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ABSTRACT 

The traditional stochastic analysis methods are becoming increasingly unappreciated 

for modern engineering practices. The inconsistency between intentionally designed 

CAD model and the traditional stochastic analysis model inevitably obstructs the 

accuracy, efficiency, and applicability of the traditional stochastic analysis methods. 

However, these requirements are becoming increasingly significant in contemporary 

engineering practices. Therefore, it is requisite to develop a new stochastic analysis 

framework complied with the requirements of modern engineering practices. 

This dissertation presents a CAD-CAE integrated spectral stochastic isogeometric 

analysis (SSIGA) framework. And a series of structural analysis problems with 

uncertainties are investigated within the proposed framework. Firstly, the SSIGA is 

developed and investigated for the stochastic linear elasticity problem. Then, the SSIGA 

is further developed for the stochastic linear elasticity problem of composite plates. 

Moreover, the SSIGA is extended for the structural free vibration problem, namely, the 

stochastic eigenvalue problem. After that, the extended support vector regression (X-SVR) 

method is adopted within SSIGA framework for the stochastic linear stability analysis of 

plates. The accuracy, efficiency, and applicability of the proposed SSIGA framework for 

different structural problems are comprehensively investigated and verified through 

several elaborately selected numerical examples. 

The proposed SSIGA framework provides a CAD-CAE integrated stochastic analysis 

framework for the modern engineering practices. By meticulously adopting the basis 

functions within CAD system, the SSIGA framework can maintain the exact geometries 

of the structures and the random fields between the CAD model and the SSIGA stochastic 



 

ii 

analysis model, even for those complex geometries inspired from real-life engineering 

practices. Such rigor can thoroughly eliminate the geometric errors that permanently 

embedded in traditional approaches. The stochastic analysis by SSIGA framework will 

be assuredly implemented on the intentionally designed model in CAD system. Moreover, 

basis functions within CAD system are always higher-order continuous over the whole 

physical domain. Therefore, the novel SSIGA approach can guarantee a globally smooth 

random field modelling and finally a globally smooth stochastic analysis result. 

Additionally, by implementing stochastic analysis directly on the CAD model and 

avoiding the mesh process in traditional stochastic analysis routines, SSIGA framework 

will promise an efficient stochastic analysis method for real-life engineering practices. 
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1 

Chapter 1  

INTRODUCTION 

1.1 Summary 

An introductory chapter is presented which outlines the necessity, contribution as well 

as the layout of this dissertation. Thus, Chapter 1 is properly organized as follows. Section 

1.2 introduces the motivation of the research work. Section 1.3 states the research 

objective and scopes. Then in Section 1.4, a comprehensive dissertation layout is 

presented, and finally, all research supports from organizations have been acknowledged 

in Section 1.5. 

1.2 Motivation of research 

The finite element method (FEM) is a traditional numerical method for solving 

problems of engineering and mathematical physics. These problems include structural 

analysis, fluid flow, heat transfer, etc., and are usually modelled as boundary value 

problems, or in general, partial differential equations. The finite element method can 

approximate their results by formulating these problems into a system of algebraic 

equations. Originated at the 1950s and 1960s, the finite element method spreads quickly 

into other scientific and engineering disciplines, and now with many commercial 

programs are available, finite element method is widespread. 

However, the deterministic FEM analysis gradually becomes less appreciate for the 

engineering practices, because the existences, and more significantly, the influences of 
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inevitable uncertainties in real-life engineering applications have been widely admitted. 

The incompetence of deterministic FEM on quantitatively assessing the effect of these 

intrinsic uncertainties has restrained its applicability. Such restriction has stimulated the 

studies on stochastic analysis to critically assess the safety of real-life engineering 

practices against various complications. As a result, considerable numerical methods have 

been developed for the stochastic analysis of real-life engineering applications. These 

developed stochastic analysis methods meticulously integrate uncertainty quantification 

within the deterministic FEM analysis framework. Such integration of uncertain 

quantification into FEM has significantly promoted the applicability of these traditional 

stochastic analysis methods by completely inheriting the characteristics of FEM. 

However, it is reminded that such adoption is always a double-edged sword which 

possesses both favourable advantages and inevitable limitations. 

Despite of the remarkable advantages and benefits of what FEM has brought to modern 

engineering applications, there are still some inadequacies associated with this 

masterpiece. One inevitable, yet critical, issue exists in the Computer-Aided Design-

Computer-Aided Engineering (CAD-CAE) work routine of FEM. That is, the FEM 

usually is conducted by firstly transferring the geometric information in the CAD system 

into the CAE system. Subsequently, the relevant analysis by FEM will be executed within 

the CAE system. Such conventional FEM analysis routine results some issues obstructing 

the accuracy, efficiency and applicability of FEM. One primary issue associated with the 

FEM routine is the geometric inconsistency between the design models in CAD system 

and the analysis models in CAE systems. The two separate environments are tenuously 

linked by the mesh process in FEM. Such process will construct an analysis model by 

approximate the intentionally designed model. Consequently, geometric error will 

inevitably be introduced into the analysis model and permanently exist in the FEM routine, 
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especially when the physical geometry of engineering applications is complex. 

Unsurprisingly, such inherent defect of the FEM also exists in the whole process of 

traditional stochastic analysis methods. The direct consequence of this intrinsic defect is 

that regardless how accurate the stochastic analysis is, the results are always incorrect 

simply because the investigated model is not the intentionally designed one. Such effect 

would be specifically magnified for stochastic analysis of modern engineering practices, 

which are usually involved with complex physical geometries and are also sensitive to 

the geometric inaccuracy. 

Another issue of FEM is on the computational efficiency. It is reported that 80% of 

the time of whole FEM analysis is spent on the communication between two separate 

environments (Cottrell, Hughes and Bazilevs, 2009). Traditional FEM based stochastic 

analysis is usually involved with a fair amount of repetitive communications between two 

distinctive environments. This will certainly increase the computational time for the 

uncertainty analysis at each uncertain-analysis-to-design cycle, and consequently, the 

overall turnaround time for the real practices is incapable of fulfilling the efficiency 

requirement of modern engineering practices. 

