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Chapter 1

Introduction

1.1 Introduction

The contents of this thesis are a sequence of four papers in the area of exponential and

character sums. A typical problem in this area may be stated in the following way.

Problem 1.1. Given an integer q, a sequence of integers Sy = {sn }1<n<n and a character
U, of either the additive group of residues Z/qZ or the multiplicative group of reduced
residues (Z/qZ)*, for which 0 < e < 1 does there exist a bound of the form

D Wy(s)| <eN. (1.1)

SESN

Developing techniques for bounding sums of the form (1.1) have a wide range of
applications in number theory and are motivated by their arithmetic consequences. Often

one has a fixed sequence S = {s,}52; and wishes to obtain a bound of the form

D Wy(s)| < g nlSnl, (1.2)

sESN

where Sy ={s € §:1<s < N} and g, y — 0 as both ¢ and N — oco. In other instances
the sequence § = Sy N = {5n,q}1<n<n, varies with both ¢ and N. Various techniques have
been developed which may be applied to sums of the form (1.1) when S belongs to a very
general class of sequences. The methods used in this thesis bear closest resemblance to

the method of Vinogradov.

We attempt to describe the method of Vinogradov in its most general form as being

comprised of three distinct stages. One first uses properties specific to the set Sy to bound
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sums of the form (1.1) in terms of certain multilinear forms

oo > an(ar) . onlar)Wolan,. . a). (1.3)

a1€A; ap €A

This is usually done through a sieve, combinatorial decomposition or certain averaging.
Once the sums (1.1) are brought into the form (1.3) one considers various applications
of partitioning summation depending on values of the function ¥y(ay,...,ax), the Holder
inequality and possibly some sort of Fourier expansion. These three strategies are applied
with the aim of separating variables occurring in summation (1.3) to reduce the problem to
bounding a number of mean values. The resulting mean values can usually be interpreted
geometrically as the number of solutions to a system of equations, as moments of certain

integrals or as complete sums over finite fields.

1.2 Illustration of Vinogradov’s method

We illustrate the use of Vinogradov’s method with a simplified version of an argument due
to Heath-Brown [35] and is related to Dirichlet L-Functions.

For a real number ¢ > 0 consider the character W;(n) = n® of the multiplicative

group R* and summation over an interval Z = (N,2N]. Our sums (1.1) may be written

> oat (1.4)

N<n<2N

For small z, the intervals (N — z,2N — z] and (N, 2N] approximate each other and hence

we may approximate S by

Z Z Z n+uv ,

U<u<2U V<v<2V N<n<2N
provided UV is not too large.

Let

- Y Y Y erw

U<u<2U V<v<2V N<n<2N

Since the function n' is multiplicative on N we may bound

X T X (G

N<n<2N U<u2U |V<v<2V
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Partitioning summation over n and u according to the value of n/u gives

S<Y I Y (v,

A€Q V<2V

where I(\) is defined by

IN={N<n<2N,U<u<2U : n=\u}.

If § is small, we may approximate the sum

Y (o)t

V<o<2V

1 Z /)\+(5 "
— (z +v)"dz,
2 V<v<ay A0

by the average

and hence approximate S’ in terms of

1 A6 )
% Z / (z +v)dz|.
A—

AEQ 8 V<'u<2V

Let

A0
/ Z (z+0) thz .
A

)\e(@ 0 yep<av

An application of the Cauchy-Schwarz inequality gives

A+0
(8" ZI ZI / Z z+v”dz
A—

A€Q A€Q 8 yep<av

From a second application of the same inequality we get

2
CONES Y (0} > I(N)? /M > (z+v) ”dz
A

AEQ AeQ Ae@ 0 vep<ov
I(\)#0
By the Holder inequality
4 4
A+ , A+d }
/ Z (z +v)"dz| < (26)3/ Z (z +v)*| dz,
A8 v ioZay A= |y cp<ov
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so that letting

2 4
A+ '
S"=>"1() > I(N)? Z/ > (z+v)| dz |, (1.5)
AEQ AEQ AeQ A0 |vcw<av
I(N)#0

we have

(5/1)4 S (25)35«///‘

For the first term on the right of (1.5), since the numbers I(\) partition the set
{(n,u) ;N <n<2N, U<u<2U},

into disjoint subsets we get

> I(\) < NU.

A€Q

For the second term on the right of (1.5), we have

>IN =

A€Q
‘{ (nl,ul,ng,uQ) ; MU = Nauy, N < n; < 2N, U < u; < 2U}‘, (1.6)

which may be bounded by fixing values of n; and ugy in (1.6) then counting divisors of the

product njus.

For the last term on the right of (1.5), we consider the set of A € Q such that I(\) # 0
as a subset of the set of reduced fractions with denominator at most U and numerator at

most N. This set is U~2 spaced which implies that for suitably chosen §, the intervals
A=0,A+0] with Ae@Q and I()\)#0,

do not overlap and hence

4 4

P , 4N/U .
Z/}\ Z (z + )" dzg/ Z (z +v)"*| dz.

reQ ‘A lvcu<av N/AU |y p<av
1(X)£0
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To bound the mean value on the right, we interchange summation and integration to

get

4

AN/U A
/ Z (z4+v)" dz < Z

N/AU |y cy<av V<u <2V
1<i<4

/WU ((z o)z +vz>>” dz
n/au \ (2 +v3)(2 + va)
For a fixed tuple (v1,va,v3,v4) we may estimate the integral

/4N/U <(z +u1)(z+ ”2)>it dz,

N/av \ (2 +v3)(2 + va)

via stationary phase or by considering the following elementary argument.

Let
(Z + 'Ul)(Z + ’Ug)

(z+v3)(z+vq)’

F(z) =

and define the sets I1(g) and I2(g) by

N 4N N 4N
=¢-— <2< —:|F(2)| < ={-—<z2< —:|F
Li(e) {4UZ 7 \F(z)]s}, I1(¢) {4UZ 7 \F(z)]>5}

We have

AN/U it

/ ((””l)(””)) dz = S1 + S,

~nav \(z +v3)(2 + v4)

where
S) = F(2)%dz, Sy = / etloe(F () g
11(6) IQ(E)

Considering 51, we have

1S1] < u(Ii(g)),

where p denotes the Lebesgue measure. This allows one to estimate S; by a consideration

of the zeros of the rational function F’(z).

For Sy we first note that I5(e) splits as a union over disjoint intervals I, ..., Ix, so

123 [ () (L)

The above sum may be bounded by combining an integration by parts with the fact that

we may write

|F'(2)| > € whenever z € I;.
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1.3 Outline of Thesis

The following problems comprise the main four sections of this thesis.

1.3.1 Rational Exponential Sums Over the Divisor Function

For integers ¢ and a with (a,q) = 1 we consider giving nontrivial bounds for the sums

Z 6271"L'a7'(n)/q7 (18)

1<n<N

where 7(n) counts the number of divisors of n. This problem does not seem to be considered

before although has been posed by Shparlinski [64]. We consider two different approaches.

Our first approach involves a decomposition of integers based on their squarefree part
and reduces bounding the sums (1.8) to bounding sums over multiplicative subgroups. This
allows us to apply results of Bourgain [4] and Shkredov [62, 63] concerning such sums. Our
second approach applies only for prime modulus and involves applying the Selberg-Delange

method to the Dirichlet series -
Z x(7(n))
ns '

n=1

where x is a multiplicative character mod p.

1.3.2 Character Sums Over Shifted Primes

For integers g and a with (a,q) = 1 and a character x of the multiplicative group (Z/qZ)*

we consider giving nontrivial bounds for the sums

S Al)x(n+a),

M<n<M+N
where A(n) is the Von Mangoldt function defined by

k

logp if n=p" and p prime,

A(n) =

0 otherwise.

This problem has been considered by Karatsuba [43] for the case of prime ¢ and for
arbitrary ¢ by Friedlander, Gong and Shparlinski [26] and Rakhmonov [56]. Our result
improves on the strength of a bound of Rakhmonov [56] in the range N > gb/6+e(1),
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1.3.3 Mixed Character Sums

Let g be an integer, x a character of the multiplicative group (Z/gZ)* and F' a polynomial

with real coefficients. We consider giving nontrivial bounds for a number of different sums

2miF(n)

consisting of terms involving both x(n) and e . The simplest example of such sums

Z X(n)e%iF(").

M<n<M+N

being

These sums and their generalizations have been considered by Enflo [22], Chang [15],
Heath-Brown and Pierce [38] and Pierce [53]. We extend some bounds of Heath-Brown

and Pierce [38] and Pierce [53] in various directions and improve on a bound of Chang [15].

1.3.4 The Fourth Moment of Character Sums

For a prime number ¢, we consider giving nontrivial bounds for the fourth moment

4

DI D DRI (19)

x#xo0 |M<n<M+n

where the above sum is over all non principal characters of the multiplicative group

(Z/qZ)*. The sum (1.9) is related to the distribution of solutions to the congruence
T122 = x3x4 mod g, (1.10)

with each z; lying in an interval ;.

This problem has been considered by Ayyad, Cochrane and Zheng [1] and Garaev
and Garcia [31]. We give new bounds concerning the distribution of solutions to the
equation (1.10) and as a Corollary give new bounds for the sums (1.9) which improve on
previous results by a power of a logarithm. Our techniques are based on Ayyad, Cochrane
and Zheng [1], Garaev [29] and Garaev and Garcia [31].

1.4 Notation

We adopt the following standard notation common to all four sections of this thesis.

Given two expressions f and g depending on a number of parameters, we write

f<g and [=0(yg),
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to mean that there exists some absolute constant C' > 0 such that
1< Clygl, (1.11)

as the parameters approach some specified values. If there is no mention of the values
which the parameters approach then we will mean as the parameters approach infinity. In

a similar fashion we write
f=olg),
when (1.11) holds for any C' > 0 provided the parameters are sufficiently large.
Given a positive integer ¢, we use Z/qZ to denote the additive group of residues

mod ¢ and (Z/qZ)* to denote the multiplicative group of reduced residues mod ¢q. We let

eq(an) denote the character

eq(an) _ 627rian/q,

of the group Z/qZ which we assume to be extended to Z by first identifying Z/¢Z with
the set [0,1,...,¢ — 1] and defining

eq(an) = eq(ab) whenever n=5b mod g.

The symbol y will always denote a character of the multiplicative group (Z/qZ)* which
we assume to be extended to Z by first identifying (Z/qZ)* with the set

and defining

x(a) whenever n=a mod ¢ and (a,q) =1,

0 if (n,q) #1.

Given any finite set of integers A we let |A| denote its cardinality.
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Chapter 2

Rational Exponential Sums over

the Divisor Function

2.1 Introduction

We consider a problem posed by Shparlinski [64, Problem 3.27] of bounding rational
exponential sums over the divisor function. More specifically, for integers a and m with

(a,m) =1 and m odd we consider the sums

N
Tom(N) = em(ar(n)), (2.1)
n=1

where e,,(z) = 2™*/™ and 7(n) counts the number of divisors of n.

Arithmetic properties of the divisor function have been considered in a number of
works, see for example [21, 24, 36, 47]. We are concerned mainly with congruence proper-
ties of the divisor function, which have been considered in [19, 51, 58]. Exponential sums

over some other arithmetic functions have been considered in [2, 3].

Our first step in bounding the sums (2.1) uses a combinatorial decomposition of the
integers based on Sathe [58]. This requires a sharper version of a result of Sathe [58,
Lemma 1] concerning the distribution of the function w(n) in residue classes, where w(n)

counts the number of distinct prime factors of n.

The ideas outlined above allow us to reduce the problem of bounding (2.1) to bound-

ing sums of the form
¢

Sm(r) = em(r2"), (2.2)

n=1

11
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where ¢ denotes the order of 2 (mod m) and we may not necessarily have (r,m) = 1. Such
sums have been well studied and we rely on previous work bounding these sums. See for
example Bourgain [4], Heath-Brown and Konyagin [37] Korobov [45] and more recently
Shkredov [62, 63].

2.1.1 Notation

If p|n and @ has the property that p’ is the largest power of p dividing n then we write
0
p°|In.

We let S denote the set of all square-free integers.

For integer m > 3 we let M,,, the set of integers which are perfect m-th powers, Q,,
the set of integers n, such that if p?||n then 2 < § < m — 1 and K the set of squarefull
integers n defined by the property that if p’||n then 6 > 2.

Given an arbitrary set of integers A, we let A(z) count the number of integers in A

less than z. In particular we have
Q(z) < K(z) < 2'/2.

This implies that the sums

h(q) 1\~
H(r,m) = —,  he=]J(1+=) . (2.3)
q€Qm a pla P
7(¢)=r (mod m)
converge.
We let ((s) denote the Riemann-zeta function,

=1

() =3 o R > 1,
n=1

and I'(s) the Gamma function,

I(s) :/ e ™%dz,  R(s) > 0.
0

For odd integer m we let t denote the order of 2 (mod m) and define

ap =1 — cos(27/t). (2.4)

12
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2.2 Main Results

Theorem 2.1. Suppose m is odd and sufficiently large. With notation as in (2.1), (2.2), (2.3)
and (2.4) we have

_m) 6 (R
Tom(N) = 2 > H(r,m)Sm(ar) | N + O (tN(log N) =) .
r=0

When m = p is prime we use a different approach to save an extra power of log N in

the asymptotic formula above, although our bound is worse in the ¢ aspect.

Theorem 2.2. Suppose p > 2 is prime, then

p—1
Tap(N) = qf):z (Z H(T,p)Sp(ar)> N+0O (pN(log N)—(at+1>) _
r=0

Combining Theorem 2.1 with the main result from [4] we obtain a bound which is

. . 1/
nontrivial for N > e*’"" for some fixed constant c.

Theorem 2.3. Suppose m is odd and sufficiently large, then for all € > 0 there exists
0 > 0 such that if t > m® then we have

1
max [Ty m(N)| < <6 + t(log N)_C”> N.
1 m

(a,m)=

We may combine Theorem 2.2 with a number of different bounds for exponential
sums over subgroups in prime fields to deduce corresponding bounds for exponential sums
with the divisor function. The sharpness of such bounds usually depend on the order of
the subgroup and in our setting this corresponds to the order of 2 mod p. For example,

combining Theorem 2.2 with a bound of Shkredov [63] gives.

2/3

Theorem 2.4. Suppose p > 2 is prime. Ift < p*/° then we have

(m?x |Top(N)| < (t_1/2p1/6 log'/%¢ + plog N_(O‘“rl)) N.
a,p)=1

To deduce bounds for the quantity max, ,)—1 |T4,»(/N)| which are sharper depending

on the order of t relative to p one may consider combining Theorem 2.2 with results of
Korobov [45] and Shkredov [62].

2.3 Combinatorial Decomposition

We use the decomposition of integers as in [58].

13



Chapter 2. Rational Exponential Sums over the Divisor Function

Lemma 2.5. For any integer m > 3, any n € N may be written uniquely in the form
n = sqk,
with s €S, ¢ € O, k € My, and ged(q,s) = 1. For such a representation, we have

T(n) =7(s)7(¢) (mod m).

Proof. We first fix an integer m. Given any integer n, let n = pi"* ... p?j be the prime

factorisation of n. We have
T(n) = (o1 +1)...(aj + 1). (2.5)
Let 5; be the remainder when «; is divided by m. For some k € M,,, we have

n=kp .. 07 =k [] o T] 0/ = ksa.
Bi=1 Bi#l

with s € S, ¢ € @, and ged(g, s) = 1. Finally, we have from (2.5)

T(n)=Pr+1)...(8; +1) =7(¢gs) = 7(¢)7(s) (mod m),

since ged(q, s) = 1. O

2.4 Approximation of Preliminary Sums

Given an integer k, we let w(k) denote the number of distinct prime factors of k. For a
squarefree number ¢ we let A,(X) count the number of non-negative integers n < X such

that any prime dividing n also divides q.

Techniques related to bounding A,(X) have been well studied in a number of different
contexts. For example, Lehmer [46] interprets the problem geometrically as counting
lattice points inside a tetrahedron. In the same paper Lehmer also considers an argument
based on an idea of Rankin [57]. Hooley [41, Section 16] considers a related problem in
which terms of A,(X) are weighted with certain multiplicative coefficients and uses the
same idea of Rankin [57]. Granville [32] considers the problem of counting lattice points

inside a tetrahedron from which bounds for A,;(X) occur as a special case.

