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Abstract

Inference for Bayesian models often require one to simulate from some non-standard

multivariate probability distributions. In the first part of the thesis, we successfully simu-

late exactly from certain Bayesian posteriors (the Tobit, the constrained linear regression,

smoothing spline, and the Lasso) by applying rejection sampling using exponentially tilted

sequential proposal distributions. This technique is typically efficient for posteriors which

have the form of truncated multivariate normal/student. In this manner, we are able to

simulate exactly from the posterior in hundreds of dimensions, which has until now being

unattainable.

Due to the curse of dimensionality, these rejection schemes are unfortunately bound to

fail as the dimensions of the problems grow. In such cases, one ultimately has to resort to

approximate MCMC schemes. It is known that the sampling error of a Markov chain can

be a lot easier if we can identify the regeneration times for the Markov chain. In particular,

the convergence rate of a geometrically ergodic Markov chain can be estimated if one can

identify the underlying regeneration events. While the idea of using regeneration in the

error analysis of MCMC is not new, our contribution in the second part of the thesis is

to provide simpler estimates of the total variation error, and a new graphical diagnostic

with strong theoretical justification.

Finally, in the third part of the thesis, we consider the exponentially tilted sequential

distributions in part one as proposal distributions for the MCMC samplers in part two. We

introduce a novel Reject-Regenerate sampler, which combines the lessons learned about

exact sampling and regenerative MCMC into a single framework. The resulting MCMC

algorithm is a Markov chain with clearly demarcated regeneration events. Moreover, in the

event of a regeneration, the Markov chain achieves a perfect draw with some probability.

Keywords: MCMC, regeneration, rejection sampling, total variation distance, indepen-

dent sampler, perfect sampling, Bayesian Lasso, Bayesian constrained linear regression,

Bayesian smoothing spline
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Notation and Symbols

We make use of various typographical aids, and it will be beneficial for the reader to be

aware of some of these.

• E denotes the expectation operator, Var as the variance operator

• P[X ∈ A] is the probability of random vector X falling in set A

• I{x ∈ A}, and Ix∈A denote the indicator function on the set A evaluated at x

• N(µ,Σ) denotes the distribution of a Normal random vector (variable) centred at µ

and covariance matrix Σ

• Exp(λ) denotes the distribution of an exponential random variable with rate λ > 0

• Unif(a, b) denotes the distribution of a uniform random variable with rate with support

on the interval (a, b)

• ∼ denotes ‘obeys’, for example X ∼ N(µ,Σ) means the random vector X has a distri-

bution of N(µ,Σ)

• dim(v) denotes the dimension of the vector v

• diag(v) denotes the diagonal matrix with (i, i)-th entry being vi, the i-th component

of the vector v

• I denotes an identity matrix of appropriate dimension

•
∫
f(x) dx denotes the integral of the function f with respect to the Lebesgue measure

•
∫
f(x) π(dx) denotes the integral of the function f with respect to the measure π

• We often omit brackets when it is clear what the argument is of a function or operator.

For example, we prefer EX2 to E[X2].

• We will occasionally use a Bayesian notation convention in which the same symbol

is used to denote different (conditional) probability densities. In particular, instead of

writing fX(x) and fX |Y (x | y) for the probability density function (pdf) of X and the

conditional pdf of X given Y , we simply write f(x) and f(x | y). This particular style of

notation can be of great descriptive value, despite its apparent ambiguity.
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Chapter 1

Introduction

Let π be a probability measure defined on a measurable space (X ,A ), where X ⊆ Rd and

d can be large. Generating random1 vectors X1,X2, . . . whose probability laws coincide

to π, that is P[Xk ∈ A] = π(A) for all k and A ∈ A , can be difficult for arbitrary π and X .

However, simulating draws from a (posterior) density (known up to some marginalizing

constant) is a common theme in Bayesian inference.

Rejection sampling allows one to simulate iid random vectors X1,X2, . . . ∼ π in the

case where π exhibits a density (with respect to the Lebesgue measure). Formally, let

f = f̃/` denote the density of π, where ` is the normalizing constant for some positive

function with finite integral f̃ , and let g be a probability density for which f̃ ≤ cg for

some c > 0. If one retains a draw X ∼ g only if f̃(X)/cg(X) ≤ U for some independent

U ∼ Unif(0, 1), then the resulting random vector obeys π. (We refer readers to [70] and

the reference therein for further details.)

In Chapter 2 we construct efficient rejection sampling proposal density for the pos-

terior densities of the Bayesian constrained linear regression [17, 37], the Bayesian Tobit

model [20], and the Bayesian smoothing spline [89]. Up until now, the standard ap-

proaches only simulate draws that approximately obey these posterior densities, however

we show that it is possible to obtain exact draws from these posterior densities. The key

insight is that these posterior densities, after some coordinate transformations, take the

form of the proposal density studied in [12]. The original work there provides accurate

importance sampling estimator for multivariate student probabilities on sets described

by a linear system of inequalities. The technique is to constructs an exponentially tilted

sequential proposal density. It turns out that this density is also an efficient rejection

sampling proposal density that targets truncated multivariate student distribution even

up to hundreds of dimensions. (Note that multivariate normal with linear constraint is a

special case of the multivariate student studied in [11].)

The idea of sequential exponential tilting presented in Chapter 2 and applied to the

truncated multivariate normal/student can also be extended to some other non-standard

1Algorithms that run on standard PC actually generate ‘pseudo random’ vectors.
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multivariate distributions. We show that an example of such non-standard multivariate

distributions amenable to our rejection sampling methods is the Bayesian Lasso posterior

studied in Chapter 3.

The Lasso linear regression [107] and its Bayesian analogue [91] have appealed practi-

tioners. However, the standard samplers in the current again only simulate approximate

draws. In this chapter we construct a novel exact sampling algorithm for the Bayesian

Lasso posterior which is presented in [10]. The idea is to construct an efficient proposal

distribution for rejection sampler, again via an exponentially tilted sequential distribution.

The obvious advantage of our novel rejection samplers is that standard iid analyses hold

for any simulated draws, making error analysis straightforward. Unfortunately, designing

an efficient proposal density is not a routine task – it requires careful analysis for each

problem. Moreover, as d increases, due to the curse of dimensionality, any proposal density

is destined to lose its efficiency. For this reason we also study approximate sampling by

MCMC (Markov chain Monte Carlo). Algorithms in this framework generate a Markov

chain {X∗k, k ≥ 1} on (X ,A ) such that the limiting probability law, limk→∞ P[X∗k ∈ ·],
coincides to the targeted π in some metric. The idea is that the sample path of the Markov

chain itself corresponds to correlated draws that approximately obey π. Moreover, for any

h from a large class of functions, the ergodic average, q̂t := 1
t

∑t
k=1 h(X∗k) converges to

q :=
∫
X h(x)π(dx) as t → ∞. Further along with some regularity conditions, there is

also a Markov chain CLT that is,
√
t(q̂t − q) → N(0, σ2), for some σ2. Common MCMC

algorithms include Metropolis-Hastings samplers, independent samplers, Gibbs sampler,

and hit-and-run sampler [82, 53, 39].

Despite being computationally attractive, evaluating the performance of a MCMC

sampler is a difficult task due to the dependence between the MCMC draws. Systemati-

cally evaluating the performance of a given MCMC method naturally resorts to answering

the following questions. For t < ∞, how well does q̂t approximate q on average? How

variable is it? How close is P[X∗k ∈ ·] to π for different values of k? How much closer

does it become for each extra step? This motivates our study in Chapters 5 and 6. (Some

preliminary results and notions are recounted in Chapter 4.)

Moving away from the ambitious rejecting sampling, in Chapter 5 we explore how one

can evaluate the performance of a given MCMC by identifying its underlying regenerative

times. Roughly speaking, these are instances where the Markov chain ‘stochastically

restarts, thereby allowing one to segment the chain into iid cycles [87, 86]. It is well

established that if one can identify the regeneration times of a Markov chain sampler,

then the variability of ergodic estimators can be quantified in an easier manner.

Our contributions in regenerative MCMC are as follows. In Chapter 5 we derive a

novel total variation distance bounds between a geometric Markov chain and its limiting

2



distribution. The constants for these bounds can be easily estimated by identifying its

underlying regenerative structure, thus we propose estimators for these constants using

the output of the MCMC samplers. Such bounds are useful for assessing the convergence

rate of a Markov chain and for estimating the size of a burn-in period [64].

Another contribution is in Chapter 5, where we show that the convergence of a regen-

erative MCMC can be summarized by an underlying one dimensional process, known as

the elapsed time process. To this end, we propose a univariate diagnostic plot that as-

sesses the global mixing. Consequently, practitioners no longer need to rely on arbitrary

projection of high dimensional processes for the construction of diagnostic plots.

An interesting insight is that a carefully designed rejection sampling proposal natu-

rally leads to a Metropolis-independence MCMC sampler with frequent regeneration. In

particular, we consider how the sequential proposal densities studied in Chapters 2 and 3

perform when they are the proposal densities Metropolis-independence samplers. In ap-

plying our novel MCMC diagnostics on these independent samplers, we observe that

these independent samplers converge quickly (they exhibit fast mixing). Consequently,

we demonstrate the value of these carefully designed sequential proposals outside the

framework of rejection sampling.

Finally, in Chapter 6 we describe our novel Reject-Regenerate Markov chain sampler.

In this framework the simulated Markov chain is regenerative. Moreover, in the event of

a regeneration, the Markov chain has some probability of achieving a perfect draw. The

Reject-Regenerate algorithm can be thought of as a hybrid algorithm combining the best

aspects of exact rejection sampling and approximate MCMC sampling.

3



Chapter 2

Exponentially tilted sequential proposal for the truncated

multivariate student distribution

2.1 Introduction to this chapter

A random vector Y ∈ Rd, whose density (with respect to the Lebesgue measure) exists,

is said to obey the multivariate student distribution, centered at µ ∈ Rd with covariance

matrix Σ, denoted by Y ∼ tν(µ,Σ), if its density1 function (with respect to the Lebesgue

measure) is

Γ((d+ ν)/2)

|Σ|1/2(πν)d/2Γ(ν/2)

(
1 +

1

ν
(y − µ)>Σ−1(y − µ)

)−(ν+d)/2

, y ∈ Rd.

For a given m× d real matrix C and vectors l,u ∈ Rm
, denoting ` = P[l ≤ CY ≤ u], it

follows that the density of Y conditioned on Y ∈ {y | l ≤ Cy ≤ u} is

h(y) =

Γ((d+ν)/2)

|Σ|1/2(πν)d/2Γ(ν/2)

(
1 + 1

ν
(y − µ)>Σ−1(y − µ)

)−(ν+d)/2 I{l ≤ Cy ≤ u}
`

. (2.1)

Here we take the convention R = R∪{−∞,∞} to allow for certain components of Cy to

have no lower or upper restrictions.

Estimating ` and simulating draws Y ∼ h are two closely related problems. Both

problems can be notoriously difficult for general C, l and u, however they have many

statistical applications (see [58, 42, 44] and the references therein).

In this chapter we consider the exponentially tilted sequential proposal density for the

truncated multivariate student distribution derived in [12]. This proposal density gives

an accurate importance sampling estimator for ` and an efficient rejection sampler to

simulate draws from h.

Our contributions over and above the existing theory in [12] are as follows. In this

chapter we shall prove a theoretical results concerning the asymptotic efficiency of this

importance sampler. A by-product of this proof is a multivariate extension to the Mill’s

1In this thesis, we only consider Σ is invertible so that the density exists.
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ratio of the univariate student density [69, 84]. We then find applications for this rejection

sampler in simulating draws from the posterior densities of the Bayesian constrained linear

regression, Bayesian Tobit model, and the Bayesian smoothing spline. In other words,

we construct exact sampling schemes for these Bayesian posterior densities whose default

samplers at the current literature are approximate MCMC samplers.

Before we present a brief recount of notable related works, we note that it suffices to

consider the case where µ = 0. This is because if Y ∼ tν(µ,Σ) and Y ′ ∼ tν(0,Σ) then

Y = Y ′ + µ, so that

` = P[l ≤ CY ≤ u] = P[l′ ≤ CY ′ ≤ u′]

where l′ = l − Cµ and u′ = u − Cµ. Moreover, if Y ′ obeys tν(0,Σ) restricted to

the set {y′ | l′ ≤ Cy′ ≤ u′}, then Y := Y ′ + µ obeys tν(µ,Σ) restricted to the set

{y | l ≤ Cy ≤ u}. We henceforth refer to ` and h for the case µ = 0, for some matrices

Σ, C and vectors l,u of appropriate dimensions. That is

` = P[l ≤ CY ≤ u] =

∫
y:l≤Cy≤u

Γ((d+ν)/2)

|Σ|1/2(πν)d/2Γ(ν/2)

(
1 +

1

ν
y>Σ−1y

)−(ν+d)/2

dy,

and

h(y) =

Γ((d+ν)/2)

|Σ|1/2(πν)d/2Γ(ν/2)

(
1 + 1

ν
y>Σ−1y

)−(ν+d)/2 I{l ≤ Cy ≤ u}
`

.

The exponentially tilted sequential proposal density derived in [12] is motivated by the

‘separation of variable method’, which concerns estimating ` by Monte Carlo, proposed

in [42]. This method concerns the case where C is the d × d identity matrix so that ` is

the probability of a tν(0,Σ) random vector falling in some (possibly unbounded) hyper

rectangle [l,u]. The method begins by computing the Cholesky decomposition of Σ so

that ` can be equivalently expressed as the probability of a tν(0, Id) random vector falling

in a set described by a lower triangular system of linear inequalities.

Formally, let Σ = LL> be the Cholesky decomposition of Σ. It follows that Y = LX

in distribution, where X ∼ tν(0, Id), and

` = P[l ≤ Y ≤ u] = P[l ≤ LX ≤ u].

That is,

` = P[l ≤ LX ≤ u] =

∫
x:l≤Lx≤u

Γ((d+ν)/2)

(πν)d/2Γ(ν/2)

(
1 +

x>x

ν

)−(ν+d)/2

dx. (2.2)
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The lower triangular structure of L in (2.2) means that

l′1 := l1/L11 ≤x1 ≤ u1/L11 := u′1

l′2 :=
l2 − L21x1

L22

≤x2 ≤
u2 − L21x1

L22

:= u′2

...

l′d :=
ld −

∑d−1
i=1 Ldixi
Ldd

≤xd ≤
ud −

∑d−1
i=1 Ldixi
Ldd

:= u′d,

so that the constraint on xk only depends on xj for j < k. Next, since

(
1 +

x>x

ν

)
=

(
1 +

x2
1

ν

)
·
(

1 +
x2

2

ν + x2
1

)
· . . . ·

(
1 +

x2
d

ν +
∑d−1

j=1 x
2
j

)
,

applying the substitution xk = zk

√
ν+x2

1+...x2
k−1

ν+k−1
for k = d, d − 1, . . . , 2 and x1 = z1, one

after the other, we can write

` =

∫
[l̂1,û1]

tν(z1)

∫
[l̂2,û2]

tν+1(z2) . . .

∫
[l̂d,ûd]

tν+d−1(zd) dz, (2.3)

where l̂k = l′k

√
ν+k−1

ν+x2
1+...x2

k−1
, ûk = u′k

√
ν+k−1

ν+x2
1+...x2

k−1
for k = 2, . . . , 2, l̂1 = l′1, û1 = u′1, and

tν+k−1 is the density of a univariate tν+k−1(0, 1) random variable. Readers should note

that l̂k and ûk still only implicitly depends on zj for j ≤ k after these transformations.

These observations motivate a numerical scheme for estimating `. This numerical

scheme can be equivalently viewed as a sequential importance sampling estimation as

follows. Define the density

g(z) = g1(z1)g(z2 | z1)g2(z3 | z1, z2) . . . gd(zd | z1, z2, . . . , zd−1),

where

g(zk | z1, . . . , zk−1) =
tν+k−1(zk)

Tν+k−1(ûk)− Tν+k−1(l̂k)
I{l̂k ≤ z ≤ ûk}, k = 1, . . . , d

is the density of a univariate tν+k−1(0, 1) random variable constrained to [l̂k, ûk] and that

Tν+k−1 is the cdf of a univariate tν+k−1(0, 1) random variable. Denoting the integrand in

(2.3) as

p(z) = tν(z1)tν+1(z2) . . . tν+d−1(zd),
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and let Zi
iid∼ g for i = 1, . . . n. It follows, by the virtue of importance sampling estimation,

` = E
p(Z1)

g(Z1)
=

d∏
k=1

[Tν+k−1(l̂(Z1))− Tν+k−1(û(Z1))].

Therefore, the estimator for ` is

ˆ̀
Genz =

1

n

n∑
i=1

d∏
k=1

[Tν+k−1(l̂(Zi))− Tν+k−1(û(Zi))].

Remark. The original work in [42] introduces one more transformation so that the in-

tegral (2.3) is on a [0, 1]d−1 hypercube. In this manner, instead of simulating univariate

truncated students, one simulates random/quasi-random uniformly distributed points on

[0, 1]d−1 to estimate the integral.

Indeed, this technique, known as the ‘separation of variable’ has already been applied

in earlier works on estimating multivariate normal probabilities over linear constraints

[40, 112] and even for the case where the covariance matrix of the multivariate normal

distribution is singular [43]. Other methods for computing ` are discussed in [41].

A problem closely related to computing ` is to compute E[Y k], where Y ∼ h and

the exponent k is taken coordinate-wise. Again, for the case where C = Id, [55] derives

analytic formula to compute E[Y ] and E[Y Y >]. A recurrence relation for E[Y k] is also

derived in [36].

The next related problem is simulating from h. The standard approach when d is large

is Gibbs sampling which gives approximate draws from h. These Gibbs samplers leverage

the fact that if X ∼ N(0,Σ), and independently R ∼ chiν , then Y =
√
νX/R ∼ tν(0,Σ)

where the density of a chiν random variable is

1

2ν/2−1Γ(ν/2)
exp

(
−r

2

2
+ (ν − 1) ln r

)
, r > 0.

In this manner, it suffices for one to consider simulating (X, R) ∼ f where

f(x, r) =

1√
|Σ|(2π)d/2×2ν/2−1Γ(ν/2)

exp
(
−1

2
x>Σ−1x− r2

2
+ (ν − 1) ln r

)
I{rl ≤

√
νCx ≤ ru}

`
,

so that Y =
√
νX/R ∼ h.
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The Gibbs sampler proposed in [44] assumes that C is invertible and considers the

transformation z = Cx. This yields the following density.

f1(z, r) =

1√
|D|(2π)d/2×2ν/2−1Γ(ν/2)

exp
(
−1

2
z>D−1z − r2

2
+ (ν − 1) ln r

)
I{rl ≤

√
νz ≤ ru}

`
,

where D = C>ΣC. Here, the marginal density f1(r) is the density of a chiν random variable

while the full conditional densities f1(zk | r, z1, . . . , zk−1, zk+1, . . . zd) is the density of some

univariate truncated normal random variable for k = 1, . . . , d. The proposed Gibbs

sampler then cycles between these densities to simulate (Z, R) which is approximately f1

distributed.

An alternative Gibbs sampler proposed in [76] considers a different transformation on

f . Again denoting the Cholesky decomposition Σ = L1L>1 , the transformation z = L−1
1 x

for f yields the following density.

f2(z, r) =

1
(2π)d/2×2ν/2−1Γ(ν/2)

exp
(
−‖z‖

2

2
− r2

2
+ (ν − 1) ln r

)
I{rl ≤

√
νCLz ≤ ru}

`
.

Again, the marginal density f2(r) is the density of a chiν random variable while the full

conditional densities f2(zk | r, z1, . . . , zk−1, zk+1, . . . zd) is the density of some univariate

truncated normal random variable for k = 1, . . . , d. The proposed Gibbs sampler again

cycles between these densities to simulate (Z, R) which is approximately f2 distributed.

The Gibbs sampler in [44] has the advantage that the support of f1 is a simple hyper

rectangle [l,u]. This makes the implementation of algorithm simple. However this Gibbs

sampler is restricted to the case where C is invertible. On the other hand, the support

of f2 can potentially be much more complicated, however its normal component does not

have a complicated covariance structure unlike the matrix D in f1. The authors of [76]

argue that this renders a better mixing Gibbs sampler. Moreover, this Gibbs sampler

does not require C to be invertible in the first place.

Finally, the exponentially tilted sequential proposal derived in [12] also considers a

proposal density g that takes a sequential form. That is, (denoting θ = (z, r))

g(θ) = g0(θ0)g1(θ1 | θ0)g2(θ2 | θ0, θ1) . . . gd(θd | θ0, . . . , θd−1),

where each gk belongs to a family of densities indexed by some ‘tilting’ parameter. An

optimal tilting parameter is chosen such that the corresponding importance sampling

estimator ˆ̀ has (approximately) minimal variance within that family. Moreover, it turns

out this optimally chosen g may render an efficient exact sampling scheme for h.
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The rest of the chapter is structured as follows. We first revisit the importance sam-

pling estimation for ` and the exact simulation scheme for h proposed in [12]. We then

establish a theoretical result concerning the asymptotic efficiency of this importance sam-

pler. Finally we find applications for this rejection sampler in simulating draws from the

posterior densities of the Bayesian constrained linear regression, Bayesian Tobit model,

and the Bayesian smoothing spline. In other words, we construct efficient exact sam-

plers for these posterior densities whose current default samplers in the literature are

approximate MC samplers.

2.2 A sequential proposal density via optimal exponential tilting

We describe the methods proposed in [12] in this section. Again, let

f(x, r) =

1√
|Σ|(2π)d/2×2ν/2−1Γ(ν/2)

exp
(
−1

2
x>Σ−1x− r2

2
+ (ν − 1) ln r

)
I{rl ≤

√
νCx ≤ ru}

`
,

so that if (X, R) ∼ f then Y =
√
νX/R ∼ h.

Next, let Σ = L1L>1 be the Cholesky decomposition of Σ and CL1 = LQ be the LQ

decomposition of CL1 so that L1, L are lower triangular while Q is orthogonal. It follows

that the substitution x = L1Q>z yields the density

f(z, r) =

1√
|Σ|(2π)d/2×2ν/2−1Γ(ν/2)

exp
(
−‖z‖

2
2

2
− r2

2
+ (ν − 1) ln r

)
I{rl ≤

√
νLz ≤ ru}

`
,

(2.4)

where ‖ · ‖p is the p-norm.

Exploiting the lower triangular structure of L and write R := {(z, r) | rl ≤
√
νLz ≤

ru} as

l̃1(r) :=
r l1√
ν
/L11 ≤z1 ≤

r u1√
ν
/L11 := ũ1(r)

l̃2(r, z1) :=
r l2ν

−1/2 − L21z1

L22

≤z2 ≤
r u2ν

−1/2 − L21z1

L22

:= ũ2(r, z1)

...

l̃d(r, z1, . . . , zd−1) :=

r ld√
ν
−
∑d−1

i=1 Ldizi

Ldd
≤zd ≤

r ud√
ν
−
∑d−1

i=1 Ldizi

Ldd
:= ũd(r, z1, . . . , zd−1).

Observing that l̃k, ũk only depends on r, z1, z2, . . . , zk−1 for all k, it is therefore natural to

construct proposal density g sequentially in the sense that

g(z, r) = g0(r)g1(z1 | r)g2(z2 | r, z1) . . . gd(zd | r, z1, . . . , zd−1).
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Denoting φ(·; θ, σ2) as the density function for a N(θ, σ2) random variable, we may choose

g0(r) =
φ(r; η, 1)

Φ(η)
, r > 0

gk(zk | r, z1, . . . , zk−1) =
φ(zk;µk, 1)I{l̃k ≤ zk ≤ ũk}
Φ(ũk − µk)− Φ(l̃k − µk)

, k = 1, 2, . . . ,

for some (µ, η) that is yet to be specified. That is,

R ∼ TN(0,∞)(η, 1)

Zk |R,Z1, . . . , Zk−1 ∼ TN(l̃k,ũk)(µk, 1), k = 1, . . . , d

where we denote TN(a,b)(θ, σ
2) as a N(θ, σ2) random variable, conditional on interval (a, b).

We can think of (µ, η) as some indexing parameter for the class of densities whose

form is defined by g, since the shape of g depends on these parameters, it is also called

‘tilting parameters’. The idea is now to choose the optimal tilting parameter for which g

matches f as much as possible. Formally, let f̃(z, r) = `f(z, r) denote the kernel part of

f , for all (z, r) ∈ R, so that ` =
∫

R
f̃(z, r) d(z, r). Moreover let

ψ(z, r,µ, η) = ln[f̃(z, r)/g(z, r)]

=
‖µ‖2

2
− z>µ+

η2

2
− rη + (ν − 1) ln r + ln Φ(η)

+
d∑

k=1

ln[Φ(ũk − µk)− Φ(l̃k − µk)].

The optimal tilting parameters (µ, η) is given by the solution to the optimization program

(z∗, r∗,µ∗, η∗) = argmin
(η,µ)

argmax
(z,r)∈R

ψ(z, r; η,µ). (2.5)

Here, since ψ is the log-likelihood ratio of f and g, intuitively, the maximization with

respect to (z, r) identifies the maximum deviance between f and g while the minimization

with respect to (µ, η) then mitigates for this deviance. In other words, this program can

be viewed as a minimax problem. Indeed, choosing g as a sequence of truncated normal

guarantees ψ is concave in (z, r) and is convex is (µ, η). This means that the unique

solution to this program is given by solving for the system of equations ∇ψ = 0, where

∇ = (∂z, ∂r, ∂µ, ∂η)
>.

Moreover let g be the optimally tilted proposal density and let (Z1, R1), . . . , (Zn, Rn)
iid∼

g. It follows that

` = E
f̃(Z1, R1)

g(Z1, R1)
= E exp(ψ(Z1, R1;µ∗, η∗))
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so that the importance sampling estimator is

ˆ̀=
1

n

n∑
i=1

exp(ψ(Zi, Ri;µ
∗, η∗)).

A motivation for the program (2.5) given in [12] is that for all (µ, η),

Var(ˆ̀) ≤ exp[2 sup
(z,r)∈R

ψ(z, r;µ, η)].

Therefore, the program (2.5) minimizes an upper bound on the variance of ˆ̀, thereby

giving a more accurate estimate (say for example in the MSE sense) for `.

Next, denoting cµ,η = exp(ψ(z∗, r∗;µ, η)), since ψ is concave in (z, r), we have then

f̃ ≤ cµ,ηg. This means g is a valid rejection sampling proposal for f . Since the probability

of retaining a proposal is `/cµ,η, maximizing the efficiency of this rejection sampling

scheme is equivalent to minimizing cµ,η with respect to (µ, η). This again reduces to

optimization program (2.5). To this end, we have following rejection sampler.

Algorithm 1 : Exact draw from (2.4)

Require: (z∗, r∗, η∗,µ∗)

repeat

Draw (Z, R) ∼ g, the optimally tilted proposal density

Draw E ∼ Exp(1)

until E ≥ ψ(z∗, r∗; η∗,µ∗)− ψ(Z, R; η∗,µ∗)

return (Z, R)

Finally, given an exact draw (Z, R) ∼ f , one then computes Z = QL−1
1 X and Y =

√
νX/R so that Y ∼ h. Note that L1 is a lower diagonal matrix, so L−1

1 X can be

efficiently calculated by forward substitution.

2.3 Asymptotic efficiency of the importance sampling estimator

Suppose that ` is a function of a parameter γ in the following manner.

`(γ) = P[Y ≥ l(γ)], Y ∼ tν(0,Σ)

where maxi li > 0, and at least one component of l(γ) diverges to∞, that is, limγ↑∞ ‖l(γ)‖ =

∞. We are interested in studying the asymptotic accuracy of the importance sampling

estimator in the sense that γ ↑ ∞. The key result for this section is the following theorem,

whose proof is given later in the section.
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Theorem 2.3.1 (Bounded Relative Error estimator). Suppose we wish to

estimate the tail probability `(γ) = P[X ≥ l(γ)], whereX ∼ tν(0,Σ), and maxi li >

0 with l(γ)/γ = Θ(1) as γ ↑ ∞. Then, the exponentially tilted estimator

ˆ̀= exp(ψ(Z, R;µ∗, η∗)), (Z, R) ∼ g(z, r; η∗,µ∗),

where

ψ(r∗, z∗; η∗,µ∗) = inf
η,µ

sup
(r,z)∈R

ψ(r,z; η,µ),

is a bounded relative error estimator:

lim sup
γ↑∞

Var(ˆ̀)

`2(γ)
<∞.

