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Abstract 

In modern engineering analysis and design, it is well recognized that fluctuations exist in 

the material properties, geometric characteristics and externally applied loadings. These 

uncertainties, which are either resulted from the variation of system parameters or the 

lack of knowledge or information, can significantly affect the performance of engineering 

systems. Recently, the study in hybrid uncertainty analysis is gaining increasingly 

popularity duo to the advantage in evaluating the effect of various types of uncertainties 

in a unified approach. Despite of the availability, the existing methods are developed with 

strengths in particular engineering applications. Thus, there is a continuous demand on 

enhancing the reliability, accuracy, computational efficiency and robustness of hybrid 

uncertainty analysis. 

 This dissertation aims at providing a series of uncertainty analysis approaches for 

engineering structures with both random and interval uncertain parameters, which can be 

applied to investigation on various engineering problems. Firstly, the uncertain linear 

static analysis of discrete structures with hybrid random and interval variables is 

investigated by using a novel perturbation-based mathematical programming approach. 

For the structures with non-random and spatially variant uncertainties, a novel interval 

field concept is adopted to model such uncertainties. Then, the natural frequencies of 

structures with both random and interval fields are studied for the first time by using the 

extended unified interval stochastic sampling (X-UISS) method. Finally, a brand-new 

dynamic reliability analysis through an advanced machine learning algorithm, namely the 

extended support vector regression (X-SVR), is proposed. Various numerical examples, 

including both academic-sized and engineering motivated, have been elaborately selected 

for demonstrating the accuracy, efficiency and applicability of the proposed methods. 



xii 

 

 The computational schemes developed in this dissertation offer new yet efficient 

strategies for analysing the performance of engineering systems with various uncertain 

system parameters. Since that the proposed methods are all based on finite element 

analysis, either intrusively or non-intrusively, it is possible to integrate the introduced 

approaches with the finite element software. Thus, the methods developed in this research 

project have the potential to be applied in practical engineering analysis and design. 
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Chapter 1 . Introduction  

1.1 Motivation of research 

In order to achieve trustworthy predictions with respect to the behaviour, performance 

and safety of engineering systems, the numerical modelling of the physical and 

mechanical properties should be realistic [1]. Despite of the wide implementation of 

deterministic numerical models, uncertainties inevitably exist in most engineering 

applications and affect the design of structural system and operating performance [2]. For 

structural engineering, uncertainty analysis [3] could provide rational assessment of the 

effects of variation of system parameters on structural response. Therefore, by 

incorporating the uncertainty analysis into the process of structural analysis and 

optimization, more reliable and economic optimal designs will be achieved [4]. 

Traditionally, probabilistic methods have been widely applied in uncertainty 

analysis and structural reliability analysis. Within the probabilistic analysis framework, 

all uncertain parameters are modelled as either random variables or fields with associated 

statistical information [1, 5]. Consequently, by combining the FEM with the well-

established theories on probability and statistics, the stochastic finite element method 

(SFEM) has been innovatively established with extensive application across wide range 

of engineering disciplines [6–8]. Subsequently, a probability profile can be constructed 

for the concerned engineering system output, such as structural displacement, as the 

discrption of the variation caused by uncertain input variables. For practical application, 

sufficient statistical information may be unavailable or very expensive to obtain in real 

engineering problems. It has been shown that even small variations in the real statistical 

characteristics from the assumed one could lead to relatively large errors in the probability 

file of the output [9].  
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In order to achieve valid uncertainty analysis for situations where stochastic 

approaches are prohibited, the non-probabilistic approaches, such as the convex model, 

fuzzy set theory and interval analysis, have been developed as alternatives. By using 

convex sets to describe uncertain parameters, such non-stochastic modelling technique 

has been applied in uncertainty propagation analysis, reliability analysis and engineering 

optimizations involving uncertain system inputs [10–12]. The fuzzy analysis, stemming 

from the fuzzy set theory, incorporates membership functions to represent the possibility 

distributions of uncertain variables [13, 14]. Among the non-probabilistic approaches, 

interval method is the most widely adopted computational strategy due to the conceptual 

simplicity, which only requires the upper and lower bounds of the uncertain parameters 

rather than the probability profiles. The interval model is also regarded as a special case 

of the convex model analsys.  

In real engineering problems, it is recently recognized that both probabilistic and 

non-probabilistic uncertainties can exist simultaneously. By unifying a mixture of 

uncertain parameters into one computational approach, it would enhance the robustness 

and applicability of the algorithm considering the diverse natural of practical situation. 

Within such framework, the concept of probabilistic interval analysis is widely 

implemented in the investigation of static response [7, 15], acoustic fields [16, 17] and 

structural-acoustic interaction system [18, 19] and structural reliability [20, 21] with 

spatially independent random and interval uncertain variables. The combination of multi-

types of uncertainties in one approach cerntainty brings the complexity existing in each 

approach to the hybrid analysis. Therefore, the study of hybrid uncertainty analysis and 

reliability analysis considering mixed uncertainties have received increasingly amount of 

attention in the past decade. 
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At the time of the start of this research project, there have been many numerical 

methods developed within each of the uncertainty analysis category. Obviously, the 

mentioned three types of uncertainty analysis are proposed with distinctive concerns of 

the practical situation and the every uncertainty analysis approach has individual 

advantages in particular engineering applications. At current stage, there is still a lack of 

single uncertainty analysis approach which is effective and applicable for all scenarios. 

Thus, there are always enquires on developing novel approaches and improving the 

currently available methods of uncertainty analysis for the increasingly more complicated 

engineering applications. 

1.2 Research objectives  

The aim of the research is to propose a series of new uncertainty analysis methods which 

can be effectively and efficiently integrated into the practical engineering applications. 

More explicitly, this research encompasses the following key objectives: 

1. Develop new formulations and computational methods for static analysis of 

structures (i.e. truss and frame) with hybrid uncertainties. In this thesis, a novel 

unified perturbation mathematical programming approach is proposed, which 

combines the advantages of both perturbation method and mathematical 

programming approach. 

2. Propose a new non-deterministic free vibration analysis scheme for continuous 

structures with hybrid probabilistic and interval uncertainties. Firstly, 

formulations and computational methods for interval analysis with spatially 

dependent uncertain parameters will be developed. Then this method will be 

adopted and extended to a hybrid analysis to include both random and interval 

fields.  
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3. Propose new efficient approach for dynamic reliability analysis of structures 

against various uncertainties. For this target, a new machine learning based 

surrogate model will be developed to have the capability in considering relatively 

large number of (more than several) random variables. Then this method will be 

applied into dynamic reliability analysis with random uncertainties. 

 The main contribution of the research is to provide a collection of uncertain 

analysis methods for engineering structures with considerations of hybrid uncertain 

parameters, which can be implemented into modern engineering applications. The 

robustness of the framework is another key factor considered in this research, which 

enable the further extension of the proposed method into other engineering applications 

in addition to structural engineering. 

1.3 Outline of the thesis 

The thesis is organized in seven chapters. The contents included in each chapter are 

briefly presented in the following. 

 Chapter 1 presents the motivation and objective of the research. The structure of 

this dissertation and achieved journal and conference publications are also included in 

this chapter. 

 Chapter 2 provides a literature review of the uncertainty analysis strategies 

adopted in structural engineering. The probabilistic analysis, non-probabilistic methods 

and hybrid probabilistic and non-probabilistic models are discussed in details. The 

reliability analyses based on the aforementioned three theories are also presented in 

corresponding sections. 
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 Chapter 3 demonstrates the static response analysis of linear engineering 

structures with hybrid random and interval uncertainties. In this chapter, a novel unified 

perturbation mathematical programming (UPMP) approach is proposed for the hybrid 

static response analysis. As a combination of perturbation method and mathematical 

programming, the proposed method enables the obtained of the bounds of mean and 

standard deviations of static structural response by solving nonlinear programming 

problems (NPLs). 

 Chapter 4 investigates the effect of spatial-variant non-probabilistic uncertainties 

on structural natural frequencies. Such uncertainties are modelled by adopting a recently 

introduced interval field concept. An efficient computational strategy is proposed such 

that the extreme bounds of natural frequencies of the structure involving interval fields 

can be rigorously computed by performing two independent eigen-analyses. The 

effectiveness of the proposed method is validated by comparing with the conventional 

Monte Carlo simulation. 

 Chapter 5 extends the uncertain natural frequency analysis with interval field to 

the hybrid analysis with both random and interval fields, which is distinguished from the 

conventional hybrid analysis. By combining the interval eigenvalue analysis proposed in 

Chapter 4 with stochastic sampling techniques, a large number of samples can be 

collected for the upper and lower bounds of structural natural frequencies. The stochastic 

characteristics of the extreme bounds of the structural natural frequencies can be obtained 

by utilizing the adequate statistical inference methods. 

 Chapter 6 provides the dynamic reliability analysis of engineering systems. The 

reliability analysis is conducted by using a new machine learning based surrogate model, 

namely the extended support vector regression (X-SVR). Additionally, a new orthogonal 
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polynomial kernel is proposed to enhance the performance of the proposed metamodel. 

The efficiency and effectiveness of the proposed method is verified by two benchmark 

functions and two engineering motivated models. 

 Chapter 7 presents the conclusions and further development recommendations.  

1.4 List of publications 

By the completion of this dissertation, there have been a number of journal and conference 

papers which have been published or submitted for publication. The details of the 

publications are: 

Journal publications: 

1. Wu, D., Gao, W., Feng, J., & Luo, K. (2016). Structural behaviour evolution of 

composite steel-concrete curved structure with uncertain creep and shrinkage 

effects. Composites Part B: Engineering, 86, 261-272. 

https://doi.org/10.1016/j.compositesb.2015.10.004 

2. Feng, J., Wu, D., Gao, W., & Li, G. (2017). Uncertainty analysis for structures 

with hybrid random and interval parameters using mathematical programming 

approach. Applied Mathematical Modelling, 48, 208-232. 

https://doi.org/10.1016/j.apm.2017.03.066 

3. Feng, J., Wu, D., Gao, W., & Li, G. (2018). Hybrid uncertain natural frequency 

analysis for structures with random and interval fields. Computer Methods in 

Applied Mechanics and Engineering, 328, 365-389. 

https://doi.org/10.1016/j.cma.2017.09.004 

4. Feng, J., Li, Q., Sofi, A., Li, G., Wu, D., & Gao, W. (2018). Uncertain structural 

free vibration analysis with non-probabilistic spatially varying parameters. ASCE-

https://doi.org/10.1016/j.compositesb.2015.10.004
https://doi.org/10.1016/j.apm.2017.03.066
https://doi.org/10.1016/j.cma.2017.09.004
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ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: 

Mechanical Engineering. https://doi.org/10.1115/1.4041501 

5. Feng, J., Liu, L., Wu D., Li, G., Gao, W., & Beer M. (2019). Dynamic reliability 

analysis using the extended support vector regression (X-SVR). Mechanical 

Systems and Signal Processing, 126, 368-391. 

https://doi.org/10.1016/j.ymssp.2019.02.027 

Conference publications: 

1. Gao, W., Feng, J. & Wang, C. (2015). Nondeterministic dynamic characteristics 

of structures with mixed uncertainties, Proceedings of 23rd Annual International 

Conference on Composites or Nano Engineering, July 12-18, 2015, Chengdu, 

China 

2. Feng, J., Wu, D., Gao, W., & Li, G. (2015). Structural behaviour analysis of truss 

structure with mixed uncertainties, Proceedings of 2nd Australasian Conference 

on Computational Mechanics, Nov 30-Dec 1, Brisbane. 

3. Feng, J., Wu, D., Gao, W., & Li, G. (2016). Static response of frame structure in 

the presence of hybrid uncertainties, Proceedings of 6th Asian-Pacific Symposium 

on Structural Reliability and Its Application, May 28-30, 2016, Shanghai, China. 

4. Feng, J., Wu, D., Gao, W., & Li, G. (2016). Unified stochastic and non-stochastic 

free vibration analysis of structures, Proceedings of 24th Australasian Conference 

on the Mechanics of Structures and Materials, December 6-9, 2016, Perth. 

5. Feng, J., Wu, D., Gao, W., & Li, G. (2017). Non-deterministic free vibration 

analysis of structures with random and fuzzy parameters, Proceedings of 

International Mechanical Engineering Congress and Exposition, November 3-9, 

2017, Tampa, USA 

https://doi.org/10.1115/1.4041501
https://doi.org/10.1016/j.ymssp.2019.02.027
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Chapter 2 . Literature review on uncertainty 

analysis in structural engineering 

Despite that the system variables of the concerned structures are widely assumed as 

deterministic, it has been illustrated that the fluctuation, or so-called uncertainties, of 

these parameters inherently associates with the structures as well as the modelling process 

[22–24]. Uncertainties are contributed from wide ranges of resources, such as 

manufacturing imperfection, random environmental attacks, measurement errors and 

human faults. Depending on the originality, the uncertainties can be generally divided 

into two categories: aleatory and epistemic uncertainties [25]. The aleatory uncertainty is 

resulted from the inherent variations associated with the engineering systems or 

environment. Thus, probabilistic theories are adopted by modelling the aleatory 

uncertainty as random variables. The epistemic uncertainty is considered as the 

consequence of the ignorance or incomplete information of the engineering systems or 

environment and thus usually described by interval, convex or fuzzy variables and so on. 

 The analysis approaches are usually categorised into three groups: (1) 

probabilistic approach, such as Monte-Carlo simulation, perturbation techniques and 

spectral methods; (2) non-probabilistic approaches including interval models, convex 

methods and fuzzy analysis; (3) hybrid uncertainty analysis which unifies a mixture of 

uncertainties (i.e. random and interval) into a single numerical strategy. In this section, 

the overviews of the methodologies that can be incorporated in uncertainty analysis are 

discussed. 
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2.1 Probabilistic analysis of structures  

Probabilistic approach has been widely used for analysing structural responses with 

uncertainties when sufficient stochastic information is available. By adopting this concept, 

uncertain parameters are modelled as random variables or random fields which enable the 

computation of statistical characteristics, such as mean and standard deviation, of the 

structural response. Different engineering variables, such as Young’s modulus and 

loading regimes, can be modelled as different probability distributions, which is 

comprehensively summarised in the reference [26]. Generally, the implementation of 

SFEM can be classified into two categories: the simulative approaches (e.g., direct 

Monte-Carlo simulation (MCS)) which are capable in offering the probabilistic features 

of the concerned structural responses based on the collection of samples obtained from 

the simulation [2, 27–30]; and the non-simulative strategies which approximate the 

statistical characteristics of the structural system outputs by implementing various 

numerical methods [31–35]. 

 The sampling approaches, such as Monte-Carlo simulation (MCS), have been 

widely used in the probabilistic analysis. Within this framework, a large number of 

samples of the uncertain variables are generated based on the given statistical information. 

Then, deterministic analysis is repeated for each set of samples. The advantage of MCS 

is its robustness, which means that it can be extensively adapted to a variety of 

engineering analysis models [24]. By combining MCS with Abaqus, the effect of 

uncertain material properties on the structural response of composite steel-concrete beams 

is obtained [36]. To select the best-fit distributions, some statistical analysis methods, 

such as Anderson-Darling test, Chi-square test and Kolmogorov-Smirnov test, can be 

applied to the samples from MCS [37]. The MCS is also capable to be combined with 
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extended finite element method (XFEM) in the uncertainty analysis of composite 

structures [30].  

 However, to reach an acceptable level of accuracy, a large number of simulations 

are necessary which requires excessive computational efforts. Hence, a Monte-Carlo 

simulation method is often used as a reference approach to validate the accuracy of other 

approach. For increasing the computational efficiency for calculating the eigenvalues and 

eigenvectors of complex stochastic structures, Székely & Schuëller [38] combines the 

subspace iteration method with the parallel computing such that the practical application 

of MCS is enabled. Latin Hypercube Sampling (LHS) method is an alternative of MCS. 

This method will generate samples which are equally distributed according to the 

cumulative distribution functions of the input uncertain parameters [39]. Line sampling 

and Adaptive Line Sampling methods can improve the simulation efficiency as well [40]. 

 Perturbation method has been widely applied to formulate the finite element 

matrices for stochastic engineering systems. By using Taylor expansion to the stochastic 

matrices and structural response vector, the uncertain property of the structures is 

discretised as a function of partial derivative of the input random parameters. Generally, 

the Taylor expansions are truncated at first or second-order since higher order terms will 

result in a significant increase in computational effect [41]. Accordingly, a random 

variable functional moment method is proposed by Gao et al. [15] up to the second-order 

Taylor expansion for linear analysis of truss and frame structures. This method is 

extended to hybrid random and interval uncertainty analysis. Kaminski et al proposed a 

generalised stochastic finite element method and applied it to the elastic buckling analysis 

of structures [42]. The perturbation-based method is capable in uncertain dynamic 

analysis of laminated plate as well [43]. The key advantage of this method is that the 
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means and standard deviations of the structural output can be obtained without running 

simulations with a large number of samples. Hence, the efficiency is increased 

dramatically comparing with sampling method. However, the accuracy of this approach 

is affected by the coefficient of variation of the input variables [44] due to neglect of 

higher order terms. Therefore, improved perturbation methods for stochastic finite 

element analysis are developed to increase the accuracy [41, 45]. For large-scale random 

eigenvalue problem, a reduced basis formulation is proposed aiming on improving the 

accuracy of the first order perturbation method [46]. By adopting this method, the original 

random eigenvalue problem is transferred into a series of reduced order random 

eigenvalue problem for each interested mode and thus the computational efficiency is 

also increased. Adhikari & Friswell [47] propose a modification of the conventional 

perturbation method. Instead of applying the Taylor’s expansion at the mean of random 

variables, the proposed method applied the perturbation expansion at the so-called 

optimal point, which enhances the performance of perturbation method in the presence of 

non-Gaussian random variables. To overcome the drawback that the traditional 

perturbation-based SFEM can only estimate the probability density function of structural 

responses with Gaussian distributed input variables, Xia et al. [48] integrate the change-

of-variable technique into the perturbation method and applied to the static response 

analysis of structures. Subsequently, the cumulative distribution function of the stochastic 

structural response can be achieved.  

 Instead of using the conventional finite element method, Long et al. [49] combine 

the perturbation concept with the scaled boundary finite element method (SBFEM) for 

the stochastic analysis of the orthotropic and cracked structures with random variables. 

Such stochastic SBFEM is then extended by considering the material properties as 
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random fields which are discretised by Karhunen–Loève (KL) expansion [50]. In this 

context, the first-order Taylor series expansion is applied by using the independent 

random variables resulted from the KL expansion. This method takes the advantage of 

the SBFEM in fracture mechanics and thus extended the applicability of the perturbation 

method.  

 With the progressive development of uncertainty analysis, SFEM has been 

escalated with the consideration of the spatial dependency of uncertain system parameters 

by incorporating the theory of random field. The spectral stochastic finite element method 

(SSFEM) is another type of non-simulative approaches, which was introduced by [32] by 

describing the spatial random variables of structure as random field. The core concept of 

SSFEM is to establish a valid surrogate model by implementing various series expansion 

schemes (e.g., the Karhunen–Loève expansion) such that the statistical characteristics 

(i.e., mean and variance) of the structural responses can be effectively calculated [51]. 

Instead of assuming the independency of random variables, the spatial correlation of 

random variables is considered in SSFEM as the covariance between the variables at any 

two locations within the spatial domain of the structures [52]. In additional to the static 

analysis, the SSFEM is implemented on random eigenvalue problem where the stochastic 

natural frequencies and mode shapes are represented by polynomial expansion [53] with 

respect to the random variables resulted from the Karhunen-Loève discretization.  

 The performance of the SSFEM is affected the inherent defect of the tradition 

FEM which can only approximate the geometry of the physical domain of structures to a 

certain extent. This negative effect would lead to numerical errors in the case that the 

structural systems are sensitive to geometric fluctuation. Stimulated by such imperfection 

of the traditional FEM, Li et al. [54] introduced a spectral stochastic isogeometric analysis 
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(SSIGA) which combines the spectral representation of random field with the novel 

isogeometric analysis. This method allows the complex geometries of structures to be 

exactly represented with relatively coase discretization comparing with the traditional 

FEM. Moreover, the quality of approximating the covariance function of random field is 

improved by integrating the NURBS and T-spline with the KL expansion. 

 Theoretically, the results estimated by the SSFEM can converge to the “exact” 

solution if the number of terms in the polynomial expansion increases to infinity. It is 

admitted that the accuracy will be increased with more terms involved, but the 

computational burden will be significantly heavy which prevents the SSFEM to be 

applied in the uncertainty problems with a large number of random variables. 

 Additionally, other types of stochastic methods have been proposed. Di Paola [55] 

proposed a virtual distortion method for investigating the static response of truss 

structures with stochastic uncertainties. By using the superposition principle, the explicit 

expression of structural response as a function of input random variables could be 

obtained in an asymptotic series expansion format. Due to the adoption of an alternative 

finite element formulation, the applicability of this approach is rather limited. A random 

eigenfunction expansion method is proposed by [56] for the response of stochastic finite 

element analysis of elliptical partial differential equations. The eigenvalues and 

eigenvectors used for constructing the expansion are computed by the 

eigendecomposition of the stiffness matrix of the investigated structures. Similar as other 

series expansion method, the proposed eigenfunction expansion approach requires 

truncation and approximation. The associated error is minimized by adopting the Galerkin 

error minimization approach. However, the computational efficient is significantly 

reduced by this error reduction strategy as discussed by the authors. 
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 Surrogate models have been widely employed as computationally highly efficient 

approach for reliability assessments and uncertainty quantifications. The core concept of 

the metamodel technique is to establish an explicit formulation to approximate the 

relationship between the inputs and outputs of the concerned structural analyses with limit 

number of running the original model based on the Design of Experiments (DOE) and 

then the conventional MCS will be performed on the constructed metamodel [57]. 

Impollonia & Sofi [58] proposed a response surface method for analysing the stochastic 

static response of structures with geometrical nonlinearities. Although this approach is 

developed based on the first-order perturbation method, it offers a closed-form expression 

that approximates the relationship between the stochastic responses and input random 

variables. However, due to existence of computing the derivative of stiffness matrix with 

respect to random variables and the calculation of eigenvalues and eigenvectors, the 

applicability of such method would be limited to specific cases such as truss structures. 

In terms of using surrogate models for reliability analysis, the polynomial-based classical 

response surface method (RSM) was first employed [59, 60] and received further 

improvement upon in various applications [61, 62]. Polynomial chaos expansion (PCE) 

is another widely adopted non-intrusive method such that the stochastic system output is 

represented by a collection of orthogonal polynomial basis functions [54, 63]. To reduce 

the effect of “curse of dimensionality” issue associated with PCE, a sparse polynomial 

chaos expansion approach was introduced [64, 65] such that only a subset of PC terms is 

involved in the expansion. The PCE technique is recently extended to the generalized 

polynomial chaos (gPC) [66] and arbitrary polynomial chaos (aPC) [67, 68] methods, 

which enable the strategy to be applied to the problems with non-Gaussian distributions. 

A Chebyshev method is proposed for the dynamic uncertainty analysis of multibody 
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mechanical systems and extended for analyzing the dynamic responses of structures with 

uncertain variables [69, 70]. 

 Aside from the aforementioned surrogate models, Kriging model which is a 

performance promising spatial interpolation technique has been extensively applied in 

uncertainty quantification and reliability analysis [71–74]. As a mathematical model 

constructed based on Gaussian process, Kriging can not only offer the unbiased predictive 

value but also uncertainty of the prediction measured by the Kriging variance [75]. Via 

utilizing the Kriging technique, a nested extreme response surface (NERS) method was 

developed to efficiently identify the extreme time responses as the dynamic reliability 

analysis can be conducted using static reliability analysis methods [76]. Other Kriging-

based reliability analysis approaches for dynamics are also developed for various 

engineering applications [77, 78]. 

 The artificial neural network (ANN) and its variations, benefitted from the 

capability in capturing the complex nonlinear relationship between the inputs and outputs, 

are increasingly applied as surrogate models for structural reliability analysis [79–81] and 

other engineering applications [82, 83]. Another machine learning technique, the support 

vector machine (SVM), has also been extensively studied in the structural reliability 

assessments. For example, the least squares support vector machine has been utilized for 

the dynamic reliability analysis of turbomachinery in [84]. Unlike the surrogate models 

based on the polynomial chaos expansion (PCE), the SVM is capable to bypass the curse 

of dimensionality and can also handle nonlinear problems effectively. 

 Even though the probabilistic approach of uncertainty analysis has been 

prevalently implemented in practical engineering applications, the applicability of such 
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methodology strongly depends on the availability of the information of uncertain 

parameters [85]. 

2.2 Non-probabilistic analysis of structures 

In practical engineering applications, sufficient probabilistic information may not be 

available under particular circumstance. Therefore, non-probabilistic approaches are 

implemented as an alternative of the probabilistic methods for uncertainty analysis. 

Among which, the uncertainties are generally either described as fuzzy, convex or interval 

parameters. 

 The fuzzy set theory was introduced by [86] firstly in 1965. The importance of 

this theory is its capability of describing the incomplete information by using the fuzzy 

set which is generally defined by its membership function [87]. The membership function 

can be interpreted as a distribution of uncertainty. In practice, the α-level strategy is used 

so that the membership function is subdivided into series α-sublevels [88]. Each α-

sublevel will generate a closed interval. Therefore, the α-sublevel approach actually 

transfers the fuzzy analysis into a number of interval analyses [87] and the membership 

function of the output of structures can be obtained. By using this strategy, a novel 

mathematical programming approach is proposed for robust fuzzy structural safety 

assessment [89]. The fuzzy membership function is constructed by performing a series of 

interval limit analyses using the concept of robust and optimistic optimizations. Recently, 

a novel fuzzy reliability model is from the viewpoint of probability theory [90]. In this 

theory, the membership levels of different variables are treated as independent standard 

uniform distributions. Inspired by the SSFEM, Adhikari & Khodaparast [91] proposed a 

spectral fuzzy finite element method based on Legendre polynomial expansion. 

Accordingly, the fuzzy variables are transferred into the standard interval variables vary 
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within . Similar as the SSFEM, the structural response is expressed as a function in 

the basis of multivariate orthogonal polynomials. This method extends the concept of 

SSFEM to non-stochastic analysis while maintains the same drawback which limits the 

number of fuzzy variables to be relatively small.  

 Convex model which was introduced in early 1990s [9] is another non-

probabilistic methodology for uncertainty analysis. In this method, the uncertain variables 

are assumed to vary within a non-stochastic convex set, such as multidimensional 

ellipsoid. The interval analysis can be regarded as a special case of convex analysis with 

uncertainties varying within a multidimensional solid box. Comparing with the 

probabilistic analysis, the convex model has weak dependency on the number of samples 

[92]. In order to develop an effective approach for constructing the multidimensional 

ellipsoids for describing uncertainties, Jiang et al. [93] created a correlation analysis 

strategy. Accordingly, mathematical definitions are provided for the marginal convex 

model which represents the variation range of each uncertain parameter, and a covariance 

which describes the correlation degree between two variables. This approach is combined 

with the reliability index method and applied on the non-probabilistic structural analysis. 

The introduced correlation analysis offers the first attempt for defining the concept of 

correlation within the framework of non-probabilistic analysis of engineering structures. 

The degree of the correlation is represented by the shape of the ellipsoid. To improve the 

conventional convex model in considering both independent and correlated variables, a 

novel multidimensional parallelepiped model is developed with the introduction of 

correlation angle [94]. In this method, both positive and negative correlation between two 

uncertain variables can be represented. Assitionally, the parallelepiped model in the 

original parameter space is transferred into the affine space by using the affine coordinates, 

[ 1,1]−
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which simplified the subsequent computation. Comparing with the conventional ellipsoid 

model, the multidimensional parallelepiped model extends the convex strategy to a more 

general manner. However, this model cannot provide an explicit formulation for 

describing the uncertainties and the complex affine transformation prevents the practical 

implementation in structural uncertainty analysis. To enhance the applicability of this 

approach, an improved multidimensional parallelepiped model is then developed to fix 

the aformentioned defects [10].  

 The interval analysis was developed based on the interval arithmetic [95], which 

simply requires the upper and lower bounds of the uncertain variables. Comparing with 

the probabilistic analysis and fuzzy method, the interval analysis takes the advantage of 

the conceptual simplicity and thus has been extensively implemented as an alternative to 

the probabilistic methods. Similar as the probabilistic approaches, sampling methods 

which include Monte-Carlo simulation (MCS) and Quasi-MCS are widely adopted for 

interval analysis of structures. Comparing with MCS, the samples generated by Quasi-

MCS are relatively more equally distributed within the upper and lower bounds of the 

interval variables [96]. The disadvantage of this method is same as demonstrated 

previously that huge computation cost is requires, especially for complex structures. 

 In the light of pursuing a more accurate estimation of the bounds of natural 

frequencies, different numerical strategies have been developed, such as perturbation 

method, vertex method, interval factor method and others [97–100]. The accuracy of these 

numerical approaches is conditional to specified assumptions and types of structures. 

Among these methods, the perturbation method can be applied without the limit of the 

type of structures or where the interval uncertainty exists. Chen et al. [101] applied the 

first-order perturbation method with finite element method in static response analysis 



20 

 

with interval parameters within the frame work of interval arithmetic. However, the 

drawback of the traditional interval finite element analysis is the so-called dependency 

issue [102, 103] which may result in the overestimation of upper and lower bounds of 

structural response.  

 For the purpose of addressing this problem, different approaches have proposed 

for within the framework of interval finite element method. Guo et al. [104] applied linear 

mixed 0-1 programming for structural response analysis of truss structures with interval 

material properties. Affine arithmetic is another effective approach which is capable to 

track the dependency between interval variables [105]. Additionally, Interval Rational 

Series Expansion [106] is proposed and later on combined into the optimization and anti-

optimization approach for interval analysis of structures [107]. A novel mathematical 

programming (MP) based formulation within the framework of FEM is developed which 

is capable for completely eliminating the dependency issue [108]. With the reformulation, 

the traditional governing equation of finite element method is decomposed into 

equilibrium equation, compatibility equation and elastic constitutive equation. This 

reformulation enables the upper and lower bounds of structural response to be solved as 

nonlinear programming problems. Recently, this approaches have extend to structural 

stability analysis [109] and elastoplastic analysis [110]. Within the framework of 

improved interval analysis via extra unitary interval, an interval finite element analysis is 

proposed by [111] to associate an extra unitary interval to each uncertain variable. 

