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I 

Abstract 

Owing to the rapidly advanced production techniques and falling cost of material 

manufacture, advanced materials are increasingly applied in both academia and industry 

fields. Classical static structural stability analysis provides a reliable and efficient tool to 

evaluate critical buckling load-carrying capacity of thin-walled structures made of 

traditional homogeneous materials. However, as the application of advanced materials is 

becoming diverse and more complex, such as thermal effect, damping effect and resting 

on or embedding in elastic foundation/medium, the problems of dynamic characteristics 

and stability of structures made of new materials need to be further studied. Thus, it is 

vital and essential to investigate the dynamic behaviour and stability of slender 

engineering structures (i.e., beam, plate and shell) made of advanced materials under 

different extreme conditions and develop an appropriate strategy to ensure safety and 

serviceability of these structures. 

This dissertation aims to provide a comprehensive analytical framework for dynamic 

behaviour assessment of beam, plate and cylindrical shell made of advanced materials, as 

well as a vivid modelling on the damping effect, thermal effect and elastic foundation for 

structures under dynamic loadings. For dynamic buckling of beams, both the Galerkin-

Force method and energy method are utilized by considering different boundary 

conditions, damping and thermal effects; For dynamic buckling of plates, based on the 

classical plate theory and accounting for von-Kármán strain-displacement relation, the 

nonlinear compatibility equation is derived. Then the Galerkin method and Airy’s stress 

function are applied, and the obtained the nonlinear differential equations are solved 



II 

numerically by the fourth-order Runge-Kutta method; As for the dynamic buckling of 

cylindrical shells, by employing Hamilton’s principle, the equations of motions are 

derived.  

Therefore, by comparing with finite element methods, the other analytical methods in 

the open literature, the validity, accuracy, applicability of the proposed analytical models 

and solutions were comprehensively examined. The dynamic buckling analysis and 

dynamic assessment of thin-walled structures made of advanced materials conducted in 

this dissertation can help achieve the optimum design of such structures under dynamic 

loadings, as well as a useful benchmark for design and analysis of nano/micro-sized 

devices and systems. 
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Chapter 1 Introduction 

1.1 Background  

As the basic elements in engineering practices, the mechanics and mechanism of beam, 

plate and shell structure have been investigated extensively in the past. Classical static 

structural stability analysis provides a reliable and efficient tool to evaluate the critical 

buckling load-carrying capacity of thin-walled and slender engineering structures (i.e., 

bar structures, plates or shells structures, cylindrical columns) [1-3]. On the bases of the 

well-established theoretical foundations (force-equilibrium and energy method)[4-7], 

accompanied with the availability of high-speed digital computers[1, 8], the static 

structural stability analysis has been widely implemented in different engineering fields 

[1, 9-11]. However, the static buckling analysis framework hardly provides general 

guidelines for structural design against dynamic buckling due to its incompetence of 

estimating the structural behaviour subjected to dynamic loads (i.e., wind effect, 

earthquakes, and stochastic dynamic loads) [12-14]. The time-dependent forces are 

intrinsic among engineering applications, and more importantly, excessively 

simplifications on such type of loading conditions in both structural analysis and design 

could compromise the structural safety.  

Due to the rapidly advanced production techniques and falling cost of material 

manufacture, advanced materials are increasingly used in flexible batteries, replacement 

bones, structural components, lightweight sensors and so on in both academia and 

industry. As the application of advanced materials is becoming diversification and more 

complex, so the problems of dynamic characteristics and stability of structures made of 
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new materials need to be further studied. Compared with the traditional homogeneous 

materials, composite materials have widely used in the engineering fields, such as 

reinforced-concrete slabs, high-way bridge decks, flight wings, ship hull, and aerospace 

structures for many decades, due to its outstanding stiffness, good energy-efficient and 

high strength-weight ratio. Even though fibre-reinforced or laminate composite materials 

have distinguished stiffness and large strength-weight ratio, severe stress concentrations 

or singularities at the corners of structure boundaries or interfaces between layers made 

of different materials would undermine the structure strength and even lead to non-

deterministic buckling. Fortunately, an amazingly creative invention named functionally 

graded materials (FGMs) was proposed by material scientists during the spacecraft 

project, as a means of ultrahigh temperature resisting materials, which can effectively 

avoid stress concentrations or singularities due to the smooth transition of the material 

interface between metal and ceramic. Since then, the studies about FGMs have been 

completely blooming in almost all associated fields.  

In general engineering applications (i.e. aerospace and mechanical engineering), 

structures are not only subjected to dynamic loadings but also exposed to the physical 

environment, such as thermal effects, moisture effects, etc. Furthermore, these structures 

usually rest on or embed in elastic foundation/medium. Under such circumstance, 

dynamic characteristics and stability of structures may be different from traditional ones. 

Thus, to ensure safety and serviceability of the thin-walled and slender engineering 

structures (i.e., beam, plate and shell), investigations on the dynamic characteristics and 

stability of such structures made of advanced materials under different conditions are 

much needed. 
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1.2 Objectives and Scope 

The practical relevance and significance come from the increasing application of 

composite materials, orthotropic materials, FG orthotropic materials and the latest FG 

porous materials in modern engineering areas and the unknown influence of material 

properties, damping effect, thermal effect, elastic foundation, etc., on structures’ dynamic 

characteristics and stability behaviours. Therefore, the primary purpose of this thesis is to 

provide a comprehensive analytical analysis framework for dynamic behaviour 

assessment of beam, plate and cylindrical shell made of advanced materials, as well as a 

vivid modelling on the damping effect, thermal effect and elastic foundation for structures 

under dynamic loadings. More explicitly, the following objectives have been 

encompassed in this research: 

1. A unified nonlinear dynamic buckling analysis for Euler-Bernoulli beam-columns 

subjected to constant loading rates is proposed with the incorporation of mercurial 

damping effects under thermal environment. Both the Galerkin-Force method 

(GFM) and energy method (EM) are capable of handling effectively different 

boundary conditions, damping and thermal effects. 

2. Nonlinear dynamic characteristics and stability of composite orthotropic plate on 

Winkler-Pasternak elastic foundation subjected to different axial velocities was 

developed with damping and thermal effects for the first time.  

3. The nonlinear primary resonance behaviour of cylindrical shells made of 

functionally graded (FG) porous materials subjected to a uniformly distributed 

harmonic load including the damping effect was investigated. Three types of FG 
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porous distributions, namely symmetric porosity distribution, non-symmetric 

porosity stiff or soft distribution and uniform porosity distribution were considered. 

4. The dynamic stability analysis of an FG orthotropic circular cylindrical shell 

surrounded by a Winkler-Pasternak elastic foundation subjected to linearly 

increasing load with the consideration of damping effect has been presented. 

5. An analytical approach on the nonlinear dynamic buckling of the orthotropic 

circular cylindrical shells made of an exponential law functionally graded material 

(E-FGM) subjected to the longitudinal constant velocity is investigated with the 

incorporation of mercurial damping effect. 

The developed method presented herein provides a comprehensive analytical analysis 

framework for dynamic stability assessment of thin-walled structures made of advanced 

materials with consideration of damping effects, thermal effects and elastic foundations, 

and the obtained conclusions can help optimum design of such structures under dynamic 

loadings, as well as a useful help for design and analysis of nano/micro-sized devices and 

systems. 

1.3 Methodology  

Among various approaches for estimating critical dynamic buckling load of structures, 

three major categories can be classified. The first category is the total energy-phase plane 

approach [15, 16], which emphasises on establishing the sufficiency conditions for 

structural stability (lower bounds) or instability (upper bounds) due to the characteristics 

of the system phase plane. The second category can generally be recognised as the total 

potential approach which was proposed by Simitses in 1965 [17]. Within this framework 

of analysis, the energy balance equation was implemented so the relationship between the 
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potential energy and load parameter can be robustly established. The third type is the 

equation of motion approach, which was proposed by Budiansky and Roth in 1962 [18]. 

The governing equation can be solved numerically according to the parameters of the 

concerned structures, and also such approach can be flexibly modelled by computational 

methods which have been widely implemented [8, 19, 20]. Therefore, Budiansky-Roth 

criterion is used to evaluate dynamic buckling responses in this study.  

The dynamic buckling phenomena of thin-walled structures have been investigated 

analytically, numerically and experimentally for more than half of century in various 

areas. The increasing application of FGM, such as orthotropic FG, FG porous, etc., makes 

the research of dynamic buckling more complex. It is true that the traditional finite 

element method (FEM) can serve as a reference to verify the dynamic characteristics of 

simply structures. However, the advantages of analytical methods over FEMs are: Firstly, 

for linear problems, the traditional FEM approach (i.e. ANSYS that used in this study) is 

very fast. For nonlinear dynamic analysis, the FEM takes more time to achieve a better 

convergence. Moreover, one needs to spend much time on problems, like mesh refinement, 

modelling, applying various boundary conditions, etc. Secondly, although the traditional FEM 

can get reliable results for eigenvalue problem, the results of nonlinear dynamic buckling are 

affected by many uncertainty properties, such as analysis types, element types, boundary 

conditions and the damping effects. One needs to be proficient with the software and improper 

picking will lead to large errors and even incorrect results. Take the damping effects as an 

example, in ANSYS; there are five types of damping models. Each of them has the strict 

requirements for the analysis types, and not all of them can be used in different analysis 

types. Thirdly, the modelling of FGMs is still at early stage, which is more complicated 

and time-consuming than traditional materials. Finally, the developed method presented 
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provides a comprehensive analytical analysis framework for dynamic stability assessment 

of thin-walled structures, as well as a vivid modelling on the damping effects under 

different environment (thermal effect or rest on or embed in elastic foundation/medium) 

for structures under dynamic loadings. The nonlinear dynamic buckling analysis can help 

the optimum design of structures under dynamic loadings faster and efficiently. 

The research of the nonlinearities due to nonlinear material properties and nonlinear 

boundary supports as well as nonlinear structural joints is out of the scope of present 

thesis. Because for dynamic buckling analysis, the structures will be failure in a few 

seconds while the material properties still remain in elastic range at this moment. 

Therefore, the material nonlinearities are often ignored in the dynamic buckling analysis. 

The influence of nonlinear boundary supports will be studied in the future, and the author 

mainly focus on traditional boundary conditions in this thesis. 

The accuracy of theoretical models of structures can only be validated by experimental 

results. However, due to the lack of experimental equipment, the uncertain material 

properties, the inadequacy of budgetary funds, experimental investigations will not be 

included in this study. It is true that the nonlinear phenomena can be predicted accurately 

according to the experimental method. The author tried to find any test results related to 

the topics and used them as the validation in the present thesis, while relevant 

experimental researches about dynamic buckling of structures made of advanced 

materials has received limited attention. Most of them focused on material properties and 

static behaviours. Therefore, in the present thesis, the author verified the numerical results 

with FEM or other numerical methods in the open literature and tried to use some of 

experimental results that can be used as a validation. Moreover, as we all known, FEMs 
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are widely implemented in different engineering fields to examine the experimental or 

theoretical methods. Therefore, the results of FEMs are credible. 

For dynamic buckling of beam structures, both the Galerkin-Force method (GFM) and 

energy method (EM) are used by considering different boundary conditions, damping and 

thermal effects. By integrating Hamilton’s principles into Lagrange’s equations, the 

governing equation of the energy method is derived in the form of partial differential 

equations (PDEs) for dynamic buckling of beams. The obtained the nonlinear differential 

equations are solved numerically by the fourth-order Runge-Kutta method. The proposed 

Galerkin-Force method is to introduce the buckled shape function as a trial function into 

force equilibrium equation in dynamic buckling. The performance of the proposed two 

approaches is confirmed by finite element method (FEM); For dynamic buckling of plates, 

based on the classical plate theory and accounting for von-Kármán strain-displacement 

relation, the nonlinear compatibility equation is derived. Then the Galerkin method and 

Airy’s stress function are applied, and the obtained the nonlinear differential equations 

are solved numerically by the fourth-order Runge-Kutta method. As for the dynamic 

buckling of cylindrical shells, utilizing Hamilton’s principle, the equations of motions are 

derived. And the nonlinear compatibility equation is considered by means of modified 

Donnell shell theory including large deflection. Based on a hybrid analytical-numerical 

method (Galerkin method and fourth-order Runge-Kutta method), the dynamic governing 

equation can be solved. Finally, the proposed method was validated with other 

publications. 

Therefore, by comparing with finite element method, the other methods in open 

literature, the validity, accuracy, applicability of the proposed analytical models and 
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solutions were verified. The dynamic buckling analysis and dynamic assessment of thin-

walled structures made of advanced materials conducted in this dissertation can help 

optimum design of such structures under dynamic loadings, as well as a useful benchmark 

for design and analysis of nano/micro-sized devices and systems. 

1.4 Thesis online 

The main purpose of this dissertation is to provide a comprehensive analytical analysis 

framework for dynamic behaviour assessment of beam, plate and cylindrical shell made 

of advanced materials, as well as an accurate modelling on the damping effects, thermal 

effect and elastic foundation for structures under dynamic loadings. The dissertation 

consists of seven chapters, and a brief overview of each chapter include in the dissertation 

is presented as follows: 

Chapter 1 presents the background of dynamic buckling of beam, plate and cylindrical 

shell made of advanced materials and objectives, the scope of this research, followed by 

the methodology that used in this study. The structure of the dissertation and some 

associated publications are also listed in detail. 

Chapter 2 surveys the previous work related to the dynamic characteristic and stability 

analysis of beam, plate and cylindrical shell made of advanced materials. The review 

covers the development of FG materials, the classification of dynamic buckling criterions 

and loading types. Then various methods on dynamic behaviours and stability analysis of 

beam, plate and cylindrical shell made of advanced materials are subsequently discussed. 

The influence of thermal effect, damping effect and elastic foundation is also presented. 
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Finally, based on the present review, a summary of knowledge gap is proposed for a better 

understanding of the present problems and the research objectives are further explicated. 

Chapter 3 proposes two analytical-numerical methods (EM and GFM) for dynamic 

stability assessment of Euler-Bernoulli beam. The proposed analytical-numerical 

methods can incorporate multiple types of parameters of the dynamic response of 

structures within a unified nonlinear ordinary differential equation, such as beam 

geometry, material properties, loading rate, and different boundary conditions, especially 

damping and thermal effects. Consequently, the structural stability assessment against 

dynamic loading can be examined. The research found that the presence of the damping 

effects can strengthen structure ability against buckling by increasing the dynamic 

buckling load. However, the buckling time of structure will be delayed for a damped 

system. Moreover, the critical buckling is deceased for the temperature change from 

temperature fall to temperature rise. Temperature rise would defer the time of buckling 

while temperature fall would accelerate the time of buckling. 

Chapter 4 develops an analytical solution about the nonlinear dynamic characteristics 

and stability of an eccentrically composite orthotropic plate on Winkler-Pasternak elastic 

foundation subjected to different axial velocities. Both damping effects and thermal 

effects are considered. The characteristics of natural frequency, linear and nonlinear 

vibration, frequency-amplitude curve and nonlinear dynamic responses were investigated; 

then various effects of constant velocity, damping ratio, temperature change, buckling 

mode, initial imperfection, elastic foundation parameter on nonlinear dynamic buckling 

of the plate were also discussed. The accuracy of the obtained results of frequency 

parameters is verified against the published paper by other methods and shows that the 
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proposed method has good accuracy. Moreover, the proposed method can be applied to 

micro- and nanostructures. 

Chapter 5 studies the nonlinear primary resonance analysis of cylindrical shells made 

of functionally graded (FG) porous materials subjected to a uniformly distributed 

harmonic load including the damping effect. Three types of FG porosity distributions 

(symmetric, non-symmetric stiff or soft and uniform) are investigated. The Galerkin 

method in conjunction with the method of multiple scales was utilised to obtain the 

Duffing-type equation. The detailed parametric studies on porosity distribution, porosity 

coefficient, damping ratio, amplitude and frequency of the external harmonic excitation, 

aspect ratio and thickness ratio, shown that the distribution type of FG porous cylindrical 

shells significantly affects primary resonance behavior and the response presents a 

hardening-type nonlinearity, which provides a useful help for the design and optimize of 

FG porous shell-type devices working under external harmonic excitation. 

Chapter 6 conducts nonlinear dynamic buckling of functionally graded orthotropic 

cylindrical shell surrounded by Winkler-Pasternak foundation subjected to a linearly 

increasing loading with damping effect. The material properties vary gradually in the 

thickness direction based on an exponential distribution function. Hamilton’s principle 

and modified Donnell shell theory were used to obtain the nonlinear differential 

governing equations. Effects of inhomogeneous parameters, loading speeds, damping 

ratios, aspect ratios and thickness ratios on dynamic buckling were also discussed. 

Chapter 7 implements dynamic buckling of the imperfect orthotropic E-FGM 

cylindrical shell subjected to a longitudinal constant velocity. Both FG stiff and FG soft 

cylindrical shells are considered. The dynamic longitudinal loading on the shell is 
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accomplished by applying a constant displacement rate at one end with respect to the 

other. According to the improved Donnell shell theory, the nonlinear compatibility 

equation and the equation of motion were derived with the consideration of initial 

imperfection and damping effects. The governing equation was solved by fourth-order 

Runge-Kutta method and the nonlinear dynamic stability of the orthotropic FG cylindrical 

shell is assessed based on Budiansky-Roth criterion. The Effect of various velocities, 

initial imperfections, damping ratios, inhomogeneous parameters κ1 and κ2 on nonlinear 

dynamic buckling of the orthotropic FG cylindrical shells were studied. 

Chapter 8 concludes a summary of the work done in this dissertation, followed by the 

further recommendations of present work in the future study. 

1.5 List of publications  

During the three years of my PhD life, the following journal and conference papers have 

been published. They are direct outputs of my research towards the writing of this thesis 
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Gao K, Gao W, Wu D, Song C. Nonlinear dynamic stability of the orthotropic 

functionally graded cylindrical shell surrounded by Winkler-Pasternak elastic foundation 
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Chapter 2 Literature Review 

This chapter reviews the existing studies about the dynamic behaviours and stability 

of beams, plates and cylindrical shells made of advanced materials. The similarities and 

differences are summarised based on various methodologies (analytical, numerical, 

hybrid or experimental aspects), loading conditions, external environments (thermal 

effect, damping effect or elastic foundation) and boundary conditions in Section 2.1. 

Section 2.2 reviews the dynamic behaviours and stability of beams. After that, the 

dynamic behaviours and stability of orthotropic plates are reviewed in Section 2.3. 

Section 2.4 summarised the past and current study on dynamic buckling of isotropic 

cylindrical shells, followed by dynamic analysis of orthotropic cylindrical shells and FG 

porous structures, respectively. The influence of thermal effect, damping effect and 

elastic foundation is shown in Section 2.7. Finally, Section 2.8 gives a summary of 

research objectives in this dissertation.  

2.1 Introduction 

An amazingly creative invention named functionally graded materials (FGMs) was 

proposed by material scientists during the spacecraft project in 1984, as a means of 

ultrahigh temperature resisting materials. Since then, the studies about FGM have been 

completely blooming in almost all associated fields. Generally, FGMs are made from a 

mixture of metallic and ceramic ingredients. As one of the most promising materials in 

lightweight structures, the mechanics and mechanism of FGMs have been investigated 

extensively in the past.  
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Nearly all of the studies regarding FGMs can be classified into three models based on 

the material graded along the focused direction: power-law FGM (P-FGM), sigmoid law 

FGM (S-FGM) and exponential law FGM (E-FGM). Tornabene [21] thoroughly 

investigated the free vibration of power-law FG conical, cylindrical shell and annular 

plate according to the shear deformation theory. Pradhan [22] presented dynamic 

behaviour of FGM cylindrical shells for various boundary conditions based on power law 

model. The influence of constituent volume fractions on the frequency features of an FG 

cylindrical shell was presented by Loy et al. [23] based on the power-law model. In 2001, 

A Sigmoid-FGM made of two power-law functions to define volume fraction was first 

reported by Chung and Chi [24]. In the second year, they concluded that the stress 

singularity of a cracked body would reduce apparently when using sigmoid FGM[25]. 

Hamed et al. [26] investigated free vibration of sigmoid FGM beams. Jung et al. [27] 

analysed the forced-vibration of a sigmoid FG plate according to the four-variable refined 

plate theory. Duc et al. [28] proposed the dynamic response of the imperfect symmetric 

thin sigmoid FGM plate resting on elastic foundation. Ravichandran [29]investigated the 

thermal residual stresses of the E-FGMs. Atmane [30] studied the free vibration 

behaviour of E-FGM beams with a variable cross-section with different boundary 

conditions. Chakraborty et al. [31] used finite element method to study the thermoelastic 

behaviour of FGM beam structures.  

According to design standards and codes, thin-walled and slender engineering 

structures not only need to satisfy the load-carrying capacity but also sustain the stability 

condition. Therefore, the buckling behaviours of such structures under different effects 

(axially-loaded[32], pressure-loaded[33], torsional-loaded[34], thermal effect[35], 

combined axial-radial mechanical load[36], combined thermo-mechanical effect[37] and 
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so on) has been extensively and systematically investigated based on experimental 

analysis and theoretical method more than half a century. In engineering practice, 

however, dynamic loads (i.e., wind effect, earthquakes, and stochastic dynamic loads) are 

commonly and intrinsically applied on the structures, excessively simplifications on such 

type of loading conditions in both structural analysis and design could compromise the 

structural safety. 

Among various approaches for estimating critical dynamic buckling load of structures, 

three major categories can be classified. The first category is the total energy-phase plane 

approach [15, 16], which emphasises on establishing the sufficiency conditions for 

structural stability (lower bounds) or instability (upper bounds) due to the characteristics 

of the system phase plane. The second category can generally be recognized as the total 

potential approach which was proposed by Simitses in 1965 [17]. Within this framework 

of analysis, the energy balance equation was implemented so the relationship between the 

potential energy and load parameter can be robustly established. The third type is the 

equation of motion approach, which was proposed by Budiansky and Roth in 1962 [18]. 

The governing equation can be solved numerically according to the parameters of the 

concerned structures, and also such approach can be flexibly modelled by computational 

methods which have been widely implemented [8, 19, 20]. 
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Figure 2.1 Different types of loading schemes 

Additionally, nearly all of the researchers regarding dynamic buckling can be 

classified into three categories according to the following loading schemes [38], as shown 

in Figure 2.1. 

1. Constant velocity or displacement loading scheme [4, 14, 39-44]; 

2. Constant mass impulse loading scheme [38, 45-49]; 

3. Force-time impulse loading scheme [7, 50-52]. 

2.2 Dynamic behaviours and stability of beams 

In 1951, Hoff [53], as one of the earliest researchers on dynamic buckling, who studied 

that a perfectly straight pinned-pinned column subjected to a uniform velocity in a 

perfectly rigid testing machine. Motamarri et al.[43] studied the dynamic elastic buckling 

of beam-columns of various boundary conditions under a constant speed compression. 

This type of load differs from the other two loading schemes in that the time required to 

reach the structure critical load is larger than the time required for the elastic wave to 
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travel from one end to the other. So normally the inertial effects can be ignored. In practice, 

the transition from dynamic to quasi-statics is nearly impossible[44], so normally the 

static loading-bearing capacity is measured by hydraulic testing machines, which means 

the structure is loaded by a constant displacement rate of the one end with respect to the 

other. Therefore, the threshold velocity values between static and dynamic are the key 

concerns in experiments and theoretical analysis. Based on this idea, Gao et al. [54] 

proposed two analytical-numerical methods, Galerkin-Force method (GFM) and energy 

method (EM), to investigate the dynamic behaviours of Euler-Bernoulli beam-columns 

under loading rates. In their analytical model, both the influence of the different boundary 

conditions, damping and thermal effects on dynamic response are obtained. The 

increasing application of the lightweight material in engineering practices, such as 

buildings, bridges and multi-span large frame structures makes the research of dynamic 

behaviours of such structures more important. The structures exposed in the strong 

earthquake and large wind effect may experience rapid shortenings or elongations. Under 

such circumstance, the time-dependent term in the analysis should not be ignored during 

analysis. Azad et al. [55] applied Hoff’s method in analysing concentrically braced frames 

to stimulate the periodic vibration of earthquakes. Through dynamic experiments and FE 

analyses, they concluded that it is essential to consider the inertia effect when studying 

the seismic behaviour of concentrically braced frames.  

Recently, the studies of dynamic buckling analysis of beams made of FGMs become 

popular due to higher stiffness and thermal resistance of these materials. Ghiasian et al.[56] 

studied the dynamic buckling response of FGM beams subjected to sudden thermal 

change with/without elastic foundation. Ren et al.[57] presented the mechanical buckling 

of a graphite column in non-equilibrium molecular dynamics (NEMD) simulations under 
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different loading velocities. The dynamic instability of FG multilayer graphene 

nanocomposite beams under a periodic axial force with the consideration of thermal effect 

was examined by Wu et al. [58] and found that more graphene nanoplatelets additive near 

the top and bottom layers can strengthen the natural frequency and reduce the unstable 

region. Smyczynski and Magnucka [59] analysed the dynamic stability of a five-layer 

sandwich beam which consists of two metal layers, porous metal layer and two binding 

layers between them. Lim et al. [60, 61] investigated the dynamic response of metallic 

corrugated sandwich columns under high compressive rates. Additionally, structures’ 

behaviours and stability of velocity impulse also occur in high speed travelling plates in 

the printing industry, aeronautics and flat-type fuel assemblies in research nuclear 

reactors[62].  

Dynamic buckling phenomenon not only exists in the macroscopic scale but also 

witnessed by some scholars in laboratory among nanodevices, nanosensors and 

nanostructures. Xiong and Jiang [63]investigated dynamic buckling response of single-

walled carbon nanotubes (SWCNTs) subjected to a sudden step load by modelling the 

SWCNTs as a thin cylinder shell. Compared with molecular dynamic models, the FE 

methods in ABAQUS were verified. Based on continuum mechanics, the dynamic 

torsional buckling of a double-walled carbon nanotube (DWCNT) surrounded by the 

elastic medium was presented by Sun and Liu[64]. After that, they also studied the 

dynamic shell buckling characteristics of multi-walled carbon nanotubes (MWCNTs) 

surrounded by the elastic medium subjected to a step axial load[65]. Hu et al. 

[66]proposed the axial dynamic buckling analysis of the SWCNT resting on the elastic 

foundation by complicated structure-preserving method. According to these studies, 

though traditional methodologies can be applied in dynamic buckling analysis of carbon 
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nanotubes, nanostructures embrace some specific mechanical or dynamical properties, 

such as size effect or nonlocal effect, van der Waals interactions, etc. Therefore, 

experimental methods need to be considered when designing nanodevices under dynamic 

loads.  

2.3 Dynamic behaviours and stability of orthotropic plates 

Composites orthotropic plate has widely used in the engineering fields, such as 

reinforced-concrete slabs, high-way bridge decks, flight wings, ship hull, and aerospace 

structures for many decades, due to its outstanding stiffness, good energy-efficient and 

high strength-weight ratio. Nowadays, the application of such structure is becoming 

diversification and more complex, so the problems of dynamic characteristics and 

stability of orthotropic plate have been further studied.  

From 1978 to 1997, Ari-Gur [49, 67-70] thoroughly investigated the dynamic buckling 

of columns subjected to a longitudinal moving mass based on experimental analysis and 

theoretical methods. At the same time, he [71]studied a rectangular plate impacted by a 

moving mass. After that, in 1997, he [72] also presented a rectangular fibre reinforced 

laminated plate subjected to half-sine compressive pulse load. Papazoglou et al.[73] 

studied the dynamic response of composite laminated plates under suddenly applied 

constant load, linearly increasing load and step loading with considering of damping 

effects. Ekstrom [74] investigated a simply-supported rectangular orthotropic plate 

subjected to a constant rate of loading (linearly increasing load). Recently years, Azarboni 

et al.[75]presented dynamic buckling of an imperfect rectangular plate with different 

boundary conditions under various force-time functions. Mojahedin et al. [76] presented 

the buckling behaviour of FG circular plates made of the porous material on higher-order 
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shear deformation theory. The buckling of FG circular plate made of porous due to 

thermal effect also studied by Jabbari et al. [77]. 

For dynamic analysis of orthotropic plates, many researchers paid attention to natural 

frequency, linear and nonlinear vibration responses, and frequency-amplitude curves. 

Eslami et al.[78] studied a rectangular orthotropic plate subjected to a uniformly 

distributed harmonic transverse loading considering damping effects and in-plane loads. 

Yeh et al.[79] investigated the large deflections and nonlinear flexural vibrations of 

orthotropic rectangular plates using the generalised double Fourier series. Eshmatov [80] 

presented the nonlinear vibrations of viscoelastic orthotropic plates based on Kirchhoff-

Love hypothesis and Reissner-Mindlin generalised theory. By using Eringen’s nonlocal 

elasticity theory, Sari and Al-Kouz [81] investigated the free vibration of non-uniform 

orthotropic Kirchhoff plates. The free vibration of moderately thick orthotropic 

rectangular plates was presented by Wang et al.[82]. A more general boundary condition 

can be considered in their model by using Raleigh-Ritz method. Moreover, Buckling and 

postbuckling behaviour of orthotropic plate were reported by some researchers based on 

various methods. Ferreira and Virtuoso [83] introduced the semi-analytical models into 

postbuckling analysis of orthotropic plate and found that the proposed method can obtain 

more accurate results than other analytical ones. The buckling responses of the orthotropic 

nanoplates resting on the elastic foundation subjected to the nonuniform biaxial load was 

presented by Golmakani and Rezatalab[84]. Unlike other scholars, nonlocal elasticity 

theory was used to explore the buckling behaviour of graphene sheets in nanoscale.  

Dynamic buckling analysis of orthotropic plates has received considerable attention 

due to the existence of dynamic loading environments. Patel et al. [85] studied the 
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dynamic instability of layer orthotropic composite plates embedded in the elastic medium. 

The periodic loading scheme was considered in this model. The refined plate model, 

which considers transverse shear and rotary inertia effects, was developed to investigate 

the dynamic buckling behaviour of composite laminate plates by Chattopadhyay and 

Radu[86]. Kubiak [87] presented the dynamic buckling of orthotropic plates subjected to 

an in-plane pulse load while the plates occupy a varying widthwise material property. The 

results obtained from analytical-numerical method validated with the finite element 

method. Gao et al. [88] proposed an analytical computational method for dynamic 

stability of composite orthotropic plate subjected to different axial velocities. This type 

of load differs from the other two loading schemes in that the time required to reach the 

structural critical load is larger than the time required for the elastic wave to spread from 

one end to the other. Therefore, the inertial effects can be ignored commonly. 

2.4 Dynamic behaviours and buckling of isotropic cylindrical shells 

The thin-walled cylindrical shell structure has been widely used in aerospace 

engineering and other engineering disciplines for many decades, such as propellant tank 

of space shuttle, the skin of ballistic missile, air receiver tanks, distillation columns, heat 

exchangers/condensers, due to its outstanding stiffness, large space cover, lower cost and 

high strength-weight ratio.  

Most of those works about FG cylindrical shells focus on free vibration, forced 

vibration, nonlinear vibration and thermal responses. With the expanding application of 

FG structures, buckling or stability behaviour of FG structures keep attracting researchers’ 

attention. Shen, as one of the highly cited researchers on buckling behaviour of 

functionally graded structures, thoroughly studied pressure-load post-buckling [33, 89], 
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axially-loaded postbuckling[90], thermal buckling and post-buckling[91, 92], post-

buckling subjected to combined axial and radial mechanical load[36, 93, 94], torsional 

buckling and post-buckling [95-97] of FG structures. Following his work, a large number 

of theoretical and numerical techniques are developed to study the stability behaviour of 

FG structures. Wattanasakulpong et al. [98] studied the free vibration of layered FG bars 

and verified with the experimental results.  

Although the static buckling and post-buckling of FG structures is well understood, a 

clear understanding of the dynamic stability of such structures’ behaviour has not gained 

much attention. However, the time-dependent forces are intrinsic among engineering 

applications, and more importantly, excessively simplifications on such type of loading 

conditions in both structural analysis and design could compromise the structural safety. 

Sofiyev [99] derived the dynamic buckling equation of FG cylindrical shell subjected to 

non-periodic impulsive loading. Then this work is applying in the case of FG truncated 

conical shell[100, 101]. Huang et al. [102]studied the dynamic buckling of the 

functionally graded cylindrical shells subjected to linearly increasing load. This type of 

loading model also appeared in Dung’s [103] and Bich’s [104] recent work. Nevertheless, 

there is another type of loading should be noticed, the constant velocity, which was first 

proposed by Hoff[53]. Then based on his work, Motamarri et al. [43] studied the dynamic 

elastic buckling of beam-columns of various boundary conditions under a constant speed 

compression.  

Topics on dynamic stability of cylindrical shell keep attracting researchers’ attention 

these years. Shaw et al. [105] studied the dynamic instability of the composite cylindrical 

shells subjected to axial and/or torsional impulse load. Liao and Cheng [106] investigated 
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dynamic buckling characteristics of a laminated composite stiffened or non-stiffened 

shells subjected to periodic in-plane forces. Based on the energy criterion, Gu et al. [107] 

presented the plastic buckling of cylindrical shells under external impulsive velocity and 

asymmetric external loadings, respectively. With respect to dynamic buckling of the FG 

cylindrical shell structures, Ng et al. [108] and Darabi et al. [109] derived the dynamic 

buckling equations of FG cylindrical shells subjected to periodic axial loading based on 

small deflection theory and large deflection theory, respectively. While the non-periodic 

impulsive loading scheme of dynamic buckling for FG cylindrical shell was studied by 

Sofiyev [99]. Then, after that, in 2004, he also investigated the buckling behaviour of an 

FG cylindrical shell subjected to linearly increasing torsional loading. Huang and Han 

[102] then analysed the dynamic stability of FG cylindrical shell subjected to the linearly 

increasing load with the consideration of large deflection and thermal effects. Shariyat 

[110] studied the dynamic buckling of preloaded, imperfect FGM cylindrical shell 

subjected to combined axial load and external pressure under thermal environment. Then, 

he [111] also analysed dynamic buckling of the abruptly loaded hybrid FG cylindrical 

shell subjected to thermo-electro-mechanical loads including the temperature-dependent 

property. Static and dynamic buckling of an imperfect stiffened FG cylindrical shell under 

axial load was presented by Bich et al. [112]. Based on the kp-Ritz method, Lei et al. [113] 

investigated the dynamic buckling of carbon nanotube-reinforced functionally graded 

cylindrical panels under periodic loadings. However, up to date, the investigation on 

dynamic buckling of orthotropic FG cylindrical shells subjected to such type of loading 

has received limited attention. 