The problem of bounding A,(X) is also related to counting numbers with small prime
factors to which we refer the reader to [23, 40, 50].

14
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Lemma 2.6. Suppose q is squarefree and let Aq(X) be as above. We have

Al(X) < (log X + w(q))w(q) )

1
w(q)!

Proof. Suppose first that ¢ is odd. Let pi,...,pr be the distinct primes dividing q. We

see that A,(X) counts the number of non-negative integers hy, ..., hj such that
hilogpy + -+ hilogpr <log X. (2.6)
The assumption ¢ is odd implies that each logp; > 1. Hence if hq, ..., hy satisfy (2.6) then
hi1+---+ h; <log X.
Since each h; is integral, we see that
hi+ -+ hy < |log X]. (2.7)

The number of solutions to (2.7) is known to be (see for example [46, Equation 4])

<k+ L?gXJ)

Writing H = [log X |, this gives

(H + k)* < (log X —I—w(q))“’(Q)
E'H! k! - w(q)!

Consider next when ¢ is even. Letting r = ¢/2 we have

log X/ log 2
Aq(X) < Z AT(XZ?h) < A (X) +/ A (X27%)da.
0<h<log X/ log 2 0

An application of (2.8) gives

log X + w(r w(r) 1 log X/ log2 o
(log w(r)g ) +w(r)!/0 (log X — arlog 2 + w(r))*da,

Ay(X) <

which implies that

4,(X) < (log X + w(g))“?,

1
w(q)!
since w(q) = w(r) + 1. O

We use the following result of Selberg [61]. For related and more precise results see
(65, 11.6].

15
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Lemma 2.7. For any z € C

Z M = G(2)z(logz)* "t + O (m(log x)%(z)_2> ,
n<x

nes

with

w00 ()

and the implied constant is uniform for all |z| = 1.

We combine Lemma 2.6 and Lemma 2.7 to give a sharper version of [58, Lemma 1].
Lemma 2.8. For integers q,v and t let
M(z,q,rt)=#{n<z : neS, wh)=r (modt), (n,q) =1}

Then for x > q we have

h
M(x,q,rt) = 6W§3)x +0 (m1/2(210g 2)*@ + z(log z) " loglog q) .

Proof. Suppose first q is squarefree. Let

S(a,z) = Z ei(aw(n)),
=

and

Si(a,q,z) = Z er(aw(n)).
nes
(n,q)=1

Since the numbers e;(aw(n)) with (n,q) =1 and n € S are the coefficients of the Dirichlet

5 M 0 5)

we let the numbers a, and b, be defined by

series

plq P’ n=1
o0
b
11 (1 + et@) =y
P p n=1 n

This gives
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and

1(a,q, Z Z ba, ag, = ZanS(a,x/n).

n<z dida=n n<z

Consider when a # 0. With notation as in Lemma 2.7

Z anS(a,z/n) = G(eia))w Z %(log (z/n))c(@—1

n<x n<x

x cos (27 /t)—2
+0 Z ]an|n(logm/n)

n<x
log ) —(1—cos(2r/1)) 3™ |an]
< z(log x) ngz -
1_ ~1
< z(logx)™ ™ 1—- .
loga) ]| < p>

plg

Letting ¢ denote Euler’s totient function, since

1!
H <1 — p> = % < loglogq,

plg

we see that
Si(a,q,x) < x(logx)~* loglogq. (2.9)

For a = 0, by [33, Theorem 334]

1(0,q,x Zan (0,z/n)

n<z
Gn 1/2 |an|
o ey
n<lzx n<lz
6 1! ‘ n, 21/2 |an]
SEII(1eg) ol ey
plg n>zx n<lz

Considering the first error term, with notation as in Lemma 2.6, we have

Z |an| = Aq(1),

17
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so that

|ay| /‘X’Aq(t)
> =< e dt

) 1 * (logt + w(q))w(q)
< w(q)!/m - dt. (2.10)

From an application of the binomial theorem we get

. w(q w(q) o) n
/ (log t + w(q)) ”dt_z (w(Q)>w(q)w<q)n/ (10§2t) . (211)

t2 n
n=0

The integral

o0 1 n
/ (logt) .

t2

is the n-th derivative of the function

H(z) :/ 2y = 2~ ,

evaluated at z = 0. By Cauchy’s Theorem letting v C C be the circle centred at 0 with

radius 1/log x we have

* (logt)" ! =1 1 I(1 "
/ ogt)7 b [ 1, o nhlloga)”,
. t 2mi Jo 1 — 2z 2™ x

Combining the above with (2.10) and (2.11) gives

iR )

n>x n=0

By Stirling’s formula [49, Equation B.26]

() () =X () (25)

n=0 n=0
< w(q)“ﬁ (w?) (b?)

1 w(q)
< w(g)? (Ofx + 1) ,

which implies that

w(g)+1/2 w(q)
ZM<< lw(q) 10g£L’+1 .
n x  w(q)! e

n>x

18
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By the above and another application of Stirling’s formula we arrive at

n 1 w
ZM<<7(1ogx+e) @
n X

n>x

This gives

51(0,¢,2) = 6};(61) 2+ 0 | (logz + e + 212 )" |an]

2
= nl/2
For the last term
’an’ —1/2\—1
an/Q <[[a-»7)
n<w plg
= H(l +p %) H (1- jtfl)_1 < 2¢@loglog g,
plg plg
so that 6h
51(0,q,x) = (QQ)QU +0 <(2log )@ 4 21/299(9) Jog log q) . (2.12)
T
Since
1 t—1
M(l‘, q,T, t) = 2 Z et(_ar)sl(a7 q, .fL')
a=0
1 1 t—1
— 551 (07 q, 'T) + E Z et(_ar)sl(aa q, l'),
a=1

we have from (2.9) and (2.12)

6h(q)
w2t

+0 ((2 log x)w(Q) + 217229 Jog log g + z(log x) " log log q) .

M(x,q,r,t) = x

If ¢ is not squarefree, repeating the above argument with g replaced by its squarefree

part gives the desired result since the error term is increasing with q. O

2.5 Dirichlet Series Involving the Divisor Function

For complex s we write s = o + ¢t with both ¢ and ¢ real.

19
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Lemma 2.9. Let m be odd, x a multiplicative character mod m and define

)
(s.0m) =Y X
n=1

For o > 1 we have
L(s,x,7) = {(s)*@F(s, ),

where F(1,x) # 0 and

= b(x,n
_Z()fz

n=1

for some coefficients b(x,n). Uniformly over all x we have

|b(x
Z 1/2+5 =0(1),

for any 6 > 0, with the implied constant depending only on 9.

Proof. Since both y and 7 are multiplicative, we have for o > 1

L(s,x,7) _H<1+ZX - )

= ((sPF (s, %),

with
o) X(n+1) _i x(2)
F(s,x)—l;[<1+nzl P ) < ps)
We have
- X2 X2 yxntl)
F(S7X)_1;I<1 ps><1+ = +nz2 s )x
_@ -1 _i x(2)
1;[(1 P > <1 ps>
= Fi(s,x)Fa(s, x),
where

B B x(2) x(2) - M
F1(57X) = ];I <1 ps > (1 + ps + T; pns )
B x(n+1)—x(2n)
_ 1;[ <1 + nz_; per ) ’ 219
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and
=T ) ' (-2)”

Considering Fy(s, x), we have for o > 1

log Fa(s,x) = ZZ% (ng3:) a 25125))

p n=l1
P n=2

Since the sum in (2.14) converges absolutely for s = 1 we see that F»(1,x) # 0.

To show that Fi(1,x) # 0, we note that the product in (2.13) converges absolutely

for s = 1, hence it suffices to show that for each prime p we have

LS XD =)

n=2 P
Consider first when p > 3, then
o0 (e e}
1) — x(2 2 1 2
N B i D R
—~ p p* = p pp—1)
2
> =
-3

For the case p = 2, we choose m satisfying x(m + 1) — x(2m) = 1. Then we may write

1+§:X(”+1)—X(2”) :1+§: x(n+1)—x(@n) 1

n=2 2n n=2 2" 2
n#m
00
1 1 1
21-2 5t m =
n=1

which completes the proof that
F(1,x) #0.

To prove the last part of the statement, since |x(j) — x(k)| < 2 for all integers k, j

we see that the coefficients b(x,n) in

F(s.x) =y M),

n=1
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satisfy
‘b(X7 TL)’ S C’fl7

where the numbers ¢, are defined by

(35 e (SE55) -0

jS
P p]2]p n=1

The function defined by the above formula converges uniformly in any halfplane ¢ > oy >
1/2, so that

D en=0(X12),

n<X

and the last statement of the Lemma follows by partial summation. O

The following is [49, Theorem 7.18].

Lemma 2.10. Suppose for each complex z we have a sequence (by(n))>2, such that the

sum
2R+1

Z b, (n log n) ’

is uniformly bounded for |z| < R and for o > 1 let

Suppose for o > 1 we have

for some a.(n) and let S,(x) = Z az(n). Then for x > 2, uniformly over all |z| < R we

have

Combining Lemma 2.9 and Lemma 2.10 gives

Lemma 2.11. For integer m let x be a multiplicative character mod m and let

1 > x(n+1) 1@
G(X"mx@))l;[(; o )(1 )

p

Then uniformly over all characters x we have

Z x(1(n)) = G(x)z(logz)X? =1 + 0 (:L‘(log :E)m(X@))_Q) . (2.15)

n<zx

22
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We require a sharper estimate for the case of the principal character yg to prime

modulus.

Lemma 2.12. Let p be an odd prime and xo be the principal multiplicative character

mod p. Then for some constant B, and any A > 0 we have

S nalrn) = B+ 0 (5 )

o og™x

Proof. We first note that since p is odd we have

xo(2) = 1.

With notation as in Lemma 2.9, considering the Dirichlet series

> T(n
Ls,xo,r) = 3 X))
n=1
We have

L(SaXO)T) = C(S)F(S)XO)7 (216)

where

o I (5252

q n=1
q prime
— Xo(n+ 1) — xo(n)
0 — X0
ST (e ),
q n=2
q prime

Since F(x,xo) is analytic and bounded in any halfplane o > 1/2 + ¢ uniformly over
all odd primes p, the stated bound follows by combining (2.16) with the Perron summation

formulae and standard estimates for ((s). O

Lemma 2.13. For any integer m we have

1 1
Z P mlog2/2’

qeK q
7(¢)=0 mod m

and if p is prime

> i<y
Z -
prere q 21?/
7(¢)=0 mod p

23
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Proof. Suppose 7(¢) =0 mod m and let ¢ = p{*...pp* be the prime factorization of g.
We have

7(q) = (1 + 1)... (g + 1) > m.

By the arithmetic-geometric mean inequality

q> 2(a1+1)+~--+(ak+1)—k > 2k(7’(q)1/k—1) > 2k(m1/k—1) > 210gm _ mlogQ,

and since K(z) < z'/2 we get

1 1 * Kz
E 6§ E q<</102x(2)d$<<7n10g2/2.
qeK qeK mee
7(@)=0 (modm)  gmmios?

Suppose p is prime. If 7(n) =0 mod p then n > 2P~1. Arguing as before we get

R
q 211/2.

qeR
7(¢)=0 (mod p)

2.6 Proof of Theorem 2.1

By Lemma 2.5 we have

N
Zem(aT(n))z Z Z Z em(at(kgs))
n=1

kEMp qEQm SES
k<N g<N/kged(s,q)=1
s<N/qk

= Z Z Z em(at(q)T(s))

k?EMm qEQm, seS
k<N ¢<N/kged(s,q)=1
s<N/qk

= Z Z Z em(at(q)2°®).

kEMy, q€EQm, seS
k<N ¢<N/kged(s,q)=1
s<N/qk

24
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Taking K = N'/2, partitioning summation over ¢ depending on K and grouping together

values of 2¥(5) in the same residue class mod m gives

N t
Zem(aT(n)): Z Z ZM(N/qk:,q,r,t)em(aT(q)ZT)

n=1 kEMyn qEQp T=1
RN g<K/k

t
+ > > D M(N/gk.q,r em(ar(9)2"),
kEM o, qEQm r=1
k<N K/k<q<N/k

where M (z,q,r,t) is defined as in Lemma 2.8. By choice of K we see that N/qk > q when
q < K/k. Hence we may apply Lemma 2.8 to the first sum above

N
Zem(aT(n)) Z Z Z—em (q)2")
n=1

k‘EMm qGQm r=1

k<N q<N//€
tN Ntloglogq o
A DD I DS og (N/qk)) ™
keEMy,  q€9m gk kEMpm q€EQm
k<N K/k<q<N/k k<N ¢<K/k
1/2
+O | D ) (2log (N/kg))*@ <>
kEMm, q€EQm
k<N q<K/k

Considering the first error term

tN N K(x) tN
> < tN/K 30 < (2.17)

keEMm qEQ’m
k<N K/k<q<N/k

For the second error term, since the sum

Z Z log logq

keEMm q€EQm
k<N ¢<K/k

is bounded uniformly in m as K, N — oo, we get

D N“qu og (N/qk)) ™ < Ntlog(N/K)™ 3" % loglogq

kEMp q€EQm, kEMpm q€Qm
k<N ¢<K/k k<N ¢<K/k

< Nt(log(N/EK))~". (2.18)

25
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For the last term

S Y (e log (N/kg)? (,ZL)/ <N Y (;)2/3 (2105 M),

kEMm qe Q'm TLEIC
k<N ¢<K/k n<N

Since

we get

1\ 2/3
N?/3 2log N)“(@) ()
> > (2logN) T

kGMm qGQm
RN g<KJk

. 2/3
< N2/3 (log N)(lﬂ’(l))% Z <1> (2(log N)E)/G)w(n)
n

nek
n<N

1 2/3
< N5/6+o(1) Z <n> (z(logN)E)/ﬁ)w(n)

nex
n<N

We may bound the last sum on the right by noting

1 2/3 6 . 00 1
> (n) (2(log N)P/6)=() < ];[ (1 +2(log N )/ épzk/s) :

nek
n<N

Taking logarithms we see that

1 2(10gN)5/6 p2/3
5/6 _
log <H <1+2(10gN) / szk/?))) _Zlog ((1—1— YT
k=2 p

p

- 5/6 1 p2/3
< 2(log N) Z A3 23 1
P

< (log N)*/S.

This implies that for some absolute constant ¢

4 wig) (N 12 5/6+0(1) c(log N)3/6
> ) (etlog (N/kq))“\ T <N ecllos . (2.19)

kEMm qEQm
RN g<KJk

26
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Combining (2.17), (2.18) and (2.19) gives

N

6’”(@7—(”)):%]1\: Z % Z h(Q)Zem(aT(Q)T)

n=1 kEMm  q€Qm q r=1

)

+0 (Nt(log(N/K))_O‘t + Y NB/6+e(1) gellog N)5/6>

and recalling the choice of K we get

Al 6 N h(q)
Zem(aT(n)) = Z Z . Zem at(q)2") + O (Nt(log N)~*) . (2.20)
n=1 r=1

kGMm q€EQm
k<N  ¢<N/k

For the main term

>ox e Zemm 27)

kGMm qe Om
k<N  ¢<N/k

L 1/2
- Y MOS0 | 3 ()]
v e S ,
k<N E<N

and hence

' 1 h(q) — t
Z Z h(q) Z_;em Z - Z (9) Z_;em ar )27")+O<N1/2>

kEMm qEQm q k}GMm qEQm q
k<N g<N/k

h(q) . ¢
= ((m) quQm . TE 1em at(q)2") + O (N1/2>
This gives

al ¢(m) 6

E em(ar(n)) = T 2 ( g Hr, m)Sm(ar)) N+0O (tN(logN)_O‘t) .

