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Abstract

The acoustic-structure interaction commonly exists in numerous civil and mechani-

cal engineering applications, such as dam-reservoir interaction system, air-coupled

ultrasonic testing and the design of underwater structures. In all these applications,

the acoustic domains are usually infinitely large. Moreover, the distinct physical

properties of acoustic and structural domains lead to the preference of using diffe-

rent mesh sizes for each domain in numerical modelling. Due to the intrinsic nature

of scaled boundary finite element method in modelling unbounded domain and its

versatility in mesh generation. This thesis presents the developments of this method

for simulating 2D and 3D acoustic-structure interaction systems by considering the

infinite acoustic domain and structural elastoplasticity, which frequently appears

under strong excitations.

The high-order doubly-asymptotic open boundary is developed to simulate the

wave propagation in 2D and 3D exterior acoustics accurately and efficiently. This is

accomplished by solving the scale boundary finite element equation for unbounded

acoustic domain in the frequency domain using doubly-asymptotic continued fracti-

ons. Via introducing the auxiliary variables, this open boundary can be formulated

into a system of time-domain equations and thus suitable for non-linear analysis.

For the elastoplastic analysis of structures, the efficient scaled boundary for-

mulation for elastoplasticity with stabilization is extended to 3D analysis. In this

formulation, the computationally expensive return-mapping algorithm is only requi-

red to be performed at scaling centres as the elastoplastic constitutive matrices and
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internal stresses are assumed to be constants within each subdomain. Stabilisation

matrices are introduces to control spurious modes. Additionally, Newmark’s scheme

is employed for dynamic elastoplastic analysis.

Mesh generation from the STL models of the whole system and mesh transition

on the acoustic-structure interface, especially for 3D models with complex geometry,

can be easily addressed with automatic mesh generation techniques, which benefit

from the boundary discretization in scaled boundary finite element method. Both

2D and 3D numerical examples are presented in this thesis to highlight the accuracy,

efficiency and robustness of the proposed techniques for the numerical simulations

of acoustics, elastoplastic structures and acoustic-structure interaction problems.
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“Success is not final, failure is not fatal. It is the courage to continue that

counts.”

Winston Churchill (1874− 1965)
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Chapter 1

Introduction

1.1 Background

In numerous engineering and physical systems, the dynamic interactions between

man-made structures and acoustic media are inevitable due to the ubiquity of acou-

stic media, such as water and air. The modelling of these dynamic interactions

are of great significance in various of practical problems including the sound pro-

pagation into ears, radiation of sound from bells, dam-reservoir interaction, noise

control in high-speed rail way and the designs of microphones and speakers. In

some of these problems, the sound radiated into the acoustic field is caused by the

vibration of structures or the structural vibration is induced by the incident sound

wave. This type of acoustic-structure interaction problems, which is also known as

the vibroacoustics, is studied in this thesis. The acoustic media investigated in this

research are assumed to be compressible but irrotational and inviscid and undergo

small perturbations from the equilibrium hydrostatic state. In addition, the acou-

stic media can be infinite or semi-infinite for representing the environment, such

as the atmosphere, ocean, lake or reservoir, surrounding the structure. In another

type of acoustic-structure interaction problems, which is commonly known as the

aeroacoustics, the generation of acoustic waves is caused by the interactions between
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unsteady fluid flows and structures. Typical examples of aeroacoustics include the

noise from the rotation of propeller and voice generated from human vocal cord. The

considerations of aeroacoustics are out of the scope of present work. In the following

part of this section, some of the early works on acoustic-structure interactions are

introduced.

In a broader sense, the problems on the interaction between fluids, including

acoustics, and structures are old and relevant studies can be traced back to eig-

hteenth century. In 1779, Pierre Louis Gabriel Du Buat (Du Buat et al., 1779)

observed the vibrations of submerged spherical pendulums made of glass, lead and

wood in water. According to the results from observations, He concluded that the

effect of surrounding fluid on the vibrating solid is approximately equal to the in-

crease of its mass by one-half the mass of fluid, which is displaced by the submerged

solid. Since then, a variety of experiments and analyses were performed to investi-

gate the influence of fluid media on the responses of submerged structures (Stelson,

1955). Later, similar results were also published by Stokes in 1843 when he was stu-

dying the uniform acceleration of an infinitely long cylinder in infinite fluid medium

(Lamb, 1932). Although these early formulas proposed by Du Buat and Stokes for

evaluating the added mass on structure are limited to the geometry and boundary

conditions of the structures, these formulas for describing the interactions between

fluids and structures are simple and efficient.

The concept of added mess has been used to solve engineering problems and one

of the early studies is commenced on the dam-reservoir interaction analysis by Wes-

tergaard in 1933 for the design of Hoover dam located in Arizona, the United States

(Westergaard, 1933). In this study, Westergaard proposed a pioneering method to

estimate the response of a rigid rectangular dam subjected to the harmonic seismic

excitation and the reservoir in this coupled system is considered to be semi-infinite

with constant depth. The fluid of reservoir in the dynamic analysis is represented by

an added mass term and the inertial forces exerted by the added mess is assumed to
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be identical to the hydrodynamic pressure on the dam body. The conclusion states

that the distribution of hydrodynamic pressure applied on the dam wall is parabolic

and the applicability of the solution is limited to low excitation frequency.

Following Westergaard’s study mentioned above, a discussion about the hydro-

dynamic pressures on dams was published by von Karman et al. with the consi-

derations of flexibility of dam and length of reservoir (von Karman et al., 1933).

In terms of the reservoir length, it was found that the hydrodynamic pressure on

the dam is overestimated if the finite reservoir is assumed to be infinite. However,

when the length of reservoir approaches twice of its height, this overestimation is

negligible. As for the flexibility of dam, the conclusion implies that the considera-

tion of flexible dams makes no significant difference from the consideration of rigid

dams in the analysis of dam-reservoir interaction system. Despite the fact that these

conclusions are incorrect, the discussion by von Karman et al. was the first attempt

to investigate the flexibility of dam in the dam-reservoir system.

Hydrodynamic pressure in water tank under seismic loads was experimentally

and numerically studied by Hoskins and Jacobsen (Hoskins and Jacobsen, 1934).

Later, Jacobsen extended the above work to model fluid in cylindrical tank and

piers surrounded by fluid (Jacobsen, 1949). In order to calculate the hydrodynamic

pressure and height of free surface wave in fluid tank subjected to the horizontal

ground motion, Housner developed simplified formulas for containers with twofold

symmetry, dams with sloping faces and flexible retaining walls (Housner, 1957). In

this simplified approach, the fluid and structure are evaluated independently. First

of all, the hydrodynamic pressure of fluid is calculated via assuming the structure

is rigid. Next, the response of structure subjected to the hydrodynamic pressure

evaluated previously is obtained. Because it was widely believed during that period

of time that the hydrodynamic pressure calculated based on the assumption of rigid

structure is greater than the actual hydrodynamic pressure acting on the flexible

structure, the hydrodynamic pressures evaluated by this simplified approach should
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be conservative and lead to safe designs. As a result, this approach was widely

accepted and applied in the designs. However, the faultiness of those assumptions

and the inadequacy of this approach were evidenced by a number of structural fai-

lures during earthquakes. For example, in the United States, the Alaska earthquake

in 1964 caused failures of petrochemical tanks and catastrophic damages (Stein-

brugge, 1970). In 1971, the buckling of tanks and lift-off of anchored tanks from

foundations were observed after the earthquake happened in San Fernando, Califor-

nia. These evidences indicate that the aforementioned approach which considers the

uncoupled motions of fluid and structure leads to unsafe designs. Therefore, coupled

approaches were widely used in the designs of fluid-structure or acoustic-structure

interaction systems during recent decades (Belytschko, 1980; Liu and Chang, 1984;

Kulak, 1985; Hamdan, 1999).

1.2 Statement of problem

As mentioned at the end of last section that the uncoupling of acoustics and struc-

tural motions in the design may yield unsafe structures. This is especially true with

the occurrence of resonance between acoustic media and structures. Consequently,

coupling approaches are used in modern analysis of acoustic-structure interaction

systems. An illustration of a typical acoustic structure interaction system is given in

Figure 1.1. Except for the coupling of acoustic and structural domains, other factors

may also influence the accuracy of the modelling of acoustic-structure interaction

problems and should thus be considered in the pertinent researches. Among them,

one of the most important and challenging factors is the modelling of unbounded

acoustic media.

Accurate and efficient representation of the unbounded domain, or the far field, is

significant in modelling the wave propagation in the infinite extent of media. When

the waves, which could be elastic or acoustic, travel from the near field to the far field,
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Figure 1.1. Acoustic-structure interaction problems.

they will not be reflected back. This irreversible withdrawal of the energy carried by

waves from the near field to the far field causes damping effect on the wave amplitude

and are known as the radiation damping. The boundary condition at infinity in

the numerical modelling is also called the radiation condition. For modelling the

unbounded domain, the radiation condition indicates that the unbounded domain

should behave like an energy sink and the energy from the source must scatter

to infinity but must not radiate from infinity back to the near field. Therefore, the

radiation condition guarantees the uniqueness of the solutions to the boundary-value

problems. Arnold Sommerfeld defined the radiation condition for the propagation

of scalar wave governed by Helmholtz equation in 1949 (Sommerfeld, 1949). For the

acoustic wave governed by the Helmholtz equation, it can be written as

∇2p+ k2p = 0 (1.1)

where the ∇2 denotes the Laplace operator, k represents wavenumber and p is the

amplitude of acoustic wave. The Sommerfeld radiation condition for the solution of

p can be expressed by:

lim
r→∞

r
s−1
2

(
∂p(r)

∂r
+ ikp(r)

)
= 0 (1.2)

where s is the spacial dimension with s = 2 for 2D and s = 3 for 3D, r is the
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Figure 1.2. Acoustic wave (a) reflection on the truncated boundary and (b) propa-
gation into infinity.

radial coordinate and i is the imaginary unit. Only the outgoing waves can satisfy

Equation (1.2).

For the numerical modelling of unbounded domains with discretization schemes,

such as the finite element method, the finite mesh should be truncated at certain

distance. Simple boundary conditions, such as fixed boundaries in elastic analysis,

on the truncated boundary might be sufficient for static analysis. However, for the

dynamic analysis, the waves generated from the source of excitation or scatterer will

be reflected back on the truncated boundary and this does not satisfy the radiation

condition. This is shown in the two-dimensional acoustic problem in Figure 1.2. In

Figure 1.2(a), the infinite acoustic domain is truncated at certain distance to the

sound source. The acoustic wave propagates outwardly at first. When it impinges

the truncated boundary, it is reflected back and trapped inside the bounded acoustic

domain. However, for the acoustic wave propagation in real unbounded domain in

Figure 1.2(b), the wave should propagate outwardly without any reflection. Even-

tually, the energy carried by the acoustic wave should travel to infinity. Therefore,

two different strategies are proposed to analyse the coupled systems of unbounded
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and bounded domains: the substructure method and direct method.

The basic concept of substructure method is to divide the acoustic-structure in-

teraction system into substructures of bounded and unbounded domains as shown in

Figure 1.3. The bounded domain includes the finite structure. Part of the acoustic

domain adjacent to the acoustic-structure interface could also be included if it is

irregular, such as the nonlinearity caused by acoustic cavitation, which commonly

exists in the part of liquid where the pressure drops below the vapor pressure and

generates many small bubbles (liquid-free zones). Whereas the unbounded domain

represents the infinite extent of the acoustic domain with linear and regular pro-

perties. Then, the unbounded domain can be modeled separately and the radiation

condition is rigorously satisfied in the substructure method. The corresponding im-

pedance properties of unbounded acoustic domain are adopted later in the evaluation

of the bounded domain (Wolf and Song, 1996; Vaish and Chopra, 1974). To this

end, the discretization of both bounded and unbounded domains are compatible on

the common interface in numerical analysis. In acoustics, the dynamic relationship

between the acoustic flux R and pressure p on the common interface are used to

represent the unbounded domain. This relationship can be expressed in frequency
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domain for an excitation frequency ω as:

R(ω) = S∞(ω)p(ω) (1.3)

where S∞(ω) is the impedance matrix for the unbounded acoustic domain. The

relationship in Equation (1.3) is later used as the boundary condition in the analysis

of the bounded domain. In case of the existence of nonlinear behaviors in the

bounded domain, the time-domain formulation for the flux-pressure relationship in

the unbounded domain can also be derived via applying the inverse Fourier transform

to Equation (1.3):

R(t) =

ˆ t

0

S∞(t− τ)p(τ)dτ (1.4)

In Equation (1.4), the interacting flux at time t on the common interface R(t) is

equal to the convolution integral of the unit-impulse response matrix of the un-

bounded acoustic domain S∞(t) and the corresponding pressure vector p(t). This

convolution integral is similar to the Duhamel’s integral in structural dynamics. In

the substructure method, the boundary condition in Equation (1.3) or (1.4) is ge-

nerally global. This indicates that the response at a specific location and time is

dependent of the responses at all other locations, i.e. spatially global, and all previ-

ous times, i.e. temporally global. However, the spatially global boundary conditions

may lead to fully populated impedance matrix S∞ and the computationally expen-

sive convolution integral is involved in the transient analysis. Literature review on

several global procedures for modelling unbounded domain is presented in Section

2.2.1.

In terms of the direct method, a finite part of the unbounded acoustic domain

is included in the bounded domain along with the finite structure. The interface

between bounded and unbounded domains are thus placed with a certain distance

away from the vibrating structure or other sources of excitation as presented in

Figure 1.4. For the representation of unbounded domain, simple and approximate
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boundary conditions are usually applied on the discretized interface. These approx-

imate boundary conditions are usually local, which means that the response at a

specific location and time only depends on the responses at its neighboring loca-

tions, i.e. spatially local, and a few previous times, i.e. temporally local. These

properties of local boundary conditions guarantee the sparsity of impedance ma-

trix and the use of standard time-step integration schemes for transient analysis.

Therefore, the local boundary conditions are numerically cheaper than global boun-

dary conditions. This type of boundary conditions on the discretized boundary is

known by several different terms such as: artificial boundary, absorbing boundary,

transmitting boundary, open boundary, non-reflection boundary, one-way boundary,

anechoic boundary, radiation boundary etc. The term open boundary is adopted in

this thesis. A summary of commonly used local boundary conditions is stated in

Section 2.2.2.

Although the local boundaries are efficient and simple in numerical modelling,

they are approximations and the spurious reflections may occur on the truncated

interface. As a result, the performances of local boundaries deteriorate when they are

placed near the excitations (Givoli, 1991). However, increasing the distance between

the local boundary and excitation results in a large bounded domain and increased

computational efforts. Hence, local boundary conditions with high accuracy are
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demanded in the numerical modelling of unbounded domain.

Except for the limitations in the modelling of unbounded domain using substruc-

ture or direct method, there are other factors worth considering in the numerical

analysis of acoustic-structure interaction system. Because the wave speeds in acou-

stic fluids and structures might be very different and yield distinct wave lengths in

these two separate domains, different mesh sizes should be used in acoustic and struc-

tural domains respectively for efficiently representing these different wave lengths.

Efficient mesh transition between non-matching meshes from acoustic and structural

domains on the acoustic-structure interface are required.

In addition, nonlinear behaviors, such as elastoplasticity, may occur in the struc-

tures under strong excitations. Material nonlinearity should be considered in the

corresponding structural models. The numerical modelling of nonlinear problems

is usually time-consuming as the incremental formulations and iterative procedures

are normally involved. Therefore, For the dynamic analysis of nonlinear problems,

efficient time-domain equations for the structural domain in the coupled acoustic-

structure system are required. Apart from that, defects and cracks may also exist

in structures and vary the corresponding responses.

Moreover, due to the dramatic increases in the complexities and scales in mo-

dern engineering designs, the efficient and automatic techniques to generate meshes

from geometrical models are also necessary to reduce the human efforts in the nu-

merical simulations of acoustic-structure interaction problems in practice and highly

demanded.

1.3 Objectives and significance of study

As discussed in the last section, a number of factors in modelling of acoustic-

structure interaction problems are discussed and certain limitations in the currently

existing numerical methods are given. In order to overcome these limitations, This
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thesis provides new techniques to accurately and efficiently model the acoustic-

structure interaction problems with arbitrary and complex geometries based on the

scaled boundary finite element method. The scaled boundary finite element method

excels in modelling unbounded domain as it only requires boundary discretization

and provides analytical solutions in the radial direction. The boundary discretiza-

tion of the scaled boundary finite element method also gives unique advantages on

efficient mesh transition on acoustic-structure interface and automatic mesh gene-

rations. The aforementioned elastoplastic behavior of structures is also considered

in the acoustic-structure interactions within this study. The main objectives of this

thesis are listed as follows:

1. Extend the scaled boundary finite element method to two- and three- dimen-

sional acoustic analyses by utilizing the high-order doubly-asymptotic open

boundary for the unbounded domain. This includes developing accurate, ef-

ficient and robust approach for modelling two-dimensional acoustics and ex-

tending the existing high-order doubly-asymptotic open boundary to three-

dimensional acoustics.

2. Extend the scaled boundary finite element method to model both two- and

three-dimensional acoustic-structure interaction problems with efficient mesh

transition on the acoustic-structure interface.

3. Extend the scaled boundary finite element method to efficiently model both

static and dynamic elastoplastic structures in three-dimensions.

4. Extend the scaled boundary finite element method to model both two- and

three-dimensional acoustic-structure interaction problems with elastoplastic

structures.

5. Apply automatic scaled boundary finite element mesh generation technique to

generate scaled boundary meshes from standard tessellation language (STL)
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models in three-dimensional analysis leading to high efficiency in mesh gene-

ration and reduced human efforts.

Via completing these objectives mentioned above, the scaled boundary finite ele-

ment method is further developed in several major research areas including acoustic

analysis, elastoplastic analysis and acoustic-structure interaction analysis. Outco-

mes from this research can also contribute to the numerical analysis of relevant

engineering problems. In addition, because the commonly used STL file format

in computer-aided design (CAD) industry is directly used here as the input files

of three-dimensional models, presented techniques can be conveniently applied to

practical engineering analysis.

1.4 Outline of the thesis

The outline of this thesis is listed below:

Chapter 2 presents the literature review on topics related to this research. Fir-

stly, numerical methods for modelling the wave propagation in unbounded domains

are firstly reviewed and categorized into the global procedures and local procedures.

Brief introductions and discussions on several techniques in both categories are sta-

ted. Next, fundamentals on the theories for elastoplastic analysis are summarized.

This is followed by an introduction to the numerical implementation in the finite

element scheme. Reviews on several reduced integration methods with hourglass

control for improving the efficiency of elastoplastic analysis are also presented.

In Chapter 3, the scaled boundary finite element method is developed to model

two-dimensional acoustic problems. The unbounded domain is modeled based on

the high-order doubly-asymptotic open boundary with circular geometry proposed

in (Prempramote, 2011). Additional factor coefficients for eliminating singularities

in continued-fraction expansions and rules for using singly-asymptotic continued

fractions for low-frequency modes are given to improve the stability and efficiency
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of doubly-asymptotic open boundary. The bounded domain, which includes cavities

with arbitrary geometry is modeled using scaled boundary finite element method

with continued fractions for efficiently solving the impedance matrices. Bounded

and unbounded acoustic domains are then coupled via the nodal flux on the com-

mon interface. The resulting global equations of motion can be directly adopted in

transient analysis.

In Chapter 4, three-dimensional acoustic analysis is performed using the sca-

led boundary finite element method. To this end, the high-order doubly-asymptotic

open boundary is extended to model acoustic wave propagation in three-dimensional

unbounded domain with a spherical boundary. The bounded acoustic domain in-

cluding any complex geometry is again modeled by scaled boundary finite element

method with continued-fraction expansions for impedance matrices. For the efficient

modelling of acoustic problems with complex geometry and reducing the correspon-

ding human efforts, octree mesh technique is adopted to automatically generate

meshes for three-dimensional models provided in STL files. In scaled boundary fi-

nite element method, each octree cell can be treated as a polyhedral subdomain

with arbitrary number of faces. Displacement incompatibility between cells with

different sizes can be easily addressed by subdivisions of surface elements.

Chapter 5 develops the scaled boundary finite element method for acoustic-

structure interaction analyses in both two and three dimensions. The linearly elastic

behaviors of structures are assumed in this chapter. The infinite acoustic domains

in these coupled systems are modeled using the approaches provided in Chapters

3 and 4 for two- and three-dimensional cases respectively. As for the modelling of

structures, the scaled boundary finite element method is applied. The continued

fractions are again involved to evaluate dynamic stiffness matrices in structural

domain accurately and efficiently. Then, the time-domain formulations for acoustic

and structural domains are coupled together by enforcing the boundary conditions

on the acoustic-structure interface. Different mesh sizes can be used in structural
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and acoustic domains. The mesh transition on the acoustic-structure interface is

efficiently handled in scaled boundary finite element method due to its boundary

discretization.

In Chapter 6, the scaled boundary finite element formulation for two-dimensional

elastoplasticity with stabilization in (He, 2017) is extended to three-dimensional sta-

tic and dynamic analyses. In this formulation, the varying elastoplastic constitutive

matrix and stresses are assumed to be constants within each scaled boundary sub-

domain. Comparing with the original formulation in (Ooi et al., 2014), this leads

to higher efficiency in elastoplastic analysis as the number of locations for perfor-

ming the computationally expensive return mapping algorithm in each subdomain

is significantly reduced. Meanwhile, stabilisation matrix is introduced to control

the hourglass modes of each subdomain. Standard time-stepping scheme is adopted

to perform the dynamic elastoplastic analysis with iterative procedure in each time

step to enforce the force equilibrium. Octree mesh is again applied for automatic

mesh generation.

Chapter 7 extends the scaled boundary finite element method to model acoustic-

structure interaction problems with elastoplastic behavior in the structural domain.

The approaches developed in Chapters 3 and 4 are again used here to model the

two- and three-dimensional infinite acoustic domains, respectively. Additionally, the

scaled boundary finite elements formulations with stabilisation for two- and three-

dimensional elastoplasticity from (He, 2017) and Chapter 6 are utilized here for

modelling the structural domains. Formulations for acoustics and structures can

be coupled via the same way presented in Chapter 5. Dynamic analysis of this

nonlinear coupled system is achieved by applying standard implicit time-stepping

scheme with iterative procedure in each time step to enforce both force equilibrium

in structural part and flux equilibrium in acoustic part.

Finally, conclusions of this thesis, along with recommendations for future rese-

arch, are drawn in Chapter 8.
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Chapter 2

Literature review

2.1 Introduction

Numerical modelling of acoustic-structure interaction systems has been studied for

decades as discussed in Chapter 1. Many factors in modelling such a coupled system

will affect the accuracy of results in both acoustic and structural fields. According

to the scope of this research, the emphases of the literature review presented in this

chapter are placed on two aspects: the numerical methods for modelling wave propa-

gation in unbounded domain and elastoplastic analysis for structures. For the latter

one, the reduced integration methods with stabilization are also reviewed as these

approaches can be used to improve the efficiency of computational elastoplasticity

and are related to the research in this thesis.

This chapter is organized as the following sections: Section 2.2 presents the litera-

ture review on some well-known procedures for modelling the unbounded domains.

These procedures can be categorized into two groups: global and local procedu-

res. Both of the global and local procedures are reviewed in Sections 2.2.1 and

2.2.2, respectively. The developments as well as the strengths and drawbacks of

these approaches are summarized and discussed in these sections. For the review

on structural elastoplasticity in Section 2.3, the fundamentals of plastic theory are
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briefly summarized in Section 2.3.1. Then, a brief introduction of finite element

implementation for elastoplastic analysis is given at the beginning of Section 2.3.2.

Reduced integration methods with stabilization are reviewed in the same section.

Finally, conclusions are stated in Section 2.4.

2.2 Wave propagation in infinite domain

In modelling wave propagation in infinite media, the infinite domain is normally

truncated into a bounded near field and an unbounded far field. Boundary conditi-

ons are assigned on the near-far field interface to prevent the wave reflections and

thus represent the unbounded domain. Various approached have been proposed to

represent the unbounded domain during the last years and can basically be divided

into two types: the global procedures and local procedures (Tsynkov, 1998).

The global procedures usually give accurate representations of unbounded dom-

ain and show robustness in the computational analysis, However, the global pro-

cedures are also computationally expensive as they are spatially and temporally

global. This is even more so for simulating large-scale problems during long-time

analysis as the computational costs rapidly increase with the number of degrees of

freedom in the system and the number of time steps used in convolution integrals.

Commonly used global procedures, including boundary element method, exact non-

reflecting boundaries and scaled boundary finite element method, are reviewed in

the following Section 2.2.1.

Alternatively, the local procedures are attractive in terms of computational effi-

ciency and simplicity in implementations as they are spatially and temporally local.

Hence, this type of methods are practical in modelling large-scale problems and for

transient analysis as the computationally expensive convolution integral is not requi-

red. Nevertheless, because the formulations in local procedures are not rigorous but

approximate, they are normally found to be lack of accuracy and should therefore
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be placed at certain distance away from the near field excitations for minimizing the

effects of spurious reflections. Some frequently used local procedures are discussed

in Section 2.2.2.

2.2.1 Global procedures for modelling unbounded domains

2.2.1.1 Boundary element method

The boundary element method (BEM) has been developed and widely applied to

unbounded-domain problems for more than 40 years. It is usually known as the

numerical approach for solving the boundary integral equations (BIEs) based on

Green’s formula. Some of the early attempts for solving BIEs were performed by

Jaswon, et al. in 1963 for potential problems (Jaswon, 1963; Symm, 1963; Jas-

won and Ponter, 1963). Later on, numerous studies have been performed on the

BIE formulations and their numerical solutions for two and three-dimensional elas-

tic problems in both statics and dynamics (Rizzo, 1967; Rizzo and Shippy, 1968;

Cruse and Rizzo, 1968; Cruse, 1968, 1969; Rizzo and Shippy, 1970a; Cruse, 1974;

Lachat and Watson, 1976; Stippes and Rizzo, 1977; Wilson and Cruse, 1978) during

1960s and 1970s. Among them, an efficient numerical approach for solving BIEs of

three-dimensional elastostatics by subdividing the elastic body into subdomains and

discretizing all surfaces by triangular and quadrilateral elements, which are similar

to those used in FEM, was introduced by Lachat and Watson (Lachat and Watson,

1976). During the same period of time, BIEs for heat conduction (Rizzo and Shippy,

1970b), thermalelasticity (Rizzo and Shippy, 1977), linear viscoelasticity (Rizzo and

Shippy, 1971) and fracture mechanics (Cruse and Vanburen, 1971) have also been

investigated and the name ’boundary element method’ appeared in several literatu-

res (Banerjee and Butterfield, 1976; Brebbia and Dominguez, 1977; Brebbia, 1978).

A detailed review of the history and developments of BEM and BIEs can be found

in (Cheng and Cheng, 2005).

As a result of the development during the past decades, BEM has become a
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Figure 2.1. A typical 3D exterior domain ΩE in BEM with the boundary Γ.

powerful method in modelling exterior acoustic problems due to its intrinsic ad-

vantages in simulating unbounded domains. Considering the steady-state linear

acoustic problems in three-dimensional unbounded domain ΩE (the infinite space

outside the surface Γ) in Figure 2.1, the acoustic pressure p(x) is governed by the

following Helmholtz equation:

∇2p(x) + k2p(x) = 0 (2.1)

with the a wavenumber k and any source point x in the unbounded domain ΩE.

The Sommerfeld radiation condition should also be satisfied on the boundary Γ

for modelling the unbounded domain. Utilizing the Green’s second identity, Equa-

tion (2.1) can be transformed into the following conventional boundary integral

equation (CBIE) as (Schenck, 1968; Seybert et al., 1985):

c(x)p(x) =

ˆ

Γ

[
G(x,y, k)

∂p(y)

∂n⃗y

− ∂G(x,y, k)

∂n⃗y

p(y)

]
dΓ(y) + pI(x) (2.2)

where n⃗ is the unit vector normal to the boundary Γ shown in Figure 2.1 pointing

away from ΩE. y is any point on the boundary Γ (field point) and pI(x) describes any

incident acoustic wave. c(x) = 0.5 if Γ is smooth around x. The Green’s function
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G(x,y, k) in Equation (2.2), which is a fundamental solution for three-dimensional

acoustic problems, can be expressed as:

G(x,y, k) =
1

4πr
eikr (2.3)

In Equation (2.3), r is the distance between source point x and field point y.

i =
√
−1 is the imaginary unit.

For exterior problems, the CBIE in Equation (2.2) has one major defect. At the

so-called fictitious eigenfrequencies, the solution is not unique (Burton and Miller,

1971). This difficulty can be addressed by using the linear combination of CBIE

and hypersingular boundary integral equation (HBIE). The latter can be derived

via taking the normal derivative of the representation integral of the solution p at

point x and let this point approaching the boundary Γ. This combined formulation

is also known as the Burton-Miller formulation and can provide unique solutions at

all frequencies (Burton and Miller, 1971; Kress, 1985).

Compared with other domain based numerical methods, such as the finite ele-

ment method (FEM) and finite difference method (FDM), one of the salient advan-

tages of BEM is the boundary discretization. In BEM, a three-dimensional domain

should only be discretized by two-dimensional surface elements on the boundary and

a two-dimensional domain is discretized using one-dimensional line elements on its

boundary. This reduces the problem dimension by one, and alleviates the difficul-

ties in mesh generations for complicated geometries. Additionally, due to the use of

the so-called fundamental solution in its formulations, the BEM can yield accurate

solutions. For the same reason, BEM is able to model unbounded domains (such as

the three-dimensional unbounded domain in Figure 2.1) accurately as the boundary

condition at infinity is rigorously satisfied in Equation (2.2).

In the conventional BEM formulations, the discretization of BIEs, such as Equa-

tion (2.2), yields a global system of algebraic equations with unsymmetrical and

fully-populated coefficient matrices. The numerical solution of such a system requi-
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res a large amount of memory and is usually computationally expensive. To obtain

a time-domain solution, an inverse of Fourier transform and a convolution integral

in time can be employed. Due to the high computation costs of conventional BEM,

it is often not used for solving transient problems and also limited to small-scale

problems.

For improving the efficiency of BEM, several fast solution methods, such as the

fast multiple method (FMM) and pre-corrected fast Fourier transformation (pFFT)

method have been developed. The FMM used for accelerating the solution of BEM

is firstly studied by Rokhlin and Greengard (Rokhlin, 1985; Greengard and Rokhlin,

1987). This is later extended to solve Helmholtz equation for acoustic problems. A

detailed review can be found in (Nishimura, 2002). The basic approach of the fast

multiple accelerated BEM is to solve the global system of algebraic equations with

iterative solver, such as GMRES (Saad and Schultz, 1986). Within each iteration,

the FMM is utilized to accelerate the matrix-vector multiplication. The great re-

duction of computation efforts achieved by using the fast multiple accelerated BEM

leads to the application of BEM to large-scale and practical problems with some

of the examples given in (Liu, 2009). Compared with the fast multiple accelerated

BEM, the pFFT accelerated technique developed by Philips and White shows uni-

que advantages on its kernel independent nature and simplicity of implementation

(Phillips and White, 1997). This method has been applied in BEM for solving large-

scale problems in recent years. Some examples are shown in (Ding and Ye, 2004;

Masters and Ye, 2004; Ding and Ye, 2006; Fata, 2008; Yan et al., 2010a,b).

2.2.1.2 DtN finite element method

An alternative global procedure for modelling the wave propagation in infinite dom-

ains is the Dirichlet-to-Neumann (DtN) finite element method (Givoli, 1999). The

DtN finite element method was developed by Keller and Givoli in 1989 (Keller and

Givoli, 1989; Givoli and Keller, 1989). A typical setup of this method for a 2D
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Figure 2.2. A typical setup for DtN finite element method.

problem is illustrated in Figure 2.2. For modelling the exterior problem, the infinite

domain is firstly truncated by an artificial boundary Γ outside the irregular obstacle

in grey color. Ω is the surrounding near-field medium and ΩE is the unbounded

domain. As the name DtN finite element method implies, this method combines the

finite element scheme for modelling the bounded domain Ω with a DtN boundary

condition on the artificial boundary Γ for representing the unbounded domain. The

DtN boundary condition is an exact spatially non-local solution of the unbounded

domain in the frequency domain.

Because the analytical expressions of the DtN boundary conditions are required,

the problem in unbounded domain ΩE, as well as the geometry of the boundary

Γ, are normally simple for obtaining such an analytical solution. Some early works

for using exact boundary conditions to represent the unbounded domain and finite

element method for the bounded domain are collected in References (Fix and Marin,

1978; Maccamy and Marin, 1980; Marin, 1982; Goldstein, 1982; Bayliss et al., 1985;

Canuto et al., 1985; Feng, 1983, 1984; Masmoudi, 1987; Lenoir and Tounsi, 1988).

Comparing with these methods, the DtN finite element method proposed by Keller
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and Givoli is well-known as a practical method for modelling wave propagation in

infinite domain as the exact boundary condition is expressed explicitly in terms of

known functions. In (Keller and Givoli, 1989), the boundary Γ is chosen to be a

circle for two-dimensional problems, which is also plotted in Figure 2.2 denoted by

the circular artificial boundary Γ with the radius R, or a sphere for three-dimensional

problems. The DtN boundary condition can be generally described by the following

equation:

uν = −Mu (2.4)

In Equation (2.4), u is the unknown scattered field (or sound pressure for acou-

stics) and uν is its outward normal derivative. The non-local operator M is also

known as the DtN map, which relates the Dirichlet datum u to the Neumann da-

tum uν on Γ. For two-dimensional wave propagation problems governed by the

Helmholtz equation (Equation (2.1)), Equation (2.4) can be expressed as:

uν(R, θ) = −
∞∑
n=0

′
2πw
0

mn(θ − θ′)u(R, θ′)dθ′ (2.5)

with the prime after the sum indicating that the term with n = 0 is multiplied by

a factor of 1
2
. The DtN kernels mn(θ − θ′) in Equation (2.5) is

mn(θ − θ′) = −k
π

H
(1)′
n (kR)

H
(1)
n (kR)

cos(n(θ − θ′)) (2.6)

where H
(1)
n is the Hankel function of the the first kind, k is the wavenumber in

Helmholtz equation.

As for the three-dimensional problems, the DtN boundary condition in Equation

(2.4) can be derived for the spherical boundary with radius R as:

uν(R, θ, φ) = −
∞∑
n=0

πw
0

2πw
0

mn(θ, φθ
′, φ′)u(R, θ′, φ′)R2 sinφ′dθ′dφ′ (2.7)

with the DtN kernels mn(θ, φ, θ
′, φ′) given by

mn(θ, φ, θ
′, φ′) =

∞∑
j=0

′βjnP
j
n(cosφ)P

j
n(cosφ

′) cos(j(θ − θ′)) (2.8a)
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βjn = −(2n+ 1)(n− j)!γn
2πR2(n+ j)!

(2.8b)

γn =
1

R−0.5H
(1)
n+0.5(kR)

∂
(
R−0.5H

(1)
n+0.5(kR)

)
∂R

(2.8c)

In Equation (2.8), P j
n is the associated Legendre function of the first kind. The

DtN boundary condition can be implemented as the boundary condition for finite

element formulations for u on the artificial boundary Γ. The DtN boundary condi-

tion is non-local as the integration over the whole boundary Γ exists in Equations

(2.5) and (2.7). DtN maps have been derived and combined with finite element met-

hod for analyzing various problems and structures. In 1990, Givoli modeled the long

elastic beam and cylinder, as well as the elastic wave propagation with DtN maps

(Givoli, 1990b,a; Givoli and Keller, 1990). Later, the modelling of wave propagation

governed by Helmholtz equation in semi-infinite plane is published in (Givoli and

Vigdergauz, 1993). Derivations of the DtN boundary conditions for simulating acou-

stic waves in three-dimensional problems and wave guides are given in (Patlashenko

and Givoli, 1997) and (Harari et al., 1998) respectively. In (Grote and Keller, 1995),

the DtN boundary conditions were developed for boundary of elliptical shape via

utilizing the trigonometric functions. The DtN finite element method was also used

to model microwaves, which are governed by Maxwell’s equations, in two dimensions

(Ayappa et al., 1992).

The DtN boundary conditions, such as those given in Equations (2.5) and (2.7),

contains infinite series. From a practical point of view, these infinite series have

to be truncated with the first N terms involved in the calculations. However, this

leads to non-unique solutions for certain wavenumber k, which is very similar to

the uniqueness problem in the solutions of CBIE in BEM as discussed in Section

2.2.1.1. The uniqueness problem for DtN finite element method is also studied in

(Harari and Hughes, 1992, 1994; Harari et al., 1996). The conclusion for Helmholtz

problem states that if the (exact) DtN boundary condition with infinite series is

used, the solution is unique for all wavenumbers k. However, if the truncated DtN
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boundary condition is used, the uniqueness of solution is only guaranteed when

N ≥ kR. This problem can be addressed by the modified DtN method (Grote and

Keller, 1995). In this method, the truncated DtN condition is combined with the

Sommerfeld boundary condition for those modes higher than N . The resulting DtN

condition provides unique solutions for all wavenumbers k regardless of the number

of terms N retained in the truncated series. Further reviews of the DtN boundary

conditions can be found in (Givoli, 1999; Thompson and Pinsky, 2004).

2.2.1.3 Scaled boundary finite element method

The scaled boundary finite element method (SBFEM) is a semi-analytically compu-

tational method, which combines the major advantages of the finite element method

and boundary element method. Similar to the boundary element method, this met-

hod only requires the boundary discretization with interpolation functions used in

standard finite elements. Thus, the spatial dimension is reduced by one. When

modelling an unbounded domain, the SBFEM can rigorously satisfy the radiation

condition at infinity. In addition, the stress singularities around the tips of cracks

and notches can be expressed semi-analytically in the radial direction, which le-

ads to direct and accurate calculations of stress intensity factors. The boundary

discretization also leads to the reduction of computational difficulties and human

efforts on automatic mesh generation since the meshing process should only be

performed on the two-dimensional surfaces for three-dimensional problems and one-

dimensional lines for two-dimensional problems. Unlike the boundary element met-

hod, the SBFEM doesn’t require fundamental solutions and evaluation of singular

integrals. This feature allows the SBFEM to handle anisotropic materials with no

additional computational effort. The SBFEM was firstly developed by Song and

Wolf in 1995 for modelling unbounded domains in two-dimensional dynamic soil-

structure interaction analysis (Song and Wolf, 1995; Wolf and Song, 1995). The

name “Consistent infinitesimal finite-element-cell method” was used at that time
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Figure 2.3. The scaled boundary finite element method for modelling two-
dimensional: (a) unbounded domain and (b) bounded domain.

since the original derivation of this method was based on the assemblage of infinite-

simal finite-element cell and the similarity between exterior and interior boundary.

This infinitesimal finite-element cell is introduced in the radial direction adjacent to

the soil-structure interface. Using the relationship of the similar exterior and inte-

rior cell boundaries and performing the limit of infinitesimal cell width approaching

zero yield the consistent infinitesimal finite-element cell equation in the frequency

domain. This equation is transformed into the time domain via an inverse Fourier

transform. This method was extended to three-dimensional vector waves in the

following year (Song and Wolf, 1996). Later, a new derivation of this method for

elastodynamics is published in (Song and Wolf, 1997). The new derivation is based

on the Galerkin’s weighted residual method and is more consistent with the deriva-

tion of finite element formulation. This method is named as the “scaled boundary

finite element method”.

For explaining the basic concept of SBFEM, typical two-dimensional unbounded

and bounded domains with arbitrary geometry are plotted in Figure 2.3(a) and

2.3(b) respectively. For modelling an unbounded or a bounded domain in SBFEM,

a scaling centre is chosen from where the whole boundary Γ of the domain can be

visible. For a bounded domain with complex geometry, this requirement can always
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Figure 2.4. The scaled boundary finite element method for modelling three-
dimensional: (a) unbounded domain and (b) bounded domain.

be satisfied by subdividing the original domain into smaller subdomains. Only the

boundaries Γ of the domains are discretized. For a two-dimensional domain, line

elements of any arbitrary orders can be used. Their shape functions are the same

as those of one-dimensional finite elements. In the isoparametric formulation, the

shape functions are formulated in their local coordinate η. In Figure 2.3, the end

points of elements are marked by the larger red dots, while other nodes of elements

are denoted by smaller black dots. The radial coordinate ξ starting from the scaling

centre O and pointing at any node on the boundary Γ is introduced for describing

the whole domain by scaling the boundary. The radial coordinate is set to be ξ > 1

for modelling the unbounded domain ΩE, whereas ξ < 1 for describing the bounded

domain ΩI . On the boundary Γ and scaling centre O, the radial coordinate ξ is

equal to one and zero separately.

The shaded grey areas in Figure 2.3(a) and (b) indicate parts of the unbounded

and bounded domains formed by scaling the corresponding line elements respecti-

vely. The side faces, which are the straight lines passing through the scaling centre

and boundary, are not discretized as they are generated by scaling the correspon-

ding points on the boundary. The transformation of coordinate system from the

Cartesian coordinate (x̂, ŷ) to the scaled boundary coordinate (ξ, η) is known as the
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scaled boundary transformation. For three-dimensional problems shown in Figure

2.4, two local circumferential coordinates η and ζ are introduce to describe the sur-

face element of the boundary. One of the quadrilateral elements on the boundary

of SBFEM unbounded and bounded subdomains is shown as the shaded area in

Figure 2.4(a) and (b) respectively. The same radial coordinate ξ is used to des-

cribe the whole three-dimensional domain (unbounded or bounded) via scaling the

corresponding surface elements.

After the scaled boundary transformation, the nodal displacement functions (or

nodal pressure functions for acoustics) are introduced along radial direction ξ and

discretized in the circumferential direction η for two-dimensional case (or in the

circumferential direction η and ζ for three-dimensional case) with corresponding

shape functions. After expressing the governing equation in the scaled boundary

coordinates, the Galerkin’s weighted residual method can be applied to the governing

equation in the circumferential direction. A system of ordinary differential equations

for displacement with the independent variable ξ are obtained. This system of

differential equations is also known as the scaled boundary finite element equation.

The coefficient matrices of the differential equations are calculated on an element-

by-element basis and assembled in the same way as the assemblage of stiffness and

mass matrices in finite element method (Song and Wolf, 1997). The modelling of

body load is developed in SBFEM by Song and Wolf in (Song and Wolf, 1999a).

The derivation of the scaled boundary finite element equation for elastostatics using

principle of virtual work is published by Deek and Wolf (Deeks and Wolf, 2002b).

A technique allowing the displacement to be prescribed using power series on side

faces is also developed in (Deeks, 2004).

In elastostatic analysis, the scaled boundary finite element equation can be trans-

formed into a system of linear first-order differential equations. The system of equa-

tions can be decoupled by an eigenvalue decomposition (Song and Wolf, 1997). The

solution is obtained as a series of power functions. However, the eigenvalue method
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for solving the scaled boundary finite element equation breaks down when multi-

ple eigenvalues with parallel eigenvectors exist. This situation corresponds to the

existence of logarithmic functions in the solution. It occurs in the solutions of two-

dimensional unbounded domains and of a multi-material wedge at certain opening

angles. This problem of the eigenvalue method is addressed in (Deeks and Wolf,

2002a) by including additional logarithmic terms in the solution. Based on the ma-

trix function solution and real Schur decomposition, a new solution procedure is

proposed by Song (Song, 2004a). This new approach is numerically more stable.

Power and logarithmic functions in the solution, as well as their transition, can be

semi-analytically represented by this procedure.

For modelling wave propagation in unbounded domains using SBFEM, the in-

tegration of the scaled boundary finite element equation in dynamic stiffness is

performed in the frequency domain. This leads to the dynamic stiffness matrix

of the unbounded domain. To perform a time-domain analysis, a unit-impulse re-

sponse matrix can be obtained (Wolf, 2003). The original formulation of SBFEM

are spatially and temporally global. Many efforts have been made to reduce the

computational costs of SBFEM in dynamic analysis of unbounded domains (Paro-

nesso and Wolf, 1995, 1998; Zhang et al., 1999; Wegner et al., 2005; Lehmann, 2005;

Lehmann and Rüberg, 2006; Song, 2006). Among them, a reduced set of base functi-

ons are employed in (Song, 2006). Utilizing the Schur decomposition in elastostatics

(Song, 2004a), modes with the small real parts of eigenvalues are selected as the

reduced set of base functions in this approach. Reformulating the scaled boundary

finite element equation with the reduced set of base functions leads to reduced size

of system equations. The formulation is still temporally global. Therefore, an ap-

proximation of the dynamic stiffness matrix of the unbounded domain using Padé

series constructed from the high-frequency expansion of the scaled boundary finite

element equation is developed by Song and Bazyar (Song and Bazyar, 2007). The

solution in Padé series has a larger convergence range and faster convergence rate
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than a solution in power series.

This solution procedure using Padé series is further improved by a continued-

fraction expansion at high-frequency limit (Bazyar and Song, 2008), which is also

closely related to Padé series in terms of convergence rate and range (Baker and

Graves-Morris, 1996). By introducing the auxiliary variables, the continued-fraction

expansions can be transformed into a temporally local open boundary condition,

which can be directly applied for transient analysis. The continued-fraction expan-

sions has also been applied to evaluate the dynamic stiffness matrices of bounded

domains by Song (Song, 2009). It does no require an internal mesh to capture short

wave lengths at high frequencies. The dynamic stiffness matrix converges rapidly

with increasing order of continued fraction.

Extending the singly-asymptotic continued-fraction expansion at low-frequency

limit, a doubly-asymptotic continued-fraction expansion is proposed by Prempra-

mote et al. to evaluate the dynamic stiffness matrix. Since this formulation is exact

in both high- and low-frequency limits, it shows high convergence rate for high-order

modes (Prempramote et al., 2009). In literatures (Prempramote, 2011; Birk et al.,

2012), the numerical studies prove that the continued-fraction expansion used in

both (Bazyar and Song, 2008) and (Prempramote et al., 2009) may break down

when the mode number λ is equal to λ = i+ 0.5 (i is an integer). Hence, improved

approaches are proposed in (Prempramote, 2011; Birk et al., 2012) by introducing

additional factor coefficients in the continued-fraction expansion.

The SBFEM has been applied to model the acoustic (Lehmann et al., 2006) and

acoustic-structure interaction problems (Fan et al., 2005; Li, 2006). Additionally,

the SBFEM has been applied to other research areas, such as ultrasonics (Graven-

kamp et al., 2012, 2013, 2014, 2015, 2017), dam-reservoir interaction systems (Lin

et al., 2007; Wang et al., 2011; Fan and Li, 2008), fracture mechanics (Song, 2004b,

2005; Yang, 2006; Song and Vrcelj, 2008; Ooi and Yang, 2009; Song et al., 2010; Ooi

and Yang, 2011; Ooi et al., 2012; Li et al., 2013, 2014; Sun et al., 2015; Ooi et al.,
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2016; Song et al., 2017; Ooi et al., 2017; Zhong et al., 2018) due to its superiori-

ties in modelling the unbounded domain and stress singularities. The SBFEM has

also been developed for elastoplastic analysis in references (Ooi et al., 2014; Chen

et al., 2017a,b,c). In these approaches, multiple fitting points are required within

each subdomain for accurately interpolating the stresses and elastoplastic constitu-

tive matrices. The computationally expensive return mapping algorithm should be

performed on each fitting point for updating the stresses. For improving the effi-

ciency of the scaled boundary formulation in elastoplastic analysis, a novel approach

is proposed in (He, 2017) with only one fitting point required in each subdomain.

Comparing with the original formulation, the new approach is more computationally

efficient and suitable for image-based automatic analysis.

Recently, automatic mesh generation techniques have been proposed for SBFEM.

In SBFEM, the shapes of subdomains are more flexible than finite elements. For-

mulations of polygonal or polyhedral subdomains are derived with boundary discre-

tization only. This allows the use of simple and efficient mesh generation algorithm.

Quadtree and octree algorithms have been developed for the generation of scaled

boundary finite element meshes. Automatic image-based stress analysis are per-

formed (Saputra et al., 2017a). Automatic octree mesh generation from standard

tessellation language (STL) models are developed in (Liu et al., 2017) by trimming

the octree grid with the facets in STL models. These automatic meshing approaches

reduce the human burdens on generating appropriate meshes for modelling realistic

and complicated engineering problems using SBFEM (Talebi et al., 2016; Saputra

et al., 2017b; Zou et al., 2017).

2.2.2 Local procedures for modelling unbounded domains

2.2.2.1 Absorbing boundary conditions

As mentioned at the beginning of Section 2.2, local approaches, such as absorbing

boundary conditions (ABCs), are more popular than global approaches in the simu-
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lation of wave propagation in unbounded domains for large-scale problems. Nevert-

heless, these local approaches have certain limitations on accuracy because they are

approximations in general. Many ABCs have been proposed during the last decades

to address this issue.

The first local open boundary applied in finite element analysis of unbounded

domains is probably the standard viscous boundary developed by Lysmer and Kuhle-

meyer in 1969 (Lysmer and Kuhlemeyer, 1969). The viscous boundary is proposed

for elastodynamics and can be interpreted as dash-pots applied on the normal and

tangential directions of the boundary in physics. The relationships between the

stresses and velocities in both normal and tangential directions are quite empiri-

cal. The viscous boundary can be expressed by the following first-order differential

equations:

σ = aρcpu̇ (2.9a)

τ = bρcsv̇ (2.9b)

In Equation (2.9), σ and τ are the normal and shear stresses respectively. ρ is the

density of the medium. cp and cs are the longitudinal and shear velocities separately.

The minimizing of the reflected wave energy from the boundary is achieved by the

introduction of the dimensionless parameters a and b. In (Lysmer and Kuhlemeyer,

1969), good absorption of wave energy is achieved by setting a = b = 1. It is also

applied in the modelling of anisotropic media in (White et al., 1977) and is called the

unified boundary condition. The viscous boundary is simple, frequency independent

and suitable for any geometry of the boundary. Thus, it is commonly implemented

in commercial finite element software packages. However, severe spurious reflections

may occur at certain cases, such as sharp incident angle between impinging waves

and boundary or close distance between the scattering source and viscous boundary.

This is even more so for absorbing waves in the low-frequency range due to the lack of

stiffness. Later, the viscous-spring boundary is developed in (Deeks and Randolph,
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1994) via adding spring coefficients to improve its behavior in low-frequency limit.

The viscous boundary can be considered as a low-order absorbing boundary

condition due to its order of approximation. For improving the accuracy of absorbing

boundary conditions, high-order absorbing boundary conditions were proposed and

can yield more accurate results with the increase of their orders of approximations.

In 1975, the “free-space” boundary conditions for time-dependent wave equation

were constructed by Lindman via using the projection operators (Lindman, 1975).

Past data on the boundary, which are processed in the form of updating three to six

wave equations, are used by the projection operators. Reflection coefficients less than

one percent are obtained for a wide range of incident angles for both propagating

and evanescent waves.

The paraxial boundary condition proposed by Engquist and Majda (Engquist

and Majda, 1977) is possibly one of the most cited works on absorbing boundary

conditions. A hierarchy of local high-order boundary conditions are used to ap-

proximate the non-local boundary conditions for the acoustic wave equations. The

approximation is accomplished by utilizing Padé series, which is a rational function.

This is also the first time that a rational approximation is used to construct the

local formulations for absorbing boundary conditions. High-order derivatives are

included in these formulations and the first three paraxial boundary conditions for

scalar waves are:

A1 :
∂p

∂x
+

1

c

∂p

∂t
= 0 (2.10a)

A2 :
∂2p

∂x∂t
+

1

c

∂2p

∂t2
− c

2

∂2p

∂y2
= 0 (2.10b)

A3 :
∂3p

∂x∂t2
− c2

4

∂3p

∂x∂y2
+

1

c

∂3p

∂t3
− 3c

4

∂3p

∂t∂y2
= 0 (2.10c)

with the speed of acoustic wave c, the solution of wave equation p. The first-

order boundary condition in Equation (2.10a) is identical to the viscous boundary

of Lysmer and Kuhlemeyer’s.

Then, the paraxial boundary condition is developed for scalar and elastic waves
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in (Clayton and Engquist, 1977). Many of the theoretical and practical aspects of

this method are developed in (Engquist and Majda, 1979). Although the accuracy

will be improved by increasing the orders of approximation, instability issues may

arise for high-order formulations and inclined body waves (Wolf and Hall, 1988).

The Bayliss-Turkel boundary condition is a sequence of absorbing boundary con-

ditions for three-dimensional wave-like equations in polar coordinates (Bayliss and

Turkel, 1980). This boundary conditions are constructed based on the asymptotic

expansion in 1
r

of the radiating solution p to the wave equation. r is the distance

from a fixed point. Based on the method of separation of variables, the asymptotic

expansion of p can be of the form:

p(t, r, θ, ϕ) =
∞∑
j=1

fj(t− r, θ, ϕ)

rj
(2.11)

Where r, θ and ϕ are the spherical coordinates centered at a fixed origin in space.

The series in Equation (2.11) is convergent providing that the fj is an analytical

function of θ and ϕ. This boundary condition forms a sequence of differential ope-

rators Bm to annihilate the first m terms in the asymptotic expansion in Equation

(2.11). The mth Bayliss-Turkel boundary condition has the form:

Bmp = 0 (2.12)

with the differential operators Bm formulated as:

Bm =
m∏
j=1

(
∂

∂t
+

∂

∂r
+

2j − 1

r

)
(2.13)

Accuracy of this open boundary is able to be improved by increasing its order.

However, for the mth-order absorbing condition, a product of m first-order derivati-

ves is included in Equation (2.13). The discrete representation of the high-order de-

rivatives might be impractical (Givoli, 2004). This sequence of absorbing boundary

conditions is further developed to model the nonlinear compressible Navier-Stokes

and Euler equations (Bayliss and Turkel, 1982). The performance of the above ab-
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sorbing boundary conditions deteriorates once the boundary is close to the domain

of interest.

An alternative approach to construct the absorbing boundary conditions without

deriving the analytical boundary conditions was proposed by Higdon in 1986 (Hig-

don, 1986). This absorbing boundary condition is developed for multi-dimensional

wave equations. The finite difference method is firstly employed in this approach

to approximate the scalar wave equation in both space and time. The Resulting

boundary condition is consistent with the analytical boundary condition and can be

expressed as:

Hmp =

(
m∏
j=1

(
(cosαj)

∂

∂t
− ∂

∂x

))
p = 0 (2.14)

Equation (2.14) is the Higdon boundary condition. αj is the angle of incidence

with |αj| < π
2

for all j. p is the solution of the scalar wave equation. Because

the Higdon boundary condition is exact for wave propagation in those angles of

incidence ±αj, it can be considered as the general form of the viscous boundary and

paraxial boundary condition. According to (Higdon, 1986), the numerical studies

indicate that this absorbing boundary performs well for absorbing waves with a

wide range of incidence angles. This absorbing boundary condition is practically

and theoretically advantageous as it can be increased to arbitrary order of m. It

was later developed to model the acoustic and elastic waves in stratified media

(Higdon, 1992) and also the dispersive waves (Higdon, 1994). However, stability

issues appear for these absorbing boundary conditions with the order higher than

two. Analogous to the paraxial boundary condition (Engquist and Majda, 1977)

and Bayliss-Turkel boundary condition (Bayliss and Turkel, 1980), the high-order

derivatives in these formulations provide difficulties in the implementations of these

absorbing boundary conditions beyond certain orders.

In order to avoid the existence of high-order derivatives and instabilities in some

classical absorbing boundary conditions mentioned above, local high-order absor-
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bing boundary conditions without high-order derivatives are constructed. This is

achieved by introducing auxiliary variables to eliminate those high-order terms. The

boundary condition proposed by Collino (Collino et al., 1993) in 1993 is the pioneer

of this kind and the formulations are derived based on the paraxial boundary. The

resulting formulations involve no high-order derivatives beyond second-order and

thus benefits to the implementation of this absorbing boundary condition to arbi-

trarily high order. For two-dimensional scalar wave equation of the solution p, the

high-order absorbing boundary condition of Collino’s with the order J is formulated

as:

∂p

∂x
+

1

c

∂p

∂t
− 1

c

J∑
j=1

βj
∂ϕj
∂t

= 0 (2.15a)

1

c2
∂2ϕj
∂t2

− αj
∂2ϕj
∂y2

− ∂2p

∂y2
= 0 (2.15b)

with j = 1, 2, · · · , J .

In Equation (2.15), ϕj are the auxiliary variables, c is the speed of scalar wave.

The coefficients αj and βj can be expressed as:

αj = cos2
(

jπ

2J + 1

)
(2.16a)

βj =
2

2J + 1
sin2

(
jπ

2J + 1

)
(2.16b)

It should be noticed that Equation (2.15a) is similar to a modified Sommerfeld-

like boundary condition and Equation (2.15b) is a one-dimensional wave equation for

ϕj on the boundary. This implies that special corner conditions have to be proposed

for Equation (2.15b) if the boundary has corners, such as rectangle. These corner

conditions are also demonstrated in (Collino et al., 1993).

