated unknown 

parameters are invariant with respect to changes in 𝜎𝑖
2, but affected by changes in 𝑷𝒁𝑖 

(Teunissen and Amiri-Simkooei, 2008). 

 A Priori Stochastic Model 

To mitigate the unmodelled elevation-related errors, such as ionospheric, tropospheric 

and multipath errors, the a priori stochastic model based on the satellite elevation angle 

is often used for GNSS-based positioning algorithms due to its simplicity and low 

computational complexity (Howind et al., 1999). When using this a priori elevation-

dependent stochastic model for multi-GNSS positioning, different a priori variances of 

unit weight for different GNSSs also need to be considered due to different signal 

structures, different levels of measurement noise and multipath, etc. However, there are 

still some measurement residuals that are not elevation-dependent, resulting from input 

GNSS corrections such as the precise satellite orbit and clock products. To take into 



 

77 
 

account these errors, the a priori stochastic model with real-time precise multi-GNSS 

SISRE can be used to determine the weight ratios among different GNSSs. 

5.3.1.1 A Priori Stochastic Model Based on Satellite Elevation Angle 

There are two commonly used elevation angle based weight matrices, based on 

trigonometric and exponential forms (Gao et al., 2011; Yu and Gao, 2017): 

 

𝑝
𝒁
𝑖

𝑛𝑖 = 𝑎2 + 𝑏2 (𝑠𝑖𝑛 𝜃𝑖
𝑛𝑖)

2
⁄

𝑝
𝒁
𝑖

𝑛𝑖 = [𝑎0 + 𝑎1 ⋅ 𝑒𝑥𝑝(−𝜃𝑖
𝑛𝑖 𝜃0⁄ )]

2 (5.6) 

where 

𝑎, 𝑏, 𝑎0, 𝑎1 and 𝜃0 are constant empirical values; 

𝜃𝑖
𝑛𝑖 is the 𝑛𝑖th satellite elevation angle of the ith GNSS; and 

𝑝
𝒁
𝑖

𝑛𝑖  is the ith diagonal component of the weight matrix 𝑷𝒁𝑖
−1.  

The reference values for the constant empirical values can be found in, for example, Han 

(1997). Since there are some measurement errors that are not elevation-dependent, 

resulting from signal diffraction and receiver characteristics, a carrier-to-noise ratio (C/N0) 

based stochastic model has been proposed to describe the carrier phase variance 𝜎
𝒁
𝑖

𝑛𝑖
2  

(Brunner et al., 1999), which is generally expressed as: 

 𝜎
𝒁
𝑖

𝑛𝑖
2 = 𝐶𝑖 ⋅ 10

−(
𝐶 𝑁0⁄
10

)
  (5.7) 

where 𝐶𝑖 is a constant value (in 𝑚2𝐻𝑧). The C/N0 based stochastic model can also be 

combined with the elevation-based stochastic model (Luo et al., 2009). One example of 

such a combined stochastic model 𝑝
𝒁
𝑖

𝑛𝑖
𝑐𝑜𝑚 can be written as (Gao et al., 2011): 

 𝑝
𝒁
𝑖

𝑛𝑖
𝑐𝑜𝑚 = (9 𝑠⁄ )2𝑝

𝒁
𝑖

𝑛𝑖  (5.8) 

where 𝑠 is the scaling factor, which can be expressed as: 
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 𝑠 =

{
 
 

 
 9 𝑖𝑛𝑡 (

𝐶 𝑁0⁄

5
) > 9

𝑖𝑛𝑡 (
𝐶 𝑁0⁄

5
) 𝑒𝑙𝑠𝑒

 (5.9) 

The above weight matrix can be used to determine the weight ratios for satellites with the 

same type of observations. For multi-GNSS PPP positioning using both pseudorange and 

carrier phase measurements, the variance factor of pseudorange measurements is often 

assumed to be 104 times larger than that of carrier phase measurements (Giorgi and 

Teunissen, 2012). For observations from different GNSSs with multiple frequencies, one 

commonly used approach is to directly weight GNSS observations with empirical 

variance factor ratios by analysing their measurement noises and multipath effects (Cai 

et al., 2016; Wang et al., 2018). 

5.3.1.2 A Priori Stochastic Model Based on Real-time SISRE 

To mitigate the influence of errors in the input satellite orbit and clock products on the 

GNSS PPP positioning, the a priori stochastic model based on real-time precise GNSS 

SISRE was developed (Kazmierski et al., 2018). The real-time precise GNSS SISRE can 

be defined in a similar way to the traditional SISRE quantity for assessing constellation-

specific positioning performance using broadcast ephemerides. The real-time precise 

GNSS SISRE can be calculated based on the global-average instantaneous SISREs 

(Montenbruck et al., 2018): 

 𝜎𝑆𝐼𝑆𝑅𝐸,𝑖
𝑠𝑖 = √[𝑤𝑅(𝛥𝑟𝑅 − 𝛥𝑟̄𝑅) − (𝛥𝜏 − 𝛥𝜏̄)]2 + 𝑤𝐴,𝐶(𝛥𝑟𝐴

2 + 𝛥𝑟𝐶
2) (5.10) 

where  

𝛥𝑟𝑅 , 𝛥𝑟𝐴  and 𝛥𝑟𝐶  represent the real-time orbit error in the radial-, along- and 

cross- directions, respectively;  

𝛥𝜏 is the real-time clock error; and  

𝑤𝑅, 𝑤𝐴 and 𝑤𝐶 are weight factors specific to the satellite orbit radius.  
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The values of these weight factors for different satellites from different GNSSs are listed 

in Table 5.1, which are the same as those used for the conventional SISRE calculation 

with the broadcast ephemerides. 𝛥𝑟̄𝑅 and 𝛥𝜏̄ are the constellation mean values of orbit 

radius and clock errors, respectively. These two mean values are used to remove errors, 

due to time system offset, group delay offset and pseudorange error, common to all 

satellites within a single GNSS. As the real-time precise GNSS SISRE is a satellite- and 

epoch-specific value, it can also be used to compute real-time precise root mean squared 

(RMS) GNSS SISRE 𝜎𝑆𝐼𝑆𝑅𝐸,𝑖 over all satellites for each GNSS: 

 𝜎𝑆𝐼𝑆𝑅𝐸,𝑖 = RMS(𝜎𝑆𝐼𝑆𝑅𝐸,𝑖
𝑠𝑖 ) (5.11) 

Table 5.1 Weight factors used in SISRE computation (Montenbruck et al. 2015) 

GNSS 𝑤𝑅  𝑤𝐴,𝐶 

GPS 0.98 1/49 

GLONASS 0.98 1/45 

Galileo 0.98 1/61 

BeiDou 

(IGSO/GEO) 
0.99 1/126 

BeiDou (MEO) 0.98 1/54 

Using the real-time precise GNSS SISRE it is possible to weight all observations at the 

satellite level by comparing all the individual satellite SISRE values. In addition, it is also 

possible to obtain the weight ratio at the GNSS level by comparing the real-time precise 

RMS GNSS SISRE values. In this chapter the real-time precise RMS SISRE of GPS is 

used as a reference value. Therefore the weight matrix on the satellite level can be 

calculated as: 

 𝑷̄𝒁𝑖 =
(𝜎𝑆𝐼𝑆𝑅𝐸,𝑖

𝑠𝑖 )
2

𝜎𝑆𝐼𝑆𝑅𝐸,𝐺
2 𝑷𝒁𝑖 

(5.12) 

Similarly, the weight matrix at the GNSS level can be calculated as: 

 𝑷̄𝒁𝑖 =
𝜎𝑆𝐼𝑆𝑅𝐸,𝑖
2

𝜎𝑆𝐼𝑆𝑅𝐸,𝐺
2 𝑷𝒁𝑖 (5.13) 
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The weight matrix can be calculated on a daily basis for real-time multi-GNSS PPP or 

even in real-time if it is possible to provide the users with real-time monitored precise 

SISRE values.  

 Real-time Estimated Stochastic Model 

The a priori stochastic models described above only take into account measurement errors 

based on empirical experiment data to determine the weight ratios of different types 

observations or observations from different GNSSs. To obtain the optimal weight ratios 

of different types of observations, the VCE based methods can be used by analysing 

redundant measurement residuals that contain all the unmodelled measurement errors. 

One widely used VCE based method, the HVCE, for estimating the stochastic model for 

real-time multi-GNSS PPP is described in the following section. In addition, the real-time 

variance estimation for pseudorange noise and multipath errors is also introduced. 

5.3.2.1 Real-time Variance Estimation Based on HVCE 

According to the HVCE theory, the variance of observations from different GNSSs at one 

epoch can be estimated posteriorly using the measurement residuals (Zhou et al., 2008). 

