
Verification of programs in virtual memory using separation
logic

Author:
Kolanski, Rafal Michal

Publication Date:
2011

DOI:
https://doi.org/10.26190/unsworks/23844

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/51288 in https://
unsworks.unsw.edu.au on 2024-04-28

http://dx.doi.org/https://doi.org/10.26190/unsworks/23844
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/51288
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Verification of Programs in
Virtual Memory Using

Separation Logic
Rafal Kolanski

Ph.D.

2011

ii

iii

Originality Statement

‘I hereby declare that this submission is my own work
and to the best of my knowledge it contains no materials
previously published or written by another person, or sub-
stantial proportions of material which have been accepted
for the award of any other degree or diploma at UNSW
or any other educational institution, except where due ac-
knowledgement is made in the thesis. Any contribution
made to the research by others, with whom I have worked
at UNSW or elsewhere, is explicitly acknowledged in the
thesis. I also declare that the intellectual content of this
thesis is the product of my own work, except to the extent
that assistance from others in the project’s design and con-
ception or in style, presentation, and linguistic expression
is acknowledged.’

Signed .

Date .

iv

v

Copyright Statement

‘I hereby grant the University of New South Wales or its
agents the right to archive and to make available my thesis
or dissertation in whole or part in the University libraries
in all forms of media, now or here after known, subject
to the provisions of the Copyright Act 1968. I retain all
proprietary rights, such as patent rights. I also retain the
right to use in future works (such as articles or books) all or
part of this thesis or dissertation. I also authorise Univer-
sity Microfilms to use the 350 word abstract of my thesis
in Dissertation Abstract International (this is applicable to
doctoral theses only). I have either used no substantial por-
tions of copyright material in my thesis or I have obtained
permission to use copyright material; where permission
has not been granted I have applied/will apply for a partial
restriction of the digital copy of my thesis or dissertation.’

Signed .

Date .

Authenticity Statement

‘I certify that the Library deposit digital copy is a direct
equivalent of the final officially approved version of my
thesis. No emendation of content has occurred and if there
are any minor variations in formatting, they are the result
of the conversion to digital format.’

Signed .

Date .

vi

Abstract

Formal reasoning about programs executing in virtual memory is a difficult problem,
as it is an environment in which writing to memory can change its layout. At the
same time, correctly reasoning about virtual memory is essential to operating system
verification, a field we are very much interested in. Current approaches rely on
entering special modes or making high-level assertions about the nature of virtual
memory which may or may not be correct.

In this thesis, we examine the problems created by virtual memory and develop
a unified view of memory, both physical and virtual, based on separation logic. We
first develop this model for a simple programming language on a simplified archi-
tecture with a one-level page table, taking care to prove it constitutes a separation
logic. We then extend the framework to deal with low-level C programs executing
in a virtual memory environment of the ARMv6 architecture with a two-level page
table. We perform two case studies involving mapping in of a new page into the
current address space: first for the simple version of our logic, and finally for our
full framework. The case studies demonstrate that separation logic style modular
reasoning via the frame rule can be used in a unified model which encompasses
virtual memory, even in the presence of page table writes.

To our knowledge, we present the first model offering a unified view of virtual
and physical memory, the first separation logic involving an address translation
mechanism, as well as the first published model of a functional subset of ARM
memory management unit. Our memory models, framework, proofs and all results
are formalised in the Isabelle/HOL interactive theorem prover.

viii

Acknowledgements

First and foremost, I wish to thank my supervisor, Gerwin Klein, for his continued
advice, encouragement and support over the years. His friendly nature, Zen-like
calmness and amazing work ethic have been a source of inspiration to me, and this
work definitely could not have happened without him.

I would also like to thank the ERTOS and L4.verified teams at NICTA for the
best work atmosphere one could wish for and all the good advice. In particular,
I wish to thank June Andronick for her heroic efforts of proofreading this thesis,
Thomas Sewell for always being willing to assist me in pushing the Isabelle theorem
prover to the cutting edge, Michael Norrish for developing and assisting with the C
parser I use in this thesis, and of course Harvey Tuch, from whose initial ideas about
separation logic and C semantics sprouted my then far-fetched idea of marrying
separation logic and virtual memory.

I also thank my parents for their continued support and patience during all the
years of my thesis, as well as the years leading up to it.

Finally, I wish to say a thank you to my first Hapkido teacher, Master Scott
Wetherell. While he had no direct involvement in this thesis, his strength and
confidence contributed significantly to my being the person I am today. I hope that
through me, part of his legacy lives on. May he rest in peace.

x

Contents

1 Introduction 1
1.1 Overview . 1

1.1.1 Theorem Proving and Isabelle/HOL 1
1.1.2 Operating Systems . 2
1.1.3 Virtual Memory . 3
1.1.4 Separation Logic . 3

1.2 Contributions . 3
1.3 Related Work . 4

1.3.1 Separation Logic . 4
1.3.2 Operating System Verification 5
1.3.3 Low-level Verification . 6

1.4 Layout of the Rest of the Document 8

2 Notation 9
2.1 Isabelle . 9
2.2 HOL . 9
2.3 Special Notation in This Work . 13

3 Virtual Memory 15
3.1 Importance of Virtual Memory . 15
3.2 Virtual Memory Overview . 16

3.2.1 Page Tables . 17
3.2.2 Multi-level Page Tables . 19
3.2.3 Translation Lookaside Buffer 21
3.2.4 Caching . 21
3.2.5 Devices . 23

3.3 Overview of ARMv6 Address Translation 24
3.4 Overview of Other Page Table Mechanisms 26

3.4.1 Software-loaded TLB . 26
3.4.2 Virtualised Page Table . 27
3.4.3 Guarded Page Table . 27
3.4.4 Inverted Page Table . 28

3.5 Summary . 30

4 Separation Logic 31
4.1 An Informal Introduction to Separation Logic 31

4.1.1 The Factory . 31
4.1.2 Pointer Aliasing . 33

xii CONTENTS

4.1.3 Local Reasoning and Memory Safety 36
4.2 Requirements of Being a Separation Logic 38
4.3 Summary . 40

5 Mapped Separation Logic 41
5.1 Machine Architecture . 41

5.1.1 Pointers, Addresses and Values 41
5.1.2 Memory . 42
5.1.3 A Page Table . 42

5.2 Separation Logic Assertions on Virtual Memory 43
5.2.1 The Problem . 44
5.2.2 Slices and the Fractional Heap 44
5.2.3 Assertions . 47

5.3 The Logic . 48
5.4 Case Study . 53
5.5 Conclusion . 56

6 Typed Mapped Separation Logic 57
6.1 Architecture Setup . 58

6.1.1 Pointers and Addresses . 58
6.2 Page Tables . 59

6.2.1 A Page Table Abstraction . 59
6.2.2 ARMv6 Page Table Formalisation 61

6.3 Storage of Values in Memory . 66
6.3.1 The Class of Memory-Storable Types 67
6.3.2 Loading Memory-Storable Types 68
6.3.3 Memory-Storable Words . 69
6.3.4 Memory-Storable Structures without Padding 70
6.3.5 Memory-Storable Arrays . 72

6.4 Separation Logic Constructs at the Byte Level 73
6.4.1 The Fractional Heap and Memory Views 73
6.4.2 Maps-to Predicates . 75

6.5 Type-level Separation Logic Maps-to Predicates 76
6.6 Slice Accounting and Read-only Maps-to Predicates 77
6.7 Interface to the C Programming Language 78

6.7.1 Loading Values from the Fractional Heap 79
6.7.2 Updating the Fractional Heap 80
6.7.3 Reading and Updating Memory from C 81
6.7.4 A Simple Example: Swapping the Contents of Two Pointers 83

6.8 Case Study . 85
6.8.1 The Code . 85
6.8.2 The Code as Seen by Isabelle 87
6.8.3 Proof Stage 1: The Function as a Heap Update 88
6.8.4 Proof Stage 2: A Heap that Contains a Mapping 90
6.8.5 Final Proof: A Function that Maps 92

CONTENTS xiii

7 Discussion and Conclusion 95
7.1 Summary . 95
7.2 Discussion . 95
7.3 Future Work . 98

7.3.1 Translation Lookaside Buffer 98
7.3.2 Caching . 99
7.3.3 Devices and IOMMUs . 99
7.3.4 Reasoning About Multiple Page Tables at Once 100
7.3.5 Larger Case Study . 100

7.4 Concluding Remarks . 101

xiv CONTENTS

List of Figures

3.1 A 32-bit virtual address on an architecture with 4KB page sizes. . . 18
3.2 A lookup in a one-level page table on a 32-bit machine with a page

size of 4KB. 18
3.3 A lookup in a two-level page table on a 32-bit machine with a 4KB

page size with a 10-10 split on the page number. 19
3.4 A lookup in a multi-level page table. Intermediate levels not to scale. 20
3.5 A lookup in a two-level page table completing early due to a “don’t

look further” flag in the first-level table, resolving to a superpage. . 20
3.6 Involvement of the Translation Lookaside Buffer (TLB) in the virtual

memory resolution process. If the page number is in the TLB, the
base address in the matching TLB entry is used. Otherwise, the page
table is consulted. 21

3.7 Mapping memory addresses to cache lines for a 4-line cache with
4-byte lines, in the case of 1-way associativity (direct-mapped) and
2-way associativity. 22

3.8 Page table lookup for a 4KB small page on ARMv6 24
3.9 Page table lookup for a 1MB section on ARMv6 24
3.10 The usage of bits in looking up a virtual address and resolving it to a

physical one in ARMv6. 25
3.11 A virtual address lookup in the page directory resolving to a super-

page. Note that bits [31:20] are used as an index into the PDE, but
only bits [31:24] of the PDE are used as the base address of the super-
page. This requires 16 identical PDEs in the page directory. The offset
within the superpage comes from virtual address bits [23:0]. A base
of 0xF4 indicates the 16MB superpage at physical address 0xF4000000. 26

3.12 A lookup in a guarded multi-level page table with a guard match at
level 2 resulting in a skip to level n. 27

3.13 Looking up 0x123456000 in a guarded page table via a PTE requesting
10 guard bits equal to 0x56. 28

3.14 A lookup in an inverted page table. A hashing function is applied
to the page number of the virtual address and resolves to an index
via an index table. After resolving a collision chain of length one the
lookup successfully finds a table entry whose index forms the base
physical address. Process identifiers omitted. 29

3.15 A lookup in an hashed page table (HPT). Functionality is almost
identical to the IPT it is based on, though there is no intermediate
table of indices. 29

xvi LIST OF FIGURES

4.1 Empty factory floor; factory components 32
4.2 A working production unit for painting objects red. 32
4.3 Factory operational semantics for the naïve model. 33
4.4 Two production units pointed to by p and q. 34
4.5 Separating conjunction . 35
4.6 Basic maps-to predicate of separation logic. 36
4.7 Updated assignment rule. 37
4.8 The frame rule. 37

5.1 Maps-to assertions on the heap, virtual map and address space. . . 44
5.2 The concept of two virtual-to-value mappings being separate in our

framework despite being mapped through the same page table entry
by virtue of using separate slices of the page table entry (the contested
region in the middle). 46

5.3 Syntax of the heap based WHILE language. 49
5.4 Semantics of arithmetic and boolean expressions. 50
5.5 Big-step semantics of commands. 51
5.6 The proof rules for Mapped Separation Logic. 52
5.7 The page table interface. 53
5.8 A simple page table manipulating program. 54
5.9 Specification of the program in Figure 5.8. 54
5.10 The page_mapped predicate and associated definitions; page_mapped indi-

cates that a page at a given virtual address is fully accessible. 55

6.1 Abstract page table interface. 60
6.2 Page table lookup for a 4KB small page on ARMv6 63
6.3 Page table lookup for a 1MB section on ARMv6 64
6.4 Memory-storable type class mem_type axioms for a type ′a. 67
6.5 Addition and subtraction of offsets to pointers. “Raw” manipulation

has byte granularity. Manipulation of pointers to type ′t, where ′t is
memory-storable has size_of TYPE(′t). Sequences of pointers. 68

6.6 The memory-storable interface instantiated to words. 69
6.7 An example of a structure in C. 70
6.8 Address of structure field operator for the example_C structure (_&→_). 72
6.9 Instantiation of arrays to the memory-storable type for an element

type ′a and an index type ′b. 73
6.10 Basic constructs of mapped separation logic: separating conjunction,

the empty heap and universal True. 74
6.11 Non-fractional views of the fractional heap for physical memory as

well as a program’s address space (virtual memory). 74
6.12 Automatically generated variants of maps-to predicates, shown here

for the virtual-to-value maps-to predicate. 76
6.13 Type-level separation logic maps-to predicates. 77
6.14 Automatically generated variants of typed maps-to predicates, shown

here for the typed virtual-to-value maps-to predicate. 77
6.15 Physical byte-level and type-level mappings with precise slice control. 78
6.16 Read-only byte-level and type-level address space maps-to predicates. 79
6.17 Loading a memory-storable object from a fractional heap state given

a virtual or physical pointer. 79

LIST OF FIGURES xvii

6.18 Rules of byte-level updates to physical memory and virtual memory
addresses, as well as typed updates to pointers in virtual memory. . 81

6.19 The C pointer guard requiring alignment to the size of the pointed to
object, as well as the zero address not being present in the range of
addresses occupied by the object. 82

6.20 Exported C semantics of loading and storing a value. 82
6.21 The rules linking loading and storing of values in virtual memory

with the address spaces maps-to predicate. 82
6.22 A simple C function swapping the contents of two int pointers. . . 83
6.23 Definition produced by the C parser for the function in Figure 6.22 83
6.24 Specification and frame rule for program in Figure 6.22. 84
6.25 The seL4 type definitions used in our case study. 86
6.26 The seL4 page mapping function code used in our case study. . . . 87
6.27 Definition of performPageInvocationMapPTE from Figure 6.26 pro-

duced by the C parser. 87
6.28 Deriving an address space mapping from virtual and physical map-

pings. 88
6.29 The specification of performPageInvocationMapPTE in terms of heap

updates. 89
6.30 Loop invariant used in the proof of the specification in Figure 6.29. 90
6.31 The correspondence theorem between a page table entry (PTE) and

the page of virtual addresses it maps to physical ones. 91
6.32 The consequence rule of SIMPL. It allows strengthening the precondi-

tion and weakening the postcondition of an existing specification. . 92
6.33 Splitting a physical maps-to predicate into two read-only maps-to

predicates with complementary slice sets. 92
6.34 The specification of performPageInvocationMapPTE as a page table

mapping function. 93

7.1 Lines of code and proof script in the different components of our work. 96

xviii LIST OF FIGURES

Chapter 1

Introduction

When planes fall out of the sky or ships collide, it would be really nice to know
it was not a software problem. Mechanical parts wear out and fail, human pilots
and captains make mistakes, while weather is unpredictable and can be often
be dangerous and erratic. Software, on the other hand, does not wear out. It
follows a set of prescribed instructions precisely, never wavering even in the face of
overwhelming odds. As for weather, it can certainly interfere with the hardware
that software runs on, but we have not yet heard of any weather phenomenon which
interferes with software directly.

Software controls an ever-increasing amount of machines and devices around us.
As we become more dependent on it, it simultaneously becomes more important
that the software correctly implements the tasks it is meant to do. We can perform
tests, but it is intractable to cover all possible cases in this manner. If we desire a
higher level of assurance, we can create mathematical models of the software and
prove things about them. We thus enter the world of formal verification. The question
then becomes one of depth: the more in-depth the model, the higher our level of
assurance as to the correctness of the software implementation conforming to that
model, at the price of time required to verify it. A very simple model can be checked
on paper. A simple model can be given to another piece of software and checked
automatically, as is the case in model checking. More complex models require both
human and machine input into the checking process, and a significant investment
of time by both. If we go too deep, the high assurance may arrive after the software
is declared obsolete.

The goal of our work is to move the world of operating system verification one
step in the direction of realism, by providing a memory model which contains both
physical and virtual memory in the same framework, with a single view of memory.
We believe our fusion of virtual memory and separation logic constitutes such a
step.

1.1 Overview

1.1.1 Theorem Proving and Isabelle/HOL

First, we believe it is important to define what we mean by “verified” and “cor-
rectness”. A system cannot be verified in a vacuum, and there is no such thing as
correctness as an absolute concept. When we say that a system is verified, we mean

2 CHAPTER 1. INTRODUCTION

a proof of that the effects of a system correspond a particular specification. This
is known as functional correctness. Properties of systems can also be verified, by
which we mean a proof that a particular model of the system exhibits a particular
property.

In order to raise the confidence in our proofs beyond the level of paper and
pencil, humans have enlisted the use of machines, leading to machine-checked
proofs. There exist many frameworks, systems and procedures for providing such
proofs. Our weapon of choice is Isabelle/HOL [42].

The Isabelle theorem prover is an interactive theorem proving framework built
upon a minimal proof kernel. The kernel is based on LCF, or Logic for Computable
Functions [25]. These types of kernels follow the approach of a small core capable
of deriving and manipulating theorems, with all other functionality of the theorem
prover having to go through this core’s interface. The interface in turn is enforced
by the type system of a strongly-typed language. Isabelle uses Standard ML [40].
Both the size of the core, since it can be rigorously checked, and the strongly-typed
implementation result in a highly reliable proof system. If further reassurance is
needed, Isabelle can also export “proof terms” which can be checked by a different,
even simpler, theorem prover.

HOL, or Higher-Order Logic, extends first-order logic by introducing types and
the ability to quantify over functions. Isabelle/HOL is an instantiation of HOL in
Isabelle, along with a large body of structures and proofs about them, creating a rich
theorem proving environment.

Every theorem proving environment comes with its own notation and idioms.
We will cover those of Isabelle/HOL in Chapter 2.

1.1.2 Operating Systems

The operating system of a device is a software component which abstracts away
the direct hardware interface. It provides an alternative high-level interface, upon
which other software components can be executed. Operating systems on simple
devices may only provide this interface and task scheduling. Modern operating
systems running on more capable hardware must handle scheduling and execution
of multiple user programs at the same time, while preventing their unauthorised
access to hardware, protecting the operating system itself from corruption by user
programs, and also protect the user programs from each other. This includes man-
aging access to shared resources and inter-process communication. The operating
system kernel is the part of the system that runs in privileged mode with direct
hardware access. By setting up the hardware, the kernel constructs a restricted envi-
ronment in which client programs can run. We call this restricted environment user
mode. The boundary between user and kernel mode is enforced by the hardware.

The responsibilities of an operating system kernel and its direct access to hard-
ware make it a critical component of the system. If it is not reliable, all programs
running on the system may be unreliable. If it freezes, the entire system will be
unresponsive. No matter how efficient it is, an operating system’s usefulness is
limited if its kernel doesn’t reliably perform what it was designed to do.

It therefore makes sense to aim every weapon in our computer science arsenal at
increasing the reliability and security of operating system kernels: beyond testing,
beyond checking of simplified models and into the territory of proving something

1.2. CONTRIBUTIONS 3

about what an implementation actually does.

1.1.3 Virtual Memory

Virtual memory is a hardware-enforced abstraction providing running processes
with their own “view” of memory (RAM). It is used in most modern operating
systems capable of supporting multiple executing processes. All access attempts
to virtual memory are intercepted by translation hardware which either resolves
to a real memory access or to a violation reported to the operating system. The
translation hardware uses a translation table called a page table, stored in real
memory, meaning that writing to memory can change the layout of memory.

When used correctly, the virtual memory subsystem allows for process isolation,
dynamic allocation, sharing data between processes and controlling access rights
to memory regions. When used incorrectly, the system allows security leaks and
mysterious crashes in programs whose functioning might otherwise be considered
correct.

We will cover virtual memory in more depth in Chapter 3.

1.1.4 Separation Logic

Separation logic is an extension of Hoare Logic [28]. It was first presented by
Reynolds [48] as a method for reasoning about imperative programs dealing directly
with manipulation of memory. It focuses on local reasoning: separating out and
defining rigidly the region of memory involved in access operations. This allows
inferring the regions of memory which do not change, eliminating artifacts such as
pointer aliasing. We introduce it in more detail in Chapter 4.

1.2 Contributions

We claim the following technical contributions:

• A novel approach to modelling behaviour of programs executing in the pres-
ence of virtual memory, based on separation logic. We model virtual and
physical memory accesses in a single, unified view, without the need to enter
special “modes”. To our knowledge, we are the first to do this.

• Development of a separation logic which allows convenient, abstract reasoning
about both the virtual and physical layers of memory, supporting the frame
rule for arbitrary writes to memory (including the page table). The logic
includes a separating conjunction extending to virtually shared memory.

• An abstract framework which makes the core logic independent of the machine
architecture and page table implementation.

• An instantiation of our framework developed for demonstration purposes, us-
ing a simple machine architecture with a one-level page table, combined with
a simple, deeply embedded imperative programming language with arbitrary
pointer arithmetic. We prove this instantiation constitutes a separation logic
according to the requirements of Calcagno et al. [13], and demonstrate that it
can be applied in practice in a simple case study on page allocation.

4 CHAPTER 1. INTRODUCTION

• A formalisation of the page table subsystem on the ARMv6 architecture in
non-legacy mode. We omit some features such as domains, but model a
functionality subset sufficient to cover the usage patterns of the seL4 microker-
nel [31]. To our knowledge, this is the first formalisation of an ARM memory
management subsystem in a theorem prover or otherwise.

• Instantiating our framework to our model of the ARMv6 architecture and a
shallow embedding of the C programming language, made practically us-
able by connecting it with the verification framework based on Schirmer’s
SIMPL [49] used in the L4.verified project [31].

• A case study demonstrating modular reasoning about a C function which
modifies the page table, identifying its precise semantics as a function inserting
a new mapping into the page table. The function chosen is a small one from
the seL4 microkernel [31], but the concept demonstrated applies in general.

All results presented in this work are formalised in the Isabelle/HOL theo-
rem prover [42]. All definitions, datatypes and rules we present are output by
the Isabelle/HOL theorem prover, resulting in this document being an accurate
representation of our work.

1.3 Related Work

We gave a brief overview of the core topics relevant to our work in Section 1.1. Now
we will discuss the relevant work of others.

1.3.1 Separation Logic

Since its inception [48], classic separation logic has been mechanised in Isabelle/HOL
by Weber [60], HOL4 by Tuerk [58] and Coq by Marti et al. [39]

Further work by Calcagno et al. [13] defined what exactly constitutes a separation
logic. By formulating an abstract separation logic which, appropriately, abstracts
away the specifics of memory model and state, they formulate a class of separation
algebras suitable for local reasoning. They demonstrate that the original separation
logic is one instance of abstract separation logic. They define the properties a logic
must have in order to be called a separation logic; properties which we use to
demonstrate that our logic is a separation logic in Chapter 5.

Although we do not use them in our work, the local semantics of separation
logic allow for reasoning about concurrency [10] [44]. If two regions of memory are
separate, it logically follows that updating one does not affect the other. This means
if the regions are given out to two processes, those processes can be executed or
interleaved in any order. It also means there can be no sharing between them.

In order to enable read-only sharing of resources between concurrent processes
while remaining a separation logic, Bornat et al. [10] introduced permissions. Instead
of treating cells in memory as atomic units, they allow referring to parts of them, e.g.
half of the cell at address 5 contains the value 7. The semantics allows memory reads
from partial cells, but memory writes still require an entire cell. Our work uses a
similar idea in the concept of slices introduced in Chapter 5. We compare these ideas
in detail in Chapter 7, Section 7.2.

1.3. RELATED WORK 5

1.3.2 Operating System Verification

The first attempts to realise the vision of a verified operating system were PSOS [18]
and UCLA Secure Unix [47]. The former had a specification, but no proofs. The
latter had a specification and about 20% of proofs refining it to its implementation
in Pascal. The first system to be completely verified with respect to a specification
was Bevier’s KIT [7]. By aiming for a smaller, simpler kernel, Bevier managed to
push implementation proofs right down to assembler. Unfortunately, this approach
resulted a set of kernel features too small to be used by the industry. Thus, after
this achievement, the next challenge was to create a more industry-capable verified
operating system.

While this was going on, the operating system world started experimenting with
scaling back the size of the kernel, or at least breaking it up into pieces, in order to
more closely approach real modularity by having the boundaries between operating
system modules enforced by hardware [26]. The most common term for such a
system is microkernel. There also exist hypervisors [11,24] which, while similar in their
minimalist spirit to microkernels, are targeted at running multiple guest operating
systems rather than programs. While microkernels can act as hypervisors, the latter
are tuned to re-expose an interface resembling actual hardware, while the former
offer a more generic interface.

Unfortunately, microkernels were hard to get right. The first microkernel, Hy-
dra [61] was never widely used due to poor performance. The Mach [2] kernel,
which coined the phrase microkernel, was somewhat large and also had poor per-
formance. As a consequence, migration of features into the kernel to improve speed
resulted in a kernel that was anything but micro. These early results suggested a
different approach was necessary: moving into user mode anything that does not
need to be in the kernel, focusing on appropriate abstractions and fast communica-
tion [38]. Some of the new wave of microkernels that resulted from this approach
did successfully make it into industry: QNX [51], µ-velOSity [50] and OKL4 [35].

The increased viability of microkernel-based operating systems whose kernel size
was deserving of the name also contributed to an atmosphere in which attempting
verification of operating system kernels made sense [56]. The Verisoft project [4]
attempted verification of an entire stack: from user-mode applications down to
the logic gates of the processor. Verisoft completed most, but not all of the proofs.
Nonetheless, their scope was a narrow slice through all layers, so their kernel was
simplified and optimised for verification, not performance. The first kernel with a
real claim to the industry-capable verified operating system kernel title turned out
to be the seL4 kernel from the L4.verified project [31]. We use some of the source
code from this kernel in our case study in Chapter 6.

Due to their direct interface to hardware, as well as the goal of utilising hardware
resources as efficiently as possible, operating systems are typically implemented
using low-level programming languages such as C [30], even using processor instruc-
tions directly where necessary. Since separation logic was developed for reasoning
about imperative programs with direct access to memory, that makes it applicable
to operating system verification.

6 CHAPTER 1. INTRODUCTION

1.3.3 Low-level Verification

Assembler

Assembler is the human-readable version of instructions executed by a processor.
Given a semantics for those instructions, one can show the exact result of them
being executed. At the same time, assembly offers little higher-level information
for humans, making it a challenge to reason about. Our work does not include
reasoning about programs at the assembly level, even though we do model the bits
and bytes in a page table and the lookup procedure used by hardware.

C

The C programming language [30] is one of the most popular languages used for
developing low-level applications, as well as operating systems. Although C++ is
also used, the subset of its semantics that has been formalised remains small [59].
Projects attempting verification of C++ code, such as VFiasco [29], have not yet
moved past their preliminary stages. It is in our opinion far too complex a language
to involve in formal verification.

In fact, although the C programming language appears simple, it is sufficiently
complex for it to be tricky to reason about. Various attempts exist at modifying C to
be simpler for verification purposes. Examples include C0 in the Verisoft project [36],
Cminor [37] and C-light [8] (a “representative subset”).

Norrish formulated a formal semantics of the C programming language [43]. He
also developed a C to Isabelle/HOL parser [57] which parses a substantial subset
of C code. The result is represented inside Isabelle/HOL using the SIMPL [49]
environment developed Schirmer for verification of sequential imperative programs.
When combined with the memory model of Tuch [54, 55], which includes storage of
C structures and padding, the combined framework [57] captured a significantly
large part of C semantics to be used for the verification of the seL4 microkernel [31].

Tuch’s memory model supports both separation logic and typed heaps of
Burstall [12] and Bornat [9], and takes into account the presence of padding in
C structs. It is, however, a flat memory model and does not deal with virtual mem-
ory in any way. Our work is inspired by the results of the L4.verified project, but our
focus is on virtual memory. We use Norrish’s C parser, but plug in an entirely new
memory model. We focus on separation logic exclusively. We also don’t currently
handle padding, since we observed that no C structure in the seL4 kernel has any.

There exist other tools for formal reasoning about C code. Key-C [41] deals only
with the type-safe subset of C. VCC and Caduceus both generate proof obligations
from annotated C code. VCC [15] tries to discharge them automatically. It addition-
ally supports concurrency. The Verisoft XT project used VCC to successfully perform
automated proofs for a very small hypervisor [5]. However, VCC uses a memory
model which axiomatises a weaker version of what Tuch proves. Caduceus [20]
translates C code into the functional language of the Why [19] tool, which then
generates verification conditions that can be proved by other tools. Like Norrish’s
C parser, Caduceus covers a substantial subset of C. Caduceus is now part of the
Frama-C framework [1]. None of memory models in these frameworks have virtual
memory built in.

Gast [23] describes a way of reasoning about some of C’s more complicated

1.3. RELATED WORK 7

features, such as pointers to local variables, which don’t typically appear in for-
malised C semantics such as those used in the L4.verified project or Caduceus. To
our knowledge, a larger framework incorporating such features does not yet exist.

Architectures and Virtual Memory

Reasoning about the interaction between software and hardware requires a model
of the hardware. Our work involves reasoning about virtual memory on the ARMv6
architecture. While thorough models of the ARMv6 [21] and ARMv7 [22] instruction
set semantics exist, they do not include the memory management unit. Tews et al.
include some virtual memory characteristics in their model of the IA32 architec-
ture [53]. Our work contains a model of the page table behaviour of the ARMv6 in
non-legacy mode, as described in Chapter 3 and Chapter 6. To our knowledge, it is
the first such model.

When it comes to reasoning about programs executing in virtual memory, espe-
cially the operating system itself, we have seen two approaches used.

The first approach is to set up a rigid page table structure, abstract it away and
from that point on act like it isn’t there. This approach was used in the Verisoft
project [3]: a simple one-level page table for user programs, direct physical access
for the kernel (no translation), limited functionality for mapping, unmapping and
remapping. The simplicity, however, allowed for verifying a paging mechanism.
The L4.verified [31] project sets up a semi-rigid structure: a range of addresses at the
top of virtual memory in any page table is accessible by the kernel only and maps
directly, one-to-one, to physical memory. The lower addresses of virtual memory
can be used by user-level tasks, but the kernel never touches it; it only manipulates
memory through the top section of virtual memory. The L4.verified project proved
invariants which state that even though the kernel page table is in the one-to-one
virtual memory region, all writes to this region do not affect its mappings in virtual
memory. However, since virtual memory is not part of the core memory model, the
invariants do not follow from the model, but rather are forced onto the model by
human hand.

The other approach we have encountered is a “magic mode” abstraction. In
normal mode, we expect virtual memory to behave much like normal memory, and
the set of mappings from virtual to physical memory cannot be modified. To modify
the contents of page tables and, as a result, the mappings, one has to enter a special
mode. In this special mode one can modify the memory however one wishes, and
any invariants about the memory state have to be reestablished upon returning to
normal mode. This approach is used in the Robin project [52, 53]: there is a subset of
addresses which is blessed and can be accessed normally as plain memory. Writing to
outside blessed regions violates the plain memory property and requires that the
property be reestablished.

In our work, we acknowledge the fact that writing to a page table entry nec-
essarily invalidates the regions of virtual memory that are resolved through that
entry, but we also observe that it isn’t the end of the world. Writing to the second
level of a two-level page table with 4KB sizes only affects 4KB of virtual memory
addresses, and the rest remain unaffected. This means we can apply local reasoning,
and hence separation logic, to specify exactly what changes. When we know exactly
what changes, we can derive what does not change via the frame rule. Additionally,

8 CHAPTER 1. INTRODUCTION

by using a single memory model, we do not enter or exit any special modes. Our
rules are standard separation logic Hoare-style triple reasoning.

