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1 Introduction 

 

 

1.1 Motivation and Objectives 

 

Wildfire can become a rapidly spreading, destructive fire over natural landscapes; it is a 

major natural hazard worldwide. Wildfire can negatively influence the land use, soil 

degradation, and emission of greenhouse gas (Arroyo et al., 2008). Some major 

environmental damage and changes to ecosystems are the results of wildfire (Cobb et 

al., 2016; Gazzard et al., 2016; Mistry et al., 2016). One of the important components in 

determining the severity of wildfire is fuel availability. Wildland fuels can vary 

considerably, both spatially and temporally (Stambaugh et al., 2011). Various 

interpretations and characterisations of fuel have been made in past studies as a key 

contribution to assessing wildfire potential (Hudec and Peterson, 2012; Jurdao et al., 

2012; Peterson et al., 2008; Sharples et al., 2009a; Stambaugh et al., 2011; Yebra et al., 

2013). Fuel can also be quantified by its age or time since last fire (Bradstock et al., 

2010). 

 

In Australia, most wildfires are generally referred to as bushfires. To be more specific, a 

bushfire can be described by its dominant fuel type, such as forest fire, grass fire, or 

scrub fire. Grasslands are the most widespread fuel type in Australia with nearly 75% 

coverage (Cheney and Sullivan, 2008). Thus, efforts are being dedicated to the 

prediction and management of grassland fire. 

 

There are multiple factors that influence a grassland fires severity, including fuel 

conditions and weather variables. Due to the their fuel characteristics, grassland fires 

are very responsive to weather conditions, especially wind speed, wind direction, and 

relative humidity (Cheney and Sullivan, 2008). Fuel availability also plays an important 

role in a grassland fires severity (Cheney et al., 1998; Cruz et al., 2015; Kidnie et al., 

2015). Grassland fuel availability can be quantified with the metric known as the degree 

of curing (DOC). The DOC is the percentage of dead material in a grassland fuel bed; 

100% indicates a fully cured (dead) grassland fuel complex. Fuel load, while its influence 

on grassland fire severity is not as prominent as other factors mentioned, is another 

interesting variable in grassland fire. 
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In this study, I focused on grassland DOC and fuel load and their influence on fire spread 

and severity. DOC and fuel load monitoring over Australia is currently limited in space 

and time. To quantify the spatial and temporal variability of both grassland DOC and fuel 

load, I developed estimates of DOC and fuel load using satellite observations over 

Australia. This observed DOC and fuel load gridded data was then used as inputs to fire 

spread models to assess the impact on spread of grassland fires due to variation in DOC 

and fuel load. The questions I am addressing in this thesis are: how does DOC and fuel 

load vary in space and time, and how do these variations effect fire spread as predicted 

by current fire spread models? 

 

 

1.2 Literature Review 

 

1.2.1 Remote Sensing and Fire Risks 

 

There are currently many Earth observing satellites acquiring a large amount of data 

relevant to surface vegetation. Many remote sensing approaches have been developed 

to estimate fire relevant properties of the fuel and have been assessed and compared in 

previous studies (Arroyo et al., 2008; Yebra et al., 2013). Note that the combination of 

data retrieval method, type of sensor, and spectral information are dependant on the 

respective research objectives. 

 

There are numerous advantages in remote sensing methods. This includes very cost 

effective, high spatial and temporal coverage, much faster and more consistent update 

time, and easier access to data (Arroyo et al., 2008). However, some of the traditional 

limitations in remote sensing still persist. Including: inability to identify the vertical 

structure of fuel bed; canopy obstruction in high density forest; high variability and 

inherent complexity of fuel types across spatial and temporal domain; and the resolution 

is too coarse for smaller or point scale representation; are some examples of remote 

sensing limitations for wildfire fuel mapping (Keane et al., 2001; Saatchi et al., 2007). 

Significant errors and inaccuracies can also be introduced by cloud cover, variability in 

land cover, atmospheric effects such as aerosols and water vapour, and variations 

between satellite over-passes (Dilley et al., 2004). 
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1.2.2 Field Observations 

 

The earliest efforts to gather fuel spatial data were based on field survey. Field 

observation involved simple but tedious procedures, such as recording the type of fuel 

conditions on a paper map while traversing an area by foot (Hornby, 1935), collecting 

samples required for destructive sampling back in the laboratory to determine moisture 

content (Yebra et al., 2013), and extensive field inventory with statistical analysis and 

inference (Miller et al., 2003). 

 

The main advantage of field observed fuel data is its accuracy because the researcher 

is in physical contact with the fuel. Though, there are chances that mapping errors may 

occur; the error is still likely to be limited to improper fuel type assessments. Note that 

the amount of money and time required for extensive fuel field mapping implementation 

may not be practical for many land managers (Falkowski et al., 2005; Miller et al., 2003). 

Thus, field observation is deemed to be appropriate for use as the reference or basic 

source of fuel datasets, and here it is used to evaluate remotely sensed fuel estimations. 

 

1.2.3 Satellite Products – VOD and NDVI 

 

The satellite products I used to estimate both DOC and fuel load in this study are a more 

recent, passive microwave based product and a well-known, optical based product. The 

recently developed, passive microwave based remote sensing vegetation product used 

here is called vegetation optical depth (VOD) (Meesters et al., 2005). VOD is primarily 

sensitive to vegetation water content, including both leafy and woody components 

(Guglielmetti et al., 2007; Jackson and Schmugge, 1991; Kerr and Njoku, 1990). The 

other product is a traditional, optical based vegetation index called normalised difference 

vegetation index (NDVI). As opposed to VOD, NDVI is primarily sensitive to vegetation 

greenness. 

 

NDVI is a well-established vegetation index and has been used in many vegetation and 

biomass studies. For instance, NDVI was used to identify the changes in Australian 

vegetation cover due to climate related trends between 1981 to 2006; the results showed 

an overall greening of Australia over these decades, where persistent vegetation types 

have better benefits than recurrent vegetation types (Donohue et al., 2009). NDVI was 

also often used as a complimentary dataset for investigating vegetation. For example, 

NDVI was used along with a satellite derived soil moisture to quantify the long term 
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changes in vegetation due to large spatial variations in soil moisture. It was found that 

soil moisture affected NDVI in both monthly variations and long term changes, and both 

NDVI and soil moisture had coherent trends (Chen et al., 2014). Another example of 

NDVI application was to help discriminating the climate and human induced dryland 

degradation. NDVI and precipitation data were used to determine the area of high 

possibility of human induced degradation. The climate induced changes can be identified 

using the rainfall period that was best related to maximum NDVI; any deviations from this 

relationship were considered as human induced degradation (Evans and Geerken, 

2004). It should be noted that optical based remote sensing products, including NDVI, 

are affected by cloud cover and aerosols. Some studies explicitly acknowledged 

challenges presented by cloud effects and when there are both forest and water bodies 

in the same NDVI pixel, which resulted in an erroneous grassland interpretation (Allan et 

al., 2003; Chladil and Nunez, 1995). 

 

Unlike the traditional optical based vegetation indices, such as NDVI, VOD is minimally 

influenced by the atmospheric conditions due to its longer wavelength and stronger 

penetration capacity (Jones et al., 2009). However, it has a coarser spatial resolution 

(0.1°) in comparison with optical based products, which is a consequence of the low 

energy microwave emissions from the Earth’s surface. It had been demonstrated that 

VOD can capture the changes in vegetation water content over different land cover types 

at the global scale, including grassland, cropland, savannas, tropical forests, and boreal 

forests (Liu et al., 2015, 2013a, 2013b). Also, NDVI and VOD provided complementary 

information and can comprehensively characterise vegetation dynamics when combined 

(Andela et al., 2013; Liu et al., 2011). 

 

There are various past studies using VOD. Jones et al. (2011) used VOD to monitor 

global vegetation phenology, which characterise seasonal cycle of vegetation that 

influences the land-atmosphere water exchange and carbon cycle. It was found that VOD 

corresponded well with vegetation indices and leaf area index from optical based satellite 

and exhibited a unique end of season signal associated with changes in canopy water 

content. It was concluded that VOD contributed to a better view of land surface 

phenology than optical based vegetation indices (Jones et al., 2011). VOD was also used 

to determine the long term changes in regional and global environments via the changes 

in vegetation water content across different land cover types. For instance, the biomass 

reduction in Mongolian Steppes was successfully identified by VOD. It was found that 

the VOD declines in Mongolian Steppes were approximately 60% due to climate 
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variations and the rest are from increased goat population and wild fire (Liu et al., 2013a). 

For global biomass changes, it was found that VOD changes in different land cover types 

can be attributed to various factors VOD patterns have a strong correlation with temporal 

precipitation patterns over grasslands and shrublands, while VOD changes in croplands 

are associated with both precipitation patterns and agricultural improvements (Liu et al., 

2013b). 

 

1.2.4 Grassland Fire Danger Index 

 

Since wildfires are primarily driven by weather and climate, many different types of fire 

danger rating systems are implemented based on different local meteorological variables 

in a specific region. Though, these fire danger rating systems interpret and quantify their 

inputs differently, many meteorological parameters required by these fire danger indices 

are common, such as temperature, relative humidity, and wind speed. For instance, 

McArthur Forest Fire Danger Index (FFDI) (McArthur, 1967), McArthur Grassland Fire 

Danger Index (GFDI) (Noble et al., 1980; Purton, 1982), and Sharples Simple Index 

(Sharples et al., 2009b) are fire danger indices that required all three common 

meteorological parameters.  

 

Several revisions of GFDI were made by past studies (Noble et al., 1980; Purton, 1982). 

The GFDI revision used in this study is modified Mark 4 GFDI, since it is the grassland 

fire danger assessing system that is generally being used by Bureau of Meteorology 

(Sharples et al., 2009b). Originally, the fire danger rating system was presented in a 

circular slide rule. A mathematical equation representation of modified Mark 4 GFDI was 

derived from the circular meter, and can be expressed as follows in Equation 1.1 (Purton, 

1982): 

 

𝐺𝐹𝐷𝐼 = 𝑄1.027𝑓(𝐷𝑂𝐶)𝑒𝑥𝑝(−1.523 + 0.0276𝑇𝑚𝑎𝑥 − 0.2205√𝐻3𝑝𝑚 + 0.6422√𝑉𝑚𝑎𝑥 (1.1) 

 

where Q is the fuel load (kg m-2), Tmax is the dry bulb or daily maximum temperature (°C), 

H3pm is the daily relative humidity at 3 pm (%), Vmax is the daily maximum wind speed 

(km h-1), and f(DOC) is the curing factor and DOC is, of course, the degree of curing (%). 

The curing factor can be calculated by Equation 1.2. 

 

𝑓(𝐷𝑂𝐶) = 𝑒𝑥𝑝(−0.009432(100 − 𝐷𝑂𝐶)1.536)     (1.2) 
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Note that though GFDI provides a satisfactory fire danger rating for grassland, it does 

not provide satisfactory predictions of the rate of spread (Cheney and Sullivan, 2008). 

 

1.2.5 DOC and Fuel Load Estimation with Remote Sensing 

 

There are several past studies that use remote sensing, in particular optical based 

satellite products, to estimate DOC (Chladil and Nunez, 1995; Dilley et al., 2004; Martin 

et al., 2015; Newnham et al., 2011, 2010; Turner et al., 2011). Some of these studies 

used NDVI, while others used multiple optical based vegetation indices. In Chladil and 

Nunez (1995) and Dilley et al. (2004), both studies used satellite derived NDVI and 

ground observations estimated fuel moisture content and DOC. While one study area 

was in Tasmania (Chladil and Nunez, 1995), the other was in Victoria (Dilley et al., 2004). 

In Chladil and Nunez (1995) study, NDVI had been used to produce DOC derived from 

a soil dryness index model to predict soil and fuel moisture content. While Dilley et al. 

(2004) established a relationship between DOC and NDVI by estimating live fuel 

moisture content from NDVI and relating it to curing via an exponential function using a 

finite difference Levenberg-Marquardt method (Rouse et al., 1973). Both studies found 

a good relation between NDVI and DOC in their respective study area. Another method 

for estimation of DOC using NDVI can be achieved by using a relative greenness (RG) 

approach that was based on NDVI distribution to provide more accurate estimation of 

DOC than a direct linear regression between DOC and NDVI (Newnham et al., 2011). 

NDVI and other optical based vegetation indices computed from remote sensing 

reflectance products can also be developed into a satellite based model integrated with 

ground observations to predict DOC (Martin et al., 2015; Turner et al., 2011). 

 

Bureau of Meteorology are currently providing two DOC estimation products that have 

500 m spatial resolution and daily temporal resolution based on two past studies (Martin 

et al., 2015; Newnham et al., 2010). There are five separate satellite based DOC models; 

four are from Newnham et al. (2010) and one is from Martin et al. (2015). All satellite 

based DOC models are based on optical and near-infrared wavelength bands, hence 

they share similar limitations concerning clouds and aerosols etc. Here I propose a new 

satellite derived DOC product that combines observations in the optical and infrared 

wavelengths with observations in the microwave band. The addition of microwave 

observations will reduce the sensitivity to atmospheric interference improve the DOC 

estimation over Australia. 
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For fuel load estimation, some studies opted for much higher resolution remote sensing 

products (higher than 500 m), such as radar and aerial imagery, in a much smaller area 

rather than over continental areas (Brandis and Jacobson, 2003; Jin and Chen, 2012; 

Miller et al., 2003; Reich et al., 2004; Saatchi et al., 2007; Scott et al., 2002). In the USA, 

fuel load snapshots were developed from aerial photographs for two particular areas in 

New Mexico (Scott et al., 2002), Landsat imagery in South Dakota (Reich et al., 2004), 

and multifrequency polarimetric synthetic aperture radar in Yellowstone National Park 

(Saatchi et al., 2007). For the first two studies, they found that while the high spatial 

resolution fuel load models developed were good, the models exhibited high errors on 

one of the two study areas (Scott et al., 2002) and some degree of skewed distribution 

(Reich et al., 2004). For the third study, it was found that the three major fuel load 

parameters (canopy fuel weight, canopy bulk density, and foliage moisture content) that 

were estimated provided more than 70% accuracy when compared to plot 

measurements (Saatchi et al., 2007). Usage of these fuel load models were also limited 

to certain regions that have similar climate, terrain, and soil conditions. While in China, 

a more recent study use a newer high resolution satellite image from QuickBird and 

Landsat imagery to constructed a fuel load model for a region in northeast of China. They 

found that both QuickBird and Landsat models performed better at estimating fine fuel 

loads, while not as good for coarse fuel loads (Jin and Chen, 2012). For Australia, there 

was a study using observed data collected from Popran National Park in New South 

Wales and Landsat imagery. In this study, two estimation methods were tested, where 

the first method used classification techniques to derived current fuel load from predicted 

vegetation type and fire history and the second method used litterfall estimation from 

biomass. It was found that the classification method overestimated fuel loads and 

biomass method was subject to less uncertainty (Brandis and Jacobson, 2003). There 

was also a study that used lower spatial but higher temporal resolution satellite product, 

such as the wildfire risk modelling in the Mojave Desert in Nevada. In this study, NDVI 

was used in fuel load prediction model along with other climate and topography 

parameters (Van Linn et al., 2013). 

 

Other fuel load estimation studies decided to rely solely on field records for fuel load 

estimation model development, such as a study in several locations across Australian 

open woodlands and forests (Gilroy and Tran, 2009). Linear regression models were 

developed for open woodland and open forest fuel types based on field observations in 

various areas across Australia. It was found that the developed model provided useful 

guidance on the fine fuel loads development in eucalypt forests of southeast Queensland 
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(Gilroy and Tran, 2009). Fire severity can also affect the variability in fuel load as 

demonstrated by the fuel variability study in Cascade Range, USA. It was found that fire 

severity influenced the immediate post burned canopy fuels but not the dead and down 

surface fuel loads (Hudec and Peterson, 2012). In contrast, fuel aging and structures can 

also influence fire behaviour, as demonstrated in an Australian eucalypt forest fire 

behaviour study. It was found that the fire behaviour was dominantly affected by the near 

surface fuel layer during the prescribed burn experiments (McCaw et al., 2012). 

 

Here, I propose a different approach to estimate fuel load over Australia by using the 

VOD derived aboveground biomass carbon (AGBC) estimation as a proxy for estimating 

fuel load (Liu et al., 2015). AGBC was estimated globally via microwave based VOD and 

used to assess the interannual variations and recent reversal in global AGBC reduction. 

It was found that the increase in AGBC was associated with wetter conditions in the 

savannahs of northern Australia and southern Africa. The AGBC dataset derived here 

has the same moderate spatial resolution as VOD and annual temporal resolution. While 

the spatial resolution is much lower than the imagery products used for estimating fuel 

load in most of the past studies described earlier, it has an advantage of providing a total 

spatial coverage over Australia. 

 

1.2.6 Grassland Fire Spread Modelling 

 

The factors influencing wildfire behaviour can be loosely categorised into three main 

components: fuels; weather; and topography. Many fire danger rating systems, fuel 

classification, and other related research is based on fire behaviour and spread 

modelling (Rothermel, 1972). In order to improve fire spread predictions in various 

grassland types in Australia, rural fire authorities requested the Commonwealth Scientific 

and Industrial Research Organisation (CSIRO) to undertake major research on fire 

spread in 1986 (Cheney and Sullivan, 2008). The development of grassland fire spread 

models has been heavily based on field observation data. The traditional southern 

grassland fire spread model developed by the CSIRO in 1998, associated grass fuel load 

with the condition of pasture for practical field use; level of grassland fuels was 

associated with three pasture categories: undisturbed (high fuel load), grazed (moderate 

fuel load), and eaten-out pasture (low fuel load) (Cheney et al., 1998). In addition, 

Cheney et al. (1998) model suggested that grassland fires are unable to spread where 

DOC is less than 50%. However, more recent studies also by CSIRO on grassland fire 

spread model developments that put more emphasis on DOC revised this limit (Cruz et 
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al., 2015; Kidnie et al., 2015). In Cruz et al. (2015) model, grassland fires can spread on 

an area with DOC as low as 20%. 

 

To simplify the process of fire spread predictions, several integrated software packages 

for the prediction of fire spread have been developed. In Australia, Phoenix RapidFire 

(hereafter referred to as Phoenix) is one of the more popular fire spread models with a 

lot of complex features (Tolhurst et al., 2008). Phoenix fire propagation prediction is 

based on Huygenon principle (simulates the propagation of fire with an elliptic stencil) 

(Knight and Coleman, 1993). Its grassland fire behaviour module is based on modified 

version of CSIRO southern grassland fire spread model discussed earlier (Cheney et al., 

1998).  

 

Phoenix is widely used in fire simulation studies in Australia, including examining the 

effects of fire weather, suppression, and fuel treatment on fire behaviour in the Sydney 

Basin (Penman et al., 2013), changes in future fire behaviour due to revegetation altering 

the fuel characteristics in New South Wales (Collins et al., 2015), and a fire risk mitigation 

policy and scientific interactions study in Victoria (Neale et al., 2016). Penman et al. 

(2013), using Phoenix simulations, concluded that fuel treatment can benefit the fire 

management agencies in a case where the suppression resources can respond rapidly. 

Collins et al. (2015) found that revegetation rarely increased median fire intensity over 

the suppressible levels, while the fuel load and fire weather were the main factors in 

suppressibility. Neale et al. (2016) used Phoenix as a part of their workshop in 

investigating how wildfire scientific research and policy and practices interacted. Phoenix 

has also been adapted for fire modelling outside of Australia, such as in a case study in 

Cavillon, France, where Phoenix was used to predicted fire spread in the interface area 

between the vegetated and urban area (Pugnet et al., 2013). The study in France 

concluded that Phoenix was effective in predicting spread in the vegetated and urban 

interface area, but testing with other fire events was required before a widespread 

deployment. Phoenix is routinely used in bushfire agency operations, such as those 

conducted by the New South Wales Rural Fire Service (Louis and Matthews, 2015). 

 

There is also a more recently developed software package that models fire spread called 

Spark (Miller et al., 2015). Spark uses a level set method as its baseline for predicting 

fire propagation (Osher and Sethian, 1988). While all fire behaviour models in Phoenix 

are embedded in the core of the program and are inaccessible to the user, Spark allows 

much more flexibility where the user can specify their own fire behaviour algorithm for 



10 
 

any fuel classification to govern the baseline level set method. Currently Spark can only 

output the predicted rate of spread and fire perimeter, in contrast to Phoenix which offers 

various fire behaviour components. However, Spark is relatively young model and 

continuous improvement and development in refining the fire perimeter shape and its 

internal level set method are still ongoing (Hilton et al., 2017, 2016, 2015). 