Subsequently, the dependency between interval variables can be tracked in both assembly 

and solution stage of the finite element analysis. However, this method is limited to 

analyse with interval uncertainties existing in Young’s modulus.  
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 For interval eigenvalue problems, under the circumstance that only the structural 

stiffness is affected by interval variables, the exact bounds of natural frequencies are 

firstly proved by [112] to be achievable by implementing two deterministic finite element 

analyses. Recently, pioneering work has been accomplished [113] that the sensitivity 

analysis of eigenvalue is implemented with regarding to the interval system variables. By 

evaluating the first-order derivative of eigenvalues with respect to interval variables, 

monotonic relationship between the natural frequencies and input variables can be 

indicated. In such way, the combinations of the extreme values of interval parameters that 

lead to the exact bounds of eigenvalues can be identified. The combination of 

mathematical programming and perturbation method is also implemented for interval 

eigenvalue problems. Since that the perturbation method based on the second-order 

Taylor expansion can increase the accuracy in interval analysis, Li et al. [114] 

reformulated the Taylor expansion of eigenvalues as a quadratic programming problem 

and employed the difference of convex functions algorithm (DCA) to obtain the optimal 

solutions. Although extra computational time is required comparing with the first-order 

Taylor expansion method, this approach allows the eigenvalue analysis with large interval 

uncertainties.  

 A common assumption enclosed in the discussed interval analyses is that the 

interval parameters exist in the structural system are spatially independent. The 

consistency between the numerical analysis and general engineering practice is not fully 

addressed by such hypothesis [85]. To realistically describe the spatial dependencies of 

interval parameters, the concept of interval field is innovatively proposed as an extension 

of conventional random model by Verhaeghe et al. [115] who have suggested two models, 

namely explicit and implicit interval fields, for the static analysis of engineering 
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structures. Such novel concept is reinvented by implementing the Karhunen-Loeve-like 

decomposition of the bounded spatial fluctuation of Young’s modulus for the static 

response analysis of an Euler-Bernoulli beam [116]. A comparative study on random and 

interval field models based on a one-dimensional beam structure is conducted by [117]. 

The introduction of interval field concept provides an innovative point of view for interval 

structural analysis. In addition, a non-probabilistic convex process model is introduced 

for time-variant uncertainty analysis and dynamic reliability analysis [118]. Accordingly, 

an interval process model is constructed to describe the non-random excitation applied 

on structures [119]. Comparing with the conventional random vibration analysis, only the 

upper and lower bounds functions are required for the time-variant excitation rather than 

the precise probability distribution. Wu & Gao [120] proposed another interval field 

model which is applied on both 1D and 2D static plain stress problem. The input interval 

parameters are described by upper and lower bound spatial-variant functions. By adopting 

the spatial average discretization scheme which was originally proposed for random field 

[121], the interval field is discretised into a vector of interval variables. Subsequently, the 

conventional interval finite element methods can be employed to solve the uncertainty 

problem with interval field. The aforementioned non-random field/process models enrich 

the theories of non-probabilistic analysis for engineering applications by offering 

practically applicable representations of the spatial/time variabilities of system 

parameters when information of the uncertain variables is insufficient for stochastic 

analysis. 

2.3 Hybrid probabilistic and non-probabilistic uncertainty analysis 

Considering that the modern engineering applications are advancing with increasing 

complexity in terms of materials, geometric properties and loading regimes, it is realized 
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by researchers that the aforementioned single uncertainty modelling techniques are 

inadequate for representing all the uncertain system parameters [122]. In this context, the 

hybrid uncertainty analysis approaches are developed to unify the diverse types of 

uncertainty modelling strategies (typically the probabilistic and non-probabilistic) into a 

single computational scheme. 

 Gao et al. [15] developed a random interval moment method based on the 

perturbation theory by taking Taylor expansion and the mean of random variables and 

mid-point values of interval parameters. In these studies, the upper and lower bounds of 

means and variances of system responses are explicitly formulated, such that the 

computational efficiency of this type of approach can be well preserved. The main 

advantage of this method is that mean and standard deviation of structural responses can 

be obtained with relatively less computational cost comparing with the sampling 

approaches. In addition to the static response analysis, the random interval moment 

method has been extended to natural frequency and mode shape analysis [123]. To avoid 

the interval dependency issue, the Monte Carlo simulation is used for computing the 

upper and lower bounds of mean and variance instead of using the interval perturbation 

method [6]. However, the computational efficiency is significantly reduced and the 

achievement of the exact upper and lower bounds is not promised. The random interval 

moment method is extended to the analysis of acoustic field with both random and 

interval uncertainties [17, 18, 124].  

 Semi-sampling approach combines the advantages of sampling method for 

stochastic analysis and non-simulative methods for interval analysis. Wu et al. [125] 

proposed a unified interval stochastic sampling (UISS) approach for the probabilistic 

interval limit analysis of structures. Firstly, a large number of samples for the input 
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random variables are generated according to the corresponding statistical information. 

Then, for each sample, an interval limit analysis is performed to obtain the upper and 

lower bounds of the collapse load factor. Thus, the statistical analysis can be conducted 

based on the collected samples to estimate the PDFs and CDFs of the bounds of collapse 

load factor. Assisted by the samples, the bounds of structural reliability against plastic 

collapse can be conveniently evaluated. The UISS method is also implemented on the 

uncertain stability analysis of structures with mixed random and interval variables [7]. 

The UISS approach offers a semi-sampling computational scheme which can be 

combined with the advanced sampling strategies in addition to the conventional MCS and 

also other non-simulative interval analysis approaches. For example, Wu et al. [126] 

incorporated the UISS method with a unified Chebyshev surrogate model for 

geometrically nonlinear analysis of structures with random and interval variables. 

 The dynamic response of structures with interval system parameters under random 

excitations has been investigated as a special case of hybrid uncertainty problem. 

Muscolino & Sofi [127] improved the interval perturbation method by using the affine 

arithmetic which introduces a unitary interval. The random dynamic response in time 

domain is approximated by the first-order Taylor expansion by assuming the stochastic 

response can be expressed as sum of midpoint solution and a deviation. This method is 

also applied to the frequency domain analysis [128] and dynamic reliability analysis of 

linear structures under stationary Gaussian excitation [129]. Do et al. [130] investigate 

the bounds of dynamic reliability of structures based on the first-passage failure 

probability. In this study, the boundary governing the first-passage failure is considered 

as interval variables in addition to the structural system parameters. Instead of evaluating 

the upper and lower bounds of the time-variant stochastic response, the proposed method 
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investigates the variations of the mean of structural response/ stress. Due to the 

complexity of the problem, an improved particle swarm optimization method is adopted 

to efficiently obtain the bounds of structural reliability and the mean of nodal structural 

responses. 

 For the hybrid uncertainty analysis involving spatial dependency, the static plane 

stress problem is investigated by either extending the spectral SFEM with interval 

variables [131]. In this study, the SSFEM is combined with interval analysis to calculate 

the bounds of the first two moment, mean and standard deviations, of the static structural 

responses. The mean and standard deviations are expressed as complicated polynomials 

of interval variables, which prevents the achievement of upper and lower bounds by 

simple interval arithmetic. Thus, an improved particle swarm optimization (PSO) method 

is adopted for efficiently computing the extreme bounds. An imprecise random field 

model is proposed by [132] by incorporating the uncertain-but-bounded values into the 

mean and standard deviations. Specifically, the Young’s modulus and body force of 

structures are modelled as imprecise random fields which are discretised by KL expansion. 

This special case leads to the monotonic relationship between the structural response and 

the interval parameters. Therefore, the exact upper and lower bounds of statistical 

characteristics of the responses can be obtained by using the combinatorial approach. The 

uncertain static analysis with hybrid random and interval fields is conducted by [133] for 

the first time by a semi-sampling approach. Firstly, the random field is discretised by 

using the KL expansion and then a large number of samples for the random field are 

generated. At each sampling point, an interval analysis is conducted by using 

mathematical programming method. Subsequently, the collections of upper and lower 

bound samples are obtained, and the corresponding PDFs and CDFs can be constructed. 
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For representing the variabilities existing in fibre composites, a novel fuzzy-stationary 

random field model is proposed [134] by calibrating the random fields with fuzzy 

variables. Accordingly, a global-local multiscale algorithm is constructed by adopting the 

concept of representative volume element (RVE) and homogenization. At current stage, 

this model has only been applied on one-dimensional problem. 

 The hybrid uncertainties are also considered in the reliability analysis. For the 

First Order Reliability Analysis (FORM), a unified uncertainty analysis approach is 

introduced for considering a mixture of random and interval variables [135]. Thus, the 

probability of failure varies within a range instead of a constant value. In this study, the 

upper and lower bounds of the probability of failure are defined plausibility and belief 

according to both evidence and probability theory. This method is later on extended to 

reliability sensitivity analysis with both random and interval parameters [136]. Luo et al. 

[21] proposed a hybrid probabilistic and convex approach for structural reliability 

analysis. Due to existence of the uncertain-but-bounded parameters, the points that can 

lead to the structural failure form a bounded region, namely the critical region, rather than 

a multi-dimensional surface in the traditional probabilistic reliability analysis. For sake 

of conservation, this method is developed for searching the most probable failure point 

which has the shortest distance from origin to the critical region. For the structural 

reliability analysis with imprecise random distribution, Jiang et al. [137] proposed two 

models based on the reliability index approach (RIA) and performance measurement 

approach (PMA), which can be solved as two-layer nesting optimization problems. To 

increase the computational efficiency, a monotonicity analysis is conducted based on the 

two proposed approaches. As shown in this study, monotonicity of CDF can be observed 

for several commonly used probability distributions, such as Gaussian, lognormal, 
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extreme value distribution. The concern raised is that the first-order Taylor expansion is 

adopted in the inner-layer optimization problem, which could affect the accuracy of the 

proposed models. The perturbation-based random interval moment method is also 

extended to the reliability analysis of homogeneous and biomaterial cracked structures 

[138]. In this method, the elastic properties, externally applied loads and material fracture 

resistance are modelled as random variables, and the crack geometry is represented by 

interval variables. The upper and lower bounds of the reliability index are defined as 

functions of the bounds of mean and standard deviations of structural response.  

 Recently, the non-intrusive approaches are gaining increasingly popularity for the 

application in the hybrid uncertainty analysis and reliability analysis. By integrating the 

Polynomial Chaos expansion (PCE) method with the Chebyshev inclusion theory, a 

Polynomial-Chaos-Chebyshev-Interval (PCCI) method is proposed for the vehicle 

dynamics involving hybrid random and interval variables [139]. This method is capable 

in providing two types of hybrid analysis outcomes: (1) the interval mean and standard 

deviations; (2) the mean and standard deviations of upper and lower bounds of. The PCCI 

method can be regarded as the first non-intrusive approach for hybrid uncertainty analysis. 

In addition to the Chebyshev polynomial, the Legendre polynomial is also combined with 

the PCE and implemented for the time response of structures with hybrid uncertainties 

[140]. A Gegenbauer series expansion method (GSEM) is introduced by [141] for 

approximating the response of structural-acoustic systems with bounded hybrid random 

and interval variables. In this method, the expansion coefficients are obtained by the 

Gauss-Gegenbauer integration method. These methods share the same concept by using 

sampling approaches, either scanning method or Monte Carlo simulation, to obtained the 
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upper and lower bounds. Theoretically, the results can converge to the exact solution if 

sufficient number of samples is used. 

 Surrogate models have also been applied in the reliability analysis of structures 

with hybrid uncertainties. Balu & Rao [142] applied the Multicut-High Dimensional 

Model Representation (MHDMR) method in evaluating the bounds on structural 

reliability involving a mixture of random and fuzzy parameters. In this method, the 

probability distribution function of the approximated limit state function is estimated by 

using fast Fourier transform (FFT). An active learning Kriging model is proposed and 

implemented for reliability analysis with hybrid random and convex variables [143]. By 

iteratively adding the training point which is least likely to be correctly predicted, the 

accuracy of the Kriging model can be gradually increased. Comparing with the 

perturbation-based method and other intrusive approaches for hybrid analysis, the 

surrogate model based strategies eliminated the reformulation of the governing equations 

of the computational model which are usually complex. Thus, the implementation of 

metamodeling techniques in practical applications is expected to be more straightforward. 
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Chapter 3 . Uncertainty analysis for structures 

with hybrid random and interval parameters 

using mathematical programming approach 

3.0 Summary 

A novel computational method, namely the unified perturbation mathematical 

programming (UPMP) approach, for hybrid uncertainty analysis of engineering structures 

is proposed in this paper. The presented study considers a mixture of random and interval 

system parameters which are frequently encountered in engineering applications. Within 

the UPMP approach, matrix perturbation theory is adopted in combination with the 

mathematical programming approach. The proposed computational method provides a 

non-simulative hybrid uncertainty analysis framework, which is competent to offer the 

extreme bounds of the statistical characteristics (i.e., mean and variance) of any concerned 

structural responses in computationally tractable fashion. In order to thoroughly explore 

various intricate aspects of the engineering system involving hybrid uncertainties, 

systematic numerical experiments have also been conducted. Diverse statistical analyses 

are implemented to identify the bounded probability profile of the uncertain structural 

responses. Both academic and practical engineering structures are investigated to justify 

the applicability, accuracy and efficiency of the proposed UPMP approach. 

 The Chapter 3 is organised as follows. Section 3.1 introduces the background of 

static structural analysis with uncertainties. In Section 3.2, the formulations for static 

structural response analysis with hybrid uncertainties are presented. The proposed UPMP 

scheme is formally presented in Section 3.3. Furthermore, both academic sized and 

practically motivated numerical examples are investigated by the proposed UPMP 
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approach and then critically compared with either analytical solution or exhausted 

simulation approach in Section 3.4. Finally, some concluding remarks are drawn in 

Section 3.5. 

 The research work developed in this chapter has produced one journal paper 

which has been published in Applied Mathematical Modelling. The detail of the 

publication is: Feng, J., Wu, D., Gao, W., & Li, G. (2017). Uncertainty analysis for 

structures with hybrid random and interval parameters using mathematical programming 

approach. Applied Mathematical Modelling, 48, 208-232. 

https://doi.org/10.1016/j.apm.2017.03.066 

3.1 Introduction 

Uncertainties, such as variations in material properties, cross-sectional geometry as well 

as loading regimes, inherently exist in practical engineering applications [144]. Such 

variabilities can result in significant effect on the structural response [2, 145]. Therefore, 

it is essential to incorporate the uncertain parameters into structural analyses. 

 Regarding the traditional uncertainty analysis, probabilistic/stochastic approaches 

are frequently implemented in the uncertain structural analysis due to the solid theoretical 

foundation associated with uncertainty modelling. Within the framework of the stochastic 

finite element method (SFEM), the well-known Monte-Carlo simulation (MCS) method 

is one of the most straightforward procedures, which has been pervasively implemented 

in a variety of stochastic problems [23, 27, 28]. In addition, the computational stochastic 

analysis, which has been developed basing on the theory of general matrix perturbation, 

offers an advantageous non-simulative strategy for uncertainty analysis on engineering 

structures involving random variables [48, 146–148]. Furthermore, the spectral stochastic 

https://doi.org/10.1016/j.apm.2017.03.066
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finite element method (SSFEM) was introduced to address the spatially dependent 

uncertain system parameters in structural engineering problems [22, 32, 149].  

 However, accumulated experiences from engineering practice have repeatedly 

revealed that the requirement for the implementation of the probabilistic analysis cannot 

be always fulfilled due to the issue of information deficiency on the uncertain system 

parameters [150]. In this context, the interval models are gaining popularity because of 

the conceptual simplicity [151]. By implementing the concept of interval analysis within 

the framework of the FEM, various computational algorithms with specific emphasises 

have been explicitly developed for tackling intricate engineering problems with enhanced 

capability and accuracy [103, 104, 107, 109, 152].  

 In modern engineering applications, it is frequently encountered that both 

probabilistic and non-probabilistic uncertainties exist simultaneously [153]. Therefore, a 

computational scheme which is capable of estimating the effect of diverse types of 

uncertainties on engineering system is inevitably necessary. A random interval 

perturbation method has been developed for static response analysis [15], and free 

vibration analysis [123] of structures with both stochastic and non-stochastic uncertainties. 

Also, the perturbation based computational method is extended to the dynamic response 

analysis of acoustic field and structural-acoustic interaction system with hybrid uncertain 

parameters [124].  

 By thoroughly examining on the literatures regarding the perturbation theory 

based hybrid uncertainty analysis with random and interval variables, it is realized that 

either series expansion or numerical approximation has been implemented to derive 

explicit formulations for the upper and lower bounds of the statistical characteristics of 

the considered structural responses. The advantage of such prevalently employed 
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technique is that explicit formulations on the bounded statistical characteristics of 

structural responses can be explicitly formulated. However, the drawback of such analysis 

is that the overestimation on the bounded statistical characteristics of system output 

cannot be completely exempted due to the issue of interval dependency. As clearly 

demonstrated in the previous studies [103, 104, 107, 109, 152], the issue of interval 

dependency can significantly affect the accuracy of the interval analysis, which is mainly 

attributed by the multiple occurrences of the same interval parameter at various locations. 

The general rule is that the more numbers of interval parameters appear in the system, the 

more likely the bounded results are suffering from overestimation.  

 In the light of achieving valid hybrid uncertainty analysis with the least 

overestimation due to interval dependency, a novel computational method, namely the 

unified perturbation mathematical programming (UPMP) method, is proposed for static 

analysis of engineering structures with a mixture of random and interval uncertain 

parameters. Within the proposed computational scheme, the matrix perturbation theory 

and mathematical programming (MP) approach are integrated in conjunction with an 

alternative FEM modelling technique. Such novel integration reformulates the hybrid 

probabilistic interval static analysis into a series of nonlinear programming (NLPs) 

problems. Consequently, the upper and lower bounds of the mean and variance of the 

concerned structural response can be explicitly determined by solving the corresponding 

NLPs. Some core advantages of UPMP are including: 

1. The superior computational efficiency of the non-simulative method is fully 

inherited by the UPMP approach, which significantly enhances the applicability 

of the proposed scheme in the context of analysing modern complex engineering 

structures. 



33 

 

2. The physical feasibility of all interval parameters can be rigorously maintained 

throughout the entire hybrid probabilistic interval analysis. Thus, the determined 

system outputs are fully liberated from the overestimation caused by the issue of 

interval dependency. 

3. The critical values of the interval parameters responsible for the extremities of 

statistical information of structural response can be effectively retrieved as by-

products of the uncertainty analysis. 

In order to evidently illustrate the applicability and effectiveness of the proposed UPMP 

approach, both academic sized and practically motivated structures have been 

investigated in this chapter. For the purpose of results verification, all computational 

results provided by the UPMP approach are rigorously testified against either analytical 

solution (for academic sized example) or results obtained from exhausted simulation 

approach (for practically motivated example). In addition to the proposition of the UPMP 

approach, supplementary numerical experiments have been conducted to further explore 

some important aspects on the hybrid uncertain static analysis with random and interval 

variables.  

3.2 Non-deterministic static analysis of structures with hybrid 

uncertainties 

For the non-deterministic analysis, the system parameters such as material properties, 

cross-sectional geometries and loading regimes are considered as uncertain variables. In 

general engineering practice, the availability and sufficiency of information of uncertain 

system parameters are strongly situational dependent [6, 7]. Therefore, it is rational and 

necessary to develop a hybrid uncertainty analysis scheme which can adopt as many 

different uncertainty modelling techniques as possible in a single framework of analysis.  
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3.2.1 Generalized hybrid random interval static analysis of structures 

Without loss of generality,  is defined as a random variable in a probability space 

 and  denotes the set collects all real numbers; and  denotes an interval 

variable, such that , where  an  represent the lower 

and upper bounds of , respectively. For maintaining the consistency of formulations 

throughout this paper,  denotes that the parameter  is a random variable/vector, 

 denotes that the parameter  is an interval variable/vector, and  denotes that 

the parameter  is a variable/vector which includes both random and interval 

characteristics. Thus, the non-deterministic linear static response analysis of a structure 

with  degrees-of-freedom (DOFs) is expressed as: 

  (3.1) 

such that 

  (3.2) 

  (3.3) 

where  denotes the non-deterministic stiffness matrix of the structure; 

 is the vector that contains the non-deterministic displacements at all DOFs; 

and  denotes the non-deterministic externally applied forces;  denotes 

the random vector which collects all the m probabilistic uncertain system parameters; 

 denotes the probability density function of the random variable ;  denotes 

the interval vector which contains all the  interval variables presented in the system; 
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 and  denote the lower and upper bounds of , respectively. It is worth to notice 

that due to the presence of hybrid uncertainties, the stiffness matrix and force vector are 

functions of both random and interval variables.  

 The consideration of hybrid stochastic and non-stochastic uncertainties within the 

structural system dramatically increases the complexity of the static analysis problem. 

Due to the simultaneous existence of both random and interval variables, the behaviour 

of structural responses including nodal displacement and elemental force could have both 

probabilistic and interval characteristics. Moreover, for complex structural systems, the 

relation between each input variable and the structural output (i.e. nodal displacement and 

elemental force) cannot be analytically determined such that the exact prediction on the 

mercurial characteristics of structural behaviour is prohibited. Being conceptually 

different with the theories of imprecise probabilities [154], the random and interval 

uncertainties considered in this study are mutually independent rather than inclusive. 

3.2.2 Hybrid uncertainty analysis by using moment method 

By implementing the concept of the random moment method [7, 123] combined with the 

probabilistic theory, the means and standard deviations of the structural responses can be 

explicitly reformulated. Without loss of generality, multiple random and interval 

variables are respectively represented by random vector  and interval vector 

. Within the framework of finite element method, the structural stiffness matrix 

 and the applied load vector , which are the functions of random and 

interval parameters, can be expanded by implementing the random moment method as: 

j j j

mψ

Imζ

( , )sK ψ ζ ( , )R I
F ψ ξ
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  (3.4) 

  (3.5) 

where  is the vector collects the means of all random variables; 

 denotes the mean of the ith random variable ;  is the high-order terms of the 

Taylor expansion for the uncertain parameter . 

 From the theory of first-order matrix perturbation, the governing equation for 

linear static analysis of the structure involving various uncertain parameters can be 

formulated as: 

   (3.6) 

where 
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  (3.10) 

 By neglecting the high-order terms, the random interval structural displacement 

based on the first-order perturbation is calculated as: 

  (3.11) 

 Subsequently, the mean and standard deviation of the random interval structural 

displacement responses  based on the first-order matrix perturbation [123] can be 

obtained by taking the mean and variance operation on Eq. (3.11), which leads to: 

  (3.12) 

  (3.13) 

where  and  denote the vectors which collect the mean and standard 

deviation of the displacement responses at all  degrees-of-freedom, respectively; 

 denotes the covariance between the ith and kth random variables  and ; 
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the operator “ ” denotes the Hadamard product of two matrices with equal dimension 

[155]. As indicated by Eqs. (3.12) and (3.13), the hybrid random interval problem has 

been transferred into two explicit interval analyses such that the statistical characteristics 

of the structural displacements are uncertain-but-bounded which can be further expressed 

as: 

  (3.14) 

  (3.15) 

where  and  denote the mean and standard deviation of the structural 

displacement ( ) at vth degree-of-freedom, respectively;  and  denote the 

upper and lower bounds of , respectively; and  denote the upper and lower 

bounds of , respectively. 

 In addition, the elemental force denoted by , can be explicitly formulated 

as: 

  (3.16) 
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 Once again, by implementing the random moment method combined with the 

theory of matrix perturbation, the mean and standard deviation of elemental force can be 

explicitly formulated as: 

  (3.18) 

  (3.19) 

where ,and  denote the vectors which collect the mean and standard 

deviation of the elemental force, respectively. Subsequently considering the effects of 

interval uncertainties, the mean and standard deviation of the elemental force become 

uncertain-but-bounded which can be further expressed as: 

  (3.20) 

  (3.21) 

where  and  denotes the mean and standard deviation of  which is the zth 

component of the elemental force vector, respectively;  and  denote the upper 

and lower bounds of , respectively; and  denote the upper and lower bounds 

of , respectively; denotes the total number of elemental force in the structural 

system. 

 Eqs. (3.14) - (3.15) and (3.20) - (3.21) indicate that the implementation of the 

random moment method meticulously transforms the hybrid random interval static 

analysis of linear structures into a series of interval problems, which provide an efficient 
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yet systematic scheme for solving uncertainty analysis of structures with a mixture of 

random and interval variables. The explicit reformulations on the mean and standard 

deviation of the nodal displacement and elemental force offer preliminary information for 

analysing the uncertain structural behaviour under static loads. However, the calculation 

of the uncertain-but-bounded statistical characterises remains a computational challenge 

which is dominated by the aforementioned interval dependency issue. In this context, the 

interval arithmetic-based approaches could lead to overestimation of the bounded 

stochastic characteristic while sampling method would be computational expensive for 

complex hybrid uncertainty analysis. Therefore, it is necessary to develop a more 

computational tractable approach such that the bounded means and standard deviations 

of the structural responses can be efficiently calculated without the interference of the 

issue of interval dependency. 

3.3 The unified perturbation mathematical programming (UPMP) 

approach 

In this section, a new computational approach, namely the unified perturbation 

mathematical programming (UPMP) approach, is proposed to investigate the hybrid 

uncertain static response analysis with random and interval parameters. The UPMP 

approach offers a non-sampling computational strategy which can efficiently determine 

the mean and standard deviations of the structural responses. Furthermore, by adopting 

the alternative finite element (FE) formulation, the upper and lower bounds of the means 

and standard deviations of the structural responses can be explicitly formulated into 

standard nonlinear programming problems (NLPs). Consequently, the extreme bounds of 

all statistical characteristics (i.e. means and standard deviations) of either nodal 

displacements or elemental forces can be efficiently obtained by solving eight standard 

NLPs. 
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3.3.1 Alternative finite element formulation 

As previously emphasized, the issue of interval dependency is always present in 

assembling global stiffness matrix with interval variables through the interval arithmetic 

approach. Even though the interval stiffness matrix can be easily assembled, it is highly 

likely that the final computational results are over-estimated due to the inappropriate 

manipulation of interval algebra. In the light of eliminating the interference on the system 

outputs caused by the interval dependency, an alternative FE formulation [108, 109] is 

implemented in interval analysis of engineering structures. Within the studies reported in 

[108, 109], the structural response analysis and linear bifurcation buckling analysis with 

interval uncertain parameters are transformed into mathematical programming problems. 

Subsequently, the interval analyses are processed directly via NLP solver by modelling 

the interval parameters as inequality constraints of the NLPs while the originality of the 

FE governing equations is thoroughly maintained. In this context, the interval arithmetic 

and the associated dependency issue are completely eliminated from the analysis such 

that the sharpness of results is improved. Therefore, such FE reformulation is 

meticulously adopted in this hybrid uncertainty analysis and briefly demonstrated in this 

subsection. 

 By implementing this alternative FE modelling, the governing equations of linear 

elastic analysis of a structure which consist  elements,  degrees of freedom and  

generalized stress/strain, are composed by the equilibrium condition, the compatibility 

condition and the elastic constitutive condition. The three governing equations can be 

explicitly expressed as: 

  (3.22) 

sn sd w

T

s =C q F
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  (3.23) 

   (3.24) 

where  denotes the generalized stress vector of the structure;  denotes the 

generalized strain vector corresponding to ;  denotes the compatibility 

matrix which physically correlates the global displacement with generalised strain, and 

its transpose is the equilibrium matrix which maintains the balance between the externally 

applied force  and the generalised stresses ;  is a block diagonal 

matrix which collects all elemental stiffness. Readers who are interested in the detailed 

alternative FE formulations of the 2D truss and frame structures can refer to [108]. 

When the hybrid random and interval uncertainties of system parameters are 

considered, the non-deterministic analysis expressed in Eq. (3.1) can be reformulated into: 

  (3.25) 
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  (3.27) 

where  denote the non-deterministic generalized stress and strain vectors 

respectively. By substituting Eqs. (3.26) and (3.27) into Eq. (3.25), the resultant equation 

becomes: 
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 Additionally, the elemental force of the structure can be obtained from the 

generalized stress vector as: 

  (3.30) 

 Eqs. (3.25) - (3.27) are the general governing equations for linear elastic analyses 

of structures involving hybrid random and interval uncertainties, which should be 

satisfied regardless of element types. 

3.3.2 Upper and lower bounds of mean of nodal displacement 

By implementing the alternative FE formulation as illustrated in Eqs. (3.28) and (3.29), 

the mean of nodal displacement as expressed in Eq. (3.14) can be reformulated as: 

  (3.31) 

Thus, the formulation of mean of nodal displacement can be alternative expressed by the 

format introduced in Eqs. (3.25) - (3.27). Mathematically, all the interval uncertain 

parameters can be treated as inequality constraints, and the equilibrium condition, the 

compatibility condition and the elastic constitutive condition are considered as equality 

constraints. Subsequently, the upper bound of the mean of the displacement response at 

vth ( ) degree-of-freedom can be obtained by solving the following NLP: 
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  (3.32d) 

  (3.32e) 

Similarly, the lower bound of the mean of the displacement response at vth 

( ) degree-of-freedom is calculated by solving the following problem: 

                                 (P2): 

  (3.33a) 

                                 subject to: 

  (3.33b) 

 Eqs. (3.32) and (3.33) indicate that by introducing the alternative finite element 

model into the matrix perturbation, the upper and lower bounds of the mean of the nodal 

displacement can be determined without the implementation of interval arithmetic. 

Consequently, the extremities of the mean of the structural displacement at any degree of 

freedom can be rigorously established by completely eliminating the effects of interval 

dependency.  