1.4 Layout of the Rest of the Document

Chapter 2 introduces the basics of Isabelle/HOL notation as well as the more
common structures we use in our formalisation and proofs. Although this is mostly
standard and can be skipped by a reader experienced in Isabelle/HOL, we do use
some variants of standard notation for presentation purposes.

Chapter 3 contains an in-depth discussion of virtual memory, address translation,
issues involved and different page table types. A reader experienced with operating
systems and virtual memory may wish to skip directly to Section 3.3 where we
discuss the ARMv6 page table which we will use in instantiating our framework in
Chapter 6.

Chapter 4 contains an introduction to separation logic, beginning with an in-
formal. A reader well-versed in separation logic may wish to skip this chapter
entirely.

In Chapter 5 we present the core idea of our work, mapped separation logic. We
instantiate it to a simplified machine architecture supporting virtual memory. We
also perform a small case study using a simple programming language to show it is
indeed a separation logic. This chapter is based on our paper by the same name [33].

Chapter 6 describes our improved and extended version of mapped separation
logic. We instantiate it to an ARMv6 architecture and page table and add pointers
to objects in memory. We create an interface to the C programming language and
the Norrish’s C parser [57], along with a simple demonstration of this functionality.
Section 6.8 of Chapter 6 contains our case study, in which we verifying the semantics
of a function from the seL4 microkernel [31] which writes to the page table.

Chapter 2

Notation

In this chapter we will give an overview of Isabelle/HOL [42] idioms and notations.
As we mentioned in Chapter 1, Isabelle/HOL is a Higher-Order Logic implementa-
tion on top of the Isabelle theorem prover.

2.1 Isabelle

Isabelle has its own “meta” logic, in which other logics, such as HOL can be im-
plemented. For theorems in the metalogic, there are zero or more assumptions, as
well as one goal. We write these using meta-implication, denoted by _ =⇒ _. It has
multiple syntax variants. The following are all equivalent:

A =⇒ B =⇒ A ∧ B [[P; Q]] =⇒ P ∧ Q
P Q

P ∧ Q

The rightmost variant mimics standard logical notation, thus we use it for presen-
tation of rules. There is also meta-equality, written as _ ≡ _. These mostly appear
in definitions. For the purposes of reading this document, it is safe to assume that
meta-equality is the same as normal equality.

Isabelle also supports a type system. We write x :: ′t to indicate that x has type
′t. Type variables have an apostrophe in front, e.g. ′t, ′zft. By convention, type
names are usually lowercase.

Functions in Isabelle are total. Their types are written using ⇒, e.g. ′d ⇒ ′r.
Application of a function f to arguments x, y and z is written as f x y z, which
yields three function applications, resulting in functions at each stage, i.e. (((f x)

y) z). One can construct functions on the fly using lambda notation, e.g. λx. x = y.
Isabelle supports custom syntax for constants. When dealing with the syntax

of infix operators, we refer to the operator itself using op. For example, a + b is
identical to op + a b.

2.2 HOL

We will now cover the standard components of the HOL instantiation in Isabelle.
We will refer to this as “HOL” throughout.

10 CHAPTER 2. NOTATION

Basic Logic

HOL defines the standard boolean operations of first-order logic, as well as standard
quantification operators:

negation ¬ P

conjunction P ∧ Q

disjunction P ∨ Q

implication P −→ Q

universal quantifier ∀x. P x

existential quantifier ∃x. P x

HOL also provides the choice operator SOME, which returns any member of a
type meeting a certain predicate, provided such a member exists. For example,
SOME x. x < 17 returns a number less than 17, but does not specifically state which
number it is.

Functions

Functions in HOL are defined using a set of equations. The simplest of these
are definitions, which only have one equation and can neither recurse nor have
any constructors on the left-hand side. For example, the definition of the identity
function is: id = (λx. x)

HOL provides several ways of constructing functions from sets of equations
with different tradeoffs between ease of specifying the equations compared to
reasoning about them later. Since functions in HOL are total, recursive function
definitions must be accompanied by a potentially automatic termination proof.
For the purposes of this work, we will simply state the function types and their
corresponding equations.

The function composition operator is defined as follows:

f ◦ g = (λx. f (g x))

The term f(x := y) represents a function derived from f, but updated such that
f x = y.

Let

The let construct allows writing a term such as:

let a = f x;
b = g a

in h a b

instead of:

h (f x) (g (f x))

We use it to improve readability of complicated statements.

Datatypes

Datatypes are types which can have different kinds of contents, each tagged by a
constructor. The constructor is also a function that will construct a particular kind of
content. A simple datatype is that of bool, which has the constructors True and False:

2.2. HOL 11

datatype bool = True | False

By convention, datatype constructors start with a capital letter.
We can differentiate values of a datatype based on the constructor used to make

them with case, for example:

case is_magic of True ⇒ 42 | False ⇒ 0

Pairs

Pairs are denoted by (a, b) where a and b are the two members. The first can be
accessed with fst, the second with snd.

Multi-member tuples are actually a left-associative construct of pairs. For exam-
ple, (a, b, c, d) has the type ′a × ′b × ′c × ′d, which is internally represented
by ′a × (′b × (′c × ′d)).

Option

The ′a option datatype is a simple container type with two constructors:

datatype ′a option = b ′ac | None

As its name suggests, it has the option of containing the value of that type, or None. By
using an option type as the range of a function, we can create partial functions. HOL
even has special syntax for such functions, thus the following types are identical:

bool => bool option

bool ⇀ bool

Given bxc, we can get x directly using the:

the :: ′a option ⇒ ′a

Note that the None returns undefined, which is a HOL constant representing “any value
of a given type”. Another name for this constant is arbitrary.

Applying a function to the contents of an option type is done using Option.map:

Option.map :: (′a ⇒ ′b) ⇒ ′a option ⇀ ′b

As one would expect, Option.map f None is None and Option.map f bxc is bf xc.

Type Declarations and Type Introspection

The typedecl keyword declares a new type in Isabelle without any extra information.
We use this in Chapter 6 to declare tags for our two types of pointers: virtual and
physical.

Isabelle allows limited type introspection. We can create functions which work
on types: rather than working on values of ′a, such functions work on ′a itself.
TYPE allows capturing types to pass as values to such functions, i.e. the type of
TYPE(′a) is ′a itself.

Types in the finite type class have a finite number of members (cardinality).
This number can be queried using CARD, e.g. CARD(′a).

12 CHAPTER 2. NOTATION

Sets

In HOL, sets are represented as functions from the type of element to bool. The
empty set is denoted by ∅, the universal set by UNIV.

HOL set notation is otherwise standard:

set of elements {e1, e2, e3}

membership x ∈ S, x /∈ S

union S ∪ T

intersection S ∩ T

difference S - T

product S × T

subset S ⊂ T, S ⊆ T

set comprehension {x | P x}

Lists

The list datatype features the empty list as well as a list constructor for prepending
an element to an existing list:

datatype ′a list = [] | ′a · ′a list

HOL contains the usual operations on lists: hd gets the first element, tl gets the
rest, length calculates the list length, set constructs a set from the lists’s elements, map

applies a function to all list elements, zip creates a list of pairs from two lists, and foldl

reduces a list to one element by applying a folding function from left to right. We
list their type signatures here for reference:

hd :: ′a list ⇒ ′a

tl :: ′a list ⇒ ′a list

length :: ′a list ⇒ nat

set :: ′a list ⇒ ′a ⇒ bool

map :: (′a ⇒ ′b) ⇒ ′a list ⇒ ′b list

zip :: ′a list ⇒ ′b list ⇒ (′a × ′b) list

foldl :: (′a ⇒ ′b ⇒ ′a) ⇒ ′a ⇒ ′b list ⇒ ′a

The nth element of a list is obtained using _[n]. Taking and dropping n elements
from a list is done using take n and drop n respectively, while concat concatenates a list
of lists into one list.

Numbers

Apart from words, which we will cover shortly, the other type of number which
appears in our work is the type of natural numbers. Natural numbers are also a
datatype, built around zero and the successor function Suc:

datatype nat = 0 | Suc nat

The min and max functions respectively find the minimum and maximum of two
comparable quantities.

Division is performed by _ div _, and when x divides y, we write x dvd y.

2.3. SPECIAL NOTATION IN THIS WORK 13

N-bit Words

HOL provides a library of n-bit words. These can be considered to be an n-length
vector of bits, or a ring modulo 2n. They can be constructed from a natural number
using of_nat, while unat performs an unsigned conversion to a natural number.

The word library provides standard bitwise word operations:

bitwise not NOT _

bitwise and _ AND _

bitwise or _ OR _

shift left _ << _

shift right _ >> _

nth bit as a bool _ !! n

The mask function creates a word whose lowest n bits are set. The size function
takes an n bit value and returns n as a natural number, e.g.

size (w :: 32 word) = 32

Maps

In HOL, a map is a partial function, i.e. function with the type:
′a ⇀ ′b

These are the operations we use on maps:

empty map empty = (λx. None)

domain dom m = {a | m a 6= None}

merge (right-override) f ++ g = (λx. case g x of None ⇒ f x | byc ⇒ byc)
restrict domain m�A = (λx. if x ∈ A then m x else None)

construct from maplets [d1 7→ r1, d2 7→ r2]

2.3 Special Notation in This Work

In this work, we differentiate all constants, such as datatype constructors by using a
different font. For example, when stating that x is True, one can clearly see which is a
constant already defined in the current theory, and which is the variable: x = True.
Some existing constants define their own syntax, and their writers chose their own
notation. In such cases we do not interfere, even if the notation chosen is a normal
word. An example of such notation is the integral division operator: _ div _.

Lifted conjunction We define a conjunction predicate which works on predicates
taking one parameter and returning bool:

_ b∧c _ :: (′a ⇒ bool) ⇒ (′a ⇒ bool) ⇒ ′a ⇒ bool

P b∧c Q ≡ λx. P x ∧ Q x

K combinator We state the functional K combinator in HOL:
K :: ′a ⇒ ′b ⇒ ′a

K ≡ λx y. x

14 CHAPTER 2. NOTATION

Map disjunction We define two maps to be disjoint if their domains are disjoint:

_ ⊥ _ :: (′a ⇀ ′b) ⇒ (′a ⇀ ′b) ⇒ bool

h0 ⊥ h1 ≡ dom h0 ∩ dom h1 = ∅

We will explain the constants and their notation as we define them. We may
repeat some of the definitions shown in this chapter for reader convenience.

Chapter 3

Virtual Memory

Virtual memory is a hardware-supported abstraction over physical memory. It
is used in most modern operating systems. Virtual memory allows isolation of
programs, dynamic allocation, permission control over memory access and sharing
of memory between programs. Although the term “physical memory” is sometimes
extended to encompass all physical media such as disk, we consider only the main
system memory to be physical memory. This is nearly always RAM.

In this chapter, we introduce virtual memory, its relevance, fundamental concepts
and mechanisms. In Section 3.2 we introduce page tables, and in particular, in
Section 3.2.2 we discuss the most common setup for 32-bit machines: the two-level
page table with optional superpages. Section 3.3 documents an implementation of
this on a real architecture, ARMv6. We conclude with a discussion of some of the
less popular page table models, which we do not formalise in our work.

We will present a formalisation of a one-level page table in Chapter 5, and a two-
level page table of the ARMv6 architecture in Chapter 6. While our formalisation
does not presently cover other page table types, caches or the translation lookaside
buffer (TLB), we nonetheless discuss these concepts in this chapter, in order to give
an impression of the diversity of the underlying mechanisms our framework may
later be applied or extended to.

3.1 Importance of Virtual Memory

An operating system executing highly specialised tasks on limited hardware may
depend on a priori knowledge about the nature and requirements of those tasks.
However, an operating system claiming to be general purpose cannot, by its very
nature, know what tasks executing on it will try to do. In particular, it cannot know
how much memory a task will require.

A task is supplied by a user in the form of a program. To run the program, an
operating system creates a process. Since programs are user-supplied, their memory
requirements are initially unknown. Allocating “enough” memory beforehand
makes no sense, as it may be too little (task cannot complete) or too much (memory
wasted on this process cannot be given to other processes). Trusting the user to
supply this information likewise makes no sense, as the user may be wrong, their
program may be buggy or even malicious.

The virtual memory mechanism involves hardware-level monitoring of every
memory access attempt performed by a process and checking it against a table of

16 CHAPTER 3. VIRTUAL MEMORY

valid memory locations for the process. This allows allocation of physical memory on
an as-needed basis, while restricting access to memory the process is not authorised
to access. The operating system sets up these tables and is invoked whenever there
is a problem.

An operating system running user-supplied programs should minimise the
possibility of those programs being able to interfere with each other, whether ac-
cidentally or intentionally. This means that programs must not be able to access
each other’s memory unless specifically permitted to do so by first asking the operating
system for permission. Permission granted need not be absolute; access to memory
may place restrictions on execution, reading or writing. The virtual memory mecha-
nism is enforced by hardware, and the operating system controls the mechanism,
which allows memory isolation between programs.

Work performed by a process at any time tends to centre around a set of resources
relevant to the task at hand. This set of resources that the process is currently
working with and accessing in quick succession is called the process’ working set. It
changes over time. The implication of this is that to perform its task successfully,
a process does not need all of the memory allocated to it all of the time. Physical
memory not in use by a process can be backed up onto another physical medium,
such as disk, and made available to whichever process needs it next. Since the
virtual memory mechanism monitors all memory access, the operating system can
request that it be invoked when the process tries to access its “missing” memory, in
order to load it from disk. This process is known as demand paging or swapping. Since
the focus of swapping is keeping the working set of processes in memory, it allows
execution of processes with resident sizes exceeding the size of physical memory.
There is a limit to the benefits of swapping: when the sum of working sets of all
processes on the system exceeds the size of physical memory, however, the system
will spend most of its time juggling memory between processes and disk, resulting
in performance degradation.

We omit any discussion of segmented memory architectures. While the rather
popular x86 architecture is segmented, the segments are typically set up to be
identical. Actual use of segmentation is rare; e.g. using a segment for thread-local
storage on Windows and some versions of Linux.

In the remainder of the chapter, we will describe the mechanism by which virtual
memory can allow the behaviours mentioned in this section. We will omit discussion
of swapping, as it is a matter of operating system policy rather than the mechanism
itself.

3.2 Virtual Memory Overview

The basic idea behind virtual memory is that a process cannot access physical
memory directly. Instead, a process accesses virtual memory addresses, which are
resolved to physical addresses by a hardware-supported translation mechanism
controlled by the operating system.

From the point of view of the user process, it has access to a large, contiguous
address space. Reading and writing to “allocated memory” works. Execution
proceeds normally. It is as if the process was the only one on the system. In reality,
this address space does not exist. This is where virtual memory gets its name. Only

3.2. VIRTUAL MEMORY OVERVIEW 17

physical memory exists. Virtual memory accesses are treated as requests. They can
be:

• denied - e.g. invalid address, attempt to write to a read-only area; usually
results in the process being killed.

• delayed - the value viewable at a virtual address by a given process is not
currently available; for instance, it has been placed on disk.

• granted - the virtual address is translated to a physical one and the access is
performed on the physical address.

In the first two cases, a hardware-enforced virtual memory abstraction invokes
the operating system with information on what went wrong.

3.2.1 Page Tables

So far, we have been talking about virtual memory in terms of individually mapping
each virtual address to a physical one. The virtual-to-physical memory map is
many-to-one (the same physical address may appear at multiple virtual addresses),
partial (some virtual addresses are not mapped), and annotated with permission
flags supported by the hardware (e.g. read/write/execute). In order to perform the
per-process access control and translation necessary for virtual memory to work,
these mappings have to be stored somewhere. Typically, they are stored in physical
memory where the hardware can access them to perform lookups. The encoded
form of the set of virtual-to-physical mappings, stored in physical memory, is known
as a page table.

Access to and manipulation of page tables is the domain of the operating system
kernel. The kernel needs to set up its address space in order to access the entirety
of physical memory and also set up the address spaces of user-level programs.
Conversely, a user-level program should never have access to its own page table. If
it can access its page table for any reason, it can modify its memory layout to allow
access to data in other programs and in the operating system itself. This circumvents
the point of virtual memory in the first place.

Let us examine the case of a 32-bit machine, i.e. a machine with 32-bit registers.
Since memory pointers need to fit in registers, the machine will have a 32-bit virtual
address space. Typically, the physical address space will also be 32-bit, though
hardware specifics will dictate how much of it is accessible. This means there are 232

virtual addresses to keep track of per process. Each mapping is 32-bits in size, i.e. 4
bytes. Storing one physical address per virtual address in the mapping would hence
require 4 ∗ 232 bytes (16GB) of memory for the entire set of mappings, per process.
Clearly, this is not a viable solution.

One way to approach this problem is by decreasing the granularity of the map-
pings, from bytes to larger-sized pages. In each entry, we store the physical address a
page is mapped to. A typical page size is 4KB (212 bytes). If we store one physical
address per page, we now need 220 mappings per process for a 32-bit machine.

In this setup, the virtual address can be broken down as in Figure 3.1. The
highest 20 bits of the virtual address indicate which page it lies in – the page number.
This can be used as an index into the table of mappings, to obtain the physical
address of where the page is mapped to. The lowest 12 bits of the virtual address

18 CHAPTER 3. VIRTUAL MEMORY

Figure 3.1: A 32-bit virtual address on an architecture with 4KB page sizes.

are the offset within the page. By adding them to the physical address the page is at,
we resolve the virtual address to a physical one.

With 32-bit physical addresses, this means our table needs to be 4 ∗ 220 bytes per
process, or 4MB, already a significant improvement. The downside to a decrease in
granularity is imperfect use of allocated memory. If a process uses only one byte
in a page, the operating system needs to allocate it the entire page anyway. This is
called internal fragmentation. Per-byte granularity has no internal fragmentation, but
is effectively impossible. Some hardware supports variable-sized pages, shifting the
responsibility for the most efficient choice to the operating system designer, which
we discuss starting with Section 3.2.2.

Figure 3.2: A lookup in a one-level page table on a 32-bit machine with a
page size of 4KB.

One more aspect of our mapping table to consider is the physical equivalent of
pages: frames. In the previous paragraph, we allowed a page to map to any physical
address. Real hardware does not allow this due to efficiency considerations. Instead
of performing addition, the hardware takes a 32-bit virtual address, translates the
first 20 bits as in our example, and leaves the last 12 unchanged. The first 20 bits
before the translation we call the page number, while after the translation they become
the frame number. Taking this into consideration, when we store the frame’s address
in our table, we know the last 12 bits will always be zero, since the last 12 bits of
any page are zero. Therefore rather than wasting 12 bits per entry, one can place
any extra flags (e.g. read/write/execute permission flags) there. A special value,
typically 0, is used for entries to indicate that a page is not mapped, i.e. does not
have a corresponding physical frame.

There exist many ways of encoding the virtual-to-physical mappings. The table
of entries we described in this section is among the simplest available: the one-level
page table. We will discuss other encodings later in the chapter. The procedure we
described for using the page table to resolve a virtual address into a physical one
we refer to as a page table lookup. Figure 3.2 shows this process for our one-level page
table. We refer to the location at which the page table can be found as the page table
root.

In Chapter 5, we will discuss our formalisation of a simple 32-bit machine

3.2. VIRTUAL MEMORY OVERVIEW 19

with a one-level page table, as a simple test case for our mapped separation logic
framework.

3.2.2 Multi-level Page Tables

In Section 3.2.1 we explained the origins of the single-level page table. Though a
single-level page table can store the mappings for the entire virtual address space, it
cannot store any fewer. It turns out that in practice, a process usually does not use
the entire address space. At 4MB, the single-level page table we described would
use up 200MB of memory for 50 processes, regardless of how sparse their use of
the virtual address space actually is. This is a waste of memory. What we need is a
structure that can map sparse address spaces efficiently. The per-process solution to
this problem is use of a multi-level page table.

In our single-level page table example, we divided a virtual address into a 20-bit
page number and a 12-bit offset within that page. We used the page number as an
offset into a table of addresses of corresponding frames.

The concept of the multi-level page table is to simply divide the page number
further, using each part as an index into a table of indices to subsequent tables.

Two-level Page Table

To convert our one-level page table example from Section 3.2.1 into a two-level page
table, we can divide the 20-bit page number into two 10-bit indices. Figure 3.3 shows
the resulting lookup pattern: we use the first 10 bits as an index into the first-level
table, obtaining an entry which may contain the address of the second-level table (or
an indication that the corresponding memory area contains no mappings – typically
an address of 0). Once we have the address of the second-level table, we use the
second 10-bits of the page number as an index into that table to obtain the same kind
of page table entry as we had in the single-level page table (frame number + flags).

Figure 3.3: A lookup in a two-level page table on a 32-bit machine with a 4KB
page size with a 10-10 split on the page number.

The minimal memory use of such a page table is the size of first-level page table
– 210 32-bit pointers to second-level tables, 4KB. Should all second-level tables be
created, their combined size is identical to the size of a one-level page table. Thus,
when fully populated, the overhead of a two-level page table over a one-level page
table is the size of the first-level table, i.e. 4KB. As virtual memory usage is typically
sparse, the two-level table yields a significant improvement in efficiency.

20 CHAPTER 3. VIRTUAL MEMORY

Many-level Page Table

For 32-bit systems a two-level page table is typical. Due to the efficiency issues we
outlined, 64-bit systems require use of more levels.

Figure 3.4: A lookup in a multi-level page table. Intermediate levels not to
scale.

By "many-level" we refer to page tables with more levels than the two-level
ARMv6 page table which we formalise in Chapter 6. For 32-bit systems, two
levels are sufficient. For 64-bit systems, four or even five-level tables may be used.
Figure 3.4 shows how the extra levels are just a variation on a normal two-level page
table, but with the page-number bits split into multiple page-table indices rather
than just two.

Superpages

The two-level page table in Section 3.2.2 maps one 4KB page at a time. A first-
level entry can point to a second-level table, which contains 1024 entries, each
corresponding to a 4KB page. Thus, in total, one first-level entry is responsible for a
4MB block of virtual memory. By extracting a physical address and a “don’t look
further” tag at the first-level entry, we can map a 4MB block of virtual memory to a
4MB block of physical memory without the use of a second-level table. In general,
we refer to such areas of memory, mapped using a larger-than-page granularity as
superpages.

Figure 3.5: A lookup in a two-level page table completing early due to a
“don’t look further” flag in the first-level table, resolving to a superpage.

A “don’t look further” bit can be squeezed into the first-level entry of our
example if we know that second-level table entries are, for example, 4-byte aligned –

3.2. VIRTUAL MEMORY OVERVIEW 21

their address is divisible by 4, so its last two bits are zero, allowing two bits of extra
information. This alignment can be enforced either by the hardware or the operating
system. Figure 3.5 shows the revised lookup pattern.

The same modifications that allow the existence of superpages in a two-level
page table allow superpages to exist in a multi-level page table, though naturally
there will be more possible superpage sizes.

3.2.3 Translation Lookaside Buffer

Page table lookups are expensive; they potentially involve multiple memory reads:
one per page table level. To decrease this cost, these lookups are cached in most
architectures in a translation lookaside buffer (TLB), a hardware component within the
processor.

Figure 3.6: Involvement of the Translation Lookaside Buffer (TLB) in the
virtual memory resolution process. If the page number is in the TLB, the
base address in the matching TLB entry is used. Otherwise, the page table is
consulted.

Abstractly, the TLB can be seen as a finite, small set of virtual-to-physical
mappings. They may include lookups for code instructions as well as data. It
is architecture-dependent whether these are handled separately from each other or
not, how large the TLBs are, and when a mapping is removed from the TLB and
replaced by another. Most architectures provide assembler instructions for explicitly
removing all or specific mappings from the TLB, which is called flushing.

Although the page table should ultimately define what a mapping is, the hard-
ware will always first consult the TLB and ignore the contents of the page table if
a TLB entry is found. When we change the page table and the TLB contains the
mapping being changed, we may introduce an inconsistency. This inconsistency can
be resolved by flushing the TLB such that the new page table contents will be loaded
for future lookups. However, indiscriminate TLB flushes are expensive, as they may
flush TLB entries that could be used in the future, requiring extra lookups and hence
additional memory reads. Kernel programmers like to optimise by deferring TLB
flushes as far as possible and by making them as specific as possible.

3.2.4 Caching

Memory caching is a mechanism which allows processor-local storage of values
obtained from memory. It also allows local storage of memory writes, deferring

22 CHAPTER 3. VIRTUAL MEMORY

their transfer to memory. It adds another indirection layer between a user process
and memory.

Figure 3.7: Mapping memory addresses to cache lines for a 4-line cache with
4-byte lines, in the case of 1-way associativity (direct-mapped) and 2-way
associativity.

A cache is arranged into blocks of data called lines. Each line is tagged in order
to identify which line-sized block of memory it corresponds to.

The simplest way of mapping memory addresses to cache lines is shown in
the left side of Figure 3.7. Consider a cache with 4 lines, each line being 4 bytes in
size. Since one cache line stores 4 bytes, if we map the start of memory to the first
cache line, it will store data for addresses 0, 1, 2 and 3. If we then map the next four
addresses to the second cache line, it will store data for addresses 4, 5, 6 and 7. When
we get to address 16, we run out of cache lines, so we go back to the first cache line,
and so forth. The cache index, hence cache line, for an address a, for a cache with L
lines of size s is then i =

a
s

mod L. In order to use the line, we also need to check if

its tag is
a
s

.

Caches are typically smaller than memory, therefore collisions are a certainty. In
our example, an address may be associated with only one cache line. For instance,
only one address of 0, 16, 32, . . . may be associated with cache line 0. If address 16
is associated with cache line 0 and we wish to access address 32, then cache line 0
must be written to memory first, before being loaded with data from address 32.
If a program must repeatedly access addresses 16 and 32, the constant accessing
of memory will cause performance degradation, while other cache lines might be
unused.

In order to address this issue, we increase the associativity of the cache. That is,
we group cache lines together, and we associate memory locations with a group.
For example, the right side of Figure 3.7 shows a 2-way associative cache. The first
group of cache lines, denoted by index 0, can store data blocks from addresses 0, 8,
16, 32, . . . while lines with index 1 can store data from addresses 4, 12, 20, 28, . . . A
program repeatedly accessing addresses 16 and 32 can now run using just the cache.

In a 2-way associative cache, we first find the cache line group with the correct
index, then examine the tags on both lines to see if any of them match.

In general, for a n-way associative cache with L lines of size s, the index i for an

address a is i =
a

n× s
mod

L
n

. In order to use the line, we also need to check cache

lines 2i + k (where 0 ≤ k < s) looking for a tag of
a

n× s
.

Like the TLB, the contents of caches can be selectively flushed, which discards

3.2. VIRTUAL MEMORY OVERVIEW 23

the contents. Caches can also be selectively cleaned, which writes out the cache
contents to memory, ensuring consistency.

Caches may be virtually indexed or physically indexed, depending on whether
the cache line group index is calculated from a virtual address or the physical address
it represents. Similarly, caches can be virtually or physically tagged, depending
on whether the tag is derived from a virtual address or the physical address it
represents.

The addition of caching adds complexity. Firstly, it can cause inconsistency
with memory-mapped devices, as we’ll explain in Section 3.2.5. Secondly, the
combination of caching and virtual memory can lead to complex interactions on
some architectures, which need to be managed to prevent inconsistency.

An example of the latter is the virtually indexed, physically tagged cache on the
ARMv6 architecture. Cache lines have a size of 32 bytes, and the size of the tag is
designed to be unique for a 4-way 16KB cache. This means there are 16K/32 = 512
cache lines in total, 128 cache lines per way. The hardware therefore provides a tag
size of 7 bits. ARMv6 allows larger cache sizes than 16KB, however. For a 64KB
cache, we need a 9 bit tag to uniquely match an address with a line. Since we only
get a 7 bit physical tag, but derive the index from a virtual address, two virtual
addresses mapping to the same physical address can be stored in two different cache
lines, resulting in an inconsistency.

In our framework, we do not currently model or reason about caches. We
consider it a promising direction for future work.

3.2.5 Devices

On most architectures, the physical address space does not only access physical
memory. Interfaces to devices appear in it as ordinary physical addresses, but in
reality they represent external communication. Unlike ordinary memory, the values
at these addresses may change without being written to.

The concept of devices is orthogonal to that of virtual memory. The virtual
memory abstraction translates virtual addresses to physical ones, after which the
memory controller within the processor decides whether the access represents a
memory access request or a device access request.

Caching poses a more significant issue. Since memory locations corresponding
to device interfaces may change without the software writing to it, hardware caching
is typically turned off for these locations. Some mechanisms such as direct memory
access (DMA) allow devices to write to memory directly, bypassing the processor
and its cache. In such cases, the cache contents must be carefully managed to prevent
inconsistency.

Presence of such devices on the system can be modelled explicitly, for in-
stance by specifically defining how they modify memory, or implicitly, e.g. via
non-determinism at the point of a memory read. Our framework does not specify
any implicit behaviour related to devices. In order to use devices, their actions must
be specified explicitly.

24 CHAPTER 3. VIRTUAL MEMORY

3.3 Overview of ARMv6 Address Translation

In order to demonstrate the applicability of our work to a real-world scenario, we
chose to instantiate it to the ARMv6 architecture. The ARMv6 architecture uses a
two-level page table with superpages and hardware page table lookup. This is a
common setup for 32-bit systems, making it a realistic target. Chapter 6 documents
our formalisation and instantiation efforts.

On ARMv6, the page table lookup is performed automatically by the hardware,
invoking the operating system only when the lookup fails. Thus, the layout of the
page table and format of page table entries is dictated by the hardware.

ARMv6 supports certain legacy features, such as subpages, for compatibility
with older processors. These are marked obsolete in ARMv6 [6]. We do not consider
any of the legacy features in our work.

The architecture is 32-bit, with 32-bit virtual and physical addresses. The page
table lookup for a virtual address is performed by using the top 12 bits of the virtual
address (bits 20-31) as an index into the first-level table and, if necessary, using the
next 8 bits (bits 12-19) as an index into the second-level table, as shown in Figure 3.8.

Figure 3.8: Page table lookup for a 4KB small page on ARMv6

ARM naming convention refers to the first level table as a page directory, whose
entries are page directory entries (PDEs), and to the second-level table as a page
table, whose entries are page table entries (PTEs). We avoid the use of page table
when referring to the second-level table unless referring to ARMv6 mechanisms
specifically, in order to prevent the “do they mean the page table or the page table?”
ambiguity.

Figure 3.9: Page table lookup for a 1MB section on ARMv6

While ARMv6 supports the usual 4KB page size, as well as the 1MB superpages
one would expect from the 8-bit index into the second-level table, it also allows

3.3. OVERVIEW OF ARMV6 ADDRESS TRANSLATION 25

Figure 3.10: The usage of bits in looking up a virtual address and resolving it
to a physical one in ARMv6.

larger pages (64KB) and larger superpages (16MB). Presumably in avoidance of
naming something a “super-superpage”, the ARMv6 adopts the following naming
convention:

• 4KB page – small page

• 64KB page – large page

• 1MB superpage – section

• 16MB superpage – supersection

We will now describe the virtual address translation mechanism on the ARMv6
architecture. We refer to bits from n to m (inclusive) of a value v as v[m:n], e.g.
v[31:20] denotes the top 12 bits of the 32-bit value v.

The translation for a virtual address vaddr proceeds as follows (see Figure 3.10):

• Use vaddr[31:20] as index into page directory, obtain PDE.

– If PDE[1:0] = 00 (invalid) or PDE[1:0] = 11 (reserved), the lookup fails.

– If PDE[1:0] = 10 and PDE[18] = 1, resolve to a supersection.
Combine PDE[31:24] with vaddr[23:0] into a new address and return it.