The measurement residuals 𝑽𝑘 can be obtained as follows: 

 𝑽𝑘 =

[
 
 
 
𝑽𝐺,𝑘
𝑽𝑅,𝑘
𝑽𝐸,𝑘
𝑽𝐶,𝑘]

 
 
 

=

[
 
 
 
𝑯𝐺,𝑘

𝑯𝑅,𝑘

𝑯𝐸,𝑘

𝑯𝐶,𝑘]
 
 
 

𝑿𝑘 −

[
 
 
 
𝒁𝐺,𝑘
𝒁𝑅,𝑘
𝒁𝐸,𝑘
𝒁𝐶,𝑘]

 
 
 

 (5.14) 

With the known a priori weight matrices of the four GNSSs, the unit weight variances for 

the four GNSSs can be estimated as: 

 

[
 
 
 
 
𝜎̂𝐺,𝑘
2

𝜎̂𝑅,𝑘
2

𝜎̂𝐸,𝑘
2

𝜎̂𝐶,𝑘
2
]
 
 
 
 

= [

𝑠𝐺𝐺 𝑠𝐺𝑅 𝑠𝐺𝐸 𝑠𝐺𝐶
𝑠𝑅𝐺 𝑠𝑅𝑅 𝑠𝑅𝐸 𝑠𝑅𝐶
𝑠𝐸𝐺 𝑠𝐸𝑅 𝑠𝐸𝐸 𝑠𝐸𝐶
𝑠𝐶𝐺 𝑠𝐶𝑅 𝑠𝐶𝐸 𝑠𝐶𝐶

]

−1

[
 
 
 
 
𝑽𝐺,𝑘
𝑇 𝑷𝒁𝐺,𝑘𝑽𝐺,𝑘

𝑽𝑅,𝑘
𝑇 𝑷𝒁𝑅,𝑘𝑽𝑅,𝑘

𝑽𝐸,𝑘
𝑇 𝑷𝒁𝐸,𝑘𝑽𝐸,𝑘

𝑽𝐶,𝑘
𝑇 𝑷𝒁𝐶,𝑘𝑽𝐶,𝑘 ]

 
 
 
 

 (5.15) 

 

𝑠𝑖𝑖 = 𝑛𝑖 − 2𝑡𝑟(𝑵
−1𝑵𝑖) + 𝑡𝑟(𝑵

−1𝑵𝑖)
2

𝑠𝑖𝑗 = 𝑠𝑗𝑖 = 𝑡𝑟(𝑵−1𝑵𝑖𝑵
−1𝑵𝑗) 𝑗 ≠ 𝑖 𝑖, 𝑗 = 𝐺, 𝑅, 𝐸, 𝐶

𝑵 = 𝑯𝑇𝑷𝒁
−1𝑯 𝑵𝑖 = 𝑯𝑖

𝑇𝑷𝒁𝑖
−1𝑯𝑖

 (5.16) 
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where 

𝑛𝑖 is the number of measurements from the ith GNSS; and 

𝑡𝑟(∙) denotes the trace operation on the matrix.  

If the a priori weight matrices for the four GNSSs are inaccurate, then the estimated unit 

weight variances are not equal. In this case, the weight matrix can be scaled by a factor 

𝜆̂𝑖,𝑘: 

 𝑷̂𝒁𝑖,𝑘 = 𝜆̂𝑖,𝑘𝑷𝒁𝑖,𝑘 (5.17) 

where 𝑷̂𝒁𝑖,𝑘  is the new weight matrix. 𝜆̂𝑖,𝑘  can be iteratively updated based on the 

estimated unit weight variances 𝜎̂𝑖,𝑘
2 : 

 𝜆̂𝑖,𝑘 =
𝑎𝜆𝑖,𝑘

𝜎̂𝑖,𝑘
2  (5.18) 

where 𝑎 is a constant, which is usually set equal to 𝜎̂𝐺,𝑘
2 . The initial value of the scale 

factor 𝜆𝑖,𝑘 is set to 1. With the estimated unit weight variances 𝜎̂𝑖,𝑘
2  and scaled weight 

matrix 𝑷̂𝒁𝑖,𝑘, the state 𝑿𝑘 can be re-estimated. Equations (5.14) to (5.18) are iteratively 

recalculated until the differences of all the estimated unit weight variances are less than a 

given threshold. The HVCE based variance estimation method is also able to calculate 

weight ratios between pseudorange and carrier phase observations in a single GNSS with 

the fixed ambiguities. However this method is difficult to implement for real-time 

applications due to the inverse operation for estimating the unit weight variances. To 

reduce the computational cost, simplified formulas for VCE can be used. One widely used 

simplified estimator is the Förstner method (Bähr et al., 2007). This method is derived 

with an assumption that the iteration in HVCE will be finally converged. Since the 

stochastic model considered in this chapter has block diagonal structure, the 

simplification of equation (5.15) is given as (Wang et al., 2009): 

 𝜎̂𝑖,𝑘
2 =

𝑽𝑖,𝑘
𝑇 𝑷𝒁𝑖,𝑘𝑽𝑖,𝑘

𝑟𝑖,𝑘
  (5.19) 
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where 𝑟𝑖,𝑘 = 𝑛𝑖 − 𝑡𝑟(𝑵
−1𝑵𝑖)  denotes the redundancy contribution of the ith GNSS, 

which can also be seen as the number of degrees of freedom. Although Förstner’s VCE 

estimates are identical to those of HVCE on the premise of convergence, independence 

of observations from each GNSS and good approximate values of the a priori variance of 

unit weight are required for (fast) convergence. In addition, the HVCE method may 

generate negative variance estimates, which can also be avoided by using appropriate the 

a priori variance of unit weight. To further reduce the computational time of the matrix 

product 𝑵−1𝑵𝑖 in equation (5.19), the unit weight variance estimation can be simplified 

as (Bähr et al., 2007): 

 𝜎̂𝑖,𝑘
2 =

𝑽𝑖,𝑘
𝑇 𝑷𝒁𝑖,𝑘𝑽𝑖,𝑘

𝑛𝑖 − 𝑢𝑖,𝑘
=
𝑽𝑖,𝑘
𝑇 𝑷𝒁𝑖,𝑘𝑽𝑖,𝑘

𝑛𝑖 −
𝑛𝑖
𝑛 𝑢

 (5.20) 

where  

𝑢𝑖,𝑘 is the decomposed number of unknowns of the ith GNSS; 

𝑛 = ∑ 𝑛𝑖𝑖  is the overall number of observations; and 

𝑢 is the overall number of unknown parameters. 

When there are outliers in the observations, the scaled weight matrix derived from the 

above VCE methods could be dramatically affected, which is not robust enough to be 

used directly for parameter estimation (Yang et al., 2002). To reduce the effect of outliers, 

an equivalent weight matrix 𝑷̄𝒁𝑘 based on the IGG-III can be used instead. Its diagonal 

elements are calculated as follows: 

 𝑝̄𝒁𝑘
𝑖𝑖 =

{
 
 

 
 

𝑝𝒁𝑘
𝑖𝑖 |𝑽̄𝑖,𝑘| ≤ 𝑘0

𝑝𝒁𝑘
𝑖𝑖

𝑘0

|𝑽̄𝑖,𝑘|
(
𝑘1 − |𝑽̄𝑖,𝑘|

𝑘1 − 𝑘0
)

2

𝑘0 < |𝑽̄𝑖,𝑘| ≤ 𝑘1

0 𝑘1 < |𝑽̄𝑖,𝑘|

 (5.21) 

where  

𝑘0 and 𝑘1 are two constants, which are usually chosen as being in the ranges 2.0 −

3.0 and 4.5 − 8.5, respectively; and 
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𝑝𝒁𝑘
𝑖𝑖  is the ith diagonal element of the weight matrix 𝑷𝒁𝑘. 

When sufficient observation redundancy for a single epoch cannot be satisfied there is 

insufficient robustness to estimate the unit weight variances on an epoch-by-epoch basis. 

Therefore in order to ensure reliable stochastic model estimation, one commonly used 

strategy is to estimate the unit weight variances using a multi-epoch model (Tiberius and 

Kenselaar, 2003). It is assumed that the stochastic model is the same over m epochs and 

the time correlation is absent. Then the estimated unit weight variance can be obtained by 

averaging those estimated per epoch:  

 𝜎̂𝑖,𝑘
2 =

∑ 𝜎̂𝑖,𝑡
2𝑘

𝑡=𝑘−𝑚+1

𝑚
  (5.22) 

The above HVCE based methods could all be implemented for real-time multi-GNSS 

PPP. However, one problem is that the different ranges of the calculated multi-GNSS 

residuals resulting from the different systematic errors need to be taken into account. This 

can be solved by unifying all the measurement residuals 𝑽𝑘 with the corresponding unit 

weight variances 𝜎𝑖,𝑘
2  and weight matrices 𝑸𝑖 (Zhang et al., 2018): 

 𝑽̄𝑖,𝑘 =
𝑽𝑖,𝑘

𝜎𝑖,𝑘
2 √𝑸𝑖

 (5.23) 

with 

 𝑸𝑖 = 𝑷𝒁𝑖,𝑘
−1 −𝑯𝑖,𝑘𝑵𝑖𝑯𝑖,𝑘

𝑇  (5.24) 

The standardised measurement residuals can then be used in HVCE based methods for 

real-time multi-GNSS PPP. 

5.3.2.2 Real-time Variance Estimation for Pseudorange Noise and Multipath 

There are two commonly used approaches to mitigate the influence of pseudorange 

multipath errors on positioning: modelling pseudorange multipath errors and removing 

them from the observations, or pseudorange multipath error-based stochastic modelling 

(Seepersad and Bisnath, 2015). In this chapter the latter approach is considered. In order 

to effectively analyse the pseudorange multipath errors, all geometric contributions, and 
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ionospheric and tropospheric delays in pseudorange measurements have to be cancelled 

out. The well-known multipath linear combination, i.e. geometric-free IF pseudorange 

combination, is used to estimate the variance of pseudorange multipath errors (Lei et al., 

2017). The geometry-free IF measurements can be generalised as follows: 

 
𝑃𝐼𝐹 = 𝑔 +𝑚𝑝𝑃,𝐼𝐹 + 𝑏𝐼𝐹 + 𝑒𝐼𝐹

𝐿𝐼𝐹 = 𝑔 + 𝜆𝐼𝐹𝑁𝐼𝐹 +𝑚𝑝𝐿,𝐼𝐹 + 𝐵𝐼𝐹 + 𝜀𝐼𝐹
 (5.25) 

where  

𝑔 is a geometric term including the geometric range between the receiver and 

satellite, tropospheric delay, receiver clock error and satellite clock error; and  

𝑚𝑝𝑃,𝐼𝐹 and 𝑚𝑝𝐿,𝐼𝐹 are the pseudorange and carrier phase multipath, respectively.  