Hagstrom and Hariharan presented asymptotic boundary conditions for isotropic

wave equations in both two-dimensional and three dimensional cases (Hagstrom

and Hariharan, 1998). These boundary conditions are formulated based on the

Bayliss-Turkel boundary condition (Bayliss and Turkel, 1980). For avoiding the
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high-order derivatives in Bayliss-Turkel boundary condition, the boundary condition

of arbitrary order is expressed recursively using auxiliary variables. The Hagstrom-

Hariharan boundary condition with the order of J for two-dimensional wave equation

can be written as the following sequence of equations:

1

c

∂p

∂t
+
∂p

∂r
+

1

2r
p = ω1 (2.17a)

1

c

∂ωj
∂t

+
j

r
ωj =

(
j − 1

2

)2
4r2

ωj−1 +
1

4r2
∂2ωj−1

∂θ2
+ ωj+1 (2.17b)

where, c and r are scalar wave speed and radius of the circle. ωj are the auxiliary

variables with j = 1, 2, · · · , J . The ω0 is set to be,

ω0 = 2p (2.18)

For three-dimensional wave equation, the boundary condition is obtained as:

1

c

∂p

∂t
+
∂p

∂r
+

1

r
p = ω1 (2.19a)

1

c

∂ωj
∂t

+
j

r
ωj =

1

4r2
(
∇2
s + j(j − 1)

)
ωj−1 + ωj+1 (2.19b)

with the radius of the sphere r and j = 2, 3, · · · , J . ∇2
s is the Laplacian in spherical

coordinates. For the absorbing boundary conditions in Equations (2.17) and (2.19)

with the order of J , setting ωj+1 = 0 is involved. This leads to the accuracy of

O(r−2J−2). However, for the special three-dimensional case when the solution p is a

finite sum of spherical harmonics, the Hagstrom-Hariharan boundary condition can

be exact.

The Givoli-Neta absorbing boundary condition was developed by Givoli and Neta

in 2003 (Givoli and Neta, 2003; Givoli et al., 2003) and the derivations are based

on the reformulation of Higdon boundary condition (Higdon, 1986). This boundary

condition is developed for semi-infinite layers, such as wave-guide, with dispersive

media. The dispersive media is governed by the Klein-Gordon equation:

∂2t u− C0∇2u+ f 2u = s (2.20)
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with the unknown wave field u, given dispersion parameter f and the reference wave

speed C0. s represents the given wave source function. Again, no high-order de-

rivative beyond second order exists in the formulations as the result of including

special auxiliary variables. The auxiliary variables in Givoli-Neta absorbing boun-

dary condition can be calculated using simpler recursive formulations than those in

Hagstrom-Hariharan boundary condition (Hagstrom and Hariharan, 1998). In Car-

tesian coordinates, the Givoli-Neta absorbing boundary condition with the order of

J can be summarized as:

β0u,t + u,t = ϕ1 (2.21a)

βjϕj,t − αjϕj−1,tt − ϕj−1,yy + λϕj−1 = ϕj+1 (2.21b)

with j = 1, 3, · · · , J − 1, and ϕ0 ≡ u, ϕJ ≡ 0. Comma in the subscript represents

partial derivative. The coefficients in Equation (2.21) are:

αj =
1

C2
j

− 1

C2
0

, βj =
1

Cj
− 1

Cj+1

, β0 =
1

C1

, λ =
f 2

C2
0

(2.22)

where Cj is the phase speed of propagating wave and should be selected either manu-

ally via “educated guess” based on exact solution or by computer codes. Different

approaches for selecting Cj are also discussed in (Givoli and Neta, 2003). These

absorbing boundary conditions are coupled with finite difference discretization and

finite element discretization in (Givoli and Neta, 2003) and (Givoli et al., 2003)

respectively.

Comparing with the Givoli-Neta absorbing boundary condition (Givoli and Neta,

2003), the Hagstrom-Warburton absorbing boundary condition (Hagstrom and War-

burton, 2004) leads to balanced and symmetrizable system of equations on the boun-

dary for the scalar wave problems. The recursive relations for J-order Hagstrom-

Warburton absorbing boundary condition in (Hagstrom and Warburton, 2004) can

be expressed as:

(a0∂t + c∂x)u = a0∂tϕ1 (2.23a)
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lj,j−1∂
2
t ϕj−1 + lj,j∂

2
t ϕj + lj,j+1∂

2
t ϕj+1 = c2(mj,j−1∂

2
yϕj−1 +mj,j∂

2
yϕj

+mj,j+1∂
2
yϕj+1)

(2.23b)

In Equation (2.23), c is the speed of scalar wave. ∂ia is the shorthand for the ith

order partial derivative with respect to a. ϕj with j = 1, 2, · · · J represent auxiliary

variables, which are functions of location on the boundary. For the absorbing boun-

dary conditions truncated at Jth order, ϕJ+1 is setting to be zero and ϕ0 = u. For

j = 1, the coefficients lj,k and mj,k (k = j − 1, j, j + 1) are listed as:

l1,0 = 2a1(1− a20), m1,0 = 2a1,

l1,1 = a0(1 + 2a0a1 + a21), m1,1 = a0,

l1,2 = a0(1− a21), m1,2 = a0.

(2.24)

For j = 2, 3, · · · , J , coefficients li,j and mi,j are:

lj,j−1 = aj(1− a2j−1), mj,j−1 = aj,

lj,j = (aj−1 + aj)(1 + aj−1aj), mj,j = aj−1 + aj,

lj,j+1 = aj−1(1− a2j), mj,j+1 = aj−1.

(2.25)

In Equations (2.24) and (2.25), the computational parameters aj ∈ (0, 1] for

j = 0, 1, · · · , J have to be chosen. A study of the selection of parameters aj is

performed in (Hagstrom et al., 2007) and suggests that the simplest choice for aj = 1

is reasonable in general. These absorbing boundary conditions are also implemented

in finite element scheme (Givoli et al., 2006). Further extensions and improvements

are also made in (Hagstrom et al., 2008). The performance of Hagstrom-Warburton

absorbing boundary condition in frequency domain is investigated and compared

with perfectly matched layer in (Rabinovich et al., 2010).

Besides the aforementioned absorbing boundary conditions, the wave propaga-

tion in infinite medium can be approximated by the doubly asymptotic approxima-

tions (DAAs). As the name implies, the DAAs are approximations that approach

the exact boundary integral representation of unbounded domain asymptotically at

both high-frequency and low-frequency limits. This approach was firstly employed
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in the acoustic-structure interaction analysis by Geers in the 1970’s (Geers, 1971,

1974, 1978). In DAAs, the integral-equation solution of the governing equation of

acoustics is written in the form of Kirchhoff’s integral equation (KIE). The early

time approximations (ETAs), which are related to the high-frequency responses, are

then constructed based on the KIE. A hierarchical family of ETAs for transient

acoustic-structure interaction was published by Felippa in 1980 (Felippa, 1980) and

then extended to a third-order ETA which can be applied to the crude plane-wave

approximation (Geers, 1991). The low-frequency responses are then approximated

by the late time approximations (LTAs) constructed from the Laplace transform of

KIE and are spatially non-local due to the spacial integral included. Via matching

the early-time and late-time approximations, the DAAs can be formulated as:

DAA1 : ṗ(R, t) + cβ−1γp(R, t) = ρcυ̇(R, t) (2.26a)

DAA2 : p̈(R, t) + c(χ+ κ)ṗ(R, t) + c2χβ−1γp(R, t)

= ρc[ϋ(R, t) + cχυ̇(R, t)]
(2.26b)

DAA3 :
...
p(R, t) + c(λβ−1α + ζ + κ)p̈(R, t)

+c2ζβ−1γṗ(R, t) + c3λβ−1γp(R, t) = ρc[
...
υ(R, t)

+c(λβ−1α + ζ)ϋ(R, t) + c2λυ̇(R, t)]

(2.26c)

In Equation (2.26), p is the acoustic pressure, R is any point on the boundary

and υ is the normal fluid velocity at the boundary. The sound speed is c and the

fluid density is ρ. κ is the mean curvature. All the other Greek alphabets in Equa-

tion (2.26) denote spatial integration operators. The first-order doubly asymptotic

approximation (DAA1) was heuristically formulated in (Geers, 1971). Then, DAA1

was further developed for elastodynamics (Underwood and Geers, 1981) and non-

linear ground shock analysis (Mathews and Geers, 1987). Both DAA1 and DAA2

have been used for acoustic-structure interaction analysis in (Geers, 1978; Geers and

Felippa, 1983). Promising results have been obtained via employing DAA2. DAAs

were also extended to electromagnetic scattering problems (Geers and Zhang, 1988)

39



ΩE
Ω

Γ

∞

Infinite element

Figure 2.5. An illustration of infinite element.

and poroelastodynamics (Qi and Geers, 1997). The geometrical versatility is the

major advantage of DAA boundaries. The major limitation is the difficulty of im-

plementing DAA boundaries with order higher than two as the improving accuracy

requires increasing DAA orders (Geers and Sprague, 2010). To the author’s know-

ledge, the highest order of DAAs reported in literature is three (Geers and Toothaker,

2000).

2.2.2.2 Infinite elements

The infinite elements can replace the open boundary conditions by a layer of ele-

ments on the boundary. In this method, the infinite domain is entirely represented

by elements with infinite extent. The concept of infinite elements is analogous to

finite elements in FEM for modelling bounded domains but with appropriate shape

functions that can extend elements to the unbounded domain. Therefore, the infi-

nite elements are spatially and temporally local. An illustration of infinite elements

on the boundary Γ of the bounded domain Ω for representing the unbounded domain

ΩE is plotted in Figure 2.5.

The work on infinite element was firstly performed by Zienkiewicz and Bettess in

1976 (Zienkiewicz and Bettess, 1976). In this original approach, the elements can be
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extended to infinity via multiplying the corresponding shape functions with suitable

decay functions. Then, exponential decay functions are chosen in this approach for

the Laplace problems in (Bettess, 1977). This shape function of infinite elements

for one-dimensional problems can be formulated as:

Nj(r) = e
(rj−r)
L lj(r) (2.27)

with the Lagrange polynomial lj(r) and the nodal coordinates rj. L is an arbitrary

distance parameter, which measures the severity of the exponential decay. Via

discretizing the unbounded domain into infinite elements, this approach can be

implemented into existing finite element programs easily as an additional element

library. As an alternative choice, the reciprocal decay functions can also be applied.

The above infinite elements were also extended to model wave propagation problems

governed by the Helmholtz equation (Bettess and Zienkiewicz, 1977). In order to

model the decay of waves to infinity due to energy dissipation, a harmonic function

of type eikr is multiplied to Equation (2.27) as:

Nj(r) = eikre
(rj−r)
L lj(r) (2.28)

with the wavenumber k.

Except decay-function infinite elements, the mapped infinite elements developed

by Zienkiewicz et al. show simplicity in the generation of one-, two- and three-

dimensional infinite elements (Zienkiewicz et al., 1983). For one-dimensional pro-

blems, the introduced mapping function in this approach can transform the finite

parent element with the interval of ξ ∈ [−1, 1] to an infinite element with the interval

x ∈ [x2 − x1,∞). This transformation can be formulated in the form of:

x(ξ) = (2x1 − x2)Ñ0(ξ) + x2Ñ2(ξ) (2.29)

where x1 and x2 are nodal coordinates and the expressions for Ñ0(ξ) and Ñ2(ξ) are
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give by:

Ñ0(ξ) =
−ξ
1− ξ

, Ñ2(ξ) = 1 +
ξ

1− ξ
(2.30)

This mapped formulation also imposes the correct asymptotic decay behavior, such

as r−0.5 for two-dimensional problems, in the radial direction. In contrast, the infinite

elements with exponential decay functions (Bettess, 1977) are not able to correctly

represent that. The mapped infinite elements are also applied to two-dimensional

surface wave and three-dimensional acoustics in (Moyer, 1992) and (Goransson and

Davidsson, 1987) respectively.

A third type of infinite elements called wave envelope elements was firstly de-

veloped by Astley and Eversman for acoustics (Astley, 1983; Astley and Eversman,

1983). In this approach, the complex conjugates of shape functions are employed

as the weighting functions in the Galerkin weight-residual approach. This leads to

correct asymptotic behavior of the infinite elements and great simplification to the

integration of elements as the oscillatory terms are removed in the integrands of

weighting functions. However, this also makes the discrete problem unsymmetrical.

The weighting function can be expressed as:

Wi = Ni(r, θ)
ri
r
e+ik(r−ri) (2.31)

with the global shape function in polar coordinates Ni(r, θ) for any node i. This

scheme also shows capability of predicting accurate behaviors of unbounded domains

with sparse meshes. Then, the wave envelope elements were tested by a simple

one-dimensional problem for revealing their significance and hidden snags (Bettess,

1987). Later, Astley et al. extended the wave envelope idea by including element

mapping from infinite elements methodology (Astley et al., 1994). The complex

conjugate weighting functions in this approach are scaled by a geometric weight

factor. This approach is also known as the conjugated Astley-Leis formulation as

it fits within the variational framework of Leis (Leis, 2013). The wave envelop
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Figure 2.6. An illustration of perfectly matched layer.

formulation in the frequency domain is also developed for transient analysis via

incorporating the inverse Fourier transform (Astley, 1996). However, ill-conditioning

problems might be caused by increasing the order of element or at large wavenumber

(Astley, 2000; Astley and Coyette, 2001). Additionally, a study in (Astley and

Hamilton, 2006) reveals that the stability of infinite elements for transient wave

problems depends on the inner surface of the infinite element domain.

2.2.2.3 Perfectly matched layer

An alternative type of procedure for modelling wave propagation in unbounded

domains is the absorbing layers. Several absorbing layers, such as the sponge layers

(Israeli and Orszag, 1981), have been developed in the past decades. The perfectly

matched layer (PML) is one of the most widely developed absorbing layers. The

PML is a hypothetical layer surrounding the bounded domain with finite thickness

and artificial medium. This layer is capable of eliminating the reflected waves back to

the computational domain and thus replacing the unbounded domain. As illustrated

in Figure 2.6, the computational domain Ω is surrounded by the PML (ΩPML) along

its boundary Γ.

The PML was firstly constructed in time domain based on the finite-difference

method by Berenger for the unbounded electromagnetic problems governed by Max-
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well’s equations (Berenger, 1994). Then, the same author extended the PML to

three-dimensional electromagnetic problems (Berenger, 1996). Later, the original

approach developed by Berenger is proved to be weakly will-posed and may lead to

instabilities (Abarbanel and Gottlieb, 1997). As a result, strong well-posted formu-

lations based on Lorentz-material model and mathematical construct are proposed

in (Abarbanel and Gottlieb, 1998). The PML has been applied to various problems

such as linearized Euler equations (Hu, 1996), poroelastic media (Zeng et al., 2001)

and elastodynamics (Chew and Liu, 1996). Surveys of PML can be found in pu-

blications (Gedney, 1998; Hagstrom, 1999). The wave propagation in unbounded

acoustic media has also be modeled by PML in literatures (Qi and Geers, 1998; Ha-

rari et al., 2000; Tsynkov and Turkel, 2001; Singer and Turkel, 2004; Bécache et al.,

2004; Bermúdez et al., 2007). For two-dimensional acoustic problems governed by

Helmholtz equation in Equation (2.1), the governing equation in PML (ΩPML) is

the modified Helmholtz (PML-Helmholtz) equation with complex-valued anisotropic

material properties suitable for standard finite-element scheme and can be expressed

as:

∂

∂x

(
Sy
Sx

∂p

∂x

)
+

∂

∂y

(
Sx
Sy

∂p

∂y

)
+ k2SxSyp = 0 (2.32)

with the acoustic pressure p and wavenumber k. Sx and Sy are functions responsible

for the decay within the layer ΩPML and can be written in a general form of:

Sx = 1 +
σx
ik
, Sy = 1 +

σy
ik

(2.33)

In Equation (2.33), σx and σy, which are corresponding to the rate of decay, are

functions with respect to x and y. When σx = σy = 0 and Sx = Sy = 1, Equation

(2.32) will be reduced to the original Helmholtz equation in Equation (2.1) for the

computational domain Ω. For the absorbing layer ΩPML, σx or σy is zero in the part

of layer normal to y or x direction respectively. Therefore, both σx and σy are not

zeros in those corner regions only. In the PML formulations developed by Tsynkov
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and Turkel (Tsynkov and Turkel, 2001), constant decaying functions in ΩPML are

adopted for the convenience of analysis. For obtaining high-accuracy approximation

to Helmholtz equation, Singer and Turkel employed polynomial decay functions

(Singer and Turkel, 2004). Then, the PML based on an unbounded decay function,

which only depends on the sound speed of acoustics, is proposed by Bermúdez et

al (Bermúdez et al., 2007). It is also called the optimal or exact PML as it shows

significantly smaller errors than the classical ones.

Via utilizing the insights obtained with PML for electromagnetics, Basu and

Chopre also developed a novel PML for time-harmonic elastodynamics. This no-

vel PML can be implemented into a displacement-based finite element formulation

(Basu and Chopra, 2003). In the next year, it was extended to transient elastodyn-

amics for homogeneous and isotropic media (Basu and Chopra, 2004). Recently, a

new absorbing layer was constructed by Harari and Albocher based on PML concept

with the layer viewed as an anisotropic material with continuously varying complex

material properties (Harari and Albocher, 2006). This absorbing layer can also be

easily implemented in finite element software. The PML has been employed in the

transient analysis of dam-reservoir interaction system in (Khazaee and Lotfi, 2014)

and nonlinear analysis of soil-structure interaction in (Lee et al., 2014). Optimal

placement of the interface, thickness of layer, number of elements, types of decay

functions and implementation in the time domain is still debatable (Collino and

Monk, 1998).

2.3 Structural elastoplasticity

In the elastoplastic analysis preformed in this thesis, only small strain problems wit-

hout large rigid body rotations are considered. The problems of large deformations

are out of the scope of this research. Therefore, literature reviews on the former

type of problems are presented in the following sections.
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Studies on microplasticity have already revealed some physical mechanisms of

plastic deformations, such as the crystal slip in metal (Hull and Bacon, 2001) or mi-

crocracks in rocks and concrete (Vermeer, 1998). However, microplasticity modelling

of plastic behaviors is not feasible in the engineering level due to the demands of ef-

ficient analyses and minimum costs from industries. Therefore, classical continuum

plasticity with mathematical descriptions, such as the yield criteria, plastic flow and

hardening rules, is widely used in the engineering analysis of plastic deformations.

As an introduction to the classical plasticity theories, some well-known yield cri-

teria, hardening rules and constitutive relationships between stresses and strains are

discussed in Section 2.3.1. Next, a brief description of finite element implementati-

ons for elastoplastic analysis are given at the beginning of Section 2.3.2. This is then

followed by a review of the reduced integration methods with stabilizations. The

reduced integration methods were commonly used to improve the efficiency of com-

putational elastoplasticity and eliminate the locking phenomena in finite element

analysis.

2.3.1 Fundamentals of plasticity theory

The origin of plasticity theory can be traced back to the pioneer work done by

Tresca in 1864 (Tresca, 1864). Later, other important theories on plasticity were

also developed by Saint-Venant (St Venant, 1870), Mohr (Mohr, 1906), Mises (Mises,

1913), Drucker and Prager (Drucker and Prager, 1952) et al. Detailed descriptions

and discussions can be found in many books on plastic theory (Hill, 1998; Chen and

Han, 2007; de Souza Neto et al., 2011). In the plasticity theory, the limit that the

material shows plastic behavior is defined as the yield criterion. After the yielding

happens, the stress-strain relationship of material is determined by the flow rule. In

the following sections, brief descriptions of the plasticity theory and key formulations

are demonstrated.
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2.3.1.1 Yield criteria

In a simple uniaxial tension test, the elastic limit of material before the exist of any

plastic deformation is easily defined by the uniaxial yield stress σ0. However, the

definition of this limit in multiaxial stress test is less straightforward as the stress

components in several directions are included. In general, the yield condition can

be expressed as a function of the state of stress σ as:

F (σ, k) = f(σ)− k2 = 0 (2.34)

with f representing some function and k representing material parameter which

can be determined experimentally. The k can also be a function of the hardening

parameter κ if the work hardening is considered. In the stress space, the yield

function given by Equation (2.34) describes the yield surface. For any stress point

in this space, F < 0 indicates it inside the surface and corresponding to the elastic

stress state. Points on the surface define the elastic limit with F = 0 and points

outside the yield surface with F > 0 is considered to be plastically inadmissible.

Two classical yield criteria for defining the yield surface of metallic materials, the

Tresca yield criterion and von Mises yield criterion, are briefly summarized here.

In 1864, the first yield criterion for a combined state of stresses in metal was

proposed by Tresca (Tresca, 1864). The Tresca yield criterion suggests that the

plastic yielding begins when the maximum shear stress reaches a critical value. This

can be formulated using principle stresses (σ1, σ2, σ3) as:

τmax = max

(
1

2
|σ1 − σ2|,

1

2
|σ1 − σ2|,

1

2
|σ1 − σ2|

)
= k (2.35)

where the material parameter k can be determined by the simple tension test as:

k =
σ0
2

(2.36)

The Tresca yield criterion in Equation (2.35) defines an infinitely long regular

hexagonal cylinder in the principle stress space. The axis of this hexagonal cylinder
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Figure 2.7. π plane representation of Tresca and von Mises yield criteria.

coincides with the space diagonal. Because each normal section of this cylinder is

identical, the geometrical representation of this yield surface can make use of its

projection on the π plane (or deviatoric plane), which is a plane passing through

the origin of principle stress space and perpendicular to the space diagonal with

σ1 + σ2 + σ3 = 0. The π plane representation of Tresca yield criterion is plotted as

the regular hexagon in Figure 2.7.

Although Tresca yield criterion is simple, no influence of the intermediate princi-

ple stress is reflected in this criterion. In 1913, von Mises suggested that the plastic

yielding begins when the second deviatoric stress invariant reaches a critical value.

The mathematical expression of von Mises yield criterion is:

√
J2 = k (2.37)

with the second deviatoric stress invariant J2 defined as:

J2 =
1

6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

(2.38)

In Equation (2.37), k is a material parameter that can be determined by expe-

riments. Consider the yielding occurred in uniaxial tension test when σ1 = σ0 and

σ2 = σ3 = 0, utilizing Equations (2.37) and (2.38) yields:

k =
σ0√
3

(2.39)
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Figure 2.8. Stress-strain curve of uniaxial tension test with hardening.

The von Mises yield surface is an infinitely long cylinder in the principle stress

space with its axis coincides with the space diagonal. π plane representation of von

Mises yield criteria is also given in Figure 2.7. In this figure, the von Mises circle

is set to intersect the vertices of Tresca hexagon under uniaxial stress. For many

metallic materials, the experimental yield surfaces fall between the von Mises and

Tresca yield surfaces.

2.3.1.2 Hardening rules

The hardening phenomenon in a typical uniaxial test is shown in Figure 2.8. Gene-

rally, hardening means that the yield stress level after the initial yielding is depen-

dent on the history of plastic straining. In the uniaxial test, hardening is described

by allowing the uniaxial yield stress σ0 to vary with respect to the accumulated

plastic strain. For describing the nonlinear stress-strain relationship of elastoplastic

materials, the incremental procedure is adopted. The strain increment dϵ is assumed

to consist two parts: the elastic strain increment dϵe and the plastic strain increment

dϵp as:

dϵ = dϵe + dϵp (2.40)
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In Figure 2.8, the stress increment dσ is related to the strain increment dϵ by:

dσ = Etdϵ (2.41)

with the tangent modulus Et, which is varying during the plastic deformation. Uti-

lizing Hook’s law for elastic strain increment dϵe and substituting Equation (2.40)

into (2.41) yields:

dσ = Et

(
dσ

E
+ dϵp

)
(2.42)

where E is the Elastic modulus. Rearranging Equation (2.42) yields the relationship

between stress increment dσ and plastic strain increment dϵp:

dσ = Hdϵp (2.43)

with the hardening parameter H (or plastic modulus) defined as:

1

H
=

1

Et
− 1

E
(2.44)

For the two- or three-dimensional cases, the hardening is introduced by changing

the material parameter k in the yield function F (σ, k) in Equation (2.34). This may

lead to the change of size, shape and orientation of the yield surface. First of all,

the material is perfectly plastic if there is no hardening exist. In this scenario, the

yield stress level does not depend on the degree of plastic deformation and the yield

surface is fixed regardless of any deformation process. The k in Equation (2.34) is

then a constant in this situation. Figure 2.9 shows the π plane representation of a

perfectly plastic von Mises model on the left-hand-side. The corresponding uniaxial

cyclic test with loading (tension), unloading and reloading (compression) process

is also plotted on the right-hand-side in Figure 2.9 for explanation. The perfectly

plastic model is normally used for stability analysis of structures and calculating

limit loads and safety factors in engineering practices.

If the subsequent yield surface is corresponding to the uniform (isotropic) ex-

pansion of the initial yield surface at any state of hardening, this plastic model
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Figure 2.9. Perfect plasticity: π plane representation of von Mises yield surface and
uniaxial test.
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Figure 2.10. Isotropic hardening: π plane representation of von Mises yield surface
and uniaxial test.

is considered to be isotropic hardening. The size of the yield surface in the iso-

tropic hardening depends on the material parameter k(ϵ̄p), which is a function of

the plastic strain history now. The effective plastic strain ϵ̄p can be determined as

a scalar function of the work done by plastic deformation or as the accumulated

plastic strain. The graphical interpretation of isotropic hardening is illustrated in

Figure 2.10 with the π plane representation of von Mises yield surface and a typical

stress-stain curve of uniaxial cyclic test.

After being loaded and hardened in one direction, it is frequently observed in the

experiments that some material show less resistance to the plastic yielding in the

opposite direction. This type of phenomenon is known as the Bauschinger effect,

which is not included in the isotropic hardening. Therefore, the kinematic hardening
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Figure 2.11. Kinematic hardening: π plane representation of von Mises yield surface
and uniaxial test.

is developed to included the Bauschinger effect. In the kinematic hardening, the

shape and size of the yield surface are preserved but the yield surface translates

in the stress space. Again, the kinematic hardening of von Mises yield surface is

plotted in Figure 2.11 along with the stress-strain curve of uniaxial cyclic test. The

yield function of kinematic hardening can be written in the general form of:

f(σ −α)− k = 0 (2.45)

where the material parameter k is a constant and α is known as the back stress or

shift stress, which defines the shifting (OO′) of the yield surface and varies with the

plastic deformation.

2.3.1.3 Elastoplastic constitutive relationship

For deriving the stress-strain relationship after the yielding, the loading criterion is

firstly addressed here. As discussed in Section 2.3.1.1, the elastic stress states are

located inside the yield surface and the plastic deformation occurs when the stress

point is on the yield surface. Therefore, during the plastic loading, the stress point

stays on the yield surface and the additional loading or the incremental stress dσ

should point outwardly from the current elastic region. In order to precisely express

the above statement, the criterion for loading can be written as:

F = 0, and
∂F

∂σ
dσ > 0 (2.46)
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For the loading condition described in Equation (2.46), ∂F
∂σ

is normal to the yield

surface. Since the incremental stress dσ is pointing outwardly from elastic region

during loading, the angles between dσ and ∂F
∂σ

is less than 90◦ and the product

of them should be larger than zero. In contrast, unloading occurs when the stress

point moves back from yield surface to the current elastic region inside. The angles

between dσ and ∂F
∂σ

is larger than 90◦. Hence, the unloading will occur when:

F = 0, and
∂F

∂σ
dσ < 0 (2.47)

In the neutral loading case, the incremental stress dσ is tangential to the yield

surface and perpendicular to ∂F
∂σ

. No additional plastic deformation will occur. Thus,

the criterion for neutral loading is:

F = 0, and
∂F

∂σ
dσ = 0 (2.48)

After the initial yielding, part of the material will be plastic. Any increment in

stress dσ is corresponding to the changes in strain. Following Equation (2.40), the

incremental strain for multidimensional case dϵ can be decomposed in to elastic and

plastic parts as:

dϵ = dϵe + dϵp (2.49)

A further assumption is made for deriving the relationship between plastic strain in-

crement dϵp and the stress increment dσ for the multidimensional case. Because the

relationship between elastic strain increment dϵe and the stress increment dσ is go-

verned by the Hook’s law, the plastic strain increment is assumed to be proportional

to the stress gradient of plastic potential G as:

dϵp = dλ
∂G

∂σ
(2.50)

where the scalar of proportionality dλ is the plastic multiplier, Equation (2.50) is

the flow rule, which governs the plastic flow after yielding. Generally, the expression

for G should be determined by experiments. As the simplest guess, it is reasonable
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to assume G = F and yields:

dϵp = dλ
∂F

∂σ
(2.51)

Equation (2.51) is known as the associate flow rule as the plastic flow is associate

or connected to the yield criterion. In contrast, Equation (2.50) is also known as

the nonassociate flow rule. The relationship between incremental stress and strain

is defined as the constitutive relation below:

dσ = Depdϵ (2.52)

where Dep is the elastoplastic constitutive matrix. Here, only the detailed derivation

of Dep for perfectly plastic material is given for conciseness. Derivations for stress-

strain relationship under other yielding criteria and hardening rules can be found

in books for plastic theory (Hill, 1998; Chen and Han, 2007). Utilizing Hook’s law

and Equation (2.49), the stress increment dσ can be expressed as:

dσ = Ddϵe = D (dϵ− dϵp) (2.53)

with D the elastic matrix. Substituting Equation (2.50) into (2.53) yields:

dσ = D

(
dϵ− dλ

∂G

∂σ

)
(2.54)

Because the stress state (σ+dσ) after the incremental change dσ should still satisfy

the yield criterion F = 0, the following relationship must exist for perfectly plastic

material:

F (σ + dσ) = F (σ) + dF = 0 = F (σ) (2.55)

Then, the consistency condition can be derived from Equation (2.55) as:

dF =

(
∂F

∂σ

)T
dσ = 0 (2.56)
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Substituting the expression for dσ in Equation (2.54) into Equation (2.56):(
∂F

∂σ

)T (
Ddϵ− dλD

∂G

∂σ

)
= 0 (2.57)

Solving the plastic multiplier dλ from Equation (2.57):

dλ =

(
∂F
∂σ

)T
Ddϵ(

∂F
∂σ

)T
D∂G

∂σ

(2.58)

Substituting Equation (2.58) into (2.54) and rearranging the resulting formula into

the form of Equation (2.52) yields the expression for the elastoplastic constitutive

matrix:

Dep = D−
D∂G

∂σ

(
∂F
∂σ

)T
D(

∂F
∂σ

)T
D∂G

∂σ

(2.59)

According to Equations (2.52) and (2.59), the stress and strain relationship in

finite element formulations is nonlinear as the evaluation of current stress is influ-

enced by the magnitude of the stress increment. Therefore, the iterative procedure

must be applied in each incremental step. The finite element implementation of

elastoplastic analysis is briefly summarized at the beginning of next section.

2.3.2 Improving efficiency of computational elastoplasticity

For the purpose of discussing the use of reduced integration methods in improving

the efficiency of computational elastoplasticity, the computational procedures for

the finite element analysis of elastoplasticity are briefly summarized at first. Some

early implementations of plastic theory into finite element scheme can be traced

back to mid-1960s (Marcal and King, 1967; Yamada et al., 1968; Zienkiewicz et al.,

1969). Detailed descriptions, including computer codes, for the finite element analy-

sis of elastoplastic problems are available in various books (Owen and Hinton, 1980;

de Souza Neto et al., 2011; Kim, 2014). Performing the finite element analysis for

normal static problems yields the following global system of equations:

KU = Fext (2.60)
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with the nodal displacement vector U, external nodal force vector Fext and the

stiffness matrix K for elastoplastic analysis given by:

K =

ˆ
Ω

BTDepBdΩ (2.61)

where B is the strain-displacement matrix. According to Equation (2.59), the evalu-

ation of Dep in Equation (2.61) requires the current state of stress. Additionally, the

response of elastoplastic system also depends on the deformation history. Therefore,

the incremental form of Equation (2.60) is adopted:

Kt∆U = ∆Fext (2.62)

The tangent stiffness matrix Kt in Equation (2.62) is a linearization of the exact

nonlinear stiffness matrix K within this incremental step and is calculated based on

the stress state at the end of last step. Consequently, the incremental displacement

and strain can be evaluated. Then, the incremental stresses can be calculated using

the nonlinear relation defined in Equation (2.59). The evaluation of incremental

stresses also requires the elastic predictor/plastic corrector algorithm, which is also

known as the return mapping algorithm. As the name suggests, this algorithm

involves two steps: the elastic trial step and the plastic corrector step. In the elastic

trial step, the elastic trial state is solved by assuming that the material is purely

elastic. If the elastic trial state lies within the elastic domain or on the yield surface

defined by the yield criterion in Equation (2.34), this solution is accepted. However,

if the elastic trial state violates plastic admissibility, the plastic corrector step is

required to enforce the plastic admissibility and bring the stress state back to the

updated yield surface (in case of the exist of hardening). Once the stresses of this

current step σ are calculated, the internal nodal force vector Fint can be calculated

as:

Fint =

ˆ
Ω

BTσdΩ (2.63)
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Then, the global force equilibrium has to be satisfied by examining the difference of

internal and external nodal forces. The difference, which is known as the residual

force R, is:

R = Fext − Fint (2.64)

The residual force R should be smaller than a tolerance value for accuracy. If

R is larger than the tolerance, it is then used as a new applied external force for

evaluating the new strain and stress increments via the aforementioned procedure to

update the results. In each of these iterations, a new residual force will be calculated

at the end and this iteration procedure will stop until the residual is smaller than

the predefined tolerance. Common iterative procedures, such as Newton-Raphson

or modified Newton-Raphson method, could be employed.

As discussed earlier, the update of stresses within each incremental load step

requires the return mapping algorithm and should be performed at each integration

point (Gauss point) of an element independently. Due to the nonlinearity of the

elastoplastic constitutive equations, the return mapping algorithm should include a

stepping or iterative procedure and thus is computationally expensive. For impro-

ving the efficiency of elastoplastic analysis via finite element method, developments

have been made on constructing stable iterative procedures with accelerated con-

vergence rate, such as line search techniques (Matthies and Strang, 1979; Crisfield,

1983, 1984), arc length methods (Wempner, 1971; Riks, 1972, 1979; Crisfield et al.,

2012) and consistence tangent operators (Simo and Taylor, 1985). Alternatively, the

efficiency of the elastoplastic analysis can be increased by reducing the number of

integration points required in each element, such as the quadrilateral element with

a single quadrature point introduced by Hughes et al. in (Hughes et al., 1978). Ho-

wever, reducing the integration points leads to rank-deficient elements. This means

that the sum of the rank of element stiffness matrix and the number of rigid body

modes is less than the total number of degree of freedom. This may cause singulari-
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ties of the assembled global stiffness matrix under certain boundary conditions and

meshes. Although the singularity is absent in the transient system matrix, spatial

oscillations may exist in the solutions. These spatial oscillations are physically un-

interpretable and similar to the hourglass patterns in finite difference computations

(Maenchen and Sack, 1964). In order to reduce the rank deficiency, numerous redu-

ced integration methods with hourglass control have been developed during the last

decades. In these methods, the spurious modes, which is also known as the hour-

glass modes, of the underintegrated elements are often controlled by introducing an

additional stabilization matrix. The stabilization matrix should be used to ensure

the element passes the patch test via preserving the conditions of invariance and

consistency. Moreover, deformation modes other than the hourglass modes should

not be effected by the stabilization matrix.

During the past decades, a number of literatures have been contributed to de-

velop stable underintegrated elements for finite element analysis and a good review

on those techniques for controlling the hourglass modes are discussed in the pa-

per by Belytschko et al. (Belytschko et al., 1984). The hourglass control scheme

published by Kosloff and Frazier (Kosloff and Frazier, 1978) is considered to be se-

minal. In their work, the stabilization matrix is constructed to be orthogonal to all

linear displacement field and its magnitude is determined by a stabilization parame-

ter. However, the solution of equation is required in the derivation of the element

stiffness. Then, a scheme with simple expression for the projection in stabiliza-

tion matrix are established by Flanagan and Belytschko (Flanagan and Belytschko,

1981) without the solution of any equation. This projection is also known as the γ-

projection operator. Based on the approach developed by Flanagan and Belytschko

(Flanagan and Belytschko, 1981), quadrilateral elements with one-point integration

for plates (Belytschko and Tsay, 1983) and heat conduction (Liu and Belytschko,

1984) are developed. The stabilization parameter in (Liu and Belytschko, 1984) is

determined by solving an eigenvalue problem. The numerical results imply that the
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accuracy of underintegrated element for Laplace equation is slightly decreased but

the rate of convergence is not influenced by the hourglass control. In (Belytschko

et al., 1984), the γ-projection is used to construct the optimal bending element with

the magnitude of stabilization parameter obtained by the Hu-Washizu variational

principle. The stability and convergence of the 4-nodes quadrilateral element with

one-point integration are also examined by Jacquotte and Oden (Jacquotte and

Oden, 1984). The conclusion of the examination states that the convergence rate of

the 4-nodes quadrilateral element with one-point integration is nearly the same as

the fully integrated element. The γ-projection operator was also used to develop two

flexural-superconvergent elements and two elements that avoid volumetric locking

in (Belytschko and Bachrach, 1986). The corresponding numerical examples show

that the hourglass control may improve the accuracy of underintegrated elements for

certain types of problems such as the beam bending and incompressible materials.

The stabilization matrix can also be derived by approaches which do not require

stabilization parameters. An assumed strain stabilization of the 4-nodes quadrila-

teral element and 8-nodes hexahedral element with one-point integration was con-

structed in (Belytschko and Bindeman, 1991) and (Belytschko and Bindeman, 1993)

respectively by Belytschko and Bindeman. Based on the material properties and

element geometry, this stabilization procedure is developed via the assumed strain

method. This type of element is accurate in coarse mesh as the symmetric displace-

ment gradient is projected to the assumed strain field. This strain field is chosen in

a similar way as it developed in (Belytschko and Bachrach, 1986). Alternatively, Liu

et al. suggested that the strain field used in stabilization can be constructed by Tay-

lor series (Liu et al., 1985). This approach is a unification of the stabilization-matrix

concept as it is applicable to all two-dimensional and three-dimensional elements.

However, shear-related locking phenomenon are not considered. Another hourglass

control approach was also published by Schulz via expanding the stress field using

Taylor series about the centre of element (Schulz, 1985). Based on the procedure
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proposed by Liu et al. (Liu et al., 1985), the directional reduced integration is de-

veloped by Koh and Kikuchi (Koh and Kikuchi, 1987). In the directional reduced

integration, the full integration is still used along on of the referential directions for

stabilization. The computational effort is thus smaller than full integration but gre-

ater than one-point quadrature. The approach proposed by Koh and Kikuchi works

well for two-dimensional problems. Nevertheless, hourglass modes have been found

for three-dimensional plate and shell elements. In order to overcome the locking

problems in (Liu et al., 1985), new two-dimensional and three-dimensional underin-

tegrated elements are constructed in (Liu et al., 1994) for solving beam, plate and

shell problems. The approaches proposed by Liu et al. in (Liu et al., 1985, 1994)

are based on the Taylor expansion of stain-displacement matrix, while approaches

based on the Taylor expansion of the derivatives of shape function with respect to

physical coordinates are proposed by Hueck and Wriggers for linear elasticity (Hu-

eck and Wriggers, 1995) and large deformation (Wriggers and Hueck, 1996). Later,

Korelc and Wriggers published a more efficient element. This element utilizes the

Taylor expansion of the derivatives with respect to reference coordinates rather than

physical coordinates (Korelc and Wriggers, 1997). Elements with reduced integra-

tion and hourglass control have been successfully implemented in several software

packages such as LS-DYNA3D (Hallquist, 1983, 1994), MSC Nastran (Lahey et al.,

1994), ANSYS (ANSYS, 2002) and ABAQUS (Systèmes, 2007). Recently, reduced

integration has also been applied to isogeometric analysis (IGA) (Schillinger et al.,

2014; Adam et al., 2015; Hiemstra et al., 2017; Fahrendorf et al., 2018; Leonetti

et al., 2018).

2.4 Conclusions

Reviews on the numerical simulations of both wave propagation in unbounded dom-

ains and structural elastoplasticity are performed in this chapter. For modelling the
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unbounded domains, the developments on global and local approaches are stated

and the corresponding advantages and disadvantages are discussed. Considering

the intrinsic nature of SBFEM in modelling unbounded domains and several local

high-order open boundaries developed for improving its computational efficiency,

this method is extended to model both two- and three- dimensional unbounded

acoustic domains as well as the acoustic-structure interaction problems in this the-

sis. Not to mention the inherent advantages of SBFEM in automatic meshing of

complex geometry and efficient mesh transitions on acoustic-structure or material

interface.

The fundamentals for structural elastoplasticity, along with the implementations

in finite element scheme, are briefly summarized in this chapter as well. The de-

velopments and discussions of reduced integration methods with hourglass control

are reviewed. As an approach to reduce the number of locations for performing the

computationally expensive return mapping algorithm in elastoplastic analysis, the

scaled boundary formulation with stabilization is developed for three-dimensional

elastoplasticity in this thesis for efficient and automatic analysis.
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Chapter 3

2D acoustic analysis using SBFEM

3.1 Introduction

The propagation of acoustic waves in unbounded domains, including sound wave

radiation and scattering by obstacles, is of importance in many practical applications

such as sonar, crack detection, acoustic optimization of vehicles and the seismic

design of dam-reservoir systems. The numerical modelling of these types of problems

is challenging due to the requirement to satisfy the radiation condition at infinity.

Moreover, the modelling of waves in bounded domains poses its own problems with

regards to fine mesh requirements when high wavenumbers are involved.

With respect to accurately and efficiently representing unbounded domains, dif-

ferent numerical approaches have been proposed, some of the most popular methods

used in modelling exterior acoustics are reviewed and compared in Chapter 2. Local

absorbing boundary conditions are particularly attractive in terms of efficiency and

ease of implementation. Most of the proposed local absorbing boundaries are only

singly asymptotic at the high-frequency limit. That is, they are suitable for radia-

tive fields where all of the field energy propagates to infinity. This is not the case in

a layered system, where evanescent modes exist. Even if all modes are propagating,

the rate of convergence of high-order singly-asymptotic open boundaries may be
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low. For a circular cavity embedded in a full plane, the modal stiffness coefficient

approaches that of a horizontal layer with increasing mode number λ (Prempramote

et al., 2009). The slow convergence can be overcome by using a doubly-asymptotic

approximation (DAA), which is accurate not only at the high-frequency limit, but

also at statics. The development of the DAA is documented in Section 2.2.2.1. The

highest order of the DAA reported in the literature is three (Geers and Toothaker,

2000).

As discussed in Section 2.2.1.3, a high-order doubly-asymptotic open boundary

was proposed specifically for the modal equations of scalar waves (Prempramote

et al., 2009). This formulation has been shown to accurately model evanescent wa-

ves and long-time responses. Compared to singly-asymptotic open boundaries, it

leads to a significant gain in accuracy at no additional cost. However, this algo-

rithm can become ill-conditioned for mode number λ close to i+ 0.5, where i is an

integer. Therefore, an improvement is proposed in (Prempramote, 2011) to increase

the numerical robustness of the solution procedure. This is achieved by introducing

additional factor coefficients in the derivation of the doubly-asymptotic continued-

fraction solution. As a result, the denominators of certain continued-fraction coeffi-

cients turn into only sign functions, whereby singularities are avoided. In addition,

it is also proposed to use singly-asymptotic approximations for the low-order mo-

des only and to combine these with doubly-asymptotic approximations of all other

modes. This contributes to improving robustness and reducing the computational

cost.

The approach presented in References (Prempramote et al., 2009; Prempramote,

2011) for modal equations is extended to the two-dimensional case in this chapter.

To this end, it is combined with a scaled boundary finite element approach. The

SBFEM is a semi-analytical technique that is particularly suitable for modelling

waves in unbounded domains and for representing singularities. It has also been

used in the context of dynamic dam-reservoir interaction (Lin et al., 2012). The
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development of this method is documented in References (Song and Wolf, 1995;

Wolf and Song, 1995; Song and Wolf, 1996; Wolf and Song, 1996; Song and Wolf,

1997; Wolf, 2003).

A two-dimensional acoustic domain of arbitrary shape can be divided into a near

field region containing any irregular geometrical features and a far field region by in-

troducing a circular boundary as will be illustrated in Figure 3.1 later in Section 3.2.

The near field can be further divided into bounded scaled boundary finite element

subdomains, which can be regarded as superelements. The far field region is repre-

sented by the proposed high-order doubly-asymptotic open boundary. The scaled

boundary finite element equations of the unbounded domain with circular boun-

dary are decoupled in this approach. The resulting modal scaled boundary finite

element equations can be cast in terms of a frequency-dependent modal impedance

coefficient and the solutions can be sought recursively by expanding this coefficient

into a series of continued fractions and satisfying the scaled boundary finite ele-

ment equation at both high and low frequency limits. Via introducing auxiliary

variables and superimposing the contributions of individual modes, the continued-

fraction expansion is transformed into a temporally local open boundary condition

in the time-domain (Prempramote et al., 2009). The resulting system of first-order

differential equations to represent the unbounded domain is easily coupled to the

standard equations of motions representing the interior via the nodal flux vector on

the circular boundary. The main materials of this chapter have been published as a

research paper in Journal of Computational Physics (Birk et al., 2016).

This chapter is organized as follows. The scaled boundary finite element appro-

ach for two-dimensional linear acoustics is outlined in Section 3.2. The improved

doubly-asymptotic open boundary for 2D exterior acoustics is derived in Section 3.3.

The coupling of the scaled boundary finite element model of the bounded domain

and the high-order doubly-asymptotic open boundary is addressed in Section 3.4.

Numerical examples are presented in Section 3.5 to illustrate the improved numerical
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Figure 3.1. Modeling 2D infinite acoustic domain: (a) the 2D acoustic domain, (b)
bounded near field and (c) unbounded far field

robustness, accuracy and efficiency of the proposed approach.

3.2 Scaled boundary finite element formulations

for 2D linear acoustics

Wave propagation in a linear acoustic medium is governed by the scalar wave equa-

tion,

∇2p− 1

c2
∂2p

∂t2
= 0. (3.1)

In Equation (3.1), the symbols p and c denote the acoustic pressure and the speed of

sound, respectively. The gradient operator ∇ is formulated in Cartesian coordinates

x̂, ŷ as ∇ =
[
∂
∂x̂
, ∂
∂ŷ

]T
.

Consider a two-dimensional domain, which is split into a near field region ΩN

and a far field region ΩF by a circular boundary Γ as shown in Figure 3.1.

Both the bounded and unbounded parts of the system can be efficiently modeled

using the SBFEM, as will be demonstrated in this chapter. To this end, the near

field region is split into a number of bounded subdomains to capture the essential

geometric features. The SBFEM is applied to each of these subdomains. The far field
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is treated as one unbounded subdomain with a circular surface. Near field and far

field are coupled via the nodal flux on the circular boundary Γ . The computational

implementation of the coupling of the scaled boundary finite element models of

bounded and unbounded substructures is straightforward, provided that compatible

meshes are used to discretize the circular boundaries. The scaled boundary finite

element formulations for the bounded and unbounded domains are summarized in

Sections 3.2.1 and 3.2.2, respectively.

3.2.1 2D bounded acoustic domain

Figure 3.2 shows a scaled boundary finite element model of a typical polygon-shaped

bounded domain. Only the boundary is discretized using line finite elements. Here,

higher-order elements can be employed (Vu and Deeks, 2006). Individual sections

of the boundary can be modeled using different numbers of elements and varying

element orders. In Figure 3.2, the bigger red dots indicate nodes that coincide with

the endpoints of elements, whereas the smaller black dots indicate internal nodes.

For each element, the geometry of the boundary is described by interpolating local

nodal coordinates xb and yb using 1D mapping functions N(η) in terms of the local

coordinate η,

x(η) = N(η)xb, y(η) = N(η)yb. (3.2)

with the 1D mapping functions

N(η) = [N1(η), N2(η), · · ·Nm(η)] (3.3)

where m is the number of nodes in this element. The total bounded domain is

described by scaling the geometry of the boundary using the radial coordinate ξ,

x̂ = ξ · x = ξN(η)xb (3.4a)

ŷ = ξ · y = ξN(η)yb (3.4b)
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O

η

ξ

Figure 3.2. A Typical 2D polygon-shaped bounded subdomain in SBFEM coordi-
nates

The radial coordinate ξ is equal to one at the boundary and zero at the scaling

centre O. In Figure 3.2, the grey shaded triangle indicates the part of the bounded

polygon that is obtained by scaling the corresponding line element.

Equation (3.4) is referred to as the scaled boundary transformation. It is used

to express the differential operator in a governing equation in terms of the scaled

boundary coordinates η and ξ. Following the general concept of the SBFEM (Wolf,

2003; Wolf and Song, 2000), the gradient operator in Equation (3.1) for 2D acoustics

is formulated as

∇ = [J(η)]−1


1

ξ




∂
∂ξ

∂
∂η

 = {ba1(η)}
∂

∂ξ
+

1

ξ
ba2(η)

∂

∂η
, (3.5)

with

J(η) =

 x(η) y(η)

x(η),η y(η),η

 . (3.6)

The superscript ’a’ in vectors ba1 and ba2 in Equation (3.5) denotes the acoustic

domain. Using Equation (3.2), ba1 and ba2 can be expressed as

ba1 =
1

|J|

 y,η

−x,η

 , ba2 =
1

|J|

 −y

x

 , |J| = xy,η − yx,η. (3.7)

Discretizing the pressure field p(x, y, t) using the same mapping functions as for the
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geometry,

p(x, y, t) = N(η)p̂(ξ)eiωt, (3.8)

p̂(ξ) is the radial pressure amplitude. Applying the method of weighted residuals

to Equation (3.1) in the circumferential direction, a differential equation for the

nodal pressure amplitude p̂(ξ) in two-dimensional acoustics is obtained. In this

equation, the absence of prescribed flux along side-face (boundary with constant

circumferential coordinates η) in a subdomain is also considered:

Ea
0ξ

2p̂(ξ),ξξ +
(
Ea

0 − Ea
1 + [Ea

1]
T
)
ξp̂(ξ),ξ − Ea

2p̂(ξ) + ω2Ma
0ξ

2p̂(ξ) = 0 (3.9)

In Equation (3.9), the symbols Ea
0, Ea

1, Ea
2 and Ma

0 denote coefficient matrices that

are calculated on an element-by-element basis and assembled using standard finite

element techniques. For two-dimensional acoustics, these matrices calculated for

each boundary element are defined as

Ea
0 =

ˆ +1

−1

[Ba
1(η)]

T Ba
1(η) |J(η)| dη (3.10a)

Ea
1 =

ˆ +1

−1

[Ba
2(η)]

T Ba
1(η) |J(η)| dη (3.10b)

Ea
2 =

ˆ +1

−1

[Ba
2(η)]

T Ba
2(η) |J(η)| dη (3.10c)

Ma
0 =

ˆ +1

−1

NT (η)
1

c2
N(η) |J(η)| dη (3.10d)

with

Ba
1(η) = ba1N(η), Ba

2 = ba2N(η),η. (3.11)

The second-order differential equation (3.9) in nodal pressure can be transformed

in an equivalent nonlinear first-order differential equation in impedance Sa(ω),

(Sa(ω)− Ea
1) [E

a
0]

−1
(
Sa(ω)− [Ea

1]
T
)
− Ea

2 + ωSa(ω),ω + ω2Ma
0 = 0 (3.12)

where the frequency-dependent impedance matrix Sa(ω) relates the amplitudes of
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the nodal flux R̂ to those of the nodal pressure p̂ at the boundary ξ = 1,

R̂ = Sa(ω)p̂ (3.13)

In a 2D bounded domain, the nodal flux R̂(ξ) is equal to the internal nodal flux

Q̂(ξ), which is related to the nodal pressure as (Wolf and Song, 2000; Wolf, 2003)

Q̂(ξ) = Ea
0ξp̂(ξ),ξ + [Ea

1]
T p̂(ξ) (3.14)

At ξ = 1, the nodal flux vector R̂ is defined as

R̂ =

ˆ
Γξ

NT ∂p̂

∂n⃗
dΓ (3.15)

In Equation (3.15), the integration is over the boundary Γξ with ξ = 1 and dΓ is the

infinitesimal line. n⃗ is the unit normal vector to the boundary curve and ∂p̄
∂ñ

denotes

the prescribed normal derivative of the pressure at the boundary. Equation (3.12)

can be solved by expanding the impedance matrix into a series of continued fractions,

as has been proposed for structural dynamics in Reference (Song, 2009). Later,

the coefficient matrix X
(i)
a is added in the continued fractions and lead to better

conditioned mass and stiffness matrices in the time-domain equations (Chen et al.,

2014). The continued-fraction solution for Sa(ω) is summarized in the following

section.

3.2.1.1 Continued-fraction solution for 2D bounded acoustics

In this section, the improved continued-fraction solution for solving the impedance

of 2D bounded acoustic domain is summarized. Readers are referred to (Song, 2009;

Chen et al., 2014) for more details. Equation (3.12) can be rewritten as

(Sa(ω̄)− Ea
1) [E

a
0]

−1
(
Sa(ω̄)− [Ea

1]
T
)
+ 2ω̄Sa(ω̄),ω̄ − Ea

2 − ω̄Ma
0 = 0 (3.16)

70



with ω̄ = −ω2. The impedance matrix Sa(ω̄) can be expressed as the sum of constant

term Ka, linear term ω̄Ma and a high-order residual term −ω̄2
(
R

(1)
a (ω̄)

)
as

Sa(ω̄) = Ka + ω̄Ma − ω̄2
(
R(1)
a (ω̄)

)
(3.17)

In Equation (3.17), Ka and Ma are the static stiffness and mass matrix of bounded

acoustic domain. R
(1)
a (ω̄) represents the high-frequency response of this bounded

domain. Substituting Equation (3.17) into (3.16) gives

(
Ka − Ea

1 + ω̄Ma − ω̄2
(
R(1)
a (ω̄)

))
[Ea

0]
−1
(
Ka − [Ea

1]
T + ω̄Ma

− ω̄2
(
R(1)
a (ω̄)

))
+ 2ω̄

(
Ma − 2ω̄

(
R(1)
a (ω̄)

)
− ω̄2

(
R(1)
a (ω̄)

)
,ω̄

)
− Ea

2 − ω̄Ma
0 = 0 (3.18)

Next, Equation (3.18) can be rearranged in ascending orders of the power of ω̄. By

setting all constant terms to zero yields

(Ka − Ea
1) [E

a
0]

−1
(
Ka − [Ea

1]
T
)
− Ea

2 = 0 (3.19)

The solution of the algebraic Riccati equation in Equation (3.19) for Ka is described

in (Song, 2004a). Setting all linear terms in Equation (3.18) to zero leads to

(Ka − Ea
1) [E

a
0]

−1Ma +Ma [E
a
0]

−1
(
Ka − [Ea

1]
T
)
+ 2Ma −Ma

0 = 0 (3.20)

Equation (3.20) is the Lyapunov equation for the mass matrix Ma. Setting the

remaining terms in Equation (3.18) to zero yields the following equation for R(1)
a (ω̄):

Ma [E
a
0]

−1Ma − (Ka − Ea
1) [E

a
0]

−1 (R(1)
a (ω̄)

)
−
(
R(1)
a (ω̄)

)
[Ea

0]
−1

·
(
Ka − [Ea

1]
T
)
− 4

(
R(1)
a (ω̄)

)
− ω̄Ma

0 [E
a
0]

−1 (R(1)
a (ω̄)

)
− ω̄

(
R(1)
a (ω̄)

)
[Ea

0]
−1Ma − 2ω̄

(
R(1)
a (ω̄)

)
,ω̄

+ ω̄2
(
R(1)
a (ω̄)

)
[Ea

0]
−1 (R(1)

a (ω̄)
)
= 0 (3.21)

In this improved continued-fraction solution, the unknown residual term R
(i)
a (ω̄)

is decomposed by the yet undetermined scaling factor X(i)
a with i = 1, 2, . . . M (M
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is the number of terms in continued fraction).

