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Preface

In this thesis, we study equations with boundary noise with a particular aim

to explore new techniques and new questions for equations with Dirichlet

boundary noise. Boundary noise arise naturally in physical problems where

uncertainty arises on the boundary of a domain but also presents a number

of interesting technical challenges. Let U ⊂ Rd be a domain with boundary

∂U and ξ a Gaussian random field on R+× ∂U . A prototypical example is the

following problem: find a function u := u (t ,x ) satisfying

∂t u =∆u on R+×U , τu = ξ on R+× ∂U . (1)

When τu := ∂νu |∂U we obtain the Neumann problem and when τu := u |∂U the

Dirichlet problem, in addition, there are four cases for the Gaussian boundary

noise ξ that can be considered: ξ is a space-time correlated, ξ is a time white

noise but spatially correlated, ξ is a space white noise, or ξ is a space-time

white noise.

When d ≥ 2, existence of “function-valued solutions” to (1), e.g., values in

L2(U ), is an open problem in the Dirichlet boundary noise case when the noise

ξ is either time white noise or space-time white noise and, even for an elliptic

problem, the space white noise case is unresolved.

1
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In this thesis, we partially resolve the space-time noise case using weighted

Lp spaces in dimension two and higher. Then, in the elliptic setting, we draw

from ideas in harmonic analysis to resolve some structural question for the

space white noise case.

This work is structured as follows. In Chapter 1, we provide a compre-

hensive survey on equations with boundary noise. We take a chronological

perspective, which is well suited for the foundational developments in this

area; then, as we move to more recent contributions, we classify the literature

thematically. Our aim is to summarise, using a homogeneous notation, the

main ideas and approaches to the problem of boundary noise in the current

literature.

In Chapter 2, we collect a number of known definitions and theorems that

we will make use of in the rest of the thesis. This material is necessary for the

development in later chapters.

In Chapter 3, we start by considering boundary value problems for deter-

ministic data and extend the abstract Hilbert space approach of Washburn,

Balakrishnan and Lasiecka [1, 2, 3] to the Banach space setting. As a Banach

space theory for boundary value problems has only been considered in a num-

ber of special cases [4, 5], there is a need for a unified theory here. In addition,

these results provide both a precursor for Chapter 4 where we consider the

stochastic case and a framework for transferring the elliptic results, obtained

in Chapter 6 and Chapter 7, to the parabolic setting.

In Chapter 4, we extend the deterministic Banach space theory of Chapter 3

to the stochastic setting. This work grew out of Project 31 posed in March 2008

by Ben Goldys for the 11th TULKA Internet Seminar (ISEM) on ‘Stochastic Evo-

lution Equations’. Although a few results on Banach-space valued Stochastic

Evolution Equations (SEE) had been obtained in the literature, in this seminar,

Van Neerven [6] presented a unified approach using γ-radonifying operators,

based on his recent results with Weis and Veraar [7, 8, 9, 10]. That is, a theory

1http://fa.its.tudelft.nl/isemwiki/moin.cgi/Phase_2.html

http://fa.its.tudelft.nl/isemwiki/moin.cgi/Phase_2.html
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was presented for equations of the form

d X (t ) = AX (t )d t + Bd W (t ), t ∈ [0, T ], (2)

where A is a linear operator generating a semigroup (S(t ))t≥0 of bounded linear

operators on a Banach space E , B is a bounded linear operator from a Hilbert

space H to E , and (W (t ))t≥0 is a cylindrical Wiener process on H . Project

3 aimed to develop an appropriate extension of SEE of the form (2) so that

boundary noise problems could be considered in Lp spaces using the semi-

group approach. In §4.2, we develop this extension, then in §4.3 and §4.4 we

consider the Dirichlet and Neumann boundary noise problems for the heat

equation in Lp spaces as examples.

Of course, it has been known since the seminal work of Da Prato and

Zabczyk in 1993 [11] that one cannot obtain L2-valued solutions for the heat

equation with Dirichlet white noise boundary conditions even in dimension

one. Remarkably, in 2002, Alòs and Bonaccorsi [12] showed that function-

valued solutions to the Dirichlet white noise problem could be obtained on

the half-lineR+ provided solutions are considered in the space of real-valued

functions f such that

∫

R+

| f (x )|p (x p−1+γ ∧1)d x <∞

where 0 < γ < 1 and p ≥ 2. Their approach is analytic and has not been

extended to higher dimensions. Critically, two key questions arise out of their

work. Can a similar result be obtained using the semigroup approach? Can

one extend this idea to arbitrary domains inRd ?

In Chapter 5, we address and answer these questions by obtaining a number

of results which allow us to extend the approach of Chapter 4 to weighted Lp

spaces. We consider examples of the Dirichlet boundary noise problem in the

elliptic and parabolic settings and show that ‘potential operators’ which map

the boundary data to a solution in the state space E are γ-radonifying when E
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is a weighted Lp space of the form

E = Lp (U , dist(x ,∂U )α), (3)

for appropriate choices of the parameter α ∈ R. Further, we show that the

Dirichlet heat semigroup on Lp is Hilbert-Schmidt in weighted spaces of the

form (3) when α< 2. Finally, we apply these results to the Dirichlet boundary

noise problem for the heat equation.

Therefore, using our approach we partially resolve the question of obtain-

ing function-valued solutions to (1) in the space-time white noise setting in

the case d ≥ 2. We claim only partial resolution as these solution are not well-

posed: the trace relationship with the boundary data is lost. Well-posedness

(in the sense of Hadamard) is a desired property if one wants to construct

a stable approximation scheme for numerical solutions. Further, as our ap-

proach intertwines the question of existence of solutions and the question of

γ-radonification, our approach does not provide a sharper result for the time

white noise case. This motivates the results of the second half of this thesis

whereby we apply new techniques to the Dirichlet boundary value problem.

In a broader context, weighted function spaces have also been used to han-

dle elliptic equations on domains U whose boundary ∂U is rough (or exhibits

various singularities like corners or edges) or to handle elliptic equations with

degenerate or singular coefficients [13]. In fact, over the last two decades there

has been considerable activity in the study of boundary value problems with

minimal assumptions on the coefficients or on the boundary of the domain in

question. When studying such problems, it has become apparent that replac-

ing weighted function space techniques with a harmonic analysis approach

has proven to be extremely useful [14]. As we are using weighted spaces to

obtain existence of solutions to the boundary noise problem, this raises the

question: could harmonic analysis techniques be useful for the boundary noise

problem?
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Consider the canonical example on the unit disk given by

∆u = 0 on D, u = ξ on T, (4)

where ξ is a space white noise on T. Then, even in this simple setting, a L2(D)-
valued solution cannot be obtained and one might apply the weighted Lp space

theory of Chapter 5 to obtain a solution.

In Chapter 6, we explore a harmonic analysis approach to the elliptic bound-

ary noise problem (4). We develop a theory of “randomized harmonic analysis”.

To do this, we explore the concept of Gaussian random variables in the Hardy

spacesH p (D). We show that anH 2(D)-valued Gaussian random variable can

not be obtained if the noise on boundary is spatially white. More promisingly,

we show that the Poisson integral is γ-radonifying from L2(T) to the space of

harmonic functionsH (D) endowed with the norm of uniform convergence

on compact sets K â D, a result which suggests that it might be possible to

obtain solutions in a larger space. Next, under the assumption that the noise

on the boundary is not spatially white, we relate these Hardy space results to

the results obtained in Chapter 5.

As mentioned above, the Hardy spaces H p are too small to allow us to

consider white noise on the boundary. A key question is, thus, can we find a

larger space that is suitable to handle spatial white noise on the boundary?

We consider two approaches to this question: an ‘inside-out’ approach in

Chapter 7 and an ‘outside-in’ approach in Chapter 8.

In Chapter 7, we start with a simple example of aH (D)-valued Gaussian

random variable that exhibits the correct type of ‘white noise behaviour’ as

one approaches the boundary T. This suggests that we might be able to find an

appropriate space. To explore this idea, we start by studying the mean growth

of circle moments (e.g., the variance ofH (D)-valued random variable over a

circle of radius r ). This motivates us to construct the space of random variables,
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which we call Bloch random variables2, such that

sup
z∈D
‖u ′(z )‖L2(Ω)(1− |z |2)<∞,

where u ′(z ) = ∂θu (r e iθ ). We show that the norm of Bloch random variables is

invariant under conformal transformations and then obtain a random variable

extension of Makarov’s law of iterated logarithms which yields a rate of blow-up

for a Bloch random variable near the boundary T.

Relatively little work has been published on the question of blow-up for

a stochastic partial differential equations. Further, even though numerous

papers study boundary blow-up for deterministic PDEs, we are unaware of any

results on blow-up for PDEs with random noise terms on the boundary, so this

is a critical contribution of this thesis.

The development of Chapter 7 suggests an alternative approach. We started

with a ‘candidate solution’ for the elliptic problem

∆u = 0 in D, u =w on T,

by taking aH (D)-valued Gaussian random variable and working outwards,

showing that it had properties that suggested it might provide a solution to the

problem. One could call this an ‘inside-out’ approach. This raises the question:

can we start with a white noise on the boundary T and work our way inwards

to characterise the rate of blow-up? That is, can we obtain a ‘outside-in’ result?

Further, where is the blow-up occurring? Do we have blow-up at a point, on a

subset ofT, or blow-up everywhere? To make matters even more interesting, as

the data is random in our situation, this behaviour might change for every path

of the stochastic process. In Chapter 8, we address and answer these questions

for the unit diskD. Our approach is to construct a Poisson-Wiener integral and

relate the rates of blow-up with the fine behaviour of the white noise on the

boundary.

2Natural random analogue of Bloch functions
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Thus far, these results are only available for the unit disk D. A natural

question is whether these results could be extended to an arbitrary domain

U ⊂Rd with smooth boundary ∂U . In Chapter 9, we consider this question.

For an arbitrary smooth domain U ⊂Rd , one typically considers the boundary

behaviour by using a partition of unity and straightening of the boundary argu-

ment to transform the situation to the half-spaceRd
+. In this spirit, we consider

the blow-up behaviour on the half-spaceRd
+ by drawing a connection between

the recently-made definition of “thick points” of Gaussian random fields (in

particular, the Gaussian free field) and the classic definition of “Lebesgue

points”. This allows us to draw from ideas in harmonic analysis and propose a

new maximal function definition: a maximal thickness function. We then show

that the ‘ball averaging’ operator is γ-radonifying. Finally, as an application

of these results we show how we can use it to quantify the blow-up rate of the

white-noise Poisson integral in higher-dimensions.



8

Remark

Just before submitting this thesis, we have become aware of the thesis of Khader

[15]where the Poisson equation with Gaussian white noise on the boundary

is considered. The main results of Khader’s thesis are obtained in Chapter 7

and Chapter 8. In Chapter 7, the Poisson equation with Gaussian white noise

on the boundary is considered and in Chapter 7 an extension to the nonlinear

setting is performed.

We believe that our results in Chapter 6 complement Khader’s results in the

following ways: First, we obtain an Lp theory (as opposed to an L2 theory in

[15]). We both show that the solution to the Poisson equation with Gaussian

white noise on the boundary is a well-defined Gaussian random variable in

H (D). However, in this thesis we proceed to characterise whenH p -valued

random variables can be obtained. In return, Khader shows that the solution

to the Poisson equation is a Markov random field in §7.1.3, then considers the

Poisson equation for the d -dimensional ball and obtains pointwise estimates

for the solution and its derivatives in §7.2 (as opposed to this thesis where

we only consider the domain D). Further, Khader considers the nonlinear

analogues of his theory in Chapter 8. We finally note that the results used by

Khader to prove his results are different to ours as he applies the theory of

Steklov eigenfunctions.

However, we believe the existence of the thesis of Khader shows that there

seems to be an interest (outside our thesis) in obtaining results for the elliptic

problem with boundary noise.



1
Equations with Boundary Noise

Consider an infinitesimally thin piece of string of length ` clamped at its end

points. A classic problem is to apply a force to this string and study how it

vibrates. If f (t ,x ) is the amount of pressure applied in the direction of the

y -axis at time t and horizontal location x ∈ [0,`], then physics tells us that the

position u (t ,x ) of the string solves the one-dimensional wave equation

∂ 2u (t ,x )
∂ t 2

= κ
∂ 2u (t ,x )
∂ x 2

+ f (t ,x ), (1.1)

for (t ,x ) ∈ [0,∞)× [0,`] where κ is a physical constant that depends on the

linear mass density and the tension of the string. As the string is clamped, we

set the (homogeneous) Dirichlet boundary conditions u (t , 0) = u (t ,`) = 0. The

field of stochastic partial differential equations addresses the question: what if

f is random noise? In such a situation, Walsh [16] physically interpreted (1.1)

as a model for a guitar string being struck by particles of sand.

Now consider the following small variation of (1.1) whereby the homo-

geneous boundary conditions are replaced by the inhomogeneous Dirichlet

boundary conditions,

u (t , 0) = g (t ), u (t ,`) = h(t ), (1.2)

9
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where g (t ) and h(t )model the position of the string at time t at its end points.

Again, it becomes natural to consider the stochastic analogue of the model

(1.1)-(1.2) whereby g and h are replaced by random noise. Physically, we sug-

gest that one could interpret this as a model for the position of a piece of

string being shaken at its end points. Of course, one can imagine infinitely

many variations on this theme: replace (1.1) by any partial differential equa-

tion (PDE) or stochastic partial differential equation (SPDE) and (1.2) with a

large range of possible types of inhomogeneous random boundary conditions

(Neumann, Robin, etc.). As such, we shall call this class of problems equations

with boundary noise.

Stochastic partial differential equations arise naturally as models for dy-

namical systems1 subject to random influences. Sometimes the noise affects a

complex system not only inside the physical medium but also at the physical

boundary. This occurs in a variety of difficult problems: air-sea interactions

on the ocean surface, heat transfer in a solid in contact with a fluid, chemi-

cal reactor theory, and colloid and interface chemistry. In fact, we argue that

randomness at the boundary of an object is even more natural than noise on

the interior, especially in higher dimensions. Intuitively, one could draw an

analogy with the divergence theorem which relates the flow of a vector field

through a surface to the behaviour of the vector field inside the surface. Finally,

as we shall show, not only are boundary noise problems of practical interest

but they also present us with an fascinating setting where a number of areas of

mathematics intersect.

In this chapter we survey the current literature on equations with bound-

ary noise. We take a chronological perspective, which is well suited for the

foundational developments in this area; then, as we move to more recent con-

tributions, we shall attempt to classify the literature thematically. Our aim is to

sketch, using a homogeneous notation, what we believe to be the main ideas

and approaches to the problem of boundary noise. We have tried to not enter

1modelled by partial differential equations
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into too much detail and refer the reader to the original publications if further

details or clarifications are required.

Notation

We use the following notation. The relation a ® b means that a is bounded

by some constant times b uniformly in all parameters on which a and b may

depend. We write a ∼b to mean that a ®b and b ® a holds. Lp (U ), 1≤ p ≤∞,

are the usual Lebesgue spaces on a domain U ⊂ Rd and W k ,p ⊂ Lp (U ), for

k ∈N are the Sobolev spaces of functions whose weak derivatives up to order

k are bounded in Lp (U ). We express derivatives in a number of ways. First,

the partial derivatives are expressed as ∂ u /∂ t or ∂t and∆u :=
∑d

i=1 ∂
2

x i
u . We

also use the notation u̇ to be the formal time derivative of u with respect to

the time variable t . This is especially relevant when we talk about white noise

and Wiener processes (which are, almost surely, not differentiable). In that

case, one should interpret an equation by formally multiplying by d t on both

sides to obtain a stochastic differential notation. For example, if (W (t ))t≥0 is

a Wiener process then Ẇ (t )d t is interpreted as d W (t ). Sometimes, we write

X t for X (t ) to make the notation simpler. For Hilbert spaces H1 and H2, we

denote byL (H1, H2) the space of bounded linear operators from H1 into H2

andL2(H1, H2) the subspace of Hilbert-Schmidt operators.

1.1 Semigroup approach to boundary control

Between 1976 and 1984, it emerged that parabolic equations with bound-

ary control could be described by a semigroup model [2, 17, 3] and thus

problems in optimal control such as quadratic control, stabilizability, and

boundary control where studied extensively in this framework [17, 18]. This

was an interesting development, as although evolution equations of the form

u ′(t ) = A(t )u (t )+ B (t )g (t ) in Banach spaces had been studied for a while, the

theory was only sufficient to handle the case of distributed parameter systems.
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Therefore, the main achievement to that time was the development of an ap-

propriate abstract Hilbert space theory to handle partial differential equations

for which the control is applied at the boundary. To be precise, let E and H be

Hilbert spaces and consider the simpler autonomous evolution equation

u ′(t ) = Au (t )+ B g (t ), u (0) = u 0 ∈D(A)⊂ E . (1.3)

We shall call u : [0, T ]→ E the state and g : [0, T ]→H the control or data. If A

is an infinitesimal generator of a strongly continuous semigroup ((S(t ))t≥0 on E

then one way to interpret a solution of (1.3) is to formally treat it as an ordinary

differential equation (albeit infinite-dimensional) then setting S(t ) = e t A one

obtains the integral equation

u (t ) =S(t )u 0+

∫ t

0

S(t − s )B g (s )d s . (1.4)

If B ∈ L (H , E ) and g ∈ L2(0, T ;H ) then such a solution is known as a “mild

solution” [17]. However, this situation is insufficient to handle the case of

boundary controls and an extension to case where B is an unbounded operator

from H to E was required. It was noticed that in this situation, sufficient

conditions to obtain a mild solution are

D(B ) =H ,

‖S(t )B g (t )‖E ≤
C

t α
‖g (t )‖H ,

for g ∈ D(B ), t < T , α < 1/2 and some constant C = C (α) > 0. Under

these conditions, this abstract framework allows consideration of a large class

of parabolic and hyperbolic partial differential equations on a manifold M

whereby controls or data are limited to regions of the boundary or a submani-

fold N ⊂M of lower dimension [17, 18]. Further, all standard boundary con-

ditions can be handled (Dirichlet, Neumann, Robin, etc.) and even feedback

loops (i.e. dynamical conditions) can be incorporated.
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1.2 Semigroup approach to boundary noise

Due to the close relationship between optimal control theory and stochastic

evolution equations (e.g., see conditions (9.50) and (9.51) in [19]), the first

papers on equations with boundary noise considered in a semigroup frame-

work appeared shortly after, see [20, 21, 11]. Curtain [20] obtained a stochastic

version of his optimal control theory [17] using the Green formula and the

duality between control and observation. Ichikawa [21] proposed a semigroup

model for parabolic equations with finite-dimensional boundary noise or

pointwise noise and obtained existence, uniqueness, and regularity results. In

1993, Da Prato and Zabczyk [11] extended these results to the case of infinite-

dimensional boundary noise (i.e., the white noise case). In particular, they

studied the nonlinear evolution equation with white-noise boundary condi-

tions on a Hilbert space H given by











X ′(t ) = AX (t )+ F (X (t )), t ∈ [0, T ],

τX (t ) = Ẇ (t ), t ∈ (0, T ],

X (0) = 0.

(1.5)

where A : D(A) ⊂ H → H , F : D(F ) ⊂ H → H is a nonlinear operator, and Ẇ

represents a white noise process on L2(0, T ;∂H ), i.e. a formal time derivative of

a cylindrical Wiener process (W (t ))t≥0 taking values on ∂H . We recall that, as

opposed to a Wiener process, a cylindrical Wiener process is a ‘true’ infinite-

dimensional stochastic process (see §2.9). Finally, τ :D(τ)⊂H → ∂H models

the boundary condition and the relationship between the Hilbert spaces H and

∂H . For example, this abstract formulation may be used to study dynamics

on a bounded domain U ⊂ Rd with C∞ boundary ∂U by posing H = L2(U )

and ∂H = L2(∂U ). To set Dirichlet boundary conditions one would choose

τu = u |∂U (in terms of trace) for u ∈ L2(U ) and for Neumann boundary condi-

tions one would choose τu = (∂νu )|∂U for u ∈ L2(U ). Finally, setting Au =∆u

for u ∈ D(A) where D(A) is the Sobolev space W 2,2(U ), then (1.5) is the ab-
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stract formulation of a nonlinear heat equation with white-noise boundary

conditions.

Da Prato and Zabczyk showed that if one defines the operator

Au := Au , D(A) := {u : Au ∈H ,τu = 0} (1.6)

and assumes that A is the infinitesimal generator of a strongly continuous semi-

group (S(t ))t≥0 on H , then a continuous adapted H-valued process (X (t ))t≥0 is

a mild solution for (1.5) if it satisfies the stochastic integral equation

X (t ) =

∫ t

0

S(t − s )F (X (s ))d s +(λ−A)

∫ t

0

S(t − s )Λλd W (s ), (1.7)

where Λλ : ∂H → H is the Dirichlet map associated with A and τ. That is,

assume that the stationary boundary value problem

(λ−A)u = 0, τu = g (1.8)

has a unique solution Λλg := u ∈ D(A) for arbitrary g ∈ ∂H (see §2.7). They

suggest that due to the form of (1.7), one can formally view (1.5) as the stochas-

tic evolution equation

d X (t ) = [AX (t )+ F (t , X (t ))]d t +(λ−A)Λλd W (s ). (1.9)

When F = 0, they show that a sufficient condition for existence of a mild

solution to (1.9) is
∫ T

0

‖AS(t )Λλ‖2
L2(∂H ,H )d t <∞, (1.10)

whereL2(∂H , H ) is the space of Hilbert-Schmidt operators between ∂H and

H . Under condition (1.10) and a Lipschitz assumption on F they show that a

unique mild solution of (1.5) exists in H .
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1.3 Dirichlet boundary noise: a negative result

In [11], Da Prato and Zabczyk illustrate their results by studying the one-

dimensional heat equation

∂ u

∂ t
(t ,x ) =

∂ 2u

∂ x 2
(t ,x ), (t ,x )∈ [0, T ]× (0, 1), (1.11)

with u (0,x ) ≡ 0. Let Ẇ0 and Ẇ1 be the (formal) time derivatives of the inde-

pendent Wiener processes (W0(t ))t≥0 and (W1(t ))t≥0. The processes Ẇ0 and Ẇ1

model time white noise on the boundary of (0,1). By explicit calculation, Da

Prato and Zabczyk show that in the case of Neumann boundary conditions

∂ u

∂ x
(t ,x )

�

�

�

x=0
= Ẇ0(t ),

∂ u

∂ x
(t ,x )

�

�

�

x=1
= Ẇ1(t ), (1.12)

then a L2(0, 1)-valued solution can be obtained. However, when the Dirichlet

boundary conditions

u (t , 0) = Ẇ0(t ), u (t , 1) = Ẇ1(t ),

are imposed then (1.11) does not have a solution in H = L2(0,1) but only in

a larger space, i.e., one cannot obtain a function-valued solution using this

approach. This is somewhat surprising for two reasons: first, this is not the

case in the deterministic situation (i.e., (1.3) and (1.4)) and second, the one-

dimensional stochastic heat equation with zero Dirichlet boundary conditions

∂ u

∂ t
(t ,x ) =

∂ 2u

∂ x 2
(t ,x )+ Ẇ (t ), (t ,x )∈ [0, T ]× (0, 1), (1.13)

where (W (t ))t≥0 is a cylindrical Wiener process on L2(0, 1) does have a L2(0, 1)-

valued solution owing to the regularity provided by the Dirichlet heat semi-

group [19, Example 5.7].

1.4 Analytic approach to boundary noise

Independently, during 1992-1993, three new papers appeared on the topic

of boundary noise [22, 23, 24]. These works used a different approach and
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were motivated by the study of dynamical systems subject to the influence of

small random perturbations [25]which is typically concerned with the study

of Rd -valued stochastic differential equations (SDE) of the form

d X εt =b (X εt )+ εσ(X
ε
t )d w t , X ε0 = x , (1.14)

where b is a suitably smoothRd -valued function defined on a domain U ⊂Rd ,

σ is a d ×d matrix-valued function, w t is a d -dimensional Wiener process and

ε is a small real parameter. Due to the close relationship between probability

and analysis, one could also view this area as the study of the differential

operatorA ε given by

(A εu )(x ) :=
ε2

2

d
∑

j ,k=1

a j k (x )
∂ 2u

∂ x j ∂ xk
(x )+

n
∑

j=1

b j (x )
∂ u

∂ x j
(x ), (1.15)

for x ∈ U and sufficiently smooth u , where a (x ) := σ(x )σ∗(x ). A variety of

different questions then arise naturally about the behaviour of (1.14) when

ε → 0. For example: Do solutions of (1.14) approach, in a suitable sense,

solutions of the Cauchy problem u ′(t ) = b (u (t )) with u (0) = x ? Can one

estimate the first exit time of solutions to (1.14) from a given domain in Rd ?

Can one estimate, as ε→ 0, the principal eigenvalue of (1.15) with vanishing

Dirichlet boundary data?

It was therefore natural, in 1992, for Freidlin and Wentzell to further ex-

plore these ideas and consider semilinear PDE with fast oscillating boundary

conditions [22]. In other words, perturbations of the boundary conditions

were examined in the following sense. For t > 0 and x ∈ [−1,1], consider the

semilinear heat equations

∂ u

∂ t
(t ,x ) =

1

2
∆u (t ,x )+ f (x , u ),

∂ u

∂ x
(t ,x )

�

�

�

x=±1
= 0 (1.16)

and for a small real parameter ε,

∂ u ε

∂ t
(t ,x ) =

1

2
∆u ε(t ,x )+ f (x , u ε),

∂ u ε

∂ x
(t ,±1) = Ẇ±

� t

ε

�

(1.17)
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where (W+(t ))t≥0 and (W−(t ))t≥0 are correlatedR-valued Wiener processes. For

(1.16) and (1.17), we assume u (0,x ) = u 0(x ) ∈C ([0,1]). The main theorem of

[22], is that for any T > 0 and δ> 0,

lim
ε↓0
P
n

sup
0≤t≤T
|x |≤1

|u ε(t ,x )−u (t ,x )|>δ
o

= 0, (1.18)

and one should note, as opposed to the study of (1.14), that this is now an

infinite-dimensional problem. Using purely analytic derivations (i.e., without

relying on semigroup results), they then derived large deviation results and

presented some interesting examples.

In 1992, Freidlin and Sowers [23] studied the nonlinear stochastic heat

equation on the unit disk D = {x ∈ R2 : |x | < 1} with Neumann boundary

conditions given on T= {x ∈R2 : |x |= 1} by

∂ u ε

∂ t
(t ,x ) =∆u ε(t ,x )+ f (x , u ε),

∂ u ε

∂ x
(t ,x )

�

�

�

T
= Ẇ ε (t ) , (1.19)

where (W ε(t ))t≥0 is process given on T by

W ε(t )(x ) =
∞
∑

n=0

λn hn (x )
1

ε
wn

� t

ε2

�

, s.t.
∞
∑

n=0

|λn |<∞, (1.20)

and where (hn )∞n=0 is an orthonormal basis of L2(T) and (wn (t ))t≥0 areR-valued

Wiener processes. Or in more modern language,

W ε(t ) =
1

ε
QW

� t

ε2

�

where (W (t ))t≥0 is a cylindrical Wiener process on a Hilbert space L2(T) and

Q is the operator on L2(T), given by Qhn :=λn hn and TrQ <∞ by (1.20). They

obtain an estimate of the form (1.18) and a central limit result for (1.19).

Two years later in [24], Sowers extends the ideas of Freidlin and Wentzell

and considers the semilinear parabolic equation with white noise boundary

perturbations given for t > 0 and x ∈M by

∂ u

∂ t
=

1

2
∆u +(b ,∆u )+c u + f (x , u ), (ν ,∇u )+β (x )u |R+×∂M =σ(x )ẇ , (1.21)
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where M ⊂ Rd is a Riemannian manifold with smooth boundary ∂M , ẇ is

a space-time white noise on R+× ∂M , and ν is the inward-pointing normal

vector field on ∂M . Here, (·, ·) denotes the Riemannian metric tensor, ∇ is

the gradient operator defined by (·, ·), and∆ := div∇ is the Laplace-Beltrami

operator. It is assumed that b is a C∞ vector field on M , c and β are some

C∞ functions on M and ∂M , respectively. The initial condition for (1.21) is

given by u (0,x ) = u 0 ∈ C (M ). Again using analytic methods, existence and

uniqueness of a solution to (1.21) follow. Although Sowers claims that his work

is “essentially an extension of the efforts of Freidlin and Wentzell”, several novel

ideas are presented in his work. In particular, (1.21) is studied in the following

way. Let M ◦ denote the interior of M and define the second-order differential

operator

Aϕ :=
1

2
∆ϕ+(b ,∇ϕ)+ c ϕ, ϕ ∈C∞(M ),

and the first-order differential operator

Bϕ := (ν ,∇ϕ)+β ϕ, ϕ ∈C∞(M ).

First, Sowers shows the existence of a unique Robin kernel R : for each y ∈M ,

Ry is a C∞ function of (t ,x ) in R+×M ◦ \ {(0, y )} that satisfies

∂ Ry

∂ t
=ARy , lim

t ↓0
Ry (t , ·) =δy , BRy

�

�

R+×∂M
= 0. (1.22)

Using R , he shows that the linear version of (1.21), namely,

∂ u

∂ t
=Au , u (0, ·) = 0, Bu

�

�

R+×∂M
=σ(x )ẇ , (1.23)

has a unique solution given by the stochastic integral

u (t ,x ) =−
1

2

∫ t

0

∫

∂M

Ry (t − s ,x )σ(y )w (d s , d y ), (t ,x )∈R+×M ◦. (1.24)

This result is achieved by using a number of intricate kernel estimates for

R that he carefully justifies and concludes that, under assumptions on the
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nonlinear potential f , a transformation to (1.24) gives the solution of (1.21).

We note that Sowers definition of a solution is slightly non-standard. Let the

distance function on M defined by (·, ·) be denoted by d (·, ·) and for any subset

S of M and any point x ∈ M , we write dist(x ,S) := infy∈S d (x , y ). To make

sense of (1.24), one must shift the boundary in some orderly manner into M ◦.

Specifically, for each ε > 0 we shrink M to

M ε := {x ∈M : dist(x ,∂M )> ε},

and then replace M by M ε and ∂M by ∂M ε. For every ε > 0, let u ε(t ,x ) be the

stochastic integral (1.24) when (t ,x ) ∈R+×M ε and u ε(t ,x ) = 0 when x /∈M ε.

It is shown that for every ε > 0, u ε is well-defined and a solution to (1.23) is

defined as a (weak) limit of u ε as ε → 0. This fact follows from his insight

that there exists a boundary layer degeneracy: if M =Rd
+ and ∂M =Rd−1 then

asymptotically near the boundary

E|u (t , (x ,xd ))|2 ∼
1

x d−1
d

,

where x ∈Rd−1, xd > 0, and t > 0. Or more precisely, he shows that for each

T > 0 and γ> (d −1)/2,

lim sup
x→∂M
0≤t≤T

dist(x ,∂M )γ|u (t ,x )|= 0, P-a.s. (1.25)

We conclude our discussion of Sowers results with a few remarks. First, due to

his assumption onσ, it appears that the noise on the boundary is not space-

time white noise but only time white noise asσ appears to be a Hilbert-Schmidt

kernel (i.e., σ has a γ-radonifying effect [26]). Secondly, the nonlinearity in

(1.21) is more complicated than in (1.5) and due to (1.25), in addition to (stan-

dard) Lipschitz assumptions of f , one must also impose a growth condition on

f : for all x ∈M ◦ and z ∈R such that |z |> 1,

| f (x , z )|® dist(x ,∂M )η1 |z |η2 ,
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where η1 −η2γ > −1 is satisfied. Third, due to the shrinking of the domain

used in his methods, such results seem somewhat difficult to obtain using an

operator theoretical or semigroup approach.

1.5 Stochastic evolution equations with boundary

noise and ergodicity

In 1995, Maslowski [27] used the semigroup approach to study stochastic

nonlinear boundary value problems with boundary or pointwise noise on a

bounded domain U ⊂Rd . Let H and ∂H be Hilbert spaces. As we have already

seen (e.g., (1.5) and (1.7)), it should come as no surprise that such problems

may be treated abstractly in the framework of semilinear stochastic evolution

equations of the form

d X (t ) = [AX (t )+ f (X (t ))+Πh(X (t ))]d t

+ g (X (t ))d W1(t )+Πk (X (t ))d W2(t ),
(1.26)

with X (0) = x ∈H , where (W1(t ))t≥0 and (W2(t ))t≥0 are independent cylindrical

Wiener processes on H and ∂H , respectively. The operators A : H → H and

Π : ∂H → H are unbounded linear operators, while f : H → H , h : H → ∂H ,

g : H → L (H ), and k : H → L (∂H ) are Lipschitz continuous. In essence,

this is a slight generalisation of (1.5) and the representation (1.7), however

after proving existence and uniqueness of solutions, Maslowski goes further

and obtains some results on the asymptotic behaviour of solutions such as

exponential stability in mean and the existence and uniqueness of an invari-

ant measure. A number of examples are also presented. For example, it is

also shown that (1.26) can also be used to study stochastic plate equations

with structural damping. Although it is claimed in [27, Example 3.1] that the

Dirichlet boundary problem can be considered, a Neumann condition is in

fact assumed during calculations. Therefore we observe that again, similar to
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(1.5), one still cannot obtain solutions in H when Dirichlet boundary noise is

imposed.

1.6 Markovian dynamical systems

In 1996, Da Prato and Zabczyk dedicate a chapter of their monograph [28] to

systems perturbed through the boundary. They recall their results from [19],

extend the Neumann boundary condition example (1.11)-(1.12) to the domain

U = (0,π)d ⊂ Rd to show that for d = 1,2,3 solutions can be obtained, and

conclude with some remarks on ergodicity of such systems. Further, as Neu-

mann boundary conditions are a special case of Robin boundary conditions,

we observe that the restriction d = 1, 2, 3 makes sense in terms of (1.25).

We should also remark that an important observation was made in [28] and

[27]. Under appropriate assumptions on A and F in (1.7) then the H-valued

stochastic process (X (t ))t≥0 is Markovian [19, Proposition 13.2.3]. Further, if

(X x (t ))t≥0 is the solution of (1.26) with X (0) = x ∈H , then by [27, Proposition

1.3], (X x (t ))t≥0 defines a H-valued homogeneous Feller Markov process with

the transition probability function

P(t , y , A) =P{X x (t )∈ A}, A ∈B(H ).

This fact is a strong motivation for studying white-noise boundary conditions

as the Markov property is highly desirable from both a theoretical and applied

point of view.

1.7 Optimal control of stochastic systems

Extending his earlier work [27], Maslowski in collaboration with Duncan and

Pasik-Duncan, study boundary and point control of semilinear stochastic evo-

lution equations [29]. In the case where the control and noise are distributed,

the existence of an optimal control was proved in [30]. In the framework of
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[29], let H = L2(0,π),K ⊂Rk1 andC ⊂Rk2 compactly with k1, k2 ∈N, then one

may consider the one-dimensional stochastic heat equation with Neumann

boundary conditions on (0,π)

∂ u

∂ t
(t ,x ) =

∂ 2u

∂ x 2
(t ,x )+ f (u (t ,x ))+ Ẇ (t ) on [t0, T ]× (0,π)

∂ u

∂ x
(t , 0) = h1(α,u (t , ·), g (u (t , ·)))+ ẇ1(t ),

∂ u

∂ x
(t ,π) = h2(α,u (t , ·), g (u (t , ·)))+ ẇ2(t ),

(1.27)

where (W (t ))t≥0 is a cylindrical Wiener process on H , (w1(t ))t≥0 and (w2(t ))t≥0

are independent R-valued Wiener processes, h i : C ×H ×R → R, α ∈ C
represents a parameter, u is the unknownR-valued process representing the

state of the system, and the control is given by the R-valued process g . We

note that in our example, we do not need a Hilbert-Schmidt operator in front

of the cylindrical process W as this is a one-dimensional situation, see (1.13).

The control problem considered in [29] is to minimize the ergodic cost

functional

J (x , g ,α) := lim sup
T→∞
E

1

T

∫ T

0

c (u (t ), g (u (t )))d t

over the set of Markov controls G = {g : H →K , g Borel measurable} where

c : H×K →R. In contrast to [30], where the control is of distributed parameter

type on H , the control and the noise act on the boundary of (0,π) in (1.27). We

note that boundary controls are more natural and realistic since, in practice,

distributed parameter controls are hard to implement.

We conclude that the main development here is that the ideas of optimal

control for (1.3) and stochastic evolution equations of the form (1.26) are

combined, i.e., these are results on optimal control of stochastic boundary

systems. We shall return to this thematic development later, but we continue

chronologically here.



23

1.8 Dirichlet boundary noise: a conceptual

breakthrough

Although the paper [24] is cited in [27, 28, 29], up to this time there seemed to be

no attempt to interpret Sowers results, in particular the boundary layer degen-

eracy (1.25), from a semigroup perspective. Perhaps [24] was simply viewed

(see e.g., [27]) as a “thorough analysis of the multi-dimensional Neumann

problem”? In addition, due to the negative result obtained for the Dirichlet

boundary noise case in [11], there had been no further attempts to study this

difficult situation since 1993.

However in 2002, Alós and Bonaccorsi [12]made a number of insightful

observations with regard to [24] and the Dirichlet boundary noise problem.

First they noted that the qualitative arguments of Sowers for Robin boundary

noise, such as the boundary layer degeneracy, could also be performed for the

Dirichlet boundary noise case on the one-dimensional domain U =R+ with

boundary ∂U = {0}. Second, they observed that this qualitative information

could then be incorporated into the choice of function space where the process

will take values. That is, one should replace the Hilbert space H = L2(0,∞) by

the weighted Lp -space of all functions f :R+→R such that

∫ ∞

0

| f (x )|(x p−1+γ ∧1)d x <∞, (1.28)

for some choice of 0<γ< 1 and p ≥ 2. Moreover, they continued to examine

the problem, as their aim was to study the stochastic semilinear heat equation

with white-noise boundary condition given for x ∈R+ by

d u t = ∂ 2
x u t d t +

n
∑

j=1

[b j (x )∂x u t + Fj (t ,x , u t )]d w j (t ), u (t , 0) = ẇ0(t ), (1.29)

where for j = 0, 1, . . . , n , (w j (t ))t≥0 are independentR-valued Wiener processes,

b j :R+→R are C 3
b (R+)-functions, Fj (t ,x , ·) are Lipschitz continuous uniformly

in (t ,x ), using the short-hand notation u t := u (t ,x ). C 3
b (R+) is the space of
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thrice differentiable, continuous, and bounded functions onR+. We observe

that the structure of (1.29) is more complicated than that of (1.21) as there

is noise present on the interior of the domain and that the results of [24]

rely fundamentally on obtaining a kernel (i.e. fundamental solution) of the

homogeneous interior dynamics, e.g., (1.22) and deriving kernel estimates.

Therefore, to use this approach for (1.29), Alós and Bonaccorsi used Malliavin

calculus to obtain a stochastic heat kernel pD (s , t , y ,x ) for the stochastic heat

equation with zero Dirichlet boundary conditions

d u t = ∂ 2
x u t d t +

n
∑

j=1

b j (x )∂x u t d w j (t ), u (t , 0) = 0,

so that the solution of (1.29) yielded

u (t ,x ) =

∫ t

0

∂ pD

∂ y
(s , t , 0,x )d w0(s )

+
n
∑

j=1

∫ t

0

 

∫

R+

pD(s , t , y ,x )Fj (s , y , u (s , y ))d y

!

d w j (s ).

Kernel estimates for pD (s , t , y ,x ) are then used to prove existence and unique-

ness of solutions in the weighted Lp space given by (1.28). Then they show that

u (t , ·) is continuous on [δ,∞) for every δ> 0 and

x 1+αu (t ,x )→ 0, P-a.s.,

for every α> 0. In similar fashion to Sowers, they also define a concept of weak

solution whereby the solution u is understood as a (weak) limit, as ε→ 0, of a

sequence of solutions u ε defined on the shrunk domains [ε,∞). Continuing

their results in [31], Alós and Bonaccorsi proceed to study the asymptotic

behaviour of the solutions to (1.29) and prove that they have a unique invariant

measure that is exponentially mean-square stable.

We note that these results are fundamentally analytic in nature and cannot

be placed in the framework of (1.5) or (1.26) for the following reasons. First,

to obtain an optimal theory, the process must take values in a weighted Lp
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space but the abstract semigroup approach typically used to model SPDE

is a Hilbert space theory, and we would require a Banach space theory for

stochastic evolution equations. As noted in the recent thesis of Veraar [32]:

“The main problem for this is to find a ‘good’ stochastic integration theory

for processes with values in a Banach space. In the 70’s and 80’s, several

authors found negative results in this direction, and it turned out that the

stochastic integration theory for Hilbert spaces does not extend to the Banach

space setting”. Second, in a semigroup approach, one relies on a number of

assumptions such as analyticity of the C0-semigroup (S(t ))t≥0 generated by

the unbounded operator A on the Hilbert space H . Leaving Banach space

results aside, if we simply take H to be a weighted L2-space then to formulate

the theory, we must show that (S(t ))t≥0 is analytic on the weighted L2-space.

Further, a good characterisations2 of the fractional spacesD((−A)α)⊂H and

estimates for the Dirichlet map Λ : ∂H →H are also required. Unfortunately,

these types of results do not seem to exist in the literature.

1.9 Hyperbolic equations with boundary noise

Although hyperbolic SPDEs can be handled within the semigroup framework

of [11] or [27] by writing them as a system of two first order equations, then

considering H as the tensor product H1⊗H2 for appropriate choices of Hilbert

spaces H1 and H2 (e.g., see [33, Chapter 13] or [6, Section 15.2]), in this sec-

tion we review a number of specialised papers on hyperbolic equations with

boundary noise.

In 1993, Mao and Markus [34] investigated the stochastic vibrations of a

flexible string excited by a boundary force of white noise type. That is, the

one-dimensional wave equation (1.1) with f = 0 and boundary values

u (t , 0) = 0,
∂ u

∂ x
(t ,`) = ẇ (t ) (1.30)

2Possibly in terms of weighted Sobolev-Slobodeckij spaces.
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where ẇ is the formal time derivative of a R-valued Wiener process (w (t ))t≥0.

They also consider the case

u (t , 0) = 0,
∂ u

∂ t
(t ,`) = ẇ (t ) (1.31)

so that u (t ,`) =w (t ). They start by showing existence, uniqueness and regu-

larity theorems for the problems (1.1)-(1.30) and (1.1)-(1.31) with f = 0. They

then show that the amplitude ‖u (t , ·)‖ :=max0≤x≤` |u (t ,x )|, for both types of

boundary conditions, satisfies the asymptotic estimates

π

2
p

2
≤ lim inf

n→∞

‖u (n , ·)‖
p

n/ log n
P-a.s., lim sup

n→∞

‖u (n , ·)‖
p

n log n
≤
p

2 P-a.s.

We note that this paper was received by the journal in 1991, hence these results

could in fact be considered as some of the first on the topic of boundary noise.

In 2001, Lévêque completed his thesis on hyperbolic stochastic partial

differential equations driven by boundary noise. Lévêque answered a funda-

mentally different question to the papers [34, 11, 27]. As the wave equation

driven by a space-time Gaussian white noise admits a solution that takes its

value in a space of distributions when the spatial dimension is greater than

one, the aim of his thesis was to understand what assumptions need to be

placed on the spatial correlation structure of the boundary noise if the solution

is to be function-valued. Using Fourier analytic techniques, a number of re-

sults were obtained such as necessary and sufficient conditions on the spatial

correlations of the noise for the existence of a square integrable solution to the

linear hyperbolic SPDE

∂ 2u

∂ t 2
+2a

∂ u

∂ t
+b u −∆u = ẇ ,

∂ u

∂ ν

�

�

�

R+×∂U
= 0, (1.32)

on a domain U ⊂Rd with initial condition u (0,x ) = u 0(x ) and ∂t u (0,x ) = v0(x )

for x ∈U . The noise ẇ has covariance given by

Eẇ (t ,x )ẇ (s , y ) =δ0(t − s )Γ(x , y ),
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where δ0 is the Dirac measure onR and Γ is some negative definite distribution

on U ×U . His results were published jointly with Dalang in the papers [35, 36].

In [37], Kim considers the one-dimensional wave equation

∂ 2u

∂ t 2
=
∂

∂ x

�

a (t ,x )
∂ u

∂ x

�

−b (t ,x )
∂ u

∂ x
+ c (t ,x )u ,

u (0,x ) = u 0(x ),
∂ u

∂ t
(0,x ) = u 1(x ),

(1.33)

on the interval (0,`)with Neumann white noise boundary conditions

a (t , 0)
∂ u

∂ x
(t , 0) = g (t , u (t , 0))Ḃ (t ), u (t ,`) = 0, (1.34)

where (B (t ))t≥0 is aR-valued Brownian motion, a ∈C 3(R+× [0,`]), b ∈C 2(R+×
[0,`]), c ∈C 1(R+× [0,`]), and a (t ,x )≥α> 0 for all (t ,x ). Notice that the given

functions a , b and g are time dependent, so they cannot be handled by (1.32)

nor by the time-independent semigroup theory given by [11, 27] using the

tensor product space approach. We believe it is due to the time dependence

present in (1.33) that the semigroup theory cannot be applied, not due to the

fact that hyperbolic equations cannot be handled in the framework of [11, 27]

as claimed by Kim. Due to the time dependence, Kim constructs a Galerkin

approximation scheme for the deterministic problem to justify manipulations

and obtain the estimates required for the white noise boundary conditions.

