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Abstract

In Part I of this thesis we extend Lanchester’s Ordinary Differential Equations

and construct a new physically meaningful set of partial differential equations with

the aim of more realistically representing soldier dynamics in order to enable a

deeper understanding of the nature of conflict. Spatial force movement and troop

interaction components are represented with both local and non-local terms, us-

ing techniques developed in biological aggregation modelling. A highly accurate

flux limiter numerical method ensuring positivity and mass conservation is used,

addressing the difficulties of inadequate methods used in previous research. We

are able to reproduce crucial behaviour such as the emergence of cohesive density

profiles and troop regrouping after suffering losses in both one and two dimensions

which has not been previously achieved in continuous combat modelling.

In Part II, we reproduce for the first time apparently complex cellular automaton

behaviour with simple partial differential equations, providing an alternate mech-

anism through which to analyse this behaviour. Our PDE model easily explains

behaviour observed in selected scenarios of the cellular automaton wargame ISAAC

without resorting to anthropomorphisation of autonomous ’agents’. The insinua-

tion that agents have a reasoning and planning ability is replaced with a determin-

istic numerical approximation which encapsulates basic motivational factors and

demonstrates a variety of spatial behaviours approximating the mean behaviour of

the ISAAC scenarios. All scenarios presented here highlight the dangers associ-

ated with attributing intelligent reasoning to behaviour shown, when this can be

explained quite simply through the effects of the terms in our equations. A con-

tinuum of forces is able to behave in a manner similar to a collection of individual

x



autonomous agents, and shows decentralised self-organisation and adaptation of

tactics to suit a variety of combat situations. We illustrate the ability of our model

to incorporate new tactics through the example of introducing a density tactic, and

suggest areas for further research.
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Introduction

Continuous time approaches to combat modelling have not received a great deal

of attention or development since the seminal research of Lanchester [23] in 1914

when he developed the set of ordinary differential equations:

Square Law for Collective combat:

du

dt
= −kuv(t), u(0) = u0, ku > 0 (0.1)

dv

dt
= −kvu(t), v(0) = v0, kv > 0 (0.2)

Linear Law for Individual combat:

du

dt
= −kvuv(t)u(t), u(0) = u0, kvu > 0 (0.3)

dv

dt
= −kuvu(t)v(t), v(0) = v0, kuv > 0 (0.4)

Lanchester modelled force dynamics as two forces u = u(t) and v = v(t) with

initial sizes u0 and v0 respectively. The constants ku and kv are known as Lanchester

attrition-rate coefficients and the addition of the opposing force’s density converts

the Collective or Square Law equations (0.1) and (0.2) into the Individual or Linear

Law equations (0.3) and (0.4). His set of ordinary differential equations has greatly

influenced military decision making for many years and permeate military thought

and analysis to this day. However, the underlying Command and Control structure

implied by these equations is that all individuals have perfect knowledge of the

enemy, systematically killing opponents until a winner is determined either by total

xii



annihilation or when force numbers reach a predetermined level. That is, despite

variations in communications, weapon lethality, terrain effects, location in the do-

main etc., individual soldiers are deemed to have equal capabilities and affect each

other equally. While perhaps applicable to ancient and outdated forms of warfare,

this underlying assumption must be addressed if these equations are to be applied

to modern warfare that relies heavily on discrepancies of terrain, communications,

sensors, weapon and soldier capabilities. Many military researchers recognise this

limitation and are seeking to derive more realistic representations to enable a deeper

understanding of the nature of conflict, see for example [7, 8, 17].

Progress has been made by Protopopescu et al. [45, 46], Rusu [47] and Jaiswal

[20], addressing some of the major criticisms of the ODEs and reflecting the devel-

opment in numerical techniques and computational ability of the 1980s and 1990s.

Spatial and temporal variation and local and non-local firing effects were success-

fully modelled using standard Method of Lines and Finite Difference techniques,

and a suite of basic military manoeuvres demonstrated. Frontal attack, turning

manoeuvres, envelopment, infiltration [47], reserve deployment and termination de-

cision rules have been implemented. However, troop formation was an artefact of

initial profiles chosen; that is, a formation initially set as a bivariate Gaussian re-

mained roughly as such as all scenario results published were stopped after a brief

period of force interaction. Furthermore, spatially dependent velocity fields resulted

in unacceptable numerical losses, restricting the velocity field to a temporally de-

pendent one. More complex velocity fields or other numerical techniques such as

Finite Volume Methods have not been investigated. Recent work by Spradlin et

al. focused on variations of the firing terms while using either stationary forces or

simple velocity terms [50].

The rise of agent-based or cellular-automaton models has received much atten-

tion in many disciplines, especially defence related research. Models such as Einstein

[19], ISAAC [18], Map Aware Non-uniform Automata (MANA) [25] demonstrate

a range of behaviour which appears to hint at some form of underlying structure.

xiii



Each individual troop is modelled via a rule set relating to quantifiable capabilities

such as fire-power, communications and also intangibles such as morale or desire to

remain close to friendly forces. These rules encode the nonlinearities necessary for

a more realistic description of warfare. These nonlinearities need to be understood

in order to develop specialised tactics based on current capability, or enhance the

procurement of future capability. We believe that the rapidly developing spatially

and temporally discrete approach would be greatly assisted by the corresponding

development of the continuous spatial and temporal approach. Indeed, Ilachinski

[17], who has been instrumental in the development of ISAAC, stresses the need

for research into nonlinear continuous dynamics, exploitation of analogous biolog-

ical models and phase-space reconstruction techniques. Lauren compares MANA

simulation results with fluid dynamic concepts or transition between laminar and

turbulent states and maintenance of force profiles to viscosity [24]. If an appro-

priate suite of equations can be found and analysed, this may eliminate the need

for extensive parametric studies and subsequent data mining in order to find those

combinations of parameters that produce behaviour of interest in CA or agent-based

models. Continuous models can be more transparent in terms of how parameter

changes affect outcomes and thus more understandable.

In this thesis, we combine aggregation modelling with traditional Lanchester

attrition terms and nonlocal firing terms to more accurately represent the spatial

aspects of combat. Initially a one dimensional model is developed and tested to es-

tablish the parameters required for the selected numerical technique to be effective.

Using simple interaction or firing terms, we compare our results to previous work

and demonstrate that cohesive troop movement can be achieved and maintained,

even when suffering loss of density through attrition. We extend these equations to

two dimensions and again show cohesive troop movement that in previous work had

only been achieved artificially by using a carefully chosen initial distribution, low

diffusion constant, and a sufficiently short overall simulation time to prevent exces-

sive diffusion. Also, for the first time the inclusion and navigation of obstacles in
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the domain is possible in a continuous combat model. Again in previous work this

had been artificially achieved through the manipulation of the convection vector to

form a predefined route.

In the second part of this thesis we compare, for the first time, our set of con-

tinuous equations to a series of published scenarios generated using the stochastic

cellular automaton wargame ISAAC. This approach provides an alternate mech-

anism through which to analyse the behaviour seen in the ISAAC scenarios. By

doing this, the danger of the reliance on using one instance of ISAAC to derive con-

clusions is highlighted as our model is shown to demonstrate an equivalent mean

behaviour. The tendency for anthropomorphisation of agents when seemingly intel-

ligent behaviour is observed is also shown to be inappropriate as the factors influ-

encing behaviour are more easily understandable in the PDEs. This transparency

of our PDE terms also facilitates easy changing or addition of tactics (spatial terms)

and/or motivational (social) factors, and the subsequent changes in dynamics more

understandable. A series of reverse comparisons is then undertaken to show that

the density limitations of the ISAAC construct prevent ISAAC demonstrating the

equivalent behaviour as shown in a basic set of PDE results.

Finally we demonstrate how variations in the spatial or social dynamics terms

correspond to the employment of different tactics. A density response to enemy

detection in the form of either expansion or contraction is introduced and the impact

on observed behaviour and density loss throughout the simulation discussed. This

highlights the importance of the appropriate choice of tactics in order to successfully

represent those aspects of combat in question. Modifying our equations in this

manner may also provide inspiration to the combat modelling cellular automata

community with regards to further developing agent interactions.

In our model forces and firing coefficients remain homogeneous, a criticism of the

traditional Lanchester approach. However the nonlinear nature of the equations is

able to mimic those seen in ISAAC that have been labelled as complex. Therefore

we show that a continuum of forces is able to behave in a manner similar to a
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collection of individual autonomous agents, shows decentralised self-organisation,

and an adaptation of tactics to suit a variety of combat situations.
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Part I

Model Development

In this section we discuss some of the restrictions and shortfalls of the Lanchester

Equations, several recent significant extensions of these equations and other

developments, especially within the field of mathematical biology, which partly

forms the inspiration for this research.

We then develop a new set of combat equations with a physically meaningful

representation of the spatial dynamics of soldier movement throughout the

battlespace. Interaction terms (weapons effects) retain the usual form as found in

the Lanchester equations, in addition to a nonlocal form corresponding to long

range weapons.

Due to the nonlinear nature of these equations, a brief overview of commonly used

numerical methods is given and the appropriate numerical technique for this

situation is outlined. This is implemented firstly in one dimension and compared

to published results in order to ascertain acceptable numerical parameters. Firing

effects are introduced and density losses compared to results from Protopopescu et

al. Once a satisfactory one dimensional model is established, a two dimensional

implementation is made. Again, numerical parameters are found, firing effects

included and density loss comparisons made.

Finally obstacle effects are introduced so that a better approximation to established

wargaming tools can be made in the following part.
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Chapter 1

Basic Extensions of the Lanchester Equations

Developed during the First World War, the Lanchester Equations have greatly in-

fluenced military decision making for many years, still permeating military thought

and analysis to this day. Developed in an attempt to elucidate general principles of

combat, they do however frequently suffer from inappropriate usage when applied

to historical data [43] and general wargaming. Generally the difficulty arises when

the equations are simplistically applied to the entire battle and battlefield which

may encompass large numbers of opposing forces engaged in multiple distributed

skirmishes. That is, the spatial distribution of these forces and whether each force

is coordinated as a whole is not considered. The underlying Command and Control

structure implied by this type of application is that all individuals have perfect

knowledge of the enemy, are able to engage the enemy with equal efficacy regard-

less of physical separation or decentralised control, systematically killing opponents

until a winner is determined. This is exactly how one would expect equations with

no spatial element to be interpreted. Despite this apparent simplicity in applica-

tion of the equations, Lanchester acknowledged that battles should be treated as a

series of simultaneous smaller sub battles spatially and temporally separated in the

battlespace, with each sub battle analysed separately using these laws. Sub battle

results should then be amalgamated to produce an overall result. In this way, the

researcher effectively performs a type of pre-processing spatial analysis. However

the temptation to treat the entire battle as one large conflict and the difficulty in

accurately distinguishing potentially numerous sub-battles remains a considerable

difficulty for the analyst. The commonly heard three-to-one force ratio required to
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ensure victory demonstrates the temptation to reduce the modern complex, com-

plicated and technological battlefield into a simplistic numerical problem. Within

the defence community there also remains some confusion in the application of the

Square and Linear laws with regards to firing interpretations [22] and the validity

of assuming the attrition coefficients are universal [15]. Usually, the Square law is

taken to represent aimed or direct fire, and the Linear law representative of area or

indirect fire. Depending upon the conditions, both laws may be used to represent

both aimed and area fire [43].

Most research using the LEs focuses on either extending the equations in some

way in order to account for variations of tactics seen in combat, and/or the ap-

plication of the original or extended LEs to historical data. An example of one

such extension is to use both the Linear and Square laws in representing guerrilla

warfare as proposed by Deitchman [5]. Guerrilla warfare is a form of combat where

a numerically inferior force with less effective weapons engages a larger force with

more effective weapons in a series of skirmishes or small scale engagements. Suc-

cess of the guerrillas is determined by employing either of two differing methods

with the assumption that the larger force has been fragmented into a number of

smaller formations. The first method relies on the guerrillas sequentially engaging

each small formation while maintaining local numerical superiority during each of

these small skirmishes. This method is more in keeping with Lanchester’s idea of

treating a larger conflict as a series of smaller conflicts. The second assumes partial

concealment of the guerrillas in an ambush situation such that the guerrillas have

full visibility of their enemy, and thus have the ability to engage all opposing troops

simultaneously. For this method the opposing troops are restricted to engaging

only this smaller number of visible guerrillas. In Deitchman’s paper, intangibles

such as moral and psychological effects are discussed although no attempt is made

to include them.

Historical data is notoriously limited and when available, may not lend itself to

a direct comparison with Lanchester’s equations [14, 21], let alone to the spatially
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dependent combat models as presented here. As we are not concerned with devel-

oping a highly realistic set of equations with the purpose of recreating historical

battles, comparisons will not be made in this thesis.

As randomness is a significant factor in determining the evolution and outcome

of a conflict, many researchers have looked to implement a range of techniques to

the LEs to reflect this. Stochasticity, Markov models and fractal attrition models

have all been developed however none have proved to be a paradigm shift from

the original LEs [43]. Wargames, especially commercial games that include high

levels of physical realism, may be appealing due to their detailed reflection of the

physical world. However these may generate large data sets requiring sophisticated

data mining techniques resulting in great difficulty in extracting or elucidating any

underlying general principals.

Any extension of the Lanchester Equations to inherently variable future com-

bat remains an open problem. Using post-conflict data to calculate a posteriori

knowledge such as the force ratio required for success or informative scenario spe-

cific relationships are limited in use. This information is far more valuable before

a conflict. The desire for a priori analysis producing information divorced from

historic particulars which military personnel or analysts can utilise in a general

fashion remains the driving factor for military research.

1.1 Existing PDE Models

1.1.1 Protopopescu et al.

Protopopescu et al. [45, 46] extended the ODE formalism of the original Lanchester

Equations to a set of partial differential equations in order to address a major criti-

cism from the military modelling community: the inability to model the movement

of forces throughout a domain or battlespace. Exploiting the terrain and enemy

positioning within the battlespace by executing the appropriate manoeuvre is a
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fundamental requirement of all forms of physical warfare both ancient and mod-

ern1. An example of one such manoeuvre is the classic flanking movement. Here

the main body of a force will advance directly towards the enemy, fixing him in

position, preventing his retreat and limiting his ability to react to other threats.

During this fixing operation conducted by the main force, a subsection will covertly

relocate to the flank of the enemy for a surprise attack.

Avoidance of obstacles such as mountains or unnavigable terrain is also a key

feature in modern warfare. Modern warfare has moved away from the traditional

attritional engagements conducted in large open areas to a form where smaller

forces operate in difficult terrain such as the urban environment with greater spa-

tial restrictions. Tactics of urban warfare utilise the built environment to conceal

movement, positions and to enable surprise attacks. This has resulted in a new

form of warfare, manoeuvre warfare, that relies on the principle of inflicting a dis-

proportionate amount of damage to the enemy’s weak points. Spatial dependency is

implicit in all of these warfare types and so has been emphasised in Protopopescu’s

research.

Protopopescu et al. consider equations of the following form over the domain

R
2. Let u = u(x, y, t), v = v(x, y, t) : R

2 × R → R represent the positive soldier

densities of two opposing forces at a given position and time. Let the kernels

ku(x, y, t), kv(x, y, t) : R
2 × R → R represent non-local interaction between the two

forces over some finite domain R.

∂u

∂t
= ∇ · (Du∇u) +∇ · (Cuu) + (au + buu + ku ∗ v) u + duv + eu (1.1)

∂v

∂t
= ∇ · (Dv∇v) +∇ · (Cvv) + (av + bvv + kv ∗ u) v + dvu + ev (1.2)

Where:

(ku ∗ v)(x, t) =

∫
R

ku(x−X, t)vj(X, t) dX

1Psychological or Information operations exploit an enemy’s thought and decision process and
are not considered in this research.
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Taking (1.1) as an example, the physical interpretation of the individual terms

is as follows. The first term represents diffusion of the force u. As the soldiers of

force u move throughout the battlespace, they will tend to wander or move away

slightly with respect to their fellow soldiers, such that the entire force distribution

may diffuse over time. As maintaining formation is a critical requisite of a force’s

overall capability to, for example, respond to threats or move effectively to a specific

location, it is assumed that diffusion effects will be minimal. This diffusion may

have several dependencies on parameters such as space, time or troop levels,

∇ · (Du∇u), Du(x, y, t) > 0. (1.3)

Velocity, or the large scale movement of soldiers toward a predetermined location

or in a specific direction, may also have dependencies on several parameters. For

example, velocity may represent a desire to move with constant speed to a goal

located at the north-east corner of the two dimensional domain. For the examples

presented in this paper, the velocity term is set to a constant speed in a fixed

direction.

∇ · (Cuu), Cu(x, y, t) > 0. (1.4)

In this research there are two methods of interaction, aimed and area fire. Aimed fire

retains the traditional Lanchester form, representing a close range local interaction

between forces comparable to fighting with bayonets or hand-to-hand combat. This

is the form most commonly used in predator-prey modelling as colocation of both

species is required for predation to occur. In the LEs (eq:LanchesterSquareR) and

(eq:LanchesterSquareB) with no spatial element, each soldier is assumed to posses

the ability to engage all opposing soldiers simultaneously:

duv, du < 0 (1.5)

Area fire now takes on the nonlocal weighted form so that long range weapons can
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be more realistically represented. Here, the dependency on separation distance of

rifle fire or longer range weapons such as artillery or mortar fire is represented by

a convolution. The domain of the convolution and the specific form of the kernel k

reflect the type of weapon modelled.

(ku ∗ v) u. (1.6)

In [45] the kernels ku, kv were of the form βe−νi|x−y| so that the efficacy increases

with decreasing distance with a maximum value at zero as expected for say, a rifle.

This behaviour is not particularly adequate for modelling artillery fire as there is a

minimum distance at which they can operate. We use another form of the above

kernel to take this further restriction into account. The remaining terms represent

self-suppressing effects due to crowding, environmental constraints etc.,

buu
2, bu < 0, (1.7)

re-enforcement of the force at a rate dependent upon the number of troops remaining

auu, au > 0, (1.8)

or a constant, density independent re-enforcement of the force, present in some

forms of the Lanchester equations

eu. (1.9)

Setting a = b = c = e = 0, d �= 0 and making appropriate simplifications leads

to the modern warfare form of Lanchester’s Equations (0.1), (0.2), (0.3) and (0.4).

We note that mathematical modelling of factors such as preparation, change of

plans or psychological effects such as surprise, motivation, exhaustion or morale

and their effects of these on parameters is still to be addressed. While we do not

address them in this research, we note that these are useful areas for future research.
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The equations (1.1) and (1.2) must be supplemented with initial and boundary

conditions. Initial conditions are easily specified and there is great flexibility in

defining the initial strength and distribution of each force: Initial conditions:

ui|t=0 = ui0(x), i = 1, 2.

Protopopescu et al. used Gaussian, rectangular, spike and triangular distributions

while Jaiswal et al. used a bivariate Gaussian distribution. In all cases however,

the shape of the initial distribution was not maintained due to diffusion effects.

Short simulation times prevented excessive diffusion however this behaviour is not

realistic in the military case. Maintaining force formation is essential in modern

warfare, a dispersal of soldiers that is not due to actions of the opposing force is

unacceptable.

Boundary conditions may be defined in several ways, each of the form:

(αiui + �βi∂�rui)|�r∈∂Ω = Υ(�r), i = 1, 2;

The general form of boundary conditions for one dimension and force u is:

a1u + b1
∂u

∂x
= c1 at x = L

a2u + b2
∂u

∂x
= c2 at x = −L

where a1, a2, b1, b2, c1, c2 are constants.

For Dirichlet boundary conditions, a1, a2 �= 0, b1, b2 = 0, Neumann boundary

conditions, a1, a2 = 0, b1, b2 �= 0 and mixed boundary conditions, a1, a2 �= 0, b1, b2 �=
0. Mixed boundary conditions were used .

Protopopescu’s previous work focused on developing these initial equations and

demonstrating that simulation of basic manoeuvres is possible. Various postures or

behaviours were imposed on force movement corresponding to predetermined values
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with each scenario employing varying combinations. These included termination,

withdrawal, penetration limits and retreat mechanisms. Withdrawal occurred once

a 20% loss of density on either side was attained and was followed by a retreat.

A penetration limit halted advancement when 15% of the smaller force penetrated

the larger. Termination of the simulation was based on the occurence of a 40% loss

by either force. These posture inclusions were seen to produce a higher degree of

realism. Jaiswal furthered this approach through the addition of an interface to a

suite of termination rules and decision spaces for reserve deployment. This approach

taken by both research groups follows a more traditional wargame interface where

the operator may run through a suite of simulations, change the decision rules at

each iteration, and investigate the differences in outcome - a familiar “what if”

analysis tool for the military practitioner. In [20] a simulation may be run in either

an Interactive, Partially Interactive or Non-interactive mode. The Non-interactive

mode is self explanatory and operates in a similar manner to Protopopescu et

al. and the other two modes requiring some form of user input during execution

of the simulation, involve potential changes to reserve deployment thresholds and

termination of combat.
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Figure 1.1: Interface developed by Jaiswal et al. Reprinted from [20], with permis-
sion from Elsevier.

No further analysis of these approaches has been made, nor comparisons to

historical data or other wargaming/conflict models.

1.1.2 Spradlin

Recent work by Spradlin et al. [50] focused mainly on investigation of different

force interaction terms. The spatial criticisms highlighted in the previous section

were addressed in a similar although more simplistic manner than Protopopescu

et al. Spradlin et al.’s two dimensional model used two opposing forces r and

b undergoing advection throughout the domain without diffusion and interacting

via four variations of the attrition rates Ir(x, y, t, r, b) and Ib(x, y, t, r, b) - Local

Direct Fire, Nonlocal Area Fire, Nonlocal Direct Fire: Front Model and Surrounding

Direct Fire: Front Model. Forces either remained stationary or simple velocities

v(x, y, t) with only one spatial dependency such as v(x, y) = (1−x, 0) and v(x, y) =

(3(0.6− x), 0) used.
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∂r

∂t
= −∇r · vr − Ir ,

∂b

∂t
= −∇b · vb − Ib

Local Direct Fire:

Ir(x, y, t) = αb(x, y, t), α > 0

Nonlocal Area Fire:

Ib(x, y, t) =

(∫ ∞
−∞

∫ ∞
−∞

ϕr(x− x′, y − y′)b(x′, y′, t)dx′dy′
)

b(x, y, t)

where ϕr(x, y) is chosen to be a bivariate Gaussian. Nonlocal Direct Fire: Front

Model:

Ib =

∫ ∫
R2

Ir,b(x
′, y′, x, 0)dx′dy′

where Ir,b is the attrition rate of blue forces at (x′, y′) caused by red forces at (x, y)

and is defined as:

Ir,b(x, y, x′, y′, t) = Arr(x, y, t)
ϕ(x′ − x, y′ − y)b(x′, y′, t)

Vr,b(x, y)

Surrounding Direct Fire: Front Model where there is only a dependancy on x:

Ir = Abr(x)

(∫ ∫
R2

b(x′)
1
p
ϕb(x− x′, y′)

1
p

Vb,r(x′)
1
p

dy′dx′
)

and similarly for Ib

As with Protopopescu, the desired force profile of constant density interior with

sharp edges is an artefact of the initial conditions and short durations of the simu-

lations. Results from all four firing terms investigated showed not only the expected

density loss due to firing terms but a lack of reformation of the forces. There is

no reconstitution of the desired force density profile undertaken after losses were

incurred. While it is useful to investigate differing forms of the interaction terms,

we believe realistic movement throughout the battle space must also be addressed.
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1.2 Mathematical Biology

Lanchester Equations have been used in mathematical biology to provide a frame-

work for the study of animal interactions. Conversely, mathematical biology is a

logical research area from which to derive insight and inspiration into other ap-

proaches to combat modelling as a significant volume of research has been under-

taken in order to understand animal dynamics. In essence, combat can be viewed

as an extension of traditional predator-prey interactions. Both parties act as preda-

tor and prey however interactions can occur over both local and non-local spatial

scales. Birth rates are superseded by resupply rates that do not necessarily depend

on current soldier numbers unlike birth rates, and time scales may be far shorter

than expected life spans of the participants. For many species there may be a cor-

relation between mortality rates, group size and fighting ability and this may be

applicable to combat modelling. Unlike weapons, fighting ability in animals can

also be linked to their ability to defend themselves. As will be shown in the follow-

ing, the similarities between these approaches have been recognised for quite some

time.

While we note there are many areas of similarity, there are other aspects of bio-

logical modelling that have yet to be incorporated into combat modelling. Swarm-

ing, schooling, clumping and self-organisational behaviour in nature is well known

and widespread (see [12, 38, 39, 40, 41, 42]) and provides classic examples of com-

plexity despite no obvious external drivers orchestrating the behaviour. Instead,

internal forces acting over short ranges are responsible for the large scale coor-

dinated behaviours we observe on a daily basis. Strong social interactions such

as attraction, repulsion and collision avoidance are generally effective over larger

distances, inferring the need for non-local representation of these effects. These con-

cepts are highly applicable to the military domain as a typical feature of combatant

movement is the maintenance of a constant interior density with sharply defined

edges.
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For continuous reaction-diffusion-advection type models these non-local influ-

ences have been incorporated into the advection term in the form of convolutions

(or their discrete form for discrete modelling) and represent a balance of attractive

and repulsive forces of individuals towards each other [35]. Adopting this approach,

cohesive stable swarms with realistic interior densities can be achieved with Mogilner

et al. determining travelling solutions and Topaz et al. [52] providing stationary

solutions. Other methods of representing clustering such as the population density

dependent acceleration method as described by Tyutyunov et al. [55] are also able

to reproduce clustering behaviour and are discussed below.

1.2.1 Predator-Prey modelling

Similarities of these predator-prey biological systems to combat have long been

recognised by the defence research community. Epstein, an advocate of pursuing a

mathematical biology approach to warfare modelling, has demonstrated the deriva-

tion of the LEs and the Richardson Arms Race model from both Lotka-Volterra

equations and basic biological modelling techniques. Alterations of the Lanchester

Equations to include reinforcements and carrying capacities have also been shown

to give Gause’s model of competition between two species.

1.2.1.1 Lotka-Volterra Equations

Proposed between the First and Second World Wars and so of a similar age to the

Lanchester Equations, the Lotka-Volterra equations were derived independently by

Lotka in 1925 and Volterra in 1926. Classically this model describes an unrestrained

prey species whose population is only restricted through predation, and a predator

subject to a given death rate. Further generalisations can produce mutualism or

competitive behaviour.

For the prey species x1 and predator species x2 with constants α, β, γ, δ defining

the their interaction, the non-spatial deterministic Lotka-Volterra Equations are:

dx1

dt
= x1 (α− βx2) ,
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dx2

dt
= −x2 (γ − δx1) ,

When there are two species competing for a common resource:

dx1

dt
= r1x1

(
1− x1

K1

+ a12
x2

K1

)
,

dx2

dt
= r2x2

(
1− x2

K2

+ a21
x1

K2

)
.

The intraspecific competition/environmental limitations on both populations are

represented by the constants K1 and K2 arising from the classic logistics population

model. Each population in isolation will reach equilibrium densities of K1 and K2

respectively. a12, a21 are the interspecific competition or predation rates and usually

assumed to be greater than zero.

Three states are possible depending on the values of Ki and aij.

1. Coexistance: K1 > a12K2 and K2 > a21K1 give a stable equilibrium with

both populations having a nonzero population.

2. Competitor Exclusion: for example K1 < a12K2 and K2 > a21K1 where

population 1 predates population 2 to extinction.

3. Founder Control: K1 < a12K2 and K2 < a21K1 where initial densities deter-

mine the successful population as coexistence is not possible.

Setting dx1

dt
= dx2

dt
= 0 in (1.2.1.1) yields the interior equilibrium conditions that

are also the equilibrium conditions for the linear system, giving the Richardson

Arms Race model:

dx1

dt
= r1 − a11x1 + a12x2,

dx2

dt
= r2 − a21x1 + a22x2,

Here a11, a22 represent action/reaction, a12, a21 fatigue on the economic resources

of the country and r1, r2 the grievance terms each country has for one another and

are assumed to be negative. This model can be further manipulated in order to
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give the simple epidemic model or SIR (Susceptible, Infected, Recovered). Setting

a12 = a21 > 0; r1 = r2 = a11 = a22, and including recovery rate of infectives

proportional to infected population, gives the simple epidemic model. Note that r2

is now assumed to be positive as it represents the recovery rate.

dx1

dt
= −a12x1x2,

dx2

dt
= a12x1x2 − r2x2

Epstein [8] likens the behaviour of this SIR model with the permeation of rev-

olutionary ideals and the tactics employed by a totalitarian government to quash

the“infection” of new individuals with these ideals. He does not elaborate further

on these simple equations any more than highlighting the fact that many seemingly

dissimilar phenomena are described on a gross level by simple related equations with

origins in mathematical biology. He uses this to champion a biological approach to

modelling human behaviour in the social sciences, particularly warfare.

In his second paper from the 1992 Lectures in Complex Systems [7], his aim

was to develop a model of warfare that will produce the core system behaviour.

He again gives a brief review on how developing Lanchester Equations through the

introduction of, for example, reinforcements or density restrictions gives Gause’s

model of competition between two species. Gause’s principle states that compet-

ing species cannot coexist in the same location such that one or both species will

eventually become extinct.

Epstein’s main criticism of the LEs has been the omission of the spatial con-

siderations of force movement. He addressed this by modelling the velocity of the

soldiers on the front line dependent on the force ratio. It was found that the at-

trition rates remain unaffected whether a withdrawal takes place or not. Epstein

argues that although movement is influenced by attrition, the reverse is not the

case and goes on to develop the Adaptive Dynamic Model of Combat.
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1.2.2 Adaptive Dynamic Model of Combat

This is a system of delay equations based on a generalisation of the LEs where

withdrawal now lowers attrition rates. That is, flight mechanism prosecution rates

and attrition rates are linked. His key parameters are“equilibrium” attrition rates

αdT (defender) and αaT (attacker), and the maximum daily attrition rate the de-

fender/attacker is willing to suffer in order to hold/take territory. Variation in value

of these parameters leads to the following observed types of warfare:

Parameter Observed Behaviour

αdT −→ 1 Trench War (Verdun)

αdT −→ 0 Guerrilla War

αaT −→ 1 The Somme

αaT −→ 0 Fixing Operations2

Table 1.1: Parameters used in the Adaptive Dynamic Model of Combat.

All Epstein claims is that this model gives a less crude caricature of combat

dynamics. Our aim is not to over simplify to such an extent that our model is seen

as a caricature, rather we strive to distil the essence of combat and avoid cluttering

with terms aimed at instilling a high degree of realism.