25 

 

2.5 Dynamic behaviours and stability of orthotropic cylindrical shells 

In the last subsection, the dynamic buckling analysis of FG cylindrical shells’ studies 

was done by considering in homogenous, isotropic graded materials. However, in 

engineering practices, the material-oriented or orthotropic materials are commonly used 

in all kinds of fields to maximise the material property and optimise the structures, which 

is even more critical for the FG structures. Additionally, due to the nature of fabrication 

techniques and physical composition, the FGMs are easier to loss of isotropy and become 

anisotropic with principal directions parallel or/and perpendicular to each layer[114, 115]. 

For example, Kaysser and IIschner [116] found that a graded Cu-Ni-Sn specimen 

exhibited a lamellar or duplex structure after the plasma spray processing. A similar 

phenomenon also reported by Sampath et al. [117] that equiaxed grain microstructures 

are observed by Transmission electron micrographs (TEMs). Thus, it is not unnatural to 

consider the orthotropic FGMs when studying the dynamic buckling behaviours of 

cylindrical shells. Based on such idea, Sofiyev [99-101, 118] thoroughly investigated the 

dynamic responses of the anisotropic FG cylindrical shells these years based on 

theoretical and computational methods. Vel [119] presented the free and forced vibration 

of anisotropic FG cylindrical shells with simply supported boundary condition by using 

an exact elasticity solution. Pelletier and Vel [120] investigated the steady-state response 

of FG cylindrical shell subjected to mechanical load under thermal environment. Based 

on the pseudo-Stroh formalism and transfer matrix method, Wang and Sudak [121] 

analysed an anisotropic FG, thermoelastic, multi-layered cylindrical panel. The free 

vibration of a simply-supported, fluid-filled orthotropic FG cylindrical shell was studied 

by Chen et al.[122].  
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Nevertheless, investigations involving the orthotropic FGMs cylindrical shells for the 

dynamic buckling analysis are limited in number. Some works about orthotropic FG 

cylindrical shells is focused on static buckling, free vibration, force vibration, nonlinear 

vibration and thermal responses. Sofiyev, as one of the main researchers on orthotropic 

FG cylindrical shells, has thoroughly investigated such structures under various 

conditions. For instance, Sofiyev and Kuruoglu [123] presented buckling and vibration 

characteristics of FG anisotropic cylindrical shell subjected to external pressure was 

studied by considering shear deformation and rotary inertia. Then, Najafov, Sofiyev and 

Kuruoglu [124] also investigated the torsional stability and vibration of FG orthotropic 

cylindrical shell on elastic foundation. The buckling of FG orthotropic cylindrical shells 

with the consideration of shear deformable subjected to lateral pressure also discussed by 

Sofiyev et al. [125].  Recently, both the nonlinear free vibration including shear 

deformable theory and large amplitude vibration on nonlinear Winkler elastic foundation 

of FG orthotropic cylindrical shells were reported by Sofiyev[126, 127]. While other 

scholars mainly focused on crack analysis and failure behaviours of orthotropic FGMs 

[128-133]. Rao and Rahman [128] studied the cracks behaviours of orthotropic 

cylindrical shells by finite element method (FEM). Xu et al. [129] presented the semi-

infinite cracks of FG orthotropic materials. By using an equivalent domain integral 

approach, Dag [133] analysed the thermal stresses in FG orthotropic cylindrical shells. 

Then, Dag et al. [131] also discussed the mechanical and thermal effects on fracture 

failure of orthotropic cylindrical shells.  
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2.6 Dynamic behaviours and stability of FG porous structures 

Most recently, a novel functionally graded (FG) pure metallic porous material was 

proposed in recent years by changing the cell geometry, density and/or material 

composition from point to point within the porous foams or metallic foams in the process 

of fabrication [134-137]. Such materials can be widely used in various industries such as 

energy absorbing systems, porous electrodes, sound absorbers, heat exchangers, 

construction materials, electromagnetic shielding, etc., due to excellent impact energy 

absorption, high specific strength, and low thermal conductivity and other distinctive 

characteristics [138-141]. Nearly all of the early researchers regarding FG porous 

structures were focused on problems of elastic buckling or dynamic buckling analysis. 

Magnucki and his co-workers firstly and thoroughly investigated the static and dynamic 

stability of FG porous structures (such as porous beams[142] or porous sandwich 

beam[143], porous plates[144, 145] or porous sandwich plates[146] and porous circular 

cylindrical shells[147-150]) based on theoretical and finite element methods. For example, 

Magnucki and Stasiewicz[142] studied the buckling behaviour of asymmetric porosity 

distributed bar based on the principle of stationarity of the total potential energy including 

the effect of shear strain. The buckling and strength of a sandwich beam with a metal 

foam core were presented by Magnucka-Blandzi and Magnucki[143]. Magnucka-Blandzi 

[144, 146] also investigated the dynamic buckling of a porous circular plate and static 

buckling of a rectangular sandwich plate with the porous core. Furthermore, Belica and 

Magnucki [147-150] employed a nonlinear hypothesis of deformation of a plane cross-

section and Hamilton’s principle to carry on analytical and numerical studies on dynamic 

buckling of porous cylindrical shells subjected to external pressure and axial compression. 

Porous structures are not only subjected to different loading conditions but also saturated 
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with liquid and gas. Under such circumstances, the dynamic properties or mechanical 

mechanism would be different. Therefore, Jabbari et al. [76, 151-154] studied the stability 

of saturated FG porous circular plate with or without piezoelectric layers subjected to a 

radially loading, thermal buckling and combined thermal and mechanical loads on the 

ground of linear poroelasticity theory of Biot[155]. Following their work, the post-

buckling behaviour of saturated FG porous circular plates subjected to a uniformly 

radially loading with simply-supported and clamped boundary conditions was presented 

by Feyzi and Khorshidvand[156].  

Natural frequencies and other nonlinear dynamic properties play an essential role in 

the design [157-159] and analysis of FG porous structures in the large amplitude 

deflections. More and more researches paid attention to the dynamic behaviour of FG 

porous structures in the engineering practices. Chen et al. [160] applied the Timoshenko 

beam theory and Lagrange equation to investigate the free and forced vibration 

characteristics of shear deformable FG porous beams with symmetric and asymmetric 

porosity distributions. Furthermore, by using the same method, the nonlinear free 

vibration of shear deformable sandwich beams with an FG porous core was studied[161]. 

In this study, they also considered a non-symmetric porosity distribution and a uniform 

porosity distribution when compared with Magnucki[143] and the results showed that 

with the consideration of two layers at the top and bottom sides, the vibration behaviour 

of the structure is improved. The rapid development of manufacturing technique makes 

it possible to introduce nanofillers such as carbon nanotubes (CNTs) and graphene 

platelets (GPLs) into porous materials. The novel porous nanocomposites occupy both 

advantages of CNTs or GPLs and porous materials. Kitipornchai et al.[162] presented the 

influence of both porosity and GPLs dispersion pattern on the free vibration of FG porous 
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nanocomposite beams. Following this idea, Chen et al. [163] studied the nonlinear 

vibration and postbuckling behaviour of GPLs reinforced FG porous beams. Based on the 

Reddy’s third-order shear deformation theory, the dynamic characteristics of a porous 

rectangular plate resting on a Pasternak foundation was solved by differential quadrature 

method[164]. Ebrahimi and Habibi [165] employed the third order shear deformation 

plate theory and finite element method to predict the deflection and vibration 

characteristics of a saturated FG porous rectangular plate. There are also some studies 

dealing with the random distribution of porosity during the multi-step sequential 

infiltration technique. Wattanasakulpong and Ungbhakorn [166] conducted an 

investigation of random porosity volume fraction on the linear and nonlinear vibration of 

FG porous beams with elastically restrained ends. Using the semi-analytical differential 

transform method, the free vibration of rotating FG porous beam was studied by Ebrahimi 

and Mokhtari [167] based on the Timoshenko beam theory. They [168] also presented the 

free vibration of a rotating double-tapered functionally graded (FG) porous beam based 

on Euler–Bernoulli beam theory and then the governing equation is solved by the 

differential transform method. 

As can be seen, most of those works about FG porous structures focus on beam and 

plate structures, and investigations involving the application of FG porous cylindrical 

shells are still limited in number. However, in engineering practices, the cylindrical 

shell/sheet structures are widely used in all kinds of fields in order to match the desired 

functionality and optimize the structures [169-171], such as the propellant tank of the 

space shuttle, the skin of the ballistic missile, oil refineries, petrochemical plants, power 

plants, pressure vessel and so on. Ghadiri and SafarPour [172] applied the first-order shear 

model and modified couple stress theory to analyse the free vibration characteristics of 
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FG porous microshell in the thermal environment. Wang and Wu [173] calculated the 

natural frequencies of an FG porous cylindrical shell with different boundary conditions 

using sinusoidal shear deformation theory and Rayleigh-Ritz method. Additionally, the 

understanding of free vibration and nonlinear vibration analysis is crucial to FG porous 

cylindrical shells. However, no previous work has been done for FG porous cylindrical 

shells with external harmonic excitation, especially for the resonant characteristics with 

different internal porosity distributions. Thus, it is of great importance to analyse the 

forced vibration behaviour of FG porous cylindrical shell due to the time-dependent 

external forces and the proper understanding and development of primary resonance of 

FG porous cylindrical shell can help engineers avoid the peak resonances of the structural 

system in the design process.  

2.7 The influence of thermal effect, damping effect and elastic 

foundation on dynamic characteristics and stability of structures 

Despite of diversely proposed computational schemes (i.e. Galerkin method, finite 

element method, finite difference method, etc.) for dynamic buckling [7, 20, 174, 175], 

from the authors’ knowledge, early dynamic buckling studies on structures subjected to 

axial loads have been investigated in the way such that damping effects are ignored [11, 

19, 20, 43, 176-178]. However, damping property (i.e., a non-conservative energy 

contribution) is one of the most important aspects of engineering dynamics, which 

intrinsically exists in all physical systems[179, 180]. Kounadis and Raftoyiannis [181] 

investigated the nonlinear dynamic stability criteria for one degree of freedom system 

under step loading and concluded that the structure would buckle when the phase-point 

velocity vanished regardless of the length of loading duration and damping effects. After 

one year, Kounadis [182] subsequently studied two nonlinear two-degree-of-freedom 
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systems under step loading with and without damping effects. It was shown that when 

viscous damping was incorporated, the lower bound of critical load for dynamic buckling 

could be estimated. Mallon et al. [183] presented numerical approaches for analysing a 

series of thin shallow arches subjected to a pulse load and also found that the increase of 

damping coefficient would lead to an increasingly dynamic buckling critical load. 

Moreover, Lee [184] investigated a rod with intermediate spring support with a follower 

force at one end, also suggested that damping effects cannot always be neglected 

especially for some particular engineering systems. 

In engineering practices (i.e. aerospace and mechanical engineering), structures are not 

only subjected to dynamic loadings but also exposed to the physical environment, such 

as thermal effects, moisture effects, etc. Thermal effects due to temperature changes, in 

turn, have an influence on structure dynamic characters and the stress state [185, 186]. 

The combined effect of moisture and temperature (hygro-thermal environment) on 

dynamic response was investigated by Ebrahimi and Barati[187]. Shariyat [110] studied 

the dynamic thermal buckling of FGM imperfect cylindrical shell and the results shown 

that thermal stresses would change the buckling behaviour. Ansari et al. [185] 

investigated the post-buckling behaviour of nanofilms under the action of thermal loads. 

Wu [188] found that region of instability is sensitivity to temperature change for a beam 

under transverse magnetic fields and thermal loads. The nonlinear dynamic buckling 

analysis of FGM beam due to the sudden uniform temperature rise was proposed by 

Ghiasian et al.[189]. The hybrid iterative Newton-Raphson-Newmark method was 

utilised to solve the governing equation in this study. The influence of the three-parameter 

elastic foundation was also included in the analytical method, which will be discussed 
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later. These studies have shown that temperature changes have a significant influence on 

dynamic behaviour and further affect the performance and stability of structures.  

Furthermore, these structures normally rest on or embed in elastic foundation/medium. 

Under such circumstance, dynamic characteristics and stability of structures may be 

different from traditional ones. Li et al. [190] studied the nonlinear vibration and thermal 

buckling of an orthotropic annular plate with a central rigid mass. Barati et al.[191] 

presented the thermo-mechanical buckling analysis of embedded nanosize FG plates. 

Taczala et al. [192] studied the nonlinear stability of stiffened functionally graded 

materials plates in the thermal environment using finite element method. Based on 

second-order shear deformation plate theory, the free vibration analysis of the 

functionally graded nanoplates embedded in an elastic medium was discussed by 

Panyatong et al.[193]. Yang and Shen [194] investigated the dynamic response of initially 

stressed functionally graded rectangular thin plates resting on an elastic foundation. 

Uğurlu et al.[195] presented the effects of elastic foundation and fluid on the dynamic 

response characteristics of rectangular Kirchhoff plates. The dynamic behaviour of a 

beam on a nonlinear elastic foundation under a sudden step loading was investigated by 

Jabareen and Sheinman[177]. Both Budiansky-Roth and Hoff-Simiteses dynamic 

buckling criteria were applied in their research. These studies have shown that elastic 

foundation has a significant influence on dynamic behaviour and further affect the 

performance and stability of structures.  

2.8 Summary 

The literature review on dynamic characteristics and stability of beam, plate and 

cylindrical shell were presented above. The research hotspots and methodologies were 
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also demonstrated, as well as the shortcomings and limitations of the past literature. Due 

to the enormous growth of FGMs’ application in lightweight structures and the complex 

physical environment that these structures may expose to, a large number of new 

problems has emerged. Thus, to ensure safety and serviceability of the Thin-walled and 

slender engineering structures (i.e., beam, plate and shell), investigations on the dynamic 

characteristics and stability of such structures made of advanced materials under different 

conditions are much needed.  

It is noticeable from the above review that very few studies have addressed the 

dynamic characteristics and stability of structures made of advanced materials under 

different environment. Therefore, based on the open literature, a comprehensive 

knowledge gap is proposed for a better understanding of the present problems, the 

following aspects are mentioned: 

1. The influence of different boundary conditions, damping and thermal effects on 

the dynamic buckling of beam is not thoroughly studied. A more comprehensive 

mathematical model is needed. 

2. From the previously reported literature, Winkler-Pasternak elastic foundation has 

a significant influence on dynamic behaviour and further affect the performance 

and stability of structures. While the dynamic behaviours and stability of 

composite orthotropic plate subjected to different axial velocities resting on elastic 

foundation are unclear.  

3. It is noted that no study has been reported yet on the nonlinear primary resonance 

behaviour of cylindrical shells made of functionally graded (FG) porous materials 
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subjected to a uniformly distributed harmonic load including the damping effect, 

let alone the influence of different porosity distributions. 

4. The review confirmed that most of the studies about orthotropic FG cylindrical 

shells focused on static buckling, free vibration, force vibration, nonlinear 

vibration and thermal responses, the dynamic stability analysis of FG orthotropic 

circular cylindrical shell has not touched yet. 
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Chapter 3 Nonlinear dynamic 

stability analysis of Euler-Bernoulli 

beam-columns with damping effects 

under thermal environment 

3.1 Introduction  

This chapter proposed two hybrid analytical-numerical methods for nonlinear dynamic 

buckling analysis of Euler-Bernoulli beam-columns under constant loading rates. Both 

the Galerkin-Force method (GFM) and energy method (EM) are capable of handling 

effectively different boundary conditions, damping and thermal effects. By integrating 

Hamilton’s principles into Lagrange’s equations, the governing equation of the energy 

method is derived in the form of partial differential equations (PDEs) for dynamic 

buckling of beams. Unlike traditional approaches for dynamic buckling analysis [43, 44], 

the proposed governing equation is able to incorporate damping and thermal effects 

simultaneously. The proposed Galerkin-Force method is to introduce the buckled shape 

function as a trial function into force equilibrium equation in dynamic buckling. Damping 

effects under thermal environment are also formulated in the ordinary differential 

equations (ODEs). The exhilarating performance of the proposed two approaches is 

confirmed by finite element method (FEM), and the damping, thermal effects on 

structural dynamic buckling behaviour are comprehensively investigated.   
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3.2 Nonlinear dynamic buckling analysis with damping and thermal 

effects 

3.2.1 The Galerkin-Force method (GFM) 

The governing equation for the dynamic buckling of Euler-Bernoulli beam can be 

derived from the free body diagram and the moment-curvature relation for the beam. The 

schematic illustration is presented in Figure 3.1. 
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Figure 3.1 The free body diagram of a small element dx 

It is assumed that counter-clockwise is positive. By neglecting the rotational inertia of 

the infinitesimal body, the sum of moments about Point B can be calculated as: 
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Eq. (3.1) can be simplified by ignoring the second order infinitesimal term  
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The resultant force of the y-axis gives  
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Therefore 
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According to the relation of moment and curvature, one obtains  
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Differentiating Eq.(3.5) with respect to x and substituting it into Eq.(3.2), then 

differentiating Eq. (3.2) with respect to x and substituting it into Eq. (3.4), one can obtain 

the governing equation for dynamic buckling 
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Eq.(3.6) is the partial differential equation for the continuous beam including damping 

effects. 

 )()(),( 0 xftwtxw =    (3.7) 
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 )(),( 0 xfetxe =    (3.8) 

where w(x, t), e(x, t) denote the structural deflection of the beam and the initial 

imperfection respectively. 

Hoff (1951) [39] assumed the first mode shape as the buckling mode shape of the 

beam-column under constant speed compression for various boundary conditions, so the 

corresponding deflection functions f(x) can be approximated as below. It is also assumed 

that the effects of rotational inertia and transverse shear are negligible.  

For a simply-supported beam (the same as free-free, hinged-free), the first mode shape 

function can be defined as: 
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Therefore, for different boundary conditions and geometries, different first mode 

shape functions should be selected [43, 196, 197]. Moreover, the absolute value of 

maximum or minimum deflection for different boundary conditions is normalized to 1. 

Clamped-clamped: 
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Clamped-pinned [198]: 
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Clamped-free (cantilever): 
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Pinned-free: 
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By substituting Eqs.(3.7) and  (3.8)into Eq.(3.6), one obtains: 
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By multiplying f(x) in both side of Eq.(3.14) and applying Galerkin method, Eq.(3.14) 

can be further reformulated as: 
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Let  
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The values of constants d1-d4 for different boundary conditions are shown in Table 3.1. 

Table 3.1 Value of Constants for d1-d4 

Boundary condition d1 d2 d3 d4 

Pinned-Pinned 0.5 -4.9348 4.9348 48.7045 

Clamped-Clamped 0.375 -4.9348 4.9348 194.818 

Clamped-Pinned 0.425453 -5.15721 5.16187 104.174 

Clamped-Free 0.22676 0.337096 1.2337 -0.83175 

Pinned-Free 0.5 -1.2337 1.2337 3.04403 

Eq. (3.15) can be further transformed into: 
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In order to maintain the readability of the thesis by efficiently expressing all 

formulations, the following dimensionless quantities are necessarily introduced: 
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where rg represents the radius of gyration of the section and ξ denotes the slenderness 

ratio of the beam. 

Hence, Eq. (3.17) can be further reformulated as: 
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And then simplified as 
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By considering the viscous damping as internal damping effects, one can obtain that: 
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where cd denotes the damping coefficient of the structure; 0 denotes the fundamental 

frequency of the structure; and  denotes the damping ratio of the beam. 

Dividing by d1EIL at both side of Eq.(3.20), one obtains: 
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By substituting Eq. (3.21) into Eq.(3.22), Eq. (3.22) can be further reformulated as: 
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Also, the reaction force for the beam can be calculated as: 
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For the axial displacement of the beam at the roller support, it can be divided into two 

parts, Ua, the axial displacement due to axial shortening and Ub (t), the axial displacement 

due to the bending shortening. That is: 
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Thus, Ua can be alternatively expressed as 

 
L

etw
dtvUa

2

)( 2

0

2

0
3

−
−=    (3.26) 

It is assumed that the thermal effect is a uniform temperature load, while the change 

of the material property due to the thermal load is ignored [110, 185]. Therefore, the 

reaction force generated by the beam-column can be formulated as: 
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where αx means coefficient of linear expansion and ∆t represents the temperature change. 

The coefficient of thermal expansion in steel beam is positive (αx=12×10−6 K−1) for the 

rise of temperature and is negative (αx=-12×10−6 K−1) for the fall of temperature based on 

the room temperature (20oC).  

Then, by substituting Eq. (3.26) into Eq. (3.27), Eq. (3.27) can be reformulated as: 
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According to the dimensionless quantities of Eq.(3.18), the buckling load and the 

normalised buckling load can be represented as: 
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Therefore, by substituting Eqs.(3.29) and (3.24) into Eq.(3.23), Eq.(3.23) can be 

reformulated as: 
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Consequently, Eq.(3.31) is the unified governing nonlinear ordinary differential 

equation for dynamic buckling analysis of Euler-Bernoulli beams with various boundary 

conditions considering damping effects under thermal environment from Galerkin-Force 

method. 

3.2.2 The Energy method (EM) 

For this particular study, a simply-supported Euler-Bernoulli beam with arbitrary 

cross-section is investigated. The general structural layout is illustrated in Figure 3.2, e(x), 

w(x) denote the initial imperfection and the structural deflection of the beam respectively. 

Also, the considered beam is subjected to a constant compression rate. 
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Figure 3.2 A simply-supported Euler-Bernoulli beam 

For this particular structural system, the kinetic energy can be formulated as: 
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The potential energy: 
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where the first term of Eq.(3.33) is strain energy and the second term of Eq.(3.33) is the 

potential energy due to the external forces.  

The power dissipation function: 
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where cd denotes the coefficient of damping. 

Consequently, the Lagrange’s equation of the structural system can be formulated as: 

 VTL −    (3.35) 
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The same as the Galerkin-Force method, by substituting Eqs.(3.32) and (3.33) into Eq. 

(3.35) and according to Eqs. (3.7) and (3.8), Eq.(3.35) can be formulated as: 
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Let  
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The values of constants c1-c3 for different boundary conditions are shown in Table 3.2. 

Table 3.2 Value of Constants for c1-c3 

Boundary condition c1 c2 c3 

Pinned-Pinned 1 1 1 

Clamped-Clamped 0.75 4 1 

Clamped-Pinned 0.85224 2.14149 1.047 

Clamped-Free 0.453521 0.0625 0.25 

Pinned-Free 1 0.0625 0.25 

The same values of Table 3.2 are also verified by reference [43].  

Eq. (3.36) can be further transformed into: 
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For Lagrange’s Equations [199]: 
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By substituting Eqs.(3.38) and (3.34) into Eq. (3.39), one obtains: 
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According to Eq.(3.25), Ua can be alternatively expressed as 
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In order to maintain the readability of the chapter by efficiently expressing all 

formulations, the following dimensionless quantities are necessarily introduced: 
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By considering the viscous damping as internal damping effects, one can obtain that: 
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where C denotes the total damping coefficient of the structure; ω0 denotes the 

fundamental frequency of the structure, and ζ denotes the damping ratio of the beam. 

Then, the reaction force generated by the beam-column can be formulated as: 
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Hence, according to Eqs. (3.43) and (3.45), Eq. (3.40) can be further reformulated as: 
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Eq.(3.46) is the unified governing nonlinear ordinary differential equation for dynamic 

buckling analysis of Euler-Bernoulli beams with various boundary conditions with the 

consideration of damping effects under thermal environment. 

Therefore, the normalised dynamic load is  
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where Pcr denotes the static buckling load for a given boundary condition, that is, 
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3.3 Numerical results and discussion 

In order to demonstrate the applicability and effectiveness of the proposed methods, 

four types of models on the dynamic buckling analysis of three types of boundary 

conditions are investigated with/without thermal effects and with/without damping 

effects. Throughout this study, the solutions of the unified nonlinear ordinary differential 

equations (Eq. (3.31) and Eq.(3.46)) are solved numerically by the Runge-Kutta method. 

3.3.1 Verification of structural critical load 

In order to assess the accuracy of the proposed method, an alternative approach, known 

as the finite element method (FEM), is also adopted so the computational results obtained 

from both approaches can be compared.  

Regarding the adopted FE model, the viscous damping effect is introduced via the 

Rayleigh damping, which can be formulated as: 

      MKC  +=    (3.49) 

where [K], [M] are the stiffness matrix and mass matrix of the structure, respectively; α 

and β can be calculated from the chosen first two natural frequencies for different cases 

[200].  
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Even though the damping model used in FEM is different from the one being 

implemented in the proposed method, a comparable level of damping values can be still 

achieved by the following equation: 

 
2 2

 



= +    (3.50) 

where ζ is the damping ratio implemented in the proposed method. 

In this subsection, a rectangular steel beam-column with a length of 1m, depth of 

0.02m and width of 0.06 is investigated. The information of the geometrical and material 

properties is shown in Table 3.3. For this particular analysis, the yield strength is 340 

MPa, which implies that buckling happens before yielding for all investigated examples. 

Table 3.3 Parameter values 

Property Value Unit 

b 0.06 (m) 

h 0.02 (m) 

L 1.0 (m) 

E 210 (GPa) 

ρ 7850 (kg/m3) 

e0 5×10-4 (m) 

ζ 0.02 N/A 

αx 1.2×10-5 (1/oC) 

ΔT +1 (oC) 

v 0.03 (mm/ms) 
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L

v

Clamped-Clamped

L

v

Clamped-Pinned

L

v

Pinned-Pinned  

Figure 3.3 Beam-columns with three different boundary conditions subjected to 

constant compressive rate 

In order to comprehensively appreciate the damping and thermal effects on the 

dynamic buckling analysis of the structure, three Euler-Bernoulli beam-columns have 

been investigated with distinctive boundary conditions as illustrated in Figure 3.3. For 

each concerned beam-column, four investigations have been explicitly conducted which 

are including: 

a) Conventional dynamic buckling analysis without damping and thermal effects; 

b) Dynamic buckling analysis with damping effect only; 

c) Dynamic buckling analysis with thermal effect only; 

d) Dynamic buckling analysis with both damping and thermal effects. 

Figure 3.4, Figure 3.5 and Figure 3.6 show the relationship between axial load and 

end-shortening of the beam of 12 scenarios for different methods under the same axial 

loading speed, v. The numerical results of the Galerkin-Force Method (GFM) and Energy 
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Method (EM) are compared with those of Finite Element Method (FEM) to demonstrate 

the performance of the proposed methods in the presence of damping effects under 

thermal environment. Despite different scenarios, the comparisons show that the results 

of the proposed methods agreed very well with the results obtained from the FEM.  

  

(1) Simplified Model (2) Considering Damping Effect 

  

(3) Considering Thermal Effect 
(4) Considering both Damping and Thermal 

Effect 

Figure 3.4 The relationship between axial load and end-shortening of the pinned-pinned 

type beam for different models 
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(1) Simplified Model (2) Considering Damping Effect 

  

(3) Considering Thermal Effect 
(4) Considering both Damping and Thermal 

Effect 

Figure 3.5 The relationship between axial load and end-shortening of the clamped-

clamped type beam for different models 

  

(1) Simplified Model (2) Considering Damping Effect 
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(3) Considering Thermal Effect 
(4) Considering both Damping and Thermal 

Effect 

Figure 3.6 The relationship between axial load and end-shortening of the clamped-

pinned type beam for different models 

In order to explore the differences of GFM, EM and FEM further, the critical values 

of Figure 3.4, Figure 3.5 and Figure 3.6 are also reported in Table 3.4,Table 3.5,Table 3.6 

and Table 3.7. Table 3.4 shows the critical values of the simplified model. The results of 

GFM and EM are sharing a high degree of similarity. The maximum end-shortenings of 

the beams obtained by the GFM and EM are slightly larger than the FEM ones for 

different boundary conditions, except the case of the clamped-clamped condition. 

Likewise, the critical buckling loads obtained by the GFM and EM are larger than FEM 

ones whose relative differences are 0.07%, 0.04% and around 0.2% for P-P, C-C and C-

P, respectively.  

In the presence of damping effects, the critical values would increase for all three 

methods, which are shown in Table 3.5. It is evident that the results of FEM increased 

faster than other two methods. For the undamped system, the errors between Analytical-

Numerical Methods (or ANMs, which includes both GFM and EM) and FEM is almost 

positive in Table 3.4. However, the errors turned out to be negative for almost all cases 

for a damped system. By carefully examining Table 3.5, it can be noticed that the damping 
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effect has a significant influence on the beam-column with clamped-clamped boundary 

condition. 

Table 3.4 Simplified Model of different boundary conditions for different methods 

Simplified Model GFM(1) EM(2) FEM(3) ((1)-(3))/(3) ((2)-(3))/(3) 

P-P 

Disp(mm) 

Load(N) 

0.5572 

123289.4295 

0.5572 

123289.5076 

0.5565 

123202.8433 

0.12% 

0.07% 

0.12% 

0.07% 

C-C 

Disp(mm) 

Load(N) 

1.3764 

317297.0083 

1.3764 

317297.3954 

1.3845 

317155.7688 

-0.59% 

0.04% 

-0.59% 

0.04% 

C-P 

Disp(mm) 

Load(N) 

0.7997 

180056.2270 

0.7989 

179933.1369 

0.7965 

179563.2074 

0.40% 

0.27% 

0.30% 

0.21% 

Table 3.5 Damping effects of different boundary conditions for different methods 

Damping effects GFM(1) EM(2) FEM(3) ((1)-(3))/(3) ((2)-(3))/(3) 

P-P 

Disp(mm) 

Load(N) 

0.5619 

124069.3688 

0.5618 

124069.7696 

0.5625 

124377.8760 

-0.10% 

-0.25% 

-0.13% 

-0.25% 

C-C 

Disp(mm) 

Load(N) 

1.3790 

317773.7130 

1.3785 

317773.7426 

1.3965 

318625.0000 

-1.25% 

-0.27% 

-1.29% 

-0.27% 

C-P 

Disp(mm) 

Load(N) 

0.8032 

180622.4431 

0.8014 

180499.4169 

0.8025 

180853.7828 

0.09% 

-0.13% 

-0.13% 

-0.20% 

Table 3.6 Thermal effects of different boundary conditions for different methods 

Thermal effects GFM(1) EM(2) FEM(3) ((1)-(3))/(3) ((2)-(3))/(3) 

P-P 

Disp(mm) 

Load(N) 

0.5707 

123291.7983 

0.5692 

123292.8598 

0.5650 

123131.7714 

1.00% 

0.13% 

0.75% 

0.13% 
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C-C 

Disp(mm) 

Load(N) 

1.3896 

317301.5589 

1.3896 

317301.8508 

1.3930 

317417.0000 

-0.25% 

-0.04% 

-0.24% 

-0.04% 

C-P 

Disp(mm) 

Load(N) 

0.8118 

180068.8077 

0.8113 

179946.1041 

0.8110 

179679.0532 

0.09% 

0.22% 

0.04% 

0.15% 

Table 3.7 Damping effects and thermal effects of different boundary conditions for 

different methods 

Damping effects and 

Thermal effects 
GFM(1) EM(2) FEM(3) ((1)-(3))/(3) 

((2)-

(3))/(3) 

P-P 

Disp(mm) 

Load(N) 

0.5766 

124857.0824 

0.5727 

124073.0732 

0.5770 

124319.9615 

-0.07% 

0.43% 

-0.74% 

-0.20% 

C-C 

Disp(mm) 

Load(N) 

1.3918 

317777.5873 

1.3913 

317778.3685 

1.4110 

319065.9036 

-1.36% 

-0.40% 

-1.40% 

-0.40% 

C-P 

Disp(mm) 

Load(N) 

0.8139 

180634.1171 

0.8142 

180511.6822 

0.8170 

180809.3937 

-0.37% 

-0.10% 

-0.34% 

-0.16% 

For thermal effects, the rise of temperature is considered in this part of the 

investigation, which is also shown in Table 3.6. Compared with the simplified model, the 

critical values would increase under thermal environment. An interesting finding is that 

the thermal effect has a more significant influence on the system than the damping effect 

does. 

Furthermore, when the thermal and damping effects are simultaneously considered 

(Table 3.7), the critical values are largest among all investigated cases of analysis. 

However, the results of FEM are larger than the results calculated by the other two 

methods.  
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3.3.2 Verification of buckled structural configuration 

Strictly, in classical static structural stability analysis, the buckled shape (also called 

Eigen-function) is solved by a second order/fourth order homogeneous ordinary 

differential equation according to equilibrium equation. However, it is difficult to 

introduce such an idea to dynamic buckling analysis because of two reasons. The first 

reason is that normally the governing equations involved in the dynamic structural 

stability analysis are high order inhomogeneous partial differential equations, which has 

escalated the difficulty for solving such problem when compared with the static analysis; 

the second reason is that obtaining explicit solution becomes very intricate due to the 

insufficiency of the boundary conditions. Consequently, various numerical methods (e.g., 

Galerkin method, finite different method, etc.,) have been adopted to tackle such 

challenges.  

In this chapter, the first mode shape of the beam-column has been adopted as the 

buckling shape of the structure under constant speed compression for various boundary 

conditions. Therefore, it is necessary to examine effectiveness and validity of the 

proposed methods in terms of the buckling shape modelling. 