Where we recall that for real-valued functions f and g, we write g(x) = O(f(x)) if

there are constants M,C > 0 such that |f(x)| < C|g(x)| whenever ‖x‖∞ ≥ M . Furher,

we write g(x) = Θ(f(x)) whenever g(x) = O(f(x)) and f(x) = O(g(x)). Finally, in

addition to f(x) = o(g(x)) being a shorthand notation for lim‖x‖∞↑∞ f(x)/g(x) = 0, we

use the notation . for “asymptotically less than”.

Theorem 2.3.1 states that our estimator ˆ̀ has bounded relative error even when the

rarity parameter γ → +∞ so that at least one of the component of l diverges to +∞.

This is a desirable property but it is often unobtainable for naive estimators. For example,

given Xk
iid∼ Exp(1), the naive estimator ρ̂(γ) := 1

n

∑n
k=1 I{Xk > γ} for the quantity

ρ(γ) := P[X1 > γ] has unbounded relative error as γ → +∞ (when n is held fixed):

Var(ρ̂(γ))

ρ2(γ)
=
ρ(γ)(1− ρ(γ))

ρ2(γ)
= Θ(1/ρ(γ)) ↑ ∞.

This is because the variance does not decay at a rate fast enough to offset the growth in

1/ρ(γ).

Quite often, practical applications are interested in the case l(γ) = (γ, γ, . . . , γ)> so

that `(γ) is the probability of each coordinate exceeding some threshold γ. In such cases,

the assumption l(γ)/γ = Θ(1), which requires l to grow linearly with γ, is fulfilled.

We now present the required notations and lemmas for proving Theorem 2.3.1. The

idea of the proof closely follows the proof of Theorem 1 in [11] – we shall analyze the set

of equations derived from ∇ψ = 0 as in the program (2.5), and this will give us an upper

bound on Var(ˆ̀), which then implies our desired result.
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Let P be a permutation matrix which maps the vector (1, . . . , d)> into the permutation

p = (p1, . . . , pd)
>, that is, P(1, . . . , d)> = p. Note that `(γ) = P[PY ≥ Pl(γ)] for any

permutation p, and PY ∼ tν(0,PΣP>). We will specify p shortly.

Define the convex quadratic programming:

min
x

1

2
x>(PΣP>)−1x

subject to: x ≥ Pl(γ)
(2.6)

The Karush-Kuhn-Tucker conditions are a necessary and sufficient condition to find the

unique solution:

(PΣP>)−1x− λ = 0

λ ≥ 0, Pl− x ≤ 0

λ>(Pl− x) = 0 ,

(2.7)

where λ ∈ Rd is the Lagrange multiplier. Denote the number of active constraints in

(2.6) by d1 and the number of inactive constraints as d2, so that d1 + d2 = d. Note that

the number of active constraints d1 ≥ 1, because otherwise the solution is x = 0, which

implies Pl ≤ 0, thus reaching a contradiction.

Given the partition λ = (λ>1 ,λ
>
2 )> with dim(λ1) = d1 and dim(λ2) = d2, one can

select the permutation vector p and the corresponding matrix P in such a way that all

the active constraints in (2.7) correspond to λ1 > 0 and all the inactive ones to λ2 = 0.

Henceforth, we assume that this reordering of the variables via the permutation operator

P has been applied as a preprocessing step to both l and Σ so that Pl = l and PΣP> = Σ.

If we partition x, l, and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

then the KKT equations tell us that the optimal solution x∗ is:

x∗1 = Σ11λ1 = l1(γ)

x∗2 = Σ21λ1 = Σ21Σ−1
11 l1(γ) > l2(γ)

with the global minimum 1
2
(x∗)>Σ−1x∗ = 1

2
(x∗1)>λ1 = 1

2
l>1 Σ−1

11 l1.

Note that x∗(γ) is implicitly a function of γ and that in general the active constraint

set of (2.6) and its size, d1, also depends on the value of γ through l(γ). We henceforth

assume that ‖l(γ)‖ diverges to infinity as γ ↑ ∞ in such a way that, for large enough γ,

the active constraint set of (2.6) becomes independent of γ.

One of our main contributions is to generalize the following result of [52].
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Proposition 2.3.1 (Mill’s Ratio For Multivariate Normal [52]). Under the condi-

tions above, if Z ∼ N(0,Σ), then as γ ↑ ∞, we have:

P[Z ≥ l(γ)] =
P[Z2 ≥ l∞ |Z1 = 0]

(2π)d1/2|Σ11|1/2
∏d1

k=1 e
>
k Σ−1

11 l1
exp

(
−l
>
1 Σ−1

11 l1
2

)
(1 + o(1)),

where l∞ := limγ↑∞(l2(γ)− x∗2(γ)) with l∞ ≤ 0.

Using the notations introduced, we have the following lemma, which can be thought

of as a multivariate extension to the Mill’s ratio of the univariate student density [69, 84]

and the Multivariate student version of Proposition 2.3.1.

Lemma 2.3.1 (Mill’s Ratio For Multivariate Student). Suppose Y ∼ tν(0,Σ)

with ν > 0, and Σ and l satisfy the conditions imposed for the solution of (2.6).

Then,

P[Y ≥ l(γ)] = (c+ o(1))×
(

1 +
l1(γ)>Σ−1

11 l1(γ)

ν

)−ν/2
, γ ↑ ∞,

where c is a constant, independent of γ, and is given by the expression:

c =
21−ν/2

Γ(ν/2)

∫ ∞
0

rν−1P[Z ≥ rl∞] dr,

with l∞ = limγ↑∞
l(γ)√

ν+l1(γ)>Σ−1
11 l1(γ)

and Z ∼ N(0,Σ).

Proof. First, we use the normal scale-mixture representation of Y ∼ tν(0,Σ) as Y =
√
νZ/R, where Z ∼ N (0,Σ) is independent of

R ∼ chiν(r) =
exp

(
− r2

2
+ (ν − 1) ln r

)
2ν/2−1Γ(ν/2)

, r > 0.

We can thus write ` as a conditional expectation:

`(γ) = P
[√

νZ

R
≥ l(γ)

]
= EP

[√
νZ

R
≥ l(γ)

∣∣∣R] .
Next, condition on R = r, and let µ = rx∗/

√
ν, where x∗ is the solution of (2.6).

Denoting t = [t>1 , t
>
2 ]> := rl/

√
ν, and making a change of variable z ← z −µ, we obtain
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P
[√

νZ
R
≥ l(γ)

∣∣∣R = r
]

= P[Z ≥ t] =

= E exp(−µ>Σ−1µ
2
−Z>Σ−1µ)I{Z ≥ t− µ}

= exp(−µ>Σ−1µ
2

)E exp(−Z>1 Σ−1
11 t1)I{Z1 ≥ t1 − µ1,Z2 ≥ t2 − µ2}

= exp(−t>1 Σ−1
11 t1/2)E exp(−Z>1 Σ−1

11 t1)I{Z1 ≥ 0,Z2 ≥ t2 − µ2}.

In other words, we have:

P[Z ≥ t] = exp(− r2l>1 Σ−1
11 l1

2ν
)E exp(− rZ>1 Σ−1

11 l1√
ν

)I{Z1 ≥ 0,Z2 ≥ r(l2−Σ21Σ−1
11 l1)√

ν
} (2.8)

Let D ≡ {z : z1 ≥ 0, z2 ≥ r(l2−Σ21Σ−1
11 l1)√

ν
}. We can now rewrite (2.8) as an integral and

integrate over r. This gives `(γ) =:

=
∫∞

0

∫
D

chiν(r)φΣ (z) exp
(
−r2l>1 Σ−1

11 l1/(2ν)− rz>1 Σ−1
11 l1/

√
ν
)
dz dr

= 21−(ν+d)/2π−d/2

Γ( ν
2

)|Σ|1/2
∫∞

0

∫
D

exp
(
− r2

2

(
1 +

l>1 Σ−1
11 l1

2ν

)
− z>Σ−1z

2
− rz>1 Σ−1

11 l1√
ν

+ (ν − 1) ln r
)
dz dr

= 21−(ν+d)/2π−d/2

Γ( ν
2

)|Σ|1/2
(

1+
l>1 Σ−1

11 l1
ν

)ν/2 ∫∞0 ∫D exp

(
−u2

2
− z>Σ−1z

2
− u z>1 Σ−1

11 l1√
ν+l>1 Σ−1

11 t1
+ (ν − 1) lnu

)
dz dr

= 1(
1+

l>1 Σ−1
11 l1
ν

)ν/2 ∫∞0 ∫Rd chiν(u)φΣ(z) exp

(
− u z>1 Σ−1

11 l1√
ν+l>1 Σ−1

11 l1

)
I
{
z1 ≥ 0, z2 ≥ u(l2−Σ21Σ−1

11 l1)√
ν+l>1 Σ−1

11 l1

}
dz dr

=
(

1 +
l>1 Σ−1

11 l1
ν

)−ν/2
E exp

(
− R Z>1 Σ−1

11 l1√
ν+l>1 Σ−1

11 l1

)
I
{
Z1 ≥ 0,Z2 ≥ R(l2−Σ21Σ−1

11 l1)√
ν+l>1 Σ−1

11 l1

}

where the third line follows from the change of variable u = r

√
1 +

l>1 Σ−1
11 l1
ν

. Next, using

formula (2.8) we rewrite the last expression as:

(
1 +

l>1 Σ−1
11 l1
ν

)−ν/2
E exp

(
R2l>1 Σ−1

11 l1

2(ν+l>1 Σ−1
11 l1)

)
P
[
Z ≥ Rl√

ν+l>1 Σ−1
11 l1

∣∣∣R]
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We now seek to apply the dominated convergence theorem to the expectation in the last

displayed equation. For this we need the upper bound (recall that Σ−1
11 l1 ≥ 0)

exp

(
r2l>1 Σ−1

11 l1

2(ν + l>1 Σ−1
11 l1)

)
P

Z ≥ rl√
ν + l>1 Σ−1

11 l1

 ≤ exp(r2/2)P

Z1 ≥
rl1√

ν + l>1 Σ−1
11 l1


≤ exp(r2/2)P

l>1 Σ−1
11 Z1 ≥

rl>1 Σ−1
11 l1√

ν + l>1 Σ−1
11 l1


= exp(r2/2)Φ

[
r

√
l>1 Σ−1

11 l1

ν + l>1 Σ−1
11 l1

]
≤ exp(r2/2)Φ (r) .

The last expression is integrable in the sense that∫ ∞
0

chiν(r) exp(r2/2)Φ (r) dr =
21−ν/2

Γ(ν/2)

∫ ∞
0

rν−1Φ (r) dr

=
21−ν/2

Γ(ν/2)2ν

∫ ∞
−∞
|u|νφ(u) du

=
21−ν/2Γ((ν + 1)/2)2ν/2√

πΓ(ν/2)2ν
=

Γ((ν + 1)/2)√
πΓ(ν/2)ν

<∞.

In addition, as γ ↑ ∞, by Lemma 2.3.2 we have the pointwise limits:

exp
[

r2l>1 Σ−1
11 l1

2(ν+l>1 Σ−1
11 l1)

]
P
[
Z ≥ rl√

ν+l>1 Σ−1
11 l1

]
→ exp(r2/2)P[Z ≥ rl∞].

Therefore, by the dominated convergence theorem

limγ↑∞ E exp
(

R2l>1 Σ−1
11 l1

2(ν+l>1 Σ−1
11 l1)

)
P
[
Z ≥ Rl√

ν+l>1 Σ−1
11 l1

∣∣∣R] = 21−ν/2

Γ(ν/2)

∫∞
0
rν−1P[Z ≥ rl∞] dr.

This concludes the proof.

Lemma 2.3.2 (Continuity of Gaussian tail). Suppose that Z ∼ N (0,Σ) for

some positive definite matrix Σ, and an → a as n ↑ ∞. Then, the tail of the

multivariate Gaussian is continuous:

lim
n↑∞

P[Z ≥ an] = P[Z ≥ a].
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Proof. The proof is yet another application of the dominated convergence theorem to show

that: ∫
[0,∞)

φΣ(z + an) dz →
∫

[0,∞)

φΣ(z + a) dz = P[Z ≥ a].

Since Σ is a positive definite matrix, the ‖x‖2
Σ := x>Σ−1x is a norm satisfying ‖z+an‖2

Σ ≤
2(‖z‖2

Σ + ‖an‖2
Σ). Therefore,∫
[0,∞)

φΣ(z + an) dz ≤ exp(−‖an‖2
Σ)

2n/2

∫
[0,∞)

φΣ/2(z) dz <∞,

and the conditions for the dominated convergence theorem are met.

Finally, we have the following proof for Theorem 2.3.1

Proof. First, note that the second moment is∫
g(z, r;µ∗, η∗) exp(2ψ(z, r;µ∗, η∗)) dz dr =

∫
R

chiν(r)φΣ(z) exp(ψ(z, r;µ∗, η∗)) dz dr

≤ `(γ) exp(ψ(z∗, r∗;µ∗, η∗)).

Since the properties of ψ imply that

ψ(z∗, r∗;µ∗, η∗) ≤ ψ(z∗, r∗; 0, η∗) ≤ (η∗)2

2
− r∗η∗ + (ν − 1) ln r∗ + ln Φ(η∗),

bounded relative error will follow if we can show that

(r∗)ν−1Φ(η∗) exp( (η∗)2

2
− r∗η∗)

`(γ)

remains bounded in γ. The pair (r∗, η∗) is determined from the solution to the saddle-

point problem: maxr,z minη,µ ψ(z, r;µ, η). This can be obtained by setting the gradient of

ψ with respect to the vector (z, r,µ, η) to zero: ∇ψ = 0. We now introduce the following

notation that will allow us to express ∇ψ = 0 explicitly. Let L be the lower triangular

Cholesky factor of Σ = LL>. Define D = diag(L) , L̆ = D−1L,

l̃ =
r√
ν

D−1l(γ)− (L̆− I)z,
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and vector Ψ with elements Ψk = φ(l̃k − µk)/Φ(l̃k − µk). Then, ∇ψ = 0 can be written

as

(L̆> − I)Ψ− µ = 0

ν − 1

r
− η − 1√

ν
Ψ>D−1l(γ) = 0

µ+ Ψ− z = 0

η +
φ(η)

Φ(η)
− r = 0.

(2.9)

Next, we verify via substitution that the solution of (2.9) as γ ↑ ∞ satisfies

r∗ = O(γ−1), z∗ = O(1), η∗ = O(−γ), µ∗ = O(1).

First, equations one and three in (2.9) are trivially satisfied and we can deduce that

Ψ = O(1). Second, since l̃ = O(rl(γ)) = O(1), it follows that equation two in (2.9) is

equivalent to

r∗η∗ = ν − 1− r∗√
ν

Ψ>D−1l(γ) = O(1).

Finally, note that Mill’s ratio

Φ(η)

φ(η)
' −1

η
+

1

η3
, η ↓ −∞,

implies that equation four is asymptotically equivalent to rη2 +η− r ' 0. The solution of

this quadratic equation in turn implies that η ' (−1−
√

1 + 4r2)/(2r) ' −1/r. In other

words, η∗r∗ = O(1), as desired. Therefore, if ψ̃ denotes the value of ψ at the solution

(2.9), we have

ψ̃ =
‖µ∗‖2

2
− (z∗)>µ∗ +

(η∗)2

2
− r∗η∗ + (ν − 1) ln r∗ + ln Φ(η∗) +

d∑
k=1

ln Φ(l̃k − µ∗k)

= O(1) +
(η∗)2

2
+ (ν − 1) ln r∗ + ln Φ(−η∗).

By Mill’s ratio inequality:

ln Φ(−η) ≤ −η2/2− 1

2
ln(2π)− ln(−η),

we obtain:

ψ̃ . O(1)− ln(−η∗)− 1

2
ln(2π) + (ν − 1) ln r∗ = −ν log(γ) + O(1).

18



In other words, there exist constants c1, c2 > 0 such that exp(ψ̃) ≤ c1γ
−ν for every γ > c2.

Therefore, Var(ˆ̀) = E exp(ψ(Z, R;µ∗, η∗))− `2 . exp(ψ̃)− `2 ≤ c1γ
−ν − `2(γ) and since

by Proposition 2.3.1

`(γ) ' c×
(

1 + γ × l
>
1 Σ−1

11 l1
ν × γ︸ ︷︷ ︸

Θ(1)

)−ν/2
= Θ(γ−ν/2), γ ↑ ∞,

we have lim supγ↑∞Var(ˆ̀)/`2 <∞.

2.4 The rejection sampler

Although Algorithm 1 is motivated by simulating from h, in this section we show that

Algorithm 2.1 actually renders exact sampling schemes for some Bayesian posterior den-

sities. In particular, we study the posterior densities of the Bayesian constrained linear

regression, Bayesian Tobit model, and the Bayesian smoothing spline.

2.4.1 Constrained Linear Regression

Consider the linear regression model

Y = Xβ + ε, X ∈ Rm×d, ε ∼ N(0, σ2I)

with the prior information p(β) ∝ I{l ≤ Cβ ≤ u} for some appropriate matrix C and

vectors l,u. Assuming for simplicity a non-informative prior p(σ) ∝ σ−2 (the approach

is straightforward to generalize to an inverse gamma prior), the posterior from which we

wish to sample is:

π(β, σ) ∝ exp

(
−‖y − Xβ‖2

2σ2
− (m+ 2) lnσ

)
× I{l ≤ Cβ ≤ u}.

Readers should note that the posterior distribution is conditional on the observed vector

of response y. However for the ease of presentation, we have suppressed it from our

notation and write π(·) instead of π(· |y). We do this for every examples in the remaining

of this chapter. If H := X(X>X)−1X> is the hat matrix, β̂ is the least squares estimate,

and s2 := y>(I− H)y = ‖y − Xβ̂‖2 is the norm of the residuals squared, then

π(β, σ) ∝ exp

(
− s2

2σ2
− (m+ 2) lnσ − (β − β̂)>X>X(β − β̂)

2σ2

)
× I{l ≤ Cβ ≤ u}.

(2.10)
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Let L1L>1 = X>X be the lower triangular Cholesky decomposition of X>X and LQ = CL−>1

be the LQ decomposition of matrix CL−>1 . Then, the bijective smooth transformation

r = s/σ

z = Q L>1 (β − β̂)/σ

l←
√
ν(l− Cβ̂)/s

u←
√
ν(u− Cβ̂)/s,

where ν ← (m− d+ 1) ≥ 1, yields the density:

f(z, r) ∝ exp
(
−1

2
‖z‖2 − r2

2
+ (ν − 1) ln r

)
× I{rl ≤

√
νLz ≤ ru},

and thus amenable to Algorithm 1.

We consider the ‘Apple dataset’ [18, 17] which records 207 observations of the number

apples produced (in cartons) along with the number of trees of each year of age from

various growers. This can be modeled by the Bayesian constrained linear regression where

the i-th response, yi ∈ R, is the number of apples produced and the i-th predictor vector,

xi ∈ R10, records the number of trees of age ‘j + 1’, j = 1, . . . , 10 being the entry index

within the vector xi. Note that here trees of year 1 is considered to have zero production

and ‘age 11’ is considered as the mature age of an apple tree, so that any tree above an age

of 11 is recorded as ‘age 11’. Finally, the prior π(β) ∝ I{β1 ≤ β2 ≤ . . . ≤ β10} captures

the prior believe that a more mature tree produces more apples. In this example, the

optimal tilting parameter is

η = −0.0425, µ = (−0.0425,−6.0946,−2.6257,−2.5290,−0.0017,−0.0170, 0, 0, 0, 13.4835)>.

This gives an acceptance probability for this rejection sampling scheme is about 0.637,

suggesting that our rejection sampling scheme is efficient here. The results of the inference

are summarized in figure 2.1 and table 2.1.

mean 0.025-quantile 0.975-quantile sample std.
Age 2 3.19× 10−2 6.11× 10−3 5.46× 10−2 1.20× 10−2

Age 3 4.85× 10−2 2.56× 10−2 7.77× 10−2 1.33× 10−2

Age 4 1.79× 10−1 1.53× 10−1 2.06× 10−1 1.38× 10−2

Age 5 2.79× 10−1 2.02× 10−1 3.69× 10−1 4.37× 10−2

Age 6 5.21× 10−1 3.54× 10−1 7.08× 10−1 9.19× 10−2

Age 7 7.02× 10−1 5.81× 10−1 8.28× 10−1 6.45× 10−2

Age 8 7.31× 10−1 6.16× 10−1 8.54× 10−1 6.26× 10−2

Age 9 8.62× 10−1 6.81× 10−1 1.20 1.32× 10−1

Age 10 9.57× 10−1 7.25× 10−1 1.31 1.56× 10−1

Age 11 1.16 8.28× 10−1 1.66 2.18× 10−1

Table 2.1: Estimated mean, 0.95 credible interval and standard deviation of the posterior distribution from the exact
simulation.
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Figure 2.1: The empirical posterior distribution for the New Zealand apples dataset de-
rived from n = 104 independent exact draws.

2.4.2 Tobit Model

Again, let X be the design (data) matrix and Y be the vector of response. The Tobit

linear regression model concerns observations where the i-th response is (left) censored

at some lower threshold ui (known a priori). The Tobit regression model with normally

distributed error, treats this problem by assuming that Yi takes the following form:

Yi =

Wi, if ui < Wi,

ui, if Wi ≤ ui,
, where W ∼ N(Xβ, σ2I).

The posterior, given for the data y and with uninformative priors, say p(β) ∝ 1 and

p(σ) ∝ σ−2, is then of the form:

π(β, σ) ∝ exp
(
−
∑

i:yi>ui

(
(yi−x>i β)2

2σ2 + lnσ
)

+
∑

i:yi=ui
ln Φ((ui − x>i β)/σ)

)
× σ−2.

Let y and y be vectors that collect all yi > ui and yi = ui, respectively. Denote the

corresponding matrix with predictors via X and X, respectively. Using a latent variable

wi for each yi = ui, we can write:

π(β, σ,w) ∝ exp

(
−‖y − Xβ‖2

2σ2
− ‖w − Xβ‖2

2σ2
− (m+ 2) lnσ

)
I{w ≤ u}
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so that the marginal of (β, σ) has the desired posterior pdf. Note that, conditional on

(σ,w), the distribution of β is N(C(X
>
y+X>w), σ2C), where C−1 = X

>
X+X>X. Given

a draw of (σ,W ) from the marginal, simulating from N(C(X
>
y+X>w), σ2C) is a routine

task on standard mathematics/statistics toolbox, thus the only difficulty is to simulate

from the marginal density of (σ,W ),

π(σ,w) ∝ exp
(
−‖w‖

2

2σ2 + (X
>
y+X>w)>C(X

>
y+X>w)

2σ2 − ‖y‖
2

2σ2

)
I{w ≤ u} × σd−m−2.

We may rewrite this as

π(σ,w) ∝ exp
(
−w

>(I−XCX>)w
2σ2 + y>XCX>w

σ2 − y>(I−XCX
>

)y
2σ2

)
I{w ≤ u} × σd−m−2

the identity (I− XCX>)−1 = I + X(X
>

X)−1X>, then yields

π(σ,w) ∝ exp
(
− (w−ŵ)>(I−XCX>)(w−ŵ)

2σ2 − s2

2σ2 − (m− d+ 2) lnσ
)
I{w ≤ u},

where

ŵ := (I− XCX>)−1XCX
>
y = X(X

>
X)−1X

>
y

s2 := y>(I− XCX
> − XCX>X(X

>
X)−1X

>
)y = y>(I− X(X

>
X)−1X

>
)y.

Finally, let LL> = I + X(X
>

X)−1X> be the Cholesky decomposition, and ν ← m − d −
dim(y) + 1, l ←

√
ν(ŵ − u)/s, the transformation r = s/σ, z = L−1(ŵ −w)/σ, again

gives

f(z, r) ∝ exp
(
−‖z‖

2

2
− r2

2
+ (ν − 1) ln r

)
I{
√
ν Lz ≥ rl}.

The analysis above can be easily generalized to the general Tobit model in which we

have both left and right censoring. That is the response is modeled as

Yi =


Wi, if ui < Wi < li

li, if Wi > li

ui, if Wi < ui

, W ∼ N(Xβ, σ2I).

However, we do not pursue this further in this thesis.

2.4.2.1 Women’s wages dataset

The Women’s Wages dataset [85] consists of m = 753 observations on the number of hours

(the response yi) married women spend in the labor force. The seven predictor variables

(x1, . . . , x7) are:

1. kidslt6: number of children of age less than 6
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2. kidsge6: number of children of age between 6 and 18

3. age: age of the married woman

4. educ: level of education

5. experience: number of years worked since age 18

6. nwifeinc: income that does not come from the wife

7. expersq: square of the number of years the married woman has worked since age 18

The acceptance probability in this rejection sampling is about 0.41 this suggests our

rejection sampling scheme is efficient in practical inferences. (We do not report the optimal

tilting parameter here because its dimension is too large.) The results are summarized in

Figure 2.2 and Table 2.2.
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Figure 2.2: The empirical posterior distribution for the women’s wage dataset derived
from n = 104 independent exact draws.

We can see that the most important factor is the number of children of age less than

6 with a negative effect on the number of hours in the workforce. The experience in the

work force is the second most important factor and it has a positive effect.
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mean 0.025-quantile 0.975-quantile sample std.
β0 9.59× 102 2.29× 101 1.84× 103 4.64× 102

kidslt6 −9.03× 102 −1.15× 103 −6.80× 102 1.20× 102

kidsge6 −1.62× 101 −9.39× 101 6.10× 101 3.99× 101

age −5.50× 101 −7.09× 101 −4.00× 101 7.86
educ 8.18× 101 3.81× 101 1.28× 102 2.27× 101

exper 1.33× 102 9.80× 101 1.70× 102 1.85× 101

nwifeinc −8.92 −1.81× 101 8.08× 10−2 4.65
expersq −1.89 −3.00 −8.06× 10−1 5.59× 10−1

Table 2.2: Estimated mean, 0.95 credible interval and standard deviation of the posterior distribution from the exact
simulation.

2.4.2.2 The affairs dataset

The affairs dataset consists of m = 601 independent observations. The response variable

is a measure of time spent engaging in extramarital affairs, a variable that takes on a

value for each individual of either zero or some positive number [28, 29].

The predictor variables include the following:

1. gender: a categorical variable (male being 1 and female being 0)

2. age: the age of the person

3. yearsmarried: the number of years being married

4. children: whether the couple has a children or not

5. religiousness: a rating on how religious the person is

6. education: the level of education

7. occupation: a measure of the socioeconomic status of the occupation

8. rating: how satisfied the person is with the current marriage

The acceptance probability in this rejection sampling is about 0.166 this again suggests our

rejection sampling scheme is efficient in practical inferences. The results are summarized

in figure 2.3 and table 2.3

mean approx. 0.025-quantile approx. 0.975-quantile sample std.
β0 7.65 −1.14 1.64× 101 4.40

gender 1.04 −1.28 3.68 1.25
age −2.09× 10−1 −4.16× 10−1 −3.71× 10−2 9.60× 10−2

yearsmarried 5.65× 10−1 2.51× 10−1 9.42× 10−1 1.76× 10−1

children 1.17 −1.62 4.38 1.52
religiousness −1.80 −2.93 o −9.07× 10−1 5.14× 10−1

education 3.59× 10−2 −4.70× 10−1 5.61× 10−1 2.61× 10−1

occupation 2.14× 10−1 −5.12× 10−1 9.33× 10−1 3.66× 10−1

rating −2.42 −3.73 −1.48 5.69× 10−1

Table 2.3: Estimated mean, 0.95 credible interval and standard deviation of the posterior distribution from the exact
simulation.

The result shows that the most important factor is the level of satisfaction with the

marriage. The posterior distribution of the rating is concentrated at the negative values.

This means one is less likely to engage in extramarital affairs if one is satisfied with one’s

marriage.

24



−8

−6

−4

−2

0

2

4

6

8

10

gender age yearsmarried children religiousness education occupation rating

c
o
e
ff
e
c
ie
n
t
s
β
j

Figure 2.3: The empirical posterior distribution for the affairs dataset derived from n =
104 independent exact draws.