– If PDE[1:0] = 10 and PDE[18] = 0, resolve to a section.
Combine PDE[31:20] with vaddr[19:0] into a new address and return it.

– If PDE[1:0] = 01, obtain the address of the second-level table by combining
PDE[31:10] with bits [9:0] set to zero.

• Use vaddr[19:12] as index into second-level table, obtain PTE.

– If PTE[1:0] = 00 (invalid), the lookup fails.

26 CHAPTER 3. VIRTUAL MEMORY

– If PTE[1] = 1, resolve to a small page.
Combine PTE[31:12] with vaddr[11:0] into new address and return it.

– If PTE[1:0] = 01, resolve to a large page.
Combine PTE[31:16] with vaddr[15:0] into new address and return it.

The translation for small pages (Figure 3.8) and sections (Figure 3.9) is nearly
identical to that of large pages and supersection, except four more bits of vaddr are
used for the offset. Figure 3.10 shows the utilisation of bits in each of the four cases.

There is some magic going on here. If vaddr[31:20] are used as an index into the
page directory, then how can we use vaddr[23:0] as the offset for superpages? There
are 4 bits of overlap. Similarly for large pages, vaddr[19:12] is used as an index
into the second-level table, but vaddr[15:0] is used as an offset into the page. The
consequence of this fact is that virtual addresses belonging to the same large page
or supersection do not necessarily resolve to the same entry in the appropriate table.
Instead, they can resolve to one of 24 entries. This means that in order to enforce
consistency, those entries must be repeated in the table sixteen times. Indeed, this is
what the ARMv6 standard requires [6].

Figure 3.11: A virtual address lookup in the page directory resolving to a
superpage. Note that bits [31:20] are used as an index into the PDE, but
only bits [31:24] of the PDE are used as the base address of the superpage.
This requires 16 identical PDEs in the page directory. The offset within the
superpage comes from virtual address bits [23:0]. A base of 0xF4 indicates
the 16MB superpage at physical address 0xF4000000.

3.4 Overview of Other Page Table Mechanisms

Beyond the multi-level hierarchical page table, there exist other page table schemes.
We discuss them here for completeness, along with our thoughts about the difficulty
of their formalisation.

3.4.1 Software-loaded TLB

Some processors, rather than implementing specialised page table lookup hardware,
leave the implementation of page table lookups to software. If no TLB entry exists
to permit/resolve the requested access via a virtual memory address, the processor
issues a special interrupt, which invokes an interrupt handler in the operating

3.4. OVERVIEW OF OTHER PAGE TABLE MECHANISMS 27

system. From that point on, it is the operating system that is responsible for figuring
out what to do. The operating system thus can implement an arbitrary page table
structure or lookup mechanism. The MIPS processor series is an example of this type
of processor. The IA-64 (“Itanium”) processor can switch into the software-loaded
TLB mode as well.

3.4.2 Virtualised Page Table

A virtualised page table is a variation on another page table type, most commonly a
multi-level page table, wherein only part of the page table has to reside in memory
whenever the process it belongs to is executing. This core part contains references
to virtual, rather than physical, addresses where the remainder of the page table is
stored. This means that the operating system can store rarely used parts of the page
table on another medium, such as disk, and re-use the memory for another purpose.
When a lookup occurs, accessing the missing page table information causes a page
fault, which invokes the operating system’s page fault handler to resolve the fault
and replace the original page. The page fault handler is the operating system routine
called upon a page fault.

From a formal perspective, reasoning about virtualised page tables is not very
interesting without also formalising the page fault handler itself, and possibly the
storage medium. We believe our framework to be sufficient for modelling the part of
the virtualised page table that is currently resident in memory, as it is a multi-level
page table lookup that either starts or continues in virtual memory.

3.4.3 Guarded Page Table

The guarded page table is a multi-level page table with path compression applied. Path
compression allows the lookup procedure to skip levels under certain conditions,
based on a guard. The guard is stored in intermediate page table levels along with a
pointer to the next page table level or the final frame address.

Guarded page tables are useful for large, sparse address spaces. For instance, in
a five-level page table, to map a single page, one needs to have all five page table
levels. This is unnecessary complexity, as we could really encode the frame address
directly in the first level of the page table, along with an indication of when that
lookup is valid. This indication is what the guard is. Figure 3.12 gives an overview
of this process.

Figure 3.12: A lookup in a guarded multi-level page table with a guard match
at level 2 resulting in a skip to level n.

28 CHAPTER 3. VIRTUAL MEMORY

To illustrate; consider a simpler example of the two-level page table from Sec-
tion 3.2.2: 1024 entries per level, each resolving 10 bits, working on 32-bit virtual
addresses consisting of a 20-bit page number and 12-bit offset. Let us allocate a
page at virtual address 0x123456000 in a previously empty address space. The page
number, then, is 0x123456. To perform a lookup, we split it into two 10-bit indices:
0x8D and 0x56. We use 0x8D as an index into the first-level table and obtain our
entry, which indicates there are no mappings beyond this point. At this point we
have resolved 10 bits of the page number, with 10 bits left to resolve.

Figure 3.13: Looking up 0x123456000 in a guarded page table via a PTE
requesting 10 guard bits equal to 0x56.

Normally, we would allocate a second table, point the entry at it, then use 0x56
as an index into the second table and store the physical address of a frame there.
Since there would be only one member in the second-level table, this is wasteful.
Instead, we can observe that we have 10 bits left to resolve, and in order to be a valid
lookup of our page, those bits must be 0x56. We can thus store a new frame address
in the first-level entry along with a guard which says "0x56, length = 10 bits". When
a lookup for our page is attempted, it will use the first 10 bits to find the first-level
entry, then it will check the next 10 bits against the guard. The guard says to check
the next 10 unresolved bits against 0x8D. If the guard matches, we get the frame
address and skip the second level entirely, as shown in Figure 3.13. If the guard did
not match, the lookup would have failed anyway. In our simple example, the guard
will always be 10 bits, but in multi-level tables, the length of the guard can vary, and
hence there is variation in the number of levels skipped.

From a formalisation perspective, guarded page tables are very similar to super-
pages in their indication of "don’t go any further", except that they indicate a level
skip rather than a larger page size.

3.4.4 Inverted Page Table

Unlike the other page table variations, the inverted page table (IPT), is not a variation
on the multi-level page table concept. Instead, it uses a hash table at its core, with
the page number as the key, possibly along with a process identifier. For the value,
it uses the frame number along with any extra flags, such as permissions. Page table
lookup proceeds as shown in Figure 3.14.

IPTs are a candidate on systems where the virtual address space is far bigger than
the size of physical memory installable in the machine. This is a typical situation
on 64-bit systems. The IPT stems from the observation that there is a fixed number

3.4. OVERVIEW OF OTHER PAGE TABLE MECHANISMS 29

Figure 3.14: A lookup in an inverted page table. A hashing function is applied
to the page number of the virtual address and resolves to an index via
an index table. After resolving a collision chain of length one the lookup
successfully finds a table entry whose index forms the base physical address.
Process identifiers omitted.

of frames in the system. Therefore, if we store a page number in a table which has
one entry per frame, we can hash the page number of the virtual address we are
trying to look up, and then follow a collision chain if necessary to get to an entry
whose page number and process identifier matches. The index at which we end up
is the frame number we resolve to. If the chain ends without a match, a page fault is
issued.

The IPT is fast and very memory-efficient. Unfortunately, using a hash table
based on virtual page numbers and process identifiers makes shared memory diffi-
cult to manage.

Figure 3.15: A lookup in an hashed page table (HPT). Functionality is almost
identical to the IPT it is based on, though there is no intermediate table of
indices.

In practice, such as on the relatively popular PowerPC, UltraSPARC and IA-64
("Itanium") architectures, a variant of the IPT is used: the Hashed Page Table (HPT),
pictured in Figure 3.15.

Formal reasoning about this page table model in our framework is difficult, as
we based it in separation logic. As we will discuss in Chapter 4, the focus is on
separation of resources. The idea of collision chains on the lookup path implies a
dependency between an entry in the table and one that is upstream from it in a
collision chain. While in theory it is possible to disentangle the dependencies, our
belief is that this particular page table type is best modeled in a framework not
based around separation logic. We are not aware of any formalisation or verification
efforts based around IPTs.

30 CHAPTER 3. VIRTUAL MEMORY

3.5 Summary

In this chapter, we introduced virtual memory, its core concepts and mechanisms.
We described how page table lookups resolve virtual addresses to physical ones, in
detail for one and two-level page tables, and in general for other page table types.
We also described an instance of a two-level page table on a specific architecture, the
ARMv6.

As we mentioned at the start of this chapter, our work contains formalisations of
a one-level page table in Chapter 5, and the ARMv6 page table in Chapter 6.

Chapter 4

Separation Logic

Separation logic, first introduced by Reynolds [48], is a logic for reasoning about
programs which directly manage resources such as memory. It focuses on local
reasoning via precise definitions of which areas of memory are modified during a
program’s operation and, importantly, which areas are not. This allows for effective
reasoning about programs involving pointers, memory allocation, low-level data
structure implementations, even some forms of concurrency.

In this chapter, we will first informally introduce the concepts behind separation
logic, while in Section 4.2 we discuss what makes a logic a separation logic.

4.1 An Informal Introduction to Separation Logic

Our running example for this section will be a very simple factory, whose job it is to
take objects and paint them. We will not go into details as to how exactly the factory
manages this, focusing instead on the issues surrounding arrangement of machinery
on the factory floor.

We will begin by introducing the factory scenario, then formalise it naïvely in
Isabelle/HOL. By identifying issues with the naïve formalisation, we will introduce
how separation logic addresses them and adjust the formalisation while introducing
the core concepts of separation logic. As we progress with the informal introduction,
we will establish that the factory floor is in fact an analogy for computer memory.
This analogy will allow us to explain the concept of pointer aliasing in an informal
setting.

4.1.1 The Factory

As in Figure 4.1, the factory floor consists of 16 squares, addressable by an index
between 0 and 15. Each unit may be empty, or may contain one item of machinery.
We will refer to the position with index i as [i].

A source at [i] introduces objects to be painted into the factory (for instance,
from below the floor) and passes them to the square at [i+1]. A sink at [i] receives
objects from the square at [i-1] and removes them from the factory. In order to
paint objects, they must pass through a painter. A painter at [i] takes objects from a
source at [i-1], paints them, and passes them to a sink at [i+1]. We define three
painters, respectively named red, green, and blue. Each paints objects the colour it
is named after. Figure 4.2 demonstrates a working production unit which paints

32 CHAPTER 4. SEPARATION LOGIC

Figure 4.1: Empty factory floor; factory components

Figure 4.2: A working production unit for painting objects red.

objects red.
For manipulating the floor plan, we define two commands:

• get:
localvar := [address]
places the value at [address] into local variable localvar

• set:
[address] := val
places the value val into the square at [address]; val may be an immediate
value or the value of a local variable.

In order to reason about the arrangement of machinery on the factory floor, we
formalise its state. In this case, the state is a mapping from an index to the contents
of the square it corresponds to. First, we know the types of machinery that can be
placed in a square, thus we can define the square’s contents as a data type:

datatype contents =
Empty

| RedPainter
| BluePainter
| GreenPainter
| Source
| Sink

Second, we know the index is between 0 and 15, containing exactly four bits
of information. Let us represent it as 4 word, i.e. a four-bit number. The state of
the factory then has type 4 word ⇒ contents. Since Empty is part of the contents
description, we use a total function. An empty factory floor can then be defined as
λi. Empty

Finally, in order to reason about effects of operations on the state, we add a
predicate for describing the value at a given index. In the current formalisation, the
value at index p in state s is simply s p. For v such that s p = v, we say that p maps
to v in s, denoted by (p ↪→ v) s.

_ ↪→ _ :: 4 word ⇒ contents ⇒ (4 word ⇒ contents) ⇒ bool

p ↪→ v ≡ λs. s p = v

4.1. AN INFORMAL INTRODUCTION TO SEPARATION LOGIC 33

Hoare triples are assertions on sequential programs. They feature a precondition,
the program being executed, and a postcondition which holds after the program is
executed provided the precondition held before the program was executed. Using
our new maps-to predicate, we can define the semantics for our factory floor get
and set operations as the Hoare triples in Figure 4.3. The pre- and postconditions of
these triples talk about the factory floor, thus are predicates on the state and hence
have the type (4 word ⇒ contents) ⇒ bool

• {p ↪→ v} var := [p] {λs. var = v}

• {λs. True} [p] := var {p ↪→ var}

Figure 4.3: Factory operational semantics for the naïve model.

The factory floor is really a metaphor for (computer) memory; in this case, a
4-bit memory space. An index p refers to [p], and [p] contains some value v. This is
analogous to a memory pointer p pointing to memory location [p] containing the
value v. We will henceforth refer to an index of a square on the factory floor as a
pointer to that square.

4.1.2 Pointer Aliasing

One of the big problems faced when reasoning about pointers and memory is pointer
aliasing. We will now demonstrate this problem in the context of the factory floor.

The Problem

Suppose we have two pointers. Pointer p points to a production unit painting objects
red:

Pointer q also points to a production unit painting objects red:

Suppose new orders come in, requiring our production units to be converted such
that the unit at p paints objects green, and the unit at q paints objects blue. We now
need to change the painters at [p+1] and [q+1] to GreenPainter and BluePainter.
We issue the following two operations in sequence, with the following semantics:

{p + 1 ↪→ RedPainter b∧c q + 1 ↪→ RedPainter}
[p+1] := GreenPainter ;
[q+1] := BluePainter
{p + 1 ↪→ GreenPainter b∧c q + 1 ↪→ BluePainter}

where b∧c is lifted conjunction:
P b∧c Q ≡ λx. P x ∧ Q x

34 CHAPTER 4. SEPARATION LOGIC

There is a problem here though. The Hoare triple as written is incorrect. We
assumed the situation in Figure 4.4. However, if p and q both point to the same
assembly unit, the result of the two operations will instead be the undesired post-
condition of

{p + 1 ↪→ BluePainter b∧c q + 1 ↪→ BluePainter}

This is known as the aliasing problem.

Figure 4.4: Two production units pointed to by p and q.

We can solve this particular problem by changing the precondition to require
distinct p and q:

{λs. (p + 1 ↪→ RedPainter b∧c q + 1 ↪→ RedPainter) s ∧ p 6= q}

The requirement of stating that pointers point to distinct resources is easy when
reasoning about only two pointers. Dealing with more becomes cumbersome.
Furthermore, if we build up more complex structures than those consisting of only
one factory square, we need to worry about overlap even if the pointers to their
beginning are distinct.

For more complex structures in memory, the proof obligations increase. For
instance, in a classical tree structure, one must not only ensure that a parent node
does not point to the same child node twice, but that no two parents point to the
same child.

The Separation Logic Approach

What if we had the ability to state our assumptions in a manner that directly implied
that pointers point to distinct, non-overlapping memory areas? Separation logic
provides this by local reasoning on partial heaps. In our factory example, this
means considering areas of the factory floor separately, applying each predicate to a
different area of the floor.

In Figure 4.4 we clearly see two areas of factory floor, one for each production
unit. To solve the aliasing problem in our factory, we can simply divide the factory
floor in two and “give” each maps-to predicate its own piece.

Since our representation of the state of the factory floor is currently a total
function from indices to valid values, we cannot perform this division. To be able to
describe parts of the factory floor by themselves, we need the factory floor state to
become a partial function.

We create partial functions from total functions by making their range the option
type:

datatype ′a option = None | Some ′a

4.1. AN INFORMAL INTRODUCTION TO SEPARATION LOGIC 35

such that in a partial function f, for some x, f x is either None or bvc. The function’s
domain is the set of all arguments for which the function results in bvc:

dom f = {a | f a 6= None}

We change the type of the factory floor state to 4 word ⇒ contents option,
which we will write as 4 word ⇀ contents. Now we can refer to specific areas of
the factory floor. In separation logic, this partial function of resources to values is
referred to as a heap. Our factory floor is therefore a heap.

We can now divide the factory floor into areas, but we still need the ability to say
that predicates hold on separate areas. In other words, instead of saying “p maps to
_ and q maps to _”, we say “p maps to _ and separately q maps to _”. In separation
logic, this alternate form of conjunction is referred to as separating conjunction. We
will denote it as ∧∗. It is also sometimes referred to as “star” [48].

For (P ∧∗ Q) h to be true for a heap h, we must be able to break h up into two
partial heaps h0 such that:

• Their domains must be disjoint:
h0 ⊥ h1, where h0 ⊥ h1 ≡ dom h0 ∩ dom h1 = ∅

• When joined together they must re-form h:
h0 ++ h1 = h

where
h0 ++ h1 = (λx. case h1 x of None ⇒ h0 x | byc ⇒ byc)

• P h0

• Q h1

This results in the formal definition in Figure 4.5. In the case of our factory, we
instantiate the heap type ′a ⇀ ′b with our factory floor type: 4 word ⇀ contents.

_ ∧∗ _ :: ((′a ⇀ ′b) ⇒ bool) ⇒ ((′a ⇀ ′b) ⇒ bool) ⇒ (′a ⇀ ′b) ⇒ bool

P ∧∗ Q ≡ λh. ∃h0 h1. h0 ⊥ h1 ∧ h = h0 ++ h1 ∧ P h0 ∧ Q h1

Figure 4.5: Separating conjunction

Our old maps-to operator dealt with the total function representing the factory
floor. We need to change it to deal with parts of the floor, i.e. partial heaps:

_ ↪→ _ :: 4 word ⇒ contents ⇒ (4 word ⇀ contents) ⇒ bool

p ↪→ v ≡ λh. h p = bvc

Using separating conjunction, we can rephrase our problematic statement from
the beginning of this section (4.1.2) correctly as:

{p + 1 ↪→ RedPainter ∧∗ q + 1 ↪→ RedPainter}
[p+1] := GreenPainter ;
[q+1] := BluePainter
{p + 1 ↪→ GreenPainter ∧∗ q + 1 ↪→ BluePainter}

Now if p=q, we cannot construct two partial heaps such that [p] is in one and [q] in
the other, resulting in a false precondition for the Hoare triple.

36 CHAPTER 4. SEPARATION LOGIC

The separating conjunction concept scales to an arbitrary number of pointers
and removes the possibility of overlap, significantly reducing the work needed to
reason about aliasing of locations on the heap.

4.1.3 Local Reasoning and Memory Safety

At the beginning of this chapter, we mentioned local reasoning, i.e. reasoning about
precisely what changes, but also what does not change. In the previous example,
we divide the heap into two sub-heaps: one for p and one for q. However, the size
of these partial heaps is not strictly constrained, and thus says nothing about what
our program has not changed. For instance, adding superfluous information to the
precondition still results in a true statement:

{p + 1 ↪→ RedPainter ∧∗ q + 1 ↪→ RedPainter ∧∗ t ↪→ Empty}
[p+1] := GreenPainter ;
[q+1] := BluePainter
{p + 1 ↪→ GreenPainter ∧∗ q + 1 ↪→ BluePainter}

The postcondition can talk about a completely different heap than the assumption.
We can also omit information, as the following is likewise correct:

{p + 1 ↪→ RedPainter}
[p+1] := GreenPainter ;
[q+1] := BluePainter
{p + 1 ↪→ GreenPainter}

These truths do not form a basis for local reasoning, as our weak maps-to predicate,
apart from the mapping it talks about, will happily consume any information about
other areas of the heap. The resulting rules have imprecise preconditions and
weak postconditions. They combine poorly and complicate the creation of tools
for automated reasoning, such as weakest-precondition or verification condition
generators.

In order to address this shortcoming, we must restrict our maps-to predicate to
only the area of the heap that contains the mapping itself. In other words, a mapping
of address 42 to value 7 must only be true on a partial heap whose domain is {42}

and whose value at [42] is 7. Making the heap smaller or bigger must make the
predicate false. The predicate in Figure 4.6 is the basic maps-to predicate that forms
the basis of separation logic.

_ 7→ _ :: 4 word ⇒ contents ⇒ (4 word ⇀ contents) ⇒ bool

p 7→ v ≡ λh. h p = bvc ∧ dom h = {p}

Figure 4.6: Basic maps-to predicate of separation logic.

Using a precise version of the maps-to predicate allows us to reason about
programs in a modular fashion, focusing on their local properties.

For example, in Figure 4.7 we restate the rule about placing machinery on the
factory floor, the assignment rule, using the new maps-to predicate where, for
convenience, p 7→ - means “maps to anything”, i.e. λh. ∃v. (p 7→ v) h

This rule clearly states that, given a heap with only [p], the assignment will set
[p] to var and do nothing else. In terms of the factory, this will place object var at the

4.1. AN INFORMAL INTRODUCTION TO SEPARATION LOGIC 37

{p 7→ -}
[p] := var
{p 7→ var}

Figure 4.7: Updated assignment rule.

square on the factory floor at index p. We can be certain that the assignment is both
unaffected by and does not affect the rest of the factory floor.

Most rules of Hoare Logic apply to separation logic. However, given separation
logic predicates P, Q and R, the rule of constancy does not hold:

{P} program {Q}

{P b∧c R} program {Q b∧c R}

By separation logic predicates we mean any predicate that restricts the size of
heaps it is true on. Combining such predicates with normal conjunction does not
work, e.g. our precise maps-to predicate is true only for heaps with a domain of
cardinality 1. Combining it with another precise maps-to predicate may result in
requiring a domain of two addresses, but of cardinality 1, which is impossible. The
rule of constancy is only true if R is pure, i.e. does not make any assertion about the
heap.

{P} program {Q}

{P ∧∗ R} program {Q ∧∗ R}

Figure 4.8: The frame rule.

What separation logic offers in place of the constancy rule is the frame rule
(Figure 4.8). The frame rule, in conjunction with separation logic maps-to predicates
allows us to effectively combine programs via local reasoning. The R in the frame
rule no longer needs to be pure, but it must talk about a separate region of the heap
from P and Q.

We will now revisit the problematic statement from the beginning of this section
(4.1.2):

[p+1] := GreenPainter ;
[q+1] := BluePainter

We can instantiate our new assignment rule to the two assignment statements,
we get the following Hoare triples:

{p + 1 7→ RedPainter}
[p+1] := GreenPainter
{p + 1 7→ GreenPainter}

{q + 1 7→ RedPainter}
[q+1] := BluePainter
{q + 1 7→ BluePainter}

We apply the frame rule to both:

{p + 1 7→ RedPainter ∧∗ R}
[p+1] := GreenPainter
{p + 1 7→ GreenPainter ∧∗ R}

{q + 1 7→ RedPainter ∧∗ R ′}
[q+1] := BluePainter
{q + 1 7→ BluePainter ∧∗ R ′}

We then match up the postcondition of the first assignment with the precondition of
the second:

38 CHAPTER 4. SEPARATION LOGIC

{p + 1 7→ RedPainter ∧∗ q + 1 7→ RedPainter}
[p+1] := GreenPainter
{p + 1 7→ GreenPainter ∧∗ q + 1 7→ RedPainter}

{q + 1 7→ RedPainter ∧∗ p + 1 7→ GreenPainter}
[q+1] := BluePainter
{q + 1 7→ BluePainter ∧∗ p + 1 7→ GreenPainter}

As the postcondition of the first assignment is now the precondition of the second,
we can combine the two statements into one statement that only touches the distinct
addresses [p+1] and [q+1]:

{p + 1 7→ RedPainter ∧∗ q + 1 7→ RedPainter}
[p+1] := GreenPainter
{p + 1 7→ GreenPainter ∧∗ q + 1 7→ RedPainter}
[q+1] := BluePainter
{p + 1 7→ GreenPainter ∧∗ q + 1 7→ BluePainter}

Note that during this procedure, we did not mention the aliasing problem at all.

4.2 Requirements of Being a Separation Logic

Our informal example gives an intuition for the goals and approaches of separation
logic. It does not, however, qualify what exactly constitutes a separation logic.
Calcagno et al. [13] provide a formal definition and requirements. This section
attempts to summarises those requirements and discuss the features relevant to our
work.

Firstly, the concept of separation must talk about the management of a set of
independent, separable resources. Each of these resources is optionally assigned a
value. We call the partial function from the domain of resources onto the range of
possible values the state. For example, in Section 4.1.3 we used a partial memory-
to-value heap as the state. The logic must define the notion of disjointness of states
(denoted in our work as ⊥), as well as state composition (++), with conditions as per
Definition 4.2.1.

Definition 4.2.1 Commutativity and associativity of the composition operator when applied
to disjoint states. s ++ s ′ denotes the composition of states s and s ′. s ⊥ s ′ denotes the
disjointness of states s and s ′.

s ⊥ s ′ −→ s ++ s ′ = s ′ ++ s

s0 ⊥ s1 ∧ s1 ⊥ s2 −→ (s0 ++ s1) ++ s2 = s0 ++ (s1 ++ s2)

Secondly, in order to be able to accurately perform local reasoning on states and
their sub-states, the basic predicates used should restrict their scope to only be true
on states of a specific, minimal, state. For example, the precise mapping predicate
we introduced in Section 4.1.3, Figure 4.6 has this property.

Finally, we must satisfy requirements for local reasoning. These requirements
apply to the semantics of the programming language used in the logic. Calcagno et
al. [13] define them as safety monotonicity and the frame property. To show these for
all possible statements in a programming language, the language must be aware of
the allocation of resources in the state. In other words, attempts to access resources

4.2. REQUIREMENTS OF BEING A SEPARATION LOGIC 39

which are not part of the current state must result in failure of the program. Let
us denote the execution of a program c on state s as c s. If there are insufficient
resources to complete the execution, we will indicate failure as c s = Abort. If the
program succeeds, it returns a new, valid (non-abort) state: c s = Valid s ′.

Safety monotonicity, defined in Definition 4.2.2, states that if a program in the
language succeeds on some state, i.e. has all the resources necessary to execute, then
enlarging the state with more resources will have no effect upon the program’s out-
come. The frame property, defined in Definition 4.2.3, states that given a successful
execution of a program on a small state and also on a larger state, we can trace back
the execution to local reasoning about execution on the smaller state.

Definition 4.2.2 Safety monotonicity for a program c.

[[c s0 6= Abort; s0 ⊥ s1]] =⇒ c (s0 ++ s1) 6= Abort

Definition 4.2.3 The frame property for a program c.

[[c s0 6= Abort; c (s0 ++ s1) = Valid s ′; s0 ⊥ s1]]

=⇒ ∃s0
′. s ′ = s0

′ ++ s1 ∧ c s0 = s0
′

Safety monotonicity and the frame property can be defined and shown to hold
for memory-safe language semantics. Memory safety means awareness of which
memory areas are allocated/accessible and which are not. This awareness allows
abnormal termination upon accessing an unallocated memory area, for example
Abort as in Definition 4.2.2. In such a semantics we can reason about addresses in a
heap as being “allocated” or “valid” and derive local rules for the exact amount of
allocated addresses a program needs to execute successfully, hence the size of the
heap.

Unfortunately, not all programming language semantics involve memory safety.
For example, the C programming language standard defines accesses to unallocated
memory as undefined behaviour. In practice, nearly all implementations of the C
programming language do not keep track of allocated memory. All reads and
writes to memory are treated in an identical fashion and performed, regardless
of allocation status. In this case, a formalisation of C that results in Abort upon
accessing unallocated memory would not be a true reflection of C semantics, while
a formalisation which allows arbitrary memory reads and writes will neither have
safety monotonicity nor the frame property.

Definition 4.2.4 The frame rule for a program c and heap predicates P, Q and R.

{P} c {Q}

{P ∧∗ R} c {Q ∧∗ R}

Fortunately, there is a way out. Safety monotonicity and the frame property can
be shown to be equivalent to the frame rule, Definition 4.2.4. This means that even
if we cannot prove safety monotonicity and the frame property for the language
semantics itself, we can still prove locality by showing the frame rule holds for
specific programs. In this manner, we can prove the frame rule on a function-by-
function or component-by-component basis, and then compose them in the manner
demonstrated in Section 4.1.2.

40 CHAPTER 4. SEPARATION LOGIC

4.3 Summary

Beginning with an informal setting, we have now introduced the core concepts of
what makes a separation logic and hopefully imparted why it can be useful.

To summarise, we can think of a separation logic is a logic where:

• Predicates about the heap specify precisely the size and contents of the heap
on which they hold.

• Heap disjunction (_ ⊥ _) and heap composition (_ ++ _) operators are defined.
The separating conjunction operator is defined using these.

• The safety monotonicity and frame property hold on the language in which
programs are written, or at least they can be proven for each program in the
language. As a result, the frame rule holds.

The power of separation logic lies in its local reasoning. By defining what
changes in a precise way, we can infer what does not change. As a result, the benefits
of picking the building blocks well allow for convenient use of modularity in an
environment that involves pointers and raw access to memory.

Chapter 5

Mapped Separation Logic

In the previous two chapters, we introduced the virtual memory abstraction, as well
as separation logic. In this chapter, we outline their combination, the core idea of
our work, into a new logic we call Mapped Separation Logic.

We will analyse the general problem, but instantiate it to a very simple form: a
simplified machine architecture supporting virtual memory, with a one-level page
table. This simplicity allows us to focus on the core issue: the fusion of virtual
memory and separation logic concepts into new predicates; the identification of
what exactly separate means in virtual memory. At the same time, we will identify
the core concepts that will work for other architectures and page table models.

From there we move on to define predicates analogous to those of Separation
Logic, which we then use to perform a small case study using a simple programming
language. We prove that the combination of the language and predicates forms a
separation logic by showing it has safety monotonicity and the frame property, as
required by Calcagno et al. [13].

We have already published most of the work in this chapter as Mapped Separation
Logic [33]. We expand on some points, but our message remains the same.

5.1 Machine Architecture

Our choice of architecture in the case study is a slightly modified 32-bit machine.
That is, the basic unit of data manipulation, the machine word, is 32 bits in size.
Typically, a machine’s registers and pointers to memory are the same size as the
machine word, in this case 32 bits. We follow this scheme, but do not formalise
registers, in favour of focusing specifically on memory.

The non-standard part of our machine setup is the memory layout. While our
memory is still a map from a machine word to a value, we chose a value size of
32-bits, the size of the machine word, rather than the usual 8-bit byte value. This
simplifies assembling pointers from memory values and avoids complications such
as endianness, allowing us better focus on our goal.

5.1.1 Pointers, Addresses and Values

Our 32-bit machine setup means that all pointers will be 32 bits in size. Since the
machine supports virtual memory, it manipulates pointers to both the physical and
virtual address spaces. The former allows direct access to physical memory, while

42 CHAPTER 5. MAPPED SEPARATION LOGIC

the latter involves a translation via the page table, which may fail. For this reason,
although to the machine they are simply 32-bit words, it is important that we never
confuse a virtual pointer with a physical one.

We therefore define two distinct pointer types for any type of address:

datatype ′a pptr_t = PPtr ′a

datatype ′a vptr_t = VPtr ′a

as well as their destructor functions for talking about a physical/virtual address
directly:

pptr_val :: ′a pptr_t ⇒ ′a

pptr_val (PPtr x) = x

vptr_val :: ′a vptr_t ⇒ ′a

vptr_val (VPtr x) = x

The overloaded accessor function ptr_val combines both of the above, working on
either virtual or physical pointers.

Much of the framework presented in this chapter is generic over the size of
addresses and values. For our 32-bit machine we instantiate them as follows:

types addr = 32 word

pptr = addr pptr_t

vptr = addr vptr_t

val = 32 word

In other words: addresses are 32-bit words, pointers are addresses with extra
type information. Values stored in memory are also 32-bit words.

5.1.2 Memory

The addition of virtual memory requires we consider three concepts related to
memory: the physical address space, the virtual address space, and the translation
from virtual to physical addresses.