  

(1) Simplified Model (2) Considering Damping Effect 
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(3) Considering Thermal Effect 
(4) Considering both Damping and Thermal 

Effect 

Figure 3.7 The buckled shape of P-P beams for different models 

  

(1) Simplified Model (2) Considering Damping Effect 

  

(3) Considering Thermal Effect 
(4) Considering both Damping and Thermal 

Effect 

Figure 3.8 The buckled shape of C-C beams for different models 
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(1) Simplified Model (2) Considering Damping Effect 

  

(3) Considering Thermal Effect 
(4) Considering both Damping and Thermal 

Effect 

Figure 3.9 The buckled shape of C-P beams for different models 

Similar to Section 3.2, the 12 investigated scenarios are once again considered in this 

subsection. By implementing the proposed approaches and the FEM, the buckled 

structural configurations for all 12 concerned scenarios are demonstrated in Figure 3.7, 

Figure 3.8 and Figure 3.9. As clearly indicated by these figures, the structural 

deformations predicted by the proposed methods are in a good agreement with the FEM 

modellings. One remark regarding the structural deformation presented in these figures 

is that the Clamped-Clamped beam-column has the maximum transverse deflection 

whereas the Pinned-Pinned case has the least.  

To comprehensively survey the differences between the proposed methods (i.e., GFM 

and EM) and reference method (i.e., FEM), the maximum transverse deflection reported 
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in these figures is also formally presented in Table 3.8,Table 3.9,Table 3.10 and Table 

3.11. Table 3.8 shows the maximum transverse deflection of the simplified model. It is 

clear that the results of GFM and EM are larger than the ones obtained from FEM, expect 

the case with the C-C boundary condition. If damping effect is considered, as shown in 

Table 3.9, the errors between ANM (GFM and EM) and FEM are decreased for C-C and 

C-P boundary conditions. 

Table 3.10 shows the influence of thermal effect on the maximum transverse deflection. 

It is clearly indicated that the thermal effect would result in an increase in the structural 

displacement, especially for the FEM. For the results shown in Table 3.11, the structure 

is subjected to both damping and thermal effects simultaneously. The results calculated 

by the GFM and EM have a well-preserved agreement. However, an interesting remark 

is that the increase of maximum deflection is almost the same when only considering 

either damping or thermal effects.   

Table 3.8 The maximum transverse displacement of simplified model under different 

boundary conditions  

Simplified Model GFM(1) EM(2) FEM(3) ((1)-(3))/(3) ((2)-(3))/(3) 

P-P 5.2701 5.2941 5.2489 0.40% 0.86% 

C-C 6.9112 6.9596 7.2293 -4.40% -3.73% 

C-P 5.7660 5.8143 5.6966 1.22% 2.07% 

Table 3.9 The maximum transverse displacement of beam of damping effects under 

different boundary conditions 

Damping effects GFM(1) EM(2) FEM(3) ((1)-(3))/(3) ((2)-(3))/(3) 

P-P 5.3362 5.3532 5.1331 3.96% 4.29% 
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C-C 6.9346 6.9513 6.9516 -0.24% 0.00% 

C-P 5.8168 5.7927 5.7940 0.39% -0.02% 

Table 3.10 The maximum transverse displacement of beam of thermal effects under 

different boundary conditions 

Thermal effects GFM(1) EM(2) FEM(3) ((1)-(3))/(3) ((2)-(3))/(3) 

P-P 5.3276 5.2966 5.3072 0.38% -0.20% 

C-C 6.9459 6.9789 7.0946 -2.10% -1.63% 

C-P 5.7676 5.7947 5.9506 -3.08% -2.62% 

Table 3.11 The maximum transverse displacement of beam of damping effects and 

thermal effects under different boundary conditions 

Damping effects and 

Thermal effects 
GFM(1) EM(2) FEM(3) ((1)-(3))/(3) ((2)-(3))/(3) 

P-P 5.3162 5.3121 5.1331 3.57% 3.49% 

C-C 6.9554 6.9724 6.9516 0.05% 0.30% 

C-P 5.7655 5.8168 5.7940 -0.49% 0.39% 

3.3.3 Verification of different velocities for different boundary conditions 

In 1951, Hoff [39] proposed the constant velocity loading scheme of dynamic buckling 

and shown that the critical force strongly depends on compression rate and initial 

imperfection of a beam-column. Moreover, velocity is one of the critical parameters in 

the governing equation formulated as Eqs. (30)-(31) for GFM and Eqs. (46)-(47) for EM. 

Therefore, it is essential to study the impact of different velocities acting on the structures 

with various boundary conditions. 

In Section 3.3, the results of ANM are determined by implementing the proposed GFM 

only, which are also compared with results obtained by the FEM. The material properties 
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and other parameters of the investigated structures are given in Table 3. Both damping 

and thermal effects are simultaneously considered in all models. In order to study the 

dynamic buckling under different compression rates, three typical velocities are selected 

for each boundary condition with the same initial deflection e0 of 0.5mm. For the P-P 

type, the structure is subjected to velocity of 0.01mm/ms, 0.03mm/ms, 0.05mm/ms; for 

the C-C type, it is subjected to velocity of 0.03mm/ms, 0.04mm/ms, 0.05mm/ms; and for 

the C-P type, it is subjected to velocity of 0.02mm/ms, 0.04mm/ms, 0.05mm/ms. 

Figure 3.10 shows the load-longitudinal displacement curves for the P-P, C-C, and C-

P type boundary conditions for different velocities. All solid lines are representing the 

results determined by the ANM, whereas all circles are representing the results of the 

FEM. In Figure 3.10, it can be clearly seen that the results obtained from ANM match 

very well with the results obtained from FEM for different velocities for all three 

considered boundary conditions. It is obvious that with the increase of compression rates, 

the axial force becomes larger until it reaches the peak load, which indicates the 

occurrence of buckling. 

Figure 3.11 shows the buckled shape of different boundary conditions under different 

loading rates. The surface areas are plotted by the results from ANM and the circle, square 

and point lines are plotted by the results obtained from FEM, which is corresponding to 

different velocities. The results of ANM and FEM match well in lower velocities. 

However, with the increase of axial loading rate, the error by ANM is less than 1 percent, 

except the P-P type boundary condition, which is still in a good agreement with FEM. 

The reason for this phenomenon is that with the increase of velocities, higher-order 

vibrations are involved in the model, which is also shown in the following part. 
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(a) P-P type (b) C-C type (c) C-P type 

Figure 3.10 The relationship axial load and axial displacement for different velocities of different boundary conditions 

   

(a) P-P type (b) C-C type (c) C-P type 

Figure 3.11 The relationship lateral displacement and axial length along the beam for different velocities of different boundary conditions 



63 

 

3.4 Parametric analysis 

In section 3.3, the accuracy of the proposed GFM and EM used in dynamic buckling 

analysis has been examined by comparing with the results obtained by FEM for various 

boundary conditions under different compression rates. The ANM (both GEM and EM) 

shows a good agreement with FEM, so the proposed method will introduce to parametric 

analysis in this section. The influence of damping effects, thermal effects, velocity, initial 

eccentricity, the boundary condition is explored here by utilising the GFM approach. The 

corresponding material properties are shown in Table 3.3.  

3.4.1 The influence of damping effects 

In section 3.2 and 3.3, the results showed that the critical dynamic buckling load of the 

damped system is larger than the undamped system. In order to further explore the 

relationship between damping ratio and critical load, five damping ratios ζ from 0 

(undamped system) to 0.08 are explicitly investigated as shown in Figure 3.12. It is 

obvious that the increase of the damping ratios result in an increase of dynamic 

dimensionless buckling load. When zoom in the key points, which is shown in the small 

rectangular box, the time instants of buckling are also delayed with the increasing of the 

damping ratio as shown in Table 3.12. 
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Figure 3.12 The time-load curve for different damping ratios  

Table 3.12 The time-load curve for different damping ratios  

Dimensionless time t* Dimensionless critical load Pcr
* 

0.5680 4.89E-04 

0.5701 4.92E-04 

0.5739 4.95E-04 

0.5783 4.99E-04 

0.5810 5.02E-04 

3.4.2 The influence of thermal effects 

In this subsection, the influence of the variation of the thermal environment is 

investigated. The coefficient of thermal expansion in steel beam is positive (αx=12×10−6 

K−1) for the rise of temperature and is negative (αx=-12×10−6 K−1) for the fall of 

temperature based on the room temperature (20oC). It is assumed that thermal 

environment is a uniform temperature, which means that thermal load is a prestressing 

load in the beam, while the temperature-dependent material properties are ignored. The 
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thermal stresses induced by a uniform temperature rise of fall are also shown in Eqs. (3.27) 

and (3.45).  

Five temperature changes ∆T from -20oC to +20 oC are explicitly studied, and 0 oC is 

defined as the reference temperature to represent the stress-free state case. The time-load 

curves under different temperature changes are plotted in Figure 3.13. It can be observed 

that for the structure has a negative force at the beginning of loading for temperature rise 

while a positive force for temperature fall. One can obtain two conclusions from this 

figure. The first one is that the critical buckling is decreased for temperature change ∆T 

from -20oC to +20 oC. Since the temperature-dependent material properties are ignored in 

this analysis, the thermal effects are presented as a prestressing loading as shown in 

Eq.(3.30) and Eq.(3.47). The values of critical buckling load of each ∆T are shown in 

Table 3.13.  

Moreover, with the ∆T change from -20oC to +20 oC, the dimensionless time t* is 

delayed, which means temperature rise would defer the time of buckling while 

temperature fall would cause the structure to buckle in shorter duration. The critical 

buckling load and the corresponding buckling time are the two critical impacts in dynamic 

buckling.  
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Figure 3.13 The time-load curve for different temperature change 

 

Figure 3.14 The time-deflection curve for different temperature change 

In addition to the maximum deflection, the time-deflection curves are also plotted in 

Figure 3.14. Combined with Figure 3.14 and Table 3.13, another finding is that with ∆T 

changes from -20oC to +20 oC, the dimensionless transverse deflection is increasing with 

the increase of dimensionless buckling time. 
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Table 3.13 The critical values of beam column for temperature change 

 

3.4.3 The influence of compression rates 

In section 3.3, the verification of different velocities for different boundary conditions 

has been discussed. In this part, more dynamic characteristic of dynamic buckling under 

different compression rates are studied.  

 

Figure 3.15 The time-deflection curve for different velocities  
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v
*
=3.35E-04

v
*
=1.00E-03

v
*
=1.67E-03

Temperature 

change/oC 
t* t/s Pcr

* Pcr (N) w* w (mm) 

-20 0.3640 0.0122 5.4455E-04 137227.4479 5.0032E-03 5.0032 

-10 0.4549 0.0152 5.0916E-04 128308.0928 5.2695E-03 5.2695 

0 0.5691 0.0191 5.0158E-04 126399.1497 5.3555E-03 5.3555 

10 0.6840 0.0229 4.9733E-04 125326.0961 5.4430E-03 5.4430 

20 0.7920 0.0265 4.8020E-04 121009.7834 5.5532E-03 5.5532 
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Figure 3.15 shows the time-deflection curves for a simply-supported beam-column for 

different dimensionless velocity, v*. In this figure, the dynamic buckling responses give 

a charter of oscillation and an increasing of velocity would aggravate the vibration. This 

phenomenon can be observed when the structure is the onset of the buckle. Some 

researchers hold the opinion that the first inflexion on the response curve representing the 

critical condition [201]. However, the peak load already reached before the first inflexion 

if one observed Figure 3.13 and Figure 3.14 carefully.  

 

Figure 3.16 The time-load curve for different initial eccentricities 

3.4.4 The influence of initial eccentricity 

Initial eccentricity is one of the most important parameters in dynamic buckling 

analysis. In this section, five different dimensionless initial eccentricities e* are discussed. 

In Figure 3.16, it is clearly demonstrated that a slight change of initial deflection would 

result in an apparent change in critical buckling load. For example, if initial deflection 

e*increase from 5×10-4 to 1×10-3, the dynamic critical load would decrease by 1.25 times. 

Therefore, initial eccentricity is much more important than other parameters. 
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3.4.5 The influence of boundary condition 

This subsection is dedicated to understanding the effects of different boundary 

conditions on the buckling behaviour of a beam-column. In Section 3.3, different 

boundary conditions are shown in different terms of the first mode buckled shape function. 

Furthermore, the validity of the first mode buckled shape function for dynamic buckling 

analysis is examined by comparing the results from ANM and with the FEM results in 

Section 3.3.1.  

 

Figure 3.17 The time-load curve for different boundary conditions 
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Figure 3.18 The time-deflection curve for different boundary conditions 

In this section, five typical boundary conditions, such as P-P, C-C, C-P, C-F, P-F, are 

discussed, where P, C and F denote pinned, clamped and free, respectively. Figure 3.17 

depicts the variation of the dimensionless axial load with the dimensionless time for five 

different boundary conditions. If one sort the critical buckling load in descending order, 

the following conclusion be made: C-C>P-F>C-P>C-F>P-P. The time-deflection curve 

is also shown in Figure 3.18. Similarly, the buckle time in descending order is that, C-

C>P-F>C-P>C-F>P-P. However, the dimensionless transverse deflections in descending 

order is C-P>C-F>C-C>C-P>P-P. These conclusions are much more important for 

engineers during the design of beam or column structure subjected to dynamic loading. 

They can compare the results from critical buckling load, buckle time and transverse 

deflections. 

3.4.6 The relationship of velocity, damping effects and thermal effects 

In addition to the parametric analysis, the critical loads of different damping 

coefficients for different velocities are discussed. Ten dimensionless velocities v* from 

0.1 to 1.5 and ten different dimensionless damping coefficients cd
* from 0 to 0.09 are 

explicitly investigated. Figure 3.19 shows the relationship between the load, velocity and 

damping coefficient. The increase of velocities will result in an increase of dynamic 

critical load, which is also shown in Figure 3.10. In order to further explore the 

relationship between damping coefficient and critical load, the projection of Figure 3.19 

is also established and shown in Figure 3.20. It can be observed that dynamic critical load 

increases slightly with an increase of the damping coefficients. 
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Figure 3.21 shows the relationship of load, velocity and temperature change. Similarly, 

ten dimensionless temperature changes ∆T* from -0.15 to 0.15 and ten different 

dimensionless velocities v* from 0.1 to 1.5 are studied. With the increase of temperature 

change, the critical load increase from 0.8328 to 1.165, while the critical load has a 

significant increase due to the increase of velocities. When both velocity and temperature 

change reach to the maximum value, one can see that the maximum dynamic buckling 

load and the beams need to sustain a much larger load than static one in some special 

situations, which tells us that ignoring these effects can be very dangerous for structures.  

Figure 3.22 shows the relationship between the critical buckling load, damping 

coefficient and temperature change. Similarly, ten dimensionless temperature changes 

∆T* from -0.15 to 0.15 and ten different dimensionless damping coefficients cd
* from 0 to 

0.09 are explicitly analysed. With the increase of damping coefficients, the critical load 

increase from 1.309 to 1.351, while the critical load has a significant increase due to the 

increase of temperature change. When both velocity and temperature change equal the 

maximum value, one can see the maximum critical load, which is lower than the 

combined temperature changes and velocities. Therefore, for a beam-column subjected 

to a compression rate in the presence of damping effects under thermal environment, 

velocities of load are the most important parameter for structures, then temperature 

change. And the last one is damping effects. 
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Figure 3.19 The relationship of load, velocity and damping coefficient 

 

Figure 3.20 The critical load under different damping coefficient 
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Figure 3.21 The relationship of load, velocity and temperature change 

 

Figure 3.22 The relationship of load, damping coefficient and temperature change 

3.5 Conclusion 

This chapter presents two analytical-numerical methods (EM and GFM) for dynamic 

stability assessment of Euler-Bernoulli beam. The proposed analytical-numerical 

methods are able to incorporate multiple types of parameters of the dynamic response of 

structures within a unified nonlinear ordinary differential equation, such as beam 
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geometry, material properties, loading rate, and different boundary conditions, especially 

damping and thermal effects. Consequently, the structure stability assessment against 

dynamic loading can be examined. By further comparing with FEM, the accuracy of the 

proposed method has been rigorously justified. All computational results have shown that 

the proposed method is in good agreement with FEM with/without damping effects or/and 

with/without thermal effects and the following remarks can be concluded: 

1) The presence of the damping effects can strengthen structure ability against 

buckling by increasing the dynamic buckling load. However, the buckling time 

of structure will be delayed for a damped system.  

2) The critical buckling is deceased for the temperature change from temperature 

fall to temperature rise. Moreover, temperature rise would defer the time of 

buckling while temperature fall would accelerate the time of buckling. 

3) For a beam-column subjected to a compression rate in the presence of damping 

effects under thermal environment, velocities of load are the most important 

parameter for structures, then temperature change. However, in this case, the 

damping effect has the least effects. 

4) Compared with the traditional FEM, the proposed method is time-saving and 

more accurate. Because one does not need to deal with problems such as mesh 

refinement, element types, modelling, analysis types, boundary conditions, etc. 

Moreover, the developed method can help optimum design of beam-columns 

structures under dynamic loadings. 
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Therefore, the developed method presented herein provides a comprehensive 

analytical analysis framework for dynamic stability assessment of beam-columns, as well 

as a vivid modelling on the damping effects under thermal environment for structures 

under dynamic loadings. 
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Chapter 4 Nonlinear dynamic 

characteristics and stability of 

composite orthotropic plate on elastic 

foundation under thermal environment 

4.1 Introduction  

For dynamic analysis of orthotropic plates, many researchers paid attention to natural 

frequency, linear and nonlinear vibration responses, and frequency-amplitude curves. 

From authors’ knowledge and above reviewed literature, there are no researches about 

nonlinear dynamic characteristics and stability of orthotropic plate subjected to constant 

velocities on the elastic foundation under thermal environment, even considering 

damping effects.  

Therefore, the dynamic behaviours and stability of the eccentrically composite 

rectangular orthotropic plates subjected to different loading rates is investigated in this 

chapter. The dynamic longitudinal loading on the plate is accomplished by a constant 

displacement rate of one end with respect to the other. The nonlinear compatibility 

equation is derived by using the classical plate theory with the consideration of von-

Kármán strain-displacement relation. Then the nonlinear dynamic buckling equation 

considering thermal effects and damping effects on Winkler-Pasternak elastic foundation 

is obtained by Airy’s stress function and Galerkin method. Finally, the nonlinear 
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compatibility equation is solved by fourth-order Runge-Kutta method and the nonlinear 

dynamic stability of the composite rectangular orthotropic plates are presented based on 

Budiansky-Roth criterion[2, 6, 202]. Various effects of constant velocity, damping ratio, 

temperature change, buckling mode, initial imperfection, foundation parameter on 

nonlinear dynamic buckling of the plate are discussed. 

4.2 Theory and formulation 

Consider a simply-supported composite orthotropic plate resting on a Winkler-

Pasternak elastic foundation with length a, width b and thickness h under uniform thermal 

environment ΔT, as shown in Figure 4.1. The Cartesian coordinate system (x,y,z)  is 

established, in which the (x,y) plane is on the middle surface of the plate and z is the 

thickness direction. Also, the plate is subjected to a constant compression rate v along the 

x direction. 

                

(a)                                                                (b) 

Figure 4.1 Geometry and dimensions of composite orthotropic plate resting on a 

Winkler-Pasternak elastic foundation under uniform thermal environment subjected to 

constant axial velocity 
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According to Hooker’s stress-strain relation, the constitutive equations of an 

orthotropic plate under uniform environment ΔT have the form.  
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and 
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where thermal strains have the following form 
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with x ,
y the coefficients of linear thermal expansion along the x and y axes, 

respectively.  

in which the elastic constants for orthotropic materials are given following: 

 

( )

( )

( )

( )


















=

−
=

−
=

−
=

−
=

1266

2112

2
22

2112

211
21

2112

122
12

2112

1
11

1

1

1

1

GC

vv

E
C

vv

vE
C

vv

vE
C

vv

E
C

   (4.4) 



79 

 

where E1, E2, v12 and v21 are the moduli of elasticity and Poisson ratio in x and y 

directions, respectively. G12 is the shear modulus. 

 The expansion of Eq.(4.1) can be written as  
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Considering the initial imperfection, the von-Kármán nonlinear strain-displacement 

relations can be written 
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where u , v , w are the displacement components of middle surface of the plate in x,y,z 

direction, respectively. 

Following the classical (Kirchhoff) plate theory and substituting Eqs.(4.6) into 

Eqs.(4.5), the moment resultants of an orthotropic plate are given following: 
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where the bending moment due to the thermal effects can be obtained 
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By differentiating x ,
y ,

xy  from Eqs.(4.6) twice with respect to y,x and 

x,y ,respectively, one can obtain the nonlinear kinematic compatibility equilibrium  
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Airy’s stress function F(x,y), is defined as follows 
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Substituting Eqs.(4.2) and (4.10) into Eq.(4.9), the nonlinear compatibility equation 

for buckling of imperfect rectangular plates can be written 
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The nonlinear dynamic equilibrium equations for an eccentrically orthotropic plate 

resting on the Winkler-Pasternak elastic foundation under uniform temperature change 
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and uniformly out-plate distributed load q0 including damping effects based on classical 

plate theory are  
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where cd denotes the damping coefficient of the structure; kw is Winkler foundation 

modulus, kpx and kpy is the shear layer foundation stiffness of Pasternak model along x 

and y direction. If the foundation is isotropic, it is obvious that kpx=kpy=kp. 

and where  
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Substituting Eqs.(4.7) and Eqs.(4.8) into Eq.(4.14), the dynamic equation of the plate 

can be obtained 
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From E1v21=E2v12, so that C12=C21. The flexural rigidities are given by Dij=Cijh
3/12 
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When considering uniform temperature changes in the environment, the nonlinear 

compatibility equation for buckling of imperfect rectangular plates Eq.(4.11) can be 

reduced to 
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And the dynamic equation for orthotropic plate Eq.(4.16) can be reduced to 
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4.3 Nonlinear dynamic analysis of an orthotropic plate 

4.3.1 Solution of the problem 

The boundary conditions for w  and 0w  of a supported plate where the edges remain 

straight after buckling are 
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From the above figure, the average stress in each direction becomes 
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where )(tp  is the average compressive stress due to the constant compression rates. 
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The deflection function for the SSSS boundary condition plate will be assumed to be 

the single mode[74] 
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where Wmn(t) is the time-varying amplitude of w, and m and n are the number of half 

waves in the x and y directions, respectively. Moreover, other boundary conditions can 

be considered if one selects the proper trigonometric admissible functions[75]. 

Also, the initial shape function can be taken as 
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where W0  represents the initial eccentricity value of the plate. 

Substituting Eq.(4.24) and Eq.(4.25) into the nonlinear compatibility Eq.(4.18) and 

solving the obtained equation for unknown F lead to   
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Then, using Eqs.(4.24), (4.25) and (4.26), Eq.(4.19) can be rewritten as  
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(4.27) 

Applying the Galerkin method to Eq.(4.27) and multiplying each term with   

sin(mπx/a)sin(nπy/b)dxdy, then integrating over the middle surface of the plate, the 

equation becomes 

 

( )

2

0

2

4 4 2 2 4 2 2

11 12 66 224 2 2 4 4 2 2 2 2

2 2 4 4 4
2 2

0 1 2 02 4 4

1
2( 2 )

( ) ( ) 0
24

mn mn
d

w px py

mn mn mn mn

W W q
c

t t

m m n n m n
D D D D k k k

h a a b b a b

m p t m n
W W W E E W W W

a a b





   

 

 

 
+ −

 

 
+ + + + + + + 

 

 
• − − + + − = 

 

  (4.28) 

4.3.2 In-plane compressive force 

Substitute Eq.(4.26) into Eq.(4.22), the membrane stresses can be obtained  
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Getting together Eq.(4.6) with Eq.(4.2), we can have the following equations 
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Substitute Eq.(4.29) into Eqs.(4.30) and eliminating x , then xu  /  can be expressed  
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where ∂u/∂x strain at any point through the plate thickness in x-direction; when z=0,  

∂u/∂x represents the strain at points on the plate middle plane. Therefore, for 

simplification, in this chapter we just consider the strain at points on the plate middle 

plane.  

The dynamic longitudinal loading on the plate is accomplished by a constant 

displacement rate v along x-axis of one end with respect to the other; therefore, the 

displacement along x-axis due to the loading rate can be solved by 
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where negative in the displacement means the plate edge is shorten.  

Also, the average value of compressive stress p(t) can be expressed 
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The coefficient of thermal expansion in plate is positive (αx=12×10−6 K−1) for the fall 

of temperature and is negative (αx=-12×10−6 K−1) for the rise of temperature based on the 

room temperature (T=300K). This is because the plate will expand due to the rise of 

temperature, which may result in tension force along the edge of the plate. 

4.3.3 Vibration analysis 

For an imperfect orthotropic plate on Winkler-Pasternak elastic foundation in thermal 

environment subjected to out-plane uniformly distributed load (UDL) q0=Qsin(wt) and 

in-plane compressive force p(t), respectively. Then Eq.(4.28) can be written as 
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where Q is the amplitude of the UDL and w is the frequency of the excitation force. 

By solving Eq.(4.34), the natural frequencies of the orthotropic plate, and the 

frequency-amplitude relation of nonlinear vibration with or without damping, the 

nonlinear behaviour of the orthotropic plate on Winkler-Pasternak elastic foundation can 

be obtained.  
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For the free and linear vibration without damping effect, considering only initially 

perfect plates, 0W =0, the Eq.(4.34) becomes 
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For harmonic motion, Wmn(t) may be taken in the form 

 )sin()( tAtWmn =    (4.36) 

where A is the amplitude of the vibration. 

Substituting Eq.(4.36) into Eq.(4.35), the fundamental frequency of natural vibration 

of orthotropic plate on Winkler-Pasternak elastic foundation can be determined by 
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When the compressive loading rate v=0 and considering an initially perfect plate, the 

nonlinear vibration of an orthotropic plate with the consideration of damping effect on 

Winkler-Pasternak elastic foundation can be obtain from Eqs.(4.33) and (4.34) 
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Substituting Eq.(4.36) into nonlinear vibration equation (4.38) and applying Galerkin 

method, one can obtain that  
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Eq.(4.39) is the nonlinear vibration equation of an orthotropic plate subjected to out-

plane uniformly distributed load (UDL) and uniformly temperature changes environment 

on Winkler-Pasternak elastic foundation with damping effects. 
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1) When Q=0, the nonlinear free vibration of an orthotropic plate under uniformly 

temperature changes environment on Winkler-Pasternak elastic foundation is 

obtained 
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2) When 
T

x =0, the nonlinear free vibration of an orthotropic plate under out-

plane uniformly distributed load on Winkler-Pasternak elastic foundation is 

obtained 
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3) When Q=0 and 
T

x =0, the nonlinear free vibration of an orthotropic plate on 

Winkler-Pasternak elastic foundation can be determined by  
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4.3.4 Buckling analysis 

4.3.4.1 Static buckling analysis 

For an initially perfect plate, by omitting the out-plane UDL, velocity, acceleration 

and high-order terms, Eq.(4.28) can be reduced into 
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Eq.(4.44) is the linear static equation of the orthotropic plate on an elastic foundation, 

which can also obtain from the corresponding static case using the linear theory. Then the 

critical buckling load is  
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Therefore, the dimensionless in-plane static buckling load is defined as follows: 
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4.3.4.2 Dynamic buckling analysis 

Then substituting Eq.(4.33) into Eq.(4.28), the governing equation of nonlinear 

dynamic buckling of an orthotropic rectangular plate subjected to a constant loading rate 

v with thermal effect and damping effect can be derived  
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Introduce the following non-dimensional parameters and constants 
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By considering the viscous damping as internal damping effects, one can obtain that: 
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where cd denotes the damping coefficient of the structure; mn denotes the circular natural 

frequency of the plate corresponding to mode (m,n); and  denotes the damping ratio of 

the plate. 
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Therefore, the differential equations governing the nonlinear behaviour of an 

orthotropic plate can be written in a non-dimensional form 
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According to the dimensionless quantities of Eq.(4.48), the normalised buckling load 

from Eq.(4.33) can be represented as: 
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where 
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4.4 Numerical results and discussion 

4.4.1 Verification of proposed method 

In this section, the accuracy of the proposed method is verified with published papers 

and the following dimensionless parameters are defined. 

Natural frequency of orthotropic plate without Winkler-Pasternak elastic foundation 
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Natural frequency of orthotropic plate with Winkler-Pasternak elastic foundation 
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The dimensionless elastic constants of foundations may also be defined as 

follows[203],[204] 
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Table 4.1 Comparison on the frequency parameter of SSSS orthotropic plate without 

Winkler-Pasternak elastic foundation 

Mode sequence 

number 

Present 

method 
Ref.[204] Ref.[205] Ref.[206] 

Average Error(%) with 

Ref. [204-206] 

1st 4.90236 (1,1)* 4.88896 4.902 4.9002 0.27% 

2nd 7.25736 (1,2) 7.23752 7.253 7.2562 0.27% 

3rd 8.38189 (2,1) 8.35899 8.34 8.3823 0.27% 

4th 9.80473 (2,2) 9.77791 9.795 9.7997 0.27% 

5th 10.10273 (1,3) 10.07513 10.079 10.1161 0.27% 

6th 11.95108 (2,3) 11.91839 11.924 11.9501 0.27% 

*Numbers in parentheses refer to mode type (m,n). 

At first, the natural frequencies of perfect SSSS orthotropic plate without Winkler-

Pasternak elastic foundation is calculated by present analysis and compared with Huang 

et al.[205] using the discrete method, Bahmyari et al.[206] based on element free Galerkin 
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method, and Rahbar-Ranji et al.[204] based on Rayleigh-Ritz method, as shown in Table 

4.1. For Table 4.1, the dimensions of plate are a=b=1m, h=0.01a, the material properties 

are taken as E1=60.7GPa, E2=24.8GPa, G12=12GPa, v12=0.23, v21=0.094, ρ=1600kg/m3.  

As can be seen, in this comparison study outstanding agreements are achieved and the 

average errors in different modes have 0.27%.  

Then the comparison on the frequency parameter of SSSS orthotropic plate with 

Winkler-Pasternak elastic foundation solved by presented method with the results of 

Rahbar-Ranji et al. [204] based on Rayleigh-Ritz method is investigated, as shown in 

Table 4.2. In this part, dimensions of plate are a=b=1.2m, h=0.02a, the material properties 

are taken as E1=185GPa, E2=10.5GPa, G12=7.3GPa, v12=0.28, v21=0.01589, ρ=1600kg/m3. 

Again it can be concluded that the proposed method has good accuracy for different 

modes with or without elastic foundation. Additionally, the proposed analytical solution 

is quite simpler and faster than the cited references. 

Table 4.2 Comparison on the frequency parameter of SSSS orthotropic plate with 

Winkler-Pasternak elastic foundation 

Method wK  
pK  

Frequency parameter 

1st 2nd 3rd 4th 5th 6th 

Present 

0 100 

6.76565 

(1,1)* 

8.4894 

(1,2) 

9.00394 

(2,1) 

9.95903 

(2,2) 

10.14206 

(1,3) 

11.15779 

(2,3) 

Ref.[204] 6.76565 8.48948 9.00394 9.95903 10.14210 11.15780 

Present 

100 0 

3.85714 

(1,1) 

4.35429 

(1,2) 

5.33623 

(1,3) 

6.45643 

(2,1) 

6.60842 

(1,4) 

6.72178 

(2,2) 

Ref.[204] 3.85714 4.35429 5.33624 6.45643 6.60842 6.72178 
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Present 

100 100 

6.84497 

(1,1) 

8.53005 

(1,2) 

9.03799 

(2,1) 

9.98424 

(2,2) 

10.16594 

(1,3) 

11.17574 

(2,3) 

Ref.[204] 6.84497 8.53005 9.03799 9.98424 10.16590 11.17570 

*Numbers in parentheses refer to mode type (m,n).  

Figure 4.2 and Figure 4.3 show the 3D plot of simultaneous effects of 
wK and 

pK  on 

dimensionless parameter of natural frequency mn  and static buckling load stp , 

respectively. As can be seen, with the increase of 
wK  and 

pK , the natural frequencies and 

static buckling load become larger. While the influence of  
pK  is more pronounced than 

wK , especially for the static buckling load.  

 

Figure 4.2 Dimensionless parameter of natural frequency mn  of an orthotropic 

rectangular plate on Winkler-Pasternak elastic foundation with variable foundation 

parameters 
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Figure 4.3 Dimensionless parameter of static buckling load stp  of an orthotropic 

rectangular plate on Winkler-Pasternak elastic foundation with variable foundation 

parameters 

4.4.2 Dynamic characteristics of orthotropic plate on Winkler-Pasternak elastic 

foundation 

4.4.2.1 Natural frequency and linear vibration 

The results from Table 4.1 and Table 4.2 have verified the proposed methods. 

Additional the effects of different aspect ratios, foundation parameters and mode numbers 

on natural frequencies and static buckling, respectively, are shown in Table 4.3. 

Obviously, the increasing of a/b leads to the increase of natural frequencies and static 

buckling for the same foundation parameters, while the influence of 
pK  is more 

pronounced than 
wK , especially for the static buckling load. Same results are shown 

before. One interesting finding is that the influence of modes (m,n) does not have specific 

laws. The increase of m will not cause the increase of static buckling. For example, the 

static buckling of m=2,3 is smaller than m=1 when a=1,2.  