To adaptively calculate the stochastic model of pseudorange multipath errors, a linear 

combination of pseudorange and carrier phase can be used: 

 𝑀𝑃 = 𝑃𝐼𝐹 − 𝐿𝐼𝐹 (5.26) 

Compared to pseudorange multipath errors, the carrier phase multipath error is 

approximately two orders of magnitude smaller, and can therefore be neglected. Then the 

expectation and dispersion of 𝑀𝑃 are: 

 
𝐸(𝑀𝑃) ≈ 𝑚𝑝𝑃,𝐼𝐹 + 𝑏𝐼𝐹 − 𝜆𝐼𝐹𝑁𝐼𝐹 − 𝐵𝐼𝐹

𝐷(𝑀𝑃) ≈ 𝜎̂𝑃
2  (5.27) 

Assuming that there are no cycle slips in the carrier phase, the phase ambiguities and the 

receiver hardware delays can be considered to be constants. Then 𝜎̂𝑃
2 can be estimated in 

real-time with a sliding window by subtracting the mean value 𝑀̄𝑃 from the sequences of 

𝑀𝑃: 

 𝜎̂𝑃,𝑘
2 =

∑ (𝑀𝑃,𝑘−𝑡 − 𝑀̄𝑃)
2𝑘

𝑡=𝑘−𝑚+1

𝑚− 1
 (5.28) 

where 𝑚 is the number of epochs in the sliding window. 𝑚 has to be carefully chosen by 

trading off the periodic influence of the multipath effect and tracking sensitivity for time-
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varying pseudorange errors. Instead of directly calculating 𝜎̂𝑃
2 based on equation (5.28), 

a fading factor 𝛽 (0 < 𝛽 ≤ 1) can be introduced to reduce the contribution of earlier 

information (Zheng and Guo, 2016): 

 𝜎̂𝑃,𝑘
2 =

∑ 𝛽𝑘−𝑡(𝑀𝑃,𝑘−𝑡 − 𝑀̄𝑃)
2𝑘

𝑡=𝑘−𝑚+1

∑ 𝛽𝑘−𝑡
𝑘
𝑡=𝑘−𝑚+1

  (5.29) 

where 𝛽𝑘−𝑡 can be set to 
9

9+𝑘−𝑡
. The weight matrix used for multi-GNSS PPP can then be 

directly scaled with the estimated multipath error variances for each observed satellite.  

 Experiment and Result Analysis 

To evaluate the stochastic models for the A-PL positioning with real-time multi-GNSS 

PPP, observations collected from 14 stations in the MGEX network were tested. These 

14 stations are globally distributed as shown in Figure 5.1.  

 

Figure 5.1 Distribution of selected MGEX stations 

One-week GNSS data for only three GNSSs GPS, GLONASS and Galileo, observed from 

DOY 60 to 66 in 2018 were processed on an epoch-by-epoch basis as there was no 

BeiDou observation for these stations during this period. Some details of the multi-GNSS 

PPP processing strategy are summarised in Table 5.2. 

Table 5.2 Multi-GNSS PPP data processing strategy 

Item Models 

Observations IF pseudorange and carrier phase 

Frequencies 
GPS: L1/L2; GLONASS: L1/L2; Galileo: 

E1/E5a 
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Sampling rate 30s 

Elevation cut-off angle 7∘ 

A priori stochastic model for 

a single GNSS  

A priori standard deviation of 0.003m and 

0.3m for carrier phase and pseudorange 

observations; trigonometric elevation 

dependent weight matrix 

Satellite antenna correction 
Correct PCOs and PCVs for GPS, 

GLONASS and Galileo with IGS14.atx 

Receiver antenna correction 

Correct PCOs and PCVs for GPS and 

GLONASS with IGS14.atx; Galileo 

corrections are assumed to be the same as 

GPS 

Phase-windup effect Model corrected 

Station displacement 

Corrected based on IERS Convention 2010, 

including Solid Earth tide, pole tide and 

ocean tide loading 

Differential code bias 
Corrected with DCB products provided by 

CODE 

Satellite orbits and clocks 
Using the ultra-rapid products from 

GeoForschungsZentrum Potsdam (GFZ)  

Station coordinates Estimated in epoch-wise kinematic mode 

Terrestrial frame  
International Terrestrial Reference Frame 

2014 (ITRF2014) 

Receiver clock offsets Estimated as epoch-wise white noise 

Receiver ISBs Estimated as constants 

GLONASS code IFBs Estimated as 1-day constants 

Tropospheric delays 

Saastamoinen model as a priori value and 

wet delay estimated every 1 hour as random-

walk noises (10−7m2 s⁄ ) with global 

mapping function 

Phase ambiguities Estimated as float constants 

Estimator EKF 

To assess the a priori stochastic model based on real-time SISRE for multi-GNSS PPP, 

ultra-rapid and final multi-GNSS orbit and clock products provided by the GFZ were used 

for the SISRE calculation, which are denoted in the following experiment as GBU and 

GBM, respectively. The predicted GBU orbit and satellite clock products between 2 and 

5 hours into the second half of each GBU file were used for the real-time multi-GNSS 

PPP. The real-time multi-GNSS SISRE values from January to July 2018 were calculated 
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using equation (5.10). The mean RMS SISRE and the 95th-percentile SISRE of each 

satellite in different GNSSs for the six months were also calculated, as shown in Figure 

5.2. Table 5.3 lists the mean RMS SISRE values over all satellites for each GNSS, which 

are also denoted in Figure 5.2 with the horizontal bar. As can be seen from Figure 5.2, 

the satellite-specific SISRE value in the same GNSS varies from each other. The satellite 

SISRE values of most satellites are nearly at the same level as that of the corresponding 

GNSS. However, it can also be observed that some satellites’ SISRE values are 

significantly larger than others, such as PRN#G08, PRN#G24 and PRN#E11, which can 

be excluded from user positioning or applied with lower weight when they are not flagged 

as outliers. In addition, the mean RMS SISRE values for different GNSSs vary from each 

other. In the following experiment, two a priori stochastic models with the real-time 

SISRE for multi-GNSS PPP were evaluated. One was based on the GNSS system-specific 

SISRE and the other one was based on the satellite-specific SISRE. 
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Figure 5.2 Multi-GNSS satellite SISRE comparison 

Table 5.3 Multi-GNSS system SISRE comparison 

System RMS of SISRE (m) 

GPS 0.3 

GLONASS 0.9 

Galileo 0.1 

BeiDou (GEO) 1.3 

BeiDou (IGSO/MEO) 0.6 

The SISRE ratios among all satellites and GNSSs were used to scale the elevation-based 

weight matrices for the two a priori stochastic models. To calculate the SISRE ratios, all 

satellite- and GNSS-specific SISRE values were compared with the mean RMS SISRE 

value of GPS. The daily satellite and GNSS SISRE ratios were used for the two a priori 
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stochastic models, which can be updated with the same rate as the precise orbit and 

satellite clock products. Since multi-GNSS observations during 1-7 March 2018 were 

selected for multi-GNSS PPP, the GBU orbit and clock products starting from 28 

February 2018 were utilised for the satellite and GNSS SISRE calculations. In addition 

to the two a priori stochastic models based on the SISRE ratios, the other two real-time 

estimated stochastic models were also considered. The simplified multi-epoch estimator 

for HVCE method based on equation (5.20) with the standard measurement residuals was 

used in the experiment. The IGG-III was used to remove the influence of outliers. The 

number of epochs was set to 20, i.e. 10 mins. To achieve stable variance estimation the 

least number of observed satellites for each GNSS was set to 5. Only pseudorange 

measurement residuals were used to estimate the variance in real-time as the carrier phase 

ambiguities were not fixed in the experiment. The other real-time variance estimation for 

pseudorange noise and multipath is referred to as the PML method in the following 

experiment. The number of epochs to initialise and estimate the variance of pseudorange 

noise and multipath were set to 60 and 20, i.e. 30 mins and 10 mins, respectively. To 

avoid using a wrong estimate of variance of pseudorange noise and multipath for each 

observed satellite, a constraint was introduced. If the estimated variance is 𝛼  times 

larger/smaller than the one estimated before, then the weight matrix used in the stochastic 

model is calculated with the one estimated before. 𝛼 was set to 5 in the experiment. In 

addition, when cycle slips were detected during multi-GNSS PPP processing, the two 

real-time estimated stochastic models were re-initialised. To assess the four different 

stochastic models for real-time multi-GNSS PPP, the performance of the 14 MGEX 

stations with respect to positioning accuracy, repeatability and estimated ZTD accuracy 

were compared. The positioning accuracy and repeatability were indicated by the RMS 

and STD of positioning error, respectively. RMS of ZTD estimation error was used to 

represent the ZTD accuracy. The estimated station coordinates and ZTD were all 

compared against the daily SINEX and ZTD solutions provided by the IGS, which can 

be accessed at ftp://cddis.nasa.gov/gnss/products/. 

Figure 5.3 shows the station performance improvement of real-time multi-GNSS PPP 

using the four different stochastic models, compared with the results of conventional 

multi-GNSS PPP with a priori stochastic model based on satellite elevation angle.  

ftp://cddis.nasa.gov/gnss/products/
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Figure 5.3 Real-time multi-GNSS PPP performance improvement with four different 
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stochastic models  

Table 5.4, Table 5.5 and Table 5.6 list the averaged positioning accuracy, repeatability 

and estimated ZTD accuracy over all 14 MGEX stations as well as the corresponding 

percentage of improvement, respectively. It can be seen that the positioning accuracy, 

repeatability and estimated ZTD accuracy achieved by multi-GNSS PPP with the four 

stochastic models are all better than using conventional multi-GNSS PPP even though a 

few stations, such as CHPG, GAMG and MAYG, have slightly worse performance, as 

shown in Figure 5.3. 