3.3.3 Upper and lower bounds of standard deviation of nodal displacement 

Similarly, by adopting the alternative FE model introduced in Section 3.3.1, the bounds 

of standard deviation of the nodal displacement at the vth degree-of-freedom can be also 

calculated by solving two standard NPLs. To further simplify Eq. (3.13), additional 

auxiliary variables , , and  for , are 

introduced, thus the variance of displacement can be expressed as: 
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  (3.34) 

where 

  (3.35) 

  (3.36) 

such that 

  (3.37) 

  (3.38) 

 The introduction of these auxiliary variables enables the adoption of the 

alternative FE model to reformulate the standard deviation of nodal displacement. Thus, 

by implementing the concept expressed in Eqs. (3.28) and (3.29), Eqs. (3.35) - (3.38) can 

be explicitly reformulated. Subsequently, the determinations of the extreme bounds of 

standard deviation of nodal displacement could be achieved through solving two explicit 

NLPs. By treating interval uncertainties as bounded variables, the upper bound of the 

standard deviation of displacement response at the vth degree-of-freedom is calculated by 

solving the NLP defined by Eq. (3.39). Due to the non-negative property of standard 

deviation,  and such that the validity of the proposed UPMP 

approach for obtaining the bounds of standard deviation through the calculation on the 

bounds of variance is ensured. Consequently, the upper bound of the variance of the vth 

structural displacement can be explicitly formulated as the NLP problem (P3): 
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  (3.39a) 
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Furthermore, the lower bound of the variance of displacement response at the vth 

( ) degree-of-freedom is calculated by solving the following NLP: 

                                 (P4): 

   (3.40a) 

                                 subject to: 

  (3.40b) 

 The details of the reformulation of Eqs. (3.35) - (3.38) are illustrated by the 

following proof, which provides a reference for the construction of the two NLP problems 

indicated by Eqs. (3.39) and (3.40). 

Proof. 

 By implementing the alternative FE formulation presented in Section 3.3.1, the 

reformulation of Eq. (3.35) is demonstrated as: 
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where  and  denotes the two pseudo-vectors corresponding to . 

 Similarly, Eq. (3.37) is reformulated as Eq. (3.43) by adding two pseudo-vectors

 and . That is, 

  (3.43) 

 Then, Eq. (4.38) could be decomposed into Eq. (3.44) by introducing a pseudo-

vector , such that: 
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programming approach advantageously accommodates the dependency of interval 

uncertain variables. 

3.3.4 Upper and lower bounds of mean of elemental force 

Within the framework of the proposed UPMP approach, the expression of mean of 

elemental force (Eq. (3.18)) is reformulated by adopting the alternative FE formulation 

indicated by Eq. (3.30) as following: 

  (3.45) 

where  has been defined as in Eqs. (3.32b) - (3.32d) such that 

  (3.46) 

Therefore, the upper bound of mean of the zth ( ) force response can be obtained 

by solving the NLP problem (P5) expressed as Eq. (3.47): 

                                 (P5): 

  (3.47a) 

                                 subject to: 

  (3.47b) 

and the calculation of the lower bound of mean of the zth ( ) force response is 

summarised as the following NLP (P6):  

                                 (P6): 

  (3.48a) 

1

0 0 0

( , )
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RI

s

−=

=

=
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ψ u

μ D K F

S μ ζ Cμ

q

sq

0 ( , )= ψD S μ ζ C

1z ,...,w=

maximise{ }RI
z

zf
q =

Eqs. (3.32b)-(3.32e)

1z ,...,w=

minimise{ }RI
z

zf
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                                 subject to: 

  (3.48b) 

 The Eqs. (3.47) and (3.48) indicate that the computation of upper and lower 

bounds of the mean of elemental force are based on solving two NLP problems with same 

constraints as in the calculation of bounded mean of nodal displacement which saves the 

computational effort in the hybrid random interval uncertainty analysis. 

3.3.5 Upper and lower bounds of standard deviation of elemental force 

The expression of the standard deviation of elemental force for the hybrid uncertainty 

analysis can be reformulated by utilising the proposed UPMP approach as Eq. (3.49): 

  (3.49) 

where , ,  are the auxiliary variables and , , 

 are the pseudo-vectors introduced in the reformulation for standard deviation 

of nodal displacement. By adopting the same concept of numerical decomposition for the 

calculation of the bounds of the standard deviation of nodal displacement, the general 

computational formulation of UPMP for the calculation of the upper bound of the 

standard deviation of the sth ( ) elemental force response can be explicitly 

formulated into a NLP, such that: 

                                 (P7): 

Eqs. (3.32b)-(3.32e)
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  (3.50a) 

                                 subject to: 

  (3.50b) 

  (3.50c) 

and the calculation of the lower bound of the standard deviation of the zth elemental force 

response can be explicitly expressed as: 

                                 (P8): 

  (3.51a) 

                                 subject to: 

  (3.51b) 

  (3.51c) 

 Eqs. (3.50) and (3.51) comprise the general formulations of the proposed UPMP 

approach for calculating the upper and lower bounds of standard deviation of elemental 

force of linear structures. The proposed computational scheme rigorously transforms a 

complicated hybrid random interval analysis of elemental force into four NLP problems 

(P5 - P8) which could be solved by any available NLP solver. Additionally, the constraints 

for the calculation of standard deviation of nodal displacement and elemental force are 

identical such that only the objective functions of NLP problems are necessarily to be 

modified. 

2 2maximise{ }RI RI
z zf f

 =

{ } { }cov( , )RI RI
i i i k k k

m m

i k

i k

 = − + − + A B n A B nf f
σ σ q q q q q q

Eqs. (3.39c)-(3.39n)

2 2minimise{ }RI RI
z zf f

 =

Eqs. (3.50b)
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3.3.6 The implementation of the UPMP approach 

The proposed UPMP approach transforms the uncertain structural responses analysis with 

hybrid random and interval parameters into mathematical programming problems. In this 

context, the means and standard deviations of random variables become deterministic 

inputs. Furthermore, by modelling the interval uncertain parameters as inequality 

constraints, the extreme bounds of the stochastic characteristic of structural responses are 

directly obtained by respectively solving the NLP problems P1 - P8. The solution 

algorithm of the proposed UPMP methods is summarised by a flowchart shown in Figure. 

3.1. 
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Figure 3.1 Flowchart of the solution algorithm of UPMP approach 

 As a combination of perturbation method and mathematical programming 

approach, the proposed UPMP method offers a computational framework which contains 

the advantages of both approaches. By employing the perturbation-based random moment 

method with respect to random variables, the explicit expressions of first two moments 

of structural responses are respectively formulated such that only the means and standard 

deviations of random variables are enclosed. Thus, the achievement of means and 

standard deviations of system outputs is no longer rely on generating a large number of 

samples for random variables. Furthermore, the adoption of the alternative FE modelling 

technique conveniently reformulated the expressions of the statistical characteristics of 

structural responses into the NLP format. Subsequently, the hybrid uncertain structural 

response analysis with random and interval variables can be efficiently processed by any 

available NLP solver. Consequently, the interval arithmetic is completely eliminated 

throughout the proposed computational strategy. 

3.4 Numerical examples 

In this section, the applicability, accuracy and efficiency of the proposed UPMP approach 

are critically justified through investigations on both academic sized and practically 

motivated engineering structures. For the simple academic sized examples, the accuracy 

of the proposed UPMP approach can be rigorously justified by comparing with some 

analytical solutions, whereas the applicability of the proposed approach can be illustrated 

by analysing the practically motivated examples.  

 Within the context of this study, all NLPs involved in the proposed UPMP 

approach are solved by a commercial NLP solver named CONOPT [156], which is 

operated within an advanced mathematical modelling environment, namely General 
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Algebraic Modelling System (GAMS) [157]. For all the numerical examples investigated 

in this study, uncertain parameters from the same category of different elements are 

treated as independent to each other. The accuracy of the results is rigorously verified 

through a number of different approaches. For academic sized examples, the results 

calculated by the proposed UPMP approach are compared with the analytical solutions 

where possible. For the circumstance that analytical solution cannot be determined, the 

computationally exhaustive Monte-Carlo Simulation combined with Quasi-Monte-Carlo 

Simulation (MCS-QMCS) method is implemented to verify the uncertain-but-bounded 

statistical characteristics obtained by UPMP approach into certain extent. The realizations 

for both random and interval variables used in the MCS-QMCS approach are generated 

by the Statistics toolbox of MATLAB R2015b [158]. For the QMCS scheme, the Halton 

low discrepancy sequence has been implemented with a dynamic skip and leap scheme 

combined with a ‘‘RR2” scramble scheme [159]. The presented numerical results are 

obtained by using a workstation with CPU of Intel Core i7-4770, 32 GB of memory, and 

1 TB of hard drive. 

3.4.1 Stepped cantilever beam 

The first investigation considers a two-stepped cantilever Euler-Bernoulli beam subjected 

to an external load acting at the right end, as depicted in Figure. 3.2. The Young’s 

modulus and cross-sectional geometries of the two elements (element 1 is between nodes 

1 and 2, and element 2 is between nodes 2 and 3) are different. For this particularly 

example, the vertical displacements at nodes 2 ( ) and 3 ( ) have been analysed by 

employing the UPMP approach considering three cases of analysis with distinctive 

mixture of random and interval variables. The information of uncertain parameters of the 

considered three cases is presented in Table 3.1. 

2, yu 3, yu
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Figure 3.2 Two-stepped cantilever beam 

 The upper and lower bounds of the stochastic characteristics of and  of 

Case 1 obtained by the proposed UPMP approach are presented in Table 3.2. In order to 

verify the accuracy of the proposed method, the analytical expressions of  and  

are respectively obtained as Eqs. (3.52) and (3.53) based on the Euler-Bernoulli beam 

theory. Subsequently, the analytical solutions for the upper and lower bounds of the 

means and standard deviations of and  for Case 1 can be calculated as demonstrated 

in Table 3.2. In such way, the accuracy of the UPMP approach has been evidently justified 

for this particular case of analysis. 

  (3.52) 

  (3.53) 

 For the investigations conducted in Cases 2 and 3, the analytical solutions of 

bounded statistical characteristics of the nodal displacement with hybrid uncertainties 

cannot be explicitly determined, thus the MCS-QMCS method has been implemented to 

verify the results obtained from the proposed UPMP approach. Regarding the 

investigations for Cases 2 and 3, 1,000 realizations have been generated for all the interval 

variables within the scheme of QMCS, and 10,000 random samples have been explored 
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at each realization of the interval variable. Therefore, the bounds of stochastic 

characteristics of and obtained by both approaches for Cases 2 and 3 of the 

cantilever beam are summarised in Table 3.3. 

By thoroughly examining Table 3.3, all computational results provided by the 

proposed UPMP approach are fully enclosing the results reported from the dually 

simulative MCS-QMCS approach. The reason for such observed incompetence of the 

simulative approach is that even though extensive amount of sampling points with 

considerable amount of uniformity have been explored for the interval counterpart, it still 

remains quite challenging for the global search based method to sample the points at the 

boundaries of the interval parameters (i.e., the upper and lower bounds of the interval 

parameters). However, from Eqs. (3.52) and (3.53), monotonic relationship can be 

observed for the considered interval parameters in Cases 2 and 3 with the concerned 

structural responses. Consequently, once explicit formulations for the mean and standard 

deviation for the structural responses are established, the UPMP approach can utilize the 

computational benefit offered by the mathematical programming approach to search for 

the extreme bounds of the statistical characteristics in a more appropriate manner. 

Table 3.1 Information of uncertain parameters of Example 3.4.1 

Parameters Case 1 Case 2 Case 3 

( ) 
Interval Normal 

Same as Case 1 
 ,  

( ) 
Interval Normal Lognormal 

 ,  ,  

( ) 
Interval 

Same as Case 1 Same as Case 1 
 

( ) 
Interval 

Same as Case 1 
Normal 

 ,  

Interval Same as Case 1 Same as Case 1 

yu ,2 yu ,3

1E GPa
1180 220E 

1
200E =

1
20E =

2E GPa
262.1 75.9E 

2
69E =

2
6.9E =

2
69E =

2
6.9E =

1b m
10.054 0.066b 

2b m
20.036 0.044b 

2
0.04b =

2
0.002b =
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( )  

( ) 
Interval 

Same as Case 1 
Normal 

 ,  

( ) 
Lognormal Interval Normal 

,   ,  

 

 Overall, by comparing with both analytical solutions in Case 1 and simulative 

results provided by the MCS-QMCS approach in Cases 2 and 3, the proposed UPMP 

approach offers several superiorities over the simulative approach for all the investigated 

scenarios. 

Table 3.2The statistical characteristics of Case 1 of cantilever beam 

 UPMP ( ) Analytical  solution ( ) 

 

  

 

  

 

  

 

  

   

   

   

   

 

Table 3.3 The statistical characteristics of Case 2 and 3 of cantilever beam 

 Case 2 Case 3 

 UPMP  MCS-QMCS UPMP MCS-QMCS 

( ) 
    

( ) 
    

( ) 
    

( ) 
    

1h m 10.0736 0.0864h 

2h m
20.0552 0.0648h 

2
0.06h =

2
0.003h =

F kN
50F = 7.5F = 42.5 57.5F  50F = 7.5F =

m m

2,yu
37.019 10− 37.019 10−

yu ,2
 31.053 10− 31.053 10−

yu ,2
 32.904 10− 32.904 10−

yu ,2
 44.357 10− 44.357 10−

yu ,3
 23.067 10− 23.067 10−

yu ,3
 34.600 10− 34.600 10−

yu ,3
 21.269 10− 21.269 10−

yu ,3
 31.904 10− 31.904 10−

yu ,2
 m 310265.7 − 310711.6 − 310019.7 − 310442.6 −

yu ,2
 m 410265.7 − 410833.6 − 310053.1 − 410621.9 −

yu ,2
 m 310716.2 − 310982.2 − 310904.2 − 310142.3 −

yu ,2
 m 410716.2 − 410112.3 − 410357.4 − 410688.4 −
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( )     

( )     

( )     

( )     

(s) 1.52 230.76 1.47 253.64 

 

3.4.2 Three-span truss bridge 

In the second example, the hybrid uncertain static analysis of a three-span truss bridge 

involving both random and interval uncertainties is conducted. The general layout of the 

structure with the loading regime at reference configuration is shown in Figure. 3.3. The 

truss bridge consists of 113 elements with 108 degrees-of-freedom. Moreover, the 

elements of the truss bridge are categorised into four groups with different cross-sectional 

areas such that  denotes the cross-sectional areas of all the vertical elements,  

denotes the cross-sectional areas of all the diagonal elements,  denotes the cross-

sectional areas of the elements between nodes 1 and 29, and  denotes the cross-

sectional areas of the elements between nodes 30 and 58.  

 

Figure 3.3 Three-span truss bridge 

 The investigation of structural response of the truss structure involves two 

distinctive cases with various uncertain situations. The details of the two cases are 

outlined as follows: 

yu ,3
 m 210174.3 − 210840.2 − 210537.2 − 210432.2 −

yu ,3
 m 310249.2 − 310054.2 − 310165.4 − 310076.4 −

yu ,3
 m 210187.1 − 210372.1 − 210581.1 − 210660.1 −

3,yu m 410408.8 − 410966.9 − 310914.2 − 310060.3 −

comt

1A 2A

3A

4A
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Case 1. The Young’s modulus ( , unit: GPa) is lognormal random variable and the four 

different cross-sectional areas ( , , and , unit: ) are normally distributed 

random variables. The statistical information of random variables are:  GPa, 

 GPa; , ; , 

; , ; , 

. The externally applied loads ( ,  and , units: kN) at 

reference configuration are interval parameters which have: 

  (3.54) 

  (3.55) 

  (3.56) 

Case 2. The effect of varying degree of uncertainty of system parameters against the 

structural responses is analysed. The change range (CR) of interval variables is varying 

between CR  and the coefficient of variation (COV) of random variables is 

varying between COV . In this case, Young’s modulus ( , unit: GPa) and 

cross-sectional areas ( , ,  and , unit: ) are interval variables which have 

the nominal values as:  GPa, , , 

, and . Thus, the interval parameters can be 

expressed as: 

  (3.57) 
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20E =
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2 21.232 10A m −= 
1
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2 21.361 10A m −= 

2
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E
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  (3.58) 

  (3.59) 

  (3.60) 

  (3.61) 

The random variables considered in this case are the normally distributed externally 

applied loads at reference configuration. The means of the externally applied loads are: 

 kN,  kN, and  kN.  

 For Case 1, both UPMP approach and dual simulative MCS-QMCS method are 

implemented to investigate the structural responses of the truss bridge with hybrid 

uncertainties specified as above. For the purpose of demonstration, the bounds of 

statistical characteristics of the horizontal displacement at node 10 ( ), the vertical 

displacement at node 44 ( ) and the internal force of element 69 ( ) obtained by 

both approaches are reported in Table 3.4. For the MCS-QMCS method, various sample 

sizes are adopted in calculating the upper and lower bounds of the statistical 

characteristics. It is evidently illustrated that all the results of MCS-QMCS approach are 

enclosed within the results obtained by the proposed UPMP approach. From Table 3.4, it 

can be observed that increasing the initial sample size in MCS-QMCS approach could 

slightly improve the computational results. However, the computational effort increases 

dramatically with the increase of sample size. Therefore, the proposed UPMP approach 

surpassed the performance of MCS-QMCS method in both accuracy and computational 

efficiency. 

11

29

1 1 1 1, 1{ | (1 CR) (1 CR),   for 1,...,29}
A

I C C

i AA A A i =  −   + =A Ω A

11

28

2 2 2 2, 2: { | (1 CR) (1 CR),   for 1,...,28}
A

I C C

i AA A A i =  −   + =A Ω A

33

28

3 3 3 3, 3: { | (1 CR) (1 CR),   for 1,...,28}
A

I C C

i AA A A i =  −   + =A Ω A

33

28

4 4 4 4, 4: { | (1 CR) (1 CR),   for 1,...,28}
A

I C C

i AA A A i =  −   + =A Ω A

1
320F =

2
400F =

3
320F =

10,xu
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Table 3.4 The bounds of statistical characteristics of Case 1 of truss bridge 

 UPMP  

MCS-QMCS 

100  

interval 

500  

interval 

500  

interval 

1000  

interval 

5000  

random 

5000  

random 

10,000  

random 

10,000  

random 

( ) 
     

( ) 
     

( ) 
     

( ) 
     

( )      

( )      

( )      

( )      

(kN)      

(kN)      

(kN)      

(kN)      

(s) 3.109 679.906    

 

 

                                      (a)                                                                           (b) 

xu ,10
 m 210128.1 − 210048.1 − 210048.1 − 210046.1 − 210069.1 −

xu ,10
 m 310209.1 − 310134.1 − 310134.1 − 310129.1 − 310153.1 −

xu ,10
 m 310897.7 − 310328.9 − 310141.9 − 310121.9 − 310121.9 −

xu ,10
 m 410419.8 − 410867.9 − 410634.9 − 410661.9 − 410661.9 −

yu ,44
 m 210305.8 − 210913.7 − 210931.7 − 210934.7 − 210042.8 −

yu ,44
 m 310655.8 − 310418.8 − 310418.8 − 310292.8 − 310375.8 −

yu ,44
 m 210567.6 − 210150.7 − 210133.7 − 210124.7 − 210124.7 −

yu ,44
 m 310849.6 − 310474.7 − 310425.7 − 310415.7 − 310364.7 −

69f
310731.1  310613.1  310613.1  310614.1  310637.1 

69f 580.22 344.21 439.21 282.21 590.21

69f 310277.1  310464.1  310442.1  310442.1  310442.1 

69f 844.17 386.19 211.19 177.19 177.19

comt 32.856 10 35.487 10 41.346 10
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Figure 3.4 Variations of upper and lower bounds of (a) mean and (b) standard deviation of  

of Case 2 of truss bridge against alternations of degree of uncertainty 

 

 

                                      (a)                                                                           (b) 

Figure 3.5 Variations of upper and lower bounds of (a) mean and (b) standard deviation of  

of Case 2 of truss bridge against alternations of degree of uncertainty 

 

 

                                       (a)                                                                              (b) 

Figure 3.6 Variations of upper and lower bounds of (a) mean and (b) standard deviation of  

of Case 2 of truss bridge against alternations of degree of uncertainty 

10,xu

44, yu

69f
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Figure 3.7 Symmetric two-bar truss with interval uncertain Young’s modulus and cross-

sectional area 

 For Case 2, the response surfaces of the upper and lower bounds of the stochastic 

characteristics of ,  and  against the variations of the random forces, interval 

Young’s modulus and cross-sectional areas are constructed by the proposed UPMP 

approach and shown as the 3-D plots through Figures 3.4 to 3.6. Additionally, the MCS-

QMCS method with 100 interval samples and 5000 random samples against selected 

combinations of change ratio (CR, which equals to the interval width divided by the 

midpoint) of an interval variable and coefficient of variation (COV, which equals to the 

standard deviation divided by the mean value) of a random variable are also implemented. 

Thus, for each combination of CR and COV, 100 samples of mean and standard deviation 

are obtained and shown in the 3-D plots. Once again, the results provided by the UPMP 

approach enclose all the results obtained from the dual sampling method. Comparing with 

Case 1, the relative difference between the results obtained by both approaches are 

relatively large. The reason for such noticeable difference is because of the 

implementation of insufficient amount of sample for situations involving relatively large 

number of interval variables. The quality of results obtained from the QMCS-MCS 

10,xu 44, yu 69f
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approach can be improved if more sampling points are explored. However, the increasing 

of the sample size would also burden the computational cost of such analysis. By further 

examining Figures 3.4 - 3.6, several additional interesting yet important points can be 

noticed which includes: 

1. When the COV of random variables varies and CR of interval variables remains 

constant, both the upper and lower bounds of mean of the selected structural 

responses remain unchanged. On the other hand, the bounds of the standard 

deviations of the selected structural responses vary monotonically with the change 

of COV. 

2. Under the circumstance that the COV is constant, a monotonic increase of the 

upper bounds and a monotonic decrease of the lower bounds of means and 

standard deviations of the selected structural responses can be observed when the 

CRs of Young’s modulus and cross-sectional areas increases. Additionally, 

nonlinear relationship between the variations of the bounds of statistical 

characteristics and the changes of CRs are observed from Figures 3.4 and 3.5. 

Therefore, it can be concluded from Case 2 that the influence on the bounds of the 

stochastic characteristics of structural responses due to the variations of the 

interval Young’s modulus and cross-sectional areas cannot be predicted by simple 

linear scaling. Moreover, it can be observed from Figure 3.5 that the increase of 

is relatively faster in comparison with the decrease of . 

3. By examining Figure 3.4(a), the obtained by the proposed UPMP approach 

decreases from positive to negative when the CRs of Young’s modulus and cross-

sectional area increase, while the simulated samples from MCS-QMCS remain 

positive. The physical plausibility of such phenomenon can be demonstrated 

44 ,yu yu ,44


10 ,xu
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based on a symmetric two-bar truss structure, as shown in Figure 3.7, (element 1 

is between nodes 1 and 2, and element 2 is between nodes 1 and 3) with interval 

Young’s modulus (  and ) and cross-sectional area (  and ) of both 

elements subjected to vertical load applied at node 1. The bounds of Young’s 

modulus and cross-sectional area are: 

  (3.62) 

  (3.63) 

By simply applying the interval arithmetic with structural analysis, a positive  

can be easily obtained when , ,  and  while the  

is negative when , ,  and . Thus, if the externally 

applied load is a random variable, the mean of  will varies from negative to 

positive. Therefore, the proposed UPMP approach has the superior advantage for 

situations involving the positive-to-negative variations of bounds of mean of the 

structural responses. 

 By implementing the UPMP approach, the random interval behaviors of the 

structural responses of the three-span truss bridge have been investigated against two 

different cases with various uncertain conditions. The accuracy and computational 

efficiency of the proposed method has been clearly illustrated in the study of Example 

3.4.2. Additionally, the effects of varying interval Young’s modulus and cross-sectional 

area and random externally applied loads on the structural responses have been 

investigated. From this investigation, it is necessary for engineering application to 

1E 2E 1A 2A

2: { | ,   for 1,2}
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explicitly analyze the influence of the fluctuation of random and interval uncertain system 

parameters acting upon the structural responses of structures. 

3.4.3 Multi-bay multi-storey frame 

To further investigate the performance of the proposed UPMP approach, a practical-sized 

multi-bay multi-storey frame subjected to diverse vertical and horizontal loadings at 

various locations is considered in the last numerical investigation. In this particular 

example, the applicability, accuracy and computational efficiency of the UPMP approach 

are thoroughly demonstrated through three distinctive investigations which are including 

a probabilistic analysis, an interval analysis, and a hybrid random and interval analysis of 

structural responses. The general layout and loading regime of the frame is illustrated in 

Figure 3.8. The plane frame model consists of 753 degrees-of-freedom and 376 elements. 

The considered uncertain parameters are the Young’s modulus ( , unit: GPa), cross-

sectional areas of beams ( , unit: ) and columns ( , unit: ), and externally 

applied loads ( ,  and , units: kN) at reference configurations. For this frame 

structure, 310UC118 has been used for all columns and 310UB32 has been employed for 

all beams [160]. In order to maintain the compatibility between cross-sectional area and 

the corresponding second moment of area for both column and beam, the following 

compatibility functions are introduced such that the second moment of area of each 

element is expressed as a function of cross-sectional area. For each 310UC118 column 

the compatibility function is expressed as Eq. (3.64), whereas the compatibility function 

of each 310UB32 beam is expressed as Eq. (3.65).  

  (3.64) 

  (3.65) 

E

BA
2m

CA
2m

1F 2F 3F

2 5( ) 0.5238 0.0114 3 10s

C C C CI A A A −= + − 

2 5( ) 0.8876 0.0288 4 10s

B B B BI A A A −= − + − 
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Figure 3.8 The multi-bay multi-storey frame 

Table 3.5 Statistical information of all random variables considered in Case 1 

Parameter Distribution Mean COV 

 (GPa) lognormal 200 0.06 

 ( ) normal  0.05 

 ( ) normal  0.05 

 (kN) normal 5.5 0.1 

 (kN) normal 60 0.1 

 (kN) normal 80 0.1 

 

 For this particular example, three cases with various uncertain scenarios are 

investigated. The details of the three distinct investigations are outlined as follows: 
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Case 1: All system parameters are considered as random variables whose statistical 

information is collectively summarized in Table 5 [161, 162]. 

Case 2: The Young’s modulus, cross-sectional areas of each beam and column, as well 

as all the applied loads at reference configuration are considered as interval uncertain 

parameters. The detailed information regarding all considered interval parameters is 

summarized through Eqs. (3.66) - (3.71). 

  (3.66) 

  (3.67) 

  (3.68) 

  (3.69) 

  (3.70) 

  (3.71) 

Case 3: Two scenarios are thoroughly investigated to demonstrate the performance of the 

proposed UPMP approach in hybrid random and interval analysis. For both scenarios, the 

interval cross-sectional areas of beams and columns are expressed as Eqs. (68) and (69), 

and the details of random uncertain parameters are listed in Table 3.6. 

 (3.72) 

  (3.73) 

Table 3.6 Random uncertain parameters of frame structure 

Parameter Distribution Mean COV 

281: { |180 220,   for 1,...,281}
E

I

i EE i =    =E Ω E

151 4 4

,: { | 36.72 10 44.88 10 ,   for 1,...,151}
A BB

I

B B B i AA i− − =      =A Ω A

130 4 4

,: { |135 10 165 10 ,   for 1,...,130}
A CC

I

C C C i AA i− − =      =A Ω A

11

8

1 1 1,: { | 4.95 6.05,   for 1,...,13}
F

I

i FF i =    =F Ω F

22

156

2 2 2,: { | 54 66,   for 1,...,156}
F

I

i FF i =    =F Ω F

33

95

3 3 3,: { | 72 88,   for 1,...,95}
F

I

i FF i =    =F Ω F

151 4 4

,: { | 38.352 10 43.248 10 ,   for 1,...,151}
A BB

I

B B B i AA i− − =      =A Ω A

130 4 4

,: { |141 10 159 10 ,   for 1,...,130}
A BB

I

C C C i AA i− − =      =A Ω A
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Scenario 1 Scenario 2 

 (GPa) lognormal lognormal 200 0.045 

 (kN) normal gumbel 5.5 0.1 

 (kN) lognormal lognormal 60 0.1 

 (kN) normal normal 80 0.1 

 

Table 3.7 The statistical characteristics of frame structure of Case 1 

 UPMP 
MCS MCS 

RR1 (%) RR2 (%) 
10,000 100,000 

(m)    -0.748 -0.714 

(m)    -0.339 -1.208 

(m)    -0.628 -0.616 

(m)    -1.111 -0.793 

(kNm) 92.652 92.757 92.790 -0.113 -0.148 

(kNm) 9.655 9.613 9.685 0.440 -0.311 

(s) 71.765 
  N/A N/A 

 For Case 1 of Example 3, both UPMP and Monte-Carlo Simulation (MCS) 

method are implemented to investigate the random behaviour of the structural responses 

of this complex frame. For the MCS approach, two simulations with 10,000 and 100,000 

samples have been adopted to verify the results obtained by the proposed method. The 

means and standard deviations of the horizontal displacement at node 167 ( ), 

vertical displacement at node 70 ( ), and the bending moment at node 1 ( ) 

calculated by both approaches are outlined in Table 3.7, where R1 and R2 denote the 

relative differences between the results obtained by UPMP approach and MCS method 

with 10,000 and 100,000 samples, respectively. The relative difference in this case is 

defined as: 

E

1F

2F

3F

167,xu 210194.9 − 210263.9 − 210260.9 −

167,xu 210190.1 − 210194.1 − 210205.1 −

70,yu 210689.1 − 210700.1 − 210699.1 −

70,yu 310931.1 − 310953.1 − 310946.1 −

1M

1M

comt 210470.9  410767.1 

167,xu

70, yu 1M
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  (3.74) 

 It is indicated in Table 3.7 that the results calculated by the UPMP approach agree 

well with the statistical information obtained from the MCS approach with various sample 

sizes, but of course in a much more computational friendly manner. Therefore, the 

applicability, accuracy and computational efficiency of the proposed UPMP approach for 

pure stochastic analysis have been rigorously justified through this investigation. 