98 

 

Table 4.3 Dimensionless parameter of natural frequency mn and static buckling stp load 

of SSSS orthotropic plate on Winkler-Pasternak elastic foundation for different aspect 

ratios and foundation parameters (m=1-3, n=1, h=0.02a) 

a/b wK  pK  

mn  stp  

m=1 m=2 m=3 m=1 m=2 m=3 

0.5 

0 0 3.1807 6.3020 9.4372 1.0508 4.0481 9.0476 

100 0 3.7716 6.3996 9.4668 2.0774 4.3048 9.1617 

0 100 6.0458 8.7162 11.4289 13.7159 14.8135 19.4612 

100 100 6.1559 8.7538 11.4456 14.7425 15.0701 19.5753 

1 

0 0 3.3190 6.3615 9.4755 1.2457 4.2031 9.1952 

100 0 3.8571 6.4564 9.5047 2.2723 4.4598 9.3093 

0 100 6.7656 9.0039 11.5718 21.5099 16.8683 20.4531 

100 100 6.8450 9.0380 11.5879 22.5365 17.1249 20.5672 

2 

0 0 4.0135 6.6379 9.6414 2.6638 4.9827 9.8566 

100 0 4.3543 6.7218 9.6692 3.6904 5.2393 9.9706 

0 100 8.4895 9.9590 12.1050 53.3244 25.2469 24.4918 

100 100 8.5301 9.9842 12.1191 54.3510 25.5036 24.6059 

4.4.2.2 Frequency-amplitude curve 

In a damped nonlinear forced or nonlinear free vibration system, the Frequency-

Amplitude (F-A) curve is of important impacts to study the oscillation laws of the system. 

Normally, the graph of A versus F called a ‘backbone curve’ because of its shape. In this 

subsection, the FA curve of an SSSS orthotropic plate resting on the elastic foundation 

subjected to out-plane UDL including damping effects is investigated. The dimensions of 

plate are a=b=25.4cm, h=0.005a, the material properties are taken as E1=275.79GPa, 
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E2=27.579GPa, G12=10.756GPa, v12=0.25, v21=0.025, ρ=1619kg/m3. The coefficients of 

Winkler-Pasternak elastic foundation are kw =5×105N/m2, kpx = kpy=2.5×104N/m. 

Substituting Eq.(4.49) into Eq.(4.39), the nonlinear free vibration frequency can be 

obtained 

 
A

Q
Acccmn
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
 −+−=− 2

321

2

4

34
   (4.56) 

where denotes the damping ratio of the plate. 

 

Figure 4.4 The frequency-amplitude curve of the nonlinear vibration of a SSSS 

orthotropic plate resting on the elastic foundation subjected to different external UDL 
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Figure 4.5 The frequency-amplitude curve of the nonlinear vibration of a SSSS 

orthotropic plate resting on the elastic foundation subjected to different temperature 

changes  

 

Figure 4.6 The frequency-amplitude curve of the nonlinear vibration of an SSSS 

orthotropic plate resting on the elastic foundation subjected to different damping ratios 
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magnitude of Q, the FA curve follows the one of nonlinear free vibration. Positive means 

the force is upward, and vice versa. The FA curves of the nonlinear free vibration of an 

SSSS orthotropic plate resting on the elastic foundation subjected to different temperature 

changes are illustrated in  

Figure 4.5. Five thermal changes are considered, which are 0°C, 20°C, 40°C, 60°C, 

80°C. For the same amplitude, the frequencies ratios increase with an increase of 

temperature changes. And for each single FA curve, the amplitudes increase 

monotonically with an increase of frequencies ratios for all five cases.  

Figure 4.6 investigates the effect of varying damping ratios f a SSSS orthotropic plate 

resting on the elastic foundation while holding other parameters constant. As can be seen, 

for the same amplitude, the increase of damping ratios leads to the increase of frequency 

ratios; for the same frequency, damping ratios increase, while the amplitude decreases. 

Also for each single FA curve, the amplitudes increase monotonically with an increase of 

frequencies ratios for all five cases. The effects of the two parameters of Winkler-

Pasternak elastic foundation on FA curves are presented in  

Figure 4.7. For the same amplitude, the increase of both kw and kp will cause the 

decrease of frequency ratios; while the influence of kp is more pronounced than kw. 
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Figure 4.7 The frequency-amplitude curve of the nonlinear vibration of a SSSS 

orthotropic plate resting on the elastic foundation subjected to different foundation 

parameters 

 

Figure 4.8 The nonlinear dynamic responses of a SSSS orthotropic plate resting on the 

elastic foundation subjected to different damping ratios 
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Figure 4.9 The zoom in of the first period of Figure 4.8 

4.4.2.3 Nonlinear dynamic responses 
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Figure 4.10 The nonlinear dynamic responses of a SSSS orthotropic plate resting on the 

elastic foundation subjected to different temperature changes 
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changes look like the prestressing force on the plate edge, which will influence the plate 

vibration frequencies, amplitudes, and undermine the critical buckling load. The same 

results have been witnessed by Li et al. [207] and Bich et al.[208, 209]. When ΔT=0, the 

amplitudes of the plate is almost the same and keep a line near 0; then when temperature 

rise, the plate bend to the downward direction. Before applying the UDL, the plate is in a 

uniform temperature field, which means the plate will bend under such environment and 

the amplitudes is negative.  

 

Figure 4.12 The influence of different frequencies of the excited forces on the nonlinear 

dynamic responses of a SSSS orthotropic plate 
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foundation, the deflection of the plate will decrease; while kp is more sensitive than kw for 

the structures. This is because the elastic foundation restricts the transverse vibration. 

Figure 4.14 shows the deflection-velocity relation of a SSSS orthotropic plate resting 

on the elastic foundation. As can be seen that the deflection-velocity curve is closed and 

symmetrical with respect to amplitudes equals to 0.  

 

Figure 4.13 The nonlinear dynamic responses of a SSSS orthotropic plate resting on the 

elastic foundation subjected to different foundation parameters 

 

Figure 4.14 Deflection-velocity relation of a SSSS orthotropic plate resting on the 

elastic foundation 
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4.4.3 Dynamic stability of orthotropic plate on Winkler-Pasternak elastic 

foundation 

To investigate the nonlinear dynamic stability of an orthotropic plate on Winkler-

Pasternak elastic foundation in a thermal environment subjected to a constant 

compression rate, Eq.(4.50) was solved numerically based on fourth-order Runge-Kutta 

method. The dimensions of the plate and the material properties are the same as last 

subsection, while the coefficients of Winkler-Pasternak elastic foundation are kw 

=1×105N/m2, kpx = kpy=1×103N/m and the initial imperfection is W0=0.01×h. Three value 

of velocity v: 0.001m/s, 0.002m/s, 0.003m/s.  

Figure 4.15 and Figure 4.16 show the dimensionless time-deflection curve, the 

dimensionless time-load curve of a SSSS orthotropic plate resting on the elastic 

foundation subjected to different velocities, respectively. When time multiplies velocity, 

the longitudinal end-shortening can be obtained. Static post-buckling solution is solved 

from the reduced form of Eq.(4.50), which ignore the transverse velocity and acceleration 

terms. As can be seen from Figure 4.15 that all the static buckling curves have two phases, 

which is a sudden increase of deflection from initial position and then nearly a linear 

increase of deflection with respect to time. Moreover, all the dynamic buckling curves 

have three phases, which are slow increase, rapid increase and then plate vibration. Figure 

4.17 is the enlarged view of Figure 4.16. From Figure 4.16 and Figure 4.17, we can 

observe that all the static buckling curves have two phases, which are linear pre-buckling 

curves and linear post-buckling curves. Moreover, all the dynamic buckling curves have 

two phases, which are linear pre-buckling and then plate vibration.  
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From Figure 4.15, it is interesting to note that as velocity is small, the deflection of 

static buckling is larger than the dynamic one, while after the first inflexion the dynamic 

curves are oscillated about static ones when the velocity is increased. Therefore, as we 

mentioned before, constant velocity schemes can help us find the threshold velocity 

values between static and dynamic in experiments and theoretical analysis. Moreover, 

from Figure 4.17, critical static buckling loads are the same for different velocity and 

equals to 0.33. This is just we expected, and the velocity has no influence on the critical 

buckling load. Because the eccentricity is 0.01×h in this section, pmn* is not equal to 1. 

 

Figure 4.15 Dimensionless time-deflection curve of a SSSS orthotropic plate resting on 

the elastic foundation subjected to different velocities 
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Figure 4.16 Dimensionless time-load curve of a SSSS orthotropic plate resting on the 

elastic foundation subjected to different velocities 

 

Figure 4.17 The zoom in of Figure 4.16(b) 
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Figure 4.18 Dimensionless time-deflection curve of a SSSS orthotropic plate resting on 

the elastic foundation subjected to damping ratios 

 

Figure 4.19 Dimensionless time-load curve of a SSSS orthotropic plate resting on the 

elastic foundation subjected to different damping ratios 
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which stored in the first two phases. The larger that damping ratios are, the more the 

depletion. 

 

Figure 4.20 Dimensionless time-deflection curve of a SSSS orthotropic plate resting on 

the elastic foundation subjected to different temperature changes 

 

Figure 4.21 Dimensionless time-load curve of a SSSS orthotropic plate resting on the 

elastic foundation subjected to different temperature changes 

Figure 4.20 and Figure 4.21 show the influence of temperature changes on nonlinear 

dynamic buckling of orthotropic plate resting on the elastic foundation. It shows that the 
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increase of temperature changes will delay the buckling time. If observing the two figures 

carefully, one can find that the increase of temperature changes also decreases the 

buckling load and increase the deflection of the plate.  The same results also concluded 

in the last subsection.  

 

Figure 4.22 Dimensionless time-deflection curve of a SSSS orthotropic plate resting on 

the elastic foundation for different buckling modes 

 

Figure 4.23 Dimensionless time-load curve of a SSSS orthotropic plate resting on the 

elastic foundation for different buckling modes 
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Figure 4.22 and Figure 4.23 show the buckling modes on nonlinear dynamic buckling 

of orthotropic plate resting on the elastic foundation. It is found that the increase of n (the 

half-wave along y-axis) will decrease the critical buckling load and enlarge the oscillation; 

while m (the half-wave along x-axis) increase, the critical load maybe increases or 

decrease. However, the oscillation will be weakened due to the increase of m. 

 

Figure 4.24 Dimensionless time-deflection curve of a SSSS orthotropic plate resting on 

the elastic foundation for different initial imperfections 

 

Figure 4.25 Dimensionless time-load curve of a SSSS orthotropic plate resting on the 

elastic foundation for different initial imperfections 
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In Figure 4.24 and Figure 4.25, the effects of different initial imperfections on 

nonlinear dynamic buckling of orthotropic plate resting on the elastic foundation. Three 

values are chosen, i.e.W0 =0.1×h, 0.01×h, 0.001×h. As shown, initial imperfections 

greatly influence the dynamic buckling load and oscillation of third phases. When initial 

imperfections increase, both the critical buckling load and oscillation of third phases 

decrease. 

 

Figure 4.26 Dimensionless time-deflection curve of a SSSS orthotropic plate resting on 

the elastic foundation for different foundation parameters 

 

Figure 4.27 Dimensionless time-load curve of a SSSS orthotropic plate resting on the 

elastic foundation for different foundation parameters 

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5



W
* m

n

 

 

1:0*k
p
,0*k

w

2:0*k
p
,10*k

w

3:0*k
p
,50*k

w

4:50*k
p
,0*k

w

5:50*k
p
,10*k

w

6:50*k
p
,50*k

w

V=0.001m/s,w
0
=0.01h,

T=0,=0
(m,n)=(1,1)

3 12 6 5 4

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1



p
* m

n

 

 

1:0*k
p
,0*k

w

2:0*k
p
,10*k

w

3:0*k
p
,50*k

w

4:50*k
p
,0*k

w

5:50*k
p
,10*k

w

6:50*k
p
,50*k

w

V=0.001m/s,w
0
=0.01h,

T=0,=0
(m,n)=(1,1)

2

3

1

4

5 6



115 

 

The influence of different elastic foundation parameters on nonlinear dynamic 

buckling of orthotropic plate is also illustrated in Figure 4.26 and Figure 4.27. It is 

obvious that the increase of kw would reduce the onset of buckling amplitudes and 

decrease dynamic buckling load while holding all other things fixed. An interesting 

finding is that when kp reaches 50*kp, there is an absence of dynamic buckling point or 

even a clearly inflexion according to Budiansky-Roth criterion[2, 6, 202]. This is due to 

the increase of kp restrict the transverse deflection of the plate and further mitigate 

dynamic buckling load.  

From the figures, although there is no clearly buckling point, there is a clear turning 

between second phase and the third phase for Wmn
*-τ and between the first phase and 

second phase for pmn-τ. Some of the researchers give the explanation according to this 

phenomenon.  Bich et al. [210] took the intermediate value of the turning satisfying the 

condition 
𝑑2𝑊𝑚𝑛

𝑑𝜏2 = 0 when τ=τcr .Huang et al. [102] selected the first inflexion on the 

response curve which also needs to satisfy 
𝑑2𝑊𝑚𝑛

𝑑𝜏2 = 0.  Based on authors’ knowledge, 

giving 
𝑑2𝑊𝑚𝑛

𝑑𝜏2 = 0 as the buckling points cannot accurately predicts the exact dynamic 

buckling of orthotropic plate on the elastic foundation. This is because the slight 

disturbance or inflexion is just the release of strain energy, and both Wmn
*, τ and pmn 

change very small. Actually, as we all known, the load-capability is larger for an 

orthotropic plate, moreover, the plate on an elastic foundation which restrict its transverse 

movement. Therefore, the author thinks that the B-R criterion is unsuitable for the plate 

on elastic foundation when foundation parameters become larger.  
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4.5 Conclusion 

The chapter develops the nonlinear dynamic characteristics and stability of composite 

orthotropic plate on Winkler-Pasternak elastic foundation subjected to different axial 

velocities with damping and thermal effects for the first time. The Galerkin method and 

Airy’s stress function were used to obtain the nonlinear differential equations. By using 

fourth-order Runge-Kutta method and B-R criterion, the characteristics of natural 

frequency, linear and nonlinear vibration, frequency-amplitude curve and nonlinear 

dynamic responses were investigated; then various effects of constant velocity, damping 

ratio, temperature change, buckling mode, initial imperfection, elastic foundation 

parameter on nonlinear dynamic buckling of the plate were also discussed and the 

following remarks can be concluded: 

1. The formulation for dynamic responses is converted into an ordinary 

differential equation with consideration of out-plate UDL, in-plate axial 

velocity, damping effects, thermal effects and elastic foundation. The accuracy 

of the obtained results of frequency parameters is verified against the published 

paper by other methods and shows that the proposed method has good accuracy. 

Moreover, the proposed method can be applied to micro- and nanostructures.  

2. For the time-deflection relation, static buckling curves have two phases, which 

are a sudden increase of deflection from initial position and then nearly a linear 

increase of deflection with respect to time. The dynamic buckling curves have 

three phases, which are slow increase, rapid increase of deflection with respect 

to time and then plate oscillation; while for the time-load relation, static 

buckling curves have two phases, which are linear pre-buckling curves and 
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linear post-buckling curves, the dynamic buckling curves have two phases, 

which are linear pre-buckling and then plate oscillation. 

3. When considering dynamic terms, the dynamic buckling loads are larger than 

the static ones. However, the mid-plane deflections of dynamic are smaller than 

static ones. The threshold velocity values between static and dynamic can be 

solved, which are the key concerns in experiments and theoretical analysis.  

4. For the out-plate vibration due to UDL, the damping effects have a significant 

influence on the structure, especially in the first vibration period, while after 

that the amplitude of plate keeps nearly the same for different damping ratios. 

And the velocity impulse dynamic stability analysis shows that the increase of 

damping ratios increases the dynamic buckling load and eliminates the 

oscillations in the third phases. 

5. Temperature rise will cause the increase of axial compression stresses and 

further reduce the transverse stiffness of plate. Additionally, the uniform 

temperature changes look like the prestressing force on the plate edge, which 

will influence the plate vibration frequencies, amplitudes, and undermine the 

critical buckling load. 

6. The two parameters of Winkler-Pasternak elastic foundation have a significant 

influence on structural dynamic responses. Considering the elastic foundation, 

the deflection of the plate will decrease; while Pasternak parameter is more 

sensitive than Winkler one for the structures. Also the increase of foundation 

parameters would reduce the onset of buckling amplitudes and decrease 

dynamic buckling load. The author thought that the B-R criterion is unsuitable 

for the plate on elastic foundation when foundation parameters become larger.  
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Chapter 5 Nonlinear primary 

resonance of functionally graded 

porous cylindrical shells using the 

method of multiple scales 

5.1 Introduction  

As one of the most promising materials in lightweight structures, the mechanics and 

mechanism of FG porous structures have been investigated extensively in recent years. 

Additionally, the understanding of free vibration and nonlinear vibration analysis is 

crucial to FG porous cylindrical shells. However, no previous work has been done for FG 

porous cylindrical shells with external harmonic excitation, especially for the resonant 

characteristics with different internal porosity distributions. Thus, it is of great importance 

to analyse the forced vibration behaviour of FG porous cylindrical shell due to the time-

dependent external forces and the proper understanding and development of primary 

resonance of FG porous cylindrical shell can help engineers avoid the peak resonances of 

the structural system in the design process. 

The purpose of this chapter is to study the nonlinear forced vibration characteristics of 

the cylindrical shell made of functionally graded porous materials subjected to a 

uniformly distributed harmonic loading. The nonlinear compatibility equation is derived 

by using the Donnell shell theory with the consideration of von-Kármán strain-
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displacement relation and damping effect. With an acceptable accuracy, neglecting the 

inertia and rotary inertia terms, the single-mode approximation of deflection was assumed, 

which satisfies the boundary conditions[54, 211, 212]. Then the Galerkin method in 

conjunction with the method of multiple scales is used to obtain a second-order nonlinear 

ordinary equation with the cubic nonlinear term, named Duffing-type equation. Based on 

this equation, the frequency-response analysis is investigated for three types of FG porous 

cylindrical shells, that are symmetric porosity distribution, non-symmetric porosity stiff 

or soft distribution, and uniform porosity distribution. The influences of porosity 

distribution, porosity coefficient, damping ratio, amplitude and frequency of the external 

harmonic excitation, aspect ratio and thickness ratio on the nonlinear dynamic behaviour 

are discussed in detail. 

5.2 Material gradient of an FG porous cylindrical shell 

In this chapter, three types of FG porous distributions, namely Type 1(symmetric 

porosity distribution) [142-149], Type 2 (non-symmetric porosity distribution) [76, 152-

154, 173] and Type 3 (uniform porosity distribution) are considered in cylindrical shells, 

as shown in Figure 5.1. The elastic modulus and mass density of porous materials vary 

through the thickness direction based on the assumption of a typical mechanical feature 

of the open-cell metal foam. The variation of Young’s modulus E(z), shear modulus G(z) 

and density ρ(z) through the thickness direction of the cylindrical shell is described by 

Eqs.(5.1)-(5.4).  

A novel non-symmetric porosity soft distribution is also proposed and Young’s 

module E, shear modulus G and density ρ of this type of distribution gradually become 

small from inside diameter to outside diameter, as shown in Figure 5.1(c). Though non-
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symmetric porosity soft distribution is different from that of stiff type, both of them 

occupy similar free vibration and forced vibration behaviour due to the same stiffness and 

mass. Thus, for the convenience, in this chapter, both non-symmetric porosity stiff 

distribution and soft distribution are called Type 2. 

                     

 

                     

 

Figure 5.1 Cross-section of an FG porous cylindrical shell with different porosity 

distributions 

 

 

 

(a) Type 1 Symmetric porosity distribution (b) Type 2 Non-symmetric porosity stiff 

distribution 

 

(c) Type 2 Non-symmetric porosity soft 

distribution    
(d) Type 3 Uniform porosity distribution 
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Type1: symmetric porosity distribution 
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Type2: non-symmetric porosity stiff distribution 
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Or non-symmetric porosity soft distribution 
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Type3: uniform porosity distribution 
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where h is the thickness of the shell and varies from –h/2 to h/2. z is the coordinate in the 

thickness direction. N0 is the coefficient of cylindrical shell porosity 0<N0<1 and can be 

obtained by N0 =1-Emin/Emax=1-Gmin/Gmax. The porosity coefficient of mass density is 

defined as Nm=1-ρmin/ρmax. Emin, Gmin and ρmin are the minimum values of Young’s 

modulus, shear modulus and mass density in the thickness direction of the cylindrical 

shell, while Emax, Gmax and ρmax are the corresponding maximum values, respectively. Also 

G(z)=E(z)/[2(1+v)] from the relationship between Young’s modulus and shear modulus. 

In this chapter, we assume that Poisson’s ratio v of the shell is considered to be constant 

because the effect of Poisson’s ratio on the deformation is much less than other material 

properties[213]. The variations of Young’s modulus through the dimensionless thickness 

z/h for different types of porosity distributions are shown in Figure 5.2.  

The relation between Young’s modulus and mass density of metal foam materials was 

presented by Gibson and Ashby [214] in the following form 

 

2

min min

max max

E

E





 
=  
 

   (5.5) 

Following this equation, one can obtain the expression between Nm and N0 

 01 1mN N= − −    (5.6) 

Since the total masses M of the cylindrical shell with different porosity distributions 

are the same, then the porosity coefficient of mass density Nm
* in Eq.(5.4) for uniform 

porosity distribution can be derived from Eq.(5.6) as follows 
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Furthermore, the λ in Eq.(5.4) for uniform porosity can be rewritten as  
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Figure 5.2 Variation of Young’s modulus through the dimensionless thickness z/h for 

different types of porosity distributions 

5.3 Theory and formulation 

Consider a functionally graded porous cylindrical shell with length L, mean radius R 

and thickness h, as shown in Figure 5.3. The Cartesian coordinate system (x,y,z) is 

established, in which point O is located on the middle plane and at the left side of the 

cylindrical shell. z is the thickness direction. Also, the cylindrical shell is subjected to a 

uniformly distributed harmonic loading q(t) at both upper side and bottom side of the 

cylindrical shell along the z direction. 

0.4 0.6 0.8 1
-0.5

0

0.5

E(z)/E
max

z
/h

 

 

Type 1

Type 2-Stiff distribution

Type 2-Soft distribution

Type 3



124 

 

 
(a) 

 
(b) 

Figure 5.3 Geometry and the coordinate system of the FG porous cylindrical shell 

subjected to a uniformly distributed harmonic loading q(t) 

Based on the classical shell theory, the von-Kármán nonlinear strain-displacement 

relation on the middle plane of FG porous cylindrical shell can be written as 
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   (5.9) 

where  0

x  and 0

y  are normal strains, 0

xy is the shear strain at the middle surface of the 

shell. u, v, and w are the displacement components of middle surface of the cylindrical 

shell in x, y, and z direction, respectively. 
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The strain components across the shell thickness are  

 0 0 0, , 2x x x y y y xy xy xyz z z        = + = + = +    (5.10) 

where κx , κy and κxy  are the change of curvatures and twist and can be expressed as 

2 2

x w x = −  ,
2 2

y w y = −  ,
2

xy w x y = −   , respectively. 

By differentiating
0

x ,
0

y
0

xy  from Eq.(5.9) twice with respect to y, x and x, y, 

respectively, one can obtain the nonlinear kinematic compatibility equilibrium as 
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   (5.11) 

According to Hooker’s stress-strain relation, the constitutive equations of an FG 

porous cylindrical shell are as follows 
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where E and v are the moduli of elasticity and Poisson ratios.  

The internal forces Nx, Ny, Nxy and the moment resultants Mx, My, Mxy of the cylindrical 

shell can be obtained by integrating the stresses through the thickness of the shell, as 

follows 
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Inserting Eqs.(5.9), (5.10) and (5.12) into Eq.(5.13) gives the constitutive relations in 

matrix form as  
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Then, Eq.(5.14) can be further simplified as 

       BA +=N ,      DB +=M    (5.15) 

where A, B and D are the matrixes about Aij, Bij and Dij (i, j=1,2,6).  

Using the matrix calculus, the following equations can be obtained  

       ** BA += N ,     ** DC += NM    (5.16) 

where A*=A-1, B*=-A-1B, C*=BA-1=-(B*)T and D*=D-BA-1B. 

Then by solving Eq.(5.16), one can be obtained 
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The nonlinear dynamic equilibrium equations, for an FG porous cylindrical shell 

subjected to a uniformly distributed harmonic loading q(t) including damping effect based 

on classical shell theory, are given by 
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   (5.21) 

where 
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and where cd denotes the damping coefficient of the structure.  

Similarly, from Eq. (5.15) the moment resultants can be obtained 
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   (5.23) 

With an acceptable accuracy and based on the assumption that the flexural motion is 

predominant in the present investigation[215], u ≪ w and v ≪ w, 

2
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t
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
, 
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t
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,

2

2

v

t




and 

v

t





approach to 0. Thus, considering Eqs.(5.19) and (5.20), the Airy’s stress function F(x,y) 

is defined as follows 
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With Eqs.(5.17) and (5.22), substituting Eq.(5.23) into Eq.(5.11), the nonlinear 

kinematic compatibility equilibrium equation can be rewritten as 

 

4 4 4 4
* * * * *

11 66 12 11 114 2 2 4 4

2
4 4 2 2 2 2

* * *

12 66 222 2 4 2 2 2

( 2 )

1
(2 )

F F F w
h A A A A B

x x y y x

w w w w w w
B B B

x y y x y y x R x

    
+ + + − 

     

      
− − − = − − 

        

   (5.25) 

where 
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With Eqs.(5.12) and (5.13), substituting Eq.(5.14) into Eq.(5.21), the dynamic 

equation of the FG porous cylindrical shell can be obtained as 
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   (5.27) 

where  
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   (5.28) 

5.4 Nonlinear dynamic analysis of an FG orthotropic cylindrical shell 

5.4.1 Solution of the problem 

To solve the dynamic equation of FG porous cylindrical shell, the assumed deflection 

shape plays a vital role in the analysis. Actually, there are several assumed deflection 

shapes based on different assumptions and methods subjected to various specified 

problems. While this is not principal objective in this chapter, more details can be found 
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in [216-219]. Generally, the first mode assumption permitted to obtain analytical 

solutions for the amplitude frequency dependence and the nonlinear forced frequency 

response function. Though some researchers reported that excessive simplification of the 

assumed deflection shape would lead to large errors and even inaccurate results[220, 221] 

due to the ignore of companion mode, the single mode approach is still prevalent among 

literature because it is good enough to estimate the nonlinear frequency and total 

regularity of structures.  

Therefore, in this chapter, the simply-supported boundary conditions are considered, 

and the approximate solution of Eq.(5.27) can be written as assumed to be the single mode 

[74] 

 )sin()sin()(),,( yxtWtyxw mn =    (5.29) 

where Wmn(t) is the time-varying amplitude of w, and α=mπ/L and β=n/R are the number 

of half waves in the x and y directions, respectively. Moreover, other boundary conditions 

can be considered if one selects the proper trigonometric admissible functions[75]. 

Substituting Eq.(5.29 into the nonlinear compatibility Eq.(5.25), a particular solution 

of Eq.(5.25) is given 

 ( )1 2 3( , , ) cos(2 ) cos(2 ) sin( )sinF x y t F x F y F x y   = + +    (5.30) 

where 
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   (5.31) 

Substituting Eqs.(5.29 and (5.30) into Eq.(5.27) and then applying the Galerkin 

method[222, 223]. Each term in Eq.(5.27) is multiplying with sin(mπx/L)sin(ny/R)dxdy, 

then integrating over the middle surface of the cylindrical shell, the equation of motion 

becomes 
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where 
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   (5.33) 

and where 
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By considering the viscous damping as internal damping effect, one can obtain that 
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 2d mnc  =    (5.35) 

where cd denotes the damping coefficient of the structure; mn denotes the circular natural 

frequency of the cylindrical shell corresponding to mode (m, n); and  denotes the 

damping ratio of the cylindrical shell. 

Substituting Eq.(5.35) into Eq.(5.32), one can obtain  
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   (5.36) 

where 
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5.4.2 Primary resonance of FG porous cylindrical shells 

In this section, the primary resonance of different types of FG porous cylindrical shells 

is investigated. Based on the method of multiple scales, Eq.(5.36) can be further 

simplified by using the following transformation  

 1 3 2 4, ,mn c c c c    = = =    (5.38) 

where ε is the small parameter in the order of the amplitude of the response. Then, 

substituting the above equation into Eq.(5.36), one can obtain 

 2 3

3 4( ) 2 ( ) ( ) ( ) cos( )mn mn mn mn mnW t W t W t c W t c t    + + + =    (5.39) 
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To determine an approximate solution to Eq.(5.39), the new scaled times Tr according 

to method of multiple scales[224] are introduced 

 r

rT t= , 0,1,2,...r =    (5.40) 

Then the derivatives with respect to t can be expressed in terms of the new scaled times 

Tr using chain rule as 
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   (5.41) 

where Dr (r=0,1,2,…) is the partial differential operator and can be defined as follows 

 r

r

D
T





, 0,1,2,...r =    (5.42) 

According to the perturbation method, the response W can be expanded with respect 

to ε as follows 

 2

0 0 1 1 0 1 2 0 1( ; ) ( , ,...) ( , ,...) ( , ,...) ...W t W T T W T T W T T  = + + +    (5.43) 

In primary resonance, it is assumed that the frequency of the excitation ω and the 

natural frequency of the corresponding system ωmn are close to each other, then  

 mn  = +    (5.44) 
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where σ indicates the detuning parameter quantitatively describing the nearness of 

frequency of the excitation ω to the natural frequency of the corresponding system ωmn. 

Therefore, cos(ωt) can be rewritten as  

 0 1cos( ) cos( ) cos( )mn mnt t t T T    = + = +    (5.45) 

Substituting Eqs.(5.41)-(5.45) into Eq.(5.39), then equating the coefficients of ε0 and ε 

to zero, one can obtain a first-order approximation of the Duffing equation  

 2 2

0 0 0 0mnD W W+ =    (5.46) 

 2 2 3

0 1 1 0 1 0 0 3 0 4 0 12( ) cos( )mn mnD W W D D D W c W c T T   + = − + − + +    (5.47) 

The solution of Eq.(5.46) can be defined as 

   0

0 0 1 1 0 1 1( , ) ( )cos ( ) ( ) mni T

mnW T T a T T T A T e cc
 = + = +    (5.48) 

where A(T1) is an unknown complex function; cc stands for the complex conjugate of the 

preceding terms and i=√−1; a(T1) and φ(T1) are both real functions of T1. And A(T1) can 

be written as  

 1( )

1 1

1
( ) ( )

2

i TA T a T e =    (5.49) 

To simplify the calculation, the above equation can be rewritten in the plural form as 

follows 
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W e e
   + − +
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Substituting Eq.(5.50) into Eq.(5.47), one can obtain  
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   (5.51) 

In order to avoid secular behaviour in the system, the following equation must be 

satisfied  

 12

1 3 4

1
2 ( ) 3 0

2

i T

mni D A A c A A c e  + + − =    (5.52) 

Substituting Eq.(5.49) into Eq.(5.52), then separating the real and imaginary parts, one 

can obtain 
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where the new phase angle define as γ=σT1-φ(T1). Then the above equation can be 

rewritten as  
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The first approximation to the steady state solution can be written as  

    1 0 1 1( )cos ( ) ( ) cos ( )mn mnW a T T T T a t t t      = + − = −    (5.55) 
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For the steady-state response, both D1a and D1φ in Eq.(5.53) equal to 0. Hence, the 

amplitude a and the phase γ of the steady-state response satisfy  
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   (5.56) 

By eliminating γ, squaring and adding these two equations, one obtains 
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   (5.57) 

Eq.(5.57) is an implicit equation for the amplitude of response a as a function of the 

detuning parameter σ, also called the frequency-response equation. Similarly, by dividing 

the two equations in Eq.(5.56), the phase-frequency equation can be obtained as follows 
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3 8mnc a


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   (5.58) 

By multiplying ε2 to both sides of Eq.(5.57), then replacing all the parameters by the 

original ones according to Eq.(5.38), the above equations can be rewritten as 
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As Eq.(5.59) is a quadratic equation in terms of ω. For 0<a< 2

22 mn

c


, by solving the 

equation, a set of real roots can be obtained  
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21 23
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8 2
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c a c
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= +  −  

   
   (5.61) 

The peak amplitude amax gives 

 2
max 22 mn

c
a


=    (5.62) 

As can be seen, the nonlinearity has no impact on the peak amplitude amax, while the 

excitation frequency ω of the corresponding peak amplitude amax affected by the 

nonlinearity. 

 
2

1 max3
1

8
mn

c a
 

 
= + 

 
   (5.63) 

5.5 Results and discussions 

5.5.1 Validation of present study 

In this section, the accuracy of the proposed method is verified with the numerical 

results in the open literature. Due to the lack of results in the nonlinear primary resonance 

of the FG porous cylindrical shells, the present theories and formulations are examined 

by comparing the results of natural frequencies of the FG porous cylindrical shell reported 

by Wang and Wu[173] based on the Rayleigh-Ritz method.  
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For Table 5.1 and Table 5.2, the dimensions of circular orthotropic cylindrical shell 

are E=200GPa, v=0.3, ρ=7850kg/m3, R/h=100, L/R=0.2 from [173]. The natural 

frequency ωmn can be calculated by Eq.(5.37). For simplicity, the non-dimensional natural 

frequency is introduced as 

 
*

max max/mn mnR E  =    (5.64) 

According to the comparisons from Table 5.1 and Table 5.2 for symmetric porosity 

distribution and non-symmetric porosity distribution, respectively, it is clear that the 

proposed method matches very well with the published journals and the differences for 

various porosity coefficients N0 are around 0.3%-0.5%.  