Table 5.4 Averaged positioning accuracy comparison among four different stochastic 

models  

Stochastic 

Models 

RMSE (cm) Accuracy 

Improvement East North Up 3D  

Conventional 

PPP  
9.1 2.8 6.6 11.5 - 

PML 8.2 2.7 6.3 10.7 7.4% 

HVCE 7.9 2.7 5.9 10.2 10.7% 

System 

SISRE Ratio 
7.3 2.7 5.3 9.4 18.2% 

Satellite 

SISRE Ratio 
6.7 2.9 5.1 8.9 22.7% 

Table 5.5 Averaged positioning repeatability comparison among four different 

stochastic models 

Stochastic 

Models 

STD (cm) 
Repeatability 

Improvement East North Up 3D  

Conventional 

PPP  
2.6 1.4 2.5 3.9 - 

PML 2.5 1.2 2.3 3.6 6.9% 

HVCE 2.1 1.2 2.1 3.3 14.7% 

System 

SISRE Ratio 
2.1 1.1 1.9 3.1 20.7% 

Satellite 

SISRE Ratio 
1.3 0.9 1.7 2.3 41.5% 

Table 5.6 Averaged ZTD estimation comparison among four different stochastic models  
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Stochastic Models RMSE (cm) ZTD 

Improvement Conventional PPP  11.2 - 

PML 10.3 7.9% 

HVCE 9.6 13.4% 

System SISRE Ratio  8.3 26.1% 

Satellite SISRE Ratio 6.0 46.3% 

As can be seen from the performance comparison, the real-time multi-GNSS PPP with 

stochastic model based on satellite SISRE ratio has the best performance with 22.7%, 

41.5% and 46.3% improvement in positioning accuracy, repeatability and ZTD 

estimation accuracy, respectively. This stochastic model takes into account the errors in 

precise orbit and satellite clock values of each individual satellite, which can also be used 

for GNSS PPP with a single GNSS. Although the stochastic model based on PML also 

scales the weight matrix for each observed satellite, it has the least performance 

improvement. Since the magnitude of multipath also depends on the elevation angle, it 

reflects the pseudorange precision similar to the a priori elevation-dependent stochastic 

model. To further illustrate the difference between stochastic model based on PML 

compared with the one based on satellite SISRE ratio, the average RMS of pseudorange 

noise and multipath for each GNSS was calculated, as shown in Figure 5.4 and Table 5.7. 

It can be seen that observations from GPS and GLONASS have nearly the same level of 

pseudorange noise and multipath of about 0.6m. The lowest average RMS of pseudorange 

noise and multipath 0.4m was observed for Galileo observations. The weight ratios 

calculated with the average RMS of pseudorange noise and multipath among the different 

GNSSs are listed in Table 5.7. It can be seen as that only observations from Galileo were 

being scaled compared with those of GPS observations. 
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Figure 5.4 Multi-GNSS pseudorange multipath error of different stations 

Table 5.7 Multi-GNSS pseudorange multipath error comparison 

GNSS Systems 

Average 

Pseudorange 

Multipath Error 

(m) 

Multipath 

Ratio 

GPS 0.6 1.0 

GLONASS 0.6 1.1 

Galileo 0.4 0.6 

The other two stochastic models only scale the weight matrices at the GNSS level by 

assuming the observed satellites in the same GNSS have the same weight. The 

performance of these two stochastic models is worse than that with satellite SISRE ratio, 

and better than that using the PML method. In addition, it can be seen that the one based 

on system SISRE ratio has better performance than the one using the HVCE method. 

Unlike the stochastic model based on system SISRE ratio that indicates the quality of 

precise satellite products, HCVE uses the measurement residuals containing all 

unmodelled errors. Therefore, in theory the stochastic model based on HCVE should have 

better performance. However the measurement residuals calculated in real-time during 

the positioning adjustment may not be able to reflect all the unmodelled errors due to the 

unconverged estimated unknown parameters. In addition, the requirement of redundant 

measurements could not be satisfied all the time, affecting variance estimation for the 

HVCE method as it only scales the weight matrix when the variances of all the epochs in 
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the sliding window can be estimated. To demonstrate the effectiveness of the HVCE 

method, the RMS of measurement residuals of GPS and Galileo measurements derived 

from conventional multi-GNSS PPP and HVCE for the 14 stations were calculated and 

compared in Figure 5.5. If HVCE could correctly estimate variance at all the epochs, the 

RMS residuals calculated for different GNSSs should be on the same level, i.e. the ratios 

among different GNSSs are around 1. The bottom plot in Figure 5.5 gives the residual 

ratios between GPS and Galileo. It can be seen that 8 stations achieve ratios around 1 with 

the HVCE method and the other 6 stations have ratios almost at the same level as those 

using conventional PPP. 

 

 

Figure 5.5 Observation residuals between conventional PPP and HVCE comparison 

To further compare the performance of the HCVE method and the a priori stochastic 

model based on satellite SISRE ratio, another stochastic model based on HCVE combined 
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with satellite SISRE ratio was also evaluated. Table 5.8, Table 5.9 and Table 5.10 list the 

detailed performance comparison over the 14 MGEX stations between these two 

stochastic models, as well as the percentage of improvement in terms of positioning 

accuracy, repeatability and estimated ZTD accuracy. It can be seen that the HCVE with 

satellite SISRE ratio has a slightly better performance than the stochastic model based on 

satellite SISRE ratio. Therefore, in practical applications it would be promising to provide 

the satellite SISRE values to the multi-GNSS PPP users in real-time as the HVCE method 

may not always be effective for real-time use. Furthermore, the a priori stochastic model 

with satellite SISRE ratio is simpler to implement compared to the real-time estimated 

stochastic models. 

Table 5.8 Averaged positioning accuracy comparison between two different stochastic 

models 

Stochastic 

Models 

RMSE (cm) 
Accuracy 

Improvement East North Up 3D  

Satellite SISRE 

Ratio  
6.7 2.9 5.1 8.9 22.7% 

HVCE with 

Satellite SISRE 

Ratio 

6.4 2.9 5.1 8.7 24.3% 

Table 5.9 Averaged positioning repeatability comparison between two different 

stochastic models 

Stochastic 

Models 

STD (cm) 
Repeatability 

Improvement East North Up 3D  

Satellite SISRE 

Ratio  
1.3 0.9 1.7 2.3 41.5% 

HVCE with 

Satellite SISRE 

Ratio 

1.2 0.8 1.6 2.2 43.3% 

Table 5.10 Averaged ZTD estimation comparison between two different stochastic 

models 

Stochastic Models RMSE (cm) 
ZTD 

Improvement 

Satellite SISRE Ratio  6.0 46.3% 

HVCE with Satellite 

SISRE Ratio 
5.8 48.4% 
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 Summary 

Two types of stochastic models for real-time multi-GNSS PPP were assessed by a static 

experiment, performed in a kinematic mode, with one-week data from 14 MGEX stations. 

The performance in terms of positioning accuracy, repeatability and estimated ZTD 

accuracy for all the stochastic models were compared. It was found that the stochastic 

models based on real-time SISRE, HVCE and PML could all achieve better performance 

than the one based on satellite elevation angle. The best performance was obtained by the 

stochastic model with real-time satellite SISRE ratio. Although PML can also obtain the 

weight ratios at the satellite level, the estimated stochastic model only reflects the 

observation precision resulting from the measurement noise and multipath. In theory, the 

HVCE based method should give the best performance if all the unmodelled errors are 

reflected in the measurement residuals. However, by calculating the RMS residuals of 

different GNSSs for the 14 MGEX stations, only 8 stations had the same level of residuals 

among the observed GNSSs. This method estimates the variance with the measurement 

residuals calculated in real-time during the positioning adjustment but may not be able to 

reflect all the unmodelled errors. In addition, it requires sufficient observation redundancy 

for each observed GNSS and in order to improve its estimation robustness and remove 

the influence of outliers, averaged multi-epoch stochastic model and IGG-III were used, 

which could lead to limited positioning performance improvement. From the evaluation 

of HVCE compared to real-time satellite SISRE ratio, it was found that the positioning 

performance was only slightly improved in comparison with that with that of the 

stochastic model based on satellite SISRE ratio. 
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Chapter 6 Satellite Selection with an End-to-end Deep Learning Network 

 Introduction 

Benefiting from multi-constellation GNSS, the number of satellites in view will be 

increased to well over 40 most of the time, at many places around the world. This 

significant increase in the number of available GNSS satellites will greatly improve 

navigation performance in terms of positioning accuracy, reliability and availability. 

However, it may not always be possible to track signals and process measurements of all 

visible satellites in real-time for a standalone GNSS receiver, especially in the case of 

low-cost receivers with limited tracking channels, or insufficient bandwidth for 

augmentation message channels, or critical power consumption (Walter et al., 2016). 

Even if all visible satellites are used for positioning, the positioning accuracy may not 

necessarily be improved, and real-time performance can deteriorate due to the high 

computational burden (Blanco-Delgado et al., 2017). Therefore it is necessary to select 

the best subset of visible satellites specially for the moving A-PLs at high altitude using 

real-time multi-GNSS PPP.  