 For Case 2, interval analyses of the displacement and force responses of the frame 

structure have been conducted by both UPMP and Quasi-Monte-Carlo Simulation 

(QMCS) approaches with various sample sizes. The reason for adopting QMCS in this 

investigation is due to the advantage of QMCS approach in generating more uniform 

samples than the MCS method, which could potentially enhance the effectiveness of the 

QMCS method. For this particular case, 100, 1000, 10,000 and 100,000 simulations have 

been implemented through the QMCS scheme. For the demonstration purpose, the upper 

and lower bounds of  and  obtained by both approaches are shown in Figure 3.9, 

where the colour scale in the plots indicates the computational time consumed by the 

QMCS approach. It can be easily observed that the UPMP approach surpasses the 

capability of the QMCS method by providing a larger upper bound and smaller lower 

bound within 20 seconds. Indeed, limited improvements of results obtained from the 

QMCS approach can be observed by exponentially increasing the sample size, but the 

possibility of engineering application for such global search based computational 

approach is quite challengeable due to the inevitably substantial consumption of 

computational effort. 

%
UPMP MCS

RR
MCS

−
=

70, yu 1M
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                                        (a)                                                                 (b) 

Figure 3.9 Bounds of (a)  and (b)  of frame structure of Case 2 

 For Case 3, the uncertain-but-bounded statistical characteristic of selected 

displacement and force responses obtained by both approaches are listed in Table 3.8. For 

the MCS-QMCS method, 100 simulations have been implemented for generating 

realizations for interval variables through the QMCS scheme, and subsequently, 10,000 

simulations have been conducted at each interval realization for the stochastic analysis. 

By inspecting the results reported in Table 3.8, the upper and lower bounds of statistical 

information regarding concerned structural responses obtained by MCS-QMCS method 

are enclosed by the results determined from the UPMP approach for both Scenarios 1 and 

2. Since that the proposed approach simply requires the mean and standard deviations of 

the random variables, it leads to the same UPMP formulations and subsequently the 

results for the structural responses for both Scenarios 1 and 2. Comparing with the 

adopted sampling method, the proposed UPMP approach is capable of offering sharper 

bounds on the means and standard deviations of all the considered structural responses 

with dramatically less computational cost. Therefore, the accuracy and computational 

efficiency of the proposed approach in hybrid uncertainty analysis have been evidently 

demonstrated. 

70,xu 1M
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Table 3.8 The bounds of statistical characteristics of the frame structure in Case 3 

 UPMP  
MCS-QMCS  

Scenario 1 Scenario 2 

( ) 
   

( ) 
   

( ) 
   

( ) 
   

( )    

( )    

( )    

( )    

(kNm)    

(kNm)    

(kNm)    

(kNm)    

(s)    

 

Table 3.9 Probability distribution types identified by statistical inference analyses in Case 3 

 
Probability Distribution  

Scenario 1 Scenario 2 

 Normal Gumbel 

 Lognormal Lognormal 

 Normal Gumbel 

 

Table 3.10 Parametric and non-parametric test statistics for  for Scenario 1 of Case 3 

Scenario 1-  

 Parametric Method 
Non-parametric 

Method 

xu ,167
 m 11.016 10− 29.351 10− 29.351 10−

xu ,167
 m 210127.1 − 210041.1 − 210048.1 −

xu ,167
 m 210350.8 − 210105.9 − 210105.9 −

xu ,167
 m 310640.9 − 210019.1 − 210027.1 −

yu ,70
 m 210815.1 − 210734.1 − 210734.1 −

yu ,70
 m 310764.1 − 310691.1 − 310702.1 −

yu ,70
 m 210578.1 − 210654.1 − 210654.1 −

yu ,70
 m 310550.1 − 310616.1 − 310627.1 −

1M 110.832 101.412 101.416

1M 568.10 581.9 657.9

1M 804.76 679.85 682.85

1M 140.7 919.7 983.7

comt 310031.2  410399.6  410366.6 

167,xu

70, yu

1M

167,xu

167,xu
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Distribution 
Log Likelihood

 

AIC

 

BIC

 
AD Test KS Test 

Normal 3.0879 -6.1755 -6.1740 0.9730 0.0114 

Gamma 3.0862 -6.1720 -6.1706 3.1464 0.0135 

Lognormal 3.0821 -6.1638 -6.1624 8.3085 0.0191 

Gumbel 3.0195 -6.0386 -6.0372 97.6199 0.0581 

Logistic 3.0769 -6.1533 -6.1519 10.4052 0.0225 

Log logistic 3.0742 -6.1480 -6.1465 13.6244 0.0229 

Weibull 3.0461 -6.0918 -6.0903 59.0456 0.0428 

Rayleigh 1.9963 -3.9925 -3.9918 
 

0.4340 

 

 In addition to the illustration on the applicability and effectiveness of the proposed 

UPMP approach, both parametric and non-parametric statistical inference analyse 

methods which are widely adopted [163–166] in structural engineering for identifying the 

probability distributions of random variables are selected to construct the probability 

density functions (PDFs) and cumulative distribution functions (CDFs) of the bounds of 

the concerned structural responses demonstrated in Table 3.8. The selected parametric 

methods include log-likelihood test, Akaike information criterion (AIC) test and Bayesian 

information criterion (BIC) test. The non-parametric analyses adopted involve 

Kolmogorov–Smirnov (KS) test and Anderson–Darling (AD) test. These methods are 

implemented on the simulated results of ,  and  at each realisation of 

interval parameters from MCS-QMCS for both Scenarios 1 and 2. According to the test 

statistics, the types of probability distribution which are closest fit for describing the 

selected structural responses are summarised in Table 3.9. For demonstration purpose, 

the test statistics for the samples corresponding to the 50th realisation of interval 

parameters for Scenarios 1 and 2 are respectively summarised as in Table 3.10 and 3.11. 

The maximum test statistics obtained by the log likelihood approach indicates the best 

410 410 410

3108050.2 

167,xu 10, yu 1M
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fitted probability distribution for the given samples, while the distribution with minimum 

test statistics obtained by other methods is inferred as the most suitable. 

Table 3.11 Parametric and non-parametric test statistics for for Scenario 2 of Case 3 

Case 2-  

 Parametric Method 
Non-parametric 

Method 

Distribution 
Log Likelihood

 

AIC

 

BIC

 
AD Test 

KS 

Test 

Normal 3.1477 -6.2949 -6.2935 83.7019 0.0623 

Gamma 3.1754 -6.3503 -6.3489 46.1837 0.0475 

Lognormal 3.1859 -6.3714 -6.3700 31.6121 0.0399 

Gumbel 3.2039 -6.4074 -6.4060 4.8649 0.0157 

Logistic 3.1645 -6.3286 -6.3272 48.6919 0.0381 

Log logistic 3.1866 -6.3727 -6.3713 22.4190 0.0243 

Weibull 3.0184 -6.0363 -6.0349 296.2260 0.1078 

Rayleigh 2.0533 -4.1064 -4.1057 
 

0.4648 

 

 Subsequently, the probability density functions (PDFs) and cumulative 

distribution functions (CDFs) of the demonstrated displacement and force responses of 

Scenarios 1 and 2 are shown in Figures 3.10 and 3.11, respectively. It can be observed 

from Figures 3.10 and 3.11 that the PDFs of the MCS-QMCS results are bounded by the 

upper bound of PDF (PDF-UB) and lower bound of PDF (PDF-LB) constructed based on 

the results of UPMP approach. Moreover, the upper bound of CDF (CDF-UB) and lower 

bound of CDF (CDF-LB) of the selected nodal displacement and elemental force are 

rigorously enclosing all CDFs constructed basing on the results of the MCS-QMCS 

approach.  

xu ,167

167,xu

410 410 410

3108695.2 
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Figure 3.10 PDFs and CDFs of selected structural responses of Scenario 1 of Case 3 of the 

frame structure 
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Figure 3.11 PDFs and CDFs of selected structural responses of Scenario 2 of Case 3 of the 

frame structure 
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3.5 Conclusion 

This paper presents a computational scheme named as unified perturbation mathematical 

programming (UPMP) approach for structural analysis involving random and interval 

parameters. The proposed approach offers a potent non-sampling strategy for 

investigating the static response for various engineering structures. The integration of 

matrix perturbation with mathematical programming within the proposed computational 

approach transforms the intricate hybrid random interval analysis into a series of NLP 

problems. By treating interval parameters as inequality constraints in the mathematical 

programming, the interval dependency is eliminated from the algorithm.  

 The applicability of the proposed UPMP approach is critically validated by 

investigating various types of engineering structures through numbers of uncertain 

circumstances. By comparing with analytical solution and results obtained from sampling 

method, the accuracy and computational efficiency of the proposed uncertainty analysis 

scheme are evidently illuminated. Additionally, hypothesis test is implemented in this 

study for identifying the probability distribution of the structural responses.  

From the computational benefits associated with the proposed UPMP approach, it is 

possible to further extend the proposed computational scheme for other types of 

engineering analyses, such as hybrid uncertain linear and nonlinear buckling analysis, 

dynamic analysis of structures involving random and interval uncertainties, etc. 

Furthermore, the concept of the proposed approach can be also extended to other areas of 

study where the effects of uncertainties must be evaluated.  
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Chapter 4 . Uncertain structural free vibration 

analysis with non-probabilistic spatially varying 

parameters 

4.0 Summary 

The uncertain free vibration analysis of engineering structure with the consideration of 

non-stochastic spatially dependent uncertain parameters is investigated. The novel 

concept of interval field is implemented to model the intrinsic spatial dependency of the 

uncertain-but-bounded system parameters. By employing the appropriate discretisation 

scheme, evaluations on natural frequencies for engineering structures involving interval 

fields can be executed within the framework of finite element method (FEM). 

Furthermore, a robust, yet efficient, computational strategy is freshly proposed such that, 

the extreme bounds of natural frequencies of the structure involving interval fields can be 

rigorously captured by performing two independent eigen-analyses. Within the proposed 

computational analysis framework, the traditional interval arithmetic is not employed so 

the undesirable effect of the interval overestimation can be completed eliminated. 

Consequently, both sharpness and physical feasibility of the results can be secured into 

certain extent for any particularly discretised interval fields. The plausibility of the new 

interval field model, as well as the feasibility of the proposed computational scheme, are 

evidently demonstrated by investigating both academic sized and practically motivated 

engineering structures. 

 The remainder of this chapter is organised as follows. The Section 4.1 offers a 

brief background of free vibration analysis of structures with uncertain variables. In 

Section 4.2, the detailed description of the concept of interval field and the particularly 
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adopted field discretisation method are introduced. Subsequently, the problem statement 

on uncertain free vibration analysis with interval fields and the proposed computational 

scheme are formally presented in Section 4.3. Furthermore, both academic sized and 

practically motivated numerical examples are thoroughly investigated in Section 4.4 for 

the purpose of illustrating the applicability and accuracy of the proposed computational 

scheme. Finally, some concluding remarks are drawn in Section 4.5. 

 The research work developed in this chapter has produced one journal paper 

which has been published in ASCE-ASME Journal of Risk and Uncertainty in 

Engineering Systems, Part B: Mechanical Engineering. The detail of the publication is: 

Feng, J., Li, Q., Sofi, A., Li, G., Wu, D., & Gao, W. (2018). Uncertain structural free 

vibration analysis with non-probabilistic spatially varying parameters. ASCE-ASME 

Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical 

Engineering. https://doi.org/10.1115/1.4041501 

4.1 Introduction 

For practical engineering applications, the natural frequencies and the corresponding 

mode shapes are critical for analysing vibrational behaviours of structural systems. While 

deterministic analysis is widely adopted, the nondeterministic features or so-called 

uncertainties, which inherently exist within the structural systems and modelling process, 

could affect the credibility of the prediction of dynamic behaviours of the structures [1, 

5, 8]. Therefore, it is indispensable to develop uncertain free vibration analyses for 

critically evaluating mercurial effects of uncertainties on the dynamic performance of 

engineering structures [94, 167, 168]. 

 Conventionally, probabilistic/stochastic approaches, which are established on the 

solid theoretical foundation of probability and statistics, are frequently implemented for 

https://doi.org/10.1115/1.4041501
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uncertain natural frequency analysis [15, 139]. The incorporation of the probabilistic 

framework with FEM leads to the stochastic finite element method (SFEM), which has 

been extensively adopted in solving random eigenvalue problems in structural 

engineering [169]. The sampling approaches, such as the direct Monte-Carlo simulation 

method, are recognised as the most robust SFEM strategy for the probabilistic analysis of 

natural frequencies [28, 170]. In addition, numerous non-simulative computational 

strategies [171–175] have been developed which offer the alternatives to the sampling 

approaches by providing the numerical approximations on statistical characteristics (i.e., 

mean and standard deviation) of the random eigenvalues. Furthermore, the effects of 

spatial variabilities of the uncertain structural parameters are advantageously addressed 

by the introduction of spectral stochastic finite element method (SSFEM) [33–35, 176]. 

Despite the prevalent implementation of probabilistic methodologies for uncertain 

eigenvalue analysis in practical engineering applications, the creditability of such 

approaches strongly depends on the availability of information regarding the considered 

uncertain variables [154, 177]. 

 In practical engineering applications, the prerequisites for implementing the 

probabilistic approaches cannot be always guaranteed due to the phenomenon of the 

information deficiency of uncertain system parameters. Under such circumstances, non-

probabilistic methods including convex models, fuzzy sets and interval models offer the 

supplementary solutions for uncertainty analysis of structures [12, 13, 69, 178–180]. 

Among these methods, interval approaches are widely adopted in the natural frequency 

analysis of vibration systems with uncertainties, which lead to the interval eigenvalue 

problems within the framework of FEM [123]. 
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 By thoroughly examining on literatures regarding the non-stochastic uncertain 

eigenvalue problems, the spatial variations of uncertain-but-non-random parameters have 

not been systematically addressed in the free vibration analysis of engineering structures. 

Among all reported works regarding interval free vibration analysis, the bounded 

structural system parameters are either considered spatially independent, or simplified 

into single representation per category throughout entire structural system (i.e., the 

Young’s moduli of all structural components are considered as a single interval variable). 

It has been clearly demonstrated by previous studies [115, 116] that the realistic 

uncertain-but-non-random fluctuations of system variables may not be precisely 

described by these two assumptions. Therefore, the interval eigenvalue problems of 

structures are necessarily to be extended to incorporate the intrinsic spatially variant 

characteristics of these uncertain parameters. 

 In order to achieve a more realistic and efficient uncertainty analysis framework, 

the uncertain free vibration analysis with interval fields is investigated in this study for 

the first time. Unlike traditional interval analysis framework, both uncertain Young’s 

modulus and density of structural material are modelled as spatially dependent uncertain 

parameters. By adopting such novel uncertainty modelling technique, the uncertain 

system parameters can be more realistically modelled by incorporating the interaction 

between degree of uncertainty and variation of physical location. Consequently, the 

benefit of such integration is that the results of the uncertainty analysis are meaningful in 

both theoretical and practical aspects. Furthermore, a novel computational scheme is 

proposed for capturing the extreme bounds of the natural frequencies of engineering 

structures involving diverse interval fields. By adopting appropriate discretization 

techniques, the extreme bounds of natural frequencies of engineering structures can be 
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rigorously calculated by two independent eigen-analyses. Within the proposed 

computational framework, the undesirable effects of interval overestimation associated 

with the inappropriate practice of the interval arithmetic can be fully eliminated and also, 

both sharpness and physical feasibility of the computational bounds on the natural 

frequency of the structure can be well preserved for any particularly discretised interval 

fields. Consequently, both computational effectiveness and efficiency of the proposed 

method for uncertain free vibration analysis with interval fields can be promised into 

certain extent. 

4.2 Concept of interval field 

Conventionally, the spatial variabilities of structural system parameters are modelled by 

adopting the theory of random field. Benefiting from the solid theoretical background, 

the random field has been extensively implemented across many modern engineering 

applications [32, 33]. The combination of such theory with FEM leads to a powerful 

uncertainty analysis framework, namely the spectral stochastic finite element method 

(SSFEM) [34, 35]. As it is constructed based on the theory of probability, the utilisation 

of random field requires the classification of the type of random field as well as the 

determination of the spatial correlation through the establishment of the covariance 

function. The satisfaction of these two prerequisites becomes possible if sufficient amount 

of samples are available, but such optimism are generally disappointed in real life 

engineering due to a variety of reasons [85, 96, 115, 116]. Therefore, an alternative non-

probabilistic approach is essentially needed for situations where random field model is 

prohibited by information deficiency. 
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4.2.1 Introduction of the interval field 

In the motivation of offering a preliminary non-probabilistic approach to model the 

spatially varying uncertain parameters, the concept of interval field was initially 

introduced in [115] including both explicit and implicit formulations. In contrast to the 

random field models, the interval field has the superior competence in performing valid 

uncertainty analysis for engineering systems based on whatever information available for 

the spatially dependent uncertain parameters. For the purpose of presenting the concept 

of interval field in a more appropriate fashion, several essential definitions regarding such 

novel concept are introduced as follows [120]. 

 Definition 1. An interval field  is a collection of interval variables indexed 

by a continuous parameter , where  is an open set of . 

 From Definition 1, the realization of the interval field, denoted as , is a 

sample function of the interval field . 

 Definition 2. The upper bound function of the interval field, denoted as 

, such that , .  

 Definition 3. The lower bound function of the interval field, denoted as 

, such that , . 

 From Definitions 2 and 3, the upper and lower bound functions are essentially 

providing a finite envelope which is strictly bounding the interval field within. 

Furthermore, at any specified location ,  becomes an interval variable of , 

where  denotes the closed set for all real intervals, such that 

 with  and . 

( )I χ

χ Θ Θ n

( )rI χ

( )I χ

( ) : nI  →χ p χ Θ ( ) ( )p pI Iχ χ

( ) : nI  →χ
p χ Θ ( ) ( )p pI Iχ χ

pχ ( )pI χ ( )I 

( )I

( ) : [ ( ), ( )] { | }p p p p p pI I I I I I I I= = =   χ χ χ ( )p pI I=χ ( )p pI I=χ
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 Definition 4. The mid-point function of the interval field, denoted as

, such that 

  (4.1) 

 Definition 5. The half-width function of the interval field, denoted as

, such that 

  (4.2) 

 

Figure 4.1 Example of 1D interval field 

 Definition 6. A constant interval field is defined such that the lower and upper 

bound functions are constants for all . That is,  and , where

. 

 From Definition 6, a conventional interval parameter can be alternatively 

considered as a constant interval field. In order to illustrate the concept of interval field, 

a simple 1D interval field is presented in Figure 4.1. Let  

denotes a physical coordinate. 

C ( ) : nI  →χ

( ) ( )
( ) : ,

2

C I I
I

+
=  

χ χ
χ χ Θ

( ) :W nI  →χ

( ) ( )
( ) : ,

2

W I I
I

−
=  

χ χ
χ χ Θ

χ Θ
*

( )I I=χ
*

( )I I=χ

**
I I 

: { | 0 }p p  + =   
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 It is indicated in Figure 4.1 that sets of data have been collected at various 

measuring points along the axis. However, due to diverse reasons including cost 

issues, technological issues, and accessibility issues etc., the amount of collected data at 

each measuring point is insufficient for constructing a precise statistical profile for the 

considered structural system parameter. Consequently, the implementation of random 

field approach becomes a challenging task since that the distribution type as well as the 

correlation of the considered spatially varying uncertain parameter cannot be 

appropriately confirmed. In this context, the interval field model can be implemented 

which describes the considered spatial-variant uncertainty based on all the available 

information. From the collected data, the upper and lower bound functions of the 

considered uncertain variable can be simply established by collecting the upper and lower 

bounds of the data at each measuring point. Subsequently, the spatial variability of the 

considered uncertain parameter is feasibly confined by the envelope offered by the two 

extreme bound functions. It is emphasized that the upper and lower bound functions are 

defined based on the currently available information. These functions can be accordingly 

refined if additional information is provided. Furthermore, once sufficient amount of data 

has been collected, that is the precise probability profile can be constructed, the random 

field model can be certainly adopted to model the spatially dependent uncertain 

parameters instead of the interval field model.  

 In addition to the upper and lower bound functions, the conventional interval 

variable, which is also defined as a constant interval field, is also illustrated in Figure 4.1 

for demonstrating the difference between two distinctive models. It can be noticed by 

visually comparing the two models that, the conventional interval variable simply provide 

an overconservative hull by taking the global maximum and minimum across the entire 

 −
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measured data. Despite that all the observed realisations of the uncertain parameters are 

absolutely confined in this envelope, the spatial coherence of the uncertain parameter is 

completely neglected in the conventional interval approach. Consequently, more 

conservative results may be obtained from the subsequent analysis basing on such 

overprotective model. Therefore, it is evidently illustrated that the correlation between 

the physical location and the degree of variation of the uncertain parameter can be 

meticulously reflected within the formation of upper and lower bound functions in 

comparison to the traditionally adopted interval variable models. 

4.2.2 Discretisation of the interval field 

An interval field discretising scheme, or simply referred as the discretisation, is an 

approximation of the interval field  by  defined by means of a finite set of 

interval variables  with  denotes the total number of structural 

elements, collected by an interval vector denoted by , that is: 

  (4.3) 

 For the purpose of this study, the adopted discretising technique is the spatial 

average method which was proposed by Vanmarcke and Grigoriu [121] for discretising 

the random field. Within the adopted discretising scheme which is constructed based on 

the available meshing information of the structure, the interval field is approximated as a 

constant within each structural element, which is calculated as the average of the original 

interval field over the domain of the element. If there are  ( ) interval fields 

involved in the analysis, for the th ( ) interval field, the implemented spatial 

average method can be interpreted as: 
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  (4.4) 

where  denotes the domain of the th structural element;  denotes the area of the 

concerned element. The interval vector  corresponding to an approximation of the θth 

interval field can be defined as the collection of these interval variables such that 

. 

 Consequently, the lower and upper bound functions can be respectively 

discretised into two vectors  and  in a similar 

fashion such that: 

  (4.5) 

where  and denote the upper and lower bounds of , respectively. Moreover, a 

mid-point vector  associated with  can be defined as: 

  (4.6) 

and the half-width vector  associated with  can be additionally defined as: 

  (4.7) 

 Therefore, the original interval fields are transformed into standard interval 

vectors with known upper and lower bound information. This has brought substantive 

computational benefit for implementing such analysis in the framework of FEM. 
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4.3 Uncertain free vibration analysis of structures with interval fields 

4.3.1 Interval eigenvalue problem with spatially dependent uncertain parameters 

Within the framework of FEM, the free vibration analysis of linear undamped engineering 

structures with spatially dependent interval uncertainties is conducted by solving the 

generalised interval eigenvalue problems. For a structure with  degrees-of-freedom, the 

governing equation of the generalised eigenvalue problem involving interval fields is 

explicitly formulated as: 

  (4.8a) 

                                         such that: 

  (4.8b) 

where  denotes the stiffness matrix of the structure;  

denotes the mass matrix of the structure;  is the vth ( ) natural frequency and 

 is the associated eigenvector.  denotes the concerned spatially uncertain 

system parameters.  denotes the interval field associated to the θth spatially variant 

uncertainty; and  denotes the domain of the entire structural system. 

 Unlike traditional uncertain eigenvalue problem associated with conventional 

interval variables, Eq. (4.8) is actually defines an uncertain eigenvalue problem involving 

spatially dependent uncertain parameters. Consequently, Eq. (4.8) is at least as 

challenging as the conventional interval eigenvalue problem due to fact that the intrinsic 

correlation between degree of uncertainty and physical location of the uncertain 

parameter is additionally considered. The misery of adequately conquering such difficulty 

is that the sharpness of the bounded eigenvalues has to be rigorously promised at the same 
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time, various physical feasibilities, which are including the symmetry of stiffness and 

mass matrices of the structural system, and the intrinsic spatial dependency of the 

concerned uncertain parameters have to be rigorously maintained throughout the entire 

calculation process. However, according to the authors’ limited knowledge regarding 

interval eigenvalue problem involving spatial dependency, there are not any mature 

theoretical instructions on solving such intricate problems have been developed yet.  

 Even though there is a lack of theoretical support on tackling such challenges, 

some adequate strategies are urgently needed to overcome these hurdles in real life 

engineering applications. In the light of achieving a more appropriate uncertainty analysis, 

a new, yet robust, computational approach is proposed in this study, which serves as the 

first attempt on tackling the intricate problem of the uncertain structural free vibration 

analysis with interval fields. 

4.3.2 Uncertain free vibration analysis of structures involving interval fields 

The proposed computational procedure firstly integrates the concept of interval field into 

the framework of the finite element method (FEM). By adopting the field discretisation 

scheme expressed as Eq. (4.4), each interval field is approximated by a finite set of 

interval variables which are respectively associated to all the structural elements. For the 

generalised eigen-analysis with multiple spatially dependent uncertainties illustrated as 

Eq. (4.8), each element is assigned  interval variables by the discretisation of the interval 

fields. In such way, the compatibility between the spatial variation of the uncertain 

parameters and the implementation of FEM is thoroughly maintained by the proposed 

computational strategy. 

 Without loss of generality, for the vth element of the structural system, an 

elemental interval vector  can be defined as the collection of all the  interval 

q

e

e q

i I q
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variables resulted from the interval field discretisation associated with this element such 

that . The corresponding upper and lower bound vectors associated 

with the element can be respectively defined as  and 

, where the entries of the vectors are defined as Eq. (4.5). 

Subsequently, the elemental stiffness matrix  and mass matrix 

 can respectively expressed as the functions of the element interval 

vector. Subsequently, the spatially uncertain stiffness and mass matrices of the structural 

system can be explicitly approximated as Eqs. (4.9) and (4.10): 

  (4.9) 

  (4.10) 

where  and  denote the uncertain-but-bounded 

global stiffness and mass matrices of the structural system. Thus, the spatial dependencies 

of interval uncertain parameters are thoroughly enclosed into the interval eigenvalue 

problem expressed as: 

  (4.11) 

where  denotes the approximation of  of the linear structural system with spatially 

variant uncertainties such that ,  and  

denote to the upper and lower bounds of , respectively; denotes the 

eigenvector associated with . Subsequently, the uncertain eigenvalue analysis with 
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interval field is equivalently transformed into a format which can be processed within the 

framework of FEM. 

 By adopting the proposed interval field model, the uncertain Young’s modulus 

and density can be respectively expressed as  and , with the associated upper 

and lower bound functions are , ,  and . By implementing the 

spatial average approach, the uncertain-but-bounded spatial-variant Young’s modulus 

and density are respectively discretised into the interval vectors  and 

 with n denotes the total number of structural elements. Moreover, 

the upper and lower bound functions are respectively discretised into the vectors 

, ,  and  

such that: 

  (4.12) 

  (4.13) 

where  and  denote to the upper and lower bounds of , respectively;  

and  denote the upper and lower bounds of , respectively. Thus, the spatially 

dependent uncertain stiffness and mass matrices can be respectively approximated as: 
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 For the purpose of this study, only non-deficient structures are considered. 

Consequently, both stiffness and mass matrices are symmetric and positive-definite. By 

adopting the proposed computational approach, the upper and lower bounds of the 

eigenvalues can be respectively achieved by two independent eigen-analyses expressed 

as Eqs. (4.16) and (4.17): 

  (4.16) 

  (4.17) 

where  and  denote the upper and lower bounds of , respectively; and  

respectively denote the eigenvectors (mode shapes) associated with  and , 

respectively. The validity of Eqs. (4.16) and (4.17) is demonstrated by the proof as 

follows. 

Proof: 

 The computation for the jth eigenvalue ( ) of the structural system with 

discretised spatially dependent uncertain Young’s modulus and density can be expressed 

as the Rayleigh’s quotient: 
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eigenvectors within the specified variation ranges of the uncertain variables  and , 

then the bounds of  can be calculated by the simple interval arithmetic expressed as 

Eqs. (4.19) and (4.20). In this context, the Young’s modulus and density varies 

independently with each other. 

  (4.19) 

  (4.20) 

where  with its upper bound ;  with its 

lower bound ;  with its lower bound , and 

 with its upper bound . In this context, , ,  and  

are real and positive. Subsequently, the computation of extremities of  can be 

equivalently implemented by seeking the values of  and  which lead to , , 

 and .  

 For a real-valued function  which is differentiable at , the 

rate of change of the function can be measured by the directional derivative of  with 

respect to a unit vector  ( ) defined [181] as Eq. (4.21): 
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where “ ” denote the dot product;  indicates the direction of variation of ;  

denote the gradient of  at  which is defined as: 

  (4.22) 

In this study, the increase of the discretised spatially variant Young’s modulus and density 

from the corresponding lower bounds (  and ) to the upper bounds ( and ) can 

be respectively represented by two non-negative incremental vectors 

 and  such that: 

  (4.23) 

  (4.24) 

where  and  denote the positive scalers which indicate the magnitude of the increase 

of  and , respectively;  and  are the arbitrary non-negative unit 

vectors, such that  and , which respectively represent the directions of 

 and .  
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increase of density  from . The directional derivatives are illustrated as Eqs. 

(4.25) - (4.28) which are expressed as vector fields. 

  (4.25) 

  (4.26) 

  (4.27) 

  (4.28) 

where the components of the gradients in Eqs. (4.25) - (4.28) can be respectively 

expressed as: 
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 It has been demonstrated that the matrices  and  of linear structural 

systems are semi-positive definite [113]. Therefore, each component of the gradients 

expressed as Eqs. (4.29) - (4.32) are promised to be non-negative. Such property indicates 

that directional derivatives expressed as Eqs. (4.25) - (4.28) are also non-negative. Hence, 

, and  have monotonically increasing relationship with  from  to , and 

 and  also monotonically increase with the increase of  from the associated 

lower bound to the upper bound. Subsequently, the upper bounds of  and , and 

lower bounds of  and  can be respectively calculated as: 

  (4.33) 

  (4.34) 

  (4.35) 

  (4.36) 

 Subsequently, the upper bounds of all natural frequencies can be obtained with 

the combination of  and  as expressed as Eq. (4.37), and the lower bounds of all the 

natural frequencies are resulted from the combination of  and  as expressed as Eq. 

(4.38). 
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  (4.37) 

  (4.38) 

The Eq. (4.37) is equivalent to Eq. (4.16), and the Eq. (4.38) is equivalent to Eq. (4.17). 

