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Abstract

Akt is a signalling protein that regulates many processes in the cell, such

as cell growth, anti-apoptosis, and glucose metabolism. The abnormal reg-

ulation of Akt is implicated in the development of a number of diseases,

including cancer, cardiovascular disease, and type two diabetes.

Initially synthesized on the endoplasmic reticulum, Akt moves to the plasma

membrane in response to insulin, where it is activated by phosphorylation.

Phosphorylated Akt is found in many cellular locations, and the spatial dis-

tribution of Akt is thought to be an important determinant of downstream

regulation. However, this aspect of Akt signalling has received scant treat-

ment in the mathematical modelling literature to date.

This thesis consists of a number of mathematical models of Akt translo-

cation and phosphorylation. The Akt Switch model is a simple, linear,

ordinary differential equation (ODE) model of Akt activation that tracks

both the biochemical state and cellular location of Akt. Whilst elucidating

some of the apparent anomalies of Akt signalling, it enables the differential

regulation of downstream substrates via the two branches of Akt signalling

(plasma membrane-bound and cytosolic), without recourse to complex feed-

back mechanisms.

However, the Akt Switch model has some limitations, including a noticeable

discrepancy between the model output and the experimental data in the early

stages of simulation. As a result, the Akt Translocation model was developed

to further investigate the translocation of Akt in response to insulin in vitro.

The Akt Translocation model is a three-compartment ODE model that re-

produces the salient features of Akt translocation. Analysis of the model

shows that it behaves as a heavily damped harmonic oscillator with solution

curves that either increase monotonically or overshoot.
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Optimisation of the model to TIRF microscopy data quantified a time de-

lay of approximately 0.4 min between the application of insulin and the Akt

translocation response. In addition, the optimisation revealed that the pro-

cesses regulating the size of the plasma membrane bound pool vary with

the insulin level. For physiological insulin, the rate limiting step is the re-

lease of Akt to the plasma membrane. At high insulin levels, however, the

down-regulation of Akt movement away from the plasma membrane is also

necessary to explain the data.

The models developed in this thesis provide a framework for understanding

the dynamics of this vital signalling node.
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Chapter 1

Overview

Akt is a key signalling protein of mammalian cells that is involved in many

cellular processes, including glucose metabolism, cell growth, cell survival,

and proliferation. Located at the juncture of multiple signal transduction

networks, Akt functions as a nutrient sensor that coordinates resource inten-

sive mitogenic processes—such as cell growth and survival—with metabolism.

As a result, the dysregulation of Akt is implicated in a variety of disorders,

from diabetes to cancer.

The mathematical modelling of Akt activation, and particularly its role in in-

sulin signalling, constitutes the major theme of this thesis. Firstly, an outline

of the biological context is given. Next, the previous mathematical modelling

of this important signalling pathway is reviewed. This is followed by a brief

discussion of the rationale that underpins the choice of mathematical models

and techniques employed in the current work. With this groundwork laid, a

preliminary study of the insulin signalling network is presented in Chapter 5.

The three studies of Akt activation and translocation in Part II (Chapters 6–

8) compose the backbone of the thesis. The three major studies presented in

Part II, along with the preliminary study from Part I (Chapter 5), are based

on articles that have already been published in the peer-reviewed literature.

3



4 Overview

As a consequence, these chapters follow the conventional “IMRAD” (intro-

duction, method, results and discussion) format of a scientific paper. There

is a short summary concluding each chapter.

The first major study is the Akt Switch model described in Chapter 6. This

four-compartment model explicitly depicts both the translocation and phos-

phorylation subprocesses of Akt activation. It demonstrates that some of the

enigmas of Akt signalling can be explained by a model that allows for two

processes and two cellular locations—cytosol and plasma membrane.

The Akt translocation process then becomes the subject of more detailed

study in Chapters 7 and 8. The Akt Translocation model is first defined in

Chapter 7. Mathematical analysis yields substantial insight into both the

transient and steady state behaviour of the model, and reveals an inher-

ent hysteresis in the system. The model is then optimised to experimental

data in Chapter 8. This also leads to greater insight into potential regula-

tory mechanisms of the underlying biological system. The interplay between

these three studies is discussed further in Chapter 9, and some directions for

future work are outlined in Chapter 10. The major results of the thesis are

summarized in Chapter 11.



Chapter 2

Biological Context

2.1 Introduction

This chapter consists of an overview of insulin signalling events between the

pancreatic release of insulin and the translocation of glucose transporter 4

(GLUT4) to the plasma membrane. A particular focus will be given to

the signalling component Akt (also known as protein kinase B or PKB), as

the mathematical modelling of Akt activation constitutes a major theme of

this thesis. Furthermore, although insulin possesses a plethora of biological

functions, the current work will take a predominantly “glucose centric” view

of insulin signalling. That is to say, the focus is on the regulation of glucose

metabolism by insulin, and how this is effected by the components of the

insulin signalling pathway.

2.2 The Insulin Signalling Pathway

Insulin plays a pivotal role in the maintenance of glucose homeostasis in

the body. The major targets of insulin signalling are fat cells (adipocytes),

5



6 Biological Context

skeletal muscle cells (myocytes) and liver cells (hepatocytes). Adipocytes and

myocytes respond to insulin stimulation with the translocation of GLUT4 to

the plasma membrane, enabling the clearance of glucose from the blood. In

addition, insulin stimulates the synthesis of glycogen, fat, and protein in

insulin sensitive cells and suppresses the break down of glycogen, fat, and

protein in the liver [1]. These actions combine to promote the metabolism and

storage of glucose circulating in the bloodstream, which is the predominant

metabolic effect of insulin. Defects in this process can give rise to insulin

resistance, diabetes, and vascular disease [2].

2.2.1 Insulin

Proinsulin (the nascent, inactive form of insulin) is synthesized and stored

within the β-cells of the pancreas. Following a rise in blood sugar, proinsulin

undergoes irreversible proteolytic cleavage and is released as insulin and C-

peptide into the bloodstream [3].

Insulin secretion from the pancreas is periodic, with oscillations that occur

on several different timescales: rapid (5-15 minutes); ultradian (1-2 hours);

or circadian (24 hours) [4]. Interestingly, the insulin signal is predominantly

amplitude, rather than frequency, modulated. The β-cells continually secrete

small pulses of insulin into the blood with a period of 5–10 minutes [4–6],

even in the fasted state. However, the amplitude of these pulses increases

dramatically within a few minutes of a rise in blood sugar. Once secreted,

the insulin circulates in the bloodstream until it either binds to an insulin

receptor or is degraded by the liver. The half-life of insulin in the blood is

5 minutes [4], approximately the same as the period of pancreatic insulin

release.

In addition to its effect on glucose metabolism, insulin also manifests pro-

found mitogenic effects on cellular growth, proliferation, and anti-apoptosis.

This explains why dysregulation of the insulin signalling pathway is impli-

cated in the development of cancer. Interestingly, the mitogenic actions of
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insulin occur on a time frame of hours to days, in contrast to the meta-

bolic effects, which occur within a matter of minutes. How the cell regulates

processes on such different time scales using the same signal transduction

machinery is an area of active research: see for instance [7–10].

2.2.2 The Upstream Signalling Pathway

The insulin receptor is a transmembrane protein composed of two parallel

half-receptors [11] found on insulin sensitive cells. When insulin binds to

the extracellular subunits of the receptor, the intracellular subunits undergo

transphosphorylation. The phosphorylated intracellular subunits then inter-

act with a number of signalling intermediaries, such as insulin substrates 1, 2,

and 3 (IRS-1, IRS-2 and IRS-3). In this fashion, the insulin signal is relayed

from the bloodstream to the internal environment of the cell. A simplified

diagram of the insulin signalling pathway is given in Figure 2.1.

Numerous substrates of the insulin receptor have been identified [1], and

at least six eponymous substrates (IRS-1–6) are known [12]. There is con-

siderable redundancy and complementarity in the functions of this family

of proteins, but the IRS-1 and IRS-2 isoforms play a central role in the

metabolic action of insulin signalling. Ordinarily, IRS-1 is phosphorylated

on tyrosine residues by the activated insulin receptor. This in turn recruits

phosphatidylinositol 3-kinase (PI3K) to the plasma membrane, resulting in

the forward propagation of the insulin signal.

PI3K is a scaffold protein of major importance in a number of signalling path-

ways. It controls vital cellular functions such as membrane trafficking, signal

transduction and exocytosis [13]. In the insulin signalling pathway, PI3K

catalyses the formation of phosphatidylinositol 3,4,5-trisphosphate (PIP3)

[14]. PIP3 functions as a docking site at the plasma membrane for the protein

kinase Akt, which is activated at the plasma membrane through phospho-

rylation by phosphoinositide-dependent kinase-1 (PDK1) and mammalian

target of rapamycin complex-2 (mTORC2) [15].
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Cytosol

Nucleus

Plasma membrane

Insulin signal

Upstream signalling Akt activation

Akt/pAkt

Akt pAkt

Proliferation
Cell Growth

Anti-apoptosis

GLUT4
translocation

Glucose

Figure 2.1: An overview of the insulin signaling pathway. Insulin in the
bloodstream binds to the insulin receptor, generating the insulin signal. This
signal propagates through the upstream signalling pathway to Akt, and then
through the downstream signalling pathway to the GLUT4 translocation
machinery.
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2.2.3 Akt as a Key Crosstalk Node

Akt is a key regulator of diverse cellular processes, such as survival, growth,

metabolism and proliferation. As with many components of signal transduc-

tion pathways, Akt derives signalling specificity from both its intracellular

location and its phosphorylation state [16–18]. Like most cellular proteins,

Akt is synthesized on the endoplasmic reticulum in the inert state. It is then

activated by phosphorylation, which only occurs on the inner leaflet of the

plasma membrane. Consequently, the translocation of Akt from the cytosol

to the plasma membrane is a crucial, albeit poorly understood, step in the

activation process [19–21]. As Akt dysregulation is implicated in a wide ar-

ray of disorders—from diabetes to cancer [22–24]—a deeper understanding

of the Akt translocation and activation processes would be invaluable.

Akt activation is both necessary and sufficient for GLUT4 translocation. The

inhibition of Akt substantially decreases GLUT4 expression at the plasma

membrane [16, 25–27]. Conversely, the activation of only a small percentage

of the Akt pool results in maximal GLUT4 translocation, even in the absence

of an upstream insulin signal [15,28,29]. Thus Akt functions as an extremely

low-threshold switch amplifying and transmitting the insulin signal to its

downstream substrates.

In mammals there are three Akt isoforms, which exhibit distinct functions

and tissue distributions [15]. Akt1 is widely expressed in many cell types

and plays a role in cell proliferation and growth; Akt2 is found in skeletal

muscle and fat cells where it is involved in glucose metabolism; Akt3 is found

predominantly in the brain and testes [24]. The primary focus of this thesis is

Akt2 and its role in glucose metabolism. Consequently, subsequent references

to “Akt” should be understood as denoting the Akt2 isoform, unless stated

otherwise.

Figure 2.2 shows a schematic diagram of the Akt activation process. After

synthesis on the endoplasmic reticulum, Akt forms a pre-activation complex



10 Biological Context

with 3-phosphoinositide dependent protein kinase-1 (PDK1), which is widely

available in the cytosol [15, 30]. In response to insulin, this pre-activation

complex is recruited to the plasma membrane, where it binds to a dock-

ing site on PIP3 [15, 31]. Once docked at the plasma membrane, full acti-

vation is contingent upon double phosphorylation: once on Threonine-308

(Thr308) by PDK1; and once on Serine-473 (Ser473) by the mammalian

target of rapamycin (mTOR)/rapamycin-insensitive companion of mTOR

(RICTOR) complex [32–34]. It is known that the catalytic activity of doubly-

phosphorylated Akt (pAkt) is at least one order of magnitude higher than

that of Akt phosphorylated on Thr308 alone [35], and recent work suggests

that Thr308 phosphorylation precedes Ser473 phosphorylation [36].

Following activation, some of the pAkt leaves the plasma membrane to ac-

tivate substrates in a variety of cellular locations, such as the mitochondrial

membrane and the cell nucleus. A fraction also remains at the plasma mem-

brane to propagate the insulin signal downstream [19, 31, 37]. The presence

of activated Akt in the nucleus has been widely reported, however details

concerning the nuclear transport of pAkt are disputed [19]. It is known that

pAkt first appears at the plasma membrane within minutes of insulin stim-

ulation but takes approximately 30 minutes to appear in the nucleus [38].

Akt has many downstream substrates that are found in both the cytosol and

the nucleus [19, 31, 37]. These substrates can be broadly classified as either

metabolic or mitogenic effectors [24], although the distinction between the

two classes is not entirely clear cut. Consequently, Akt functions as an im-

portant crosstalk node between metabolic and mitogenic signalling pathways

in the cell. It is clear that Akt fulfils the three criteria of a ‘critical node’ in

the insulin signalling pathway as outlined by Taniguchi and co-workers: it

is essential for the propagation of the insulin signal; it is tightly regulated;

and it constitutes a major crosstalk node with other signalling systems in

the cell [12].
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Figure 2.2: Akt in the cell. Akt is synthesized in the un-activated state near
the nucleus. It forms a pre-activation complex with PDK1 in the cytosol.
Under the influence of insulin, the pre-activation complex travels to the inner
leaflet of the plasma membrane, where it is doubly-phosphorylated to become
activated Akt (pAkt).
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2.2.4 GLUT4 Translocation

Glucose transport into the cell is widely considered to be the rate-limiting

step of glucose metabolism [15,39]. Ordinarily, glucose cannot diffuse across

the plasma membrane in the absence of a glucose transporter molecule. The

glucose transporters constitute a family of membrane embedded proteins

which selectively facilitate the passive transport of glucose down its concen-

tration gradient into or out of cells. GLUT4 is the insulin-responsive member

of the glucose transporter family and is predominantly found in insulin sen-

sitive cells.

Glucose transport into insulin sensitive cells is controlled by the spatial dis-

tribution of GLUT4. In the basal (non-insulin stimulated state) over 95% of

GLUT4 is embedded in membranes inside the cell, reducing the leakage of

glucose to the exterior, as, in vivo, a basal state would generally be associated

with low blood glucose concentrations. In response to insulin, up to 40% of

the entire GLUT4 complement is redistributed to the plasma membrane in a

dose dependent manner [40, 41]. This permits the influx of glucose from the

bloodstream into the cell.

GLUT4 trafficking involves at least six steps, all of which are potential targets

for regulation by insulin [42–44]. The six steps are:

� retention inside the cell under basal conditions within membrane struc-

tures such as vesicles and endosomes;

� release of GLUT4 containing vesicles from retention in response to in-

sulin;

� movement of GLUT4 vesicles toward the plasma membrane;

� tethering, docking and fusion of vesicles at the plasma membrane;

� endocytosis from the plasma membrane back into internal membranes;

� sorting and redistribution of the internalized GLUT4.
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The regulation of these processes remains incompletely understood and some-

what contentious. Nonetheless, GLUT4 expression at the plasma membrane

constitutes a readily measured output of insulin signalling. At its simplest,

the insulin signalling pathway in adipocytes can be considered a single input,

single output system where the input is insulin and the output is GLUT4

expression at the plasma membrane.

2.3 Summary

Although the chain of events between the release of insulin from the pan-

creas to the translocation of GLUT4 in adipocytes is known in broad out-

line, many of the details remain obscure. In general, intracellular events

more distal from the insulin receptor are less well understood. Much has

been discovered regarding the role of Akt in the mammalian cell, however,

much also remains to be elucidated concerning its regulation, activation, and

downstream signalling modalities. In order to understand the dysregulation

of Akt in pathological states, it is necessary to first establish a thorough

working knowledge of its function in the healthy state.
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Chapter 3

Mathematical Models of the

Insulin Signalling Pathway

3.1 Introduction

This chapter is a review of work done by others to model different aspects

of the insulin signalling network. It begins with a discussion of the best

known and most extensive model of insulin signalling to date, the Sedaghat

model [45]. The Sedaghat model is discussed in some detail, as is some of

the more recent work derived from it. Next, the focus shifts to components

of the insulin signalling network, in particular, the insulin receptor subsys-

tem and the Akt cycle. There are numerous studies of these components,

with the great majority employing some form of deterministic ordinary dif-

ferential equation (ODE) model. As the number of studies is large, only

brief overviews can be given, however, it is important to note the contrast

in treatments of the two components. Thus far, the insulin receptor subsys-

tem has been modelled extensively, and with a high degree of mathematical

sophistication. In comparison, the treatment of the Akt cycle in the math-

ematical modelling literature is far sketchier. Unquestionably this is due to

15
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the fact that less is known about the insulin signalling network the further

one moves down the cascade: it is inherently much easier to study structures

like the insulin receptor that are located on the cell exterior. However, the

sheer number and variety of mathematical models featuring Akt activation

attest to both the biological significance of this signalling component, and

the degree of interest in its role as a crosstalk node.

3.2 Signalling Network Models

3.2.1 The Sedaghat Model

There are few mathematical models of the insulin signalling pathway that

detail all major steps between the binding of insulin to the insulin receptor

and the translocation of GLUT4 to the plasma membrane [46]. The Seda-

ghat, Sherman and Quon model (Sedaghat model) is one such model [45]. It

is widely considered to be the most comprehensive model of insulin signalling

to date, and is still regularly cited, despite the passage of over fifteen years

since its publication [47].

The Sedaghat model is composed of twenty deterministic, non-linear ODEs

involving twenty-one state variables. While the number of equations is large,

the individual equations are relatively straightforward, being generally first

or second order polynomials in the state variables. (A model that embod-

ied all chemical species and cellular subprocesses known to be involved in

insulin signalling would have in excess of one hundred state variables [48].)

There is also a version of the model that incorporates a number of feedback

loops. A schematic diagram of the simpler open-loop system is given in Fig-

ure 3.1. In this diagram, the state variables are represented by nodes and

chemical reactions by edges labelled with the appropriate rate constants and

other factors that modulate these reactions. Nodes lying on the left side of
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the diagram represent chemical species that are located at the plasma mem-

brane. The model can be divided, somewhat arbitrarily, into a number of

different subsystems. In this diagram, the insulin receptor subsystem has

been distinguished from the downstream subsystem, with the division lying

immediately above IRS-1. The parameter values used in the model are pre-

dominantly drawn from a variety of data sets found in the literature. For a

full description of the Sedaghat model, including equations, initial conditions

and parameter values, please consult [45].

In the Sedaghat model, insulin signalling commences when extracellular in-

sulin (x1) binds to free insulin receptors on the plasma membrane (x2). The

singly-bound receptors (x3) then undergo autophosphorylation (x5). Follow-

ing this, the receptors either bind a second insulin molecule (x4) or dissociate

from the first, thus returning to the free surface insulin receptor pool (x2).

The binding of a second insulin molecule does not affect the phosphorylation

state of the receptor, but dissociation causes almost instantaneous dephos-

phorylation. The insulin signal is propagated down the cascade via the sum

of the variables x4 and x5.

The model explicitly includes insulin receptor recycling and degradation.

Once- and twice- bound receptors are internalized in an identical manner

(x7 and x8) and dephosphorylated. Upon dephosphorylation, the receptors

return to the intracellular pool (x6), where they are either recycled to the

plasma membrane or degraded. Synthesis of new intracellular receptors is

assumed to occur at a constant, but very low, rate. These sinks and sources

are noted in Figure 3.1.

The multiplicative factor PTP, representing the relative activity of protein

tyrosine phosphatases in the cell, modulates the receptor dephosphorylation

rate of both surface and internalized receptors. It is thought that under

certain pathological conditions, protein tyrosine phosphatases contribute to

the development of insulin resistance by increasing the dephosphorylation

rate of insulin receptors, leading to the premature termination of signalling
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Figure 3.1: A schematic diagram of the Sedaghat model. Nodes in the dia-
gram represent state variables; edges represent chemical reactions.
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[49]. Under normal physiological conditions it is assumed that PTP equals

one.

As the insulin signal is propagated downstream from the receptor subsystem,

it is modulated by the factor IRp, representing the concentration of phor-

phorylated surface insulin receptors achieved after maximal insulin stimu-

lation. This signal activates IRS-1 (x9 in Figure 3.1), which then binds to

PI3K (x11), forming the IRS-1/PI3K complex (x12). The IRS-1/PI3K com-

plex converts phosphatidylinositol 4,5-bisphosphate (x14) to PIP3 (x13), the

next major signalling component in the cascade. PIP3 is also produced by

the phosphorylation of phosphatidylinositol 3,4-bisphosphate (x15). It was

assumed that the synthesis and degradation of these signalling molecules

does not occur at an appreciable rate, and hence these processes were not

included explicitly in the model.

The GLUT4 translocation machinery is located downstream from PIP3. Even

under fasting conditions, GLUT4 is in a dynamic equilibrium between the

internal pool (x20) and the plasma membrane pool (x21). However, the rate

of exocytosis of GLUT4 is greatly increased when Akt (x16) and PKC-ζ (x18)

are activated by PIP3. As a consequence, the expression of GLUT4 at the

plasma membrane increases from an initial value of 4% to slightly less than

40% within 10–15 minutes of the start of insulin stimulation.

The Sedaghat model and its various subsystems have been modified, ex-

tended and reused in a number of subsequent studies. For instance, it has

been used as the basis of a mathematical study of the multi-drug treatment

of diabetes [47], and as the insulin signalling module of a multi-scale model

of glucose metabolism and regulation [46, 50, 51]. In addition, it has been

extended to include the mitogenic action of insulin on gene transcription and

growth regulation [52, 53], and as one component of a systematic model of

hepatic insulin signalling [54].
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3.2.2 Limitations of the Sedaghat Model

The Sedaghat model has some significant limitations. In particular, the

differential equations of the insulin receptor subsystem are stiff [50, 55], due

to the widely different timescales involved. In addition, some key biochemical

components in the network—most notably, insulin receptors and GLUT4

molecules—are not conserved. Furthermore, some aspects of the network,

such as Akt activation, were modelled somewhat sketchily, reflecting the

understanding of the biology current at the time. (For a succinct review of

what was known concerning Akt activation circa 2001, please consult [56].)

Akt activation in the Sedaghat model is a simple two-compartment system

(activated and un-activated Akt) that does not reflect the spatial distribution

of Akt within the cell.

The Sedaghat model was given a major update by Ho and colleagues in

2014 [57]. Newly elucidated components of the GLUT4 translocation ma-

chinery, such as Akt substrate of 160 kDa (AS160), were added to the original

Sedaghat model. These additions are all located downstream from Akt and

PKC-ζ in the signal transduction pathway, and depend upon the activation

state of upstream components for their reaction rates. However, it should be

noted that the Ho model retains the same simple two-pool treatment of Akt

activation as the original model.

3.3 Models of the Insulin Receptor System

There is a long history of modelling the insulin receptor system. One of

the earliest models is that of Jones, et al. [58], which modelled the receptor-

mediated clearance and degradation of insulin. This model inspired the five-

compartment model of insulin clearance of Hovorka, et al. [59, 60], which

featured a simple two-compartment treatment of the insulin receptor system.

This was followed by the models of Quon and colleagues in the nineties
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[61–63], which formed the foundation for the insulin receptor subsystem of

the Sedaghat model [45].

The Sedaghat insulin receptor subsystem combined previous models of in-

sulin receptor binding kinetics with receptor internalisation and recycling

dynamics. Following the model of Wanant and Quon [63], the Sedaghat

model explicitly incorporated the divalent binding of the insulin receptor, in

which two insulin molecules simultaneously bind a single receptor. A later,

and much more detailed, treatment of this phenomenon was also given in

the harmonic oscillator model of insulin receptor binding of Kiselyov and

co-workers [64]. Indeed, in at least one instance, the insulin receptor model

of Kiselyov, et al., has been used as a replacement for the insulin receptor

subsystem of the Sedaghat model in a parametric sensitivity analysis of the

insulin signalling pathway [65].

Insulin receptor internalisation and recycling has also been studied by Hori

and colleagues [66]. Starting with a two-compartment model of insulin recep-

tor internalisation by Backer, et al. [67], they developed three further models

of increasing complexity (the four-, five- and six-pool models) in order to

study the effect of insulin receptor phosphorylation state and ligand dissoci-

ation on insulin receptor trafficking in FAO hepatoma cells under conditions

of maximal insulin stimulation (100 nM).

Koschorreck and Gilles have also investigated the role of insulin receptor

activation in rat hepatocytes on the concentration of insulin in the blood

[68]. The Koschorreck model relaxes the tight connection between ligand

dissociation and receptor dephorphylation seen in the Sedaghat model. It

also details some processes not included in previous models, such as renal

clearance of insulin from the bloodstream.