 

Both Phoenix and Spark models were recently evaluated in a fire spread models 

evaluation report by Bureau of Meteorology (Deslandes and Jacobs, 2017). In this 

evaluation, four simulators (Phoenix, Spark, Prometheus, and Australis) were evaluated 

based on ten case studies. It was found that no single fire spread simulator performs 

distinctively better than others, since none performed well for all case studies. One of 

the case studies, the Cobbler Road fire (8 January 2013), is a 6 hours, 140 km2 grassland 

fire. In this case study, both Phoenix and Spark (with grassland model varied by grass 

fuel condition and additional flank and back fire spread modification) generally performed 

in a median range. The report recommended executing the simulators in ensemble 

based approach over single, deterministic runs to account for uncertainty in fuel, weather 

conditions, and ignition inputs. 
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2 Methods 

 

 

This chapter describes all satellite and ground observation datasets used during this 

study. In addition, fire behaviour models used during the second part of this thesis 

(Chapter 5 and 6) is also described here. General methods that are used in multiple 

chapters are explained here, while unique methods that are exclusive to each individual 

chapter are described in their respective chapter. 

 

 

2.1 Dataset Description 

 

2.1.1 VOD and NDVI 

 

VOD was used in the estimation of DOC and to derive AGBC, which was used for 

estimating fuel load over Australia. NDVI was used for estimating DOC only. Both 

estimated DOC and fuel load gridded data were then used as the fire spread models’ 

inputs for analysing the sensitivity of grassland fire spread over landscapes with variable 

DOC and fuel load. 

 

The NDVI dataset used here is derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) 8 day surface reflectance product (MOD09A1) on-board the 

Terra satellite (Vermote and Vermeulen, 1999). The 8 day product has less noise than 

the daily product, and its spatial resolution is 0.005° (~500 m). This product is obtained 

from Remote Sensing at National Computational Infrastructure (NCI) MODIS Land 

Product for Australia website (Paget and King, 2008). It is produced from original tiles 

provided by the United States Geological Survey (USGS) for Australia with a starting 

date from 18 February 2000. Note that MOD09A1 is pre-processed with the provided 

quality flag grid, where the pixels with less than ideal quality were excluded prior to NDVI 

computation. 

 

The 8 day NDVI data is derived from the MODIS reflectance dataset using Equation 2.1: 

 

𝑁𝐷𝑉𝐼 = 
𝜌2−𝜌1

𝜌2+𝜌1
          (2.1) 
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where ρ1 and ρ2 are spectral reflectance measurements obtained from the visible (red) 

and near-infrared regions, respectively. During the conversion, to ensure the quality of 

data, only pixels with ideal quality in all bands and a view angle zenith of less than 60° 

were kept for the analysis, as suggested by Newnham et al. (2011). The spatial 

resolution was kept at 0.005°. 

 

The VOD dataset used here is retrieved from the Advanced Microwave Scanning 

Radiometer – Earth Observing System (AMSR-E) using the Land Parameter Retrieval 

Model (LPRM) (Meesters et al., 2005; Owe et al., 2001). It has a spatial resolution of 0.1° 

(~10 km) and nearly daily temporal resolution (Parinussa et al., 2014). The time period 

covered by AMSR-E is from 2 June 2002 to 3 October 2011, but I use complete years 

covering a 9 year range from 4 July 2002 to 26 June 2011 in our analysis. The same 

time period is also used for the MOD09A1 NDVI dataset. 

 

VOD data, which has a near daily temporal resolution, is converted to an 8 day average 

product to reduce noise and ensure complete coverage over Australia (10° S to 45° S 

and 110° E to 160° E) per temporal interval. The grid cells with radio frequency 

interference (RFI) are excluded from our analysis. RFI is caused by man-made 

transmitters, such as radars and wireless communications. These transmitters can be 

operated in the same frequency range as passive microwave observation, including 

VOD. Thus, natural signals captured by passive microwave observations are sometimes 

contaminated with RFI (Nijs et al., 2015). 

 

There are two frequency variants of AMSR-E VOD available, a shortwave frequency (6.9 

GHz or C-band) called VOD6 and a longwave frequency (10.7 GHz or X-band) called 

VOD10 (Reichle et al., 2007). The VOD data used for estimating DOC (Chapter 3) is 

VOD10. For estimation of fuel load (Chapter 4), VOD6 is used as a basis, while VOD10 

is used as a replacement in the locations (pixels) that are affected by RFI. 

 

An example comparison time series of VOD and NDVI from July 2002 to June 2011 at 

one of the observed DOC sites, Silent Grove, WA (17.13° S, 125.37° E) can be seen in 

Figure 2.1. It is shown that both VOD and NDVI have a similar seasonal cycle. Vegetation 

types that are present within the VOD (0.1°) and NDVI (0.005°) pixel influence the 

differences in VOD and NDVI behaviour. It is worth noting that the VOD time series is 

complete while the NDVI time series has periods of missing data generally caused by 

extended periods of atmospheric interference (clouds, aerosols, etc.). The difference 
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between VOD and NDVI spatial resolution can be clearly seen in the example 2° x 2° 

spatial maps around the Silent Grove area (Figure 2.1). I used both VOD and NDVI 

together in DOC estimation to combine their strengths. 

 

 

Figure 2.1 Example vegetation optical depth (VOD) and normalised difference vegetation 

index (NDVI) time series (b) and spatial maps, (c) for VOD and (d) for NDVI, at Silent 

Grove, WA (17.13° S, 125.37° E). The star (*) indicate the location of the time series on 

Australia map (a). 

 

2.1.2 Climate Datasets 

 

Gridded and point observed climate datasets are used in study. Gridded climate 

datasets, in particular – dry bulb or maximum temperature, 3 pm relative humidity, 

maximum wind speed, from multiple sources are used for GFDI calculation for assessing 

the usability of the satellite based DOC (estimated from VOD and NDVI). Point observed 

climate datasets recorded from weather stations network across Australia (temperature, 

relative humidity, wind speed and direction) are used as inputs for fire spread models in 

the realistic fire spread experiments. 



14 
 

 

The gridded, meteorological datasets are usually derived from the network of ground 

observation stations across Australia. The range for the temperature, relative humidity, 

and wind speed datasets is from 4 July 2002 to 26 June 2011 to exactly match with the 

VOD 9 year range. Both temperature and relative humidity datasets are acquired from 

the Australian Water Availability Project (AWAP) (Jones et al., 2009). Note that relative 

humidity is derived from vapour pressure and temperature data. These AWAP datasets 

have a 0.05° spatial and daily temporal resolution with a coverage region of 10° S to 

44.5° S and 112° E to 156° E. AWAP dataset has been widely used in climate modelling 

and land surface studies. For instance, there was a study on Australian rainfall patterns 

and associated vegetation growth. It was concluded that a lasting reduction in 

precipitation pattern was a major constraint on Australian vegetation growth (Liu et al., 

2017). Another example is the study of changes in Australian temperature and 

precipitation extremes and future projection with Coupled Model Intercomparison Project 

Phase 5 (CMIP5) multi-model ensemble, where the results were: increases in high 

temperature extremes, changes in temperature extremes were mostly found in the 

tropics, more periods of dryness, and increases in the most intense precipitation 

extremes (Alexander and Arblaster, 2017). AWAP was also used in validating dynamical 

downscaling of coupled global circulation models, where it was found that air to sea 

interactions were important and global forecast bias corrections were needed before 

downscaling for applications over Australia (Ratnam et al., 2017). An example of remote 

sensing related study that used AWAP is the improvement of satellite observations on 

detecting dryland degradation, where an extension of an existing technique is developed 

and resulted in more accurate estimation of degradation in Australia (Burrell et al., 2017). 

In a variability of extreme fire weather in southeast Australia study, AWAP was used to 

compute the FFDI (Harris et al., 2017). AWAP data is also considered one of the most 

accurate gridded datasets over Australia (Contractor et al., 2015). 

 

For maximum wind speed data, the reanalysis maximum daily wind speed is computed 

from the ERA-Interim wind components dataset, acquired from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) (Dee et al., 2011). The reanalysis wind 

components dataset is available globally at approximately 0.8° resolution at a 6 hour 

interval. ERA-Interim reanalysis datasets are widely used in various field of studies. For 

instant, ERA-Interim was used in the estimation of sudden burst or drop in wind speed 

for wind energy production, where the results from the prediction based on the reservoir 

computing method showed significant improvement over prior models (Dorado-Moreno 
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et al., 2017). ERA-Interim was also used to compute weighted average characteristics 

of sea conditions in maritime traffic route in European seas to minimised risk (Vettor and 

Guedes Soares, 2017). In a climate dynamics study, specifically the surface storm track 

intensities and spatial patterns, the surface storm tracks in CMIP5 multi-model ensemble 

were examined against ERA-Interim. The study concluded a dual role in forcing the 

CMIP5 storm track from aloft and the ocean surface (Booth et al., 2017). For a global 

scale fire behaviour simulation study based on global topographic, climatic, and fuel bed 

data, ERA-Interim was used as fire weather inputs. It was found from the global 

simulations that the most severe fire events were found in grasslands and shrublands in 

tropical biomes (Pettinari and Chuvieco, 2017). 

 

Point observed climate data are obtained from the past development of historical fire 

weather dataset (Lucas, 2010). The weather records are daily, ranging from 1973 to 

2010 with over 300 observation sites across Australia. The historical fire weather dataset 

was further analysed for trends in Australia from 1973 to 2010 using FFDI. The 

discovered trends, found to be consistent with projected impact on climate change, 

suggested increased fire weather conditions at numerous locations across Australia, with 

an increase in FFDI magnitude and fire season duration (Clarke et al., 2013b). The 

historical fire weather dataset was also used in evaluating the fire weather prediction skill 

of the Weather Research and Forecasting (WRF) model over southeast Australia in 1985 

to 2009; it was found that the WRF model predicted FFDI distribution and spatial variation 

with an overall positive bias, where errors in average FFDI were caused mostly from 

WRF humidity simulation error and errors in extreme FFDI were caused mostly from 

WRF wind speed simulation error (Clarke et al., 2013a). Another study that used the 

historical fire weather dataset was the assessment of climate change impact on fire risk 

in New South Wales. The study compared the FFDI computed from projected climate 

changes from regional climate models and a historical weather dataset with a result 

showing increases in both mean FFDI magnitude and mean number of days with high 

FFDI across New South Wales (Zhu et al., 2015). 

 

2.1.3 Land Cover, Vegetation Structure, Burned Area, and Digital Elevation Maps 

 

A land cover map of Australia is necessary for classifying dominant vegetation type with 

each gridded pixel of VOD and NDVI. It is used for calibration purposes when forming 

empirical models for estimating DOC and fuel load. Here, I use the global 0.05° land 

cover map based on the MODIS MCD12C1 product. The land cover classification system 



16 
 

is as proposed by the University of Maryland (UMD scheme) (Hansen et al., 2000). 

Figure 2.2 shows the 0.05° land cover type map of Australia, with observed curing sites 

marked with crosses. The land cover map used here is from year 2010. 

 

For additional evaluation on estimation of fuel load with AGBC (derived from VOD), I use 

Australia vegetation height and structure dataset to ensure that the derived AGBC level 

is consistent with different vegetation structures across various Australian bioregions. 

The vegetation height and structure dataset is obtained from AusCover product 

catalogue (Lucas et al., 2014). While vegetation height and plant cover products are 

available separately, for simplicity, I acquired the plant structure product, which is a 

categorical dataset that combines vegetation height and plant cover products. The 

vegetation structure map is a 30 m gridded snapshot of Australia during the year 2009 

(Lucas et al., 2015). This vegetation dataset is derived from Advanced Land Observing 

Satellite (ALOS-1 PALSAR), Landsat, and NASA Ice, Cloud, and Land Elevation 

(Rosenqvist et al., 2014). The dataset was also reviewed in a recent study on monitoring 

forest degradation with current remote sensing approaches. The study was a review of 

various remote sensing approaches for detecting forest degradation at national level, 

where future improvements were anticipated with the next generation of remote sensing 

sensors (Mitchell et al., 2017).  

 

A satellite observed burned area map is used for evaluating the GFDI calculated with 

satellite based DOC and for locating the ignition location of the past fire events selected 

for fire spread model realistic experiments. I picked the monthly archived MODIS burned 

area map reprojected for Australia from Remote Sensing at the NCI site (Paget and King, 

2008). There are two separate MODIS burned area products: the MCD45A1 and the 

MCD64A1. The MCD64A1 burned area product is preferred over MCD45A1, since it was 

proven to be more accurate (Andela and van der Werf, 2014; Padilla et al., 2015; Ruiz 

et al., 2014). It was previously used in Australia in the studies related to emission factors 

of Australia forest fire (Paton-Walsh et al., 2014) and estimating emission of greenhouse 

gases from a past Victoria fires (Surawski et al., 2016). Its spatial specification is the 

same as the MODIS reflectance dataset, with temporal availability from August 2000 

onwards. To ensure high quality of the burned pixels, only pixels with the valid data flag 

from the provided quality control file are included in the analysis. Over 99 % of pixels 

from mid-2002 to mid-2011 are classified as unburned. To reduce the number of 

prescribed burned and other low power anomalies detected by the burned area product, 
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a fire radiative power (FRP, unit: MW) from MODIS active fire product (MCD14ML) is 

used to mask out low severity fires. 

 

The digital elevation model (DEM) is needed for realistic fire spread model experiments 

in Chapter 5 and 6. I obtained 25 m DEM around the three realistic fire spread 

experimental sites, which are Toodyay, WA, Pulletop, NSW, and Jail Break Inn, NSW 

areas from Geoscience Australia via the Elevation Information System (ELVIS) service 

(Geoscience Australia, 2016). Note that the elevation variations around the burned areas 

in the experiments are quite low (not exceeding 1° slope). 

 

 

Figure 2.2 MODIS MCD12C1 land cover type map for Australia (Hansen et al., 2000). 

The locations of observed degree of curing (DOC) sites are marked with crosses. 

 

2.1.4 Site Observed DOC and Fuel Load 

 

Both site observed DOC and fuel load are required for calibrating and evaluating the 

satellite based estimation models for both DOC and fuel load. 

 

The observed grassland DOC data was provided by Bushfire and Natural Hazards 

Cooperative Research Centre (BNHCRC) and its partner agencies (Project reference: 
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http://www.bushfirecrc.com/projects/a14/grassland-curing). The observed data were 

collected from several sites across Australia and New Zealand, ranging from August 

2005 to March 2009, usually during summer. Refer to Figure 2.2 for DOC site locations. 

Selected sites were intended to represent broad coverage of major grassland types. Note 

that the number of locations and samples taken were highly dependent on the availability 

of field observers from fire management agencies; data were collected with inconsistent 

interval between data collection dates (Anderson et al., 2011). Three types of data 

collection approaches were used: visual estimation, levy rod method, and destructive 

sampling. Due to the number and availability of data as well as their accuracy, only 

observed DOC from the levy rod method was used in this study. Anderson et al. (2011) 

and Newnham et al. (2011) state that the levy rod measurement is reliable with less than 

1% bias when compared with destructive sampling. Note that the number of locations 

and samples taken were highly dependent on the availability of field observers from fire 

management agencies; data are collected in a disjoint daily period, with inconsistent 

interval between each data collection date. 

 

The observed fuel load data is extracted from recent prescribed fire effectiveness 

between Australia bioregion study (Price et al., 2015). There are 31 fuel load records for 

31 different bioregions. Note that unlike observed DOC and other observed climate data, 

the fuel load data is not a daily or near daily data, but a snapshot value, representing the 

max fuel load for its corresponding bioregion. Other two fuel load datasets available are 

point observations of past fuel loads from various sites across Australia. The first site-

based fuel load data is provided by BNHCRC and consisted of observation sites from 

South Australia. The second site-based fuel load data is provided by Country Fire 

Authority (CFA) and consisted of observation sites from Victoria. Both site-based fuel 

load data are as described in Section 4.1.1. 

 

Every dataset used along with summary of their functions in the study is as summarised 

in Table 2.1 

 

Table 2.1 List of datasets used in this study in order of appearance. 

Dataset Used 

Name Source Format Functions 

Vegetation Optical 

Depth (VOD) 

Parinussa 

et al. (2014) 

Gridded (8-

day) 

Deriving DOC and fuel load 

(via AGBC). 
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MODIS MOD09A1 

(Reflectance) 

Paget and 

King (2008) 

Gridded (8-

day) 
Deriving NDVI. 

AWAP Temperature 
Jones et al. 

(2009) 

Gridded 

(Daily) 
For computing GFDI. 

AWAP Vapour 

Pressure 

Jones et al. 

(2009) 

Gridded 

(Daily) 

Deriving relative humidity for 

computing GFDI. 

ERA-Interim Wind 

Components 

Dee et al. 

(2011) 

Gridded 

(Daily) 

Deriving wind speed for 

computing GFDI. 

Historical Fire 

Weather Dataset 

Lucas 

(2010) 

Time Series 

(Daily) 

Includes temperature, relative 

humidity, and wind speed; 

used as inputs in fire spread 

modellings. 

MODIS MCD12C1 

(Land Cover) 

Hansen et 

al. (2000) 

Gridded 

(Snapshot) 

Used for Australia land cover 

classification throughout this 

study. 

AusCover Vegetation 

Inventory (Vegetation 

Structure) 

Lucas et al. 

(2014) 

Gridded 

(Snapshot) 

For evaluating gridded fuel 

load derived from VOD (via 

AGBC). 

MODIS MCD64A1 

(Burned Area) 

Paget and 

King (2008) 

Gridded 

(Daily) 

For evaluating gridded GFDI 

computed from various DOC 

estimation models. 

MODIS MCD14ML 

(Active Fire) 

Paget and 

King (2008) 

Gridded 

(Daily) 

For reducing low power 

anomalies detected by 

MCD64A1. 

ELVIS Digital 

Elevation Model 

(DEM) 

Geoscience 

Australia 

(2016) 

Gridded 

(Snapshot) 

Used in fire spread modelling 

(in realistic experiments). 

BNHCRC Site 

Observed DOC 

Provided by 

BNHCRC 

Time Series 

(Disjointed) 

For calibrating and evaluating 

DOC estimation models. 

Australia Bioregions 

Fuel Load 

Price et al. 

(2015) 

Gridded 

(Snapshot) 

For calibrating fuel load 

estimation models. 

BNHCRC South 

Australia Fuel Load 

Provided by 

BNHCRC 

Time Series 

(Disjointed) 

For calibrating fuel load 

estimation models. 

CFA Victoria Fuel 

Load 

Provided by 

CFA 

Time Series 

(Disjointed) 

For calibrating fuel load 

estimation models. 
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Estimated DOC 

Method B 

Newnham 

et al. (2010) 

Gridded (8-

day) 

For comparison with estimated 

DOC developed in this study. 

Estimated DOC 

MapVic 

Martin et al. 

(2015) 

Gridded (8-

day) 

For comparison with estimated 

DOC developed in this study. 

 

2.2 Models Description 

 

2.2.1 Phoenix RapidFire Model 

 

I use two different fire behaviour models to execute the idealised and realistic grassland 

fire spread experiments. The first model is Phoenix (version 4.0.0.7) (Tolhurst et al., 

2008, 2007), which is a dynamic fire behaviour and characterization model. Phoenix fire 

behaviour’s modules are based on two modified fire behaviour models: CSIRO southern 

grassland fire model (Cheney et al., 1998) and the McArthur’s Mark 5 forest fire 

behaviour model (McArthur, 1967; Noble et al., 1980). Its fire spread algorithms are 

based on Huygen’s principle (Knight and Coleman, 1993). In addition to fire behaviour 

simulation component, Phoenix also integrates a likelihood and consequence business 

model. 

 

The CSIRO southern grassland fire spread model (Cheney et al., 1998) underpinning 

Phoenix’s grassland fire behaviour component is a function of pasture type, mean wind 

speed at 10 m in the open, moisture content of dead grass, and DOC. Two sets of 

equations are used to predict fire spread, respectively, for the cases where the wind 

speed is below and above 5 km h-1. The model also supports three different major 

pasture types with differing fuel loads: undisturbed natural, and grazed, and eaten out 

pastures. Some modifications to the fire behaviour models in Phoenix have been made 

to accommodate the dynamic nature of fire and its surrounding environmental 

interactions (Tolhurst et al., 2008, 2007). The curing coefficient used in Phoenix is the 

original curing coefficient from Cheney et al. (1998) model, as shown in Equation 2.2. 