Moreover, the higher accuracy requirement in both modelling and analysis in modern 

engineering practices can’t be achieved by the FEM, which mainly adopts lower order 

polynomial basis functions. Undoubtedly, the traditional FEM based stochastic analysis 

methods cannot satisfy such higher accuracy requirements of contemporary engineering 

practices as well. 

Clearly, the traditional FEM based stochastic analysis method is incapable of handling 

the new challenges. Meanwhile, these challenges are becoming increasingly significant 

as the development of modern society. Therefore, it is requisite to develop a new 
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stochastic analysis framework complied with the developments and requirements of 

modern engineering practices. 

1.3 Objective and scope 

The inspiration of this study comes from the increasingly significant challenges in 

accuracy and efficiency of stochastic analysis for modern engineering practices. 

Therefore, the main purpose of this thesis is to propose a CAD-CAE integrated stochastic 

analysis framework which can efficiently handle aforementioned challenges. More 

explicitly, this thesis has developed the following areas. 

Firstly, an accurate, efficient, and applicable CAD-CAE integrated stochastic analysis 

framework is proposed for the structural linear elasticity analysis. The random field is 

firstly modelled within CAD system. Thus, a consistency between the intentionally 

design model and stochastic analysis model can be achieved for the modern engineering 

structures. 

Then, such freshly proposed modern stochastic analysis framework is extended to the 

composite structures, which has been successfully implemented across a wide range of 

engineering disciplines including automotive, civil, military, biomedical, electrical, etc. 

Secondly, such CAD-CAE integrated stochastic analysis framework is meticulously 

developed for the structural free vibration problem, namely, the generalized stochastic 

eigenvalue problem. Globally smooth estimations for stochastic eigenvalues and 

eigenvectors can be achieved. 

Finally, the stochastic linear stability analysis for plate is developed within the CAD-

CAE integrated stochastic analysis framework. A semi-sampling method is adopted for 

the stochastic eigenvalue problem coupled with a stochastic linear elasticity problem. 
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In order to achieve all the goals of this thesis, the following individual tasks have been 

thoroughly developed and implemented: 

1) Random field modelling within CAD system is developed such that the spatially 

dependent uncertainties can be accurately applied on the intentionally designed 

CAD model. 

2) The CAD basis function based Karhunen-Loève (K-L) expansion is proposed and 

formulated. The accuracy and the influence of h- and k- refinement of the CAD 

basis function on K-L expansion is comprehensively investigated and compared 

with available analytical results. 

3) The polynomial chaos expansion (PCE) is developed and implemented for the 

representation of the stochastic responses such that these responses can be 

properly represented even without the knowledge of the corresponding covariance 

relationship. 

4) A stochastic Galerkin based method is proposed and developed within the CAD-

CAE integrated stochastic analysis framework, namely, spectral stochastic 

isogeometric analysis (SSIGA) for the stochastic linear elasticity problems. 

5) The SSIGA is formulated for two fundamental engineering structures, Mindlin 

plate and Kirchhoff-Love shell. Different orders of statistical moments (i.e., mean 

value and standard deviation), probability density function (PDF), and cumulative 

distribution function (CDF) of concerned stochastic responses (i.e., displacement, 

strain, and stress) are obtained and verified with large cycle Monte Carlo 

Simulation (MCS) method. 

6) The novel SSIGA framework is extended to estimate the performance of the 

composite material plate with uncertain material property under static load. Both 
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spatially dependent and independent uncertainties are involved within the 

framework. 

7) The random field with non-Gaussian (lognormal) distribution is developed and 

incorporated into the proposed framework, and proper formulation is proposed for 

practical application. 

8) Arbitrary polynomial chaos (aPC) is firstly introduced into the framework to 

provide a more flexible and practical method to model the stochastic responses of 

modern engineering practices against various complications. 

9) The SSIGA framework is proposed for the stochastic structural free vibration 

problem, namely, the stochastic eigenvalue problem. A stochastic Galerkin 

approach is proposed to formulate the problem into a system of nonlinear 

equations. The Newton-Raphson approach is adopted to solve the nonlinear 

system. 

10) Such approach is formulated and implemented for structural free vibration 

analysis of the Mindlin plate and Kirchhoff-Love shell. The stochastic eigenvalue 

and eigenvectors are calculated, and corresponding statistical information are 

obtained. The accuracy and efficiency of the proposed method is partially verified 

through Monte Carlo Simulation (MCS) method. 

11) The SSIGA framework is proposed for the stochastic linear stability analysis of 

plates. An extend support vector regression (X-SVR) is adopted within the 

framework. And a sampling method is developed, and corresponding sampling 

method is proposed to calculate the stochastic critical load. Similarly, Monte 

Carlo Simulation (MCS) method is adopted for the verifications. 

The abovementioned tasks have outlined the contribution of this thesis, and the SSIGA 

framework can be easily implemented and extended for the modern engineering practices. 
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1.4 Layout of thesis 

This study proposed and developed a novel CAD-CAE integrated stochastic analysis 

framework, i.e., Spectral Stochastic Isogeometric Analysis (SSIGA), for modern 

engineering practices. The accuracy, efficiency, and applicability of the proposed 

framework has been comprehensively investigated and thoroughly demonstrated through 

series of works in this thesis. 

Firstly, the Spectral Stochastic Isogeometric Analysis (SSIGA) is freshly proposed in 

Chapter 3. By meticulously adopting the basis functions within CAD system (i.e. NURBS 

and T-splines), the SSIGA framework can maintain the exact geometries of the structures 

and random fields between the CAD model and SSIGA stochastic analysis model, even 

for those complex geometries inspired from real-life engineering practices. Such rigor 

can thoroughly eliminate the geometric errors that permanently embedded in traditional 

approaches. The stochastic analysis by SSIGA framework will be assuredly implemented 

on the intentionally designed model in CAD system. Moreover, basis functions within 

CAD system are always higher-order continuous over the whole physical domain. 

