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Chapter 1

Introduction

A longitudinal study is an experimental design which takes repeated measurements

of some variables from a study cohort over a specified time period. This induces

a correlation structure between observations collected on the same measurement

subject, and hence special care is required when performing statistical analyses on the

data. One of the most dominant methods used in longitudinal analysis of continuous

outcomes is the linear mixed effects model proposed by Laird and Ware (1982).

Let yit = (y1,it, . . . , yD,it)
> be a vector of D correlated continuous outcomes

collected from individual i = 1, . . . , N at time period t = 1, . . . , Ti. The linear mixed

effects model is formulated as

yit = Bxit +Aizit + εit, (1.1)

where xit = (1, x1,it, . . . , xKf−1,it)
> and zit = (1, z1,it, . . . , zKr−1,it)

> are both a set of

exogenous variables assumed to be the same for all margins of yit, B is a D ×Kf

matrix of fixed-effects regression coefficients, Ai is a D×Kr matrix of random effects

and εit = (ε1,it, . . . , εD,it)
> is a D-vector of N (0,Σε) distributed correlated error term

which models the dependence structure between the outcomes yit. The variable xit

is assumed to be uncorrelated with both Ai and εit. The fixed effects are constant

across all subjects, whereas the random effects α = vec(A) which are distributed
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as N (0,Σα) account for heterogeneity between subjects, thereby permitting an

investigation of the evolution of individual-specific processes over time. Using the

linear mixed effects model as a basis for model formulation, we analyse longitudinal

data from three different domains of research – health economics, epidemiology and

sports science, and introduce novel statistical methodologies in this thesis. Chapter 2

reviews the modelling approaches for these applications and provides an outline of

the Bayesian framework used throughout the thesis for model estimation. The rest

of the thesis is organised as follows.

Chapter 3 models the longitudinal stated preference survey described in Fiebig

et al. (2017), whereby a study is designed to mimic the choice problem faced by

general practitioners in a consultation where they need to match alternative female

contraceptive products with a particular patient whose socio-economic and clinical

characteristics are varied as part of the experimental design to cover a range of

different life cycle and fertility stages. An analysis of the decision-making of these

general practitioners can be performed using a multivariate probit model with mixed

effects by extending the formulation in (1.1) to accommodate for binary responses.

This is done by introducing normally distributed latent variables y∗it following the

data augmentation approach given in Chib and Greenberg (1998) such that the

value of each margin in the observed binary outcomes yit is determined by the

sign of the corresponding margin in y∗it. Additionally, the covariance matrix Σε

of these latent normal random variates must be restricted to a correlation matrix

Rε so that the model parameters are uniquely identified (Chib and Greenberg,

1998). In a Bayesian context, Markov chain Monte Carlo (MCMC) sampling from

the posterior distribution of Rε is challenging as a result of the restrictions on the

diagonal entries and the positive definiteness property of the matrix (Chib and

Greenberg, 1998; Edwards and Allenby, 2003; Smith, 2013). Common sampling

approaches for Rε include the random walk Metropolis-Hastings algorithm (Chib

and Greenberg, 1998; Gunawan et al., 2017) and the Griddy-Gibbs sampler (Barnard

et al., 2000), which suffer from poor exploration of the parameter space (Sherlock
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et al., 2010) in addition to being computationally expensive when the dimension

of Rε is large. To overcome this, we reparameterise Rε in a principled way and

then carry out efficient Bayesian inference using Hamiltonian Monte Carlo (Duane

et al., 1987; Neal, 2011) due to its ability to generate credible but distant candidate

parameters for the Metropolis-Hastings algorithm, thereby reducing autocorrelation

in the posterior samples. Motivated by variance reduction techniques, we also propose

a novel method which integrates an antithetic variable (Hammersley and Morton,

1956) dynamically within the MCMC sampling algorithm to improve the mixing

properties of the Markov chain associated with the regression parameter B and

the random effects α, thereby increasing their effective sample size. Our analysis

result of the motivating discrete choice experiment suggests that the joint probability

of discussing combinations of contraceptive products with a patient shows medical

practice variation (Wennberg et al., 1982; Scott and Shiell, 1997; Davis et al., 2000)

among the general practitioners.

While it is well established that having access to professional reproductive health

advice improves the general well-being of women (Darroch et al., 2011; Sundstrom

et al., 2019), it is also equally important to address nutritional problems among

young children which is prevalent in low to medium income countries (Onofiok and

Nnanyelugo, 1998; Martorell, 1999; Lartey, 2008; Kirby and Danner, 2009; Keino et al.,

2014). In Chapter 4, we propose a multiclass classification model for growth curves

so that children with similar growth structures can be identified and appropriate

targeted treatments or interventions can be designed and administered. Current

approaches in the literature can be categorised as functional models (Abraham

et al., 2003; James and Sugar, 2003; Ramsay and Silverman, 2005; Heard et al.,

2006; Tokushige et al., 2007) or growth mixture models (Muthén and Shedden, 1999;

Nagin, 1999; Muthén and Muthén, 2000; Li et al., 2001; Muthén, 2008). Functional

approaches intrinsically assume that the data are infinite dimensional and defined

over a continuum of time, which makes them a less attractive option in applications

with sparse observations, especially so when analysing health data from low to
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medium income countries. On the other hand, growth mixture models are popular

regression models in the epidemiological literature which extend naturally from

the general formulation of the linear mixed effects models in (1.1) by replacing

the exogenous variable zit with basis function of time. Greater flexibility is also

achieved by relaxing the distribution assumption on α from a normal distribution to

a more structured normal mixture distribution with G components. This allows each

mixture component to characterise subgroup-specific growth trajectories. However,

choosing a suitable value of G in a mixture distribution is a non-trivial problem.

Most methods require the need to fit multiple models with different values of G,

and then select the “best” model by performing a likelihood ratio test (Titterington

et al., 1985), or considering a goodness-of-fit test (Verbeke and Lesaffre, 1996) or

information criterion (Dasgupta and Raftery, 1998), among others. In order to

circumvent this kind of model selection procedure, we model the mixture distribution

non-parametrically using a Dirichlet process prior (Ferguson, 1973), which avoids

the need to specify G by allowing its value to be driven by the complexity of the

data (Teh, 2011). Because children have individual differences in the onset of growth

stages, we introduce individual-specific random knot change points whose prior

distribution follow the even-numbered order statistics distribution in Green (1995)

to probabilistically encourage consecutive change points to be uniformly spaced.

Simulation results show that the random change point model outperforms the fixed

change point model because it has fewer restrictions on knot locations. We apply

the proposed model to analyse a longitudinal birth cohort from the Healthy Birth,

Growth and Development knowledge integration project. Our result suggests that

child growth may be influenced by gender and maternal education levels, and that

children who experience severe faltering during their first year of life have lower IQ

scores compared to their peers.

Unlike anthropometric measurements such as height, weight and body mass

index which can be collected physically, executive functions, which are higher order

cognitive functioning underpinning other cognitive processes such as problem solving,
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planning and reasoning (Diamond, 2013), are usually examined using a test battery

of neuropsychological assessments. Chapter 5 presents one of the first population-

specific studies in the field of sports science research by analysing the developmental

changes in executive functions of elite German soccer players aged between 10 and

21 years old participating in a longitudinal study. Previous research investigating

this problem in an athlete population are based on cross-sectional data (see e.g.

Verburgh et al., 2014; Huijgen et al., 2015; Sakamoto et al., 2018), which ignores

potential heterogeneity between players that are due to unobservables such as the

number of training hours and familiarity with the test. Furthermore, existing results

from longitudinal studies are based on a general population (Zelazo et al., 2004;

Huizinga and Smidts, 2010; Zelazo and Carlson, 2012) and the generalisation of

these results to an athlete population is limited given that active participation in

sports has shown to improve executive functioning (Jacobson and Matthaeus, 2014).

The common factor theories (Birren and Fisher, 1995; Salthouse, 1996; Baltes and

Lindenberger, 1997; Lindenberger and Baltes, 1997) argue that the evolutionary

changes in cognitive functioning are shared among various types of cognitive variables

(Salthouse et al., 1998). Therefore, it is instructive to assume that measurements of

these cognitive variables reflect properties of a common latent cognitive process. To

model the unobserved latent cognitive process, we consider a latent growth curve

model (Meredith and Tisak, 1990; Dunson, 2000; Muthén, 2002; Proust et al., 2006)

which introduces a two-level hierarchical structure to the formulation in (1.1) such

that the first level given by a measurement model links the measured cognitive

outcomes to the latent variable representing the executive functions in a linear

fashion. The executive functions are, in turn, modelled by a structural model with

random effects in the second level of the hierarchical model so that each individual

has its own rate of growth centered around a population mean. Estimation results

show that executive functions of these players which are responsible for excellence

in soccer performance demonstrate a sharp increase from late childhood (10–12

years old) until early adolescence (12–15 years old), and then their increase remains
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very minimal. This developmental pattern implies that executive functions do not

correlate with good performance in soccer, as claimed in the literature (Verburgh

et al., 2014; Vestberg et al., 2012; Sakamoto et al., 2018). Finally, we provide some

concluding remarks and discussion of potential future research work in Chapter 6.



Chapter 2

Literature review

Bayesian estimation methods for any general statistical modelM requires computing

the posterior distribution π(θ) (or π(θ|M,y) in a more precise notation) of model

parameter θ upon observing the data y = {yit; i = 1, . . . , N, t = 1, . . . , Ti} according

to the Bayes’ theorem,

π(θ) = π(θ|M,y) =
p(y|θ,M)p(θ|M)

p(y|M)
, (2.1)

where p(y|θ,M) is the likelihood function of the modelM and p(θ|M) is the prior

distribution on the parameter θ. The marginal likelihood p(y|M), which can be

expressed as:

p(y|M) =

∫
Θ

p(y|θ,M)p(θ|M)dθ, (2.2)

provides a measure of the average fit of the model to the data, and is therefore used

extensively for Bayesian model selection.

A fundamental problem in statistical computing is estimating the expectation

Eπ[f(θ)] of a scalar function f of θ∈ Θ with respect to its posterior distribution π(θ)

in (2.1), i.e. evaluating the integral

∫
Θ

f(θ)π(θ)dθ. (2.3)
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A tractable closed form expression for (2.3) rarely exist for a high dimensional θ,

but it can be approximated if samples from π(θ) can be drawn easily.

This chapter begins by introducing three different models for the analysis of

longitudinal data that will be used in subsequent chapters, i.e. multivariate probit

models, growth mixture models and latent growth curve models. We then review

variance reduction techniques for Monte Carlo estimation of (2.3), as well as Markov

chain Monte Carlo algorithms when π(θ) is challenging to sample directly. Finally, we

address how model selection procedures can be circumvented, and model uncertainty

can be accounted for when using Bayesian non-parametric models.

2.1 Longitudinal data analysis

2.1.1 Multivariate probit models

A multivariate probit model (MVP; Ashford and Sowden, 1970) is used commonly

in situations where multiple correlated binary responses are observed. For example,

the outcome yit may represent an individual’s preference for each of the D different

products. To accommodate for binary outcomes in (1.1), the MVP model can be

written as:

y∗it = Bxit +Aizit + εit,

using the latent variable formulation introduced in Chib and Greenberg (1998) so that

each margin of yit takes the value of 0 or 1 depending on the sign of the corresponding

margin of the latent variable y∗it:

yd,it = 1(y∗d,it > 0), d = 1, . . . , D,

where 1(E) denotes an indicator function of the event E. Additionally, the covariance

matrix Σε must be restricted to a correlation matrix Rε so that all model parameters

are identifiable (Chib and Greenberg, 1998).
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We now discuss related work on priors for Rε. Let RD be the space of all valid

correlation matrices. Barnard et al. (2000) suggest a uniform prior over all correlation

matrices in RD, which is equivalent to the LKJ prior (Lewandowski et al., 2009) with

unit shape, as suggested by the Stan Development Team (2017). The LKJ prior with

unit shape is a regularising prior (McElreath, 2020) since each off-diagonal elements

rij, i 6= j of Rε is marginally distributed according to a Beta(D
2
, D

2
) distribution

over (−1, 1) with both shape parameters D
2
, which is informative in high dimensions

because the Beta density increasingly concentrates around zero. Chib and Greenberg

(1998) propose using a multivariate normal prior on the rij, with the support of the

prior restricted to values of rij which give a correlation matrix in RD, while Liechty

et al. (2004) introduce a mixture of normal distributions prior on rij to express a

priori knowledge of blocked structure in Rε. However, these choices of normal priors

do not imply that all marginal densities of the rij are the same due to the constraints

imposed on the rij for the resulting Rε to be in RD.

Barnard et al. (2000) also propose decomposing a covariance matrix Σε as SRεS,

where S is a diagonal matrix of standard deviations and Rε is a correlation matrix.

They show that if Σε ∼ IW(ν, I), i.e. an inverse-Wishart distribution with degrees

of freedom ν and the D ×D identity matrix I as scale matrix, then the density of

Rε is

p(Rε) ∝ |Rε|
1
2

(ν−1)(D−1)−1

(
D∏
d=1

|Rε(−d;−d)|

)− ν
2

, (2.4)

where Rε(−d;−d) denotes the d-th principal submatrix of Rε, that is Rε with its

d-th row and column removed. The prior distribution in (2.4) induces a modified

Beta distribution on each rij. In particular, the marginal densities of the rij are

uniform on (−1, 1) when ν = D+ 1, which means that posterior inference is invariant

to the ordering of the binary outcomes y. Furthermore, recent results in Wang et al.

(2018) establish that for such a choice of ν, the corresponding matrix of partial

correlations ρkl has the LKJ distribution with unit shape parameter. This means

that the prior weights on all ρkl are greater around zero as the dimension D increases,

using the property of the LKJ distribution mentioned earlier. The informativity of
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ρkl is useful in practical applications, where more often than not a sparse structure

on the partial correlation matrix is desirable to suggest conditional independence.

The dependence structures imposed by the marginally uniform prior on rij when

ν = D+ 1 in (2.4) are less studied in the literature. Since analytical results for these

properties are limited (Tokuda et al., 2011), we briefly illustrate these graphically

instead. The results obtained are based on correlation matrices of dimension D = 4

but they can be generalised to higher dimensions. We generate 107 samples from (2.4)

with ν = D+ 1 by normalising the covariance matrices drawn from an IW(D+ 1, I)

distribution. Figure 2.1 illustrates the pairwise dependence structures among the

correlations rij and the partial correlations ρkl when the pairs share (top panels) or

do not share (bottom panels) common indices. When there is a shared index, the

density on (r12, r13) tends to support similar values in absolute terms (the visible

cross pattern), which is less apparent when there is no common index in (r12, r34).

However, both distributions have most of their density on the vertices corresponding

to |rij| ≈ 1. This means that inference for all pairs of rij is skewed towards jointly

extreme values a priori (the univariate margin for each rij is still uniform on (−1, 1)),

although this effect diminishes with an increase in the number of observations. In

contrast, pairs of partial correlations ρkl exhibit no dependence structure regardless
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Figure 2.1: Bivariate density plots showing the dependence structures associated
with the marginally uniform prior (2.4) on Rε with ν = D+1, for pairs of parameters
sharing common indices (top panels) and without a common index (bottom panels).
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of whether or not there is a common index. Independence is also observed between

rij and ρkl, except when both indices of parameters are the same (r12, ρ12) in which

case they are strongly positively correlated; see Figure 2.1, top row, rightmost.

2.1.2 Growth mixture models

The linear mixed effects model in (1.1) can also be used to study how growth curves

of measurement subjects are shaped and change over time (Ghisletta et al., 2015). A

univariate formulation of (1.1) that forms the basis of more complex growth models

is the random intercept and slopes model given by:

yit = αi + βiωit + εit, (2.5)αi
βi

 ∼ N (µ,Σ), with µ =

µα
µβ

 ,Σ =

 σ2
α σαβ

σαβ σ2
β

 , (2.6)

εit ∼ N (0, σ2
ε ), (2.7)

where αi and βi are the normally distributed random intercept and slope whose

variance-covariance is (σ2
α, σ

2
β, σαβ); ωit is the age of individual i on the t-th measure-

ment occasion; εit is the random error term assumed to be uncorrelated with αi and

has variance σ2
ε . The growth model described in (2.5)–(2.7) allows the growth trajec-

tory of each individual to have its own intercept and rate of growth. Acknowledging

the potential of non-linear trends in growth structures, some applications consider

more flexible construction of the growth trajectory using latent basis coefficients

(McArdle and Epstein, 1987; Meredith and Tisak, 1990; Ram and Grimm, 2009;

Grimm et al., 2011), linear splines (Pan and Goldstein, 1998; Tilling et al., 2014;

Crozier et al., 2019) and fractional polynomials (Long and Ryoo, 2010; Tan et al.,

2011), among others.

Equation (2.6) assumes that the study population is homogeneous such that

individual growth profiles follow closely the trend of a population trajectory whose

intercept-slope parameter is given by µ = (µα, µβ)>. However, this is rarely the case
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in most practical applications where multiple subgroups are hypothesised to present

in a population. This restriction motivates the utilisation of finite mixture models

(Gelman et al., 2013, Chapter 22) in the context of growth mixture models (Muthén

and Shedden, 1999; Nagin, 1999; Muthén and Muthén, 2000; Li et al., 2001; Muthén,

2008), which allow greater flexibility by permitting different sets of intercept-slope

parameter to capture group-specific growth trajectories. Formally, the distributional

assumption on (αi, βi)
> is relaxed to a normal mixture distribution:

αi
βi

 ∼ G∑
g=1

wgN (µg,Σg), (2.8)

with positive weights wg > 0 such that
∑G

g=1 wg = 1. Each component g in the

mixture distribution therefore represents a particular class of growth trajectory as

characterised by µg, and each child belongs to one of these G subgroups probabilis-

tically. The heterogeneous model assumed in (2.8) is used extensively for cluster

analysis. For example, Verbeke and Lesaffre (1996) divided a schoolgirl population

into “slow” growers and “fast” growers, Lin et al. (2002) identified different trajecto-

ries of prostate-specific antigen for the onset of prostate cancer, and Muthén (2004)

studied mathematics achievement of students in U.S. public schools.

Equation (2.8) requires specifying the “correct” number of subgroups G, which is

non-trivial. Under a classical statistical approach, a likelihood ratio test (Titterington

et al., 1985) is performed, but the asymptotic distribution of the test statistic

under the null hypothesis is unknown (Ghosh and Sen, 1985), as opposed to the

conventional χ2 distribution. Verbeke and Lesaffre (1996) consider a goodness-of-fit

test by comparing the probability distribution of random variables derived from linear

combinations of the observations against a uniform distribution using the Kolmogorov-

Smirnov test. From the Bayesian perspective, Richardson and Green (1997) adapt the

reversible jump MCMC (Green and Han, 1992), which permits dimension-changing

moves between the parameter subspaces corresponding to different values of G in

the Metropolis-Hastings algorithm. Dasgupta and Raftery (1998) use the Bayesian
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information criterion (BIC) approximation to the Bayes factor as a basis for the

selection of G, from which there is strong evidence to prefer the model with a larger

value of G if the BIC value increases by more than 10 upon an increase of one

additional mixture component. Sugar and James (2003) propose computing the

average Mahalanobis distance between the observations and their respective subgroup

means for a range of values G. They show theoretically that the “true” value of G

contributes to the largest drop in the distance. More recently, Fúquene et al. (2019)

develop a family of repulsive prior distributions to penalise recurring components

so that each subgroup is well distinguished. An extensive review of other trans-

dimensional MCMC methods and likelihood-based approaches for finite mixture

models under model specification uncertainty of G is described in Frühwirth-Schnatter

(2006).

2.1.3 Latent growth curve models

An extension of the linear mixed effects model in (1.1) to latent variable models can

be formalised in a latent growth curve model (McArdle, 1986; Meredith and Tisak,

1990; Muthén, 1991; Duncan et al., 1994; Stoolmiller, 1995; Bollen and Curran, 2006;

Duncan et al., 2013), which can be described by a two-level hierarchical structure:

Measurement model: yd,it = ηd,i + x>itγd + cdζi(ωit) + εd,it, (2.9)

Structural model: ζi(ωit) = αi + βiωit + eit. (2.10)

The first level of the hierarchical structure in (2.9) is a measurement model that relates

the observed outcome yd,it to the latent construct ζi scaled by cd; ηd,i ∼ N (0, σ2
ηd

) is

the random effects and γd is a Kf -vector of contrasts for the d-th outcome margin

associated with the exogenous variables xit. The second level of the structure shown

in (2.10) is a structural model having the same formulation as the random intercept

and slopes model in (2.5) to describe the evolutionary process of the latent construct

ζi over time ωit. Sammel and Ryan (1996) proposed a structural model in which fixed
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effect covariates are allowed to affecting ζi directly. In order for all model parameters

to be identifiable, the random error eit is assumed to have a N (0, 1) distribution and

c1 is a constant taking a value of 1.

An important feature of the latent growth curve model is that the time variable

ωit acts on the latent construct ζi directly, which in turn influences the D-dimensional

observation yit = (y1,it, . . . , yD,it)
> such that the cross-sectional correlation structure

in yit is due to ζi (Roy and Lin, 2000). In other words, the model estimates a

common growth trajectory shared between the marginal outcomes to characterise

their observed variability across time (Rolfe, 2010; Wolf, 2016). Other possible

extensions of latent growth curve modelling include accommodating a mixture of

binary, ordinal, count and continuous data (Dunson, 2003), relaxing linear relationship

between the observed outcomes and the latent construct (Proust et al., 2006; Proust-

Lima et al., 2009), allowing individually varying measurement occasions (Sterba,

2014) and using a semi-parametric smooth function (Jacqmin-Gadda et al., 2010) or

a finite mixture model in the structural model (Berlin et al., 2014; Lai et al., 2016).

2.2 Monte Carlo integration

Monte Carlo methods, which date back to the work of Metropolis and Ulam (1949),

use stochastic simulation to approximate (2.3) via

f̂MC
n =

1

n

n∑
i=1

f(θi), θi
iid∼ π(θ), (2.11)

with θi being independent and identically distributed samples drawn from π(θ). The

strong law of large numbers (Loève, 1977, Chapter 17) guarantees that the unbiased

Monte Carlo estimate f̂MC
n converges almost surely to the expectation Eπ[f(θ)] as

n→∞. Moreover, the variance (and the mean squared error) of f̂MC
n is given by

V(f̂MC
n ) =

1

n
V(f(θ)),
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for Eπ[f 2(θ)] < ∞. It is possible in certain cases to construct an estimator that

is more efficient than f̂MC
n . To produce estimates of (2.3) with a lower variance

for the same amount of simulation effort, or equivalently, achieve the same level of

variability as f̂MC
n , but use fewer than n samples, we discuss a few variance reduction

techniques (Robert and Casella, 2004; Kroese et al., 2013; Rubinstein and Kroese,

2017) in the following sections.