R(i)
a (ω̄) = X(i)

a

(
S(i)
a (ω̄)

)−1 (
X(i)
a

)T (3.22)

The term S
(i)
a (ω̄) in Equation (3.22) corresponds to the denominator of the continued-

fraction term. Similar to the expression for Sa(ω̄) in Equation (3.17), S(i)
a (ω̄) can be

expressed as the sum of a constant term S
(i)
a0 , a linear term ω̄S

(1)
a1 and a high-order

residual term −ω̄2
(
R

(i+1)
a (ω̄)

)
as

S(i)
a (ω̄) = S

(i)
a0 + ω̄S

(1)
a1 − ω̄2

(
R(i+1)
a (ω̄)

)
(3.23)

The derivative of
(
R

(i)
a (ω̄)

)
,ω̄

can be obtained as

(
R(i)
a (ω̄)

)
,ω̄
= −X(i)

a

(
S(i)
a (ω̄)

)−1 (
S(i)
a (ω̄)

)
,ω̄

(
S(i)
a (ω̄)

)−1 (
X(i)
a

)T (3.24)

Substituting Equation (3.22) into (3.21) and pre- and post-multiplying the resulting

expression by
(
S
(i)
a (ω̄)

)(
X

(i)
a

)−1

and
(
X

(i)
a

)−T (
S
(i)
a (ω̄)

)
, respectively, leads to the

expression for S
(1)
a (ω̄) (with i = 1) as:

(
S(1)
a (ω̄)

)
c(1)

(
S(1)
a (ω̄)

)
−
(
S(1)
a (ω̄)

) (
b
(1)
0

)T
−
(
b
(1)
0

) (
S(1)
a (ω̄)

)
− ω̄

(
S(1)
a (ω̄)

) (
b
(1)
1

)T
− ω̄

(
b
(1)
1

) (
S(1)
a (ω̄)

)
+ 2ω̄

(
S(1)
a (ω̄)

)
,ω̄
+ ω̄2a(1) = 0 (3.25)

with:

a(1) =
(
X(1)
a

)T
[Ea

0]
−1X(1)

a (3.26a)

b
(1)
0 =

(
X(1)
a

)T
[Ea

0]
−1
(
Ka − [Ea

1]
T
) (

X(1)
a

)−T − 2I (3.26b)

b
(1)
1 =

(
X(1)
a

)T
[Ea

0]
−1Ma

(
X(1)
a

)−T (3.26c)

c(1) =
(
X(1)
a

)T
Ma [E

a
0]

−1Ma

(
X(1)
a

)−T (3.26d)

Equation (3.25) can be expanded by utilizing (3.23). Rewriting the resulting ex-

pression in ascending order of powers of ω̄, the following equation can be obtained

by setting the constant term to zero

−b
(i)
0 S

(i)
a0 − S

(i)
a0

(
b
(i)
0

)T
+ S

(i)
a0c

(1)S
(i)
a0 = 0 (3.27)
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Equation (3.27) can be transformed into a Lyapunov equation for solving S
(i)
a0 via

pre- and post-multiplying with
(
S
(i)
a0

)−1

(
S
(i)
a0

)−1

b
(i)
0 +

(
b
(i)
0

)T (
S
(i)
a0

)−1

= c(1) (3.28)

Equating all linear terms to zero yields

(
−b

(i)
0 + S

(i)
a0c

(1)
)
S
(i)
a1 + S

(i)
a1

(
−
(
b
(i)
0

)T
+ c(1)S

(i)
a0

)
+ 2S

(i)
a1

= b
(i)
1 S

(i)
a0 + S

(i)
a0

(
b
(i)
1

)T
(3.29)

which is again a Lyapunov equation for S(i)
a1 . Equating the remaining terms to zero,

substituting Equation (3.22) and (3.24) into resulting equation and pre- and post-

multiplying it by
(
S
(i+1)
a (ω̄)

)(
X

(i+1)
a

)−1

and
(
X

(i+1)
a

)−T (
S
(i+1)
a (ω̄)

)
, respectively,

yields an equation for the residual term R
(i+1)
a (ω̄):

(
S(i+1)
a (ω̄)

)
c(i+1)

(
S(i+1)
a (ω̄)

)
−
(
S(i+1)
a (ω̄)

) (
b
(i+1)
0

)T
−
(
b
(i+1)
0

) (
S(i+1)
a (ω̄)

)
− ω̄

(
S(i+1)
a (ω̄)

) (
b
(i+1)
1

)T
− ω̄

(
b
(i+1)
1

) (
S(i+1)
a (ω̄)

)
+ 2ω̄

(
S(i+1)
a (ω̄)

)
,ω̄
+ ω̄2a(i+1) = 0 (3.30)

with:

a(i+1) =
(
X(i+1)
a

)T
c(i+1)X(i+1)

a (3.31a)

b
(i+1)
0 =

(
X(i+1)
a

)T (
2I−

(
b
(i)
0

)T
+ c(i)S

(i)
a0

)(
X(i+1)
a

)−T (3.31b)

b
(i+1)
1 =

(
X(i+1)
a

)T (−(b(i)
1

)T
+ c(i)S

(i)
a1

)(
X(i+1)
a

)−T (3.31c)

c(i+1) =
(
X(i+1)
a

)T (
a(i) − b

(i)
1 S

(i)
a1 − S

(i)
a1

(
b
(i)
1

)T
+ S

(i)
a1c

(i)S
(i)
a1

)(
X(i+1)
a

)−T (3.31d)

The continued fraction is terminated when i = M and the residual of order

M + 1 is neglected. In the expressions of continued-fraction solution for bounded

domain in this section, if the coefficient matrix X
(i)
a is chosen to be identical, this

improved continued fraction will be reduced to the original one in (Song, 2009).

In the improved continued fraction, the coefficient matrix X
(i)
a is chosen in a way
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that can lead to numerically better conditioned coefficient matrices in the continued

fraction. According to (Chen et al., 2014), the evaluation of X(i)
a is given by:

c(i) =
(
X(i)
a

)−1
c̃(i)
(
X(i)
a

)−T (3.32)

The coefficient matrix X
(i)
a can be determined using LDLT decomposition.

3.2.1.2 Time-domain formulation for 2D bounded acoustics

The continued fraction for impedance matrix in Section 3.2.1.1 can be transformed

to a series of linear equations in ω̄ = (iω)2. Detailed derivations can be referred to

(Song, 2009). In this section, key equations are stated. Firstly, utilizing Equation

(3.17), Equation (3.13) can be expressed as

R̂ = (Ka + ω̄Ma) (p̂(ω))− ω̄X(1)
a

(
p̂(1)(ω)

)
(3.33)

with the introduction of the first auxiliary variable p̂(1)(ω):

ω̄
(
X(1)
a

)T
(p̂(ω)) =

(
S(1)
a (ω̄)

) (
p̂(1)(ω)

)
(3.34)

Equation (3.34) can be generalized as:

ω̄
(
X(i)
a

)T (
p̂(i−1)(ω)

)
=
(
S(i)
a (ω̄)

) (
p̂(i)(ω)

)
(3.35)

with p̂(0)(ω) = p̂(ω). Using Equation (3.23) and new auxiliary variable p̂(i+1)(ω),

the following equation for i-th continued fraction can be obtained

− ω̄
(
X(i)
a

)T (
p̂(i−1)(ω)

)
+
(
S
(i)
a0 + ω̄S

(i)
a1

) (
p̂(i)(ω)

)
− ω̄

(
X(i+1)
a

)T (
p̂(i+1)(ω)

)
= 0 (3.36)

Finally, the continued fraction terminates at order M and p̂(M+1)(ω) should be zero.

Equations (3.33) and (3.36) can be formulated into matrix form. Its time-domain ex-

pression with frequency-independent coefficient matrices for bounded acoustic dom-
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ain is:

Ma
hÿ(t) +Ka

hy(t) = r(t) (3.37)

The superscript and subscript ’a’ indicate the acoustic domain in this chapter. For a

continued-fraction expansion with the order of M , the high order mass and stiffness

matrices Ma
h and Ka

h are expressed as:

Ma
h =



Ma −X
(1)
a 0 · · · 0

−
[
X

(1)
a

]T
S
(1)
a1 −X

(2)
a · · · 0

0 −
[
X

(2)
a

]T
S
(2)
a1

. . . 0

...
...

. . .
. . . −X

(M)
a

0 0 0 −
[
X

(M)
a

]T
S
(M)
a1


(3.38a)

Ka
h = diag

(
Ka S

(1)
a0 S

(2)
a0 · · · S(M)

a0

)
(3.38b)

In Equation (3.38), S
(i)
a0 and S

(i)
a1 with i = 1, 2, 3, · · · ,M are those coefficient

matrices calculated recursively in the continued-fraction expansion for impedance

matrices Sa(ω) of all subdomains and assembled using standard finite element techni-

ques. Ma and Ka are corresponding to the low-frequency expansion of impedance

matrix with the order of continued-fraction expansion M = 0. The vector of unkno-

wns y(t) includes both the nodal pressure p(t) and auxiliary variables p(i)(t). The

vector of unknowns can be expressed below:

y(t) =

{
p(t) p(1)(t) p(2)(t) · · · p(M)(t)

}T
(3.39)

The right-hand-side of Equation (3.37) r(t) only contains the time-dependent

nodal flux vector Rext(t) from any external sources as:

r(t) =

{
Rext(t) 0 0 · · · 0

}T
(3.40)

The bounded and unbounded substructures shown in Figure 3.1 are coupled via the

nodal flux vector on the interface Γ . The numerical modelling of the unbounded

domain is addressed in the following section.
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Figure 3.3. Scaled boundary finite element model of a 2D unbounded domain with
circular interface

3.2.2 2D unbounded acoustic domain

A scaled boundary finite element model of an unbounded domain with a circular

interface of radius r0 is shown in Figure 3.3.

The scaling centre O is located at the centre of the circle. The circular boundary

is discretized with line elements, analogously to the bounded domain. The unboun-

ded domain is described by scaling the geometry of the circular interface using the

scaling factor ξ ≥ 1,

x̂ = ξ · x(η) (3.41a)

ŷ = ξ · y(η) (3.41b)

In order to accurately represent the circular geometry of the boundary, x(η) and

y(η) are expressed in terms of polar coordinates, the constant radius r0 and the

angle θ, where θ is measured anti-clockwise from the positive x-axis.

x(η) = r0 cos(θ(η)) (3.42a)

y(η) = r0 sin(θ(η)) (3.42b)

Only the angular coordinate θ(η) is approximated by using the mapping functions
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N(η) to interpolate nodal values θ,

θ(η) = N(η)θ. (3.43)

Substituting the coordinate transformation defined by Equations (3.42) and (3.43)

into Equation (3.5) yields for the unbounded domain

ba1 =
1

r0

 cos(θ(η))

sin(θ(η))

 , ba2 =
r0

|J(η)|

 − sin(θ(η))

cos(θ(η))

 , (3.44)

with

|J| = r20θ(η),η = r20N(η),ηθ.

Note that ba1 and ba2 are orthogonal. The further procedure is analogous to the steps

described for the bounded domain in Section 3.2.1. For the unbounded medium with

a circular boundary, the scaled boundary finite element equation in nodal pressure

amplitude is obtained from Equation (3.9) (Wolf and Song, 2000),

Ea
0ξ

2p̂e(ξ),ξξ + Ea
0ξp̂e(ξ),ξ − Ea

2p̂e(ξ) + ω2Ma
0ξ

2p̂e(ξ) = 0. (3.45)

In Equation (3.45), the subscript ’e’ indicates the exterior domain. The matrices

Ea
0, Ea

2 and Ma
0 are calculated using Equations (3.10) and (3.11) with ba1 and ba2

defined in Equation (3.44). The coefficient matrix Ea
1 vanishes for orthogonal ba1

and ba2. Thus, the internal nodal flux defined in Equation (3.14) is simplified as

Q̂(ξ) = Ea
0ξp̂e(ξ),ξ (3.46)

Substituting Equation (3.11) in Equation (3.10a) and using Equation (3.44), the

coefficient Ea
0 can be expressed as

Ea
0 =

1

r20

ˆ +1

−1

NT (η)N(η) |J(η)| dη (3.47)

which is diagonal when using Gauss-Labotto quadrature. Comparing Equations
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(3.10d) and (3.47), Ea
0 is proportional to Ma

0,

Ma
0 =

(r0
c

)2
Ea

0. (3.48)

Substituting Equation (3.48) into (3.45), the scaled boundary finite element equation

in nodal pressure can be written for an unbounded domain with a circular boundary

as

Ea
0ξ

2p̂e(ξ),ξξ + Ea
0ξp̂e(ξ),ξ − Ea

2p̂e(ξ) + a2Ma
0ξ

2p̂e(ξ) = 0 (3.49)

where the dimensionless frequency a is defined as

a =
ωr0ξ

c
. (3.50)

Equation (3.46) and (3.49) provide the basis of constructing an open boundary

condition to represent the unbounded domain. This is explained in detail in the

following section.

3.3 Doubly-asymptotic open boundary for 2D un-

bounded acoustics

A novel doubly-asymptotic open boundary for scalar wave propagation in an elastic

full plane with a circular cavity has been proposed by Prempramote in Reference

(Prempramote, 2011). It is transferred to the acoustic case in the following. Here,

only the key equations are presented, while the detailed derivation can be found in

Reference (Prempramote, 2011).

The proposed approach is based on decoupling the differential equations in nodal

pressure (3.49) to derive scalar equations for the modal impedance coefficients of

the circular cavity. These equations can be solved by means of continued-fraction

expansions. The final high-order doubly-asymptotic open boundary condition is

obtained by introducing internal variables and combining the modal flux-pressure
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relationships in a global matrix formulation.

3.3.1 Modal impedance coefficients of a full plane with a

circular cavity

The scaled boundary finite element equation (3.49) can be decoupled by using the

following eigenvalue problem,

Ea
2Ψ∞ = Ea

0Ψ∞Λ (3.51)

Λ is the diagonal matrix with eigenvalues λ2j on its diagonal terms. Ψ∞ is the

corresponding eigenvector matrix. The eigenvectors are normalized as

ΨT
∞Ea

0Ψ∞ = I (3.52a)

ΨT
∞Ea

2Ψ∞ = Λ (3.52b)

Pre- and post-multiplying Equation (3.49) by ΨT
∞ and Ψ∞, respectively, and using

Equation (3.52) results in

ξ2P̃(ξ),ξξ + ξP̃(ξ),ξ −ΛP̃(ξ) + a2P̃(ξ) = 0 (3.53)

with

P̃(ξ) = Ψ−1
∞ p̂e(ξ) (3.54)

Here and in the following, P̃(ξ) is referred to as the modal pressure vector. For a

2D unbounded domain with Ne nodes on the circular boundary, j = 1, 2, 3, · · · , Ne.

Equation (3.53) is a series of Ne independent modal equations,

ξ2P̃j,ξξ + ξP̃j,ξ + (a2 − λ2j)P̃j = 0 (j = 1, 2, · · · , Ne) (3.55)

for the components P̃j of P̃(ξ). In an unbounded domain, the radial flux R̂e(ξ) is

related to the internal radial flux Q̂(ξ) as follow,

R̂e(ξ) = −Q̂(ξ) (3.56)
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As before, the subscript ’e’ denotes the exterior domain. Substituting Equation

(3.46) in Equation (3.56), pre-multiplying by ΨT
∞ and using Equations (3.52a) and

(3.54) yields

R̃(ξ) = −ξP̃(ξ),ξ (3.57)

with

R̃(ξ) = ΨT
∞R̂e(ξ) (3.58)

Equation (3.57) is a series of scalar equations for the modal flux R̃j,

R̃j(ξ) = −ξP̃j(ξ),ξ (j = 1, 2, · · · , Ne). (3.59)

The modal flux-pressure relationship is defined as

R̃j(ξ) = Sj(a)P̃j(ξ) (j = 1, 2, · · · , Ne), (3.60)

where Sj(a) is referred to as the modal impedance coefficient. An equation for Sj(a)

is obtained by eliminating R̃j(ξ) from Equations (3.59) and (3.60), differentiating

the resulting formulation with respect to ξ and substituting in Equation (3.55)

(Prempramote et al., 2009; Prempramote, 2011). On the circular boundary (ξ = 1),

it is expressed as

S2
j (a0)− a0Sj(a0),a0 + a20 − λ2j = 0, (j = 1, 2, · · · , Ne), (3.61)

with

a0 =
ωr0
c
. (3.62)

Equation (3.61) is solved by expanding Sj(a0) into continued fractions as outlined

in (Prempramote, 2011).
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3.3.2 Doubly-asymptotic continued-fraction solution for mo-

dal impedance coefficient

Constructing a doubly-asymptotic solution of Equation (3.61) involves two steps:

a recursive continued-fraction solution at the high-frequency limit and a recursive

continued-fraction solution of the residual equation of the high-frequency expansion

at the low-frequency limit. The same strategy has been used in Reference (Prem-

pramote et al., 2009) to construct high-order doubly-asymptotic open boundaries.

In (Prempramote, 2011) it was shown that the approach presented in Reference

(Prempramote et al., 2009) fails for certain parameters λj and an improved deriva-

tion containing scaling factors has been proposed.

3.3.2.1 Continued-fraction solution at high frequency

The continued-fraction solution

Sj(a0) = K∞ + ia0C∞ −
(
ψ(1)

)2 (
Y (1)(a0)

)−1 (3.63)

is assumed. Here, the coefficients K∞ and C∞ correspond to the constant and linear

terms of the asymptotic solution, while the third term in Equation (3.63) corresponds

to the yet undetermined residual of the high-frequency expansion. ψ(1) is a scaling

factor that will subsequently be determined to guarantee the numerical stability of

the solution procedure. The superscript ’(1)’ indicates the first step of a recursive

technique. In subsequent steps of this recursive algorithm, the residual Y (i) will be

expanded into a constant term, a linear term and a residual term, analogously to

Equation (3.63),

Y (iH) = Y
(iH)
0 + ia0Y

(iH)
1 −

(
ψ(iH+1)

)2 (
Y (iH+1)(a0)

)−1 (3.64)

with iH = 1, 2, · · · ,MH indicating the steps of recursive iterations and MH is the

order of the continued-fraction solution at high-frequency limit. Equations for C∞

and K∞ are obtained by substituting Equation (3.63) in Equation (3.61) and setting
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terms in (ia0)
2 and ia0, respectively, to zero.

C∞ = 1, (3.65a)

K∞ = 0.5. (3.65b)

The remaining terms yield an equation for Y (1)(a0),

K2
∞ − λ2j − 2 (ia0C∞ +K∞) (ψ(1))2

(
Y (1)(a0)

)−1
+

(ψ(1))4
(
Y (1)(a0)

)−2 − a0(ψ
(1))2

(
Y (1)(a0)

)−2 (
Y (1)(a0)

)
,a0

= 0. (3.66)

After multiplication by
(
Y (1)(a0)

)2 (
ψ(1)

)−2, Equation (3.66) can be formulated as

the case iH = 1 of

a(iH) − 2
(
b
(iH)
0 + ia0

)
Y (iH)(a0) + c(iH)

(
Y (iH)(a0)

)2 − a0
(
Y (iH)(a0)

)
,a0

= 0, (3.67)

with

a(1) =
(
ψ(1)

)2
=
∣∣0.25− λ2j

∣∣ , (3.68a)

b
(1)
0 = 0.5, (3.68b)

c(1) =
(
0.25− λ2j

)
/
(
ψ(1)

)2
=

 +1 when 0.25− λ2j ≥ 0,

−1 when 0.25− λ2j < 0.
. (3.68c)

In Equation (3.68a) the factor ψ(1) has been selected to avoid the occurrence

of c(1) = 0 in Equation (3.68c). To solve Equation (3.67), Equation (3.64) is used.

Setting the quadratic term and the linear term in the resulting equation to zero

leads to equations for Y (iH)
1

Y
(iH)
1 =

2

c(iH)
= 2 · sgn(iH). (3.69)

and Y
(iH)
0 , respectively.

Y
(iH)
0 =

2b
(iH)
0 + 1

c(iH)
=
(
2b

(iH)
0 + 1

)
sgn(iH). (3.70)

Note that the coefficients Y (iH)
1 and Y (iH)

0 as defined in Equations (3.69) and (3.70),

respectively, become singular when the parameter c(iH) appearing in the denomi-
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nators is equal to zero. This situation occurs in the original continued-fraction

procedure (Prempramote et al., 2009) when λj = k + 0.5 (k = 0, 1, 2, · · · ). If λj

approaches these values, Y (iH)
1 and Y (iH)

0 tend to infinity and the continued-fraction

expansion becomes ill-conditioned. Choosing the factor ψ(iH) according to Equation

(3.68a) guarantees that the coefficients Y (iH)
1 and Y

(iH)
0 remain finite, since c(iH)

can only be equal to either +1 or −1. This improves the numerical accuracy and

stability of the continued-fraction solution.

In subsequent steps of the recursive procedure Equation (3.67) is expressed as

a(iH+1) − 2
(
b
(iH+1)
0 + ia0

)
Y (iH+1)(a0) + c(iH+1)

(
Y (iH+1)(a0)

)2
− a0

(
Y (iH+1)(a0)

)
,a0

= 0, (3.71)

with

a(iH+1) = c(iH)
(
ψ(iH+1)

)2
, (3.72a)

b
(iH+1)
0 = b

(iH)
0 + 1 = iH + 0.5, (3.72b)

c(iH+1) =
(
a(iH) + Y

(iH)
0

)
/
(
ψ(iH+1)

)2
= sgn(iH+1). (3.72c)

In Equation (3.72c), the factor ψ(iH+1) is selected as

ψ(iH+1) =

 |a(iH) + Y
(iH)
0 |1/2, when iH < MH ,

|(2λj − 1)(a(MH) + Y
(MH)
0 )|1/2, when iH =MH .

(3.73)

For iH < MH , the choice of ψ(iH+1) is analogous to Equation (3.68a). The slightly

different choice of ψ(iH+1) for iH =MH will be explained later in the derivation.

Equation (3.71) for Y (iH+1)(a0) can be solved using the same steps as for sol-

ving Equation (3.67). The continued-fraction solution is thus determined recursi-

vely using Equations (3.70) and (3.69). The coefficients a(iH), b(iH)
0 and c(iH) are

initialized in Equation (3.68) and updated in each step of the recursion using Equa-

tion (3.72). After MH steps of the expansion at the high-frequency limit, the re-

sidual satisfies Equation (3.71) with iH = MH . The modal impedance coefficient
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Figure 3.4. High-frequency continued-fraction solution for modal impedance coeffi-
cient of circular cavity (λj = 0)
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Figure 3.5. High-frequency continued-fraction solution for modal impedance coeffi-
cient of circular cavity (λj = 1)

of the mode λj = 0 and the normalized modal impedance coefficients of the mo-

des λj = 1, 1.5, 2, 2.5, 5, 30 are determined using the above recursive procedure and

shown in Figures 3.4-3.10, respectively.

Note that the original high-order asymptotic expansion proposed in Reference

(Prempramote et al., 2009) fails for λj = 1.5, 2.5. It can be seen that the improved

singly-asymptotic expansion converges with increasing MH over the whole frequency

range. Figures 3.4-3.10 also show, however, that the convergence decreases conside-

rably as the modal eigenvalue λj increases. This has also been observed in Reference

(Prempramote et al., 2009). Obviously, for lower modes up to λj = 5, the singly

asymptotic solution of order MH = 5 is highly accurate. For higher modes, and

thus for problems with many degrees of freedom, high orders of expansion MH are
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Figure 3.6. High-frequency continued-fraction solution for modal impedance coeffi-
cient of circular cavity (λj = 1.5)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  0.5  1  1.5  2  2.5  3

R
E

A
L(

S
(a

0)
)/

λ

NORMALIZED FREQUENCY a0/λ

EXACT
MH = 1
MH = 2
MH = 5

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

IM
A

G
(S

(a
0)

)/
λ

NORMALIZED FREQUENCY a0/λ

EXACT
MH = 1
MH = 2
MH = 5

Figure 3.7. High-frequency continued-fraction solution for modal impedance coeffi-
cient of circular cavity (λj = 2)

required, if only the high-frequency solution is used. To overcome this problem, a

doubly-asymptotic solution, which is exact for ω = 0 is sought in the following for

modes λj > MH +1. This is achieved by further expanding the residual of the high-

frequency solution. For later use in the low-frequency limit, the following identity

is derived from Equations (3.72), (3.70) and (3.68).

(
b
(iH+1)
0

)2
− a(iH+1)c(iH+1) =

(
b
(iH)
0 + 1

)2
− c(iH)a(iH) − c(iH)Y

(iH)
0 =(

b
(iH)
0

)2
− c(iH)a(iH) = λ2j . (3.74)
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Figure 3.8. High-frequency continued-fraction solution for modal impedance coeffi-
cient of circular cavity (λj = 2.5)
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Figure 3.9. High-frequency continued-fraction solution for modal impedance coeffi-
cient of circular cavity (λj = 5)

3.3.2.2 Continued-fraction solution at low frequency

The residual of the high-frequency continued-fraction solution is denoted as

YL(a0) = Y (MH+1)(a0), (3.75)

and the residual equation (3.71) is expressed as

aL − 2 (bL0 + ia0)YL(a0) + cL (YL(a0))
2 − a0 (YL(a0)),a0 = 0, (3.76)

with

aL = a(MH+1) = c(MH)
(
ψ

(0)
L

)2
, (3.77a)

bL0 = b
(MH+1)
0 =MH + 0.5, (3.77b)

cL = c(MH+1) =
(
a(MH) + Y

(MH)
0

)
/
(
ψ

(0)
L

)2
= sgn

(0)
L /|2λj − 1|, (3.77c)
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Figure 3.10. High-frequency continued-fraction solution for modal impedance coef-
ficient of circular cavity (λj = 30)

where

ψ
(0)
L = ψ(MH+1), (3.78a)

sgn
(0)
L = sgn(MH+1). (3.78b)

The continued-fraction solution (3.79) is assumed at the low-frequency limit,

YL(a0) = Y
(0)
L0 + ia0Y

(0)
L1 − (ia0)

2
(
Y

(1)
L (a0)

)−1

(3.79a)

Y
(iL)
L (a0) = Y

(iL)
L0 + ia0Y

(iL)
L1 − (ia0)

2
(
Y

(iL+1)
L (a0)

)−1

(3.79b)

with iL = 1, 2, · · · ,ML in Equation (3.79b) indicating the steps of recursive itera-

tions and ML is the order of the continued-fraction solution at low frequency limit.

Note that Equation (3.79) approaches a constant value for ω → 0. The coefficients

Y
(iL)
L0 , Y (iL)

L1 are determined recursively, analogously to the high-frequency expansion.

Substituting Equation (3.79) into Equation (3.76) leads to a power series in terms of

ia0, which is satisfied by setting individual terms corresponding to different powers

of ia0 equal to zero in ascending order. The constant term yields

aL − 2bL0Y
(0)
L0 + cL

(
Y

(0)
L0

)2
= 0. (3.80)

The two solutions of this quadratic equation are

Y
(0)
L0 =

1

cL

(
bL0 ±

√
b2L0 − cLaL

)
(3.81)
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Using Equation (3.74), the coefficient Y (0)
L0 is determined as

Y
(0)
L0 = (bL0 + λj) /cL = (bL0 + λj) |2λj − 1|/sgn(0)

L . (3.82)

Setting the linear term in ia0 to zero leads to the solution for Y (0)
L1 ,

Y
(0)
L1 = 2Y

(0)
L0 / (2λj − 1) . (3.83)

Note that Y (0)
L1 in Equation (3.83) becomes infinite if λj = 0.5. In order to avoid

this, the factor |2λj−1| has been included in the definition of the coefficient ψ(MH+1)

in Equation (3.73). Using Equation (3.82), Y (0)
L1 is expressed as

Y
(0)
L1 = 2 (bL0 + λj) /

(
sgn

(0)
L sgn

(0)
L0

)
, (3.84)

with

sgn
(0)
L0 =

 +1, when 2λj − 1 ≥ 0,

−1, when 2λj − 1 < 0.
(3.85)

The remaining terms result in an equation for Y (1)
L , which is expressed as the iL = 1

case of

(ia0)
2a

(iL)
L − 2

(
b
(iL)
L0 + ia0b

(iL)
L1

)
Y

(iL)
L (a0) + c

(iL)
L

(
Y

(iL)
L (a0)

)2
− a0

(
Y

(iL)
L (a0)

)
,a0

= 0, (3.86)

with

a
(1)
L = cL, (3.87a)

b
(1)
L0 = −1− bL0 + cLY

(0)
L0 = −1 + λj, (3.87b)

b
(1)
L1 = −1 + cLY

(0)
L1 = 2(MH + 1)/(2λj − 1), (3.87c)

c
(1)
L = −2Y

(0)
L1 + cL

(
Y

(0)
L1

)2
. (3.87d)

Equation (3.86) is solved using the same strategy as for solving Equation (3.67).

The recursive equation of the low-frequency limit (3.79b) is substituted into Equa-

tion (3.86). The resulting formulation is a power series of ia0, which is satisfied by
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Figure 3.11. Doubly-asymptotic continued-fraction solution for modal impedance
coefficient of circular cavity (λj = 30)

setting individual terms equal to zero. The constant term yields

Y
(iL)
L0 = 2b

(iL)
L0 /c

(iL)
L . (3.88)

Setting the linear term in ia0 to zero and using Equation (3.88) results in the solution

for Y (iL)
L1 ,

Y
(iL)
L1 = 2b

(iL)
L1 Y

(iL)
L0 /(2b

(iL)
L0 − 1). (3.89)

Setting the remaining terms equal to zero yields the residual equation

(ia0)
2a

(iL+1)
L − 2

(
b
(iL+1)
L0 + ia0b

(iL+1)
L1

)
Y

(iL+1)
L (a0) + c

(iL+1)
L (Y

(iL+1)
L (a0))

2

− a0(Y
(iL+1)
L (a0)),a0 = 0, (3.90)

with

a
(iL+1)
L = c

(iL)
L , (3.91a)

b
(iL+1)
L0 = c

(iL)
L Y

(iL)
L0 − b

(iL)
L0 − 1 = b

(iL)
L0 − 1, (3.91b)

b
(iL+1)
L1 = c

(iL)
L Y

(iL)
L1 − b

(iL)
L1 , (3.91c)

c
(iL+1)
L = a

(iL)
L − 2b

(iL)
L1 Y

(iL)
L1 + c

(iL)
L (Y

(iL)
L1 )2. (3.91d)

Equation (3.90) for Y (iL+1)
L is solved analogously to Equation (3.86) for Y (iL)

L .

The continued-fraction solution at low frequency is thus evaluated using Equations

(3.88) and (3.89), where the recursive constants are initialized using Equation (3.87)
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Figure 3.12. Doubly-asymptotic continued-fraction solution for modal impedance
coefficient of circular cavity (λj = 30.5)

and updated using Equation (3.91). The expansion terminates with the assump-

tion that the residual term (ia0)
2/Y

(ML+1)
L (a0) is zero. The final doubly-asymptotic

continued-fraction solution of Equation (3.61) is obtained by combining the high-

frequency continued-fraction solution in Equations (3.63) and (3.64) with the low-

frequency continued-fraction solution in Equation (3.79) using Y (MH+1)(a0) = YL(a0).

It is expressed as :

Sj(a0) = K∞ + ia0C∞

−
(
ψ(1)

)2
Y

(1)
0 + ia0Y

(1)
1 − (ψ(2))

2

···−
(ψ(MH ))

2

Y
(MH )
0 +ia0Y

(MH )
1 −

(ψ(0)
L )

2

Y
(0)
L0

+ia0Y
(0)
L1

(ia0)
2

Y
(1)
L0

+ia0Y
(1)
L1

− (ia0)
2

···− (ia0)
2

Y
(ML)
L0

+ia0Y
(ML)
L1

(3.92)

Figures 3.11 - 3.13 show the normalized impedance coefficients for λj = 30, 30.5

and 200, respectively. The agreement of the doubly-asymptotic approximations of

order MH = 5, ML = 5 with the exact solutions is excellent, even for high-order

modes. Moreover, for relatively low λj, there is actually no need to use high values

of the order of continued-fraction expansion at low frequency ML. Only two terms

(ML = 1) can provide very accurate solutions for modal impedance coefficients of

intermediate order. For high-order modes λj, more terms of continued-fraction at

low frequency are required. The singly-asymptotic expansions of order MH = 5 are
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Figure 3.13. Doubly-asymptotic continued-fraction solution for modal impedance
coefficient of circular cavity (λj = 200)

also shown for comparison. It can be clearly seen that the high-order expansions

oscillate in the low frequency range for high λj. Based on these observations the

following procedure will be used:

• choose orders MH and ML of continued-fraction expansion,

• approximate all modes corresponding to λj ≤ MH + 1 by singly-asymptotic

expansions of order MH ,

• approximate all modes corresponding to λj > MH + 1 by doubly-asymptotic

expansions of orders MH , ML.

3.3.3 Time-domain formulation for 2D exterior acoustics

The procedure of transforming the continued-fraction expansion into the time dom-

ain is based on the technique described in Reference (Prempramote et al., 2009;

Prempramote, 2011). It begins with the modal flux-pressure relationship in the fre-

quency domain as expressed in Equation (3.60). Substituting the first equation of

the continued-fraction solution at the high-frequency limit (3.63) in Equation (3.60)

yields,

R̃j = Sj(a0)P̃j = K∞P̃j + ia0C∞P̃j −
(
ψ

(i)
j

)2
(Y

(1)
j (a0))

−1P̃j. (3.93)
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Equations (3.65a) and (3.65b) are substituted in Equation (3.93). Furthermore, the

first auxiliary variable P̃ (1)
j is introduced, which leads to

R̃j = 0.5P̃j + ia0P̃j − ψ
(1)
j P̃

(1)
j , (3.94)

with

ψ
(1)
j P̃j = Y

(1)
j (a0)P̃

(1)
j . (3.95)

Using Equations (3.58) and (3.94), the amplitude of the nodal flux vector is

R̂e = 0.5Ψ−T
∞ P̃+ ia0Ψ

−T
∞ P̃−Ψ−T

∞ ψ(1)p̃(1). (3.96)

ψ(1) is diagonal matrices with diagonal terms equal to continued-fraction coefficients

ψ
(1)
j for all modes.

Using P̃ = Ψ−1
∞ p̂e and Ea

0 = Ψ−T
∞ Ψ−1

∞ , Equation (3.96) is re-formulated in terms

of the nodal pressure vector p̂e,

R̂e = 0.5Ea
0p̂e + ia0E

a
0p̂e −Ψ−T

∞ ψ(1)p̃(1), (3.97)

where p̂e and R̂e denote p̂e(ξ = 1) and R̂e(ξ = 1), respectively. Substituting

Equation (3.64) in Equation (3.95) yields

ψ
(1)
j P̃j = Y

(1)
0,j P̃

(1)
j + ia0Y

(1)
1,j P̃

(1)
j − ψ

(2)
j P̃

(2)
j , (3.98)

where the second auxiliary variable P̃ (2)
j is defined as the iH = 1 case of

ψ
(iH+1)
j P̃

(iH)
j = Y

(iH+1)
j (a0)P̃

(iH+1)
j . (3.99)

Equation (3.98) is formulated for all modes j. Using P̃ = Ψ−1
∞ p̂e yields

ψ(1)Ψ−1
∞ p̂e = Y

(1)
0 p̃(1) + ia0Y

(1)
1 p̃(1) −ψ(2)p̃(2). (3.100)

Y
(1)
0 , Y

(1)
1 and ψ(2) are all diagonal matrices with diagonal terms equal to

continued-fraction coefficients Y (1)
0,j , Y (1)

1,j and ψ
(2)
j for all modes separately. Sub-

stituting the remaining terms of the continued-fraction solution (3.64) in Equation
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(3.99) results in

ψ
(iH)
j P̃

(iH−1)
j = Y

(iH)
0,j P̃

(iH)
j + ia0Y

(iH)
1,j P̃

(iH)
j − ψ

(iH+1)
j P̃

(iH+1)
j . (3.101)

For modes corresponding to λj ≤ MH + 1, the continued-fraction expansion ter-

minates with Equation (3.101). For higher modes, however, the residual term of

an order MH high-frequency continued-fraction solution defined in Equation (3.99)

with iH = MH is the initial term of the low-frequency continued-fraction solution.

It is expressed as

ψ
(MH+1)
j P̃

(MH)
j = Y

(MH+1)
j (a0)P̃

(MH+1)
j = YL,j(a0)P̃

(0)
L,j ,

(j = NH + 1, · · · , Ne) (3.102)

with the auxiliary variable P̃ (0)
L,j = P̃

(MH+1)
j . In Equation (3.102), NH corresponds to

the number of modes approximated by high-order expansions only with λj ≤MH+1

and Ne is the total number of nodes on the circular boundary. Equations (3.78a)

and (3.79a) are substituted in Equation (3.102),

ψ
(0)
L,jP̃

(MH)
j = Y

(0)
L0,jP̃

(0)
L,j + ia0Y

(0)
L1,jP̃

(0)
L,j − ia0P̃

(1)
L,j , (j = NH + 1, · · · , Ne). (3.103)

In Equation (3.103), the auxiliary variable P̃ (1)
L,j is defined as the iL = 1 case of

ia0P̃
(iL−1)
L,j = Y

(iL)
L,j (a0)P̃

(iL)
L,j , (j = NH + 1, · · · , Ne). (3.104)

Substituting Equation (3.79b) in Equation (3.104) yields

ia0P̃
(iL−1)
L,j = Y

(iL)
L0,j P̃

(iL)
L,j + ia0Y

(iL)
L1,j P̃

(iL)
L,j − ia0P̃

(iL+1)
L,j ,

(j = NH + 1, · · · , Ne). (3.105)

For a low-frequency continued-fraction expansion of order ML, P̃ (ML+1)
L,j = 0 is as-

sumed. Equations (3.97), (3.100), (3.101), (3.103) and (3.105) are assembled in a

system of linear equations,

(Ka
e + iωCa

e) ẑ = r̂. (3.106)
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The vector of unknowns ẑ contains the nodal pressure amplitudes at the circular

boundary and auxiliary variables,

ẑ =

{
p̂e p̃(1) · · · p̃(MH) p̃

(0)
L p̃

(1)
L · · · p̃

(ML)
L

}T
. (3.107)

Note that the auxiliary variables p̃(1) to p̃(MH) are of size Ne, whereas the auxiliary

variables p̃
(0)
L to p̃

(ML)
L are of size Ne − NH . The right-hand side vector r̂ contains

the nodal flux amplitude applied on the circular boundary,

r̂ =

{
R̂e 0 · · · 0 0 0 · · · 0

}T
(3.108)

The symbols Ka
e and Ca

e in Equation (3.106) refer to the banded and symmetric

high-order stiffness and damping matrices of the unbounded medium, respectively.

Ka
e =



0.5Ea
0 −Ψ−T

∞ ψ(1)

−ψ(1)Ψ−1
∞ Y

(1)
0 −ψ(2)

−ψ(2) . . .
. . .

. . . Y
(MH)
0 −ψ∗

L

− [ψ∗
L]
T Y

(0)
L0 0

0 Y
(1)
L0

. . .

. . .
. . . 0

0 Y
(ML)
L0


(3.109)
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Ca
e =

r0
c



Ea
0 0

0 Y
(1)
1 0

0
. . .

. . .

. . . Y
(MH)
1 0

0 Y
(0)
L1 −I

−I Y
(1)
L1

. . .

. . .
. . . −I

−I Y
(ML)
L1



(3.110)

where ψ(iH) are diagonal matrices and ψ∗
L is a rectangular matrix with Ne rows and

Ne −NH columns defined as:

ψ∗
L =

 0

ψ
(0)
L

 (3.111)

The matrix ψ(0)
L in the lower partition in Equation(3.111) is also a diagonal

matrix with diagonal terms ψ(0)
L,j for all modes with λj > MH+1 in 2D and therefore

has the same size of Y
(iL)
L0 . Equation (3.106) represents the high-order doubly-

asymptotic open boundary condition in the frequency domain. In the time domain,

it corresponds to a system of first-order differential equations,

Ka
ez(t) +Ca

e ż(t) = re(t) (3.112)

with the time-dependent vector of unknowns z(t) expressed as:

z(t) =

{
pe(t) p̃(1)(t) · · · p̃(MH)(t) p̃

(0)
L (t) p̃

(1)
L (t) · · · p̃

(ML)
L (t)

}T
(3.113)

The right-hand-side of Equation(3.112) re(t) includes any nodal flux Re(t) app-

lied on the circular boundary and written as,

re(t) =

{
Re(t) 0 · · · 0 0 0 · · · 0

}T
(3.114)

Equation (3.112) is a temporally local formulation of size Ne× (MH +1)+(Ne−
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NH) × (ML + 1) that can be coupled to the high-order equations of motion of the

near field (3.37) straightforwardly. This is addressed in the following Section 3.4.

3.4 Coupling of bounded and unbounded domain

models

In order to facilitate the coupling of Equations (3.37) and (3.112), that represent

the bounded and unbounded domain respectively, the equations of motion of the

near field are re-written as
Mbb Mbe

MT
be Mee

∗

∗ Mii




p̈b(t)

p̈e(t)

p̈i(t)

+


Kbb Kbe

KT
be Kee

0

0 Kii




pb(t)

pe(t)

pi(t)


=


Rext
b (t)

Rext
e (t)

0

−


0

Re(t)

0

 (3.115)

In Equation (3.115), the subscripts ’e’ and ’b’ refer to the nodes on the circular

boundary and in the interior of the bounded domain, respectively, whereas the

subscript ’i’ refers to all auxiliary variables p(1)(t) to p(M)(t) of the bounded domain.

Note that the right-hand side vector r(t) in Equation (3.37) has been split into two

contributions. The terms Rext
b (t) are due to any external sources acting on the

bounded domain, whereas the term Re(t) corresponds to the prescribed normal

derivative of the pressure at the circular near field / far field boundary. This term is

defined in the first block row of the system of first-order differential equations (3.112)

to represent the exterior domain. Substituting the first block row of Equation (3.112)

in Equation (3.115) leads to a global system of second-order differential equations

in the time domain with global mass, damping and stiffness matrices,

Ma
Gz̈G(t) +Ca

GżG(t) +Ka
GzG(t) = rG(t) (3.116)
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The global vector of unknowns zG(t) contains the acoustic pressure p(t) at all nodes

of the coupled model, the internal variables of the bounded domain p(i)(t) in Equa-

tion (3.39) and the auxiliary variables of the exterior domain p̃(iH)(t) and p̃
(iL)
L (t)

from Equation (3.113),

zG(t) ={
p(t) p(1)(t) · · · p(M)(t) p̃(1)(t) · · · p̃(MH)(t) p̃

(0)
L (t) · · · p̃

(ML)
L (t)

}T
(3.117)

The total number of unknowns is (M +1)×N +MH ×Ne+(ML+1)× (Ne−NH),

where N and Ne denote the total number of nodes and the number of nodes on the

circular boundary, respectively. The global right-hand side vector rG(t) in Equation

(3.116) contains the nodal flux Rext(t) due to any source in the bounded domain,

rG(t) =

{
Rext(t) 0 · · · 0 0 · · · 0 0 · · · 0

}T
(3.118)

The global mass, damping and stiffness matrix in Equation (3.116) contains all

the coefficient matrices from both bounded and unbounded acoustic domains in

Equations (3.37) and (3.112). They are also partitioned in the same way as for the

global vector of unknowns zG(t) and global flux vector rG(t) and listed below,

Ma
G =



Ma −X
(1)
a 0 · · · 0 0

−
[
X

(1)
a

]T
S
(1)
a1 −X

(2)
a · · · 0 0

0 −
[
X

(2)
a

]T
S
(2)
a1

. . . 0 0

...
...

. . .
. . . −X

(M)
a

...

0 0 0 −
[
X

(M)
a

]T
S
(M)
a1 0

0 0 0 · · · 0 0


(3.119)
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Ca
G =

r0
c



0 0

0 Ea
0

0 0

0 0 0

0 0

Y
(1)
1 0

0
. . .

. . .

. . . Y
(MH)
1 0

0 Y
(0)
L1 −I

. . .

−I Y
(1)
L1

. . .
. . . −I

−I Y
(ML)
L1



(3.120)
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Note that Equation (3.116) represents the coupled acoustic system in the time

domain. The global mass matrix Ma
G is a result of the bounded domain only, whereas

the global damping matrix Ca
G is entirely due to the unbounded domain. The global

stiffness matrix Ka
G contains contributions from both near and far field. Ma

G, Ca
G

and Ka
G are symmetric and sparse. The coupled system of equations (3.116) can be

solved for arbitrary time-variations of the source rG(t) using standard time stepping

algorithms, such as Newmark’s method.

3.5 Numerical examples

In this section, five numerical examples are studied to demonstrate the accuracy,

robustness and efficiency of the proposed method. In examples 3.5.1, 3.5.2, 3.5.4,

and 3.5.5, the non-viscous fluid is assumed to have a sound velocity c and density ρ.

In Section 3.5.1, a circular cavity embedded in a full plane is considered. Accuracy

and efficiency of the proposed method are presented and compared with results

obtained using the singly-asymptotic open boundary proposed in (Birk et al., 2012).

Then, Section 3.5.2 presents an infinite wedge with circular arc subjected to a long-

time flux to examine the performance of the present method for λ = i + 0.5 (i is

a non-negative integer) and long-time excitation. Next, Section 3.5.3 addresses the

out-of-plane wave propagation in a non-uniform half-plane with piecewise constant

shear modulus G and mass density ρ to demonstrate the applicability of the coupled

SBFEM model. In Section 3.5.4, a coupled system with elliptical cavity partially

subjected to a flux with relatively high frequency is addressed to test the capacity

of the present doubly-asymptotic open boundary in the high-frequency range. In

the last example in Section 3.5.5, the wave radiation from a more complicated open

structure is investigated to demonstrate the robustness of the proposed approach.

Newmark’s method with α = 0.5 and β = 0.25 (average acceleration scheme) is

applied to Equation (3.116) for all time-domain analyses. To provide reference
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solutions, all numerical examples are modeled by the commercial software ANSYS

using an extended mesh of finite elements. The boundary of each finite element

model is sufficiently far away from the investigated bounded domain to avoid wave

reflections.

3.5.1 Circular cavity subject to transient flux on entire boun-

dary

A circular cavity of radius r0 is modeled as a coupled system consisting of a ring of

bounded domains and an unbounded subdomain (the open boundary). The radius

of the open boundary is r1 = 2r0. The geometry of this model is illustrated in

Figure 3.14. It is subject to a transient flux on the entire circular boundary Γ which

is given as

∂p̄

∂n⃗
(θ, t) = h(θ)f(t). (3.122)

In Equation (3.122), h(θ) and f(t) are functions of angle θ and time t describing the

spatial and temporal variation of the prescribed flux, respectively. The flux varies

spatially as a cosine function,

h(θ) = cos (mθ) , (3.123)

where the factor m is selected as m = 25 in the following time-domain example. The

time history f(t) is plotted in Figure 3.15 as non-dimensional flux f(t)/Ft (Ft is the

maximum value of function f(t)) as a function of the dimensionless time tc/r0.

Based on Figure 3.15(b), the maximum dimensionless frequency of interest is

estimated at a0,max = 30. In order to proceed with the time-domain analysis, the

order of continued-fraction M in the bounded domain must be selected. A guideline

for the choice of this parameter has been given in Reference (Song, 2009). According

to (Song, 2009), 3 to 4 terms per wavelength are required. The wavelength λ of the

sound pressure wave propagating outwards is related to the frequency content of the
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Figure 3.14. Geometry of circular cavity model

Figure 3.15. Time variation f(t) of transient flux applied to entire circular boundary:
(a) time history and (b) Fourier transform

prescribed flux as:

λ =
2π

a0
r0. (3.124)

Therefore, the shortest wavelength is calculated as λmin = 2π
30
r0 ≈ 0.21r0. In order

to be able to use relatively small values of M , the total bounded domain is divided

into 64 subdomains evenly in the circumferential direction and into 8 layers in the

radial direction as illustrated in Figure 3.16(a). The scaling centre of the unbounded

domain coincides with the origin of the Cartesian coordinate system. The scaling
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(b)

Figure 3.16. The coupled SBFE circular cavity model (a) mesh of near field and far
field (b) mesh of one subdomain

centres of all 64×8 = 512 bounded subdomains are located at the respective centres

of gravity of these subdomains and marked by ′+′. The keypoints defining the

individual subdomains are shown as red solid dots. To guarantee the accuracy

of the results, six 3-node elements are used on each curved or straight edge of

a subdomain, which gives about 13 nodes per shortest wavelength. It should be

noticed that the nodes of the scaled boundary finite elements are not shown in Figure

3.16(a) for clarity. One arbitrary subdomain with all nodes shown is illustrated in

Figure 3.16(b) as an example. The maximum radial distance in each subdomain

is dmax ≈ 0.11r0. Therefore, the order of continued-fraction expansion is chosen as

M = dmax
λmin

× 4 ≈ 2 for all bounded subdomains.

The resulting pressure due to the applied flux is calculated by applying New-

mark’s method to Equation (3.116). A constant time step is set to ∆t = 0.01r0/c

for accuracy as it gives about 21 time steps per period at the highest frequency of

interest. The pressure response at point A in Figure 3.14 is illustrated in Figure 3.17,
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Figure 3.17. Dimensionless pressure response at point A of circular cavity

where the vertical axis is non-dimensionalized by r0Ft and the horizontal axis repre-

sents the dimensionless time tc/r0. The orders of high-frequency and low-frequency

continued-fraction expansions of the open boundary are chosen as MH =ML = 1. A

converged reference solution calculated using an extended mesh finite element model

in ANSYS is plotted with a dashed line for comparison. The outer radius of this

extended mesh is set to be 3.5r0 in order to prevent wave reflections. In Figure 3.17,

the difference between the results of the present SBFEM approach and the reference

solution is hardly appreciable. The accuracy of the proposed coupled SBFEM model

is thus proven to be very high for transient flux on the entire cavity boundary. In

addition, the pressure variations along the radial line AB shown in Figure 3.14 at

the dimensionless times t c
r0

= 0.9 and 1.5 are plotted in Figure 3.18 and compa-

red with the reference solution. The vertical axis is again non-dimensionalized by

r0Ft and the horizontal axis represents the distance to the centroid of the circular

cavity. Very good agreement is observed in these two figures. The corresponding

non-dimensionalized pressure contour plots calculated by using the proposed met-

hod on the mesh shown in Figure 3.16 and ANSYS are also shown in Figures 3.19

and 3.20 respectively, for illustration.

The proposed doubly-asymptotic open boundary can be placed very close to the
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Figure 3.18. Pressure variation along line AB: (a) at t c
r0

= 0.9 and (b) at t c
r0

= 1.5

(a) (b)

Figure 3.19. Circular cavity subject to transient flux (Eq. (3.122)) on entire boun-
dary. Pressure contour obtained using the proposed method at: (a) t c

r0
= 0.9 and

(b) t c
r0

= 1.5

(a) (b)

Figure 3.20. Circular cavity subject to transient flux (Eq. (3.122)) on entire boun-
dary. Pressure contour obtained using ANSYS at: (a) t c

r0
= 0.9 and (b) t c

r0
= 1.5
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radiator and accurate results can be obtained by using higher orders of expansion.

This is demonstrated in the following. The previously developed singly-asymptotic

open boundary (Birk et al., 2012) is also used here for comparison. The same

circular cavity with radius r0 is again subjected to the same transient flux described

in Equations (3.122) and (3.123) with m = 25. Both singly-asymptotic and doubly-

asymptotic open boundaries are used in this model. This time, the radius of the open

boundary r1 is chosen to be a slightly extreme value of r1 = 1.01r0 (which is about

1/20 of the shortest wavelength away from the circular cavity). The bounded ring

is divided into 64 subdomains in the circumferential direction as shown in Figure

3.21(a) (mesh size in Figure 3.21 is not to scale for illustration). Three 3-node

elements are used on each circumferential line and one 3-node element on each radial

line (see 3.21(b)) to yield at least 15 nodes per minimum wavelength. According

to Reference (Song, 2009), the degree of continued-fraction expansion M in the

bounded domain is set to M = 2 as the maximum radial distance for each subdomain

now is dmax ≈ 0.1r0 and the minimum wavelength is still λ = λmin ≈ 0.21r0. The

time step for Newmark’s method is still ∆t = 0.01r0/c. The resulting pressure

variation at point A in Figure 3.14 is shown in Figure 3.22 with the reference solution

obtained from the extended mesh model described earlier. It should be noticed that

MH in Figure 3.22 represents the order of the high-frequency continued-fraction

term in the doubly-asymptotic open boundary or the order of continued fraction in

the singly-asymptotic open boundary.

From Figure 3.22, it can be seen that the doubly-asymptotic open boundary can

achieve higher accuracy than the singly-asymptotic open boundary with less com-

putational effort. For example, the present doubly-asymptotic open boundary with

MH = ML = 1 leads to a high-order stiffness matrix Ka
e and to a damping matrix

Ca
e of the unbounded domain of the same size as the previous singly-asymptotic

open boundary with MH = 3, however, the result calculated by the present method

is much more accurate than the result calculated by the previous method. Moreo-
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(b)

Figure 3.21. The coupled SBFE circular cavity model with r1 = 1.01r0 (a) mesh of
near field and far field (b) mesh of one subdomain

ver, the agreement between the pressure response calculated by the present method

with MH = ML = 1 and the reference solution is similar to the agreement between

the reference solution and the results calculated using the singly-asymptotic open

boundary with MH = 7, which leads to more than twice the computational effort.

The accuracy of this doubly asymptotic open boundary can still be improved by

increasing the number of MH or ML as shown in Figure 3.23. It can be seen that

the present method with MH = ML = 2 matches the reference solution very well

even with the open boundary located merely about 1/20 of the minimum wavelength

away from the cavity.

3.5.2 Semi-infinite wedge with circular arc cavity

In order to demonstrate the capability of the present doubly-asymptotic open boun-

dary to handle eigenvalues λ equal to i + 0.5 (where i is an arbitrary non-negative

integer), a semi-infinite wedge with circular arc cavity and an opening angle of 120◦ is
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Figure 3.22. Dimensionless pressure response at point A of circular cavity due to
transient flux on entire boundary: Comparison of time-domain solutions calculated
by singly-asymptotic and doubly-asymptotic open boundary

Figure 3.23. Dimensionless pressure response at point A of circular cavity due to
transient flux on entire boundary: Results obtained using doubly-asymptotic open
boundaries of various orders for r1 = 1.01r0

addressed in this example. The geometrical details are illustrated in Figure 3.24(a).

The radius of the circular arc cavity is r1 = r0
2

and the doubly-asymptotic boundary

is located at r0. Additionally, a long-time flux is used in this example to investigate

the long-time pressure response at certain points during t = 0 to t = 30 r0
c

. The flux

is assumed to be zero on the two side faces, i.e.:

∂p̄

∂n⃗
(θ = 0, t) =

∂p̄

∂n⃗
(θ =

2π

3
, t) = 0, (3.125)
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Figure 3.24. Semi-infinite wedge with circular arc cavity: (a) geometry, (b) mesh

where θ is the angle measured anti-clockwise from the positive x-axis.

An equation for the modal impedance coefficient of the semi-infinite wedge with

a circular arc boundary and homogeneous boundary conditions on the side faces

can be derived using the method of separation of variables. For details, the reader

is referred to Reference (Song, 2009), Section 3.1. There, it is shown that the

corresponding eigenvalues λ can be expressed as,

λj =
π

α
j (j = 0, 1, 2, · · · , n), (3.126)

where, α is the opening angle of the wedge. Thus, the eigenvalues in the present

example are: λ = 0, 1.5, 3, · · · , 1.5n. Note that the previous doubly-asymptotic

open boundary proposed in Reference (Prempramote et al., 2009) cannot handle

this example as singularities will occur in the continued-fraction expansions for all

modes with λ = i + 0.5. The flux applied on the circular arc ÂB is defined by the

following Equations (3.127) and (3.128),

∂p̄

∂n⃗
(θ, t) = hw(θ)fw(t), (3.127)

with

hw(θ) =


1 when π

6
≤ θ ≤ π

2

0 otherwise.
(3.128)
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Figure 3.25. Time variation fw(t) of transient flux applied on circular arc: (a) time
history and (b) Fourier transform

In other words, the flux is applied only on arc ĈDE in Figure 3.24(a). The time-

dependent function fw(t) is defined as

fw(t) = Fwt × sin2(4
1

s
t) · e−0.1 1

s
t, (3.129)

and plotted in Figure 3.25(a) with its Fourier transform in Figure 3.25(b). Here,

the applied flux fw(t) is non-dimensionalized by the peak value Fwt and the time t

is also non-dimensionalized by r0/c.

The SBFEM mesh is shown in Figure 3.24(b). The scaling centre of the un-

bounded subdomain is placed at the origin of the Cartesian coordinate system, and

the scaling centres of the other 8× 2 = 16 bounded subdomains are located at the

respective centres of gravity. All red small solid dots mark keypoints of individual

subdomains. The nodes of individual elements are not shown in Figure 3.24(b) for

clarity.

According to Figure 3.25(b), the maximum dimensionless frequency of interest

in this numerical example is estimated at a0,max = 10. Therefore, the shortest

wavelength can be calculated from Equation (3.124) as λmin = r0
2π
10

≈ 0.63r0. A

sufficient number of nodes are used on each curved or straight line. Generally,

two 3-node elements are used on each edge of individual subdomains, which yields

approximately 11 nodes per wavelength. The same guideline of selecting the order of

continued-fraction expansionM of the bounded domain as in Section 3.5.1 is applied.

In Figure 3.24(b), the maximum radial distance in each subdomain is dmax ≈ 0.18r0.
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Thus, the order of continued-fraction expansion is selected as M = dmax
λmin

× 4 ≈ 1.

A long-duration time-domain solution of this problem is calculated by Newmark’s

method with a constant time step of ∆t = 0.03r0/c to demonstrate the accuracy and

robustness of the proposed method. This selected value for ∆t provides about 21

time steps per period at the highest frequency of interest. The pressure variations

at the mid-points of the circular arc cavity and the open boundary (points D and J

in Figure 3.24(a)) are illustrated in Figures 3.26(a) and 3.26(b), respectively, for the

first 30 r0
c

seconds. During this period, any ‘fictitious reflections’ would be reflected

60 times between the circular arc cavity ÂB and the open boundary F̂H. Any

errors during this time integration would also be accumulated. The vertical axes in

Figure 3.26 are non-dimensionalized by r0Fwt and the horizontal axes represent the

dimensionless time tc/r0.

