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Abstract

The Empirical Mode Decomposition (EMD) is a powerful data analysis method

that can be used to extract embedded components within time series and other

data. In the context of EMD, these embedded components are called Intrinsic

Mode Functions (IMF). Since its inception in the late 1990s, EMD has been applied

in a number of areas, including biomedicine, neuroscience, epidemiology, chemical

engineering, finance, atmospheric turbulence, seismology and oceanography. The

method is advantageous in that it is able to analyse nonlinear and non-stationary

data. Surprisingly, the literature exploring the ability of EMD to analyse data with

different types of non-stationarity is relatively sparse. Also, the sensitivities associ-

ated with the critical initial steps of the EMD procedure are not well understood.

One of the critical steps in determining each of the IMFs involves constructing up-

per and lower envelopes of the local maxima and minima of the time series. In the

original presentation of the EMD methodology, cubic-spline interpolation was used

to construct these envelopes. However, there is no a priori reason to support the use

of cubic splines, and it is natural to wonder how employing alternative interpolation

methods might affect the ultimate outcome of the EMD method.

This dissertation is dedicated to providing a more comprehensive understanding of

the sensitivity of EMD to different interpolation methodologies, and to different

types of data non-stationarity. These sensitivities are investigated systematically

using synthetic time series data that cover a range of interesting features. In addi-

tion, a number of environmental data sets are used to explore how EMD sensitivity

can influence the inferences that might be drawn from IMFs extracted using var-

ious forms of the EMD method. In this part of the study, temperature, sea level

and forest fire danger rating time series are chosen. There is significant interest

in the way these particular variables might be changing over various time scales,

and how these changes might impact various ecosystems, including human societies.

The analyses conducted in this thesis suggest that the robustness and accuracy of

EMD is improved when smoothing-spline interpolation is employed as its underlying

iii



interpolation method. In particular, Smoothing Ensemble EMD (SEEMD) is intro-

duced, and is shown to out-perform other EMD methods in a number of important

contexts. Specifically, SEEMD is shown to be more robust in the presence of noise

and is able to extract more meaningful features from the environmental times se-

ries. It is also found, however, that all EMD-based methods perform poorly when

confronted with time series exhibiting abrupt non-stationarity.
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Chapter 1

Introduction

1.1 Context of this study

In order to understand the physical world we live in better, it is necessary to obtain

quality data and to interpret them correctly. Having quality data means having ap-

propriate measuring instruments and knowing their limitations. Another challenge

is interpreting the data. This is usually achieved by using a method appropriate to

the data. To gain reliable interpretations of the data, it is necessary to know the

limitations and sensitivities of the chosen method.

Analytical methods usually decompose the data (time series or some other signal)

into its primitive or fundamental components (modes). The use of these fundamen-

tal components to describe the original data arises in a number of applications. For

example, in electronics signal processing and in certain geophysical applications, in-

sights can be gained by decomposing a complex signal into components with distinct

frequency characteristics, which can then be analysed to identify particular driving

mechanisms. The Fourier Transform is the pervasive example in this respect, though

other examples such as Principal Components Analysis and Wavelet Analysis are

also widely employed. While methods like the Fourier Transform are key theoretical

tools in signal decomposition, they suffer from certain shortcomings, such as being

poorly suited to the analysis of nonlinear and non-stationary data.

Unlike global methods such as the Fourier Transform, the Empirical Mode Decom-

position (EMD) procedure, [Huang et al., 1998a] expresses the input time series in

terms of an a posteriori defined basis, which is derived from the data themselves.

When combined with the Hilbert transform [Hahn, 1996], which delivers informa-

tion about the frequency/power spectra of the intrinsic modes, EMD constitutes a

useful data-analysis technique that can be applied to nonlinear and non-stationary

time series. The combination of EMD and Hilbert spectral analysis is referred to

collectively as the Hilbert-Huang Transform (HHT).
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The HHT provides a method more suitable for non-stationary and nonlinear time

series than the traditional methods such as Fourier Analysis [Rai and Mohanty, 2007,

Peng et al., 2005, Du and Yang, 2007, Donnelly, 2006]. This method has been used in

a number of areas in which non-stationary and nonlinear data naturally arise such as:

biomedicine [Huang et al., 1998b, Pachori, 2008]; neuroscience [Pigorini et al., 2011];

chemical engineering [Phillips et al., 2003]; finance [Huang et al., 2003]; atmospheric

science [Hong et al., 2010, Salisbury and Wimbush, 2002]; seismology [Changwei

et al., 2012]; and ocean dynamics [Schlurmann, 2002, Ezer et al., 2013]. Given the

broad application of EMD/HHT, it is important to have a sound understanding of

its limitations and sensitivities so that the output it produces can be interpreted

appropriately. A number of such limitations and sensitivities have been discussed in

the literature; these include mode mixing [Deering and Kaiser, 2005, Huang and Wu,

2008, Torres et al., 2011], end effects [Jin-Ping, 2001, Dätig and Schlurmann, 2004,

Wu and Qu, 2008] and sensitivity to interpolation method [Pegram et al., 2008,

Peel et al., 2009]. Despite all these studies, the mathematical theory behind the

EMD/HHT method is still not well understood and deserves further consideration.

1.2 Aim and scope

Non-stationary and nonlinear data are two main sources of difficulty in data analysis.

Time-series data are non-stationary if the mean, variance or both vary with time

[Priestley, 1988, Parzen, 1999]. As discussed previously, EMD was designed to

facilitate spectral analysis of non-stationary and nonlinear data Huang et al. [1998a].

EMD is a sifting process that decomposes the data into component functions, called

Intrinsic Mode Functions (IMFs), which are analogous to the harmonic modes of

Fourier Analysis, but which can have variable amplitude and frequency in the time

domain. A critical step in determining each of the IMFs involves constructing upper

and lower envelopes of the local maxima and minima of the original series, or a

residual series, depending on the stage of the sifting process. These envelopes are

usually obtained using some form of interpolation. Transformation of the IMFs

using the Hilbert Transform (HT) then delivers spectral information relating to the

data [Huang et al., 1998a].

In the original presentation of the EMD method, cubic-spline interpolation was

employed to construct the upper and lower envelopes [Huang et al., 1998a]. However,

no a priori reason was given to justify the use of cubic-spline interpolation over the

multitude of other interpolation techniques that are available. In fact, known issues

with cubic splines, such as overshooting and undershooting, can limit the accuracy

of the overall EMD process [Pegram et al., 2008]. A number of subsequent studies

have investigated the use of other interpolation methods in the EMD process, and
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have shown that the choice of interpolation method used to obtain the envelopes of

the maxima and minima can be quite critical [Duffy, 2005, Chen et al., 2006, Peel

et al., 2009].

In addition to the methodological limitations and sensitivities of EMD discussed

above, there are also questions about how the nature of the nonlinearity and non-

stationarity of the time series might affect the efficacy of EMD. Environmental time

series, like those to which EMD has been applied, can possess a variety of non-

stationary and nonlinear characteristics, and so it is important to understand the

sensitivity of EMD to these aspects of the data. For example, Duffy [2005] found

that EMD performed well for periodic signals but could perform poorly for nonlinear

aperiodic time series, such as most meteorological datasets. The sensitivity of EMD

to data non-stationarity has received little attention in the literature, particularly

for cases in which the non-stationarity arises due to time-dependent variance. Peel

et al. [2011] investigated the application of rational-spline EEMD to synthetic time

series with a number of trend patterns, while this appears to be one of the limitted

studies that considered time-dependent variance, Huang and Pan [2006] applied

EMD to speech signals with time-dependent variance.

In this dissertation, the sensitivity of the EMD procedure to the interpolation

method and data non-stationarity is investigated using sets of synthetic data con-

structed to cover the different types of non-stationarity, and specifically the possible

ways that environmental data can be non-stationary. For example, with global

warming, the mean and the variance of environmental data may be changing over

time. Using the synthetic data assists us to systematically investigate the combined

sensitivity of EMD to data non-stationarity and the interpolation method used.

EMD methods based on three different interpolation methods, piecewise-linear in-

terpolating splines, cubic interpolating splines and smoothing splines, are applied to

time series with time-dependent mean and/or time-dependent variance, and their

ability to reproduce the known signal components as IMFs assessed.

Then EMD is applied to environmental data (temperature and sea level) to deter-

mine its sensitivity in these cases to the different interpolation methods and the

data non-stationarity. Smoothing-spline interpolation is found to give the most ro-

bust and accurate results, and its use is suggested as an improvement to the EMD

method. Finally, EMD with smoothing-spline interpolation is applied to data on

the forest fire danger index to investigate the long-term variability in fire danger in

southeast Australia.
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1.3 Significance of the study

In this dissertation the sensitivity of the EMD method to data non-stationarity

is examined. To do this, 20 synthetic datasets based on different types of non-

stationarity are constructed. These synthetic data are specifically constructed to

resemble possible patterns in environmental data. Then the EMD method is used

to analyse these data. The results show a clear sensitivity of the method to abrupt

changes in the mean or variance of the data. This will assist scientists to know for

which type of data they can use EMD as an analysis tool.

As mentioned in the previous section, interpolation is used in a critical step of

the EMD method to find the upper and lower envelopes; the interpolation is used

multiple times during the EMD process. Therefore, if there are any problems in the

interpolation or if the interpolation method used is not suitable, then the errors are

propagated and magnified through the whole process. This makes understanding

the sensitivity of the EMD to interpolation method important. In this thesis, it

is shown for which types of data the method is more likely to be sensitive to the

interpolation method and which interpolation method most suitable.

Three different interpolation methods are used to show the sensitivity of the EMD

to the interpolation method and determine if there is a way to reduce this sensitivity.

The results in this study show that more sophisticated interpolation methods such

as cubic spline and smoothing spline produce better results. Although cubic-spline

interpolation is not the worst method to use in EMD, smoothing-spline interpolation

reduces the end effects and mode-mixing issues and produces more robust results.

Therefore the author suggests that using smoothing splines is more suitable for EMD

analysis.

Although using smoothing splines improves the accuracy and robustness of the re-

sults, it adds a degree of freedom in the model: a smoothing parameter must be

specified. Choosing a suitable smoothing parameter can be challenging. However

in this thesis, the author shows that it is possible to find a range of smoothing

parameters that give good results. Further study needs to be done on this matter.

The two better interpolation methods (cubic-spline and smoothing-spline interpo-

lation) are then applied to real environmental data (temperature and sea level) to

examine the impact of the EMD sensitivity on real-world data and whether these

sensitivities can affect the interpretation of the results. The results indicate that,

although the EMD results with both interpolation methods describe the general be-

haviour of temperature and sea level, the smoothing-spline results show more detail

that matches the actual behaviour of temperature and sea level.
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The improved smoothing-spline-based EMD is then used to investigate the decadal

and multi-decadal variability in fire danger and its contributors in south-east Aus-

tralia. This is the first study to examine the fire danger variability at these time

scales. The study indicates that the main drivers of long-term variability can be

defined over different time scales.

In summary, this thesis systematically examines the EMD method and enhances

our knowledge of the sensitivity and limitations of the method when applied to

environmental data. It also introduces a new variant of EMD which is shown to be

more accurate, more robust and more able to produce physically meaningful results.

1.4 Structure of the thesis

This thesis has eight chapters, with the first chapter an introduction. Chapter 2

gives the background to and a brief overview of current data-analysis tools.

In Chapter 3, the EMD, its limitations and recent improvements are presented in

detail.

In Chapter 4, the sensitivity of the EMD to the interpolation method used and to

data non-stationarity is investigated using synthetic data.

In Chapters 5 and 6, the effects of using two of the interpolations on temperature

and sea-level data are examined, and the results are compared with the literature.

In Chapter 7, the best interpolation method is used to analyse the forest fire danger

index data and make predictions about long-term trends.

Chapter 8 presents the main conclusion of this thesis and highlights avenues for

future work.
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Chapter 2

Background

2.1 Introduction

The need to decompose a time series, or some other signal, into its primitive or

fundamental components arises in a number of applications. The Fourier Transform

is the pervasive example in this respect, but it and other commonly used methods

are poorly suited to the analysis of nonlinear and non-stationary data, typical of

environmental time series.

For environmental decision makers, having reliable information about the environ-

ment and its behaviour is essential. Reliable and useful information can only result

from accurate analyses of the environmental data.

2.2 Characteristics of environmental data

Most environmental data are nonlinear and non-stationary. Data are nonlinear when

they come from a non-linear structure, in which its elements are not organized in a

sequential fashion. A data item in a nonlinear data structure could be attached to

several other data elements to reflect a special relationship among them, and all the

data items cannot be traversed in a single run.

Non-stationary data are data in which the mean, variance and/or covariance change

over time [Priestley, 1988]. Non-stationary behaviour can include trends, cycles,

white noise or a combination of all three. Later in this thesis, we give examples of

nonlinear data, non-stationary data and combinations of these.

Unfortunately there are not many methods that can analyse both non-stationary

and nonlinear data without first transforming them into stationary data or making

linear assumptions. We look first at some of these methods and their limitations in

this chapter.
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2.3 Overview of analytical methods

Decomposition of a stochastic time series into its basis modes is common in many

areas of application, and different methods exist to do this [Holmes et al., 1998].

The aim of all of these methods is to extract dominant features and trends from the

data. Visser et al. [2015] reviewed thirty methods used to find the (long-term) trend

in one specific set of environmental data: sea level at San Francisco over the period

1855–2014. They specifically compared the second derivative of the trends (sea-level

acceleration) using these methods. They showed that different methods can lead to

contradictory acceleration-deceleration inferences, and suggested that the reason for

these differences is uncertainties in parameters in the models, as well as different

model structures. They divided the thirty methods into five main categories, listed

in Table 2.1.

The members of the first group, exploratory data analysis, are mainly simple low-

pass filters, moving-average or linear-filter methods. This group has several prob-

lems, such as they are not based on a statistical formulation and thus provide no

uncertainty bounds for trend estimates. In addition, they depend on the choice of

a specific window size, which results in missing trend estimates at the end of the

sample period.

The second group is parametric trend estimation. In these methods a linear or

second-order polynomial trend is fitted to the data. Therefore, the shape of the

trend is fixed or deterministic. One of the main drawbacks of this group of methods

is finding a reliable uncertainty.

The third group is called non-parametric models. In this group the shape of the

trend is not defined in advance and is data driven. These models do not assume

fixed trend shapes. The main issue with these methods is that their interpretation

is more complex. They also have the same issue as the second group with their

uncertainty.

The fourth group is stochastic models, with the trend assumed to originate from the

underlying noise processes. The idea is that the data are a realisation of stochastic

processes, and that trends in the data should be treated accordingly. These methods

have the underlying assumption that the noise in the data is white noise. This might

not be the case in all situations. Visser et al. [2015] considered the EMD, the subject

of this thesis, to be in the fifth, miscellaneous, group but they did not study it.
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Some of the traditional time series analysis methods are now explained in more

detail.

2.3.1 Fourier transforms

One of the most common data-analysis methods is the Fourier-Transform method.

This method is a linear transform that converts a time series to the sinusoidal

frequencies that make it up [Bracewell, 1965]. The Fourier Transform Y (t) of time-

domain data are of the form

Y (t) =
N−1∑
j=0

aj exp(iωjt),

where the aj are amplitudes derived from the original data and ωj the frequencies.

This method is a useful technique for solving problems in linear systems [Bracewell,

1965]. However, it is also based on an assumption of stationary data, and there-

fore cannot analyse non-stationary terms, which often carry important information

[Hlawatsch and Auger, 2013].

If the data are not linear and stationary, the output may not have the usual physical

meaning of frequencies. Kolláth and Oláh [2009] investigated solar magnetic activity,

which cannot be treated as a stationary periodic process. They used a finite Fourier

Transform, Wavelet Analysis and generalised time-frequency distributions. Their

results showed that, although the finite Fourier Transform was more powerful than

Wavelet Analysis, it was not as useful as Time-Frequency Distribution Analysis.

Thayaparan and Yasotharan [2000] used non-stationary radar signals produced by

accelerating targets. They applied the Fourier method to detect the moving object

and estimate its velocity. Their results showed that the Fourier method was not

successful in detecting the nonlinear components of the accelerating target. They

suggested that a more sophisticated method was required.

2.3.2 Fourier-based methods

The Short-Time Fourier Transform is a way to overcome the non-stationary

problem in Fourier transforms. The idea is to break the non-stationary data into

sections, then assume the data in each section are stationary and use the normal

Fourier Transform [Okumura, 2011]. The size of each section is chosen by the user.

Choice of the section size is critical; for example, a very small section size will lose the

low-frequency modes, a very large section size will lose the high-frequency modes.

This method also cannot be used with non-stationary data [Okumura, 2011].
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The Spectrogram is a Fourier Transform with a restricted time window [Bastiaans,

1981]. It is easy to implement as a Fast Fourier Transform. It assumes that the data

are piecewise stationary; this is not always the case even with small time windows

[Bastiaans, 1981].

The Wigner-Ville distribution is the Fourier transform of the central covariance

function Cc(τ, t),

V (ω, t) =

∫ +∞

−∞

∫
Cc(τ, t)e

−ωτ dτ,

where Cc (τ, t) = D
(
t− 1

2
τ
)
D∗
(
1
2
τ
)

and D(t) are the data. This method is pow-

erful and covers a variety of problems, although this windowed Fourier analysis

suffers from all the Fourier limitations and requires a lot of judgment to apply it to

complicated data.

The Evolutionary Spectrum method uses a family of orthogonal basis functions

Φ(ω, t) instead of the sine and cosine functions in the Fourier Transform.

X(t) =

∫ +∞

−∞
Φ(ω, t) dA(ω, t),

where Φ(ω, t) is the basis function. The difficulty is to define the basis functions

Φ(ω, t). The basis is a posteriori, and no systematic way has been found.

2.3.3 Wavelet Analysis

This method shows the similarity between a signal and the predetermined wavelet

at scale a at time b. To cover all high and low frequencies, wavelets of different size

(frequency) scales are used:

W (a, b; f, ψ) = |a|−
1
2

∫ +∞

−∞
f(t)Ψ∗

(
t− b
a

)
dt. (2.1)

Here, a is a dilation factor, b is a translation of the origin (temporal location), Ψ is

the basis wavelet and 1/a is a frequency. W is the energy of f of scale a at t = b.

Advantages of using this method are: the basic wavelet Ψ can be modified according

to need; and it is very useful in analysing data with a slowly changing frequency.

However, we have to define the Ψ in advance for the whole calculation. It is also

a linear analysis, and hence has all the inherent problems of linear analysis. It is

limited by the wavelet function, has poor resolution, a counter-intuitive interpre-

tation, a non-adaptive nature, and the physical meaning is the same as for linear

phenomena [Huang et al., 1998a, Duffy, 2005].

11



2.3.4 The Empirical Orthogonal Function expansion

The Empirical Orthogonal Function (EOF) expansion is also known as Principal-

Components Analysis, Singular-Value Decomposition or Singular Spectrum Analy-

sis. For a scalar variable, the EOF method finds spatial patterns of variability and

their time variation, and gives a measure of the importance of each pattern. This

method is an alternative approach to analysing a non-stationary and nonlinear time

series. To define the basis functions, some prior determination has to be applied.

In the EOF method, an orthogonality assumption is also made [Ghil et al., 2002].

This method is sensitive to the selection of the temporal and spatial domains.

This method is basically a decomposition of a signal or dataset in terms of orthogonal

basis functions (eigenvectors), which are different from the data. It finds both time

and spatial variations; the modes are directly extracted from the data.

However, the method only gives frequencies independent of time, and so cannot be

used for non-stationary data [Huang et al., 1998a, Duffy, 2005]. Furthermore, the

eigenvectors are not necessarily linear or stationary, and so are difficult to anal-

yse. Moreover, the distribution of eigenvalues does not yield characteristic time or

frequency scales [Duffy, 2005].

None of the above methods is suitable to analyse nonlinear/non-stationary data.

The Empirical Mode Decomposition method, which was pioneered in the late 1990s,

is known to deal with nonlinearity and non-stationarity in the data. In the next

chapter, this method is explained in more detail.
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Chapter 3

Empirical Mode Decomposition/Hilbert-Huang Transform

Method

The Empirical Mode Decomposition / Hilbert-Huang Transform, proposed by Huang

et al. [1998a], consists of two main steps: a decomposition algorithm, the empirical

mode decomposition (EMD); and a spectral analysis tool called the Hilbert-Huang

Transform (HHT).

3.1 Empirical Mode Decomposition

The Empirical Mode Decomposition decomposes a dataset into its intrinsic mode

functions (IMFs) [Huang and Wu, 2008]. For a time series y(t), the IMFs are

determined through the EMD process according to the algorithm below.

Algorithm Empirical Mode Decomposition

1. Set j=1.

2. Identify all the local extrema in the signal y(t).

3. Interpolate the maxima and minima to define upper and lower envelopes of

y(t).

4. Calculate the mean of the upper and lower envelopes mj(t).

5. Protomode hj(t)=y(t)−mj(t).

If j < 3 Then y(t) = hj(t)j + 1→ j Go to 2

6. If hj =hj−1 =hj−2* Then IMF 1 is c1(t)=hj(t) Go to 7

Else y(t)=hj(t) Go to 2.

7. Find the residual time series r1(t)=y(t)− c1(t).
8. For the next IMF c2(t), set y(t)=r1(t) Go to 1. Subsequent IMFs c3, . . . , cn

and residuals r3, . . . , rn are obtained similarly.

If rn(t) has at most one extremum Stop. EMD is now complete.
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* within the specified tolerance. Steps 2–4 in the EMD method are quite important.

These steps are illustrated in Figure 3.1. In this method, given the input dataset

(Figure 3.1a), first the local extrema are found (Figure 3.1b); then the upper and

lower envelopes are plotted using an interpolation method (Figure 3.1c). The mean

of the two envelopes m1(t) is then calculated (Figure 3.1d), and finally, the difference

between the mean and the data is calculated:

h1(t) = y(t)−m1(t). (3.1)

Setting the new y(t) = h1(t), the same steps are repeated to give h2, h3, . . . until

1

2

1

2

1

2

0 100 200 300 400 500

1

2

a)

b)

c)

d)

Figure 3.1: Empirical Mode Decomposition upper and lower envelopes.

hj = hj−1 = hj−2 to within some given tolerance. This often is called the ‘stopping

criterion’, according to Huang et al. [2003]. This stopping criterion determines the

number of sifting steps to produce an IMF. Huang et al. [2003] mentioned that the

stopping criterion provides a symmetric IMF and eliminates riding waves. Huang

proposed two possibilities for choosing the stopping criteria. First, the Cauchy-

type convergence criterion which is explained in detail in Huang et al. 1998a, here

14



the sifting is carried to the point when the difference between the successive sifted

results is smaller than a preset limit. Huang.2003 mentioned the major flaw of this

approach is that it is unrelated to the definition of the IMF; it only requires the

successive IMFs to be approximately equal. Second, where the sifting is stopped

when the number of zero crossings and extrema is the same number for successive

sifting steps (S) Huang et al. 1999. Huang et al. 1999 mentioned S can not be

too large as over-sifting can have a detrimental effect on the results. Huang et al.

1999 suggested a value of 3 < S < 5 as the default stopping criterion. Rilling et al.

2003 discussed how the amplitude of the mean in comparison with the amplitude

of the corresponding mode is critical, as it can be led to under- or over-iteration

which could under- or over-decompose the dataset. Rilling et al. 2003 proposed a

new criterion based on two thresholds which, aimed at guaranteeing globally small

fluctuations in the mean while taking into account locally large excursions. Rato

et al. 2008 emphasized that the stopping criterion is another source of problems

with EMD due to its degree of arbitrariness, since it may not guarantee a total

signal removal to obtain a true IMF. They defined a resolution factor by the ratio

between the energy of the signal at the beginning of the sifting, and the energy of

average of the envelopes. If this ratio grows above the allowed resolution, then the

IMF computation must stop. In this study, we used the stopping criteria introduced

by Huang.1999. However, as mentioned earlier, reaching absolute equality (in the

equation hj = hj−1 = hj−2) is implausible, and some tolerance is applied; in this

study, when the differences between hj, hj−1 and hj−2 are less than 10−3.

If hj(t) is the last component, then c1(t) = hj(t) is the first IMF.

In the resulting IMF:

• the mean mj(t) should be identically zero to within some tolerance;

• the number of zero-crossings and extrema of the IMF should either be equal

or differ by one.

The IMF is then subtracted from the original data to give the residual. This residual

contains information on the longer-period components. The residual is then used as

the new dataset, and the process repeated to calculate successive IMFs.

EMD is stopped when the residual is a monotonic; this monotonic residual is the

(long-term) trend in the original data. The whole process in the algorithm is called

sifting. Huang et al. [1999] mentioned that to guarantee physical meaning, the sifting

process needs to be limited, otherwise we will end up with a constant-amplitude

component and additional, unphysical modes.
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The data have then been decomposed as:

y(t) =
n−1∑
j=1

cj(t) + rn(t), (3.2)

where the cj(t) are the IMFs, n is a total number of IMFs and rn(t) is the final

residual [Huang and Wu, 2008].

3.2 Hilbert-Huang Transform

By applying the Hilbert transform to individual IMFs, we obtain a full energy-

frequency-time distribution which permits further physical interpretation of the

data.

The Hilbert Transform Hj(t), now applied to each IMF cj(t), is given by

Hj(t) =
1

π
P

∫
cj(t

′)

t− t′
dt′, (3.3)

where P indicates the Cauchy Principal Value. An analytical function Zj is defined

for IMFj is

Zj(t) = cj(t) + iHj(t) = Aj(t) exp(iθj(t)), (3.4)

where Aj(t) and θj(t) are the instantaneous amplitude and phase of IMFj, respec-

tively, with

Aj = (c2j +H2
j )1/2 θj(t) = tan−1

(
Hj

cj

)
. (3.5)

The instantaneous frequency of IMFj, ωj is given by:

ωj(t) =
dθj(t)

dt
. (3.6)

A limitation of this transform is that it cannot be used on all datasets [Huang et al.,

1998a]. The data must be mono-component, and therefore need to be sifted and

decomposed first. By first using EMD, we separate the data into IMFs based on

their time scale. Then, using a Hilbert Transform on each IMF will lead us to a

physical interpretation of the data. IMFs and their energy distribution are crucial

in analysing and interpreting the data.
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3.3 Comparison of classical time-series analyses with the

EMD/HHT method

In this section, the studies that compare the EMD/HHT method with other methods

are reviewed. The aim of all of these methods is to analyse experimental data with

a view to extracting dominant features and trends: coherent structures. Although

all of these methods deal with nonlinear problems, other than EMD/HHT, they are

linear procedures.