Table 5.1 Comparison of the non-dimensional natural frequencies of a simply supported 

FG cylindrical shell with symmetric porosity distribution with results reported by Wang 

and Wu[173] (m=1) 

 
Ref [173] Present Ref [173] Present Ref [173] Present Ref [173] Present 

N0 n=1 n=2 n=3 n=4 

0 1.2429 1.2466 1.2387 1.2426 1.2325 1.2368 1.2256 1.2305 

0.2 1.2155 1.2194 1.2118 1.2159 1.2064 1.2110 1.2006 1.2057 

0.4 1.1893 1.1935 1.1862 1.1906 1.1818 1.1867 1.1772 1.1827 

0.6 1.1677 1.1725 1.1653 1.1704 1.162 1.1676 1.1590 1.1652 

0.8 1.1633 1.1693 1.1617 1.1681 1.1599 1.1668 1.1591 1.1666 
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Table 5.2 Comparison of the non-dimensional natural frequencies of a simply supported 

FG cylindrical shell with non-symmetric porosity distribution with results reported by 

Wang and Wu[173] (m=1) 

 
Ref [173] Present Ref [173] Present Ref [173] Present Ref [173] Present 

N0 n=1 n=2 n=3 n=4 

0 1.2429 1.2466 1.2387 1.2426 1.2325 1.2368 1.2256 1.2305 

0.2 1.2037 1.2075 1.1997 1.2037 1.1938 1.1982 1.1872 1.1922 

0.4 1.1598 1.1637 1.1559 1.1600 1.1501 1.1546 1.1438 1.1488 

0.6 1.1093 1.1133 1.1054 1.1096 1.0995 1.1041 1.0930 1.0980 

0.8 1.0507 1.0548 1.0463 1.0505 1.0396 1.0440 1.0317 1.0365 

To further verify the method developed in present study, the adaptive step-size fourth-

order Runge-Kutta method is employed to analyse Eq.(5.36) numerically. The initial 

conditions of the ordinary differential equation are (0) (0) 0mn mnW W= = and then each of 

the maximum response amplitudes corresponding to various excitation frequencies can 

be extracted from the time-domain responses. Figure 5.4 shows the comparison of the 

dimensionless amplitude-frequency curves of FG porous cylindrical shell obtained by 

proposed method with that by Runge-Kutta method for Type 1. In Figure 5.4, the hollow 

circle dot denotes the results obtained from Runge-Kutta method, while solid curve 

represents the response from proposed method. As can be seen, the present method is in 

agreement with that from the numerical simulation, and then the validity of the present 

study is examined.  
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Figure 5.4 Comparison of the dimensionless amplitude-frequency curve of FG porous 

cylindrical shell calculated by proposed method with that by Runge-Kutta method for 

Type 1 

5.5.2 Results of natural frequencies of free vibration 

The results from the last subsection have verified the proposed methods. Additional 

effects of different modes (m, n), different types porosity distributions, different L/R ratios 

and R/h ratios on natural frequencies 
*

mn  (calculated from Eq. (64)) a simply supported 

FG porous cylindrical shell are investigated below. Emax=200GPa, v=0.3, 

ρmax=7850kg/m3, which were taken from Wang and Wu[173]. The geometrical 

parameters are h=0.25m, R=100×h, L=10×R. Figure 5.5 shows the dimensionless natural 

frequencies of FG porous cylindrical shell for different porosity distributions when m=1.  

To further investigate the natural frequencies of FG porous cylindrical shell, the effect 

of L/R ratio and R/h ratio are presented. The material properties are same as before, except 

that L/R=10, 20 and 40, L=10×R for Table 5.3 and R/h=100, 150 and 200, L=50*R for 

Table 5.4, respectively. Clearly, for different cases, the dimensionless natural frequency 

of Type 1 is the largest among all the porosity distributions. By increasing the porosity 
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coefficient, the dimensionless natural frequencies decrease, as well as the increase of L/R 

ratio and R/h ratio. Moreover, the fundamental natural frequency is affected by L/R ratio 

and R/h ratio; this is also consistent with the results reported by Wang and Wu[173]. 

 

Figure 5.5 Dimensionless natural frequencies of FG porous cylindrical shell for 

different porosity distributions (m=1) 

Table 5.3 Dimensionless natural frequencies for different L/R ratios, porosity 

coefficients and porosity distributions (m=1, 
*

mn ×10-2) 

L/R N0 Type 1 Type 2 Type 3 

10 

(n=2) 

0.2 2.637 2.622 2.616 

0.4 2.566 2.528 2.507 

0.6 2.5 2.425 2.371 

0.8 2.465 2.319 2.181 

20 

(n=2) 

0.2 1.352 1.323 1.317 

0.4 1.345 1.274 1.262 

0.6 1.349 1.209 1.193 

0.8 1.382 1.113 1.098 
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40 

(n=1) 

0.2 0.666 0.663 0.661 

0.4 0.648 0.639 0.634 

0.6 0.631 0.613 0.599 

0.8 0.621 0.587 0.551 

Table 5.4 Dimensionless natural frequencies for different R/h ratios, porosity 

coefficients and porosity distributions (m=1, 
*

mn ×10-2) 

R/h N0 Type 1 Type 2 Type 3 

100 

(n=1) 

0.2 0.486 0.481 0.480 

0.4 0.476 0.464 0.460 

0.6 0.468 0.444 0.435 

0.8 0.467 0.420 0.400 

150 

(n=1) 

0.2 0.431 0.428 0.427 

0.4 0.419 0.413 0.409 

0.6 0.408 0.396 0.387 

0.8 0.403 0.379 0.356 

200 

(n=1) 

0.2 0.409 0.408 0.407 

0.4 0.397 0.393 0.390 

0.6 0.385 0.378 0.369 

0.8 0.377 0.363 0.339 

5.5.3 Nonlinear primary resonance of FG porous cylindrical shells subjected to a 

uniformly distributed harmonic loading 

In this subsection, the nonlinear primary resonance of the FG porous cylindrical shell 

subjected to a uniformly distributed harmonic loading q(t) with the consideration of 
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damping effect is investigated. The influences of porosity distribution, porosity 

coefficient, damping ratio, amplitude and frequency of the external harmonic excitation, 

aspect ratio and thickness ratio on the nonlinear dynamic behaviour are discussed in 

details. The material properties of the open-cell foam are chosen: Emax=200GPa, v=1/3, 

ρmax=7850kg/m3. The geometrical parameters are h=0.25m, R=100×h, L=2×R. The 

amplitude of the uniformly distributed harmonic loading q(t) is Q=5×104N/m2 and the 

damping ratio of the cylindrical shell is 0.1. mn denotes the circular natural frequency of 

the cylindrical shell corresponding to mode (1, 7).  

5.5.3.1 The influence of different porosity coefficients N0 for various porosity 

distributions 

Figure 5.6 illustrates the frequency-response curves of free and nonlinear forced 

vibrations of FG porous cylindrical shells for different porosity coefficients with 

symmetric porosity distribution, non-symmetric porosity distribution, and uniform 

porosity distribution, respectively. Four different of porosity coefficients N0=0, 0.2, 0.4 

and 0.6 are selected. For N0=0, the structures reduce to the homogeneous case. It is can 

be seen that by increasing the value of the coefficient of porosity, the maximum amplitude 

of primary resonance is shifted to the higher detuning parameters σ (calculated by 

Eq.(5.44)) for all the distribution types. The frequency-response curve of free vibration is 

a single-valued parabola and shown by the black dash line, also named backbone curve.  

Furthermore, it is observed that porosity coefficient has a significant effect on the jump 

height a of the frequency-response curve, which can be obtained by Eq.(5.62). As we can 

see, all the frequency-response curves bend to the right side. We call this phenomenon 

hardening nonlinearity. While for the frequency-response curve bending to the opposite 
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direction is called softening nonlinearity. Therefore, Figure 5.6 also indicates that 

hardening nonlinearity can be weakened by the increase of porosity coefficients. 
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(c) Type 3 

Figure 5.6 Effect of porosity coefficient N0 on the amplitude-frequency response of FG 

porous cylindrical shells for different porosity distributions  

The influence of different porosity distribution types on the amplitude-frequency 

response of FG porous cylindrical shell with same porosity coefficient is demonstrated in 

Figure 5.7. The porosity coefficient N0=0.8 is chosen while holding all other parameters 

fixed. It is clear that the jump height of Type 1 (symmetric porosity distribution) is much 

less than the other two types while the height of jump for Type 2 and Type 3 is almost 

the same. However, Type 1 (symmetric porosity distribution) exhibits more hardening 

nonlinearity behaviour than the other two types. Another notable feature is primary 

resonance region, the area covered by the frequency-response curve. From the figure, one 

can obtain that Type 1< Type 2< Type 3 for primary resonance region. This is due to the 

symmetric porosity distribution occupies more stiffness than the other two types and 

consequently, the detuning parameters and amplitude of response are the smallest.  
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coefficient N0=0.6 is chosen while holding all other parameters fixed. As it can be 

predicted, Type 1 occupies more stiffness feature when compared with other two types. 

Thus the jump height of Type 1 is smaller than that of Type 2 and Type 3. Similar 

conclusions are obtained from Figure 5.7. 

As the above conclusions, though symmetric porosity distribution exhibits more 

stiffness behaviour, the jump height and the primary resonance region is smaller than 

Type 2 and Type 3, especially the jump height, one of the most important governing 

parameters. Additionally, frequency-response curves are quite similar for all three types 

of distribution. Thus, in the following sections, our main research object is Type 1.   

 

Figure 5.7 Effect of porosity distribution on the amplitude-frequency response of FG 

porous cylindrical shells with same porosity coefficient  
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Figure 5.8 Effect of porosity distribution on the amplitude of the response of FG porous 

cylindrical shells as a function of amplitude of the excitation 

 

 

Figure 5.9 Effect of porosity coefficient N0 on the amplitude of the response of FG 

porous cylindrical shells as a function of amplitude of the excitation 
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and after the jump, an increase almost linearly with the increase of the amplitude of 

excitation Q. According to Nayfeh’s explanation[224], the multivaluedness of the 

response curves (jump phenomena) is due to influence of the nonlinearity. Moreover, by 

increasing the coefficient of porosity, the jump height of a-Q curves increases. This is 

because the increase of the porosity coefficients would lead to the decrease of nonlinearity 

stiffness.  

5.5.3.2 The influence of amplitude of excitation Q on primary resonance 

Depicted in Figure 5.10 is the influence of amplitude of excitation Q on the amplitude-

frequency response of FG porous cylindrical shell. Four different amplitude of excitation 

Q=0, 1×104N/m2, 2.5×104N/m2 and 5×104N/m2 are selected. It can be found that when the 

amplitude of the excitation Q increases, the hardening nonlinearity becomes worse and 

the maximum amplitude of responses a increases. This is because the increase of the 

amplitude of external excitation will lead to the increase of vibration amplitude. And also 

the frequency interval for unstable region is prolonged. When the amplitude of the 

excitation Q is small, like Q=0 and 1×104 N/m2, as can be seen in Figure 5.10, there is no 

unstable region. 

5.5.3.3 The influence of damping ratio ζ on primary resonance 

The effect of damping ratio ζ on the amplitude-frequency response of FG porous 

cylindrical shell is demonstrated in Figure 5.11. Three different damping ratios are 

considered, which are ζ =0,0.1 and 0.2. In the absence of damping effect, the peak 

amplitude is infinite. While in the presence of damping effect, the amplitude-frequency 

curves are finite. And as the value of damping ratio increases, the peak amplitude 

decreases. 
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Figure 5.12 indicates the influence of damping effect on the variation of the amplitude 

of response with the amplitude of excitation. Three different damping ratios are 

considered, which are ζ =0, 0.1 and 0.2. The frequency of the excitation ω=1000 rad/s 

and other parameters are unchanged. It is clear that damping effect does not have a 

significant effect on the jump height of the a-Q curves. 

 

Figure 5.10 Effect of amplitude of excitation Q on the amplitude-frequency response of 

FG porous cylindrical shells  

 

Figure 5.11 Effect of damping ratio ζ on the amplitude-frequency response of FG 

porous cylindrical shells  
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Figure 5.12 Effect of damping effect on the amplitude of the response of FG porous 

cylindrical shells as a function of amplitude of the excitation 

5.5.3.4 The influence of L/R and R/h ratios on primary resonance 

Figure 5.13 shows the amplitude-frequency curves for various L/R ratios. The 
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to 1 slowly and amplitude of the response a also grows tardy when the L/R ratio reaches 

a certain level.   

 

Figure 5.13 Effect of L/R ratios on the amplitude-frequency response of FG porous 

cylindrical shells  

The effect of L/R ratios on the variation of the amplitude of response with the 
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Figure 5.14 Effect of L/R ratios on the amplitude of the response of FG porous 

cylindrical shells as a function of amplitude of the excitation 

 

Figure 5.15 Effect of R/h ratios on the amplitude-frequency response of FG porous 

cylindrical shells  
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The simultaneous effect of L/R ratios and R/h ratios on the peak amplitude of response 

for the primary resonance of FG porous cylindrical shell is highlighted in Figure 5.17 for 

the case of detuning parameter σ=0 (the frequency of excitation is equal to the natural 

frequency of the corresponding Duffing-type system). It is seen that as the R/h ratios the 

peak amplitude of response for primary resonance increases for all values of L/R ratios, 

though the growth is uneven for different cases. 

 

Figure 5.16 Effect of R/h ratios on the amplitude of the response of FG porous 

cylindrical shells as a function of amplitude of the excitation 

  

Figure 5.17 The relationship of different L/R ratios and R/h ratios on the peak amplitude 

of response for primary resonance of FG porous cylindrical shells 
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5.5.3.5 The influence of detuning parameters σ on primary resonance 

Figure 5.18 presents the variation of the amplitude of response with the amplitude of 

excitation for different detuning parameters σ. Five different of detuning parameters, i.e. 

σ=1000, 500, 0, -500 and -1000 are chosen. All the other parameters remain the same as 

before. When detuning parameters σ=0, it means the frequency of excitation is equal to 

the natural frequency of the corresponding Duffing-type system; when σ> 0, it 

corresponds to the frequency of excitation is larger than the natural frequency while σ <0 

means the frequency of excitation is smaller than the natural frequency of the system. As 

can be seen, depending on the detuning parameters σ, some curves are multivalued while 

others are single-valued. 

 

Figure 5.18 Effect of detuning parameters σ on the amplitude of the response of FG 

porous cylindrical shells as a function of amplitude of the excitation 
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larger than the natural frequency, the discontinuous changes of the curve will result in the 

instability of the system. For instance, when σ=1000, with the amplitude of the excitation 

Q increasing from 0, the amplitude of the response a increases continuously from 0. When 

Q reaches around 0.25×104 N/m2, the response amplitudes suddenly changes from 0.06 

m to 0.11m and then increases gradually. Similarly, when the external excitation Q 

decreases from 5×104 N/m2, the amplitude response a decreases continuously at first and 

then jumps rapidly from 0.11 m to 0.06 m. This is called the discontinuous changes of the 

curve or the jump phenomenon. 

5.6 Conclusions 

This chapter investigates the nonlinear primary resonance behaviour of cylindrical 

shells made of functionally graded (FG) porous materials subjected to a uniformly 

distributed harmonic load including the damping effect. To develop this model, the 

Donnell shell theory (DST) and accounting for von-Kármán strain-displacement relation 

and damping effect was employed. The Galerkin method in conjunction with the method 

of multiple scales (MMS) was utilised to obtain a second-order nonlinear ordinary 

equation with the cubic nonlinear term, named Duffing-type equation. Three types of FG 

porous distributions, namely symmetric porosity distribution, non-symmetric porosity 

stiff or soft distribution and uniform porosity distribution were considered in this chapter. 

Then, the influence of porosity distribution, porosity coefficient, damping ratio, 

amplitude and frequency of the external harmonic excitation, aspect ratio and thickness 

ratio were discussed in details and the following conclusions can be made: 

1. By increasing the value of the coefficient of porosity, hardening nonlinearity 

is weakened for all the distributions. 
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2. Although Type 1 (symmetric porosity distribution) exhibits more stiffness 

behaviour, the jump height and the primary resonance region are smaller than 

Type 2 and Type 3, especially the jump height. This is because the symmetric 

porosity distribution occupies more stiffness than the other two types and 

consequently the detuning parameters and amplitude of response are the 

smallest. 

3. The amplitude of the excitation increases, the hardening nonlinearity becomes 

worse and the maximum amplitude of responses increases.  

4. In the absence of damping effect, the peak amplitude is infinite. While in the 

presence of damping effect, the amplitude-frequency curves are finite. And as 

the value of damping ratio increases, the peak amplitude decreases as the value 

of damping ratio increases. 

5. L/R ratio does not have a significant effect on the primary resonance behaviour 

while R/h ratio does.  

6. Depending on the detuning parameters σ, some curves are multivalued while 

others are single-valued. 

Therefore, the proposed method presented herein provides a comprehensive analytical 

analysis framework for nonlinear primary resonance behaviour assessment of FG porous 

cylindrical shells, as well as a useful help for design and analysis of nano/micro-sized 

devices and systems. 
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Chapter 6 Nonlinear dynamic 

stability of the orthotropic functionally 

graded cylindrical shell surrounded by 

Winkler-Pasternak elastic foundation 

subjected to a linearly increasing load 

6.1 Introduction  

The thin-walled cylindrical shell structure has been widely used in aerospace 

engineering and other engineering disciplines for many decades, such as propellant tank 

of space shuttle, the skin of ballistic missile, air receiver tanks, distillation columns, heat 

exchangers/condensers, due to its outstanding stiffness, large space cover, lower cost and 

high strength-weight ratio.  

Despite mentioned studies, up to date, dynamic buckling of FG orthotropic cylindrical 

shells is a novel topic that cannot be found in the literature. Furthermore, with the 

application of FG orthotropic cylindrical shells, these structures rest on or embed in 

elastic foundation/medium have attracted much attention. Damping property (i.e., a non-

conservative energy contribution), as one of the most important aspects of engineering 

dynamics, is also considered in this chapter.  
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Therefore, to the best of authors’ knowledge, the dynamic stability of an FG 

orthotropic circular cylindrical shell surrounded by a two-parameter (Winkler-Pasternak) 

elastic foundation subjected to linearly increasing load with the consideration of damping 

effect is first investigated in this chapter. Equations of motion are derived from 

Hamilton’s principle and the nonlinear compatibility equation is considered by means of 

modified Donnell shell theory including large deflection. Then the nonlinear dynamic 

buckling equation is solved by a hybrid analytical-numerical method (combined Galerkin 

method and fourth-order Runge-Kutta method). Effects of different parameters such as 

various inhomogeneous parameters, loading speeds, damping ratios and aspect ratios and 

thickness ratios of the structure on dynamic buckling are discussed in detail. Finally, the 

proposed method was validated with other publications.  

6.2 Orthotropic FGMs cylindrical shell surrounded by Winkler-

Pasternak elastic foundation subjected to a linearly increasing load 

6.2.1 FG orthotropic cylindrical shell 

The orthotropic FGMs cylindrical shell surrounded by a two-parameter (Winkler-

Pasternak) elastic foundation subjected to a linearly increasing load is shown in Figure 

6.1. The geometrical dimensions are as follows: length L, mean radius R and thickness h. 

The Cartesian coordinate system (x,y,z) is established, in which point O is located on the 

middle plane and at the left side of the cylindrical shell. z is in the thickness direction. 

And the linearly increasing load P(t) is at the end of right side along the x direction. 
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(1) 

 

(2) 

Figure 6.1 Geometry and the coordinate system of the orthotropic FGMs cylindrical 

shell surrounded by Winkler-Pasternak elastic foundation subjected to a linearly 

increasing load 

FGMs in this chapter is assumed to be made from a mixture of ceramic and metal with 

exponentially varying material properties that have been reported by many scholars [127-

133, 225]. The Young’s moduli E, shear modulus G and density can be given in the 

following form 
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and where ψ(z) is the material’s exponential function. κi is the exponential factor, and 

also denotes the non-homogenous parameter because it characters the degree of the 

material gradient in the z-direction. In this chapter, we assume that Poisson’s ratio of the 

shell is considered to be constant due to the effect of Poisson’s ratio on the deformation 

is much less than other material properties[213]. E01 and E02 represent Young’s moduli of 

the homogeneous orthotropic material along x, y directions, respectively. Similarly, G0 

and ρ0 are the shear modulus and density of the homogeneous orthotropic material, 

respectively. As can be seen, when κi =0, Eq.(6.1) reduces to the homogeneous case; when 

κi > 0, it corresponds to the graded stiff material while κi <0 means graded soft 

material[226]. 

6.2.2 Constitutive relations 

Considering the initial imperfection w0, the von-Kármán nonlinear strain-displacement 

relation on the middle plane of the circular cylindrical shell can be written as 
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where 
0

x , 0

y  and 0

xy  are normal strains, shear strain at the middle surface with the 

consideration of initial imperfection of the FG orthotropic circular cylindrical shell, 
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respectively. u, v and w are the displacement components of middle surface of the 

cylindrical shell in x, y, and z direction, respectively. 

The strain components across the shell thickness at a distance z from the middle 

surface are  
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where κx , κy and κxy  are the change of curvatures and twist.  

According to Hooker’s stress-strain relation, the constitutive equations of an FG 

orthotropic cylindrical shell are as follows 

 
































=
















xy

y

x

xy

y

x

C

CC

CC













66

2221

1211

00

0

0

   (6.6) 

and 
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where the elastic constants for orthotropic materials Cij (i,j=1,2,6) are given in the 

following  
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where Ex, Ey, vxy, and vyx are the moduli of elasticity and Poisson ratios in x and y 

directions, respectively. For an FG orthotropic cylindrical shell, it has Exvyx=Eyvxy. Gxy is 

the shear modulus. Ex, Ey and Gxy are in an exponential function form, as shown in Eq.(6.1).  

Therefore, Eq.(6.6) can be further formulated as  
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The internal forces Nx, Ny, Nxy and the moment resultants Mx, My, Mxy of the FG 

orthotropic cylindrical shell can be defined in terms of the stress components in Eq.(6.9) 

across the thickness direction as 

  ( )dzz
xy

M
y

M
x

M
xy

N
y

N
x

N
h

h
xyyx ,1,,,,,,,

2/

2/−=























     (6.10) 

Inserting Eqs.(6.3)-(6.7) into Eq.(6.10) gives the constitutive relations in matrix form 

as  
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Then, Eq.(6.11) can be further simplified as 

       BA +=N ,      DB +=M    (6.12) 

where A, B and D are the matrixes about Aij, Bij and Dij (i, j=1,2,6). Using the matrix 

calculus, the following equations can be obtained  

       ** BA += N ,     ** DC += NM    (6.13) 

where A*=A-1, B*=-A-1B, C*=BA-1=-(B*)T and D*=D-BA-1B. 

By solving Eq.(6.13), the normal strains, shear strain at the middle surface can be 

obtained  
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where Aij and Bij
 (i,j=1,2,6) are given in the following. 
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Similarly, from Eq.(6.13) the moment resultants can be obtained 
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6.2.3 Equations of motion and the nonlinear compatibility equation for orthotropic 

FG cylindrical shell 

The equations of motion for an eccentricity orthotropic FGMs cylindrical shell 

surrounded by Winkler-Pasternak elastic foundation subjected to a linearly increasing 

load are derived based on Hamilton’s principle. According to this theory, the following 

equation is given 

 0)(
0

=−+++ dtKVVUU
T

dees     (6.17) 

where δUs, δUe, δVe, δVd and δK are the virtual variation of the strain energy of the 

orthotropic FG cylindrical shell, the virtual variation of potential energy stored in the 

deformed elastic foundation, the variation of work done by the external load (linearly 
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increasing load), the virtual variation of potential energy of non-conservative forces (i.e. 

damping effect in this chapter) and the virtual variation of the kinetic energy, respectively. 

Firstly, the expression of the virtual strain energy is given by 
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The virtual variation of potential energy stored in the deformed softening nonlinear 

elastic foundation can be expressed by 
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where kw is Winkler foundation modulus and kp is the shear layer foundation stiffness of 

Pasternak model, respectively. The variation of work done by the external load (linearly 

increasing load) can be described by the following equation 
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By substituting the displacement component from Eq.(6.3) into δVe, the following 

equation can obtain 
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where p is the average axial stress of the applied external force. The virtual variation of 

potential energy of non-conservative forces due to damping effect can be expressed as 

follows  
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where cd denotes the damping coefficient of the structure. The virtual variation of the 

kinetic energy is given by 
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Recalling Eq.(6.10) and substituting Eqs.(6.18)-(6.23) into Eq.(6.17), then integrating 

the equation by parts and rearranging the coefficients of δu, δv and δw leads to the 

nonlinear dynamic equilibrium equations for an eccentrically FG orthotropic cylindrical 

shell surrounded by a Winkler-Pasternak elastic foundation with the consideration of 

damping effect based on classical shell theory 
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Based on the assumption[227], u ≪ w and v ≪ w, 
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0. Thus, considering Eqs.(6.24) and (6.25), the Airy’s stress function F(x,y) is defined as 

follows 
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By differentiating
0

x , 0

y , 0

xy  from Eq.(6.3) twice with respect to y, x and x, 

y ,respectively, one can obtain the nonlinear kinematic compatibility equilibrium as 
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With Eq.(6.28), substituting Eq.(6.14) into Eq.(6.29), the nonlinear kinematic 

compatibility equilibrium equation can be rewritten as 

 

2

0

2

2

0

2

2

0

2
2

0

2

2

2

2

2
2

2

4

0

4
*

2222

0

4
*

66

*

21

*

12

4

0

4
*

114

4
*

2222

4
*

66

*

21

*

124

4
*

11

)(1

)()(
)(

)(
)(

x

ww

Rx

w

y

w

yx

w

x

w

y

w

yx

w

y

ww
B

yx

ww
BBB

x

ww
B

y

F
A

yx

F
AAA

x

F
Ah



−
−








+














−








−












=



−
−



−
−+−



−
−












+




+++





   (6.30) 



168 

 

where Aij
* and Bij

* (i,j=1,2,6) are given in the following. 
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With Eqs.(6.11), (6.16), substituting Eq.(6.28) into Eq.(6.26), nonlinear dynamic 

buckling equation for an eccentrically FG orthotropic cylindrical shell surrounded by a 

Winkler-Pasternak elastic foundation with the consideration of damping effect can be 

obtained as 
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where Cij
* and Dij

* (i,j=1,2,6) are given in the following. 
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6.3 Static buckling and dynamic buckling analysis of an FG orthotropic 

cylindrical shell surrounded by Winkler-Pasternak elastic 

foundation 

6.3.1 Solution of the governing equations 

The deflection function for a simply supported boundary condition cylindrical shell is 

assumed to be the single mode [74], which means w equals to 0 at x=0, L and at y=0,2πR.  

 )sin()sin()(),,( yxtWtyxw mn =    (6.34) 

where Wmn(t) is the time-varying amplitude of w , and α=mπ/L and β=n/R are the number 

of half waves in the x and y directions, respectively. Moreover, other boundary conditions 

can be considered if one selects the proper trigonometric admissible functions[75]. 

Also, the initial shape function can be taken as 

 )sin()sin(),( 00 yxWyxw =    (6.35) 

where W0  represents the initial eccentricity value of the cylindrical shell. 

Substituting Eq.(6.34) and Eq.(6.35) into the nonlinear compatibility Eq.(6.30), a 

solution is given 
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Substituting Eqs.(6.34)-(6.36) into Eq.(6.32) and then applying the Galerkin method. 

Each term in Eq.(6.32) is multiplying with sin(mπx/L)sin(ny/R)dxdy, then integrating over 

the middle surface of the cylindrical shell, the equation of motion becomes 
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where K1, K2, K3 and K4 are given in the following. 
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6.4 Buckling analysis of FG orthotropic cylindrical shell 

6.4.1 Static buckling analysis 

For an initially perfect FG orthotropic cylindrical shells, by omitting the velocity, 

acceleration and high-order terms, Eq.(6.37) can be reduced into 

 ( ) ( ) 0)( 22

321

2 =+++−−− mnpwmnmn WβαkkWKKKhpWα    (6.39) 

Eq.(6.39) is the linear static equation of the FG orthotropic cylindrical shell on an 

elastic foundation, which can also obtain from the corresponding static case using the 

linear theory. Then the static buckling load is  

 ( )2 2

3 1 22

1
( )st w pp K K K k k

h
 


 = − + + +
 

   (6.40) 

where the least static buckling load
st

crp  can also be obtained with respect to various modes 

(m, n), which can be further reduced into classical buckling load of the isotropic circular 

cylindrical shell by giving κi, kw and kp equal to 0, respectively. And the equation is given 

as follows 

 
)1(3 2vR

Eh
cr

−
=    (6.41) 

6.4.2 Nonlinear dynamic buckling analysis 

In this chapter, an eccentrically FG orthotropic simply supported cylindrical shell 

surrounded by a Winkler-Pasternak elastic foundation with the consideration of damping 

effect is subjected to a linearly increasing load p(t)=ct at the end of the boundary condition 
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along the longitudinal direction, as shown in Figure 6.1. Here, introducing the following 

non-dimensional parameters and constants 
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where 
st

crp is depend on different modes (m, n). Normally, most of the structures buckling 

locate in low-order modes. Thus, in this chapter, we choose the top 30 modes, which 

means m=n=(1,2,3…30). 

For the harmonic motion of FG orthotropic cylindrical shell, Wmn(t) may be taken in 

the form 

 ti

m nmn
mneyxAtW

 )sin()sin()(
1 1 



=



=
=    (6.43) 

where Wmn(t) is the time-varying amplitude of w, A is the amplitude of the vibration, 

1−=i , and α=mπ/L and β=n/R are the number of half waves in the x and y directions, 

respectively. Then substituting Eq.(6.43) into Eq.(6.37), the closed form expression for 

natural frequencies is obtained as follows 

 ( ) )(
1 22

213 


 +++−= pw

t

mn kkKKK , ,...3,2,1, =nm    (6.44) 

By considering the viscous damping as internal damping effects, one can obtain that 
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where cd denotes the damping coefficient of the structure; 
mn denotes the circular natural 

frequency of the cylindrical shell corresponding to buckling mode (m, n); and  denotes 

the damping ratio of the cylindrical shell. 

Therefore, the differential equations governing the nonlinear behaviour of an FG 

orthotropic cylindrical shell can be written in a non-dimensional form 
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   (6.46) 

Eq.(6.46) can be solved by fourth-order Runge-Kutta method based on mathematical 

computing software MATLAB. m and n equal to (1,2,3…30) are considered in this 

equation, which means 900 ordinary differential equations are solved. Utilizing 

Budiansky-Roth criterion to search the buckling point at 

2 *

2
0

cr

mnW

 


=


=


, namely (τcr,

*

mnW ), then the least dynamic buckling load p(t)=cτcr is determined corresponding to 

mode (m, n). The initial conditions for the problem are 
*

mnW =
*

0W  and 
*

mnW   =0 at  =0. 

6.5 Numerical results and discussions 

6.5.1 Validation of proposed formulation 

In this section, the accuracy of proposed method is verified with published papers and 

the following dimensionless parameters are defined. 
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1. Dimensionless critical static buckling load of FG orthotropic cylindrical shell 
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2. Dimensionless natural frequency of orthotropic plate  
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3. Dimensionless elastic constants of foundations may also be defined as follows [228] 
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Example 1. For Table 6.1, the dimensions of circular orthotropic cylindrical shell are 

E01=275.8×109 Pa, E02= 27.58×109 Pa, v12=0.25, v21=0.025, G0=10.34×109 Pa, h 

=0.00254 m, R/h =100, L/R =2, ρ=1619.27 kg/m3 from [229]. As can be seen, in this 

comparison study very good agreements are achieved and the average errors in different 

modes are just 0.008%-0.449%. 

Table 6.1 Comparison of dimensionless axial static buckling load )( 3

02

2 hELp st

cr of S-S 

orthotropic cylindrical shell without Winkler-Pasternak elastic foundation with the 

results of Eq.(6.47) from Lee [229] 

(m,n) Lee [229] Present method Difference 

(1,1) 78139.72 78145.73 0.008% 

(1,2) 29556.79 29580.83 0.081% 

(1,3) 13850.67 13904.75 0.390% 
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(2,1) 32341.27 32347.28 0.019% 

(2,2) 19852.90 19876.93 0.121% 

(2,3) 12046.73 12100.82 0.449% 

To further validate the proposed method, the dynamic response of isotropic cylindrical 

shell of an S-S cylindrical shell without Winkler-Pasternak elastic foundation subjected 

to axial load is analysed by reducing damping effects and material’s exponential function 

in Eq.(6.46). Figure 6.2 and Figure 6.3 show the time-deflection curve of an eccentricity 

simply supported orthotropic cylindrical shell subjected to linearly increasing load c0 

=2.068×109 Pa/s, c0 =4.136×109 Pa/s with the results of Eq.(33) from Lee [229], 

respectively. The material properties are E01=275.8×109 Pa, E02= 27.58×109 Pa, v12=0.25, 

v21=0.025, G0=10.34×109 Pa, h =0.00254 m, R/h =100, L/R =2, ρ=1619.27 kg/m3 from 

[229]. As can be seen from Figure 6.2 and Figure 6.3, a very good agreement is obtained.  

 

Figure 6.2 Comparison of the time-deflection curve of an eccentricity simply supported 

orthotropic cylindrical shell subjected to linearly increasing load c0 =2.068×109 Pa/s 

with Lee [229] 
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Figure 6.3 Comparison of the time-deflection curve of an eccentricity simply supported 

isotropic cylindrical shell subjected to linearly increasing load c0 =4.136×109 Pa/s with 

Lee [229] 

Table 6.2 Comparison of the natural frequencies (Hz) with experimental results by 

Sewall and Naumann [230] and other theoretical methods by Naeem and Sharma [231] 

of an S-S cylindrical shell without Winkler-Pasternak elastic foundation (m=1) 

n 
Present 

Method 

Experimental results of 

Swall and 

Naumann[230] 

Results of Trigonometric 

function by Naeem and 

Sharma [231] 

Results of Ritz 

polynomial function by 

Naeem and Sharma [231] 

6 168.01 175.0 166.59 166.59 

7 167.56 163.0 and 169.0 166.22 166.22 

8 190.33 188.0 189.26 189.29 

9 227.39 224.0 226.88 226.88 

10 273.88 268.0 274.07 274.09 

11 327.59 326.0 328.62 328.64 

12 387.51 382.0 and 385.0 389.49 389.49 

13 453.20 440 456.21 456.21 

Example 2. For Table 6.2, the comparison of the natural frequencies given by proposed 

method with the results of Swall and Naumann[230] based on experimental results, 
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Naeem and Sharma [231] based on trigonometric function and Ritz polynomial function 

of an S-S cylindrical shell without Winkler-Pasternak elastic foundation is suggested. The 

dimensions of circular isotropic cylindrical shell are E01=E02=E0, v12=v21=v0, the material 

properties are taken as E0=68.95GPa, v0=0.315, ρ=2714.5kg/m3, h=0.648mm, 

R=242.3mm, L=609.6mm from Ref.[230, 231]. G0=E0/2(1+v)=26.22GPa. The results 

show that the proposed results are falling somewhere between Swall and Naumann[230] , 

Naeem and Sharma [231]. According to the comparisons from example 1 and 2, it is clear 

that the proposed method matches very well with the published journals and the reliability 

and accuracy of our method are validated.  