Therefore, the novel SSIGA approach can guarantee a globally smooth random field 

modelling and finally a globally smooth stochastic analysis result. Additionally, by 

implementing stochastic analysis directly on the CAD model and avoiding the mesh 

process in traditional stochastic analysis methods, SSIGA framework will promise an 

efficient stochastic analysis method for real-life engineering practices. The proposed 

framework is formulated for the stochastic linear elasticity of Mindlin plate and 

Kirchhoff-Love shell involved with complex geometry. And, the accuracy and efficiency 

of the proposed framework for each case is comprehensive investigated and demonstrated 
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by comparing with Monte Carlo Simulation (MCS) method with significantly large 

number of cycles. 

In Chapter 4, the SSIGA framework is presented for quantitatively assessing the 

performance of functionally graded materials (FGM) plate with uncertain material 

properties under static load. The SSIGA framework can maintain the exact geometries of 

both FGM plate and random field acting on the plate between the design model and 

stochastic analysis model. Thus, the stochastic analysis is surely implemented on the 

intentionally designed CAD model of FGM plate. That is, the consistency of the geometry 

of an FGM plate in CAD model, deterministic Computer-Aided Engineering (CAE) 

model, and structural safety assessment model can be exactly maintained. This unique 

feature is extremely important for practically stimulated FGM plates with complex 

geometries and spatially dependent uncertain system parameters. 

Moreover, in Chapter 5, the SSIGA framework is proposed for structural free vibration 

analysis, namely, the generalized stochastic eigenvalue problems. Within this chapter, the 

modelling of random field with non-Gaussian distribution and the arbitrary polynomial 

chaos (aPC) are freshly introduced into the SSIGA framework. Then, a Galerkin-based 

method is proposed for the generalized stochastic eigenvalue problem. Such approach can 

circumvent the dependence of the statistical solution on the quality and quantity of the 

underlying random number generator, and provides an approximation to the complete 

probabilistic description of the eigensolutions. In the end, the stochastic generalized 

eigenvalue problem is formulated as a group of deterministic non-linear equations, and 

can be easily solved by the Newton-Raphson method. Since the closed-form solutions for 

the stochastic eigenvalue problems are usually unavailable, thus, the Monte Carlo 

Simulation (MCS) method is also adopted for partially verifying the proposed method. 
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Then, in Chapter 6, the SSIGA framework is freshly proposed for the stochastic linear 

stability analysis of plates with uncertain material properties and complex geometries. 

The proposed SSIGA framework is applicable to different material models, i.e., 

homogeneous material, functionally graded material, and functionally graded porous 

material, etc. An extended support vector regression (X-SVR) with a generalized 

Gegenbauer polynomial kernel is developed, and then, implemented within the SSIGA 

framework for establishing the statistical characteristics (e.g., mean and standard 

deviation etc.) of the structural buckling load. Such semi-sampling scheme can also 

effectively establish the PDF and CDF of the critical buckling load of the FGM plate with 

relatively small sampling size. As a result, the computational efficiency will be 

significantly reduced when comparing with the full-scale Monte-Carlo simulation (MCS) 

technique. 

Finally, the overall conclusions of this thesis are drawn in Chapter 7, accompanied 

with some recommendation analysis on uncertain analysis as well as suggestions for 

future researches. 
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Chapter 2  

LITERATURE REVIEW 

2.1 Summary 

This chapter reviews the existing studies about the isogeometric analysis (IGA) and 

spectral finite element method (SFEM). The research works about IGA are summarized 

in Section 2.2. Particularly, an introduction about the development and related techniques 

of IGA is presented in the Subsection 2.2.1. Some of the mechanics problems that are 

investigated under IGA framework are categorized in Subsection 2.2.2. Most importantly, 

IGA for structural analysis is summarized in Subsection 2.2.3. The relevant works for the 

SFEM is presented in Section 2.3. A general introduction about stochastic analysis is 

presented in Subsection 2.3.1. The uncertainty modelling and uncertainty quantification 

under the SFEM are presented in Subsection 2.3.2 and 2.3.3 respectively. 

2.2 Isogeometric analysis (IGA) 

2.2.1 Introduction 

In the last century, computer is not as powerful and popular as it is today. All the 

drawing work of engineering projects was done manually. Then, the development of 

computers and computer aided design (CAD) saved engineers from the repetitive labour 

work, and those drawings could be done on computers accurately and efficiently. 

Nowadays, most engineering and architectural designs are highly relied on CAD (Rogers, 

2001). Since 1972, the B-splines have been widely applied to represent the curves by the 
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designers (Cottrell, Hughes and Bazilevs, 2009). Then, the non-uniform rational B-

splines (NURBS) is further developed as a generalization of B-splines, which has been 

used in CAD programs since 1975 (Cottrell, Hughes and Bazilevs, 2009). As a commonly 

used modelling technique in computer graphics for generating and representing curves 

and surfaces, NURBS offer great flexibility and precision for handling both analytic and 

modelled shapes (Rogers, 2001). In particular, NURBS can represent conic sections, like 

circles, cylinders and spheres exactly. Although NURBS were only used in proprietary 

codes of some car companies at early stage, today they are used in all standard CAD 

packages (Rogers, 2001). More importantly, many efficient stable numerical algorithms 

have been well-developed to generate NURBS objects (Piegl and Tiller, 1997).  

Besides the CAD system, Computer Aided Engineering (CAE) is to use computer 

technology with programmed codes to solve problems in engineering analysis. 

Originating in 1950s and 1960s, the finite element method (FEM) is the most widely used 

method in CAE (Hughes, Cottrell and Bazilevs, 2005). It numerically solves the partial 

differential equations, which are used for modelling the real engineering problems by 

approximating their results through lower order Lagrange polynomials. (Cottrell, Hughes 

and Bazilevs, 2009). After the launch of the first commercial computer programs, FEM 

becomes widely spread in different engineering and scientific disciplines. And, new 

techniques, formulations, basis functions, and applications, are developed in the followed 

decades. However, when it comes to the higher order partial differential problems, which 

require higher order basis functions, FEM met challenge in accuracy and efficiency. 

Moreover, for modern engineering analysis, CAD and CAE systems are closely related. 