Let H k (0,`), k ∈Z, be the standard Sobolev spaces over the interval (0,`) and

define the self-adjoint positive operators

A(t ) :=−
∂

∂ x

�

a (t ,x )
∂

∂ x

�

,

D(A(t )) :=
�

u ∈H 2(0,`) :
∂ u

∂ x
(0) = 0, u (`) = 0

�

.

Let (λk )∞k=1 and (ϕk )∞k=1 be the sequence of all eigenvalues and corresponding

eigenfunctions for A(0) and for θ ∈R define

Hθ
†

:=

(

f =
∞
∑

k=1

a kϕk :
∞
∑

k=1

λθk |a k |2 <∞

)

.
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First, Kim considers (1.33) combined with the deterministic boundary condi-

tion

a (t , 0)
∂ u

∂ x
(t , 0) = h(t ), u (t ,`) = 0, (1.35)

and shows that for (u 0, u 1) ∈ L2(0,`)×H−1
† and h ∈ H−1(0, T ) there exists a

unique function u satisfying (u , u̇ ) ∈C ([0, T ]; L2(0,`)×H−1
† ) and (1.33)-(1.35)

in a weak sense. In particular, he shows this holds if h = v̇ with v ∈C ([0, T ]).

Hence, there exists a continuous linear mapping

Φ : (u 0, u 1, v ) 7→ (u , u̇ , u (·, 0))

from L2(0, T )×H−1
† ×C ([0, T ]) into C ([0, T ]; L2(0,`)×H−1

† )× L2(0, T ). A weak

solution for (1.33)-(1.34) is then obtained by noticing that if g ∈ L2(Ω; L2(0, T ))

and

v (t ) =

∫ t

0

g (s )d W (s ),

then v is a continuous martingale such that

E‖v ‖2
C ([0,T ]) ≤C E

 

∫ T

0

|g (s )|2 d t

!

for some constant C > 0. Hence, if

(u 0, u 1, v )∈ L2(Ω; L2(0,`)×H−1
† ×C ([0, T ])),

then the mapping Φ gives a unique solution to (1.33)-(1.34) such that

(u 0, u 1, u (·, 0))∈ L2(Ω;C ([0, T ]; L2(0,`)×H−1
† )× L2(0, T )).

In effect, the equation is solved pathwise due to the absence of a stochastic

integral. Kim’s approach for handling time-dependent coefficients is quite

powerful and could be applied for parabolic equations with boundary noise

and higher-dimensional domains.

See also the recent paper by Brźezniak and Peszat [38].
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1.10 Dynamical boundary noise

When modelling physical phenomena, boundary conditions can be either

static or dynamical. Static conditions, such as Dirichlet or Neumann boundary

conditions, do not involve the time derivative of the system state variable.

However, dynamical boundary conditions contain a dependence on time

derivatives.

In 2004, Chueschov and Schmalfuß [39] considered the system of quasi-

linear parabolic SPDE on a C∞ bounded domain U ⊂Rd with boundary ∂U =

∂U1 ∪ ∂U2,

d u t = (A (t )u t + f (t , u t ,∇u t ))d t + g (t , u t )d w0(t ) on R+×U

ε2d u t = (−B1(t )u t +h(t , u t ))d t + εσ(t , u t )d w1(t ) on R+× ∂U1

B2(t )u t = 0 on R+× ∂U2, u (0, ·) = u 0,

(1.36)

where u t := u (t , ·), A is a normally elliptic second-order differential oper-

ator, the operatorsBi satisfy a uniformly strong complementing condition

with respect toA (t ), (w i (t ))t≥0 are independent R-valued Wiener processes,

and ε ∈ (0,1] is a parameter. The boundary conditions are different from the

standard ones and arise in physical models with dynamics on the boundary.

Similar to (1.17), the parameter ε emphasizes that (1.36) is a perturbation of a

deterministic equation. Their approach for studying (1.36) is, for any ε ∈ (0, 1],

to first consider the linear deterministic PDE

∂t u +A (t )u = 0 on (0, T ]×U ,

ε2∂t (u |∂U1)+B1(t )u on (0, T ]× ∂U1,

B2(t )u = 0 on (0, T ]× ∂U2, u (0, ·) = u 0,

and to formulate conditions so that the operators Aε(t ) = (A (t ), 1
ε
B1(t )) de-

fine a fundamental solution (or evolution operator) S(t , s ) that satisfies the

evolution equation u ′(t )+A(t )u (t ) = 0 on a Hilbert space H . Similar to (1.5)

and (1.26), a stochastic evolution equation for (1.36) is defined and they prove
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existence and uniqueness of a mild solution given by

u (t ) =S(t , 0)u 0+

∫ t

0

S(t , s )F (s , u (s ))d s

+

∫ t

0

S(t , s )G (s , u (s ))d W (s ).

Note that this is a non-autonomous (or time-dependent) stochastic evolu-

tion equation theory. They also study smoothness of the mild solution and

compactness properties3.

In 2007, Wang and Duan [40] also studied a SPDE with dynamical boundary

conditions. However, the novelty in their work lies in the fact that the random-

ness enters the system at the boundary of small scale obstacles: the smooth

bounded domain U ⊂Rd is perforated with small holes (modelling obstacles or

heterogeneities) and random dynamical boundary conditions are defined on

the boundaries of these small holes. In particular, let Uε be the domain given by

removing Oε, a collection of small holes of size ε, periodically distributed in the

fixed domain U ⊂Rd , d ≥ 2. When ε→ 0, the holes inside the domain become

smaller and the number of holes increases to infinity. This process models

the heterogeneities becoming finer and finer. In this perforated domain, they

study the sequence of equations

∂ u ε

∂ t
=∆u ε+ f (t ,x , u ε,∇u ε)+ g 1(t ,x )Q1Ẇ1 on (0, T )×Uε,

ε2 ∂ u ε

∂ t
=−

∂ u ε

∂ νε
− εb u ε+ εg 2(t ,x )Q2Ẇ2 on (0, T )× ∂Oε,

(1.37)

where (W1(t ))t≥0 and (W2(t ))t≥0 are cylindrical Wiener processes on Hε := L2(Uε)

and ∂Hε := L2(∂Oε), respectively. The holes are assumed to have no intersec-

tion with the boundary ∂U , this implies that ∂Uε = ∂U ∪ ∂Oε. The positive

symmetric operators Q1 ∈ L (Hε) and Q2 ∈ L (∂Hε) and functions g 1 and g 2

satisfy

‖g 1(t , ·)
p

Q1‖2
L2(Hε )

≤CT , ‖g 2(t , ·)
p

Q2‖2
L2(∂Hε )

≤CT , t ∈ [0, T ].
3In fact, this is the reason why the parameter ε was introduced.
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The aim of their paper is to study the homogenization problem for (1.37). The

aim of (deterministic) homogenization theory is to establish the macroscopic

behaviour of a system that is microscopically heterogeneous in order to de-

scribe some characteristics of the heterogeneous medium (e.g., its thermal or

electrical conductivity) [41]. As (1.37) is a stochastic partial differential equa-

tion modelling the microscopic heterogeneous system, their goal is to derive

a homogenized effective equation (which is a new SPDE) by a probabilistic

variation of homogenization techniques. That is, u ε converges to a solution u

of the homogenized problem as ε ↓ 0 in the sense of probability distribution.

Their approach is as follows. First, they show that (1.37) can be formulated

as a stochastic evolution equation and that there exists a mild solution taking

values in the product space Hε× ∂Hε. Next, regarding the mild solution u ε as

a random variable in L2(0, T ; L2(U )) by extending u ε to the whole domain U ,

they obtain tightness of the distributions. Finally, they show that u ε converges

to the solution u of a homogenized equation in probability under different

types of conditions on f : polynomial nonlinearity, sublinear nonlinearity, and

nonlinearity containing a gradient term∆u ε. Their results have applications in

the study of composite materials but this problem also provides an illustration

of how boundary noise could also appear on “inner boundaries”.

Also in 2007, Yang and Duan [42] studied the Cahn-Hilliard equation with

random dynamical boundary conditions. The Cahn-Hilliard equation serves

as a mathematical model for the description of phase separation phenomena

in materials such as binary alloys. The concentration u of one of the two

components of the binary alloy satisfies

∂ u

∂ t
=∆

�

−∆u + f (u )
�

in U , (1.38)

where U =
∏d

i=1(0,`i )with `i > 0 and d ∈ {1, 2, 3}. As physicists started consid-

ering phase separation phenomena in confined systems where interactions

with the wall were taken into account, it was a natural development to consider

(1.38) with dynamical boundary conditions. Yang and Duan made the exten-
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sion to random dynamical boundary conditions by considering a problem of

the form
∂ u

∂ t
=∆µ+Q1Ẇ1(t ), µ=−∆u + ε

∂ u

∂ t
+ f (u ) in U ,

∂ µ

∂ ν
= 0,

∂ u

∂ t
=∆‖u −λu −

∂ u

∂ ν
u − g (u )+Q2Ẇ2 on ∂U ,

(1.39)

with initial condition u (0, ·) = u 0. Here∆‖ is the Laplace-Beltrami operator on

∂U , µ is the chemical potential, ν is the unit outer normal vector on ∂U , λ> 0,

f is a polynomial of odd degree, and (W1(t ))t≥0 and (W2(t ))t≥0 are cylindrical

Wiener processes on H = L2
0(U ) and ∂H = L2(∂U ), respectively. The space

L2
0(U ) is the subspace of functions u ∈ L2(U ) with 1

|U |

∫

U
u (x )d x = 0. The

operators Q1 and Q2 are assumed to be Hilbert-Schmidt and of trace class.

Further, they assume Q1 is orthogonal with respect to the orthonormal basis of

eigenfunctions for∆ on U andQ2 is orthogonal with respect to the orthonormal

basis of eigenfunctions of∆‖ on ∂U . They first obtain a solution for the interior

dynamics of (1.39) with homogeneous Neumann boundary conditions given

by
∂ u

∂ t
=−∆2u −∆ f (u )+Q1Ẇ (t ) on U ,

∂ u

∂ ν
= 0 on ∂U . (1.40)

We note that setting Au =∆u for u ∈D(A) =W 2,2(U )∩{u : ∂ν = 0} and under

the assumption that Tr(A−1+δQ1) < ∞ for some δ > 0, a L2(U )-valued mild

solution to (1.40) exists by [43]. As it is “impossible to define a semigroup

on the phase space” [42], they obtain a solution of (1.39) using a stochastic

flow given by the solution of (1.40) instead of a semigroup approach. This

stochastic flow satisfies the so-called cocycle property which allows them to

consider (1.39) as a random dynamical system. As such, they study the long-

term dynamics of (1.39) and the properties of the system as λ varies.

In 2009, Wang and Duan [44] studied the SPDE with dynamical boundary

conditions given on a smooth domain U ⊂Rd , 1≤ d ≤ 3, by

∂ u ε

∂ t
=∆u ε+ f (u ε)+σ1ẇ1 on (0, T )×Uε

ε
∂ u ε

∂ t
=−

∂ u ε

∂ νε
−u ε+

p
εσ2ẇ2 on (0, T )× ∂Oε,

(1.41)
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where ẇ1 and ẇ2 are time white noises on Uε and ∂Oε, respectively. Note that

(1.41) is an extension of (1.17) to dynamical boundary condition. Instead of

using the analytic approach used by Freidlin and Wentzell, Wang and Duan

consider a semigroup formulation of (1.41) to obtain a mild solution, then

for dynamical boundary conditions, they answer similar questions as those

answered for the static boundary conditions considered in [22]. First, they show

tightness of the distributions of the solutions and then they obtain a SPDE

with a simpler boundary condition when ε→ 0. Denoting by u a solution to

this limiting equation, they then show that u ε converges to u in the sense of

(1.18). Next, they then proceed to study the normalized deviations between

the solution u ε of (1.41) and u . In particular, it is shown that vε = (u ε−u )/
p
ε

converges to a process that solves a linear partial differential equation with

random coefficients under a white noise static boundary condition. Finally, a

large deviation result is proved for (u ε −u )/εκ, where 0< κ < 1/2. Although

it is not mentioned, we believe that the restriction to d ≤ 3 comes from the

boundary layer degeneracy (1.25).

In 2006, Bonaccorsi and Ziglio [45] applied the technique of product spaces

and operator matrices to solve stochastic evolution equations with randomly

perturbed dynamic boundary conditions. This theory is largely a development

of the equivalent deterministic theory obtained in [46, 47]. One can view

these deterministic results as a more refined version of the developments

presented in §1.1. As in (1.5), let H and ∂H be Hilbert spaces, A :D(A)⊂H →H ,

F : H →H is a nonlinear operator, and they consider the stochastic evolution

equation on H given by

d X (t ) = (AX (t )+ F (X (t )))d t +G (X (t ))d W (t ), X (0) = x ∈H , (1.42)

where (W (t ))t≥0 is a cylindrical Wiener process on H . Now, on ∂H they con-

sider another stochastic evolution equation

dZ (t ) = (BZ (t )+ΦX (t ))d t +C (Z (t ))d V (t ), Z (0) = z ∈ ∂H , (1.43)
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where Φ : D(Φ) ⊂ H → ∂H is the feedback operator and it is assumed that

D(A) ⊂ D(Φ), (V (t ))t≥0 is another cylindrical Wiener process on ∂H taking

values on ∂H , B : D(B ) ⊂ ∂H → ∂H . The state space H and the boundary

space ∂H are coupled together with the condition

Z (t ) =τX (t ), t > 0, (1.44)

where τ :D(A)→ ∂H . Defining the operator (A,D(A)) by (1.6) and under the

assumptions that A generates a C0-semigroup (S(t ))t≥0 on H and B generates

a C0-semigroup (T (t ))t≥0 on ∂H , then one can formulate the coupling (1.42)-

(1.43)-(1.44) as a single stochastic abstract Cauchy problem on the product

space H × ∂H in the following way. First, define the operator matrix

A :=

 

A 0

0 B

!

, D(A) :=D(A)×D(B ),

the Dirichlet map Λλ : ∂H →H by (1.8), and the operator matrix

L :=

 

IH −Λλ
0 I∂H

!

,

where IH and I∂H are the identity operators on H and ∂H , respectively. Then

dX(t ) = (AX(t )+F(X(t )))d t +G(X(t ))dW(t ), X(0) = x∈H × ∂H , (1.45)

whereW := (W, V ). They show that when Φ = 0 (i.e. there is no boundary

feedback), the mild solution of (1.45) is given by

X(t ) = S(t )x+
∫ t

0

S(t − s )F(X(s ))d s +

∫ t

0

S(t − s )G(s )dW(s ),

where (S(t ))t≥0 is the C0-semigroup generated by A on H × ∂H . Although

the deterministic framework for this construction is formulated in a Banach

space setting [46, 47], the extension of these results to the stochastic setting of

Bonnacorsi and Ziglio are only given in the Hilbert space case. More details of
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their construction can be found in Ziglio’s thesis [48]. We also note that this

formulation is not entirely appropriate when one wants to consider the white

noise case as in (1.5). One can easily see this from the coupling condition (1.44)

whereby if B = 0, Φ= 0, C = I in (1.43) then trivially solving for Z (t )we obtain

τX (t ) =Z (t ) =V (t ), and not τX (t ) = V̇ (t ) as needed.

In 2008, Bonaccorsi in collaboration with Marinelli and Ziglio [49] consid-

ered the stochastic FitzHugh-Nagumo equations on networks with impulsive

noise. The FitzHugh-Nagumo equations result from a simplification of the

Hodgkin-Huxley model which describes how action potentials in neurons are

initiated and propagated. In [49] they study a system of FitzHugh-Nagumo

equations defined on a graph G described by a set of n vertices v1, . . . , vn and m

oriented edges e1, . . . , em which are assumed to be normalised (i.e., e j = [0,1]

for i = 1, . . . , m ). The graph G is described by an incidence matrix Φ=Φ+−Φ−

where Φ+ = (ϕ+i j )n×m and Φ− = (ϕ−i j )n×m are given by

ϕ−i j =







1, vi = e j (1)

0, otherwise
, ϕ+i j =







1, vi = e j (0)

0, otherwise.

The electrical potential in the network denoted by u (t ,x ) where u ∈ (L2(0, 1))m

is the vector (u 1(t ,x ), . . . , u m (t ,x )) and u j (t , ·) is the electrical potential on the

edge e j . Let

Γ(vi ) := {j ∈ {1, . . . , m } : e j (0) = vi or e j (1) = vi },

and it follows that the degree of a vertex vi has cardinality |Γ(vi )|. On every

edge e j , the potential u j satisfies the parabolic PDE

∂ u j

∂ t
=
∂

∂ x

�

c j (x )
∂ u j

∂ x
u j

�

+ f j (u j ), (1.46)

on R+× (0,1), where u j = u j (t ,x ), in combination with the initial conditions

u j (0,x ) = u 0
j (x )∈C ([0, 1]), the continuity assumption on every node given by

p i (t ) := u j (t , vi ) = u k (t , vi ), j , k ∈ Γ(vi ), i = 1, . . . , n ,
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and the random dynamics at the nodes v1, . . . , vn are given by

∂ p i

∂ t
(t ) =−b i p i (t )+

∑

j∈Γ(vi )

ϕi jµj c j (vi )
∂ u j

∂ x
(t , vi )+σi L̇(t , vi ), t > 0, (1.47)

where µj > 0 for j = 1, . . . , m and σi > 0 for i = 1, . . . , n . Here L̇(t , vi ) is the

formal time derivative of aR-valued Lévy process, see §1.11.

Of course, one could make the observation here that a Brownian motion

is a Lévy process (see [50]) so that we could replace L̇(t , v j ) by ẇ j (t ) where

(w j (t ))t≥0 are R-valued Brownian motions, then notice that (1.47) is a dynami-

cal Neumann condition so, in respect to §1.3 and the regularity provided by

Neumann conditions, we should expect existence of a L2(0, 1)-valued solution

for each stochastic boundary value problem (1.46)-(1.47) defined on each edge

e i in this Brownian motion case.

In [48, 49], it is shown that (1.46) can be formulated as a stochastic evolution

equation of the form (1.42) by taking the state space H = L2(0,1)m and (1.47)

as a stochastic evolution equation of the form (1.43) on the boundary space

∂H = Rn where the processes W and V in (1.42) and (1.43) are replaced by

Lévy processes. Using this semigroup approach, they then prove existence and

uniqueness of a mild solution to (1.46)-(1.47).

In 2009, Brune, Duan and Schmalfuß studied a coupled system of the

two-dimensional Navier–Stokes equations and the salinity transport equation

[51]. The Navier-Stokes equations are often coupled with other equations,

especially with the scalar transport equations for fluid density, salinity, or

temperature. This coupling allows models to be developed for a variety of

phenomena in environmental, geophysical, and climate systems. Let U ⊂R2 be

a bounded domain with C 1 boundary ∂U . In [51] they take random influences
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into account and consider a problem of the form

∂ u

∂ t
=
�

c1∆u −∇p −u ·∇u − c2v e2
�

+ ẇ1 on R+×U

div u = 0 on R+×U , u = 0 on R+× ∂U

∂ v

∂ t
= (c3∆v −u ·∇v )+ ẇ2 on R+×U

∂ v ◦

∂ t
=

1

ε

�

−
∂ v ◦

∂ ν
− c4v ◦+ f (x )

�

+ ẇ3 on R+× ∂U

(1.48)

where v ◦ = v |∂U in terms of trace, u = u (t ,x )∈R2 is the velocity, v = v (t ,x )∈R
is the salinity, p is the pressure, f (x ) is the mean salinity flux through the bound-

ary, e1 = (0,1)T ∈ R2, c i for i ∈ {1,2,3,4} are constants, and ẇ i for i ∈ {1,2,3}
are independent white noises. When the positive constant ε becomes zero,

then the dynamical boundary condition is interpreted as a static Robin bound-

ary condition. Their approach to studying (1.48) is to embed the dynamical

boundary condition into a stochastic evolution equation, called a stochastic

Boussinesq equation, then taking the linear part of (1.48) with homogeneous

boundary conditions they obtain a linear symmetric operator whose eigenfunc-

tions form a complete orthonormal system. In this basis, they then construct a

Galerkin approximation of the associated random system, then the solution

map obtained defines a random dynamical system. We should note that this is

the same idea employed by Kim for (1.33). Finally, they show that the random

dynamical system obtained has a random attractor.

In 2010, Sun, Gao, Duan and Schmalfuß [52] considered rare events for the

Boussinesq system with fluctuating dynamical boundary conditions given by

(1.48). A large deviations principle is established and small probability events

are studied in this context.

1.11 Lévy processes

In 2007, Peszat and Zabczyk [33, Chapter 15] consider the development of (1.5)

to the case of Lévy white noise. We refer the reader to the monograph [33] for
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the definition of Hilbert space valued Lévy processes. We simply mention that

Lévy processes serve as a tractable model for processes with “jumps”.

Let H be a Hilbert space. In [33, Chapter 15], they consider the slight

modification of (1.5) given by

X ′(t ) = AX (t )+ F (X (t )), τX (t ) = L̇(t ), X (0) = x , (1.49)

where L̇ is the formal time-derivative of a Lévy process taking values in the

Hilbert space H and the other operators are defined like (1.5). They additionally

assume that (1.49) models dynamics on a C∞ bounded domain U ⊂Rd with

boundary ∂U , H is embedded in the space of distributions on ∂U , and the

operator A has domain D(A) := {u ∈W 2,p (U ) : τu = 0} and generates a C0-

semigroup on Lp (U ). Of course, following (1.6), this implies that A has domain

D(A) =W 2,p (U ). They define two new types of weak solutions when A = ∆.

First, for the Dirichlet case τu := u |∂U (in terms of trace), they say that a

Lp (U )-valued process (X (t ))t≥0 is a weak solution of (1.49) if

〈X (t ),ϕ〉= 〈x ,ϕ〉+
∫ t

0

〈X (s ),∆ϕ〉d s +(L(t ),∂νϕ) (1.50)

holds where ν is the exterior normal of ∂U , 〈·, ·〉 is the canonical bilinear form

onD(U )×C∞(U ), (·, ·) is the bilinear form onD(∂U )×C∞(∂U ), andϕ ∈C∞(U )

satisfying ϕ = 0 on ∂U . Second, for the Neumann case τu := ∂νu , a process

(X (t ))t≥0 is a weak solution of (1.49) if

〈X (t ),ϕ〉= 〈x ,ϕ〉+
∫ t

0

〈X (s ),∆ϕ〉d s +(L(t ),ϕ)

holds for ϕ ∈C∞(U ) satisfying ∂νϕ = 0 on ∂U . These definitions follow natu-

rally from Green’s second formula. Similar to (1.7), they show that a unique

mild solution to (1.49) exists in L2(U ) and is given by

X (t ) =

∫ t

0

S(t − s )F (X (s ))d s +

∫ t

0

(λ−A)S(t − s )Λλd L(s )
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if L is a square-integrable, centered Lévy process with reproducing kernel

Hilbert spaceH ⊂ H = L2(U ), F : R→ R is a Lipschitz continuous function

and
∫ t

0

‖(λ−A)S(s )Λλ‖2
L2(H ,L2(U ))d s <∞,

for t > 0. They also show that if (X (t ))t≥0 is a mild solution to (1.49) with A =∆

then it is also a weak solution. Next, they present the example of §1.3 for

the case of (1.49) and again conclude that no solutions exist for the Dirichlet

case in L2(0,1). Finally, they conclude that “in order to study the Dirichlet

problem with random perturbations of the Gaussian white noise type, one

should introduce weighted L2-spaces. Namely, the space L2(U ,κ(x )d x )where

k vanishes on the boundary ∂U”. However, these arguments are not presented

and the reader is referred to [24, 12, 31] and a preprint by Peszat and Russo4.

As already mentioned in §1.10, the boundary noise problem studied in [54],

in particular (1.46)-(1.47), is studied under the influence of Lévy boundary

noise. As such, the operator matrix approach whereby the boundary value

problem is formulated as the abstract Cauchy problem (1.45) on the product

space H × ∂H is presented for Lévy processes in Ziglio’s thesis [48].

1.12 Optimal control of stochastic systems: a

continuing story

As briefly mentioned in §1.5, the first results on optimal control of stochastic

boundary value problems were obtained in 1998 [29]. Recently a number of

new results have appeared on this topic.

In 2007, Debussche, Fuhrman and Tessitore [55] studied the optimal control

problem for a nonlinear stochastic heat equation on the interval (0,π)where

4We believe this has become the preprint [53].
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the boundary conditions are of Neumann type,

∂ u

∂ t
(t ,x ) =

∂ 2u

∂ x 2
(t ,x )+ f (t , u (t ,x )) on [t0, T ]× (0,π)

∂ u

∂ x
(t , 0) = g 1(t )+ ẇ1(t ),

∂ u

∂ x
(t ,π) = g 2(t )+ ġ 2(t ).

(1.51)

In (1.51), (w1(t ))t≥0 and (w2(t ))t≥0 are independentR-valued Wiener processes,

u is the unknownR-valued process representing the state of the system, and

the control is given by the R-valued processes g 1 and g 2 acting at the points 0

and π, respectively.

Their approach is to use the framework of [11] and to formulate (1.51) as

(1.9) resulting in a stochastic evolution equation on a Hilbert space H of the

form

d X (t ) = [AX (t )+ F (t , X (t ))+ (λ−A)ΛλG (t )]d t +(λ−A)Λλd W (s ),

where, as for (1.9) we have a boundary Hilbert space ∂H , Λλ : H → ∂H is

the map associated with the Neumann boundary condition τu = ∂νu , G (t ) =

(g 1(t ), g 2(t )) and W (t ) = (w1(t ), w2(t )) take values on ∂H = L2({0,π})'R2, and

A is defined by (1.6). The optimal control problem treated is the minimisation

of the finite horizon cost

J (t , X (0),G (·)) =E
∫ T

t

∫ π

0

c (s , z , X (s )(z ),G (s ))d z d s

+E
∫ π

0

ϕ(z , X (T )(z ))d z ,

(1.52)

where c : [0, T ]× [0,π]×R×K →R andϕ : [0,π]×R→R and the set of control

actionsK is a bounded closed subset of R2. They obtain the existence and

uniqueness of a C 1 mild solution of the Hamilton-Jacobi-Bellman equation.

This enables them to find an optimal feedback for their problem.

Although the control problem (1.51) seems simpler than (1.27) due to the

absence of noise on the interior of the domain, in fact the problem is surpris-

ingly more difficult, as the presence of enough noise guarantees that the linear
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operator in the Hamilton-Jacobi equation is strongly elliptic. As a result, their

method would apply equally well in the presence of interior noise. Due to

the absence of interior noise, a number of technical difficulties arise which

they surmount by formulating the problem as a system of forward-backward

stochastic differential equations.

Finally we note that they mention “the case of Dirichlet boundary condi-

tions is more complicated since the solutions are much less regular in space”.

Further, they suggest that their method can be extended to this case by using

the techniques of [24, 12] and that “the real structural restriction - beside tech-

nical complications - is that the ‘image of the noise operator’ is larger than

the image of the control”. They also recall the negative result of §1.3 obtained

in the semigroup framework of [11] and conclude that “the smoothing prop-

erties of the heat equation are not strong enough to regularize a rough term

such as white noise”. These ideas where implemented in 2009 by Fabbri and

Goldys [56], however in order to continue chronologically, we shall discuss

their contributions later.

In 2008, Bonaccorsi, Confortola, and Mastrogiacomo [54] study the exten-

sion of (1.51) to the case of dynamical Neumann boundary conditions. That is,

to dynamics of the form

∂ u

∂ t
(t ,x ) =

∂ 2u

∂ x 2
(t ,x )+ f (t ,x , u )+ g (t ,x , u )Ẇ (t ) on [t0, T ]× (0,π)

z ′1(t ) =−b1z 1(t )−
∂ u

∂ x
(t , 0)+h1(t )(g 1(t )+ ẇ1(t ))

z ′2(t ) =−b2z 2(t )−
∂ u

∂ x
(t ,π)+h2(t )(g 2(t )+ ẇ2(t )),

(1.53)

where (W (t ))t≥0 is a cylindrical Wiener process on H = L2(0,π) and for i = 1, 2:

b i > 0, h i (t ) are bounded measurable functions, and (w i (t ))t≥0 are indepen-

dentR-valued Wiener process. The control process G (t ) = (g 1(t ), g 2(t )) takes

values in a compactK ⊂ R2 and we set V (t ) = (w1(t ), w2(t )). Note that the

boundary dynamics are given by Z (t ) = (z 1(t ), z 2(t ))which is a system of twoR-

valued stochastic differential equations. Setting X (t ) = u (t , ·), their approach
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is to pose (1.53) in the form of (1.42)-(1.43)-(1.44) using the operator matrix

theory presented in §1.10. This results in a Cauchy problem on the space

H × ∂H = L2(0,π)×R2 of the form

dX(t ) = [AX(t )+F(t ,X(t ))]d t +G(t ,X(t ))[IZ (t )d t + dW(t )],

with initial condition X (0) = x. The operator I : ∂H →H gives the immersion of

the boundary space into H × ∂H by Iz := (0, z ). This formulation is then used

to minimize a cost functional of the form

J (t , X (0),G ) =E
∫ T

t

c (s , X (s ),Z (s ),G (s ))d s +Eϕ(X (T ),Z (T )), (1.54)

where c : [0, T ]×H × ∂H ×K →R and ϕ : H × ∂H →R and the set of control

actionsK is a bounded closed subset of R2. Due to the presence of interior

noise in (1.53) and the structure of the cost functional in (1.54), this problem

seems less technical than (1.52) but the presence of dynamical Neumann

boundary conditions is an interesting feature that impacts the theory.

In 2009, Fabbri and Goldys [56] furthered the idea mentioned in [55]. That

is, they apply the weighted space technique of [12] that we presented in §1.8,

to handle the optimal control problem for the heat equation on the half-line

(0,∞)with Dirichlet boundary noise and boundary control given by

∂ u

∂ t
(t ,x ) =

∂ 2u

∂ x 2
(t ,x ) on [t0, T ]× (0,∞),

u (t , 0) = g (t )+ ẇ (t ),
(1.55)

where (w (t ))t≥0 is a R-valued Wiener process and g is a square integrable

control. Setting X (t ) = u (t , ·), their approach is to formulate (1.55) as a stochas-

tic evolution equation of the form (1.9) with F = 0 whereby the state space

H = L2(0,∞;%(x )d x ) is a weighted L2 space with%(x ) :=min(1,x 1+θ ) such that

θ ∈ (0, 1) and the boundary space ∂H 'R. In other words,

d X (t ) = [AX (t )+ (λ−A)Λλg (t )]d t +(λ−A)Λλd W (s ), (1.56)
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where Au := ∂ 2
x u withD(A) =W 2,2

0 (0,∞), Λλ is the Dirichlet map, and W (t ) =

w (t ). They indicate that the case of (1.55) with interior noise and interior

control could be easily considered in the same framework. They study the

linear quadratic problem given by the cost functional

J (t , X (0), g ) =E
∫ T

t

�

‖BX (s )‖2
H2
+ |g (s )|2

�

d s +E〈QX (T ), X (T )〉H , (1.57)

where H2 is another Hilbert space, B ∈L (H , H2), and Q ∈L (H ) is a positive

symmetric operator. Following a result by Krylov [57]which shows that A ex-

tends to a generator eA of an analytic semigroup (S(t ))t≥0 on H = L2(0,∞;%(x )d x ),

they are able to obtain a unique mild solution of (1.56) using the classic meth-

ods of [11]. They solve the minimisation (1.57) by working directly with a

solution of the associated deterministic problem u ′(t ) = Au (t )+ (λ−A)Λλg (t )

on H .

In 2010, Masiero [58] considered the nonlinear version of (1.55) given by

∂ u

∂ t
(t ,x ) =

∂ 2u

∂ x 2
(t ,x )+ f (s , u (t ,x )) on [t0, T ]× (0,∞),

u (t , 0) = g (t )+ ẇ (t ),
(1.58)

where (w (t ))t≥0 is a R-valued Wiener process and the control g is given by the

R-valued process g . Similar to the approach of Fabbri and Goldys, Masiero

formulates (1.58) as a stochastic evolution equation of the form

d X (t ) = [AX (t )+ F (s , X (t ))+ (λ−A)Λλg (t )]d t +(λ−A)Λλd W (s ),

where Au := ∂ 2
x u withD(A) =W 2,2

0 (0,∞), Λλ is the Dirichlet map, and W (t ) =

w (t ). First, solutions are considered on the weighted space H = L2(0,∞;%(x )d x )

using the results of [56] and extending them to nonlinear case. The optimal

control problem considered is similar to (1.52) and of the form

J (t , X (0), g ) =E
∫ T

t

∫ ∞

0

c (s , z , X (s )(z ), g (s ))d z d s

+E
∫ ∞

0

ϕ(z , X (T )(z ))d z .
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where c : [0, T ]× [0,∞]×R×K → R and ϕ : [0,∞]×R → R and the set of

control actionsK is a bounded closed subset of R. Existence and uniqueness

of the Hamilton-Jacobi-Bellman equation is proved and it is shown how these

results can be applied to perform the synthesis of the optimal control. The

infinite horizon problem is also considered.

Again, we note that these results for the Dirichlet boundary noise case rely

heavily on the weighted space idea obtained in [12] and the one-dimensional

example can only be treated in [56, 58] as there is a lack of a higher-dimensional

existence theory.

1.13 Qualitative theory

In 2007, Chueshov and Schmalfuß [59] continued their study of (1.36) and

considered the qualitative properties of the dynamical system obtained. Under

certain conditions on the nonlinear term f , they show that the solution of

the system generates a monotone order-preserving random dynamical system

with respect to the metric dynamical system generated by the underlying

Wiener process. Under a coercitivity condition, it is shown that this system has

a random pull-back attractor. They then apply these results to the case of a

nonlinear stochastic heat equation with a polynomial nonlinearity and show

that the attractor is a random equilibrium point.

In 2008, Ziglio [48] studied the existence of an attracting set at time t = 0

for a heat equation in a bounded domain U ⊂R3 with smooth boundary ∂U

under random dynamical Neumann boundary conditions.

1.14 Physics

Briefly looking at the physics literature, we notice that in a number of papers

during 2008 and 2009, Sabelfeld and Shalimova considered different types of

elliptic equations with random boundary excitations [60, 61, 62, 63]. Their
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papers all follow the same structure, hence we shall illustrate their results with

the simple example

∆u = 0 in U , u =w on ∂U

where w is a Gaussian (spatial) white noise on ∂U and U is the half-space

R2
+ with boundary ∂U ≡ R. Their “solutions” are defined by convolution

against a Poisson kernel, however an existence and uniqueness result is not

proved and it is simply stated that u is a Gaussian random field with zero

mean. The main aim of their papers is to obtain analytic approximations to

the “correlation tensor” of the u and to represent u as a Karhunen-Loève (KL)

series expansion. By truncating the KL expansion at a desired term, they obtain

analytic estimates for the correlation structure of u which they verify through

numerical simulation.

Although they have not obtained an existence or uniqueness result for

these elliptic problems, these papers show there is an interest from physicists

to understand elliptic problems with boundary noise. Further, the noise on

the boundary is spatially white which is a situation that has not been hitherto

studied in the literature. This is due to the standard assumption that the noise is

typically assumed to be of the form BẆ where B is a Hilbert-Schmidt operator

or that U ⊂R and ∂U is the endpoint(s) of an interval5.

1.15 Recent developments

Recently, Cerrai and Freidlin have considered a nonlinear stochastic parabolic

equation with Neumann boundary noise [64]. The interior noise is of multi-

plicative type and the uniformly elliptic second order differential operatorA
is multiplied by a parameter ε−1 such that 0 < ε � 1, i.e., ε−1 is large. More

5Noise cannot be spatially white in this case.
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precisely, they consider

∂ u ε

∂ t
(t ,x ) =

1

ε
Au ε(t ,x )+ f (t ,x , u ε(t ,x ))

+ g (t ,x , u ε(t ,x ))QẆ1(t ) on R+×U ,

1

ε

∂ u ε

∂ ν
(t ,x ) =σ(t ,x )BẆ2(t ) on R+× ∂U ,

(1.59)

where U ⊂Rd is bounded with C∞ boundary ∂U . The functions f , g : [0,∞)×
U×R→R are assumed to be measurable and satisfy a Lipschitz condition with

respect to the third variable, uniformly with respect to the first two variables,

and the mapping σ : [0,∞)× ∂U → R is bounded with respect to the space

variable. The operators Q ∈ L (L2(U )) and B ∈ L (L2(∂U )) are assumed to

be nonnegative and symmetric. The processes (W1(t ))t≥0 and (W2(t ))t≥0 are

independent cylindrical Wiener processes on H := L2(U ) and ∂H := L2(∂U ),

respectively. Let A be the unbounded operator on H defined by Au :=Au for

u ∈ D(A) := {u :Au ∈H ,∂νu |∂U = 0}. Different from previous results in the

literature, they assume that the strongly continuous semigroup (S(t ))t≥0 in H

generated by A admits a unique invariant measure µ and spectral gap occurs.

That is, there exists some γ> 0 such that, for any h ∈ L2(U ,µ),








S(t )h −
∫

U

h(x )µ(d x )









L2(U ,µ)
® e−γt ‖h‖L2(U ,µ), t ≥ 0. (1.60)

We shall use the notation Hµ := L2(U ,µ) and 〈h,µ〉 :=
∫

U
h(x )µ(d x ) and (·, ·) for

the inner product in L2(U ).

Their aim is to study the limiting behaviour of (1.59) as the parameter ε

goes to zero and to show that the spatial average of (1.59) can be approximated

by a R-valued stochastic differential equation of the form

d v (t ) = F̃ (t , v (t ))d t +G̃ (t , v (t ))Q d W1(t )+ Σ̃(t )B d W2(t ), (1.61)

with initial condition v (0) = 〈u 0,µ〉 where for ϕ ∈ L2(U ,µ), ψ ∈ L2(U ), κ ∈
L2(∂U ), and t ≥ 0, they defined the R-valued mappings F̃ , G̃ , and Σ̃ by the
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spatially averaging

F̃ (t ,ϕ) :=

∫

U

f (t ,x ,ϕ(x ))µ(d x ),

G̃ (t ,ϕ)ψ :=

∫

U

g (t ,x ,ϕ(x ))ψ(x )µ(d x ),

Σ̃(t )κ :=λ

∫

U

Λλ[σ(t , ·)κ](x )µ(d x ).

Here, Λλ is the Neumann map associated with (A ,∂ν ) and the solution v of

(1.61) approximates the solution u ε of (1.59) in the sense of

lim
ε↓0
E sup

t∈[δ,T ]

�

�

�

�

�

∫

U

|u ε(t ,x )−v (t )|2µ(d x )

�

�

�

�

�

p

= 0,

for any fixed 0<δ< T and p ≥ 1/2.

To obtain this approximation result, they first show that there exists a

unique solution to (1.59) in the following way. First, they assume that

QW1(t ) =
∞
∑

n=0

λn en wn (t ), BW2(t ) =
∞
∑

n=0

θn ẽn w̃n (t ),

where (en )∞n=0 is an orthonormal basis of H that diagonalizes Q with eigenval-

ues (λn )∞n=0, (ẽn )∞n=0 is an orthonormal basis of ∂H that diagonalizes B with

eigenvalues (θn )∞n=0, and (wn (t ))t≥0 and (w̃n (t ))t≥0 are two sequences of inde-

pendentR-valued Wiener processes. They stress that they are “not imposing

the Hilbert-Schmidt condition on the operators Q and B” and instead assume

that if d ≥ 2 then there exists % < 2d /(d −2) and β < 2d /(d −1) such that

∞
∑

n=0

λ%n‖en‖2
L∞(U ) <∞ and

∞
∑

n=0

θ βn <∞. (1.62)

We recall however that if an operator T ∈L (L2(U )) satisfies T L2(U )⊂ L∞(U )

then T is Hilbert-Schmidt so (1.62) is equivalent to saying that, depending on

d , that the cylindrical Wiener processes W1 and W2 take values in H ⊂H and
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∂H ⊂ ∂H respectively, and we can identify Q and B with Q ∈ L2(H , H ) and

B ∈L2(∂H ,∂H ).

Under the conditions (1.62) and posing for h1, h2 ∈H ,

F (t , h1)(x ) := f (t ,x , h1(x )), [G (t , h1)h2](x ) := g (t ,x , h1(x ))h2(x ),

for all x ∈U , they prove that a H-valued mild solution of (1.59) is given by

u ε(t ) =Sε(t )u 0+

∫ t

0

Sε((t − s ))F (s , u ε(s ))d s

+

∫ t

0

Sε(t − s )G (s , u ε(s ))Q d W1(s )

+ (λ−A)

∫ t

0

Sε(t − s )ΛλB d W2(s )

︸ ︷︷ ︸

Lε (t )

where Sε(t ) :=S(t /ε), Λλ is the Neumann map, and u ε(t )(x ) = u ε(t ,x ). Further,

for any T > 0 and p ≥ 1,

sup
ε∈(0,1]
E‖Lε‖p

C ([0,T ];H ) <∞.

Finally, once a solution is obtained, they show that for any u 0 ∈H , p ≥ 1, θ < 1

and δ> 0 it holds that

E sup
t∈[δ,T ]

‖u ε(t )−v (t )‖p
Hµ
® (ε+ εpθ/2)

where v solves (1.61).

Let us consider (1.60) for the case where U = (0,`) ⊂ R and A is the Neu-

mann Laplacian on L2(0,`), i.e., Au = u ′′ with

D(A) = {u ∈W 2,2(0,`) : u ′(0) = u ′(`) = 0}.

The trigonometric functions hn (x ) =−
p

2 sin(nπ
`

x ) form an orthonormal basis

on L2(0,`) such that Ahn =−λn hn with λn = (nπ
`
)2 for n = 1,2, . . . and h0(x ) =
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1/
p
`with λ0 = 0. As S(t ) = e t A , it follows that S(t )hn = e−tλn hn . Using the fact

that

S(t )h =

∫ `

0

h(x )
1

`
d x +

∞
∑

n=1

e−tλn (h, hn )hn ,

it follows that µ(d x ) = `−1 d x is an invariant measure of (S(t ))t≥0. In fact, for

a bounded domain U ⊂Rd , in the same way it follows that µ(d x ) = |U |−1 d x

where |U | is the volume of U .

In the preprint [65], Veraar and Schnaubelt have considered the well-

posedness and pathwise regularity of semilinear non-autonomous parabolic

equations with boundary and interior noise in an Lp setting. Let H and ∂H

be separable Hilbert spaces and let E and ∂ E be Banach spaces. On E , they

consider the stochastic evolution equation

d X (t ) = [A(t )X (t )+ F (t , X (t ))+Π1(t )G (t , X (t ))]d t

+ B (t , X (t ))d W1(t )+Π2(t )C (t , X (t ))d W2(t )
(1.63)

with initial condition X (0) = x ∈ E where (A(t ))t∈[0,T ] is a family of closed

operators on E . The processes (W1(t ))t≥0 and (W2(t ))t≥0 are cylindrical Wiener

processes on H and ∂H , respectively. The operators Πi :D(Πi )⊂ ∂ E → E for

i ∈ {1, 2} are used to treat the boundary conditions.

Their approach to handling the family of operators (A(t ),D(A(t )))t≥0 is

through the non-autonomous theory developed by Acquistapace and Terrini

[66]. That is, the family (A(t ),D(A(t )))t≥0 is assumed to satisfy the following

conditions:

• A(t ) are densely defined, closed linear operators on a Banach space E

and there are constantsσ ∈R, K ≥ 0, and θ ∈ (π
2

,π) such that Σ(θ ,σ)⊂
%(A(t )) and ‖R(λ, A(t ))‖ ≤ K /(1+ |λ−σ|) holds for all λ ∈ Σ(θ ,σ) and

t ∈ [0, T ],

• There are constants L ≥ 0 and µ,ν ∈ (0, 1] such that µ+ν > 1 and

‖Aσ(t )R(λ,Aσ(t ))(Aσ(t )−1−Aσ(s )−1)‖ ≤ L|t − s |µ(|λ|+1)−ν
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holds for all λ∈Σ(θ , 0) and s , t ∈ [0, T ], where Aσ(t ) := A(t )−σ.