6.5.2 Results of natural frequencies and static buckling 

The results from Table 6.1 and Table 6.2 have verified the proposed methods. 

Additional effects of different (kw
*, kp

*) and E01/E02 on natural frequencies 
*

mn  

(calculated from Eq.(6.48)) and static buckling load
*st

crp  (calculated from Eq. (6.47)) of 

a simply supported orthotropic cylindrical shell are shown in Table 6.3. E02=20.69GPa, 

v12=0.3, v21=0.03, ρ=1950kg/m3, which were taken from Reddy’s book[232]. The 

geometrical parameters are h=0.01m, L=5m, R=1.0m. E02 remain unchanged and E01 is 

variable with respect to the ratios. Clearly, for a fixed (kw
*, kp

*), the increasing of E01/E02 

causes the increase of the buckling load; while leading to the decrease of natural 

frequencies. One interesting finding is that the influence of modes (1,n) does not have 

specific laws. Moreover, with the increase of kw
* and kp

*, the natural frequencies and static 

buckling load become larger. While the influence of kp
* is more pronounced than kw

*, 

especially for the static buckling load. 
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Table 6.3 Comparison of natural frequencies 
*

mn  and static buckling load 
*st

crp  of a 

simply supported orthotropic cylindrical shell surrounded by Winkler-Pasternak elastic 

foundations for different (kw
*, kp

*) and E01/E02 (E02=20.69GPa, m=1) 

(kw
*, kp

*)    E01/E02 

*

mn  
*st

crp (×106) 

n =1 n =2 n =3 n=1 n =2 n =3 

(0,0) 

10 43.13 27.38 19.27 29.48 4.79 1.17 

20 39.44 27.03 19.15 41.23 9.09 2.29 

30 36.93 26.69 19.09 47.55 12.99 3.40 

40 35.06 26.40 19.06 51.50 16.53 4.50 

(0,100) 

10 43.14 27.51 20.04 29.51 4.88 1.37 

20 39.45 27.16 19.94 41.29 9.28 2.69 

30 36.95 26.84 19.89 47.64 13.27 4.00 

40 35.08 26.54 19.86 51.62 16.91 5.30 

(100,0) 

10 43.13 27.38 19.27 29.48 4.79 1.18 

20 39.44 27.03 19.16 41.23 9.09 2.30 

30 36.93 26.70 19.10 47.55 12.99 3.40 

40 35.06 26.39 19.06 51.50 16.54 4.50 

(100,100) 

10 43.14 27.51 20.04 29.51 4.88 1.38 

20 39.46 27.17 19.94 41.29 9.28 2.70 

30 36.95 26.84 19.89 47.64 13.27 4.00 

40 35.08 26.54 19.86 51.62 16.91 5.30 
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6.5.3 Dynamic buckling of FG orthotropic cylindrical shell surrounded by Winkler-

Pasternak elastic foundations subjected to a linearly increasing load 

In this section, the dynamic stability of an FG orthotropic circular cylindrical shell 

surrounded by a Winkler-Pasternak elastic foundation subjected to linearly increasing 

load with the consideration of damping effect is investigated. The nonlinear dynamic 

buckling Eq.(6.46) is solved by a hybrid analytical-numerical method (combined 

Galerkin method and fourth-order Runge-Kutta method). Then the nonlinear dynamic 

stability of the FG orthotropic cylindrical shell is assessed based on Budiansky-Roth 

criterion. Effects of different parameters such as various inhomogeneous parameters, 

loading speeds, damping ratios and aspect ratios and thickness ratios of the structure on 

dynamic buckling are discussed in detail. The material properties are E01=275.8 GPa, 

E02=27.58 GPa, v12=0.25, v21=0.025, ρ=1619.27kg/m3. The geometrical parameters are 

h=0.00254m, R=100×h, L=2×R, G0=10.34 GPa.  

6.5.3.1 The influence of different non-homogenous parameters κ1 

According to Eq.(6.1), Young’s moduli E(z) and shear modulus G(z) is governed by 

the exponential factor κ1, while density ρ(z) is governed by κ2. All these material 

coefficients may influence the dynamic response of the FG orthotropic cylindrical shell. 

In this subsection, we focused on the effects of κ1 (or Young’s module and shear modulus) 

while κ2 (or density) keeps invariable. Five different inhomogeneous parameters κi =-1, -

0.5, 0, 0.5, 1 are selected. For κ1 =0, Eq. (6.1) reduces to the homogeneous case; when κ1 > 

0, it corresponds to the graded stiff material while κ1 <0 means graded soft material. The 

initial imperfection is W0=0.001×h. And the loading speed c=4.137e9 Pa/s.  
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The initial conditions for the problem are 
*

mnW =
*

0W =0.001 and 
*

mnW   =0 at  =0. 

The dynamic buckling point at 2 * 2 0
cr

mnW
 


=

  =  based on Budiansky-Roth criterion by 

considering m and n equal to (1, 2, 3…30). Then the least dynamic buckling load p(t)=cτcr 

is determined corresponding to different modes (m, n). Figure 6.4 shows the effects of 

different κ1 on the dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell subjected to linearly increasing load c =4.137GPa/s. It is clear 

that for all the cases, critical buckling time τcr>1, which means dynamic critical buckling 

loads is larger than the static ones. With the increase of inhomogeneous parameters κ1, 

critical buckling time τcr decreases but dynamic buckling loads and the vibration of the 

structure increase. This is due to the increase of κ1 would lead to the increasing of shell 

stiffness. Similar results also obtained from Table 6.4. Furthermore, one interesting 

finding is that when the shell becomes stiffer, the dynamic buckling mode (m, n) jumps 

from (1, 23) to (1, 11), as shown in Table 6.4. 

 

Figure 6.4 The dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell subjected to linearly increasing load c=4.137 GPa/s for 

different κ1 
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Figure 6.5 The effects of different κ1 on p(t)cr and Wmn of a simply supported FG 

orthotropic cylindrical shell subjected to linearly increasing load c =4.137 GPa/s  

The effects of different κ1 on p(t)cr and Wmn  is shown in Figure 6.5. The blue circular 

represents κ-p(t)cr curve while the red rectangular refers to κ-Wmn curve. Both of them 

increase significantly when the materials become stiffer.  

6.5.3.2 The influence of different non-homogenous parameters κ2 

Effects of inhomogeneous parameters κ2 are investigated in this subsection. As shown 

before, five different κ2=-1, -0.5, 0, 0.5, 1 are selected. κ1 (or Young’s module and shear 

modulus) keeps invariable while holding all other parameters fixed.  

Figure 6.6 depicts the dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell subjected to linearly increasing load c=4.137e9 Pa/s for 

different κ2. The increase in κ2 would increase the dynamic buckling load but the growth 

rate is prolonged. For example, κ2 change from -1.0 to 1.0, the dynamic buckling loads 

increase by 1.025 times, as shown in Table 6.4. The dynamic buckling mode (m, n) also 

changes from (1, 14) to (1, 18) while the critical static buckling load keeps constant.  
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The effects of different κ2 on p(t)cr and Wmn also illustrated in Figure 6.7. A similar 

phenomenon can also be witnessed that dynamic buckling load increases slowly with the 

increase of κ2. However, the deflection of Wmn decreases by 1.4 times with the increase of 

κ2, as shown in Table 6.4. 

 
Figure 6.6 The dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell subjected to linearly increasing load c=4.137 GPa/s for 

different κ2 

 

Figure 6.7 The effects of different κ2 on p(t)cr and Wmn of a simply supported FG 

orthotropic cylindrical shell subjected to linearly increasing load c =4.137GPa/s  
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6.5.3.3 The combined effects of κ1 and κ2 on dynamic buckling responses 

In the subsections 6.5.3.1 and 6.5.3.2, the effects of κ1, κ2 on the dynamic buckling of 

an FG orthotropic cylindrical shell has been presented, respectively. As can be seen, both 

of them have a significant influence on dynamic buckling responses. Therefore, it is 

obvious for us to investigate the combined effects of these two parameters. 

 

Figure 6.8 The dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell subjected to linearly increasing load c=4.137GPa/s for 

different κ1 and κ2 

 

Figure 6.9 The effects of different κ1 and κ2 on p(t)cr and Wmn of a simply supported FG 

orthotropic cylindrical shell subjected to linearly increasing load c=4.137GPa/s  
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Table 6.4 Comparison of critical buckling time τcr, static critical buckling load
st

crp , 

dynamic critical buckling load 
dy

crp and deflection mnW for various material exponential 

factor κi 

Material gradient κi cr  
st

crp  (Pa) 
dy

crp  (Pa) mnW  (m) 

κ1 (or Young’s module 

and shear modulus) 

change, κ2 (or density) 

keeps constant 

-1 1.127 1.58E+08(3,8) 1.78E+08(1,23) 1.14E-04 

-0.5 1.099 2.00E+08(3,8) 2.2E+08(1,19) 1.50E-04 

0 1.078 2.56E+08(3,8) 2.76E+08(1,16) 1.87E-04 

0.5 1.06 3.30E+08(3,8) 3.5E+08(1,13) 2.50E-04 

1 1.046 4.30E+08(3,8) 4.49E+08(1,11) 3.00E-04 

κ1 keeps constant, κ2 

change 

-1 1.066 2.56E+08(3,8) 2.73E+08(1,14) 2.27E-04 

-0.5 1.072 2.56E+08(3,8) 2.74E+08(1,15) 2.05E-04 

0 1.078 2.56E+08(3,8) 2.76E+08(1,16) 1.87E-04 

0.5 1.085 2.56E+08(3,8) 2.78E+08(1,17) 1.73E-04 

1 1.093 2.56E+08(3,8) 2.8E+08(1,18) 1.63E-04 

Both κ1 and κ2 change 

-1 1.111 1.58E+08(3,8) 1.76E+08(1,21) 1.26E-04 

-0.5 1.09 2.00E+08(3,8) 2.18E+08(1,18) 1.60E-04 

0 1.077 2.56E+08(3,8) 2.76E+08(1,16) 1.87E-04 

0.5 1.065 3.30E+08(3,8) 3.52E+08(1,14) 2.24E-04 

1 1.053 4.30E+08(3,8) 4.52E+08(1,12) 2.79E-04 

Figure 6.8 gives the comparison of different κ1 and κ2 on the dimensionless time-

deflection curve of an FG orthotropic cylindrical shell. Both κ1 and κ2 increase 

simultaneously while keeps other parameters unchanged. With the increase of non-

homogenous parameters κ, the critical buckling time τcr decreases but dynamic buckling 

loads and the vibration of the structure increase. And the dynamic buckling mode (m, n) 
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jumps significantly from (1, 21) to (1, 12), as shown in Table 6.4. The effects of different 

κ1 and κ2 on p(t)cr and Wmn also shown in Figure 6.9. Both κ-p(t)cr curve and κ-Wmn curve 

increase simultaneously with the increase of non-homogenous parameters κ. From 

subsection 6.5.3.1 to 6.5.3.3, it is clear that both κ1 and κ2 have an impact on dynamic 

buckling responses; while the influence of κ1 is more prominent than that of κ2. 

6.5.3.4 The influence of various linearly increasing loads 

As one of the major coefficients in governing Eqs. (6.37), (6.46), the linearly 

increasing load has a significant effect on dynamic buckling load[102, 112].  Therefore, 

it is essential to study the impact of different loading speeds acting on an FG orthotropic 

cylindrical shell. The exponential factor or material gradient in this subsection chooses κi 

=1.0. Three different loading speeds c equals to 4.137GPa/s, 8.274GPa/s and 16.55GPa/s 

are discussed. 

 

Figure 6.10 The dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell subjected to different linearly increasing loads c 
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Figure 6.11 The effects of different linearly increasing loads c on p(t)cr and Wmn of a 

simply supported FG orthotropic cylindrical shell  

Figure 6.10 shows the dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell subjected to different linearly increasing loads c. The 

numbers in the parenthesis denote the dynamic buckling modes (m, n) in the figure. 

Obviously, with the increase of loading speed, the critical buckling time τcr, dynamic 

buckling loads p(t)cr and the vibration of the structure increase. And the buckling modes 

jumps from (1, 12) to (1, 25).  

The effects of different linearly increasing loads c on p(t)cr and Wmn of a simply 

supported FG orthotropic cylindrical shell is shown in Figure 6.11. The deflection Wmn 

would decrease due to the increase of loading speeds. This is because the increase of the 

loading speeds makes the onset of buckling in advance of the release of strain in the 

cylindrical shell.  
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6.5.3.5 The influence of different damping ratios 

To explore the influence of different damping ratios, five damping ratios ζ from 0 

(undamped system) to 0.05 are explicitly investigated. The exponential factor or material 

gradient in this subsection chooses κi =1.0. And the loading speed is c=4.137G Pa/s.  

 

Figure 6.12 The dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell for various damping ratios 

 

Figure 6.13 The effects of various damping ratios ζ on p(t)cr and Wmn of a simply 

supported FG orthotropic cylindrical shell  
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In Figure 6.12 the effects of various damping ratios on the dimensionless time-

deflection curve are illustrated. It is noted that the oscillations after buckling are greatly 

eliminated with the consideration of damping effects. One interesting finding is that the 

half wave number in the axial direction m jumps from 1 to 2 when the damping ratio 

reaches at 0.03. The numbers of wave in the circumferential direction n is decrease with 

an increasing of damping ratios. Normally, some researchers[73, 211] believed in that the 

increasing of damping ratios increases the dynamic buckling load. In this study, however, 

the increasing of damping ratios not always results in the rise of buckling load, as the ζ-

p(t)cr curve shown in Figure 6.13. This is due to the buckling modes jumps from (1,10) to 

(2,10) when the damping ratios reach at 0.03. As to the ζ-Wmn curve, the deflection 

increases with the increase of damping ratios.  

6.5.3.6 The influence of R/h ratios 

The effects of R/h ratios of a simply supported FG orthotropic cylindrical shell 

subjected to a linearly increasing load are discussed in this subsection. The geometrical 

parameters are h=0.00254m, L=0.508m. Three different of radius-to-thickness ratios, i.e. 

R/h=60, 80 and 100 are chosen. All the other parameters remain the same as before. As 

shown in Figure 6.14, with the increase of R/h ratios, both the critical buckling time τcr 

and dynamic buckling loads p(t)cr apparently changed. When R/h ratios increase from 60 

to 100, p(t)cr decreases by 1.64 times and the buckling modes jumps from (1,6) to (1,12). 

As can be seen from Figure 6.15, the increase of R/h ratios would reduce the largest 

deflection Wmn of the cylindrical shell.  
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Figure 6.14 The dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell for various R/h ratios 

 

Figure 6.15 The effects of various R/h ratios on p(t)cr and Wmn of a simply supported FG 

orthotropic cylindrical shell  
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different L/R ratios. According to Figure 6.17, the increase of R/h ratios would reduce the 

deflection Wmn of the structure.  

 

Figure 6.16 The dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell for various L/R ratios 

 

Figure 6.17 The effects of various R/h ratios on p(t)cr and Wmn of a simply supported FG 

orthotropic cylindrical shell  
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such as (kw
*, kp

*) equals to (0, 0), (0, 100), (100, 0) and (100, 0). The other parameters 

keep unchanged. Clearly, from Figure 6.18, when (kw
*, kp

*) equals to (0, 0), (100, 0), the 

dimensionless time-deflection curves are almost the same, similar rules can be obtained  

when (kw
*, kp

*) equals to (0, 100) and (100, 100); while the influence of kp
* is more 

pronounced than kw
*.  

The effects of different (kw
*, kp

*) on p(t)cr and Wmn of a simply supported FG orthotropic 

cylindrical shell are shown in Figure 6.19, for both (kw
*, kp

*)-p(t)cr and (kw
*, kp

*)-Wmn 

curves, the influence of kp
* is more prominent than kw

*. By considering the Winkler-

Pasternak elastic foundation, the dynamic buckling load will increase, and Pasternak 

parameter is more sensitive than Winkler one. As for the deflection of the cylindrical shell, 

the increase of kw
* would reduce the deflection, while the increase of kp

* would increase 

the deflection. Because kw
* (Winkler foundation modulus) restricts the circumferential 

deflection of the cylindrical shell and kp
* strengthens shear layer foundation stiffness and 

then eliminates the axial movement. Also, the influence of kp
* is more pronounced than 

kw
* on the deflection of the cylindrical shell.  
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Figure 6.18 The dimensionless time-deflection curve of a simply supported FG 

orthotropic cylindrical shell for different (kw
*, kp

*)    

 

Figure 6.19 The effects of different (kw
*, kp

*)   on p(t)cr and Wmn of a simply supported 

FG orthotropic cylindrical shell 
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effect of κ1 (governed Young’s module and shear modulus) is more distinct 

than κ2 (governed density) for dynamic stability behaviours. Therefore, a 

rational design of κ1 and κ2 is necessary for buckling analysis of an FG 

orthotropic cylindrical shell.  

2. The dynamic critical buckling loads are larger than the static ones when 

considering the dynamic terms for all the cases. With the increase of loading 

speed, the critical buckling time, dynamic buckling loads and the vibration of 

the structure increase; while deflection decrease. 

3. The increasing of damping ratios not always results in the rise of buckling load, 

which may affect by buckling modes or other uncertainty factors. The 

deflection increases with the increase of damping ratios. 

4. The increase of R/h ratios leads to the decrease of dynamic buckling load 

dramatically; while the increase of L/R ratios results in slowly increase of 

dynamic buckling. Moreover, dynamic buckling modes changed greatly for 

different R/h ratios while seems invariable for different L/R ratios. 

5. Dynamic buckling load would increase due to the effect of the Winkler-

Pasternak elastic foundation and Pasternak parameter is more sensitive than 

Winkler one. The influence of Pasternak parameter is more pronounced than 

Winkler foundation modulus on the deflection of the cylindrical shell. The 

increase of Winkler foundation modulus would reduce the deflection; while the 

increase of Pasternak parameter would increase the deflection.  
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Chapter 7 Nonlinear dynamic 

buckling of the imperfect orthotropic 

E-FGM circular cylindrical shells 

subjected to the longitudinal constant 

velocity 

7.1 Introduction  

The dynamic buckling of isotropic FG cylindrical shells subjected to the longitudinal 

constant velocity has not been reported yet, and even the dynamic buckling of orthotropic 

FG cylindrical shells. Therefore, in this chapter, the dynamic stability of the imperfect 

orthotropic Exponential Law Functionally Graded Material (E-FGM) circular cylindrical 

shell subjected to the constant longitudinal velocity is investigated. The dynamic 

longitudinal loading on the shell is accomplished by applying a constant displacement 

rate at one end with respect to the other. The nonlinear compatibility equation is derived 

by using the improved Donnell shell theory with the consideration of von-Kármán strain-

displacement relation and damping effect. Then the nonlinear dynamic buckling equation 

considering initial imperfections and damping effect is obtained by Airy’s stress function 

and Galerkin method based on Volmir’s approach[233]. Finally, the nonlinear 

compatibility equation is solved by fourth-order Runge-Kutta method and the nonlinear 
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dynamic stability of the orthotropic FG cylindrical shell are assessed based on Budiansky-

Roth criterion[2, 6, 202].  

7.2 Theory and formulation 

7.2.1 Material gradient of orthotropic FG cylindrical shells 

Orthotropic functionally graded cylindrical shell in this chapter is assumed to be made 

from a mixture of ceramic and metallic with exponentially varying material properties 

P(z) and can be given as follows 

 )()( zPzP i=    (7.1) 

where 

 
)5.0(

)(
+

= h

z

i

i

ez


    (7.2) 

where ψ(z) is the material’s exponential function. κi is the exponential factor, and also 

denotes the non-homogenous parameter because it characters the degree of the material 

gradient in the z-direction. h is the thickness of the shell and varies from –h/2 to h/2. z is 

the coordinate in the thickness direction. Figure 7.1 illustrates the material’s exponential 

function for five different non-homogenous parameters (-1.5, -0.5, 0, 0.5, 1.5) along the 

z-direction. As can be seen, when κi =0, Eq.(1) reduces to the homogenous case; when κi > 

0, it corresponds to the graded stiff material while κi <0 means the graded soft material, 

as shown in Figure 7.2. 
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Figure 7.1 Material’s exponential function ψi(z) over z/h for five different non-

homogenous parameters (-1.5, -0.5, 0, 0.5, 1.5)  

For an orthotropic functionally graded cylindrical shell, Young’s module E(z), shear 

modulus G(z), and density ρ(z) can be given in the similar form as Eq.(7.1). 
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where E01 , E02 represent Young’s moduli of homogeneous orthotropic material along x, 

y directions, respectively. Similarly, G0 and ρ0 are the shear modulus and density of the 

homogenous orthotropic material, respectively. Poisson’s ratio in this chapter is assumed 

to be invariable because Poisson’s ratio has less effect on structures than other material 

properties[213]. 
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(a)                                                                      (b) 

Figure 7.2 Cross-section of (a) FG stiff circular cylindrical shell; (b) FG soft circular 

cylindrical shell 
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Figure 7.3 Geometry and Cartesian coordinate system of an orthotropic FG cylindrical 

shell subjected to a constant axial velocity 

7.2.2 Governing equations 

Consider an orthotropic functionally graded cylindrical shell with length L, mean 

radius R and thickness h, as shown in Figure 7.3. The Cartesian coordinate system (x,y,z) 

is established, in which point O is located on the middle plane and at the left side of the 

cylindrical shell. z is the thickness direction. Also, the cylindrical shell is subjected to a 

constant compression rate v at the end of right side along the x direction. 

 

R 
L 

V 



198 

 

The governing equation same as Section 6.2.2 and Section 6.2.3 when the elastic 

foundation parameters equals to 0. 

 

( )

( )

4 4 4
* * * * *

12 11 66 22 214 2 2 4

4 4 4 2
0* * * * *0 0

11 12 66 21 224 2 2 4 2

2 2 2 2 2 2 2

2 2 2 2 2

2

( ) ( )
( 2 )

2 t d t

F F F
h C C C C C

x x y y

w w w w w w h F
D D D D D

x x y y R x

F w F w F w w w
h c

y x x y x y x y t t
 

   
+ − + + 

    

 −  −  − 
− − + + − +

    

        
+ − + = + 

          

   (7.4) 

7.3 Nonlinear dynamic analysis of an orthotropic FG cylindrical shell 

7.3.1 Solution of the problem 

The boundary conditions for w and w0 of a supported cylindrical shell where the edges 

remain straight after buckling are 
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From the above figure, the average stress in each direction becomes 
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where p(t) is the average compressive stress due to the constant compression rates and 
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The deflection function for the SSSS boundary condition cylindrical shell is assumed 

to be the single mode [74] 

 )sin()sin()(),,( yxtWtyxw mn =    (7.9) 

where Wmn(t) is the time-varying amplitude of w, and α=mπ/L and β=n/R are the number 

of half waves in the x and y directions, respectively. Moreover, other boundary conditions 

can be considered if one selects the proper trigonometric admissible functions[75]. 

Also, the initial shape function can be taken as 

 )sin()sin(),( 00 yxWyxw =    (7.10) 

where W0  represents the initial eccentricity value of the cylindrical shell. 

Substituting Eq.(7.9) and Eq.(7.10) into the nonlinear compatibility Eq.(6.30) and 

combined with the boundary conditions Eqs.(7.5)-(7.8), a solution is given 
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Substituting Eqs.(7.9)-(7.11) into Eq.(7.4) and then applying the Galerkin method. 

Each term in Eq.(7.4) is multiplying with sin(mπx/L)sin(ny/R)dxdy, then integrating over 

the middle surface of cylindrical shell, the equation of motion becomes 
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7.3.2 In-plane compressive force 

Substituting Eq. (7.11) into Eq. (6.28), the membrane stresses can be obtained  

 

22
2 2 1

0 0*

22

22
2 2 1

0 0*

11

sin( )sin( )cos(2 )
( ) ( ) ( )

8

sin( )sin( )cos(2 )
( ) ( )

8

x mn mn

y mn mn

K x yy
W W W W p t

A h h

K x yx
W W W W

A h h

   


   


= − − − − −

= − − − −

   (7.15) 

Getting together Eq.(6.3) with Eq.(6.14), we can have the following equations 
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Substitute Eqs.(7.9), (7.10) into Eqs.(7.16) and eliminating
0

x , then xu  /  can be 

expressed  
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where ∂u/∂x denotes the strain at any point through the cylindrical shell thickness in the 

z-direction. 

The dynamic longitudinal loading on the cylindrical shell is accomplished by a 

constant displacement rate v along x-axis of one end with respect to the other; therefore 

the displacement along x-axis due to the loading rate can be solved by 
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 vtU −=    (7.19) 

where negative displacement means the cylindrical shell edge is shortened.   

From Eqs.(7.18) and (7.19), the average value of compressive stress p(t) can be 

expressed 
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7.3.3 Buckling analysis 

7.3.3.1 Static buckling analysis 

For an initially perfect orthotropic FG cylindrical shell, by omitting the velocity, 

acceleration and high-order terms, Eq. (7.13) can be reduced into 

 ( )2

1 1 1 0mn mnα hpW M K N W− − − =    (7.22) 
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Eq. (7.22) is the linear static equation of the orthotropic FG cylindrical shell, which 

can also obtain from the corresponding static case using the linear theory. Then the static 

buckling load is  

 ( )1 1 12

1
stp N M K

h
= −    (7.23) 

where the least static buckling load
st

crp  can also obtain with respect to various modes (m, 

n), which can be further reduced into classical buckling load of an isotropic circular 

cylindrical shell by giving κi equals to 0, respectively. And the equation is given as 

follows 
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7.3.3.2 Dynamic buckling analysis 

Substituting Eq. (7.20) into Eq. (7.13), the government equation of nonlinear dynamic 

buckling of orthotropic FG cylindrical shell subjected to a constant loading rate v with 

damping effect can be derived  
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Here, introduce the following non-dimensional parameters and constants 
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By considering the viscous damping as internal damping effects, one can obtain that 
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where cd denotes the damping coefficient of the structure; 
mn denotes the circular natural 

frequency of the cylindrical shell corresponding to mode (m, n); and  denotes the 

damping ratio of the cylindrical shell. 

For harmonic motion, Wmn(t) may be taken in the form 

 )sin()( tAtWmn =    (7.28) 

where A is the amplitude of the vibration. 

Substituting Eq. (7.28) into Eq. (7.25), the fundamental frequency of natural vibration 

of the orthotropic FG cylindrical shell can be determined by 
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1
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Therefore, the differential equations governing the nonlinear behaviour of an 

orthotropic FG cylindrical shell can be written in a non-dimensional form 
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According to the dimensionless quantities of Eq. (7.28), the normalized buckling load 

from Eq. (7.20) can be represented as 
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7.4 Results and discussions 

7.4.1 Validation of present study 

In this section, the accuracy of proposed method is verified with published papers. 

First of all, the comparison on the static buckling of simply supported isotropic cylindrical 

shell pst (calculated from Eq.(7.23)) given by the proposed analysis with the results Huang 

and Han [102] based on the Euler-Lagrange equation, as shown in Table 7.1. The 

dimensions of the circular cylindrical shell are E01=E02=E0, v12=v21=v0. The material 

properties are taken as E0=200GPa, G0=77.3GPa, ρ=1200kg/m3, h=4×10-3m, R/h=125, 

L/R=1. The Poisson’s ratio is chosen to be 0.3. As can be seen, in this comparison study 

outstanding agreements are achieved and the average errors in different modes just have 

around 0.11%-0.32%.  
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Table 7.1 Comparison of the static buckling load of a simply supported isotropic 

cylindrical shell with the results reported by Huang and Han[102]  

(m,n) Huang and Han[102](GPa) Present method (GPa) Difference (%) 

(1,1) 16.721 16.739 0.11 

(1,2) 10.284 10.311 0.26 

(1,3) 5.586 5.604 0.32 

(1,4) 3.029 3.038 0.30 

(2,4) 2.657 2.664 0.26 

(3,4) 1.762 1.765 0.16 

Furthermore, the natural frequencies (in Eq.(7.29)) of the simply supported anisotropic 

circular cylindrical shell is calculated by present analysis and compared with Greenberg 

and Stavsky [234] based on the Love-type theory solved by finite Fourier transform, 

Sofiyev et al.[118] based on Donnell’s nonlinear shell theory and solved by homotopy 

perturbation method, Liu et al.[235] based upon the Donell-Mushtari shell theory solved 

by closed-form vibration solution. The comparisons are carried out for the following 

circular cylindrical shell material properties: E01=120GPa, E02=10GPa, G0=5.5GPa, 

v12=0.27, v21=0.0225, ρ=1700kg/m3, h=0.01m, L=5m, R=1.0m, which were taken from 

the study of Liu et al.[235]. As shown in Table 7.2, a good agreement can be witnessed. 

Table 7.2 Comparison of the natural frequencies of a simply supported orthotropic 

cylindrical shell with results reported by Greenberg and Stavsky [234], Sofiyev et 

al.[118] and Liu et al.[235] 

n 
Present 

Method 

Ref. 

[234] 

Ref. 

[118] 

Ref. 

[235] 

Average Error (%) with 

Ref. [118, 234, 235] 

3 272.0 266 273 258 2.33% 

4 203.99 202 204 198 1.30% 
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5 213.05 211 210 209 1.43% 

6 269.81 270 265 266 1.04% 

7 353.57 358 347 350 0.54% 

8 455.93 464 448 452 0.28% 

7.4.2 Results of natural frequencies and static buckling loads 

The results from Table 7.1 and Table 7.2 have verified the proposed methods. 

Additional effects of different L/R and E01/E02 on natural frequencies ωmn (calculated from 

Eq.(7.29)) and static buckling load of pst (calculated from Eq.(7.23)) of a simply supported 

orthotropic cylindrical shell are shown in Table 7.3. The material properties are same as 

Table 7.2, expect that E02 and R remain unchanged and E01 and L are variable with respect 

to the ratios in Table 7.3, respectively. Obviously, for a fixed E01/E02, the increasing of 

L/R leads to the decrease of natural frequencies; while static buckling does not have this 

phenomenon. Similarly, for a fixed L/R, the increasing of E01/E02 causes the increase of 

the buckling load; while natural frequencies do not have this phenomenon. One 

interesting finding is that the influence of modes (m,1) does not have specific laws.  

Table 7.3 Comparison of natural frequencies ωmn and static buckling loads pst of a 

simply supported orthotropic cylindrical shell for different L/R and E01/E02 (E02=10GPa, 

R=1m,n=1) 

L/R E01/E02 

ωmn (Hz) pst (MPa) 

m=1 m=2 m=3 m=1 m=2 m=3 

2 

10 1843.2 2243.5 2386.1 2340.6 867.0 435.9 

20 1845.4 2253.4 2436.1 2346.4 874.7 454.3 

30 1846.7 2263.8 2485.4 2349.7 882.8 472.9 
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40 1847.8 2274.3 2533.8 2352.5 890.9 491.5 

10 

10 449.0 980.3 1373.8 3472.7 4138.5 3611.8 

20 493.2 1004.2 1384.6 4189.8 4342.1 3669.2 

30 511.1 1012.5 1388.4 4499.6 4414.7 3689.3 

40 520.8 1016.8 1390.4 4672.3 4452.1 3699.7 

20 

10 157.7 449.0 731.6 1714.2 3472.7 4097.4 

20 194.7 493.2 765.5 2612.4 4189.8 4486.5 

30 214.4 511.1 778.0 3166.0 4499.6 4633.3 

40 226.7 520.8 784.4 3541.3 4672.3 4710.4 

 

7.4.3 Dynamic buckling of the orthotropic FG cylindrical shells subjected to 

constant velocities 

In this subsection, the nonlinear dynamic stability of an imperfect orthotropic FG 

cylindrical shell subjected to a constant compression rate is investigated. Eq.(51) was 

solved numerically based on fourth-order Runge-Kutta method and the nonlinear 

dynamic stability of the orthotropic FG cylindrical shell are assessed based on Budiansky-

Roth criterion[2, 6, 202]. The following material properties are chosen: E01=206.9GPa, 

E02=20.69GPa, G0=6.9GPa, v12=0.3, v21=0.03, ρ=1950kg/m3, which were taken from 

Reddy’s book[232]. The geometrical parameters are h=0.01m, L=5m, R=1.0m. And the 

initial imperfection is W0=0.001×h.  

7.4.3.1 The influence of various compression rates 

The constant velocity or displacement loading scheme of dynamic buckling, which 

was first studied by Hoff [53] in 1951, and shown that the critical force strongly depends 
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on compression rate and initial imperfection of a beam-column structure. Moreover, 

velocity is one of the key parameters in the governing Eqs.(7.30) and (7.31). Therefore, 

it is essential to study the impact of different velocities acting on an imperfect orthotropic 

FG cylindrical shell. The exponential factor or material gradient in this subsection 

chooses κi =1.0. Three different compression rates v equal to 0.1m/s, 0.2 m/s and 0.3m/s 

are discussed. 