One of the problems with the classical methods is that sometimes, although the re-

sults are mathematically meaningful, they do not give physically meaningful results.

Huang et al. [1998a] and Duffy [2005] showed that, due to the nature of the Fourier

Transform, it sets the frequency globally for the whole dataset. The frequency spec-

trum cannot represent the true energy density in frequency space. Thus, while the

Fourier Transform can deliver mathematical representations of the frequency spec-

trum, it may have no relation to physical reality. Moreover, Fourier spectral analysis

uses harmonic components to decompose the wave profile but sometimes the defor-

mation of the wave profile is a cause of non-linearity. Therefore it is difficult to

study non-stationary and nonlinear data without making linearity assumptions.

A more detailed example is presented by Donnelly [2006], who applied the Fast

Fourier Transform (FFT) and Hilbert-Huang Transform (HHT) to a sum of two

sine waves of different frequencies (f1 = 1, f2 = 1.08). The FFT returned the two

original frequencies whereas the HHT generated only a single frequency, f = 1.04,

the average of the two frequencies. Donnelly [2006] suggested that the reason that

the HHT just gave one frequency is the small frequency difference between the two

signals. Although the results of the FFT are in principle more accurate, two modes

at frequencies so close together may not be physically meaningful; the HHT method

in this case may provide a more meaningful result.

Wu et al. [2011] also demonstrated that Fourier-Transform results may not have

physical meaning. They used two water-wave generators in a tank, and applied a

Fourier Transform to predict the frequency of the generated waves. The Fourier

Transform extracted ten components instead of two. They claimed this happened

because orthogonality is a key constraint in Fourier analysis: orthogonality of each

pair of Fourier components to some degree implies that each wave of a particular

frequency is not correlated with any other wave, resulting in the misinterpretation

[Wu et al., 2011].

Some studies claim that the EMD/HHT results are more effective and accurate than

other methods. Schlurmann [2002] used a physical ocean model to produce two
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different types of water-wave data, a monochromatic wave and a transient wave. He

then applied a Fourier Transform and the Hilbert-Huang Transform to investigate

the accuracy and reliability of the HHT method. The EMD/HHT method provided

the more accurate and reliable results. Schlurmann [2002] also applied Wavelet

Analysis and HHT to investigate the accuracy and reliability of the HHT method.

Their results showed that the EMD/HHT method provided more accurate and more

reliable results than Wavelet Analysis.

Pines and Salvino [2002] used a physical model in evaluating the performance of

EMD in the detection of structural damage to a building. They shook the model

using an hydraulic system, and recorded the acceleration before and after damage.

They found the EMD/HHT results promising, as they allowed both the location

and the amount of damage to be determined.

In another study, Zhang et al. [2003] used two different time series. First, they ap-

plied the EMD method to a time series y(t) (non-stationary and nonlinear without

trend), defined as y(t) = y1(t) + y2(t), with y1(t) = cos
(
2πt + 0.5 sin(2πt)

)
e−0.2t, a

decaying wave, and y2(t) = 0.05 sin(30πt). Their results showed that the first IMF

of the EMD picked up the noise in the data, the second picked up the signal; the rest

of the IMFs, with negligible amplitude, represented the numerical error in the EMD

process. Second, they applied EMD to the record of the 1994 Northridge (Los An-

geles) earthquake, and compared their results with a Fourier-based analysis. Both

methods produced similar component signals but the EMD results showed more

detail of the earthquake rupture process. In addition, the EMD method was able

to distinguish some related phenomena such as the predominant wave motion gen-

erated near the hypocenter, a large stress drop associated with the initiation of the

earthquake and the components associated with longer-period signals as the rupture

propagated. However, Zhang et al. [2003] did not say if all the EMD components

were related to physical phenomena associated with the earthquake.

Vincent et al. [2010] found some limitations in the HHT method compared with the

Fourier-Transform (FT) method. Their study showed that FT contains information

up to 2∆t (20 minutes), whereas the Hilbert-Huang marginal spectrum required 4∆t

(40 minutes) to resolve spectral information. This issue has been acknowledged by

Huang et al. [1998a], who suggested that an interpolation method with more points

between the available data would decrease the time step. They suggested that using

oversampled data would also help.

Peng et al. [2005] compared their improved EMD/HHT method with Wavelet Anal-

ysis using three sets of synthetic data and a set of rolling-bearing data. Their re-

sults showed that: the improved EMD/HHT method had better resolution in time
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and frequency than Wavelet Analysis; the improved EMD/HHT method had better

computing efficiency than Wavelet Analysis, which means it is more suitable for

large-scale signal analysis; and, the HHT spectrum often had a ripple phenomenon

in its estimated frequencies, which may cause problems in the analysis.

Boudraa and Cexus [2007] applied wavelet analysis and EMD to synthetic data.

They called their synthetic data: Doppler signals, which start with a high frequency,

but the frequency decreases with time; Block and Bump signals, which are combi-

nations of square steps and gentle peaks, respectively; and Heavy sine waves, which

are low-frequency sine waves. Their results showed that, for some data such as their

electrocardiogram and ‘Heavy sine’ data, the EMD results were more accurate, but

for datasets such as their ‘Doppler signals’ and ‘Bumps signals’, Wavelet Analysis

gave better results. Both EMD and wavelet methods did equally well in analysing

their ‘Block signals’.

Rai and Mohanty [2007] also investigated the effectiveness of the EMD/HHT method

in bearing-fault diagnosis. To determine the characteristics of the frequency of

defects in rolling-element bearings, they applied the fast Fourier Transform and the

EMD/HHT process. Their results indicated that the EMD/HHT produced better

results and worked well for bearing-fault diagnoses.

Vincent et al. [2010] applied the Fourier Transform (FT) and the Hanning window

function to provide an estimate of the spectrum for wind-speed data. Although this

method is an improvement on the standard Fourier-Transform analysis, it is still

based on a stationary assumption [Madsen, 2007]. Both the FT and EMD/HHT

results identified the diurnal cycle and both spectra had a similar shape. However,

the Hilbert Transform had a smoother spectrum that resulted in better accuracy.

One of the significant differences between classical methods and EMD/HHT is that

EMD uses intrinsic mode functions that often happen to be approximately orthog-

onal, rather than relying on orthogonal basis functions [Holmes et al., 1998]. Fur-

ther, using a global domain in Fourier analysis and orthogonality assumes forever-

repetitive datasets, which is not always the case in a physical system. Data observed

in different time domains are not necessarily repetitive [Wu et al., 2011].

3.4 EMD limitations and improvements

In this section, some of the limitations and recent improvements of the EMD method

are discussed in more detail.
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3.4.1 EMD method limitations

Although the EMD/HHT is a useful tool for time-series analysis, it has some dis-

advantages as mentioned previously. Some of these limitations have been studied,

such as endpoint effects, noise handling and mode-mixing problems, and the effects

of different interpolation methods, and some improvements have been made. Some

limitations are still unknown, such as the sensitivity of the method to the nature of

the data. One of the big challenges in determining the EMD sensitivity is that the

method, A its name suggests, EEMD is essentially an empirical method. While it

does have a mathematical foundation, this is only algorithmic in nature, and does

not provide for a particular set of basis functions that could be used to support more

rigorous mathematical analysis, such as can be applied to Fourier series, for exam-

ple; it is hard to check the accuracy of the results in general. Different studies have

used different ways to assess the accuracy of EMD, for example by comparing EMD

results with the results of other methods [Schlurmann, 2002], or reconstructing the

data by plotting the sum of the modes together with the original data [Huang et al.,

2003]. However, there is no guarantee about the accuracy of these results. All in all,

because the method is relatively new, there is still a lot of scope for further research.

One of the most common limitations of the EMD method is mode mixing. Mode

mixing occurs when a single IMF consists of signals of widely disparate time scales, or

when signals of similar time scales reside in different IMF components. The presence

of noise in the input signal is known to cause problems with mode mixing in the

EMD method [Deering and Kaiser, 2005]. To overcome this problem, Huang and

Wu [2008] introduced the Ensemble EMD (EEMD) procedure, which is a version of

EMD specifically to deal with noise. Flandrin et al. [2004] found this method quite

effective for analysing noisy data. However, they mentioned the lack of theory and

applications of the method to real-world situations.

As discussed in Chapter 1, when EMD was presented for the first time, cubic-

spline interpolation was used to interpolate between the local maxima and minima

and find the upper and lower envelopes [Huang et al., 1998a]. Later Dätig and

Schlurmann [2004] found that cubic-spline interpolation can cause overshooting and

undershooting at the endpoints. This impacts the accuracy and overall performance

of the EMD [Pegram et al., 2008]. Duffy [2005], Chen et al. [2006] and Peel et al.

[2009] showed that the choice of interpolation in EMD is quite critical.

The interpolation method also plays a critical role at the beginning and end of the

time series. To support interpolation at the beginning and end of a time series, it

is necessary to extend the series by adding points before the beginning and after

the end. The way these additional points are defined will affect the IMFs that are
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produced and, in the worst cases, can produce highly undesirable end effects [Dätig

and Schlurmann, 2004]. Moreover, these end effects can propagate inwards and

corrupt the whole sifting process, resulting in inaccurate IMFs.

In addition to the methodological limitations and sensitivities of EMD discussed

above, there are also questions about how the nature of the nonlinearity and non-

stationarity of the time series might affect the efficacy of EMD. Environmental time

series, like those to which EMD has been applied, can possess a variety of non-

stationary and nonlinear characteristics, and so it is important to understand the

sensitivity of EMD to these aspects of the data. For example, Duffy [2005] found

that EMD performed well for periodic signals but could perform poorly for nonlinear

aperiodic time series, such as most meteorological datasets. The sensitivity of EMD

to data non-stationarity has received little attention in the literature, particularly

for cases in which the non-stationarity arises due to time-dependent variance. Peel

et al. [2011] investigated the application of rational-spline EEMD to synthetic time

series with a number of trend patterns, while Huang and Pan [2006] applied EMD

to speech signals with time-dependent variance.

3.4.2 EMD method improvements

Improvements in interpolation

To improve the interpolation method used in the EMD method, several studies have

been done to test other interpolation methods. Deléchelle et al. [2005] suggested an

approach based on parabolic partial differential equations to find the mean envelope.

This approach is based on the definition of the characteristic points of a function, the

minima, maxima and inflection points, and the use of piecewise-cubic polynomial

curves to interpolate successive characteristic points. Deléchelle et al. [2005] used

a combination of two triangular waveforms as an input to test the method. The

method decomposed the data into the IMFs expected. However, they did not test

the method with complex input data.

Huang and Shen [2005] introduced a new spline method based on the B-spline in-

terpolation [De Boor et al., 1978]; they called it the B-spline EMD method. The

B-Spline EMD (BS-EMD) method represents the local mean of a signal as the mov-

ing average of the extrema, which is fitted using combinations of B-splines; this

avoids the use of upper and lower envelopes. The advantage of not using envelopes

is the elimination of one of the original EMD problems, generating the upper and

lower envelopes. The use of the BS-EMD resulted in only a slight improvement

because the basis of interpolation remained the same, cubic-spline interpolation.
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Chen et al. [2006] made some improvements to the previous BS-EMD method. They

found that the original EMD gave fewer modes than the moving-average methods.

The EMD modes also had larger amplitudes and amplitude variations. However, the

results from the EMD and moving-average methods were qualitatively and quanti-

tatively similar. Furthermore, oversifting was still an issue [Huang et al., 1999]. Liu

et al. [2006] applied the BS-EMD method to vibration signal analysis for localised

gearbox fault diagnosis (data with no trend). They found that the method was

more effective than Fourier and wavelet methods, and that it successfully detected

gearbox faults. They also found that the BS-EMD method performed much better

than the original EMD method.

Meignen and Perrier [2007] calculated the mean envelope as the solution of a quadratic

programming problem with equality and inequality constraints; they did not calcu-

late the upper and lower envelopes, one of the drawbacks of the EMD method.

However, they used cubic splines as the interpolation method, with all its problems

of overshooting and undershooting. Kopsinis and McLaughlin [2007] modified the

existing EMD method by using the extrema of the original signal as fixed interpola-

tion points, rather than recalculating the extrema at each iteration of the method,

and found that this improvement reduced the total number of sifting steps in the

EMD method.

Pegram et al. [2008] suggested the use of rational splines instead of cubic splines in

the original EMD method. Rational splines are of the form [Späth, 1995]:

sk(x) = Aku+Bkt+
Cku

3

1 + pt
+

Dkt
3

1 + pu
,

where

t =
x− xk

xk+1 − xk
, u = 1− t.

The pole parameter p, controls the spline tension. When p = −1, sk(x) is a

quadratic-spline interpolation; when p = 0, sk(x) is a cubic-spline interpolation;

and for p → ∞, a linear interpolation [Gregory and Sarfraz, 1990]. The ability to

vary the pole parameter permits consideration of the interplay between spline ten-

sion and the resulting IMFs. The performance of a rational-spline EMD was tested

using synthetic time series by Peel et al. [2011]. They used 0 < p < 5, and found

more sifting and more IMFs than with cubic splines. However, oversifting can lead

to non-physically meaningful results [Huang et al., 1999]. Rational-spline EMD was

found to perform well when applied to environmental time series [Pegram et al.,

2008, Peel et al., 2009, 2011], although there remains some ambiguity surrounding

the optimal choice of the tension parameter.
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Some of the above studies have improved on cubic splines in more sophisticated ways.

These improvements however, have either added new challenges to the method or

they were not tested sufficiently on different nonlinear and non-stationary datasets.

Bahri and Sharples [2015] examined the performance of EMD based on piecewise-

linear interpolation (i.e. the simplest form of interpolation) as applied to synthetic

times series and to an actual geophysical time series. For the synthetic time series,

Bahri and Sharples [2015] found that, on average, EMD based on linear interpolation

was able to reproduce the known signal components very well, with IMFs very similar

to those obtained from the original EMD methods using cubic splines. Overall, the

linear-interpolation-based methods were able to better capture the trend in the

data, while the original method provided better estimates of both the high- and

low-frequency oscillatory components. For the geophysical time series (sea level),

the linear-interpolation-based EMD was found to produce a different estimate of the

long-term trend in the data than that obtained from classical EMD, which raised

a number of questions about the interpretation of EMD output arising from actual

environmental data. For example, which trend will give the most reliable information

for decision making?

Endpoint considerations

The behaviour of the time series at the endpoints and appropriate boundary con-

ditions are related critical issues that, together with the interpolation method, can

affect the IMFs resulting from EMD. One of the first studies into this issue was con-

ducted by Jin-Ping [2001]. They pioneered the mirror-extension method, in which

the data are modified to form a closed curve. Therefore, the effects of the endpoints

of the data do not arise. Figure 3.2 shows data extended using the mirror-extension

technique. After the sifting process, only the output from the upper part is used.

One limitation of this method is that the data are assumed to end at an extremum;

there is no general reason to expect this to be the case.

Zeng and He [2004] modified the mirror-extension method by doing even and odd

extensions to the data (Figure 3.3). They suggested the following steps to deal with

the endpoints.

1. Construct a new series by even extension of the data (Figure 3.3b).

2. Construct a new series composed of all maxima. If the right endpoint of

the extended dataset series is not a local maximum, append an additional

maximum to the series as the periodic repeat of the leftmost maximum, as

shown in Figure 3.3.
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Figure 3.2: Mirror-extension technique. The data (solid line) in the upper half are
reflected in the horizontal mirror (giving the dashed line) to form a closed curve.
The blue dotted lines are the upper and lower envelopes.

3. Connect all the maxima in Step 2 using an interpolation method to give the

upper envelope of the even-extended data series.

4. Repeat Steps 2 and 3 on the minima to construct the lower envelope of the

even-extended data series.

5. Construct a new series by odd extension of the original data (Figure 3.3c).

6. Repeat Steps 2, 3 and 4 to construct the upper and lower envelopes for the

odd-extended data series.

7. Subtract the mean of the four envelopes from the original data to complete

one step of the sifting process.

Lin et al. [2012] combined mirror imaging and extrapolation using a regression func-

tion to reduce endpoint effects. This method consists of two steps. First, the signal

is extrapolated at each endpoint using regression functions to form the primary sig-

nal. The primary signal is then further expanded by mirror extension. EMD is then

performed on the resulting signal. Lin et al. [2012] tested their method using simple

synthetic data (with no trend). Their results showed a significant improvement in

endpoint effects.

Deng et al. [2001] applied neural networks to determine suitable boundary con-

ditions. They tested their method using simple synthetic data, a combination of

sine and cosine waves but no trend. The Hilbert Transform of the result obtained

from the neural network contained more detail than the original EMD method, so
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Figure 3.3: Odd and even extensions of the original N data points.

the neural network extension to the EMD improved the accuracy of the results.

Zhidong and Yang [2007] introduced a method that they called the ‘New Method’

in an attempt to deal with endpoint effects. Essentially, they averaged the max-

ima and minima of all points except the first and the last point. Then the first

and last points are compared with the average of the maxima and minima. If an

endpoint is bigger than the average of the maxima, it is counted as a maximum

point; if it is smaller than the average of the minima, it is counted as a minimum

point. Zhidong and Yang [2007] then used two simple synthetic datasets (without

trend), and found their results to be more accurate than the original EMD method.

Ren et al. [2006] suggested the use of a window-function method, similar to Fourier

Transforms. However, windowing can destroy information in the data [Dätig and

Schlurmann, 2004].

Another endpoint improvement was put forward by [Dätig and Schlurmann, 2004],

who discussed the importance of endpoints on the whole sifting process; the inter-

polation methods are sensitive to the boundary conditions, with the possibility of

large swings of the interpolating functions at the endpoints, either overshooting or

undershooting. These swings propagate inward, corrupting the whole data series,

consequently over-riding some of the characteristics of the data.

Dätig and Schlurmann [2004] suggested a simple solution to the endpoint problem

by adding a new minimum and maximum to the beginning and end of the data.
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Figure 3.4: Endpoint solution according to Dätig and Schlurmann [2004].

Given a time series η(t), if the first minimum of the dataset is at tmin0 , they create a

new minimum at tmin−1 , where η(tmin−1) = η(tmin0). The time tmin−1 is defined such

that tmin0 − tmin−1 = tmin1 − tmin0 . Similarly for tmax−1 and for the corresponding

quantities at the end of the dataset (Figure 3.4). Dätig and Schlurmann [2004] also

suggested an improvement in their method by taking the slope of the data into the

account. This method is known as the Slope-Based Method (SBM) for endpoints.

The slopes relevant to the start of the data are defined by:

slope1 =
η(tmax1)− η(tmin0)

tmax1 − tmin0

, (3.7)

slope2 =
η(tmin0)− η(tmax0)

tmin0 − tmax0
. (3.8)

Then,

η(tmin−1) = (slope1 + slope2)∆tmin + η(tmin0), (3.9)

where ∆tmin = tmin1 − tmin0 . Similar calculations are then used to find η(tmax−1)

and the corresponding quantities for the end of the dataset.

Wu and Qu [2008] discussed the SBM method and found that, although this method

works most of the time for non-stationary and nonlinear data, sometimes the inter-

polation functions oscillate wildly at the end of the time series. They therefore

developed the improved Slope-Based Method. In this method they extended the

slope of two neighbouring maximum values, then compared that with the value of

the endpoints. The bigger value was chosen for the upper envelope. Similarly for
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the lower envelope. They used synthetic data (a combination of two cosine signals)

and compared their results with those using the SBM method; their results were

more robust and accurate.

The Ensemble Empirical Mode Decomposition

As mentioned in Section 3.4.1, noisy input data can cause mode mixing in the EMD

method. When dealing with noisy datasets, the EMD procedure is implemented as

part of an ensemble process, which is referred to as the ensemble EMD (EEMD).

In the EEMD procedure, noise ε ≈ N(0, δ), normally distributed with zero mean

and standard deviation δ, is added to the EMD; the means of the IMFs found from

numerous EMD applications give the the final ensemble IMFs [Huang and Wu, 2008].

Torres et al. [2011] introduced what they called a Complete Empirical Mode De-

composition to help combat the mode-mixing problem when noise is present. In

this method, they added a particular type of noise at each stage of the sifting pro-

cess and obtained a unique residual for each mode. To test the result, they used

a synthesised Dirac signal with 512 samples. Their results had fewer IMFs than

the EEMD method. The high-frequency IMFs in both methods were similar but at

lower frequencies, there appeared to be more mode mixing than using the Complete

Ensemble Empirical Mode Decomposition method. Another advantage of using a

Complete Empirical Mode Decomposition is that it provides an improvement in

terms of computational cost. Wu and Huang [2009] used a noisy synthetic data

and compared the results of EMD and EEMD. They showed that the results from

EEMD were significantly better than the ones from EMD. They mentioned that

although EEMD improves mode mixing effects, it does not reduce the impact of

different sifting stoppage rules or end effect methods.

3.5 Methods used in this study

3.5.1 EMD or Ensemble EMD?

In this study, whenever the data are noiseless, the EMD method is used. In the

presence of noise, the Ensemble EMD (EEMD) method is used, with the number

of ensemble members depending on the noise in the data (noisier data need more

ensemble members).

3.5.2 Endpoints

In this study the Slope-Based Method discussed in Section 3.4.2 is used for the

endpoints. The effect of the endpoints, which also impact the accuracy of the IMFs

found using the different interpolation methods, is clearly an area for further study.
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In this study, the main focus is to investigate the sensitivity of EMD/EEMD to

interpolation method. We did not investigate on endpoint effects.

3.5.3 Interpolation methods

In this study, as mentioned before, we focus on Step 3 of the EMD algorithm, which

determines the upper and lower envelopes, using each of three interpolation meth-

ods. In addition to the cubic-spline interpolation originally advocated by Huang

et al. [1998a], we also use piecewise-linear interpolation and a smoothing-spline in-

terpolation of the extrema.

Linear interpolation

A piecewise-linear function is the simplest piecewise interpolating function. In

piecewise-linear interpolation (just ‘linear interpolation’ from now on), each suc-

cessive pair of data points (xi, yi), (xi+1, yi+1) is joined by a straight line.

A significant issue with linear interpolation is that the overall interpolating function

is not differentiable or smooth. A non-differentiable function can introduce new

issues into a system in a similar manner to a non-continuous function. In general,

linear interpolation is almost always inappropriate unless the function is almost

linear or a large error is acceptable [Khoury and Harder, 2015].

Despite all the problems with linear interpolation, it is considered because it is the

simplest interpolation method, and it enables us to find the largest possible errors

in the method that can occur in choosing an interpolation method. The linear

interpolation function used here is the interp1 function in MATLAB.

Cubic-spline interpolation

Interpolation with cubic splines is essentially equivalent to passing a flexible plastic

curve through the data points. If one can hammer some nails into a board to

represent a set of data points, the plastic curve can then be deformed to touch all

the nails. Between the nails, the curve acts as the interpolating function. The cubic-

spline interpolant and its first two derivatives are continuous at the data points. Let

gi(x) be the cubic in the interval xi ≤ x ≤ xi+1 and g(x) denote the collection of all

cubics for the whole data. Then,

gi(x) =
g′′(xi)

xi − xi+1

(x− xi+1)
3

6
+
g′′(xi+1)

xi+1 − xi
(x− xi)3

6
+ C1x+ C2. (3.10)
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C1 and C2 are constants that can be obtained by matching the function at the

boundaries, which leads to:

gi(x) =
g′′(xi)

6

[
(xi+1 − x)3

∆i

−∆i(xi+1 − x)

]
+
g′′(xi+1)

6

[
(x− xi)3

∆i

−∆i(x− xi)
]

+ f(xi)
xi+1 − x

∆i

+ f(xi+1)
x− xi

∆i

, (3.11)

where ∆i = xi+1−xi, xi < x < xi+1 and i = 1, 2, 3, . . . , N−1. The unknowns g′′(xi)

and g′′(xi+1) can be obtained using the continuity of the first derivative [Moin, 2010].

The cubic-spline interpolation function used here is the spline function in MATLAB.

Smoothing-spline interpolation

The smoothing spline (csaps in MATLAB) for a dataset y(xj) finds the interpolating

functionf(x) that minimizes the quantity

p
n∑
j=1

∣∣y(xj)− f(xj)
∣∣2 + (1− p)

∫ ∣∣D2f(t)
∣∣2 dt, (3.12)

where n is the number of data points and the integral is over the smallest interval

containing all the data points. p is a smoothing parameter: if p → 0, f is the

least-squares straight-line fit to the data; at the other extreme, if p → 1, f is the

variational, or ‘natural’ cubic-spline interpolant. Smoothing effectively averages over

local variations. Due to noise, however, there will be a range of p values for which the

method works well. We find that there is a range of p values that extracts the low-

frequency behaviour, but misses the high frequencies, and vice versa. The smoothing

parameter in our implementation of EMD/EEMD is chosen to favour retrieval of the

lower-frequency IMFs and the trend (residual). We provide some discussion of how

the smoothing parameter can be chosen to give good high-frequency performance.

3.5.4 Validation of the EMD/EEMD algorithm

In this study, we implement the EMD/EEMD algorithm in MATLAB following the

EMD procedure given by Huang and Wu [2008] but using the Slope-Based Method

for the endpoints (Section 3.4.2). In particular, we have not attempted to ameliorate

further any of the known issues with endpoints and extrapolation of the interpolating

functions beyond the first and last extreme points. The reader is referred to Dätig

and Schlurmann [2004] and Peel et al. [2009] for further discussion of these issues.

29



The implementation of the EMD algorithm used in this work was validated1 by
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Figure 3.5: Validation of the EMD algorithm. The top panel shows the input
synthetic data (see Chapter 4); the other three panels show the three components
extracted by the algorithm (using cubic-spline interpolation) from the data (red
dashed lines), together with the actual components (black solid lines).

applying it to the synthetic data in Figure 3.5. The EMD method, as coded for this

study, extracted the three components in the data very accurately.

We note that there are number of other codes available following the same algorithm,

such as Huang’s code2, Flandrin’s EEMD codes3 and the MATLAB HHT toolbox.4

1The code used in this study is available from the author
2http://rcada.ncu.edu.tw/intro.html
3http://perso.ens-lyon.fr/patrick.flandrin/emd.html
4http://au.mathworks.com/matlabcentral/fileexchange/19681-hilbert-huang-transform
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Chapter 4

Sensitivity of Empirical Mode Decomposition to

Interpolation Method and Data Non-stationarity

This chapter describes the construction and use of synthetic datasets to assess the

application of alternative interpolation methods in the EMD and EEMD methods

and how well they deal with non-stationary data.