The physical address space represents the physical memory contained in the
machine. Hence it is map from physical addresses to values. Since we will be
dealing with separation logic concepts, we make it a partial map as in Chapter 4, in
order to talk about specific areas of physical memory in isolation. Physical memory
also represents the resource we will be managing. Therefore, in this chapter we
use the word heap to refer to physical memory. For conciseness we will refer to the
virtual-to-physical translation as the virtual map, and to the virtual address space as
the address space. The relevant types are:

types heap = pptr ⇀ val

vmap = vptr ⇀ pptr

addr_space = vptr ⇀ val

5.1.3 A Page Table

As described in Chapter 3, the page table is an encoding of the translation from
virtual to physical addresses. It resides in physical memory, i.e. the heap, at a location
we call the root.

5.2. SEPARATION LOGIC ASSERTIONS ON VIRTUAL MEMORY 43

In our development, we abstract the concept of the page table as much as
possible, such that our logic remains mostly independent of the particular encoding
used. Our abstract page table interface requires two functions:

ptable_lift :: heap ⇒ pptr ⇒ vmap

ptable_trace :: heap ⇒ pptr ⇒ vptr ⇒ pptr set

Both functions take the physical heap and page table root as parameters. The
result of ptable_lift is the vmap encoded by the page table, whereas ptable_trace returns
for each virtual address vp the set of locations in the page table that are involved in
the lookup of vp. Naturally, for a one-level page table, this set will only have one
element, but other page table models, such as the two-level page table we will use in
Chapter 6, have more complicated lookup paths. In contrast to our earlier work [32],
we do not require an explicit formulation of the page table area in memory.

We will later require five constraints on these two functions. We defer the pre-
sentation of these to Section 5.3 when the associated concepts have been introduced.

As mentioned earlier, we use a simple one-level page table as an example instan-
tiation. As in Chapter 3, Section 3.2.1, it is a contiguous physical memory structure
consisting of an array of machine word pointers, where word 0 defines the physical
location of page 0 in the address space, word 1 that of page 1 and so forth. While
inefficient in terms of storage, it is simple to present and experiment with. The table
is based on an arbitrarily chosen page size of 4096, i.e. 20 bits for the page number
and 12 for the offset. Page table lookup works as expected: we extract the page
number from the virtual address, go to that offset in the page table and obtain a
physical frame number which replaces the top 20 bits of the address:

get_page :: vptr ⇒ 32 word

get_page vp ≡ ptr_val vp >> 12

ptr_remap :: vptr ⇒ 32 word ⇒ pptr

ptr_remap (VPtr vp) pg ≡ PPtr (pg AND NOT 0xFFF OR vp AND 0xFFF)

ptable_lift :: (pptr ⇀ 32 word) ⇒ pptr ⇒ vptr ⇀ pptr

ptable_lift h r vp ≡ case h (r + get_page vp) of None ⇒ None
| Some addr ⇒

if addr !! 0 then Some (ptr_remap vp addr)
else None

ptable_trace :: (pptr ⇀ 32 word) ⇒ pptr ⇒ vptr ⇒ pptr ⇒ bool

ptable_trace h r vp ≡ case h (r + get_page vp) of None ⇒ ∅
| Some addr ⇒ {r + get_page vp}

AND, OR and NOT are bitwise operations on words. The operator >> is bitwise
right-shift on words. The term x !! n stands for bit n in word x. Since the bottom 12
bits of the page table entry are unused, we arbitrarily choose to use bit 0 to denote
whether a page table entry contains a valid mapping.

5.2 Separation Logic Assertions on Virtual Memory

Thus far, we have defined a 32-bit machine and associated concepts. Apart from our
use of the word heap, however, we have not raised any issues related to separation
logic. In this section, we discuss the extension of classical Separation Logic assertions
to hold for a model with virtual memory.

44 CHAPTER 5. MAPPED SEPARATION LOGIC

Figure 5.1: Maps-to assertions on the heap, virtual map and address space.

5.2.1 The Problem

As we mentioned in Chapter 3, a program accesses memory on an architecture
supporting virtual memory via virtual addresses, which involves the translation
mechanism, including lookups in the page table. A separation logic used to reason
about such a program must hence involve the concept of separation between map-
pings of virtual addresses to values. This poses a problem, which we will explain
below.

In Chapter 4, we discussed two central tools of Separation Logic: the separating
conjunction and the frame rule. Separating conjunction P ∧∗ Q is an assertion
on heaps, stating that the heap can be split into two separate parts on which the
conjuncts P and Q hold respectively. We also say P and Q consume disjoint parts of
the heap. Separating conjunction conveniently expresses anti-aliasing conditions.
For an action f , the frame rule allows us to conclude {P ∧∗ R} f {Q ∧∗ R} from
{P} f {Q} for any R. This expresses that the actions of f are local to the heaps
described by P and Q, and can therefore not affect any separate heaps described by
R.

Unfortunately, given the additional layer of indirection provided by virtual
memory, two different virtual addresses may resolve to the same physical address,
which breaks separating conjunction, as on these addresses it does not end up
providing separation. Additionally, although a memory update to the page table
may only locally change one value in physical memory, it might completely change
the view the virtual memory layer provides, affecting a whole number of seemingly
unrelated virtual addresses. A local action might therefore have non-local effects.
This breaks the frame rule. In the remainder of this chapter, we show how to repair
both of these tools while remaining within a virtual memory context.

5.2.2 Slices and the Fractional Heap

As mentioned in the previous section, the common case of reasoning about programs
in virtual memory involves mappings from virtual addresses to values in physical
memory. We can consider such virtual-to-value mappings as the composition of two
other mapping types: the virtual-to-physical mapping, resolving a virtual address
to a physical one, and a physical-to-value mapping, declaring a physical memory
location to hold a particular value. This requires three corresponding maps-to
assertions, shown in Figure 5.1.

As mentioned in Chapter 4, predicates about the heap consume parts of it under
separating conjunction, i.e. if a predicate states something about a part of the heap,
one cannot use separating conjunction to combine it with a predicate involving

5.2. SEPARATION LOGIC ASSERTIONS ON VIRTUAL MEMORY 45

that same part of the heap. In our case, it is quite clear that the physical-to-value
mapping consumes one heap address which contains some value. However, the
question central to the issue is which part of the heap should a virtual-to-physical assertion
consume?

This question determines the meaning of separation between this and other
assertions. Assuming for example a one-level page table where memory location
x encodes the lookup of virtual address vp1 to physical address p2, there are two
cases: (a) the lookup consumes x, or (b) it does not. In case (a) we cannot use
separating conjunction to specify separation of vp1 and another address vp2 if vp2

happens to use the same page table entry x. Typically, many virtual addresses share
an entry in the encoding, and we clearly do not want to exclude this case. The other
extreme, in case (b), would be to say the lookup consumes no resources. In earlier
work [32] we came to the conclusion that this model cannot support the frame rule
for arbitrary programs: a physical write to the page table would be separate to
any virtual-to-physical mapping, but the write might have the non-local effect of
changing that apparently separate mapping.

The only way out, and hence our proposal, is to have a page table lookup
consume only parts of the page table entry involved. Since a page table entry consists
of bytes in physical memory, this can be seen as cutting each physical address, i.e.
heap location, into multiple slices. If a page table lookup, i.e. a virtual-to-physical
mapping, consumes only the parts of the page table entry involved in the lookup,
we can make all memory updates local.

This idea is similar to the model of permissions by Bornat et al. [10] for concur-
rent threads. Their permission model involves mentioning the size of the fraction of
a resource consumed each time a mapping predicate is used, as well as placing infor-
mation on fractional resource usage in the range of the heap. The latter complicates
usage of existing infrastructure of maps provided by tools such as the Isabelle theo-
rem prover, which we use in this work. Although this model will work, we make
two observations. Firstly, the common case for interaction with virtual memory
does not involve manipulation of the page table. Secondly, considering all possible
page table models, there is a finite upper bound on the amount of addresses that can
be sharing a page table entry: 2n, where n is the number of bits in a virtual address.
This upper bound can only arise in the pathological case of a page table in which one
page table entry maps all virtual addresses. These observations allow us to create a
model more optimised for the common case, which we will explain presently. We
maintain the Bornat concept of full permissions being required for writing to the
heap, while allowing reading with only partial access to a heap location.

In the worst-case sharing scenario we outlined above, on a 32-bit machine there
will be 232 virtual addresses whose lookups resolve through the same page table
entry. In terms of resource consumption, we can visualise the situation as follows.
Lookups of all 232 virtual addresses need access to that page table entry in order to
succeed. Dividing the single page table entry into 232 slices and assigning one slice to
each virtual address allows each address’ lookup to use one slice of the entry. At this
point we can start talking about separation. Two virtual-to-physical mappings are
separate if the lookups of the virtual addresses do not use the same slice in the page
table entry. Two physical-to-value mappings are separate if the physical addresses
are distinct. We will address the concept of virtual-to-value mappings later in this
section, as they introduce another issue not directly relevant to discussion of slices.

46 CHAPTER 5. MAPPED SEPARATION LOGIC

Figure 5.2: The concept of two virtual-to-value mappings being separate in
our framework despite being mapped through the same page table entry by
virtue of using separate slices of the page table entry (the contested region in
the middle).

To conclude the pathological example, we observe that if there are 232 virtual
addresses and 232 slices of the page table entry, we can trivially assign them one-
for-one. Since we do not know where in physical memory this entry is located, any
physical address in the heap may be a potential page table entry.

for any physical address p we need to be able to address the slice of p responsible
for virtual address 0, 1, . . . :: vptr etc. Thus, the domain of the heap becomes
pptr × vptr and (p, vp) stands for the vp-slice of physical address p. We call this a
fractional heap:

types fheap = (pptr × vptr) ⇀ val

Applying this idea of a fractional heap to other page table models allows us
to conclude that two virtual-to-physical or virtual-to-value mappings are separate
even if they are mapped by the same page table entry, provided that they do not
consume the same slices of the entry. An intuitive representation of this situation
appears in Figure 5.2. The common case of memory access in a virtual memory
system does not involve manipulating or accessing the page table directly. In these
cases, we do not need to mention how much and which part of a page table entry
a virtual-to-physical mapping consumes. It is always the same: lookup of virtual
address vp consumes slice vp of every physical address required for the lookup, i.e.
of the page table trace. Thus the memory footprint of page table lookups has a direct
formulation in our model.

The consequences of this are three-fold. Firstly, the basic definition of heap
merge (++), domain, and disjointness (⊥) remain completely standard:

_ ++ _ :: (′a ⇀ ′b) ⇒ (′a ⇀ ′b) ⇒ ′a ⇀ ′b

h1 ++ h2 ≡ λx. case h2 x of None ⇒ h1 x | Some y ⇒ Some y

dom :: (′a ⇀ ′b) ⇒ ′a ⇒ bool

dom h ≡ {x | h x 6= None}

_ ⊥ _ :: (′a ⇀ ′b) ⇒ (′a ⇀ ′b) ⇒ bool

h0 ⊥ h1 ≡ dom h0 ∩ dom h1 = ∅

Secondly, in the cases when we do manipulate the page table, we will need to deal
with all slices of a page table entry, including those that are not involved in resolving
any virtual addresses. In our one-level page table example, each page table entry

5.2. SEPARATION LOGIC ASSERTIONS ON VIRTUAL MEMORY 47

resolves only 4096 virtual addresses, much smaller than the worst-case scenario of
232, meaning we need to keep track of the extra slices. This is similar to making sure
that the permissions add up to 1 in the Bornat model.
Finally, the fractional heap allows the possibility of expressing an invalid memory
state: two distinct slices of the same physical address mapping to distinct values.
As we require full permissions, i.e. presence of all slices of a physical address to
perform a write, this does not pose a problem.

5.2.3 Assertions

Now that we have a fractional heap to work with, we can start building up the
three maps-to assertions mentioned in Section 5.2.2. Although a fractional heap is
sufficient to express the state of physical memory of a system, a maps-to assertion,
in particular one related to virtual addresses, needs the physical location of the page
table that will be used for lookups:

types map_assert = (fheap × pptr) ⇒ bool

The Separation Logic connectives for empty heap, true, and conjunction stay
almost unchanged. We additionally supply the page table root r.

� :: (′a × ′b ⇀ ′c) × ′d ⇒ bool

� ≡ λ(h, r). h = empty

> :: (′a × ′b ⇀ ′c) × ′d ⇒ bool

> ≡ λ(h, r). True

_ ∧∗ _ :: ((′a × ′b ⇀ ′c) × ′d ⇒ bool)
⇒ ((′a × ′b ⇀ ′c) × ′d ⇒ bool) ⇒ (′a × ′b ⇀ ′c) × ′d ⇒ bool

P ∧∗ Q ≡ λ(h, r). ∃h0 h1. h0 ⊥ h1 ∧ h = h0 ++ h1 ∧ P (h0, r) ∧ Q (h1, r)

Since the definitions are almost unchanged it is unsurprising that the usual prop-
erties such as commutativity and associativity and distribution over lifted normal
conjunction continue to hold.

The interesting, new assertions are the three maps-to statements that we alluded
to in Figure 5.1. Corresponding to the traditional Separation Logic predicate is the
physical-to-value mapping:

_ 7→p _ :: pptr ⇒ 32 word ⇒ fheap × pptr ⇒ bool

p 7→p v ≡ λ(h, r). (∀vp. h (p, vp) = Some v) ∧ dom h = {p} × UNIV

For this assertion, we require that all slices of the heap at physical address p map
to the value v and that the domain of the heap is exactly the set of all pairs with p

as the first component (UNIV is the universe set). This predicate would typically be
used for direct memory access in devices or for low-level kernel operations.

The next assertion is the virtual-to-physical mapping:

_ 7→v _ :: vptr ⇒ pptr ⇒ fheap × pptr ⇒ bool

vp 7→v p ≡ λ(h, r).
let heap = h_view h vp; vmap = ptable_lift heap r
in vmap vp = Some p ∧ dom h = ptable_trace heap r vp × {vp}

where h_view fh vp ≡ λp. fh (p, vp). Here, we first lift the page table out of the
heap to get the abstract vmap which provides us with the translation from vp to p.

48 CHAPTER 5. MAPPED SEPARATION LOGIC

Additionally, we assert that the domain of the heap is the vp slice of all page table
entries that are involved in the lookup. With h_view we project out the vp slice for all
addresses so that the page table lift function can work on a traditional pptr ⇀ val

heap.
Putting the two together, we arrive at the virtual-to-value mapping that corre-

sponds to the level that most of the operating system and user code will be reasoning
at.

_ 7→ _ :: vptr ⇒ 32 word ⇒ fheap × pptr ⇒ bool

vp 7→ v ≡ b∃ cp. vp 7→v p ∧∗ p 7→p v

where b∃ cx. P x ≡ λs. ∃x. P x s. The predicate implies that the lookup path
is separate from the physical address p the value v is at. This is the case for all
situations we have encountered so far and, as the case study shows, works for page
table manipulations as well. It is possible to define a weaker predicate without the
separation, but this creates a special case for the assignment rule: if a write changes
the page table for the address the write goes to, the post condition would have to
take the change in the translation layer into account directly.

The usual variations on the maps-to predicate can be defined in the standard
manner again for virtual-to-value mappings:

_ 7→ - :: vptr ⇒ fheap × pptr ⇒ bool

p 7→ - ≡ b∃ cv. p 7→ v

_ ↪→ _ :: vptr ⇒ 32 word ⇒ fheap × pptr ⇒ bool

p ↪→ v ≡ p 7→ v ∧∗ >
_ { 7→} - :: (vptr ⇒ bool) ⇒ 32 word ⇒ fheap × pptr ⇒ bool

p { 7→} - ≡ fold_image op ∧∗ (λx. x 7→ -) � S

The latter definition refers to a finite set S of addresses. It states that all of the
elements map separately by folding the ∧∗ operator over S and the maps-to predi-
cate. There are analogous variations for physical-to-value and virtual-to-physical
mappings.

We have proved that our basic mappings 7→p and 7→v are domain exact [48].
Note that, although not domain exact due to the existential quantifier on p, the
virtual-to-value mapping is still precise [45]:

precise P ≡ ∀Q R. (P ∧∗ Q b∧c R) = ((P ∧∗ Q) b∧c (P ∧∗ R))

That is, it distributes over conjunction in both directions. We write P b∧c Q for the
lifted conjunction of assertions P and Q: P b∧c Q ≡ λx. P x ∧ Q x

5.3 The Logic

Having introduced the basic and mapping predicates, we can now build a separation
logic. To do so, we require a programming language. This section introduces a
simple, heap based programming language with pointer arithmetic to analyse how
the assertions presented above can be developed into a full Separation Logic. For
the meta-level proofs in this chapter, we provide a deep embedding of the language
into Isabelle/HOL. The language is standard, with skip, if, while, and assignment.
The WHILE and IF statements potentially read from virtual memory in their guards.
Assignment is the most interesting: it accesses memory through the virtual memory
layer and can potentially modify this translation by writing to the page table. We

5.3. THE LOGIC 49

datatype aexp =
HeapLookup aexp

| BinOp (val ⇒ val ⇒ val) aexp aexp
| UnOp (val ⇒ val) aexp
| Const val

datatype com =
SKIP

| aexp := aexp
| com; com
| IF bexp THEN com ELSE com
| WHILE bexp DO com

datatype bexp =
BConst bool

| BComp (val ⇒ val ⇒ bool) aexp aexp
| BBinOp (bool ⇒ bool ⇒ bool) bexp bexp
| BNot bexp

Figure 5.3: Syntax of the heap based WHILE language.

leave out the simpler physical write access for the presentation here. It would be
easy to add and does not increase the complexity of the language.

Figure 5.3 shows the Isabelle datatypes that make up the syntax of the language.
Note that the left hand side of assignments can be an arbitrary arithmetic expression.
For simplicity, we identify values and pointers in this language and admit arbitrary
HOL functions for comparison and arithmetic expressions. The program states
are the same states that the separation assertions work on. To keep the number of
statements small, we only provide the more complicated case of virtual access: even
low-level page table manipulations are translated.

The semantics of boolean and arithmetic expressions is shown in Figure 5.4.
We write [[B]]b for the meaning of boolean expression B as a partial function from
program state to bool. Analogously [[A]] is a partial function from state to values. All
of these are straightforward, only heap lookup deserves more attention.

Heap lookup only succeeds if the address the argument of the lookup evaluates
to virtually maps to a value. This means that the appropriate slices that are involved
in the page table lookup as well as the full cell of the target in physical memory
must be available in the domain of the heap. In any execution, there will always
be full memory cells available, but using our assertions from above we are able to
make finer-grained distinctions during program proofs. The function

as_ view :: fheap × pptr ⇒ vptr ⇀ 32 word

as_ view (fh, r) vp ≡ (let hp = h_view fh vp in ptable_lift hp r B hp) vp

uses h_view to read the value from the heap after the address has been translated, and

_ B _ :: (′a ⇀ ′b) ⇒ (′b ⇀ ′c) ⇒ ′a ⇀ ′c

f B g ≡ λx. case f x of None ⇒ None | Some y ⇒ g y

to compose the two partial functions.
Finally, Figure 5.5 shows a big-step operational semantics of commands in the

language. We write 〈c,s〉 → s ′ if command c, started in s, evaluates to s’. As
usual, the semantics is the smallest relation satisfying the rules of Figure 5.5. Non-

50 CHAPTER 5. MAPPED SEPARATION LOGIC

[[Const c]] s = Some c

[[HeapLookup vp]] s = case [[vp]] s of None ⇒ None
| Some v ⇒

if (VPtr v ↪→ -) s then as_view s (VPtr v)
else None

[[BinOp f e1 e2]] s = case ([[e1]] s, [[e2]] s) of

(bv1c, bv2c) ⇒ bf v1 v2c | _ ⇒ None

[[UnOp f e]] s = case [[e]] s of None ⇒ None | Some v ⇒ Some (f v)

[[BConst b]]b s = Some b

[[BComp f e1 e2]]b s = case ([[e1]] s, [[e2]] s) of

(bv1c, bv2c) ⇒ bf v1 v2c | _ ⇒ None

[[BBinOp f e1 e2]]b s = case ([[e1]]b s, [[e2]]b s) of

(bv1c, bv2c) ⇒ bf v1 v2c | _ ⇒ None

[[BNot b]]b s = case [[b]]b s of None ⇒ None | Some v ⇒ Some (¬ v)

Figure 5.4: Semantics of arithmetic and boolean expressions.

termination is modelled by absence of the transition from the relation. In contrast
to this, we model memory access failure explicitly by writing 〈c,s〉 → None, and
we do not allow accessing unmapped pages. On hardware, this would lead to a
page fault and the execution of a page fault handler. This can also be modelled by
making the assignment statement a conditional jump to the page fault handler, or
with an abstraction layer showing that the page fault handler always establishes a
known good state by mapping pages in from disk. We follow the lead of the seL4
microkernel [16, 17] verification project [31] in wanting to show absence of page
faults in the kernel itself, hence our stricter model. Excluding the conditional jump
is no loss of generality as we already have IF statements in the language.

As with arithmetic expressions, the most interesting rule in Figure 5.5 is assign-
ment which involves heap access and which we will explain below. In the other
rules, we abbreviate [[b]]b s = bTruec with s, and [[b]]b s = bFalsec with ¬ s.
Failure in any part of the execution leads to failure of the whole statement.

The assignment rule in the top right corner of Figure 5.5 requires that both the
arithmetic expressions for the left and right hand side evaluate without failure. The
left hand side is taken as a virtual pointer, the right hand side as the value being
assigned. The assignment succeeds if the virtual address vp is mapped and allocated.
We use the notation s [vp,- 7→ v] to update with v all slices in the heap belonging
to the physical address that vp resolves to. Since heap writes always update such
full cells, all heaps in executions will only ever consist of full cells and are thus
consistent with the usual, non-sliced view of memory. Slices are a tool for assertions
and proofs only.

Having shown the semantics, we can now proceed to defining Hoare triples.
Validity is the usual:

{|P|} c {|Q|} ≡ ∀s s ′. 〈c,s〉 → s ′ ∧ P s −→ (∃r. s ′ = Some r ∧ Q r)

We do not define a separate syntactic Hoare calculus. Instead, we define validity
only and then derive the Hoare rules as theorems in Isabelle/HOL directly. Figure 5.6
shows the rules we have proved for this language. Again, the rules for IF, WHILE,

5.3. THE LOGIC 51

〈SKIP,s〉 → Some s

[[lval]] s = Some vp [[rval]] s = Some v (VPtr vp ↪→ -) s

〈lval := rval ,s〉 → Some (s [VPtr vp,- 7→v v])

[[lval]] s = None ∨ [[rval]] s = None

〈lval := rval ,s〉 → None

[[lval]] s = Some vp ¬ (VPtr vp ↪→ -) s

〈lval := rval ,s〉 → None

〈c0,s〉 → Some s ′ ′ 〈c1,s
′ ′〉 → s ′

〈c0 ; c1,s〉 → s ′
〈c0,s〉 → None

〈c0 ; c1,s〉 → None

 s 〈c0,s〉 → s ′

〈IF b THEN c0 ELSE c1,s〉 → s ′
¬ s 〈c1,s〉 → s ′

〈IF b THEN c0 ELSE c1,s〉 → s ′

[[b]]b s = None

〈IF b THEN c0 ELSE c1,s〉 → None

¬ s

〈WHILE b DO c,s〉 → Some s

 s 〈c,s〉 → Some s ′ ′ 〈WHILE b DO c,s ′ ′〉 → s ′

〈WHILE b DO c,s〉 → s ′

 s 〈c,s〉 → None

〈WHILE b DO c,s〉 → None

[[b]]b s = None

〈WHILE b DO c,s〉 → None

where
(h, r) [vp,- 7→v v] ≡ case vmap_view (h, r) vp of Some p ⇒ (h [p,- 7→ v], r)

vmap_view (h, r) vp ≡ ptable_lift (h_view h vp) r vp

h [p,- 7→ v] ≡ λp ′. if fst p ′ = p then Some v else h p ′

Figure 5.5: Big-step semantics of commands.

etc., are straightforward and the same as in a standard Hoare calculus. We write
P b−→c Q ≡ ∀s. P s −→ Q s for lifted implication, and «b» s to denote that [[b]]b

s 6= None. The precondition P in the IF and WHILE case must be strong enough to
guarantee failure free evaluation of the condition b. The lifting rules for conjunction
and disjunction, as well as the weakening rule are easy to prove, requiring only
the definition of validity and separating conjunction. The interesting cases are the
assignment rule and the frame rule.

The assignment rule is more complex looking than the standard rule of Separa-
tion Logic. Here, both the left and right hand side of the assignment are arbitrary
expressions, potentially including heap lookups that need to be evaluated first. This
is the reason for the additional P conjunct separate from the basic pointer mapping.
It is not an artifact of virtual memory, but one of expression evaluation only. In
essence, this is a rule schema. P can be picked to be just strong enough for the
evaluation of the expressions to succeed. For instance, if the left hand side were to
contain one heap lookup for location x only, we would choose P to be of the form
x 7→ r. The rule is sound for too strong and too weak P: either the precondition
is merely stronger than it needs to be, or P is too weak to support the expression
evaluation conjunct and the precondition as a whole becomes false.

The proof of the assignment rule proceeds by unfolding the definitions and
observing that the postcondition is established by the memory update, noting the
fact that the ptable_trace from the precondition fully accounts for all page table entries

52 CHAPTER 5. MAPPED SEPARATION LOGIC

{|P|} SKIP {|P|}
{|P|} c {|Q|} P ′ b−→c P Q b−→c Q ′

{|P ′|} c {|Q ′|}

{|P b∧c |} c1 {|Q|} {|P b∧c ¬|} c2 {|Q|}
{|P b∧c «b»|} IF b THEN c1 ELSE c2 {|Q|}

{|P b∧c |} c {|P|} P b−→c «b»

{|P|} WHILE b DO c {|P b∧c ¬|}
{|P|} c1 {|Q|} {|Q|} c2 {|R|}

{|P|} c1 ; c2 {|R|}

{|P|} c {|Q|} {|R|} c {|S|}
{|P b∧c R|} c {|Q b∧c S|}

{|P|} c {|Q|} {|R|} c {|S|}
{|P b∨c R|} c {|Q b∨c S|}

{|(VPtr vp 7→ - ∧∗ P) b∧c [[l]] = bvpc b∧c [[r]] = bvc|}
l := r

{|VPtr vp 7→ v ∧∗ P|}

{|P|} c {|Q|}
{|P ∧∗ R|} c {|Q ∧∗ R|}

Figure 5.6: The proof rules for Mapped Separation Logic.

that are relevant in the postcondition and that P is preserved, because it is separate
from the heap in which the update occurs. Since the physical address of the write
is separate from the page table lookup for this address and from P, the translation
layer for their heaps is not affected by the write. To reason about page table updates
we need a slightly stronger rule that unfolds the virtual-to-value mapping and lets
us talk about the physical address p:

{|(VPtr vp 7→v p ∧∗ p →p - ∧∗ P) b∧c [[l]] = bvpc b∧c [[r]] = bvc|}
l := r

{|VPtr vp 7→v p ∧∗ p 7→p v ∧∗ P|}

Reasoning with the new mapping predicates is similar to abstract-predicate style
reasoning [46] if we never unfold their definitions in client proofs. As we will see in
the case study, we only need to do this locally if we are reasoning about changes
to the page table and we are interested in the page that is being modified. This
obviously heavily depends on the page table encoding. Application level reasoning
can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [13] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting, our
separation algebra is the common heap monoid where the binary operation is heap
merge lifted to the heap × pptr type. Our definition of separating conjunction then
coincides with the one in the framework, and to show that our logic is a Separation
Logic, we only need to show that all actions in the programming language are
local. Locality is equivalent to the combination of safety monotonicity and the frame
property [13]. In our setting, these two are:

Theorem 5.3.1 (Safety Monotonicity) If a small state provides enough resources to run
a command c, then so does a larger state. Formally, the converse is easier to state:

5.4. CASE STUDY 53

ptable_lift (h0 ++ h1) r vp = Some p h0 ⊥ h1

ptable_lift h0 r vp = Some p ∨ ptable_lift h0 r vp = None

ptable_lift h0 r vp = Some p h0 ⊥ h1

ptable_lift (h0 ++ h1) r vp = Some p

get_page vp = get_page vp ′

ptable_lift h r vp = Some val ptable_lift h ′ r vp ′ = Some val ′

ptable_trace h r vp = ptable_trace h ′ r vp ′

p /∈ ptable_trace h r vp ptable_lift h r vp = Some p

ptable_lift (h(p 7→ v)) r vp = Some p

p /∈ ptable_trace h r vp ptable_lift h r vp = Some p

ptable_trace (h(p 7→ v)) r vp = ptable_trace h r vp

Figure 5.7: The page table interface.

If 〈c,(h ++ h ′, r)〉 → None and h ⊥ h ′ then 〈c,(h, r)〉 → None.

Theorem 5.3.2 (Frame Monotonicity) Execution of a command can be traced back to a
smaller part of the state as long as the command executes at all on the smaller state.

If ¬ 〈c,(h0, r)〉 → None and 〈c,(h0 ++ h1, r)〉 → Some (h ′, r) and
h0 ⊥ h1 then ∃h0

′. h ′ = h0
′ ++ h1 ∧ 〈c,(h0, r)〉 → Some (h0

′, r).

We have not formalised the full abstract, relational treatment of the framework
by Calcagno et al., but shown the above two properties and the implied frame rule
directly by induction on the evaluation of commands.

Figure 5.7 gives the page table interface constraints that we promised in Sec-
tion 5.1.3. These rules need to be proved about ptable_lift and ptable_trace for a new page
table instantiation in order to use the abstract logic rules presented in Figure 5.6. The
first two rules are the frame and monotonicity property on ptable_lift. The third rule
states that if the domain of ptable_lift does not change, neither does ptable_trace. The last
two rules state that updates to the heap outside the trace affect neither the lifting nor
the trace of the page table. We have proved the rules in Figure 5.7 for the one-level
page table instantiation in the examples.

5.4 Case Study

In this section, we present a small page allocation and assignment routine one might
see in operating system services, mapping a frame, the physical equivalent of a
page, to some address in virtual memory. The program appears in Figure 5.8 with
simplified syntax. Frame availability information is stored in a frame table, which
contains one entry per frame in the system, marking it as used or unused. In our
program, line 1 attempts to find a free frame’s entry in the free frame list. An empty
list causes an erroneous return at line 7. Line 3 removes the head of the list. Line 4
calculates the number of the frame from its entry. Upon successfully allocating a

54 CHAPTER 5. MAPPED SEPARATION LOGIC

1. fte := ft_free_list;
2. IF fte != NULL THEN
3. ft_free_list := *ft_free_list;
4. frame := &fte - &frame_table;
5. *(ptable + (a2p page_addr)) := f2a frame OR valid_pmask;
6. ret_val := 0
7. ELSE ret_val := -1

Figure 5.8: A simple page table manipulating program.