In order to verify the accuracy of the coupled SBFEM model, an extended finite

element mesh of an semi-infinite wedge with an opening angle of 2π
3

is again built in

ANSYS, where the outer circular boundary is located at r = 16r0 in order to avoid

wave reflections. The converged pressure responses from the extended mesh model

at points D and J are also plotted in Figures 3.26(a) and (b) as a reference solution.

Different combinations of MH and ML have been studied, i.e. solutions obtained

with continued-fraction expansions of order ‘MH = ML = 1’, ‘MH = 3,ML = 1’,

‘MH = 6,ML = 1’ and ‘MH = 9,ML = 1’ are presented in Figure 3.26.

Figure 3.26 shows that all results obtained using the proposed doubly-asymptotic

open boundary agree very well with the reference solution during the first 5 r0
c

se-

conds. After this, the results obtained with the doubly-asymptotic open boundary

with ’MH = ML = 1’ differ significantly form the extended mesh solutions. Ho-

wever, by increasing the high-frequency continued-fraction term MH , the results

obtained using the doubly-asymptotic open boundary are approaching the exten-

ded mesh results. For both points D and J, the doubly-asymptotic open boundary

with continued-fraction expansions of order ‘MH = 6,ML = 1’ provides results
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Figure 3.26. Dimensionless pressure response of semi-infinite wedge subject to long-
time transient flux: (a) at point D and (b) at point J

with good agreement with the extended mesh results in the first 20 r0
c

seconds, and,

the doubly-asymptotic open boundary with continued-fraction expansions of order

‘MH = 9,ML = 1’ yields results with good agreement with the extended mesh re-

sults in the first 30 r0
c

seconds. In summary, it can be said that convergence for late

times is achieved by increasing the order of MH . Obviously, the late time-response

is governed by the low-order modes. Modes with λ ≤ MH + 1 are approximated

by singly-asymptotic expansions of order MH only in the proposed approach. Thus,

the accuracy of these modes is affected by increasing MH only.
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Figure 3.27. Geometry of non-uniform half-plane model

3.5.3 Non-uniform half-plane with semi-circular cavity

For illustrating the applicability of the proposed approach, the propagation of out-

of-plane waves in an elastic half-plane with a non-uniform circular bounded domain

is addressed in this section. This elastodynamic problem is governed by the scalar

wave equation and can therefore be modeled using the proposed approach. Figure

3.27 shows the layout and dimensions of a circular canyon with radius r0 enclosed by

three different circular layers. All three types of material A, B and C are assumed to

have the same density ρ but different shear moduli G0, 3G0 and 16G0, respectively.

The shear wave velocity in material A can be calculated as cA =
√

G0

ρ
= c0. Conse-

quently, the shear wave velocities in layers B and C are
√
3c0 and 4c0, respectively.

The surface traction f on the canyon ÂBC and ground surface ADE and CFG

are assumed to be zero. Only a point load is applied at point H with coordinates

(x, y) = (−3r0 cos 45
◦,−3r0 cos 45

◦). The point load fh varies as a Ricker wavelet

with respect to time according to Equation (3.130). fh is non-dimensionalized by

its peak value Fht and plotted in Figure 3.29(a). Its Fourier transform is shown in

Figure 3.29(b).

fh(t) = Fht × [1− 20
1

s2
(t− 1.5 s)2]e−10 1

s2
(t−1.5 s)2 . (3.130)
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Figure 3.28. Mesh of non-uniform half-plane model

Figure 3.29. Time variation fh(t) of point load applied at non-uniform half-plane:
(a) time history and (b) Fourier transform

The SBFE mesh of the half-plane is illustrated in Figure 3.28. The scaling centre

of the unbounded subdomain is placed at the origin of the Cartesian coordinate

system, and the scaling centres of the other 16 × 8 = 128 bounded subdomains

are located at the respective centres of gravity. All red solid dots mark keypoints

of individual subdomains but the nodes of individual line elements are not shown

for clarity. From the Fourier transform of the applied load in Figure 3.29(b), the

maximum dimensionless frequency of interest is estimated at a0,max = 20. Since

the shear wave velocity varies across the different layers, the shortest wavelengths

λA,min, λB,min and λC,min in the three layers A, B and C can be calculated according

to Equation (3.124) as:

λA,min = r0
2π

20c0
× cA = r0

2π

20
≈ 0.314r0, (3.131a)

λB,min = r0
2π

20c0
× cB = r0

2π

20
×

√
3 ≈ 0.544r0, (3.131b)
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λC,min = r0
2π

20c0
× cC = r0

2π

20
× 4 ≈ 1.257r0. (3.131c)

Therefore, the number of required elements and terms of continued-fraction expan-

sion also vary across the different layers. In order to provide a sufficient number

of nodes per wavelength during the analysis, six 3-node elements are used on each

edge of individual subdomains in material A and material B, whereas layer C only

requires three 3-node elements on each edge. Thus, the entire domain is modeled

with at least 12 nodes per wavelength. The same guideline of selecting the order

of continued-fraction expansion M of the bounded domain as in Section 3.5.1 is

applied to the different material types. In Figure 3.27(b), the order of continued-

fraction expansion for subdomains in layer A is selected as MA = 2. The orders

of continued-fraction expansions for subdomains in layers B and C are selected as

MB = 2 and MC = 1, respectively, to satisfy the guideline.

The time-domain solutions are calculated by Newmark’s method with a constant

time step of ∆t = 0.02r0/c for the fist t = 10r0/c seconds, which yields at least 15

time steps per period at the highest frequency of interest. The out-of-plane displa-

cements at points B, C, D and F shown in Figure 3.27(a) are illustrated in Figure

3.30(a)-(d), respectively. The vertical axes are non-dimensionalized by Fht/G0r0 and

the horizontal axes represent the dimensionless time tc0/r0.

For verification, an extended finite element mesh is built in ANSYS, where the

outer circular boundary is located at r = 24r0 to avoid reflected waves entering the

area of interest. The converged reference displacement responses from the extended

mesh model at all corresponding points match the results from the SBFEM model

very well in Figure 3.30. The dimensionless displacement contour plots calculated

by the coupled SBFEM model at the dimensionless times t c
r0

= 1.8, 2.2, 3.2 and 3.6

are also shown in Figure 3.31 for illustration.
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Figure 3.30. Dimensionless displacement response of non-uniform half-plane sub-
jected to a point load: (a) at point B, (b) at point C, (c) at point D, (d) at point
F

3.5.4 Elliptical cavity subject to transient flux on part of

the boundary

In this section, an elliptical cavity with semi-major axis a = 0.6r0 and semi-minor

axis b = 0.4r0 as shown in Figure 3.32(a) with an unbounded subdomain of radius

r0 is studied. The elliptical boundary is partially subjected to a transient flux which

is defined by the following Equation (3.132):

∂p̄

∂n⃗
(θ, t) = he(θ)fe(t), (3.132)

with the spacial variation described by:

he(θ) =


1 when −θ1 ≤ θ ≤ θ1,

0 otherwise.
(3.133)
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(a) (b)

(c) (d)

Figure 3.31. Displacement contour due to Ricker pulse applied at point H of half-
plane model at: (a) t c

r0
= 1.8, (b) t c

r0
= 2.2, (c) t c

r0
= 3.2 and (d) t c

r0
= 3.6

In Equation (3.133), θ1 = arctan(2
3
) ≈ 33.69◦. In other words, the flux is applied

only on arc B̂AC in Figure 3.32. The time-dependent function fe(t) is plotted in

Figure 3.33(a) with its Fourier transform in Figure 3.33(b). Similarly, the applied

flux fe(t) is non-dimensionalized by Fet, which is the peak value, and the time t is

also non-dimensionalized by r0/c.

As shown in Figure 3.32(b), the scaling centre of the unbounded subdomain is

placed at the origin of the Cartesian coordinate system, and the scaling centres of

the other 64× 8 = 512 bounded subdomains are located at the respective centres of

gravity. All red small solid dots mark keypoints of individual subdomains but the

nodes are not shown for conciseness.

In this numerical example, the maximum dimensionless frequency of interest is

estimated at a0,max = 60 from Figure 3.33(b). Therefore, the shortest wavelength
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Figure 3.32. Elliptical cavity model: (a) geometry (b) mesh

Figure 3.33. Time variation fe(t) of transient flux applied partially to elliptical
boundary: (a) time history and (b) Fourier transform

can be calculated from Equation (3.124) as λmin = r0
2π
60

≈ 0.105r0. The same

guideline for selecting the order of continued-fraction expansion M of the bounded

domain is applied. In Figure 3.32(b), the maximum radial distance in each subdo-

main is dmax ≈ 0.061r0. Thus, the order of continued-fraction expansion is selected

as M = dmax
λmin

× 4 ≈ 2. Additionally, a sufficient number of nodes are used on each

curved or straight line. Generally, six 3-node elements are used on each line of

individual subdomains which yield approximately 13 nodes per wavelength. The

time-domain solutions of this problem are also calculated by Newmark’s method

with the constant time step of ∆t = 0.005r0/c, which gives about 21 time steps per

period at the highest frequency of interest for accuracy. The pressure variations at
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Figure 3.34. Dimensionless pressure response of elliptical cavity partially subject to
transient flux: (a) at point A and (b) at point E

Figure 3.35. Pressure variation along radial line AD: (a) at t c
r0

= 0.3 and (b) at
t c
r0

= 0.6

points A and E in Figure 3.32(a) are illustrated in Figure 3.34(a) and (b) respecti-

vely. The vertical axes are non-dimensionalized by r0Fet and the horizontal axes

represent the dimensionless time tc/r0.

In order to verify the accuracy of the coupled SBFEM model, an extended finite

element mesh is built in ANSYS, where the outer circular boundary is located at r =

3r0 in order to avoid wave reflections. The converged reference pressure responses

from the extended mesh model at points A and E match the results from the coupled

SBFEM model very well in Figure 3.34. Therefore, the accuracy of the proposed

coupled SBFEM model is proven to be very good when it is subjected to transient

flux on part of the elliptical cavity boundary.

The dimensionless pressure variation along line AD in Figure 3.32 is also evalu-
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(a) (b)

(c) (d)

Figure 3.36. Elliptical cavity partially subject to transient flux. Pressure contour
obtained using the proposed method at: (a) t c

r0
= 0.3, (b) t c

r0
= 0.4, (c) t c

r0
= 0.6

and (d) t c
r0

= 0.8

ated at times t c
r0

= 0.3 and 0.6 and shown in Figures 3.35(a) and (b) respectively.

The vertical axes show the dimensionless pressure p(t)/ρcFt and the horizontal axes

represent the distance to the origin of the Cartesian coordinate system. Reference

solutions from the same extended FEM model are also plotted. Very good agreement

with the pressure responses obtained from the coupled SBFE model is observed. Ad-

ditionally, the non-dimensionalized pressure contour plots calculated by the coupled

SBFEM model and ANSYS at the dimensionless times t c
r0

= 0.3, 0.4, 0.6 and 0.8

are also shown in Figures 3.36 and 3.37, respectively, to illustrate how the pressure

wave passes through the open boundary.
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(a) (b)

(c) (d)

Figure 3.37. Elliptical cavity partially subject to transient flux. Pressure contour
obtained using ANSYS at: (a) t c

r0
= 0.3, (b) t c

r0
= 0.4, (c) t c

r0
= 0.6 and (d)

t c
r0

= 0.8

3.5.5 Wave radiation from an open structure

A more complex structure which is considered to be submerged into a non-viscous

fluid is studied in this section. The structure is a 2D hollow square box with an

outlet at the right bottom. The exact shape and dimensions of the structure are

illustrated in Figure 3.38(a). The coupled system consisting of the bounded domain

and unbounded domain around this box is also shown in Figure 3.38(b). The radius

of the open boundary is r0. A transient flux is applied on line AB, where A and B are

located at the coordinates (−0.45r0, 0.225r0) and (−0.45r0, −0.225r0), respectively.

The time variation of the flux on line AB in Figure 3.38(b) is the same as f(t) used

in the first numerical example described by Figure 3.15 in Section 3.5.1.

The mesh of this model is plotted in Figure 3.39 with keypoints marked as red

solid dots and scaling centres marked by ’+’. The domain inside the box is divided
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Figure 3.38. 2D open box structure: (a) layout of open box and (b) coupled SBFE
model

into 16 × 16 = 256 subdomains, and the domain outside the box is divided into

65 subdomains in the circumferential direction and 8 layers in the radial direction.

The outlet region (a small strip) is also discretized into 8 subdomains in the vertical

direction.

According to Figure 3.15(b), the maximum dimensionless frequency of interest

is about a0,max = 30. From Equation (3.124), the shortest wavelength is thus

λmin = r0
2π
30

≈ 0.21r0. For accurately modelling the variation of flux and resulting

response, all curved and straight lines in Figure 3.39 are discretized by three 3-

node elements, which yields approximately 13 nodes per wavelength. The order of

continued-fraction expansion M for the bounded domains can be chosen by using

the same guideline as applied in the previous examples. The maximum radial dis-

tance of each subdomain in Figure 3.39 is dmax ≈ 0.058r0. Therefore, the degree

of continued-fraction expansion in this first case is chosen as M = dmax
λmin

× 4 ≈ 1.

Newmark’s method is also applied here to obtain the time-domain solution with
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Figure 3.39. Mesh of the coupled SBFE open structure model

constant time step of ∆t = 0.01r0/c for accuracy.

Points C and D with coordinates (0.45r0, −0.225r0) and (0, −0.45r0) are indi-

cated in Figure 3.38(b). The dimensionless pressure response p(t)/r0Fbt at points

C and D is plotted in Figure 3.40 versus the dimensionless time t × c/r0. For ve-

rification, an extended mesh of finite elements is built in ANSYS with the outer

boundary located at 6r0 to avoid reflected waves approaching the bounded domain

during the considered time range. The converged reference solutions are also plot-

ted in Figure 3.40 for both points. It can be seen that the results from the SBFEM

model match the reference solutions very well. This demonstrates that the proposed

coupled SBFEM model is able to deal with complex geometrical shapes with very

high accuracy.

In addition, the dimensionless pressure contour plots calculated by the coupled

SBFEM model and ANSYS at times t c
r0

= 0.95, 1.55, 3.0 and 6.0 are shown in Figures

3.41 and 3.42, respectively, for illustration. It can be seen that at t = 0.95r0/c,

the pressure wave just meets the outlet and part of the outgoing wave propagates

through the outlet of the open box and the open boundary while the other part
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Figure 3.40. Dimensionless pressure response of open box structure at: (a) point C
and (b) point D

is trapped and reflected inside the box. When t = 1.55r0/c, the outgoing wave

is passing through the open boundary and spreading into the whole unbounded

domain.

3.6 Conclusions

A doubly-asymptotic open boundary for modelling acoustic wave propagation in

two-dimensional unbounded domains of arbitrary geometry is proposed in this chap-

ter. It is based on the previous approach in Reference (Prempramote et al., 2009)

for modal equations. In order to solve two-dimensional acoustic problems of arbi-
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(a) (b)

(c) (d)

Figure 3.41. Open box model. Pressure contour obtained using the proposed coupled
SBFE method at: (a) t c

r0
= 0.95, (b) t c

r0
= 1.55, (c) t c

r0
= 3 and (d) t c

r0
= 6

trary geometry, the whole region is divided into a near field (bounded domain) and

a far field (unbounded domain). In the bounded domain, the scaled boundary finite

element method in the time domain is applied. In the unbounded domain, modal

expansion is used. The modal impedance coefficients are expressed as series of conti-

nued fractions. Here, singularities are avoided by introducing additional factors into

certain continued-fraction coefficients. Rules for using singly-asymptotic continued

fractions for low-frequency modes are stated to further improve the efficiency and

stability of doubly-asymptotic open boundary. As a result, the present method is

more robust than the previous approach.

Auxiliary variables are introduced to transform the continued-fraction expansion

into the time-domain. In this way, the computationally expensive numerical inte-

gration of the stiffness and damping coefficient matrices is avoided. The proposed
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(a) (b)

(c) (d)

Figure 3.42. Open box model. Pressure contour obtained using ANSYS at: (a)
t c
r0

= 0.95, (b) t c
r0

= 1.55, (c) t c
r0

= 3 and (d) t c
r0

= 6

unbounded domain model can easily be coupled with the equations of motion of

the near field. A global system of second-order differential equations in the time

domain is obtained, which can be solved using standard time stepping algorithms

such as Newmark’s method. Five numerical examples related to two-dimensional

exterior acoustics are presented in this paper to demonstrate the accuracy and

efficiency of this coupled approach, as well as its ability to handle complex pro-

blem. Generally, highly accurate solutions have been obtained with low orders of

continued-fraction expansion. Compared to the singly-asymptotic open boundary,

the high-order doubly-asymptotic formulation leads to a significant gain in accuracy

at no additional cost. Moreover, the proposed doubly-asymptotic boundary can be

placed very close to the radiating field.
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Chapter 4

Automatic 3D acoustic analysis

using octree mesh and SBFEM

4.1 Introduction

As it has been implemented into most of the commercial software packages, the finite

element method (FEM) is one of the most popular and versatile computational tools

for solving practical engineering problems. Similar to most of the computational

methods, the analysis based on FEM starts from the mesh generation of the input

model, that is, the discretization of the problem domain into numbers of finite

elements with simple geometries, such as triangular or quadrilateral elements in 2D

and tetrahedral or hexahedral elements in 3D. With the increasing use of computer-

aided design (CAD) in solving engineering problems and manufacturing processes,

automatic mesh generation techniques are highly desirable in finite element analysis

to reduce the human efforts on mesh generation from CAD models, especially for

problems with complex geometry.

For three-dimensional problems, two popular techniques can be used to generate

tetrahedral elements from arbitrary domains automatically. They are advancing

front technique (AFT) (Löhner and Parikh, 1988) and Delaunay triangulation (Du
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and Wang, 2006). The major advantage of these techniques is the simplicity of

implementation. However, the quality of the produced mesh is not always guaran-

teed and highly depend on the surface triangulation of the model. Moreover, it is

preferred to use hexahedral elements in finite element analysis rather than tetrahe-

dral elements due to the consideration of accuracy of the results (Blacker, 2001).

Therefore, a large number of meshing methods have been proposed for generating

hexahedral mesh, such as general sweeping (Staten et al., 1999), whisker weaving

(Tautges et al., 1996), plastering (Blacker and Meyers, 1993) and octree-based ap-

proach (Yerry and Shephard, 1984). Nevertheless, these techniques for hexahedral

mesh generation are reported to be less robust than those for tetrahedral mesh gene-

ration (Young et al., 2008). Furthermore, the hexahedral meshing from CAD model

with arbitrary geometry remains to be a challenge in automatic mesh generation

(Liu et al., 2017).

The development of other numerical methods provides alternative approaches

for applying the automatic mesh generation techniques and thus circumvent the

difficulties encountered in traditional FEM, such as extended finite element method

(XFEM) (Moës et al., 1999) and finite cell method (FCM) (Parvizian et al., 2007).

The mesh generation burden is greatly reduced in these methods because the mesh

conforming to the geometrical boundary is not required. Quadtree in 2D and octree

in 3D have been applied to XFEM for image-based analysis (Legrain et al., 2011).

Quadtree and octree are hierarchical meshing structures, which allow efficient tran-

sition between different cell sizes (Legrain et al., 2011; Young et al., 2008; Huang and

Li, 2013). The mesh is generated by subdividing a larger cell into four equal sized

square cells in quadtree or eight equal sized cubic cells in octree recursively until a

customized stopping condition is satisfied. Additionally, the efficiency of quadtree

and octree approach is further improved as they only generate limited number of

cell patterns and the corresponding element solutions for these cell patterns can be

precomputed for later use (He, 2017; Saputra et al., 2017a; Liu et al., 2017). Ho-
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wever, the direct implementation of quadtree or octree mesh in traditional FEM or

XFEM may lead to hanging nodes between two adjacent cells with different sizes

due to the displacement incompatibility. Numerous techniques have been presented

to overcome the hanging-node problem and a few are listed in References (Fries

et al., 2011; Legrain et al., 2011; Lo et al., 2010; Krysl et al., 2003; Tabarraei and

Sukumar, 2007).

The SBFEM is a semi-analytical computational tool developed by Song and Wolf

(Wolf and Song, 2000; Song and Wolf, 2000; Wolf, 2003). This method only requires

boundary discretization and can describe the whole domain by scaling the boundary

using a dimensionless radial coordinate. The SBFEM excels in modeling unbounded

domain and stress singularities as it can provide analytical solutions in the radial

direction. This method has been applied to numerous engineering problems inclu-

ding elastostatics (Song and Wolf, 1997, 1999a; Song, 2004a), elastodynamics (Song

and Wolf, 1997; Song, 2009), wave propagation (Bazyar and Song, 2008; Birk et al.,

2012; Bazyar and Song, 2017), diffusion (Song and Wolf, 1999b; Birk and Song,

2010), soil-structure interaction (Birk and Behnke, 2012), fluid-structure interaction

(Fan et al., 2005; Lin et al., 2007; Xu et al., 2018), ultrasonics (Gravenkamp et al.,

2015, 2017), electromagnetics (Liu and Lin, 2012), isogeometric analysis (Natara-

jan et al., 2015), piezoelectric materials (Saputra et al., 2017b), et al. SBFEM has

also been applied to acoustics in some researches (Lehmann et al., 2006; Birk et al.,

2016; Li et al., 2018). In most of these references, SBFEM is only used to simulate

unbounded domain in one or two dimensions, that is, an infinite layer or 2D infinite

plane. In this study, 3D bounded and unbounded acoustic domains are modeled via

SBFEM.

The boundary discretization in SBFEM provides extra advantages in automatic

mesh generation as demonstrated in recent researches (Saputra et al., 2017a; Talebi

et al., 2016; Liu et al., 2017; Natarajan et al., 2017; Zou et al., 2017). The quadtree

and octree based techniques have been applied in SBFEM for solving engineering
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problems and some of them are listed in References (Gravenkamp et al., 2017; Ba-

zyar and Song, 2017; Chen et al., 2018). The displacement incompatibility between

neighboring cells with different sizes usually leads to hanging-node problem in stan-

dard FEM. In SBFEM, the hanging-node problem doesn’t exist in quadtree mesh as

the number of edges in a polygonal subdomain can be an arbitrary number. For the

octree mesh, the hanging-node problem can be addressed by simple subdivisions of

the common surfaces connecting cells with different sizes. Furthermore, only a limit

number of cell patterns are generated in quadtree or octree approach. The element

solutions for geometrically similar cells are identical or proportional to each other.

Therefore, these element solutions can be precomputed and stored for later use (Sa-

putra et al., 2017a). The automatic mesh generation process reduces the burdens on

analysts for creating quality meshes from a the input of geometric models, especially

when the geometry and material distributions are complex. The octree algorithm is

able to handle not only conventional computer-aided design (CAD) models (Talebi

et al., 2016) but also digital images (Saputra et al., 2017a) and models in the Stan-

dard Tessellation Language (STL) file format widely used in 3D printing industry

(Liu et al., 2017).

This chapter extends the SBFEM to model wave propagation in 3D infinite

acoustic domain with arbitrary geometry of cavity inside. The modeling of infinite

acoustic domain can be addressed by dividing the whole infinite domain into acoustic

near field and far field via a spherical boundary. The improved high-order doubly

asymptotic open boundary in Chapter 3 for 2D problems is further developed to

model 3D unbounded acoustic far field in this Chapter. The modeling of acoustic

far field in 3D is based on decoupling the scaled boundary finite element equation

for spherical unbounded domain into a series of modal equations with frequency-

dependent modal impedances. These modal impedances can then be expanded into

continued fractions and solved recursively by satisfying those modal equations at

both high and low frequency limits. The improved doubly-asymptotic continued-
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fraction expansion in Chapter 3 are used to solve modal impedances as the mode

number λ = i+0.5, with the integer i, for 3D spherical unbounded domain. Auxili-

ary variables are again introduced here to transform the continued fraction solutions

into the nodal flux-pressure relationship in the time domain. The acoustic near field

containing irregular complex geometries is also modeled by SBFEM. The automatic

mesh generation technique presented in (Liu et al., 2017) is adopted in this chapter

for 3D acoustic analysis from any STL model. Therefore, very complex geometri-

cal features embedded in the acoustic medium can be meshed and then modeled

automatically by this presented approach. The acoustic near field and far field are

coupled via the nodal flux on the spherical boundary at the end to form the global

system of equations representing the whole infinite acoustic domain.

This chapter is organized as follows: The scaled boundary finite element equa-

tions for 3D acoustic near field and far field are expressed in Section 4.2. Next, the

continued-fraction solutions for the spherical doubly-asymptotic open boundary are

derived in Section 4.3. Section 4.4 describes the derivations of time-domain equati-

ons for unbounded domains and the whole 3D acoustic system. Several numerical

examples are presented in Section 4.5 to demonstrate the accuracy, efficiency and

ability of the proposed approach to handle practical acoustic problems with complex

geometries. Finally, conclusions are stated in Section 4.6.

4.2 Scaled boundary finite element formulations

for 3D linear acoustics

The acoustic fluid in this chapter is assumed to be linear, inviscid and isentropic

with small perturbations. The scalar wave propagation in such a linear acoustic

domain is described by the governing equation in Equation (3.1). The symbol ∇

represents the gradient operator in 3D as ∇ =
[
∂
∂x̂
, ∂
∂ŷ
, ∂
∂ẑ

]T
. x̂, ŷ and ẑ are the

Cartesian coordinates shown in Figure 4.1.
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Figure 4.1. Modeling 3D infinite acoustic domain: (a) the 3D acoustic domain, (b)
bounded near field and (c) unbounded far field

In the proposed approach, the idea of modeling acoustic wave propagation in an

infinite 3D domain is similar to the approach used for 2D acoustics in Chapter 3 but

a spherical surface is used to truncate the infinite 3D domain instead of the circular

boundary for truncating 2D infinite domain described in Section 3.2. An illustration

for such an idea in 3D case is shown in Figure 4.1. The whole infinite 3D domain

with gray region of cavity is illustrated in Figure 4.1(a). A spherical boundaryΓ is

then chosen to truncate the infinite 3D domain into an acoustic near field ΩN in

Figure 4.1(b) and an acoustic far field ΩF in Figure 4.1(c). The near field ΩN is a

bounded domain and can include cavities with arbitrary geometries. The far field

ΩF is an unbounded domain with a spherical interior boundary.

The modeling of 3D acoustic near field by SBFEM is summarized in the following

Section 4.2.1. In this chapter, the hierarchical octree structure is utilized to discretize

the 3D near field and any geometrical features in the near field are able to be

captured efficiently and automatically. The acoustic far field ΩF in Figure 4.1(c)

is modeled by one unbounded subdomain in SBFEM with spherical boundary Γ

for 3D case. The derivation of the scaled boundary finite element equation for 3D

unbounded domain is summarized in Section 4.2.2. The meshes of the bounded and

unbounded domains are compatible at the interface. The solutions for bounded and
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unbounded domains are coupled together straightforwardly via the nodal flux on

the interface Γ .

4.2.1 3D bounded acoustic domain

After the meshing process, SBFEM polyhedral subdomains with arbitrary number

of faces are generated. These subdomains are described by the so called scaled

boundary coordinates (Wolf, 2003). In this section, the derivation for 3D acoustic

analysis is addressed. Figure 4.2 illustrates a bounded polyhedral subdomain with

scaled boundary coordinates (ξ, η, ζ) and Cartesian coordinates (x̂, ŷ, ẑ). Only boun-

dary discretization is required in SBFEM. For a 3D problem, standard 2D surface

elements, such as triangular or quadrilateral elements used in the standard FEM,

can be adopted and described by the local scaled boundary coordinates (η, ζ). The

shaded area in Figure 4.2 shows an example of quadrilateral element on one of the

faces of the 3D bounded subdomain. The scaling centre O is placed within the

bounded domain and the whole boundary should be visible from this point. This

is also known as the scaling requirement in SBFEM. For subdomains with complex

geometry, this condition can be satisfied by subdivisions. Then, the entire boundary

can be scaled inwardly by a dimensionless radial coordinate ξ to describe the poly-

hedral subdomain. Following the geometrical transformation described above, any

surface element on the boundary of polyhedral subdomain with m nodes can be des-

cribed by interpolating the local nodal coordinates xb,yb,zb using the 2D mapping

functions N(η, ζ) as given in Equation (4.1).

x(η, ζ) = N(η, ζ)xb (4.1a)

y(η, ζ) = N(η, ζ)yb (4.1b)

z(η, ζ) = N(η, ζ)zb (4.1c)

N(η, ζ) = [N1(η, ζ), N2(η, ζ), · · ·, Nm(η, ζ)] is the 2D mapping functions for an m-

nodes surface element. Subscript ’b’ in the nodal coordinate vectors xb, yb and
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Figure 4.2. A typical 3D polyhedral bounded subdomain in SBFEM coordinates.

zb indicates nodal Cartesian coordinates on the boundary. Any point inside the

subdomain with coordinates (x̂, ŷ, ẑ) is then described by scaling the boundary along

the radial lines using the radial coordinate ξ. These radial lines connect any nodes

on the boundary to the scaling centre O. This coordinate transformation can be

expressed below:

x̂(ξ, η, ζ) = ξN(η, ζ)xb (4.2a)

ŷ(ξ, η, ζ) = ξN(η, ζ)yb (4.2b)

ẑ(ξ, η, ζ) = ξN(η, ζ)zb (4.2c)

For a bounded domain, 0 ≤ ξ ≤ 1 with ξ = 1 on the boundary and ξ = 0 at

the scaling centre O applies. Equation (4.2) is also known as the scaled boundary

transformation in 3D. It relates the Cartesian coordinates (x̂, ŷ, ẑ) to the scaled

boundary coordinates (ξ, η, ζ). The Jacobian matrix on the boundary with ξ = 1

can be written as:

J(η, ζ) =


x(η, ζ) y(η, ζ) z(η, ζ)

x(η, ζ),η y(η, ζ),η z(η, ζ),η

x(η, ζ),ζ y(η, ζ),ζ z(η, ζ),ζ

 (4.3)

with its determinant |J| expressed as:

|J| = x (y,ηz,ζ − z,ηy,ζ) + y (z,ηx,ζ − x,ηz,ζ) + z (x,ηy,ζ − y,ηx,ζ) (4.4)
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The gradient operator in Equation (3.1) can also be written in the scaled boundary

coordinates for 3D acoustics as:

∇ = ba1(η, ζ)
∂

∂ξ
+

1

ξ

(
ba2(η, ζ)

∂

∂η
+ ba3(η, ζ)

∂

∂ζ

)
(4.5)

with the vectors ba1, ba2 and ba3 given as:

ba1(η, ζ) =
1

|J|


y,ηz,ζ − z,ηy,ζ

z,ηx,ζ − x,ηz,ζ

x,ηy,ζ − y,ηx,ζ

 (4.6a)

ba2(η, ζ) =
1

|J|


zy,ζ − yz,ζ

xz,ζ − zx,ζ

yx,ζ − xy,ζ

 (4.6b)

ba3(η, ζ) =
1

|J|


yz,η − zy,η

zx,η − xz,η

xy,η − yx,η

 (4.6c)

The acoustic pressure p(x, y, z, t) in a subdomain can also be interpolated by the

same 2D mapping function N(η, ζ) in Equation (4.2) for geometry as,

p(ξ, η, ζ, t) = p̂(ξ, η, ζ)eiωt = N(η, ζ)p̂(ξ)eiωt (4.7)

In Equation (4.7), p̂(ξ, η, ζ) is the pressure amplitude in the subdomain and p̂(ξ)

is the pressure amplitude in the radial direction. Applying the method of weigh-

ted residual to the governing Equation (3.1) in the frequency domain for 3D in

the circumferential directions (η, ζ) as in Reference(Song and Wolf, 1997) yields the

following differential equation for the radial pressure amplitude p̂(ξ) in 3D acou-

stics with the absence of prescribed flux along side-face (boundary with constant

circumferential coordinates (η, ζ)) in a subdomain.

Ea
0ξ

2p̂(ξ),ξξ +
(
2Ea

0 − Ea
1 + [Ea

1]
T
)
ξp̂(ξ),ξ +

(
[Ea

1]
T − Ea

2

)
p̂(ξ)

+ ω2Ma
0ξ

2p̂(ξ) = 0 (4.8)
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Equation (4.8) is also known as the scaled boundary finite element equation in pres-

sure amplitude. Ea
0, Ea

1, Ea
2 and Ma

0 are coefficient matrices for acoustic domain.

These coefficient matrices depend on the geometry and materials of the correspon-

ding elements and can be expressed as:

Ea
0 =

ˆ +1

−1

ˆ +1

−1

[Ba
1(η, ζ)]

T Ba
1(η, ζ) |J(η, ζ)| dηdζ (4.9a)

Ea
1 =

ˆ +1

−1

ˆ +1

−1

[Ba
2(η, ζ)]

T Ba
1(η, ζ) |J(η, ζ)| dηdζ (4.9b)

Ea
2 =

ˆ +1

−1

ˆ +1

−1

[Ba
2(η, ζ)]

T Ba
2(η, ζ) |J(η, ζ)| dηdζ (4.9c)

Ma
0 =

ˆ +1

−1

ˆ +1

−1

NT (η, ζ)
1

c2
N(η, ζ) |J(η, ζ)| dηdζ (4.9d)

where c is the sound speed in Equation (3.1). The matrices Ba
1(η, ζ) and Ba

2(η, ζ)

in Equation (4.9) are defined as:

Ba
1(η, ζ) = ba1(η, ζ)N(η, ζ) (4.10a)

Ba
2(η, ζ) = ba2(η, ζ)N(η, ζ),η + ba3(η, ζ)N(η, ζ),ζ (4.10b)

The coefficient matrices in Equation (4.9) are calculated on an element-by-

element basis and assembled as in finite element method for each polyhedral subdo-

main. The frequency-dependent impedance matrix Sa(ω) is introduced in acoustics.

The impedance matrix relates the nodal flux amplitude R̂ to nodal pressure am-

plitude p̂ on the boundary with ξ = 1 as shown in Equation (3.13). The nodal

flux amplitude vector R̂ is also defined in Equation (3.15). For 3D acoustics, the

integration in Equation (3.15) is over the boundary Γξ of a polyhedral subdomain

with ξ = 1 and dΓ is the infinitesimal area for 3D. n⃗ is the unit normal vector to

the boundary surface and ∂p̂
∂n⃗

represents any prescribed normal derivative of pres-

sure amplitude on the boundary of a polyhedral subdomain. For the 3D bounded

domains, the radial flux R̂(ξ) is equal to the internal radial flux Q̂(ξ) on any surface

with constant ξ. The internal radial flux Q̂(ξ) is related to the radial pressure p̂(ξ)
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as: (Song and Wolf, 1997; Wolf, 2003)

Q̂(ξ) = Ea
0ξ

2p̂(ξ),ξ + [Ea
1]
T ξp̂(ξ) (4.11)

Substituting Equations (3.13) and (4.11) for 3D acoustics into Equation (4.8),

this second-order differential equation can be transformed to a nonlinear first-order

differential equation for impedance matrix Sa(ω):

(Sa(ω)− Ea
1) [E

a
0]

−1
(
Sa(ω)− [Ea

1]
T
)
− Ea

2 + Sa(ω) + ωSa(ω),ω

+ ω2Ma
0 = 0 (4.12)

Equation (4.12) is solved in (Song, 2009) by expanding Sa(ω) into a series of

continued fractions similar to those summarized in Section 3.2.1.1 for 2D acoustics.

Later, an improved procedure leading to better conditioned mass and stiffness ma-

trices id developed in (Chen et al., 2014). After introducing the auxiliary variables,

the continued-fraction expansions can again be transformed into the same time-

domain equations of motion with frequency-independent coefficient matrices for 3D

bounded acoustic domain:

Ma
hÿ(t) +Ka

hy(t) = r(t) (4.13)

Ma
h, Ka

h, y(t) and r(t) are the same as in Equations (3.38a) - (3.40) but with

coefficients calculated in 3D case.

4.2.2 3D unbounded acoustic domain

This section presents the derivations of the scaled boundary finite element equation

for 3D unbounded acoustic domain. The far field of a 3D acoustic problem is modeled

by one spherical unbounded subdomain in SBFEM as shown in Figure 4.3 with a

spherical boundary Γ . This spherical subdomain has a radius of r0 with the scaling

centre O at its centroid. The spherical surface is also discretized using standard

2D elements in FEM. One of the quadrilateral element on the surface with local
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Figure 4.3. Scaled boundary finite element model of unbounded domain with spher-
ical interface.

boundary coordinates (η, ζ) is shaded in Figure 4.3 as an example. Similar to the

scaled boundary transformation for bounded domain in Section 4.2.1, the infinite

acoustic medium is then described by scaling the spherical surface outwardly using

the dimensionless radial coordinate ξ in scaled boundary coordinates with ξ ≥ 1.

Given the Cartesian coordinates of any point on the spherical boundary x(η, ζ),

y(η, ζ) and z(η, ζ), the Cartesian coordinates of any point in the unbounded domain

can be described by,

x̂(ξ, η, ζ) = ξ · x(η, ζ) (4.14a)

ŷ(ξ, η, ζ) = ξ · y(η, ζ) (4.14b)

ẑ(ξ, η, ζ) = ξ · z(η, ζ) (4.14c)

Spherical coordinates are then introduced to describe any node on the spherical

boundary with a constant radius r0, polar angle θ(η, ζ) and azimuthal angle φ(η, ζ).

For any point on the sphere Γ , the azimuthal angle φ(η, ζ) is measured in the x̂-ŷ

plane from positive x̂ direction to the line segment connecting the coordinate origin

to any point on the sphere. The polar angle θ(η, ζ) represents the angle between the

positive ẑ direction and the same line segment connecting the coordinate origin to
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the point on the sphere. The coordinates of nodes on spherical boundary written in

spherical coordinate (r0, θ, φ) is then given in the following Equation (4.15),

x(η, ζ) = r0 sin (θ(η, ζ)) cos (φ(η, ζ)) (4.15a)

y(η, ζ) = r0 sin (θ(η, ζ)) sin (φ(η, ζ)) (4.15b)

z(η, ζ) = r0 cos (θ(η, ζ)) (4.15c)

Then, the same 2D mapping function N(η, ζ) used in Section 4.2.1 is adopted here

for interpolating the two angles θ(η, ζ) and φ(η, ζ) as,

θ(η, ζ) = N(η, ζ)θ (4.16a)

φ(η, ζ) = N(η, ζ)φ (4.16b)

where, θ and φ are the vector of nodal angles on the boundary in spherical coordi-

nates. Substituting Equation (4.15) into Equation (4.4) and (4.6) respectively yields

the determinant of the Jacobian for the spherical subdomain:

|J| = r30 sin θ · (θ,ηφ,ζ − θ,ζφ,η) (4.17)

and the vectors ba1, ba2 and ba3 are written as:

ba1(η, ζ) =
1

r0


sin θ cosφ

sin θ sinφ

cosφ

 (4.18a)

ba2(η, ζ) =
r20
|J|


φ,ζ sin θ cos θ cosφ+ θ,ζ sinφ

φ,ζ sin θ cos θ sinφ− θ,ζ cosφ

−φ,ζ sin2 φ

 (4.18b)

ba3(η, ζ) =− r20
|J|


φ,η sin θ cos θ cosφ+ θ,η sinφ

φ,η sin θ cos θ sinφ− θ,η cosφ

−φ,η sin2 θ

 (4.18c)

The scaled boundary finite element equation in pressure amplitude presented

in Equation (4.8) applies to both bounded and unbounded domains with the same
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definition of all coefficient matrices Ea
0, Ea

1, Ea
2 and Ma

0. The only difference is

the range of radial coordinates: 0 ≤ ξ ≤ 1 for a bounded domain, while ξ ≥ 1

for an unbounded domain. It should be noted that ba1 is orthogonal to ba2 and ba3

respectively in Equation (4.18). Therefore, according to Equations (4.10) and (4.9b),

Ea
1 vanishes due to the orthogonality and the internal radial flux Q̂(ξ) defined in

Equation (4.11) for 3D acoustics can thus be simplified as:

Q̂(ξ) = Ea
0ξ

2p̂e(ξ),ξ (4.19)

The subscript ’e’ in p̂e denotes the exterior acoustic domain. Substituting Equations

(4.10a) and (4.18a) into Equation (4.9a) gives the expression of Ea
0 for a spherical

subdomain,

Ea
0 =

1

r20

ˆ +1

−1

ˆ +1

−1

NT (η, ζ)N(η, ζ) |J(η, ζ)| dηdζ (4.20)

Comparing Ea
0 and Ma

0 defined in Equations (4.20) and (4.9d) yields the relationship

between Ea
0 and Ma

0 in Equation (4.21)

Ma
0 =

(r0
c

)2
Ea

0 (4.21)

The above Equations (4.14) - (4.21) are derived for the unbounded domain in 3D

acoustic analysis in this section. The proportional relationships between Ea
0 and Ma

0

for 2D and 3D unbounded acoustic domains are the same by observing Equations

(4.21) and (3.48). Now, for 3D unbounded acoustic domain, the scaled boundary

finite element equation in pressure amplitude in Equation (4.8) can be simplified,

using Equation (4.21) and vanishing Ea
1 as

Ea
0ξ

2p̂e(ξ),ξξ + 2Ea
0ξp̂e(ξ),ξ − Ea

2p̂e(ξ) + a2Ma
0ξ

2p̂e(ξ) = 0 (4.22)

wherea is the same dimensionless frequency as defined in Equation (3.50).
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4.3 Doubly-asymptotic open boundary for 3D un-

bounded acoustics

The derivations of high-order doubly asymptotic open boundary for 3D acoustics

is discussed in this section. Analogous to the derivation of circular open boun-

dary for 2D acoustics in Section 3.3. The scaled boundary finite element equa-

tion for unbounded acoustic domain in Equation (4.22) is firstly decoupled into

a series of scalar equations for modal impedance coefficients of the 3D unboun-

ded domain. These modal impedance coefficients can be solved via using doubly-

asymptotic continued-fraction expansions (Prempramote et al., 2009). Comparing

with singly-asymptotic continued-fraction expansion (Bazyar and Song, 2008), the

doubly-asymptotic continued-fraction solution involves an extra continued-fraction

approximation of the residual term at the low-frequency limit. This results in a

more accurate and efficient estimation of the model impedance coefficients com-

paring with the singly-asymptotic one. In this section, the improved solutions in

Section 3.3.2 from Chapter 3 is adopted for 3D problems via introducing the newly

defined modal impedance and the shifted mode number. Comparing with the ori-

ginal doubly-asymptotic continued-fraction solution in (Prempramote et al., 2009),

certain ill-conditions in the original solution is avoided in the improved solution.

After obtaining the continued-fraction expansions for modal impedances, auxiliary

variables and modal flux-pressure relationship are introduced to form global matrix

formulation for time-domain analysis.

As described above, the scaled boundary finite element equation in pressure

amplitude for an unbounded acoustic domain in Equation (4.22) is firstly decoupled

using the same eigenvalue problem defined in Equations (3.51) - (3.52) from Section

3.3.1, but with the coefficient matrices Ea
0 and Ea

2 defined in Equations (4.20) and

(4.9c) respectively. Pre- and post-multiplying Equation (4.22) by ΨT
∞ and Ψ∞

respectively and utilizing Equation (3.52) yields the following partial differential
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equations with the radial coordinate ξ and excitation frequency ω as independent

variables. These partial differential equations for modal pressure amplitude P̃(ξ) can

be defined the same as in Equation (3.54) with dimensionless excitation frequency

a and the radial coordinate ξ as the independent variable,

ξ2P̃(ξ),ξξ + 2ξP̃(ξ),ξ −ΛP̃(ξ) + a2P̃(ξ) = 0 (4.23)

Equation (4.23) can be written into a series of independent scalar equations in

Equation (4.24) with j = 1, 2, 3, · · · , Ne, Ne is the number of nodes on the spherical

open boundary.

ξ2P̃j(ξ),ξξ + 2ξP̃j(ξ),ξ − λ2j P̃j(ξ) + a2P̃j(ξ) = 0 (j = 1, 2, · · · , Ne) (4.24)

Substituting Equation (4.19) for 3D unbounded domain into (3.56) yields,

R̂e(ξ) = −Ea
0ξ

2p̂e(ξ),ξ (4.25)

Pre-multiplying both sides of Equation (4.25) by ΨT
∞ and applying Equations (3.52a)

and (3.54) results in,

R̃(ξ) = −ξ2P̃(ξ),ξ (4.26)

The modal flux R̃(ξ) in Equation (4.26) is defined in Equation (3.58). Again, Equa-

tion (4.26) can be written into a series of scalar equations as,

R̃j(ξ) = −ξ2P̃j(ξ),ξ (4.27)

with j = 1, 2, 3, · · · , Ne (the range of the subscript j is the same in the following

equations of this section and not repeated). The relationship between modal flux

R̃j(ξ) and modal pressure P̃j(ξ) can then be described by introducing the modal

impedance coefficient Sj(a) as in Equation (3.60). Substituting Equation (3.60)

into (4.27) to eliminate model flux R̃j(ξ) yields,

−ξ2P̃j(ξ),ξ = Sj(a)P̃j(ξ) (4.28)
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Differentiating Equation(4.28) with respect to ξ results in,

ξ2P̃j(ξ),ξξ + 2ξP̃j(ξ),ξ + Sj(a)P̃j(ξ),ξ + Sj(a),ξP̃j(ξ) = 0 (4.29)

Replacing P̃j(ξ),ξ in the third term in Equation (4.29) with P̃j(ξ) using Equation

(4.28) gives:

ξ2P̃j(ξ),ξξ + 2ξP̃j(ξ),ξ −
S2
j (a)

ξ2
P̃j(ξ) + Sj(a),ξP̃j(ξ) = 0 (4.30)

Substituting Equation (4.30) into (4.24) and eliminating the modal pressure P̃j(ξ)

yields,

S2
j (a)

ξ2
− Sj(a),ξ + a2 − λ2j = 0 (4.31)

Introducing the intermediate variable S̃j(a) = Sj(a)

ξ
, Equation (4.31) can be written

into, (
S̃j(a)

)2
−
(
ξS̃j(a)

)
,ξ
+ a2 − λ2j = 0 (4.32)

Evaluating the partial differentiation term in Equation (4.32) and changing the

independent variable ξ to a using its definition in Equation(3.50) yields,(
S̃j(a)

)2
− S̃j(a)− aS̃j(a),a + a2 − λ2j = 0 (4.33)

On the spherical boundary with ξ = 1, the dimensionless frequency a(ξ = 1) =

a0 = ωr0
c

from Equation (3.62), and the intermediate variable S̃j(a0) = Sj(a0).

The following scaled boundary finite element equation for modal impedance on the

boundary of unbounded acoustic domain can be obtained,

S2
j (a0)− Sj(a0)− a0Sj(a0),a0 + a20 − λ2j = 0 (4.34)

In order to simplify the implementation of this doubly-asymptotic open boundary

in 3D, Sj(a0) can be solved using the same continued-fraction expansions for 2D

acoustics in Section 3.3.2. The ordinary differential equation (4.34) for 3D case is
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transformed into the following form:

(
S̄j(a0)

)2 − a0S̄j(a0),a0 + a20 −
(
λ̄j
)2

= 0 (4.35)

with S̄j(a0) and λ̄j defined as:

S̄j(a0) = Sj(a0)− 0.5 (4.36a)(
λ̄j
)2

= λ2j + 0.52 (4.36b)

Equation (4.35) is mathematically identical to the differential equation expressed

in Equation (3.61) in Section 3.3.1 for solving the modal impedance coefficient of a

two-dimensional unbounded acoustic domain with a circular boundary. Then, the

same strategy used in Section 3.3.2 for the improved doubly-asymptotic continued-

fraction solution can be employed here to calculate S̄j(a0) from Equation (4.35).

To this end, all λj and Sj(a0) in Equations (3.63)-(3.92) from Section 3.3.2 can be

replaced by λ̄j and S̄j(a0) respectively. The singly-asymptotic continued fraction

can be expressed by:

S̄j(a0) = K∞ + ia0C∞ −
(
ψ(1)

)2
Y

(1)
0 + ia0Y

(1)
1 − (ψ(2))

2

···−
(ψ(MH ))

2

Y
(MH )
0 +ia0Y

(MH )
1

(4.37)

while the doubly-asymptotic continued fraction is:

S̄j(a0) = K∞ + ia0C∞

−
(
ψ(1)

)2
Y

(1)
0 + ia0Y

(1)
1 − (ψ(2))

2

···−
(ψ(MH ))

2

Y
(MH )
0 +ia0Y

(MH )
1 −

(ψ(0)
L )

2

Y
(0)
L0

+ia0Y
(0)
L1

(ia0)
2

Y
(1)
L0

+ia0Y
(1)
L1

− (ia0)
2

···− (ia0)
2

Y
(ML)
L0

+ia0Y
(ML)
L1

(4.38)

The procedures for applying singly- and doubly-asymptotic expansions at the end

of Section 3.3.2 for 2D open boundary can be written for the 3D case by considering

Equation (4.36b) as:
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• choose orders MH and ML of continued-fraction expansion,

• approximate all modes corresponding to
√
λ2j + 0.52 ≤ MH + 1 by singly-

asymptotic expansions of order MH ,

• approximate all modes corresponding to
√
λ2j + 0.52 > MH + 1 by doubly-

asymptotic expansions of orders MH , ML.

Once the continued-fraction expansion in Equation (4.37) or (4.38) for S̄j(a0) is

obtained, the modal impedance coefficient Sj(a0) on the spherical boundary of 3D

acoustic unbounded domain can be obtained by simply adding 0.5 to S̄j(a0) accor-

ding to Equation (4.36a).

4.4 Time-domain formulation for 3D acoustics

Based on the same approach in Section 3.3.3, the modal flux-pressure relationship in

the frequency domain in Equation (3.60) with the continued-fraction expansion of

model impedance of unbounded domain Sj(a0) can be transformed to time domain

equations. Substituting Equations (3.63) and (4.36a) into Equation (3.60) yields:

R̃j = Sj(a0)P̃j =
(
0.5 + Sj(a0)

)
P̃j

= (0.5 +K∞) P̃j + ia0C∞P̃j −
(
ψ

(i)
j

)2
(Y

(1)
j (a0))

−1P̃j. (4.39)

Values of constant coefficients K∞ and C∞ from Equations (3.65a) and (3.65b)

respectively are substituted in Equation (4.39). Then, introducing the first auxiliary

variable P̃ (1)
j in Equation (3.95) yields,

R̃j = P̃j + ia0P̃j − ψ
(1)
j P̃

(1)
j , (4.40)

Utilizing the definition of R̃j in Equation (3.58) and (4.40), the amplitude of the

nodal flux vector is expressed as

R̂e = Ψ−T
∞ P̃+ ia0Ψ

−T
∞ P̃−Ψ−T

∞ ψ(1)p̃(1). (4.41)
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Substituting Equations (3.54) and (3.52a) into Equation (4.41), this equation can

be reformulates as

R̂e = Ea
0p̂e + ia0E

a
0p̂e −Ψ−T

∞ ψ(1)p̃(1), (4.42)

Next, following exactly the same procedures described by Equations (3.98) -

(3.112) in Section 3.3.3 for 2D doubly-asymptotic open boundary, the system of first-

order equations for 3D doubly-asymptotic open boundary can also be formulated as

follow:

Ka
ez(t) +Ca

e ż(t) = re(t) (4.43)

with the high-order damping matrix Ca
e , vector of unknown z(t) and right-hand

side vector re(t) expressed the same as in Equations (3.110), (3.113) and (3.114)

respectively but with coefficients calculated in 3D case. The high-order stiffness

matrix Ka
e in 3D is slightly different from its 2D expression in Equation (3.109) and

given by

Ka
e =



Ea
0 −Ψ−T

∞ ψ(1)

−ψ(1)Ψ−1
∞ Y

(1)
0 −ψ(2)

−ψ(2) . . .
. . .

. . . Y
(MH)
0 −ψ∗

L

− [ψ∗
L]
T Y

(0)
L0 0

0 Y
(1)
L0

. . .

. . .
. . . 0

0 Y
(ML)
L0


(4.44)

with the diagonal matrices ψ(iH) and the rectangular matrix ψ∗
L given in Equation

(3.111). For 3D expressions, the lower partitionψ(0)
L in Equation (3.111) is a diagonal

matrix with diagonal terms ψ(0)
L,j for all modes with

√
λ2j + 0.52 > MH + 1.

The coupling of acoustic near field and far field is performed along the spherical
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interface Γ in Figure 4.1(a). Therefore, Equation (4.13) is firstly divided into three

parts corresponding to the nodes inside the spherical interface, nodes on the interface

and auxiliary variables as in Equation (3.115). Substituting the first block row of

Equation (4.43) into (3.115) and rearranging all terms related to acoustic pressures

and auxiliary variables to the left-hand-side yields the following global second-order

differential equations for the coupled bounded and unbounded 3D acoustic domains:

Ma
Gz̈G(t) +Ca

GżG(t) +Ka
GzG(t) = rG(t) (4.45)

with the global vector of unknowns zG(t), global flux vector rG(t), global mass Ma
G

and global damping matrices Ca
G defined in Equations (3.117) - (3.120), respectively.

The expression for the global stiffness matrix Ka
G in 3D is slightly different from its

2D form. This is due to the difference between Equations (3.109) and (4.44) for the

high-order stiffness matrix of 2D and 3D unbounded domains Ka
e . In 3D acoustic,

Ka
G is thus given by:
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Then, the global Equation (4.45) can be solved using standard time-stepping

method. Newmark’s method is employed in Section 4.5 to obtain the time-domain

solutions.

4.5 Numerical examples

In this section, four numerical examples in 3D acoustics are studied to demonstrate

the accuracy, robustness and efficiency of the proposed method. In all the numerical

examples presented in this chapter, the non-viscous fluid is assumed to have a sound

velocity c and density ρ. In Section 4.5.1, a spherical cavity inside an infinite acoustic

space is studied for verifying the implementation of present method. Then, Section

4.5.2 presents a 3D open structure with the flux applied on the inner surface to test

the accuracy of proposed SBFEM for modelling the wave reflections inside the cavity

and radiation from the outlet. In the last two examples in Sections 4.5.3 and 4.5.4,

the wave propagation around more complicated structures, including a 3D human

external ear and an ancient Chinese bell in the air, are simulated using SBFEM to

demonstrate the possible applications of this present approach to acoustic problems

with complex geometries. All SBFEM meshes of these examples are generated

automatically from the input STL models of the cavities. Newmark’s method with

α = 0.5 and β = 0.25 (average acceleration scheme) is applied to Equation(4.45)

for all time-domain analyses. To provide reference solutions, the first two numerical

examples are also modeled by the commercial software ANSYS using an extended

mesh of finite elements. The boundary of each finite element model in ANSYS is

sufficiently far away from the investigated bounded domain to avoid reflected waves

reaching the bounded domain.
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4.5.1 Spherical cavity subject to transient flux on entire

boundary

As an initial verification of the implementation of the proposed method, an infinite

acoustic space with a spherical cavity as shown in Figure 4.4 is addressed. The

surface of the spherical cavity Γ has a radius of r0 shown as the smaller sphere

in Figure 4.4, while the spherical open boundary is represented by a translucent

spherical shell with the radius of r1 = 2r0. The acoustic medium between the cavity

and open boundary is modeled as a bounded domain and the medium exterior to the

open boundary is modeled as an unbounded domain. In this example, the transient

flux applied to the spherical boundary Γ is given in the equation below:

∂p̄

∂n⃗
(θ, φ, t) = hi(θ, φ)fs(t). (4.47)

where hi(θ, φ) describes the spatial variation of the applied flux with the polar angle

θ and azimuthal angle φ as defined in Equation(4.15) Section 4.2.2. Three spatial

variations of flux (i = 1, 2, 3) on the spherical cavity are considered:

h1(θ, φ) = 1 (4.48a)

h2(θ, φ) = cos θ (4.48b)

h3(θ, φ) = 3 cos2 θ − 1 (4.48c)

fs(t) is a time-dependent function non-dimensionalized by its peak value Fst and

plotted in Figure 4.5(a) with the dimensionless time t c
r0

. Its corresponding Fourier

transform is shown in Figure 4.5(b).

For a 3D acoustic analysis, the recently developed automatic mesh generation

technique based on octree decomposition for SBFEM by Liu et al. (Liu et al., 2017)

is integrated here for automatic and efficient mesh generation. The STL model

containing the spherical cavity and the spherical open boundary is shown in Figure

4.4. This STL model is used as the geometrical input for mesh generation of SBFE

mesh.
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Figure 4.4. Geometry of spherical cavity model.

Figure 4.5. Time variation fs(t) of transient flux applied to entire spherical boun-
dary: (a) time history and (b) Fourier transform.

According to Figure 4.5(b), the maximum dimensionless frequency of interest is

approximately a0,max = 4. Therefore, the shortest wave length can be calculated

from Equation (3.124) as λmin = 2π
4
r0 ≈ 1.57r0. In order to guarantee the accuracy

of the time-domain analysis, the maximum cell size in the octree grid is set to be

0.156r0, which provides at least 10 nodes per shortest wavelength. The automatically

generated mesh is illustrated in Figure 4.6 with the outer view in Figure 4.6(a)

showing the trimmed octree mesh of spherical surface. The mesh is also cut in half
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(a) (b)

Figure 4.6. The SBFEM mesh of spherical cavity model: (a) view of the outer
surface of the mesh (b) view of half of the mesh with interior details.

in Figure 4.6(b) to show the interior of the mesh. The octree cells around the inner

spherical cavity in Figure 4.6(b) is further divided into smaller cells automatically

with the size of 0.078r0 to accurately represent the geometry of the smaller inner

spherical surface. The spherical unbounded domain includes all surface elements on

the outer spherical surface and its scaling centre is located at the centroid of the

sphere.