Under these conditions, the non-autonomous Cauchy problem u ′(t ) = A(t )u (t )

for t ∈ [s , T ]with u (s ) = x ∈ E , has a solution u ∈C ([s , T ]; E )∩C 1((s , T ]; E )with

u (t )∈D(A(t )) for all t ∈ (s , T ]. This gives rise to a strongly continuous evolu-

tion family of bounded operators (S(t , s ))0≤s≤t≤T on E with properties:

• S(s , s ) = I for all s ∈ [0, T ];

• S(t , s ) =S(t , r )S(r, s ) for all 0≤ s ≤ r ≤ t ≤ T ;

• the map (t , s ) 7→S(t , s ) is strongly continuous.

This evolution family allows Schnaubelt and Veraar to prove existence and

uniqueness of a mild solution of (1.63) under linear growth and uniform Lips-

chitz conditions (in space) on the mappings F , G , B , and C . The conditions

are technical, therefore let us consider an example where F ≡ 0, G ≡ 0, B ≡ 0.

In this simple case, a candidate mild solution of (1.63) is given by

X (t ) =S(t , 0)x +

∫ t

0

S(t , s )Π2C (s , X (s ))d W2(s ). (1.64)

Setting Π2 = (λ− A)Λλ, one can see (1.64) is a non-autonomous version of

(1.7) and under similar conditions on Λλ, a mild solution in E can be obtained.

We note that their results can be viewed as an extension of Chapter 4 to the

non-autonomous setting by applying the Acquistapace-Terrini conditions.

In the preprint [67], Bonnacorsi and Ziglio consider a nonlinear stochastic

partial differential equation with dynamical boundary conditions given by

∂ u

∂ t
(t ,x ) = div a(x ,∇u )+QẆ1(t ) in R+×U ,

∂ u ◦

∂ t
(t ,x ) =−u ◦(t ,x )|u ◦(t ,x )|p−2−a(x ,∇u ) ·ν + BẆ2(t ) on R+× ∂U

(1.65)

where u ◦ = u |∂U in terms of trace. Here, (W1(t ))t≥0 and (W2(t ))t≥0 are cylindrical

Wiener processes on H = L2(U ) and ∂H = L2(∂U ) respectively, Q ∈ L2(H ),

B ∈ L2(∂H ), and a : U ×Rd → Rd is a Carathéodory function satisfying the

conditions:
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• there exists α> 0 such that a(x ,ξ) ·ξ≥α|ξ|p for almost every x ∈U and

for all ξ∈Rd ,

• there existsσ> 0 and f ∈ Lq (U ) such that |a(x ,ξ)| ≤σ( f (x )+ |ξ|p−1) for

almost every x ∈U and for all ξ∈Rd where q = p/(p −1),

• for almost every x ∈U and for all ξ 6=η∈Rd , (a(x ,ξ)−a(x ,η)) ·(ξ−η)> 0.

Notice than when p = 2 and a(x ,∇u ) =∇u then div a(x ,∇u ) =∆u and (1.65)

reduces to the stochastic heat equation with dynamical Robin boundary con-

ditions of the form

∂ u

∂ t
(t ,x ) =∆u +QẆ1(t ) in R+×U ,

∂ u ◦

∂ t
(t ,x ) =−u ◦(t ,x )−

∂ u ◦

∂ ν
(t ,x )+ BẆ2(t ) on R+× ∂U ,

and it may be posed as a problem of type (1.42)-(1.43)-(1.44) taking values in

H . However, when p 6= 2, a can no longer be extended to a linear operator

on H × ∂H and the framework of [45] no longer applies. This is the case,

for example, when a(x ,ξ) = |ξ|p−2ξ which gives the p -Laplacian. As such, to

consider (1.65), Bonaccorsi and Ziglio use the pivot space approach, a standard

PDE technique to handle nonlinearities like a (e.g., see §II.3 in [68]) which was

extended to the case of SPDEs (with interior noise) in [69]. Using the product

space ideas of [45], Bonaccorsi and Zigio extend [69] to the case of stochastic

dynamical boundary conditions by defining E = Lp (U ) and ∂ E =W 1−1/p ,p (∂U ),

where W 1−1/p (∂U ) is the space of all u ∈ Lp (∂U ) such that

‖u ‖p
∂ E :=

∫

∂U

∫

∂U

|u (x )−u (y )|p

|x − y |p+d−2
dσ(x )dσ(y )<∞,

then taking the pivot (or Gelfand triple)

E × ∂ E ,→H × ∂H (≡H ∗× ∂H ∗) ,→ (E × ∂ E )∗,

where H × ∂H is identified with its dual H ∗× ∂H ∗ by the Riesz isomorphism

and ,→ denotes a continuous and dense embedding. The nonlinear operator a
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is then considered by introducing the matrix operator

A(u , u ◦)T :=

 

div a(·,∇u ) 0

−u ◦|u ◦|p−2 −a(·,∇u ) ·ν

!

for all u ∈C∞(U ) and u ◦ ∈C∞(∂U ), then showing thatA extends to a bounded

nonlinear operator from E × ∂ E into (E × ∂ E )∗, and finally posing (1.65) as

dX(t ) =A(X(t ))d t +BdW(t ), X(0) = x∈H × ∂H , (1.66)

where B= (Q , B ) andW= (W1, W2). Existence and uniqueness of a variational

solution to (1.66) is obtained by showing thatA satisfies the necessary assump-

tions (i.e., hemicontinuity, weak monotocity, coercivity, and boundedness) and

B ∈L2(H × ∂H ) so that the framework of [69] applies. Here, a (Ft )-adapted

process (X(t ))t≥0 is a variational solution to (1.66) if X is H × ∂H-valued and

there exists a process eX that is d t ⊗P-equivalent toX such that eX belongs to

Lα([0, T ]×Ω; E ×∂ E )∩L2([0, T ]×Ω; H ×∂H )with α> 1 (dependent onA) and

for t ∈ [0, T ],

X(t ) = x+

∫ t

0

A(eeX(s ))d s +

∫ t

0

BdW(s ), P-a.s.,

where eeX is a E × ∂ E -valued progressively measurable d t ⊗P-version of eX.

Let (Xx(t ))t≥0 denote a solution to (1.66) with initial condition X(0) = x ∈
H × ∂H and let Cb (H × ∂H ) be the space of bounded continuous functions

on H × ∂H . In the second part of [67], it is shown that (Xx(t ))t≥0 is a Markov

process that satisfies

E sup
t∈[0,T ]

‖Xx(t )‖2
H×∂H <∞,

where ‖u ‖H×∂H is defined by the inner product 〈u , v 〉H×∂H := 〈u , v 〉H+〈u ◦, v ◦〉∂H

with u := (u , u ◦), and there the exists an ergodic invariant measure µ for the

transition semigroup defined by Ptϕ(x) := Eϕ(Xx(t )) for ϕ ∈Cb (H × ∂H ). As

E × ∂ E ,→H × ∂H is a compact embedding, µ is concentrated on E × ∂ E and,

under an additional “superlinearity” assumption onA, µ is unique.
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In the preprint [53], Brzeźniak, Fabbri, Goldys, Peszat and Russo consider

the Poisson and heat equation with white noise Dirichlet boundary conditions

on a (possibly unbounded) domain U ⊂ Rd with boundary ∂U (of class C∞

when d > 1). That is, for λ≥ 0 they consider the elliptic equation

∆u =λu on U , τu = ξ on ∂U , (1.67)

where τu := u |∂U in terms of trace and ξ is aS ′(∂U )-valued Gaussian random

variable, and the heat equation

∂ u

∂ t
=∆u on R+×U , τu = ξ̇ on R+× ∂U , (1.68)

with initial condition u (0, ·) = u 0(·)where (ξ(t ))t≥0 is aS ′(∂U )-valued stochas-

tic process with continuous paths. Here, S ′(Rd ) is the space of tempered

distributions on Rd which is the (topological) dual of the space of functions

with rapid decrease S (Rd ) and S ′(U ) denotes distributions in S ′(Rd ) with

support on U [70, §V.3]. When U is unbounded, it is assumed that λ > 0 in

(1.67). First, they show that aS ′(U )-valued mild solution of (1.68) is given by

u (x ) =S(t )u 0+

∫ t

0

S(t − s )(λ−A)Λλdξ(s ), (1.69)

where (S(t ))t≥0 is the C0-semigroup on L2(U ) generated by the Dirichlet Lapla-

cian A with domain D(A) :=W 1,2
0 (U ). Then they show equivalence between

a weak solution defined in terms of (1.50) and the mild solution (1.69). Let

δ(x ) :=min(dist(x ,∂U ),1) and %α,β (x ) :=δ(x )1+α(1+ |x |2)−β for x ∈Rd and let

(hn ) be an orthonormal basis of ∂H := L2(∂U ), their two main theorems are as

follows.

First, there exists a unique solution u to (1.67) with ξ =
∑

n γn hn where

(γn ) is a sequence of independent standard R-valued Gaussians. Moreover,

P-almost surely u ∈C∞(U ), and for all β > d /2, p ≥ 1, and α∈R such that

β >−1, p ≥ 1 if d = 1,
d +1+α

d −1
> p ≥ 1 if d > 1,
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u is a Gaussian random variable in the weighted space Lp (U ,%α,β (x )d x ).

Second, there exists a unique solution u to (1.68) with ξ(t ) =
∑

n wn (t )hn

where (wn (t ))t≥0 is a sequence of independent standard R-valued Wiener

processes such that u ∈ Lq (Ω;C m ([0, T ]× K )) for any compact K ⊂ U and

all q ≥ 1, T > 0, m ∈N. Further, for all β > d /2, p ≥ 1, and α∈R such that

d +1+α
d

> p ≥ 1

u is a Markov process with values in C ([0,∞); Lp (U ,%α,β (x )d x )).

Finally, they demonstrate their results for the Dirichlet problem (1.68) for

the case where U = (0, 1)⊂R and show that solutions exist in L2(0, 1;δ(x )1+αd x )

for α> 1.

We note that the case where the sequence of Wiener processes (wn (t ))t≥0 is

replaced by fractional Brownian motions is also considered in this preprint.

1.16 Conclusion

As we have shown in this survey, since the first papers appeared in the 1990s

many advances have been made on the topic of equations with boundary noise.

These advances have largely been motivated by the need of more accurate

physical models whereby noise enters through the boundary but also from a

mathematical desire to extend existing results to more abstract and difficult

situations. Although the boundary noise theory originally grew out of results

from optimal control theory (i.e., the boundary control problem), it has taken

a life of its own due to the significant new difficulties and differences that arise

when the boundary noise is of white noise type. We recall that the white noise

assumption is required to obtain solutions with the Markov property which is a

highly desirable feature from both the theoretical and applied point of view. To

date, a number of interesting results have been obtained by asking the natural

question: can standard results for the interior noise problem be extended to

the boundary noise case? This question has lead to numerous developments
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such as optimal control of systems perturbed by boundary noise, ergodicity

for boundary noise problems, and the extension to the Lévy process case. A

large number of new results have also appeared from a desire to consider the

dynamical boundary noise situation. We note however that although such a

large body of theory already exists, a number of results are lacking:

• Apart from a few examples, most results have been obtained for the

Neumann or Robin boundary noise problem due to the inability to obtain

solutions in L2(U ) in the Dirichlet case.

• The only successful approach for the Dirichlet boundary noise problem

has been to consider solutions in weighted Lp spaces however these

results have all been for the one-dimensional case where U ⊂R. That is,

no examples of Dirichlet boundary noise have been explicitly consider

for d ≥ 2.

• Apart from some recent preprints, the existing boundary noise theory has

been largely considered in a Hilbert space framework. That is, there lacks

an extension of these results into the Banach space setting. Such a theory

would be useful to be able to consider the boundary noise problem in a

(weighted) Lp space from a semigroup perspective allowing one to “tune”

the parameter p .

• As only the one-dimensional situation has been consider for the Dirichlet

boundary noise problem, the space-time white noise case has not been

studied so far.





2
Background Material

In this section we recall some well-known results and definitions. The reader is

referred to the lecture notes [6], which was our main reference, if more details

or further references are required. For the Hilbert space or Lp setting, the

reader may also refer to [19, 33].

Notation

For [a ,b ]⊂R and Banach space E , we denote by B ([a ,b ]; E ) and C ([a ,b ]; E )

the Banach spaces of all bounded (respectively, continuous) functions from

[a ,b ] to E endowed with the supremum norm ‖ f ‖∞ := supa≤t≤b ‖ f (t )‖E . We

denote by C α([a ,b ]; E ) the Banach space of all α-Hölder continuous functions

from [a ,b ] to E , endowed with the norm ‖ f ‖Cα([a ,b ];E ) := ‖ f ‖∞ + [ f ]Cα([a ,b ];E )

where [ f ]Cα([a ,b ];E ) := supa≤s ,t≤b ‖ f (t )− f (s )‖E/(t − s )α.

2.1 Semigroups

Let E be a Banach space. A family of operators S(t )∈L (E )with t > 0 is a one-

parameter semigroup if S(t1+ t2) = S(t1)S(t2) for t1, t2 > 0. We only deal with

57
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strongly continuous semigroups (sometimes called C0-semigroups) which

means that limt→0+S(t )x = x for all x ∈ E . Every A ∈L (E ) generates the semi-

group S(t ) = e t A where e t A := I + t A + 1
2

t 2A2+ · · · . We define the infinitesimal

generator of a semigroup (S(t ))t≥0 the operator Ax := limh→0+(S(h)x − x )/h

whose domain D(A) consists of all elements x ∈ E for which the right-hand

limit exists. The resolvent set of A is the set %(A) consists of all λ ∈ C for

which there exists a unique bounded linear operator R(λ, A) on E such that (i)

R(λ, T )(λ−A)x = x for all x ∈D(A), (ii) R(λ, A)x ∈D(A) and (λ−A)R(λ, A)x = x

for all x ∈ E . The spectrum of A is the complement σ(A) := C \%(A). The

operator R(λ,A) = (λ−A)−1 is called the resolvent of A at λ.

Forσ ∈ (0,π] define the open sector

Σσ =
�

z ∈C \ {0} : |arg(z )|<σ
	

,

where the argument is taken in (−π,π]. A strongly continuous semigroup

(S(t ))t≥0 is called analytic on Σσ if for all x ∈ E the function t 7→S(t )x extends

analytically to Σσ and satisfies

lim
z∈Σσ ,z→0

S(z )x = x .

First, let us recall, from [71] and [72], some equivalent characterizations of

analytic semigroups and their generators.

Theorem 2.1. For a densely defined closed operator A on a Banach space E , the

following are equivalent:

1. {λR(λ,A) :λ∈Σσ} is bounded for someσ>π/2.

2. There is an analytic semigroup (S(t ))t≥0 on a sector Σδ, δ> 0, such that

d

d z
S(z ) = AS(z ), z ∈Σσ−π/2 (2.1)

holds and (S(z ))z∈Σ(δ) is bounded.

3. There is a strongly continuous semigroup (S(t ))t≥0 such that (2.1) holds

for t ∈R+ and {t AS(t ) : t > 0} is bounded.
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2.2 R-Bounded and γ-Bounded operators

R-Boundedness and γ-Boundedness are generalisations, to a Banach space

setting, of uniform boundedness of families of operators in Hilbert spaces.

Let (%n )Nn=1 be a sequence of independent Rachemacher random variables.

Let E1 and E2 be Banach spaces. An operator family T ⊂L (E1, E2) is said to

beR-bounded if there exists a constant M ≥ 0 such that

 

E









N
∑

n=1

%n Tn xn
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≤M
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N
∑

n=1

%n xn










2
!1/2

, (2.2)

for all N ≥ 1, all T1, . . . , TN ∈ T , and all x1, . . . ,xN ∈ E1. If (2.2) holds with the

sequence (%n ) is replaced by a sequence of independent Gaussian random vari-

ables (γn )Nn=1 the operator family T is called γ-bounded. The least admissible

constant M is called theR-bound (respectively, γ-bound) of T .

Theorem 2.2 (Kalton & Weis). Let E1, E2 be Banach spaces. Suppose that M :

(0, T )→L (E1, E2) is strongly measurable and has γ-bounded range {M (t ) : t ∈
(0, T )} :=M . Then for every finite rank simple function Φ : (0, T )→ γ(H , E1) the

operator RMΦ belongs to γ(L2(0, T ; H ), E2 and

‖RMΦ‖γ(L2(0,T ;H ),E2) ≤ γ(M )‖RΦ‖γp (L2(0,T ;H ),E1).

As a result, the map fM : RΦ→RMΦ has a unique extension to a bounded operator

fM : γp (L2(0, T ; H ), E1)→ γp (L2(0, T ; H ), E2)

of norm ‖fM‖ ≤ γ(M ).

Lemma 2.3 (Lemma 10.17 [6]). For all real numbers α,β ,η≥ 0 satisfying 0≤
α+η<β < 1, the set

{t β (−A)ηS(t ) : t ∈ (0, T )}

isR-bounded (and hence γ-bounded) inL (E , Eα)with γ-bound O(T β−α−η).
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2.3 Abstract Cauchy problems

We shall now recall some results (e.g., see [71, 5]) on the inhomogeneous

abstract Cauchy problem

u ′(t ) = Au (t )+ f (t ), u (0) = u 0, t ∈ [0, T ], (2.3)

taking values in a Banach space E where the unbounded linear operator A :

D(A)⊂ E → E generates a strongly continuous semigroup of operators (e t A)t≥0

on E and f : [0, T ]→ E .

A function u : [0, T ]→ E is called a classical solution of (2.3) in the interval

[0, T ] if

u ∈C 1((0, T ]; E )∩C ((0, T ];D(A))∩C ([0, T ]; E ),

and satisfies u ′(t ) = Au (t ) + f (t ) for every t ∈ (0, T ], and u (0) = u 0. Further,

if f ∈ L1(0, T ; E )∩C ((0, T ]; E ), u 0 ∈ D(A), and u is a classical solution of (2.3)

then u satisfies the variation of constants formula

u (t ) = e t A u 0+

∫ t

0

e (t−s )A f (s )d s , 0≤ t ≤ T. (2.4)

As the integral form (2.4) makes sense whenever f ∈ L1(0, T ; E ) and u 0 ∈ E , in

this situation it is customary to call such a function u given by (2.4) a mild

solution of (2.3). Thanks to this representation, questions about existence of

classical solutions may be reduced to questions about the regularity of mild

solutions. Although every classical solution has the representation (2.4), not

every mild solution is a classical solution therefore it is often convenient to

work with alternative solution concepts.

Definition 2.4. For 1 ≤ p < ∞, a strong solution of (2.3) is a function u ∈
L1(0, T ; E ) such that for all t ∈ [0, T ]we have

∫ t

0
u (s )d s ∈D(A) and

u (t ) = e t A u 0+A

∫ t

0

u (s )d s +

∫ t

0

f (s )d s .
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A weak solution of (2.3) is a function u ∈ L1(0, T ; E ) such that for all t ∈ [0, T ]

and v ∈D(A∗)we have

〈u (t ), v 〉= 〈u 0, v 〉+
∫ t

0

〈u (s ), A∗v 〉d s +

∫ t

0

〈 f (s ), v 〉d s .

One may show (e.g., Proposition 7.16 in [6]) the following useful equivalence

between weak and strong solutions for (2.3).

Theorem 2.5. Every weak solution of (3.1) is a strong solution, and vice-versa.

Further, a strong (hence weak) solution satisfies a variation of constants for-

mulation (e.g., Theorem 7.17 in [6]).

Theorem 2.6. Fix 1≤ p <∞, then for all u 0 ∈ E and f ∈ L1(0, T ; E ) the problem

(2.3) admits a strong solution u , which is given by the convolution formula

u (t ) = e t A u 0+

∫ t

0

e (t−s )A f (s )d s .

If f ∈ Lp (0, T ; E )with 1≤q <∞, then u ∈ Lp (0, T ; E ).

Let A :D(A)⊂ E → E be a sectorial operator, then one can introduce the

intermediate Banach spaces between D(A) and E given, for 0< α < 1, by all

elements x ∈ E such that

[x ]α := sup
0<t≤1

‖t 1−αAe t Ax‖<∞.

We denote these spaces byDA(α,∞) and endow them with the norms

‖x‖DA (α,∞) := ‖x‖E +[x ]α.

We also introduce the space Bα := B ([0, T ];DA(α,∞)) and write u̇ (t ) := d
d t

u (t ).

Theorem 2.7. Let 0 < α < 1, A : D(A) ⊂ E → E be a sectorial operator, and let

f ∈C ([0, T ]; E )∩Bα. Then

v (t ) =

∫ t

0

e (t−s )A f (s )d s ,
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solves (2.3) with u 0 = 0 and belongs to C ([0, T ];D(A))∩C 1([0, T ]; E ). Moreover,

v̇ and Av belong to Bα and Av to C α([0, T ]; E ), and we have the estimate

‖v̇ ‖Bα + ‖Av ‖Bα + ‖Av ‖Cα([0,T ];E ) ® ‖ f ‖Bα .

Let A :D(A)⊂ E → E be a sectorial operator on the Banach space E . There

are a number of equivalent definitions for the intermediate spaces DA(α, p ),

0<α< 1, betweenD(A) and E given by

DA(α,p ) =
¦

x ∈ E : t 7→ v (t ) = ‖t 1−α−1/p Ae t Ax‖ ∈ Lp (0, 1)
©

with norm given by ‖x‖DA (α,p ) := ‖x‖+ ‖v ‖Lp (0,1). In particular, for 0<α< 1 and

1≤ p ≤∞ and for (α, p ) = (1,∞),DA(α, p ) is a real interpolation space between

E andD(A). i.e.,DA(α, p ) = (E ,D(A))α,p .

2.4 Parabolic Hölder spaces

Let J ⊂Rd be an open set and 0< θ < 1, then the Banach space C θ (J ) is the

space of all continuous functions f : J →C such that

[ f ]C θ (J ) := sup
x ,y∈J ,x 6=y

| f (x )− f (y )|
|x − y |θ

<∞.

For U ⊂Rd and T > 0, the parabolic Hölder space C θ/2,θ ([0, T ]×U ) is the space

of continuous functions f : [0, T ]×U →C such that

‖u ‖C θ/2,θ (I×U ) := ‖u ‖L∞([0,T ]×U )+ sup
x∈U

[ f (·,x )]C θ/2([0,T ])

+ sup
t∈[0,T ]

[ f (t , ·)]C θ (U ) <∞.

Remark 2.8. We recall [73, p.59] that f ∈C θ/2,θ ([0, T ]×U ) if and only if

f ∈C θ/2([0, T ];C (U ))∩ B ([0, T ];C θ (U )).
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2.5 The Dirichlet and Neumann Laplacians

In this section we recall the definition of the Dirichlet and Neumann Laplacians

and their associated semigroups on Lp (U ). We refer to the books of Pazy [71]

and Haroske and Triebel [74] for further details.

Let U ⊂ Rd be an open set. We shall denote by Cc (U ) the space of all

continuous functions u : U → R such that the support of u is a compact

subset1 of U , i.e.,

supp u := {x ∈U : u (x ) 6= 0}âU ,

and byD(U ) :=C∞(U )∩Cc (U ) the space of all test functions. For u ∈D(U ), we

define the Laplacian −∆ by

(−∆u )(x ) :=−
d
∑

i=1

∂ 2u

∂ x 2
i

(x ).

Let Lp (U ), 1 ≤ p ≤ ∞, be the Lebesgue spaces and L1
loc(U ) be the space of

measurable functions u : U → R such that
∫

K
|u (x )|d x < ∞ for all K â U .

Note that Lp (U ) ⊂ L1
loc(U ) for all 1 ≤ p ≤ ∞. We define the weak Laplacian

A by integration by parts. That is, for u ∈ L1
loc(U ) and v ∈ L1

loc(U ) we say

Au :=−∆u = v weakly if

∫

U

(−∆ϕ)u d x =

∫

U

ϕ v d x

holds for all ϕ ∈D(U ). Of course, this means that weak Laplacian Au is only

unique up to a set of measure zero. For obvious reasons, the weak Laplacian

is also sometimes called the distributional Laplacian. We define the Sobolev

space W 1,p (U ) as the space of functions u ∈ Lp (U ) for which there exists func-

tions vi ∈ Lp (U ) that satisfy

∫

U

u
∂ ϕ

∂ x i
d x =−

∫

U

viϕd x

1we use the notation K âU to mean that K is a compact subset of U .
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for allϕ ∈D(U ). The Sobolev spaces W k ,p (U )with k ≥ 2 are defined inductively

as

W k ,p (U ) := {u ∈W 1,p (U ) :
∂ u

∂ x i
∈W k−1,p (U ), 1≤ i ≤ d },

and under the norm

‖u ‖W k ,p (U ) := ‖u ‖Lp (U )+
d
∑

i=1

‖
∂ u

∂ x i
‖W k−1,p (U ),

the spaces W k ,p (U ) are Banach spaces. Finally, W k ,p
0 (U ) is the closure ofD(U )

in the W k ,p (U ) norm.

On the space L2(U )with inner product 〈·, ·〉, the Dirichlet Laplacian is the

operator AD defined by

AD f :=−∆ f ; D(AD) :=W 2,2(U )∩W 1,2
0 (U ).

That is, AD is the weak Laplacian on L2(U ) subject to homogeneous (i.e., zero)

Dirichlet boundary conditions. Notice that 〈AD u , u 〉 ≥ 0 for u ∈D(AD) so AD

is positive on L2(U ). We recall that AD is a self-adjoint dissipative operator on

L2(U ) that generates a contractive strongly continuous semigroup (S2(t ))t≥0 on

L2(U ). We shall sometimes use the symbolic notation

e t AD f :=S2(t ) f ,

for f ∈ L2(U ). For t > 0, the space L1 ∩ L∞(U ) is invariant under S2(t ) and

(S2(t ))t≥0 may be extended from L1∩L∞(U ) to a positive contraction semigroup

(Sp (t ))t≥0 on Lp (U ) for each 1 ≤ p ≤ ∞. As such, we shall use the notation

(S(t ))t≥0 for all these semigroups (i.e. as p varies) as the choice of p will be clear

from the context. We call (S(t ))t≥0 the Dirichlet heat semigroup on Lp (U ) for

any 1≤ p ≤∞, and write e t AD f :=S(t ) f for f ∈ Lp (U ).

In a similar way, we can define the Neumann Laplacian AN on L2(U ) by

settingD(AN ) to be all functions u ∈W 1,2(U ) for which there exists v ∈ L2(U )

so that

−
∫

U

∇u ·∇w d x =

∫

U

v w d x
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holds for all w ∈W 1,2(U ). Then AN u = v for u ∈ D(AN ) and AN generates a

strongly continuous semigroup (S2(t ))t≥0 on L2(U ). Again, (S2(t ))t≥0 may be

extended to Lp (U ) and we write e t AN f :=S(t ) f for f ∈ Lp (U ) and call (e t AN )t≥0

the Neumann heat semigroup on Lp (U ) for any 1 ≤ p ≤ ∞. Finally, let GU :

(0,∞)×U ×U → R be the Dirichlet heat kernel, that is, the positive C∞0 (U )

function such that

(S(t ) f )(x ) =

∫

U

GU (t ,x , y ) f (y )d y

for any f ∈ Lp (U ), 1≤ p ≤∞.

2.6 Trace of a function

In this section we recall the concept of “trace” for functions in Lp (U ). The

books of Adams [75] and Haroske and Triebel [74] are our main references.

If u ∈ C (U ) then the function given by taking the restriction of u to ∂U ,

written u |∂U , gives a function u |∂U ∈ C (∂U ). Hence, for f ∈ C (U ), we can

define the (pointwise) trace of f by τ f := f |∂U . This definition does not extend

immediately to functions u ∈ Lp (U ), 1≤ p <∞ as u |∂U need not have sense in

general.

Let Lp (∂U ), 1≤ p <∞, be the Lebesgue spaces on the boundary ∂U of U

normed by

‖ f ‖Lp (∂U ) =

�∫

∂U

| f (x )|p dσ(x )

�1/p

,

whereσ is the (d −1)-dimensional surface measure2 on ∂U and let C∞0 (Rd ) be

the space of functions u ∈C∞(Rd ) such that lim|x |→∞u (x ) = 0. If U ⊂Rd is an

open subset with C 1 boundary ∂U (or U =Rd
+), then we have

‖τϕ‖Lp (∂U ) ® ‖ϕ‖W 1,p (U ), ∀ϕ ∈C∞0 (R
d ).

2Naïvely defined in terms of surface patches.
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As {ϕ|∂U :ϕ ∈C∞0 (Rd )} is dense in W 1,p (U )when ∂U is of class C 1, it becomes

natural to define a trace of a function in W 1,p (U ) as a limit of pointwise traces

of functions in C∞0 (Rd ).

Definition 2.9. Let U be of class C 1 with compact boundary ∂U (or U = Rd
+)

and u ∈W 1,p (U ). Then τu := limn→∞τu n , in Lp (∂U )where {u n} ∈C∞0 (Rd ) is

such that u n → u in the W 1,p (U ) norm. We call τu the trace of u .

This definition is consistent as it is independent of the sequence (u n ) chosen.

For k ∈N and 1≤ p <∞ it holds that the linear operators

τ : W k ,p (U )→ Lp (U ), k ≥ 1,

τ
∂

∂ ν
: W k ,p (U )→ Lp (U ), k ≥ 2,

are bounded and continuous. For 0 < s < 1, we can define the fractional

Sobolev spaces3 W s ,2(U ) to be functions f ∈ Lp (∂U ) such that ‖ f ‖W s ,p (∂U ) <∞
where

‖ f ‖W s ,p (∂U ) := ‖ f ‖Lp (∂U )+

�∫

∂U

∫

∂U

| f (x )− f (y )|p

|x − y |d−1+p s
dσ(x )dσ(y )

�1/p

.

Using this definition, we can say more about the trace τ and the Neumann

trace τ∂ /∂ ν where ν is the unit (outward) normal. That is, if U ⊂ Rd is a

bounded domain with C∞ boundary ∂U , then τ is a linear and bounded map

of W s ,p (U ) onto W s− 1
p ,p (∂U ) for s > 1

2
and τ ∂

∂ ν
is a linear and bounded map of

W s ,p (U ) onto W s−1− 1
p ,p (∂U ) for s > 1+1/p .

2.7 The Dirichlet and Neumann maps

In this section we recall results on solutions to the Dirichlet and Neumann

problems and, as such, we introduce the Dirichlet and Neumann maps. We

3Sobolev-Slobodeckii spaces
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refer to the books of Wu, Yin and Wang [76] or Chen and Wu [77] for details in

the Lp setting and Haroske and Triebel [74] in the L2 setting.

Consider the inhomogeneous Dirichlet problem

−∆u = f , x ∈U , (2.5)

u = g , x ∈ ∂U . (2.6)

where g : U →R such that g ∈W 2,p (U ). If u ∈W 2,p (U ), u − g ∈W 1,p
0 (U ) and

satisfies (2.5) almost everywhere, then u is said to be a strong solution to the

Dirichlet problem (2.5)-(2.6).

Theorem 2.10. Let f ∈ Lp (U ) and g ∈W 2,p (U ), 1< p <∞. Then the Dirichlet

problem (2.5)-(2.6) has a unique strong solution u ∈W 2,p (U ) satisfying u − g ∈
W 1,p

0 (U ).

Definition 2.11. The Dirichlet map is the continuous operator

Λλ : W 2−1/p ,p (∂U )→W 2,p (U )

such that for g ∈W 2−1/p ,p (∂U )we have the equivalence

Λλg := u ⇐⇒







∆u =λu , in U ,

τu = g , on ∂U .

2.8 Gaussian random variables

Let (Ω,F ,P) be a probability space and we shall useE to denote the expectation

operator EX :=
∫

Ω
X (ω)dP(ω).

We recall that a R-valued random variable ξ is called Gaussian if there

exists a numberσ≥ 0 such that

Ee−iθξ = e−
1
2σ

2θ 2
, θ ∈R,

and we call ξ a standard Gaussian if Eξ= 0 and Eξ2 =σ2 = 1.
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Let E be a Banach space with norm ‖ · ‖E . A random variable X :Ω→ E is

called strongly measurable if it is the pointwise limit of a sequence of simple

random variables. We write L0(Ω;X ) as the vector space of strongly measur-

able random variables X : Ω → E with the usual identification of variables

equal P-almost surely. Endowed with the topology induced by convergence in

probability, L0(Ω; E ) is a complete metric space.

For random variables X , X1, X2, . . .∈ L0(Ω; E )we have X = limn→∞Xn if and

only if X = limn→∞Xn in probability. Let X ∗ :=L (E ,R) and 〈x ,x ∗〉 := x ∗(x ).

Definition 2.12. A random variable X is called Gaussian if it is strongly mea-

surable and for all x ∗ ∈X ∗, 〈X ,x ∗〉 is a R-valued Gaussian random variable.

2.9 Cylindrical Wiener process

LetH and H be Hilbert spaces with inner products [·, ·] and (·, ·), respectively.

Let (Ω,F ,P) be a probability space with associated expectation operator E and

the space L2(Ω) is endowed with the inner product E(X Y ) for X , Y ∈ L2(Ω). We

shall denote by 1A the indicator function of a set A.

Definition 2.13. AH -isonormal process on Ω is a mappingW :H → L2(Ω)

with the following properties:

• For all h ∈H the random variableWh is Gaussian,

• For all h1, h2 ∈H we have E(Wh1Wh2) = [h1, h2].

Example 2.14. A classic example of a H -isonormal process is given in the

caseH = L2(0, T ), then w (t ) :=W 1[0,t ] defines a R-valued Brownian motion

on [0, T ].

The following definition will be of fundamental nature in this thesis as it

represents a ‘true’ infinite-dimensional process.
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Definition 2.15. A H-cylindrical Wiener process on [0, T ] is a family (W (t ))t∈[0,T ]

of mappings from H to L2(Ω)with the following properties:

• (W (t )h)t∈[0,T ] is a Brownian motion for all h ∈H,

• for all 0≤ t1, t2 ≤ T and h1, h2 ∈H we have

E (W (t1)h1W (t2)h2) =min{t1, t2}(h1, h2).

The following two characterisations of a H-cylindrical Wiener process W :=

(W (t ))t∈[0,T ] are sometimes useful:

• If we chooseH such thatH = L2(0, T ;H ) where H is a Hilbert space,

then we can define W in terms of aH -isonormal processW by

W (t )h :=W (1[0,t ]⊗h),

where ⊗ denotes the tensor product, e.g., if h ∈ L2(R) then

�

1[0,t ]⊗h
�

(s ,x ) = 1[0,t ](s )h(x )

for s ,x ∈R.

• If (wn ) is a sequence of independentR-valued Brownian motions wn :=

(wn (t ))t≥0 and H is a separable Hilbert space with orthonormal basis

(hn ), then

W (t )h :=
∞
∑

n=1

wn (t )(h, hn ), t ≥ 0,

defines a H-cylindrical Wiener process.

It should be noticed from the second characterisation that the H-cylindrical

Wiener process (W (t ))t∈[0,T ] formally given by

W (t ) =
∞
∑

n=1

wn (t )hn
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is P-almost surely divergent for t ∈ (0, T ] since

E‖W (t )‖2
H =

∞
∑

n=1

t =∞.

However, as we shall see in §2.11, if E is a Banach space and B ∈ L (H , E ) is

chosen correctly then we may have E‖BW (t )‖2
E <∞.

2.10 White noise

Let (Ω,F ,P) be a probability space. The following definition provides a mathe-

matical formulation of idealised randomness which is independent between

different (disconnected) locations and has large fluctuations at any location. It

provides a fundamental building block for modelling random systems.

Definition 2.16. Let (M ,M ,µ) be aσ-finite measure space and denote byM0

the collection of all B ∈ M such that µ(B ) <∞. A Gaussian white noise on

(M ,M ,µ) is a mapping w :M0→ L2(Ω) such that:

• each w (B ) is a centered Gaussian with

Ew (B )2 =µ(B ),

• if B1 ∩ B2 = ;, then w (B1) and w (B2) are independent and

w (B1 ∪ B2) =w (B1)+w (B2).

Remark 2.17. As we only consider Gaussian white noise in this thesis, we

simply refer to Gaussian white noise as white noise.

Definition 2.18. If U ⊂Rd and we set M =U in Definition 2.16, then we call w

a space white noise.
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Canonically associated with a space white noise w is a L2(U )-cylindrical

Gaussian random variable X , defined by

X 1B :=W (1)1B :=w (B ), B ∈M0(U ).

where (W (t ))t≥0 is a L2(U )-cylindrical Wiener process.

Definition 2.19. A white noise on [0, T ]×U, where U ⊂Rd and T > 0, will be

called a space-time white noise on U.

Canonically associated with a space-time white noise w is a L2(U )-cylindrical

Wiener process W , defined by

W (t )1B :=w ([0, t ]× B ), B ∈M0(U ).

2.11 γ-Radonifying operators

When h ∈H and x ∈ E , we denote by h⊗x the operator inL (H , E ) defined by

(h ⊗x )h ′ := (h, h ′)x , h ′ ∈H . (2.7)

An operator inL (H , E ) is said to be of finite rank if it is a linear combination

of operators of the form (2.7). Even further, every finite rank operator T :

H → E can be represented in the form T =
∑N

n=1 hn ⊗ xn where (hn )Nn=1 is an

orthonormal sequence in H and (xn )Nn=1 is a sequence in E . For a such an

operator we define the norm

‖T ‖2
γ(H ,E ) :=E










N
∑

n=1

γn xn










2

.

where (γn ) is a sequence of independent standard R-valued Gaussian random

variables. This formula is independent of the particular representation of T

and defines a norm on the space of finite rank operators from H to E which is

stronger than the uniform operator norm.
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Definition 2.20. The space γ(H , E ) is defined as the closure of all finite rank op-

erators in the norm ‖ · ‖γ(H ,E ). The operators in γ(H , E ) are called γ-radonifying.

Since convergence in γ(H , E ) implies convergence in L (H , E ), every op-

erator T ∈ γ(H , E ), being the operator norm limit of a sequence of finite rank

operators from H to E , is compact.

Theorem 2.21. If H is separable, then for an operator T ∈L (H , E ) the following

assertions are equivalent:

• T ∈ γ(H , E ),

• for all orthonormal bases (hn ) in H and all 1≤ p <∞ the sum
∑∞

n=1γn T hn

converges in Lp (Ω; E ),

• for some orthonormal bases (hn ) in H and some 1 ≤ p < ∞ the sum
∑∞

n=1γn T hn converges in Lp (Ω; E ).

If H is separable and B ∈ γ(H , E ) then the sum
∑∞

n=1γn Bhn converges

P-almost surely and defines an E -valued Gaussian random variable with co-

variance operator B B ∗. In particular, if (W (t ))t∈[0,T ] is a cylindrical Wiener

process on H , then for all t ∈ [0, T ],

E‖BW (t )‖2
E <∞,

so (BW (t ))t∈[0,T ] is an E -valued Wiener process (that is no longer cylindrical!).

We denote by L2(H1, H2) the space of all Hilbert-Schmidt operators be-

tween the Hilbert spaces H1 and H2. The following characterisation when E is

a Hilbert space is useful:

Theorem 2.22. If E is a Hilbert space, then R ∈ γ(H , E ) if and only if R ∈
L2(H , E ), and in this case we have

‖R‖γ(H ,E ) = ‖R‖L2(H ,E ).
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When H is a finite-dimensional space, for example H = Rd , then the fol-

lowing theorem states that even the identity operator I ∈ L (H ) is a Hilbert-

Schmidt operator.

Theorem 2.23. Let H be a Hilbert space and R ∈ L (H ). If dim(H ) <∞, then

R ∈L2(H ).

2.12 Wiener process

Definition 2.24. An E -valued process ((W (t ))t≥0 is called an E -valued Brown-

ian motion if it has the following properties:

• W (0) = 0 almost surely,

• W (t − s ) and W (t )−W (s ) are identically distributed Gaussian random

variables for all 0≤ s ≤ t ≤ T ,

• W (t )−W (s ) is independent of {W (r ) : 0≤ r ≤ s } for all 0≤ s ≤ t ≤ T .

The next proposition shows that given B ∈ γ(H , E ) and a cylindrical Wiener

process (W (t ))t∈[0,T ] we can construct a E -valued Wiener process (W B (t ))t∈[0,T ].

In fact, the converse holds too: every E -valued Brownian motion is of the form

W B for canonical choices of H and B ∈ γ(H , E ), see [6].

Proposition 2.25. Let (W (t ))t∈[0,T ] be an H-cylindrical Brownian motion and

let B ∈ γ(H , E ). If (hn )∞n=1 is an orthnormal basis of (ker(B ))⊥, then:

• the sum

W B (t ) :=
∞
∑

n=1

W (t )hn ⊗ Bhn

converges almost surely and in Lp (Ω; E ), 1≤ p <∞, for all t ∈ [0, T ],

• up to a null set, W B (t ) is independent of the basis (hn )∞n=1,

• the process (W B (t ))t∈[0,T ] defines an E -valued Brownian motion.
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2.13 Stochastic integration

We shall now quickly recall how to define a stochastic integral of a function

Φ : (0, T )→L (H , E )with respect to W .

For anL (H , E )-valued step function of the form Φ= 1(a ,b )⊗ (h⊗x )with 0≤
a <b ≤ T and h ∈H , x ∈ E , we define the random variable

∫ T

0
Φd W ∈ L2(Ω; E )

by
∫ T

0

Φd W := (W (b )h −W (a )h)⊗x

and extend this definition by linearity to step functions with values in the space

of the finite rank operators. Any step function Φ : (0, T )→L (H , E ) uniquely

defines a bounded operator RΦ ∈L (L2(0, T ; H ), E ) by the formula

RΦ f :=

∫ T

0

Φ(t ) f (t )d t , f ∈ L2(0, T ; H ).

Theorem 2.26 (Itô isometry). For all finite rank step functions Φ : (0, T ) →
L (H , E ) we have RΦ ∈ γ(L2(0, T ;H ), E ), the stochastic integral

∫ T

0
Φd W is a

Gaussian random variable, and

E









∫ T

0

Φd W









2

= ‖RΦ‖2
γ(L2(0,T ;H ),E ).

Definition 2.27. A function Φ : (0, T )→L (H , E ) is said to be stochastically in-

tegrable with respect to W if there exists a sequence of finite rank step functions

Φn : (0, T )→L (H , E ) such that

• for all h ∈H we have limn→∞Φn h =Φh in measure,

• there exists an E -valued random variable X such that

lim
n→∞

∫ T

0

Φn d W =X

in probability.
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The stochastic integral of a stochastically integrable function Φ : (0, T ) →
L (H , E ) is then defined as the limit in probability

∫ T

0

Φd W := lim
n→∞

∫ T

0

Φn d W.

Remark 2.28. Convergence of Φn h→Φh in measure means

lim
n→∞

Leb ({t : ‖Φn (t )h −Φ(t )h‖> r }) = 0

for all h ∈H , t ∈ (0, T ), and r > 0.

For a function Φ : (0, T )→ L (H , E ) and elements h ∈ H and x ∗ ∈ E ∗ we

define Φh : (0, T )→ E and Φ∗x ∗ : (0, T )→H by (Φh)(t ) :=Φ(t )h and (Φ∗x ∗)(t ) :=

Φ∗(t )x ∗. A function Φ : (0, T )→L (H , E ) is called H-strongly measurable if for

each h ∈H the function Φh : (0, T )→ E is strongly measurable.

Theorem 2.29. For an H-strongly measurable function Φ : (0, T )→L (H , E ) the

following assertions are equivalent:

• Φ is stochastically integrable with respect to W

• Φ∗x ∗ ∈ L2(0, T ;H ) for all x ∗ ∈ E ∗, and there exists an E -valued random

variable X such that for all x ∗ ∈ E ∗, almost surely we have

〈X ,x ∗〉=
∫ T

0

Φ∗x ∗d W,

• Φ∗x ∗ ∈ L2(0, T ; H ) for all x ∗ ∈ E ∗, and there exists an operator

R ∈ γ(L2(0, T ; H ), E )

such that for all f ∈ L2(0, T ; H ) and x ∗ ∈ E ∗ we have

〈R f ,x ∗〉=
∫ T

0

〈Φ(t ) f (t ),x ∗〉d t .
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If these equivalent conditions are satisfied, the random variable X and the

operator R are uniquely determined, we have X =
∫ T

0
Φd W almost surely, and

E









∫ T

0

Φd W









2

= ‖R‖2
γ(L2(0,T ;H ),E ).

Theorem 2.30. Let (A,A ,µ) be aσ-finite measure space.

• If E has type 2, then the mapping ( f ⊗h)⊗x 7→ f ⊗ (h ⊗x ) has a unique

extension to a continuous embedding

L2(A;γ(H , E )) ,→ γ(L2(A; H ), E )

of norm at most T2(E ). Conversely, if the identity mapping f ⊗x 7→ f ⊗x

extends to a bounded operator from L∞(0, 1; E ) to γ(L2(0, 1), E ), the E has

type 2.