{|vars ∧∗ in_pt page_addr ∧∗ frame_list (f · fs) ∧∗ pt_alloc page_addr ∧∗
ret_valv 7→ -|}

program page_addr
{|vars ∧∗ in_pt page_addr ∧∗ frame_list fs ∧∗ VPtr f 7→ - ∧∗ ret_valv 7→ 0 ∧∗

page_mapped page_addr|}

where:

vars ≡ ptablev 7→ pt ∧∗ framev 7→ - ∧∗ frame_tablev 7→ frame_table ∧∗
ftev 7→ -

in_pt :: vptr ⇒ fheap × pptr ⇒ bool
in_pt page_addr (h, r) ≡

(VPtr pt + a2p page_addr 7→v r + a2p page_addr) (h, r)

pt_alloc :: vptr ⇒ fheap × pptr ⇒ bool
pt_alloc page_addr ≡ λ(h, r). (r + get_page page_addr →p -) (h, r)

frame_list :: 32 word list ⇒ fheap × pptr ⇒ bool

frame_list xs ≡ list xs ft_free_listv (fte_property frame_table)

list :: 32 word list
⇒ vptr
⇒ (32 word ⇒ fheap × pptr ⇒ bool) ⇒ fheap × pptr ⇒ bool

list [] h P ≡ h 7→ 0
list (x · xs) h P ≡ λs. x 6= 0 ∧ (h 7→ x ∧∗ list xs (VPtr x) P ∧∗ P x) s

fte_property :: 32 word ⇒ 32 word ⇒ fheap × pptr ⇒ bool
fte_property start ptr ≡ entire_frame (PPtr (f2a (ptr - start))) {→p} -

entire_frame :: pptr ⇒ pptr ⇒ bool
entire_frame p ≡ {p..PPtr (pptr_val p + 0xFFF)}

Figure 5.9: Specification of the program in Figure 5.8.

frame, line 5 updates the page table with the appropriate entry mapping page_addr

to the new frame.
The functions a2p and f2a convert addresses to page numbers and frame numbers

to addresses by respectively dividing or multiplying by 4096.
We have proved that the program conforms to specification in Figure 5.9.
The language is slightly atypical for a separation-logic based language in that

it is purely heap based. In other words, there are no local variables accessible in
the language. If we wish to reason about use of a local function variable, we must
assert its location and value using a maps-to predicate. Hence, we use varv 7→ var

to denote that a variable var has a specific value and to represent var in Figure 5.8.
For our case study we assume that the page table is accessible from the virtual
address ptable, and the frame table lies at frame_table. Further, we have a
non-empty free list starting at first_free, corresponding to f in Figure 5.9, where

5.4. CASE STUDY 55

each address in the list indicates the presence of a frame. Finally, we require that
the page table entry that is used to resolve a lookup of page_addr is allocated, and
accessible from our address space. We additionally require that page_addr is aligned
to the page size. As a result of executing the program, the free frame list becomes
shorter and the page at page_addr is fully accessible. Figure 5.10.

page_mapped :: vptr ⇒ fheap × pptr ⇒ bool
page_mapped vp ≡

entire_page vp { 7→} - ∧∗ consume_slices vp (UNIV - entire_page vp)

consume_slice :: vptr ⇒ vptr ⇒ fheap × pptr ⇒ bool
consume_slice vp sl ≡ λ(h, r). dom h = ptable_trace (h_view h sl) r vp × {sl}

consume_slices :: vptr ⇒ (vptr ⇒ bool) ⇒ fheap × pptr ⇒ bool
consume_slices vp S ≡ fold_image op ∧∗ (consume_slice vp) � S

entire_page :: vptr ⇒ vptr ⇒ bool
entire_page vp ≡ {vp..VPtr (vptr_val vp + 0xFFF)}

Figure 5.10: The page_mapped predicate and associated definitions;
page_mapped indicates that a page at a given virtual address is fully
accessible.

All our separation logic statements work on heaps of a precise size. Using up
the entire page table entry in our precondition means we must likewise use it all in
the postcondition. A page table entry maps 4096 addresses, but is made up of more
slices. Stating that those addresses are mapped does not consume all the slices. The
difference in heap size is made up by consume_slices.

The actual mapping-in step from line 5 of our program performs a write to
the page table at pt + a2p page_addr. In addition to our assignment rule, we have
shown another property that allows us to to conclude from the post-state of line 5
that the page at page_addr is now completely mapped:

entire_frame (PPtr (f2a frame)) {→p} - ∧∗ pt_map page_addr frame b−→c
page_mapped page_addr

where:

pt_map :: vptr ⇒ 32 word ⇒ fheap × pptr ⇒ bool

pt_map page_addr frame ≡
λ(h, r). (PPtr (pptr_val r + a2p page_addr) 7→p f2a frame OR 1) (h, r)

This rule is the only place in the case study where we had to unfold page table defi-
nitions and reason directly about the encoding. All other reasoning used Separation
Logic rules only.

In order to check successful interaction with the newly mapped page, we added
an extra segment to our program.

*page_addr := 0xFF;

*(page_addr + 3) := *page_addr + 2

If executed on a state with offsets 0 and 3 in the page mapped and allocated:

{|page_addr 7→ - ∧∗ page_addr + 3 7→ -|}

it results in those offsets set to 0xFF and 0x101:

{|page_addr 7→ 0xFF ∧∗ page_addr + 3 7→ 0x101|}

56 CHAPTER 5. MAPPED SEPARATION LOGIC

These two offsets are part of the page at page_addr; the program fragment does not
change anything else. As we can rewrite

page_mapped p = (p 7→ - ∧∗ p + 3 7→ - ∧∗ page_mapped {p, p + 3} p)

we can invoke the frame rule and include the rest of the state.
Our case study shows that our logic allows abstract reasoning, even in the

presence of page table manipulation. Examples like this would occur when verifying
operating system code directly. The logic is easier to use for application code that
might support sharing, but has no direct access to the page table.

Our case study also shows that reasoning about changing page table mappings
from the address space they define is a complicated process to reason about. Ironi-
cally, the primary benefit of working within a separation logic is not visible in the
rules of our case study. We have precisely specified which areas of the heap are
involved in mapping in a new page. Therefore, by virtue of the frame rule, we
can infer the areas of memory which did not change without any need for further
complicated reasoning. Without separation logic, even if the mapping lemma itself
were easier to state and prove, further reasoning about virtual memory would be
necessary to prove that a virtual address is unaffected by mapping in a page. Some
of this modularity is apparent in the case study within our full logic in Chapter 6.

5.5 Conclusion

In this chapter, we have presented an extension of Separation Logic which allows
reasoning about virtual memory and processes running within. The logic fully
supports the frame rule as well as the other Separation Logic proof rules and allows
for a convenient representation of predicates on memory at three levels: the virtual
map, physical heap and virtual address space. We have presented a small case study
that demonstrates the applicability of the logic to operating system level page table
code as well as client code using the page table mechanism.

For our initial analysis of the logic we chose a simplified machine and page table
instance. The logic does not depend on the implementation of either.

We have managed to fully hide the complexity of virtual memory reasoning
for code that does not directly modify the page table. We have also shown that
high-level reasoning is still possible for code that does. The concepts in the logic
are close to the mental model operating system kernel programmers have of virtual
memory.

In the following chapters, we will enhance our model and instantiate it to the C
programming language and apply it to both a more realistic machine and a code
base inspired from real life use.

Chapter 6

Typed Mapped Separation Logic

In the previous chapter we described a method for integrating a view of virtual
memory into separation logic for a very simple architecture with a one-level page
table. In this chapter, we present a more realistic framework, built around the 32-bit
ARMv6 [6] architecture in little-endian mode, with a two-level page table modeled
after the actual hardware, as well as storing typed objects in memory. We connect
this model to the C semantics developed by Norrish for the L4.verified project [57].
Our framework is generic where possible.

For our case study in Section 6.8, we will present our analysis of a function in
the seL4 microkernel [31] responsible for writes to the second-level page table, thus
responsible for mapping in pages. We will formally precisely identify the context in
which the function does this, as well as what it means for a page to be “mapped” in
our new framework.

We have already published the core ideas of typed mapped separation in Types,
Maps and Separation Logic [34]. This chapter covers our work in more detail, along
with any changes we have implemented since then. The primary change is abol-
ishing tagging of types in memory in favour of dealing purely in separation logic.
This is because such annotations are only necessary to support the Burstall/Bornat
style of typed heaps. In separation logic, the information is contained in the maps-to
predicates, as will become evident in this chapter.

We will begin this chapter with an overview of architecture-based issues, such as
pointers, addresses, their manipulation and sequences thereof, and instantiate the
relevant structures to the ARMv6 architecture in little-endian mode. We will then
proceed to our updated page table interface, which has been augmented slightly
from the one in Chapter 5 in order to facilitate page tables with superpages, as well as
decoding permissions from the page table entries. We instantiate the interface to the
ARMv6 two-level page table. We explain our semantics for storing words, structures
and arrays in memory, before moving on to byte-level, type-level and special-
purpose maps-to predicates. We then build upon these maps-to predicates in order
to construct an interface to Norrish’s C to Isabelle/HOL parser [57]. We conclude
with a case study based upon a small function from the seL4 [31] microkernel and
precisely verifying the conditions under which it maps in a new page.

58 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

6.1 Architecture Setup

6.1.1 Pointers and Addresses

Abstract Pointers and Addresses

As in the previous chapter, we still need to talk about two different types of ad-
dresses: virtual and physical. In Chapter 5 pointers were addresses, so we could get
away with two datatypes with separate constructors. In this chapter we still have
addresses, but we also need to represent typed pointers. such as a pointer to a 32-bit
word at virtual address 0xF00F. If we have two different address constructors, we
will need separate functions for virtual and physical addresses, and furthermore
for pointers to such addresses. In order to avoid this duplication, we have only a
single address constructor, Addr which takes a tag (virtual or physical) as a type
argument:

typedecl physical

typedecl virtual

datatype (′a, ′p) addr_t = Addr ′a

Thus it takes two type arguments: the type of addresses themselves (e.g. 32-bit
words), and a phantom type tag designating the sort of address it is. For exam-
ple, a 32-bit virtual address has the type (32 word, virtual) addr_t. Where Addr

constructs an address, addr_val gets at the value inside it:

addr_val :: (′a, ′p) addr_t ⇒ ′a

addr_val (Addr a) = a

We can add to and subtract from addresses:
a + x ≡ Addr (addr_val a + x)

a - x ≡ Addr (addr_val a - x)

and express address ranges:

addr_seq :: (′a, ′p) addr_t ⇒ nat ⇒ (′a, ′p) addr_t list

addr_seq p 0 = []

addr_seq p (Suc n) = p · addr_seq (p + 1) n

Similarly to addresses, we define pointers as the constructor Ptr applied to an
address. We also add a third type variable, a phantom type representing the type
of entity that the pointer points to. We use only a phantom type since languages
with direct access to memory, such as C, do not have to respect type safety. At the
underlying level, it’s just bytes:

datatype (′a, ′p, ′t) ptr_t = Ptr (′a, ′p) addr_t

So a pointer to an int in 32-bit physical memory has the type (32 word, physical,

int) ptr_t. The value of a pointer is its address:

ptr_val :: (′a, ′p, ′t) ptr_t ⇒ (′a, ′p) addr_t

ptr_val (Ptr a) = a

For convenience, we also combine ptr_val and addr_val when we need the value of the
address contained in a pointer:

ptr_addr :: (′a, ′p, ′t) ptr_t ⇒ ′a

ptr_addr x ≡ addr_val (ptr_val x)

6.2. PAGE TABLES 59

Since the type of the pointer target is just a phantom type, casting is a no-operation:

ptr_coerce :: (′a, ′p, ′t) ptr_t ⇒ (′a, ′p, ′t2) ptr_t

ptr_coerce (Ptr p) = Ptr p

Pointers and Addresses on the ARMv6

Our case study is the ARMv6 [6], a 32-bit architecture. This means that the machine
word (corresponding to machine register size), as well as both virtual and physical
addresses are 32 bits wide, allowing us to define short-hand specific to this machine:

types machine_word = 32 word

vaddr = (32 word, virtual) addr_t

paddr = (32 word, physical) addr_t

and similarly for pointers:

types ′t vptr = (32 word, virtual, ′t) ptr_t
′t pptr = (32 word, physical, ′t) ptr_t

Knowing the sizes of addresses, we can derive the maximum sizes of physical
and virtual memory address spaces in a 32-bit system:

memory_size :: nat

memory_size = 232

addr_space_size :: nat

addr_space_size = 232

Finally, we need to consider storage of bytes in memory. On a little-endian
system, the bytes in a word are stored in reverse order. The word_rsplit and word_rcat

functions in the Isabelle/HOL word library can split an n-bit word into a list of k-bit
words and recombine it again into an n-bit word. The n and k are specified using
the type system. Thus, breaking up a word into a byte list and recombining them,
on a little endian system can be represented as follows, with rev being list reversal:

machine_w2b :: ′a word ⇒ 8 word list

machine_w2b ≡ rev ◦ word_rsplit

machine_b2w :: 8 word list ⇒ ′a word

machine_b2w ≡ word_rcat ◦ rev

6.2 Page Tables

6.2.1 A Page Table Abstraction

The page table is at the core of virtual memory, being the physical memory encoding
of the virtual memory layout. In Chapter 5, we had an abstract page table interface
instantiated to a very simple one-level page table. When working with more com-
plicated page tables on realistic hardware, such as the two-level page table on the
ARMv6, we need to augment the abstract interface slightly. We explained the basics
of the functioning of the ARMv6 page table in Chapter 3, Section 3.3.

Our abstract interface requires providing three functions:

60 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

p /∈ ptable_trace h r vp ptable_lift h r vp = bpc
ptable_trace (h(p 7→ v)) r vp = ptable_trace h r vp

p /∈ ptable_trace h r vp ptable_lift h r vp = bpc
ptable_lift (h(p 7→ v)) r vp = bpc

ptable_lift h0 r vp = bpc h0 ⊥ h1

ptable_lift (h0 ++ h1) r vp = bpc

ptable_lift h r vp = bpc h ⊥ h ′

ptable_trace (h ++ h ′) r vp = ptable_trace h r vp

ptable_lift (h0 ++ h1) r vp = bpc h0 ⊥ h1

ptable_lift h0 r vp = bpc ∨ ptable_lift h0 r vp = None

Figure 6.1: Abstract page table interface.

ptable_lift :: (′paddr ⇀ ′val) ⇒ ′base ⇒ ′vaddr ⇀ ′paddr

ptable_trace :: (′paddr ⇀ ′val) ⇒ ′base ⇒ ′vaddr ⇒ ′paddr set

get_page :: (′paddr ⇀ ′val) ⇒ ′base ⇒ ′vaddr ⇒ ′a

The first of these, ptable_lift, represents a standard walk of the page table. Given a
′vaddr address and a physical memory representation from ′paddr addresses to some
kind of values, perform a lookup and return a ′paddr address. The ′base parameter
is meant to contain information on where the page table is to be found in memory.
It is typically an address in physical memory. As expected from their names, ′vaddr
and paddr are meant to be virtual and physical addresses respectively. Naturally,
the function is partial, as not all virtual addresses can be resolved to physical ones.
There is an additional difference from what one might expect of an interface for page
tables: our physical memory representation is a partial map. This is because our
entire framework is built around the concept of partial heaps that underlies the local
reasoning of separation logic. Essentially, we expect a lookup of any kind outside of
the part of the heap we have access to to fail; this includes page table lookups.

For this reason we require ptable_trace, which is to report on the set of all physical
addresses that need to be accessed during a ptable_trace. Given this set of addresses
for looking up a virtual address, it intuitively follows that modifying any other
address will have no effect on the lookup. We enforce this in the assumptions of our
interface in Figure 6.1. Finally, get_page is a convenience function used to figure out
the granularity of the mapping of the block a given virtual address belongs to. For
our one-level page table in Chapter 5 this is completely obvious. However for multi-
level page tables with superpages such as those on an ARMv6, extra information is
necessary, as we will demonstrate shortly.

The properties we require of any page table instantiation are listed in Figure 6.1.
They require that ptable_lift and ptable_trace behave like separation logic assertions, which
we described in Chapter 4. The first two rules establish the relationship between the
trace and result of a page table lookup: given a valid lookup for a virtual address,
modifying any physical address outside of the lookup trace has no effect either on the
lookup or the trace in the updated heap. Next we require that the lookup and trace

6.2. PAGE TABLES 61

respect the separation logic safety monotonicity property [13]: if a lookup succeeds
for a virtual address in a small heap, then it will also succeed in a larger heap. Our
final requirement is that page table lookups have safety monotonicity property of
separation logic [13]. Reducing the size of the heap in which a lookup succeeds can
cause the lookup to fail, but it can never cause the lookup to successfully resolve
to a different address. We do not require the safety monotonicity property on the
lookup trace, however. This is because it is still useful to talk about a failed lookup
in which n levels of an m-level page table were successfully traversed; rather than
all-or-nothing reasoning, we can build up a successful lookup from a failed one with
a partial trace of how far it got.

6.2.2 ARMv6 Page Table Formalisation

In Chapter 3, Section 3.3, we described the address translation mechanism on the
ARMv6 architecture. Now, as we said earlier, we will present our formalisation of
it. We will later use this formalisation to instantiate our logic to the ARMv6. We
do not model the entirety of the ARMv6 address translation mechanism. We have
reduced the scope of what we model in order to focus on the implications of address
translation in a two-level page table with superpages. Nonetheless, the subset we
model is a real-world example, as this is the setup used in the seL4 microkernel [31]
which was verified in the L4.verified project.

We make the following assumptions in our formalisation about the configuration
of the translation unit. The ARM reference manual [6] contains the exact meaning of
these settings:

• The translation mechanism is set to use the ARMv6 page table format with
subpages disabled, i.e. the subpage AP bits are disabled.

• Extended physical addresses, i.e. a 40-bit physical address space, are disabled.
The physical address space is 32-bit.

• We do not consider domains outside of domain 0. We assume the domain is
always zero.

Page Sizes

Our model supports all non-legacy ARMv6 page table sizes. That is small (4Kb) and
large (64Kb) pages, as well as sections (1Mb) and supersections (16Mb):

datatype page_type =
ArmSmallPage

| ArmLargePage
| ArmSection
| ArmSuperSection

The amount of bits that can be used to index into them is 12, 16, 20 and 24 respec-
tively:

62 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

page_bits :: page_type ⇒ nat

page_bits ArmSmallPage ≡ 12

page_bits ArmLargePage ≡ 16

page_bits ArmSection ≡ 20

page_bits ArmSuperSection ≡ 24

which is sufficient to define their size in bytes:

page_size :: page_type ⇒ nat

page_size page_type ≡ 2page_bits page_type

We also need to be able to split a 32-bit virtual address into the base address of
the page it is in and the offset within that page by respectively either masking the
low bits or the high bits:

vaddr_offset :: page_type ⇒ 32 word ⇒ 32 word

vaddr_offset p w ≡ w AND mask (page_bits p)

addr_base :: page_type ⇒ 32 word ⇒ 32 word

addr_base sz w ≡ w AND NOT mask (page_bits sz)

Furthermore, if an address’ offset inside a page is zero, we consider the address to
be page aligned:

page_aligned :: page_type ⇒ 32 word ⇒ bool

page_aligned page_type p = (vaddr_offset page_type p = 0)

Permissions

All mappings of pages also contain architecture-specific flags which indicate per-
missions and other properties of the particular mapping. Our formalisation extracts
them into a arm_perm_bits record where each named field is one of the properties:

record arm_perm_bits =

arm_p_APX :: 1 word

arm_p_AP :: 2 word

arm_p_TEX :: 3 word

arm_p_S :: 1 word

arm_p_XN :: 1 word

arm_p_C :: 1 word

arm_p_B :: 1 word

arm_p_nG :: 1 word

According to the ARM reference manual [6], on ARMv6 these flags correspond
to access permissions (AP), extended access permission bit (APX), type extension
(TEX), as well as the shared (S), execute-never (XN), cacheable (C), bufferable (B),
not-global (nG) bits. We do not provide a higher-level abstraction here, such as
a set of properties, as these do not follow in a straightforward manner from the
permission bits. For example, setting APX to 0 and AP to “read-only” results in
read-only mode for user-level code, but read/write mode for privileged level code.
If we change APX to 1, then the permissions switch to being read-only for privileged
level code and inaccessible to user-level code.

6.2. PAGE TABLES 63

The permission bits are arranged differently for section/supersection mappings,
large page and small page mappings. For valid entries, we use the following
functions to extract them, following the ARMv6 standard exactly:

perm_bits_pde_sections :: 32 word ⇒ arm_perm_bits

perm_bits_pde_sections w ≡ (|arm_p_APX = ucast ((w >> 15) AND 1),
arm_p_AP = ucast ((w >> 10) AND 3),
arm_p_TEX = ucast ((w >> 12) AND 7),
arm_p_S = ucast ((w >> 16) AND 1),
arm_p_XN = ucast ((w >> 4) AND 1),
arm_p_C = ucast ((w >> 3) AND 1),
arm_p_B = ucast ((w >> 2) AND 1),
arm_p_nG = ucast ((w >> 17) AND 1)|)

perm_bits_pte_small :: 32 word ⇒ arm_perm_bits

perm_bits_pte_small w ≡ (|arm_p_APX = ucast ((w >> 9) AND 1),
arm_p_AP = ucast ((w >> 4) AND 3),
arm_p_TEX = ucast ((w >> 6) AND 7),
arm_p_S = ucast ((w >> 10) AND 1),
arm_p_XN = ucast (w AND 1),
arm_p_C = ucast ((w >> 3) AND 1),
arm_p_B = ucast ((w >> 2) AND 1),
arm_p_nG = ucast ((w >> 11) AND 1)|)

perm_bits_pte_large :: 32 word ⇒ arm_perm_bits

perm_bits_pte_large w ≡ (|arm_p_APX = ucast ((w >> 9) AND 1),
arm_p_AP = ucast ((w >> 4) AND 3),
arm_p_TEX = ucast ((w >> 12) AND 7),
arm_p_S = ucast ((w >> 10) AND 1),
arm_p_XN = ucast ((w >> 15) AND 1),
arm_p_C = ucast ((w >> 3) AND 1),
arm_p_B = ucast ((w >> 2) AND 1),
arm_p_nG = ucast ((w >> 11) AND 1)|)

ucast is an unsigned cast between two words. In this case, it performs truncation
from a 32-bit machine word to the target size of the field.

PDEs and PTEs

Figure 6.2: Page table lookup for a 4KB small page on ARMv6

Now we move on to resolving virtual addresses to physical ones. For conve-
nience, we will repeat the diagrams from Chapter 3 in this one as Figure 6.2 and

64 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

Figure 6.3: Page table lookup for a 1MB section on ARMv6

Figure 6.3. As we described there, the ARMv6 uses a two-level page table structure:
the first level contains page directory entries (PDEs) and the second level page
table entries (PTEs). A PDE may either be invalid, reserved for future processor
functionality, resolve an address to a section or supersection, or point to a PTE:

datatype pde = InvalidPDE | ReservedPDE
| PageTablePDE paddr
| SectionPDE paddr arm_perm_bits
| SuperSectionPDE paddr arm_perm_bits

Similarly, a PTE may be invalid, reserved or resolve to a large or small page:

datatype pte = InvalidPTE
| LargePagePTE paddr arm_perm_bits
| SmallPagePTE paddr arm_perm_bits

To get a datatype we can reason about out of a 32-bit word in memory, we need
to perform some decoding. This consists of following the ARMv6 manual [6] and
picking the right bits. For PDEs, we do it as follows:

decode_pde_section :: 32 word ⇒ pde

decode_pde_section w ≡ SectionPDE (Addr (addr_base ArmSection w))
(perm_bits_pde_sections w)

decode_pde_ssection :: 32 word ⇒ pde

decode_pde_ssection w ≡ SuperSectionPDE (Addr (addr_base ArmSuperSection w))
(perm_bits_pde_sections w)

decode_pde_pt :: 32 word ⇒ pde

decode_pde_pt w ≡ PageTablePDE (Addr (w AND NOT mask 9))

decode_pde :: 32 word ⇒ pde

decode_pde w ≡
let pde_type = w AND 3
in if pde_type = 1 then decode_pde_pt w

else if pde_type = 2
then if w !! 18 then decode_pde_ssection w else decode_pde_section w
else if pde_type = 3 then ReservedPDE else InvalidPDE

decode_heap_pde :: (paddr ⇀ 8 word) ⇒ paddr ⇀ pde

decode_heap_pde h p ≡ Option.map decode_pde (load_machine_word h p)

We will introduce load_machine_word later, in Section 6.3. At this point, it is sufficient
to know it loads a 32-bit address from the physical address space by invoking

6.2. PAGE TABLES 65

machine_b2w on the four consecutive addresses from the supplied location. If the
partial heap does not contain those addresses, it will return None.

We perform a similar decoding for PTEs:

decode_pte_small :: 32 word ⇒ pte

decode_pte_small w ≡ SmallPagePTE (Addr (addr_base ArmSmallPage w))
(perm_bits_pte_small w)

decode_pte_large :: 32 word ⇒ pte

decode_pte_large w ≡ LargePagePTE (Addr (addr_base ArmLargePage w))
(perm_bits_pte_large w)

decode_pte :: 32 word ⇒ pte

decode_pte w ≡
if w AND 3 = 0 then InvalidPTE
else if w !! 1 then decode_pte_small w else decode_pte_large w

decode_heap_pte :: (paddr ⇀ 8 word) ⇒ paddr ⇀ pte

decode_heap_pte h p ≡ Option.map decode_pte (load_machine_word h p)

Performing a Page Table Lookup

Given the decoding functions we introduced, we create lookup functions which,
given the address of a PTE or PDE can give us back the size of the page a virtual
address is in, as well as the physical base address that page is mapped to. On the
ARMv6, bits [31:20] of a virtual address represent an index into the page directory,
while bits [19:12] are used as an index into the page table. Each PDE and PTE entry
is 32-bits, i.e. 4 bytes, thus we multiply those indices by 4, look up in the PDE/PTE
and decode:

vaddr_pd_index :: 32 word ⇒ 32 word

vaddr_pd_index w ≡ (w >> 20) AND mask 12

vaddr_pt_index :: 32 word ⇒ 32 word

vaddr_pt_index w ≡ (w >> 12) AND mask 8

lookup_pde :: (paddr ⇀ 8 word)
⇒ paddr ⇒ vaddr ⇀ paddr × page_type × arm_perm_bits

lookup_pde h root vp ≡
case decode_heap_pde h (root + (vaddr_pd_index (addr_val vp) << 2)) of
None ⇒ None | bPageTablePDE pt_basec ⇒ lookup_pte h pt_base vp
| bSectionPDE base permsc ⇒ b(base, ArmSection, perms)c
| bSuperSectionPDE base permsc ⇒ b(base, ArmSuperSection, perms)c
| b_c ⇒ None

lookup_pte :: (paddr ⇀ 8 word)
⇒ paddr ⇒ vaddr ⇀ paddr × page_type × arm_perm_bits

lookup_pte h pt_base vp ≡
case decode_heap_pte h

(pt_base + (vaddr_pt_index (addr_val vp) << 2)) of
None ⇒ None | bInvalidPTEc ⇒ None
| bLargePagePTE base permsc ⇒ b(base, ArmLargePage, perms)c
| bSmallPagePTE base permsc ⇒ b(base, ArmSmallPage, perms)c

With lookup_pde, we can figure out which page a virtual address belongs to by
masking out the offset bits for the page size it resolves to:

66 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

get_page :: (paddr ⇀ 8 word)
⇒ paddr ⇒ vaddr ⇀ vaddr × page_type × arm_perm_bits

get_page h root vp ≡
Option.map
(λ(base, pg_size, perms).

(Addr (addr_base pg_size (addr_val vp)), pg_size, perms))
(lookup_pde h root vp)

We can use the page lookup to transform a virtual pointer by masking the offset
while replacing the virtual page address with a physical frame address, resulting in
Definition 6.2.1.

Definition 6.2.1 The ARMv6 version of ptable_lift.
Given a physical memory heap and a physical address denoting where the page directory

of a page table resides, try to resolve a virtual address to a physical one.

ptable_lift :: (paddr ⇀ 8 word) ⇒ paddr ⇒ vmap

ptable_lift h pt_root vp ≡
let vp_val = addr_val vp
in Option.map (λ(base, pg_size, perms). base + vaddr_offset pg_size
vp_val)

(lookup_pde h pt_root vp)

Finally, we implement the page table lookup trace in Definition 6.2.2 by following
the same procedure as ptable_lift, but keeping track of memory areas touched rather
than the lookup result.

Definition 6.2.2 The ARMv6 version of ptable_trace.
Given a physical memory heap and a physical address denoting where the page directory

of a page table resides, return all physical addresses that influence what a page table lookup
for a virtual address resolves to.

ptable_trace :: (paddr ⇀ 8 word) ⇒ paddr ⇒ vaddr ⇒ paddr ⇒ bool

ptable_trace h root vp ≡
let vp_val = addr_val vp; pd_idx_offset = vaddr_pd_index vp_val << 2;

pt_idx_offset = vaddr_pt_index vp_val << 2;
pd_touched = set (addr_seq (root + pd_idx_offset) 4);
pt_touched = λpt_base. set (addr_seq (pt_base + pt_idx_offset) 4)

in case decode_heap_pde h (root + pd_idx_offset) of None ⇒ ∅
| bPageTablePDE pt_basec ⇒ pd_touched ∪ pt_touched pt_base
| b_c ⇒ pd_touched

We have also proven that these definitions fulfill the requirements for our abstract
page table interface described in Section 6.2.1, Figure 6.1. As we showed in Chapter 5,
these allow us to include the page table lookup mechanisms in separation logic.

6.3 Storage of Values in Memory

In order to talk about typed mapped separation logic, we need a model for storing
values of different types (such as a C int or struct) in memory. In other words, when
we say “physical pointer p points to a struct s”, we must have an understanding of
what it means for something to be stored in memory which is, after all, a sequence
of byte-sized cells.

This section describes a type class of memory-storable types, the instantiation of
this class to 8, 16, and 32-bit words, as well as how we consider multi-field structures
without padding as storable.

6.3. STORAGE OF VALUES IN MEMORY 67

0 < size_of TYPE(′a) size_of TYPE(′a) < min memory_size addr_space_size

align_of TYPE(′a) dvd memory_size ∧ align_of TYPE(′a) dvd addr_space_size

from_bytes (to_bytes v) = v length (to_bytes v) = size_of TYPE(′a)

length bs = size_of TYPE(′a)

to_bytes (from_bytes bs) = bs

Figure 6.4: Memory-storable type class mem_type axioms for a type ′a.

6.3.1 The Class of Memory-Storable Types

In our work, we consider non-padded objects in memory. That is, objects that are
serialisable to and from a stream of bytes which happens to be their representation in
memory. We do not support gaps in this stream. The work of Tuch [54] demonstrates
a method for encoding padding. In the interest of clarity, we omit consideration
of padding. This decision is hardly crippling: in our chosen arena of operating
system kernels, structures are usually hand-packed anyway to avoid padding, since
presence of padding means wasted memory. Our memory-storable class is inspired
by the one in the work of Tuch et al. [57].

Our name for the memory-storable class is mem_type, thus when we will refer to
a memory-storable type ′t, we will implicitly mean ′t::mem_type.

We require the following interface from a memory-storable type:

size_of :: ′a itself ⇒ nat

align_of :: ′a itself ⇒ nat

to_bytes :: ′a ⇒ 8 word list

from_bytes :: 8 word list ⇒ ′a

As expected, size_of is the size in bytes of any object of this type in memory, while
align_of is the required alignment in bytes. The serialisation to a stream of bytes in
memory is performed by to_bytes, while from_bytes does the inverse.