While mathematical biology can provide much conceptual inspiration, it is from

the development of numerical methods and computer simulation techniques dis-

cussed in the next section that we derive most benefit. Development of partial dif-

ferential equations used for modelling swarming/schooling behaviour also provides

inspiration for constructing a more sophisticated method with the aim of addressing

the spatial dynamics criticism of the LE type approach to combat modelling.

1.2.3 Biological Aggregation Models

Approaches to modelling biological aggregations, incorporating such terms as swarm-

ing, schooling or clumping, have garnered much interest in recent years and there
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has been a plethora of approaches developed of which [39, 40, 42, 12, 6] are just a

few. While there are both Lagrangian and Eulerian approaches, we concentrate here

on the developments made in the area of continuous or Eulerian approximations.

There are numerous reason for animals to aggregate. Forces responsible for

the formation of swarms include both responses to external stimuli such as light,

nutrient gradients (eg chemotaxis) or the presence of predators; and internal forces

such as social interactions (attraction, repulsion, alignment [32]). However one of

the key concepts of many swarming observations is the maintenance of an individual

separation distance determined by the environmental conditions at that time. Most

swarms exhibit a relatively constant interior density and well defined edges. There

is great variation in the approaches to modelling the mechanisms by which this

occurs and thus the level of abstraction or detail included. Continuous approaches

usually represent these through the inclusion of some form of nonlocal interaction

[27, 35, 36], however there are others which achieve the same behaviour through

setting acceleration proportional to the density [55]. These non-local interactions

are generally not assumed to span great distances. Grunbaum [13] also states

that an animal’s social responses are inherently non-linear and are dictated by the

conspecifics within the animal’s restricted sensory field. Individual-based models

represent this concept in a similar manner [36], for example, the perception function

of Viscido [57] decays with distance. Alignment of individuals plays a pivotal role

in some instances however for simplicity’s sake we restrict ourselves to considering

only the internal or social interactions of attraction and repulsion.

Interactions are taken to be pairwise [30, 56, 57] so that for a large population,

these interactions are superimposed and are adequately described by a convolution

for Eulerian models. Studies into non-local effects on swarming/schooling behaviour

by Mogilner and Edelstein-Keshet [35], and Lee [27], used convolution terms to de-

scribe the effects of neighbours on movement. The form of the kernels used decayed

with increasing separation distance, and the convolution domain was restricted to

a finite range. This provides flexibility in defining the maximum distance at which
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a neighbour can be sensed thus providing a mechanism to model a range of sensors

operational over differing ranges, be that visual, audible or otherwise.

Using the one dimensional convolution as an example:

K ∗ u =

∫ x+r

x−r

K(x−X)u(X) dX (1.10)

The kernel K associates the strength of the interaction with separation distance

x − X. Mogilner and Edelstein-Keshet have found that a positive, even kernel

(K(x) = K(−x)) on the interval [−r, r] and zero otherwise gives rise to overall

group drift, whereas an odd kernel (K(x) = −K(−x)) maintains the swarm profile

without an overall drift. We also assume that the sensing and communication

responsible for attractive and repulsive forces is omnidirectional. Thus an odd

kernel is desirable as we do not wish the profile to move unless otherwise directed

by a separate advection/velocity term, and it provides the correct phenomenological

behaviour. Further expanding upon this idea, separating the effects of attraction

and repulsion and by using an odd kernel, the convection term takes the form in

one dimension:

C(u) = Vu + (Aa − Aru)(K ∗ u) (1.11)

attraction

repulsion

(a) Graphical representation of two
dimensional attraction and repulsion
ranges

0rr ra−rr−ra

0

(b) Form of the kernel in one dimension

Figure 1.2: Ranges and Kernels
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The kernel K is odd as shown graphically in one dimension in Figure 1.2b,

Aa > 0 and Ar > 0 represent the strength of attraction and repulsion and Vu

(a(e)u in [35] and labelled the drift term) is the overall velocity term. In this form,

attraction and repulsion are proportional to the non-local density. However repul-

sion is also proportional to local density such that for local densities greater than

Aa/Ar repulsive effects dominate over attraction. Where density is low, repulsion

has very little effect with attraction becoming the dominant term. Where density

is high, attraction has little effect and repulsion prevents increasing overcrowding

collapsing the aggregation to a point density. The two dimensional attraction and

repulsion ranges are shown graphically in Figure 1.2a. The combined effect is a

cohesive profile that has a constant interior density Aa/Ar with sharp edges [35].

We prefer to use the term velocity in preference to either advection or convec-

tion used in other fields where reaction/diffusion/advection systems are well known.

This is due to the passive connotation of the term advection whereas soldier move-

ment is perceived as deliberate. However all three terms are used interchangeably

throughout this thesis.

1.3 Cellular Automata and Lagrangian Approaches

As mentioned in the Introduction, agent-based or cellular-automaton models have

received much attention in defence related research into complex adaptive systems.

As we wish to ultimately compare our continuous system of equations to results

generated from a well known cellular automata model, it is worth noting that

many presentations given regarding complex adaptive systems highlight the ap-

parent chaotic and unpredictable behaviour demonstrated by the simplest cellular

automata types - elementary cellular automata. We discuss what these are and the

implications for our research.

1.3.1 Elementary Cellular Automata - ECA

So called as these one dimensional binary cellular automata are the simplest non-

trivial case. The eight possible combinations produced by one cell plus its two
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neighbours, gives the 256 possible rule sets that define these ECA. These rule sets,

usually numbered from 0 to 255, are capable of producing a range of visually seem-

ingly complex and chaotic behaviours. Wolfram [58] has separated these ECA into

four classes based on their observed behaviour:

Class Observed Behaviour

I Homogeneous state

II Simple stable or periodic structures

III Aperiodic or chaotic behaviour

IV Long lived complex structures

Table 1.2: Classes of Cellular Automata as defined by Wolfram.

A well known example of a Class III type is Rule 30 and is often used as an

example in cellular automata literature. This ECA can be described by 8 binary

tuples:

(000, 001, 010, 011, 100, 101, 110, 111) → (0, 0, 0, 1, 1, 1, 1, 0) (1.12)

Despite the terms “chaotic” and “complex” used by Wolfram in his description

of Class III ECA, research by Mingarelli et al. [9, 34] into continuous versions of

cellular automata derived from a fuzzification process3 has determined the evolution

and dynamics of all elementary cellular automata. At most only nine of these fuzzy

rules are truly chaotic with the remaining 247 rules deterministic. Their findings

also highlighted the dangers of choice of visualisation method. For example in [9],

depending on the chosen visualisation method for the evolution of the fuzzy ruleset

derived from boolean rule 90, results may display behaviour remarkably similar to its

CA counterpart, or may show the true rapid convergence to the asymptotic solution

3The disjunctive normal form which describes the given ruleset is fuzzified by redefining (a∨ b)
as (a + b), (a ∧ b) as ab and (¬a) as (1− a).
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of 1
2
. This highlights the dangers of relying solely on particular visualisations and

on one approach to derive conclusions.

The particular cellular automata model we will be comparing our model to will

be described in more detail in Chapter 6.

1.3.2 Biological Modelling

There have been numerous CA or individual-based models derived for equally nu-

merous biological systems - from the single-celled level of bacterial colonies to fish

schooling to ungulate herds. Adopting this technique is a natural approach as the

researcher is able to bestow individual members with individual characteristics and

to more easily incorporate stochasticity. This also provides a valuable alternative

to the more traditional deterministic Eulerian approaches. However, this is not to

suggest either method is without fault and indeed it may be preferable to implement

both methods so as to draw on the advantages of each.

For example, both Lagrangian and Eulerian approaches have been applied to

the same biological system, elver movement, with a partial differential approach de-

veloped directly from an individual-based model (IBM) of that system [10]. Whilst

the PDE was solved numerically, this approach was deemed to provide a method

of analysing, extracting conclusions from (such as convergence to steady state so-

lutions), verifying and communicating IBMs. With an increasing focus on IBMs,

this type of procedure will become increasingly important.

Thus we believe there to be merit in pursuing the development and comparison

of a continuous approach to a discrete one. While a detailed derivation from the

cellular automata ISAAC is not undertaken here, the principle of using two different

approaches to investigate the same dynamical system applies. Also, it is not the

aim to develop a set of equations to replace Lanchester’s equations and form an

entirely new paradigm for the analysis of combat. Rather, the aim is to supplement

the existing spatial extensions in order to ascertain a greater understanding of the

underlying dynamics of these simplified combat models.
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Chapter 2

New Approach

Here we develop a set of partial differential equations based on both Lanchester

type equations and biological aggregation models. We retain the simple interaction

term as developed by Lanchester and supplement this with the nonlocal convolution

term as proposed by Protopopescu. This allows us to represent a range of weapons

systems in a simple yet physically meaningful way as they take into account the

local and non-local aspects of conflict.

We take the advances in biological aggregation modelling coupled with mili-

tary requirements in order to develop a realistic method of modelling the spatial

dynamics of soldier movement.

The terms of the equations will be referred to and treated as two separate groups

- Spatial Dynamics and Interaction Terms. How each force navigates throughout

the domain or battlespace is described by the Spatial Dynamics terms, with the

Interaction Terms specifying the mechanisms through which forces interact with

each other, largely through weapons firing.

2.1 Spatial Dynamics

One failing of Protopopescu’s equations and published results is the gradual diffu-

sion of the original Gaussian force density profile throughout the simulation. This

did not pose a significant problem in Protopopescu’s study [44], however, as the

simulation time was so short that diffusion did not smear the profile to unrealistic

sparse densities. However, the small, though significant, smearing present is not

representative of actual troop movement. While some form of diffusion is intrinsic

to animal aggregation [39], we expect some form of active diffusion showing density
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dependence to be present. This equates to some jostling within a force as it moves

throughout the battle space, however the formation of a stable footprint or distribu-

tion with a sharp well defined edge is essential. As such, we use a density dependent

diffusion term Du. For simplicity we maintain the assumptions that attraction and

repulsion are omnidirectional, act over different ranges and disregard alignment of

individual soldiers.

2.1.1 Military Considerations

Biological evidence suggests that in schooling and swarming behaviour, attraction

acts over a greater spatial range than repulsion [27, 35, 48, 51], however both are

limited to the limits of an animal’s sensory perception. This assumption also holds

in the military context. Each soldier within a formation has the benefit of an

extensive communications capability such as personal radios to supplement basic

human visual abilities, effectively extending the range of attraction out to the spatial

size of the force itself. One purpose of these communications is for soldiers to

maintain awareness of their own locations in relation to the rest of the force and

to known enemy locations. Maintaining formation while traversing through thick

jungle depending solely on the human senses is extremely difficult and thus the range

of attractive forces in this context would be severely reduced. Supplementation

with communications enhances the attractive range due to the basic human senses

significantly. This is in keeping with the range of attraction extending over the

range of the force itself.

Repulsion is deemed to operate over a much smaller range as this will depend on

the proximity of a soldier’s immediate neighbours. A soldier is required to maintain

their position relative to the other soldiers within, usually, their view. Terrain and

operational status will determine the density at any given time.

Thus we would expect that a single velocity term is inadequate for the military

context, that is, separate attraction and repulsion kernels are required for a more

realistic approximation of soldier movement.
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We use the velocity term from Mogilner and Edelstein-Keshet with separate

convolution term for attraction and repulsion:

C(u) = Vuu + Aa(Ka ∗ u)− Aru(Kr ∗ u) (2.1)

with:

Ka(x) =
−x

2a2
exp

(−x

2a2

)
, Kr(x) =

−x

2r2
exp

(−x

2r2

)
, (2.2)

where a represents the range of attraction, r the repulsion range and a > r

The approach developed here moves beyond well known advection-reaction-

diffusion equations through the incorporation of non-local terms that represent

cohesion of troops as they navigate the battle space.

2.2 Interaction Terms

Initially, the interaction between forces is represented using Protopopescu’s formu-

lation of two terms to represent aimed (short range weapons such as rifles) and

area (long range weapons such as artillery) fire. For aimed fire, the terms take on

a similar form to that seen in predator-prey modelling whereas the area fire term

is a non-local convolution term.

2.2.1 Aimed Fire

Aimed Fire is represented by the terms for Force u and v respectively:

duv, dvu (2.3)

Aimed fire is similar to the requirement of co-location of predator and prey in or-

der for predation to occur. Here, troops must physically meet in order to affect each

other. From the perspective of the numerical approximation, troops can interact if

they occupy the same cell. Weapons such as rifles and grenades are represented in

this way, as is hand-to-hand combat. While we recognise that these weapons, ex-

cluding hand-to-hand combat, could be represented by another more sophisticated
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non-local term, we believe that the simple terms proposed are sufficient to capture

aimed fire behaviour and are in keeping with the overall level of abstraction of the

Spatial Dynamics terms. All members of each force possess identical weapons, that

is, are homogeneous with the respect to weapons capabilities.

In order to ensure positivity of results, the aimed fire terms may be extended to

include a small positive term ε as was the case for Spradlin et al. [50]. Using Force

u as an example, duv becomes:

duv
u

ε + u
(2.4)

2.2.2 Area Fire

This term represents a distinct departure from the traditional Lanchester approach

due to the spatial dependency. However typical commercially available wargames

calculate area weapon effects in a similar manner. Usually the Linear Law (0.3,0.4)

is seen as representing area fire, noting that there is no spatial dependency in the

equation.1 For simplicity, following Protopopescu’s approach, we use a circularly

symmetric function for the kernel over the domain R.

For Force u and v respectively:

u (ku ∗ v) , v (kv ∗ u) (2.5)

We use the form k(x, y) = βe−ν
√
|((x−X)2+(y−Y )2)−rop| : R

2 → R
+ representing

the strength of the interaction with separation distance x −X. Here, ν and β are

positive weapons coefficients that represent the efficacy of the long range weapon

with the optimal range rop being modelled. This enables a wide range of long range

weapons to be represented and will be referred to as the Artillery kernel. Other

1For example, JANUS is an interactive simulation wargame used extensively throughout the
world’s military [4]. During use, the simulation is periodically halted to allow military participants
to discuss developments and alter the missions of their forces. Once the simulation is restarted,
kill probabilities based on type and separation distance are calculated and enforced. JANUS
also uses three dimensional terrain data in loss calculations although in simpler wargames, these
probabilities are in the form of a simple equation relating weapon type and distance.

25



forms of the kernel such as a bivariate Gaussian may be used [50]; however we

believe this form adequately captures area weapon behaviour. We also use another

form of the kernel k(x, y) = βe−ν
√
|(x−X)2+(y−Y )2| for use in the cellular automata

comparison scenarios, to represent weapons such as heavy guns that have a range

greater than the individual soldier’s reach, and are also decreasingly effective with

decreasing distance from the firer. Depending upon the choice of weapon system to

be represented, either of these two kernels may be used. Replacing the aimed fire

term with this second Rifle kernel would also be useful in many scenarios. Due to

the dependency of this term on both force densities, positivity is ensured.

2.2.3 Other Terms

While reinforcement rates can be critical in some circumstances, we elect to exclude

these terms for two reasons: (i) simplicity and (ii) the model we are striving to make

comparisons with does not include reinforcements.

2.3 New Equations

Combining the new spatial dynamics and interaction terms, we propose the follow-

ing form of the integro-differential equations in two dimensions. [We separate each

equation into three parts, fdiff containing the diffusion terms, fvel containing the

velocity terms and freact containing the interaction terms for ease of discussion in

the following sections,]

∂u

∂t
= ∇ · (Du(u)∇u)︸ ︷︷ ︸

fdiff

+∇ · {u(Vuu + Aa(Ka ∗ u)− Aru(Kr ∗ u))}︸ ︷︷ ︸
fvel

+ u (ku ∗ v) + duv︸ ︷︷ ︸
freact

(2.6)

∂v

∂t
= ∇ · (Dv(v)∇v)︸ ︷︷ ︸

fdiff

+∇ · {v(Vvv + Aa(Ka ∗ v)− Arv(Kr ∗ v))}︸ ︷︷ ︸
fvel

+ v (kv ∗ u) + dvu︸ ︷︷ ︸
freact

(2.7)
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We consider a rectangular domain Ω with lengths Lx and Ly. The general form

of the boundary conditions for the domain (0, Lx)× (0, Ly) is:

a11u + b11
∂u

∂x
= c11 at x = 0

a21u + b21
∂u

∂y
= c21 at y = 0

a12u + b12
∂u

∂x
= c12 at x = Lx

a22u + b22
∂u

∂y
= c22 at y = Ly

Boundary conditions may be either:

Dirichlet (aij �= 0, bij = 0,∀i = 1, 2; j = 1, 2),

Neumann (aij = 0, bij �= 0,∀i = 1, 2; j = 1, 2) or

Mixed (aij �= 0, bij �= 0,∀i = 1, 2; j = 1, 2).
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Variable Definition of Variable

u(x, y, t) The positive troop density of Force u at the given position and time.

v(x, y, t) The positive troop density of Force v at the given position and time.

Parameter Definition of Parameter

Di(x, y, t) The diffusion coefficient for Force i(i = u, v) that may be spatially,

temporally or otherwise dependent.

Vi(x, y, t) The velocity coefficient for Force i(i = u, v) that may be spatially, tem-

porally or otherwise dependent.

Aai
The strength of the internal attraction of Force i(i = u, v).

Ari
The strength of the internal repulsion of Force i(i = u, v). The ratio of

Aai

Ari
gives the desired internal density of Force i.

Kai
The form of the attraction kernel for Force i(i = u, v). For the re-

sults presented here, the form is Ka ∗ u =
∫ y+ra

y−ra

∫ x+ra

x−ra
Ka(x −X, y −

Y )u(X, Y )dXdY

Kri
The form of the repulsion kernel for Force i(i = u, v). For the re-

sults presented here, the form is Kr ∗ u =
∫ y+rr

y−rr

∫ x+rr

x−rr
Kr(x − X, y −

Y )u(X, Y )dXdY

rai
The range over which the attraction kernel for Force i(i = u, v) acts.

rri
The range over which the repulsion kernel for Force i(i = u, v) acts.

rri
< rai

ki The form of the area fire kernel for Force i(i = u, v). For the results

presented here, the form is ki(x, y) = βie
−νi

∣∣∣√(x−X)2+(y−Y )2
∣∣∣
: R

2 → R
+

for the rifle kernel, and k(x, y) = βe−ν
√
|((x−X)2+(y−Y )2)−rop| : R

2 → R
+

for the artillery kernel.

rafi
The range over which the area fire kernel for Force i(i = u, v) acts.

ropi
The optimal range for the area artillery fire kernel for Force i(i = u, v).

βi Variable used in the calculation of area fire losses for Force i(i = u, v).

νi Variable used in the calculation of area fire losses for Force i(i = u, v).

di The aimed fire coefficient for Force i(i = u, v). To ensure positivity, the

form of the term should be as given in Eq. eq:PosAimedFire.

Table 2.1: Definitions of Variables and Parameters Used in Our PDE Model.
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Attraction and repulsion operate over different spatial domains, ra and rr re-

spectively with ra > rr, and the drift term is replaced by a spatially dependent

vector field V . So now the overall movement throughout the domain and cohe-

sion of the soldier formation is represented in (2.6)-(2.7). The traditional convec-

tion/diffusion/reaction equations have now been altered to provide a more realistic

representation or force movement throughout a battlefield.

This system of equations will be further expanded in order to more closely mimic

the functions used within ISAAC as outlined in Chapter 6.
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Chapter 3

Numerical Techniques

In this chapter we discuss the general method of classification of partial differential

equations, typical techniques used for numerically approximating them, and their

advantages/disadvantages.

Numerical methods used in previous combat models are then discussed, high-

lighting the difficulties of using these techniques with our new approach by demon-

strating the types of numerical errors found.

Finally we outline a numerical method that has been applied to biological sys-

tems such as in the approximation of fungal growth, which fulfils our requirements

of conservation of density while maintaining good resolution, mainly due to the

similarity of the equations in question. We then summarise the numerical method

to be used in this research.

3.1 General Form of Partial Differential Equations

One of the most general ways of writing a second order linear partial differential

equation is the form:

A
∂2u

∂x2
+ B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ . . . = 0 (3.1)

By using this notation, three common types of PDEs can be defined:

Hyperbolic B2 − 4AC > 0

Parabolic B2 − 4AC = 0

Elliptic B2 − 4AC < 0
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Whilst some simple PDEs may be solved exactly, there may be no easy way to

analyse other types due to the presence of nonlinearities in the remaining terms

in (3.1). As analytical methods are unavailable, numerical approximations can be

made which usually entails the use of computer simulations. In many fields such

as mathematical biology, the interest lies in time evolution and asymptotic states.

Usually these are some type of initial value problem with conditions at some time

t0 specified, along with domain and boundary conditions.

The most common three techniques used for numerical approximation are the

Finite Difference, Finite Volume, and Finite Element Methods. The basis of all

three of these methods is the discretisation of the domain in order to approximate

the spatial derivatives and to then evolve the equation for a discrete time interval.

Typically both the spatial and temporal domains are uniformly discretised.

How these discretisations are used to evolve the equations can be broadly classed

as either explicit or implicit. An explicit method requires only the current values

of the function in order to calculate the values at the next time step whereas an

implicit method uses both current and future values.

For a finite difference scheme, derivatives are approximated at the mesh points

and are usually separated into three types - forward, backward or central. Finite

Volume methods involve evaluating the fluxes at the boundaries of each cell sur-

rounding each mesh point. This type of method has the added advantages of the

flexibility of using non-uniform meshes, and conserving density as the fluxes across

boundaries cancel.

Depending upon the form of the equation(s), one or more numerical technique(s)

may be suitable. Here we give a few examples of typical forms of these equations

and common numerical methods that may be used.

3.1.1 Parabolic

Another typical form of a parabolic equation is:

∂u

∂t
=

∂

∂x

(
b(x, t)

∂u

∂x

)
+ c(x, t)u + d(x, t). (b > 0)
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One of the simplest approximations that can be used is a combination of explicit

finite difference schemes for the time and space discretisations. For example, a for-

ward time and second order spatial central difference method or “FTCS” scheme.

The Crank-Nicolson method uses a central difference time and second order central

difference spatial derivative and is a well known example that uses implicit methods.

Under certain conditions these methods can be numerically stable and convergent,

however they may be computationally expensive and introduce unwanted errors

for nonlinear parabolic equations. Explicit methods are generally the least com-

putationally expensive yet require small time steps to maintain accuracy. Implicit

methods are more computationally expensive, however, allow for larger time steps

to be taken.

3.1.2 Hyperbolic

A typical form of a scalar hyperbolic equation is

a
∂u

∂t
+ b

∂u

∂x
= c (a, b �= 0).

Using the example of linear advection,

∂u

∂t
+ a

∂u

∂x
= 0, (3.2)

solutions can be found along characteristics. These curves are solutions of the

ordinary differential equation

dx

dt
= a(x, t). (3.3)

In general the method of characteristics uses these equations and initial data u(x, 0)

to find a series of curves which satisfy u(x, t) = u(xj, 0) where x0, x1, . . . , xj, . . . is

a suitably chosen set of points. Difficulties arise for nonlinear hyperbolic equations

where these characteristics overlap, that is, there exist multiple values for the so-

lution which can be viewed as the formation of a discontinuous shock wave. The
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classic equation used for demonstrating this phenomenon is the inviscid Burgers

Equation,

∂u

∂t
+

∂ 1
2
u2

∂x
= 0. (3.4)

Generally none of the previously mentioned schemes are capable of providing suf-

ficient accuracy around the shock as well as other areas. Thus we must look for

other methods or a combination of several methods in order to provide the desired

accuracy.

3.1.3 Elliptic

Elliptic equations are generally time independent equations describing physical phe-

nomena such as Poisson’s equation, ∇2u = f(x). As these equations are not of the

relevant type, we recommend references such as [29] for further reading.

3.1.4 Mixed-type

Reaction-advection-diffusion equations are of the mixed type - both hyperbolic

and parabolic - with advection dominated reaction-diffusion equations abundant

throughout science and nature. One of the most famous examples of which is

the chemical reaction-diffusion system that mimics the development of a leopard’s

spots developed initially by Alan Turing [53] and then expanded by Sy-Sang Liaw

and Ruey-Tarng Liu [31]. Other examples such as the Belousov-Zhabotinski reac-

tion [2], models of fluid flows or turbulence show the intricate detail that must be

captured in order to adequately demonstrate and understand their underlying dy-

namics. These equations often possess steep fronts, shocks or discontinuities whose

resolution must be addressed accurately in order to understand the characteristics

of the system under investigation. This remains one of the foremost challenges for

the development and use of numerical approximations.

Due to the mixed nature of reaction-advection-diffusion equations, we look to

more sophisticated techniques. Examples of commonly used methods for solving
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include Multiscale, Galerkin, Upwind Petrov-Galerkin, Method of Lines, Finite Vol-

ume and Flux Limiter methods (see [29] for an excellent review of numerical meth-

ods). It is thanks to the abundance of these equations throughout nature that such

diversity of numerical methods can now be found throughout the literature.

As our equations are of the mixed-type, we will look to implement a combination

of these methods.

3.2 Previously Used Numerical Methods

We begin by describing the numerical methods employed in the previous combat

modelling by Protopopescu and Jaiswal and noting the deficiencies of these and

other well known yet simple techniques.

Application of standard simple numerical methods can result in a range of un-

desirable behaviours due to their inherent inadequacies for use unmodified with

non-linear PDEs. When the convection field dominates over diffusion or if the grid

spacing is too large, excessive unrealistic oscillations or numerical oscillation as seen

in Figure 3.1b can occur. An example of this is seen when using a second order

centred finite difference method for a scalar advection equation. As moving fronts

may exist, the integrator approximation method, grid spacing and time step must

be chosen with care otherwise further errors may be introduced. Again using the

example of scalar advection, a first order two point upwind finite difference method

can result in numerical diffusion as seen in Figure 3.1a.
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(a) Numerical Diffusion seen when ap-
proximating scalar advection.
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(b) Numerical Oscillation around dis-
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Figure 3.1: Examples of possible errors in some Numerical Techniques.
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Protopopescu recognised the difficulties in numerical approximations of the Cen-

tral Finite Difference scheme used when approximating sharp fronts [47], and so

used sufficiently smooth force profiles in order to avoid these difficulties. Spatially

dependent velocity fields were not investigated due to unrealistic losses through

boundaries, and density dependency was also omitted. The approximation method

used by Protopopescu was the Method of Lines (MOL). This technique involves

spatially discretising the PDEs so producing a set of ordinary differential equations

continuous in time. A suitable integration technique is then applied. He began by

specifying the allowed error of time integration of the ODE system, then investi-

gated mesh spacings that resulted in a spatial error of equal or lesser magnitude.

Protopopescu and Jaiswal did not use more advanced techniques such as the adap-

tive MOL, upwinding, or mesh refinement, as a regular grid spacing was deemed to

suffice.

However the application of an incorrect more advanced technique does not guar-

antee success with deficiencies demonstrated by the following example. Manipulat-

ing code based on the upwinding finite difference scheme of Schiesser [49] as devel-

oped by Lee et al. [28], a Matlab model of (2.6) and (2.7) was developed. Each

force is moved with constant velocity in the direction of the opposing force’s initial

position and velocity is not altered during the simulation to account for pursuance

as demonstrated by Protopopescu. Diffusion was also set as constant. Initial force

profiles were of the form:

u(x, 0) =
size

0.05 ∗ √2π
e
−((x−μ)2)

2ρ2

Details of the numerical method as used by Lee are as follows. A method of lines

is used with a selection of fourth order spatial approximations to the derivative of

the function f given by the matrix:
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B =
1

24Δx

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−50 96 −72 32 −6

−6 −20 36 −12 2

2 −16 0 16 −2

−2 12 −36 20 6

6 −32 72 −96 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.5)

In Equation 3.5, the middle row represents the central fourth order spatial ap-

proximation, the first and second rows represent fourth order backward difference

approximations and the fourth and fifth rows represent fourth order forward ap-

proximations. This matrix is used to calculate derivatives on the lattice where for

example, the central difference approximation to u′ is given by:

∂u

∂x
=

1

24Δx

[
2 −16 0 16 −2

]



⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fi−2

fi−1

fi

fi+1

fi+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.6)

Neumann boundary conditions of zero flux were used. Other parameters used

were Δx = 0.01, Δt = 0.2, Du = 0.005, Dv = 0.008, Cu = 1, Cv = −1.5, sizeu,v =

2000, ρu,v = 0.05, μu = 3, μv = 7, du = 3×10−4, dv = 2.4×10−4, βu = 3×10−4, βv =

2.4× 10−4, νu,v = 0.3.

After each time step which was calculated using the inbuilt Matlab integrator

ode45, interaction terms were solved to reduce force density which then produced

the input density profile for the following time step calculation. In effect troop

movement for the given time step is conducted, and based upon these updated

distributions casualties are determined and deducted from the distributions. For

initial modelling, strategic decisions such as retreat or advance were omitted in order

to investigate the behaviour of the model and ensure accuracy of the results. The
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results are seen in Figure 3.2 where the smearing effect of diffusion is clearly demon-

strated. Both forces advance regardless of the relative position of the opposing force

or density loss. The top graph shows the superimposed distributions of both forces

at the specified times, with the middle two graphs showing the individual force

distributions for extra clarity.
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Figure 3.2: Basic example using MOL with Aimed Fire Only. Despite a small value
of diffusion, the initial force profiles rapidly and unacceptably diffuse.

Higher strategic decision making abilities were then included. In Figure 3.3

a retreat mechanism for both forces is specified to be enforced once a threshold

density loss is encountered. This threshold is lower for Force u and is encountered

sooner than that of Force v such that v does not retreat throughout the duration of

the simulation. Again the top graph shows the superimposed distributions of both

forces at the specified times, with the middle two graphs showing the individual

force distributions for extra clarity.
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Figure 3.3: Basic example using MOL with Aimed Fire Only, and the addition of
retreat decision criteria for both Forces. Force u reaches its threshold of 20% losses
before triggering a retreat whereas Force v does not reach its 50% threshold

Extending this one dimensional model into two dimensions using the same

method of lines upwinding finite difference scheme by Schiesser [49] as detailed

in Equations 3.5 and 3.6, created numerical abnormalities or striations when a high

value of diffusion was used. Using the ode15s integrator as suggested in the Matlab

literature instead of ode45 as used in the one dimensional case did not resolve this

issue. Advection only did not produce these striations.
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Figure 3.4: Integrator errors present with high values of diffusion (left) and absent
with only advection (right).