2.2.1 Rao-Blackwellisation

A Rao-Blackwellised estimator (Gelfand and Smith, 1990; Casella and Robert, 1996)

is based on the principle that analytical computation should be carried out as much

as possible (Liu, 2001). Suppose that θ = (θ1, θ2)> has two margins for simplicity and

the conditional expectation Eπ[f(θ)|θ2] is analytically tractable, then given random

samples {θ2,1, . . . , θ2,n} of θ2,

f̂RBn =
1

n

n∑
i=1

Eπ[f(θ)|θ2 = θ2,i],

is an unbiased estimator of Eπ[f(θ)] by the law of total expectations, and additionally

by the law of total variance,

V(f̂RBn ) =
1

n
V(Eπ[f(θ)|θ2]) ≤ V(f̂MC

n ).

Variance reduction is achieved by replacing the random samples of f(θ) in (2.11) with

exact values of its conditional expectation Eπ[f(θ)|θ2]. Integrating out θ1 eliminates

some of the randomness in the naive estimator and in turn, this marginalisation

procedure means lower computational costs since only the simulation of θ2 is required

for the approximation of Eπ[f(θ)] in (2.3). The Rao-Blackwellisation method has

been used to estimate, for example, posterior model probabilities in Bayesian variable

selection for regression models (Ghosh and Clyde, 2011) and to compute smoothed

expectations in a general state space model (Olsson and Ryden, 2011).
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2.2.2 Control variates

The construction of a control variate estimator relies on the availability of an exact

solution to the expectation Eπ[h(θ)] for some proxy function h. A common choice

of h is the Taylor expansion of f , which is used extensively in a class of scalable

Bayesian computational methods (Giles et al., 2016; Bardenet et al., 2017; Bierkens

et al., 2019). A control variate estimator of Eπ[f(θ)] is then defined by

f̂CVn =
1

n

n∑
i=1

f(θi)− w(h(θi)− Eπ[h(θ)]),

where w is some weighting constant. Denote the correlation coefficient between

f(θ) and h(θ) by ρ and the covariance between the pair by Cov(f(θ), h(θ)), it is

straightforward to show that

V(f̂CVn ) =
1

n

(
V(f(θ))− 2wCov(f(θ), h(θ)) + w2V(h(θ))

)

attains its minimum value of (1− ρ2)V(f̂MC
n ) at the optimal weighing constant

w∗ =
Cov(f(θ), h(θ))

V(h(θ))
, (2.12)

hence f̂CVn has lower variability the more highly correlated the samples of f(θ) and

h(θ) are. However, achieving the optimal condition in (2.12) is infeasible in practice

because computing w∗ requires knowing Eπ[f(θ)]. One possible solution is estimating

w∗ using the sample moments of f(θ) and h(θ), see e.g. Glynn and Szechtman (2002).

Alternatively, a more sophisticated approach based on the score function in Brooks

and Gelman (1998) and Philippe and Robert (2001) can be implemented.

2.2.3 Antithetic variables

An estimator constructed from independent samples may not always be desirable.

The formulation of an antithetic variable estimator is in fact similar to that of f̂MC
n ,
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but with potentially correlated samples of f(θ). Suppose that both θ and θ̃ are

distributed according to π(θ), then the antithetic variable estimator of Eπ[f(θ)] is

f̂AVn =
1

n

n/2∑
i=1

(f(θi) + f(θ̃i)),

with its variance given by

V(f̂AVn ) =
1

n

(
V(f(θ)) + Cov(f(θ), f(θ̃))

)
.

Therefore, f̂AVn will have a lower variance compared to f̂MC
n provided that the joint

distribution for (θ, θ̃) is chosen so that Cov(f(θ), f(θ̃)) < 0. In some cases, the

construction of the dependence structure is simple, for example letting θ̃ be the

corresponding values of θ reflected about the mean of a symmetric π(θ) (Geweke,

1988), while others require careful designs (see Robert and Casella (2004) for a

discussion). The intuition behind this style of variance reduction is that if one of

a pair in (f(θi), f(θ̃i)) overestimates Eπ[f(θ)] then the other provides a natural

correction and vice versa.

2.3 Markov chain simulation

So far, our discussion assumes that it is trivial to simulate from π(θ). However, this is

usually not the case as π(θ) is often a non-standard probability density function even

for a simple model. This section describes a Bayesian posterior sampling approach

known as Markov chain Monte Carlo (MCMC) methods, which produce approximate

samples from π(θ) without having to sample directly from π(θ). Technically, MCMC

methods generate a Markov chain whose invariant distribution is π(θ).

2.3.1 Gibbs sampling

The Gibbs sampler was formalised by Geman and Geman (1984) as an MCMC tool

for simulating from high-dimensional distributions arising in image restoration, and
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subsequently developed further in the statistics literature by Gelfand and Smith

(1990) to compute estimates of marginal probability distributions. Suppose that

it is impossible to sample directly from the joint posterior distribution π(θ) where

θ = (θ1, . . . , θP )>, but that sampling from the full conditional distribution of each

margin πp(θp|θ1, . . . , θp−1, θp+1, . . . , θP ) for p = 1, . . . , P is straightforward. The Gibbs

sampler proceeds by updating the margins systematically, one at a time, conditional

on the current values of the other margins (see Algorithm 1). Under relatively

general conditions, it can be shown that the generated Markov chain {θ[1], . . . ,θ[n]},

where θ[i] = (θ
[i]
1 , . . . , θ

[i]
P )> is the sample generated in the i-th iteration, has invariant

distribution π(θ) (Robert and Casella, 2004). However, the Gibbs sampler is limited

since it requires the ability to sample from all P full conditional distributions.

Algorithm 1 Gibbs sampling
Initialise θ[1] with a random value such that π(θ[1]) > 0. For i = 2, . . . , n,

1. Sample θ[i]
1 ∼ π1(θ1|θ[i−1]

2 , . . . , θ
[i−1]
P ).

...

p. Sample θ[i]
p ∼ πp(θp|θ[i]

1 , . . . , θ
[i]
p−1, θ

[i−1]
p+1 . . . , θ

[i−1]
P ).

...

P . Sample θ[i]
P ∼ πP (θP |θ[i]

1 , . . . , θ
[i]
P−1).

2.3.2 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm, which is due to the work of Metropolis

et al. (1953) and Hastings (1970), is a powerful Bayesian inference tool for generating

samples of model parameters θ from their posterior distribution π(θ) for more

general problems compared to the Gibbs sampler as it only requires the likelihood

function of the model of interest to be analytically tractable. Each iteration of the

scheme involves sampling a proposed state θ′ from an arbitrary proposal distribution

q(θ′|θ). The proposed value θ′ is then accepted or rejected with a certain probability

according to the MH acceptance ratio to reflect how likely it is to move from the

current state of θ[i−1] to the new state θ′ under the target distribution π(θ) (see
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Algorithm 2). The posterior density π(θ) only needs to be known up to a normalising

constant (marginal likelihood) because the normalising constant is cancelled out in

the acceptance ratio. A rejection of θ′ implies that there is no change in the state

between successive iterations. Note that the Gibbs sampler is a special instance of

the MH algorithm with the full conditional distribution as the proposal distribution,

for which the acceptance probability is always 1. Furthermore, the Markov chain

generated will also yield the invariant distribution π(θ) when some of the Gibbs

steps in the Gibbs sampler are replaced by the equivalent MH step updates (Johnson

et al., 2013). Despite being a universal method for sampling difficult π(θ), the MH

sampler is known to be very inefficient for high dimensional θ as it performs local

updates which then generate highly correlated samples (Sherlock et al., 2010; Neal,

2011).

Algorithm 2 Metropolis-Hastings algorithm
Initialise θ[1] with a random value such that π(θ[1]) > 0. For i = 2, . . . , n,

1. Sample θ′ ∼ q(·|θ[i−1]).

2. Calculate the MH acceptance ratio given by

a[i−1] = a(θ′|θ[i−1]) = min

{
1,

π(θ′)q(θ[i−1]|θ′)
π(θ[i−1])q(θ′|θ[i−1])

}
.

3. Sample u ∼ Uniform(0, 1).

4. Set θ[i] ← θ′ if a[i−1] > u, otherwise set θ[i] ← θ[i−1].

2.3.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC; Neal, 2011; Betancourt, 2017) was initially intro-

duced in the physics literature by Duane et al. (1987) and first used for statistical

applications in Neal (1996). The widespread use of HMC is attributed to its ability

to sample credible but distant proposal parameters for the MH algorithm, relying on

the gradient information of the posterior density π(θ), and often its Hessian as well.
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Instead of generating a Markov chain whose invariant distribution is π(θ), HMC

introduces an auxiliary momentum variable u and targets the augmented distribution

π(θ,u) ∝ exp(−H(θ,u)),

where

H(θ,u) = − log π(θ) +
1

2
u>M−1u,

is known as the Hamiltonian which is made up of potential energy and kinetic energy

components. The potential energy is defined as minus the log density of θ under

the target distribution π(θ), while the kinetic energy is due to the movement of

the momentum variable u which is assumed to follow a N (0,M ) pseudo-prior with

mass matrix M . The Hamiltonian system is used to describe the evolution of θ and

u over time t via the differential equations

dθ

dt
=
∂H
∂u

and
du

dt
= −∂H

∂θ
. (2.13)

Essentially, the loss in the kinetic energy of u is used to drive θ to a region of higher

density, and vice versa. An inherent property of the Hamiltonian is that it conserves

energy, i.e. dH/dt = 0 so that the proposed state (θ′,u′) obtained by solving (2.13) is

always accepted. However, solution to the dynamics in (2.13) is typically intractable

for complex π(θ) and requires implementing the leapfrog integrator (Neal, 2011),

which discretises continuous time by a stepsize ε so that

u(t+ ε/2) = u(t)− (ε/2)
∂H
∂θ

(θ(t))

θ(t+ ε) = θ(t) + ε
∂H
∂u

(u(t+ ε/2))

u(t+ ε) = u(t+ ε/2)− (ε/2)
∂H
∂θ

(θ(t+ ε)).

(2.14)

Proposed values θ′ and u′ obtained after a trajectory of length T = Lε by iterating

the procedures in (2.14) L times are then accepted with probability

min{1, exp(H(θ,u)−H(θ′,u′))}. (2.15)
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Since the leapfrog integrator introduces approximation error, the MH accept-reject

step in (2.15) is necessary in order to preserve the invariant distribution of the Markov

chain generated as π(θ,u). Samples from π(θ) are obtained by retaining the margins

associated with θ. A summary description of HMC is provided in Algorithm 3.

Despite providing an approximate solution to the differential equations in (2.13), the

leapfrog integrator still largely conserves the energy in the Hamiltonian (Neal, 2011).

This translates to a high sampler acceptance probability even when the proposal

is distant, thereby suppressing the random walk behaviour observed in typical MH

algorithms. Note that the updates performed in the leapfrog integrator are entirely

deterministic, and the stochasticity of HMC is due to the random sampling of the

momentum variable u.

There are three tuning parameters which affect the performance of HMC sampling:

the choice of the covariance matrix M of the momentum u, the number of leapfrog

updates L and the stepsize ε. Betancourt (2017) suggest settingM to be the precision

matrix of the variable θ in order to achieve uniform energy level sets which lead to

efficient exploration of the scaled target space. For a small value of L, exploration of

the parameter space is reduced to a random walk. On the other hand, the simulated

trajectory reverses direction and the proposed value θ′ is close to the initial value θ

if L is chosen to be too large. To automate the tuning of this parameter, Hoffman

Algorithm 3 Hamiltonian Monte Carlo
Initialise θ[1] with a random value such that π(θ[1]) > 0. For i = 2, . . . , n,

1. Sample u[i−1] ∼ N (0,M).

2. Sample (θ′,u′) using the leapfrog integrator in (2.14).

3. Set u′ ← −u′.

4. Calculate the MH acceptance ratio given by

a[i−1] = a((θ′,u′)|(θ[i−1],u[i−1])) = min{1, exp(H(θ[i−1],u[i−1])−H(θ′,u′))}.

5. Sample u ∼ Uniform(0, 1).

6. Set (θ[i],u[i])← (θ′,u′) if a[i−1] > u, otherwise set (θ[i],u[i])← (θ[i−1],u[i−1]).



50 CHAPTER 2. LITERATURE REVIEW

and Gelman (2014) develop the No-U-Turn Sampler (NUTS) which determines an

optimal value of L using a tree building algorithm. The tree building algorithm

can be briefly described as follows: a single leapfrog update is performed from the

current state of θ, followed by two more updates and then four more, with the

doubling process being terminated when the simulated trajectory of θ first retraces

its steps back to its initialised value. The number of doubling procedure undertaken

is known as the tree depth. In the same paper, the authors also provide a heuristic

for setting ε based on the dual averaging method of Nesterov (2009), which is used

predominantly for non-smooth and stochastic convex optimisation, to target a desired

level of acceptance probability.

2.3.4 Assessing convergence

It is crucial to monitor the convergence of all parameters drawn using the algorithms

described in Sections 2.3.1–2.3.3 in order to ensure that the samples are representative

of the posterior distribution π(θ). For simplicity, suppose that we have a univariate

parameter θ and we simulate m parallel chains, each of length n after discarding the

burn in. Defining θ[i,j], i = 1, . . . , n, j = 1, . . . ,m as the i-th iterate of θ in the j-th

chain, the between- and within-chain variances are given, respectively, by

B =
n

m− 1

m∑
j=1

(θ̄[·,j] − θ̄[·,·])2, where θ̄[·,j] =
1

n

n∑
i=1

θ[i,j], θ̄[·,·] =
1

m

m∑
j=1

θ̄[·,j]

W =
1

m

m∑
j=1

s2
j , where s2

j =
1

n− 1

n∑
i=1

(θ[i,j] − θ̄[·,j])2.

Convergence can be assessed by computing the factor by which the scale of the

current distribution for θ is reduced in the limit of n → ∞ (Gelman and Rubin,

1992), which can be estimated from

R̂ =

√
n− 1

n
+

B

nW
, (2.16)

which approaches 1 as n→∞.
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2.3.5 Effective number of simulation draws

The inefficiency of an MCMC sampler in estimating Eπ[f(θ)] is usually measured by

the integrated autocorrelation time (Roberts and Rosenthal, 2009), which is defined

as

IACTf = 1 +
∞∑
j=1

ρj,f ,

where ρj,f is the lag j autocorrelation function of the MCMC iterates of f(θ)

after convergence. Alternatively, one can measure the efficiency of the sampler by

computing the effective sample size per MCMC iteration, which by definition is the

reciprocal of the IACT (Kass et al., 1998; Robert and Casella, 2004), i.e.

ESS =
1

IACTf

.

A small value of the IACT, under the assumptions that the invariant distribution of

the generated Markov chain is π(θ), is desirable in practice as it indicates that the

Markov chain mixes well (Pitt et al., 2012; Doucet et al., 2015).

2.4 Bayesian non-parametric methods

With advances in the computing technology, it has now become a common practice

for practitioners to consider various models of differing complexity {M1, . . . ,MQ},

and obtain the predictive distribution p(y?|y) of a future observation y? from the

same stochastic process that generated y via Bayesian model averaging (e.g. Draper,

1995; Hoeting et al., 1999; Clyde and George, 2004), i.e.

p(y?|y) =

Q∑
q=1

p(y?|Mq)π(Mq|y),

where p(y?|Mq) is the predictive distribution of y? conditional on the modelMq

whose parameter is θMq and given prior model probabilities p(Mq), π(Mq|y) is the
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posterior model probability upon observing y computed from

π(Mq|y) =
p(y|Mq)p(Mq)∑Q
q=1 p(y|Mq)p(Mq)

. (2.17)

An important quantity required for the analysis in (2.17) is the marginal likelihood

of modelMq whose expression is given in (2.2). However, computation for (2.2) is

notoriously challenging and {M1, . . . ,MQ} only represents a finite subset of models

in the space M of all possible models (Ghahramani, 2013).

This section describes a special class of methods known as Bayesian non-parametric

(BNP) methods (Hjort et al., 2010; Gershman and Blei, 2012) which adopt a model

M∞ ∈M whose parameter θ lies in an infinite-dimensional space Θ. BNP models

account for model uncertainty by using a finite number of parameters in Θ to describe

the generating mechanism of y in such a way that the complexity of the modelM∞

is entirely data-driven (Orbanz and Teh, 2010), rather than comparing multiple

models that vary in complexity (Gershman and Blei, 2012). Common examples of

BNP methods used in statistical applications include Gaussian processes (Rasmussen

and Williams, 2006) and Dirichlet processes (Ferguson, 1973).

2.4.1 Dirichlet processes

The Dirichlet process (DP) belongs to a family of stochastic processes which is used

extensively in Bayesian mixture modelling (Rasmussen, 2000; Zhang et al., 2005;

da Silva, 2007) when the number of components G in a mixture distribution, i.e.

G∑
g=1

wgpK(y|θg) with
G∑
g=1

wg = 1, (2.18)

where each component density pK(y|θg) comes from the same family of distribution

K(θ) weighted by wg ≥ 0, is unknown a priori. Let G0 be a probability measure on

the measurable space (Θ,F), where Θ is a non-empty set and F is the σ-algebra on

Θ. A realisation, G, from a Dirichlet process DP(λ,G0) with concentration parameter
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λ > 0 and base distribution G0 is a discrete probability distribution, taking the form

G =
∞∑
g=1

wgδθg , (2.19)

where {wg}∞g=1 is an infinite sequence of non-negative weights which sum to 1, {θg}∞g=1

are independent random samples (also known as atoms) drawn from G0 and δθ is

a point mass located at θ. The base distribution G0 determines the support of the

(almost surely) discrete distribution G in (2.19), whereas the concentration parameter

λ controls the variability of G around G0.

While the sampling of the atoms is straightforward, the construction of {wg}∞g=1

is non-trivial. Sethuraman (1994) provides a constructive definition of the infinite

sequence of weights in the DP using the stick-breaking process whereby metaphorically,

a stick, initially of unit length, is repeatedly broken at a random lengths, as determined

by a Beta random variable γ. In such a manner, the weights are constructed as

wg = γg

g−1∏
h=1

(1− γh), γg ∼ Beta(1, λ). (2.20)

Note that the weight decreases stochastically so that wg is almost negligible for a

large value of G (which depends on λ).

We now discuss some theoretical properties of a DP. For any finite measurable

partition S1, . . . , SJ of Θ such that Sj ∩ Sj′ = ∅ for j 6= j′ and
J⋃
j=1

Sj = Θ, the

marginal distribution of a DP is distributed according to a Dirichlet distribution by

definition (Ferguson, 1973), so that

(G(S1), . . . ,G(SJ)) ∼ Dirichlet(λG0(S1), . . . , λG0(SJ)).

Using properties of the Dirichlet distribution, the mean and variance of a DP can be

easily obtained as

E[G(S)] = G0(S), and V(G(S)) =
G0(S)(1− G0(S))

1 + λ
,
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for any measurable set S of Θ. The concentration parameter λ dictates the variability

of G around G0: G converges to G0 pointwise in the limit as λ → ∞, whereas G

collapses to a point distribution in the limit as λ → 0. Figure 2.2 illustrates this,

where realisations from a DP with G0 being a standard normal distribution and

different values of λ are shown. For small λ, G has large masses concentrated on

a few atoms, and its empirical cumulative distribution function (CDF) is highly

variable. As λ increases, more atoms have non-negligible weights, and the empirical

CDF of G converges to the CDF of the base distribution (shown by the solid black

line).

Suppose that G ∼ DP(λ,G0), and that θ1:N = {θ1, . . . ,θN} are independent and

identically distributed samples generated from the atomic distribution G. Define

nj := |i : θi ∈ Sj| to be the number of samples observed in the measurable set

Sj, j = 1, . . . , J such that
∑J

j=1 nj = N . Using the conjugacy property of a Dirichlet
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Figure 2.2: Realisations (top panel) resulting from a random draw from the DP prior
DP(λ,G0) with λ = 1, 10, 100 and G0 is a standard normal distribution. Empirical
CDFs (bottom panel) of 50 samples generated from DP(λ,G0) for each value of λ
are plotted against the CDF of G0 (black curve).
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prior distribution to a multinomial likelihood function (Wade et al., 2011), we obtain

(G(S1), . . . ,G(SJ))|θ1:N ∼ Dirichlet(λG0(S1) + n1, . . . , λG0(SJ) + nJ). (2.21)

Equation (2.21) holds for any finite measurable partition {S1, . . . , SJ} of Θ, and thus

by definition the posterior distribution of G is itself another DP with concentration

parameter λ̃ = λ+N and base distribution

G̃0 =
λ

λ+N
G0 +

N

λ+N

N∑
i=1

δθi
N
.

This shows that the DP is a conjugate prior for the random distribution G, and that

the posterior base distribution G̃0 is a weighted average of the prior base distribution

(whose informativity is given by λ) and the empirical distribution resulting from the

samples θ1:N .

The DP induces a clustering effect and this makes it a powerful tool in classification

problems when the actual number of classes G is unknown. To illustrate this property,

consider the following DP mixture model (Antoniak, 1974) in which

yi|θ̃i ∼ pK(y|θ̃i), θ̃i|G ∼ G, G ∼ DP(λ,G0), (2.22)

for i = 1, . . . , N, where θ̃i is the parameter of the density pK(y|θ̃i) responsible for

generating the observation yi. Integrating out the discrete distribution G from (2.22),

Blackwell and MacQueen (1973) show that the conditional prior distribution induced

on θ̃i follows a Pólya urn scheme where

θ̃i|θ̃1, . . . , θ̃i−1 ∼
1

λ+ i− 1

i−1∑
j=1

δθ̃j +
λ

λ+ i− 1
G0. (2.23)

Equation (2.23) suggests that the first parameter θ̃1 is initialised by drawing a

random sample from the base distribution G0 of the DP. Conditional on the set of

previous samples drawn {θ̃1, . . . , θ̃i−1}, the following parameter, θ̃i, is determined
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probabilistically. With probability proportional to the concentration parameter λ, θ̃i

is set to be a new random draw from G0, and with probability proportional to i− 1,

θ̃i is sampled uniformly from {θ̃1, . . . , θ̃i−1}. The former introduces a new distinct

value, while the latter induces clustering effect so that the generated parameters

{θ̃1, . . . , θ̃N} concentrate on a set of unique values {θ1, . . . ,θG}, with G � N . A

larger value of λ increases the probability of generating θ̃i from G0, which in turn

gives rise to a larger value of G. In fact, Teh (2011) show that for N, λ� 0,

E[G] ' λ log

(
1 +

N

λ

)
,

indicating that the mean of G scales logarithmically with the size of the dataset, N .

Note that the value of G is bounded above by N , and its (random) value can be

determined via posterior inference.

Bayesian inference for mixture models often suffers from the label switching

problem (Celeux et al., 2000; Jasra et al., 2005) due to the invariance of the like-

lihood function in (2.18) to permutations of the labels of the mixture components.