However, they are not related directly. Instead, communication processes are necessary 

for the two separating systems. As the advent of modern society and modern engineering, 

the requirement for more accurate and efficient analysis method has been emerged due to 
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the increasing complexity involved in the engineering applications. With such gaps 

between two separating systems, traditional FEM cannot always provide a satisfactory 

analysis result with desirable efficiency and accuracy. In order to properly integrate CAD 

and CAE systems, Isogeometric Analysis (IGA) was firstly proposed by Hughes et al. 

(Hughes, Cottrell and Bazilevs, 2005), and a monograph of the isogeometric analysis has 

been published entirely on the subject (Cottrell, Hughes and Bazilevs, 2009). 

Isogeometric analysis is developed by following the concept of isoparametric analysis but 

in a reverse direction. The NURBS basis functions, representing geometries in CAD 

system, are directly employed to represent partial differential equation unknowns. By 

doing so, problem domain with conic sections geometry, e.g. circles, cylinders, spheres 

etc. can be represented exactly, and problems with complex geometry can be represented 

more properly Moreover, NURBS basis function can achieve 1pC −  continuity with pth 

order NURBS, even across the boundaries of elements. Isogeometric analysis has 

analogues of h-, p- and hp-refinement strategies as FEM. In addition to them, a new 

higher-order methodology, k-refinement, is freshly developed, and provides IGA with 

advantages of efficiency and robustness over traditional p-refinement. (Hughes, Cottrell 

and Bazilevs, 2005). 

After the successful launch of such innovation, IGA has attracted a lot of attentions 

from academic communities. Firstly, mathematical studies and engineering investigation 

would necessary for a new numerical method. Bezilevs et al. (BAZILEVS et al., 2006) 

initiated a mathematical study of IGA based on NURBS, and studied the approximation 

and stability properties in the context of h-refinement. Cottrell et al. (Cottrell, Hughes and 

Reali, 2007) then investigated the effects of smoothness of basis functions on solution 

accuracy within IGA framework through two simple one-dimensional structural 

eigenvalue problems and two static shell boundary value problems modelled with 
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trivariate NURBS solids. In this work, they also developed a k-method, a local refinement 

strategy. Hughes et al. (Hughes, Reali and Sangalli, 2008) compared the approximation 

properties of standard 0C  continuous finite elements with NURBS on problems of 

structural vibrations and wave propagation, and NURBS presented the possibility of 

higher order accuracy and robustness. Evans et al. (Evans et al., 2009) conducted a 

mathematical study of the k-method utilizing results in approximation theory. Theoretical 

results indicate that, for many function spaces, higher-order splines with maximal 

continuity are optimal approximants with respect to the number of degrees of freedom, 

and numerical studies have validated and improved these results. Beirão da Veiga et al. 

(Beirão da Veiga et al., 2011) presented a result on error estimates for NURBS 

approximation of smooth functions, explicit in the mesh-size h, degrees p, space 

regularities k1, k2, that determine the approximation. Hughes et al. (Hughes, Evans and 

Reali, 2014) studied the accuracy of finite elements and NURBS approximations to the 

elliptic eigenvalue problem, and the implications of these results to the corresponding 

elliptic boundary-value problem and the parabolic and hyperbolic initial-value problems. 

Meanwhile, many other researchers also did contribution to the error estimation of IGA 

for different engineering or mathematical problems (Akkerman et al., 2007; van der Zee 

and Verhoosel, 2011; Xu et al., 2012; Beirão da Veiga, Cho and Sangalli, 2012; Dedè 

and Santos, 2012; Hassani, Ganjali and Tavakkoli, 2012; da Veiga et al., 2014; Tagliabue, 

Dedè and Quarteroni, 2014; Bartezzaghi, Dedè and Quarteroni, 2015; Kleiss and Tomar, 

2015; Kumar, Kvamsdal and Johannessen, 2017). 

Since the NURBS basis functions generally are not interpolatory functions, special 

treatments are necessary for imposing essential boundary condition. Bazilevs and Hughes 

(Bazilevs and Hughes, 2007) proposed a Weakly enforced Dirichlet boundary conditions 

are compared with strongly enforced conditions for boundary layer solutions of the 
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advection–diffusion equation and incompressible Navier–Stokes equations. Then, they 

(Bazilevs, Michler, et al., 2007) proposed a modification of the original weak boundary 

condition formulation that consistently incorporates the well-known ‘‘law of the wall’’. 

Apart from the abovementioned methods, transformation method (Wang and Xuan, 2010), 

Nitsche’s method (Embar, Dolbow and Harari, 2010), quasi Interpolation (Costantini et 

al., 2010), Lagrange multiplier method (Shojaee, Izadpenah and Haeri, 2012), blending 

method (Lu, Yang and Ge, 2013; Ge et al., 2016) are also have been investigated to solve 

this problem. 

In addition to the NURBS, new splines techniques are developed and incorporated into 

IGA. T-splines (Sederberg et al., 2003), as a generalization of NURBS, is one of the most 

important techniques. Bazilevs et al. (Bazilevs, Calo, et al., 2010) explored T-splines, a 

generalization of NURBS enabling local refinement, as a basis for isogeometric analysis. 

They test T-splines on some elementary two-dimensional and three-dimensional fluid and 

structural analysis problems and attain good results in all cases. Scott et al. (Scott et al., 

2012) developed a local refinement algorithm for analysis-suitable T-splines which does 

not produce excessive propagation of control points. They then demonstrated its use as 

an adaptive framework for isogeometric analysis. Evans et al. (Evans et al., 2015) 

developed hierarchical-analysis-suitable T-splines (HASTS), and the resulting spaces are 

a superset of both analysis-suitable T-splines and hierarchical B-splines. The additional 

flexibility provided by the hierarchy of T-spline spaces results in simple, highly localized 

refinement algorithms which can be utilized in a design or analysis context. Except for T-

splines, many other techniques, for example, B-splines (Costantini et al., 2010; Manni, 

Pelosi and Lucia Sampoli, 2011; Bornemann and Cirak, 2013; Y.-W. Wang et al., 2013; 

Johannessen, Kvamsdal and Dokken, 2014; Berdinsky et al., 2015; Jiang and Dolbow, 

2015; Johannessen, Remonato and Kvamsdal, 2015), PHT-splines (Nguyen-Thanh et al., 
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2011; P. Wang et al., 2011), THB-splines (Giannelli, Jüttler and Speleers, 2012; Giannelli 

et al., 2016), are also developed and applied for different engineering problems under 

IGA framework. 