The most straightforward algorithm for satellite selection is based on a “brute force” 

approach that aims to minimise either the GDOP or the WGDOP (Zhang and Zhang, 

2009). The optimal satellite subset is determined by computing GDOP/WGDOP values 

with all possible satellite subset combinations and selecting the subset with the minimum 

value. The GDOP/WGDOP calculation cycle can reach billions of computations for one 

epoch, with the calculation of a single GDOP or WGDOP value requiring matrix 

multiplication and inversion operations. This makes the brute force approach difficult to 

implement for real-time applications. To reduce the number of GDOP/WGDOP 

calculation cycles, a number of sub-optimal satellite selection methods have been 

proposed. For example, a quasi-optimal subset of satellites is selected by recursively 

removing the satellite that has the smallest increase in GDOP from all satellites in view 

(Liu et al., 2009), or by sequentially adding the least redundant satellite with respect to 

previously selected satellites (Peng et al., 2014; Roongpiboonsopit and Karimi, 2009), or 

just by removing the satellites that have GDOP contribution values smaller than a 

predefined threshold (Li et al., 2012). However, these algorithms are very likely to select 

a globally sub-optimal set of satellites. To track the optimal subset of satellites over time, 
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a temporal algorithm for satellite subset selection has been proposed by evolving the best 

subset over time by swapping one or two satellites (Swaszek et al., 2017). This algorithm 

shows great promise in finding the optimal subset. However, this algorithm still suffers 

from the computational burden of hundreds, even thousands of calculation cycles. To 

minimise (or even avoid) GDOP/WGDOP calculations alternative satellite selection 

approaches, such as maximisation of the volume of the polytope formed by the satellites 

(Blanco-Delgado and Nunes, 2010; Kong et al., 2014) and satellites’ comparability and 

distribution characteristics (Li et al., 2016; Wei et al., 2012), have been proposed. These 

methods cannot guarantee optimal satellite selection and need to take geometric satellite 

distribution into account. Furthermore, instead of directly computing GDOP using matrix 

multiplication and inversion operations, there are alternative methods. These include 

closed-form formulas (Doong, 2009; Teng and Wang, 2016) and machine learning (ML) 

based methods, such as the Genetic Algorithm (GA) (Mosavi, 2011; Zhu, 2018), SVM 

(Wu et al., 2011), and Neural Network (NN) approaches (Azami and Sanei, 2014; Jwo 

and Lai, 2007; Mosavi and Sorkhi, 2009; Simon and El-Sherief, 1995; Zarei, 2014). These 

ML-based methods treat satellite selection as a regression problem of GDOP calculation 

and focus on improving the performance of GDOP approximation and/or classification. 

The performance of some of these methods also depends on the training time and size of 

training data. To reduce the training time of back propagation (BP) NN, there have been 

many methods proposed in using either different NNs, such as the probabilistic NN and 

the general regression NN (Jwo and Lai, 2007), or improved BP algorithms, including 

resilient BP and conjugate gradient algorithms (Azami et al., 2013). Even with the GDOP 

approximation/classification methods, satellite selection still requires a brute force 

procedure to identify the subset with the smallest GDOP value from all possible subsets. 

Moreover, the GDOP classification can only approximately classify the GDOP value of 

each satellite subset into a predefined range (Azami et al., 2013; Jwo and Lai, 2007).  

In this chapter an end-to-end deep learning network to select the optimal subset from the 

set of all visible satellites is proposed. Instead of treating the satellite selection as a 

regression problem for GDOP calculation, it can be considered as a segmentation problem 

of a small point cloud (Grilli et al., 2017), by partitioning all visible satellites into two 

classes indicating whether the satellite is selected or not. There is no need to design a 

specific training pattern to describe the input-output relationships for the GDOP or to 

implement a brute force selection procedure. To design such an end-to-end deep learning 
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network for satellite selection with GDOP/WGDOP criteria, the interactions among all 

the input satellites need to be captured by the network.  

Since different satellite feeding orders would not change the satellite segmentation results 

the network can be designed to be invariant to all permutations of the input, as inspired 

by PointNet via using a simple symmetric function, max-pooling (Qi et al., 2016). 

Furthermore, the max-pooling enables the network to learn the global features of the 

satellite input. To output the per-satellite segmentation, the local features of each satellite 

also have to be learned. The PointNet has shown to be effective in per-point segmentation 

by combining local point and global input features learned from multi-layer perceptron 

(MLP) on each point and max-pooling across points, respectively. Therefore, the module 

with local and global information combination in the PointNet is also adopted by the end-

to-end deep learning network for satellite selection. To learn the features of the selected 

subset from all satellites in view, the input channels used for each satellite should be able 

to characterise its specified features to help satellite segmentation with respect to 

GDOP/WGDOP criteria. They can be represented by the receiver-to-satellite vector or 

elevation and azimuth angles. Each visible satellite is processed identically and 

independently at the beginning by using a few fully connected (FC) layers on each 

satellite to achieve the local satellite features. Then, new per-satellite features are obtained 

by concatenating the local satellite feature and global satellite input feature with max-

pooling, which are used as input for the subsequent segmentation layers. To learn more 

complex features for the selected satellites with GDOP/WGDOP criteria, the architecture 

of stacked voxel feature encoding (VFE) layers used in VoxelNet is also employed (Zhou 

and Tuzel, 2017). However, to obtain better-trained models for satellite segmentation, the 

stacked VFE architecture is modified with reduced output sizes to achieve compact 

satellite internal representations. One problem with this network is that the number in the 

predicted subset may not always be equal to the required one. Since the output scores of 

the network represent probabilities of input being the predicted labels, this problem can 

be solved by selecting the required number of satellites according to their output scores. 

This chapter is organised as follows. Following an introduction of the architectures of 

PointNet and VoxelNet, the end-to-end network for satellite segmentation is described in 

detail, including the training and validation data generation, architecture design, and 

training details. Models for GDOP and WGDOP with different numbers of satellites are 
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then tested with GNSS observations from 220 IGS stations. Finally, the summary is 

presented. 

 PointNet and VoxelNet Networks 

PointNet is a unified architecture for tasks with irregular input format such as point cloud-

based 3D classification and segmentation (Qi et al., 2016). It is able to directly take point 

sets as input and outputs either class labels for the entire input or per-point labels for each 

point of the input. To realise satellite selection, each satellite has to be identified to be 

selected or not. Since the segmentation network of PointNet is capable of partitioning 

input point sets into multiple homogeneous segments, i.e. per-point segment labels for 

each point of the input, this network is of more interest. Each point in the point cloud can 

be represented by its (𝑥, 𝑦, 𝑧) coordinates as well as other feature channels. Assuming 

that there are 𝑛  unordered input points {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} with 𝑥𝑖 ∈ ℝ
𝑑  and 𝑚  sub-

categories, the model trained from the segmentation network is able to output 𝑛 × 𝑚 

scores for each point and sub-category. The basic idea of the PointNet is to approximate 

a continuous function 𝑓: 𝝌 → ℝ that maps the unordered input points to a vector by 

applying a symmetric function, max-pooling, on transformed elements in the set: 

 𝑓({𝑥1, 𝑥2, ⋯ , 𝑥𝑛}) ≈ 𝛾 ( MAX
𝑖=1,2,⋯,𝑛

{𝑝(𝑥𝑖)})  (6.1) 

where 𝛾  and 𝑝  are usually MLP networks. The output vector 𝒇 represents the global 

signature of the input set. Each input point is identically and independently processed at 

the initial stages using the MLP with different hidden layers to encode statistical 

properties of the points. The MLP can also be seen as several FC layers operating on each 

point, i.e., 1 × 1 convolution layers. To achieve per-point segmentation, both local and 

global features of the input point are extracted to learn the interactions among the points. 

The local features of each point 𝒑𝑖 ∈ ℝ
𝑙 can be obtained from the initial stages with the 

MLP, and the global features 𝒇 ∈ ℝ𝑔 can be achieved with the max-pooling algorithm 

across points. Then the new per-point features 𝒑𝑖
𝑛𝑒𝑤 ∈ ℝ𝑙+𝑔  are extracted by 

concatenating the local point features with the global features: 

 𝒑𝑖
𝑛𝑒𝑤 = [𝒑𝑖

𝑇 𝒇𝑇]𝑇  (6.2) 
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Finally, the combined new per-point features are used for point label prediction with the 

MLP. Figure 6.1 illustrates the basic segmentation network architecture. 

Global featureLocal feature

Input points

MLP Max poolingMLP

Concatenated 

feature
MLP

Output scores

nxl

nxd

nx(l+g)

nxm

g

 

Figure 6.1 PointNet segmentation network architecture 

VoxelNet is an end-to-end network for point cloud-based 3D object detection (Zhou and 

Tuzel, 2017). The voxel used in the VoxelNet refers to a 3D grid, which contains a 

number of points divided from the point cloud input. One key innovation of the VoxelNet 

is its architecture of stacked VFE layers to learn voxel-wise feature, as shown in Figure 

6.2. As with the feature aggregation network in PointNet, each VFE layer is able to 

achieve the new point features by combining the point-wise features with one FC layer 

and the locally aggregated features with the max-pooling, i.e., the local point features and 

global voxel features. The main difference between the VoxelNet feature learning 

architecture and PointNet is that there are several global and local feature concatenations 

performed with the stacked VFE layers. To illustrate the detailed processing procedure of 

one voxel all the feature sizes involved in the different layers are shown in Figure 6.2. It 

is assumed that the network also takes 𝑛 points with input channels 𝑑 as input and outputs 

voxel feature 𝑓𝑣 ∈ ℝ
𝑣. Since there is one FC layer and one max-pooling in each VFE 

layer, the output feature size from each VFE is two times the local feature size. The 

stacked VFE layers also directly consume the points within the voxel as input and outputs 

new per-point concatenated features. It encodes point interactions within a voxel and 

enables learning complex voxel-wise features for characterising 3D shape information of 

each voxel. 
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Figure 6.2 Architecture of stacked VFE layers 

 An End-to-end Satellite Segmentation Network 

In contrast to the GDOP approximation/classification methods mentioned earlier, that 

treat satellite selection as a regression problem and classifying the GDOP value of satellite 

input into a predefined range, the proposed end-to-end satellite segmentation network is 

able to directly segment all the input satellites that are selected or not with no need for 

the brute force procedure required by GDOP approximation/classification methods. One 

key problem for satellite segmentation using GDOP/WGDOP criteria is that the 

segmentation results should be invariant to all the permutations of the input satellites. 