This makes identification of and inference for each component (i.e. the clusters of

individuals) challenging. Identification of each component is further complicated

in a DP mixture model since G is variable. Fritsch and Ickstadt (2009) proposed

addressing this issue using Bayesian decision theory, where the best decision rule (for

component membership) satisfies certain optimality conditions. A popular measure

used for comparing competing membership clusterings s and s̃, with G and G̃ clusters

respectively, is the adjusted Rand index (ARI; Hubert and Arabie, 1985) defined as

ARI(s, s̃) =

∑G
g=1

∑G̃
h=1

(
Ngh

2

)
−
∑G

g=1

(
Ng+

2

)∑G̃
h=1

(
N+h

2

)
/
(
N
2

)
1
2

(∑G
g=1

(
Ng+

2

)
+
∑G̃

h=1

(
N+h

2

))
−
∑G

g=1

(
Ng+

2

)∑G̃
h=1

(
N+h

2

)
/
(
N
2

) .
Here Ngh is the number of individuals in group g of membership clustering s that are

also in group h of membership clustering s̃, Ng+ =
∑G̃

h=1Ngh, N+h =
∑G

g=1Ngh and(
n
2

)
= n(n−1)/2 is the Binomial coefficient. The ARI measures the similarity between

the two clusterings, mostly taking values between 0 (for completely random clustering)
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and 1 (for identical clusterings). Thus, values closer to 1 indicate clusterings that

are more consistent. Negative values of the ARI are possible but they have no

substantive use. In the current context, the optimal clustering ŝ maximises the

posterior expected adjusted Rand (PEAR) index. That is,

ŝ = arg max
s̃

Es[ARI(s, s̃)],

where the expectation Es is taken with respect to the posterior distribution of s.
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Chapter 3

Efficient data augmentation for

multivariate probit models with

panel data: An application to

general practitioner decision-making

about contraceptives

3.1 Introduction

Bayesian inference for the multivariate probit (MVP) model is usually performed

using the data augmentation representation of Chib and Greenberg (1998), whereby

the latent variables indicating the observed outcomes are normally distributed. For

unique identification of the regression parameters, the covariance matrix of these

latent normal random variates is assumed to be a correlation matrix Rε. However,

Monte Carlo sampling for Rε in a Bayesian context is difficult due to the restrictions

on the diagonal entries and the requirement that the matrix Rε must be positive

definite (Chib and Greenberg, 1998; Edwards and Allenby, 2003; Smith, 2013).



60

CHAPTER 3. EFFICIENT DATA AUGMENTATION FOR MULTIVARIATE PROBIT
MODELS WITH PANEL DATA: AN APPLICATION TO GENERAL PRACTITIONER

DECISION-MAKING ABOUT CONTRACEPTIVES

This chapter presents three contributions, two methodological and the third a

subject matter one. The first methodological contribution provides an improved

method for sampling the potentially high dimensional correlation matrix Rε within a

Markov chain Monte Carlo (MCMC) algorithm. Chib and Greenberg (1998) suggest

sampling the correlation coefficients in blocks using a random walk Metropolis-

Hastings (RWMH) algorithm with a multivariate t proposal density whose degree of

freedom is specified arbitrarily as 10, or some similar values. However, the resulting

matrix obtained after each proposal is not guaranteed to be a valid correlation

matrix and such proposals are rejected with certainty in the MH algorithm, in

addition to the RWMH algorithm being notorious for its slow exploration of the

parameter space (Sherlock et al., 2010; Neal, 2011). Tuning the parameters of this

proposal distribution also requires finding an approximate mode of the log posterior

distribution and the observed Fisher information for every iteration, resulting in

high computational overheads. On the other hand, Barnard et al. (2000) adopt the

Griddy-Gibbs sampler of Ritter and Tanner (1992) to sample Rε in hierarchical

regression models. Here, prior to the Gibbs step, one needs to solve a quadratic

equation to determine the support for a single correlation coefficient (while keeping

the rest fixed) which results in a valid correlation matrix. The design of drawing

one correlation coefficient at a time becomes computationally prohibitive when the

dimension of Rε is large. In order to circumvent the positive definiteness restriction

imposed on a correlation matrix, we adopt the reparameterisation strategy of Smith

(2013) which re-expresses Rε as an unconstrained Cholesky factor Lε. This maps

the manifold space of a correlation matrix to a Euclidean space, which improves the

efficiency of posterior simulation while keeping the number of unknown parameters

the same. We employ the Hamiltonian Monte Carlo (HMC) algorithm (Neal, 2011)

to sample the high dimensional Lε efficiently, thereby avoiding the slow exploration

of parameter space by random walk updates.

The second methodological contribution is to introduce antithetic sampling, based

on the work of Hammersley and Morton (1956), into the Metropolis-Hastings (MH)
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literature in the context of MVP. In order to implement this idea, we specify the

proposal distribution of parameter update as a deterministic function. Here, the

generated samples will be super-efficient in terms of the reduction in variance of the

Monte Carlo estimates compared to the same estimates constructed from uncorrelated

samples. Although the proposal chain update is deterministic, the convergence prop-

erties are not compromised when this is embedded within a larger system of MCMC

sampling based on our empirical results. Our proposed methodology is motivated by

the over-relaxation algorithm (Adler, 1981; Barone and Frigessi, 1990), and is similar

to the idea built within the framework of HMC in Pakman and Paninski (2014).

However, our proposed sampler is different from these methods in two main aspects.

First, there is no randomness in the proposal distribution for parameter updates in

our method, whereas theirs still retain a certain degree of stochasticity. Second, we

introduce perfect negative correlation between successive MCMC samples via the

deterministic proposal, while they suggest partial or zero dependence between the

samples. Results based on our real data application investigating the decision-making

of general practitioners about contraceptives document a significant improvement

of up to a 16 times performance gain in the mixing behaviour of the Markov chain,

thereby lowering the autocorrelation between the iterates. The computing time of

the algorithm is also marginally reduced due to the deterministic sampling.

Our third contribution is a methodological development is motivated by the

staged stated preference panel data collection described in Fiebig et al. (2017), which

is used to study the decision-making of Australian general practitioners (GPs) about

female contraceptive products. Here, the authors used the data from the final stage

of the three-stage decision process, whereas we explore outcomes from the second

stage. This second stage relates to the question of which particular contraceptive

products GPs would discuss with a female patient, defined by a vignette that is part

of the experimental design. Separate univariate analyses on each product would

ignore possible complex dependence structures that are useful in exploring which

particular bundles of products are discussed with patients. This is important here
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because in any correlated choice problem there may be multiple close substitutes,

which makes joint rather than marginal probabilities more relevant. Therefore, we

model the GPs’ choices by an MVP model, and employ our proposed methods to

improve the sampling efficiency of the correlation matrix Rε and the regression

coefficients of covariates in the model. Inspection of the resulting graphical model

describing this interaction between products lends support to the suitability of a

multivariate approach. By using the MVP model, we are able to compute the joint

probability of specific product bundles being discussed with a patient. Posterior

estimation of this probability, based on a patient with certain socio-economic and

clinical characteristics for which there is strong clinical evidence on the suitability

of long acting contraceptive choices, reveals differing views among the GPs in the

sample. This variability is known as medical practice variation in the health industry;

see for example Wennberg et al. (1982), Scott and Shiell (1997) and Davis et al.

(2000), whereby the decision making of GPs is influenced by both their personal

characteristics such as gender, age and qualifications, as well as other unobservables

that we model as random effects.

The rest of the chapter is organised as follows. Section 3.2 describes the MVP

model with random effects. Section 3.3 presents our proposed methodology of

sampling Rε, and Section 3.4 outlines the antithetic sampling technique whose

efficiency is illustrated via simulation studies in Section 3.5. Section 3.6 provides our

analysis of the discussion preference data of contraceptive products by Australian

GPs, and Section 3.7 concludes. Appendices 3.8.1–3.8.5 provide further details on

the contraceptive product data analysis.

3.2 Multivariate probit model with random effects

The MVP model has been used extensively to model correlated binary data (Gibbons

and Wilcox-Gök, 1998; Buchmueller et al., 2013). Let yit = (y1,it, . . . , yD,it)
> be a

vector of D correlated binary outcomes for individual i = 1, . . . , N at time period t,

for t = 1, . . . , T . The latent variable representation of the MVP model, using the
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data augmentation approach of Albert and Chib (1993), is given by

y∗it = αi +Bxit + εit, (3.1)

αi = (α1,i, . . . , αD,i)
> iid∼ N (0,Σα), (3.2)

εit = (ε1,it, . . . , εD,it)
> iid∼ N (0,Rε), (3.3)

for i = 1, . . . , N, t = 1, . . . , T, where y∗it = (y∗1,it, . . . , y
∗
D,it)

> is a continuous latent

variable, αi is a D-vector of outcome-specific random intercepts for individual i

allowing for heterogeneity between individuals, xit = (1, x1,it, . . . , xK−1,it)
> is a set

of exogenous variables, B is a D × K matrix of regression coefficients and εit is

a D-vector correlated error term which models the dependence structure between

outcomes. The variable xit is assumed to be uncorrelated with both αi and εit.

This is entirely appropriate in the stated preference case that is our motivating

analysis but relaxing the assumption of exogenous xit represents a useful extension.

In order for B to be uniquely identified (Chib and Greenberg, 1998), Rε is set to be

a correlation matrix. The observed outcome yit is defined to be dependent on the

latent variable y∗it via the relationship

yd,it = 1(y∗d,it > 0), d = 1, . . . , D, (3.4)

where 1(E) is an indicator function which takes value 1 if the event E occurs and 0

otherwise. Let y = {yit; i = 1, . . . , N, t = 1, . . . , T} be the set of observed discrete

outcomes. The density of the latent continuous variables y∗ conditional on the

random effects α1:N = (α1, . . . ,αN) is given by

p(y∗|α1:N ,θ) =
N∏
i=1

T∏
t=1

φ(y∗it;µit,Rε),

where θ := (B,Rε,Σα) denotes the vector of model parameters, µit = αi +Bxit

and φ is the multivariate normal density function in D dimensions.
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Following the specification of the MVP model in (3.1)–(3.4), the posterior density

is

π(y∗,α1:N ,θ|y) =
p(y|y∗,α1:N ,θ)p(y∗|α1:N ,θ)p(α1:N |θ)p(θ)

p(y)
, (3.5)

where p(y) =
∫
p(y|y∗,α1:N ,θ)p(y∗|α1:N ,θ)p(α1:N |θ)p(θ)dθ is the marginal likeli-

hood, p(θ) is the prior on all of the model parameters θ and

p(y|y∗,α1:N ,θ) =
N∏
i=1

T∏
t=1

D∏
d=1

(
1(yd,it = 0)1(y∗d,it ≤ 0) + 1(yd,it = 1)1(y∗d,it > 0)

)
,

is the distribution of the data conditional on the unobserved latent variables y∗.

3.3 Efficient sampling for Rε when using a

marginally uniform prior

This section describes an efficient way of sampling Rε by utilising Hamiltonian

dynamics (Duane et al., 1987). This involves reparameterising Rε to enable sampling

of parameters in an unconstrained space rather than RD. Due to the attractive

properties of the marginally uniform prior in (2.4) with ν = D + 1 being invariant

to different ordering of the outcome variables y and induces a shrinkage prior on

the partial correlation (detailed discussion in Section 2.1.1), we will use this prior

hereafter. Inference for the posterior distribution of (B,α1:N ,Σα) in (3.5) can be

performed using a Gibbs sampler (see Chapter 10 of Greenberg (2012) for details).

Our focus here is on the following non-standard conditional posterior distribution

π(Rε|y,y∗,α1:N ,θ−Rε) ∝
N∏
i=1

T∏
t=1

φ(y∗it;µit,Rε) · p(Rε), (3.6)

where θ−Rε is defined as θ, but excluding the parameters Rε.
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3.3.1 An unconstrained parameterisation

Because of the restrictions on sampling correlation coefficients on a confined space,

we adopt the reparameterisation strategy in Smith (2013) which re-expresses Rε via

a positive definite matrix Σε as

Rε = Λ−1/2
ε ΣεΛ

−1/2
ε , (3.7)

where Λε is a diagonal matrix made up from the diagonal elements of Σε. The

covariance matrix Σε can then be written in terms of its Cholesky factorisation

Σε = LεL>ε , where Lε is a lower triangular matrix. The diagonal elements of Lε

are set to 1 so that the transformation of Rε to Lε is one-to-one (Smith, 2013). We

define an operator vechL which vectorises the strict lower triangle of a matrix by row.

The unknown parameter vechL(Lε) = {Lij; i = 2, . . . , D, j < i} lies in RD(D−1)/2

and is therefore unconstrained. Lindstrom and Bates (1988) also implement the

Cholesky factorisation on a covariance matrix to optimise the log-likelihood function

of a linear mixed effects model. Other possible reparameterisation methods for Rε

include using polar coordinates (Rapisarda et al., 2007) and partial autocorrelations

(Daniels and Pourahmadi, 2009), but we adopt the representation in (3.7) due to its

computational tractability.

By using a change of variables, we can rewrite (3.6) in terms of Lε as

π(Lε|y,y∗,α1:N ,θ−Lε) ∝ π(Rε|y,y∗,α1:N ,θ−Rε) · |J|, (3.8)

where |J| = |∂vechL(Rε)/∂vechL(Lε)>| is the determinant of the Jacobian for the

transformation. We now note that for the transformation from Rε to Lε, the prior

on lower triangular Cholesky factor Lε whose diagonal entries are all fixed as ones,

given by

p(Lε) ∝ p(Rε) · |J|, (3.9)

induces a marginally uniform prior on all correlation coefficients for ν = D + 1.
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3.3.2 Sampling the Cholesky factor using HMC

HMC, popularised by Neal (2011), has enjoyed considerable recent interest within

the statistical literature due to its ability to generate credible but distant candidate

parameters for the MH algorithm, thereby reducing autocorrelation in the posterior

samples. It does so by exploiting gradient information of the log posterior density to

simulate a trajectory according to physical dynamics.

HMC has an intuitive physical interpretation whereby the state of the system

consists of the position of the variable of interest θ and its momentum u, which is

assumed to follow a N (0,M) pseudo-prior with mass matrix M . The momentum

of θ allows it to move over surfaces of varying gradients in the physical system, and

hence changing the position of θ. As a result of the introduction of the auxiliary

momentum variable u, the HMC targets the augmented distribution

π(θ,u) ∝ exp(−H(θ,u)),

where H(θ,u) = − log π(θ) + 1
2
u>M−1u is termed the Hamiltonian. As shown by

Neal (2011), the invariant distribution of the Markov chain generated from the HMC

algorithm is π(θ,u) and samples from π(θ) can be obtained by marginalising out

the momentum u.

In order to implement the HMC algorithm as described in Section 2.3.3, compu-

tation of the derivatives of (3.8) with respect to the Lij is required for the leapfrog

update. Lemma 1 derives the expressions for these gradients for the marginally

uniform prior in (2.4) based on the Cholesky reparameterisation in (3.7).

Lemma 1. Let Ed denote the matrix obtained by removing column d from an identity

matrix I. For the parameterisation of Rε in (3.7),

(i)
∂R−1

ε

∂Lij
= −Λ1/2

ε

(
Σ−1
ε

∂Σε

∂Lij
Σ−1
ε +

∂Λ
−1/2
ε

∂Lij
Λ1/2
ε Σ−1

ε + Σ−1
ε Λ1/2

ε

∂Λ
−1/2
ε

∂Lij

)
Λ1/2
ε .

(ii)
∂ log |Rε(−d;−d)|

∂Lij
= tr

(
R−1
ε (−d;−d)E>d

∂Rε

∂Lij
Ed

)
.
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(iii)
∂ log |Rε|
∂Lij

= − 2Lij∑i
k=1 L

2
ik

.

Proof.

(i) Using the chain rule and the reparameterisation in (3.7), we obtain

∂Σ−1
ε

∂Lij
=
∂Λ
−1/2
ε

∂Lij
Λ1/2
ε Σ−1

ε + Λ−1/2
ε

∂R−1
ε

∂Lij
Λ−1/2
ε + Σ−1

ε Λ1/2
ε

∂Λ
1/2
ε

∂Lij

and the result follows from Theorem 3 in Chapter 8 of Magnus and Neudecker

(1999).

(ii) We express Rε(−d;−d) as E>d RεEd and the result follows from Theorem 2 in

Chapter 8 of Magnus and Neudecker (1999).

(iii) We note that |Rε| = |Λε|−1 since |Σε| = 1 from the reparameterisation in

(3.7) and that |Λε| =
∏D

i=1

∑i
k=1 L

2
ik. The result is straightforward from simple

calculus.

3.4 A deterministic proposal distribution

Various strategies have been proposed to reduce the variability in the Monte Carlo

estimate of the expectation Eπ[f(θ)] of a scalar function f of parameter θ with respect

to some posterior distribution π(θ), including the Rao-Blackwellisation (Robert and

Casella, 2004) and the control variates (Dellaportas and Kontoyiannis, 2012; Oates

et al., 2017). These techniques produce an efficient estimator of Eπ[f(θ)] based on

sampled θ generated from an MCMC sampler.

Here, we focus on a particular class of methods which integrate variance reduction

techniques dynamically within an MCMC sampling algorithm. Let θ = (θ1, . . . , θP )>

be a parameter vector that has P univariate parameter with normal full conditional

distributions θp|θ−p ∼ N (µp, σ
2
p), where the conditional mean µp and the conditional

variance σ2
p may depend on θ−p = {θq : q = 1, . . . , P , q 6= p}. Adler (1981) and
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Barone and Frigessi (1990) introduce an over-relaxation method where the update

on θ is performed using Gibbs sampling, and where the new value θ′p for each margin

of θ is generated as

θ′p = (1 + κ)µp − κθp + δσp
√

1− κ2, p = 1, . . . , P , (3.10)

with δ ∼ N (0, 1) being a standard normal random variable. Equation (3.10) allows

for the introduction of dependence between successive samples via the constant

antithetic parameter κ, which is required to be in the open interval (−1, 1) so that

the Markov chain is ergodic and produces π(θ) as its invariant distribution. This

scheme is exactly the conventional Gibbs sampler when κ = 0. Variance reduction in

estimating Eπ[f(θ)] is achieved through the antithetic variable method (Hammersley

and Morton, 1956) by setting κ > 0 so that the estimation bias in the previous sample

is corrected in the opposite direction. The rate of convergence for the over-relaxation

method in (3.10) is studied in Barone and Frigessi (1990), while Green and Han

(1992) establish that the asymptotic variance of the estimator for Eπ[f(θ)] using this

strategy for linear f is proportional to (1− κ)/(1 + κ).

Motivated by the over-relaxation sampler (Adler, 1981; Barone and Frigessi, 1990)

discussed previously and noting that the IACT can be less than 1 if some of the

autocorrelations are negative, in which case a Monte Carlo estimator constructed is

super-efficient in terms of the reduction in variance of the Monte Carlo estimates

compared to the same estimates constructed from uncorrelated samples, we introduce

into the MH literature a deterministic design of the proposal distribution for θ

q(θ′|θ) = δψ(θ)(θ
′),

where ψ is a mapping function which introduces negative correlation between samples

and δψ(θ) is the Dirac delta function at ψ(θ) so that θ′ = ψ(θ). In this case, the MH

acceptance probability reduces to the ratio of π(θ) evaluated at θ′ and θ.
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When π(θ) is a normal distribution, we propose setting

ψ(θ) = 2µθ − θ, (3.11)

where µθ is the mean of π(θ). It is clear that (3.11) represents an example of the

antithetic variable with perfect negative correlation, and also an instance of the over-

relaxation method in (3.10) with κ = 1, which is outside the range of values for which

the Markov chain is ergodic. Symmetry of the normal density gives π(θ′) = π(θ),

which in turn translates to an acceptance probability of one. Clearly, our proposed

antithetic sampling will only yield an ergodic Markov chain when it is coupled with

stochastic simulation of additional parameters that affect the value of the determin-

istic proposal ψ(θ), in particular µθ. Under this condition, the value of µθ changes

in every iteration of the update and this drives the exploration of θ in the parameter

space. Furthermore, the dependence between θ and other model parameters prevents

exact periodicity from occurring, and thus the Markov chain is aperiodic.

The conditional posterior distribution of the random effects α1:N in our MVP

model is normal and likewise for the regression parameters β = vec(B) when using

a conjugate normal prior. Therefore, we can employ the antithetic sampling method

in (3.11) to improve the IACTs of both the random effects α1:N and regression

coefficients β. In fact, antithetic sampling of normal random variables can also be

understood in terms of a HMC update. Suppose that θ ∼ N (µθ,Σθ), and the prior

on the momentum variable u is chosen as N (0,Σ−1
θ ). Pakman and Paninski (2014)

show that the resulting Hamiltonian system can be solved analytically, with solution

given by

θ(t) = µθ + Σθu(0) sin(t) + (θ(0)− µθ) cos(t), (3.12)

which is a linear combination of µθ, the initial value θ(0) of θ and the initial

momentum u(0). Note that (3.12) is a multivariate generalisation of (3.10) with

t = cos−1(−κ). Equation (3.12) is thus equivalent to the antithetic sampler in

(3.11) when setting t = π radians. Since there is no approximation error in the
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Hamiltonian dynamics for a normal distribution, an MH accept-reject step is not

required in the HMC sampler, and the proposed value of θ will always be accepted.

This equivalence relation was first observed by Pakman and Paninski (2014), but was

not particularly useful in their framework of sampling from a truncated multivariate

normal distribution. Our proposal for antithetic sampling is different from theirs in

the sense that it is entirely deterministic, and we choose t = π radians to induce a

perfect negative proposal correlation. Pakman and Paninski (2014), on the other

hand, suggest setting t = π
2
radians, which is equivalent to drawing a fresh sample

from a random number generator when it is applied to the setting of a normal

distribution. We refer to this approach as the independent sampler hereafter.

So far, our discussion has mainly focused on normal π(θ). This is because an

analytic solution to the Hamiltonian system is only available for a normal distribution.

It is possible to extend the proposed antithetic sampler to more general distributions

by obtaining an approximation of µθ in order to propose a new value of θ, and

then accept or reject the proposal in an MH algorithm to target the true π(θ), as

suggested in Green and Han (1992). However, the application of this generalisation

and its variants (e.g. Creutz (1987)) is somewhat limited due to high rejection rates

in the accept-reject step (Neal, 1998). In this case, we consider the HMC algorithm

as it provides a way to overcome this shortcoming.

3.5 Simulation studies

We now study the efficiency of the antithetic variable technique described in Sec-

tion 3.4. Two examples are presented. The first examines the antithetic sampler in a

more general setting, while the second is specific to the application in Section 3.6.

Reported IACT values of the parameters are computed using the coda package

version 0.19–3 (Plummer et al., 2006) in R version 3.6.2 (R Core Team, 2019).

Example 1. The invariant distribution π(θ) is specified as a bivariate normal

distribution with high correlation (0.99) between the variables. For such a strong
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dependence between the variables, the Gibbs sampler is known to converge slowly to

π(θ) (Gilks et al., 1994). We investigate the performance of three sampling schemes –

the independent sampler, the over-relaxation algorithm with κ = 0.9, and a coupling

of the over-relaxation algorithm (on the first margin) with the antithetic sampler

(on the second margin). Note that this coupling strategy introduces stochasticity

into the antithetic sampler, which is essential to produce an ergodic Markov chain.

The three samplers are each run for 10 000 iterations from the same initialised

value (2, 2), and the update on each margin is performed conditional on the other.

Figure 3.1 illustrates the trajectories of the first 50 samples generated for each

of the three samplers. Exploration of the target space is reduced to a random

walk under the independent sampler (Figure 3.1 (left)). In contrast, the other two

samplers move between different contours of the density and explore the full support

of the distribution in an elliptical manner, thereby reducing the IACT significantly

(Figure 3.1 (middle)). The IACT decreases further (Figure 3.1 (right)) when the

over-relaxation algorithm on the second margin is replaced by antithetic sampling.