4.1 Synthetic time series

The advantage of using synthetic data is that the actual signal components are

known, which permits direct comparison with the IMFs obtained from EMD and

EEMD. The synthetic datasets here cover different types of non-stationarity with

and without noise. In addition, due to the focus of this study on environmental

data, the synthetic data are designed so that they have similar characteristics to

environmental data such as temperature and sea-level data.

Global warming is causing a general increase in the mean and changing the variance

of environmental data such as temperature and sea level. An aim of this study is

to see if EMD can extract reliable information about the shape of the (long-term)

trend. Obtaining an accurate estimate of the trend is important in environmental

studies, as it shows long-term changes in the climate. Environmental scientists use

the shape of the trend to calculate acceleration in the mean of the data [Church

and White, 2011], which is used for environmental planning and adaptation. The

frequency of significant environmental events such as El Niño and La Niña has also

changed due to global warming; this appears as changes in the variance of the data

[Priestley, 1988, Parzen, 1999].

Hence, to systematically assess the performance of EMD when applied to time se-

ries possessing different types of non-stationarity, separate synthetic time series are

constructed with: (i) time-dependent mean; (ii) time-dependent variance; and (iii)
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time-dependent mean and variance. The sensitivity of the EMD procedure to the

different types of data non-stationarity is then investigated systematically.

4.1.1 Stationary synthetic time series

As a basis for constructing non-stationary synthetic time series, we use a stationary

time series comprised of two sinusoidal components, a low-frequency component L(t)

and a high-frequency component H(t):

x0(t) = L(t) +H(t); t = 1, 2, . . . , 1000, (4.1)

where

L(t) = 0.4 sin

(
2πt

200

)
; H(t) = 0.2 sin

(
2πt

25

)
. (4.2)

A perfect transform will recover L(t) and H(t) exactly as IMFs.
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a) No trend with no noise x0

b) No trend with constant noise y0

Figure 4.1: Synthetic stationary time series (a) x0(t) with constant mean and con-
stant variance (Equation 4.1); (b) y0(t) with constant mean and constant variance
with added noise (Equation 4.3).

We next define the noisy time series

y0(t) = x0(t) + ε0(t); t = 1, 2, . . . , 1000, (4.3)

where the noise ε0 ∼ N(0, δ0), i.e. normally distributed with mean zero and constant

standard deviation δ0; δ0 is taken as 20% of the standard deviation of x0 (Figure

4.1b).
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4.1.2 Synthetic data with time-dependent mean

Non-stationary time series with time-dependent mean are constructed by adding

various trends Ti(t) to x0(t). Specifically, we consider the non-stationary time series

xi(t) = x0(t) + Ti(t), i = 1, . . . , 4; t = 1, 2, . . . , 1000, (4.4)

with trends

T1(t) = 1 +
t

2000
, (4.5)

T2(t) = 1 +
(t+ 300)2

200000
, (4.6)

T3(t) = 7− ln(1002− t), (4.7)

T4(t) = 2 exp(−0.09(20t− 1)2). (4.8)

T1 is a linear trend; T2 is a non-monotonic (quadratic) trend, which initially decreases

then increases; T3 is a logarithmic trend, which exhibits a sharp rise near the end of

the time series, similar to the ‘hockey stick’ trends encountered in global temperature

data; and T4 is a Gaussian trend, with a sharp increase followed by a sharp decrease.

Figure 4.2 shows the non-stationary time series defined by Equation 4.4 with the

respective trends, Equations 4.5–4.8.

We next define noisy versions of these time series as:

yi(t) = xi(t) + εi, i = 1, . . . , 4; t = 1, 2, . . . , 1000. (4.9)

The noise terms εi ∼ N(0, δi) are added to emulate actual data (e.g. environmental

data). The constant variance of the noise δi is 20% of the standard deviation of xi.

Figure 4.3 shows the non-stationary time series defined by Equation 4.9 with the

respective trends, Equations 4.5–4.8.

4.1.3 Synthetic data with time-dependent variance

Two separate time series, z05 and z06 with time-dependent variance are constructed

based on x0(t):

z0j(t) = x0(t) + εj(t), j = 5, 6; t = 1, 2, . . . , 1000, (4.10)

where the time-dependent noise term is εi(t) ∼ N(0, δi(t)), with

δ5(t) = 0.0005t, (4.11)
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Figure 4.2: Synthetic data with time-dependent mean (Equation 4.4): (a) linear
trend x1; (b) quadratic trend x2; (c) logarithmic trend x3; (d) Gaussian trend x4.

and

δ6(t) = 0.0005 + 0.5 exp
(
−(0.006t− 3)2

)
. (4.12)

Hence, the time series z05(t) represents data with a monotonically increasing stan-

dard deviation, while z06(t) represents data with maximum variance in the middle

of the series. Figure 4.4 shows the non-stationary time series defined by Equation

4.10.
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Figure 4.3: Synthetic data with constant noise εi and time-dependent mean (Equa-
tion 4.9): (a) linear trend y1; (b) quadratic trend y2; (c) logarithmic trend y3; (d)
Gaussian trend y4.

4.1.4 Synthetic data with time-dependent mean and time-dependent variance

Time-series data with both a time-dependent mean and time-dependent variance

are constructed as follows:

zij(t) = xi(t) + εj(t), i = 1, 2, . . . 4; j = 5, 6; t = 1, 2, . . . , 1000. (4.13)

These time series are shown in Figure 4.5 for zi5(t) and Figure 4.6 for zi6(t).
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Figure 4.4: Synthetic data with time-dependent variance (Equation 4.10): (a) z05(t);
(b) z06(t).

Hence, a total of twenty synthetic datasets (2 stationary and 18 non-stationary)

are used to assess the performance of the EMD and EEMD procedures using the

different interpolation methods. These datasets are summarised in Table 4.1

Data Description Equation
x0 sum of sinusoids L, H 4.1
y0 x0 plus constant noise ε0 4.3
xi x0 plus trends Ti, i = 1, . . . , 4 4.4; 4.5– 4.8
yi xi plus constant noise εi; εi∼N(0, δi) 4.9
z05 x0 + ε5; δ5(t) = 0.0005t 4.10; 4.11

z06 x0 + ε6; δ6(t) = 0.5
(
0.001+e−(0.006t−3)

2)
4.10; 4.12

zij xi + εj, εj∼N(0, δj), j = 5, 6 4.13

Table 4.1: Summary of the datasets used as input to EMD/EEMD.

4.2 Sensitivity of EMD and EEMD to the interpolation method.

The performance of the EMD and EEMD procedures with the three different in-

terpolation methods is assessed using the twenty synthetic time series introduced

in the last section. We begin by considering how well EMD and EEMD are able

to estimate the sinusoidal signals L(t) and H(t) from the stationary input signals

x0 (Equation 4.4) and y0 (Equation 4.9). We then investigate their performance in

recovering the sinusoidal signals and the various trends Ti (Equations 4.5 to 4.8)

from the input time series with the various forms of non-stationarity.
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Figure 4.5: Synthetic data with time-dependent mean and variance (Equation 4.13
with ε5(t)): (a) linear trend z15; (b) quadratic trend z25; (c) logarithmic trend z35;
(d) Gaussian trend z45.

We first show the EMD/EEMD original results for two selected datasets and then

discuss how we analyse the results. It should be mentioned that in the EEMD results

it is normal to obtain more modes than we expect but the amplitude of some of these

modes are too small for the modes to carry valuable information. Therefore elimi-

nating these modes will not change the final analysis. In this study, the modes with

small amplitudes (smaller than 1× 10−2) are eliminated following the selection cri-

teria introduced in Peng et al. [2005]. Figures 4.7 to 4.9 show the results of LEEMD

(linear–EEMD), CEEMD (cubic–EEMD) and SEEMD (smoothing–EEMD) on the

three datasets (x0, y0 and y1).

Figure 4.7 shows the results of EMD for the x0 stationary data. The linear EMD

extracts six modes from the input data, four of which are too small. The cubic
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Figure 4.6: Synthetic data with time-dependent mean and variance (Equation 4.13
with ε6(t)): (a) linear trend z16; (b) quadratic trend z26; (c) logarithmic trend z36;
(d) Gaussian trend z46.

and smoothing EMD both extract five modes from the input data of which, in both

cases, three are too small. So, all interpolations produce two modes, which nearly

perfectly match the original modes (correlation coefficient ≈ 1). The first mode

produced is the high-frequency mode, the second the low-frequency mode. This

shows that for the noiseless stationary data, the EMD method is able to extract the

actual modes regardless of the type of interpolation used.

In the presence of noise, the results are not as straightforward. Figure 4.8 shows the

EMD outputs for the three interpolation methods for the y0 data (Equation 4.3).

The first two modes in LEEMD and CEEMD results correspond to the noise, and

the third mode is the high-frequency mode. For the SEEMD results, the first mode

is the noise, and the second mode is the high-frequency mode. The amplitude of
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Figure 4.7: EMD results for the noiseless stationary data x0 (Equation (4.1)) using
LEEMD (left column), CEEMD (middle column) and SEEMD (right column). The
top two rows shows the high- and low-frequency modes extracted by all three meth-
ods. The bottom row shows the sum of the two extracted modes (red dash line)
compared with the original signal x0 (black solid line).

.

this mode in SEEMD is underestimated due to the smoothing parameter being set

to extract the low-frequency mode more accurately (see Section 4.4).

LEEMD and CEEMD struggle to extract the low-frequency mode. In LEEMD, the

low-frequency mode appears in three IMFs (the first of which still has high-frequency

mode mixing), in CEEMD in two IMFs. This is a common challenge of the method;

the user can either choose one of the two or three modes or add all the modes with

similar time periods together [Peng et al., 2005]. It is not clear which is the better

method.

Adding the modes, then adding the trend does not cause loss of any information but,

in some cases, we are interested in studying a mode with a particular time period;

then by adding the modes we lose some of the information from that mode. Another

problem is in deciding which modes to add up. This is quite challenging, especially

when we deal with data with several high or low frequencies. Then, the IMFs are

often a combination of two modes. Obviously, in both of these situations, some
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information will be lost from the analysis. The ideal situation is that the method

should result in pure IMFs in the first place. Treating the problem objectively, we

did not add modes together but chose the modes that had the closest frequency and

amplitude to the actual modes. For example, for the low-frequency modes in the

y0 results, in LEEMD the fifth IMF, in CEEMD the fourth IMF and in SEEMD

the third IMF have the closest frequency and amplitude to the actual low-frequency

mode.

Figure 4.9 shows the EEMD results for data with constant noise and trend (y1,

Equation (4.9)). LEEMD extracts ten modes, CEEMD nine and SEEMD only six.

Similar to the y0 results, the first two modes of LEEMD and CEEMD, and the

first mode of SEEMD represent noise. The high-frequency mode then appears in

the third IMF from LEEMD and CEEMD, and the second from SEEMD. The next

three modes from LEEMD and CEEMD show that the methods struggle to extract

the low-frequency mode due to the challenges mentioned above. However, SEEMD

does find the low-frequency mode accurately. This shows another advantage of using

smoothing-spline interpolation in the EEMD method.

The mean absolute error (MAE) is used to quantify the differences between the

IMFs/residuals from EMD/EEMD and the corresponding sinusoidal components/trends

of the input data, that is how well EMD/EEMD recovers the original data:

MAEI =
1

N

N∑
k=1

∣∣M(tk)−IMFI(tk)
∣∣. (4.14)

Here, M(t) can be one of the sinusoidal components L(t) or H(t) in Equation 4.1, or

one of the trends Ti(t) in Equations 4.5–4.8; IMFI(t) is the corresponding IMF. The

subscript I denotes the interpolation method: L: linear; C: cubic; S: smoothing;

and N is the number of data points.

MAE values for all the analyses below are given in Table 2 on page 58.

4.2.1 EMD/EEMD and the stationary data

We now consider the performance of the EMD procedure applied to the input noise-

less stationary time series x0(t) (Equation 4.1) and that of the EEMD procedure

applied to corresponding time series with noise, y0(t) (Equation 4.3). Although

EMD was originally developed to deal with non-stationary data, the ability of the

EMD and EEMD methods to retrieve the component signals from stationary data

establishes a benchmark for the subsequent analyses using non-stationary data.
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Figure 4.8: EMD results for the noisy y0 data (Equation 4.3) using LEEMD (left
column), CEEMD (middle column) and SEEMD (right column). The top two rows
are noise, the third row the high-frequency modes and rows 4 to 6 low-frequency
modes extracted by three methods. The bottom row shows the sum of the two
extracted modes (red dashed line) compared with the original signal y0 (black solid
line).

Figure 4.10 shows that EMD applied to the noiseless time series x0 is able to extract

the high- and low- frequency sinusoidal components to a very high degree of accuracy.

The cubic- and smoothing-splines with EMD performed the best, with mean absolute
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Figure 4.9: EMD results for the noisy y1 data (Equation 4.9) using LEEMD (left
column), CEEMD (middle column) and SEEMD (right column). The top two rows
are noise, the third row the high-frequency modes and rows 4 to 6 low-frequency
modes extracted by three methods. The 10th row is the trend and the bottom row
shows the sum of the two extracted modes (red dashed line) compared with the
original signal y1 (black solid line).

errors (MAEs) of 6.68×10−4 and 5.22×10−4, respectively, for the low-frequency

component, and MAEs of 6.68×10−4 and 4.56×10−4, respectively, for the high-

frequency component. Linear EMD exhibited poorer performance, with an MAE of

3.25× 10−3 for both the low- and high-frequency components.
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Figure 4.10: EMD results for the noiseless stationary x0 (Equation 4.1); (a): high-
frequency IMFs; (b): low-frequency IMFs. Original is either the high-frequency
component H(t) (top) or the low-frequency component L(t) (bottom) of the input
signal.

EEMD applied to the noisy time series y0 (Equation 4.3) is able to accurately recover

the frequencies of the sinusoidal components, but performs less well in capturing

their amplitudes, as can be seen in Figure 4.11. For the high-frequency component,

‘cubic EEMD’ (CEEMD) performs the best (MAE = 2.22 × 10−2), while ‘smooth-

ing EEMD’ (SEEMD) performs the worst (MAE = 7.86 × 10−2). ‘Linear EEMD’

(LEEMD) is able to capture the high-frequency component to a similar degree of

accuracy as the cubic EEMD (MAE= 3.69×10−2), but produces very inaccurate re-

sults for the low-frequency component (MAE = 1.15× 10−1). For the low-frequency

component, smoothing EEMD performed the best (MAE = 1.61×10−2), with cubic

EEMD very inaccurate (MAE = 1.86× 10−1).
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Figure 4.11: EEMD results for the corresponding data with noise y0 (Equation
(4.3)); (a): high-frequency IMFs; (b): low-frequency IMFs. Original is either the
high-frequency componentH(t) (top) or the low-frequency component L(t) (bottom)
of the input signal.

The large error in smoothing EEMD for the high-frequency modes can be reduced

by changing the smoothing parameter. This is discussed in more detail in Section

4.4.

4.2.2 EMD/EEMD and non-stationary data with time-dependent mean

EMD applied to x1, the noiseless time series with linear trend (Equation 4.4), per-

forms very well regardless of the interpolation method used, producing identical

MAE statistics to those obtained from x0 for the sinusoidal modes. Similarly, EMD

based on each of the interpolation methods is able to accurately extract the linear

trend in x1, with linear EMD, cubic EMD and smoothing EMD yielding MAEs of

9.25× 10−5, 9.50× 10−5 and 1.79× 10−4, respectively.
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Figure 4.12: EMD results for the non-stationary data with logarithmic time-
dependent mean, x3 (Equation 4.4).
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The corresponding MAE statistics for the times series x2, x3 and x4 can be seen

in Table 4.2 (page 58). In the absence of noise, cubic EMD and smoothing EMD

provide the better estimates of the sinusoidal components and the various trend

components. Linear EMD performs considerably worse in estimating the logarithmic

trend component of x3, while EMD with all the interpolation methods has difficulty

in recovering the Gaussian trend component of x4.

Figures 4.12 shows the results of the various EMD procedures applied to x3. It is

evident that the nature of the logarithmic trend results in poor EMD performance;

this is particularly noticeable in the inability of the linear EMD to estimate the low-

frequency sinusoidal component in the region where the trend increases abruptly,

though similar issues can be seen with the cubic and smoothing EMD results (Figure

4.12). There are also problems with the estimation of the high-frequency component

near the end of the time series for the all interpolation methods (Figure 4.12, top

panel). Similar issues with the performance of the linear EMD are evident for

the low-frequency mode in Figures 4.12 and 4.13, with the region of particularly

poor performance coinciding with where the trend component exhibits the greatest

variability.

The various EMD methods perform relatively poorly in extracting the Gaussian

trend component from x4 (Figure 4.13). The linear EMD method, in particular,

fails to accurately extract the trend. The cubic and smoothing EMD methods

are able to extract the general pattern and symmetry of the trend component,

but underestimate its variability. Each of the EMD methods, however, is able to

accurately reproduce the high-frequency mode of x4.

The MAE statistics resulting from application of EEMD to the constant-noise time

series y1, y2, y3 and y4 can be seen in Table 4.2 (page 58). For the linear-trend time

series y1, the smoothing EEMD results in a more accurate recovery of the three

signal components, in particular the linear trend and the low-frequency sinusoidal

components, much better that the linear and cubic EEMD. Indeed, the MAE for the

low-frequency component is an order of magnitude smaller with smoothing EEMD.

Smoothing EEMD also deals with noise but it is important to set the right smoothing

parameter (see Section 4.4).

For the time series y2 with quadratic trend, the smoothing EEMD again provides

the lowest MAE values for the low-frequency component, although those from the

cubic EEMD are only slightly higher. Similarly, for the time series y4 with Gaussian

trend, smoothing EEMD yields the lowest MAE for the low-frequency component.

The exception is the logarithmic trend in y3, for which cubic EEMD yields a lower

MAE than the smoothing EEMD (see Table 4.2, page 58). As can be seen in Figure
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4.14, the linear EEMD has considerable difficulty in accurately reproducing the

amplitudes of both sinusoidal components.

4.2.3 EEMD on non-stationary data with time-dependent variance

The results of applying the various EEMD methods to the non-stationary time series

z05 and z06 are presented in Figures 4.15 and 4.16. Figures 4.15 and 4.16 clearly show

that the ability of linear EEMD to recover the high-frequency sinusoidal component

is considerably affected by the noise, a result which is consistent with those relating

to the application of linear EEMD to the time series y1, y2, y3 and y4. Again, it is the

amplitudes of the estimated components that are most sensitive to the presence of

noise, whereas their frequencies appear to be far more robust. The regions of poorest

performance of linear EEMD coincide with the regions where the amplitude of the

noise is greatest, near the end of the time series for z05 and in the middle of the time

series for z06. For z05, linear EEMD yields an MAE for the high-frequency component

of 5.02 × 10−2, while cubic and smoothing EEMD produce MAEs of 4.514 × 10−2

and 7.73 × 10−2, respectively. For the case of z06, in which the amplitude of the

noise is greatest in the middle of the time series, linear EEMD produces a MAE of

4.66 × 10−2, while cubic and smoothing EEMD produce MAEs of 4.87 × 10−2 and

7.32× 10−2, respectively.

As mentioned earlier, due to the interest of this study in long-term variability, the

smoothing parameter is biased towards the accuracy of the low-frequency modes.

Unfortunately, that means the high-frequency IMFs of SEEMD are not as accurate

as they could be, and the values of the corresponding MAEs are relatively high.

These high MAEs are due to errors in estimating amplitude rather than frequency.

So if the smoothing parameter in smoothing EEMD is not suitable for a specific

frequency range, the method can still find the correct frequency but will underesti-

mate the amplitude. This issue can easily be fixed in individual cases by changing

the smoothing parameter to a more suitable value. For more details about choice of

smoothing parameter, see Section 4.4.

For the low-frequency sinusoidal component, Figures 4.15 and 4.16 show that the

linear EEMD is badly affected by the presence of noise, and worst affected where

the amplitude of the noise is greatest. Cubic EEMD also seems to perform poorly

in these cases, though the regions of poorest performance occur at the ends of the

time series rather than where the noise is greatest in amplitude. This suggests that

end effects may have some bearing on the results of cubic EEMD; further analysis

is required to confirm this possibility. For z05, linear EEMD yields an MAE for

the low-frequency component of 1.67 × 10−1, while cubic and smoothing EEMD

produces MAEs of 9.41× 10−1 and 1.65× 10−2, respectively. For z06, linear EEMD
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produce a MAE of 1.60 × 10−1, while cubic and smoothing EEMD produce MAEs

of 1.47× 10−1 and 1.04× 10−2, respectively. These results indicate that smoothing

EEMD also provides the most accurate estimates of the low-frequency sinusoidal

component for the two cases of time-dependent variance considered; there is no

amplitude underestimation in the results and therefore no artificially high MAEs.

It is worth noting that the performance of smoothing EEMD does appear to also

work well near the end of the time series in the z06 case (Figures 4.15 and 4.16).

This shows that smoothing EEMD with a suitable smoothing parameter is a good

alternative to the standard (cubic interpolation) EEMD, with greater accuracy and

less mode mixing.

With smoothing splines, the best accuracy is achieved for the low-frequency modes

because the smoothing parameter is set in favour of the low-frequency modes.

4.2.4 EEMD on non-stationary data with time-dependent mean and variance

Here we consider the results of applying the various EEMD methods to the time

series zij with i ≥ 1 (Equation 4.13). Table 4.2 (page 58) details the resulting MAE

statistics for the various cases, while Figures 4.17–4.20 show some selected examples

of EEMD performance.

Consistent with the results in the previous section, linear EEMD is highly sensitive

to the presence of noise in the input time series. This is clearer when we consider

the MAEs for the xi (3.2 − 6.8) and the yi (36.9 − 81.2) in Table 4.2 (page 58).

Again, it is the amplitude of the estimated signals that is most badly affected (e.g.

see Figure 4.17). Interestingly however, linear EEMD is better able to accurately

reproduce the trend component of the input signals, in contrast to its ability to

reproduce their sinusoidal components. Table 4.2 (page 58) shows that apart from

the data with logarithmic and Gaussian trends, linear EEMD results for the trend

have smaller MAEs than for the low-frequency mode. Figures 4.18 and 4.19 show

that cubic EEMD is also prone to poor performance, particularly in its ability to

reproduce the low-frequency sinusoidal component.

Inspection of Table 4.2 indicates that, overall, smoothing EEMD provides the most

accurate estimation of the original signal components. Indeed, smoothing EEMD

produces the smallest MAE values in all but two of the cases considered, namely z16

and z25, for which cubic EEMD yields the smallest MAE values. However, in these

cases the smoothing EEMD mean absolute errors are only slightly larger. For the

sinusoidal components, smoothing EEMD consistently produces the smallest MAE

values. For the low-frequency components, smoothing EEMD produces MAE values

an order of magnitude smaller than those obtained from linear and cubic EEMD.
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It should be noted that in these cases the smoothing EEMD MAE values are only

slightly larger: 2.62×10−2 as opposed to 1.65×10−2 for the z16 case; and 1.62×10−2

as opposed to 1.21 × 10−2 for the z25 case. It is also worth noting that these two

cases involve estimation of the trend component.

In terms of estimating the trend component of the input signal, it is the logarithmic

and Gaussian trends that most confound the various EEMD procedures. Figures

4.19 and 4.20 show that the abrupt changes represented by these trend components

result in poor EEMD performance. For the logarithmic trend cases, this is particu-

larly evident near the end of the time series, while for the Gaussian trend cases the

EEMD methods fail to accurately estimate the full extent of the trend, similar to

that discussed above in the case of y4. Also, as was the case with y4, it is worth not-

ing that despite its relatively poor performance, smoothing EEMD better captures

the variability and symmetry of the Gaussian trend component for the two cases z45

and z46 (see Appendix).
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4.3 Robustness of the EEMD ensemble members

In this section, we consider the consistency of the various interpolation-based EMD

procedures that are employed in EEMD to estimate the trend component of the

various input time series. To do this, we construct confidence intervals based on

the full spectrum of the EEMD ensemble members. Figures 4.21 and 4.22 show

EEMD trend components along with 95% confidence intervals (shaded), which are

determined by considering the point-wise distribution of the 3000 estimated trend

components (i.e. the ensemble members) across the time series domain. Thus, at

each point in time, the lower confidence limit defines the value below which 2.5% of

the ensemble member values lay, while the upper confidence limit defines the value

above which 2.5% of the ensemble member values lay.

Figure 4.21 shows the trend components estimated by applying the various EMD

methods to the time series x1, x2, x3 and x4. The confidence intervals in Figure

4.21a indicate that there is a considerable degree of variability in the linear trends

determined in each of linear EMD ensemble runs. In particular, the confidence

intervals indicate that linear EMD produces linear trend estimates with gradients

ranging from 0.58 to 1.30 (width of trend estimation = 0.72). Figure 4.21a shows

that cubic EMD also produces a fairly wide spread of linear trend estimates, from

0.88 to 1.32 (width of trend estimation = 0.44). In contrast, the confidence intervals

associated with smoothing EMD are very small, from 0.93 to 1.03 (width of trend

estimation = 0.1), indicating greater consistency in the trend components produced

over the 3000 smoothing EMD ensemble runs.

Similar results are evident for the quadratic, logarithmic and Gaussian trend com-

ponents in Figures 4.21b, 4.21c and 4.21d, respectively. Linear EMD produces

the broadest range of trend estimates, while smoothing EMD exhibits considerable

robustness, producing consistent estimates of the various trends across the 3000

ensemble runs. In the case of the Gaussian trend in Figure 4.21d, the confidence

intervals associated with linear and cubic EEMD indicate that they are far less con-

sistent than smoothing EMD in their ability to estimate the trend. However, it

should be noted that the linear EEMD confidence intervals are the only ones that

encompass the actual trend component.