This concludes the proof of the proposition.                                                                   □ 

4.4 Numerical examples 

In this section, the applicability and effectiveness of the proposed computational scheme 

are critically verified through investigations on both academic sized and practically 

motivated engineering structures. Due to the unavailability of experiment data, the upper 

and lower bound functions are constructed based on assumption in order to demonstrate 

the concept and applicability of interval field. For the purpose of validation, the upper 

and lower bounds of natural frequencies obtained by the proposed method are compared 

with the results provided by the Latin Hypercube Sampling method [182]. The advantage 

of the adopted simulation approach is that it is capable of offering more uniformly 

distributed samples within the bounded domain than the conventional Monte-Carlo 

simulation. The presented numerical results are obtained by using a workstation with 

CPU of Intel Core i7-4770, 32 GB of memory, and 1 TB of hard drive. 
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4.4.1 I-section cantilever beam 

The first investigation considers an I-section cantilever Euler-Bernoulli beam with the 

geometrical properties depicted in Figure 4.2. The Young’s modulus and density of the 

cantilever beam are considered as interval fields such that the upper and lower bounds 

vary continuously along the span of the beam (x-axis). The upper and lower bound 

functions of Young’s modulus ( , unit: GPa) and density ( , unit: ) are 

demonstrated in Figures 4.3 and 4,4.  and  respectively denote the upper and 

lower bound functions of Young’s modulus which are expressed in Eqs. (4.39) and (4.40); 

 and  respectively denote the upper and lower bound functions of density 

which are expressed in Eqs. (4.41) and (4.42). 

 

Figure 4.2 I-section cantilever beam 

  (4.39) 

  (4.40) 

  (4.41) 

E  3/kg m

( )EI x ( )EI x

( )I x ( )I x

( 2sin( /0.25) 2.4) ( 3sin( /0.22) 3.6)( ) 205 1.5 2x x

EI x e e − − − −= − +

( 3sin( /0.22) 3.6) ( 1.5sin( /0.28) 1.8)( ) 195 1.2 2x x

EI x e e − − − −= + −

( 1.5cos( ( 0.5)/0.23) 1.8) ( 2.5sin( ( 0.5)/0.24) 3)( ) 7800 400 300x xI x e e 



− + − − + −= + +
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  (4.42) 

 

Figure 4.3 Upper bound, lower bound and mid-point functions of  

 

Figure 4.4 Upper bound, lower bound and mid-point functions of  

 The numerical investigation on the cantilever beam is firstly conducted with three 

different discretization sizes for the interval fields, and consequently, the structure can be 

respectively divided into 20, 100 and 1,000 beam elements. The adopted three distinctive 

discretisation sizes for , ,  and  are shown in Figures 4.5 and 4.6. 

It can be observed from Figures 4.5 and 4.6 that, with the increase of element number, 

( 1.5cos( ( 1.5)/0.24) 1.8) ( 3.5sin( ( 0.5)/0.23) 4.2)( ) 7800 400 300x xI x e e 



− + − − + −= − −

E



( )EI x ( )EI x ( )I x ( )I x
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the smoothness of the transition between the discretised values of both upper and lower 

bound functions of adjacent elements is improved.  

 The upper and lower bounds of the natural frequencies of the cantilever beam with 

regarding to the discretisations are computed by adopting the proposed computational 

scheme. As indicated in Section 4.3.2, the relation between eigenvalues and Young’s 

modulus is monotonic increasing, while it is a monotonic decreasing relationship between 

the eigenvalues and the density. Therefore, the upper bounds of natural frequencies are 

effectively calculated with the combination of upper bounds of Young’s modulus and 

lower bounds of density at each discretisation, whereas the lower bounds of the natural 

frequencies are resulted from the lower bounds of Young’s modulus combined with the 

upper bounds of density. 

  

                               (a)                                                                (b) 
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                               (c)                                                                (d) 

  

                               (e)                                                                (f) 

Figure 4.5 Discretisation of  and  with 20 (a and b), 100 (c and d) and 1,000 

(e and f) elements 

  

                               (a)                                                                (b) 

  

( )EI x ( )EI x
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                               (c)                                                                (d) 

  

                               (e)                                                                (f) 

Figure 4.6 Discretisation of  and  with 20 (a and b), 100 (c and d) and 1,000 (e and 

f) elements 

 

Table 4.1 Bounds of first two natural frequencies of the cantilever beam 

 Number of elements 

20 50 100 500 1000 

( ) 248.119 248.101 248.098  248.052 247.457 

( ) 238.159 238.205 238.211 238.123 237.119 

( ) 1554.913 1554.744 1554.722 1554.710 1554.640 

( ) 1492.359 1492.613 1492.649 1492.661 1492.539 

 

 In addition to the previously adopted discretisation sizes shown in Figures 4.5 and 

4.6, the beam is once again meshed into 50 and 500 elements for the evaluation of the 

bounds of the natural frequencies. The extreme bounds of the first two natural frequencies 

obtained by the proposed approach are summarised in Table 4.1. It is revealed from the 

data that the upper bounds of the investigated natural frequencies gradually reduce with 

the increase of number of structural elements, while the lower bounds fluctuate with 

( )I x ( )I x

1 Hz

1 Hz

2 Hz

2 Hz
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different number of elements. Such observed phenomenon is actually attributed to the 

insufficient approximation on the interval field with coarse discretisation. 

 

                                     (a)                                                                  (b) 

Figure 4.7 Extreme bounds of  (a) and  (b) 

 The accuracy of the proposed method (PM) is verified by comparing with the 

results obtained by the Latin Hypercube Sampling (LHS) approach. In this comparison 

study, the discretization with 1,000 elements is adopted for both approaches. For the 

sampling method, simulations with 1,000, 5,000 and 10,000 samples are respectively 

conducted. The results for the first two natural frequencies are presented in the Figure 4.7. 

It is indicated by Figure 4.7(a) and (b) that all simulative results are completely enclosed 

by the upper bounds (UB) and lower bounds (LB) obtained by the proposed 

computational approach. Marginal improvement can be observed for the sampling 

approach by significantly increasing the number of samples, but the computational cost 

is also exponentially increased as well. Thus, the applicability of the introduced concept 

of interval field and the effectiveness of the proposed computational method has been 

evidently justified. 

1 2
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4.4.2 L-shape simply supported plate 

In the second example, the interval natural frequency analysis of an L-shape thin plate 

with out-of-plane vibration is investigated. The general layout of the structure with 

boundary conditions at reference configuration is shown in Figure 4.8(a). The plate is 

discretised into 341 nodes with 300 rectangular Kirchhoff plate elements as shown in 

Figure 4.8(b). The nodes 1 - 5 of the plate are simply supported. This investigation 

concerns that the Young’s modulus ( , unit: ) and density ( , unit: ) are 

spatially variant uncertainties which are described as interval fields, while the Poisson’s 

ratio ( ) is considered as deterministic. The corresponding upper and lower bound 

functions are respectively expressed as Eqs. (4.43) - (4.46). In order to enhance the 

visualization on the 2D interval fields, the spatially dependent fluctuation of  and  

are demonstrated in Figures 4.9 and 4.10. 

  (4.43) 

  (4.44) 

  (4.45) 

  (4.46) 

 

(a) 

E GPa  3/kg m



E 

( , ) 74.084 1.5sin(2.083 ( )) 1.5cos(0.766 ( ))EI x y x y x y = + + + −

( , ) 72.084 1.5sin(2.083 ( )) 1.5cos(0.766 ( )EI x y x y x y = + + − −

( , ) 2880 15sin(8.267 ( ) 15cos(0.766 ( ))I x y x y x y  = + − + +

( , ) 2720 15sin( 8.267 ( )) 15cos(0.766 ( ))I x y x y x y  = + − − − +
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(b) 

Figure 4.8 L-shape simply supported thin plate: (a) general layout and (b) FEM mesh 

  

                               (a)                                                                   (b) 

Figure 4.9 The (a) upper and (b) lower bound functions of the Young’s modulus 

  

                               (a)                                                                   (b) 

Figure 4.10 The (a) upper and (b) lower bound functions of the density 
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 The extreme bounds of the natural frequencies of the structure are calculated by 

adopting the proposed method (PM) which are subsequently compared with the results 

obtained by the Latin Hypercube Sampling (LHS) approach with 10,000 samples. The 

results of the first six uncertain-but-bounded natural frequencies are summarised in Table 

4.2 with the relative difference that has been defined in Eq. (4.47). It is evidently 

illustrated in Table 4.2 that the results obtained by the proposed approach rigorously 

enclose the computational results obtained from the sampling approach for all six 

considered natural frequencies. 

Table 4.2 Extreme bounds of  -  of the L-shape plate 

 PM (Hz) LHS (Hz) RR (%) 

 
34.834 33.925 2.608 

 32.836 33.710 -2.662 

 
66.473 64.921 2.335 

 62.958 64.461 -2.388 

 121.211 118.211 2.475 

 114.393 117.328 -2.565 

 161.942 158.113 2.364 

 153.421 157.120 -2.411 

 165.310 161.588 2.252 

 156.995 160.595 -2.293 

 240.649 235.173 2.276 

 228.147 233.469 -2.333 

where 

  (4.47) 

1 6

1

1

2

2

3

3

4

4

5

5

6

6

%
PM LHS

RR
PM

−
=
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                                (a)                                                                 (b) 

  

                                (c)                                                                 (d) 

  

                                (e)                                                                 (f) 
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Mode shape -  

X
Y
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-.910498
-.692028
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-.25509
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X
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-.457783
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                                (g)                                                                 (h) 

Figure 4.11 Mode shapes associated with the upper and lower bounds of  -  

 In addition to the natural frequencies, the mode shapes (normalised with respect 

to mass matrices corresponding to the extreme bounds of natural frequencies) associated 

with the upper and lower bounds of  -  are obtained from ANSYS [183]. By 

comparing the mode shapes listed in Figure 4.11, an interesting observation can be made 

which is that the general shape of the mode shape of the plate associated with the upper 

bound of natural frequency is same as the one corresponding to the lower bound.  

 Thus, the applicability of the proposed interval field concept and the accuracy of 

the computational approach are evidently illustrated. One highlight should be mentioned 

here is that the proposed uncertainty model, as well as the computational scheme can be 

directly integrated into the commercial FEM software.  

4.4.3 Cantilever plate  

To further investigate the effectiveness of the proposed computational approach, a 

practical-sized cantilever plate is considered in the final numerical investigation by 

adopting the Kirchhoff plate theory. The general layout of the structure is shown in Figure 

 

X

YZ

-1.04058
-.809336

-.578097
-.346858

-.115619
.115619

.346858
.578097

.809336
1.04058

Mode shape -  

 

X
YZ

-1.00592
-.782384

-.558846
-.335307

-.111769
.111769

.335307
.558846

.782384
1.00592

Mode shape -  

1 4
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4.12. In this example, the material properties such as Young’s modulus ( , unit: ) 

and density ( , unit: ) are respectively considered as 2D spatially dependent 

interval uncertain parameters. For this example, two cases of different upper and lower 

bound functions are considered which are respectively expressed in Eqs. (4.48) - (4.51) 

and Eqs. (4.52) - (4.55). The Poisson’s ratio of the plate is considered as . For the 

purpose of providing deep insight of the spatial variations of the considered uncertain 

parameters, the upper and lower bound functions and the associated discretisation under 

the adopted mesh are illustrated in Figures 4.13 – 4.14.  

Case 1: 

  (4.48) 

  (4.49) 

  (4.50) 

  (4.51) 

Case 2: 

  (4.52) 

  (4.53) 

  (4.54) 

  (4.55) 

E GPa

 3/kg m

0.3 =

3.5sin( /5 /4) 4.2 1.5sin( /2 /1.53) 1.8

,1( , ) 75 2 2x y x y

EI x y e e   − + − − + −= + +

3.5sin( /2 /3.9) 4.2 1.5sin( /1.8 /4.2) 1.8

,1( , ) 71.5 2 2x y x y

EI x y e e   − + − − + −= − +

1.5cos( ( )/5.64) 1.8 2.5cos( ( )/6.83) 3

,1( , ) 2800 100 100x y x yI x y e e 



− − − − + −= + +

1.5cos( ( )/3.64) 1.8 3.5cos( ( )/5.83) 4.2

,1( , ) 2700 100 100x y x yI x y e e 



− − − − + −= + −

,2 ( , ) 74 sin( /12 0.6 ) cos( / 4.5 1.2) sin( / 6.5 0.1)EI x y x y xy= + + + + − +

,2 ( , ) 72.5 cos( /12 /1.7) sin( / 21 / 2.3) cos( / 47)EI x y x y y x xy= − + + − −

2 2 2 2

,2 ( , ) 2800 60cos(( 1.2) / 56) 100sin(( ) / 68)I x y x y x y = + − + − +

2 2

,2 ( , ) 2700 40sin(( ) / 34) 100cos(( ) / 53 0.1)I x y x y x y = + − − + +
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Figure 4.12 General layout of the cantilever plate 

  

                                  (a)                                                                (b) 

  

                                  (c)                                                                (d) 

Figure 4.13 Upper and lower bound functions of  and  of Case 1 

  

                                  (a)                                                                (b) 

E 
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                                  (c)                                                                (d) 

Figure 4.14 Upper and lower bound functions of  and  of Case 2 

 

Figure 4.15 Adopted FEM mesh for comparing results of PM with LHS 

 For evaluating the upper and lower bounds of the natural frequencies of the 

structure, both the proposed method (PM) and Latin Hypercube Sampling (LHS) method 

are implemented in this numerical investigation by adopting an unstructured triangular 

mesh with 2,725 elements and 1,459 nodes. Such unstructured mesh is generated by 

employing a Delaunay mesh-generator [184] which is proved to be capable in generating 

high-quality triangular mesh. For the LHS approach, 5,000 samples have been adopted 

for the purpose of result verification. By adopting the proposed computational approach, 

the upper and lower bounds of the first four natural frequencies are obtained by 

conducting two independent eigen-analyses and the results are summarised in Table 4.3. 

In addition, the results produced by the LHS approach are also reported in Table 4.3, 

E 
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where  denote the relative difference between the results from PM and LHS as 

defined in Eq. (4.47). It is evidently demonstrated in Table 4.3 that the results obtained 

by the proposed approach are completely enclosing the ones obtained from the LHS 

method. In addition to the superior computational effectiveness, the computational time 

( , unit: sec) of the proposed approach is much less than the adopted sampling method. 

Once again, the applicability, accuracy as well as the efficiency of the proposed method 

is fully illustrated through the investigation on practically motivated engineering structure. 

 Additionally, convergence studies are conducted for both Cases 1 and 2 in order 

to investigate the effect of mesh size on the results of proposed method. Thus, totally 11 

unstructured meshes (including the mesh shown in Figure 4.15) with the number of 

elements ranging from 453 to 17,169 are considered. In addition to the two cases with 

uncertainties, a deterministic case with ,  and  is 

involved in such numerical test such that the convergence of FEM analysis can be 

demonstrated simultaneously. By employing the proposed method, the upper (UB) and 

lower (LB) bounds of the first ( ) and second ( ) natural frequencies of Cases 1 and 

2 are shown in Figures 4.16 - 4.17 together with the results obtained from deterministic 

analysis. By thoroughly examining the Figures 4.16 - 4.17, there are two observations can 

be drawn: (1) refining the mesh from coarse to fine can gradually lead to the convergence 

of the calculation of both uncertain and deterministic natural frequencies; (2) the extreme 

bounds of natural frequencies converge in the same trend as the results from deterministic 

FEM analysis. Subsequently, it can be concluded that the convergence of the proposed 

uncertain free vibration analysis of structures with interval field is promised in the context 

of the convergence of FEM analysis for such vibration problem of bending plate.  

RR

comt

73E GPa=
32800 /kg m = 0.3 =

1 2
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Table 4.3 Extreme bounds of  -  of the cantilever plate of Cases 1 and 2 

 
Case 1 (unit: Hz) Case 2 (unit: Hz) 

PM LHS RR (%) PM LHS RR (%) 

 0.8703 0.8507 2.252 0.8665 0.8520 1.673 

 0.8289 0.8473 -2.220 0.8350 0.8489 -1.665 

 4.0682 3.9614 2.625 4.0499 3.9696 1.983 

 3.8473 3.9422 -2.467 3.8834 3.9559 -1.867 

 9.0418 8.8145 2.514 9.0090 8.8329 1.955 

 8.5677 8.7759 -2.430 8.6445 8.8010 -1.810 

 

10.6454 10.3975 2.329 10.6654 10.4259 2.246 

 10.1277 10.3563 -2.257 10.1664 10.3843 -2.143 

  168.831  N/A 164.539  N/A 

 

  

                                     (a)                                                                   (b) 

Figure 4.16 Convergence study of  and  of (a) Cases 1 and (b) Case 2 with comparison to 

the deterministic analysis 

1 4

1

1

2

2
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4

comt 41.273 10 410173.1 
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                                     (a)                                                                  (b) 

Figure 4.17 Convergence study of  and  of (a) Cases 1 and (b) Case 2 with comparison to 

the deterministic analysis 

4.5 Conclusion 

  In this study, the free vibration of engineering structures with non-probabilistic 

spatially dependent uncertain parameters is thoroughly investigated for the first time. In 

order to model the spatial variations of system variables with insufficient information, a 

new concept of interval field is proposed which simply requires the upper and lower 

bound functions to describe the non-stochastic uncertainties. Additionally, the spatial 

average approach is adopted to discretise the interval field into a finite set of interval 

variables such that the extremities of eigenvalues can be calculated within the framework 

of finite element method.  

 Furthermore, an efficient computational approach is proposed to obtain the 

bounds of natural frequencies, which excludes either numerical estimation of bounds of 

eigenvalues or combinatory approaches. Accordingly, the upper and lower bounds of 

natural frequencies can be achieved by performing two independent eigen-analyses. The 

applicability of the interval field model and the accuracy of the proposed approach for 

2 2
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calculating the bounds of natural frequencies are evidently testified through investigations 

on academic and practical-sized structures. 
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Chapter 5 . Uncertain natural frequency analysis 

for structures with hybrid spatially variant 

stochastic and interval parameters 

5.0 Summary 

This chapter presents a robust non-deterministic free vibration analysis for engineering 

structures involving hybrid, yet spatially dependent, uncertain system parameters. 

Distinguished from the conventional hybrid uncertain eigenvalue problem, the concept of 

interval field is enclosed with random field model such that, both the stochastic and non-

stochastic representations of the spatial dependency of the uncertainties are 

simultaneously incorporated within a unified non-deterministic free vibration analysis for 

the first time. In order to determine the probabilistic characteristics (i.e., means and 

standard deviations) of the extremities of structural natural frequencies, an extended 

unified interval stochastic sampling (X-UISS) method is implemented for the purpose of 

effective hybrid uncertain free vibration analysis. By meticulously blending sharpness-

promised interval eigenvalue analysis with stochastic sampling techniques, the stochastic 

profiles (i.e., probability density functions (PDFs) and the cumulative distribution 

functions (CDFs)) of the extreme bounds of the structural natural frequencies can be 

rigorously established by utilizing the adequate statistical inference methods. The 

applicability and effectiveness of the proposed computational framework are evidently 

demonstrated through the numerical investigations on various practically motivated 

engineering structures. 

The remainder of the Chapter 5 is organized as follows. In Sections 5.2, a brief 

summary of the concept of random field and the adopted discretization scheme are 
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provided. The details of the adopted interval field concept have been demonstrated in 

Chapter 4 and it is omitted in this chapter. Then, the extended hybrid uncertain eigenvalue 

problem which encloses both the random and interval fields as well as the proposed 

computational framework for analyzing the hybrid uncertain natural frequencies of 

structures are comprehensively introduced in Section 5.3. Furthermore, two practically 

motivated numerical examples are investigated by the proposed approach and then 

critically compared with computational exhausted simulation approach in Section 5.4. 

Finally, some concluding remarks are drawn in the Section 5.5. The research work 

developed in this chapter has produced one journal paper which has been published in 

Computer Methods in Applied Mechanics and Engineering. The detail of the publication 

is: Feng, J., Wu, D., Gao, W., & Li, G. (2018). Hybrid uncertain natural frequency 

analysis for structures with random and interval fields. Computer Methods in Applied 

Mechanics and Engineering, 328, 365-389. https://doi.org/10.1016/j.cma.2017.09.004 

5.1 Introduction 

The natural frequency, as a key indicator for the vibrational performance of engineering 

structural systems, has been extensively studied in the past decades. With the aid of finite 

element method (FEM), such essential dynamic characteristic of engineering structures 

can be adequately obtained by solving the generalized eigenvalue problems. The 

existence of uncertainties potentially affects the credibility of the analyzing results of the 

dynamic behaviours of the structural systems, which leads to the indispensability of 

developing an uncertain free vibration analysis framework for a more effective and 

meaningful prediction on the structural natural frequencies as well as other dynamic 

characteristics [145, 169, 176]. 

https://doi.org/10.1016/j.cma.2017.09.004
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Conventionally, the uncertain free vibration analysis is initialized by 

implementing probabilistic/stochastic approaches, which are established on the solid 

theoretical foundation of probability or statistics. In structural engineering, the random 

eigenvalue problem is adequately addressed by the stochastic finite element method 

(SFEM) by incorporating the probabilistic strategies within the FEM [148, 168, 185, 186]. 

Accordingly, the concerned uncertainties of the structural system parameters are 

modelled as stochastic parameters with the pre-defined statistical information such as 

mean and standard deviations. Admitting the universal application of SFEM, it is worthy 

to pointing out that the creditability of such stochastic procedures is conditional to the 

availability of the statistical information of the concerned uncertainties in practical 

engineering applications [124, 139, 188]. 

For the circumstance where the prerequisites of the probabilistic approaches are 

not satisfied, the non-stochastic procedures are extensively developed so the 

implementation of uncertainty analysis is not restrained by the insufficiency of the 

information of system parameters. Profiting from the conceptual simplicity, the interval 

approaches have been widely adopted into the FEM for the free vibration analysis 

involving uncertain-but-non-random variables. Numerous computational procedures 

have been developed in the light of pursuing a more accurate estimation of the exact 

extreme bounds of natural frequencies [99, 100, 112, 113]. Unlike the extensive adoption 

of the theoretically well-established random field models in SFEM, the exploration of 

inclosing the spatial dependency of uncertainties in non-stochastic analysis just started 

recently in statics analysis where various interval field models have been introduced with 

different solution algorithms [85, 115, 116, 120].  
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 In modern engineering problems, both random and interval uncertain variables 

can exist simultaneously. Therefore, the approaches which can enclose both types of 

uncertainties are necessary for obtaining a more realistic analysis in engineering 

application. However, based on the thorough literature review, there is still a blank to fill 

in the free vibration analysis of structures with spatially dependent uncertain system 

parameters, specifically with the spatial representation of non-stochastic uncertainties. 

 Thus, the aim of this chapter is to provide an adequate insight of the eigenvalue 

problem with mixed type of spatially dependent uncertainties for the first time. In this 

study, the conventional hybrid uncertain eigenvalue problem is extended into a 

generalized form such that the theory random field and the concept of interval field 

proposed by [133] are enclosed simultaneously. Since that such generalized spatial 

uncertain eigenvalue problem has not been systematically addressed, a feasible 

computational framework is necessarily to be introduced for the investigation of the 

hybrid uncertain natural frequencies. Therefore, a new computational strategy, namely 

the extended unified interval stochastic sampling (X-UISS) approach, is adopted for the 

hybrid uncertain eigenvalue analysis with diverse uncertainties. As a modification of the 

computational validated UISS approach [133], the X-UISS method can be effectively 

applied in uncertain free vibration analysis of structural systems with either spatially 

dependent or independent hybrid random and interval parameters. In the proposed 

investigation, the Poisson’s ratio is considered by the random field model while the 

Young’s modulus and density of materials are modelled as either random or interval field. 

By utilizing the semi-sampling X-UISS strategy, the upper and lower bounds of all the 

natural frequencies are firstly calculated by two independent eigen-analyses. Within the 

framework of FEM, it can be proved that sharpness and feasibility of the achieved 
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extremities of eigenvalues of the structures can be preserved in the context of discretised 

interval fields. Subsequently, the statistical profiles (i.e. means, standard deviations, PDFs 

and CDFs) of each of the eigenvalues can be robustly established based on the collected 

samples. Since the interval arithmetic is excluded from the X-UISS approach, the 

associated cacoethic effect of the potential overestimation (so-called dependency issue) 

[113, 116] is eliminated from the computational scheme. Additionally, the adopted 

computational framework is applicable with multiple types of random fields such as 

Gaussian and lognormal distributed fields. Therefore, the X-UISS approach provides an 

effective and feasible computational framework for the uncertain free vibration analysis 

of structures with hybrid spatially dependent uncertain system parameters. 

5.2 Stochastic approach for modelling spatially dependent uncertainties 

5.2.1 The concept of random field 

Given a probability space , a random field  is defined as a collection 

of random variables indexed by a continuous parameter  which is the description 

of the system geometry, where  denote an arbitrary sampling point in the sample 

space ,  denote the algebra, and the probability measure is denoted by P which 

is a function on  such that . At an arbitrary point  within the domain 

of the system,  denotes a random variable such that

, where  denotes the PDF of the random 

variable ( ). For a specified outcome ,  can be considered as a realization of 

the random field. 

 Practically, the Gaussian random field, benefiting from its conceptual simplicity, 

has been prevalently adopted in a wide range of engineering applications [5, 131, 189, 

( ,  ,  P)Ω F ( , )H χ

nχ

 Ω

Ω F  −

F : [0,  1]→P F
pχ

( , )pH χ

( , ),  ( , ) ~ ( )
p

n

p p HH f x  χχ χ (•) ( )f x
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190]. Therefore, such type of random field is implemented in the proposed hybrid 

vibration analysis as a probabilistic representation of spatially variant uncertain 

parameters. Additionally, some structural system variables, such as material properties, 

considered in the engineering practices are commonly positive. Hence, non-negative 

random field, typically the lognormal random field, is adopted to model the spatially 

coherent material properties. Among all the available covariance functions, the 

exponential covariance function is frequently employed within the random field and here 

adopted in this investigation as well. The incorporated exponential covariance functions 

have generalized forms as: 

  (5.1) 

where  denotes the standard deviation of the random field;  denote the 

correlation lengths in x- and y-direction respectively. 

5.2.2 The Karhunen-Loève expansion 

As a special case of the orthogonal series expansion methods, the Karhunen-Loève (KL) 

expansion is which has been successfully implemented for simulating the random field 

[189, 191]. By employing the KL expansion, the random field  over any outcome 

 can be expanded as: 

  (5.2) 

where  is the mean function of the random field;  are mutually 

uncorrelated random variables;  and  respectively denote the kth eigenvalue and 
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eigenfunction of the covariance function  which can be spectrally decomposed 

as: 

  (5.3) 

As indicated by the theory, the ciance function is bounded, symmetrical, as well as 

positive definite. The eigen-pairs presented in Eq. (5.3) form the solutions to the 

Fredholm integral equation, such that: 

  (5.4) 

with the eigenfunction satisfying the orthogonal property as: 

  (5.5) 

where  denotes the spatial domain that the considered random field is defined within; 

 denotes the Kronecker delta. Based on the orthogonal characteristic of the 

eigenfunction, the kth component of  can be analytically achieved as 

[190]: 

  (5.6) 

In the context that Gaussian random field is implemented, the entire set 

 is a collection of independent standard normal variables. 

Considering the computational efficiency issue in practice, the KL expansion of the 

random field expressed in Eq. (5.2) is replaced by the dth order (i.e., ) series 

expansion which is expressed as: 
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  (5.7) 

where  denotes dth order approximation of the random field;  and  

respectively denote the mean and standard deviation of the Gaussian random field. If the 

lognormal random field is adopted, the random field can be formulated as the exponential 

of a Gaussian random field [50]:  

  (5.8) 

where the mean  and standard deviation  of the enclosed Gaussian random 

field are calculated based on the mean  and standard deviation  of the 

considered lognormal field as 

  (5.9) 

  (5.10) 

5.3 Hybrid uncertain free vibration analysis of structures with spatial-

variant random and interval uncertainties 

5.3.1 Generalized spatially uncertain eigenvalue problem 

As an extension of the conventional eigenvalue problem with uncertain variables, the free 

vibration analysis of linear undamped engineering structures with spatially dependent 

stochastic and non-stochastic uncertainties is investigated in this study. The two types of 

uncertain system variables are considered as mutually independent. Such extension, here 

namely as the generalized spatially uncertain eigenvalue problem, thoroughly involved 

the theories of both random and interval fields into a unified framework of free vibration 
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analysis of structural system for the first time. For a structure with degrees-of-freedom, 

the governing equation of the generalized spatially uncertain eigenvalue problem is 

explicitly formulated as: 

  (5.11a) 

                                           such that: 

  (5.11b) 

  (5.11c) 

where  denotes the hybrid uncertain stiffness matrix of the structure; 

 denotes the hybrid uncertain mass matrix of the structure;  is the vth 

( ) eigenvalue and  is the associated eigenvector.  denotes the 

concerned spatial-variant stochastic uncertainties of the structural system,  denotes the 

concerned spatially uncertain system parameters with non-stochastic characteristics. 

 denotes the random field adopted for describing the ath random variable ; 

 denotes the interval field associated to the th non-probabilistic yet spatially 

variant uncertainty, and  denotes the domain of the entire structural system. Within the 

defined eigenvalue problem, both the stiffness and mass matrices are functions of the 

spatially dependent random and interval uncertain parameters. Moreover, it is necessary 

to emphasize here that, for non-defective engineering structures which are considered in 

the proposed study, the stiffness and mass matrices are consistently symmetric and 

positive-definite [191] despite of the fluctuation of the considered uncertain variables. 
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A mixture of both random and interval fields is enclosed in the proposed uncertain 

eigenvalue problem, the outcomes, which are the natural frequencies investigated in this 

study, consist both probabilistic and interval characteristics. Comparing with the 

conventional non-deterministic eigenvalue problem with single type of uncertainty (either 

stochastic or non-stochastic), the complexities for solving the hybrid spatially uncertain 

free vibration are including: 

1. There are infinite combinations for the possible realizations of random and 

interval fields such that infinite number of outcomes can be obtained, 

which will result the hybrid uncertain structural free vibration analysis to 

be computationally intractable. 