In this analysis, the mixing of both margins is improved by a factor of 1.75.
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Figure 3.1: Trajectories of the first 50 samples generated from the independent
sampler (left), the over-relaxation algorithm with κ = 0.9 (middle), and the over-
relaxation algorithm coupled with the antithetic sampler (right). The blue solid lines
represent the 95% confidence region of the bivariate normal distribution.
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Example 2. A simulated dataset is generated following the MVP model given

in (3.1)–(3.4), with D = 8, N = 162, T = 16 and values of the parameters θ =

(β,Rε,Σα) set to be the posterior mean estimates of the parameters in Model 1 of

the female contraceptive product analysis of Section 3.6. To avoid hand-tuning the

stepsize ε and the trajectory length T for the HMC update of Lε, we utilise the

No-U-Turn Sampler (NUTS) with the dual averaging scheme of Hoffman and Gelman

(2014). We use the following weakly informative prior distributions: β ∼ N (0, 100I),

Σα ∼ IW(9, I) and the prior distribution on the lower triangular Cholesky factor Lε

given in (3.9). The sampling scheme is run for 30 000 iterations, with the first 5 000

samples discarded as burn-in. Appendix 3.8.1 details the Gibbs sampling scheme.

Figure 3.2 compares graphically the marginal posterior densities and sample

autocorrelations of randomly sampled random effects α1:N and the regression pa-

rameter β between independent and antithetic sampling. Despite the absence of

Figure 3.2: Marginal posterior densities of a randomly selected random effects term
α3,80 (top panel) and regression coefficient β182 (bottom panel), and their sample
autocorrelation plots under independent sampling (IS) and antithetic sampling (AS).
Rightmost column gives the distributions of the log IACT values and the element-
wise log IACT ratios of IS to AS for all random effects α1:N (1 296 parameters) and
regression coefficients β (216 parameters).
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a stochastic component in the updates of α1:N and β, the kernel density plots of

these parameters indicate that the coupling of a stochastic MCMC scheme for the

remaining parameters with the antithetic variable technique gives the same posterior

distributions as those under independent sampling. The autocorrelation plots show

that the samples generated from antithetic sampling have positive dependence that

has a higher rate of decay over the number of lags, thereby reflecting the superior mix-

ing of the Markov chain. The IACT values of the randomly sampled parameters are

significantly lower, with improvement factors of 3.72 and 2.10 observed for α3,80 and

β182 respectively. The box plot showing the distribution of the IACT values across

all α1:N also indicates that some of these parameters are super-efficient (i.e. IACT

less than 1). Furthermore, the log IACT ratios of the independent sampler compared

to the antithetic sampler are well above 0, suggesting that all α1:N and β parameters

experience efficiency gains (see rightmost boxplots in Figure 3.2. Although perfect

negative correlation is induced between successive samples by the deterministic

proposal, this does not necessarily translate to an equivalent autocorrelation in the

posterior samples. Rather, the negative relationship is used to reduce the magnitude

of positive autocorrelation present in the MCMC samples. Note that convergence to

the posterior distribution might be slow for poorly initialised values under antithetic

sampling so we suggest using independent sampling during the burn-in period and

later switching to the deterministic proposal.

The remaining simulation experiments investigate the performance of the MVP

model in the context of recovering the true parameters of the data generating

process under different specifications of prior distribution on θ. We use the posterior

root-mean-square error (RMSE) defined by

RMSE(θp) =

√√√√ 1

n

n∑
j=1

(θp[j] − θp,true)2, (3.13)

as the performance measure, where θp[j] is the j-th iterate from the n posterior

samples and θp,true is the true value of θp. The measure in (3.13) is defined for
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univariate θp. For a multivariate θ, the posterior RMSE is calculated for each margin

of θ. All the results shown are based on 1 000 different replicate sets of simulated

data with the same true parameter values. The use of RMSE is valid here as a

measure of fit since weakly informative priors are used.

We first consider the conditionally conjugate hierarchical inverse-WishartHIW(ν0,

A) prior of Huang and Wand (2013) with degrees of freedom ν0 and positive scale

parameter A = (A1, . . . , AD)> as an alternative to the inverse-Wishart prior on the

D ×D covariance matrix Σα,

Σα|a1, . . . , aD ∼ IW

(
ν0 +D − 1, 2ν0 diag

(
1

a1

, . . . ,
1

aD

))
,

ad
iid∼ IG(0.5, A−2

d ), d = 1, . . . , D,

where IG(a, b) is an inverse-Gamma distribution with shape a and scale b. The

marginal prior of the standard deviation in Σα is a half-t(ν0, Ad) distribution, as

suggested in Gelman (2006). In the simulation, we select ν0 = 2 and choose a weakly

informative scale parameter whereby A1 = A2 = 0.23 and A3 = · · · = A8 = 0.46 so

that approximately 95% of the half-t density is below 1 and 2 respectively. This

specification is relevant to the real data application in Section 3.6, where our prior

belief is that the variability in the tendency of GPs to discuss pill contraceptives

is lower compared to non-pill alternatives. In contrast, the inverse-Wishart prior

assumes the same variability for all variance parameters σ2
αi

in Σα.

Figure 3.3a shows the distribution of the average RMSE ratio of each type of

parameter in Σα, i.e.
1

P

P∑
p=1

RMSEHIW(θp)

RMSEIW(θp)

based on 1 000 replicate simulations, for the hierarchical inverse-Wishart prior versus

the inverse-Wishart prior. Although the hierarchical inverse-Wishart prior is flexible

enough to specify different strengths of prior on each σ2
αi
, Figure 3.3a shows that in

this case its performance is similar to the more restrictive inverse-Wishart prior. This

result is somewhat unsurprising considering that the estimated σ2
αi

in the application
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(a) Hierarchical inverse-Wishart prior versus inverse-Wishart prior on Σα.
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(b) Horseshoe shrinkage prior versus normal prior on β.

Figure 3.3: Distributions of the average posterior RMSE ratio of all parameters in
(a) Σα or (b) β, based on 1 000 replicate analyses, under different prior choices.
(a) Standard deviations, correlations and partial correlations for parameters in Σα

for the hierarchical inverse-Wishart prior versus the inverse-Wishart prior on Σα.
(b) Sparse regression coefficients βk = 0 and non-sparse coefficients βk 6= 0 for the
horseshoe prior versus the N (0, 100I) prior on β.

example are more or less similar across the different contraceptive products (see

Appendix 3.8.5). The distributions for the posterior RMSE ratio of the correlation

coefficients and the partial correlations are concentrated around 1 since both the

hierarchical inverse-Wishart prior with ν0 = 2 and the inverse-Wishart prior with

D + 1 degrees of freedom and scale matrix I induce the same marginally uniform

prior, i.e. (2.4) with ν = D + 1, on the resulting correlation matrix Rα, which in

turn gives the same implied LKJ distribution on the partial correlations.

To identify sparse signals (coefficients which are significant) in the regression

parameter β, we employ the horseshoe shrinkage prior (Carvalho et al., 2010) given
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by

βk|λk, τ ∼ N (0, τ 2λ2
k), λk ∼ C+(0, 1), τ ∼ C+(0, 1),

where C+(0, 1) is a half-Cauchy distribution with location 0 and scale 1 restricted

to positive support. The simulation is carried out by setting 75% of the smallest

non-intercept posterior mean regression coefficients (in absolute value) in β to

0, from which we generate the simulated datasets. We model the prior on each

intercept separately by a weakly informative N (0, 100) distribution to avoid heavily

penalising these parameters. Gibbs sampling from the posterior distribution of β is

implemented by adopting the latent variable formulation in Makalic and Schmidt

(2016). Figure 3.3b displays the results of comparing this prior specification for β

to a N (0, 100I) prior, again in terms of the average RMSE ratio over all regression

parameters. The horseshoe prior performs as well as the N (0, 100I) prior on non-zero

entries of β, although the variability in the RMSE ratio is large. On the other hand,

the horseshoe prior outperforms the normal prior for those parameters whose true

values are zero, reducing the RMSE by half. This occurs as the horseshoe prior

places a greater density around zero, which results in a more concentrated posterior

distribution for parameters which are truly zero. Therefore, it is an attractive default

option when we expect sparsity in the regression parameters, as is the case for our

analysis of the characteristics affecting the decision-making behaviour of GPs in the

next section.

3.6 Application to female contraceptive products

by Australian GPs

3.6.1 Background and aims of study

In order to study the decision-making behaviour of Australian GPs, we obtain data

from Fiebig et al. (2017) who design a stated preference experiment in which GPs

are asked to select the contraceptive products that they would consider discussing
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with hypothetical female patients. The GPs evaluate a sequence of vignettes where

patients are defined in terms of socio-economic and clinical characteristics that are

varied as part of the experimental design to cover a range of different life cycle and

fertility stages. Table 3.3 in Appendix 3.8.2 contains the attributes of the patients

with a description for each level of the categorical variables. The GPs choose from a

set of 9 products that they would discuss with the patient before deciding upon their

most preferred product to be subsequently prescribed to the patient. A sample of 162

GPs from a list of 14 816 GPs from all states and territories of Australia volunteered

to participate in the experiment between December 2008 and June 2009 where each

subject makes choices for 16 different patients, resulting in 2 592 observations. The

following covariate information is collected on the GPs themselves: age, gender,

whether they are registered as a Fellow of the Royal Australian College of GPs,

whether they have a certificate in family planning, whether they are an Australian

medical graduate, whether their location of practice is in an urban area and whether

they bulk-bill patients. Analysis of this panel data is based on the set of binary

outcomes as to whether or not to discuss each of the contraceptive products. Due

to low occurrences for the prescription of the hormonal patch which was yet to be

released in the Australian market, we removed this product from the dataset leaving

observations on the 8 remaining products.

The experiment is designed to mimic the choice problem faced by GPs in a

consultation where they need to match a product with a particular patient. In

characterising such a decision problem, Frank and Zeckhauser (2007) distinguish

between “custom-made” and “ready-to-wear” (or norm-based) choices. A custom-

made choice involves the GP undertaking a careful evaluation of the patient and then

matching her to an appropriate product. However, as new products are introduced,

GPs face considerable costs in the process of gaining the knowledge and expertise

required to discuss and prescribe these products (Hauser and Wernerfelt, 1990;

Roberts and Lattin, 1991; Gilbride and Allenby, 2004). This is particularly the

case when more familiar products are available even though they may be somewhat
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inferior to the new products (Wellings et al., 2007); an especially salient situation in

the market for contraceptive products. In such cases, some GPs will tend to adopt

norms (here particular products) that work well for a broad class of patients and to

place less weight on certain patient attributes that would indicate a different product

that is potentially a better match.

Particular interest is in the dependence in recommendations among the products.

That is, which products tend to be discussed together and which tend to form distinct

clusters. If GPs pursue custom-made strategies, then a considerable portion of the

dependence between products will be explained by the attributes of the patient.

Conditional on the observable features of the patient and characteristics of the GPs,

remaining dependencies will reflect the relationship between unobservables related to

evaluations of the suitability of certain products for a particular patient, and how for

individual GP’s their product effects are correlated across products. The proposed

model is designed to capture these forms of heterogeneity and will permit a detailed

analysis of the choices.

The prevalence of ready-to-wear choices is one possible explanation for the rela-

tively low uptake of long acting reversible contraceptive (LARC) methods in Australia

(Black et al., 2013). LARC methods are contraceptives that are administered less

frequently than monthly and include hormonal implants, intrauterine contraception

(IUC), both hormonal and copper-bearing, and contraceptive injections. There is

increasing support for the greater use of these more effective methods to reduce

unintended pregnancies and abortion rates (Stevens-Simon et al., 2001; Blumenthal

et al., 2011; Secura, 2013). In our analysis below, we will use the model to explore

a case where there is no clinical reason why at least one of these LARC methods

should not be considered for discussion by GPs. For ease of presentation, we will use

the subscripts in Table 3.1 to denote the products.
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Subscript Product
1 Combined pill
2 Mini-pill
3 Hormonal injection
4 Hormonal implant
5 Hormonal IUD
6 Vaginal ring
7 Copper IUD
8 Condom

Table 3.1: Correspondence of parameter subscripts to each female contraceptive
product. Long acting reversible contraceptive methods are shown in grey.

3.6.2 Analysis and results

We consider two different models for the data:

Model 1: y∗it = αi +Bxit + εit, (3.14)

Model 2: y∗it = αi +Bxit +Czi + εit, (3.15)

for i = 1, . . . , N = 162 GPs and t = 1, . . . , T = 16 patients, where y∗ is the latent

normal random variables underlying the observed binary outcomes y described in

(3.4). Here αi and Czi respectively represent GP-specific random and fixed effects

with zi being a vector of GP characteristics, and Bxit represents fixed effects of

the patient. We select a horseshoe prior on β = vec(B) and model the covariance

matrix Σα of the random effects by the HIW(2,A) prior in Section 3.5 where

A = (0.23, 0.23, 0.46, . . . , 0.46)>. The scale is chosen to express the prior information

that the variances of the random effects are expected to be small, with those for the

pill products being less variable compared to the non-pill alternatives. The difference

between these two models is the presence of the GP-specific fixed effects in Model

2, which explain some of the relationships in the random effects of Model 1. Let

X = (X1, . . . , XK)> be a vector of normal random variables with covariance matrix

given by ΣX . Recall that Xi and Xj are conditionally independent given the other

random variables if the (i, j)-th entry of the precision matrix Σ−1
X is zero.
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Figures 3.4 and 3.5 give graphical summaries of the posterior distribution of the

dependence structures of the latent variable y∗it conditional on αi and xit (as well as

zi for Model 2), and the random effects αi respectively. All graphs are obtained by

computing the 95% credible interval of the posterior distribution for each entry of

R−1
ε and Σ−1

α , where an edge is formed between two nodes if the credible interval

does not include 0. The absence of an edge between any two nodes indicates a

plausible conditional independence between the two variables given the rest. The

dependence structures associated with the latent variables are the same for both

Model 1 and 2. This supports the use of the MVP model in order to capture the

complex dependencies between different products that would otherwise be ignored

in separate univariate analyses on each product.

Figure 3.4 is also instrumental in explaining the suitability of the contraceptive

products for a patient in terms of substitute goods, which are products with similar

functions that can be used in place of each other. For conciseness, we only focus on

some important relationships illustrated in the graphical model. The propensity to

discuss pill products (y∗1, y
∗
2) is independent of each other given whether the hormonal

IUD and the vaginal ring (y∗5, y
∗
6) are discussed, by the Markov property since all paths

from y∗1 to y∗2 pass through (y∗5, y
∗
6), reflecting the use of these non-pill contraceptives

as pill alternatives dictated by particular clinical conditions. The clique formed

between (y∗5, y
∗
7, y
∗
8) suggests dependence in the propensity to discuss the hormonal

IUD, the copper IUD and condoms. In fact, the posterior correlation between the

propensity scores for both the IUD methods (y∗5, y
∗
7) is around 0.52 on average (see

Appendix 3.8.4), suggesting a high tendency for these products to be discussed

together. This also suggests that these IUD methods are substitutes. Noticeably,

the propensity to discuss the hormonal injection and the hormonal implant (y∗4, y
∗
5)

exhibit the highest level of association, as indicated by our model, with a mean

posterior correlation of 0.59. This indicates the likelihood of these two prominent

LARC products being included together in discussions, and it is consistent with

them being moderately close substitutes for many patients.
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Figure 3.4: Graphical model illustrating estimated dependence structure of the latent
variables y∗ conditional on the random effects and the covariates in both Model
1 and 2. Edges between y∗i and y∗j are included if the 95% credible interval of the
marginal posterior distribution of the (i, j)-th entry of R−1

ε does not contain 0. Blue
edges represent positive dependence while red edges represent negative dependence.
The thickness of the edges is proportional to the strength of the dependence.
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(a) Model 1.
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(b) Model 2.

Figure 3.5: Graphical models illustrating estimated dependence structure of the
GP-specific random effects α in each model. Edges between αi and αj are included
if the 95% credible interval of the marginal posterior distribution of the (i, j)-th
entry of Σ−1

α does not contain 0. Blue edges represent positive dependence while red
edges represent negative dependence. The thickness of the edges is proportional to
the strength of the dependence.

Figure 3.5 can be interpreted in the same way as Figure 3.4, regarding the

substitution of different products but in the context of ready-to-wear choices. This

is because the random effects in (3.14) characterise the consistency of GPs in

discussing a particular product after observing the patient’s attributes. There

are clear differences in the graphical structure when comparing Models 1 and 2

(Figures 3.5a and 3.5b). The changes in the dependence structure of the GP random
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effects arise because some of the consistency in product choices can be explained by

GP characteristics. For example, the tendency of GPs to include both the hormonal

injection and the copper IUD (α3, α7) as ready-to-wear choices is due to their age

(see significance of GP characteristics in Appendix 3.8.3). The posterior structure

also provides some confidence that the random effects specification is useful in

capturing important GP characteristics that are not directly observed. Three clusters

of products with substantial dependence in ready-to-wear choices are identified from

the model after accounting for the observed GP characteristics. Particularly relevant

is the dependence between the hormonal IUD and the implant (α4, α5). There

is positive correlation between these two LARCs, indicating the tendency for GP

attitudes (either positive or negative) to be aligned. A second cluster includes both of

the pills (α1, α2) which is consistent with these products being used as a ready-to-wear

choice. GPs who are more likely to discuss the combined pill after conditioning on the

patient’s attributes behave similarly when considering the mini-pill. Contraceptives

that are not pill- nor hormone-based form the final bundle.

Our models allow us to examine posterior predictions for a range of patients.

Since we are interested in the uptake of LARC products, we specify a particular

female patient where there is no clinical reason why a LARC should not be considered

for discussion. Table 3.3 of Appendix 3.8.2 gives the attributes of this base-case

patient. Figure 3.6 summarises the estimate of the predictive probability of a GP

discussing a particular product, where the range of predictions shown is generated

for all GPs in the sample based on Model 2. For this particular base-case patient,

there is considerable agreement amongst all GPs in the sample that the combined

pill (product 1) is one of the most suitable products to be discussed, but they have

much more variable views on the other products. Amongst the LARCs (products

3, 4, 5 and 7), the hormonal injection (product 3) and the implant (product 4) are

the products which are the most likely to be discussed, with the variability across

GPs perhaps simply reflecting a view that they are good substitutes to each other,

which is in fact what we find in Figure 3.4. GPs could indeed have consistent views
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Figure 3.6: Predicted probability of a GP discussing each product for a base-case
patient for each of the 162 Australian GPs.

about the need to discuss LARCs, as they do with the combined pill, but they are

divided on which of the LARC products to discuss. To explore this possibility, the

final column in Figure 3.6 shows the predicted probability of the GPs discussing at

least one of these two products, that is P(y3 + y4 ≥ 1). The results suggest that

the GPs will discuss either product 3 or 4 (or both) with similar probability to the

combined pill. While this joint probability does indicate a median that is similar

to that of discussing the combined pill, the variability across GPs remains much

larger than that associated with the combined pill. This evidence is consistent with

the hypothesised resistance amongst some GPs to even discuss LARCs, let alone

recommend them (Sundstrom et al., 2015).

To assess convergence of the posterior samples generated, we compute the R̂

statistics defined in (2.16). Figure 3.7a shows the distribution of the R̂ of all model

parameters in Model 2. Since all values of R̂ are close to 1, the model parameters

have converged to their respective posterior distributions. We also perform posterior

predictive checks (Rubin, 1984; Gelman and Rubin, 1995), i.e. comparing predictions

drawn from the posterior predictive distribution to the observed data, to evaluate

the model fit. Following Gelman et al. (2000), we compare the distribution of the

realised continuous residuals εit for each posterior sample to a multivariate normal
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Figure 3.7: Distributions of the R̂ of all model parameters (left) and the p-value of
the non-parametric multi-sample E-statistic test (right) comparing the distribution
of realised continuous residuals to a multivariate normal distribution with mean
vector 0 and covariance matrix Rε.

distribution with mean vector 0 and covariance matrix Rε using the non-parametric

multi-sample E-statistic test (Székely and Rizzo, 2004) implemented in the mvn

package in R version 3.6.2 (R Core Team, 2019). Figure 3.7b shows the distribution

of the p-value obtained. The p-value is less than 0.05 in approximately 5% of the

samples, indicating that the model fits well.

3.6.3 Comparing sampling schemes

In order to investigate the performance of the antithetic sampler, Figure 3.8 illus-

trates marginal posterior distributions of those Model 2 parameters whose densities

demonstrate the greatest visual differences between independent and antithetic

sampling of the random effects α1:N and regression parameters β. The marginal

posterior distributions of α7,110 and β236 are effectively the same under both updating

approaches. This occurs because the mean of the conditional posterior distribution,

which is a key ingredient in the deterministic antithetic sampler proposal, changes

between iterations; a change largely driven by the stochastic update of the latent
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Figure 3.8: Marginal posterior density estimates of those Model 2 parameters with
the greatest visual differences between using independent sampling (IS) and antithetic
sampling (AS) for α1:N and β.

variable y∗. This outcome suggests that the posterior distribution of the other

parameters remains adequately explored by the antithetic sampler.

Table 3.2 compares the performance between independent and antithetic sampling

schemes when estimating Model 2. The antithetic variable method generates samples

marginally faster than independent sampling because it is deterministic. Based on

the results shown, we observe an improvement of 4.86 and 3.31 times performance

gain on average in the mixing of α1:N and β respectively. As a result of this, the

mean IACT of y∗ is also improved.

Parameter
Mean IACT IACT Ratio
IS AS Min Max Mean

y∗ 3.6387 2.6686 0.8242 3.1419 1.2127
α1:N 16.8872 4.6456 1.4857 13.3424 4.8632
β 15.0446 4.0105 1.4566 16.0173 3.3111

vechL(Lε) 14.8292 14.5422 0.9338 1.1737 1.0191
vechL(Rε) 12.7311 12.5170 0.9147 1.1509 1.0180
diag(Σα) 24.8056 14.6929 1.3130 2.0651 1.7222
vechL(Rα) 9.5025 5.1716 1.4599 2.3336 1.8424

Time per iteration 0.0243 0.0239 - - -

Table 3.2: Comparison of the performance between independent sampling (IS) and
antithetic sampling (AS) in the contraceptive products preference data in terms of
the speed (seconds per iteration), the mean IACT and the IACT ratio for each block
of parameter.
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3.7 Conclusion

Many methods exist for fitting a multinomial logit model with random effects, such

as simulated maximum likelihood (Gong et al., 2004), quadrature (Hartzel et al.,

2001; Hedeker, 2003), multinomial-Poisson transformation (Lee et al., 2017), and

moment-based estimation (Perry, 2017), among others. Computational strategies for

the MVP model, in contrast, are less well studied and computationally expensive to

implement. For instance, the random walk Metropolis-Hastings algorithm used in

Chib and Greenberg (1998) does not guarantee positive definiteness of the correlation

matrix in each proposal step, while at the same time not being able to explore the

parameter space efficiently (Sherlock et al., 2010). In this chapter, we introduce a

Hamiltonian Monte Carlo (Neal, 2011) sampling approach to generate the posterior

samples of correlation matrix Rε, which requires reparameterising Rε into an un-

constrained Cholesky factor to circumvent the restrictive properties of a correlation

matrix having diagonal entries of 1 and being positive definite. Credible but distant

candidate parameters for the Cholesky factor can be generated from the Hamilto-

nian dynamics by exploiting gradient information of the posterior density, thereby

reducing autocorrelation in the posterior samples. Furthermore, we propose a novel

antithetic variable technique, motivated by the over-relaxation algorithm (Adler,

1981; Barone and Frigessi, 1990), to accelerate the mixing of the random effects and

the regression parameters, where significant gains in efficiency are observed in our

application. Although our antithetic sampling regime deterministically specifies the

proposal distribution within the Metropolis-Hastings update, the ergodicity of the

Markov chain is unaffected when it is embedded within a larger system of stochastic

updates based on our empirical results.