2.4.3 Bayesian splines

Consider noisy iid pairs {(x1, y1), (x2, y2), . . . , (xn, yn)} generated from some unknown

positive function f over x ∈ [0, h]. Using {0, x1, . . . , xn, h} as knots and, the model for

estimating f with a cubic smoothing splines is

yi =
n+4∑
k=1

βksk(xi) + εi, εi
iid∼ N(0, σ2).

Here sk is the k-th 4-th order B-spline basis for inner knots {x1, . . . , xn}. (Recall that

the 4-th order B-spline basis is a linear combination of cubic polynomials.) The goal is to

estimate β := (β1, . . . , βn+4)>, such that the model ‘fits the data well’ and is ‘reasonably

smooth’.

The classical treatment of the problem reduces down to solving the penalized regression

optimization:

argmin
β

n∑
i=1

(
yi −

n+4∑
k=1

βksk(xi)

)2

+ λ

∫ h

0

(
n+4∑
k=1

βks
′′
k(x)

)2

dx,

where λ > 0 controls the smoothness of the estimated model.
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Denoting s(xi) = (s1(xi), s2(xi), . . . , sn+4(xi))
>, its Bayesian analogue is therefore [89]:

π(y|x,β, σ2) ∝ σ−n exp

(
− 1

2σ2

n∑
i=1

(yi − β>s(xi))
2

)

π(β|σ2, λ) ∝ λ(n+4)/2σ−(n+4) exp

(
− λ

2σ2

∫ h

0

(β>s′′(x))2 dx

)
∝ λ(n+4)/2σ−(n+4) exp

(
− λ

2σ2
β>Kβ

)
p(σ2) ∝ σ−2,

where K is a square matrix of size n+ 4 with entries

Kkl =

∫ h

0

s′′k(x)s′′l (x) dx.

In practice, enforcing the positive definiteness of f reduces down to selecting points {0 ≤
z1 < z2 < . . . < zm ≤ h} and imposing the constraint:

β>s(zj) :=
n+4∑
k=1

βksk(zj) > 0, j = 1, . . . ,m.

Consequently, Bayesian inference for this model requires one to sample from the posterior

distribution:

π(β, σ2) ∝ π(y|x,β, σ2)π(β|σ2, λ)p(σ2)

restricted to:

β>s(zj) > 0, j = 1, . . . ,m.

By denoting the matrix S =


s(x1)>

...

s(xn)>

 and completing the square, the posterior distri-

bution reduces to:

π(β, σ2) ∝ exp
(
− s2

2σ2 − (2n+ 6) lnσ − (β−β̂)>A(β−β̂)
2σ2

)
I{β>s(zj) > 0, j = 1, . . . ,m}

where A = S>S + λK, β̂ = A−1S>y and s2 = y>y − y>SA−1Sy. This again takes the

form admissible to the sampling scheme since this posterior density takes the same as

the constrained linear regression in (2.10). Figure 2.4 is an example of such smoothing

problem.
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Figure 2.4: We consider the same example described in [89] in which they used a Gibbs
sampler to sample the coefficients from the posterior distribution. There are 50 xi uni-
formly distributed across [0, 2π] and yi = xi sin

2(xi) + εi, where εi ∼ N(0, 1). The dotted
line and the bands are the mean and the empirical 95% function values obtained from
sampling the posterior distribution exactly 1000 times.

2.5 Concluding remarks for this chapter

In this chapter we establish theoretical results concerning the asymptotic efficiency of the

importance sampling estimator for ` derived in [12]. A byproduct of this proof is a novel

multivariate extension to the Mill’s ratio, currently known only for univariate student

densities.

We also find novel applications of the exact samplers derived in [12]. In particular, we

construct efficient rejection sampler for the posterior densities of the Bayesian constrained

linear regression model, the Bayesian Tobit model and the Bayesian smoothing spline.

Integrals with respect to these posterior distributions are intractable so practitioners call

for Monte Carlo methods to estimate these integrals. The standard approach in the

literature is to sample approximately from the posterior by MCMC samplers.

We have also tested these rejection samplers on real and synthetic datasets. Our

simulation experience reveals that these samplers achieve valid posterior inferences and

the probabilities of retaining samples are reasonably high.

In the next chapter we consider applying similar technique for simulating from the

Bayesian Lasso linear regression model. The Lasso linear regression and its Bayesian

analogue are popular extensions of the simple linear regression model. The standard
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approaches for the posterior inference of the Bayesian Lasso linear regression model are

approximate Markov chain samplings. It turns out that we can construct an optimally

tilted sequential proposal for this posterior distribution too (though it will not be a simple

standard family of densities), and in this manner we propose a novel efficient rejection

sampler in the next chapter.
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Chapter 3

Sequential proposal density via exponential tilting for the

Bayesian Lasso linear regression posterior density

3.1 Introduction to this chapter

The Bayesian Lasso linear regression model can be summarized by the following hierar-

chical representation:

Y |β, σ ∼ N(Xβ, σ2I),

βj
iid∼ Lap(λ/σ), j = 1, . . . , p,

σ ∼ p(σ).

(3.1)

Here Y ∈ Rn denotes the vector of some centered response variable, β = (β1, . . . , βd)
> ∈

Rd is the random vector of coefficients, X is the n × d associated standardized design

matrix, p(σ) is some prior distribution for the noise parameter σ, and λ is called the

‘Lasso parameter’ which determines the level of shrinkage for βj. Moreover, a Lap(λ)

random variables are defined by the density

λ

2
exp(−λ|z|), z ∈ R.

It is common to choose p(σ) ∝ σ−2, the non-informative scale invariant prior [62], and

in this way, inference for the Bayesian Lasso linear regression model ultimately requires

computing integrals with respect to posterior densities of the form

π(β, σ |y, λ) =
σ−2 × (2πσ2)−n/2 exp

(
− 1

2σ2‖y − Xβ‖2
2

)
× λd

(2σ)d
exp

(
−λ
σ
‖β‖1

)
`(λ |y)

. (3.2)

Here ` is marginal likelihood. (Note that, in this thesis, we consider Y being centralized

during data-preprocessing so that we ignore the intercept term in the regression. One can

alternatively assign an non-informative prior for the intercept and integrate it out, see [91]

for detail on this matter.) For the simplicity of notation, we shall now drop the condition

on y for the posterior density, that is we will write π(·) and `(·) instead of π(· |y), and
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`(· |y). Since integrals with respect to this posterior density are intractable, in practice,

one simulates draws from π and approximate the integrals with some average.

In this chapter we construct novel exact sampling algorithms to sample from the

posterior density of the Bayesian Lasso. We begin by considering a simplified model in

which we take σ as a fixed and known. We show that this simplified posterior density

exhibits a simple rejection sampling algorithm by constructing an exponentially tilted

normal proposal density. The tilting parameter here is optimally chosen by solving a

quadratic programming problem. Moreover, it turns out this exponentially tilted normal

density renders an accurate importance sampling estimator for the marginal likelihood `.

We then consider the standard case where σ is random. In this case, the normal

proposal density is no longer efficient. For this reason, we construct a more complex

sequential proposal density, again based on the “separation of variable” technique in

Chapter 2. This later construction is published in [10].

The rest of this section provides a discussion on the origin and the motivation for the

Bayesian Lasso linear regression model. A brief recount of notable works in the literature

is also presented. We find that MCMC is the standard approach to the problem as oppose

to our rejection sampler.

The classical ordinary least squares (OLS) estimator, which historically traces back to

Legendre and Gauss [103], considers solving the optimization

β̂OLS = argminβ‖Y − Xβ‖2
2.

This approach quickly loses appeal when one wishes to achieve a lower mean squared error

(MSE) or to perform variable selection. Studies have shown that introducing regulariza-

tion penalties can achieve lower MSE. For example, for some λ > 0, the ridge regression

[59] which concerns

β̂ridge = argminβ‖Y − Xβ‖2
2 + λ‖β‖2,

or the Lasso regression [107], which concerns

β̂Lasso = argminβ‖Y − Xβ‖2
2 + λ‖β‖1,

or in general, the bridge regression [34] that concerns

β̂bridge = argminβ‖Y − Xβ‖2
2 + λ‖β‖p.

Here ‖ · ‖p denotes the p-norm (or the p-pseudo-norm for 0 ≤ p < 1). Note that

the bridge regression naturally encompasses ‘subset selection’ when p = 0, the Lasso

regression when p = 1 and the ridge regression when p = 2.
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The Lasso is of particular interest to practitioners because ‖ · ‖1 corresponds to the

smallest p out of all ‖ · ‖p such that the programming remains a convex problem, and

unlike the ridge regression, it can set some components of β to 0. Consequently, variable

selection naturally embeds in the Lasso regression [108]. This is advantageous over earlier

variable selection methods that involve repeated model fitting and calculation of statistics

such as the Akaike Information criterion [1] and the Bayesian Information criterion [102].

A Bayesian interpretation of the Lasso linear regression is also given in [107]. Here

β is assigned an independent Lap(λ) prior. The first systematic study on this Bayesian

analogue is given in [91], however they argue that a Lap(λ/σ) prior should be imposed

to achieve unimodality of the posterior distribution so as to ensure the proposed Gibbs

sampler converges. This model can is summarized by hierarchy (3.1).

Bayesian inference for this model requires one to evaluate intractable integrals with

respect to the posterior density (3.2). Numerical techniques such as importance sampling

and MCMC sampling are almost the default methods in this context. The Gibbs sampler

proposed in [91] exploits the normal scale mixture representation of the Laplace density

as follows:
λ

2σ
e−λ|z|/σ =

∫ ∞
0

1√
2πs

e−z
2/(2s) λ

2

2σ
e−λ

2s/(2σ2) ds.

Consequently, one can consider

π(β, s, σ) =
σ−2 × (2πσ2)−n/2 exp

(
− 1

2σ2‖y − Xβ‖2
2

)
×
∏d

j=1
1√
2πsj

e−β
2
j /(2sj) λ

2

2σ
e−λ

2sj/(2σ
2)

`(λ)

so that π(β, σ) =
∫
Rd+
π(β, s, σ) ds is recovered. Defining τj = 1/sj for each j, and denote

τ = (τ1, . . . , τd)
>, one may rewrite the hierarchy as follows.

Y |β, σ ∼ N(Xβ, σ2I),

β |σ, s ∼ N(0, σ2diag(τ )),

p(s |σ) =
d∏
j=1

λ2

2σ
e−λ

2sj/(2σ
2),

p(σ) ∝ σ−2.

The idea is then to construct a (block) Gibbs sampler on the augmented state space,

Rd × Rd
+ × R+ for (β, τ , σ), that cycles through the following conditional distributions.

β | τ , σ ∼ N(AX>y, σ2A),

σ2 |β, τ ∼ InvGamma(n/2 + d/2, ‖y − Xβ‖2
2/2 + β>diag(τ )β/2),

τj :=
1

sj
|β, σ ∼ Wald(λ2, σλ/|βj|), independently for all j.
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Here A−1 = X>X+diag(τ ) is symmetric and invertible, and the density of a Wald(λ, µ)[19]

distribution is √
λ

2π
x−3/2 exp

(
λ(x− µ)2

2µ2x

)
, x ∈ R+.

Since then, different approaches have been proposed. For example, [79] uses the relation

λ

2σ
e−

λ
σ
|z| =

λ

2σ

∫ ∞
0

λe−λuI{u > |z|/σ} du =

∫ ∞
0

λ2

2Γ(2)σu
ue−λu du

so that

π(β,u, σ) =
σ−2 × (2πσ2)−n/2 exp

(
− 1

2σ2‖y − Xβ‖2
2

)
×
∏d

j=1
λ2

2Γ(2)σuj
uje
−λujI{uj ≥ |βj|/σ}

`(λ)

also satisfies π(β, σ) =
∫
Rd+
π(β,u, σ) du. Hence one can study the Bayesian Lasso with

the following equivalent hierarchy.

Y |β, σ ∼ N(Xβ, σ2I)

βj |u, σ ∼ Unif(−σuj, σuj), for j = 1, . . . , d

uj
iid∼ Gamma(2, λ), for j = 1, . . . , d

p(σ) ∝ σ−2.

A natural Gibbs sampler for (β,u, σ) then cycles between the following full conditional

densities.

β |u, σ ∼ N(β̂OLS, σ
2(X>X)−1), conditional on |βj| < σuj ∀j

uj |β, σ ∼ Exp(λ), conditional on uj > |βj|/σ ∀j

σ2 |β,u ∼ InvGamma(n/2 + d/2, ‖y − Xβ‖2
2/2), conditional on σ2 > max

j
β2
j /u

2
j .

Both [91] and [79] construct Markov chain on some augmented state space. A noteworthy

work along this framework is [92] which also injects the posterior density of the Bayesian

bridge into some augmented state space, and proposes a Gibbs sampler from there. On the

other hand [50] proposes a direct approach, which does not introduce auxiliary variables.

This is done by leveraging the observation that |βj| = β+−β−, so that the density of β |σ
is some mixture of normal densities, and a Gibbs sampler follows. (Here, ·+ = max{0, ·}
and ·− = min{0, ·}.)

Before we move on to the content of this chapter, we draw readers’ attention to the

matter of choosing λ. Here, one can take a fully Bayesian approach where λ is assigned a

prior and is treated as random. Alternatively one can take the empirical Bayes approach
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and find the λ for which ` is maximized. In this thesis, we take the latter approach in all

our numerical examples. This optimization problem can be solved numerically using the

approximate EM algorithm proposed in [15] whenever there is a Gibbs sampler targeting

the posterior density.

3.2 Bayesian Lasso, with σ fixed

In this section we shall consider the case where σ is known and is not random. In the

numerical experiment, the maximum likelihood estimator σ̂ is substituted for σ.

Observe that the Pythagorean Identity

‖y − Xβ‖2
2 = ‖y − Xβ̂‖2

2 + ‖X(β − β̂)‖2
2

yields

π(β) ∝ exp

(
− 1

2σ2
‖X(β − β̂)‖2

2 −
λ

σ
‖β‖1

)
.

Denoting Σ = σ2(X>X)−1 yields the target distribution:

π(β) =
φΣ(β − β̂)λ

p

2p
exp(−λ

σ̂
‖β‖1)

`(λ)
, (3.3)

where φΣ(β − β̂) is the pdf of a d-dimensional normal random variable with covariance

matrix Σ, and mean vector β̂.

Perhaps a natural choice of the proposal density for the rejection sampler is φΣ(·− β̂).

In this case, we have the following algorithm.

Algorithm 2 : Naive rejection sampler for π(β).

Require: Supremum of likelihood ratio c = supβ `π(β)/φΣ(β − β̂).

Simulate U ∼ U(0, 1) and β ∼ φΣ(β − β̂), independently.

while cU > `π(β)/φΣ(β − β̂) do

Simulate U ∼ U(0, 1) and β ∼ φΣ(β − β̂), independently.

return β, a perfect draw from the posterior.

This rejection scheme will only be useful if the probability of acceptance

P
[
cU ≤ ` π(β)

φΣ(β−β̂)

]
= `/c

is high. For this particular proposal, it is clear that

c = sup
β

`π(β)

φΣ(β − β)
= sup

β

λp

2p
exp(−λ

σ
‖β‖1) =

λp

2p
.
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Moreover, the marginal likelihood ` can be estimated with importance sampling. Hence,

we can estimate the acceptance probability, `/c, of Algorithm 2. Take for example, the

diabetes data set [27]. The empirical Bayes approach [15] estimates λ = 0.237 and

plugging this value into the expression, along with the least squares estimator for σ, we

get that a 95% asymptotic confidence interval for the acceptance probability is (7.53 ±
0.053) × 10−6. Since the acceptance probability is too small, we next propose a more

efficient alternative.

Suppose that, instead of φΣ(β− β̂) as a proposal density, we use φΣ(β−µ) where the

parameter µ ∈ Rp is yet to be specified. In a similar to manner to Chapter 2, we define

ψ(β;µ) := ln
` π(β|y, λ)

φΣ(β − µ)
= −1

2
‖X(β − β̂)‖2

2 −
λ

σ
‖β‖1 +

1

2
‖X(β − µ)‖2

2 + p ln(λ/2)

=
µ>Σ−1µ− β̂

>
Σ−1β̂

2
+ β>Σ−1(β̂ − µ)− λ

σ
‖β‖1 + p ln(λ/2),

and solve the program infµ supβ ψ(β;µ). Noting that we can exchange the order:

inf
µ

sup
β
ψ(β;µ) = sup

β
inf
µ
ψ(β;µ).

Since ψ(β;µ) is a quadratic function in µ, one can easily verify via standard calculations

that µ = β. Eliminating µ from the objective function, yields

sup
β
ψ(β,β) = −min

β

1

2
(β − β̂)>Σ−1(β − β̂) +

λ

σ
‖β‖1 + p ln(λ/2). (3.4)

Next, recall that

‖β‖1 = max
a:‖a‖∞=1

a>β.

With this, we can transform (3.4) into a constrained quadratic programming in the fol-

lowing way.

min
β

1

2
(β − β̂)>Σ−1(β − β̂) + λ‖β‖1 = min

β
max

a:‖a‖∞=1

1

2
(β − β̂)>Σ−1(β − β̂) + λa>β

= min
β

max
−1≤a≤1

1

2
(β − β̂)>Σ−1(β − β̂) + λa>β

= max
−1≤a≤1

min
β

1

2
(β − β̂)>Σ−1(β − β̂) + λa>β

= max
−1≤a≤1

λa>β̂ − λ2

2
a>Σa.

(3.5)

The above calculation leverages the following. Firstly, the maximization over a with

the constraint ‖a‖∞ = 1 is equivalent to maximization over a with the box constraint
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−1 ≤ a ≤ 1, provided there is at least one active constraint. We assume that there is at

least one active constraint, since otherwise we end up with an uninteresting Lasso solution

of β = 0. Further, we use minβ max−1≤a≤1 ≡ max−1≤a≤1 minβ, so that substituting the

minimum over β, which is β = β̂−λΣa, we arrive at the last equality. The last expression

can be solved by constrained quadratic programming packages. Plugging a∗, the solution

to the last expression, gives µ∗ = β∗ = β̂ − λΣa∗.

Algorithm 3 : Rejection sampler for π(β) with minimax tilting.

Require: Supremum of likelihood ratio c = infµ supβ `π(β)/φΣ(β − β̂)., and µ∗, the

solution to the minimax program

Simulate U ∼ U(0, 1) and β ∼ φΣ(β − µ∗), independently.

while cU > `π(β)/φΣ(β − µ∗) do

Simulate U ∼ U(0, 1) and β ∼ φΣ(β − β̂), independently.

return β, a perfect draw from the posterior.

3.2.1 Estimating the marginal likelihood

Observe that the marginal likelihood, as a function of the Lasso parameter λ, is given by

`(λ) =

∫
Rp
φΣ(β − β̂)

λp

2p
exp (−‖β‖1) dβ.

Such an integral clearly cannot be computed analytically so one needs to resort to numer-

ical methods. In the context of importance sampling estimation, perhaps it is natural to

consider a N(β̂,Σ) proposal. It follows that for any λ > 0,

ˆ̀
naive(λ) =

λp

2p
exp (−λ‖Z‖1) , Z ∼ N(β̂,Σ),

is an unbiased estimator, that is λp

2p
E exp(−λ‖Z‖1) = `(λ). However, it turns out that

N(µ∗,Σ) is a more efficient importance sampling proposal for `(λ). That is, we propose

the estimator

ˆ̀(λ) = exp(ψ(Z;µ∗)), Z ∼ N(µ∗,Σ). (3.6)

(Notice that E exp(ψ(Z;µ∗)) = `(λ) as well.)

One reason is that ˆ̀(λ) is more efficient is the following. Note that controlling the

variance of (3.6), an unbiased estimator, is the same as controlling its second moment,

and the following calculation shows that µ = β∗ also controls the second moment. Set
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ν = µ− β̂, then:

Eµ exp(2ψ(Z;µ)) = (λ/2)2pEβ̂ exp(µ
>Σ−1µ−β̂>Σ−1β̂

2
+Z>Σ−1(β̂ − µ)) exp(−2λ‖Z‖1)

= (λ/2)2p exp(ν>Σ−1ν)Eβ̂−ν exp(−2λ‖Z‖1)

≤ (λ/2)2p exp(ν>Σ−1ν) mina:‖a‖∞=1 Eβ̂−ν exp(−2λa>Z)

≤ (λ/2)2p exp(ν>Σ−1ν) mina:‖a‖∞=1 exp(−2λa>(β̂ − ν) + 2λ2a>Σa).

Minimization over ν requires us to solve:

min
a:‖a‖∞=1

min
ν

{
ν>Σ−1ν − 2λa>(β̂ − ν) + 2λ2a>Σa

}
.

Eliminating

ν = −λΣa,

the last is equivalent to

min
a:‖a‖∞=1

λ2a>Σa− 2λa>β̂,

which is equivalent to the quadratic programming problem (3.5), up to some scaling

constant. Thus, the tilted proposal density N(µ∗,Σ) is useful both in the acceptance

rejection Algorithm 3 and also in the estimation of the marginal likelihood `(λ).

Computing the marginal likelihood has practical importance in Bayesian inference such

as model comparison with the Bayes factor. Further, suppose that one takes the empirical

Bayes approach [15] to choose the Lasso parameter λ. To do so, one is required to find

the value of λ for which the marginal likelihood is maximized. This can be done with

pilot Gibbs sampling run. Our approach here provides an alternative to Gibbs sampling.

An advantage of our importance sampler is that we have a analytic upper bound on the

variance:

(λ/2)2p exp(ν>Σ−1ν) min
a:‖a‖∞=1

exp(−2λa>(β̂ − ν) + 2λ2a>Σa).

Further, the importance sampler is based on iid replicates, and so standard iid analysis

applies here.

3.2.2 Numerical experiments

We take the “diabetes dataset” on n = 442 patients from [27]. For each patient, we have

a record of p = 10 predictor variables (age, sex, body mass index, blood pressure, and

six blood serum measurements), and a response variable, which measures the severity of

nascent diabetes. We then wish to determine which of the predictors are most relevant to

the response variable using this simplified Lasso model by simulating from the posterior.
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Here y ∈ Rn is the vector of centralized response variables, and X is the standardized

matrix of predictors. The Lasso parameter λ is chosen to be λ = 0.237, which is the

value that maximizes the marginal likelihood; see [91], and σ is taken to be the maximum

likelihood estimator σ̂. The result of the sampler is presented below.

Gibbs sampler [91] Exact sampler via minimax tiliting
Median 95% credible interval Median 95% credible interval

Age -3.296 (-110.99, 102.54) -3.4176 (-111.28,102.87)
sex -213.90 (-333.41, -95.448) -213.76 (-333.28,-94.658)
bmi 523.56 (393.45, 653.59) 523.72 (394.55,654.14)
map 307.81 (179.99,434.24) 307.30 (180.33,435.12)
tc -171.95 (-576.12,125.90) -172.05 (-578.95,125.82)
ldl -2.7453 (-273.66, 332.13) -2.2558 (-275.06,335.22)
hdl -152.24 (-382.22,69.698 ) -151.59 (-381.67,70.233)
tch 92.174 (-126.57, 351.57) 92.480 (-127.4, 349.79)
ltg 521.62 (333.88,725.86) 521.8 (333.04,728.47)
glu 63.007 (-50.496, 188.16) 63.032 (-51.175,189.20)

For the diabetes dataset we have estimated the marginal likelihood for different values
of the Lasso parameter λ, as shown in Figure 3.1. For ease of comparison, we plotted
λ against the estimated log-likelihood. We see that the maximum indeed occurs near
λ = 0.237 as reported by [91]. Moreover, it is clear from the figure that importance
sampling gives more accurate point-wise estimates.
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Figure 3.1: Comparing the estimated logarithm of the marginal likelihood ratio ln(`(λ))
with point-wise approximate confidence interval using 104 Monte Carlo samples. The
horizontal line is −χ2

1,95, the 0.95 quantile of the χ2 distribution with 1 degree of freedom.

3.3 Bayesian Lasso

We now construct a more sophisticated exact sampler for the general case of the Bayesian

Lasso in which we sample σ ∈ R+ along with β according to the density. Taking the

uninformative scale-invariant prior π(σ) ∝ σ−2, the posterior density takes the form

π(β, σ) ∝
λp

2p
σ−p+2 exp

(
− 1

2σ2
‖y − Xβ‖2

2 −
λ

σ
‖β‖1

)
.

The idea here is again similar to Chapter 2 in which we shall introduce some coordinate

transformations that motivates a sequential proposal density. The sequentially proposal

is then optimally tilted so that rejection sampling remains practical for reasonably large
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dimensions. We begin by introducing some probability distributions, which will be part

of the sequential densities.

For z ∈ R, the exponentially tilted Laplace distribution is defined by

Lapµ(z) = exp
(
−|z|+ µz + ln(1− µ2)

)
, |µ| < 1.

For r > 0, the chi distribution is defined by

chiν(r) =
exp(−r2/2 + (ν − 1) ln r)

2ν/2−1Γ(ν/2)
, r > 0.

Finally, the normal-Laplace density is

nl(z;λ, α) = φ(z; 0, 1) exp (−λ|z − α| − ξ(λ, α)) ,

where

ξ(λ, α) = −α
2 + ln(2π)

2
+ ln

[
Φ̄(λ+ α)

φ(λ+ α)
+

Φ̄(λ− α)

φ(λ− α)

]
is the normalizing constant, and Φ̄ is the complementary cdf for a standard normal dis-

tribution. Note that it is not difficult to simulate from each of them. Standard statistical

software packages can generate chiν random variables while Lapµ and nl(·;λ, α) can be

written as a mixture of exponential and a mixture of normal random variables respec-

tively.

Next, observe that we can factorize π in the following way

π(β, σ) ∝ φσ2(y − Xβ)λd exp (−(2 + d) lnσ − λ‖β‖1/σ) ,

and let X = QL be the QL decomposition of the matrix X. Then, the bijective smooth

transformation

r = s/σ, s2 = ‖y − Xβ̂‖2, z = β/σ

ν = n− d+ 1 + d = n+ 1, γ = Lβ̂/s

yields

f(z, r) ∝ λdchiν(r) exp

−1

2

∑
i

(
Liizi − rγi +

∑
j<i

Lijzj

)2

− λ
∑
j

|zj|

 .

Now set

αj(r, z1, . . . , zj−1) := −rγj +
∑
k<j

Ljkzk,
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and J := {j : Ljj 6= 0}, so that we can write:

f(z, r) ∝ λdfν(r) exp

−∑
j /∈J

α2
j

2
−
∑
j∈J

(Ljjzj + αj)
2

2
− λ

∑
j

|zj|

 .

The key insight here is that f(z, r) can be ‘nearly’ written as a product of chi and a

sequence of Lap or nl, and each term, as a function of zj only depends on z1, . . . zj−1.

Consider for example d = 3, so that z = (z1, z2, z3).

• If J = ∅, then

f(z, r) ∝ chiν(r)×exp

(
−α

2
1

2
− λ|z1|

)
×exp

(
−α

2
2

2
− λ|z2|

)
×exp

(
−α

2
3

2
− λ|z3|

)
.

This looks like, but does not equal to

chiν × Lap× Lap× Lap.

• If J = {1, 2, 3}, then

f(z, r) ∝ chiν(r)× exp

(
−(L11z1 + α1)2

2
− λ|z1|

)
× exp

(
−(L22z2 + α2)2

2
− λ|z2|

)
× exp

(
−(L33z3 + α3)2

2
− λ|z3|

)
.

This looks like (and again does not equal to)

chiν × nl× nl× nl.

• Finally, if J ={1,3}, then

f(z, r) ∝ chiν(r)× exp

(
−(L11z1 + α1)2

2
− λ|z1|

)
× exp

(
−α

2
2

2
− λ|z2|

)
× exp

(
−(L33z3 + α3)2

2
− λ|z3|

)
.

This looks like (and again does not equal to)

chiν × nl× Lap× nl.

In general, f always looks like a product of a sequence of chiν , Lap and nl, where the first

term is always a chiν , and the (j+ 1)-term looks like a nl if j ∈J , otherwise it looks like
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a Lap. Moreover, the αj in each term is an expression that only depends on r and zk, for

k < j. This motivates a sequential proposal density g(z, r) on Rd × R+ by

R→ (Z1 |R)→ (Z2 |R,Z1)→ (Z3 |R,Z1, Z2)→ . . . .