2
n=1 (mod m)

2.7 Proof of Theorem 2.2

Let
Clp,r,N)=#{n < N:7(n)=7r (mod p)},
so that
N p—1
Y eplar(n)) =D Clp,r, N)em(ar). (2.21)
n=1 r=0
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Suppose (r,p) = 1, using orthogonality of characters, Lemma 2.11 and Lemma 2.12

C(p,r,N) Z Z

p nlxmodp

B MULTIETES b pie
n=1

n=1 x(mod p)

X#X0
3 1 B 1 B B
=N+ Y. X(MGOON +—= > X(G()N(log N~

1 1 _
p P o= P= (o

+0 (N(log N)~ (¥t}

where 3, is defined as in Lemma 2.12. For r = 0, we have by Lemma, 2.12

N
C(p,0,N) =Y (1= xo(r(n))) = ¢,N + O (N(log N)?),

n=1

for some constant ¢,. Hence from (2.21)

N
Z CN+O pN (log N)~ (O‘H‘l))
p—1
p—1 (X)ep(ar) + X(r)ep(ar)G(x)(log N)XP 1
P r=1 Ax@)=1 x(2)#1
N p—1
=N+ 77 D, GOUog N B X(rep(ar)
x(2)#1 r=1
+0 (pN(log N) (D),
for some constant A,. If x(2) # 1 then we have
r)ep(ar)| =p'/?,
so that
Zep CLT A N+ 0O ( 1/2N(10g N)—at +pN(10g N)—(at—l—l)) .
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Since we may assume N > pN(log N)_(O‘H'l) as otherwise our bound is trivial, the

above simplifies to

N
S ep(ar(n)) = AN +0 <pN(log N)—<at+1>) . (2.22)

n=1

Finally, comparing (2.22) with the leading term in the asymptotic formula from Theo-

rem 2.1, we see that

p—1
Ap = C(tp);l (Z_:O H(T,p)Sp(ar)> .

2.8 Proof of Theorem 2.3

Considering the main term in Theorem 2.1

m—1 m—1
> H(r,m)Sp(ar) <> | Y. H(r,m)Sp(ar)
r=0 dlm r=0
ged(rym)=d
m—1
< Hir, Sm(M)].
Y| X e | e 500
ged(r,m)=d
Writing ¢ = log 2/2, by Lemma 2.13
m—1 m—1
h
H(r,m) = hia)
r=0 r=0 qEQm q
ged(r,m)=d ged(r,m)=d r(g)=r (mod m)

which gives

—_

m—

Z H(r,m)Sp(ar) < Z = max S, (M) (2.23)

de =
—o dim ged(A\,m)=d

Suppose gcd(A, m) = d, so that we may write

A=d)\N and m=dm/

29
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for some X and m’ with ged(\,m’) = 1. Let t4 denote the order of 2 mod m/, so that

t
:Ze (\2™) = Zem//\2"
n=1
By the main result of [4], if t; > (m/d)¢ then for some § > 0 we have

Sm(A) < (i)ét. (2.24)

Suppose t > m?®, then since

tg > - =

if d < m?/? then we have tq > (m/d)*/?. An application of (2.24) gives

d\’° t
(A — |t —
S()<<<m) <<m50

Hence by (2.23) for some d; > 0

—_

m—

1
H S (A — S (A
S utms.on € X ks 500 5 5 e .00
d<mf’:/2 d>ms/2
1 7(m)
dlm dlm
d<me/? d>ms/2

and the result follows combining (2.25) with Theorem 2.1.

2.9 Proof of Theorem 2.4

By Lemma 2.13

p—1 p—1
ZH(rp (ar,t) ZHrp (ar) +tH(0,p)
r=0

2p/2 <ZH r,p ) sodnax_ [5p(A)]

- S, (M),
< 2p/2+gcdr(g%>§ 1Sp(N)]

and by [63, Theorem 1]

S (A <t1/2 1/61 I/Gt,
geabax [Sp(A)] < #7p7 % log
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from which the result follows.
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Chapter 3

Character Sums over Shifted

Primes

3.1 Introduction

Let g be an arbitrary positive integer and let x be a primitive non-principal multiplicative

character mod ¢. Our goal is to estimate character sums of the form

Salg:N) = 3 A(n)x(n +a), (3.1)

n<N

where a is an integer relatively prime to ¢ and A(n) is the Von Mangoldt function defined
by

k

logp if n=p® and p prime,

A(n) =

0 otherwise.

For prime modulus ¢, Karatsuba [43] has given a nontrivial estimate of the sums
Sa(g; N) in the range N > ¢'/?t=. Recently, much more general sums over primes have
been considered by Fouvry, Kowalski and Michel [25]. A special case of their result (see [25,
Corollary 1.12]) gives nontrivial bounds for character sums to prime modulus ¢ with a
very general class of rational functions over primes and is nontrivial provided N > ¢3/4t¢.
Rakhmonov [54, 55] has shown that nontrivial cancellations in the sums S,(g; N) also
occur in the case of general modulus ¢, but only in the narrower range N > ¢'*¢. This
range has been extended by Friedlander, Gong and Shparlinski [26] to N > ¢%9%¢ where
the bound

[Salg: N)| < (NT/3H/2 4 N3/32¢71/18) o), (3.2)
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is given for N < ¢'9/9. Recently Rakhmonov [56] has shown that
Sa(q; N) < Ne~Viesa, (3.3)

provided N > ¢%/6+°(1)  Comparing the bound of Rakhmonov (3.3) with the bound of
Friedlander, Gong and Shparlinski (3.2), we see that (3.3) is valid for a wider range of the
parameter N although is quantitatively much weaker than (3.2). In this paper we improve

on the strength of Rakhmonov’s bound.

3.2 Main Result

Our main result is as follows.

Theorem 3.1. For N < g we have

1Sa(q; N)| < (Nq—1/24 +(]5/42]\76/7) qo(l).

We see that Theorem 3.1 is nontrivial provided N > ¢%/6+°(1) and can be considered as
comparable on a quantitative level to the bound of Friedlander, Gong and Shparlinski (3.2)

as it also gives a power saving.

3.3 Reduction to Bilinear Forms

As in [26] our basic tool is the Vaughan identity, see [60].

Lemma 3.2. For any complexz-valued function f(n) and any real numbers U, V' > 1 with
UV < N, we have

> AM)f(n) < i+ o+ g+ [Tl
1<n<N

where

P2 = (logUV) Y | >, flsv)],

v<UV |[s<N/v

Y3 = (logN) ) max| » = f(sv)|,

v<V 7 |w<s<N/v
Sio= ) MO DD uld)f(ke).
k<N dlk,d<V
k>V (>U
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where p(d) denotes the Mébius function and is defined by

(—1)“(d), if d squarefree,
p(d) =
0, otherwise,

and w(d) counts the number of distinct prime factors of d.

3.4 The Pdlya-Vinogradov Bound

The following is [26, Lemma 4].

Lemma 3.3. For any integers d, M, N,a with (a,q) = 1 and any primitive character x

mod ¢ we have

N
Z X(dn + G) S (d, q)ﬁ + q1/2+0(1).
M<n<M+N q

In [26], Lemma 3.3 was used to show [26, Lemma 5] which we state as follows.

Lemma 3.4. For any integers M, N,a with (a,q) = 1 and any primitive character x

mod ¢ we have

> xn+a) <0 g
M<n<M+N
(n7Q):1

3.5 Burgess Bounds

The techniques of [26] combine a basic sieve with the amplification method to reduce

> x(n+a),

n<N
(n,q)=1

bounding the sums

to bounding the mean values

S (ﬁ@ + dw) % ( I e+ dw)

r=1 =1 1=r+1

\%

>

V15,027 =1

. r=23. (3.4)

The argument of [26] proceeds to bound the mean values (3.4) by completing outer sum-

mation to result in sums of the form

ix(ﬁ@w))X(ﬁ(xw))' )

=1 =1 i=r+1

dv

2

V15,027 =1
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We give a slight improvement on [26] by modifying the method of Burgess [9, 13] to
bound the mean values (3.4) directly.

3.5.1 The Case r =2

We use a special case of [9, Lemma 7].

Lemma 3.5. For integer q let x be a primitive character mod q and let

fi(z) = (x — dv1)(z — dv2), fa(x) = (x — dvs)(xz — dvy).

Suppose at least 3 of the integers vi,va,v3 and vy are distinct and define
A; = [ (dvi — dvy).
J#
Then we have

< 8°@ql/2(q, Ay),

> x(fA@)x(fa())

for some A; #£ 0.

The next Lemma is based on Lemma 3.5 and ideas from the proof of [9, Lemma 8§].

Lemma 3.6. For any primitive character x mod q and any positive integer V. we have

Vv 4
5 [ (Te o) x (LT 0)| < 020 v
V1,...,04=1 |z=1 =3

Proof. We divide the outer summation of

q 2 4
Z X (H(a: + dvi)> X (H(m + dvﬁ)

=1 =3

\%4

>

v1,V2,V3,04=1

)

into two sets. In the first set we put all v1,v9,v3 and v4 which contain at most 2 distinct
numbers and we put the remaining v1,ve,vs and v4 into the second set. The number of

elements in the first set is < V2 and for these sets we estimate the inner sum trivially.

This gives
14 q 2 4
Z Zx<H(x+dvz> (H —&-de)
V1,...,04=1 |z=1 i=1 =3
\4 , q 2 4
qV? + Z X (H x + dv;) ) (H(:U + dvi)> ,
V1,...,04=1 [z=1 i=1 =3
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where the last sum is restricted to v1,vs9,v3 and vy which contain at least 3 distinct

numbers. With notation as in Lemma 3.5 we have

V/ q V/ 4
SIS (@) x (a@)] < ¢ /20 3 S (40).

V1,...,04=1 |z=1 V1,...,0a=1 14
Since

i#] i#]

we see that

v / 4 v / 4
Z Z (Aivc.I) < (d3aQ) Z Z (A;7Q)u

V1,...,04=1 1=1 V1,...,0a=1 1
A0 Ai#0

and in [9, Lemma 8] it is shown

from which the result follows. O

Using Lemma 3.6 in the proof of [26, Lemma 10| we arrive at the following bound.

Lemma 3.7. For any primitive character x mod q and integers M, N, a and d satisfying
N <@Ba ™t d<q'% (a,q) =1,

we have

Z X(dn+CL) S q3/16+0(1)d3/8N1/2.
M<n<M+N

3/8

Proof. We proceed by induction on N. Since the result is trivial for N < ¢°/° this forms

the basis of the induction. We define
U = [0.25Nd%2¢~ Y4, vV =[0.25d7%/2¢"/4],
and let

U={1<u<U : (udg) =1}, V={1<ov<V : (v,q9)=1}
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By the inductive assumption, for any € > 0 and integer h < UV < N we have

Z x(dn+a)| < Z x(d(n+h) +a)| + 2q3/16+5d3/8h1/27
M<n<M+N M<n<M+N

for sufficiently large q. Hence

Z X(dn+a) < |W|+2q3/16+€d3/8(Uv)1/2
ManShAN i ’ Id

where

W:ZZ Z x(d(n 4+ uv) + a)

ueU veV M<n<M+N

=Y x(w) > D x((dn+a)ut +dv).

uel M<n<M+N veY

We have

Z X(z + dv)

veY

UAEDPIE
r=1

where v(x) counts the number of representations z = (dn + a)u™! mod ¢ with M < n <
M+ N and v el.

Two applications of Holder’s inequality gives

it () (S50 3

=1 =1

4
Z x(z + dv)

veY

From the proof of [26, Lemma 7] we have

M=

q
v(z) = N#U, Zl/2(l‘) < <dNU + 1> NUgW,
q

r=1

and by Lemma 3.6

>

z=1

ZX x + dv)

vey

Z Zq:x<ﬁ x+dvz> (f[ x+dv,>

V1,...04EV =1 =1 7

=3
1% q 4
Z X(Hm—kdw) <Hx+dvz>‘
=1 i=1 =3
)

V1,...04=1

< V2q1+0(1 ’

.

since V < d=3/2¢/4,
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Combining the above bounds we get

N
Wt < (d qU + 1) NU(NU|)?V2giTel),

Since
U =Ug’, V| =veW,
we have
dYAN VAN 3/16+¢ 13/8 1/2
Z x(dn + a) S(VI/Q +U1/4V1/2 °W 243716+ @38 ()2,
M<n<M+N

Recalling the choice of U and V' gives

dN 1
E x(dn+a)| < <1/8 +q3/16d3/8N1/2> qo(l) + §q3/16+sd3/8N1/2'
M<n<M+N q

Since by assumption
N < /8454,

we see that for sufficiently large ¢
S Xdnta)| < ¢/OBENY2PM %q3/16+€d3/8N1/2

M<n<M+N
< P16+ BN/,

In [26, Lemma 11] it is shown that

S x(n+a)| < gYHHONI
M<n<M+N
(n,q):l

provided N < ¢%®. Our next Lemma can be considered as an improvement on this bound.

Lemma 3.8. Let x be a primitive character mod q and suppose (a,q) = 1. For N <

¢/ we have

Z X(n—i—a) < q3/16+o(1)N1/2‘
M<n<M+N
(n,q)=1
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Proof. We have

Yo xnta) = > ud) > x(dn + a)

M?nS)M—&-N d|q M/d<n<(M+N)/d
n,q)=1

SZ Z x(dn +a)|.

dlg |M/d<n<(M+N)/d

Let
N1/2
P16 |

Z:

and partition outer summation according to Z. By Lemma 3.7 we have

Z Z x(dn+a)| =

dlg |M/d<n<(M+N)/d

Z Z x(dn+a)| + Z Z x(dn + a)

dlg |M/d<n<(M+N)/d dlg |M/d<n<(M+N)/d
d<Z d>Z

_ N
< Z 31600 g=1/8 \1/2 | Z s
dlq dlq

<z d>Z
By choice of Z we get
N N
Z §/16+0(D) g=1/8 N1/2 Z = < <q3/16N1/2 + Z> ) < 16+ N1/2,
dlq dlq
d<z d>7

which gives the desired bound.

It remains to check that the conditions of Lemma 3.7 are satisfied. For each d|q with

d < Z we need
% < P d < glle,

which on recalling the choice of Z is satisfied for N < ¢*3/72. O

3.5.2 The Case r =3

Throughout this section we let

fi(x) = (x + dv)(z + dv2)(x + dvs),  fa(z) = (z + dva)(x + dvs) (z + dvg), (3.5)
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and
F(z) = fi(z)f2(z) = fr(2) f(2), (3.6)

and write v = (v1,...v). We generalize the argument of Burgess [13] to give an upper

bound for the cardinality of the set

A(s,s') ={v e Z® : 0 <wv; <V, there exists an = such that

(s, fi(@) fa(2)) =1, s|F(x), s|F'(x), s'[F"(z)},

which will then be combined with the proof of [13, Theorem 2] to bound the sums (3.4).

The proof of the following Lemma is the same as [13, Lemma 3].

Lemma 3.9. Let s'|s and consider the relations

()‘78) =1, (fl(_t)7‘9/8,) =1, (37)
6(f1(X) 4+ Mo(X) =6(1+ N (X +1)® mod s, (3.8)
6(1+A) =0 mod s (3.9)

Let

Ai(s,s)={(v,\, ) €Z® : 0<v; <V, v; # vy, i >2,
0<A<s, 0<t<s/s, (3.7), (3.8), (3.9)},

then we have

|A(s, s")| < V3 4+ |A1(s,8)].

We next make the substitutions

Y=X +dU1,
V;;:’L)Z'—Ul, ’iZ?, (3.10)
T=t—dvy mod s/s,

so that
AX) =YY +dVa)(Y +dVs) =Y? +d(Va + V3) Y2 + d®VLV3Y

=g1(Y), (3.11)

fo(X) = (Y +dVy)(Y +dV5)(Y +dVg) = Y3 +do Y? 4+ d?02Y + do3
= g2(Y), (3.12)
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where

o1 =Va+ Vs + Vs,
o2 = ViV + ViV + V5 Vs,
o3 = ViVsVs.

We see that (3.8) becomes
6(g1(Y) +Ag2(Y)) =6(1 +N)(Y +T)> mod s.
The proof of the following Lemma follows that of [13, Lemma 4].
Lemma 3.10. With notation as in (3.10) and (3.13), consider the relations
(s/s'\T)=1, (s/s,T—dV3) =1,
6d*T3 (Vi — 01V + 09) — 18d%03T? + 18d*V303T — 6d°Vio3 =0 mod s,
6d303 =0 mod ¢,

and let

AQ(SaS,) = {(‘/37 Vzl? V:t;, V67 T) S Z5 :

0<|Vi| <V, 0<T <s/s, (3.15), (3.16), (3.17)}.