Most of the insulin receptor models discussed thus far have been compartmen-

tal ODE models in which either the law of mass action or Michaelis-Menten

kinetics has been assumed. (For a more in-depth discussion of the law of
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mass action and Michaelis-Menten kinetics, see [69].) The resulting mathe-

matical models may be large, but the individual equations are generally quite

simple. A potential pitfall of this approach, however, is the generation of a

large number of model parameters which must be estimated from experimen-

tal data. In many cases, the experimental data either does not exist, lacks

the necessary temporal or spatial resolution, or is very noisy. Fitting models

to scant or noisy data can result in many unidentifiable parameters.

The Cedersund group have taken a parameter-free modelling approach that

uses the methods of mathematical control theory to analyse, and ultimately

accept or reject, whole classes of compartmental models. Any compartmental

model can be thought of as one instance of a larger class or family of models.

The class is determined by the model structure: that is, the number of com-

partments and the relationships between them, such as positive or negative

feedback and feed-forward mechanisms, for example. The particular instance

of the model is given by the set of values assigned to the parameters (rate

constants and initial conditions) arising from the structure [70]. In the Ced-

ersund method, models are systematically assessed against specific criteria

based on structural details rather than features arising from the particular set

of parameter values used to instantiate the models. The results of this analy-

sis hold true irrespective of the feasibility of optimising the candidate model

or models to experimental data. In [71] or [72], for example, this approach

was applied to the early phase of insulin signalling to establish that insulin

receptor internalisation is necessary for feedback mechanisms involving mass

and information transfer.

3.4 Models of Akt Activation

Numerous mathematical models of Akt activation have appeared in the lit-

erature. As Akt is an important crosstalk node in the cell, these modelling

efforts have detailed its role in both insulin signalling [10, 45, 52, 73–77] and
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other signalling pathways [78–82]. The models are based on a variety of

cell types, such as Chinese-hampster ovary (CHO) cells [78], glial progenitor

cells [81], HeLa cells [83], human adipocytes [73], human embryonic stem

cells [74,75], mouse embryonic fibroblasts [84], NIH 3T3 fibroblasts [80], and

rat hepatoma FAO cells [10]. Furthermore, although many of these studies

model Akt activation in response to insulin, other growth factors have also

been used, including fetal bovine serum [84], heregulin [78, 85], insulin-like

growth factor 1 (IGF-1) [81], platelet derived growth factor (PDGF) [80], and

vascular endothelial growth factor (VEGF) [82]. Given the use of diverse cell

types and stimuli, caution must be exercised when interpreting or comparing

results from these disparate models.

3.4.1 Single Input Models

A number of studies based on the Sedaghat model have appeared in the lit-

erature. Giri and co-workers adapted the model to study the phenomenon

of bistability caused by positive and negative feedback in the network [86];

Liu, et al., employed the model in a study of glucose metabolism in hepa-

tocytes [50]; Luni and Doyle simplified the model to study multi-drug ther-

apy [47]; Huang and collaborators adapted the model to study the role of

IRS1 and IRS2 in hepatic insulin signalling [54]; and Mathews and collabora-

tors used the model in a systems analysis of self-renewal in human embryonic

stem cells [74,75]. Being derived from the Sedaghat model, all these studies

featured the same simple two-compartment treatment of Akt activation.

Park and co-workers studied the activation of Akt in NIH 3T3 fibroblasts in

response to PDGF stimulation [80]. A mechanistic ODE model was used to

describe this signalling pathway, however, the reduced version of this model

used for the experimental data fitting featured only a single compartment of

activated Akt.

Similarly, Romanelli and colleagues combined empirical studies and mathe-

matical modeling to study the response of the PI3K-Akt signalling pathway
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to IGF-1 stimulation in glial progenitor cells [81]. Their modelling predomi-

nantly focused on IGF-1 receptor dynamics, with the phosphorylated fraction

of Akt as the primary model output. The treatment of Akt activation in this

model was rudimentary, and the spatial distribution of Akt in the cell was

not addressed.

Kubota, et al., developed a computational model of the insulin signalling

pathway from the insulin receptor to the downstream substrates of Akt:

ribosomal protein S6 kinase (S6K); glucose-6-phosphatase (G6Pase); and

glycogen synthase kinase-3β (GSK3β) [10]. Although insulin receptor dy-

namics was treated with some detail, Akt activation was represented by a

two-compartment system consisting of pools of unactivated and activated

Akt.

Smith and colleagues developed a computational model of the regulation of

insulin signalling by reactive oxide species in order to study the phenomenon

of aging at the cellular level [53]. Their work focussed on the long-term

regulation of downstream substrates of Akt, such as FOXO, rather than the

short-term behaviour of the insulin signalling pathway. The Smith model fea-

tured a detailed treatment of the insulin receptor subsystem, with the inclu-

sion of multiple insulin binding and receptor internalisation dynamics. Akt

activation, however, was represented by a simple two-compartment model

with pools of activated and un-activated Akt.

In contrast, Wang modelled the phosphorylation/dephosphorylation cycle of

Akt in response to insulin with a four-compartment system that uses the

full Michaelis-Menten kinetics [87]. That is to say, Akt in the Wang model

existed in either the activated or unactivated state, and the intermediate

states—where Akt is complexed with either its phosphorylating kinase or

dephosphorylating phosphatase—were also explicitly modelled. The Wang

paper consisted of singularity and bifurcation analyses of this system, and

made no attempt to fit the model parameters to experimental data. Were

this to be attempted, it is probable that this level of model complexity could
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not be supported by the existing data, leading to some of the parameter

values being unidentifiable.

The activation of Akt in response to vascular endothelial growth factor

(VEGF) has also been modelled [82]. The authors’ intent with this model

was to study the highly transient behaviour of Gab2 (an upstream effector of

Akt) in the VEGF signalling pathway. The model was based on mass-action

kinetics and features a highly detailed treatment of Akt phosphorylation. As

with the Wang model, the enzyme-substrate binding step for each biochem-

ical reaction was explicitly modelled, with the added complexity of double

phosphorylation. In common with the previously mentioned model, the ex-

perimental support for the estimation of all the parameters was possibly

incomplete.

Goltsov, et al., developed a computational model of the PTEN-PI3K-Akt

signalling pathway to study the development of resistance to anti-cancer

drugs in breast and ovarian cancer [88–90]. In their model, the double phos-

phorylation of Akt is explicitly modelled, with pools of unphosphorylated,

singly-phosphorylated and doubly-phosphorylated Akt. Dalle Pezze and col-

laborators [83] also employed a three-pool model of Akt phosphorylation in

their study of mTOR regulation by insulin. However, neither of these models

depict the translocation of Akt directly.

Brännmark and colleagues from the Cedersund group developed an exten-

sive mathematical model of insulin signalling to study the mechanisms of

insulin resistance arising in type 2 diabetes [72]. Their model features a

four-compartment subsystem of Akt activation (referred to as PKB) that

tracks the phosphorylation and dephosphorylation of Akt in detail, and in-

cludes pools of unphosphorylated Akt; Akt singly-phosphorylated on Serine-

473 (Ser473); Akt singly-phosphorylated on Threonine-308 (Thr308); and

doubly-phosphorylated Akt.

As a generalisation, the models of Akt activation discussed thus far tend

to be either rudimentary two-compartment models or, given the existing
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experimental data, overly detailed in their treatment of Akt phosphorylation.

One could say that the depiction of Akt phosphorylation seems to be either

too simple, or too elaborate! Furthermore, in these studies Akt translocation

has often been “lumped” into the activation step, rather than being explicitly

modelled in its own right.

3.4.2 Crosstalk Models of Akt Signalling

An important sub-class of mathematical models of Akt activation are what

may be termed “crosstalk” or systems biology models. One of the advan-

tages that mathematical modelling has over other investigative techniques is

the ability to study emergent properties that arise from complex interactions

between multiple signalling pathways with comparative ease. Numerous ex-

amples of such systems biology models can be found in the Akt modelling

literature. These studies investigate the interaction between the PI3K-Akt

network and other signalling pathways such as mitogen activated protein

kinase (MAPK) [78, 91, 92]; epidermal growth factor (EGF) [93, 94]; and

mammalian target of Rapamycin (mTOR) [95, 96]. Crosstalk between three

signal transduction pathways has also been studied: the PI3K-Akt, mTOR

and MAPK pathways in [97]; and the PIP3-Akt, IGF-1, and EGF pathways

in [94].

Hatakeyama [78] and colleagues studied the interaction between the MAPK

pathway and PI3K-Akt signalling in CHO cells. This model treated Akt

phosphorylation in detail, with three Akt pools representing singly-, doubly-

and un-phosphorylated Akt. Similarly, Suresh Babu, et al., employed a com-

putational modelling approach to investigate the response of the MAPK and

PI3K-Akt signalling pathways to stimulation with epidermal growth factor

(EGF) and nerve growth factor (NGF) [92]. This model also tracked the

phosphorylation and dephosphorylation of Akt in detail. In addition, Arkun

investigated the key feedback loops involved in crosstalk between the MAPK

and Akt signalling pathways, this time in response to insulin stimulation [91].
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In this study, Akt signalling was represented by a reduced version of the Wang

model, and thus featured only two Akt pools (activated and unactivated).

None of these three models of combined Akt and MAPK signalling explicitly

tracked the location Akt within the cell.

Nijhout and co-workers also studied the insulin-mTOR-MAPK network re-

sponse to a variety of stimuli, such as insulin, amino acids and other growth

factors [76]. Interestingly, the activation equation for each node in this net-

work is a sigmoid (logistic) function of the input, defined as a weighted sum

of upstream activators and inhibitors. Akt is represented as a single node in

this network with the immediate upstream activator PIP3 and inhibitor PKC

(protein kinase C). For all activation equations in the model, multiple phos-

phorylation steps, equilibrium reactions between kinases and phosphatases,

and translocation dynamics were ignored.

The interaction between the mTOR and insulin signalling pathways was

studied by Vinod and Venkatesh [95] and Bertuzzi, et al. [96]. Vinod and

Venkatesh modelled the effect of amino acids on an integrated model of the

insulin signalling pathway and mTOR. Akt activation in this study con-

sisted of a two-compartment model with phosphorylated and unphosphory-

lated Akt pools linked to upstream and downstream components via ODEs

that have the functional form of a Hill equation. In contrast, Bertuzzi, et

al., employed Michaelis-Menten kinetics to develop their rather detailed four-

compartment submodel of Akt phosphorylation, which distinguishes between

unphosphorylated Akt, Akt singly-phosphorylated on Ser473 or Thr308, and

doubly-phosphorylated Akt.

Crosstalk between the EGF and insulin signalling pathways was investigated

by Borisov, et al., [93] and Zielinski, et al. [94]. In the Borisov paper, the

double-phosphorylation and dephosphorylation of Akt was modelled with

Michaelis-Menten reaction kinetics. In contrast to the previously outlined,

purely deterministic models, Zielinski and co-workers developed a Boolean

network model of crosstalk between the EGF, IGF-1, and insulin signalling
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pathways. This model relied on stochastic signal propagation and was used to

study the combinatorial stimulation of the EGF, IGF-1, and insulin receptors.

Crosstalk between three signal transduction pathways, namely PI3K-Akt,

mTOR and MAPK, was studied in [97]. The PI3K-Akt subsystem in this

model was largely drawn from Sedaghat, but employed a more elaborated

description of Akt phosphorylation, resulting in a four-pool model which

distinguished between unphosphorylated Akt, Akt singly-phosphorylated on

Ser473 or Thr308, and doubly-phosphorylated Akt.

3.4.3 Translocation Models

In the mathematical modelling literature, comparatively detailed descrip-

tions of Akt phosphorylation are commonplace. Numerous models discussed

in Sections 3.4.1 and 3.4.2 featured a detailed treatment of the double-

phosphorylation of Akt [72, 78, 82, 83, 88–90, 92, 96, 97]. However, models

that address the spatial dependency of Akt activation or explicitly describe

the Akt translocation process are rare. Two exceptions are the models of

Bates, et al. [52], and Nim, et al. [84].

Bates and colleagues developed a mathematical model of growth regulation

via Akt and the forkhead transcription factor, FOXO. In the downstream sub-

systems of this model, partial differential equations were used to describe the

transport (advection and diffusion) of mobile proteins, such as Akt. However,

all mobile components of this model shared common diffusivity and advec-

tion coefficients, presumably due to a dearth of experimental data suitable

for estimating these constants.

In contrast, Nim and co-workers presented an ODE model of Akt activation in

mouse embryonic fibroblasts. This compartmental model tracks the effect of

a peak in PIP3 activation on subsequent Akt activation and includes two Akt

pools distinguished by location (plasma membrane and cytosol). This model
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was used to investigate the implications of an unknown effect on each of the

main steps of the canonical Akt activation pathway. This was done in order

to either support or exclude certain hypotheses concerning the phenomenon

of “overshoot” in the levels of Akt phosphorylated on Thr308.

3.5 Summary

In this chapter, numerous models of the insulin signalling network have been

discussed. The most comprehensive model of the insulin signalling path-

way to date—the Sedaghat model—has been reviewed, along with some of

the studies derived from it. An overview of modelling of two components

of insulin signalling pathway—the insulin receptor subsystem and the Akt

cycle—has also been given. In general, it can be seen that while the insulin

receptor subsystem has been modelled in detail, models that directly depict

the translocation of Akt in response to insulin are few.
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Chapter 4

Mathematical Modelling

Philosophy and Techniques

An overview of the mathematical modelling philosophy behind the thesis is

presented in this chapter. This overarching philosophy naturally gives rise

to a set of techniques for model development, model analysis, and parameter

optimisation. For specific details concerning the implementation of these

techniques, the reader is referred to the relevant chapter(s) in Part II of the

thesis.

4.1 Modelling Approach

The three mathematical models that form the backbone of this thesis—the

Receptor State Space model, the Akt Switch model, and the Akt Transloca-

tion model—are deterministic, ordinary differential equation (ODE) models

of components of the insulin signalling pathway. The insulin receptor subsys-

tem is the focus of the Receptor State Space model (Chapter 5); and the Akt

activation cycle is modelled in the Akt Switch model (Chapter 6) and the

31
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Akt Translocation model (Chapters 7 and 8). All three models are intended

to be explanatory rather than predictive in a heuristic sense: they were de-

veloped to identify dominant processes and suggest possible mechanisms of

regulation of the underlying biological system.

The approach taken in this work is that, in general, it is best to use the

simplest model that can reproduce the salient features of the underlying bi-

ology: model complexity should only be increased when justified by the data

available. This principle of parsimony (also known as “Ockham’s razor”) is

particularly important when multiple submodels are to be linked together

into a network, as it leads to more highly constrained data fitting and more

straightforward model analysis. All three models presented in this thesis can

be viewed as small components in a much larger network, either the insulin

signalling pathway or in other signalling cascades, such as those of mTOR

or MAPK. Consequently, two noteworthy simplifications have been made in

the development of these models.

Firstly, the models are deterministic, even though the biochemical reactions

being modelled are inherently stochastic. In this case, the deterministic

model is a mean-field approximation representing the average behaviour of

the underlying stochastic system. Provided that the population of chemical

species is sufficiently large, this approximation will be a good one. In the

absence of data indicating contrariwise, the greater computational tractabil-

ity of a deterministic model makes it the preferred choice compared to its

stochastic counterpart. Indeed, were one aiming to develop a stochastic

model of a biochemical system, the development of a deterministic represen-

tation would still be a wise initial step.

Secondly, all three models are compartmental ODE models. In the case of

Akt translocation, which involves changes in the intracellular distribution

of Akt, it could be argued that a partial differential equation (PDE) model

would be more appropriate. However, experimental data with sufficient spa-

tial and temporal resolution to support the development of such a model

does not currently exist. As noted in Section 3.4.3, there has been a previous
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attempt to replace parts of the Sedaghat model, including the Akt activation

cycle, with a PDE formulation (the Bates model [52]). This, however, re-

quired substantial simplifications—it could be argued over-simplifications—

in which all mobile components of the model were assumed to share common

diffusivity and advection coefficients. Instead, in the current work, com-

partmental ODE models have been employed. It should be bourne in mind,

however, that compartmental homogeneity is an inherent assumption of such

modelling approaches.

4.2 Model Development

This section is based on work presented in: CW Gray and ACF Coster. Models of
Membrane-Mediated Processes: Cascades and Cycles in Insulin Action. In Wolkenhauer &
Voit (Eds.), Systems Medicine: Integrative, Qualitative and Computational Approaches,
Academic Press. To appear September 2020.

Figure 4.1 shows a selection of simple two- and three-compartment models

in which a reactant, R, is converted into a product, P . For each model,

a schematic diagram is shown on the left and a typical time course on the

right; the initial concentration of the product is P0, and the steady state

value is P ∗. In each case, first order reaction kinetics have been assumed.

This means that the rate of each reaction (depicted with an arrow in the

diagram) depends linearly on the concentration of the reactant at the start

of the arrow. Thus the time derivative of any component concentration is

the sum of the incoming reactions minus the sum of the outgoing reactions.

For example, in the three pool cycle shown in Figure 4.1 (d),

dP

dt
= k2I − k3P,

where t is time.

The simplest possible scheme is shown in Figure 4.1 (a). In this case, R

is converted to P via a single forward reaction with constant rate k. The
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(d) Three-pool cycle

R I P
k1 k2

k3

time

P0

P ∗

(c) Two-pool cycle

R P
k1

k−1

time

P0

P ∗

(b) Forward reaction with sink

R P Sink
k1 k2

time

P0

P ∗

(a) Single forward reaction

R P
k

time

P0

P ∗

Figure 4.1: A schematic diagram of simple two- and three-compartment mod-
els is shown on the left; a typical time course from each model on the right.
All rate constants (k, k1, k−1, k2, k3) are positive. In each graph, R0 is the
initial concentration of R, P0 the initial concentration of P , P0 < R0, and P ∗

is the steady state level of P . First order reaction kinetics have been assumed
in each case. In (b), k2 < k1; in (c), k1 > k−1; and in (d), k3 > k1 > k2.
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solution for P is

P (t) = P0 +R0(1− e−kt),

where R0 is the initial concentration of R. The resulting time course is an

exponential rise to the steady state value, P ∗ = P0 + R0, with a single time

constant, 1
k
.

In contrast, Figure 4.1 (b) shows a forward reaction with a sink (shaded

in grey). In other words, following conversion from R at the constant rate

k1, P is consumed or otherwise leaves the system at the constant rate k2.

Consequently, the concentration of P typically increases at first, peaks, and

then ultimately decreases to zero. In this case, the solution for P is a double

exponential,

P (t) = αe−k1t + (P0 − α)e−k2t,

where α = R0k1
k2−k1 and k1 6= k2. Note that the interplay of two rate constants

of differing magnitude (k1 and k2) is necessary to produce a peak.

A two-compartment model with both forward and backward reactions is

shown in Fig. 4.1 (c). The solution is a single exponential,

P (t) = P ∗ − (P ∗ − P0)e−(k1+k−1)t,

where P ∗ = k1
k1+k−1

(P0 + R0), the steady state value. This results in a time

course which is an exponential rise to the steady state value with a single

time constant, 1
k1+k−1

.

A three-pool cycle is shown in Figure 4.1 (d). In this model, R is converted

to P via an intermediary, I. It is then converted back into R again. This

has the solution

P (t) = αeλ1t + βeλ2t,
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where

λ1 =
−(k1 + k2 + k3) +

√
∆

2
,

λ2 =
−(k1 + k2 + k3)−

√
∆

2
,

and

∆ = (k1 + k2 + k3)2 − 4(k1k2 + k2k3 + k1k3).

Here the constants α and β are determined by the initial conditions. This

system, which is equivalent to a heavily damped harmonic oscillator [98], will

exhibit overshoot under some conditions and is discussed more extensively

in Chapter 7. Overshoot is an initial, rapid rise followed by a decrease or

“roll-off” to a lower steady state value, and is an important aspect of some

signalling pathways, such as Akt. Note that, as in Fig. 4.1 (b), at least two

time constants, representing two processes that occur on sufficiently different

time scales, are required to produce the overshoot behaviour.

Determining the relevant time scale is an important consideration in the con-

struction of a mathematical model. Naturally, the choice of time scale will de-

pend on the intended application of the model. Three significant time scales

involved in signal transduction pathways are the time scales of biochemical

activation (milliseconds to seconds); physical translocation (seconds to min-

utes); and protein synthesis (hours to days). In three out of the four models

discussed in this section (the single forward reaction, the two pool cycle, and

the three pool cycle), conservation has been assumed. That is to say, R+ P

(or in the case of the three-compartment model, R + P + I) is constant at

all times. This is called the quasi-steady state hypothesis, as it is often only

approximately true over the time scale of interest. However, when invoked,

the quasi-steady state hypothesis can lead to substantial simplifications.

As an example, compare the single forward reaction and the two-pool cycle,

shown in Fig. 4.1 (a) and Fig. 4.1 (c), respectively. It is apparent that the
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time courses and the forms of the solutions are substantially the same. Two

differences are: the steady state levels, which differ by a factor of k1
k1+k−1

; and

the time constants, 1
k

compared to 1
k1+k−1

. That is, the two-pool model will

reach a lower steady state value quicker than the single forward reaction. If

k1 is much greater than k−1 (which is to say, if the forwards reaction occurs

at a much faster rate than the back reaction) then k1
k1+k−1

is approximately

one and 1
k1+k−1

is close to 1
k1

. Thus the prudent mathematical modeller could

invoke the quasi-steady state hypothesis and reduce the two constants to

a single rate constant. In effect, this is the substitution of a single forward

reaction for the two-pool cycle, and has the advantage of reducing the number

of parameters in the model.

4.3 Model Analysis

Stability analysis is a standard method for analysing the long-term behaviour

of a dynamical system (a system of ODEs). This involves finding and deter-

mining the stability of the fixed points of the system. If the time derivative

of an n-dimensional dynamical system is given by

dx

dt
= F(x), where F : Rn → Rn, (4.1)

then a fixed point of the system is a point x̂ ∈ Rn where F(x̂) = 0. Thus a

dynamical system initially located at a fixed point will stay there indefinitely.

The stability of a fixed point is determined by the behaviour of the system

when slightly perturbed away from x̂.

Roughly speaking, fixed points can be categorised as either stable or unstable.

If the system is perturbed away from a stable fixed point, the size of the

perturbation decreases. In contrast, if the system is perturbed away from an

unstable fixed point, the perturbation grows. Consequently, over time the

system will return to a stable fixed point but move away from an unstable one.
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For this reason, stable fixed points are sometimes referred to as attractors

and unstable fixed points as repellers.

The stability of a non-linear dynamical system at a fixed point is typically

determined by linearisation about the fixed point, x̂. A Taylor series approx-

imation is used to re-write Equation 4.1 as

dx

dt
= F(x̂) + J(x̂) · (x− x̂) + higher order terms,

where J(x̂), the Jacobian, is the matrix of partial derivatives of F evaluated

at x̂. That is,

J =


∂F1

∂x1
· · · ∂F1

∂xn
...

. . .
...

∂Fn

∂x1
· · · ∂Fn

∂xn

 .
The stability of the system is determined, at least locally, by finding the

eigenvalues of J(x̂), provided that the eigenvalues have non-zero real part [99].

(If some of the eigenvalues have zero real part, then the higher order terms

neglected in the linearisation need to be considered.) If all eigenvalues have

negative real part, the fixed point is stable.

4.4 Parameter Optimisation

Once an initial model structure has been decided and preliminary stability

analysis carried out, parameter optimisation is a natural next step. This

means selecting a parameter set—rate constants and in some cases initial

conditions for the model—to minimize the difference between the model out-

put and the available experimental data. Although the emphasis here is on

explanatory rather than predictive models, a model that cannot reproduce

the significant features of the underlying biological system for any choice of

parameter set clearly lacks explanatory power.
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In this thesis, the focus is on identifying dominant processes operating in

the system. Thus the primary motivation behind parameter optimisation is

system identification rather than parameter estimation, per se. In general,

the relative magnitudes of rate constants obtained from the parameter opti-

misation are of greater interest than the actual values obtained. It is hoped

that from these results possible mechanisms of regulation can be inferred,

and in some cases, more plausible model structures identified.

Non-linear least squares optimisation and simulated annealing were used for

the parameter fitting. Other methodologies could have been employed: for

instance, Bayesian methods could be used to determine the distribution of

parameter values. Irrespective of parameter fitting method, a goodness-of-

fit statistic that takes into account differing numbers of parameters must

be used to compare rival model structures. For the non-linear least squares

fitting in this study, the adjusted R-squared statistic was used.