Changing the form of the advection term from a simple constant to, for ex-

ample, a density dependent term highlighted a further difficulty of using inbuilt

Matlab integrators. Conservation of troop density in the absence of attrition was

not maintained as the integrators trialled are not symplectic. Thus this technique

coupled with Matlab integrators was not found to be a suitable approach to this

problem.
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Figure 3.5: Total Mass, Spatially Dependent Advection

While well known methods such as Lax-Wendroff have been successfully imple-

mented for simpler versions of (2.6) and (2.7) (see [35]), an extension of this method

to incorporate density dependent diffusion leads to spurious unphysical oscillations,

a well known failing of the Lax-Wendroff technique. Nonphysical negative values

are unacceptable and must not be a feature of the numerical method used to ap-

proximate these equations. If higher order accurate methods are to be used, some

form of flux limitation is needed to ensure physically acceptable results.

As a non-constant field will be required for both velocity and diffusion in further

modelling, we must now look to other numerical methods such as conservation laws

that have been widely utilised in other areas such as mathematical biology and gas

dynamics.
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3.3 Conservation Laws

The standard conservation form of a vector of unknown functions u(x, t) and a

vector of flux functions f(u) is:

∂u

∂t
+

∂f(u)

∂x
= 0. (3.7)

As this system of coupled partial differential equations describes the evolution

of the density of troops, the extra demands of mass conservation and of positiv-

ity further restricts the choice of numerical method. Conservation laws enable

accurate capturing of discontinuities and shock speeds, and ensure, by definition,

conservation of density. For mixed-type equations such as these, with a hyperbolic

(advection) and parabolic (diffusion) component, there exists only a handful of ap-

propriate techniques suitable for use in solving them: symmetrisation, upwinding,

exponential fitting and least-squares regularisation [37]. As no one technique is suit-

able for all problems, the researcher must decide those features of the equation(s)

in question are critical which will then determine the choice of technique.

We follow the work of Gerisch [1], Boswell [3] and Hundsdorfer [16] by using

the Method of Lines scheme. Here spatial derivatives are discretised on a uniform

finite grid xi, i = 0, 1, · · · , N with spacing Δx, giving a large system of Ordinary

Differential Equations. Flux limiters are employed at this stage to ensure positivity

and conservation of mass. An explicit Runge-Kutta method is then used for the

time integration, again with constraints in place to ensure positivity.

3.3.1 Spatial Discretisation
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Figure 3.6: Flux Calculation for One Dimension
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Following standard finite volume theory, the central difference approximation in

one dimension to the spatially discretised conservative form of the equation du
dt

=

F (x, t), t ≥ 0, u(x, 0) = u0(x) ≥ 0 takes the form:

d

dt
Ui +

{
Fi+1/2 − Fi−1/2

}
Δx

= 0, i = 0, 1, · · · , N. (3.8)

where Ui is the continuous time approximation of u(xi, t) over cell i at time t. At

time n, the density function is defined by

Un
i =

(
1

Δx

)∫ x+1/2

x−1/2

u(x, tn)dx i = 0, 1, · · · , N. (3.9)

The general flux function F is defined as a function of the fluxes of the sur-

rounding grid points. Let the flux at each grid point be defined as:

fi(t) = v(xi, t)Ui(t) (3.10)

Let the general flux function for positive velocities become:

Fi+1/2 = fi +
1

2
Φ(ri+1/2)(fi − fi−1) (3.11)

Similarily for negative velocities:

Fi+1/2 = fi+1 +
1

2
Φ(r−1

i+3/2)(fi+1 − fi+2) (3.12)

where the limiter function Φ is a function of the smoothness of the fluxes as

measured by r:

ri+1/2 =
fi+1 − fi

fi − fi−1

(3.13)

This limiter function may act as a switch between high and low order approx-

imations. Smooth areas can then be approximated using a higher order scheme

whereas oscillations that might otherwise be present in areas of steep gradients can
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be approximated using a lower order scheme. Based on [1, 3, 16] which specify

requirements for maintaining positivity, we use the van Leer limiter:

Φ(r) =
‖r‖+ r

1 + ‖r‖ (3.14)

In the numerical simulations and following, a small number ε 
 1 = 10−30 is added

to both numerator and denominator of (3.13) to ensure good behaviour in regions

of uniform flow [1].

Now that we have a system of ODEs with initial conditions, the appropriate

time integration method must be determined. An explicit three stage second or-

der Runge-Kutta scheme with matrix A and weights b is used that provides good

positivity and second order accuracy [1].

A =

⎛
⎜⎜⎜⎝

0 0 0

1/2 0 0

1/2 1/2 0

⎞
⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎝

1/3

1/3

1/3

⎞
⎟⎟⎟⎠ (3.15)

Again following Boswell, a variable time step is used in order to maintain ac-

curacy without unnecessarily small time steps. Using the initial values uk at time

t = tk, two approximations are found at u(t = tk + τ). Firstly, using the single

time step τ and secondly using two consecutive time steps of τ/2. A scaled error is

defined by the standard measure:

ρ =
1

2p − 1

√√√√ 1

m

m∑
i=1

(
(u(2× τ

2
))i − (uτ )i

atoli + rtoli|(uk)i|
)2

(3.16)

where p = 2 is the order of the ODE solver, m = N is the ODE system di-

mension, and atoli and rtoli the respective absolute and relative tolerances of the

error. If ρ > 1 the step is rejected, and it follows that if ρ ≤ 1 the step is accepted.

Whether the step is recomputed or not, the new time step is calculated as:

τnew = τ ·min{2,max{0.8ρ −1
2p−1 , 0.25}} (3.17)
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Once the step is accepted, the new state is updated using the more accurate

approximation u2× τ
2
.

3.3.1.1 One Dimensional Test Case

In order to demonstrate the ability of this numerical method to resolve disconti-

nuities and following standard demonstrations in numerical methods texts [29, 33],

the numerical approximation of several limiters is compared to the exact solution

for the constant advection of a rectangular function for various times as shown in

Figure 3.7. Firstly, the one dimensional case using the van Leer limiter with velocity

C = 20, Δt = 10−6, atol = rtol = 10−6 and the initial density profile

u(x, 0) =

⎧⎨
⎩ 10 0.1 ≤ x ≤ 0.3

0 otherwise
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Figure 3.7: Numerical approximation comparison to exact solution of advecting
rectangular function.
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As Figure 3.7 shows, with decreasing grid spacing Δx the resolution of the

leading and trailing edges of the rectangular function increases. The correct location

of these edges is also maintained and most importantly the solution remains positive

throughout. There are no negative oscillations present.

3.3.1.2 Two Dimensional Test Case

Now expanding to the two dimensional case again using the van Leer limiter with

velocity Cx,y = 20 and the initial density profile

u(x, y, 0) =

⎧⎨
⎩ 10 0.1 ≤ x ≤ 0.3 and 0.1 ≤ y ≤ 0.3

0 otherwise

Figure 3.8: Numerical approximation comparison to exact solution of advecting
square function.
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Figure 3.9: Numerical approximation comparison to exact solution of advecting
square function, diagonal slice.

Again Figure 3.8 and the two dimensional diagonal slice of Figure 3.9 shows

that with decreasing grid spacing the resolution of the edges of this square function

increases and the correct location of these edges is maintained. Again it can be

seen that at no stage are there negative parts to the approximations arising from

oscillations - the solution remains positive throughout. Although a number of dif-

ferent limiters can be used, the van Leer limiter is implemented here and as will be

shown in the following chapter, this is the most appropriate choice of limiter.

3.3.2 Numerical Integration

We apply the numerical method above for the numerical integration of the advection

section in (2.6) and (2.7). For the density dependent diffusion component of (2.6)

and (2.7), we use a simple second order accurate finite difference scheme:
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Un+1
i = Un

i −
Δt

(Δx)2

{(
(Dn

i+1 + Dn
i )

2
)

)
(un

i+1 − un
i )−
(

(Dn
i + Dn

i−1)

2

)
(un

i − un
i−1)

}
(3.18)

After the integration from time t to t + τ , the reaction terms of (2.6) and (2.7)

are calculated and the losses subtracted from the density profile.

3.3.3 Fractional Step methods

Fractional step methods or Operator-Splitting methods, involve the decoupling of

constituent processes with the appropriate numerical methods applied to each sub-

problem sequentially. For the chemotaxis model studied by Tyson et al. [54], a high

resolution explicit method was used for advection, and an implicit method for the

diffusion. This model also included velocity fields that are not divergence free as

the pattern formation intended to be produced depends on cells clustering in some

regions. This is also applicable to soldier behaviour. It is noted that the interplay

between pattern-erasing Fickian diffusion and pattern-creating chemotaxis creates

observed stable patterns [54].

Fickian diffusion is analogous to the heat equation, that is, for a concentration

φ, ∂φ
∂t

= D∇2φ. Chemotaxis is a guided movement in response to a stimulus,

generally applicable to cells or simple single/multicellular organisms, for example,

the movement of bacteria in response to a chemical gradient.

In order to solve all terms simultaneously, the numerical method would typically

need to be implicit due to diffusion. However, this would impose a severe time

step restriction and lead to a method in which all terms are implicit and centred in

space, potentially producing non-physical oscillations near discontinuities and steep

gradients. Since these are features to be expected in this model, good resolution is

critical. Many good methods exist that address each term’s peculiarities well so a

method which takes advantage of this is desired - fractional step methods.
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Using a simple example of an advection-reaction equation to highlight the im-

plications of the fractional step method: qt + ūqx = −βq where the decay rate β

does not depend on x, this can be split into two subproblems A: qt = −ūqx and

B: qt = −βq. Solution operators for the two sub problems commute since solu-

tion methods can be applied in either order, flow then react or react then flow,

producing the same result. Spatial dependency of β will introduce further error as

the subproblems will then not be commutative producing results that will over or

under-estimate actual results. Generally, some form of splitting error is introduced.

For the chemotaxis model which is a combination of reaction, diffusion and

advection terms:

qt = D(q) +A(q) +R(q)

In order to obtain the solution qn+1 from qn at time tn+1 = tn + δt:

• Solve qt = A(q) over time δt with data qn to obtain q∗

• Solve qt = D(q) over time δt with data q∗ to obtain q∗∗

• Solve qt = R(q) over time δt with data q∗∗ to obtain qn+1

Depending upon the precise forms of each of these terms, the appropriate nu-

merical method for each step must be determined. Thus for our equations, we are

able to use the methods described above for each of these terms giving first order

accuracy.

• Solve ut = fdiff over time δt with data un to obtain u∗

• Solve ut = fvel over time δt with data u∗ to obtain u∗∗

• Solve ut = freact over time δt with data u∗∗ to obtain un+1
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Chapter 4

1D Results

We now apply the numerical method described in Chapter 3 to a one dimensional

version of (2.6) with interaction terms removed. This is done in order to deter-

mine appropriate numerical parameters and compare results to previous swarming

research by Mogilner et al.. The author has kindly provided the original Matlab

code used to produce the published results. We expected to find good agreement

of our numerical method with that used by Mogilner et al.. Both (2.6) and (2.7)

including interaction terms are then modelled and compared to previous results of

Protopopescu et al.. We expect to find similar reduction in density due to weapons

effects however the density distributions should retain a relatively constant interior

density with sharply defined edges throughout the simulations.

Once the numerical requirements have been established and we are satisfied that

the interaction terms produce acceptable behaviour, this information will be used

to direct the expansion of our equations to two dimensions.

4.1 Numerical Parameters and Previous Analytical

Studies

Initially, we consider the force u in isolation. We take Equation (2.6), remove

the firing terms freact and write the equations in a non-linear conservation form.

Equation (2.6) becomes:

∂u

∂t
=

∂

∂x

(
(D

∂u

∂x
) + u(Cu + (Aa − Aru)(K ∗ u))

)
(4.1)
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with the kernel K defined as:

K(x) =

⎧⎨
⎩ −(1/2r)sign(x) −r ≤ x ≤ r

0 |x| > r
(4.2)

This is identical to the one dimensional system modelled by Mogilner et al..

In [35], a linear stability analysis, analysis of the front and rear densities, and

size and lifetime analysis was undertaken using a rectangular pulse ansatz solution

and several key results found to ensure coherence of the formation. Firstly we

highlight the findings for density independence.

• Constant diffusion will result in a small trail of swarm members being lost

from the rear of the swarm.

• If the value of D is of the same order of magnitude or greater than:

Aar/4Ar

(Aa − 4C)2
, (4.3)

the density of stragglers behind the swarm will not be small resulting in the

swarm dispersing in finite time.

• If

D 
 Aar/4Ar

(Aa − 4C)2
(4.4)

the layer of stragglers left will be exponentially thin.

• Loss of density will result in the interior density remaining the same while the

width of the profile linearly decreases to compensate. Although the density

loss in the analysis directly resulted from the drift of members away from

the swarm when density is independent, this finding is expected to hold for a

density loss due to firing effects in our simulations. The temporal dependence

of the swarm width L is given by:

dL

dt
=

CAa

Ar

exp

[
−A2

a

r
4ArD

(
1− 4C

Aa

)]
(4.5)
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The results for density dependence:

• Density dependent diffusion Df must be small enough,

D <
Aar/4

(1− (2C/Aa))2
(4.6)

to ensure that the swarm remains stable and a true travelling band solution

is found.

As we require a stable swarm with no loss of members, this small density depen-

dent diffusion is essential and our parameters much be chosen to satisfy the stability

conditions. We follow Mogilner et al. by choosing the density dependent diffusion

to be of the form:

D =

⎧⎨
⎩ Duu if u < 0.1× Aa/Ar

Du otherwise,
(4.7)

where Du is a constant.

4.1.1 Flux Limiters, Tolerances and Grid Spacing

In order to determine an accurate solution to be found within an acceptable compu-

tational time, the choice of flux limiter, tolerance and grid spacing is of the utmost

importance. Not only is capturing steep fronts formed by each force essential, the

steepness of the rear of the profile must also be approximated well. This can be

achieved if the limiter is of high enough accuracy yet prevents numerical oscilla-

tions or negative densities. Several first and second order standard and well known

flux limiters as given in Table 4.1 were investigated for a range of tolerances and

compared to a high tolerance second order van Leer limiter result.

Typically for simulations of this nature, time is stated in terms of the number

of time steps taken. As this is normal for fixed sized time steps and the numerical

method used here relies on a variable time step, we leave time values in a less fa-

miliar format of, in this case, decimals. For Figure 4.2 an end time of t = 0.001 is

used such that the force moves approximately one third of the length of the domain.
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Name Limiter

First Order Upwind 0

van Leer r+|r|
1+|r|

Second Order Central max {0, min(r, δ)}
Second Order Upwind max {0, min(2r, δ, 1)}

Table 4.1: Potential Flux Limiters.

Following Boswell, the parameter δ for the Second Order Central and Second

Order Upwind limiters was set to 2.

log10(tol) Flux Limiter

First Order

Upwind

van Leer Second Or-

der Central

Difference

Second Or-

der Upwind

Time RS Time RS Time RS Time RS

-2 0.703 0 0.782 0 0.563 0 0.766 0

-3 2.109 1 2.407 1 2.531 5 2.407 1

-4 6.562 3 6.906 24 8.078 30 6.578 25

-5 19.469 2 20.5 138 23.031 145 20.438 109

-6 62.203 3 60.187 211 75.266 242 64.312 194

-7 195.859 5 186.344 273 233.218 302 210.8248 249

Table 4.2: Run Time and Rejected Steps (RS) for selected Limiters.

For Figure 4.2, the initial density profile is:

u(x, 0) =

⎧⎨
⎩ 10 0.1 ≤ x ≤ 0.3

0 otherwise

Parameters are r = 5, D = 5, C = 20, Aa = 20, Ar = 2, Δt = 10−6, end time =

10−3.
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Figure 4.1: All limiters have a tolerance of 10−7 and the high accuracy solution
using the van Leer limiter with a tolerance of 10−10
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Figure 4.2: Comparison of Tolerances

All results were generated using a HP Compaq DC7800 Intel Core 2 Duo CPU

2.66GHz 1.95GB RAM personal computer.

For each Rejected Step entry in Table 4.1, the majority of the rejected steps

occurred during the initial start up phase. As the initial time step Δt = 10−6

produced a larger error ρ for higher tolerances, a higher number of time step cor-

rections were required for the error to fall within acceptable limits as detailed in
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Section 3.16. As each correction increments the rejected steps value, it follows that

a higher tolerance will produce more rejected steps in reaching an adequate error.

While both the first and second order upwind limiters gave results in the same

order of magnitude of computational time and rejected steps, their inability to

resolve the rear of the force such that a trailing profile is left, removes them from

consideration as potential limiters for this model. The First Order Upwind gives

the least accuracy with poor resolution especially of the rear of the profile. Both

the van Leer and Second Order Central limiters are in close agreement with the

high accuracy solution. As the van Leer limiter is continuously differentiable and

has good positivity properties at lower tolerances [3], this will be the limiter used

for the one dimensional results presented in this chapter.

Having established a tolerance, the effect of grid spacing on the solution is now

investigated. Note that the computational times given in Table 4.3 are for one force

profile only whereas we will be simulating the interaction of two forces and their

interaction. Parameters for Figure 4.3 are D = 5, C = 20, Aa = 20, Ar = 2, ra,r =

5, τ(t = 0) = 10−7, atol = rtol = 10−6, end time t = 10−3.

Δx log10(tol)

-3 -4 -5 -6 -7

RS Time RS Time RS Time RS Time RS Time

0.01 1 0.7 23 2 142 6.36 214 19.8 274 61.4

0.005 2 3.2 2 10.1 270 32.9 760 105.7 1044 326.6

0.0025 3 32.9 3 104.7 7 316 1560 1002.2 - -

0.00125 4 1517.1 5 4859.3 - - - - - -

Table 4.3: Comparison of Grid Spacings and Tolerances to Computational Time
and Rejected Steps.
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Figure 4.3: Comparison of Grid Spacings

For our equations, the Péclet number which indicates the degree to which ad-

vection dominates diffusion is of the order:

P =
CΔx

D
=

60 ∗ 0.005

10
= 0.03. (4.8)

This indicates that advection does not dominate diffusion and that spurious os-

cillations associated with applying finite difference schemes to high Péclet numbers

does not apply in this case.

As can be seen in Figure 4.3, the location of the leading and trailing edge of the

force profile does not greatly alter between Δx = 0.005 and 0.0025. In addition,

the computational time increases greatly between these two values and as such, the

grid spacing and tolerance values to be used for the one dimensional modelling will

be 0.005 and 10−6 respectively.

55



4.1.2 Comparison with Previous Work

Now that the tolerance and limiter have been determined, we compare results

against the original algorithm kindly provided by Alex Mogilner in order to test

the numerical method of integration proposed. The ranges at which attraction and

repulsion operate are taken to be equal (r = 5). Diffusion is set at (D = 5) and

convection (C = 20). Convolutions were approximated using a second order accu-

rate trapezoidal rule. Unless otherwise stated, the domain was discretised into 100

grid points. For Figure 4.4a the initial density profile is:

u(x, 0) =

⎧⎨
⎩ 10 0.1 ≤ x ≤ 0.3

0 otherwise

Parameters for Mogilner’s results are r = 5, D = 5, C = 20, Aa = 20, Ar = 2, Δt =

10−6, number of time steps = 2000. For our numerical method, all parameters are

identical with the exception of τ(t = 0) = 10−6, atol = rtol = 10−6. For Figure 4.4b,

D =

⎧⎨
⎩ Duu if u < 0.1× Aa/Ar

Du otherwise

as specified for density dependent diffusion with Du = 5, Aa = 20, Ar = 2, r =

5, τ(t = 0) = 10−6, atol = rtol = 10−6, end time t = 10−3. The initial density

profile is the same as in Figure 4.4a.

56



0 20 40 60 80 100
0

2

4

6

8

10

D
en

si
ty

x

RK
LW

(a) Comparison of the numerical method used
by Mogilner (Lax-Wendroff) and that pro-
posed in Section 3 (Runge-Kutta).

10 20 30 40
0

1

2

3

4

x

D
en

si
ty

Density Independent Diffusion
Density Dependent Diffusion

(b) A comparison of density independent
(D = Du) and density dependent diffusion.

Figure 4.4: Comparisons with Mogilner et al.’s Numerical Method.

Figure 4.4a demonstrates a good agreement with Mogilner et. al ’s results and

the troop formation holds. Oscillations present in Mogilner’s results, more easily

seen in videos or shorter interval snapshot series, are reduced due to the flux limiter

and the density of lost organisms behind the troop profile is slightly higher. Had the

advection term not included the convolution terms, we would expect the density

profile to retain a similar shape with diffusive spread increasing throughout the

simulation. This diffusive spread is easily seen in the results of Protopopescu where

the initial Gaussian profile slowly diffuses throughout the simulation.

Diffusion is now taken as density dependent Du for densities below u < 0.1 ×
(Aa/Ar) and constant D otherwise. Figure 4.4b shows a zoom of the rear of the

profile highlighting the noticeable difference between density dependence and inde-

pendence. As expected, there is no lost density behind the profile when diffusion is

density dependent. This also agrees with Mogilner et al.’s findings in one dimension.

As the behaviour of the moving troop profile is satisfactory, we proceed to

introduce the firing terms. Following military and wargaming nomenclature, forces

are named Red and Blue.

4.2 Force Interaction

We now consider interaction between two forces by reintroducing the firing terms

freact. Firstly, the simpler aimed fire term is included so that soldier losses are
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sustained only when troop profiles overlap in the domain. Secondly, only the area

fire term is included resulting in spatially dependent losses. Thirdly, both aimed and

are fire terms are included and lastly, these results are compared to Protopopescu’s

results.

4.2.1 Aimed Fire Only

No changes in tactics due to losses incurred are implemented, e.g. retreat upon a

50% reduction. Each force maintains a constant velocity regardless of losses and

will pass directly through the opposing force. Figure 4.6 demonstates that losses

only occur when members of the opposing forces are co-located as expected. The

initial density profile is:

u(x, 0) =

⎧⎨
⎩ 10 0.1 ≤ x ≤ 0.3

0 otherwise
, v(x, 0) =

⎧⎨
⎩ 10 0.7 ≤ x ≤ 0.9

0 otherwise

Parameters were set at ru,v = 5, Du,v = 5, Cu = 20, Cv = −20Aau,v
= 20, Aru,v

=

2, du,v = 8× 10−5, τ(t = 0) = 10−6, end time t = 2× 10−3, atol = rtol = 10−6, Δx =

0.005.

∂u

∂t
= ∇ · (Du(u)∇u) +∇ · {u(Cuu + (Aa − Aru)(K ∗ u))}+ duv (4.9)

∂v

∂t
= ∇ · (Dv(v)∇v +∇ · {v(Cvv + (Aa − Arv)(K ∗ v))}+ dvu (4.10)
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Figure 4.5: 1D Aimed Fire Only
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Figure 4.6: 1D Aimed Fire Only Losses
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As can be seen in Figure 4.6 troops are rapidly killed when they come in contact

due to the high value of du = dv = 8×10−5 and the constant velocity sufficiently low

that the two forces have enough time to inflict significant casualties. At t = 8×10−4,

where approximately half of each force is in contact with each other, the drop in

density due to fire can be clearly seen. As the forces pass each other and incur more

losses, the densities fall below the ratio Aa/Ar = 10. The effects of the attraction

kernel becomes apparent in Figure 4.5 as each force contracts in order to maintain

a constant interior density of 10 with steep edges throughout the simulation. At

t = 1.8× 10−3, there is no overlap of forces and thus no firing effects resulting loss

of density. Each force now exhibits a stable travelling profile that is thinner than

the initial profile due to reduced numbers.

4.2.2 Area Fire Only

Of the freact terms, we now consider only the Area Fire terms:

∂u

∂t
= ∇ · (Du(u)∇u) +∇ · {u(Cuu + (Aa − Aru)(K ∗ u))}+ u (ku ∗ v) (4.11)

∂v

∂t
= ∇ · (Dv(v)∇v) +∇ · {v(Cvv + (Aa − Arv)(K ∗ v))}+ v (kv ∗ u) (4.12)

where the form of the Area Fire kernel is:

k(x) = βe−ν|(x−X)|, (4.13)

and is taken to act over the whole domain.

As the form of area fire is proportional to the density, initial losses are expected

to be evenly felt across the troop formation. As the initial density was set to

the desired Aa/Ar, any loss incurred will result in the density dropping below this

value and the attraction term dominating over the repulsion term. This forces

60



the troops to contract so as to maintain this desired density, unlike traditional

advection/diffusion/reaction models. This is seen clearly in Figure 4.7.

The initial density profile is:

u(x, 0) =

⎧⎨
⎩ 10 0.1 ≤ x ≤ 0.3

0 otherwise
, v(x, 0) =

⎧⎨
⎩ 10 0.7 ≤ x ≤ 0.9

0 otherwise

Parameters were set at ru,v = 5, Du,v = 5, Cu = 20, Cv = −20Aau,v
= 20, Aru,v

=

2, βu,v = 8× 10−5, νu,v = 0.8, τ(t = 0) = 10−6, end time t = 2× 10−3, atol = rtol =

10−6, Δx = 0.005.
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Figure 4.7: 1D Area Fire Only
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Figure 4.8: 1D Area Fire Only Losses

4.2.3 Both Aimed and Area Fire

We now include both Aimed and Area Fire, giving (2.6) and (2.7). We see an

immediate reduction in both forces due to the non-local effects of Area Fire, and an

increased reduction due to Aimed Fire effects when the forces come into contact.

The initial density profile is:

u(x, 0) =

⎧⎨
⎩ 10 0.1 ≤ x ≤ 0.3

0 otherwise
, v(x, 0) =

⎧⎨
⎩ 10 0.7 ≤ x ≤ 0.9

0 otherwise

Parameters were set at ru,v = 5, Du,v = 5, Cu = 20, Cv = −20, Aau,v
= 20, Aru,v

=

2, βu,v = 8×10−5, νu,v = 0.8, du,v = 8×10−5, τ(t = 0) = 10−6, end time t = 2×10−3,

atol = rtol = 10−6, Δx = 0.005.
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Figure 4.9: 1D Aimed and Area Fire Only.
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Figure 4.10: 1D Aimed and Area Fire Losses
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4.2.3.1 Comparison to Previous Research

Protopopescu et al generally enforced higher level decisions or tactics into their

simulations which we have chosen to forego. Therefore, comparisons are restricted

due to the small number of published results available that do not include these

tactics. However in [46], Figure 4 is comparable to Figure 4.7 and shows a similar

trend in soldier losses. The parameters used for Figure 4.11 are L = 5, Cu = 5, Cv =

−6, Du = 0.01, Dv = 0.02, cu = −2.4× 10−4, cv = −3× 10−4, νu,v = 1/3, u(t = 0) =

v(t = 0) = 2000:

∂u

∂t
= Du

∂u

∂x2
+ Cu

∂u

∂x
− cuu

∫ L

−L

e−νu|x−y|v(y)dy (4.14)

∂v

∂t
= Dv

∂v

∂x2
+ Cv

∂v

∂x
− cvv

∫ L

−L

e−νv |x−y|u(y)dy (4.15)

Figure 4.11: Protopopescu et al ’s results for Aimed Fire. Reproduced from [46].
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Figure 4.12: Losses for Figure 4.11. Reproduced from [46].

Figure 4.11 shows obvious smearing of the force profile with time and thus the

complete absence of the ability to maintain a constant interior density with well

defined edges. Density loss as a function of time is also of the same form as our Area

Fire Only results indicating the correct freact form as the essence of Protopopescu’s

results have been captured. Therefore, even our simplest one dimensional model

with a basic interaction term is able to model soldier movement with a greater

degree of realism with regards to spatial movement.

Now we can extend these equations to two dimensions in preparation for com-

parisons to the cellular automaton wargame ISAAC.
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Chapter 5

2D Results

We now extend Equations (2.6) and (2.7) to two dimensions. Initially we determine

the appropriate tolerance to be used in a similar manner as for the one dimensional

case, and the appropriate method for solving the convolution terms in a computa-

tionally acceptable time. We then proceed to investigate the interactions between

two forces in a comparable manner as Chapter 4. Lastly we look at the introduction

of obstacles in the domain and the navigation of a force around these obstacles.

5.1 Specifics of the Numerical Method

5.1.1 Numerical Methods for Convolution terms

Moving from one to two dimensions presented significant concerns with regards to

computational time required. This is due to a total of three computationally ex-

pensive convolution terms for each force - attraction, repulsion and area fire - that

must be calculated for each of the N × N grid points for each time step. Two

approaches available in the standard version of Matlab 2008b for solving convolu-

tions were used. Firstly, the standard convolution functions conv and conv2 were

utilised and a significant speed increase was noticed. Secondly, Fourier theory for

convolutions was implemented using Matlab’s Fast Fourier (FFT) and Inverse Fast

Fourier Transformation (IFFT) functions fft2 and ifft2. Using standard Fourier

transform theory, Fourier transformations of both functions to be convoluted were

taken, multiplied together, and the inverse fast Fourier transform applied.

1

2π

∫ ∞
−∞

f̂(α)ĝ(α)eiαxdα =

∫ ∞
−∞

f(x− y)g(y)dy
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Using the parameters D = 2,C = (20, 20), Aa = 20, Ar = 2, ra,r = 2, τ(t = 0) =

10−7, atol = rtol = 10−4 and Δx = 0.01, the times taken to reach t = 0.001 are

summarized in Table 5.1.

fft2, ifft2 conv2

Run Time 358.547 116.484

351.797 123.422

360.157 116.187

358.11 114.062

353.156 116.235

349.454 112.265

356.75 118.031

356.829 119.61

351.015 116.906

355.954 113.735

Mean 355.1769 116.6937

Standard Deviation 3.59 3.19

Table 5.1: Run Times for Convolution Comparisons.

Noting the increase in time using the FFT/IFFT approach for the given grid size,

the convolution function conv2 will be used for the following numerical simulations.

While using larger grid sizes results in time savings for the FFT/IFFT approach, as

the maximum value of N being considered is 100, the conv2 approach is sufficient

for this research.

5.1.2 Variation of Tolerances and Grid Spacing

Following the one dimensional equations, in order to determine an accurate solution

to be found within acceptable computational time, a comparison of tolerances to

computational time was undertaken. In order for the simulation time to fall within

acceptable limits, the tolerance was varied between 10−2 and 10−5. As for the one
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dimensional results, the van Leer limiter is used throughout the two dimensional

results. The initial density profile is:

u(x, y, 0) =

⎧⎨
⎩ 10

√
5/(5×√2π)× e−((x−0.15)2+(y−0.15)2)/(0.5) > 0.5

0 otherwise

Parameters are D = 10,C = (60, 60), Aa = 5, Ar = 0.5, ra,r = 5, τ(t = 0) = 10−7,

end time t = 0.001 and Δx = 0.01.
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Figure 5.1: Comparison of tolerance values, horizontal slice of the 2D profile.
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Figure 5.2: Parameters are identical to Figure 5.1.
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Tolerance Rejected Steps

1e−2 0

1e−3 1

1e−4 4

1e−5 6

Table 5.2: Rejected Steps for Tolerances in 2D.