Then we have

|A1(s,8")| < (d,s)V(1+V/q)|Aa(s,s)|.

Proof. We first note that (3.7) and (3.10) imply (3.15). Let

Bl:{(‘é7‘/37v217‘/5a‘/67T) EZG 0« ’V;| S‘/’

0<A<s, (\,s)=1,0<T<s/s,(3.9),(3.14),(3.15)},

so that
|Ai(s,8')] < VIBil.

Using (3.11) and (3.12) and considering common powers of ¥ in (3.14) we get
6d(Va+ Vs 4+ A1) =18(1 + AT mod s,

6d*(vaV3 + Ao) = 18(1 4+ \)T?  mod s,

6d°Xo3 = 6(1+ \)T? mod s.

42
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By (3.18) we see that
6dVs = 18(1 + \)T — dVs — dAoy  mod s,
which has O ((d, s)(1 + V/q)) solutions in V5.
The equations (3.9) and (3.20) imply that
6d%03 =0 mod ¢,

6(1+X) =0 mod s,

and
6A(d%03 — T3) = 6172 mod s. (3.21)

Combining (7,s/s") = 1 with the above equations implies that there are O(1) possible
values of A. Finally combining (3.18), (3.19) and (3.21) gives (3.16). O

The following is [13, Lemma 2].

Lemma 3.11. For any integer s, uniformly over all polynomials G(X) with integer coef-

ficients and fized degree, we have
o<z <s Gx)=0 mods, (s,G'(x))]6}] < sV,

as s — 0oQ.

The proof of the following Lemma follows that of [13, Lemma 5].

Lemma 3.12. For s"|(s/s') consider the relations
(s,6d%03) = 5’5", (3.22)

6d*(V¢ — o1V +02) =0 mod s, (3.23)
and let
As(s,s', ") = {(Va, Vi, Vs, V) € Z* : 0 < V3| <V, (3.22), (3.23)}.
Then we have
|Ag(s,s")| < s Z s"|As(s, s, s")|.
s"|s/s'

Proof. For s"|(s/s') let

Al(s, s, 8") = {(V3, V4, V5, Ve, T) € Aa(s,8) : (3,6d303) =s's"},
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then we have

[Az(s,s)) = > [Ab(s, ', 5")]. (3.24)
511(s/5")
Let S = (¢/,s/s') so that (s'/S, s/s") = 1. For points (Va, Vy, Vs, Vs, T) € As(s,s',s”) since
6d03 =0 mod Ss”, (3.25)
we have by (3.15), (3.16) and (3.22)

6d*(VE —o1V3 +02) =0 mod Ss”. (3.26)

By (3.16) this implies that

6d*(VE — o1V3 + 02) pa 18d%03 e
S B S
18d*o3V3 6d°0o3VE
+ o T — S 3 =0 mod s/(s's"). (3.27)
Let
2(V7/2 _ 1 3 1 4 5 2
G(T):Gd (VS 01V3+0’2)T3_ 8d U3T2—|— 8d 0’3V3T_6d O’3V3 :
SS// SS// SS” SS”
so that )
18(130'3

3G(T) - TG(T) = — (T — dV3)2.

SSI/
Writing 6d303 = s's”0’ with (0/,s) = 1 we see from (3.15) that for some integer y with

(y,s/s") =1 we have
3s’

3G(T) — TG/(T) = -

Y.
If Ty is a root of G(T) (mod s/(s's”)) then from (s'/S,s/s") =1 we get
(G'(Tv), s/ (s's"))I6,

hence by Lemma 3.11 the number of possible values for T is < s”s°(1). Finally (3.26)
implies
6d*(Vi — o1V +02) =0 mod s”,

and the result follows from (3.24). O

Lemma 3.13. With notation as in Lemma 3.12, for integers s,s',s" satisfying s'|s and
s"|s/s" we have
|As(s, s, s")| < (d®, s)Vis°M) /(s's").
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Proof. Bounding the number of solutions to the equation (3.23) trivially and recalling the

definition of o3 from (3.13) we see that

\Ag(s,s',s”)]
<VH{(Va, V5, Vo) € Z2: 0 < [Vi| <V, (5,6d°VaV5Ve) = s's"}. (3.28)

Writing s = (d3, s)s; and d® = (d?, s)d; and considering
(5,6d3V,VsV) = 5's”,

we see that
(s1,6V4V5Vg) = s’s”/(dg, s).

For integers s1, so, s3, let
As(s1,s2,83) = {(Va, V5, Ve) € Z° : 0 <|V;| SV, 51|6V4, 52[6V5, s3/6V5}.

From (3.28)
|Asz(s,s',8") <V > | A4 (s1, 52, 83)],

s15283=s's""/(d3,s)

and since

V3 (d3,5)V3
515953 s's"”

)

|A4(s1, 82, 83)] <

we see that . i o
|As(s, ', s")| < M

SIS//

Lemma 3.14. Let s'|s and

A(s,s) ={veZ® : 0<w <V,there exists an z such that

(s, fr(@) fa(z)) = 1, s|F(x), s|F'(x), s'|F"(x)}.

Then Ve v
‘A(S,S,)‘ < (d, 8)4 < + S/) qO(l) 4 V3.

ss’

Proof. Combining Lemma 3.9, Lemma 3.10 and Lemma 3.12 we get

v
|A(s, ") < V3 +(d, s) <1 + s> 14 Z 5" As(s, 8, 8.

SII‘S/SI
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Applying Lemma 3.13 to summation over s” gives

so() (d3,s)V*

S/

Z s"|As(s, 8", 8" <

S/I‘s/s/

O
For integer ¢, we define the numbers hj(q), ha(q), hs(q) as in [13]
hi1(q)? = smallest square divisible by g,
ha(q)® = smallest cube divisible by g, (3.29)
hs(q) = product of distinct prime factors of g.
The following is [13, Theorem 2.
Lemma 3.15. Let x be a primitive character mod q and let
q = 40919243, (3.30)
where the q; are pairwise coprime. Let the integers lg,l1,lo satisfy
lolh1(q0)/Rh3(q0), lilha(q1)/hs(q1), l2lha(g2)/h3(g2), (3.31)
and consider the relations
o (@1a208)|F(@), (F(@), ha(q0)) = lo (3.32)
l1ha(g2q3)|F' (), (F'(), ha(q1)) =, (3.33)
laha(g3)|F"(2),  (F"(2), ha(g2)) = la. (3.34)
Letting
C= C(l()a ll, ZZa q0, 91, 92, q3) = {1 <x<gq: (332)3 (333)a (334)}3
we have
1)1
S XA @)R(fa())| < g/zrom (28l T
zeC h2(qQ)

Lemma 3.16. For any primitive character x mod q and any integer V < ¢*/9d—2 we have

\%4 q 3 6
Z Z X (H(x + dvi)> X (H(:E + dvi))
=1 \i=1 i=4

V1,...,06=1
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Proof. With notation as above and in (3.5) and (3.6)

Zx<H:v+dvi)>X<f£x+dvz>

rx=1

|4

2

V1,...,U6=1

<>

di,l;

ZX fl )) ’

zeC

where the last sum is extended over all q1, g2, g3, 94 and [y, 1,2 satisfying the conditions
of Lemma 3.15. By Lemma 3.14, for some fixed ¢, ..., q4 satisfying (3.30) and I, [y, 2
satisfying (3.31)

14
V1,...,U

6 5 1/2
liha(g2q3)l2h2(q3) l2h2(CI3) ha(g2)

((q, d)*VO¢' % + (q,d)' VO3 + V3q) ¢°W,

Zq: (ZHI (z + dvi)> X <ﬁ(:p + dv,-))

=1 i=4

where the last inequality follows from the definitions of [;, h; and ¢;. The result follows
since the term V3¢ dominates for V < ¢'/6d=2. O

Lemma 3.17. For any primitive character x mod q and integers M, N, d and a satisfying
N <qRd32 d< ¢ (a,q) =1,

we have

Z x(dn + a)| < /9o 23 N2/3,
M<n<M+N

Proof. Using the same argument from Lemma 3.7, we proceed by induction on N. Since

the result is trivial for N < ¢!/3, this forms the basis of our induction. Define
U =[05Nd*>¢ %), Vv =1[0.5d"%¢"9],
and let

U={1<u<U : (u,dg)=1}, V={1<v<V : (v,q9)=1}
Fix € > 0, by the inductive hypothesis for any integer h < UV < N we have

Y xln+a)<| Y x(dn+h)+a)| +2¢" PR,
M<n<M+N M<n<M+N
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for sufficiently large q. Hence

> X(dn+a)| < MM]W!+2q1/9+5d2/3(UV)2/3

M<n<M+N
where
W=>>" >  xdn+w)ta)=> x@ D> > x((dn+au ' +dv).
ueU veV M<n<M+N ueU M<n<M+N vey
We have .
W< vl@) Y x(@ + dv)
z=1 veVY

where v(x) counts the number of representations z = (dn + a)u™! mod ¢ with M < n <

M + N and v € U. Two applications of Holder’s inequality gives

wW|® < (qul v%c)) (iv<w>>42q:

z=1

6
Z x(x + dv)

veY

As in Lemma 3.7

By Lemma 3.16

Z ZX (x + dv)

= > ZX (f[ + dvi)> X (ﬁ(x + d@)

z=1 |veY V1,.. U@GVI 1 i=1 i=4
q 3 6
v1,...v6=1 |z=1 i:l =4

S V3q1+0( )

The above bounds combine to give
dNU
wiE < (B0 1) N Wy () 0,
which implies

dl/GN q1/6N5/6

o(1 1/9+€ 12/3 2/3
Z x(dn + a) S(VUQ +U1/6V1/2>q()+2q/ UV,
M<n<M+N
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On recalling the choices of U and V' we get

g dn+a)| < d'°N + 1/9+0(1)d2/3N2/3+2 1/9+¢ 2/3 \r2/3
x(dn +a)| < W q gq .
M<n<M+N

Since 7/
N
az]l/lz < q1/9d2/32\12/3 when dN <q13/24,

we have by assumption on N and d

Z dn +a)| < q1/9+o(1)d2/3N2/3+§q1/9+sd2/3N2/3

M<n<M+N
< gMoHe g3 N3,

for sufficiently large q.

In [26, Lemma 8] it is shown that

Z X(n + a)| < g2/21Ho N/T,

M<n<M+N
(n7Q):1

provided N < ¢7/12. Our next Lemma can be considered as an improvement on this bound.

Lemma 3.18. Let x be a primitive character mod q and suppose (a,q) = 1. For N <

¢23/*2 we have

Z X(n+a) < q1/9+0(1)N2/3.

M<n<M+N
(n,q)=1

Proof. We have

Y x(n+a)| =D ud) > x(dn + a)

M<n<M+N dlq M/d<n<(M+N)/d

(n,q)=1
< Z Z x(dn+a)|.
dlg |M/d<n<(M+N)/d
Let
1/3
oo ||
q*/®
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then by Lemma 3.7 we have

Z Z x(dn+a)l =

dlg |M/d<n<(M+N)/d

Z Z x(dn+a)| + Z Z x(dn + a)

dlg |M/d<n<(M+N)/d dlg |M/d<n<(M+N)/d
d<z d>7
N
< Z q1/9+o(1)N2/3 i Z -
dlq dlq
d<z d>7Z

Since by choice of Z

N N
1/9+0(1) A72/3 i 1/9a72/3 | 1V ) o(1) 1/9+0(1) A72/3
Eq N +§d§<qN +Z>q <q N=/2,
dlq dlq
d<Zz d>Z

we get the desired bound.

It remains to check that the conditions of Lemma 3.7 are satisfied. For each d|q with
d < Z we need
% < q"2q732 g < g2,

and from the choice of Z, this is satisfied for N < ¢23/42, O

3.6 Complete Sums

The results of this section will be used to derive new bounds for bilinear character sums.

Lemma 3.19. Let x be a primitive character mod q. For integers uy, us, A we have

q
> x(n A+ w)X(n + up)e®™ A

n=1

q
= > X+ Nx(n) et -/l

n=1

Proof. Let

be the Gauss sum, so that

r(0l=¢"? and > x(n)e*™ ™7 =x(a)T(x).
n=1
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Writing
q
x(n + u1) % Z |)e2ritntuni/a
X A1=1
and
1 < .
Xn+wuy) = (7 Z x(A 27”(”+U2)>\2/q7
A2=1
we have
q .
> x(n+ un)X(n + ug) ™ =
n=1
a q q
e Z Y()q)627”"\””2/qX()\Q)e%i)‘ng/q Z 2min(A+FAL+A2)
X A=1X2=1 n—1
Since
g q q
Z Z Y()q)627Ti)‘1m/qX()\Q)ezmAZm/q Z e2min(A+A1+A2) _
1=12=1 n=1
X( —27rzu2>\/qq Z )\1 + )\ ) 27ri)\1(u1—U2)/q’
A1=1
we have
1 q
Z n+u1) (n+u ) 2miAn/q (q Z n+)\ 27rin(u1—u2)/q
7(X)|
n=1 o

Zq: 27rin(u1 —u2)/q )

O]

Lemma 3.20. Let x be a primitive character mod q. For integers b and A with b Z 0

mod ¢ we have

q
Z X (1 + b> eZTri)\n/q < (b, q)q1/2+0(1)'

Proof. Consider first when A =0 (mod ¢). By Lemma 3.19

q

Z ’2 2mibn/q| _

d b
Z y(1+= 627ri>\n/q
n

o1
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and from [42, Equation 3.5] we have

q
Z e?mbn/q < bq)

This gives

q
E : X<1+b) 2mwiAn/q < (b Q) (b q) 1/2+o(1)'
n

Next consider when A #Z 0 (mod ¢). We first note that if x is a character mod p
with p prime then we have from the Weil bound (see [59, Theorem 2G]J)

For p prime and integers \,b,c and o we let N(A,b,¢,p®) denote the number of

solutions to the congruence
M?=cb modp® 1<n<p® (n,p) =L (3.35)

We have
N\ b, c,p™) < 4(A, p%), (3.36)

since if there exists a solution n to (3.35) then (X,p*) = (cb,p®). This implies that that

for some integer a with (a,p) = 1 we have
n®=a (mod p®/(p®,\)). (3.37)

The bound (3.36) follows since there are at most 4 solutions to (3.37).

Suppose g = p>* is an even prime power and let ¢ be defined by
X(l +pa) _ e?m’c/po‘_

From the argument of [9, Lemma 2] (see also [42, Lemma 12.2]) we have by (3.36)

q

Z < ) 2TN/a| < pAN(A b, ¢) < (A, )q"/2.
n=1
n,q)=1
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20+1

Suppose next ¢ = p is an odd prime power with p > 2 and let ¢ be defined by

X(l +pa+l) — 627ric/p°‘.

From the argument of [9, Lemma 4] (see also [42, Lemma 12.3]) we get

q
b ,
D X <1 + n) 2T < pREDEN (A, ¢,p%) + PN (A b e,
< (A\q)q'.

Finally if ¢ = 229*1 then from the argument of [9, Lemma 3]

q
b .
2 : Y (1 + > 627rz)\n/q < 21/22aN(A, b, c, pa)
n
n=1

(n,q)=1

< (N q)g?.

Combining the above bounds gives the desired result when ¢ is a prime power.