Due to the use of 3-node triangular or 4-node quadrilateral elements as the

surface elements for each octree cell in the bounded domain, the octree cells are

relatively small and can thus sufficiently represent the shortest wavelength. As a

result, the orders of continued-fraction expansion for cells in bounded domain are

all set to be M = 0. In other words, only low-frequency expansion of impedance

matrix for each bounded cell is adopted. The high order mass and stiffness matrices

Ma
h and Ka

h for bounded domain in Equation (3.38) are reduced to:

Ma
h = Ma (4.49a)

Ka
h = Ka (4.49b)
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Figure 4.7. Dimensionless pressure response of spherical cavity subject to transient
flux with spacial variation h1(θ, φ).

Figure 4.8. Dimensionless pressure response of spherical cavity subject to transient
flux with spacial variation h2(θ, φ).

The time-domain solutions of this problem are calculated by Newmark’s method

with a fixed time step of ∆t = 0.1 r0
c

for all applied fluxes ∂p̄
∂n⃗

defined in Equa-

tion (4.47) with the spacial variation hi(θ, φ) with i = 1, 2, 3 in Equation (4.48).

This choice of ∆t provides at least 15 time steps per period at the highest fre-

quency of interest. The pressure variations for all three types of flux during the first

t = 20r0/c at the intersection point between spherical cavity and z-axis with the

coordinate of (0, 0, 1) are plotted in Figures 4.7-4.9 respectively in red solid lines.

153



Figure 4.9. Dimensionless pressure response of spherical cavity subject to transient
flux with spacial variation h3(θ, φ).

The orders of high and low frequency continued-fraction expansions for the spherical

open boundary is set as MH = ML = 1 in this analysis. Again, the vertical axes

are non-dimensionalized by r0Fst and the horizontal axes indicate the dimensionless

time tc/r0. The same problem with extended finite element mesh is built in ANSYS

for verification. In the extended mesh in ANSYS, 4-nodes tetrahedral elements is

employed with minimum edge length of 0.075r0 around cavity and maximum edge

length of 0.15r0 for accuracy. The truncated spherical boundary in the extended

mesh is located at r = 9r0 to avoid any reflected waves polluting the interested

region between r0 ≤ r ≤ r1 during the time t between 0 to 15r0/c. The converged

reference solutions from the extended mesh model at the same points are illustrated

in Figures 4.7 - 4.9 with black dash lines and match the results from the SBFEM

model very well.

4.5.2 Wave radiation from a 3D open structure

For the further investigation of the accuracy of proposed SBFEM in 3D acoustic

analysis, an open structure submerged in infinite acoustic space is studied in this

section. The open structure is a rigid hollow sphere with one quarter missing as
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Figure 4.10. Geometry of 3D open sphere structure model.

shown in Figure 4.10. r0 and r1 are the inner and outer radii of the open hollow

sphere with r1 = 1.2r0. The translucent spherical shell with the radius of r2 = 2r0

is the spherical open boundary for representing the unbounded domain. The entire

inner surface of the open structure Γ is uniformly subjected to the same transient

flux fs(t) defined by Figure 4.5(a) in Section 4.5.1.

The inner radius of the open structure and the radius of the open boundary in

this numerical example are equal to the radii of spherical cavity and open boundary

of the example in Section 4.5.1, respectively. Therefore, the maximum and minimum

octree cell sizes for meshing this acoustic domain are chosen to be the same as those

used in Section 4.5.1 and they are equal to 0.156r0 and 0.078r0 respectively. The

SBFEM mesh is automatically generated and shown in Figures 4.11 and 4.12. Figure

4.11 illustrates the outer surface of the spherical open boundary and Figure 4.12

shows the details of the interior of the mesh by cutting the octree mesh in half along

x-y and x-z planes respectively. Smaller cell size is used around the open structure

to accurately represent the geometry. Similar to the SBFEM mesh in the previous
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Figure 4.11. The SBFEM mesh of 3D open structure model - the view of outer
surface.

(a) (b)

Figure 4.12. Half of SBFEM mesh of 3D open structure model: (a) view from +z
direction and (b) view from +y direction.

example in Section 4.5.1, 3-node triangular and 4-node quadrilateral elements are

used as the surface elements for each polyhedral subdomains in the SBFEM mesh.

The orders of continued-fraction expansion for cells in bounded domain are all set to

be M = 0 and the orders of high and low frequency continued-fraction expansions

for open boundary is again chosen as MH =ML = 1.
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Figure 4.13. Dimensionless pressure response of 3D open structure model at point
O.

Figure 4.14. Dimensionless pressure response of 3D open structure model at point
A.

Newmark’s method with a time step of ∆t = 0.1r0/c is again applied to Equation

(4.45). The transient solutions are obtained during the time between 0 to 60r0/c.

For verifying the solution obtained using SBFEM, a FEM extended mesh in ANSYS

is built for the same problem to calculate the reference solutions. The 4-node tetra-

hedral element is again used in FEM model with minimum edge length of 0.075r0

around cavity and maximum edge length of 0.15r0 for accuracy. The truncated sp-

herical boundary of the extended mesh has a radius of r = 18r0. Points O(0, 0, 0),
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Figure 4.15. Dimensionless pressure response of 3D open structure model at point
B.

A(r0, 0, 0) and B(0,−r0, 0) are marked in Figure 4.10. Results of the dimensionless

pressure p(t)/r0Fst at points O, A and B versus dimensionless time tc/r0 are plotted

as red solid lines in Figures 4.13, 4.14 and 4.15 respectively. The reference soluti-

ons from ANSYS are shown by the black dash lines up to the time 30r0/c before

the reflected waves reach the observation points. Very good agreements are obser-

ved. Additionally, the dimensionless pressure contour plots calculated by SBFEM

at times t c
r0

= 4, 8, 12, 16 are plotted in Figure 4.16.

4.5.3 Sound propagation around human external ear

The modeling of sound wave propagation around ear is of great significance in various

research areas and engineering applications such as sound transmission in the human

ear (Volandri et al., 2014)(De Greef et al., 2017), binaural recording (Hammershøi

and Møller, 2002)(Paul, 2009) and treatments for hearing loss (Qi et al., 2006). In

this example, a human external ear model in infinite air space is subjected to a

near field acoustic flux and simulated using the proposed SBFEM. The original STL

model of a human right external ear is obtained from Reference (szczehoo, 2014).

The STL model is shown in Figure 4.17 with two different views. The sound speed
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(a) t c
r0

= 4 (b) t c
r0

= 8

(c) t c
r0

= 12 (d) t c
r0

= 16

Figure 4.16. 3D open structure. Pressure contour obtained using the proposed
SBFEM at: (a) t c

r0
= 4, (b) t c

r0
= 8, (c) t c

r0
= 12 and (d) t c

r0
= 16.

in the air is assumed to be c = 340m/s.

The system is divided into a bounded domain and an unbounded domains as

shown in Figure 4.18. The translucent spherical shell indicates the spherical open

boundary with a radius of 6cm, while the model of human external ear is assumed

to be rigid and placed inside. It should be noticed that the coordinate axes plotted

in the left-bottom of all figures in this example only indicates the orientation of the

presented 3D model but not the actual position of the x, y and z axes of Cartesian

coordinates. The actual origin of coordinates coincides with the centroid of the

translucent spherical shell. The induced flux in the bounded domain is uniformly
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(a) (b)

Figure 4.17. Human external ear STL model: (a) view from the front of ear and (b)
view from the back of ear.

applied on a surface indicated by the red squire in Figure 4.18. The red square

with the edge length of 2.5cm is parallel to y-z plane and its centroid is located at

(−3.59cm, 0.16cm, 0.16cm). The time history of the applied transient flux is defined

by:

fear(t) =


106 × (1− cos 8πt) (kg/(cm·ms)2) when 0 ≤ t ≤ 0.25ms,

0 (kg/(cm·ms)2) when 0.25ms < t.

(4.50)

fear(t) is plotted in Figure 4.19(a) with its Fourier transform in Figure 4.19(b).

The maximum frequency of interest is estimated at ω0,max = 40rad/ms. Therefore,

the shortest wave length is approximately λmin ≈ 5.3cm. For generating the octree

mesh of the coupled system, the maximum cell size is set to be 0.625cm, which

provides about 9 nodes per shortest wave length. 3-node triangular elements or

4-node quadrilateral elements are used on the boundary of each cell. Furthermore,

the minimum octree cell size is set to be 0.15625cm (1
4

of the maximum cell size)

around the ear model to accurately describe the complex geometrical details of the

human ear. Then, the meshing process is automatically completed and the final
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Figure 4.18. The coupled SBFE model for human external ear in infinite space.

Figure 4.19. Time variation fear(t) of transient flux applied in the acoustic near field
of ear model: (a) time history and (b) Fourier transform.

mesh is shown in Figure 4.20 for the outside view of the sphere. Figure 4.21 also

illustrates the inside of the mesh from Figure 4.20 cut in half along the x-z plane.

Analogous to Section 4.5.1, the octree cells are sufficiently small and thus the orders

of continued-fraction expansion for cells in bounded domain are all set to be M = 0.

The order of continued-fraction expansion for unbounded domain is MH =ML = 1.

The time-domain solutions are calculated by Newmark’s method with a time

step of ∆t = 0.01ms for the first 0.7ms. This selection of ∆t yields at least 15

time steps per period at the highest frequency of interest. Contour plots of acoustic
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Figure 4.20. The SBFEM mesh of human external ear model - the view of outer
surface.

(a) (b)

Figure 4.21. Half of SBFEM mesh of human external ear model: (a) view from -y
direction and (b) view from +y direction.

pressures with the unit of Pa at time t = 0.15ms, 0.2ms, 0.25ms and 0.3ms are

illustrated in Figure 4.22. It can be seen from these contour plots that part of the

sound waves propagate into the ear canal and then reflected back to the infinite air

domain at the end.
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(a) t = 0.15ms (b) t = 0.2ms

(c) t = 0.25ms (d) t = 0.3ms

Figure 4.22. Human external ear. Pressure contour obtained using the proposed
SBFEM at: (a) t = 0.15ms (b) t = 0.2ms (c) t = 0.25ms (d) t = 0.3ms.

4.5.4 Sound radiation from an ancient Chinese bell

One of the most common applications on acoustics is the design of musical instru-

ments. Many cultures in this world have developed their own musical instruments

since ancient times and they play an important role in our society, both in the past

and present. According to archaeological excavations, the bells began to appear in

Chinese civilization around third millennium BC. Later, ancient Chinese musical

bells were usually cast in bronze and their early developments can be traced back

to 1600-1100 BC. Various literatures, including (Chen, 1996; Pan, 2009; Wu et al.,

2013), studied the acoustic properties of ancient Chines bells via modern numerical

modelling technology, and the significance of these studies is not only in history and
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(a) (b)

Figure 4.23. Ancient Chinese bell STL model: (a) view from -y direction and (b)
view from -z direction.

culture, but also in the modern acoustic designs.

The acoustic study of an ancient Chinese bell, which is cast about 5th century

BC, is performed in this section. This bell is one of the collections in the British

Museum and its STL model used in this analysis is downloaded from (ScanThe-

World, 2016) and shown in Figure 4.23 with two different views. The interaction of

bell and surrounding acoustic medium is not considered in this example and the bell

is thus assumed to be rigid and within the infinite domain as illustrated in Figure

4.24. The translucent spherical shell in Figure 4.24 again represents the spherical

open boundary with the radius of 110cm and its centroid coincides with the origin

of coordinates. Analogous to Section 4.5.3, the coordinate axes plotted in all figures

in this example only indicate the orientation of the displayed model. The red area

on part of the surface of bell in Figure 4.23 are subjected to a uniform flux in this
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∞ ∞

∞

∞

∞∞

Figure 4.24. The coupled SBFE model for ancient Chinese bell in infinite space.

Figure 4.25. Time variation fbell(t) of transient flux applied in the acoustic near
field of ancient Chinese bell model: (a) time history and (b) Fourier transform.

example and the applied transient flux fbell(t) is defined by:

fbell(t) =


106 × (1− cos π

6
t) (kg/(cm·ms)2) when 0 ≤ t ≤ 12ms,

0 (kg/(cm·ms)2) when 12ms < t.

(4.51)

The time variation of fbell(t) are also plotted in Figure 4.25(a) with its Fourier

transform in Figure 4.25(b). According to Figure 4.25(b), the maximum frequency of

interest of the applied flux is estimated at ω0.max = 1.5rad/ms. The acoustic medium
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Figure 4.26. The SBFEM mesh of ancient Chinese bell model - the view of outer
surface.

Figure 4.27. Half of SBFEM mesh of ancient Chinese bell model.

in this example is assumed to be air with sound speed of 340m/s. This gives the

shortest wavelength of λmin ≈ 142.4cm. Therefore, the maximum cell size of the

octree mesh is set to be 15cm. This yields at least 10 nodes per shortest wavelength.

For describing the geometrical details of the bell accurately, the minimum cell size is

equal to 0.46875cm ( 1
32

of the maximum cell size) around the bell surface. The final
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(a) t = 4ms (b) t = 6ms

(c) t = 10ms (d) t = 12ms

Figure 4.28. Ancient Chinese bell. Pressure contour obtained using the proposed
SBFEM at: (a) t = 4ms (b) t = 6ms (c) t = 10ms (d) t = 12ms.

trimmed octree mesh is illustrated in Figure 4.26 and 4.27. Figure 4.26 shows the

outside sphere of the mesh, while Figure 4.27 shows the interior of the mesh from

Figure 4.26 cut in half along x-z plane. As the cell size in octree mesh is sufficiently

small, the orders of continued-fraction expansion for bounded domains are set to

be M = 0. The order of continued-fraction expansion for doubly-asymptotic open

boundary is MH = ML = 1. Newmark’s method is applied to Equation (4.45) to

obtain the time-domain solutions of acoustic pressures for the first 50ms with a

constant time step of ∆t = 0.25ms. This gives about 16 time steps per period at

the highest frequency of interest. The contour plots of acoustic pressures at time
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t = 4ms, 6ms, 10ms and 12ms are illustrated in Figure 4.28 with the unit of Pa.

4.6 Conclusions

The SBFEM has been extended to model 3D acoustic problems in this Chapter. In

order to solve acoustic problems of arbitrary geometry, the whole region is again

divided into a near field (bounded domain) and a far field (unbounded domain).

For accurately and efficiently representing the unbounded domain in the acoustic

medium, a spherical doubly-asymptotic open boundary is introduced. It is based on

the approach presented in Chapter 3 for modeling 2D unbounded acoustics domain.

Via introducing the newly defined model impedance and the shifted mode number

into the modal impedance equations for spherical unbounded domain, the modal

impedance coefficients are determined by utilizing the same doubly-asymptotic con-

tinued fractions for 2D doubly-asymptotic open boundary, which has been proved

to be efficient, stable and robust in the previous Chapter 3. The time-domain equa-

tion is obtained by introducing auxiliary variables. For modeling the 3D bounded

domain, the scaled boundary finite element method is applied. The mesh is genera-

ted by an octree algorithm with STL models as the inputs. This mesh generation

technique automatically captures the geometrical features and handles the mesh

transition from fine elements to coarse elements efficiently. The hanging nodes in an

octree mesh is easily solved in SBFEM by subdivisions of surface elements. This can

greatly reduce the human efforts on the simulations of 3D acoustic problems with

complex geometry, which is demonstrated by several numerical examples related to

practical applications.
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Chapter 5

2D and 3D acoustic-structure

interaction analyses using SBFEM

5.1 Introduction

In general, the acoustic-structure interaction analyses consider the dynamic inte-

ractions between flexible structures and the acoustic media such as air or water. Due

to the ubiquity of the acoustic media in most engineering applications, the structu-

ral surfaces are always in contact with the surrounding acoustic media. Examples

of engineering applications involving the acoustic-structure interactions includes the

dam-reservoir interaction, air-coupled ultrasonic testing, acoustic design of vehicles

and earphones to name a few. In all these examples, the acoustic domains have

no significant flow. This type of acoustic-structure interaction problems is also ter-

med as vibroacoustic problems and is studied in this chapter. In other examples of

structural acoustics, the interaction between structural and acoustic domains may

be caused by unsteady fluid flow, which is known as aeroacoustics. The noise gene-

rated from propeller, the vibration of vocal cords during speaking and the sounds

generated by some music instruments such as flute are all examples of aeroacoustics.

The acoustic media investigated in this chapter are assumed to be compressible but
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irrotational, isentropic and inviscid with small perturbations.

Due to the increasing complexity of structures involved in acoustic-structure in-

teraction system and the versatility of finite element method (FEM), this numerical

tool has been employed to model acoustic-structure interaction problems by many li-

teratures (Belytschko, 1980; Bathe et al., 1995; Mellado and Rodríguez, 2001; Olson

and Bathe, 1985; Nitikitpaiboon and Bathe, 1993) based on either displacement-

based formulations or potential-based formulations. The displacement-based formu-

lations are attractive as the modeling of acoustics can be achieved by simply setting

the shear modulus to be zero. However, spurious or circulation modes may arise in

acoustic domain due to the failure of satisfying the irrotational displacement in fluid

strictly as reported in (Hamdi et al., 1978). In contrast, the potential-based formu-

lation show no spurious modes in acoustic domain as the scalar functions, which

could be velocity potentials or acoustic pressures, are used to describe the behavior

of acoustics. Normally, FEM are preferred to model acoustic-structure interaction

problems with bounded acoustic domain as any outgoing wave will be reflected back

by the boundary of finite element meshes. In order to model the unbounded acou-

stic domain, the boundary of the finite element model should be far away from

the area of interest to avoid the contamination of results by reflected waves. As a

result, this will inevitably increase the computational costs for acoustic-structure

interaction analyses. Therefore, various open boundaries are developed to represent

the unbounded domain by satisfying the radiation condition at infinity. Readers for

detailed review of open boundaries are referred to Chapter 2.

One of the well suited numerical tools for modeling unbounded domains is the

boundary element method (BEM). The BEM only requires boundary discretization

and thus reduces the problem dimension by one. A salient feature of modeling un-

bounded domain via BEM is that the radiation condition at infinity is naturally

satisfied by the fundamental solution (Marburg and Nolte, 2008). No artificial open

boundary is required. The coupled acoustic-structure system with infinite acoustic
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domain can then be simulated by coupling FEM formulation for structural domain

and acoustic near field with BEM formulation for acoustic far field. One of the

earliest researches on coupling FEM with BEM was presented by Zienkiewicz et

al. (Zienkiewicz et al., 1977) with direct coupling scheme, which enforces equili-

brium and compatibility conditions on common interface. The direct FEM-BEM

coupling scheme is also applied to fluid-structure interaction analysis in the time

domain (Estorff and Antes, 1991) and later extended to fluid-structure interaction

problems considering the structural nonlinearity (Czygan and Von Estorff, 2002).

The developed FEM-BEM coupling formulations for acoustic-structure interactions

are summarized in several literatures (Amini et al., 2012; Brunner et al., 2009). For

reducing the computational costs in direct coupling scheme, an alternative option

is to couple the FEM and BEM equations through the iterative coupling scheme,

which satisfies the equilibrium and compatibility conditions on interface iteratively

(Soares Jr et al., 2004; Soares Jr and Mansur, 2005; Soares Jr and Godinho, 2008).

Nevertheless, the fundamental solutions in BEM might be complex and difficult to

find. In addition, increasing stability of the coupled FEM-BEM formulation and

reducing numerical costs for transient analysis may still require extra efforts as re-

ported in some literatures (Rokhlin, 1985; Yu et al., 2002; Soares Jr and Mansur,

2005; Rjasanow and Steinbach, 2007; Soares Jr and Godinho, 2008).

The SBFEM is another promising method for modeling infinite domains as it

only requires boundary discretization and provides analytical solutions in the radial

direction (Wolf, 2003). Some of its early developments are summarized in (Song

and Wolf, 1995; Wolf and Song, 1995; Song and Wolf, 1996, 1997, 1999b,a; Wolf

and Song, 2000; Song and Wolf, 2000). High-order elements can be applied into

the SBFEM (Vu and Deeks, 2006) for efficiently obtaining accurate solutions under

high-frequency excitations, such as the applications of SBFEM in ultrasonic pro-

blems (Gravenkamp et al., 2012, 2015). The recently developed automatic meshing

techniques based on quadtree or octree mesh can further reduce the human efforts
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on mesh generation for complicated models in SBFEM (Saputra et al., 2017a; Liu

et al., 2017). Due to the intrinsic advantage of SBFEM in modeling unbounded

domains, this method has also been applied to exterior acoustic analysis (Lehmann

et al., 2006) and acoustic-structure interaction analysis (Fan et al., 2005; Li, 2006;

Fan and Li, 2008) before. Some of the early approaches for modeling unbounded

domains are involved, which are less computationally efficient than the high-order

doubly-asymptotic open boundaries presented in Chapters 3 and 4 for exterior acou-

stics as the computationally expensive convolution integral is usually required for

transient solutions. Later, the high-order doubly-asymptotic open boundary has

been applied to model the infinite layer of reservoir in 2D dam-reservoir interaction

problems in (Wang et al., 2011). The dam structure and reservoir near field are still

modeled using standard FEM. Therefore, it is demanded to utilize all the advan-

tages in modeling bounded and unbounded domains using SBFEM and extend the

SBFEM to model the whole acoustic-structure interaction system for both 2D and

3D cases. Due to the fact that waves travel with different wave lengths in structural

and acoustic domains, different mesh sizes are preferred to be used in distinct media.

The boundary discretization in SBFEM yields an extra advantage in efficient mesh

transition on the acoustic-structure interface for non-matched meshes. In 2D case,

the mesh transition can be done by simply dividing line elements on the interface.

For 3D scenario, this can be achieved by subdivision of surface elements.

The purpose of this chapter is to develop the coupled 2D and 3D formulations for

acoustic-structure interaction analyses based on SBFEM. To this end, the SBFEM

formulation for structural dynamics in (Chen et al., 2014) is employed to simulate

the wave propagation in elastic structural domain. The acoustic domain is again

divided into a near field containing any irregular geometry of structures and a far

field representing the infinite acoustic medium of simple geometry. Thus, the for-

mulation for acoustic analyses in Chapters 3 and 4 are directly applied here. The

coupling of structural and acoustic formulations is achieved by applying the force
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equilibrium and displacement compatibility in the normal direction of the acoustic-

structure interface. Different meshes can be used for structures and acoustics in the

coupled SBFEM model and the mesh transition on the coupling interface is hand-

led efficiently. The resulting second-order global differential equations of motion for

acoustic-structure interaction system is unsymmetrical, which can be transformed

into a symmetric one by replacing the variables related to acoustic domain with new

variables.

The organization of this chapter is stated as follows: Firstly, Section 5.2 summa-

rizes the SBFEM for structural dynamics based on continued-fraction expansions.

Then, the derivations of coupled scaled boundary finite element formulation for

both 2D and 3D acoustic-structure interaction analyses are addressed in Section

5.3. Several numerical examples are presented in Section 5.4 for demonstrating the

accuracy, efficiency, robustness of the present SBFEM, as well as its ability of solving

complex problems in structural acoustics. Finally, conclusions are stated in Section

5.5.

5.2 Scaled boundary finite element solutions for

structural dynamics

This section presents the SBFEM formulations for elastic 3D structural dynamics.

Corresponding equations for elastic 2D structural dynamics can be found in Ap-

pendix A. As the scaled boundary coordinates for a 3D structural domain are the

same as those for a bounded acoustic domain summarized in Equations (4.1)-(4.2) in

Section 4.2.1, the scaled boundary coordinate transformation will not be reproduced

here. The derivation of scaled boundary formulations for structural dynamics starts

from the following governing differential equations of motion in frequency domain,

LT σ̂ + F̂b + ω2ρsû = 0 (5.1)
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In Equation (5.1), σ̂ is the stress amplitude, û is the displacement amplitude and F̂b

is the amplitude of any body forces. The scalar ρs is the density of structure. Diffe-

rential operator L denotes the strain-displacement relationship and can be expressed

in its 3D form as:

L =



∂
∂x̂

0 0

0 ∂
∂ŷ

0

0 0 ∂
∂ẑ

0 ∂
∂ẑ

∂
∂ŷ

∂
∂ẑ

0 ∂
∂x̂

∂
∂ŷ

∂
∂x̂

0


(5.2)

In scaled boundary coordinates, the strain-displacement relationship can be descri-

bed by,

ϵ(ξ, η, ζ) = Lû(ξ, η, ζ) (5.3)

The displacement amplitude û(ξ, η, ζ) in Equation (5.3) can be discretized for 3D

subdomains using the shape function in Equation (4.1) for geometry interpolation.

Every DOF is interpolated independent of the others, yielding

û(ξ, η, ζ) = Ns(η, ζ)û(ξ) (5.4)

where û(ξ) is the radial displacement solution. The nodal 2D shape function matrix

Ns(η, ζ) in Equation (5.4) is defined as:

Ns(η, ζ) = [N1(η, ζ)I, N2(η, ζ)I, · · ·, Nm(η, ζ)I] (5.5)

for a m-nodes element with the 3× 3 identity matrix I.

According to Reference (Song and Wolf, 1997), the differential operator L in 3D

scaled boundary coordinates in Equation (5.3) can be expressed by:

L = bs1(η, ζ)
∂

∂ξ
+

1

ξ

(
bs2(η, ζ)

∂

∂η
+ bs3(η, ζ)

∂

∂ζ

)
(5.6)
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with the bs1(η, ζ), bs2(η, ζ) and bs3(η, ζ) matrices defined as,

bs1(η, ζ) =
1

|J|



y,ηz,ζ − z,ηy,ζ 0 0

0 z,ηx,ζ − x,ηz,ζ 0

0 0 x,ηy,ζ − y,ηx,ζ

0 x,ηy,ζ − y,ηx,ζ z,ηx,ζ − x,ηz,ζ

x,ηy,ζ − y,ηx,ζ 0 y,ηz,ζ − z,ηy,ζ

z,ηx,ζ − x,ηz,ζ y,ηz,ζ − z,ηy,ζ 0


(5.7a)

bs2(η, ζ) =
1

|J|



zy,ζ − yz,ζ 0 0

0 xz,ζ − zx,ζ 0

0 0 yx,ζ − xy,ζ

0 yx,ζ − xy,ζ xz,ζ − zx,ζ

yx,ζ − xy,ζ 0 zy,ζ − yz,ζ

xz,ζ − zx,ζ zy,ζ − yz,ζ 0


(5.7b)

bs3(η, ζ) =
1

|J|



yz,η − zy,η 0 0

0 zx,η − xz,η 0

0 0 xy,η − yx,η

0 xy,η − yx,η zx,η − xz,η

xy,η − yx,η 0 yz,η − zy,η

zx,η − xz,η yz,η − zy,η 0


(5.7c)

In Equation (5.7), |J| is the determinant of Jacobian matrix defined in Equation

(4.4). Substituting Equations (5.6) and (5.4) into (5.3) yields the expression for

strain field ϵ(ξ, η, ζ) in 3D as,

ϵ(ξ, η, ζ) = Bs
1(η, ζ)û(ξ),ξ +

1

ξ
Bs

2(η, ζ)û(ξ) (5.8)

with the Bs
1(η, ζ) and Bs

2(η, ζ) matrices defined as:

Bs
1(η, ζ) = bs1(η, ζ)Ns(η, ζ) (5.9a)

Bs
2(η, ζ) = bs2(η, ζ)Ns(η, ζ),η + bs3(η, ζ)Ns(η, ζ),ζ (5.9b)
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In order to obtain a general solution for structural dynamics, the method of

weighted residuals is applied to the differential equations of motion in Equation

(5.1) in circumferential directions (η, ζ) (Song and Wolf, 1997). Assuming that

the side-faces in radial direction are traction free and the body forces vanish, a

system of ordinary differential equations for radial displacement amplitude û(ξ) in

the frequency domain is derived

Es
0ξ

2û(ξ),ξξ +
(
2Es

0 − Es
1 + [Es

1]
T
)
ξû(ξ),ξ +

(
[Es

1]
T − Es

2

)
û(ξ)

+ ω2Ms
0ξ

2û(ξ) = 0 (5.10)

Equation (5.10) is also known as the scaled boundary finite element equation in

displacement formulated in frequency domain. Es
0, Es

1, Es
2 and Ms

0 are coefficient

matrices for 3D structures. These coefficient matrices depend on the geometry and

materials of the corresponding elements and can be expressed as,

Es
0 =

ˆ +1

−1

ˆ +1

−1

[Bs
1(η, ζ)]

T DBs
1(η, ζ) |J(η, ζ)| dηdζ (5.11a)

Es
1 =

ˆ +1

−1

ˆ +1

−1

[Bs
2(η, ζ)]

T DBs
1(η, ζ) |J(η, ζ)| dηdζ (5.11b)

Es
2 =

ˆ +1

−1

ˆ +1

−1

[Bs
2(η, ζ)]

T DBs
2(η, ζ) |J(η, ζ)| dηdζ (5.11c)

Ms
0 =

ˆ +1

−1

ˆ +1

−1

NT
s (η, ζ)ρsNs(η, ζ) |J(η, ζ)| dηdζ (5.11d)

where D is the elasticity matrix for 3D.

The coefficient matrices are calculated on an element-by-element basis and as-

sembled as in finite element method for each subdomain. Equations (5.2) - (5.11) are

derived for elastic 3D structural dynamics. Summary of these equations for elastic

2D structural dynamics based on SBFEM are provided in Appendix A. Compa-

ring the scaled boundary finite element equations in displacement in 2D (Equation

(A.9)) and in 3D (Equation (5.10)), the unified form of scaled boundary finite ele-

ment equation in displacement can thus be expressed in Equation (5.12) with the
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spatial dimension s,

Es
0ξ

2û(ξ),ξξ +
(
(s− 1)Es

0 − Es
1 + [Es

1]
T
)
ξû(ξ),ξ +

(
(s− 2) [Es

1]
T − Es

2

)
û(ξ)

+ ω2Ms
0ξ

2û(ξ) = 0 (5.12)

In Equation (5.12), the spatial dimension s = 2 for 2D problems and s = 3 for 3D

problems applies.

5.2.1 Solutions for elastostatics

In static analysis, the low-frequency limit ω = 0 is considered in Equation (5.12)

and thus this equation can be simplified as,

Es
0ξ

2u(ξ),ξξ +
(
(s− 1)Es

0 − Es
1 + [Es

1]
T
)
ξu(ξ),ξ +

(
[Es

1]
T − Es

2

)
u(ξ) = 0 (5.13)

For simplifying the notations in static analysis, the hat •̂ of û(ξ) in Equation (5.10)

is omitted. Introducing the following variable Θ(ξ),

Θ(ξ) =

 ξ0.5(s−2)u(ξ)

ξ−0.5(s−2)q(ξ)

 (5.14)

where q(ξ) in Equation (5.14) is the internal nodal force. Equation (5.13) can

then be transformed to a system of first-order ordinary differential equations (Song,

2004a),

ξΘ(ξ),ξ = −ZΘ(ξ) (5.15)

where Z is a Hamiltonian matrix and defined as,

Z =

[Es
0]

−1 [Es
1]
T − 0.5(s− 2)I − [Es

0]
−1

Es
1 [E

s
0]

−1 [Es
1]
T − Es

2 −Es
1 [E

s
0]

−1 + 0.5(s− 2)I

 (5.16)

Utilizing the eigenvalue decomposition of Z leads to,

Z

Ψun Ψup

Ψqn Ψqp

 =

Ψun Ψup

Ψqn Ψqp


Sn 0

0 Sp

 (5.17)
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After sorting the eigenvalues in Equation (5.17) in ascending order of their real

parts, the diagonal entries of Sn include the eigenvalues with negative real parts for

a bounded domain. The diagonal entries of Sp include the eigenvalues with positive

real parts for an unbounded domain. The corresponding eigenvectors are also parti-

tioned conformably with submatrices Ψun and Ψqn indicating modal displacements

and forces in bounded domain. The corresponding modal displacements and forces

for the unbounded domain are Ψup and Ψqp respectively. The solutions for displa-

cements and forces in each bounded subdomain can then be expressed in Equations

(5.18) and (5.19) respectively

u(ξ) = Ψunξ
−Sn−0.5(s−2)Icn (5.18)

q(ξ) = Ψqnξ
−Sn+0.5(s−2)Icn (5.19)

The elastic stiffness matrix for a subdomain can then be calculated by eliminating

the integration constant cn in Equations (5.18) and (5.19) as

Ke = ΨqnΨ
−1
un (5.20)

cn can be expressed by using Equation (5.18) and the nodal displacement on the

boundary ub = u(ξ = 1) as

cn = Ψ−1
unub (5.21)

After computing elastic stiffness matrices Ke for all subdomains, they can be as-

sembled in the same way as in FEM and give the following global equation for the

whole problem domain [
nPol∑
i=1

Ke

]
Ub = Fb (5.22)

where Ub and Fb are the global nodal displacement and force vectors respectively.[∑nPol
i=1 Ke

]
is the assembled global stiffness matrix in elastic analysis. This sy-

stem of linear equation can be directly solved for Ub after applying the boundary

conditions.
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5.2.2 Solutions for elastodynamics

On the boundary of subdomains with the radial coordinate ξ = 1, the dynamic-

stiffness matrix Ss(ω) is introduced for representing the relationship between nodal

force amplitude F̂ = F̂(ξ = 1) and nodal displacement amplitude û = û(ξ = 1) as:

F̂ = Ss(ω)û (5.23)

The nodal force amplitude vector F̂ in Equation (5.23) is defined as:

F̂ =

ˆ
Γξ

NT
s T̂dΓ (5.24)

In Equation (5.24), the integration is over the boundary Γξ with ξ = 1 and dΓ is

an infinitesimal length for 2D or infinitesimal area for 3D. T̂ is the surface traction

amplitude applied on the structure. For the bounded domains, the radial force

F̂(ξ) is equal to the internal nodal force q̂(ξ) on any surface (3D) or line (2D) with

constant ξ. The internal nodal force q̂(ξ) is related to the radial displacement û(ξ)

as (Song and Wolf, 1997; Wolf, 2003):

q̂(ξ) = ξ(s−2)
(
Es

0ξû(ξ),ξ + [Es
1]
T û(ξ)

)
(5.25)

Utilizing Equations (5.23), (5.25) and (5.12), the scaled boundary finite element

equation in displacement is thus transformed into the following first-order differential

equation for the dynamic stiffness Ss(ω) on the boundary ξ = 1 with independent

variable ω,

(Ss(ω)− Es
1) [E

s
0]

−1
(
Ss(ω)− [Es

1]
T
)
− Es

2 + (s− 2)Ss(ω) + ωSs(ω),ω

+ ω2Ms
0 = 0 (5.26)

Equation (5.26) is also known as the scaled boundary finite element equation in

dynamic stiffness.

In order to obtain mass matrix M for a subdomain, a low-frequency expansion
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of dynamic stiffness matrix (Song and Wolf, 1997),

Ss(ω) = Ke − ω2M (5.27)

is considered.

In Equation (5.27), terms of order in ω higher than two are neglected. Ke in

Equation (5.27) is determined in Equation (5.20). Substituting Equation (5.27) into

(5.26) results in an equation with constant term independent of ω, a quadratic term

in ω2 and higher-order terms which can be neglected. For satisfying the solution in

statics (ω = 0), the constant term is equal to zero. Then, the remaining term in ω2

is:(
(−Ke + Es

1) [E
s
0]

−1 − s

2
I
)
M+M

(
[Es

0]
−1 (−Ke + [Es

1]
T )− s

2
I
)
+Ms

0 = 0 (5.28)

which is a Lyapunov equation as Ke = KT
e and Es

0 = (Es
0)
T . Equation (5.28) can

also be written in the following form

AM+MAT = C (5.29)

with A =
(
(−Ke + Es

1) [E
s
0]

−1 − s
2
I
)
, C = (−Ms

0) and M is the unknown mass

matrix.

Equation (5.28) can be solved alternatively via utilizing the intermediate results

of eigenvalue decomposition in Equation (5.17). Details of the SBFEM for elasto-

dynamics are presented in Reference (Song and Wolf, 1997). Similar to FEM, Ke

and M for all subdomains can be assembled to form the following global equations

of motion in (5.30) with frequency-independent coefficients that represent the whole

problem domain [
nPol∑
i=1

Ke

]
Ub(t) +

[
nPol∑
i=1

M

]
Üb(t) = Fb(t) (5.30)

where Ub(t) and Fb(t) are the time-dependent global nodal displacement and

force vectors due to arbitrary excitations.
[∑nPol

i=1 M
]

is the assembled global mass

matrix. Equation (5.30) can be solved using standard time stepping algorithms,
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such as Newmark’s method, for elastodynamic analysis. The global mass matrix[∑nPol
i=1 M

]
derived here will be directly used later in Section 6.4.2 for dynamic

elastoplastic analysis as it remains to be a constant before or after the yielding

happens (Chopra, 2001).

Analogous to the solution procedures for impedance matrix in Sections 3.2.1.1

and 3.2.1.2. Equation (5.26) can be solved efficiently by expanding the dynamic-

stiffness matrix Ss(ω) into continued-fraction expansions as stated in (Song, 2009;

Chen et al., 2014). The time-domain transformation is again achieved by introducing

auxiliary variables. The final global equations of motion for transient analysis of

structure domain is expressed as:

Ms
GüG(t) +Ks

GuG(t) = fG(t) (5.31)

The vector of unknowns for structural dynamics uG(t) includes the nodal displace-

ment Ub(t) and auxiliary variables u(i)(t):

uG(t) =

{
Ub(t) u(1)(t) u(2)(t) · · · u(M)(t)

}T
(5.32)

The expression in Equation (5.32) is written forM -order continued-fraction solutions

with the superscript i = 1, 2, 3, · · · ,M in auxiliary variables u(i)(t). The right-hand-

side vector fG(t) in Equation (5.31) contains the transient nodal force vector F(t)

from any external source,

fG(t) =

{
Fb(t) 0 0 · · · 0

}T
(5.33)

The global mass Ms
G and stiffness matrices Ks

G in Equation (5.31) for structural
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dynamics in SBFEM can then be formulated as:

Ms
G =



Ms −X
(1)
s 0 · · · 0

−
[
X

(1)
s

]T
S
(1)
s1 −X

(2)
s · · · 0

0 −
[
X

(2)
s

]T
S
(2)
s1

. . . 0

...
...

. . .
. . . −X

(M)
s

0 0 0 −
[
X

(M)
s

]T
S
(M)
s1


(5.34a)

Ks
G = diag

(
Ks S

(1)
s0 S

(2)
s0 · · · S(M)

s0

)
(5.34b)

In Equation(5.34), S
(i)
s0 , S

(i)
s1 and X

(i)
s are those coefficient matrices calculated

recursively in the continued-fraction expansion for dynamic-stiffness matrices Ss(ω)

of all subdomains and assembled using standard finite element techniques. Ms and

Ks correspond to the low-frequency expansion of Ss(ω) of all subdomains. In other

words, Ms =
[∑nPol

i=1 M
]

and Ks =
[∑nPol

i=1 Ke

]
applies. All ’s’ in superscripts

and subscripts indicate the structural domain for the purpose of distinguishing from

similar coefficients used in Equation (3.38) for bounded acoustic domain. The global

equations for structural domain in Equation (5.31) will be coupled with the global

equations for acoustic domain in Equation (3.116) or (4.45) in the next section to

perform the acoustic-structure interaction analysis.

5.3 Scaled boundary finite element formulation

for acoustic-structure interaction system

A schematic diagram of the general acoustic-structure interaction system modeled

by the proposed SBFEM is illustrated in Figure 5.1. In this diagram, the red region

represent the structural domain, which is denoted by Ωs. The surrounding acoustic

near field is indicated by the blue area and the acoustic far field is represented by the

circular or spherical open boundary Γ for 2D or 3D cases respectively as in Figure

4.1. The whole acoustic domain, which includes both the near field ΩN and far field
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∞ ∞

Γ

Figure 5.1. A typical acoustic-structure interaction system

ΩF in Figure 4.1, is denoted by Ωa here. In Figure 5.1, a predefined unit vector

n⃗ is normal to the acoustic-structure interface Γas and pointing from the acoustic

domain into the structural domain. The acoustic media in Ωa is again assumed

to be linear, inviscid and isentropic fluid with small perturbations. The structural

domain Ωs is assumed to be linear elastic in this chapter.

For clearer demonstration of the coupling procedures for structural and acoustic

formulations in the following Section 5.3.2, the individual equations for structural

and acoustic domains in Equations (5.31) and (4.45) are partitioned according to

the locations of nodes. To this end, the vector of unknowns uG(t) in the global

equations for structural dynamics expressed in Equation (5.32) can be divided as:

uG(t) =

{
uo(t) uas(t) ũ(t)

}T
(5.35)

In Equation (5.35), uas(t) and uo(t) are nodal displacements of the structure on

the acoustic-structure interface Γas and other structural region, respectively. ũ(t)

represents all the auxiliary variables u(i)(t) in Equation (5.32). For the clarification

of notations, the subscript ’as’ and ’o’ used in all the following equations in this

whole chapter denotes nodes on the acoustic-structure interface and other region of

structural or acoustic domain. The tilde •̃ is used to indicate any rows and columns
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corresponding to the auxiliary variables. Following the same arrangement, the right-

hand-side vector fG(t) in Equation (5.31) containing the external nodal force can be

partitioned as:

fG(t) =

{
Fo(t) Fext

as (t) + Fas(t) 0

}T
(5.36)

where Fext
as (t) and Fo(t) are nodal forces applied on acoustic-structure interface and

other parts of structural domain from any external source, while Fas(t) represents

the force applied on the acoustic-structure interface caused by the excitations from

acoustic domain. The global mass and stiffness matrices in Equation (5.34) are then

partitioned in the same manner.

Ms
G =


Ms

o Ms
o·as

[Ms
o·as]

T Ms
as

M̃s
2[

M̃s
2

]T
M̃s

1

 (5.37a)

Ks
G =


Ks
o Ks

o·as

[Ks
o·as]

T Ks
as

0

0 K̃s
1

 (5.37b)

It should be noticed that the Ms and Ks in Equation (5.34) related to real nodes

in the structural domain, i.e. the upper-left part in Equation (5.37), are divided into

four submatrices, respectively. All other coefficient matrices in rows and columns

corresponding to auxiliary variables are allocated in M̃s
1, M̃s

2 and K̃s
1. The global

equations for structural dynamics in Equation (5.31) can be written as:
Ms

o Ms
o·as

[Ms
o·as]

T Ms
as

M̃s
2[

M̃s
2

]T
M̃s

1




üo

üas

¨̃u

+


Ks
o Ks

o·as

[Ks
o·as]

T Ks
as

0

0 K̃s
1




uo

uas

ũ


=


Fo

Fext
as + Fas

0

 (5.38)
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In Equation (5.38), the argument (t) is omitted from Equations (5.35) and (5.36)

for simplifying the presentation of equation. Analogously, the global equations for

the whole acoustic domain in Equation (3.116) or (4.45) can be divided into similar

partitions as for structural domain. The vector of unknowns zG(t) for acoustics is

reformulated as:

zG(t) =

{
pas(t) po(t) p̃(t)

}T
(5.39)

where pas(t) and po(t) are nodal acoustic pressure on the acoustic-structure interface

and in the other region of acoustic domain, respectively. p̃(t) includes all auxiliary

variables for both bounded and unbounded acoustic domains p(i)(t), p̃(iH)(t) and

p̃
(iL)
L (t) in Equation (3.117). The right-hand-side vector rG(t) in Equation (3.116)

or (4.45) containing the external flux can then be written as:

rG(t) =

{
Rext
as (t) +Ras(t) Ro(t) 0

}T
(5.40)

where Rext
as (t) are external nodal fluxes applied on acoustic-structure interface. Ro(t)

are external nodal fluxes applied in other parts of acoustic domain. Ras(t) represents

the flux applied on the acoustic-structure interface caused by the excitations of

structure. The global mass, damping and stiffness matrices in Equations (3.119)-

(3.121), or Equation (4.46) for stiffness matrix in 3D acoustics, are then partitioned

as,

Ma
G =


Ma

as Ma
as·o

[Ma
as·o]

T Ma
o

M̃a
2[

M̃a
2

]T
M̃a

1

 (5.41a)

Ca
G =


0 0

0 Ca
o

0

0 C̃a
1

 (5.41b)
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Ka
G =


Ka
as Ka

as·o

[Ka
as·o]

T Ka
o

K̃a
2[

K̃a
2

]T
K̃a

1

 (5.41c)

Again, the partitions in Equations (3.119) - (3.121) and (4.46) related to real

nodes in the acoustic domain are in the top-left partition in Equation (5.41). All

other coefficient matrices in rows and columns corresponding to auxiliary variables

are allocated in those coefficient matrices with tilde •̃. In Equation (5.41b), the top-

left partition only includes Ca
o corresponding to nodes in acoustic domain excluding

those on the acoustic-structure interface. This is due to the fact that the radiation

damping is only contributed by the unbounded acoustic domain, which is just related

to those nodes on the doubly-asymptotic open boundary Γ in Figure 5.1. The global

equations for acoustics in Equation (4.45) can be written as:
Ma

as Ma
as·o

[Ma
as·o]

T Ma
o

M̃a
2[

M̃a
2

]T
M̃a

1




p̈as

p̈o

¨̃p

+


0 0

0 Ca
o

0

0 C̃a
1




ṗas

ṗo

˙̃p


+


Ka
as Ka

as·o

[Ka
as·o]

T Ka
o

K̃a
2[

K̃a
2

]T
K̃a

1




pas

po

p̃

 =


Rext
as +Ras

Ro

0

 (5.42)

The rearranged formulations in Equations (5.38) and (5.42) will be used to derive the

coupled formulation for acoustic-structure interaction system in the Section 5.3.2.

5.3.1 Boundary conditions on acoustic-structure interface

When coupling of acoustic and structural domains, two boundary conditions have

to be satisfied on the acoustic-structure interface for both 2D and 3D problems.

Because the acoustic medium is assumed to be inviscid, no shear force exists in the

acoustic domain. Both boundary conditions hold only in the direction normal to the

acoustic-structure interface. This normal direction is specified by the unit vector n⃗
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in Figure 5.1.

For the first boundary condition, the acoustic pressure applied on the acoustic-

structure interface should equal to the normal traction applied on the structure side

of the interface:

n⃗ · pas = Tas (5.43)

where, Tas is the normal traction applied on the structural side of acoustic-structure

interface caused by the acoustic pressure from acoustic side. pas represents the

acoustic pressure field on the same interface and can therefore be interpolated by

the same shape function N in Equation (3.8) or (4.7) for interpolating 2D or 3D

acoustic fields respectively in SBFEM,

pas = Npas (5.44)

pas in Equation (5.44) is the nodal acoustic pressure on the acoustic-structure in-

terface as defined in Equation (5.39).

The second boundary condition is about the normal displacement compatibility

on the acoustic-structure interface, that is, the normal structural displacement on

the acoustic-structure interface should equal to the normal displacement of fluid

particles on the same interface in acoustic domain

n⃗Tus = n⃗Tua (5.45)

where us and ua are the displacement fields of structure and fluid particles on the

acoustic-structure interface separately. us can also be interpolated by the shape

function Ns in Equation (A.3) or (5.4) for interpolating 2D or 3D structural displa-

cement fields respectively in SBFEM,

us = Nsuas (5.46)

uas in Equation (5.46) is the nodal displacements of structure on the acoustic-

structure interface as defined in Equation (5.35). Applying Equation (5.45) into
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Euler equation and neglecting the hydrostatic term, the flux applied on the acoustic-

structure interface can be expressed by:

∂pas
∂n⃗

= −ρan⃗T üa = −ρan⃗T üs (5.47)

where ρa is the density of acoustic medium. üa and üs are accelerations of fluid

particles and structure surface on the acoustic-structure interface.

According to Equation (5.24) for defining the nodal forces, the nodal forces on

the acoustic-structure interface can be calculated by:

Fas =

ˆ
Γas

NT
sTasdΓ (5.48)

Substituting Equation (5.43) and (5.44) into (5.48) yields the expression for nodal

force on the acoustic-structure interface:

Fas =

ˆ
Γas

NT
s n⃗NdΓ · pas (5.49)

Analogously, the nodal flux on acoustic-structure interface can be defined from Equa-

tion (3.15) as:

Ras =

ˆ
Γas

NT ∂pas
∂n⃗

dΓ (5.50)

Substituting Equations (5.47) and (5.46) into (5.50) yields the expression for nodal

flux on acoustic-structure interface:

Ras = (−ρa) ·
ˆ
Γas

NT n⃗TNsdΓ · üas (5.51)

The nodal force Fas and flux Ras in Equations (5.49) and (5.51) are calculated on

an element-by-element basis for all elements on the acoustic-structure interface Γas

and assembled using standard finite element techniques. Corresponding integrations

are one-dimensional for 2D problems or two-dimensional for 3D problems. The

common terms in Equations (5.49) and (5.51) are defined as the coupling matrix
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Has in acoustic-structure interaction,

Has =

ˆ
Γas

NT
s n⃗NdΓ (5.52)

Therefore, the interacting force and flux on the acoustic-structure interface in Equa-

tion (5.49) and (5.51) can be written as:

Fas = Haspas (5.53a)

Ras = −ρaHT
asüas (5.53b)

5.3.2 Coupling of acoustic and structural domains

In Equation (5.38), the interaction force applied on the structural side of acoustic-

structure interface caused by the acoustic pressure Fas is expressed in Equation

(5.53a). Substituting Equation (5.53a) into (5.38) yields:
Ms

o Ms
o·as

[Ms
o·as]

T Ms
as

M̃s
2[

M̃s
2

]T
M̃s

1




üo

üas

¨̃u

+


Ks
o Ks

o·as

[Ks
o·as]

T Ks
as

0

0 K̃s
1




uo

uas

ũ


=


Fo

Fext
as +Haspas

0

 (5.54)

Since the interaction flux Ras applied on the acoustic side of acoustic-structure in-

terface caused by the structural accelerations is also formulated in Equation (5.53b).

Substituting Equation (5.53b) into (5.42) yields:
Ma

as Ma
as·o

[Ma
as·o]

T Ma
o

M̃a
2[

M̃a
2

]T
M̃a

1




p̈as

p̈o

¨̃p

+


0 0

0 Ca
o

0

0 C̃a
1




ṗas

ṗo

˙̃p
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+


Ka
as Ka

as·o

[Ka
as·o]

T Ka
o

K̃a
2[

K̃a
2

]T
K̃a

1




pas

po

p̃

 =


Rext
as − ρaH

T
asüas

Ro

0

 (5.55)

Moving the interacting force and flux terms Haspas and ρaH
T
asüas from the right-

hand-side of Equations (5.54) and (5.55) to their left-hand-side and rearranging the

resulting two equations into one coupled equations. The global equations of motion

for coupled acoustic-structure interaction system can thus be formulated as:

MGZ̈G(t) +CGŻG(t) +KGZG(t) = FG(t) (5.56)

with the global vector of unknowns for acoustic-structure interaction system ZG(t)

defined by:

ZG(t) =

{
uo(t) uas(t) pas(t) po(t) ũ(t) p̃(t)

}T
(5.57)

The right-hand-side vector vector for acoustic-structure interaction system FG(t)

in Equation (5.58) contains both the external nodal forces in structural domain and

external nodal fluxes in acoustic domain.

FG(t) =

{
Fo(t) Fext

as (t) Rext
as (t) Ro(t) 0 0

}T
(5.58)

Following the partitions in Equations (5.57) and (5.58), the global mass, dam-

ping and stiffness matrices for acoustic-structure interaction system are given in the

following Equation (5.59):

MG =



Ms
o Ms

o·as

[Ms
o·as]

T Ms
as

0 M̃s
2 0

0 ρaH
T
as

0 0

Ma
as Ma

as·o

[Ma
as·o]

T Ma
o

0 M̃a
2[

M̃s
2

]T
0

0[
M̃a

2

]T M̃s
1 0

0 M̃a
1


(5.59a)

190



CG =



0 0 0

0
0 0

0 Ca
o

0

0 0
0 0

0 C̃a
1


(5.59b)

KG =



Ks
o Ks

o·as

[Ks
o·as]

T Ks
as

0 0

−Has 0
0

0
Ka
as Ka

as·o

[Ka
as·o]

T Ka
o

0 K̃a
2

0
0[

K̃a
2

]T K̃s
1 0

0 K̃a
1


(5.59c)

In Equation (5.59), the global mass matrix MG is a result of structural and

acoustic near field. Global damping matrix CG is only due to the acoustic far field,

while the global stiffness matrix KG includes the contributions from both structural

and acoustic domains with the near and far fields. Equation (5.56) can then be

solved using standard time-stepping schemes, such as Newmark’s method. It should

be noticed that the global equations of motion for acoustic-structure interaction

analysis are not symmetric due to the unsymmetrical terms in the global mass matrix

MG and stiffness matrix KG. In the next section, the global equations of motion in

Equation (5.56) for acoustic-structure interaction analysis will be transformed into

a symmetric formulation by replacing all variables related to acoustic domain in the

global vector of unknown ZG(t) with newly defined variables.

5.3.3 Symmetric formulation for acoustic-structure interaction

system

In Reference (Everstine, 1981), a symmetric formulation is proposed for transient

acoustic-structure interaction analysis via merely replacing the acoustic pressure by
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velocity potential. Similar approach can be applied to Equation (5.56) to transform

this unsymmetrical global system of equation for acoustic-structure interaction ana-

lysis in SBFEM to a symmetric formulation. To this end, the following new variables

are introduced to the acoustic parts in Equations (5.57) and (5.58)

pas(t) = q̇as(t), po(t) = q̇o(t), p̃(t) = ˙̃q(t), Rext
as (t) = V̇ext

as (t), Ro(t) = V̇o(t)

(5.60)

New variables in Equation (5.60) are substituted into the global vector of unknown

ZG(t) and global load vector FG(t) in the global equation for acoustic-structure in-

teraction system in Equation (5.56). Then, integrating those rows corresponding to

newly introduced variables in time and multiplying the resulting rows by − 1
ρa

on

both sides yields the symmetric global equations for acoustic-structure interaction

system in SBFEM

M̄G
¨̄ZG(t) + C̄G

˙̄ZG(t) + K̄GZ̄G(t) = F̄G(t) (5.61)

where the new global vector of unknown Z̄G(t) in symmetric formulation is written

as:

Z̄G(t) =

{
uo(t) uas(t) qas(t) qo(t) ũ(t) q̃(t)

}T
(5.62)

Similarly, the global right-hand-side vector in Equation (5.61) is:

F̄G(t) =

{
Fo(t) Fext

as (t) Vext
as (t) Vo(t) 0 0

}T
(5.63)

For applying any external flux Rext
as (t) or Ro(t) to the acoustic domain in the

symmetric formulation, the relative part Vext
as (t) or Vo(t) in Equation (5.63) can

be obtained by simply integrating the external flux Rext
as (t) or Ro(t) with respect

to time according to Equation (5.60). The symmetric mass, damping and stiffness
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matrices in Equation (5.61) are given below:

M̄G =



Ms
o Ms

o·as

[Ms
o·as]

T Ms
as

0 M̃s
2 0

0 0

0 0

− 1
ρa
Ma

as − 1
ρa
Ma

as·o

− 1
ρa

[Ma
as·o]

T − 1
ρa
Ma

o

0 − 1
ρa
M̃a

2[
M̃s

2

]T
0

0

− 1
ρa

[
M̃a

2

]T M̃s
1 0

0 − 1
ρa
M̃a

1


(5.64a)

C̄G =



0
0 0

−Has 0
0

0 −HT
as

0 0

0 0

0 − 1
ρa
Ca
o

0

0 0
0 0

0 − 1
ρa
C̃a

1


(5.64b)

K̄G =



Ks
o Ks

o·as

[Ks
o·as]

T Ks
as

0 0

0
− 1
ρa
Ka
as − 1

ρa
Ka
as·o

− 1
ρa

[Ka
as·o]

T − 1
ρa
Ka
o

0 − 1
ρa
K̃a

2

0
0

− 1
ρa

[
K̃a

2

]T K̃s
1 0

0 − 1
ρa
K̃a

1


(5.64c)

Equation (5.61) can again be solved using standard time-stepping scheme, such

as Newmark’s method employed in Section 5.4, for transient solutions of structural

displacements and acoustic pressures. From a practical point of view, although new

variables qas(t), qo(t) and q̃(t) in Equation (5.60) are introduced into the symmetric

formulation to replace the original acoustic pressures pas(t), po(t). and p̃(t), the

acoustic pressures can still be directly calculated as the first-order time derivative

of qas(t), qo(t). and q̃(t) at each time step without further effort.
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5.4 Numerical examples

This section demonstrates the accuracy, efficiency and robustness of the present

SBFEM for 2D and 3D acoustic-structure interaction analyses by means of five nu-

merical examples, which include two 2D examples in Sections 5.4.1 and 5.4.2 and

three 3D examples in Sections 5.4.3, 5.4.4 and 5.4.5. In all these numerical exam-

ples, the structure is assumed to be elastic and the acoustic medium is assumed to

be irrotational, isentropic and inviscid with small perturbations. In the first nume-

rical example in Section 5.4.1, an infinitely long tube with elliptical cross-section

is submerged in infinite acoustic domain with load applied on the structural inner

surface. Then, a example of a simply supported beam subjected to a uniformly dis-

tributed load applied on the top surface is studied in Section 5.4.2 to further verify

the reliability and accuracy of proposed method for dealing with acoustic-structure

interaction systems. Next, a hollow sphere vibrating in the infinite acoustic space

due to structural load applied on the internal surface is simulated in Section 5.4.3 to

verify the implementation of SBFEM in 3D acoustic-structure interaction. Further-

more, an example of a simply supported plate submerged in infinite acoustic space is

investigated in Section 5.4.4. In this example, the hexahedral subdomains are used

for modeling structure while octree mesh is employed to model the surrounding

acoustic domain to illustrate the versatility of SBFEM in mesh generation for cou-

pled system. Finally, an illustrative example of an ancient Chinese bell submerged

in infinite acoustic domain in Section 5.4.5 is simulated using present SBFEM and

octree mesh technique for demonstrating the feasibility and advantages of SBFEM

in modeling complex acoustic-structure interaction problems. Newmark’s method

with α = 0.5 and β = 0.25 (average acceleration scheme) is applied to Equation

(5.56) or the symmetrical formulation in Equation (5.61) to obtain the transient

displacements in structural domain and acoustic pressures in acoustic domain. The

first four numerical examples are verified by reference solutions obtained using FEM

with extended mesh for acoustic domain in commercial software ANSYS. Again, the
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boundaries of extended meshes in FEM models are set to be far away from structures

to avoid the spurious reflected waves.