Figure 6.4 shows the axioms of the memory-storable class of types. The object’s
serial representation’s length must be the same as its size_of, a size which must fit
both in physical memory and virtual memory address space. Similarly, the object
can only request an alignment which divides both physical and virtual memory
address space sizes. In the binary-based system world those sizes will always be
powers of two. The consequence of our requirement is that alignments must also be
powers of two. Finally, from_bytes must be an inverse of to_bytes, and vice-versa. The
last rule in Figure 6.4 allows us to define a generic decoder to pop off a sequence of
memory-storable objects from a byte stream:

mem_type_decode :: 8 word list ⇒ ′a × 8 word list

mem_type_decode bs ≡ let sz = size_of TYPE(′a)
in (from_bytes (take sz bs), drop sz bs)

68 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

Pointers to Memory-Storable Types

In the C programming language, adding n to a pointer does not add n to its address,
but instead increments the address by the size of the pointed to type n times. Since
we will be interfacing to the C programming language, and we know the in-memory
sizes of memory-storable types, we implement a similar functionality, shown in
Figure 6.5. We use of_nat to create a word out of a natural number.

ptr_raw_add :: (′a, ′p, ′t) ptr_t ⇒ ′a ⇒ (′a, ′p, ′t) ptr_t

ptr_raw_add p x ≡ Ptr (ptr_val p + x)

_ + _ :: (′a, ′p, ′t) ptr_t ⇒ ′a ⇒ (′a, ′p, ′t) ptr_t

p + x ≡ ptr_raw_add p (x * of_nat (size_of TYPE(′t)))

ptr_raw_sub :: (′a, ′p, ′t) ptr_t ⇒ ′a ⇒ (′a, ′p, ′t) ptr_t

ptr_raw_sub p x ≡ Ptr (ptr_val p - x)

_ - _ :: (′a, ′p, ′t) ptr_t ⇒ ′a ⇒ (′a, ′p, ′t) ptr_t

p - x ≡ ptr_raw_sub p (x * of_nat (size_of TYPE(′t)))

ptr_seq :: (′a, ′p, ′t) ptr_t ⇒ nat ⇒ (′a, ′p, ′t) ptr_t list

ptr_seq p 0 = []

ptr_seq p (Suc n) = p · ptr_seq (p + 1) n

Figure 6.5: Addition and subtraction of offsets to pointers. “Raw” manipu-
lation has byte granularity. Manipulation of pointers to type ′t, where ′t is
memory-storable has size_of TYPE(′t). Sequences of pointers.

A pointer is considered aligned if the required alignment of the type it points to
divides its address. We use unat to perform an unsigned conversion from a word to a
natural number:

ptr_aligned :: (′a word, ′p, ′t) ptr_t ⇒ bool

ptr_aligned p ≡ align_of TYPE(′t) dvd unat (ptr_addr p)

6.3.2 Loading Memory-Storable Types

Given a class of serialisable types, we can concoct a system for storing them in
memory. In our work, we have two different types of memory: virtual and physical.
The top-level abstractions of them, however, are still those of a partial heap: a partial
map from addresses to values, given some kind of addresses.

If we try load a number of values sequentially beginning from some address, we
will get a list of load results, each of whose success depends on whether the address
is in the partial heap or not:

load_list_basic :: ((′a, ′p) addr_t ⇀ ′v) ⇒ nat ⇒ (′a, ′p) addr_t

⇒ ′v option list
load_list_basic h 0 p ≡ []

load_list_basic h (Suc n) p ≡ h p · load_list_basic h n (p + 1)

We consolidate this result into Some list of actual values, or None if any of them failed:

6.3. STORAGE OF VALUES IN MEMORY 69

deoption_list :: ′a option list ⇀ ′a list

deoption_list xs ≡ if None ∈ set xs then None else bmap the xsc
load_list :: ((′a, ′p) addr_t ⇀ ′v) ⇒ nat ⇒ (′a, ′p) addr_t ⇀ ′v list

load_list h n p ≡ deoption_list (load_list_basic h n p)

All that remains is to plug our list of bytes into from_bytes, which we explained in
Section 6.3.1, and tell the type system which memory-storable type ′t we want to
get out:

load_value :: ((′a, ′p) addr_t ⇀ 8 word) ⇒ (′a, ′p) addr_t ⇀ ′t

load_value h p ≡ Option.map from_bytes (load_list h (size_of TYPE(′t)) p)

For example, the load_machine_word we promised to explain in Section 6.2.2 is just
load_value constrained to return a 32-bit word, which is the machine word size on
ARMv6:

load_machine_word :: ((′a, ′p) addr_t ⇀ 8 word) ⇒ (′a, ′p) addr_t
⇀ 32 word

load_machine_word ≡ load_value

Next we will explain how it is that words and other types become memory-storable.

6.3.3 Memory-Storable Words

The ARMv6 can natively address 8, 16, and 32-bit words in memory. In Section 6.1.1
we already introduces machine_w2b and machine_b2w which will correctly serialise such
values into and from a list of bytes, taking endianness into account. What remains is
the instantiation to the memory-storable interface, shown in Figure 6.6. The undefined

constant in size_of is an arbitrary value of the type given by x. The size and alignment
for words of these size is identical.

to_bytes ≡ machine_w2b

from_bytes ≡ machine_b2w

size_of x ≡ size undefined div 8

align_of ≡ size_of

Figure 6.6: The memory-storable interface instantiated to words.

There is also a small technical obstacle in the current Isabelle/HOL type system:
one cannot simply make three statements of “an n-bit word is a member of the
memory-storable class”. Isabelle will only accept one such statement. In order to
work around this, we define a type class of words whose number of bits are exactly
8, 16 or 32 and instantiate this class only:

len_of TYPE(′a) = 8 ∨ len_of TYPE(′a) = 16 ∨ len_of TYPE(′a) = 32

We can derive such a class using a chain of classes. We can obtain a 8/16/32
word by adding a bit to a 4/8/16 word, which we can get from 2/4/8 and 1/2/4
words. We can get a 1/2/4 word from a 1/2 word, and that from a 1 bit word. The
initial condition is that the one-bit numeral can be shown to be in the class of 1-bit
words, 1 or 2 bit words, and 1/2/4 bit words.

70 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

Thus the statement we prove in Isabelle/HOL is:

instance word :: (word_len_8_16_32) mem_type

6.3.4 Memory-Storable Structures without Padding

Norrish’s C parser [57] provides Isabelle representations of C structures in the form
of records. In order to use them within our framework, we need to show those
are memory-storable. Unfortunately, there is currently no way to show that all
records are memory-storable, so the proof must be performed for each record type
separately. We have automated the instantiation process, but will describe its steps
manually for demonstration purposes on a sample C struct.

The C parser uses its own record package rather than the standard one that
comes with Isabelle/HOL. The reason for this is that Isabelle/HOL records do not
permit recursion, and it is valid C code to have a struct containing a pointer to a
struct of the same type. The second difference is that Isabelle/HOL records can be
extended, whereas the C parser ones cannot. This functionality is not necessary, as
C only allows non-extensible structures.

Instantiation to Memory-Storable Class

s t r u c t example {
short fa ;
short fb ;
i n t f c ;

} ;

Figure 6.7: An example of a structure in C.

Let us instantiate struct example in Figure 6.7. It contains three fields, the first two
of which are short and the last one is an int. On an ARMv6, a short is a 16-bit word
and an int is a 32-bit word. We already know those word sizes are memory-storable,
hence it becomes an issue of putting those building blocks together.

The C parser generates a record type named example_C with the following
constructor of the same name, as well as three field accessors:

example_C :: 16 word ⇒ 16 word ⇒ 32 word ⇒ example_C

fa_C :: example_C ⇒ 16 word

fb_C :: example_C ⇒ 16 word

fc_C :: example_C ⇒ 32 word

Given that this structure has no padding, its size is simply the sum of its fields’
sizes:

size_of x = size_of TYPE(16 word) + size_of TYPE(16 word) + size_of TYPE(32 word)

To fulfil the requirements of the C programming language [43], we make the
structure alignment the same as the largest alignment required by its fields:

6.3. STORAGE OF VALUES IN MEMORY 71

align_of x ≡ max (align_of TYPE(16 word))
(max (align_of TYPE(16 word)) (align_of TYPE(32 word)))

Although these are the definitions we use for instantiating, we perform a sanity
check against the size and alignment of the structure as reported by the C parser
and automatically prove the following rules, which we then include in the set of
terms automatically simplified by Isabelle:

size_of TYPE(example_C) = 8

align_of TYPE(example_C) = 4

For serialising the structure, it is sufficient to concatenate its serialised fields:

to_bytes x = to_bytes (fa_C x) @ to_bytes (fb_C x) @ to_bytes (fc_C x)

Note that the C programming language standard does not permit C compilers to
rearrange the order of fields of a structure in memory. If we do not permit padding,
then our memory representation of example_C will be identical to that generated by
a standard C compiler.

We restore a structure from a list of bytes by “popping” off its fields in sequence
and then continuing with the rest of the stream. This results in a rather monadic
computation:

from_bytes bs ≡ let (f1, bs) = mem_type_decode bs;
(f2, bs) = mem_type_decode bs;
(f3, bs) = mem_type_decode bs

in example_C f1 f2 f3

Since the structure is smaller than size of virtual or physical memory, its align-
ment is a power of two, and the serialisation functions are built on those of other
memory-storable types, it is also memory-storable, which we proved automatically
in order to have example_C appear in this document:

instance example_C :: mem_type

Accessing the Structure Fields

The primary requirement for accessing structure fields is knowing where in the
structure they are. We generate a partial function in Isabelle from a list of maplets –
given a field name, give us an offset:

example_C_offs :: char list ⇀ nat

example_C_offs = [′ ′fa ′ ′ 7→ 0, ′ ′fb ′ ′ 7→ 2, ′ ′fc ′ ′ 7→ 4]

Getting a pointer with the correct address is then just adding the offset within
the structure to the address of the structure in memory.

We define an address-of-field function for every structure, shown in Figure 6.8.
Notice that the source pointer must be a pointer to that structure type. We also
define the special syntax s&→f, which is shorthand for “&(s->f)” in C. This is due to
C notation masking the semantics. In C, “s->f” represents a load from the address
of the field when on the right side of an equation (an r-value), and a store to the
address of the field when on the left of an equation (an l-value). In reality, the C

72 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

&→ :: (′a, ′p, example_C) ptr_t ⇒ char list ⇒ (′a, ′p, ′ft) ptr_t

ptr&→fld = Ptr (ptr_val ptr + of_nat (the (example_C_offs fld)))

Figure 6.8: Address of structure field operator for the example_C structure
(_&→_).

compiler always keeps track of the address of a variable in memory. It is this reality
which is exposed to us via the C parser, resulting in our slightly different notation
being convenient. This notation also allows chaining, for example the C equivalent
of “&(p->fs.fa)” becomes p&→ ′ ′fs ′ ′&→ ′ ′fa ′ ′.

There is a trick we need to perform here, however. Notice that our field accessor’s
function returns a (′a, ′p, ′ft) ptr_t, where ′ft is not bound by any other type.
The function returns a pointer to a field, and fields have arbitrary types. We can cast
that pointer to the correct type manually, but this is inconvenient. Instead, our s&→f

notation uses a hook in Isabelle’s parsing mechanism, which proceeds as follows:

• examine the left-hand side, check it is a pointer to a structure;

• find the address-of-field function for that structure;

• get the type of the field named on the right-hand side within the structure;

• translate the notation to invoking the address-of-field function on the field
name and constrain the free type variable in the resulting pointer to be the
field’s type.

6.3.5 Memory-Storable Arrays

Our array representation is based upon the work of Harrison [27]. The representation
itself is not our own work, and appears in the work of Tuch et al. [57]. We will
explain the basic concept, but will focus on their memory-storable instantiation in
our logic.

The two ingredients of an array are the element type, which we will denote
′a, and an index type ′b. We write the resulting array type as ′a[′b]. The index
type ′b must be finite, and its cardinality defines the size of the array. The C parser
automatically defines a new type of the required cardinality for each array size.

Constructing and destructing arrays is achieved by the two functions index and
FCP:

index :: (′a[′b]) ⇒ nat ⇒ ′a

FCP :: (nat ⇒ ′a) ⇒ ′a[′b]

where index returns the nth element of an array, and FCP converts a function with
type nat ⇒ ′a into an array such that:

i < CARD(′b) =⇒ index (FCP g) i = g i

In order to show arrays are memory-storable, we will need to reconstitute arrays
from a stream of bytes. For this purpose, we define utility functions for cutting up a
list into lists of size n, and converting a list of element type members to an array:

6.4. SEPARATION LOGIC CONSTRUCTS AT THE BYTE LEVEL 73

cut_list :: ′a list ⇒ nat ⇒ ′a list list

cut_list [] n ≡ []

cut_list (v · va) 0 ≡ [v · va]
cut_list (v · va) (Suc vb) ≡ take (Suc vb) (v · va) ·

cut_list (drop (Suc vb) (v · va)) (Suc vb)

list_to_array :: ′a list ⇒ ′a[′b]

list_to_array bs ≡ FCP (op ! bs)

To actually perform the instantiation of arrays to the memory-storable class, we
need to pick type classes for ′a and ′b such that we can prove that we can store
the array in memory. Unfortunately, in Isabelle/HOL, we can do this only once,
meaning we need to place a limit on the size of both the size of the array, as well as
the in-memory size of its element type.

We thus define the fourthousand_count class with the restriction that CARD(′b) be
limited to 212 elements, as well as the oneMB_size class to limit its memory-storable
members to 220 bytes. These are picked arbitrarily, but when multiplied, they result
in 232 bytes, which happens to be the maximum memory size on a 32-bit machine.

to_bytes a ≡ concat (map (λi. to_bytes (index a i)) [0..<CARD(′b)])

from_bytes bs ≡ list_to_array (map from_bytes (cut_list bs (size_of TYPE(′a))))

size_of x ≡ CARD(′b) * size_of TYPE(′a)

align_of x ≡ align_of TYPE(′a)

Figure 6.9: Instantiation of arrays to the memory-storable type for an element
type ′a and an index type ′b.

Along with the equations in Figure 6.9, our instantiation is then:

instance array :: (oneMB_size, fourthousand_count) mem_type

6.4 Separation Logic Constructs at the Byte Level

In Chapter 5, we introduced a separation logic working at the level of memory
granularity. On the machine we presented, this granularity was 32 bits. On the
ARMv6, it is 8 bits, i.e. a byte. We will now adapt the separation logic constructs
from that chapter to the ARMv6 and our updated infrastructure before. We will also
go over the basic byte-level concepts again before we move on to the pointer level
ones, as they are crucial to the understanding of our approach to virtual memory.

6.4.1 The Fractional Heap and Memory Views

Our separation logic heap remains a fractional heap where each physical address is
split up into a number of slices:

types fheap = (paddr × vaddr) ⇀ 8 word

Like last time, the number of slices is sufficient to allocate one to each virtual
address, which corresponds to the worst-case entry sharing of a page table: one entry

74 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

� ≡ λ(h, r). h = empty

> ≡ λ(h, r). True

P ∧∗ Q ≡ λ(h, r). ∃h0 h1. h0 ⊥ h1 ∧ h = h0 ++ h1 ∧ P (h0, r) ∧ Q (h1, r)

Figure 6.10: Basic constructs of mapped separation logic: separating conjunc-
tion, the empty heap and universal True.

mapping all virtual addresses. Likewise, our separation logic assertions, in addition
to the fractional heap, take an extra parameter r, which we will use to indicate the
physical location of the current page table, i.e. the page table root. Figure 6.10 shows
the basic constructs. They are identical to those of the previous chapter.
Recall that: f B g ≡ λx. case f x of None ⇒ None | byc ⇒ g y

h_view :: fheap ⇒ vaddr ⇒ paddr ⇀ 8 word

h_view fh vp ≡ λp. fh (p, vp)

vmap_view :: fheap × paddr ⇒ vmap

vmap_view (fh, r) vp = ptable_lift (h_view fh vp) r vp

as_view :: fheap × paddr ⇒ vaddr ⇀ 8 word

as_view (fh, r) vp = (vmap_view (fh, r) B h_view fh vp) vp

Figure 6.11: Non-fractional views of the fractional heap for physical memory
as well as a program’s address space (virtual memory).

In order to reason about objects in either physical memory or a task’s address
space (virtual memory) we cannot use our fractional heap as is. For the purposes of
such reasoning we therefore generate non-fractional views from a fractional heap.
Figure 6.11 shows these views; they are functionally identical to those in the previous
chapter.

The three views represent the concepts we introduced in the last chapter. The
physical heap, derived from the fractional heap by h_view is our physical-to-value layer.
The virtual map, derived by vmap_view is the virtual-to-physical mapping. We combine
these into the address space, a virtual-to-value mapping, using as_view.

Each physical address has as many slices associated with it as virtual addresses.
If all slices of a physical address are present in the fractional heap, then it does not
matter which slice we look at. However, when we use one slice of a byte of a PTE for
resolving one virtual address and a different slice for resolving another, then those
two virtual addresses end up with different views of the fractional heap: each one
“sees” only the slices that are required for its page table lookup and a slice of the
physical address it resolves to. Thus our flat view of physical memory, h_view, consists
of all the slices attributed to a single virtual address. We can perform page table
lookups in such a view of physical memory, generating a virtual-to-physical map
using vmap_view. The r parameter represents the page table root. We then combine
the two into as_view to generate a view of a virtual address space: for every virtual
address, we look it up in the page table within the h_view for that virtual address.

6.4. SEPARATION LOGIC CONSTRUCTS AT THE BYTE LEVEL 75

6.4.2 Maps-to Predicates

As in Chapter 5 Section 5.2.3, three views of memory require three levels of maps-to
predicates. All our predicates work upon fheap × paddr: the fractional heap and
the page table root.

The first of these is our physical-to-value predicate, shown in Definition 6.4.1. A
physical address can be considered to map to some value in the fractional heap if all
slices of that physical address are in the fractional heap, containing the same value.
From a separation logic perspective, we expect this mapping to behave very much
like the classical separation logic maps-to predicate [48]: it requires that its domain
be restricted to precisely that physical address. Indeed, we get this behaviour if
we require all slices of the physical address p to be present in the fractional heap.
Under separating conjunction, this excludes other predicates mentioning any slice
of p, which includes having this address in the pagetable trace of a virtual address.

Definition 6.4.1 Byte-level maps-to predicate corresponding to the physical heap: a physi-
cal address to value mapping.

_ : 7→p _ :: paddr ⇒ 8 word ⇒ fheap × paddr ⇒ bool

p : 7→p v ≡ λ(h, r). (∀vp. h (p, vp) = bvc) ∧ dom h = {p} × UNIV

Definition 6.4.2 shows our virtual-to-physical predicate. Here, we derive the
physical heap from the fractional one for the supplied virtual address and then
perform a page table lookup to find the physical address. As for the consumption
of resources under separating conjunction, we specify the minimum that needs to
be present in the fractional heap for the page table lookup to succeed: the slice
assigned to the virtual address supplied in all the physical addresses required for
its pagetable lookup, i.e. in its pagetable trace. This excludes the physical-to-value
mapping from using any of those addresses, as it requires all slices, while permitting
other virtual addresses to share an identical (or partially identical) pagetable trace,
as they will look at different slices of those addresses.

Definition 6.4.2 Byte-level maps-to predicate corresponding to the virtual map: a virtual
address to physical address mapping.

_ : 7→v _ :: vaddr ⇒ paddr ⇒ fheap × paddr ⇒ bool

vp : 7→v p ≡ λ(h, r).
let heap = h_view h vp; vmap = ptable_lift heap r
in vmap vp = bpc ∧ dom h = ptable_trace heap r vp × {vp}

Now that we have the virtual-to-physical and physical-to-value mappings, we
can combine them. Unfortunately, due to the nature of virtual memory, there are two
ways to combine them, based on whether we hit the uncommon case of the physical
address a virtual address resolves to appearing in the virtual addresses pagetable
trace. If it does not, we can use a separating conjunction to combine the two as
in Definition 6.4.3. We believe that this is the common case, and our case study
will be based on using these mappings. Nonetheless, when dealing with operating
systems there is usually an exception to any rule of thumb, and so it is here. Since
the operating system accesses physical memory via virtual memory addresses, its
address space must be stored in a page table. Since the operating system must be

76 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

in control of its own address space, then the page table must be mapped into the
very address space whose mappings it stores. Thus there will exist addresses which
map to bytes of page table entries which map them. For this rather circular situation
we instead proceed as in Definition 6.4.4 by combining the virtual-to-physical and
physical-to-value mappings using a union of their domains. Note that by “unsafe”
we do not mean it violates the logic in any way. We simply mean that after writing
to such a virtual address, we cannot guarantee that the value we just wrote, or in
fact any value, can be read from that virtual address.

Definition 6.4.3 Safe version of the byte-level maps-to predicate corresponding to the
address space: a virtual address to value mapping.

_ : 7→ _ :: vaddr ⇒ 8 word ⇒ fheap × paddr ⇒ bool

vp : 7→ v ≡ λs. ∃p. (vp : 7→v p ∧∗ p : 7→p v) s

Definition 6.4.4 Unsafe version of the byte-level maps-to predicate corresponding to the
address space: a virtual address to value mapping.

_ : 7→u _ :: vaddr ⇒ 8 word ⇒ fheap × paddr ⇒ bool

vp : 7→u v ≡ λ(fh, r).
let heap = h_view fh vp; vmap = ptable_lift heap r
in ∃p. vmap vp = bpc ∧

(∀vp. fh (p, vp) = bvc) ∧
dom fh = ptable_trace heap r vp × {vp} ∪ {p} × UNIV

For the four types of maps-to predicates, we automatically generate variants such
as maps-to-any. Figure 6.12 shows all generated variants for one type of maps-to
predicate.

vp :↪→ v ≡ vp : 7→ v ∧∗ >
vp : 7→ - ≡ λs. ∃v. (vp : 7→ v) s

vps [: 7→] vs ≡ foldl op ∧∗ � (map (λ(x, y). x : 7→ y) (zip vps vs))

vp :↪→ - ≡ λs. ∃v. (vp :↪→ v) s

vps [: 7→] - ≡ foldl op ∧∗ � (map (λvp. vp : 7→ -) vps)

vps [:↪→] - ≡ foldl op ∧∗ � (map (λvp. vp :↪→ -) vps)

Figure 6.12: Automatically generated variants of maps-to predicates, shown
here for the virtual-to-value maps-to predicate.

6.5 Type-level Separation Logic Maps-to Predicates

Having defined what happens at the byte level for single addresses, we will now use
them as building blocks for type-level predicates working on pointers to memory-
storable objects in memory.

Figure 6.13 shows the type-level predicates. All the predicates work using the
same principle. In the style of Tuch et al. [57] we employ a guard on the supplied
pointer. The guard is entirely independent from the fractional heap and page table
root. It is there to enforce what constitutes a valid pointer: for example, there exist

6.6. SLICE ACCOUNTING AND READ-ONLY MAPS-TO PREDICATES 77

_ ` _ 7→p _ :: (′t pptr ⇒ bool) ⇒ ′t pptr ⇒ ′t ⇒
fheap × paddr ⇒ bool

g ` p 7→p v ≡ addr_seq (ptr_val p) (size_of TYPE(′t)) [: 7→p] to_bytes v
b∧c (λs. g p)

_ ` _ 7→v _ :: (′t vptr ⇒ bool) ⇒ ′t vptr ⇒ ′t pptr ⇒
fheap × paddr ⇒ bool

g ` vp 7→v p ≡ addr_seq (ptr_val vp)
(size_of TYPE(′t)) [: 7→v] addr_seq (ptr_val p) (size_of TYPE(′t))
b∧c
(λs. g vp)

_ ` _ 7→ _ :: (′t vptr ⇒ bool) ⇒ ′t vptr ⇒ ′t ⇒ fheap × paddr ⇒ bool

g ` vp 7→ v ≡ addr_seq (ptr_val vp) (size_of TYPE(′t)) [: 7→] to_bytes v
b∧c (λs. g vp)

_ ` _ 7→u _ :: (′t vptr ⇒ bool) ⇒ ′t vptr ⇒ ′t ⇒ fheap × paddr ⇒ bool

g ` vp 7→u v ≡ addr_seq (ptr_val vp) (size_of TYPE(′t)) [: 7→u] to_bytes
v b∧c (λs. g vp)

Figure 6.13: Type-level separation logic maps-to predicates.

alignment constraints both on specific architectures and in the C programming
language, or we do not want the pointer to be NULL. We then use the maps-to-list
variant shown in Figure 6.12 to combine a list of addresses and values (in the case
of physical-to-value and virtual-to-value maps) or addresses and addresses (in the
case of virtual-to-physical maps). The number of addresses that an object of type
′t occupies in memory is size_of TYPE(′t), which we described in Section 6.3.1. This
means ′t must be memory-storable.

As we did for our byte-level maps-to predicates, we also automatically generate
maps-to variants for our type-level predicates. They are shown in Figure 6.14

g ` vp ↪→ v ≡ g ` vp 7→ v ∧∗ >
g ` vp 7→ - ≡ λs. ∃v. (g ` vp 7→ v) s

g ` vps [7→] vs ≡ foldl op ∧∗ � (map (λ(x, y). g ` x 7→ y) (zip vps vs))

g ` vp ↪→ - ≡ λs. ∃v. (g ` vp ↪→ v) s

g ` vps [7→] - ≡ foldl op ∧∗ � (map (λvp. g ` vp 7→ -) vps)

g ` vps [↪→] - ≡ foldl op ∧∗ � (map (λvp. g ` vp ↪→ -) vps)

Figure 6.14: Automatically generated variants of typed maps-to predicates,
shown here for the typed virtual-to-value maps-to predicate.

6.6 Slice Accounting and Read-only Maps-to Predicates

In most situations, the maps-to predicates we introduced in Section 6.4.2 and Sec-
tion 6.5 are sufficient. When dealing with page table modification, two consequences
arise where we need predicates with a higher degree of control regarding the slices
used.

The first of these consequences concerns correspondence between a page table
entry as a machine word in memory and as part of a lookup path for addresses

78 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

on the page which the entry maps. We will explore this correspondence in more
detail in our case study in Section 6.8. For the moment, consider the following two
predicates:

g ` pde_ptr 7→p pde ∧∗ g ` pte_ptr 7→p pte

vp : 7→v v

The first predicate consumes all slices of four physical address bytes starting at
pte_ptr. Let us assume that the lookup path for vp involves both the PDE at pde_ptr
and the PTE at pte_ptr. In this case the second consumes only the vp slice of the
entire lookup path. Recall that there are 232 slices per physical address. Since the
granularity of mapping on the ARMv6 is smaller than 232 bytes, consumption of all
slices on the lookup path by a virtual-to-physical mapping is impossible by design.
For a small page, only 4096 slices of the PTE and PDE will be used. Since this is
separation logic, we cannot simply forget about the domain of our heap. Therefore,
we need a way of keeping track of these extra slices. This can be accomplished by
using the predicates in figure Figure 6.15.

_ of _ : 7→p _ :: (vaddr ⇒ bool)
⇒ paddr ⇒ 8 word ⇒ fheap × paddr ⇒ bool

slices of p : 7→p v ≡
λ(h, r). (∀vp∈slices. h (p, vp) = bvc) ∧ dom h = {p} × slices

_ ` _ of _ 7→p _ :: (′t pptr ⇒ bool)
⇒ (vaddr ⇒ bool)
⇒ ′t pptr ⇒ ′t ⇒ fheap × paddr ⇒ bool

g ` slices of p 7→p v ≡
slices of addr_seq (ptr_val p)

(size_of TYPE(′t)) [: 7→p] to_bytes v b∧c
(λs. g p)

Figure 6.15: Physical byte-level and type-level mappings with precise slice
control.

The sliced-controlled physical mappings correspond to the ordinary one in the
expected manner, i.e. by consuming the entire set of slices for the physical addresses
involved:

p : 7→p v = UNIV of p : 7→p v

Using the slice-controlled physical mappings, we can then also create a minimal
virtual-to-value mapping predicate. This predicate identifies the smallest heap
necessary to be able to make a statement in our logic about a successful read from
that virtual location. Since the virtual-to-physical mappings are already minimal, all
we need to do is match up the slices. We present the byte and type versions of this
predicate in Figure 6.16.

6.7 Interface to the C Programming Language

In the previous chapter, we used a programming language deeply embedded into
our framework. While it allowed us to prove that the combination of predicates and
language resulted in a separation logic, it was a very simple language with exactly
one user.

6.7. INTERFACE TO THE C PROGRAMMING LANGUAGE 79

_ : 7→1 _ :: vaddr ⇒ 8 word ⇒ fheap × paddr ⇒ bool

vp : 7→1 v ≡
λs. ∃p. (vp : 7→v p ∧∗ {vp} of p : 7→p v) s

_ ` _ 7→1 _ :: (′t vptr ⇒ bool)
⇒ ′t vptr ⇒ ′t ⇒ fheap × paddr ⇒ bool

g ` vp 7→1 v ≡
addr_seq (ptr_val vp) (size_of TYPE(′t)) [: 7→1] to_bytes v
b∧c
(λs. g vp)

Figure 6.16: Read-only byte-level and type-level address space maps-to pred-
icates.

In this section, we will build up our framework to the point where it exposes
two main functions which can bind to the C programming language: first loading,
then storing values in memory. We will assume that the program being executed
runs in virtual memory, and so must go through the page table in order to access
any address in physical memory.

Please note that we will omit page table permissions for the purposes of this
exercise. Since our maps-to predicates guarantee that page table lookups will
succeed for the given addresses, assertions on page table permissions can be added
as an extra guard on our maps-to assertions. In the context of the seL4 microkernel,
this is acceptable, as valid mappings are always read/write to the kernel and the
execute-never bit is not used. In order to adapt our work for verification of virtual
memory-aware user programs or memory-mapped devices, addition of such a guard
would be necessary. We discuss this further in Section 7.3 of Chapter 7.

6.7.1 Loading Values from the Fractional Heap

In Section 6.3.2 we showed loading of memory-storable types from a partial address-
to-value heap. In order to interface with another programming language, we need
to express the concept of loading an object from memory. Recall that our “state”
comprises the fractional heap and a physical address pointing to the page table root.
Our loading functions must thus be adapted to load objects given a pointer and a
state. Figure 6.17 shows the adapted functions.

load_value_v :: fheap × paddr ⇒ ′t vptr ⇀ ′t

load_value_v s vp ≡ load_value (as_view s) (ptr_val vp)

load_value_p :: fheap × ′b ⇒ ′t pptr ⇀ ′t

load_value_p s p ≡ load_value (h_view (fst s) undefined) (ptr_val p)

Figure 6.17: Loading a memory-storable object from a fractional heap state
given a virtual or physical pointer.

We can combine the loading functions with our maps to predicates. For example,
these rules show the relationship between a maps-to at the address space level and
the results of trying to load a value from the address space:

80 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

(g ` vp 7→ v) s

load_value_v s vp = bvc
(g ` p 7→ v ∧∗ P) s

load_value_v s p = bvc

6.7.2 Updating the Fractional Heap

If we can load from the fractional heap, we should also be able to store to it. Con-
ceptually, this is a matter of writing to physical addresses. However, our addresses
are divided up into slices, some of which may or may not be present in a given
fractional heap.

Definition 6.7.1 shows our core update function: it updates one byte in the
fractional heap at the given physical address. Our version updates the slices of the
physical address that are present in the fractional heap, completely ignoring those
that are not present. Note that if one is not careful, this is a potentially dangerous
situation. Invoking this function if not all the slices are present will cause a state
in which only part of a physical address changes value. Combining such a state
which has other slices of this physical address but with a different value will result
in a vacuous state. The advantage is that our update functions always preserve the
domain of the fractional heap, never adding slices or addresses to it.

In our framework the vacuous state is not a problem, however. We are interested
in separation-logic-based memory safety. Arbitrary growth of the heap holds no
interest for us and makes the frame rule harder to establish. Furthermore, the C
parser generates guards on all accesses. As we will demonstrate soon, the guard we
supply it with guarantees a non-vacuous state.