Figure 4.22 shows that similar patterns in the confidence intervals arise when consid-

ering time series data with time-dependent mean and time-dependent variance (zi5,

i≥1). The broadest confidence intervals arise in connection with linear EMD, while

smoothing EMD exhibits a considerable degree of robustness across the ensemble

members.
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4.4 Varying the smoothing parameter in SEEMD

In the previous sections, smoothing EEMD was implemented assuming a smoothing

parameter of p = 0.0015. This value of the smoothing parameter was shown to result

in accurate reproduction of the trend and low-frequency sinusoidal component, but

poor reproduction of the high-frequency sinusoidal component. In this section, we

examine if increasing the smoothing parameter results in more accurate estimation

of the high-frequency component, and what effect it has on the accuracy of estimates

of the trend and low-frequency component. Given that as p→ 1, smoothing-spline

interpolation approaches cubic interpolation, the expectation is that increasing p

will produce results more akin to those obtained using cubic EEMD.

In order to do this, we construct synthetic data with four sinusoidal components in

which we have inserted two more sinusoidal components between the high-frequency

and low-frequency components used previously:

Y (t) = S(t) + T1(t) + ε0, (4.15)

where ε0 ≈ N(0, δ) , δ = 0.2 std(S(t)), T1(t) = 1 + t
2000

,

and:

S(t) = 0.6 sin

(
2πt

400

)
+ 0.4 sin

(
2πt

200

)
+ 0.4 sin

(
2πt

100

)
+ 0.6 sin

(
2πt

50

)
; t = 1, 2, . . . , 1000. (4.16)

These data are shown in Figure 4.23.

SEEMD is used on these data with the smoothing parameter varying in the range

10−6 < p < 1. The IMFs for each p value are compared with the corresponding

sinusoidal components in Equation 4.16; the MAEs for each component are shown

in Figure 4.24.

For p > 10−1 and p < 10−3, the MAEs for all IMFs fluctuate considerably and

are relatively high: some values of p give good results for the higher-frequency

IMFs but not for the lower-frequency IMFs, and vice versa (Figure 4.24). However,

for 10−3 < p < 10−1, the MAEs for all four IMFs are low, suggesting that this

range contains suitable values for the smoothing parameter. However, this is for

the synthetic data presented here; the range may be different for different data.

Finding suitable values for the smoothing parameter needs further study. An obvious

approach would be to use generalised cross validation [Wahba and Wang, 1995] to
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determine an optimal value of p at each stage of EMD. However, this would increase

the computational demands of the procedure considerably.

4.5 Discussion and conclusions

The lack of a complete formal mathematical framework underpinning EMD means

that theoretical analysis of the sensitivity of the EMD method is not possible. Stud-

ies like this one, which examine the sensitivity of EMD using synthetic data, are one

of the only means of understanding the limitations of the method. In this study,

the application of EMD to stationary data and EEMD to non-stationary data have

been investigated using different types of non-stationarity (time-dependent mean,

time-dependent variance or both). The effects of varying the method of interpo-

lation, linear, cubic and smoothing-spline, in the EMD algorithm have also been

investigated.

Linear interpolation performed just as well as other interpolation methods in EMD

applied to data without noise, but performed poorly in EEMD applied to noisy data.

In particular, it suffered from mode mixing and end effects, and consistently under-

estimates the amplitude of the sinusoidal signal components. Linear interpolation

did however provide reasonable estimates for the trend components (except for data

with abruptly changing logarithmic or Gaussian trends).

Cubic EEMD exhibited overall better performance than linear EEMD, but was

still prone to mode mixing and end effects in certain cases. Smoothing EEMD

(SEEMD) consistently provided the most accurate estimates of the low-frequency

sinusoidal component and the various trends. Because the smoothing parameter was

set to favour the low-frequency components, the amplitude of the high-frequency

component in most of the cases was underestimated. However, we have shown

that it is possible to find a smoothing parameter that gives accurate results for all

frequencies, at least for the datasets considered in this study. There is a need for

further study on how to find suitable smoothing parameters for data in general,

without inflating the computational demands of the method too much.

Another advantage of SEEMD is that it is more robust and less sensitive to noise,

so that there is less mode mixing. In addition, SEEMD is less sensitive to the

non-stationarity of the input data. In all cases, there is much less variation in IMF

ensemble members using SEEMD.

We have also shown that EEMD performance depends on the nature of the input

data. It is sensitive to abrupt changes in the mean, for example, the ‘hockey-stick’

logarithmic trend, and the rise and fall of the Gaussian trend. When the data are
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more complex or there are sudden changes in the mean, EEMD is sensitive to the

choice of interpolation method.

Estimation of the frequency of the sinusoidal components by the IMFs appears less

sensitive to the data than estimation of the amplitude. All the interpolation methods

worked reasonably well in recovering the trend, with no one method always better

than the others. Finding the correct shape of the residual is important in analysing

long-term changes, and critically important to the accurate study of environmental

data [Ezer et al., 2013].

For completeness and future reference, the results of our study for each type of

non-stationary data are summarised in Table 4.2. Full details are in Appendix 1.
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Figure 4.13: EMD results for the non-stationary data with Gaussian time-dependent
mean, x4 (Equation 4.4).
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Figure 4.14: EEMD results for the non-stationary data with time-dependent mean
and constant noise, y3 (Equation 4.9).
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Figure 4.15: EEMD results for the non-stationary data with time-dependent vari-
ance, z05 (Equation 4.10).
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Figure 4.16: EEMD results for the non-stationary data with time-dependent vari-
ance, z06 (Equation 4.10).
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Figure 4.17: EEMD results for the non-stationary data with time-dependent mean
and variance, z15 (Equation 4.13).
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Figure 4.18: EEMD results for the non-stationary data with time-dependent mean
and variance, z25 (Equation 4.13).
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Figure 4.19: EEMD results for the non-stationary data with time-dependent mean
and variance, z36 (Equation 4.13).
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Figure 4.20: EEMD results for the non-stationary data with time-dependent mean
and variance, z45 (Equation 4.13).
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Chapter 5

Application of Empirical Mode Decomposition to

Temperature Data

5.1 Introduction

Over the last century, global and local temperatures have risen significantly; many

studies have been done in the last 50 years examining the significance of this warm-

ing. Coumou and Rahmstorf [2012] showed that the number of extremely high

temperatures has risen significantly after 1980.

An increase in global temperatures also has follow-on effects on the environment,

such as a rise in sea level [Rahmstorf, 2007], changes in precipitation [Trenberth,

2011a] and ocean circulation patterns [Levermann et al., 2005], and melting ice

[Meehl et al., 2007]. Climate change has two types of causes, external forcing and

internal variability in the climate system. External forcing can be a result of, for ex-

ample, the shading of the Sun by aerosol pollution in the atmosphere from volcanoes

[Neely et al., 2013] or from coal-fired power stations [Kaufmann et al., 2011]; the

volcanic effect has only a short-term impact on the climate [Jones, 1994]. Another

possible external forcing is a change in solar irradiation, but this has not changed

sufficiently to explain the rise in the temperature in the last century [Crowley, 2000].

Other external forcings are the Earth’s orbit around the Sun and, importantly, the

addition of greenhouse gases to the atmosphere due to human activity (anthro-

pogenic effect) [Trenberth and Fasullo, 2013, Mann and Park, 1994].

Trenberth [2011b] found small but significant and growing anthropogenic effects

increasing global temperature. The other contributors to global temperature rise

such as solar and volcanic effects are discussed by Ghil and Vautard [1991] and

Foster and Rahmstorf [2011]. Ghil and Vautard [1991] said that a solar origin

for the multi-decadal oscillation is unlikely for three reason. First, any insolation

effects of the Sun’s 22-year activity cycle should be dominated by the rectified 11-

year period, which is absent in their analysis. Second, multi-channel signal spectrum
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analysis of North American temperature data revealed no coherence with the 11-

year insolation signal. Third, although the 0.1% amplitude of the solar irradiation

cycle is sufficient to cause a variation of 0.1◦C in the atmospheric temperature, it is

definitely not sufficient to heat the upper ocean down to the penetration depth of

a decadal signal. Foster and Rahmstorf [2011] showed that, because the effects of

volcanic eruptions are very short-term and that of solar variability very small, neither

of these factors can be expected to exert a significant influence on the continuation

of global warming over the coming decades.

The strongest internal variability in the climate system is the change from El Niño

to La Niña — a natural, stochastic ‘seesaw’ in the tropical Pacific called El Niño

Southern Oscillation (ENSO). El Niño years are particularly warm, with 1998 the

strongest El Niño year on record. During an El Niño, the ocean releases heat; dur-

ing La Niña it stores heat. Randel et al. [2009] used a whole-atmosphere chemistry

climate model to study the signature of ENSO in the global temperature. They

found a strong ENSO signal in zonal mean temperature and ozone in the tropical

lower stratosphere in both the model and observational datasets. They also noticed

that there can be confusion of the ENSO and volcanic signals in short time series.

Therefore it is more helpful to use longer time records to analyse decadal and multi-

decadal temperature variability. Thompson et al. [2009] showed that land and ocean

coupled temperature fluctuations have a complex spatial signature. These fluctua-

tions penetrate the Atlantic Ocean, with larger sea-surface temperature amplitude

than other locations. Hansen et al. [2006] argued that warming in the western equa-

torial Pacific was larger than in the eastern equatorial Pacific in the last century.

This increase in the east-west temperature gradient may increase the likelihood of

stronger El Niños.

Changes in atmospheric and sea-surface temperatures impact the ocean and the

weather globally and regionally on both long and short timescales. To study the

long-term variability in the temperature, it is necessary to use a long data record and

subtract the underlying ENSO variability. Hulme et al. [2002] provided information

on climate change over time intervals of 20, 50 and 80 years, and demonstrated

that changes in climate state variables such as the warming of central England and

surrounding coastal waters only showed directional change over a period of at least

50 to 100 years.

Foster and Rahmstorf [2011] analysed five global temperature time series (over land

and ocean) from 1979 to 2010, three surface temperature records and two lower-

troposphere temperature records based on satellite microwave sensors. All five re-

sults showed consistent global warming trends, ranging from 0.014◦C to 0.018◦C per
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year. When the data were adjusted to remove the estimated impact of known fac-

tors on short-term temperature variations (El Niño/Southern Oscillation, volcanic

aerosols and solar variability), the global warming signal became even more evident

as the noise was reduced. The lower troposphere was affected by these factors more

strongly than the sea surface temperature.

Gaining a better understanding of temperature variability requires a method that

can more accurately extract information from the data. Some studies have already

shown that data-adaptive methods such as the Empirical Orthogonal Function or

Empirical Mode Decomposition/Hilbert-Huang Transform are suitable for this [Wu

et al., 2011, Mann et al., 2000]. These methods decompose the data into components

with different time scales, which relate to different temperature forcings.

As mentioned in Chapter 2, the Empirical Orthogonal Functions (EOF) Method

requires stationary data. Recent global warming has changed the mean temperature

and standard deviation, therefore adding more non-stationarity to the temperature

data. Jones et al. [1999] showed that all monthly, seasonal and annual series are

poorly approximated by linear trends due to two periods of warming from 1920

to 1940 and from the mid-1970s to 1999. Over both periods, the warming was

slightly greater in the southern hemisphere than in the northern hemisphere. Dealing

with such data is challenging, and requires a method that can deal with both non-

linearity and non-stationarity. Molla et al. [2006] used EMD to analyse a 15-year

air-temperature dataset with temperature measured daily. They used orthogonality

and a normal-distribution check of the modes, and reconstructed the modes to test

accuracy. However, 15 years of data are insufficient to investigate the climate-change

influences on temperature, and orthogonality does not necessarily provide a good

measure of the accuracy of the results [Bahri and Sharples, 2015].

The question is whether the EMD method and its extension, Ensemble Empirical

Mode Decomposition (EEMD), are suited to dealing with the non-stationarity in

the temperature data. If so, do the results change significantly using different inter-

polation methods? The EMD method was shown to be sensitive to the interpolation

method in Chapter 4. Whether this sensitivity can affect the analysis of temperature

data is investigated in this chapter.

In this chapter, unlike Chapter 4, we do not know the actual modes. Therefore we

cannot directly compare the EEMD results with the actual modes. In order to make

a judgment about which interpolation method gives the better results, we compare

our results with other studies and obvious physical phenomena, and see if using

different interpolation methods changes the detailed information that we extract

from the EEMD method.
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5.2 Temperature data

In this chapter, five temperature datasets are studied. The first dataset is the land-

sea mean global monthly temperature index obtained from NASA’s website

(data.giss.nasa.gov/gistemp/ ). This dataset is the combined Land-Surface Air and

Sea-Surface Water Temperature Anomalies (Land-Ocean Temperature Index, LOTI),

from 1880 to 2015. The accuracy of this dataset has been improved several times.

Quayle et al. [1999] combined long-term ship data, and buoy and satellite data to

provide the greatest possible coverage of the sea surface temperature. The result

is a global, century-scale surface-temperature index, updated monthly, that closely

parallels other widely published global surface-temperature measurements. To com-

bine these data into a single index, the land-air surface temperature was weighted

with a coefficient of 0.3, the sea surface temperature 0.7. Smith and Reynolds

[2005] investigated errors in the merged land-air/sea-surface temperature data and

reconstructed the data in two separate parts: a low-frequency component and a

high-frequency component: the low-frequency modes are anomaly modes, and the

high-frequency modes seasonal and inter-annual modes. They found that anomaly

persistence was stronger in SST than in land-surface temperature (LST); if a land

station disappears, it has a effect on the LST analysis. The global ocean area is

roughly twice as large as the global land area, so the impact of the SST overpowers

the impact of LST. Land variations are often more complicated than sea-surface

variations because of different elevations and land types.

Smith and Reynolds [2005] merged the two datasets by weighting the SST and LST

components by the percentage of ocean and land area in each 5◦×5◦ region. Errors

arose from historical gaps in sampling and from bias uncertainties in the data. The

errors in their study are due to the simple methods used for the low-frequency

analysis; the low frequencies in their study were only resolved if there were sufficient

local data for a large-scale (10◦×10◦ or 15◦×15◦) average and for low frequency

(15-yr) filtering.

Another study of the National Oceanic and Atmospheric Administration (NOAA)

which merged land-ocean surface temperature from 1880 to 2006 was done by Smith

et al. [2008]. They used the decadal-scale component to obtain the LF component,

they averaged spatially over 15◦×15◦ moving areas and then annually, to remove

local anomalies. The smoothed annual averages were then median filtered using

15 annual averages to produce a 15-yr LF anomaly analysis. The high-frequency

(HF) observations were obtained from a combination of the interpolation of SST

measurements over the oceans and from the global historical climate network over

the land. Smith et al. [2008] found that uncertainty occurred because of data errors
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Figure 5.1: Monthly mean temperatures and the time variability of their mean and
standard deviations. The left column of panels shows the data, the middle column
the decadal mean and the right column the decadal standard deviations. The top row
of panels shows the land-sea mean global monthly temperature index, the second row
the Sydney, Australia monthly maximum temperature and the third row the Sydney
monthly minimum temperature. The two bottom rows, with a different time scale,
show the Canberra monthly maximum and minimum temperatures, respectively.

and incomplete sampling over the historical period. The improvements in this study,

especially in late nineteenth century and since 1985, allowed a better understanding

of the global temperature. The improvements in the late the nineteenth century

were due to improvements in the analysis and data-collection methods.

The other datasets used here are the Sydney monthly maximum and Sydney monthly

minimum temperatures, both from 1859 to 2015. These data were obtained from the

Australia Bureau of Meteorology (www.bom.gov.au/climate/data-services/ ). The

data were collected initially at a station on Sydney Observatory Hill, latitude 33.86◦S
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and longitude 151.21◦E, at 39 m above mean sea level. Historically, if an observa-

tional site moved a relatively short distance (within about 1 to 2 km), it may still

have used the same station number. Numerous changes have also occurred in in-

strumentation and/or observing practices over the period included in the dataset,

which may have had an effect on the long-term record. In recent years, many sta-

tions have had observers replaced by automatic weather stations, either completely

or at certain times of the day. The Sydney record started in January 1859. The

first station on Observatory Hill was about 0.5 km from the harbour. In 1917, the

weather station moved about 100 m downhill to the south to a 6 m lower elevation.

From 1922 to 1946, the population of the area grew significantly. These changes

might have contributed slight variations to the temperature records.

The final two datasets are the Canberra monthly maximum and minimum temper-

atures from 1940 to 2015, obtained from the Bureau of Meteorology website

(www.bom.gov.au/climate/data-services/ ). The station is at Canberra Airport, lat-

itude 35.30◦S and longitude 149.20◦E, at 578 m above mean sea level. The Canberra

data came in two files, one called Canberra Airport comparison from 1939 to 2010,

the other Canberra Airport from 2008 to 2016.

In this section, the temperature data are analysed to determined whether they are

non-stationary, and so, what type of non-stationarity they have. The data are shown

in Figure 5.1. To find if the data are non-stationary, a test is applied to find whether

the decadal mean and/or decadal variance of the data vary with time. In order to do

that we calculated the mean and variance of the data for each decade. The results

are shown as bar charts in Figure 5.1.

Figure 5.1 shows that there was an overall increase in the global mean temperature

(top row in Figure 5.1), with a sharp rise after 1980. The decadal variance in the

global monthly temperature fluctuated more after 1940. The mean and the variance

of the global temperature data are time-dependent, so these data are non-stationary;

the mean changed non-monotonically from 1880 till 2016, with a slight bump around

1945. Although the changes in the variance over the whole time period were small,

the fluctuations of the variance in the period 1880–1940 were different from those

in the period 1940–2015. This shows not only a time dependence in the variance of

global temperature but that the change in variance was irregular over time.

The Sydney monthly maximum temperature (second row in Figure 5.1) showed a

roughly constant increase in decadal mean, but also a local peak around 1940. The

decadal variance showed a sharp decrease in 1920s and remained low after that.

The Sydney monthly minimum temperature (third row in Figure 5.1) dropped in

1940, then increased up to 2015. Its variance had a greater fluctuation after 1940.
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The increase in both the minimum and maximum temperature shows that Sydney

became warmer. The Sydney minimum temperature had a quadratic-like trend,

with regular variations in the variance; the Sydney maximum temperature trend

was more linear, with decreasing variance.

The Canberra, Australia monthly maximum and minimum temperature records both

started after 1940, (the bar charts show the mean and variance variability after 1960)

and showed an increase in the period after 1980. After 1985, the rate of decadal

increase was gentle. However, due to the short time span of the data, the study

of the longer time variations was harder. The variance of both the minimum and

maximum temperatures peaks in 1990–2000 and then decreases after 2000.

5.3 EEMD analysis of temperature data

In this section, the results of using two different interpolation methods in EEMD on

temperature data are presented; statistically significant modes are obtained. The

EEMD method is used to avoid mode mixing effects in the results. It was shown

in Chapter 4 that EMD/EEMD with linear interpolation had a poor performance.

Therefore, in this chapter only the EEMD with cubic interpolation (CEEMD) and

smoothing spline interpolation (SEEMD) is used. When using SEEMD, the smooth-

ing parameter is set to p = 0.001, chosen according to the results in Section 4.4.

The IMFs from the EEMD analysis are shown in Figure 5.2 for the global tempera-

ture data. SEEMD mode 1 was equivalent to CEEMD modes 1,2 and 3 combined,

SEEMD had an extra low-frequency mode with very small amplitude.

The method produces a number of modes (Figure 5.2), not all of which carry sta-

tistically significant information. Wu and Huang [2004] introduced the following

method to test for statistically significant modes. First, decompose the targeted

normalised noisy data into IMFs. Second, construct a long artificial white-noise

record with the same standard deviation as the first mode as a reference. This ref-

erence record is then divided into sections of identical length (we used 100 sections,

each with the same length as the time series). Next, apply the EEMD method to

decompose each reference section into IMFs; the statistical characteristics of these

IMFs should have energy× period (EnTn) constant for each section ‘n′. Therefore,

ln(En)+ln(Tn) = 0, so that the graph of ln(En) against ln(Tn) will be a straight line

(for more information see Wu and Huang [2004]). A number of IMFs are produced

for each reference section; the mean of each IMF over all sections is then obtained.

By specifying the confidence interval (95% in this study), upper and lower bounds

for the IMFs are determined. The spread lines are the 2.5 and 97.5 percentiles. The

IMFs with energy above the upper spread line or below the lower spread line are
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Figure 5.2: IMFs of the global land-sea mean monthly temperature index data:
cubic-spline interpolation CEEMD (left column); smoothing-spline interpolation
SEEMD (right column), high frequency at the top; the bottom IMFs is the residual
or trend.

considered to contain information at that selected confidence level and are statis-

tically significant (Monte Carlo tests). However the IMFs with energy lower than

the lower spread line will have very low energy and do not play a significant role.

Therefore, in this study only the IMFs above the upper spread lines are considered
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as statistically significant IMFs. This method is used here on all temperature data.

Figure 5.3 shows a posteriori and Monte Carlo tests for the data.

Figure 5.3 shows that, for global temperature, CEEMD gave seven statistically sig-

nificant IMFs whereas SEEMD gave six statistically significant IMFs. For Sydney

maximum temperature, SEEMD extracted four significant IMFs whereas CEEMD

only extracted three. This shows that changing the interpolation in the EMD

method, can change the total number of statistically significant IMFs.

Period
Dataset Interpolation Intera-decadal Decadal Multi-decadal

Global
Cubic mode 5 mode 6 mode 7

Smoothing mode 3 mode 4 mode 6
Sydney
Max

Cubic mode 3 none none
Smoothing mode 3 mode 4 none

Sydney
Min

Cubic none none none
Smoothing mode 3 mode 4 none

Canberra
Max

Cubic none none none
Smoothing none none none

Canberra
Min

Cubic none none none
Smoothing mode 4 none mode 7

Table 5.1: Statistically significant IMFs (modes) for global, Sydney maximum and
minimum, and Canberra maximum and minimum temperature data. In this table
the blue shows the modes from CEEMD, and red the modes from SEEMD.

This situation applies for Sydney and Canberra minimum temperatures (Figure

5.3). In addition, the local temperature is influenced strongly by high-frequency

drivers such as seasonal variability. Therefore the long-term low-frequency variables

have smaller amplitudes, and mode mixing can result in IMFs containing relevant

information being discarded as insignificant.

Ghil and Vautard [1991] used singular spectrum analysis (see Section 2.3.4) to anal-

yse the time series of global annual surface air temperatures from 1854 to 1988. They

found fundamental oscillations that were associated with peaks near 21 years, 6 years

and 5 years. In this study we found fundamental oscillations similar to Ghil and

Vautard [1991]. In Table 5.1, the statistically significant IMFs are listed according

to their time scale. intra-decadal IMFs are IMFs with a period of 4–6 years, decadal

IMFs a period of 10–20 years and multi-decadal IMFs a period of more than 30

years. As shown in Table 5.1, SEEMD extracted more statistically significant IMFs

with lower frequencies; therefore SEEMD is a more suitable interpolation method if

we are interested in studying the long-term variability. For Sydney minimum and

maximum temperatures, smoothing splines gave a statistically significant decadal
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Figure 5.3: Results of the a posteriori and Monte Carlo tests for the five temperature
datasets. The dotted lines show the upper and lower spread lines determined from
the energy densities of the reference section IMFs (coloured dots). The orange circles
show the energy density of the original IMFs. Those orange circles that lie above or
below the spread lines correspond to statistically significant modes.
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IMFs whereas cubic splines did not. Similarly for the Intra-decadal IMFs for the

Sydney and Canberra minimum temperatures and for the multi-decadal IMFs for

Canberra minimum temperature.

In Mann and Park [1994], the spatial patterns associated with significant peaks in

the variance within a broad period of 2.8 to 5.7 years exhibited characteristic ENSO

patterns. A decadal mode in the 15–18-year period appears to represent long-term

ENSO variability. Mann and Park [1994] showed that a significant proportion of

climatic variability on inter-annual to century timescales may be associated with

quasi-periodic processes of either external or internal origin. Organised internal

variability appears to be associated with ENSO or with extra tropical patterns that

chiefly involve a North Atlantic Oscillation pattern. Decadal variability has a weak

impact on global average temperature but gives rise to a strong redistribution of

surface heat. The 15–18-year intra-decadal signal related to ENSO has a significant

amplitude and projection onto global average temperature. This signal contributed

to the anomalous warmth of the 1980s. Smith and Reynolds [2005] removed noise

by fitting the data to a set of covariance modes, based on a densely sampled period.

They found that for the period 1880–1997, the number of statistically significant LST

modes increased gradually until about 1950. After 1950, the number of LST modes

remained the same, with a slight decrease in the 1990s. The number of statistically

significant SST modes remained constant for most of the twentieth century.

5.4 Interpolation sensitivity – application to temperature data

In Figures 5.4–5.7, the statistically significant IMFs in Table 5.1 at each of the three

time scales, intra-decadal, decadal and multi-decadal, are shown.

Figure 5.4 shows the global and Sydney maximum temperature Intra-decadal tem-

perature modes. The top panel shows the intra-decadal modes for global tempera-

ture using cubic and smoothing splines. The results are similar except for opposite

trends in 1886, 1945 and 1990. The bottom panel in Figure 5.4 shows the corre-

sponding results for Sydney maximum temperature. Here, there are more differ-

ences between the cubic-spline and smoothing-spline results. The amplitude of the

CEEMD IMF curve is significantly less than that of SEEMD for the first half of the

data, because of mode mixing in the cubic-spline results. In the second half of the

data, there is more similarity between the SEEMD and CEEMD results. Neither of

the interpolation methods found significant intra-decadal modes for Canberra max-

imum temperature, and no statistically significant modes were found for Sydney

minimum temperature using CEEMD. The results for Sydney and Canberra min-

imum temperature using SEEMD are shown Figure 5.5. The IMFs show similar
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Figure 5.4: Statistically significant intra-decadal IMFs for global temperature and
Sydney maximum temperature data. S: smoothing-spline interpolation; C: cubic-
spline interpolation.
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Figure 5.5: Statistically significant intra-decadall IMFs for global Canberra and
Sydney minimum temperature data. S: smoothing-spline interpolation.

behaviour, with a some lag between the Canberra and Sydney intra-decadal results.

This lag could be due to the different lengths of the Canberra and Sydney data.

Figure 5.6 shows the decadal IMF for global temperature with CEEMD and SEEMD.