Again, let (µ, η) = (µ1, . . . , µd, η) be some tilting parameter, we shall define g(z, r;µ, η)

by

R ∼ TN(0,∞)(η, 1)

Zj |(R,Z1, . . . , Zj−1) ∼ nl(Ljjzj + αj − µj;λ/|Ljj|, αj − µj), if j ∈J

Zj |(R,Z1, . . . , Zj−1) ∼ Lapµj(λzj), if j /∈J .

Notice that g(z, r;µ, η) is chosen so that

ψ(z, r;µ, η, λ) := ln
f(z, r)

g(z, r;µ, η, λ)

=
∑
j∈J

(
µ2
j

2
− µj(Ljjzj + αj)

)
− λ

∑
i 6∈J

µjzj −
∑
j 6=J

α2
j

2

+
η2

2
− rη + (ν − 1) ln r + ln Φ(−η) + const.+ d lnλ

+
∑
j∈J

ξ(λ/Ljj, αj − µj)−
∑
j 6∈J

ln(1− µ2
j)

is concave in (z, r) and convex in (µ, η). Consequently, we can seek for inf(µ,η) sup(z,r) ψ

by solving ∇ψ = 0.

Denoting L̃ = L− diag(L) and ξ2j := ξ2(λ/Ljj, αj − µj), we have that for ∇ψ,

∂ψ/∂zi = −µi(LiiI{i∈J } + I{i 6∈J }) +
∑

j∈J L̃jiξ2j −
∑

j 6∈J µjL̃ji

∂ψ/∂r = −η + (ν − 1)/r −
∑

j∈J γjξ2j +
∑

j 6∈J µjγj

∂ψ/∂µi = (µi − (Liizi + αi)− ξ2j)I{i∈J } − (zi − 2µi/(λ
2 − µ2

i ))I{i 6∈J }

∂ψ/∂η = η − r + φ(η)/Φ(η)

∂ψ/∂λ = (d+ |J c|)/λ− 2λ
∑
j 6∈J

1

λ2 − µ2
j

+
∑
j∈J

ξ1j/Ljj.

In summary, we have the following algorithms.
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Algorithm 4 : Defining the proposal density g(z, r;µ, η).

Require: tuning parameters η and µ

Compute QL decomposition X = QL; β̂ ← argminβ‖y − Xβ‖2 ; s2 ← ‖Xβ̂ − y‖2
2;

γ ← Lβ̂/s

R ∼ chin+1(r)

for j = 1, . . . , p do

if j 6∈J then

Zj ∼ Lapµj(λzj)

else

αj ← −Rγj +
∑

k<j ljkZk

Zj ∼ nl(ljjzj + αj − µj;λ/|ljj|, αj − µj)
return A draw (Z, R) from the proposal density.

Algorithm 5 : Simulating from posterior π(β, σ |y, λ).

Require: shrinkage parameter λ > 0

Solve the nonlinear system ∇ψ = 0 to obtain the solution (z∗, r∗;µ∗, η∗)

ψ∗ ← ψ(z∗, r∗;µ∗, η∗)

repeat

E ∼ Exp(1), that is, E is an exponential r.v. with rate unity

(Z, R) ∼ g(z, r;µ∗, η∗) using Algorithm 4

until E > ψ∗ − ψ(Z, R;µ∗, η∗)

σ ← s/R

β ← σZ

return A draw (β, σ) from the posterior density.

3.4 Numerical studies for the general case

3.4.1 Diabetes Dataset

The first numerical experiment considers the same dataset as in Section 3.2.2, but we

now include σ in the simulation scheme. The results of simulating from the posterior

are given in the last two columns of Table 3.4.1, which also shows the ordinary least

squares estimate. Figure 3.2 shows the estimated marginal distributions of each of the

ten predictors with the ordinary least squares point-estimate superimposed as a (blue)

dot on the boxplots.
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Age Sex BMI BP tc ldl hdl tch ltg glu
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Figure 3.2: Marginal distributions of each predictor coefficient (as boxplots). The sta-
tistically significant predictors appear to be sex, body mass index (BMI), blood pressure
(BP), and lgt.

Estimated 95%
Ord. least sq. Posterior Median credible interval

age of patient (age) -10 -3.1 (-110,102)
Gender of patient (sex) -239 -212 (-332,-91)
body mass index (BMI) 519 524 (394,655)

blood pressure (BP) 324 307 ( 179,435)
tc -792 -161 (-807,232)
ldl 476 2.7 (-327,491)
hdl 101 -160 (-454,153 )
tch 177 82 ( -186, 374)
ltg 751 523 (309,791)
glu 67 61 (-53,188)

Table 3.1: Simulation results from the posterior density (diabetes dataset) using 105 iid draws.

The acceptance rate of the sequential sampling Algorithm 5 was estimated to be

approximately 0.39. In contrast, the naive rejection Algorithm 2 has an acceptance prob-

ability smaller than 10−7 (making the event of drawing from the posterior a rare event,

and the probability of acceptance a rare-event probability).

In addition, we compared the output of Algorithm 5 (taking about 7 seconds) with

the output of the popular Park&Casella Gibbs sampler (taking about 16 seconds). We

observed that the boxplots computed from the output of the Gibbs sampler (not shown
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here) do not extend as much as the boxplots on Figure 3.2. This suggests that the exact

sampler is better at exploring the tails of the posterior density.

3.4.2 Boston Housing Dataset

As another example, we consider the Boston housing dataset from [51], which attempts to

explain housing prices in the Boston area from the p = 13 predictors given in Table 3.4.2

and n = 506 observations. The table confirms that Algorithm 5 simulates from the

posterior accurately, because the MCMC simulations in [92] suggest the same list of

statistically relevant predictors (crime levels, proximity to waterfront, number of rooms,

distance to employment centers, etc) using the shrinkage value of λ = 5.71. For this

example, the acceptance rate of the sequential rejection sampler was estimated to be

approximately 0.67.

Estimated 95%
Ord. least sq. Posterior Median credible interval

per capita crime rate by town (crim) -0.10 -0.098 (-0.16, -0.032)
proportion of zoned land (zn) 0.047 0.048 ( 0.021,0.076 )

proportion of non-retail business (indus) 0.011 -0.034 (-0.15, 0.084)
Charles River exposure (chas) 2.75 1.75 ( 0.14, 3.47)

nitric oxide pollution (nox) -12.0 -1.49 ( -6.41 , 0.70 )
number of rooms (rm) 4.61 4.079 ( 3.54, 4.62)

proportion built before 1940 (age) -0.0023 -0.010 (-0.035 , 0.015 )
distance to CBD (dis) -1.28 -1.17 (-1.54, -0.80)
highway access (rad) 0.25 0.25 ( 0.13, 0.38)

property tax rate (tax) -0.011 -0.013 (-0.020, -0.0059 )
quality of schools (ptratio) -0.73 -0.72 (-0.93, -0.51)

proportion of ethnic diversity (b) 0.011 0.010 (0.0056, 0.015)
economic status of residents (lstat) -0.48 -0.53 (-0.63,-0.44 )

Table 3.2: Posterior estimates for the Boston Housing dataset using 105 iid draws.

3.5 Concluding remarks for this chapter

In this chapter we have constructed two exact samplers for the posterior distribution of

the Bayesian Lasso linear regression model for a simplified case where σ is considered

fixed and for the standard case where σ is included for the posterior inference too. Both

samplers are rejection samplers, however the proposal densities are optimally tilted to

achieve efficiency even for real datasets with dimensions greater than 10.

An optimally tilted normal density is constructed for the first case. Unsurprisingly, it

turns out that the optimal tilting parameter corresponds to the solution to the frequentist

Lasso linear regression problem. We also show that this proposal density renders an

importance sampling estimator for the marginal likelihood whose variance is better than

a naive alternative, say a normal proposal density centred at the OLS estimator.
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An optimally tilted sequential proposal density is constructed next, which is a more

sophisticated alternative to the simpler Gaussian proposal. Two real datasets are tested

against this samplers, and it appears that this sequential proposal density performs well

for the posterior inference on the Bayesian Lasso linear regression model. This sequential

density naturally gives an importance sampling estimator for the marginal likelihood as

well (not presented here).

Despite this success, due to the curse of dimensionality, these rejection samplers are

bound to be inefficient as the dimension of the posterior distributions increase. In this

manner, no matter how well a proposal distribution can approximate a posterior dis-

tribution, say for example using the tilting techniques we have studied so far, rejection

samplings will eventually be inefficient as the dimensions increase.

To this end, we shall move on to the study of Markov chain sampling. The error

analysis of Markov chain sampling is known to be difficult. Nevertheless, in Chapter 5

we present novel diagnostics for geometrically ergodic Markov chain samplers whose ‘re-

generation times’ are identifiable. Roughly speaking, regeneration times are instances

where a stochastic process restarts. Some theoretical backgrounds on Markov chains and

regenerative processes are given in Chapter 4.

We also study what happens when the proposal densities we have considered so far are

used as proposal densities in the context of an independence (Markov chain) samplers,

instead of rejection sampling. Our novel diagnostics reveal promising convergence accel-

eration in this setting, and thus these proposal densities have values outside the rejection

sampling paradigm as well.
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Chapter 4

Theoretical backgrounds on Markov chains and regenerative

processes

4.1 Introduction to this chapter

In Chapters 2 and 3 we have seen how exponentially tilted sequential proposal densities

result in efficient rejection samplers for some posterior densities π in Bayesian inferences.

Rejection samplers gives exact1 iid draws Y 1,Y 2, . . . ∼ π, so that for any measurable

function h such that
∫
|h(y)|π(dy) <∞

q̃t :=
1

t

t∑
k=1

h(Y k)
a.s.−→

∫
h(y)π(dy), as t→∞.

Moreover standard iid error analysis, such as computing the standard error of q̃t or an-

alyzing q̃t asymptotically as some normally distributed random variable (i.e. the CLT

for q̃t), are valid here (provided that
∫

[h(y)]2π(dy) < ∞). However, these samplers are

bound to fail when the dimension of the support of π increases, and in such an extreme

setting one has to resort to approximate sampling schemes such as MCMC.

MCMC simulates a Markov chain {X1,X2, . . .} whose distribution limits towards π.

In a similar way, one definines

q̂t :=
1

t

t∑
k=1

h(Xk),

and hopes that q̂t
a.s.−→

∫
h(x)π(dx) too. Moreover, one can wish for some CLT approxi-

mation to hold as well. However, these are not guaranteed for arbitrary Markov chains.

In this chapter we shall give a brief recount the theory of Markov chains on X ⊆ Rp. In

particular, we state known results concerning the conditions under which a Markov chain

converges to a limiting distribution. We also describe notions regarding a regenerative

processes and their connections to Markov chains. Along the way, we shall establish

notations and definitions we use in the study of Chapter 5, in which we describe our novel

1In this thesis we often refer to rejection sampling as ‘exact sampling’ because they obey the target
density. This is different to some MCMC literature where the term ‘exact MCMC’ refers to a Markov
chain whose initial distribution coincides with its limiting distribution.
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MCMC error analyses. The definitions and results here can be found in related books

such as [3, 83] and survey papers such as [96, 66].

4.2 Theoretical backgrounds on Markov chains and regenerative

processes

Definition 4.2.1. A transition probability kernel κ on a measurable space (X ,A )

is a function κ : X ×A → [0, 1] such that

1. for every x ∈ X , κ(· |x) :=
∫
· κ(dξ |x) is a probability measure; and

2. for every A ∈ A , the function defined by κ(A |x) :=
∫
A
κ(dy | ·) is measurable.

The idea of a probability transition kernel is to associate a probability measure for

each point in X so that starting from some initial X1 ∼ ν1, the sequence of random

vectors {Xk, k ≥ 1} such that P[X t+1 ∈ A|X t = x] = κ(A |x) for all t = 1, 2, . . . and

A ∈ A . Such a sequence of random vectors is called a time-homogeneous Markov chain

on state space (X ,A ) and, for all A1, . . . , At ∈ A , it satisfies the relation

P[X1 ∈ A1,X2 ∈ A2, . . . ,X t ∈ At] =∫
x1∈A1

. . .

∫
xt−1∈At−1

κ(At |xt−1)κ(dxt−1 |xt−2) . . . κ(dx2 |x1)ν1(dx1).

Notice that κ naturally defines an operator on the set of probability measures on

(X ,A ) via

(νκ)(A) :=

∫
x∈X

κ(A |x)π(dx),

for any probability measure ν and A ∈ A . In this manner, the t-step probability transition

kernel, κt, can be defined by the recursion

κt(A |x) = [κ(· |x)κt−1](A), for t = 2, 3, 4, . . . .

Further if, π is invariant in the sense πκ = π, we say π is the stationary probability

measure for κ. (We also call it the stationary probability distribution of a Markov chain

κ induces.) In many applications of Bayesian inference, one designs a κ for which the

posterior probability distribution π is the invariant one and in this way, the simulated

Markov chain κ induces may perhaps be approximate draws from π.

Checking whether or not πκ = π in practice can be difficult. Indeed, one often checks

the following sufficient condition known as the reversibility condition.
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Definition 4.2.2. Let κ be a transition probability kernel on a measurable space

(X ,A ). The Markov chain κ induces is said to be reversible with respect to a

probability measure π on (X ,A ), if for every A,B ∈ A∫
x∈B

κ(A |x)π(dx) =

∫
x∈A

κ(B |x)π(dx).

This is sometimes stated in the following form.

κ(dy |x)π(dx) = κ(dx |y)π(dy).

Intuitively, the equation describes the situation where the probability flux of entering a

set from another set is the same as the probability flux of the reverse transition. Formally

one can check that if κ is reversible with respect to π, then π is stationary for κ with the

following calculations. For any A ∈ A ,

(πκ)(A) =

∫
x∈X

κ(A |x)π(dx) =

∫
x∈A

κ(X |x)π(dx) =

∫
x∈A

π(dx) = π(A).

The equation πκ = π is sometimes called the ‘global-balance’ equation while the equation

κ(dy |x)π(dx) = κ(dx |y)π(dy) is called the ‘detail-balance’ equation. One should also

note that if π and κ(· |x) exhibits a density for every x (say with respect to the Lebesgue

measure or the counting measure, depending on what (X ,A ) is), checking whether detail-

balance equation is satisfied amounts to checking κ(y |x)π(x) = κ(x |y)π(y), where

κ(y |x) and π(x) are the density functions.

Next we introduce the notion of total variation distance. The total variation distance

is a metric that can be defined on sets of (probability) measures.

Definition 4.2.3. Let π1 and π2 be two probability measures defined on (X,F).

The total variation distance between two probability measures is

‖π1 − π2‖TV = sup
A∈F
|π1(A)− π2(A)|.

When approximating draws from π by a Markov chain {X1,X2, . . .}, the least that one

should require is having π as some ‘limiting distribution’ of the Markov chain. Formally,

this means ‖κt(· |x1)− π‖TV → 0 as t→∞ for π-a.e. x1 ∈ X .

Unfortunately, reversibility by itself is not sufficient to guarantee the Markov chain to

limit towards π, let alone q̂t → q and the existence of some CLT for q̂t. Reversibility simply

ensures that if the Markov chain, for some reason, at some stage Xk is π distributed, then

the marginal distributions of X l will be π as well for l > k.
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A concrete but naive example to illustrate why reversibility with respect to π by itself

is insufficient is to consider κ(dy |x) = δx(dy) for every x ∈ X . Here, for any A ∈ A ,

(πδx)(A) =

∫
δx(A)π(dx) = π(A),

so that π is stationary for κ. However this probability transition kernel renders an uninter-

esting Markov chain, {X1,X1,X1, . . .}, which clearly cannot be a helpful approximation

for most π. To this end, we need further assumptions on the probability transition kernel.

Definition 4.2.4. Suppose κ is a probability transition kernel with invariant prob-

ability measure π. The probability transition kernel κ and the Markov chain it

induces are said to be

1. φ-irreducible if there is a σ-finite measure φ on X , such that for all A ⊆ X
with φ(A) > 0, there is a positive integer t for which κt(A |x) > 0 for all

x ∈ X .

2. Aperiodic if there is no d ≥ 2 and disjoint subsets X1,X2, . . . ,Xd ⊆ X such

that κ(X(i+1)mod d |x) = 1 for all x ∈ Xi for i = 1, . . . , d.

In the case where such a d exists, we call the largest such d the period of the

Markov chain and the Markov chain is said to be periodic.

It is apparent how these notions mimic the notion of irreducibility and aperiodicity

for the classical treatment of Markov chains on countable state spaces. Indeed, just like

Markov chains on countable state spaces, we have the following well-known theorems in

the MCMC literature.

Theorem 4.2.1. Suppose {Xk, k ≥ 1} is a Markov chain on a state space with

countably generated σ-algebra and denote its t-step transition kernel as κt. Further

suppose that it is φ-irreducible, aperiodic and exhibits an stationary probability

measure π, then

1. for π-a.e. x ∈ X , ‖κt(· |x)− π‖TV → 0 as t→∞;

2. q̂t := 1
t

∑t
k=1 h(Xk) → q :=

∫
h(x)π(dx) almost surely, as t → ∞, provided∫

|h(x)|π(dx) <∞.

Theorem 4.2.1 works for most Markov chain samplers in practice, however since the

statement holds only for π-a.e. x ∈ X , if one initializes the chain exactly at points for

which the statement fails, the resulting Markov chain can have pathological behaviors.

(See [16, 109] for discussion on this matter.) To improve from ‘π-a.e. convergence’ to

‘convergence for all x ∈ X ’ we need a stronger condition known as Harris recurrence.
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Definition 4.2.5. A φ-irreducible Markov chain with stationary probability mea-

sure π is Harris recurrent if for all A ⊆ X with φ(A) > 0 and all x ∈ X , we

have

P[τA <∞|X1 = x] = 1

where τA = inf{k > 1 |Xk ∈ A}.

It turns out that being Harris recurrent and aperiodic is equivalent to the convergence

of κt to π for all initial x ∈ X [95]. This can be formally stated as follows.

Theorem 4.2.2. For a φ-irreducible, aperiodic Markov chain with stationary prob-

ability measure π, Harris recurrence is equivalent to

‖κt(· |x)− π‖TV → 0, as t→∞,

for all x ∈ X where κt is the t-step probability transition kernel of the Markov

chain.

Fortunately, many practical Markov chain samplers, in particular the Markov chains

we consider this thesis, are indeed Harris recurrent. Precisely, suppose that π exhibits a

density (in this thesis, densities are always with respect to the Lebesgue measure on Rd)

and let g(y |x) be some transition density. Defining

α(y |x) =

min
{

1, π(y)g(x |y)
π(x)g(y |x)

}
, if π(x)g(y |x) > 0,

1, if π(x)g(y |x) = 0,

the probability transition kernel of the well-known Metropolis-Hastings sampler is

κ(dy |x) = α(y |x)g(dy |x) dy + (1− α∗(x))δx(dy)

where α∗(x) =
∫
α(u |x)g(du |x). Here, α(y |x) is chosen so that α(y |x)g(y |x) is

reversible with respect to π, and in this manner, π is a stationary probability measure for

κ here. The following result due to [109] ensures a Metropolis-Hastings sampler generates

a Harris recurrent Markov chain.

Theorem 4.2.3. Let κ be the kernel of a Metropolis-Hastings sampler with station-

ary probability measure π. If κ is π-irreducible, then the Markov chain κ induces

is Harris recurrent.
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In this thesis, we are particularly interested in the independence (chain) sampler and

the (block) Gibbs sampler. The independence sampler is a special case of the Metropolis-

Hastings sampler the density g is a constant in x i.e. g(y |x) = g(y) for all x. (The general

Metropolis-Hastings sampler, also known as the random-walk sampler is not considered in

this thesis because there is no systematic way to identify its regeneration times, as discuss

later.) Algorithmically, given the current state of the Markov chain x, an independence

sampler simulates a draw Y from another density g, which is called the proposal density.

It is similar to rejection sampling but there are two differences. Firstly, the probability

of retaining Y depends on x, secondly, in the event of a rejection, the next state of

the Markov chain is set to be the current state. Formally, the transition kernel of an

independence sampler with proposal density g, targeting density π is

κ(dy |x) = α(y |x)g(y) dy + (1− α∗(x))δx(dy),

where α(y |x) = min
{

1, π(y)g(x)
π(x)g(y)

}
, and α∗(x) =

∫
α(u |x)g(u) du. It is clear from the

construction of this algorithm, Theorem 4.2.3 trivially holds for the independence sampler

if the support of g encompasses the support of π.

On the other hand, a Gibbs sampler begins by segmenting x = (x1,x2, . . . ,xp)
>

and constructs the full conditional densities π(yj |x1,x2, . . . ,xj−1,xj+1, . . .xp) for j =

1, . . . , p. Given the current state of the Markov chain x, a Gibbs sampler cycles through

each of the full conditionals by simulating draws Y j from π(· |Y 1,Y 2, . . .Y j−1,xj+1, . . . ,xp)

for j = 1, . . . , d. In this manner, its transition density is

κ(y |x) = π(y |x2,x3 . . . ,xp)π(y2 |y1,x3, . . .xp) . . . π(yd |y1, . . . ,yd−1).

It turns out that a Gibbs sampler is actually a special case of the Metropolis-Hastings

algorithm as well, and moreover because it simply cycles through the full conditional

densities of π, Theorem 4.2.3 again holds.

Although Harris reccurrence guarantees a limiting distribution π, it turns out that it

still does not guarantee q̂t to admit a CLT. Indeed, this actually needs assumptions on

the rates with which κt(· |x) converges to π. To this end, we recall the following notions

concerning the convergence rates of Markov chains.
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Definition 4.2.6. A Markov chain having stationary distribution π is

1. geometrically ergodic if there is a function M(x) < ∞ for π-a.e. x ∈ X and

some r < 1 such that for all t = 1, 2, . . .

‖κt(· |x)− π‖TV ≤M(x)rt.

2. uniformly ergodic if there is a constant M < ∞ for π-a.e. x ∈ X and some

r < 1 such that for all t = 1, 2, . . .

‖κt(· |x)− π‖TV ≤Mrt.

Clearly, uniform ergodicity is a stronger condition in the sense that uniform ergodicity

implies geometric ergodicity. A version of Markov chain CLT for q̂t is that if the Markov

chain is Harris recurrent and geometrically ergodic, and that
∫

[h(x)]2+δπ(dx) < ∞ for

some δ > 0, then
√
t(q̂t − q) → N(0, σ2) in distribution for some σ2. Other versions of

Markov chain CLT is surveyed in [66].

A result that is of particular interest for this thesis is the following theorem given in

[81].

Theorem 4.2.4. The independence sampler is uniformly ergodic if there is a con-

stant c such that
π(x)

g(x)
≤ c, ∀x ∈ X ,

where π is the stationary density and g is the proposal density.

It is apparent that the proposal densities described in Chapters 2 and 3 are bound to

fail in the rejection sampling context, as the dimension of the problem grows. Neverthe-

less, this theorem suggests that we can perhaps use them as the proposal densities for

independence sampling, and we are immediately guaranteed to enjoy uniform ergodicity.

Indeed, we will present few numerical studies in this paradigm later in the thesis.

We now move on to regenerations in Markov chains. Firstly, recall that a strictly

increasing sequence of random variables {Tk, k ≥ 0 | 0 ≤ T0 < T1 < T2 < . . .} taking

value on R+ or N is called a renewal process if the inter-arrival times Mj = Tj − Tj−1 are

positive iid random variables.
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Definition 4.2.7. A (discrete time) stochastic process {Xk, k ≥ 1} is a zero-

delayed regenerative process if there is a renewal process {Tk, k ≥ 0} with T0 = 0,

for which the process {XTr+k, k > 0}

1. has the same distribution as {Xk, k ≥ 1}; and

2. is independent of {Xk, 1 < k ≤ Tr − 1}

for all r = 1, 2, . . ., and consequently, the cycles {{Xk, Tr−1 < k ≤ Tr},Mr} are iid

for all r = 1, 2, . . ..

The cycles {{Xk, Tr−1 < k ≤ Tr},Mr} can be formally understood as a killed process

{Y k, k ≥ 1} where Y k := XTr−1+k for all k ≤ Mr and Y k takes the ‘coffin state’, say

for example 0, for all k > Mr [104]. In this manner, in the context of a regenerative

process, the random variables Mr = Tr − Tr−1 are often called the ‘tour length’ or the

‘cycle length’.

Although the theory for renewal processes and regenerative processes have been de-

veloped for general index set T, our focus is on Markov chains so that T = N and Mj

are random variables on the set of strictly positive integers Z+. Next, The random

instances T0, T1, T2, . . . are called regeneration times, and since the post regeneration pro-

cesses are iid, the regeneration times are commonly understood as the instances for which

the stochastic process has ‘restarted’. Finally, in general, one can have T0 ≥ 0 with non-

zero probability. Such a regenerative processes is called a delayed regenerative process,

however we only consider zero-delayed regenerative processes in this thesis.

Remark. We also note that many texts index a stochastic process from k = 0, in other

words, they present their discrete-time stochastic process as the collection {Xk, k ≥ 0}.
In this setting, the convention is to define the underlying regeneration times as the in-

stances T0, T1, T2, . . . that initiate a new regenerative cycle i.e. the instances such that

{{Xk, Tr−1 ≤ k < Tr},Mr} are iid for all r. This is in contrast to the presentation in

this thesis, where we define regeneration times as the instances that end a regenerative

cycle. This is because it appears that this convention is easier to present our contributions

in later chapters.

Clearly, for (time-homogenous) Markov chains regeneration happen whenever the pro-

cess reaches any particular state. However, this is only useful for Markov chains on

countable state space since in general uncountable state spaces, the probability of visiting

the same state twice is usually zero. This leads to notion of an atom. Atoms are sets for

which the transition out of the set is the same for any points. That is to say the following.
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Definition 4.2.8. Let κ be the probability transition density of a Markov chain

on (X ,A ). A set C ∈ A is called an atom for the Markov chain if there is a

probability measure ν on A for which

κ(· |x) = ν(·), ∀x ∈ C.

The motivation of an atom C is that, should it exist, then any transition out of C is

the same disregarding the exact position of the current state. That is Xk+1 ∼ κ(· |Xk ∈
C) = ν. Consequently, if a Markov chain has an initial distribution of ν, that is X1 ∼ ν,

then whenever the Markov chain falls into an atom, the next step always initiates a

new regenerative cycle. To see this, suppose that Xk ∈ C and observe that Xk+1 ∼ ν

is actually independent of Xk and in fact the whole process {Xk, k ≥ 1} must have

the same distribution as that of {Xk+j, j ≥ 1}, again due to the fact that Xk+1 ∼ ν.

Finally the tour lengths now corresponds to the hitting time τC starting from ν, and in

this manner, the iid assumption on the tour lengths is fulfilled. Ultimately, if an atom

C exists, the Markov chain is actually a zero-delayed regenerative process whenever the

initial distribution is ν.

Interesting results concerning the moments of the tour lengths (i.e. the hitting times

to C) can be found in [88]. In particular, all moments of regenerative tour lengths exist

for a geometrically ergodic Markov chain.

The natural question that follows is whether an atom actually exists, and how does

one identify one. Fortunately, the split-chain technique due to [4, 87] enables one to

systematically construct atoms for many Markov chains by carefully injecting the Markov

chain in an enlarged state space. We now present a brief summary of this technique.

For a given probability transition kernel κ, we begin by assuming that that there is a

measurable function s : X → [0, 1], and a probability measure ν for which

κ(dy |x) ≥ s(x)ν(dy)

for all x ∈ X . This inequality is known as the ‘minorization condition’, and in the case

where κ(· |x) and ν exhibit densities for all x, it simplifies to κ(y |x) ≥ s(x)ν(y) for all

x,y ∈ X .