• If E has cotype 2, then the mapping f ⊗ (h⊗x ) 7→ ( f ⊗h)⊗x has a unique

extension to a continuous embedding

γ(L2(A; H ), E ) ,→ L2(A;γ(H , E ))

of norm at most C2(E ). Conversly, if the identity mapping f ⊗x 7→ f ⊗x

extends to a bounded operator from γ(L2(0, 1), E ) to L1(0, 1; E ), then E has

cotype 2.

2.14 Stochastic abstract Cauchy problems

We now recall existence and uniqueness results for the stochastic abstract

Cauchy problem

d X (t ) = AX (t )d t +G d W (t ), t ∈ [0, T ] (SACP)

with X (0) = x ∈ E . Here A is the generator of a strongly semigroup (S(t ))t≥0

on E and G ∈ L (H , E ) is a given bounded operator. We call an E -valued

process (X (t ))t∈[0,T ] strongly measurable if it has a version which is strongly

B([0, T ])×F -measurable on [0, T ]×Ω.
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Definition 2.31. A weak solution of the problem (SACP) is an E -valued pro-

cess (X x (t ))t∈[0,T ] which has a strongly measurable version with the following

properties:

• almost surely, the paths t 7→X x (t ) are integrable,

• for all t ∈ [0, T ] and x ∗ ∈D(A∗)we have, almost surely,

〈X x (t ),x ∗〉= 〈x ,x ∗〉+
∫ t

0

〈X x (s ), A∗x ∗〉d s +W (t )G ∗x ∗.

Remark 2.32. We do not distinguish between (X x (t ))t∈[0,T ] and its version

(áX x (t ))t∈[0,T ] that satisfies the previous definition.

Theorem 2.33. The following assertions are equivalent:

• the problem (SACP) has a weak solution (X x (t ))t∈[0,T ],

• t 7→S(t )G is stochastically integrable on (0, T )with respect to W .

If one holds, then for every t ∈ (0, T ) the function s 7→S(t − s )G is stochastically

integrable on (0, t )with respect to W and almost surely we have

X x (t ) =S(t )x +

∫ t

0

S(t − s )G d W (s ). (2.8)

If we assume that G ∈ γ(H , E ) then the term ‘G d W ’ may be replaced by

d W G where W G is an E -valued Wiener process canonically associated with G :

if (hn ) is an orthonormal basis of (ker(G ))⊥ then

W G (t ) :=
∞
∑

n=1

W (t )hn ⊗G hn

converges almost surely and in Lp (Ω; E ), 1≤ p <∞, for all t ∈ [0, T ].

Definition 2.34. Let G ∈ γ(H , E ). A strong solution of (SACP) is a strongly

measurable E -valued process (X x (t ))t∈[0,T ] with the following properties:
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• the trajectories of X x are integrable almost surely,

• for all t ∈ [0, T ], almost surely we have
∫ t

0
X x (s )d s ∈D(A) and

X x (t ) = x +A

∫ t

0

X x (s )d s +W G (t ).

Theorem 2.35. Let G ∈ γ(H , E ). The following assertions are equivalent:

• the problem (SACP) has a strong solution,

• the problem (SACP) has a weak solution.

In this situation, the weak and strong solutions are versions of each other and

both are given by (2.8).

2.15 Weighted Sobolev spaces

Let U ⊂Rd be a domain with boundary ∂U (of codimension 1) and let % be a

vector of nonnegative (positive almost everywhere) measurable functions on

U , that will be called a weight, i.e.

% :=
�

%s =%s (x ) : x ∈U , |α| ≤ k
	

,

where s is a multi-index s := (s1, s2, . . . , sd )with sn ∈N∪{0} and |s | := s1+. . .+sd .

Definition 2.36. The space W k ,p (U ,%), k ∈N∪{0} and 1≤ p <∞, is defined as

the set of all functions u that are defined a.e. on U and whose (distributional)

derivatives D s u for orders |s | ≤ k satisfy

∫

U

|D s u (x )|p%s (x )d x <∞.

We call these weighted Sobolev spaces.



79

A weighted Sobolev space is a normed linear space if equipped with the

norm

‖u ‖k ,p ,% :=





∑

|s |≤k

∫

U

|D s u (x )|p%s (x )d x





1/p

.

For k = 0, by convention, W 0,p (U ,%) = Lp (U ,%) and we call Lp (U ,%) a weighted

Lp space. If %s (x ) ≡ 1 for |s | ≤ k , then W k ,p (U ,%) =W k ,p (U ), i.e. we retrieve

the “classical” Sobolev space. We shall mostly assume that the components %s

coincide, that is,

%s (x ) =%(x ), ∀s , |s | ≤ k .

We note that if a weight function % satisfies

0< c1 ≤%(x )≤ c2, ∀x ∈U

for fixed c1, c2 ∈ R+ then the space W k ,p (U ,%) is equivalent to the space

W k ,p (U ).

Weighted Sobolev spaces have been used in many places in the PDE liter-

ature but also in the harmonic analysis literature. We shall now present two

types of weights, the associated weighted Sobolev spaces, and their properties.

We now recall some facts about the class of Muckenhoupt weights that

sometimes make an appearance in the harmonic analysis literature.

We call a Q ⊂Rd a cube if it is of form Q =
∏n

j=1 I j where I1, . . . In ⊂R are

bounded intervals of the same length and Q has sides parallel to the axes.

Definition 2.37. Let 1 < q <∞. A function 0 ≤ % ∈ L1
loc(Rd ) is called an Ap -

weight if

sup
Q

 

1

|Q |

∫

Q

%d x

! 

1

|Q |

∫

Q

%−1/(p−1)d x

!p−1

<∞

where the supremum is taken over all cubes Q ⊂Rd and |Q | assigns the Lebesgue

measure of Q.

We now recall the concept of a maximal function so that we may present

some useful characterisations of the class of Ap weights.
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Definition 2.38. For a nonnegative Borel measure µ on Rd , we call

Mµ(x ) = sup
Q3x

1

|Q |

∫

Q

dµ,

the Hardy-Littlewood maximal function. Here, the supremum is taken over all

cubes Q containing x and for a measurable function w ≥ 0 defining the measure

dµ(y ) =w (y )d y we write Mµ(x ) =M w (x ).

We now collect a number of characterisation of the class of Ap weights,

found in [78], in the next lemma.

Lemma 2.39. Ap weights have the following properties and relationships:

• Let µ be a nonnegative Borel measure such that Mµ(x )<∞ almost every-

where, then (Mµ)β is an A1 weight for all β ∈ [0, 1).

• Ap ⊂ Aq , 1≤ p <q.

• % ∈ Ap if and only if %1−p ′ ∈ Ap ′ .

• If %0,%1 ∈ A1 then %0%
1−p
1 ∈ Ap .

When we take the weight % in the definition of weighted Sobolev spaces

to be of the class Ap then the spaces W k ,p (U ,%) have a few properties that we

shall now recall.

To avoid confusion and to formalise the correspondance between the index

p in the definition of an Ap weight and the index p of the Sobolev spaces we

give

Definition 2.40. If % is an Ap weight and U ⊂Rd an open set we define

Lp (U ,%) :=

(

f ∈ L1
loc(U ) : ‖ f ‖p ,% :=

�∫

U

| f |p%d x

�1/p

<∞

)

.
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As noted before, if % ≡ 1 then Lp (U ,%) = Lp (U ) and if supx∈U |%(x )| <∞
then Lp (U ,%)' Lp (U ). We also have that

(Lp (U ,%))∗ = Lq (U ,%∗) where
1

p
+

1

q
= 1 and %∗ :=%−

1
p−1 =%−q/p .

For every 1< p <∞ and Ap weight%, there exists r1, r2 ∈R such that r2 < p < r1

and the following imbeddings hold [79]:

Lr1(U ) ,→ Lp (U ,%) ,→ Lr2(U ).

or more precisely,

Lemma 2.41. If 1 ≤ s , % is an As weight, and 1 ≤ q <∞, then for p ≥ sq one

has

Lp (U ,%) ,→ Lq (U ).

For an Ap weight, the Sobolev space definitions follow from our initial

definition or equivalently by

W k ,p (U ,%) :=







f ∈ Lp (U ,%) : ‖ f ‖k ,p ,% :=
∑

|s |≤k

‖D s f ‖p ,% <∞







and the dual space is given by

W −k ,p (U ,%) =
�

W k ,q (U ,%∗)
�∗

, where
1

p
+

1

q
= 1, %∗ =%−

1
p−1 .

For k ∈N, p ∈ (1,∞) and % an Ap weight, we define the trace space as

T k ,p (∂U ,%) := (W k ,p (U ,%))|∂U

equipped with the norm

‖g ‖T k ,p (∂U ,%) := inf
¦

‖u ‖W k ,p (U ,%) : u ∈W k ,p (U ,%), u |∂U = g
©

.

It it well-known that in case % ≡ 1 that for 1< p <∞ and k ∈N that

T k ,p (∂U ) =W k−1/p ,p (∂U ).

Finally, as in the unweighted case, the following relationships hold when 1<

p <∞:
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• For k ∈N, the trace restriction

τ : u 7→ u |∂U : W k ,p (U ,%)→ T k ,p (U ,%),

is continuous (with norm 1).

• A Green’s formula holds: for u ∈W 1,p (U ,%) and v ∈W 1,q (U ,%∗) where

1/p +1/q = 1 and %∗ =%−1/(p−1),

∫

U

u∇v d x =

∫

∂U

u ∂νv dσ−
∫

U

∇u v d x ,

whereσ is the surface measure on ∂U .

• There exists a continuous extension operator

Λ : T 1,p (∂U ,%)→W 1,p (U ,%)

with τΛg = g for every g ∈ T 1,p (∂U ,%). We call Λ the Dirichlet map.

• For ϕ ∈C k−1(U ) the multiplication operator

u 7→ uϕ, W k ,p (U ,%)→W k ,p (U ,%),

is continuous.

The class of Ap weights is less familiar in the PDE literature where the

concept of weighted Sobolev spaces is generally taken directly to be a space

weighted by %(x ) := dist(x ,∂U )α. Here, dist(x ,∂U ) stands for the distance of

the point x ∈U from the boundary ∂U , i.e.

dist(x ,∂U ) := inf
z∈∂U

|x − z |,

and α∈R. We shall often abbreviate δ(x ) := dist(x ,∂U ). Setting %(x ) =δ(x )α

for α ∈ R in the definition of our weighted Sobolev spaces gives the spaces

W k ,p (U ,δα).
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Lemma 2.42 (Theorem 3.6 in [13]). The spaces W k ,p (U ,δα) are separable Ba-

nach spaces.

Let U ⊂Rd be a bounded domain. The Sobolev spaces W k ,p (U ,δα) have a

number of imbedding properties.

Lemma 2.43 (Lemma 6.2 in [13]). Let α,β ∈R. Then

Lp (U ,δα) ,→ Lp (U ,δβ )

for α≤β .

Theorem 2.44 (Theorem 6.3 in [13]).

W k ,p (U ) ,→W k ,p (U ,δα), α≥ 0,

W k ,p (U ,δα) ,→W k ,p (U ), α≤ 0.

As a consequence, the weighted Sobolev spaces W k ,p (U ,δα) for α> 0 are

richer and for α < 0 poorer than the corresponding classical Sobolev spaces

W k ,p (U ). Nevertheless, for some α > 0 it is possible to imbed the spaces

W k ,p (U ,δα) into a certain Sobolev space.

Theorem 2.45 (Prop. 6.5 & Cor. 6.7 in [13]). Let p > 1 and 1≤q < p . Then

W k ,p (U ,δα) ,→W k ,q (U ),

if α and q satisfy

0≤α< p −1, 1≤q <
p

α+1
.

Let U ⊂Rd have a C 2 boundary ∂U . The following theorem shows that the

trace map τ is bounded from W 1,p (U ,δα) to Lp (∂U ).

Theorem 2.46 (Theorem 9.15 in [13]). Let 1< p <∞ and u ∈W 1,p (U ,δα) for

0≤α< p −1. Then

‖τu ‖Lp (∂U ) ® ‖u ‖W 1,p (U ,δα).





3
Deterministic Boundary Data

In this chapter, we extend the abstract Hilbert space approach for boundary

value problems [1, 2, 3] to the abstract Banach space setting. As a Banach

space theory seems largely folklore, there seems to be a case for providing a

unified theory here. In addition, these results to provide a point of departure

for Chapter 4 where we consider the stochastic case and a framework for

transferring elliptic results to parabolic results on “nonstandard” spaces (see

§6.3 and §7.3).

Let E , ∂ E , and Y be Banach spaces, let A :D(A)⊂ E → E be a closed and

densely defined linear operator, and let T > 0 be some finite time horizon. In

this chapter we study the inhomogeneous abstract boundary value problem

u ′(t ) = Au (t )+ f (t ), τu (t ) = B g (t ), u (0) = x , (3.1)

where g : [0, T ]→ Y , B ∈L (Y ,∂ E ), and τ :D(τ)⊂ E → ∂ E .

In §3.1 we make use of the assumptions and decomposition from [46] to

obtain a Banach space theory then, in §3.2, we weaken these assumptions to

allow less regular data.

The cases E =C (U ) and E = Lp (U ), 1< p <∞, for some domain U ⊂Rd

for Dirichlet and Neumann boundary conditions have been studied before.

85
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For this theory, we refer to Lunardi’s monograph [5] and Amann’s paper [4].

We sketch how these cases can be obtained as examples in §3.3, as such, this

chapter provides an abstraction of their ideas by applying results of Greiner

[46]. We also show how the abstract formulation can be related to parabolic

layer potentials in §3.4, thus relating the abstract approach to the well-known

PDE approach (e.g., see [80, 81]).

3.1 Abstract boundary value problems

We now consider the abstract boundary value problem (3.1) in a Banach space

setting. To initiate this construction, we introduce another linear operator

A :D(A)⊂ E → E that is defined by Au := Au for u ∈D(A)where

D(A) :=D(A)∩kerτ.

We call A the maximal operator and A the restricted or constrained operator.

This naming convention follows from the fact that A is the operator A with

domain constrained to functions with zero boundary conditions. Of course,

this impliesD(A)⊆D(A).

Example 3.1. Let U ⊂ Rd be a bounded domain with C∞ boundary ∂U and

set E = L2(U ). On the space E , we define the operator A by

D(A) :=W 2,2(U ),

Au :=−∆u for u ∈D(A).

Let τu := u |∂U in terms of trace (see §2.6) then

kerτ= {u ∈ E : u |∂U = 0 in trace},

and it follows that the operator A is given by

D(A) =W 2,2
0 (U ), Au :=−∆u for u ∈D(A).

In other words, A is the Dirichlet Laplacian on E (see §2.5).
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Example 3.2. Let U ⊂Rd with smooth boundary ∂U . Other common bound-

ary conditions include τu := ∂νu |∂U (Neumann), τu := u |∂U + ∂νu |∂U (Robin)

and τu := u |∂U +∂ν |∂U +∆|∂U u (Wentzell), where∆|∂U is the Laplace-Beltrami

operator on the manifold ∂U .

In [46], Greiner studied perturbations of the domainD(A) of an unbounded

operator A on a Banach space E . As part of his study, Greiner developed a

number of useful lemmas that we shall make use of in this chapter. As such,

we need to introduce a number of assumptions into our abstract framework.

3.1.1 Assumptions

We shall consider (3.1) under the following assumptions:

• D(A)≡D(τ) and τ :D(A)→ ∂ E is surjective, i.e.,R(τ) = ∂ E ,

• The operator (A,τ) :D(A)⊂ E → E × ∂ E is closed,

• The operator A generates a strongly continuous semigroup (e t A)t≥0 on

E ,

Remark 3.3. Analyticity of the semigroup (e t A)t≥0 on E is not assumed in this

section.

To clarify these assumptions, we present the following example.

Example 3.4. We continue Example 3.1, therefore to satisfy the surjectivity as-

sumption on τ, we choose ∂ E to be the Sobolev-Slobodeckii space W 3/2,2(∂U ).

Next, as A is the Dirichlet Laplacian on E , it is well-known that A generates a

strongly continuous semigroup (e t A)t≥0 on E (see §2.5).

Remark 3.5. We make two remarks. First, since trace theorems hold for u ∈
W 1,p (U ) for p ≥ 1 (see §2.6), the assumption D(A) ≡ D(τ) is quite strong.

Second, our approach is to choose the space ∂ E so thatR(τ) = ∂ E holds.
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3.1.2 Greiner’s decomposition

Under the assumptions of §3.1.1, we may apply the abstract decomposition

of D(A) obtained by Greiner [46]. First, the domain of the operator A can be

decomposed and related to A.

Lemma 3.6 (Greiner [46]). Let λ∈%(A), thenD(A) =D(A)⊕ker(λ−A).

Next, as the map τ is surjective and (A,τ) is closed, a restriction of τ properly

maps the points inD(A) \D(A) to the boundary space ∂ E .

Lemma 3.7 (Greiner [46]). If τ :D(A)→ ∂ E is surjective and the operator

(A,τ) :D(A)⊂ E → E × ∂ E

is closed, then the restriction τλ :=τ|ker(λ−A) : ker(λ−A)→ ∂ E is invertible and

its inverse is bounded.

Thanks to the previous lemma, it makes sense to define the linear operator

Λλ ∈L (∂ E , ker(λ−A)) given by

Λλ :=τ−1
λ .

Lemma 3.8 (Greiner [46]). The operator Λλ has the following properties:

• (λ−A)Λλ ≡ 0,

• τΛλ = I∂ E where I∂ E is the identity operator on ∂ E ,

• Λλτ is the projection inD(A) onto ker(λ−A) alongD(A),

• R(µ, A)Λλ =R(λ,A)Λλ,

• Λλ = (I − (λ−µ)R(λ,A))Λµ,

where λ,µ∈%(A) and R(λ,A) := (λ−A)−1.

By applying Greiner’s lemmas, we can obtain the following useful result.
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Lemma 3.9. For u ∈D(A), we have

Au = A(I −Πλ)u +λΠλu . (3.2)

Proof. The previous lemmas imply that the projection Πλ := Λλτ gives for

u ∈D(A) the decomposition

u = (I −Πλ)u
︸ ︷︷ ︸

D(A)

+ Πλu ,
︸︷︷︸

ker(λ−A)

hence asD(A)⊆D(A) it follows that

Au = A(I −Πλ)u +λΠλu .

3.1.3 Classical, strong, and weak solutions

Under the assumptions presented in §3.1.1, in this section we construct a

Banach space theory for solutions to (3.1). First, we must make clear what we

mean by “solution”.

Definition 3.10. A function u is a classical solution of (3.1) in [0, T ] if:

• u ∈C 1((0, T ]; E )∩C ((0, T ];D(A))∩C ([0, T ]; E ),

• u ′(t ) = Au (t )+ f (t ) for every t ∈ (0, T ],

• τu (t ) = B g (t ) for every t ∈ (0, T ], and

• u (0) = u 0.

We now show that if u is a classical solution to (3.1) and f ≡ 0, then the solution

is given by the variation of constants formula

u (t ) = e t A u 0+

∫ t

0

e (t−s )A(λ−A)ΛλB g (s )d s , 0≤ t ≤ T, (3.3)
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for λ∈%(A), where (e t A)t≥0 is the strongly continuous semigroup generated by

the operator A on E .

Remark 3.11. One should notice that the boundary value problem (3.1) is

given in terms of the operator A but the integral formula (3.3) only contains

the operator A.

Proposition 3.12. Let g ∈ C ((0, T ];Y ) be such that t 7→ ‖g (t )‖ ∈ L1(0, T ), let

f ≡ 0, and let u 0 ∈ D(A) be given. If u is a classical solution of (3.1), then it is

given by formula (3.3).

Proof. Let u be a classical solution of (3.1) with f ≡ 0, let (e t A)t≥0 be the strongly

continuous semigroup generated on E by A, and fix t ∈ (0, T ]. By definition, it

follows that u ∈C 1((0, T ]; E )∩C ((0, T ];D(A))∩C ([0, T ]; E ) and thus the function

z (t ) := e (t−s )A u (t ), 0≤ s ≤ t ,

is in C ([0, t ]; E )∩C 1((0, t ); E ) and

z (0) = e t A u 0, z (t ) = u (t ).

Further, for 0< s < t ,

z ′(s ) =−Ae (t−s )A u (s )+ e (t−s )A u ′(s ) (3.4)

Now using the fact that u is a classical solution and the decomposition (3.2),

we get

u ′(s ) = Au (s )

= A ((I −Πλ)u (s )+Πλu (s ))

= A
�

u (s )−ΛλB g (s )
�

+λΛλB g (s ).

Substituting this expression for u ′(s ) into (3.4) and simplifying,

z ′(s ) = e (t−s )A(λ−A)ΛλB g (s ).
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Now, for 0< 2ε < t , we get

z (t − ε)− z (ε) =

∫ t−ε

ε

e (t−s )A(λ−A)ΛλB g (s )d s ,

and taking ε ↓ 0, the variations of constants formula given by (3.3) follows.

Remark 3.13. Due to the representation (3.3), we see that (3.1) with f ≡ 0 can

be formally related to the abstract Cauchy problem

u ′(t ) = Au (t )+ (λ−A)ΛλB g (t ), 0≤ t ≤ T.

Hence, we can write (3.1) as the abstract Cauchy problem

u ′(t ) = Au (t )+ f (t )+ (λ−A)ΛλB g (t ), u (0) = u 0, t ∈ (0, T ] (3.5)

and now a solution u of (3.1) is given by a superposition of the solution u 1 to

(2.3) and the solution u 2 of (3.1) with f ≡ 0 and u 0 ≡ 0.

The previous theorem implies that existence of a classical solution can be

viewed as a problem about determining the regularity of a function u given by

the variation of constants formula (3.3). It should be clear that even assuming

the boundary data g is continuous is not sufficient to ensure u has enough

regularity to be a classical solution. However, similar to definition of a strong

solution for the abstract Cauchy problem (2.3) where an integrated version of

the equation is shown to be satisfied, we propose a similar definition for the

abstract boundary value problem (3.1).

Definition 3.14. We call a strong solution of (3.1) the function u ∈ L1(0, T ; E )

such that for all t ∈ [0, T ]we have
∫ t

0
u (s )d s ∈D(A),

u (t ) = u 0+A

∫ t

0

u (s )d s +

∫ t

0

f (s )d s ,

and τ
∫ t

0
u (s )d s =

∫ t

0
B g (s )d s , or equivalently,

∫ t

0
u (s )d s −

∫ t

0
B g (s )d s ∈

D(A).
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If u is defined by the variation of constants formula (3.3) and the time-derivative

of the data g : [0, T ]→ Y is continuous and bounded on (0, T ) then we can

show that u is a strong solution to (3.1).

Proposition 3.15. Let g ∈C 1
b ((0, T ); Y ). If u is defined by (3.3) then u is a strong

solution to (3.1) with f ≡ 0.

Proof. Assume u (t ) is given by (3.3), then u (t ) = u 1(t )+u 2(t )+u 3(t )where

u 1(t ) := e t A u 0,

u 2(t ) :=λ

∫ t

0

e (t−s )AΛλB g (s )d s ,

u 3(t ) :=

∫ t

0

(−A)e (t−s )AΛλB g (s )d s ,

AsD(A)⊆D(A), we have by the properties of strongly continuous semigroups

that

A

∫ t

0

u 1(s )d s = A

∫ t

0

e s A u 0 d s = e t A u 0−u 0, τ

∫ t

0

u 1(s )d s = 0.

Next, by Fubini’s theorem

∫ t

0

u 2(s )d s =λ

∫ t

0

∫ s

0

e (s−r )AΛλB g (r )d r d s

=λ

∫ t

0

∫ t

r

e (s−r )AΛλB g (r )d s d r

and
∫ t

r

e (s−r )AΛλB g (r )d s =

∫ t−r

0

e τAΛλB g (r )dτ∈D(A)⊆D(A),

so as Au = Au for u ∈D(A), it follows that

A

∫ t

0

u 2(s )d s =λ

∫ t

0

(e (t−r )A − I )ΛλB g (r )d r, τ

∫ t

0

u 2(s )d s = 0.



93

Finally, we consider u 3 and notice that by our assumption and integration by

parts,
∫ t

0

(−A)e (t−s )AΛλB g (s )d s =ΛλB g (t )− e t AΛλB g (0)

−
∫ t

0

e (t−s )AΛλB g ′(s )d s .

which allows us to calculate
∫ t

0

u 3(s )d s =

∫ t

0

∫ s

0

(−A)e (s−r )AΛλB g (r )d r d s

= I1+ I2−
∫ t

0

∫ s

0

e (s−r )AΛλB g ′(r )d r d s

where

I1 :=

∫ t

0

ΛλB g (s )d s , I2 :=−
∫ t

0

e s AΛλB g (0)d s .

Considering the terms I1 and I2 first, we have I1 ∈ ker(λ−A) and I2 ∈D(A)⊂
D(A) so that τI1 =

∫ t

0
B g (s )d s , τI2 = 0,

AI1 =λ

∫ t

0

ΛλB g (s )d s , AI2 =−e t AΛλB g (0)+ΛλB g (0).

Now similar to the u 2 term, we have

J :=−
∫ t

0

∫ s

0

e (s−r )AΛλB g ′(r )d r d s ∈D(A)⊆D(A),

τJ = 0, and

A J =−
∫ t

0

(e (t−r )A − I )ΛλB g ′(r )d r

=−
∫ t

0

e (t−r )AΛλB g ′(r )d r +

∫ t

0

ΛλB g ′(r )d r

=−ΛλB g (t )+ e t AΛλB g (0)+

∫ t

0

e (t−r )A(−A)ΛλB g (r )d r

+

∫ t

0

ΛλB g ′(r )d r
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Collecting terms we get τ
∫ t

0
u (s )d s =

∫ t

0
B g (s )d s and

A

∫ t

0

u (s )d s = e t A u 0−u 0+

∫ t

0

e (t−s )A(λ−A)ΛλB g (r )d r.

Hence, u is a strong solution to (3.1).

In the previous proof, we saw that by assuming g ∈C 1([0, T ]; Y ) gives an alter-

native representation of the solution u . We formalise this in the next lemma

and give a self-contained proof of this fact.

Lemma 3.16. If u is a classical solution of (3.1) with g ∈C 1([0, T ]; Y ) and f ≡ 0,

then u is given by

u (t ) = e t A(u 0−ΛλB g (0))+ΛλB g (t )+

∫ t

0

e (t−s )AΛλB (λg (s )− g ′(s ))d s . (3.6)

Proof. Assume u is a classical solution of (3.1). From the form of (3.6), we guess

that we seek a solution in the form

u (t ) = v (t )+ΛλB g (t ) (3.7)

where v (t ) is a classical solution of the abstract Cauchy problem

v ′(t ) = Av (t )+w (t ) (3.8)

and the form of w (t ) is to be determined. Differentiating u and using the fact

that v (t ) = u (t )−ΛλB g (t ) by definition andD(A)⊆D(A), we get

u ′(t ) = v ′(t )+ΛλB g ′(t )

= (Av (t )+w (t ))+ΛλB g ′(t )

= A(u (t )−ΛλB g (t ))+w (t )+ΛλB g ′(t )

= Au (t )−λΛλB g (t )+w (t )+ΛλB g ′(t ).
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We set w (t ) = ΛλB (λg (t )− g ′(t )) and since v (t )∈D(A) it follows that τv (t ) = 0

and






u ′(t ) = Au (t ),

τu (t ) =τ(v (t )+ΛλB g (t )) = g (t )

so (3.1) is formally satisfied. As g ∈C 1([0, T ], Y ) by assumption, it follows that

w ∈ C ([0, T ]; E ) so by Theorem 2.6 the abstract Cauchy problem (3.8) has a

unique strong solution given by

v (t ) =S(t )v (0)−
∫ t

0

S(t − s )w (t )d s

and substituting v (t ) into (3.7) gives the representation (3.6).

Similar to the theory for abstract Cauchy problems, we can also define the

concept a weak solution for the abstract boundary value problem (3.1) when

f ≡ 0 and u 0 ≡ 0.

Definition 3.17. A weak solution of (3.1) when u 0 ≡ 0 and f ≡ 0 is a function

u ∈ L1(0, T ; E ) such that for all t ∈ [0, T ] and v ∈D(A∗)we have

〈u (t ), v 〉= 〈−ΛλB g 0, v 〉+
∫ t

0

〈u (s ), A∗v 〉d s (3.9)

and for all t ∈ [0, T ], [τu (t ), w ] = [B g (t ), w ] for w ∈ (∂ E )∗ where [·, ·] is the

dual-pairing between ∂ E and (∂ E )∗.

Remark 3.18. In the previous definition, one should note the subtle choice of

v ∈D(A∗) but that the operator in (3.9) is the adjoint of A.

Proposition 3.19. Every weak solution of (3.1) is a strong solution, and vice-

versa.

Let E1 and E2 be Banach spaces. To prove Proposition 3.19 we shall make

use of the following lemma which ‘dualises’ the definition of D(A∗), see [6,

Proposition 7.14].
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Lemma 3.20. Let (A,D(A)) be a closed and densely defined linear operator

from E1 to E2. If x1 ∈ E1 and x2 ∈ E2 are such that 〈x2,x ∗2〉 = 〈x1, A∗x ∗2〉 for all

x ∗2 ∈D(A∗), then x1 ∈D(A) and Ax1 = x2.

Proof of Proposition 3.19. Choose v = (e t A)∗w for w ∈ E ∗ then v ∈D(A∗). The

proof follows from Lemma 3.20.

The equivalence between weak and strong solutions gives us an alternative

method of proving existence. We also obtain uniqueness of the solution.

Theorem 3.21. For u 0 ≡ 0, f ≡ 0, and g ∈C 1
b ([0, T ]; Y ) the problem (3.1) admits

a unique strong (or weak) solution.

Proof. By Proposition 3.19, we only need to check this is a weak solution.

Notice that u is a weak solution with initial value u 0 −ΛλB g 0 if and only if

t 7→ u (t )−S(t )(u 0−ΛλB g 0) is a weak solution corresponding to the initial value

0. Therefore, without loss of generality, we assume u 0 = 0 and ΛλB g 0 = 0.

Let u be given by (3.6) and set z (t ) :=ΛλB (λg (t )−g ′(t )). As z (t )∈C ([0, T ]; E ),

it is clear that u ∈ L1(0, T ; E ). Let v ∈D(A∗) then A∗v = A∗v so for all t ∈ [0, T ]

using Fubini’s theorem and defining S∗(t ) := (e t A)∗,
∫ t

0

〈u (t ), A∗v 〉d s =

∫ t

0

∫ s

0

〈z (r ),S∗(s − r )A∗v 〉d r d s

+

∫ t

0

〈ΛλB g (s ), A∗v 〉d s

=

∫ t

0

∫ t

r

〈z (r ),S∗(s − r )A∗v 〉d s d r

+

∫ t

0

〈ΛλB g (s ), A∗v 〉d s

=

∫ t

0

〈z (r ),S∗(t − r )v −v 〉d r

+

∫ t

0

〈ΛλB g (s ), A∗v 〉d s
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= 〈
∫ t

0

e (t−r )A z (r )d r −
∫ t

0

z (r )d r, v 〉+

〈ΛλB g (t ), v 〉+ 〈
∫ t

0

λΛλB g (s )d s , v 〉

= 〈u (t ), v 〉.

By Lemma 3.20, it follows that
∫ t

0
u (s )d s ∈ D(A). The condition [τu (t ), v ] =

[g (t ), v ] for v ∈ (∂ E )∗ follows readily as z (t )∈ E for all t ∈ [0, T ],

h(t ) :=

∫ t

0

e (t−s )A z (s )d s ∈D(A)

so τh(t ) = 0 and, by definition, τΛλB g (t ) = B g (t ) so

[τu (t ), v ] = [τ(h(t )+ΛλB g (t )), v ] = [B g (t ), v ].

We now prove uniqueness. Suppose ũ and u are strong solutions of (3.1), then

v := ũ −u is integrable and satisfies v (t ) = A
∫ t

0
v (s )d s for all t ∈ [0, T ] and

also τv (t ) =τũ (t )−τu (t ) = 0 for all t ∈ [0, T ]. Set

w (t ) :=

∫ t

0

∫ s

0

v (r )d r d s ,

then it also follows that τw (t ) = 0. By the fundamental theorem of calculus,

w is continuously differentiable on [0, T ], and using Hille’s theorem (e.g. [6,

Theorem 1.19]) we see that w (t ) ∈ D(A) and since τw (t ) = 0 it follows that

w (t )∈D(A) and

w ′(t ) =

∫ t

0

v (s )d s =

∫ t

0

A

∫ s

0

v (r )d r d s = Aw (t ).

Fix t ∈ [0, T ] and put h(s ) :=S(t − s )w (s ). Then h is continuously differentiable

on [0, t ]with derivative

h ′(s ) =−AS(t − s )w (s )+S(t − s )w ′(s ) = 0.
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It follows that h is constant on [0, t ]. Hence,

w (t ) = h(t ) = h(0) =S(t )w (0) = 0.

As we have shown that
∫ t

0

∫ s

0
v (r )d r d s = 0 for all t ∈ [0, T ], it follows that v = 0

almost everywhere so we must have u = ũ almost everywhere.

We now give a sufficient condition for a mild solution to be a classical

solution.

Lemma 3.22. Let g ∈ C 1
b ((0, T ];Y ) and let u be a mild solution of (3.1) with

u 0 ≡ 0 and f ≡ 0. Then the following conditions are equivalent:

• u ∈C ((0, T ];D(A)),

• u ∈C 1((0, T ]; E ),

• u is a classical solution of (3.1) with u 0 ≡ 0 and f ≡ 0.

3.2 Under an analyticity assumption

In this section, we change the assumption given in §3.1.1 slightly and now

assume:

• The operator A : D(A) ⊂ E → E is sectorial and generates an analytic

semigroup (e t A)t≥0 on E ,

• τ :D(τ)⊂ E → ∂ E has range given byR(τ) = ∂ E ,

As before, the A :D(A)⊂ E → E is the maximal operator and the relationship

with the constrained operator A is given by

D(A) :=D(A)∩kerτ.

Writing Bα := B ([0, T ];DA(α,∞)), we now obtain a regularity theorem for

the variation of constants formula (3.3).



99

Theorem 3.23. Let g ∈C ([0, T ]; Y ), and assume Λλ ∈L (∂ E ,DA(α,∞)) for some

0<α≤ 1. Then the variations of constants formula v given by

v (t ) = (λ−A)

∫ t

0

e (t−s )AΛλB g (s )d s , 0≤ t ≤ T, (3.10)

belongs to C ((0, T ];DA(α,∞))∩Bα, and

‖v ‖Bα + ‖v ‖Cα([0,T ];E ) ® ‖g ‖C ([0,T ];∂ E ). (3.11)

Proof. As B ∈L (Y ,∂ E ) and Λλ ∈L (∂ E ,DA(α,∞)) it follows that if we define

f (t ) :=ΛλB g (t ) then f ∈C ([0, T ];DA(α,∞)) and

‖ f ‖C ([0,T ];DA (α,∞)) ® ‖g ‖C ([0,T ];Y ).

The result now follows by applying Theorem 2.7 to the function

z (t ) :=

∫ t

0

e (t−s )A f (s )d s , 0≤ t ≤ T,

which gives that v = (λ−A)z belongs to C ([0, T ];D(A)), toBα, and to C α([0, T ]; E ).

Further, estimate (3.11) holds.

For (3.10) to make sense as a “solution” to (3.1) with f ≡ 0 we need to make

sure that τv (t ) = B g (t ) for all t ∈ (0, T ]. This follows readily if

D(τ) =DA(α,∞)

for the same α as in Theorem 3.23, as Theorem 3.23 then ensures that v ∈D(τ).

3.3 Application to parabolic equations

In this section, we shall apply the abstract theory presented in the last section

to study a parabolic partial differential equation on a domain U ⊂Rd subject to

inhomogeneous Dirichlet or Neumann boundary conditions on the boundary

∂U .
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3.3.1 Neumann boundary conditions

Let U be either the half-space Rd
+, or an open bounded subset of Rd with

uniformly C 2 boundary ∂U . We shall denote by ν (x ) the exterior unit nor-

mal vector to ∂U at the point x ∈ ∂U . We first consider the inhomogeneous

Neumann boundary value problem











u t (t ,x ) =Au (t ,x ), (t ,x )∈ [0, T ]×U ,

u (0,x ) = 0, x ∈U ,

∂νu (t ,x ) = g (t ,x ), t ∈ [0, T ]× ∂U ,

whereA :=A (x , D) is the second order differential operator

A (x , D) :=
d
∑

i ,j=1

a i j (x )Di j +
d
∑

i=1

b i (x )Di + c (x )I

with real uniformly continuous and bounded coefficients a i j ,b i , c . We assume

that the matrix [a i j ] is symmetric and satisfies the uniform ellipticity condition

d
∑

i ,j=1

a i j (x )ξiξj ≥ κ|ξ|2, x ∈U , ξ∈Rd ,

for some κ> 0.

Case E =C (U )

In this section we consider the case E = C (U ) and apply our Banach space

theory to obtain the same results as those found in Chapter 5 of [5]. As such,

we pose E =C (U ) and ∂ E =C 1(∂U ) and define the operators

• Au =Au for u ∈D(A)where

D(A) :=







u ∈
⋂

p≥1

W 2,p
loc (U ) : u ,Au ∈C (U )






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• τ :D(τ)⊂ E → ∂ E where

τu :=
∂ u

∂ ν

�

�

�

∂U

• AsD(A) :=D(A)∩kerτ, it follows that

D(A) :=







u ∈
⋂

p≥1

W 2,p
loc (U ) : u ,Au ∈C (U ),∂νu |∂U = 0







Applying Corollary 3.1.24 of [5], it follows that the resolvent set of the operator

A :D(A)⊂ E → E contains the halfplane {λ ∈C :ℜλ > l 1} and A is sectorial1.

Hence, A generates an analytic semigroup (e t A)t≥0 on E . By Theorems 3.1.30

and 3.1.31 in [5], we also have the characterisation

DA(α,∞) =











C 2α(U ), if α≤ 1/2,

C 1
τ(U ), if α= 1/2,

C 2α
τ (U ), if α≥ 1/2,

(3.12)

where the subscript τ means that the function space is only comprised of

functions u such that u ∈ kerτ. The space C 1
τ(U ) is defined [5, p. 109] as

C 1
τ(U ) =

�

u ∈C 1(U ) : sup
T

|u (x −hβ (x ))−u (x )|
h

<∞
�

,

where T := {x ∈ ∂U , h ∈R,x −hβ (x ) ∈U} with β (x ) := (β1(x ), . . . ,βd (x )). Let

Y be another Banach space and B ∈ L (Y ,∂ E ) or let Y = ∂ E with B = I (i.e.,

the identity operator). Finally, we define Λλ as the Neumann map which is

given by the solution of the elliptic Neumann problem on E = C (U ) with

g ∈ ∂ E =C 1(∂U ) given by

(λ−A )u = 0, ∂νu |∂U = g .

1See Corollary 3.1.24 [5] for the definition of the constant l 1
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That is, the solution u defines Λλ ∈L (∂ E , E ) by Λλg = u . By regularity theory

for the Neumann problem, we have that Λλ ∈L (C 1(∂U ),C 2(U )). Further by

(3.12), it follows that C 2(U ) is continuously embedded in DA(1/2,∞) and we

have

Λλ ∈L (∂ E ,DA(1/2,∞)).

By the theory of this chapter, a mild solution is given by

u (t ) = (λ−A)

∫ t

0

e (t−s )AΛλB g (s )d s , 0≤ t ≤ T, (3.13)

and as all the assumptions of Theorem 3.23 are satisfied, the following result

(given also by Theorem 5.1.17 in [5]) is obtained as an example of our theory.

Theorem 3.24. Let g ∈ C ([0, T ];C 1(∂U )). Then u given by (3.13) belongs to

C α([0, T ];C (U )) and B ([0, T ];C 1(U )).

Case E = Lp (U )

We now consider the case E = Lp (U ) by defining the operators

• Au =Au for u ∈D(A)where

D(A) :=W 2,p (U )

• τ :D(τ)⊂ E → ∂ E where

τu :=
∂ u

∂ ν

�

�

�

∂U

• AsD(A) :=D(A)∩kerτ, it follows that

D(A) :=
¦

u ∈W 2,p (U ) : ∂νu |∂U = 0
©

Assume U is an open set in Rd with uniformly C 2 boundary and fix p ∈ (1,∞).
Then (e.g., see Theorem 3.1.2 in [5]) there exists κ1 ∈ R such that if ℜλ ≥ κ1,

then for every f ∈ Lp (U ) and g ∈W 1,p (U ), the elliptic problem

(λ−A )u = f in U , ∂νu = g in ∂U , (3.14)
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has a unique solution u ∈W 2,p (U ) depending continuously on f and g . By

taking g ≡ 0 it follows that {λ ∈C :ℜλ≥ κ1} ⊂ %(A). If U is unbounded then

the constant κ1 may depend on p . It is known (e.g., see Theorem 3.1.3 in [5])

that the following bounds on the norm of the resolvent operator of A holds:

there exists κp ≥ κ1, M p > 0 such that if ℜλ≥ κp , then for every u ∈W 2,p (U )

we have

|λ|‖u ‖+ |λ|1/2‖Du ‖+ ‖D2u ‖

≤M p

�

‖λu −Au ‖+ |λ|1/2‖g̃ ‖+ ‖D g̃ ‖
�

where g̃ is any extension of g belonging to W 1,p (U ), ‖Du ‖ =
∑d

i=1 ‖Di u ‖,
‖D2u ‖ =

∑d
i ,j=1 ‖Di j u ‖. Henceforth, A is sectorial on E = Lp (U ) and gener-

ates an analytic semigroup (e t A)t≥0 on E .

Let u be the weak solution to (3.14) where ∂ E = W s−1−1/p ,p (∂U ) for s ∈
(1,1+1/p ), by regularity theory for the Neumann problem it follows that u ∈
W s ,p (U ). Hence, defining Λλg = u we get

Λλ ∈L (W s−1−1/p ,p (∂U ), W s ,p (U )).

For 1< p <∞ and 0<α< 1 where 2α and 2α−1/p are not integers, we have

the characterisation (e.g., see Theorem 15.5 in [33] or Theorem 3.2.3 in [5]),

DA(α,p ) =







W 2α,p (U ), if 2α< 1+1/p ,

{u ∈W 2α,p (U ) : ∂νu |∂U = 0}, if 2α> 1+1/p .

Hence to apply our framework, fix 1/p < s < 1+1/p , let Y = Lp (∂U ), and set

∂ E =W s−1−1/p ,p (∂U ). Notice that since s < 1+ 1/p we have Y ⊂ ∂ E . Finally,

assume B ∈L (Y ,∂ E ) and set α= s/2. By Proposition 2.2.15 in [5], we have

DA(α, 1)⊂D((−A)α)⊂DA(α,∞), 0<α< 1.

Hence, it follows that BΛλ ∈L (Y ,DA(α,∞))with 2α∈ (1/p , 1+1/p ) and since

all the assumptions of Theorem 3.23 are satisfied, the following result is ob-

tained as an example.
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Theorem 3.25. Let g ∈ C ([0, T ];Y ) and B ∈ L (Y , W s−1−1/p ,p (∂U )) for some

s ∈ (1/p ,1 + 1/p ). Then u given by (3.13) belongs to C α([0, T ]; Lp (U )) and

B ([0, T ]; W s ,p (U )). In particular, we can take Y = Lp (∂U ) and B = I .

3.3.2 Dirichlet boundary conditions

Let U be either the half-space Rd
+, or an open bounded subset of Rd with

uniformly C 2 boundary ∂U . We shall denote by ν (x ) the exterior unit normal

vector to ∂U at the point x ∈ ∂U . We shall now consider the inhomogeneous

Dirichlet boundary value problem











u t (t ,x ) =Au (t ,x )+ f (t ,x ), (t ,x )∈ [0, T ]×U ,

u (0,x ) = u 0(x ), x ∈U ,

u (t ,x ) = g (t ,x ), t ∈ [0, T ]× ∂U ,

whereA :=A (x , D) is the second order differential operator

A (x , D) :=
d
∑

i ,j=1

a i j (x )Di j +
d
∑

i=1

b i (x )Di + c (x )I

with real uniformly continuous and bounded coefficients a i j ,b i , c . We assume

that the matrix [a i j ] is symmetric and satisfies the uniform ellipticity condition

d
∑

i ,j=1

a i j (x )ξiξj ≥ κ|ξ|2, x ∈U , ξ∈Rd ,

for some κ> 0.

Case E =C (U )

Let us first consider the case E =C (U ) and ∂ E =C θ (∂U ) for some θ ≥ 0. We

define the operators
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• Au =Au for u ∈D(A)where

D(A) :=







u ∈
⋂

p≥1

W 2,p
loc (U ) : u ,Au ∈C (U )







• τ :D(τ)⊂ E → ∂ E where

τu := u |∂U

• AsD(A) :=D(A)∩kerτ, it follows that

D(A) :=







u ∈
⋂

p≥1

W 2,p
loc (U ) : u ,Au ∈C (U ), u |∂U = 0







It is known that the operator A is sectorial on E (e.g., see Corollary 3.1.21 in

[5]) and generates an analytic semigroup (e t A)t≥0 on E . Next, forℜλ large, the

elliptic boundary value problem

(λ−A )u = f in U , u = g in ∂U , (3.15)

with f ∈ Lp
loc(U ) and g ∈W 2,p

loc (U )∩C 1(U ) is solvable (e.g., Theorem 3.1.19 in [5]).