 

𝛾 = 
1.120

1+59.2𝑒−0.124(𝐷𝑂𝐶−50)
         (2.2) 

 

where γ is the curing coefficient, which is a value between 0 to 1 modifying the rate of 

spread due to the level of presented DOC. 
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For grassland fuel load the original Cheney et al. (1998) model has three different grass 

states of natural, grazed, and eaten out which are associated with fuel loads ranging 

from 6.0 t ha-1 to 1.5 t ha-1. To incorporate continuous changes in state based on 

equivalent fuel load in Phoenix, the rate of spread is calculated for the natural state and 

is then modified by a factor proportional to the fuel load greater or less 6.0 t ha-1. A 

consequence of the implementation in Phoenix is that fuel loads greater than 6.0 t ha-1 

can result in spread rates lower than that obtained for 6.0 t ha-1 fuel load. This has been 

justified by asserting that the additional heat generated would create a greater drawback 

on the rate of spread (Tolhurst et al., 2007). 

 

2.2.2 Spark Model 

 

Spark (version 0.9.4) is a more recently developed system for predicting bushfire spread 

by CSIRO (Miller et al., 2015). Its fire propagation perimeter is represented by a level set 

method (Osher and Sethian, 1988). The fire behaviour components can be defined by 

the user, maximising the customizability of the simulation software 

 

To closely emulate Phoenix’s grassland fire behaviour module, I also use CSIRO 

southern grassland fire model (Cheney et al., 1998). However, I implement a modern 

revision of curing coefficient from Cruz et al. (2015) study, as shown in Equation 2.3. 

 

𝛾 = 
1.036

1+103.989𝑒−0.0996(𝐷𝑂𝐶−20)
        (2.3) 

 

The revised curing coefficient allows fire to spread under a condition where DOC is as 

low as 20%, as opposed to the original DOC threshold of 50%. 

 

To incorporate variability in fuel loads between different pasture states, a fitting curve 

between the coefficients of the rate of spread equations from three different pasture 

states and corresponding fuel load of 6.0, 4.5, and 1.5 t ha-1 for natural, grazed, and 

eaten out pastures is formed. The fitting equations along with the corresponding Cheney 

et al. (1998) rate of spread models are as shown in Equation 2.4 for the case with wind 

speed over 5 km h-1 and Equation 2.5 for wind speed under 5 km h-1. 

 

a = 0.264 + 0.188Q 

b = 0.281Q0.614 

𝑅𝑉≥5 = (𝑎 + 𝑏(𝑉 − 5)0.844)(𝜇)(𝛾)       (2.4) 
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a = 0.054 

b = 0.0489 + 0.0363Q 

𝑅𝑉<5 = (𝑎 + 𝑏𝑉)(𝜇)(𝛾)        (2.5) 

 

Note that a and b are coefficients for Cheney et al. (1998) rate of spread model (R), Q is 

fuel load (t ha-1), V is wind speed (km h-1), μ is the moisture coefficient, and γ is the curing 

coefficient. 

 

For lateral and back fire spreads, I have added a template to simulate different spread 

rates at the flanks and the back of the fires (Alexander, 1985). This is done by adding a 

7% flanking and 2% backing spread of the head fire. These flanking and backing spread 

rates can be derived from an elliptic modelling approach and shape factor from past 

bushfire modelling studies (Anderson et al., 1982; Luke and McArthur, 1978). I use an 

elliptical shape to describe the perimeter of a grass fire under a constant wind (at any 

time period t) as in Equation 2.6, where R0 is zero-wind rate of spread, f, g, and h are 

elliptical shape parameters depending on the wind speed, and θ is fire spread direction 

ranging from 0° to 360°  (Anderson et al., 1982). 

 

𝑥(𝑡, 𝜃) = 𝑅0𝑡(𝑓𝑐𝑜𝑠𝜃 + 𝑔) and 𝑦(𝑡, 𝜃) = 𝑅0𝑡(ℎ𝑠𝑖𝑛𝜃)     (2.6) 

 

In an idealised fire condition, the head, flank, and back fire rate of spread can be 

described as in Equation 2.7, where Rh, Rf, and Rb are the head, flank, and back fire rate 

of spread. 

 

𝑅ℎ = 𝑅0(𝑓 + 𝑔), 𝑅𝑏 = 𝑅0(𝑓 − 𝑔), and 𝑅𝑓 ≈ 𝑅0ℎ     (2.7) 

 

Equation 2.7 is then rearranged so that the flank and back fire rate of spread can be 

expressed as percentages of the head fire rate of spread (α and β) as in Equation 2.8. 

 

Rb = βRh and Rf = 𝛼Rh        (2.8) 

 

From Luke and McArthur (1987) study, a relationship between length-to-breath ratio (
L

B
) 

or shape factor of a fire and a wind speed can be established by rearranging Equation 

2.7 and 2.8 in term of f and h, as shown in Equation 2.9. The expression can be further 

simplified to Equation 2.10. 
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𝑓 =
𝑅ℎ(1+𝛽)

2𝑅0
 and ℎ =

𝛼𝑅ℎ

2𝑅0
        (2.9) 

 

𝐿

𝐵
=

𝑓

ℎ
=

1+𝛽

2𝛾
          (2.10) 

With a wind speed of 55 km h-1 in idealised experiments, the shape factor is ~7 (Luke 

and McArthur, 1978). Hence, from Equation 2.10, α and β are approximately 2% for 

backing and 7% flanking rate of spread, respectively. For simplicity and consistency, I 

use 7% flanking and 2% backing rate of spread for every Spark experiment. 
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PART I: SATELLITE BASED DEGREE OF 
CURING AND FUEL LOAD 
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3 Estimated Degree of Curing with Satellite Data 

 

 

In this chapter, I use both optical based (NDVI) and recently developed microwave based 

satellite data (VOD) along with site observed grassland DOC datasets to calibrate and 

evaluate a regression based model for prediction of DOC over Australia. The model 

developed here is then compared with the existing DOC products that are Newnham et 

al. (2010) Method B and Martin et al. (2015) MapVic models. I compare the GFDI 

calculated from satellite based models and constant DOC (100%) with the satellite 

observed burned areas over Australia and how satellite based DOC models help to 

improve fire severity prediction. Contents in this chapter are from the paper “Estimating 

Grassland Curing with Remotely Sensed Data” (Chaivaranont et al., 2018). 

 

 

3.1 Existing Approaches to Estimate DOC with Optical Based Satellite 

Products 

 

Satellite based DOC estimation over Australia are usually based on optical and infrared 

wavelength satellite sensor observations. As indicated by past studies (Dilley et al., 2004; 

Peterson et al., 2008), NDVI has a significant relationship with live fuel moisture content 

and DOC. Apart from using straight NDVI to establish a relationship with DOC, there are 

also other variations of modified NDVI, such as RG (Newnham et al., 2011). Newnham 

et al. (2011) found that RG has a stronger relationship with DOC than NDVI. One of the 

two alternatives Newnham et al. (2011) proposed is the range based RG, which can be 

computed by the following Equation 3.1, where the NDVImin and NDVImax are the 

minimum and maximum NDVI value over a specified time range. . 

 

𝑅𝐺 =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
         (3.1) 

 

However, estimated DOC using RG over Australia or very large areas is challenging 

since RG is highly dependent on the time range for minimum and maximum NDVI. 

Defining an appropriate time range for large areas encompassing various ecosystems is 

very difficult. 
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For DOC estimation over Australia, currently there are several products available from 

Bureau of Meteorology. There are five models available, four are based on Newnham et 

al. (2010) and one is based on Martin et al. (2015) studies. All models are also based on 

NDVI and reflectance products (optical and infrared based satellite products). Here, we 

show only one of Newnham et al. (2010) models (Method B) and the Martin et al. (2015) 

model (MapVic), since they have the best performance among the five models. Both 

Method B and MapVic DOC models are as described in Equation 3.2 and Equation 3.3, 

as shown below. 

 

𝐷𝑂𝐶𝑀𝑒𝑡ℎ𝑜𝑑𝐵 = 237.31 − 190.14(𝑁𝐷𝑉𝐼) − 142.66(
𝜌7

𝜌6
)    (3.2) 

 

𝐷𝑂𝐶𝑀𝑎𝑝𝑉𝑖𝑐 = 113.80 − 88.41(𝑁𝐷𝑉𝐼) − 67.71(𝐺𝑉𝑀𝐼)     (3.3) 

 

GVMI is Global Vegetation Monitoring Index, which can be calculated as shown in 

Equation 3.4. The reflectance bands ρ2, ρ6 and ρ7 (band two, six, and seven) are from 

MODIS reflectance dataset (Ceccato et al., 2002; Martin et al., 2015; Newnham et al., 

2010). 

 

𝐺𝑉𝑀𝐼 = 
(𝜌2+0.1)−(𝜌6+0.02)

(𝜌2+0.1)+(𝜌6+0.02)
        (3.4) 

 

To assess our DOC estimation model performance with the existing products, we 

compare both Method B and MapVic model with our model. We evaluate them using the 

same observed DOC sites. In addition, we also compute recalculated GFDI with both 

Method B and MapVic DOC and assess their burned area prediction capability. 

 

 

3.2 Calibrating VOD-NDVI-based DOC estimate models  

 

3.2.1 Multiple Linear Regression Model 

 

In this study, we investigate whether the recently developed, microwave based VOD 

adds any information to satellite based DOC beyond that embodied in the NDVI (optical 

based product) using a multiple linear regression model. Initially, we investigated 

modified forms of NDVI, such as RG, since they have better correlation with DOC per 

Newnham et al. (2011). Note that we did not attempt to compare the other purposed 
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alternative, the spread based RG, but only range based (per pixel) RG. In Newnham et 

al. (2011), while range based RG performance is not as good as preferred spread based 

RG (r2 = 0.62 and RMSE = 14.2%), it is still better than plain NDVI (NDVI had r2 = 0.50 

and RMSE = 16.4%, while 2.5 years range based has r2 = 0.57 and RMSE = 15.1%). 

Note that while we cannot exactly reproduce the 10 year time range Newnham et al. 

(2011) used, since our study time frame is 9 years, we tried various 2.5 years time ranges 

that overlapped with Newnham et al. (2011) study period. However, given the same 

observed DOC data and NDVI dataset, we were unable to reproduce a result where the 

RG correlation with DOC is stronger than NDVI.  Further analysis showed that the RG 

results were very sensitive to the selected time range for the computation, such that 

results were inconsistent with relatively small differences in the selected range. Due to 

this, RG is not used in this study and NDVI is used directly in forming a multiple linear 

regression model to estimate satellite based DOC. 

 

Our preliminary analysis revealed that the VOD anomalies, computed from the difference 

between VOD and average VOD over a specified temporal range, yields the best 

correlation with DOC, but only if the VOD anomalies are computed from the range 

matching the in situ DOC observation range for each specific site. The range selection 

for computing VOD anomalies can be quite problematic, since it can heavily influence 

the correlation result, and no pattern could be found for determining an appropriate VOD 

range for any other locations outside the observed DOC sites. Thus, we focus our 

analysis on using the absolute VOD value. The linear regression equation for DOC and 

VOD correlation can be expressed as Equation 3.5, where a and b are the intercept and 

slope of the relationship. 

 

𝐷𝑂𝐶 = 𝑎 + 𝑏(𝑉𝑂𝐷)         (3.5) 

 

Utilising both VOD and NDVI datasets, the following multiple linear regression equation 

for estimating DOC can be expanded from Equation 3.5 as Equation 3.6. 

 

𝐷𝑂𝐶 = 𝑎 + 𝑏(𝑉𝑂𝐷) + 𝑐(𝑁𝐷𝑉𝐼) + 𝑑(𝑉𝑂𝐷)(𝑁𝐷𝑉𝐼)      (3.6) 

 

Here a, b, c, and d are the intercept and coefficients of VOD, NDVI and the product of 

VOD and NDVI (interaction term), respectively. Using a stepwise regression, the 

calibrated final model with corresponding coefficients can be determined. The stepwise 

fit algorithm used here selects the significant terms with the lowest p-value, which is 
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smaller than the entrance tolerance, to be included in the model first. Next, the algorithm 

chooses the next most significant term that is still less than the entrance tolerance. This 

process is repeated until either there are no remaining significant terms or all terms are 

included in the final model (Draper and Smith, 1998).  

 

3.2.2 Observed DOC Site Selection  

 

To build up robust relationships between the site observed DOC and satellite signals, 

several site selection criteria were applied. Sites meeting these criteria were used for 

calibration in the VOD and NDVI based DOC estimation models, while all valid records 

were used for evaluation.  

 

There are several factors considered in the site selection. First is the land use type of 

the observed DOC site. The 0.05° land cover type map (MCD12C1) is used for 

classifying the site location land cover (Hansen et al., 2000). Since 0.1° VOD pixel is 

covered by 2 x 2 0.05° land cover pixels, the corresponding 2 x 2 pixels of land cover 

type for each observed DOC site can be acquired. The land cover type and homogeneity 

of each observed DOC site can then be determined, where the site is considered to have 

a homogeneous land cover only if all four land cover pixels corresponding to the VOD 

pixel are the same. In case of a site with heterogeneous land cover type, the dominant 

land cover with the most pixels out of four will be considered as the representative land 

cover. All observed DOC sites can be categorised into the following land cover types: 

evergreen broadleaf forest, open shrubland, savannas, woody savannas, grasslands, 

croplands, and urban. According to the land use information for each 0.1° VOD pixel, 

sites identified as evergreen broadleaf forest pixels were removed from the analysis. 

There are three out of 37 sites situated in the evergreen broadleaf forest, which are 

Darnum, VIC (mixed grass), Simcocks, WA (improved pasture), and Neerim South, VIC 

(mixed grass). Even though actual locations of all observed curing sites were in grassy 

areas, the VOD signal is a mixture of grassland and forest when the sites are surrounded 

by dense forests within the same 0.1° pixel. 

 

All sites were also examined to ensure a negative correlation between VOD and the in 

situ DOC data. That is, since VOD is a proxy for water content in above ground biomass, 

an overall negative correlation between VOD and curing is expected. If this is not the 

case, then there is likely some other activity within the 0.1° pixel that disrupts this basic 

relationship; this effect was found in three sites (Durran Durra, NSW (native grass), 
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Monaro, ACT (improved pasture), and Parry Lagoons, WA (native grass)). The sites 

without the negative correlation with VOD also had no correlation with NDVI suggesting 

other land cover types where dominating the signal. Thus, six out of 37 sites are excluded 

from the analysis. 

 

In addition, there are eight sites (Umbigong, ACT (native grass), Kilcunda, VIC (improved 

pasture), Tooradin, VIC (improved pasture), Tooradin North, VIC (improved pasture), 

Caldermeade Park, VIC (improved pasture), Kaduna Park, VIC (improved pasture), 

Hobart Airport, TAS (native grass), and Jerona, QLD (native grass)) in which VOD data 

are not available. Most of these are due to sites being located near the coast or a large 

body of water, where the VOD signal is strongly influenced by the water itself. With the 

remaining 23 out of 37 sites, several site selection criteria were applied for the calibration 

phase. The criterion used here to maintain consistency in observation time series 

requires sites to have at least eight consecutive records, where records are considered 

consecutive when they are separated by no more than 15 days. Only the consecutive 

series of records within the selected sites are included in the analysis for the calibration 

phase. This ensures that the derived model contains the temporal evolution of DOC 

within years. Only five out of 23 sites are retained for this group, containing a total of 122 

(out of 238 total) observations. The selected sites are: Majura, ACT (improved pasture), 

Tidbinbilla, ACT (mixed grass), Ballan, VIC (improved pasture), Murrayville 1, VIC (native 

grass), and Murrayville 2, VIC (improved pasture). Multiple linear regression models of 

VOD and NDVI were then calibrated with the observed curing from the final selected 

sites. 

 

3.2.3 Calibration Results 

 

Across all selected observed DOC sites (excluding the forest areas) from July 2002 to 

June 2011, the r2 of VOD and NDVI is 0.52 with an RMSE of 0.11. Using the linear model, 

as described by Equation 3.5, the DOC and VOD correlation result has a significant 

relationship and an r2 of 0.20 with RMSE of 20.80%. The scatter plot showing the 

correlation between VOD, NDVI and combined VOD and NDVI terms are as shown in 

Figure 3. 1, while Figure 3.2 shows the residual DOC unexplained by NDVI (differences 

between observed DOC and NDVI-based DOC) against VOD and combined VOD and 

NDVI terms. 

 



30 
 

However, at this level of r2, VOD alone is not reliable enough to estimate DOC, especially 

across Australia in general. The study of Newnham et al. (2011) indicated that NDVI 

alone can perform better at estimating DOC, with an r2 of approximately 0.50 for a DOC 

and NDVI linear relationship. The combined explanatory power of NDVI and VOD is 

explored using a multiple linear regression analysis, as expressed by Equation 3.6. The 

first final model includes the VOD and NDVI interaction (𝑑) and NDVI (𝑐) terms, and is 

as shown in Equation 3.7. The calibrated r2 for this model is 0.67 with RMSE of 13.40%. 

VOD was excluded as a predictor in the first final model, as expressed in Equation 3.7, 

because during the stepwise regression, when the NDVI and (VOD)(NDVI) terms are 

included as the first and second predictors, the VOD term does not contribute in 

improving the final model prediction (i.e. p-value exceeds the acceptance threshold, 

preventing overfitting). When the NDVI term is excluded, the (VOD)(NDVI) term is 

included first, followed by the VOD term, as expressed in the second final model, shown 

in Equation 3.8. The second final model has a calibrated r2 of 0.54 and RMSE of 15.95%. 

Table 3.1 shows the correlation results for both models. Scatter plots for both DOC 

models calibration, all sites evaluation, and independent sites evaluation are as shown 

in Figure 3.3. 

 

𝐷𝑂𝐶1 = 145.57 − 260.82(𝑁𝐷𝑉𝐼) + 137.19(𝑉𝑂𝐷)(𝑁𝐷𝑉𝐼)    (3.7) 

 

𝐷𝑂𝐶2 = 48.70 + 147.60(𝑉𝑂𝐷) − 259.95(𝑉𝑂𝐷)(𝑁𝐷𝑉𝐼)    (3.8) 
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Figure 3.1 Scatter plot of observed degree of curing (DOC) from five calibration sites 

against VOD, NDVI, and combined VOD and NDVI terms. 
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Figure 3.2 Scatter plot of residual observed degree of curing (DOC) from five calibration 

sites that are unexplained by NDVI against VOD and combined VOD and NDVI terms. 

 

Table 3.1 Calibration and evaluation of satellite based degree of curing (DOC) model 

derived from Vegetation Optical Depth (VOD) and Normalised Difference Vegetation 

Index (NDVI). Existing estimated DOC models, Method B (Newnham et al., 2010) and 

MapVic (Martin et al., 2015), evaluations are also listed below. 

Model 

Calibration (5/23 
sites; 112/238 
observations) 

All Sites Evaluation 
(23/23 sites; 238/238 

observations) 

Independent Sites 
Evaluation (18/23 

sites; 126/238 
observations) 

r2 RMSE r2 RMSE r2 RMSE 

First DOC-VOD-
NDVI Model 
[Eq. (3.7)] 

0.672 13.396 0.550 15.254 0.443 16.760 

Second DOC-
VOD-NDVI Model 
[Eq. (3.8)] 

0.536 15.950 0.503 15.952 0.542 15.527 

Method B 
[Eq. (3.2)] 

N/A N/A 0.611 14.438 0.632 11.924 

MapVic 
[Eq. (3.3)] 

N/A N/A 0.435 19.801 0.562 14.682 
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Figure 3.3 Scatter plots between observed and estimated degree of curing (DOC) from 

the first (Equation 3.7) and second (Equation 3.8) models during calibration, all sites 

evaluation, and independent sites evaluation stage, corresponding to the information in 

Table 3.1; dash line represent idealise 1:1 line (perfect fit) while grey solid represent the 

best fit. 
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3.3 Evaluating VOD-NDVI-based DOC Estimate Model 

 

3.3.1 Evaluation Results 

 

The DOC models are then evaluated with all (23) valid observed DOC sites and 

independent (18) observed DOC sites (excludes 5 sites that were used in calibration). 

The evaluation results for the first model are also shown in Table 1, where the evaluated 

r2 is 0.55 and 0.44 with RMSE of 15.25% and 16.76% for all sites evaluation and 

independent sites evaluation, respectively. The second model evaluations results have 

r2 of 0.50 and 0.54, with RMSE of 15.95% and 15.53% for all sites evaluation and 

independent sites evaluation, respectively. While the evaluations resulted in degradation 

in model performance over the calibration in most cases, the independent evaluation of 

the second model has a slightly better evaluation performance.  