For the general case, suppose x is a primitive character mod ¢ and let ¢ = p{" p§2...p*

be the prime factorization of ¢. By the Chinese Remainder Theorem we have

X = X1X2---Xk>

where each x; is a primitive character mod p;*. Let ¢; = ¢/p*. By the above bounds
and another application of the Chinese remainder theorem (see [42, Equation 12.21]) we

have for some absolute constant C

n=1
(n,q)=1
L " b b
Z L. Z X1 (1 4 k) eZm)\nl/pllka (1 + k> e27rz)\nk/pi
ni=1 np=1 Z’i:l niq; Zizl n;q;

(n1,p1)=1  (ng,px)=1

g

p k
i b e .
=Tl > x (1 * )e2mni/pi < [T p2p 7 < (A, q)g"/*+e),
3 =1

=1 n;=1 idi
(ng,pi)=1
and the result follows from Lemma 3.19. OJ
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3.7 Bilinear Character Sums

Lemma 3.21. Let K and L be integers and for any two sequences (o)X, and (Bo)k_, of

complex numbers supported on integers coprime to q and any integer a coprime to q let

W=> > oxBex(kl+a)

k<K ¢<L

Then we have
W< (KLl/Q—i— (1+K1/2q_1/2)q1/4K1/2L) W,

where

maxfog|  an max ||

Proof. By the Cauchy-Schwarz inequality

WP < A2K Y1 Bex(ke + a)

k<K |¢<L

< A’B’K*L + Z Z B, Be,x (kb1 + a)X(klz + a)| .

k<K €1,62<L
0140y
Let
Wi=Y > BuBux(klr+a)x(kls + a).
k<K #1,02<L
0140,
We have

32 - —2mis : -1\ - mis
W1 37 ST e AN (At aly XA + aly e

l1<la<L |s=1k<K A=1
(€1,9)=1
(£2,9)=1
q q
372 —2misk/q —1\— —1\ 2misA/q
< Z Z Ze XA+ aly XA+ aly e .
q l1<la<L s=1 |k<K A=1
(€1,9)=1
(£2,9)=1
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By Lemma 3.20

q
D> XA+ aly X+ aly eV <«

Z i 267271'72516/(]

l1<la<L s=1 |k<K A=1
(£1,9)=1
(£2,9)=1
3 zmm( H)wl _ 5, q)gl/2+el),
01 <la<L s= 1 q

Since
RURIAES DI SETENS 3) SESAYL)
01,05<L 0<L 01 ,05<L dlq <L
01 #Llo 1 <la d‘f
01 —la=L
we get

< — 1 1/240(1) 72 « B2 K\ 1/24001)72
|W1| min | K, q L*<B° |1+ q L~.
[Is/qll q

This implies that

W|* < A’B’K (KL + <1 + I;) q1/2+0<1>L2> .

O]

Next, we use an idea of Garaev [30] to derive a variant of Lemma 3.21 in which the

summation limits over £ depend on the parameter k.

Lemma 3.22. Let K, L be natural numbers and let the sequences (L), and (My)K

—y of

nonnegative integers be such that My < Ly < L for each k. For any two sequences (ozk)k:1

and (Bg)ngl of complex numbers supported on integers coprime to q and for any integer a

coprime to q, let

/W/: Z Z ozkﬁgx(k€+a).

k<K M), <t<Ly

Then we have
W < (KL1/2 ra +K1/2Cf1/2)C]1/4K1/2L> qo(1)7

where

A= d B = .
max|ax|  an max | 3|

Proof. For real z we denote
er(z) = exp(2miz/L).
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Considering summation over ¢ in the definition of W, we use the orthogonality of expo-

nential functions to get

> bkt =Y Y Bkt Y enlr(t—)

M, <t<Lyg (<L Mg <s<Ly —%L<T§%L
1
=7 Z Z eL(—rs)ZﬁgeL(rﬁ)X(M—i—a).
—SL<r<3L Mi<s<Ly (<L

In view of [42, Bound (8.6)], for each k < K and every integer r such that |r| < 1L we

can write

Z er(—rs) = Z er(—rs) — Z er(—rs) = nk,rwil,

My, <s<Ly s<Lg s< My,
for some complex number 7, < 1.

Letting ay,, = ag 1k, and Bgﬂn = Brer(rl) we may write

Z Z ag Bex(kl 4+ a) = Z |r\1+ 1 Z Z amfég,r X(kl + a).

Ko<k<K M <t<Ly “lpcr<lin k<K ¢<L

Applying Lemma 3.21 with the sequences (ay )5, and (EE,r)gL:p and noting that

1
Y <logl,
S Il
—5L<r<;L

we derive the stated bound. O

3.8 Proof of Theorem 3.1

Considering the sum

we apply Lemma 3.2 with

x(n+a) if (n,q) =1,

0 otherwise.

fn) =

56



Chapter 2. Character Sums over Shifted Primes

3.8.1 The sum X

For 37 in Lemma 3.2 we apply the trivial estimate obtained from the Prime Number

Theorem

Si=Y An)f(n)| < U.

n<U

3.8.2 The sum ¥,

We have

Yo = (logUV) Z Z X(sv+a)| = (logUV) Z Z x(s +av 1.

v<UV |s<N/v v<UV |s<N/v
(’U,q)zl (s,q):l (’Uyq)zl (S,q)=1

Since N < g, an application of Lemma 3.4 gives

Z Z X(s—i—aqfl) < Z q1/2+0(1)

,USNq743/72 SSN/’U ,USNq743/72
(vg)=1 I(s,9)=1 (v,9)=1

< Ng~T/72+o1),

By Lemma 3.8
Z Z (s + av 1| < 16+ N1/2 Z o172
Nq—43/72 cy< Ng—11/24 (SSJ;UU Nq—43/72 cy< Ng—11/24
(U7Q):1 5,4 =1

< Ng~V/24to()),
and by Lemma 3.18

Z Z X(S—i—aﬂ)_l) §q1/9+0(1)N2/3 Z ?}_2/3

Nqg—11/24<y<yV | s<N/v Nq~11/24<y<UV
(v,9)=1 (s,4)=1

S q1/9+0(1)N2/3(UV)1/3.
Combining the above bounds gives

¥, < (Nq—1/24+0(1) +q1/9N2/3(UV)1/3) .
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3.8.3 The sum ;3

Arguing as above, we get

25 = (log N) Z max Z X(s +av )| < (qu1/24+o(1) +q1/9N2/3V1/3) W,
v<V w2l w<s<N/v
(v,9)=1 (s,9)=1

3.8.4 The sum >,

For the sum X4, we have

Sa= ), AR Y AWOx(kL+a),
U<k:§% V<U<N/k
ged(k, ¢)=1
where
A(l) = p(d), ged(l,q) =1,
dle, d<v
and

We note that
A(k) <logk <k°V  and  |A(0)| < 7(¢) < ¢,

Separating the sum 34 into O(log N) sums of the form

WE) = > Ak) D AW@x(kl+a),
K<k<2K V<¢<N/k
ged(k, g)=1

where U < K < N/V.

By Lemma 3.22 we have

W(K) < <K1/2N1/2 +a JrK—1/2(fl/2)ql/zqu/z]\,) o
3.38
< K1/2N1/2 +q1/4K*1/2N+Nq71/4+0(1)? ( )

so that summing over the O(log N) values of U < K < NV~ gives

Sy < (NV*1/2 +q1/4NU*1/2 +Nq*1/4) (Nq)o(l).
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3.8.5 Optimization of Parameters

Combining the estimates for 31, Y9, X3 and 34 gives
Sa(q: N) < (Nq—1/24+0(1) LU+ NV-V2 4 g ANy —1/2 +q1/9N2/3(UV)1/3> (Nq)o(l)‘
We choose U = ¢/2V to balance the terms NV /2 and ¢"/4*NU~Y2 which gives
Sa(q: N) < (Nq—1/24+o(1) LU+ NV Y24 q5/18N2/3V2/3> (Nq)o(l)‘
Choosing V = N2/7¢=5/21 {0 balance the terms NV ~/2 and ¢*/®N2/3V2/3 we get
Salq: N) < (Nq71/24+0(1) 4 VAN q5/42N6/7> (Nq)o(l)_

We have U >V > 1 when N > q5/6 which is when the term q5/42N6/7 becomes nontrivial.

Also we need
UV — q1/42N4/7 <N

which is satisfied for N > ¢!/® which we may suppose since otherwise the bound is trivial.
Finally we note that we may remove the middle term, since it is dominated by the last
term for N > ¢!/
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Mixed Character Sums

4.1 Introduction

4.1.1 Background

Let g be an integer, x a primitive multiplicative character mod ¢ and F' a polynomial of
degree d with real coefficients. We consider a variety of character sums mixed with terms
2miF (n)

of the form e . The simplest example of such sums is given by

> x(n)ermre), (4.1)

M<n<N+M

For prime ¢, these sums were first studied by Enflo [22] who outlines an argument based

on Weyl differencing which gives the bound

1S(x, F)| < N1~1/2r g(r41)/27+2r2+0(1)

)

for integer » > 1 and is nontrivial provided H > ¢'/4t%. This bound was improved by
Chang [15] who showed that

1S(x, F)| < Ng™°, (4.2)
provided N > ¢1/4+% and

52
T A1 +20)(2+ (d+1)2)

€

In the same paper Chang considers a generalisation of the sums (4.1) to arbitrary
finite fields. More specifically, let ¢ be prime, n an integer, x and ¥ multiplicative and

additive characters of Fy» respectivley and F' a polynomial of degree d with coefficients in
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Fgn. Let wy,...,wy, be a basis for Fy» over IF, and let B denote the box
B={whi+ - 4+wyh,:1<h; <H}

Chang showed that
D x(W(F(h) < H"q ", (4.3)

heB
when H > ¢'/4t9 and ¢ is given by

5n

ST 20)2nt (dr1)?)

Recently, Heath-Brown and Pierce [38] have improved on the bound of Chang (4.2)
for prime fields showing that, subject to some conditions on r related to Vinogradov’s

mean value theorem, we have

Z X(n)627riF(n) < lel/rq(r+lfd(d+l)/2)/4r(rfd(d+l)/2) ) (44)
M<n<M+N

The above bound can be compared directly with the result of Chang by noting that for
small 6 and N > ¢*/4t9, we have

N1I-Urg(r+1=d(d+1)/2)/ar(r=d(d+1)/2) < Ng—2

where e behaves like (see [38, Section 4.2])

2
2
e~ 0 as 6 — 0.
1+ /1+2d(d+ 1)

Pierce [53] also considers a multidimensional version of the sums (4.1). Let q1,...,¢n
be primes, y; a multiplicative character mod ¢; and F' a polynomial of degree d in n

variables. Pierce has given a number of different bounds for sums of the form

S xa(hn) .. xn (b)) b, (4.5)
Ni<h;<N;+H;

In the same paper, Pierce mentions the following problem. Let Lq,...,L, be n linear

forms in n variables which are linearly independent mod ¢ and let F' be a polynomial of

degree d in n variables. Then the problem is to give an upper bound for the sums

n
Lj(h1, ..., hy))e™F(hnshn) (4.6)

=1

x(
H

1<h;<
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The sums (4.6) without the factor e>7#'(h1:-hn) were first considered by Burgess [11] whose

bound was later improved by Bourgain and Chang [6].

4.1.2 New Results

We first consider the problem of extending the bound of Heath-Brown and Pierce (4.4) to

squarefree modulus. The main obstacle in doing this is bounding the double mean value

2r

1 1 4
/ .. / Z Z Box(A + U)QQﬂi(a1v+...+oadvd) doy .. doy.
0 0

A=1 1<V

For the case of prime modulus, Heath-Brown and Pierce [38] combine the Weil bounds for
complete sums with Vinogradov’s mean value theorem. For the case of squarefree modulus,
we can use the Chinese remainder theorem, as done by Burgess [9] for pure sums, so that
we may apply the Weil bounds, although there are extra complications in incorporating
bounds for Vinogradov’s mean value theorem. Doing this we end up with a bound weaker
than for prime modulus, although in certain cases we can get something just as sharp, in

particular when ¢ does not have many prime factors.

We give an improvement on the bound (4.2) of Chang for boxes over finite fields. We
deal with the factor ¢)(F'(h)) in a similar fashion to the case of squarefree modulus. Our
argument also relies on Konyagin’s bound on the multiplicitive energy of boxes in finite

fields [44], Vinogradov’s mean value theorem and the Weil bounds for complete sums.

We show in certain cases we may improve on the results of Pierce for the sums (4.5).
The argument of Pierce relies on a multidimensional version of Vinogradov’s mean value
theorem due to Parsell, Prendiville and Wooley [52]. Our improvement comes from av-
eraging the sums (4.5) in a suitable way so we end up applying the classical Vinogradov
mean value theorem rather than the multidimensional version. Although in order to do
this, we need the range of summation in each variable not to get too short and each of the

¢; in (4.5) not to be too small, so our result is less general.

Finally, we consider the problem mentioned by Pierce in [53], of bounding the sums (4.6).
We obtain a result almost as strong as Bourgain and Chang [6] for the case of pure sums.
An essential part of our proof is the bound of Bourgain and Chang on multiplicative energy

of systems of linear forms.
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4.1.3 New Arguments

Our arguments use a different approach to that of Heath-Brown and Pierce [38]. The tech-

2miF(n) can be thought of as incorporating principles

nique we use to deal with the factor e
of the large sieve. We also mention a paper of Chamizo [14] who considers incomplete

Gauss sums and provides inspiration for some of our ideas.

We briefly indicate our technique for dealing with mixed sums in a general setting.
Let F(z,y) be a polynomial of degree d with real coefficients, ®(k, v) a sequence of complex

numbers and consider the bilinear form

W = ’Ykﬁvq)(ka v eQm’F(k‘,fu).
2. 2. )

1<k<K 1<v<V

Our first step is an application of the triangle inequality

W< >0l D) Bul(k,v)e™FE0))

1<k<K 1<V
Fori=1,...,d, we let
0; = L
AT

so that for 1 < v <V we have

1 .
< =<V

dilv) = sin(2wd;vt) 6

Considering W, we have

01 6d d '
W< Yl max |3 [ [ ) vt et
_5 _

1<k<K Ql,...,0gE€ 1<0<V 84 i1
51 84
. . d
< Z |’Yk‘ max R/ / § : ,B;@(k,v)eQﬂz((al+xl)v+ +(agtzq)v®) dx,
1<h<k V€S- —0d |1<u<V
where

d
Bl =Bu [ [ 0i(v).
=1
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Applying Hélder’s inequality gives

2r—1
w2r < V*(Z'I’fl)d(d‘i’l)/Q Z ’,yk|2r/(2r71)
1<k<K
2r
X max / / (k‘, ,U)627ri((o¢1+z1)y+...+(ad+xd)vd) dx
1<k<K°‘1’ neaR b0 |1 Soay

By extending the range of integration we may remove the condition max,, . ,eRr, since

2r
é
max /1 / (k,v)eQm'((m+x1)v+..,+(ad+zd)vd) N
1<k<KCY1, Lag€ER s 2,
2r
“ Z / Z ”Béq)(k’v)€2m($1”+"'+$dvd) dx.
1<he i 7104 | 52y
Mean values of the form
2r
/ S Bk, vyt tranh) gy (4.7)
0.1 |, 52y

have been considered in a number of previous works, see for example [5, 7, 8, 39, 69], and

are closely related to Vinogradov’s Mean Value Theorem, which we describe below.

Concerning the sums (4.7), we note that one may use results of Bourgain, Demeter
and Guth [8, Theorem 4.1] based on restriction theory to show that (4.7) is bounded by

r

ol <1+Vr—d(d+1)/2> S ek o)’ (4.8)

1<v<V

One may then incorporate summation over k in (4.8) and use properties specific to ® to
obtain a final bound. The author does not use results from restriction theory to bound
the mean values (4.7). It may be possible to improve on the results obtained in this thesis

by incorporating the bound (4.8) in the methods used.

Although our approach is different to that of Heath-Brown and Pierce, we also rely
on bounds for Vinogradov’s mean value theorem. For integers r,d, V, we let J, 4(V') denote

the number of solutions to the system of equations

Vi vl =l b, 1<i<d, 1<v; <V
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Bounds for J, 4(V') are generally referred to as Vinogradov’s Mean Value Theorem. Con-
cerning bounds for J, 4(V'), significant progress has been made by Wooley [67, 68] and very
recently Bourgain, Demeter and Guth [8] have proved the main conjecture for J, 4(V') when
d > 3. In particular, combining the main results of Bourgain, Demeter and Guth [8] with

those of Wooley [68] for the case d = 3, we have for any integers r,d and V/
Jpa(V) < (V7 4 VZ—dd+D)/2)pe),
In particular if » > d(d + 1)/2 then we have the following estimate
T, q(V) < V-t /zho(1)

which will be used in what follows without further reference.

4.2 Main Results

For ease of notation we let D = d(d + 1)/2. Our first two Theorems concern mixed sums

to squarefree modulus.

Theorem 4.1. Let g be squarefree and x a primitive character mod q. Let M, N,r be
integers with v > D + 1 and N < ¢Y/*t1/4=D/2) = For any polynomial F(x) of degree d

with real coefficients we have

Z X(n)esz(n) < Nl—1/Tq1/4r+D/8r(r—D/2)+1/4r(r_D/2)+0(1).