The tolerance value of 10−3 gives an acceptable level of accuracy within a rea-

sonable computational time and thus will be used for all two dimensional results

presented. For all tolerance values rejected steps occurred only at the initial stages

of the simulation and once an acceptable value of τ was found, no further rejected

steps occurred. We use a tolerance value of 10−5 as the control high accuracy result.

Having established a tolerance and in a similar manner as for the one dimensional

results, the effect of grid spacing on the solution is now investigated. Note that the

computational times given in Table 5.3 are for one force profile only whereas we

will be simulating the interaction of two forces and their interaction. Parameters

for Figure 5.3 are D = 5, Cx = 60, Cy = 0, Aax,y
= 5, Arx,y

= 0.5, ra,rx,y
= 5, τ(t =

0) = 10−7, atol = rtol = 10−3, end time t = 10−4.

Δx Rej Steps Time

0.02 0 10.3590

0.01 0 92.7460

0.005 1 460.4520

0.0025 3 2228.9

Table 5.3: Comparison of Grid Spacings.
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Figure 5.3: Comparison of Grid Spacings

For our equations, the Péclet number for the interior of the profile is:

P =
CΔx

D
=

60 ∗ 0.01

5
= 0.03. (5.1)

This indicates that advection does not dominate diffusion and that spurious os-

cillations associated with applying finite difference schemes to high Péclet numbers

does not apply in this case.

As can be seen in Figure 5.3, the location of the leading and trailing edge of the

force profile does not greatly alter between Δx = 0.01 and 0.0025 however the best

overall density profile resolution is found with grid spacing 0.0025. In addition, the

computational time increases greatly between these two values and as such, the grid

spacing and tolerance values to be used for the one dimensional modelling will be

0.01 and 10−3 respectively.
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5.2 Movement Only

5.2.1 Effect of Attraction and Repulsion

Considering one force in isolation (no firing effects), setting the convection term

to zero and using density dependent diffusion, the asymptotic behaviour is investi-

gated. As for the one dimensional version, it is expected that the resulting profile

will be circular and will retain a constant interior density with steep edges dropping

to zero. We set the initial profile as non-circular and confirm that the asymptotic

stationary state is as a circular profile with constant interior density of Aa/Ar and

steep circumference with density falling to zero. The initial density profile is:

u(x, y, 0) =

⎧⎨
⎩ 10

√
(x− 0.15)2 + (y − 0.15)2 < 0.071

0 otherwise

Parameters were set at ra,r = 5, D = 10,C = 0, Aa = 5, Ar = 1, τ(t = 0) = 10−8,

end time t = 10−2, atol = rtol = 10−4, Δx = 0.01.
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Figure 5.4: Asymptotic State for Stationary Force Profile
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We now set the velocity to a constant value in order to ascertain whether the

resolution of the steep moving fronts is sufficient. That is, whether the movement

throughout the battlespace is realistic. An initial circular troop profile begins in

the lower left quadrant of the domain and proceeds with constant velocity toward

the upper right corner of the domain. Snapshots are taken at approximately equal

time intervals. The initial density profile is:

u(x, y, 0) =

⎧⎨
⎩ 10

√
(x− 0.15)2 + (y − 0.15)2 < 0.071

0 otherwise

Parameters were set at ra,r = 5, D = 10,C = (60, 60), Aa = 20, Ar = 2, τ(t = 0) =

10−7, end time t = 10−2, atol = rtol = 10−3, Δx = 0.01.
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Figure 5.5: Diagonal Movement Only
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As Figure 5.5 demonstrates, the troops move in a cohesive fashion, approxi-

mately maintaining the initial profile of constant interior density with steep edges.

This behaviour is a noticeable feature of published ISAAC results [18], and is la-

belled as “unexpected self-organized internal formation”. However, we have shown

that such self-organisation may be modelled using relatively simple and physically

meaningful PDEs that are comprehensible enough to allow us to predict this be-

haviour a priori. For the cellular automata results though, this was unexpected

and required simulations to be run.

5.3 Inclusion of Interaction Terms

As with the one dimensional results, aimed and area fire are initially treated sepa-

rately and then combined.

5.3.1 Aimed Fire Only

We now investigate the aimed fire terms only. An opposing force is introduced,

and the effect of area and aimed firing terms determined. Initial circular profiles

with interior densities of Aa/Ar in opposite quadrants are set, contour intervals of

the Matlab graphs are fixed at equal intervals with one force represented as dashed

contour lines and the other solid lines. Velocity is set such that each force will

progress to the opposite corner of the battlefield at a constant rate.

Again the maintenance of the minimum soldier density once the two formations

have passed through each other can be seen. This behaviour has not been demon-

strated in any previous continuous combat model. In Figures 5.6 and 5.7, only the

velocity of each force is varied with firing variables are held constant. There are

two factors responsible for the differences in the final size of each force. Force v

possesses a higher aimed fire constant and thus will incur a greater loss than Force

u. Also, the increased velocity of both forces in Figure 5.7 minimises time in con-

tact between them and thus firing opportunities and the subsequent loss of density.

Figures 5.8a and 5.8b demonstrate that density loss occurs only when members of
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each force are co-located, and losses are proportional to the time in contact. The

initial density profiles are:

u(x, y, 0) =

⎧⎨
⎩ 10

√
(x− 0.15)2 + (y − 0.15)2 < 0.071

0 otherwise

v(x, y, 0) =

⎧⎨
⎩ 10

√
(x− 0.35)2 + (y − 0.35)2 < 0.071

0 otherwise

Parameters were set at ru,va,r
= 5, Du,v = 10, Cu = (20, 20), Cv = (−20,−20),

Aau,v
= 20, Aru,v

= 2, du = 10−5, dv = 10−4, τ(t = 0) = 10−7, end time t = 10−2,

atol = rtol = 10−3, Δx = 0.01.
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(a) Contours of Profiles in 2D

(b) Graphs of profiles 3D

Figure 5.6: 2D Aimed Fire only
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Figure 5.7: All parameters are the same as for Figure 5.6 with the exception of
Cu = (60, 60),Cv = (−60,−60), end time t = 4× 10−3.
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Figure 5.8: Losses for Figure 5.6 and 5.7

5.3.2 Area Fire Only

We now use two forms of the non-local area fire term only for freact as detailed

in Section 2.2.2, the Rifle and Artillery kernels. As expected for both kernels,

each force incurs losses throughout the simulation, with the blue force sustaining

the most attrition due to the difference in firing constants, νu = 8 × 10−5, βu =

8× 10−8, νv = 8× 10−6, βv = 10−9. The rate of density loss seen in Figure 5.10 is of

the same form as seen in Figure 4.8 due to the form of the Area Fire terms (4.11)

and (4.12). The initial density profile is:

u(x, y, 0) =

⎧⎨
⎩ 10

√
(x− 0.15)2 + (y − 0.15)2 > 0.071

0 otherwise

v(x, y, 0) =

⎧⎨
⎩ 10

√
(x− 0.35)2 + (y − 0.35)2 > 0.071

0 otherwise

Parameters were set at ru,va,r
= 5, Du,v = 10, Cu = (20, 20), Cv = (−20,−20),

Aau,v
= 20, Aru,v

= 2, βu = 8× 10−8, βv = 8× 10−9, νu = 8× 10−5, νv = 8× 10−6,

τ(t = 0) = 10−7, end time t = 10−2, atol = rtol = 10−3, Δx = 0.01. For Figure

5.9b the optimal range rop is set at 20.
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(a) Rifle/Gun Kernel
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(b) Artillery Kernel

Figure 5.9: 2D Area Fire only showing different kernels
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(a) Rifle/Gun Kernel Losses
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(b) Artillery Kernel Losses

Figure 5.10: Losses for Figure 5.9a and Figure 5.9b respectively.

As expected, there is a continuous loss of density seen throughout the simulation

using the Rifle/Gun kernel and in comparison, two distinct periods of density loss

using the Artillery kernel. This corresponds to those approach and retreat periods

of time when the two forces were within the optimal range. This effect can be

difficult to see in the accompanying movies however Figure 5.10 demonstrates these

effects quite clearly.

5.3.3 Aimed and Area Fire

We now investigate the full Equations (2.6) and (2.7) and begin by using the Rifle

kernel for the Area Fire term. Results found after the introduction of the area fire

term are as expected. Losses are gradually incurred due to the non-local area fire

term and increase rapidly once the two forces meet and the aimed fire term becomes

significant as shown in Figure 5.12. Maintenance of the desired internal density is

also observed in Figure 5.11. The initial density profiles are:

u(x, y, 0) =

⎧⎨
⎩ 10

√
(x− 0.12)2 + (y − 0.12)2 < 0.071

0 otherwise

v(x, y, 0) =

⎧⎨
⎩ 10

√
(x− 0.38)2 + (y − 0.38)2 < 0.071

0 otherwise
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Parameters were set at ru,va,r
= 5, Du,v = 5, Cu = (20, 20), Cv = (−20,−20),

Aau,v
= 5, Aru,v

= 0.5, du = 2× 10−6, dv = 2× 10−5, βu = 8× 10−9, βv = 8× 10−8,

νu = 0.3, νv = 0.4, τ(t = 0) = 10−7, end time t = 1.2 × 10−2, atol = rtol = 10−3,

Δx = 0.01.

82



0 0.5
0

0.5
Time = 0.00000

0 0.5
0

0.5
Time = 0.00120

0 0.5
0

0.5
Time = 0.00240

0 0.5
0

0.5
Time = 0.00360

0 0.5
0

0.5
Time = 0.00480

0 0.5
0

0.5
Time = 0.00600

0 0.5
0

0.5
Time = 0.00720

0 0.5
0

0.5
Time = 0.00840

0 0.5
0

0.5
Time = 0.00960

0 0.5
0

0.5
Time = 0.01080

0 0.5
0

0.5
Time = 0.01200

2 4 6 8 10

Force u
Force v

(a) Contours of Profiles in 2D

(b) Graphs of profiles 3D

Figure 5.11: 2D Aimed and Area Fire, Rifle Kernel.
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Figure 5.12: Losses for Figure 5.11

Now using the Artillery kernel as the Area Fire term and using the same pa-

rameters as for Figure 5.11 with the addition of the optimal range set to 20.
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(a) Contours of Profiles in 2D

(b) Graphs of profiles 3D

Figure 5.13: 2D Aimed and Area Fire, Artillery Kernel
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Figure 5.14: Losses for Figure 5.13.

There are three distinct periods of density loss as seen in Figure 5.14. These

correspond to the two aimed firing effects as the forces come into range during the

advancing period and the retreating period, and the third is due to aimed firing

during overlap of the force profiles. Effectively we can see a superposition of the form

of aimed fire losses in Figure 5.7 and artillery kernel area fire losses of Figure 5.10b.

We have now developed a set of partial differential equations showing the stable

aggregation of forces with sharply defined edges that interact through either simple,

non-local or a combination of both attrition terms. These produce similar attrition

results to previously published research yet model cohesive movement throughout

the simulation.

5.4 Comparison to Previous Research

Similarly for Section 4.2.3.1 we compare our results with the simple case of Frontal

Attack as published in [44]. Note the distinct smearing of the profile due to dif-

fusion and the overall retention of the initial bivariate Gaussian form of the force

distributions chosen in order to simplify numerical analysis. Only the aimed fire

terms were included in these results.
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Figure 5.15: Frontal Attack Results reproduced from [44].

For the losses incurred, we concentrate on the force ratio results for 1 : 1 in

Figure 5.15b. As the forces remain in contact and thus incur losses from approx-

imately t = 0.2 onward, we note the casualty rate is of the same form as seen in

Figures 5.8a and 5.8b for the period over which the forces were in contact.

Again, as with the one dimensional case, the force distributions show no signs

of achieving constant interior densities nor well defined edges as we expect due to

the simplistic representation of the spatial aspects of force movement.

5.5 Obstacles in the domain

In order to mimic the larger range of scenarios available in ISAAC and other cellular

automata based wargames, obstacles were added to the model. These obstacles

may represent physical boundaries such as walls, mountain ranges, lakes, rivers,

unsuitable terrain, or any type of obstruction to movement. Areas where electronic

or communications equipment become inoperable may also be represented this way.
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We implement boundaries through the calculation of the flux function so that the

flux is set to zero at the object boundaries. Using one dimension as an example, for

v(xi, t) ≥ 0 in cell i where the cell i+1 forms part of the boundary in Equation 3.10:

Fi+ 1
2

= 0 (5.2)

and similarly for v(xi, t) < 0 in cell i where the cell i−1 forms part of the boundary,

Fi− 1
2

= 0. (5.3)

5.5.1 Wall Obstacle

Firstly, an impassable wall shaped obstacle is tested. The obstacle in this scenario

represents a vertical wall dissecting the length of the domain with width 2 at 0.25 ≤
x ≥ 0.26. The initial force density profile is:

u(x, y, 0) =

⎧⎨
⎩ 8

√
(x− 0.15)2 + (y − 0.15)2 < 0.071

0 otherwise

Parameters were set at ra,r = 5, D = 5,C = (60, 60), Aa = 5, Ar = 0.5, τ(t = 0) =

10−9, end time t = 5× 10−3, atol = rtol = 10−3, Δx = 0.01.
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Figure 5.16: Wall Obstacle.
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Note that as the force impacts against the wall, an increase in density due to

following forces trajectory continuing directly on towards the wall. This increases

the density at the wall to a higher level than Aa/Ar resulting in the repulsion term

becoming significant. As no flux is permitted through the wall, this repulsion results

in the force flowing along the wall in both directions until the force forms a thin

strip.

5.5.2 Small Square Obstacle

Next, a small square obstacle was placed in the middle of the troop’s path located

at [0.25, 0.26]× [0.25, 0.26] ⊂ Ω. The initial density profile is:

u(x, y, 0) =

⎧⎨
⎩ 8

√
(x− 0.15)2 + (y − 0.15)2 < 0.071

0 otherwise

Parameters were set at ra,r = 5, D = 5,C = (60, 60), Aa = 5, Ar = 0.5, τ(t = 0) =

10−9, end time t = 5× 10−3, atol = rtol = 10−3, Δx = 0.01.
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Figure 5.17: Small Square Obstacle.

91



In comparison to the force profile, this obstacle is quite small and the effects

to force traversal are minimal. The range of attraction is much greater than the

separation created between both arms of the force profile that are formed as it

moves around the obstacle. Due to this effectiveness of the attraction force, one

main profile is reformed on the opposite side of the obstacle. We now gradually

increase the size of the square.

5.5.3 Medium Square Obstacle

The obstacle is expanded to a larger square located at [0.23, 0.27]× [0.23, 0.27] ⊂ Ω.

Note the separation of the force into halves and subsequent reformation as the two

halves remain inside the attraction/repulsion ranges. The initial density profile is:

u(x, y, 0) =

⎧⎨
⎩ 8

√
(x− 0.15)2 + (y − 0.15)2 < 0.071

0 otherwise

Parameters were set at ra,r = 5, D = 5,C = (60, 60), Aa = 5, Ar = 0.5, τ(t = 0) =

10−9, end time t = 5× 10−3, atol = rtol = 10−3, Δx = 0.01.
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Figure 5.18: Medium Square Obstacle.
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The effect of attraction distance on the force reforming is accentuated by the

effective separation of the force in two. A sufficient range of attraction again results

in the reformation of the force.

5.5.4 Large Square Obstacle

Extending this concept further, the square obstacle is increased such that each half

of the force lies outside sensor range after passing around the obstacle located at

[0.22, 0.28]× [0.22, 0.28] ⊂ Ω.The initial density profile is:

u(x, y, 0) =

⎧⎨
⎩ 8

√
(x− 0.15)2 + (y − 0.15)2 < 0.071

0 otherwise

Parameters were set at ra,r = 5, D = 5,C = (60, 60), Aa = 5, Ar = 0.5, τ(t = 0) =

10−9, end time t = 5× 10−3, atol = rtol = 10−3, Δx = 0.01.
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Figure 5.19: Large Square Obstacle.
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As expected, the two halves do not reform after passing the obstacle and form

independent troop profiles.

The capability of a force to navigate around an obstacle highlights one of the

differences between this model and those of Protopopescu and Spradlin. Obsta-

cle avoidance was approximated by Protopopescu in [44] in a predetermined way.

Time dependency of the convection term was artificially constructed so that the

manoeuvring force effectively transits along a predefined route. In this way, various

tactics such as the turning movement, envelopment and infiltration were achieved.

Spradlin omitted the inclusion of obstacles altogether. Here we have shown a differ-

ent method of facilitating a form of autonomous navigation throughout the domain.

Although flow around obstacles is well researched and represented in fluid dynamics,

this is the first time this has been included in a continuous combat model.

Now that a functional two dimensional partial differential equations based com-

bat model as been established, we continue with comparisons to the cellular au-

tomata wargame ISAAC.
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Part II

Comparison with the Cellular

Automaton Model ISAAC

In Chapter 6 we describe the cellular automaton model ISAAC and a selection of

scenarios its author has published to demonstrate its range of capabilities and

note its ability to produce distinctive behaviours. We then show how our

simulation with slight modifications can reproduce similar behaviours. Thus we

show that a PDE model can perform the combat modelling tasks of a

state-of-the-art CA model while being easier to understand and analyse. This can

have great advantages when seemingly unexplainable or novel behaviour is seen in

CA modelling results that may otherwise be attributed to a form of intelligence.

In Chapter 7 we investigate the dynamics of our model through a series of sim-

ple scenarios and attempt to reproduce these behaviours as closely as possible in

ISAAC. These comparisons highlight some of the limitations in the design of ISAAC

and the implications this has for the range of results expected.
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Chapter 6

ISAAC

6.1 Agent-Based Wargames

There are several cellular automaton or agent-based wargaming models familiar

to the military researcher. The two most common examples of which are ISAAC

(Irreducible Semi-Autonomous Adaptive Combat) and MANA (Map-Aware Non-

uniform Automata). Rather than deriving separate continuous equivalents to these

and other military wargames through the application of coarse graining techniques,

we take the published ISAAC scenarios that demonstrate the types of behaviour

of interest to military researchers as representative of these CA wargame models,

and compare these to our equations. Through these comparisons, we are able to

determine those physically meaningful terms that generate behaviour of interest

rather than concentrating solely on parameter comparisons.

6.2 ISAAC

In this chapter we describe the ISAAC simulation, giving a overview of the basic

functioning of the model and how this relates to our equations. A selection of

appropriate (genetic algorithms absent) published ISAAC scenarios are chosen for

comparison. As some input files were missing from the ISAAC software installation

package, we determine the input variables required to produce the phenomenon

observed in the published results. All ISAAC results in the figures presented were

generated by us using the necessary parameters to produce similar results to those

published in [17, 18]. Then for each of these scenarios, parameters required for our

model to produce similar behaviour are determined. This results in an alteration
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of the velocity terms of our equations to account for the effects of meta-personality.

Comparisons between the discrete and continuous models are then made.

We highlight the difficulties associated with relying on atypical instances of the

ISAAC scenarios to drive analysis, the effects of spatial asymmetry produced by

the inherent randomness of ISAAC.

6.3 Model Description

ISAAC, Irreducible Semi-Autonomous Adaptive Combat, is a multi-agent based

simulation in the style of a cellular automaton. A cellular automaton (CA) is

essentially a lattice where information located on the nodes propagates from its

position at each time step based on a set of defined rules. Ilachinski [18] asserts

ISAAC differs from a traditional CA in that agents rather than information move

throughout the lattice and that rule sets may adapt over time. In the comparison

ISAAC scenarios, however, rule sets remain fixed throughout the simulation.

In ISAAC, each agent represents a simplified soldier. Soldiers are collectively

grouped into “Forces” and act according to a user defined rule set for that force.

That is, all agents of a Force are homogeneous with respect to their rule set def-

inition. In order to create a truly heterogeneous battlefield of agents, each agent

must be assigned to a Force consisting only of that agent. As this could result in

the creation of a large numbers of Forces and is not generally practical, two oppos-

ing Forces are usually used. Additional to the rule sets, interaction in the form of

weapons effects determines agent attrition.

Agents are defined to exist in three health states, alive, injured and killed and

can obviously only exist in one of these states. For each time step the position

for each agent is determined according to the application of the previous time step

data to the rule set. Following this positional update, attrition is calculated based

on the defined hit/kill probabilities. Attrition is applied to a specified maximum

number of enemy agents (from zero to all agents) within a specified range.

In practice, usually two forces are defined and are typically referred to as Red

and Blue with injured agents taking the same parameter values as uninjured agents.
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6.3.1 Penalty Function

Movement of ISAAC agents (ISAACAs) is determined by minimisation of a penalty

function calculated at each time step. Proximity of other ISAACAs, both friendly

and enemy, and proximity of each force’s goals are defined as the six personality

weights used to calculate the penalty at each location within the ISAACA’s move-

ment range rM . Note that the movement range and all other ranges used in ISAAC

is a square, not a circle, of radius rM .

Own force goals w5 are usually located at the starting side or corner of the

domain/battlespace of their respective force, with the opposition force goals w6

located at the opposite side. As the proximity of an agent to the opposition goal

increases, so the effect of the w6 term increases, increasing the speed at which it

approaches the goal. Usually the value of w5 is set to zero, thus the own goal has

no effect on an agent.

Figure 6.1: Ranges used in ISAAC

Personality weights:
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Parameter Description

w1 alive friendly

w2 alive enemy

w3 injured friendly

w4 injured enemy

w5 friendly flag

w6 enemy flag

Table 6.1: ISAAC Personality Weights.

The form of the penalty function is:

Z(x, y) =
w1√

2rfNfalive

∑
falive;i

d[i; (x, y)] +
w2√

2reNealive

∑
ealive;i

d[i; (x, y)] +

w3√
2rfNfinj

∑
finj ;i

d[i; (x, y)] +
w4√

2reNeinj

∑
einj ;i

d[i; (x, y)] +

w5
dnew[flagf : (x, y)]

dold[flagf : (x, y)]
+ w6

dnew[flage : (x, y)]

dold[flage : (x, y)]
. (6.1)

where wi, i = 1, 6 are personality weights as mentioned. The scaling factors
√

2rf

and
√

2re, number of ISAACAs Ni within sensor range and distances d[i; (x, y)] of

those Ni ISAACAs form a discrete convolution. dnew and dold are the distances to

the flags in question from each potential new position and from the original position

respectively.

At each time step this penalty is calculated for all potential moves an agent may

make, including the penalty for remaining in the original position. The position with

the lowest valued penalty function is selected. When multiple new positions of equal

minimum penalty occur, the new position is chosen randomly from this set.

Interestingly, Ilachinski refers to these six personality weights as constituting a

local rule set, yet the influence of these weights, especially w5 and w6, can span the

entire domain.
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An example calculation:

Figure 6.2: Example ISAAC scenario calculation

Z(x′, y′) =
w1

sred

(
1

3
) [Da + Db + Dc] +

w2

sblue

(
1

2
) [DA + DB] + w5

Dgoalred

D0
goalred

+ w6
Dgoalblue

D0
goalblue

where Dgoalred
and D0

goalred
are the distances from (x, y) and (x′, y′) to the red

goal, respectively, and Dgoalblue
and D0

goalblue
are the distances from (x, y) and (x′, y′)

to the blue goal, respectively.

6.3.2 Meta-Personality

In addition to this penalty function, there are six additional rules that may be

implemented:

• Advance Constraint

• Cluster Constraint

• Combat Constraint

• Minimum distance to friendly ISAACAs

• Minimum distance to enemy ISAACAs

• Minimum distance to own flag.
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They are collectively termed a ’meta-personality’ and modify the calculation of the

penalty function. These are effectively variations on some of the personality weights

of (6.1) using user defined threshold and constraint ranges.

These meta-personalities will mean our PDEs as given in (2.6) and (2.7) will

require modification in order to take these behaviours into account if we wish to

make a direct comparison between our model and ISAAC. As these traits are not

diffusion or reaction based, our fvel term will be the section modified.

6.3.2.1 Advance Constraint

This constraint consists of specifying a threshold number of friendly ISAACAs that

must be within a given ISAACA’s constraint range rC in order for that ISAACA to

continue advancing toward the enemy flag. If the number of friendly forces within

the range exceed this threshold, the default weight +w6 is used in Equation 6.1. If

this is not the case, −w6 is used so that the overall desire switches to a movement

away from the enemy goal. Thus sufficient troop density is required in order for

advancement.

6.3.2.2 Cluster Constraint

In order for the Advance constraint to be effective, a desire to be attracted toward

friendly ISAACAs to form clusters is required. Again, the threshold number of

ISAACAs required to be present within the constraint range rC is defined by the

user. If this threshold is not met, the ISAACA will move in the direction of the

highest density of friendly forces calculated within the sensor range. Once this

threshold is reached, an ISAACA will no longer move toward friendly ISAACAs,

effectively setting the parameters w1 = w3 = 0.

Note that this constraint combined with w1 and w3, mimics the attraction/repulsion

kernels in our continuous equations. If the cluster constraint is not activated by the

user, an artificial default lattice repulsion is present. Due to the density limitations

of the lattice, only one agent of any type may occupy a lattice site at any time step,

so that troop density cannot contract to a higher density than one troop per cell as

demonstrated in Figure 6.3a.
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(a) ”Default” Clustering (b) Use of Cluster Constraint

Figure 6.3: Differences in clustering of forces with and without use of Cluster Con-
straint.

In order to maintain an average inner density of less than one troop per cell, the

cluster constraint must be used in conjunction with w1 and w3 (Figure 6.3b).

6.3.2.3 Combat Constraint

The Combat and Advance constraints are conceptually very similar in that a mini-

mum number of ISAACAs within a given range are required to activate a particular

behaviour. This constraint is concerned with defining minimum conditions for en-

gaging in combat with enemy ISAACAs. Two ranges (rC) and (rS) are used to deter-

mine the number of friendly Nfriendly and enemy Nenemy ISAACAs respectively. For

advancement in the direction of greatest enemy concentration within the range (rS),

the threshold troop difference Δc = Nfriendly(rC)−Nenemy(rS) must be exceeded. If

this threshold is not exceeded, movement is determined using w2 = −w2,default and

w4 = −w4,default, where w2,default and w4,default are the default weights for moving

toward alive and injured enemy ISAACAs. That is, when a numerical advantage is

reached, the agents will advance along the gradient of highest enemy concentration,

otherwise a numerical advantage has not been reached and the agents will retreat

down the gradient of highest enemy concentration.
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Setting the combat threshold to a large positive number gives a very defensive

force, whereas for a large negative value a force will pursue the enemy despite the

numerical disadvantage.

6.3.2.4 Other Meta-Personality and Agent Constraints

Genetic algorithms, local command and other constraints may be incorporated into

ISAAC however they are not discussed in this research. Published example scenarios

used as comparisons in this thesis either do not utilise these constraints or are

unaffected upon their removal.

6.4 Comparisons with ISAAC Scenarios

Of those ISAAC scenarios published in [18] we investigate five which are noted by

Ilachinski as demonstrating

self-organized emergent behaviors [sic].

The scenarios utilise only the three meta-personality types as detailed above, and

those agent parameters as described in the penalty function. This allows us, with

slight modification to our equations, to compare our continuous model to a well

accepted cellular automata based wargame.

Descriptions are based on our ISAAC run results which are similar to the pub-

lished screen shots as given in [18]. Where the behaviour observed in running

scenarios differs markedly from the published and assumed representative results,

further descriptions are given of what is seen to be the actual representative be-

haviour.

Distributions of forces with initial densities ID located at c will be of the form:

wi(x, y, 0) =

⎧⎪⎨
⎪⎩

ID (
√

ρ

ρ
√

2π
∗ e

−|c−μ|

2ρ2 ) > Initial Threshold (IT)

0 otherwise
i = u, v (6.2)

6.4.1 Difficulties with Representative Scenarios

During the prosecution of this research, one major shortcoming of using an agent

based model of this nature was highlighted - stochasticity. Those results shown
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in the figures contained within the scenario descriptions of [18] are not necessarily

indicative of any expected behaviour. Although there is some facility for the col-

lection of basic statistics such as average cluster size, spatial entropy or Red/Blue

interpoint distance, there has been no undertaking to establish whether the given

realisations are true representatives of their scenario parameters, despite being pre-

sented by Ilachinski as the expected or mean behaviour. Graham and Moyeed [11]

note that Lagrangian models are akin to experiments rather than any theoretical

undertaking and provide a framework for establishing reliability of such results.

We do not pursue the application of such a framework here. Rather we take the

ISAAC results presented at face value while noting the frequency of realisations

that match the stated behaviour, and through our continuous approach provide a

type of verification in a similar vein to [10]. Had the software not been available for

use in order to recreate these scenarios, the noted discrepancies between the pub-

lished and seemingly representative results to the variations observed and described

in this thesis would not have been found. We believe the establishment of mean

behaviour of agent based models such as ISAAC and MANA should rest with their

developers.

6.4.2 Classic Fronts Scenario

6.4.2.1 Description

We begin with the input file included with the Einstein Test Release Version 1.0.0.4

Beta, Build Date 2000, for the “einstein classic fronts” scenario which Ilachinski

likens to a clash between two viscous fluids. The two loosely grouped forces collide

and align in relatively stable long thin fronts. Attrition between these fronts and

the inherent randomness of the movement updates causes a discrepancy in density

at either the upper or lower point of the formations. Once this occurs, the forces

are able to slowly filter around each other and proceed to their respective goals.

6.4.2.2 ISAAC Parameters and Results

We now investigate the minimum number of parameters and their values required to

display the original behaviour. Firstly, the parameters for alive and injured friendly
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and enemy ISAACAs are made equal such that there is no distinction in behaviour

of an alive or injured ISAACA. Personality weights towards friendly forces (and

thus clustering effects) were set to zero and found not to affect the overall “front

forming” behaviour. Switching the Advance parameter off also had no effect. The

final parameter values used are in Table 6.2.