 

These results can be compared to those obtained using existing remotely sensed DOC 

estimates which are also shown in Table 3.1. The MapVic DOC has a lower r2 and higher 

RMSE, while the Method B DOC has a higher r2 and lower RMSE when compared with 

both of our models in all sites evaluation. This indicates that Method B has the best 

evaluation among the three models, while MapVic is the worst, and our models sit in the 

middle between the two. However, during an independent sites evaluation, both models 

with VOD have the worst performance (lowest r2 and RMSE). This result is not entirely 

surprising as all the observations used here were also used in the calibration of Method 

B (Newnham et al., 2010), a subset is used in the calibration of our method, and MapVic 

was developed using an independent visual estimates dataset. That is, there is no 

independent data available for testing Method B, while both our method and MapVic are 

being tested against independent data. While our first and second models do not have 

obvious advantages over one another, since the second model only performs better than 

the first in independent sites evaluation, we decided to pick the first model as our 

representative model for further comparison with the existing models from this point, 

since the terms in the first model were selected based on stepwise fit regression with 

none of our interference (we intentionally removed NDVI term in the second model before 

applying the stepwise fit regression). 
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3.3.2 Spatial and Temporal Variability 

 

Using the relationship between VOD, NDVI, and observed DOC from the first model, as 

stated in Equation 3.7, we calculated satellite based DOC for Australia. Figure 3.4 

presents maps of satellite based DOC data averaged over the summer periods 

(December, January, February) for the years 2002-2003 and 2010-2011. From mid-2002 

to mid-2011, the overall average DOC for the Australian summer period is the highest 

during 2003 and the lowest during 2011.  Note that the pixels that are classified as any 

forest types are masked out in white. Comparison time series between satellite based 

and site observed DOC at Silent Grove, WA (same location as shown in VOD and NDVI 

example comparison in Figure 2.1) is also shown at the top of Figure 3.4 as an example. 

Note that the continental mean of DOC across Australia from mid-2002 to mid-2011 is 

85.70%. 

 

To determine the amount of spatial variation in DOC across Australia, we computed the 

standard deviation of all valid DOC estimates across the continent within a single time 

step. The spatial variation time series can then be plotted for the available time period of 

mid-2002 to mid-2011, as shown in Figure 3.5. Note that the continental mean spatial 

DOC standard deviation is 20.39%. This indicates that there is significant spatial 

variability in DOC that persists across all years, and contains a small seasonal 

component. For a normally distributed variable, 95% of values would lie within two 

standard deviations, which is ±40.78% in this case. Further analysis on DOC spatial 

standard deviation are as shown in Table 3.2. This includes seasonal, monthly, and land 

cover type spatial standard deviation of DOC. From both seasonal and monthly spatial 

standard deviation of DOC, it is shown that DOC has the highest spatial variation during 

winter, which is especially true for northern Australia (Anderson et al., 2011). 

 

In addition, based on time series of satellite based curing data, Figure 3.6 reveals the 

spatial distribution of standard deviations calculated for each pixel. It shows that most of 

the strong temporal variation occurs in the south, especially in the southeast and 

southwest of Australia. Several areas in the midcontinent that have unexpectedly high 

variation are likely due to rare inundation events. The continental mean temporal 

standard variation is at 11.88%. Together, Figure 3.5 and 3.6 show the variability in DOC 

that will impact calculations of fire danger indices. 
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Though an earlier study for estimating DOC directly with NDVI yielded even smaller 

RMSE of up to 6.3%, that particular study is focused on data from only three different 

sites, within a limited study area of 1 km2 (Dilley et al., 2004). Older studies that have 

used NDVI data derived from the National Oceanic and Atmospheric Administration’s 

(NOAA) Advanced Very High Resolution Radiometer (AVHRR) have the same problem 

of interference from clouds and atmospheric effects, but do not have the advantage of 

high resolution offered by MODIS (0.05° for AVHRR, but 0.005° for MODIS), or the 

advantage that VOD is not affected by clouds or aerosol interference. 

 

 

Figure 3.4 Example satellite based and site observed degree of curing (DOC) time series 

comparison at Silent Grove, WA (17.131° S, 125.374° E) (b), where the star (*) indicate 

the location of the time series on Australia map (a). Satellite based DOC across Australia 

during summer (December, January, February) for 2002-2003 (c) and 2010-2011 (d) are 

shown with forest areas masked out. 
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Figure 3.5 Spatial standard deviation of estimated degree of curing (DOC) time series 

from 4 July 2002 to 26 June 2011. 

 

Figure 3.6 Temporal standard deviation of estimated degree of curing (DOC) map from 

4 July 2002 to 26 June 2011. 
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Table 3.2 Spatial standard deviation of estimated degree of curing (DOC) by season, 

month, and land cover type from 4 July 2002 to 26 June 2011. 

DOC Spatial Standard Deviation 

Season 
Spatial SD 

(%) 
Month 

Spatial SD 
(%) 

Land Cover 
Type 

Spatial SD 
(%) 

Autumn 
(MAM) 

20.636 January 19.050 
Closed 
Shrublands 

11.484 

Winter (JJA) 22.895 February 21.354 
Open 
Shrublands 

13.982 

Spring 
(SON) 

18.861 March 21.167 
Woody 
Savannas 

17.912 

Summer 
(DJF) 

19.161 April 20.228 Savannas 13.432 

  May 20.498 Grasslands 19.105 

  June 21.770 Croplands 20.995 

  July 23.231   

  August 23.634   

  September 21.971   

  October 18.305   

  November 16.325   

  December 17.276   

 

 

3.4 Comparing GFDI Derived From VOD-NDVI-based and Existing DOC 

Estimation 

 

3.4.1 Calculating GFDI 

 

GFDI can be calculated as described in Equation 1.1 and 1.2. The spatial plot for 

maximum summer recalculated GFDI from the DOC multiple linear regression model is 

shown in Figure 3.7, where the top row (a) and (b) are the maps for summer 2003 and 

summer 2010, respectively. The magnified regions for example fire events in Weston 

Creek, ACT 2003 and Toodyay, WA 2010 events can be seen in the bottom row (c) and 

(d). The fire locations are marked with a red crosshair. White pixels are forest areas that 

were masked using the land cover map. Overall, summer 2003 has 4.51% more areas 

indicated as severe or higher GFDI than summer 2010. MCD64A1 burned area map 

(Figure 3.8) also suggested that summer 2003 had 91.45% more severe wildfire counts 

than summer 2010. It should be noted that high GFDI values do not guarantee a fire as 



39 
 

there is no accounting for ignition sources, rather a higher GFDI value indicates that if a 

grassland fire were to start it would spread faster compared to low GFDI values, given 

no fire suppression activity. Further complicating comparison of Figure 3.7 and 3.8 is the 

presence of prescribed burns that are deliberately done during low to moderate GFDI 

conditions, and that some fires shown in Figure 3.8 occur in forested areas where GFDI 

is not applicable. Nevertheless, they provide a picture of the inter-annual spatial 

variability in both GFDI and burned area. 

 

The time series plots of recalculated GFDI at Weston Creek, ACT, and Toodyay, WA, 

for the example 2003 and 2010 fire events were produced, and are shown in Figure 3.9. 

The black line represents the recalculated GFDI from variable DOC, while the dashed, 

light green line is for original GFDI with constant DOC at 100%. These locations are 

marked with red crosshair indicators on the spatial maps (Figure 3.7). Note that the 

original GFDI time series peaks every year, whereas the recalculated GFDI with variable 

DOC time series shows sudden peaks in the days near major fires. The Weston Creek 

fire was part of the 2003 Canberra bushfire complex, where multiple fires merged and 

rapidly propagated from 18-22 January 2003, burning 1,600 km2 (McLeod, 2003). The 

weather conditions on 18 January 2003 were extreme with temperature as high as 40°C 

and wind exceeding 60 km h-1. The Toodyay fire was much smaller in magnitude, burning 

just over 30 km2 on 29 December 2009. The Weston Creek area is mostly comprised of 

forest with mixed land cover, whereas the Toodyay area is mostly a mix between 

croplands and savannas. 
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Figure 3.7 Maximum estimated Grassland Fire Danger Index (GFDI) for summer 

(December, January, February) of 2002-2003 (a) and 2009-2010 (b). Both zoomed areas 

marked with red bounding boxes for (a) and (b) are shown in (c) and (d), respectively. 

The fires locations for Canberra fire (c) and Toodyay fire (d) are marked with red 

crosshair. Forest areas are masked out in white. 
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Figure 3.8 MCD64A1 burned area map (Ruiz et al., 2014) during summer (December, 

January, February) 2002-2003 (a) and 2009-2010 (b) with forest areas masked out. 
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Figure 3.9 Grassland Fire Danger Index (GFDI) time series plot at Weston Creek, ACT, 

from July 2002 to June 2011 (a) and at Toodyay, WA, from July 2002 to June 2011 (b) 

where the red vertical dash line indicates the date of fire event on 18 January 2003 for 

Canberra fire and on 29 December 2009 for Toodyay fire. Solid black line is estimated 

GFDI time series computed from estimated degree of curing (DOC), whereas green dash 

line is GFDI time series computed from constant DOC at 100%. 

 

3.4.2 GFDI Severity Level vs Burned and Unburned Areas 

 

By pairing up burned and unburned pixels from burned area observation dataset from 

MODIS (MCD64A1) with their associated GFDI pixel, we can assess the number of 

burned and unburned pixels for each GFDI severity level. Using histogram and receiver 
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operating characteristic (ROC) analysis, the difference between original GFDI with 

constant DOC at 100% and recalculated GFDI with satellite based dynamic DOC can be 

assessed (DeLong et al., 1988; Zweig and Campbell, 1993). 

 

Using a burned area observation dataset from MODIS (MCD64A1), we test the 

effectiveness of GFDI with satellite-based DOC in increasing the probability that fires will 

occur in high GFDI severity levels compared to the probability that fires will occur in low–

moderate GFDI severity levels. Low intensity fires, such as prescribed burned, are 

removed from the burned area observation by using the FRP provided in MODIS active 

fire product (MCD14ML) to mask out burned area that have low FRP. We assume any 

burned area with FRP lower than 100 MW to be unburned (associated with low–

moderate GFDI risk). At each burned and unburned daily data point, the corresponding 

daily GFDI was calculated. The GFDI histogram in Figure 3.10 shows the frequency of 

satellite based recalculated GFDIs and constant based (DOC = 100%) reference GFDIs 

over burned and unburned areas. Figure 3.10 shows that the recalculated GFDI places 

the largest percentage of unburned pixels in the low-moderate GFDI severity class, with 

~80 % of all unburned pixels occurring in the low-moderate or high severity classes.  

Meanwhile the reference (DOC = 100%) GFDI places ~80% of unburned pixels in the 

high, very high, severe and extreme classes. 

 

We can evaluate the performance in correctly assigning burned and unburned area for 

both recalculated and reference GFDI by using the concept of ROC. Assume that the 

MCD64A1 burned area map represents the true condition and that the GFDI severity 

level represents the predicted condition, where the prediction is positive when GFDI level 

is classified as high or above for a burned area and low-moderate for an unburned area. 

Table 3.3 shows the contingency table, including both type I (unburned area with high or 

above GFDI level; false positive) and type II (burned area with low-moderate GFDI level) 

errors. Though recalculated GFDI has a lower true positive rate of correctly assigning 

burned area than reference GFDI (0.86 vs 0.895, it is much better at assigning unburned 

area correctly, i.e. lower false positive rate (0.38 vs 0.53). Overall accuracy for 

recalculated GFDI is higher than the reference GFDI (0.62 vs 0.47). 
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Figure 3.10 Grassland Fire Danger Index (GFDI) severity level histograms at burned and 

unburned areas over Australia during 4 July 2002 to 26 June 2011 where the dark and 

light blue shaded bars are recalculated GFDI with satellite estimated variable degree of 

curing (DOC), while the green and yellow shaded with diagonal hatch bars are reference 

GFDI with constant DOC at 100%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

Table 3.3 Referenced and recalculated Grassland Fire Danger Index (GFDI) severity 

and burned-unburned area contingency table for satellite based degree of curing (DOC) 

derived from Vegetation Optical Depth (VOD) and Normalised Difference Vegetation 

Index (NDVI). Reference GFDI is computed from constant DOC at 100%, while 

recalculated GFDI is computed from satellite based DOC. 

 

Reference GFDI 
Recalculated GFDI (First 

Model – Eq. 3.7) 

MCD64A1 No. of Pixels 

Burned Unburned Burned Unburned 

GFDI 

Severity  

High or 

above 
88 446,894,217 80 319,386,462 

Low 

Moderate 
5 395,703,734 13 523,211,489 

      

 Reference GFDI 
Recalculated GFDI (First 

Model – Eq. 3.7) 

True Positive Rate 0.9462 0.8602 

False Positive Rate 0.5304 0.3790 

Accuracy 0.4696 0.6210 

 

3.4.3 Comparison with Current DOC Products 

 

Both Method B and MapVic DOC are then used to compute recalculated GFDI and 

compare with burned area observation dataset in the same manner as our DOC model. 

From the ROC analysis in Table 3.4 for Method B and MapVic recalculated GFDI, we 

found that even though Method B has the best DOC evaluation results (highest r2, lowest 

RMSE) and highest overall recalculated GFDI burned and unburned detection accuracy 

at 0.84, it is the worst at detecting burned area correctly with a true positive rate of only 

0.10. This concurs with the findings in Newnham et al. (2010) who found Method B to 

consistently under predict DOC, and hence it produces fewer cases of high or above 

GFDI severity. 

 

Though the overall recalculated GFDI from Method B DOC is the best (overall accuracy 

from best to worst is 0.84 for Method B, 0.62 for our DOC model, 0.59 for MapVic, and 

0.47 for GFDI with 100 % constant DOC), we found that it is the worst at detecting burned 

area correctly (true positive rate from best to worst is 0.94 for GFDI with 100 % constant 
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DOC, 0.89 for MapVic, 0.86 for our DOC model, and 0.10 for Method B). Our model is in 

the middle ground between Method B and MapVic in terms of overall accuracy. 

 

Table 3.4 Recalculated Grassland Fire Danger Index (GFDI) severity and burned-

unburned area contingency table for degree of curing (DOC) computed with Method B 

(Newnham et al., 2010) and MapVic (Martin et al., 2015) model. Reference GFDI is 

computed from constant DOC at 100%, while recalculated GFDI is computed from 

satellite based DOC. 

 

Method B GFDI MapVic GFDI 

MCD64A1 No. of Pixels 

Burned Unburned Burned Unburned 

GFDI 

Severity  

High or 

above 
9 131413937 83 334095499 

Low 

Moderate 
84 693718749 10 488464724 

      

 Method B GFDI MapVic GFDI 

True Positive Rate 0.0968 0.8925 

False Positive Rate 0.1593 0.4061 

Accuracy 0.8407 0.5938 

 

 

3.5 Limitations 

 

It is worth noting here that in an operational setting atmospheric interference by clouds 

or smoke will cause gaps in the optical and near-infrared (NDVI) data, while the VOD 

data remains unaffected. We also note that while the VOD data use here was derived 

from the AMSR-E sensor, which is no longer operational, VOD data derived from 

currently operating passive microwave sensors, such as Advance Microwave Scanning 

Radiometer 2 (AMSR2), could be used in an operational setting. 

 

Reducing the chance of incorrectly assigning unburned and burned areas correctly from 

the ROC analysis made here is purely based on using the burned area map as a true 

baseline. However, the burned area map may include fires that are deliberately lit in low-

moderate conditions, such as prescribed burns and fires that the GFDI is not designed 

for, such as a fire that burns in forested regions. Prescribed burns and low intensity fires 
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are however minimised by applying low FRP threshold, using information from the 

MODIS active fire product. The ROC analysis result here is only used to reinforce the 

idea that using the reference GFDI with constant curing (100%) leads to overestimating 

GFDI in some situations, and might result in misleading fire danger warnings. 

 

The satellite based DOC produced here is also at a moderate spatial resolution, which 

is a limitation of many satellite products. However, DOC in reality can vary over spatial 

scales much finer than the satellite footprint (less than 0.05°). As such, our model should 

only be used as a guide for dynamic, near daily assessment of grassland curing at coarse 

to moderate spatial scales. This is also true for other satellite based DOC models, 

including Method B and MapVic models. 
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4 Estimated Fuel Load with Satellite Data 

 

 

In this chapter, I developed a regression based model for estimating the amount of 

wildfire fuel load over Australia. The aim here was to produce moderate resolution, 

temporally varying, gridded fuel load dataset over Australia based on a microwave 

satellite vegetation product. To achieve this, I produced gridded annual estimated AGBC 

using VOD based on the technique of Liu et al. (2015). AGBC computed from VOD has 

been used in various applications, such as assessing the impact of climate and 

deforestation on the Amazon Basin’s AGB (Exbrayat et al., 2017), assessing the 

greening of the South China Karst (Brandt et al., 2018), and evaluating an even more 

recent 1.4 GHz (L-band) VOD over biomass in Africa (Rodríguez-Fernández et al., 

2018). Other similar usage of VOD, such as linking the VOD to gross primary production 

(Teubner et al., 2018), is also based on the methodology behind VOD based AGBC. 

Then, using gridded annual AGBC along with observed fuel load data, I calibrated the 

fuel load prediction model. Due to the limited records of the available observed fuel load 

data, there was no remaining independent data for model evaluation. Thus, I used a 

vegetation structure dataset to evaluate AGBC dataset as a proxy to evaluating the 

estimated fuel load data. 

 

 

4.1 Observed Fuel Load Data 

 

4.1.1 Site-based Fuel Load 

 

Site observation fuel load datasets were gathered from BNHCRC and CFA for field 

measurements in South Australia and Victoria, respectively. These observed fuel loads 

were recorded once at each site rather than a consistent record every day or month, 

hence, each site usually had only single record rather than a time series illustrating fuel 

load dynamics over time. The aim here was to find a relationship between site-based 

fuel load and AGBC computed from modified monthly mean of persistent component of 

VOD in grassland areas. Thus, only grassland fuel load records were extracted. 18 valid 

fuel load records with record date ranging from early-2013 to early-2015 were collected 

from grassland fuel beds (9 from South Australia and 9 from Victoria). Note that since 

the observations were collected outside the temporal range of AMSR-E (mid-2002 – late-
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2011) VOD availability, I used AMSR2 (mid-2012 – present, with similar specification to 

AMSR-E) VOD to calculate AGBC instead. Note that AMSR2 is an AMSR-E successor 

and have a very similar specification. It was found that some sites were located nearby 

each other, resulting in multiple sites falling into the same VOD 0.1° pixel. The fuel load 

variations within the same VOD pixel can be as high as 3 t ha-1. This high variability in 

site observations introduced uncertainty in the representativeness of the point based site 

observations to the mean fuel load over a VOD pixel. Note that site-based fuel load (both 

from BNHCRC and CFA) are only used for initial fuel load estimation approach described 

in Section 4.2.1. 

 

4.1.2 Bioregion Based Fuel Load 

 

Bioregion fuel load data was obtained from a past study on prescribed fire effectiveness 

within Australian bioregions (Price et al., 2015). There is a total of 31 fuel load records 

for each corresponding bioregion across New South Wales and Victoria. The dominant 

vegetation types for 31 bioregions include a variety of forests, woodlands, and hummock 

grassland. Fuel load levels for 31 bioregions ranged between 0 to 19 t ha-1 with bioregion 

areas ranging between approximately 12,900 to 427,300 km2. The dominant vegetation 

classes within each bioregion are as described by Native Vegetation Information System 

framework (NVIS) (Price et al., 2015). The NVIS framework is provided by the 

Department of the Environment and Energy. The 100 m spatial resolution, gridded NVIS 

map (version 4.2) was obtained and used as a dominant vegetation filter. Unlike site-

based fuel load, a mean AGBC value for each bioregion was compared with each 

corresponding bioregion fuel load instead of pixel by pixel comparison. AMSR-E VOD 

was used here for computing AGBC, since the available period was longer than AMSR2 

VOD data. Bioregion fuel load is used for fuel load estimation approach described in 

Section 4.2.2. 

 

 

4.2 Estimating Fuel Load with Satellite Products 

 

Most of the past studies of fuel load estimation are based on high resolution satellite 

images, such as Landsat or  MODIS products (Brandis and Jacobson, 2003; Jin and 

Chen, 2012; Reich et al., 2004; Van Linn et al., 2013). As discussed earlier, while these 

models have an advantage of high spatial resolution (usually ~500 m or higher), their 

spatial coverage is limited to at most a regional scale. Some of these studies (Jin and 
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Chen, 2012; Reich et al., 2004) used detailed ground observations from their selected 

study areas along with high resolution satellite snapshots to construct fuel load models 

for different aspects of the fuel. Reich et al. (2004) constructed fuel load models for three 

custom forest fuel classifications with different fuel sizes using multiple linear regression 

models and binary regression trees. In Jin and Chen et al. (2012), multiple regression 

models were constructed for different fuel ages and sizes and total fuel based on tree 

stand characteristics. While these two studies covered multiple fuel types and 

characteristics, they both required very high spatial resolution satellite dataset and 

detailed field records of vegetation characteristics, i.e. tree heights, diameter at breast 

height, etc. Brandis and Jacobson (2003) opted for a more generalised fuel prediction 

method by only computing remaining litterfalls (fine fuels), but the models also required 

high resolution satellite data and field observation of tree characteristics. An even more 

simplified fuel load model was constructed in a study by Van Linn et al. (2013), using 

NDVI, temperature, elevation, and aspect data as inputs. Note that none of the past fuel 

load prediction studies were done exclusively for grassland areas. 