The two methods gave similar results for the years 1900 to 1940, but the SEEMD
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results showed more peaks in the years 1940–2000. These peaks are consistent with

the timing of El Niños in 1972, 1983, 1987 and 2003.
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Figure 5.6: Statistically significant decadal IMFs for global and Sydney temperature
data. S: smoothing-spline interpolation; C: cubic-spline interpolation

Figure 5.7 shows statistically significant IMFs with multi-decadal periods. Table 5.1

shows that only three IMFs with multi-decadal period across all the temperature

datasets were statistically significant. Therefore, in Figure 5.7 just the multi-decadal

IMFs from SEEMD and CEEMD global temperature and multi-decadal SEEMD

Canberra minimum temperature are plotted. The two EEMD methods gave similar

IMFs for the multi-decadal period for global temperature, with small differences

after 1960. In this figure, there is a phase difference between Canberra minimum

temperature and global temperature. This makes sense because the global tem-

perature is the average of land and sea temperature, and the fluctuations in sea

temperature are delayed relative to those in land temperature. Unfortunately, due

to the short record for Canberra temperature, its multi-decadal behaviour from be-

fore 1940 is unknown. Therefore, it is difficult to distinguish global climate change

effects from the local climate variability. Local climate variability can occur over

sub-decadal to decadal scales, while climate change effects are only discernible in

records longer than 50 years approximately. As such the Canberra time series may

not be able to properly distinguish the local climate changes from those associated

with global climate change effect, and is required in interpreting the results.

In the EEMD method, the residual is the IMF that shows the long-term variability in

the data. Here, the long-term variability in the temperature data is related to climate

change. Many studies have shown that climate change cannot be studied successfully

with short records. Therefore, the trends in the Canberra temperature data, because

of their short time records, probably will not give us realistic information about

climate change.
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Figure 5.7: Statistically significant multi-decadal IMFs for global and Canberra min-
imum temperature. S: smoothing-spline interpolation; C: cubic-spline interpolation.
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Figure 5.8: Sydney maximum and minimum temperature anomalies using CEEMD
and SEEMD.

Figure 5.8 shows the trends (residuals) in the Sydney minimum (top) and maximum

temperature (bottom) anomalies using SEEMD and CEEMD. This figure shows

further evidence of the sensitivity of EEMD to the interpolation method. The

residuals of the maximum and minimum temperature using SEEMD have different

shapes, whereas those using CEEMD are more or less the same shape. SEEMD

indicates that the minimum temperature had an acceleration after 1920 whereas
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CEEMD indicates that its rate of increase was approximately constant during the

whole time period.

According to the SEEMD results, over the whole period 1859–2015, Sydney max-

imum temperature increased from 21.1◦C to 23.2◦; CEEMD gave this increase as

from 20.6◦C to 22.8◦C. For minimum temperature, SEEMD gave an increase from

13.05◦C to 14.86◦C, CEEMD from 12.8◦C to 14.87◦C.

Data Method 1859–1937 1938–2015

Max T
CEEMD 0.45 1.25
SEEMD 1.04 1.26

Min T
CEEMD 0.40 1.30
SEEMD 0.02 1.38

Table 5.2: Increase in Sydney temperature for the given periods.

The SEEMD results for Sydney are similar to those of Jones [1994] and Ghil and

Vautard [1991] for global temperature, and of Vose et al. [2005] for Sydney tempera-

ture. Jones [1994] reviewed the surface air temperature record of the past 150 years.

He found that, over the two 20-year periods of greatest warming this century, 1925–

1944 and 1978–1997, global temperatures rose by 0.37◦C and 0.32◦C, respectively.

In recent decades, there have been much greater increases in minimum temperatures

than in maximum temperatures; over the period 1950–1993, the difference between

maximum and minimum temperatures decreased by 0.08◦C per decade. Jones [1994]

found that for the period 1951–1990, minimum temperatures warmed at three times

the rate of maximum temperatures and that minimum temperature in Sydney rose

faster than maximum temperature over the entire last century. Annual global sur-

face temperatures warmed by 0.57◦C over the period 1861–1997 and by 0.62◦C over

the period 1901–1997. However, he could not obtain accurate results for the south-

ern hemisphere due to lack of data coverage. Table 5.2 shows the rate of change

in temperature estimated using SEEMD and CEEMD. The increases in the Syd-

ney temperature from SEEMD and CEEMD are similar for the period 1938–2015

but quite different in the period 1859–1937. According to CEEMD, the minimum

temperature in the periods 1859–1937 and 1937–2015 increased by about 0.9◦C per

year, whereas according to SEEMD, it was about 1.36◦C per year.

In addition, Figure 5.8 also shows the average difference between the CEEMD and

SEEMD results. The average of the trend using CEEMD is 21.4590 whereas when

the SEEMD is used the average is 22.0774. This 0.6184 average difference is another

evidence of the sensitivity of the EMD method to interpolation. This is also shown

in the Bahri and Sharples [2015] results for sea level data. They showed that two

different interpolation have different start and end points. In their results, there
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was a 5 cm difference for the trend between the results from linear interpolation and

cubic interpolation.

5.5 Temperature and its physical drivers

As mentioned in Section 5.1, changes in temperature have two types of drivers,

external and internal. In this section, SEEMD and CEEMD are used to investi-

gate whether the resulting IMFs can be related to specific drivers and whether the

different interpolation methods can change the interpretation of the results.

5.5.1 CO2 and temperature

The strongest external temperature driver in the last century has been the anthro-

pogenic. Mann et al. [2000] investigated the effects of solar, greenhouse gas and

volcanic forcing. They found that, while natural (solar and volcanic) forcing was

an important factor governing the natural variation in temperature in past cen-

turies, only human greenhouse-gas forcing, as noted by Mann and Park [1994], can

statistically explain the unusual warmth of the past few decades.

In this study, CEEMD was used to analyse the global CO2 concentration data for

1960–2015 from the NOAA website (www.esrl.noaa.gov/gmd/ccgg/trends/data.html).

Due to our interest in long-term variability, only the CO2 residual is used here. Fig-

ure 5.9 shows the global temperature residual using CEEMD (blue dashed line) and

SEEMD (red solid line), together with the CO2 residual calculated using CEEMD.

SEEMD and CEEMD gave similar residuals for the global temperature data and

show a sharp increase after 1920. The CO2 trend also shows a sharp increase from

1960 till the present. The time period for the CO2 data is not very long, so that it

is not clear if the CO2 trend had similar behaviour with temperature before 1960.

5.5.2 Southern Hemisphere variability

One of the significant internal drivers of temperature in the Southern Hemisphere

is ENSO. In the last century, there were stronger El Niño effects than previously

experienced. These strong El Niños are called super El Niño. Hong [2016] showed

these events happened in 1972–1973, 1982–1983 and 1997–1998. In this study we

use these three super El Niños as examples of strong physical phenomena, and see if

CEEMD and SEEMD can distinguish these events. The reason to take El Niños into

account is that the presence of an El Niño event affects global mean temperature

anomalies. For example, the big El Niño over the winter of 1997–1998 directly

warmed a large part of the Pacific, indirectly warmed an even larger region and

caused a warm year in 1998. The opposite effect was seen in the La Niña event in
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Figure 5.9: SEEMD and CEEMD trends for global temperature (left-hand scale).
The black dashed line shows the CEEMD trend in the CO2 concentration (right-
hand scale)

the 2007 winter. Since the variability associated with these events is large compared

to expected global warming trends over a short number of years, the underlying

trends might be more clearly seen if the El Niño events were extracted from the

climate model. There is no perfect way to do this.

Unfortunately ENSO influences the climate on different time scales. Trenberth and

Fasullo [2013] emphasised the role of the long-term variation in ENSO, called the

Pacific Decadal Oscillation (PDO), and found that PDO events may persist for up

to two decades in the tropical Pacific, causing a somewhat slower warming at the

surface, because more heat is stored deeper in the ocean. Rasmusson et al. [1990]

noted that the multi-decadal oscillations in the temperature anomaly are probably

related to the low-frequency component of ENSO.

The EEMD decadal IMFs (see Section 5.3) are shown in Figure 5.10. Smoothing-

spline interpolation showed the decadal temperature fluctuations more clearly than

cubic-spline interpolation. In Figure 5.10, the SEEMD result showed that the tem-

perature reached maxima in 1952, 1970, 1983 and 1990, 1997 years reported as

major El Niño years (Figure 5.10).

Hong [2016] showed that super El Niño happened in 1982–1983, and Mann and Park

[1994] found 1983–1993, to be the warmest decade up to that time, as shown by the
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Figure 5.10: Decadal oscillation in global temperature and super El Niño events.

SEEMD results in Figure 5.10. The SEEMD results also show another significant

peak in 1990, which is also mentioned as a super El Niño year by Hong [2016],

Spencer [1990].

After 1990, neither interpolation method showed any significant peak in the global

land and sea temperature; this time was called a cooling phase by Ghil and Vautard

[1991]. About half of the slow down can be explained by a slower increase in radiative

forcing. A problem is that the data on the net radiative forcing are too imprecise to

better quantify its contribution. The often cited data on heat storage in the ocean

are therefore just further evidence that El Niño played a crucial role in the pause.

According to Herold and Santoso [2017], the ENSO effects in 86, 87, 91/92, 94, 02

and 09 were quite weak. In Figure 5.10, the SEEMD results show a brief cooling

period after 1990 and no further peak in the temperature, just a gentle increase.

Ghil and Vautard [1991] also found a large fluctuation just after 1950, which they

related to the quasi-biennial component of ENSO; this is consistent with the SEEMD

results in Figure 5.10.

The effect of the 1998 El Niño on temperature was not resolved in either EEMD

method. The El Niño events in 1997–98 and 1982–83 temperature records appear to

be somewhat anomalous in the context of the past several centuries. Hansen et al.

[2006] called the El Niños in 1983 and 1998 super El Niños because of the sharp

temperature gradient between the east and west Pacific.

Over the period 1998 to 2013, global temperature rose more slowly than previously

but this does not mean that global warming has stopped. Due to natural variability,
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trends based on short-term records are very sensitive to values at the beginning and

end, and do not in general reflect long-term climate trends. The long-term warming

and short-term pauses have nothing to do with each other, since they have very

different causes.

5.6 Discussion and conclusions

The results in this chapter show that the EEMD method, regardless of the interpo-

lation method used, can describe long-term behaviour in the temperature. However,

changing the interpolation method changes the degree of variability in the trend,

and even the interpretation of the data.

The SEEMD results had less mode mixing than CEEMD; less mode mixing can

result in more statistically significant modes. For the decadal mode for the global

temperature data, both CEEMD and SEEMD show the overall trend in the cool-

ing and warming phases. However, SEEMD exhibited more detail in the decadal

variability and contained features that matched known extreme events and El Niño

occurrences reported in the literature.

EEMD showed a sensitivity to the interpolation method in finding the trend for the

Sydney maximum and minimum temperature data, with greater sensitivity for the

minimum temperature data. According to the SEEMD results, Sydney maximum

temperature has increased about 2.3◦C in the last 136 years, whereas CEEMD found

an increase of about 2◦C. For Sydney minimum temperature, SEEMD gave about

a 1.4◦C increase, CEEMD a 1.3◦C increase. In addition, the slopes of the trend

from SEEMD and CEEMD were not the same. The CEEMD result showed linear

trends for both minimum and maximum temperature, with positive slopes, whereas

SEEMD showed that the minimum temperature rise accelerated from 1920. The

SEEMD result in this case agrees with the literature.

Although the differences between the smoothing-spline and cubic-spline interpo-

lation results might seem small, they still cause serious issues in interpreting the

results. For example, the maximum temperature difference between the SEEMD

and CEEMD results for Sydney was about 0.3◦C. Comparison of this value with the

overall global temperature increase since 1880, reported in on Climate Change [2014]

(0.85◦C), shows the huge impact of the interpolation method in the EEMD method.

Again its appears that smoothing-spline interpolation is the better interpolation

method to use in EMD/EEMD.
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Chapter 6

Application of Empirical Mode Decomposition

to Sea-Level Data

6.1 Introduction

Global warming has resulted in significant environmental changes, among which its

impact on the ocean, and more specifically on sea-level rise, is one of the most im-

portant leading to serious environmental hazards [Meehl et al., 2005]. According

to the Intergovernmental Panel on Climate Change (IPCC) 6th Report [on Cli-

mate Change, 2014], global mean sea level has increased significantly in the 20th

century, by about 1.7 mm per year between 1901 and 2010. In Mastrandrea et al.

[2010], sea level was estimated to rise by up to 74 cm by the year 2100, correspond-

ing to an average annual increase of 8.5 mm. These significantly different values

could be the result of using different methods to estimate them. More accurate and

more reliable prediction of sea-level change would help develop more efficient coastal

management plans to mitigate possible damage from sea-level rise.

Church and White [2011] applied satellite altimeter data from the relatively short

period 1993 to 2009 and tidal-gauge data from 1880 to 2009 to estimate the global

mean sea level (GMSL) using the Empirical Orthogonal Function Expansion (EOF)

method. For the period 1993 to 2009, both tidal and altimeter results from this

method showed an increase in GMSL. The linear trend from the altimeter data

from January 1993 to December 2009 was 3.2 ± 0.4 mm per year. However the

value from the combined data was slightly smaller than the altimeter estimate after

correction for glacial melting. For the 130 years from 1880 to 2009, the total rise

was about 210 mm, commensurate with the 195 mm in their prior study which had

eight years’ less data [Church and White, 2011, Cai, 2006]. Church and White [2011]

identified two different rates in the data: one from 1880 to 1935 was 1.1 ± 0.7 mm

per year; the other from 1936 to 2009 was 1.8± 0.3 mm per year.
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6.1.1 Historical sea-level variability

In the previous chapter, global warming in the last century was discussed. This

warming has direct impacts on the environment, among which is impact on the

ocean, and more specifically on sea-level rise [Meehl et al., 2005]. Meehl et al. [2005]

showed that, even if the concentrations of greenhouse gases in the atmosphere had

been stabilised in the year 2000, sea level would continue to rise due to future global

warming of about another half degree, with an additional 32% sea-level rise caused

by thermal expansion by the end of the 21st century.

A number of studies have been done on global sea-level rise, for example Church

et al. [2006], Church and White [2011], Jevrejeva et al. [2008], Wenzel and Schröter

[2014], Ray and Douglas [2011], Hay et al. [2014]; these studies, regardless of the

method used, all demonstrated that the rate of rise in the last two decades (about

3 cm per decade) was the highest on record.

Global sea level has always been changing; in the last ice age, 20, 000 years ago,

sea level was about 120 m less than it is today [Solomon, 2007]. More recently, it

was stable from 100 BC until 950 AD, then increased by 0.6 mm/yr for about 400

years, followed by a further stable period, then gradually decreased until late in

the 19th century [Kemp et al., 2011, Vermeer and Rahmstorf, 2009]. Since then,

sea level has risen at an average rate of about 2 mm/yr, representing the steepest

century-scale increase of the past two millennia. This rate began to increase between

1865 and 1892. Using an extended semi-empirical modelling approach, Kemp et al.

[2011] showed that these sea-level changes were consistent with the increase in global

temperature for at least the past millennium.

From 1901 to 2010, total global sea level rose by 190 ± 20 mm, albeit at varying

rates and spatial distributions [Church et al., 2013]. Kopp et al. [2016] showed that

from late in the 20th century, sea level has risen faster than in any of the previous

27 centuries.

Lyu et al. [2014] defined the time of emergence (ToE) as the time when the climate-

change signal from increasing greenhouse gases exceeded natural climate variability.

They mentioned that the ToE is an important climate-change issue. In their study,

they used three regional sea-level projection models to predict sea level in 2100, and

estimated the ToE for sea-level changes relative to the reference period 1986 to 2005.

They used a dynamic sea-level model, derived from ocean density and circulation

changes, then added the global-ocean thermal expansion effect and additional con-

tributions from land-ice mass loss, land-water storage change and glacial isostatic

adjustment, which generally enhances the signal of regional sea-level rise (except in

some regions with decreasing sea levels). Their results showed a ToE over more than
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50% of the ocean area by 2020. This shows that ToE for sea level is substantially

earlier than that for surface air temperature, and exhibits little dependence on the

emission scenarios. It means that society will face detectable sea-level change and

its potential impacts earlier than surface air warming.

Wenzel and Schröter [2010] used neural networks to estimate global sea-level varia-

tions based on long-term tidal-gauge records in the 20th century. The global mean

sea level for the period January 1900 to December 2006 was estimated to have risen

at a rate of 1.56±0.25 mm/yr, reasonably consistent with earlier estimates, but they

did not find significant acceleration.

6.1.2 What causes sea-level change?

There are several contributors acting on global and/or regional scales that affect sea

level. The main global contributors are: thermal expansion, which is the increase

in the volume of the ocean water mass due to atmospheric heat exchange; melting

land ice from mountain glaciers, small ice caps and big ice sheets, which add water

mass to the ocean; and changes in the depth of the ocean basin due to long-term

movements of the Earth’s crust [Rahmstorf, 2012b].

Church and White [2011] provided a sea-level budget analysis to estimate the con-

tributions from each of these contributors. For the period 1972 to 2008, the sum

of the contributions led to a total rise in sea level of about 70 mm. Over 50% of

that was due to melting land ice, and a little less than 50% to thermal expansion.

Church and White [2011] suggested that thermal expansion affects sea level over

longer time scales, so that even if greenhouse-gas emissions were curbed, sea level

would continue to rise. Therefore, in this chapter we pay special attention to the

variability in sea level and its relationship to changes in global mean temperature.

Rahmstorf [2007] used a semi-empirical approach to connect global sea-level rise to

global mean surface temperature. They proposed that the rate of sea-level rise dH
dt

on an anthropogenic time scale is roughly proportional to the magnitude of warming

above the temperature in the pre-industrial age T0:

dH

dt
= a(T − T0). (6.1)

This holds to a good approximation for temperature and sea-level changes during

the 20th century. Vermeer and Rahmstorf [2009] improved this method by adding

a rapid-response term. They proposed a simple relationship linking global sea-level
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variations on time scales of decades to centuries to global mean temperature:

dH

dt
= a(T − T0) + b

dT

dt
. (6.2)

Vermeer and Rahmstorf [2009] applied this model to global sea-level data and tem-

perature from 1880 to 2000, and found that it explained 98% of the variance.

Church and White [2011] quantitatively explained the rate of sea-level rise since

1970 by a gradual increase in ocean thermal expansion, with fluctuations at least

partly related to volcanic eruptions and an increasing cryospheric contribution. The

contributions from glaciers and ice caps [Cogley, 2009], and from the Greenland ice

sheet [Rignot et al., 2011] both increased in the 1990s, and there was an increasing

contribution from the West Antarctic ice sheet [Rignot et al., 2011]. The larger

rate of rise in the 1940s may be related to larger glacier and ice-cap contributions

[Oerlemans et al., 2007] and higher temperatures over Greenland.

Peltier et al. [2015] showed that land in most of the worldis subsiding at a fraction

of a millimeter per year, compounding the problem of sea-level rise. However, at

some locations in the northern latitudes, the reverse is happening; land is rising

after being liberated from the mass of the ice sheets, again normally by less than

1 mm/yr, but in places of over 5 mm/yr.

6.1.3 From global to regional scale

Changes in sea level are spatially non-uniform [Church and White, 2011], so it is

necessary to have a better understanding of the drivers of both global and regional

sea-level changes to facilitate local adaptation planning [Rahmstorf, 2012a]. Re-

gional sea levels are affected by global sea-level variability and by regional factors.

With global contributors outlined above, this section discusses the impact of re-

gional contributors. White et al. [2005] found that coastal sea level was rising faster

than the global average in some parts of the world, for example around Australia,

during the 1990s and around 1970, but that it rose slower than the global average

during the late 1970s and late 1980s. They suggested that a more rapid coastal rise

corresponds to La Niña-like conditions in the tropical Pacific Ocean, a slower rate

to El Niño-like conditions.

Meyssignac and Cazenave [2012] studied the altimeter-based spatial trend patterns

in sea level from 1993 to 2010. The variability in sea level was emphasised when

they removed the global mean sea-level trend of 3.2 mm/yr. In some regions, such

as the western and northern Pacific, the southern Indian Ocean and the south of

Greenland, the local departures from the global mean trend were so large that they
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actually dominated the sea-level rate signal over the relatively short period 1993 to

2010. In addition, all processes that influence global mean sea level vary in time

and space. For example, local changes in ocean temperature and salinity lead to

local sea-level changes through associated variations in the water-column density

and volume (thermosteric and halosteric effects, respectively) [Wunsch et al., 2007,

Lombard et al., 2009]. These variations are closely linked to atmosphere-ocean

interactions (mostly through wind stress but also through exchanges of heat and

fresh water) and associated changes in the ocean flow field [Köhl and Stammer,

2008, Timmermann et al., 2010].

Regional sea-level changes differ from the global sea-level change for a number of

reasons. First, ocean waters circulates, driven by winds and other factors, so that

even if the global water volume does not change, there will be regional sea-level

changes. This can happen due to both natural oscillations in the climate system

(such as El Niño/Southern Oscillation) and forced anthropogenic changes (e.g. a

weakening of the Atlantic thermohaline circulation).

Second, the gravitational pull of land ice is reduced as the ice melts, which has a

surprisingly large effect on the sea surface. For example, as ice on Greenland melts,

this causes a global sea-level rise, but a regional drop in sea level in a circular area

around Greenland extending all the way to Fennoscandia [Mitrovica et al., 2001].

Local sea-level changes can differ by some tens of centimeters or even more from the

global mean sea-level change. This makes some locations, like low-lying delta cities

on subsiding ground, particularly vulnerable.

On a regional scale, there are several factors than can affect sea level, for example

ocean currents [Levermann et al., 2005], storm surges, modes of climate variability

such as El Niño and long-term trends such as land movements [Church and White,

2011].

Church and White [2011] noted that sea level at any location contains the influence of

local and regional meteorological effects (including storm surges), modes of climate

variability (for example El Niño/Southern Oscillation) and long-term trends (from

both the ocean surface and land movements), and including the impact of anthro-

pogenic climate change. As the altimeter record has clearly demonstrated, global

mean sea level has much less short-term variability (more than an order of magni-

tude) than sea level at individual locations because, as mentioned before, while the

volume of the ocean is nearly constant, the distribution changes with time. While

the variability between individual locations can be reduced by low-pass filtering of

the data, there remains significant energy at yearly-to-decadal periods that may be

either positively or negatively correlated between stations.

91



Levermann et al. [2005] investigated the relationship between thermohaline circula-

tion, and the local and global variability of sea level. They found that local sea level

can rise by up to 1 m due to local current circulation variability. Changes in sea

level due to regional variations can be as large as the climatic signal on multi-decadal

time scales [Rahmstorf, 2012a,b].

Factor Time Scale Length (km) Amplitude (m)

Seiches and edge waves 1 (min) 10–80 0.03
Tropical surge 1 (hr) 20–100 5

Tsunami 10 (min) 100–600 1–10.7
Semi-diurnal tides 12 (hr) 100–10000 1–10

Diurnal tides 1 (dy) 110–11000 0.1–1
Extra tropical surges 12 (hr) – 7 (dy) 300–1100 1

Rossby waves 10 (dy) – 1.5 (yr) 100–1200 0.1
Climate change 5–20 (yr) 500–20000 0.2

Crustal movements 10 (yr) – 4.5 (by) 10–40000 1000

Table 6.1: Sea-level contributors of different times and lengths. Min: minute; hr:
hour; dy: day; yr: year; by: billion years. Data from Pugh [2004].

Table 6.1 lists regional sea-level-change contributors [Pugh, 2004]. It should be

mentioned that, although the time scale for climate-change contributors in Pugh

[2004] is up to 20 years, there is evidence that climate-change contributions can

have time scales of up to 60 years [Douglas et al., 2000].

Meyssignac and Cazenave [2012] summarised observations of sea-level variations,

globally and regionally, during the 20th century. Over this period, the global mean

sea level rose at rates of 1.7 mm/yr and 3.2 mm/yr , as a result of an increase

in ocean thermal expansion and land-ice loss, respectively. Regional sea-level varia-

tions, however, have been dominated by thermal expansion over the last few decades,

even though other factors such as ocean salinity and the subsidence response to the

last deglaciation could have played a role [Nicholls and Cazenave, 2010, Antonov

et al., 2002].

Lombard et al. [2009] showed that non-uniform ocean warming and therefore non-

uniform thermal expansion, is most responsible for the observed spatial patterns

in the sea-level trend. Wunsch et al. [2007] reproduced local sea-level data trend

patterns observed using satellite altimetry from 1993 to 2004. They too showed

that the change in the thermal expansion in the upper ocean is the dominant contri-

bution to observed spatial trend patterns, but also that approximately 25% of the

temperature contribution is locally compensated by salinity.

92



Several studies have indicated that the trends in sea-level rise around Australia are

affected by climate change [Hughes, 2003, Mitchell et al., 2000]. Sea-level rises over

the last several decades have varied from about −0.95 mm/yr at Geraldton in the

west to +2.08 mm/yr at Port Adelaide in the south [Hughes, 2003, Mitchell et al.,

2000]. The average of these changes is about +0.3 mm/yr, less than the IPCC global

estimate [Hughes, 2003, Mitchell et al., 2000].

6.1.4 Limitations in sea-level studies

In principle there are two main challenges in studying sea-level rise. First is the

data complexity and the second the choice of appropriate methods of analysis.

Tidal gauges are one of the most common, easy and widely accessible ways to obtain

sea-level data. However, obtaining accurate sea-level data from tidal gauges is quite

challenging, with problems such as: 1) tidal-gauge measurements are not available

over a very long period and are not distributed evenly over the oceans; 2) many of

the time series have data gaps; 3) tidal gauges measure sea-level relative to the land,

so these data are corrupted by land movement.

Satellites are now a readily available source of sea-level data. Unlike tidal-gauge

data, satellite data are continuous, are not corrupted by land movement and are of

a high quality. However, the time span of satellite data is too short to provide enough

information about sea-level variation over a multi-decadal time scale [Church and

White, 2011]. Multi-decadal and decadal trend analyses are necessary to investigate

sea level and its acceleration due to climate variability. Therefore, tidal-gauge data

are the only option for long-term studies of sea level, and identifying a method that

appropriately accounts for the errors in those data is necessary.

Watson [2011] mentioned that there are numerous meteorological and oceanographic

processes that affect ocean water levels over differing time and spatial scales. Several

influences are on time scales less than a year, such as seasonal factors, weather sys-

tems and variability in ocean water properties. Other longer-term influences such as

ENSO (up to 10 years) and Pacific Decadal Oscillation (PDO) (20–30 years) will in-

fluence ocean water levels over much longer time frames. Choosing the ‘best’ method

to isolate these dynamical signals from sea level data can be quite challenging.