M<n<M+N

Theorem 4.1 is slightly worse than the bound of Heath-Brown and Pierce (4.4) for

prime modulus, although in certain cases we can get something almost as sharp.

Theorem 4.2. Let s be an integer, q squarefree with at most s prime factors and x
a primitive character mod q. Let M, N,r be integers with r > D + s+ 1 and N <

¢\/2TY40=D) - Eor any polynomial F(x) of degree d with real coefficients we have

S X)X < N1V glri=D)Ar=D)to(),
M<n<M+N

Our next Theorem improves the bound of Chang for mixed sums in finite fields [15].
Before we state our result we introduce some notation. Let wy,...,w, be a basis for Fyn
over F, and let F' be a polynomial of degree d in n variables with real coefficients. For
x € Fyn we define F(z) by

F(x)=F(hi,...,hy),
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where

x = hjwi + -+ hpwy.
Theorem 4.3. Let q be prime, n and r integers and x a multiplicative character of Fyn.
Let wy,...,wp be a basis for Fgn as a vector space over IFy. For integer H let B denote the

box
B:{h1w1++hnwn0<h1§H}

Let F be a polynomial of degree d in n variables with real coefficients. Then if r > D + 1
and H < ¢*/? we have

Z X(X) e2m’F(x)

xeB

< ‘B‘ 1f1/rqn(rfD+1)/4r(rfD)+o(1)_

We note that the sums in Theorem 4.3 are slightly more general than those considered

by Chang [15], since any additive character ¢ of Fyn is of the form

1/}(‘7:) — eQﬂiTr(am)/q

)

for some a € Fyn, where Tr(z) is the trace of z € Fyn in IF.

Our next Theorem improves on some results of Pierce [53] in certain circumstances.

Theorem 4.4. Let q1,...,q, be primes which may not be distinct and for each i let x; be
a multiplicative character mod q;. Let F' be a polynomial of degree d in n variables with

real coefficients and let B denote the box
B:{(hl,...,hn) M < by SMl—I—Hl}

For integer v > D + 1, if for each i we have q; > ¢'/20=P) and ¢V/20=P) < H; <

qi1 J241/4(r=D)

D o xa(@1) . xn @)X < (BN grm DA fAr(r=D) o),
xeB

where g = q1 . . . Gn.

Our final Theorem extends a bound of Bourgain and Chang [6] to the setting of mixed

character sums.

Theorem 4.5. Let q be prime, r an integer and x a multiplicative character mod q.
Let L1,...,Ly, be linear forms with integer coefficients in n variables which are linearly

independent mod q. Let B denote the box

B:{(hl,...,hn)il<hi§H},
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and let F' be a polynomial of degree d in n variables with real coefficients. Then if r > D+1
and H < ¢*/? we have

Z Y (ﬁ LZ'(X)> e?m’F(x)

xeB i=1

< ‘B| 1—1/rqn(r—D+1)/4r(r—D)+o(1) )

4.3 Reduction to Multilinear Forms
The following can be thought of a multidimensional version of a technique from the proof
of [28, Theorem 1].

Lemma 4.6. Let n = (ny,...,n,) and G(n) be any complex valued function on the inte-

gers. Let B and By denote the boxes
B={(ny,...,n,) €Z":1<n; <N;, 1 <i<r},

Bo={(n1,...,n,) €Z": =N; <n; <N;, 1 <i<r}.

Let Uy,...,U. and V' be positive integers such that U;V < N; and let U C Z" be any set
such that if (u1,...,uy) €U then 1 < u; < U;. For some a € R we have

Z G(n)’ < log NlV'\'L‘{T)g s Z Z Z G(n + vu)e?™ v

neB neBy ueld |1<v<V

Proof. In what follows we let (.,.) denote the standard inner product on R". For u € U
and 1 < v <V we have

Z G(n) = Z G(n + vu) Z e((b,n+vu—m))db.

neB nelBy neB [0,1]
Averaging over 1 < v <V and u € U gives
1
Y Gn)= vl > Z/ e((b,n)) > G(n+vu)e(v(b,u)) > e(—(b,m))db.
neB neBo uey 01 1<0<V meB

This implies that

db,

Y G(n)

neB

> e(—(b,m))

meB

1
< VW‘/[W S Y Gt vw)e(uib,u))

neBy ueld |1<v<V
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which is bounded by

> G

nesb

neBy ueld |[1<v<V

= v|1mr£§§‘ > | D Gn+vue(va) /[Oﬁwj];[l(min(zvj,”bj”1))db

log N7 ...log N,
< VU] max E E E G(n+vu)e(va)| .
neBoueld [1<vV

4.4 Mean Value Estimates

We keep notation as in the introduction and recall that J;,.4(V) denotes the number of

solutions to the system of equations

Vit =l b h,, 1<i<d, 1<v <V

The following is due to Burgess and is a special case of [9, Lemma 7|. Since the

statement of Burgress is weaker than what the argument implies we reproduce the proof.

Lemma 4.7. Let q be squarefree, x a primitive character mod q, v = (v1,...,v2,) be a

2r-tuple of integers. For each integer 1 < i < 2r define A;(v) by

2r

Ai(v) = [J(vi = vy).
j=1
JFi
For any 1 <i < 2r such that A;(v) # 0 we have

El A+v1)...( A+ o) (V)21 2H0(1)
;X<()\+vr+1)...(>\—|—v27~)) < (g, () 2T, (4.9)

Proof. Let
q=DPp1-.-Pk

be the prime factorization of g. By the Chinese remainder theorem there exists primitive
characters

x;j modp;, 1<j<k,

such that
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A second application of the Chinese remainder theorem gives

d A+v). O+v) \ Tl [ A+v)...(A+v,)
Z ()\+vr+1 ()\+Uzr)>_JHl<ZX] <()\+vr+1)...()\+v27~)>>'

A=1 A=1

From [9, Lemma 1] we have

2% <(>\(>—\FJ;Z11)) ”((AAJ;U;j )) < (pjr Ai() 0}, (4.10)
A=1 T ce T

which by the above implies that

q Ato).. (At oer) (y))1/21/2+0(1)
;X(()‘—l_vr-&-l)...()\—l-vgr))‘S(q’Al( ) 2gt/Eretl),

The following will be used in the proof of Theorem 4.1.

Lemma 4.8. Let g be squarefree, x a primitive character mod ¢, 5, be a sequence of

complex numbers with |5,| < 1 and let

2r

W = / / Z Z /B’UX )\ +v 2m’(alv+---+akvk) dO[l e dak. (411)

0 =1 |1<o<v

Then we have
%% < <qu +q1/2Jr,k(V)1/2VT> qo(l)'

Proof. Let J,.1(V) denote the set of all (v1,...,vs,) such that
v+l =l v, 1<j<k 1<y <V

Expanding the 2r-th power in the definition of W and interchanging summation and

integration gives

W< >

(’[}17...71}27-)6Jr,k(v)

< A+v1)... A+ o)
ZX(()\+Ur+1---()\+U2r))|'

A=1

We break J,.x(V) into sets J;, (V') and J,";(V), where

(vi,...,02) € Tri(V) : at least 7+ 1 of vy,..., v, are distinct},
(Ub SRR UQT‘) € jr,k(v) : (Ub s 7U27") ¢ j;,k(v)}v
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so that |7 (V)| < V". Considering J!,(V), since at least 7 + 1 of the v; are distinct
there exists an i such that 4;(v) # 0. An application of Lemma 4.7 gives

2r
W < gV 4 ¢/ | 3 > (Ai(v), )2
=1 (v1,0,020) €T (V)
Ai(v)#£0

For 1 <i < 2r let

Wi = Y (A9
(U17~--,v27-)€Jr”k(V)
A;(v)#0

so that an application of the the Cauchy-Schwarz inequality gives

/2 1/2
W; < Y Y (Aw),9)
(V15020) €T (V) (v1,...,v27)
Ai(v)#0
1/2
< ‘jr,k(v)’1/2 Z (Al(v)7Q>
U1,...,02r
For the last sum, we have
ETCRIES 30 ib it
yeees U2 d AH#Q V1,027
o A AWZA
We next fix a value of A and consider (v, ..., vy, ) such that
Since
2r
Ai(v) = H(Uz vj),
j=1
J#
we see that there are qo(l) choices for the numbers (v; — v1), ..., (v; — v2,) and choosing v;
determines vy, ..., vy, uniquely. Since there are V' choices for v; and each A;(v) < y2r—1
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we get
Y (Av) <MY da > v
(v1ye-ny027) dlg 1<AxV?r-1
Ai(V)#0 A
< qo(l)v2r Z 1= qo(l)VZT.
dlq
This gives

W < (aV7 + @ 2Tk (V)12 ) o0 = (qV7 4 g 20, (V)27 g0,

O]

The following will be used in the proof of Theorem 4.2 and improves on Lemma 4.8

provided the number of prime factors of ¢ is bounded.

Lemma 4.9. Let s be an integer and q a squarefree number such that the number of
prime factors of q is less than s. Let x be a primitive character mod q, B, any sequence

of complex numbers with |5y| <1 and forr > s+ 1 let

2r

1 1 4
W = / . / Z Z Box(\ + ,U)eQﬂ’l(Oll’U-i-...-‘rOékvd) doy .. doy. (4.12)
0 0

A=1 [1<o<V

Then we have

1974 < (qu + q1/2<]r—5—17d(v)v28+2) qo(l)'

Proof. We keep the same notation from the proof of Lemma 4.8 so that

2r
W < qu +q1/2+0(1) (Z W’L> ,
i=1
with

Wi = > (Ai(v),9)"/?. (4.13)
(Ul ----- 'U27‘)€‘77{7k(v)
A1(v)#£0

We consider only Wi, the same argument applies to the remaining W;.

Let ¢ = q1...¢qs be the prime factorization of ¢q. For each subset S C {1,...,s} we

consider a partition of S into 2r — 1 sets

2r
S=JU;, where UinU;=0 if i#j (4.14)
j=2
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and some U; may be empty. We have

ms Y% Y (w9 (4.15)

SC{1,....;s} Uz,.o,U2r (v1,..,020) €T 1 (V)
A1(v)#0
(g1 —vj):Heer qe

where summation over Uy, ..., Us, satisfies (4.14). Hence it is sufficient to show that for
fixed S and fixed Us, ..., Us, satisfying (4.14) we have

> (A1(v), @)% < Joso1 (V) V22600,
(U11-~~,U2r)€jr'yk(\/)

A1 (v)#£0
(q,v1 *Uj)ZHze U; qe

Considering values of j such that U; # (), each value of v; determines v; with <
v/ Hier ¢; possibilities. Since there are are most s values of j such that U; # 0, we may

choose two sets V1, Vs such that
Vi C{l,....r}, Mil=r—s—1,

Vo C{r+1,...,2r}, Wo|=r—s—1,

and
Uj =0, whenever jeViUDWs.
For such a selection there exists integers aj, ..., ax such that
Z (Al (V)7 Q)1/2 S
(V1,es0r) ETL (V)
A1 (v)#0
(‘L'Ul—'Uj):Hier qi
1/2
2r
Z H (vl—vj),q J(Vl,Vg,OZl,...,Oék),
1<y; <V Jj=
iZV1UVs JEV1UVo
A (v)#£0
(@v1-v)=]licv; @
where J(V1, Vo, a1, ..., a) denotes the number of solutions to the system of equations
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This implies that

Z (Al(v),q)1/2 < V28+2J(V1,V27a17...,ak)7

(Ul,...,UT)EJ,Z’k(V)
A1(v)#0
(q7’U1—'Uj):Hier i

Since J(V1,Va, 11, ..., 0) < Jpr—s_1.4(V), we see that

Yoo (AW, SVERRL (V).
(U17~~~7U2r)€\77:7k(v)

A1 (v)#0
(q,v1 —Uj):Hing qi

This gives

Wl S V2S+2Jrfsfl,d(v)qo(l)a
which combined with the above completes the proof. O
Lemma 4.10. Let q1,...,q, be primes, x; a multiplicative character mod ¢;, B, a se-

quence of complex numbers with |B,| < 1 and let

2r

qi
W= / / Z > BvHxlA tv)erileavitare)| o, day,.  (4.16)
0

1<o<V i=1
1<z<n

If for each i we have V < q;, then
W< (V7 + a2 0(V)) ¢V,

where ¢ = q1 ...q, and the o(1) term depends on n.

Proof. With notation as in the proof of Lemma 4.8, following the same argument gives

Ator)...(A+)
Z ()\+vr+1) ()\+U2r)>‘

A=1

W < qV" + Z H

(v1,..02r) €T (V) =1

We claim that if (v1,...,v2,) € J; (V) then for each 1 <4 < n the function

o Atv). (A t)
X@<<A+vr+l>...<x+vw>’

is not constant.

Supposing for some i this were false and letting d denote the order of x;, this implies

that the rational function
A+v1)... (A + o)

()\+Ur+1) c. ()\ +U27~)7
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is a d-th power mod ¢;. Hence at most r + 1 of the wvi,...,v9,. are distinct mod g¢;.
Since V' < ¢; this implies that at most r 4+ 1 of the vy, ..., v9, are distinct, contradicting
the definition of J7, (V). Hence from the Weil bound for complete character sums [59,
Theorem 2C’, pg 43| we have

g
)\-i-?)l) ()\—I—UT) ) 1/2
z:: ( At o). (A tog)) S0

provided (v1,...,v9,) € jka(V). This implies that

W < qV" + ¢ 2O 7l (V)] = (aV" + ¢ Tra(V)) "W).
0

Lemma 4.11. Let g be prime, n an integer and x a multiplicative character of Fon, By

any sequence of complex numbers satisfying |By| < 1 and let

2r

/ Z /B’UX A+ U) 2mi(onvi+-tagv?) doq .. .dayg.
0.1 NeFn [1<0<V

For any integer r we have

W < ¢V + ¢ q(V),

where the implied constant depends on n.

Proof. Arguing as in the proof of Lemma 4.8, let 7, (V') denote the set of all (v1,...,va,)
such that
v+l =l ), 1<j<k 1<u <V

Expanding the 2r-th power in the definition of W and interchanging summation and

integration gives

W < >

(’Ul ,...,UQT)GJFJC (V)

Z < A4v1)... (A +vp) )
1 At v (A tv) )|
As in Lemma 4.8 we break the 7, (V) into sets J; (V) and J}(V), where

(v1,...,v2) € Trk(V) : at least r + 1 of the v]s are distinct},
(1, 02) € Trg(V) 2 (01,000, 02) € Tr (V)

A
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This gives

W <"V + Z
(vl,...,v27~)€\747k(

zq: < A+ov1)...(A+v) >
= At vpgr. (A ve) )|
From [59, Theorem 2C’, pg 43], if (v1,...,v2) € J; (V) then

ix( (A +v1). (A+vr))> <2

A+ Up41 - ()\ + vor

A=1
so that
W<<qnvr+ Z qn/2.
(’Ul,...,’UQT)EJAk(V)
The result follows since |7, (V)| < Jra(V). O

4.5 Multiplicative Equations

The following follows from the proof of [26, Lemma 7].

Lemma 4.12. Let M, N,U,q be integers with

and let U denote the set

The number of solutions to the congruence
niuy = noug mod q, M <ni,ng <M+ N, wuj,us €U,
is bounded by NUq°").

The following is due to Konyagin [44, Lemma 1].

Lemma 4.13. Let q be prime and let wy,...,w, € Fgn be a basis for Fgn as a vector space
over Fy. Let By and By denote the boxes

Blz{hlwl+"'+hnwn:1§h/i§H}7

By = {hiwi + -+ hgw, : 1 < h; <U},
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and suppose that H,U < p'/2. Then the number of solutions to the equation
nul = naug, ni,n2 € Bi,  ui,uz € B,
is bounded by O (UH)"logq) .

The following is due to Bourgain and Chang [6].

Lemma 4.14. Let q be prime, L1(X), ..., Ly(x) be linear forms in n variables which are

linearly independent mod q and let By and B denote the boxes
Bl :{h: (hl,...,hn) 01 Shz SHL

By={h=(hy,....,hn):1<h; <U}.