 

Since I aimed for total spatial coverage over Australia and at least several years of 

temporal coverage, I decided to opt for a moderate spatial resolution satellite product 

(VOD) and a very simplified fuel load prediction model (only total estimated fuel is 

computed) as a compromise. VOD has previously been shown to provide a good 

indication of above ground biomass globally (Liu et al., 2015). Since there are no exact 

methods for estimating fuel load at a continental scale from past studies, I attempted two 

different approaches in calibrating the fuel load estimation model. 

 

4.2.1 Estimating Fuel Load Using VOD and Site-based Observations 

 

The first method involved using the modified, long term VOD trend to compute AGBC. A 

brief summary regarding the methodology can be outlined as follows: 

1. Compute and separate the long term trend (persistent component) of VOD. 

2. Apply a litterfall decay to the decreasing trend of the separated persistent 

component of VOD. 

3. Use the modified persistent component of VOD computed from step 2 to calculate 

monthly AGBC. 

4. Calibrate the fuel load estimation model using AGBC computed from step 3 and 

site-based fuel load observations described in Section 4.1.1. 
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To be precise, the first step was to segregate the persistent and recurrent components 

in the VOD time series. The persistent component represented the base moisture in the 

vegetation or existing fuel load, while the recurrent component represented the shorter-

term weather induced changes in vegetation moisture. The idea of separating persistent 

and recurrent trends in VOD is based on a past study over Australia that did this using a 

different vegetation index (Donohue et al., 2009). Only persistent component will be kept 

for further analysis, while recurrent component will be discarded. 

 

For the second step, it is known that fuel load depends on the vegetation type and the 

litter accumulation since the last fire (Brandis and Jacobson, 2003; Olson, 1963). Using 

the persistent component of VOD as a proxy of fuel load, I then applied the litterfall decay 

function to the decreasing trend in persistent VOD. The idea behind the litterfall decay is 

that during the decline of vegetation moisture content, the accumulated litter decays 

according to the decomposition rate rather than being directly related to moisture 

decreases. The equation for computing the remaining litterfall after decay is as shown in 

Equation 4.1, where Lrem is the remaining litter after time period t (t ha-1), L0 is the rate 

of litterfall, k is the decomposition rate, and t is the period of litterfall (Olson, 1963). 

 

𝐿𝑟𝑒𝑚 =
𝐿0

𝑘
(1 − 𝑒−𝑘𝑡)         (4.1) 

 

Note that the decomposition rate (k) is estimated using the litter half-life from past studies 

of litterfall and organic matter turnover in South Australia, where the half-life of litter from 

leafy component can range between 1.9 (wet condition) to 4.2 years (dry condition) 

(Hutson, 1985). Decomposition rate equation is as described in Equation 4.2, where T1/2 

is the half-life of litter. 

 

𝑘 = 
0.693

𝑇1/2
          (4.2) 

 

Using the above litterfall decay and decomposition rate, the persistent VOD with applied 

litterfall decay on the decreasing trend is computed and referred to modified persistent 

component. 

 

During the third step, the modified persistent component of VOD was then used to 

calculate gridded monthly AGBC. Note that the AGBC computation based on VOD is 

from Liu et al. (2015) study, as discussed in Section 4.2.2. The monthly AGBC was then 

calibrated with grassland site observed fuel load data from BNHCRC (South Australia) 
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and CFA (Victoria) in the fourth step. It was intended that this fuel load estimation model 

for Australian grasslands would have up to monthly temporal coverage in additional to 

0.1° spatial coverage over Australia. However, no significant correlation was found 

between the derived AGBC and grassland site observed fuel load data (only 18 records 

are from grasslands). There were various possible causes for this including the spatial 

mismatch between site observations and VOD pixels (0.1° x 0.1° or ~100 km2).  

 

Many variations on this method were attempted, however no satisfactory solution was 

found when comparing directly with site observations. Thus, this method was deemed to 

be unsuccessful for creating a fuel load estimation model. The valid approach for 

calibrating fuel load estimation model is as described in the following Section 4.2.2 and 

4.3. 

 

4.2.2 Annual AGBC Estimation Using VOD 

 

The second method was much simpler when compared with the first. Here, annual mean 

VOD was directly converted to gridded annual AGBC. The annual AGBC was then 

calibrated with observed fuel load based on Australian bioregions (Price et al., 2015). 

Using this method yielded a general fuel load model for Australia, but the temporal 

resolution was reduced to annual, while the spatial resolution was kept at 0.1°. This 

method yielded a significant correlation between annual mean AGBC and fuel load 

representing each bioregion. 

 

Calculating AGBC from VOD data was based on a past study on the recent reversal of 

biomass loss in Australia (Liu et al., 2015). Firstly, since VOD can be affected by RFI 

and large bodies of water, quality control of the VOD dataset prior to AGBC calculation 

was needed. The VOD6 (i.e. VOD derived from relatively low frequency of 6.9 GHz) was 

used as a base for AGBC calculation. A separate RFI mask was then applied over all 

VOD6 data; this mask contained RFI flags indicating whether the VOD6 pixel is: 1) free 

of interference, 2) affected by RFI and can be replaced by VOD10 (derived from relatively 

high frequency of 10.7 GHz), 3) affected by RFI and must be removed, and 4) on large 

body of water and must be removed. 

 

In the case where the VOD10 pixel was needed as a replacement pixel for VOD6 per 

RFI mask, the VOD10 to VOD6 conversion equation was required. I established a simple 

linear relationship between VOD6 and VOD10 by correlating all available daily VOD data 
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from mid-2002 to mid-2011. The relationship was significant with r2 of 0.82 and RMSE of 

0.087 for AMSR-E VOD. The associated conversion equation for VOD6 replacement 

pixel is as described in Equation 4.3. 

 

𝑉𝑂𝐷6 = 0.0145 + 0.903𝑉𝑂𝐷10       (4.3) 

 

Then, the filtered 8 day VOD (VOD6 variant) data was combined into monthly or annual 

average dataset. In Liu et al. (2015) study, three different relationships between VOD 

and AGBC were presented for high, mean, and low AGBC estimates. I used mean AGBC 

estimates, since it had the least RMSE (RMSE = 6.45 t ha-1) and best correlation (r2 = 

0.99). The VOD to AGBC conversion equation is as shown in Equation 4.4 (Liu et al., 

2015). 

 

𝐴𝐺𝐵𝐶 = 0.5[(320.6) [
𝑎𝑟𝑐𝑡𝑎𝑛(9.10(𝑉𝑂𝐷−0.95))−𝑎𝑟𝑐𝑡𝑎𝑛(9.10(0−0.95))

𝑎𝑟𝑐𝑡𝑎𝑛(9.10(𝐼𝑛𝑓−0.95))−𝑎𝑟𝑐𝑡𝑎𝑛(9.10(0−0.95))
] + 5.5]   (4.4) 

 

Using Equation 4.4, the annual AGBC can be computed from monthly or annual average 

VOD dataset. An example time series comparison between annual average VOD and 

resultant AGBC at Silent Grove, WA is as shown in Figure 4.1. Note that VOD is unit less 

value ranging from 0 to 1.3, while AGBC is in t ha-1. 

 

 

Figure 4.1 Example annual average VOD (black) and AGBC (blue) time series 

comparison at Silent Grove, WA (17.13° S, 125.37° E) (b), where the star (*) indicate the 

location of the time series on Australia map (a). 
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4.3 Fuel Load Model Calibration 

 

Annual estimated AGBC based on VOD was used for calibration with bioregion fuel load. 

Since each bioregion had a single fuel load value representing a very large area, the 

mean value of AGBC from 2003 to 2011 at every pixel within the corresponding bioregion 

area was computed and compared with bioregion fuel load. 29 out of 31 bioregions were 

used for calibration; the other two regions had no corresponding VOD pixels, since they 

were located along the coastline and were relatively small. For each bioregion, only 

AGBC pixels that were located on the dominant vegetation type according to NVIS map 

was retained for the mean value computation. I tried different types of fitting functions for 

correlation between bioregion fuel load and AGBC, including linear, polynomial (2nd and 

3rd degree), exponential, logarithm, and 2nd order power fitting functions. It was found 

that an exponential function provided the most significant relationship with r2 0.74 of and 

RMSE of 3.26 t ha-1 and also predicted fuel load of approximately 0 t ha-1 when AGBC is 

at 0 t ha-1. This fuel load prediction equation is as described in Equation 4.5, where Q is 

fuel load in t ha-1. 

 

𝑄 =−18.7𝑒(−0.0408𝐴𝐺𝐵𝐶) + 18.4       (4.5) 

 

Note that ignoring the NVIS map (as a dominant vegetation filter) reduced the predicted 

fuel load model correlation. It should also be noted that this fuel load estimates from 

Equation 4.5 does not and was never meant to capture any fine variabilities in fuel litters, 

since a stationary bioregion fuel load map with 29 valid data points is used for the fuel 

load model calibration (Price et al., 2015). It is also due to the fact that the base VOD 

product used has a resolution of 0.1º (~100 km2 area) as discussed clearly in Section 

2.1.1. Variability of fuel elements can occur at very small scales (metres) but the satellite 

can only see the aggregate signal from all fuel elements within a given pixel. 

 

The uncertainties in the AGBC estimates from VOD are, as described in Liu et al. (2015), 

measured using RMSE between three different AGBC models. I used the model with the 

least RMSE (as stated in Section 4.2.2) to minimise uncertainties from estimated AGBC. 

While this resulted in multiple uncertainties both from estimated AGBC (RMSE = 6.45 t 

ha-1) and our estimated fuel load (RMSE = 3.26 t ha-1), the scale for fuel load data we 

produced here is at continental scale with annual temporal interval. 
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4.4 Fuel Load Model Evaluation 

 

4.4.1 Spatial and Temporal Variability 

 

Using Equation 4.5, annual estimated fuel load over Australia can be computed. Example 

fuel load map for year 2003 and 2011 are as shown in Figure 4.2, where the year 2003 

(panel c) has the smallest mean fuel load of 5.88 t ha-1 and the year 2011 (panel d) has 

the largest mean fuel load of 7.17 t ha-1. The year 2003 and 2011 are selected as an 

example of dry (during the Millennium Drought in Australia from late 1996 to mid-2010) 

and wet (La Nina period during 2010 to 2011) year, respectively. Example fuel load time 

series at the same location as shown in Figure 2.1 (Silent Grove, WA) is also shown here 

in Figure 4.2. The continental mean of fuel load across Australia from 2003 to 2011 is 

5.92 t ha-1. 

 

The standard deviation was computed to represent the amount of spatial and temporal 

variation of fuel load across Australia. For spatial variation, the standard deviation of all 

valid fuel load estimates was computed within a single time step. An annual spatial 

variability time series is plotted in Figure 4.3. Here, it can be seen that the annual spatial 

variability is on an overall increasing trend with 2003 having the lowest and 2011 having 

the highest spatial variations. The mean standard deviation of spatial variation across all 

years is 2.50 t ha-1. 

 

For annual temporal variation, the standard deviation was calculated for each pixel 

across Australia. This temporal variation map is shown in Figure 4.4. While the temporal 

variations are minimal across mid-continent and along the west coast, there are strong 

temporal variations along the east coast, especially in Queensland. The mean standard 

deviation of temporal variation across all pixels is 0.54 t ha-1. 
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Figure 4.2 Example satellite based fuel load time series comparison at Silent Grove, WA 

(17.13° S, 125.37° E) (b), where the star (*) indicate the location of the time series on 

Australia map (a). Annual satellite based fuel load across Australia during 2003 (c) and 

2011 (d) are shown. 
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Figure 4.3 Spatial standard deviation of estimated fuel load time series from 2003 to 

2011. 
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Figure 4.4 Temporal standard deviation of estimated fuel load map from 2003 to 2011. 

 

4.4.2 Comparison with Vegetation Structure Data 

 

Since there was no independent bioregion fuel load data for evaluating the fuel load 

prediction model, I assessed the AGBC used in calibrating the fuel load model with the 

vegetation structure dataset (Lucas et al., 2014). Since the vegetation structure dataset 

is basically a classification of how dense the vegetation is (based on total plant coverage 

and 95th percentile height), I made a simple assumption that the amount of AGBC is 

proportional to the density (plant coverage and height) of the vegetations. Originally, the 

vegetation structure dataset was 30 m gridded snapshot of Australia during the year 

2009, but I rescaled it to 0.1°, matching the resolution of estimated AGBC data (and 

VOD). Each pixel on the vegetation structure map is labelled as a structure formation, 
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as shown in Figure 4.5. Corresponding detailed description of each structure formation 

(total plant cover fraction and 95th percentile height) is as listed in Table 4.1. 

 

For all 29 usable bioregions, only four dominant structure formations were presented, 

which were low scatter trees (14 bioregions), medium scatter trees (5 bioregions), tall 

open forest (1 bioregion), and very tall closed forest (7 bioregions). The remaining two 

bioregions had “no data” structure as a dominant formation and thus were removed from 

the vegetation structure analysis. A comparison between 27 bioregions AGBC and 

corresponding dominant vegetation structure formations was made, where region with 

high AGBC was expected to be associated with high density structure formation that has 

high plant cover fraction such as very tall closed forest, and vice versa. From this 

comparison, I found a significant relationship with an r2 of 0.82 and RMSE of 0.57 t ha-1. 

The results showed that Australia wide AGBC estimates from VOD can roughly explain 

the vegetation structure (the higher the AGBC is, the denser the vegetation cover is). 

This also implied that fuel load estimates from AGBC corresponds with the vegetation 

structure, and thus, was predicting a sensible amount of fuel load across Australia (the 

higher the fuel load is, the taller and denser the vegetation cover is). 

 

Comparing between the fuel load map shown in Figure 4.2 (panel c and d) and the 

vegetation structure map in Figure 4.5, it can be seen that the dominant vegetation 

structures around South Australia areas are a combination of low scattered trees and 

low woodland that correspond well with the fuel load patterns. Victoria generally has 

denser forest along the coast (Tall Open and Closed Forest), which is also reflected in 

Figure 4.2 (panel c and d) as high (over 16 t ha-1) fuel load. Southern part of Western 

Australia also shows a similar trend where the areas with dense forest are associated 

with higher fuel load. Fuel load patterns in Tasmania are potentially the least 

representative of how dense the forests in the area are, due to Tasmania’s smaller area 

that is surrounded by water (which negatively impacted VOD performance). Overall, the 

fuel load maps in Figure 4.2 reflected the vegetation structure patterns in Figure 4.5 well. 
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Figure 4.5 Vegetation structure map (rescaled to 0.1°) across Australia (Lucas et al., 

2014). 

 

 

4.5 Limitations 

 

It should be noted that the estimated fuel load produced here does not and is not 

intended to capture fine scale fuel variations nor discriminate between litter, herbaceous, 

and woody fuels. It provides an aggregate estimate of the fuel status as seen from the 

satellite. In addition, the calibration of the fuel load model (Equation 4.5) is performed 

with observation data only from the south eastern Australian Bioregions and no data 

tropical regions are available. However, the overall fuel dynamics over Australia is still 

well captured as demonstrated in the evaluation with vegetation structure dataset, as 

stated in Section 4.4.2 (with a significant relationship to the vegetation structure, where 

r2 = 0.82 and RMSE = 0.57 t ha-1). 
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Table 4.1 List of vegetation structural formations (as shown in Figure 4.5) and their 

corresponding total vegetation cover fraction and 95th percentile height. 

Vegetation Structural Formation 

Total Plant 

Cover 

Fraction (%) 

95th 

Percentile 

Height (m) 

No Data N/A N/A 

No trees 0% N/A 

Low scattered trees 0% to 6% < 9 m 

Medium scattered trees 0% to 6% 9 m to 17 m 

Low open woodland 6% to 11% < 9 m 

Medium open woodland 6% to 11% 9 m to 17 m 

Tall open woodland 6% to 11% 17 m to 27 m 

Low woodland 11% to 30% < 9 m 

Medium woodland 11% to 30% 9 m to 17 m 

Tall woodland 11% to 30% 17 m to 27 m 

Very tall woodland 11% to 30% 27 m to 57 m 

Low open forest 30% to 70% < 9 m 

Medium open forest 30% to 70% 9 m to 17 m 

Tall open forest 30% to 70% 17 m to 27 m 

Very tall open forest 30% to 70% 27 m to 57 m 

Extremely tall open forest 30% to 70% > 57 m 

Tall closed forest > 70% 17 m to 27 m 

Very tall closed forest > 70% 27 m to 57 m 
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PART II: FIRE SPREAD MODELLING
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5 Modelled Grassland Fire Spread Behaviour due to DOC 

Variations 

 

In this chapter, I examine the changes in the rate of grassland fire spread due to spatial 

variations in DOC. Research questions being addressed include: How are DOC 

variations translated into fire spread variations by models? How do models differ in their 

fire spread response to DOC variation? 

 

Two Australian fire spread models, Phoenix and Spark, are used to predict both idealised 

and realistic (based on past fire events) fire spreads. To test the changes in the rate of 

spread prediction from Phoenix and Spark, I use artificial DOC patterns in idealised 

scenarios and satellite based DOC dataset, developed in Chapter 3, in realistic 

scenarios. Fire spread results from both Phoenix and Spark are then compared and the 

differences between the predictions are discussed. 

 

In previous studies, Phoenix was mostly used for forest fire behaviour prediction (Collins 

et al., 2015; Louis and Matthews, 2015; Penman et al., 2013; Pugnet et al., 2013). These 

past studies did not test the variability in fire spread prediction due to variation in DOC, 

understandably due to their focus on forest fires. Recent fire spread simulation report 

compared both Phoenix and Spark in various case studies and found both model to 

performed at median range in grassland fire (Deslandes and Jacobs, 2017). 

 

Since Phoenix and Spark utilised different curing factor as discussed earlier (see 

Equation 2.2 and 2.3), the predicted grassland fire rate of spreads is expected to be 

different between the two models especially at low DOC levels. Phoenix’s curing factor 

(Cheney et al., 1998) dictates that fire is struggling to spread when DOC is at 50% or 

lower, while this threshold is much lower in Spark’s curing factor (Cruz et al., 2015) that 

is DOC at 20% or lower. If the rate of spread is solely based on the curing factor, Spark 

is expected to predict a much faster rate of spread at low DOC level, while the differences 

in the predicted rate of spread will approach zero as the DOC level reaches 100%. 

 

 

5.1 Experiment Setups 
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The spatial and temporal domains were set to be the same for every test. Fires are 

ignited within a 100 x 200 km gridded, rectangular domain with a spatial resolution of 

200 m. Simulation time is set to 10 hours, with the temporal interval dynamically 

determined by both models. Temporal intervals in Phoenix and Spark can be as long as 

6 minutes. Since we are exclusively interested in the effect of grassland curing, we 

assume a homogeneous, undisturbed grassland fuel bed as a fuel layer input for all 

experiments. Both Phoenix and Spark model descriptions and initial configurations are 

as stated in Chapter 2.2. 

 

5.1.1 DOC and Topography Data 

 

The satellite based DOC is calibrated and evaluated with DOC field data collected from 

a past study of field based curing assessment in Australia and New Zealand (Anderson 

et al., 2011), as discussed in Chapter 3. Figure 5.1 shows the DOC patterns used in both 

the idealised (artificial pattern as shown in a, b, and c) and realistic (satellite based DOC 

pattern as shown in d, e, and f) grass fire spread simulations at Toodyay, WA, Pulletop, 

NSW, and Jail Break Inn, NSW, along with experimental domain and fire ignition 

locations. 

 

DEM data is acquired from Geoscience Australia via ELVIS service (Geoscience 

Australia, 2016). The gridded DEM is available at 25 m spatial resolution.  
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Figure 5.1 DOC spatial maps for a) idealised experiment scenario I1a (only I1 with DOC 

= 100% is shown here), I4, and I5, b) idealised experiment scenario I2, c) idealised 

experiment scenario I3, d) realistic experiment scenario R1 (Toodyay, WA), e) realistic 

experiment scenario R2 (Pulletop, NSW), and f) realistic experiment scenario R3 (Jail 

Break Inn, NSW). Black borders indicate the 100 x 200 km experiment domain. Red dots 

or lines indicate the fire ignition location for each experiment. 