Definition 6.7.1 Updating a single byte of the fractional heap at the level of physical
addresses.

fheap_update :: fheap ⇒ paddr ⇒ 8 word ⇒ fheap

fheap_update fh p v ≡ λppv.
if fst ppv = p
then Option.map (K v) (fh ppv)
else fh ppv

Scaling up the fractional heap update to a full memory-storable object update is
a fairly simple process. For physical memory updates we simply discard the page
table root. For virtual address space updates we first perform a page table lookup to
determine the physical address to write to:

state_update_p :: fheap × paddr ⇒ paddr ⇒ 8 word ⇒ fheap × paddr

state_update_p s p v ≡ (fheap_update (fst s) p v, snd s)

state_update_v :: fheap × paddr ⇒ vaddr ⇒ 8 word ⇒ fheap × paddr

state_update_v s vp v ≡ case vmap_view s vp of None ⇒ s
| bpc ⇒ (fheap_update (fst s) p v, snd s)

Once we can write to a virtual or physical address, updating an object becomes
updating the range of addresses occupied by an object of that type to the sequence
of bytes it represents in memory. We only show the virtual address space updates,
as the process is identical for physical pointer updates:

6.7. INTERFACE TO THE C PROGRAMMING LANGUAGE 81

(p : 7→p b ∧∗ Q) (fh, r)

(p : 7→p b ′ ∧∗ Q) (fheap_update fh p b ′, r)

(vp : 7→ b ∧∗ P) s

(vp : 7→ b ′ ∧∗ P) (state_update_v s vp b ′)

(g ` vp 7→ old ∧∗ P) s

(g ` vp 7→ v ∧∗ P) (store_value_v vp v s)

Figure 6.18: Rules of byte-level updates to physical memory and virtual mem-
ory addresses, as well as typed updates to pointers in virtual memory.

state_update_v_list :: fheap × paddr ⇒ (vaddr × 8 word) list ⇒ fheap × paddr

state_update_v_list s [] = s

state_update_v_list s ((vp, v) · upds) =

state_update_v_list (state_update_v s vp v) upds

store_value_v :: ′t vptr ⇒ ′t ⇒ fheap × paddr ⇒ fheap × paddr

store_value_v vp val s ≡ state_update_v_list s
(zip (addr_seq (ptr_val vp) (size_of TYPE(′t)))

(to_bytes val))

We have proved that the rules in Figure 6.18 hold. That is, the frame rule holds for
updates to memory when considered by themselves. While this does not guarantee
that a programming language semantics which uses our updates will obey the frame
rule, they do form the most interesting part of the proof, as seen in the previous
chapter.

6.7.3 Reading and Updating Memory from C

Now that we have a way of loading and storing typed values in virtual memory,
we can finally create functions which hook our framework up to programs in the C
programming language. We do this by providing the C parser with functions it will
use to model the memory semantics.

Let us first consider what it means to perform a memory safe access in C. The C
standard requires that the pointer has to be aligned to the size of the object pointed
to. Additionally, in all systems with a virtual memory interface examined during the
production of this work, it is customary in nearly all situations to make the first page
of virtual memory invalid. The purpose of this is to make address zero invalid, thus
giving programmers a known invalid address to initialise pointers with. Figure 6.19
shows these constraints in the form of a c guard in the style of Tuch et al. [57].

It is not sufficient that the pointer be aligned and not cross the start of the address
space for an access to be safe. Recall from Section 6.7.2 that our access rules as well
as method of updating the fractional heap require that what we are trying to access
actually be present in the heap. For a single access, that would mean:

c_guard ` p 7→ -

However, a program is unlikely to work on just the minimal fractional heap re-
quired for this predicate. Therefore, we weaken it, resulting in the predicate in
Definition 6.7.2. If the weaker predicate holds for a fractional heap, it is safe to both

82 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

c_null_guard :: (′a, ′p, ′t) ptr_t ⇒ bool

c_null_guard p ≡ Addr (0 :: ′a) /∈ set (addr_seq (ptr_val p) (size_of TYPE(′t)))

c_guard :: (′a word, ′p, ′t) ptr_t ⇒ bool

c_guard p ≡ ptr_aligned p ∧ c_null_guard p

Figure 6.19: The C pointer guard requiring alignment to the size of the
pointed to object, as well as the zero address not being present in the range
of addresses occupied by the object.

read from and write to that address.

Definition 6.7.2 Safety predicate for reading and writing by C programs.

c_ptr_safe :: ′t vptr ⇒ fheap × paddr ⇒ bool

c_ptr_safe p ≡ c_guard ` p ↪→ -

Now that we have defined memory safety in a C program, we can define the
loading and storing interface functions under the assumptions that the C parser will
insert the safety predicates on all memory accesses. As shown in Figure 6.20 storing
is no different and loading assumes the load can be performed given the current
heap.

c_load_value :: fheap × paddr ⇒ ′t vptr ⇒ ′t

c_load_value s ≡ the ◦ load_value_v s

c_state_update :: ′t vptr ⇒ ′t ⇒ fheap × paddr ⇒ fheap × paddr

c_state_update ≡ store_value_v

Figure 6.20: Exported C semantics of loading and storing a value.

We can then link our address space maps-to predicate to the C loading and
storing interface, again showing that the frame rule holds on the update when
considered by itself. Figure 6.21 shows the proved rules.

(g ` p 7→ v) s

c_load_value s p = v

(g ` vp 7→ old ∧∗ P) s

(g ` vp 7→ v ∧∗ P) (c_state_update vp v s)

Figure 6.21: The rules linking loading and storing of values in virtual memory
with the address spaces maps-to predicate.

Unlike the situation in the previous chapter, where we could prove the frame
rule for all programs, we cannot induct over the structure of all programs expressible
in SIMPL [49]. SIMPL is deeply embedded for statements, but shallowly embedded
for expressions. A proof for all programs would thus need to contain a proof for
all expressions in Isabelle/HOL. Hence, like Tuch et al. [57] we can only prove the
frame rule for individual code components such as functions. Given that the output

6.7. INTERFACE TO THE C PROGRAMMING LANGUAGE 83

void int_ptr_swap (i n t * x , i n t * y) {
i n t t ;
t = * x ;

* x = * y ;

* y = t ;
}

Figure 6.22: A simple C function swapping the contents of two int pointers.

int_ptr_swap_body ≡
TRY
´t :== arbitrary;;

Guard C_Guard {|c_guard ´x|} (´t :== c_load_value H ´x);;
Guard C_Guard {|c_guard ´x|}
(Guard C_Guard {|c_guard ´y |}

(Guard MemorySafety {|c_ptr_safe ´x H|}
(H :== c_state_update ´x (c_load_value H ´y) H)));;

Guard C_Guard {|c_guard ´y |}
(Guard MemorySafety {|c_ptr_safe ´y H|} (H :== c_state_update ´y ´t H))

CATCH SKIP
END

Figure 6.23: Definition produced by the C parser for the function in Fig-
ure 6.22

is generated by the C parser using only the update and store functions we supply
ourselves, the process is not complicated and could be completely automated as
done by Tuch [54].

6.7.4 A Simple Example: Swapping the Contents of Two Pointers

To give a better understanding of the interaction with the C parser, we will give a
simple example of proving the specification and frame rule for the simple pointer
content-swapping program in Figure 6.22.

When we invoke the C parser on our file, it produces the definition for the
function body shown in Figure 6.23. The overall notation is that of SIMPL [49]: we
perform a sequence of operations in a TRY. . . CATCH block. In this case, we do not
return anything in the function at any point, so there is nothing to catch. In SIMPL,
statements encased in {| . . . |} have access to SIMPL states. In these statements,
variables annotated with with ´ refer to variables in that state, e.g. ´x.

The C parser generates pointer guards around all C statements which use point-
ers for memory access. The Guard C_Guard {| . . . |} identify and label the guard itself
in {| . . . |}. The guard we use is c_guard, which we explained in Section 6.7.3 and
provided to the parser as part of the instantiation of our logic.

The other guard is MemorySafety. When given the “memsafe” parameter, the
parser generates this guard for all writes to memory. As we mentioned in Sec-
tion 6.7.3, our choice of memory-safety predicate is c_ptr_safe.

The C parser does not allow referring to addresses of local variables such as ´t;
they exist only as SIMPL variables, and hence have no guards.

Guards aside, the statements themselves modify memory using c_load_value and
c_state_update, introduced in Section 6.7.3. There is some extra C parser infrastructure
present, in the form of the heap state variable H. This represents the state of the

84 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

∀ σ xv yv P.
Γ` {|σ. (c_guard ` ´x 7→ xv ∧∗ c_guard ` ´y 7→ yv ∧∗ P) H|}

Call int_ptr_swap
{|(c_guard ` σx 7→ yv ∧∗ c_guard ` σy 7→ xv ∧∗ P) H|}

Figure 6.24: Specification and frame rule for program in Figure 6.22.

underlying logic within the C parser’s state. In the case of the logic in our work, this
corresponds to the fractional heap and page table root.

Figure 6.24 shows the specification of our pointer content swap function. The
specification is also the frame rule (see Figure 4.8 in Chapter 4) for this function. The
rule is in the form of a Hoare triple, with the invocation of our function being the
executed command.

In the precondition, we require that both the pointer arguments ´x and ´y are
valid, disjoint in the fractional heap, as well as initially pointing to the values xv and
yv respectively. We also admit any other separation logic predicate that is separate
from these two pointers. The σ is there to give a name to the initial state, so we can
refer to it in the postcondition.

In the postcondition, we refer to the pointers in the original state by superscript-
ing them with the name we gave the state: σx and σy. We require that they now
point to yv and xv, in other words that their contents have been swapped. Our
arbitrary separation logic predicate in the original state, whatever it is, must remain
unaffected.

To prove the rule, we first want to reduce all the SIMPL annotations to something
we can reason about using the rules in our logic. The SIMPL verification condition
generator tactic (vcg) transforms Figure 6.24 into a rule containing only components
of our logic:

(c_guard ` x 7→ xv ∧∗ c_guard ` y 7→ yv ∧∗ P) s =⇒
c_guard x ∧
c_guard y ∧
c_ptr_safe x s ∧
c_ptr_safe y (c_state_update x (c_load_value s y) s) ∧
(c_guard ` x 7→ yv ∧∗ c_guard ` y 7→ xv ∧∗ P)
(c_state_update y (c_load_value s x) (c_state_update x (c_load_value s y) s))

Given our earlier rules for C loads and stores in Section 6.7.3, as well as the
associativity and commutativity of separating conjunction, it is easy to prove this
statement is true, and thereby not only that the frame rule holds for simple pointer
contents swapping function, but that it also actually swaps the contents of the
pointers.

We would further like to note that for such a simple example, it certainly looks
rather complicated when parsed into Isabelle. This is deceptive. All pointers in C, as
per the standard, must satisfy c_guard. Further, any logic with partial heap semantics
must prove that the write is safe, hence the c_ptr_safe guard. We are after all not
writing code in SIMPL, we are writing it in C and emulating its semantics in SIMPL.
This extra visual complexity is also evident in the work of Tuch [54, 57]. Going from
Figure 6.23 to Figure 6.24 requires one line of proof script only. The proof of the
statement in Figure 6.24 is also relatively short at around 20 lines, despite the fact
we presently use little automation in our framework.

6.8. CASE STUDY 85

6.8 Case Study

At the end of Chapter 5 we described a short case study which mapped a single
page into the page table, for a simplified machine, a one-level page table and a very
simple language. Now that we have introduced our entire framework, including the
interface to the C language, we will demonstrate a similar study, but at a far more
realistic level.

For this case study, we have chosen to examine a function of the seL4 micro-
kernel [31] named performPageInvocationMapPTE. Its code is listed in Figure 6.26
on page 87. It is a deceptively simple function. Through being a simple write to
memory, it places entries into the second-level page table, potentially resulting in a
re-mapping of the current kernel virtual memory layout. We will discuss the code
in more detail shortly.

This function is a good candidate for specifying the behaviour of within our
framework, as it exposes one of the most complex and intricate situations when
dealing with virtual memory. We demonstrated in Section 6.7.4 that in the simple
case our logic is just another separation logic. While this is indeed our goal, it is no
more interesting in our framework than in any other. Let us focus instead on a more
complicated situation: given that a first-level page directory entry is already present
and pointing to the second-level page table, what are the semantics of writing to
the page table? If the page table defines the current view of memory, how is this
view affected? Which heap resources are consumed? In particular, updating the
second-level table must consume a fraction of the first-level PDE. Let us apply our
logic then and demonstrate what happens.

6.8.1 The Code

Type Definitions

Before we get to the main function definition, we will give an overview of the types
used. Their definitions are listed in Figure 6.25. Some of these are not important
for the case study, other than to make sure the code compiles. Note that these type
definitions are the final result of conditional preprocessing of the original code base
for the 32-bit ARMv6 architecture.

uint32_t is a 32-bit unsigned integer, identical in size to the 32-bit machine word
on ARMv6 when compiled for this platform.

enum exception_t signifies the type of return value from seL4 functions. In our
case study we only see EXCEPTION_NONE, which signifies a normal function
return.

cap_t, mdb_node_t and cte_t are components of the seL4 capability system. They
are represented internally as arrays of words, which allows reasoning about
the bit-fields inside them for verification purposes [14]. For our purposes,
we are only interested in the page table system, thus we do not model the
capability system. We will model any writes to these structures, but not their
system-wide meaning.

pte_t represents a page table entry (PTE), such as the one we will be writing to the
second-level page table.

86 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

typedef unsigned long u i n t 3 2 _ t ;

enum except ion {
EXCEPTION_NONE,
EXCEPTION_FAULT,
EXCEPTION_LOOKUP_FAULT,
EXCEPTION_SYSCALL_ERROR,
EXCEPTION_PREEMPTED

} ;
typedef enum except ion e x c e pt i o n _ t ;

s t r u c t cap {
u i n t 3 2 _ t words [2] ;

} ;
typedef s t r u c t cap cap_t ;

s t r u c t mdb_node {
u i n t 3 2 _ t words [2] ;

} ;
typedef s t r u c t mdb_node mdb_node_t ;

s t r u c t c t e {
cap_t cap ;
mdb_node_t cteMDBNode ;

} ;
typedef s t r u c t c t e c t e _ t ;

s t r u c t pte {
u i n t 3 2 _ t words [1] ;

} ;
typedef s t r u c t pte p t e _ t ;

s t r u c t pte_range {
p t e _ t * base ;
unsigned i n t length ;

} ;
typedef s t r u c t pte_range pte_range_t ;

Figure 6.25: The seL4 type definitions used in our case study.

pte_range_t indicates a range of PTEs to write to. Please note that the base field
does not indicate the address of the second-level page table nor the base
address of any page or frame. The base field is a virtual pointer, pointing to
the virtual address at which the first PTE we want to write to is accessible in
the kernel’s address space. The length field indicates how many PTEs should
be written to in sequence. As we explained in Chapter 3, Section 3.3, this
number is either 1 for a small page or 16 for a large page.

The Code

Figure 6.26 shows the code of performPageInvocationMapPTE. We shall now dis-
cuss what exactly it does, although at the C code level it is rather simple.

The cap and ctSlot arguments refer to the seL4 capability system. As part of
adding the mapping, the capability cap to this mapping is recorded by the system
in the specified ctSlot. This has no effect on the actual mapping.

6.8. CASE STUDY 87

e x ce p t i o n _t
performPageInvocationMapPTE (cap_t cap , c t e _ t * c t S l o t , p t e _ t pte ,

pte_range_t p t e _ e n t r i e s) {
unsigned i n t i ;

c t S l o t−>cap = cap ;

for (i =0 ; i < p t e _ e n t r i e s . length ; i ++)
{

p t e _ e n t r i e s . base [i] = pte ;
}
/ * Our model d o e s not s u p p o r t c a c h e s .
c l e anCacheRange ((word_t) p t e _ e n t r i e s . bas e ,

(word_t)& p t e _ e n t r i e s . b a s e [p t e _ e n t r i e s . l e n g t h −1]) ;
* /

return EXCEPTION_NONE;
}

Figure 6.26: The seL4 page mapping function code used in our case study.

Next, we iterate over the number of PTEs specified by pte_entries.length,
writing the supplied PTE pte that many times in the table, starting at address
pte_entries.base.

Finally, the seL4 code causes the processor to flush the appropriate caches. As
we do not model caches in our framework, we have commented out this code.

6.8.2 The Code as Seen by Isabelle

performPageInvocationMapPTE_body ≡
TRY
´i :== arbitrary;;

Guard C_Guard {|c_guard ´ctSlot&→ ′ ′cap ′ ′|}
(Guard MemorySafety {|c_ptr_safe ´ctSlot&→ ′ ′cap ′ ′ H|}

(H :== c_state_update ´ctSlot&→ ′ ′cap ′ ′ ´cap H));;
´i :== scast 0;;
While {|´i < length_C ´pte_entries|}
(Guard C_Guard {|c_guard (base_C ´pte_entries + ´i)|}

(Guard MemorySafety {|c_ptr_safe (base_C ´pte_entries + ´i) H|}
(H :== c_state_update (base_C ´pte_entries + ´i) ´pte H));;

´i :== ´i + scast 1);;
RETURN (scast EXCEPTION_NONE)

CATCH SKIP
END

Figure 6.27: Definition of performPageInvocationMapPTE from Fig-
ure 6.26 produced by the C parser.

As with the pointer swapping example in Section 6.7.4, the C parser creates gen-
erates a SIMPL representation of the code, along with additional guards. Figure 6.27
shows this representation.

The C parser initialises ´i to any value, then proceeds to our first statement:
writing ´cap to the cap field of the ctSlot, i.e. ´ctSlot&→ ′ ′cap ′ ′. In order to do this,
we must prove that we can write to the address represented by ´ctSlot&→ ′ ′cap ′ ′,

88 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

both in terms of the heap domain containing the addresses we need to write to, as
well as the pointer being correctly aligned. If these conditions are met, H, i.e. the
heap, is updated.

As per the for loop initialisation condition, ´i is set to zero. The scast performs a
cast from the signed integer literal to the unsigned 32 word type of ´i.

The for loop is expressed as a while loop. The loop condition is as expected:
proceed while ´i is less than the length field of ´pte_entries.

The loop body proceeds as one might expect. We use ´i as an index into the
array starting at the base field of ´pte_entries. If the write-safety guards apply to
this address, we write ´pte there. Then we increment ´i.

Once the loop completes, we return EXCEPTION_NONE.

6.8.3 Proof Stage 1: The Function as a Heap Update

We will now proceed to verifying the semantics of performPageInvocationMapPTE
as a page table mapping insertion function. We will do the proof in three stages. The
first is to establish what the function does purely in terms of memory writes, without
considering its address-space modifying potential. Next we will demonstrate what
exactly is required in order to establish a small page mapping in our logic. Finally,
we will use our specification from the first stage to demonstrate the context in which
the function inserts a new mapping.

We begin with the first stage of our proof: defining and proving the semantics of
performPageInvocationMapPTE purely as a heap update function. What we mean
by this is looking at the function as a series of memory writes to virtual addresses
which represent access to corresponding physical addresses. Note that we cannot
use only address-space mappings as we did for the pointer swap example. In this
case, when we write to a virtual address we also need to know specifically which
physical address it maps to. While we can infer an address space mapping from a
virtual and physical one as shown in Figure 6.28, we cannot easily derive a specific
physical address if we try to reverse the process.

(g ` vp 7→v p ∧∗ g ′ ` p 7→p v) s

(g ` vp 7→ v) s

Figure 6.28: Deriving an address space mapping from virtual and physical
mappings.

Figure 6.29 shows the specification of our case study function. We will now cover
its pre- and postconditions on an issue-by-issue basis. Recall that ´x means x in the
current state, while σx means x in the state bound to the name σ. By convention, we
bind the initial state to be σ, such that σx means “the original value of x”.

Restrictions on the number of PTEs written. We require that the number of PTEs
written be non-zero, but less than 16 (0x10 in hexadecimal):

length_C ´pte_entries ≤ 0x10

0 < length_C ´pte_entries

Heap state root is unchanged. Recall that the heap stateH consists of the fractional
heap and the page table root. The function may modify the heap stateH, but

6.8. CASE STUDY 89

Γ` {|σ. (c_guard ` ´ctSlot&→ ′ ′cap ′ ′ 7→ - ∧∗
c_guard ` ptr_seq (base_C ´pte_entries)

(unat (length_C ´pte_entries)) [7→v] pte_ptrs ∧∗
c_guard ` pte_ptrs [7→p] - ∧∗ P)
H ∧

0 < length_C ´pte_entries ∧
length_C ´pte_entries ≤ 0x10 ∧
length pte_ptrs = unat (length_C ´pte_entries) ∧ snd H = r|}

Call performPageInvocationMapPTE
{|(c_guard ` σctSlot&→ ′ ′cap ′ ′ 7→ σcap ∧∗

c_guard ` ptr_seq (base_C σpte_entries)
(unat (length_C σpte_entries)) [7→v] pte_ptrs ∧∗

c_guard ` pte_ptrs [7→p] replicate (unat (length_C σpte_entries)) σpte ∧∗ P)
H ∧

snd H = r|}

Figure 6.29: The specification of performPageInvocationMapPTE in
terms of heap updates.

leaves the page table root unchanged. Thus we constrain the root in the
precondition to the free variable r, and demonstrate this is still true in the
postcondition:

snd H = r

We will now focus on the contents of the heap.

Setting the capability in the capability table entry. At the start, we require a valid
address-space mapping for a cte_C virtual pointer, but we do not care about
the value it points to. Given this precondition, we show that the function
updates the cap field of the structure pointed to by the original ctSlot to the
original argument cap:

PRE: c_guard ` ´ctSlot&→ ′ ′cap ′ ′ 7→ -

POST: c_guard ` σctSlot&→ ′ ′cap ′ ′ 7→ σcap

The virtual addresses of the PTEs. We assume that the sequence virtual pointers
we will be writing to maps to a sequence of distinct physical addresses. This is
expected, as second-level tables are required to be contiguous in memory. We
prove this mapping is not disturbed by the function:

PRE: c_guard ` ptr_seq (base_C ´pte_entries)
(unat (length_C ´pte_entries)) [7→v] pte_ptrs

POST: c_guard ` ptr_seq (base_C σpte_entries)
(unat (length_C σpte_entries)) [7→v] pte_ptrs

The PTEs in physical memory are updated. We assume that the sequence of phys-
ical pointers representing the PTEs, pte_ptrs, is present in the heap. We are
not concerned about the initial values. From this we show that after executing
the function, all these physical pointers will point to the same value, the pte

argument given originally:

PRE: c_guard ` pte_ptrs [7→p] -

POST: c_guard ` pte_ptrs [7→p] replicate
(unat (length_C σpte_entries)) σpte

90 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

The framing condition. This is, after all, separation logic. When we add extra
predicates to describe our heap state, then if they describe separate areas of
the heap to the other predicates (as indicated by separating conjunction), then
these extra predicates should be unaffected. This is the frame rule, and we do
prove that it holds for this function:

PRE: P
POST: P

∃len. len = length_C ´pte_entries ∧
len ≤ 0x10 ∧
´i ≤ len ∧
0 < len ∧
length pte_ptrs = unat len ∧
´cap = σcap ∧
´ctSlot = σctSlot ∧
´pte = σpte ∧
´pte_entries = σpte_entries ∧
snd H = r ∧
(c_guard ` drop (unat ´i)

(ptr_seq (base_C ´pte_entries)
(unat (length_C

´pte_entries))) [7→v] drop (unat ´i) pte_ptrs ∧∗
c_guard ` take (unat ´i)

(ptr_seq (base_C ´pte_entries)
(unat (length_C

´pte_entries))) [7→v] take (unat ´i) pte_ptrs ∧∗
c_guard ` drop (unat ´i) pte_ptrs [7→p] - ∧∗
c_guard ` take (unat ´i) pte_ptrs [7→p] replicate (unat ´i) ´pte ∧∗
c_guard ` ´ctSlot&→ ′ ′cap ′ ′ 7→ ´cap ∧∗ P)
H

Figure 6.30: Loop invariant used in the proof of the specification in Fig-
ure 6.29.

Proving the specification in Figure 6.8.3 is purely an exercise in matching up the
Hoare logic reasoning of SIMPL with standard reasoning about separation logic
assertions. At this stage, we do not consider the function as performing any kind
of page table manipulation at all, just as writes to memory. In a way, it is just a
more complicated version of our pointer swap example from Section 6.7.4. Using
the loop invariant in Figure 6.30, our proof of the function specification comes to
75 lines of proof script. The proof is straightforward, although at this stage we
have little automation, thus much of it is simple reordering of maps-to predicates
under separating conjunction to get rules to apply. We did not experience any added
complexity from reasoning about writing to virtual memory.

6.8.4 Proof Stage 2: A Heap that Contains a Mapping

Given the specification in Section 6.8.3, we now know exactly what the function
does. In order to confirm it can indeed add a virtual-to-physical page table map-
ping for the current state, we need to place it in the correct context. In order to
describe this context, we need to first identify what sort of physical heap state is

6.8. CASE STUDY 91

actually equivalent to a virtual-to-physical mapping of a small page on the ARMv6
architecture.

Figure 6.31 shows the preconditions required in order to assert that using a page
table root r, there exist mappings for all virtual addresses within the page table.
Furthermore, in terms of accounting for slices, these are the minimal requirements
of a heap which maps a small page.

[[decode_pde pde = PageTablePDE pt; decode_pte pte = SmallPagePTE base perms;
sz = page_size ArmSmallPage; page_aligned ArmSmallPage vbase;
(g ` set (addr_seq (Addr vbase) sz) of Ptr r + vaddr_pd_index vbase 7→p pde ∧∗
g ` set (addr_seq (Addr vbase) sz) of Ptr pt + vaddr_pt_index vbase 7→p pte ∧∗
R r)
(h, r)]]

=⇒ (addr_seq (Addr vbase) sz [: 7→v] addr_seq base sz ∧∗ R r) (h, r)

Figure 6.31: The correspondence theorem between a page table entry (PTE)
and the page of virtual addresses it maps to physical ones.

Assuming we want a small page with a virtual base address of vbase to be
mapped to a contiguous sequence of bytes in physical memory at physical address
base, let us examine the demands on the heap. We will abbreviate the page size in
bytes, page_size ArmSmallPage, as sz. This size is 212 = 4096 bytes.

Firstly, a page in memory must start at a multiple of its page size. Hence vbase

must be aligned to the size of a small page:

page_aligned ArmSmallPage vbase

Next, let us consider the slices required. Recall from Section 6.4.1 that for the
purposes of page table lookup, each virtual address gets its own view of physical
memory by using a sliced view derived from the address itself. This means that
for a lookup of virtual address vp to succeed, the vp slice of any PDE and PTE in its
lookup path must be present in the heap. It then follows that for a whole page of
virtual addresses starting at vbase, the slices available must be:

set (addr_seq (Addr vbase) sz)

If we construct a 32 word pointer from the page table root r, we can add the page
directory index obtained from vbase to it to obtain the PDE. This is identical to the
left-shift-by-two in the page table lookup procedure in Section 6.2.2, except here
we exploit pointer addition to perform the multiplication for us. Recall that size_of

TYPE(32 word) = 4. The resulting physical pointer must point to the PDE whose
slices required for the page must be in the heap:

g ` set (addr_seq (Addr vbase) sz) of Ptr r + vaddr_pd_index vbase 7→p pde

If we decode the PDE, it needs to lead us to a second-level page table in physical
memory:

decode_pde pde = PageTablePDE pt

Similarly to the way we extracted the PDE, we extract the PDE starting at the
base address of the page table and adding the page table index obtained from vbase:

g ` set (addr_seq (Addr vbase) sz) of Ptr pt + vaddr_pt_index vbase 7→p pte

Finally, if we decode that pte, the result needs to be a small page, with a physical
base address of base:

92 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

decode_pte pte = SmallPagePTE base perms

If all these conditions are fulfilled, we can conclude that the entire small page is
mapped. The slice consumption outlined above corresponds to that of the virtual-
to-physical mapping:

addr_seq (Addr vbase) sz [: 7→v] addr_seq (Addr base) sz

Finally, we add the frame condition R r which is preserved across this state
rearrangement. This is not strictly necessary, but in our experience it makes the rule
more useful in the context of proof.

6.8.5 Final Proof: A Function that Maps

Given that we have the specification of performPageInvocationMapPTE as well as
the physical requirements of which heap conditions constitute a small page mapping,
we can now expand the precondition of the specification, have them pass through
to the postcondition via the frame rule, and finally rewrite the postcondition using
the mapping rule in Figure 6.31. We can do this via the consequence rule in SIMPL,
which we present for completeness in Figure 6.32. Interesting symbols aside, one
can see that it allows precondition strengthening and postcondition weakening of
any existing SIMPL program specification.

∀Z. Γ,Θ`/F (P ′ Z) c (Q ′ Z),(A ′ Z)
∀s. s ∈ P −→ (∃Z. s ∈ P ′ Z ∧ Q ′ Z ⊆ Q ∧ A ′ Z ⊆ A)

Γ,Θ`/F P c Q,A

Figure 6.32: The consequence rule of SIMPL. It allows strengthening the
precondition and weakening the postcondition of an existing specification.

In order to rewrite the postcondition, we need one more rule to make our slice
accounting break even. Our function writes to a full physical address, i.e. all slices,
while our mapping rule only uses some of them to create a mapping. In order to
specify “the other slices”, we use the splitting rule in Figure 6.33. Note that - S is the
set inverse of S, i.e. UNIV - S.

(g ` p 7→p v) s = (g ` S of p 7→p v ∧∗ g ` (- S) of p 7→p v) s

Figure 6.33: Splitting a physical maps-to predicate into two read-only maps-
to predicates with complementary slice sets.

Using this rule, it is finally possible to express performPageInvocationMapPTE
in terms of the semantics of a function that adds a mapping. Figure 6.34 shows the
completed rule for using the function for mapping in a small page with a physical
base address of base as contiguous sequence of bytes in virtual memory at virtual
address vbase.

The large size of this rule is due to the seL4 function not mentioning the page
directory or second-level page table directly, but rather only writing to individual
PTEs. Nonetheless, the proof is easier than it would seem, as we are strengthening
the precondition and weakening the postcondition, with disjoint predicates passed
through via the frame rule. The proof takes 24 lines of proof script.

6.8. CASE STUDY 93

Γ` {|σ. (c_guard ` ´ctSlot&→ ′ ′cap ′ ′ 7→ - ∧∗
c_guard ` base_C ´pte_entries 7→v pte_ptr ∧∗
c_guard ` pte_ptr 7→p - ∧∗
c_guard ` set (addr_seq (Addr vbase)

sz) of Ptr r + vaddr_pd_index vbase 7→p pde ∧∗
P)
H ∧

length_C ´pte_entries = 1 ∧
index (pte_C.words_C ´pte) 0 = pte ∧
pte_ptr = Ptr pt + vaddr_pt_index vbase ∧
decode_pde pde = PageTablePDE pt ∧
decode_pte pte = SmallPagePTE base perms ∧
sz = page_size ArmSmallPage ∧
page_aligned ArmSmallPage vbase ∧ snd H = r|}

Call performPageInvocationMapPTE
{|(c_guard ` σctSlot&→ ′ ′cap ′ ′ 7→ σcap ∧∗

c_guard ` base_C σpte_entries 7→v pte_ptr ∧∗
addr_seq (Addr vbase) sz [: 7→v] addr_seq base sz ∧∗
c_guard ` (- set (addr_seq (Addr vbase) sz)) of pte_ptr 7→p

σpte ∧∗ P)
H ∧

snd H = r ∧ index (pte_C.words_C σpte) 0 = pte|}

Figure 6.34: The specification of performPageInvocationMapPTE as a
page table mapping function.

Once again, here is an aspect-by-aspect breakdown of the rule.

Framing condition, capability setting and root preservation. These remain identi-
cal to Section 6.8.3.