It becomes apparent why the authors call this technique ‘splitting’ in the construction

that follows. Let X ∗ = X × {0, 1} be an enlarged state space. For i = 0, 1 we denote

xi = x × {i}, Ai = A × {i} for all x ∈ X , A ∈ A , and equip X ∗ with A ∗, the σ-

algebra generated by the family of sets {Ai | i = 0, 1 and A ∈ A }. Next, any probability
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measure λ defined on (X ,A ) exhibits an unique extension λ∗ defined (X ∗,A ∗) for which

λ∗ satisfies

λ∗(A0) =

∫
A

(1− s(u))λ(du), and λ∗(A1) =

∫
A

s(u)λ(du),

for all A ∈ A . Intuitively, the function s dictates how the ‘volume’ of a set A ∈ A splits

into its corresponding ‘branches’ A0 and A1. Formally, for any A ∈ A , observing that

A0 ∪ A1 = A× {0, 1}, and A0 ∩ A1 = ∅, we have

λ∗(A0 ∪ A1) =

∫
A

(1− s(u))λ(du) +

∫
A

s(u)λ(du) = λ(A). (4.1)

Consequently, λ∗(X ∗) = λ(X ) = 1 so that λ∗ is a probability measure on (X ∗,A ).

In other words, if (X, Y ) is a X ∗-valued random vector whose law coincides with λ∗,

then the law of X coincides with λ. This observation will ultimately give as a Markov

chain {(Xk, Bk), k ≥ 1} such that the first coordinate process {Xk, k ≥ 1} has the same

distribution as the Markov chain κ induces, a regenerative cycle starts whenever Bk = 1.

To achieve this, we need to carefully extend κ from X ×A onto X ∗ ×A ∗.

Extending κ to achieve the desired property is rather subtle. The construction begins

by extending κ from defined on X ×A to κ̌ defined on X ∗ ×A , where

κ̌(A |x0) =
κ(A |x)− s(x)ν(A)

1− s(x)
,

κ̌(A |x1) = ν(A).

The next step is to extend κ̌ from X ∗ × A to X ∗ × A ∗. This is done by leveraging

equation (4.1). For every z ∈ X ∗, we extend the probability measure κ̌(· |z) defined on

(X ,A ), to λ̌∗(· |z) defined on (X ∗,A ∗). We shall henceforth suppress our notation and

write κ∗ instead of κ̌∗.

To see why κ∗ can induce a Markov chain {(Xk, Bk), k ≥ 1} on X ∗ such that the first

coordinate process {Xk, k ≥ 1} has the same distribution as a Markov chain κ induces,

let ν1 be some (initial) distribution on (X ,A ) and suppose (X1, B1) ∼ ν∗1 is an initial

state, so that X1 ∼ ν1. Observe that for any A ∈ A

(ν∗1κ
∗)(A0 ∪ A1) =

∫
X ∗
κ∗(A0 ∪ A1 |x)ν∗1(dx)

=

∫
X

κ(A |x)− s(x)ν(A)

1− s(x)
(1− s(x))ν1(dx) +

∫
X
ν(A)s(x)ν1(dx)

=

∫
X
κ(A |x)ν1(dx)

= (ν1κ)(A).
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Consequently, whenever κ∗ and initial distribution ν∗1 induce a Markov chain {(Xk, Bk), k ≥
1}, the first coordinate process {Xk, k ≥ 1} has the same distribution as a Markov chain

κ and initial distribution ν1 induce. Moreover, since the transition out of X 1 is always

governed by ν, disregarding the current state of the chain, the entire X 1 ∈ A ∗ is an

atom for κ∗, and in this manner, a new regenerative cycle starts whenever Bk = 1. Fi-

nally it is well-known if {Zk, k ≥ 1} is a regenerative process with regeneration times

T0 < T1 < T2 < . . ., then so is the process {f(Zk), k ≥ 1} for any function f . Conse-

quently, given the Markov chain {(Xk, Bk), k ≥ 1} on X ∗, taking f as the projection onto

the first coordinate, the process {Xk, k ≥ 1} must have identical regeneration times. Of

course, in this construction, to ensure the process zero-delayed, that is T0 = 0, we need

to initialize X1 ∼ ν∗.

In fact, Nummelin’s original work proceeds further and shows that whenever κ is Harris

recurrent, so is κ∗ and in this manner, the atom X 1 is visited infinitely often. In fact it is

not difficult to see from [83, Theorem 15.0.1] that if κ is geometrically erdogic, then so is

κ∗.

Applying the split chain technique directly as per described can be difficult for ar-

bitrary κ on X × A since we often do not know how to simulate draws from κ̌(A |x0).

Luckily the ‘retrospective’ technique for identifying regeneration times introduced in [86]

avoids this complication. Suppose that κ and ν exhibit densities, and so for any x ∈ X ,

we can write κ(y |x) as a mixture of densities in the following way.

κ(y |x) = s(x)ν(y) + (1− s(x))
κ(y |x)− s(x)ν(y)

1− s(x)

:= s(x)ν(y) + (1− s(x))ν̄(y |x), ∀y ∈ X .

The insight is that given the current state of the chain Xk, Bk+1 = 1 if and only if

Xk+1 |Xk ∼ ν. Moreover, since κ(y |x) ≥ s(x)ν(y), we can simulate Xk+1 ∼ κ(· |Xk)

and ‘retrospectively’ decide whether Xk+1 ∼ ν or Xk+1 ∼ ν̄(· |Xk), which is equivalently

to deciding whether Bk = 1 or Bk = 0, by plugging Xk in to a rejection sampling tar-

geting ν. That is, denoting r(y |x) = s(x)ν(y)/κ(y |x), one proceeds with the following

algorithm.

Algorithm 6 : MCMC with regeneration

Require: Current state of chain (Xk, Bk).

Set Bk ← 0

Simulate Xk+1 ∼ κ(· |Xk) and U ∼ Unif(0, 1), independently.

if U ≤ r(Xk+1 |Xk), then

Bk+1 ← 1

return (Xk+1, Bk+1) as the next state of the chain
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To ensure B0 = 1, in other words X1 ∼ ν, one can start with any initial z ∈ X and

proceed with the simulation until one observes a regeneration, and discard all previous

draws. Algorithmically speaking, for an arbitrary initial z1, one simulates Z2,Z3, . . .

whose dynamic is governed by κ until one gets a draw Z∗ ∼ ν and set X1 ← Z∗.

We now describe how one can systematically establish the minorization condition for

the probability transition kernels for Gibbs samplers and independence samplers which

are also introduced in [86].

We illustrate the technique for a two-staged Gibbs sampler, but it can be easily ex-

tended to a general one. The transition density of a two-staged Gibbs sampler is

κ(y |x) = π(y2 |y1)π(y1 |x).

The construction begins by considering a hyper-rectangle of the form [c,d] where c,d ∈,

and a choice of a point x̃ ∈ [c,d] so that

κ(y |x) = π(y2 |y1)π(y1 |x)

= π(y2 |y1)π(y1 | x̃)
π(y1 |x)

π(y1 | x̃)

≥ κ(y | x̃)

ε
I{y ∈ [c,d]} × ε min

y∈[c,d]

π(y1 |x)

π(y1 | x̃)
.

With this, we can choose ν(y) = κ(y | x̃)
ε

I{y ∈ [c,d]} where ε =
∫
Rd κ(y | x̃)I{y ∈ [c,d]} dx

is the marginalizing constant and s(x) = miny∈[c,d]
π(y1 |x)
π(y1 | x̃)

.

Next, let us consider the independence sampler algorithm with a proposal probability

density g(y) so that the transition kernel is

κ(dy |x) = α(y |x)g(y)dy + (1− α∗(x))δx(dy),

where α(y |x) = min
{
π(y)g(x)
π(x)g(y)

, 1
}

. The idea is to find ν and s such that α(y |x)g(y) ≥
ν(y)s(x) for all x,y and define

r(y |x) =


s(x)ν(y)

α(y |x)g(y)
if x 6= y

0, else.

Since α(y |x)g(y) ≥ ν(y)s(x), we automatically have κ(dy |x) ≥ ν(dy)s(x). In terms

of practical implementation, we are nesting the regeneration event within the event of

accepting a transition.
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To find such s and ν, observe that, if we denote w(y) = π(y)/g(y) we have

α(y |x)g(y) = min

{
π(y)g(x)

π(x)g(y)
, 1

}
g(y)

= min

{
w(y)

w(x)
, 1

}
g(y)

≥ g(y) min

{
w(y)

c
, 1

}
min

{
c

w(x)
, 1

}

for any c > 0. It follows that we can choose ν(y) = ε−1g(y) min
{
w(y)
c
, 1
}

and s(x) =

εmin
{

c
w(x)

, 1
}

, where ε =
∫
g(y) min

{
w(y)
c
, 1
}
dy. Finally, given the current state X,

and condition on the event where Y ∼ g is accepted as the next state, the probability

that Y ∼ ν is
min

{
w(y)
c
, 1
}

min
{

c
w(x)

, 1
}

min
{
w(y)
w(x)

, 1
} .

Notice that the choice of s in both the Gibbs sampler and the independence sampler

described above involves some unknown normalizing constant ε. However one does not

actually need to compute it because in either cases the expression for r, which is all that

is needed in the practical implementations, only depends on the product sν, which does

not involve ε.

To this ends are now ready exploit the rich theory of regenerative processes can offer

in the analysis of Markov chain sampling studied in this thesis. We shall conclude this

section by giving few more results we will refer to in Chapter 5.

Firstly, we have the well-known Wald’s identity and Wald’s second moment identity

[113, 114].

Theorem 4.2.5 (Wald’s identities). Let τ be an a.s. finite stopping time with

respect to a filtration {Ak, k ≥ 0} and let Z1, Z2, . . . be iid random variables such

that Zk is Ak-measurable and Zk+1, Zk+2, . . . are independent of Ak. Denoting

Sn = Z1 + . . .+ Zn, it follows that

1. if either E|Z1| <∞ and Eτ <∞, or Z1 ≥ 0, then E[Sτ ] = EZ1Eτ .

2. if Var(Z1) <∞ and Eτ <∞, then E[Sτ − τEZ1]2 = Var(Z1)Eτ .

In our context, we will often use N(t) := inf{n |Tn > t} as our stopping time while Zk

will be some measurable functionals of the k-th cycle {{Xk, Tj−1 < k ≤ Tj},Mj}. The

process N(t) can be thought of as the minimum number of regeneration cycles needed to

surpass time t. It follows that in our zero-delayed setting where T0 = 0, we have N(0) = 1.

In fact, the counting process {N(t)− 1}, which is the number of renewals (regenerations)

up until time t is sometimes called ‘the renewal process’ while the process {Tk, k ≥ 0},
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which is what we refer to as ‘the renewal process’, is sometimes called ‘the renewal time

process’. Finally, note that in our context, the time parameter t takes value on N, so one

may prefer the subscript notation Nt for the process N(t). However, to avoid stacking of

subscripts in the next chapter, we have decided to use the notation N(t).

Next, given a renewal process {Tk, k ≥ 0}, we define its residual life time process as

R(t) = TN(t)− t. In our context, it can be thought of as the the number of steps until the

current regenerative cycle ends. The results due to [78] gives us bounds on the p-moments

of R(t).

Theorem 4.2.6 (Lorden’s inequalities). Let {Tk, k ≥ 0} be a renewal process

with inter-arrival times M1,M2, . . ., and let R(t) be its corresponding residual life

time process. Denoting the p-th moment of the inter-arrival times of a renewal

process by mp = EMp
1 , the moments of R(t) satisfy:

ERp(t) ≤


m2

m1
, if p = 1,

p+2
p+1

mp+1

m1
, if p > 1.

In our context, the inter-arrival times M1,M2, . . . are the regenerative cycle lengths. A

fact that we will repeatedly use is that once we have observed M1,M2, . . . in our simulation

output, there is a natural estimator m̂p = 1
n

∑n
k=1 M

p
k for mp.

The next result is [3, Chapter 7,Corollary 1.5], which can be viewed as a statement

concerning the relationship between the regenerative cycles and the limiting distribution

of a Markov chain. Although the result holds for general regenerative processes (not

necessarily Markov chains), we shall state it in terms of Markov chains.

Theorem 4.2.7. Let {Xk, k ≥ 1} be a Markov chain with limiting distribution

π with regeneration times {Tk, k ≥ 0}, T0 = 0. For any function f such that∫
f(x)π(dx) <∞, we have for all r = 1, 2, . . .,

∫
f(x)π(dx) =

1

m1

E
Mr∑
k=1

f(XTr+k)

where m1 = EM1 is the expected length of the regenerative cycle.

In other words, the average of f evaluated along each regenerative cycle, on average,

equals to the expectation of f with respect to the Markov chain’s limiting distribution. In

particular, in our proofs for Theorems 5.2.2 and 5.2.3, given in Appendices A.2 and A.3,
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we will choose f(x) = I{x ∈ A} for some A ∈ A so that we have the relation

π(A)EMr = E
Mr∑
k=1

I{XTr+k ∈ A}.

4.3 Concluding remarks for this chapter

In this chapter, we have introduced notions and notations that we shall use in the upcom-

ing chapters. In particular, we have discussed the technique of split chain and retrospective

identification of regeneration times of a Markov chain. In this manner, we can identify

the regeneration times for many Markov chain samplers (at least for the examples we

consider in this thesis). This is important to the novel Markov chain sampling diagnostics

we propose in Chapter 5. The diagnostics use the observed regenerative cycle tour lengths

to estimate error bounds for the Markov chain. Since our proposed methods use the sim-

ulation output to do these estimations, they still fall under the ‘diagnostics framework’.

However, we shall argue that these novel diagnostics have solid theoretical footings, and

are much easier to implement than a purely analytical approach.
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Chapter 5

Regenerative Markov chain sampler and error analysis

5.1 Introduction to this chapter

Most inference in Bayesian statistics requires one to take expectations with respect to π,

the posterior distribution. These expectations are intractable and call for Monte Carlo

statistical methods, in particular, Markov chain Monte Carlo (MCMC).

MCMC approximates draws from π by the sample path of a simulated Markov chain

{Xk, k ≥ 1} on Rd whose limiting distribution is π. Moreover, given a measurable function

h, one often estimates q :=
∫
h(x)π(dx) with averages such as q̂t := 1

t

∑t
k=1 h(Xk).

Despite being computationally attractive, evaluating the performance of a MCMC method

is difficult due to the dependence between each draw and the fact that often X1 6∼ π.

To evaluate the performance of a given MCMC method, one naturally asks the fol-

lowing questions. How close is the probability law of X t to π for different values of t?

How much closer does it become for each extra step? For t < ∞, how well does q̂t ap-

proximate q on average? How variable is it? These questions motivate our work in this

chapter. In this chapter we propose novel assessment tools to address these questions

for the cases where one can identify the underlying regeneration times of geometrically

ergodic Markov chains. Specifically, let κt be a t-th step probability transition kernel on

X ⊆ Rd, and we assume that the single step transition kernel satisfies the minorization

condition, that is there is a function s : X → [0, 1] and a probability measure on X for

which κ(dy |x) ≥ s(x)ν(dy) for all x ∈ X .

Firstly, we derive an asymptotic bound on δt := ‖E[κt(· |X1)]− π‖TV, where X1 ∼ ν

and X t ∼ E[κt(· |X1)] :=
∫
κt(· |x)ν(dx). In other words, δt is the total variation

distance between the t-th step Markov transition kernel marginalized over the initial

distribution. Such a bound allows practitioners to quantify convergence speeds of Markov

chains and provide estimates for burn-in periods [64].

Moreover, recall from Chapter 4 that we denote {Tk, k ≥ 0} as the regeneration times

for the Markov chain {Xk, k ≥ 1} and that N(t) = inf{n |Tn > t}. Motivated by the

results in [71], we also consider a regime where one simulates until TN(t) and resample

with uniform probability from the path’s history. In other words, given a pre-specified
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t > 0, one simulates the collection of random variables {X1,X2, . . . ,XTN(t)
} and resample

Xreg-seq ∈ {X1,X2, . . . ,XTN(t)
} with uniform probability. In this setting, we derive two

bounds (one asymptotic, and one non-asymptotic) on the total variation distance between

the distribution of Xreg-seq and π. Motivated by the terminology ‘regenerative-sequential

estimator’ in [71], we denote this total variation distance by δreg-seq
t , and it is formally

defined by the formula

δreg-seq
t := ‖E[κTN(t)

(· |X1)]− π‖TV,

where E[κTN(t)
(· |X1)] :=

1

TN(t)

TN(t)∑
k=1

E[κk(· |X1)].
(5.1)

These bounds can be thought of as extensions to the non-asymptotic MSE bound on

the estimator q̂TN(t)
derived in [71] and Markov chain analogues to the bounds on the

generalized splitting algorithm derived in [13].

We point out in advance that our bounds depend on some unknown constants, and

thus they are not computable exactly. However, these constants can be easily estimated

from the sample path itself provided that we can identify the regeneration times.

Secondly, we propose a novel visual aid for assessing the convergence of a Markov chain

whenever we can identify the regeneration times. Visual aids such as trace plots and au-

tocorrelation plots of coordinate processes are very common in practice. (See for example

[21, 38, 92, 79] and the popular software WinBUGS.) Such plots project a Markov process

in high-dimensions to a univariate process and then display the autocorrelation/trace of

this process to determine whether the sampler is working satisfactorily. Typically, the

greatest difficulty is in determining what kind of projection to use to summarize the high-

dimensional process via a one-dimensional one. Almost any projection will lose essential

information about the process and thus convergence of the low-dimensional process is not

a sufficient condition for the convergence of the high-dimensional process.

However, our novel visual aid provides a loss-less dimension-reduction projection, in

the sense that the convergence of the low-dimensional process is sufficient to guarantee

the convergence of the high-dimensional process. Thus, we can examine the convergence

of the underlying Markov chain without the need of some arbitrary lossy projection such

as the coordinate projections.

Finally, we also consider quantifying the variability of some point estimator. The

authors of [71] derive a non-asymptotic bound on the MSE of q̂TN(t)
, and from there, they

can estimate a non-asymptotic confidence region for q̂TN(t)
by running parallel Markov

chain. (We give a brief description to this later in the section.) We also recommend the

estimator q̂TN(t)
to practitioners. However, in contrast to the proposal in [71], we estimate
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the non-asymptotic bound on the MSE from a single MCMC simulation output directly

(no parallel Markov chains are necessary).

The problems we study in this Chapter are actually well studied in the literature, but

existing works do not provide the same solution as ours. We now provide a brief review

on existing works and compare them to our proposed methods.

Firstly, if the initial state is indexed by 0, an analytic bound on ‖κ(· |X0)− π‖TV for

all initial distribution ν0 is derived in the highly cited work [98]. This bound requires one

to establish the following two conditions.

1. There exists a function V : Rd → [0,∞), constants λ < 1, b <∞ such that

E(V (X1) |X0 = x) ≤ λV (x) + b, x ∈ Rd

2. The set {x ∈ Rd |V (x) ≤ c} is small, for some c > 2b/(1 − λ), that is there exists

a probability measure ν on Rd such that

κ(· |x) ≥ εν

for all x ∈ {x ∈ Rd : V (x) ≤ d}.

The first condition is known as drift, and the second one is known as the associated

minorization. With these, [98] asserts the following theorem.

Theorem 5.1.1. If κ satisfies the conditions mentioned, then for any r ∈ (0, 1)

‖κt(· |X0)− π‖ ≤ (1− ε)rt + (α−(1−r)Ar)t
(

1 +
b

1− λ
+ E(V (X0))

)
where X0 ∼ ν0

α−1 =
1 + 2b+ λc

1 + c
< 1, A = 1 + 2(λc+ b)

for all initial distribution ν0.

In fact, if κ is φ-irreducible, aperiodic with stationary measure π, the drift condition

on any small set C, (not necessarily on C = {V (x) ≤ d} for some d) is sufficient for

geometric ergodicity (see [83, chapter 15] and [96]), hence the existence of a CLT for q̂t,

provided that
∫

[q(x)]2+δπ(dx) <∞ for some δ > 0, or if κ satisfies detailed balance with

respect to π then
∫

[q(x)]2π(dx) <∞ guarantees CLT [16, 94]. A detailed survey on the

various conditions under which CLT holds for q̂t is given in [66].

This techniques has been applied for some Markov chain samplers targeting Bayesian

posteriors such as the Gibbs samplers for Bayesian Lasso [68], Bayesian shrinkage models
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[90], Bayesian penalized regression models [111], Bayesian quantile regression [67] and

Bayesian general linear mixed models [97]. In a similar manner, [24, 32, 33, 61] study

ergodicity of Metropolis-Hastings type algorithms.

An extension for time inhomogeneous Markov chains is also provided in [25] and they

also consider the more general f -total variation distance. Moreover the notion of a gener-

alized drift condition from which one can proceed similar derivations for the total variation

distance bound is introduced in [115].

Using Theorem 5.1.1 to assess the convergence of a Markov chain has the advantage of

being analytic in nature. However, many MCMC practitioners rely on simple ‘convergence

diagnostics’ such as the autocorrelation plots of coordinate processes or checking whether

parallel Markov chains approximately converge to the same distribution when initialized

differently. (See for example [21, 38, 92, 79] and the popular software WinBUGS.) We

suspect that this is because the assumptions Theorem 5.1.1 requires are too difficult to

verify. Another issue we observe in our study is that the bound in Theorem 5.1.1 can

suffer from numerical instability (see Section 5.5).

Many authors have also proposed sophisticated convergence diagnostics that use the

simulation output. These approaches give justifiable diagnostics, and at the same time,

they remain relatively simple to implement. Our contributions in this chapter fall under

this framework. Existing works that also go under this framework are as follows.

The method proposed [8] is to segment the Markov chain into small batches and for-

mulate kernel density approximations for each batch. From there, they can diagnose the

convergence of the chain by estimating the Hellinger distances across each batches. An-

other notable work that relies on kernel density estimation is in [23] where they estimate

the symmetric Kullback Leibler divergence of two parallel chains using kernel density ap-

proximations. From there, they formulate a hypothesis testing framework to answer the

question on whether the two chains are sufficiently close. These kernel density approxima-

tion approaches are in contrast to our approach where we work directly with E[κt(· |X1)]

for X1 ∼ ν.

Approaches that do not rely on kernel density approximations are also proposed in for

example [54]. They infer the convergence of the Markov chain by estimating the Kullback

Leibler divergence between the Markov chain and a subsequence of the chain using numeric

integration. Another example is in [110] where they estimate supx1
‖κt(· |x1) − π‖TV

from the simulation output. Their estimation relies on the integral form of the total

variation distance ‖ν − µ‖TV = 1
2

∫
|µ(x) − ν(x)| dx, and from there they estimate the

integral by clustering the simulation output when parallel Markov chains simulated. Here,

µ(x) and ν(x) are the density functions for measures µ and ν (with respect to Lebesgue

measure) evaluated at x ∈ Rd. These approaches that estimate some integrals directly
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are fundamentally different to our proposal. In this chapter, we derive analytic bounds

on δt (and δreg-seq
t ), and the estimation comes in to play when we estimate some unknown

constants in our bound.

Our proposed method is quite similar to the work in [63] where they also propose

estimating an unknown constant in a bound they have derived using the simulation output.

However their approach runs two parallel chains, and instead of considering regeneration,

they consider the frequency with which the two chains couple. This coupling approach

between two chains is extended to ‘L-lag coupling’ in [7]. This approach is in contrast

to our approach where we propose running a single chain, and we consider its underlying

regeneration times. Moreover, their bound is for the total variation distance between the

joint distribution of sample paths and a product of the limiting distribution but we study

the distributions E[κt(· |X1)] and E[κTN(t)
(· |X1)].

Estimating a burn-in period is a natural application of these bounds on the distance

between the distribution of the Markov chain and its limiting distribution, whether it

be analytic or estimated [64]. Typically, one can choose a burn-in period such that

the Markov chain ‘is initialized’ sufficiently close to the limiting distribution using these

bounds. However, other approaches and criteria for estimating a burn-in period have

been proposed. For example [93] formulates the problem in terms of Bayesian posterior

estimation and considers estimating a quantile of h(X∞), where h : Rd → R is a function

of interest and X∞ ∼ π, to some given precision. Other examples include the work in

[100, 101], in which explicit bounds on the mean-squared error of q̂ is derived for some

class of h, and consider burn-in periods for which the mean-squared error is sufficiently

small.

The other well studied problem is to quantify the variability of q̂t. A common approach

is that when q̂t admits a CLT
√
t(q̂t − q)

d→ N(0, γ2
h) then γ2

h captures the asymptotic

variability of q̂t. An estimate for γ2
h =

∫
Rd(h(x)− q)2 π(dx) allows one to construct some

asymptotic confidence interval for q̂t and it is natural to stop the Markov chain simulation

only when this interval is desirably small for example in [30, 64, 45, 75, 74, 73].

A popular estimator for γ2
h is the batch-means variance estimator, where the simulation

assumes to terminates at t = ab for some positive integers a and b, so that we can segment

the sample path into a batches of length b. (See [75] and the references therein.) The

estimator then proceeds with the premise that the averages within each individual batch

are roughly independent. Formally, denoting

Br =
1

b

rb∑
k=(r−1)b+1

h(Xk), for r = 1, . . . , a
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the batch-means variance estimator is

γ̂2
h,BM =

b

a− 1

a∑
r=1

(Br − q̂t)2.

Its consistency has been studied extensively for example [49] shows that if a is held

constant, then γ̂2
h,BM

is not even a weakly consistent estimator for γ2
h as t→∞.

The first positive result on its consistency is given in [22], which is reformulated in [65]

as follows.

Theorem 5.1.2. Let {Xk, k ≥ 1} be an uniformly ergodic, positive Harris rec-

curent Markov chain wiht invariante distribution π. Suppose that Eπ|h|2+δ < ∞
for some δ > 0, and (a) at → ∞ as t → ∞; (b) bt → ∞ and bt/t → 0 as t → ∞;

(c) b−1
t t1−2α log t → 0 as t → ∞, where α ∈ (0, δ/(24 + 12δ)); and (d) there exists

a constant c ≥ 1 such that
∑

t(bt/t)
c < ∞, then as t → ∞, γ̂2

h,BM
→ γ2

h with

probability 1.

The uniform ergodicity assumption is indeed quite strong and fails to hold in many

practical Markov chain samplers, and to this end, an extension to geometrically ergodic

Markov chain is also given in [65] as follows.

Theorem 5.1.3. Let {Xk, k ≥ 1} be a geometrically ergodic, positive Harris re-

current Markov chain with invariant distribution π. Suppose that Eπ|h|4+δ < ∞
for some δ > 0, and (a) at →∞ as t→∞; (b) bt →∞ and bt/t→ 0 as t→∞; (c)

b−1
t t2α[log t]3 → 0 as t → ∞, where α = 1/(2 + δ); and (d) there exists a constant

c ≥ 1 such that
∑

t(bt/t)
c <∞, then as t→∞, γ̂2

h,BM
→ γ2

h with probability 1.

The moment condition Eπ|h|4+δ for some δ > 0, is relaxed to Eπ|h|2+δ+ε for some

δ, ε > 0 in [6].

The mean-squared-error consistency of the batch-means variance estimator is also

studied in [31], and by minimizing the mean-squared-error of γ̂2
h,BM

, they show that the

optimal number of batches should increase with order t1/3. Finally, variations and exten-

sions can be found in the literature. such as the overlapping batch-means discussed in

[31], while [77] concerns an analogous batch-means asymptotic covariance estimator when

h is vector-valued.

On the other hand, an alternative estimator when the regeneration times of the Markov

chain is identifiable. Let 0 = T0 < T1 < T2 < . . . be the random regeneration times so that

for all r = 1, 2, . . ., {{Xk, Tr−1 < k ≤ Tr},Mr} are iid where Mr = Tr − Tr−1. Denoting
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the sum of h(Xk) over the r-th regenerative cycle as

Hr = h(XTr−1) + h(XTr−1+1) + h(XTr−1+2) + . . .+ h(XTr−1) =
Tr∑

k=Tr−1+1

h(Xk),

then q̂Tn = 1
Tn

∑Tn
k=1 h(Xk) =

∑n
r=1 Hr∑n
r=1 Mr

is an alternative estimator for q. Here, one specifies

number of regenerative cycles and consequently the total simulation time is random.

When the Markov chain is geometrically ergodic and that Eπ|h|2+p <∞ for some p > 0,

q̂Tn exhibits a CLT
√
nEM1(q̂Tn − q)

d→ N(0, γ2
h) [6, 65]. Indeed q̂Tn is asymptotically

equivalent to q̂t, however the iid decomposition renders simple estimator

γ̂2
h =

1
n

∑
(Hr − q̂TnMr)

2

(M̄)2
(5.2)

and its consistency is established in [48, 57, 65]. Here M̄ is the sample average of

M1, . . . ,Mn.