2. Despite of the well-established theoretical support for either random or 

interval analysis, a unified theory for the hybrid uncertain structural free 

vibration analysis of structures with both random and interval fields is not 

systematically established. 

Due to the above mentioned barriers, the currently available approaches for 

uncertain free vibration analysis are incapable of being directly implemented in solving 

the eigenvalue problem with a mixture of random and interval fields. Therefore, some 

adequate computational strategies must be developed to address such intricate free 

vibration analysis with the capability of overcoming the aforementioned complexities. 

5.3.2 Extended unified interval stochastic sampling (X-UISS) approach 

In the light of providing an adequate computational strategy for solving the uncertain 

eigenvalue problem with spatially dependent uncertain variables, a general semi-

sampling uncertainty analysis approach, namely the extended unified interval stochastic 

sampling (X-UISS) method is adopted. For the generalized spatially uncertain eigenvalue 
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problem investigated in this study, the Young’s modulus ( ) and mass density ( ) are 

considered as interval fields while the Poisson’s ratio ( ) is represented by random field. 

Additionally, the random and interval variables are considered as mutually independent. 

Considering the aforementioned intricacies of the hybrid uncertain eigenvalue 

problem, the aim of the proposed computational strategy is to offer a generalized 

description of the non-deterministic natural frequencies which contain both random and 

interval characteristics. Due to the existence of interval fields, the natural frequencies 

corresponding to a specific realization of random fields may vary within a range instead 

of being a deterministic value. Inspired by the concept of statistics, the samples of upper 

and lower bounds can be collected in the context of the given observations of random 

fields and then the means and standard deviations of the samples of extreme bounds of 

natural frequencies are respectively obtained. Subsequently, the governing equation of 

the adopted procedure can be formulated as: 

Find , ,  and  

  (5.12a) 

                                           such that: 

  (5.12b) 

  (5.12c) 

  (5.12d) 

where  and  respectively denote the upper and lower bounds of the vth natural 

frequency ;  and  respectively denote the mean and standard deviation of 
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variable ;  denote the random field corresponding to Poisson’s ratio;  

and  denote the interval fields for the spatially dependent uncertain Young’s 

modulus and mass density, respectively. 

Within the framework of X-UISS, the spatially dependent uncertain system 

parameters are firstly transformed into either random or interval vectors by employing 

the aforementioned field discretization techniques. Thus, the spatially dependent 

uncertain free vibration is equivalently investigated by analyzing a non-deterministic 

structural free vibration analysis with spatially independent uncertainties. Subsequently, 

the random field for Poisson’s ratio to the dth order can be formulated as: 

  (5.13) 

Then the interval fields of Young’s modulus and density are respectively discretized as: 

  (5.14) 

  (5.15) 

The X-UISS method is initialized by arbitrarily generating a total number of 

 sampling points for the discretized random field of Poisson’s ratio such that: 

  (5.16) 

where denotes the set collecting all the realizations,  denotes the  realization 
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  (5.17) 

where is the approximation of the vth natural frequency  at the  sampling 

point;  denotes the eigenvectors associated with . Eq. (5.17) indicates that at 

each sampling point, an interval eigenvalue analysis needs to be conducted such that the 

upper and lower bounds of natural frequencies associated with this sampling point are 

determined. Therefore, it is critical for the adopted method to achieve the sharp bounds 

of natural frequencies at each sampling point. The following proposition indicates that 

the sharp bounds of eigenvalues are achievable in specified conditions.  

Proposition: 

 Consider two real matrices  and  which are defined by 

  (5.18) 

  (5.19) 

where  and  are constant positive-semidefinite matrices. For the eigenvalue 

problem , if the conditions ,  and  hold, then:  
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where , , and ; and

 denote the eigenvectors associated with  and , respectively. 

Proof: 

By Rayleigh quotient, the vth eigenvalue of generalized eigenvalue problem can 

be calculated as: 

  (5.22) 

Since , , and , that is: 

  (5.23) 

Therefore the extreme bounds of eigenvalues can be calculated by: 

  (5.24a) 

  (5.24b) 
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  (5.25) 

From Eq. (5.26), it is concluded that and are monotonically increasing functions of

, and  are monotonically increasing functions of . Therefore, the upper 

bounds of  and , and the lower bounds of  and  are obtained as following 

  (5.26) 

which is equivalent to Eq. (5.24). 

This concludes the proof.                                                                                                 □ 

For linear, elastic and non-deficient structures with adequate boundary conditions, 

the stiffness and mass matrices are proved to be positive definite [67] regardless of the 

realizations of  and . Therefore, for any realization of  and , if  then 

the following property holds: 
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Moreover, considering the discretization of interval field, the uncertain stiffness and mass 

matrices of the structural system can be alternatively expressed as: 

  (5.29) 

  (5.30) 

where  denotes the uncertain elemental stiffness matrix; and 

 denotes the uncertain elemental mass matrix. Considering the linear 

elastic structure, within the framework of FEM, the total strain energy ( ) and kinetic 

energy ( ) of the structural system are respectively expressed as: 

  (5.31) 

  (5.32) 

where  denotes the structure displacement vector;  denotes the structure 

velocity vector. By definition, if the structure is adequately restrained, the total strain 

energy and kinetic energy must be positive. Meanwhile, the elemental strain energy ( ) 

and kinetic energy ( ) must be non-negative. Such phenomenon is self-explained since 

that the elemental stiffness matrix  and mass matrix 

 can be considered as the global stiffness and mass matrices of a 

deficient structural system where the rigid body motion is not prevented. Additionally, 
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both  and  are positive vectors by definition. Therefore, the following relationships 

are valid: 

  (5.33) 

  (5.34) 

Hence, the matrices  and  are both positive semi-definite for the considered 

structural system in this study. Subsequently, the upper and lower bounds of  can be 

rigorously determined from two independent eigen-analyses with the interval input as 

expressed in Eqs. (5.35) and (5.36): 
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Then, for both upper and lower bounds of the vth ( ) eigenvalue, a 

collection of r samples are provided after implementing the interval analysis at all the 

sampling points. Benefiting from the offered samples, the sample means and standard 

deviations of the upper and lower bounds of natural frequencies can be respectively 

determined as: 

  (5.37) 

  (5.38) 

  (5.39) 

  (5.40) 

where  and  denote the sample mean and standard deviation of the concerned 

extreme bound of , respectively. If  and  respectively denote the true mean of 

upper and lower bounds of , then based on the linearity of expected value, that is:  

  (5.41) 

  (5.42) 

where  denotes the expectation operator for . Furthermore, the variance of the 

variance estimators illustrated in Eqs. (5.43) – (5.44) are approaching to zero as r (number 

of samples) increases to infinity, which can be demonstrated as: 
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  (5.43) 

  (5.44) 

where  denotes the variance operator for , and  and  respectively 

denote the true variance of upper and lower bounds of . Subsequently, according to 

the Kolmogorov’s Strong Law of Large Numbers, if the size of sample tends to infinity, 

the sample mean of the extreme bounds of the jth natural frequency converge almost 

surely to the corresponding true expected values. Therefore, the estimators in Eqs. (5.43) 

- (5.44) are consistent as well. Moreover, the point estimation for the variance of extreme 

bounds of vth natural frequency can be proved to be unbiased, and converge almost surely 

to the true variances by adopting the same theoretical support for the estimators of mean 

[137]. In this context, the robust point estimations of mean and standard deviations of the 

upper and lower bounds of any concerned natural frequency can be achieved by 

implementing the X-UISS scheme. 

Additionally, the probability distribution of the extreme bounds can be 

conveniently identified by employing adequate statistical inference methods (i.e. 

parametric and non-parametric analysis). Subsequently, the probability density functions 

(PDFs) and cumulative distribution functions (CDFs) can be established as: 
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  (5.46) 

  (5.47) 

  (5.48) 

where  and  denote the true and estimated PDFs of the random variable , 

respectively;  and  denote the true and estimated CDFs of the random 

variable , respectively. Furthermore, if  denotes the constraint of the vth natural 

frequency, then the upper and lower bounds of the structural reliability against such 

constraint can be respectively estimated as: 

  (5.49) 

  (5.50) 

The solution algorithm of X-UISS for the uncertain free vibration analysis with spatially 

dependent random Poisson’s ratio, and interval Young’s modulus and density are 

demonstrated in the flowchart as Figure 5.1. 

2

,
ˆ ˆ( ) ( ) ( , , ),   for 1,...,

i s i s v v ss s

PDF PDF PDF

i i v i s MCSf f f i m        = =

ˆ
ˆ ˆ ˆ( ) ( ) ( )

s s si i is s s

CDF CDF

i i i if f f d
  

   


−
 = 

ˆ
ˆ ˆ ˆ( ) ( ) ( )

i s i s s sis s s

CDF CDF

i i i if f F d     


−
 = 

( )

PDFf • ( )

PDFf • ( )•

( )

CDFf • ( )

CDFf •

( )• v


ˆ
ˆPr{ } ( )

v

v
r v vP f x dx




 





−
=  = 

ˆ
ˆPr{ } ( )

v

vr v vP f x dx


 




−
=  = 



136 

 

 

Figure 5.1 Solution algorithm of X-UISS method 

 The X-UISS approach offers a robust, effective and rational strategy for the hybrid 

uncertain free vibration analysis for engineering structures with spatially dependent and 

mutually independent random and interval uncertainties. The implemented computational 

framework transfers the generalized spatially uncertain eigenvalue problem into a 

stochastic interval analysis which provides valid and robust estimations on the statistical 
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characteristics of the extreme bounds of the natural frequencies. Since the independency 

between random and interval uncertainties is assumed, the physical feasibility of the 

investigated eigenvalue problem is not affected by respectively discretizing the two types 

of spatial-variant uncertain parameters. Subsequently, the X-UISS method converts the 

spatially dependent eigenvalue analysis into a spatially independent one by adopting 

appropriate discretizing methods.  

 Benefiting from the calculated samples of upper and lower bounds of the natural 

frequencies, the PDFs and CDFs of the extremities of all concerned natural frequencies 

can be obtained by implementing either parametric or non-parametric statistical inference 

methods in addition to the statistical characteristics (i.e. mean and standard deviations). 

Evidently supported by the proposition, the sharpness of each interval analysis enclosed 

in the X-UISS method is promised. Therefore, for any concerned natural frequency, the 

accordingly constructed PDFs of upper and lower bounds offer a solution hull for the 

variation of such natural frequency at any specific probability. Moreover, the robustly 

bounded reliability as indicated in Eqs. (5.49) - (5.50) are rationally obtained by the CDFs 

of upper and lower bounds of the concerned natural frequency. As a semi-sampling 

computational strategy, the X-UISS is not only applicable where normally distributed 

random variables exist but also extendable to the spatially uncertain free vibration 

problem involving random fields with other types of distribution (e.g. lognormal 

distribution). Thus, the X-UISS approach offers a robust and effective computational 

framework for analyzing the uncertain free vibration problem with hybrid random and 

interval fields. 
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5.4 Numerical examples 

The applicability and effectiveness of the proposed computational scheme are critically 

verified through investigations on the practically motivated engineering structures in this 

section. According to the previous studies on the stochastic finite element method, the 

KL expansion for some typical covariance functions can be truncated at relatively small 

numbers of orders ( ) [192] while the convergence is maintained acceptable. In 

order to a though the convergence, the dependent KL expansion is truncated at the order 

of 40 for all random fields considered in this investigation. Due to the limitation of authors 

in the access to experimental data, the adopted upper and lower bound functions of 

interval field are based on assumption. For validation purposes, the statistical 

characteristics of the extreme bounds of natural frequencies obtained by the X-UISS 

method are contrasted by comparing with results provided by a hybrid sampling method 

(LHS-MCS) which combines the Latin Hypercube Sampling (LHS) approach [193] with 

the Monte Carlo simulation (MCS). Within the hybrid sampling approach, the LHS is 

utilized for generating sampling points for interval fields, while the MCS is implemented 

for generating samples of random fields. Subsequently, a stochastic MCS is conducted at 

each interval sampling point such that the collection of means and standard deviations of 

natural frequencies can be obtained. Then, the variations of the statistical characteristics 

of natural frequencies can be revealed. The presented numerical results are obtained by 

using a workstation with CPU of Intel Core i7-4770, 32 GB of memory, and 1 TB of hard 

drive. 

5.4.1 Cantilever plate 

The first investigation considers a cantilever plate, which is the same structure used in 

Section 4.4.3, with spatially dependent uncertain material properties. The general layout 

20d 
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of the structure with geometrical properties is depicted in Figure 4.12. Moreover, 3-node 

triangular element based on Kirchhoff plate theory is implemented for the uncertain free 

vibration analysis of the structure. 

For this example, both Young’s modulus ( , unit: ) and Poisson’s ratio ( ) 

are considered as random fields with Gaussian distribution [30], with , 

, and , . The exponential covariance function 

with correlation length of  and  are adopted for both the random fields 

of both  and . The mass density of the cantilever plate is considered as an interval 

field such that the upper and lower bounds vary continuously along the x and y axes. The 

upper and lower bound functions of density ( , unit: ) are expressed in Eqs. (5.51) 

- (5.52). In order to visibly demonstrate the spatial variance of the uncertain Young’s 

modulus and Poison’s ratio, some selected realizations of the random fields are shown in 

Figures 5.2 and 5.3. Moreover, the extreme bound functions of  can be visualized as 

Figure 5.4 
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Figure 5.2 Selected realizations of the random fields of   

  

Figure 5.3 Selected realizations of the random fields of   

  

                                     (a)                                                                   (b) 

Figure 5.4 Upper (a) and lower (b) bound functions of   

Table 5.1 Different meshes adopted for Example 5.4.1 

Mesh 1 2 3 4 5 6 

Number 

Of nodes 
1,167 1,459 1,908 2,568 3,680 5,708 

Number 

of elements 
2,161 2,725 3,594 4,873 7,048 11,030 

E
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To investigate the effect of mesh size on the computational output, total 6 

unstructured triangular meshes are adopted for the computation of the X-UISS approach. 

The details of the different FEM discretization are summarized in Table 5.1, which 

indicates that the number of elements and nodes increases from Mesh 1 to Mesh 6. Such 

unstructured mesh is generated by employing a Delaunay mesh-generator [184] which is 

proved to be capable in generating high-quality triangular mesh. Subsequently, by 

utilizing the spatial average discretization on the interval fields, the discretized upper and 

lower bound functions of the uncertain mass density are respectively represented by two 

upper and lower bound vectors. The discretized upper and lower bound functions resulted 

from Mesh 1, 3 and 5 are shown in Figure 5.5 which offers an intuitional expression of 

the interval field discretization. 

  

                                (a)                                                                   (b) 

  

                                (c)                                                                   (d) 
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                                (e)                                                                   (f) 

Figure 5.5 Discretized upper and lower bound functions of  corresponding to Mesh 1 (a and 

b), 3 (c and d) and 5 (e and f) 

  

                                    (a)                                                                  (b) 

  

                                    (c)                                                                   (d) 

Figure 5.6 Mean ( ) and standard deviation ( ) of the upper bound (UB) and lower bound 

(LB) of  and  with respect to different meshes 

By implementing the X-UISS method with 1,000 sampling points on all the 

different meshes, the mean and standard deviations of the extreme bounds of the natural 

frequencies are calculated. For the purpose of demonstration, the results of the first two 

natural frequencies obtained by the X-UISS method are summarized in Figure 5.6. The 
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presented results indicate that the means of the upper and lower bounds of natural 

frequencies gradually converge with the increase of total element number of the FEM 

discretization. In contrast, the standard deviations fluctuate at different element sizes. 

In order to verify the results achieved by the X-UISS approach, the LHS-MCS 

method with total 100,000 simulations (1,000 samples for random fields and 100 samples 

for interval field) is conducted on Mesh 2 and the computational results are also illustrated 

in Table 5.2. It is revealed that the results calculated by LHS-MCS method are enclosed 

by the results of the X-UISS approach. Furthermore, the computational time of the X-

UISS method is  second which is much less than the simulation time 

(  second) of the LHS-MCS approach. Thus, it is evidently demonstrated that 

the X-UISS approach offers the high-quality results with competitive computational 

efficiency. 

Table 5.2 The statistical characteristics of bounds of  and  of Example 5.4.1 obtained by 

X-UISS and LHS-MCS with Mesh 2 

 X-UISS (1000) LHS-MCS( ) 

(Hz) 0.8489 0.8365 

(Hz) 0.0331 0.0326 

(Hz) 0.8279 0.8345 

(Hz) 0.0323 0.0325 

(Hz) 3.9643 3.9128 

(Hz) 0.1632 0.1557 

(Hz) 3.8736 3.9058 

(Hz) 0.1592 0.1545 
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1000100
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Furthermore, the effect of sample size on the results of X-UISS method is 

preliminarily addressed based on Mesh 2. In addition to the 1,000 sampling points as 

aforementioned, the X-UISS method is implemented with 5,000, 10,000, 25,000 and 

50,000 sample sizes. The statistical characteristics of the extreme bounds of  and  

are demonstrated in Figure 5.7. As indicated by Figure 5.7, limited variation of the mean 

of extreme bounds of the concerned natural frequencies appears with the increasing of 

sample size, while the standard deviations gradually converge and then fluctuate when 

the sample size is increased to more than 10,000. Thus, as a trade-off of computational 

efficiency and accuracy, 10,000 sampling points is capable in offering the results with 

reasonable quality in this context. 

 Overall, it can be revealed from the results presented in Table 5.2 and Figure 5.7 

that the X-UISS approach offers an effective computational strategy for solving the 

spatially uncertain free vibration problem with hybrid random and interval fields.  

  

                                     (a)                                                                  (b) 

  

                                     (c)                                                                  (d) 
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Figure 5.7 Mean ( ) and standard deviation ( ) of the upper bound (UB) and lower bound 

(LB) of  and  with respect to different sampling points 

5.4.2 Steel arch bridge 

To further investigate the uncertain free vibration of structures with spatially dependent 

uncertain parameters as well as the performance of the X-UISS method, a practical-sized 

3-D steel bridge consisting four arches is considered in the second example. The general 

layout and dimensions of the steel arch bridge are demonstrated in Figure 5.8. 

Additionally, the details of the cross-sections of the four arches and the bracing members 

of the bridge are presented in Figure 5.9. As indicated by Figure 5.8, each arch is 

discretized into 100 3-D beam elements and each bracing member is modelled as one 3-

D beam element. 

 

(a) 
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(b) 

 

(c) 

Figure 5.8 The general layout (a) and the dimensions (b and c) of the steel arch bridge 

           

                                                 (a)                                          (b) 

Figure 5.9 Cross-sections of arch (a) and bracing (b) members 
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For this particular investigation, the Young’s modulus, density and Poisson’s ratio 

of the main arches of the bridge are considered as spatially dependent uncertain 

parameters which vary along the x-axis, while the material properties of the bracing 

elements are remained deterministic. The density ( ) of each arch is modelled as 

lognormal random field with  and , and an 

exponential covariance function with correlation length . The Poisson’s ratio 

( ) is considered as Gaussian random field [194] with  and , and 

an exponential covariance function with correlation length . The Young’s 

modulus ( ) of main arches are modelled as interval fields with the upper and lower 

bound functions expressed as Eqs. (5.53) - (5.60). The arches with span  (inner span) 

are labelled as 1 and 2, and the other two arches (outer span) are labelled as 3 and 4 in 

this example. The deterministic Young’s modulus, density and Poisson’s ration of bracing 

members are: ,  and . Moreover, selected 

examples of realizations of spatially dependent and randomly distributed density and 

Poisson’s ratio are demonstrated in Figure 5.10 and the visualization of the extreme bound 

functions of Young’s modulus is presented in Figure 5.11 to offer a more intuitionistic 

illustration. 
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  (5.56) 

  (5.57) 

  (5.58) 

  (5.59) 

  (5.60) 

  

                                (a)                                                                    (b) 

  

                                (c)                                                                    (d) 

Figure 5.10 Selected realizations of random fields of Example 5.4.2: density (a and b) and 

Poisson’s ratio (c and d) 
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                                (a)                                                                    (b) 

Figure 5.11 Upper (a) and lower (b) bound functions of the interval fields of Example 5.4.2 

Within this numerical investigation, the X-UISS method is utilized with 1,000, 

5,000, 10,000 and 50,000 sampling points such that the statistical information of the 

extreme bounds of natural frequencies is achieved. For demonstrating the applicability of 

the X-UISS approach for the spatially uncertain free vibration analysis, the first three 

natural frequencies (  - ) are selected as observation reference and the simulation 

results are summarized in Table 5.3. It can be observed from the results in Table 5.3 that 

reasonable convergence is achieved for X-UISS approach with 10,000 simulations for 

this example. 

Table 5.3 The statistical characteristics of bounds of  -  of Example 5.4.2 with respect to 

different sample sizes 

 X-UISS 

(1000) 

X-UISS 

(5,000) 

X-UISS 

(10,000) 

X-UISS 

(50,000) 

LHS-MCS 

( ) 

(Hz) 0.7079 0.7078 0.7079 0.7080 0.7034 

(Hz) 0.0109 0.0113 0.0111 0.0111 0.0113 

(Hz) 0.6982 0.6981 0.6982 0.6983 0.7023 

(Hz) 0.0108 0.0111 0.0110 0.0110 0.0113 

(Hz) 1.3351 1.3351 1.3353 1.3353 1.3233 

(Hz) 0.0205 0.0212 0.0210 0.0210 0.0211 

(Hz) 1.3091 1.3091 1.3093 1.3094 1.3207 
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(Hz) 0.0201 0.0208 0.0206 0.0206 0.0211 

(Hz) 1.7757 1.7754 1.7757 1.7758 1.7645 

(Hz) 0.0255 0.0262 0.0257 0.0258 0.0262 

(Hz) 1.7516 1.7513 1.7516 1.7518 1.7623 

(Hz) 0.0252 0.0259 0.0254 0.0254 0.0261 

 

 Additionally, the computationally expensive dual sampling LHS-MCS approach 

with total 100,000 simulations (i.e. 100 samples for interval field and 1,000 samples for 

random field) is implemented and the mean and standard deviations of  -  are 

reported in Table 5.3 for the partial result verification purpose. By comparing the 

simulation results of both methods, the mean obtained by dual sampling approach are 

enclosed by the results calculated by X-UISS approach, while minor differences in 

standard deviations are indicated. 

 Furthermore, the probability plots of the results obtained by X-UISS approach 

with 50,000 samples are implemented to identify the distributions of the extreme bounds 

of the concerned natural frequencies. The probability plots of upper and lower bound 

samples of  -  against wildly adopted distributions are illustrated in Fig. 5.12. The 

construction of the PDFs of various distributions can be conveniently implemented by 

using statistical analysis toolbox integrated in Matlab [158]. Additionally, the kernel 

density estimation (KDE) which is a non-parametric approach to represent the PDFs of 

random variables based on the available samples is adopted and accordingly constructed 

PDFs are demonstrated in Figure 5.12. By reviewing all the probability plots in Figures 

5.12(a) and 5.12(b), both the Gaussian and lognormal distributions are overlapped with 

the PDF generated by KDE for . Additionally, same observation can be obtained for 
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3


3


3


1 3

1 3
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 and  from Figures 5.12(c) - 5.12(f) since both normal and lognormal PDFs fit the 

histogram of the samples. Thus, it is potential that the concerned system outputs follow 

either normal or lognormal distribution despite that the input variables contain both 

Gaussian and lognormal random fields. 

 

 

                                     (a)                                                                  (b) 

 

                                     (c)                                                                  (d) 
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                                     (e)                                                                  (f) 

Figure 5.12 Probability plots for the upper and lower bounds of  -  of Example 5.4.2 

 To ensure the consistency of the numerical study, the KDE is implemented in all 

the results obtained by X-UISS approach such that the PDFs and CDFs against different 

samples are constructed and shown in Figure 5.13. Additionally, the estimated PDFs and 

CDFs based on the output samples from LHS-MCS are also demonstrated for comparison 

purpose. It is noticeable that the PDFs and CDFs resulted from the dual sampling 

simulation are completely enclosed by the ones constructed by the X-UISS approach. 

Such large variation ranges between the PDFs and CDFs of extreme bounds calculated 

by X-UISS method is due to the fact that the sharpness of the results computed by the 

interval analysis at each sampling point of random field can be promised explicitly. 

Moreover, by increasing the sample size of X-UISS method, smoother PDFs, which are 

estimated by the adopted non-parametric statistical analysis, can be achieved, while 

limited effect on the variations of CDFs are observed in this investigation. Accordingly, 

the X-UISS approach offers a robust estimation of the probability profile of the extreme 

bounds of the natural frequencies of structures with hybrid random and interval fields. 

1 3
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                                    (a)                                                                   (b) 

  

                                    (c)                                                                   (d) 

  

                                    (e)                                                                   (f) 

Figure 5.13 Estimated PDFs and CDFs of the upper and lower bounds of  -  of Example 

5.4.2 
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5.5 Conclusion 

This chapter presents an investigation of the non-deterministic free vibration problem of 

engineering structures considering the material uncertainties. As a novel extension of the 

conventional uncertain eigenvalue problem, the non-stochastic yet spatially dependent 

uncertain parameters and the random field theory are combined into a unified numerical 

analysis framework for the first time. In this study, the innovative concept of interval field 

is adopted as the representation of spatial-variant uncertainties which cannot be modelled 

precisely by random field. 

 A semi-sampling approach, namely the extended unified interval stochastic 

sampling (X-UISS) method, is adopted for robustly investigating the spatially uncertain 

free vibration problem. Within the computational framework, the extreme bounds of 

natural frequencies at each realization of random field are calculated by two independent 

eigen-analyses. The sharpness of the enclosed interval analysis is evidently promised in 

the context that Young’s modulus and mass density are considered as interval fields. 

Benefitting from the generation of samples, the random field is not limited to be Gaussian 

distributed but applicable for other types of distribution. Various types of engineering 

structure have been investigated such that the applicability and effectiveness the X-UISS 

method as well as the robustness of the resultant PDFs and CDFs are systematically 

demonstrated. 
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Chapter 6 . Dynamic reliability analysis using the 

extended support vector regression (X-SVR) 

6.0 Summary  

In this chapter, a new machine learning based metamodel, namely the extended support 

vector regression (X-SVR) is proposed for the structural dynamic reliability analysis 

using the first-passage theory. Furthermore, a new kernel function constructed based on 

the vectorized Gegenbauer polynomial is introduced to enhance the capability of X-SVR 

in approximating complex engineering analyses. Through the proposed approach, the 

relationship between the extremum of the structural dynamic response and input uncertain 

parameters is approximated by training the X-SVR model such that the probability of 

failure can be efficiently predicted without further finite element analysis. The 

performance of the proposed surrogate model and its application in structural dynamic 

reliability analysis is investigated by comparing with the conventional ε-insensitive 

support vector regression (ε-SVR) with Gaussian kernel and Monte Carlo simulation 

(MSC). Four numerical examples are adopted such that the effectiveness and efficiency 

of the proposed X-SVR method is evidently demonstrated. 

 The rest of the chapter is organized as following. In Section 6.1, the background 

and available methods for dynamic reliability analysis is briefly introduced. The Section 

6.2 will give a brief review on the theoretical background of structural dynamic reliability 

analysis using the first-passage probability. Then in Section 6.3, the detailed formulation 

of the proposed extended support vector machine and the generalized Gegenbauer kernel 

(GGK) function is demonstrated. The procedures for applying the proposed X-SVR on 

structural dynamic reliability analysis are illustrated in Section 6.4. The capability of X-
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SVR with GGK is tested by applying it to two benchmark problems and two reliability 

analysis problems in Section 6.5. Then, some concluding remarks are summarized in 

Section 6.6. 

 The work presented in Chapter 6 has produced one journal paper which has been 

submitted to Mechanical Systems and Signal Processing. The detail of the publication is: 

Feng, J., Liu, L., Wu D., Li, G., Gao, W., & Beer M. (2019). Dynamic reliability analysis 

using the extended support vector regression (X-SVR). Mechanical Systems and Signal 

Processing, 126, 368-391. https://doi.org/10.1016/j.ymssp.2019.02.027 

6.1 Introduction 

The dynamic reliability of engineering systems is essential and important to be 

investigated so that the effects of the uncertain variables can be thoroughly evaluated in 

the analyses and designs [151, 154, 195, 196]. As a matter of fact, the corresponding 

stochastic response in dynamics is time-dependent and should therefore be represented 

by a stochastic process, which increases the computational cost in comparison with the 

static reliability analysis. 

 In the past decades, there are numerous methods that have been developed for 

estimating the dynamic reliability of engineering systems, which focus on estimating the 

first-passage probability by evaluating the mean out-crossing rate [197]. The integration 

of the out-crossing rate is usually based on considering the out-crossing events either 

individually (Poisson model) or in a group (Markov model) [198]. In addition to the 

stochastic approaches, a non-probabilistic alternative convex process model is introduced 

in [118] to solve the first-passage reliability analysis. The most efficient stochastic 

approaches in this regard are based on approximately determining the probability density 

function (PDF) of the extreme system performance, which allows for a direct evaluation 

https://doi.org/10.1016/j.ymssp.2019.02.027
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and estimation of the failure probability. The extreme system performance is quantified 

with an extreme value distribution (EVD) for the first-passage reliability computation 

[198, 199]. In the EVD approach, the time-dependent reliability analysis is beneficially 

converted into the time-independent reliability evaluation. For the problems with small 

variations of coefficients, an envelope function method was introduced with the first-

order approximation of the motion error function [200]. Concepts of stochastic 

averaging/linearization [201], of dimension reduction [202], and of numerical path 

integral solutions [203] provide currently the most efficient pathways to solve the first 

passage problem. Nevertheless, the derivation of a closed-form equation for the extreme 

values is technically difficult for generalized dynamic responses [204]. Despite of the 

comprehensively established theory, the first-passage probability of failure can be 

analytically obtained only in limited cases and is mostly restricted to single degree of 

freedom (SDOF) problems [205]. The consideration of nonlinearities and the expansion 

to several degrees of freedom are topics of current research [206]. 