Page size As in Section 6.8.4, we abbreviate the page size in bytes as:

sz = page_size ArmSmallPage

Restrictions on the number of PTEs written. This time we are specifically map-
ping a single small page, we restrict the number of modified PTEs to one:

length_C ´pte_entries = 1

Address of the PTE. We extract the contents of ´pte into the free variable pte. We
also require that the page table index in vbase and the address of the PTE
agree:

index (pte_C.words_C ´pte) 0 = pte

pte_ptr = Ptr pt + vaddr_pt_index vbase

Furthermore, the address of the PTE must be accessible via the virtual address
specified in the base field of ´pte_entries. This is very similar to Section 6.8.3,
but with only one PTE. It carries through to the postcondition:

PRE: c_guard ` base_C ´pte_entries 7→v pte_ptr

POST: c_guard ` base_C σpte_entries 7→v pte_ptr

PDE and PTE contents: as in the mapping rule in Figure 6.31, we require that the
PDE points to a page table when decoded, and that the PDE contains the base
physical address of the page in physical memory:

94 CHAPTER 6. TYPED MAPPED SEPARATION LOGIC

decode_pde pde = PageTablePDE pt

decode_pte pte = SmallPagePTE base perms

Alignment of vbase . As before, vbase must be page aligned:

page_aligned ArmSmallPage vbase

The mapping. We start with the necessary slices of the PDE being available to map
the page, as well as pte_ptr pointing to some existing PTE in memory:

PRE: c_guard ` pte_ptr 7→p -

PRE: g ` set (addr_seq (Addr vbase)
sz) of Ptr r + vaddr_pd_index vbase 7→p pde

After the function is done, we have consumed the supplied PDE slices within
the virtual-to-physical mapping for the entire page, but we are left over with
the anticipated surplus of slices from the PDE, corresponding to the comple-
ment of the ones we used in the PDE:

POST: addr_seq (Addr vbase) sz [: 7→v] addr_seq base sz

POST: c_guard ` (- set (addr_seq (Addr vbase) sz)) of pte_ptr 7→p
σpte

This concludes our case study. As we have demonstrated, it is possible to reason
about page table manipulation in our framework. Doing so remains somewhat com-
plicated, but this is entirely expected when dealing with virtual memory reasoning
involving page table modification. As we demonstrated, it is convenient that we
can develop the specifications for these complicated cases in a modular fashion, by
first specifying what a function does in terms of memory writes, and performing
the reasoning about virtual memory as a separate step.

The novelty in our framework is visible in perhaps the smallest part of the proof:
the framing condition. By specifying exactly what changed in the heap, we have also
specified what didn’t. Although we still consider pagetable manipulation the most
complex case within our framework, it certainly is not the end of the world. This can
easily be seen when supplying a different page mapping as P in our rule. If this map-
ping uses a different PTE, even if the PDE is the same, then we can guarantee it is
unaffected by the insertion of a new mapping by performPageInvocationMapPTE.
This includes any other predicate that is separate in the heap, as enforced by sepa-
rating conjunction.

As promised, we did not enter any special state, but remained in our framework
throughout.

Chapter 7

Discussion and Conclusion

7.1 Summary

In this work, we have extended the reach of separation logic to the domain of
reasoning about programs executing in a virtual memory environment. We have
demonstrated that one can talk about virtual memory, physical memory, and their
combinations simultaneously, without the need for entering special “modes”. Our
basis in separation logic allowed us to express the effects of accessing memory in
terms of not only what changed, but also infer what did not. This included accesses
to the page table which modify the layout of virtual memory itself. We showed that
the basic idea works for a simple machine with a trivial one-level page table, and
does in fact form a separation logic. We also demonstrated that our idea extends
to reasoning about a real machine, a two-level page table with superpages, and
that our logic can be plugged into an existing framework for reasoning about C
programs, in the form of the L4.verified project’s C parser [57].

We demonstrated, over the course of two case studies, that it is possible to reason
about writes to the page table in our framework while preserving the frame rule.
The case study using our initial, plain untyped framework in Chapter 5 did so for
a one-level page table on a simplified architecture. Our case study in Chapter 6
demonstrated this in our full framework, with a realistic page table model based on
the ARMv6 architecture, by verifying the exact conditions necessary for making a C
function insert a page table mapping for a small page. These studies demonstrate it
is possible to manipulate the page table while maintaining use of the frame rule to
infer not just what changed, but also what didn’t change, thus bringing separation
logic-style modularity to the virtual world.

In short, our approach allows local reasoning about programs running in virtual
memory, despite the complications that working with virtual memory entails.

Figure 7.1 shows the lines of code and proof script as used in the various com-
ponents of our work. At least a third of these consist of comments and internal
documentation.

7.2 Discussion

While our work does demonstrate our core idea as advertised, and while we do
outline an initial framework for working with C programs in virtual memory, it
is important to point out that our work is one way of doing so. To the best of our

96 CHAPTER 7. DISCUSSION AND CONCLUSION

Component File type Lines
Simple Logic Proof Script 6322

Full Logic
Proof Script 7041

ML code 823

C Parser Integration
Proof Script 1326

ML code 1126
Full Logic Case Study Proof Script 567

Figure 7.1: Lines of code and proof script in the different components of our
work.

knowledge, we appear to be the first person1 to create such a unified memory model
and connect it to separation logic. As we have made decisions that could possibly
have been done differently, we believe these are worthy of discussion.

No Page Table Permissions Visible in Maps-to Predicates

There is an obvious omission in our maps-to arrows. While our model of the ARMv6
page table does include the decoding of page table properties, we do not use them
in the maps-to assertions themselves. Initially, we omitted them because they were
unnecessary to prove that our core idea works. When we investigated the seL4
microkernel, we found that the kernel only creates mappings that it can read and
write to and does not use the no-execute flag nor domains. Additionally, its single-
processor nature means that the memory-ordering bits are largely unimportant.
Since our work does not examine caches or interfacing to devices (see Section 7.3),
the cacheable and bufferable bits were also irrelevant in the model used in our work.

Thus, while adding an extra “permission guard” on all our virtual memory
maps-to predicates is not hard, in our model as it stands in this work, such a guard
does not actually provide any extra information to the reader.

Upon exploration of some of the topics we mention in Section 7.3, the concept of
permission guards is worth revisiting.

Slices vs. Bornat Model of Permissions

Bornat’s model of permissions [10] involves adding a rational number to all maps-to
assertions in separation logic, as well as all values in the heap. If that number is
1, we can read and write to an address. If it is less, but greater than 0, we can
only read. This allows splitting a value at an address into a number of pieces,
allowing specification of read-only sharing of memory between concurrent program
components.

To anyone familiar with Bornat’s model, our concept of slices would seem
familiar. In fact, it is possible to express our slices in terms of Bornat’s permission
model, if we pick the right rational numbers and are careful when reasoning about
them. Why then do we not use the permissions model?

The foremost reason is a conceptual one. We know ahead of time the worst
possible situation that can happen on the system in terms of sharing one page table

1Throughout this work, we have used the royal “we” to indicate the author.

7.2. DISCUSSION 97

entry: all virtual addresses sharing the same entry. This gives us an upper bound,
meaning we have no need of rational numbers. By cutting up every physical address
into the upper-bound number of slices, we also gain the ability to give each virtual
address a “view” of physical memory. This means that in the common case of
accessing virtual memory addresses, when we do not modify the page table and
hence change the memory layout, we do not need to work with fractional arithmetic.

The other reason is convenience. Since our number of slices per physical address
is constant, we do not need to put a fraction in the range of our heap function.
Instead, we simply make its domain be the product of virtual and physical addresses.
By doing so, we can use the normal Isabelle/HOL map operations, as well as
everything that has been proven about them over the years.

As always, there is a trade off to our choice of slices vs. permissions. With
permissions, every time one splits an address, one gets two fractions to carry around
with the resulting predicates until they are merged again. One also has to deal with
adding up fractions and making sure the result is not greater than 1. With slices, the
information on which slices of a physical address are used by a virtual address can
be inferred from the virtual address itself, and several tricky cases go away. The
price we pay is that we derive everything from the worst-case situation, thus we
have a constant excess of slices. For instance, when we take a PTE on ARMv6, the
four physical addresses there each have the full complement of slices. If we then use
that PTE to map a small page, 212 addresses will be mapped. That leaves 232 − 212

slices that are “virtual”: they do nothing except serve as a token to keep on the side
to be able to reconstruct the full physical addresses of the PTE.

Correctness

As we mentioned in Chapter 1, nothing can be proven completely correct. The only
concept of correctness is with regard to a specification.

In our work, we use Norrish’s C parser [57], which formalises a subset of the
C99 programming language standard into Norbert Schirmer’s SIMPL [49] encoding
in Isabelle/HOL. We choose to trust that this mapping is correct. It has been heavily
tested, but the translation has not yet been verified to conform to the specification of
the C programming language subset we use. As the C programming language has
features which are implementation-dependent, architecture-dependent and compiler
dependent [43], there is unlikely to ever be a specification of the C programming
language, and certainly there is no way to logically prove that is is authoritative.

Our ARMv6 page table model is likewise developed after the fact from the ARM
reference manual [6], as well as examination of the seL4 code base to confirm that
domains are not used. We are confident that our model represents the behaviour
specified in the ARM reference manual for the ARMv6 architecture in non-legacy
mode, but to trust that our model is correct, one needs to trust that the manual is
correct.

Finally, we use the Isabelle/HOL theorem prover for every part of our model,
and even for displaying all formulas in this document. As we mentioned in Chap-
ter 1, Isabelle is an LCF-style prover, an approach which is designed to maximise
reliability. It is written in Standard ML, a functional language with a strict type sys-
tem, and one of the few languages with an actual formal specification of its semantics.
Nonetheless, even here there is room for error, although given the years of usage

98 CHAPTER 7. DISCUSSION AND CONCLUSION

and testing performed on Isabelle’s proof kernel, we have very high confidence that
what Isabelle admits as proof is indeed true.

7.3 Future Work

In this section we will outline next steps and possible future directions one can take
our work.

7.3.1 Translation Lookaside Buffer

As we discussed in Section 3.2.3 of Chapter 3, the translation lookaside buffer
(TLB) is a hardware cache of mappings contained in the page table. When TLB
entries constitute a subset of the mappings in the page table, everything is fine. The
difficulty occurs when there is a possible disrepancy. For example, if a mapping
is currently cached by the TLB and we change this mapping in the page table, the
hardware will ignore our change when looking up a virtual address that corresponds
to this mapping. The hardware provides TLB flush instructions for this reason. They
clear a subset, or potentially all, entries from the TLB. Thus modelling only the page
table does not encompass all the issues involved in virtual memory.

There are several ways to get out of this. The most obvious way is to treat the
TLB the same way as the L4.verified project treats virtual memory: write down
well-reasoned assertions about properties memory accesses should have such that
TLB consistency is maintained. The most painful way is to model the contents of the
TLB itself and reason about what mappings are cached in it.

We claim that there is a better way to model TLB behaviour in our framework.
Our initial concept proceeds as follows. Firstly, the specific situation we are trying
to avoid is a memory read or write to a virtual address whose mapping has been
modified but that might also be in the TLB. This means we do not care what set
of mappings is currently in the TLB. We only care that we do not make any claim
about where a virtual address maps to unless we are certain that its lookup path
does not take it through a page table entry out of sync with the TLB. Following this
line of thought, a write to a page table entry “taints” it until a TLB flush makes it
safe to use again.

Our proposal therefore involves adding a “dirty” flag to every byte in the phys-
ical heap. When a physical address is written to, we set its dirty flag in the heap.
We then make any page table lookup involving that physical address fail. In this
situation, we would be unable to assert a virtual-to-physical mapping such as:

vp : 7→v p

Once a TLB flush occurs which clears any conflicting mapping from the TLB,
the dirty flags will be removed from the corresponding page table entries, at which
point we can use them for virtual-to-physical mappings again.

Although we believe our approach has merit, there are a number of concerns
which need to be explored in terms of its convenience:

• A correspondence needs to be established between the TLB flush instructions
on the given architecture and the page table entries involved. This is the only
way to remove a dirty flag from a physical address.

7.3. FUTURE WORK 99

• After we write the page table entry that establishes a page table mapping, we
still need to be able to state that mapping in our logic. If we simply make page
table lookups unsuccessful, such a predicate may become very inconvenient.

• We do not yet know how the addition of a dirty flag to all physical addresses
would help or hinder reasoning about more complicated concepts such as
devices or caches.

If these concerns were addressed, this approach to TLB management would
allow reasoning about TLB consistency without having to model the entire memory
management unit on a bit-by-bit level of detail.

7.3.2 Caching

In our framework, we have made no attempts at reasoning about cache mechanisms,
although we covered the basics of caching in Section 3.2.4 of Chapter 3. The cache
we are referring to is the onboard memory of the processor, which the processor
uses to prevent having to access the comparatively much slower RAM.

The presence of caches can create multiple problems when they are not handled
properly. The type of problems depend largely on the type of the cache. For example,
we previously outlined the implementation-dependent issues with virtually indexed,
physically tagged caches on the ARMv6, where two virtual addresses mapping to
the same physical address could be stored in two different cache lines.

As with the TLB, when modifying page table mappings, there are consistency
problems between the main memory and the cache. Unless instructed to flush
caches, the processor will load from the cache. An example mistake is forgetting
to issue a cache flush when mapping a physical memory into a process’ address
space which was once used by a different process. This can result in addresses with
stale entries sitting in the processor’s cache which will be written out to RAM the
moment the new process tries to access them, resulting in erronous behaviour even
in correct programs.

Once again, our interest lies not in what is and is not in the cache, but we remain
very interested in how to specify cache behaviour similarly to the idea we outlined
for the TLB, i.e. annotations to the system model that implicitly result in correct
behaviour with respect to cache coherency. We believe that development of such
a model, especially if it allows preservation of the modularity of separation logic,
would be an exciting research area.

7.3.3 Devices and IOMMUs

Our current framework does not address issues resulting from dealing with hard-
ware devices whose inputs and outputs are mapped into physical memory. In our
current model, we can either treat such areas as ordinary physical memory, or we
can leave such areas out of the partial heap state to begin with. Beyond this, any
actions performed by devices would have to be modelled explicitly. From this angle,
the problem of devices is orthogonal to the issue of virtual memory and as such,
outside the realm we are exploring.

An input/output memory management unit (IOMMU) is to devices what the
normal MMU is to the processor. That is, it translates addresses requested by the

100 CHAPTER 7. DISCUSSION AND CONCLUSION

device into addresses in physical memory. Although we do not explore this in detail
as we are not at this point interested in device verification, the IOMMU translation
mechanism obeys the same principles encoded in our logic and as such can also be
reasoned about using separation logic.

7.3.4 Reasoning About Multiple Page Tables at Once

All the case studies in this work involve a process modifying its own address space
by writing to its own page table. We focus on this as it is the most complicated
situation that can arise which we can think of. Unfortunately, we have not explored
in detail how our separation logic assertions can be disassembled and reassembled
upon switching processes and thus switching the active page table root.

Naturally, as we have shown that our logic follows the principles of separation
logic, it will continue to work in a modular fashion for any predicates we can show
to be separate. The slicing model does not permit modelling of all possibilities,
however. For example, consider two processes, each of which has a separate page
directory. If we wish to share a second-level page table between these processes,
then we must make sure that none of the pages mapped by those page table entries
have the same virtual address. While the hardware will allow it, in our slicing model
these entries cannot be considered separate.

Furthermore, while we explored the management of “virtual” slices within the
same address space deriving from the same page table root, we have not examined
in detail how well the concept works in practice when reasoning about multiple
page table roots simultaneously or when switching page table roots.

In other words, our focus has been on verifying the operating system alone. In
order to branch out into verification of user programs in the context of the operating
system, the multiple page table root issue will need to be explored.

7.3.5 Larger Case Study

In Section 7.3.4 we mentioned multiple page table roots, switching page table roots,
and user programs. The reason we talk about these in the future work section is that
while this work presents our logic and thus a way to pull separation logic into the
domain of virtual memory, we can only make predictions at how it can be used in
the context of a larger project. How it will actually be used depends on the project
itself.

We believe that a suitable larger case study for our framework would be the
verification of a system pager. A pager is a subsystem or process whose job it is
to swap the data of processes between the main memory and the disk, mapping
and unmapping pages in and out of page tables as necessary. This type of memory
management is difficult to get right, as a pager must make sure that a process only
has access to its own data rather than another process’, while constantly managing
reuse of the same physical memory.

Involving a new framework into a larger project such as a pager component
would likely facilitate construction of more effective memory management predi-
cates and ironing out any kinks. We believe the situation would be analogous to
comparing the case study of Chapter 5 with the corresponding case study in our full
framework in Chapter 6. Despite a more complicated architecture, page table model,
as well as the presence of C semantics, the reasoning in the full framework is, in our

7.4. CONCLUDING REMARKS 101

opinion, far easier to understand. We hope that our framework will see such further
improvement in the future.

7.4 Concluding Remarks

We stated our goal as moving the world of operating system verification one step
closer towards realism. By introducing a way of looking at virtual and physical
memory simulaneously, while being able to prove properties of how one affects
the other and maintaining the ability to reason locally, we believe that we have
accomplished that goal.

102 CHAPTER 7. DISCUSSION AND CONCLUSION

Bibliography

[1] Frama-C. http://frama-c.com.

[2] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. Mach: A new kernel foundation for UNIX
development. In Proceedings of the 1986 Summer USENIX Technical Conference,
pages 93–112, Atlanta, GA, USA, 1986.

[3] Elyad Alkassar, Norbert Schirmer, and Artem Starostin. Formal pervasive
verification of a paging mechanism. In C.R. Ramakrishnan and Jakob Rehof,
editors, Proc1̇4th Int’l Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08), volume 4963 of Lecture Notes in Computer Science,
pages 109–123. Springer, 2008.

[4] Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W. Schirmer, and
Artem Starostin. The Verisoft approach to systems verification. In Natarajan
Shankar and Jim Woodcock, editors, Verified Software: Theories, Tools, Experiments
Second International Conference, VSTTE 2008, Toronto, Canada, October 6–9, 2008.
Proceedings, volume 5295 of Lecture Notes in Computer Science, pages 209–224,
Toronto, Canada, October 2008. Springer.

[5] Eyad Alkassar, Mark A. Hillebrand, Wolfgang Paul, and Elena Petrova. Auto-
mated verification of a small hypervisor. In Peter O’Hearn, Gary T. Leavens,
and Sriram Rajamani, editors, Verified Software: Theories, Tools, Experiments
(VSTTE 2010), volume 6217 of Lecture Notes in Computer Science, pages 40–54,
Edinburgh, UK, August 2010. Springer.

[6] ARM Limited. ARM Architecture Reference Manual, June 2000.

[7] William R. Bevier. Kit: A study in operating system verification. IEEE Transac-
tions on Software Engineering, 15(11):1382–1396, 1989.

[8] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C
compiler front-end. In FM 2006: Int. Symp. on Formal Methods, volume 4085 of
Lecture Notes in Computer Science, pages 460–475. Springer, 2006.

[9] Richard Bornat. Proving pointer programs in Hoare Logic. In R. Backhouse and
J. Oliveira, editors, Mathematics of Program Construction (MPC 2000), volume
1837 of Lecture Notes in Computer Science, pages 102–126. Springer, 2000.

[10] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson.
Permission accounting in separation logic. In Proc. 32nd POPL, pages 259–270.
ACM, 2005.

http://frama-c.com

104 BIBLIOGRAPHY

[11] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco:
Running commodity operating systems on scalable multiprocessors. ACM
Transactions on Computer Systems, 15:412–447, 1997.

[12] Rod Burstall. Some techniques for proving correctness of programs which alter
data structures. In B. Meltzer and D. Michie, editors, Machine Intelligence 7,
pages 23–50. Edinburgh University Press, 1972.

[13] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and
abstract separation logic. In Proc. 22nd LICS, pages 366–378. IEEE Computer
Society, 2007.

[14] David Cock. Bitfields and tagged unions in C: Verification through automatic
generation. In Bernhard Beckert and Gerwin Klein, editors, Proceedings of the 5th
International Verification Workshop, volume 372 of CEUR Workshop Proceedings,
pages 44–55, Sydney, Australia, Aug 2008.

[15] Ernie Cohen, Michal Moskał, Wolfram Schulte, and Stephan Tobies. A precise
yet efficient memory model for C. http://research.microsoft.com/
apps/pubs/default.aspx?id=77174, 2008.

[16] Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and Manuel M. T.
Chakravarty. Running the manual: An approach to high-assurance microkernel
development. In Proceedings of the ACM SIGPLAN Haskell Workshop, Portland,
OR, USA, September 2006.

[17] Kevin Elphinstone, Gerwin Klein, Philip Derrin, Timothy Roscoe, and Gernot
Heiser. Towards a practical, verified kernel. In Proceedings of the 11th Workshop
on Hot Topics in Operating Systems, pages 117–122, 2007.

[18] Richard J. Feiertag and Peter G. Neumann. The foundations of a provably
secure operating system (PSOS). In AFIPS Conference Proceedings, 1979 National
Computer Conference, pages 329–334, New York, NY, USA, June 1979.

[19] Jean-Christophe Filliâtre. Verification of non-functional programs using inter-
pretations in type theory. J. Funct. Program., 13:709–745, July 2003.

[20] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C
programs. In Proc. 6th ICFEM, volume 3308 of Lecture Notes in Computer Science,
pages 15–29. Springer, 2004.

[21] Anthony Fox. Formal specification and verification of ARM6. In David Basin
and Burkhart Wolff, editors, TPHOLs ’03, volume 2758 of Lecture Notes in
Computer Science, pages 25–40. Springer, 2003.

[22] Anthony C. J. Fox and Magnus O. Myreen. A trustworthy monadic formal-
ization of the ARMv7 instruction set architecture. In Matt Kaufmann and
Lawrence C. Paulson, editors, ITP, volume 6172 of Lecture Notes in Computer
Science, pages 243–258. Springer, 2010.

[23] Holger Gast. Reasoning about memory layouts. In Ana Cavalcanti and Dennis
Dams, editors, FM, volume 5850 of Lecture Notes in Computer Science, pages
628–643. Springer, 2009.

http://research.microsoft.com/apps/pubs/default.aspx?id=77174
http://research.microsoft.com/apps/pubs/default.aspx?id=77174

BIBLIOGRAPHY 105

[24] Robert P. Goldberg. Survey of virtual machine research. IEEE Computer, 7(6):34–
45, June 1974.

[25] M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanized Logic
of Computation (Lecture Notes in Computer Science). Springer, 1 edition, January
1980.

[26] Per Brinch Hansen. The nucleus of a multiprogramming system. Commun.
ACM, 13:238–241, April 1970.

[27] John Harrison. A HOL theory of Euclidean space. In Joe Hurd and Tom
Melham, editors, Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLs 2005, volume 3603 of Lecture Notes in Computer Science,
Oxford, UK, 2005. Springer-Verlag.

[28] C. A. R. Hoare. An axiomatic basis for computer programming. COMMUNI-
CATIONS OF THE ACM, 12(10):576–580, 1969.

[29] M. Hohmuth and H. Tews. The VFiasco approach for a verified operating
system. In Proceedings of the 2nd ECOOP Workshop on Programming Languages
and Operating Systems, 2005. http://www.cs.ru.nl/H.Tews/Plos-2005/
ecoop-plos-05-letter.pdf.

[30] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall Professional Technical Reference, 2nd edition, 1988.

[31] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
verification of an OS kernel. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, pages 207–220, Big Sky, MT, USA, Oct 2009. ACM.

[32] Rafal Kolanski. A logic for virtual memory. In Ralf Huuck, Gerwin Klein, and
Bastian Schlich, editors, Proc. 3rd Int’l Workshop on Systems Software Verification
(SSV’08), volume 217 of ENTCS, pages 61–77. Elsevier, February 2008.

[33] Rafal Kolanski and Gerwin Klein. Mapped separation logic. In Jim Woodcock
and Natarajan Shankar, editors, Proceedings of Verified Software: Theories, Tools
and Experiments 2008, volume 5295 of Lecture Notes in Computer Science, pages
15–29, Toronto, Canada, Oct 2008. Springer-Verlag.

[34] Rafal Kolanski and Gerwin Klein. Types, maps and separation logic. In Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors,
Proceedings of the 22nd International Conference on Theorem Proving in Higher Order
Logics, volume 5674 of Lecture Notes in Computer Science, pages 276–292, Munich,
Germany, Aug 2009. Springer-Verlag.

[35] OK Labs. OKL4 microvisor. http://www.ok-labs.com/.

[36] Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the formal
verification of a C0 compiler: Code generation and implementation correctnes.
Software Engineering and Formal Methods, IEEE International Conference on, 0:2–12,
2005.

http://www.cs.ru.nl/H.Tews/Plos-2005/ecoop-plos-05-letter.pdf
http://www.cs.ru.nl/H.Tews/Plos-2005/ecoop-plos-05-letter.pdf
http://www.ok-labs.com/

106 BIBLIOGRAPHY

[37] Xavier Leroy. Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. In 33rd symposium Principles of Programming
Languages, pages 42–54. ACM Press, 2006.

[38] Jochen Liedtke. Toward real microkernels. Commun. ACM, 39:70–77, September
1996.

[39] Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Towards formal veri-
fication of memory properties using separation logic. In 22nd Workshop of the
Japan Society for Software Science and Technology, 2005. INRIA Logic for Small-step
Cminor 29, 2005.

[40] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1997.

[41] Oleg Mürk, Daniel Larsson, and Reiner Hähnle. Key-c: A tool for verification
of c programs. In Proceedings of the 21st international conference on Automated
Deduction: Automated Deduction, CADE-21, pages 385–390, Berlin, Heidelberg,
2007. Springer-Verlag.

[42] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[43] Michael Norrish. C formalised in HOL. Technical report, University of Cam-
bridge, 1998.

[44] Peter W. O’Hearn and Peter W. O’hearn. Resources, concurrency and local
reasoning. In Theoretical Computer Science, pages 49–67. Springer, 2004.

[45] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and
information hiding. In POPL ’04: Proc. 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 268–280. ACM, 2004.

[46] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction.
In POPL ’05: Proc. 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 247–258. ACM, 2005.

[47] Gerald J. Popek, Mark Kampe, Charles S. Kline, Allen Stoughton, Michael Ur-
ban, and Evelyn J. Walton. Ucla secure unix. Managing Requirements Knowledge,
International Workshop on, 0:355, 1979.

[48] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proc. 17th IEEE Symposium on Logic in Computer Science, pages 55–74, 2002.

[49] Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL.
PhD thesis, Technische Universität München, 2006.

[50] Green Hills Software. µ-velOSity™real-time microkernel. http://www.ghs.
com/products/micro_velosity.html.

[51] QNX Software Systems. QNX realtime operating system. http://www.qnx.
com/.

http://www.ghs.com/products/micro_velosity.html
http://www.ghs.com/products/micro_velosity.html
http://www.qnx.com/
http://www.qnx.com/

BIBLIOGRAPHY 107

[52] Hendrik Tews, Marcus Völp, and Tjark Weber. Formal memory models for
the verification of low-level operating-system code. J. Autom. Reasoning, 42(2-
4):189–227, 2009.

[53] Hendrik Tews, Tjark Weber, and Marcus Völp. A formal model of memory
peculiarities for the verification of low-level operating-system code. In Proc. 3rd
Int. WS on Systems Software Verification (SSV’08), volume 217 of ENTCS, pages
79–96. Elsevier, 2008.

[54] Harvey Tuch. Formal Memory Models for Verifying C Systems Code. PhD thesis,
School of Computer Science and Engineering, University of NSW, Sydney 2052,
Australia, Aug 2008.

[55] Harvey Tuch. Formal verification of C systems code: Structured types, separa-
tion logic and theorem proving. Journal of Automated Reasoning: Special Issue on
Operating System Verification, 42(2–4):125–187, Apr 2009.

[56] Harvey Tuch, Gerwin Klein, and Gernot Heiser. OS verification — now! In
Proceedings of the 10th Workshop on Hot Topics in Operating Systems, pages 7–12,
Santa Fe, NM, USA, June 2005. USENIX.

[57] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation
logic. In Martin Hofmann and Matthias Felleisen, editors, POPL ’07, pages
97–108. ACM, 2007.

[58] T. Tuerk. A separation logic framework in HOL. In César Muñoz Otmane
Ait Mohamed and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics:
Emerging Trends Proceedings, pages 116–122, 08 2008.

[59] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip. An op-
erational semantics and type safety proof for multiple inheritance in c++. In
OOPSLA ’06: Object oriented programming, systems, languages, and applications.
ACM Press, 2006.

[60] Tjark Weber. Towards mechanized program verification with separation logic.
In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic –
18th International Workshop, CSL 2004, 13th Annual Conference of the EACSL,
Karpacz, Poland, September 2004, Proceedings, volume 3210 of Lecture Notes in
Computer Science, pages 250–264. Springer, September 2004.

[61] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
HYDRA: The kernel of a multiprocessor operating system. Communications of
the ACM, 17:337–345, 1974.

	Title Page - Verification of Programs in Virtual Memory Using Separation Logic
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures

	Chapter 1 Introduction
	Overview
	Theorem Proving and Isabelle/HOL
	Operating Systems
	Virtual Memory
	Separation Logic

	Contributions
	Related Work
	Separation Logic
	Operating System Verification
	Low-level Verification

	Layout of the Rest of the Document

	Chapter 2 Notation
	Isabelle
	HOL
	Special Notation in This Work

	Chapter 3 Virtual Memory
	Importance of Virtual Memory
	Virtual Memory Overview
	Page Tables
	Multi-level Page Tables
	Translation Lookaside Buffer
	Caching
	Devices

	Overview of ARMv6 Address Translation
	Overview of Other Page Table Mechanisms
	Software-loaded TLB
	Virtualised Page Table
	Guarded Page Table
	Inverted Page Table

	Summary

	Chapter 4 Separation Logic
	An Informal Introduction to Separation Logic
	The Factory
	Pointer Aliasing
	Local Reasoning and Memory Safety

	Requirements of Being a Separation Logic
	Summary

	Chapter 5 Mapped Separation Logic
	Machine Architecture
	Pointers, Addresses and Values
	Memory
	A Page Table

	Separation Logic Assertions on Virtual Memory
	The Problem
	Slices and the Fractional Heap
	Assertions

	The Logic
	Case Study
	Conclusion

	Chapter 6 Typed Mapped Separation Logic
	Architecture Setup
	Pointers and Addresses

	Page Tables
	A Page Table Abstraction
	ARMv6 Page Table Formalisation

	Storage of Values in Memory
	The Class of Memory-Storable Types
	Loading Memory-Storable Types
	Memory-Storable Words
	Memory-Storable Structures without Padding
	Memory-Storable Arrays

	Separation Logic Constructs at the Byte Level
	The Fractional Heap and Memory Views
	Maps-to Predicates

	Type-level Separation Logic Maps-to Predicates
	Slice Accounting and Read-only Maps-to Predicates
	Interface to the C Programming Language
	Loading Values from the Fractional Heap
	Updating the Fractional Heap
	Reading and Updating Memory from C
	A Simple Example: Swapping the Contents of Two Pointers

	Case Study
	The Code
	The Code as Seen by Isabelle
	Proof Stage 1: The Function as a Heap Update
	Proof Stage 2: A Heap that Contains a Mapping
	Final Proof: A Function that Maps

	Chapter 7 Discussion and Conclusion
	Summary
	Discussion
	Future Work
	Translation Lookaside Buffer
	Caching
	Devices and IOMMUs
	Reasoning About Multiple Page Tables at Once
	Larger Case Study

	Concluding Remarks

	Bibliography