5.4.1 Long elliptical tube submerged in infinite plane water

In this numerical example, a very long tube is submerged in infinite acoustic domain

and modeled as a 2D acoustic-structure interaction problem. The tube has elliptical

cross-section with the half major and minor axes of the inner surface equal to 9m

and 7m respectively, the half major and minor axes of the outer elliptical surface

are 10m and 8m. The cross-section of tube is marked by the red area in Figure 5.2.

Similar to the modeling of infinite acoustic domain in Chapter 3, the surrounding

infinite acoustic medium is again divided into the blue acoustic near field and the

far field is represented by the circular open boundary with radius equal to 15m in

the same figure. The structure is assumed to have the Young’s modulus of E =

210GPa, Poisson ratio of ν = 0.3 and mass density ρs = 7860kg/m3 with plane-

strain condition, while the acoustic medium is assumed to be water and has the

sound speed of c = 1482m/s and density ρa = 1000kg/m3.

The entire inner surface of this tube is subjected to a uniformly distributed load

F(t) with its time history and Fourier transform plotted in Figure 5.3(a) and 5.3(b)

respectively. According to the Fourier transform in Figure5.3(b), the maximum fre-

quency of interest is estimated at ωmax = 1200rad/s for obtaining accurate solutions.

In order to calculate the shortest wavelength in structure domain λs, the speed of

pressure waves in structure cp due to the volumetric deformation can be calculated

by

cp =

√
E(1− ν)

ρs(1 + ν)(1− 2ν)
(5.65)

Substituting required material properties into Equation (5.65), the pressure wave

speed in the structure domain cp ≈ 5997.16m/s is obtained. The speed of shear
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Figure 5.2. The acoustic-structure interaction model of an elliptical tube submerged
in infinite acoustic domain.

Figure 5.3. Time variation F(t) of transient load applied uniformly on the inner
surface of tube: (a) time history and (b) Fourier transform.

waves cs in structure can be calculated by:

cs =

√
E

2ρs(1 + ν)
(5.66)

for ν < 0.5, cp is larger than the shear wave speed cs. Therefore, cs is used for cal-

culating the minimum wavelength. By substituting all requires material properties

into Equation (5.66) the shear wave speed in structural domain cs ≈ 3205.62m/s.

Therefore, the shortest wavelength in structure domain can be evaluated as λs =

2π
ωmax

cs ≈ 16.78m. Analogously, the shortest wavelength in the acoustic domain is
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(a) (b)

Figure 5.4. The SBFEM mesh of an elliptical tube submerged in infinite acoustic
domain: (a) the mesh of whole coupled system and (b) a detailed view of subdomains
around acoustic-structure interface.

approximately λa = 2π
ωmax

c ≈ 7.76m.

The scaled boundary finite element mesh of this coupled system is shown in

Figure 5.4. In this mesh, different subdomain sizes and number of elements per

edge are used in acoustic and structural domains as the result of different shortest

wavelengths in two distinct media. From Figure 5.4(a), the acoustic domain has

been divided into 32 subdomains in circumferential direction and 3 layers in radial

direction with blue dots denoting the keypoints. However, the cross-section of tube

is only divided into 16 subdomains in circumferential direction and one layer in radial

direction. Red dots are used to specify the keypoints in structural subdomains. The

scaling center of each bounded subdomain is marked by cross ’+’, and the ’+’ at

the center of this whole model is the scaling center of the circular open boundary.

It should be noticed that both the blue keypoints from acoustic domain and red

keypoints from structural domain exist on the acoustic-structure interface due to
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Figure 5.5. Results at point A in the coupled model of an elliptical tube submerged
in infinite acoustic domain: (a) horizontal displacement and (b) acoustic pressure.

the non-matched subdomain sizes used in two different domains. Because of the

boundary discretization required in SBFEM, the mesh transition on the acoustic-

structure interface can be addressed easily and efficiently by simply adding extra

nodes on the structure side of the interface to match the mesh on the acoustic side.

A detailed view of subdomains surrounded by red dash-line in Figure 5.4(a) is

illustrated in Figure 5.4(b). All the other nodes except keypoints are marked by

black dots in the detailed view only for conciseness. For the acoustic domain, two

3-node elements are used on each edge of a subdomain and yields approximately

13 nodes per wavelength. The order of continued fractions for bounded acoustic

domain is chosen as 1 according to 3-4 terms per wave length (Song, 2009). The same
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Figure 5.6. Results at point B in the coupled model of an elliptical tube submerged
in infinite acoustic domain: (a) vertical displacement and (b) acoustic pressure.

Figure 5.7. Acoustic pressure at point C in the coupled model of an elliptical tube
submerged in infinite acoustic domain.
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Figure 5.8. Acoustic pressure at point D in the coupled model of an elliptical tube
submerged in infinite acoustic domain.

number and arrangements of nodes and elements are used on the acoustic-structure

interface for both structure and acoustic domains for matching the meshes. Because

the minimum wavelength in structure domain λs is about two times larger than the

minimum wavelength in the acoustics λa, only two 3-node elements are use on each

circumferential edge of structural subdomains and one 3-node elements are used

on the radial edges to represent the minimum wavelength and bending of structure

sufficiently. The terms of continue fractions are set to be zero for all structural

subdomains. In addition, the orders of high-frequency and low-frequency continued-

fraction expansions of circular open boundary are chosen as MH =ML = 1.

For the transient analysis of this coupled system, the Newmark’s method is ap-

plied to Equation (5.56) or (5.61) with the time step ∆t = 0.4ms. The chosen value

of ∆t give about 13 time steps per period at the highest frequency of interest. Both

of the displacement responses and acoustic pressures are calculated for structural

and acoustic domains respectively. Results at four points A, B, C and D in Figure

5.2 are summarized and compared with the reference solutions in Figure 5.5 - 5.8.

In all these figures, the reference solutions are calculated using extended FEM mesh

for acoustic domain in ANSYS for the first 0.5s and plotted with black dash lines.

The radius of truncated circular boundary for the acoustic domain in the FEM mo-
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del is set to be 390m. During the first 0.5s, the traveling distance of wave front

is 1482 × 0.5 = 741m. The distance between FEM truncated boundary and the

boundary of the domain of interest is 390− 15 = 375m, which is more than half of

the traveling distance of wave front. Therefore, the reflected wave has not entered

the domain of interest yet. Both acoustic and structural domains in FEM model are

discretized using 4-node quadrilateral elements with the maximum edge length of

0.5m and 0.25m respectively. Meanwhile, the solutions obtained by present SBFEM

are plotted in those corresponding figures with red solid lines during the first 4s.

Among all these selected points for presenting results, points A and B are loca-

ted on the acoustic-structure interface. Therefore, both the structural displacements

and acoustic pressures for points A and B are illustrated in Figures 5.5 and 5.6 se-

parately. As a result of the symmetry of the structure and applied load, only the

horizontal displacement plotted in Figure 5.5(a) exist at point A and the acou-

stic pressure at the same point is plotted in Figure 5.5(b). Consequently, Point B

only has vertical displacement and acoustic pressure presented in Figure 5.6(a) and

5.6(b) respectively. Very good agreements between presented SBFEM and reference

solutions are obtained for both displacement and acoustic pressure results.

Point C and D are chosen to be just on the truncated circular boundary to

test the accuracy of the doubly-asymptotic open boundary employed in the present

acoustic-structure interaction model in SBFEM. The acoustic pressures at these two

points obtained by present SBFEM agrees well with the reference solutions obtained

using extended meshes in FEM as illustrated in Figure 5.7 and 5.8 respectively.

5.4.2 Beam submerged in infinite acoustic water plane

The acoustic-structure interaction problem of a simply supported beam submerged

in infinite acoustic media is investigated in this section. The SBFEM model of this

system is illustrated in Figure 5.9. The system is simplified as a 2D problem and the

beam is represented by the red rectangle in this figure. Similarly, the surrounding
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Figure 5.9. The acoustic-structure interaction model of a beam submerged in infinite
acoustic domain.

acoustics is divided into a near field, which is denoted by the blue area in Figure

5.9, and a far field by a circular open boundary. The beam has the length of

DC = AB = 24m and height of AD = BC = 6m. The radius of the circular

open boundary, which represents the acoustic far field, equals to 20m. This beam

is fixed in the y-direction along two edges AD and BC and modeled in plane-stress

condition. The material properties of beam are: Young’s modulus E = 100GPa,

mass density ρs = 1500kg/m3 and Poisson ratio ν = 0.333 . The acoustic domain

is again assumed to be filled with water with the sound speed of c = 1482m/s and

mass density of ρa = 1000kg/m3.

A uniformly distributed load Fb(t) is applied on the top surface AB of this

beam. The time-dependent function Fb(t) and its Fourier transform are plotted

in Figures 5.10(a) and 5.10(b) separately. The shear wave speed in the structural

domain cs can be calculated by Equation (5.66) and approximately equals to cs ≈

5000.63m/s. From Figure 5.10(b), the maximum relevant frequency is about ωmax =

1.5rad/ms. The shortest wavelength in structural domain are therefore calculated as
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Figure 5.10. Time variation Fb(t) of transient load applied on the top of beam: (a)
time history and (b) Fourier transform.

(a) (b)

Figure 5.11. The SBFEM mesh of a beam submerged in infinite acoustic domain:
(a) the mesh of whole coupled system and (b) a detailed view of subdomains around
acoustic-structure interface.

λs =
2π

ωmax
cs ≈ 20.95m. The shortest wavelength in acoustic domain is determined

as λa = 2π
ωmax

c ≈ 6.21m.

Figure 5.11 shows the scaled boundary finite element mesh of beam and sur-

rounding acoustic domain. In Figure 5.11, the acoustic domain is divided into 20

subdomains in circumferential direction and 3 layers in radial direction and denoted

by blue keypoints. In contrast, the rectangular structure domain is divided into 24
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Figure 5.12. Structural displacement at point O in the coupled model of a beam
submerged in infinite acoustic domain.

and 6 square subdomains with red keypoints in horizontal and vertical directions

respectively for its regular geometry. All scaling centers are marked by the cross

’+’ and the scaling center of circular unbounded domain is again located at its cen-

troid. The different sizes of structural and acoustic subdomains are matched on

the acoustic-structure interface by simply introducing extra nodes on the common

edges as in Section 5.4.1. A closer view of subdomains around the acoustic-structure

interface within the red dash-line in Figure 5.11(a) is illustrated in Figure5.11(b).

In Figure 5.11(b), all other nodes are marked by black solid dots. For the acoustic

subdomains, twelve 2-node elements are used on each edge of subdomains, which

yields at least 11 nodes per shortest wavelength. Two terms of continued-fractions

are used for the bounded acoustic domain to guarantee the rule of 3-4 terms of

continued-fraction expansions per shortest wavelength (Song, 2009). As for the

structural subdomains, the edges attached to the acoustic-structure interface use

the same number of nodes and type of elements for matching the meshes. On the

remaining edges of structural subdomains, only two 2-node elements are applied

to each edge for accurately modeling the beam. No continued-fraction terms are

assigned to structural subdomains. Orders of high-frequency and low-frequency

continued-fraction expansions for circular open boundary are selected as MH =
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Figure 5.13. Results at point E in the coupled model of a beam submerged in infinite
acoustic domain: (a) vertical displacement and (b) acoustic pressure.

ML = 1. In order to obtain the time-domain solutions of this acoustic-structure

interaction system, Newmark’s method is applied here with the constant time step

of ∆t = 0.25ms. This gives at least 16 time steps per period at the highest frequency

of interest.

The solutions calculated by present SBFEM at points O(0m, 0m), E(0m, 3m),

F(0m, 20m) and G(0m,−20m) are demonstrated in Figures 5.12 - 5.15 with red

solid lines for the first 200ms and compared with reference solutions at the same

points denoted by black dash lines for the first 80ms. Those reference solutions

are calculated using FEM model in ANSYS the bounded acoustic domain modeled

by an extended mesh. In this example, the radius of truncated boundary of the
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Figure 5.14. Acoustic pressure at point F in the coupled model of a beam submerged
in infinite acoustic domain.

Figure 5.15. Acoustic pressure at point G in the coupled model of a beam submerged
in infinite acoustic domain.

extended mesh of finite element is set to be 170m for avoiding reflected waves in the

first 80ms. In the FEM mesh, 4-node quadrilateral elements with the edge length

of 0.3m are used for the structural domain. 3-node triangular elements with the

maximum edge length of 0.6m are used for the acoustic domain to achieve better

mesh transition on the acoustic-structure interface.

The structural displacements at points O and E are plotted in Figures 5.12

and 5.13(a) respectively. Due to the symmetry of applied boundary conditions and

geometry, only vertical displacements are shown in these two figures. The acoustic
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Figure 5.16. Coupled system of beam submerged in infinite acoustic domain. Con-
tour plots of vertical displacements and acoustic pressures at: (a) t = 30ms, (b)
t = 60ms, (c) t = 90ms and (d) t = 120ms.

pressure at point E is also shown in Figure 5.13(b) as this point is located on

acoustic-structure interface. The results of acoustic pressures at other two points

F and G on the open boundary are also summarized in Figures 5.14 and 5.15 for

demonstrating the accuracy of doubly-asymptotic open boundary. Comparing all

solutions obtained by SBFEM and FEM model in ANSYS, very good agreements

have been achieved for both structural displacements and acoustic pressures. The

contour plots of this coupled system on the mesh in Figure 5.11 are plotted in Figure

5.16 with the solutions obtained by present SBFEM. In all these contour plots,

vertical displacements and acoustic pressures are shown for structural and acoustic

domains respectively at times t = 30ms, t = 60ms, t = 90ms and t = 120ms

for illustrating the interactions between acoustic and structural domains in this

example.

207



∞

∞

∞

∞

∞

∞

∞

∞

(a)

11
.5
m

9.5m

9m

(b)

Figure 5.17. The acoustic-structure interaction model of a hollow sphere submerged
in infinite acoustic domain: (a) the whole model and (b) half of the model.

5.4.3 Hollow sphere submerged in infinite acoustic domain

A 3D acoustic-structure interaction problem is studied in this section to verify the

implementation of SBFEM in 3D cases. Figure 5.17(a) shows the layout of this

system: the red sphere represents the hollow sphere and the translucent region in

blue color denotes the surrounding acoustic domain. The red hollow sphere has the

inner and outer radii of 9m and 9.5m separately as marked in Figure 5.17(b), and

the radius of spherical open boundary is set to be 11.5m to truncate the 3D blue

acoustic near field from far field. The same material properties for structural and

acoustic domains used in Section 5.4.1 are adopted in this numerical example.

A uniform load is applied on the entire inner surface of the hollow sphere with

the time variation Fs(t) defined in Equation (5.67) and plotted in Figure 5.18(a).

Fs(t) =


0.5× (1− cos 0.2πt) (MPa) when 0 ≤ t ≤ 10ms,

0 (MPa) when 10ms < t.

(5.67)

The corresponding Fourier transform of Fs(t) is also given in Figure 5.18(b) with the
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Figure 5.18. Time variation Fs(t) of transient load applied uniformly on the inner
surface of hollow sphere: (a) time history and (b) Fourier transform.

(a) (b)

Figure 5.19. The SBFEM mesh of a hollow sphere submerged in infinite acoustic
domain: (a) mesh of the spherical open boundary and (b) half of the mesh showing
details of inside.

maximum relevant frequency estimated at ωmax = 2rad/ms. From Section 5.4.1, the

speed of shear waves is cs ≈ 3205.62m/s in structure. Thus, the shortest wavelength

in structural domain can be evaluated as λs = 2π
ωmax

cs ≈ 10.07m. Similarly, the

shortest wavelength in the acoustic domain is equal to λa = 2π
ωmax

c ≈ 4.66m. The

scaled boundary finite element mesh of this 3D coupled system is illustrated in Figure

5.19 with the blue region denoting the mesh for acoustic domain and the mesh for

structure is plotted in red color. For both acoustic and structural domains, they are

divided into 48 subdomains in the hoop direction. The structural domain only has
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Figure 5.20. Radial displacement on the inner surface of hollow sphere submerged
in infinite acoustic domain.

one layer of subdomains in radial direction, while the acoustic domain has two layers

of subdomains in radial direction. For all subdomains, the 9-node quadrilateral

element is used on each face of them. This can yield about 10 nodes per shortest

wavelength in acoustic domain. Because the minimum wavelength in structure is

about two times larger than that in acoustics, the 9-node quadrilateral elements

in structure can sufficiently represent the wavelength and simulate the geometry

accurately. The number of terms of the continued fractions is chosen as 1 for the

acoustic subdomains, which satisfies the rule of 3-4 terms per minimum wavelength

(Song, 2009). Because of the larger minimum wavelength in structural domain,

no continued-fraction expansion is applied to structural subdomains. Orders of

high-frequency and low-frequency continued-fraction expansions for spherical open

boundary are selected as MH =ML = 1.

Newmark’s method with the constant time step of ∆t = 0.2ms is used to calcu-

late the transient solutions of the structural and acoustic domains of this coupled

system during the first 50ms, which yields about 15 time steps per period at hig-

hest frequency of interest. For the reason of the symmetry of geometry and applied

load, the radial displacements or acoustic pressure on any spherical surface with

the same radius should be the same. Hence, the radial displacements on the in-
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Figure 5.21. Results on the acoustic-structure interface of the coupled model of a
hollow sphere submerged in infinite acoustic domain: (a) radial displacement and
(b) acoustic pressure.

Figure 5.22. Acoustic pressure on the spherical open boundary of the coupled model
of a hollow sphere submerged in infinite acoustic domain.
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(a) t = 3.8ms (b) t = 6.2ms

(c) t = 8.0ms (d) t = 10.8ms

Figure 5.23. Coupled system of hollow sphere submerged in infinite acoustic domain.
Contour plots of radial displacement and acoustic pressure at: (a) t = 3.8ms, (b)
t = 6.2ms, (c) t = 8.0ms and (d) t = 10.8ms.

ner surface of hollow sphere and on the acoustic-structure interface are presented

in Figures 5.20 and 5.21(a) separately. Additionally, the acoustic pressures on the

acoustic-structure interface and on the spherical open boundary are summarized in

Figure 5.21(b) and 5.22 respectively. For verifying the results obtained by SBFEM

and demonstrating its accuracy, reference solutions are calculated via using FEM

model in ANSYS with extended mesh for representing the infinite acoustic domain.

The radius of truncated boundary of extended mesh for acoustic domain is 27m for

avoiding the reflected waves during the first 20ms. 20-node hexahedral elements

are employed in the FEM model in ANSYS with the discretization pattern shown
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Figure 5.24. The acoustic-structure interaction model of a 3D plate submerged in
infinite acoustic domain.

in Figure 5.19. In all Figures 5.20 - 5.22, the results obtained using the proposed

SBFEM are shown by red solid lines and the reference solutions from the finite ele-

ment models in ANSYS are plotted in black dash lines. The results from SBFEM

are in good agreements with the reference solutions.

Moreover, the contour plots of the coupled system with the radial displacements

from structural domain and acoustic pressures from acoustic domain at times t =

3.8ms, 6.2ms, 8.0ms and 10.8ms are shown in Figures 5.23(a) - (d). All the results

shown in contours are calculated from the present SBFEM with the mesh shown in

Figure 5.19.

5.4.4 3D plate submerged in infinite acoustic space with

octree mesh for acoustic near field

A 3D simply supported plate vibrating in an infinite acoustic domain is investigated

in this numerical example. The layout of the coupled acoustic-structure interaction
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Figure 5.25. Time variation Fp(t) of transient load applied on the top of plate: (a)
time history and (b) Fourier transform.

(a) (b)

Figure 5.26. The SBFEM mesh of 3D plate and surrounding acoustics: (a) mesh of
plate and (b) octree mesh of acoustic domain.

model is illustrated in Figure 5.24. The red square plate has the edge length of 12.8m

and thickness of 1.6m, while the surrounding acoustic domains is represented by the

translucent region with blue color. The radius of the spherical open boundary is

12m. The material properties of plate and acoustics in this example are the same as

those used in Section 5.4.2. The centroid of the red plate is located at the coordinate

origin as shown in Figure 5.24 and coincides with the centroid of the spherical open

boundary. The four side faces around the plate are fixed in the z-direction. The

entire top surface of this plate is subjected to a uniformly distributed load pointing

in -z direction and described by the time-dependent function Fp(t) in Figure 5.25(a)
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Figure 5.27. The SBFEM mesh of a 3D plate submerged in infinite acoustic domain:
(a) coupled mesh with part of the acoustic mesh showing details of inside and (b) a
detailed view of the emsh around acoustic-structure interface.

with its Fourier transform plotted in Figure 5.25(b).

According to the Fourier transform in Figure 5.25(b), the maximum relevant

frequency is approximately equal to ωmax = 0.6rad/ms. As discussed in Section

5.4.3, the shear wave speed is equal to cs ≈ 5000.63m/s. Therefore, the shortest

wavelength in 3D plate is λs = 2π
ωmax

cs ≈ 52.37m. The shortest wavelength in

acoustic domain λa can directly be calculated using the give sound speed as λa =

2π
ωmax

c ≈ 15.52m.

The meshes for the structural plate and surrounding acoustic medium are genera-

ted separately in the proposed SBFEM. Because the plate has very regular geometry,

it is discretized into 32 subdomains in both x and y directions and 8 subdomains

in z (thickness) direction as shown in Figure 5.26(a). 4-node quadrilateral elements

are used on the boundary of each hexahedral subdomain and represent the shortest

wavelength in plate λs sufficiently. Due to the dissimilar geometry of the acoustic-

structure interface and the spherical open boundary in the acoustic domain, it is

difficult to generate structured mesh for the acoustic domain as in Section 5.4.3. For
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Figure 5.28. Results at point A in the coupled model of a 3D plate submerged in
infinite acoustic domain: (a) vertical displacement and (b) acoustic pressure.

reducing the human efforts on mesh generation and making use of the advantage

of SBFEM on boundary discretization, octree algorithm once employed in Sections

4.5.1 to 4.5.4 in Chapter 4 is applied here to automatically generate the SBFEM

mesh for the acoustic domain. The outer surface of the acoustic domain, which is

the spherical open boundary, are illustrated in Figure 5.26(b). The maximum and

minimum cell sizes in the octree mesh are set to be 1.6m and 0.4m respectively

with smaller cells around the acoustic-structure interface. Both 3-node triangular

elements and 4-node quadrilateral elements are used in the octree mesh for acoustic

domain, which yields at least 10 nodes per minimum wavelength. As discussed in

Section 4.5.1, the terms of continued fractions for all bounded subdomains are set to

be zero as these subdomain sizes are small enough to represents the minimum wave-
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Figure 5.29. Results at point B in the coupled model of a 3D plate submerged in
infinite acoustic domain: (a) vertical displacement and (b) acoustic pressure.

lengths in both structural and acoustic domains. The orders of continued fractions

for spherical open boundary are again specified as MH =ML = 1.

Then, the independent meshes for structural and acoustic domains are coupled

together along the acoustic-structure interface in Figure5.27(a). In this figure, only

part of the acoustic mesh is shown for presenting the inside of the mesh and the

coupling between the acoustic and structural domains. In order to address the

mismatch of the subdomain sizes from acoustic and structural domains along the

side faces of plate, the quadrilateral elements in acoustic domains contacting the

structural elements with smaller size are simply subdivided into triangular elements

and smaller quadrilateral elements to fulfill the displacement consistency on the

acoustic-structure interface. This is clearly shown in Figure 5.27(b) along the edge
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(a) t = 25ms (b) t = 70ms

(c) t = 85ms (d) t = 100ms

Figure 5.30. Coupled system of 3D plate submerged in infinite acoustic domain.
Contour plots of vertical displacements and acoustic pressures at: (a) t = 25ms, (b)
t = 70ms, (c) t = 85ms and (d) t = 100ms.

DE marked by white dash line. The mesh transition on acoustic-structure interface

can still be handled efficiently in SBFEM for 3D problems. The coordinate axes in

Figures 5.26 and 5.27 only denote the orientations of the model and are not shown

at the coordinate origin.

The Newmark’s method with a time step ∆t = 0.5ms are employed to calculate

the time-domain solutions of this example. The chosen value of ∆t yields about 20

time steps per period at the highest frequency of interest. The results at two points

A, B in Figure 5.24 are summarized in Figure 5.28 and 5.29 with the results from

present SBFEM plotted in red solid lines and reference solutions in black dash lines.
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As usual, the reference solution is obtained via using the FEM model in ANSYS

with extended mesh to represent the infinite acoustic domain. Here, the radius of

the extended mesh in ANSYS is equal to 165m. During the first 200ms, the traveling

distance of wave front is 1.482×200 = 296.4m. The distance between FEM truncated

boundary and the boundary of the domain of interest is 165 − 12 = 153m, which

is more than half of the traveling distance of wave front. The reflected wave has

not entered the domain of interest yet. Therefore, the results of reference solution

during the first 200ms are used to compare with SBFEM solutions. The plate in

the finite element model is still divided into 32 8-node hexahedral elements in x and

y directions and 8 divisions in z direction. For discretizing the acoustic domain in

FEM, 4-node tetrahedral elements with the maximum edge length of 1.6m are used

for the mesh transition on acoustic-structure interface.

Points A and B are both on the top surface of the plate with the coordinates

of A(0m, 0m, 0.8m) and B(3.2m, 0m, 0.8m). As they are located on the acoustic-

structure interface, both vertical displacements and acoustic pressures of these two

points are given in Figures 5.28 and 5.29 respectively. Very good agreements are

obtained by comparing the SBFEM solutions and reference solutions from ANSYS

for the first 200ms in both structural and acoustic domains. The contour plots of

results calculated from the present SBFEM are also shown in Figure 5.30 for this

coupled system at times t = 25ms, t = 70ms, t = 85ms and t = 100ms.

5.4.5 Ancient Chinese bell vibrating in infinite air space

In the last numerical example, an acoustic-structure interaction system of an ancient

Chinese bell vibrating in air is simulated in this section and used as an illustrative

example to demonstrate the advantages of modeling acoustic-structure interaction

problems with complex geometries via SBFEM and octree mesh. The STL model

of the bell is the same as the one used in Section 4.5.4 Chapter 4, which is only

used to model the sound propagation in the surrounding acoustic space but the bell
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Figure 5.31. The acoustic-structure interaction model of ancient Chinese bell sub-
merged in infinite acoustic domain.

Figure 5.32. Time variation Fbell(t) of transient point force applied on ancient Chi-
nese bell: (a) time history and (b) Fourier transform.

itself is assumed to be rigid. In this example, the submerged bell is assumed to be

elastic with the material properties of Young’s modulus E = 110GPa, Poisson ratio

ν = 0.34 and mass density ρs = 8000kg/m3. The surrounding air has the sound

speed of c = 340m/s and density ρa = 1.23kg/m3.

Figure 5.31 illustrates the coupled acoustic-structure interaction model of the

bell. The bell structure is denoted by the red region and the surrounding acoustic

near field is indicated by the translucent blue color. The spherical surface of the
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(a) (b)

Figure 5.33. SBFEM mesh of the ancient Chinese bell: (a) view from -y direction
and (b) view of half of the mesh from -z direction.

translucent region with blue color is the doubly-asymptotic open boundary for repre-

senting the infinite acoustic far field and has the radius of 110cm. The centroid of the

open boundary coincides with the coordinates origin and the coordinate axes plotted

in all figures in this section only indicate the orientation of the displayed model. All

nodes on the part of surface marked by the green area on the handle of the bell in

Figure 5.31 are fixed in all DOFs. A transient point force Fbell(t) is applied at point

A on the surface of bell with the coordinate of (−0.009m,−0.4002m,−0.3844m) in

+y direction. The point force Fbell(t) is given by:

Fbell(t) =


500× (1− cos π

6
t) (kN) when 0 ≤ t ≤ 12ms,

0 (kN) when 12ms < t.

(5.68)

The time variation of Fbell(t) are also plotted in Figure 5.32(a) with its Fourier

transform in Figure 5.32(b). According to Figure 5.32(b), the maximum relevant

frequency of the applied force is estimated at ωmax = 1.5rad/ms. The acoustic

medium in this example is assumed to be air with sound speed of 340m/s. This
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Figure 5.34. The SBFEM mesh of the ancient Chinese bell submerged in infinite
acoustic domain.

gives the shortest wavelength in acoustic field of λa ≈ 142.4cm, which is equal to

the shortest wavelength in acoustic field in Section 4.5.4. Therefore, the octree mesh

of the acoustic field in this example is the same as that illustrated in Figures 4.26 and

4.27 with the maximum and minimum cell size of 15cm and 0.46875cm respectively.

According to Equation (5.66), the shear wave speed in bell structure is cs ≈ 2265m/s.

This gives the shortest wavelength in structural domain of λs = 2π
ωmax

cs ≈ 9.49m.

However, for better capturing the complex geometrical features on the surface of the

bell, the minimum cell size used for generating the octree mesh of the bell structure

is set to be 0.46875cm and the maximum cell size of the structural octree mesh is

1.875cm (4 times of the minimum cell size in structural mesh). The octree mesh of

the bell structure is also illustrated in Figure 5.33(a) and Figure 5.33(b) with half

of the mesh cutting through y-z plane.

The octree meshes of acoustic and structural domain are then coupled together

and shown in Figure 5.34. Subdivisions of surface elements are applied to couple

these two independent meshes with different element sizes on the same acoustic-

structure interface. The meshing process for this acoustic-structure interaction sy-
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(a) t = 6ms (b) t = 8ms

(c) t = 10ms (d) t = 12ms

Figure 5.35. Coupled system of ancient Chinese bell submerged in infinite acoustic
domain. Contour plots of acoustic pressures from acoustic domain at: (a) t = 6ms,
(b) t = 8ms, (c) t = 10ms and (d) t = 12ms.

stem is automatically completed with little human effort. All surface elements in the

octree mesh in Figure 5.34 are 3-node triangular or 4-node quadrilateral elements.

Because all subdomain sizes are small enough to capture the shortest wavelengths

in both acoustic and structural subdomains, the terms of continued-fraction of all

bounded subdomains are set to be zero. The orders of continued-fractions for sp-

herical open boundary is set to be MH = ML = 1. The time-domain solutions of

this coupled acoustic-structure interaction system are obtained by applying New-

mark’s method to Equation (5.56) or (5.61) with the constant time step ∆t = 0.2ms,
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(a) t = 6ms (b) t = 8ms

(c) t = 10ms (d) t = 12ms

Figure 5.36. Coupled system of ancient Chinese bell submerged in infinite acoustic
domain. Contour plots of vertical displacements and acoustic pressures at: (a)
t = 6ms, (b) t = 8ms, (c) t = 10ms and (d) t = 12ms.

which gives about 20 time steps per period at the highest frequency of interest. The

contour plots of the pressures in the acoustic domain at time t = 6ms, 8ms, 10ms

and 12ms are illustrated in Figure 5.35. Additionally, the contour plots of results

from both acoustic and structural domains, including both acoustic pressures and

structural displacements in y direction, at the same time steps are plotted in Figure

5.36. In both Figures 5.35 and 5.36, the acoustic domains are cut in half along y-z

plane for showing more details inside the model.
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5.5 Conclusions

In this chapter, the SBFEM has been developed to 2D and 3D acoustic-structure

interaction analyses by utilizing the approaches developed in previous Chapters 3

and 4 for simulating infinite acoustic domain. For a general acoustic-structure inte-

raction problem, the infinite acoustic domain is divided into an acoustic near field

and an infinite acoustic far field. The acoustic far field is represent by the high-order

doubly-asymptotic open boundary in Chapters 3 and 4 for 2D and 3D problems

respectively. The dynamic stiffness matrices for bounded subdomains in acoustic

near field and structural domain are calculated using continued fractions for accu-

rate and efficient modeling of structural and acoustic wave propagation. With the

introduction of auxiliary variables to continued-fraction expansions, the resulting

time-domain equations for both structural and acoustic domains can be directly

coupled together for transient analysis via satisfying the normal force equilibrium

and normal displacement consistency on the acoustic-structure interface. The global

equations of motion for the coupled acoustic-structure interaction system can also

be transformed to symmetric formulation by replacing the unknowns corresponding

to acoustic pressures to newly defined variables. Due to the boundary discretization

required in SBFEM, the mesh transition on the acoustic-structure interface can be

handled easily and efficiently by adding extra nodes on the interface for 2D pro-

blems and subdivisions of surface elements for 3D problems. Two 2D and three 3D

examples of acoustic-structure interaction are presented in this chapter to show the

accuracy of proposed SBFEM and its efficiency on transition between acoustic and

structural meshes. Newmark’s method is applied to obtain the transient solutions

of all numerical examples. The octree mesh technique is also employed to auto-

matically generate meshes for acoustic-structure interaction problems with complex

geometry and reduce the human efforts.
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Chapter 6

Automatic 3D elastoplastic

analysis using octree mesh and

SBFEM with stabilisation

6.1 Introduction

The SBFEM proposed by Song and Wolf (Song and Wolf, 1997) is naturally suita-

ble for applying the quadtree and octree techniques as introduced in Section 4.1 of

Chapter 4. SBFEM is a semi-analytical computational method, which only requires

the boundary discretization. This reduces the problem dimensions by one and pro-

vides more flexibility in the automatic mesh generation. For satisfying the scaling

requirement in SBFEM, the problem domain can be divided into multiple subdo-

mains as in FEM but with arbitrary sides (polygonal or polyhedral subdomains in

2D or 3D cases respectively). Both quadtree and octree have been implemented

into SBFEM for automatic stress analysis recently (Saputra et al., 2017a; Liu et al.,

2017). In quadtree mesh, the hanging-node problem does not exist in SBFEM as

each quadtree cell can be treated as a subdomain with arbitrary number of line ele-

ments on the edges. Although hanging nodes exist in octree mesh, those faces of an
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octree cell with hanging nodes can be simply divided into a combination of standard

triangular and quadrilateral elements without additional effort. The recently pro-

posed octree mesh generation technique based on SBFEM in Reference (Liu et al.,

2017) presents an efficient way of generating CAD-based mesh automatically. STL

format is chosen as the input file format as it is widely supported in CAD industry

such as 3D printing and rapid prototyping. The STL format is simple as it only

contains unstructured triangular facets for describing the surface of an object. Besi-

des, ill-shaped, overlapping and self-intersecting facets are all allowed to be existed

in this file. All these advantages of STL file make the proposed meshing technique

universal and simple to use.

In addition to the excels of SBFEM in automatic analysis using quadtree and

octree techniques, this method also presents salient advantages in modelling the

unbounded domains (Deeks and Augarde, 2007; Wolf, 2003) and stress singulari-

ties (Song, 2004a, 2005) as it describes the whole problem domain by scaling the

boundary of bounded or unbounded domain using dimensionless radial coordinate

and can provide analytical solution for displacements and stresses in the radial di-

rection in terms of matrix power functions (Song and Wolf, 1997). SBFEM has also

been applied to elastoplastic and nonlinear analysis in some literatures such as (Ooi

et al., 2014; He, 2017; Chen et al., 2017a). In this study, the recently developed

octree mesh generation technique from STL model by Liu et al. (Liu et al., 2017),

which has only been applied to elastic analysis before, will be introduced to elasto-

plastic analysis due to its versatility on meshing complex geometry and accuracy of

modeling.

For extending the capability of SBFEM to handle material nonlinearity, a novel

polygon-based SBFEM formulation is firstly developed by Ooi et al. (Ooi et al.,

2014) for elastoplastic analysis. Then, an alternative approach with higher com-

putational efficiency is developed for elastoplastic image-based analysis (He, 2017),

which is inspired by the reduced integration method with hourglass control in FEM
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(Belytschko and Tsay, 1983; Belytschko and Bachrach, 1986; Liu et al., 1985; Be-

lytschko and Bindeman, 1991; Liu et al., 1994; Korelc and Wriggers, 1997). In

elastoplastic analysis, once the stresses exceed the yielding stress of material, a cor-

rection procedure should be involved to bring the elastic trial stress back to the

yield surface decided by corresponding yielding criteria such as Tresca ,von Mises

or Drucker-Prager criteria (Chen and Han, 2007). This correction procedure for

updating the stresses in elastoplastic analysis is also known as the return mapping

algorithm. The return mapping algorithm needs to be performed on each Gauss

points in FEM and is usually computationally expensive as it requires iteration pro-

cedures, such as Newton-Raphson method, to return the elastic trial stress back to

the yield surface. Compared with normal Gauss quadrature, the reduced integra-

tion method in FEM requires the return mapping algorithm to be performed at less

Gauss points within each element. This greatly improves the efficiency of elasto-

plastic analysis and simplifies the implementation, especially for complex nonlinear

problems. For overcoming the stability issues in reduced integration method, stabili-

sation matrix is often required to control those spurious modes, which is also known

as hourglass modes in the underintegrated elements. A review of reduced integra-

tion methods can be found in Section 2.3.2 of Chapter 2. Analogously, the original

polygon-based SBFEM formulation for elastoplasticity needs multiple fitting points

in each polygonal subdomain to approximate the varying elastoplastic constitutive

matrix and internal stresses via a polynomial function. As a result, return mapping

algorithm should be performed at every fitting point in the subdomain with plastic

deformation. In the new approach for image-based elastoplastic analysis in SBFEM,

the return mapping algorithm should only be performed at one fitting point at the

scaling centre of each subdomain experiencing plastic deformation. A stabilisation

matrix is also introduced to control the hourglass modes in each underintegrated

subdomain. In addition, no fitting operation is required for interpolating the elasto-

plastic constitutive matrix and internal stresses as they are represented by constant
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values in each subdomain. Therefore, smaller subdomain size is suggested to be

used in the yield zone as the variations of elastoplastic constitutive matrix and in-

ternal stresses should also be small and represented by the constant values. This

is consistent with the idea of using automatic meshing techniques for both image-

based and CAD-based mesh as smaller mesh size is often preferred to preserve all

the geometrical features that can be captured from the input models. Furthermore,

the mesh transition from refined plastic region to non-refined elastic region can be

handled efficiently by utilizing the quadtree or octree mesh.

The work in this chapter is a natural extension of the improved scaled boundary

finite element formulation for elastoplastic analysis with one-point return mapping

algorithm in (He, 2017) to three-dimensional static and dynamic elastoplastic ana-

lysis. By combining with the automatic mesh generation from STL model with

trimmed boundaries, the stress concentration on the jagged boundaries in image-

based mesh, reported in literatures (Lian et al., 2013; He, 2017; Saputra et al.,

2017a), will not appear in this approach. Similar to 2D analysis, the return map-

ping algorithm just needs to be performed at the scaling centre of each polyhedral

subdomain, which improves the efficiency of SBFEM in 3D elastoplastic analysis. A

stabilisation matrix is introduced for controlling the spurious modes of plastic poly-

hedral subdomains. Newmark’s method for nonlinear systems is directly employed

in the proposed formulations for performing the dynamic elastoplastic analysis.

The remaining sections in this chapter are organized as follows: the shape

function, stress and strain fields of the polyhedral subdomains in SBFEM are firstly

summarized in Section 6.2. Then, the derivation of SBFEM formulation with stabi-

lisation for 3D elastoplasticity is illustrated in Section 6.3. Next, the computational

procedures for implementing the current approach in both static and dynamic elas-

toplastic analyses are summarized in Section 6.4. Several numerical examples are

presented in Section 6.5 to demonstrate the accuracy, efficiency and practicability

of current approach. Finally, conclusions are stated in Section 6.6.
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6.2 Polyhedral subdomains in SBFEM

6.2.1 Scaled boundary shape function for polyhedral sub-

domains

For deriving the formulations for elastoplastic analysis based on SBFEM, the scaled

boundary shape function for each polyhedral subdomain is derived at first following

a similar procedure as in (Ooi et al., 2014) for polygonal subdomains. Expressing

the radial displacement function u(ξ) in Equation (5.18) by substituting cn defined

in (5.21) yields

u(ξ) = Ψunξ
−Sn−0.5IΨ−1

unub (6.1)

with s = 3 for 3D problems. The displacement field in subdomain u(ξ, η, ζ) can be

expressed by substituting Equation (6.1) into (5.4)

u(ξ, η, ζ) = Ns(η, ζ)Ψunξ
−Sn−0.5IΨ−1

unub (6.2)

Equation (6.2) can then be written into the following matrix product as in the finite

element analysis

u(ξ, η, ζ) = Φ(ξ, η, ζ)ub (6.3)

with the scaled boundary shape function Φ(ξ, η, ζ) for polyhedral subdomains defi-

ned as

Φ(ξ, η, ζ) = Ns(η, ζ)Ψunξ
−Sn−0.5IΨ−1

un (6.4)

This scaled boundary shape function is analytically described in the radial di-

rection ξ and compatible between adjacent polyhedral elements (Ooi et al., 2014).

For a crack polyhedral element, it can describe singularities semi-analytically (Chi-

ong et al., 2014). Due to the fact that the rigid body motion modes, constant strain

modes and other higher order modes can be identified via their corresponding eigen-
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values in Sn, a stabilisation procedure for three-dimensional elastoplastic analysis

in SBFEM is developed in this chapter based on the constant stress state of each

subdomain.

6.2.2 Scaled boundary stress and strain fields for polyhedral

subdomains

The strain field ϵ(ξ, η, ζ) in Equation (5.8) can be expressed in terms of nodal

displacement ub by utilizing Equation (6.1). The resulting expression is:

ϵ(ξ, η, ζ) = (Bs
1(η, ζ)Ψun [−Sn − 0.5I] +Bs

2(η, ζ)Ψun) ξ
−Sn−1.5IΨ−1

unub (6.5)

Equation (6.5) can be simplified as:

ϵ(ξ, η, ζ) = B(ξ, η, ζ)ub (6.6)

with the scaled boundary strain-displacement matrix B(ξ, η, ζ) for polyhedral sub-

domain below:

B(ξ, η, ζ) = Ψϵ(η, ζ)ξ
−Sn−1.5IΨ−1

un (6.7)

In Equation (6.7), the strain modes Ψϵ(η, ζ) are:

Ψϵ(η, ζ) = Bs
1(η, ζ)Ψun [−Sn − 0.5I] +Bs

2(η, ζ)Ψun (6.8)

The incremental strain field ∆ϵ in an elastoplastic analysis can be decomposed into

elastic and plastic parts as

∆ϵ = ∆ϵe +∆ϵp (6.9)

The subscripts ’e’ and ’p’ in Equation (6.9) denote the incremental elastic and plastic

strains, respectively. The incremental plastic strain can be calculated from plastic

flow rule. Assuming associative plasticity, it is expressed as

∆ϵp =
∂F

∂σ
∆λ (6.10)
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where F ≡ F (σ, κ) is a yield function depending on the current stress state σ

and the hardening parameter κ. ∆λ is the plastic multiplier. An example of yield

function for isotropic hardening material under von Mises yield criterion is written

as

F (σ, κ(ϵp)) =

√
3

2
J2 − σf (ϵp) = 0 (6.11)

with the second deviatoric stress invariant J2 and instantaneous plastic yield limit

σf (ϵp). According to Hooke’s law, the incremental stress field is related to total

incremental strain in Equation (6.9) and written as

∆σ = Dep∆ϵ (6.12)

with the elastoplastic constitutive matrix

Dep = D−
D
(
∂F
∂σ

) (
∂F
∂σ

)T
D

H +
(
∂F
∂σ

)T
D
(
∂F
∂σ

) (6.13)

and H is the hardening parameter

H = − 1

∆λ

∂F

∂κ
dκ (6.14)

In unloading, the state of stress immediately becomes elastic. The corresponding

criteria for loading and the start of unloading can be mathematically expressed as

(Chen and Han, 2007)

F = 0and

(
∂F

∂σ

)
dσ ≥ 0 (loading) (6.15a)

F = 0and

(
∂F

∂σ

)
dσ < 0 (unloading) (6.15b)

(
∂F
∂σ

)
is normal to the yield surface and dσ is the additional loading or incremental

stress vector. Substituting Equation (6.6) for incremental strain into (6.12) yields

the expression for incremental stress field ∆σ as

∆σ(ξ, η, ζ) = DepB(ξ, η, ζ)∆ub (6.16)

with the incremental nodal displacement ∆ub.
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6.3 Stabilisation procedure for 3D elastoplastic

analysis based on scaled boundary finite ele-

ment formulations

6.3.1 Governing equation of elastoplasticity in SBFEM

Analogous to FEM, the scaled boundary finite element formulation for static elasto-

plasticity can be derived from the incremental form of the principle of virtual work

in the scaled boundary coordinates
ˆ
Ω

δ∆ϵT∆σ(ξ, η, ζ)dΩ =

ˆ
Γ

δuT |(j+1)ft|(j+1)dΓ +

ˆ
Ω

δuT |(j+1)fb|(j+1)dΩ

−
ˆ
Ω

δϵT |(j)σ(ξ, η, ζ)|(j)dΩ
(6.17)

where ∆σ(ξ, η, ζ) and σ(ξ, η, ζ)|(j) are the incremental stress and current stress field

at load step j respectively. ft|(j+1) and fb|(j+1)are the surface traction and body force

at load step j+1. δ∆ϵ and δϵ|(j) are the virtual incremental strain field and virtual

strain field at load step j. δu|(j+1) is the virtual displacement field at load step j+1.

Substituting Equations (6.3), (6.6) and (6.16) into (6.17) yields(ˆ
Ω

BT (ξ, η, ζ)DepB(ξ, η, ζ)dΩ

)
∆ub

=

(ˆ
Γ

ΦT (ξ, η, ζ)ft|(j+1)dΓ +

ˆ
Ω

ΦT (ξ, η, ζ)fb|(j+1)dΩ

)
−
ˆ
Ω

BT (ξ, η, ζ)σ(ξ, η, ζ)|(j)dΩ (6.18)

The integration on the left-hand-side of Equation (6.18) represents the elasto-

plastic stiffness matrix Kep for the subdomain. The first two terms on the right-

hand-side in the parentheses are the external load vector Fext|(j+1) due to surface

traction ft and body loads fb. The internal load vector Fint|(j) is defined by the last

term on the right-hand-side. Then, Equation (6.18) can be simplified as

Kep∆ub = Fext|(j+1) − Fint|(j) (6.19)
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Assembling the system of nonlinear equations in (6.19) for all polyhedral subdomains

as in FEM yields [
nPol∑
i=1

Kep

]
∆Ub =

nPol∑
i=1

{
Fext|(j+1) − Fint|(j)

}
(6.20)

Equation (6.20) can then be solved using standard nonlinear solution techniques,

such as the modified Newton-Raphson iterations employed in this chapter.

6.3.2 Decomposition of SBFEM stress field in polyhedral

subdomains

In an elastoplastic analysis, the return mapping algorithm is applied to update the

stress field once the trial stress state violates the plastic admissibility. The recently

proposed one-point return mapping formulations for polygonal subdomains in 2D

elastoplasticity (He, 2017) is extended to 3D elastoplastic analysis in this chapter.

Based on the same assumption that each polyhedral subdomain needs to be relatively

small, a constant elastoplastic constitutive matrix Dep is employed to approximate

the variation of Dep within each subdomain. The elastoplastic constitutive matrix

Dep is only required at the scaling centre of each subdomain. Therefore, the com-

putationally expensive return mapping algorithm should just be performed at one

point per subdomain for updating the stresses. The constant stresses within each

scaled boundary polyhedral subdomain are corresponding to the constant stress mo-

des (Chiong et al., 2014). As a result, once the stresses at the scaling centre reach

the yield surface, the whole subdomain is considered to be plastic. Otherwise, this

subdomain is still in elastic state.

For decomposing the stress field in Equation (6.16) into a constant stress part and

a non-constant (higher-order) stress part, the scaled boundary strain-displacement

matrix B(ξ, η, ζ) should be divided into constant and no-constant parts as well.

From the expression for B(ξ, η, ζ) in Equation (6.7), all three matrices for defining

B(ξ, η, ζ) are decomposed into constant parts with superscript ’c’ and non-constant
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parts with superscript ’n’ respectively in Equations (6.21) - (6.23).

Ψϵ(η, ζ) =

[
Ψ(n)
ϵ (η, ζ) Ψ(c)

ϵ

]
(6.21)

ξ−Sn−1.5I =

 ξ−S
(n)
n −1.5I 0

0 ξ−S
(c)
n −1.5I

 (6.22)

Ψ−1
un =

 (Ψ−1
un

)(n)(
Ψ−1
un

)(c)
 (6.23)

The constant part is related to nine constant strain modes for a polyhedral subdo-

main and can be identified by their corresponding eigenvalues as λ(S(c)
n ) = −1.5.

λ(S
(n)
n ) < −1.5 identifies other non-constant strain modes. By substituting the value

of λ(S(c)
n ) = −1.5 into Equation (6.22), this matrix exponential function is simplified

as

ξ−Sn−1.5I =

 ξ−S
(n)
n −1.5I

I

 (6.24)

Substituting Equation (6.21), (6.24) and (6.23) into (6.7), the B(ξ, η, ζ) matrix

can be written into the following form

B(ξ, η, ζ) =

[
Ψ(n)
ϵ (η, ζ) Ψ(c)

ϵ

] ξ−S
(n)
n −1.5I

I


 (Ψ−1

un

)(n)(
Ψ−1
un

)(c)
 (6.25)

Now, Equation (6.25) can be decomposed as

B(ξ, η, ζ) = B(c) +B(n)(ξ, η, ζ) (6.26)

with constant and non-constant strain-displacement matrix in Equation (6.27)

B(c) = Ψ(c)
ϵ

(
Ψ−1
un

)(c) (6.27a)

B(n)(ξ, η, ζ) = Ψ(n)
ϵ (η, ζ)ξ−S

(n)
n −1.5I

(
Ψ−1
un

)(n) (6.27b)
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Thus, the stress field can be decomposed by substituting Equation (6.26) into (6.16)

as

σ(ξ, η, ζ) = σ(c) + σ(n)(ξ, η, ζ) (6.28)

with constant and non-constant stress parts σ(c) and σ(n)(ξ, η, ζ) listed below:

σ(c) = DepB
(c)ub (6.29a)

σ(n)(ξ, η, ζ) = DepB
(n)(ξ, η, ζ)ub (6.29b)

6.3.3 Decomposition of elastoplastic stiffness matrix for po-

lyhedral subdomains

The total stiffness matrix for elastoplasticity Kep can also be decomposed corre-

sponding to the decomposition of the stress field in Equation (6.28). Comparing

Equation (6.18) and (6.19) gives the expression of elastoplastic stiffness matrix for

a polyhedral subdomain

Kep =

ˆ
Ω

BT (ξ, η, ζ)DepB(ξ, η, ζ)dΩ (6.30)

Replacing the second instance of B(ξ, η, ζ) with the expression in Equation (6.26)

yields

Kep =

ˆ
Ω

(
BT (ξ, η, ζ)DepB

(c) +BT (ξ, η, ζ)DepB
(n)(ξ, η, ζ)

)
dΩ (6.31)

where the infinitesimal volume dΩ is defined as (Song and Wolf, 1997)

dΩ = |J(η, ζ)| ξ2dξdηdζ (6.32)

with |J(η, ζ)| the determinant of Jacobian matrix for 3D subdomain defined in Equa-

tion (4.4). Substituting Equation (6.7), (6.27), and (6.32) into the expression for

Kep in Equation (6.31) gives

Kep = Ψ−T
un X

(c)
(
Ψ−1
un

)(c)
+Ψ−T

un X
(n)
(
Ψ−1
un

)(n) (6.33)
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with X(c) and X(n) expressed as

X(c) =

ˆ 1

0

ξ−STn−1.5I

[ˆ +1

−1

ˆ +1

−1

ΨT
ϵ (η, ζ)DepΨ

(c)
ϵ |J(η, ζ)| dηdζ

]
ξ2dξ (6.34)

X(n) =

ˆ 1

0

ξ−STn−1.5I·[ˆ +1

−1

ˆ +1

−1

ΨT
ϵ (η, ζ)DepΨ

(n)
ϵ (η, ζ) |J(η, ζ)| dηdζ

]
ξ−S

(n)
n −1.5Iξ2dξ (6.35)

Now, the total stiffness matrix for elastoplasticity Kep has been decomposed into

two parts and Equation(6.33) can be written in simplified notations as

Kep = K(c)
ep +K(n)

ep (6.36)

with the constant stress part K
(c)
ep and non-constant stress part K

(n)
ep listed below

K(c)
ep = Ψ−T

un X
(c)
(
Ψ−1
un

)(c) (6.37a)

K(n)
ep = Ψ−T

un X
(n)
(
Ψ−1
un

)(n) (6.37b)

The constant stress part of the elastoplastic stiffness matrix K
(c)
ep is an under-

integrated matrix and contains spurious modes. In order to overcome the spurious

modes and make the whole formulation stable, the elastoplastic stiffness matrix of

non-constant stress part K
(n)
ep is introduced as a stabilisation matrix here and used

later in Section 6.3.4.2 to calculate the internal load vector due to the non-constant

stress state part R(n)
int . The evaluation of X(c) and X(n) are explained in the following

Sections 6.3.3.1 and 6.3.3.2 respectively.

6.3.3.1 Evaluate elastoplastic stiffness matrix related to constant stress

part

For evaluating K
(c)
ep in Equation (6.37a), the calculation of X(c) term is firstly addres-

sed. Matrix Y(c) can be used to represent the integration in the surface directions

238



(η, ζ) of a subdomain in Equation (6.34) as

X(c) =

ˆ 1

0

ξ−STn−1.5IY(c)ξ2dξ (6.38)

with Y(c) expressed as

Y(c) =

ˆ +1

−1

ˆ +1

−1

ΨT
ϵ (η, ζ)DepΨ

(c)
ϵ |J(η, ζ)| dηdζ (6.39)

Y(c) can also be decomposed into two parts by substituting Equation (6.21) into

(6.39)

Y(c) =

Ync

Ycc

 (6.40)

with

Ync =

ˆ +1

−1

ˆ +1

−1

(
Ψ(n)
ϵ (η, ζ)

)T
DepΨ

(c)
ϵ |J(η, ζ)| dηdζ (6.41a)

Ycc =

ˆ +1

−1

ˆ +1

−1

(
Ψ(c)
ϵ

)T
DepΨ

(c)
ϵ |J(η, ζ)| dηdζ (6.41b)

Equation (6.41a) and (6.41b) can then be numerically integrated using standard

Gauss or Gauss-Lobatto quadrature. Next, substituting Equation (6.24) and (6.40)

into (6.38) yields

X(c) =

Xnc

Xcc

 (6.42)

with

Xnc =

ˆ 1

0

ξ
−
(
S
(n)
n

)T
+0.5I

dξYnc (6.43a)

Xcc =

ˆ 1

0

ξ2dξYcc (6.43b)

Integrations in Equation (6.43) can be calculated analytically in ξ direction yielding

Xnc =
(
−
(
S(n)
n

)T
+ 1.5I

)−1

Ync (6.44a)

Xcc =
Ycc

3
(6.44b)
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Now K
(c)
ep can be solved by substituting the results of X(c) in Equation (6.42)

into Equation (6.37a). Notice that the numerical integration is only employed to

calculate Y(c) for evaluating K
(c)
ep . In other words, K(c)

ep is evaluated semi-analytically

for a scaled boundary polyhedral subdomain and requires only a two-dimensional

integration along the boundary of subdomain.