Another important statistic related to the individual parameter values is the

95% confidence interval. In general, smaller confidence intervals are bet-

ter. A large confidence interval indicates that a parameter has not been

well identified. In particular, if the confidence interval includes zero, this

means that the uncertainty is larger than the parameter value itself. Some

authorities consider this evidence that the parameter has not been success-

fully identified [70]. Large confidence intervals could be due to the sparsity

of the data used for fitting (a perennial problem with biological systems)

or inherent problems with the proposed model structure. They also arise

from the nature of the underlying system itself. Many biological processes

exhibit multiple layers of regulation and considerable redundancy. Given the

limitations of current experimental techniques, this may render some aspects

of system behaviour a priori unidentifiable. Alternately, it may simply be

that the model output is largely insensitive to changes to that particular

parameter.
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4.5 Parametric Sensitivity Analysis

Parametric sensitivity analysis (PSA) is a term describing a number of tech-

niques used to understand the effect of parameter uncertainty on a math-

ematical or statistical model. Typically, the rate constants of a biological

model are not known with any degree of certainty, if at all. Parameter

values quoted in the literature are derived from measurements taken under

diverse experimental conditions and may not reflect the behaviour of sig-

nalling molecules in vivo [100–102]. Many parameters must be inferred from

data that is noisy or lacking in temporal and/or spatial resolution; often only

relative, not absolute, measurements are available. Thus some form of PSA

is an important step in the analysis and refinement of a mathematical model.

PSA methods can be categorized as either local or global. In local PSA,

parameter values are varied about a reference point one at a time and the

impact on some aspect of model output is assessed. The results of a local

PSA may hold true only for a limited area of parameter space about the ref-

erence point of the analysis, particularly in the case of a non-linear dynamical

system.

In contrast, global PSA is an attempt to assess the combinatorial effect of

changes in multiple parameter values. There are a variety of global PSA tech-

niques in the literature (see [100,103–106]), however, these methods typically

have a computational burden that increases exponentially with the number

of parameters under investigation. Furthermore, several studies have demon-

strated that parameter rankings obtained from local and global PSA of the

same system do not necessarily agree [102, 107]. Thus local and global PSA

are not interchangeable. However, given the relative computational tractabil-

ity of a local PSA, it can be used as an initial investigation of the parameter

space of the model.
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PSA—either local or global—is performed with respect to some criterion

that reflects an important aspect of model behaviour. In this thesis, the

term metric is used to refer to some quantifiable aspect of model behaviour,

and should not be confused with the mathematical use of the same term.

Examples of metrics include: the area under the curve; the maximum value;

the peak timing (that is, the time taken to reach the maximum value); and

the initial gradient. Which metrics should be used and the priority given

them in the PSA depends on the purpose of the mathematical model and

should be informed by what is already known about downstream signalling.

A successful local PSA can lead to greater insight into the underlying bi-

ology, and even improved experimental design [103, 108]. The identification

of sensitive and insensitive parameters can suggest potential mechanisms of

regulation for the behaviour of interest, even if only in a negative way, as

a behaviour cannot be controlled by a process to which it is insensitive. In

addition, this knowledge can be used to design experiments that more ac-

curately measure the sensitive parameters or identify possible therapeutic

targets.

Furthermore, PSA can lead to improved parameter optimisation and model

development. Parameters identified as insensitive can be set to their nominal

values, and the remaining sensitive parameters fitted to experimental data

in a more highly constrained fashion. Alternately, the model could be sim-

plified by a process of model reduction informed by the results of the PSA.

An example of the simplification of the insulin receptor subsystem of the

Sedaghat model based on a local PSA is given in Chapter 5.

4.6 Summary

In this thesis, gaining insight into the underlying biology is a key motivation

behind the choice of models and techniques. From the development of the

initial model structure, to its analysis and optimisation, the emphasis is on
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determining the dominant processes and modes of regulation in operation.

The next part of the thesis presents the original work undertaken using this

approach to explore the translocation and activation of Akt in response to

insulin.
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Chapter 5

Preliminary Study on the

Insulin Signalling Network

5.1 Introduction

This chapter is based on work presented in: CW Gray and ACF Coster. A receptor state
space model of the insulin signalling system in glucose transport. Mathematical Medicine
and Biology: A Journal of the IMA, 32(4):457–473, 2015.

In this chapter, the Receptor State Space model is proposed as a simpler,

more streamlined alternative to the insulin receptor subsystem of the Seda-

ghat model. This is done for two purposes: to demonstrate some of the

mathematical techniques described in Chapter 4 that can be used to study

signal transduction pathways; and to provide further context for the mod-

els of Akt activation which are discussed in Chapters 6–8. The Receptor

State Space model, while preserving the same input-output relation of the

original Sedaghat subsystem, was analytically tractable and computationally

efficient. Furthermore, it overcame some of the limitations of the Sedaghat

model, such as the non-conservation of insulin receptor numbers and stiffness

of the differential equations.

45
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5.2 Methods

5.2.1 Analysis of the Sedaghat Model

A local parametric sensitivity analysis (PSA) of the full Sedaghat model was

the major theme of my masters thesis [69]. As the results of the PSA strongly

informed the development of the Receptor State Space model, the important

points of the analysis are summarized here.

The simpler feed-forward version of the Sedaghat model was used for the

PSA. A diagram of the full Sedaghat model is given in Chapter 3 (see Fig-

ure 3.1). The output metric for the PSA was the time integral of GLUT4

at the plasma membrane (x21) over a 60 minute interval. The state variable

x21 is located at the end point of the cascade in the downstream subsystem,

however, the model reduction detailed subsequently was limited to the in-

sulin receptor subsystem. The differential equations, initial conditions, and

parameter values of the Sedaghat insulin receptor subsystem are listed in

Table 5.1; and an enlarged diagram of the system is given in Figure 5.1.

Stability Analysis

A linear stability analysis of the Sedaghat model was performed by a con-

ventional procedure as described in Section 4.3. It confirmed that the model

has no true fixed points, however, a quasi-steady state in the basal condition

(that is, at the vector of initial conditions but with zero insulin input) was

found.

The absence of fixed points is caused by the non-conservation of insulin re-

ceptors (in the insulin receptor subsystem) and GLUT4 (in the downstream

subsystem). The differential equation given for x6 (intracellular insulin re-

ceptors) in the Sedaghat model is

dx6

dt
= k5 − k−5x6 + k6(PTP)(x7 + x8) + k4x2 − k−4x6,
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Table 5.1: Differential equations, initial conditions and parameter values of
the insulin receptor subsystem from the Sedaghat model.

Differential Equations

dx2
dt

= k−1x3 + k−3(PTP)x5 − k1x1x2 + k−4x6 − k4x2

dx3
dt

= k1x1x2 − k−1x3 − k3x3

dx4
dt

= k2x1x5 − k−2x4 + k−4′x7 − k4′x4

dx5
dt

= k3x3 + k−2x4 − k2x1x4 − k−3(PTP)x4

+k−4′x8 − k4′x4
dx6
dt

= k5 − k−5x6 + k6(PTP) (x7 + x8) + k4x2 − k−4x6

dx7
dt

= k4′x4 − k−4′x7 − k6(PTP)x7

dx8
dt

= k4′x4 − k−4′x8 − k6(PTP)x8

Initial Conditions

x2(0) = 9× 10−12M
x3(0) = 0
x4(0) = 0
x5(0) = 0
x6(0) = 1× 10−13 M
x7(0) = 0
x8(0) = 0

Parameter Values

k1 = 6× 107 M−1 min−1

k−1 = 0.20 min−1

k2 = k1

k−2 = 100 k−1

k3 = 2500.00 min−1

k−3 = k−1

k4 = k−4

9

k−4 = 0.003 min−1

k4′ = 2.1× 10−3 min−1

k−4′ = 2.1× 10−4 min−1

k5 =

{
10 k−5 M min−1 if x6 + x7 + x8 > 1× 10−13,
60 k−5 M min−1 otherwise

k−5 = 1.67× 10−18 min−1

k6 = 0.461 min−1

PTP = 1.0
IRp = 8.97× 10−13 M
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x1 x2

x3

x4

x5

x6

x7

x8

Synthesis/Degradation

Downstream

k4

k1
k−1

k−2

k4′

k4

k2

k−4

k6[PTP]

k−4′

k6[PTP]

k−4

k−3[PTP] k3

k−5

k5

Insulin

x2: unbound surface insulin receptors
x3: unphosphorylated once-bound surface insulin receptors
x4: phosphorylated twice-bound surface insulin receptors
x5: phosphorylated once-bound surface insulin receptors
x6: unbound unphosphorylated intracellular insulin receptors
x7: phosphorylated twice-bound intracellular insulin receptors
x8: phosphorylated once-bound intracellular insulin receptors

IRp

Figure 5.1: A schematic diagram of the insulin receptor subsystem from
the Sedaghat model. Nodes in the diagram represent state variables; edges
represent chemical reactions. Parameters sensitive for glucose transport have
been highlighted in yellow.
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where k5 is the rate of synthesis and k−5 the rate of degradation of intracel-

lular insulin receptors. These parameters are defined as

k−5 = 1.67× 10−18 min−1,

and

k5 =

{
10k−5 if x6 + x7 + x8 > 1× 10−13,

60k−5 otherwise.

It can be seen that the rate of synthesis generally substantially exceeds the

rate of degradation, although both rates are small, being of the order of

MATLAB’s machine precision [109]. The small magnitude of these rates

makes their numerical analysis somewhat difficult. However, when the model

was simulated with a constant insulin input of 100 nM for 240 minutes an

increase of approximately 4.4% in total receptor numbers, mainly in the

variables x2 and x6, was observed. Indeed, an increase of 0.4% was found

even when the model was simulated for 240 minutes with zero insulin input.

The Jacobian of the system in the basal condition was also found, and numer-

ical calculation of the eigenvalues confirmed that the differential equations

of the insulin receptor subsystem are stiff [50,55].

Parametric Sensitivity Analysis

A local PSA of the Sedaghat model was carried out by simulating the model

over a 60 minute interval in MATLAB (R2014a Mathworks 2014). When

GLUT4 is at the plasma membrane, glucose can flow down its concentration

gradient into the cell. Thus the time integral of GLUT4 expressed at the

plasma membrane (the glucose transport) was chosen as the metric for the

PSA. The percentage change in the glucose transport (∆GT) was calculated

as model parameters were individually perturbed by ±5% and ±10%.
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Of a wide variety of possible insulin input profiles, an initial fifteen minute

insulin pulse over a total 60 minute simulation was chosen. This pulsatile

delivery profile facilitated the study of both the transition from basal to

maximal GLUT4 expression and also the relaxation back to the basal state. A

logarithmic scale of insulin concentrations (0.1 nM, 1 nM, 10 nM and 100 nM)

was used. This scale spanned both the physiological and experimental range

of insulin levels [110,111].

For each parameter in the model, a four-tuple representing ∆GT at the

various insulin concentrations was calculated. These four-tuples were then

clustered in MATLAB using the Euclidean metric and classified as either

sensitive (causing a substantial change in the glucose transport) or insensi-

tive (causing little or no change in the glucose transport). The majority of

parameters from the insulin receptor subsystem were insensitive across all

four insulin levels; the parameters PTP and IRp were sensitive at all in-

sulin levels; and the rate constants k1 and k−3 were sensitive at low insulin

levels only. These sensitive parameters have been highlighted in yellow in

Figure 5.1. For all sensitive parameters, a decline in sensitivity at higher

concentrations of insulin was evident. For further details of the parametric

sensitivity analysis, and for a full ranking of parameters by sensitivity, please

consult [69] or [112].

5.2.2 Model Reduction

Following the local PSA of the Sedaghat model, a model reduction of the

insulin receptor subsystem was carried out. The goals of the model reduction

were threefold:

� to preserve the input-output relation of the insulin receptor subsystem

from the original Sedaghat model;

� to conserve insulin receptor numbers; and
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� to reduce the stiffness of the differential equations in the Sedaghat

insulin receptor subsystem.

Model reduction necessarily entails the sacrifice of some degree of biological

complexity, however, it is hoped that this loss of realism is compensated for

by gains in computational and analytic tractability.

5.2.3 The Receptor State Space Model

Model reduction was carried out by the removal of insensitive states and

parameters. Only two processes in the Sedaghat insulin receptor subsystem

were sensitive for glucose transport: the forward reaction pathway from x2

through to x4 and x5 via x3, which featured the sensitive rate constant k1; and

the backward pathway from x4 and x5 to x2, containing the multiplicative

combination (PTP)k−3. Thus a simplified Receptor State Space model was

proposed. The equations for this model are as follows:

dy2

dt
= r−1y3 − r1y1y2, (5.1)

dy3

dt
= r1y1y2 − r−1y3, (5.2)

where t is time; y1 is the extracellular insulin input; y2 is the concentration

of unbound insulin receptors; and y3 is the concentration of both singly-

and doubly-bound receptors. In other words, y2 corresponds to x2 and y3

corresponds to the sum of the variables x4 and x5 from the Sedaghat model.

Thus y3, modulated by the factor IRp, takes on the role of propagating the

insulin signal to the downstream subsystem. The rate constant of the forward

pathway is r1, which most closely corresponds to k1 in the original model;

and r−1 is the backward rate constant, broadly corresponding to (PTP)k−3.

A schematic diagram of the model is shown in Figure 5.2.
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y1 y2 y3

Downstream

r1

r−1

y1: insulin input
y2: unactivated insulin receptor
y3: activated insulin receptor

IRp

Figure 5.2: A schematic diagram of the Receptor State Space model. Nodes
in the diagram represent state variables; edges represent chemical reactions.
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5.3 Results

5.3.1 Rate Constants

Rate constants for the new model were determined by simulated annealing

in MATLAB (R2014a Mathworks 2014), using the output (x21) of the Seda-

ghat model as a benchmark. The corresponding initial conditions and rate

constants from the Sedaghat model (k1 and k−3) were used as a seed for the

simulated annealing algorithm. The values obtained are given in Table 5.2,

and were similar to those of the corresponding rate constants in the original

Sedaghat model. Differential equations and initial conditions for the model

are listed in Table 5.2, and the MATLAB code is given in Appendix A.1.

5.3.2 Fixed Points

The fixed points of the system were found analytically. As it was assumed

that insulin receptor numbers are conserved, y2 +y3 = R, where the constant

R represents the total number of receptors. Substituting this into Equa-

tion (5.2), and assuming a fixed value of y1, the equation

dy3

dt
= r1y1R− (r1y1 + r−1)y3 = f(y3), (5.3)

is obtained. From this equation it can be seen that there is a fixed point of

the system at y1 = 0, y3 = 0, representing the basal (unstimulated) state.

Furthermore, y∗3, the insulin stimulated steady state value of y3, is given by

y∗3 =
r1y1R

r1y1 + r−1

= R− Rr1

r1y1 + r−1

.

The stability of this fixed point can be determined by linearising about y∗3.

Since y1, r1, and r−1 are all positive, f ′(y∗3) = −(r1y1 + r−1), which is clearly
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Table 5.2: State variables, differential equations, initial conditions and pa-
rameter values of the Receptor State Space model.

Variable Chemical Species

y1 Insulin input
y2 Unbound surface insulin receptor
y3 Bound surface insulin receptor

Differential Equation Initial Condition

dy2
dt

= r−1y3 − r1y1y2 y2(0) = 9× 10−13 M
dy3
dt

= r1y1y2 − r−1y3 y3(0) = 0 M

Parameter Value

y1 1× 10−7 M if t < 15,
0 otherwise

r1 6× 107 M−1 min−1

r−1 0.202 min−1
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negative. This implies that y∗3 is a stable fixed point, with characteristic time

scale, τ , given by

τ =
1

|f ′(y∗3)|
=

1

r1y1 + r−1

.

Figure 5.3(a) shows time courses of insulin receptor activation for the Recep-

tor State Space model. In all cases, a constant insulin input of y1 = 10 nM

but with varying initial conditions was used. The existence of a single, sta-

ble fixed point is evident. In contrast, Figure 5.3(b) shows time courses

of insulin receptor activation for varying insulin concentrations but with a

constant zero initial condition for y3, demonstrating that both y∗3 and τ are

functions of the insulin concentration.

5.3.3 The Analytic Solution

The simplified equations of the Receptor State Space model are amenable to

analytic solution. Given a fixed value of y1, if the derivative of y3 is non-zero,

reciprocals of both sides of Equation 5.3 can be taken to obtain

dt

dy3

=
1

r1y1R− (r1y1 + r−1)y3

=

(
1

r1y1 + r−1

)(
1

y∗3 − y3

)
.

Thus

y3(t) = y∗3 − αe−(r1y1+r−1)t,

where α = y∗3 − y3(0).

Time courses of insulin receptor activation in response to a fifteen-minute

insulin pulse for the Sedaghat and Receptor State Space models are shown

in Figure 5.4(a). Insulin receptor activation (x4 + x5 in Sedaghat; y3 in the

Receptor State Space model) represents the output of the insulin receptor

subsystem that is propagated downstream. As can be seen in the figure,

there is a slight divergence between the two models during the ‘plateau’ phase
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Figure 5.3: Time course of insulin receptor (IR) activation for the Receptor
State Space model for (a) constant insulin (10 nM) and varying initial con-
ditions; and (b) varying insulin concentrations. Parameter values used are
listed in Table 5.2.
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(b) GLUT4 translocation

Figure 5.4: A comparison of (a) insulin receptor (IR) activation; and (b)
GLUT4 translocation for the two models for varying insulin concentrations.
Receptor State Space model outputs are indicated by dashed lines; Sedaghat
model outputs by unbroken lines. The input was a fifteen-minute insulin
pulse of 0.1 nM (red), 1 nM (magenta), 10 nM (cyan) or 100 nM (blue).
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of activation at high insulin concentrations. At low insulin concentrations,

neither of the models reaches the plateau and so the two outputs match

closely. In contrast, Figure 5.4(b) shows a comparison of the final output—

the GLUT4 expression at the plasma membrane—of the two models. In both

cases, the downstream subsystem of the Sedaghat model has been coupled

to the output of the respective insulin receptor subsystems. As can be seen

in this figure, the output of the system utilising the Receptor State Space

model is practically identical to that of the Sedaghat model at all insulin

levels tested.

5.4 Discussion

Mathematical analysis of the Sedaghat model revealed a lack of conservation

of insulin receptors and stiffness in the equations of the insulin receptor

subsystem. In at least two subsequent papers that use the Sedaghat model

[47,51], the insulin receptor subsystem was modified by removing the insulin

receptor degradation/synthesis terms to make a closed system. Thus, it is

desirable to reduce the model in such a fashion that insulin receptor numbers

are conserved and, if possible, improve the computational tractability of the

model by developing a non-stiff system of equations.

The Receptor State Space model results from eliminating all but the two

sensitive pathways of the Sedaghat insulin receptor subsystem. That is, in

the Receptor State Space model, only the forward reaction pathway from

x2 to x5 and the backward pathway from x5 to x2 are retained. Hence the

Receptor State Space model features only three state variables, namely: y1,

the extracellular insulin input; y2, the un-activated surface insulin receptors;

and y3, the activated surface insulin receptors. Thus, the processes of receptor

internalisation, recycling, synthesis and degradation were omitted; and the

secondary binding of insulin to the surface receptor has been lumped into the

receptor activation step. Consequently, only the state variable y3, modulated

by the factor IRp, propagates the signal downstream.
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In the Receptor State Space model the conservation of insulin receptor num-

bers is made explicit. As a result, for this subsystem at least, a fixed point

at high insulin exists and an analytic solution can be found. (However, as

the system reduction is limited to the top of the signalling cascade, this

does not resolve the issue of non-conservation of GLUT4 in the downstream

subsystem.)

It should also be noted that the total number of receptors differs by 10%

between the two models, at least initially. In the Sedaghat model it is as-

sumed that only 90% of the total receptor concentration is expressed at the

plasma membrane, with the remainder present in the internalisation/recy-

cling pathway. In contrast, the Receptor State Space model only includes

surface receptors, hence the lower number of receptors. Furthermore, since

the number of insulin receptors is not conserved in the Sedaghat model, the

disparity between the two models increases the longer the simulation is run.

Parameter values for the Receptor State Space model were determined by

simulated annealing, using the output of the Sedaghat model as a benchmark.

The time constants of the dominant processes in the Sedaghat insulin recep-

tor subsystem were preserved. The output of the two models—Sedaghat and

the system utilising the Receptor State Space model—are closely matched

over the entire range of insulin concentrations tested, as seen in Figure 5.4.

5.5 Summary

In this chapter, an alternative to the insulin receptor subsystem of the Seda-

ghat model has been described. This model retains the input-output relation

of the original model, but is non-stiff. This reduces computational time and

results in a system that is analytically tractable. Furthermore, the non-

conservation of insulin receptors in the Sedaghat model has been eliminated.

Consequently, the Receptor State Space model is a viable alternative to the

insulin receptor subsystem of the Sedaghat model for situations where: the
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internal dynamics of the insulin receptor subsystem can be safely ignored;

the model is to be embedded as a component of a larger multi-scale system;

simulations over long time periods are necessary; or many simulations are

required.

However, the Receptor State Space model only addresses issues in the Seda-

ghat model arising from the upper portion of the signalling cascade. The

limitations discussed in Section 3.2.2 that arise from the downstream subsys-

tem remain. In particular, the process of Akt translocation and activation

was only given a cursory treatment in the Sedaghat model. This lacuna will

be addressed in the following chapters.



Chapter 6

The Akt Switch Model

6.1 Introduction

This chapter is based on work presented in: CW Gray and ACF Coster. The Akt switch
model: Is location sufficient? Journal of Theoretical Biology, 98:103–111, 2016.

Akt functions as a pivotal nutrient sensor in the mammalian cell, coordi-

nating proliferation and growth with metabolism. In insulin-sensitive cells,

the primary metabolic role of Akt is the regulation of glucose uptake, which

is achieved by the redistribution of GLUT4 from the cell interior to the

plasma membrane [25,28,113]. Under basal conditions, the vast majority of

GLUT4 is sequestered within the cell. However, in response to the insulin

signal, GLUT4-laden vesicles travel to and fuse with the plasma membrane,

providing a channel for glucose to selectively diffuse down its concentration

gradient into the cell. In this signal transduction pathway, Akt acts as a

vital, intermediate amplifier of the insulin signal [15,28,29].

However, insulin signalling as mediated by Akt poses somewhat of an enigma,

as the time and dose-response characteristics of Akt and its substrates are not

always well correlated [17,29,114]. Recent evidence suggests that Akt derives

61
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signalling specificity from its cellular location—either at the plasma mem-

brane or within the cytosol—and not merely its phosphorylation state. Gon-

zalez and McGraw have shown that the greater efficacy of Akt2 for GLUT4

translocation vis-á-vis Akt1 is largely due to the propensity of the former to

accumulate at the plasma membrane [16]. Ng and colleagues have demon-

strated that the time and dose characteristics of several metabolic effectors of

Akt, such as AS160 and GLUT4, cluster more closely with those of the pAkt

fraction at the plasma membrane, rather than total pAkt [17]. Furthermore,

there is evidence suggesting that the initial rate of Akt phosphorylation (that

is, immediately following insulin application), and not just the absolute level

reached, is an important determinant of downstream signalling [10,29].

As discussed in Chapter 3, numerous mathematical models of Akt activa-

tion can be found in the literature [10, 45, 52, 73–82, 84, 85, 115, 116]. With a

few exceptions, none of these models address the spatial dependency of Akt

activation or describe the Akt translocation process in any detail. In this

chapter, a four-compartment ODE model that tracks both the location and

biochemical state of Akt in 3T3-L1 adipocytes is presented. This simple, lin-

ear model is composed of four state variables and six rate constants. It has a

readily derived analytic solution and is computationally tractable. Analysis

of the behaviour of this dynamical system demonstrates that some of the

apparent anomalies of Akt signalling can be explained by distinguishing be-

tween the two activation subprocesses—translocation and phorphorylation—

particularly if these two processes occur on time scales that differ by several

orders of magnitude.
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6.2 Method

6.2.1 Experimental Data

Dose response and time course data were obtained from the raw data of

Ng, et al. [17]. In these experiments, 3T3-L1 adipocytes were stimulated

with a constant dose of insulin (1 or 100 nM) for a specified time (0 s, 15 s,

30 s, 60 s, 5 min, 30 min). Levels of Ser-473 phosphorylation were assessed

by Western blot and normalized to the steady state (30 min) value obtained

with 100 nM insulin. Three experimental replicates were carried out at an

insulin concentration of 1 nM and four at a concentration of 100 nM.

The data is shown in Figure 6.1. As can be seen in this figure, there is an

initial rapid rise in pAkt, followed by a distinct overshoot. After approxi-

mately one minute, levels of pAkt decrease more slowly to a steady state.