The solution is unique and satisfies u ∈W 2,p
loc (U )∩C 1(U ). Assuming U has a

uniformly C 2+β boundary ∂U where 0≤β < 1, then (e.g. Theorem 0.3.2 in [5])

there exists an extension operator E ∈L (C θ (∂U ),C θ (U )) for each θ ∈ [0, 2+β ]

such that

E g |∂U = g , ∀g ∈C (∂U ).

Hence, defining the operator Λλg = u where u is the solution to (3.15) gives

Λλ ∈L (∂ E ,D(A)). As for the Neumann case, we need Λλ to map intoDA(α,∞)
for some 0<α< 1. However, by [5, Theorem 3.1.29], for 0<α< 1,

DAD (α,∞) =







C 2α
0 (U ), α 6= 1/2,

C 1
0 (U ), α= 1/2,
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This causes a problem with our theory as Λλ does not vanish on the boundary,

hence unlike the Neumann case we cannot find α∈ (0, 1) for the condition on

zero boundary data to disappear. We conclude that Theorem 3.23 is insufficient

to handle such a case.

Remark 3.26. The inability to apply this theory to the space E = C (U ) is an-

other motivation for our results in Chapter 6.

Case E = Lp (U )

We now consider the case E = Lp (U ), 1< p <∞. We define the operators

• Au =Au for u ∈D(A)where

D(A) :=W 2,p (U )

• τ :D(τ)⊂ E → ∂ E where

τu := u |∂U in trace

• AsD(A) :=D(A)∩kerτ, it follows that

D(A) :=W 1,p
0 (U )∩W 2,p (U ).

It is known that the operator A is sectorial on E (e.g., see Theorem 3.1.3 in [5])

and generates an analytic semigroup (e t A)t≥0 on E . Also, (e.g., Theorem 3.1.2

in [5]) if U has uniformly C 2 boundary, then there exists κ1 ∈ R such that if

ℜλ≥ κ1, then for every f ∈ Lp (U ) and g ∈W 2,p (U ) the problem

(λ−A )u = f in U , u = g in ∂U , (3.16)

has a unique solution u ∈W 2,p (U ), depending continuously on f and g . Let

s > 1/p then τ∈L (W s ,p (U ), W s−1/p ,p (∂U )) and we can define Λλg = u where

u solve (3.16). Then Λλ ∈L (W α−1/p ,p (∂U ), W α,p (U )) for α> 1/p . For 1< p <
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∞ and 0<α< 1 where 2α and 2α−1/p are not integers andA =∆, we have

the characterisation (e.g., see Theorem 15.5 in [33]),

DA(α,p ) =







W 2α,p (U ), if 2α< 1/p ,

{u ∈W 2α,p (U ) :τu = 0}, if 2α> 1/p .

Hence, choosing 0<α< 1 such that 2α< 1/p and setting ∂ E =W α−1/p ,p (∂U )

the assumptions for Theorem 3.23 are satisfied and we obtain a similar result

to [4, Theorem 11.2].

Theorem 3.27. Let g ∈ C ([0, T ];Y ) and B ∈ L (Y , W 2β−1/p ,p (∂U )) for 1/p <

2β < 1+1/p . Then u given by (3.13) belongs to C α([0, T ]; Lp (U )) and B ([0, T ]; W 2β ,p (U )).

3.4 Parabolic layer potentials

We shall make use of Green’s formula (e.g., see [81]) to obtain some explicit

representations for the abstract approach presented in the previous sections

in the case where E = Lp (U ), 1< p <∞ and U ⊂Rd is a bounded domain with

smooth boundary ∂U .

The results of this section are known for the L2 case (e.g., see [82]) however

we could not find a reference for the (straight-forward) extension to the Lp

setting. We have included this characterisation as we believe it illustrates

the connection between the abstract approach and the classic double-layer

potential approach.

Theorem 3.28 (Green’s second formula). Let U ⊂ Rd be a bounded open set

with boundary ∂U of class C 1 and u , v ∈C 2(U ). Then
∫

U

(v (x )∆u (x )−u (x )∆v (x )) d x =

∫

∂U

�

v (z )
∂ u

∂ νz
(z )−u (z )

∂ v

∂ νz
(z )
�

σ(d z )

whereσ is the surface measure on (∂U ,B (∂U )) and νz is the exterior normal at

z ∈ ∂U.
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Fix 1 < p < ∞ and 1/p < 2α < 1+ 1/p . Let 〈·, ·〉 be the dual pairing be-

tween Lp (U ) and (Lp (U ))∗ and [·, ·] the dual pairing between W 2α−1/p ,p (∂U ) and

(W 2α−1/p ,p (∂U ))∗. Let us define the normal derivative operatorN : C 1(U )→R
by

(N u )(x ) := (∇u )(x ) ·ν (x ),

and, as before, we define

• Au :=∆u for u ∈D(A) =W 2,p (U ),

• Au :=∆u for u ∈D(A) =W 1,p
0 (U )∩W 2,p (U ),

• Λ : W 2α−1/p ,p (∂U )→W 2α,p (U ) be the Dirichlet map, i.e., Λg solves the

elliptic Dirichlet problem

∆u = 0 in U , u |∂U = g on ∂U (in trace),

• (e t A)t≥0 be the Dirichlet heat semigroup on Lp (U ).

The following lemma extends the characterisation of ((−A)Λ)∗ in [82] to the Lp

setting.

Lemma 3.29. For v ∈D(A∗),

((−A)Λ)∗v =N v.

Proof. Take g ∈D(Λ) and v ∈D(A∗) and apply Theorem 3.28 to get

〈(−A)Λg , v 〉= 〈Λg , (−A)∗v 〉

= 〈Λg , (−A)∗v 〉

= 〈(−A)Λg , v 〉+[Λg |∂U ,∂νv |∂U ]− [∂ν (Λg )|∂U , v |∂U ]

= [g ,∂νv ]

as Λg |∂U = g by definition, v |∂U = 0 as v ∈ D(A∗), and 〈(−A)Λg , v 〉= 0 by the

definition of Λ.
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The next characterisation connects the semigroup approach with the double-

layer potential approach to boundary value problems. We recall there exists a

positive C∞-function GU : (0,∞)×U ×U →R called the Dirichlet heat kernel

such that

(e t A f )(x ) =

∫

U

GU (t ,x , y ) f (y )d y

for any f ∈ Lp (U ), 1≤ p ≤∞.

Lemma 3.30. For g ∈ Lq (0, T ; Lp (∂U )), we have

 

∫ T

0

(−A)e t AΛ f (t )d t

!

(x ) =−
∫ T

0

∫

∂U

∂GU

∂ νy
(t ,x , y ) f (t , y )σ(d y )d t ,

whereσ is the surface measure on (∂U ,B(∂U )).

Proof. Write S(t ) := e t A and let g ∈ Lq (0, T ;C (∂U )) then Λg ∈ C 2(U )∩ Lp (U )

and as (S(t ))t≥0 is analytic on Lp (U ), S(t )maps intoD(A) for t > 0. As A f =∆ f

for f ∈D(A) and GU (t ,x , y ) =GU (t , y ,x ) for all x , y ∈U and t > 0 we have

(−A)S(t )Λg (t ,x ) = (−∆)
∫

U

GU (t ,x , y )Λg (t , y )d y

=

∫

U

(−∆)GU (t ,x , y )Λg (t , y )d y

=

∫

U

(−∆y )GU (t ,x , y )Λg (t , y )d y

=−
∫

U

GU (t ,x , y )∆yΛg (t , y )d y

+

∫

∂U

GU (t ,x , z )∂νz (Λg (t , z ))σ(d z )

−
∫

∂U

∂νz GU (t ,x , z )g (t , z )σ(d z )

=−
∫

∂U

∂νz GU (t ,x , z )g (t , z )σ(d z )
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as GU (t ,x , z ) = 0 for z ∈ ∂U and∆yΛg (t , y ) = 0 for y ∈U . Therefore, by density

of C (∂U ) in Lp (∂U )we get the identity by approximation and integrating over

time.

Using the explicit representations, we can derive the following alternative

definition of a weak solution.

Definition 3.31. A weak solution of (3.1) is a function u ∈ L1(0, T ; Lp (U )) such

that for all t ∈ [0, T ] and v ∈D(A∗)∩{v :τv = 0}we have

〈u (t ), v 〉= 〈u 0−Λg 0, v 〉+
∫ t

0

〈u (s ), A∗v 〉d s −
∫ t

0

[g (s ),N v ]d s .

Lemma 3.32. If a function u satisfies Definition 3.31 then it satisfies Defini-

tion 3.17, and vice-versa.

Proof. Follows by applying Green’s theorem (i.e. Theorem 3.28).

Remark 3.33. Definition 3.31 forms the basis of the definition of a weak solu-

tion given by [33, Definition 15.1] (also see [53]) for the stochastic setting.
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Stochastic Boundary Data

This chapter1 introduces the theory for evolution equations driven by stochas-

tic boundary data. Our theory extends (1.5), given by Da Prato and Zabczyk in

[11], to the Banach space setting.

Let E and ∂ E be Banach spaces and H and ∂H be Hilbert spaces. Let

A :D(A)⊂ E → E be a closed and densely defined linear operator and let T > 0

be some finite time horizon. We now consider the stochastic version of (3.1)

given by

X ′(t ) = AX (t ), τX (t ) = BẆ (t ), X (0) = x , (4.1)

where (W (t ))t≥0 is a cylindrical Wiener process on ∂H , B ∈ L (∂H ,∂ E ) and

τ :D(τ)⊂ E → ∂ E .

1Most results of this chapter were presented during the meeting held from June 16 to 19 at
the Heinrich-Fabri Institute in Blaubeuren (Germany) for the 11th TULKA Internet Seminar
titled “Stochastic Evolution Equations” and form part of project 3: “Lp theory of the heat
equation driven by boundary noise” posed by Ben Goldys.
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4.1 Strong and weak solutions

Following the results of Chapter 3, one could suggest several types of solutions

to (4.1). Assume there exists another linear operator A :D(A)⊂ E → E that is

defined by Ax := Ax for x ∈D(A)where

D(A) :=D(A)∩kerτ.

If B ∈ γ(∂H ,∂ E ) and (W (t ))t≥0 then (see §2.12) we can identify (BW (t ))t≥0

with a Wiener process (W B (t ))t≥0. Let [·, ·] be the dual pairing between ∂ E and

(∂ E )∗.

The following definitions seem the most natural stochastic extensions of

Definition 3.14 and Definition 3.17.

Definition 4.1. Let B ∈ γ(∂H ,∂ E ). A strong solution to (4.1) is a strongly mea-

surable E -valued stochastic process (X x (t ))t∈[0,T ] such that

• t 7→X x (t ) is integrable P-almost surely,

• for all t ∈ [0, T ], P-almost surely, we have
∫ t

0

X x (s )d s ∈D(A),
∫ t

0

X x (s )d s ∈D(τ),

• for all t ∈ [0, T ], P-almost surely,

X x (t ) = x +A

∫ t

0

X x (s )d s , τ

∫ t

0

X x (s )d s =W B (t ).

Definition 4.2. A weak solution to (4.1) is a E -valued process (X x (t ))t∈[0,T ]

which has a strongly measurable version with the following properties:

• P-almost surely, the paths t 7→X x (t ) are integrable,

• for all t ∈ [0, T ] and x ∗ ∈D(A∗)we have P-almost surely,

〈X (t ),x ∗〉= 〈x ,x ∗〉+
∫ t

0

〈X x (s ), A∗x ∗〉d s ,
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• for all t ∈ [0, T ] and z ∗ ∈ (∂ E )∗, we have P-almost surely,

[τX x (t ), z ∗] = [BW (t ), z ∗].

Although these definitions seem like appropriate extensions of their de-

terministic counterparts as they are given in terms of the operator A (and not

A), they are difficult to work with in the stochastic setting. Therefore, in the

next section, we take the standard approach of formulating the boundary value

problem (4.1) as an abstract Cauchy problem.

4.2 Mild solutions

In this section we follow the well-known methodology [11, 27, 28, 33]whereby

the boundary value problem (4.1) is formulated as an abstract Cauchy problem.

Assume there exists another linear operator A :D(A)⊂ E → E that is defined

by Ax := Ax for x ∈D(A)where

D(A) :=D(A)∩kerτ.

We recall that A is called the maximal operator and A is called the restricted

operator. Similar to Chapter 3, we assume that:

• A :D(A)⊂ E generates an analytic semigroup (e t A)t≥0 on E ,

• Λλ : ∂ E → E continuously for some λ≥ 0,

• B : ∂H → ∂ E continuously.

In this chapter, the Hilbert space ∂H replaces the use of the Banach space Y in

Chapter 3. Using these assumptions and Remark 3.13, we can formally rewrite

(4.1) as the abstract Cauchy problem






d X (t ) = AX (t )d t − (λ−A)ΛλBd W (t ), t ∈ [0, T ],

X (0) = x ∈ E ,
(4.2)
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by formally setting g = Ẇ (t ) in (3.5), multiplying both sides of (3.5) by d t , and

writing Ẇ (t )d t = d W (t ). Alternatively, one could follow the derivation of [33,

Section 15.1] to obtain the integral version of (4.1) given by

X (t ) = e t Ax +

∫ t

0

(λ−A)e t AΛλB d W (t ), t ∈ [0, T ]. (4.3)

As the second term in (4.3) is a stochastic convolution the following definition

of a solution has become customary (e.g., see [11, 27, 33]).

Definition 4.3. Let x ∈ E . The process (X x (t ))t≥0 (given by (4.3)) is called a mild

solution of (4.1) if

sup
t∈[0,T ]
E‖X x (t )‖p

E <∞, p ≥ 2.

However, we suggest that for (4.3) to make sense as a solution to the bound-

ary value problem (4.1) (and not simply as a mild solution of the formal abstract

Cauchy problem (4.2)) we propose the following slight modification of the defi-

nition of a mild solution.

Definition 4.4. Let x ∈ E . The process (X x (t ))t≥0 is called the well-posed mild

solution of (4.1) if

sup
t∈[0,T ]
E‖X x (t )‖p

E <∞, p ≥ 2.

and X x (t )∈D(τ) for t ∈ (0, T ].

The following example explains why we suggest this definition.

Example 4.5. Consider the case E = Lp (U ) for some bounded domain U ⊂Rd

with smooth boundary ∂U . Suppose τu := u |∂U in terms of trace, then it is

well-known τ only makes sense for u ∈ D(τ) =W 1,p (U ). However, suppose

that a mild solution X x := (X x (t ))t≥0 (in the sense of Definition 4.3) is obtained

such that X x (t ) /∈ D(τ) for t ∈ (0, T ], then X x does not satisfy the boundary

condition of (4.1) in any meaningful way.
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Remark 4.6. Example 4.5 suggests either working in a space where the concept

of trace holds for a larger class of functions or modifying the definition of τ so

that the relationship between the solution and the boundary data is understood

in a different way (e.g., pointwise instead of in trace). This motivates the

weighted Lp approach we present in Chapter 5 and the Harmonic analysis

approach we present in Chapter 6.

By Theorem 2.33, a sufficient condition for the existence of a mild solution

to (4.2) is that Φ(t ) := AS(t )ΛB is stochastically integrable with respect to W ,

or equivalently, that the operator

RΦ f :=

∫ T

0

Φ(t ) f (t )d t , f ∈ L2(0, T ;∂H ),

is γ-radonifying from L2(0, T ;∂H ) to E . In [11] and [33, Chapter 13, Equation

15.3], in the case where E = L2(U ), it is stated that a necessary and sufficient

condition for

t 7→ −
∫ t

0

AS(t − s )ΛB d W (s ), t ∈ [0, T ],

to be a well-defined square integrable process taking values in L2(U ) is given

by
∫ T

0

‖AS(t )ΛB‖2
L2(∂H ,L2(U ))d t <∞.

Therefore, one could suggest that a Banach space extension of this sufficient

condition is
∫ T

0

‖AS(t )ΛB‖2
γ(∂H ,E )d t <∞,

instead of RΦ ∈ γ(L2(0, T ;∂H ), E ). This raises the question: which condition

implies the other? In the Banach space setting this depends on the space E .

Theorem 4.7. Assume (W (t ))t≥0 is a cylindrical Wiener process on ∂H. If E has

type 2 and for λ∈%(A),
∫ T

0

‖(λ−A)e t AΛλB‖2
γ(∂H ,E )d t <∞.
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Then for any x ∈ E there exists a unique process (X x (t ))t∈[0,T ] such that

sup
t∈[0,T ]

�

E‖X (t )‖2
E

�1/2
<∞.

Proof. Follows by taking A = (0, T ) and µ = d t (Lebesgue measure) in Theo-

rem 2.30 and then Theorem 2.33.

Let U ⊂ Rd be a bounded domain with smooth boundary ∂U . Spaces

of type 2 include Lp (U ) for p ≥ 2. Peszat and Zabczyk obtain the following

necessary and sufficient condition for existence of a mild solution in the case

E = L2(U ). Recall that γ(∂H , E ) =L2(∂H , E )when E is a Hilbert space.

Theorem 4.8 (Peszat/Zabczyk). Assume (W (t ))t≥0 is a cylindrical Wiener pro-

cess on ∂H. If E = L2(U ) for a bounded domain U ⊂Rd with smooth boundary

∂U and x ∈ L2(U ). Then
∫ t

0

‖(λ−A)e t AΛλ‖2
L2(∂H ,L2(U ))d s <∞, for t > 0,

is a necessary and sufficient condition for (4.3) to be a mild solution to (4.2).

Theorem 4.9. Assume (W (t ))t≥0 is a cylindrical Wiener process on ∂H. If E has

cotype 2 and for λ∈%(A),

R g :=

∫ T

0

(λ−A)e t AΛλB g (t )d t , g ∈ L2(0, T ;∂H ),

is γ-radonifying from L2(0, T ;∂H ) to E . Then for any x ∈ E there exists a unique

process (X x (t ))t∈[0,T ] such that

sup
t∈[0,T ]

�

E‖X (t )‖2
E

�1/2
<∞.

Proof. Follows by taking A = (0, T ) and µ = d t (Lebesgue measure) in Theo-

rem 2.30 and then Theorem 2.33.
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We now provide a refined sufficient condition for the existence of a mild so-

lution to (4.2). This condition is an abstraction of [33, Theorem 15.4] obtained

in the case E = Lp (U )where U ⊂Rd with smooth boundary ∂U .

Theorem 4.10. If (−A)κΛB ∈ γ(∂H , E ) for some κ satisfying 1/2 < κ ≤ 1, then

t 7→ (−A)S(t )ΛB is stochastically integrable with respect to W .

Proof. By Theorem 2.33 it is sufficient to check that Φ(t ) = (−A)S(t )ΛB is

stochastically integrable on (0, T ) or equivalently that

RΦ f :=

∫ T

0

Φ(t ) f (t )d t , f ∈ L2(0, T ;∂H ),

is γ-radonifying from L2(0, T ;∂H ) to E . Choose β ∈ (0, 1/2) and 0≤η<β such

that κ= 1−η. We now factorise Φ(t ) as

Φ(t ) = t β (−A)ηS(t )t −β (−A)1−ηΛB

= t β (−A)ηS(t )Ψ(t )

where Ψ(t ) := t −β (−A)1−ηΛB . By Lemma 2.3, the set {t β (−A)ηS(t ) : t ∈ (0, T )} is

γ-bounded inL (E , E ). Hence, by Theorem 2.2, RΦ belongs to γ(L2(0, T ;∂H ), E )

once RΨ ∈ γ(L2(0, T ;∂H ), E ). By assumption,

(−A)1−ηΛB = (−A)κΛB ∈ γ(∂H , E ),

and as t −β ∈ L2(0, T ), RΨ ∈ γ(L2(0, T ;∂H ), E )with norm

‖RΨ‖γ(L2(0,T ;∂H ),E ) = ‖t −β‖L2(0,T )‖(−A)κΛB‖γ(∂H ,E ).

Corollary 4.11. If (−A)κΛB ∈ γ(H , E ) for some κ satisfying 1/2 < κ ≤ 1, then

(4.2) has a weak solution.
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4.3 Dirichlet boundary noise problem

In this section we recall the classic example of [11] (see also [33, Theorem

15.6]) which shows that L2-valued solutions for the Dirichlet boundary noise

problem for the heat equation cannot be obtained (even in dimension one).

Fix 2 ≥ p < ∞. Let U = (0,1) ⊂ R and E = Lp (U ). We set A to be the

Dirichlet Laplacian on Lp (U )which generates an analytic semigroup (e t A)t≥0.

As ∂U = {0,1}, we see that any function space on the two-point boundary

∂U (e.g., W s ,p (∂U ) for any s ≥ 0) can be identified with R2. Hence, we take

∂H = ∂ E =R2. As U is bounded we can take λ= 0 and consider the elliptic

boundary value problem

−∆u = 0 in (0, 1), u (0) = a , u (1) =b ,

to obtain the Dirichlet map Λ :R2→ L2(U ) given by

Λ : (a ,b )T 7→ a (1−ξ)+bξ, ξ∈ (0, 1). (4.4)

Let (W (t ))t≥0 by a cylindrical Wiener process on ∂H = R2. It follows auto-

matically that B = I ∈L2(∂H ), hence (W (t ))t≥0 is a Wiener process (i.e., not

cylindrical) given explicitly by W (t ) = (w0(t ), w1(t ))where (w i (t ))t≥0 for i = 1, 2

are independentR-valued Wiener processes. This setup models the boundary

value problem

∂t u (t ,ξ) = ∂ξξu (t ,ξ) on (0, 1), u (t , 0) = ẇ0(t ), u (t , 1) = ẇ1(t ),

with u (0,ξ) = x (ξ) by the relation X x (t )(ξ) = u (t ,ξ) and, in this case, (4.3) is

given by

X x (t ) = e t Ax +

∫ t

0

(−A)e t AΛd W (s ), t ∈ [0, T ].

By Theorem 4.10, it is sufficient to check that

(−A)κΛ∈ γ(∂H , Lp (0, 1))
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for some 1/2<κ≤ 1. However, since ∂H =R2 we have

γ(∂H , Lp (0, 1)) =L (R2, Lp (0, 1))

and we only need to check that Λ∈D((−A)κ) for some 1/2<κ≤ 1. That is,

a (1−ξ)+bξ∈D((−A)κ), κ∈ (1/2, 1].

However, setting α= κ in the characterisation

DA(α,p ) =







W 2α,p (U ), if 2α< 1/p ,

{u ∈W 2α,p (U ) :τu = 0}, if 2α> 1/p ,

we see that for p ≥ 2 we have 2α = 2κ > 1 > 1/p . Hence, the function a (1−
ξ) +bξ must vanish at ξ = 0 and ξ = 1. Clearly, this is not the case, hence

Theorem 4.10 is insufficient to handle this problem.

Specialising to the case p = 2, one may check the necessary and sufficient

condition given in Theorem 4.8 directly and obtain the following result that

was originally noticed in [11].

Theorem 4.12 (Theorem 15.6 in [33]). Let E := L2(0, 1), ∂ E := {0, 1} 'R2, B := I ,

then (4.1) does not have a L2(0, 1)-valued solution when Λ is given by (4.4).

4.4 Neumann boundary noise problem

In this section we consider the example of the Neumann boundary noise

problem on a bounded domain U ⊂Rd with C 2 boundary ∂U when E = Lp (U )

for some 2≤ p <∞. This example has been considered previously in [11, 33]

for the one-dimensional case, in [28, Section 13.3] for the case p = 2 and

U = [0,π]d then extended to p ≥ 1 by embeddings. We refer the reader to

Chapter 1 for a more comprehensive survey. The novelty of this section is a

‘direct’ Banach space approach to this well-studied example.
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We consider the Neumann boundary value problem

∂t u =Au in [0, T ]×U , ∂νu = Ẇ B on [0, T ]× ∂U , (4.5)

with initial condition u (0,x ) = u 0(x ). The second order differential operator

A is given by

A (x , D) :=
d
∑

i ,j=1

a i j (x )Di j +
d
∑

i=1

b i (x )Di + c (x )I

with real uniformly continuous and bounded coefficients a i j ,b i , c . We assume

that the matrix [a i j ] is symmetric and satisfies the uniform ellipticity condition

d
∑

i ,j=1

a i j (x )ξiξj ≥ κ|ξ|2, x ∈U , ξ∈Rd ,

for some κ > 0. The process (W (t ))t≥0 is a cylindrical Wiener process and

B ∈ γ(∂H ,∂ E ), hence we identify BW (t ) as a Wiener process (W B (t ))t≥0. We

apply the setup and results given in §3.3.1 whereby

• Au =Au for u ∈D(A)where

D(A) :=W 2,p (U )

• τ :D(τ)⊂ E → ∂ E where

τu :=
∂ u

∂ ν

�

�

�

∂U

• AsD(A) :=D(A)∩kerτ, it follows that

D(A) :=
¦

u ∈W 2,p (U ) : ∂νu |∂U = 0
©

The operator A is sectorial and generates an analytic semigroup (e t A)t≥0 on

E . The Neumann map Λλ : ∂ E → E is defined by the unique solution u to the

elliptic Neumann boundary value problem

(λ−A )u = 0 in U , ∂νu = g in ∂U ,
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by setting Λλg = u . We set ∂ E =W s ,p (∂U ) for s ≥ 0 and by regularity theory

for the elliptic problem we get

Λλ : ∂ E →W s+1+1/p ,p (U ) continuously.

We now choose the Hilbert space ∂H where the cylindrical Wiener process

(W (t ))t≥0 takes values to be ∂H =W 2a ,2(∂U ). As U is a bounded domain we

have for p ∈ (1,2) the natural embedding Ip : W 2a ,2(∂U ) ,→W 2a ,p (U ) and by

the Sobolev embedding theorem for p ≥ 2,

Ip : W 2a ,2(∂U ) ,→W r,p (∂U ),

where r = 2a − d (1/2− 1/p ). Setting X (t )(ξ) = u (t ,ξ), a mild solution is

obtained if

X (t ) = e t A u 0+

∫ t

0

(λ−A)e t AΛλd W B (t ), t ∈ [0, T ],

makes sense as an E -valued process.

The following theorem gives conditions on when one can obtain a mild

solution to (4.5) depending on the regularity of the noise on the boundary

(controlled by the parameter a ), the space Lp (U ), and the ambient spatial

dimension d .

Theorem 4.13. The function t 7→ (λ−A)e t AΛλIp is stochastically integrable on

(0, T )with respect to W B when one of the following conditions hold:

• d ∈ {1, 2, 3}, p ≥ 2, and a ≥ d /4,

• a ≥ 0, 4a < d < 4a +1, and 2≤ p < 2/(d −4a ),

• d ≥ 2, 0< a < (d −1)/2, and (d −1)/2a < p < 2,

• d ≥ 2, (d −1)/2≤ a , and 1< p < 2.

As a consequence, the stochastic Cauchy problem (4.1) admits a unique mild

solution when these conditions hold.
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Proof. By [6, Theorem 8.6] and [6, Theorem 8.10], it suffices to check that the

function Φ(t ) =S(t )(λ−A)ΛλIp B is stochastic integrable with respect to W , or

equivalently, that the operator

RΦ f :=

∫ T

0

Φ(t ) f (t )d t , f ∈ L2(0, T ;∂H ),

is γ-radonifying from L2(0, T ;∂H ) to E . Choose a small ε > 0 and β so that

0< 1/2− ε <β < 1/2 to ensure that

¦

t β (λ−A)1/2−εe t A : t ∈ (0, T )
©

is γ-bounded inL (Lp (U )). This holds as 1/2− ε <β . We write

Φ(t ) = t β (λ−A)1/2−εe t A t −β (λ−A)1/2+εΛλIp =: t β (λ−A)1/2−εe t AΨ(t ),

where Ψ(t ) := t −β (λ−A)1/2+εΛλIp . By [6, Lemma 10.17] and the γ-multiplier

theorem [6, Theorem 9.14], the operator RΦ belongs to γ(L2(0, T ;∂H ), E ) once

we know that

RΨ ∈ γ(L2(0, T ;∂H ), E ).

As β < 1/2, it is clear that t 7→ t −β ∈ L2(0, T ) so all we need to check is

(λ−A)1/2+εΛλIp ∈ γ(∂H , E ).

We know that Λλ ∈L (W r,p (∂U ), W r+1+1/p ,p (U )) by [83]. Next, we know that

(λ−A)1/2+ε : W r,p (U )→W r−1−2ε,p (U )

continuously, so we have that

(λ−A)1/2+εDλ : W r,p (∂U )→W r+1/p−2ε,p (U )

continuously. Thus, (λ−A)1/2+εΛλ ∈ L (W r,p (∂U ), E ) if and only if r + 1/p −
2ε ≥ 0. As 0 < ε < 1/2 it is clear that this holds for p > 1 and r ≥ 0. By

Sobolev embedding, one has W r+1/p−2ε,p (U ) ,→Cb (U )when r +1/p−2ε > d /p .
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If this held, then the embedding into Lp (U ) would be γ–radonifying by [10,

Lemma 2.1]. Assuming ε ↓ 0, we see that this holds (for p ≥ 2 by setting

r = 2a −d (1/2− 1/p ) and r = 2a when p ∈ (1,2)) when one of the following

holds:

• a ≥ 0, 0< d ≤ 4a , and p ≥ 2,

• a ≥ 0, 4a < d < 4a +1, and 2≤ p < 2/(d −4a )

• a > 0, d > 2a +1, and (d −1)/2a < p < 2,

• a > 0, 0< d ≤ 2a +1, and 1< p < 2.

The next theorem extends [11, Proposition 3.2] to the case d = 1, 2, 3 which

showed that in the case that U = (0,π) (i.e. d = 1) that the solution (X (t ))t∈[0,T ]

of (4.1) is an Eα-valued process if and only if α < 1/4 and (X (t ))t∈[0,T ] has an

L2(0,π)-valued continuous version. Using a different method, a similar result

was obtained for a L2((0,π)d )-valued solution in [28, Theorem 13.3.6].

Theorem 4.14. Under the assumptions of Theorem 4.13, for all 0≤α< 1/4 and

β ≥ 0 satisfying α+β < 1/2 and 1≤ p <∞ the mild solution (X (t ))t≥0 belongs

to Lp (Ω; Eα) and there exists and constant C ≥ 0 such that for all 0≤ s , t ≤ T ,

�

E‖X (t )−X (s )‖p
Eα

�1/p
≤C |t − s |β .

As a consequence, for all 0≤α< 1/4 and β ≥ 0 satisfying α+β < 1/2 the process

(X (t ))t∈[0,T ] has a version with trajectories in C β ([0, T ]; Eα).

Proof. By the Kahane-Khintchine inequality [6, Theorem 3.12] it suffices to

prove the estimate for p = 2. We fix 0 ≤ α < α′ < min(1/2, s + 1/(2p )) and

choose β ≥ 0 such that α+β < 1/2. We first prove that for all t ∈ [0, T ] the

random variable X (t ) takes it values in Eα almost surely.
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By [6, Theorem 10.17], we know that

¦

t α
′
(λ−A)1/2−s−1/(2p )e t A : t ∈ (0, T )

©

is γ-bounded inL (E , Eα) as α+1/2− s −1/(2p )< 1/2. This implies that

‖RΦ‖γ(L2(0,T ;∂H ),Eα) ® ‖(λ−A)s+1/2+1/(2p )i pΛλB‖L (∂H ,E ).

Fix 0≤ s ≤ t ≤ T . By the triangle inequality in L2(Ω; E ),

�

E‖X (t )−X (s )‖2
Eα

�1/2

≤






E
















∫ s

0

[e (t−r )A − e (s−r )A](λ−A)s+1/2+1/(2p )i pΛλB d W (r )
















2

Eα







1/2

+






E
















∫ t

s

e (t−r )A(λ−A)s+1/2+1/(2p )i pΛλB d W (r )
















2

Eα







1/2

.

Choose λ∈R sufficiently large so that the fractional powers of λ−A exist. For

the first term we have, for any choice of η,θ ≥ 0 satisfying α+β <η+α<θ <

1/2 with η≥ 1/4, and using [6, Lemma 10.8] and [6, Lemma 10.15] that the first

term is estimated as

E
















∫ s

0

[e (t−r )A − e (s−r )A](λ−A)1−ηΛλB d W (r )
















2

Eα

'E
















∫ s

0

(s − r )θ (λ−A)η+αe (s−r )A

×(s − r )−θ [e (t−s )A − I ](λ−A)−η(λ−A)1−ηΛλB d W (r )






2

®E
















∫ s

0

(s − r )θ [e (t−s )A − I ](λ−A)1−2ηΛλB d W (r )
















2

=




[e (t−s )A − I ](λ−A)1−2ηΛλB






2

L2(L2(∂U ),E )

∫ s

0

(s − r )−2θ d r

® s 1−2θ









�

e (t−s )A − I
�

(λ−A)−η









2

L (E )





(λ−A)1−ηΛλB






2

L2(L2(∂U ),E )
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®T (t − s )2β




(λ−A)1−ηΛλB






2

L2(L2(∂U ),E )

Now for any η≥ 1/4 satisfying 1/2−β <η< 1/2 we have α<η and the second

term is estimated as

E
















∫ t

s

e (t−r )A(λ−A)1−ηΛλB d W (r )
















2

Eα

'E
















∫ t

s

(t − r )η(λ−A)αe (t−r )A(t − r )−η(λ−A)1−ηΛλB d W (r )
















2

E

®E
















∫ t

s

(t − r )−η(λ−A)1−ηΛλB d W (r )
















2

E

®E




(λ−A)1−ηΛλB






2

L2(L2(U ),E )

∫ t

s

(t − r )−2ηd r

®T (t − s )2β




(λ−A)1−ηΛλB






2

L2(L2(U ),E ) .

Now combining these estimates and extending to all 1< p ≤∞we get

�

E‖X (t )−X (s )‖p
Eα

�1/p
®T (t − s )β





(λ−A)1−ηΛλB






L2(L2(U ),E ) ,

so we have shown the first part of the theorem. Now pick β < β ′ < 1/2−α.

Given p ≥ 1, from the above estimate we can find a constant C such that for all

0≤ s , t ≤ T ,

E |X (t )−X (s )|pEα ≤C p |t − s |β ′p .

For p large enough the existence of a version with β -Hölder continuous trajec-

tories now follows from Kolmogorov’s theorem [6, Theorem 6.9].
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Weighted L p Theory for White Noise Data

In this chapter we extend the weighted Lp space approach of [12] to higher

dimensions, to elliptic problems, and to space-time white noise.

In §5.1, we ask whether there are weights µ for which it is possible to apply

the theory of Chapter 4 in the case E = Lp (U ,µ). Our approach makes use of

a theorem by Brzeźniak and van Neerven [84] and in contradistinction to the

standard applications of the theorem, the weight µ is not a priori given. We

show that if µ is chosen appropriately the Poisson kernel and the Dirichlet

heat kernel are γ-radonifying from L2(∂U ) to Lp (U ,µ). This approach gives an

alternative proof of Theorem 4 and Theorem 5 in the preprint [53].

In §5.1, we show that certain integral operators related to the solution of

boundary value problems are γ-radonifying from the boundary space to the

state space. In particular, in §5.1.2 we consider the elliptic case and in §5.1.3 we

consider the parabolic case. In §5.2, we consider the Dirichlet heat semigroup

taking values in weighted Lp spaces and in §5.3 we apply this theory to the

stochastic heat equation taking values in a weighted Lp space.

127
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5.1 γ-Radonifying mappings into weighted spaces

5.1.1 γ-Radonifying operators into Lp spaces

Let (U ,U ) be a measurable space and let K be an integral operator associated

with a kernel function k (x , y ) by

(K f )(x ) :=

∫

U

k (x , y ) f (y )d y .

It is well-known (e.g., see [85]) that the condition k ∈ L2(U ×U ) characterises

K as a Hilbert-Schmidt operator from L2(U ) into L2(U ). Theorem 5.1 (below)

extends this characterisation to the γ-radonifying operator setting and is based

on the following fact. Let H be a separable Hilbert space and let Lp (U ;H )

denote the H-valued Lp space1. Every f ∈ Lp (U ; H ) defines a bounded operator

R f ∈L (H , Lp (U )) by posing

(R f h)(x ) := [ f (x ), h], x ∈U , h ∈H ,

where [·, ·] is the inner product on H . It holds that R f ∈ γ(H , Lp (U )) and every

R ∈ γ(H , Lp (U )) is of this form [6, Theorem 5.22].

Theorem 5.1 (Bźezniak/van Neerven [84]). Let (U ,U ,µ) be a σ-finite mea-

sure space and H a separable Hilbert space with inner product [·, ·]. For K ∈
L (H , Lp (U ,µ)), 1≤ p <∞, the following are equivalent:

1. K is γ-radonifying,

2. There exists a µ-measurable function k ∈ Lp (U ,µ;H ) such that for µ-

almost all x ∈U we have

(K h)(x ) = [k (x ), h], x ∈U , h ∈H .

We recall the proof from [84] for convenience of the reader.

Proof. Let (hn ) be an orthonormal basis for H and (γn ) a sequence of i.i.d.

standard Gaussian random variables.
1in the sense of Bochner.
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(1⇒ 2) By assumption, K is γ-radonifying from H to Lp (U ,µ) so

E









∞
∑

n=1

γn K g n










p

Lp (U ,µ)
<∞.

and (ω,x ) 7→
∑∞

n=1γn (ω)(K hn )(x ) is measurable from Ω×U to R. Hence by

Fubini’s theorem,

E









∞
∑

n=1

γn K g n










p

Lp (U ,µ)
=

∫

U

E
�

�

�

∞
∑

n=1

γn (K hn )(x )
�

�

�

p

µ(d x )

'p

∫

U

 

∞
∑

n=1

|K hn |(x )|2
!p/2

µ(d x )

In particular,
∞
∑

n=1

|(K hn )(x )|2 <∞

for µ-almost all x ∈U . It follows that there exists a measurable Ũ ⊂U with

µ(U \Ũ ) = 0 such that for all x ∈ Ũ the map kx : H →R,

kx h := (K h)(x )

is Hilbert-Schmidt, hence bounded. By the Riesz representation theorem, we

obtain a function k : Ũ →H such that

kx h = [k (x ), h]H , h ∈H , x ∈ Ũ .

Noting that

[k , hn ]H = K hn |Ũ ,

we see that x 7→ [k (x ), hn ]H is measurable for each n and therefore x 7→ k (x ) is

measurable by Pettis’s measurability theorem and the separability of H . By the

Parseval formula,

∞
∑

n=1

|(K hn )(x )|2 =
∞
∑

n=1

|[k (x ), hn ]|2 = ‖k (x )‖2
H , x ∈ Ũ .
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We extend k to a function on U by extending it identically zero on U \ Ũ .

Combining everything, we find

∫

U

‖k (x )‖p
H µ(d x )'p E










∞
∑

j=1

γn K hn










p

Lp (U ,µ)
<∞.

(2⇒ 1) Using the Kahane-Khintchine inequality, for all 1≤M ≤N we have

�

E









N
∑

n=M

γn K hn










2

Lp (U ,µ)

�p/2

®p E









N
∑

n=M

γn K hn










p

Lp (U ,µ)

=E
∫

U










N
∑

n=M

γn [k (x ), hn ]









p

µ(d x )

®2

∫

U

�

N
∑

n=M

[k (x ), hn ]2
�p/2

µ(d x ).

By assumption, the right hand side tends to 0 as M , N →∞. Thus the series
∑∞

n=1γn K hn converges in L2(Ω; Lp (U ,µ)) and, by the Itō-Nisio theorem, almost

surely. This means that K is γ-radonifying.

Due to the equivalence γ(H , E ) =L2(H , E )when E is a Hilbert space, one

can obtain the familiar Hilbert-Schmidt setting with an appropriate choice of

H and setting p = 2.

Corollary 5.2. Let (U1,U1,µ1) and (U2,U2,µ2) be aσ-finite measure spaces. For

K ∈L (L2(U1,µ1), L2(U2,µ2)), the following are equivalent:

1. K is a Hilbert-Schmidt operator,

2. There exists a µ1⊗µ2-measurable function k ∈ L2(U1×U2,µ1⊗µ2) such

that for µ2-almost all x ∈U we have

(K f )(x ) =

∫

U1

k (x , y ) f (y )µ1(d y ), x ∈U , f ∈ L2(U1,µ1).
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Let U ⊂ Rd and Lp (U ) be the Lp given in terms of d -dimensional Lebesgue

measure `d on (U ,U ) and we recall that we call a measure µ a weight if µ� `d ,

i.e., we have

µ(d x ) =%(x )d x ,

for some %. To simplify notation, we often write %(x ) instead of %(x )d x and

call % the weight.

The typical use of Theorem 5.1 and Corollary 5.2 is: Given a fixed space

Lp (U ,µ) and an operator K ∈L (H , Lp (U ,µ)) one checks the condition

k ∈ Lp (U ,µ; H )

to conclude that K is a γ-radonifying operator from H to Lp (U ,µ), or equiva-

lently (in the context of Corollary 5.2) that

∫

U2

∫

U1

|k (x , y )|2µ1(d y )µ2(d x )<∞,

for K to be a Hilbert-Schmidt operator from L2(U1,µ1) to L2(U2,µ2).

In the next section we will take an integral operator K such that K /∈
γ(H , Lp (U )) and ask whether there exists a class of weights {%α : α ∈ R} such

the operator K ∈ γ(H , Lp (U ,%α)) for admissible α ∈ A ⊂R. Therefore, in con-

tradistinction to the typical use of Theorem 5.1 and Corollary 5.2, the space

Lp (U ,µ) is not a priori given.

5.1.2 Elliptic case

Let U ⊂ Rd be a domain with boundary ∂U and λ ∈ R. In this section, we

consider the white-noise elliptic problem

∆u = 0 on U , u |∂U =w on ∂U (in trace), (5.1)

where w is a space white noise on ∂U . Recall that the solution of the Dirichlet

problem with continuous boundary data f ∈ C (∂U ) is given by the Poisson
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integral

u f (x ) =

∫

∂U

P(x , z ) f (z )σ(d z ), (5.2)

whereσ is the surface measure on ∂U . Hence, we can view the Poisson integral

as an operator P with kernel defined by

(Ph)(x ) = [P(x , ·), h]

where [·, ·] is the inner product on L2(∂U ). The following estimates on the

Poisson kernel are known (e.g., [86]).

Lemma 5.3. If U ⊂ Rd with piecewise smooth boundary ∂U and d ≥ 2, then

for all x ∈U and z ∈ ∂U,

|P(x , z )|® |x − z |1−d .

Therefore, by applying the Poisson kernel estimates and choosing the mea-

sure µ in Theorem 5.1 so that (5.3) holds we show in the next theorem that

P ∈ γ(L2(∂U ), Lp (U ,µ)).

Remark 5.4. Note that since γ(H , E ) ⊂ L (H , E ) once we obtain P ∈ γ(H , E )

then automatically P extends to a linear operator from H to E as well. This is

relevant as we have only defined (5.2) for f ∈C (∂U ).

Theorem 5.5. The operator P ∈L (C (∂U ),C (U )) given by

(P f )(x ) =

∫

∂U

P(x , z ) f (z )σ(d z )

is γ-radonifying from L2(∂U ) to Lp (U ,µ) if µ and p are chosen so that

∫

U

dist(x ,∂U )p (1−d )µ(d x )<∞. (5.3)
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Proof. Setting H = L2(∂U ), A =U , K = P , and k (x ) = P(x , ·) in Theorem 5.1, all

one needs is to choose the measure µ and 1≤ p <∞ such that

∫

U

�∫

∂U

|P(x , z )|2σ(d z )

�p/2

µ(d x )<∞,

for P to be γ-radonifying from L2(∂U ,σ) to Lp (U ,µ). Using Lemma 5.3, we

approximate
∫

∂U

|P(x , z )|2σ(d z )® dist(x ,∂U )2(1−d ).

and the result follows.

Therefore, for an appropriate choice of µ this implies that the Poisson

integral is γ-radonifying from L2(∂U ) to Lp (U ,µ) and, as such, we can consider

white noise on the boundary. We write δ(x ) := dist(x ,∂U ) and introduce the

class of weights

{δα(x ) :α∈R}.

Notice that when α = 0 we have Lp (U ,δα) = Lp (U ) and we have the scale of

spaces

Lp (U ,δα)⊂ Lp (U ,δβ ), α<β .

Theorem 5.6. The random variable

X =

∫

∂U

P(·, z )d w (z )

is well-defined and takes values in Lp (U ,δα) if d ≥ 2 and α> p (d −1)−1.