6.3.3.2 Evaluate elastoplastic stiffness matrix related to non-constant

stress part

Similar to Section 6.3.3.1, X(n) is calculated at first for evaluating K
(n)
ep in Equation

(6.37b). The inner part of X(n) related to the integration on the surface (η, ζ) can

be represented by matrix Y(n). The expression of Equation (6.35) can be simplified

as:

X(n) =

ˆ 1

0

ξ−STn−1.5IY(n)ξ−S
(n)
n −1.5Iξ2dξ (6.45)

with Y(n) expressed as

Y(n) =

ˆ +1

−1

ˆ +1

−1

ΨT
ϵ (η, ζ)DepΨ

(n)
ϵ (η, ζ) |J(η, ζ)| dηdζ (6.46)

Substitute Equation (6.21) into (6.46) gives

Y(n) =

Ynn

Ycn

 (6.47)

with Ynn and Ycn being expressed as

Ynn =

ˆ +1

−1

ˆ +1

−1

(
Ψ(n)
ϵ (η, ζ)

)T
DepΨ

(n)
ϵ (η, ζ) |J(η, ζ)| dηdζ (6.48a)

Ycn =

ˆ +1

−1

ˆ +1

−1

(
Ψ(c)
ϵ

)T
DepΨ

(n)
ϵ (η, ζ) |J(η, ζ)| dηdζ (6.48b)

Equation (6.48a) and (6.48b) can then be numerically integrated using standard

Gauss or Gauss-Lobatto quadrature. Next, substituting Equations (6.24) and (6.47)
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into (6.45) yields

X(n) =

Xnn

Xcn

 (6.49)

with

Xnn =

ˆ 1

0

ξ
−
(
S
(n)
n

)T
−1.5I

Ynnξ
−S

(n)
n +0.5Idξ (6.50a)

Xcn = Ycn

ˆ 1

0

ξ−S
(n)
n +0.5Idξ (6.50b)

Equation (6.50) can be solved analytically in radial direction ξ as well. Utilizing

the properties of matrix power function and integration by parts as in Reference

(Ooi et al., 2014), matrix Xnn expressed in Equation (6.50a) can be solved from the

following Lyapunov equation

(
−S(n)

n

)T
Xnn +Xnn

(
−S(n)

n

)
= Ynn (6.51)

Solving the integration in ξ direction analytically in Equation (6.50b) results in

Xcn = Ycn

(
−S(n)

n + 1.5I
)−1 (6.52)

Now the part of elastoplastic stiffness matrix related to the non-constant stress

state part K
(n)
ep can be solved by substituting the results for X(n) from Equation

(6.49) into Equation (6.37b). Again, only the two-dimensional integration along the

boundary directions (η, ζ) are required to calculate matrix Y(n) and thus K
(n)
ep is

evaluated semi-analytically.

6.3.4 Decomposition of internal load vector

To formulate the internal force consistently with the elastoplastic stiffness matrix,

the total internal load vector is also decomposed into the internal load vectors related

to constant stress part and non-constant stress part respectively. Comparing Equa-

tions (6.18) and (6.19) gives the expression of internal load vector for a polyhedral
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subdomain

Fint =

ˆ
Ω

BT (ξ, η, ζ)σ(ξ, η, ζ)dΩ (6.53)

Substituting the decomposed stress in Equation (6.28) into Equation (6.53) yields

Fint =

ˆ
Ω

(
BT (ξ, η, ζ)σ(c) +BT (ξ, η, ζ)σ(n)(ξ, η, ζ)

)
dΩ (6.54)

Equation (6.54) can then be written into two parts as

Fint = F
(c)
int + F

(n)
int (6.55)

with the internal load vector related to constant and non-constant stress parts F
(c)
int

and F
(n)
int expressed as

F
(c)
int =

ˆ
Ω

BT (ξ, η, ζ)σ(c)dΩ (6.56a)

F
(n)
int =

ˆ
Ω

BT (ξ, η, ζ)σ(n)(ξ, η, ζ)dΩ (6.56b)

The evaluations of F
(c)
int and F

(n)
int will be addressed in the following Sections

6.3.4.1 and 6.3.4.2 separately.

6.3.4.1 Evaluate internal load vector related to constant stress part

The constant stress part of the internal load is calculated based on the constant

stress vector σ(c) at scaling centre in Equation (6.56a). Return mapping algorithm

as used in standard FEM (de Souza Neto et al., 2011; Hinton and Owen, 1986) can

be applied here to update σ(c) for each plastic polyhedral subdomain and the return

mapping algorithm should only be performed at the scaling center. Because the

number of locations to perform the return mapping algorithm is reduced to one,

this proposed one-point return-mapping formulation is reported to be more com-

putationally efficient than the original scaled boundary finite element formulations

for elastoplastic analysis, which requires the return mapping calculation on multi-

ple fitting points within each subdomain (Ooi et al., 2014; He, 2017). As σ(c) is
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independent of ξ,η and ζ, it can be moved outside from the integral as

F
(c)
int =

ˆ
Ω

BT (ξ, η, ζ)dΩσ(c) (6.57)

Substituting the expression for scaled boundary strain-displacement matrix B(ξ, η, ζ)

from Equation (6.7) and expression for dΩ from Equation (6.32) yields

F
(c)
int = Ψ−T

un

ˆ 1

0

ξ−STn−1.5Ir(η, ζ)ξ2dξσ(c) (6.58)

with the vector r(η, ζ) containing integration along surface directions (η, ζ) as:

r(η, ζ) =

ˆ +1

−1

ˆ +1

−1

ΨT
ϵ (η, ζ) |J(η, ζ)| dηdζ (6.59)

Equation (6.59) can then be numerically integrated using standard Gauss or Gauss-

Lobatto quadrature along the boundary. Integration in ξ direction in Equation

(6.58) can be calculated analytically and yields

F
(c)
int = Ψ−T

un

(
−STn + 1.5I

)−1
r(η, ζ)σ(c) (6.60)

6.3.4.2 Evaluate internal load vector related to non-constant stress part

Because the subdomains are refined in the yield zone, the contributions of the non-

constant stresses σ(n)(ξ, η, ζ) is minimized. The reason for evaluating the internal

load vector due to non-constant stress part F
(n)
int in this section is to use it as the

stabilisation term in the internal nodal force vector Fint and control the spurious

modes for each subdomain. As a result, σ(n)(ξ, η, ζ) is not calculated through the

return mapping algorithm. F
(n)
int only needs to be calculated once at the beginning

of each equilibrium iteration in elastoplastic analysis. Substituting Equations (6.7),

(6.29b), (6.27b) and (6.32) into (6.56b) results in

F
(n)
int = Ψ−T

un

ˆ 1

0

ξ−STn−1.5I·[ˆ +1

−1

ˆ +1

−1

ΨT
ϵ (η, ζ)DepΨ

(n)
ϵ (η, ζ) |J(η, ζ)| dηdζ

]
ξ−S

(n)
n −1.5Iξ2dξ

(
Ψ−1
un

)(n)
ub (6.61)

In Equation (6.61), the part of right-hand-side before the nodal displacement

243



vector ub is equal to the expression for the elastoplastic stiffness matrix related to

non-constant stress K
(n)
ep by substituting Equation (6.35) into (6.37b). Therefore,

Equation (6.61) can simplified as

F
(n)
int = K(n)

ep ub (6.62)

6.3.5 External load vector

Comparing Equations (6.18) and (6.19) gives the expression of external load vector

Fext for a polyhedral subdomain as

Fext =

ˆ
Γ

ΦT (ξ, η, ζ)ftdΓ +

ˆ
Ω

ΦT (ξ, η, ζ)fbdΩ (6.63)

The first term on the right-hand-side of Equation (6.63) represents the surface

traction applied on the boundary of polyhedral subdomains. As ξ = 1 on the

boundary, Φ(ξ, η, ζ) in Equation (6.4) reduces to Nu(η, ζ) . This term can thus be

written as
ˆ
Γ

ΦT (ξ, η, ζ)ftdΓ =

ˆ +1

−1

ˆ +1

−1

NT
s (η, ζ) |J(η, ζ)| ftdηdζ (6.64)

The second term on the right-hand-side of Equation (6.63) represents the body load

vector. For constant body load vector fb, substituting Equations (6.4) and (6.32)

into the second term in Equation (6.63) yields

ˆ
Ω

ΦT (ξ, η, ζ)fbdΩ

=

ˆ 1

0

ˆ +1

−1

ˆ +1

−1

(
Ns(η, ζ)Ψunξ

−Sn−0.5IΨ−1
un

)T |J(η, ζ)| ξ2dηdζdξfb (6.65)

Then, the Equation (6.65) can be solved analytically in ξ direction and numerically

in (η, ζ) directions as

ˆ
Ω

ΦT (ξ, η, ζ)fbdΩ

= Ψ−T
un

(
−STn + 2.5I

)−1
ΨT
un

[ˆ +1

−1

ˆ +1

−1

NT
s (η, ζ) |J(η, ζ)| dηdζ

]
fb (6.66)
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6.4 Computational procedures

The computational procedures for both static and dynamic elastoplastic analyses

are summarized in the following sections 6.4.1 and 6.4.2 separately. In the proposed

method for elastoplastic analysis, the strain-displacement matrix B(ξ, η, ζ) in Equa-

tion (6.7) and mass matrix M in Equation (5.28) do not change in each load step or

time step as they are only related to the material and geometry of the problems but

irrelevant from the corresponding state of stresses. Therefore, all the matrices for

calculating B(ξ, η, ζ) and M, that include coefficient matrices in Equation (5.11),

Ψun , Sn and Ψϵ(η, ζ) in Equation (5.17) and (6.8), can be precomputed after the

octree mesh generation in SBFEM. Then, they can be stored in the system memory

for accessing in the following iterations. In this chapter, the relative norm χ of

residual forces is calculated for checking if the solution has converged by satisfying

a convergence tolerance value χtol. Modified Newton-Raphson iteration is applied

to the equilibrium iterations for both static and dynamic analysis to minimize the

residual forces. The standard Newmark’s method for nonlinear systems (Chopra,

2001) with γ = 0.5 and β = 0.25 (average acceleration scheme) is employed here for

solving the dynamic elastoplastic problems due to its unconditionally stable nature.

6.4.1 Computational procedure for static elastoplastic ana-

lysis

The computational procedure for 3D static elastoplastic analysis in SBFEM is sum-

marized in this section as follows:

1. Initial calculations of geometrically similar and trimmed cells and stored the

results for later use

(a) Calculate coefficient matrices from Equations (5.11a) - (5.11c).

(b) Solve the eigenvalue problem in Equation (5.17) for Ψun , Ψqn and Sn for
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polyhedral subdomains.

(c) Calculate elastic stiffness matrices Ke and strain modes Ψϵ(η, ζ) for these

subdomains according to Equations (5.20) and (6.8) respectively.

2. Initializing the total displacement vector as Ub|(j) = 0 at j = 0.

3. For load steps j = 1, 2, 3, · · · :

(a) Compute the incremental external load vector ∆Fext|(j) for subdomains

between load step j − 1 and j using Equation (6.63).

(b) Compute the elastoplastic constitutive matrix Dep|(j−1) for subdomains

experiencing plastic deformation. If all subdomains are elastic or in un-

loading step, that is, Dep|(j−1) = D, then jump to Step (e).

(c) Compute the tangent elastoplastic stiffness matrices related to constant

stress state K
(c)
ep |(j−1) using Equation (6.37a) for plastic subdomains.

(d) Compute the tangent elastoplastic stiffness matrices related to non-constant

stress state K
(n)
ep |(j−1) using Equation (6.37b) for plastic subdomains.

(e) Compute the total tangent elastoplastic stiffness matrices Kep|(j−1) using

Equation (6.36) for plastic subdomains. If subdomain is in elastic state,

use Kep|(j−1) = Ke precomputed before entering the load-step iterations

instead.

(f) Assemble the global tangent stiffness matrix
[∑nPol

i=1 Kep|(j−1)

]
and glo-

bal incremental load vector for external forces
{∑nPol

i=1 ∆Fext|(j)
}

as in

Equation (6.20) .

(g) Solving initial incremental displacement vector ∆Ub|(j):

∆Ub|(j) =

[
nPol∑
i=1

Kep|(j−1)

]−1{nPol∑
i=1

∆Fext|(j)

}
(6.67)
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(h) At equilibrium iteration k = 0, initializing the incremental displacement

vector ∆Ub|k(j) = ∆Ub|(j) and accumulated total external load vector

Ftot
ext|(j) =

∑j
j=1 ∆Fext|(j) for each subdomain .

(i) For equilibrium iterations, k = 1, 2, 3, · · · , the modified Newton-Raphson

algorithm is applied to correct the incremental displacement ∆Ub|(j):

i. Update the elastoplastic stresses σ(c)|k(j) at scaling centre of polyhe-

dral subdomains using return-mapping algorithm for current itera-

tion step k.

ii. Calculate internal load vector related to constant stress parts F(c)
int|k(j)

for each subdomain using Equation (6.60).

iii. Calculate internal load vector related to non-constant and non-constant

stress parts F
(n)
int |k(j) for each subdomain using Equation (6.62).

iv. Calculate total internal load vector Ftot
int|k(j) for each subdomain using

Equation (6.55).

v. Assemble the global load vectors for total internal forces in sta-

tics Fstatic
int |k(j) =

{∑nPol
i=1 Ftot

int|k(j)
}

and total external forces Fext|(j) ={∑nPol
i=1 Ftot

ext|(j)
}

as in Equation (6.20) .

vi. Calculate global residual force vector in statics dF|k(j) = Fext|(j) −

Fstatic
int |k(j)

vii. Calculate incremental displacement dUb|k(j) due to residual force ba-

sed on Equation (6.20).

dUb|k(j) =

[
nPol∑
i=1

Kep|(j−1)

]−1

dF|k(j) (6.68)

viii. Correct the incremental displacement vector ∆Ub|k(j) = ∆Ub|k−1
(j) +

dUb|k(j).

ix. Calculate norm of residual force vector χ =
∥∥∥dF|k(j)∥∥∥.

x. Check for convergence:
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• If χ > χtol, set iteration index k = k + 1 and return to Step i.

• If χ ≤ χtol, exit the equilibrium iteration.

(j) Update the total nodal displacement vector Ub|(j) = Ub|(j−1) + ∆Ub|k(j)
and set the load-step number j = j + 1, then returns to Step (a) in

load-step loop.

6.4.2 Computational procedure for dynamic elastoplastic

analysis

This section describes the Newmark’s method used here for dynamic elastoplastic

analysis in SBFEM. Based on the procedures described on (Chopra, 2001), the rele-

vant procedures can be summarized as follows without the consideration of damping:

1. Initial calculation of geometrically similar and trimmed cells and stored the

results for later use

(a) Calculate all coefficient matrices in Equation (5.11).

(b) Solve the eigenvalue problem in Equation (5.17) for Ψun , Ψqn and Sn for

bounded subdomains.

(c) Calculate elastic stiffness matrices Ke, mass matrices M and strain modes

Ψϵ(η, ζ) for these subdomains according to Equations (5.20), (5.28) and

(6.8) respectively.

2. Initial calculations for time step j = 0 in Newmark’s method.

(a) Assuming structure at rest at the beginning and initialize the total dis-

placement vector Ub|(j) = 0, total velocity vector U̇b|(j) = 0 and total

acceleration vector Üb|(j) = 0 at j = 0.

(b) Select the time-step size ∆t.
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(c) Calculate the constant matrices used later in Newmark’s iterations: a =

1
β∆t

M and b = 1
2β
M.

3. For time steps j = 1, 2, 3, · · · :

(a) Compute the incremental external force vector ∆Fext|(j) for subdomains

between time step j − 1 and j using Equation (6.63).

(b) Compute effective incremental load vector ∆F̂ext|(j).

∆F̂ext|(j) = ∆Fext|(j) + aU̇b|(j−1) + bÜb|(j−1) (6.69)

(c) Repeat Steps (b) to (e) in the load-step loop in the procedures for sta-

tic elastoplastic analysis in Section 6.4.1 to calculate the total tangent

elastoplastic stiffness matrices Kep|(j−1).

(d) Assemble the global tangent stiffness matrix
[∑nPol

i=1 Kep|(j−1)

]
, global

mass matrix
[∑nPol

i=1 M
]

and global effective incremental load vector

∆F̂ext|(j) =
{∑nPol

i=1 ∆F̂ext|(j)
}

for the whole problem domain .

(e) Compute global effective stiffness matrix K̂|(j−1).

K̂|(j−1) =

[
nPol∑
i=1

Kep|(j−1)

]
+

1

β(∆t)2

[
nPol∑
i=1

M

]
(6.70)

(f) Solving initial incremental displacement vector ∆Ub|(j) for each time

step.

∆Ub|(j) =
[
K̂|(j−1)

]−1

∆F̂ext|(j) (6.71)

(g) At equilibrium iteration k = 0, initializing the incremental displacement

vector ∆Ub|k(j) = ∆Ub|(j), accumulated displacement vector Ub|k(j−1) =∑j−1
j=1∆Ub|(j) to last time step j − 1 (Ub|k(j−1) = 0 for j = 1) and accu-

mulated total effective external load vector F̂tot
ext|(j) =

∑j
j=1∆F̂ext|(j) to

this time step j for each subdomain.
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(h) In dynamic analysis, the modified Newton-Raphson algorithm is again

applied to correct the incremental displacement ∆Ub|(j) in each time step.

The procedures for corresponding equilibrium iterations, k = 1, 2, 3, · · · ,

are the same as those described in Steps (i) to (ix) for static elastoplastic

analysis in Section 6.4.1, except for the calculations of global load vector

for total internal forces in statics Fstatics
int |k(j) in Step (v). In dynamic

analysis, these internal force vector should be calculated by considering

the effect of inertial and thus the modified Newton-Raphson algorithm

in dynamic elastoplastic analysis is changed to:

i. Repeat Steps (i) to (iv) in the equilibrium iterations for static elasto-

plastic analysis in Section 6.4.1 and assemble the global total internal

forces vector in statics Fstatic
int |k(j) =

{∑nPol
i=1 Ftot

int|k(j)
}

ii. Calculate the effective global vector for total internal forces F̂dynamic
int |k(j),

F̂dynamic
int |k(j)

= Fstatic
int |k(j) +

1

β(∆t)2

[
nPol∑
i=1

M

] (
Ub|k(j−1) +∆Ub|k(j)

)
(6.72)

and assemble effective external forces F̂ext|(j) =
{∑nPol

i=1 F̂tot
ext|(j)

}
iii. Calculate effective global residual force vector in dynamics dF̂|k(j) =

F̂ext|(j) − F̂dynamic
int |k(j)

iv. Calculate incremental displacement dUb|k(j) due to residual force ba-

sed on Step (f) in time-step iteration.

dUb|k(j) =
[
K̂|(j−1)

]−1

dF̂|k(j) (6.73)

v. Repeat Steps (viii) to (x) in the equilibrium iterations for static

elastoplastic analysis in Section 6.4.1 to correct the incremental dis-

placement vector ∆Ub|k(j) and check χ =
∥∥∥dF̂|k(j)∥∥∥ for convergence.
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(i) Compute incremental velocity vector ∆U̇b|k(j),

∆U̇b|k(j) =
γ

β∆t
∆Ub|k(j) −

γ

β
U̇b|(j) +∆t

(
1− γ

2β

)
Üb|(j) (6.74)

and incremental acceleration vector∆Üb|k(j)

∆Üb|k(j) =
1

β(∆t)2
∆Ub|k(j) −

1

β∆t
U̇b|(j) −

1

2β
Üb|(j) (6.75)

(j) Update the total displacement vector

Ub|(j) = Ub|(j−1) +∆Ub|k(j) (6.76)

total velocity vector

U̇b|(j) = U̇b|(j−1) +∆U̇b|k(j) (6.77)

total acceleration vector

Üb|(j) = Üb|(j−1) +∆Üb|k(j) (6.78)

and set the time-step number j = j + 1, then returns to Step (a) in

time-step loop.

6.5 Numerical examples

In this section, five numerical examples are presented to demonstrate the accuracy,

efficiency and robustness of the present SBFEM formulations for 3D elastoplastic

analysis. In section 6.5.1 and 6.5.2, a constant stress patch test and hollow sphere

subjected to internal pressure with analytical solutions are used to check the accu-

racy of current method with analytical solutions. Then, a simply supported beam

with a cylindrical notch is investigated in Section 6.5.3. A uniformly distributed

pressure is applied at the top of the beam. The results for static and dynamic elas-

toplastic analyses are presented in Sections 6.5.3.1 and 6.5.3.2, respectively. The

numerical solutions computed from SBFEM are verified using reference solutions
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A

B

C

Figure 6.1. SBFEM mesh for constant stress patch test.

obtained from commercial software ANSYS using standard FEM. The efficiency of

modeling the same cylindrically notched beam via the present method is also dis-

cussed and compared with the model used in ANSYS. Next, a plate with multiple

holes is subject to a dynamic excitation and simulated using the present SBFEM in

Section 6.5.4. Reference solution obtained from ANSYS is again used for demon-

strating the accuracy of SBFEM. In the last example in Section 6.5.5, an attractive

example of a 3D humerus-shaped structure is used to demonstrate the ability of the

proposed method in analyzing models with complex geometry and shows a possible

application of this numerical tool in biomechanics. Newmark’s method for nonli-

near system described in Section 6.4.2 with computational coefficients (γ = 0.5 and

β = 0.25, the average acceleration scheme) is applied here for time-domain dynamic

analysis in all the following numerical examples.

6.5.1 Elastoplastic constant stress patch test

An uniaxial tension test is performed in this example. A cubic block with the

dimensions of 1m×1m×1m is subjected to a uniform pressure of 0.2MPa at the top

(z = 1m) pointing at positive z-direction. The block is discretized into eight irregular
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polyhedral subdomains with 4-node quadrilateral elements on their surfaces. The

mesh is shown in Figure 6.1 with the translucent surfaces illustrating the mesh inside

the block. The block is fixed in z-direction on the entire bottom surface (z = 0m)

and with constrains in x-direction along line AB (coordinates for point A (1, 0,

0) and point B (1, 1, 0)) and constrain at y-direction at point C (coordinate for

point C (0, 1, 0)) for eliminating all rigid body motions. The material is isotropic

with Young’s modulus of E = 200GPa and Poisson’s ratio of ν = 0.333. The von

Mises yield criteria is considered in this example with yield stress of σy = 0.16MPa

and hardening modulus of H = 20GPa. At the end of the loading process, the

theoretical values of stress in z-direction are σzz = 0.2MPa , while other stresses in

each subdomain should be zeros. The results of stresses calculated from the proposed

SBFEM at scaling centers of all subdomains are tabulated in Table 6.1. Comparing

the results from numerical and analytical solutions, the proposed formulation is

able to calculate the stresses of every subdomain accurately and thus passes the

elastoplastic constant stress patch test.

6.5.2 Hollow sphere subjected to internal pressure

In this example, a hollow sphere is subjected to a uniform internal pressure on the

whole internal cavity. The hollow sphere has an inner radius of a = 1m and outer

radius of b = 2m. Due to its symmetry, only an octant of this sphere is modeled

as illustrated in Figure 6.2(a). Normal constrains are applied on all three cutting

faces of this octant. The magnitude of the internal pressure is P = 9.5019MPa.

The material of sphere is assumed to be perfectly plastic with Young’s modulus of

E = 100GPa, Poisson’s ratio of ν = 0.3, yield stress of σy = 10MPa. Von Mises

yield criteria is also assumed in this example.

Analytical solution is available for this problem (Gao and Davies, 2002). For

elastic-perfectly plastic material under von Mises criteria, the analytical solution is

derived in spherical coordinates (r, θ, ϕ) with r the radial coordinate and (θ, ϕ)
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Table 6.1. Stresses at scaling centres of polyhedral subdomains in constant stress
patch test.

Coordinates of Normal stresses (MPa)
scaling centres (m) σxx σyy σzz
(0.25, 0.25, 0.25) 6.2787× 10−9 5.3204× 10−9 2.0000× 10−1

(0.75, 0.25, 0.25) 1.9950× 10−9 2.1242× 10−9 2.0000× 10−1

(0.25, 0.75, 0.25) 7.1716× 10−9 5.6927× 10−9 2.0000× 10−1

(0.75, 0.75, 0.25) 3.2813× 10−9 2.7854× 10−9 2.0000× 10−1

(0.25, 0.25, 0.75) 7.0512× 10−9 5.3259× 10−9 2.0000× 10−1

(0.75, 0.25, 0.75) 3.1482× 10−9 2.3552× 10−9 2.0000× 10−1

(0.25, 0.75, 0.75) 6.1311× 10−9 5.1017× 10−9 2.0000× 10−1

(0.75, 0.75, 0.75) 1.8949× 10−9 2.1229× 10−9 2.0000× 10−1

Coordinates of Shear stresses (MPa)
scaling centres (m) τyz τxz τxy
(0.25, 0.25, 0.25) −6.3642× 10−11 −6.0494× 10−11 −6.5862× 10−11

(0.75, 0.25, 0.25) 1.6486× 10−10 −4.2895× 10−10 3.7842× 10−10

(0.25, 0.75, 0.25) 3.3184× 10−10 −3.2441× 10−11 1.7439× 10−10

(0.75, 0.75, 0.25) 6.9339× 10−10 2.6614× 10−10 −6.9416× 10−11

(0.25, 0.25, 0.75) −1.3021× 10−10 1.2233× 10−10 −1.1928× 10−10

(0.75, 0.25, 0.75) 1.7671× 10−10 −3.5742× 10−10 −2.5531× 10−10

(0.25, 0.75, 0.75) 3.8727× 10−10 9.4651× 10−11 1.9013× 10−10

(0.75, 0.75, 0.75) 8.7902× 10−10 2.7184× 10−10 −4.9703× 10−10

the two angular coordinates in hoop directions. The radial displacements ur(r) in

elastic (b ≥ r > c) and plastic (a ≤ r ≤ c) zone can be expressed in the following

equation as:

ur(r) =


2
3E

c3

b3

(
(1− 2ν)r + (1 + ν) b

3

2r2

)
σy (b ≥ r > c)

σy
E
r
(
(1− ν) c

3

r3
− 2

3
(1− 2ν)

(
1 + 3 ln

(
c
r

)
− c3

b3

))
(a ≤ r ≤ c)

(6.79)

In Equation (6.79), c is the radial coordinate of the spherical interface between

elastic and plastic zones and can be calculated from the following Equation (6.80)

P =
2

3
σy

(
1 + 3 ln

( c
a

)
− c3

b3

)
(6.80)

where P is the applied internal pressure. In this example, c = 1.25m, which indicates

that the yield zone will propagate from the internal surface to one fourth of the

thickness of the hollow sphere.

The stresses in radial direction σr(r) and hoop directions σθ(r) or σϕ(r) are then
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Figure 6.2. An octant of hollow sphere: (a) geometry and loading and (b) the
SBFEM mesh 3.

Figure 6.3. Convergence study with three types of meshes.

given in the following two Equations(6.81) and (6.82) respectively

σr(r) =

 −2
3
c3

b3

(
b3

r3
− 1
)
σy (b ≥ r > c)

−2
3

(
1 + 3 ln

(
c
r

)
− c3

b3

)
σy (a ≤ r ≤ c)

(6.81)

σθ(r) = σϕ(r) =


2
3
c3

b3

(
b3

2r3
+ 1
)
σy (b ≥ r > c)

2
3

(
1
2
− 3 ln

(
c
r

)
+ c3

b3

)
σy (a ≤ r ≤ c)

(6.82)

For numerical analysis using SBFEM, three types of meshes are used for conver-

gence study at first. In each of these meshes, the octant is equally discretized into M
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Figure 6.4. Radial displacement ur in hollow sphere obtained from SBFEM and
analytical solution.

(b)

Figure 6.5. Stresses in hollow sphere obtained from SBFEM and analytical solution:
(a) Radial stress σr and (b) Hoop stresses σθ or σϕ.

divisions along the circular edges and N divisions in the thickness direction. 4-node

quadrilateral elements are used on the surface of each hexahedral subdomains. All

meshes used for convergence study are: mesh 1 with M=10 and N=6, mesh 2 with

M=16 and N=9, mesh 3 with M=20 and N=12. Figure 6.2(b) shows an example of

mesh 3. The results of convergence study are shown in Figure 6.3. In Figure 6.3, the

horizontal and vertical axes represent total number of degree-of-freedom (D.O.F.) in

the mesh and percentage error of radial displacement at the outer surface of sphere

comparing with analytical solution. In the convergence study, mesh 3 has the per-

centage error of approximate 0.7% comparing with analytical solution. Therefore,

mesh 3 is chosen to present the following results of radial displacements, stresses

and contour plots in this example.
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(a) (b)

Figure 6.6. Contour plots for hollow sphere using mesh 3: (a) Radial displacement
and (b) von Mises stress.

The radial displacements ur at each nodes along radial direction computed from

proposed SBFEM formulation are shown in Figure 6.4 with red dots. In the pro-

posed method, stresses can only be calculated at scaling centres. Hence, the radial

stresses σr and hoop stresses, σθ or σϕ, at the scaling centres along radial direction

are presented in Figure 6.5(a) and (b) respectively. In both Figures 6.4 and 6.5,

horizontal axes represent the radial coordinate r and the corresponding analytical

solutions are also plotted in these figures with black lines for comparison. The

numerical solutions are in very good agreements with the analytical solutions.

Figure 6.6(a) and (b) shows the contour plots of radial displacement and von

Mises stress calculated using mesh 3, respectively. Because the present method as-

sumes constant stresses at the scaling centre within each subdomain, the contour

color for von Mises stress in Figure 6.6(b) is the same within each hexahedral sub-

domain. Figure 6.6(b) also shows that the red yield zone only propagates from the

inner surface of hollow sphere to one fourth of its thickness, which agrees well with

the prediction from analytical solution using Equation (6.80).
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Figure 6.7. Simply supported beam with cylindrical notch: (a) Front view and (b)
Side view (from +x direction).

Figure 6.8. The SBFEM mesh for cylindrically notched beam.

6.5.3 Simply supported beam with cylindrical notch

The structure considered in this numerical example is a simply supported beam with

a cylindrical notch. The cylindrical notch with a radius of r = 1.6m is at the middle

of the beam bottom. The dimensions of this beam are illustrated in Figure 6.7.

Point A in Figure 6.7 is located at the top-front of the beam with the coordinate

of (0, 4.8, 0). The material used for this beam is assumed to be perfectly plastic

with Young’s modulus of E = 100GPa, Poisson’s ratio of ν = 0.333, yield stress

of σy = 0.16GPa and density of ρ = 1.5 × 103kg/m3. Von Mises yield criterion is

considered in this example and the self-weight of beam is neglected. Both static and

dynamic elastoplastic analyses are performed for this beam in the following Sections

6.5.3.1 and 6.5.3.2, respectively.

The same SBFEM mesh is used for static and dynamic analyses and shown

in Figure 6.8. In the SBFEM mesh, only the surface of octree subdomains are
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A
Subdomain B

Figure 6.9. A closer look at the trimmed mesh along notched surface in SBFEM
mesh.

Figure 6.10. The FEM mesh for cylindrically notched beam in ANSYS.

meshed with 4-node quadrilateral and 3-node triangular elements. The size of larger

octree cells is 0.4m and the middle part of the beam is refined using smaller octree

cells with the size of 0.2m as the internal stresses and elastoplastic constitutive

matrices within each polyhedral subdomain in the proposed method are represented

by constants. The mesh transition between the smaller and larger quadrilateral

elements are handled efficiently using octree mesh. After the generation of octree

mesh, the jagged boundary along the cylindrical notch is trimmed by the STL model

of this beam to generate a smooth cylindrical boundary, which is clearly shown in

Figure 6.9. For verifying the numerical results obtained from the proposed SBFEM
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Figure 6.11. Vertical displacement at point A of cylindrically notched beam.

formulation, the same notched beam is modeled in the commercial software ANSYS

with the FEM mesh illustrated in Figure 6.10. 8-node hexahedral elements are used

in the structured mesh in ANSYS. In order to obtain an accurate reference solution,

the maximum element size used in ANSYS mesh is set to be 0.2m. The minimum

element edge length in ANSYS mesh is about 0.09m in the refined region around

the notch.

6.5.3.1 Static analysis results

In the static elastoplastic analysis, a cyclic pressure P is uniformly applied on the

entire top surface (y = 4.8m) of the beam. This cyclic pressure P changes from

the initial value of P = −8.5MPa (downward) to P = 8.5MPa (upward), and then

decreases and returns back to the initial value of P = −8.5MPa (downward). The

vertical displacement (in y-direction) at point A in Figure 6.7 during this whole

loading-unloading-reloading process is recorded and plotted with the red line in

Figure 6.11. The vertical displacement at the same point computed from ANSYS is

also illustrated in the same figure with black dash line for comparison.

In Figure 6.11, the result computed from present SBFEM formulation agrees
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(a) (b)

Figure 6.12. Contour plots of von Mises stress (GPa) for cylindrically notched beam
after first loading process: (a) from proposed SBFEM formulations and (b) from
ANSYS.

with the reference solution obtained from ANSYS well. After the first loading

(P = −8.5MPa), the relative difference between the SBFEM and ANSYS solu-

tions for the vertical displacement at point A is approximately 1.6%. There are

totally 72630 DOFs used in the FEM analysis in ANSYS. However, the total DOFs

used in the present SBFEM formulation is 38859, which is less than 54% of the total

DOFs used in the ANSYS model. In addition, the computationally expensive return

mapping algorithm only needs to be performed at the scaling centre of each poly-

hedral subdomain in the proposed method. The contour plots of von Mises stress

after the first loading process calculated from the present method and ANSYS are

also summarized in Figures 6.12(a) and 6.12(b) separately for illustration.

6.5.3.2 Dynamic analysis results

For performing the dynamic elastoplastic analysis, the top surface (y = 4.8m) of the

beam is subjected to a suddenly applied (applied during the first time step of New-

mark’s method) uniform pressure of P̄ = −4.5MPa (downward). The same mesh

used in previous static analysis is again employed here for dynamic analysis. New-

mark’s method for nonlinear systems are applied to solve the solutions in the time

domain for both analyses performed in ANSYS and SBFEM. The dynamic responses

during the first 50ms are calculated with the selected time step of ∆t = 0.0625ms

for the convergence of nonlinear analysis. Analogously, the vertical displacement at

261



Figure 6.13. The vertical displacements of cylindrically notched beam at point A
from both dynamic elastic and elastoplastic analyses.

Figure 6.14. The horizontal stresses in subdomain B of cylindrically notched beam
from both dynamic elastic and elastoplastic analyses.

point A from present SBFEM is recorded and plotted with red line in Figure 6.13,

with the reference solution obtained from ANSYS plotted in black dash line. For

comparison, the dynamic elastic analysis of the same simply supported beam with

cylindrical notch under the same suddenly applied pressure P̄ is performed. The

vertical displacement calculated from SBFEM at point A for elastic case is also pre-

sented in the Figure 6.13 with purple line. The displacement result from the elastic

analysis is still verified using ANSYS and plotted in the same Figure 6.13 with black
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(a) t = 10ms (b) t = 20ms

(c) t = 30ms (d) t = 40ms

Figure 6.15. Contour plots of horizontal stress in cylindrically notched beam using
proposed SBFEM at: (a) t = 10ms, (b) t = 20ms, (c) t = 30ms and (d) t = 40ms.

dotted line. In the dynamic response of elastoplastic case, the oscillation of vertical

displacement will not return back to its initial position as in elastic case due to the

permanent plastic deformations in the beam.

The horizontal (x-direction) stress in hexahedral subdomain B shown in Figure

6.9 is also calculated using SBFEM and presented by red and purple lines for dyna-

mic elastoplastic and elastic analyses, as illustrated in Figure 6.14. Here, the elastic

analysis in SBFEM is achieved by simply setting the yield stress of structure to be a

significantly large value in the proposed approach for elastoplastic analysis and thus

avoid the yielding. The average horizontal stresses extracted from the hexahedral

element at the same position with the same shape in ANSYS model are plotted

in Figure 6.14 for the verification of both elastic and elastoplastic results obtained

from SBFEM. Same line styles for presenting different numerical results are used

here as in Figure 6.13. According to Figures 6.13 and 6.14, the displacement and

stress results from dynamic elastoplastic analyses using both SBFEM and ANSYS
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(a) t = 10ms (b) t = 20ms

(c) t = 30ms (d) t = 40ms

Figure 6.16. Contour plots of horizontal stress (GPa) in cylindrically notched beam
using ANSYS at: (a) t = 10ms, (b) t = 20ms, (c) t = 30ms and (d) t = 40ms.

are in very good agreements. In addition, the contour plots of horizontal stresses

from dynamic elastoplastic analyses calculated by the proposed SBFEM and AN-

SYS at time t = 10ms, 20ms, 30ms and 40ms are presented in Figures 6.15 and 6.16

respectively.

6.5.4 3D plate with multiple holes

In this numerical example, a square plate with multiple holes is subjected to a

harmonic excitation uniformly on the top. The geometry of this plate is stated in

Figure 6.17. Totally five holes are in the square plate which has the dimension of

256mm×256mm×24mm. Among those holes, two square holes have the same edge

length of 40mm, three circular holes have the same radius of r = 20mm with all of

their locations marked in Figure 6.17. The whole bottom surface (y = 0) is fixed

in the vertical direction (y direction) and the uniform harmonic pressure P̄ (t) with

units of (GPa) and (ms) for time t, given in Equation (6.83), is applied on the top
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(a) Front view (b) Side view

24mm

2
5

6
m

m

y

zO

2
5

6
m

m

40mm40mm

64mm 64mm 64mm

6
4

m
m

6
4

m
m

6
4

m
m

r r

r

x
y

O

64mm

A

Figure 6.17. Geometry of plate with multiple holes: (a) Front view and (b) Side
view (from +x direction).

of the plate (y = 256mm) pointing upward (positive y direction).

P̄ (t) = 0.082× (1− cos(20t)) (6.83)

The material made of this plate is assumed to be perfectly plastic and follows

von Mises yield criterion. It has the Young’s modulus of E = 206.9GPa, Poisson’s

ratio of ν = 0.3, yield stress of σy = 0.45GPa and density of ρ = 7.7× 103kg/m3.

In this example, the FEM solution computed from ANSYS is again used as the

reference solution for verifying the results obtained using the present SBFEM formu-

lation. The meshes used in ANSYS and SBFEM are illustrated separately in Figure

6.18(a) and (b). In the SBFEM mesh in Figure 6.18a, the octree cells around all the

holes are refined for possible plastic deformation occurs within this region. 4-node

quadrilateral and triangular elements are used in this octree mesh. The minimum

octree cell size is set to be 4mm and the maximum size is 8mm in this SBFEM mesh.

The boundaries of holes are also trimmed to make the geometry smooth. In order

to make the mesh comparable, the maximum element size in ANSYS mesh is equal
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(a) Mesh in SBFEM (b) Mesh in ANSYS

Figure 6.18. Meshes of plate with multiple holes: (a) Mesh in SBFEM and (b) Mesh
in ANSYS.

Figure 6.19. The vertical displacements of plate with multiple holes at point A from
both dynamic elastic and elastoplastic analyses.

to the maximum cell size in SBFEM mesh around the plate edges. Moreover, the

minimum element size in ANSYS mesh is also the same as the minimum cell size

in SBFEM mesh around the boundaries of holes. 4-node tetrahedral elements are

adopted in the ANSYS model. The total number of DOFs in SBFEM model is about

83% of the total number of DOFs used in ANSYS model. The maximum relevant
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(a) t = 0.2ms (b) t = 0.34ms

Figure 6.20. Contour plots of vertical displacement (m) in plate with multiple holes
using proposed SBFEM at: (a) t = 0.2ms and (b) t = 0.34ms.

(a) t = 0.2ms (b) t = 0.34ms

Figure 6.21. Contour plots of vertical displacement (m) in plate with multiple holes
using ANSYS at: (a) t = 0.2ms and (b) t = 0.34ms.

frequency of this excitation is ωmax = 60rad/ms. According to Equation (5.66), the

speed of shear wave in this plate is cs ≈ 3214.76m/s, which gives the shortest wave

length λmin = 2π
ωmax

cs ≈ 0.34m and can be sufficiently represented by the maximum

mesh size. Time step for dynamic analyses using Newmark’s method is set to be

∆t = 2×10−4ms for the convergence of nonlinear analysis. The displacement respon-

ses from both elastic and elastoplastic analyses at point A(128mm, 256mm, 0mm),

shown in Figure 6.17(a), is demonstrated in Figure 6.19. All displacement results are
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(a) t = 0.2ms (b) t = 0.34ms

Figure 6.22. Contour plots of von Mises stresses (GPa) in plate with multiple holes
using proposed SBFEM at: (a) t = 0.2ms and (b) t = 0.34ms.

(a) t = 0.2ms (b) t = 0.34ms

Figure 6.23. Contour plots of von Mises stresses (GPa) in plate with multiple holes
using ANSYS at: (a) t = 0.2ms and (b) t = 0.34ms.

verified using reference solution from ANSYS, good agreements have been observed

in Figure 6.19.

Additionally, the contour plots of vertical displacements and von Mises stresses

at time t = 0.2ms and 0.34ms are illustrated in Figure 6.20 and 6.22 respectively.

For verification purpose, the results of contour plots for vertical displacements and

von Mises stresses from ANSYS at the same moments are also shown in Figure 6.21
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and 6.23 respectively.

6.5.5 3D humerus-shaped structure

The applications of 3D-printing have been used in producing customized implants

and prostheses due to its cost-efficiency, enhanced productivity, democratization

and collaboration. The complex geometry of human structures obtained from x-ray,

MRI or CT scans can be translated to STL files for 3D printing. This solves a

persistent problem in orthopedics that standard implants are often not sufficient

for some patients (Ventola, 2014). Therefore, customized implants from 3D prin-

ting are increasingly used for individual patients. Examples include customized

prosthetic limbs (Fan et al., 2015), skulls in neurosurgery (Banks, 2013) and 3D-

printed titanium mandibular prosthesis (Klein et al., 2013). In the last numerical

example, the dynamic elastoplastic analysis of a structure with human humeral

(upper-limb) shape is performed to demonstrate the capability of proposed SBFEM

formulations for addressing problems with complex geometry and extend the practi-

cal applications of SBFEM. The STL file of a human right humerus is obtained

from the website (profguy, 2014). This prosthesis is assumed to be made of tita-

nium with Young’s modulus of E = 110GPa, Poisson’s ratio of ν = 0.3, initial

yield stress of σy = 0.9GPa, hardening parameter of H = 1.25GPa and density of

ρ = 4.5 × 103kg/m3. Von Mises yield criterion and isotropic hardening rule are

considered in this example. The self-weight of prosthesis is neglected. The size of

this humeral model is 101mm × 49.2mm × 307mm and its geometry with facets in

STL file are shown in Figure 6.24(a).

Modeling the real boundary and loading conditions of humerus in human arm

can be complicated and involves various muscle forces and numerical joints to si-

mulate the shoulder kinematics accurately (Bolte, 2004; Astier et al., 2008). The

discussions on those boundary and loading conditions are out of the scope of this

work. Therefore, for the purpose of demonstrating the proposed method for elas-
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(a) (b)
A

Smaller cell

Larger cell

(c)

Figure 6.24. The humeral prosthesis: (a) The shape of humerus and STL file (b)
Applied boundary conditions and (c) The SBFEM mesh of humerus.

Figure 6.25. The displacements in y direction of humeral prosthesis at point A from
both dynamic elastic and elastoplastic analyses.

toplastic analysis, the simplified boundary and loading conditions shown in Figure

6.24(b) is applied in this example. In Figure 6.24(b), all nodes on the surface within

the blue area of the humerus is fixed in all DOFs and all elements with nodes within

the red region in the deltoid tuberosity are subjected to a suddenly applied (applied

during the first time step of Newmark’s method) uniform pressure in -y direction
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(a) t = 1ms

(b) t = 3ms

(c) t = 6ms

(d) t = 8ms

Figure 6.26. Contour plots of displacements (m) in y direction in humeral prosthesis
using SBFEM at: (a) t = 1ms, (b) t = 3ms, (c) t = 6ms and (d) t = 8ms.

on the surface. The magnitude of the suddenly applied pressure is P̄ = 18MPa.

The minimum and maximum cell size in the octree mesh is set to be 3.24mm and

6.48mm respectively to capture the geometrical features and the final trimmed mesh

is shown in Figure 6.24(c). Totally 7567 nodes are used in the presented SBFEM

mesh. The mesh inside the humerus around the fixed end is refined using the smal-

ler cell size due to possible plastic deformations that may happen in this region as

shown in Figure 6.24(c). Both dynamic elastic and elastoplastic analyses are perfor-

med on this example and the displacement results in y direction at point A, which
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(a) t = 1ms

(b) t = 3ms

(c) t = 6ms

(d) t = 8ms

Figure 6.27. Contour plots of von Mises stresses (GPa) in humeral prosthesis using
SBFEM at: (a) t = 1ms, (b) t = 3ms, (c) t = 6ms and (d) t = 8ms.

is at the bottom with smallest z coordinate marked in Figure 6.24(c) with red dot,

are presented in Figure 6.25 with elastic results in black dash line and elastoplastic

results in red solid line. The dynamic responses during the first 8ms are calculated

with the selected time step of ∆t = 0.005ms in Newmark’s method.

The contour plots of the displacements in y direction and von Mises stresses at

time t = 1ms, 3ms, 6ms and 8ms are presented in Figures 6.26 and 6.27 respectively

for illustrating the numerical results from elastoplastic analysis of this humerus-

shaped structure using present SBFEM. From results in Figure 6.27 and 6.26, large
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displacements in loading (y) direction happen around the free end (capitulum) of

this structure and the von Mises stresses tend to concentrate on the head-side (fixed

end) of the deltoid tuberosity.

6.6 Conclusions

This chapter presents an automatic way of performing static and dynamic elasto-

plastic analyses from STL models using SBFEM. The automatic mesh generation

from STL model is achieved by utilizing the octree mesh technique and a systema-

tic way of boundary trimming according to STL facets. For guaranteeing the high

efficiency and easy of implementation of the automatic elastoplastic analysis in 3D

using SBFEM, the proposed method in this chapter is based on the approach in

Reference (He, 2017) for 2D image-based elastoplastic analysis and extends it to 3D

static and dynamic elastoplasticity. This approach is very efficient in modeling elas-

toplastic models with quadtree or octree based mesh. Because small cell sizes are

preferred to be used in quadtree or octree decomposition for better representing the

geometrical features in the input models, the elastoplastic constitutive matrices and

internal stresses can be approximated by constant values within each subdomain in

SBFEM. As a result, the return mapping algorithm should only be performed at

the scaling center of each subdomain with plastic deformation. The internal loads

due to the higher order stresses are used as the stabilisation part in the formulation

to control the spurious modes in plastic subdomains. The mesh transition between

refined yield zone and unrefined elastic zone is also handled efficiently with octree

mesh in this chapter. Various numerical examples for 3D elastoplastic analysis are

presented in this chapter for verification as well as for demonstrating the accuracy

and efficiency of the proposed method. This achieved by comparing the results from

SBFEM with available analytical solutions and standard FEM elastoplastic analysis

using commercial software ANSYS. Furthermore, a 3D dynamic elastoplastic analy-
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sis of a titanium humerus-shaped structure is performed to prove the capability of

this proposed SBFEM on handling 3D models with complex geometry and extend

the practicability of this numerical tool to possible biomechanical applications.
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Chapter 7

2D and 3D acoustic-structure

interaction analyses considering

structural elastoplasticity using

SBFEM

7.1 Introduction

The investigation of interaction between structure and acoustic media, or the acoustic-

structure interaction analysis, is a research area of great significance in various civil

and mechanical engineering applications. These include the design of dam-reservoir

system, marine structures, nuclear rector component, etc. In many cases, the inte-

raction effects between acoustics and structures are not negligible due to the sur-

rounding heavy fluids, for instance water, or the light and flexible structures. For

such an acoustic-structure interaction system subjected to severe transient excitati-

ons, such as the earthquake response of dam-reservoir system, plastic deformations

may occur in part of the structural domain and the elastoplastic behavior of the

vibrating structures has to be considered.
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In the aforementioned acoustic-structure interaction problems considering struc-

tural elastoplasticity, a method to perform direct time-domain analysis is required

for considering the nonlinearity of structures in the coupled formulations. In order

to model the acoustic-structural interaction system with great flexibility, numerical

methods are extensively applied by researches in this research area. Among them,

the finite element method (FEM) is possibly the most popular one as it is suitable

for modelling structural nonlinearity and the bounded acoustic domain with arbi-

trary geometry. However, FEM is not suitable for the direct modelling of systems

with infinite domains because of the wave reflection from the truncated boundaries

of the finite mesh. One of the commonly used method for modelling unbounded

domains in acoustic-structure interactions is the boundary element method (BEM)

(Marburg and Nolte, 2008) as reviewed in Chapter 5.

As a promising method for performing the numerical analysis in both bounded

and unbounded domains, the SBFEM is a semi-analytical computational tool shows

advantages from both FEM and BEM. In SBFEM, only the boundary is discretized

and the radiation condition at infinity is satisfied exactly (Wolf and Song, 1996) wit-

hout the requirement of fundamental solution. The original scaled boundary finite

element formulation for modelling unbounded domain is global in space and time

and thus computationally expensive (Song and Wolf, 1995, 1996). For solving the

wave propagation problems in unbounded acoustic domains with higher efficiency,

the high-order doubly-asymptotic open boundary (Prempramote et al., 2009; Prem-

pramote, 2011; Birk et al., 2016) is also introduced recently. The dynamic impedance

coefficients of an unbounded domain are obtained in the frequency domain by means

of continued-fraction expansions. The time-domain formulation is then obtained by

introducing auxiliary variables and the resulting global equations of motion for in-

finite acoustic domain can be solved by standard time-stepping schemes for direct

time-domain analysis. For modelling the bounded domain, the SBFEM excels in

representing stress singularities as the analytical solutions can be provided in radial
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directions (Song, 2004a). For utilizing the advantages of boundary discretization,

the SBFEM is combined with quadtree and octree mesh techniques and provides

an efficient approach for automatic stress analysis (Saputra et al., 2017a; Liu et al.,

2017; He, 2017; Gravenkamp et al., 2017). The SBFEM has also been applied to

model structural nonlinearity in (Ooi et al., 2014; Chen et al., 2017a), which requires

multiple fitting points within each subdomain for interpolating the nonlinear con-

stitutive matrix and stresses. Later, a more efficient approach is developed for 2D

image-based elastoplastic analysis (He, 2017). Comparing with previous methods

based on SBFEM for modelling nonlinear structural behavior, this efficient approach

for image-based elastoplastic analysis only requires one fitting point within each sub-

domain and thus reduces the locations for performing the computationally expensive

return mapping algorithm.

The SBFEM has been applied to acoustic-structure interaction systems by some

researchers (Wolf, 2003; Li, 2006, 2011; Wang et al., 2011; Fan et al., 2005; Fan and

Li, 2008; LI et al., 2008; Li, 2012, 2009; Lin et al., 2007, 2012). To the author’s

knowledge, the scaled boundary finite element formulations published so far for

acoustic-structure interaction problems or dam-reservoir interaction problems have

only considered the elastic behavior of structures. In this chapter, the SBFEM is

further developed to model the 2D and 3D acoustic-structure interaction problems

considering the elastoplastic behavior of the finite structural domain. The infinite

acoustic domain is modeled by the approaches developed in Chapter 3 and 4 based

on SBFEM. The structure is then simulated using the recently developed scaled

boundary finite element formulations for 2D (He, 2017) and 3D elastoplasticity in

Chapter 6. The Newmark’s method is directly applied to the coupled equations

of motion for obtaining the transient solutions and the modified Newton-Raphson

algorithm is adopted to achieve the force and flux equilibrium states for the coupling

equations within each time step.

The remaining parts of this chapter is outlined as follows: Section 7.2 firstly
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summarizes the SBFEM formulations for dynamic elastoplastic analysis. Then,

the coupling of elastoplastic equations for structures and acoustic formulations are

presented in Section 7.3. Next, the computational procedures for performing the

acoustic-structure interaction analysis considering the structural elastoplasticity ba-

sed on SBFEM are summarized in Section 7.4. Some numerical examples are given

in Section 7.5 for illustrating the accuracy and robustness of the proposed approach.

Finally, conclusions are stated in Section 7.6.

7.2 Scaled boundary finite element method for

dynamic elastoplasticity

The 2D and 3D SBFEM formulations for dynamic elastoplastic analysis using only

one fitting point in each subdomain are summarized here. Readers are referred to

(He, 2017) and Chapter 6 of this thesis for details. Considering the small strain

and deformation type of motion for an elastoplastic structure and neglecting the

damping, it can be described by the following incremental form of matrix equation

at the time step j:[
nPol∑
i=1

M

]
∆Üb|(j) +

[
nPol∑
i=1

Kep

]
∆Ub|(j) = ∆Fext|(j) (7.1)

where
[∑nPol

i=1 M
]

is the assembled global mass matrix and given by Equation (5.29)

in SBFEM. ∆Ub|(j) and ∆Fext|(j) are the global incremental nodal displacement and

external force vector respectively due to any applied incremental load during time

step j.
[∑nPol

i=1 Kep

]
is the true global elastoplastic stiffness matrix for time step

j.
[∑nPol

i=1 Kep

]
is normally unknown for the current step as the elastoplastic stif-

fness matrix for each subdomain Kep can only be calculated from a given state of

stresses. The approach for calculating Kep is described in Section 6.3.3 for 3D ana-

lysis or Appendix B.1 for 2D analysis. Because the elastoplastic stiffness matrix

for each subdomain Kep varies with stress states and thus is a function of struc-
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tural displacement vector ub, it should be recalculated at each time step once the

yielding happens. For solving Equation (7.1) for dynamic elastoplastic analysis,

time-marching integration schemes are often applied in conjunction with standard

iterative scheme for solving nonlinear equations, such as the use of Newmark’s met-

hod with modified Newton-Raphson iterations for dynamic elastoplastic analysis

demonstrated in Section 6.4.2, Chapter 6. The reason for using iterative approach

in Newmark’s method is that the known elastoplastic stiffness matrix from the last

time step Kep|(j−1) is used to replace the unknown true elastoplastic stiffness matrix

Kep for the current time step. The use of Kep|(j−1) to predict the deformation under

the incremental external force will certainly introduce error in the final incremental

nodal displacement ∆Ub|(j). Therefore, an additional iterative scheme should be

involved to correct ∆Ub|(j) and reduce this error. In other words, the following

effective static problem at the time step j in Newmark’s method is solved iteratively

using modified Newton-Raphson iterations as:

K̂|(j−1)dUb|k(j) = F̂ext|(j) − F̂dynamic
int |k(j) (7.2a)

∆Ub|k(j) = ∆Ub|k−1
(j) + dUb|k(j) (7.2b)

In Equation (7.2), ∆Ub|k(j) is the incremental displacement vector during time

step j at the end of Newton-Raphson iteration step k. dUb|k(j) is the incremental

displacement vector during the Newton-Raphson iteration step k, which is used

to update ∆Ub|k(j) within time step j until the effective residual force F̂ext|(j) −

F̂dynamic
int |k(j) is smaller than a predefined tolerance. The evaluation of the residual

forces is described by steps (i) to (iii) and Equations (6.69) and (6.72) in Section

6.4.2. In a 3D analysis, the approach for calculating the static internal force vector

for Fstatic
int |k(j) in Equation (6.72) is demonstrated in Section 6.3.4. For 2D case, this

is summarized in Appendix B.2. K̂|(j−1) in Equation (7.2a) is the effective stiffness

matrix obtained from the last time step j − 1 via Equation (6.70).
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7.3 Coupling of elastoplastic structural domain

and acoustic domain

For performing the dynamic acoustic-structure interaction analysis considering the

elastoplastic structural behavior, procedures similar to those summarized in Section

7.2 or listed in Section 6.4.2 for dynamic elastoplastic analysis are adopted here.

The incremental form of the global equations of motion for the acoustic-structure

interaction system considering structural elastoplasticity for any time step j can be

formulated as:

Mep
G∆Z̈epG |(j) +Cep

G∆ŻepG |(j) +Kep
G∆ZepG |(j) = ∆Fep

G |(j) (7.3)

The global mass, damping and stiffness matrices Mep
G , Cep

G and Kep
G in Equation (7.3)

can be formulated by coupling the global equations for infinite acoustic domain in

Equation (3.116) or (4.45) for 2D or 3D acoustics with the global equations for 2D or

3D dynamic elastoplastic analysis for structural domain in Equation (7.1). Boundary

conditions on acoustic-structure interface from Equation (5.53) are satisfied during

the coupling of elastoplastic structures and acoustic domains. Following similar

coupling procedures and rearrangement of coupled equations in Section 5.3.2, the

global vector of unknown ZepG for acoustic-structure interaction system considering

the structural elastoplasticity can be defined by:

ZepG =

{
uo(t) uas(t) pas(t) po(t) p̃(t)

}T
(7.4)

which contains both the nodal displacement uo and uas of structure, nodal pressure

pas and po from acoustics and auxiliary variables p̃ used for bounded and unbounded

acoustic domain. Subscript ’as’ and ’o’ denote the DOFs corresponding to acoustic-

structure interface and other parts of the system. The corresponding global load

vector Fep
G can therefore be written as

Fep
G =

{
Fo(t) Fext

as (t) Rext
as (t) Ro(t) 0

}T
(7.5)
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The global mass, damping and stiffness matrices Mep
G , Cep

G and Kep
G are also presented

in the following equations:

Mep
G =



Ms
o Ms

o·as

[Ms
o·as]

T Ms
as

0 0

0 ρaH
T
as

0 0

Ma
as Ma

as·o

[Ma
as·o]

T Ma
o

M̃a
2

0
[
M̃a

2

]T
M̃a

1


(7.6a)

Cep
G =



0 0 0

0
0 0

0 Ca
o

0

0 0 C̃a
1


(7.6b)

Kep
G =



Kep
o Kep

o·as

[Kep
o·as]

T Kep
as

0 0

−Has 0
0

0
Ka
as Ka

as·o

[Ka
as·o]

T Ka
o

K̃a
2

0
[
K̃a

2

]T
K̃a

1


(7.6c)

In Equation (7.6c), the top-left partition represents the true global elastoplastic

stiffness matrix from structural domain for time step j. Comparing with Equation

(7.1) the following relationship is obtained for Equations (7.1) and (7.6):[
nPol∑
i=1

M

]
=

 Ms
o Ms

o·as

[Ms
o·as]

T Ms
as

 (7.7a)

[
nPol∑
i=1

Kep

]
=

 Kep
o Kep

o·as

[Kep
o·as]

T Kep
as

 (7.7b)

For the elastic case, the elastic stiffness matrix
[∑nPol

i=1 Ke

]
from Equation (5.22)

281



is used to replace the top-left partition in Equation (7.6c).[
nPol∑
i=1

Ke

]
=

 Kep
o Kep

o·as

[Kep
o·as]

T Kep
as

 (7.8)

Other notations in Equation (7.6) have the same definitions as in Equation (5.59).