This rapid rise and overshoot is a robust feature of Akt activation that is

evident in numerous experiments [10, 17, 29, 78, 80, 83, 117]. A single expo-

nential curve cannot capture this feature of the data: at least two processes,

with time constants that differ by at least three orders of magnitude, are in

operation. A double exponential, in contrast, describes the data well. The

relative phosphorylated fraction of pAkt (y) as a function of time (t min) was

fitted to a double exponential of the form y = ae−bt− ce−dt. Table 6.1 shows

the parameter values, 95% confidence intervals, and adjusted R-squared ob-

tained for both the 100 nM insulin and 1 nM insulin data. Note that in

both cases, the time constants obtained (b and d) differ by several orders of

magnitude. This demonstrates that at least two subprocesses operating on

widely different timescales are required to explain the data.

The overshoot behaviour of Akt is thought to be intimately connected to its

role as a crosstalk node between metabolic and mitogenic signalling pathways

within the cell [17,29,84]. How a diverse range of signals is encoded by a com-

paratively small number of signalling pathways is an intriguing conundrum in
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Figure 6.1: Relative phosphorylated Akt as function of time from Ng, et
al. [17]. Blue-toned hues and open circles represent the four experimental
runs conducted at an insulin concentration of 100 nM. Red-toned hues and
filled triangles represent the three experimental runs conducted with a 1 nM
insulin concentration. In all cases, the insulin concentration was held con-
stant throughout the experimental run. Total pAkt has been normalized to
the steady state (30 min) value of the 100 nM data.
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Table 6.1: Parameter values obtained from fitting the relative phosphorylated
fraction of pAkt (y) as a function of time in minutes (t) for the 100 nM insulin
and 1 nM insulin data to a double exponential of the form y = ae−bt− ce−dt.

Insulin Parameter Value Confidence Interval
(nM)

100

a 1.203 (01.091, 1.314)
b 0.006276 min−1 (0.001116, 0.01144)
c 1.183 (1.33, 1.036)
d 2.77 min−1 (1.97, 3.57)

Adjusted R-squared: 0.9363

1

a 0.511 (0.3673, 0.6547)
b 0.01637 min−1 (−0.0007458, 0.03349)
c 0.5239 (0.3528, 0.6949)
d 1.837 min−1 (0.5466, 3.127)

Adjusted R-squared: 0.7455
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cell biology: one possibility is that different information is encoded by dif-

ferent temporal aspects of the signal. For instance, in the case of Akt, the

downstream metabolic effectors must respond rapidly to the insulin signal to

ensure the prompt clearance of glucose from the blood. In contrast, the mito-

genic effects of Akt take place on a much slower time scale, and thus could be

encoded by steady state values or even tied to the attainment of a threshold

value of pAkt. The initial rapid phosphorylation could be a key signalling

motif for some downstream components, whereas the steady state phospho-

rylation level could control the behaviour of other, slower acting components.

Hence, it is essential that the model both replicate the overshoot observed

in the experimental data and produce appropriate steady state values.

6.2.2 Model Development

The Akt Switch model is a deterministic compartmental model that tracks

both the translocation and phosphorylation of Akt. A major aim of the

modelling was to develop the simplest model that reproduces the important

features of the experimental data. Although investigation of the metabolic

function of Akt in insulin signalling was the primary motivation for devel-

oping the model, the resulting model can be readily extended to encompass

the mitogenic effects as well.

Figure 6.2 is a diagram of the Akt Switch model. As there are at least

two subprocesses involved in Akt activation (translocation and phosphory-

lation), all Akt in the cell is assumed to be present in one of two locations,

in either the phosphorylated or the unphosphorylated state. Thus there

are four compartments in the model: unphosphorylated Akt in the cytosol

(Ac); phosphorylated Akt in the cytosol (Pc); unphosphorylated Akt at the

plasma membrane (Ap); and phosphorylated Akt at the plasma membrane

(Pp). These variables are normalized to the total Akt pool, which is assumed

to be constant over the duration of the simulations in this study. Thus at all

times, Ac + Pc + Ap + Pp = 1.
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In the basal state, approximately 5% of Akt is located at the plasma mem-

brane, with the remaining 95% in the cytosol; negligible amounts are phos-

phorylated in either location [17]. Thus the initial conditions of the model

are Ac(0) = 0.95, Ap(0) = 0.05, and Pc(0) = Pp(0) = 0. The effect of the

initial condition as a parameter was also explored.

The four rate constants in the model represent the rate of translocation of

Akt from cytosol to plasma membrane (kout); the rate of translocation of Akt

from plasma membrane to cytosol (kin); the rate of phosphorylation of Akt at

the plasma membrane (kon), and the rate of dephosphorylation of Akt (koff ).

Furthermore, it is assumed that the rate of translocation of Akt (both to and

from the plasma membrane) is independent of its phosphorylation state, and

that the dephosphorylation rate is independent of location.

It is thought that insulin up-regulates both the translocation of Akt from

cytosol to plasma membrane and the phosphorylation of Akt at the plasma

membrane. In the model, the parameter ψ represents the insulin-dependent

spatial distribution of Akt between the cytosol and the plasma membrane.

Thus ψ =
kout
kin

(or alternately, kout = ψkin). Similarly, φ represents the

equilibrium between Akt and pAkt in the cell, and so φ =
kon
koff

. It is assumed

that both ψ and φ are functions of the insulin concentration. The differential

equations of the model expressed in terms of ψ, φ, kin and koff are presented

in Table 6.2, along with the initial conditions. MATLAB code for simulating

the model is given in Appendix A.2.
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Figure 6.2: Diagram of the Akt Switch model. This four-compartment model
tracks both the location—cytosol and plasma membrane—and biochemical
state of cellular Akt. The effect of insulin on the system is shown by the
dashed line.
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Table 6.2: Variables, differential equations and initial conditions of the Akt
Switch model.

Variables

Ac Unphosphorylated Akt in the cytosol
Pc Phosphorylated Akt in the cytosol
Ap Unphosphorylated Akt at the plasma membrane
Pp Phosphorylated Akt in the cytosol

Equations

dAc
dt

= koffPc − ψkinAc + kinAp

dPc
dt

= kinPp − (koff + ψkin)Pc

dAp
dt

= koffPp + ψkinAc − (φkoff + kin)Ap

dPp
dt

= φkoffAp + ψkinPc − (kin + koff )Pp

Ac + Pc + Ap + Pp = 1, P = Pc + Pp

Initial Conditions

Ac(0) = 0.95
Pc(0) = 0.00
Ap(0) = 0.05
Pp(0) = 0.00
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6.2.3 Parameter Optimisation

Parameters from the Akt Switch model were fitted to the experimental data

using non-linear regression via the Levenberg-Marquardt method (fit algo-

rithm) in MATLAB (R2015b Mathworks 2015). The tolerance for the mini-

mum change in the finite difference gradient was 1× 10−8 and the maximum

was 0.1. The maximum number of iterations allowed for the fit was 400 and

the maximum number of function evaluations was 600. The termination tol-

erance on the model value was 1 × 10−6, as was the termination tolerance

on the coefficient values. The confidence intervals for the parameters were

calculated from the Jacobian. The confidence bounds for fitted coefficients

were given by C = b ± t
√
S, where b is the vector of coefficients produced

by the fit; t depends on the confidence level, and is computed using the in-

verse of Student’s t cumulative distribution function; and S is the covariance

matrix of the coefficient estimates, (XTX)−1s2, where X is the Jacobian of

the fitted values with respect to the coefficients, XT is the transpose of X,

and s2 is the mean squared error. The parameters were constrained to be

non-negative.

The fit was weighted to correct for the discrepancy in the number of experi-

mental replicates between the two insulin concentrations (3 for 1 nM versus 4

for 100 nM) and additionally the non-uniform spread of time-points. Half the

measurements were taken during the first minute of the experimental run,

that is, during the ‘up-stroke’ of the overshoot. However, the model must

replicate not only the overshoot, but also the relaxation back to steady state.

Obtaining correct steady state values is particularly important as the exper-

imental data is normalized to the steady state levels of the 100 nM insulin

data. Consequently, time-points after 1 min were more heavily weighted than

earlier times. Choice of seed-values for the parameter fitting was informed

by the double exponential fit shown in Table 6.1.
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6.3 Results

6.3.1 Analytic Solution

The system of differential equations in Table 6.2 can be written in matrix

form for the vector of states x = (Ac, Pc, Ap, Pp)
T . Then x′ = Mx where

M =


−ψkin koff kin 0

0 kin 0 −(koff + ψkin)

ψkin 0 −(φkoff + kin) koff

0 ψkin φkoff −(kin + koff )

 .

The matrix M has eigenvalues

λ1 = 0, λ2 = −(1 + ψ)kin, λ3 = −γ +
√

∆

2
, λ4 = −γ −

√
∆

2
,

where

γ = (ψ + 1)kin + (φ+ 2)koff ,

and

∆ = [(ψ + 1)kin − φkoff ]2 + 4φkinkoff .

The zero eigenvalue, λ1, is due to the conserved quantity Ac+Pc+Ap+Pp = 1.

This means that the system could be rewritten as a three-by-three dynamical

system, and the corresponding zero eigenvalue eliminated. Clearly λ2 is real

and negative, as all parameters in the model are non-negative. Similarly, ∆

is positive, and consequently λ3 and λ4 are real. Furthermore,

γ2 −∆ = [(ψ + 1)kin + (φ+ 2)koff ]
2 − [(ψ + 1)kinφkoff ]

2 − 4φkinkoff

= [2(ψ + 1)kin + 2koff ][2(φ+ 1)koff ]− 4φkinkoff

= 4(ψφ+ ψ + 1)kinkoff + 4(φ+ 1)k2
off > 0,



72 The Akt Switch Model

so γ has greater magnitude than
√

∆, and hence λ3 and λ4 are negative.

Thus all non-zero eigenvalues are real and negative, which implies that the

steady state of the system is asymptotically stable.

The steady state values of the system (A∗c , P
∗
c , A∗p, P

∗
p ) are given by

A∗c =
(ψ + 1)kin + (φ+ 1)koff

(ψ + 1)[kin + (φ+ 1)(koff + ψkin)]
,

P ∗c =
ψφkin

(ψ + 1)[kin + (φ+ 1)(koff + ψkin)]
,

A∗p =
ψ[koff + (ψ + 1)kin]

(ψ + 1)[kin + (φ+ 1)(koff + ψkin)]
,

P ∗p =
ψφ(koff + ψkin)

(ψ + 1)[kin + (φ+ 1)(koff + ψkin)]
.

Much of the experimental work in the literature reports the total phospho-

rylated fraction of Akt, irrespective of location. In the current model, this

quantity corresponds to the sum of Pp and Pc, and has a steady state value,

P ∗, given by

P ∗ =
ψφ[koff + (ψ + 1)kin]

(ψ + 1)[kin + (φ+ 1)(koff + ψkin)]
.

6.3.2 The Parameter Space

Figure 6.3 shows a series of time courses of total Akt activation (pAkt) for

various values of ψ, with all other parameters fixed. It is apparent from

this figure that the model exhibits two distinct types of behaviour. For

low values of ψ there is a rapid rise in output during the first few minutes

of simulation. This is followed by a slower decline to a steady state value

which is reached within 15 minutes of simulation time. In contrast, at higher

ψ values pAkt increases monotonically to the steady state value. These

two modes of behaviour will subsequently be referred to as overshoot and

monotonic increase, respectively.
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Figure 6.3: Time course of the Akt Switch model showing pAkt as a per-
centage of total Akt for various values of ψ. Other model parameters were
held constant at typical values of Ap(0) = 0.05, φ = 32, kin = 0.43, and
koff = 0.62. Note the presence of the two behaviour regimes: overshoot at
lower values of ψ; monotonic increase at higher values.
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Figure 6.4 shows a series of time courses of total Akt activation for varying

values of φ. In this figure, φ was varied from one order of magnitude less to

one order of magnitude more than ψ. In contrast to Figure 6.3, the overshoot

behaviour is less pronounced, but still evident, particularly at higher φ values.

However, it should be noted that even when φ is an order of magnitude

greater than ψ, the amount of total pAkt in the steady state is still very

low, at less than 1% of the total Akt pool. This indicates that φ needs to be

several orders of magnitude larger than ψ for the model to exhibit biologically

realistic behaviour.

The influence of initial conditions on the transient behaviour of the model

is demonstrated in Figure 6.5. In this figure, the initial fraction of Akt in

the unphosphorylated state at the plasma membrane (that is, Ap(0)) was

varied from zero to ten percent. It can be seen that some Akt must ini-

tially be present at the plasma membrane for the model to exhibit overshoot

behaviour.

The influence of Ap(0) on the behaviour of the model is further illustrated

by Figure 6.6. The model was simulated for values of ψ and φ over a loga-

rithmic range. The behaviour of the model was classified as overshoot if the

difference between final and maximal values of pAkt was greater than 10−5

and as monotonic increase otherwise. The contour lines on this plot show

the demarcation line between the overshoot and monotonic increase regimes

as a function of Ap(0).

6.3.3 Optimised Parameter Values

The model parameters were fitted to the time course data via non-linear least

squares optimisation. A steady state (30 min) phosphorylation of 5% of the

total Akt pool was set as the end-point for the 100 nM insulin data [29], and

all data sets were re-normalized to this level. In the model, the translocation

rate is kout = ψkin. Similarly, the phosphorylation rate is koff = φkon. That
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Figure 6.4: Time course of the Akt Switch model showing the pAkt as a
percentage of total Akt for various values of φ. Other model parameters
were held constant at typical values of Ap(0) = 0.05, ψ = 0.032, kin = 0.43,
koff = 0.62.
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Figure 6.5: Time course of the Akt Switch model showing the pAkt as a
percentage of total Akt for various values of Ap(0). Other model parameters
were held constant at typical values of ψ = 0.032, φ = 32, kin = 0.43,
koff = 0.62.
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Figure 6.6: Phase transition diagram of the Akt Switch model for various
values of ψ and φ. The parameters kin and koff were held constant at typical
values of 0.43 and 0.62, respectively. The thick lines show the change of
regime (from monotonic increase to overshoot) for a given initial condition.
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is, it is assumed that kin and koff are insulin independent but that ψ and φ

are insulin dependent. Thus, when simultaneously optimising the data from

both the 1 nM and 100 nM experiments, kin and koff are common, but two

values for each of ψ and φ (ψ1 and ψ100; φ1 and φ100) were employed.

Given the amount of data, unconstrained fits of φ100 and φ1 unsurprisingly

produced ill-conditioned Jacobians that resulted in very large confidence in-

tervals. As a double exponential fitted directly to the raw data rather than

the model output (see Section 6.2.1) had showed that the two major time

constants in the system differ by at least three orders of magnitude, φ100 was

constrained to be one thousand times ψ100 and the fit was repeated. This

allowed much narrower 95% confidence intervals to be obtained for the other

parameters, which were allowed to vary freely. Values obtained for kin, koff ,

ψ100, ψ1 and φ1 are shown in Table 6.3.

The output of the model for a 100 nM insulin input (Fig 6.7(a)); and a 1 nM

insulin input (Fig 6.7(b)) is shown in comparison with the experimental data

in Figure 6.7. The insets in these two plots show the first two minutes of

simulation in greater detail.

6.3.4 Analysis of Model Behaviour

An analysis of the model optimised to the experimental data (the optimised

model) was carried out by simulating the model with the parameter values

listed in Table 6.3. Maximum values of Pp and Pc and the time taken to

reach the maximum (tmax) at both insulin concentrations were found. The

overshoot, defined as the difference between the maximum value and the final

value at 30 minutes as a percentage of the final value, was also calculated. In

addition, initial activation rates of Pp and Pc were found by fitting the model

output from t = 0 to t = tmax to a single exponential curve, y = 1 − e−kt.
The values of these metrics are shown in Figure 6.8.
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Table 6.3: Optimised parameter values of the Akt Switch model with 95%
confidence intervals. The adjusted R-squared for this fit was 0.9732.

Parameter Value Confidence Interval

kin 0.55 min−1 (0.19, 0.91)
koff 0.35 min−1 (0.010, 0.60)
ψ1 0.014 (0.0041, 0.023)
ψ100 0.023 (0.011, 0.034)
φ1 2.2 (0.46, 4.0)
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Figure 6.7: Output of the optimised Akt Switch model showing pAkt at the
plasma membrane (PM), in the cytosol, and total pAkt as a percentage of
total Akt in comparison with the experimental data for (a) 100 nM insulin
and (b) 1 nM insulin. The insets show the first two minutes in detail.
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overshoot as a percentage of the corresponding final value; the time taken to
reach the maximum value (tmax); and the initial rate of activation for both
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concentrations of 1 and 100 nM.
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6.4 Discussion

The Akt switch model is able to reproduce the experimental data, both

qualitatively and quantitatively. When simulated with the parameter set for

100 nM insulin given in Table 6.3, the Akt Switch model reaches a steady

state within 15–20 minutes that has 5% of the total Akt pool phosphorylated

(Figure 6.7(a)). This level of Akt phosphorylation is known to be sufficient

for maximal GLUT4 translocation [17,29,114]. Furthermore, both the physi-

ological (1 nM) and high (100 nM) insulin parameter sets found in the current

work preserve the initial overshoot of Akt phosphorylation, as is seen in the

literature [10, 17, 29, 80, 117]. Thus both the transient and the steady state

behaviour of the model are consistent with the experimental evidence.

Parameter values obtained for the model are in broad agreement with those

found in the literature. Park and colleagues give a deactivation rate of Akt

(albeit in a different cell type) of 0.56 min−1 and Gao, et al., found that Akt1

was dephosphorylated at Ser473 by PHLPP with a half time of 0.53±0.08 min

[80, 118], corresponding to a deactivation rate of approximately 1.9 min−1.

The koff value found in the current work (0.35 min−1) is of the same order

of magnitude at the value found by Gao.

In contrast, little is known about the insulin-stimulated translocation of Akt

from the cytosol to the plasma membrane, and almost nothing of a quantita-

tive nature [20, 21]. It is well know that PI3K inhibitors, such as Wortman-

nin, inhibit Akt activation by preventing the formation of PIP3 at the plasma

membrane. It has also been shown that Akt translocation (and hence activa-

tion) can be inhibited in a PI3K-independent manner by ceramide [119,120].

This indicates that the insulin signal diverges into two separate paths—

one controlling translocation and the other phosphorylation—at some point

above PI3K in the signalling network. In the Akt Switch model, these two

points of regulation are embodied by the parameters ψ and φ.

The parameter ψ represents the equilibrium distribution of Akt between the

cytosolic and plasma membrane pools. Carvalho and colleagues have found
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that the translocation of Akt to the plasma membrane approximately doubled

when human fat cells taken from non-diabetic subjects were stimulated with

insulin [121]. This is in agreement with values of 0.014 and 0.023 obtained

for ψ1 and ψ100, respectively, in the current work. It should be noted that

the Carvalho study used a different cell type (primary human adipocytes)

and measured the steady state difference between basal insulin and 6.9 nM

insulin, rather than the 1 and 100 nM data used for data fitting in the

current work. However, it has been found that the ED50 (the dose required

to obtain 50% of the maximal effect) of insulin for GLUT4 translocation is

approximately 1 nM [17], so 6.9 nM is likely near maximal stimulation.

Given that Akt translocation is insulin-regulated, one possible mechanism is

that of active transport by molecular motors. In this scenario, the Akt is

packed into transport vesicles, with the strength of the insulin signal deter-

mining either the number or the Akt-loading of the vesicles. Average veloc-

ities for vesicles transported by molecular motors range from 0.8 to 1 µms−1

in the literature [122, 123]. The cell radius of a typical mouse adipocyte

is approximately 25 µm (calculated from an average cross-sectional area of

about 2150 µm2 reported in [124]). Assuming that the Akt travels a dis-

tance equal to the radius, this results in a transit time of 25–33 s. Given

the (implausible) assumption that all unphosphorylated Akt in the cytosol

is available for transport, this yields an insulin-stimulated translocation rate

constant of about two, which is two orders of magnitude greater than the

ψ100 value found in the parameter fitting. This indicates that if an active

transport process is involved, only a small percentage of the cytosolic Akt

pool is available for transport.

An alternative transportation mechanism is a ‘retention-and-release’ model

that relies on diffusion to move the Akt to the plasma membrane. In this

model, the unactivated Akt is initially bound to structures on, or near, the

endoplasmic reticulum. Some fraction of the bound Akt is released in an

insulin-sensitive manner, and then diffuses to the plasma membrane. Bates

reports a diffusivity for Akt of 25 µm2 min−1, based on the assumption
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that 5% of the Akt pool diffuses [52]. This yields an insulin-stimulated

translocation rate of the same order of magnitude as those found in the

current work. It is interesting to note that both these translocation models

(active transport and retention and release) can only be reconciled with the

rate constants found if a large portion of the cytosolic Akt pool is not available

for transport at any given time. This is a reasonable assumption: unactivated

cytosolic Akt (Ac in the model) is a diverse pool, including both freshly

synthesized and recycled Akt. It would appear that even newly synthesized

Akt must form a complex with PDK1 in the cytosol prior to translocation

and phosphorylation [30]. Furthermore, once Akt is activated at the plasma

membrane, it travels to a variety of cellular locations, including the plasma

membrane, the cytosol, and the nucleus [19]. Once activated, the Akt must be

recycled before it can participate afresh in the insulin signalling process. At

a minimum, the recycling of Akt involves steps such as: dephosphorylation;

return to the cytosol; some form of sorting or sub-localisation within the

cytosol; and complexing with PDK1. Thus it is plausible that a large fraction

of the Ac pool is present in the recycling pathway. This may also explain the

extremely low threshold of Akt activation observed in GLUT4 translocation:

at any given time, only a small fraction of the total Akt pool is available

to respond to the insulin signal. Clearly, this is an area requiring further

investigation.

Rather more is known about the process of phosphorylation at the plasma

membrane [19, 35, 37]. Studies in the literature typically report pAkt lev-

els, either in the whole cell or (rarely) at the plasma membrane. In either

case, this measure is the culmination of both the translocation and the phos-

phorylation processes. Little could be found in the literature specifically

concerning the rate of phosphorylation. However, overshoot in Akt levels

is a commonly observed phenomenon at both high and physiological levels

of insulin, and this type of behaviour cannot be produced by a single dom-

inating time constant—it requires at least two time constants, differing by

several orders of magnitude. Furthermore, since translocation is synonymous

with the physical movement of signalling components, whereas phosphory-
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lation involves a chemical change in situ, it is reasonable to assume that

phosphorylation is the faster process.

A number of alternative parameter fitting scenarios were attempted to deter-

mine if the parameters given in Table 6.3 represent a truly minimal set. As

can be seen in this table, the 95% confidence interval of ψ1 and ψ100 overlap

to a large extent, which could suggest that the same ψ value can be used

for both the 100 nM and 1 nM insulin simulations. However, when the data

was fitted with a single ψ value, overshoot behaviour at the physiological in-

sulin level disappeared and a biologically unrealistic value for φ100 (108) was

obtained. Similarly, forcing the same φ value for both insulin treatments re-

sulted in the loss of overshoot behaviour at 100 nM insulin. A third scenario,

where the ratios of ψ100 : φ100 and ψ1 : φ1 were constant was also attempted,

but this too resulted in the loss of overshoot behaviour at the higher insulin

level. The failure of these alternative parameter fitting scenarios indicates

that insulin control of both ψ and φ is necessary to obtain a good fit to the

experimental data. Although there were slight discrepancies at very early

times (see inset, Figure 6.7), this was due to delays between the application

of insulin and the response in Akt phosphorylation, delays which are not

explicitly embodied in the model. (The role of time delays in Akt translo-

cation is a topic that will be explored in greater depth in Chapter 8.) This

also accords with what has been reported in the literature concerning Akt

activation: namely, that translocation and phosphorylation are controlled by

distinct mechanisms that diverge considerably upstream from Akt.

As can be seen in Figures 6.5 and 6.6, the initial amount of unphosphory-

lated Akt at the plasma membrane, Ap(0), is also an important determinant

of model behaviour. In the absence of Akt at the plasma membrane, Akt

translocation becomes rate-limiting for phosphorylation and consequently the

model exhibits monotonic increase, even when the rate of phosphorylation is

high. As explained previously, the parameter ψ represents the equilibrium

distribution of Akt between the cytosol and plasma membrane for a given

level of insulin stimulation. In the basal state, the rate of phosphorylation is
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negligible, which gives a steady state value for unphosphorylated Akt at the

plasma membrane (A∗p) of
ψ0

1 + ψ0

. The parameter fitting yielded a ψ1 value

of 0.014; ψ0 will be lower still, resulting in a low value of A∗p. It can be seen

from the phase transition diagram in Figure 6.6 that this value is too low to

produce an overshoot in pAkt upon stimulation.