Apart from the basic mathematical error estimations and splines techniques, numerous 

engineering techniques are developed to handle the complex geometries and problems 

inspired from the real-life engineering techniques, for example, trimmed surface (Kim, 

Seo and Youn, 2009, 2010; Seo, Kim and Youn, 2010a; Schmidt, Wüchner and Bletzinger, 

2012; Ruess et al., 2014; Beer, Marussig and Zechner, 2015; Kang and Youn, 2015; Nagy 

and Benson, 2015; Marussig and Hughes, 2018), volumetric parameterization (Martin, 

Cohen and Kirby, 2009; Martin and Cohen, 2010; W. Wang et al., 2011, 2013; Zhang, 

Wang and Hughes, 2013, 2012; Evans and Thomas J. R. Hughes, 2013; Xu et al., 2013b, 

2013c, 2013a; Liu et al., 2014), Bézier extraction (Borden et al., 2011; Scott et al., 2011; 

Irzal et al., 2014; Evans et al., 2015; Thomas et al., 2015; Hennig, Müller and Kästner, 

2016), quadrature (Schellekens and De Borst, 1993; Auricchio et al., 2012; Schillinger, 

Hossain and Hughes, 2014; Adam, Bouabdallah, et al., 2015; Adam, Hughes, et al., 2015; 

Hillman, Chen and Bazilevs, 2015; Nagy and Benson, 2015), multi-patch (Hesch and 

Betsch, 2012; Kleiss et al., 2012; Apostolatos et al., 2014; V. P. Nguyen et al., 2014; 

Greco and Cuomo, 2014; Breitenberger et al., 2015; Dornisch, Vitucci and Klinkel, 2015; 

Du, Zhao and Wang, 2015; Guo and Ruess, 2015; Kapl et al., 2015; Buchegger, Jüttler 

and Mantzaflaris, 2016). 

Also, a lot of excellent researchers elaborately designed and developed programming 

packages, which not only provides convenience for further researches on IGA but also 

explore the possibility of commercialization of this technique. De Falco et al. (de Falco, 

Reali and Vázquez, 2011) developed a suite of free software tools for applications on 

Isogeometric Analysis (IGA). They focused on providing a common framework for the 
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implementation of the many IGA methods for the discretization of partial differential 

equations currently studied, mainly based on B-Splines and NURBS, while being flexible 

enough to allow users to implement new and more general methods with a relatively small 

effort. Rypl and Patzák (Rypl and Patzák, 2012) presented how the isogeometric analysis 

can be integrated within an object oriented finite element environment so that most of the 

existing functionality of the finite element code is reused. Hsu et al. (Hsu et al., 2015) 

proposed an interactive parametric design-through-analysis platform to help design 

engineers and analysts make more effective use of Isogeometric Analysis (IGA) to 

improve their product design and performance. Pauletti et al. (Pauletti et al., 2015) 

presented the design of an object-oriented general purpose library for isogeometric 

analysis, where the mathematical concepts of the isogeometric method and their 

relationships are directly mapped into classes and their interactions. Nguyen et al. (V. P. 

Nguyen et al., 2015) presented an introduction to IGA applied to simple analysis 

problems and the related computer implementation aspects. Dalcin et al. (Dalcin et al., 

2016) developed a high-performance IGA analysis framework based on PETSc, a high-

performance library for the scalable solution of partial differential equations, which 

simplifies the development of large-scale scientific codes, provides a rich environment 

for prototyping, and separates parallelism from algorithm choice. They name the 

framework PetIGA. 

2.2.2 Mechanics problems 

Due to its well-demonstrated advantages over traditional FEM, IGA has been applied 

to a wide range of mechanics problems. The exact geometry representation, globally 

smoothness, and inherent higher continuity of basis function within IGA is attractive to a 

numerous engineering and scientific problems. 
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The IGA can exactly and smoothly represents the physical domains. Such rigor 

provides evident benefits in biomechanics. Zhang et al. (Zhang et al., 2006) described an 

approach to construct hexahedral solid NURBS meshes for patient-specific vascular 

geometric models from imaging data for use in IGA. Due to studies of the impact of 

LVADs on thermodynamics are notably lacking, Bazilevs et al. (Bazilevs et al., 2009) 

initiated a computational study of the Jarvik 2000 LVAD model employing isogeometric 

fluid-structure interaction analysis. They focused on a patient-specific configuration in 

which the LVAD is implanted in the descending thoracic aorta, performed computations 

for three pump settings, and reported their observations for several quantities of 

hemodynamic interest. 

The aforementioned advantage is also attractive for the analysis of fluids and fluid-

structures interaction. Bazilevs and Hughes (Bazilevs and Hughes, 2007) applied IGA to 

solve the advection-diffusion equation and incompressible Navier-Stokes equations. 

Bazilevs et al. (Bazilevs, Calo, et al., 2007) successfully applied the YZβ approach to the 

simulation of drug delivery in patient-specific coronary arteries under IGA framework. 

Bazilevs and Akkerman (Bazilevs and Akkerman, 2010) presented an application of the 

residual-based variational multiscale turbulence modelling (RBVMS) methodology to the 

computation of turbulent Taylor-Couette flow at high Reynolds number under IGA 

framework. Bazilevs et al. (Bazilevs, Michler, et al., 2010) combined (i) NURBS-based 

IGA, (ii) residual-driven turbulence modelling and (iii) weak imposition of no-slip and 

no-penetration Dirichlet boundary conditions on unstretched meshes to compute wall-

bounded turbulent flows. Bazilevs et al. (Bazilevs et al., 2013) proposed IGA of 

Lagrangian shock hydrodynamics, and extended it to 3D axisymmetric case (Bazilevs et 

al., 2014). Evans and Hughes (Evans and Thomas J.R. Hughes, 2013) developed 

divergence-conforming B-splines for application to the incompressible Navier-Stokes 
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equations on geometrically mapped domains. Ghaffari Motlagh et al. (Ghaffari Motlagh 

et al., 2013) presented an application of the residual-based variational multiscale 

modelling methodology within IGA to the computation of laminar and turbulent 

concentric annular pipe flows. 