Inspired by the PointNet segmentation network that uses max-pooling to deal with 

unordered input, and predicts the per-point class label by combining the global feature 

with local point features, this architecture can be used for satellite segmentation network 

by treating the satellites in view at one instant as point cloud input, with two class labels 

– for selecting the satellite or not selecting the satellite – as output. In addition, the 
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architecture of stacked VFE layers in the VoxelNet is employed to improve the 

performance of satellite segmentation using GDOP/WGDOP criteria. 

 Train and Validation Data Generation 

Assume the selection of m satellites from n satellites in view from multiple constellations 

where inter-system time offsets have been accounted for. The criterion used for satellite 

selection is to minimise either the GDOP or WGDOP value. These values can be 

calculated by: 

 𝐺𝐷𝑂𝑃 = √𝑡𝑟(𝑯𝑇𝑯)−1 𝑊𝐺𝐷𝑂𝑃 = √𝑡𝑟(𝑯𝑇𝑾𝑯)−1 (6.3) 

where  

𝑡𝑟(∙) denotes trace of the matrix;  

𝑯 is the design matrix; and  

𝑾 is the weight matrix.  

𝑯 and 𝑾 can be represented by:  

 𝑯 = [

𝑥1 𝑦1 𝑧1 1
𝑥2 𝑦2 𝑧2 1
⋮ ⋮ ⋮ ⋮
𝑥𝑛 𝑦𝑛 𝑧𝑛 1

] 𝑾 = [
𝑤1 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝑤𝑛

] (6.4) 

where  

ℎ𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖] is the receiver to ith satellite unit vector, the column of ones in 

the 𝑯 matrix represents parameters for the receiver clock bias in units of metres; 

and 

𝑤𝑖 is the weight of the ith satellite.  

Using the brute force approach, the subset with the minimum GDOP or WGDOP value 

can be selected from 𝑛!/[𝑚! (𝑛 − 𝑚)!] possible combinations. Therefore there are two 

classes in the output data. One class is for the m selected satellites and the other is for the 
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𝑛 −𝑚 not-selected satellites. To classify the n satellites in an end-to-end fashion, the 

input data of each satellite should be able to characterise its local feature. The receiver-

to-satellite unit vector [𝑥𝑖 𝑦𝑖 𝑧𝑖] can be used as the input channel, which contains 

direct information for the optimal subset selection using GDOP/WGDOP criteria. Since 

it can also be converted to elevation and azimuth [𝑒𝑙𝑖 𝑎𝑧𝑖] , the input channel 

represented by [𝑒𝑙𝑖 𝑎𝑧𝑖] is another option. In the following experiment, the satellite 

segmentation performance using both forms of input channels is compared. 

 Satellite Segmentation Network Architecture 

To segment all the satellites in view, both local and global features of each satellite are 

needed. The local feature of each satellite can be obtained by applying inputs and feature 

transformation through a few FC layers on each satellite. Since the satellite order does 

not change the final segmentation result, max-pooling is used for the satellite 

segmentation network. Furthermore, max-pooling also learns the global features of the 

satellite input. Then new satellite-wise features can be extracted by combining the global 

features with the local satellite features. To learn multi-level features for characterising 

the pattern of the selected satellites, stacked feature encoding (FE) layers based on the 

architecture of stacked VFE layers are used. However, instead of concatenating local and 

global features every time the local feature is obtained with the FC layer in each VFE 

layer, the MLP with a few FC layers are used. As with the MLP in the PointNet, the FC 

layers operate on each satellite. The global feature obtained from the last layer in the MLP 

is concatenated with the local feature in the same layer or preceding one as shown in 

Figure 6.3. All the feature sizes derived from different layer are also illustrated in Figure 

6.3. This architecture is able to reduce the inference time due to the two times increase in 

feature size resulting from feature concatenation of each FC layer as in the stacked VFE 

layers. 
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Figure 6.3 Satellite segmentation network architecture 

 Training Details 

Since the number of satellites in view will change with time, zero-padding is needed. The 

size of the zero-padding can be determined by fixing the number of observed satellites to 

the maximum possible number of visible satellites, e.g. 𝑛. Therefore, the size of each 

input training data is 𝑛 × 𝑑 where 𝑑 is the dimension of the satellite input channel. All 

training data are randomised before processing. The network is designed by trading off 

the computational complexity and performance of satellite segmentation. It is composed 

of seven stacked FE layers and two FC layers for the final segmentation. In each FE layer, 

there are three FC layers and a max-pooling procedure. The max-pooling procedure, 

performed across the local features learned from the last FC layer, is used to obtain the 

global feature. The global feature is then concatenated with the local feature obtained 

from the second FC layer, as shown in Figure 6.3. Overall, there are 23 layers in the 
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proposed network architecture. The detailed layer output sizes are listed in Table 6.1. The 

number of layers and their sizes are empirical values. 

Table 6.1 Satellite segmentation architecture with stacked FE layers 

Layers 
Output size 

(𝑙𝑖1, 𝑙𝑖2, 𝑙𝑖3) 

Concatenated 

feature size 

(𝑙𝑖2 + 𝑙𝑖3) 

Number of 

FC layers 

Stacked 

FE layers 

FE layer 1 (32, 32, 48) 80 3 

FE layer 2 (64, 64, 96) 160 3 

FE layer 3 (128, 128, 160) 298 3 

FE layer 4 (256, 256, 320) 576 3 

FE layer 5 (512, 512, 640) 1152 3 

FE layer 6 (864, 864, 960) 1824 3 

FE layer 7 (1024, 1024, 1152) 2176 3 

Segmentation layer (1024,2) — 2 

The gradual increase in the channel size makes it possible for the network to learn more 

high-level features. Due to the redundancy in the concatenated feature in each FE layer, 

the channel size of the FC layer in the next FE layer is reduced in order to keep the 

compact satellite features. All FC layers use rectified linear units (ReLU) as activation 

function and batch normalisation. Since the satellite segmentation is satellite-wise 

classification, all of the input data including both satellite-input and zero-padding input 

have to be segmented. The same label as satellite not selected is assigned to zero-padding 

input. The loss function for the satellite segmentation network is based on the binary cross 

entropy between the target and predicted classes (De Boer et al., 2005): 

 𝐿 = −𝛼
1

𝑁1
∑𝑙𝑜𝑔(𝑙𝑖)

𝑁1

𝑖=1

− 𝛽
1

𝑁0
∑𝑙𝑜𝑔(1 − 𝑙𝑖)

𝑁0

𝑖=1

− 𝛾
1

𝑁𝑒
∑𝑙𝑜𝑔(1 − 𝑙𝑖)

𝑁𝑒

𝑖=1

 (6.5) 

where  

𝑁1, 𝑁0, and 𝑁𝑒 denote the number of satellite-input training data with label 1, 0 

and zero-padding input data with label 0, respectively; 

𝑙𝑖 denotes the predicted value of the softmax output; and 

𝛼, 𝛽, and 𝛾 are loss weight constants to adjust the relative importance balance 

among different input data. 
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The minimisation of this loss function also indirectly minimises the difference in the 

GDOP or WGDOP values between the predicted satellites to be selected and the targeted 

ones. This loss function is optimised based on one commonly used stochastic gradient 

descent algorithm for deep learning networks, the Adam optimisation algorithm (Kingma 

and Ba, 2014). This algorithm uses first-order gradients to optimise stochastic objective 

functions with adaptive estimates of first and second moments. In addition, the algorithm 

has very little memory requirement and is very suitable for neural networks with large 

training datasets and parameters. All the computations in the proposed network can be 

implemented on a CPU/GPU in parallel. One problem when using this network is that the 

number of output predictions for selected satellites may not be equal to the predefined 

one. As the output scores of the network can be interpreted as probabilities of input being 

the predicted labels, the number of output satellites for selection can be fixed by selecting 

the satellites with high output scores for label 1. 

 Experiment and Analysis 

To train a satellite selection model with GDOP and WGDOP criteria for the A-PL system, 

training data were generated based on the brute force approach using one day’s GNSS 

observations (at 1-minute intervals) from 200 IGS stations, resulting in around 288,000 

training data samples in total including around 10% data set for test. Both GPS and 

GLONASS observations were used and it was assumed that the inter-frequency bias for 

GLONASS satellites had been accounted for. Elevation cutoff angle for each receiver was 

set to 15 degrees. Validation data were generated in a similar way for another 20 IGS 

stations. The maximum number of satellites in view was 20, i.e. 𝑛 = 20. The labels for 

selected satellites were set as class 1 and the not-selected satellites were designated class 

0. Due to the slightly unbalanced training data, different loss weight values 𝛼 = 1, 𝛽 =

1.2 , and 𝛾 = 0.05  were assigned. Adam optimiser with initial learning rate 0.1, 

momentum 0.9 and batch size 128 values were used. The decay rate for batch 

normalisation was 0.7, starting from 0.5 and gradually increasing to 0.99. The learning 

rate was reduced at the same rate as the decay rate for batch normalisation. The models 

were converged in around 50 minutes using TensorFlow (Abadi et al., 2016), an open-

source ML library running on a GTX1080TI GPU. The code and trained models used in 

the following experiment can be found at 

https://github.com/PanUnsw/satellite_selection.git. 

https://github.com/PanUnsw/satellite_selection.git
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 Satellite Segmentation with Different Input Channels and Architectures 