Note that these variance estimators only capture the asymptotic variability. To the

best of our knowledge, the first non-asymptotic results for the MSE of q̂Tn are established

in [71, 72]. Moreover, [71] proposes a new estimator q̂TN(t)
, in which the practitioner

specifies a deterministic t and upon reaching it, the simulation continues until the current

regenerative cycle ends. They further suggest running parallel simulations and apply the

‘median trick’ to guarantee that realizations of this estimator is sufficiently concentrated

around the true value with a given level of confidence. Formally, for some positive odd

integer l, they propose running l parallel Markov chains so that there are l realizations

q̂1
TN(t)

, . . . , q̂lTN(t)
. They then propose the estimator

q̂TN(t),l = med (q̂1
TN(t)

, . . . , q̂lTN(t)
)

and provide a formula to estimate (optimal) t and l for which

P(|q̂TN(t),l − q| > ε) = α

for any given ε > 0 and α. Following this, estimators with non-asymptotic relative errors,

instead of absolute errors, has also been studied in the literature [35].

In this chapter, we also recommend the estimator q̂TN(t)
to practitioners whenever re-

generation times can be identified. This is because the MSE of this estimator exhibits

a non-asymptotic bound, whose constant depends on the mean tour length of the regen-

eration cycles. However, instead of suggesting running parallel chains and applying the

‘median trick’, we propose estimating the constants involved in the MSE directly from
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the simulation output of a single MCMC run. We also demonstrate how we can quantify

the asymptotic error of these estimations in a single MCMC run in Section 5.6. In this

manner, whenever regeneration is easily identifiable, we can systematically address the

convergence issues of the MCMC sampler in a way that is more accessible to practitioners,

yet remains on safe theoretical footing.

We argue that our approach is not as restrictive as it may seem. Firstly, many practical

Markov chains are indeed geometrically ergodic. Next the notion of split chains [4, 87] and

retrospective identification of regeneration times [86] allow practitioners to systematically

identify the regeneration times of the Markov chain. Moreover the notion of an ‘artificial

atom’ is introduced in [14], equipping practitioners with additional tools for introducing

regeneration times in their Markov chain samplers.

In summary, our contributions include an estimate for the total variation distance

bound, an the extension of the MSE bound of [71] to the estimation of the total varia-

tion distance, a novel dimension-reduction visual diagnostic tool for the total variation

convergence of an MCMC sampler, and an alternative sample-based estimate of the MSE

bound in [71],

The rest of the chapter is structured as follows. In Section 5.2 we discuss our con-

tribution introduced above. We then apply our proposed methods on some simple toy

examples in Section 5.3. Following that, in Section 5.4 and 5.5 we apply our proposed

methods to the Park & Casella Gibbs sampler [91] for the Bayesian Lasso model and an

independence sampler for the Probit model [26]. We then give some concluding remarks.

5.2 Output diagnostics in regenerative Markov chains

We shall present our novel diagnostics for Markov chains in this section. We assume that

the Markov chain has a stationary probability measure π and is geometrically ergodic.

Moreover, we assume that the probability transition kernel κ satisfies the minorization

condition, that is κ(dy |x) ≥ s(x)ν(dy) for some function s : X → [0, 1] and proba-

bility measure ν on (X ,A ). We denote {Tk, k ≥ 0} as the underlying (zero-delayed)

regeneration times and Mr = Tr − Tr−1 as the r-th tour length.

5.2.1 Upper bounds on total variation distance

Since we assume that the Markov chain is a zero-delayed regenerative process, we require

that X1 ∼ ν. Moreover, the marginalized t-step transition kernel is obtained by taking

the expectation with respect to X1, namely, E[κt(A |X1)]. In this way, a theoretically

sound assessment of convergence, is to construct an estimate for

δt := ‖E[κt(· |X1)]− π‖TV,
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and examine how fast it decays with respect to t. Denoting mk = EMk
1 , our key insight

is that the bias properties of regenerative estimators [46] allow us to bound the total

variation distance, as follows.

Theorem 5.2.1 (Asymptotic total variation bound for MCMC). Let

κt(· |X1) with X1 ∼ ν be the t-step transition kernel of a geometrically ergodic

Markov chain with limiting density π. Then, we have (for some constant ε > 0)

δt := ‖E[κt(· |X1)]− π‖TV ≤
c1

t
+ O(exp(−εt)),

where c1 = m2+m1

2m1
.

The proof is given in the Appendix A.1. The key feature of this bound is that the

constant c1 only depends on m1 and m2, which can be estimated from simulation using

the iid realizations of M1,M2, . . . (for example m̂k =
∑N(t)

k=1 M
k/N(t)), and in this manner,

we can approximately assess the convergence of the Markov chain, once we have a good

estimate of this constant.

Note that we propose to estimate c1, and unknown constants introduced in later

sections, using iid realizations of M1,M2, . . .. An obvious approach to quantifying the

uncertainty in these constants is to run parallel chains to estimate confidence sets for

these constants. Alternatively, we can exploit the fact the iid nature of M1,M2, . . ., so

that in a single run of the Markov chain, we can formulate partial M-estimators for these

constants and approximate their corresponding asymptotic variance (see Section 5.6).

We also note that the bound on δt can severely overestimate the true TV distance,

because the MCMC samplers that we consider converge geometrically fast, therefore any

polynomially decaying estimator is suboptimal. If it is possible to precisely quantify

the rate of geometric convergence, then that will be preferable. In reality, the rate of

geometric decay of an MCMC sampler is typically unknown and difficult to estimate from

simulation. In contrast, our bounds on δt (and δreg-seq
t ) decay only at a polynomial rates,

but their rates of decay can be easily estimated from the simulation.

One may also consider analytical upper bounds that use the technique developed in

[98, Theorem 12]. However, our simulation experience (shown later on) reveals that these

bounds, in particular [68, Proposition 4], require large sample sizes to eventually overtake

the simpler linear bound. Moreover, our simulation experience reveals to us that this

analytic bound can exhibit numerical round-off issues.

Finally to ensure X1 ∼ ν one can simulate the Markov chain starting with some

arbitrary initial w ∈ X and discard the samples until one observes the first instance of
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regeneration as discussed in [86]. Our simulation experience reveals the cost for this is

generally small when the associated parameters are appropriately tuned.

An advantage of being able to compute an upper bound for δt is that it motivates a

natural burn-in estimator. Let us define the ε-burn-in of a Markov chain with transition

kernel κ as the smallest t for which ‖E[κt(· |X1)]− π‖TV < ε, that is:

tb := min{t : ‖E[κt(· |X1)]− π‖TV < ε}.

Hence, a key insight from the theorem above is that an asymptotic upper bound for the

ε-burn-in, tb, is dc1/εe , It follows that the ε-burn-in is:⌈∑N(t)
k=1 M

2
k +

∑N(t)
k=1 Mk

2ε
∑N(t)

k=1 Mk

⌉
. (5.3)

This estimator can admittedly be quite conservative as it relies on an upper bound of the

total variation distance, not on the actual total variation distance.

Suppose now the sampling scheme is first budgeted for t-steps but is allowed to com-

plete its current regenerative cycle, following that we resample from its history with equal

probability. We shall denote the distribution of this by E[κTN(t)
(· |X1)] as in (5.1), and

in this manner, we can study δreg-seq
t , the convergence rate of E[κTN(t)

(· |X1)] to π. In

such a simulation scheme we have the following two bounds regarding the total variation

distance between the Markov chain and the limiting distribution. The first one is a non-

asymptotic bound that decays at O(t−3/2) and the second one is an asymptotic bound

that asymptotically decays at O(t−2). The idea and the proofs for these bounds closely

follow the generalized splitting algorithm studied in [13], however in this thesis we are

concerned with geometrically erdogic Markov chains.

Theorem 5.2.2 (Non-asymptotic TV bound for MCMC sampling until

cycle ends). Let κt(· |X1) with X1 ∼ ν be the t-step transition kernel of a geo-

metrically ergodic Markov chain with limiting density π. For some ω > 0 (typically

unknown)

δreg-seq
t := ‖E[κTN(t)

(· |X1)]− π‖TV ≤ c1(t)t−3/2,

where c1(t) :=
√

(4/3)m3m2(m1 +m2/t)m
−3/2
1 is bounded uniformly in t.
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Theorem 5.2.3 (Asymptotic TV bound for MCMC sampling until cycle

ends). Let κt(· |X1) with X1 ∼ ν be the t-step transition kernel of a geometrically

ergodic Markov chain with limiting density π. For some ω > 0 (typically unknown)

δreg-seq
t := ‖E[κTN(t)

(· |X1)]− π‖TV ≤
c1

t2
+
c2(t)

t5/2
+ O(exp(−ωt))

where

c1 :=
E|M − 1− 2r|M2

2m1

, r =
m2 +m1

2m1

and

c2(t) :=

√
(6/5)(m1 +m2/t)m2m5

m1

,

is bounded uniformly in t.

In this section we have provided simple quantitative estimates of the convergence of

the MCMC sampler, in the next section we provide a simple qualitative convergence

assessment via a single autocorrelation plot.

5.2.2 Global convergence diagnostic plot

As already mentioned, most users assess the performance of MCMC samplers by display-

ing a number of autocorrelation or trace plots of some functions of the output. Nonethe-

less, almost any projection will lose essential information about the process and thus

convergence of the low-dimensional process is not a sufficient condition for the conver-

gence of the high-dimensional process.

In this section we show that, in the limited number of cases where we can identify regen-

erative structure in the MCMC sampler, we need only monitor one single one-dimensional

Markov chain. Specifically, we first introduce a dimension reduction technique which cap-

tures the total variation convergence of the underlying Markov chain. From there, we

propose a novel visual aid for assessing this convergence.

This useful diagnostic visualization is based on a simple observation regarding the

‘elapsed time process’ denoted by E(t) = t−TN(t)−1. Intuitively, the elapsed time process

concerns the number of steps since last regeneration time. Our novel result is summarized

in the following theorem and its proof is provided in Appendix A.4.
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Theorem 5.2.4 (Elapsed-Time Convergence Diagnostic). Suppose X1 ∼ ν

and denote E(∞) as a stationary version of E(t).

δt := ‖E[κt(· |X1)]− π‖TV ≤ 2 sup
A
|P[E(t) ∈ A]− P[E(∞) ∈ A]| ,

In other words, twice the total variation error of E(t) bounds the total variation

error of X t.

This result implies that one only needs to monitor the convergence of the one-dimensional

process {E(t), t ≥ 0}. This is because Theorem 5.2.4 suggests that whenever the Elapsed

time process converges rapidly, then so does E[κt(· |X1)]. To this end, we propose dis-

playing the autocorrelation of the process {E(t), t ≥ 0} as a visual aid in assessing the

convergence speed of the underlying Markov chain. We call this the elapsed-time conver-

gence diagnostic, and of course, we expect a rapidly converging Markov chain exhibits a

rapidly decaying elapsed-time convergence diagnostic plot.

5.2.3 Non-asymptotic variance upper bound

In completing our toolbox for MCMC diagnostics via regenerations, we consider the fol-

lowing estimator

q̂N(t) =
1

TN(t)

TN(t)∑
k=1

h(Xk).

The renewal theorem [3] guarantees q̂TN(t)
→ q :=

∫
h(x)π(dx) as t → ∞. Moreover, we

have the following non-asymptotic result from [71] regarding its MSE.

Theorem 5.2.5 (Upper Bound on MSE). Let Zr := Hr − qMr, then the MSE

of q̂TN(t)
satisfies:

E(q̂TN(t)
− q)2 ≤ EZ2

1

tm1

+
m2EZ2

1

t2m2
1

.

We also included a proof of this result in Appendix A.5. Note that this upper bound

is asymptotically sharp in the sense that it is equivalent to the consistent estimator γ̂2
h in

(5.2) as t → ∞. In addition, we again propose estimating the the constants involved in

this non-asymptotic upper bound from the simulation output. For example, a consistent

estimator of EZ2 is

ÊZ2
1 =

1

N(t)

N(t)∑
r=1

(Hr − q̂TN(t)
Mr)

2 . (5.4)
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5.3 Toy examples for illustration

We have proposed our novel MCMC diagnostics when regeneration times are identifiable.

In this section we illustrate how Theorems 5.2.1, 5.2.2, 5.2.3, and 5.2.4 can be applied

with two simple toy examples.

5.3.1 Independence sampler for univariate truncated normal

Let us consider the target density as π(x) = 1
2
√

2π
e−x

2/2 for x ≥ 0, that is the density

of a N(0, 1) random variable constrained on (0,∞). We study independence samplers

with proposal densities gλ(x) = λe−λx for x > 0, that is the densities for Exp(λ) random

variables. Formally, given λ, the probability transition kernel is

κ(dy |x) = min

{
π(y)gλ(x)

π(x)gλ(y)
, 1

}
gλ(y) dy + δx(dy)

∫
1−min

{
π(u)gλ(x)

π(x)gλ(u)
, 1

}
gλ(u) du

= min

{
w(y;λ)

w(x;λ)
, 1

}
gλ(y) dy + δx(dy)

∫
1−min

{
w(u;λ)

w(x;λ)
, 1

}
gλ(u) du,

where w(·;λ) = π(·)/gλ(·). Next, we recall the discussion on independence sampler in

Section 4.2. Given the previous state x and current state y, the current state is the start

of a new regenerative cycle if U < r(y |x) where U is an independent Unif(0, 1) draw, and

r(y |x) =
min

{
w(y;λ)
c

, 1
}

min
{

c
w(x;λ)

, 1
}

min
{
w(y;λ)
w(x;λ)

, 1
}

for any c > 0.

We illustrate with two examples, first with a Exp(0.5) proposal, and second with a

Exp(3.5) proposal. In both cases, we perform a pilot run to choose a c that approximately

gives the most regenerations on average. Our simulation experience reveals to us that

when λ = 0.5, we should choose c ≈ 0.4 and when λ = 3.5, we should choose c ≈ 0.2.

The results illustrated in Figures 5.1, 5.2, 5.3, and 5.4.
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Figure 5.1: Sample autocorrelation function for the elapsed time process when λ = 3.5 as
a demonstration of Theorem 5.2.4
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Figure 5.2: Estimated bounds as functions of t when λ = 3.5 as a demonstration of
Theorems 5.2.1, 5.2.2,and 5.2.3.
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Figure 5.3: Sample autocorrelation function for the elapsed time process when λ = 0.5 as
another demonstration of Theorem 5.2.4
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Figure 5.4: Estimated bounds as functions of t when λ = 0.5 as another demonstration
of Theorems 5.2.1, 5.2.2,and 5.2.3.

Our studies reveal that Exp(0.5) is a better proposal in targeting π compared to

Exp(3.5). This agrees with the theory of independence sampler as Exp(0.5) is a better

approximation to N(0, 1) constrained to (0,+∞).
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5.3.2 Gibbs sampler for bivariate truncated normal

We now present another toy example to illustrate the diagnostic plot resulting from Theo-

rem 5.2.4. (Estimates for the total variation distance bounds in Theorems 5.2.1, 5.2.2 and 5.2.3

are not shown for this example. Our simulation experience gives us similar results to Fig-

ures 5.2 and 5.4.)

Consider the bivariate random vector (X1, X2) with density

π(x1,x2) =
1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
x2

1 + x2
2 − 2ρx1x2

])

so that marginally Xi ∼ N(0, 1) for i = 1, 2 and that Corr(X1, X2) = ρ. Observe that

for i 6= j, the conditional densities π(xi |xj) are the densities of N(ρxj, 1 − ρ2) random

variables. In this manner, we can consider the Gibbs sampler with kernel

κ(y |x) = π(y2 | y1)π(y1 |x2),

which has limiting distribution π. Applying the usual trick described in Section 4.2

regarding Gibbs samplers, we may choose

s(x1, x2) = ε exp

(
− 1

2(1− ρ2)

[
−2cx2 + x2

2

])
and

ν(y1, y2) = ε−1π(y2 | y1)π(y1 | 0)I{y1 ≥ c}

for some c > 0 normalizing constant for ε for ν. It follows that the probability transition

kernel satisfies the minorization condition κ(y |x) ≥ s(x)ν(y). In this manner, given the

previous state x and the current state y, the (retrospective) probability of the current

state initializing a new regenerative cycle is

r(y |x) =
s(x)ν(y)

κ(y |x)
= exp

(
−ρx2(y1 − c)

1− ρ2

)
I{y1 ≥ c}.

It is well known the mixing property of this Gibbs sampler is poor for extreme values

of ρ, that is if |ρ| is close to 1. Figure 5.5 shows how our proposed graphical diagnostic,

that is the autocorrelation plot of the elapsed time process, can capture this. In Figure 5.6

we show the autocorrelation plots for different functionals of the Markov chain compared

to the autocorrelation plot of the elapsed time process when ρ = −0.85. We can see that

the plot of the elpased time process gives the most conservative diagnostic regarding the

mixing of the underlying Markov chain.

76



0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

Lag
0 50 100 150 200

−0.2

0

0.2

0.4

0.6

0.8

Lag
0 50 100 150 200

−0.2

0

0.2

0.4

0.6

0.8

Lag

Figure 5.5: The sample autocorrelation functions of the elapsed time process for ρ =
0.6, 0.9, 0.99 (from left to right).

Figure 5.6: The sample autocorrelation functions for different functionals of the Markov
chain.

5.4 Applications

In this section we establish the minorization condition for the Park & Casella Gibbs

sampler [91] for the Bayesian Lasso model. The detail of this Gibbs sampler are described

in Section 3.1 and Appendix A.6. The corresponding numerical results, when tested

against real and synthetic datasets, are given in Section 5.5.

We also describe two more independence samplers, both of which use optimally tilted

sequential proposal densities. In particular, the first independence sampler also targets

the posterior density of the Bayesian Lasso model and the proposal density is the one in

Section 3.3. The second one targets the Bayesian probit model, and the proposal density

is the proposal density described in [11]. The minorization conditions for these indepen-

dence samplers are straightforward application of the formulas described in Section 4.2

regarding independence samplers. The numerical results for these samplers are also given

in Section 5.5.
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These proposal densities are originally studied in the context of rejection samplers.

We point out to readers in advance that in this paradigm, the Markov chains converge

rapidly (see Section 5.5). In particular, our analyses reveal that this indpendence sampler

for the Bayesian Lasso converges much faster than the original Gibbs sampler due to Park

& Casella. In this way, we successfully demonstrate the value of these optimally tilted

sequential proposals outside the framework of rejection samplings.

Moreover, the dataset we consider in the numerical experiment for the Bayesian probit

model consists of 516 parameters. In this manner we demonstrate that our proposed

MCMC diagnostics are not restricted for low dimensional problems.

5.4.1 Application to Park & Casella sampler

Given the centralized response variable Y and standardized model matrix X, the hierar-

chical formulation of Bayesian Lasso linear regression model is as follows (here β, σ are

model parameters and λ is the Lasso regularization parameter):

p(σ2) ∝ σ−2

βj |σ2, λ
iid∼ Lap(σ/λ), for j ∈ {1, . . . , p}

Y |β, λ, σ2 ∼ N(Xβ, σ2I).

It follows that inference for the Bayesian Lasso linear regression requires one to take

expectations with respect to the posterior distribution

π(β, σ2 |λ) =
(σ2)−n/2−p/2−1(λ/2)p exp

(
−‖y−Xβ‖22

2σ2 − λ√
σ2
‖β‖1

)
`(λ)

, (5.5)

where `(λ) is the marginal likelihood for λ. (The conditioning on y is dropped in the

posterior π for the simplicity of notation.)

Recall (see Appendix A.6 for details or [91]) that the transition density for the Gibbs

sampler of Park & Casella is

κ(β∗, σ
2
∗, τ ∗︸ ︷︷ ︸

xk+1

|β, σ2, τ︸ ︷︷ ︸
xk

) = π(σ2
∗ |β, τ )π(τ∗ |β, σ2

∗)π(β∗ |σ2
∗, τ ∗).

Here π(β|σ2, τ ) = N(AτX>y, σ2Aτ ), π(τj |β, σ2) = Wald(λ2, σλ/|βj|) (see, for example,

[19]), and π(σ |β, τ ) = InvGamma((n−1)/2+p/2, b(β, τ )/2), where A−1
τ = X>X+diag(τ )

and b(β, τ) = ‖y − Xβ‖2
2 + β>diag(τ )β. We have the following lemma and its proof is

given in Appendix A.7.
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Lemma 5.4.1 (Regenerative conditions for Park & Casella sampler).

Let D = Rp × [l, u]× [c,d], a subset of Rp × R+ × Rp
+ which is the state space on

which (β, σ2, τ ) is defined. Define the probability measure:

ν(β∗, σ
2
∗, τ ∗) := ε−1κ(β∗, σ

2
∗, τ ∗|β̃, σ̃2, τ̃ )I{(β∗, τ ∗, σ2

∗) ∈ D}, (5.6)

where (β̃, σ̃2, τ̃ ) ∈ D is fixed and ε is the normalizing constant for ν. Further,

define

Υ(β, τ ; c,d) = ‖y − Xβ̃‖2
2 − ‖y − Xβ‖2

2 + β̃
>

diag(τ̃ )β̃ − β>diag(τ )β

+
∑
j∈J

c2
j(τ̃j − τj) +

∑
j /∈J

d2
j(τ̃j − τj) +w>(Aτ̃ − Aτ )w,

where J := {j : τ̃j − τj ≥ 0}, and

s(β, σ2, τ ) :=

(
b(β, τ )

b(β, τ )

)a(
det(Aτ̃ )

det(Aτ )

)n/2
exp

(
Υ(β, τ ; c,d)+

2u
+

Υ(β, τ ; c,d)−
2l

)
.

Here the notation a+ = max{a, 0} and a− = min{a, 0}. Then, the measure ν and

the function s satisfy the minorization condition:

κ(β∗, σ
2
∗, τ ∗ |β, σ2, τ ) ≥ ν(β∗, σ

2
∗, τ ∗)s(β, σ

2, τ ), ∀(β, σ2, τ ).

Conditional on the simulated states (β, σ2, τ ) and (β∗, σ
2
∗, τ ∗), the probability that

(β∗, σ
2
∗, τ ∗) is the start of a new regenerative cycle is:

r(β∗, σ
2
∗, τ ∗ |β, σ2, τ ) = exp

(
Υ(β, τ ; c,d)+

2u
+

Υ(β, τ ; c,d)−
2l

− Υ(β, τ ;β∗,β∗)

2σ2
∗

)
(5.7)

Note that to simulate (β1, σ
2
1, τ 1) ∼ ν(β, σ2, τ ), one only needs to simulate from

κ(·|β̃, σ̃2, τ̃ ) until a realization falls in D . In practice, one needs to specify (β̃, σ̃2, τ̃ ),

[l, u], and [c,d]. Our simulation experience is that it pays to experiment with these

parameters to increase the probability of a regeneration.

Finally geometric ergodicity of this Gibbs sampler is proven in [68]. Consequently

we now have all the ingredients for identifying regeneration events during the course of

running the Gibbs sampling of Park & Casella.
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5.4.2 Independence sampler for the Bayesian Lasso

Again, dropping the conditional y in our notation, the posterior density of the Bayesian

Lasso linear regression model is:

π(β, σ) =
σ−2 × (2πσ2)−n/2 exp

(
− 1

2σ2‖y − Xβ‖2
2

)
× λd

(2σ)d
exp

(
−λ
σ
‖β‖1

)
`(λ |y)

.

Recall from Section 3.3 that under suitable bijective smooth coordinate transformations,

π becomes a density f(z, r) whose expression looks like a product of laplace and normal

laplace densities and in this manner we can use a sequential proposal

g(z, r) := g0(r)
d∏

k=1

gk(zk | r, z1, . . . , zk−1),

where g0 is a normal density truncated on the positive axis, and {gk, k ≥ 1} are some

laplace or normal laplace densities. In fact, the logarithm of the likelihood ratio is

bounded:

ψ(z, r) := ln
f(z, r)

g(z)
≤ ψ∗

for some constant ψ∗. Consequently, when g is a proposal density for π in an independence

sampler, the Markov chain is uniformly ergodic as stated in Theorem 4.2.4.

Let us now consider g as a proposal density for independence sampler so that denoting,

x := (z, r) and w(x) = exp(ψ(z, r)), the corresponding probability transition kernel is

κ(dy |x) = α(y |x)g(y) dy + (1− α∗(x))δx(dy),

where α(y |x) = min{w(y)/w(x), 1} and α∗(x) =
∫
g(u) min {w(u)/w(x), 1} du. In

other words, with probability α∗(x) we simulate from a density proportional to

g(y) min {w(y)/w(x), 1} ,

and with probability 1 − α∗(x), we remain in the same state x. The kernel satisfies

a minorization condition, and given the current state y and the previous state x, the

probability that y initiates a new regenerative cycle for an independent sampler can

be is as follows. (See Section 4.2 regarding minorizations conditions for independence

samplers.)

r(y |x) =


min{w(y)/c,1}min{c/w(x),1}

min{w(y)/w(x),1} , if y 6= x,

0, else.
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Of course, one can proceed with some running pilot runs, and from there, one can choose

the c that empirically gives the most regenerations.

We shall point out in advance that our analysis based on regeneration times reveals

to us that this algorithm has better mixing properties compared to the Gibbs sampler

described in the previous section (i.e. Section 5.4.1). However, the construction of this

proposal density do require n > d (the number of observations to be larger than the

number of model coefficients), on the other hand its competing Gibbs sampler actually

remains to work even when n ≤ d (although it appears to us that the mixing of this

Gibbs sampler is poor in such an extreme case). This is because the introduction of the

auxiliary variable τ guarantees the invertibility of the matrix A−1
τ = X>X + diag(τ ).

5.4.3 The Bayesian probit linear regression model

The Bayesian probit model (see for example [26]) can be summarized by the following

hierarchy.

Yi |Zi
i.i.d∼ Ber(P[Zi ≥ 0]) for i = 1, . . . , n

Zi |β
i.i.d∼ N(x>i β, 1) for i = 1, . . . , n

β ∼ N(0, ν2I).

Here Z1, Z2, . . . are latent variables introduced to simplify the sampling scheme for the

posterior distribution. It turns out that π(β, z |y), the posterior distribution, can be

written as π(β, z) = π(z |y)π(β | z,y). Here π(z |y) is the density of N(0, I + ν2XX>)

constrained to zi > 0 if yi = 1, otherwise zi ≤ 0, and π(β | z,y) is the density of

N(CX>z,C), where C = (X>X + I/ν2)−1, see [9].

Of course sampling from π(β | z,y) is routine, so the only challenge here is sampling

from π(z |y). In this chapter we sample from π(z |y) using the independence Metropolis

sampler with the optimal sequential importance sampling density given in [11, Equation

5], which again takes the form:

g(z) :=
d∏

k=1

gk(zk | z1, . . . , zk−1),

but {gk} are truncated normal densities, and the logarithm of the likelihood ratio is

bounded [11, Equation 6]:

ψ(z) := ln
π(z |y)

g(z)
≤ ψ∗

for some constant ψ∗. This g is originally studied for rejection sampling targeting mul-

tivariate normal densities over linear constraints. We shall use g as the proposal density

for an independence sampler in our numerical example. Consequently, the corresponding
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minorization condition, and the retrospective probability for a regeneration follow exactly

as described in Section 5.4.2.

5.5 Numerical Experiments

5.5.1 Park & Casella Gibbs sampler

In this section we consider two datasets that we shall model with the Bayesian Lasso

regression. We identify the regenerative structure in the Gibbs sampler formulated in [91]

and apply our diagnostics. The first dataset is a synthetic dataset that emulates a simple

univariate problem. The second dataset is the ‘diabetes dataset’ of [27]. It consists of

10 predictor variables (age, sex, BMI, etc.) and a response variable which is a medical

measurement for the level of diabetes for n = 442 patients.

5.5.1.1 Synthetic dataset

This synthetic dataset consists of n = 5 observations of pairs (xi, yi) generated in the

following manner. For i = 1, . . . , 5, simulate xi ∼ N(0, 1), then set yi = −0.05xi + wi,

where wi
iid∼ N(0, 1).