In vivo, insulin is secreted in a pulsatile fashion, which is thought to be nec-

essary for normal glucose homeostasis [125]. It has been shown that glucose

clearance from the blood is enhanced by pulsatile insulin delivery [126], and

dysregulation of pulsatile secretion, particularly of the high frequency modes,

is known to be an early symptom of pre-diabetes [127]. It is possible that

the regular secretion of small pulses of insulin serves to ‘prime’ the insulin

signalling pathway so that it can respond rapidly and effectively. One way

that this might happen is by maintaining a larger pool of Akt at the plasma

membrane than would otherwise occur in the basal state. Clearly the inter-

play between steady state values, initial conditions, and periodic inputs in

the model is an area requiring further investigation.

The Akt Switch model also shows that is it possible to control downstream

signalling with different temporal profiles. There are differences in the initial

rate, overshoot and maximal time profiles of Akt activation under various

levels of insulin stimulation. These differences are further amplified by lo-

cation. This is because the two pools of activated Akt (Pc and Pp) display

distinct responses to the same insulin input. When simulated with the pa-

rameter values listed in Table 6.3, the plasma membrane fraction had a much

larger overshoot than the cytosolic fraction, and reached a maximum much

quicker (see Figures 6.7 and 6.8). In addition, observed initial activation

rates of the plasma membrane fraction are much more sensitive to the in-

sulin concentration than those of the cytosolic fraction: whereas the initial

activation rate of Pc increased two-fold between 1 and 100 nM insulin, the

initial activation rate of Pp increased by one order of magnitude. This is of

particular interest, as there is evidence to suggest that activation of Akt sub-

strates is more closely correlated with the initial rate of Akt phosphorylation



Summary 87

than the maximum level reached [29]. The existence of two pAkt pools in

the model provides a mechanism for the differential regulation of downstream

substrates, and suggests ways in which the model can be fruitfully extended

in the future.

The model is capable of further refinement should appropriate experimental

data become available. For instance, more data from time points after the

overshoot in Akt activation is observed—say between 5 and 15 minutes—

would further elucidate the relaxation of the system back to steady state.

In addition, it has been posited that the translocation and phosphorylation

of Akt are insulin regulated, and the parameter values obtained in the cur-

rent work provide point estimates of this relationship. Data from a greater

number of insulin concentrations would permit the interpolation of the be-

haviour of the system under a wider range of stimuli: the physiological range

(0.1–1.5 nM insulin) is of particular interest. Such data would also allow

the relaxation of some of the parameter constraints in the model. The ulti-

mate (if improbable) data would be time series that track all four Akt pools.

Nonetheless, the proposed model is able to replicate all the major features

of the data that is currently available.

6.5 Summary

The Akt Switch model is a simple, linear, four-compartment ODE model

of Akt activation. It embodies the main features of this important cross-

talk node and is consistent with the existing experimental data. The model

provides a means for the differential regulation of downstream components

without requiring complex feedback mechanisms. Experimental data suffi-

cient to support a more complicated model of Akt activation does not exist

at the current time. However, should such data come to light, the model

presented here is amenable to extension and adaptation.
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The Akt Switch model elucidates how differential downstream regulation

can be effected via a node that appears to act as a low-threshold switch.

The key is location: simply allowing for two cellular locations opens up the

possibility of dissimilar temporal activation profiles in initial rate, time to

maximum activation, and steady state values.



Chapter 7

The Akt Translocation Model

7.1 Introduction

This chapter is based on work that has been presented in: CW Gray and ACF Coster.
Crosstalk in transition: The translocation of Akt. Journal of Mathematical Biology,
78(4):919–942, 2019

In this chapter, a three-compartment model of Akt translocation is presented.

The four-compartment Akt Switch model presented in Chapter 6 employed

two spatial Akt pools: one in the cytosol and one at the plasma membrane.

It was able to reproduce important features of the experimental data, includ-

ing a substantial initial overshoot in pAkt. In the Akt Switch model, over-

shoot arose from the interaction between phosphorylation, which is fast, and

translocation, which is slow. These two processes were assigned single, dom-

inant time constants that differed by three orders of magnitude. However,

subsequent experimental work has shown that overshoot is evident within

the translocation process itself, independent of phosphorylation state [128].

Consequently, the Akt Translocation model was developed to investigate the

translocation of Akt in greater detail. In this chapter, the model is defined

and some preliminary mathematical analysis is carried out. In Chapter 8,

the model is optimised to experimental data, yielding further insights into

the underlying biology.

89
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7.2 Method

7.2.1 Model Development

A good mathematical model of Akt translocation should reproduce salient

features of both the transient and steady state behaviour seen in the exper-

imental data. More specifically, the transient behaviour should manifest an

overshoot in Akt localised to the plasma membrane (Akt-PM); and realistic

steady state values should be produced in both the basal and insulin stim-

ulated states. It is known that Akt functions as an ultra-sensitive switch

in the insulin signalling cascade [15, 28], operating within only 5–22% of its

dynamic range [29]. Overshoot—an initial rapid rise in Akt-PM upon stimu-

lation followed by a slower decrease to a steady state value—is also a robust

and widely observed feature of Akt activation. In the literature, overshoot in

Akt activation is reported in response to many types of stimulation, includ-

ing insulin [10, 17, 29, 78, 80, 83, 117]. Moreover, overshoot, or at least a high

initial rate of Akt activation, is thought to be a crucial trigger of downstream

processes in the insulin signalling pathway [29].

Mathematically, a minimum of three compartments is required to produce

overshoot behaviour: a two-compartment model can only exhibit an expo-

nential rise or decay determined by the balance of on- and off-rates. Clearly,

the Akt translocation process involves at least one ‘internal’ or cytosolic pool

and one ‘external’ or plasma membrane-docked pool where activation takes

place. The Akt Translocation model has a third, intermediate or ‘primed’

pool, containing Akt which is primed for docking, but has not yet received

the signal to do so. This compartment could represent Akt that is physically

located in close proximity to the plasma membrane, or alternately, in an

intermediate, but necessary, biochemical state prior to translocation to the

inner leaflet of the plasma membrane. The addition of a third pool can also

be justified based on the current understanding of the biology, as it is thought

that Akt forms a complex with PDK1 in the cytosol prior to recruitment to

the plasma membrane [15,30].
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Figure 7.1 shows a diagram of the Akt Translocation model. The three com-

partments consist of a cytosolic pool of Akt (x1); a primed pool representing

Akt primed for docking at the plasma membrane (x2); and a membrane-

bound pool located on the inner leaflet of the plasma membrane (x3). As

this model focuses on the translocation process only, the Akt is not distin-

guished by phosphorylation state in any of the compartments. Thus each

compartment could contain Akt in either the activated or the unactivated

state. Furthermore, it has been assumed that the total amount of Akt is

constant (at least on the time-scale of translocation events) and has been

normalized to one.

The transition between any two compartments is approximated by a sin-

gle reaction that represents the combined effect of the forward and back

reactions, as explained in Section 4.2. This results in three major rate con-

stants: k1, the rate of transition into the primed pool (the priming rate);

k2, the rate of docking at the plasma membrane (the docking rate); and k3,

the rate of recycling from plasma membrane to cytosol (the recycling rate).

Since each compartment potentially contains both phosphorylated and un-

phosphorylated Akt, these rate constants represent a weighted average rate

of both subtypes of Akt. Whilst other effects are possible, in this chapter

it is assumed that the insulin signal changes the docking rate only. This

transition is represented by changes to the parameter α. Initially, the system

is assumed to be a steady state corresponding to α = α1. At time t = 0,

the value of α undergoes a step change to α2. The equations, variables and

parameters for the model are presented in Table 7.1.
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Figure 7.1: Diagram of the Akt Translocation model. All Akt in the cell
is in one of three pools: the cytosolic pool (Akt-Cyt, x1); the primed pool
(Akt-Pri, x2); or the plasma membrane-bound pool (Akt-PM, x3). The effect
of the insulin signal on the system is represented by the multiplicative factor
α.
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Table 7.1: Variables, parameters, and differential equations of the Akt
Translocation model.

Variables

x1: Akt in the cytosol (Akt-Cyt)
x2: Akt in the primed pool (Akt-Pri)
x3: Akt docked at the plasma membrane (Akt-PM)

Parameters

k1: Rate of transition into the primed state
k2: Rate of Akt docking at the plasma membrane
k3: Rate of Akt recycling from plasma membrane to

cytosol
α: The effect of the insulin signal on the system.

Equations

dx1

dt
= −k1x1 + k3x3

dx2

dt
= k1x1 − αk2x2

dx3

dt
= αk2x2 − k3x3

x1 + x2 + x3 = 1, ∀t.



94 The Akt Translocation Model

7.3 Results

7.3.1 Mathematical Analysis

Non-Dimensionalisation

Insight into the behaviour of a dynamical system can be gleaned from non-

dimensionalisation. The actual values of the parameters in a dynamical sys-

tem are an artefact of the units of measurement used. When a system is

non-dimensionalised, the variables are re-scaled to be dimensionless. This

can highlight relationships between variables and parameters that are in-

trinsic to the system. At the very least, it will yield a system with fewer

parameters (see [129] or [130]).

The system of equations in Table 7.1 can be written in matrix form for the

vector of states x = (x1, x2, x3)T . Then x′ = Mx, where

M =

 −k1 0 k3

k1 −αk2 0

0 αk2 −k3

 . (7.1)

Let x̂1 = x1
z1

, x̂2 = x2
z2

, x̂3 = x3
z3

and τ = t
t0

, where z1, z2, z3 and t0 are

constants yet to be determined. By the chain rule,

dx1

dt
=
dx1

dx̂1

· dx̂1

dτ
· dτ
dt

=

(
z1

t0

)
dx̂1

dτ
.

Similarly,
dx2

dt
=

(
z2

t0

)
dx̂2

dτ
, and

dx3

dt
=

(
z3

t0

)
dx̂3

dτ
.
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In terms of the new variables, Equation 7.1 can be written as
dx̂

dτ
= Nx̂,

where

N = t0k2


−k1
k2

0 k3
k2

(
z3
z1

)
k1
k2

(
z1
z2

)
−α 0

0 α
(
z2
z3

)
−k3
k2

 .

Set t0 = 1
k2

, let z1 = z2 = z3, and define the relative rates r1 = k1
k2

and

r3 = k3
k2

. Then
dx̂

dτ
= Rx̂, where the matrix R is given by

R =

 −r1 0 r3

r1 −α 0

0 α −r3

 .

In effect, for this particular non-dimensionalisation, only the time variable

has been re-scaled in terms of the docking rate of Akt. Consequently, in

the following discussion the re-scaled time variable, τ , will be used; but for

the sake of convenience, x̂1, x̂2, and x̂3 will be referred to by their original

variable names, x1, x2, and x3.

Steady States and Stability

The elementary symmetric polynomials in the relative rates α, r1, and r3

occur repeatedly in the ensuing discussion. The elementary symmetric poly-

nomials are

s1(α) = α + r1 + r3

and

s2(α) = αr1 + αr3 + r1r3.

These polynomials have been defined as functions of α since the parameter

α takes on different values to represent the level of insulin stimulation.
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As a three-by-three matrix, R has three eigenvalues,

λ0 = 0, λ1(α) =
−s1(α) +

√
∆(α)

2
, λ2(α) =

−s1(α)−
√

∆(α)

2
,

where ∆(α) = [s1(α)]2 − 4s2(α). The zero eigenvalue, λ0, arises from the

assumption of Akt conservation: namely, that x1 + x2 + x3 = 1 at all times.

In effect, this assumption reduces the dimension of the system by one.

The stability of the system can be determined by considering the two non-

zero eigenvalues, λ1 and λ2. The sign of ∆ depends on the values of r1, r3 and

α: if they are of similar magnitude, then ∆ is negative; if one is much larger

than the others, or only one parameter is smaller, then ∆ is positive. When ∆

is positive, s1(α) has a greater magnitude than
√

∆, and so both eigenvalues

are negative. If ∆ is negative, the eigenvalues are complex. However, even

in this case, the real parts of λ1 and λ2 are negative. Thus in all cases, over

time the system will converge from any initial condition to a stable steady

state or fixed point, x∗(α), given by

x∗(α) =
1

s2(α)
(αr3, r1r3, αr1)T , (7.2)

which is the eigenvector corresponding to the zero eigenvalue.

Derivation of the Harmonic Oscillator Equation

A major focus of the current work is the study of the transient behaviour

of the system as it moves between one steady state and another. These

changes in steady state correspond to changes in the value of α. Initially,

it is assumed that the system is in a steady state with an α value of α1.

Thus x(0) = x∗(α1). However, at τ = 0, α is switched to a second value, α2.

Thus the system potentially undergoes two types of transition: a low-high

transition, where α1 < α2; and a high-low transition, where α1 > α2. In vitro

experiments often measure the transition from basal (zero) to extremely high
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insulin, that is α1 � α2. In vivo, this is more likely a low-high transition

where α1 and α2 are more similar in value. High-low transitions are problem-

atic in experimental work, as rapid removal of the insulin signal is difficult

to achieve.

The system represented by the equations in Table 7.1 can be re-written as an

instance of the damped harmonic oscillator equation. The ordinary differen-

tial equations (ODEs) of the Akt Translocation model expressed in terms of

the relative rates r1, r3, and r2 = α are

x′1 = r3x3 − r1x1, (7.3)

x′2 = r1x1 − αx2, (7.4)

x′3 = αx2 − r3x3, (7.5)

where the prime denotes differentiation with respect to τ . The conservation

relation x1 + x2 + x3 = 1 can be substituted into Equation (7.4) to eliminate

the variable x1. Then

x′2 = r1 − (r1 + α)x2 − r1x3. (7.6)

Moreover, as α 6= 0, Equation (7.5) can be rearranged as

x2 =
1

α
(x′3 + r3x3).

This can be differentiated once more to obtain

x′2 =
1

α
(x′′3 + r3x

′
3).

Substituting these last two equations into Equation (7.6) and simplifying

gives the second order ODE

x′′3 + s1(α)x′3 + s2(α)(x3 − x∗3) = 0. (7.7)
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If we make the change of variable X3(τ) = x3(τ)− x∗3(α), then

X ′′3 + s1(α)X ′3 + s2(α)X3 = 0. (7.8)

Since all the rate constants in the model are positive, so are s1(α) and s2(α).

Thus Equation (7.8) is an instance of the damped harmonic oscillator equa-

tion.

The Analytic Solution

Since α = α2 for τ ≥ 0, the general solution to Equation (7.7) is

x3(τ) = x∗3(α2) + Aeλ1τ +Beλ2τ , (7.9)

where A and B are constants determined by the initial conditions of the

system, and λ1, λ2, and ∆ denote the values of these quantities when α = α2.

That is,

λ1 =
−s1(α2) +

√
∆

2
,

λ2 =
−s1(α2)−

√
∆

2
,

and

∆ = [s1(α2)]2 − 4s2(α2).

To determine the values of A and B, recall that initially the system is in

a steady state with α = α1. Thus it can be seen from Equation (7.2) that

x3(0) = α1r1
s2(α1)

. Substituting τ = 0 into Equation (7.9) and re-arranging,

A+B =
α1r1

s2(α1)
− α2r1

s2(α2)
= −r

2
1r3(α2 − α1)

s2(α1)s2(α2)
.
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Moreover, differentiating Equation (7.9),

x′3(τ) = λ1Ae
λ1τ + λ2Be

λ2τ , (7.10)

which implies that x′3(0) = λ1A+ λ2B. However, from Equation (7.5),

x′3(0) = α2x2(0)− r3x3(0)

= α2
r1r3

s2(α1)
− r3

r1α1

s2(α1)

=
(α2 − α1)r1r3

s2(α1)
.

Thus

λ1A+ λ2B =
(α2 − α1)r1r3

s2(α1)
.

Putting these results together in matrix form,(
1 1

λ1 λ2

)(
A

B

)
=

(α2 − α1)r1r3

s2(α1)

(
− r1
s2(α2)

1

)
.

Now (
1 1

λ1 λ2

)−1

=
1√
∆

(
−λ2 1

λ1 −1

)
,

and so (
A

B

)
=

(α2 − α1)r1r3

s2(α1)
√

∆

(
r1λ2
s2(α2)

+ 1

− r1λ1
s2(α2)

− 1

)

= C

(
r1λ2 + s2(α2)

−r1λ1 − s2(α2)

)
,

where C =
(α2 − α1)r1r3

s2(α1)s2(α2)
√

∆
.
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7.3.2 The Parameter Space

The harmonic oscillator equation is a canonical second order ODE discussed

extensively in many introductory texts on the theory of differential equations,

such as [131–133], for instance. The standard treatment in most texts is to

write the equation in the form

X ′′3 + 2ζω0X
′
3 + ω2

0X3 = 0, (7.11)

where ω0 is the natural frequency (that is, the notional frequency of the

undamped system) and ζ is the damping coefficient, a dimensionless ratio

that crucially determines the behaviour of the system. In terms of parameters

from the current model, ω0 =
√
s2(α2) and ζ =

s1(α2)

2
√
s2(α2)

.

Four solution types can be distinguished based on the value of ζ. When ζ = 0,

the system is undamped and the solutions are purely sinusoidal. That is, the

system oscillates indefinitely about the equilibrium position with a constant

amplitude at a frequency of ω0. In the current model, all rate constants

are strictly positive, so ζ > 0. Hence this situation does not apply directly;

nonetheless, the natural frequency, ω0, remains an important concept in the

analysis of the three damped solution types.

The three damped solution types are termed under-damped, over-damped,

and critically-damped. If 0 < ζ < 1, then the system is under-damped. The

solutions display damped oscillations with quasi-frequency ω1 = ω0

√
1− ζ

inside an exponential decay envelope given by e−λt, where λ = ω0ζ. In

contrast, the system is over-damped if ζ > 1, with the borderline case of

critical damping when ζ = 1. In both these cases, there are no oscillations,

but the system could overshoot: this is when the solution passes through

the equilibrium position once in the transient phase before asymptotically

approaching the equilibrium. It also entails the existence of an extremum

that is distinct from the steady state value (either higher or lower).
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Conditions for Overshoot

In the Akt Translocation model, overshoot will occur if r1 < α2 +r3, in which

case the system reaches an extremum of

x∗3(α2) +m exp

(
−s1(α2)

2
√

∆
ln γ

)
,

where γ =
r1 + λ2

r1 + λ1

and m =

(
(α2 − α1)r1r3

s2(α1)s2(α2)

)√
(r1 + λ1)(r1 + λ2).

In order to prove this, consider the over-damped case, where ∆ > 0 and

hence λ1 and λ2 are both real and negative. If there is an overshoot in x3,

then x3 reaches an extremum (a peak or a trough) for some τ̂ > 0. At this

time x′3(τ̂) = 0. This means that, from Equation (7.10),

λ1Ae
λ1τ̂ = −λ2Be

λ2τ̂

e(λ1−λ2)τ̂ = −λ2B

λ1A

τ̂ =
1√
∆

ln γ,

where γ = −λ2B
λ1A

. If τ̂ is real valued and positive, then γ > 1. Now

γ = −λ2B

λ1A
=
λ2[r1λ1 + s2(α2)]

λ1[r1λ2 + s2(α2)]
.

Since λ1 and λ2 are the roots of the characteristic polynomial of Equa-

tion (7.7), λ1λ2 = s2(α2). Thus

γ =
r1 + λ2

r1 + λ1

.

Consequently, if τ̂ is real-valued, then (r1 + λ1) and (r1 + λ2) have the same

sign (both are negative in the over-damped case). Furthermore, if τ̂ > 0 then

|r1 + λ2| > |r1 + λ1|. It is this last condition that limits the size of r1 in the
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case of an overshoot, since if |r1 + λ2| > |r1 + λ1|, then∣∣∣∣∣r1 +
−s1(α2)−

√
∆

2

∣∣∣∣∣ >
∣∣∣∣∣r1 +

−s1(α2) +
√

∆

2

∣∣∣∣∣∣∣∣r1 − α2 − r3 −
√

∆
∣∣∣ > ∣∣∣r1 − α2 − r3 +

√
∆
∣∣∣∣∣∣√∆− (r1 − α2 − r3)

∣∣∣ > ∣∣∣√∆ + (r1 − α2 − r3)
∣∣∣ .

Given that
√

∆ > 0, this inequality holds only if r1 − α2 − r3 < 0. That is,

if r1 < α2 + r3.

Large Damping

As will be demonstrated shortly, damping in the model is always ‘large’. This

means that, even in the under-damped case, any oscillations rapidly die out

after the switch from α1 to α2. In the context of an experiment, once the

amplitude of the oscillations is smaller than the experimental error, they are

no longer detectable.

Under-damping in a harmonic oscillator occurs when 0 < ζ < 1. The expo-

nential decay envelope for the oscillations is given by the decreasing expo-

nential e−λt, where λ = ω0ζ. As a result, when ζ is large (close to one), the

exponential decay envelope rapidly narrows, and the solution curves manifest

as simple overshoots that rapidly approach equilibrium.

In terms of parameters from the Akt Translocation model,

ζ =
s1(α2)

2
√
s2(α2)

.

Thus

ζ2 − 3

4
=

[s1(α2)]2

4s2(α2)
− 3

4
.
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Recall that s1(α2) = r1 + α2 + r3 and s2(α2) = r1α2 + α2r3 + r1r3. This

implies that

ζ2 − 3

4
=
r2

1 + α2
2 + r2

3 + 2s2(α2)

4s2(α2)
− 3

4

=
r2

1 + α2
2 + r2

3 − s2(α2)

4s2(α2)

=
r2

1 + α2
2 + r2

3 − (r1α2 + α2r3 + r1r3)

4s2(α2)
.

A simple application of the inequality of arithmetic and geometric means

shows that, for all positive numbers, r1, r3, and α2,

r2
1 + α2

2 + r2
3 ≥ r1α2 + α2r3 + r1r3.

Thus ζ2− 3
4
≥ 0 and hence ζ ≥

√
3

2
≈ 0.866. This means that ζ is always close

to the critically damped value, even in the under-damped case. Consequently

the model can produce only two broad modes of behaviour, namely overshoot

and monotonic increase.

The Delta Surface

As the model contains only three relative rates—r1, r3 and α—it is easy

to visualise the parameter space in three dimensions. The system is under-

damped if 0 < ζ < 1 and over-damped if ζ > 1, or, equivalently, if ∆ < 0 or

∆ > 0. The surface in Figure 7.2 shows ∆ on the vertical axis as a function

of r1 and r3 when α = 1. A horizontal slice corresponding to ∆ = 0 can be

taken through this surface to create a two dimensional plot, as illustrated in

the plot in Figure 7.3. (Due to the inherent symmetry in the roles of the

parameter values in the model, similar plots can be produced when either r1

and r3 is held constant.) The curve thus created is a parabola that touches

the coordinate axes at (α, 0) and (0, α), dividing the plane into four distinct

regions. The single under-damped region (B), where ∆ < 0, lies inside
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Figure 7.2: The ∆-surface as a function of r1 and r3 for a constant value of
α = 1. A horizontal slice corresponding to ∆ = 0 can be taken through this
surface to create a parabola (see Figure 7.3).
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Figure 7.3: Regions of parameter space. The curve shown in the plot is
a parabola that demarcates the under-damped and over-damped regions of
parameter space (∆ = 0). The darkly shaded area (B) inside the curve is the
under-damped region (∆ < 0). The over-damped region (∆ > 0) is divided
into three non-contiguous areas: A (small r1, large r3); C (large r1, small r3);
and D (small r1 and r3).
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the parabola. In contrast, the over-damped region outside the parabola is

divided into three non-contiguous areas: A, with small r1 and large r3; C,

with large r1 and small r3; and D with small r1 and r3. The dashed line,

r1 = α+r3, represents the behaviour transition of the system, from overshoot

in the upper left of the plot to monotonic increase in the lower right. Thus

overshoot in x3 occurs in regions A, D, and part of B, but not in C.

7.3.3 Crosstalk in Transition

Figure 7.4 shows the output of simulations with parameter sets representative

of the four regions of parameter space. In each plot, the system is initially

in a steady state with α = α1 for −5 < τ < 0. The value of α changes to α2

at time τ = 0. Solid curves shows the low-high transition, where α1 = 0.5

and α2 = 1; dashed curves shows the high-low transition with the values of

α1 and α2 reversed. The dotted black lines represent the steady state values.

Within any given plot, the other rates (r1 and r3) were held constant across

both conditions.

Interestingly, the high-low transition in α values is not a simple vertical

reflection of the low-high transition in any of the four regions but rather

exhibits some degree of hysteresis. This can be seen most clearly in the

simulation with the Region B parameter set, where the Akt-PM values for

the low-high transition reaches a peak that is both greater in magnitude and

earlier than the corresponding trough for the high-low transition. Similar

phenomena can be seen in the simulations from the other three regions of

parameter space.