Parameters used:

Parameter Red Blue Parameter Red Blue

Squad Size 225 225 Combat 3 3

w1 0 0 Battlefield length 100

w2 50 50 Battlefield width 100

w3 0 0 Initial Dist Centre x 15 85

w4 50 50 Initial Dist Centre y 50 50

w5 0 0 Size x 25 25

w6 5 5 Size y 25 25

rS 5 5 Flag x 1 99

rF 3 3 Flag y 50 50

rT 2 2 Terrain no

wM 1 1 Move sampling order random

Prob Hit 0.002 0.002 Fratricide no no

Max Sim tgts 5 5 Reconstitution no no

Defence Measure 1 1 Terrain no

Cluster NA NA

Table 6.2: ISAAC Parameters for Classic Fronts Scenario. All other parameters are
set to zero or no.
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Figure 6.4: These snapshots were generated using the provided input file and
demonstrates equivalent behaviour to those in [18]

6.4.2.3 PDE Modification

Our original equations are modified to reflect the addition of the combat meta-

personality. This is effectively a modification of the velocity term (2.1) as we wish

for only the direction of movement to be affected by the presence of the opposite

force. Diffusion, inter-force attraction and repulsion are to remain unaffected.

fadv = ∇ · {u(Cuu + Aa(Ka ∗ u)− Aru(Kr ∗ u))} (6.3)

We propose the following form of the velocity term, taking force u as an example:
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C =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C if (
∫ x+rS

x−rS

∫ y+rS

y−rS
u dxdy − ∫ x+rS

x−rS

∫ y+rS

y−rS
v dxdy) > Δc

−C if (
∫ x+rS

x−rS

∫ y+rS

y−rS
u dxdy − ∫ x+rS

x−rS

∫ y+rS

y−rS
v dxdy) ≤ Δc

(6.4)

where (
∫ x+rS

x−rS

∫ y+rS

y−rS
udxdy) is the number of friendly forces and (

∫ x+rS

x−rS

∫ y+rS

y−rS
vdxdy)

the number of enemy forces within the sensor range rS. C is a constant and repre-

sents the overall movement toward the u or friendly flag. If a numerical advantage

greater than Δc is reached, the force will proceed with a constant velocity toward

its own flag. Should this numerical advantage not be attained, the velocity of the

force is reversed such that it will retreat away from its flag.

6.4.2.4 PDE Results

Parameters were set at IDu,v = 8, ρu,v = 0.05, μu = (0.15, 0.15), μv = (0.35, 0.35),

ITu,v = 0.5, ra,ru,v
= 5, Du,v = 5, Cu = (20, 20), Cv = (−20,−20), Aau,v

= 5,

Aru,v
= 0.5, rSu,v

= 3, Δcu,v = 100, attacku,v = −1, du,v = 2×10−6, βu,v = 8×10−8,

νu,v = 0.2, τ(t = 0) = 10−7, end time t = 10−2, atol = rtol = 10−3, Δx = 0.01.
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(a) Contours of Profiles in 2D

(b) Graphs of profiles 3D

Figure 6.5: Our Model: Classic Fronts comparison.
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ISAAC has two areas of inbuilt randomness or stochasticity; (i) new position

selection when there are multiple positions with equal penalty function values and

(ii) the calculation of casualties/fatalities and updated after each positional update.

This randomness results in slight differences in the spatial distribution of the two

forces whereas the non-random continuous version produces equal distributions as

expected. The ISAAC results in Figure 6.4 shows the forces “slipping” around each

other due to these slight variations in distributions and then proceeding to their

respective goals. Figure 6.5 shows that our continuous version also forms long thin

fronts however these remain stationary throughout the duration of the simulation.

Due to the steady reduction in both forces due to aimed fire, their densities gradually

decline however the position of the fronts remain stationary. This tactic represents

a classic style of attrition warfare. If the simulation is allowed to progress, both

forces will eventually decline to zero. There is no randomness present to generate

the slight differences or asymmetry in spatial distribution that leads to the forces

manoeuvring around each other as in Figure 6.4.

Introducing spatial asymmetry through the initial density profile positions forms

a type of controlled stochasticity approximation, providing a mechanism to further

explore the observed ISAAC dynamics. In this case, it allows us to confirm our

conjecture that asymmetry facilitates the “slippage”. By effectively removing the

inherent stochasticity of ISAAC, we can determine the mean behaviour of a scenario

and more easily understand the effects of parameter changes.

In order to introduce an asymmetry to the continuous model so as to mimic the

asymmetry seen in the ISAAC results, the initial positions of each force distribution

is changed such that the velocity vectors are offset. That is, the forces will no longer

collide “head on”.

Parameters were set at IDu,v = 8, ρu,v = 0.05, μu = (0.19, 0.15), μv = (0.31, 0.35),

ITu,v = 0.5, ra,ru,v
= 5, Du,v = 5, Cu = (20, 20), Cv = (−20,−20), Aau,v

= 5,

Aru,v
= 0.5, rSu,v

= 3, Δcu,v = 100, attacku,v = −1, du,v = 2 × 10−6, βu,v =
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8 × 10−8, νu,v = 0.2, τ(t = 0) = 10−7, end time t = 2 × 10−2, atol = rtol = 10−3,

Δx = 0.01.
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Figure 6.6: Our Model: Classic Fronts comparison with forces initially offset.
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Figure 6.7: Losses for Figure 6.6

Again the formation of fronts is present however they form at a slight angle

rather than vertically due to the initial offset in position. A slight oscillation in

the movement of each force is visible in Figure 6.6 as they slowly rotate around

each other. This is more noticeable in the movie of this scenario. Once the forces

pass, circular profiles with the respective desired minimum densities are reformed.

Comparing Figure 6.4 to Figure 6.6, the tight troop formation of the ISAAC agents

seen prior to the forces making contact in Figure 6.4 is not seen after the con-

frontation. In the ISAAC results, troops stream to their respective flag in single file

rather than proceeding in formation due to the effect of increasing flag proximity

(w6) on the penalty function. However, maintaining a coherent profile throughout

the entire simulation, especially when a force is not in contact with another, is a

highly desirable feature as a long thin profile may have an increased vulnerability

to attack.

6.4.3 Precess Scenario

6.4.3.1 Description

This scenario is described by Ilachinski as showing a simple example of an emergent

behaviour. Red and blue forces are quite different in personality, with red preferring

to remain in close proximity while blue actively seeks the red force within sensor

range. Initially the rapidly advancing blue force is loosely formed and the slower

red force advances in a higher density and thus smaller formation. As the forces
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enter into each other’s sensor range, the blue force partially surrounds the red and

a slow precession begins. The red force slowly continues advancing toward its flag,

constantly pursued by the blue force as shown in Figure 6.10. This precession be-

haviour, or rotation of both forces around an axis, as shown in the published ISAAC

results and Figure 6.10 occurs in only a small percentage of the test runs. When

precession was observed, both clockwise and anti-clockwise precession occurred with

the forces often colliding with the domain boundaries. Offsetting the position of the

blue flag slightly to the left or right did result in a higher frequency of precession

observed, with precession directionality depended upon the flag offset.

Without the flag offset the usual behaviour is as follows using the initial con-

ditions as given in Table 6.3. As the forces come into sensor range, the blue force

surrounds the red until the majority of the blue force is located on the south western

side of the red force. As the personality weights for engaging in combat is stronger

than for continuing to the blue flag, the blue force actively pursues the tightly clus-

tered red force as it moves toward its red flag goal. Both forces remain in coherent

formations throughout the duration of the scenario as seen in Figure 6.8.

We propose that, similar to the Classic Fronts scenario, this precession behaviour

arises due to the spatial asymmetry of the forces. Depending on the spatial dis-

tribution on falling into sensor range, the precession will be either clockwise or

anticlockwise, and offsetting the initial positions exacerbates this asymmetry thus

increasing the frequency of precession occurring.

6.4.3.2 ISAAC Parameters and Results

Unlike the Classic Fronts scenario, no input file was provided by the developer

of ISAAC with the software installation, only a series of snapshots with a par-

tially complete list of parameter values. Those unspecified values were determined

through a trial and error procedure until the behaviour shown in [18] could be re-

produced. In a similar manner as for the Classic Fronts scenario, we set the Advance

and Minimum Distance parameters to zero and find that precession behaviour is
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still produced although more infrequently, suggesting that these parameters are

unnecessary for this behaviour to occur.

Parameters used:

Parameter Red Blue Parameter Red Blue

Squad Size 90 90 Cluster 10 3

w1 25 10 Combat 4 -5

w2 10 35 Battlefield length 100

w3 75 10 Battlefield width 100

w4 25 80 Initial Dist Centre x 10 90

w5 0 0 Initial Dist Centre y 10 90

w6 50 50 Size x 20 20

rS 5 5 Size y 20 20

rF 3 3 Flag x 1 90

rT 2 3 Flag y 1 99

wM 1 1 Terrain no

Prob Hit 0.002 0.002 Move sampling order random random

Max Sim tgts All All Fratricide no no

Defence Measure 1 1 Reconstitution no no

Advance 0 0 Terrain no

Table 6.3: ISAAC Parameters for the Precess scenario. Partially supplied in the
literature with the remaining values determined by the author. All other parameters
are set to zero or no.
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Figure 6.8: ISAAC Precess Scenario Screenshots

Figure 6.8 shows the usual results found when running the input file as detailed

in Table 6.3. Note the absence of precession. As indicated above, precession in both

directions can be observed with the direction determined by the spatial asymmetry

generated in that particular instance.
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Figure 6.9: Losses for Figure 6.8.

Figure 6.10: ISAAC Precess Scenario Screenshots with Artificial Offset.

By introducing an artificial offset, precession is almost always observed (Fig-

ure 6.10) and is dictated by the direction of the given offset.

6.4.3.3 PDE Modifications

We now seek to modify the velocity term in a similar way as with the Classic

Fronts scenario. Our modification to the velocity term described in (6.4) does not

adequately take into account the differences in offensive/defensive personalities as
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described in the ISAAC literature and must be expanded in order to include this.

Firstly, we define the number of friendly (Nu) and enemy forces (Nv) within the

Sensor range used to determine the Combat constraint by:

Nv =

∫ x+rS

x−rS

∫ y+rS

y−rS

v dxdy; Nu =

∫ x+rS

x−rS

∫ y+rS

y−rS

u dxdy; (6.5)

In order to allow for the two different types of attacking personalities, a switch

attack in the form of an integer of value 1 or −1 is included. This allows for

a distinction between two force types - an aggressive and a defensive force. An

aggressive force will move toward the enemy regardless of superiority in numbers,

while a defensive force will advance only with superior numbers and will otherwise

retreat. We now alter the velocity term again and arrive at the following form:

C =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C +
∫ x+rS

x−rS

∫ y+rS

y−rS
v dxdy Nu −Nv ≥ Δc

C + attack × ∫ x+rS

x−rS

∫ y+rS

y−rS
v dxdy Nu −Nv < Δc

(6.6)

With a numerical superiority above the given Δc, the force has an additional

attraction up the gradient of greatest concentration of the opposing force. If this

superiority level is not reached, this attraction is reversed, becoming a repulsion

down the gradient of greatest concentration. This effectively mimics the Combat

constraint of ISAAC as described in Section 6.3.2.3.

6.4.3.4 PDE Results

Figure 6.11 shows the first comparison at the ISAAC precession results and is

markedly similar to Figure 6.8. Upon falling into the Sensor range of the smaller

footprint higher density force (Force 1, coloured red), the larger footprint lower

density force (Force 2, blue) rapidly moves to surround it as attack = 1 for Force 2.

As with the ISAAC scenario, this aggressive force pursues Force 1 for the remainder

of the simulation with the majority of the force located on the south western side

of Force 1 and a small portion of Force 2 located on the north eastern side of Force

1.
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Parameters were set at IDu = 8, IDv = 12, ρu,v = 0.05, μu = (0.15, 0.15),

μv = (0.35, 0.35), ITu,v = 1, ra,ru,v
= 5, Du,v = 5, Cu = (20, 20), Cv = (−20,−20),

Aau,v
= 5, Aru

= 0.5, Arv
= 1, rSu

= 3, rSv
= 7, Δcu = 106, Δcv = 4, attacku,v =

−1, du,v = 2 × 10−6, βu,v = 8 × 10−8, νu,v = 0.2, τ(t = 0) = 10−7, end time

t = 4× 10−3, atol = rtol = 10−3, Δx = 0.01.
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Figure 6.11: Precess approximation.
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Figure 6.12: Losses for Figure 6.11.

Note that no precession behaviour is seen which corresponds to the majority

of ISAAC Precess scenario simulation results. We now offset the initial positions

of the forces as we did with the ISAAC scenario such that they pass to the left or

right of each other to ascertain whether both clockwise and anticlockwise precession

behaviour will be achieved in our continuous model.

We begin by attempting to induce anticlockwise precession. Parameters were

set at IDu = 8, IDv = 12, ρu,v = 0.05, μu = (0.15, 0.18), μv = (0.35, 0.32), ITu,v =

1, ra,ru,v
= 5, Du,v = 5, Cu = (60, 60), Cv = (−60,−60), Aau,v

= 5, Aru
=

0.5, Arv
= 1, rSu

= 3, rSv
= 7, Δcu = 106, Δcv = 4, attacku,v = −1, du,v = 2 ×

10−6, βu,v = 8× 10−8, νu,v = 0.2, τ(t = 0) = 10−7, end time t = 3.5× 10−3, atol =

rtol = 10−3, Δx = 0.01.
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Figure 6.13: Precess comparison with initial positions offset. Anticlockwise preces-
sion.
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As expected, precession occurs due to the spatial asymmetry introduced into

the scenario through the offset of the initial spatial distributions. The behaviour is

markedly similar to that seen in Figure 6.10. Upon falling into sensor range, Force

1 is partially surrounded by Force 2 and an anti-clockwise precession occurs. Force

1 is then closely pursued by the majority of Force 2 following and a small portion

directly in the path of Force 1. We now confirm our expectation that clockwise

precession will occur with the initial positions offset in reverse.

Parameters were set at IDu = 8, IDv = 12, ρu,v = 0.05, μu = (0.18, 0.15),

μv = (0.32, 0.35), ITu,v = 1, ra,ru,v
= 5, Du,v = 5, Cu = (60, 60), Cv = (−60,−60),

Aau,v
= 5, Aru

= 0.5, Arv
= 1, rSu

= 3, rSv
= 7, Δcu = 106, Δcv = 4, attacku,v =

−1, du,v = 2 × 10−6, βu,v = 8 × 10−8, νu,v = 0.2, τ(t = 0) = 10−7, end time

t = 3.5× 10−3, atol = rtol = 10−3, Δx = 0.01.
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Figure 6.14: Clockwise Precess Approximation, initial positions offset.
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(a) Anticlockwise
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(b) Clockwise

Figure 6.15: Losses for Figure 6.13 and Figure 6.14 respectively.

We propose that, similar to the Classic Fronts scenario, the precession behaviour

seen in the ISAAC results (Figure 6.10) arises due to the spatial asymmetry of the

forces. Depending on the spatial distribution on falling into sensor range, the pre-

cession will be either clockwise or anticlockwise, and offsetting the initial positions

of the forces exacerbates this asymmetry thus increasing the frequency of preces-

sion occurring. An artificial initial spatial asymmetry in the continuous version is

necessary before precession is observed.

As a result of the modification of the advection term through the addition of

the attack variable we see minimal overlap between the forces in keeping with

the ISAAC behaviour. However the positive value of attack for the Blue force is

sufficient to give rise to pursuing of the Red force, yet the threshold value prevents

any significant overlap. It is the effect of the repulsion down the gradient of highest

concentration of enemy density which prevents any significant overlap.

6.4.4 Mismatch Scenario

6.4.4.1 Description

This scenario shows strikingly similar behaviour to both the Precess and Circle sce-

narios. The larger distribution less dense Red force has the restriction of requiring

a minimum numerical advantage in order to advance upon the sensed opposition

Blue force, resulting in the Blue force maintaining a separation (avoiding overlap)

as this superiority is only achieved at the periphery. As the Red force does not have
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this restriction, it continues to advance toward the Blue flag, engaging the opposi-

tion during this advancement. It is the combination of the smaller footprint Red

advancement and the separation distance which results in the seemingly “intelligent

tactics” of the Blue force exploiting a superior sensor and fire range.

6.4.4.2 ISAAC Parameters and Results

Unlike the Classic Fronts scenario, the input file was not included with the software

installation. However, similar to the Precession scenario, the majority of the input

parameters were stated in the literature with the remainder determined through

trial and error. Numerous test runs using the given parameters showed a less dense

blue force advancing more rapidly than the higher density red force. Setting the

Advance parameter to zero still produced the same behaviour, whereas its inclusion

was seen as integral by Ilachinski.

Parameters used for Figure 6.16:
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Parameter Red Blue Parameter Red Blue

Squad Size 90 90 Combat 0 5

w1 25 10 Battlefield length 100

w2 25 40 Battlefield width 100

w3 25 10 Initial Dist Centre x 10 90

w4 25 40 Initial Dist Centre y 10 90

w5 0 0 Size x 20 20

w6 75 50 Size y 20 20

rS 2 7 Flag x 1 99

rF 1 5 Flag y 1 99

rT 1 4 Terrain no

rM 1 1 Move sampling order random

Prob Hit 0.002 0.002 Fratricide no no

Max Sim tgts 999 999 Reconstitution no no

Defence Measure 1 1 Terrain no

Cluster 0 10

Table 6.4: ISAAC Mismatch Scenario Parameters. All other parameters are set to
zero or no.

While Figure 6.16 in not an exact replica of the published screen shots, the

equivalent behaviour is demonstrated.
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Figure 6.16: ISAAC Mismatch Scenario Screenshots

Figure 6.17: Losses for Figure 6.16

6.4.4.3 PDE Results

Using similar parameter values to the Precess scenarios and using the same form

of the advection term (6.6), the following results are obtained. The only difference

between the two scenarios is Aimed Fire values.

Parameters were set at IDu,v = 10, ρu,v = 0.05, μu = (0.15, 0.15), μv =

(0.35, 0.35), ITu,v = 0.5, ra,ru,v
= 5, Du,v = 5, Cu = (40, 40), Cv = (−60,−60),

Aau,v
= 5, Aru

= 0.5, Arv
= 1, rSu

= 0, rSv
= 3, Δcu = 0, Δcv = 2000, attacku = 0,

attackv = −1, du = 10−5, dv = 10−5, τ(t = 0) = 10−7, end time t = 5 × 10−3,

atol = rtol = 10−3, Δx = 0.01.
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Figure 6.18: Mismatch approximation with Aimed Fire Only.
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Figure 6.19: Losses for Figure 6.18.

Similarly to the ISAAC results shown in Figure 6.16, the denser Red Force is

surrounded by the more aggressive Blue Force. While the repulsion due to force

inferiority maintains a degree of separation between the two forces, some overlap is

present at the edges. Once the Red Force is surrounded, overall movement slows

to almost a halt. Density is gradually lost due to attrition and there is a slight

imbalance in the Blue Force’s distribution around the Red Force. The slow advance

of Red and imbalance in the Blue Force distribution results in an eventual breakaway

of Red. Blue is divided into roughly two separate groups, one on each side of the

Red Force similar to the ISAAC scenario.

6.4.5 Circle Scenario

6.4.5.1 Description

This scenario shows strikingly similar behaviour to the Precess scenario. Both forces

form dense formations with Blue slightly denser due to the higher cluster variable.

The more aggressive Red force envelops the Blue force entirely upon coming into

sensor range and it is at this point, time = 140, that the published snapshots stop.

This can give the impression that this formation remains static or stable after this

time. When running the simulation past this time step, the similarity with the

Precess scenario from time = 120 onwards becomes apparent. Blue forces continue

to move towards the Blue flag and Red forces begin to concentrate on the opposite

side (Figure 6.20, time = 200). For the remainder of the simulation, Red forces
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pursue the Blue force toward the Blue flag. In this particular time series, a smaller

section of the Blue force is separated and pursued by the Red force (time = 220)

in the same manner as the larger section.

6.4.5.2 ISAAC Parameters and Results

Unlike the Classic Fronts scenario and similar to the Precession scenario, no input

file was provided with the software installation, only a series of snapshots with a

partial list of parameters and corresponding values. Initial distribution position

and size values were not provided. Numerous test runs using the given parameters

showed a less dense blue force advancing more rapidly than the higher density red

force. Setting the Advance and Minimum Distance parameters to zero still produced

the same behaviour.

Parameters used for Figure 6.20:
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Parameter Red Blue Parameter Red Blue

Squad Size 200 200 Combat -7 5

w1 10 25 Battlefield length 100

w2 50 25 Battlefield width 100

w3 0 75 Initial Dist Centre x 10 90

w4 100 25 Initial Dist Centre y 10 90

w5 0 0 Size x 20 20

w6 25 75 Size y 20 20

rS 5 5 Flag x 1 99

rF 3 3 Flag y 1 99

rT 3 3 Terrain no

rM 1 1 Move sampling order random

Prob Hit 0.001 0.001 Fratricide no no

Max Sim tgts 999 999 Reconstitution no no

Defence Measure 1 1 Terrain no

Cluster 3 15

Table 6.5: ISAAC Circle Scenario Parameters. All other parameters are set to zero
or no.
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Figure 6.20: ISAAC Circle Scenario Screenshots

Figure 6.21: Losses for Figure 6.20.
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6.4.5.3 PDE Results

Using similar parameter values to the Precess scenarios and using the same form

of the advection term (6.6), the following results are obtained. The only difference

between the two scenarios is Aimed Fire values.

Parameters were set at IDu = 8, IDv = 12, ρu,v = 0.05, μu = (0.15, 0.15),

μv = (0.35, 0.35), ITu,v = 1, ra,ru,v
= 5, Du,v = 5, Cu = (20, 20), Cv = (−20,−20),

Aau,v
= 5, Aru

= 0.5, Arv
= 1, rSu

= 3, rSv
= 4, Δcu,v = 18, attacku,v = −1,

du,v = 2 × 10−6, τ(t = 0) = 10−7, end time t = 8 × 10−3, atol = rtol = 10−3,

Δx = 0.01. For Figure 6.23 du = 10−4, dv = 10−4.
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Figure 6.22: Circle approximation with Aimed Fire Only.
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Figure 6.23: Circle approximation with with differing values of Aimed Fire to Fig-
ure 6.22.
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Figure 6.24: Losses for Figure 6.22 and Figure 6.23 respectively

Similarly to the ISAAC results shown in Figure 6.20, in Figure 6.22 the denser

Force 1 is surrounded by the more aggressive Force 2. While the repulsion due

to force inferiority maintains a degree of separation between the two forces, some

overlap is present at the edges. Once Force 1 is surrounded, overall movement

slows to almost a halt. Density is gradually lost due to attrition and there is a

slight imbalance in Force 2’s distribution around Force 1. The slow advance of

Force 1 and imbalance in Force 2 results in an eventual breakaway of Force 1. The

higher attrition rate used in Figure 6.23 shows that this almost stationary phase

has a much shorter duration as attrition speeds the generation of an imbalance in

the surrounding force’s density.

Note the nonlinear form of density loss shown in Figure 6.24. Lauren states that

casualty rates are uneven on a turbulent nonlinear battlefield. This is held as an

important distinction between complex adaptive and convectional combat models.

Here we have shown that a conventional model is indeed capable of producing

intermittent density losses.

6.4.6 Sensor Scenario

6.4.6.1 Description

This set of scenarios shows the effect of increasing sensor range while keeping all

other parameters fixed. An almost complete lack of specified parameters made recre-

ating the published snapshots extremely difficult and the stated SENSOR X.out
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files were not included in any versions of the ISAAC/EINSTein installations. Only

force sizes, sensor ranges, fire range, single-shot probabilities and Combat thresholds

were specified.

Specifically, this suite of four scenarios varies only in the sensor range of the

doubly larger Red force. As this value increases to equal that of the Blue force

and then surpasses that value, a noticeable change in the interaction dynamics is

observed. At sensor ranges equal to or lower than the Blue force, Red penetrates

the Blue force which then disperses and forms small clusters at the periphery of

the Red force where engagement occurs. Throughout these scenarios, the Red force

advances at a relatively constant velocity to the Blue goal as seen in Red Sensor=3

and Red Sensor=5 in Figure 6.25. As the Red sensor range is increased beyond

parity, Red fails to penetrate Blue and the inner/outer force roles are reversed.

This encircling behaviour is similar to the Precess and Circle scenarios where the

Combat threshold produces a repulsive velocity down the gradient of greatest enemy

density within sensor range. As the Blue force maintains a large central formation

of troops, this repulsion results in the Red force partially surrounding the Blue

force. As the sensor range increases, this effect becomes more pronounced and the

Red force is not as effective at reaching the Blue goal due to these combat effects

dominating the goal term in the penalty function.

This scenario is used by Ilachinski to demonstrate that an increase in sensor

range does not produce a monotonic increase in overall effectiveness. Effectiveness

here is described by two features; (i) the Red force’s effectiveness at establishing a

presence near the Blue flag, and (ii) defending the Blue advancement to the Red

flag.

6.4.6.2 ISAAC Parameters and Results

Parameters used for Figure 6.25:
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Parameter Red Blue Parameter Red Blue

Squad Size 100 50 Advance 20

w1 10 10 Combat -4 0

w2 40 30 Battlefield length 80

w3 10 10 Battlefield width 80

w4 40 30 Initial Dist Centre x 20 60

w5 0 0 Initial Dist Centre y 40 40

w6 30 30 Size x 20 20

rS 7 5 Size y 10 10

rF 4 4 Flag x 1 80

rT 3 3 Flag y 40 40

rM 1 1 Terrain no

Prob Hit 0.005 0.005 Move sampling order random

Max Sim tgts 3 3 Fratricide no no

Defence Measure 1 1 Reconstitution no no

Cluster 10 15 Terrain no

Table 6.6: ISAAC Sensor Scenario Parameters. All other parameters are set to zero
or no.

As mentioned, due to the few parameters specified, the method of trial-and-

error was used to determine the remaining values. The screenshots presented in

Figure 6.25 display the same main features as published.
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Figure 6.25: ISAAC Circle Scenario Screenshots
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6.4.6.3 PDE Results

Parameters were set at IDu,v = 10, ρu,v = 0.05, μu = (0.15, 0.15), μv = (0.35, 0.35),

ITu,v = 0.5, ra,ru,v
= 5, Du,v = 5, Cu = (20, 0), Cv = (−20, 0), Aau,v

= 5, Aru,v
=

0.5, rSu,v
= 3, Δcu,v = 100, attacku,v = −1, du = 10−5, dv = 10−5, τ(t = 0) = 10−7,

end time t = 5× 10−3, atol = rtol = 10−3, Δx = 0.01.
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Figure 6.26: Sensor approximation with Aimed Fire Only, Sensor range = 1.
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Figure 6.27: Sensor approximation with Aimed Fire Only, Sensor range = 3.
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Figure 6.28: Sensor approximation with Aimed Fire Only, Sensor range = 5.
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Figure 6.29: Sensor approximation with Aimed Fire Only, Sensor range = 7.

Our series of four scenarios in Figures 6.26, 6.27, 6.28 and 6.29 demonstrates

how an increasing sensor range rc increases the effect of the convolution term in

6.6. That is, an increasing convolution term results in a stronger repulsion down

the gradient of greatest enemy density if the threshold density Δc is not exceeded.

This is clearly demonstrated in both discrete and continuous results.

6.5 Discussion

As the comparisons between the ISAAC and our continuous scenarios indicate,

there lies an inherent danger in relying on one realisation of a discrete scenario to

drive analysis or to be held as a valid representation of the output with the given

input parameters. The Precess scenario is a prime example of this as the majority

of simulations displayed behaviour more similar to the Circle scenario. Precession

behaviour was absent in the majority of ISAAC simulations run. Implementing a

method of ascertaining the reliability of ISAAC results by providing some form of
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confidence limit as discussed in [11] is recommended for those interested in using

ISAAC as a research tool.

However, we must note that the spatial asymmetry produced through ISAAC’s

inherent randomness can result in behaviour not seen in our continuous counterpart

on first try. By artificially inducing asymmetry through careful positioning of the

initial distributions of the continuous force density profiles, these behaviours were

replicated. In this way, our PDEs act to establish the mean behaviour and we retain

control over how this approximation of stochasticity is introduced.

Tactics such as forward advance, frontal attack, local clustering, penetration, re-

treat, containment, flanking manoeuvres, defensive posturing and encirclement, de-

fined as self-organised emergent behaviours and part of the rich spectrum of ISAACA

behaviours are all demonstrated in our continuous model. We have shown that a

Lanchester-type interaction model extended to include aggregation spatial dynam-

ics also displays this rich spectrum.

The aim of this thesis was not to develop a continuous model directly from

the discrete ISAAC model, rather to extend the work by Protopopescu et al. and

to introduce the essential nonlocal features of attraction to “like” members and

some form of response to “unlike” members as is common in CA wargames. As

the terms in the ISAAC penalty function are essentially discrete convolution terms,

the swarming integro-differential equation with nonlocal interaction as developed by

Mogilner and Edelstein-Keshet was an excellent position to start from as this model

neatly displayed the desired characteristics of soldier movement with physically

meaningful terms. The flexibility in using Mogilner and Edelstein-Keshet’s work

as a starting point has enabled three important things; the formation of soldier

profiles with constant interior density and steep edges with the ability to navigate

the battlespace while maintaining this formation; the reproduction of ISAAC-type

behaviour through the addition of other interaction terms; and more importantly,

the easy introduction and exploration of new tactics such as the Density Response

tactic which will be shown in Chapter 8.
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Chapter 7

ISAAC Comparison to PDEs

The comparisons made in the previous chapter highlight the dependency of the

evolution of the discrete ISAAC equations on the parameters as given in [18]. We

now investigate the dynamics of two equal forces for a range of simple scenarios

using our PDE model. Initial position and attack variable are varied with all

other parameters held constant and we seek to reproduce these results in ISAAC as

closely as possible. This is the opposite of the previous chapter where continuous

counterparts were derived to match given ISAAC scenarios.

We use the form of our equations as developed in Chapter 6 that utilises the

attack variable:

∂u

∂t
= ∇·(Du(u)∇u)+∇·{u(Cuu+Aa(Ka∗u)−Aru(Kr∗u))}+u (ku ∗ v)+duv (7.1)

∂v

∂t
= ∇·(Dv(v)∇v)+∇·{v(Cvv+Aa(Ka∗v)−Arv(Kr∗v))}+v (kv ∗ u)+dvu (7.2)

where for Force u

C =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C +
∫ x+rC

x−rC

∫ y+rC

y−rC
v dxdy Nu −Nv ≥ Δc

C + attack × ∫ x+rC

x−rC

∫ y+rC

y−rC
v dxdy Nu −Nv < Δc

(7.3)

and similary for Force v.

Firstly the effect of varying the simplest parameter, attack, on the dynamics

is investigated. Following the observations from the previous chapter of the effect
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of spatial asymmetry, we again introduce this through a slight spatial offset in the

forces initial distribution and thus velocity vectors.