 

5.1.2 Idealised Experiments 

 

For idealistic fire spread simulations, we setup 4 different DOC patterns and terrain on a 

homogeneous grassland fuel bed as follows:  

 homogeneous DOC at 100%, 90%, 80%, 70%, 60%, 50%, and 40% on flat terrain 

(scenario I1)  

 DOC gradient from 100 to 50% in southward direction on flat terrain (scenario I2) 

 10 x 10 km checkerboard pattern, alternating between 75% and 100% curing on 

flat terrain (scenario I3) 

 homogeneous DOC at 100% on a 1°, 5°, and 10° slope for downhill direction 

(scenario I4)  

 homogeneous DOC at 100% on a 1°, 5°, and 10° slope for uphill direction 

(scenario I5) 
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Note that the different levels of homogeneous DOC in scenario I1 are distinguished with 

suffix a to g for DOC at 100% to 40% (i.e. scenario I1a has homogeneous DOC at 100%, 

scenario I1b has homogeneous DOC at 90%, and so on); different slopes for both down 

and uphill in scenario I4 and I5 are distinguished with suffix a to c for slope at 1° (I4a and 

I5a), 5° (I4b and I5b), and 10° (I4c and I5c), respectively. Note that the changes in rate 

of spread due to variation in surface slope can be described as in Equation 5.1 (Noble 

et al., 1980). 

 

𝑅𝜂 = 𝑅𝑒0.069𝜂          (5.1) 

 

where R is the rate of spread on flat terrain (km h-1), η is the slope of ground surface (°), 

and Rη is the rate of spread on ground of slope η. 

 

Fire ignitions for these idealised experiments are all along a 50 km long north-south line 

in the middle of the rectangular domain. All points on the line are ignited simultaneously. 

 

Weather conditions for idealised experiments are as listed in Table 5.1. Note that cloud 

cover is a percentage fraction of cloud in the sky during the fire event, where 0% cloud 

cover indicates a clear sky. Topography is assumed to be homogeneous flat or uniformly 

sloping terrain. 

 

5.1.3 Realistic Experiments 

 

For realistic fire spread simulations of past fire events in Australia, several gridded and 

station datasets are used. These include satellite based gridded DOC, observed weather 

data from the nearest weather station, gridded topography, and satellite derived burned 

area data. Three past fire events in Australia are chosen for realistic fire spread 

experiments. These three past fire events are: 

 Toodyay, WA (29/12/2009) (scenario R1) 

 Pulletop, NSW (6/2/2006) (scenario R2) 

 Jail Break Inn, NSW (1/1/2006) (scenario R3) 

 

These small to large fire events (with Toodyay, WA burned area of ~30 km2, Pulletop, 

NSW burned area of ~90 km2, and Jail Break Inn burned area of ~300 km2) have mixed 

fuel types with significant grasslands and little to no forest fuels. For each of the three 

scenarios, we test 3 different DOC and topography configurations, including a control 
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scenario with homogeneous 100% DOC pattern and flat terrain (scenario with suffix A), 

satellite based DOC pattern and flat terrain (scenario with suffix B), and satellite based 

DOC pattern and terrain data from a 25 m DEM (scenario with suffix C). For instance, 

scenario R1A is a control scenario with homogeneous 100% DOC pattern for the 

Toodyay fire. Ignition location is set at the centre of the rectangular domain, based on 

the actual burned area and observed wind direction. 

 

Weather conditions for realistic fire spread experiments, including temperature, relative 

humidity, wind speed, and wind direction, are obtained from the past development of 

historical fire weather dataset (Lucas, 2010). Extracted weather information is as listed 

in Table 5.2. The location of past fire events and their associated nearest fire weather 

stations are shown in Table 5.3. The weather records are daily, ranging from 1973 to 

2010 with over 300 observation sites across Australia. Note that observed cloud cover 

data is not available, thus, cloud cover is always assumed to be 0% (clear sky) for both 

idealised and realistic experiments. 

 

The fire rate of spread and area burned from the Phoenix and Spark models are 

compared across the different experiments. 

 

Table 5.1 List of weather inputs for idealised fire spread experiment. 

Wind 

Direction 

Wind Speed 

(km h-1) 

Temperature 

(°C) 

Relative 

Humidity (%) 

Cloud Cover 

(%) 

East 55 40 5 0 

 

Table 5.2 Observed weather conditions from the nearest weather station for realistic fire 

spread experiments. 

Location Event Date 
Wind 

Direction 

Wind 

Speed 

(km h-1) 

Temper

ature 

(°C) 

Relative 

Humidity 

(%) 

Cloud 

Cover 

(%) 

Toodyay, 

WA 
29/12/2009 Northwest 16.6 42.7 20.0 0 

Pulletop, 

NSW 
6/2/2006 

West 

Southwest 
31.3 35.5 12.0 0 

Jail Break 

Inn, NSW 
1/1/2006 Northwest 50.0 44.6 8.0 0 
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Table 5.3 List of chosen fire events for realistic fire spread experiments with 

corresponding nearest weather stations. 

Fire Event Nearest Weather Station 

Site Name Event Date Coordinate Site Name Coordinate 

Toodyay, WA 29/12/2009 
31.55° S, 

116.46° E 
Perthap, WA 

31.93° S, 

115.98° E 

Pulletop, NSW 6/2/2006 
35.40° S, 

147.72° E 

Wagga 

Wagga, NSW 

35.16° S, 

147.46° E 

Jail Break Inn, 

NSW 
1/1/2006 

34.92° S, 

147.66° E 

Wagga 

Wagga, NSW 

35.16° S, 

147.46° E 

 

 

5.2 Grassland Fire Spread with Variable DOC Results 

 

5.2.1 Idealised Experiments 

 

For each idealised experiment, we examine the average fire spread speed, area burned, 

and flame height, as shown in Table 5.4. Note that Spark does not compute flame height, 

thus only rate of spread and area burned are shown. The corresponding scatter plot 

showing the changes in rate of spread due to changes in DOC with computed rate of 

spread from Cheney et al., 1998 and Cruz et al. 2015 curing coefficients are shown in 

Figure 5.2. Corresponding burned time step and flame height map for each scenario are 

shown in Figure 5.3 (I1a, I4b, and I5b are only shown for I1, I4, and I5). For area burned 

listed in Table 5.4, we use the total area that was burned after 5 hours, since the fire 

front in some experiments reached the border of the experiment domain well before the 

end of the experiment (10 hours). 

 

For scenario I4 and I5, the slight changes in terrain elevation can affect the fire severity, 

where uphill slope increases the fire severity (increase in spread speed and area burned) 

and vice versa. Note that the steeper the uphill slope is, the faster the rate of spread 

(McArthur, 1967). As the slope becomes steeper for both down and uphill (scenario I4a 

to I4c for downhill and I5a to I5c for uphill), the rate of spread decreases significantly for 

downhill (I4) and increases significantly for uphill (I5), as expected (Noble et al., 1980). 

 

Changes in DOC pattern (scenario I2 and I3) significantly impede the fire severity. With 

50% changes in DOC from north to south of the experiment domain (100% to 50%), the 
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fire front is significantly slowed down, as shown in Figure 5.3 for scenario I2 in both 

Phoenix and Spark. In scenario I3, where an abrupt change in DOC with a checkboard 

pattern alternating between 75% and 100% curing occurred, the rate of spread and 

advancement in fire front is slightly hindered. Note that Phoenix’s head fire is significantly 

impeded by alternating DOC pattern, whereas Spark’s head fire is not as strongly 

affected as Phoenix. Both fires in scenario I2 and I3 have variable average spread speed 

across different east to west transects due to changes in the DOC in the domain. 

 

Area burned directly corresponds to the rate of spread, i.e. the faster the fire spread, the 

more area burned. However, Spark’s area burned at the end of simulation (10 hours) are 

much larger than Phoenix due to larger flanking and backing fire spread. Though area 

burned from both Phoenix and Spark at 5 hours mark in scenario I1a is more comparable, 

it has a different shape. Note that the average flame heights in Phoenix vary little 

between each scenario, because the grassland fire flame height is limited due to fuel 

bed structure and height. However, the faster the fire spread, the higher the flame height  

(Cheney and Sullivan, 2008).  
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Table 5.4 Average fire spread speed, area burned, and average flame height for idealised experiments. 

Scenario 
Degree of Curing 

Configuration 

Terrain 

Configuration 

Spark Phoenix 

Average Fire 

Spread Speed 

(km h-1) 

Area Burned 

(km2) after 5 

hours 

Average Fire 

Spread Speed 

(km h-1) 

Area Burned 

(km2) after 5 

hours 

Average 

Flame Height 

(m) after 5 

hours 

I1a Homogeneous (100%) Flat 17.49 4,754.40 17.64 4,769.36 2.40 

I1b Homogeneous (90%) Flat 16.52 4,501.52 13.97 3,712.64 2.25 

I1c Homogeneous (80%) Flat 14.34 3,937.48 8.12 2,106.68 1.91 

I1d Homogeneous (70%) Flat 10.69 2,942.24 3.33 844.00 1.45 

I1e Homogeneous (60%) Flat 6.28 1,756.84 1.11 282.08 1.03 

I1f Homogeneous (50%) Flat 3.00 854.28 0.35 90.52 0.71 

I1g Homogeneous (40%) Flat 1.29 377.44 0.12 30.04 0.48 

I2 
Gradient Curing (100% 

to 50%) 
Flat 2.18 to 12.11 2,878.80 0.30 to 18.44 2,159.64 2.23 

I3 
Checkerboard Pattern 

(75% and 100%) 
Flat 8.98 to 13.36 3,905.00 7.88 to 15.28 2,418.48 2.01 

I4a Homogeneous (100%) 1° Downhill 16.45 4,568.40 16.37 4,421.44 2.37 

I4b Homogeneous (100%) 5° Downhill 13.38 4,000.84 12.03 3,249.60 2.16 

I4c Homogeneous (100%) 10° Downhill 11.49 3,611.68 7.70 2,068.96 1.88 

I5a Homogeneous (100%) 1° Uphill 18.33 4,929.52 18.88 5,104.32 2.48 

I5b Homogeneous (100%) 5° Uphill 22.37 5,485.12 24.87 5,439.76 2.72 

I5c Homogeneous (100%) 10° Uphill 27.47 6,044.92 34.65 5,426.36 3.03 
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Figure 5.2 Scatter plot showing the changes in the rate of spread due to changes in DOC 

from idealised experiments I1a to I1g, I2, I4a to I4b, and I5a to I5b for both Phoenix and 

Spark models. Calculated rate of spread from Cheney et al. (1998) and Cruz et al. (2015) 

are shown as dash lines. Predicted rate of spread with slope modifier from Noble et al. 

(1980) are shown as crosses. 
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Figure 5.3 Burned time step (2 left columns for Spark and Phoenix) and flame height (right column for Phoenix) over the burned area in the 

idealised experiments (only I1a, I4b, and I5b are shown for scenario I1, I4, and I5), where the background shows the corresponding DOC spatial 

map in greyscale (as shown in Figure 5.1). 
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5.2.2 Realistic Experiments 

 

For realistic experiments, we also observe the same output parameters with an emphasis 

on the rate of fire spread. Table 5.5 summarises the average rate of fire spread, area 

burned, and average flame height for 3 realistic scenarios, each with 3 different DOC 

and terrain configuration combinations. Corresponding weather information for each 

location is as listed in Table 5.2. Every scenario uses the same location-specific weather 

conditions regardless of DOC and terrain configuration combinations. 

 

Comparing the fire severity between control scenarios (DOC = 100%) and scenarios with 

satellite based DOC and 25 m DEM included, the magnitude of both spread speed and 

area burned are quite different. Control scenarios have faster fire spread and larger 

burned area for both Phoenix and Spark. The difference between scenarios with flat and 

realistic elevation is, however, not very large, similar to the idealised experiments at 1° 

slope. This is due to the maximum slopes in each burned domain being 1.00°, 1.98°, and 

0.21° for experiment R1-C, R2-C, and R3-C, respectively. Note that the estimated slope 

losses its accuracy when the DEM resolution is low (Chang and Tsai, 1991; Zhang et al., 

1999). 

 

Differences in rate of fire spread between each DOC and terrain configuration 

combination at each time step for a 10 hour fire are shown in Figure 5.4. Similar to the 

average speed, the rate of fire spread at each time step for control scenarios with DOC 

= 100% are the highest, while the fire spread speed for satellite based DOC and flat or 

realistic elevation combinations are similar. These apply for all 3 fire event locations. The 

sudden stop of fire spread after ~4 to ~5 hours for DOC = 100% in scenario R3 is 

because the fire front reaches the border of the experiment domain before the end of 10 

hours experiment period. See Figure 5.5 for visual comparisons between area burned, 

burned location at each time step, and flame height for each scenario (scenarios with 

DEM are not shown). 

 

Note that differences in average flame height between each scenario are small, similar 

to the idealised experiments. Again, flame height does seem to be higher as the fire 

spreads faster (Cheney and Sullivan, 2008)  
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Table 5.5 Average fire spread speed, area burned, and average flame height for realistic experiments. 

Scenario Location 

Degree of 

Curing 

Configuration 

Terrain 

Configuration 

Spark Phoenix 

Average Fire 

Spread Speed 

(km h-1) 

Area Burned 

(km2) after 5 

hours 

Average Fire 

Spread Speed 

(km h-1) 

Area Burned 

(km2) after 5 

hours 

Average Flame 

Height (m) after 

5 hours 

R1-A 

(Control) 

Toodyay, 

WA 

Homogeneous 

(100 %) 
Flat 3.31 55.60 4.95 87.12 1.24 

R1-B 
Toodyay, 

WA 

Satellite based 

DOC 
Flat 2.19 43.76 1.08 14.64 1.19 

R1-C 
Toodyay, 

WA 

Satellite based 

DOC 

DEM (Max 

slope = 1.00°) 
2.18 42.44 1.08 18.48 1.21 

R2-A 

(Control) 

Pulletop, 

NSW 

Homogeneous 

(100 %) 
Flat 5.42 133.84 8.57 141.40 1.63 

R2-B 
Pulletop, 

NSW 

Satellite based 

DOC 
Flat 2.99 20.72 0.22 0.76 0.60 

R2-C 
Pulletop, 

NSW 

Satellite based 

DOC 

DEM (Max 

slope = 1.98°) 
3.03 20.80 0.20 0.76 0.63 

R3-A 

(Control) 

Jail Break 

Inn, NSW 

Homogeneous 

(100 %) 
Flat 11.35 554.72 16.00 288.00 1.72 

R3-B 
Jail Break 

Inn, NSW 

Satellite based 

DOC 
Flat 10.24 466.12 11.64 161.84 2.16 

R3-C 
Jail Break 

Inn, NSW 

Satellite based 

DOC 

DEM (Max 

slope = 0.21°) 
9.48 458.68 11.58 163.76 2.17 
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Figure 5.4 Fire propagation speed at each burned time step comparison time series for 

all realistic experiments (a, b, and c for scenario R1, R2, and R3), where the blue line 

shows control scenarios with homogeneous DOC = 100%, the black line shows 

scenarios using satellite based DOC, and the red line shows scenarios using satellite 

based DOC and digital elevation model. Solid lines are for Phoenix model, whereas dash 

lines are for Spark models. 
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Figure 5.5 Burned time step (2 left columns for Spark and Phoenix) and flame height (right column for Phoenix) area burned maps for realistic 

experiment, where the background shows the corresponding DOC spatial map in greyscale (as shown in Figure 5.1). The scenarios with digital 

elevation map (R1-C, R2-C, and R3-C) are not shown here due to negligible changes in spreads. For Phoenix’s scenario R2-B, a 10 times 

magnifying burned area are shown with red bounding box insets.
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5.3 Discussion 

 

5.3.1 Grass Fire Spreads in Idealised Condition 

 

During idealised experiments, we found that changes in DOC can significantly affect the 

fire spread rate and area burned. There is a non-linear reduction in the rate of spread 

due to changes in DOC as described by Cheney et al. (1998) and Cruz et al. (2015) 

curing coefficients shown in Figure 5.2. In scenario I1, both Phoenix and Spark predicted 

rate of spread follows Cheney et al., 1998 (Phoenix) and Cruz et al., 2015 (Spark) curing 

coefficient closely. In scenario I2, for Phoenix, the fastest front in I2 where DOC is at 

100% is interestingly slightly faster than I1a, while at a lower DOC level, I2 (in the area 

with 50 % DOC) the fire front is slightly slower than I1e. This demonstrates a slightly 

higher variation in fire spread in a non-homogeneous DOC environment than a 

homogeneous DOC environment for Phoenix. In contrast, Spark shows severe 

underestimation of rate of spread when compared with its I1 results and Cruz et al. (2015) 

curing coefficient. In addition, Spark’s highest rate of spread does not occur at the point 

where DOC is at maximum 100%, but at slightly lower DOC. These are due to the 

implementation of flanking and backing spread in Spark. The differences in flanking and 

backing spread implementation in Phoenix and Spark also heavily influence the fire 

perimeters. Without any flanking and backing spread implementation, Spark’s severe 

underestimation and shift in the location of highest rate of spread do not occur, and the 

predicted rate of spreads are closer to I1 results. While Phoenix simulations have some 

degree of lateral spreading and no back spreading at all, Spark simulations have a 

significantly larger lateral and back spread. 

 

Immediately altering between 2 different DOC level of 75% and 100% with a 10 x 10 km 

checkerboard pattern in scenario I3 also further obstructs the fire front advancement 

speed for both models (34.35% and 36.13% slower than I1a on average for Phoenix and 

Spark). This spread rate is slower than the likely spread rate for a uniform DOC of 

87.50%, the average of the DOC levels used in the checkerboard, especially for Spark. 

It is interesting to note that at the boundary between two rows in the I3 checkerboard 

pattern the fire is able to spread at a rate much closer to that in I1a (only 13.38% slower) 

for Phoenix. It does this by spreading perpendicular to the fire just enough to light the 

100% DOC square at each intersection. This small lateral spread is a consequence of 

Phoenix’s use of an elliptic stencil when calculating fire propagation. In general, however, 

this may suggest that Phoenix allows little spread perpendicular to the wind direction and 
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most of the checkerboard squares are unaffected by these rapidly spreading fire tendrils. 

However, this behaviour suggests that in realistic DOC landscapes, where complex 

patterns of varying levels of DOC exist, the actual fire spread rate may be difficult to 

estimate and is unlikely to resemble the fire spread rate over an area with an “average” 

DOC level. These fire tendrils are much less prominent in the Spark simulation, due to 

its wider lateral spread and higher spread speed at 75% DOC. At 5 hours of simulation 

time with no fire suppression and any disruption in the terrain, the burned area for I2 and 

I3 scenarios are still relatively large, but much smaller than I1a (54.72% and 49.29% for 

Phoenix and 39.45% and 17.87% for Spark which has a smaller area burned for I2 vs 

I1a and I3 vs I1a, respectively). This suggests that DOC plays an important role in 

determining the magnitude of grassland fire spread under extreme weather conditions 

with no fire suppression. Note that at the end of 10 hours simulation, Spark’s area burned 

are larger than Phoenix. From Figure 5.3, it can be seen that while Spark’s head fires 

are getting smaller as the simulation time approaches the end, which differs from 

Phoenix’s constant head fire size, the flank and back fires are much larger in Spark. 

 

5.3.2 Modelled Grass Fire Spreads from Past Events 

 

For more realistic experiments, we see considerable spatial variability in DOC in the 

satellite based observations. These DOC variations substantially affect the magnitude of 

grassland fire spread during all 3 past fire events. Assigning control scenarios with DOC 

= 100%, the differences in fire rate of spread and area burned between control scenarios 

and scenarios with satellite based DOC are very large. We found 78.18%, 98.60%, and 

27.25 % reduction in spread speed for Phoenix (compared to 100% DOC) and 33.84%, 

44.83%, and 9.78% for Spark in scenario R1-B when compared with R1-A, scenario R2-

B when compared with R2-A, and scenario R3-B when compared with R3-A, 

respectively. Spark clearly suffered significantly less rate of spread reduction due to more 

generous curing coefficient for all cases. 