Our methodology is applied to a longitudinal study of the discussion of female

contraceptive products by Australian GPs, where the (binary) outcomes are obtained

from the second stage of the stated preference data in Fiebig et al. (2017). An

examination of the correlation matrix underlying the choices revealed a complex
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dependence structure between the products, hence indicating the plausibility of our

formulation to model these choices in a multivariate setting. By using a multivariate

model, we are able to make inference about conditional independence of the products

using a graphical model, as well as computing the probability of the GPs discussing

a set of contraceptive products which is not possible in univariate analyses. Our

empirical study provided evidence of medical practice variation among the GPs,

which is in line with the findings of earlier studies (Wennberg et al., 1982; Scott and

Shiell, 1997; Davis et al., 2000). We found that the disparities in medical practice was

especially more pronounced with regard to the inclusion of LARCs in the discussion

with patients, and this result is also reported in Sundstrom et al. (2015). Our analysis

indicated that the combined pill was the most popular contraceptive choice among

the patients, and it represented a likely ready-to-wear option for many GPs. Without

GPs even discussing LARCs, their uptake was likely to remain relatively constrained

in such a context (Wellings et al., 2007).

3.8 Appendices

3.8.1 Sampling scheme for the MVP model with random

effects

Suppose that we choose the following prior distributions: β ∼ N (0,Ψβ),Σα ∼

IW(ν0,ΨΣ) and the prior distribution on the lower triangular Cholesky factor Lε

in (3.9) with ν = D + 1. Let θ = (β,Lε,Σα). Equation (3.5) gives the posterior

distribution of interest under the data augmentation approach where we update

y∗,α1:N and each component of θ using Gibbs sampling. For notational clarity, we

will drop the superscript which indicates the sequence of the samples in a Markov

chain where necessary.
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Step 1: Updating y∗

For d = 1, . . . , D, sample y∗ conditionally one-at-a-time following Geweke (1991),

i.e.

y∗d,it|α1:N ,θ,y
∗
−d,it, yd,it ∼


T N (−∞,0](µ

(d|−d)
d,it , σ

(d|−d)
d,it ) if yd,it = 0

T N (0,∞)(µ
(d|−d)
d,it , σ

(d|−d)
d,it ) if yd,it = 1

where y∗−d,it = (y1,it, . . . , yd−1,it, yd+1,it, . . . , yD,it)
>, µ(d|−d)

d,it and σ(d|−d)
d,it are the univari-

ate d-th dimension conditional mean and conditional standard deviation respectively

for the N (µit,Rε) distribution and T N (a,b) is a univariate normal distribution

truncated to the interval (a, b).

Step 2: Updating β

Compute the posterior mean µβ and the posterior covariance matrix Σβ for β as

Σβ =

(
N∑
i=1

T∑
t=1

(I ⊗ xit)R−1
ε (I ⊗ xit)> + Ψ−1

β

)−1

,

µβ = Σβ

(
N∑
i=1

T∑
t=1

(I ⊗ xit)R−1
ε (y∗it −αi)

)
,

where ⊗ denotes the Kronecker product and set β[j+1] = 2µβ −β[j] deterministically.

If a horseshoe prior is specified on β instead, its update is the same by first sampling

diag(Ψβ) conditional on the local shrinkage parameters λk and global shrinkage

parameter τ (see Makalic and Schmidt (2016) for details).

Step 3: Updating Lε

Sample Lε using the NUTS algorithm and obtain the correlation matrix Rε from

the relationship in (3.7).

Step 4: Updating α1:N

For i = 1, . . . , N , compute the posterior mean µαi and the posterior covariance
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matrix Σ̃α for the random effects αi as

Σ̃α =
(
TR−1

ε + Σ−1
α

)−1
,

µαi = Σ̃α

(
R−1
ε

T∑
t=1

y∗it −Bxit

)
,

and set α[j+1]
i = 2µαi −α

[j]
i deterministically.

Step 5: Updating Σα

Sample

Σα ∼ IW

(
ν0 +N,

N∑
i=1

αiα
>
i + ΨΣ

)
.

Suppose that a HIW(ν0,A) prior with scales A is used for Σα. Sample

ad ∼ IG
(
ν0 +D

2
, ν0Σ

−1
α (d; d) +

1

A2
d

)
,

Σα ∼ IW

(
ν0 +N +D − 1,

N∑
i=1

αiα
>
i + 2ν0diag

(
1

a1

, . . . ,
1

aD

))
,

where Σ−1
α (d; d) is the d-th diagonal entry of the precision matrix Σ−1

α .
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3.8.2 Attributes of the patient in the Australian GP data

Attribute Variable Description

Age

dagegp1 Aged 16-19 years
dagegp2 Aged 20-29 years
dagegp3 Aged 30-39 years
dagegp4 Aged 40 years or more

Reason for encounter

drfe1 Starting prescribed contraception for first time
drfe2 Recommencing prescribed contraception
drfe3 On pill but dissatisfied
drfe4 Using non-pill method but dissatisfied

Periods
dbleed1 Heavy and/or painful periods
dbleed2 Irregular periods
dbleed3 No problems with periods

Blood pressure
dbp1 Has low blood pressure
dbp2 Has normal blood pressure
dbp3 Elevated blood pressure

Relationship

drel1 In long-standing relationship
drel2 In new relationship
drel3 Has no steady relationship
drel4 No information about relationship

Children
dchild1 Is currently breastfeeding
dchild2 Has children but is not breastfeeding
dchild3 Has no children

Fertility plans

dfut1 Does not want to have children in future
dfut2 Plans to have children in next 2 years
dfut3 Plans to have children but not in next 2 years
dfut4 Unsure about future fertility plans

Pill preference
dpil1 Prefer pill to other methods
dpil2 Has no strong opinion about pill
dpil3 Prefers methods other than pill

Weight concern dwt1 Is concerned about gaining weight
dwt2 Is not concerned about gaining weight

Compliance dcomp1 Has no difficulty with compliance
dcomp2 Has difficulty with compliance

Income
dpay1 Has a low to middle household income
dpay2 Has a health care card
dpay3 Has a high household income

Smoking
dsmk1 Is a non-smoker
dsmk2 Smokes less than 10 cigarettes per day
dsmk3 Smokes 10 or more cigarettes per day

Table 3.3: Categorical variables in the contraceptive discussion data with a text
description for each level of attribute. Levels in grey define the attributes of a base-
case patient.
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3.8.3 Posterior means of the patient and GP fixed effects in

the Australian GP data based on Model 2

Variable Product
1 2 3 4 5 6 7 8

P
at
ie
nt

Intercept 1.4161 −1.2576 −0.3964 1.0991 −2.3943 −0.1142 −1.7657 0.6918
dagegp1 0.1949 −0.1329 0.0104 0.0744 −0.5063 −0.0205 −0.2880 0.0637
dagegp3 −0.1326 0.0621 −0.0624 −0.0002 0.3173 −0.0037 0.0906 0.0108
dagegp4 −0.3936 0.1851 −0.2406 −0.1041 0.8095 −0.0270 0.3849 0.0013
drfe2 −0.0426 0.0008 −0.0388 −0.0144 0.0441 −0.0188 −0.0449 0.0068
drfe3 −0.2464 −0.0541 0.0270 0.0788 0.0940 0.1069 −0.0248 0.1364
drfe4 −0.0206 0.1042 −0.0099 0.0516 0.0678 0.0719 −0.0702 0.0056

dbleed1 0.0493 −0.1363 0.0615 −0.0869 0.4000 −0.0256 −0.5274 −0.2311
dbleed2 0.0160 −0.0763 0.0213 −0.0222 0.0070 0.0408 −0.0869 −0.0254
dbp1 −0.0599 −0.0011 −0.0300 0.0292 0.0040 0.0317 −0.0221 −0.1433
dbp3 −0.9956 0.2444 0.0070 0.0135 0.2375 −0.2959 0.2561 0.0347
drel1 0.0436 −0.0102 −0.0963 −0.0020 0.1570 0.0314 0.0282 −0.3971
drel3 −0.0141 0.0269 −0.0208 0.0002 −0.0271 0.0090 −0.0186 0.0198
drel4 −0.0914 0.0879 0.0667 −0.0009 −0.0101 0.0294 0.0029 −0.2035
dchild1 −1.7437 1.3074 −0.0082 −0.0889 0.9236 −0.9909 0.5354 −0.0371
dchild2 −0.0458 0.0344 −0.0632 −0.0403 0.9850 −0.0498 0.6007 −0.0543
dfut1 −0.3206 −0.0043 0.1978 0.0245 0.6323 −0.0786 0.2120 −0.1143
dfut2 −0.2861 0.1936 −0.2169 −0.1996 −0.0068 0.0359 −0.1438 0.0116
dfut4 −0.3591 0.0485 0.0470 0.0099 0.2882 0.0067 0.0150 0.0323
dpil1 0.4724 0.3662 −0.0948 −0.2629 −0.0120 −0.0331 −0.0430 −0.0287
dpil3 −0.1878 −0.2417 0.0289 0.0618 0.0538 0.0329 0.0457 0.0814
dwt1 0.0831 0.0374 −0.2582 −0.0624 0.0318 0.0652 −0.0130 0.0815

dcomp2 −0.3401 −0.1988 0.2152 0.0642 0.2321 −0.0033 0.3133 −0.0162
dpay2 −0.0253 −0.0558 −0.0204 −0.0026 0.0084 0.0595 0.0082 0.0074
dpay3 0.0317 −0.0639 −0.0697 −0.0177 −0.0373 0.2896 −0.0177 −0.0044
dsmk2 −0.2665 −0.0117 −0.0266 −0.0126 −0.0038 0.0444 0.0892 0.0320
dsmk3 −0.5218 −0.0133 0.0132 0.0255 0.0148 −0.0546 0.0467 0.0333

G
P

Female −0.0662 0.0248 −0.4417 0.0732 0.0368 0.5999 −0.4474 −0.0260
Fellow −0.0183 −0.0958 0.0709 0.0418 0.2067 0.1019 −0.1456 −0.0108

Family planning −0.0002 −0.0154 −0.1203 0.2229 0.0434 0.0360 −0.0324 −0.0118
Bulk-bill −0.0210 −0.0349 0.0416 −0.0372 −0.0617 0.0036 0.0509 0.0038

Age 0.0086 0.0080 0.0207 −0.0061 0.0175 −0.0044 0.0093 −0.0100
Australian graduate 0.0839 0.0564 −0.0087 0.3466 0.0911 −0.2385 −0.0965 0.5515

Urban −0.0888 0.0065 0.0706 −0.0078 0.0099 0.0048 −0.0222 0.1774

Table 3.4: Regression coefficient posterior mean estimates for the attributes of a
female patient and the characteristics of a GP based on Model 2 for various products
in the contraceptive discussion data. Parameters whose 90% credible interval does
not include 0 are shown in grey.
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3.8.4 Posterior mean of Rε in the Australian GP data based

on Model 2

Rε =



1.0000 −0.1126 −0.0515 −0.0450 −0.2349 0.4712 −0.2065 −0.0204

−0.1126 1.0000 0.1625 0.0449 −0.0263 −0.2679 −0.0537 −0.0494

−0.0515 0.1625 1.0000 0.5873 0.1779 0.0153 0.1836 0.0189

−0.0450 0.0449 0.5873 1.0000 0.2414 0.0379 0.1889 0.1048

−0.2349 −0.0263 0.1779 0.2414 1.0000 −0.0696 0.5177 −0.0771

0.4712 −0.2679 0.0153 0.0379 −0.0696 1.0000 −0.0055 0.1831

−0.2065 −0.0537 0.1836 0.1889 0.5177 −0.0055 1.0000 0.2058

−0.0204 −0.0494 0.0189 0.1048 −0.0771 0.1831 0.2058 1.0000



3.8.5 Posterior mean of Σα in the Australian GP data

based on Model 2

Σα =



0.5574 0.3005 0.2760 0.2490 0.0795 0.2056 0.0634 0.2592

0.3005 0.6923 0.3040 0.2679 0.1875 0.2199 0.2418 0.3358

0.2760 0.3040 1.3574 0.2590 −0.0188 0.1065 0.2586 0.0751

0.2490 0.2679 0.2590 1.6084 0.5244 0.2538 −0.2229 0.2383

0.0795 0.1875 −0.0188 0.5244 1.1040 0.2911 0.0135 0.2612

0.2056 0.2199 0.1065 0.2538 0.2911 1.5142 0.2950 0.4906

0.0634 0.2418 0.2586 −0.2229 0.0135 0.2950 2.0530 0.4144

0.2592 0.3358 0.0751 0.2383 0.2612 0.4906 0.4144 1.2942





Chapter 4

Multiclass classification of growth

curves using random change points

and heterogeneous random effects

4.1 Introduction

According to the latest joint malnutrition estimates by the United Nations Children’s

Fund, World Health Organization (WHO), and World Bank Group (2018), it is

estimated that in 2017, stunted growth is prevalent in 22.2% of the global population

under the age of 5, or over 150 million children worldwide. This is particularly

serious in low to medium income countries where the rate of stunting is 35.0%.

A major contributor to stunted growth is prolonged faltering, defined as a slower

rate of growth compared to a reference healthy population of the same age and

gender, which comes with adverse consequences such as increased susceptibility of

individuals to diarrhoea and respiratory infections (Kossmann et al., 2000), abnormal

neurointegrative development (Benítez-Bribiesca et al., 1999) and at a population

scale, a capital loss to the labour market (Hoddinott et al., 2013). Therefore, it is

imperative to take early preventive measures to minimise these impacts. In order
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to implement preventive measures, faltered children must first be identified in the

population. It is additionally important to distinguish between different growth

patterns, as each type represents a particular growth behaviour and so merits a

different response (Collins et al., 2006). For example, children who caught up on

growth after having faltered may have benefited from the intake of better diets or

nutritional supplements. Such strategies can then be extended to other children in

the cohort to improve their growth.

In the functional data analysis (Ramsay and Silverman, 2005) literature, several

clustering methods are proposed. One of these methods first reduces the dimension of

the inherently infinite-dimensional functional data using a finite basis expansion (see

e.g. Abraham et al. (2003) and Rossi et al. (2004) for such approximation using a B-

spline) or a functional principal component analysis, for example in Peng and Müller

(2008) and Xiao et al. (2016), and then clusters the basis coefficients or the functional

principal component scores using classical classification algorithms (see Chapter 14

in Hastie et al., 2009). Another related classification approach that is proposed in

Tarpey and Kinateder (2003), Ferraty and Vieu (2006) and Tokushige et al. (2007)

computes the pairwise Euclidean norm between curves, which is used as a similarity

measure for k-means clustering. On the other hand, model-based clustering methods

are presented in Shi et al. (1996), James and Sugar (2003), Heard et al. (2006) and

Giacofci et al. (2013), whereby the basis coefficients are typically assumed to be

distributed according to a mixture of normal distributions, with each component

determining the classification memberships. Model-based techniques using principal

components modelling are considered in Bouveyron et al. (2007) and Bouveyron and

Jacques (2011), whereby the data are fitted in group-specific functional subspaces

using the notion of functional probability density defined in Delaigle and Hall

(2010). However, functional methods are not suitable for sparse observations. This is

particularly relevant when studying the growth development of children in low to

medium income countries, where the number of height-related measurements per

child is small and they are taken at irregular intervals (see e.g. Anderson et al. (2019)
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for a summary of these statistics for the datasets used in their study). This has made

regression-based methods a more popular approach in modelling growth curves.

Similarly, both multi-stage and model-based methods are proposed for growth

curve regression models. Leung et al. (2017) suggests classifying children with the

lowest 10% of values of random velocity estimates extracted from a linear mixed

effects model (Laird and Ware, 1982) as having experienced an “abnormal” growth,

whereas Lee et al. (2018) classifies children into two groups based on their minimum

random random velocity estimates obtained from a broken stick model (Ruppert

et al., 2003), which is a piecewise linear model with breaks at several knots. Here, the

velocity refers to the rate of change in the measurements used for growth modelling

(Cole, 1998), which in practice includes the raw height and other suitable metrics such

as z-scores. Z-scores, such as the height-for-age z-score (HAZ), is a measure defined

by the WHO Multicentre Growth Reference Study Group (2006) that compares the

anthropometric measurements of a child matched against a reference population

of healthy children of the same age and gender. These staged methods rely on an

arbitrary threshold and the resulting classifications are not necessarily comparable

between different populations. As such, growth mixture models (Muthén and Shedden,

1999; Nagin, 1999; Muthén and Muthén, 2000; Li et al., 2001; Muthén, 2008) are

considered for analysing the change of growth patterns in longitudinal measurement

data. These models assume that the population is heterogeneous and comprises of

multiple smaller subgroups (Berlin et al., 2014). Unobserved heterogeneity between

children is modelled using random effects and finite mixture distribution (McLachlan

and Peel, 2000), thereby allowing different sets of velocities to capture group-specific

growth trajectories. Despite its extensive use, one unresolved issue in the application

of a growth mixture model is how to determine the “correct” number of mixture

components G (Nylund et al., 2007). Most approaches choose G based on information

criterion (Dasgupta and Raftery, 1998; Magidson and Vermunt, 2004), likelihood

ratio test (Titterington et al., 1985), goodness-of-fit test (Verbeke and Lesaffre, 1996),

among others, which requires fitting multiple models with different values of G.
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This chapter adopts a different strategy in choosing G: modelling the mixture

distribution of growth velocities within a Bayesian framework using the Dirichlet

process (DP; Ferguson, 1973) prior, with G being inferred as part of the posterior

sampling algorithm. We note that the concept of using a DP prior for classification

is not new. In the context of functional data, Scarpa and Dunson (2014) cluster body

temperature curves of women during menstrual cycle using a functional DP prior,

Ray and Mallick (2006) and Suarez and Ghosal (2016) use a wavelet representation

of the functional data with a DP prior on the coefficients to classify precipitation

curves, while Rodriguez et al. (2008) propose a nested DP model to study differences

in health care quality. A DP prior is particularly convenient in our present framework

of growth curve modelling as it circumvents model selection procedure by modelling

the mixture distribution non-parametrically and adapting the complexity of the

model, i.e. the value of G, to the amount of data available. Furthermore, Teh (2011)

show that G scales logarithmically in the number of observations so that the number

of subgroups is bounded above.

Anderson et al. (2019) compare the most common growth modelling approaches

and find that the broken stick model, when used in conjunction with the z-scores

has superior performance in terms of out-of-sample prediction. As such, we use the

broken stick model as the underlying growth curves model. The locations of the

knots in the broken stick model are generally assumed to be equally spaced (Lee

et al., 2018; Anderson et al., 2019). A further contribution of this chapter is to

introduce random change points for the knots into the broken stick model, rather

than their locations being arbitrarily fixed, and simultaneously modelling the growth

velocities of each child as random slopes. These change points are modelled as

random effects so that the difference in the timing of growth phases between children

can be accommodated within the model and the classification process. Probabilistic

inference for these change points is straightforward and can be implemented using

Markov chain Monte Carlo (MCMC) algorithms. Our simulation studies demonstrate

the superior performance of the random change points model compared to the broken
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stick model with fixed knots in terms of the agreement to the true component

membership. Due to the limited flexibility of the broken stick model with fixed knot

locations in capturing change point heterogeneity, the number of clusters tends to

be overestimated. This occurs as a result of the bias in the estimation of growth

velocity.

This chapter is organised as follows: Section 4.2 describes the extension of the

broken stick model to include mixture distributed random effects using a DP prior. It

also introduces individual-specific random change points into the model, and provides

implementation details. Section 4.3 investigates the performance of the proposed

model via simulation studies. Section 4.4 provides an analysis of the Vellore growth

curve dataset, and Section 4.5 concludes.

4.2 Methods

4.2.1 A broken stick model with mixture distributed

random slopes

A popular method for modelling longitudinal growth data in the epidemiological

literature is the broken stick model (Ruppert et al., 2003). This may be defined as

yit = αi+β0i(ωit−(ωit−ξ1)+)+βKi(ωit−ξK)++
K−1∑
k=1

βki((ωit−ξk)+−(ωit−ξk+1)+)+εit,

(4.1)

αi ∼ N (µα, σ
2
α), εit ∼ N (0, σ2

ε ), (4.2)

for i = 1, . . . , N, t = 1, . . . , T i, where yit ∈ R denotes the height-for-age z-score (HAZ)

for child i on the t-th measurement occasion at age ωit, (a)+ = max{0, a} is the

positive part of a and ξ = (ξ1, . . . , ξK)> is an ordered vector ofK predetermined knots,

or change points, such that ξ1 < · · · < ξK . The individual-specific random intercept

αi and error εit are both assumed to be independent and normally distributed with

parameter vectors given by (µα, σ
2
α) and (0, σ2

ε ) respectively. The child-specific and
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time invariant random intercept αi controls for heterogeneity in the HAZ at birth,

centred around the population mean µα, and is assumed to be uncorrelated with the

error term εit. The broken stick model fits K + 1 piecewise linear segments with

breaks at ξ to model the growth trajectory calibrated in terms of the HAZ. The

formulation in (4.1) enables an individual child’s growth velocity to be obtained

directly from the regression coefficients since βki represents the rate of change in

the HAZ between years ξk and ξk+1. This model could be extended to higher order

polynomials but this would complicate direct interpretation of the parameters as a

measure of change.

We now consider distributional assumptions on the individual-specific growth

velocity vector βi = (β0i, . . . βKi)
>. Anderson et al. (2019) and Lee et al. (2018)

model βi as realisations from a multivariate normal distribution with mean vector

µβ and covariance matrix Σβ, i.e.

βi ∼ N (µβ,Σβ).

This signifies a homogeneous population model where individual growth profiles

largely follow the trend of a global trajectory, with the variability of deviations across

individuals from this mean curve determined by Σβ. Under this assumption the

growth rate is, on average, the same for all children in the population at each knot.

However, this is rarely the case in practice. For example, Goode et al. (2014) find

that higher socio-economic status has a positive impact on the HAZ through greater

health consciousness and better household sanitation systems in their analysis of

child health data from the China Health and Nutrition Survey, which is a household

survey conducted in nine Chinese provinces: Guangxi, Guizhou, Heilongjiang, Henan,

Hubei, Hunan, Jiangsu, Liaoning, and Shandong. Studies have also found evidence

of correlation between growth velocity during childhood and biological factors such

as maternal height (see e.g. Ramakrishnan et al. (1999) for a related study in rural

eastern Guatemala). Therefore, we alternatively consider a more structured normal
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mixture distribution

βi ∼
G∑
g=1

wgN (µg,Σg), (4.3)

for positive weights wg > 0 with
∑G

g=1 wg = 1, in order to accommodate a more

complex composition of the population. Each mixture component g in (4.3) therefore

corresponds to a particular type of growth pattern as characterised by the set of mean

growth velocities µg, and each child belongs (probabilistically) to one of these G

subgroups. By clustering the children into different subgroups, subsequent analyses

can then identify risk factors which are associated with the manifestation of certain

growth behaviours. Equation (4.3) requires specifying the number of subgroups G,

which is typically unknown a priori in practice. Common methods for choosing G

are discussed in Section 2.1.2. In the next section, we describe a Bayesian approach

that incorporates the estimation of G via a Dirichlet process prior.