Following the previous chapter, distributions of initial densities will be of the

form:

wi(x, y, 0) =

⎧⎪⎨
⎪⎩

ID (
√

ρ

ρ
√

2π
∗ e

−|c−μ|

2ρ2 ) > IT

0 otherwise
i = u, v (7.4)

7.1 Mutual Attack

Now setting the initial force sizes, attraction, repulsion, firing and attack variables

equal, we investigate the effect of initial conditions and the attack variable. Firstly,

attack is set to 1 so that each force will pursue the enemy once sensed, regard-

less of numerical superiority. As expected, once the enemy is sensed, both forces

rapidly co-locate and remain so while slowly attritting. If the simulation time is

set significantly longer or the fire coefficients set higher, both forces total densi-

ties will reduce to zero as expected. Parameters were set at IDu,v = 10, ρu,v =

0.05, μu = (0.15, 0.15), μv = (0.35, 0.35), ITu,v = 0.5, ra,ru,v
= 5, Du,v = 5, Cu =

(60, 60), Cv = (−60,−60), Aau,v
= 5, Aru,v

= 0.5, rCu,v
= 5, Δc = 20, attacku,v =

−1, du,v = 2 × 10−6, βu,v = 8 × 10−8, νu,v = 0.2, τ(t = 0) = 10−7, end time

t = 5× 10−3, atol = rtol = 10−3, Δx = 0.01.
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(a) Contours of Profiles in 2D

(b) Graphs of profiles 3D

Figure 7.1: Equal Forces, Both Attacking
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Figure 7.2: Losses for Figure 7.1

7.1.1 ISAAC Approximation

Now an approximation of this scenario is made using ISAAC. As using the default

lattice density of one troop per cell to mimic the repulsion term in (2.6) and (2.7) is

somewhat inelegant, the Cluster meta-personality parameter is used in combination

with w1 and w3 to mimic the attraction and repulsion terms (see Figure 6.3). If the

default density method is used, mingling of forces is hindered as a greater percentage

of lattice sites within the force footprint are occupied. Allowing for a sparser density

will permit greater mingling, thereby imitating the ability of the continuous model

to allow both forces to simultaneously occupy the same spatial region. By setting

a high negative value for the Combat parameter, both forces are strongly attracted

up the density gradient of opposition forces within the given sensor range.
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Parameter Red Blue Parameter Red Blue

Squad Size 200 200 Combat -20 -20

w1 10 10 Battlefield length 100

w2 50 50 Battlefield width 100

w3 10 10 Initial Dist Centre x 10 90

w4 50 50 Initial Dist Centre y 50 50

w5 0 0 Size x 20 20

w6 20 20 Size y 20 20

rS 5 5 Flag x 1 100

rF 2 2 Flag y 1 100

rT 2 2 Terrain no

wM 2 2 Move sampling order random

Prob Hit 0.002 0.002 Fratricide no no

Max Sim tgts 5 5 Reconstitution no no

Defence Measure 1 1 Terrain no

Cluster 10 10

Table 7.1: ISAAC Parameters Equal Forces Mutual Attack. All other parameters
are set to zero or no.
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Figure 7.3: Screenshots of ISAAC Approximation to Equal Forces Mutual Attack
Scenario

Figure 7.4: Losses for Figure 7.3

As expected, upon each force falling into sensor range of the other, both forces

engage while located in the central region of the domain similar to Figure 7.1. There
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is some movement away from this location as expected due to the stochasticity

present. Attrition in using both methods shows a gradual decline in force numbers

(Figures 7.2 and 7.4).

7.2 Mutual Attack, Offset Initial Position

Offsetting the initial positions of the forces enables one instance of asymmetry to

be examined, however we expect a similar overall behaviour to Figure 7.1. That

is, once the convolution term in 7.3 becomes nonzero, the forces will co-locate,

remain stationary and continue to inflict attrition on the opposite force until either

force density becomes zero or the simulation halts. Again we equivalent expect

the ISAAC scenario to produce similar behaviour. Parameters were set at IDu,v =

10, ρu,v = 0.05, μu = (0.2, 0.15) μv = (0.3, 0.35), ITu,v = 0.5, ra,ru,v
= 5, Du,v =

5, Cu = (60, 60), Cv = (−60,−60), Aau,v
= 5, Aru,v

= 0.5, rCu,v
= 5, Δc =

20, ; attacku,v = 1, du,v = 2 × 10−6, βu,v = 8 × 10−8, νu,v = 0.2, τ(t = 0) = 10−7,

end time t = 5× 10−3, atol = rtol = 10−3, Δx = 0.01.
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Figure 7.5: Equal Forces, Both Attacking, Forces Offset
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Figure 7.6: Losses for Figure 7.5

No significant change in behaviour is seen between Figures 7.5 and 7.1, however

the same avoidance of opposition forces as sub-sections pass each other is seen.

7.2.1 ISAAC Approximation

Parameter Red Blue Parameter Red Blue

Squad Size 200 200 Combat -20 -20

w1 10 10 Battlefield length 100

w2 50 50 Battlefield width 100

w3 10 10 Initial Dist Centre x 10 90

w4 50 50 Initial Dist Centre y 50 50

w5 0 0 Size x 20 20

w6 20 20 Size y 20 20

rS 5 5 Flag x 1 100

rF 2 2 Flag y 1 100

rT 2 2 Terrain no

wM 2 2 Move sampling order random

Prob Hit 0.002 0.002 Fratricide no no

Max Sim tgts 5 5 Reconstitution no no

Defence Measure 1 1 Terrain no

Cluster 10 10

Table 7.2: ISAAC Parameters Equal Forces Mutual Attack. All other parameters
are set to zero or no.
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Figure 7.7: Screenshots of ISAAC Approximation to Equal Forces Mutual Attack
Scenario

Figure 7.8: Losses for Figure 7.7
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7.3 Mutual Retreat

We now investigate the case where both forces have a retreating personality. Chang-

ing the value of attack to −1 and setting the numerical threshold value Δc to a

prohibitively large value should result in some sort of front forming behaviour. As

each force should not advance due to the numerical advantage not being reached,

this should show similarity to the Classic Fronts scenario in Section (6.4.2). This

front forming behaviour is seen as shown in Figure 7.9. Interestingly, by relax-

ing the numerical advantage threshold to an achievable value, this front forming

behaviour is again seen after an initial fragmentation of each force. This frag-

mentation is due to some areas of the force exceeding Δc and thus the advection

term includes an attraction up the gradient of sensed opposite force, while the re-

maining areas that do not exceed Δc experience a repulsion down this gradient.

Reformation of each force occurs after exchanging places. Parameters were set at

IDu,v = 10, ρu,v = 0.05, μu = (0.15, 0.15), μv = (0.35, 0.35), ITu,v = 0.5, ra,ru,v
=

5, Du,v = 5, Cu = (60, 60), Cv = (−60,−60), Aau,v
= 5, Aru,v

= 0.5, rCu,v
=

5, Δc = 1010, attacku,v = −1, du,v = 2 × 10−6, βu,v = 8 × 10−8, νu,v = 0.2, τ(t =

0) = 10−7, end time t = 5× 10−3, atol = rtol = 10−2, Δx = 0.01. For Figure 7.10

Δc was set to 20.
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(a) Contours of Profiles in 2D
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Figure 7.9: Equal Forces, Both Retreating, High Δc.
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Figure 7.10: Equal Forces, Both Retreating, Low Δc

158



0 0.001 0.002 0.003 0.004
390

400

410

420

430

440

450

460

Time

To
ta

l D
en

si
ty

Force u
Force v

0 0.001 0.002 0.003 0.004

400

420

440

460

Time

To
ta

l D
en

si
ty

Force u
Force v

Figure 7.11: Losses for Figure 7.9 and 7.10

Figure 7.10 demonstrates that complicated forms of manoeuvre warfare are pos-

sible using a deterministic continuous set of equations with no artificial advection

time dependence as used by Protopopescu in order to influence force movement. It

is a result of the inherent nonlinearity of the PDEs. This capability is seen as a

noted feature of artificial life that is absent from Lanchestrian approaches.

7.3.1 ISAAC Approximation

Again an ISAAC approximation is found.
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Parameter Red Blue Parameter Red Blue

Squad Size 200 200 Combat 20 20

w1 10 10 Battlefield length 100

w2 50 50 Battlefield width 100

w3 10 10 Initial Dist Centre x 10 90

w4 50 50 Initial Dist Centre y 50 50

w5 0 0 Size x 20 20

w6 20 20 Size y 20 20

rS 5 5 Flag x 1 100

rF 2 2 Flag y 1 100

rT 2 2 Terrain no

wM 2 2 Move sampling order random

Prob Hit 0.002 0.002 Fratricide no no

Max Sim tgts 5 5 Reconstitution no no

Defence Measure 1 1 Terrain no

Cluster 10 10

Table 7.3: ISAAC Paramters Equal Forces Mutual Retreat. All other parameters
are set to zero or no.
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Figure 7.12: Screenshots of ISAAC Approximation to Equal Forces Mutual Retreat
Scenario, High Δc.

161



Figure 7.13: Screenshots of ISAAC Approximation to Equal Forces Mutual Retreat
Scenario, Low Δc.

Figure 7.14: Losses for Figure 7.12 and Figure 7.13 respectively.

Note that the front forming behaviour similar to Figure 7.9 is seen in both Fig-

ures 7.12 and 7.13. Lowering the Combat value for both ISAAC forces, effectively
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the lowering of Δc for Figure 7.10 does not result in the fragmentation and refor-

mation of the forces. Only the front forming behaviour is seen. This is our first

example of a continuous result that cannot be replicated in ISAAC.

7.4 Mutual Retreat, Offset Initial Position

As there are noticeable spatial asymmetries in Figures 7.12 and 7.13, Figures 7.9 and

7.10 are repeated with the initial positions of forces offset. Parameters were set at

IDu,v = 10, ρu,v = 0.05, μu = (0.18, 0.15), μv = (0.32, 0.35), ITu,v = 0.5, ra,ru,v
=

5, Du,v = 5, Cu = (60, 60), Cv = (−60,−60), Aau,v
= 5, Aru,v

= 0.5, rCu,v
=

5, Δc = 20, attacku,v = −1, du,v = 2 × 10−6, βu,v = 8 × 10−8, νu,v = 0.2, τ(t =

0) = 10−7, end time t = 5× 10−3, atol = rtol = 10−3, Δx = 0.01. For Figure 7.16

Δc = 1010 and end time t = 3× 10−3.
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(b) Graphs of profiles 3D

Figure 7.15: Equal Forces, Both Retreating, Forces Offset, Low Δc
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Figure 7.16: Equal Forces, Both Retreating, Forces Offset, High Δc
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Figure 7.17: Losses for Figures 7.15 and 7.16

Figure 7.15 shows both attractive and repulsive behaviour due to the low thresh-

old value. A stable state is reached due to the dominant attraction at the force

periphery keeping the two forces locked in conflict while the dominant repulsion

of the force interior prevents the two forces from co-locating. Attrition reaches a

constant rate (Figure 7.17b) such that both forces will eventually reduce to zero.

Once the threshold value becomes significant as in Figure 7.16, the weak at-

tractive forces do not dominate the much stronger repulsion resulting in avoidance

behaviour for the duration of the simulation. Initial asymmetry determines the

direction of force rotation about one another.
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7.4.1 ISAAC Approximation

Parameter Red Blue Parameter Red Blue

Squad Size 200 200 Combat 20 20

w1 10 10 Battlefield length 100

w2 50 50 Battlefield width 100

w3 10 10 Initial Dist Centre x 10 90

w4 50 50 Initial Dist Centre y 50 50

w5 0 0 Size x 20 20

w6 20 20 Size y 20 20

rS 5 5 Flag x 1 100

rF 2 2 Flag y 1 100

rT 2 2 Terrain no

wM 2 2 Move sampling order random

Prob Hit 0.002 0.002 Fratricide no no

Max Sim tgts 5 5 Reconstitution no no

Defence Measure 1 1 Terrain no

Cluster 10 10

Table 7.4: ISAAC Parameters Equal Forces Mutual Retreat, High Δc. All other
parameters are set to zero or no.
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Figure 7.18: Screenshots of ISAAC Approximation to Equal Forces Mutual Retreat
Scenario, Low Δc.

Figure 7.19: Screenshots of ISAAC Approximation to Equal Forces Mutual Retreat
Scenario, High Δc, Offset Initial Position.

For this case, finding similar behaviour using ISAAC was easily achieved. Again

for a low threshold, attraction towards enemy forces resulted in a semi-stable thin
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front formation and a constant rate of attrition. However, stochasticity coupled

with goal proximity led to the eventual disintegration of this state as the forces

moved to their respective goals. For the high threshold value and as expected,

strong repulsion prevented any significant interaction with the forces manoeuvring

around each other and proceeding to their goals. Note how each force streams

towards the goals due to the increasing dominance of the penalty function goal

term.

7.5 Attack and Retreat

We now look at the combination of attacking and retreating forces. Setting IDu,v =

10, ρu,v = 0.05, μu = (0.15, 0.15), μv = (0.35, 0.35), ITu,v = 0.5, attackForce 1 =

1 and attackForce 2 = −1. Parameters were set at ra,ru,v
= 5, Du,v = 5, Cu =

(60, 60), Cv = (−60,−60), Aau,v
= 5, Aru,v

= 0.5, rCu,v
= 5, Δc = 20, attacku,v =

−1, du,v = 2 × 10−6, βu,v = 8 × 10−8, νu,v = 0.2, τ(t = 0) = 10−7, end time

t = 5× 10−3, atol = rtol = 10−3, Δx = 0.01.
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(b) Graphs of profiles 3D

Figure 7.20: Equal Forces, One Attacking, One Retreating
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Figure 7.21: Losses for Figure 7.20

Two features are immediately apparent in Figure 7.20 - penetration by the at-

tacking force and its subsequent pursuing of the retreating force. The Blue force

(retreating force) behaves in a similar manner as for obstacle avoidance - a bisec-

tion followed by a reformation given a sufficient range of attraction and had the

Red force been stationary. As the Red force was not stationary, the attack term

results in the pursuing of the bisected Blue. As the attack term dominates the

attractive/repulsive forces of Red, this too is split into two sections.

Three main periods of constant attrition are seen in Figure 7.21, initial contact

(1.7− 2e−3), intact Red (2− 3.5e−3) and split Red (3.5− 5e−3). Despite a visually

dynamic simulation, these periods correspond well with Lanchester’s original idea

of segmenting an overall conflict into a series of smaller ones. Thus each of these

three sections can be thought of as a separate Lanchester-type conflict.

7.5.1 ISAAC Approximation

We again seek to find an ISAAC scenario producing similar results.
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Parameter Red Blue Parameter Red Blue

Squad Size 200 200 Combat -20 20

w1 10 10 Battlefield length 100

w2 50 50 Battlefield width 100

w3 10 10 Initial Dist Centre x 10 90

w4 50 50 Initial Dist Centre y 50 50

w5 0 0 Size x 20 20

w6 20 20 Size y 20 20

rS 5 5 Flag x 1 100

rF 2 2 Flag y 1 100

rT 2 2 Terrain no

wM 2 2 Move sampling order random

Prob Hit 0.002 0.002 Fratricide no no

Max Sim tgts 5 5 Reconstitution no no

Defence Measure 1 1 Terrain no

Cluster NA NA

Table 7.5: ISAAC Parameters Equal Forces Both Retreat and Attack. ISAAC
Parameters Equal Forces Both Retreat and Attack. All other parameters are set to
zero or no.
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Figure 7.22: Screenshots of ISAAC Approximation to Equal Forces Both Retreat
and Attack Scenario

Figure 7.23: Losses for Figure 7.22

Note that the penetration by the Red attacking force is present however the main

concentration of the Red force does not continue pursuing. Small elements of the

Red force are visible from t = 220 onwards pursuing the Blue force. Despite setting

for the Red force w2,4 to their maximum values of 100 for maximum attraction to

Blue, w6 to a minimum of 1 to ensure the minimal overall velocity in the direction of

the Blue goal, and Combat to a maximum of −100 to promote maximum pursuing

of the Blue force, the main body of the red force proceeds at a constant rate to the

Blue goal with only a small number of agents breaking off in pursuit. That is, no

significant variation from that seen in Figure 7.22 is seen.
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This is another example of the inability of ISAAC to reproduce our continuous

results.

7.6 Attack and Retreat, Offset Initial Position

We continue our investigation into the effects of spatial asymmetry through offset-

ting the initial positions of the forces. Force 1attack = 1 and Force 2attack = −1.

Parameters were set at IDu,v = 10, ρu,v = 0.05, μu = (0.15, 0.15), μv = (0.35, 0.35),

ITu,v = 0.5, ra,ru,v
= 5, Du,v = 5, Cu = (20, 0), Cv = (−20, 0), Aau,v

= 5,

Aru,v
= 0.5, rCu,v

= 3, Δc = 100, attacku,v = −1, du = 10−5, dv = 10−5,

τ(t = 0) = 10−7, end time t = 5× 10−3, atol = rtol = 10−3, Δx = 0.01.
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Figure 7.24: Equal Forces, One Attacking, One Retreating, Forces Offset
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Figure 7.25: Losses for Figure 7.24

This degree of offset of the initial positions results in a precession of the two

forces followed by pursuit. At t = 0.002 a small section of the Blue force is extended

towards the (0.3, 0.25) position. The attack convolution of the trailing section of

the Red force then becomes significant in the velocity term resulting in this section

separating from the main Red force. For this small Blue section, the retreat gradient

combined with the attraction of the main Blue force results in its recombination

with the main Blue force.
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7.6.1 ISAAC Approximation

Figure 7.26: Screenshots of ISAAC Approximation to Equal Forces Both Retreat
and Attack Scenario, Forces Offset

Figure 7.27: Losses for Figure 7.26

Similarly to the previous results, both forces move in an anticlockwise direction

around each other due to the initial position offset. Fragments of the Red force then

pursue Blue when within sensor range (t = 80 in Figure 7.26) however the main

body continues to the Blue goal relatively unhindered. There is no redirection of

the Red force as a whole as seen in Figure 7.24.

7.7 Equal Forces Discussion

What does this show us? The inability of forces to strongly intermingle or co-locate

in ISAAC can result in missing out on observing behaviour as seen in our continuous
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model that could be classed as manoeuvre warfare. A higher clustering variable

may result in a more circular profile, however this is at the expense of the degree

of “overlap”, “mixing” or co-location possible between forces. Lowering the cluster

variable however does produce sparser, less dense profiles allowing greater mixing

between forces. The difficulty with using this approach is that an advecting, sparser

force tends to form long narrow distributions as seen at t = 40 in Figure 7.13, t =

100 in Figure 7.19 and t = 40 in Figure 7.22, rather than the circular distributions of

our continuous model as seen at t = 0.0008 in Figure 7.9, t = 0.0009 in Figure 7.16

and t = 0.0015 in Figure 7.20. Regardless of whether the density of the ISAAC

force distributions is high or low, behaviour equivalent to that of the continuous

scenarios cannot be consistently replicated from scenario to scenario. This could

lead an experimentalist using only ISAAC to conclude that the dynamics for even

these simple scenarios are much simpler than our PDE results indicate. The inability

to increase the density beyond one soldier per cell must be considered when using

a cellular automaton model. One potential improvement for ISAAC could be the

ability for each cell to allow multiple agents. This is discussed in more detail in the

next chapter.

It could also be argued that the high degree of fragmentation seen in the ISAAC

results, for example the Attack/Retreat case, is quite unrealistic. Retaining a high

level of cohesiveness would be strongly desired from the viewpoint of self preserva-

tion of the force, a tactic also employed by many animal species. A prey species’

propensity to fragment is a failing (feature) any predator is likely to exploit. While

it is acknowledged that both these modelling approaches are very abstract ap-

proximations of combat, a minimal cohesiveness could be seen as a fundamental

requirement.
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Chapter 8

Density Response Tactic

As mentioned in the swarming literature, the typical individual distance of a par-

ticular species is likely be independent on population size yet may be dependent on

a variety of other environmental factors. Examples of this include the presence of a

predator, time of day or the distribution of food effects may increase or decrease this

distance. It follows that the interspacing of soldiers may also have several depen-

dencies - terrain or engagement in combat for example. This potential relationship

is not a consideration that is included in ISAAC other than the simplistic Cluster

constraint which is constant throughout each simulation. Neither thus far has it

been incorporated into our PDE model where only the velocity vector is altered by

the presence of an enemy force.

We take inspiration again from the implementation of cellular automata to bio-

logical modelling of, for example, fish schooling and predator avoidance of herring

[56]. This individual-based model differs from ISAAC in two important ways; (i) a

variable density per cell is allowed, and (ii) predator and prey may be co-located

in a single cell (predation may only occur when co-located). Repulsion is simi-

lar to ISAAC in that it is enforced by an artificial density limit placed on each

cell, however this limit was given a predation dependency. If a herring senses a

predator within the defined panic distance, this maximum allowable density per

cell increases. These are two key model constructs that could be employed in both

ISAAC and our model to enrich the range of possible behaviours. Firstly, should

ISAAC be extended to allow for a density greater than one per cell and dual oc-

cupancy of both forces per cell, an increase in mixing or co-location of the two

forces may lead to differing scenario results. A revisit of the scenarios presented
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in Chapter 6 after this modification may result in a closer alignment of behaviours

to our model. This feature is already included in our model. Secondly, and this

applies to our PDE model also, is the introduction of density dependence on the

detection of a threshold number of enemy forces. This dependence should not be to

the negation or the detriment of the social interaction dependency as is the case in

[56, 57], where the velocity of an individual under attack may be solely determined

by the velocity of the approaching attacker with no dependency on conspecifics.

Rather, we envisage that attraction/repulsion terms of our PDEs and the Cluster

constraint of ISAAC be altered to include this effect. We propose a modification

to the attraction/repulsion ratio that determines the interior equilibrium density in

order to introduce this concept.

Currently the constant interior density or typical individual distance is deter-

mined by the attraction and repulsion values as described in (2.1):

F =
Aa

Ar

. (8.1)

There are a variety of ways in which this term could be modified in order to take

in to account the presence of enemy soldiers on the target density. A switch as in

[56], or a predator influence function in the form of a decay function that smoothly

scales the strength of reaction to predators depending upon the separation distance

[57]. For IBMs or CAs, repulsion is again artificially imposed through the definition

of a maximum density per cell, whether that is one individual per cell as in ISAAC,

or several.

For our model we can include this type of dependency through either the attrac-

tion, repulsion or both of these terms and we propose the following implementation.

Following [56] we define the enemy influence to affect the strength of the attraction

parameter Aa once the number of enemy soldiers detected within the sensor dis-

tance rS exceeds the given threshold Δc. Note that this implementation uses the

already defined parameters in (7.3) and is a natural extension of this concept. It

follows that if the detection of a minimum number of enemy soldiers should alter
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the velocity of the force, then this same threshold and range are appropriate for

defining other enemy based tactical responses.

We define:

Aa =

⎧⎨
⎩ factor× Aa Nenemy ≥ Δc

Aa Nenemy < Δc
(8.2)

where the factor may be defined as a percentage increase or decrease resulting

in a respective increase or decrease in density.

Initially this modification is made and we conduct a series of test cases. Firstly

the forces are set to pass directly through one another with an attraction factor for

both forces set at 0.8 giving a 20% decrease in the equilibrium density, and then

with the factor set at 1.4 or a 40% increase. For clarification, the equations used

are:

∂u

∂t
= ∇·(Du(u)∇u)+∇·{u(Cuu+Aa(Ka∗u)−Aru(Kr∗u))}+u (ku ∗ v)+duv (8.3)

∂v

∂t
= ∇·(Dv(v)∇v)+∇·{v(Cvv+Aa(Ka∗v)−Arv(Kr∗v))}+v (kv ∗ u)+dvu (8.4)

where the attraction Aa is defined as in 8.2.
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Figure 8.1: Effect of attraction factor on force density - Contraction - 2D.
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Figure 8.2: Effect of attraction factor on force density - Expansion - 3D.
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Figures 8.1 and 8.2 show quite clearly the changes in density associated with

the attraction factor. In the accompanying videos, the propagation of the density

change can be seen initiating at the front of the forces, smoothly moving to the rear

as the two forces advance closer to each other. This propagation reflects the limits

of the sensor range threshold level.

We now consider a simple scenario in order to investigate the relationship be-

tween this type of alteration to tactics and density loss through the inclusion of

aimed fire. Both the expansion and contraction versions are compared to a baseline

scenario.
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Figure 8.3: Effect of attraction factor on force density - Baseline.
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Figure 8.4: Effect of attraction factor on force density - Contraction.
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Figure 8.5: Effect of attraction factor on force density - Expansion.
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Figure 8.6: Losses for Figures 8.3, 8.4 and 8.5

We omit the losses for the second force for clarity as both forces are equal in

parameters and suffer the same reduction in density. Although using the expansion

tactic results in greater initial density loss, this approach leads to the lowest overall

reduction. This earlier commencement of attrition is due to the expansion of the

front section of the force that is first to sense an enemy density exceeding the given

threshold. Such an expansion then results in a more rapid co-location of both forces

and hastens the onset of attrition by aimed fire. Attrition continues for a longer

duration as these expanded force distributions remain in contact for a longer period

of time. Despite this longer duration, the lower density produces lower attrition

rates and the lowest overall force reduction.

Using a contraction tactic produces the opposite behaviour to the expansion

tactic. Similarly to the expansion tactic and as expected, contraction propagates

from the front to the rear of the force, delaying the onset of force co-location and

thus attrition. A higher attrition rate is experienced due to the higher density,

and despite the shortened duration of contact, gives the greatest overall density

reduction.

Here we have shown that a simple scenario can demonstrate a different possible

outcome for each permutation of the density response tactic. Although these out-

comes are relatively straightforward in this example, the inclusion of this tactic in

our already complex PDE model of (2.6), (2.7) and (6.6) would warrant detailed

numerical approximations and further study to ascertain the extent of the effects
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on the dynamics of the model. As this is beyond the scope of this research, we

present here one example from our comparison to the ISAAC scenarios.

8.0.1 Implementation of Density Response Tactic to ISAAC

Comparison Scenario

We now revisit one of the comparisons made to the ISAAC scenarios using our PDE

model and introduce the density response tactic to the Precess scenario as an ex-

ample of how this changes the observed dynamics. Firstly each force will undergo

expansion upon sensing enemy density above the given threshold, then contrac-

tion. Recall that the Precession scenario consisted of both typical non-precession

behaviour and atypical precession behaviour when the force density profiles were

sufficiently offset. We implement both forms of the density response tactic to both

behaviour types.
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Figure 8.7: Effect of attraction factor on ISAAC Precess Scenario Approximation
shown in Figure 6.11.
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Figure 8.8: Effect of attraction factor on ISAAC Anticlockwise Precess Scenario
Approximation shown in Figure 6.11.
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Figure 8.9: Losses of original ISAAC Precess Scenarios compared with additional
attraction tactic.

For the expansion tactic, the lower density and thus larger area of the Blue force

causes greater percentage of this force to lie beyond the sensor range used for the

attacking term, giving a zero contribution to the velocity vector. So this portion of

the force continues on to the opposite corner. Social forces dominate the attacking

section of the Blue force and the Red force is not pursued. This is seen in both

the typical (Figure 8.7b) and atypical results (Figure 8.8b). As expected there is

less density loss for expansion due to the reduced co-location and lack of pursuance

(Figure 8.9a) in the Precession comparison, though this difference is negligible for

the Precession Offset comparison (Figure 8.9b).

For the contraction tactic however, the higher density induces a smaller overall

density profile of the Blue force. This ensures that the Red force then remains

entirely within the Blue’s sensor range so that the attack term then dominates the

Blue force fvel term. Again this behaviour is seen in both results (Figures 8.7a

and 8.8a). As expected the contraction tactic gives comparable or slightly greater

density loss than the baseline.

We can continue with further combinations of expansion and contraction tactics,

for example, the Red force adopting expansion and the Blue force contraction, or
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vice versa. However we leave this and the extension of the density tactic to the

remaining ISAAC scenarios for exploration in future research.

This chapter demonstrates the inherent flexibility of our model to incorporate

variations to the spatial dynamics or social interaction terms that form the main

influence on the observed dynamics. The spatial dynamics terms can be though

of as the tactics employed by a force, and forms one of the fundamental drivers

in military research - what tactics increase the likelihood of achieving the desired

outcome? This equally applies to both forces as an assumption of a completely

predictable and static enemy is fraught with danger. By allowing flexibility in

the repertoire of tactics that can be explored, a better understanding of combat

dynamics may be gained prior to the introduction of additional features such as

command structures (as is possible in ISAAC).
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Chapter 9

Discussion, Summary and Future Work

9.1 Discussion

Cellular automata can be difficult to use for understanding the underlying dynamics

of combat as stochasticity can hinder the extraction of conclusions from a model. All

scenarios presented here highlight the dangers associated with attributing intelligent

reasoning to behaviour shown, when this can be explained quite simply through the

effects of the terms in our equations (2.6) and (2.7) and the spatial distribution of

forces. This can be seen quite simply in the Classic Fronts scenario. Ilachinski

describes the occurrence of the forces passing by one another as the agents having

“found” a way to sneak around. We believe it is the differences in distribution

caused the inherent randomness of ISAAC that results in agents located at the end

of the distributions becoming sufficiently distanced so that repulsive forces from

enemy agents greatly reduces with respect to the attractive forces of the goal. This

dominant attractive force then results in those agents progressing towards the goal.

Although the attraction/repulsion of goals in our equations is not weighted with

respect to separation distance as it is in the ISAAC penalty function, a slight offset

or asymmetry of initial distributions demonstrates this same type of behaviour.

This can also be seen clearly in the Precess scenario where the infrequently

observed precession behaviour arises from asymmetries of the force profiles upon

commencing combat, rather than being an unexplainable emergent behaviour. The

majority of ISAAC Precession simulations show behaviour similar to those obtained

from the continuous equivalent without the initial distribution offset as shown in

Figure 6.8. Again the observed asymmetries are due to the stochasticity of ISAAC
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present in the movement and attrition algorithms, and are responsible for the pre-

cession seen in Figure 6.10 and [18]. When mimicked in our continuous equations

through initially offset distributions, precession was observed. In this case the un-

derlying behaviour without the effects of stochasticity highlighted the similarity

between the Precession and Circle scenarios. Again Ilachinski infers a degree of

intelligence or emergence by stating that there are a few stray ‘leakers’ and an oc-

casional group of a few Blue ISAACAs that choose[s] to leave the main battle and

head toward Red’s flag. This is similar to the comments made for the Classic Fronts

scenario and our explanation for that behaviour - differences in distribution result in

agents becoming sufficiently distanced from enemy agents such that the goal terms

in the penalty function become significant.

Our deterministic approach encapsulates basic motivational factors and demon-

strates a variety of spatial behaviours. Cohesive troop movement has only been

achieved artificially in previous work: by using a desired initial distribution, low

diffusion constant, and a sufficiently short overall simulation time, excessive dif-

fusion is prevented and the troop profile cannot diffuse to a unrealistic spread.