If H U < p'/? the number of solutions to the system of congruences
Li(x1)L;i(x2) = Li(x3)Li(x4) mod q, =xi1,x3€ By, X2,x4 € By, 1<i<m,

is bounded by (NH)"p°™).

4.6 Proof of Theorem 4.1

We define the integers

— N 1 1/2(r—d(d+1)/4
U—{ql/zwwﬂwf V= g2y, (4.17)
and the set
U={1<u<U:(ug) =1},
so that

u| =g (4.18)

By Lemma 4.6 we have

E;(Gi Z Z Z X(n + uv>e2m’F(n+uv) p2miav 7

M—-N<n<M+N uveld |1<vo<V
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for some o € R. Let

W = Z Z Z X(n + uv)eQﬂ'iF(nJruv)e%riow ) (419)

M—-N<n<M+N uveld |[1<v<V

Then since the polynomial F' has degree d we see that

W< Z Z max Z X(n—i—uv)eQ’”(O‘1U+'--+advd)

(a1,...,aq)€[0,1]¢

M—-N<n<M+N ucld 1<v<V
=) I(A max A -+ v)e2milcavttag?) |
Z ( ) (alr“zad)e[o,l]d Z X( )

A=1 1<o<V

where I(\) denotes the number of solutions to the congruence

nu*=X (modgq), M-N<n<M+N, uecl.

For j=1,...,d, let
5 — 1
J M’
and define the functions ¢;(v) by

d; o
1= gbj(v)/ eV’ g,

J

For 1 < v <V we have

¢-(v)—W77)j<<i<<Vj (4.20)
I sin(2md09) 5 ' '
Let
a=(ay,...aq), x=(x1,...,2q9), V= (v,...,vd),

and let C(0) denote the rectangle
[—(51, (51] X oo X [—5d, 6d]

We have

q d
W < I()\) max]d Z (H sz(v)) / YA+ v)e2m'<a+x,v>dx :
1 0 c(s)
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where < ., . > denotes the standard inner product on R?. An application of the triangle

inequality gives

q

W < T(\ y )\ 2mi<oa+x,v> dx.
< <>a§g’f]d/ Z<H¢ ) +v)e x

A=1

Two applications of the Hélder inequality give

d 2r—1 q 2r—2 q
W < (H 5,) (Z I(A)) (Z I()\)2> x
i=1 A=1 A=1
d 2r
(v v 6271'2‘<0¢—i-x,v> <
arengf]d/ 2 <H¢z( )) YO\ +v) d

We have
and the term

is equal to the number of solutions to the congruence
niur =ngus mod g, M —N<ni,no <M+ N, uj,us€U. (4.21)

Since 0 ¢ U, the number of solutions to (4.21) with nyny =0 mod ¢ is < U? and for the

remaining solutions we apply of Lemma 4.12. This gives

q
> IV < NU¢*W +U? < NUgW.
A=1

By the above, we may bound W by

2r—1

WZT (H Y ) (NU)zr_lqO(l)Wl,

where
2r

W, = y )\+ 2mi<o+x,v> dx.
| = aren[gﬁd / 2 (Hcﬁ ) v)e x

Recalling the choice of §; we get

WQT S V_(zT_l)d(d+1)/2(NU)2T_1q0(1)W]_. (422)
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We have

2r

q d
Wy = max / Z <H gf)l(’())) X()\ + 0)6271’1'<x,v> dx
C(0)+a

d
Ao @€l o<V \i=1
2r

d
. 2mi<x,v> <.

By (4.20), for each 1 < v <V we have

H¢l <Vdd+1/

hence by Lemma 4.8
W, <<Vrcl(d+1) (qu +q1/2v2"‘—d(d+1)/4)) qo(l).

An application of (4.19) gives

2r

(NU)QT‘ 1 (qu +q1/2v2r d(d+1)/4) Vd(d+1)/2 o(1)

Z X(n)eQﬂ—iF(n) - 2r\/2r
M<n<M+N vev

Recalling the choices of U and V' we get

2r
Z X(n)eQﬂ'iF(n) < N2r72ql/2+d(d+1)/8(r7d(d+1)/4)+1/2(r7d(d+1)/4)+o(1).
M<n<M+N

4.7 Proof of Theorem 4.2

Let

N .
U= | |V = L)

and let ¢;(v) be defined as in the proof of Theorem 4.1. Following the proof of Theorem 4.1

we get
2r
V—(2r—1)d(d+1)/2(NU)2r—1

2miF(n) _ 1%,% o(1)

where
2r

Wl Z /0 (H ¢z ) )\ + U) 2mi(z v+ +zgvd) Ix.
o<V
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By Lemma 4.9 we have
W, < Vrd(d+1) (qu + qVQT—d(d‘H)/Q)qO(l),

which implies

2r

S x(m)erFm| < a2 (NQU) i
M<n<M+N vV

2r—1
<qu i q1/2v2r7d(d+1)/2) W,

Recalling the choice of U,V gives

2r
Z X(n)627riF(n) < N2r—2q(7"+1—d(d+1)/2)/2(r—d(d+1)/2)+0(1) )
M<n<M+N

4.8 Proof of Theorem 4.3

We define the numbers U and V by

H 2
U:LMJ, V= g R,

In order to apply Lemma 4.6, we identify subsets of

]

~ =
with subsets of Fyn via

Z=(21,...,2n) < 21W1 + * -+ + ZpWwn.

An application of Lemma 4.6 gives

2miF qO(l) 2miF(x+ +27i
I e DI M D DR Rt
xeB xeBp ueld |[1<v<V
where
By ={xiw1 + - +zpwn: —H <z; <H, 1<i<n}.
Let

W = Z Z Z X(X+uv)€2ﬁiF(x+uv)+27riav . (423)

xEBy uel |1<v<V
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Expanding F'(x + uv) as a polynomial in v gives
F(x+u) = Z Fi(x,u)v’,

for some real numbers Fj(x,u). This gives

27i(ay vt Fagu?)
PEXY Y e

xEBy ueld

- Z I(A)  max Z X(A+v)62“(“1”+'“+%vd) ,

d
AEF (a1,...,aq)ER 1502V

where I()) denotes the number of solutions to the equation in Fg»

xu =)\, xeB) ucl.

With ¢;(v), §; and C(6) as in the proof of Theorem 4.1, we let v = (v,...,v?). We

have

w < I()\ max/ Z H¢Z )\—i-’l) 2mi<aty,v> dy

d
AEF n aeREJC() |1 o2zt

Two applications of Holder’s inequality gives

2r—2
w2r < V—(27‘—1)d(d+1)/2 Z I()\) Z I()\)2
)\E]Fqn )\E]Fqn
2r
ma)g/ H¢z )\+U 2mi<aty,v> dy
AR n @REICE) |1 <oy
We have
> I < (HU)™
)\GFqn
The term
>IN
)\E]Fqn
is equal to the number of solutions to the equation over Fn
X1U; = XoUg, X1,X92 € By, uj,us €U. (4.24)
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Consider first solutions to (4.24) with x;x2 = 0. Since 0 ¢ U we must have x; = xo = 0
and for these values there are U?" solutions in variables u;, us. For the remaining solutions

we apply Lemma 4.13 to get

>IN < (HU)gW + U,
AeFy,

Since U < H we have
W2r < V_(2T_1)d(d+1)/2(HU)(ZT_I)an(l)Wl,

where
2r

max / H(bz XA+ )™=tV gy,

d
AEF, O‘ER 1<v<Vi=1

We have

2r

max XA+ wv)e i<y, v>| g
/ 3 H@ y

A€F, ClO+a |1<p<vi=1

2r

< Z/ H¢1 )\+U 2mi<ly,v> dy,

A€l 1<v<V i=1

hence by Lemma 4.11 we get
W, < Vrda+D) <qnvr 1 qn/2V2r—d(d+1)/2> .

This implies that

2r 2r—1)n
< pdld)2 (fig); ) <qnvr+qn/2v2r—d(d+l)/2) 0,

Z X 27rzF(x

xeB

which on recalling the choices of U,V gives

2r
< H(2r72)nq(nrfnd(dJr1)/2)/2(r7d(d+1)/2)+0(1) )

Z X(X)eQﬂ"L’F(x)

xeB

4.9 Proof of Theorem 4.4

Let ¢ = ¢ ...q, and define the integers

H.
o 1/2(r—d(d+1)/2 o i
V= g ) | e |
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Let U denote the box
U:{(ul,...,un) 1 <y SUz}

By Lemma 4.6 we have for some oo € R

Z Xl(xl) cee Xn(xn)eQﬂiF(x) <

Z Z Z x1(z1 + uiv) .. Xn(xn + unv)egm(F(X"rlw)-f—ow) '

Un x€By uel |1<v<V

Writing

W = Z Z Z Xl i+ ulv) Xn($n + unv)eQWi(F(x'*‘UU)-Fav) 7

xEBy uel [1<v<V

and letting I(A1,...,\,) denote the number of solutions to the system of congruences

ziu;'=XN mod g, Ni—H; <z <N+ Hj,1<w;<U;, 1<i<n,

7

we see that

qi
W < Z I()\l,...,)\n) Z Xl()\l_|_rU)___Xn()\n+v)62wz(F(x+uv)+av)

Ai=1 1<V
1<i<n

< Z (AM1,...,Ap) max Z X1(A1+v) o oxn(An + v)e2m(a1”+"'+ad”d) .

at,...,ag€R
1y050d 1<o<V
1<z<n

With notation as in the proof of Theorem 4.1, we have

i
W< max / I(Ai,..00 )
s et Jees)
1<i<n

Z (H ¢i(v ) X1(A1+0) . oxn (A + 0)62ﬂi<a+x,v> dx.

1<v<V

Two applications of Holder’s inequality give

2r—2
qi q;
W2 <y CreDd@ED2 N (L M) > I, ) | T,
1>\§Zz:§n 1/\Szl:§n
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where

Wi =

” 2r
max di(v) | X1 (M +0) .. xn(An F )2V gy

= acl0,1]? /0(5) 1<vZ<V (H ' ) X

1<i<n o
Arguing as in the proof of Theorem 4.1 gives

2r
W < Z / (H $i(v ) (A + v)etmilarvtraat) | gy
0.1 |1 <oy

lgzgn

which combined with by Lemma 4.10 gives

W, < prda+D) (QVT 4 q1/2v2r—d(d+1)/2) 0.

We have
Z I\, ) < Hy .. HLU, ... Uy,
1<z<n

The term

()\17 .. '))‘n)Qu

i=1
1<z<n

>.’

is equal to the number of solutions to the system of equations
Ti1Ui1 = Ti2Ui2 mod g;,

with
Ni—H; <zig,mio < N+ Hi, 1<wu,up2<U;, 1<i<n.

Arguing as in the proof of Theorem 4.1, an application of Lemma 4.12 gives

qi
> I, A0 < (HUgW + UD)(HoUnggV + U2) < Hy . HyUy ... Ung®V.

Ai=1
1<i<n

The above bounds combine to give

2r
<

Z X1(x1) - - X (2 ) 2™ )

Hy...H,)* ! _
a2 (1 n <qu Ly d(d+1)/2> e
vy, ... U, ’
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which on recalling the choices of V, Uy, ...,U,, we get

2r

Z x1(x1) ... Xn(;vn)e%iF(x) <
xeB

(Hl o Hn)2r72q(rfd(d+l)/2+n)/2(rfd(d+1)/2)+0(1).

4.10 Proof of Theorem 4.5

We define the integers

N -
Y= Ll/?(rd(dHW)J .V = [g/2rmddt/2))

and let U and let denote the set

U={u=(up,...,up):1<u; <U}.

Since z By Lemma 4.6 we have

<

> ox (ﬁ Li(X)) il ()

xeB =3

qo(l)

XD 35 1 B SN {1 RIS PR

xEBy ueld |1<v<V i=1

Since each L; is linear this gives

where

W,

>ox (H Li(X)) rir)| < 47

— n
xeB i=1 VU

W= Z Z Z X (ﬁ(Li(X)Li(u)_l + v)) e2mi(F(x)+av)|

Let I()\l,

XEBy ueld |1<v<V i=1
, An) denote the number of solutions to the system of equations

Li(x)L7'(u)= X\, modq, x€By, ucid, 1<i<n.

(2

86



Chapter 4. Mixed Character Sums

Applying techniques from the preceding arguments gives

Xi= Ai=

2r—2
q q
wer < V*(2r71)d(d+1)/2 (Z I()\b o )\n)) (Z I()\la o /\n)Q)

2r

Z / <H d)’L > )\1 + U) ()\n + U)) 627Fi($1v+...+xdvd) dx
0,1} 1<o<V

We have

zq: I(\) < (HU)

A=1
By Lemma 4.14

q
ZI S HU n 0(1) + UQn < (HU)nqo(l),
A=1

and by Lemma 4.10

2r

Z / (H gf)z ) )\ + U) 2mi(x v+ qv?) Jdx
0 1] 1<V

< prdd+1) (qnvr + qn/2v2r—d(d+1)/2> ‘

The above bounds combine to give

> Tt e

xeB i=1

2r

2r—1)n
< ydd+1)/2 E‘[/(z U) (qnvr n qn/2V2r—d(d+1)/2) '

Recalling the choice of U and V' gives

NG

xEB i=1

2r
< H(2r72)nqn(rfD+l)/2(rfD)+o(1) .
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Chapter 5

The Fourth Moment of Character

Sums

5.1 Introduction

For q prime and a sequence of intervals T = {Z;}_, we consider estimating N(Z), the

number of solutions to the congruence
T1T9 = x3x4 mod g with z; € Z;. (5.1)

The sharpest estimate for N(Z) is due to Ayyad, Cochrane and Zheng [1, Theorem 1],

who obtain the asymptotic formula

4
w = L= o <10g2qn |L-1/2> , (5.2

q i=1
where |Z;| denotes the length of Z;.

Ayyad, Cochrane and Zheng also show that in certain cases one may remove a power
of log ¢ in (5.2) at the expense of replacing the asymptotic formula with upper and lower

bounds. In particular Ayyad, Cochrane and Zheng show that [1, Equation 6] if either
Zi| = [Z2|  and  |Zs] = |Z4],

or

|ZT:| = |Z3], and |TIo| = |Z4],

89



Chapter 5. The Fourth Moment of Character Sums

then we have

4 4 4 =
Lz 1 |Z;
Uil g o Tz « v <« BB g Tz, (59)
q i=1 1 =1
and if
4
[117il < ¢®log?q,
i=1
then we have 4
N(T) < loqu \Z:| /2. (5.4)

=1

The error in the approximation for N(Z) is connected to the 4-th moment of multi-
plicative character sums when
Ty =TIy =13 =1y,

through the identity

A =R o N (5.5)

¢-1 q_1X75X0 z€ly

By considering certain averages on the left hand side of (5.5) one may remove the log

factor completely in the error term in (5.2). For example, Burgess [12] has shown that

4

1 1 iy
2
LY ] ) e
z=1 X#EXo lz=2z+1
and Montgomery and Vaughan [48] have shown
1 v
XFX0 =1

We refer the reader to Friedlander and Iwaniec [27], Harman [29] and Vaughan [66]
for analytic techniques for estimating the sums (5.5) which apply for general modulus ¢
although are restricted to intervals starting from the origin. Cochrane and Sih [18] have
extended the argument of [1] to deal with composite modulus and arbitrary intervals and
Friedlander and Iwaniec [28] obtain the upper bound (5.4) when Z; = Z3, To = Z4 and Z;

starts from the origin.

In [1] the question is raised whether it is possible to remove a power of log ¢ in (5.2).
By (5.3) such an estimate would be sharpest possible up to implied constants. Progress
in this direction has been made by Garaev and Garcia [31] who improve on (5.2) under

certain conditions on the lengths of the intervals occuring in Z. The precise range of values
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of |71, |Z2|, |Z3| and |Z4| for which Garaev and Garcia’s bound holds depends on values
of the products obtained by multiplying distinct pairs of each |Z;| together and does not
improve on (5.2) in general. For example, in the simplest case of |Z;| = |Zz| = |Z3| = |Z4],
Garaev and Garcia’s bound extends (5.2) to the range |Z;| < q'/2¢°1°8"* 4. The aim of the

current paper is to improve on (5.2) for arbitrary intervals Z;.