To compare the segmentation performance with input channels represented by 𝑐𝑖 =

[𝑥𝑖 𝑦𝑖 𝑧𝑖]  and 𝑐𝑖 = [𝑒𝑙𝑖 𝑎𝑧𝑖] , one example for selecting 9 satellites based on the 

GDOP criterion is shown in Figure 6.4. Table 6.2 is a comparison of training and testing 

accuracies. The accuracy represents the percentage of satellite input segmented correctly, 

i.e., the predicted subset is the same as the optimal subset. Although [𝑥𝑖 𝑦𝑖 𝑧𝑖] and 

[𝑒𝑙𝑖 𝑎𝑧𝑖] are mathematically equivalent, the input channel with [𝑥𝑖 𝑦𝑖 𝑧𝑖] has slower 

training convergence, and worse converged training and testing accuracies than that based 

on [𝑒𝑙𝑖 𝑎𝑧𝑖]. This fact can be intuitively explained by the saddle points when optimising 

the loss function, which can considerably slow down training (Dauphin et al., 2014). It 

may take more time to escape the saddle points for the input channel with [𝑥𝑖 𝑦𝑖 𝑧𝑖] 

compared with [𝑒𝑙𝑖 𝑎𝑧𝑖] at the beginning of training. The input channels represented by 

[𝑒𝑙𝑖 𝑎𝑧𝑖] were used in the following experiment. 
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Figure 6.4 Performance comparison with different input channels  

Table 6.2 Accuracy comparison with different input channels 

Input channels Training 

accuracy 

Testing 

accuracy 

Receiver-to-satellite 

unit vector 
98.9% 97.6% 

Elevation and azimuth 99.1% 98.0% 

To illustrate the performance of the satellite segmentation architecture with stacked FE 

layers compared with that without stacked FE layers, another model with an architecture 

without stacked FE layers was also trained with elevation and azimuth input channels for 
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selecting 9 satellites based on the GDOP criterion. The architecture, consisting of six FC 

layers, one max-pooling layer and one segmentation layer was used by trading off the 

computational complexity and performance of satellite segmentation. The output sizes of 

these layers are shown in Figure 6.3. Local features obtained from the third FC layer were 

concatenated with the global features from the max-pooling layer. The number of layers 

and their sizes used for the architecture without stacked FE layers are also empirical 

values. 

Table 6.3 Satellite segmentation architecture without stacked FE layers 

Layers Output size  

FC layers (32, 64, 128, 256, 512, 1024) 

Max pooling 1024 

Segmentation layer (512,2) 

The initial parameters used for the architecture without stacked FE layers were the same 

as with stacked FE layers except that the decay rates for batch normalisation and learning 

rate were set to 0.3 to reduce the tendency for overfitting. Figure 6.5 and Table 6.4 show 

the performance comparison between the two trained models, model 1 and 2, with and 

without stacked FE architecture, respectively. It can be seen that both the training and test 

accuracies of model 2 are worse than that of model 1. Therefore, it is preferable to use 

the architecture with stacked FE layers for satellite segmentation. 
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Figure 6.5 Performance comparison with different architectures  

Table 6.4 Accuracy comparison with different architectures 

Network architecture 
Training 

accuracy 

Testing 

accuracy 

Model 1 99.1% 98.0% 

Model 2 97.9% 95.6%  

 Satellite Segmentation with GDOP 

Models for selecting 9 and 12 satellites from the same set of observed satellites using the 

GDOP criterion were trained and evaluated. With the same network architecture with 

stacked FE layers, the models trained were used when selecting, in turn, 9 or 12 satellites. 
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Table 6.5 shows the segmentation performance comparison. It can be seen that the testing 

accuracy is slightly worse than the training accuracy. The model for selecting 12 satellites 

has better performance than that for 9 satellites. 

Table 6.5 Satellite segmentation performance using the GDOP criterion 

Number of 

selected satellites 

Training 

accuracy 

Testing 

accuracy 

9 99.1% 98.0% 

12 99.2% 98.3% 

To validate the trained models, Table 6.6 lists the validation results. Compared with 

means of the best GDOP values, the means of the validation GDOP values were only 

increased by 0.08% and 0.04% when selecting 9 or 12 satellites, respectively. For more 

than 80% of the epochs the optimal subset of the satellite input was correctly predicted, 

and around 20% when one satellite in the optimal subset was not selected. The one 

satellite in the optimal subset that was not selected was often replaced by one that 

produces a slightly worse GDOP value than the minimum GDOP value. 

Table 6.6 Validation evaluation performance with GDOP-trained model 

Number of 

selected 

satellites 

Mean of 

best 

GDOP 

Mean of 

validation 

GDOP 

Percentage of wrong 

segmentation 

0 1 

9 1.981 1.983 81% 18% 

12 1.809 1.810 83% 16% 

One example of the predicted subset with one wrongly selected satellite is shown in 

Figure 6.6. The detailed input and output labels for the targets and predictions are listed 

in Table 6.7. The satellite PRN G9 in the optimal subset was predicted with label 0, which 

was replaced by satellite PRN R18 resulting in the optimal GDOP value increasing from 

1.617 to 1.619. 
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Figure 6.6 One example of a wrongly predicted subset with GDOP-trained model 

Asterisk, diamond and circle markers identify the satellites optimally selected, not 

selected and wrongly selected, respectively. 

Table 6.7 One example of satellite segmentation with GDOP-trained model 

Satellite 

Input Output labels 

Elevation 

(rad) 

Azimuth 

(rad) 
Targets Predictions 

G2 1.480 5.310 1 1 

G5 0.680 3.569 0 0 

G6 0.909 1.397 0 0 

G9 0.502 1.241 1 0 

G12 0.664 4.193 0 0 

G19 0.442 2.346 1 1 

G23 0.288 0.690 1 1 

G25 0.607 5.058 0 0 

G29 0.317 5.358 0 0 

R3 0.782 0.806 0 0 

R4 1.035 2.621 1 1 

R5 0.270 3.295 1 1 

R10 0.325 5.037 1 1 

R11 0.285 5.946 1 1 

R18 0.482 1.962 0 1 

R19 1.356 0.820 1 1 

R20 0.591 5.375 0 0 

Figure 6.7 is a plot of the percentage of GDOP increase between the predicted and the 

optimal subsets. It can be seen that the GDOP increase is limited to 8% and 3% when 

selecting 9 or 12 satellites, respectively, as shown in the top and bottom panels. 
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Figure 6.7 Percentage of GDOP increase  

The histogram of GDOP value differences between the validation and the optimal GDOP 

values is plotted in Figure 6.8. For about 99% and 100% of the time, the GDOP difference 

is smaller than 0.03 when selecting 9 or 12 satellites, respectively. 
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Figure 6.8 GDOP value difference comparison 

 Satellite Segmentation with WGDOP 

In this section, satellite segmentation results are presented for two trained models using 

the WGDOP criterion. The weight calculated for each satellite is based on its elevation 

angle as 𝑤 = [𝑠𝑖𝑛(𝑒𝑙)]2 . With the same network architecture used above, the best 

performance results of two trained models when selecting 9 or 12 satellites are listed in 

Table 6.8. Similar to the earlier trained models using the GDOP criterion, the model for 

selecting 12 satellites has better performance than that for 9 satellite selection. However, 

both models trained with WGDOP have lower accuracies than the ones with GDOP. This 

can be attributed to more complex features introduced by the different target satellites. 

Table 6.8 Satellite segmentation performance with the WGDOP criterion 

Number of 

selected satellites 

Training 

accuracy 

Testing 

accuracy 

9 99.1% 95.8% 

12 99.2% 96.8% 

Even with the larger bias between the testing and training accuracies, around 95% of the 

time the predicted subsets are correctly selected, or with just one wrong segmentation, 

compared with the optimal ones, as listed in Table 6.9. The means of the validation 

WGDOP values are increased by 0.31% and 0.15% when selecting 9 or 12 satellites, 
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respectively. Similar to the earlier case, the subset with one wrongly selected satellite 

usually has a slightly larger WGDOP value than the optimal subset. One typical example 

of a wrongly predicted subset is shown in Figure 6.9. Table 6.10 lists the elevation and 

azimuth input and the output labels for the targets and predictions. The difference in 

WGDOP value between the optimal and predicted subsets is approximate 0.012, with 

WGDOP increased from 3.418 to 3.430. 

Table 6.9 Validation evaluation performance with WGDOP-trained model 

Number of 

selected satellites 

Mean of best 

WGDOP 

Mean of 

validation 

WGDOP 

Percentage of wrong 

segmentation 

0 1 

9 3.742 3.753 65% 29% 

12 3.355 3.359 71% 27% 

 

Figure 6.9 One example of a wrongly predicted subset with WGDOP-trained model   

Asterisk, diamond and circle markers identify the satellites optimally selected, not 

selected and wrongly selected, respectively. 

Table 6.10 One example of satellite segmentation with WGDOP-trained model 

Satellite 

Input Output labels 

Elevation 

(rad) 

Azimuth 

(rad) 
Targets Predictions 

G2 1.516 0.197 1 1 

G5 0.773 3.582 0 0 

G6 0.828 1.449 0 0 

G9 0.505 1.146 1 1 
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G12 0.597 4.114 1 1 

G19 0.361 2.382 0 1 

G25 0.603 4.953 0 0 

G29 0.395 5.365 1 1 

R3 0.699 0.731 1 1 

R4 1.132 2.491 0 0 

R5 0.370 3.309 1 1 

R10 0.266 4.955 0 0 

R11 0.300 5.853 0 0 

R18 0.400 2.032 1 0 

R19 1.322 1.289 1 1 

R20 0.682 5.425 1 1 

The percentage of WGDOP increase between the predicted and the optimal subsets is 

mostly limited to 8% and 4% when selecting 9 or 12 satellites, respectively, as shown in 

the top and bottom panels of Figure 6.10. 