Moreover, in contact problem, IGA can provide a smooth contact surface and then lead 

to more physically accurate contact stresses. De Lorenzis et al. (De Lorenzis et al., 2011) 

applied NURBS-based IGA to Coulomb frictional contact problems between deformable 

bodies, in the context of large deformations and the numerical examples show that the 

proposed contact formulation in conjunction with the NURBS discretization delivers 

accurate and robust predictions. Temizer et al. (Temizer, Wriggers and Hughes, 2011) 

studied NURBS-based IGA of contact problems and compare with standard C0-

continuous Lagrange finite elements and concluded that NURBS-based IGA is a viable 

technology for contact problems and offers potential accuracy as well as convergence 

improvements over C0-continuous finite elements. De Lorenzis (De Lorenzis, Wriggers 

and Zavarise, 2012) applied NURBS-based IGA to 3D frictionless large deformation 

contact problems. Temizer et al. (Temizer, Wriggers and Hughes, 2012) presented a 

three-dimensional mortar-based frictional contact treatment in IGA with NURBS under 

the finite deformation regime. Dimitri et al. (Dimitri et al., 2014) applied IGA with T-

splines to frictionless contact problems between deformable bodies in the context of large 

deformations. Also, a comprehensive review about isogeometric contact can be found in 

De Lorenzis et al. (De Lorenzis, Wriggers and Hughes, 2014). 

Structural dynamics problem is also a mechanics problem that can benefit from the 

global smoothness and higher order basis function of IGA. Cottrell et al. (Cottrell et al., 

2006) applied IGA to several structural models, including rods, thin beams, membranes, 

and thin plates. Rotationless beam and plate models are utilized as well as three-
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dimensional solid models. More significantly, a geometrically exact model of the NASA 

Aluminium Testbed Cylinder is constructed, and frequencies and mode shapes are 

computed and shown to compare favourably with experimental results. Willberg et al. 

(Willberg et al., 2012) developed a higher order schemes and verified their capabilities 

with respect to accuracy and numerical performance on Lamb wave propagation in 

Structural Health Monitoring (SHM) applications. Coox et al. (Coox et al., 2016) 

evaluated the performance of a NURBS-based isogeometric finite element formulation 

for solving stationary acoustic problems in two dimensions. In addition to above 

applications, IGA is also applied to Crack (D. J. Benson et al., 2010; De Luycker et al., 

2011), Electromagnetics(Buffa, Sangalli and Vázquez, 2010, 2014; Ratnani and 

Sonnendrücker, 2012), topology optimization (Seo, Kim and Youn, 2010b), and etc. 

2.2.3 Structural analysis 

The IGA methodology aims to improve the interoperability between numerical 

simulation and the geometry modelling. Namely, IGA is designed to properly integrate 

the CAE and the CAD systems. Such masterpiece not only drastically reduces the 

geometry error in the meshing process of traditional FEM routine, but also offers a 

flexible and efficient framework for refinement, de-refinement, degree-elevation, and re-

modelling. In addition, the basis functions within IGA framework are globally smooth 

beyond the classical C0 continuity of traditional FEM. These features evidently provide 

IGA advantages in structural analysis, especially for plates and shell structures with 

complex geometries, which are commonly used in real-life engineering applications. 

For plate structures, traditional plate theories and new plate theories are proposed, 

developed, or reinforced by incorporating IGA. The first one is classical plate theory 

(CPT), also known as thin plate theory. S. Shojaee et al. (Shojaee et al., 2012) presented 
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an isogeometric finite element method for natural frequencies analysis of thin plate 

problems of various geometries. They designed several numerical examples, and 

demonstrated the effectiveness, robustness and accuracy of proposed method by 

comparing with the theoretical solutions and other numerical methods. Then, S. Shojaee 

et al. (Shojaee et al., 2012) further developed the IGA based CPT for natural frequencies 

and buckling analysis of thin symmetrically laminated composite plates. They compared 

the numerical results with either the analytical solutions or other available numerical 

methods, and excellent agreements are found. Also, VALIZADEH et al. (VALIZADEH 

et al., 2013) investigated the buckling, free and forced vibration behaviours of orthotropic 

plates through the IGA based CPT. Yin et al. (Yin, Yu and Liu, 2013) applied the IGA 

based CPT to functionally graded material plates, and investigated their free vibration 

behaviour. Excellent agreement with exist analytical or numerical solutions can be 

observed. 

The Reissner–Mindlin plate theory, also known as first-order shear deformation theory 

(FSDT), is another important plate theory beside the classical plate theory (CPT). Beirão 

da Veiga et al. (Beirão da Veiga et al., 2012) presented an isogeometric method for the 

discretization of the Reissner–Mindlin plate bending problem. Their new formulation is 

locking-free by construction and is natural from the theoretical/mechanical viewpoint. 

Moreover, they proved that the method is uniformly stable and satisfies optimal 

convergence estimates, and the theoretical results are fully supported by numerical tests. 

After that, they also studied a reformulated version of Reissner–Mindlin plate theory in 

which rotation variables are eliminated in favour of transverse shear strains. This theory 

has the advantage that the "shear locking" phenomenon is completely precluded, 

independent of the basis functions used for displacement and shear strains (Beirão Da 

Veiga et al., 2015). The IGA based FSDT is also developed for functionally graded 
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material (FGM) plates, laminated composite and sandwich plates, and other composite 

plates. Valizadeh et al. (Valizadeh et al., 2013) studied the static and dynamic 

characteristics of FGM plates through IGA. Yin et al. (Yin et al., 2014) developed an 

effective, simple, robust and locking-free simple first-order shear deformation plate 

theory (S-FSDT) under the IGA framework, and  analysed the static bending, buckling, 

and free vibration of homogeneous and functionally graded plates. Then, Yu et al. (Yu et 

al., 2015) developed S-FSDT for geometrically nonlinear analysis of homogeneous and 

non-homogeneous FGM plates. The accuracy and the effectiveness of the presented 

approach is illustrated by comparing the obtained results with reference solutions. Also, 