 

Scenario R3 is characterised by more severe fire weather conditions than R1 and R2, 

and the smallest rate of spread and area burned reduction difference from DOC = 100% 

control scenario for both Phoenix and Spark, because the fire front (determined by wind 

direction) advances through an area with consistently high DOC (~85 to 95%). In 

scenario R1 and R2 the fire encounters areas with lower DOC, as seen in Figure 5.5, 

which heavily impedes the advancement of the fire, especially in Phoenix cases. In 

scenario R1, the initial area that the fire ignited and burned before the rate of spread 
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begins to drop has DOC of ~75 to 85%. The surrounding DOC tiles after ~6 hour mark 

have a relatively low DOC between ~50 to 60%, thus it became more difficult for the fire 

to spread for Phoenix. Spark’s fire can spread further than Phoenix, even with smaller 

spread in control scenario prediction due to its curing coefficient, as shown in Figure 

5.4a. For scenario R2, we have a consistently lower DOC from the ignition (~45 to 55%), 

resulting in a very slow rate of spread for scenario R2 and very small final area burned 

after 10 hours for Phoenix, but a much larger spread and area burned in Spark. This is 

again, due to different curing coefficients in Phoenix and Spark, where Phoenix’s curing 

coefficient is much lower than Spark’s (0.019 vs 0.166 at DOC = 50% for Phoenix and 

Spark curing coefficient; computed with Equation 2.2 and 2.3) (Cheney et al., 1998; Cruz 

et al., 2015). For scenario R3, at the northwest of the burned area, there is a small area 

where the fire rate of spread is severely reduced to the point that it is not burned after 10 

hours for Phoenix, while this is not the case for Spark. This area has a DOC level of 

~38%, thus, the curing coefficient for Phoenix and Spark are 0.004 and 0.057. We also 

redid all realistic experiments using the same severe weather setting as the idealised 

runs, and found the rate of spread is still strongly affected by DOC. 

 

In terms of influence on fire spread due to changes in terrain, both idealised and realistic 

experiments suggested that the effect of terrain at around 1° slope on fire spread rate is 

small, with a change by a factor of 1.07 per Equation 5.1 (Noble et al., 1980). On more 

extreme terrain elevation changes, such as a 10° slope in I4c and I5c, the changes in 

the rate of spread are much more significant with a factor of 1.99 for uphill and 0.50 for 

downhill slope. For Phoenix, the uphill slope increases the rate of spread by 17.01 km h-

1 (factor of 1.96), while rate of spread decline due to downhill slope is 9.94 km h-1 (factor 

of 0.44). For Spark, the rate of spread is increased by 9.98 km h-1 (factor of 1.57) and 

decrease by 5.99 km h-1 (factor of 0.66). Spark uses Kataburn framework to calculate 

slope effects (Sullivan et al., 2014), while Phoenix uses standard slope factor developed 

by McArthur (1967). Spark has less reduction in spread speed in a downhill slope 

because Kataburn framework reduces the underprediction in downhill rate of spread from 

earlier slope modifier models. Other variations in speed differences in both up and 

downhill slope are due to lateral and backing spread implementations. In terms of flame 

height, we can see slight differences in flame height due to differences in terrain elevation 

in the realistic cases, or rather, elevation patterns on the flame height distribution. It is 

not clear how Phoenix incorporates elevation variations with small changes in flame 

height though. The area burned differences are also small on a 1° slope, while quite 

significant on a 10° slope for both models. 
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The impact of DOC on flame height is arguably more uncertain, since flame height is 

consistently low in grassland fires. Scenario R3 also shows that the average flame height 

from fire with DOC = 100% is lower than flame height from fire with satellite based DOC 

from Table 5.5. This is due to the flame height along the outer edge of the burned area 

on a homogeneous DOC (100%) field is much lower than the flame height along the 

edge of same fire on a variable, satellite based DOC field (Figure 5.5, scenario R3-A and 

R3-B), thus lowering the overall mean flame height. It appears to be due to how the flank 

and back fires are handled in Phoenix. Though there is a relationship that can be clearly 

seen in experiment I3, it should be noted that the flame height and DOC relationship is 

only applicable at the head fire (Cheney and Sullivan, 2008). This is consistent with 

Cheney and Sullivan (2008) who suggested that DOC and flame height have a positive 

relationship (the higher the DOC is, the higher the flame height is). 

 

It should be noted that the area burned simulated from the realistic scenarios differs from 

the actual area burned during the fire events, with simulated area burned of 14.64 km2, 

0.76 km2, and 161.84 km2 for Phoenix and 43.76 km2, 20.72 km2, and 466.12 km2 for 

Spark and actual area burned of ~30 km2, ~90 km2, and ~300 km2 for Toodyay, WA (R1), 

Pulletop, NSW (R2), and Jail Break Inn, NSW (R3), respectively. This is not unexpected, 

because there are major assumptions made in our realistic fire spread simulations, 

including homogeneous grassland fuel bed, single wind direction, exclusion of fire 

suppressions and disruptions, and the burned duration. The simulations are setup this 

way, since we aim to make a clear evaluation of the effects of DOC on fire spread in 

case of a grassland fire within the Phoenix and Spark models, rather than recreate the 

past fire events with precision 

 

Different curing coefficient and flank and back fire implementations heavily influenced 

the predicted results. 

 

5.3.3 Model Uncertainties 

 

In addition to variabilities in fire spread prediction due to various assumptions I made 

during the realistic experiments, due to lack of climatological inputs with sub-daily (i.e. 

hourly) timestep, and better understanding of the evolution of past events, there are 

uncertainties that can be introduced due to the way the model is configured (i.e. 

implementing flank and back fire in Spark affects the fire spread prediction) and from the 
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model itself (i.e. both rate of spread prediction from Cheney et al. (1998) and Cruz et al. 

(2015) assume no disruption along the fire’s path). While both Phoenix and Spark both 

tried to incorporate as many features as possible (e.g. disruption and road proximity), in 

reality, there is very likely to be a higher degree of variability in both the weather and fuel 

measurements. Cheney et al. (1998) recommended fire suppression agencies to plan 

their logistics on the basis that there are 15% chance that the fire spreads are going to 

exceed the predicted spread. 
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6 Grasslands Fire Spread Behaviour due to Fuel Load Variations 

 

 

In this chapter, I examine the changes in the rate of grassland fire spread due to spatial 

variation in fuel load. Research questions of interest include: How are fuel load variations 

translated into fire spread variations by models? How do models differ in their fire spread 

response to fuel load variation? How much of this variation is due to model structure and 

configuration aspects rather than the head fire rate of spread algorithm used? 

 

As in Chapter 5, I use Phoenix and Spark to predict both idealised and realistic (based 

on past fire events) fire spread. Artificial fuel load patterns and satellite based fuel load 

spatial maps developed in Chapter 4 are used in idealised and realistic experiments. Fire 

spread results from both Phoenix and Spark are then compared and the differences 

between the prediction from both models are discussed. The contents in this chapter is 

from the paper “Effect of Fuel Load on Grassland Fire Spread within the Phoenix 

RapidFire and Spark Fire Spread Models” (in review). 

 

Since most of the past studies that used Phoenix are focused on forest fire behaviour, 

the fuel classes used in fire spread predictions have both surface and elevated fuel 

(Penman et al., 2013; Pugnet et al., 2013). Phoenix will only engage its grassland fire 

spread model when only surface fuel is present (elevated fuel is zero). For studies that, 

in addition to forest fuels, also involved grassland or pasture fuel loads, where only 

surface fuel is present, the fuel load levels are usually lower than 6 t ha-1, thus not 

engaging the spread reduction factor in Phoenix grassland fire spread (Collins et al., 

2015; Louis and Matthews, 2015). However, there is a study on how revegetation alters 

fire intensity that set pasture fuel load at 7 t ha-1 in one of the three revegetation test 

scenarios (the revegetation scenarios are: low pasture fuel at 2 t ha-1, moderate pasture 

fuel at 4.5 t ha-1, and high pasture fuel at 7 t ha-1) (Collins et al., 2015). They found that 

at low pasture fuel, increasing the coverage of higher biomass native woody vegetation 

will increase fire size and intensity, while at both moderate and high pasture fuel, the fire 

intensity will generally reduce instead. The trends discovered also corresponded with 

patterns observed in South Africa, as stated by Collins et al. (2015) that the evidence 

from South African savannahs suggested that when the vegetation cover exceeds 40%, 

the annual area burnt is reduced. Since the high pasture fuel level is only at 7 t ha-1, I 

suspect that the spread reduction effect from Phoenix is not very prominent, and the fire 

intensity prediction might not be affected in a similar manner as the fire spread. 
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It should also be noted that the effect of fuel load on grassland fire spread is debatable. 

In some past grassland fires, the rate of spread was considered directly proportional to 

the amount of fuel (Cheney and Sullivan, 2008). In contrast, there were several large 

fires in a very fine grass with low fuel load (~2.5 t ha-1) that spread as fast as the fires on 

coarser and heavier grasses (Cheney et al., 1998). It was later found that fuel load 

directly affects the grassland fire’s rate of spread only if the changes in fuel load also 

reflect changes in fuel condition, such as fuel continuity (extent of fuel coverage on 

ground surface). Fuel continuity can be vastly different between pasture types due to the 

natural distribution of grasses. Fuel load by itself was found to have more influence on 

flame height and fire intensity (Cheney and Sullivan, 2008). For this study, I assume the 

changes in fuel load to reflect the change in fuel continuity similarly with CSIRO southern 

grassland fire spread model. 

 

 

6.1 Experiment Setups 

 

The experiments for both Phoenix and Spark are conducted in the same domain 

configurations as in Chapter 5, where fires are ignited within a 100 x 200 km rectangular 

gridded domain at a spatial resolution of 200 m. The time allows for fire to spread is set 

to 10 hours without any suppression or obstruction to the fire front. 

 

6.1.1 Fuel Load, DOC and Topography Data 

 

The satellite based fuel load used here is as discussed in Chapter 4. Figure 6.1 shows 

the surface fuel load patterns used in both the idealised (artificial pattern as shown in 

panels a, b, and c) and realistic (satellite based fuel load pattern as shown in panels d, 

e, and f) fire spread experiments, along with experimental domain and fire ignition 

locations. 

 

DOC spatial pattern is also used in some realistic experiments to demonstrate the effect 

of variable DOC in grassland fire spread. The DOC spatial maps used in realistic 

experiments are the same as those used in Chapter 5 (see Figure 5.1 panels d, e, and 

f). 

 

DEM data used here is as described in Chapter 5. 
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Figure 6.1 Artificial fuel load for idealised experiments (a, b, and c) and satellite based 

fuel load at Toodyay, WA (d), Pulletop, NSW (e), and Jail Break Inn, NSW (f) for realistic 

experiments. Red lines and dots indicate the fire ignition locations. Only 20 t ha-1 fuel 

load is shown for idealised experiment scenarios with homogeneous fuel load. 

 

6.1.2 Idealised Experiments 

 

For idealised grassland fire experiments, we specified 4 different fuel load patterns and 

terrain combinations on a grassland fuel bed with DOC at 100% as followed: 

 homogeneous fuel load at 20, 15, 10, 5, and 2 t ha-1 on a flat terrain (scenario I1) 

 fuel load gradient from 20 to 2 t ha-1 in southward direction on a flat terrain 

(scenario I2) 

 10 x 10 km checkerboard pattern, alternating between 4 and 8 t ha-1 fuel load on 

flat terrain (scenario I3) 

 homogeneous fuel load at 20 t ha-1 on a 1°, 5°, and 10° slope for downhill direction 

(scenario I4) 

 homogeneous fuel load at 20 t ha-1 on a 1°, 5°, and 10° slope for uphill direction 

(scenario I5) 
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The different level of homogeneous fuel load in scenario I1 is distinguished with suffix a 

to e for fuel load at 20 (I1a) to 2 t ha-1 (I1e). For scenario I4 and I5, different slopes for 

both down and uphill are distinguished with suffix a to c for slope at 1° (I4a and I5a), 5° 

(I4b and I5b), and 10° (I4c and I5c). In theory, the changes in rate of spread due to 

different surface slope is as previously described as in Equation 5.1. 

 

The fire is ignited along a 50 km long north-south line in the middle of the testing domain 

for all idealised experiments. The list of weather data used in idealised experiments can 

be seen in Table 5.1. Artificial fuel load patterns are as shown in Figure 6.1a (scenario 1 

and 4), 6.1b (scenario 2), and 6.1c (scenario 3). 

 

6.1.3 Realistic Experiments 

 

We selected three past fire events with various sizes in Australia as references for 

realistic experiments. Several gridded and weather station datasets are used to emulate 

the condition of these past events. These three past fire events are: 

 Toodyay, WA (29/12/2009) (scenario R1) 

 Pulletop, NSW (6/2/2006) (scenario R2) 

 Jail Break Inn, NSW (1/1/2006) (scenario R3) 

 

These small to large fire events (with Toodyay, WA burned area of ~30 km2, Pulletop, 

NSW burned area of ~90 km2, and Jail Break Inn burned area of ~300 km2) have mixed 

fuel types with significant grasslands and little to no forest fuels. For each scenario, we 

run 4 different fuel load and terrain configurations, including a control scenario with 

homogeneous fuel load of 5.1 t ha-1, homogenous DOC at 100%, and flat terrain 

(scenario with suffix A), satellite based fuel load with 100% DOC and flat terrain (scenario 

with suffix B), satellite based fuel load and DOC with flat terrain (scenario with suffix C), 

and satellite based fuel load and DOC with terrain data from a DEM (scenario with suffix 

D). For instance, scenario R2-B is a Pulletop fire simulation with satellite based fuel load 

and 100% DOC on a flat terrain. Note that for scenario with homogeneous fuel load 

(suffix A), fuel load is set to 5.1 t ha-1 because it is the same amount of fuel load when 

fuel type is set to grassland in Phoenix’s default fuel table. 

 

Fires in all realistic experiments are point ignition at the middle of the experiment domain, 

based on the actual burned area and observed wind direction. The ignition location 

coordinates are as listed in Table 5.3. List of observed weather data from the nearby 
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weather stations are as shown in Table 5.2. Satellite based fuel load patterns are as 

shown in Figure 6.1d (scenario R1), 6.1e (scenario R2), and 6.1f (scenario R3). 

Corresponding satellite based DOC patterns for scenarios with suffix C and D are as 

shown in Figure 5.1d (scenario R1), 5.1e (scenario R2), and 5.1f (scenario R3). 

 

 

6.2 Grassland Fire Spread with Variable Fuel Load Results 

 

6.2.1 Idealised Experiments 

 

For each idealised experiment, we examine the mean fire spread speed and area burned 

after 5 hours as shown in Table 6.1 for both Phoenix and Spark models. Figure 6.2 shows 

a corresponding scatter plot for Phoenix’s (black) and Spark’s (blue) changes in mean 

rate of spread due to fuel load, respectively. Corresponding burned time step map for 

both Phoenix and Spark experiments are as shown in Figure 6.3. Note that the total area 

burned shown here is after 10 hours (at the end of the simulation). Figure 6.4 compares 

the rate of spread from the same idealised experiment scenarios between Phoenix and 

Spark models. 

 

For scenario I1a to I1e, where fuel load gradually reduces from 20 to 2 t ha-1, the rate of 

spread also decreases in proportion to the amount of available fuel for Spark. However, 

in case of Phoenix, the rate of spread oscillates between ~10 to ~18 km h-1. This 

oscillation of rate of spread behaviour in Phoenix can also be clearly seen in scenario I2. 

Note that in scenario I2 for Spark, the rate of spread at the area with the highest fuel load 

(northern edge of the ignition line) is not the fastest, and the overall rate of spread at the 

area with equivalent fuel load level is slower than scenario I1 (see Figure 6.3). Overall 

rate of spread at high fuel load level is much faster in Spark than Phoenix. 

 

For checkerboard pattern fuel load in scenario I3, the rate of spread is visibly hindered 

in Spark, showing a vertical wave pattern along the fire front and back fire, whereas in 

the case of Phoenix model, the rate of spread does not seem to be obstructed as much. 

Changes in terrain slope have similar influences on both Phoenix and Spark models, 

where the rate of spread is increased on the uphill and decreased on the downhill slope. 

The steeper the slope is, the larger the changes in the spread speed are. 
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Table 6.1 Idealised experiments average fire spread speed and area burned for Phoenix 

and Spark models. 

Scena

rio 

Fuel Load 

Configuration 

Terrain 

Configur

ation 

Phoenix Spark 

Average 

Fire 

Spread 

Speed (km 

h-1) 

Area 

Burned 

(km2) after 

5 hours 

Average 

Fire 

Spread 

Speed (km 

h-1) 

Area 

Burned 

(km2) after 

5 hours 

I1a 
Homogeneous 

(20 t ha-1) 
Flat 13.18 3,491.28 41.40 9,031.64 

I1b 
Homogeneous 

(15 t ha-1) 
Flat 9.51 2,483.88 34.48 8,188.32 

I1c 
Homogeneous 

(10 t ha-1) 
Flat 15.84 4,246.92 26.67 6,931.44 

I1d 
Homogeneous 

(5 t ha-1) 
Flat 17.54 4,731.44 17.27 4,700.64 

I1e 
Homogeneous 

(2 t ha-1) 
Flat 10.24 2,679.08 9.93 2,745.60 

I2 
Gradient (20 to 

2 t ha-1) 
Flat 

9.36 to 

18.39 
3,565.80 

7.29 to 

27.41 
6,556.88 

I3 
Checkerboard 

(4 & 8 t ha-1) 
Flat 

16.93 to 

18.07 
4,582.00 

11.27 to 

16.28 
4,829.56 

I4a 
Homogeneous 

(20 t ha-1) 

1° 

Downhill 
12.23 3,245.20 38.93 9,009.44 

I4b 
Homogeneous 

(20 t ha-1) 

5° 

Downhill 
8.99 2,384.04 31.68 8,886.52 

I4c 
Homogeneous 

(20 t ha-1) 

10° 

Downhill 
5.76 1,521.44 27.20 8,718.48 

I5a 
Homogeneous 

(20 t ha-1) 
1° Uphill 14.10 3,734.64 43.40 9,045.60 

I5b 
Homogeneous 

(20 t ha-1) 
5° Uphill 18.57 4,923.56 52.94 9,101.96 

I5c 
Homogeneous 

(20 t ha-1) 
10° Uphill 25.88 5,332.00 65.08 9,154.68 
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Figure 6.2 Changes in rate of spread due to changes in fuel load from Phoenix (black) 

and Spark (blue) idealised experiments. 
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Figure 6.3 Phoenix and Spark idealised experiments burned time spatial maps. 

Grayscale backgrounds show the corresponding fuel load map from Figure 6.1. Only 

experiments I1a, I4b, and I5b are shown for scenario I1, I4, and I5. 
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Figure 6.4 Rate of spread comparison between Phoenix and Spark idealised 

experiments. Only scenario I1, I4, and I5 are shown. The marker size of I1 represents 

the fuel load level (larger circle represents higher fuel load). 

 

6.2.2 Realistic Experiments 

 

For realistic experiments, we also examine the mean rate of spread and area burned 

after 5 hours, similarly to idealised experiments. Results are as shown in Table 6.2 for 

both Phoenix and Spark models. Corresponding burned time step map for both Phoenix 

and Spark experiments are as shown in Figure 6.5. Comparison between Phoenix and 

Spark rate of spread for each realistic scenario can be seen in the scatter plot in Figure 

6.6. 

 

The general satellite based fuel load within the fire perimeters for all scenarios are 

ranged between ~4 to ~7 t ha-1, thus the variabilities between control fuel load scenario 

(suffix A) and other scenarios with satellite based fuel load are not very high (see Figure 

6.1). However, this is not the case for DOC as shown in Figure 5.1 (panels d, e, and f), 

where DOC can be as low as ~35% and as high as ~95% across three locations. Since 
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fuel load level and variability is generally low for all scenarios, Phoenix rate of spread 

results are expected to be more stable than in idealised experiments. 

 

For scenario R1 and R2, the rate of spreads for both Phoenix and Spark slightly increase 

when compared between homogeneous and satellite based fuel load (scenarios with 

suffix A and B), since overall satellite based fuel load within fire perimeters for both 

scenarios are slightly higher than homogeneous 5.1 t ha-1 fuel load, whereas for scenario 

R3, the satellite based fuel load is slightly lower, thus slight decrease in the rate of 

spread. There are large decreases in the rate of spreads, especially for scenario R1 and 

R2 when satellite based DOC is introduced (scenarios with suffix C). This is due to high 

variability of DOC and the large influence of DOC on the rate of spread. Note that DOC 

is at a consistently high level for scenario R3, thus a much less significant reduction in 

the rate of spread. The inclusion of digital elevation models to simulated realistic terrain 

has relatively small impact to the rate of spread in all scenarios (scenarios with suffix D), 

since the maximum changes in slopes are small (1.00°, 1.98°, and 0.21° for scenario R1, 

R2, and R3). 