4.2.2 Bayesian non-parametric mixture modelling

Choosing a suitable value for the number of components G in a mixture distribution

is a non-trivial problem. Most of the methods described in Section 2.1.2 are ad-hoc,

requiring the need to fit multiple models of differing complexity, and selecting the

“best” model based on certain criteria. In order to circumvent this kind of model

selection procedure, we employ a Bayesian non-parametric approach to fit a model

which allows its complexity to be parameterized within the model. In general, such

flexibility is achieved by assuming an infinite dimensional parameter space Θ, on

which a prior distribution is then developed. In our present context, subscribing to

this framework leads to an infinite mixture model.

Specifically, we consider a DP mixture model (Antoniak, 1974) for βi for which

βi|(µi,Σi) ∼ N (µi,Σi), (µi,Σi)|G ∼ G, G ∼ DP(λ,G0), (4.4)

for i = 1, . . . , N , where θ̃i = (µi,Σi) are the parameters of a normal distribution

specifying the mixture component from which the growth velocity βi of child i is



100
CHAPTER 4. MULTICLASS CLASSIFICATION OF GROWTH CURVES USING RANDOM

CHANGE POINTS AND HETEROGENEOUS RANDOM EFFECTS

generated and DP(λ,G0) denotes a Dirichlet process with concentration parameter

λ > 0 and base distribution G0. Since the parameter of interest is a mean vector

and covariance matrix pair, one common choice of G0 is the normal-inverse-Wishart

distribution with parameters (m, c, ν,Ψ), having density function

p(θ̃) ∝ |Σ|−1/2 exp

(
− c

2
(µ−m)>Σ−1(µ−m)

)
×|Σ|−(ν+K+2)/2 exp

(
−1

2
tr(ΨΣ−1)

)
.

Integrating out G from (4.4), Blackwell and MacQueen (1973) show that the con-

ditional prior distribution induced on θ̃i follows a Pólya urn scheme, constructed

as

θ̃i|θ̃1, . . . , θ̃i−1 ∼
1

λ+ i− 1

i−1∑
j=1

δθ̃j +
λ

λ+ i− 1
G0. (4.5)

From (4.5), the generating mechanism of the first parameter θ̃1 involves drawing an

independent sample from the base distribution G0. Subsequent samples, θ̃i, are then

obtained by setting θ̃i to be a random draw from the previous samples {θ̃1, . . . , θ̃i−1}

with probability proportional to i− 1 (thereby directly introducing a clustering effect

within the mixture model) or a new sample from G0 (i.e. a new mixture component)

with probability proportional to λ. Accordingly, the generated samples {θ̃1, . . . , θ̃N}

concentrate on a set of unique values {θ1, . . . ,θG}, with a larger value of λ giving

rise to a larger (random) value of G.

4.2.3 Knot locations as random effects

So far, the knot location vector ξ in (4.1) has been treated as predetermined and

fixed across all children in the population. However, this is unrealistic in the current

context as individual children react differently to treatment interventions such as

the administration of vitamins or to negative experiences such as infections, which

will likely occur at individual-specific time points. The heterogeneity in the timing

of such events is likely to cause individual trajectories to change course at different

time points. Furthermore, erroneously fixing ξ in the broken stick model, will result

in a biased estimate of the growth velocity βi as the regression lines between two
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neighbouring segments are connected at the knot. This then affects the classification

of each child because their growth patterns are summarised by βi. Therefore, a

sensible approach is to model the knot locations within the interval of [0, I] as a

child-specific ordered vector of knot random effects ξi = (ξi1, . . . , ξiK)>. We construct

the prior distribution of each ξi as

p(ξi) ∝
K+1∏
k=1

(ξik − ξi,k−1)×
K∏
k=1

1

(
ξik ∈

(
(k − 1)I

K
,
kI
K

))
, (4.6)

for i = 1, . . . , N , where ξi0 = 0 and ξi,K+1 = I for convenience and 1(E) is an

indicator function which takes value 1 if the event E occurs and 0 otherwise. The

first product term in (4.6) is the distribution of the even-numbered order statistics

from 2K + 1 points uniformly distributed on [0, I], as used in Green (1995), which

probabilistically encourages consecutive knot points to be uniformly spaced such

that each random knot ξik is centered around (k − 0.5)I/K a priori. Although the

even-numbered order statistics distribution usefully penalises short subintervals, it

would still be possible for the knots ξi to be concentrated in regions where there is

an abundance of informative data. As such, we additionally impose a hard constraint

via the second product term in (4.6), which ensures that there is exactly one knot

within each of the K subintervals of equal length on [0, I] (see e.g. Fan et al. (2010)

for a similar construction).

4.2.4 Posterior inference and cluster analysis

Posterior simulation for the DP mixture model defined in (4.4) is straightforward to

implement using MCMC methods (Gelman et al., 2013). However, naive sampling

schemes based on the Pólya urn construction of the DP prior in (4.5) can be

highly inefficient due to the resulting numerical approximations of high dimensional

integrals when the dimension of βi is large. Let s = (s1, . . . , sN)>, si ∈ {1, 2, . . .}

be the vector of cluster allocation variables determining which subgroup each child

belongs to. Here we focus on the MCMC sampling of s, the weight of each mixture
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component wg, the concentration parameter λ of the DP prior, and the knot random

effects ξi, as MCMC updates for other model parameters are straightforward. We

implement the slice sampler proposed by Walker (2007) which is based on the stick-

breaking representation. The slice sampling algorithm introduces auxiliary variables

ui, i = 1, . . . , N , whose distribution conditional on the label si is uniform on [0, wsi ].

This parameter augmentation strategy gives the conditional posterior distribution

P(si = g| · · · ) of si as

P(si = g| · · · ) =

∏Ti
t=1 p(yit|θg, αi,xit(ξi), σ2

ε )1(wg > ui)∑
h:wh>ui

∏Ti
t=1 p(yit|θh, αi,xit(ξi), σ2

ε )
, (4.7)

where xit(ξi) is the regressor in (4.1) by replacing the fixed knots ξ with individual-

specific random knots ξi, and given the univariate normal density φ

p(yit|θg, αi,xit(ξi), σ2
ε ) = φ(yit;αi + x>it(ξi)µg,x

>
it(ξi)Σgxit(ξi) + σ2

ε ),

is the likelihood function for the t-th measurement from child i under mixture group

g. Conditional on the other model parameters, (4.7) indicates that the possible

subgroups to which any child belongs are restricted to a finite set of components

in the infinite dimensional parameter space Θ whose weights are greater than ui.

Given this, the probability of child i belonging to any of these subgroups is then

proportional to the appropriate likelihood term for each group.

Denoting the number of children in the g-th occupied mixture component by

Ng, g = 1, . . . , G, where each child is assigned to one of the mixture components

probabilistically according to (4.7), the conditional posterior distribution of the

weights can be shown to be Dirichlet distributed (Ge et al., 2015), i.e.

(w1, . . . , wG, w
′)| · · · ∼ Dirichlet(N1, . . . , NG, λ),

where w′ = 1−
∑G

g=1 wg is the weight on Θ′ = Θ\{θ1, . . . ,θG}. The stick-breaking

process in (2.20) is then applied to w′ until the length of the stick is less than

min{u1, . . . , uN}. For each additional break of the stick with initial length w′, a new
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sample θ′ ∈ Θ′ is drawn from the base distribution, G0. The rationale behind this is

to ensure that Θ′ has zero probability of being sampled in (4.7). The generation of

additional empty mixture components and the removal of unoccupied components

after sampling s changes the value of G between MCMC iterations.

Escobar and West (1995) show that likelihood function of the hyperparameter λ

is given by

p(λ| · · · ) ∝ λG
Γ(λ)

Γ(λ+N)
∝ λG

∫ 1

0

cλ−1(1− c)N−1dc,

where Γ(λ) =
∫∞

0
xλ−1 exp(−x)dx denotes the gamma function and c is a latent

variable. Under a Gamma(aλ, bλ) prior for λ, the joint posterior distribution of (λ, c)

can be written as

π(λ, c| · · · ) ∝ λaλ+G−1 exp(−bλλ) cλ−1(1− c)N−1. (4.8)

Equation (4.8) simplifies posterior sampling of the hyperparameter λ since the

conditional posterior distributions of λ and c are now standard probability dis-

tributions. Therefore, the MCMC update for (λ, c) can be performed by Gibbs

sampling, whereby c is generated from a Beta(λ,N) distribution and then λ from a

Gamma(aλ +G, bλ − log c) distribution.

The individual-specific knots, ξi, can be updated one knot component, k =

1, . . . , K, at a time using a Metropolis-Hastings update. Writing ξ̃(k)
i = (ξi1, . . . , ξi,k−1,

ξ̃ik, ξi,k+1, . . . , ξiK)> as the proposed vector of knot locations with ξ̃ik sampled uni-

formly from the subinterval ((k − 1)I/K, kI/K) and all other ξi components set at

their previous values, the probability of accepting the proposal is given by

min

{
1,

Ti∏
t=1

p(yit|βi, αi,xit(ξ̃(k)
i ), σ2

ε )

p(yit|βi, αi,xit(ξi), σ2
ε )
× (ξi,k+1 − ξ̃ik)(ξ̃ik − ξi,k−1)

(ξi,k+1 − ξik)(ξik − ξi,k−1)

}
,

where p(yit|βi, αi,xit(·), σ2
ε ) = φ(yit;αi + x>it(·)βi, σ2

ε ). For improved efficiency, the

update for ξi can be performed in parallel for each child.
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4.3 Simulation study

We now examine how the above model and inferential procedure performs in a

controlled setting. A population of N = 400 children was generated under the broken

stick model in (4.1). The child-specific random intercepts αi were chosen to follow

a N (0.75, 0.5) distribution and the error variance σ2
ε is set as 0.15. The individual

growth velocity vectors βi are generated from a normal mixture distribution with

G = 4 components with equal weights. The number of knots is specified as K = 2

so that the growth trajectories are constructed from three piecewise linear segments.

The mean velocities for each subgroup, µg, g = 1, . . . , 4, are given by

[
µ1 µ2 µ3 µ4

]
=


−3.0 −7.5 −3.0 4.0

−3.0 −5.0 −1.0 1.0

−3.0 0.0 3.0 −3.0

 ,

and the covariance matrix for each subgroup, Σg = 0.2I, where I is the identity

matrix. Figure 4.1 shows three scatterplots, with each plot illustrating the bivariate

marginal distributions of the generated βi. Using the same βi, we construct two sets

of data to examine different designs on the knot locations. The first dataset (Dfixed)
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Figure 4.1: Scatterplots illustrating the bivariate marginal distributions of the
generated N = 400 growth trajectory vectors βi, i = 1, . . . , N . The realised vectors
are coloured by subgroup membership.
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has fixed and equally spaced knots within the interval [0, 1] so that (ξ1, ξ2) = (1
3
, 2

3
)>,

while the second dataset (Drandom) generates random knots for each child, with

the first and second knots drawn uniformly from the intervals [0, 0.5] and [0.5, 1]

respectively. Figure 4.2 illustrates growth profiles for one representative individual

from each subgroup (columns) and also compares their differences between Dfixed

(top panels) and Drandom (bottom panels) for the same βi. The first three subgroups

exhibit a faltering pattern with different rates during the first two time periods.

This faltering then either continues (subgroup 1), plateaus (subgroup 2) or growth

improves (subgroup 3) in the third time period. In contrast, subgroup 4 is qualitatively

different, whereby the children experience accelerated growth over time before a

decline in the HAZ score is observed closer to age 1.

For each child, a random number (uniformly between 10 and 20) of HAZ observa-

tions was generated, with the measurement time of each observation being uniformly
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Figure 4.2: HAZ score versus age (from birth until year 1) of representative simulated
individuals from each of the four distinct growth trajectory groups (columns) under
the broken stick model. Growth curve knot points are indicated by vertical dashed
lines; the top panels showing equally spaced fixed knots (Dfixed) and the bottom
panels showing the same individuals but with random knot points (Drandom). The
observed data (×) is generated using the same random errors around each growth
curve for each individual (top versus bottom panel in each column).
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distributed between birth and age 1. To reduce variability in the comparison be-

tween Dfixed and Drandom, the two datasets were generated using the same number,

measurement time of observations and random deviations around the two growth

trajectories for each individual child. In this manner, the empirical residuals around

each growth trajectory are identical between the two datasets for each child, and the

knot locations are the only component which varies between Dfixed and Drandom.

For inference we adopted weakly informative conjugate prior distributions. In

particular we specified µα ∼ N (0, 25), σα, σε ∼ half-Cauchy(5), λ ∼ Gamma(2, 4),

and the base distribution G0 has a normal-inverse-Wishart distribution with parame-

ters (m, c, ν,Ψ) = (0, 10−3, K + 2, I). Posterior sampling is achieved using MCMC

following the details in Section 4.2.4 with a chain of 100 000 iterations, with the

first 50 000 iterations discarded as burn in and retaining every 20th of the remaining

samples, yielding 2 500 thinned iterates for analysis. We fit two model variants to

each dataset: Mfixed is the model with K = 2 fixed and equally spaced knots at ω = 1
3

and ω = 2
3
, whereas Mrandom is the model where the two knot points are allowed

to vary for each individual. The optimal clustering ŝ is obtained by optimising

the PEAR (or Es [ARI(ŝ, s)]) described in Section 2.4.1 using the mcclust package

version 1.0 (Fritsch, 2012) in R version 3.6.2 (R Core Team, 2019).

Table 4.1 presents a summary of the performance of models Mfixed and Mrandom

for both datasets, in terms of the final group classification outcome. For the fixed

knot dataset Dfixed both models perform similarly well by correctly identifying

the true number of groups. This largely occurs as the Mfixed model is contained

within the Mrandom model, and so the latter has the capacity to achieve the same

performance as the former when the data have the knot structure assumed in Mfixed.

Of course, here model Mfixed is slightly outperforming Mrandom in terms of the

Es [ARI(ŝ, s)] because the latter needs to estimate the knot locations based on a

small number of observed datapoints, which introduces some variability into the

final classification. As the number of observations per individual increases, we can

expect these two models to perform similarly. Although model Mrandom produces
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Dataset Model Gmin Gmax Gmode Ĝ Es [ARI(ŝ, s)] ARI(ŝ, strue)

Dfixed

Mfixed 4 6 4 4 0.9674 0.9734
Mrandom 4 5 4 4 0.9096 0.9606

Drandom

Mfixed 6 9 7 7 0.7096 0.6102
Mrandom 4 5 4 4 0.8245 0.7756

Table 4.1: Performance summary when fitting fixed and random knot location
models (Mfixed and Mrandom) to fixed and random knot location datasets (Dfixed and
Drandom). For each dataset/model pair, columns indicate minimum, maximum and
mode of the posterior of the number of mixture components (Gmin, Gmax, Gmode); the
number of groups Ĝ in the optimal clustering ŝ; the value of the posterior expectation
Es [ARI(ŝ, s)]) evaluated at ŝ; and the ARI score comparing the estimated ŝ to the
true group structure strue.

lower agreement with the true clustering strue, the realised classification obtained

from the optimisation of PEAR is very much comparable to that of model Mfixed as

shown in Table 4.2: most children are allocated to their respective true groups, with

a 1.5% misclassification rate.

In contrast, when modelling the more heterogeneous (and realistic) dataset

Drandom, which is more realistic in practice, the fixed knot model performs significantly

worse (measured by PEAR) than the random knot model. TheMfixed model gives an

ARI score which indicates poor concurrence with strue. This arises as the fixed knots

lead to biased estimates of each child’s growth velocities βi, which then results in a

much larger estimated number of groups as the estimated growth curves are forced

to be more dissimilar. Figure 4.3 shows the discrepancy between the estimated βi

and their true values. True subgroup 1 has the same average velocity (−3.0) across

Dfixed Drandom

Mfixed Mrandom Mfixed Mrandom

strue\ŝ 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 1 2 3 4
1 99 0 1 0 96 0 4 0 97 0 1 2 0 0 0 96 0 4 0
2 1 99 0 0 0 100 0 0 10 50 40 0 0 0 0 12 88 0 0
3 2 0 98 0 0 0 98 2 7 0 0 51 42 0 0 14 0 82 4
4 0 0 0 100 0 0 0 100 0 0 0 0 0 56 44 0 0 2 98

Table 4.2: Contingency table comparing the true group allocations strue to those
in the estimated optimal clusterings ŝ. Results are shown when fitting fixed and
random knot location models (Mfixed andMrandom) to fixed and random knot location
datasets (Dfixed and Drandom).
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Figure 4.3: Scatterplots comparing the true and estimated mean values of βi when
fitting fixed knot location model Mfixed to random knot location dataset Drandom.
The true group allocations strue are represented by different colours, i.e. strue = 1
(black), strue = 2 (red), strue = 3 (blue) and strue = 4 (green), while the estimated
optimal clusterings ŝ are represented by different symbols.

all broken stick segments. As a result, the location of the knots is not critical, and

so any bias in βi for members in this group is relatively small. Therefore, this group

can largely be identified correctly under the fixed knot model. This is not the case

for the other true clusters: the individuals in these clusters tend to be split into

smaller subgroups, and this is largely due to the biases in the estimation of β1i and

β2i. Fitting the random knot model Mrandom naturally performs well, as expected.

Overall, it is clear that unless the true knot points for any growth curve are known

(which will not be the case in practice) and so can be fixed in the model, the random

knot location model, which allows for the heterogeneity between each individual

child’s growth stages, will outperform the fixed knot location model.

4.4 Application: Longitudinal birth cohort in India

The Healthy Birth, Growth and Development knowledge integration (HBGDki)

project is an initiative supported by the Bill and Melinda Gates Foundation to



4.4. APPLICATION: LONGITUDINAL BIRTH COHORT IN INDIA 109

combine and standardise information from various epidemiological studies into a

single knowledge base (Jumbe et al., 2016). The principal objective of this project

is to facilitate interdisciplinary collaboration among experts across different fields

to gain insights into global child growth and development issues. The life quality

of children, particularly those in low to medium income countries, can be greatly

improved by the development of appropriate and timely health solutions. To date

the project has amassed data sets from 192 studies, involving close to 11.5 million

children and spanning 36 countries.

Our focus is on the classification of growth curves for a longitudinal study from

the HBGDki project, examining the prevalence of rotavirus infections in a birth

cohort in Vellore, India (Paul et al., 2014). The sample population of N = 373

children were followed up for three years from birth and had their anthropometric

measurements recorded. For the present analysis, we only analyse the HAZ scores

from birth to year 1 as this is the period of fastest growth in mental development

(Olusanya and Renner, 2013). We remove outliers (HAZ < −6 or HAZ > 6) based on

WHO recommendations (WHO Multicentre Growth Reference Study Group, 2006).

This results in 5 to 15 observations for each child, with the first measurement taken

between days 1 and 225. The time scale is represented as age in years (between 0

and 1) whereby age 1 is equivalent to day 365, and the number of knot points on the

growth curve is specified as K = 3. Here, we fix the value of K = 3 which provides

sufficient flexibility in the shape of the individual growth curves as the number of

observed measurements for each child is relatively small. Two broken stick models

with mixture distributed random slopes are fitted, one has random change points

while the other has fixed knot locations. Further sensitivity analyses using K > 3

did not result in noticeably different analysis outcomes (results not shown). Prior

distributions on model parameters follow those in Section 4.3. The MCMC algorithm

is run for 300 000 iterations, with the first 100 000 iterations discarded as burn in,

retaining every 50th of the remaining samples, yielding 4 000 MCMC iterates for

cluster analysis.
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Figure 4.4 shows empirical growth curves obtained from the estimated groupings

of children using the broken stick model with random change points Mrandom, and

Figure 4.5 shows the associated fitted posterior mean growth curves. The optimal

clustering ŝrandom identifies 9 unique subgroups, which coincides with the posterior

mode for the number of groups in the posterior distribution for G. Children in

the two largest subgroups (1 and 2) show faltering growth where the distinction

between them is the slight improvement in the HAZ score from birth in subgroup 1.

Subgroup 3 (51 children) experiences severe early stage faltering which persists for

approximately 6 months, after which the HAZ scores subsequently improve. This

growth pattern is also observed in subgroup 7 (only 4 children), but the changes are

milder. Subgroups 4 and 6 (43 and 5 children respectively) each alternate between

growth and faltering, with the amplitude of each change differentiating between the

two groups. Children in subgroups 5 and 8 exhibit a steep decline in the HAZ score

before a short interval of significant recovery is observed, and which is then followed

by another onset of faltered growth. The difference between these two subgroups

lies in the times at which catch-up growth occurs (ω ∈ [0.25, 0.5] for subgroup 5,

ω ∈ [0.5, 0.8] for subgroup 8). Subgroup 9 consists of a small number of children

with severe and continued faltering growth between birth and age 1.

Figure 4.6 shows a sample of empirical growth curves obtained from the estimated

groupings of children using the broken stick model with fixed knot locations Mfixed,

and Figure 4.7 shows the corresponding fitted posterior mean growth curves for

these children. The optimal clustering ŝfixed now identifies 11 subgroups of children

from the birth cohort, but the patterns of growth trajectories obtained are relatively

similar to those in ŝrandom. It is unsurprising that the number of distinct subgroups

in ŝfixed is higher compared to ŝrandom, which corroborates with the results presented

in Section 4.3. The limited flexibility of Mfixed in capturing the heterogeneity in the

timing of growth phases between children leads to biased estimates of the growth

velocities – a key metric that determines the membership classification. This in turn

causes the splitting of a larger subgroup into multiple smaller subgroups. Table 4.3
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Figure 4.4: Subgroups of children from the Vellore cohort based on the broken
stick model with random change points. Individual raw trajectories, obtained by
connecting the observations with straight lines, are shown for a sample of children
from each subgroup. The number of children in each subgroup is given in parentheses.
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Figure 4.5: Estimated posterior mean trajectories for the same sample and groupings
of children in Figure 4.4.
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Figure 4.6: Subgroups of children from the Vellore cohort based on the broken stick
model with fixed change points. Individual raw trajectories, obtained by connecting
the observations with straight lines, are shown for a sample of children from each
subgroup. The number of children in each subgroup is given in parentheses.
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Figure 4.7: Estimated posterior mean trajectories for the same sample and groupings
of children in Figure 4.6.
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compares the allocated subgroup membership between ŝrandom and ŝfixed. Children

from subgroup 2 in ŝrandom, which exhibit a faltering trend with a constant negative

slope, are assigned almost equally in numbers between three different subgroups (1,

2 and 4) in ŝfixed. Similarly, children from subgroup 5 in ŝrandom are separated into

two distinct subgroups (2 and 6) in ŝfixed. While subgroup 3 in ŝrandom has a more

heterogeneous composition of children in terms of their growth curves in the second

half of the first year, these children are classified into two different subgroups in

ŝfixed, i.e. subgroup 3 which shows a steep decline in the HAZ and subgroup 5 which

also shows a similar faltering pattern but with a recovery period between ω = 0.5

and ω = 0.75.