Yu et al. (Yu et al., 2016) combined the IGA, the level set and the S-FSDT to form a new 

effective and accurate approach for simulating free vibration and buckling problems of 

laminated composite plates with cutouts. In this work, they investigated the effects of 

different boundary conditions, gradient index, length-to-thickness ratio, geometric shape, 

etc. on the geometrically nonlinear mechanical responses of FGM plates. Thai et al. (Thai 

et al., 2012) presented IGA based FSDT for static, free vibration, and buckling analysis 

of laminated composite plate. Kapoor and Kapania (Kapoor and Kapania, 2012) 

developed IGA based geometrically nonlinear analysis for laminated composite plates 

using FSDT. Kapoor et al. (Kapoor, Kapania and Soni, 2013) further did post-processor 

for interlaminar stress calculation in composite and sandwich plates under the IGA based 

FSDT. Thai et al. (Thai et al., 2013) investigated static, free vibration and buckling 

analysis of laminated composite and sandwich plates. Le-Manh and Lee (Le-Manh and 

Lee, 2014) investigated the post-buckling behaviour of laminated composite plates using 

NURBS-based IGA. Mirzaei and Kiani (Mirzaei and Kiani, 2017) analysed the thermal 

buckling response of composite laminated plates reinforced with graphene sheets through 

IGA. Huang et al. (Huang, Nguyen-Thanh and Zhou, 2017) investigated the buckling 
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analysis for the Mindlin–Reissner cracked plates by applying the extended isogeometric 

analysis (XIGA) coupled with Bézier extraction operator. Li et al. (Li, Wu, et al., 2018) 

investigated the static linear elasticity, natural frequency, and buckling behaviour of 

functionally graded porous plates reinforced by graphene platelets (GPLs). Both first- and 

third-order shear deformation plate theories are incorporated within the IGA. Nguyen et 

al. (Nguyen et al., 2019) presented an isogeometric Bézier finite element formulation for 

bending and transient analysis of functionally graded porous (FGP) plates reinforced by 

graphene platelets (GPLs) embedded in piezoelectric layers. In addition, Dornisch, 

Klinkel and B. Simeon (Dornisch, Klinkel and B. Simeon, 2013) proposed a new 

Reissner–Mindlin plate formulation with exactly calculated director.  

Higher-order shear deformation plate theory (HSDT) is also a well-developed and 

widely applied plate theory. Particularly, third-order shear deformation plate theory 

(TSDT) belongs to HSDT. Nguyen-Xuan et al. (Nguyen-Xuan, Thai and Nguyen-Thoi, 

2013) presented a simple and effective formulation based on a fifth-order shear 

deformation theory (FiSDT) in combination with IGA for composite sandwich plates. 

Tran et al. (Tran, Ferreira and Nguyen-Xuan, 2013) studied the static, dynamic, and 

buckling behaviour of FGM through the IGA based TSDT. Tran et al. (Tran, Thai and 

Nguyen-Xuan, 2013) studied the thermal buckling behaviour of FGM plates through the 

IGA based TSDT. Jari et al. (Jari, Atri and Shojaee, 2015) investigated the static, thermo-

mechanical buckling and free vibration analysis of FGM by the IGA based TSDT. Tran 

et al. (Tran, Ly, et al., 2015) combined extended isogeometric analysis (XIGA) and 

HSDT to study the free vibration of cracked FGM plates. Tran et al. (Tran, Lee, et al., 

2015) implemented geometrically nonlinear analysis of laminated composite plates by 

combining IGA and HSDT. Phung-Van et al. (Phung-Van, Abdel-Wahab, et al., 2015) 

investigated the static and dynamic behaviour of FG carbon nano-reinforced composite 
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plates. Phung-Van et al. (Phung-Van, De Lorenzis, et al., 2015) investigated static, free 

vibration and dynamic control of piezoelectric composite plates integrated with sensors 

and actuators. Thai et al. (Thai et al., 2015) investigated the suitability of NURBS-based 

IGA within a third-order shear deformation theory for the simulation of the static, 

dynamic, and buckling response of laminated composite plates. Tran and Kim (Tran and 

Kim, 2018) studied static and free vibration of multilayered plates based on isogeometric 

analysis (IGA) and higher-order shear and normal deformation theory.  

Except for classical plate theory (CPT), first-order shear deformation theory (FSDT), 

and high-order shear deformation theory (HSDT), other new plate theories are also 

developed under the IGA framework, for example, the inverse trigonometric shear 

deformation theory (V.-H. Nguyen et al., 2014), the inverse tangent shear deformation 

theory (ITSDT) (Thai et al., 2014), the refined plate theory (RPT) (Nguyen-Xuan et al., 

2014; Tran et al., 2014; N.-T. Nguyen et al., 2015; Nguyen et al., 2017; Tan, Nguyen-

Thanh and Zhou, 2017; Tran and Kim, 2018). 

For shell structures, shell theories under different kinematics assumptions are 

developed by taking the advantages of IGA. Kiendl et al. (Kiendl et al., 2009) developed 

one important shell model, the Kirchhoff-Love shell, on the basis of the isogeometric 

approach. Then, they (Kiendl et al., 2010) investigated shell structures comprised of 

multiple patches. Nguyen-Thanh et al. (Nguyen-Thanh et al., 2011) presented a novel 

approach for isogeometric analysis of thin shells using PHT-splines. Sauer et al. (Sauer, 

Duong and Corbett, 2014) proposed a geometrically exact membrane formulation based 

on curvilinear coordinates and IGA, and is suitable for both solid and liquid membranes. 

Chen et al. (Chen et al., 2014)  extended NURBS-based IGA to thin shell/membrane 

structures which allows for finite membrane stretching as well as large deflection and 

bending strain. In their work, the assumed non-linear kinematics employs the Kirchhoff-
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Love shell theory to describe the mechanical behaviour of thin to ultra-thin structures. 