 

Both Phoenix and Spark models generally have similar behaviours when satellite based 

fuel load, satellite based DOC, and DEM are added. The changes in rate of spread and 

area burned are much more prominent when satellite based DOC is added. While the 

changes in the rate of spread in Phoenix and Spark are generally in the same direction, 

Spark’s rate of spread are usually lower in control and scenarios with high DOC but 

higher when DOC is low (scenario R1-C, R1-D, R2-C and R2-D). Area burned in Spark 

can be larger than Phoenix, especially in more severe weather condition even if the 

spread speed is lower (scenario R3).  
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Table 6.2 Realistic experiments average fire spread speed and area burned for Phoenix 

and Spark models. 

Scena

rio 

Fuel 

Load 

Configur

ation 

DOC 

Configur

ation 

Terrain 

Configur

ation 

Phoenix Spark 

Average 

Fire 

Spread 

Speed 

(km h-1) 

Area 

Burned 

(km2) 

after 5 

hours 

Average 

Fire 

Spread 

Speed 

(km h-1) 

Area 

Burned 

(km2) 

after 5 

hours 

R1-A 

(Contr

ol) 

Homogen

eous (5.1 

t ha-1) 

Homogen

eous 

(100%) 

Flat 4.95 87.12 3.31 55.60 

R1-B 

Toodyay, 

WA 

(Satellite) 

Homogen

eous 

(100%) 

Flat 5.15 92.32 3.83 70.00 

R1-C 

Toodyay, 

WA 

(Satellite) 

Toodyay, 

WA 

(Satellite) 

Flat 1.14 15.20 2.38 52.24 

R1-D 

Toodyay, 

WA 

(Satellite) 

Toodyay, 

WA 

(Satellite) 

DEM 

(Max 

slope = 

1.00°) 

1.11 19.12 2.27 51.80 

R2-A 

(Contr

ol) 

Homogen

eous (5.1 

t ha-1) 

Homogen

eous 

(100%) 

Flat 8.57 141.40 5.45 133.84 

R2-B 

Pulletop, 

NSW 

(Satellite) 

Homogen

eous 

(100%) 

Flat 8.86 153.32 6.92 234.32 

R2-C 

Pulletop, 

NSW 

(Satellite) 

Pulletop, 

NSW 

(Satellite) 

Flat 0.24 0.76 4.19 65.12 

R2-D 

Pulletop, 

NSW 

(Satellite) 

Pulletop, 

NSW 

(Satellite) 

DEM 

(Max 

slope = 

1.98°) 

0.26 0.80 4.27 67.16 

R3-A 

(Contr

ol) 

Homogen

eous (5.1 

t ha-1) 

Homogen

eous 

(100%) 

Flat 16.00 288.00 11.35 554.72 
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Scena

rio 

Fuel 

Load 

Configur

ation 

DOC 

Configur

ation 

Terrain 

Configur

ation 

Phoenix Spark 

Average 

Fire 

Spread 

Speed 

(km h-1) 

Area 

Burned 

(km2) 

after 5 

hours 

Average 

Fire 

Spread 

Speed 

(km h-1) 

Area 

Burned 

(km2) 

after 5 

hours 

R3-B 

Jail Break 

Inn, NSW 

(Satellite) 

Homogen

eous 

(100%) 

Flat 15.99 290.24 11.09 573.00 

R3-C 

Jail Break 

Inn, NSW 

(Satellite) 

Jail Break 

Inn, NSW 

(Satellite) 

Flat 11.59 163.96 9.94 484.40 

R3-D 

Jail Break 

Inn, NSW 

(Satellite) 

Jail Break 

Inn, NSW 

(Satellite) 

DEM 

(Max 

slope = 

0.21°) 

11.46 165.80 9.24 477.08 
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Figure 6.5 Phoenix and Spark realistic experiments burned time spatial maps. Grayscale 

backgrounds show the corresponding fuel load map from Figure 6.1. Scenarios with 

suffix D are not shown. For Phoenix’s scenario R2-C, a 10 times magnifying burned area 

are shown with red bounding box insets. 
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Figure 6.6 Rate of spread comparison between Phoenix and Spark realistic experiments, 

where X represents number ranging from 1 to 3 (scenario R1, R2, and R3). 

 

 

6.3 Discussions 

 

6.3.1 Grass Fire Spreads in Idealised Condition 

 

From the idealised experiment results, the rate of spreads and their corresponding area 

burned for Phoenix are vastly different from Spark at fuel loads higher than 6.0 t ha-1 due 

to the implementation of a reduction factor. According to Phoenix documentation, the 

rate of spread scaling factor should start to decrease from one when fuel load level is 

over 6.0 t ha-1 (Tolhurst et al., 2007). We found that the rate of spread does decrease 

when fuel load is over 6.0 t ha-1, but starts to rise again after ~15 t ha-1, as seen in Figure 

6.2 (black) for scenario I1 and I2. We are not aware of any physical mechanism that 

might account for this. Note that fuel load in grassland of certain pasture types can be 

as high as 14 t ha-1, such as hummock grasses in Spinifex grasslands (Burrows et al., 
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2009). Even Phoenix’s default fuel table suggested that hummock grass fuel load level 

is at 15.5 t ha-1. At a lower fuel load level (scenario I1d and I1e), we found that both 

Phoenix and Spark have a very similar rate of spread and area burned (see Figure 6.3 

and Figure 6.4). 

 

In contrast, Spark has a near direct linear relationship between fuel load level and the 

rate of spread (scenario I1). Though, there seems to be a slight drop off at the highest 

fuel load level on a gradient fuel layer (scenario I2). Overall rate of spread in gradient 

fuel scenario (I2) also seems to be slower than equivalent homogeneous fuel load 

scenario (I1), as seen in Figure 6.2 (blue). This is due to the effect of flank and backing 

fire spread rates. 

 

For checkerboard pattern fuel load layer (scenario I3), Phoenix has a much more stable 

rate of spread pattern across the fuel bed than Spark. Alternating fuel load patterns does 

seem to slightly hinder the rate of spread in Phoenix, but the variation between the 

slowest and faster fire front is low (1.14 km h-1), whereas the variation between the 

slowest and fastest fire front in Spark is a lot more prominent (5.01 km h-1). This is due 

to the fact that the Phoenix’s rate of spread peaked at fuel load of 6 t ha-1 (when ranged 

between 4 to 8 t ha-) as a result of the fire spread reduction factor in Phoenix. This is not 

the case for Spark experiments.  

 

Changes in terrain slope in scenario I4 and I5 seem to result in similar trend for both 

Phoenix and Spark, as expected. As the slope becomes steeper, the rate of spread 

increases much more rapidly on an uphill slope. For downhill slope, the rate of spread 

decreases gradually, as shown in Figure 6.2 and 6.4. Note that the rate of spread and 

area burned in Spark is faster and larger than Phoenix due to the fire spread reduction 

factor in Phoenix. 

 

6.3.2 Modelled Grass Fire Spreads from Past Events 

 

For realistic experiments, the variability in fuel load between each scenario and past fire 

location is not as high as the variability in idealised experiments, with the fuel load level 

in the fire perimeters ranging from ~4 to 7 t ha-1 (control scenario fuel load is 5.1 t ha-1). 

Phoenix and Spark have a closer rate of spread predictions than idealised experiments 

due to narrower fuel load range. Note that some of Phoenix’s spread rate and burned 

area results are faster and larger than Spark’s (scenario R1-A, R1-B, and R2-A), as 
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opposed to the comparison results in idealised test. Though, in scenario R3, while 

Phoenix has a faster rate of spread, Spark’s area burned is larger. This is due to the way 

Spark handles fire ignition, where line ignition (in idealised experiments) is considered 

as a very thin rectangular ignition shape and point ignition (in realistic experiments) is 

considered as a very small circular ignition shape. Thus, having a larger ignition area, 

fire lit by line ignition spreads faster than fire lit by point ignition. For Phoenix, we do not 

know how point and line ignition is handled differently. We also make an idealised 

comparison between Phoenix and Spark with point ignition and found that Phoenix 

indeed has faster rate of spread prediction, as opposed to line ignition. 

 

The changes made by swapping the homogeneous 5.1 t ha-1 gridded fuel load with 

satellite based fuel load (scenarios with suffix A to B) results in much smaller changes in 

both spread rate and area burned than swapping the homogenous 100% gridded DOC 

with satellite based DOC (scenarios with suffix B to C). This is expected, since it is 

suggested in past studies that DOC has a larger influence on a grassland fires severity 

than fuel load (Cheney et al., 1998; Cruz et al., 2015; Kidnie et al., 2015). It is also partly 

due to spatial variability in DOC being larger than that in fuel load. Both Phoenix and 

Spark react similarly with the changes from homogeneous to satellite based fuel load, 

where the rate of spread increases when overall fuel load is higher (scenario R1-A to 

R1-B and R2-A to R2-B) and decreases when overall fuel load is lower (scenario R3-A 

to R3-B) as shown in Figure 6.5 and Figure 6.6. Note that the area burned is not 

necessarily smaller as the rate of spread is decreased in scenario R3 for both Phoenix 

and Spark. This is due to the differences in fire propagation on a homogeneous gridded 

fuel load and spatially variable fuel load. 

 

While Phoenix and Spark handle gradual changes in fuel load in a similar manner, 

changes in DOC (scenarios with suffix B to C) lead to different responses in Phoenix and 

Spark. For scenario R1-C and R2-C, where the DOC within some areas of the fire 

perimeter is generally low (~50 to 60% for R1-C and ~45 to 55% for R2-C), Spark predicts 

a significantly faster rate of spreads than Phoenix. In contrast, for scenario R3-C, where 

the DOC within the fire perimeter is consistently high (~85 to 95%) throughout the fire 

perimeter, Phoenix predicts a faster spread rate than Spark. This can be clearly seen in 

Figure 6.6 as the data points for the low DOC scenarios are the only data points 

indicating that Spark’s spread rate is faster than Phoenix’s. This is due to the different 

curing coefficients used (Cheney’s in Phoenix and Cruz’s in Spark), where Cheney’s 

curing coefficient suggested that fire is not likely to spread when DOC is less than 50% 
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(Cheney et al., 1998), as opposed to a more recent finding by Cruz that suggested a 

grassland fire can spread on a fuel complex with DOC as low as 20% (Cruz et al., 2015). 

 

The added DEM in scenarios with suffix D slightly alters the rate of spreads similarly for 

both Phoenix and Spark. The changes in area burned due to the inclusion of a more 

realistic terrain are, however, not always in the same direction for Phoenix and Spark. In 

the changes from R1-C to R1-D and R3-C to R3-D, Phoenix suggested the area burned 

to be larger, whereas Spark suggested the opposite. This is likely due to Phoenix and 

Spark handling fire propagation and slope modification differently, but since we do not 

have access to Phoenix source codes, this dissimilarity is unclear. 

 

6.3.3 Limitations 

 

Both Phoenix and Spark have their own distinct features. Phoenix is well-established 

and feature rich, since it was developed well before Spark, whereas Spark has much 

more flexibility in letting the users define their own rate of spread and post processing 

model. However, there are certainly some concerning limitations with both Phoenix and 

Spark. 

 

Though Phoenix is very feature rich, it’s source code is not available so the model 

behaviour can be unexpected. We found that at high fuel load scenarios (fuel load over 

15 t ha-1), which is possible for some pasture types, there is no clear explanation why 

Phoenix’s predicted rate of spread starts to increase again after being suppressed by 

drawback from the high heat generated when fuel load is over 6 t ha-1 as asserted in 

Tolhurst et al. (2007). If we no longer considered the effect of drawback, then the overall 

rate of spread prediction is even odder, since the rate of spread drops and rise again 

even when fuel load is constantly increasing (see Figure 6.2). Thus, we do not 

recommend using Phoenix to predict grassland fire spread where fuel load is significantly 

higher than 6 t ha-1. 

 

While Spark customisability is its strong suite, it can be a double edge sword for novice 

users. Though its online database has a small collection of fire behaviour models to 

choose from, inexperienced users are stuck with using simple fire behaviour simulation, 

since more advance components need to be added manually. Note that the predicted 

results can be vastly different from one another, depending on the specified behaviour 
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components. Though Phoenix offers multiple output variables, Spark only outputs the 

shape of the burned area and associated time steps. 
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7 Conclusions 

 

 

With a coverage of nearly 75% over Australia, grassland is one of the most widespread 

fuel type in Australia (Cheney and Sullivan, 2008). While there are efforts being 

dedicated to grassland fire management and prediction, there are still uncertainties in 

assessing the grassland fire severity. To help close the gap in grassland fire studies, the 

first part of this thesis (Chapter 3 and 4) focused on monitoring grassland degree of 

curing (DOC) and fuel load over Australia with satellite observations. This helps expand 

the limited observation of both DOC and fuel load in Australia both spatially and 

temporally. In the second part of this thesis (Chapter 5 and 6), the influence of DOC and 

fuel load (produced as gridded data in the first part) on grassland fire spread were 

assessed with grassland fire behaviour models. The research questions addressed here 

are: How does DOC and fuel load vary spatially and temporally over Australia? How do 

variations in DOC and fuel load impact modelled fire spread? 

 

During the first part of this study, the new methods for estimating grassland DOC and 

fuel load across Australia using recently developed microwave based satellite data 

(VOD) were established. For DOC estimation, various past studies (Martin et al., 2015; 

Newnham et al., 2011, 2010) suggested using optical based satellite data, such as NDVI, 

to construct DOC estimation model for regional and continental scale. After several 

combinations of calibration tests with both VOD and NDVI and observed DOC sites, the 

two best performing calibrated models for estimating DOC over Australia at 0.05° spatial 

and 8 day temporal interval were selected (r2 = 0.67 for the first model and r2 = 0.54 for 

the second model). Both model was then evaluated with partially and totally independent 

observation data and found to have a good fit (r2 = 0.55 and 0.44 for the first model and 

r2 = 0.50 and 0.54 for the second model in case of all sites and independent evaluation, 

respectively). The first model is chose in this case, since the included terms in the model 

are selected with stepwise fit algorithm without my interference. It was found that the 

continental mean of DOC over Australia from mid-2002 to mid-2011 is 85.70% with mean 

spatial standard deviation of 20.39% indicating significant spatial variability across all 

years and mean temporal standard deviation of 11.88% with strong temporal variability 

in southeast and southwest areas. GFDI over Australia for predicting fire risk can be 

computed with DOC estimated from VOD and NDVI. Comparing the GFDI calculated 

from VOD and NDVI model with existing DOC products (Method B and MapVic), showed 

that the model I developed had a comparable and arguably more balanced performance 
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in predicting the observed burned area through GFDI. While there are still some 

uncertainties in the predicted DOC (RMSE ranging from 15.25% to 16.76% for both first 

and second DOC model), my models (partly microwave and optical-based) can also be 

used as an alternative to other solely optical-based models. 

 

After the DOC estimation model was constructed, a fuel load estimation model over 

Australia was considered. However, this was more challenging than DOC estimation 

model, since there were no previous studies that successfully constructed a fuel load 

estimation model at a continental scale. Most past studies (Brandis and Jacobson, 2003; 

Jin and Chen, 2012; Reich et al., 2004) were focused on high resolution fuel load 

estimation model at a regional or smaller scale. To achieve a total spatial coverage over 

Australia and at least annual temporal interval, I decided to use AGBC data that was 

based on VOD for calibrating fuel load estimation model. Though it should be noted that 

the resultant estimated fuel load data will have only moderate (0.1°) spatial resolution. 

After multiple attempts with several site observed fuel load data and methods, a 

significant correlation between AGBC and observed fuel load is only found at bioregion 

level. This was due to the spatial mismatch between fuel load observation at site level 

and AGBC (VOD) pixels, while this was not an issue for fuel load observation at bioregion 

level, since the spatial scale was more comparable to AGBC (VOD) pixels. The 

Australian general fuel load model was then developed from the calibration of AGBC and 

bioregion fuel load data (r2 = 0.74). Since there was no additional fuel load data available 

for model evaluation, a vegetation structure dataset was used to evaluate the AGBC data 

used for developing fuel load model. It was found that AGBC had an excellent fit (r2 = 

0.82) with vegetation structure data. The continental mean of fuel load from 2003 to 2011 

was 5.95 t ha-1 with mean spatial standard deviation of 2.50 t ha-1 (highest spatial 

variability in 2011) and mean temporal standard deviation of 0.54 t ha-1 with strong 

temporal variability along the east coast. 

 

For the second part of this study, the grassland fire behaviour, particularly the rate of fire 

spread, was assessed using the previously developed satellite based estimations of 

DOC and fuel load data and fire spread prediction software, Phoenix and Spark. To test 

the sensitivity of the predicted rate of spread in grasslands to DOC and fuel load, I used 

sets of idealised and realistic experiments examine the changes in the rate of spread in 

various conditions. For varying DOC, fire propagation over a homogeneous grassland 

fuel bed was heavily dictated by the level of DOC, according to each models’ respective 

curing coefficient. Fire prorogation became difficult and started to stagnate when the 
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DOC was below the suggested propagation threshold of 50% for Phoenix (Cheney et al., 

1998) and 20% for Spark (Cruz et al., 2015). Extreme weather conditions were also 

required for fire propagation under a low DOC level. Phoenix and Spark had quite 

different predictions in terms of the rate of spread at low and uneven DOC levels, burned 

perimeters, and slope effects on spread rate, which can be clearly observed in the 

realistic experiments. For instance, in a realistic experiment at Pulletop, NSW (scenario 

I2-B), the predicted rate of spread by Phoenix was 0.22 km h-1, while Spark prediction 

was 2.99 km h-1. 

 

As for the variability in the rate of spread due to variation in fuel load for both Phoenix 

and Spark model, I assumed that the fuel load was related to the changes in grassland 

continuity. Though both Phoenix and Spark had some similarity in grassland fire spread 

prediction at low fuel load levels (6 t ha-1 or less), the differences in the predicted results 

at high fuel load were very large. In idealised experiments with high fuel load (i.e. 

scenario I1a, where Phoenix and Spark rate of spreads were 13.18 km h-1 and 41.40 km 

h-1, respectively), Phoenix’s rate of spread predictions questionable due to its internal 

implementation of rate of spread modification factor, while Spark was more consistent. 

On the other hand, in realistic experiments with generally low fuel load and high DOC, 

both Phoenix and Spark simulated results were more consistent (i.e. scenario R2-B, 

where Phoenix and Spark rate of spreads were 8.86 km h-1 and 6.92 km h-1, 

respectively). It should also be noted that the effect of fuel load on the rate of spread was 

not as prominent as the effect of DOC. Great care was recommended when simulating 

a grassland fire with high fuel load or low DOC, since the predicted results can be very 

different depending on the model selected (Phoenix or Spark), and how the behaviour 

components were specified in case of Spark, since different curing coefficients, flank and 

back fire algorithms, and slopes can alter the magnitude of the rate of spread and burned 

area. 

 

With comparable performance to the current DOC products, the DOC model developed 

here can be an appealing alternative for GFDI computation and fire risk modelling. For 

the developed estimated fuel load data, though its spatial and temporal resolutions are 

quite limited when compared with the developed DOC model (and other existing fuel load 

models in terms of spatial resolution), the fuel load model developed here can provide a 

good overall annual snapshot of fuel load variation across Australia. It was found that 

both DOC and fuel load had significant spatial variabilities that persist across all available 

temporal periods, while temporal variabilities were strong in particular areas (southeast 
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and southwest area for DOC and east coast for fuel load). Both satellite based DOC and 

fuel load data developed here were shown to be useful in the rate of spread prediction 

by different fire behaviour software packages (Phoenix and Spark). Though there was 

no exact indication of which was the best model between Phoenix and Spark, the study 

illustrated how similarly and differently Phoenix and Spark reacted to variations in DOC 

and fuel load. It should also be noted that while Phoenix had more additional features 

and a more complete fire risk package, Spark offered a much higher degree of flexibility 

in defining the fire spread behaviour components and updating the model. With enough 

support from the bushfire communities, Spark is a more appealing alternative. Better 

climatological observations and remote sensing techniques that can provided higher 

temporal (preferably sub-daily or hourly interval) and spatial resolutions to both weather 

and fuel data are a must for better fire spread predictions in the future. This thesis 

highlights the importance of monitoring the current spatial variation in fuel properties for 

accurate fire spread modelling and risk assessment, such as using satellite estimated 

DOC in GFDI yields better fire danger classification based on past burned areas 

comparison. Fire spread models’ prediction results and sensitivities can also be explored 

in a more realistic simulation with estimated DOC and fuel load. This thesis also 

demonstrates the utility of using idealised experiments to test and understand fire spread 

model behaviour that, for instance, shows how different Phoenix’s and Spark’s 

predictions are at high grasslands fuel load. Further development and improvement of 

the models, such as improving Phoenix’s flexibility to allow user modification to the 

embedded spread model or push for Spark adoption instead of Phoenix when it is fully 

developed. 
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