The purpose of this simple example is to demonstrate the advantage of our estimator

for (the bound on) δt. A geometric total variation distance bound between the t-step

probability transition kernel of this Gibbs sampler and posterior density is derived in [68]

using Theorem 5.1.1. That is, for any r ∈ (0, 1),

‖κt(· |X0)− π‖ ≤ (1− ε)rt + (α−(1−r)Ar)t
(

1 +
b

1− λ
+ E(V (X0))

)
where X0 ∼ ν0

α−1 =
1 + 2b+ λc

1 + c
< 1, A = 1 + 2(λc+ b)

for all initial distribution ν0 and ε is a constant depends on the data. In this manner, it

may seem that our estimation has less value when such geometrically decaying bounds

can be derived analytically.
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Figure 5.7: The graph compares the geometric bound derived in [68] to our bound given
in Theorem 5.2.1 for the simple synthetic dataset. Here ε is approximately 0, resulting in
the pathological behavior of the bound.

However, our numerical experiments reveal that these geometric bounds, in particular

the bound given in [68], can be numerically unstable. Indeed, even for a simple univariate

case, the parameters n = 5 and yk = −0.05xk + wk are chosen by trial and error, so that

we can achieve a meaningful bound (in many of our trials, ε often gets rounded to 0,

resulting in a bound that is always larger than 1). Further, we can see that the bound is

overly conservative, it estimates that it takes about 1.3 × 1012 steps before the Markov

chain is confidently within 0.01 total variation distance to the target density.

In experiments with real datasets (see next section), such geometric bounds for the

Gibbs sampler [91] fail to return us meaningful results (due to rounding ε to 0) and we

do not pursue further.

5.5.1.2 Diabetes dataset

Figure 5.8 is an illustration of Theorem 5.2.1 for this dataset. Setting t = 104, we

simulate 200 independent parallel Markov chains. The regeneration cycles are identified

in each chain so that we get 200 independent estimates for c1. We then display the

empirical median, and 0.95 confidence bound in the figure. Empirically, our estimate is

c1 ∈ (4.096, 4.550) with 0.95 confidence. Therefore an approximate 0.01-burn-in period is

tb ∈ (410, 455). Finally, Figure 5.9 is an illustration of our proposed visual diagnostics as

a result of Theorem 5.2.4.
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Figure 5.8: An estimate for δt for t = 1, 2, . . . , 500 on a logarithmic scale.
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Figure 5.9: Autocorrelation plot of elapse time. The value for lag zero is one (not shown
on the graph).

Finally Figure 5.10 compares the variance bound estimator given in Theorem 5.2.5
to the batch-means variance estimator for t = 1, . . . , 100 Markov chain lengths. We also
estimate the ‘true’ variance by running iid multiple Markov chains and use that as a
benchmark. Our simulation experience suggests to us that the three always eventually
coincide. However Figure 5.10 reveals that the batch-means variance estimator is less
reliable as some variance estimates can under estimate while some may over estimate.
Nevertheless, our simulation experience reveals to us that when chain length is about 105,
all the variance estimators coincide.
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Figure 5.10: A comparison of variance estimates for estimating Eβ5 and Eβ10.

Note that our simulation experience reveals to us that the probability of regeneration

derived here for the Park and Casella Gibbs sampler appears to to be sub-optimal. Upon

testing the methodology for larger datasets, the number of regenerations observed becomes

less and our diagnostics give very conservative results. For example, in a dataset with 14

variables (the Boston Housing Dataset of Section 5.5.2.2), the estimated number of burn-

in required is about 1.1 × 105 before we can intialize the Markov chain within less than
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0.01 TV distance to the target. Nevertheless, subsequent examples show that having a

carefully tailored sampling scheme allow one to perform our proposed diagnostics in high

dimensional settings.

5.5.2 Independence sampler with sequential proposal for the Bayesian Lasso

In this section we sample from the posterior density of the the Bayesian Lasso linear

regression model using the independence sampler described in Section 5.4.2 instead of

the Park & Casella Gibbs sampler. We consider the Diabetes Dataset and the Boston

Housing Datasets [51].

5.5.2.1 Diabetes Dataset

Our simulation experience with this dataset confirms that this sampler can converge very

fast – empirically we get the constant c1 for Theorem 5.2.1 to be c1 ∈ (1.556, 1.625) with

95% confidence. In other words, the 0.01-burn-in this time approximately (156, 163),

this is drastically smaller than what the Gibbs sampler gives. Of course this difference

can be a consequence of Lemma 5.4.1 being too loose. However, to our best effort (for

example, our countless experiments on choosing (β̃, σ̃2, τ̃ ), and D) we cannot achieve a

less conservative diagnostics for that Gibbs sampler.

5.5.2.2 Boston Housing Dataset

Our simulation experience with this dataset again shows that this sampler can converge

very fast – empirically we get the constant c1 for Theorem 5.2.1 to be c1 ∈ (1.581, 1.649)

with 95% confidence. In other words, the 0.01-burn-in this time approximately (159, 165),

which is drastically smaller than what the Gibbs sampler gives.

5.5.3 The Bayesian probit linear regression model

Here we consider the dataset described in [80]. It consists of 74 observations and 516

predictors for cancerous tissues, that is the response yi takes the value 1 if the tissue is

cancerous, and 0 otherwise. (Note the that a proper prior for β, that is if ν2 6= 0, give a

non-degenerate posterior distribution.) We can see in this example that the convergence

is very fast as the proposal density for the independent Metropolis sampler is carefully

tailored (optimally tilted) for the problem. It is worthwhile noting that this is an example

where regenerative structure can be frequently identified in a high dimensional setting.

Figure 5.11 again illustrates Theorem 5.2.1 by simulating 200 independent parallel

Markov chains for this dataset (again we choose t = 104). Empirically, our estimate is

c1 ∈ (1.978, 2.408) with 0.95 confidence, thus an approximate 0.01-burn-in period is tb ∈
(197, 240). Similarly, Figure 5.12 is an illustration of Theorem 5.2.4. The autocorrelation

plot of the elapsed time process reveals that this Markov chain converges quickly.
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Figure 5.11: An estimate for δt for t = 1, 2, . . . , 100 on a logarithmic scale.
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Figure 5.12: Autocorrelation plot of elapse time.

5.6 Inference for estimated constants via M-estimation

The illustrative examples in Sections 5.5.1.2 and 5.5.3 provide empirical 0.95 confidence

bounds for the estimated constant c1 of Theorem 5.2.1 by running 200 independent parallel

Markov chains. This is actually quite wasteful, given that we know the regenerative cycle

lengths M1,M2, . . ., which are used to estimate c1, are iid. In this section we demonstrate

how one can formulate M-estimators for constants such as c1 in Theorem 5.2.1. We begin

by recalling the well-known asymptotic normality of M-estimators, when the number of

sample is fixed (see [105] and the references therein):
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Suppose W k = (Wk1,Wk2, . . . ,Wkm) ∈ Rm are iid random vectors for k = 1, . . . , n.

Let ϕ : Rm × Rd → Rd and recall that the M-estimator for θ∗ ∈ Rd is the solution θ̂n to

the equation
n∑
k=1

ϕ(W k, θ̂n) = 0,

where the true value θ∗ satisfies E[ϕ(W 1,θ
∗)] = 0. Under some regularity conditions,

we have θ̂n → θ∗ in probability and that
√
n(θ̂n − θ∗) obeys some normal distribution

as n → ∞. (We refer to readers to [105] and the references therein for more details on

M-estimators.)

Although the extension of this result to the case where we have a random number

of samples appears to be part of the statistical folklore, we present here a formal proof,

because we were unable to find a precise reference to this result.

Theorem. Let W k = (Wk1,Wk2, . . . ,Wkm) ∈ Rm be iid random vectors for k = 1, . . . , n

and N(t) be a positive-integer-valued random variable such that N(t) → ∞ a.s. and

N(t)/t→ b in probability as t→∞ for some finite constant b. Suppose ϕ : Rm×Rd → Rd

is such that the solution θ̂n to the equation
∑n

k=1 ϕ(W k, θ̂n) = 0 satisfies θ̂n → θ∗ in

probability, where θ∗ is the solution to E[ϕ(W 1,θ
∗)] = 0, and that θ̂n exhibits a CLT.

Further, suppose that for each w ∈ Rm, ϕ(w, ·) is smooth in the second argument,

Eϕ(W ,θ) exists for all θ ∈ Rd, and A := −E[∂θϕ(W 1,θ
∗)] is invertible. Then the

(regeneraitve-sequential) estimator θ̂
reg-seq

t defined as the solution to

N(t)∑
k=1

ϕ(W k, θ̂
reg-seq

t ) = 0

satisfies √
N(t)(θ̂

reg-seq

t − θ∗)→ N(0,A−1BA−>)

as t→∞ where B = E[ϕ(W 1,θ
∗)ϕ(W 1,θ

∗)>].

Proof. First, note that our assumption θ̂n → θ∗ in probability as n → ∞ guarantees

θ̂
reg-seq

→ θ∗ in probability as t→∞. Observe that by the multivariate Taylor’s theorem,

there is a matrix At such that as θ̂
reg-seq

t → θ∗ in probability, At → A in probability and

satisfies

N(t)∑
k=1

ϕ(W k, θ̂
reg-seq

t ) =

N(t)∑
k=1

ϕ(W k,θ
∗)− At(θ̂

reg-seq

t − θ∗) = 0.

88



Rearranging the above implies that for t sufficiently large,

√
N(t)(θ̂

reg-seq

t − θ∗) = A−1
t

√
N(t)

1

N(t)

N(t)∑
k=1

ϕ(W k,θ
∗).

The matrix inverse A−1
t exists for t sufficiently large because matrix inversion is a continu-

ous operation and At → A in probability as t→∞. Finally the assumption thatN(t)/t→
b for some finite constant t ensures that by [106, Colloray 1],

√
N(t) 1

N(t)

∑N(t)
k=1 ϕ(W k,θ

∗)

asymptotically obeys N(0,B), and this completes the proof.

With this result in hand, one can perform statistical inference for the estimated con-

stants from the output of a single Markov chain run. Here an illustration to construct an

M-estimator for c1 = m2+m1

2m1
of Theorem 5.2.1, and how we can estimate its asymptotic

variability. Let

ϕ(x; θ1, θ2, θ3) = ϕ(x;θ) =


x− θ1

x2 − θ2

θ2 + θ1 − 2θ1θ3

 .

Denote θ∗ = (θ∗1, θ
∗
2, θ
∗
3) as the solution to the equation E[ϕ(M1, θ

∗
1, θ
∗
2, θ
∗
3)] so that θ∗ =

(m1,m2, c1)>. We note that ϕ satisfies the conditions imposed [60, Theorem 2] so that

the usual fixed sample size M-estimator θ̂n → θ∗ in probability, so we can use our

(regenerative-sequential) M-estimator for c1 where

ĉreg-seq
t =

∑N(t)
k=1 M

2
k +

∑N(t)
k=1 Mk

2
∑N(t)

k=1 Mk

.

Renewal theorem guarantees that N(t)/t → 1/E[M1] in probability as t → ∞, and the

asymptotic variance of ĉreg-seq
t is the (3, 3)-th element of the matrix ABA−> divided by

N(t) i.e. the number of completed regenerative cycles where

A = −E [∂θϕ(M1; θ∗)] =


1 0 0

0 1 0

−1 + 2c1 −1 2m1


is invertible and

B = E
[
ϕ(M1;θ∗)ϕ(M1;θ∗)>

]
=


m2 −m2

1 m3 −m1m2 0

m3 −m1m2 m4 −m2 0

0 0 0

 .
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Again, in practice, we usually don’t have formulas for mr, so we substitute for them with

consistent estimators for example m̂k =
∑N(t)

r=1 M
k
r /N(t).

Consider again the example in Section 5.5.1.2. For t = 104, the empirical 0.95 confi-

dence bound for c1, from 200 independent parallel runs of Markov chain, is (4.096, 4.550).

In a single run of t = 104, using the strategy above, we get an asymptotic 0.95 confi-

dence bound for c1 of (4.043, 4.523), which agrees with the “parallel-MCMC” one to two

significant figures.

5.7 Concluding remarks for this chapter

In this chapter we have proposed novel MCMC diagnostics for geometrically ergodic

Markov chains for which we can identify the underlying regenerative structure. In par-

ticular we derive two asymptotic and one non-asymptotic total variation distance bounds

on a geometrically ergodic Markov chain. The constants involved in these bounds depend

on moments of the regenerative cycle lengths. From there, we propose that in the cases

where regeneration times are readily identifiable, we can use the simulation outputs to

estimate these constants and quantify their asymptotic variances. In this manner we have

output diagnostics that concern the total variation distance, and in this manner, it stands

on better theoretical footing than the usual graphical analyses.

We have also introduced the notion of an elapsed process. We show the elapsed

process gives a useful dimension reduction for assessing the total variation convergence

of the underlying Markov chain. We propose a novel visual aid where we construct the

autocorrelation plot for this one dimensional process. Our experiment shows that this

plot seems to be able to distinguish between rapidly converging and slowly converging

Markov chains.

In combining different ideas we have studied in this thesis, in the next chapter, we shall

propose a novel regenerative Markov chain sampling, where we embed exact sampling in

the event of a regeneration. In other words, the underlying Markov chain is regenerative,

and in the event of a regeneration, the Markov chain has a certain probability of starting

the new regenerative cycle exactly from the target (posterior) distribution.
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Chapter 6

Reject-Regenerate Sampler

6.1 Introduction to this chapter

In Chapters 2 and 3 we have applied the exponential tilting technique to construct ex-

act samplers from some Bayesian posterior densities resulting from practical data sets.

However, as mentioned in Chapters 4 and 5, due to the curse of dimensionality no matter

how careful one constructs a proposal density, rejection sampling will eventually become

inefficient as the dimension of the problem grows.

Consider the situation where we have designed a sequential proposal density for ef-

ficient rejection sampling. We know that the rejection sampler will be efficient up to a

certain dimension, which is typically unknown apriori. Beyond this unknown dimension,

the rejection sampling will be inefficient and we will have to switch from exact rejection

sampling to approximate MCMC sampling. This scenario has a number of undesirable

features.

First, the user has to explicitly decide when a rejection sampler is inefficient. For

example, should the cutoff for efficiency be an acceptance probability of 10−3 or 10−2?

Second, the user has to run the rejection sampling algorithm to find out if it meets

the efficiency criterion above. In the likely event that the rejection sampler does not meet

the efficient criterion, this simulation effort has been effectively wasted, because the user

now has to run a separate MCMC algorithm from scratch. The simulation effort from

rejection sampling is not recycled by the MCMC sampler, but is simply used to make a

dichotomous, all-or-nothing decision about the rejection sampler.

Given the above drawbacks of using rejection and MCMC sampling as two distinct

algorithms, in this chapter we propose a single algorithm which combines the desirable

features of both rejection and MCMC sampling and thus removes the need to make a

choice between the two. We call this algorithm the Reject-Regenerate sampler.

The Reject-Regenerate sampler has the following desirable features. At a given step

t, using an (exponentially tilted or otherwise) proposal density, the Reject-Regenerate

sampler simulates a random variable X t. Then, with a certain probability the variable

X t is flagged as belonging to either one of these three states:
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1. an draw within an Markov chain which initiates the next regenerative cycle;

2. an independent and exact/perfect draw from the target;

3. a regular draw within an MCMC run (which is neither exact, nor regenerative).

As a result of these features, the Reject-Regenerate sampler makes is unnecessary for

the user to choose between rejection and MCMC sampling. If the rejection sampling is

efficient, then most of the draws in the sequence {X t} will be independent and exact

draws from the target. However, if rejection sampling is not viable, then the sequence

{X t} will be interpreted as the output of an MCMC with the possibility of identifying

regeneration cycles. In this way, the simulation effort in rejection sampling is recycled for

MCMC sampling.

To be precise, in this chapter we propose a novel sampling scheme in which we identify

the regeneration times of an usual independent sampler, and whenever regeneration oc-

curs, it has a certain probability of achieving an independent exact draw from the target

density.

We point out in advance that the proposal does not have to be derived from expo-

nential tilting. However, unsurprisingly, numerical experiments reveal to us that a good

approximation gives frequent regeneration, and in this manner we can readily apply the

diagnostics we propose in Chapter 5.

We also point out in advance that our Reject-Regenerate sampler shares some common

feature with Algorithm 1 in [56]. For example our Reject-Regenerate algorithm implicitly

requires the whole state-space is a ‘small set’, and this is explicitly assumed in [56].

Further, the of goal Algorithm 1 in [56] is to ensure the initial draw of the simulated

Markov chain comes from the target distribution, and this can be achieved by our Reject-

Regenerate sampler too. The fundamental difference between the two algorithms lies in

the construction. Algorithm 1 proposed in [56] utilizes an infinite mixture representation

of the target distribution while our Reject-Regenerate sampler utilizes a four-component

mixture representation of the transition kernel. Moreover, the objective of our Reject-

Regenerate sampler is not to initialize the Markov chain with the target, rather it aims to

provide an automated way for practitioners to switch between exact (rejection) sampling

and a Markov chain sampling along with its underlying regeneration times.

6.2 The Reject-Regenerate sampler

Suppose that the target pdf is

π(x) =
p(x)

`
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where ` =
∫
p(x) dx is the normalizing constant and we have p(x) available analytically.

Our proposal pdf is g(x) that satisfies

w(x) :=
p(x)

g(x) exp(ψ∗)
≤ 1.

where

ψ∗ = max
x

ψ(x) = max
x

ln
p(x)

g(x)
.

Of course, in the case where g comes from a family of densities, indexed by some tilting

parameter µ, in the spirit of optimal tilting, we choose ψ∗ = minµ maxx ψ(x;µ) and g is

the corresponding optimal proposal.

Next denote

min{x, y} := x ∨ y, and wγ(x) := min{w(x)/γ, 1}

for some γ ∈ (0, 1]. Now, suppose that we wish to simulate X ∼ g, conditional on

U ≤ wγ(X). The probability of this happening is

cγ = Ewγ(X).

Note that rejection sampling corresponds to γ = 1 with acceptance probability c1 =

`/ exp(ψ∗).

Recall that the probability transition kernel of an independence sampler with proposal

g is

κ(dy |x) = α(y |x)g(y)dy + (1− α∗(x))δx(dy)

where

α(y |x) = (1 ∨ w(y)
w(x)

), and α∗(x) =

∫
α(u |x)g(u) du.

Given the current state of the Markov chain x, the conventional implementation of the

independence sampler is as follows. Independent draws Y ′ ∼ g, U ∼ Unif(0, 1) are

simulated and if U < w(y′)
w(x)

, the next state of the chain Y is assigned Y ← Y ′, otherwise

Y ← x. This can be understood as the following probability transition kernel

κ(dy, dy′, u |x) = g(y′)I
u<

w(y′)
w(x)

δy′(dy) dy′ + g(y′)I
u>

w(y′)
w(x)

δx(dy) dy′

which has marginal κ(dy |x) and is such that κ(dy′ |x) = g(dy′) and κ(u |x,y′) = 1, for

u ∈ (0, 1) so that

κ(dy |x,y′, u) = I
u<

w(y′)
w(x)

δy′(dy) + I
u>

w(y′)
w(x)

δx(dy).
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Next, define

gγ(y) :=
g(y)wγ(y)

cγ

and note that we have

1 ∨ w(y)

w(x)
≥ (1 ∨ w(y)/γ)× (1 ∨ γ/w(x)) ≥ (1 ∨ w(y)/γ)× γ,

and

α∗(x) ≥ (1 ∨ γ/w(x))× cγ =: sγ(x).

It follows that we can decompose κ(dy |x) as a three-component mixture as follows.

κ(dy |x) = sγ(x)gγ(y) dy + (α∗(x)− sγ(x))
g(y)(1 ∨ w(y)

w(x)
)− gγ(y)sγ(x)

α(x)− sγ(x)
dy

+ (1− α∗(x)) δx(dy).

Regeneration happens whenever we simulate from the first component gγ, again in prac-

tical implementation this is done retrospectively. Formally, let us define

r(y |x) =
(1 ∨ w(y)/γ)× (1 ∨ γ/w(x))

1 ∨ w(y)
w(x)

≤ 1. (6.1)

Given previous state X and current state Y of the Markov chain, where Y 6= X (that

is, a transition has happened), one simulates another independent V ∼ Unif(0, 1) and

decides that Y initiates a new regenerative cycle if V < r(Y |X). In other words, one

retrospectively identifies Y as a draw from gγ if V < r(Y |X). The following expression

summarizes this independence sampler with regenerations.

κ(dy |x,y′, u, v) = δy′(dy)I
u<

w(y′)
w(x)

[
Iv<r(y′ |x) + Iv>r(y′ |x)

]
+ I

u>
w(y′)
w(x)

δx(dy).

Finally, to get the exact sampling as a subset of regeneration, define

e(y) =
w(y)

1 ∨ (w(y)/γ)
≤ 1, (6.2)

so that cγ ≥ c1. Then,

gγ(y) =
g(y)(1 ∨ w(y)/γ)

cγ
=
c1

cγ

g(y)w(y)

c1

+

(
1− c1

cγ

)
g(y)(1 ∨ w(y)/γ)− g(y)w(y)

cγ − c1

.

Notice that the first component of this mixture g(y)w(y) ∝ π(y), thus we actually achieve

an exact draw from π if a draw from gγ actually comes from this component of the mixture.
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Thus, simulation from this mixture can be accomplished by sampling from the joint:

gγ(y, v
′) = gγ(y)I{v′<e(y)} + gγ(y)I{v′>e(y)}.

In other words, simulate Y ∼ gγ(y) and V ′ ∼ Unif(0, 1) and then evaluate I{V ′<e(Y )} (to

check if we sampled from the first component of this mixture).

Putting these observations together, we propose an algorithm where we simulate Y ∼
g(y), independently V, V ′, U

iid∼ Unif(0, 1), we consider the conditional probability measure

κ(dy |x,y′, u, v, v′) =:

δy′(dy)I
u<

w(y′)
w(x)

[
Iv<r(y′ |x),v′<e(y′) + Iv<r(y′ |x),v′>e(y′) + Iv>r(y′ |x)

]
+ I

u>
w(y′)
w(x)

δx(dy).

Moreover, the probability of exact sampling, conditional on x is:

sγ(x)× c1

cγ
= c1 × (1 ∨ γ/w(x)).

The final algorithm is thus as follows. (Here B = 1 means regenerative draw and B = 2

means exact sampling draw.)

Algorithm 7 : MCMC with regeneration and exact sampling

Require: Current state of chain (Xn, Bn) and constant γ.

Bn+1 ← 0

Simulate Y ∼ g(y) and U, V, V ′ ∼iid Unif(0, 1), independently.

if U ≤ w(Y )/w(Xn) then

Xn+1 ← Y

if V ≤ r(Y |Xn) as in (6.1) then

Bn+1 ← 1

if V ′ ≤ e(Y ) as in (6.2) then

Bn+1 ← 2

else

Xn+1 ←Xn

return (Xn+1, Bn+1) as the next state of the chain

Our numerical studies show that even when g renders a small probability retaining

a perfect draw in rejection sampling, appropriate choices of γ can give a Markov chain

that frequently regenerates. A potential application of this observation is that when π

is a probability density defined on dimensions so big that even a mini-max exponentially

tilted proposal density g is incompetent, we can still use it as a proposal density for an
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independent Markov chain sampler which regenerates frequently so that its error analysis

is remains relatively simple.

However, since we have nested exact sampling within regeneration events, despite

having observed many regenerations, the probability of observing an exact sampling in

the Markov chain does reduce slightly. This is illustrated in Figure 6.1.

An interesting case is where we choose γ = 1, then the algorithm corresponds to an

independence sampler with regeneration, but regeneration corresponds to an exact draw

from π. In other words, every regenerative cycle is initialized by an exact draw from the

target. Simple analysis shows that in this setting exact component has a mixture weight

equal to the probability of retaining a proposal in the rejection sampling context. This

means that in this case (when γ = 1), the algorithm exploits the proposal g to its maximal

efficiency in the sense of achieving an exact sample.

6.3 Numerical example

6.3.1 Toy example

Consider simulating from f(x) = 2√
2π
e−x

2/2I{x ≥ 0} = e−x
2/2I{x≥0}
`

, that is the standard

normal distribution conditional on the positive axis. Suppose we use Exp(3) as the pro-

posal density and set c = e9

3
to ensure the the density of Exp(3), having scaled by c, bounds

e−x
2/2. Figure 6.1 estimates how the factor k ∈ (0, 1) in γ = kc affects the probability of

achieving a sample from ν and from f within the Markov chain.
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Figure 6.1: The green dots are the probabilities of having samples from f , the red dots are
the probability of having samples from ν, and the blue dots are the probability of having
samples from ν but not f . The horizontal line is

√
2π

2c
= 0.042, which is the probability of

retaining a draw in rejection sampling.

Of course the choice of Exp(3) as the proposal is sub-optimal, one can choose µ > 0

for which Exp(µ) is a more efficient proposal here.

6.3.2 Women wage dataset

When γ = 0.5c, the probability of regeneration is estimated to be 0.45 while the proba-

bility of an exact sample is estimated to be 0.29.

The table below summarizes the posterior distribution for the coefficients when we use

the entire Markov chain.
mean 0.25-quantile 0.975-quantile st. deviation

kidslt6 −9.02× 102 −1.12× 103 −6.84× 102 1.12× 102

kidsge6 −1.63× 101 −9.24× 101 5.98× 101 3.91× 101

age −5.47× 101 −6.96× 101 −4.03× 101 7.47

edu 8.12× 101 3.90× 101 1.24× 102 2.20× 101

exper 1.33× 102 9.87× 101 1.67× 102 1.75× 101

nwifeinc −8.98 −1.78× 101 −1.86× 10−1 4.51

expersq −1.89 −2.97 −8.22× 10−1 5.45× 10−1

The table below summarizes the posterior distribution for the coefficients when we

only consider exact draws i.e. conditional on B = 2.
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mean 0.25-quantile 0.975-quantile st. deviation

kidslt6 −9.01× 102 −1.12× 103 −6.85× 102 1.12× 102

kidsge6 −1.67× 101 −9.13× 101 6.00× 101 3.93× 101

age −5.47× 101 −6.98× 101 −4.02× 101 7.57

edu 8.11× 101 3.92× 101 1.24× 102 2.19× 101

exper 1.33× 102 9.87× 101 1.66× 102 1.72× 101

nwifeinc −8.97 −1.79× 101 −3.03× 10−1 4.56

expersq −1.89 −2.91 −8.43× 10−1 5.30× 10−1

6.4 Concluding remarks for this chapter

In this chapter we have proposed a new sampler which we call the Reject-Regenerate

sampler. The sampler is based of an usual independence sampler with the assumption

that the proposal density bounds the target density in a certain way. The proposed

algorithm identifies regeneration times within the Markov chain, and in the event of a

regeneration, with some probability, the Markov chain achieves an exact draw from the

target.

The validity of this sampler is done by careful analyses of an independence sampler

by writing it as a nested mixture. To be specific, the transition part of the kernel is

decomposed into a regenerative component and a non-regenerative component. Whenever

a draw is made from the regenerative component, it initializes a new regenerative cycle.

This is done by retrospectively checking, so that at no point of the algorithm do we

need to simulate from some complicated mixture. We further decompose the regenerative

component into a mixture that includes the target density. in this manner we have an

independence sampler whose regeneration times can be identified, and whenever a new

regenerative cycle is initialized, there is chance that the cycle starts with an exact draw

from the target density.
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Chapter 7

Concluding remarks for this thesis

This thesis is motivated by Bayesian posterior inference in which practitioners often need

to integrate with respect to some intractable posterior probability distribution. Since

these integrals do not have analytic forms, practitioners call for Monte Carlo methods.

In Chapters 2 and 3, we have shown that some Bayesian posterior inference, even when

the dimension is large, exhibit efficient rejection samplers. This is done by constructing

optimally tilted sequential proposal densities for these posterior densities. We have also

tested these samplers on real datasets and they provide promising inferences. Rejection

samplers give iid exact draws, and this way, their error analyses are simpler than their

Markov chain counterparts.