We also mention that Cilleruelo and Zumalacarregui [17] have given a result which
allows the saving of a logarithmic factor in congruence problems under very general con-

ditions and is also based on ideas from Cilleruelo [16] and Garaev [29].

5.2 Main results

Theorem 5.1. Let q be prime and T = {Ii}?zl be a sequence of intervals not containing

0 mod q. Then we have

4 4
F T
N(T) = HZ; 2 +0 <1oqu |L-11/2> .

=1

From Theorem 5.1 we immediately deduce.

Theorem 5.2. Let q be prime and N and H integers such that the interval [H, N + H]|

does not contain 0 mod q. Then we have

4

qil Z Z x(n)| < N?loggq.

x#xo |[H<n<H+N

We note that Theorem 5.2 implies Theorem 5.1 by the Holder inequality, although
we are unable to prove Theorem 5.2 directly as our argument relies on certain averaging

which reduces to the case where at least two of the Z; have different length.

We also note that from Theorem 5.2 one may obtain sharp bounds for the number

of solutions to related congruences. For example, we have the following Corollary.

Corollary 5.3. Let T be as in Theorem 5.1, let k = (ky, ko, k3, ks) € Z* and a € 7 satisfy
(k1k2k3k47q - 1) =1 and (G,Q) = 1)
and let N(Z,k,a) denote the number of solutions to the congruence

x’flmg%lg?’xi“ =a modgq with x; €Z;.
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Then we have

4 : 4
N ko) = =g (mqu |L-|1/2> :

q =1
5.3 Preliminary Definitions

The letter g always denotes a prime number. For
X = {Xi};'lﬂ and H = {Hi}?:b
with each X, H € Z* we let J(X, H) denote the number of solutions to the congruence
rir9 =w3x4 modq, H; <x; < H,+X;, 1<:<4.

For V' > 0 and X and H as above we let J;(X, H,V') denote the number of solutions to

the congruence

ri(zo+v)=z324 modgq, 1<v<V, H; <z, <H+X;, 1<i<A4

For U > 0 and X, H and V as above we let Jo(X, H,V,U) denote the number of solutions

to the congruence

z1(z2 +v) = x3(zs +u) mod g,
Although J(X, H) is essentially N(Z), we find it convenient to introduce this extra
notation since our argument relates N(Z) to J; and Ja.

In what follows we will always assume any interval does not contain 0 mod g.

5.4 Bounds for Multiplicative Equations

In this section we state bounds for J(X, H) which are due to Ayyad, Cochrane and
Zheng [1] and will be used in the proof of Theorem 5.1.

The following is [1, Theorem 1].
Lemma 5.4. For q prime and X and H as above we have

X1 X0X3Xy

J(X,H) = 1o ((X1X2X3X4)1/ 2 Jog? q) :
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The following is [1, Lemma 3].

Lemma 5.5. For q prime and X and H as above we have

X1 X9 X3X,

J(X, H) < + (¢ + X1 X2 log 9)? (¢ + X3X4log g)'/*.

Moreover, the inequality holds if the products X1Xo and X3X4 are replaced by any other
pairing of the X;.

5.5 Bounds for Averaged Multiplicative Equations

The results of this section are based on techniques from [1] and [31].

Lemma 5.6. If

Xi1=Xy, Xo=X3 and V< X2/2, (57)
we have XXX XAV
Ji(X,H,V) = % + 0 (VX2X4log qlog (X2/V)),

and if

Xi=Xy, Xo=X3 V< X2/2 and U < X4/2, (58)
we have

X1 X5 X3X
B(X,H,V,U) = TERAUE
q

+ O (UV X2Xy (log (X4/U)log (X2/V) +1logq)).

Proof. We consider only Jo(X, H,V,U), a similar argument with less technical details
applies to Ji (X, H, V). Let A(z) denote the indicator function of the set

{za+u : Hi<azs < Hs+ Xy, 1<u<U},

counted with multiplicity and considered as a subset of Z/qZ. Expanding A into a Fourier

series

L=

-1
Alx) = “(j)eqm),

y=0

we see that the Fourier coefficients a(y) satisfy (see for example the proof of [31, Theo-

rem 1))

a(0) = X,U, a(y) < min (X4, IIy}qI) min (U, IIy}qI) . (5.9)
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We have

L(X,HVU) = > D Alzag(z2 +v))
H;<z;<H;+X; 1<o<V
1<i<3

X X X3 X,UV
q
12
+=>aly) . Yo eglymagt(z2 +v))
T3 Hi<or<Hi+X1 Ho<es<Ha+ X»
H3<x3<H3+X3 1<v<V
X X X3 XUV
q
1 qg—1q—1
+ - a(y) Z eq(zx2) Z eq(2v) Z 1.
T332 Hy<wa<Hyr Xo 1<0<V Hy<a1<Hi+X

H3<z3<H3+X3
r1y=x3z mod q

Let W be defined by

JQ(X)H’V;U) -

X1X2X3X4UV’ _ EW,
q q

and let

Gtg) = i (2, i (V)

Ga(2) = min (X e Y (U )

Combining (5.9) with the above gives

q—1g—1
W< Ciy)Calz) 1.
y=1 z=1 Hi<z1<H1+X3
H3<x3<H3+X3

r1y=x32z mod ¢q

For integers k, j > 1 we define the intervals K(k) and J(j) by

(e =1)g (eF—1)q (T =1)q (¢ —1)q
’C(k) - ( )(2 Y X2 :| ’ j(]) - < X4 9 X4 :| 9

so that if |y| € (k) and |z| € J(j) we have

X2 . XQ X4 . X4
Gi(y) < —5 min (V, ek> . Ga(z) < — min <U, j) .

€ €
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In (5.10) we partition summation according to (k) and J(j). This gives

W< > YD) Gily)Galz) > 1

1<k<log X2 |y|eK (k) |z|€T (4) Hi<zi1<H1+X3
1<j<log X4 H3<z3<H3+X3
mly*z;;z mod q

min (V X2 )mln(

<X Y FL e D YD Dt

1<k<log Xo lyleK(k) |z|€T (5) H1<$1<H1+X1
1<j«klog X4 H3<x3<H3+X3
r1y=x3z mod q

Considering the innermost summation, we have

) D S DD DI

lyleX(k) |zl€T (4) H1<x1<H1+X1 1<|y|<ekq/ Xy 1<|z|<eiq/X4 Hi<zm1<H1+X1
H3<x3<H3+X3 H3<x3<H3+X3
r1y=r3z mod q r1y=x3z mod q

Lemma 5.5 and the assumption
X1 = X4 and X2 = Xg,

give

k+ia X, X

e

>, > > ol
XoXy

lyleK (k) |2|€T (4) H1<$1<H1+X1

H3<z3<H3+X3
r1y=x3z mod q

k 1/2 k 1/2
qe X qe” X1
1 1
o ) (14 5 )
< q (ek+j + elk+9)/2 log q) .

This implies that

) Xy ) Xo 1
W < ¢ XXy Z min <U, ej> min <V, ek) <1 + SN2 log q>

1<k<log X2
1<j«log X4
= qXo Xy (W1 + Walogq), (5.11)
where
. Xo . Xy
Wy = — —
1 Z min <V, ek> Z min (U, o ) ,
1<k<log X2 1<j<log X4
and

1 . X2 1 . X4

1<k<log X2 1<j<log X4
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Considering W7, we have

. X4 . X4
Z min <U, ej> = Z min (U, ej>
+1

1<jklog X4 1<j<log (X4/U)
. Xy
+ E min <U, —
el
log (X4/U)+1<j<log X4

< Ulog (X4/U)

In a similar fashion

X
S min <V, e:) < Vlog (X3/V),

1<k<log X

so that
W1 < UV log (X4/U)log (X2/V).

Considering Ws, we have

1 X4 1
Z ej/2m1n<U’ej)<<U Z ej7<<U,

1<j<log X4 1<j<log X4
and ) ¥
. 2
Z ——=min (V,—/ | K<V,
ok/2 ok
1<k«log X2
so that

Wy < UV.

Inserting the above estimates into (5.11) gives
W < qX2X4UV (log (X4/U)log (X2/V) +logq) .

This implies that

X1 Xo X3 XUV
q
+ O (UV X5Xy (log (X4/U) log (X2/V) 4+ logq)) -

Jo(X,H,V,U) =

Our next step is to remove the conditions (5.7) and (5.8) in Lemma 5.6.
Corollary 5.7. For any X, H, U,V with V < X2/2 we have

X1 Xo X3 X,V
q
+ 0 (V(X1X2X3X4)1/2 log g <log(X2/V) + logl/2 q)) ,

JI(X,H, V)=
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and

UVX1XoX3Xy
q
+0 (UV(X1X2X3X0)'/2 (1og g + log? (X2/V))"/? (log g + og? (X4/0))?) .

Jo(X, H,V,U) =

Proof. We have

1 1
Jl(X>H7V)=j Z ZX($1($2+U)$319541)
17 % gi<o<H4x: x
1<V
X1X2X3X4V 1 1 1
= g1 +q71 Z Z x1x2+vx3 x4).

Hi<z<H;+X; X
1<v<V  X#X0

Let
1.—1
W = Z Z $1x2—|—vx3 :E4),
Hi<z;<H;+X; X
1<v<V  X#FXo
so that

<> 1Y Xt > x|

X#X0 1<o<V

An application of the Cauchy-Schwarz inequality gives

2
2

wr< |y > x((@t vz > > Xz

X |Hi<z;<H;+X; X |Hi<z;<H;+X;
X7X0 1<o<V X7X0

By Lemma 5.4 we have

E E X(azlle) < ¢X1X4log?q,
X |H;<z;<H;+X;
XF#X0

and by Lemma 5.6

2

Z Z X((z2 +v)23")| < qX2X3V? (log(X2/V)? +logq) .

X |Hi<z;<H;+X;
XFX0 1<v<V
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This implies that
W < qV (X1 X2 X5X1)/? log g (10g(X/V) +log?q) .

and hence
X1 X0 X3 X4V
qg—1
+0 <V(X1X2X3X4)l/2 log g <10g(X2/V) +log!/? Q)> :

J(X,H,V) =

The result follows since we have the bound

VX1 XoX3Xy VX1XoX3Xy

< V(X1 X2X3X4)Y?2,
qg—1 q

whenever
X1 X2 X3Xy < ¢,

which we may assume.

Considering Jo(X, H,V,U), let W be defined by

J2<X7H7‘/7U> -

UVX1X2X3X4‘ 1
qg—1

so that

W< Y x@+vz|| Y x((@+warh)|.
X |Hi<z;<H;+X; H;<z;<H;+X;
XF#X0 1<v<V 1<u<U

An application of the Cauchy-Schwarz inequality and Lemma 5.6 give

W < qUV (X1 X5 X3X4)"2 (log q + log? (X2/V))/* (log g + log® (X4/U)) /7.

Hence
UVX1XoX3X,
qg—1
1/2 2 1/2 2 1/2
+0 (UV(X1X2X3X4) (log g + log* (X2/V)) '~ (log g + log* (X4/U)) ) .

Jo(X,H,V,U) =

We next improve on the error in J; by relating it to an average over Js.
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Lemma 5.8. For any X, H and V < X5/2 we have

VX1 X2X3Xy
q
+0 (V(X1X2X3X4)1/2 log'/2 ¢ (log q + log? (X/V))" 2) .

JI(X,H, V)=

Proof. Let Jj(x4) denote the number of solutions to the congruence
z1(xe +v) = 2324 mod g,

in variables x1, x2, x3 and v satisfying

so that

JU(X,H,V) = > T (4).
Hy<z4<Hs+X4y

Let

oo osen |
log” q

For any integer 1 < u < U we have by (5.12)

JI(X,H,V) = > T (x4 + u)
Hy—ulzs<Hs+X4—u

= > Ji (x4 4 u)

Hy<z4<H4+X4y

+ Y Ji(wa) - > J1(wa).

Hy—u<z4<Hy Hy+Xg—ulwg<Hy+Xy

The term

> Jilzw),

Hyi—u<xy<Hy

is equal to the number of solutions to the congruence
z1(x2 +v) = 2324 mod g,

in variables x1, x2, x3, 4, v satisfying

H <z, <H+X;, i=123 Hij—u<zy<Hy 1<ov<V.
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By an application of Corollary 5.7 we get

X1 X2 X3V
S ey - Dl

Hy—u<xy<Hy q

+0 (V(XleXgU)l/2 log g (10g (X2/V) + log!/? q)) :
and

X1X2X3Vu
> T (wg) = ————
Hy+X4—u<za<Hy+X4 4

+0 (V(X1X2X3U)1/2 log q <log (Xo/V) + log'/? q)) .
This implies that

JU(X,H,V) = > Ji (24 + )
Hy<zy<Hy+X4

+0 (V(X1X2X3U)1/2 logq <10g (X2/V) +1log'? q))

=YY

1<u<U Hy<z4<H4+X4

+0 (V(X1X2X3U)1/2 log g <log (Xa/V) + log!/? q>) .

The term

Z Z Ji (x4 + u),

1<u<U Hy<z4<H4+X4

is equal to the number of solutions to the congruence
z1(22 +v) = 23(x4 +u) mod g,
in variables x1, z9, T3, T4, v, u satisfying
H <z, <H+X;, 1<v<V, 1<u<U,

so that Corollary 5.7 and the assumption V' < Xo/2 give

UVX1XoX353X
SN e = A
1<u<U Hy<ea<Hi+X4 q

+0 (UV(XlXQX?,XAt)l/2 (log q + log? (XQ/V))l/2 (log g + log? (X4/U))1/2> .
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This implies that

VX1 X X3 X,
q
+0 <V(X1X2X3U)1/2 log g (log (X2/V) +log"/? Q))

Jl(X7H> V) =

+0 (V(X1 X5 X5 X0)V? (log g + log? (X/V)) ' (log g + log? (X4/U))?) .

Recalling the choice of U we get

VX1 X2 X3Xy
q
+0 (V(X1X2X3X4)l/2 log'/? ¢ (log ¢ + log? (X2/V))1/2> '

Jl(XaHa V) =

O
5.6 Proof of Theorem 5.1
Let each Z; be defined by
7, = [H;, H; + Xj],
SO we may write
N(IZ)=J(X,H). (5.13)

Let J'(x2) denote the number of solutions to the congruence
T1xo = x3x4 mod g,
in variables x1, x3, x4 satisfying

H, <z < H + X;,

so that
JX.H)y= > i)
Ho<zo<H>+X>
Let V be defined by
e
log®q]
For any integer 1 < v <V we have
J(X,H) = > Ji(z9 4+ v)
Ho<zo<H3+Xo
D DA > Ti(w2).
Ho—v<z2<Ha2 Ho+Xo—v<wo<Hy+X2
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The term

> Jilwa),

Ho—v<z2<H>

is equal to the number of solutions to the congruence
ri1xe = x3x3 mod g,
with variables satisfying
Hy<xy<Hy+wv, H;<x;<H;+X;, 1=1,3,4
An application of Lemma 5.4 gives

VX1 X5X
Y i) = L0 ((VX1X3X4)1/2 log? q> .
Hz—v§1‘2<H2 q

A similar argument gives

X1 X3X
Z J/(Jfg) = w + O ((VX1X3X4)1/2 log2 q) y
Ho+Xo—v<z2<Hz+X> q

so that

JXH = Y J@tv)+0 ((VX1X3X4)1/2 log? q) .
Hy<zo<H3y+X>

Averaging over 1 < v <V we get

1
JXH) =2 > Y Tt +0 ((1/)(1)(3)(4)1/2 log? q)
1<vo<V Ho<zo<H3+X>

= %Jl(X, H,V)+O0 ((VX1X3X4)1/2 log? q) : (5.14)

By Lemma 5.8 we have

1
—J1(X , HYV)=
vV 1( 3 ) )
X1 X9X3X
% +0 ((X1X2X3X4)1/2 log'/? ¢ (log g + log? (XQ/V))1/2> ;

so that substituting the above into (5.14) gives

X1 Xo X5 X,
q
+0 (X1 X5 X3 X4)210g! 2 g (log g + log? (Xa/V))*)

J(X, H) =

+0 (VX1 X3X0) 2 10g%q)
and the result follows by (5.13) and recalling the choice of V.
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