Proof. Follows from Theorem 5.5 by choosing µ(d x ) =δα(x )d x which implies

that the operator P is γ-radonifying from H to Lp (U ,δα) forα> p (d −1)−1 and

thus maps a cylindrical Gaussian random variable on H of the form
∑∞

k=1γk hk

where (hk ) is an orthonormal basis of H and (γk ) is a sequence of independent

Gaussian random variables on (Ω,F ,P) to a well-defined Gaussian random
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variable on the space Lp (U ,δα).

Example 5.7. Let D be the unit disk in R2 'Cwith boundary T. Then

u (x ) =

∫

T

P(x , z )d w (z ), x ∈D,

is a well-defined Gaussian random variable in Lp (D,δα) if α> p −1. In particu-

lar, if p = 2 then we must take α> 1.

Recall that given f ∈C (∂U ) and the Poisson integral of f given for every

x ∈U by

u (x ) =

∫

∂U

P(x , y ) f (y )σ(d y )

whereσ is the surface measure on ∂U , it follows (e.g., [87]) that we have

Dκu (x ) =

∫

∂U

DκP(x , y ) f (y )σ(d y ), |κ| ≥ 0,

hence we can obtain the following theorem.

Theorem 5.8. The random variable

X =

∫

∂U

P(·, z )d w (z )

takes values in W 1,p (U ,δα) if d ≥ 2 and α> p d −1.

5.1.3 Parabolic case

We now consider the white-noise parabolic problem

∂t u =∆u on [0, T ]×U , u (t , ·)|∂U =w (t , ·) on ∂U (in trace), (5.4)

with initial condition u (0,x ) = 0 where w is a space-time white noise on

[0, T ]× ∂U .
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In this case the application of Theorem 5.1 is a bit more subtle as one needs

to determine the correct choice for the Hilbert space H .

Let A be the Dirichlet Laplacian on Lp (U ) and (S(t ))t∈[0,T ] be the analytic C0-

semigroup generated by A. We recall that there exists a positive C∞-function

GU : (0,∞)×U ×U →R called the Dirichlet heat kernel such that

(S(t ) f )(x ) =

∫

U

GU (t ,x , y ) f (y )d y , f ∈ Lp (U ).

and by Lemma 3.30 we have that for f ∈ C ([0, T ]× ∂U ), the solution to the

inhomogeneous Dirichlet problem for the heat equation (with zero initial

condition) is given by

u f (t ,x ) =

∫ t

0

∫

∂U

∂νy GU (t − s ,x , y ) f (t , y )d y d s .

See for example [80] or, in connection to our abstract approach, see §3.4. We

will make use of the following estimates on the kernel GU .

Lemma 5.9 (e.g., see [80]). If U ⊂Rd is of class C 2, there are constants C1,C2 > 0

dependent on U such that
�

�

�

�

∂ m+k+`GU

∂ t `∂ y k∂ x m
(t ,x , y )

�

�

�

�

≤C1t −(d+m+k+2`)/2 exp

�

−
|x − y |2

C2t

�

.

Mirroring our elliptic result, our γ-radonifying result for the parabolic case

is obtained by taking H = L2(0, T ; L2(∂U )) and using the estimates for the

kernel GU .

Theorem 5.10. If U ⊂ Rd is a bounded domain then R : L2(0, T ; L2(∂U )) →
Lp (U ,µ) given by

(R f )(x ) =

∫ T

0

∫

∂U

∂νy GU (t ,x , y ) f (t , y )d y d t .

is γ-radonifying if the measure µ and p ≥ 1 are chosen so that
∫

U

dist(x ,∂U )−p d µ(d x )<∞.
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Proof. Setting H = L2(0, T ; L2(∂U )) in Theorem 5.1 and using the characterisa-

tion of R given by Lemma 3.30, we only need to check that

∂GU

∂ ν
(·,x , ·)∈ Lp (U ; L2(0, T ; L2(∂U ))).

Using Lemma 5.9, we can estimate
∫

∂U

�

�

�

�

∂GU

∂ νz
(t ,x , z )

�

�

�

�

2

σ(d z )® t −(d+1) exp

�

−
dist(x ,∂U )2

c t

�

.

and from the estimate
∫ T

0
t −a exp(−b/(c t ))d t ®b 1−a we get

∫ T

0

∫

∂U

�

�

�

�

∂GU

∂ νz
(t ,x , z )

�

�

�

�

2

d z d t ®
∫ T

0

t −(d+1) exp

�

−
dist(x ,∂U )2

c t

�

d t

® dist(x ,∂U )−2d

Therefore,
∫

U













∂GU

∂ ν
(·,x , ·)













p

H

µ(d x )<∞ if

∫

U

dist(x ,∂U )−p d µ(d x )<∞.

As in the elliptic case by choosing µ(d x ) :=δ(x )αd x , we can now obtain.

Theorem 5.11. The stochastic process (X (t ))t∈[0,T ] given by

X (t ) :=

∫

∂U

∫ t

0

∂νy GU (t − s , ·, y )w (d s , d y ), t ∈ [0, T ],

takes values in Lp (U ,δα) if α> d p −1.

Proof. The proof follows by taking a partition of unity of U and locally mapping

each ball to the half-plane. Then dist(x ,∂U ) � xd as x → ∂ Rd
+ ≡ Rd−1 where

x = (x1, . . . ,xd )we have
∫ M

0

x−p d
d xαd d xd <∞

if d p <α+1.
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Remark 5.12. We note that the same conditions on d , p , and α are obtained

in the main theorem of the preprint [53] for (5.1) and (5.4).

Again, similar to the elliptic case, we can use the kernel estimates to obtain

existence of a well-defined stochastic process on the weighted Sobolev space.

Theorem 5.13. The stochastic process (X (t ))t∈[0,T ] given by

X (t ) :=

∫

∂U

∫ t

0

∂νy GU (t − s , ·, y )w (d s , d y ), t ∈ [0, T ],

takes values in W 1,p (U ,δα) if α> d p +p −1.

Remark 5.14. We have been careful not to say that our result gives a solution

to (5.1) and (5.4) (compare to [53]). In particular, we spoke only of existence of

a “γ-radonifying map”.

5.2 Dirichlet heat semigroup on weighted Lp

spaces

We note that the results of the last section are analytic in nature and fall outside

the abstract approach developed in Chapter 4. Recall Theorem 4.7 which states

that a mild solution to (4.1) may be found once we know that

∫ T

0

‖(λ−A)e t AΛλB‖2
γ(∂H ,E )d t <∞. (5.5)

If E = Lp (U ,δα) where δ(x ) = dist(x ,∂U ) and α > 0 then to check condition

(5.5) in the case where A is the Dirichlet Laplacian on Lp (U ) and (e t A)t≥0 is

the Dirichlet heat semigroup on Lp (U ) then it is desirable to understand the

properties of (e t A)t≥0 taking values in Lp (U ,δα). In this section, we provide

some results in this direction.

We assume (e t A)t≥0 is the Dirichlet heat semigroup on Lp (U )where U ⊂Rd

is a bounded domain with C 2 boundary ∂U and δ(x ) := dist(x ,∂U ). We shall
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make frequent use of the representation

(e t A f )(x ) =

∫

U

GU (t ,x , y ) f (y )d y , f ∈ Lp (U ), (5.6)

where GU : (0,∞)×U ×U →R is the Dirichlet heat kernel.

5.2.1 γ-Radonifying properties

It is well-known that the Dirichlet heat semigroup (e t A)t≥0 on Lp (U ) is γ-

radonifying in dimension one, i.e., U ⊂ R. This property ensures that the

stochastic convolution

u (t ) :=

∫ t

0

e (t−s )A d W (s ), t ∈ [0, T ],

is well-defined in Lp (U ), p ≥ 2, even when (W (t ))t≥0 is a cylindrical Wiener

process taking values in L2(U ). We recall that this is why the stochastic heat

equation has function-valued solutions in dimension one.

We shall now proceed to study the γ-radonifying properties of the Dirichlet

heat semigroup (e t A)t≥0 on Lp (U ) acting the weighted space Lp (U ,δ(x )α) for

α > 0. In the next lemma we determine an explicit representation of the

semigroup (e t A)t≥0 acting on the weighted space Lp (U ,δα).

Lemma 5.15. For α≥ 0, the semigroup (e t A)t≥0 is given by

(e t A f )(x ) =

∫

U

K (t ,x , y ) f (y )δ(y )αd y

for any f ∈ Lp (U ,δα)where the kernel K : (0,∞)×U ×U →R is given by

K (t ,x , y ) :=GU (t ,x , y )δ(y )−α.

Proof. For α≥ 0, this follows from (5.6) and identifying

(e t A f )(x ) =

∫

U

GU (t ,x , y ) f (y )d y
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=

∫

U

GU (t ,x , y ) f (y )δ−α(y )δα(y )d y

=:

∫

U

K (t ,x , y ) f (y )δα(y )d y

Let G be the Heat kernel on Rd given by

G (t ,x ) := (4πt )−d /2 exp

�

−
|x |2

4t

�

.

We shall make use of the following estimate on the Dirichlet heat kernel.

Theorem 5.16 ([88]). For C > 0 we have the estimates

m (t ,x , y )G (t ,C (x − y ))®GU (t ,x , y )®m (t ,x , y )G (t , (x − y )/C )

where

m (t ,x , y ) :=
�

1∧
δ(x )
p

t

��

1∧
δ(y )
p

t

�

,

We recall that if H1, H2 are Hilbert spaces then the space of γ-radonifying

operators γ(H1, H2) is equivalent to the space of Hilbert-Schmidt operators

L2(H1, H2). As such, we have the following result.

Theorem 5.17. For t > 0 and any fixed 0≤α< 2,

e t A ∈L2(L2(U ,δα)).

Proof. Suppose the conditions on α are satisfied, then for f ∈ Lp (U ,δα) we

have from Lemma 5.15 that

(S(t ) f )(x ) =

∫

U

K (t ,x , y ) f (y )δ(y )αd y .

We fix t > 0, and start by checking the square integrability of the kernel K on

the weighted space Lp (U ,δα) by computing
∫∫

U

|K (t ,x , y )|2δα(x )δα(y )d x d y =
4
∑

i=1

∫∫

Ui

|K (t ,x , y )|2δα(x )δα(y )d x d y
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where we take the sub-domains:

U1 :=
�

(x , y ) : 0≤δ(x )<
p

t , 0≤δ(y )<
p

t
	

,

U2 :=
�

(x , y ) :δ(x )≥
p

t ,δ(y )≥
p

t
	

,

U3 :=
�

(x , y ) : 0≤δ(x )<
p

t ,δ(y )≥
p

t
	

,

U4 :=
�

(x , y ) :δ(x )≥
p

t , 0≤δ(y )<
p

t
	

.

Consider the domain U1 then assuming α< 2 and using Theorem 5.16,

∫∫

U1

K 2(t ,x , y )δα(x )δα(y )d x d y

®
∫∫

U1

G 2
U (t ,x , y )δ−α(y )δα(x )d x d y

® t −2

∫∫

U1

δ2+α(x )δ2−α(y )G 2(t , (x − y )/C )d x d y

® t −2

∫∫

U1

δ2+α(x )δ2−α(y )G 2(t , (x − y )/C )d x d y

® t −2(
p

t )
2+α
(
p

t )
2−α
∫∫

U1

G 2(t , (x − y )/C )d x d y

®
∫∫

U1

G 2(t , (x − y )/C )d x d y

=: I1.

Using on-diagonal estimates for the Heat kernel G we have

∫∫

U1

G 2(t , (x − y )/C )d x d y ®
∫∫

U1

G 2(t , 0)d x d y ®
|U1|2

(4πt )d
,

and as U1 is a slice of U of height O(t ), we have that |U1|2 ® t 2|U |2. So we

conclude that I1 ® t 2−d . Now we consider the sub-domain U2,

∫

U2

K 2(t ,x , y )δα(x )δα(y )d x d y
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=

∫∫

U2

G 2
U (t ,x , y )

�

δ(x )
δ(y )

�α

d x d y

=

∫∫

U2

G 2
U (t ,x , y )

�

δ(x )−δ(y )
δ(y )

+1

�α

d x d y

®
∫∫

U2

G (t , (x − y )/C )
�

δ(x )−δ(y )
δ(y )

+1

�α

d x d y

=: I2.

For some ε > 0, slice the domain U2 into M ε ∈N sets of the form

Sk := {(x , y ) : kε
p

t < |x − y |< (k +1)ε
p

t },

with k = 0,1, . . . , M ε − 1. As U is a bounded domain, M ε < ∞. Estimating

δ(x )−δ(y )≤ |x − y |we get

I2 ® t −d
Mε
∑

k=1

∫∫

U2∩Sk

e−c |x−y |2/t
�

|x − y |
δ(y )

+1

�α

d x d y

® t −d
Mε
∑

k=1

e−cε2k 2

∫∫

U2∩Sk

�

(k +1)ε
p

t
p

t
+1

�α

d x d y

® t −d
Mε
∑

k=1

e−cε2k 2

∫∫

U2∩Sk

d x d y

We rotate the coordinate system so that the diagonal slices Sk are now parallel

to one of the d coordinate axes, then each slice has height O(
p

t ), so we have
∫∫

U2∩Sk

d y d x ® t |U |2.

Therefore, I2 ® t 1−d . We now consider the sub-domain U3 using the same

slicing procedure to obtain
∫∫

U3

K 2(t ,x , y )δα(x )δα(y )d x d y

®
∫∫

U3

G 2
U (t ,x , y )δα(x )δ−α(y )d x d y
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® t −1

∫∫

U3

δ2+α(x )δ−α(y )G 2(t , (x − y )/C )d x d y

® t −1−d+1+α/2−α/2

∫∫

U3

e−C |x−y |2/t d x d y

® t −d

∫∫

U3

e−C |x−y |2/t d x d y

® t −d
Mε
∑

k=1

e−Cε2k 2

∫∫

U3∩Sk

d x d y

® t 1−d .

Finally, we consider the sub-domain U4, then if 2−α> 0, it follows using the

slicing procedure that

∫∫

U4

K 2(t ,x , y )δα(x )δα(y )d x d y

®
∫∫

U4

G 2
U (t ,x , y )δα(x )δ−α(y )d x d y

® t −1

∫∫

U4

δα(x )δ2−α(y )G 2(t , (x − y )/C )d x d y

® t −1+1−α/2

∫∫

U4

G 2(t , (x − y )/C )d x d y

® t −α/2−d

∫∫

U4

e−C |x−y |2/t d x d y

® t −α/2−d
Mε
∑

k=1

e−Cε2k 2

∫∫

U4∩Sk

d x d y

=: I4

Now considering the double integral over U4 ∩Sk ,

∫∫

U4∩Sk

d x d y ®
∫

p
t

0

∫ y+ε(k+1)
p

t

y+εk
p

t

d x d y ®
p

t
p

t = t ,
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so we have I4 ® t 1−α/2−d . Finally, recombining the pieces we see that we have
∫∫

U

|K (t ,x , y )|2δα(x )δα(y )d x d y ® 2t 1−d + t 2−d + t 1−α/2−d ,

so the conclusion follows.

Corollary 5.18. For all 0<α< 2 and t > 0 the operator S(t ) is bounded and we

have

sup
t>0

t d+α/2−1‖S(t )‖Lp (U ,δα) <∞.

5.3 Stochastic heat equation on weighted spaces

Theorem 5.19. Let U be an open domain in Rd with boundary ∂U. Let X :=

L2(U ,µ)with µ(dξ)' dist(ξ,∂U )α for α< 2. Denote

U (t ) :=S(t )x +

∫ t

0

S(t − s )(−A)D d W (s )

where (S(t ))t≥0 is the Dirichlet Heat semigroup on L2(U ) generated by the Dirich-

let Laplacian A, D is the Dirichlet map, and W is a L2(U )-cylindrical Brownian

motion. x ∈X . Then U is mean square continuous in (0, T ).

Proof. Take x ∈X and B := (−A)D. Then for h > 0,

E‖U (t +h)−U (t )‖2 ® ‖S(t +h)x −S(t )x‖2

+E
















∫ t+h

0

S(t +h − s )B d W (s )−
∫ t

0

S(t − s )B d W (s )
















2

=: I1+ I2

By strong continuity of (S(t )) on X , we have that I1 → 0 as h ↓ 0. Breaking

the integral I2 into two parts and using independence of the two stochastic

integrals, we get

I2 = E
















∫ t+h

0

S(t +h − s )B d W (s )−
∫ t

0

S(t − s )B d W (s )
















2
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= E
















(S(h)− I )

∫ t+h

t

S(t − s )B d W (s )−
∫ t+h

t

S(t +h − s )B d W (s )
















2

® ‖(S(h)− I )‖2
L (X )

∫ t+h

t

‖S(t − s )B‖2
L2

d s +

∫ t+h

t

‖S(t +h − s )B‖2
L2

d s

=: I3+ I4.

We know that B ∈L (L2(∂U ), X ) and ‖S(t )‖L2 ® t 1/2−α/2−1 for t ∈ [0, T ]. There-

fore, ‖S(t )‖2
L2

is integrable as t ↓ 0 so the integrals part of I3 and I4 are bounded

for t ∈ [0, T −h]. Further, as ‖S(h)x −x‖X ↓ 0 as h ↓ 0 for every x ∈ X , we have

that I3 ↓ 0 by the dominated convergence theorem. We can conclude that for

t ∈ [0, T )

lim
h↓0

E‖U (t +h)−U (t )‖2 = 0,

so we have right-continuity. We shall now show left-continuity. Take h > 0,

then

E‖U (t −h)−U (t )‖2 ® ‖S(t −h)x −S(t )x‖2

+E
















∫ t−h

0

S(t −h − s )B d W (s )−
∫ t

0

S(t − s )B d W (s )
















2

=: I5+ I6.

For t > 0 and x ∈X , we have

I5 = ‖S(t −h)x −S(t )x‖

= ‖S(t −h)x −S(t −h)S(h)x‖

= ‖S(t −h)‖L (X )‖x −S(h)x‖

As (S(t ))t≥0 is strongly continuous, there exists δ > 0 and M ≥ 1 such that

‖S(t )‖ ≤M for all t ∈ [0,δ]. This can be extended to any t ∈ [h, T ] using the

semigroup property. Thus, we can find M ≥ 1 such that ‖S(t −h)‖L (X ) ≤M . So

I5→ 0 as h ↓ 0. Now,

I6 = E
















∫ t−h

0

S(t −h − s )B d W (s )−
∫ t

0

S(t − s )B d W (s )
















2
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= E
















(I −S(h))

∫ t−h

0

S(t −h − s )B d W (s )−
∫ t

t−h

S(t − s )B d W (s )
















2

® ‖(I −S(h))‖2
L (X )

∫ t−h

0

‖S(t −h − s )B‖2
L2

d s −
∫ t

t−h

‖S(t − s )B‖2
L2

d s

=: I7+ I8.

where the third line is obtained by independence of the two stochastic integrals.

As before, it follows that the integral part of I7 and I8 are bounded for t ∈ [h, T ].

Also, ‖(I −S(h))‖2
L (X )→ 0 as h ↓ 0 so it follows by dominated convergence that

I7→ 0 as h ↓ 0 and we can conclude that

lim
h↓0

E‖U (t −h)−U (t )‖2 = 0,

so we have left-continuity.

Theorem 5.20. Let U be an open domain of R with boundary ∂U. Let X :=

L2(U ,µ)with µ(dξ)' dist(ξ,∂U )α for α< 2. Denote

U (t ) :=S(t )x +

∫ t

0

S(t − s )(−A)D d W (s )

where (S(t ))t≥0 is the Dirichlet Heat semigroup on L2(U ) generated by the Dirich-

let Laplacian A, D is the Dirichlet map, and W is a L2(∂U )-cylindrical Brownian

motion. x ∈X . Then U is Gaussian and has a predictable version.

Proof. By the definition of stochastic integrals, we have that U (t ) is Gaussian

with covariance
∫ t

0

S(r )(−A)DD∗(−A)∗S∗(r )d r

for t ∈ [0, T ]. Further, by Theorem 5.19 we know that U is mean square continu-

ous in (0, T ). Stochastic continuity of U follows from the Chebychev inequality.

As the integrand of the stochastic convolution U is deterministic, U is adapted
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to the filtration (Ft )t≥0 generated by (W (t ))t≥0. By Proposition 3.6 in [11], there

exists a predictable version of U .

Theorem 5.21. Let U be an open interval in R with two-point boundary ∂U.

Let X := L2(U ,µ)with µ(dξ)' dist(ξ,∂U )α for α< 2. Denote

U (t ) :=S(t )x +

∫ t

0

S(t − s )(−A)D d W (s )

where (S(t ))t≥0 is the Dirichlet Heat semigroup on L2(U ) generated by the Dirich-

let Laplacian A, D is the Dirichlet map, and W is a L2(∂U )-cylindrical Brownian

motion. x ∈X . Then U has a continuous version.

Proof. (Sketch) We have E‖U (t )−U (s )‖2 ® t −α(t − s ), so using Kolmogorov’s

theorem, U has a continuous version.



6

Harmonic Extensions to the Unit Disk

In this chapter we consider solutions to the elliptic boundary value problem

∆u = 0 in D, u = ξ on T, (6.1)

where ξ is a Gaussian noise on T. We believe this problem is interesting for

a number of reasons. First, the solution of (6.1) provides an explicit example

of the Dirichlet map Λ that has been used in previous chapters. Second, our

aim is to move away from classic PDE methods and to apply harmonic analysis

techniques to understand the case where ξ is a space white noise.

We start by studying the harmonic extension of random measures of the

form
∑

n≥1γnµn where (γn ) is a sequence of independent Gaussian random

variables and (µn ) is a sequence of measures on T to identify a sufficient condi-

tion for the extension to be a well-defined Gaussian random variable taking

values in the space of harmonic functions on D. Then, in §6.2, we apply the

theory of γ-radonifying operators to study the case where ξ= BWH where WH

is a (cylindrical) Gaussian on a separable Hilbert space H and B ∈L (H , Lp (T)).
This leads us in §6.3 and §6.4 to consider the Hardy spacesH p (D) and obtain

a representation theorem that allows us to conclude that the solution to (6.1)

147
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takes values inH p (D) if and only if E‖ξ‖p
Lp (T) <∞. This of course implies that

the Hardy spacesH p (D) are too small to consider space white noise on the

boundary T. In order to study the boundary behaviour ofH p -valued Gaussian

random variables, we obtain pointwise growth bounds of their moments in

§6.5. Next, in §6.6, we show that the Poisson operator is γ-radonifying from

L2(D) intoH (D). This implies that although the Hardy spaces are too small for

the spatial white noise setting, we might be able to find a slightly larger space

of harmonic functions where it might be possible to consider this case and that

the blow-up is concentrated on a small set of positive Lebesgue measure near

the boundary. To tie our result back with Chapter 5, we relate our Hardy space

results with weighted Sobolev space results in §6.7 and in §6.8 we show that

the embeddingH 2 ,→ L2(D, (1− |z |2)α) is Hilbert-Schmidt for α> 0. Finally, in

§6.9, we sketch how these results may be extended to the parabolic setting.

6.1 Harmonic extension to the unit disk

Suppose that the boundary space ∂ E is chosen to be the space of all continuous

functions on Twhich we denote by C (T). Then the Dirichlet map Λ : C (T)→
C (D) can be defined by the solution to the Dirichlet problem. That is, given

a function f ∈ C (T), the Dirichlet problem for f on D is to find a function

u ∈C (D) such that∆u = 0 onD and u |T = f . Therefore, if u is a solution to the

Dirichlet problem, the Dirichlet map Λ is given by u =Λ f . It is well-known fact

(e.g., see [87]) that if we define the Poisson kernel

P(z ) :=
1− |z |2

|1− z |2
, z ∈D,

and write Pr (θ ) := P(r e iθ ) and

u f (r e iθ ) :=

∫ π

−π

Pr (θ − t ) f (t )
d t

2π
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then

u (r e iθ ) =







u f (z ), z ∈D

f (z ), z ∈T

is the solution to the Dirichlet problem and for any point e iθ0 ∈T,

lim
D3z→e iθ0

u (z ) = f (e iθ0).

The function u f is called the Poisson integral of f and u f has a number of

special properties, in particular, it is harmonic onD. We recall that a complex-

valued function u ∈ C 2(D) is called harmonic if ∆u = 0 in D and denote by

H (D) the space of all harmonic functions onD endowed with the topology of

uniform convergence on compact subset of D. The spaceH (D) is complete

and has the Heine-Borel property: if u n ∈ H (D) is a sequence of functions

that are uniformly bounded on compact subsets, then there is a subsequence

tending uniformly on compact subsets to a harmonic function. Further, we

recall that if B (z , r ) is an open ball centred at z and of radius r in D, then

• if u is harmonic on D and u = 0 in B (z , r ) then u = 0 in D,

• if u is harmonic on B (z , r ) then

u (z ) =
1

2π

∫ π

−π

u (z + r e iθ )dθ ,

i.e. u (z ) equals the average of u over ∂ B (z , r ).

Finally, as ‖u f ‖H (D) ≤C‖ f ‖C (T), it follows that Λ is a bounded linear operator

from C (T) toH (D) and if (W (t ))t≥0 is a cylindrical Wiener process on some

Hilbert space H and B ∈ γ(H ,C (T)) then

W :=ΛBW (1)

is a Gaussian random variable taking values inH (D).
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The knowledge thatW is harmonic gives the Gaussian random variableW
a number of interesting properties that we have not exploited in previous chap-

ters. Exploiting the assumption of harmonic or analytic data in the theory of de-

terministic PDE is not an uncommon in the literature, the Cauchy–Kowalewski

theorem is an example of such a concept (e.g., see [86]).

6.1.1 Random Fourier series

By the results of §2.10, a spatial white noise on the boundary is obtained when

the cylindrical Wiener process (W (t ))t≥0 takes values in ∂ E = L2(∂U ). This

motivates us to understand the situation where ∂ E is a larger space than C (T).
We recall that by the Karhunen-Loève expansion (e.g., Theorem 4.12 in [6]),

any ∂ E -valued Gaussian random variable W can be represented as a Gaussian

sum of the form
∑

n≥1

γn xn

where (γn )n≥1 is a Gaussian sequence and (xn )n≥1 is a (finite or infinite) se-

quence in ∂ E . Therefore, suppose we take our boundary space ∂ E to be the

space of all complex Borel measures on T denoted byM (T). This space is

equipped with the norm

‖µ‖= |µ|(T),

where |µ| denotes the total variation of µ and is a Banach space. Recall that the

total variation |µ| is the smallest positive Borel measure satisfying

|µ(B )| ≤ |µ|(B )

for all Borel sets B ⊂ T. Now let (Ω,F ,P) be a probability space, (γn )∞n=1 a

sequence of standard Gaussian random variables, and (µn )∞n=1 a sequence

of measures in M (T). From these sequences we define the M (T)-valued

Gaussian random variable

W :=
∞
∑

n=1

γnµn .
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and as the definition of Fourier transformF can be extended to Borel measures

on T; i.e., the k -th Fourier coefficient of µ∈M (T ) is defined by

bµ(k ) :=

∫ π

−π

e−i k t dµ(e i t )
2π

, k ∈Z,

we notice the following relationship between the sequence of measures (µn )∈
M (T) and the Fourier coefficients of the measure-valued Gaussian random

variable W .

Lemma 6.1. If
∑m

k=1 ‖µk‖2 converges as m → ∞ then almost surely we have

cW ∈ `∞(Z) and E‖cW ‖2
∞ ≤

∑

k ‖µk‖2.

Proof. For m ∈Nwe define Wm =
∑m

k=1γkµk , then for each n ∈Z,

|dWm (n )|=

�

�

�

�

�

∫

T

e−i nt d Wm (e i t )

�

�

�

�

�

=

�

�

�

�

�

m
∑

k=0

γk

∫

T

e−i nt dµk (e i t )

�

�

�

�

�

=

�

�

�

�

�

m
∑

k=0

γk bµk (n )

�

�

�

�

�

so by Chebyshev’s inequality, we have for ε > 0 that

P{|dWm (n )|> ε} ≤ ε−2
m
∑

k=0

|bµk |2

≤ ε−2
m
∑

k=0

∫

T

|e−i nt |2d |µk |2(e i t )

= ε−2
m
∑

k=0

|µk |2(T)

= ε−2
m
∑

k=0

‖µk‖2.

which is independent of n . If
∑

k ‖µk‖2 converges, then by the Kolmogorov

convergence criterion, taking m →∞we have dWm (n )→ cW (n ) P-almost surely
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hence the result holds.

For any µ∈M (T), we denote the Poisson integral of µ by

P[µ](r e iθ ) =

∫ π

−π

Pr (θ − t )
dµ(e i t )

2π
,

and, as Pr ∈C (T) for 0≤ r < 1, P[µ](r e iθ ) is well defined for all θ ∈ (−π,π).

Due to Lemma 6.1, we assume that
∑

k ‖µk‖2 converges, then using the

Fourier series representation of Pr it follows that the random Fourier coeffi-

cients of Pr [W ] are given by

ØPr [W ](n ) = r |n |cW (n ), n ∈Z,

and the (formal) random Fourier series of Pr [W ] is given by

∞
∑

n=−∞

cW (n )r |n |e i nθ .

Following standard convention, we call this series the Abel-Poisson means of

the Fourier series of W that is given by

∞
∑

n=−∞

cW (n )e i nθ .

Surprisingly, by considering the boundary noise problem on D, we have now

found a connection with the classic area concerned with the study of random

Fourier series of the form
∞
∑

n=−∞
εn mn e i nθ

where (εn ) is a sequence of Rademacher or Gaussian random variables and

(mn ) is a sequence of constants was originally considered by Paley, Zygmund,

and Wiener in the 1930s. A large collection of results may also be found in the

monograph of Kahane [89].
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6.1.2 ExtendingM (T)-valued Gaussians toD

Although the Fourier series of W may not be necessarily pointwise convergent,

we shall now show that the Abel-Poisson means of W behaves much better.

Let R be theM (T)-valued random variable given by

R =
∞
∑

n=1

εn mnδθn

where (εn ) is a sequence of independent Rademacher random variables on a

probability space (Ω,F ,P), (θj ) is a sequence such that θj ∈Q∩ [0, 2π), (mn ) is

a sequence of constants such that
∑∞

n=1 m 2
n <∞, and δθ is a Dirac measure at

e iθ ∈T. In [89] considered the harmonic extension of R to D given by

u (z ) := Pr [R](z ) =
∞
∑

n=1

εn mn P(z e−iθn ), z ∈D,

and showed that u is harmonic on D and the series converges P-a.s. uniformly

on every compact subset ofD. Our next theorem is a Gaussian extension of this

result where the sequence of measures (µk ) are not necessarily Dirac measures.

Theorem 6.2. Assume
∑

k ‖µk‖2 converges and let

u (r e iθ ) = Pr [W ](e iθ )

then

u (r e iθ ) =
∞
∑

n=−∞

cW (n )r |n |e i nθ ,

for r e iθ ∈D and the series is, almost surely, absolutely and uniformly convergent

on compact subsets of D and u is harmonic onD.

Proof. From the elementary observation

1− r 2

1+ r 2−2r cosθ
=

1− r 2

1+ r 2− r (e iθ − e−iθ )

=
1− r 2

(1− r (e iθ )(1− r e−iθ )
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=
1

1− r e iθ
+

1

1− r e−iθ
−1

and, as 1+x +x 2+ · · ·= 1
1−x

for |x |< 1, we have for |r e iθ |< 1 that

=
∞
∑

n=0

(r e iθ )n +
∞
∑

n=0

(r e−iθ )n −1

=
∞
∑

n=−∞
r |n |e i nθ

so if we fix 0≤ r < 1 and θ then

u (r e iθ ) =

∫ π

−π

1− r 2

1+ r 2−2r cos(θ − t )
d W (e i t )

2π

=

∫

T

 

∞
∑

n=−∞
r |n |e i n (θ−t )

!

d W (e i t )
2π

as the series is uniformly convergent with respect to e i t and W ∈M (T)we can

interchange integration and summation to get

u (r e iθ ) =
∞
∑

n=−∞
r |n |e i nθ

∫ π

−π

e−i nt d W (e i t )
2π

=
∞
∑

n=−∞
r |n |e i nθ

cW (n ).

By Lemma 6.1 and our assumption that
∑

k ‖µk‖2 converges,

E|cW (n )r |n |e i nθ |2 ≤E‖cW ‖2
∞r 2|n |

so the series
∑

n
cW (n)r |n |e i nθ is P-almost surely, absolutely and uniformly

convergent on compact subsets of D by the Kolmogorov convergence criterion.

This allows us to interchange summation and any linear differential operator,

in particular,

∆u (r e iθ ) =∆

 

∞
∑

n=−∞
r |n |e i nθ

cW (n )

!
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=
∞
∑

n=−∞

cW (n )∆r |n |e i nθ

= 0

as r |n |e i nθ is harmonic.

Therefore the convergence of the partial sum
∑

k ‖µk‖2 is a sufficient condition

to obtain a well-definedH (D)-valued Gaussian random variable.

6.2 Random Lp boundary data

Given f :T→C, we define the norms

‖ f ‖p :=

�

1

2π

∫ π

−π

| f (e iθ )|p dθ

�1/p

, 1≤ p <∞,

and

‖ f ‖∞ = inf
M>0
{M : |{e iθ : | f (e iθ )|>M }|= 0},

where |{e iθ : a ≤ θ ≤ b}| denotes the Lebesgue measure of the set [a ,b ] ⊂ R.

The complex Lebesgue spaces Lp (T), 1< p ≤∞ are defined1 by

Lp (T) = { f : ‖ f ‖p <∞}.

If 1≤ p ≤∞, Lp (T) is a Banach space. In particular, L2(T) equipped with the

inner product

( f , g ) =
1

2π

∫ π

−π

f (e iθ )g (e iθ )dθ ,

is a Hilbert space. As measurability of f : T→ C is determined in terms of

the measurability of ℜ f and ℑ f , these definitions and standard Lp space re-

sults follow by decomposing functions into their real and imaginary parts and

applying the standard definitions of Lp spaces (e.g., [75]).

1modulo equivalence classes of functions equal almost everywhere
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The main outcome of the last section is identification of a sufficient condi-

tion for existence of aH (D)-valued Gaussian random variable. The sufficient

condition hints that we should start with the assumption that our random

boundary data W is a well-defined Lp (T)-valued Gaussian random variable

(i.e., W is not cylindrical).

Let H be a Hilbert space with orthonormal basis (hn )∞n=1 and let WH be the

(cylindrical) Gaussian random variable defined by

WH :=
∞
∑

n=1

γn hn ,

where (γn )∞n=1 is a sequence of independent standard (complex-valued) Gaus-

sian random random variables on a probability space (Ω,F ,P) and let B be a

linear operator from H to Lp (T). To ensure that BWH is a well-defined Lp (T)-
valued Gaussian random variable, in this section we shall assume that

B ∈ γ(H , Lp (T)).

Then it follows that BWH is a Lp (T)-valued Gaussian random variable with

covariance operator B B ∗. In other words, BWH is a Lp (T)-valued strongly

P-measurable function on (Ω,F ,P).
For f ∈C (T), we can write for 0≤ r < 1,

P f (r e iθ ) = Pr f (e iθ ) =

∫ π

−π

Pr (θ − t ) f (e i t )
d t

2π
.

and we interpret P in two different ways:

• P as an operator C (T)→H (D),

• Pr as an operator C (T)→C (T) for 0≤ r < 1.

By considering P as an operator, we can now move from the Fourier series

approach used in the last section to an operator theoretical approach and
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study how the Poisson operator P maps the Gaussian random variables BWH

under the assumption

E‖BWH‖
p
Lp (T) <∞.

We shall often make use of the following well-known lemma (e.g., see [87]).

Lemma 6.3. For each r ∈ [0,1) and f ∈C (T), Pr f ∈C (T) with ‖Pr f ‖∞ ® ‖ f ‖∞.

Further, limr→1− ‖Pr f − f ‖∞ = 0. In other words, Pr f converges uniformly to f

on T.

6.2.1 Case 1< p <∞

We first consider the case where BWH is a Gaussian Lp (T)-valued random

variable and study how P BWH approaches BWH in a Lp (Ω) sense as r → 1− by

applying the theory of γ-radonifying operators.

Theorem 6.4. Let B ∈ γ(H , Lp (T)) for some fixed 1< p <∞. Then

(i) P BWH is harmonic in D,

(ii) sup
r<1
E‖Pr BWH‖p

p = lim
r→1
E‖Pr BWH‖p

p =E‖BWH‖p
p ,

(iii) lim
r→1
E‖Pr BWH − BWH‖p

p = 0.

Proof. (1) follows from Theorem 6.2. Let BWH be a Gaussian Lp (T)-valued

random variable. Then as

E‖Pr BWH‖p
p ≤E‖Pr ‖

p
1 ‖BWH‖p

p ≤CE‖BWH‖p
p <∞,

for 0≤ r < 1, it follows that Pr BWH is a Lp (T)-valued random variable. Further,

E‖Pr BWH − BWH‖p
p =E‖(Pr B − B )WH‖p

p

= ‖Pr B − B‖p
γ(H ,Lp (T))

≤ ‖Pr − I ‖p
L (Lp (T))‖B‖

p
γ(H ,Lp (T)).
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Take r > 0, f ∈ Lp (T)with ‖ f ‖p = 1, and choose some ε > 0. As C (T) is dense in

Lp (T)we can find ϕ ∈C (T) such that ‖ f −ϕ‖p < ε. Then

‖(Pr − I ) f ‖p
p = ‖Pr f −Prϕ+Prϕ−ϕ+ϕ− f ‖p

p

≤ ‖Pr ( f −ϕ)‖p
p + ‖Prϕ−ϕ‖p

p + ‖ϕ− f ‖p
p

≤ (C p +1)‖ f −ϕ‖p
p + ‖Prϕ−ϕ‖p

p

≤ (C p +1)ε+ ‖Prϕ−ϕ‖p
∞.

Now by Lemma 6.3, we can find rε such that ‖Prϕ−ϕ‖
p
∞ < ε for r > rε. Hence,

E‖Pr BWH − BWH‖p
p ≤ ε(2+C p )‖B‖p

γ(H ,Lp (T))

As ε was chosen arbitrarily, (iii) is obtained and (ii) follows from (iii).

To conclude, we have shown that if we use the Poisson kernel to extend

a Gaussian random variable BWH ∈ Lp (T) to the open unit disk we obtain a

harmonic random variable u = P BWH whose (p -th moment) mean values

r 7→E‖u r ‖
p
p are uniformly bounded.

6.2.2 Pointwise blow-up is permitted

As we have seen in previous chapters, one of the main issues with the standard

approach to boundary noise is that one must assume BW is the trace of a

function ΛBW ∈W 1,2(U ) on the boundary ∂U , that is,

E‖BWH‖2
W 1/2,2(∂U ) <∞. (6.2)

However, if there is a positive probability that BWH has a singularity at a point

x0 ∈ ∂U or we had the white noise case B = I and H = L2(∂U ) then a fortiori the

condition (6.2) is not fulfilled and E‖ΛBW ‖2 =∞. In this section, we explore

the behaviour of Pr BWH as r → 1−.

As T is a compact space, for p ∈ [1,∞]we have the scale of spaces

L∞(T)⊂ Lp (T)⊂ L1(T),
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and any continuous function on T is necessarily bounded. As such, the space

of all continuous functions on the unit circle C (T) can be considered as a sub-

space of L∞(T) and L1(T) can be considered as the largest Lp space. Therefore,

without loss of generality, we now assume B ∈ γ(H , L1(T)). Of course, a natural

example for our boundary noise problem would be the case H = L2(T).
We first consider the pointwise convergence of Pr BWH as r → 1− under the

assumption that (BWH (ω))(e iθ ) is a point of continuity for BWH (ω).

Theorem 6.5. Let B ∈ γ(H , L1(T)) and supposeω 7→ BWH (ω) is continuous at

e iθ0 ∈T. Then P BWH (ω) is harmonic in D and

lim
r→1−

P BWH (ω)(r e iθ0) = BWH (ω)(e iθ0).

Proof. As Pr ∈ L∞(T) and BWH (ω)∈ L1(T), then Pr BWH (ω)(e iθ ) is well-defined

for all e iθ ∈ T by an application of Young’s inequality. By assumption, given

ε > 0 we can choose δ> 0 such that

|BWH (ω)(e iθ )− BWH (ω)(e iθ0)|< ε

as soon as |θ −θ0|< 2δ. Using the estimate

∫ δ

−δ

|Pr (e i t )|
d t

2π
<C ,

and taking |θ −θ0|<δ, we get

�

�Pr BWH (ω)(e iθ )−Pr BWH (ω)(e iθ0)
�

�

=

�

�

�

�

�

∫ π

−π

Pr (e i t )
�

BWH (ω)(e i (θ−t ))− BWH (ω)(e iθ0)
� d t

2π

�

�

�

�

�

≤

 

∫ δ

−δ

+

∫

δ≤|t |≤π

!

|Pr (e i t )||BWH (ω)(e i (θ−t ))− BWH (ω)(e iθ0)|
d t

2π

≤ εC +

∫

δ≤|t |≤π

|Pr (e i t )|(|BWH (ω)(e i (θ−t ))|+ |BWH (ω)(e iθ0)|)
d t

2π
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≤ εC + sup
δ≤|t |≤π

|Pr (e iθ )|
�

‖BWH (ω)‖1+ BWH (ω)(e iθ0)
�

Then choosing R < 1 such that supδ≤|t |≤π |Pr (e iθ )| < ε when r > R , we get for

r >R and |θ −θ0|<δ, that

|Pr BWH (ω)(e iθ )− BWH (e iθ0)|< ε(‖BWH (ω)‖1+ |BWH (ω)(e iθ0)|+C ).

As ε can be chosen arbitrarily, we are done.

Of course, a given realisationω 7→ BWH (ω)may also exhibit blow-up at a

point on the boundary. We now study the case when

lim
θ→θ0

BWH (ω)(e iθ ) =∞,

for some point e iθ0 ∈T.

Theorem 6.6. Let B ∈ γ(H , L1(T)) and suppose that

lim
θ→θ0

BWH (ω)(e iθ ) =∞.

Then limr→1− P BWH (ω)(r e iθ0) =∞.

Proof. As Pr ∈ L∞(T) and BWH (ω)∈ L1(T), then Pr BWH (ω)(e iθ ) is well-defined

for all e iθ ∈T by an application of Young’s inequality. By assumption, given any

M > 0 we can find δ> 0 such that BWH (ω)(e iθ )> 2M whenever |θ −θ0|< 2δ.

So taking |θ −θ0|< 2δ, we have

Pr BWH (ω)(e iθ ) =

∫ π

−π

Pr (t )BWH (ω)(e i (θ−t ))
d t

2π

=

 

∫ δ

−δ

+

∫

δ≤|t |≤π

!

Pr (t )BWH (ω)(e i (θ−t ))
d t

2π

≥ 2M

∫ δ

−δ

Pr (e i t )d t
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−
∫

δ≤|t |≤π

Pr (t )|BWH (ω)(e i (θ−t ))|
d t

2π

≥ 2M −
∫

δ≤|t |≤π

Pr (t )(2M + |BWH (e i (θ−t ))|)
d t

2π

≥ 2M − sup
δ≤|t |≤π

Pr (t ) (2M + ‖BWH (ω)‖1) .

Now choosing an R < 1 such that

sup
δ≤|t |≤π

Pr (t ) (2M + ‖BWH (ω)‖1)<M

as soon as r >R we have for r >R and |θ −θ0|<δ that

Pr BWH (ω)>M .

6.3 Hardy spaces

Recall that the family of complex harmonic functions on the open unit diskD
is denoted byH (D). If u ∈H (D) we write u r (e iθ ) := u (r e iθ ) and define the

norms

‖u ‖H p (D) := sup
0≤r<1

‖u r ‖Lp (T) = sup
0≤r<1

�

1

2π

∫ π

−π

|u (r e iθ )|p dθ

�1/p

for 0< p <∞, the norm

‖u ‖H ∞(D) := sup
z∈D
|u (z )|,

and the set of functions

H p (D) := {u ∈H (D) : ‖u ‖H p <∞},
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where 0 < p ≤∞. To simplify notation we shall writeH p :=H p (D). Due to

the definition of ‖ · ‖H p , it follows thatH p is a linear vector space. Further, by

Hölder’s inequality and asD is compact, we have

H ∞ ⊂H q ⊂H p ,

for 0< p < q <∞. The spacesH p , 1≤ p ≤∞ are called the Hardy spaces on

D and where introduced by Riesz in 1923.

One should notice that if u ∈H (D) and r 7→ ‖u r ‖Lp (T) behaves like 1/(1− r )

as r → 1− then u ∈H p but u 6= Lp (D). Hence, theH p norms allow a certain

amount of growth near the boundary ofD.

6.4 A representation theorem

We shall now make use of the definition of harmonic Hardy spaces to further

understand the relationship between the stochastic boundary data and the

existence or non-existence of Lp (D)-valued Gaussians.

6.4.1 Sufficient condition

A sufficient condition to obtain aH p -valued Gaussian random variable is that

the boundary data is spatially regular, i.e. B ∈ γ(H , Lp (T)).