Since these rejection samplers are bound to fail as the dimensions of the posterior

densities increase, one eventually has to resort to MCMC samplers. Although MCMC

samplers are feasible, their error analyses are a lot more difficult, and the MCMC com-

munity has devoted a lot of effort on this topic. Different analytic error bounds and precise

statements regarding the validity of these bounds are available in the literature, however

we observe that these error bounds do not receive as much attention as they deserve

among practitioners. We believe this is mainly due to the difficulty in implementation.

In Chapter 5 we introduce novel output diagnostics for geometrically ergodic Markov

chains whose regeneration times are identifiable. We argue that our methods stand on

better theoretical footings compared to the conventional graphical diagnostics, and at the

same time, are simple enough to implement. Our novel MCMC diagnostics also reveal

that sequential proposal densities such as the ones studied in Chapters 2 and 3 render

fast mixing independent samplers. Consequently, we demonstrate the values of these

sequential proposals outside the framework of rejection sampling.

The final contribution is given in Chapter 6 where we propose our novel Reject-

Regenerate algorithm. It is essentially an independence sampler, however we have intro-

duced regeneration events in this sampler in such a way that when regeneration occurs,

there is a chance that the new regenerative cycle is initialized perfectly from the target

posterior density.
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Appendix A

Appendix

A.1 Proof of theorem 5.2.1

The proof uses the following two lemmas.

Lemma A.1.1 (Uniform bias estimate). Suppose X1,X2, . . . is a zero-delayed

discrete regenerative process with regeneration times 0 = T0 < T1 < T2 < · · · ,
where Tn = M1 + · · · + Mn, and stationary distribution Q. Let E exp(ε1M) < ∞
for some ε1 > 0 and let Qt be the distribution of a state drawn at random from

the whole history of the chain up until time t, that is, drawn at random from

X1, . . . ,X t. Then, we have for some ε ∈ (0, ε1]

sup
A
|Qt[A]−Q[A]| ≤ EM2

1 + EM1

2tEM1

+ O(exp(−εt)) .

Proof. The proof follows closely the ideas in [46]. Let u(k) =
∑k

j=0 P[Tj = k] = P[∃j :

Tj = k] denote the renewal measure, and define the convolution operator (a ∗ b)(t) =∑t
k=0 a(t− k)b(k) between two functions a and b. Further, define

eA(t) := t(Q[A]−Qt[A]) = E
t∑

k=1

Zk(A),

where Zk(A) = Q[A]− I{Xk ∈ A}. Wald’s identity implies that

E
M1∑
k=1

Zk(A) = Q[A]EM1 − E
M1∑
k=1

I{Xk ∈ A} = 0.

Thus, we can then verify that eA satisfies the renewal equation

eA(t) = (vA ∗ u)(t),
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where

vA(t) := E
[∑M1

k=1 Zk(A)−
∑t

k=1 Zk(A);M1 > t
]

= E
[∑M1

k=t+1 Zk(A);M1 > t
]

with

|vA(t)| ≤ E [M1 − t;M1 > t]

Since E exp(ε1M1) < ∞, then there exists some ε2 ∈ (0, ε1] such that EM1 exp(ε2M1) ≤
∞, and therefore

|vA(t)| ≤ E [M1;M1 ≥ t] ≤ E[M1 exp(ε2M1);M1 ≥ t]

exp(ε2t)

≤ E[M1 exp(ε2M1)]

exp(ε2t)
= O(exp(−ε2t)) .

An application of Theorem 2.1 on Page 196 in [3] yields for some ε ∈ (0, ε2]:

eA(t) =

∑
k≥0 vA(k)

EM1

+ O(exp(−εt)), t ↑ ∞

uniformly in A. In other words,

sup
A
|eA(t)| ≤

∑
k≥0 supA |vA(k)|

EM
+ O(exp(−εt)), t ↑ ∞

Simplifying the upper bound
∑

k≥0 supA |vA(k)| ≤
∑

k≥0 E[M1 − k;M1 > k] =
EM2

1 +EM1

2

yields the desired result.
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Lemma A.1.2 (Time-average bound on total variation distance). LetX1 ∼
ν and R be a N-valued random variable that is not necessarily independent of X1.

Denoting κj(· | ·) as the j-th step Markov transition kernel on X ⊆ Rd and suppose

that E[κj(· |X1)] exhibits a density fj(·) with respect to the Lebesgue measure

on Rd for all j = 0, 1, 2, . . ., where we define E[κ0(· |X1)] = ν. If κj(· | ·) has an

invariant probability density π with respect to the Lebesgue measure, then for any

positive integer t,

‖E[κt+R(· |X1)]− π‖TV ≤ ‖E[ 1
t+R

∑t+R
j=1 κj(· |X1)]− π‖TV,

where by Tonelli’s theorem

E[κt+R(· |X1)] =
∑∞

r=0 P[R = r]E[κt+r(· |X1)]

and

E[ 1
t+R

∑t+R
j=1 κj(· |X1)] =

∑∞
r=0 P[R = r]× 1

t+r

∑t+r
j=1 E[κj(· |X1)].

Proof. The idea of the proof is to construct a coupling algorithm between a state sampled

from the history and the last state of the Markov chain.

We first note that for any measurable set A,

n∑
r=0

P[R = r]E[κt+r(A |X1)] and
n∑
r=0

P[R = r]× 1

t+ r

t+r∑
j=1

E[κj(A |X1)]

are bounded above by 1, non-decreasing in n, and exhibit densities with respect to the

Lebesgue measure. So by Vitali-Hahn-Saks theorem, E[κt+R(· |X1)] and E[ 1
t+R

∑t+R
j=1 κj(· |X1)]

are well-defined probability measures on X . Moreover, their densities with respect to the

Lebesgue measure are

∞∑
r=0

P[R = r]ft+r(·) and
∞∑
r=0

P[R = r]× 1

t+ r

t+r∑
j=1

fj(·).

Next, let

vs(·) =
P[R = s]× 1

t+s

∑t+s
j=1 fj(·)∑∞

r=0 P[R = r]× 1
t+r

∑t+r
j=1 fj(·)

, for s = 0, 1, 2, . . . ,

and

w
(s)
k (·) =

1
t+s
fk(·)

1
t+s

∑t+s
j=1 fj(·)

.
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Further, let Z ∼ E[ 1
t+R

∑t+R
j=1 κj(· |X1)] and Y ∼ π are maximally coupled so that

P[Z 6= Y ] = ‖E[ 1
t+R

∑t+R
j=1 κj(· |X1)]− π‖TV.

Suppose that the coupled pair (Z̃, Ỹ ) are sampled according to the following algorithm.

Algorithm 8 : Simulating (Z̃, Ỹ )

Require: (Z,Y ), vr(·), w(r)
j (·), and κj(· | ·) for j, r = 0, 1, 2, . . ..

Compute vr ← vr(Z) for r = 0, 1, 2, . . ..

Simulate ρ ∈ {0, 1, 2, . . .} with P[ρ = r] = vr.

Compute wj = w
(r)
j (Z)

Simulate τ ∈ {1, . . . , t+ ρ} with P[τ = j] = wj.

Simulate Z̃ ∼ κt+ρ−τ (· |Z).

if Z = Y , then

Set Ỹ ← Z̃

else

Simulate Ỹ ∼ κ(· |Y ).

return (Z̃, Ỹ ).

Notice that marginally the unconditional probability law of Z̃ is

∫ ∞∑
r=0

t+r∑
k=1

w
(r)
k vr(z)κt+r−k(· |z)× E

1

t+R

t+R∑
j=1

fj(z) dz

=
∞∑
r=0

P[R = r]× 1

t+ r

t+r∑
k=1

∫
κt+r−k(· |z)fk(z) dz

=
∞∑
r=0

P[R = r]ft+r(·).

In other words Z̃ ∼ Eκt+R(· |X1). It is also clear that Ỹ ∼ π(·). Finally, we have that

P[Z̃ = Ỹ ] = P[Z̃ = Ỹ ,Z = Y ] + P[Z̃ = Ỹ ,Z 6= Y ]

= P[Z = Y ] + P[Z̃ = Ỹ ,Z 6= Y ]

≥ P[Z = Y ]

so that

P[Z̃ 6= Ỹ ] ≤ ‖E[ 1
t+R

∑t+R
j=1 κj(· |X1)]− π‖TV.
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However, the pair (Z̃, Ỹ ) is not necessarily maximally coupled so that by the coupling

inequality, we have

‖E[κt+R(· |X1)]− π‖TV ≤ ‖E[ 1
t+R

∑t+R
j=1 κj(· |X1)]− π‖TV.

With the two lemmas, we can now proceed to the proof of the theorem. Let Qt[A] be

the distribution of a stateX picked at random from the Markov chain states: X1, . . . ,X t.

In other words,

Qt[A] :=
1

t

t∑
k=1

E[κk(A |X1)],

where E[κk(A |X1)] = P[Xk ∈ A] for all k ≥ 0. By assumption, the Markov chain is

geometrically ergodic, that is, the distribution of the length M of a regenerative cycle of

the chain is light-tailed. In other words, E exp(ε1M) < ∞ for some ε1 > 0. The process

X1,X1, . . . is also a zero-delayed regenerative process, because by assumption the initial

X1 commences a new cycle. Therefore, the conditions of Lemma A.1.1 (see above) are

satisfied and we have:

‖Qt − π‖TV ≤
EM2 + EM

2tEM
+ O(exp(−εt)) (A.1)

for some ε ∈ (0, ε1]. In addition, as a special case of Lemma A.1.2, if P[R = 0] = 1, the

lemma reduces to saying that the distribution of the final state of the Markov chain, X t,

is closer to π than a state picked at random from the history of the chain up until time

t: X1, . . . ,X t. In other words,

‖E[κt(· |X1)]− π‖TV ≤ ‖Qt − π‖TV . (A.2)

The result of the theorem then follows by combining (A.1)+(A.2).

A.2 Proof of theorem 5.2.2

Again, suppose X1,X1, . . . is a zero-delayed discrete regenerative process with regen-

eration times 0 = T0 < T1 < T2 < · · · , where Tn = M1 + · · · + Mn, and stationary

distribution Q. Let Qt be the distribution of a state drawn at random from the whole

history of the chain up until time TN(t), that is, drawn at random from X1, . . . ,XTN(t)
.

Again let Hr(A) =
∑Tr

k=Tr−1
I{Xk ∈ A} for some A ∈ A so that Wald’s identity and

renewal theorem together imply

EZr(A) := E(Hr(A)−MrQ(A)) = 0.
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In this way, we can write

Qt(A)−Q(A) = E
∑N(t)

r=1 Hr(A)−MrQ(A)

TN(t)

= E
∑N(t)

r=1 Zr(A)

TN(t)

= E
1
t

∑N(t)
r=1 Zr(A)

1 +R(t)/t

= E

(
1
t

∑N(t)
r=1 Zr(A)

1 +R(t)/t
−
∑N(t)

r=1 Zr(A)

t

)

=
1

t
E
−R(t)

1 +R(t)/t
Z̄t(A).

Where we have defined Z̄t(A) = 1
t

∑N(t)
k=1 Zk(A) and have used the fact that E

∑N(t)
r=1 Zr(A) =

E[N(t)]EZr(A) = 0 in the second last line. Then, using the fact that 1
1+R(t)/t

≤ 1, we

obtain the uniform bound

|Qt(A)−Q(A)| = 1

t

∣∣∣∣E −R(t)

1 +R(t)/t
Z̄t(A)

∣∣∣∣
≤ 1

t

∣∣R(t)Z̄ − t(A)
∣∣

≤
√

ER2(t)EZ̄2
t (A)

t

=

√
ER2(t)

t

√
E[N(t)]EZ2(A)/t2

≤
√

E[R2(t)]

t3/2

√
m2

m1

(1 + ER(t)/t),

where the third last line uses Wald’s identity and the last line uses the relation ER(t) =

m1E[N(t)] − t and Z2(A) < M2. Finally, applying Lorden’s inequality [78] gives the

desired result.

A.3 Proof of theorem 5.2.3

Note that if mp+5 <∞ for some p ≥ 0, then we have [47]

ER(t) = r + o(1/tp+3)
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where r := m2+m1

2m1
. Since 0 ≤ 1

1+x
− 1 + x ≤ x2 for x ≥ 0, we have the error bound:

∣∣Qt(A)−Q(A)
∣∣ =

∣∣∣∣E( 1

1 +R(t)/t
− 1

)
Z̄t(A)

∣∣∣∣
≤ |ER(t)Z̄t(A)|

t
+

∣∣∣∣E( 1

1 +R(t)/t
− 1 +

R(t)

t

)
Z̄t(A)

∣∣∣∣
≤ ER(t)Z̄t(A)

t
+

ER2(t)|Z̄t(A)|
t2

≤ |ER(t)
∑N(t)

r=1 Zr(A)|
t2

+

√
E[R4(t)]E[Z̄2

t (A)]

t2
.

Since geometric ergodicity ensures m5 < ∞, we apply Lordern’s inequality [78] which

gives us

E[R4(t)] ≤ 6

5

m5

m1

,

and

E[Z̄2
t (A)] =

E[N(t)]

t2
E[Z2

1(A)] ≤ (1 + [R(t)]/t)m2/t ≤ (1 +m2/(m1t))m2/t.

So we bound √
E[R4(t)]E[Z̄2

t (A)] ≤
√

(6/5)(m1 +m2/t)m2m5

m1t1/2
.

For the first term, we verify that eA(t) := ER(t)
∑N(t)

r=1 Zr(A) < ∞ satisfies the renewal

equation eA(t) = (u ∗ vA)(t) with vA(t) := E[R(t)Z1(A)] = E[(R(t) − r)Z1(A)], see [5,

Page 25]. We have

|vA(t)| = |E[(R(t)− r)Z1(A);M1 > t] + E[(R(t)− r)Z1(A);M1 ≤ t]|

≤ E[|M1 − r|M1;M1 > t] + E[|r(t−M1)− r|M1;M1 ≤ t]

For the first term, we otain:

E[|M1 − r|M1;M1 > t] = O(E[Mp+5
1 ;M1 > t]/tp+3) = o(1/tp+3).

For the second term,

E[|r(t−M1)− r|M1;M1 ≤ t] ≤ E[|r(t−M1)− r|M1;M1 ≤ t/2] + E[|r(t−M1)− r|M1;M1 ≥ t/2]

≤ sup
s>t/2

|r(s)− r|EM1 + sup
s<t/2

|r(s)− r|E[M1;M > t/2]

= o(1/tp+3) + o(1/tp+4).
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Hence, we have the convergence uniformly in A:

eA(t) =
E(M1 − 1− 2r)M1Z1(A)

2m1

+ o(1/pp+2)

≤ E|M1 − 1− 2r|M2
1

2m1

+ o(1/tp+2).

Putting it all together, we obtain

δreg-seq
t ≤ sup

A
|Qt −Q(A)| ≤ E|M1 − 1− 2r|M2

1

2m1t2
+

√
(6/5)(m1 +m2/t)m2m5

m1t3/2
+ o(1/tp+4)

where the exponential convergence comes from the fact that mp <∞ for all p > 0.

A.4 Proof of Theorem 5.2.4

Recall that X0,X1, . . . is a zero-delayed discrete regenerative process with first regener-

ative time T1 = T0 + M1 = 0 + M1. Define the function gA(t) = P[X t ∈ A|M1 > t] and

note that P[X t ∈ A] satisfies the renewal equation:

P[X t ∈ A] =
∑
k>t

P[X t ∈ A,M1 = k] +
t∑

k=1

P[X t ∈ A,M1 = k]

= P[X t ∈ A,M1 > t] +
t∑

k=1

P[X t ∈ A|M1 = k]P[M1 = k]

= gA(t)P[M1 > t] +
t∑

k=1

P[X t−k ∈ A]P[M1 = k] .

By a similar argument, EgA(E(t)) also satisfies the renewal equation:

EgA(E(t)) = gA(t)P[M1 > t] +
t∑

k=1

EgA(E(t− k))P[M1 = k] .

Note that the term gA(t)P[M1 > t] is common to both renewal equations. Since this

term is continuous and bounded from above by the directly-Riemann-integrable function

P[M1 > t], the key renewal theorem (see [3, Proposition 1.3, Page 170]) implies that the

two renewal equations above have the same unique solution. Hence,

P[X t ∈ A] = EgA(E(t)) .
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Using this identity, we have (E(∞) is a stationary version of E(t)):

sup
A
|P[X t ∈ A]−Q[A]| = sup

A
|EgA(E(t))− EgA(E(∞))|

≤ sup
g:‖g‖∞≤1

|Eg(E(t))− Eg(E(∞))|

≤ 2 sup
A
|P[E(t) ∈ A]− P[E(∞) ∈ A]| ,

where the supremum in the second last line is over all bounded functions g with ‖g‖∞ ≤ 1.

The last line shows that the convergence rate of E(t) determines the convergence rate of

the Markov chain {X t, t ≥ 0}.

A.5 Proof of Theorem 5.2.5

Define R(t) := TN(t) − t (the remaining lifetime) and note that 1
1+R(t)/t

≤ 1 for all t ≥ 0.

In addition, we have Theorem 4.2.6: ER(t) ≤ m2

m1
, which can be rewritten as (ETN(t) =

m1EN(t))

m1EN(t) ≤ t+
m2

m1

.

To proceed, write

q̂TN(t)
− q =

∑N(t)
k=1 Hk −Mkq

TN(t)

= E
∑N(t)

k=1 Zk
TN(t)

= E
1
t

∑N(t)
k=1 Zk

1 +R(t)/t
.

Then, using the second part of Theorem 4.2.5, E(
∑N(t)

k=1 Zk)
2 = EN(t)EZ2

1 , we obtain

E(q̂TN(t)
− q)2 =

1

t2
E

[
(
∑N(t)

k=1 Zk)
2

(1 +R(t)/t)2

]

≤ 1

t2
E

N(t)∑
k=1

Zk

2

=
EN(t)EZ2

1

t2

≤ EZ2
1

(
1

tm1

+
m2

t2m2
1

)
.
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A.6 Background: Gibbs sampler for the Bayesian Lasso

The first key insight in [91] is that a Laplace(0, 1/λ) density is in fact a Gaussian-scale

mixture [2]. In particular, for each βj, j ∈ {1, . . . , p}, we have the identity,

λ

2
√
σ2

exp

(
− λ√

σ2
|βj|
)

=

∫ ∞
0

1√
2πsj

exp

(
−
β2
j

2sj

)
× λ2

2σ2
exp

(
− λ2

2σ2
sj

)
dsj.

It follows form the change of variable τj = σ2/sj,

λ

2
√
σ2

exp

(
− λ√

σ2
|βj|
)

=

∫ ∞
0

λ2

2
√

2πσ2
exp

(
−
β2
j τj

2σ2

)
exp

(
− λ

2

2τj

)
τ
−3/2
j dτj. (A.3)

Hence if one considers sampling the triplet (β, σ2, τ ) ∈ Rp × R+ × Rp
+ from the joint

density

π(β, σ2, τ |λ) =
(σ2)−n/2−1 exp

(
− 1

2σ2‖y − Xβ‖2
2

)∏p
j=1

λ2

2
√

2σ2
exp

(
−β2

j τj

2σ2

)
exp

(
− λ2

2τj

)
τ
−3/2
j

`(λ)
,

(A.4)

the marginal samples (β, σ2), from samples of the triplet (β, σ2, τ ), have the same distri-

bution as (5.5). This is because (A.3) implies
∫
Rp+
π(β, , σ2, τ |λ) dτ = π(β, σ2|λ).

The form of (A.4) suggests a natural (block) Gibbs sampler that cycles between the

full conditional distributions π(β |σ2, τ , λ), π(σ2| |β, τ , λ) and π(τ |β, σ2, λ). The second

key insight in [91] is that π(τ |β, σ2, λ) takes the product form

π(τ |β, λ, σ2) ∝
p∏
j=1

exp

(
−
β2
j τj

2σ2

)
exp

(
− λ

2

2τj

)
τ
−3/2
j .

This means each τj are conditionally independent. Moreover, the conditional distribution

of τj is Wald(λ′, µ′j) where λ′ = λ2 and µ′j =
√
σ2λ/|βj| (see, for example, [19]). Finally,

it is not hard to show that

π(β | τ , λ, σ2) ∝ exp

(
− 1

2σ2

(
β − AX>y

)>
A−1

(
β − AX>y

)>)
,

where A−1 = X>X + diag(τ ) is a symmetric invertible matrix, and

π(σ2 |β, τ, λ) ∝ (σ2)−n/2−p/2−1 exp

(
− 1

2σ2

(
‖y − Xβ‖2

2 + β>diag(τ )β
))

.

This means, β conditional on (σ2, τ , λ), is a p-dimensional Gaussian random variable

with the mean vector AX>y and the covariance matrix σ2A while the full conditional
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distribution of σ2 is InvGamma(a′, b′) where the shape parameter a′ = n/2 + p/2 and the

scale parameter b′ = ‖y − Xβ‖2
2/2 + β>diag(τ )β/2.

The shrinkage parameter can be chosen by maximizing the marginal likelihood `(λ).

This approach is known as the ‘empirical Bayes’, and this optimization program can be

approximately solved using the EM algorithm in [15, Page 686, Appendix C].

A.7 Proof of Lemma 5.4.1

The full conditional distributions for the Bayesian Lasso posterior are π(β|σ2, τ ) =

N(AX>y, σ2A) where A−1 = X>X+diag(τ ), π(τj |β, σ2) = Wald(λ2, σλ/|βj|), and π(σ |β, τ ) =

InvGamma((n− 1)/2 + p/2, b(β, τ )/2) where b(β, τ) = ‖y − Xβ‖2
2 + β>diag(τ )β.

Consider a block Gibbs sampler with transition density: (denote σ2 by ξ)

κ(β∗, ξ∗, τ ∗ |β, ξ, τ ) = π(ξ∗ |β, τ )π(β∗|ξ∗, τ )π(τ∗ |β∗, ξ∗).

We proceed with the usual calculation (see [86, 99]) for establishing a minorization con-

dition for this transition density. We begin by observing that

κ(β∗, ξ∗, τ ∗ |β, ξ, τ ) =
π(ξ∗ |β, τ )π(β∗|ξ∗, τ )

π(ξ∗|β̃, τ̃ )π(β∗|ξ∗, τ̃ )
κ(β∗, ξ∗, τ ∗|β̃, ξ̃, τ̃ ).

Choosing ν(β∗, ξ∗, τ ∗) ∝ κ(β∗, ξ∗, τ ∗|β̃, ξ̃, τ̃ ) on D = Rp × [l, u] × [c,d], a subset of

Rp × R+ × Rp
+, where (β̃, ξ̃, τ̃ ) are fixed, it remains for us to find a function s such that

π(ξ∗ |β, τ )π(β∗|ξ∗, τ )

π(ξ∗|β̃, τ̃ )π(β∗|ξ∗, τ̃ )
≥ s(β, ξ, τ )

whenever τ 2
∗,j ∈ [c2

j , d
2
j ] for all j and ξ ∈ [l, u]. Denoting w = X>y and µτ = AτX>y, we

have

π(ξ∗ |β, τ )π(β∗|ξ∗, τ )

π(ξ∗|β̃, τ̃ )π(β∗|ξ∗, τ̃ )
=

(
b(β, τ )

b(β̃, τ̃ )

)a
exp

(
−

1

2ξ∗

(
‖y −Xβ‖22 − ‖y −Xβ̃‖22 + β>diag(τ )β − β̃>diag(τ̃ )β̃

))
×

(
det(Aτ̃ )

det(Aτ )

)n/2
exp

(
−

(β2
∗ − µτ )>A−1

τ (β2
∗ − µτ )

2ξ∗
+

(β2
∗ − µτ̃ )>A−1

τ̃ (β2
∗ − µτ̃ )

2ξ∗

)

≥
(
b(β, τ )

b(β̃, τ̃ )

)a
exp

(
−

1

2ξ∗

(
‖y −Xβ‖22 − ‖y −Xβ̃‖22 + β>diag(τ )β − β̃>diag(τ̃ )β̃

))
×

(
det(Aτ̃ )

det(Aτ )

)n/2
exp

 1

2ξ∗

∑
j∈J

c2j (τ̃j − τj) +
∑
j /∈J

d2
j (τ̃j − τj) +w>(Aτ̃ −Aτ )w


≥
(
b(β, τ )

b(β̃, τ̃ )

)a (
det(Aτ̃ )

det(Aτ )

)n/2
exp

(
Υ(β, τ ; c,d)+

2u
+

Υ(β, τ ; c,d)−

2l

)
,

where

Υ(β,τ ;c,d)=‖y−Xβ̃‖22−‖y−Xβ‖22+β̃
>diag(τ̃ )β̃−β>diag(τ )β+

∑
j∈J c2j (τ̃j−τj)+

∑
j /∈J d2

j (τ̃j−τj)+w>(Aτ̃−Aτ )w,
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J {j : τ̃j − τj ≥ 0}, and {·}+ = max{0, ·}, and {·}− = min{0, ·}. It follows that, ϑ := sν
κ

,

the probability of regeneration takes the following expression for (β∗, ξ∗, τ ∗) ∈ D .

ϑ(β∗, ξ∗, τ ∗ |β, ξ, τ ) = exp

(
Υ(β, τ ; c,d)+

2u
+

Υ(β, τ ; c,d)−
2l

− Υ(β, τ ;β∗,β∗)

2ξ∗

)
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[52] Enkelejd Hashorva and Jürg Hüsler. On multivariate gaussian tails. Annals of the

Institute of Statistical Mathematics, 55(3):507–522, 2003.

[53] W Keith Hastings. Monte Carlo sampling methods using markov chains and their

applications. Biometrika, 75:97–109, 1970.

[54] Urban Hjorth and Anna Vadeby. Subsample distribution distance and mcmc con-

vergence. Scandinavian journal of statistics, 32(2):313–326, 2005.

[55] Hsiu J Ho, Tsung-I Lin, Hsuan-Yu Chen, and Wan-Lun Wang. Some results on the

truncated multivariate t distribution. Journal of Statistical Planning and Inference,

142(1):25–40, 2012.

[56] James P Hobert and Christian P Robert. A mixture representation of π with

applications in markov chain monte carlo and perfect sampling. The Annals of

Applied Probability, 14(3):1295–1305, 2004.

[57] James P Hobert, Galin L Jones, Brett Presnell, and Jeffrey S Rosenthal. On the

applicability of regenerative simulation in Markov chain Monte Carlo. Biometrika,

89(4):731–743, 2002.

115



[58] Yosef Hochberg and Ajit C Tamhane. Multiple comparison procedures. John Wiley

& Sons, Inc., 1987.

[59] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for

nonorthogonal problems. Technometric, 12(1):55–67, 1970.

[60] Peter J Huber et al. The behavior of maximum likelihood estimates under nonstan-

dard conditions. In Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability, volume 1, pages 221–233. University of California Press,

1967.

[61] Søren Fiig Jarner and Ernst Hansen. Geometric ergodicity of Metropolis algorithms.

Stochastic processes and their applications, 85(2):341–361, 2000.

[62] Harold Jeffreys. An invariant form for the prior probability in estimation problems.

Proceedings of the Royal Society of London. Series A. Mathematical and Physical

Sciences, 186(1007):453–461, 1946.

[63] Valen E Johnson. A coupling-regeneration scheme for diagnosing convergence in

Markov chain Monte Carlo algorithms. Journal of the American Statistical Associ-

ation, 93(441):238–248, 1998.

[64] Galin L Jones and James P Hobert. Honest exploration of intractable probability

distributions via Markov chain Monte Carlo. Statistical Science, pages 312–334,

2001.

[65] Galin L Jones, Murali Haran, Brian S Caffo, and Ronald Neath. Fixed-width out-

put analysis for Markov chain Monte Carlo. Journal of the American Statistical

Association, 101(476):1537–1547, 2006.

[66] Galin L Jones et al. On the Markov chain central limit theorem. Probability surveys,

1:299–320, 2004.

[67] Kshitij Khare and James P Hobert. Geometric ergodicity of the Gibbs sampler for

Bayesian quantile regression. Journal of Multivariate Analysis, 112:108–116, 2012.

[68] Kshitij Khare, James P Hobert, et al. Geometric ergodicity of the Bayesian lasso.

Electronic Journal of Statistics, 7:2150–2163, 2013.

[69] John P Klein and Melvin L Moeschberger. Survival Analysis: Techniques for Cen-

sored and Truncated Data. Springer Science, 2003.

[70] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo methods. John

Wiley & Sons, New York, 2011.
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