Figure 7.4 and Figure 7.5 show the dimensionless time-deflection curve, the 

dimensionless time-load curve of an eccentricity simply supported orthotropic FG 

cylindrical shell subjected to different velocities, respectively. Obviously, with the 

increase of axial compression rates, the critical buckling load and vibration of the 

cylindrical shell increases; while the time of the onset of buckling decrease and the 

deflection at the buckling point (which is shown as coloured dots in Figure 7.5) decreases 

as well. As can be seen from Figure 7.4 that all dynamic buckling curves have three phases, 

which are a very slow increase, rapid increase and reach the inflexions and then 

cylindrical shell begins to vibration. Moreover, the dynamic critical buckling mode (m, n) 

changes from (8, 8) to (10, 9) with the increase of loading rates. The oscillation amplitude 

(the third phase) also becomes larger when the velocity reaches 0.3 m/s.  
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Figure 7.4 Dimensionless time-deflection curve of an eccentricity simply supported 

orthotropic FG cylindrical shell subjected to different velocities 

 

 

Figure 7.5 Dimensionless time-load curve of an eccentricity simply supported 

orthotropic FG cylindrical shell subjected to different velocities 
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As it has been reported, initial imperfection is one of the most important parameters in 

dynamic buckling analysis. To investigate effects of the initial imperfection in dynamic 
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0.001×h are discussed. In Figure 7.6, it is clearly demonstrated that a slight change of 

initial deflection would result in an apparent change in τ-Wmn
* curve and the amplitude of 

the vibration of the structures increases for smaller imperfections. From Figure 7.7, when 

the initial imperfection decreases from 0.02×h to 0.001×h, the dynamic buckling load 

increases.  

One interesting finding is that when initial imperfection increases to 0.1×h, there is an 

absence of dynamic buckling point according to Budiansky-Roth criterion[2, 6, 202]. 

Similar phenomena also are reported by Papazoglou et al.[73] and Huang et al. [102]. 

This is because B-R criterion is unsuitable for predicting dynamic buckling load of the 

cylindrical shell when the imperfection amplitude is large. 

  

Figure 7.6 Dimensionless time-deflection curve of an eccentricity simply supported 

orthotropic FG cylindrical shell for various initial eccentricities 
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Figure 7.7 Dimensionless time-load curve of an eccentricity simply supported 

orthotropic FG cylindrical shell for various initial eccentricities 

7.4.3.3 The influence of different damping ratios 

Figure 7.8 and Figure 7.9 show the influence of damping ratios on dynamic buckling 

of an eccentricity simply supported orthotropic FG cylindrical shell. Three damping ratios 

ζ from 0 (undamped system) to 0.02 are explicitly investigated. The exponential factor in 

this subsection chooses κi =1.0, axial compression velocity is v=0.1m/s, and initial 

imperfection is 0.001×h. Clearly, the influence of increasing of damping ratios is not very 

pronounced for deflections when compared with dynamic buckling load. While the 
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Figure 7.8 Dimensionless time-deflection curve of an eccentricity simply supported 

orthotropic FG cylindrical shell for various damping ratios 

 

Figure 7.9 Dimensionless time-load curve of an eccentricity simply supported 

orthotropic FG cylindrical shell for various damping ratios 
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of κ1 (or Young’s module and shear modulus) are focused on. And κ2 (or density) keeps 

invariable. Five different inhomogeneous parameters κi =-1, -0.5, 0, 0.5, 1 are selected. It 

is clear that when κ1 =0, Eq.(7.1) reduces to the homogeneous case; when κ1 > 0, it 

corresponds to the graded stiff material while κ1 <0 means graded soft material. 

The influence of different κ1on dynamic buckling of orthotropic FG cylindrical shells 

is illustrated in Figure 7.10 and Figure 7.11. It is obvious that with the increase of 

inhomogeneous parameters or say that the materials become stiffer would reduce the 

onset of buckling amplitudes and decrease the dynamic buckling loads. When κ1 increases 

from -1.0 to 1.0, the dynamic buckling loads increase by 2.56 times and times of onset 

buckling decrease 1.06 times, as shown in Table 7.4. And the buckling mode remains 

constant with the change of different inhomogeneous parameters κi. 

 

Figure 7.10 The time-deflection curve of an eccentricity simply supported orthotropic 

FG cylindrical shell for different κ1 

0 0.02 0.04 0.06 0.08
0

0.002

0.006

0.01

0.014

t(s)

W
(m

)

 

 

1: =-1.0

2: =-0.5

3: =0

4: =0.5

5: =1.0

0.044 0.048 0.052

2

x 10
-3

 

 

V=0.1m/s,w
0
=0.001h,=0,

(m,n)=(8,8)

5
4

3
2

1



215 

 

 

Figure 7.11 The time-load curve of an eccentricity simply supported orthotropic FG 

cylindrical shell for different κ1 

7.4.3.5 The influence of different non-homogenous parameters κ2 

In this subsection, the effects of inhomogeneous parameters κ2 are investigated. 
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Figure 7.12 and Figure 7.13 depict the time-deflection curve and time-load curve of 

an eccentricity simply supported orthotropic FG cylindrical shell for different κ2 subjected 

to a constant axial velocity v=0.1m/s, respectively. An interesting finding is that the first 

phases (or say slopes) of the time-load curve of different inhomogeneous parameters κ2 

are almost similar. This is due to the κ1 (or Young’s module and shear modulus) keeps 

invariable. The increase of κ2 from -1.0 to 1.0 would increase the dynamic buckling and 

also extend the time of onset of buckling, which means the larger the density becomes, 

the bigger the dynamic buckling load is when inhomogeneous parameters κ2 increases 

and κ1 (or Young’s module and shear modulus) keeps invariable.  
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Figure 7.12 The time-deflection curve of an eccentricity simply supported FG 

orthotropic cylindrical shell for different κ2 

 

Figure 7.13 The time-load curve of an eccentricity simply supported FG orthotropic 

cylindrical shell for different κ2 

7.4.3.6 The combined effects of κ1 and κ2 on dynamic buckling of orthotropic FG 

cylindrical shells 

From the last two subsections, we can see that both κ1 and κ2 have a significant 

influence on the dynamic buckling of an eccentricity simply supported orthotropic FG 

cylindrical shell. Therefore, it is evident for us to investigate the combined effects of these 

two parameters. Figure 7.14 and Figure 7.15 give the comparison of different κ1 and κ2 on 
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the time-deflection curves and time-load curves, respectively. Both κ1 and κ2 increase 

simultaneously while keeps other parameters unchanged. As can be seen from Figure 7.14, 

the time-deflection curve of inhomogeneous parameters equal to -1.0 coincides with that 

of 1.0. Similarly, the curves of -0.5 and 0.5 are almost the same. As shown in Figure 7.15, 

the dynamic buckling loads increase with the increase of inhomogeneous parameters from 

-1.0 to 1.0 while the time of onset buckling has no significant rules.   

To further explore the relationship between κ1 and κ2 on dynamic buckling of 

orthotropic FG cylindrical shells, eleven different κ1 from -1.0 to 1.0 and eleven different 

κ2 from -1.0 to 1.0 are explicitly investigated. Figure 7.16 shows the relationship of 

different κ1 and κ2 on the peak deflections at the time of onset buckling for an eccentricity 

simply supported orthotropic FG cylindrical shell. As can be seen, the influence of κ1 is 

almost the same as κ2. Both κ1 and κ2 change from (1.0, -1.0) to (-1.0,-1.0) (the softest) and 

(1.0, 1.0) (the stiffest) area, the peak deflections increase. When κ1 equals to -1.0 and κ2 

equals to 1.0, the deflection reaches the largest. Similar results also obtained from Table 

7.4. 
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Figure 7.14 The time-deflection curve of an eccentricity simply supported orthotropic 

FG cylindrical shell for different κ1 and κ2 

  

Figure 7.15 The time-deflection curve of an eccentricity simply supported orthotropic 

FG cylindrical shell for different κ1 and κ2 

Table 7.4 Comparison of static critical buckling load
st

crp  , dynamic critical buckling 

load 
dy

crp and deflection mnW for various material exponential factors κi 

Material gradient κi 
st

crp  (Pa) 
dy

crp  (Pa) mnW  ×10-3(m) 

κ1 (or Young’s module and 

shear modulus) changes, κ2 (or 

density) keeps constant 

-1 1.13E+08(7,8) 1.31E+08(8,8) 2.675 

-0.5 1.43E+08(7,8) 1.63E+08(8,8) 2.593 
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0 1.82E+08(7,8) 2.05E+08(8,8) 2.524 

0.5 2.35E+08(7,8) 2.61E+08(8,8) 2.446 

1 3.06E+08(7,8) 3.36E+08(8,8) 2.372 

κ1 keeps constant, κ2 changes 

-1 1.82E+08(7,8) 2.01E+08(8,8) 2.385 

-0.5 1.82E+08(7,8) 2.03E+08(8,8) 2.449 

0 1.82E+08(7,8) 2.05E+08(8,8) 2.524 

0.5 1.82E+08(7,8) 2.08E+08(8,8) 2.605 

1 1.82E+08(7,8) 2.12E+08(8,8) 2.7 

Both κ1 and κ2 change 

-1 1.13E+08(7,8) 1.27E+08(8,8) 2.523 

-0.5 1.43E+08(7,8) 1.61E+08(8,8) 2.52 

0 1.82E+08(7,8) 2.05E+08(8,8) 2.524 

0.5 2.35E+08(7,8) 2.65E+08(8,8) 2.52 

1 3.06E+08(7,8) 3.45E+08(8,8) 2.523 

 

The influence of different κ1 and κ2 on critical dynamic buckling load at the time of 

onset buckling for an eccentricity simply supported orthotropic FG cylindrical shell is 

also illustrated in Figure 7.17. It shows that the increase of both κ1 and κ2 will increase the 

buckling load; while the effect of κ1 is more distinct than κ2 for dynamic buckling load, 

which means Young’s module and shear modulus have a more pronounced than density 

on the buckling load. Therefore, for an eccentricity simply supported orthotropic FG 

cylindrical shell, a rational design of κ1 and κ2 can maximise the material property and 

optimise the structures. 
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Figure 7.16 The relationship of different κ1 and κ2 on the peak deflections at the time of 

onset buckling for an eccentricity simply supported orthotropic FG cylindrical shell 

 

Figure 7.17 The relationship of different κ1 and κ2 on critical dynamic buckling load at 

the time of onset buckling for an eccentricity simply supported orthotropic FG 

cylindrical shell 

7.5 Conclusions 

Dynamic stability behaviours of an imperfect orthotropic E-FGM circular cylindrical 

shell subjected to constant longitudinal velocities were investigated. The dynamic 

longitudinal loading on the shell is accomplished by applying a constant displacement 

rate at one end with respect to the other. According to the improved Donnell shell theory, 
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the nonlinear compatibility equation and the equation of motion were derived with the 

consideration of initial imperfection and damping effects. The governing equation was 

solved by fourth-order Runge-Kutta method and the nonlinear dynamic stability of the 

orthotropic FG cylindrical shell is assessed based on Budiansky-Roth criterion. The 

Effect of various velocities, initial imperfections, damping ratios, inhomogeneous 

parameters κ1 and κ2 on nonlinear dynamic buckling of the orthotropic FG cylindrical 

shells were studied and the results of this investigation can be summarized as: 

1. When considering dynamic terms, the dynamic critical buckling loads are 

larger than the static ones. Moreover, with the increase of axial compression 

rates, the critical buckling load and amplitude of the vibration of the cylindrical 

shell increases; while the time of the onset of buckling decreases and the 

deflection at the buckling point decreases as well. 

2. The presence of initial imperfection considerably reduces the dynamic 

buckling load and the oscillation of the cylindrical shell after buckling. The 

large initial imperfection will change the whole appearance of the response 

curve. At this moment, the B-R criterion is unsuitable for predicting dynamic 

buckling behaviour of the cylindrical shell. 

3. The increasing of the damping ratios results in the rise of dynamic buckling 

load and eliminates the oscillations in the third phases. 

4. Both κ1 (or Young’s module and shear modulus) and κ2 (density) will increase 

the buckling load; while the effect of κ1 is more distinct than κ2 for dynamic 

stability behaviours. Therefore, for an eccentricity simply supported 

orthotropic FG cylindrical shell, a rational design of κ1 and κ2 can maximise the 

material property and optimise the structures. 
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Chapter 8 Conclusions and further 

work 

8.1 Conclusions  

This dissertation provides a comprehensive analytical analysis framework for dynamic 

behaviour assessment of beam, plate and cylindrical shell made of advanced materials, as 

well as a vivid modelling on the damping effects, thermal effect and elastic foundation 

for structures under dynamic loadings. Chapters 3-7 present dynamic characteristics and 

stability of beams, plates and cylindrical shells under different situations, respectively.  A 

detailed summary is shown below.  

Chapter 3 proposes the nonlinear dynamic buckling analysis of Euler-Bernoulli beam-

columns under constant loading rates. The critical dynamic buckling load of the damped 

system is larger than the undamped system. The increasing of the damping ratios results 

in an increase of dynamic buckling load. However, the buckling time of structure will be 

delayed for a damped system. The critical buckling is deceased for the temperature 

change from temperature fall to temperature rise. Moreover, temperature rise would defer 

the time of buckling while temperature fall would accelerate the time of buckling. For a 

beam-column subjected to a compression rate in the presence of damping effects under 

thermal environment, velocities of load are the most crucial parameter for structures, then 

temperature change. However, in this case, the damping effect has the least effects. The 

analytical solutions are compared with the FE results and the proposed methods are in a 

good agreement with the FEM modellings. 
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Chapter 4 investigates the nonlinear dynamic characteristics and stability of composite 

orthotropic plate on Winkler-Pasternak elastic foundation subjected to different axial 

velocities with damping and thermal effects. The accuracy of the obtained results of 

frequency parameters is verified against the published paper by other methods and shows 

that the proposed method has a good accuracy. The increase in damping ratios increases 

the dynamic buckling load and eliminates the oscillations in the third phases. Temperature 

rise will cause the increase of axial compression stresses and further reduce the transverse 

stiffness of plate. Considering the elastic foundation, the deflection of the plate will 

decrease; while Pasternak parameter is more sensitive than Winkler one for the structures. 

Also the increase of foundation parameters would reduce the onset of buckling amplitudes 

and decrease dynamic buckling load. The author thought that the B-R criterion is 

unsuitable for the plate on elastic foundation when foundation parameters become larger. 

Chapter 5 implements nonlinear primary resonance behaviour of cylindrical shells 

made of functionally graded (FG) porous materials subjected to a uniformly distributed 

harmonic load including the damping effect. Three types of FG porous distributions, 

namely symmetric porosity distribution, non-symmetric porosity stiff or soft distribution 

and uniform porosity distribution were considered. By increasing the value of the 

coefficient of porosity, hardening nonlinearity is weakened for all the distributions. The 

symmetric porosity distribution occupies more stiffness than the other two types and 

consequently, the detuning parameters and amplitude of response are the smallest. While 

in the presence of damping effect, the amplitude-frequency curves are finite. And as the 

value of damping ratio increases, the peak amplitude decreases as the value of damping 

ratio increases. The analytical method is further verified by the adaptive step-size fourth-
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order Runge-Kutta method numerically. The present method is in agreement with that 

from the numerical simulation, and then the validity of the present study is examined. 

Chapter 6 carries out the dynamic stability analysis of an FG orthotropic circular 

cylindrical shell surrounded by a Winkler-Pasternak elastic foundation subjected to 

linearly increasing load with the consideration of damping effect. The non-homogenous 

parameters κi have a great effect on dynamic buckling behaviours (critical load, buckling 

modes, deflection, etc.). Additionally, the effect of κ1 (governed Young’s module and 

shear modulus) is more distinct than κ2 (governed density) for dynamic stability 

behaviours. Therefore, a rational design of κ1 and κ2 is necessary for buckling analysis of 

an FG orthotropic cylindrical shell. The dynamic critical buckling loads are larger than 

the static ones when considering the dynamic terms for all the cases. With the increase of 

loading speed, the critical buckling time, dynamic buckling loads and the vibration of the 

structure increase; while deflection decrease. The increasing of damping ratios not always 

results in the rise of buckling load, which may affect by buckling modes or other 

uncertainty factors. The deflection increases with the increase of damping ratios. 

Chapter 7 conducts the dynamic stability behaviours of an imperfect orthotropic E-

FGM circular cylindrical shell subjected to constant longitudinal velocities. The dynamic 

longitudinal loading on the shell is accomplished by applying a constant displacement 

rate at one end with respect to the other. The presence of initial imperfection considerably 

reduces the dynamic buckling load and the oscillation of the cylindrical shell after 

buckling. The large initial imperfection will change the whole appearance of the response 

curve. At this moment, the B-R criterion is unsuitable for predicting dynamic buckling 

behaviour of the cylindrical shell. 
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In brief, by comparing with finite element method, the other methods in open literature, 

the validity, accuracy, applicability of the proposed analytical models and solutions were 

verified. The analytical analysis framework for dynamic buckling and dynamic 

assessment of thin-walled structures made of advanced materials with consideration of 

damping effects, thermal effects and elastic foundations in this dissertation can help to 

achieve optimum design of such structures under dynamic loadings, as well as a useful 

benchmark for design and analysis of nano/micro-sized devices and systems. 

In engineering practices, there are some examples involving dynamic buckling. 1. 

Aerospace components or military weapons (i.e. propellant tank of space shuttle, the skin 

of ballistic missile, aircraft landing struts, etc.) may be exposed to rapid loading caused 

by sudden gusts, extreme manoeuvres, or ground impacts while landing. 2. The 

intermediate velocity impact load, or fluid-solid slamming, is a typical example of such 

dynamic load. For example, when a ship is slammed by sea waves, the beams and plates 

of its deck are subjected to dynamic load; when an airplane lands on sea water, its landing 

gear is subjected to dynamic load; when an offshore rigs and wind turbine towers is 

subjected to sea waves. Underwater vehicles subjected to slamming of the water. 3. 

Normally, the static loading-bearing capacity of the structure is measured by hydraulic 

testing machines in the lab, which means the structure is loaded by a constant 

displacement rate (or displacement control) of the one end with respect to the other. With 

the increase of the loading rates, the percentage of the dynamic terms will rise. In such 

situation, it is important to investigate the threshold velocity values between static and 

dynamic cases. 
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8.2 Future work 

The current research focuses on the analytical analysis of dynamic buckling and 

dynamic characteristics of thin-walled structures made of advanced materials with 

consideration of damping effects, thermal effects and elastic foundations. As the 

application of advanced materials is becoming diversification and more complex, so there 

are some areas in this work can be extended to fill the insufficient of this study.  

The following suggestions are recommended as possible future research: 

8.2.1 Nondeterministic dynamic buckling analysis 

In this dissertation, deterministic dynamic buckling analysis with consideration of 

damping effects, thermal effects and elastic foundations was conducted. Although 

deterministic dynamic buckling analysis has been quite prevalent in various engineering 

fields, the success of this framework was underpinned by the predetermined material and 

geometric properties as well as acceptable assumptions. However, uncertainty, 

unpredictability and randomness are the inherent attributes of structural design. Therefore, 

safety factors or failure factors are applied in most commonly used design standards of 

structures, such as Chinese design code GB50017-201X (2012) and GB50017-2003 

(2003), American code (ANSI/AISC360-10, 2010) and EC3 (2005).  In addition, the 

theoretical predictions do not always match with the results of experimental ones. Under 

these circumstances, it is not unnatural and essential to consider the influences of 

uncertainties of system parameters in deterministic dynamic buckling analysis. 
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8.2.2 The experimental research 

Though theoretical models of this study can obtain the elaborate and exact results, the 

experimental studies of dynamic buckling of thin-walled structures made of advanced 

material are indispensable. Here are two reasons:1. The analytical methods are based on 

the assumptions or simplified modellings, which could change in different situations. 2. 

In engineering structures, the phenomenon modelled in analytical way may not 

correspond to the one in the real world. Thus, the experimental investigations of dynamic 

characteristics and stability of thin-walled structures made of advanced material under 

various environmental conditions are needed.  

8.2.3 The gradient thermal effect or thermomechanical loading conditions 

In general engineering applications (i.e. aerospace and mechanical engineering), 

structures are not only subjected to uniform temperature rise but also exposed to gradient 

thermal effect or the combination of gradient thermal effect and mechanical load. 

Temperature changes have a significant influence on dynamic behaviour and further 

affect the performance and stability of structures, especially for FGMs. i.e., for 

functionally graded shells, the temperature change is not uniform along the thickness 

direction due to the various coefficients of elastic moduli, thermal expansion and the 

coefficient of heat conduction. To the author’s knowledge, although there is much 

research on buckling of structures, the work of gradient thermal effect and different 

mechanical loadings on dynamic buckling of thin-walled structures has not been 

considered simultaneously. Therefore, it is of great significance to study dynamic 

buckling response of structures in a combined thermo-mechanical loading. 
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8.2.4 Extension of the proposed analytical method to other loading conditions 

As demonstrated in Chapter 1, the analytical framework of dynamic buckling was 

developed based on constant velocity or displacement loading scheme. In Chapter 6, the 

linearly increasing load was applied in dynamic buckling of the orthotropic functionally 

graded cylindrical shell. However, in engineering practices, both constant mass impulse 

loading scheme and force-time impulse loading scheme (i.e., a sinusoidal pulse, an N-

wave pulse, and a triangular load, etc.) are also widespread. It is worth to investigate the 

dynamic buckling of various types of loadings.  

8.2.5 Extension of the proposed analytical method to higher-order shear deformation 

theory 

The main purpose of this dissertation is to develop an analytical analysis for dynamic 

buckling and dynamic characteristics of thin-walled structures made of advanced 

materials and the classical theories for thin elastic structures are utilized. However, the 

application of such theories to thick and robust structures could lead to more errors even 

mistakes in deflections, stresses, frequencies and loads. The higher-order shear 

deformation theories (HSDTs) account for the shear deformation effects, such as the first-

order shear deformation theory, the second-order shear deformation theory, third-order 

shear deformation theory, sinusoidal shear deformation theory or hyperbolic shear 

deformation theory should be considered in dynamic buckling analysis.  

8.2.6 Optimization/sensitivity analysis of structures under dynamic loadings 

As can be seen, the material, geometrical properties, damping effect, thermal effect, 

elastic foundation, boundary conditions and different loading types may have a distinct 

influence on dynamic characteristics of structures. Moreover, in real-life engineering 
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application, more integrated modeling and nonlinear structural dynamics analysis is of 

interest. The dynamics analysis of built-up structures is also needed due to the complexity 

of geometry in the future. Therefore, by developing optimisation/sensitivity analysis, one 

can capture the extent of different effects and the optimised design can be obtained for 

structures made of advanced materials under dynamic loadings.  



230 

 

References 

[1] Karagiozova D, Alves M. Dynamic elastic-plastic buckling of structural elements: a 

review. Applied Mechanics Reviews. 2008;61:040803. 

[2] Budiansky B. Theory of buckling and post-buckling behavior of elastic structures. 

Advances in applied mechanics. 1974;14:1-65. 

[3] Ansari R, Pourashraf T, Gholami R, Shahabodini A. Analytical solution for nonlinear 

postbuckling of functionally graded carbon nanotube-reinforced composite shells 

with piezoelectric layers. Composites Part B: Engineering. 2016;90:267-277. 

[4] Sevin E. On the elastic bending of columns due to dynamic axial forces including 

effects of axial inertia. Journal of Applied Mechanics. 1960;27:125-131. 

[5] Pi Y-L, Bradford MA. Nonlinear dynamic buckling of pinned–fixed shallow arches 

under a sudden central concentrated load. Nonlinear Dynamics. 2013;73:1289-1306. 

[6] Budiansky B. Buckling of clamped shallow spherical shells.  Technical report. 

Cambridge: Harvard University; 1959. 

[7] Azarboni HR, Darvizeh M, Darvizeh A, Ansari R. Nonlinear dynamic buckling of 

imperfect rectangular plates with different boundary conditions subjected to various 

pulse functions using the Galerkin method. Thin-Walled Structures. 2015;94:577-

584. 

[8] Elishakoff I. Probabilistic theory of structures: Courier Corporation, 1999. 

[9] Rouhi H, Ansari R. Nonlocal analytical Flugge shell model for axial buckling of 

double-walled carbon nanotubes with different end conditions. Nano. 

2012;7:1250018. 



231 

 

[10] Rahman T, Jansen E, Gürdal Z. Dynamic buckling analysis of composite cylindrical 

shells using a finite element based perturbation method. Nonlinear Dynamics. 

2011;66:389-401. 

[11] Lindberg HE, Florence AL. Dynamic pulse buckling: theory and experiment: 

Springer Science & Business Media, 2012. 

[12] Gladden J, Handzy N, Belmonte A, Villermaux E. Dynamic buckling and 

fragmentation in brittle rods. Physical review letters. 2005;94:035503. 

[13] Hutchinson JW, Budiansky B. Dynamic buckling estimates. AIAA Journal. 

1966;4:525-530. 

[14] Fu Y, Gao Z, Zhu F. Analysis of nonlinear dynamic response and dynamic buckling 

for laminated shallow spherical thick shells with damage. Nonlinear Dynamics. 

2008;54:333-343. 

[15] Hoff NJ, Bruce VG. Dynamic analysis of the buckling of laterally loaded flat arches. 

Studies in Applied Mathematics. 1953;32:276-288. 

[16] Bisagni C. Dynamic buckling of fiber composite shells under impulsive axial 

compression. Thin-Walled Structures. 2005;43:499-514. 

[17] Simitses GJ. Simple Mechanical Models.  Dynamic Stability of Suddenly Loaded 

Structures: Springer; 1990. p. 24-53. 

[18] Budiansky B, Roth RS. Axisymmetric dynamic buckling of clamped shallow 

spherical shells.  NASA TND-15101962. p. 597-606. 

[19] Huyan X, Simitses GJ. Dynamic buckling of imperfect cylindrical shells under axial 

compression and bending moment. AIAA Journal. 1997;35:1404-1412. 

[20] Petry D, Fahlbusch G. Dynamic buckling of thin isotropic plates subjected to in-

plane impact. Thin-Walled Structures. 2000;38:267-283. 



232 

 

[21] Tornabene F. Free vibration analysis of functionally graded conical, cylindrical shell 

and annular plate structures with a four-parameter power-law distribution. 

Computer Methods in Applied Mechanics and Engineering. 2009;198:2911-2935. 

[22] Pradhan S, Loy C, Lam K, Reddy J. Vibration characteristics of functionally graded 

cylindrical shells under various boundary conditions. Applied Acoustics. 

2000;61:111-129. 

[23] Loy C, Lam K, Reddy J. Vibration of functionally graded cylindrical shells. 

International Journal of Mechanical Sciences. 1999;41:309-324. 

[24] Chung Y, Chi S. The residual stress of functionally graded materials. J Chin Inst 

Civil Hydraulic Eng. 2001;13:1-9. 

[25] Chi S, Chung Y. Cracking in sigmoid functionally graded coating. J Mech. 

2002;18:41-53. 

[26] Hamed M, Eltaher M, Sadoun A, Almitani K. Free vibration of symmetric and 

sigmoid functionally graded nanobeams. Applied Physics A. 2016;122:829. 

[27] Jung W-Y, Han S-C, Park W-T. Four-variable refined plate theory for forced-

vibration analysis of sigmoid functionally graded plates on elastic foundation. 

International Journal of Mechanical Sciences. 2016;111:73-87. 

[28] Duc ND, Cong PH. Nonlinear dynamic response of imperfect symmetric thin 

sigmoid-functionally graded material plate with metal-ceramic-metal layers on 

elastic foundation. Journal of Vibration and Control. 2015;21:637-646. 

[29] Ravichandran K. Thermal residual stresses in a functionally graded material system. 

Materials Science and Engineering: A. 1995;201:269-276. 



233 

 

[30] Atmane HA, Tounsi A, Meftah SA, Belhadj HA. Free vibration behavior of 

exponential functionally graded beams with varying cross-section. Journal of 

Vibration and Control. 2010:311–318. 

[31] Chakraborty A, Gopalakrishnan S, Reddy J. A new beam finite element for the 

analysis of functionally graded materials. International Journal of Mechanical 

Sciences. 2003;45:519-539. 

[32] Shen H-S. Postbuckling analysis of axially-loaded functionally graded cylindrical 

shells in thermal environments. Composites Science and Technology. 2002;62:977-

987. 

[33] Shen H-S. Postbuckling analysis of pressure-loaded functionally graded cylindrical 

shells in thermal environments. Engineering Structures. 2003;25:487-497. 

[34] Sofiyev A, Kuruoglu N. Torsional vibration and buckling of the cylindrical shell 

with functionally graded coatings surrounded by an elastic medium. Composites 

Part B: Engineering. 2013;45:1133-1142. 

[35] Shahsiah R, Eslami M. Thermal buckling of functionally graded cylindrical shell. 

Journal of thermal stresses. 2003;26:277-294. 

[36] Shen H-S, Noda N. Postbuckling of FGM cylindrical shells under combined axial 

and radial mechanical loads in thermal environments. International Journal of 

Solids and Structures. 2005;42:4641-4662. 

[37] Yang J, Liew K, Wu Y, Kitipornchai S. Thermo-mechanical post-buckling of FGM 

cylindrical panels with temperature-dependent properties. International Journal of 

Solids and Structures. 2006;43:307-324. 

[38] Gary G. Dynamic buckling of an elastoplastic column. International Journal of 

Impact Engineering. 1983;1:357-375. 



234 

 

[39] Hoff NJ. The dynamics of the buckling of elastic columns. Journal of Applied 

Mechanics. 1951;18:68-74. 

[40] Schmitt A. A method of stepwise integration in problems of impact buckling. J Appl 

Mech. 1956;23. 

[41] Erickson B, Nardo S, Patel S, Hoff N. An experimental investigation of the 

maximum loads supported by elastic columns in rapid compression tests. 

Proceedings of the Society for Experimental Stress Analysis. 1956;14:13-20. 

[42] Elishakoff I. Hoff’s problem in a probabilistic setting. Journal of Applied Mechanics. 

1980;47:403-408. 

[43] Motamarri P, Suryanarayan S. Unified analytical solution for dynamic elastic 

buckling of beams for various boundary conditions and loading rates. International 

Journal of Mechanical Sciences. 2012;56:60-69. 

[44] Kuzkin VA, Dannert MM. Buckling of a column under a constant speed compression: 

a dynamic correction to the Euler formula. Acta Mechanica. 2016:1-8. 

[45] Pian T, Siddall JN. Dynamic buckling of slender struts: MIT Press, 1950. 

[46] Davidson JF. Buckling of Struts under Dynamic Loading. Journal of the Mechanics 

and Physics of Solids. 1953;2:54-66. 

[47] Hayashi T, Sano Y. Dynamic Buckling of Elastic Bars: 1st Report, The Case of Low 

Velocity Impact. Bulletin of JSME. 1972;15:1167-1175. 

[48] Hayashi T, Sano Y. Dynamic buckling of elastic bars: 2nd Report, The case of high 

velocity impact. Bulletin of JSME. 1972;15:1176-1184. 

[49] Ari-Gur J, Weller T, Singer J. Experimental studies of columns under axial impact. 

TAE Report (Technion Israel Institute of Technology, Department of Aeronautical 

Engineering). 1978. 



235 

 

[50] Taub J. Impact buckling of thin bars in the elastic range for any end condition. 1934. 

[51] Koning C, Taub J. Impact buckling of thin bars in the elastic range hinged at both 

ends. 1934. 

[52] Huffington NJ. Response of Elastic Columns to Axial Pulse Loading. AIAA Journal. 

1963;1:2099-2104. 

[53] Hoff NJ. The dynamics of the buckling of elastic columns: Polytechnic Institute of 

Brooklyn, Department of Aeronautical Engineering and Applied Mechanics, 1951. 

[54] Gao K, Gao W, Wu D, Song C. Nonlinear dynamic stability analysis of Euler–

Bernoulli beam–columns with damping effects under thermal environment. 

Nonlinear Dynamics. 2017;90:2423–2444. 

[55] Kazemzadeh Azad S, Topkaya C, Bybordiani M. Dynamic buckling of braces in 

concentrically braced frames. Earthquake Engineering & Structural Dynamics. 

2018;47:613-633. 

[56] Ghiasian S, Kiani Y, Eslami M. Dynamic buckling of suddenly heated or compressed 

FGM beams resting on nonlinear elastic foundation. Composite Structures. 

2013;106:225-234. 

[57] Ren M, Liu Y, Zhe Liu J, Wang L, Zheng Q. Anomalous elastic buckling of layered 

crystalline materials in the absence of structure slenderness. Journal of the 

Mechanics and Physics of Solids. 2016;88:83-99. 

[58] Wu H, Yang J, Kitipornchai S. Dynamic instability of functionally graded multilayer 

graphene nanocomposite beams in thermal environment. Composite Structures. 

2017;162:244-254. 

[59] Smyczynski M, Magnucka-Blandzi E. Static and dynamic stability of an axially 

compressed five-layer sandwich beam. Thin-Walled Structures. 2015;90:23-30. 



236 

 

[60] Lim J-Y, Bart-Smith H. High velocity compressive response of metallic corrugated 

core sandwich columns. International Journal of Mechanical Sciences. 

2016;106:78-94. 

[61] Lim J-Y, Bart-Smith H. Theoretical approach on the dynamic global buckling 

response of metallic corrugated core sandwich columns. International Journal of 

Non-Linear Mechanics. 2014;65:14-31. 

[62] Adjiman J, Doaré O, Moussou P. Buckling of a Flat Plate in a Confined Axial Flow.  

ASME 2015 Pressure Vessels and Piping Conference: American Society of 

Mechanical Engineers; 2015. p. V005T009A009-V005T009A009. 

[63] Xiong CA, Jiang WG. Dynamic buckling of single-walled carbon nanotubes under 

axial impact loading.  Applied Mechanics and Materials: Trans Tech Publ; 2014. p. 

178-182. 

[64] Sun C, Liu K. Dynamic torsional buckling of a double-walled carbon nanotube 

embedded in an elastic medium. European Journal of Mechanics-A/Solids. 

2008;27:40-49. 

[65] Sun C, Liu K, Hong Y. Dynamic shell buckling behavior of multi-walled carbon 

nanotubes embedded in an elastic medium. Science China Physics, Mechanics and 

Astronomy. 2013;56:483-490. 

[66] Hu W, Song M, Deng Z, Yin T, Wei B. Axial dynamic buckling analysis of 

embedded single-walled carbon nanotube by complex structure-preserving method. 

Applied Mathematical Modelling. 2017;52:15-27. 