 



 

119 
 

Figure 6.10 Percentage of WGDOP increase  

Figure 6.11 shows the histogram of WGDOP value differences between the validation 

and the optimal WGDOP values. More than 99% of the differences in WGDOP value are 

less than 0.2, for both cases of selecting 9 or 12 satellites. This is adequate for most 

applications. 

 

Figure 6.11 WGDOP value comparison 

The comparison of average computational time with GDOP and WGDOP criteria 

between the brute force approach to select one optimal subset and the proposed satellite 

segmentation network to predict one selected subset with the trained models is 

summarised in Table 6.11. It can be seen that the satellite segmentation network method 

is about 90 times faster than the brute force approach. Even though the maximum number 

of input satellites for the above trained models was set to 20, the same satellite 

segmentation architecture can be used to train those with different numbers of input 

satellites from any GNSSs. 

Table 6.11 Performance comparison of computation time 

Methods 
Average computation time (milliseconds) 

GDOP WGDOP 

Brute force approach 110 115 

Satellite segmentation 

network 
1.2 1.3 
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 Summary 

In this chapter, an end-to-end deep learning network for satellite selection invariant to 

satellite input permutation based on the PointNet and VoxelNet networks was presented. 

The satellite selection procedure was converted to a satellite segmentation procedure, 

with specified input channel for each satellite and two class labels representing the 

selected and not-selected satellites. The proposed satellite segmentation network was 

composed of several simple stacked FE layers and one segmentation layer. An experiment 

was conducted to evaluate the proposed approach with training and validation data from 

220 IGS stations. The satellite segmentation performance was compared with respect to 

different input channels, including receiver-to-satellite unit vector and elevation and 

azimuth, as well as different architectures, i.e. with and without stacked FE layers. The 

experiment showed that it was preferable to use an architecture with stacked FE layers 

and input channel represented by elevation and azimuth due to the faster training 

convergence and better converged accuracy. Cases for selecting 9 or 12 satellites, with 

GDOP and WGDOP criteria, were investigated. It was demonstrated that using the 

satellite segmentation network approach was around 90 times faster than the brute force 

satellite selection approach. From the validation results, it can be concluded that the 

trained models were capable of selecting the satellites that had the most contribution to 

the GDOP or WGDOP value and had no limitation of application locality as shown in 

GDOP approximation/classification methods. In addition, the trained models based on 

GDOP had better performance than the ones based on WGDOP. Furthermore, the models 

for selecting 12 satellites were more accurate than those for 9 satellites. 
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Chapter 7 Conclusions and Recommendations 

 Concluding Remarks   

This research has investigated an A-PL system with A-PL positioned based on the real-

time GNSS PPP technique. Kinematic GNSS PPP may suffer from reduced positioning 

accuracy due to the mobile A-PLs’ susceptibility to loss of GNSS signal or disruptions of 

correction message communication links. To enhance positioning performance of GNSS 

PPP in terms of convergence time, positioning accuracy and stability, there have been 

many methods proposed. One popular approach is based on augmentation with additional 

information, such as adding more observations of multiple frequency from multiple 

GNSS constellations, integrating with a new navigation system and introducing 

atmospheric constraints. In our proposed A-PL system it is assumed that it is possible to 

obtain inter-PL range measurements that can be combined with GNSS measurements. 

The contribution of these additional inter-PL ranges for A-PL positioning was studied. 

Different short-term prediction models for orbit and clock error corrections were also 

discussed so as to achieve continuous precise A-PL positioning. To further improve the 

robustness of GNSS PPP positioning, the unmodelled errors in the GNSS measurement 

model, resulting from multipath, interference and atmospheric residuals, are accounted 

for with non-parametric model-learning algorithms. Two commonly used non-parametric 

algorithms, LS-SVM and GPR, were investigated. In addition, to realise the optimal 

integration and stable positioning performance for multi-GNSS PPP, a stochastic model 

to appropriately weight observations from different GNSS systems is required in the 

positioning adjustment. Two types of stochastic models, including the a priori stochastic 

models based on satellite elevation angle and real-time SISRE values, and real-time 

estimated variance methods based on HVCE and PML, were investigated with a 

comprehensive performance comparison with respect to positioning accuracy, 

repeatability and estimated ZTD accuracy. Finally, an end-to-end deep learning network 

for satellite selection is proposed to trade off positioning performance and time 

consumption when using real-time multi-GNSS positioning.  

The main findings of this research are: 

(1) To implement real-time GNSS PPP combined with inter-PL ranges for A-PL 

positioning, three forms of SCIF algorithms were described and investigated. It was found 
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that the A-PL using GNSS PPP combined with inter-PL range measurements is able to 

achieve better positioning performance in terms of speed of convergence and positioning 

accuracy than that using the GNSS PPP-only approach. However, the performance 

improvement is limited by the transmitted trajectory data of the observed A-PLs, which 

have to be provided with well-converged accuracy. The SCIF-based distributed 

algorithms appear to have higher robustness in dealing with degraded transmitted 

trajectory data of the observed A-PLs compared with the centralised algorithm. In 

addition, to maintain real-time GNSS PPP accuracy when the correction message 

communication links are disrupted, a second-order polynomial model is preferable for 

short-term orbit correction predictions compared with the first- or third-order models. The 

satellite clock corrections can be predicted using either the linear model or one with linear 

and sinusoidal terms.   

(2) GNSS PPP with real-time non-parametric model-learning for unmodelled 

measurement errors based on LS-SVM and GPR was evaluated using both static and 

kinematic experiments. The results reveal that both the LS-SVM and GPR algorithms can 

effectively reduce the influence of the unmodelled error and achieve better positioning 

performance compared with conventional GNSS PPP. In addition, the GPR algorithm is 

more promising for real-time GNSS PPP applications than LS-SVM due to its slightly 

better positioning performance and the non-requirement of separate prediction 

uncertainty calculation. 

(3) By comparing the positioning performance for multi-GNSS PPP with the a priori 

stochastic models and real-time estimated variance methods, it was found that the 

stochastic models based on real-time SISRE, HVCE and PML could all achieve better 

performance than the one based on satellite elevation angle, in terms of positioning 

accuracy, repeatability and estimated ZTD accuracy. The best performance was obtained 

by the stochastic model with real-time satellite SISRE ratio. Although PML can also 

obtain the weight ratios on the level of the satellite, the estimated stochastic model reflects 

the observation precision resulting from the measurement noise and multipath, which are 

mainly elevation dependent. It was found that the HVCE method could not always 

estimate an appropriate stochastic model for multi-GNSS PPP with measurement 

residuals calculated in real-time. The requirements of sufficient observation redundancy 

and application of an outlier removing technique also limited its positioning performance 
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improvement. The a priori stochastic model with real-time satellite SISRE ratio is the 

most promising method for multi-GNSS PPP, as further indicated by the performance 

comparison with HVCE with a priori stochastic model based on real-time satellite SISRE 

ratio, as well as considering its simplicity in implementation. 

(4) The real-time satellite selection procedure was converted to a satellite segmentation 

procedure, with specified input channel for each satellite and two class labels representing 

the selected and not-selected satellites. The performance comparison with respect to 

different input channels, including receiver-to-satellite unit vector and elevation and 

azimuth, as well as different architectures was performed. The results indicate that it is 

preferable to use an architecture with stacked FE layers and an input channel represented 

by elevation and azimuth due to the faster training convergence and better converged 

accuracy. Cases for selecting 9 or 12 satellites, with GDOP and WGDOP criteria, were 

investigated. It was demonstrated that the satellite segmentation network approach is 

around 90 times faster than the brute force satellite selection approach. The trained 

models were capable of selecting the satellites that make the most contribution to the 

GDOP or WGDOP value and have no limitation of application locality as shown in 

GDOP approximation/classification methods. Furthermore, it was found that the trained 

models based on GDOP outperform the ones based on WGDOP. In addition, the models 

for selecting 12 satellites are more accurate than those for selecting 9 satellites. 

 Recommendations for Future Work 

(1) In this research, when performing the A-PL positioning, all the A-PLs are assumed to 

be perfectly time-synchronised during the entire mission. It would be of interest to also 

analyse the impact of observed A-PL time synchronisation accuracy on the “to-be-

positioned” A-PL positioning performance. In addition, to maintain A-PL positioning 

accuracy using GNSS PPP when disruption of correction message communication links 

occurs, different short-term prediction models for satellite clock and orbit correction have 

been investigated. Further research could be undertaken into the effective periods of these 

prediction models.   

(2) To account for the unmodelled GNSS measurement errors the nonlinear 

autoregressive model is used to train the LS-SVM/GPR model. The number of lags for 

the autoregressive model is set to an empirical value. In addition, the parameters involved 
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in both the LS-SVM and GPR algorithms are also selected empirically. It would be 

desirable to analyse the influence of different values on GNSS positioning performance 

in order to determine the most suitable values when undertaking LS-SVM/GPR model-

learning in practical applications. 

 (3) To assess the a priori stochastic model based on real-time SISRE in the research the 

predicted GBU orbit and satellite clock provided by the GFZ were used to calculate the 

real-time SISRE. In addition, all the stochastic model estimation methods were assessed 

for multi-GNSS PPP using only a static experiment. Assessment of these stochastic 

models for multi-GNSS PPP using real-time precise satellite orbit and clock products in 

kinematic mode should be undertaken. 

(4) The trained models based on the end-to-end deep learning network with GDOP and 

WGDOP criteria are only applicable for selecting a single fixed number of satellites. In 

addition, the training and validation data are all from static receivers. In the future, a 

model capable of selecting a multiple number of satellites can be trained with the selected 

number of satellites added to the input channel. Kinematic data could be analysed, and 

the robustness of the trained model further investigated. 
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