 As an alternative pathway, the probability distribution of extreme system 

performance can be obtained via sampling-based approaches. Within the framework of 

EVD, the probability density evolution method [207] and the equivalent extreme value 

approach [208] are developed for estimating the probability density function of the 

extreme values in the responses of the dynamic systems numerically. However, the 

numerical integration for evaluation of the PDF using these approaches still requires a 

large number of deterministic dynamic analyses with respect to selected representative 

points of input random variables. To increase the computational efficiency, the numerical 

integration can be replaced by using the first-order reliability method (FORM) in 

association with some specific adjustments such as PHI2 method [209] or discretized 
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stochastic processes [198]. Although useful for small practical cases, FORM is associated 

with its known limitations (only weak nonlinearities, small dimensionality etc.). Also, the 

advanced sampling schemes have been proven powerful in enhancing the efficiency of 

the generally applicable Monte Carlo simulation techniques [210].  

 In this chapter, a novel surrogate model, namely the extended support vector 

regression (X-SVR) is proposed for the dynamic reliability analysis. The underpinned 

analysis framework is based on the first-passage failure theorem. Comparing with the 

classical SVM approach, the satisfaction of the Mercer’s condition is not prerequisite for 

the kernel functions employed in the nonlinear X-SVR. To further enhance the capability 

of the kernelized X-SVR in approximating complex functions, a new orthogonal 

polynomial kernel function, namely the generalized Gegenbauer kernel (GGK), is 

proposed. The introduced GGK is an admissible Mercer kernel, and it can be applied to 

other kernel learning methods which strictly require the satisfaction of the Mercer’s 

condition. As a mixed kernel function, the proposed GGK consists of both orthogonal 

polynomial and Gaussian kernel function. Therefore, the advantages of both global and 

local kernels are included. Instead of using the conventional grid search technique, the 

hyperparameters of the X-SVR model are efficiently selected by the Bayesian 

optimization algorithm. After the establishment of the X-SVR surrogate model with GGK, 

the limit state function based on the first-passage principle can be explicitly approximated 

from the obtained X-SVR regression function. Subsequently, the probability of failure 

can be evaluated by Monte-Carlo Simulation (MCS) method with the constructed 

metamodel instead of using the actual computationally expensive numerical models (e.g., 

finite element analysis) with high-fidelity. This leads to a tremendous reduction of the 

computational cost. 
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6.2 A brief review of dynamic reliability analysis of structures 

6.2.1 Stochastic dynamics of structure 

The global equations of motion for a linear engineering structure with multi-degrees of 

freedom (MDOF) can be expressed as: 

  (6.1) 

where ,  and  are the mass, damping and stiffness matrices of the structure, 

respectively;  denotes the external excitation vector which is time-dependent; , 

 and  are the time dependent acceleration, velocity and displacement vectors, 

respectively. Due to the existence of uncertain parameters, the mass, damping, stiffness 

matrices and the external excitation are non-deterministic [19, 211, 212]. In this study, 

the uncertainties are considered as independent random variables and ,  and  

can be expressed as functions of the random parameters. Without loss of generality, the 

random vector  is adopted as the collection of uncertainties included in both 

parameters in the dynamic system and the external excitation. Thus, the non-deterministic 

dynamic responses can be calculated by the following global equation: 

  (6.2) 

Given a time interval , the initial condition is considered as deterministic as Eq. 

(6.3): 

 ,  (6.3) 

 The stochastic dynamic response for a non-defect system is a stochastic process 

which is dependent on the random vector . Thus, the solution of Eq. (6.2) can be 

conveniently expressed as: 
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  (6.4) 

where  denotes a deterministic operator. Despite of the existence of Eq. (6.4), the 

explicit formulation of  is usually available for some special cases rather than 

practical engineering problems with MDOF [197, 207]. Subsequently, the determination 

of an explicit tractable expression for the joint probability density function (PDF) of  

becomes computationally infeasible. Among the numerical approaches developed for 

approximately evaluating the statistical characteristics of stochastic dynamic response of 

structures, the Monte Carlo method is considered as the versatile strategy and widely 

adopted due to the straightforward implementation process [133, 180]. 

6.2.2 The first-passage failure theorem 

The reliability of a system is typically evaluated by calculating the probability of failure 

which is commonly measured by the responses, such as the stresses, strains or 

displacements of the specified critical element or control point in structural dynamics. 

The systems are considered as unsafe if the concerned responses exceed the safety 

threshold for the first time. Mathematically, the computation of the probability of failure 

( ) is expressed as: 

  (6.5) 

where  denotes the probability;  is the input random vector;  is the 

indicator function which equals to 1 if  is “true” and 0 when  is false”;  

denotes the joint PDF for  and  represents the limit state function, which defines 

a structural failure when . Within the context of structural dynamic reliability, 

the structural outputs including displacement and stress become time-variant 
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uncertainties. Thus, the limit state function can be explicitly expressed as a function of 

random variable  and time . For a given time interval , the probability of failure 

can be described as: 

  (6.6) 

Thus, an efficient and accurate evaluation of  is the key task in the structural dynamic 

reliability analysis. 

 Conventionally, for structural dynamic reliability, the probability of failure is 

widely computed by adopting the first-passage theory which is developed based on 

stochastic process [213]. In general, the security margin for the first passage theory can 

be categorized into single-sided barrier, two-sided barrier and enveloping barrier [214, 

215]. Among them, the single-sided barrier can be regarded as a special case of the two-

sided barrier problems. In this work, the two-sided barrier circumstance is studied for 

demonstrating the capability of the proposed X-SVR meta-model. The safe domain for 

two-sided barrier problem in a given time interval , as shown in Figure 6.1, is 

defined as  which is equivalent to , where  is the 

stochastic structural dynamic response;  and  are the upper and lower threshold, 

respectively. 
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Figure 6.1 The first-passage failure model for dynamic response of structure 

 For a structural system with input uncertain variable , the probability of failure 

based on the first-passage theory is obtained by evaluating the probability of the first 

occurrence of an excursion of the performance function (stress or displacement) exceeds 

the safe domain. In this context, probability of failure in time interval  can be 

expressed as: 

  (6.7) 

For the two-sided barrier where  within the time interval , the limit 

state function can be defined with the extreme of the dynamic response as 

. Thus, the  expressed in Eq. (6.7) can be simplified as Eq. 

(6.8): 

  (6.8) 

By implementing the out-crossing rate-based approach, the first-passage failure 

probability is approximated according to the out-crossing rate  which is defined in 

Eq. (6.9): 
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  (6.9) 

Among the existing hypothetical models for computing the cumulative probability of 

failure based on the out-crossing rate, the Poisson and Markov models are the two widely 

adopted [198]. The Poisson model assumes that the out-crossing events are mutually 

independent and the occurrence follows Poisson distribution. The Markov approach 

adopts an alternative path by assuming that the out-crossing events tend to occur in 

independent groups. Accordingly, the probability of failure in a given time interval  

evaluated by the Poisson and Markov models can be expressed in Eqs. (6.10) and (6.11), 

respectively: 

  (6.10) 

  (6.11) 

where  denotes the instantaneous probability of failure at time 

. It can be observed from Eqs. (6.10) and (6.11) that both approaches require the 

integration of the out-crossing rate which is difficult to be obtained for the general 

stochastic process [205]. Thus, the closed-form solutions for Eqs. (6.6) - (6.8) are usually 

available for rather simple and special problems.  

 In this context, the Monte Carlo simulation (MCS) is commonly employed for 

computing the estimated probability of failure  by generating a large number of 

samples [118, 180]. Given  samples  ( ) for input variables, the 

probability of failure can be approximated by Eq. (6.12): 
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  (6.12) 

where  is the number of samples that result in the failure of the structure. In Eq. (6.8), 

the limit state function can represent either internal force or structural deformation, which 

leads the first-passage failure mode to either the strength failure or deformation failure 

criterion [118]. Despite the fact that the first-passage theorem is conceptually simple 

through the MCS approach, the determination of the first-passage probability requires the 

computation of the whole dynamic response in the given time interval  recursively. 

Thus, the majority of the computational cost is spent on repeatedly evaluating the limit 

state functions not to mention that the finite element analysis for complex structures in 

each simulative cycle can be computationally intensive [133, 216]. Alternatively, the 

meta-modelling techniques are introduced to approximate the relationship between inputs 

and outputs by an explicit function (i.e. polynomial). The meta-models are generally 

much less complicated than the original structural models, and it is expected that the 

computing effort will be reduced by approximating the limit state function by using 

surrogate models. 

6.3 The extended support vector regression (X-SVR) with generalized 

Gegenbauer kernel (GGK) 

In this section, a new surrogate model, namely the extended support vector regression 

(X-SVR), is proposed for reducing the computational cost of the conventional MCS 

approach. Furthermore, a new orthogonal polynomial kernel based on the Gegenbauer 

polynomial is introduced and adopted in the kernelized X-SVR. Firstly, the theory of the 

classic support vector regression will be reviewed in Section 6.3.1. As a statistical 

learning method, the X-SVR model is developed as an extension of the doubly regularized 
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support vector machine (DrSVM) which will be briefly described in Section 6.3.2. Then, 

the detailed formulation of the X-SVR and proposed orthogonal polynomial kernel will 

be presented in the remaining sections. 

6.3.1 Classic support vector regression 

The Support Vector Machines is a supervised learning algorithm introduced by Vapnik 

[217] for binary classification problem and later on extended to regression analysis [218] 

and multiclass classification problems [219]. The aim of the SVM is to find a hyperplane 

which has the maximum distance to the closest data points located on each side. Given 

the training dataset with input  ( ) 

and output , the hyperplane that separating the two classes is then given as Eq. 

(6.13),  

  (6.13) 

where  is the number of training samples;  denotes the number of input variables; 

 denotes the normal to the hyperplane and  denotes the bias. In the case of 

applying the Support Vector theory to regression estimation, namely Support Vector 

Regression (SVR), Eq. (6.13) is the regression function to be obtained and  is 

the output of the true function . Instead of using the empirical risk minimization 

(ERM) principle, the Support Vector method utilizes the structural risk minimization 

(SRM) principle which minimizes the upper bound on the structural risk . For the 

support vector machine, the structural risk aims at ensuring the training data is well 

classified while maximising the margin. In general, the relationship between the empirical 

risk  and the structural risk  [217] can be expressed as Eq. (6.14): 
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  (6.14) 

where  denotes the loss function measuring the empirical risk of the 

training samples;  is Vapnik Chervonenkis (VC) dimension and  is the confidence 

interval named as “VC confidence”. The commonly employed loss function for SVR is 

the ε-insensitive loss function  [220], which is defined in Eq. (6.15), is 

incorporated into the developed regression model as the tolerance of the deviation 

between the true output  and the model prediction  for the training dataset.  

  (6.15) 

where ε denotes the tolerable deviation between  and . Such error tolerance 

can be demonstrated in Figure 6.2 by using a one-dimensional linear SVR model. In 

Figure 6.2, the slack variables  and  are introduced for respectively allowing some 

excess positive and negative deviations for the prediction function .  
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Figure 6.2 The ε-insensitive band for a one-dimension linear SVR 

 Thus, by including the ε-insensitive loss function, the regression function for 

linear SVR can be obtained by solving the optimization problem illustrated in Eq. (6.16). 

Due to the employment of the ε-insensitive loss function, the regression method expressed 

by Eq. (6.16) is commonly referred as ε-SVR. 

  (6.16a) 

  (6.16b) 

where  is the penalty constant which is defined for maintaining a proper balance 

between the flatness of  and the empirical error;  represents the  norm. It can 

be verified that Eq. (6.16) is a convex problem. By using the Lagrange multiplier method 

with Karush-Kuhn-Tucker (KKT) conditions for convex problem, the minimization 

problem defined by Eq. (6.16) can be equivalently solved by the following dual problem 

expressed in Eq. (6.17): 

  (6.17a) 

  (6.17b) 

where  and  are the Lagrange multipliers. Then, by solving the dual optimization 

problem,  and  can be obtained as Eqs. (6.18) - (6.20): 
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  (6.18) 

  (6.19) 

or 

  (6.20) 

Subsequently, the regression function  obtained by the linear ε-SVR is expressed as 

Eq. (6.21): 

  (6.21) 

 The above mentioned linear ε-SVR can be extended to nonlinear regression 

analysis by implicitly mapping the input data  from the low-dimension origin space 

 into a higher-dimensional Euclidian space or even infinite dimensional Hilbert 

feature space  by using an appropriate mapping function . Then, the linear 

support vector regression model can be constructed in the feature space. Subsequently, 

the nonlinear ε-SVR can be written by replacing the product  in Eq. (6.17a) with 

. Due to the existence of inner product of the mapping functions, the kernel 

method [221] is adopted in the support vector machine theory such that  

can be directly calculated as a function of the original input data. The kernel function 

 is defined as Eq. (6.22). 
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The introduction of the kernel function leads to that an explicit definition or formulation 

of  is not necessary, which avoid dealing directly with the high-dimensional feature 

space. Additionally, the employment of kernel function defined in Eq. (6.22) results in 

that  is only determined by the kernel function and independent to the training 

samples. Thus, the feature space is also named as intrinsic vector space [221] and the 

mapping can be illustrated as: 

  (6.23) 

where the dimension  is referred as the intrinsic degree, which can be either finite or 

infinite. Subsequently, the nonlinear ε-SVR can be obtained by solving the optimization 

problem expressed in Eq. (6.24). 

  (6.24a) 

  (6.24b) 

Then, the regression function in Eq. (6.21) is now expressed as Eq. (6.25): 

  (6.25) 

The kernel functions used for support vector machine/ regression should satisfy the 

Mercer’s theorem which requires  to be positive semi-definite [222]. This 

property is also a guarantee that the optimization problem expressed by Eq. (6.24) is a 

convex quadratic programming problem. The commonly used kernel functions are 
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Gaussian and polynomial kernel functions which are formulated as Eqs (6.26) and (6.27), 

respectively. 

  (6.26) 

  (6.27) 

where  is the kernel scale and  denotes the order of the polynomial. The 

kernel parameters, together with the penalty parameter  and insensitive tube ε, are 

referred as the hyper-parameters which strongly affect the prediction performance of the 

ε-SVR. 

6.3.2 The doubly regularized support vector machine (DrSVM) 

As an extension of the theory of support vector machine (SVM), the doubly regularised 

support vector machine (DrSVM) was proposed by [223] such that the classification and 

feature selection can be conducted simultaneously. Theoretically, the DrSVM is a 

combination of elastic net penalty which contains both  norm and  norm penalty [224] 

with the hinge loss function for reducing the effect of noise and outliers in the training 

dataset [225]. Accordingly, the DrSVM can be expressed as follows: 

  (6.28) 

where the tunning parameters  control the balance between the classification 

performance and feature selection;  represents the  norm;  denotes 

the hinge loss function which is defined as Eq. (6.29): 
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Due to the additional capability in feature selection, the DrSVM is attracting increasing 

attention since its introduction. It has been pointed out by [224] that the hinge loss 

function is not differentiable everywhere. To address such deficiency, a Hybrid Huberised 

SVM is proposed by [226] who replace the hinge loss function by the huberised loss 

function.  

 Recently, a new doubly regularised SVM, namely the pq-SVM was proposed by 

[227] as an alternative approach for solving the optimization problem defined in Eq. 

(6.28). In the pq-SVM model, two non-negative variables  are introduced such 

that . The variables  and  are defined as in Eq. (6.30): 

  and  (6.30) 

It is indicated by the definition in Eq. (6.30) that  is promised . Thus, the  

and  can be alternatively expressed as Eqs (6.31) and (6.32): 

  (6.31) 

  (6.32) 

where . Such decomposition is proved as an effective approach by the 

implementation in nonlinear optimization [228] and  norm support vector regression 

[220]. In this context, the decision function (Eq. (6.13)) can be reformulated as: 

, np q

= −w p q p q

0,   0
:

, 0

j

j

j j

w
p

w w


= 



, 0
:

0,     0

j j

j

j

w w
q

w

− 
= 



0j jp q = j
1

w

2

2
w

1 21

1 1 2 2

...

...

( )

n

n n

T

n

w w w

p q p q p q

= + + +

= + + + + + +

= +

w

e p q

2 2

2 2

2 2

2 2

2 2

2 2

2 T

= −

= + −

= +

w p q

p q p q

p q

[1,1,...,1]T n

n = e

1l



172 

 

  (6.33) 

Moreover, the non-smooth huberised loss function is replaced by a linear constraint to 

consider the noise and outliers in the training dataset. Similar as the soft margin SVM, a 

non-negative slack variable  is introduced into the optimization to control the 

marginal error. Therefore, the pq-SVM can be expressed as: 

  (6.34a) 

  (6.34b) 

where  and , as expressed in Eq. (6.35), is a diagonal 

matrix which contains all labels associated with training dataset 

  (6.35) 

By using the Lagrange method, the pq-SVM can be reformulated into a quadratic 

programming problem, which indicates the advantage of the introduction of variables  

and  for decomposing . In addition to the conventional classification problem, the 

pq-SVM is modified as knowledge-based SVM by incorporating the prior knowledge in 

the form of uncertain linear constraints [229]. Despite of the successful implementation 

of DrSVM and pq-SVM in classification problem, according to the authors’ best 

knowledge, a doubly regularised support vector regression model has not yet been 

developed. 
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6.3.3 The proposed extended support vector regression (X-SVR) 

Inspired by the success of pq-SVM in classification, a new support vector regression 

(SVR) model, namely the extended support vector regression (X-SVR) is developed by 

adopting the concept of DrSVM and extended from binary classification to the regression 

estimation. In the proposed regression model, the decomposition method applied in the 

pq-SVM is adopted such that the  norm computation  is eliminated. Additionally, 

instead of using the widely adopted linear ε-insensitive loss function expressed in Eq. 

(6.16), the proposed X-SVR incorporated the quadratic ε-insensitive loss function which 

is defined in Eq. (6.36). 

  (6.36) 

By using the non-negative slack variables , the X-SVR can be derived by 

solving the constrained optimization problem formulated as Eq. (6.37): 

  (6.37a) 

  (6.37b) 

where  is the penalty constant which controls the emphasis on the error 

minimization. As pointed out in [222, 230], the introduction of quadratic ε-insensitive 

loss function leads to the redundancy of the non-negative constraint for the slack variables 

 and . Furthermore,  (the square of bias parameter) is added to the objective 

function, which enables the simultaneous optimizing the orientation and location of the 
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regression model [227, 231]. For the sake of simplicity, Eq. (6.37) can be further modified 

as the following optimization problem: 

  (6.38a) 

  (6.38b) 

where  denotes the identity matrix and  

denotes the zero vector. The matrices ,  and  are defined as: 

  (6.39a) 

  (6.39b) 

  (6.38c) 

and the vectors , ,  and  are defined as: 

 , , ,  (6.40) 

The non-negative constraint on the variables  and  has been included in Eq. (6.38b). 
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if the linear ε-insensitive loss function is utilised. Thus, the adoption of quadratic ε-

insensitive loss function can enhance the numerical stability in solving optimization 

problem. 

 The optimization problem expressed in Eq. (6.38) can be equivalently solved in 

the dual formulation. Thus, the Lagrange function  is shown as Eq. (6.41): 

   (6.41) 

where  denotes the vector contains all Lagrange multipliers. Then, the Karush-

Kuhn-Tucker (KKT) conditions for the dual problem are: 
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By substituting the Eqs. (6.42a) and (6.42b) into Eq. (6.41), the Lagrange function can be 

then written as: 

  (6.43) 
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  (6.44a) 

  (6.44b) 

where  and  are defined by:  

  (6.44a) 

  (6.44b) 

 By using the dual formulation, the number of variables in the optimization 

problem is reduced from  in Eq. (6.38) to   in Eq (6.44). Moreover, 

the constraint in the dual problem is much less complex than that in the primary problem. 

In order to demonstrate that proposed X-SVR has the global minimum solution, we can 

equivalently prove that the dual problem is a convex optimization problem as the 

following Proposition 1.  

Proposition 1: 

 Given the training dataset with input  and output , with 

pre-defining the positive tunning parameters for X-SVR as , the 

optimization problem defined in Eq. (6.44) is a convex quadratic programming problem. 

Proof: 

 For quadratic programming expressed in Eq. (6.44), the proof of convexity is 

equivalent to proving that . Moreover, considering that  is a positive and 

diagonal matrix by definition, then  and also . Let  be a non-

zero column vector, then: 
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ˆ 0C
1ˆ 0−

C
2 2m n+v



177 

 

  (6.45) 

Therefore, the dual problem defined in Eq. (6.44) is a convex quadratic programming 

problem. 

This concludes the proof.                                                                                                  □ 

 Subsequently, the global optimum solution for the proposed X-SVR can be 

obtained by solving the associated dual problem by either gradient based method or 

available quadratic programming solvers. Let  be the obtained solution for 

the X-SVR, then the variables  and  can be respectively computed as: 

  (6.46) 

  (6.47) 

Then, the coefficient  can be obtained as: 

  (6.48) 

Thus, the regression function obtained by the proposed by the proposed X-SVR is 

expressed as: 

  (6.49) 

 Similar as the classic support vector regression, the proposed X-SVR can be 

further modified into a nonlinear regression method such that the introduced approach 

can be applied on the more complex problems. Despite of the convenience of the kernel 

method used in the ε-SVR, mapping to the intrinsic vector space can only applied as a 
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replacement of  for avoiding the explicit calculation of  and . In the 

proposed X-SVR, such implicit kernel map approach is not applicable since that the linear 

combinations of  ( ), in addition to the inner product  are included in 

the dual formulation expressed as Eq. (6.44). To extend the linear X-SVR to a kernelized 

learning method, an alternative approach, namely the empirical kernel map [221, 232], is 

utilized in the proposed surrogate model. The adopted empirical kernelization can be 

expressed in Eq. (6.50): 

  (6.50) 

where the kernel-induced vector is known as the empirical feature vector with the 

empirical degree  defined as the number of training samples [221]. Such -

dimensional vector space is named as the empirical feature space [233]. Then, the 

empirical feature vector  is regarded as the training sample for constructing the 

learning model. Comparing with the implicit kernel map approach used in ε-SVR, the 

empirical feature space is finite-dimensional and jointly defined by the employed kernel 

function and training samples. Such kernel map approach has also been effectively 

applied on the other kernelized learning method, including kernelized LASSO (Least 

Absolute Selection and Shrinkage Operator) [234], kernelized elastic net [235], linear 

programming SVR [80] and multiple empirical kernel learning machine [236]. The 

architecture of the nonlinear X-SVR is shown in Figure 6.3. 
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Figure 6.3 The architecture of the X-SVR 

 Thus, given the training dataset and a specific kernel function , the 

original training samples are transferred into the kernel matrix  which is 

expressed as Eq. (6.51): 

  (6.51) 

Then, the kernel matrix  is used as the training dataset and the nonlinear X-SVR 

problem is now formulated as Eq. (6.52): 

  (6.52a) 

  (6.52b) 

where  and have the same function as  and  for linear X-SVR; the 

subscript  is for indicating that this is a kernelized learning model. Then, by adopting 

 

 

 

 

 

 

 

 

 

 

 

 

Bias:  

  

trainx ( , )i j x x

m m

train

K

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

m

m

train

m m m m

   
 
  
 =
 
 
   

x x x x x x

x x x x x x
K

x x x x x x

trainK

2 2

2 2ˆ, , , ,

ˆ ˆmin : ( ) ( ) ( )
2 2k k

T T Ta
k k b m k k

c




+ + + + +

p q ξ ξ
p q e p q ξ ξ ξ ξ

( )

ˆ. .    ( ( ) )

ˆ, , ,

train k k m train m

train train k k m m

k k m

s t

 

 

 − − −  +


− − −  +




K p q e y e ξ

y K p q e e ξ

p q ξ ξ 0

, m

k k p q p q

k



180 

 

the same concept as expressed in Eq. (6.38) for the proposed linear X-SVR, the kernelized 

X-SVR shown in Eq. (6.52) can be further modified into: 

  (6.53a) 

  (6.53b) 

where  denotes the identity matrix and  denotes the zero matrix. 

The matrices ,  and  are defined as: 

  (6.54a) 

  (6.54b) 

  (6.54c) 

and the vectors , ,  and  are defined as: 

 , , ,  (6.55) 

Similar as the linear X-SVR, the optimization problem demonstrated in Eq. (6.53) can be 

equivalently solved in its dual formulation by using Lagrange method with KKT 
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conditions. Thus, by introducing the non-negative Lagrange multiplier , the 

proposed kernelized X-SVR can be solved as the quadratic programming problem shown 

in Eq. (6.56): 

  (6.56a) 

  (6.56b) 

where  and  are defined by: 

  (6.56c) 

  (6.56d) 

Let  be the obtained solution for the optimization problem illustrated in Eq. 

(6.56), then the variables  and  can be respectively computed as: 

  (6.57) 

  (6.58) 

Then, the coefficient  can be obtained as: 

  (6.59) 

Thus, the nonlinear regression function obtained by the proposed kernelized X-SVR is 

expressed as: 

  (6.60) 

 It can be easily observed that the only difference between the linear and nonlinear 

X-SVR is that the input dataset is mapped into the empirical space by using specified 
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kernel function. Thus, the kernelized X-SVR can be regarded as a linear X-SVR with a 

manipulated input samples and therefore the convex property is still maintained 

regardless of the type of kernel function. In this context, the selected kernel function is 

not restricted to the category satisfying the Mercer’s theorem [232]. 

6.3.4 Generalized Gegenbauer kernel - a new orthogonal polynomial kernel function 

For both nonlinear classification and regression applications, the performance of support 

vector machine is significantly affected by the employed kernel functions [237]. Despite 

that Gaussian and polynomial kernels are commonly adopted, it is pointed out that these 

kernels can lead to unsatisfied results in approximating some complex function [237, 238]. 

Specifically, Gaussian and polynomial kernels are not complete orthonormal base, which 

result in that they cannot approach to the curves in quadratic continuous integral space 

[239]. To overcome such drawback, the wavelet kernel function is proposed and receives 

favourable results for both classification and regression [237, 239]. Motivated by the 

properties of orthogonal polynomials which have been effectively and efficiently used for 

functions approximation, the development of orthogonal polynomial kernels for SVM/ 

SVR models receives increasingly attention from researchers. An orthogonal Chebyshev 

polynomial kernel is introduced by [240] for single variable input then extended to vector 

input by various approaches including unified Chebyshev kernels [241], generalized and 

modified Chebyshev kernels [242]. A modified Hermite polynomial kernel is constructed 

by [243] as an extension to the Hermite polynomial kernel originally introduced by 

Vapnik [244]. By adopting the similar kernel construction approach, a Legendre 

polynomial kernel is proposed by [245]. A comprehensive experiment on the orthogonal 

polynomial kernels including the has been conducted by [246], which offers a valuable 

reference for researchers for kernel function selection. 
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 Among the family of orthogonal polynomials, the Gegenbauer polynomial is also 

widely adopted for uncertainty quantification and function approximation by using the 

Gegenbauer series expansion [141, 247]. The univariate Gegenbauer polynomials, 

denoted by , with degree  and polynomial parameter  can be defined 

by the recurrence relations as Eq. (6.61): 

  (6.61) 

For a given , the Gegenbauer polynomials are orthogonal on  with respect to 

the weight function , which can be expressed as: 

  (6.62) 

where  and  and  can be formulated as: 

  (6.63a) 

  (6.63b) 

In Eq. (6.63b),  denotes the Gamma function. As the particular solutions of the 

Gegenbauer differential equation, such polynomial is the generalization of Chebyshev 

and Legendre polynomials by substituting various value for  [248].  

 Considering generalization ability of Gegenbauer polynomial, Padierna et al. [249] 

proposed a new orthogonal polynomial kernel based on the Gegenbauer polynomial and 
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implemented on binary classification problems. Similar as the Legendre and Hermite 

polynomial kernels, the Gegenbauer polynomial kernel is constructed as the tensor 

product of the inner product of univariate polynomials, which is conceptually identical 

with the method for extending one-dimensional polynomials to multi-dimensional. As 

pointed out by [241–243, 245], the kernel constructed by the tensor product approach 

may yield either an extremely small and larger value which will significantly impact the 

performance the corresponding kernelized learning models. Such phenomenon is avoided 

in the Gegenbauer polynomial kernel by multiplying weight and scaling functions to the 

product univariate polynomials and limiting the variation range of the polynomial 

parameter. However, it is point out by Ozer et al. [242] that such type of kernel 

construction approach may force the learning along each input variable rather than the 

input vectors. Thus, it is suggested that the orthogonal polynomial kernel functions should 

be applied directly onto the input vectors rather than each pair of input elements. 

 Inspired by the pioneering work by Ozer et al. [242] and Padierna et al. [249], we 

developed a new orthogonal polynomial kernel function for the proposed kernelized X-

SVR. Deferring from the kernel function introduced by Padierna et al. [249], the proposed 

orthogonal polynomial kernel is constructed by using the partial sum of the inner product 

of generalized Gegenbauer polynomials, namely the generalized Gegenbauer kernel 

(GGK). By adopting the strategy utilized for defining the generalized Chebyshev 

polynomial for vector inputs [242], the generalized Gegenbauer polynomials are defined 

recursively as following: 

  (6.64) 
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where  denotes the column vector of input variables. It can be revealed from Eq. 

(6.64) that the generalized Gegenbauer polynomial  yields a scalar value when the 

polynomial order  is an even number, otherwise it will yield a column vector. 

Considering that an exponential function, such as Gaussian kernel function, has better 

capability in capturing local information than the originally employed square root 

function [242, 250], the Gaussian kernel function is adopted here as the weighting 

function for the proposed GGK. Thus, the proposed dth order generalized Gegenbauer 

kernel function  of two arbitrary input vectors  and  is defined as Eq. 

(6.65): 

  (6.65) 

where each element of  and  is defined in . In this context, both  and  

are here considered as the kernel scales or the so-called decaying parameters of the 

proposed kernel function. 

 It is worthy to addressing that the proposed GGK satisfies the Mercer Theorem 

[217, 225] which is a prerequisite for implementing the kernel function in SVM/SVR. 