Using ŝrandom as the benchmark due to its parsimony, we conduct a further analysis

to explore whether there is any relationship between various covariates recorded on

each individual and the classification of children into the subgroups illustrated in

Figure 4.4. Figure 4.8 shows the results. In terms of gender composition, subgroup

1 comprises mostly females (59.0%), whereas subgroup 3 has a disproportionately

large number of males (68.6%). These subgroups deviate significantly from the

composition of the full sample which has approximately equal proportions for each

ŝfixed\ŝrandom 1 2 3 4 5 6 7 8 9
1 78 33 0 1 2 0 0 0 2
2 10 32 0 27 18 4 2 0 0
3 27 4 18 3 0 0 0 0 0
4 2 38 1 5 2 0 2 0 0
5 0 0 18 6 0 0 0 0 0
6 0 1 0 0 14 0 0 0 0
7 0 0 8 0 0 0 0 0 1
8 0 0 6 0 0 0 0 0 0
9 0 0 0 0 0 1 0 4 0
10 0 0 0 0 2 0 0 0 0
11 0 0 0 1 0 0 0 0 0

Table 4.3: Comparison of the estimated optimal clusterings (ŝrandom and ŝfixed)
based on the broken stick model with random change points Mrandom and fixed knot
location Mfixed.
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Figure 4.8: Bar charts illustrating the proportion of children in terms of gender and
maternal education levels in different subgroups (left panels), and boxplots showing
the distributions of IQ scores types (general intelligence, verbal and performance)
for children in different subgroups (center and right panels). Raw data (×) for IQ
scores are shown for subgroups 6–9 which have a small number of observations. Not
all children are represented in each boxplot due to missing data.

gender. Mothers who received no formal education are more likely to give birth

to children that exhibit the growth patterns in subgroups 3 and 4. Children are

also more likely to experience severe faltering in their early childhood (subgroups 3

and 5) if they are birthed by mothers who completed 5 years (a moderate amount)

of education. Moreover, these children have lower IQ scores (general intelligence,

performance and verbal) compared to their peers, as indicated by the lower median

scores for these tests in subgroups 3 and 5. On the other hand, children in subgroup

4, which exhibits the mildest faltering of all subgroups, have the highest median

IQ scores for all tests and this is in line with the results in Emond et al. (2007).

For children in the smaller subgroups (i.e. subgroups 6–9), subgroups 7 and 9 are

dominated by male children (75% and 100% respectively), while those in subgroups
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6 and 8 are mostly borne by mothers who are highly educated. There are no obvious

covariate patterns to account for those children who experienced severe faltering in

the first year (subgroup 9). However, these conclusions are unreliable due to the

small number of children in these subgroups.

4.5 Conclusion

This chapter proposes a new model to classify growth patterns in longitudinal child

growth studies where the number of classes is not known in advance. We model the

evolution of growth in terms of the HAZ scores by piecewise linear segments (i.e. the

broken stick model) whereby an individual child’s rates of growth are characterised

by the slopes of these segments. Accordingly, it is plausible to use these slope

parameters as a proxy for the growth pattern and so model their similarities via a

mixture distribution. A mixture distribution requires specifying a suitable number of

components to prevent over- and under-fitting. It is a common practice in the growth

mixture modelling literature (Muthén and Shedden, 1999; Muthén and Muthén, 2000;

Magidson and Vermunt, 2004; Nylund et al., 2007) to select the number of mixture

components based on model selection information criteria and likelihood ratio test,

which requires fitting multiple models of differing complexity. To overcome this issue,

a Bayesian non-parametric approach is adopted using the DP prior (Ferguson, 1973),

so that the number of mixture components is driven by the complexity of the data

and inferred as part of the posterior sampling algorithm.

In order to extend the flexibility of the broken stick model, and ensure that

it can be a viable model in practice given the heterogeneity inherent in observed

datasets, we incorporated random knot locations into the model. The location of

the knots varies between children and follows the even-numbered order statistics

distribution in Green (1995) a priori. In addition, we impose a structural restriction

which ensures that there is a knot within each of several equally divided segments

of the observational period. This is because we regard two growth curves, where

one has the same shape as the other but lags by one period, as being different.
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Our simulation studies suggest that overall the random knot point model performs

well: the fixed knot points model overestimates the number of components when the

true data generating process has random change points due to the resulting biased

estimation of the velocity vectors.

Our methodology is applied to a longitudinal study of birth cohort in Vellore,

India from the Healthy Birth, Growth and Development knowledge integration

(HBGDki) project funded by the Bill and Melinda Gates Foundation. Analysis of the

posterior distribution indicated that there are 9 different types of growth profiles in

the population, with a majority exhibiting improved growth followed by a faltering

trend. We note that the granularity of the classification can be increased if we are

willing to impose stronger assumptions in the model, for example by having a shared

covariance matrix across all subgroups, or by restricting the covariance matrices to be

diagonal. More sophisticated analyses could treat the number of knots in the broken

stick model as unknown with some prior specification, which could be implemented

via reversible-jump style MCMC algorithms (Green, 1995; Sisson, 2005).



Chapter 5

Modelling age-related changes in

executive functions of soccer players

5.1 Introduction

Sports activity has long been an integral part of everyday life, and is synonymous

with a healthy lifestyle due to well-established relationships between an adequate

level of physical exercise and physiological benefits such as reduced risk of developing

coronary heart disease (Bassuk and Manson, 2005; Sofi et al., 2008) and improved

cognitive performance (Kramer and Erickson, 2007; Hillman et al., 2008). One of the

most popular sports in the world is soccer (also known as football), which is evident

from the over 3.5 billion total viewerships (Fédération Internationale de Football

Association (FIFA), 2018) it garnered for the quadrennial World Cup tournament in

2018. Due to its ubiquitous global presence, the sport has grown into a multi-billion

dollar industry over the last few decades, with soccer clubs investing heavily in talent

identification programmes guided by measures of executive functioning. Formally,

executive functions are cognitive processes that facilitate decision-making (Best and

Miller, 2010; Furley and Wood, 2016) and goal-oriented behaviours (Zelazo et al.,

2004) based on information within the context of the task (Alvarez and Emory, 2006).
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Some examples of these processes are problem-solving, sustained attention, resistance

to interference, utilisation of feedback and multi-tasking (Grafman and Litvan, 1999;

Burgess et al., 2000; Chan et al., 2008).

The proposition advocating for the use of executive functions testing within the

talent identification process is based on considerable amount of evidence indicating

that neuropsychological evaluations provide a useful indicator for performance success

in young soccer player. For example, Verburgh et al. (2014) revealed that elite players

show superior motor inhibition as measured by a stop signal task compared to amateur

players of the same age, and this finding has been further reaffirmed in other similar

experiments (Huijgen et al., 2015; Sakamoto et al., 2018). However, longitudinal

studies of the developmental trajectories of executive functions across different stages

of life in an athlete population are lacking in the literature as previous examinations

focus on a general population (Zelazo et al., 2004; Huizinga and Smidts, 2010; Zelazo

and Carlson, 2012). Since Jacobson and Matthaeus (2014) argued that executive

functions can be improved by active participation in sports, the generalisation of

existing results to an athlete population is therefore limited. Nevertheless, general

studies conducted so far establish that executive functions are attributed to the

frontal lobes of the brain (Stuss and Alexander, 2000) which undergo protracted

maturation from childhood to early adulthood (Lebel et al., 2008; Taylor et al., 2013),

and this is followed by cognitive declines (Dempster, 1992; Jurado and Rosselli, 2007)

due to the attrition of dendrites during the ageing process. These developments give

rise to an inverted U-shaped executive functions trajectory across the lifespan of

an individual (Kail and Salthouse, 1994; Cepeda et al., 2001; Zelazo et al., 2004).

Huizinga et al. (2006) and Zelazo and Müller (2011) documented that improvements

in executive functions occur the most rapidly from late childhood into adolescence.

In fact, Diamond (2002) reported that children between the age of 12 and 15 years

old attain adult levels of performance in neuropsychological assessments.

This chapter analyses the age-related architecture of executive functions in a

sample of male elite soccer players representing a professional German club, and
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compares our findings with existing theories. A gender- and sport-specific study

is necessary here as evidence has shown that the impact of athletic participation

varies significantly between gender (Habacha et al., 2014) and sport type (Krenn

et al., 2018). Particular emphasis is given to examining the developmental changes

in executive functions trajectories between late childhood (10–12 years old) and early

adulthood (18–21 years old) since these periods are of relevance to talent identification

and development. Contrary to previous investigations in the sport science literature

which are based on cross-sectional data (see e.g. Verburgh et al., 2014; Huijgen

et al., 2015; Sakamoto et al., 2018), our analysis uses longitudinal cognitive data

collected from a test battery of soccer and non-soccer related neuropsychological

assessments performed by the players over a period of three years. These outcomes are

modelled using a latent variable model (Dunson, 2000; Muthén, 2002; Proust et al.,

2006), which relates speed and accuracy observables to latent variables representing

executive functions. Furthermore, we make a distinction between domain-generic

and domain-specific executive functions, in accordance with the two-component

intellectual development model introduced by Li et al. (2004). Indeed, Furley and

Wood (2016) recommended longitudinal studies that assess both domain-generic and

domain-specific executive functions jointly, rather than examining them independently.

This is done by modelling parameters of the underlying latent variables using a

multivariate formulation.

This chapter is organised as follows. Section 5.2 describes the data and the

neuropsychological assessments performed by the players. Section 5.3 describes the

latent variable model used in our analysis. Section 5.4 presents the results, and

Section 5.5 concludes.

5.2 Background of study

The study collects the outcome variables from a test battery of neuropsychological

assessments undergone by elite soccer players. The assessments measuring executive

functions used in the study include a determination test to measure general perceptual
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abilities, a response inhibition test to measure motor impulsivity, a pre-cued choice

response time task to measure vigilance under interference, a Helix test to measure

soccer-specific perceptual abilities and a Footbonaut test to measure soccer-specific

technical abilities. Figure 5.1 graphically illustrates these assessments, while the

following subsections give further details on each assessment.

5.2.1 Determination test

The determination test (Schuhfried GmbH, Mödling, Austria) is a multi-stimuli

assessment used in sports such as motor racing (Baur et al., 2006) to analyse the

perceptual-motor abilities of a participant. The participant is presented with a

combination of two audio tones (2 000 Hz and 100 Hz) and five coloured signals on a

computer screen in the assessment, to which the participant must react by choosing

the appropriate buttons on the keyboard panels via hand and foot responses. The

number of correct answers to the stimuli within the four-minute assessment session

and the median response time based on correct responses are recorded. Since the

participants are required to respond correctly to as many stimuli as possible within

the stipulated time, the assessment provides a good evaluation of the reactive stress

tolerance and receptivity of the participants. The validity and reliability of the

determination test in measuring executive functions have been confirmed by several

studies (Whiteside et al., 2003; Ljac et al., 2012; Beavan et al., 2019).

5.2.2 Response inhibition test

The response inhibition test (Schuhfried GmbH, Mödling, Austria) uses a stop signal

paradigm, and has been widely established to provide a good assessment of impulse

control (see e.g. Alderson et al., 2007; Zhong et al., 2014; Cox et al., 2016). The

assessment is made up of 100 trials, with each presenting a left- or right-pointing

arrow to which the participant must respond by pressing the corresponding button

on the keyboard panel. Each signal is displayed on the computer screen for a period

of one second, followed by a one-second lapse before the subsequent signal appears.
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(a) Determination test. (b) Pre-cued choice response time task.

(c) Helix test. (d) Footbonaut.

Figure 5.1: Graphical illustrations for some of the neuropsychological assessments
used in the study. (a) The test equipment used for the determination test in which
a participant is required to respond to different types of stimuli by pressing the
appropriate buttons on the keyboard panel and foot pedal. The response inhibition
test uses the same equipment, but with a simpler keyboard design and without
the foot pedal. (b) A congruent trial (the pre-cue appears in the same circle as
the stimulus) in the pre-cued choice reaction time task. (c) A participant in the
midst of identifying the players whom he is assigned to track in the Helix test while
being monitored by a staff member. (d) A design plan of the Footbonaut in which a
participant (a solid circle) is required to pass the soccer ball from one of the dispenser
gates (square panels with a solid square within) to the illuminated target gate (an
empty square panel partially surrounded by a striped band.)
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There are two types of signals: go signal (around three quarters of the total trials)

which requires instant reaction from the participant, and stop signal (usually appears

after a go signal) to which the participant must refrain themselves from responding.

The stop signal is indicated by a tone at a pitch of 1 000 Hz for 100 milliseconds.

The difficulty of the assessment is adaptive, i.e. a correct response to a stop signal

will increase the visual-audio delay between the appearance of the arrow and the

tone in the next stop trial by 50 milliseconds (up to a maximum of 350 milliseconds),

and vice versa. The variable of interest that reflects the ability to override prepotent

actions (Logan, 1994) is the stop signal reaction time (SSRT), which is calculated by

deducting the mean stop signal delay from the mean reaction time. Measurements

recorded are the SSRT, the mean reaction time and the number of correct responses.

5.2.3 Pre-cued choice response time task

In a pre-cued choice response time task, the participant is required to press the

correct button on a joystick panel as fast as possible in response to a visual stimulus.

Four blank circles are arranged side by side and presented on the screen after a

three-second countdown timer is shown. One of them turns yellow after a randomised

interval of between 2 to 4 seconds. Prior to the colour change, a small dot appears

in the center of one circle. A total of 24 trials are conducted in the assessment,

half of which has the dot in the same circle that turns yellow (congruent trials;

see Figure 5.1b), and the rest in a different circle (incongruent trials). The mean

response time for correct answers is recorded. This task has been previously used to

assess psycho-motor vigilance under interference in both general population (Barela

et al., 2019) and professional athletes (Beavan et al., 2019), thereby validating its

use as a measure of executive functions.

5.2.4 Helix test

The Helix test (SAP SE, Walldorf, Germany) is designed to train various aspects of

a participant’s perceptual abilities including sustained attention, decision-making,
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multiple object tracking, and peripheral vision using a soccer-relevant stimulus.

A participant stands facing a 180-degree curved screen where a soccer stadium is

reproduced. Eight soccer players, with equal representation from two teams, are

depicted as human-size avatars differing in the jersey colour, but otherwise having

the same physical features and jersey number. During the assessment, the animated

avatars run randomly across the virtual pitch away from the participant for eight

seconds before lining up across the screen in a different order to the initial line-up.

The participant must then identify four of the avatars that he is assigned to track

before the start of the trial (see Figure 5.1c). Ten trials are conducted and each

correct identification earns a point to a maximum score of 40 points. Although the

Helix test is a newly developed assessment tool, Beavan et al. (2020) found that it

distinguishes executive functions of professional soccer players based on their playing

experience.

5.2.5 Footbonaut test

The Footbonaut (CGoal GmbH, Berlin, Germany) is an innovative tool which aims

to measure a participant’s soccer-specific skill performance such as dribbling, passing

and shooting (Beavan et al., 2019), as well as perceptual-motor abilities. The

assessment system is made up of a square artificial turf surrounded by four walls.

Each wall contains 18 square panels arranged side by side in two rows, where the two

panels in the middle serve as the ball dispenser gates while the rest are the target

gates. All gates measure 1.5 meters × 1.5 meters in dimension and are fitted with

light barriers and light-emitting diodes (LEDs). During the assessment, a ball is

dispensed from one of the eight possible dispenser gates at a speed of 50 kilometers

per hour. Immediately before the dispense of the ball, the LEDs along the perimeter

of the gate light up and an audio signal is given to the participant. This is followed

by the same stimuli 0.8 seconds later from the target gate, to which the participant is

required to pass the ball. Thirty-two trials are conducted and the mean reaction time

for successful passes that enter the target gate is measured using the light barriers.
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Saal et al. (2018) investigated the validity of the passing test in the Footbonaut,

and concluded that it offers a reliable method to differentiate between skilled and

less-skilled soccer players.

5.2.6 Description of data

Table 5.1 summarises the measurement variables for each of the neuropsychological

assessments that were collected on 304 male soccer players, aged between 10 and 21

years old, who represented a professional German club in the Bundesliga. Repeated

measurements on the players were recorded over a study period of three years

from the 2016–17 season to the 2018–19 season, whereby an assessment session

was conducted twice in a year – pre-season (between July and August) and post-

season (between January and February). The number of assessment sessions that an

individual participated in varied, due to player mobility between soccer clubs through

the transfer market or player dropout from the soccer academy. Additionally, the

pre-cued choice response time task was only integrated into the test battery from

the start of the 2017–18 season, whereas the Helix test was excluded from the test

battery throughout the entire 2018–19 season. These changes in the test battery

setup resulted in an increased proportion of missing data, as well as a reduction in

the mean number of observations per player for measurements under both of these

Neuropsychological
Variable Outcome

Mean number of Proportion of
assessment observations per player missing observations∗

Determination
y1 Number of correct answers 2.98 0.03
y2 log median response time 2.98 0.03

Response inhibition
y3 log SSRT 2.98 0.03
y4 log mean response time 2.87 0.07
y5 Number of correct answers 2.98 0.03

Choice response
y6 log mean response time (congruent) 1.61 0.48
y7 log mean response time (incongruent) 1.61 0.48

Helix y8 Number of correct answers 1.73 0.44

Footbonaut
y9 Number of correct answers 2.39 0.22
y10 log mean response time 2.39 0.22

∗ Complete data have one observation per participated assessment session.

Table 5.1: The mean number of observations per player and the proportion of missing
observations for each outcome variable of the neuropsychological assessments in the
executive functions test battery.
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assessments. More missing data were also present in the measured outcomes as a

result of data mismanagement.

Table 5.1 shows the variables collected, which measure players’ performance in

accuracy and speed. Figure 5.2 illustrates the pairwise dependence structure between

these variables by computing their Spearman’s rho correlation coefficients using

complete observations from the 2017–18 pre-season assessment session (the only test

battery that contains all five assessments). Although the assessments are very dis-

similar in terms of their design and domain of cognitive abilities evaluated, the speed

components (y2, y3, y4, y6, y7, y10) are noticeably strongly positively correlated among

themselves. This suggests that players’ speed is measured relatively consistently

across different assessments. In contrast, the negative dependence observed in the

speed-accuracy pairs from the determination test (y1, y2) and the Footbonaut test

(y9, y10) implies that higher-scoring players also tend to have shorter response time.

This trend is in contrast to the speed-accuracy trade-off (longer response time for
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Figure 5.2: Spearman’s rho correlation coefficients between the measurement variables
collected from the 2017–18 pre-season assessment session. Circle size is proportional
to correlation magnitude, with darker blue/red indicating stronger positive/negative
correlation. Variables are ordered such that the first four (y1, y5, y8, y9) report accu-
racy components while the remainder (y2, y3, y4, y6, y7, y10) report speed components.
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increased accuracy) documented among soccer players in the experimental study

conducted in Andersen and Dörge (2011).

Each participating player can be grouped according to their playing position

in the team, either as forward, midfielder, defender or goalkeeper. According to

the developmental model of sport participation in Côté et al. (2007), players’ age

range can be divided into four age groups that represent different developmental

stages of executive functions: 10–12 years old (late childhood), 12–15 years old (pre-

adolescence), 15–18 years old (adolescence) and 18–21 years old (early adulthood).

Figure 5.3 shows the distribution of players by age group and playing position in

each assessment session. More than two-thirds of players are aged between 12 and 18

years old when they participate in the test battery, whereas there are only at most

20 players in the youngest age group (10–12 years old). In terms of playing position,

most players are either midfielders or defenders. Unsurprisingly, the goalkeeper

category has the fewest number of players due to the composition of a soccer team

which comprises ten field players and only one goalkeeper.
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Figure 5.3: Bar charts showing the distribution of players by age group and playing
position across the 3-year, pre- and post-season study period.
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Using the covariates available (assessment session and playing position), we

perform an exploratory analysis to examine whether there are systematic differences

in cognitive abilities between different groups of players. We demonstrate the general

underlying pattern with the example of log response time measurement y10 from

the Footbonaut test. Figure 5.4a shows the changes in mean value of y10 grouped

by playing position across the study period. The goalkeepers consistently improve

on their response time in the first four sessions, whereas the other field players’

performance fluctuates considerably. Goalkeepers also take the longest time to react

to the stimuli in the Footbonaut test. Visually, and on average, players react faster

in post-season assessment sessions within the same season, with a possible exception

of defenders in the 2016–17 season. This improvement in post-season cognitive

functioning can be attributed to the effect of active athletic participation (Jacobson

and Matthaeus, 2014). Overall, there is a general improvement in the response time

as the study progresses. However, it must be recognised that this positive shift in

performance level is likely to be confounded by the age of the players.

Figure 5.4b explores this age effect by showing differences in log response time

as a function of age, based on observations from the 2016–17 pre-season assess-

ment session (observations from other sessions produced similar graphs). The clear
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(a) Changes in the grouped mean log re-
sponse time measurement from the Footbo-
naut test across the study period. Error bars
indicate two standard errors of the mean.
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(b) Scatterplot showing the relationship be-
tween the log response time measurement
from the Footbonaut test and the player age,
in the 2016–17 pre-season assessment session.

Figure 5.4: Exploratory data analysis to examine performance variation between
players that is due to assessment session, playing position and age.
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negative correlation underlines that performance heterogeneity between players is

age-dependent. Response time decreases significantly between ages 10 and 15, with a

reduced rate of improvement as players age further. The age effect also offers possible

explanation of two anomalies observed in Figure 5.4a: (i) post-season deterioration

in the defenders performance in the 2016–17 season and, (ii) a sharp reduction in

post-season response time for all players in the 2017–18 season. For the former, the

session effect is offset because there are fewer defenders in the older 15–18 and 18–21

age groups (see Figure 5.3) who tend to perform better and are able to improve

the group mean. For the latter, the age effect is amplified as there is no player

below 12 years old (see Figure 5.3), resulting in the mean response time values being

significantly lower.

5.3 Methods

Formal statistical modelling of the evolution of the players’ executive functions

requires consideration of the longitudinal nature of the study, as well as the fact

that cognitive performance is determined by a battery of different but correlated

neuropsychological assessments. Analysis of test outcomes is typically carried out

using a multivariate linear mixed effects model (e.g. Hall et al., 2001; Sliwinski et al.,

2003) whereby a unique mean latent growth trajectory that is representative of

the entire population is estimated for each measured outcome. However, Salthouse

et al. (1996) establish in an experimental study that age-related differences in the

observed psychometric outcomes are not exclusively attributable to assessment-

specific cognitive processes, but instead are the manifestation of a common cognitive

factor. Furthermore, the two-component characterisation of lifespan intellectual

development (Li et al., 2004) distinguishes between two distinct facets of cognitive

processes, namely fluid and crystallised abilities. The fluid abilities refer to biological

and genetically pre-disposed intelligence in information processing, whereas the

crystallised abilities relate to the normative and pragmatic aspects of expertise

acquired through contextualised personal experiences and socio-cultural influences.
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In the current context, the determination test, the response inhibition test and

the pre-cued choice response time task examine general intelligence, and thus can be

categorised as assessments that measure fluid (domain-generic) executive functions.