We have demonstrated that by using relatively simple and physically meaningful

form of partial differential equations, cohesive troop movement can be achieved and

maintained, even when suffering loss of density through fire. Forces and firing coef-

ficients remain homogeneous, a criticism of the traditional Lanchester approach, yet

the nonlinear nature of the equations are able to mimic those seen in ISAAC that

have been labelled as complex. A continuum of forces is able to behave in a manner

similar to a collection of individual autonomous agents, and shows decentralised

self-organisation and adaptation of tactics to suit a variety of combat situations.

This is a significant step toward developing a set of realistic continuous equations

for combat modelling.

Lauren [24] states that complex adaptive models of combat, such as ISAAC or

MANA, display a rich variety of behaviour, a battlefield that is no longer linear and

agent adaptivity. How exactly do the agents perform this adapting? The evolution

193



of each agent’s position is determined by a penalty function that remains unchanged

throughout the entire simulation. There is a danger in the anthropomorphisation

of agents, insinuating agents have reasoning and planning abilities when this is

obviously not the case. Also these types of wargames concentrate heavily on the

addition of extra communication ability between agents, shifting the emphasis to

global or increasingly complex nonlocal features. MANA includes many more states

and subsequently many more triggers need to be defined to facilitate switching

between these states. Increasing the number of required parameters can cloud

the process of deriving insight, a danger which has been shown in many of the

basic scenarios presented here. For example the removal of parameters such as

the Advance constraint in the Precess scenario did not prevent the reproduction of

similar precession behaviour. Lauren also states that conventional combat models

behave largely as a series of attrition-driven fights and ISAAC entities will only

fight if conditions are suitable. If our model is viewed as a conventional combat

model as it is based on using Lanchester firing terms, it can be argued that it also

behaves as an ISAAC model due to the form of the Spatial Dynamics terms (7.3).

Conversely it could be argued that ISAAC is a type of conventional combat model

as the movement of each agent is determined in a comparable way to our continuous

model with the inclusion of randomness.

Considering the popularity of cellular automata based wargames in military and

complex adaptive systems research, it is imperative that complementary avenues

of research are undertaken in order to gain a greater insight into the nature of

combat. For a research topic such as combat modelling, emphasis of rare events or

a misunderstanding of observed behaviour can have significant consequences. Our

numerical analysis of this continuous set of equations can provide an alternative

explanation to the seemingly intelligent behaviour demonstrated in these agent

based scenarios as the same essential nonlocal interactions are present. The need

for many multiple agent simulations and the application of data mining techniques

becomes much reduced with the simultaneous use of a continuous model. MANA,
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much like ISAAC, can require approximately 600 runs to establish a mean result for

some scenarios [26]. Using the approach employed here it is much easier to establish

a mean behaviour with our continuous form.

By treating weapons systems in the simple forms as presented here, behaviour

is less likely to be obscured by potentially highly nonlinear interaction terms or

weapons effects. This could also lead to the exploration of the inherent nonlinearities

in the Spatial Dynamics terms, which essentially describes the movement or tactics

employed by a force. For example, an increase in weapon lethality (kill probability)

may not necessarily have the expected corresponding increase in casualties due to

the effects of the enemy’s tactics. It may not be sound to assume a doubling of this

probability will yield double the number of casualties.

We suggest that our continuous model be used in conjunction with agent-based

wargames to act as a combined testbed for the purpose of concept exploration.

9.2 Summary

In this thesis we have derived a partial differential equation model representing

combat, using biological aggregation models to more adequately represent the spa-

tial aspects of combat and social motivational factors. The numerical methods used

were based on the Method of Lines technique with extra and essential constraints

of conservation of mass and positivity enforced by the appropriate use of flux lim-

iters. Again the field of biological modelling provided the numerical framework.

Comparisons to Protopopescu et al.’s results found similar density losses over time,

however demonstrated maintenance of a constant interior density despite incurring

losses through firing effects. This had not been achieved in any previous continu-

ous combat modelling and counters the main criticism of Lanchester Equation-type

models of neglecting the spatial component of combat.

This one dimensional model was then extended to two dimensions and the same

process of comparisons to previous results completed. Again the maintenance of

equilibrium density was demonstrated throughout the simulations. We also showed

that a scenario can be viewed as a series of sub-battles characterised by periods
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of constant density loss. This was the intended method of implementation of the

LEs as suggested by Lanchester himself. Through the addition of obstacles in the

domain, we were able to show a bifurcation point induced by a force navigating

around obstacle which is dependent upon the social factor of attraction. Once the

separation distance of the force halves exceeds the attraction range, there is no

reconstitution of the force resulting in the formation of two distinct force profiles.

Once this baseline work had been completed, comparisons to a series of ISAAC

scenarios were made as was the main aim of this research. These ISAAC scenarios

consisted of two homogeneous forces whose parameters remain unchanged through-

out the simulations yet were deemed to exhibit adaptive behaviour. Our model

was shown to provide an easier and alternate way of explaining observed behaviour

rather than through the anthropomorphisation of agents. This highlighted the dan-

gers of using atypical instances of stochastic models to drive analysis. The effects

of the inherent stochasticity of ISAAC led us to induce a type of controlled stochas-

ticity approximation through the offsetting of the initial density profiles. We were

able to confirm our conjectures that many of the observed ISAAC behaviours were

due to asymmetry. This also enabled us to determine the mean behaviour of an

ISAAC scenario and more easily understand the effects of parameter changes.

Our model then provided a basis for the addition and exploration of other tac-

tics through modifications to the Spatial Dynamics terms. An example of a tactic

of density response to enemy detection, similar to predator avoidance models, was

implemented and explored. By comparing both an expansion or contraction re-

sponse with a simple baseline scenario, differences in the observed dynamics and

overall density losses were found. This may also drive the further development of

CA wargames through the suggestion of modifications to or alternative forms of the

discrete counterparts to the interaction terms.

In conclusion we have shown that a continuum of forces is able to behave in

a manner similar to a collection of individual autonomous agents, demonstrating

decentralised self-organisation and adaptation of tactics to suit a variety of combat
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situations. This is a significant step toward developing a set of realistic continu-

ous equations for combat modelling and provides a framework for expansion and

exploration of tactics.

9.3 Future Work

We suggest several possible areas for further research.

This research did not address other ISAAC scenarios such as LOCALCMD or

GLBALCMD where communication between agents within a user-defined range

affects the evolution of the scenarios. Inclusion of the local command and global

command functionalities and of command personality in the penalty function (6.1)

would require further significant modification to our continuous model. Addition

of these comparisons will result in a more complete development of a continuous

counterpart to ISAAC.

The addition of obstacles has been completed, however only force movement is

restricted at present with weapons remaining unaffected. While this can be seen

as a good approximation to the navigation over differing terrain types, it is not

adequate for the representation of walls or buildings. ISAAC and other cellular

automaton models such as the Map Aware Non-uniform Automata (MANA) model

have the additional restriction on weapons capabilities through these obstacles such

that they effectively act as walls. If our model was extended to allow for additional

weapon restrictions of this nature, simple modelling of urban environments would

then become possible. In conjunction with CA models, this would allow a more

thorough exploration of urban and modern warfare modelling which is of great

interest to many research organisations and the defence community.

Modifications to the Spatial Dynamics terms undertaken in Chapter 8 demon-

strated the flexibility of modifying tactics and the effects this has on the observed

dynamics and temporal dependency of density losses. This does raise the question

however; what are the important or essential features of combat that need to be

captured in the spatial dynamics? Further research may need to be conducted to
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ascertain the main influences on soldier behaviour in order to ensure they are re-

flected in modelling. Other methods of modelling social interactions could serve as

a valuable resource for this.

Unlike the comparison made between an individual-based model and PDE in

[10], the PDEs here were not derived from taking the limit as the number of soldiers

tends to infinity. The derivation method used in [10] consisted of converting the IBM

into a set of stochastic differential equations which were then converted into their

corresponding PDEs. Although this approach cannot facilitate an exact comparison

(as was the case for [10]) due to the stochasticity of ISAAC, the form of the resulting

PDEs may differ from those developed here and therefore shed a different light on

the observed dynamics. This process can also be viewed as a form of verification of

ISAAC and more weight given to the assertion that the PDE results do represent

the true mean behaviour of ISAAC.

(a) ISAAC (b) Continuous

Figure 9.1: Demonstration of potential behaviours of ISAAC and Our PDE model.
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Appendix A

Symbols and Abbreviations

CA Cellular Automaton/Automata
IBM Individual-Based Model
MOL Method of Lines
ISAAC Irreducible Semi-Autonomous Adaptive Combat
ISAACA Irreducible Semi-Autonomous Adaptive Combat Agent
MANA Map Aware Non-uniform Automata

PDE Symbols

u(x, y, t) The positive troop density of Force u at the given posi-
tion and time.

v(x, y, t) The positive troop density of Force v at the given posi-
tion and time.

Di(x, y, t) The diffusion coefficient for Force i(i = u, v) that may
be spatially, temporally or otherwise dependent.

Vi(x, y, t) The velocity coefficient for Force i(i = u, v) that may be
spatially, temporally or otherwise dependent.

Aai
The strength of the internal attraction of Force i(i =
u, v).

Ari
The strength of the internal repulsion of Force i(i =

u, v). The ratio of
Aai

Ari

gives the desired internal density

of Force i.
Kai

The form of the attraction kernel for Force i(i = u, v).
For the results presented here, the form is Ka ∗ u =∫ y+ra

y−ra

∫ x+ra

x−ra
Ka(x−X, y − Y )u(X,Y )dXdY

Kri
The form of the repulsion kernel for Force i(i = u, v).
For the results presented here, the form is Kr ∗ u =∫ y+rr

y−rr

∫ x+rr

x−rr
Kr(x−X, y − Y )u(X,Y )dXdY

rai
The range over which the attraction kernel for Force
i(i = u, v) acts.

rri
The range over which the repulsion kernel for Force i(i =
u, v) acts. rri

< rai
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ki The form of the area fire kernel for Force i(i = u, v).
For the results presented here, the form is ki(x, y) =

βie
−νi

∣∣∣√(x−X)2+(y−Y )2
∣∣∣

: R
2 → R

+ for the rifle kernel,

and k(x, y) = βe−ν
√
|((x−X)2+(y−Y )2)−rop| : R

2 → R
+ for

the artillery kernel.
rafi

The range over which the area fire kernel for Force i(i =
u, v) acts.

ropi
The optimal range for the area artillery fire kernel for
Force i(i = u, v).

βi Variable used in the calculation of area fire losses for
Force i(i = u, v).

νi Variable used in the calculation of area fire losses for
Force i(i = u, v).

di The aimed fire coefficient for Force i(i = u, v).
rS Sensor range used for the calculation of friendly and

enemy forces.
Δc Threshold number of soldiers required to trigger change

in velocity calculation.
Ni Number of soldiers of Force i(i = u, v) calculated within

sensor range rS.

ISAAC Symbols

Z(x, y) Penalty function
w1 Weighting parameter for alive friendly agents.
w2 Weighting parameter for alive enemy agents.
w3 Weighting parameter for injured friendly agents.
w4 Weighting parameter for injured enemy agents.
w5 Weighting parameter for friendly flag.
w6 Weighting parameter for enemy flag.
rS Sensor range.
rF Fire range.
rT Threshold range.
rC Communications range.
rM Movement range.
dnew Distance to flag (either friendly or enemy) from prospec-

tive new position.
dold Distance to flag (either friendly or enemy) from current

position.
si Scaling factor for ISAACs of type i(i = red, blue).
Ni Number of ISAACAs i(i = red, blue) within sensor

range.
Δc Threshold number of ISAACAa required to trigger com-

bat constraint.

Table A.1: Symbols and Abbreviations used.
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Appendix B

Matlab Code, One Dimension

The input files for the one dimensional model as developed in Chapter 4.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Main Matlab File %

% 1D Model %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

% --------------------- INITIALIZE VARIABLES --------------------

Dens = 10; % initial density

w = 20; % initial width of forces

N = 100; % number of grid points

Df = zeros(N,1); Dh = zeros(N,1); % diffusion coefficient matrix

Dcoeff = 5; % default diffusion

tau = 0.0000001; % time step

delt = 0.000001; % time step for firing calcs

endtime = 0.003; % end time of simulation

L = 1.0; % domain length

deltx = L/(N - 1); % domain discretisation

eps = 1e-30; % for limiter calculations

% ---------------------------- KERNELS --------------------------

a=ones(N,1)*(1:N)-(1:N)’*(ones(N,1))’; % auxiliary matrix

ae=20; % default convection

Aa=20; % attraction strength

Ar=2; % repulsion strength

ra=5; % range of attraction

rr=5; % range of repulsion

% odd attraction kernel

sa=0.5*sign(a).*(1-sign(abs(a)-ra-0.5));

% odd repulsion kernel

sr=0.5*sign(a).*(1-sign(abs(a)-rr-0.5));

sb=-0.5*(1-sign(abs(a)-0.5)); % for convection

sf=-ae*sb-Aa*sa; sr=Ar*sr; % equation for force f

sh=ae*sb-Aa*sa; % equation for force h

% ------------------ INITIALISE FORCE PROFILES ------------------

h=zeros(N,1); % initialise force h to zero
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h_new=zeros(N,1); % initialise force h temp matrix to zero

% initialise force profile

h(70:90) = 10*ones(21,1);

f=zeros(N,1); % initialise force f to zero

f_new=zeros(N,1); % initialise force f temp matrix to zero

% initialise force profile

f(10:30) = 10*ones(21,1);

% -------------------------- MAIN LOOP --------------------------

count=0; % counter for displaying figures

imgcount=1; % counter for movie

rejcount=0; % rejected step counter

currenttime=0;

stoptime=1e-3;

resultcount=2;

while currenttime<endtime

% force f

for i=1:N

if f(i)>0.1*Aa/Ar

Df(i)=Dcoeff;

else

Df(i)=Dcoeff*f(i);

end

end

% one full time step

ffull=RK(f,sf,sr,eps,N,deltx,tau);

ffull(2:N-1)=ffull(2:N-1)+...

(tau/deltx^2)*(0.5*(Df(3:N)+Df(2:N-1))...

.*(ffull(3:N)-ffull(2:N-1))-0.5*(Df(2:N-1)+Df(1:N-2))...

.*(ffull(2:N-1)-ffull(1:N-2)));;

ffull(1)=ffull(1)+(tau/deltx^2)*(0.5*(Df(2)+Df(1))...

.*(ffull(2)-ffull(1))-0.5*(Df(1)+Df(N)).*(ffull(1)-ffull(N)));

ffull(N)=ffull(N)+(tau/deltx^2)*(0.5*(Df(1)+Df(N))...

.*(ffull(1)-ffull(N))-0.5*(Df(N)+Df(N-1))...

.*(ffull(N)-ffull(N-1)));

% two half time steps

fhalf=RK(f,sf,sr,eps,N,deltx,tau/2);

fhalf(2:N-1)=fhalf(2:N-1)+((tau/2)/deltx^2)...

*(0.5*(Df(3:N)+Df(2:N-1)).*(fhalf(3:N)-fhalf(2:N-1))...

-0.5*(Df(2:N-1)+Df(1:N-2)).*(fhalf(2:N-1)-fhalf(1:N-2)));

fhalf(1)=fhalf(1)+((tau/2)/deltx^2)*(0.5*(Df(2)+Df(1))...

.*(fhalf(2)-fhalf(1))-0.5*(Df(1)+Df(N)).*(fhalf(1)-fhalf(N)));

fhalf(N)=fhalf(N)+((tau/2)/deltx^2)*(0.5*(Df(1)+Df(N))...

.*(fhalf(1)-fhalf(N))-0.5*(Df(N)+Df(N-1))...

202



.*(fhalf(N)-fhalf(N-1)));

for i=1:N

if fhalf(i)>0.1*Aa/Ar

Df(i)=Dcoeff;

else

Df(i)=Dcoeff*fhalf(i);

end

end

fhalf=RK(fhalf,sf,sr,eps,N,deltx,tau/2);

fhalf(2:N-1)=fhalf(2:N-1)+((tau/2)/deltx^2)...

*(0.5*(Df(3:N)+Df(2:N-1)).*(fhalf(3:N)-fhalf(2:N-1))...

-0.5*(Df(2:N-1)+Df(1:N-2)).*(fhalf(2:N-1)-fhalf(1:N-2)));

fhalf(1)=fhalf(1)+((tau/2)/deltx^2)*(0.5*(Df(2)+Df(1))...

.*(fhalf(2)-fhalf(1))-0.5*(Df(1)+Df(N)).*(fhalf(1)-fhalf(N)));

fhalf(N)=fhalf(N)+((tau/2)/deltx^2)*(0.5*(Df(1)+Df(N))...

.*(fhalf(1)-fhalf(N))-0.5*(Df(N)+Df(N-1))...

.*(fhalf(N)-fhalf(N-1)));

% tolerance checking for force f

rhof=TimeStepCheck(f,ffull,fhalf,N);

% force h

for i=1:N

if h(i)>0.1*Aa/Ar

Dh(i)=Dcoeff;

else

Dh(i)=Dcoeff*h(i);

end

end

% one full time step

hfull=RK(h,sh,sr,eps,N,deltx,tau);

hfull(2:N-1)=hfull(2:N-1)+...

(tau/deltx^2)*(0.5*(Dh(3:N)+Dh(2:N-1))...

.*(hfull(3:N)-hfull(2:N-1))-0.5*(Dh(2:N-1)+Dh(1:N-2))...

.*(hfull(2:N-1)-hfull(1:N-2)));;

hfull(1)=hfull(1)+(tau/deltx^2)*(0.5*(Dh(2)+Dh(1))...

.*(hfull(2)-hfull(1))-0.5*(Dh(1)+Dh(N)).*(hfull(1)-hfull(N)));

hfull(N)=hfull(N)+(tau/deltx^2)*(0.5*(Dh(1)+Dh(N))...

.*(hfull(1)-hfull(N))-0.5*(Dh(N)+Dh(N-1)).*(hfull(N)-hfull(N-1)));

% two half time steps

hhalf=RK(h,sh,sr,eps,N,deltx,tau/2);

hhalf(2:N-1)=hhalf(2:N-1)+((tau/2)/deltx^2)...

*(0.5*(Dh(3:N)+Dh(2:N-1)).*(hhalf(3:N)-hhalf(2:N-1))...

-0.5*(Dh(2:N-1)+Dh(1:N-2)).*(hhalf(2:N-1)-hhalf(1:N-2)));

hhalf(1)=hhalf(1)+((tau/2)/deltx^2)*(0.5*(Dh(2)+Dh(1))...

.*(hhalf(2)-hhalf(1))-0.5*(Dh(1)+Dh(N)).*(hhalf(1)-hhalf(N)));
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hhalf(N)=hhalf(N)+((tau/2)/deltx^2)*(0.5*(Dh(1)+Dh(N))...

.*(hhalf(1)-hhalf(N))-0.5*(Dh(N)+Dh(N-1)).*(hhalf(N)-hhalf(N-1)));

for i=1:N

if hhalf(i)>0.1*Aa/Ar

Dh(i)=Dcoeff;

else

Dh(i)=Dcoeff*hhalf(i);

end

end

hhalf=RK(hhalf,sh,sr,eps,N,deltx,tau/2);

hhalf(2:N-1)=hhalf(2:N-1)+((tau/2)/deltx^2)...

*(0.5*(Dh(3:N)+Dh(2:N-1)).*(hhalf(3:N)-hhalf(2:N-1))...

-0.5*(Dh(2:N-1)+Dh(1:N-2)).*(hhalf(2:N-1)-hhalf(1:N-2)));

hhalf(1)=hhalf(1)+((tau/2)/deltx^2)*(0.5*(Dh(2)+Dh(1))...

.*(hhalf(2)-hhalf(1))-0.5*(Dh(1)+Dh(N)).*(hhalf(1)-hhalf(N)));

hhalf(N)=hhalf(N)+((tau/2)/deltx^2)*(0.5*(Dh(1)+Dh(N))...

.*(hhalf(1)-hhalf(N))-0.5*(Dh(N)+Dh(N-1)).*(hhalf(N)-hhalf(N-1)));

% tolerance checking for force f

rhoh=TimeStepCheck(h,hfull,hhalf,N);

tauold = tau;

rho=max(rhof,rhoh);

tau=tau*min(2,max((0.8/(nthroot(rho,3))),0.25));

if rho>1

% step rejected

’rejected’

rejcount=rejcount+1;

continue

else

% use two half step results as higher accuracy

f=fhalf;

h=hhalf;

currenttime=currenttime+tau;

if endtime-currenttime<tau

tau=endtime-currenttime;

end

count=count+1;

% calculate firing effects btween forces

[f,h]=areafire(f,h,deltx,N,tauold/delt);

if currenttime>stoptime

fresult(resultcount,:)=f;

hresult(resultcount,:)=h;

resultcount=resultcount+1;

stoptime=stoptime+1e-3;

end
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end

if mod(count,10)==0

w=figure(1);

clf

plot((1:N),f,’b’,(1:N),h,’r --’)

axis([0 N 0 11])

ylabel(’Troop Density’)

xlabel(’x’)

title(’Area Fire’)

F(imgcount)=getframe(w);

imgcount=imgcount+1;

sum(f)

end

end

% ------------------ OUTPUTS, FIGURES & MOVIES ------------------

[’Rejected Steps:’ int2str(rejcount)]

movie2avi(F,’1DAreaFire.avi’);

% snapshots of simulation

w=figure(1);

plot((1:N),fresult(1,:),’b’,(1:N),fresult(2,:),’b --’,(1:N),...

fresult(3,:),’b -.’,(1:N),f,’b :’,(1:N),hresult(1,:),’r’,...

(1:N),hresult(2,:),’r --’,(1:N),hresult(3,:),’r -.’,(1:N),h,’r :’)

axis([0 N 0 11]);

ylabel(’Troop Density’)

xlabel(’x’)

title(’Area Fire, Density Dependent Diffusion’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Runge Kutta %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [f_new]=RK(f,s,sr,eps,N,deltx,h);

% Runge Kutta scheme

flux=fluxsub(f,s,sr,eps,N);

k1(2:N,1)=(-1/deltx).*(flux(2:N)-flux(1:N-1));

k1(1,1)=(-1/deltx).*(flux(1)-flux(N));

flux = fluxsub(f+h/2.*k1,s,sr,eps,N);

k2(2:N,1)=(-1/deltx).*(flux(2:N)-flux(1:N-1));

k2(1,1)=(-1/deltx).*(flux(1)-flux(N));

flux=fluxsub(f+h/2.*k1+h/2.*k2,s,sr,eps,N);

k3(2:N,1)=(-1/deltx).*(flux(2:N)-flux(1:N-1));
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k3(1,1)=(-1/deltx).*(flux(1)-flux(N));

f_new(1:N,1)=f(1:N)+(h/3)*(k1+k2+k3);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Flux and Limiter Calculation %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [flux]=fluxsub(f,s,sr,eps,N)

g=zeros(N,1);

speed=zeros(N,1);

r=zeros(N,1);

theta=zeros(N,1);

flux=zeros(N,1);

% calculate convolutions and fluxes

g(1:N)=(f’*s)+f’.*(f’*sr);

speed=g;

g=g.*f;

% calculate ratio of fuxes about each point

r(2:N-1,1)=(g(3:N)-g(2:N-1)+eps)./(g(2:N-1)-g(1:N-2)+eps);

r(1,1)=(g(2)-g(1)+eps)./(g(1)-g(N)+eps);

r(N,1)=(g(1)-g(N)+eps)./(g(N)-g(N-1)+eps);

% FLUX LIMITERS

% van Leer limiter

theta(1:N,1)=(r+abs(r))./(1+abs(r));

thetainv(1:N,1)=(r.^(-1)+abs(r.^(-1)))./(1+abs(r.^(-1)));

% First-Order Upwind

% theta=zeros(N,1);

% thetainv=zeros(N,1);

% Second-Order Central

% delta=2;

% theta=max(0,min(r,delta));

% thetainv=max(0,min(r.^(-1),delta));

% Second-Order Upwind

% delta=2;

% theta=max(0,min(2*r,min(delta,1)));

% thetainv=max(0,min(2*r.^(-1),min(delta,1)));

% enforce flux limiters based on direction of speed

for i=1:N
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if f(i)>0

if speed(i)>0

if i==1

flux(1,1)=(g(1)+0.5.*theta(1).*(g(1)-g(N)));

else

flux(i,1)=(g(i)+0.5.*theta(i).*(g(i)-g(i-1)));

end

elseif speed(i)<0

if i==1

temp=(g(1)+0.5.*thetainv(1).*(g(1)-g(2)));

flux(N,1)=flux(N,1)+temp;

elseif i==N

temp=(g(N)+0.5.*thetainv(N).*(g(N)-g(1)));

flux(N-1,1)=flux(N-1,1)+temp;

else

temp=(g(i)+0.5.*thetainv(i).*(g(i)-g(i+1)));

flux(i-1,1)=flux(i-1,1)+temp;

end

else

flux(i,1)=0;

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Firing Effects %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [f,h]=areafire(f,h,deltx,N,tau);

v1=0.8;

v2=0.8;

beta11=0.00008;

gamma11=0.00008;

beta12=0;

gamma12=0;

lhs1=zeros(N,1); lhs2 = zeros(N,1);

a=ones(N,1)*(1:N)-(1:N)’*(ones(N,1))’;

areafiref(1:N,1)=-deltx*gamma11*f.*(h’*exp(-v1.*abs(a*deltx)))’;

aimedfiref(1:N,1)=-gamma12.*f.*h;

lhs1=areafiref+aimedfiref;

areafireh(1:N,1)=-deltx*beta11*h.*(f’*exp(-v2.*abs(a*deltx)))’;

aimedfireh(1:N,1)=-beta12.*f.*h;

lhs2=areafireh+aimedfireh;
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% enforce losses

f(1:N) = f(1:N) + lhs1*tau;

h(1:N) = h(1:N) + lhs2*tau;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Tolerance Check %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [rho]=TimeStepCheck(f,ffull,fhalf,N);

atol=1e-6;

rtol=1e-6;

rho=sum(((fhalf-ffull)./(atol+rtol.*abs(f))).^2);

rho=(sqrt(rho/N))/3;

end
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Appendix C

Matlab Code, Two Dimensions

The input files for the two dimensional model as developed in Chapter 5.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Main Matlab File %

% 2D Model %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

warning off all

% --------------------- INITIALIZE VARIABLES --------------------

N=50; % number of grid points along both axes

Lx=1.0; Ly=Lx; % domain length, width

deltx=Lx/(100-1); % domain discretisation

delty=deltx;

endtime=0.001; % end time of simulation

tau=1e-7; % time step

Df=zeros(N,N); % diffusion matricies

Dh=zeros(N,N);

Dcoeff=5; % default diffusion coefficient

lossesf=[0]; % losses due to firing effects, force f

lossesh=[0]; % losses due to firing effects, force h

timevec=[0];

% ------------------ INITIALISE FORCE PROFILES ------------------

f=zeros(N,N); % initialise force f to zero

h=zeros(N,N); % initialise force h to zero

ffull=zeros(N,N); % initialise force f temp matricies to zero

fhalf=zeros(N,N);

hfull=zeros(N,N); % initialise force h temp matricies to zero

hhalf=zeros(N,N);

[X,Y]=meshgrid(1:N,1:N);

% initialise force f profile

rho=5; mux=18; muy=15;

f=5/(rho*sqrt(2*pi))^0.5*exp(-((X-mux).^2+(Y-muy).^2)./(2*rho^2));

f=(f>1).*8;

% initialise force h profile

rho=5; mux=32; muy=35;

h=5/(rho*sqrt(2*pi))^0.5*exp(-((X-mux).^2+(Y-muy).^2)./(2*rho^2));
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h=(h>1).*8;

% initialise convection, attraction, repulsion strengths and ranges

faey=60*ones(N,N); fAay=5; fAry=0.5; fray=5; frry=5;

faex=60*ones(N,N); fAax=5; fArx=0.5; frax=5; frrx=5;

haey=-60*ones(N,N); hAay=5; hAry=0.5; hray=5; hrry=5;

haex=-60*ones(N,N); hAax=5; hArx=0.5; hrax=5; hrrx=5;

% ranges and thresholds for attack metapersonality

frc=5; fNc=1000;

hrc=5; hNc=1000;

% type of attack metapersonality

fattack=-1;

hattack=-1;

% -------------------- CONVOLUTION KERNELS ----------------------

M=2*N-1;

a=ones(M,1)*(1:M)-(1:M)’*(ones(M,1))’;

d=zeros(M,M);

for i=1:M

d(i,:)=sqrt(a(i,(M+1)/2).^2+a((M+1)/2,:).^2);

end

% attraction kernels for force f and h

fdax=(d<=frax)*1; fdax(1:N,:)=-1*fdax(1:N,:);

fdax(N,:)=0; fdax=fdax(N-frax:N+frax,N-fray:N+fray);

hdax=(d<=hrax)*1; hdax(1:N,:)=-1*hdax(1:N,:);

hdax(N,:)=0; hdax=hdax(N-hrax:N+hrax,N-hray:N+hray);

% repulsion kernels for force f and h

fdrx=(d<=frrx)*1; fdrx(1:N,:)=-1*fdrx(1:N,:);

fdrx(N,:)=0; fdrx=fdrx(N-frrx:N+frrx,N-frry:N+frry);

hdrx=(d<=hrrx)*1; hdrx(1:N,:)=-1*hdrx(1:N,:);

hdrx(N,:)=0; hdrx=hdrx(N-hrrx:N+hrrx,N-hrry:N+hrry);

% kernels for calculating friendlies and enemies

fdtr=(d<=frc)*1; fdtr=fdtr(N-frc:N+frc,N-frc:N+frc);

hdtr=(d<=hrc)*1; hdtr=hdtr(N-hrc:N+hrc,N-hrc:N+hrc);

% kernels for calculating friendly and enemy centres of mass

fdcx=(d<=frc)*1; fdcx(1:N,:)=-1*fdcx(1:N,:); fdcx(N,N)=0;

fdcx(N,:)=0; fdcx=fdcx(N-frc:N+frc,N-frc:N+frc);

hdcx=(d<=hrc)*1; hdcx(1:N,:)=1*hdcx(1:N,:); hdcx(N,N)=0;

hdcx(N,:)=0; hdcx=hdcx(N-hrc:N+hrc,N-hrc:N+hrc);

% -------------------- INITIALISE GRAPHING ----------------------

initialnumberf=sum(sum(f));
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initialnumberh=sum(sum(h));

step=1;

% main figure for movie

w=figure(1);

tripleplot(w,f,h,0);

F(1)=getframe(w);

% 3D snapshots

w=figure(2);

clf

h1=subplot(3,4,1);

subplotRB3D(h1,f,h,0);

% 2D snapshots

w=figure(3);

clf

h1=subplot(3,4,1);

subplotRB2D(h1,f,h,0);

% -------------------------- MAIN LOOP --------------------------

count=0; % counter for displaying figures

rejcount=0; % counter for rejected steps

imgcount=2; % counter for movie

currenttime=0;

t0=clock;

stophere=endtime/10; % 10 snapshots per run

stopcount=2;

while currenttime < endtime

% keep a copy in case step rejected

f_old=f; h_old=h;

% Force f

% one full time step

Df=(f>0.1*fAax/fArx).*Dcoeff+(f<=0.1*fAax/fArx).*Dcoeff.*f;

ffull(2:N-1,2:N-1)=ffull(2:N-1,2:N-1)+(tau/deltx^2)*...