The symmetric formulation for acoustic-structure interaction system considering

structural elastoplasticity can again be derived using the same strategy presented

in Section 5.3.3 or (Everstine, 1981). Therefore, the details of the derivation are

omitted here. The incremental form of the symmetric global equations of motion

for the acoustic-structure interaction system considering structural elastoplasticity

for any time step j can be formulates as:

M̄ep
G∆

¨̄ZepG |(j) + C̄ep
G∆

˙̄ZepG |(j) + K̄ep
G∆Z̄epG |(j) = ∆F̄ep

G |(j) (7.9)

The global vector of unknown and load vector for symmetric formulation can be

expressed as:

Z̄epG =

{
uo(t) uas(t) qas(t) qo(t) q̃(t)

}T
(7.10a)

F̄ep
G =

{
Fo(t) Fext

as (t) Vext
as (t) Vo(t) 0

}T
(7.10b)

with the same choices of notations as in Equation (5.62) and (5.63). The symmetric

global mass, damping and stiffness matrices M̄ep
G , C̄ep

G and K̄ep
G are also given in the

following equations:

M̄ep
G =



Ms
o Ms

o·as

[Ms
o·as]

T Ms
as

0 0

0 0

0 0

− 1
ρa
Ma

as − 1
ρa
Ma

as·o

− 1
ρa

[Ma
as·o]

T − 1
ρa
Ma

o

− 1
ρa
M̃a

2

0 − 1
ρa

[
M̃a

2

]T
− 1
ρa
M̃a

1


(7.11a)
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C̄ep
G =



0
0 0

−Has 0
0

0 −HT
as

0 0

0 0

0 − 1
ρa
Ca
o

0

0 0 − 1
ρa
C̃a

1


(7.11b)

K̄ep
G =



Kep
o Kep

o·as

[Kep
o·as]

T Kep
as

0 0

0
− 1
ρa
Ka
as − 1

ρa
Ka
as·o

− 1
ρa

[Ka
as·o]

T − 1
ρa
Ka
o

− 1
ρa
K̃a

2

0 − 1
ρa

[
K̃a

2

]T
− 1
ρa
K̃a

1


(7.11c)

with other notations in Equation (7.11) have the same definitions as in Equation

(5.64).

Equation (7.3) or (7.9) can be solved using the Newmark’s scheme for transient

analysis. Analogous to the dynamic elastoplastic analysis summarized in Section

7.2, the partitions in Equation (7.7b) relating to the DOFs in structural domain

in the global stiffness matrix Kep
G or K̄ep

G are the true global elastoplastic stiffness

matrix
[∑nPol

i=1 Kep

]
for current time step j, which is currently unknown. Again,

the known elastoplastic stiffness matrix of the structural domain from the last time

step
[∑nPol

i=1 Kep|(j−1)

]
is used to replace the partitions related to the unknown true

elastoplastic stiffness matrix
[∑nPol

i=1 Kep

]
in the global stiffness matrix Kep

G or K̄ep
G .

The structural deformation under the applied external load and interacting force

from the acoustic domain can be predicted by using the known elastoplastic stiff-

ness matrix
[∑nPol

i=1 Kep|(j−1)

]
. This estimation will inevitably introduce errors into

both structural and acoustic results. Hence, iterative scheme, such as the modi-

fied Newton-Raphson method, should again be involved within each time step to

minimize the errors. A detailed description of the computational procedures for

the dynamic acoustic-structure interaction analysis considering the structural elas-
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toplasticity is presented in the following section.

7.4 Computational procedure for acoustic-structure

interaction analysis considering structural elas-

toplasticity

This section demonstrates the computational procedures for the acoustic-structure

interaction analysis considering structural elastoplasticity using SBFEM. Before the

computation entering the first time step, some coefficient matrices can be precom-

puted and stored in the system memory for later use as they are irrelevant from the

corresponding state of stresses and will remain constants in the following calculati-

ons. These precomputed matrices includes the global mass and damping matrices

Mep
G , Cep

G in Equation (7.3), as well as the stiffness matrix Kep
G in Equation (7.6c) for

elastic case using Equation (7.8) (or the symmetric global mass, damping matrices

and stiffness matrix in elastic case M̄ep
G , C̄ep

G and K̄ep
G from Equation (7.9), if the sym-

metric formulation is used) before the yielding starts. After the yielding happens,

only the partition in the Kep
G or K̄ep

G related to the DOFs in the structural domain

should be replaced by the elastoplastic stiffness matrix
[∑nPol

i=1 Kep

]
as described by

Equation (7.7b). For calculating the elastoplastic stiffness matrix
[∑nPol

i=1 Kep

]
, the

elastoplastic strain-displacement matrix B(ξ, η, ζ) in Equation (6.7) for 3D or B(ξ, η)

in Equation (B.2) for 2D analysis is still unaltered during all time steps, which indi-

cates that Ψun , Sn and Ψϵ(η, ζ) in Equation (5.17) and (6.8) (For 2D analysis, Ψϵ(η)

can be calculated by Equation (B.3)) can be precomputed and stored as described

at the beginning of Section 6.4 for elastoplastic analysis. The standard Newmark’s

method with γ = 0.5 and β = 0.25 (average acceleration scheme) is employed here

for solving Equation (7.3) or (7.9) in conjunction with the modified Newton-Raphson

iteration. The modified Newton-Raphson iteration is applied in each time step after
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the start of yielding to minimize the residual load. For acoustic-structure interaction

problems, the residual load includes both the residual force from structural domain

and residual flux from acoustic domain. The relative norm χ of residual load is

calculated and compared with the tolerance value χtol for checking if the solution

has converged. The following computational procedure is directly applicable to the

symmetrical formulation in Equation (7.9) as well by simply replacing all the ma-

trices and vectors Mep
G , Cep

G , Kep
G and ZepG , Fep

G in the following steps with M̄ep
G , C̄ep

G ,

K̄ep
G and Z̄epG , F̄ep

G from symmetrical formulation.

1. Initial calculations of geometrically similar and trimmed cells in both acoustic

and structural domains and stored the results for later use

(a) Calculate all global coefficient matrices for acoustic-structure interaction

system Mep
G , Cep

G and Kep
G with elastic structure in SBFEM. Save Ψun ,

Ψqn and Sn in Equation (5.17) when solving each structural subdomain.

(b) Calculate strain modes Ψϵ(η, ζ) for these subdomains according to Equa-

tion(6.8) for 3D analysis or Ψϵ(η) in Equation (B.3) for 2D analysis.

2. Initial calculations for time step j = 0 in Newmark’s method.

(a) Assuming structure and acoustics at rest at the beginning and initializing

the total vector of unknown ZepG |(j) = 0, its first derivative ŻepG |(j) = 0

and second derivative Z̈epG |(j) = 0 at j = 0.

(b) Select the time-step size ∆t.

(c) Calculate the constant matrices used later in Newmark’s iterations: a =

1
β∆t

Mep
G + γ

β
Cep
G and b = 1

2β
Mep

G +∆t
(
γ
2β

− 1
)
Cep
G .

3. For time steps j = 1, 2, 3, · · · :

(a) Compute the incremental external load vector ∆Fep
G |(j) between time step

j − 1 and j in Equation (7.3).
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(b) Compute effective incremental load vector ∆F̂ep
G,ext|(j).

∆F̂ep
G,ext|(j) = ∆Fep

G |(j) + aŻepG |(j−1) + bÜb|(j−1) (7.12)

(c) Repeat Steps 3.(b) to 3.(e) in the load-step loop in the procedures for

static elastoplastic analysis in Section 6.4.1 to calculate the total tangent

elastoplastic stiffness matrices Kep|(j−1) for each structural subdomain.

If all structural subdomains are elastic, then jump to Step (e).

(d) Assemble the elastoplastic stiffness matrix
[∑nPol

i=1 Kep|(j−1)

]
for structu-

ral domain. Then, replace the partition in the global stiffness matrix for

acoustic-structure interaction system Kep
G |(j−1) corresponding to DOFs

in structural domain by
[∑nPol

i=1 Kep|(j−1)

]
according to Equations (7.7b)

and (7.6c).

(e) Compute global effective stiffness matrix K̂ep|(j−1).

K̂ep|(j−1) = Kep
G |(j−1) +

γ

β∆t
Cep
G +

1

β(∆t)2
Mep

G (7.13)

(f) Solving initial incremental vector of unknown ∆ZepG |(j) for each time step.

∆ZepG |(j) =
[
K̂ep|(j−1)

]−1

∆F̂ep
G,ext|(j) (7.14)

(g) At equilibrium iteration k = 0, initializing the incremental vector of

unknown ∆ZepG |k(j) = ∆ZepG |(j), accumulated vector of unknown ZepG |k(j−1) =∑j−1
j=1∆ZepG |(j) to last time step j − 1 (ZepG |k(j−1) = 0 for j = 1) and accu-

mulated total effective external load vector F̂ep,tot
G,ext|(j) =

∑j
j=1∆F̂ep

G,ext|(j)

to this time step j for each subdomain.

(h) The modified Newton-Raphson algorithm is applied to correct the incre-

mental vector of unknown ∆ZepG |(j) in each time step. For equilibrium

iterations k = 1, 2, 3, · · · :

i. Repeat Steps 3.(i).i to 3.(i).iv in the equilibrium iterations for static
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elastoplastic analysis in Section 6.4.1 and assemble the global total

internal forces vectors in statics Fstatic
int |k(j) =

{∑nPol
i=1 Ftot

int|k(j)
}

for the

structural domain.

ii. Calculate the static incremental load vector in modified Newton-

Raphson iteration for acoustic-structure interaction problem Fep,static
G,int |k(j)

defined by:

Fep,static
G,int |k(j) = Kep

G

(
ZepG |

k
(j−1) +∆ZepG |

k
(j)

)
=

 Fep,static
int |k(j)

Rep,static
int |k(j)

 (7.15)

which includes both the static total internal forces vector Fep,static
int |k(j)

from structural domain and the static total internal flux vector Rep,static
int |k(j)

from acoustic domain. The evaluation of Fep,static
G,int |k(j) is explained in

Section 7.4.1. For unsymmetrical formulation in Equation (7.3), it is

given by Equations (7.28) and (7.27b). For symmetrical formulation

in Equation (7.9), Fep,static
G,int |k(j) is calculated by Equations (7.32).

iii. Calculate the effective global vector for total internal load F̂ep,dynamic
G,int |k(j),

F̂ep,dynamic
G,int |k(j)

= Fep,static
G,int |k(j) +

(
K̂ep|(j−1) −Kep

G |(j−1)

) (
ZepG |

k
(j−1) +∆ZepG |

k
(j)

)
(7.16)

iv. Calculate effective global residual load vector dF̂ep|k(j) = F̂ep,tot
G,ext|(j) −

F̂ep,dynamic
G,int |k(j)

v. Calculate incremental vector of unknown dZepG |k(j) due to residual

force based on Step (f) in time-step iteration.

dZepG |
k
(j) =

[
K̂|(j−1)

]−1

dF̂ep|k(j) (7.17)

vi. Correct the incremental displacement vector ∆ZepG |k(j) = ∆ZepG |
k−1
(j) +

dZepG |k(j).
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vii. Calculate norm of effective residual load vector χ =
∥∥∥dF̂ep|k(j)

∥∥∥.

viii. Check for convergence:

• If χ > χtol, set iteration index k = k + 1 and return to Step i.

• If χ ≤ χtol, exit the equilibrium iteration.

(i) Compute incremental velocity vector ∆ŻepG |k(j),

∆ŻepG |
k
(j) =

γ

β∆t
∆ZepG |

k
(j) −

γ

β
ŻepG |(j) +∆t

(
1− γ

2β

)
Z̈epG |(j) (7.18)

and incremental acceleration vector∆Üb|k(j)

∆Z̈epG |
k
(j) =

1

β(∆t)2
∆ZepG |

k
(j) −

1

β∆t
ŻepG |(j) −

1

2β
Z̈epG |(j) (7.19)

(j) Update the total displacement vector

ZepG |(j) = ZepG |(j−1) +∆ZepG |
k
(j) (7.20)

total velocity vector

ŻepG |(j) = ŻepG |(j−1) +∆ŻepG |
k
(j) (7.21)

total acceleration vector

Z̈epG |(j) = Z̈epG |(j−1) +∆Z̈epG |
k
(j) (7.22)

and set the time-step number j = j + 1, then returns to Step (a) in

time-step loop.

7.4.1 Calculate static incremental load vector in modified

Newton-Raphson iteration for acoustic-structure in-

teraction problem

The evaluation of static incremental load vector in Equation (7.15) from the Step

3.(h).ii in the above computational procedure is explained here. First of all, via

observing Equations (7.6c), (7.7b) and (5.41c), the global stiffness matrix for the
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acoustic-structure interaction system considering structural elastoplasticity Kep
G ba-

sed on the unsymmetrical formulation can be subdivided into parts related to struc-

tural domain, acoustic domain and coupling part respectively as

Kep
G =


[∑nPol

i=1 Kep

]
KH

0 Ka
G

 (7.23)

with
[∑nPol

i=1 Kep

]
the elastoplastic stiffness matrix for structure, Ka

G the stiffness

matrix for acoustic domain and KH represents the coupling part in Equation (7.6c)

and defined as

KH =

 0 0

−Has 0
0

 (7.24)

The vector of unknown ZepG from Equation (7.4) can also be partitioned as

ZepG =

{
Ub zG

}T
(7.25)

with the structural displacement Ub = { uo(t) uas(t) }T from Equation (6.20)

and vector of unknowns in acoustics zG = { pas(t) po(t) p̃(t) }T from Equation

(5.39). Substitute Equation (7.23) and (7.25) into (7.15) yields

Fep,static
G,int |k(j) =

[∑nPol
i=1 Kep

]
KH

0 Ka
G


 Ub|k(j−1) +∆Ub|k(j)

zG|k(j−1) +∆zG|k(j)

 =

 Fep,static
int |k(j)

Rep,static
int |k(j)

 (7.26)

Thus, the static total internal forces vector Fep,static
int |k(j) from structural domain and

the static total internal flux vector Rep,static
int |k(j) from acoustic domain can be obtained

from Equation (7.26) for unsymmetrical formulation:

Fep,static
int |k(j) =

[
nPol∑
i=1

Kep

] (
Ub|k(j−1) +∆Ub|k(j)

)
+KH

(
zG|k(j−1) +∆zG|k(j)

)
(7.27a)

Rep,static
int |k(j) = Ka

G

(
zG|k(j−1) +∆zG|k(j)

)
(7.27b)

In Equation (7.27), KH and Ka
G remain constants in every time step.

[∑nPol
i=1 Kep

]
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is the unknown true elastoplastic stiffness matrix for structure. Thus, the first term

on the right-hand-side of Equation (7.27a), which represents the internal nodal for-

ces in statics, can only be evaluated by Equation (6.55) in SBFEM and obtained at

Step 3.(h).i as Fstatic
int |k(j) in the computational procedure in Section 7.4 for the kth

Newton-Raphson iteration in the time step j. Therefore, the static total internal

forces vector Fep,static
int |k(j) can be evaluated by:

Fep,static
int |k(j) = Fstatic

int |k(j) +KH

(
zG|k(j−1) +∆zG|k(j)

)
(7.28)

The second term on the right-hand-side of Equation (7.28) represents the contribu-

tion from the acoustic domain in the static total internal forces vector Fep,static
int |k(j).

For the symmetric formulation of acoustic-structure interaction system conside-

ring structural elastoplasticity. K̄ep
G in Equation (7.11c) can be subdivided following

the same way in Equation (7.23) as:

K̄ep
G =


[∑nPol

i=1 Kep

]
0

0 − 1
ρa
Ka
G

 (7.29)

The vector of unknown Z̄epG in Equation (7.10a) can also be partitioned as

Z̄epG =

{
Ub z̄G

}T
(7.30)

with the vector of unknowns in acoustic domain for symmetric formulation z̄G =

{ qas(t) qo(t) q̃(t) }T with each variable defined by Equation (5.60). Substitute

Equation (7.29) and (7.30) into (7.15) yields

Fep,static
G,int |k(j) =
[∑nPol

i=1 Kep

]
0

0 − 1
ρa
Ka
G


 Ub|k(j−1) +∆Ub|k(j)

z̄G|k(j−1) +∆z̄G|k(j)

 =

 Fep,static
int |k(j)

Rep,static
int |k(j)

 (7.31)

Thus, Fep,static
int |k(j) and Rep,static

int |k(j) can be obtained from Equation (7.31) for symme-
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tric formulation:

Fep,static
int |k(j) = Fstatic

int |k(j) (7.32a)

Rep,static
int |k(j) = − 1

ρa
Ka
G

(
z̄G|k(j−1) +∆z̄G|k(j)

)
(7.32b)

7.5 Numerical examples

Three numerical examples are presented in this section to validate the proposed

approach for both 2D and 3D acoustic-structure interaction analyses considering

structural elastoplasticity based on SBFEM. Two 2D examples, which include the

same simply supported beam submerged in an infinite acoustic plane and interacted

with a semi-infinite acoustic plane, are studied in Section 7.5.1 and 7.5.2 separately.

The beam used in Section 7.5.1 and 7.5.2 has the same dimensions as it used in

Section 5.4.2 from Chapter 5. In the last example in Section 7.5.3, a 3D elastoplastic

plate submerged in infinite acoustic space, which has the same geometry as in Section

5.4.4 from Chapter 5, is simulated. All structures in this section are considered to

be elastoplastic with the material properties of: Young’s modulus E = 100GPa,

yield stress σy = 0.16MPa, structural density ρs = 1500kg/m3 and Poisson ratio

ν = 0.333. Elastic-perfectly plastic material is also assumed for all structures with

von Mises yield criterion. All acoustic media are assumed to be water with the

sound speed of c = 1482m/s and acoustic density of ρa = 1000kg/m3. Reference

solutions are calculated for all three examples using FEM in ANSYS with extended

meshes for the 2D and 3D unbounded acoustic domains to verify the feasibility

and accuracy of the proposed SBFEM. Newmark’s scheme presented in Section 7.4

with the parameters α = 0.5 and β = 0.25 are applied here with modified Newton-

Raphson iteration to obtain the solutions for elastoplastic structures and linear

acoustic domains.
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(a) (b)

Figure 7.1. The SBFEM mesh of an elastoplastic beam submerged in infinite acou-
stic domain: (a) the mesh of whole coupled system and (b) a detailed view of
subdomains around acoustic-structure interface.

7.5.1 Elastoplastic beam submerged in infinite acoustic plane

A simply supported elastoplastic beam submerged in infinite acoustic plane is stu-

died in this example. The geometrical layout of the SBFEM model for this problem

is the same as the acoustic-structure interaction system demonstrated in Section

5.4.2 and can be referred to Figure 5.9. The red beam in Figure 5.9 is elastic in

Section 5.4.2 but is considered to be elastoplastic in this example and subjected to

the same uniformly distributed load Fb(t) on the top surface AB. The time his-

tory of Fb(t) and its Fourier transform are presented in Figures 5.10(a) and 5.10(b)

respectively.

Because the applied load and acoustic domain are the same as in Section 5.4.2,

the shortest wavelength in acoustic domain remains the same. The same SBFEM

mesh is used for the acoustic domain. For the structural domain, smaller subdomain

size is adopted with 128 subdomains in horizontal direction and 32 subdomains in
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Figure 7.2. Structural displacement at point O in the coupled model of an elasto-
plastic beam submerged in infinite acoustic domain.

the vertical direction. This is for better predicting the elastoplastic behavior of the

beam with constant internal stresses and elastoplastic constitutive matrices in each

subdomain. The SBFEM mesh used in this example is shown in Figure 7.1 with

a closer view of subdomains surrounded by the red dash line near the acoustic-

structure interface. For the clearer presentation of the coupled mesh of acoustic

domain and structure, the red keypoints for defining the structural subdomains and

the scaling centre are not shown in Figure 7.1(a). Only one 2-node element is used

on each edge of the structural subdomain. Analogously, two terms of continued-

fractions are used for bounded acoustic domain. Orders of high-frequency and

low-frequency continued-fraction expansions for circular open boundary are again

selected as MH = ML = 1. Newmark’s method is applied here with the constant

time step of ∆t = 0.02ms to achieve the convergence of modified Newton-Raphson

iteration within each time step.

Solutions calculated by the proposed SBFEM at Points O(0m, 0m), E(0m, 3m)

and F(0m, 20m) from Figure 5.9 are plotted as blue solid lines in Figures 7.2 - 7.4.

These results are also verified by the reference solutions obtained using FEM in AN-

SYS as black dotted lines in corresponding figures. Those reference solutions from

ANSYS are calculated using extended mesh with the radius of 170m for avoiding
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Figure 7.3. Results at point E in the coupled model of an elastoplastic beam submer-
ged in infinite acoustic domain: (a) vertical displacement and (b) acoustic pressure.

reflected waves during the first 80ms for unbounded acoustic domain. The structu-

ral domain in FEM mesh is also divided into 128 and 32 elements in horizontal and

vertical directions respectively with 4-node quadrilateral elements. 3-node triangu-

lar elements with the maximum edge length of 0.6m are again used in ANSYS for

the acoustic domain to achieve mesh transition on the acoustic-structure interface.

Point E is located on the acoustic-structure interface, both vertical displacement

and acoustic pressure at this point are given in Figure 7.3(a) and (b), respectively.

Points O and F are located in the structural and acoustic domains separately, thus

the results of vertical displacement and acoustic pressure for these two points are

illustrated in Figures 7.2 and 7.4 separately. Very good agreements with the re-
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Figure 7.4. Acoustic pressure at point F in the coupled model of an elastoplastic
beam submerged in infinite acoustic domain.
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Figure 7.5. The acoustic-structure interaction model of an elastoplastic beam inte-
racting with semi-infinite acoustic domain.

ference solutions are obtained. For all the results given in Figures 7.2 - 7.4, the

results obtained in Section 5.4.2 for the case of an elastic beam, are plotted in the

corresponding figures for comparisons with solutions obtained by considering the

elastoplastic behavior of structure.

7.5.2 Interaction of elastoplastic beam with semi-infinite

acoustic plane

For further verifying the proposed SBFEM for acoustic-structure interaction analysis

considering the elastoplastic behavior of structure, The simply supported beam used
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(a)

Subdomain A

(b)

Figure 7.6. The SBFEM mesh of an elastoplastic beam interacting with semi-infinite
acoustic domain: (a) the mesh of whole coupled system and (b) a detailed view of
subdomains around acoustic-structure interface.

Figure 7.7. Structural displacement at point O in the coupled model of an elasto-
plastic beam interacting with semi-infinite acoustic domain.

in the last example is again used here and half of it is submerged in the semi-infinite

acoustic plane this time. The SBFEM model of this coupled system is described

by Figure 7.5. The radius of the open boundary, which is a semicircle this time, is

still 20m. The boundary conditions on the top surface of the acoustic domain are

assumed to be ∂p̄
∂n⃗

= 0 along the semi-infinite lines GH and IJ . The top surface

AB of this beam is again subjected to the same uniformly distributed load Fb(t)

presented in Figures 5.10(a) and 5.10(b) with its Fourier transform.

Because all the material properties, geometry of structure and applied load used
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Figure 7.8. Results at point E in the coupled model of an elastoplastic beam inte-
racting with semi-infinite acoustic domain: (a) vertical displacement and (b) acou-
stic pressure.

in the last example in Section 7.5.1 are directly used in this model except for the

geometry of acoustic domain, the subdomain sizes and element type used in the

mesh presented in Figure 7.1 are directly adopted here with only half of its mesh

for acoustic domain. The final mesh is illustrated in Figure 7.6(a) with a detailed

view of subdomains inside the red dash line near the acoustic-structure interface

in Figure 7.6(b). Two terms of continued-fractions are used for bounded acoustic

subdomains. Orders of high- and low-frequency continued-fraction expansions for

the semicircular open boundary are selected as MH = ML = 1. The structural

subdomain A, with the coordinate of its scaling centre (−9.375cm,−290.625cm), is
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Figure 7.9. Acoustic pressure at point F in the coupled model of an elastoplastic
beam interacting with semi-infinite acoustic domain.

Figure 7.10. Horizontal stress in subdomain A of the coupled model of an elasto-
plastic beam interacting with semi-infinite acoustic domain.

shown in Figure 7.6(b) and will be used for checking the stress results later. In this

example, the constant time step ∆t = 0.02ms is again used in Newmark’s method

to achieve the convergence of modified Newton-Raphson iteration within each step.

The results obtained by the proposed SBFEM at Points O(0m, 0m), E(0m,−3m)

and F(0m,−20m) in Figure 7.5 are plotted as blue solid lines in Figures 7.7 - 7.9.

Reference solutions obtained using FEM in ANSYS are plotted in the corresponding

figures as black dotted lines to verify the accuracy of present results. Those reference

solutions from ANSYS are calculated via the same FEM mesh used in Section 7.5.1
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Figure 7.11. Coupled system of elastoplastic beam interacting with semi-infinite
acoustic domain. Contour plots of vertical displacements and acoustic pressures at:
(a) t = 10ms, (b) t = 30ms, (c) t = 50ms and (d) t = 70ms.

except that only lower-half of the acoustic mesh is required this time (the semi-

infinite acoustic domain). Vertical displacements are plotted for points O and E

in Figures 7.7 and 7.8(a), while the acoustic pressures at point E and F are shown

in Figures 7.8(b) and 7.9. They all show very good agreements with the reference

solutions from ANSYS. Solutions obtained by assuming elastic behavior of the beam

are again plotted in all Figures 7.7 - 7.9 with red solid lines denoting SBFEM results

and black dash lines denoting reference solutions from ANSYS for comparisons.

In addition, the horizontal stress of subdomain A is also given in Figure 7.10. In

this figure, the blue solid line represents the horizontal stress obtained using SBFEM,

which is a constant within this subdomain. The black dotted line represents the

horizontal stress calculated using FEM in ANSYS, which is actually the average

horizontal stress of the 2D quadrilateral element with the same position and shape
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of subdomain A in SBFEM mesh. The average horizontal stresses in subdomain A

calculated by SBFEM and ANSYS under the assumption of elastic structure are also

shown in red solid line and black dash line respectively. This is achieved by simply

setting the yield stress of structure σy to a very large value and thus avoid yielding.

Contour plots of the results, which include vertical displacement of structure and

acoustic pressure of acoustic domain, of this coupled system are illustrated in Figure

7.11 at times t = 10ms, t = 30ms, t = 50ms and t = 70ms.

7.5.3 3D elastoplastic plate submerged in infinite acoustic

space

The feasibility and accuracy of the proposed approach for 3D acoustic-structure

interaction analysis considering structural elastoplasticity are investigated in this

numerical example. The 3D square plate and spherical open boundary have the

same dimensions as the example shown in Figure 5.24 Section 5.4.4. In contrast to

the elastic plate used in the numerical example in Section 5.4.4, the plate here is

assumed to be made of elastic-perfectly plastic material with the material properties

listed at the beginning of Section 7.5. Again, four side faces around the plate are

fixed in the loading (z) direction. The transient load Fep(t) defined by the following

Equation (7.33) is applied on the top surface of the plate:

Fep(t) =


4.5× (1− cos 0.05πt) (kPa) when 0 ≤ t ≤ 40ms,

0 (kPa) when 40ms < t.

(7.33)

The time history and Fourier transform of Fep(t) are also plotted in Figure 7.12.

The maximum frequency of interest is approximately equal to ωmax = 0.6rad/ms,

which is the same as the maximum relevant frequency of the applied load used in

Section 5.4.4. Therefore, the same octree mesh for acoustic domain in Section 5.4.4

is again used here with the maximum and minimum cell sizes of 1.6m and 0.4m

separately. Since the elastoplastic behavior is considered for the plate, it is uniformly
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Figure 7.12. Time variation Fep(t) of transient load applied on the top of plate: (a)
time history and (b) Fourier transform.

(a) (b)

Figure 7.13. The SBFEM mesh of a 3D elastoplastic plate submerged in infinite
acoustic domain: (a) coupled mesh with part of the acoustic mesh showing details
of inside and (b) a detailed view of the mesh around acoustic-structure interface.

divided into 64 subdomains in the x and y directions and 16 subdomains in the z-

direction in this example for accuracy. 4-mode quadrilateral elements are employed

in the structural mesh. The coupled mesh for this acoustic-structure interaction

system is shown in Figure 7.13 with the red part denoting structural mesh and

blue part denoting acoustic mesh. Due to the differences of mesh sizes used in

acoustic and structural domain, the two meshes are coupled along the acoustic-

structure interface via subdividing the surface elements into matched quadrilateral

or triangular elements. Details of the mesh around acoustic-structure interface are
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Figure 7.14. Results at point A in the coupled model of a 3D elastoplastic plate
submerged in infinite acoustic domain: (a) vertical displacement and (b) acoustic
pressure.

also illustrated in Figure 7.13(b) with efficient mesh transition between two media.

In this figure, larger elements in acoustic domain contacting smaller elements from

structural domain are simply subdivided into smaller triangular or quadrilateral

elements that can satisfy the displacement consistency on the interface. Similarly,

the coordinate axes in Figure 7.13 only denote the orientations of the coupled model.

The orders of continued-fractions for the spherical open boundary are set to be

MH = ML = 1. The results of this coupled system are calculated by applying

Newmark’s method with the constant time step of ∆t = 0.05ms for the convergence

of modified Newton-Raphson iteration within each time step.
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Figure 7.15. Results at point B in the coupled model of a 3D elastoplastic plate
submerged in infinite acoustic domain: (a) vertical displacement and (b) acoustic
pressure.

The vertical displacements and acoustic pressures at point A(0m, 0m, 0.8m) and

B(3.2m, 0m, 0.8m) (see Figure 5.24) during the first 400ms are illustrated in Figures

7.14 and 7.15 respectively as they are located on the acoustic-structural interface.

Analogous to previous examples in Sections 7.5.1 and 7.5.2, the displacements and

acoustic pressures obtained using the present SBFEM by assuming the elastoplastic

behavior of structure are plotted in blue solid lines in Figures 7.14 and 7.15, while the

results from the proposed SBFEM obtained by assuming elastic behavior of structure

are plotted in red solid lines for comparisons. The accuracy of these SBFEM results

are verified by references solutions calculated using FEM in ANSYS, which are
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Figure 7.16. X-X stress in subdomain A of the coupled model of a 3D elastoplastic
plate submerged in infinite acoustic domain.

plotted in black dash and dotted lines for the cases of elastoplastic and elastic

structures separately in corresponding figures. In the FEM model, the structural

plate is divided into 64 8-node hexahedral elements in x and y directions and 16

8-node hexahedral elements in z direction. For modelling the unbounded acoustic

domain, an extended mesh with the radius of 165m is constructed in the FEM model.

During the first 200ms, the traveling distance of wave front is 1482× 0.2 = 296.4m.

The distance between the FEM truncated boundary and the boundary of the domain

of interest is 165 − 12 = 153m, which is more than half of the traveling distance

of wave front. Therefore, the reflected wave has not entered the domain of interest

yet. 4-node tetrahedral elements with the maximum edge length of 1.6m are used

for acoustic domain in FEM model. Very good agreements between the results

calculated using proposed SBFEM and FEM model in ANSYS are obtained during

the first 200ms.

The stress in the x direction of subdomain A, which is adjacent to the centre of

the top surface of plate with the coordinate of the scaling centre (0.1m, 0.1m, 0.75m),

calculated by SBFEM model is also plotted in Figure 7.16 with the blue solid line

considering elastoplastic behavior of structure and red solid line considering elastic
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(a) t = 20ms (b) t = 40ms

(c) t = 60ms (d) t = 75ms

Figure 7.17. Coupled system of 3D elastoplastic plate submerged in infinite acoustic
domain. Contour plots of von Mises stresses in the plate at: (a) t = 20ms, (b)
t = 40ms, (c) t = 60ms and (d) t = 75ms.

behavior of structure respectively. Because the constant stresses are assumed within

each polyhedral subdomain in SBFEM model, the average of the stresses in the

x direction of the corresponding hexahedral element in FEM model are used for

verifying the stress result and plotted as black dotted and dash lines for elastoplastic

and elastic cases separately. This hexahedral element in from FEM model has the

same shape and location as the subdomain A in SBFEM mesh. Excellent agreements

between stress results obtained from proposed SBFEM and reference solutions are

observed. The contour plots of the von Mises stresses and effective plastic strains in

the plate at times t = 20ms, t = 40ms, t = 60ms and t = 75ms are also illustrated

in Figures 7.17 and 7.18, respectively.
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(a) t = 20ms (b) t = 40ms

(c) t = 60ms (d) t = 75ms

Figure 7.18. Coupled system of 3D elastoplastic plate submerged in infinite acoustic
domain. Contour plots of effective plastic strains in the plate at: (a) t = 20ms, (b)
t = 40ms, (c) t = 60ms and (d) t = 75ms.

7.6 Conclusions

In this chapter, the SBFEM is firstly developed to model the interactions between

elastoplastic structures and infinite acoustic domains in both 2D and 3D cases. To

this end, the novel approaches in (He, 2017) and Chapter 6 for elastoplastic ana-

lysis are adopted here for modelling the structural domains as these approaches

only require the return mapping algorithm to be performed at scaling centre of

each 2D or 3D subdomain, which makes them very efficient in elastoplastic analy-

sis. For the representations of unbounded acoustic domains, the high-order doubly-

asymptotic open boundaries for 2D and 3D acoustics from Chapters 3 and 4 are

also employed here as these open boundaries are robust and accurate at both high-

and low-frequency limits. As spatially and temporally local open boundaries, they

are also very efficient in modelling the unbounded domains due to the fast conver-
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gence rate of continued-fractions and can be directly used for transient analysis.

Mesh transitions on the acoustic-structure interface can also be addressed easily

and efficiently via subdividing line elements in 2D models or surface elements in

3D models due to the boundary discretization in SBFEM. The mesh generations

of 3D models are accomplished by octree mesh technique, which leads to signifi-

cant reduction on human efforts. For performing the nonlinear dynamic analysis,

Newmark’s method is applied to obtain all transient solutions with the modified

Newton-Raphson iteration within each time step to enforce the equilibrium of the

coupled acoustic-structure interaction system. Both 2D and 3D examples are pre-

sented in this chapter for the demonstration of the feasibility and accuracy of the

proposed approach.
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Chapter 8

Conclusions

8.1 Summary

In this thesis, reliable and efficient computational techniques for acoustic analysis,

structural elastoplastic analysis and acoustic-structure interaction analysis are deve-

loped based on the theoretical framework of scaled boundary finite element method

(SBFEM). The proposed techniques are also applicable to both 2D and 3D pro-

blems. Furthermore, octree mesh technique is integrated in all 3D analysis in this

research for reducing the human efforts on mesh generation and automatic analy-

sis. The SBFEM is a semi-analytical computational method which only requires

the boundary discretization but no fundamental solution is needed. This method

can also provide analytical solution in the radial direction. Therefore, this unique

feature makes the SBFEM naturally suitable to model the unbounded domain as

the radiation condition at infinity is satisfied rigorously in the scaled boundary fi-

nite element equation. In addition, the arbitrary polygon or hexahedral shape and

boundary discretization allows high flexibility in 2D and 3D mesh generations. The

mesh transition on acoustic-structure interface and material interface can be easily

and efficiently addressed in this method.

In order to model the infinite acoustic domain, the high-order doubly-asymptotic
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open boundary with continued-fraction expansion for solving the model impedance

is employed on account of its high convergence rate and accuracy in full frequency

range. Additional factor coefficients are used to eliminate singularities in continued-

fraction expansions. Rules for applying singly-asymptotic continued fraction for

low-frequency modes are provided to improve the stability of the doubly-asymptotic

open boundary. The resulting model is capable of simulating both 2D and 3D infinite

acoustic full space, semi-infinite acoustic half space and wedges with high efficiency

and accuracy.

For modelling the 3D elastoplastic structures, the scaled boundary finite element

formulation with stabilization for elastoplasticity is developed. Comparing with the

original scaled boundary formulation for elastoplasticity in (Ooi et al., 2014), this

novel formulation assumes constant elastoplastic constitutive matrix and stresses

within each scaled boundary subdomain. As a result, the computationally expensive

return mapping algorithm should only be performed at the scaling centre in each

subdomain.

The scaled boundary models for structures and acoustics are directly coupled

together in 2D and 3D acoustic-structure interaction analyses. Iterative approach

is adopted to ensure the equilibrium in each time step when plastic deformation

occurs in the structure. The conclusions and features of techniques developed in

each chapter are summarized below:

In Chapter 1, this thesis is commenced with an introduction of the research

topic. Next, the statement of problem and motivations are presented. These are

then followed by the objectives and outline of this thesis.

In Chapter 2, a detailed literature review has been performed on two relevant

parts: procedures for modelling the wave propagation in unbounded domain and

structural elastoplasticity with reduced integration method to improve the com-

putational efficiency. For the first part on modelling the unbounded domain, the

reviewed techniques are categorized into two groups: the global procedures and local
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procedures. The global procedures, such as the boundary element method (BEM),

DtN finite element method and SBFEM, are spatially and temporally global. They

can provide accurate solutions but with relatively higher computational costs than

local procedures. The local procedures are usually spatially and temporally local.

They are normally computationally efficient but with lower accuracy than global

procedures. Reviewed local procedures in this chapter includes different types of

artificial boundary conditions (ABCs), the infinite elements and perfectly matched

layer (PML). Introductions of these computational approaches, as well as the corre-

sponding advantages and limitations for modelling the unbounded domain, are also

presented. In the second part about structural elastoplasticity, the fundamentals of

classic plastic theory, including the yield criteria, hardening rules and elastoplastic

constitutive relationship, are firstly introduced. These are followed by a summary

of the computational procedures for elastoplastic analysis using the finite element

scheme. Finally, the developments and discussions on the existing reduced integra-

tion methods with hourglass control are stated.

In Chapter 3, the SBFEM is extended to model the 2D acoustic problems. For

handling the 2D acoustic domain with arbitrary geometry, the whole infinite dom-

ain is divided into the acoustic near field, which contains the complex geometry,

and the circular far field of the unbounded acoustic domain. The near field is mo-

deled by SBFEM due to the high efficiency in obtaining the dynamic impedance of

each scaled boundary subdomain using continued fractions. As for the unbounded

far field, the high-order doubly-asymptotic open boundary from reference (Prem-

pramote, 2011) is employed. Via decoupling the scaled boundary finite element

equation in nodal pressure for unbounded domain, the scalar equations for model

impedance coefficients for circular unbounded domain are obtained. The model

impedance coefficients are then solved using continued-fraction expansions. These

continued fractions are doubly asymptotic, which implies that these solutions are

exact at both the high-frequency and low-frequency (static) limits. The computatio-
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nally expensive numerical integration for forming the stiffness and damping matrices

are circumvented as the introduction of auxiliary variables can directly transform

the continued-fraction expansions into time-domain equations. The time-domain

equations of unbounded domain can be easily coupled with the equations of boun-

ded near field to form the global system of equations for the whole acoustic model

for direct transient analysis. Numerical examples demonstrate that the proposed

technique shows higher accuracy in acoustic analysis than singly asymptotic open

boundary without additional cost and is accurate for representing infinite full space,

semi-infinite half space and wedges.

In Chapter 4, the high-order doubly-asymptotic open boundary proposed in

Chapter 3 is further developed for 3D unbounded acoustic domains. Analogously,

the whole infinite acoustic domain is subdivided into the acoustic near field and

far field by defining a spherical boundary. After shifting the mode number and

introducing the modal impedance coefficients of spherical unbounded domain, the

same doubly-asymptotic continued-fraction expansions from 2D acoustic analysis is

directly applied to 3D analysis. The implementation of this open boundary to 3D

analysis is thus straightforward. The SBFEM is again used to model the acoustic

near field. Due to the advantage of high flexibility of SBFEM in element shapes, an

automatic mesh techniques based on octree is implemented for 3D acoustic analysis.

The integration of octree mesh greatly reduces the human efforts on solving acoustic

problems with complex geometries described by, for example, STL models. The

accuracy and practicability of the proposed technique are also illustrated by several

numerical examples in this chapter.

Chapter 5 extends the SBFEM to model acoustic-structure interaction problems

for both 2D and 3D cases with elastic structural behavior. In this study, the 2D and

3D acoustic domains are considered to be infinite and modeled using the SBFEM

proposed in Chapters 3 and 4 respectively. The structural domain is still modeled

by SBFEM due to the efficiency of using continued fractions for obtaining dynamic
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stiffness in the frequency domain. The continued-fraction expansion for the dyn-

amic stiffness of a structure can be transformed into time-domain equations using

auxiliary variables. The equations of motion for acoustic and structural domains are

then directly coupled by enforcing the boundary conditions on the acoustic-structure

interface to obtain the global equations of motion for the coupled system. A sym-

metric formulation is also derived for the acoustic-structure interaction system by

replacing the unknowns related to acoustic field with new variables. By applying

first-order derivative to these new variables, they can yield the original unknowns

in the acoustic domain. In SBFEM, the mesh transition on acoustic-structure in-

terface is addressed efficiently by simple subdivisions of boundary elements (line

elements for 2D or surface elements in 3D). For automatic mesh generation of 3D

acoustic-structure interaction systems, octree mesh is again introduced to generate

appropriate meshes. Both 2D and 3D numerical examples, including a practical ex-

ample with very complex geometry of a Chinese bell, are presented to demonstrate

the accuracy, efficiency and robustness of the proposed technique.

In Chapter 6, the scaled boundary finite element formulation with stabilization

for 3D static and dynamic elastoplastic analysis is proposed based on the similar

formulation for 2D image-based elastoplastic analysis in (He, 2017). In this formu-

lation, the elastoplastic constitutive matrix and stresses within each subdomain in

SBFEM are assumed to be represented by constants. Consequently, the computa-

tionally expensive return mapping algorithm should only be performed once at the

scaling centre of each subdomain to update the stresses. Stabilization matrix is also

introduced to control the hourglass modes. Comparing with the original formulation

in (Ooi et al., 2014), this new formulation can greatly simplify the implementation

and improve the efficiency of elastoplastic analysis based on SBFEM. The assump-

tions of constant elastoplastic constitutive matrix and stresses in each subdomain

are especially useful for the elastoplastic analysis based on automatically generated

meshes for structures with complicated geometry as small cells or elements are fre-
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quently used to capture the details of geometry. Automatic mesh generation from

STL models based on octree technique is applied in this chapter to obtain the meshes

for 3D elastoplastic analysis. The stress concentrations along the jagged boundary

in image-based mesh are thus avoided. Various numerical examples are presented

to highlight the efficiency and accuracy of the proposed technique for both static

and dynamic elastoplastic analyses in 3D, as well as its capability to model complex

structures.

Chapter 7 proposed the extension of SBFEM to simulate the 2D and 3D acoustic-

structure interaction problems with the consideration of elastoplastic structural be-

havior and infinite acoustic domain. To this end, the acoustic models developed in

Chapters 3 and 4 for 2D and 3D cases are coupled with the structural models for

2D and 3D elastoplastic analysis in (He, 2017) and Chapter 6 separately. The same

boundary conditions on acoustic-structure interface in Chapter 5 are adopted here

again to couple the acoustic models and elastoplastic structural models. Due to the

fact that the structure is elastoplastic in this coupled system, the partition of coupled

stiffness matrix corresponding to structural domain should be updated in each time

step after the initial yielding. Meanwhile, the iterative procedure, such as modified

Newton-Raphson method, is applied within each time step to enforce the equilibrium

between structures and acoustics in this coupled system. Numerical examples for

both 2D and 3D scenarios are studied using the proposed technique to demonstrate

its accuracy and robustness in the analysis of acoustic-structure interaction with

structural elastoplasticity. The efficient mesh transition on acoustic-structure inter-

face is also illustrated.

8.2 Recommendations for future research

• In Chapter 3 and 4, the high-order doubly-asymptotic open boundary has

only been applied to the scalar wave propagation. It is of great interest to
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extend this open boundary to model vector wave propagation in unbounded

domain. In addition, the geometry of this open boundary is circular for 2D

unbounded domain or spherical for 3D unbounded domain. Further research

could focus on developing high-order doubly-asymptotic open boundary with

arbitrary geometry of unbounded domain.

• The acoustic-structure interaction analyses proposed in Chapter 5 and 7 could

be extended to other research areas in practical engineering, such as the dam-

reservoir interaction system and air-coupled ultrasonic testing. Acoustic scat-

tering problems could also be studied by incorporating incident waves from

the far field.

• In Chapter 6, only the perfectly plastic model and von Mises model of elas-

toplasticity is considered as the material nonlinearity in this study. For mo-

delling more practical problems, other nonlinear material models can be in-

cluded in the same framework of proposed technique. Furthermore, other

iterative procedures, such as the arc-length method, can be employed to re-

place the modified Newton-Raphson method to achieve better convergence

rate and solve highly nonlinear systems of equations even when the modified

Newton-Raphson method fails.

• In many acoustic-structure interaction problems in engineering with liquid

as the acoustic medium, the cavitation, which frequently appears when the

pressure drops below the vapor pressure, may exist under very strong excita-

tions. The existence of cavitation changes the hydrodynamic force applied on

structures and varies the responses of acoustic-structure interaction system.

In the future, cavitation can be considered in the acoustic analysis and in

acoustic-structure interaction analysis performed in this thesis.

• For all the octree meshes used in this research, only low-order surface elements,

including 3-nodes triangular and 4-nodes quadrilateral elements, are adopted.
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However, in dynamic analysis with high-frequency excitations, high-order ele-

ments are preferred. The next step of research could focus on implementing

high-order elements into octree mesh.

• Due to the advantages of implementing automatic mesh generation techniques

in SBFEM, as well as its developments on acoustics and structural elastoplasti-

city in this thesis, the SBFEM can be further used as a powerful computational

tool for modelling biomechanical problems. Some preliminary examples have

already been studied in Sections 4.5.3 and 6.5.5.
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Appendices

Appendix A Scaled boundary finite element equa-

tions for 2D structural dynamics

The derivations of scaled boundary finite element equations for elastic 2D structu-

ral dynamics are demonstrated in this section. The scaled boundary coordinates in

2D structural dynamics are the same as the one defined by Equations (3.2)-(3.4)

in Section 3.2.1, so it won’t be repeated in this section. The derivation of scaled

boundary formulations for 2D structural dynamics also starts from the governing dif-

ferential equations of motion in frequency domain given by Equation (5.1) in Section

5.2. In 2D case, the differential operator L for strain-displacement relationship are

expressed as:

L =


∂
∂x̂

0

0 ∂
∂ŷ

∂
∂ŷ

∂
∂x̂

 (A.1)

Then, the 2D strain-displacement relationship in scaled boundary coordinate can be

expressed by,

ϵ(ξ, η) = Lû(ξ, η) (A.2)
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The displacement amplitude û(ξ, η) in Equation (A.2) can be discretized for 2D

subdomains using the 1D shape function Ns(η) as:

û(ξ, η) = Ns(η)û(ξ) (A.3)

with

Ns(η) = [N1(η)I, N2(η)I, · · ·, Nm(η)I] (A.4)

for a m-node element with I the 2× 2 identity matrix.

In scaled boundary coordinate, the differential operator L in 2D can be written

as: (Wolf and Song, 2000)

L = bs1(η)
∂

∂ξ
+

1

ξ
bs2(η)

∂

∂η
(A.5)

In Equation (A.5), the bs1(η) and bs2(η) matrices are defined as,

bs1(η) =
1

|J|


y,η 0

0 −x,η

−x,η y,η

 (A.6a)

bs2(η) =
1

|J|


−y 0

0 x

x −y

 (A.6b)

J in Equation (A.6) is the Jacobian matrix defined in Equation (3.6). Substi-

tuting Equations (A.5) and (A.3) into (A.2) yields the expression for strain field

ϵ(ξ, η) in 2D as,

ϵ(ξ, η) = Bs
1(η)û(ξ),ξ +

1

ξ
Bs

2(η)û(ξ) (A.7)

with the Bs
1(η) and Bs

2(η) matrices for 2D structures defined as:

Bs
1(η, ζ) = bs1(η)Ns(η) (A.8a)

Bs
2(η, ζ) = bs2(η)Ns(η),η (A.8b)
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Applying the method of weighted residuals to the differential equations of motion

in Equation (5.1) in circumferential direction (η) (Song and Wolf, 1997), a differential

equation for radial displacement amplitude u(ξ) in the frequency domain is derived

for free side-face in radial direction and vanishing of body forces, and its 2D form is

written as,

Es
0ξ

2û(ξ),ξξ +
(
Es

0 − Es
1 + [Es

1]
T
)
ξû(ξ),ξ − Es

2û(ξ) + ω2Ms
0ξ

2û(ξ) = 0 (A.9)

with the coefficient matrices Es
0, Es

0, Es
0 and Es

0 for 2D case:

Es
0 =

ˆ +1

−1

[Bs
1(η)]

T DBs
1(η) |J(η)| dη (A.10a)

Es
1 =

ˆ +1

−1

[Bs
2(η)]

T DBs
1(η) |J(η)| dη (A.10b)

Es
2 =

ˆ +1

−1

[Bs
2(η)]

T DBs
2(η) |J(η)| dη (A.10c)

Ms
0 =

ˆ +1

−1

NT
s (η)ρsNs(η) |J(η)| dη (A.10d)

where D is the elasticity matrix for 2D. All coefficient matrices in Equation (A.10)

are calculated in an element-by-element basis and assembled as in finite element

method for each 2D polygonal subdomain.

Appendix B 2D elastoplastic stiffness matrix and

internal load vector in scaled boun-

dary finite element formulation with

stabilization

The details of the derivation of 2D static elastoplastic analysis based on SBFEM with

stabilization are well established and documented in reference (He, 2017). Only the

derivations for the 2D elastoplastic stiffness matrix Kep and internal load vector Rint

are briefly summarized here for the completeness of this thesis. Similar to Equation
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(6.6), the relationship between the strain field in a 2D polygonal subdomain ϵ(ξ, η)

and nodal displacement on its boundary ub can be written by:

ϵ(ξ, η) = B(ξ, η)ub (B.1)

with the scaled boundary strain-displacement matrix B(ξ, η) for the polygonal sub-

domain

B(ξ, η) = Ψϵ(η)ξ
−Sn−IΨ−1

un (B.2)

and strain modes Ψϵ(η) for the polygonal subdomain

Ψϵ(η) = Bs
1(η)Ψun [−Sn] +Bs

2(η)Ψun (B.3)

In Equations (B.2) and (B.3), The Sn are eigenvalues with negative real parts

(which indicate bounded domain as well) calculated from the equivalent eigenvalue

problem in Equation (5.17) for 2D analysis and Ψun are the corresponding modal dis-

placements. As discussed in Section 6.3.2, the stress field in a subdomain should be

decomposed into a constant-stress part and a non-constant stress part, which can be

easily identified by their corresponding eigenvalues. For a 2D polygonal subdomain,

there are totally four constant strain modes with the eigenvalues of λ(S(c)
n ) = −1 and

other non-constant strain modes identified by the eigenvalues of λ(S(c)
n ) < −1. Ana-

logous to Equation (6.26) in 3D, Equation (B.2) can be decomposed into constant

and non-constant parts as:

B(ξ, η) = B(c) +B(n)(ξ, η) (B.4)

with

B(c) = Ψ(c)
ϵ

(
Ψ−1
un

)(c) (B.5a)

B(n)(ξ, η) = Ψ(n)
ϵ (η, ζ)ξ−S

(n)
n −I

(
Ψ−1
un

)(n) (B.5b)

The stress field in 2D polygonal subdomain σ(ξ, η) can be decomposed in the
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similar way as:

σ(ξ, η) = σ(c) + σ(n)(ξ, η) (B.6)

with constant and non-constant stress parts σ(c) and σ(n)(ξ, η) defined by:

σ(c) = DepB
(c)ub (B.7a)

σ(n)(ξ, η) = DepB
(n)(ξ, η)ub (B.7b)

In Equation (B.7), Dep is the elastoplastic constitutive matrix for 2D analysis.

Appendix B.1 Decomposition of elastoplastic stiffness ma-

trix for polygonal subdomains

Analogous to Equation (6.30) for 3D analysis, the elastoplastic stiffness matrix Kep

for a 2D polygonal element is,

Kep =

ˆ
Ω

BT (ξ, η)DepB(ξ, η)dΩ (B.8)

with the infinitesimal area dΩ defined as(Song and Wolf, 1997)

dΩ = |J(η)| ξdξdη (B.9)

Replacing the second instance of B(ξ, η) in Equation (B.8) with Equation (B.4)

and utilizing Equations (B.2), (B.5) and (B.9), Kep can be decomposed in the same

form as Equations (6.36) and (6.37) but with Ψun calculated from a 2D subdomain

and the matrices X(c) and X(n) for 2D analysis are defined as:

X(c) =

ˆ 1

0

ξ−STn−I

[ˆ +1

−1

ΨT
ϵ (η)DepΨ

(c)
ϵ |J(η)| dη

]
ξdξ (B.10a)

X(n) =

ˆ 1

0

ξ−STn−I

[ˆ +1

−1

ΨT
ϵ (η)DepΨ

(n)
ϵ |J(η)| dη

]
ξ−S

(n)
n −Idξ (B.10b)

X(c) and X(n) can then be calculated via following the same procedures presented

in Sections 6.3.3.1 and 6.3.3.2 except for a few differences in the expressions of

formulations for 2D analysis. For X(c) defined in Equation (6.38) in 3D analysis, its
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2D expression is,

X(c) =

ˆ 1

0

ξ−STn−IY(c)ξdξ (B.11)

which leads to the analytical solutions of Xnc and Xcc:

Xnc =
(
−
(
S(n)
n

)T
+ I
)−1

Ync (B.12a)

Xcc =
Ycc

2
(B.12b)

For the evaluation of X(n) given in Equation (6.45) for 3D analysis, its 2D form

is:

X(n) =

ˆ 1

0

ξ−STn−IY(n)ξ−S
(n)
n −Iξdξ (B.13)

which again leads to the analytical solutions of Xnn and Xcn:

Ynn =
(
−S(n)

n

)T
Xnn +Xnn

(
−S(n)

n

)
(B.14a)

Xcn = Ycn

(
−S(n)

n + I
)−1 (B.14b)

It should be noticed that the Lyapunov equation in Equation (B.14a) for solving

Xnn from 2D analysis has the same format as the Lyapunov equation for solving

Xnn in 3D analysis in Equation (6.51).

Appendix B.2 Decomposition of internal load vector for 2D

elastoplastic analysis

Similar to Equation (6.53) for 3D analysis, the internal load vector for a 2D polygonal

subdomain is defined by,

Fint =

ˆ
Ω

BT (ξ, η)σ(ξ, η)dΩ (B.15)

with the infinitesimal area dΩ given in Equation (B.9). Substituting Equation (B.6)

into Equation (B.15), Fint can be decomposed and evaluated via the similar proce-

dure described in Section 6.3.4. In 2D analysis, the internal load vector related to
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constant stress parts F
(c)
int is expressed as:

F
(c)
int = Ψ−T

un

(
−STn + I

)−1
r(η)σ(c) (B.16)

where σ(c) is the constant stress vector at scaling centre of the polygonal subdomain

expressed in Equation (B.7a). r(η) can be calculated by evaluating the following

integration in η direction,

r(η) =

ˆ +1

−1

ΨT
ϵ (η) |J(η)| dη (B.17)

The internal load vector related to non-constant stress parts F
(n)
int is expressed

as:

F
(n)
int = Ψ−T

un

ˆ 1

0

ξ−STn−I

[ˆ +1

−1

ΨT
ϵ (η)DepΨ

(n)
ϵ (η) |J(η)| dη

]
ξ−S

(n)
n dξ

(
Ψ−1
un

)(n)
ub

(B.18)

Utilizing Equation (B.10b) and (6.37b), Equations (B.18) can be simplified as:

F
(n)
int = K(n)

ep ub (B.19)

with the non-constant stress part of the 2D elastoplastic stiffness matrix K
(n)
ep .
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