This asymmetry in the roles of α1 and α2 is further illustrated in three

important downstream signalling metrics: the (scaled) time to the extremum

(Figure 7.5); the size of the extremum as a fraction of total Akt (Figure 7.6);

and the initial gradient of the Akt-PM pool, x′3(0) (Figure 7.7). For all these

metrics, the Region A parameter set with r1 = 0.2 and r3 = 3 has been used,

but values of α1 and α2 have been varied as indicated.
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Figure 7.4: The output of the Akt Translocation model. Time courses of
cytosolic Akt (Akt-Cyt, x1), primed Akt (Akt-Pri, x2), and Akt at the plasma
membrane (Akt-PM, x3) for the four regions of parameter space are shown in
blue, purple, and red, respectively. Step increases in insulin are shown with
solid lines; step decreases with dashed lines. Steady state levels are shown
as black dotted lines.
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Figure 7.5: The time to the extremum, τ̂ , as a function of α2 with r1 = 0.2
and r3 = 3.
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Figure 7.6: The size of the extremum, µ, as a fraction of total Akt shown as
a function of α1 and α2 with r1 = 0.2 and r3 = 3. (Negative values indicate
a trough.) The value of α2 is shown in the colour bar on the right.
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Figure 7.7: The initial gradient as a function of α1 and α2 with r1 = 0.2 and
r3 = 3. The value of α2 is shown in the colour bar on the right.
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The time to the extremum (when it exists) is independent of α1. Recall that

the time to extremum, τ̂ , is given by

τ̂ =
1√
∆

ln

(
r1 + λ2

r1 + λ1

)
.

Now

r1 + λ2

r1 + λ1

=
r1 − α2 − r3 −

√
∆

r1 − α2 − r3 +
√

∆

= 1− 2
√

∆

r1 − α2 − r3 +
√

∆

= 1 +
2
√

∆

α2 + (r3 − r1)−
√

∆
.

Furthermore,

lim
α2→0

√
∆ = lim

α2→0

√
[s1(α2)]2 − 4s2(α2)

=
√

(r1 + r3)2 − 4r1r3

= |r1 − r3|.

Note that in the overshoot case, if α2 approaches zero, then r1 < r3, so

|r1 − r3| = r3 − r1. Thus

lim
α2→0

τ̂ = lim
α2→0

1

r3 − r1

ln

(
1 +

2(r3 − r1)

α2

)
.

So as α2 approaches zero, τ̂ increases without bound as illustrated in Fig-

ure 7.5. Furthermore, as α2 increases, τ̂ decreases, irrespective of the value

of α1.

In contrast, the size of the extremum—that is, the difference between the

height of the extremum and the final steady state value—is a function of

both α1 and α2, but is not symmetric in these two variables. Let µ be the
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extreme value (maximum or minimum) of x3 in the overshoot case. Then

µ = x∗3(α2) + Aeλ1τ̂ +Beλ2τ̂

= x∗3(α2) + Aeλ1/
√

∆ ln γ +Beλ2/
√

∆ ln γ

= x∗3(α2) + A exp

[(
1

2
− s1(α2)

2
√

∆

)
ln γ

]
+B exp

[(
−1

2
− s1(α2)

2
√

∆

)
ln γ

]
= x∗3(α2) +m exp

(
−s1(α2)

2
√

∆
ln γ

)
,

where m = A
√
γ +B/

√
γ. Now

m = A
√
γ +

B
√
γ

= C[r1λ2 + s2(α2)]

√
λ2[r1λ1 + s2(α2)]

λ1[r1λ2 + s2(α2)]

− C[r1λ1 + s2(α2)]

√
λ1[r1λ2 + s2(α2)]

λ2[r1λ1 + s2(α2)]

= C

(√
λ2

λ1

−
√
λ1

λ2

)√
[r1λ1 + s2(α2)][r1λ2 + s2(α2)].

Recall that λ1λ2 = s2(α2). Thus the equation can be simplified as

m = C

(
|λ2 − λ1|√

λ1λ2

)√
(r1λ1 + λ1λ2)(r1λ2 + λ1λ2)

= C|λ2 − λ1|
√

(r1 + λ1)(r1 + λ2).

Since C =
(α2 − α1)r1r3

s2(α1)s2(α2)
√

∆
, and λ2 − λ1 =

√
∆,

m =

(
(α2 − α1)r1r3

s2(α1)s2(α2)

)√
(r1 + λ1)(r1 + λ2).
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If γ is positive, then so is (r1 + λ1)(r1 + λ2). Consequently, if α2 > α1 then

m > 0. In this case, µ > x∗3(α2) and represents a peak. Conversely, if α2 < α1

then m < 0 and µ represents a trough.

As demonstrated in Figure 7.6, as α1 increases or α2 decreases, the size of

the extremum decreases, with the positive peaks becoming less pronounced

and the negative overshoot decreasing in magnitude (it should be noted that

negative values on the vertical axis in this plot denote a trough rather than

a peak).

The dependence of the initial gradient of Akt-PM, x′3(0), on the parameters

α1 and α2 is illustrated in Figure 7.7. The initial gradient of the plasma

membrane pool, x′3(0), is given by

x′3(0) = α2x2(0)− r3x3(0)

= α2

(
r1r3

s2(α1)

)
− r3

(
r1α1

s2(α1)

)
= (α2 − α1)

r1r3

s2(α1)

= (α2 − α1)x2(0).

Consequently, the initial gradient is directly proportional to both the dif-

ference in the final and initial α values (α2 − α1) and the initial size of the

primed pool, x2(0). As it is assumed that the system starts in a steady state

with α = α1, x2(0) is also a function of α1.
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7.4 Discussion

In the Akt Translocation model, the system transitions from one steady

state, where initially α = α1, to a second steady state with α = α2. The

large damping inherent in the model guarantees that the transition occurs

in one of two ways: Akt-PM can overshoot, where the extreme value and

steady state differ; or increase monotonically, with the extreme value and

steady state coinciding. These two types of behaviour are typified by the

simulations with the parameter set from Region A (overshoot) and Region C

(monotonic increase), both shown in Figure 7.3.

The simulation plots in Figure 7.3 also illustrate that the steady state val-

ues of the system and the relative size of the overshoot peak or trough

varies markedly between the different regions of parameter space. In Re-

gion A, Akt-PM has a low steady state value and a relatively large overshoot

peak/trough. It is thus the region that produces the most biologically realis-

tic simulations. In Region B (the ostensibly underdamped region), Akt-PM

has a higher steady state value and a relatively modest overshoot peak, at

least for parameter values to the upper right of the dashed line. Region C

can only produce simulations that manifest monotonic increase. Region D,

whilst producing overshoot, has a more delayed time to extreme value, and

takes much longer to approach steady state. The plots in Figure 7.3 show

the behaviour of the system for −5 ≤ τ ≤ 10. By the end of this time,

only the Region D plot has not yet reached steady state, although it does so

within a scaled time of 30. These differences in simulations from the various

regions of parameter space demonstrate the fact that different information,

occurring on radically different time scales, can be encoded into the transi-

tory and steady state behaviour of the model. As Akt is activated at the

plasma membrane, the dynamics of translocation have a direct bearing on

the subsequent activation and downstream signalling.

It is known that Akt has a wide variety of substrates [19, 31, 37], which can

be broadly classified as metabolic and/or mitogenic effectors. The short half-
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life of insulin in the blood (approximately 5 min [4]) necessitates a rapid re-

sponse from the metabolic effectors of Akt. Rapidly responding substrates of

Akt may be activated in an ultra-sensitive switch-like manner once a certain

threshold of Akt phosphorylation is attained. Alternately, there is evidence

to suggest that some Akt substrates are sensitive to the initial gradient of Akt

phosphorylation, independent of ultimate phorsphorylation levels [29]. Both

these aspects of downstream signalling can be encoded into the transient

behaviour of the model by a judicious choice of parameter values, which per-

mits the fine-tuning of details such as the peak height (size of the extremum),

peak timing (time to extremum), and the initial gradient of Akt-PM.

In contrast, growth, proliferation, and cell fate decisions—the purview of the

mitogenic effectors of Akt—occur on much longer timescales as they involve

changes to gene expression levels and protein synthesis. It is possible that

activation of the slow-responding substrates of Akt is linked to long term

changes in Akt activation levels, an aspect of the steady state behaviour of

the model that can also be manipulated through parameter choice. As shown

in Figure 7.3 (Region A–D), the model is capable of producing a wide range

of values for both the basal and insulin-stimulated steady states.

Another illustration of how the transient and steady state attributes of the

dynamics could differentially drive downstream signalling is given in Fig-

ure 7.5. Here, the time to the extremum is a non-linear function of α2 only.

The extremum time decreases as α2 is increased (Figure 7.5(a)). In contrast,

the size of the extremum and the initial gradient respond to changes in both

α1 and α2, as shown in Figure 7.5(b) and (c).

Thus far the discussion has focussed almost exclusively on the role of x3 (Akt-

PM) in the model. This is because x3 represents a pool of Akt that is able

to be phosphorylated and become biologically active. This pool can also be

readily observed experimentally using, for instance, total internal reflection

fluorescence (TIRF) microscopy [128]. However, the analysis carried out here

(the transformation to a second order ODE) can be repeated for the other two

variables. The inherent mathematical symmetry of the model ensures that
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the resulting solutions are structurally identical, but with the rate constants

permuted, reflecting the cyclic nature of the model. This permutation of

rate constants guarantees that at most one pool in the model can manifest

overshoot. For instance, when a parameter set from Region A is used to

simulate all three pools in the model, x3 overshoots, but x1 and x2 show

monotonic increases, similar to the x3 solution curves from Region C.

Although x1 and x2 have similar solution curves (albeit with different steady

state values), x2 is of particular relevance to the initial gradient of x3. In

the model, it is assumed that the system starts in a steady state, and con-

sequently, there is some Akt in the primed pool (x2) available for transloca-

tion to, and subsequent activation at, the plasma membrane. As shown in

Equation 7.2, the steady state values are a function of the insulin-sensitive

parameter, α. Thus the initial condition is a function of the initial value of

α = α1. As x∗2(α) lacks an α containing term in the numerator, it can be

seen that the initial x1 and x3 pools are enriched at the expense of the x2

pool if the value of α1 is increased. Since the initial gradient is a linear func-

tion of x2(0), this depletion of the x2 pool has ramifications for subsequent

downstream signalling.

The hysteretic effect on the system caused by changes to the initial condi-

tion is further demonstrated by the low-high transitions (solid curves) and

the high-low transitions (dashed curves) shown in Figure 7.3 (Region A–D).

It is clear that for all four regions of parameter space, the steady state levels

for the low-high and high-low transitions are the same, however, the tran-

sitions exhibit an obvious asymmetry. Low-high transitions are typical of

much experimental work in this area. High-low transitions, in contrast, are

much harder to conduct experimentally, as it is difficult to rapidly lower the

concentration of insulin once it has been applied.

It is possible to block or attenuate the insulin signal upstream from Akt with a

number of different inhibitors. For instance, the PIP3 pool can be depleted by

either the direct dephosphorylation of PIP3 by PTEN [134] or the inhibition

of PI3K by agents such as Wortmannin or LY294002 [35,37,135]. Alternately,
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the recruitment of Akt to the plasma membrane can be prevented in a PI3K-

independent manner by ceramide or NSC126188 [20, 119, 120, 136], however,

as the Akt translocation process itself is currently not well understood, the

precise mechanism involved is not known. Furthermore, these inhibitors can

have other, off-target effects in cells. Wortmannin, for example, undergoes

irreversible binding and is toxic to cells after prolonged use [37].

In contrast, the behaviour of the system during a high-low transition can

be readily inferred from the mathematical model by simply exchanging the

values of α1 and α2. Moreover, this can be done repeatedly to simulate the

pulsatile release of insulin that occurs in vivo. Thus the underlying dynamics

of the system can be investigated without confounds caused by the timing or

duration of external perturbations. In particular, pulsatile and/or periodic

insulin stimulation is an obvious next step in the analysis of the current

model, and will no doubt raise issues of both timing and depletion that

require investigation.

The mathematical modelling of complex phenomena always entails simplifi-

cations of some kind, often significant ones. For example, in the analysis of

the current model, it was assumed that insulin only affects the docking rate

(that is, k2 or the relative rate α). It is possible that insulin also directly af-

fects the rate of recycling from plasma membrane to cytosol (k3) or even the

priming rate (k1). In addition, these translocation rates may vary depending

on the phosphorylation state of Akt. For instance, a differential recycling

rate for phosphorylated Akt in the x3 pool could lead to membrane retention

of this fraction. Since k3 in the current model is a weighted average of recy-

cling rates for both subtypes of Akt, this is equivalent to making k3 indirectly

insulin dependent. Since the phosphorylation state of Akt is not explicitly

tracked in the current model, it is not possible to distinguish between these

two scenarios—a direct influence of insulin on k3, or an indirect influence

mediated by phosphorylation state. The investigation of such hypotheses is

better suited to an expanded model of the dynamics that includes compart-

ments for both phosphorylated and un-phosphorylated Akt. This refinement

thus constitutes a natural next step in the development of the model.
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The preliminary aim of this model was to recapitulate in silico the type of

behaviour reported in the literature. This behaviour has been inferred from

in vitro experiments, and will necessarily differ to some extent from that

of the in vivo system. However, the techniques and insights obtained from

modelling the in vitro observations will contribute to the development of a

more realistic description of the in vivo behaviour. In order for this ulti-

mate aim to be achieved, more experimental data from the in vivo context

would be required. Prior to this, information from in vitro systems would

be useful in determining future directions. For example, techniques such as

reversible cryo-arrest [137] or plasma membrane lawns can help to determine

both the spatial distribution and activation state of Akt. In addition, data

taken using insulin concentrations in the physiological range will probably

yield more accurate descriptions of the in vivo system. Investigations us-

ing primary adipocytes rather than cultured cells lines may also highlight

differences between in vitro and in vivo systems. In particular, further mea-

surements of the high to low transition would be useful to determine the

parameter regimes observed under different conditions.

7.5 Summary

In this chapter, a simple, deterministic, three-compartment ordinary differ-

ential equation model of Akt translocation in vitro has been presented. The

Akt Translocation model can reproduce the salient features of Akt transloca-

tion in a manner that is consistent with the existing experimental data. After

recasting the model in terms of relative rates, and taking the conservation

relation into account, it can be seen that the system is mathematically equiv-

alent to a damped harmonic oscillator. This framework permits an analysis

of both the steady state and transient behaviour of the model over the entire

parameter space and the elucidation of conditions for the manifestation of

overshoot, a biologically significant feature of Akt translocation.
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Further investigation of the dynamics of the model has also revealed an in-

herent hysteresis brought about by changes to the initial conditions. This

asymmetry in system behaviour will have ramifications in pulsatile and peri-

odic forcing scenarios, which are ubiquitous in biological signalling networks.

In the next chapter, this model is optimised to experimental data to provide

further insight into the underlying biology of the system.
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Chapter 8

Time Delays and Dominant

Processes

8.1 Introduction

This chapter is based on work presented in: CW Gray and ACF Coster. From Insulin to
Akt: Time Delays and Dominant Processes. Journal of Theoretical Biology. Online 19
August 2020. https://doi.org/10.1016/j.jtbi.2020.110454

In Chapter 7, the Akt Translocation model—a deterministic three compart-

ment ODE model of Akt translocation in response to insulin—was presented

and analysed. In this model, it was assumed that all Akt in the cell exists in

one of three pools: a cytosolic pool (Akt-Cyt); a primed pool (Akt-Pri); and a

plasma membrane-docked pool (Akt-PM); and that the predominant effect of

insulin is an increase in the docking rate (that is, the rate at which Akt transi-

tions between the primed pool and the plasma membrane docked pool). The

model was able to reproduce the salient features of Akt translocation with

a minimum of assumptions. In the current chapter, the parameters of this

model are optimised to experimental data obtained from TIRF microscopy

of 3T3-L1 adipocytes under insulin stimulation at both physiological (1 nM)

and very high (100 nM) concentrations.

121
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As an outcome of the parameter optimisation, the time delay between the

application of insulin and the Akt translocation response has been quantified.

For physiological insulin, a delay of approximately 0.4 min was found, indi-

cating constraints on the timing of upstream signalling processes between the

insulin receptor and Akt. Intriguingly, it was found that a further transition

from physiological insulin to higher stimuli did not incur a delay.

In addition, the parameter optimisation to such widely divergent insulin lev-

els suggested that the dominant processes regulating the appearance of Akt

at the plasma membrane differ with the insulin concentration. For physio-

logical insulin, the release of Akt to the plasma membrane in response to the

insulin signal was rate limiting. This is consistent with the assumptions of

the mathematical analysis in Chapter 7. In contrast, at high insulin levels,

regulation of the recycling of Akt from the plasma membrane to the cytosol

was also required.

8.2 Method

8.2.1 The Data

The time course data for the parameter optimisation of the model was from

Norris, et al. [128] (Figure 8.1). In this study, the translocation dynamics of

Akt2 in fully differentiated 3T3-L1 adipocytes was measured by total internal

reflection fluorescence (TIRF) microscopy. TIRF microscopy is a live cell

imaging technique in which molecules of interest (in this case, Akt2) are

tagged with fluorophores. A beam of light of a given frequency incident

on the sample excites fluorophores within a narrow region near the plasma

membrane only. This narrow region (on the order of 100-200 nm) is termed

the TIRF zone. Patches of cell are repeatedly imaged as insulin is applied,

and the movement of fluorescently tagged Akt into and out of the TIRF zone

can be measured.
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Figure 8.1: The experimental data from Norris, et al. [128]. The transition
from basal to physiological (1 nM) insulin occurs during the first ten minutes
of the time course. The transition from physiological to maximal (100 nM)
insulin is from 10 to 15 minutes.
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In the Norris paper, cells were first imaged for 10 minutes in the absence of

insulin to establish the average fluorescence of the TIRF zone in the basal

state. The cells were then stimulated with a physiological dose of insulin

(1 nM) for 10 minutes, followed by a maximal dose of insulin (100 nM) for

a further five minutes. The first 10 minutes after the application of 1 nM

insulin will be referred to as the physiological transition and the five minutes

following the application of 100 nM insulin the maximal transition.

During the physiological transition, Akt-PM undergoes a rapid increase, cul-

minating in an overshoot before a relaxation to a higher steady state (Fig-

ure 8.1). This new equilibrium is reached within four or five minutes of the

initial application of insulin.

In contrast, it is unclear from the data for the second, maximal transition

whether the Akt-PM level plateaus or overshoots as the time course is short.

When fitted to an exponential rise (see Section 8.2.3), however, the rate

constant obtained for the maximal transition was 0.60 min−1 with a 95%

confidence interval of (0.47, 0.72). This equates to a doubling time of ap-

proximately 1.16 minutes. Thus the maximal transition represents a slower,

more sustained rise in the level of Akt-PM than the physiological transition.

8.2.2 The Model

The Akt Translocation model presented in Chapter 7 (with some minor mod-

ifications) was used for the parameter optimisation. In this model, the system

was initially in a steady state determined by the insulin concentration, and

the transition from one equilibrium to another in response to a step change

in insulin was analysed. The system is equivalent to a damped harmonic

oscillator with large damping. As a result, the transition from one steady

state to another occurs via one of two broad modes: overshoot (undershoot)

or monotonic increase (decrease). In addition, the minimal assumption that

insulin affects only the rate of Akt docking at the plasma membrane was

made. As will be demonstrated shortly, this assumption requires revision.
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Optimising the model to the experimental data necessitated some modifica-

tions. Firstly, the Akt pools were re-normalized to match the experimental

data. Secondly, a time delay following the application of insulin was added.

This time delay represents the time required for the insulin signal to propa-

gate through the upstream signalling cascade prior to the initiation of Akt

translocation. The structure of the model is otherwise the same as that in

Chapter 7.

A diagram of the modified model is shown in Figure 8.2. The model has

three Akt pools:

� x1, cytosolic Akt;

� x2, Akt primed for docking at the plasma membrane; and

� x3, Akt docked at the plasma membrane.

Furthermore, there are seven parameters: three rate constants; three factors

representing the effect of insulin on the rate constants; and the time delay.

For the system in the basal steady state (that is, in the absence of insulin

stimulation) the rate constants are:

� k1, the rate at which Akt enters the primed pool (the basal priming

rate);

� k2, the rate at which Akt enters the TIRF zone to dock at the plasma

membrane (the basal docking rate); and

� k3, the rate of recycling of Akt from the TIRF zone to the cytosol (the

basal recycling rate).

The effect of insulin on each of the translocation subprocesses is represented

by the positive multiplicative factors α, β, and γ, which vary with the insulin

concentration. Thus, for any given insulin level, the effective docking rate

is αk2; the effective recycling rate is βk3; and the effective priming rate is

γk1, as shown in Figure 8.2. The variables, parameters, and equations of the

model are also listed in Table 8.1.
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Cytosol

TIRF zone

Plasma membrane

Akt-Cyt

Akt-Pri

Akt-PM

x1

x2

x3

γk1

αk2

βk3

Figure 8.2: Diagram of the modified Akt Translocation model. Akt is initially
synthesized in the cytosol (x1). It is then primed for activation (x2). In
response to insulin, the primed Akt moves into the TIRF zone and docks at
the plasma membrane (x3).
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Table 8.1: Variables, parameters, and equations of the modified Akt Translo-
cation model.

Variables

x1: Akt in the cytosol (Akt-Cyt)
x2: Akt in the primed pool (Akt-Pri)
x3: Akt docked at the PM (Akt-PM)

Parameters

k1: Basal priming rate of Akt
k2: Basal docking rate of Akt at the plasma

membrane
k3: Basal recycling rate of Akt from the plasma

membrane to the cytosol

I(t): The insulin concentration at time t
α(I): The effect of insulin on the docking rate
β(I): The effect of insulin on the recycling rate
γ(I): The effect of insulin on the priming rate

∆t: The time delay

Equations

dx1

dt
= −γk1x1 + βk3x3

dx2

dt
= γk1x1 − αk2x2

dx3

dt
= αk2x2 − βk3x3

Note: at all times, x1 + x2 + x3 = T , where T is
total Akt (a constant).
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Akt occupies an intermediate position in the insulin signalling pathway [15].

Upstream propagation of the insulin signal causes a delay between the ap-

plication of insulin and the translocation response. Even in the Akt Switch

model, there were discrepancies in model output at high insulin levels due

to the signalling delay (see Section 6.4). Consequently, for the parameter

optimisation of the Akt Translocation model, a time delay, ∆t, was inserted

after the initial application of insulin. Thus, for the physiological transition,

α is represented by the step function,

α =

{
1 if t < ∆t,

αphys otherwise.
(8.1)

The minimalist assumption that the docking rate is the sole point of action

of the insulin signal corresponds to β = γ = 1 throughout.

As shown in Chapter 7, there is a stable steady state to which the system

converges. For a given insulin level, I, the steady state values of the three

Akt pools—x∗1, x∗2 and x∗3—can be written as

x∗1 =
αβk2k3

αγk1k2 + αβk2k3 + βγk1k3

· T,

x∗2 =
βγk1k3

αγk1k2 + αβk2k3 + βγk1k3

· T,

x∗3 =
αγk1k2

αγk1k2 + αβk2k3 + βγk1k3

· T,

where α, β, and γ are functions of I. In this chapter there are three levels

of insulin stimulation: basal, I0; physiological, Iphys; and maximal, Imax. In

addition, α, β, and γ have been defined as step functions of the insulin level

in a similar fashion to Equation 8.1. As will be seen later, the following values

are sufficient to describe the physiological and maximal insulin transitions:

� For I = I0, α = β = γ = 1;

� For I = Iphys, α = αphys, β = γ = 1;

� For I = Imax, α = αphys, β = βmax, and γ = 1.
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Initial conditions for the transition to physiological insulin were calculated

from the basal steady states. In terms of model variables, the experimental

data gives the value of x3 as a fraction of x3(0). In order to facilitate a direct

comparison with the data, the model was re-normalized so that x∗3 = 1 in the

basal steady state (when I = I0). This has the effect of re-scaling the total

Akt pool so that

T =
k1k2 + k2k3 + k1k3

k1k2

.

By substituting α = β = γ = 1 into the relative steady states and multiplying

by T , the basal initial conditions,

x1(0) =
k3

k1

, x2(0) =
k3

k2

, x3(0) = 1,

are obtained.

8.2.3 Parameter Optimisation

The TagRFP-T-Akt2 time course was extracted from Fig. 1F of [128]. This

data was corrected for photo-bleaching with the control data (also from Fig.

1F). Error bounds were extracted, where possible. For some values in the

data set, error bounds were obscured by the graphical marker used. In this

case, the error bound values were taken to be that of the data. An extended

data set was created comprising the data values and the extrema of the error

bounds at each time point. Parameter optimisations were performed with the

MATLAB ‘fit’ function (R2019a Mathworks 2019) at the default tolerances.
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8.2.4 Sensitivity Calculations

In metabolic control analysis, a control coefficient measures the relative

change in a metabolite concentration resulting from a small relative change

to some parameter, typically an enzyme concentration [138–140]. A control

coefficient can be thought of as a normalized or logarithmic derivative, al-

though a variety of names for the same or closely allied concepts appear in

the literature. Typically, Spx, the sensitivity of the variable x with respect to

the parameter p, is defined as

Spx = lim
∆p→0

∆x/x

∆p/p
=
∂ ln(x)

∂ ln(p)
=
∂x

∂p
· p
x
,

where ∆x is a small change in the value of x resulting from ∆p, a small

change in the value of p.