A suitable method is that able to cope with the challenges in the data. The two

studies by Church and White [2011] and Pokhrel et al. [2012] are good examples to

show the importance of the chosen method in the results. Church and White [2011]

showed that land-water storage makes a small negative contribution to sea level

variability, whereas Pokhrel et al. [2012] claimed that 42% of sea-level rise over the

period 1961 to 2003 was due to reduced land-water storage. In comparison to the
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Church and White [2011] study, reservoir storage was assumed to be smaller, but the

flow of groundwater to the sea was calculated to be several times larger. The problem

with the study of Pokhrel et al. [2012] is that it did not chose realistic assumptions

for their model. One of the problems in their study is they calculated the rate of the

sea level by just using the values at the beginning and the end of the dataset whereas

Church and White [2011] calculated the rate using linear interpolation through all

the data points. Therefore, Church and White [2011] seems to be closer to reality.

Estimating sea-level acceleration is extremely important for coastal adaptation plan-

ning, and unfortunately estimates are extremely sensitive to the method used to

calculate them. Cheng et al. [2016] found the sea-level acceleration in certain ar-

eas using linear-least-squares fitting and sea-level rate-difference approaches. They

found significant sea-level acceleration in the Bohai Sea, Yellow Sea and Yangtze

River Estuary, with relatively lower sea-level acceleration in the open ocean adja-

cent to the Bohai and East China Seas.

The results presented in this dissertation demonstrate an alternative way to calculate

sea-level acceleration (SLA). However the accuracy of using the EMD method to

calculate the SLA is not yet known.

The EEMD method has been used recently to estimate sea-level rise (SLR). Veltcheva

and Soares [2004] used sea-level data collected at Figueira da Foz, Portugal from

March to June 1994. Their results showed that the EMD method could reliably

extract all oceanographic oscillations. Duffy [2005] applied HHT to sea level ob-

served at Chesapeake Bay, to solar radiation at Des Moines, Iowa, and to barotropic

observations in central Illinois. They found that EMD/HHT could distinguish pe-

riodic features such as the tides, and episodic events such as snow melt and heavy

precipitation events. EMD/HHT could also capture a wide variety of phenomena

such as diurnal cycles, frontal passages, baroclinic instabilities and seasonal cycles.

They suggested this technique be used for investigating important weather events,

from floods to ENSO events. They also found the EMD/HHT method quite useful

in extracting the location and nature of significant events from their data.

Ezer et al. [2013] used EMD/HHT to study sea-level rise on the mid-Atlantic coast

of southern USA and its correlation with a regional contributor (the Gulf Stream).

They found a strong correlation between sea-level rise and Gulf Stream variations

with a high level of confidence (99.99%). Saramul and Ezer [2014] obtained rates

of relative-sea-level rise (RSLR) using two different methods, linear regression and

non-linear EMD/HHT. Their results showed extremely large spatial variations in

RSLR, varying from about 1 mm/yr to about 20 mm/yr. Furthermore, there were
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indications that RSLR increased significantly in all locations after the 2004 Sumatra-

Andaman earthquake and the Indian Ocean tsunami that followed, so that recent

RSLR seemed to have fewer spatial differences than in the past, but high rates of

about 20 to 30 mm/yr almost everywhere. A conclusion from these results is that

RSLR in this region is dominated by regional land movements over the smaller global

sea-level rise. Faster rates, about 10-20 mm/yr, or 5–10 times greater than the mean

rates from global tidal gauges [Church and White, 2011, Church et al., 2006], were

found where groundwater extraction caused significant land subsidence.

Kenigson and Han [2014] used EMD and EEMD to isolate oscillations and provide

robust acceleration estimates for sea-level trends. They mentioned that the reli-

ability of these methods in calculating accelerated sea-level rise had not yet been

fully tested. They applied the EMD and EEMD methods to both tidal-gauge ob-

servations and synthetic sea-level time series, constructed as a sum of oscillations

extracted from tidal-gauge records and trends with prescribed acceleration rates.

Bahri and Sharples [2015] applied linear and cubic EEMD methods to Brisbane

sea-level data to determine the long-term trend. Their results indicated significant

differences in the long-term trend estimated using the two interpolation methods.

In particular, the linear EEMD method exhibited a non-monotonic piecewise-linear

trend. Differences in the two long-term trend estimates were most significant at

the ends of the domain, where they differed by approximately 50 mm. While this

may not seem large in absolute terms, it is important to note that when dealing

with the ramifications of global and regional sea-level change, trends of the order of

millimetres per decade can be important, and so the differences encountered here

could be quite significant in applications. Moreover, without knowing what the

actual trend in the sea-level dataset is, it is difficult to assess which trend estimate

is the more accurate. However, both the cubic and linear EEMD trends reproduced

the general behaviour of the time series reasonably well. This shows the importance

of understanding the sensitivity of the method used in estimating sea-level long-term

behaviour. The rest of this chapter is dedicated to extending our understanding of

the sensitivity of EMD on the interpolation method and its application to sea-level

data.

In this chapter, unlike Chapter 4, we do not know the actual modes. Therefore we

can not directly compare the EMD results with the actual modes. In order to make

a judgment on which interpolation method gives the better results, we compare our

results with other studies and obvious physical phenomena and see if using different

interpolation method changes the detailed information that we can extract using

EMD.
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6.2 EEMD analysis of sea-level data

In this section, the non-stationary characteristics of sea-level data for eastern and

southern Australia will be discussed. Most of the tidal gauges around Australia are

located along the coast. In addition to the tidal-gauge data challenges discussed

above, there are particular challenges for tidal gauges along the coast. Sea level on

the coast can be influenced by local effects such as the wind piling up water against

the shore. Although variability in the wind cannot affect the global sea level, it can

affect local sea-level estimates. This wind variability can impact sea-level-change

records for up to a decade [England et al., 2014]. In this chapter, the EMD method

is used to remove these false decadal impressions and to give a better understanding

of long-term sea-level variability.

Figure 6.1 shows sea-level time series at seven locations in eastern and southern

Australia. The regression lines show that the mean sea level rose at most of the

locations, and that the rates of rise were non-uniform. A non-uniform rate is evidence

of non-stationarity in the sea-level data, both temporal and spatial. In this section

we discuss sea-level variability at different time scales, its acceleration and the type

of non-stationarity in more detail.

A number of different methods have been used to estimate sea-level acceleration.

One method is the quadratic approach; Church and White [2011] estimated accel-

eration in global mean sea level by fitting a quadratic function to the time series,

taking account of the time-variable uncertainty estimate. They also removed all

direct (non-climate) anthropogenic changes in terrestrial water storage from their

observations to focus on climate-related variability. They found a considerable vari-

ability in the rate of rise during the twentieth century but there was a statistically

significant acceleration since 1880 of 0.009 ± 0.004 mm yr−2. Cheng et al. [2016]

estimated SLA using sea-level rate differences used linear regression. They split

the sea-level time series into two halves, and calculated the difference between the

sea-level rates of the two half-series. For a series over the period 1950 to 2009, the

two half series from 1950 to 1979 and from 1980 to 2009 were used to calculate the

linear trends.

Based on these three commonly used approaches for estimating sea-level acceler-

ation, consistent sea-level accelerations of 0.085 ± 0.020 mm yr−2 (1950–2013) and

0.074 ± 0.032 mm yr−2 (1959–2013) were observed in the Bohai Sea and the East

China Sea, respectively. The acceleration in the Yellow Sea was not statistically

different from zero, but the record length (20 years) was relatively short.
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Figure 6.1: Sea-level variability along the east and south coast of Australia. Solid
green and light blue lines show the observed sea-level data; solid black curves the
sub-decadal variation in sea level; dashed blue line the linear regressions over the
30-year time period from 1953 to 1983; dashed red line a linear regression for the
period 1983 to 2013.

For the locations in Figure 6.1, the minimum acceleration, 0.015 mm yr−2, occurred

at Townsville. The Bundaberg and Brisbane sea-level accelerations were similar to

those at the other stations in the same region for the period 1983 to 2013, but these

records are not long enough to show if the rates have changed in the last 60 years.

The sea-level accelerations for Newcastle and Adelaide were similar, 0.028 mm yr−2

and 0.026 mm yr−2, respectively. Port Pirie had the maximum rate of sea-level

acceleration of 0.097 mm yr−2. According to Harvey et al. [1999], this high rate might

be due to land-level changes. Nevertheless, the data for Port Pirie have significant

changes in the mean over time and consequently a strong non-stationarity.
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Douglas et al. [2000] advised that record lengths of at least 60 years are required

to distinguish between trends and long-period relative sea-level fluctuations in in-

dividual records. Therefore, in this study, the three longest tidal-gauge datasets

(Newcastle, Sydney and Port Pirie) from the east and south of Australia were cho-

sen.

The Newcastle sea-level dataset is one of the longest sea-level records in Australia,

from 1925 to 2015, and was obtained from the Permanent Service for Mean Sea

Level website (www.psmsl.org/ ). The Newcastle sea level data came in several files;

in this study, we used two files, one called Newcastle III, latitude −32.91◦ and

longitude 151.80◦ from 1925 to 1988. The other file called Newcastle V, latitude

−32.92◦ and longitude 151.78◦ from 1957 to 2015. These two gauges were run

in parallel for a number of years until station Newcastle V was synched with the

monthly records of station Newcastle III; Newcastle V then became the primary

gauge. After obtaining the data, the two files were combined and the missing data

eliminated or interpolated. In cases where more than 10 values were missing in the

record, the values from the missing point onward were deleted from the analysis. In

cases where just a couple of points in the middle of the dataset were missing, the

missing values were replaced by the mean value of the surrounding two points.

The second dataset is Sydney monthly sea-level data from 1886 to 2015, obtained

from the Permanent Service for Mean Sea Level website (www.psmsl.org). The

Sydney data came in two files, one called Sydney, Fort Denison latitude −33.85◦

and longitude 151.23◦ from 1886 to 1993. For 1914 and earlier, the sea-level values

are taken from a re-computation of the data by Hamon [1987]. Later data from

Fort Denison can be found in other PSMSL records and are mean sea level (MSL),

based on data from a new tidal gauge. The other file is called Sydney, Fort Denison2

latitude −33.85◦ and longitude 151.22◦ from 1914 to 2015. The two datasets were

combined and the missing data eliminated or interpolated.

The third dataset is from the Port Pirie tidal-gauge station in South Australia for

1917 to 2015. This dataset was also obtained from The Permanent Service for Mean

Sea Level website (www.psmsl.org) for −33.177◦ latitude and 138.01◦ longitude.

Although the data were available from 1917, the source of data from this year until

1941 was not reliable due to lack of detailed information from the station. Also, the

measurement method appears to be different from 1941 onward. Therefore, we used

the data from 1941 to 2015. Harvey et al. [1999] found the tidal-gauge data from

this station to have been strongly impacted by land-level changes. They estimated

a sea-level rise of 0.31 mm per year. They warned that if we did not consider land

movement in this area, we would overestimate the rate of sea-level rise.
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Figure 6.2: Monthly mean sea level and the time variability of their decadal mean
and standard deviations. The left column of panels shows the data, the middle
column the decadal mean variable and the right column the decadal standard de-
viations. The top row of panels shows the land-sea mean global monthly sea-level
data at Newcastle, the second row, Sydney and the third row, Port Pirie.

The decadal variability of the mean and standard deviation of the three sea-level

datasets is presented Figure 6.2 as a evidence of non-stationarity of the data. In

order to do that, we calculated the mean and variance of the data for each decade.

The results are shown as bar charts in Figure 6.2. At all stations, the decadal mean

increased over time. The decadal mean of the Newcastle data increased to a local

peak in the period 1960 to 1970. The decadal standard deviation for this station

fluctuated over time. In the Sydney data, the decadal mean sea level rose slightly,

with a small peak around 1920 and a minimum in 1940 to 1950. Church et al. [2006]

found maxima in the rates of sea-level rise of over 2 mm per year in the 1940s and

1970s, and nearly 3 mm per year in the 1990s in Australia. As in earlier studies,

using 10- and 20-year windows [Church et al., 2006, 2008], the most recent rate

of rise over these short 16-year windows was at the upper end of the histogram of

trends but was not statistically higher than the peaks during the 1940s and 1970s.

In the Port Pirie data, after 2000, the decadal mean rose sharply and the decadal

variance decreased dramatically. Although Harvey et al. [1999] mentioned changes

in this area might be due to land movement, their study was before 2000. Therefore,
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it is not obvious whether the changes after this year are still just a result of land

movement. Nevertheless, this sharp change in the mean and standard deviation is

expected to impact the EMD results.

6.3 EEMD analysis of sea-level data

In this section, the Newcastle, Sydney and Port Pirie monthly tidal-gauge sea-level

data are analysed using cubic-EEMD (CEEMD) and smoothing-EEMD (SEEMD).

In particular, we obtain the statistically significant IMFs.

As an example, an output of the CEEMD and SEEMD with 500 ensemble members

is shown in Figure 6.3 for the Sydney sea-level data. Both interpolation methods

extracted similar IMFs but CEEMD extracted more than SEEMD at the higher

frequencies (Figure 6.3). The reason is that, when the smoothing parameter is set

low, p ' 0 (as in Figure 6.4), the smoothing splines do not resolve the high-frequency

variations in the data. One of the challenges in the original EEMD results with cubic

splines is that often the information on one physical driver is spread over several

modes, and this makes choosing the physically meaningful modes harder.

Figure 6.4 shows the statistically significant IMFs (using the Monte Carlo method

explained in Chapter 5) for sea-level data using SEEMD (left column) and CEEMD

(right column). In Figure 6.4 for the Newcastle sea-level data, SEEMD extracted

three IMFs whereas CEEMD found eight IMFs. IMFs 7 and 8 in the cubic EMD

results both have a similar period but different energies, a result of mode mixing.

For the Sydney sea-level data, CEEMD extracted seven statistically significant

modes whereas SEEMD only found five. The first, third and fourth CEEMD IMFs

are very close to the error bound, and it is likely that they carry little energy. These

IMFs make interpreting the CEEMD results more complicated because it leaves the

final results to user judgment.

For the Port Pirie data, SEEMD again found fewer IMFs than cubic splines (three

vs seven; Figure 6.4). CEEMD did not extract a mode with a decadal period, but

SEEMD did. IMFs 7 and 8 in the CEEMD results and IMFs 5 and 6 in the SEEMD

results again have the same period with different energies. This is due to mode

mixing, in which a single IMF is divided into two.

In this study, IMFs within the confidence intervals and those close to the confidence

intervals were not considered; only the IMFs that possessed considerably more en-

ergy than might be expected from noise were considered.
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Figure 6.3: IMFs (modes) from EEMD for the Sydney sea-level data. Left-hand
panels cubic interpolation; right-hand panels smoothing spline interpolation with
smoothing parameter p = 0.0015. the last two modes are the residuals (trends).
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Figure 6.4: Statistically significant IMFs for the three sea-level datasets. The dot-
ted lines show the upper and lower confident intervals determined from the energy
densities of the reference section IMFs (coloured dots). The orange circles show the
energy densities of the IMFs. Those that lie above upper confidence limit correspond
to statistically significant modes.
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Mode mixing impacts the results of the statistically significant tests and hence the

number of statistically significant IMFs obtained using each method. In the presence

of mode mixing, when the information in one IMF is distributed to more than one

IMF, the mixed modes may still have enough energy to remain outside the confidence

intervals or they may not.

To study the long-term variability in sea level, it is common to eliminate the short-

term variability. Some studies eliminate all inter-annual and even decadal oscilla-

tions [Burgette et al., 2013]. In this study, in order to extract the IMFs related to

climate change that are statistically significant, we have summarised the statistically

significant modes according to their time periods in Table 6.2.

Period
Data Interpolation Intra-Dec Decadal Multi-Dec 1 Multi-Dec 2

Newcastle
Cubic Mode 4 Mode 5 Mode 6 –

Smoothing Mode 2 Mode 3 – –

Sydney
Cubic – Mode 5 Mode 6 Mode 7

Smoothing Mode 2 Mode 3 Mode 4 Mode 5
Port
Pirie

Cubic Mode 4 Mode 5 – –
Smoothing Mode 2 Mode 3 – Mode 5

Table 6.2: Statistically significant IMFs at the different time scales: intra-decadal
(period ∼3 years); decadal (period ∼10 years); multi-decadal 1 (period ∼20 years);
multi-decadal 2 (period ∼ 30 years). In this table, the blue shows the CEEMD
modes, the red the SEEMD modes.

The statistically significant mode at each of the time scales is shown in Figures 6.5

to 6.9.

6.4 Interpolation sensitivity – application to sea-level data

Intra-decadal variability :

Figure 6.5 shows the statistically significant intra-decadal modes (period ∼3 years)

at the three stations. The Newcastle and Port Pirie results using CEEMD and

SEEMD are similar. However for Sydney, there are some minor differences at the

endpoints between the smoothing-spline and cubic-spline results.
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Decadal variability :

In the decadal results in Figure 6.6, the Newcastle cubic and smoothing results again

show good agreement. However, they are both influenced by mode mixing. This

mode mixing occurs in the period 1960 to 1970, when the peak in the mean of the

input data occurs (Figure 6.2). It is shown in Chapter 4 that the results in the EMD

method, regardless of interpolation used, are strongly sensitive to abrupt changes.

Similarly for the Sydney decadal IMF, some minor disagreement between the two

interpolation methods happens in the period 1920–1940, when the fluctuations in the

mean of the input data occur. The mode mixing in period 1960 to 1970 Newcastle

and 1920 to 1940 at Sydney is further evidence of this sensitivity. For the Port

Pirie decadal IMFs in the period 1960 to 1970, SEEMD and CEEMD estimated

the amplitude quite differently. After 2000, the CEEMD and SEEMD IMFs show

opposite variability in sea level.

Multi-decadal variability

Only Sydney had statistically significant SEEMD and CEEMD IMFs with period

around 20 years (multi-decadal). There were no statistically significant IMFs result-

ing from CEEMD for the Newcastle data, and in Port Pirie none of the multi-decadal

IMFs were statistically significant. For this reason, only the Sydney multi-decadal

IMFs are shown in Figure 6.7. In Figure 6.7, SEEMD and CEEMD show a good

agreement, apart from when the CEEMD results show some mode mixing in years

1910–1920 and 1980; the SEEMD results have less mode mixing than the CEEMD

results.

For multi-decadal IMFs with longer time periods (∼30 years; multi-decadal 2), the

Sydney data again produced the only statistically significant IMF. The SEEMD and

CEEMD multi-decadal IMFs are shown in Figure 6.8. Overall, both methods showed

the long multi-decadal IMFs, with a small difference in the endpoints (especially

between 1885 and 1910), and a small amount of mode mixing in the CEEMD result

around 1970.

Rate of sea-level rise

Figure 6.9 shows the trend from SEEMD and CEEMD using the three datasets.

Both methods found similar trends for the Sydney and Newcastle data, with some

differences between the interpolation results at the endpoints, more obvious in the

Sydney result. From the Sydney data, SEEMD and CEEMD both estimated the

average rate of sea-level rise over the whole period 1880–2015 as about 0.8 mm per

year. In Newcastle, both methods indicate a fast rise in sea level from 1925 to 1960
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and less rise in sea level after 1960. Both methods estimated the rate of the sea-level

rise about 2 mm per year.

Apart from the total sea-level rise, it is important to estimate the shape of the trend

accurately. The shape of the trend gives us information about whether sea-level

rise is accelerating or decelerating. As mentioned in Chapter 4, the EEMD method

sometimes fails to find the proper trend shape; the trend results for Port Pirie show

a clear example of this. As seen in Figure 6.9 for Port Pirie, CEEMD shows a linear

trend, whereas SEEMD shows a long period from 1940 to 1990 with little change in

sea level followed by a significant rise.

For Port Pirie, SEEMD estimated the rate of sea-level rise at about 1.9 mm per year

but the CEEMD estimate was 1 mm per year. The SEEMD results agree with those

of Hughes [2003] and Mitchell et al. [2000]. CEEMD and SEEMD estimated the

overall rate of sea-level rise up to 1990 as 0.04 and 0.2 mm per year, respectively.

However, after 1990, SEEMD found a sea-level increase of 0.19 mm per year whereas

CEEMD reported a sea-level rise of 0.23 mm per year. Using two different interpo-

lation methods in EEMD definitely changed the rate and the shape of the resultant

trend. This clearly shows the sensitivity of the EEMD method to interpolation.

Sea-level acceleration

As mentioned above, sea-level acceleration (SLA) is an important parameter in

planning for climate change adaptation and mitigation, and is has been considered

in a number of studies.

Watson [2011] investigated sea-level acceleration in Australia. They used a 20-year

moving-average water-level time series, and fitted second-order polynomial functions

to consider trends of acceleration in mean sea level over time using long sets of

data from Fremantle (from 1897), Auckland (from 1903), Sydney (from 1914) and

Newcastle (from 1925). They estimated the average rate of acceleration in the mean

sea level over the period 1940 to 2000 at the Sydney and Newcastle stations as

−0.04 mm yr−2 and −0.096 mm yr−2, respectively.
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In this study, SLA is estimated by finding the derivative of the residual resulting

from the SEEMD and CEEMD methods. The results are shown in Figure 6.10. For

Newcastle, both methods showed a time-dependent SLA, with a decrease in the ac-

celeration from 1935 to 1960, then a pause from 1960 to 1970, followed by an increase

in the acceleration until 1990 from SEEMD and until 2000 from CEEMD. Although

both methods showed similar behaviour in the SLA, the amount of decrease up to

1960 was different; SEEMD found that the SLA dropped to −0.13 mm yr−2 whereas

CEEMD suggested that it only fell to −0.06 mm yr−2. There was also some dis-

agreement in the SEEMD and CEEMD results at the endpoints. For Newcastle,

CEEMD estimated the average sea level acceleration as −0.0052 mm yr−2 which is

smaller compared with the one from by SEEMD, −0.017 mm yr−2. Watson [2011]

also estimated negative acceleration for sea level but the estimated amount is quite

different with what is obtained by EMD. The SLA estimated by the linear-regression

method in Section 6.2 is completely different from the result from EMD and Watson

[2011].

For Sydney, CEEMD found that the SLA rose up to 0.021 mm yr−2 in 1930, then

dropped to less than zero in 1970. The SLA then rose sharply up to 0.05 mm

yr−2 in 2016. The SEEMD results however, showed a gentle drop to −0.005 mm

yr−2 in 1910, then a rise up to 0.008 mm yr−2 in 1930, after which it remained

relatively constant till 2000. After 2000, the SLA decreased. Clearly the CEEMD

and SEEMD sea-level accelerations are quite different for Sydney. CEEMD suggest

that SLA increased but SEEMD results showed that SLA stayed the same for the

last couple of decades. The average sea-level acceleration in Sydney is estimated

at 0.0038 mm yr−2 by SEEMD and as 0.0167 mm yr−2 by CEEMD. The sea-level

acceleration results from both methods disagree with the results of Watson [2011]

and those in Section 6.2 from linear regression.

For Port Pirie, the SEEMD SLAs were completely different from the CEEMD SLAs.

CEEMD found a gradual linear increase from about 0.001 to 0.01 mm yr−2 in the

SLA whereas SEEMD found strong fluctuations from 1940 until 2016, with the SLA

varying from −0.025 mm yr−2 in 1955 to about 0.1 mm yr−2 in 1990. For Port Pirie,

CEEMD and SEEMD estimated the average sea-level acceleration as 0.005 mm yr−2

and 0.037 mm yr−2, respectively. Overall the SLA results show a strong sensitivity to

the interpolation method, with the differences significant in the context of sea-level

rise.
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6.5 Sea level and its drivers

6.5.1 Wind stress

Global warming can change the regional wind stress, which can impact regional and

local sea level and circulation patterns. Timmermann et al. [2010] summarised the

relationship between global warming and wind stress, and its impact on sea-level

variability; their results are shown schematically in Figure 6.11. They found that

the sea surface temperature warming pattern in the tropical and subtropical Pacific

generates a robust wind response in the tropical South Pacific. The related change

in wind-stress curl induces local Ekman suction and hence a decrease in sea level

relative to the global mean sea level in many areas in the South Pacific and southern

Indian Oceans.

Holbrook et al. [2011] used satellite altimeter data to estimate large-scale sea-level

changes in Australia. They showed that inter-annual and decadal sea-level changes

can be affected by local along-shore winds, coastal trapped waves and the offshore

sea level.

Merrifield [2011] showed that over the past two decades, sea level has increased in

the western tropical Pacific Ocean at rates that are approximately three times the

global average. A general circulation model was used to show that these high rates

are caused by a gradual intensification of the Pacific trade winds since the early

1990s. These results show that sea-level changes in the western tropical Pacific are

indicative of a multi-decadal increase in the Pacific trade winds.

Dangendorf et al. [2013] used sea-level data at Cuxhaven (in Germany) from 1871 to

2008, and compared the effects of wind stress, sea-level pressure and precipitation on

sea-level variability. They found that there was a robust estimation of the regression

coefficient if more than 60 years of data were used. They looked at the effect of these

drivers on sea level at seasonal and long-term time scales. At seasonal time scales,

most of the variability in sea level was caused by zonal wind-stress changes; sea-

level pressure and meridional wind stress had smaller but still significant effects.

At decadal time scales, local meteorological forcing was significantly weaker, and

remote forcing over the North Atlantic played the main role.

6.5.2 East Australian Current

Levermann et al. [2005] showed that regional ocean circulation can affect sea level

at a regional scale. In eastern Australia, the East Australian Current (EAC) is the

major southward current, and plays a significant role in the climate of this area.

The EAC is the link between the Pacific and Indian Ocean gyres, and is dominated
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by a series of meso-scale eddies of variable strength and direction. Changes in the

wind-stress curl can change the strength of the gyre and therefore the EAC; changes

in the EAC can then change the regional sea level. EAC is a western boundary

current with a volume transport of 20–30 Sv [Ridgway and Dunn, 2003]. Suthers

et al. [2011] showed that the poleward-flowing EAC is characterised by its separation

from the coast, to form the eastward flowing Tasman Front and a southward flowing

eddy field. The separation zone greatly influences coastal ecosystems on the rela-

tively narrow continental shelf (only 15–50 km wide), particularly between 32–34◦S.

Godfrey et al. [1980] found that eddies are dominant in the region of the separation

point. The separation point is determined by wind stress, coastal geometry (coastal

boundary) and bathymetry. Due to climate change, wind stress has changed in this

area over recent decades [Cai, 2006].