Theorem 6.7. Let 1 ≤ p ≤ ∞. If B ∈ γ(H , Lp (T)) then u := P BWH is a H p -

valued random variable and

E‖u ‖2
H p =E‖BWH‖2

Lp (T).

Proof. Follows from previous theorems.
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6.4.2 Necessary condition

The next theorem shows that we can only obtainH p -valued random variables

if the boundary data is spatially regular.

Theorem 6.8. If u is aH p -valued Gaussian random variable for 1 < p ≤∞
then there exists a unique Lp (T)-valued Gaussian random variable ξ such that

u (r e iθ ) =
1

2π

∫ π

−π

P(r e i (θ−t ))ξ(e i t )d t , r e iθ ∈D,

and E‖u ‖2
p =E‖ξ‖2

p . Moreover, there exists a separable Hilbert space Hξ and an

operator B ∈L (Hξ, Lp (T)) such that

E‖u ‖p
H q = ‖B‖p

γp (Hξ,Lq (T))

for 1≤ p <∞ and 1<q <∞.

Proof. Let u be aH p -valued Gaussian random variable and for n ≥ 2 define

u n (z ) := u ((1− 1/n )z ). As u n is defined on the disk {z : |z | < n/(n − 1)} we

have that u n ∈H (D) and it follows from the reproducing property that for all

z = r e iθ ∈Dwe have

u n (z ) =
1

2π

∫ π

−π

P(r e i (θ−t ))u n (e i t )d t .

On the left hand side, it is clear that u n (z )→ u (z ) as n →∞. Hence we need

to show that when n → ∞ the right-hand side expression has an integral

representation. Writing for v ∈ Lq (T),

〈u n , v 〉 :=
1

2π

∫ π

−π

u n (e i t )v (e i t )d t .

〈u n , v 〉 is a R-valued Gaussian and

E|〈u n , v 〉|2 ≤E‖u n‖2
p‖v ‖q ≤E‖u ‖2

p‖v ‖q ,
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for v ∈ Lq (T). Hence, passing to a subsequence, there exists aR-valued Gaus-

sian random variable ξv such that

lim
k→∞
〈u n k , v 〉= ξv

in probability for v ∈ Lq (T). Now, for a fixed z = r e iθ , we write vz (e i t ) :=

P(r e i (θ−t )) and it follows that vz ∈ Lq (T). Hence,

ξvz = lim
k→∞
〈u n k , vz 〉

= lim
k→∞

1

2π

∫ π

−π

P(r e i (θ−t ))u n k (e
i t )d t

= lim
k→∞

u ((1−1/n k )r e iθ )

= u (r e iθ )

But we also have by the Riesz representation theorem that there exists a Gaus-

sian random variable ξ∈ Lp (T) such that

ξv =
1

2π

∫ π

−π

v (e i t )ξ(e i t )d t

for all v ∈ Lp (T). So by choosing v = vz we get

u (r e iθ ) =
1

2π

∫ π

−π

P(r e i (θ−t ))ξ(e i t )d t .

Remark 6.9. The previous theorem does not hold forH 1(D)-valued Gaussian

random variables as L1(T) is not the dual of any space.

6.4.3 Non-existence in the white-noise case

Our next theorem shows that we cannot obtain aH 2-valued Gaussian random

variable in the white-noise case.
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Theorem 6.10. If H = L2(T), B = I , and u = PW then

E‖u ‖2
H 2 =∞.

Proof. Let (hn ) be an orthonormal basis of L2(T) and (γn ) a sequence of stan-

dard Gaussians. As we can represent W by

W =
∞
∑

n=1

γn hn

and E‖W ‖2
L2(T) =∞ it follows from Theorem 6.7 that

E‖u ‖2
H 2 =∞.

6.5 Pointwise growth bounds

We have the following pointwise growth estimate for H p -valued Gaussian

random variables. It is a straight-forward extension of a standard deterministic

estimate (e.g., Proposition 6.16 in [87]).

Theorem 6.11. For 1≤ p <∞, if u is aH p -valued Gaussian random variable

then

E|u (z )|p ≤
�

1+ |z |
1− |z |

�

E‖u ‖p
H p , ∀z ∈D.

Proof. Fix 1 < p < ∞, z ∈ D, and let u be a H p -valued Gaussian random

variable. It follows that u ∈ Lp (Ω;H p ) and there exists a Gaussian random

variable f ∈ Lp (Ω; Lp (T)) such that u (z ) = (P f )(z ) and E‖u ‖p
H p =E‖ f ‖p

Lp (T). Let

1/q +1/p = 1 and z = r e iθ , then by Hölder’s inequality

E|u (r e iθ )|p =E

�

�

�

�

�

1

2π

∫ π

−π

P(r e i (θ−τ)) f (e iτ)dτ

�

�

�

�

�

p
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≤
�

1

2π

∫ π

−π

�

�P(r e i (θ−τ))
�

�

q
dτ

�p/q

E‖ f ‖p
Lp (T)

=

�

1

2π

∫ π

−π

�

�P(r e i (θ−τ))
�

�

q
dτ

�p/q

E‖u ‖p
H p

and since

1

2π

∫ π

−π

P(r e i (θ−τ))q dτ≤ sup
τ

P(r e i (θ−τ))q−1 1

2π

∫ π

−π

P(r e i (θ−τ))dτ

=
�

1− |z |2

|1− z |2

�q−1

=
�

1+ |z |
1− |z |

�q−1

the result follows as (q −1)p/q = 1. The case p = 1 follows in a similar way.

We shall now extend the ideas seen in Proposition 6.23 of [87] to obtain a

sharper estimate in the case p = 2. First, notice that for z ∈T and x ∈Dwe can

write the Poisson kernel as

Px (z ) =
1− |x |2

|x − z |2
=

1− |x |2

1−2x · z + |x |2

Let [·, ·] be the inner product on L2(T) then as f 7→ P f is a linear isometry of

L2(T) ontoH 2 we can transfer the Hilbert space structure toH 2 as

(P f , P g ) := [ f , g ], f , g ∈ L2(T),

and for f ∈ L2(T) and x ∈Dwe have (P f )(x ) = [Px , f ]. To extend this pointwise

representation toH 2 we extend the domain of Px by defining

Px (z ) =
1− |x |2|z |2

1−2x · z + |x |2|z |2

for all x , z ∈C for which the denominator is not zero. If z ∈T then this agrees

with the previous definition of Px . Further, Px (z ) = Pz (x ) and Px (z ) = P|x |z (x/|x |).
Therefore, for u ∈H 2 we have

u (x ) = (Px , u ).



167

This allows us to get a sharper estimate in theH 2 case.

Theorem 6.12. If u is aH 2-valued Gaussian random variable then

E|u (z )|2 ≤
�

1+ |z |2

1− |z |2

�

E‖u ‖2
H 2 , ∀z ∈D.

Proof. Let u be aH 2-valued Gaussian random variable and z ∈D then

E|u (z )|2 =E|(Pz , u )|2

and by the Cauchy-Schwarz inequality we get

E|u (z )|2 ≤ ‖Pz‖2
H 2E‖u ‖2

H 2 .

Finally, as ‖Pz‖2
H 2 = (Pz , Pz ) = Pz (z ) the estimate follows from the final calcula-

tion

Pz (z ) =
1− |z |2|z |2

1−2 z · z + |z |2|z |2
=

1+ |z |2

1− |z |2
.

6.6 γ-Radonifying property of Poisson kernel

In the previous sections we have shown that B ∈ γ(H , Lp (T)) is a necessary

and sufficient conditions to obtain a well-definedH p -valued Gaussian ran-

dom variable that is given by P BWH . However, we notice that Theorem 6.2

suggests that the Poisson operator P also has a certain amount of ‘radonifying’

behaviour irrespective of the operator B .

This concept is well-known for the stochastic heat equation

∂t u (t ) =∆u (t )+ Ẇ (t ), x ∈ (a ,b )⊂R (6.3)

with u (t , a ) = u (t ,b ) = 0 for t > 0 and u (0, ·) = 0 whereby, for H = L2(a ,b ) and

due to the fact that the Dirichlet heat semigroup (e t A)t≥0 on H is radonifying
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as it satisfies for T > 0,
∫ T

0

‖e t A‖2
L2(H )

d t <∞,

ensures that the stochastic convolution

u (t ) =

∫ t

0

e (t−s )A d W (s ), t ≤ T,

is a mild solution to (6.3) and E‖u (t )‖2
H <∞ for t > 0, even in the case when

(W (t ))t≥0 is a cylindrical Wiener process on H ! See Example 5.7 in [19].

In this section we shall show a similar result whereby the Poisson operator

P is radonifying and, in the white noise case B = I and H = L2(T), we can

obtain a well-defined Gaussian random variable onH (D).
For f ∈ L2(T) recall our notation

(P f )(r e iθ ) = (Pr f )(e iθ ) =
1

2π

∫ π

−π

Pr (θ − t ) f (e i t )d t .

Theorem 6.13. For 0≤ r < 1 we have Pr ∈ γ(L2(T),C (T)). Or equivalently,

P ∈ γ(L2(T),H (D)).

To prove this result we start with a simple estimate.

Lemma 6.14. Let (γn )∞n=1 be a sequence of standardR-valued Gaussian random

variables. Then for any α> 1, almost surely we have

|γn | ≤
p

2α log(n +1)

for all but at most finitely many n ≥ 1.

Proof. Let (γn )∞n=1 be a sequence ofR-valued standard Gaussians and α> 1. As

we can bound for any t > 0

P{|γn |> t } ≤
2

t
p

2π
e−t 2/2,
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for each n , we get that

P{|γn |>
p

2α log(n +1)} ≤
2

p

4πα log(n +1)
exp(−α log(n +1))

=
1

p

πα log(n +1)

1

(n +1)α
.

As it follows that
∞
∑

n=1

P{|γn |>
p

2α log(n +1)}®
∞
∑

n=1

1

(n +1)α
<∞

as α> 1, so by an appeal to the Borel-Cantelli lemma

P({|γn |>
p

2α log(n +1)} i.o.) = 0.

Hence we can conclude that, almost surely, |γn | ≤
p

2α log(n +1) for all but at

most finitely many n ≥ 1.

We now construct a dyadic decomposition of T by taking the dyadic inter-

vals I := [−π+2πk 2−j ,−π+2π(k+1)2−j ) and defining IL := [−π+2πk 2−j ,−π+
2π(k + 1

2
)2−j ) and IR := [−π+2π(k + 1

2
)2−j ,−π+2π(k +1)2−j ) to be the left and

right parts of I , respectively. The function

h I (e i t ) := 2j /2χIL (e
i t )−2j /2χIR (e

i t ),

is called the Haar function associated with the interval I , where we have

defined the indicator function χI so that χI (e i t ) = 1 if t ∈ I and 0 otherwise.

Notice that we have defined the Haar functions so that their L2(T) norm with

respect to the uniform measure 1
2π

d t is 1. That is,
∫

T

h I (e i t )d t =
1

2π

∫ π

−π

h I (e i t )d t = 1.

Lemma 6.15. On L2(T), the Haar functions have the orthogonality property:

∫

T

h I (e i t )h I ′(e i t )d t =







0, when I 6= I ′

1, when I = I ′.
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The collection of all dyadic intervals I of T is denoted byD andDj denotes

all dyadic intervals I such that |I |= 2−j , also called the j -th level. It is clear that

eachDj provides a partition of T and

D =
⋃

j∈Z

Dj .

Lemma 6.16. The sequence {h I }I∈D forms an orthonormal basis of L2(T).

Proof. We can see
∫

T
h I = 0, ‖h I ‖2 = 1 and [h I , h I ′] = δI ,I ′ for I , I ′ ∈D. Finally,

if [ f , h I ] = 0 for all I ∈D then f = 0 in L2(T). Hence, the conclusion follows.

For each r ∈ [0, 1)we define the operator

(Pr f )(e i t ) :=
1

2π

∫ π

−π

P(r e iτ) f (e i (t−τ))dτ, f ∈C (T), t ∈ [−π,π].

We recall that the Poisson kernel satisfies

• for r ∈ [0, 1), we have z 7→ P(r z )∈ L∞(T),

• lim
r→1−

�

sup
0<δ≤|θ |≤π

|P(r e iθ )|
�

= 0.

By density of continuous functions in L2(T)we can extend this operator to

L2(T) functions such that Pr ∈L (L2(T), L2(T)).

Proof of Theorem 6.13. Let {hn}∞n=1 be defined by hn = h I with the dyadic

interval I chosen so that n = 2j +k with j = 0, 1, . . . and k = 0, . . . , 2j . Then {hn}
is an orthonormal basis of L2(T) by Lemma 6.16. Fix r ∈ [0, 1), then we see that

for n = 2j +k ,

|(Pr hn )(e i t )|=

�

�

�

�

�

1

2π

∫ π

−π

P(r e iτ)hn (e i (t−τ))dτ

�

�

�

�

�

≤
1

2π

 

∫ −δ

−π

+

∫ δ

−δ

+

∫ π

−δ

!

|P(r e iτ)| |hn (e i (t−τ))|dτ
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≤
1

2π

∫

δ≤|τ|≤π

|P(r e iτ)| |hn (e i (t−τ))|dτ

+
1

2π

∫ δ

−δ

|P(r e iτ)| |hn (e i (t−τ))|dτ

≤ sup
δ≤|τ|≤π

|P(r e iτ)|
1

2π

∫ π

−π

|hn (e i (t−τ))|dτ

+CP
1

2π

∫ π

−π

|hn (e i (t−τ))|dτ

≤
�

sup
δ≤|τ|≤π

|P(r e iτ)|+CP

�

2−j /2

=: C12−j /2

and C1 <∞ by the properties of the Poisson kernel.

By Lemma 6.14, it holds P-almost surely that there exists some N > 0 such

that we can estimate
∞
∑

n=1

|γn (Pr hn )(e i t )| ≤
N
∑

n=1

|γn (Pr hn )(e i t )|

+
∞
∑

n=N+1

p

2α log(n +1)|Pr hn (e i t )|

≤C +
∞
∑

j=1

2j
∑

k=1

p

2α log(2j +k +1)|Pr hn (e i t )|

≤C0+C1

∞
∑

j=1

p

α log(2j +k ′+1)2−j /2

by estimating 2j +k ′+1≤ 2j+1+1≤ 2j+2,

≤C0+C1

p

α log(2)
∞
∑

j=1

2−j /2
p

j +2

by estimating
p

j +1≤C22(j+1)/4,

≤C1+C1C2

p

α log(2)
∞
∑

j=1

2−(j+1)/4
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<∞,

for all t ∈ [0,2π). Hence P-almost surely, the sum converges absolutely and

uniformly for all e i t ∈T.

As |T|<∞, we have L2(T)⊂ L1(T) hence by Young’s inequality and the fact

that z 7→ Pr = P(r z ) ∈ L∞(T) for r ∈ [0,1), (Pr hn )(e i t ) is well-defined for all

e i t ∈T and Pr hn ∈C (T) and ‖Phn‖∞ ≤ ‖Pr ‖∞‖hn‖1 ® ‖Pr ‖∞‖hn‖2.

Therefore, for P-almost everyω∈Ω,

e i t 7→
∞
∑

n=1

γn (ω)(Pr hn )(e i t )

belongs to C (T). By uniform convergence, we have

SN :=
N
∑

n=1

γn (Pr hn )(e i t )

converging to

S :=
∞
∑

n=1

γn (Pr hn )(e i t )

as N →∞, P-almost surely and since

E
�

sup
e i t

S

�2

<∞.

The Ito-Nisio theorem gives that

lim
N→∞
E‖S−SN‖2

C (T) = 0.

We can then conclude that Pr ∈ γ(L2(T),C (T)) for r ∈ [0, 1).

Combined with the results of the previous sections, this shows that if we

consider the white noise case u = PW (i.e. H = L2(T), B = I ) then, almost

surely,

u /∈H 2 but u ∈H (D).
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Hence, for any compact K ⊂D,

sup
z∈K
E|u (z )|2 <∞.

For some small ε > 0, take a compact K ⊂ D such that |D \ K | < ε then our

results show that the blow-up behaviour that restricts us from taking white

noise on T is concentrated on a very small set of positive Lebesgue measure

near the boundary.

6.7 Relationship with weighted Sobolev spaces

In this section is to answer the following question: if u is a well-definedH p -

valued Gaussian random variable, is it a well-defined Gaussian random vari-

able in some weighted Sobolev space of the form W k ,p (D,δα) where δ(z ) :=

dist(z ,T) and α> 0?

We achieve this by proving a randomized version of the classic equivalence

between harmonic Hardy spaces and the weighted Sobolev spaces. As such, let

u be aH (D)-valued Gaussian random variable and for p ≥ 2 we define

Sp (u ) :=

∫

D

|u (z )|p−2|∇u (z )|2(1− |z |2)dΘ(z ),

where Θ is the normalized Lebesgue measure onD (i.e. Θ(D) = 1).

Remark 6.17. In the case p = 2, harmonic analysts may recognize S2(u ) in

terms of “square functions” i.e. estimates of Littlewood-Paley type of the form

S2(u )'









�

∫ 1

0

|(1− r 2)∇u (r z )|2
d r

(1− r 2)

�1/2







2

L2(T)
.

From the definition of Sp (u )we then prove the following

Theorem 6.18. We have the equivalence

E‖u ‖p
H p 'E|u (0)|p +

p (p −1)
2
ESp (u ).
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Then considering the case p = 2 and noticing that (1− |z |2)' dist(z ,T)we

get the following answer to our question.

Corollary 6.19. We have the equivalence

E‖u ‖2
H 2 'E‖u ‖2

W 1,2(D,δ).

Comparing with the results in the last chapter, we see that we can obtain

solution in the weighted space W 1,2(D,δα) at the critical power α= 1 where the

traces theorems break down. Hence, we have solutions where the relationship

with the boundary data is now understood in terms of radial or non-tangential

convergence towards the boundary.

We now quickly recall some known facts that will be useful for working on

D. If f ∈ C 2(R2) we can define a function F (r,θ ) := f (r cos(θ ), r sin(θ )) with

r ∈R+ and θ ∈ [−π,π), then

∇ f =
�

∂ F

∂ r
,

1

r

∂ F

∂ θ

�T

∆ f =
∂ 2F

∂ r 2
+

1

r

∂ F

∂ r
+

1

r 2

∂ 2F

∂ θ 2
.

Let BR := {z : |z |< R} ⊂C and let ν (Re iθ ) be the outer unit normal to ∂ BR at

the point Re iθ , then

∂ f

∂ ν
(Re iθ ) = (∇ f ·ν )(Re iθ ) =

∂ F

∂ r
(r,θ ).

By direct computation, it can be shown that log(%/|z |) is harmonic in C \ {0}
if 0 < % < |z |. Identifying F (z ) = F (r e iθ ) = F (r,θ ) for z := r e iθ ∈ C, by the

divergence theorem,

1

2πr

∫

|z |<r

∆F (z )d z =
1

2π

d

d r

∫ π

−π

F (r e iθ )dθ

where d z is Lebesgue measure in C. Let Θ be Lebesgue measure on D such

that Θ(D) = 1. We also have,
∫

|z |=%

F (z )dσ(z )− F (0) =

∫

|z |<%

∆F (z ) log(%/|z |)dΘ(z ).

The following lemma provides a standard result that is heavily used in the

literature (e.g., see Ex. 7, Chap. 1 in [87]).
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Lemma 6.20. If u is a positive function in C 2(D) and p is a constant, then

∆(u p ) = p u p−1∆u +p (p −1)u p−2|∇u |2.

Moreover, if u is harmonic and strictly positive, then

∆(u p ) = p (p −1)u p−2|∇u |2.

Proof. Writing z = x + i y and directly differentiating,

∆(u p ) = (p −1)p u p−2

�

�

∂ u

∂ x

�2

+
�

∂ u

∂ y

�2
�

+p u p−1

�

∂ 2u

∂ x 2
+
∂ 2u

∂ y 2

�

,

then using the fact that u is harmonic the result follows.

Posing

M p (r, u ) :=

�

1

2π

∫ π

−π

|u (r e iθ )|p dθ

�1/p

the following theorem is standard folklore: it is given as an exercise in the book

by Garnett and Marshall [90]. As a proof could not be found in the literature,

we provide one here.

Theorem 6.21 (Hardy identity on D). If u ∈ H (D), then the function r 7→
M p (r, u ), 0< r < 1, is of class C 1 and

d

d r
M p

p (r, u ) =
p (p −1)

2r

∫

|z |<r

|u (z )|p−2|∇u (z )|2 dΘ(z ),

where Θ is a Lebesgue measure such that Θ(D) = 1.

Proof. Let ε > 0 and choose a fixed r ∈ (ε,1). Since log(r /|z |) is harmonic in

C \ {0}we can use Green’s theorem on the annulus ý(ε, r ) := {z : ε < |z |< r } to

obtain
∫

ý

∆(|u |p ) log
r

|z |
d z =

∫

|z |=r

�

∂ν |u |p log
r

|z |
− |u |p∂ν log

r

|z |

�

dσr
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−
∫

|z |=ε

�

∂ν |u |p log
r

|z |
− |u |p∂ν log

r

|z |

�

dσε,

where σr is the surface measure on the circle of radius r . On the circle {z :

|z |= r } we have that log(r /|z |) = 0, ∂ν log(r /|z |) =−1/r , and dσr = r dσ1. As

ε log(1/ε)→ 0 as ε→ 0 and u ∈H (D),

lim
ε→0

∫

|z |=ε

�

∂ν |u |p log
r

|z |
− |u |p∂ν log

r

|z |

�

dσε = |u (0)|p .

So using the identity∆|u |p = p (p −1)|u |p−2|∇u |2 and taking ε→ 0, we have

p (p −1)

∫

|z |<r

|u |p−2|∇u |2 log
r

|z |
d z =

1

2π

∫ π

−π

|u (r e iθ )|p dθ − |u (0)|p .

By continuity we see that this identity holds for all r ∈ (0, 1). Without loss of gen-

erality (as we shall see below), assume u (0) = 0. Now using polar coordinates

on the left-hand side,

1

2π

∫ π

−π

|u (r e iθ )|p dθ

=
p (p −1)

2π

∫ r

0

s log
r

s

∫ π

−π

|u (s e iθ )|p−2|∇u (s e iθ )|2 dθd s

=:
p (p −1)

2π

∫ r

0

s log
r

s
G (s )d s

=
p (p −1)

2π

�∫ r

0

s log r G (s )d s +

∫ r

0

s log
1

s
G (s )d s

�

Now differentiating both sides by r (this justifies u (0) = 0 assumed above), we

get

d

d r

1

2π

∫ π

−π

|u (r e iθ )|p dθ

=
p (p −1)

2π

�

1

r

∫ r

0

G (s )s d s + rG (r ) log(r )+ rG (r ) log
1

r

�
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=
p (p −1)

2π

1

r

∫ r

0

G (s )s d s

=
p (p −1)

2π

1

r

∫ r

0

∫ π

−π

|u (s e iθ )|p−2|∇u (s e iθ )|2s dθd s

=
p (p −1)

2r

∫

|z |<r

|u (z )|p−2|∇u (z )|2 dΘ(z ),

where Θ(D) = 1 (i.e. Θ(d z ) =
s

π
d s dθ ).

Corollary 6.22. For u ∈H (D), we have the identity

M p
p (r, u ) = |u (0)|p +p (p −1)

∫

|z |<r

|u (z )|p−2|∇u (z )|2 log
r

|z |
d z .

Proof of Theorem 6.18. Fix 0 ≤ r < 1, then from the identity ∆(u p ) = p (p −
1)u p−2|∇u |2 and Green’s theorem,

∫

|z |<r

|u |p−2|∇u |2 dΘ=
1

p (p −1)

∫

|z |<r

∆(u p )dΘ

=
2πr

p (p −1)
1

2πr

∫

|z |<r

∆(u p )dΘ

=
2πr

p (p −1)
d

d r

1

2π

∫ π

−π

u p dθ

=
r

p (p −1)
d

d r

∫ π

−π

u p dθ

Multiplying both sides by p (p −1),

p (p −1)

∫

|z |<r

|u |p−2|∇u |2 dΘ= r
d

d r

∫ π

−π

u p dθ

We now integrate r over the interval [0, 1) on both sides. On the left-hand side

we get through the use of Fubini’s theorem that
∫ 1

0

p (p −1)

∫

|z |<r

|u |p−2|∇u |2 dΘd r



178

= p (p −1)

∫

|z |<1

∫ 1

|z |

r |u |p−2|∇u |2 d r dΘ

=
p (p −1)

2

∫

|z |<1

|u |p−2|∇u |2(1− |z |2)dΘ.

and on the right-hand side we get by integration by parts that

∫ 1

0

r
d

d r

∫ π

−π

u p dθ d r =

∫ π

−π

u p dθ −
∫ 1

0

∫ π

−π

u p dθ d r

=

∫ π

−π

u p dθ −
∫

D

u p dΘ(z )

Hence, reassembling the left and right hand sides it follows that

p (p −1)
2

∫

|z |<1

|u |p−2|∇u |2(1− |z |2)dΘ=
∫ π

−π

u p dθ −
∫

D

u p dΘ(z )

Rearranging then taking expectations both sides, we get

E‖u ‖p
H p =E

∫

D

|u |p dΘ

+
p (p −1)

2
E
∫

|z |<1

|u |p−2|∇u |2(1− |z |2)dΘ.

6.8 γ-Radonifying embeddings

Let U ⊂Rd be a bounded domain. In this section we show that the Hardy space

H 2 is Hilbert-Schmidt embedded into the weighted space L2(D, (1− |z |2)α).
The idea of obtaining such a result comes from Maurin’s theorem (see [75])

which gives conditions for embeddings between Sobolev spaces to be Hilbert-

Schmidt.
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Theorem 6.23 (Maurin). If m ∈N∪{0} and k > d /2, then the imbedding

W m+k ,2
0 (U ) ,→W m ,2

0 (U )

is Hilbert-Schmidt.

Remark 6.24. Taking m = 0 and d = 1 in Maurin’s theorem, we see why we

can obtain function-valued solutions to the stochastic heat equation on the

interval (0, 1).

Similar to Maurin’s theorem, we have obtained the following result which

also shows why the harmonic Hardy spaces are a nice space to work in.

Theorem 6.25. The imbedding

H 2 ,→ L2(D, (1− |z |)α)

is γ-radonifying for α> 0.

Proof. Given z ∈ D, we define the point evaluation functional Πz :H 2 → R
defined by Πz u := u (z ). It follows from Theorem 6.11 that

|u (z )| ≤
�

1+ |z |
1− |z |

�1/2

‖u ‖H 2 ,

so Πz is continuous. Let (·, ·) be the inner product onH 2. By the Riesz repre-

sentation theorem, there exists a unique function kz such that

Πz u = (kz , u )

and it follows that ‖kz‖2
H 2 ≤ (1+ |z |)/(1− |z |). In fact, one can show that kz is

the Poisson kernel. If (en )∞n=1 is an orthonormal basis ofH 2 then

‖kz‖2
H 2 =

∞
∑

n=1

|(en , kz )|2 =
∞
∑

n=1

|en (z )|2.

Hence, if α> 0 we have that

E









N
∑

n=M

γn en










2

L2(D,(1−|z |)α)
=

N
∑

n=M

‖en‖2
L2(D,(1−|z |)α)
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=
N
∑

n=M

∫

D

|en (z )|2(1− |z |)αd z

≤
∫

D

‖kz‖2
H 2(1− |z |)αd z

≤
∫

D

1+ |z |
1− |z |

(1− |z |)αd z

≤
∫ 1

0

1+ r

1− r
(1− r )αd r

<∞

Hence, we can conclude that the imbedding is γ-radonifying.

In fact, we can get a sharper embedding by applying the same estimates as

Theorem 6.12.

Theorem 6.26. The imbedding

H 2 ,→ L2(D, (1− |z |2)α)

is γ-radonifying for α> 0.

Combined with the equivalence shown in the last section, we obtain the

following corollary.

Corollary 6.27. For α> 0, the embedding

W 1,2(D, (1− |z |)) ,→ L2(D, (1− |z |)α)

is γ-radonifying.

6.9 Parabolic case

After the negative result of the last section, one may wonder if existence of a

solution might be obtained using an “heat kernel” approach, in particular, the

characterisation given by Lemma 3.30. In this section, we shall assume:
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• B ∈ γ(H , Lp (∂U ))

so that the term ‘Bd W ’ may be replaced by d W B where W B is an Lp (∂U )-

valued Wiener process, in other words, the noise on the boundary is regular.

Let us first consider the half-space case U =Rd
+ with boundary ∂U =Rd−1.

By Lemma 3.30, we have for g ∈ Lq (0, T ; Lp (Rd−1)), we have

 

∫ T

0

AS(t )Λ f (t )d t

!

(x ) =

∫ T

0

∫

Rd−1

∂GU

∂ νz
(t ,x , z ) f (t , z )d z d t ,

where GU is the Dirichlet heat kernel. In this half-space case, GU is obtained by

reflection of the (free) heat kernel G inRd given by G (t ,x ) := (4πt )−d /2 exp(−x 2/4t ),

that is

GU (t ,x , z ) =G (t ,x − z )−G (t ,x −Rz )

where Rz := (z 1, z 2, . . . , z d−1,−z d ) is the reflection operator. For (x , y ) ∈ Rd
+

with x ∈Rd−1 and y > 0, we shall write

P(t ,x , y ) :=
∂GU

∂ νy
(t , (x , y ), 0)

and note that P :R×Rd−1×R+→R is given explicitly by

P(t ,x , y ) =







y t −1

(4πt )d /2
exp

�

−
|x |2+ y 2

4t

�

, t > 0,

0, t ≤ 0,

where x ∈ Rd−1 and y > 0. Here |x | is the Euclidean norm of the vector x :=

(x1, . . . ,xd−1). One should think of P as the parabolic Poisson kernel of the

boundary value problem







∂t u (t ,x , y ) =∆x u (t ,x , y )+ ∂ 2
y y u (t ,x , y ), (t ,x , y )∈R+×Rd−1×R+,

u (t ,x , 0) = g (t ,x ), (t ,x )∈R+×Rd−1.
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To ease notation, let U := Rd
+, ∂U := Rd−1, UT := (0, T ] ×U and ∂UT :=

(0, T ]× ∂U . It is known that if g ∈ C (∂UT ) then this boundary value prob-

lem is uniquely solvable and is given by the parabolic Poisson integral

u (t ,x , y ) :=

∫∫

∂UT

P(t − s ,x − z , y )g (s , z )d z d s .

Further, u ∈ C 1,2(UT ). We denote (P g )(t ,x , y ) := u (t ,x , y ) so that P can be

viewed as the operator

P : C (∂UT )→C (UT ).

One may now ask when P extends to a bounded operator from Lp (∂UT ) to

Lq (UT ) with 1 ≤ p ,q ≤ ∞. If such an extension is possible then a possible

solution to (4.2) is given by

u (t ,x , y ) = (PW B )(t ,x , y ).

In [91], the following parabolic Littlewood-Paley estimate was shown

Theorem 6.28. If 1< p <∞ and f ∈ Lp (∂UT ) then










�

∫ ∞

0

|y ∂y P f |2
d y

y

�










Lp (∂UT )
'p ‖ f ‖Lp (∂UT ).

This allows us to prove the following

Theorem 6.29. P can be extended to P ∈L (L2(0, T ; L2(∂U )), L2(0, T ; L2(U ))).

Proof.

Considering the integral term on the left-hand side, we have

∫ ∞

0

|y ∂y P f |2
d y

y
=

∫ ∞

0

|∂y P f |2y d y ,

and taking the case p = 2,










�

∫ ∞

0

|y ∂y P f |2
d y

y

�










Lp (∂UT )
=

∫∫

∂UT

∫ ∞

0

|∂y P f |2y d y d x d t
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=

∫ T

0

∫

U

|∂z d P f |2z d d z d t

'
∫ T

0

‖P f ‖2
W 1,2(U ,z d )

d t

as P f ∈C 2(K ) for compact K away from boundary ∂U so∇x P f ∈ L2(K ). Writ-

ing δ(z ) := dist(z ,∂U )we have

P f ∈ L2(0, T ; W 1,2(U ,δ)),

where W 1,2(U ,δ) is the weighted Sobolev space and as

W 1,2(U ,δ)'W 1/2,2(U ),

it follows that P can be extended to eP ∈L (L2(0, T ; L2(∂U )), L2(0, T ; L2(U ))).





7

Blow-up for White Noise Data

We saw in the last chapter that the spaceH p with p ≥ 2 is too small to handle

white-noise data on T. In this chapter we consider a larger space of harmonic

functions that seem to exhibit the correct blow-up near the boundary T to

consider spatial white noise on T. We call this an “inside-out” approach.

Relatively few papers exist on the question of blow-up for a stochastic

partial differential equations. The first results can be found in [92, 93] for the

stochastic heat equation on the interval (0,`) given by

∂t u =∆u +u γẆ (t ), u (t , 0) = u (t ,`) = 0, u (0, ·) = u 0(·), (7.1)

where (W (t ))t≥0 is a cylindrical Wiener process taking values in L2(0,`), γ> 1,

and the initial data u 0 is continuous and positive. In [92] it was shown that the

solution u (t ,x ) to (7.1) exists for all time if 1≤ γ< 3/2 and in [93] it is shown

that if γ� 3/2 then the solution to (7.1) blows-up in finite time with positive

probability. These results were extended in [94, 95] to cover the case

∂t u =∆u +ϕ(u )Ẇ (t ), u (t , 0) = u (t ,`) = 0, u (0, ·) = u 0(·),

185
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where the nonlinearity ϕ is locally Lipschitz, ϕ(0) = 0, and ϕ(u ) ≥ c u γ for

some c > 0 and γ> 3/2. The question of blow-up has also been considered for

wave equations in a few papers. In [96], long-time existence for a stochastic

wave equation was studied. More recently in [97], a nonlinear stochastic wave

equation in a domain U ⊂Rd with d ≤ 3 was studied and solutions were shown

to blow-up in the L2 norm under appropriate conditions on the initial data

and the nonlinear term.

As the study of blow-up for nonlinear partial differential equations has

been (and still is) a very active area of research, it is somewhat surprising

that such few papers exist on blow-up for stochastic problems. Further, even

though numerous papers study boundary blow-up for deterministic PDEs,

there have been no results on blow-up for PDEs with random noise terms on

the boundary.

In the next section, we give an example of a random harmonic function u

that gives the expected behaviour if u satisfied the Dirichlet problem

∆u = 0 on D, u = ξ on T,

where ξ is a space white noise. In §7.2 we derive growth estimates for the

moments ofH (D)-valued Gaussians taken over concentric circles of radius

r < 1. This motivates the definition given in §7.3 of a space of Gaussian random

variables that satisfy

sup
z∈D
‖u ′(z )‖L2(Ω)(1− |z |2)<∞, (7.2)

and in §7.4 we show that the norm of this space is invariant under conformal

transformations. Finally, in §7.5, we derive a law of iterated logarithms for

random variables satisfying (7.2).

7.1 White noise behaviour near the boundary

As before, let (Ω,F ,P) be a probability space and (γn )∞n=1 a sequence of standard

Gaussian random variables. This chapter is related to understandingH (D)-
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valued Gaussian random variables exhibiting the following behaviour.

Example 7.1. Consider the random function

u (z ) =
∞
∑

n=0

γn z n , z ∈D.

As z n is harmonic in D it follows readily that u is a H (D)-valued Gaussian

random variable. Further, as

E‖u ‖2
L2(T) =

∞
∑

n=0

1

2π

∫ π

−π

e i nθ e−i nθ dθ =∞.

but u N :=
∑N

n=0γn z n is such that E‖u N‖2
L2(T) < ∞. We may consider u as a

prototypical example of aH (D)-valued Gaussian random variable generated

by a white-noise on T.

7.2 Mean growth of circle moments

Let L2(Ω) be the Hilbert space of random variables with second moments that

we endow with the norm ‖·‖L2(Ω) and Lp (Ω) the Banach space with norm ‖·‖Lp (Ω)

given by

‖X‖L2(Ω) := (E|X |2)1/2, ‖X‖Lp (Ω) := (E|X |p )1/p .

Mean growth estimates for harmonic functions on D are well known (for

example, the book by Duren [98]). We now derive an extension of these classic

estimates to the random variable setting. Let

M p ,q (r, u ) :=
1

2π

∫ π

−π

‖u (r e iθ )‖p
Lq (Ω)dθ

and we write M p (r, u ) :=M p ,p (r, u ). In particular, if u is aH (D)-valued Gaus-

sian random variable with Eu (z ) = 0 for z ∈D then

M 2(r, u ) =
1

2π

∫ π

−π

E|u (r e iθ )|2 dθ .
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measures the average variance (i.e. the average second moment) of u over

concentric circles of radius r < 1.

Lemma 7.2. Let u be a H (D)-valued Gaussian random variable. Then for

r < 1,

M p ,q (r, u )≤ ‖u (0)‖Lq (Ω)+

∫ r

0

M p ,q (s , u ′)d s . (7.3)

and

r 2M p ,q (r 2, u ′)≤
2

1− r 2
M p ,q (r, u ). (7.4)

Proof. Estimate (7.3) follows by writing for r e iθ ∈D

u (r e iθ ) = u (0)+

∫ r

0

u ′(s e iθ )d s .

Without loss of generality, we assume u (0) = 0. Then,

‖u (r e iθ )‖Lq (Ω) ≤
∫ r

0

‖u ′(s e iθ )‖Lq (Ω)d s

and an application of the Minkowski integral inequality gives

M p ,q (r, u ) =
1

2π

∫ π

−π

‖u (r e iθ )‖p
Lq (Ω)dθ

≤
∫ r

0

∫ π

−π

‖u ′(r e iθ )‖p
Lq (Ω)dθd s

=

∫ r

0

M p ,q (s , u ′)d s .

We shall now prove (7.4). Let Px be the kernel

Px (z ) =
1− |x |2|z |2

1−2x · z − |x |2|z |2
=

z +x

z −x

if z ∈ T then Px is the standard Poisson kernel and due to the reproducing

property we have for x =%e iθ and % < r < 1 that

u (x ) =
1

2πr

∫

|z |=r

Px (z )u (z )d z .



189

Now notice that for f ∈H (D)we have

∂

∂ θ
f (r e iθ ) = f ′(r e iθ )r e iθ i

so that

u ′(x ) =
1

i x

∂

∂ θ

1

2πr

∫

|z |=r

Px (z )u (z )d z .

We also have for x =%e iθ that

∂

∂ θ
Px (z ) =

∂

∂ θ

�

z +%e iθ

z −%e iθ

�

=
(z −%e iθ )r e iθ i +(z +%e iθ )r e iθ i

(z −%e iθ )2

= i%e iθ 2z

(z −%e iθ )2

= i x
2z

(z −x )2
.

Hence, taking ∂ /∂ θ under the integral we have for x =%e iθ that

u ′(x ) =
1

πr

∫

|z |=r

z

(z −x )2
u (z )d z

Writing ‖ · ‖q := ‖ · ‖Lq (Ω), it now follows that

‖u ′(%e iθ )‖q ≤
1

π

∫ π

−π

‖u (r e i t )‖q

(r e i t −%e iθ )2
d t

=
1

π

∫ π

−π

‖u (r e i (s+θ ))‖q

r 2−2r% cos(s )+%2
d s

so integrating both sides and using Minkowski’s integral inequality,

1

2π

∫ π

−π

‖u ′(%e iθ )‖p
q dθ

=
1

2π

∫ π

π

�

1

π

∫ π

−π

‖u (r e i (s+θ ))‖q

r 2−2r% cos(s )+%2
d s

�p

dθ
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≤
1

π

∫ π

−π

M p ,q (r, u )
r 2−2r% cos(s )+%2

d s

=
2

r 2−%2
M p ,q (r, u ).

As r < 1 we can set % = r 2 so that % < r to get

M p ,q (r 2, u ′)≤
2

r 2− (r 2)2
M p ,q (r, u ) =

1

r 2

2

1− r 2
M p ,q (r, u ).

Multiplying both sides by r 2 gives our estimate.

Let u be aH (D)-valued Gaussian random variable such that Eu (z ) = 0 for

z ∈D then considering the special case of q = p = 2, these estimates show that

for r < 1,

r 2 1

2π

∫ π

−π

E|u ′(r e iθ )|2 dθ ≤
2

1− r 2

1

2π

∫ π

−π

E|u (r e iθ )|2 dθ .

Hence, the average variance of u ′ on concentric circles of radius r grows faster

than the average variance of u by a factor of (1− r 2)−1.

This is one of the motivations to look at the space ofH (D)-valued Gaussian

random variables u such that

sup
z∈D
‖u ′(z )‖L2(Ω)(1− |z |2)<∞.

7.3 Bloch random variables

We recall that an analytic function g :D→C is called a Bloch function if

sup
z∈D
|g ′(z )|(1− |z |2)<∞.

Readers interested in this scalar setting may refer to Chapter VII in the book by

Garnett and Marshall [90] for more information and further references.
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We shall now extend this concept by replacing the absolute value in this

definition by the norm ‖ · ‖Lq (Ω) to suit our random variable situation. That is, if

u is aH (D)-valued random variable we define

‖u ‖Bp (D) := sup
z∈D
‖u ′(z )‖Lp (Ω)(1− |z |2),

and, without loss of generality, if u is Gaussian we can simply consider

‖u ‖B := sup
z∈D
‖u ′(z )‖L2(Ω)(1− |z |2).

We denote by B the space of allH (D)-valued Gaussian random variables u

such that ‖u ‖B <∞. We call u ∈B a Bloch random variable.

7.4 Conformal invariance

LetS =S (Rd ;C) be the Schwartz space of complex-valued rapidly decreasing

functions on Rd and let S ′ be its topological dual: the space of complex

tempered distributions onRd . Every Borel complex measure µ onRd , that is a

measure whose variation ‖µ‖ satisfies

∫

Rd

1

(1+ |x |2)n
‖µ‖(d x )<∞,

for a certain n ∈N can be identified with the distribution

〈µ,ϕ〉=
∫

Rd

ϕ(x )µ(d x ),

where ϕ is a test function inS . Define the group of translations (τx )x∈Rd onS
by the formula

τxϕ(y ) =ϕ(x + y ), ϕ ∈S , x , y ∈Rd .

The group (τx ) can be extended toS ′ by the relationship

〈τxµ,ϕ〉= 〈µ,τ−xϕ〉, ϕ ∈S .



192

We recall that a Wiener process (W (t ))t≥0 taking values inS ′ is called spatially

homogeneous if for every t ≥ 0 the law L [W (t )] of W (t ) in S ′ in invariant

with respect to the group of translations (τx ), that is, for any Borel set B ⊂S ′,

L [W (t )](B ) :=P[W (t )∈ B ] =P[W (t )∈τ−1
x B ] =:τx ?L [W (t )](B ).

Stochastic evolution equation inS ′ driven by spatially homogeneous noise of

the form

d X (t ) = AX (t )d t +d W (t ), X (0) = 0, (7.5)

where A is a pseudodifferential operator in S ′ and (W (t ))t≥0 is a spatially

homogeneous Wiener process have been considered in a number of papers

[99, 100, 101, 84, 102] and in the monographs [11, 28, 33]. A concrete example

of a SPDE that can be considered in the framework of (7.5) is the stochastic

heat equation in R2 given by

∂t u (t ) =∆u (t )+ Ẇ (t ), u (0) = 0. (7.6)

where (W (t ))t≥0 is a cylindrical Wiener process on L2(R2,µ), i.e., so that W

models a space-time white noise. Unlike the one-dimensional case, this equa-

tion is known not to have function-valued solutions.

Clearly, the concept of spatially homogeneous noise is not appropriate for

noise on a bounded domain U ∈Rd as a translation may take points inside U

to Rd \U . Therefore, one may pose the question: what might be an interesting

replacement for spatially homogeneous noise on a bounded domain?

When (7.6) is considered on some bounded domain U ⊂ R2 with zero

Dirichlet boundary conditions and (W (t ))t≥0 is a cylindrical Wiener process on

L2(U ), the same problem occurs: solutions areS ′ valued and not L2(U )-valued.

This situation is particularly interesting as the stationary solution is given by

the Gaussian free field (e.g., see Remark 2.1 in [103]) which has been an object

of intense study over the last years due to its connection to Schramm-Loewner

evolutions (SLE). It is also known that the law of the Gaussian free field (GFF)

on the plane is invariant under a conformal transformation [104]. This suggests
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that an interesting replacement for spatially homogeneous noise for a domain

U ⊂R2 is perhaps to consider noise whose law is invariant under conformal

transformations. That is, stochastic evolution equations in the planeR2 'C of

the form

d X (t ) = AX (t )d t +dW (t ), X (0) = 0,

where (W (t ))t≥0 is a conformally invariant noise.

In the spirit of this idea, let CSM(D) be the set of conformal self maps of D
which are given by transformations of the form

T (z ) =λ
z +a

1+a z
,

with a ∈D and |λ|= 1. These maps form a group under composition. We shall

now show the B-norm of a Gaussian Bloch random variable is invariant under

CSM transformations.