As the model has an analytic solution, the sensitivities can be calculated

directly. When the system is in the steady state under physiological insulin

(that is, when I = Iphys and β = γ = 1), the sensitivities with respect to α

are:

Sαx∗1 =
k1k3

αk1k2 + k1k3 + αk2k3

,

Sαx∗2 = − αk2(k1 + k3)

αk1k2 + k1k3 + αk2k3

,

Sαx∗3 =
k1k3

αk1k2 + k1k3 + αk2k3

.

Note that the sign of Sαx∗2 is negative whilst the other two are positive (and

equal). This indicates that as the value of α is increased, the cytosolic and

plasma membrane pools of Akt are enriched at the expense of the primed

pool.

The transition to maximal insulin involves perturbations to multiple param-

eter values which are not necessarily small. This invalidates the taking of

limits as in the standard definition of sensitivity. Instead, the relative change,
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Rn, which is the change in the steady state value of the nth Akt pool as a

fraction of the corresponding basal steady state, may be defined. That is,

Rn(I) =
x∗n(I)− x∗n(I0)

x∗n(I0)
,

where x∗n(I) is the steady state value of the nth Akt pool at an insulin level

of I. At maximal insulin (that is, when γ = 1), the relative changes are:

R1 =
αβ(k1k2 + k2k3 + k1k3)

αk1k2 + β(αk2k3 + k1k3)
− 1;

R2 =
β(k1k2 + k2k3 + k1k3)

αk1k2 + β(αk2k3 + k1k3)
− 1;

R3 =
α(k1k2 + k2k3 + k1k3)

αk1k2 + β(αk2k3 + k1k3)
− 1.

It can be seen that if α is increased and β is decreased, then x∗3 increases and

x∗2 decreases; whereas the change in x∗1 depends on the relative magnitudes

of the changes in α and β.

As the parameter optimisation showed that changes to γ are not necessary to

fit the experimental data, these sensitivities and relative changes have been

omitted.

8.3 Results

8.3.1 The Model Optimised to Physiological Insulin

The model was first optimised to the experimental data for the transition

to physiological insulin (that is, for 0 ≤ t ≤ 10). The parameter values,

95% confidence intervals, and goodness of fit data obtained are given in

Table 8.2. A second optimisation with ∆t set to zero was also attempted. In

theory, this should result in a more parsimonious and hence preferable model.
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However, the quality of the fit was much poorer: the adjusted R-squared

value was considerably lower (0.7607) and the 95% confidence intervals of all

parameters included zero.

A comparison of model simulations with and without the delay and the exper-

imental data is shown in Figure 8.3. In addition to an objective improvement

in the goodness of fit, as demonstrated by an improved adjusted R-squared

value, it is clear that the model with the time delay (the solid blue curve)

is better able to capture the overshoot characteristics of the data, such as

initial gradient, peak height, peak width, and peak timing, than the model

without time delay (red, dashed curve).

Two further parameter optimisations, in which the values of β and γ rather

than α were individually varied in a step-wise fashion, were also attempted.

The parameter values and goodness of fit data for these two parameter op-

timisations are given in Tables 8.3 and 8.4. These parameter sets yielded

much poorer fits as they were unable to replicate the overshoot behaviour

of Akt-PM. A plot of these simulations in comparison with the experimental

data is shown in Figure 8.4. In summary, for the transition from basal to

physiological insulin, a step change in the value of α in conjunction with a

time delay is sufficient to embody the experimental data.

The sensitivities and relative changes were calculated from the parameter

values for the transition to physiological insulin. The sensitivities with re-

spect to α of the steady states were (Sαx∗1 , S
α
x∗2
, Sαx∗3) = (0.41,−0.60, 0.41). The

sensitivity captures small-scale changes in steady state behaviour in response

to infinitesimal perturbations of the parameter values. In contrast, the rel-

ative change is a description of the response to larger perturbations. The

relative changes calculated for the transition to physiological insulin were

(R1, R2, R3) = (0.36,−0.28, 0.36). Thus, although the magnitudes differ,

both descriptors predict the depletion of the primed Akt pool and the aug-

mentation of the cytosolic and plasma membrane pools.
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Table 8.2: The parameter values, 95% confidence intervals, and goodness of
fit data for the optimisation to the physiological insulin data only.

Parameter Value Confidence Interval

k1 0.6205 min−1 (0.3938, 0.8472)
k2 0.3789 min−1 (0.05438, 0.7034)
k3 2.266 min−1 (0.03915, 4.493)
αphys 1.878 (1.283, 2.472)
∆t 0.4441 min (0.4013, 0.487)

Goodness of Fit Data

Sum of squares error: 0.0049
R-squared: 0.9809
Adjusted R-squared: 0.9761
Root mean square error: 0.0175
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Figure 8.3: Model simulations with parameter values optimised to the ex-
perimental data (black dots) for the model with delay (solid blue curve) and
the model without delay (dashed red curve).
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Table 8.3: The parameter values, 95% confidence intervals, and goodness of
fit data for an attempted optimisation to the physiological insulin data in
which the parameter β was varied. Note that the 95% confidence intervals
of all parameters included zero, and the goodness of fit data was worse than
that for the parameter set in which α was changed.

Parameter Value Confidence Interval

k1 1.172 min−1 (−141.2, 143.6)
k2 1.082 min−1 (−184.9, 187.1)
k3 7.537 min−1 (−144.5, 159.5)
βphys 0.7028 (−0.6401, 2.046)
∆t 0.4403 min (−1.65, 2.53)

Goodness of Fit Data

Sum of squares error: 0.0490
R-squared: 0.8082
Adjusted R-squared: 0.7602
Root mean square error: 0.0553
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Table 8.4: The parameter values, 95% confidence intervals, and goodness of
fit data for an attempted optimisation to the physiological insulin data in
which the parameter γ was varied. Once again, the 95% confidence intervals
of all parameters included zero, and the goodness of fit data was worse than
that of the parameter set in which α was changed.

Parameter Value Confidence Interval

k1 8.13 min−1 (−106.9, 123.1)
k2 7.133 min−1 (−281.1, 295.4)
k3 8.207 min−1 (−327.2, 343.6)
γphys 7.515 (−452.3, 467.3)
∆t 0.4651 min (−0.321, 1.251)

Goodness of Fit Data

Sum of squares error: 0.0520
R-squared: 0.7963
Adjusted R-squared: 0.7454
Root mean square error: 0.0570
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Figure 8.4: Model simulations of the parameter sets in which β (blue solid
line) or γ (red, dashed line) were allowed to vary. The experimental data
is also shown (black dots). Although appropriate steady state values were
obtained, neither parameter set was able to reproduce the overshoot apparent
in the experimental data.
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8.3.2 The Model Optimised to Maximal Insulin

In order to identify the dominant processes operating in the translocation of

Akt at both insulin concentrations, it is necessary to determine a minimal set

of parameter changes that embodies the observed data for the full 15 minute

time course. Figure 8.5 shows a parameter sweep of αmax in comparison

with the experimental data. In this figure, at t = 10 minutes the value

of α was switched a second time to αmax = kαphys, where 1 ≤ k ≤ 5.

Other parameters were set to the values obtained from the optimisation to

physiological insulin listed in Table 8.2. It can be seen that the model cannot

reproduce the data in this fashion. As shown in Chapter 7, as αmax increases,

the height of the subsequent peak also increases (Figure 7.6) but the timing

decreases (Figure 7.5). Thus a slow but sustained rise as seen in the data

for the transition to maximal insulin cannot be successfully fitted by merely

increasing the value of αmax.

Similarly, the parameter sweep of γmax shown in Figure 8.6 demonstrates that

a single change to this parameter is also insufficient to describe the data. In

this plot, the value of γ (the multiplier of the priming rate) was changed

at t = 10 minutes from one to γmax, where the values of γmax were taken

from a logarithmic scale between one and one million. It is evident that the

subsequent maximum value of Akt-PM saturates at roughly 2.5 times the

basal value, even with a million fold increase in the value of γmax.
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Figure 8.5: Parameter sweep of αmax. At time t = 10 min the value of α was
switched to αmax = kαphys for 1 ≤ k ≤ 5. The other parameters were held
constant at the values listed in Table 8.2.
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Figure 8.6: Parameter sweep of γmax. At time t = 10 min γ was switched
from one to γmax for 1 ≤ γmax ≤ 106. The other parameters were set to the
values listed in Table 8.2 throughout the simulations.
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The model could represent the observed data, however, if the condition that

β = 1 following the application of maximal insulin was relaxed. Recall that

the insulin dependence of the model is embodied by changes to the multipliers

α, β, and γ of the rates k1, k2, and k3, respectively (which take single values

throughout the time course). For the optimisation to the full data set, α

and β were changed at two different time points. At time t = ∆tα (after

the application of 1 nM insulin), α was switched to αphys, where αphys > 1.

At time t = 10 + ∆tβ (following the application of 100 nM insulin), β was

switched to βmax, where βmax < 1, α being maintained at αphys. Furthermore,

three different scenarios for the second time delay were optimised to the data:

in the first, ∆tα and ∆tβ were equal (Table 8.5); in the second, ∆tα and ∆tβ

were allowed to differ (Table 8.6); and in the third, ∆tβ = 0 (Table 8.7).

Figure 8.7 shows simulations for all three parameter sets in comparison with

the experimental data. The blue curve is the parameter set with equal time

delays; the red curve has differing time delays; and the cyan curve has a

second time delay of zero. The inset shows all three simulations in comparison

with the simulation from the parameter set optimised to the physiological

insulin data only (black dashed line) in greater detail.

The relative changes for the transition to maximal insulin were calculated

for the three parameter sets. The relative changes of the steady states,

(R1, R2, R3), were (0.14,−0.38, 2.44) for the parameter set with equal time

delays; (0.025,−0.46, 2.48) for differing delays; and (−0.23,−0.64, 2.53) for

the second delay set to zero. Note that R1 is positive for the parameter

set with equal delays; close to zero for differing delays; and negative for the

second delay set to zero. This implies that the steady state cytosolic pool

of Akt increases for the parameter set with equal delays; changes little, if

at all, for differing delays; and decreases for the second delay set to zero.

for Sensitivities for this transition were not calculated as there were large

changes to multiple parameter values.
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Table 8.5: The parameter values, 95% confidence intervals, and goodness of
fit data for the parameter set with equal time delays. At time t = ∆t, the
value of α was increased from one to αphys; and at time t = 10 + ∆t, the
value of β was decreased from one to βmax. Other parameters took the same
values throughout.

Parameter Value Confidence Interval

k1 0.3073 min−1 (0.06667, 0.5479)
k2 0.2442 min−1 (0.01424, 0.4741)
k3 2.239 min−1 (1.968, 2.51)
αphys 1.845 (1.431, 2.258)
βmax 0.3324 (0.2874, 0.3774)
∆t 0.4296 min (0.3605, 0.4986)

Goodness of Fit Data

Sum of squares error: 0.2265
R-squared: 0.9899
Adjusted R-squared: 0.9879
Root mean square error: 0.0952
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Table 8.6: The parameter values, 95% confidence intervals, and goodness
of fit data for the parameter set with differing time delays. Note that the
95% confidence interval of ∆tβ includes zero.

Parameter Value Confidence Interval

k1 0.3885 min−1 (0.1811, 0.5959)
k2 0.2749 min−1 (0.08634, 0.4635)
k3 1.532 min−1 (1.086, 1.978)
αphys 1.905 (1.532, 2.279)
βmax 0.2947 (0.2113, 0.3781)
∆tα 0.4373 min (0.3932, 0.4814)
∆tβ 0.1111 min (−0.8928, 1.115)

Goodness of Fit Data

Sum of squares error: 0.0527
R-squared: 0.9977
Adjusted R-squared: 0.9971
Root mean square error: 0.0469
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Table 8.7: The parameter values, 95% confidence intervals, and goodness of
fit data for the parameter set with ∆tβ = 0.

Parameter Value Confidence Interval

k1 0.5077 min−1 (0.4301, 0.5854)
k2 0.381 min−1 (0.3412, 0.4208)
k3 1.195 min−1 (1.015, 1.376)
αphys 2.143 (2.057, 2.228)
βmax 0.2194 (0.1846, 0.2542)
∆tα 0.43 min (0.4083, 0.4517)

Goodness of Fit Data

Sum of squares error: 0.0534
R-squared: 0.9976
Adjusted R-squared: 0.9972
Root mean square error: 0.0462
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Figure 8.7: Model simulations with parameter values optimised to the full
time course in comparison with the experimental data (black dots). In this
plot, the value of α was varied with a time delay of ∆tα after t = 0. The
value of β was also varied with a time delay of ∆tβ after t = 10. For the blue
curve, ∆tα and ∆tβ were equal; for the red curve, ∆tα and ∆tβ were allowed
to differ; and for the cyan curve, ∆tβ was set to zero. The inset shows all
three simulations in comparison with the simulation using the physiological
insulin only parameter set (dashed black curve) in greater detail.
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8.4 Discussion

The Akt Translocation model has been successfully optimised to the exper-

imental data for the transition from basal to physiological insulin. A step

increase in the effective docking rate of Akt at the plasma membrane (that

is, αk2) that occurs after a time delay of approximately 0.4 min constitutes

the minimal change required to embody the experimental data. This mini-

mal encoding suggests that, for the transition to physiological insulin at least,

plasma membrane docking is the rate limiting step. The delay may be due to

the experimental protocol, as the physiological level of insulin may take time

to reach and activate the insulin receptors. However, as noted in Chapter 6,

similar discrepancies were seen when the Akt Switch model was optimised

to data from a different experimental protocol. Furthermore, these discrep-

ancies were more noticeable at higher insulin levels, thus it is likely that the

delay represents the timing of the insulin signalling system itself, rather than

differential rates of diffusion due to changes in the insulin concentration.

It is known that Akt occupies an intermediate position in the insulin sig-

nalling pathway. Components of the pathway upstream from Akt include,

inter alia, the insulin receptor, IRS1, PI3K, and PIP3 [15]. Thus it is rea-

sonable to assume that the propagation of the insulin signal through the

upstream cascade results in a delay between the application of insulin and

the upregulation of Akt translocation. The improvement in the fit obtained

with the model with the time delay (see Figure 8.3) supports this assumption.

The data shows a substantial increase in Akt in the TIRF zone following

the application of 100 nM insulin. At any given time, the size of the Akt-

PM pool is controlled by the balance of the effective docking rate (αk2)

and the effective recycling rate (βk3). As demonstrated in Figure 8.5, it is

not possible to replicate the transition to maximal insulin simply with an

additional increase in the effective docking rate.

It is evident from Figure 8.5 that both the experimental data and the model

simulation attain a quasi-steady state within five minutes of the application
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of a physiological level of insulin. In addition, a calculation of either the

sensitivities with respect to α (the insulin effect on the docking rate) or the

relative changes of the steady state values shows that as α is increased, the

equilibrium distribution of Akt amongst the three pools changes, resulting

in a marked decrease in the primed Akt pool. This new, insulin-stimulated

steady state forms the initial state from which the transition to maximal

insulin occurs.

One hypothesis to explain the slow rise seen in the data for the transition

to maximal insulin is the depletion of the primed pool. Depletion would

necessitate replenishment of the primed pool from the cytosolic Akt before

the system could respond to further increases in insulin. In the steady state

under physiological insulin, Akt enters the primed pool from the cytosol at

the basal priming rate, k1, and exits the primed pool by docking at the plasma

membrane at the effective docking rate, αk2. In all parameter sets obtained,

k1 is less than αk2. This implies that replenishment of the primed pool is

relatively slow. However, as can be seen from the parameter sweep of αmax in

Figure 8.5, the model is still able to respond with a sustained increase in Akt-

PM (indeed, an overshoot), even from the steady state under physiological

insulin. It is the shape of the response—initial gradient, peak timing, and

other characteristics—that cause the mismatch between the simulation and

the experimental data. As the optimised model clearly has sufficient Akt

in the primed pool for a rapid response, the depletion hypothesis does not

explain the observed behaviour.

In contrast, the full time course data can be closely replicated by the model

if the effective recycling rate—the rate at which Akt leaves the plasma mem-

brane to return to the cytosol—is decreased following the application of max-

imal insulin (Figure 8.7). All three simulations shown in this figure involved

a decrease in the effective recycling rate of roughly 70 to 80 percent (see Ta-

bles 8.5, 8.6, and 8.7). This may be referred to as the retention hypothesis,

since it indicates that docked Akt is retained at the plasma membrane for a

longer period of time.
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Recent literature concerning Akt regulation suggests that there are two pre-

dominant models of events following the activation of Akt at the plasma

membrane [18, 141]. The first is the classical or diffusion model, in which

pAkt is locked into an active conformation by double phosphorylation and

then diffuses to various compartments within the cell. More recently, a

membrane-bound model has been suggested [142]. In the membrane-bound

model, pAkt remains catalytically active only while it is closely associated

with the membrane lipids PIP3 and PIP2. Dissociation from membranes en-

riched with such lipids results in rapid dephosphorylation and consequent

loss of activity.

The membrane retention hypothesis suggested by the parameter optimisation

is consistent with either model of post-activation events. In the case of the

classical model, it could indicate a prolonged tethering of Akt at the plasma

membrane that occurs under maximal insulin conditions. Alternately, in the

membrane-bound model, it could result from a differential sorting of pAkt

into membrane-bound compartments that are then targeted to various sites in

the cell. As the Akt Translocation model does not track the phosphorylation

state, both the basal recycling rate (k3) and the effective recycling rate (βk3)

represent a weighted sum of the return of activated and unactivated Akt from

the plasma membrane to the cell interior. If the recycling rate is affected by

the phosphorylation state, a more comprehensive mathematical model of

Akt activation—one that tracks both translation and phosphorylation—is

required to elucidate possible mechanisms.

Whilst the parameter optimisation of the Akt Translocation model in its cur-

rent form does not distinguish between the rival post-activation scenarios, it

does strongly suggest a change in the dominant processes regulating system

behaviour at maximal insulin. This may be termed the “dimmer switch

model” of Akt translocation. A dimmer switch is commonly used to flexibly

control the brightness of domestic lighting. Firstly, the dimmer switch must

be turned on before the circuit can produce a signal at all. The signal ampli-

tude is then regulated by the dimmer in a separate, continuous process. In
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the case of Akt translocation, the initial switch regulates the rate of release

of Akt from the primed pool, after which it enters the TIRF zone. This is

triggered at a comparatively low level of insulin and essentially functions as

an on/off switch. The secondary, dimmer regulation, however, is determined

by other processes that occur once Akt is docked at the plasma membrane.

In comparison with the on/off behaviour of the initial switch, these pro-

cesses exhibit a markedly different dose-response relationship to the insulin

concentration. Their overall effect is to retain Akt within the TIRF zone,

particularly at higher levels of insulin.

Further support for the dimmer switch model is provided by the relative

lengths of the time delays found in the optimisation to the full time course

data (Figure 8.7). It should be noted that the time delay potentially con-

sists of two components: a signalling delay, caused by biochemical changes

to upstream components; and a translocation delay, brought about by the

physical movement of Akt itself. Presumably, the signalling delay is much

shorter than the translocation delay. Indeed, it is possible that the signalling

delay is not detectable given the time-resolution of the current data. For the

transition to physiological insulin, the time delay is comparatively long (ap-

proximately 0.4 min in all parameter sets). In contrast, the best fits to the

data for the transition to maximal insulin involved a short or non-existent

time delay (the red and cyan curves in Figure 8.7). This suggests that the

first delay incorporates both a signalling and a translocation delay; whereas

the second delay is a signalling delay only.

The dimmer switch model of Akt translocation could be further refined

should appropriate experimental data become available. With the current

experimental data terminating at 15 minutes, it is not clear whether Akt at

the plasma membrane has reached a plateau or is still increasing. Figure 8.7

shows simulations from the three parameter sets continued on for a further

two minutes after the experimental data ends. The cyan curve (in which

the second delay is zero) appears to plateau, but the red and blue curves

(differing and equal delays) exhibit small overshoots. Judged in terms of the
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adjusted R-squared value, the cyan and red curves are a (slightly) better fit

to the experimental data than the blue. In addition, the cyan curve is a

good approximation for the physiological transition, both for the overshoot

and the steady state values. Of the three parameter sets, it compares most

favourably with the simulation from the optimisation to the physiological

insulin data only (see inset, Figure 8.7).

However, the three parameter sets have different implications for the steady

state values of the model at maximal insulin. A calculation of the relative

changes shows that the direction of change (increase or decrease) for the

cytosolic Akt pool differs between the parameter sets: positive for the pa-

rameter set with equal time delays (0.14); small but positive for differing

time delays (0.025); and negative for the zero second time delay (−0.23). In

Chapter 6 it was hypothesized that the cycling of Akt and pAkt between cy-

tosol and plasma membrane effectively splits the downstream insulin signal

into two branches. One is a fast acting, plasma membrane-bound branch,

that is mostly associated with the metabolic functions of Akt; the second is

a slower, more sustained, cytosolic branch that is associated predominantly

with the mitogenic functions of Akt. It is possible that a change in the steady

state values of the plasma membrane and the cytosolic pools of Akt could

have differential effects on the two branches of down-stream signalling. A

longer time course under the current experimental protocol would permit a

parameter optimisation that distinguishes more clearly between the three pa-

rameter sets by a more accurate calculation of steady state values at maximal

insulin.

Data from a more detailed range of insulin concentrations would be useful

for fine-tuning the model. In particular, experimental data for a transition

directly from basal to maximal insulin would elucidate the nature of the

time delay quantified by the parameter optimisation. Furthermore, in the

current model, α and β are both step functions of the insulin input, as

greater detail was not justified by the existing experimental data. Should

further data become available, the step functions could be replaced with
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mathematically smoother (and more biologically plausible) functional forms,

thus determining the dose response of the rates in the system.

8.5 Summary

From the parameter optimisation of the Akt Translocation model, a time

delay of approximately 0.4 min between the initial application of insulin

and the translocation of Akt in 3T3-L1 adipocytes was quantified. This

places a time constraint on the intermediate processes, specifically those lying

between the insulin receptor and the translocation of Akt. Interestingly,

further time delays do not need to be invoked to explain the translocation

response to subsequent applications of insulin.

This investigation indicates that the dominant processes acting in the translo-

cation of Akt differ with the insulin dose. In the case of physiological insulin,

it is sufficient for the system to regulate the release of Akt directly to the

plasma membrane in response to the insulin signal. However, at higher levels

of insulin, further changes in the rate of release are unable to describe the

system behaviour. Under these conditions, regulation of the recycling of Akt

from the plasma membrane to the cytosol is also required.

The very different modalities of regulation observed in the physiological and

maximal insulin states reinforce the idea that the dynamic behaviour at max-

imal insulin cannot be directly extrapolated to that at the physiological level.

The optimisation of the Akt Translocation model to data has allowed the

quantification of the timing of upstream signalling. Extending the model

to include phosphorylation will further elucidate the downstream signalling

pathway.
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Chapter 9

Discussion

Akt is a pivotal crosstalk node mediating between multiple signalling path-

ways within the mammalian cell. Known to play a central role in cell fate

decisions (growth, proliferation, and anti-apoptosis), Akt also functions as a

key regulator of glucose transport in response to insulin. The activation of

only a small percent of the Akt in insulin-sensitive cells results in maximal

translocation of GLUT4 to the plasma membrane, enabling the diffusion of

glucose into the cell. Since glucose transport into the cell is rate-limiting

for glucose metabolism [15, 39], Akt constitutes a vital link coordinating re-

source intensive processes, such as growth and proliferation, with cellular

metabolism.

As the dysregulation of Akt is associated with numerous “diseases of afflu-

ence,” such as diabetes and cancer, it has drawn considerable attention from

the research community, including mathematical modellers. Many models

featuring Akt in a variety of signalling pathways and cell types have ap-

peared in the literature (see Section 3.4). However, the treatment of Akt

translocation and activation within these models has, with a few exceptions,

been somewhat cursory. This is, at least in part, the result of limitations to

the current understanding of the biological processes involved.
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However, it is clear that the signalling specificity of Akt is driven both by its

biochemical state and its spatial distribution within the cell. Nonetheless, few

of the mathematical models developed to date have addressed this important

aspect of Akt signalling. The Akt Switch model in Chapter 6 constituted an

initial investigation into the interplay between the translocation and phos-

phorylation subprocesses in the activation of Akt. The model employed two

spatial pools—at the plasma membrane and in the cytosol—and tracked the

phosphorylation state of Akt in both locations (see Figure 6.2). The re-

sult was a simple, linear, deterministic, four-compartment ODE model that

embodied the main features of Akt activation. This model had an analytic so-

lution, was computationally tractable, and produced output consistent with

the main features of the existing experimental data.