In contrast, the Helix and the Footbonaut are specialised test systems designed to

evaluate soccer-related skills that are developed through active participation in the

sport, thereby demonstrating their roles in measuring crystallised (domain-specific)

executive functions. Using this two-class grouping of neuropsychological assess-

ments, we introduce two latent curves, one shared between domain-generic variables

(y1, . . . , y7) and another shared between domain-specific variables (y8, y9, y10), within

a latent variable model (Dunson, 2000; Muthén, 2002; Proust et al., 2006). In the

following we describe a latent process representing age-related changes in executive

functions in a structural model. This model is then related to recorded outcomes of

the corresponding neuropsychological assessments through a measurement model.

5.3.1 The structural model

We model the latent curve underlying either of the two facets of executive func-

tions (domain-specific and domain-generic) according to a piecewise linear spline

model, which is a commonly used method in the epidemiological literature to model

longitudinal growth curves (e.g. Werner and Bodin, 2006; De Kroon et al., 2011;

Anderson et al., 2019; Chin et al., 2019). In the current setting, this models ζi ∈ R,

the unobserved executive functions for player i at age ωit, as

ζi(ωit) = β0i(ωit − (ωit − ξ1)+) + βKi(ωit − ξK)+ +
K−1∑
k=1

βki((ωit − ξk)+ − (ωit − ξk+1)+) + eit,

(5.1)

βi = (β0i, . . . , βKi)
> ∼ N (µβ,Σβ), (5.2)

for i = 1, . . . , 304, where (a)+ = max{0, a} is the positive part of a, and ξ =

(ξ1, . . . , ξK)> is an ordered vector of K knots such that ξ1 < . . . < ξK . Here, t

measures time on the scale of the age of each individual, so that e.g. ζi(ωit) with
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ωit = 10 refers to executive functions of individual i when the individual is 10 years

old. In this way, (5.1) models the evolution of a player’s executive functions over time

(age) by K + 1 piecewise linear segments with breaks at ξ. Greater flexibility can be

achieved by introducing player-specific random change points, but here we fix ξ due to

the sparsity of the data. The vector of random slope coefficients βi = (β0i, . . . , βKi)
>,

where βki represents the rate of change in ζi between knots ξk and ξk+1, allows for

the heterogeneity between players that is due to unobservables such as the number

of training hours and familiarity with the test. By assuming a Gaussian distribution

on the vector of random effects βi in (5.2), we postulate that the mean rate of

developmental growth in executive functions in the population is µβ, and that the

variability of player-specific deviations from this global trend is characterised by Σβ.

5.3.2 The measurement model

Write yd,it as the observed test outcome d for player i, on the t-th measurement

occasion, where i = 1, . . . , 304, t = 1, . . . , Ti and d = 1, . . . , 10. Assume for the

moment that each yd,it is a continuous measurement (this is relaxed below). Using a

latent variable model (e.g. Dunson, 2000; Muthén, 2002; Proust et al., 2006), we link

the unobserved executive functions to the outcome variable by

yd,it = αd + x>itγd + cd`ζi`(ωit) + εd,it, εit = (ε1,it, . . . , εD,it)
> ∼ N (0,Σε), (5.3)

where αd is an intercept for test outcome d and xit is a vector of time-dependent

player-specific covariates associated with a vector of fixed effects γd for test d. The

recorded covariates for this study include a player’s playing position (forward, midfield,

defence or goalkeeper) and an indicator for post-season assessment measurements. In

this way, the covariates can vary in their effects on each test outcome d. The error

term εd,it is assumed to be uncorrelated with the exogenous variables xit and the

latent executive functions ζi. To incorporate the distinction between the two facets of

cognitive processes, we introduce an additional index ` ∈ {1, 2} on executive functions
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in (5.3) such that ` = 1 when d = 1, . . . , 7 refers to domain-generic functions, and

` = 2 when d = 8, . . . , 10 refers to domain-specific functions. As a result, the term

αd + cd`ζi`(ωit) stipulates a test-level linear rescaling (to account for scale differences

in the outcome variables) of either the domain-generic or domain-specific executive

functions, which is itself an individual-specific random effect around a population

mean as detailed in Section 5.3.1. In order for all model parameters to be identifiable,

one of the cd` = 1 for each value of `, i.e. cd1 = 1 for one d ∈ {1, . . . , 7} and cd2 = 1

for one d ∈ {8, . . . , 10}, and eit is restricted to a standard normal distribution N (0, 1).

Typically, the value of d for which cd` = 1 is chosen to be the measurement with the

largest scale so that the magnitude of cd` is less than 1 for other measurements.

Some of the measured outcomes are count variables, e.g. the number of correct

answers in the determination test. As a result, the assumption of normality on the

errors for these outcomes in (5.3) may be unsuitable. To account for this, we follow

Gelman et al. (2013) and transform the count variables into continuous outcomes

using the Gaussian kernel. In particular,

yd,it = h(y∗d,it), d ∈ {1, 5, 8, 9},

where h(·) is a rounding function such that h(y∗) = p if y∗ ∈ (ap, ap+1] for p =

0, . . . ,∞, a0 = −∞, and ap = p− 1, p = 1, . . . ,∞. The latent continuous variable

y∗d,it is then modelled following the measurement model in (5.3). As mentioned in

Section 5.2.6, the non-availability of certain neuropsychological assessments and data

management practices have resulted in the outcome vectors yit = (y1,it, . . . , yD,it)
>

being partially observed. We overcome the missingness by fitting the model assuming

full data, and the missing values are sampled from their full conditional distributions

(which are the posterior predictive distributions) in the Bayesian sampling scheme.
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5.4 Analysis and results

We analyse the elite soccer player performance data through the above model

in the Bayesian framework, implemented via Markov chain Monte Carlo (Robert

and Casella, 2004). Following Côté et al. (2007), we consider the development of

executive functions in the four different stages of growth: late childhood (10–12

years old), pre-adolescence (12–15 years old), adolescence (15–18 years old) and

early adulthood (18–21 years old). Accordingly, the three knot locations (K = 3)

in the piecewise linear spline model in (5.1) are specified as ξ = (12, 15, 18)>. For

prior distributions, we specify a horseshoe prior (Makalic and Schmidt, 2016) on µβ

and γd, d = 1, . . . , 10, which is designed to have concentration at zero and to shrink

small coefficients towards zero, while having heavy tails to avoid over-shrinkage of

larger coefficients, a hierarchical inverse-Wishart prior (Huang and Wand, 2013)

with 2 degrees of freedom and scale parameter 25 on Σβ and Σε to induce a sparse

structure on the partial correlation matrices (Chin et al., 2020), and a standard

diffuse N (0, 103) prior on each αd.

For parameter identifiability, we set the scale coefficients for the number of correct

answers in the determination test and the Helix test equal to one (i.e. c11 = c81 = 1).

These were chosen as y1 and y8 have the largest scales among the variables measuring

the two facets of executive functions, and so this ensures that each of the other

cd` will typically scale around or less than 1 in magnitude. We expect a priori

that assessment tasks associated with the same type of assessment type (speed or

accuracy) are likely to be positively correlated, but that tasks are likely negatively

correlated between these two groups. This is largely in evidence in Figure 5.2. Since

both y1 and y8 are accuracy components, we specify an informative N (0.5, 0.25) prior

on cd` if measurement d also relates to an accuracy component of the assessment

(y5, y9) to express the prior belief that cd` is likely to be a value between 0 and 1.

Conversely, a N (−0.5, 0.25) prior is used if the measurement relates to log speed

(y2, y3, y4, y6, y7, y10).
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Figure 5.5 shows the estimated mean trajectories of domain-generic and domain-

specific executive functions for a chosen sample of players, and compares them to

the population mean whose 95% highest posterior density (HPD) credible levels

are represented by shaded regions. For simplicity, these trajectories are based on

the number of correct answers scored in the determination test (domain-generic)

and the Helix test (domain-specific) whereby the scale factor cd` is assumed a fixed

value of 1. Our estimation results indicate that changes in executive functions of

the elite soccer player population occur mainly between 10 to 15 years old since the

magnitudes of the slopes within this age range are the largest. In particular, the most

rapid increase happens during late childhood (10–12 years old) for domain-generic

executive functions (an average rate of 28.59, which is marginally higher than the

value of 24.86 in the next period), whereas the most rapid increase happens during

pre-adolescence (12–15 years old) for domain-specific executive functions (an average

rate of 0.95, which is nearly twice as large as the value of 0.48 in late childhood).

Domain-generic executive functions continue to develop, albeit at a much slower

Figure 5.5: Domain-generic (left) and domain-specific (right) executive functions for
a sample of players plotted against the posterior mean trajectories of the population,
based on the accuracy of the determination test and the Helix test respectively. 95%
HPD credible intervals of the population mean trajectories are given by the grey
shaded regions.
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pace, during adolescence (an average rate of 6.51) and early adulthood (an average

rate of 8.52). This observation is consistent with the findings in Diamond (2002),

which argues that performance in domain-generic executive functions reaches adult

performance levels between 12 to 15 years old.

Given that maturation in domain-specific executive functions is largely conditioned

by occupational expertise (Li et al., 2004), it could be hypothesised that improvements

in soccer-related abilities will be reflected in the trajectory across all developmental

stages as players are continuously challenged to refine their skills in order to remain

competitive (Mann et al., 2007). However, our results show that the increase in

domain-specific executive functions is almost negligible after 15 years old (average

rates of 0.11 and 0.07 during adolescence and early adulthood respectively). A

possible explanation for the observed plateau is that both domain-generic and

domain-specific assessments used in our study do not necessarily represent the way

in which perception and action of competition are coupled in soccer (Pinder et al.,

2011). For example, while the Footbonaut test has some validity for measuring

soccer skills, it requires players to use passing actions to react to visual and auditory

stimuli that are unrelated to soccer (Beavan et al., 2019). Meanwhile, the Helix

test measures high-level perceptual abilities specific to soccer but its design lacks an

action component. Therefore, it is unsurprising that the expected positive association

between domain-specific executive functions and age as a proxy for soccer experience

is not observed.

When inspecting the posterior distribution of the dependence structures in Σβ

(results not shown), we find that the slopes of the piecewise linear spline model

are independent of each other and across both facets of executive functions. This

suggests that previous studies which are based on cross-sectional data (Verburgh

et al., 2014; Huijgen et al., 2015; Vestberg et al., 2017; Sakamoto et al., 2018) may

have overstated the usefulness of domain-generic executive functions in soccer talent

identification. This is because a strong relationship between both types of executive

functions should exist if domain-generic executive functions are a prognostic tool for
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soccer performance. A sample of four players are chosen and shown in Figure 5.5 to

illustrate this argument. We observe that players A and B demonstrate an above-

average level of domain-generic executive functions but fail to reproduce similar

level of superiority in soccer-specific assessments. On the other hand, player D who

has less developed domain-generic executive functions compared to the population

mean outperforms his peers in terms of soccer expertise. Player D also achieve a

comparable level of domain-specific executive functions to that of player C although

the latter performs better in the generic abilities test battery.

We now examine the impact of the covariates on each outcome variable in the test

battery. Table 5.2 shows the regression coefficient posterior mean estimates for the

assessment session and playing position. The players tend to have better response

times (y2, y3, y6, y7) in domain-generic tasks during post-season assessment sessions,

indicating that there is an acute effect of soccer participation on performance in these

assessments. The absence of positional effects in the Helix test further reinforces

our previous argument that its design may not have adequately coupled perceptual

information with soccer-specific actions. We also observe that goalkeepers generally

perform the worst in the Footbonaut test in terms of the response time y10 (i.e. players

in the other positions respond much faster). This is because as part of their training,

Variable Intercept Post-season Forward Midfielder Defender
y1 141.08 1.43 0.00 0.00 −0.01

y2 0.01 −0.03 0.00 0.00 0.00

y3 −1.26 −0.09 0.00 −0.04 0.00
y4 −0.64 −0.02 0.00 0.00 0.00

y5 81.85 −0.22 0.06 0.02 −0.34

y6 −0.49 −0.04 0.00 0.00 0.00
y7 −0.44 −0.04 0.00 0.00 0.00

y8 28.44 0.01 −0.02 0.02 0.00

y9 22.93 0.15 −0.60 0.23 0.27
y10 1.03 −0.01 −0.05 −0.06 −0.04

Table 5.2: Estimated posterior means of regression coefficients γd for the covariates
for each outcome variable. Parameters whose 95% HPD credible interval does not
include 0 are highlighted in grey.
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goalkeepers tend not to train receiving, control and passing of the ball to the same

extent as players in other positions. As a result, we can conclude that the Footbonaut

test represents a more useful measure of performance for field players rather than for

goalkeepers.

5.5 Conclusion

This chapter has explored the relationship between age and executive functions in

an athlete population by modelling the cognitive outcomes from a test battery of

neuropsychological assessments performed by elite soccer players in a longitudinal

study using a latent variable model (Dunson, 2000; Muthén, 2002; Proust et al., 2006).

The findings of previous research on the developmental trajectories of executive

functions were drawn from cross-sectional studies (Verburgh et al., 2014; Huijgen

et al., 2015; Sakamoto et al., 2018), and to the best of our knowledge, this is the

first study of its kind in the sport science literature that is based on longitudinal

data. The latent growth curve representing the unobserved executive functions is

modelled to evolve in a piecewise linear fashion across time using a random effects

model, and is linked to the observed outcomes via a measurement model. Following

the argument in Li et al. (2004), we differentiate between fluid (domain-generic)

and crystallised (domain-specific) executive functions, where the former develops

biologically while the latter is acquired through occupational experience. This allows

us to make a comparison between their trajectories across different stages of growth

development (Côté et al., 2007). Rather than examining both types of executive

functions independently as what is commonly done in the literature (Furley and

Wood, 2016), we model them jointly in a multivariate formulation to investigate

if the claims made on the importance of domain-generic executive functions as a

prognostic tool for excellence in soccer can be substantiated.

Our analysis shows that both facets of executive functions exhibit a rapid increase

between 10 to 15 years old, and while domain-generic executive functions continue to

develop at a much slower rate, domain-specific executive functions begin to plateau
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after that. The latter observation is in contrary to popular belief that soccer players

who excel in competitive settings tend to possess more developed technical abilities

shaped by their playing experience. However, the lack of evidence supporting this

expectation in our study could possibly be due to the failure of the assessment

design to reproduce the perception-action couplings experienced by players during

an actual match (Pinder et al., 2011). We also find no substantial dependencies

in the rate of developmental growth between domain-generic and domain-specific

executive functions, thereby contradicting the findings of earlier studies (Vestberg

et al., 2012; Verburgh et al., 2014; Sakamoto et al., 2018) and weakening the argument

that domain-generic executive functions provide useful information for soccer talent

identification. The longitudinal nature of the study allows our modelling approach to

control for unobserved heterogeneity such as the number of training hours (Huijgen

et al., 2015), and hence providing a closer representation of the underlying mechanistic

development in cognitive abilities.

Considering the results that we have presented, it is clear to conclude that

integrating neuropsychological test battery in soccer talent identification programmes

is likely a debatable topic given that no interaction is established between domain-

generic and domain-specific executive functions. Furthermore, a comprehensive study

on the reliability of each neuropsychological assessment in the test battery should be

undertaken to validate their use (Dicks et al., 2009), especially if the results of these

tests are used pervasively.
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Chapter 6

Summary and discussion

Chapter 3 presents an analysis of the decision-making of Australian general practition-

ers (GPs) in an experiment which is designed to mimic the choice problem faced in a

medical consultation, where the GPs need to match a set of contraceptive products

with a particular female patient. A graphical model representing the dependence

structure of the latent variables indicating the observed binary outcomes, identifies

products which are perceived to be substitutes and can be used in place of one

another. Conditional on the observable characteristics of the patient, the remaining

dependencies captured by the GP-specific random effects characterise the persistence

of GPs in discussing a particular product in ready-to-wear choices (norms that work

well for a broad class of patients). The latter dependence structure suggests evidence

of medical practice variation (Wennberg et al., 1982; Scott and Shiell, 1997; Davis

et al., 2000) among the GPs which is largely attributed to their age, gender and

qualifications. This phenomenon is likely to be one of the contributing factors to the

low uptake of long acting reversible contraceptive methods in Australia (Black et al.,

2013), as demonstrated by the varied views among the GPs on the suitability of long

acting contraceptive choices in a simulated case.

Motivated by the application example which is modelled using a multivariate

probit model, we provide an efficient method for sampling the potentially high

dimensional correlation matrix Rε for the dependence structure of the variables.



140 CHAPTER 6. SUMMARY AND DISCUSSION

The correlation matrix Rε is reparameterised as an unconstrained lower triangular

Cholesky factor which is then sampled using the Hamiltonian Monte Carlo algorithm

(Duane et al., 1987; Neal, 2011). Bayesian inference often relies on Markov chain

Monte Carlo algorithms to generate samples from the posterior distribution. However,

these samples tend to be positively correlated and in turn increase the variability of

Monte-Carlo based estimators. To address this issue, we propose an antithetic sampler,

which generates proposals in the Metropolis-Hastings algorithm deterministically. In

order to obtain an ergodic Markov chain, the antithetic sampler must be coupled

with a stochastic update of the other parameters. Our results show that significant

improvement is observed in the performance measure and some parameters achieve

super-efficiency. While we illustrate the efficiency of the antithetic sampler on an

example of a highly correlated bivariate normal distribution and the multivariate

probit model, an extension to more general settings or models is worth future research.

In addition, establishing the convergence properties of the antithetic sampler would

certainly enhance our empirical results.

Chapter 4 investigates faltering growth among young children that is endemic in

low to medium income countries. Faltered growth is generally defined as a slower

rate of growth compared to a reference healthy population of the same age and

gender. As faltering is closely associated with reduced physical, intellectual (Benítez-

Bribiesca et al., 1999) and economic productivity potential (Hoddinott et al., 2013),

it is important to identify faltered children and be able to characterise different

growth patterns, as each type represents a particular growth behaviour and so

merits a target-specific medical treatment (Collins et al., 2006). We use a multiclass

classification approach by approximating the smooth growth curves by piecewise

linear segments with random slopes using the broken stick model (Ruppert et al.,

2003). The heterogeneity in the growth velocity between children is captured by

allowing the random slopes of the broken stick model to be distributed according to

a mixture distribution. Therefore, the mixture component from which the vector of

random slopes is generated dictates the clustering of growth profiles into different
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classes, as in the formulation of a Gaussian mixture model. However, specifying the

number of mixture components G is non-trivial, and fitting separate models with

different values of G is ad-hoc and ignores uncertainty in the model. This is overcome

by adopting a Bayesian non-parametric approach using the Dirichlet process (DP;

Ferguson, 1973) prior. Subscribing to this framework allows the complexity of the

model, i.e. the value of G, to be entirely data-driven since the DP prior exhibits

clustering a priori. Furthermore, we flexibly extend the broken stick model to ensure

that the model remains a sensible approach in practice where children are likely to

react differently to treatment interventions. In this extension, we relax the fixed knot

locations of the broken stick model to allow for child-specific random change points.

The change points are modelled probabilistically using a modified even-numbered

order statistics distribution (Green, 1995) so that there is exactly one knot in each

subinterval of equal length over the observational period. Simulation results show

that the broken stick model with fixed knots produces a biased estimate of the

random slopes, which subsequently leads to an overestimation of G.

In our work, classification performed on 373 children aged between 0 and 1 from

a longitudinal study from the Healthy Birth, Growth and Development knowledge

integration (HBGDki) project suggests 9 different growth trajectory patterns. A

majority of the children experience faltering growth between birth and age one.

Further exploratory analysis suggests that certain growth patterns are more likely

to be dominated by a particular gender or maternal education level. Children

who experience severe faltering are also found to have lower IQ scores. It would

be interesting to investigate whether such patterns are observed in other studies

in the HBGDki project. Although the broken stick model provides a reasonable

approximation of the growth curves, it requires specifying the number of (fixed or

random) knots in advance, which is often unknown in practical applications. One

possible extension is to consider an infinite mixture of Gaussian processes by unifying

the DP and Gaussian processes. Conceptually, the Gaussian process models each

curve non-parametrically without having to pre-specify the number of knots, while the



142 CHAPTER 6. SUMMARY AND DISCUSSION

DP classifies the functionals generated from the Gaussian process. This extends the

present framework of DP to functional data setting, whereby a probability measure

is now defined on a function space so that a random draw from the functional DP is

a smooth function that provides a better approximation to growth curves.

Finally, Chapter 5 aims to gain further insights into the developmental trajectories

of executive functions over the playing time of a soccer player. Executive functions

are complex cognitive abilities which allow an individual to reason, plan actions

and execute strategies to achieve a goal (Grafman and Litvan, 1999; Burgess et al.,

2000; Chan et al., 2008). Contemporary research based on cross-sectional data

has generally supported the hypothesis that executive functions can be used as a

variable in predicting the prospective performance of a soccer player (Verburgh et al.,

2014; Huijgen et al., 2015; Sakamoto et al., 2018), and thus they serve as good

measures in identifying young talented players. However, longitudinal studies of the

developmental trajectories of executive functions across different stages of life in an

athlete population are lacking in the literature and previous results were established

for a general population (Zelazo et al., 2004; Huizinga and Smidts, 2010; Zelazo and

Carlson, 2012). Recent research has shown that active participation in sports has

a positive impact on executive functioning (Jacobson and Matthaeus, 2014), and

therefore the generalisation of existing results to an athlete population is limited. We

address this problem by analysing longitudinal data that examines executive functions

of male soccer players representing a professional German Bundesliga club through

a series of neuropsychological assessments, which to the best of our knowledge, is

the most comprehensive set of data available in the sport science literature. These

assessments can be broadly classified into two different categories depending on the

facet of executive functions that they measure. Domain-generic assessments measure

the level of general intelligence, whereas domain-specific assessments measure the

skilfulness of the players acquired through active participation in the sport (Li et al.,

2004). Using a latent variable model (Dunson, 2000; Proust et al., 2006), these two

facets of executive functions are modelled as unobservable curves to reflect their
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latency, and their manifestation is related to the corresponding cognitive outcome

through a measurement model.

The analysis results show that domain-specific executive functions of the players

do not change significantly between the age of 15 and 21 years old. This suggests

that the design of the domain-specific assessments may not be specialised enough to

test soccer-related skills (Pinder et al., 2011) or that these skills may be irrelevant

for soccer expertise (Beavan et al., 2019). Furthermore, no dependence structure is

observed between both facets of executive functions, which disproves earlier findings

on the usefulness of domain-generic executive functions in soccer talent identification

(Verburgh et al., 2014; Huijgen et al., 2015; Vestberg et al., 2017; Sakamoto et al.,

2018). The findings that we obtained can be further reinforced if more data is

available or the study is carried out over a longer time period. It would also be

interesting to investigate the relationship between executive functions and career

attainment by having more delineated variables recorded. Additionally, an extensive

examination on the reliability and accuracy of each neuropsychological assessment

in the test battery should be undertaken to validate their use (Dicks et al., 2009),

especially if the results of these tests are used in any major decision-making process.
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