Ridgway [2007] found that penetration of the EAC has increased southward in the

last 60 years. As a consequence, this region has become warmer and saltier, with

mean trends of 2.28◦C/century and 0.34 psu/century over the years 1994 to 2002.

Cai [2006] used the Godfrey’s Island Rule model to show that changes in Antarctic

ozone will change the surface wind stress and thereby affect the large-scale circula-

tion in the southern hemisphere. Variations in large-scale circulation will strengthen

the EAC flow by up to 20%, and perhaps even more in the south. Over the last

decade, the EAC flow has decreased at 20−30◦S, whereas at 30◦S it has increased by

about 9 Sv or 20%. According to Cai [2006], the EAC is becoming warmer, saltier

and stronger in the south; this could affect local marine ecosystems. The CSIRO

Mk3.5 coupled climate model and the ocean downscaling simulations from OFAM

also show similar results [Sun et al., 2012].

Suthers et al. [2011] also examined the effects of climatic wind-stress-forced ocean

dynamics on EAC transport variability and coastal sea level, from ENSO to multi-

decadal time scales. Inter-annual variations in the EAC transport produce a de-

tectable sea-level signal in Sydney Harbour, which could provide a useful fisheries

index, as does the Fremantle sea level and Leeuwin Current relationship.

Holbrook et al. [2011] showed that the EAC and sea level are affected by Rossby

waves. Ridgway et al. [2008] showed that the EAC has increased in south Australia

and decreased in north-east Australia. Seasonal, inter-annual and strong decadal

changes in the EAC mask the underlying long-term trends related to greenhouse-gas

forcing. However, the mean EAC flow is weak [Ridgway and Godfrey, 1994].

Sydney is in the area that the EAC separates into two parts. In addition, the EAC

is dominated by cyclonic and anti-cyclonic eddies which make calculating the EAC

transport, not its eddies, a bit hard. Cetina-Heredia et al. [2014] identified the core
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of the geostrophic EAC current by using the maximum southern geostrophic velocity

at 28◦S (between the coast and 160◦E) where the EAC is well-concentrated [Ridgway

and Dunn, 2003]. This maximum southern velocity then followed and is considered

the core of EAC transport. In this study, data provided by Cetina-Heredia et al.

[2014], were used for the monthly core EAC transport at 33◦S. This dataset is shown

in Figure 6.12.

Figure 6.13 shows the decadal variability in the EAC transport and sea level in

Sydney using SEEMD and CEEMD. The decadal EAC IMF estimated by SEEMD

just shows a gentle peak around 2003 and no changes from 1980 to 1992. The

decadal EAC from CEEMD shows a full cycle which is out of phase with sea level

from 1982 to 1993 and in phase with sea level from 1995 to 2005. So the EAC decadal

results derived from CEEMD and SEEMD show completely different behaviours. For

decadal sea-level data CEEMD and SEEMD agree, the only difference is with the

estimated amplitude, the SEEMD estimate the decadal amplitude is significantly

higher than CEEMD.

Figure 6.14 shows the EAC transport trends from CEEMD and SEEMD. Both

interpolations show the EAC transport first increasing then decreasing over the

time period (1981–2010). However, SEEMD found that the EAC increased up to

2000, is agreement with the results of Hill et al. [2008]. Hill et al. [2008] used a low-

pass-filter method on the wind stress and EAC transport data, and found that the

EAC increased due to an increase in wind stress over the period 1950–20003. Ezer

et al. [2013] showed that there is an inverse relationship between the Gulf Stream

western boundary current and sea level in the mid-Atlantic region. He showed that

weakening in the Gulf stream is the result of extreme sea level rise in that region.

It is expected that weakening in the EAC west boundary current will also cause a

similar increase in SLR. Therefore, according to the SEEMD results in Figure 6.14,

from 1981 to 2000, because of the increase in the EAC the sea level in Sydney did

not rise significantly, but after year 2000, because of the weakening in the EAC, the

sea level rose faster. This explains the fast rise in the SEEMD results for Sydney

data after 2000 in Figure 6.9, and is further evidence that SEEMD produced more

physically meaningful results.

6.6 Conclusions

In this chapter, the use of EEMD with smoothing splines (SEEMD) and cubic splines

(CEEMD) on sea-level data was investigated. The results were as follows.
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1. SEEMD obtained fewer IMFs than CEEMD because the smoothing parameter

p was set to a small value to favour the accurate extraction of the low frequency

IMFs, including the trend.

2. SEEMD also obtained fewer statistically significant IMFs, again because of

favouring the low-frequency modes by choice of the smoothing parameter p.

Smoothing the data removed the high-frequency IMFs. CEEMD did find

statistically significant high-frequency IMFs but they were mostly very close

to the noise bound, and therefore less reliable. Although SEEMD obtained

fewer statistically significant IMFs, they were all clearer and more reliable. At

low-frequency time scales, SEEMD tended to find more statistically significant

IMFs than CEEMD.

3. At an intra-decadal time scale, the results of SEEMD and CEEMD agreed

quite well.

4. At a decadal time scale, there was some mode mixing in both the SEEMD and

CEEMD results but, in general, the results of both methods were similar.

5. For multi-decadal modes with periods of about 20 years, the CEEMD results

contained more mode mixing than the SEEMD results. However they both

described the multi-decadal variability in a similar way.

6. For multi-decadal modes with periods of more than 30 years, the results of

both interpolation methods agreed overall except at the end points.

7. CEEMD and SEEMD showed similar trends for the Newcastle sea-level data.

However, the rate of sea-level rise from SEEMD agreed more closely with

previous studies. For the Sydney sea-level data, the trends from the two

methods differed at the endpoints, causing different estimates of the rate of

sea-level rise. The SEEMD rate agreed with other values in the literature. For

Port Pirie, the SEEMD and CEEMD results disagreed in both the shape and

magnitude of the estimated sea-level rise. SEEMD found the sea-level rise to

be nonlinear, with the rate of rise increasing more rapidly after 1990 whereas

CEEMD found a relatively slow linear rise in the sea level. Again the results

of SEEMD agreed better with existing literature.

8. Sensitivity of EEMD to the interpolation method is again obvious when esti-

mating the acceleration in sea-level rise. At all three locations, the sea-level

acceleration found using the two interpolation methods was different in either

or both the magnitude of the acceleration and the shape of the acceleration

curve. It is not clear in estimating sea-level acceleration which method gives

the more reliable results.
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Figure 6.5: Statistically significant IMFs with intra-decadal time period (∼3 years).
Vertical scale is in meters. S: smoothing-spline interpolation; C: cubic-spline inter-
polation.
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Figure 6.6: Statistically significant IMFs with decadal time period (∼ 10 years).
Vertical scale is in meters. S: smoothing-spline interpolation; C: cubic-spline inter-
polation.
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Figure 6.7: Statistically significant IMFs with multi-decadal 1 period (∼ 20 years)
for the Sydney data. Vertical scale is in meters. S: smoothing-spline interpolation;
C: cubic-spline interpolation.
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Vertical scale is in meters. S: smoothing-spline interpolation; C: cubic-spline inter-
polation.
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Figure 6.9: Sea-level trends (residual modes) for the Newcastle, Sydney and Port
Pirie datasets using the EEMD method with smoothing-spline (S) and cubic-spline
(C) interpolations. The dots show the data. Vertical scale is in meters.
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Figure 6.10: Sea-level acceleration (mm yr−2) for the Newcastle, Sydney and Port
Pirie datasets using the EEMD method with smoothing-spline (S) and cubic-spline
(C) interpolations.
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Figure 6.12: EAC core transport for 33◦S from 1980 to 2010.
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Figure 6.13: Sydney sea-level variability and Sydney EAC transport (from 1980).
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Chapter 7

Application of Empirical Mode Decomposition to Forest Fire

Danger Index Data

7.1 Introduction

Australia has unique ecosystems, vegetation and species. One of the major hazards

in Australia is bushfires which threaten these ecosystems [Lucas et al., 2007].

Bushfires are of three different types. The first type is crown fire, mainly affecting

the tops of the woody vegetation. This fire is strongly influenced by wind. The

second type is surface fire, which burns grass, bushes and other vegetation close to

the ground. The third fire type is ground fire, a flameless fire that burns through a

thick layer of the ground containing organic matter and roots. Surface fires initiate

the other two types of fire [Scott and Reinhardt, 2001]. To assist in controlling

bushfires, it is common to use a fire danger rating system which takes into account

the vegetation and climate of the region.

Bushfires have complex interactions with vegetation, soils, weather and human ac-

tivities. Each of these elements can change due to climate variability, thereby chang-

ing the bushfire regimes. Resolving the relative roles of each of these key factors

that influence fire dynamics demands comparative studies that illuminate how fire

regimes vary across climatic gradients [Fox-Hughes et al., 2014]. Many studies on

the long-term variability in weather variables such as temperature, rain and wind

have been conducted. However, the variability in the drivers of bushfire behaviour

over different time scales has not been paid much attention in the literature.

In this chapter, the variability in the Forest Fire Danger Index (FFDI) is investigated

over various time scales using the EMD method. The parameters taken into account

in calculating it are also investigated in a similar way, to examine which are the

dominant factors driving Fire Danger over different time scales.
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7.1.1 Fire-danger rating system as a control tool

To minimise the damage caused by fire, the risk of fire needs to be assessed, mo-

tivating the introduction of fire-danger rating systems; these are a combination of

the fire-danger factors, ranked into classes for public warning and preparation of the

support resources in cases of high fire danger [Tolhurst et al., 2010].

Fire occurrence depends on meteorological conditions, vegetation status and to-

pography [Chandler et al., 1983]. Some of the relevant meteorological conditions

are the temperature, relative humidity, and wind speed and direction in the area.

Vegetation plays an important role as fuel for bushfires.

Meteorological conditions can change during a bushfires, and intensify the fire or

modify its behaviour [Sharples, 2009]. Wind speed and direction depend on topog-

raphy, and vegetational local heating and cooling. The topography may also cause

dramatic changes in fire behaviour as a fire progress over the terrain [Sharples et al.,

2012]. In addition, the fire itself may influence the environment and thus the fire

behaviour; heating from the fire can modify or produce local winds, contributing to

atmospheric instability and causing cloud development [Sharples, 2009].

There is a variety of fire-danger rating systems used around the world, such as: the

Forest Fire Danger Index (FFDI: McArthur [1967]); Forest Fire Behaviour Tables

(FFBT: Sneeuwjagt and Peet [1985]); the Fire Weather Index (FWI: Van Wagner

et al. [1987]); and the US National Fire Danger Rating System (NFDRS: Deeming

[1972]). The two most common rating systems are the FWI and FFDI.

The Canadian Forest Fire Danger Rating System is based on experimentation and

observation of fire behaviour. This rating system works best on areas with pine

vegetation, which is widespread in Canada [Van Wagner et al., 1987].

The Australian McArthur Forest Fire Danger Index or FFDI is based on an empirical

model of fire behaviour in open Eucalyptus forests; this rating is applied broadly to

all forest types, shrubs, mallee and eucalyptus. The FFDI requires meteorological

information such as temperature, relative humidity, rainfall and wind speed. The

FFDI lies between 1 and 100+, where 100+ corresponds to the catastrophic fire

conditions on Black Friday in 1939 [Tolhurst et al., 2010].

A study by Viegas [1999] that compared five different indices in six different regions

of France, Italy and Portugal (the FFDI and NFDRS were not included) showed

that the FWI System was the best performer among the five systems. Matthews

[2009] compared the Fire Forest Danger Index, the Forest Fire Behaviour Tables and

the Fire Weather Index for Australian vegetation for use in eucalypt forests. They

calculated the three fire-danger indices over a range of values for fuel availability,
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the moisture content in the fuel (fuel moisture) and wind. They found that all

three indices were correlated, with some variability. The main variability was a

result of how or whether fuel availability was incorporated into each index. The

FFDI and FWI, both of which take fuel availability into account, were significantly

correlated. The FFDI is more suitable for eucalypt forest, the FWI for pine forest.

As the present study seeks to be relevant to Australia, the FFDI was chosen as the

fire-danger rating system to analyse.

The equation for the McArthur FFDI is [Noble et al., 1980]:

F = 2 exp
(
− 0.450 + 0.987 ln(D)− 0.0345H + 0.0338T + 0.0234V

)
, (7.1)

where F is the fire danger rating (in the range 0–100+) and D is the drought factor,

which represents the proportion of the fuel available to burn, expressed as a number

between 0 to 10. It is calculated from soil moisture and antecedent rainfall [Griffiths,

1998]). As such, can be considered as a measure of fuel availability that incorporates

aspects of meteorological and horological drought. H is percent relative humidity,

T is air temperature (◦C) and V is average wind speed (km h−1).

Fire risk FFDI Grassland
Moderate 0–11 0–11

High 12–24 12–24
Very High 25–49 25–49

Sever 50–74 50–99
Extreme 75–99 100–149

Catastrophic 100+ 150+

Table 7.1: Bushfire danger levels and the corresponding FFDI ranges.

The moisture content of a fuel sample is defined as the relative mass of moisture in

the fuel sample compared to the oven-dried mass of the sample, and is expressed as

a percentage. Fuel moisture can change in response to latent heat effects, vapour

exchange and rainfall [Nelson Jr, 2000, Viney, 1991]. The FFDI range is divided

into six categories, each of which indicates a level of fire risk to report to the public

(Table 7.1). Sharples et al. [2009] introduced a simple fuel-moisture index as a

function of temperature and relative humidity:

FMI = 10− 0.25(T −H). (7.2)

FMI is a good proxy for fuel moisture, assuming that no free water is present

[Sharples et al., 2009].
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7.1.2 FFDI and climate change

Millions of years ago (early Pleistocene) in south-east Australia, which was covered

by rain forest (now occupied by dry Eucalyptus forest), bushfires were not as com-

mon as nowadays [Sniderman and Haberle, 2012]. Sniderman and Haberle [2012]

showed that fire frequency increased by an order of magnitude during the climate-

driven transitions to sclerophyllous Eucalyptus-dominated vegetation. Mooney et al.

[2011] used sedimentary charcoal records from Australasia from the last 70,000 years

to show that there was considerable spatial and temporal variability in fire occurance

during deglaciation.

Bradstock et al. [2014] examined the changes in fire occurrence from 1975 to 2009 by

examining trends in the areas burned. They concluded that an increase in fire, due

to climatic warming and drying, was more likely to occur in the moist, temperate

forests near the coast than in the arid and semi-arid woodlands of the interior.

Significant warming and drying occurred across most of the 32 bioregions examined.

The results were mostly consistent with predictions, with an increase in area burned

in seven of eight forest bioregions, whereas the area burned either declined (two) or

did not change significantly (nine) in the drier woodland bioregions. In 12 woodland

bioregions, data were insufficient for analysis of temporal trends in fire. Increases in

fire, attributable mostly to warming or drying, were confined to three bioregions.

There are a number of studies that use climate-change scenarios to predict fire

dangers and its contributing factors into the future. Beer and Williams [1995] in-

vestigated the changes in fire danger in Sale, Victoria, Australia under conditions

of doubled carbon dioxide concentration in the atmosphere. They found more days

with high fire danger, with the annual mean FFDI and annual mean of daily mini-

mum relative humidity strongly negatively correlated. They expanded their study to

the whole country to investigate the spatial variation in FFDI. Coastal areas, espe-

cially in the north and northeast, had decreased values of the FFDI. They suggested

that changes in relative humidity play a strong role in changing the FFDI. They used

a One-Box Model [Livingstone, 1993] to investigate the changes in relative humidity

to determine whether the relative humidity change depends on the relationship be-

tween actual and potential evaporation, the expected changes in wind, the present

value of humidity and/or the present value of the evaporation rate. Their estimate

predicts that relative humidity always decreases as a result of warming. This means

widespread increases in the FFDI.

Pitman et al. [2007] explored the impact of future climate change on the risk of

forest and grassland fires over Australia in the month of the January using a high-

resolution regional climate model. They used two future emission scenarios (rela-
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tively high and relatively low) for 2050 and 2100. Their results showed a consistent

increase in regional-scale fire risk over Australia, driven principally by warming and

reductions in relative humidity in all simulations, under all emission scenarios and

at all time periods. The probability of severe fire risk increased by around 25%

in 2050 compared to the present day under both relatively low and relatively high

emissions; this increased by a further 20% by 2100 under the relatively low emission

scenario.

Grose et al. [2014] found that a warmer climate is likely to increase the frequency

and impact of the very worst fire weather days for south-east Tasmania. Flannigan

et al. [2009] suggested that fire seasons will lengthen in temperate and boreal regions.

There will be a general increase in area burned and fire occurrence but a lot of

spatial variability, with some areas of no change or even decreases in area burned

and occurrence.

King et al. [2011] investigated fire and carbon dynamics for projected warmer and

drier climates in the south-eastern Australian high country. A carbon-accounting

model FullCAM [Richards, 2001] and FIRESCAPE [King et al., 2011], a landscape

fire-regime simulator, were combined and used to simulate several fire management

options under three climate scenarios: the recent climate (1975–2005); a moderate

climate projected for 2070; and a more extreme climate projected for 2070. For

warmer and drier climates, their model simulations predicted: an increase in fire

incidence; larger areas burned; higher mean fire intensities; shorter fire cycle lengths;

a greater proportion of fires burning earlier in the fire season; a reduction in carbon

stores; a reduction in carbon sequestration rates; and an increase in the proportion

of stored carbon emitted to the atmosphere. Prescribed burning at historical or

twice historical levels had no effect on the fire or carbon dynamics. In contrast,

increasing the initial attack success partially offset the adverse effects of warmer and

drier climates on fire activity, but not on carbon dynamics. For the south-eastern

Australian high country, simulations indicated that fire and carbon dynamics are

sensitive to climate change, with simulated fire management only being able to

partially offset the adverse effects of a warmer and drier climate.

Liu et al. [2010] investigated the trend in global wildfire potential under climate

change. They used the Keetch-Byram Drought Index (KBDI) to measure the fire

potential under projected changes in temperature and precipitation at the end of this

century (2070–2100) from general circulation models (GCMs) for present and future

climate conditions. They showed that future wildfire potential increases significantly

in the United States, South America, central Asia, southern Europe, southern Africa

and Australia; fire potential moves up by one level in these regions, from currently

low to future moderate potential or from moderate to high potential. Relative
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changes are the largest and smallest in southern Europe and Australia, respectively.

The annual period with the KBDI greater than 400 becomes a few months longer.

The increased fire potential is mainly caused by warming in the US, South America,

and Australia, and by the combination of warming and drying in the other regions.

Sensitivity analysis shows that future fire potential depends on many factors such

as the climate model and emission scenario used for climate-change projections.

Barbero et al. [2014] investigated the climate-fire relationship on an inter-annual

timescale. They provided a spatio-temporal analysis using data with a 60-km spatial

and weekly temporal resolution. They found an increase in the occurrence of very

large fires in southwestern and southeastern US from 1984 to 2010. They also found

that the probability of very large fires reached its peak during spring in the eastern

and southern half of the US, and in mid to late summer for most of the northwest

US.

Mariani and Fletcher [2016] found that heatwaves did not have an extreme influence

on fire activity in the short term. They suggested that heatwaves might contribute to

the landscape availability of fuel by drying out any remaining wet soaks or creeklines

in the landscape and affecting the moisture content of live fuels. Williams et al.

[2001], in a doubled-CO2 climate simulation, found that Alice Springs, Miles, Sale

and Mildura all had significant changes in the probability distribution of the daily

FFDI, and the seasonal FFDI increased throughout both the northern and southern

fire zones. The seasonal FFDI was most sensitive to large changes in temperature.

The seasonality of fire danger was also affected, but the degree of change varied

widely. Of the eight detailed sites, only at Katanning and Hobart did the length of

the fire season not change. Hasson et al. [2009] found that using different models for

predicting fire probabilities gave large differences in results. Williams et al. [2001]

mentioned that the limitations of the scenarios, because of the assumptions built

into the GCM, impact the interpretation of fire-danger simulation.

As mentioned above, there have been some studies on the seasonal variability of

fire rating systems and future prediction based on climate-change scenarios but

there have not been many studies done on the decadal and multi-decadal time scale

behaviour of fire rating systems. This long-term behaviour would help us understand

the broad picture of how fire danger changes over time, and which of its drivers are

the most important across different time scales.

7.2 EEMD analysis of Forest Fire Danger data

Data on the Forest Fire Danger Index (FFDI) and its contributing factors from

three stations, Sydney, Canberra and Melbourne, are used in this study. These
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data were obtained from the Centre for Australian Weather and Climate Research;

details are given by Lucas [2010]. Lucas [2010] used historical FFDI datasets and, to

have a uniform quality in the data, only used the data from June 1972 onward. He

mentioned that the main problem with the data is the inhomogeneity in the wind

measurements, a consequence of using different instruments and methodologies over

time.

There were some missing data in the FFDI record, which we modified by taking

means or interpolating. Also in this study, only the fire season (from 1 October

until 31 March) is considered. The data from each station contain FFDI, maximum

air temperature, relative humidity (RH) and wind speed at 3pm, and the drought

factor from 1972 to 2014 (Figure 7.1).

In Figure 7.1, the top panel shows the FFDI for the three stations. The Canberra

FFDI has larger fluctuations than the other two stations. The drought factor and

maximum temperature are similar at all stations before 2000; after 2000, the drought

factor at Sydney behaves slightly differently from the other two stations. As Lucas

[2010] mentioned, there are some obvious inconsistencies in the mean of the Sydney

wind data before and after the mid-1990s, due to using different methods and in-

struments to measure the wind speed. Relative humidity was higher in Sydney than

in both Melbourne and Canberra, probably due to the fact that the Sydney weather

station is on the coast, and so is affected by maritime air.

The EEMD method with smoothing-spline interpolation (SEEMD) was applied to

all the data in Figure 7.1; smoothing splines gave the most reliable results for the

synthetic data (Chapter 4), temperature data (Chapter 5) and sea-level data (Chap-

ter 6). The significance tests were then used on the resulting IMFs to obtain the

statistically significant IMFs (Chapter 5). Figure 7.2 shows the statistically signifi-

cant IMFs; the first five IMFs were statistically significant for all datasets.

The first to fifth IMFs represent, respectively, seasonal, 2, 6, 8, 14 year variability.

Due to our interest in the long-term variability of FFDI in this study, we focus

on IMF 4 (decadal IMF) and IMF 5 (multi-decadal IMF). In Figure 7.2, Sydney

wind-speed IMF 5 and 6, Canberra relative humidity IMF 5 and 6, and temperature

IMFs 4 and 5, have the same period but different energies. This is evidence of mode

mixing in the results of the EEMD method. In this study, the IMFs attributed

to mixing issues have been added together. However, some of the IMFs had very

small amplitudes, so that adding them to another IMF did not change the results

significantly. Using more ensemble members might improve the results, but this was

not attempted.
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7.3 Decadal and multi-decadal variability in FFDI data and its

contributors

The statistically significant IMFs from SEEMD with 300 ensemble members and

smoothing parameter p = 0.01 for the individual contributors for Sydney, Canberra

and Melbourne are presented in Figure 7.2. The results for temperature, wind

speed, relative humidity and drought factor are compared with the corresponding

FFDI IMFs.

7.3.1 Temperature

As shown in Equation 7.1, fire risk increases exponentially with temperature. Cary

et al. [2012] found that average temperatures will increase by about 0.6◦C to 4◦C,

depending on the assumed emission scenario, time frame and locality.

Hasson et al. [2009] investigated the impact of temperature on fire events. They

used datasets for the period 1960–1999 to analyse the climate of the 20th century,

then simulations for the periods 2046–2065 and 2081–2100 to predict changes in the

middle and late 21st century. Their results showed that the frequencies of fire events

will increase from around one event every two years during the late 20th century to

around one event per year in the middle of the 21st century and one to two events

per year by the end of the 21st century.

Temperature decadal variability

Figure 7.3 shows the normalised decadal variability found here for temperature and

FFDI from 1972 to 2014 using SEEMD. In Canberra and Melbourne, the tempera-

ture and FFDI decadal variabilities are similar and in phase. In Sydney, however,

the temperature and FFDI are not in phase (Figure 7.3 top panel); from 1972 to

1985, the temperature initially leads by three years but from 1985 to 1995, temper-

ature and FFDI are more or less in phase. From 1995 until 2010, both FFDI and

temperature show mode mixing, causing a small correlation, R = 0.55 (Table 7.2).

The peaks in both FFDI and temperature in the years 1983, 1987–88 and 1998 seem

to be due to a strong El Niño effect in these years. Verdon et al. [2004] showed that

the meteorological data can be strongly affected by El Niño.

Temperature multi-decadal variability

Figure 7.4 shows the multi-decadal variability of temperature and FFDI for Sydney,

Canberra and Melbourne. In Canberra and Melbourne, FFDI and temperature be-

have similarly and are highly correlated, with R values of 0.75 and 0.8, respectively.

The Sydney multi-decadal temperature is out of phase with FFDI before 1990 with
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R = −0.73. After 1990, the temperature is in phase with FFDI with R = 0.91.

Canberra temperature from 1985 to 2003 exhibits almost no change, which reduced

R to 0.68. In Melbourne, the temperature and FFDI multi-decadal modes are in

phase and highly correlated (R = 0.84).

Ahmed et al. [2013] found that at multi-decadal to centennial scales, temperature

showed a distinct spatial variability. However, they found similarity in temperature

behaviour at this time scale within each hemisphere. Given this, its expected that

all three stations would have similar temperature variability. The results at the

decadal time scale for all stations and at the multi-decadal time scale for Canberra

and Melbourne match with those in Ahmed et al. [2013]. However, the anomalous

behaviours for Sydney around 1980 and Canberra from 1985 to 2000, are more likely

to be artefacts of the method.

Verdon et al. [2004] showed there is a strong relationship between temperature on

a range of time scales and Forest Fire Danger Index (FFDI). This is also proved

shown by the results from SEEMD and the high correlation between temperature

and FFDI.

7.3.2 Wind speed

The decadal and multi-decadal variabilities in the wind speed are shown in Figures

7.5 and 7.6, respectively.
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Wind-speed decadal variability

From 1972 to 1985, wind speed is out of phase with FFDI at all three stations (Figure

7.5). After 1985, Sydney decadal wind speed becomes in phase with decadal FFDI

variability (R = 0.32). However, Canberra and Melbourne wind speed both remain

out of phase with decadal FFDI until about 1990. The decadal wind-speed IMF

for both these stations has a low correlation with the decadal FFDI (Canberra:

R = 0.06; Melbourne: R = 0.17).