Notwithstanding its inherent simplicity, the Akt Switch model provided sig-

nificant insight into Akt activation. Firstly, the model demonstrated that

some of the apparent anomalies of Akt signalling could be explained by dis-

tinguishing between the roles of translocation and phorphorylation in the

activation of Akt. In particular, the widely reported overshoot of pAkt in

the initial stages of signalling could be explained if these subprocesses occur

on time scales differing by several orders of magnitude. In addition, translo-

cation was identified as the slower, rate-limiting step (Table 6.3). This is

a biologically plausible result, as translocation involves the physical move-

ment of components within the cell, whereas phosphorylation is a chemical

reaction taking place in situ.

Secondly, the explicit inclusion of two cellular locations in the model (cytosol

and plasma membrane) enabled different modalities of downstream regula-

tion. In effect, the movement of Akt and pAkt between cytosol and plasma

membrane splits the downstream signal into a fast acting, plasma membrane-

bound branch and a slower, more sustained, cytosolic branch of signalling.

In the optimised Akt Switch model, these two signalling branches exhibited

distinct differences in the initial rate, degree of overshoot, and steady state

values of pAkt under various levels of insulin stimulation (Figure 6.8). More-
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over, this differential regulation was achieved without the need to invoke

complex feedback mechanisms.

However, as with all mathematical models, the Akt Switch model had signif-

icant limitations. As seen in Figure 6.7, there was a noticeable discrepancy

between the model output and the experimental data in the first few minutes

of the simulation. This discrepancy was particularly obvious at the higher

(100 nM) insulin concentration, and is indicative of a timing delay in the

activation process, most probably caused by a delay in the translocation of

Akt. Nonetheless, the addition of a further parameter in the form of a timing

delay could not be justified due to the scarcity of the experimental data (see

Section 6.3.3). More importantly, TIRF microscopy data published after the

development of the Akt Switch model demonstrated that the translocation

process itself manifests overshoot, quite apart from the phosphorylation state

of Akt [128].

Consequently, the Akt Translocation model was devised in order to investi-

gate this subprocess further (Chapter 7). As overshoot was evident in the

translocation process itself, an ODE model with three distinct Akt pools

was developed. The three pools represented Akt within the cytosol, Akt

primed for docking at the plasma membrane, and Akt docked at the plasma

membrane (see Figure 7.1). As the model did not track the phosphorylation

state of Akt, all three pools potentially contained both phosphorylated and

un-phosphorylated Akt.

Preliminary mathematical analysis of the Akt Translocation model was car-

ried out in Section 7.3.1. Firstly, the model was non-dimensionalised (that

is, re-written in terms of relative rates). This resulted in a slightly simpler

formulation, which was then shown to be mathematically equivalent to the

harmonic oscillator equation (Section 7.3.1). This is a well-studied and well-

understood differential equation which provided a useful analytical frame-

work for understanding the system. Both the steady state and transient

behaviours of the model over the entire parameter space were elucidated,

and it was shown the model is always heavily damped. This means that the
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observable output of the model can be classified as either overshoot (under-

shoot) or monotonic increase (decrease), only. Conditions for overshoot—a

biologically significant feature of Akt translocation—were also determined.

In addition, important downstream signalling metrics (peak height, peak

timing, and initial gradient of Akt-PM) as functions of the insulin concen-

tration were analysed in Section 7.3.3. This revealed an inherent hysteresis

in the behaviour of the model arising from the initial conditions. Hysteresis

is potentially significant for downstream signalling, and will undoubtedly be

an important theme in any future investigation of the behaviour of the model

under pulsatile insulin stimulation (see Chapter 10).

Throughout the analysis of the Akt Translocation model, it was assumed that

the insulin signal impinges on the system by increasing the docking rate of

Akt. That is to say, the fraction of Akt at the plasma membrane increases in

response to insulin because Akt enters the plasma membrane pool at a faster

rate, rather than leaving at a slower rate. However, optimisation of the Akt

Translocation model to TIRF microscopy data from 3T3-L1 adipocytes under

insulin stimulation at both physiological (1 nM) and very high (100 nM)

concentrations [128] showed that this is not necessarily so.

As an outcome of the parameter optimisation detailed in Chapter 8, the time

delay between the application of insulin and the Akt translocation response

noted in Chapter 6 was quantified. For physiological insulin, the delay was

approximately 0.4 min (Table 8.2). This is a significant result, as it places

limitations on the timing of signalling events upstream from Akt in the insulin

signalling pathway. Intriguingly, the transition from physiological insulin to

higher stimuli did not incur a further delay.

These results also suggest that the dominant processes regulating the Akt-

PM fraction differ with the insulin dose. At the physiological level, the rate-

limiting step was the release of Akt to the plasma membrane in response to

the insulin signal, consistent with the mathematical analysis in Chapter 7.

At higher levels, in contrast, further changes to the rate of release alone were
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unable to describe the system behaviour (Figure 8.5). Under these condi-

tions, a decrease in the rate of recycling of Akt from the plasma membrane

to the cytosol was needed in order to reproduce the experimental data (Fig-

ure 8.7). This suggests that at higher insulin levels, other processes come

into play that prolong the retention of docked Akt at the plasma membrane.

Broadly speaking, views on post-activation events in the Akt cycle fall into

two major camps. The classical view holds that activated Akt leaves the

plasma membrane following phosphorylation and diffuses to its many sub-

strates which are found throughout the cell. In the membrane-bound view,

however, pAkt retains its activated state only as long as it is tightly asso-

ciated with lipid membranes such as PIP2 and PIP3. This would require

the post-activation movement of pAkt through the cell to occur via some

sort of vesicle transport mechanism. Unfortunately, the Akt Translocation

model in its current form cannot cast any light on this interesting question,

as the behaviour of the model is consistent with either explanation. This is,

in part, due to the fact that the phosphorylation state of Akt is not explicitly

included in the model.

Accordingly, an obvious next step in the study of Akt activation is the de-

velopment of a model that tracks both the location and biochemical state of

all Akt in the cell. One such model (amongst other things) is suggested as

future work in Chapter 10. It is hoped that the development and validation

of this model will lead to further insight into this important signalling node.



160 Discussion



Chapter 10

Future Work

The regulation of Akt translocation and activation remains a significant, if

only partially understood, portion of the insulin signalling network. The

following are some potentially fruitful areas of investigation arising from the

current work.

The first is the response of the insulin signalling pathway to pulsatile or peri-

odic insulin inputs. It is known that in vivo insulin secretion is periodic, with

oscillations that occur on a number of different timescales: rapid (5-15 min-

utes); ultradian (1-2 hours); or circadian (24 hours) [4]. The pulsatile release

of insulin is believed to be necessary for the maintenance of normal glu-

cose homeostasis [125]; and dysregulation of pulsatile secretion, particularly

in the high frequency modes, is an early development in pre-diabetes [127].

However, very little, if any, experimental work has been performed in vitro

on the response of the insulin signalling pathway to periodic stimulation, as

it is difficult to vary the insulin concentration in a periodic fashion under

standard ‘wet lab’ conditions. In contrast, the system response to periodic

forcing of the insulin signalling pathway or one of its subcomponents, such as

Akt, can be readily studied in silico. There are a plethora of mathematical

methods and techniques in the areas of control system engineering and sig-
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nal analysis, in particular, that could be profitably brought to bear on this

interesting question.

The second is the embedding of a mathematical model of Akt activation—

either the extant Akt Switch model or the Akt Activation model proposed

later in this chapter—in a larger model of the insulin signalling pathway.

An obvious candidate is the Sedaghat model, but there are numerous other

models for the various components of the insulin signalling pathway, some of

which have been discussed in Chapter 3. There are two facets to this task

which can be pursued independently: the link with the upstream signalling

network, between the insulin receptor and the formation of PIP3; and the

downstream link between Akt activation and GLUT4 translocation.

The parameter optimisation of the Akt Translocation model recounted in

Chapter 8 provided an estimate of the time delay between the application of

insulin and the subsequent translocation of Akt. This places an important

constraint on the timing of signalling events between the insulin receptor and

Akt, and should inform future attempts to model the upstream signalling

pathway. Similarly, it can be expected that the development and validation

of models connecting Akt activation to that of its numerous substrates will

provide further insight into the downstream signalling pathway. With such a

model, the different regulatory modalities afforded by the two ‘arms’ of Akt

signalling—one at the plasma membrane and one in the cytosol—could be

further investigated. Prior to this, however, it is clear that a more detailed

treatment of the role of phosphorylation in Akt activation is necessary.

Currently, the future task of highest priority is the development, optimisa-

tion, and validation of a mathematical model that incorporates both the

physical movement of Akt and changes to its phosphorylation state. A

schematic diagram of one such model—the Akt Activation model—is given

in Figure 10.1. The variables, parameters and equations of the model are

listed in Table 10.1, and MATLAB code is given in Appendix A.4.
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Figure 10.1: Diagram of the Akt Activation model. Unactivated Akt is
initially synthesized in the cytosol (A1). It enters the primed pool (A2) and
then docks at the plasma membrane (A3). At the plasma membrane, the Akt
is activated by phosphorylation (A4), and is redistributed in the activated
conformation to the cytosol (A5).
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Table 10.1: Variables, parameters, and equations of the Akt Activation
model.

Variables

A1: Unactivated Akt in the cytosol
A2: Unactivated Akt in the primed pool
A3: Unactivated Akt docked at the plasma membrane
A4: Activated Akt (pAkt) docked at the plasma membrane
A5: Activated Akt (pAkt) in the cytosol

Parameters

r1: Rate of transition into the primed state
r2: Rate of docking of Akt at the plasma membrane
r3: Rate of recycling of Akt from plasma membrane to cytosol
r4: Rate of recycling of pAkt from plasma membrane to cytosol
pon: Rate of phosphorylation of Akt
poff : Rate of dephosphorylation of pAkt

Equations

dA1

dt
= r3A3 + poffA5 − r1A1

dA2

dt
= r1A1 − r2A2

dA3

dt
= r2A2 − (r3 + kon)A3 + poffA4

dA4

dt
= ponA3 − (poff + r4)A4

dA5

dt
= r4A4 − poffA5

Note: at all times,
5∑
i=1

Ai = 100 (percentages).
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The Akt Activation model is the Akt Translocation model with added pools

representing the phosphorylation state of Akt. It is assumed that the Akt

is dephosphorylated before entering the primed pool, so there are only two

phosphorylated pools: one in the cytosol and one at the plasma membrane.

This results in a total of five state variables: A1, unactivated Akt in the cy-

tosol; A2, Akt primed for docking at the plasma membrane; A3, unactivated

Akt docked at the plasma membrane; A4, activated Akt at the plasma mem-

brane; and A5, activated Akt in the cytosol. As with the previous model, it

is assumed that total Akt is conserved. In addition, the model has six rate

constants: r1, the rate of transition of Akt into the primed pool (priming

rate); r2, the rate of Akt docking at the plasma membrane (docking rate);

r3, the rate of Akt recycling from plasma membrane to cytosol (recycling

rate of Akt); r4, the rate of pAkt recycling from plasma membrane to cytosol

(recycling rate of pAkt); pon, the phosphorylation rate of Akt; and poff , the

dephosphorylation rate of pAkt.

Figure 10.2 shows output from a simulation of the Akt Activation model. All

three curves in this plot represent Akt docked at the plasma membrane: the

red curve is unphosphorylated Akt (A3); the blue curve is phosphorylated

Akt (A4); and the magenta curve is total Akt (A3 +A4). Thus the magenta

curve corresponds to the variable x3 in the Akt Translocation model. The

parameter values used for this simulation were: r1 = 0.6205; r2 = 0.3789;

r3 = 2.266; r4 = 2.266; pon = 0.6; and poff = 0.06. These parameter

values were, at best, educated guesses and have not yet been optimised to

experimental data.

There are a number of simplifications of the model structure that could be

considered. For example, in the current model, it is tacitly assumed that

dephosphorylation occurs at the same rate, irrespective of location. This

is not necessarily so. Indeed, it may not be possible to source appropriate

experimental data to quantify the value of poff at the plasma membrane.

In that case, both phosphorylation and dephosphorylation at the plasma

membrane could be replaced with a single forward reaction that occurs at
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Figure 10.2: Model simulation of the Akt activation model. The red curve is
the level of unphosphorylated Akt docked at the plasma membrane (A3); the
blue curve is the phosphorylated Akt at the plasma membrane(A4); and the
magenta curve is the total Akt docked at the plasma membrane (A3 + A4).
Parameter values were: r1 = 0.6205; r2 = 0.3789; r3 = 2.266; r4 = 2.266;
pon = 0.6; and poff = 0.06. Note that these values were hand-picked and
have not been optimised to data.
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the effective phosphorylation rate, peff = pon−poff . This would permit more

tightly constrained data fitting and more straightforward interpretation of

results.

One of the most exciting outcomes of the Akt Activation model is the op-

portunity to test rival scenarios concerning post-activation events against

experimental data. Parameter optimisation of the model could be used to

investigate the membrane retention hypothesis, and post-activation events

in the Akt cycle more generally. For instance, in the parameter set used for

Figure 10.2, the recycling rate of Akt (r3) and pAkt (r4) were equal. This

could be made a hard constraint in the data fitting. Alternately, r3 and r4

could be allowed to differ, or r3 could be set to zero.

Finally, the differing signalling modalities emanating from pAkt, either at

the plasma membrane or in the cytosolic pool, could be explored. By linking

the Akt Activation model to the downstream substrates of Akt, interest-

ing questions concerning the regulation of the downstream insulin signalling

pathway could be explored.
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Chapter 11

Conclusion

Akt is a protein kinase that regulates numerous processes in the cell, includ-

ing cell growth and division, anti-apoptosis, and glucose metabolism. The

abnormal regulation of Akt is implicated in many diseases, such as cancer,

cardiovascular disease, and type two diabetes.

Akt is synthesized inside the cell in an inert state. Under the influence of

insulin, it moves to the plasma membrane to be activated by phosphoryla-

tion. However, activated Akt (pAkt) is also found in many other locations,

including the cytoplasm, the mitochondrial membrane, and the nucleus: the

spatial distribution of pAkt within the cell is an important determinant of

downstream regulation. However, this aspect of Akt signalling has received

scant treatment in the existing mathematical modelling literature.

The Akt Switch model was a simple, linear, four-compartment ordinary dif-

ferential equation (ODE) model of Akt activation that tracked both the bio-

chemical state and the physical location of Akt. Computationally tractable

and readily analysed, it elucidated some of the apparent anomalies of Akt

signalling. In particular, it enabled the differential regulation of downstream

substrates via the two branches of Akt signalling (plasma membrane-bound

and cytosolic), without the need for complex feedback mechanisms.
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However, the Akt Switch model had some limitations, including an initial dis-

crepancy between the model output and the experimental data. Furthermore,

overshoot in the Akt Switch model resulted from the interaction between the

different timescales of translation and phosphorylation, whereas subsequently

published TIRF microscopy work clearly demonstrated the presence of over-

shoot in the translocation process itself.

As a consequence, the Akt Translocation model was developed to investigate

the translocation of Akt in response to insulin in vitro. It was a simple, de-

terministic, three-compartment ODE model that could reproduce the salient

features of Akt translocation, such as a significant overshoot in the plasma

membrane-bound Akt fraction (Akt-PM) in the early stages of simulation.

Analysis of the model showed that it behaves as a heavily damped harmonic

oscillator with solution curves that either increase monotonically or over-

shoot. Further analysis also demonstrated that the model exhibits a distinct

hysteresis arising from the initial state of the system.

Optimisation of the model to the TIRF microscopy data yielded further in-

sights. A time delay of approximately 0.4 min between the application of

insulin and the Akt response was established for the transition from basal

to physiological insulin. However, no delay was required for a further tran-

sition to maximal insulin. In addition, it was apparent that the processes

regulating the size of the Akt-PM pool vary with the insulin level. For phys-

iological insulin, the rate limiting step was the release of Akt to the plasma

membrane. At high insulin levels, however, the additional down-regulation of

Akt recycling away from the plasma membrane was also necessary to explain

the data.

Akt is a vital part of insulin signalling and glucose metabolism. The models

developed in this thesis provide a solid foundation for the further elucidation

of this critical crosstalk node.



Appendices

171





Appendix A

MATLAB

A.1 Receptor State Space Model

function RSSM

% Simulates the Receptor state space model with the

% Sedaghat downstream subsystem.

clear all

function output=RSSM ODE(t,X)

% Insulin pulse (15 min)

if t<15

y1=X(1)*1e−9;
else y1=0;

end

% Receptor state space model

y2=X(2); % unbound surface insulin receptors

y3=X(3); % activated insulin receptors (x4+x5) from old model

% Downstream Sedaghat model

x9=X(4); % unphosphorylated IRS−1
x10=X(5); % tyrosine phosphorylated IRS−1

173



174 MATLAB

x11=X(6); % unactivated PI3 kinase

x12=X(7); % tyrosine phosphorylated IRS−1/PI3 kinase complex

x13=X(8); % PI(3,4,5)P 3

x14=X(9); % PI(4,5)P 2

x15=X(10); % PI(3,4)P 2

x16=X(11); % unactivated akt

x17=X(12); % activated akt

x18=X(13); % unactivated PKC−zeta
x19=X(14); % activated PKC−zeta
x20=X(15); % intracelllular GLUT4

x21=X(16); % cell surface GLUT4

% Parameters

% Receptor state space model

r1=6e7;

rm1=0.202;

PTP=1;

% Downstream Sedaghat

k7=4.16;

km7=(2.5/7.45)*4.16;

k8=5.00e−15/(7.45e−13*9.5e−14)*10.0;
km8=10.0;

IRp=8.97e−13;

k9=(1.39−(0.31/99.4)*(94/3.1)*1.39)*(x12/5.0e−15)+...
(0.31/99.4)*(94/3.1)*1.39;

km9=(94/3.1)*1.39;

k10=2.77*(3.1/2.9);

km10=2.77;

PTEN=1;

SHIP=1;

k11=0.1*6.93*((x13−0.31)/2.79);
km11=6.93;

k12=0.1*6.93*((x13−0.31)/2.79);
km12=6.93;

k13=(4/96)*0.167;

km13=0.167;
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k13p=(40/60−4/96)*0.167*min((0.2*x17+0.8*x19)/(100/11),1);
k14=96*0.001155;

km14=0.001155;

% Differential equations

% Receptor state space model

dy1dt=0;

dy2dt=rm1*y3−r1*y1*y2;
dy3dt=r1*y1*y2−rm1*y3;

% Downstream Sedaghat

dx9dt=km7*PTP*x10 − k7*x9*y3/IRp;

dx10dt=k7*x9*y3/IRp + km8*x12 − (km7*PTP + k8*x11)*x10;

dx11dt=km8*x12 − k8*x10*x11;

dx12dt=k8*x10*x11 − km8*x12;

dx13dt=k9*x14 + k10*x15 − (km9*PTEN + km10*SHIP)*x13;

dx14dt=km9*PTEN*x13 − k9*x14;

dx15dt=km10*SHIP*x13 − k10*x15;

dx16dt=km11*x17 − k11*x16;

dx17dt=k11*x16 − km11*x17;

dx18dt=km12*x19 − k12*x18;

dx19dt=k12*x18 − km12*x19;

dx20dt=km13*x21 − (k13 + k13p)*x20 + k14 − km14*x20;

dx21dt=(k13+k13p)*x20 − km13*x21;

%result

output=[dy1dt;dy2dt;dy3dt;dx9dt;dx10dt;

dx11dt;dx12dt;dx13dt;dx14dt;dx15dt;

dx16dt;dx17dt;dx18dt;dx19dt;dx20dt;dx21dt];

end

% Insulin input in nM

Ins=100;

% Initial conditions

ICs=[9e−13,0,1e−12,0,1e−13,0,0.31,99.4,0.29,100,0,100,0,96,4];

% Model simulation

options=odeset('InitialStep',0.0001,'RelTol',1e−9,'AbsTol',1e−15);
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sol=ode45(@RSSM ODE,[0,60],[Ins,ICs],options);

% Plot of GLUT4−PM
tint=linspace(0,60,100);

P=deval(sol,tint);

plot(tint,P(16,:))

ylim([0 40])

xlabel('Time (min)')

ylabel('GLUT4 Expression (PM)')

end

A.2 Akt Switch Model

function AktSwitch

% Simulates the Akt Switch model at 1 nM insulin

clear all

function output= AktSwitch ODE(t,x)

% Variables

Ac=x(1); % Akt Cyt

Pc=x(2); % pAkt Cyt

Ap=x(3); % Akt PM

Pp=x(4); % pAkt PM

% Parameter values for 1 nM insulin

alpha=0.014;

beta=2.2;

k in=0.55;

k off=0.35;

k out=alpha*k in;

k on=beta*k off;

% Differential equations

dAc dt=k off*Pc − k out*Ac + k in*Ap;

dPc dt=k in*Pp − (k off+k out)*Pc;

dAp dt=k off*Pp + k out*Ac − (k on+k in)*Ap;

dPp dt=k on*Ap + k out*Pc − (k in+k off)*Pp;
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output=[dAc dt;dPc dt;dAp dt;dPp dt];

end

% Initial conditions

AC0=0.95;

PC0=0;

AP0=0.05;

PP0=0;

% Model simulation

options=odeset('InitialStep',0.0001,'RelTol',1e−9,'AbsTol',1e−15);
sol=ode15s(@AktSwitch ODE,[0 30],[AC0 PC0 AP0 PP0],options);

% Plot model output

t=linspace(0,30,200); %timepoints for plotting output

Q=deval(sol,t); %Finds solution at time points in data

plot(t,Q(4,:))

xlabel('Time (min)')

ylabel('pAkt−PM')
end

A.3 Akt Translocation Model

function AktTranslocation

% Simulates the Akt translocation model at 1 nM insulin

clear all

% Parameters for 1 nM insulin

k1=0.6205;

k2=0.3789;

k3=2.266;

function output= AktTrans ODE(t,y)

% Variables

X1=y(1); %Akt−Cyt
X2=y(2); %Akt−Pri
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X3=y(3); %Akt−PM

% Step change in alpha

if t<0.4441

Alpha=1;

else Alpha=1.878;

end

% Differential equations

dx1 dt=−k1*X1 + k3*X3;

dx2 dt=k1*X1−k2*Alpha*X2;
dx3 dt=Alpha*k2*X2−k3*X3;

output=[dx1 dt;dx2 dt;dx3 dt];

end

% Initial Conditions

ICs=[k3/k1,k3/k2,1];

% Model simulation

options=odeset('InitialStep',0.0001,'RelTol',1e−9,'AbsTol',1e−15);
sol=ode45(@AktTrans ODE,[−5 15],ICs,options);

% Plot output

tint=linspace(−5,15,200); %timepoints for plotting

Q=deval(sol,tint);

plot(tint,Q(3,:))

ylim([0.8 1.6])

ylabel('Akt−PM')
xlabel('time (min)')

end
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A.4 Akt Activation Model

function ActModel

% Simulates the Akt Activation model

clear all

%Parameter values

r1=0.6205; %Priming rate

r2=0.3789; %Docking rate of Akt

r3=2.266; %Recycling rate of Akt

r4=2.266; %Recycling rate of pAkt

pon=0.6; %Phosphorylation rate

poff=0.06; %Dephosphorylation rate

function output=ActMod ODE(t,y)

% Variables

A1=y(1); %Akt−Cyt
A2=y(2); %Akt−Pri
A3=y(3); %Akt−PM
A4=y(4); %pAkt−PM
A5=y(5); %pAkt−Cyt

% Differential equations

dA1 dt=r3*A3+poff*A5−r1*A1;
dA2 dt=r1*A1−r2*A2;
dA3 dt=r2*A2−(r3+pon)*A3+poff*A4;
dA4 dt=pon*A3−(poff+r4)*A4;
dA5 dt=r4*A4−poff*A5;

output=[dA1 dt;dA2 dt;dA3 dt;dA4 dt;dA5 dt];

end

% Initial Conditions

ICs=[64,32,4,0,0]; %percentages

% Model simulation

options=odeset('InitialStep',0.0001,'RelTol',1e−9,'AbsTol',1e−15);
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sol=ode45(@ActMod ODE,[0 30],ICs,options);

% Plot output

tint=linspace(0,30,200); %timepoints for plotting

Q=deval(sol,tint);

plot(tint,Q(3,:))

ylabel('Akt−PM')
xlabel('time (min)')

end
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