[67] Ari-Gur J, Elishakoff I. Dynamic instability of a transversely isotropic column 

subjected to a compression pulse. Computers & Structures. 1997;62:811-815. 



237 

 

[68] Ari-Gur J, Elishakoff I. Effects of shear deformation and rotary inertia on the 

dynamic pulse buckling of a structure.  Publ by ASME1990. 

[69] Ari-Gur J, Weller T, Singer J. Experimental and theoretical studies of columns under 

axial impact. International Journal of Solids and Structures. 1982;18:619-641. 

[70] Ari-Gur J, Singer J. Theoretical studies of columns under axial impact and 

experimental verification. TAE Report (Technion Israel Institute of Technology, 

Department of Aeronautical Engineering). 1979. 

[71] Ari-Gur J, Singer J, Weller T. Dynamic buckling of plates under longitudinal impact. 

TAE Report (Technion Israel Institute of Technology, Department of Aeronautical 

Engineering). 1981. 

[72] Ari-Gur J, Simonetta SR. Dynamic pulse buckling of rectangular composite plates. 

Composites Part B: Engineering. 1997;28:301-308. 

[73] Papazoglou V, Tsouvalis N. Large deflection dynamic response of composite 

laminated plates under in-plane loads. Composite Structures. 1995;33:237-252. 

[74] Ekstrom R. Dynamic buckling of a rectangular orthotropic plate. AIAA Journal. 

1973;11:1655-1659. 

[75] Ramezannezhad Azarboni H, Darvizeh M, Darvizeh A, Ansari R. Nonlinear 

dynamic buckling of imperfect rectangular plates with different boundary 

conditions subjected to various pulse functions using the Galerkin method. Thin-

Walled Structures. 2015;94:577-584. 

[76] Mojahedin A, Jabbari M, Khorshidvand A, Eslami M. Buckling analysis of 

functionally graded circular plates made of saturated porous materials based on 

higher order shear deformation theory. Thin-Walled Structures. 2016;99:83-90. 



238 

 

[77] Jabbari M, Hashemitaheri M, Mojahedin A, Eslami M. Thermal buckling analysis 

of functionally graded thin circular plate made of saturated porous materials. 

Journal of thermal stresses. 2014;37:202-220. 

[78] Eslami H, Kandil OA. Nonlinear forced vibration of orthotropic rectangular plates 

using the method of multiple scales. AIAA Journal. 1989;27:955-960. 

[79] Yeh F, Liu W. Nonlinear analysis of rectangular orthotropic plates. International 

Journal of Mechanical Sciences. 1991;33:563-578. 

[80] Eshmatov BK. Nonlinear vibrations and dynamic stability of viscoelastic orthotropic 

rectangular plates. Journal of Sound and Vibration. 2007;300:709-726. 

[81] Ma’en SS, Al-Kouz WG. Vibration analysis of non-uniform orthotropic Kirchhoff 

plates resting on elastic foundation based on nonlocal elasticity theory. International 

Journal of Mechanical Sciences. 2016;114:1-11. 

[82] Wang Q, Shi D, Shi X. A modified solution for the free vibration analysis of 

moderately thick orthotropic rectangular plates with general boundary conditions, 

internal line supports and resting on elastic foundation. Meccanica. 2016;51:1985-

2017. 

[83] Ferreira PS, Virtuoso FB. Semi-analytical models for the post-buckling analysis and 

ultimate strength prediction of isotropic and orthotropic plates under uniaxial 

compression with the unloaded edges free from stresses. Thin-Walled Structures. 

2014;82:82-94. 

[84] Golmakani M, Rezatalab J. Nonuniform biaxial buckling of orthotropic nanoplates 

embedded in an elastic medium based on nonlocal Mindlin plate theory. Composite 

Structures. 2015;119:238-250. 



239 

 

[85] Patel B, Ganapathi M, Prasad K, Balamurugan V. Dynamic instability of layered 

anisotropic composite plates on elastic foundations. Engineering Structures. 

1999;21:988-995. 

[86] Chattopadhyay A, Radu AG. Dynamic instability of composite laminates using a 

higher order theory. Computers & Structures. 2000;77:453-460. 

[87] Kubiak T. Dynamic buckling of thin-walled composite plates with varying 

widthwise material properties. International Journal of Solids and Structures. 

2005;42:5555-5567. 

[88] Gao K, Gao W, Wu D, Song C. Nonlinear dynamic characteristics and stability of 

composite orthotropic plate on elastic foundation under thermal environment. 

Composite Structures. 2017;168:619–632. 

[89] Shen H-S. Postbuckling of nanotube-reinforced composite cylindrical shells in 

thermal environments, Part II: Pressure-loaded shells. Composite Structures. 

2011;93:2496-2503. 

[90] Shen H-S. Postbuckling of nanotube-reinforced composite cylindrical shells in 

thermal environments, Part I: Axially-loaded shells. Composite Structures. 

2011;93:2096-2108. 

[91] Shen H-S. Thermal buckling and postbuckling behavior of functionally graded 

carbon nanotube-reinforced composite cylindrical shells. Composites Part B: 

Engineering. 2012;43:1030-1038. 

[92] Shen H-S, Zhang C-L. Thermal buckling and postbuckling behavior of functionally 

graded carbon nanotube-reinforced composite plates. Materials & Design. 

2010;31:3403-3411. 



240 

 

[93] Shen H-S, Xiang Y. Postbuckling of nanotube-reinforced composite cylindrical 

shells under combined axial and radial mechanical loads in thermal environment. 

Composites Part B: Engineering. 2013;52:311-322. 

[94] Shen H-S, Zhang C-L. Postbuckling of double-walled carbon nanotubes with 

temperature dependent properties and initial defects under combined axial and 

radial mechanical loads. International Journal of Solids and Structures. 

2007;44:1461-1487. 

[95] Shen H-S, Zhang C-L. Torsional buckling and postbuckling of double-walled carbon 

nanotubes by nonlocal shear deformable shell model. Composite Structures. 

2010;92:1073-1084. 

[96] Shen H-S. Nonlocal shear deformable shell model for torsional buckling and 

postbuckling of microtubules in thermal environments. Mechanics Research 

Communications. 2013;54:83-95. 

[97] Shen H-S. Torsional buckling and postbuckling of FGM cylindrical shells in thermal 

environments. International Journal of Non-Linear Mechanics. 2009;44:644-657. 

[98] Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M. Free vibration analysis of 

layered functionally graded beams with experimental validation. Materials & 

Design (1980-2015). 2012;36:182-190. 

[99] Sofiyev A. Dynamic buckling of functionally graded cylindrical thin shells under 

non-periodic impulsive loading. Acta Mechanica. 2003;165:151-163. 

[100] Sofiyev A. On the dynamic buckling of truncated conical shells with functionally 

graded coatings subject to a time dependent axial load in the large deformation. 

Composites Part B: Engineering. 2014;58:524-533. 



241 

 

[101] Sofiyev A. The buckling of functionally graded truncated conical shells under 

dynamic axial loading. Journal of Sound and Vibration. 2007;305:808-826. 

[102] Huang H, Han Q. Nonlinear dynamic buckling of functionally graded cylindrical 

shells subjected to time-dependent axial load. Composite Structures. 2010;92:593-

598. 

[103] Van Dung D. Semi-analytical approach for analyzing the nonlinear dynamic 

torsional buckling of stiffened functionally graded material circular cylindrical 

shells surrounded by an elastic medium. Applied Mathematical Modelling. 

2015;39:6951-6967. 

[104] Bich DH, Van Dung D. Nonlinear static and dynamic buckling analysis of 

functionally graded shallow spherical shells including temperature effects. 

Composite Structures. 2012;94:2952-2960. 

[105] Shaw D, Shen Y, Tsai P. Dynamic buckling of an imperfect composite circular 

cylindrical shell. Computers & Structures. 1993;48:467-472. 

[106] Liao C-L, Cheng C-R. Dynamic stability of stiffened laminated composite plates 

and shells subjected to in-plane pulsating forces. Journal of Sound and Vibration. 

1994;174:335-351. 

[107] Gu W, W. Tang, T. Liu. Dynamic pulse buckling of cylindrical shells subjected to 

external impulsive loading. Journal of pressure vessel technology. 1996;118:33-37. 

[108] Ng T, Lam K, Liew K, Reddy J. Dynamic stability analysis of functionally graded 

cylindrical shells under periodic axial loading. International Journal of Solids and 

Structures. 2001;38:1295-1309. 



242 

 

[109] Darabi M, Darvizeh M, Darvizeh A. Non-linear analysis of dynamic stability for 

functionally graded cylindrical shells under periodic axial loading. Composite 

Structures. 2008;83:201-211. 

[110] Shariyat M. Dynamic thermal buckling of suddenly heated temperature-dependent 

FGM cylindrical shells, under combined axial compression and external pressure. 

International Journal of Solids and Structures. 2008;45:2598-2612. 

[111] Shariyat M. Dynamic buckling of suddenly loaded imperfect hybrid FGM 

cylindrical shells with temperature-dependent material properties under thermo-

electro-mechanical loads. International Journal of Mechanical Sciences. 

2008;50:1561-1571. 

[112] Bich DH, Van Dung D, Nam VH, Phuong NT. Nonlinear static and dynamic 

buckling analysis of imperfect eccentrically stiffened functionally graded circular 

cylindrical thin shells under axial compression. International Journal of Mechanical 

Sciences. 2013;74:190-200. 

[113] Lei Z, Zhang L, Liew K, Yu J. Dynamic stability analysis of carbon nanotube-

reinforced functionally graded cylindrical panels using the element-free kp-Ritz 

method. Composite Structures. 2014;113:328-338. 

[114] Ozturk M, Erdogan F. The mixed mode crack problem in an inhomogeneous 

orthotropic medium. International Journal of Fracture. 1999;98:243-261. 

[115] Ozturk M, Erdogan F. Mode I crack problem in an inhomogeneous orthotropic 

medium. International Journal of Engineering Science. 1997;35:869-883. 

[116] Kaysser WA, Ilschner B. FGM Research Activities in Europe. Mrs Bulletin. 

1995;20:22-26. 



243 

 

[117] Sampath S, Herman H, Shimoda N, Saito T. Thermal Spray Processing of FGMs. 

Mrs Bulletin. 1995;20:27-31. 

[118] Sofiyev AH, Karaca Z, Zerin Z. Non-linear vibration of composite orthotropic 

cylindrical shells on the non-linear elastic foundations within the shear deformation 

theory. Composite Structures. 2017;159:53-62. 

[119] Vel SS. Exact elasticity solution for the vibration of functionally graded anisotropic 

cylindrical shells. Composite Structures. 2010;92:2712-2727. 

[120] Pelletier JL, Vel SS. An exact solution for the steady-state thermoelastic response 

of functionally graded orthotropic cylindrical shells. International Journal of Solids 

and Structures. 2006;43:1131-1158. 

[121] Wang X, Sudak L. Three-dimensional analysis of multi-layered functionally graded 

anisotropic cylindrical panel under thermomechanical loading. Mechanics of 

materials. 2008;40:235-254. 

[122] Chen W, Bian Z, Ding H. Three-dimensional vibration analysis of fluid-filled 

orthotropic FGM cylindrical shells. International Journal of Mechanical Sciences. 

2004;46:159-171. 

[123] Sofiyev A, Kuruoglu N. Buckling and vibration of shear deformable functionally 

graded orthotropic cylindrical shells under external pressures. Thin-Walled 

Structures. 2014;78:121-130. 

[124] Najafov A, Sofiyev A, Kuruoglu N. Torsional vibration and stability of functionally 

graded orthotropic cylindrical shells on elastic foundations. Meccanica. 

2013;48:829-840. 



244 

 

[125] Sofiyev A, Deniz A, Mecitoglu Z, Ozyigit P, Pinarlik M. Buckling of Shear 

Deformable Functionally Graded Orthotropic Cylindrical Shells under a Lateral 

Pressure. Acta Physica Polonica A. 2015;127:907-909. 

[126] Sofiyev A. Large amplitude vibration of FGM orthotropic cylindrical shells 

interacting with the nonlinear Winkler elastic foundation. Composites Part B: 

Engineering. 2016;98:141-150. 

[127] Sofiyev A. Nonlinear free vibration of shear deformable orthotropic functionally 

graded cylindrical shells. Composite Structures. 2016;142:35-44. 

[128] Rao B, Rahman S. A continuum shape sensitivity method for fracture analysis of 

orthotropic functionally graded materials. Mechanics of materials. 2005;37:1007-

1025. 

[129] Xu H, Yao X, Feng X, Hisen YY. Dynamic stress intensity factors of a semi-infinite 

crack in an orthotropic functionally graded material. Mechanics of materials. 

2008;40:37-47. 

[130] Chalivendra VB. Mixed-mode crack-tip stress fields for orthotropic functionally 

graded materials. Acta Mechanica. 2009;204:51-60. 

[131] Dag S, Yildirim B, Sarikaya D. Mixed-mode fracture analysis of orthotropic 

functionally graded materials under mechanical and thermal loads. International 

Journal of Solids and Structures. 2007;44:7816-7840. 

[132] Kim J-H, Paulino GH. Mixed-mode fracture of orthotropic functionally graded 

materials using finite elements and the modified crack closure method. Engineering 

fracture mechanics. 2002;69:1557-1586. 



245 

 

[133] Dag S. Thermal fracture analysis of orthotropic functionally graded materials using 

an equivalent domain integral approach. Engineering fracture mechanics. 

2006;73:2802-2828. 

[134] Kieback B, Neubrand A, Riedel H. Processing techniques for functionally graded 

materials. Materials Science and Engineering: A. 2003;362:81-106. 

[135] Kannan A, Cindrella L, Munukutla L. Functionally graded nano-porous gas 

diffusion layer for proton exchange membrane fuel cells under low relative 

humidity conditions. Electrochimica Acta. 2008;53:2416-2422. 

[136] Zhou C, Wang P, Li W. Fabrication of functionally graded porous polymer via 

supercritical CO 2 foaming. Composites Part B: Engineering. 2011;42:318-325. 

[137] Miyamoto Y, Kaysser W, Rabin B, Kawasaki A, Ford RG. Functionally graded 

materials: design, processing and applications. USA: Springer Science & Business 

Media, 2013. 

[138] García-Moreno F. Commercial applications of metal foams: Their properties and 

production. Materials. 2016;9:85. 

[139] Banhart J. Manufacture, characterisation and application of cellular metals and 

metal foams. Progress in materials science. 2001;46:559-632. 

[140] Han X-H, Wang Q, Park Y-G, T’Joen C, Sommers A, Jacobi A. A review of metal 

foam and metal matrix composites for heat exchangers and heat sinks. Heat 

Transfer Engineering. 2012;33:991-1009. 

[141] Smith B, Szyniszewski S, Hajjar J, Schafer B, Arwade S. Steel foam for structures: 

A review of applications, manufacturing and material properties. Journal of 

Constructional Steel Research. 2012;71:1-10. 



246 

 

[142] Magnucki K, Stasiewicz P. Elastic buckling of a porous beam. Journal of 

Theoretical and Applied Mechanics. 2004;42:859-868. 

[143] Magnucka-Blandzi E, Magnucki K. Effective design of a sandwich beam with a 

metal foam core. Thin-Walled Structures. 2007;45:432-438. 

[144] Magnucka-Blandzi E. Dynamic stability of a metal foam circular plate. Journal of 

Theoretical and Applied Mechanics. 2009;47:421-433. 

[145] Magnucka-Blandzi E. Axi-symmetrical deflection and buckling of circular porous-

cellular plate. Thin-Walled Structures. 2008;46:333-337. 

[146] Magnucka-Blandzi E. Mathematical modelling of a rectangular sandwich plate with 

a metal foam core. Journal of Theoretical and Applied Mechanics. 2011;49:439-

455. 

[147] Belica T, Magnucki K. Dynamic stability of a porous cylindrical shell. PAMM. 

2006;6:207-208. 

[148] Belica T, Magnucki K. Dynamic stability of a porous cylindrical shell subjected to 

impulse of forces combined. Journal of KONES. 2007;14:39-48. 

[149] Belica T, Malinowski M, Magnucki K. Dynamic stability of an isotropic metal foam 

cylindrical shell subjected to external pressure and axial compression. Journal of 

Applied Mechanics. 2011;78:041003. 

[150] Belica T, Magnucki K. Stability of a porous-cellular cylindrical shell subjected to 

combined loads. Journal of Theoretical and Applied Mechanics. 2013;51:927-936. 

[151] Jabbari M, Mojahedin A, Khorshidvand A, Eslami M. Buckling analysis of a 

functionally graded thin circular plate made of saturated porous materials. Journal 

of Engineering Mechanics. 2013;140:287-295. 



247 

 

[152] Jabbari M, Mojahedin A, Haghi M. Buckling analysis of thin circular FG plates 

made of saturated porous-soft ferromagnetic materials in transverse magnetic field. 

Thin-Walled Structures. 2014;85:50-56. 

[153] Jabbari M, Mojahedin A, Joubaneh EF. Thermal Buckling Analysis of Circular 

Plates Made of Piezoelectric and Saturated Porous Functionally Graded Material 

Layers. Journal of Engineering Mechanics. 2014;141:04014148. 

[154] Mojahedin A, Joubaneh EF, Jabbari M. Thermal and mechanical stability of a 

circular porous plate with piezoelectric actuators. Acta Mechanica. 2014;225:3437-

3452. 

[155] Biot M. Theory of buckling of a porous slab and its thermoelastic analogy. Journal 

of Applied Mechanics. 1964;31:194-198. 

[156] Feyzi M, Khorshidvand A. Axisymmetric post-buckling behavior of saturated 

porous circular plates. Thin-Walled Structures. 2017;112:149-158. 

[157] Mareishi S, Kalhori H, Rafiee M, Hosseini SM. Nonlinear forced vibration response 

of smart two-phase nano-composite beams to external harmonic excitations. 

Curved and Layered Structures. 2015;2. 

[158] Rafiee M, Mohammadi M, Aragh BS, Yaghoobi H. Nonlinear free and forced 

thermo-electro-aero-elastic vibration and dynamic response of piezoelectric 

functionally graded laminated composite shells, Part I: Theory and analytical 

solutions. Composite Structures. 2013;103:179-187. 

[159] Rafiee M, Mohammadi M, Aragh BS, Yaghoobi H. Nonlinear free and forced 

thermo-electro-aero-elastic vibration and dynamic response of piezoelectric 

functionally graded laminated composite shells: Part II: Numerical results. 

Composite Structures. 2013;103:188-196. 



248 

 

[160] Chen D, Yang J, Kitipornchai S. Free and forced vibrations of shear deformable 

functionally graded porous beams. International Journal of Mechanical Sciences. 

2016;108:14-22. 

[161] Chen D, Kitipornchai S, Yang J. Nonlinear free vibration of shear deformable 

sandwich beam with a functionally graded porous core. Thin-Walled Structures. 

2016;107:39-48. 

[162] Kitipornchai S, Chen D, Yang J. Free vibration and elastic buckling of functionally 

graded porous beams reinforced by graphene platelets. Materials & Design. 

2017;116:656-665. 

[163] Chen D, Yang J, Kitipornchai S. Nonlinear vibration and postbuckling of 

functionally graded graphene reinforced porous nanocomposite beams. Composites 

Science and Technology. 2017;142:235-245. 

[164] Ghorbanpour Arani A, Khani M, Khoddami Maraghi Z. Dynamic analysis of a 

rectangular porous plate resting on an elastic foundation using high-order shear 

deformation theory. Journal of Vibration and Control. 2017. 

[165] Ebrahimi F, Habibi S. Deflection and vibration analysis of higher-order shear 

deformable compositionally graded porous plate. Steel and Composite Structures. 

2016;20:205-225. 

[166] Wattanasakulpong N, Ungbhakorn V. Linear and nonlinear vibration analysis of 

elastically restrained ends FGM beams with porosities. Aerospace Science and 

Technology. 2014;32:111-120. 

[167] Ebrahimi F, Mokhtari M. Transverse vibration analysis of rotating porous beam 

with functionally graded microstructure using the differential transform method. 



249 

 

Journal of the Brazilian Society of Mechanical Sciences and Engineering. 

2015;37:1435-1444. 

[168] Ebrahimi F, Hashemi M. On vibration behavior of rotating functionally graded 

double-tapered beam with the effect of porosities. Proceedings of the Institution of 

Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2016;230:1903-

1916. 

[169] Duc ND, Quan TQ, Luat VD. Nonlinear dynamic analysis and vibration of shear 

deformable piezoelectric FGM double curved shallow shells under damping-

thermo-electro-mechanical loads. Composite Structures. 2015;125:29-40. 

[170] Quan TQ, Duc ND. Nonlinear vibration and dynamic response of shear deformable 

imperfect functionally graded double-curved shallow shells resting on elastic 

foundations in thermal environments. Journal of thermal stresses. 2016;39:437-459. 

[171] Duc ND, Bich DH, Anh VTT. On the nonlinear stability of eccentrically stiffened 

functionally graded annular spherical segment shells. Thin-Walled Structures. 

2016;106:258-267. 

[172] Ghadiri M, SafarPour H. Free vibration analysis of size-dependent functionally 

graded porous cylindrical microshells in thermal environment. Journal of thermal 

stresses. 2017;40:55-71. 

[173] Wang Y, Wu D. Free vibration of functionally graded porous cylindrical shell using 

a sinusoidal shear deformation theory. Aerospace Science and Technology. 

2017;66:83-91. 

[174] Weller T, Abramovich H, Yaffe R. Dynamic buckling of beams and plates 

subjected to axial impact. Computers & Structures. 1989;32:835-851. 



250 

 

[175] Hughes TJ. The finite element method: linear static and dynamic finite element 

analysis: Courier Corporation, 2012. 

[176] Meier J. On the dynamics of elastic buckling. Journal of the Aeronautical Sciences. 

2012. 

[177] Jabareen M, Sheinman I. Dynamic buckling of a beam on a nonlinear elastic 

foundation under step loading. Journal of Mechanics of Materials and Structures. 

2009;4:1365-1373. 

[178] Lepik U. On dynamic buckling of elastic-plastic beams. International Journal of 

Non-Linear Mechanics. 2000;35:721-734. 

[179] Clough RW, Penzien J. Dynamics of structures. 1975. 

[180] Luongo A. Mode localization in dynamics and buckling of linear imperfect 

continuous structures.  Normal Modes and Localization in Nonlinear Systems: 

Springer; 2001. p. 133-156. 

[181] Kounadis AN, Raftoyiannis J. Dynamic Stability-Criteria of Nonlinear Elastic 

Damped Undamped Systems under Step Loading. AIAA Journal. 1990;28:1217-

1223. 

[182] Kounadis AN. Nonlinear Dynamic Buckling of Discrete Dissipative or 

Nondissipative Systems under Step Loading. AIAA Journal. 1991;29:280-289. 

[183] Mallon NJ, Fey RHB, Nijmeijer H, Zhang GQ. Dynamic buckling of a shallow arch 

under shock loading considering the effects of the arch shape. International Journal 

of Non-Linear Mechanics. 2006;41:1057-1067. 

[184] Lee HP. Effects of damping on the dynamic stability of a rod with an intermediate 

spring support subjected to follower forces. Computers & Structures. 1996;60:31-

39. 



251 

 

[185] Ansari R, Mohammadi V, Faghih Shojaei M, Rouhi H. Thermal Post-Buckling 

Analysis of Nanoscale Films Based on a Non-Classical Finite Element Approach. 

Journal of thermal stresses. 2015;38:651-664. 

[186] Ansari R, Sahmani S, Rouhi H. Axial buckling analysis of single-walled carbon 

nanotubes in thermal environments via the Rayleigh–Ritz technique. 

Computational Materials Science. 2011;50:3050-3055. 

[187] Ebrahimi F, Barati MR. A unified formulation for dynamic analysis of nonlocal 

heterogeneous nanobeams in hygro-thermal environment. Applied Physics A. 

2016;122:792. 

[188] Wu G. The analysis of dynamic instability and vibration motions of a pinned beam 

with transverse magnetic fields and thermal loads. Journal of Sound and Vibration. 

2005;284:343-360. 

[189] Ghiasian S, Kiani Y, Eslami M. Nonlinear thermal dynamic buckling of FGM 

beams. European Journal of Mechanics-A/Solids. 2015;54:232-242. 

[190] Li S-R, Zhou Y-H, Song X. Non-linear vibration and thermal buckling of an 

orthotropic annular plate with a centric rigid mass. Journal of Sound and Vibration. 

2002;251:141-152. 

[191] Barati MR, Zenkour AM, Shahverdi H. Thermo-mechanical buckling analysis of 

embedded nanosize FG plates in thermal environments via an inverse cotangential 

theory. Composite Structures. 2016;141:203-212. 

[192] Taczała M, Buczkowski R, Kleiber M. Nonlinear buckling and post-buckling 

response of stiffened FGM plates in thermal environments. Composites Part B: 

Engineering. 2017;109:238-247. 



252 

 

[193] Panyatong M, Chinnaboon B, Chucheepsakul S. Free vibration analysis of FG 

nanoplates embedded in elastic medium based on second-order shear deformation 

plate theory and nonlocal elasticity. Composite Structures. 2016;153:428-441. 

[194] Yang J, Shen H-S. Dynamic response of initially stressed functionally graded 

rectangular thin plates. Composite Structures. 2001;54:497-508. 

[195] Uğurlu B, Kutlu A, Ergin A, Omurtag M. Dynamics of a rectangular plate resting 

on an elastic foundation and partially in contact with a quiescent fluid. Journal of 

Sound and Vibration. 2008;317:308-328. 

[196] Stanton SC, Mann BP. On the dynamic response of beams with multiple geometric 

or material discontinuities. Mechanical Systems and Signal Processing. 

2010;24:1409-1419. 

[197] Shaker FJ. Effect of axial load on mode shapes and frequencies of beams. 1975. 

[198] Yang B. Stress, strain, and structural dynamics: an interactive handbook of 

formulas, solutions, and MATLAB toolboxes: Academic Press, 2005. 

[199] Thomsen JJ. Vibrations and stability: advanced theory, analysis, and tools: Springer 

Science & Business Media, 2013. 

[200] Cai C, Zheng H, Khan M, Hung K. Modeling of material damping properties in 

ANSYS.  CADFEM Users’ Meeting & ANSYS Conference2002. p. 9-11. 

[201] Deniz A, Sofiyev A. The nonlinear dynamic buckling response of functionally 

graded truncated conical shells. Journal of Sound and Vibration. 2013;332:978-992. 

[202] Budiansky B, Roth RS. Axisymmetric dynamic buckling of clamped shallow 

spherical shells. 1962. 1962:597-606. 

[203] Matsunaga H. Vibration and stability of thick plates on elastic foundations. Journal 

of Engineering Mechanics. 2000;126:27-34. 



253 

 

[204] Rahbar-Ranji A, Shahbaztabar A. Free vibration analysis of non-homogeneous 

orthotropic plates resting on Pasternak elastic foundation by Rayleigh-Ritz method. 

Journal of Central South University. 2016;23:413-420. 

[205] Huang M, Ma X, Sakiyama T, Matuda H, Morita C. Free vibration analysis of 

orthotropic rectangular plates with variable thickness and general boundary 

conditions. Journal of Sound and Vibration. 2005;288:931-955. 

[206] Bahmyari E, Rahbar-Ranji A. Free vibration analysis of orthotropic plates with 

variable thickness resting on non-uniform elastic foundation by element free 

Galerkin method. Journal of Mechanical Science and Technology. 2012;26:2685-

2694. 

[207] Li S, Zhou Y. Nonlinear vibration of heated orthotropic annular plates with 

immovably hinged edges. Journal of thermal stresses. 2003;26:691-700. 

[208] Ninh DG, Bich DH. Nonlinear thermal vibration of eccentrically stiffened Ceramic-

FGM-Metal layer toroidal shell segments surrounded by elastic foundation. Thin-

Walled Structures. 2016;104:198-210. 

[209] Bich DH, Ninh DG, Kien BH, Hui D. Nonlinear dynamical analyses of eccentrically 

stiffened functionally graded toroidal shell segments surrounded by elastic 

foundation in thermal environment. Composites Part B: Engineering. 2016;95:355-

373. 

[210] Bich DH, Van Dung D, Nam VH. Nonlinear dynamical analysis of eccentrically 

stiffened functionally graded cylindrical panels. Composite Structures. 

2012;94:2465-2473. 



254 

 

[211] Gao K, Gao W, Wu D, Song C. Nonlinear dynamic characteristics and stability of 

composite orthotropic plate on elastic foundation under thermal environment. 

Composite Structures. 2017;168:619-632. 

[212] Gao K, Gao W, Wu D, Song C. Nonlinear dynamic stability of the orthotropic 

functionally graded cylindrical shell surrounded by Winkler-Pasternak elastic 

foundation subjected to a linearly increasing load. Journal of Sound and Vibration. 

2018;415:147-168. 

[213] Jin Z-H, Batra R. Stress intensity relaxation at the tip of an edge crack in a 

functionally graded material subjected to a thermal shock. Journal of thermal 

stresses. 1996;19:317-339. 

[214] Gibson LJ, Ashby MF. The mechanics of three-dimensional cellular materials.  

Proceedings of the Royal Society of London A: Mathematical, Physical and 

Engineering Sciences: The Royal Society; 1982. p. 43-59. 

[215] Volmir AS. Nonlinear dynamics of plates and shells. Moscow: Science Edition, 

1972. 

[216] Nowinski J. Nonlinear transverse vibrations of orthotropic cylindrical shells. AIAA 

Journal. 1963;1:617-620. 

[217] Evensen DA. Nonlinear flexural vibrations of thin-walled circular cylinders. 

Washington, DC: National Aeronautics and Space Administration; 1967. 

[218] Dowell E, Ventres C. Modal equations for the nonlinear flexural vibrations of a 

cylindrical shell. International Journal of Solids and Structures. 1968;4:975-991. 

[219] Chu H-N. Influence of large amplitudes on flexural vibrations of a thin circular 

cylindrical shell. Journal of the Aerospace Sciences. 1961;28:602-609. 



255 

 

[220] Amabili M. Discussion on" Nonlinear vibration of functionally graded circular 

cylindrical shells based on improved Donnell equations" by DH Bich and N. Xuan 

Nguyen, Journal of Sound and Vibration 331 (25)(2012) 5488-5501. Journal of 

Sound Vibration. 2014;333:1851-1852. 

[221] Bich DH, Nguyen NX. Reply to: Discussion on" Nonlinear vibration of functionally 

graded circular cylindrical shells based on improved Donnell equations" by DH 

Bich and N. Xuan Nguyen, Journal of Sound and Vibration 331 (25)(2012) 5488-

5501. Journal of Sound Vibration. 2014;333:1853-1854. 

[222] Quan TQ, Tran P, Tuan ND, Duc ND. Nonlinear dynamic analysis and vibration of 

shear deformable eccentrically stiffened S-FGM cylindrical panels with metal–

ceramic–metal layers resting on elastic foundations. Composite Structures. 

2015;126:16-33. 

[223] Duc ND, Bich DH, Cong PH. Nonlinear thermal dynamic response of shear 

deformable FGM plates on elastic foundations. Journal of thermal stresses. 

2016;39:278-297. 

[224] Nayfeh AH, Mook DT. Nonlinear oscillations. New York: John Wiley & Sons, 

2008. 

[225] Sofiyev AH. Nonlinear free vibration of shear deformable orthotropic functionally 

graded cylindrical shells. Composite Structures. 2016;142:35-44. 

[226] Pan E. Exact solution for functionally graded anisotropic elastic composite 

laminates. Journal of Composite materials. 2003;37:1903-1920. 

[227] Vol’mir AS. Nonlinear Dynamics of Plates and Shells. 1972;Nauka, Moscow:(in 

Russian). 



256 

 

[228] Shen HS. Postbuckling of shear deformable FGM cylindrical shells surrounded by 

an elastic medium. International Journal of Mechanical Sciences. 2009;51:372-383. 

[229] Lee D-S. Nonlinear dynamic buckling of orthotropic cylindrical shells subjected to 

rapidly applied loads. Journal of Engineering Mathematics. 2000;38:141-154. 

[230] Naumann E, Sewall J. An experimental and analytical vibration study of thin 

cylindrical shells with and without longitudinal stiffeners. Hampton, VA: Technical 

Report NASA Langley Research Center; 1968. 

[231] Naeem M, Sharma C. Prediction of natural frequencies for thin circular cylindrical 

shells. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of 

Mechanical Engineering Science. 2000;214:1313-1328. 

[232] Reddy JN. Mechanics of laminated composite plates and shells: theory and analysis: 

CRC Press, 2004. 

[233] Volʹmir AdS. The nonlinear dynamics of plates and shells. DTIC Document; 1974. 

[234] Greenberg JB, Stavsky Y. Vibrations of Laminated Filament-Wound Cylindrical-

Shells. AIAA Journal. 1981;19:1055-1062. 

[235] Liu B, Xing YF, Qatu MS, Ferreira AJM. Exact characteristic equations for free 

vibrations of thin orthotropic circular cylindrical shells. Composite Structures. 

2012;94:484-493. 

 


	Title Page - Nonlinear Dynamic Behaviour and Instability of Advanced Materials and Structures
	Thesis/Dissertation Sheet
	Abstract
	Acknowledgements
	Table of Contents
	Nomenclature
	List of Figures
	List of Tables

	Chapter 1 - Introduction
	Chapter 2 - Literature Review
	Chapter 3 - Nonlinear dynamic stability analysis of Euler-Bernoulli beam-columns with damping effects under thermal environment
	Chapter 4 - Nonlinear dynamic characteristics and stability of composite orthotropic plate on elastic foundation under thermal environment
	Chapter 5 - Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales
	Chapter 6 - Nonlinear dynamic stability of the orthotropic functionally graded cylindrical shell surrounded by Winkler-Pasternak elastic foundation subjected to a linearly increasing load
	Chapter 7 - Nonlinear dynamic buckling of the imperfect orthotropic E-FGM circular cylindrical shells subjected to the longitudinal constant velocity
	Chapter 8 - Conclusions and further work
	References