Thus, not just in the proposed X-SVR model, the generalized Gegenbauer Kernel 

introduced in this study can be also employed in the other kernelized learning models 

which require the Mercer condition to be satisfied. The property that the proposed GGK 

is a valid Mercer kernel can be systematically demonstrated by the Proposition 2. It can 

be observed from Eq. (6.65), the novel GGK possesses three kernel parameters: the 

polynomial order  and two positive kernel scale parameters  and . 
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Proposition 2: 

 The proposed generalized Gegenbauer kernel (GGK) expressed in Eq. (6.65) is a 

valid Mercer kernel. 

Proof: 

 Firstly, the proposed GGK can be alternatively expressed as the product of two 

kernel functions  and  

such that: 

  (6.66) 

According to [217, 244], the multiplication of two valid Mercer kernels is also a valid 

kernel function. Since that  is the Gaussian kernel ( ) which satisfied 

the Mercer Theorem,  can be proved as a valid kernel by verifying that 

 satisfies the Mercer Theorem.  

 Given an arbitrary squared integrable function  defined as  and 

assuming each element in  and  is independent with each other, then 
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Thus,  is a valid Mercer kernel. Therefore, the proposed GGK  

is an admissible Mercer kernel function. 

This concludes the proof.                                                                                                  □ 

 It can be observed from the proof of Proposition 2 that the proposed GGK is a 

mixed kernel function which combines one local kernel  (Gaussian kernel) 

and one global kernel  (a generalized polynomial kernel) [251]. Subsequently, 

by integrating the proposed generalized Gegenbauer kernel, the nonlinear X-SVR can be 

also regarded as a multiple kernel learning algorithm using fixed rules approach [252]. 

6.3.5 Hyperparameter optimization for X-SVR with generalized Gegenbauer kernel 

In the proposed X-SVR with the generalized Gegenbauer kernel (GGK), there are seven 

hyperparameters including the two regularization parameters  and , the penalty 

parameter , the insensitive tube width , the polynomial order  and two positive 

kernel scale parameters  and . Similar as the conventional SVR model, the 

prediction accuracy of the proposed X-SVR with GGK is strongly dependent on the 

selection of these parameters. For machine learning approaches, the -fold cross-

validation (CV) over the training samples is an effective approach to ensure the regression 

model has the generalized ability in accurately predicting the training dataset while 

checking if the selected parameters will result in overfitting [253]. Practically,  is 

commonly set to 5-10 as a trade-off of computational cost and prediction accuracy. In 

present work, the 5-fold CV error which denoted by  is employed as the training 

error measure for X-SVR, which is formulated as following: 
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  (6.68) 

where  is the mean squared error (MSE) between the predicted output  obtained 

by the X-SVR model and the output of the true function  in each fold .  is 

expressed as Eq. (6.69): 

  (6.69) 

where  denotes the number of training samples in the fold ;  denotes the jth 

output in the fold i;  represents the jth inputs sample in the fold i. 

 Since that the selected hyperparameters will lead to the minimization of , 

the hyperparameter tuning can be considered as an optimization problem. For SVM/ SVR 

models, several techniques have been developed for hyperparameter selection such as 

grid search [220], random search [254], genetic algorithm [255], particle swarm 

optimization [239, 250] and other population-based optimization strategies [256]. 

Recently, Bayesian optimization is becoming increasingly popular in tuning learning 

parameters for complex machine learning algorithm such as deep neural network [257]. 

Typically, Bayesian optimization construct a probabilistic approximation of the objective 

function by using Gaussian process and then determines the next estimation point which 

results in the maximum of the acquisition function [258]. Instead of using the local 

gradient or Hessian approximations, Bayesian optimization relies on all the available 

information from previous evaluations of the objective function. Subsequently, the 

minimum of the objective function can be efficiently obtained with relative less iterations 

[258]. Considering that more hyperparameters are included in proposed X-SVR model 
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with Generalized Gegenbauer kernel in comparison with the classic nonlinear ε-SVR, 

Bayesian optimization method is integrated in the proposed meta-model for automatically 

selecting the suitable learning parameters. In the presented work, the Bayesian 

optimization is conducted by using the MATLAB Statistical and Machine Leaning 

toolbox [259]. The searching range for the hyperparameters are summarized in Table 6.1 

as following: 

Table 6.1 Searching range of X-SVR hyperparameters 

Hyperparameter Searching range 

   

  

   

   

   

   

   

 

6.4 Structural dynamic reliability analysis by using X-SVR 

This chapter offers a metamodel-based Monte Carlo Simulation method for structural 

dynamic reliability analysis by adopting the proposed X-SVR with the generalized 

Gegenbauer kernel. In this proposed reliability analysis strategy, the true structural limit 

state function is approximated by using the X-SVR metamodel to replace the precise FEM 

model. Then, the probability of failure is evaluated by conducting the Monte Carlo 

simulation based on the constructed surrogate model. Thus, the performance of the 

proposed method is significantly affected by the quality of the trained X-SVR model. In 

practice, metamodels are trained by limit number of running the original models based 
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on the Design of Experiments (DOEs) and expected to have good predictions over the 

entire domain of input variables, which is commonly achieved by employing uniform 

sampling techniques [260, 261]. In this study, the training samples are generated by quasi-

Monte Carlo sampling method with Sobol’s sequence [262]. Such low-discrepancy 

sampling technique can generate samples evenly distributed over the design space. Then, 

the X-SVR surrogate model will be trained by using the DOE and subsequently used for 

analyzing the probability of failure ( ). 

 In the presented study, the first passage problem with equal barriers ( ) 

is investigated for demonstrating the capability of the proposed metamodel-based 

reliability analysis approach. The procedure for this reliability analysis is summarized as 

follows: 

1. Generate  Monte Carlo samples  for input variables using the 

quasi-MCS scheme. The generated samples will be used as the input samples for 

the trained metamodel for reliability analysis using metamodel.  is expected 

to be large (i.e. ). 

2. Define the DOE with  ( ) training samples  and  

using the quasi-MCS (Sobol’s sequence). Here  for 

, which is obtained by high-fidelity numerical analysis (i.e. FEM) in 

this study. 

3. Train the X-SVR model based on the samples obtained in step 2. The 

limit state function of the investigated structure can be approximately expressed 

as  by employing the trained X-SVR surrogate model.  

fp
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4. Input the MCS samples into the metamodel-based limit state function  to 

analysis the dynamic response. Compute the number of failure samples  which 

are indicated by . 

5. The probability of failure for the investigated structure is approximated calculated 

as . 

The flowchart of the computational procedures is shown in Figure 6.4.  

 

Figure 6.4 Flowchart for the X-SVR based structural dynamic reliability analysis 

6.5 Numerical examples 

To demonstrate the capability and accuracy of the proposed approach, four numerical 

examples are presented in this study. The first two analytical examples are benchmark 

functions which are adopted here for illustrating the performance of the proposed 

approach. Then, the proposed approach is further tested by one structural dynamic 

problem and one acoustic problem for demonstrating its reliability and versatility. The 
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results are compared with the classical ε - support vector regression (ε-SVR) model with 

widely used Gaussian kernel. Moreover, the direct Monte-Carlo simulation (MCS) is 

conducted for each example as a reference for comparing the accuracy of the two methods. 

In all the considered examples, both the proposed method and ε-SVR model are trained 

by samples generated by Quasi MCS with Sobol sequence [262]. In this work, the ε-SVR 

integrated in the MATLAB Statistical and Machine Leaning toolbox [259] is adopted. 

The presented numerical results are obtained by using a workstation with CPU of Intel 

Core i7-4770, 32 GB of memory, and 1 TB of hard drive. 

6.5.1 Borehole function 

The first example employed for demonstrating the performance of the proposed method 

is called the Borehole function which is commonly used as a benchmark example for 

emulation and prediction tests [263]. This function, as expressed in Eq. (6.70), was 

originally derived for modelling the water flow through a borehole. There are totally 8 

input parameters which are all modeled as independent and uniformly distributed 

variables. The details of the variation range are presented in Table 6.2.  

  (6.70) 

Table 6.2 Details of the input parameters for the Borehole function 
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 The performance of the proposed model is tested with a variety number of training 

samples ( ). In this example, the initial design of experiment (DOE) consists 25 

sampling points and then augmented to 50, 100 until 200 samples. Moreover, the classical 

ε-SVR model with Gaussian kernel is applied with the same DOEs for comparison 

purpose. The accuracy of the metamodels is assessed by evaluating two types of relative 

error: the root mean squared error (RMSE) and the coefficient of determination ( ) 

which are described as in Table 6.3, where  denotes the output of the actual model 

at the sampling point ;  denotes the output of the constructed surrogate model at 

the sampling point ; and  denotes the estimated mean of the outputs of all the  

sampling points for the actual model. The RMSE is scale-dependent to the magnitude of 

data to be predicted and a lower RMSE value indicates a higher accuracy of the surrogate 

model. The  offers a statistical measure of the goodness of regression predictions in 

approximating the real data points. Surrogate models are indicated to have better 

capability in prediction if  is closer to 1. The two validation errors are computed for 

each surrogate model with different numbers of training samples by using the MCS with 

 samples in this example. 

Table 6.3 The expressions of RMSE and  

Error metrics Expression 

6x [700,820]

7x [1120,1680]

8x [9855,12045]
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ix
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Root mean square error 

(RMSE) 
 

Coefficient of determination 

( ) 
 

 

 To statistically assess the predicting performance of the surrogate models, the 

analysis is replicated 50 times at each DOE for both methods and boxplots of the RMSE 

and  of predicted results are shown in Figures 6.5 and 6.6, respectively. In the figures, 

the median error, the quantile error values and the extreme error values of the 50 

independently repeated simulations are demonstrated. As shown in Figure 6.5, the 

proposed X-SVR method has a better predicting performance than the conventional ε-

SVR in terms of median value. It is also noticed from Figure 6.5 that, for , 

more outliers are shown in the boxplot of RMSE of the simulation results obtained by ε-

SVR than the proposed approach. Additionally, both the median value and variation range 

for the RMSE of the X-SVR prediction decrease with the increase of training sample size. 

This phenomenon is not clearly demonstrated from Figure 6.5 for the ε-SVR. Similarly, 

it is shown in Figure 6.6 that the proposed surrogate model has the less scattered  value 

than the conventional SVR method. Thus, it can be concluded that the proposed model 

has a better performance in this example. 
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                                    (a)                                                                   (b) 

Figure 6.5 The boxplots of RMSE for 50 independent simulations of (a) X-SVR and (b) ε-SVR 

trained by different DOEs 

  

                                    (a)                                                                   (b) 

Figure 6.6 The boxplots of  for 50 independent simulations of (a) X-SVR and (b) ε-SVR 

trained by different DOEs 

6.5.2 50-D function 

For testing the capability of the proposed X-SVR method for high-dimensional problems, 

an analytical example with 50 input parameters is utilized. Such 50-D function [264] has 

been widely used in evaluating the performance of optimization algorithm in high 

dimensional space. The considered function is expressed in Eq. (6.71). In this example, 

the input variables are assumed to be independent and uniformly distributed within the 

range . 

2R

[0,1]
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  (6.71) 

 Similar as in the Example 6.5.1, the performance of the proposed X-SVR with 

generalized Gegenbauer kernel is investigated by comparing the ε-SVR with widely used 

Gaussian kernel against various numbers of training samples ( ). Considering of the 

relatively large number of input variables, the initial DOE is selected as 50 and increased 

gradually to 400. The validation errors RMSE and  for both surrogate models trained 

with different  are computed using  MCS samples and are plotted in 

Figure 6.7. It can be observed from simulation results that, the RMSE for X-SVR is less 

than that for ε-SVR while the  for X-SVR is larger than that for ε-SVR with any 

adopted , which indicates that the X-SVR with generalized Gegenbauer kernel 

outperforms the ε-SVR with Gaussian kernel in this example. Despite of that the 

validation errors reduce with the increase of  for both methods, the RMSE and  

for the proposed ε-SVR converge faster than that for the classic ε-SVR. Under the 

circumstance of small number of training samples ( ), it is shown in Figure 

6.7(a) that the X-SVR has much less RMSE than the ε-SVR.  

 

                                      (a)                                                                 (b) 
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Figure 6.7 The (a) RMSE and (b)  of X-SVR and ε-SVR trained with various DOEs 

  

                                      (a)                                                                 (b) 

  

                                      (c)                                                                 (d) 

Figure 6.8 Comparative assessment of by X-SVR and ε-SVR utilizing various numbers of 

training samples: (a) , (b) , (c)  and (d)  

 In order to offer a visible demonstration, the scatter plots of prediction results 

(predicted response in Figure 6.8) obtained by both X-SVR and ε-SVR trained with 

relatively small number of DOEs are shown in Figure 6.8. It can be visualized that, with 

 and , the prediction obtained by X-SVR is less variant from the true value 

(actual response in Figure 6.8) of the 50-D function obtained by direct MCS. In the 

context that  and , the function value predicted by X-SVR is almost 

identical to the MCS results by observation. Thus, the proposed X-SVR with generalized 

2R

50trainm = 75trainm = 100trainm = 150trainm =

50trainm = 75

100trainm = 150
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Gegenbauer kernel has superior capability in approximating the 50-D function than the 

ε-SVR with Gaussian kernel. 

6.5.3 Spring-mass-damper system with three degrees of freedom 

In this example, a spring-mass-damper system with three degrees of freedom (DOFs) 

modified from [265] is used for testing the capability of the proposed X-SVR based 

structural dynamic reliability analysis. The detailed configuration of the adopted vibration 

system is shown in Figure 6.9. The dynamic equations of this spring-mass-damper system 

can be expressed as Eq. (6.72): 

 (6.72) 

where ,  and  denote the masses of the system, respectively; , ,  and  

denote the stiffness of the springs in the system, respectively; , ,  and  denote 

the dampers of the system; ,  and  denote the displacements of the three 

lumped masses in this system. A time-dependent harmonic excitation 

 is applied to the mass . The initial conditions of this system are 

set as . 

 

Figure 6.9 The spring-mass-damper system with three degrees of freedom (DOFs) 

Table 6.4 The statistical information for uncertain parameters of Example 6.5.3 
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Parameter 
 

(N) 

, ,  

(kg) 

, , ,  

(N/(m/s)) 

, , ,  

(N/m) 

Mean ( ) 5 3 0.475 95 

Distribution ( ) Normal Lognormal Lognormal Lognormal 

 Case 1 2.5% 

COV Case 2 5% 

 Case 3 10% 

 

 The amplitude  of the harmonic excitation is considered as a random variable 

with normal distribution while the masses, stiffness and dampers of the system are 

considered as random variables with lognormal distribution. Moreover, three different 

coefficients of variation (COVs) ranging from 2.5% to 10% are studied in this example. 

The details of the statistical information of the considered 12 random variables are listed 

in Table 6.4. For the investigation, the displacement of  is assumed to be critical for 

the safety of the system. According to the first-passage failure theory, the limit state 

function of the spring-mass-damper system is defined by 

  (6.73) 

where  and  denotes the allowable 

displacement at  and is set to be 8.5 cm. The COV is defined as Eq. (6.74): 

  (6.74) 

where  and  denote the mean and standard deviation of the input random 

variable, respectively.  

0F 1m 2m 3m 1c 2c 3c 4c 1k 2k 3k 4k





0F

1m

1 1( ) max( ( ) )
t

g u u t= −x

1 2 3 4 1 2 3 4 1 2 3 0[ , , , , , , , , , , , ]k k k k c c c c m m m F=x
1u

1m

input

input

COV



=

input input



200 

 

 The “exact” probability of failure ( ) for the considered three cases is obtained 

by using direct Monte Carlo simulation with  samplings. For demonstrating 

the capability of the proposed surrogate model, the X-SVR models are respectively 

constructed with various training samples ( ) and the predicted 

probability of failure ( ) is then calculated accordingly. Meanwhile, the conventional 

ε-SVR model with Gaussian kernel is trained and tested with the same datasets. The 

accuracy of the proposed surrogate model is measured by calculating the relative 

difference  between  and  as the Eq. (6.75). 

  (6.75) 

Table 6.5 The probability of failure - Case 1, Example 6.5.3 

Method 

Case 1 

 

( ) 

 

 

( ) 

 

 

( ) 

 

X-SVR 0.1006 12.25% 0.0808 9.86% 0.0861 3.90% 

ε-SVR 0.1224 36.51% 0.0570 36.46% 0.1138 26.97% 

MCS  

 

Table 6.6 The probability of failure - Case 2, Example 6.5.3 

Method 

Case 2 

 

( ) 

 
 

( ) 

 
 

( ) 

 

X-SVR 0.3160 12.39% 0.2924 3.99% 0.2903 3.25% 

ε-SVR  0.2123 24.49% 0.3017 7.29% 0.2961 5.31% 
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MCS  

 

 The simulated probability of failure by using the proposed method and ε-SVR 

model for Cases 1-3 are summarised in Tables 6.5 - 6.7, respectively. By reviewing the 

simulation results, the proposed method surpasses the classical support vector regression 

model by offering less relative difference in predicting the probability of failure of the 

investigated spring-mass-damping system under various uncertainty levels. Additionally, 

it is indicated by the results that the probability of failure estimated by the proposed X-

SVR approaches to  with increasing number of samples for training, while such trend 

is not obvious based on the simulation results obtained from ε-SVR.  

Table 6.7 The probability of failure - Case 3, Example 6.5.3 

Method 

Case 3 

 

( ) 

 
 

( ) 

 
 

( ) 

 

X-SVR 0.3569 7.48% 0.3641 5.58% 0.3978 3.15% 

ε-SVR 0.2458 36.28% 0.2728 29.28% 0.1827 52.62% 

MCS  

 

6.5.4 Acoustic wave radiation from a 3D open structure 

The effectiveness and capability of the proposed X-SVR based reliability analysis 

approach is further applied to acoustic problem in this section. The 3D acoustic analysis 

of an open structure submerged in an infinite acoustic space is investigated. As shown in 

Figure 6.10, the open structure is assumed to be a rigid hollow sphere with one quarter 
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cut-off, where  and  ( )denote the inner and outer radii of the open hollow 

sphere, respectively. The inner surface of the open sphere is uniformly subjected to a 

transient acoustic flux , which is defined in a dimensionless manner in Figure 6.11. 

In Figure 6.11(a), the applied transient flux is normalized by its peak magnitude  and 

plotted against the dimensionless time , where  denotes the nominal value of 

sound speed . The Fourier transform of the flux  is also shown in Figure 6.11(b) 

with the dimensionless amplitude  and the dimensionless frequency 

. The corresponding highest frequency of interest is estimated to be 

. 

 

Figure 6.10 Problem setup of a 3D open-sphere structure submerged in infinite acoustic domain 
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                                     (a)                                                                 (b) 

Figure 6.11 Time variation of transient flux  applied on the inner spherical boundary: (a) 

time history and (b) Fourier transform. 

In this example, the time-dependent acoustic pressure  at point  

marked in Figure 6.10 is considered for reliability analysis. The commercial software 

ANSYS [183] is employed for the acoustic analysis. Due to the infinitely large acoustic 

field, the acoustic field is firstly truncated to a bounded and an unbounded acoustic 

domain by the translucent spherical shell in Figure 6.10 with the radius of . In the 

ANSYS model, the bounded acoustic domain is modelled by FLUID30 elements (4-node 

tetrahedral elements). The unbounded acoustic domain is represented by the FLUID130 

elements (3-node triangular elements) attached to the outer surface (spherical surface) of 

the bounded domain. According to Figure 6.11(b), the minimum wavelength can be 

calculated as . In order to guarantee the accuracy, the element 

edge length is set to be  in ANSYS. This can provide approximately 11 nodes per 

minimum wavelength. From the ANSYS manual [183], the FLUID130 element is 

recommended to be placed at  away from the source of excitation. 

Therefore, the radius if the truncated spherical boundary  is set to be  in this model 
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for accuracy.The total number of elements and nodes in this acoustic model are 1566852 

and 271172, respectively. The mesh of this acoustic model is also illustrated in Figure 

6.12. The global equations of motion for this acoustic model can be formulated as: 

  (6.76) 

where ,  and  denote the global mass, damping and stiffness matrices of 

acoustics, respectively;  is the vector containing all nodal pressures ; and  

denotes the global flux vector which relates to . It should be noticed that the 

existence of damping matrix in Eq.(6.75) is due to the unbounded acoustic domain. The 

initial condition of the system is . 

 

Figure 6.12 The mesh used in ANSYS for modelling the acoustic field of the 3D open-structure 

model 

 The sound speed  and the peak flux magnitude  are considered as random 

variables following Gaussian distribution with . For the purpose of 

demonstrating the effectiveness of the proposed method, the input parameters are 

considered as dimensionless [266] while  and the nominal value of  are both defined 
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as unitary such that  and . The uncertainties in  and  results in the 

fluctuation in the pressure response, which can be demonstrated in Figure 6.13. The limit 

state of the acoustic system is defined as the dimensionless pressure  at point 

 shall not exceed the ultimate capacity which is assumed as  in this 

example. Thus, the limit state function for this example can be expressed as in Eq. (6.77). 

  (6.77) 

Table 6.8 The probability of that the acoustic pressure at Point O exceeds  

Method 

Probability of failure 

 ( )   ( )  

X-SVR 0.1030 2.83% 0.1040 1.89% 

ε-SVR 0.1140 7.55% 0.1000 5.66% 

MCS  

 

 The X-SVR is employed for approximating the relationship between the input 

variables and extremum of the dimensionless pressure at point . The probability of 

failure will be computed by using the constructed X-SVR surrogate model, which 

requires significantly less computational efforts than using the original ANSYS model. 

Similar to Example 6.5.3, the results obtained by the X-SVR model are comparing with 

the results obtained using ε-SVR with Gaussian kernel and the conventional MCS. Due 

to the excessive complexity of the model, the MCS is conducted with 1000 samples 

( ), which takes approximately  seconds. The predicted probability 

of failure ( ) estimated by both X-SVR and ε-SVR and the ‘exact’ probability of failure 

1c = 1
stF = soundc stF

0

( )O

st

p t

r F

(0,0,0)O ˆ 8.5Op =

0

( )
ˆ( , ) max( )O

st O

st

p t
g c F p

r F
= −

ˆ
Op

ˆ
fp 20trainm =

fp ˆ
fp 40trainm =

fp

0.1060fp =

O

1000trainm = 61.34 10

ˆ
fp



206 

 

( ) obtained by the MCS ( ) are summarized in Table 6.8. For the given 

numbers of training samples, the  obtained by X-SVR has less relative difference with 

 in comparison with the ε-SVR. Furthermore, the probability density functions (PDFs) 

and cumulative distribution functions (CDFs) predicted by both X-SVR and ε-SVR are 

shown in Figure 6.14 with the PDFs and CDFs obtained by the MCS. Similar as the 

predicted probability of failure, the PDFs and CDFs obtained by the proposed X-SVR 

have relatively less variation to the ones obtained by the MCS, which is more visible in 

the PDF plots in Figures 6.14(a) and 6.14(c). This study indicates that the proposed X-

SVR model shows high efficiency and curacy for the reliability analysis of 3D acoustic 

application with unbounded domain. 

 

Figure 6.13 Uncertain acoustic pressure response (dimensionless) at point   

of the 3D open-structure model 
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(a) 

 

(b) 

 

(c) 

 

(d) 
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Figure 6.14 The estimated PDFs and CDFs of  obtained by X-SVR and ε-

SVR with different  and comparing with MCS 

6.6 Conclusion 

In this paper, a metamodel-based MCS strategy is proposed for the dynamic analysis with 

random input variables by evaluating the first-passage failure probability of systems. 

Within the proposed framework, the extended support vector regression (X-SVR) is 

introduced based on the theory of doubly regularized support vector machine. Since the 

proposed model can be formulated as convex quadratic programming problem, the global 

optimal solution for the given training dataset is promised. The suitable X-SVR 

parameters can be automatically selected by adopting the Bayesian optimization method. 

To enhance the capability of the introduced X-SVR approach, a new orthogonal 

polynomial kernel function satisfying the Mercer’s condition is proposed by vectorizing 

the Gegenbauer polynomial. By implementing the proposed approach, an explicit 

function is constructed by training the X-SVR model to approximate the relationship 

between the input uncertain parameters and the extremum dynamic response of the 

system within a given time interval. Subsequently, the limit state function of the system 

can be efficiently evaluated such that the computational efficiency for obtaining the 

probability of failure using the MCS can be increased. The feasibility, efficiency and 

capability of the proposed method are systematically investigated by utilizing two 

benchmark examples and two engineering problems. By comparing the results obtained 

by proposed X-SVR model, the ε-SVR with Gaussian kernel and conventional MCS, the 

superior performance of the proposed method is evidently demonstrated. 
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Chapter 7 . Conclusion and future studies 

7.1 Conclusion 

The uncertainties exist in most engineering application and accurate modelling of the 

uncertain parameters is critical for structural analysis and design. Generally, probabilistic 

approaches and non-probabilistic approaches are implemented in the uncertainty analysis 

of structural systems. Hybrid probabilistic and interval analysis is attracting increasingly 

more attention from researchers due to the algorithm robustness in considering multiple 

types of uncertainties. The aim of this research is to propose a series of new uncertainty 

analysis methods which is capable to include both probabilistic and non-probabilistic 

uncertain parameters. The methods proposed in this thesis have the applicability to 

practical engineering application. The accuracy and computational efficiency are well 

preserved.  

 The Chapter 2 focuses on the uncertain static response analysis of linear structural 

systems with hybrid probabilistic and interval variables. In this chapter, an efficient 

hybrid uncertainty analysis approach, namely the unified perturbation mathematical 

programming (UPMP), is introduced as a combination of the conventional perturbation 

approach and mathematical programming. This method takes the advantage of the 

perturbation method which expresses the mean and standard deviation of the structural 

response as explicit functions of the interval parameters. By using an alternative finite 

element formulation, the upper and lower bounds of the statistical characteristics can be 

obtained by solving the nonlinear programming problems. Such solution algorithm 

excludes the interval arithmetic from the computation of upper and lower bounds, which 

leads to the elimination of the so-called dependency issue. The numerical examples 

indicate that the proposed UPMP approach has superiority in computational efficiency 
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comparing with the traditional sampling approach in estimating the mean and standard 

deviations of structural responses. 

 The non-deterministic analysis of natural frequencies of structures with spatially 

variant uncertainties is proposed in Chapter 4. Instead of using the conventional random 

field model, the spatial-variant uncertainties are described by adopting a recently 

introduced interval field concept to address the situation that only limited amount of data 

is available. Specifically, the Young’s modulus and mass density of structures are 

considered as interval fields. For efficiently capturing the extreme bounds of natural 

frequencies, a novel computational scheme is proposed such that the upper and lower 

bounds can be achieved by two eigen-analyses after discretising the input interval fields. 

Within the proposed computational framework, it can be proved that the extremum of 

natural frequencies is resulted from the combination of bounds of Young’s modulus and 

mass density. The effectiveness of the proposed computational scheme is validated by 

both academic-sized and practically motivated numerical examples. 

 Chapter 5 extends the uncertain natural frequency analysis of structures with 

interval fields demonstrated in Chapter 4 to the hybrid analysis. In this study, both random 

and interval fields are considered, which leads to the generalized spatially uncertain 

eigenvalue problem. Due to the simultaneous existence of random and interval 

uncertainties, the upper and lower bounds of structural natural frequencies are considered 

as random parameters rather than the conventional constant. To robustly estimate the 

statistical characteristics of the extremum of eigenvalues, a semi-sampling approach, 

namely the extended unified stochastic sampling (X-UISS) approach, is proposed. For 

each sampling point of random fields, an interval eigenvalue analysis based on Chapter 4 

is implemented. Thus, for both upper and lower bounds of natural frequencies, a 
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collection of stochastic samples can be obtained. Subsequently, not only the sample mean 

and standard deviations can be computed, but also the probability profile could be 

constructed by using statistical inference analysis. 

 In Chapter 6, the dynamic reliability analysis of engineering systems is conducted 

based on the widely adopted first-passage failure theorem. Accordingly, the probability 

of failure is estimated by constructing the probability profile of the extremum of the 

response of engineering systems. To efficiently evaluate the probability of failure, a new 

machine learning based surrogate model, namely the extended support vector machine 

(X-SVR), is introduced and implemented such that only limited number of runs of the 

high-fidelity numerical models (i.e. FEM) are required. Additionally, a new orthogonal 

kernel function is proposed based on the Gegenbauer polynomial and integrated in the X-

SVR, which enhances the capability of the surrogate model in approximating complex 

engineering problems. Both benchmark tests and engineering examples indicate that the 

effectiveness and efficiency of the proposed method for dynamic reliability analysis. 

7.2 Future studies 

The methods proposed in this research can be further developed in theory study and 

extended in engineering applications. 

 Firstly, the efficiency of the UISS method in computing the bounds of standard 

deviations of structural response is significantly affected by the number of random 

variables, which is resulted from the conventional perturbation method. With the increase 

in the number of random parameters, the complexity of the formulation of the NLP for 

the standard deviation will increase dramatically. In this context, solving the optimization 

problem becomes more difficult. Increasing the capability of the UISS method in 

considering more random uncertainties will be included in the future works.  Then, 
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comparing with the random field theory which has been extensively studied in the past 

decades, the concept of interval field was just recently introduced and still under 

development. Despite of the agreement of that the non-probabilistic yet spatially variant 

uncertainties should receive attention, the necessity of interval correlation is currently 

under argument and there is still lack of well-established theory for the interval covariance. 

Thus, the correlation between the interval parameters at different location is excluded in 

this research and will be investigated in further research. Moreover, the study of the effect 

of hybrid random and interval field on other engineering applications including dynamic 

response and advanced materials will also be conducted in future studies. 

 Thirdly, further development of the X-SVR model will be included in the future 

works. As a non-intrusive method, the performance of surrogate models relies on the 

quality of training samples. Active learning approaches have been implemented in other 

metamodeling techniques including Kriging (Gaussian process), classic Support Vector 

Machine/ Regression and Polynomial Chaos expansion methods, which demonstrated the 

effectiveness of such method. Integrating the active learning and advanced sampling 

methods into the reliability analysis using X-SVR model will be the future research 

direction. 
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