Wind-speed multi-decadal variability

The multi-decadal wind-speed variability in Canberra and Melbourne is in phase

with the FFDI over the whole period, with a high correlation between multi-decadal

wind speed and FFDI, (R = 0.81 and R = 0.78, respectively). In Sydney the wind

speed lags the FFDI by about five years (Figure 7.6) and the correlation between

wind speed and FFDI is low (R = 0.24). This could be due to the inconsistency

in the wind-speed data for Sydney which was mentioned in Section 7.2, and will be

discussed further in Section 7.5.

Lucas [2010] suggested that long-term behaviour found from wind data is likely to be

unrealistic because of the many factors that can affect the wind data. These factors

are also likely to change over years, such as the growth/removal of trees and building

construction. Considering the Lucas [2010] study and the obvious inconsistency in

the Sydney wind-speed data, the wind-speed patterns at all time scales should be

considered with a suitable degree of skepticism.

7.3.3 Relative humidity

In Equation 7.1, the relative humidity and FFDI have an inverse relationship. Warm-

ing due to climate change will lower relative humidity [Murphy and Timbal, 2008].

Lower relative humidity means a relatively drier environment, and a drier environ-

ment is more likely to succumb to bushfires. Matthews et al. [2012] used a suite of

models to examine the links between climate, fuels and fire behaviour in dry euca-

lypt forests in south-eastern Australia. They found that a warm and dry climate

produced lower amounts of fine fuel, but a greater propensity of this fuel to burn

due to lower moisture content. Changing the fuel load had only a small effect on fuel

moisture. A warmer, drier climate also increased the rate of spread, an important

measure of fire behaviour. Matthews et al. [2012] observed a strong climate signal in

fuel moisture, with a shorter winter period, lower fuel-moisture levels and a greater

number of fire days in warm-dry years, in all months. However, the effect of climate

change on the amount of fuel is not yet fully understood.
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Relative humidity decadal variability

Figure 7.7 shows the decadal variability of relative humidity and FFDI. At all three

stations, the relative humidity and FFDI are out of phase and have a strong negative

correlation, Sydney R = −0.79, Canberra R = −0.88 and Melbourne R = −0.87.

Relative humidity multi-decadal variability

Figure 7.8 shows that, at all three stations, the relative humidity and FFDI are out

of phase except in Sydney from 1972 to 1985. However, as mentioned in Chapter 4,

EMD is prone to endpoint effects. Therefore it is likely that the relative humidity

from 1972 to 1985 is a method artefact.

These results suggest that relative humidity has a strong effect on FFDI variability

at both decadal and multi-decadal time scales.

7.3.4 Drought factor

The drought factor depends strongly on environmental conditions such as precipi-

tation [Keetch and Byram, 1968]. Trenberth et al. [2014] found that the occurrence

and length of droughts are changing with climate change. Increased heating from

global warming may not cause more frequent droughts but it is expected that, when

droughts occur, they are likely to set in quicker and be more intense.
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Drought-factor decadal variability

Figure 7.9 shows the decadal variability of drought factor and FFDI. In Canberra

and Sydney, FFDI is in phase with drought factor but with a two-year lag. In

Melbourne, the FFDI and drought factor are in phase with no lag, except from 1990

when the drought-factor decadal IMF shows mode mixing. Table 7.2 shows that

the Sydney drought factor has smaller correlation with FFDI than the other two

stations at this time-scale (Sydney: R = 0.19, Canberra: R = 0.55, Melbourne:

R = 0.78).

Drought-factor multi-decadal variability

The multi-decadal drought factor mode in Sydney is out of phase with FFDI (neg-

atively correlated, R = −0.61) whereas in Melbourne it is in phase and highly

correlated with FFDI (R = 0.85). For Canberra, the drought factor is in phase with

FFDI until 1987; after 1987, the drought factor becomes out of phase with FFDI.

These differences make the drought factor not highly correlated to FFDI (Table 7.2).

Nicholls [2004] showed that, despite the similarity in rainfall especially in 1982, 1994

and 2002, the nature of the drought was not the same along the entire east coast of

Australia. This might be the reason for the different behaviour in the multi-decadal

drought factor in Sydney, as a coastal station, compared with the other two stations.

This results indicate that drought factor is a more dominant driver of FFDI at

decadal time scales, but is less important at multi-decadal time scales, except at

Melbourne.

7.3.5 Long-term variability

Figures 7.11 to 7.14 show the trends for all the FFDI contributors at all three

stations. Figure 7.11 shows the drought factor and FFDI trends. In Melbourne

and Canberra, the drought factors both increase after 1990 but relative humidity

decreases (Figure 7.14). This behaviour is expected from Equation 7.1. However, in

Sydney, the drought factor seems to increase linearly, its behaviour is similar neither

to FFDI behaviour nor to the drought factors at the other two stations, both of which

have a minimum around 1990. The reason could be again the position of Sydney

in a coastal area which was less affected by drought than the other two stations.

Differences in the weather and climate at Sydney compared to the other stations

may have contributed to the differences observed. Sydney has a coastal climate,

which is more humid and therefore less prone to changes in the drought factor.

On the other hand Melbourne and Canberra data are gathered from inland areas,
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where the impact of drought factor is stronger. We suspect that coastal climate has

a significant impact on the decadal and multi-decadal relationship of FFDI and its

drivers especially drought factor, but we are not certain. Further study is necessary

on this topic.

The long-term behaviour of temperature for all three stations is consistent with the

FFDI long-term behaviour (Figure 7.12). All stations, both the temperature and the

FFDI increase after 1990. This corresponding behaviour is expected from Equation

7.1.

Only the long-term variability in wind speed in Melbourne is completely consistent

with the FFDI. In Canberra, wind speed is almost constant before 1990; after 1990

both FFDI and wind speed increase (Figure 7.13). For Sydney, the wind speed and

FFDI show some consistency but the accuracy of the long-term wind behaviour is

questionable [Lucas, 2010]. For Sydney, wind speed after 1990 increases; this does

not agree with previous studies such as England et al. [2014], and also differs from

the results at the other two stations. This could again be due to inconsistency in the

wind data at the Sydney station. The fact that Sydney wind data had an abrupt

change around 1990 might cause this (see Section 7.5). Relative humidity before

1985 decreases in Sydney but does not change much for Canberra and Melbourne;

during this time, the FFDI stays the same or decreases. From 1985 to 1995, the

relative humidity and FFDI at all stations do not change much; after 1995 at all

stations relative humidity drop to its minimum and FFDI increase significantly

(Figure 7.14). This is the reason for negative correlation coefficients in Table 7.2.

7.4 Relationship between FFDI and its contributors

Table 7.2 shows the correlation coefficients between FFDI and its contributors at

the different time scales. In the decadal variability (IMF 4) for all stations, tem-

perature has the highest positive correlation with FFDI, and relative humidity is

strongly negatively correlated. In Melbourne and Canberra for the decadal time

scale, drought factor is also highly correlated to FFDI. This shows than for these

three stations at the decadal time scale, the main drivers of the FFDI for the ar-

eas away from the coast are the temperature, relative humidity and drought factor,

whereas for the area near the coast, drought factor is less important.

At the multi-decadal time scale (IMF 5), again the results for Sydney are different

from Canberra and Melbourne. In Sydney, drought factor and relative humidity

are both negatively correlated with FFDI; wind speed and temperature are not

significantly correlated. The negative correlation of drought factor with FFDI seems

131



IMF Station DF RH V T
Decadal Sydney 0.19 −0.79 0.32 0.55

Canberra 0.55 −0.88 0.06 0.75
Melbourne 0.78 −0.87 0.17 0.80

Multi-decadal Sydney −0.63 −0.46 0.24 0.23
Canberra 0.43 −0.93 0.81 0.68

Melbourne 0.85 −0.93 0.78 0.84
Trend Sydney 0.94 −0.94 −0.46 0.98

Canberra 0.96 −0.66 0.67 0.88
Melbourne 0.89 −0.99 0.99 0.97

Table 7.2: Correlation coefficients between FFDI and drought factor (DF), relative
humidity (RH), wind speed (V) and temperature (T) at the three stations.

odd, but, the evidence is in Figure 7.10. More studies need to be done on the

relationship between drought factor and FFDI for coastal region, at this time scale.

For Melbourne at the multi-decadal time scale, all variables are highly correlated,

with relative humidity correlated negatively. It seems that in Melbourne, the multi-

decadal variability in all the contributors significantly impacts the fire danger. This

shows fire danger in Melbourne is quite sensitive to climate change. For Canberra,

wind speed and temperature have the highest correlation with FFDI at the multi-

decadal time scale.

According to the results in Table 7.2, at the multi-decadal time scale the main driver

of FFDI is different from one station to another. It seems that the potential impact

of climate change on fire danger is strongly related to the geographical situation of

the area. More studies need to be done to fully understand the impact of multi-

decadal variability on fire danger.

For the long-term trend at all three stations, the FFDI is highly positively correlated

with drought factor (R > 0.89) and temperature (R > 0.88) and highly negatively

correlated with relative humidity (Table 7.2). In Melbourne, long-term variability

in all contributors has a strong relationship with fire danger. This again emphasises

the sensitivity of Melbourne fire danger to climate change. In Sydney, wind-speed

long-term variability shows a negative relationship with FFDI. However, this might

be due to inconsistency in the wind data in Sydney. This will be investigated in the

future.

Table 7.2 shows that for all three stations, relative humidity has strong relationship

with FFDI. According to Equation 7.2, when both temperature and relative humid-

ity are strongly correlated with FFDI, changes in FFDI are related to changes in the

fuel moisture. This happens at a decadal time scale for Canberra and Melbourne.
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In multi-decadal time scale, for Melbourne and for long term variability in Sydney

and Melbourne.

In Melbourne and Sydney at decadal and multi-decadal time scales, the relative

humidity has a stronger impact on the FFDI than temperature, this means more

fuel moisture at decadal and multi-decadal time scales was available for these two

stations. Long-term variability in Canberra shows that temperature has a stronger

impact on the FFDI than relative humidity, which means the in long-term, fuel

moisture will be reduced in Canberra.

7.5 Non-stationarity of the Sydney data and its impact on EEMD

results

In the previous section, the inconsistency of the Sydney wind-speed data, due to

instrumental and method changes in measuring wind speed over decades was men-

tioned; this inconsistency caused a corresponding inconsistency in the FFDI data.

In an attempt to improve these data, the mean bias method was applied to the Syd-

ney wind-speed data, and the resulting wind speeds used to recalculate the FFDI.

The original and modified data are shown in Figures 7.15 and 7.16, together with

the corresponding IMFs. The original wind-speed data show a step-function change

after 1990 which causes a very sharp non-stationarity in the input data; in Chapter

4 it is shown that the EEMD method is highly sensitive to abrupt changes in the

data.

Both sets of wind-speed data (original and modified ) were then used in the SEEMD

method with 300 ensemble members and smoothing parameter p = 0.01. The

decadal and multi-decadal modes, and the trend are shown in Figure 7.15. The

decadal modes of the original and modified data are out of phase in the middle of

the dataset where the inconsistency in the data occurs. The differences between

the two multi-decadal modes are more obvious in the middle of the dataset. These

differences start from 1985 and continue until 2005.

The other obvious differences between the original and modified wind data appear

in the trend (bottom panel in Figure 7.15). The original wind speed shows an

overall long-term increase whereas the modified data show an overall long-term

decrease. Troccoli et al. [2012] showed that in Sydney the long-term surface (2 m)

and upper-layer (10 m) wind-speed behaviours are different; the surface wind speed

has decreased over the long term whereas the upper-layer wind speed has increased.

In our study, modifying the wind data using mean bias produced inconsistent results

in the long-term wind behaviour. As shown in Figure 7.15, the modified wind-speed
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results (solid line) at 10 m show a decrease in wind speed. The original wind-speed

trend however, agrees with the results of Troccoli et al. [2012].

The wind results in Figure 7.15 show that modifying the input data can change the

results dramatically in the sense that they might not show the true variability of the

data at different time scales. This is more evidence for the sensitivity of the EMD

method to abrupt changes in the data and its significant impact on the results.

Figure 7.16 shows the FFDI calculated from the original wind-speed data and the

modified wind-speed data. In this case, the FFDI has changed only slightly. Lucas

[2010] showed that the change in FFDI due to a change in the wind is:

∆FFDI = 0.0234× FFDI×∆V, (7.3)

where V is wind speed. This means for a change in wind speed from 27 km per hour

to 20 km per hour with an FFDI of about 7, the change in the FFDI is only about

1.2, which is not a large change. However, even this small change in the data had

significant impact on the multi-decadal results of EMD (Figure 7.16), particularly

on the lower-frequency IMFs. The dependence of each step in the method on the

previous step magnifies even small errors, and these magnified errors become more

obvious in the later, lower-frequency IMFs (Figure 7.16).

The decadal FFDI original and modified IMFs are quite similar except around 1997.

The original FFDI multi-decadal IMF has a smaller amplitude than the modified

FFDI IMF from 1972 to 1995, but a more pronounced peak in the period 2000 to

2005. The trend in the original FFDI data shows the FFDI accelerated from 1987,

whereas the modified FFDI trend accelerated from 1995, and at a greater rate.

7.6 Discussion and conclusions

In this chapter, SEEMD was used to analyse the long-term variability of FFDI and

its contributors. This was quite challenging. Apart from the normal nonlinearity and

non-stationarity in the meteorological data, there was a considerable inconsistency

in wind data. For example, the Sydney wind-speed data showed a large and sudden

inconsistency, making the data highly non-stationary. The high sensitivity of the

EMD method to abrupt changes in the data and how it strongly impacts the results

(especially for low-frequency modes).

However, there were some valuable results that achieved in this chapter. It was

shown that the main driver of the FFDI is different at different time scales. On

a decadal time scale, the FFDI is mainly driven by temperature, probably due to

the decadal variability in ENSO. On a multi-decadal time scale, however, wind
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influenced the FFDI stronger than other contributors. In the long-term time scale,

FFDI seems to be strongly driven by temperature, relative humidity and the drought

factor. These results can change depending on the geographical situation of the

weather station. In all time scales, relative humidity showed a strong relationship

with FFDI of all three stations.

The long-term FFDI trend showed that the FFDI started to accelerate after 1990

due to accelerations in the drought factor, temperature and wind speed, and a

deceleration in relative humidity. This acceleration in the FFDI predicts an increase

the in frequency and intensity of bushfire occurrence.
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Figure 7.1: Forest Fire Danger Index (FFDI), drought factor (DF), wind speed (V),
maximum temperature (T) and relative humidity (RH) data, all during the fire
season, for Sydney, Canberra and Melbourne.
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Figure 7.3: Temperature and FFDI decadal variability, IMF 4.
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Figure 7.4: Temperature and FFDI multi-decadal variability, IMF 5.
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Figure 7.5: Wind and FFDI decadal variability, IMF 4.
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Figure 7.6: Wind and FFDI multi-decadal variability, IMF 5.
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Figure 7.7: Relative humidity and FFDI decadal variability, IMF 4.
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Figure 7.8: Relative humidity and FFDI multi-decadal variability IMF 5.
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Figure 7.9: Drought factor and FFDI decadal variability, IMF 4.
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Figure 7.10: Drought factor and FFDI multi-decadal variability, IMF 5.
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Figure 7.11: Long-term variability (trend) for FFDI (black) and drought factor
(orange).
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Figure 7.12: Long-term variability (trend) for FFDI (black) and temperature (red).
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Figure 7.13: Long-term variability (trend) for FFDI (black) and wind speed (blue
dashed line).
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Figure 7.14: Long-term variability (trend) for FFDI (black) and relative humidity
(green dashed line).
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Figure 7.15: Wind-speed original and modified data (top panel) with the corre-
sponding decadal and multi-decadal IMFs, and the trend.
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decadal and multi-decadal IMFs, and the trend.
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Chapter 8

Conclusions and Future Work

This chapter presents a summary of this dissertation and its conclusions. In this

dissertation, the focus was on the application and sensitivity of the Empirical Mode

Decomposition (EMD) method, using three different interpolation methods, in de-

composing a comprehensive selection of non-stationary data with the aim of improv-

ing the accuracy of this method and enhancing our ability to analyse environmental

data.

8.1 EMD/EEMD sensitivity to data non-stationarity

Twenty different stationary and non-stationary synthetic datasets were used to de-

termine the sensitivity of EMD (and the ensemble EMD (EEMD) used for noisy

data) to non-stationarity in the data. In most cases, the method was able to find

the correct frequency for the IMFs (modes), which is evidence for how powerful the

method is in decomposing a complex (in the general sense) time series. However,

the performance of EMD was strongly sensitive to abrupt changes in the mean, for

example the ‘hockey-stick’ logarithmic trend, and the rise and fall of the Gaussian

trend. This sensitivity was more obvious in the lower-frequency IMFs and in the

residual (trend). Finding the correct shape of the residual is important for analysing

long-term changes in the data. This can be critically important to the accurate study

and interpretation of environmental data [Ezer et al., 2013].

8.2 EMD/EEMD sensitivity to the interpolation method

Three different interpolation methods were used: a simple piecewise-linear interpo-

lation; a cubic-spline interpolation, used in the original EMD method; and a more

sophisticated smoothing-spline interpolation. The results showed that, in the ab-

sence of noise, the EMD method was not sensitive to the interpolation method, but

EEMD applied to noisy data was.
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EEMD with linear interpolation suffered strongly from mode mixing and end effects

in most cases, and consistently underestimated the amplitude of the sinusoidal signal

components. Linear interpolation did however provide reasonable estimates the

trend components (except for data with logarithmic and Gaussian trends).

EEMD with cubic interpolation provided better results than linear EEMD in the

presence of noise, but still suffered from mode mixing and end effects. EEMD with

smoothing-spline interpolation consistently provided the most accurate and robust

results for the low-frequency IMFs. Because the smoothing parameter was set to

favour of the low-frequency IMFs, the amplitude of the high-frequency IMFs in most

cases was underestimated.

EEMD with both linear and cubic-spline interpolation showed more error in esti-

mating the lower-frequency IMFs than smoothing-spline interpolation which was

consistently more accurate and robust in obtaining the lower-frequency IMFs. The

smoothing-spline EEMD results also showed considerably less sensitivity to noise,

the endpoint issue and the nature of the data than EEMD using other two interpo-

lation methods. Overall, the results support the use of smoothing-spline (SEEMD)

interpolation in favour of the other interpolation methods considered.

8.3 EEMD implications for environmental time series

8.3.1 Temperature

In Chapter 5, the EEMD method with cubic-spline (CEEMD) and smoothing-spline

(SEEMD) interpolations was used on temperature data. Regardless of the inter-

polation method, EEMD obtained good results overall for the temperature data.

However, changing the interpolation method changed the degree of variability in

the trend, and even the interpretation of the data. In addition, SEEMD found fewer

modes, with less mode mixing, than CEEMD.

The results from SEEMD showed detail in the temperature variability that agreed

with the literature. For example, SEEMD showed details in the decadal variability

in the global temperature data, that were consistent with extreme events and El

Niño effects reported in the literature.

The two interpolation methods (cubic spline and smoothing spline) both gave similar

results for Sydney maximum temperature. For the Sydney data, the shape of the

trend for the minimum temperature from SEEMD was quite different from that from

CEEMD, although the increase in temperature was similar. The CEEMD trend for

minimum temperature had a positive constant slope, whereas the SEEMD trend
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showed a minimum temperature increasing at an increasing rate since 1920; the

SEEMD result agreed with the literature.

8.3.2 Sea level

In Chapter 6, the implications of using SEEMD and CEEMD on sea-level data were

investigated. The SEEMD results were again more resistant to mode mixing than

the CEEMD results.

For the intra-decadal, decadal, and multi-decadal variability with periods more than

30 years, SEEMD and CEEMD obtained similar results. The sea-level trends ob-

tained from the Newcastle data from SEEMD and CEEMD were similar, and agreed

with the literature. For the Sydney trends, however, the results from the two inter-

polation methods disagreed at the endpoints of the data, giving different estimates

of the sea-level rise. The SEEMD results agreed with the literature.

For Port Pirie, the SEEMD and CEEMD sea-level trends disagreed in both the shape

and amount of sea-level rise. SEEMD gave a nonlinear sea-level rise, with the rate

of rise increasing rapidly after 1990; CEEMD gave a uniform rise in sea level. Again

the SEEMD results agreed with the literature. SEEMD and CEEMD gave different

results in estimating sea-level acceleration, either in the amount of acceleration or

the shape of the acceleration trend, for all three stations. SEEMD gave a result that

could explain the relationship between the East Australian Current and sea level in

Sydney, which also agreed with the literature.

8.3.3 Forest Fire Danger Index (FFDI)

In Chapter 7, SEEMD was used to analyse the long-term variability in the FFDI

and its contributors. The SEEMD trend in FFDI and its contributors either had a

minimum in about 1990 or started increasing then (except relative humidity which

had a maximum in 1990). However the short length of the dataset means the

accuracy of these trends is questionable.

At decadal time scales, the FFDI was mainly driven by temperature. This is likely

to be due to the decadal variability in ENSO. The multi-decadal variability in FFDI

showed a strong correlation with wind speed. In the long-term variability, both

temperature and the drought factor had a strong influence on the FFDI, predicting

hotter and drier conditions in the future, thus increasing the possibility of bushfires.

Sydney wind-speed data showed an abrupt inconsistency in 1990. This made the

data highly non-stationary, and therefore affected the results of EMD. Improving the

wind-speed data using the bias-mean method did not improve the outcome. Even
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small changes in the FFDI data changed the low-frequency IMFs, and therefore our

interpretation of FFDI behaviour at a multi-decadal scale.

8.4 Significance of this study and possible future studies

This study has shown that the use of smoothing-spline interpolation, rather than

the usual cubic-spline interpolation, can significantly improve the accuracy of the

EMD results. Using SEEMD reduced the sensitivity of the method to noise and also

reduced mode mixing. For the data used in this study, the SEEMD results were more

resistant to endpoint effects. The SEEMD results were also more robust regardless

of the nature of the data. This robustness is evidence that, compared to EEMD

using the other two interpolation methods, SEEMD was significantly less sensitive

to data non-stationarity. All of these results were also confirmed when SEEMD

and CEEMD were used on the temperature and sea-level data. SEEMD results

consistently gave more physically meaningful detail than the original CEEMD.

However, despite all these advantages, SEEMD has its limitations, an important

one of which is finding a suitable smoothing parameter to analyse the data. For

the synthetic data used here, it was possible to find a suitable smoothing parameter

that gave accurate results for all frequencies. There is a need for further study

to determine whether a specific range of smoothing parameters can be found to

give accurate results for all frequencies regardless of the nature of the input data.

For example, using generalised cross validation may be a good method to find a

suitable smoothing parameter. There are of course a number of other interpolation

methods that could be used instead of the linear, cubic-spline or smoothing-spline

interpolation methods.
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Appendix A

All IMFs

In this Chapter, the EMD/EEMD results for all the 20 synthetic datasets are pre-

sented. Figures A.1 and A.2 are the EMD/EEMD results for stationary time series

with and without noise. Figures A.3 to A.6 illustrate the IMFs for non-stationary

data with time-dependent mean without noise. Figures A.7 and A.8 shows the IMFs

for non-stationary data with time-dependent variance. Figures A.9 to A.12 are the

IMFs for non-stationary data with time-dependent mean with constant noise and

Figures A.13 to A.20 are the IMFs for non-stationary data with time-dependent

mean and time-dependent variance.
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Figure A.1: EMD results for the noiseless stationary data x0 (Equation 4.1, Chapter
4).
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Figure A.2: EEMD results for the corresponding data with noise y0 (Equation 4.3,
Chapter 4).
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Figure A.3: EMD results for the non-stationary data with linear time-dependent
mean, x1 (Equation 4.4, Chapter 4).
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Figure A.4: EMD results for the non-stationary data with non-monotonic time-
dependent mean, x2 (Equation 4.4, Chapter 4).
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Figure A.5: EMD results for the non-stationary data with logarithmic time-
dependent mean, x3 (Equation 4.4, Chapter 4).
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Figure A.6: EMD results for the non-stationary data with Gaussian time-dependent
mean, x4 (Equation 4.4, Chapter 4).
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Figure A.7: EEMD results for the non-stationary data with time-dependent vari-
ance, z05 (Equation 4.10, Chapter 4).
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Figure A.8: EEMD results for the non-stationary data with time-dependent vari-
ance, z06 (Equation 4.10, Chapter 4).
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Figure A.9: EEMD results for the non-stationary data with time-dependent mean
and constant noise, y1 (Equation 4.9, Chapter 4).
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Figure A.10: EEMD results for the non-stationary data with time-dependent mean
and constant noise, y2 (Equation 4.9, Chapter 4).
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Figure A.11: EEMD results for the non-stationary data with time-dependent mean
and constant noise, y3 (Equation 4.9, Chapter 4).
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Figure A.12: EEMD results for the non-stationary data with time-dependent mean
and constant noise, y4 (Equation 4.9, Chapter 4).
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Figure A.13: EEMD results for the non-stationary data with time-dependent mean
and variance, z15 (Equation 4.13, Chapter 4).

164



−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800 900 1000

Original 
Smoothing
Cubic
Linear

a)

b)

c)

Figure A.14: EEMD results for the non-stationary data with time-dependent mean
and variance, z25 (Equation 4.13, Chapter 4).
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Figure A.15: EEMD results for the non-stationary data with time-dependent mean
and variance, z35 (Equation 4.13, Chapter 4).
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Figure A.16: EEMD results for the non-stationary data with time-dependent mean
and variance, z45 (Equation 4.13, Chapter 4).
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Figure A.17: EEMD results for the non-stationary data with time-dependent mean
and variance, z16 (Equation 4.13, Chapter 4).
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Figure A.18: EEMD results for the non-stationary data with time-dependent mean
and variance, z26 (Equation 4.13, Chapter 4).

169



−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

Original 
Smoothing
Cubic
Linear

a)

b)

c)

Figure A.19: EEMD results for the non-stationary data with time-dependent mean
and variance, z36 (Equation 4.13, Chapter 4).
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Figure A.20: EEMD results for the non-stationary data with time-dependent mean
and variance, z46 (Equation 4.13, Chapter 4).
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