Lemma 7.3. Let u be a H (D)-valued Gaussian random variable such that

‖u ‖B <∞, then the norm ‖u ‖B is invariant under T ∈CSM(D).

Proof. As

∂

∂ z
u
� z +a

1+a z

�

�

�

�

�

z=0

= u ′(a )(1− |a |2),

it follows that

sup
T∈CSM(D)

‖(u ◦T )′(0)‖L2(Ω) = sup
a∈D
‖u ′(a )‖L2(Ω)(1− |a |2)

= ‖u ‖B,

and ‖u ◦T ‖B = ‖u ‖B.
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7.5 A law of iterated logarithm

Our second motivation for defining the space of Bloch random variables is the

well-known observation that Bloch functions of the form

∞
∑

n=0

z 2n

behave like a random series as z → T [90]. This lead to the development by

Makarov of a law of iterated logarithm result that gives a quantitative estimate

of the rate of blow-up near the boundary ofD for Bloch functions [105]. Due to

this connection, it seems obvious that one should attempt a similar result for

our Bloch random variables.

If u is aH (D)-valued Gaussian random variable we write for p ≥ 0,

Ip (r ) :=
1

2π

∫ π

−π

|u (r e iθ )|2p dθ .

Notice that, as opposed to M p (r, u ), the evaluation Ip (r ) does not contain

a L2(Ω)-norm hence it is a random variable generated by taking the 2p -th

(spatial) moment of u on a circle of radius r . In the special case of p = 1, we

have the relationship

EI1(r ) =M 2(r, u ).

The following estimate will be used to obtain a growth rate for Ip (r ).

Lemma 7.4. For r < 1 we have

d

d r

�

r I ′p (r )
�

=
2p (2p −1)r

2π

∫ π

−π

|u (r e iθ )|2p−2|∇u (r e iθ )|2 dθ .

Proof. As u ∈H (D) and r < 1, we have by following the proof of Theorem 6.21

that

d

d r

1

2π

∫ π

−π

|u (r e iθ )|2p dθ
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=
2p (2p −1)

2π

1

r

∫ r

0

∫ π

−π

|u (s e iθ )|2p−2|∇u (s e iθ )|2s dθd s .

The conclusion now follows by multiplying both sides by r and differentiating

with respect to r .

To extend the results of Makarov to the random variable (i.e. random field)

setting, we need an almost sure pointwise bound of the gradient of the field

u overD. Our next lemma provides such a bound under the assumption that

‖u ‖B ≤ 1. We lose no generality by bounding by 1 as we can always scale our

field u .

Lemma 7.5. If ‖u ‖B ≤ 1 and r < 1 then, almost surely,

sup
z∈D
|∇u (r z )|2 ≤

1

(1− r 2)2
.

Proof. For z ∈Dwe have

P{|∇u (r z )|(1− r 2)> n} ≤ n−2E|∇u (r z )|2(1− r 2)2

= n−2‖u ′(r z )‖2
L2(Ω)(1− r 2)2

≤ n−2‖u ‖2
B

.

So by a Borel-Cantelli argument, it holds almost surely that

|∇u (r z )| ≤
1

(1− r 2)

Squaring both sides and taking the supremum over z ∈D gives the claim.

By applying our previous two lemmas, we may now recursively iterate our

definition of Ip (r ) to obtain an almost sure growth rate for Ip (r ).

Lemma 7.6. For any p ≥ 0, if Ip (0) = 0 and ‖u ‖B ≤ 1 then we have, almost

surely for r < 1,

Ip (r )≤ p !

�

log
1

1− r 2

�p

.
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Proof. By Lemma 7.4 we have

d

d r

�

r I ′p (r )
�

=
2p (2p −1)r

2π

∫ π

−π

|u (r e iθ )|2p−2|∇u (r e iθ )|2 dθ

then by Lemma 7.5 and our assumption,

≤
2p (2p −1)r
2π(1− r 2)2

∫ π

−π

|u (r e iθ )|2p−2 dθ

=
2p (2p −1)r
(1− r 2)2

Ip−1(r )

Now notice that I0(r ) = 1 so our claim holds for p = 0. Considering p = 1, we

get

d

d r

�

r I ′1(r )
�

≤
2r

(1− r 2)2

=
1

2

4r

(1− r 2)2

=
1

2

d

d r

�

r
d

d r

�

log
1

1− r 2

��

As Ip (0) = 0 by assumption, we integrate both sides with respect to r , cancel r

on both sides, then integrate again, to get

I1(r )≤
1

2
log

1

1− r 2
.

Now for p = 2, we get

d

d r

�

r I ′2(r )
�

≤
12r

(1− r 2)2
I1(r )

=
6r

(1− r 2)2
log

1

1− r 2

≤
3

4

8r

(1− r 2)2

�

log
1

1− r 2
+ r 2

�

=
3

4

d

d r

�

r
d

d r

�

log
1

1− r 2

�2
�
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and it follows that I2(r )≤ 3
4

log( 1
1−r 2 )2. Now as

d

d r

�

r
d

d r

�

log
1

1− r 2

�p�

=
4p r

(1− r 2)2

�

log
1

1− r 2

�p−2�

(p −1)r 2+ log
1

1− r 2

�

we see that for p ≥ 1,

4p r

(1− r 2)2

�

log
1

1− r 2

�p−1

≤
d

d r

�

r
d

d r

�

log
1

1− r 2

�p�

.

With a bit of thought the proceeding calculations allow is to guess that at

each iteration we pick up the constant (2p −1)/2 and since
∏p

k=1(2k −1)/2=

Γ(p +1/2)/
p
π, we conjecture that

Ip (r )≤ p !

�

log
1

1− r 2

�p

.

Assume that this inequality holds for p −1, then

d

d r

�

r I ′p (r )
�

≤
2p (2p −1)r
(1− r 2)2

Ip−1(r )

≤
(2p −1)(p −1)!

2

4p r

(1− r 2)2

�

log
1

1− r 2

�p−1

≤
(2p −1)(p −1)!

2

d

d r

�

r
d

d r

�

log
1

1− r 2

�p�

≤ p !
d

d r

�

r
d

d r

�

log
1

1− r 2

�p�

Now integrating both sides, cancelling r both sides, and integrating again we

get

Ip (r )≤ p !

�

log
1

1− r 2

�p

.

Hence the result holds by induction.
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Recall that for a function u ∈H (D), the radial maximal function of u is

the function M rad u defined for e iθ ∈T by

(M rad u ) (e iθ ) := sup
0<r<1

|u (r e iθ )|.

Our next result is an extension of Makarov’s law of iterated logarithm for

Bloch functions to Bloch random variables (i.e. random fields). Instead of

Makarov’s original, we have followed the approach found in [90] which is

attributed to Carleson and Pommerenke.

If u ∈H (D)∩B and E|u (z )|2 =∞ for almost every point z ∈ T, then the

next result may be understood as an almost sure rate of blow-up for u near the

boundary T.

Theorem 7.7. If u ∈B satisfies Eu (0)2 = 0 and ‖u ‖B ≤ 1 then we have, almost

surely,

lim sup
r→1−

|u (r e iθ )|
Æ

log 1
1−r

log log log 1
1−r

≤ 1,

for almost every e iθ ∈T.

Proof. We first fix r < 1 and write u r (e iθ ) := u (r e iθ ) and u ∗r (e
iθ ) :=M rad u r (e iθ )

so that

(u ∗r )(e
iθ ) = sup

0<%<1
|u r (%e iθ )|= sup

0<%<r
|u (%e iθ )|.

By our assumptions, it follows that u r ∈ L2(T) almost surely as Ip (r )<∞ almost

surely. Further, by the Hardy-Littlewood maximal theorem,

1

2π

∫ π

−π

|u ∗r (e
iθ )|2p dθ ≤

1

2π

∫ π

−π

|u (r e iθ )|2p dθ

® p !

�

log
1

1− r 2

�p

® p !

�

log
1

1− r

�p

.
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Now choose a fixed α> 1. As we can bound

1

(1− r ) log 1
1−r

> 1

for 0< r < 1, it follows that

1
�

log 1
1−r

�p

1
�

log log 1
1−r

�α <
1

1− r

1
�

log 1
1−r

�p+1

1
�

log log 1
1−r

�α

<

∫ 1

r

1

1− s

1
�

log 1
1−s

�p+1

1
�

log log 1
1−s

�α d s

=:

∫ 1

r

L p (s )d s

and then
|u ∗r (e iθ )|2p

�

log 1
1−r

�p �
log log 1

1−r

�α ®
∫ 1

r

|u ∗s (e
iθ )|2p L p (s )d s

Now the bound on the right-hand side depends θ , p and our choice of α. We

shall now derive a bound that holds for almost every θ ∈ [−π,π] in terms of p .

Let us define the sets

Qp := {θ :

∫ 1

r

|u ∗s (e
iθ )L p (s )d s > p 2p !}.

By an application of Chebyshev’s inequality and Fubini’s theorem,

|Qp | ≤
1

p 2p !

1

2π

∫ π

−π

∫ 1

r

|u ∗s (e
iθ )|2p L p (s )d s

=
1

p 2p !

∫ 1

r

L p (s )
1

2π

∫ π

−π

|u ∗s (e
iθ )|2p dθd s

=
1

p 2p !

∫ 1

r

L p (s )p !

�

log
1

1− r

�p

d s

≤
1

p 2

∫ 1

r

1

1− s

1

log 1
1−s

1
�

log log 1
1−s

�α d s
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®α
1

p 2

As
∑∞

p=1 |Qp |<∞ it follows by the Borel-Cantelli lemma that there exists a p0

such that if θ 6=
⋃∞

p=p 0Qp then we can bound

|u ∗r (e iθ )|2p

�

log 1
1−r

�p �
log log 1

1−r

�α ® p 2p !

Multiplying by (log log(1/(1− r )))α and using the definition of u ∗r we get

|u (r e iθ )|2p

�

log 1
1−r

�p ® p 2p !

�

log log
1

1− r

�α

Taking powers of 1/2p both sides,

|u (r e iθ )|
Æ

�

log 1
1−r

�

® (p 2)
1

2p (p !)
1

2p

�

log log
1

1− r

�
α

2p

(7.7)

We now using Stirling’s formula: m !∼
p

2πm m+1/2e−m and take p = log log log 1
1−r

to bound

(p 2)
1

2p (p !)
1

2p

�

log log
1

1− r

�
α

2p

® p
5

4p
p

p

We now divide both sides of (7.7) by
p

p =
Æ

log log log 1
1−r

and notice that if

limr→1 then p →∞, so the final result follows by limp→∞p
5

4p = 1.
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Outside-in Approach

Although the Bloch random variable approach of Chapter 7 gives us a deeper

understanding of the white noise situation onD and provides us with quantita-

tive estimates of the rate of growth near the boundary, we believe that it would

be even better if we could work from the outside inwards. That is, start from

the definition of the boundary data and work our way inwards to obtain an

estimate. This would provide a sharp connection between the boundary data

and the dynamics onD. In this chapter, we perform this “outside-in” approach.

In §8.1 we construct a spatial white noise on T using a one-dimensional

Brownian motion. Then, in §8.2, we construct a Poisson Wiener integral which

will form the base of our approach. In §8.3 and §8.4 we discuss the conse-

quences of this characterisation and the relationship with tangential deriva-

tives. In §8.5 we recall some special results on the paths of Brownian motion

that we make use of in §8.6 to estimate the rate of blow-up near typical points

and slow points of the Brownian motion on T.
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8.1 White noise on T and Brownian motion

Let T be a Borelσ-algebra of T and let λ be the Lebesgue measure on (T,T )
normalised so that λ(T) = 1. We call the white noise w on (T,T ,λ) a space

white noise and model it in the following way.

Let (B̃ (t ))t≥0 denote a standard Brownian motion with B̃ (0) = 0 and (Ft )t≥0

being its natural filtration. We now shift (B̃ (t ))t≥0 to obtain a standard Brownian

motion (B (t ))t≥0 starting at t =−π given by

B (t ) := B̃ (t +π),

so that B (−π) = 0. We model our space white noise w by the paths of (B (t ))t≥0

by defining for θ1,θ2 ∈ [−π,π),

w ({e iθ : θ1 ≤ θ < θ2}) :=
B (θ2)− B (θ1)p

2π
.

We can now check that w satisfies Definition 2.16. From the properties of

Brownian motion it is clear that if A1 = {e iθ : θ1 ≤ θ < θ2} and A2 = {e iθ : θ2 ≤
θ < θ3}with θ1 <θ2 <θ3 that w (A1) is a centered Gaussian and

E(w (A1))2 =E
�

B (θ2)− B (θ1)p
2π

�2

=
|θ2−θ1|

2π
=λ([θ1,θ2)).

It follows from the definition of A1 and A2 that A1 ∩A2 = ; and A1 ∪A2 = {e iθ :

θ1 ≤ θ < θ3} so thanks to the independent increment property of Brownian

motion it follows that w (A1) and w (A2) are independent and

w (A1 ∪A2) = B (θ3)− B (θ1)

= B (θ3)− B (θ2)+ B (θ2)− B (θ1)

=w (A2)+w (A1).

Hence, we can conclude that w is a white noise. We recall that by Kolmogorov’s

theorem, every Brownian motion has a version with Hölder continuous trajec-

tories for any exponent γ < 1/2. We shall henceforth always assume that we

have taken a version such that θ 7→ B (θ ) is continuous almost surely.
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We note that it is also possible to define a complex-valued space white

noise by setting

B (t ) =
B1(t )+ i B2(t )p

2

where B1, B2 are independent real Brownian motions and B becomes a stan-

dard complex Brownian motion scaled so that EB (1)B (1) = 1.

Alternatively, we know that (B (θ ),0 ≤ θ < 2π) can be given explicitly in

terms of an orthonormal basis (hn ) of L2(T) by

B (θ ) =
∞
∑

n=1

γn (1[0,θ ], hn ),

where (γn )∞n=1 is a Gaussian sequence and (hn )∞n=1 is an orthonormal basis for

L2(T). Therefore, as hn (z ) = z n where n ∈−Z∪Z, we have

B (θ ) =
∞
∑

n=−∞
γn

1

2π

∫ θ

0

e−i nσdσ.

Intuitively, it should be clear that we have formally (and neglecting con-

stants)

d w (e iθ )' d B (θ )' Ḃ (θ )dθ

so that space white noise on T can be seen pointwise as the time derivative of

a standard Brownian motion that is “wrapped” around the boundary ofD.

8.2 Poisson Wiener integral

Using the representation of the space white noise w in terms of a Brownian

motion, we shall now show that the Poisson integral P[w ](e iθ ) can be written

in terms of a complex-valued Wiener integral.

As is customary, we start with indicator functions of the form f := 1A where

A = {e iθ : θ1 ≤ θ < θ2} and define the random variable

I ( f ) :=w (A).
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It should be clear that this definition extends by linearity to all step functions

f :T→C and the following lemma is straight forward.

Lemma 8.1. For all step functions f :T→C, I ( f ) is a complex Gaussian random

variable and

E|I ( f )|2 =
1

2π

∫ π

−π

| f (e iθ )|2 dθ

Proof. By the definition of the space white noise w for f of the form

f =
n
∑

i=1

a i 1{e iθ :θ∈[θi−1,θi )}

with θ0 =−π and θn =πwith a i ∈C, we have

I ( f ) =
n
∑

i=1

a i w ([θi−1,θi )) =
n
∑

i=1

a i
1
p

2π
(B (θi )− B (θi−1))

which is a complex-valued Gaussian. By the independent increment and

Gaussianity properties of Brownian motion it follows, by treating the complex

terms carefully, that

E|I ( f )|2 =
n
∑

i=1

a i a i
1

2π
(θi −θi−1) =

1

2π

∫ π

−π

| f (e iθ )|2 dθ = ‖ f ‖2
2

Let L2(Ω) denote the Hilbert space of square-integrable complex-valued

random variables with inner product [X , Y ] := EX Y . Let f ∈ L2(T) and take

a sequence ( f n )∞n=1 of step functions f n : T→ C such that f n → f in L2(T). It

follows from Lemma 8.1 that (I ( f n ))∞n=1 is a Cauchy sequence in L2(Ω). We set

I ( f ) := lim
n→∞

I ( f n ), in L2(Ω),

and as it can be shown that this limit is independent of the sequence ( f n )∞n=1

chosen, the random variable I ( f ) is well-defined. We denote I ( f ) by

I ( f )(ω) =

 

∫ 2π

0

f (e iθ )d w (e iθ )

!

(ω), ω∈Ω, almost surely,
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and it should also be clear from Lemma 8.1 that we have the alternative repre-

sentation in terms of a Wiener integral

I ( f ) =

∫ π

−π

f (e iθ )d w (e iθ ) =
1
p

2π

∫ π

−π

f (e iθ )d B (θ ),

and is a complex-valued Gaussian random variable with mean 0 and variance

‖ f ‖2
2.

In particular, taking f = Px where

Px (z ) =
1− |x |2

|x − z |2
, x ∈D, z ∈T.

is the Poisson kernel gives us the Poisson-Wiener integral:

PW [w ](x ) :=

∫

T

Px (z )d w (z ) =
1
p

2π

∫ π

−π

Px (e iθ )d B (θ ), x ∈D.

It should be noted that since we are only concerned with the case where

f = Px and Px is of bounded variation we can use path-by-path integration,

�∫

T

Px (z )d w (z )

�

(ω) =
1
p

2π

∫ 2π

0

Px (e iθ )d B (θ ,ω).

Remark 8.2. A stochastic integral of this form was studied in §5.4.2 of [106] in

connection with Gaussian Analytic functions (GAF) and their zeros.

8.3 Consequences of characterisation

We believe that this characterisation provides some interesting insight into the

dynamics of the harmonic extension of white noise to the diskD. For example,

we recall that

Theorem 8.3. A positive harmonic function is equal to the Poisson integral of

an increasing function.

but we also know that
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Theorem 8.4. Brownian motion has, almost surely, no local points of increase.

Therefore, we can deduce that P[w ] is, almost surely, not a positive har-

monic function.

8.4 Tangential derivatives

Let BV(T) denote the set of all functions of bounded variation on T. We recall

(e.g., see Chapter 1 of [98]) that the Poisson-Stieljes integral of a function

v ∈BV(T) is defined to be

PS[v ](x ) :=

∫

T

Px (z )d v (z ). (8.1)

Due to the connection between BV(T) andM (T), a function u ∈H (D) belongs

to H 1 if and only if u is equal to the Poisson Stieljes integral of a function

v ∈BV(T). Further, we can rewrite (8.1) as

PS[v ](x ) =
v (π)−v (−π)

2π
Px (e iπ)+

∫

T

P ′x (z )v (z )
d z

2π
,

where for x = r e iθ and z = e i t we have Px (z ) = P(r e i (θ−t )) and

P ′x (z ) =
∂ P

∂ t
(r e i (θ−t )) =

−2r sin(θ − t )
1−2r cos(θ − t )+ r 2

P(r e i (θ−t )).

Alternatively, we can also write

PS[v ](r e iθ ) =
v (π)−v (−π)

2π
P(r e i (θ+π))+

∂

∂ θ
P[v ](r e iθ )

where P[v ] is the (standard) Poisson integral of a function v . This representa-

tion is interesting as we can interpret the term

∂

∂ θ
P[v ](r e iθ )

as a tangential derivative of P[v ] at the point r e iθ ∈D. Further, for a fixed θ

we can estimate

|PS[v ](r e iθ )|®
�

�

�

�

∂

∂ θ
P[v ](r e iθ )

�

�

�

�



207

as r → 1. We recall (e.g., see Theorem 1.1 in [98]) that the following three classes

of functions are equivalent:

• Poisson-Stieljes integrals,

• differences of two positive harmonic functions,

• H 1.

Further, Theorem 1.2 in [98] shows that if a function v ∈ BV(T) has a finite

derivative at e iθ ∈T, then

lim
r→1

PS[v ](r e iθ ) = v ′(e iθ ).

It is clear that it would be nice to be able to use these concepts and representa-

tions for the Poisson-Wiener integral PW [w ] that we defined in the last section.

We note however the following complications:

• Brownian paths t 7→ B (t ) are of unbounded variation (e.g., see Theorem

1.35 in [107]) hence PW [v ] does not fall into the class of Poisson-Stieljes

integrals,

• Almost surely, Brownian motion is nowhere differentiable (e.g., see Theo-

rem 1.30 in [107]) hence naïvely we would obtain, almost surely, that

lim
r→1

PW [w ](r e iθ ) = B ′(θ ) =∞

at almost every point e iθ ∈T.

Therefore, at first glance it seems that the representations in this section are

useless for our purpose but we take delight in the following:

• As PW [w ] /∈ PS ≡ H 1 and H 2 ⊂ H 1, we reconfirm the results of last

chapter that showed we could not obtain a well-defined H 2-valued

Gaussian random in the white noise case. In fact, this now shows that

we can not even obtain aH 1-valued Gaussian random variable (i.e. by

imbeddingH 2 into the larger spaceH 1) in the white noise case.
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• The limit PW [w ](r e iθ )→ B ′(θ )makes “physical” sense, as white noise is

often heuristically understood by physicists and engineers as the time

derivative of Brownian motion.

We finish this section by stating that, as in the case of the Poisson-Stieljes

integral, due to the nice properties of the Poisson kernel it is valid to write

PW [w ](r e iθ ) =
B (π)− B (−π)

p
2π

P(r e i (θ+π))+
∂

∂ θ
P[B ](r e iθ )

where

P[B ](r e iθ ) :=
1
p

2π

∫ π

−π

P(r e i (θ−t ))B (t )d t .

Hence, the term
∂

∂ θ
P[B ](r e iθ )

is a random variable giving the tangential derivative of P[B ] at r e iθ ∈ D. By

combining this characterisation with some special properties of Brownian

motion we shall obtain, in the coming sections, a sharper upper bound for the

behaviour of PW [w ] near the boundary ofD.

8.5 Typical and Exceptional points of Brownian

motion

In 1963, Dvoretzky improved this and established

Theorem 8.5 (Dvoretzky). Let (Bt , t ≥ 0) be a standard Brownian motion. Then

P
�

lim sup
h→0+

|Bt+h − Bt |
h1/2

> c0,∀t

�

= 1, (8.2)

for a positive constant c0.

The question whether (8.2) holds for all constants was settled by Kahane in

1974. The answer is no. He showed that
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Theorem 8.6 (Kahane). Let (Bt , t ≥ 0) be a standard Brownian motion. Then

for each ε > 0,

P
�

∃t : lim sup
h→0+

|Bt+h − Bt |
h1/2

< c1

�

= 1,

for a positive constant c1 <∞.

Kahane calls those t which satisfy

lim sup
h→0

|Bt+h − Bt |
p

|h |
<∞

the slow points of (Bt , t ≥ 0). Due the law of iterated logarithm, the slow

points almost surely have Lebesgue measure 0, but Kahane proved that their

Hausdorff dimension a.s. equals 1.

8.6 Blow-up near the boundary

At almost every point on the boundary we have the following upper estimate

of the blow-up.

Theorem 8.7. Almost surely, for almost all r e iθ ∈T

lim sup
r→1−

|PW [w ](r e iθ )|®
log log

1

1− rp
1− r

.

Proof. We take r < 1 and write

PW [w ](r e iθ ) =
B (π)− B (−π)

2π
Pr (θ +π)+

∂

∂ θ

∫ π

−π

Pr (θ − t )B (t )
d t

2π
.

So we estimate that the first term is almost surely bounded by some constant

and now proceed to estimate the second term. We set

f (θ ) =

∫ π

−π

Pr (θ − t )B (t )
d t

2π
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and assume that we have taken a continuous version of t 7→ B (t ) (which exists

almost surely). Then as f is harmonic it is twice differentiable and using

Taylor’s theorem, for h > 0 we can estimate

f (θ +2h) = f (θ )+2h f ′(θ )+2h2 f ′′(θ )+O(h3)

so that

| f ′(θ )| ≤
| f (θ +2h)− f (θ )|

2h
+h | f ′′(θ )|.

As f (θ +2h)− f (θ ) is harmonic and B (t ) is continuous on T almost surely, it

follows that

lim
r→1
| f (θ +2h)− f (θ )|= |B (θ +2h)− B (θ )|

for all e iθ ∈T. This allows us to estimate

| f ′(θ )| ≤
|B (θ +2h)− B (θ )|

2h
+h | f ′′(θ )|.

The law of iterated logarithm for Brownian motion says that, almost surely,

lim sup
h→0+

|B (h)|
p

2h log log(1/h)
= 1.

Setting ϕ(h) =
p

2h log log(1/h), we have

| f ′(θ )| ≤
ϕ(2h)

2h
+h | f ′′(θ )|.

Writing M (r, f ) = supθ | f (θ )|we have

M (r, f ′)≤
ϕ(2h)

2h
+hM (r, f ′′). (8.3)

We now need to estimate M (r, f ′′) and to relate an increment of θ to an incre-

ment of r .

We notice the following. Let B%(z ) of radius % centered at z . If u is continu-

ous on B%(z ) and harmonic in B%(z ), then by the reproducing property for the

Poisson kernel we have for z = r e iθ and % = (1+ r )/2 that

u (r e iθ ) =

∫ π

−π

P%(θ −η)u (%e iη)
dη

2π
.
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As

d

dθ
P%(θ −η) =

2r% sin(t −θ )
r 2%2−2r% cos(t −θ )+1

P%(θ −η)

It follows that there exists C > 0 such that

sup
θ

�

�

�

�

d

dθ
u (r e iθ )

�

�

�

�

≤ sup
η
|u (%e iη)|

∫ π

−π

�

�

�

�

d

dθ
P%(θ −η)

�

�

�

�

dη

2π

≤C sup
η
|u (%e iη)|(%2− r 2)−1

≤C sup
η
|u (%e iη)|(1− r )−1

Therefore, setting u = f ′ we get

M (r, f ′′)≤C (1− r )−1M ((1+ r )/2, f ′).

and it follows from (8.3) that

M (r, f ′)≤
ϕ(2h)

2h
+C h(1− r )−1M ((1+ r )/2, f ′)

Setting A(r ) = (1− r )M (r, f ′) for 0< r < 1 we get

A(r )≤ (2h)−1(1− r )ϕ(2h)+C 2t (1− r )−1A((1+ r )/2)

Hence taking h = (1− r )/(8C )we get

A(r )≤ 4Cϕ(1− r )+
1

4
A((1− r )/2)

For 0<% < 1, we have

∫ 1

%

A(r )d r ≤ 4C

∫ 1

%

ϕ(1− r )d r +
1

4

∫ 1

%

A((1+ r )/2)d r

then performing a change of variables in the integrals on the right-hand side,

∫ 1

%

A(r )d r ≤ 4C

∫ 1−%

0

ϕ(s )d s +
1

2

∫ 1

(1+%)/2

A(s )d s .
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Taking the last term on the right-hand side to the left-hand side, we get

1

2

∫ 1

%

A(r )d r ≤ 4C

∫ 1−%

0

ϕ(s )d s

and as ϕ is increasing on (0, 1−%)we estimate

1

2

∫ 1

%

A(r )d r ≤ 4C (1−%)ϕ(1−%).

As

M (%, f ′)(1−%)2 ≤ 2

∫ 1

%

A(r )d r

we get

M (%, f ′)(1−%)2 ≤ 16C (1−%)ϕ(1−%)

Giving

M (%, f ′)≤ 16C (1−%)−1ϕ(1−%)

Then taking % = r and f ′ =X , we get

M (r, X )≤ 16C
ϕ(1− r )

1− r
.

It is known that Brownian motion has certain exceptional behaviour. We

call z ∈T an a -slow point if arg z is an a -slow time for B , that is,

lim sup
h→0+

|B (arg z +h)− B (arg z )|
p

h
≤ a .

a -slow times exist for a > 1 but not for a < 1.

Theorem 8.8. If z ∈T is an a -slow point then

lim sup
r→1−

|P[Ḃ ](r z )|®
1

p
1− r

.
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Proof. Without loss of generality, assume that z = 1 is an a -slow point of B .

Then by integration by parts,

2πP[Ḃ ](r ) = Pr (t )B (t )|π−π−
∫ π

−π

P ′r (t )B (t )d t

=
1− r

1+ r
(B (π)− B (−π))−

∫ π

−π

P ′r (t )B (t )d t

As r → 1− the first term goes to zero so we now estimate the second term. As

|P ′r (t )| ≤Cδ(1− r ) for |t |>δ for every small δ> 0,

lim sup
r→1−

∫

|t |>δ

|P ′r (t )||B (t )|d t = 0.

Therefore, using |t | ≤ c (1− r ) for some constant c > 0,

2π
p

1− r |P[Ḃ ](r )| ≤

�

�

�

�

�

∫

|t |≤δ

p

1− r
p

t P ′r (t )
B (t )
p

t
d t

�

�

�

�

�

≤ c

∫

|t |≤δ

�

�(1− r )P ′r (t )
�

�

�

�

�

�

B (t )
p

t

�

�

�

�

d t

≤ 2c

∫ π

−π

Pr (t )

�

�

�

�

B (t )
p

t

�

�

�

�

d t

≤ 2c a

The result follows taking r → 1−.





9

Blow-up in higher dimension

In the previous chapter we saw that in the two-dimensional setting where the

domain is D with boundary T, we can obtain a white noise on T by “wrapping”

a one-dimensional Brownian motion. Once this construction was obtained we

associated rates of blow-up with the local fine properties of Brownian motion.

In this chapter we extend these concepts to higher dimensions whereby the

noise on the boundary is given by a random field and we associate the rate of

blow-up with the local behaviour of the random field.

In §9.1, we consider the operator which takes a sphere or ball average of a

random field and show that it is a γ-radonifying operator. In §9.2, we relate the

concept of thick points of Gaussian random fields with the notion of Lebesgue

points. This allows us to define a new type of maximal function that we call

the “maximal thickness function”. In §9.3, apply this definition to derive a rate

of blow-up for the Poisson integral of a random field on the boundary of the

half-space Rd
+, thus extending the results of Chapter 8 to higher dimension.
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9.1 Sphere and ball averaging

We take inspiration from the notation found in [108] but generalize it in a

number of ways. Let U ⊂Rd+1 be a domain with boundary ∂U of co-dimension

one. One may think of two canonical cases: either U is a bounded domain

and ∂U is its smooth boundary or U is the half-space Rd+1
+ and ∂U is the

hyperplane Rd .

Let ( f n ) be an orthonormal basis of a real-valued separable Hilbert space H .

The Gaussian field F = F∂U on the boundary ∂U is given formally as a random

linear combination

F =
∑

n

γn f n , (9.1)

where (γn ) is an i.i.d. Gaussian sequence. In this paper we often have in mind

the extreme case where H = L2(∂U ) so that F is a Gaussian white-noise on ∂U ,

as opposed to [108]where the noise is smoother as H is chosen to be a Sobolev

space. One typically cannot make sense of F as a function unless H is chosen

to be a sufficiently small space to allow an application of a Sobolev embedding

theorem from H to C (∂U ). As this embedding depends on the dimension d ,

obtaining a function-valued version of F becomes harder as the ambient space

dimension d increases. Although F is not a function, one can make sense of F

by average over sufficiently nice Borel sets such as spheres or balls.

9.1.1 In two dimensions

We start with the case where ∂U = R2 as we can quickly adapt the two-

dimensional definitions and approach to averaging found in [108], [109], and

[104].

Let D(z , r ) denote the disk of radius r centered at z ∈ ∂U , then one can

make sense of the circle average process

F (z , r ) =
1

2πr

∫

∂ D(z ,r )

F (x )σ(d x ),
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whereσ(d x ) is the length measure. Further, it holds almost surely, that for all

(z , r )
∫ r

0

2πs F (z , s )d s =

∫

D(z ,r )

F (x )d x

where the right-hand side can be taken as the definition of a disk average pro-

cess. It was shown in Proposition 2.1 of [108] that when F is a two-dimensional

continuum Gaussian Free Field (GFF), its circle average process F (z , r ) pos-

sesses a modification F̃ (z , r )where (z , r ) 7→ F (z , r ) is locally Hölder continuous

of order strictly less than 1/2. This begs the questions: how much regularity

does the circle and disk averaging introduce? and can this process be extended

to higher dimensions? Before attempting to answer these questions one may

draw analogy to some one dimensional results.

9.1.2 In one dimension

Without loss of generality, as we are interested in local averaging, we can

consider the case that ∂U = (0, T ). Or equivalently, identify (0, T ) with the

boundary of the unit disk D ⊂ C through the identification t ↔ e i t with

T = 2π.

It is well-known by specialists in stochastic evolution equations and stochas-

tic partial differential equations (see [19], [33], [6] and the references therein)

that weak and mild solutions of equations perturbed by Gaussian white-noise

can be obtained if the deterministic dynamics (i.e. sans noise) maps cylindrical

measures to radon measures. In the Hilbert space literature one searches for

Hilbert-Schmidt operators and in the Banach space literature, γ-radonifying

operators. The following operator is important in the theory of Brownian

motion and was proved by Ciesielski (see Exercise 5.5 in [6]).

Theorem 9.1. The operator IT : L2(0, T )→C [0, T ] defined by

(IT f )(t ) =

∫ t

0

f (s )d s , f ∈ L2(0, T ), t ∈ [0, T ],
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is γ-radonifying.

One can clearly see that IT is an averaging operator and thus conjecture

that averaging in higher dimensions is also a radonifying process. Further,

from the fundamental theorem of calculus, one can also conjecture that IT

increases the differentiability of f by an order of one.

9.1.3 In d -dimensions

In analogy with our previous discussion, we propose the following d -dimensional

definitions.

Definition 9.2. The sphere average process of radius r centered at z ∈ ∂U is

given by

F (z , r ) =

∫

Sd−1

F (rθ − z )σ(dθ )

whereσ is the surface measure on Sd−1 and the ball average process of radius

r centered at z ∈ ∂U is given by

G (z , r ) =

∫

B (r,z )

F (x )d x

where B (z , r ) is the ball of radius r centered at z ∈ ∂U. We write G (r ) =G (0, r ).

Let us consider the case where the boundary is compact. We can take the

canonical case where ∂U =Q with Q an d -dimensional cube. Without loss of

generality, we can scale and shift Q and assume Q = [0, 1)d .

Theorem 9.3. The operator G : L2(Q)→C (Q × [0, 1]) defined by

(G f )(z , r ) =

∫

B (z ,r )

f (x )d x , f ∈ L2(Q),

is γ-radonifying.

To prove this theorem, we shall make use of the following result mentioned

in [26].
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Theorem 9.4 (Chevet-Carmona). For all T1 ∈ γ(H1, E1) and T2 ∈ γ(H2, E2) we

have

T1⊗T2 ∈ γ(H1⊗̂H2, E1⊗̂εE2),

where H1⊗̂H2 denotes the Hilbert space completion of H1 ⊗H2 and E1⊗̂εE2

denotes the injective tensor product of E1 and E2.

We now have the following result that applies this theorem to a situation that

will be useful for the proof of Theorem 9.3.

Lemma 9.5. If K1, K2, . . . , Kn are compact sets in Rd and we have operators

Ti ∈ γ(L2(K i ),C (K i )) for i = 1, . . . , n then

T1⊗ . . .⊗Tn ∈ γ(L2(K1× · · ·×Kn ),C (K1× · · ·×Kn )).

Proof. We first notice that for compact sets K1 and K2, we have C (K1)⊗̂εC (K2) =

C (K1×K2) (see [110, §5.7.2.10]) and that L2(K1)⊗̂L2(K2) = L2(K1×K2) (see [70,

Section II.4]). Then the result follows by iterating Theorem 9.4.

We note that Theorem 9.3 can be proved from scratch by adapting the

concepts found in the proof of Theorem 9.1 (see [26] for a refined proof) to

the multidimensional setting through the construction of a multidimensional

Haar basis. As this becomes quite messy, we propose the following short proof

that uses Theorem 9.1 and Lemma 9.5.

Proof of Theorem 9.3. We first notice that for d = 2, we have for h ∈ L2([0, 1]2)

the tensor decomposition h = h1⊗h2 with h i ∈ L2([0,1]) for i = 1,2. Then for

any point z = (z 1, z 2)∈ [0, 1]2 and r ∈ [0, 1]we get

(G h)(z , r ) =

∫

B (z ,r )

h(x )d x

=

∫ z 1+r

z 1−r

∫ z 2+
p

r 2−x 2
2

z 2−
p

r 2−x 2
2

h1(x1)h2(x2)d x1d x2
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=

∫ z 1+r

z 1−r

h1(x1)d x1

∫ z 2+
p

r 2−x 2
2

z 2−
p

r 2−x 2
2

h2(x2)d x2

Then we notice that for the first integral, we can estimate

sup
(z 1,r )

�

�

�

�

�

∫ z 1+r

z 1−r

h1(x1)d x1

�

�

�

�

�

= sup
(z 1,r )

�

�

�

�

�

∫ z 1+r

0

h1(x1)d x1−
∫ z 1−r

0

h1(x1)d x1

�

�

�

�

�

≤ 2 sup
t
|(I1h1)(t )|

where I1 is the indefinite integration operator (in the first coordinate) that was

given in Theorem 9.1. We can estimate the second integral in the same way. It

follows for arbitrary space dimension d that

sup
(z ,r )
|(G h)(z , r )| ≤Cn sup

t
|(I1h1)(t )| · · · sup

t
|(Id hd )(t )|,

where Cd > 0 is a constant dependent on the dimension d . By Theorem 9.1,

I i ∈ γ(L2[0, 1],C [0, 1]) for i = 1, . . . , d . Hence, by Lemma 9.5, we have

‖G ‖γ(L2(Q),C ([0,1]d×[0,1])) ≤ ‖I1⊗ · · ·⊗ In‖γ(L2(Q),C ([0,1]d ))

<∞.

Corollary 9.6. If F is a white noise on Q, i.e. given by (9.1) with ( f n ) ∈ L2(Q),

then the ball average process (z , r ) 7→G (z , r ) has a continuous version almost

surely.

9.2 A thickness function

In connection with the study of extremes of the occupation measure of stochas-

tic processes, the concept of a “thick point” is starting to become standard
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terminology. In particular, the following definition in [108] caught our at-

tention: If U ⊂ R2 is a bounded domain, then a point z is an a-thick point

provided

lim
r→0

µ(D(z , r ))
πr 2 log 1/r

=
Ç

a

π
, (9.2)

where D(z , r ) denotes the disk of radius r centered at z ∈ U and µ(A) =
∫

A
F (x )d x . In their case, F is a Gaussian Free Field. That is, F =

∑

n γn f n

where ( f n )∈W 1,2
0 (U ).

We find this definition interesting for the following reasons. In our attempt

to derive a “Fatou theorem” for the harmonic random field generated by white-

noise on the boundary it became apparent that we need to obtain a quantitative

estimate on the local behaviour of the stochastic data around a point as is done

in classic harmonic analysis by various “maximal functions”. What needs to be

defined suddenly becomes clear if we quote the first paragraph of Section 1.1

in [111]:

According to the fundamental theorem of Lebesgue, the relation

lim
r→0

1

|B (z , r )|

∫

B (z ,r )

f (x )d x = f (z ). (9.3)

holds for almost every z , whenever f is locally integrable function

defined on Rd . Here, B (z , r ) is the ball of radius r , centered at z ,

and |B (z , r )| denotes its Lebesgue measure. In order to study the

limit (9.3) we consider its quantitative analogue, where “limr→0” is

replaced by “supr→0”; this is the maximal function.

One can now clearly see the analogy between the Lebesgue point of f given

by (9.3) and the two dimensional thick point of F given by (9.2), all that is

now needed is just a careful choice of definition that extends (9.2) to a higher

dimensional and quantitative analogue. We propose the following:

Definition 9.7. For every z ∈Rd , we call

Tϕ(F )(z ) = sup
r>0

µ(B (z , r ))
|B (z , r )|ϕ(|B (z , r )|1/d )

,
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the (maximal) thickness function of the random field F with gauge function

ϕ where µ(A) =
∫

A
F (x )d x measures the signed mass that F associates with the

Borel set A whenever it is defined, | · | is d -dimensional Lebesgue measure, and

B (z , r ) is a ball of radius r centered at z .

We now proceed to justify this choice of definition. We have chosen the

term ‘gauge’ function forϕ to bring connection to the refinement of the notions

of Hausdorff dimension and Hausdorff dimension that are used in the study

of random fractals, see [107]. In regards to (9.2), the choice ϕ(r ) = log1/r

would be an appropriate example of a gauge. Natural extensions of the classic

Hardy-Littlewood maximal function to capture regularity of the boundary data

have been proposed for when the data is in the space of Lipschitz continuous

functions Λα(Rd ) or the Besov space Λp ,q
α (Rd ). One can refer to Chapter V, §4

and §5 of [111] for the definitions of these spaces and to [112] or [113] for some

new maximal function definitions associated with these spaces. After a few

calculations, the choice of scaling |B (z , r )|1/d seemed appropriate.

Remark 9.8. We recently found a paper by Kolyada [114] where Calderon’s

maximal function definition is abstractly extended and a number Sobolev type

embeddings are proved. A similar scaling to ours is present in his definition.

9.3 Blow-up near points on the boundary

Theorem 9.9. Let F be a random field on ∂U = Rd and u (x , t ) be its Poisson

integral on U =Rd+1
+ . Then almost surely

sup
t>0
|u (x , t )|® (TϕF )(x )ϕ(b 1/d

d t )/t ,

where bd is the volume of the unit ball in Rd and ϕ is an increasing gauge

function.
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Proof. Without loss of generality, we take x = 0 and use polar coordinates to

get

u (0, t ) =

∫

Rd

Pt (−y )F (y )d y =

∫ ∞

0

∫

Sd−1

Pt (r e1)F (rθ )r d−1σ(dθ )d r,

where e1 = (1, 0, . . . , 0)∈ Sd−1 andσ is the surface measure on Sd−1. Let G (r ) be

the ball average process of F centered at 0, assumed to be continuous almost

surely. Then by integration by parts, for some large enough R > 0,

∫

Rd

Pt (−y )F (y )d y =G (t R)Pt (t Re1)−G (0)Pt (0)−
∫ t R

0

∂ Pt

∂ r
(r e1)G (r )d r

=−
∫ t R

0

∂ Pt

∂ r
(r e1)G (r )d r

as G (0) = 0, Pt (0)<∞, and Pt (t Re1) = 0. Setting bd to be the volume of the unit

ball in Rd and B (r ) = B (0, r ), we get that

G (r ) =

∫

B (r )

F (x )d x

=
|B (r )|ϕ(|B (r )|1/d )
|B (r )|ϕ(|B (r )|1/d )

µ(B (r ))

= (TϕF )(0)|Br |ϕ(|B (r )|1/d )

= (TϕF )(0)bd r dϕ(b 1/d
d r )

Therefore, using the fact that d bd =
∫

Sd−1 σ(dθ ),

�

�

�

�

�

∫ t R

0

G (r )
∂ Pt

∂ r
(r e1)d r

�

�

�

�

�

≤ (TϕF )(0)

∫ ∞

0

bd r dϕ(b 1/d
d r )

�

�

�

�

∂ Pt

∂ r
(r e1)

�

�

�

�

d r

= (TϕF )(0)
1

d

∫ ∞

0

∫

Sd−1

rϕ(b 1/d
d r )

�

�

�

�

∂ Pt

∂ r
(r e1)

�

�

�

�

r d−1σ(dθ )d r

= (TϕF )(0)
1

d

∫

Rd

|y |ϕ(b 1/d
d |y |)

�

�

�

�

∂ Pt

∂ y
(−y )

�

�

�

�

d y
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= (TϕF )(0)
1

d

 

∫

|y |<t

+

∫

|y |≥t

!

|y |ϕ(b 1/d
d |y |)

�

�

�

�

∂ Pt

∂ y
(−y )

�

�

�

�

d y .

Using the kernel bounds
�

�

�

�

∂ Pt

∂ y

�

�

�

�

® |y |−d−1,

�

�

�

�

∂ Pt

∂ y

�

�

�

�

® t −d−1,

we estimate
∫

|y |<t

|y |ϕ(b 1/d
d |y |)

�

�

�

�

∂ Pt

∂ y
(−y )

�

�

�

�

d y ®
∫

|y |<t

tϕ(b 1/d
d |y |)t

−d−1 d y

= t −d

∫

|y |<t

ϕ(b 1/d
d |y |)d y

= t −d

∫ t

0

ϕ(b 1/d
d r )r d−1 d r

® d −1t −1ϕ(b 1/d
d t ),

by the observation that ϕ is increasing and the change of variable y = rξwith

|ξ|= 1 and r = |y | so that d y = dξr d−1 d r . In a similar way,

∫

|y |≥t

|y |ϕ(b 1/d
d |y |)

�

�

�

�

∂ Pt

∂ y
(−y )

�

�

�

�

d y ®
∫

|y |≥t

|y |ϕ(b 1/d
d |y |)|y |

−d−1 d y

=

∫ ∞

r

ϕ(b 1/d
d r )d r

and the conclusion follows.
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