(0.5*(Df(3:N,2:N-1)+Df(2:N-1,2:N-1)).*(ffull(3:N,2:N-1)-...

ffull(2:N-1,2:N-1))-0.5*(Df(2:N-1,2:N-1)+Df(1:N-2,2:N-1)).*...

(ffull(2:N-1,2:N-1)-ffull(1:N-2,2:N-1)))+...

(tau/delty^2)*(0.5*(Df(2:N-1,3:N)+Df(2:N-1,2:N-1)).*...

(ffull(2:N-1,3:N)-ffull(2:N-1,2:N-1))-0.5*(Df(2:N-1,2:N-1)+...

Df(2:N-1,1:N-2)).*(ffull(2:N-1,2:N-1)-ffull(2:N-1,1:N-2)));

ffull(1,1:N)=ffull(1,1:N)+(tau/deltx^2)*...

(0.5*(Df(2,1:N)+Df(1,1:N)).*(ffull(2,1:N)-ffull(1,1:N))-...

0.5*(Df(1,1:N)+Df(N,1:N)).*(ffull(1,1:N)-ffull(N,1:N)));

ffull(N,1:N)=ffull(N,1:N)+(tau/deltx^2)*...

211



(0.5*(Df(1,1:N)+Df(N,1:N)).*(ffull(1,1:N)-ffull(N,1:N))-...

0.5*(Df(N,1:N)+Df(N-1,1:N)).*(ffull(N,1:N)-ffull(N-1,1:N)));

ffull(1:N,1)=ffull(1:N,1)+(tau/delty^2)*...

(0.5*(Df(1:N,2)+Df(1:N,1)).*(ffull(1:N,2)-ffull(1:N,1))-...

0.5*(Df(1:N,1)+Df(1:N,N)).*(ffull(1:N,1)-ffull(1:N,N)));

ffull(1:N,N)=ffull(1:N,N)+(tau/delty^2)*...

(0.5*(Df(1:N,1)+Df(1:N,N)).*(ffull(1:N,1)-ffull(1:N,N))-...

0.5*(Df(1:N,N)+Df(1:N,N-1)).*(ffull(1:N,N)-ffull(1:N,N-1)));

ffull=RK2D(f,h,N,deltx,delty,tau,-fAax*fdax,fArx*fdrx,faex,...

faey,frax,frrx,fdcx,fdtr,fNc,fattack);

% two half steps

fhalf(2:N-1,2:N-1)=fhalf(2:N-1,2:N-1)+((tau/2)/deltx^2)*...

(0.5*(Df(3:N,2:N-1)+Df(2:N-1,2:N-1)).*(fhalf(3:N,2:N-1)-...

fhalf(2:N-1,2:N-1))-0.5*(Df(2:N-1,2:N-1)+Df(1:N-2,2:N-1)).*...

(fhalf(2:N-1,2:N-1)-fhalf(1:N-2,2:N-1)))+((tau/2)/delty^2)*...

(0.5*(Df(2:N-1,3:N)+Df(2:N-1,2:N-1)).*(fhalf(2:N-1,3:N)-...

fhalf(2:N-1,2:N-1))-0.5*(Df(2:N-1,2:N-1)+Df(2:N-1,1:N-2)).*...

(fhalf(2:N-1,2:N-1)-fhalf(2:N-1,1:N-2)));

fhalf(1,1:N)=fhalf(1,1:N)+(tau/deltx^2)*...

(0.5*(Df(2,1:N)+Df(1,1:N)).*(fhalf(2,1:N)-fhalf(1,1:N))-...

0.5*(Df(1,1:N)+Df(N,1:N)).*(fhalf(1,1:N)-fhalf(N,1:N)));

fhalf(N,1:N)=fhalf(N,1:N)+(tau/deltx^2)*....

(0.5*(Df(1,1:N)+Df(N,1:N)).*(fhalf(1,1:N)-fhalf(N,1:N))-...

0.5*(Df(N,1:N)+Df(N-1,1:N)).*(fhalf(N,1:N)-fhalf(N-1,1:N)));

fhalf(1:N,1)=fhalf(1:N,1)+(tau/delty^2)*...

(0.5*(Df(1:N,2)+Df(1:N,1)).*(fhalf(1:N,2)-fhalf(1:N,1))-...

0.5*(Df(1:N,1)+Df(1:N,N)).*(fhalf(1:N,1)-fhalf(1:N,N)));

fhalf(1:N,N)=fhalf(1:N,N)+(tau/delty^2)*...

(0.5*(Df(1:N,1)+Df(1:N,N)).*(fhalf(1:N,1)-fhalf(1:N,N))-...

0.5*(Df(1:N,N)+Df(1:N,N-1)).*(fhalf(1:N,N)-fhalf(1:N,N-1)));

fhalf=RK2D(f,h,N,deltx,delty,tau/2,-fAax*fdax,fArx*fdrx,faex,...

faey,frax,frrx,fdcx,fdtr,fNc,fattack);

Df=(fhalf>0.1*fAax/fArx).*Dcoeff+...

(fhalf<=0.1*fAax/fArx).*Dcoeff.*fhalf;

fhalf(2:N-1,2:N-1)=fhalf(2:N-1,2:N-1)+((tau/2)/deltx^2)*...

(0.5*(Df(3:N,2:N-1)+Df(2:N-1,2:N-1)).*(fhalf(3:N,2:N-1)-...

fhalf(2:N-1,2:N-1))-0.5*(Df(2:N-1,2:N-1)+Df(1:N-2,2:N-1)).*...

(fhalf(2:N-1,2:N-1)-fhalf(1:N-2,2:N-1)))+((tau/2)/delty^2)*...

(0.5*(Df(2:N-1,3:N)+Df(2:N-1,2:N-1)).*(fhalf(2:N-1,3:N)-...

fhalf(2:N-1,2:N-1))-0.5*(Df(2:N-1,2:N-1)+Df(2:N-1,1:N-2)).*...

(fhalf(2:N-1,2:N-1)-fhalf(2:N-1,1:N-2)));

fhalf(1,1:N)=fhalf(1,1:N)+((tau/2)/deltx^2)*...

(0.5*(Df(2,1:N)+Df(1,1:N)).*(fhalf(2,1:N)-fhalf(1,1:N))-...

0.5*(Df(1,1:N)+Df(N,1:N)).*(fhalf(1,1:N)-fhalf(N,1:N)));
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fhalf(N,1:N)=fhalf(N,1:N)+((tau/2)/deltx^2)*...

(0.5*(Df(1,1:N)+Df(N,1:N)).*(fhalf(1,1:N)-fhalf(N,1:N))-...

0.5*(Df(N,1:N)+Df(N-1,1:N)).*(fhalf(N,1:N)-fhalf(N-1,1:N)));

fhalf(1:N,1)=fhalf(1:N,1)+((tau/2)/delty^2)*...

(0.5*(Df(1:N,2)+Df(1:N,1)).*(fhalf(1:N,2)-fhalf(1:N,1))-...

0.5*(Df(1:N,1)+Df(1:N,N)).*(fhalf(1:N,1)-fhalf(1:N,N)));

fhalf(1:N,N)=fhalf(1:N,N)+((tau/2)/delty^2)*...

(0.5*(Df(1:N,1)+Df(1:N,N)).*(fhalf(1:N,1)-fhalf(1:N,N))-...

0.5*(Df(1:N,N)+Df(1:N,N-1)).*(fhalf(1:N,N)-fhalf(1:N,N-1)));

fhalf=RK2D(fhalf,h,N,deltx,delty,tau/2,-fAax*fdax,fArx*fdrx,...

faex,faey,frax,frrx,fdcx,fdtr,fNc,fattack);

% tolerance checking for Force f

rhof=TimeStepCheck2D(f,ffull,fhalf,N,N);

% Force h

% one full time step

Dh=(h>0.1*hAax/hArx).*Dcoeff+(h<=0.1*hAax/hArx).*Dcoeff.*h;

hfull(2:N-1,2:N-1)=hfull(2:N-1,2:N-1)+(tau/deltx^2)*...

(0.5*(Dh(3:N,2:N-1)+Dh(2:N-1,2:N-1)).*(hfull(3:N,2:N-1)-...

hfull(2:N-1,2:N-1))-0.5*(Dh(2:N-1,2:N-1)+Dh(1:N-2,2:N-1)).*...

(hfull(2:N-1,2:N-1)-h(1:N-2,2:N-1)))+(tau/delty^2)*...

(0.5*(Dh(2:N-1,3:N)+Dh(2:N-1,2:N-1)).*(hfull(2:N-1,3:N)-...

hfull(2:N-1,2:N-1))-0.5*(Dh(2:N-1,2:N-1)+Dh(2:N-1,1:N-2)).*...

(hfull(2:N-1,2:N-1)-hfull(2:N-1,1:N-2)));

hfull(1,1:N)=hfull(1,1:N)+(tau/deltx^2)*...

(0.5*(Dh(2,1:N)+Dh(1,1:N)).*(hfull(2,1:N)-hfull(1,1:N))-...

0.5*(Dh(1,1:N)+Dh(N,1:N)).*(hfull(1,1:N)-hfull(N,1:N)));

hfull(N,1:N)=hfull(N,1:N)+(tau/deltx^2)*...

(0.5*(Dh(1,1:N)+Dh(N,1:N)).*(hfull(1,1:N)-hfull(N,1:N))-...

0.5*(Dh(N,1:N)+Dh(N-1,1:N)).*(hfull(N,1:N)-hfull(N-1,1:N)));

hfull(1:N,1)=hfull(1:N,1)+(tau/delty^2)*...

(0.5*(Dh(1:N,2)+Dh(1:N,1)).*(hfull(1:N,2)-hfull(1:N,1))-...

0.5*(Dh(1:N,1)+Dh(1:N,N)).*(hfull(1:N,1)-hfull(1:N,N)));

hfull(1:N,N)=hfull(1:N,N)+(tau/delty^2)*...

(0.5*(Dh(1:N,1)+Dh(1:N,N)).*(hfull(1:N,1)-hfull(1:N,N))-...

0.5*(Dh(1:N,N)+Dh(1:N,N-1)).*(hfull(1:N,N)-hfull(1:N,N-1)));

hfull=RK2D(h,f,N,deltx,delty,tau,-hAax*hdax,hArx*hdrx,haex,...

haey,hrax,hrrx,hdcx,hdtr,hNc,hattack);

% two half steps

hhalf(2:N-1,2:N-1)=hhalf(2:N-1,2:N-1)+((tau/2)/deltx^2)*...

(0.5*(Dh(3:N,2:N-1)+Dh(2:N-1,2:N-1)).*(hhalf(3:N,2:N-1)-...

hhalf(2:N-1,2:N-1))-0.5*(Dh(2:N-1,2:N-1)+Dh(1:N-2,2:N-1)).*...

(hhalf(2:N-1,2:N-1)-hhalf(1:N-2,2:N-1)))+((tau/2)/delty^2)*...
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(0.5*(Dh(2:N-1,3:N)+Dh(2:N-1,2:N-1)).*(hhalf(2:N-1,3:N)-...

hhalf(2:N-1,2:N-1))-0.5*(Dh(2:N-1,2:N-1)+Dh(2:N-1,1:N-2)).*...

(hhalf(2:N-1,2:N-1)-hhalf(2:N-1,1:N-2)));

hhalf(1,1:N)=hhalf(1,1:N)+(tau/deltx^2)*...

(0.5*(Dh(2,1:N)+Dh(1,1:N)).*(hhalf(2,1:N)-hhalf(1,1:N))-...

0.5*(Dh(1,1:N)+Dh(N,1:N)).*(hhalf(1,1:N)-hhalf(N,1:N)));

hhalf(N,1:N)=hhalf(N,1:N)+(tau/deltx^2)*...

(0.5*(Dh(1,1:N)+Dh(N,1:N)).*(hhalf(1,1:N)-hhalf(N,1:N))-...

0.5*(Dh(N,1:N)+Dh(N-1,1:N)).*(hhalf(N,1:N)-hhalf(N-1,1:N)));

hhalf(1:N,1)=hhalf(1:N,1)+(tau/delty^2)*...

(0.5*(Dh(1:N,2)+Dh(1:N,1)).*(hhalf(1:N,2)-hhalf(1:N,1))-...

0.5*(Dh(1:N,1)+Dh(1:N,N)).*(hhalf(1:N,1)-hhalf(1:N,N)));

hhalf(1:N,N)=hhalf(1:N,N)+(tau/delty^2)*...

(0.5*(Dh(1:N,1)+Dh(1:N,N)).*(hhalf(1:N,1)-hhalf(1:N,N))-...

0.5*(Dh(1:N,N)+Dh(1:N,N-1)).*(hhalf(1:N,N)-hhalf(1:N,N-1)));

hhalf=RK2D(h,f,N,deltx,delty,tau/2,-hAax*hdax,hArx*hdrx,haex,...

haey,hrax,hrrx,hdcx,hdtr,hNc,hattack);

Dh=(hhalf>0.1*hAax/hArx).*Dcoeff+...

(hhalf<=0.1*hAax/hArx).*Dcoeff.*hhalf;

hhalf(2:N-1,2:N-1)=hhalf(2:N-1,2:N-1)+((tau/2)/deltx^2)*...

(0.5*(Dh(3:N,2:N-1)+Dh(2:N-1,2:N-1)).*(hhalf(3:N,2:N-1)-...

hhalf(2:N-1,2:N-1))-0.5*(Dh(2:N-1,2:N-1)+Dh(1:N-2,2:N-1)).*...

(hhalf(2:N-1,2:N-1)-hhalf(1:N-2,2:N-1)))+((tau/2)/delty^2)*...

(0.5*(Dh(2:N-1,3:N)+Dh(2:N-1,2:N-1)).*(hhalf(2:N-1,3:N)-...

hhalf(2:N-1,2:N-1))-0.5*(Dh(2:N-1,2:N-1)+Dh(2:N-1,1:N-2)).*...

(hhalf(2:N-1,2:N-1)-hhalf(2:N-1,1:N-2)));

hhalf(1,1:N)=hhalf(1,1:N)+((tau/2)/deltx^2)*...

(0.5*(Dh(2,1:N)+Dh(1,1:N)).*(hhalf(2,1:N)-hhalf(1,1:N))-...

0.5*(Dh(1,1:N)+Dh(N,1:N)).*(hhalf(1,1:N)-hhalf(N,1:N)));

hhalf(N,1:N)=hhalf(N,1:N)+((tau/2)/deltx^2)*...

(0.5*(Dh(1,1:N)+Dh(N,1:N)).*(hhalf(1,1:N)-hhalf(N,1:N))-...

0.5*(Dh(N,1:N)+Dh(N-1,1:N)).*(hhalf(N,1:N)-hhalf(N-1,1:N)));

hhalf(1:N,1)=hhalf(1:N,1)+((tau/2)/delty^2)*...

(0.5*(Dh(1:N,2)+Dh(1:N,1)).*(hhalf(1:N,2)-hhalf(1:N,1))-...

0.5*(Dh(1:N,1)+Dh(1:N,N)).*(hhalf(1:N,1)-hhalf(1:N,N)));

hhalf(1:N,N)=hhalf(1:N,N)+((tau/2)/delty^2)*...

(0.5*(Dh(1:N,1)+Dh(1:N,N)).*(hhalf(1:N,1)-hhalf(1:N,N))-...

0.5*(Dh(1:N,N)+Dh(1:N,N-1)).*(hhalf(1:N,N)-hhalf(1:N,N-1)));

hhalf=RK2D(hhalf,f,N,deltx,delty,tau/2,-hAax*hdax,hArx*hdrx,...

haex,haey,hrax,hrrx,hdcx,hdtr,hNc,hattack);

% tolerance checking for force h

rhoh=TimeStepCheck2D(h,hfull,hhalf,N,N);

%--------------------------------------------------------------
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tauold=tau;

rho=max(rhof,rhoh);

tau=tau*min(2,max((0.8/(nthroot(rho,3))),0.25));

if rho>1 | isnan(rho)==1

% step rejected

[’rejected:’ int2str(rejcount)]

rejcount=rejcount+1;

f=f_old; h=h_old;

continue

else

count=count+1;

f=fhalf;

h=hhalf;

currenttime=currenttime+tau;

% check if coming toward end of simulation and adjust tau

% if necessary

if endtime-currenttime<tau

tau=endtime-currenttime;

end

timevec(count)=currenttime;

lossesf(count)=sum(sum(f));

lossesh(count)=sum(sum(h));

% calculate firing effects btween forces

[f,h,areafiref,aimedfiref,areafireh,aimedfireh]=...

areafire2D(f,h,deltx,delty,N,N,d,tauold/delt);

end

% capture figure for movie

if mod(count,40)==0

w=figure(1);

tripleplot(w,f,h,currenttime);

F(imgcount)=getframe(w);

imgcount=imgcount+1;

currenttime

[’f:’ int2str(sum(sum(f))) ’, h:’ int2str(sum(sum(h)))]

end

if currenttime>stophere

w=figure(2);

h1=subplot(3,4,stopcount);

subplotRB3D(h1,f,h,currenttime);

w=figure(3);

h1=subplot(3,4,stopcount);

subplotRB2D(h1,f,h,currenttime);

stophere=stophere+endtime/10;

stopcount=stopcount+1;
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end

end

% ------------------ OUTPUTS, FIGURES & MOVIES ------------------

[’Initial F:’ int2str(initialnumberf) ’,...

Initial H:’ int2str(initialnumberh)]

[’Final F:’ int2str(sum(sum(f))) ’, Final H:’ int2str(sum(sum(h)))]

rejcount

w=figure(2);

saveas(w,’EinAll3D.fig’)

saveas(w,’EinAll3D.eps’, ’psc2’)

w=figure(3);

saveas(w,’EinAll2D.fig’)

saveas(w,’EinAll2D.eps’, ’psc2’)

w=figure(4);

clf

plot(timevec,lossesf,’r --’,’LineWidth’,2,’DisplayName’,’Force 1’)

hold all

plot(timevec,lossesh,’b :’,’LineWidth’,2,’DisplayName’,’Force 2’)

legend(’show’)

xlabel(’Time’)

ylabel(’Total Density’)

saveas(w,’losses.fig’)

saveas(w,’losses.eps’, ’psc2’)

movie2avi(F,’Ein.avi’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Runge Kutta %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [f_new]=RK2D(f,h,N,deltx,delty,tau,da,dr,aex,aey,...

rax,rrx,dcx,dtr,Nc,attack);

% Runge_Kutta

[fluxx,fluxy]=flux2Dsub(f,h,N,da,dr,aex,aey,rax,...

rrx,dcx,dtr,Nc,attack);

k1x(2:N,:)=(-1/deltx).*(fluxx(2:N,:)-fluxx(1:N-1,:));

k1x(1,:)=(-1/deltx).*(fluxx(1,:)-fluxx(N,:));

k1y(:,2:N)=(-1/delty).*(fluxy(:,2:N)-fluxy(:,1:N-1));

k1y(:,1)=(-1/delty).*(fluxy(:,1)-fluxy(:,N));

[fluxx,fluxy]=flux2Dsub(f+tau/2.*k1x+tau/2.*k1y,h,N,da,...

dr,aex,aey,rax,rrx,dcx,dtr,Nc,attack);
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k2x(2:N,:)=(-1/deltx).*(fluxx(2:N,:)-fluxx(1:N-1,:));

k2x(1,:)=(-1/deltx).*(fluxx(1,:)-fluxx(N,:));

k2y(:,2:N)=(-1/delty).*(fluxy(:,2:N)-fluxy(:,1:N-1));

k2y(:,1)=(-1/delty).*(fluxy(:,1)-fluxy(:,N));

[fluxx,fluxy]=flux2Dsub(f+tau/2.*k1x+tau/2.*k1y+tau/2.*...

k2x+tau/2.*k2y,h,N,da,dr,aex,aey,rax,rrx,dcx,dtr,Nc,attack);

k3x(2:N,:)=(-1/deltx).*(fluxx(2:N,:)-fluxx(1:N-1,:));

k3x(1,:)=(-1/deltx).*(fluxx(1,:)-fluxx(N,:));

k3y(:,2:N)=(-1/delty).*(fluxy(:,2:N)-fluxy(:,1:N-1));

k3y(:,1)=(-1/delty).*(fluxy(:,1)-fluxy(:,N));

f_new=f+(tau/3)*(k1x+k2x+k3x)+(tau/3)*(k1y+k2y+k3y);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Flux and Limiter Calculation %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [fluxx,fluxy]=flux2Dsub(f,h,N,dax,drx,aex,aey,...

rax,rrx,dcx,dtr,Nc,attack);

eps=1e-30;

gx=zeros(N,N); gy=zeros(N,N);

speedx=zeros(N,N); speedy=zeros(N,N);

rx=zeros(N,N); ry=zeros(N,N);

thetax=zeros(N,N); thetay=zeros(N,N);

fluxx=zeros(N,N); fluxy=zeros(N,N);

day=dax’; dry=drx’; dcy=dcx’;

% -------------------------------------------------------------

% For including metapersonality approximation

numhx=conv2(h,-dcx,’same’);

numhy=conv2(h,-dcy,’same’);

friendly=conv2(f,dtr,’same’);

enemy=conv2(h,dtr,’same’);

testx=(enemy>0.5).*(((friendly-enemy)>=Nc).*numhx+...

((friendly-enemy)<Nc).*numhx*attack);

testy=(enemy>0.5).*(((friendly-enemy)>=Nc).*numhy+...

((friendly-enemy)<Nc).*numhy*attack);

attrepx=conv2(f,dax,’same’)+f.*conv2(f,drx,’same’);

attrepy=conv2(f,day,’same’)+f.*conv2(f,dry,’same’);
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speedx=aex+testx+attrepx;

speedy=aey+testy+attrepy;

% -------------------------------------------------------------

% -------------------------------------------------------------

% For simple movement throughout domain

%

% speedx = aex + conv2(f,dax,’same’) + f.*conv2(f,drx,’same’);

% speedy = aey + conv2(f,day,’same’) + f.*conv2(f,dry,’same’);

% -------------------------------------------------------------

gx=speedx.*f;

gy=speedy.*f;

rx(2:N-1,:)=(gx(3:N,:)-gx(2:N-1,:)+eps)./...

(gx(2:N-1,:)-gx(1:N-2,:)+eps);

rx(1,:)=(gx(2,:)-gx(1,:)+eps)./(gx(1,:)-gx(N,:)+eps);

rx(N,:)=(gx(1,:)-gx(N,:)+eps)./(gx(N,:)-gx(N-1,:)+eps);

ry(:,2:N-1)=(gy(:,3:N)-gy(:,2:N-1)+eps)./...

(gy(:,2:N-1)-gy(:,1:N-2)+eps);

ry(:,1)=(gy(:,2)-gy(:,1)+eps)./(gy(:,1)-gy(:,N)+eps);

ry(:,N)=(gy(:,1)-gy(:,N)+eps)./(gy(:,N)-gy(:,N-1)+eps);

thetax=(rx+abs(rx))./(1+abs(rx));

thetaxinv=(rx.^(-1)+abs(rx.^(-1)))./(1+abs(rx.^(-1)));

thetay=(ry+abs(ry))./(1+abs(ry));

thetayinv=(ry.^(-1)+abs(ry.^(-1)))./(1+abs(ry.^(-1)));

for i=1:N

for j=1:N

if f(i,j)>0

if speedx(i,j)>0

if i==1

fluxx(1,j)=(gx(1,j)+0.5.*thetax(1,j).*(gx(1,j)-gx(N,j)));

else

fluxx(i,j)=(gx(i,j)+...

0.5.*thetax(i,j).*(gx(i,j)-gx(i-1,j)));

end

elseif speedx(i,j)<0

if i==1

temp=(gx(1,j)+...

0.5.*thetaxinv(1,j).*(gx(1,j)-gx(2,j)));

fluxx(N,j)=fluxx(N,j)+temp;

elseif i==N

temp=(gx(N,j)+...

0.5.*thetaxinv(N,j).*(gx(N,j)-gx(1,j)));

fluxx(N-1,j)=fluxx(N-1,j)+temp;
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else

temp=(gx(i,j)+...

0.5.*thetaxinv(i,j).*(gx(i,j)-gx(i+1,j)));

fluxx(i-1,j)=fluxx(i-1,j)+temp;

end

else

fluxx(i,j)=0;

end

if speedy(i,j)>0

if j==1

fluxy(i,1)=(gy(i,1)+...

0.5.*thetay(i,1).*(gy(i,1)-gy(i,N)));

else

fluxy(i,j)=(gy(i,j)+...

0.5.*thetay(i,j).*(gy(i,j)-gy(i,j-1)));

end

elseif speedy(i,j)<0

if j==1

temp=(gy(i,1)+...

0.5.*thetayinv(i,1).*(gy(i,1)-gy(i,2)));

fluxy(i,N)=fluxy(i,N)+temp;

elseif j==N

temp=(gy(i,N)+...

0.5.*thetayinv(i,N).*(gy(i,N)-gy(i,1)));

fluxy(i,N-1)=fluxy(i,N-1)+temp;

else

temp=(gy(i,j)+...

0.5.*thetayinv(i,j).*(gy(i,j)-gy(i,j+1)));

fluxy(i,j-1)=fluxy(i,j-1)+temp;

end

else

fluxy(i,j)=0;

end

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Tolerance Check %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [rho]=TimeStepCheck2D(f,ffull,fhalf,N,M);

atol=1e-3;

rtol=1e-3;
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rho=sum(sum(((fhalf-ffull)./(atol+rtol.*abs(f))).^2));

rho=(sqrt(rho/(N*M)))/3;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Firing Effects %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [f,h,areafiref,aimedfiref,areafireh,aimedfireh] = ...

areafire2D(f,h,deltx,delty,N,M,d,tau);

gammaf2=0; % aimed fire constants

vf=0; % area fire constants

gammaf1=0; % area fire constants

betah2=0; % aimed fire constants

vh=0; % area fire constants

betah1=0; % area fire constants

%optimalrange=15;

areafiref=zeros(N,M); aimedfiref=zeros(N,M);

areafireh=zeros(N,M); aimedfireh=zeros(N,M);

lhsf=zeros(N,M); lhsh=zeros(N,M);

% this is the rifle area fire term

areafiref=conv2(h,exp(-vf.*d*deltx*delty),’same’);

% for an alternate artillery form of area fire, use:

% conv2(h,exp(-vf.*abs(d-optimalrange)*deltx*delty),’same’)

areafiref=-gammaf1*f.*areafiref;

aimedfiref=-gammaf2.*f.*h;

lhsf=areafiref + aimedfiref;

lhsf=lhsf.*tau;

areafireh=conv2(f,exp(-vh.*d*deltx*delty),’same’);

areafireh=-betah1*h.*areafireh;

aimedfireh=-betah2.*f.*h;

lhsh=areafireh+aimedfireh;

lhsh=lhsh.*tau;

f=f+lhsf;

h=h+lhsh;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Graphing Routine, 2D Snapshots %
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function subplotRB2D(f,zdata1,zdata2,currenttime)

set(f,’FontSize’,10);

axis(f,[0 50 0 50]);

title([’Time = ’ num2str(currenttime,’%6.5f’)],’FontSize’,10);

axis square

box(’on’);

hold(’all’);

contour1=contour(zdata1,’DisplayName’,’Force 1’,...

’LevelList’,[1:1:10],’LineWidth’,1);

contour2=contour(zdata2,’DisplayName’,’Force 2’,...

’LevelList’,[1:1:10],’LineStyle’,’:’,’LineWidth’,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Graphing Routine, 3D Snapshots %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function subplotRB3D(f,zdata1,zdata2,currenttime)

colormap autumn

set(f,’FontSize’,10);

axis(f,[0 50 0 50 0 14]);

title([’Time = ’ num2str(currenttime,’%6.5f’)],’FontSize’,10);

view([25 31]);

grid(’on’);

hold(’all’);

%% Create surf

surf1=surf(zdata1,’EdgeColor’,[1 0 0],’FaceAlpha’,0.4,...

’FaceColor’,[1 0 0],’DisplayName’,’Force 1’);

surf2=surf(zdata2,’EdgeColor’,[0 0 1],’FaceAlpha’,0.4,...

’FaceColor’,[0 0 1],’DisplayName’,’Force 2’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Graphing Routine, 2D and 3D for Movies %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function tripleplot(f,zdata1,zdata2,currenttime)

clf

set(f,’PaperPosition’,[0.6345 6.345 20.3 15.23],...

’PaperSize’,[20.98 29.68],’Position’,[720 40 560 910]);
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axes1=axes(’Layer’,’top’,’Position’,[0.1131 0.5209 ...

0.7974 0.4334],’CLim’,[1 10],’FontSize’,10,’Parent’,f);

axis(axes1,[0 50 0 50]);

axis square

title(axes1,[’Time = ’ num2str(currenttime,’%6.5f’)]);

box(axes1,’on’);

hold(axes1,’all’);

contour1=contour(zdata1,’Parent’,axes1,’DisplayName’,’Force 1’,...

’LevelList’,[1:1:10],’LineWidth’,1);

contour2=contour(zdata2,’Parent’,axes1,’DisplayName’,’Force 2’,...

’LevelList’,[1:1:10],’LineWidth’,1); %’LineStyle’,’:’,

colorbar1=colorbar(’peer’,axes1,’EastOutside’,...

’Box’,’on’,’FontSize’,10);

axes2=axes(’Position’,[0.13 0.13 0.775 0.3363],...

’FontSize’,10,’Parent’,f);

axis(axes2,[0 50 0 50 0 12]);

zlabel(axes2,’Density’);

view(axes2,[25 31]);

grid(axes2,’on’);

hold(axes2,’all’);

surf1=surf(zdata1,’EdgeColor’,[1 0 0],’FaceAlpha’,0.4,...

’FaceColor’,[1 0 0],’Parent’,axes2);

surf2=surf(zdata2,’EdgeColor’,[0 0 1],’FaceAlpha’,0.4,...

’FaceColor’,[0 0 1],’Parent’,axes2);

annotation1=annotation(...

f,’textbox’,’Position’,[0.05208 0.02183 0.8943 0.06],...

’FitHeightToText’,’off’,’FontSize’,10,...

’String’,{’Standard Simulation.’,’Comments Here.’});
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