Tepole et al. (Tepole et al., 2015) investigated computational modelling of thin biological 

membranes, for example, skin, alveoli, blood vessels, and heart valves, through 

Kirchhoff-Love shell under IGA. Kiendl et al. (Kiendl et al., 2015) presented 

formulations for compressible and incompressible hyperelastic thin shells which can use 

general 3D constitutive models. Nguyen-Thanh et al. (Nguyen-Thanh et al., 2015) 

developed an extended isogeometric element (XIGA) formulation for analysis of through-

the-thickness cracks in thin shell structures. Riffnaller-Schiefer et al. (Riffnaller-Schiefer, 

Augsdörfer and Fellner, 2016) presented a discretisation of Kirchhoff–Love thin shells 

based on a subdivision algorithm that generalises NURBS to arbitrary topology. Goyal 

and Simeon (Goyal and Simeon, 2017) developed an alternative formulation for multi-

patch isogeometric Kirchhoff-Love shell that improves the condition number of the 

system and removes the penalty parameter dependence. Casquero et al. (Casquero et al., 

2017) employed analysis-suitable T-spline surfaces of arbitrary degree for performing 

structural analysis of fully nonlinear thin shells. Maurin et al. (Maurin et al., 2018) 

proposed an isogeometric collection method for Kirchhoff-Love shell. Zareh and Qian 

(Zareh and Qian, 2019) presented application of rational triangular Bézier splines (rTBS) 

for developing Kirchhoff–Love shell elements in the context of IGA. Balobanov et al. 

(Balobanov et al., 2019) derived a strain gradient elasticity model for Kirchhoff-Love 

shells of arbitrary geometry. Pigazzini et al. (Pigazzini et al., 2019) extended a recently-

developed framework for isogeometric analysis of composite Kirchhoff-Love shells to 

drive material damage evolution with a smoothed strain field. 

Except for the Kirchhoff-Love shell theory for thin shell structures, there is also a 

corresponding Reissner-Mindlin shell theory for thick shell structures. D.J. Benson et al. 

(D.J. Benson et al., 2010) developed Reissner-Mindlin shell formulation based on a 
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degenerated solid and implemented it for NURBS-based IGA. Casanova and Gallego 

(Casanova and Gallego, 2013) introduced a third-order shear deformation theory (TSDT) 

shell theory for a composite shell. Benson et al. (Benson et al., 2013) propose a new 

isogeometric shell formulation that blends Kirchhoff-Love theory with Reissner–Mindlin 

theory. Dornisch, Klinkel and Bernd Simeon (Dornisch, Klinkel and Bernd Simeon, 2013) 

presented an isogeometric Reissner-Mindlin shell derived from the continuum theory. 

Dornisch and Klinkel (Dornisch and Klinkel, 2014) presented a framework for the 

computation of complex geometries containing intersections of multiple patches with 

Reissner-Mindlin shell elements. Kiendl et al. (Kiendl, Marino and De Lorenzis, 2017) 

presented an isogeometric collocation formulation for the Reissner–Mindlin shell 

problem. Zou et al. (Zou et al., 2017) presented a geometrically exact isogeometric 

blended shell formulation.  

2.3 Stochastic finite element method (SFEM) 

2.3.1 Introduction 

The random nature of many features of physical events is widely recognized by 

industry and researchers. More importantly, the effects of intrinsic randomness of system 

parameters acting on the outputs of the system have been extensively acknowledged. 

However, the natural stimuli that activate physical systems may be completely 

unpredictable by deterministic models. As a result, the characterizations provided by 

deterministic models is less satisfactory with respect to their predictive capabilities (Oden 

et al., 2003). 

As for the computational mechanics, numerous methodologies of stochastic analysis 

have been extensively proposed and investigated, also implemented in different 
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engineering applications. Generally, there are three categories of methodologies can be 

classified based on the uncertainty modelling techniques. The first main class is the 

probabilistic approach, also known as stochastic approach, and it has been developed in 

many different engineering disciplines (Papadrakakis, Papadopoulos and Lagaros, 1996; 

Papadopoulos and Papadrakakis, 2005; Sudret, Defaux and Pendola, 2005; Falsone and 

Ferro, 2007; Long et al., 2015). This approach employs well-developed statistical 

techniques to construct the probabilistic profiles of system outputs (Gao and Kessissoglou, 

2007). Then, based on the obtained probabilistic information, subsequent works such as 

safety assessment, reliability analysis, as well as reliability-based engineering designs can 

be performed (Gao, 2007; Hurtado and Alvarez, 2012). 

However, the probabilistic approach is unsuitable and less confident for engineering 

situations where the availabilities of information on the uncertain parameters are 

restricted due to both predictable and unpredictable reasons (Gao et al., 2011; Zhang, 

2012). Therefore, in order to fulfil the uncertainty analysis for situations with 

insufficiency of data, the non-probabilistic uncertainty analysis scheme has been 

developed. It includes fuzzy analysis (Elishakoff, 1997; Wu, Gao, Wang, et al., 2016), 

interval analysis (Wu, Gao, Song, et al., 2016; Wu, Gao, Tin-Loi, et al., 2016; Wu et al., 

2017; Wu, Gao and Tangaramvong, 2017), info-gap model(Ben-Haim, 1996, 2006; Ben-

Haim and Ben-Haim, 2016) and as well as others (Kang and Luo, 2009; Kang, Luo and 

Li, 2011; Jiang, Bi, et al., 2013). 

Nowadays, due to the increasing complexity and disparate availability of information 

observed in modern engineering applications, it gradually becomes inadequate to model 

all the uncertain system inputs by utilizing single uncertainty modelling technique. 

Consequently, the realization of such engineering demand has stimulated the 

development of the third type of uncertainty analysis, known as the hybrid approach. The 
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hybrid method provides a more flexible uncertainty analysis to situations where more 

than one type of uncertainty exists. Some examples of the hybrid approach are including 

the stochastic interval analysis (Gao, Song and Tin-Loi, 2010; Wang et al., 2014; Wu, 

Gao, Song, et al., 2016; Wu, Gao, Tin-Loi, et al., 2016), hybrid reliability analysis (Du, 

Sudjianto and Huang, 2005; Jiang, Long, et al., 2013), interval random analysis (Guo and 

Du, 2009; Xia, Yu and Liu, 2013; Wu, Gao, Song, et al., 2016; Wu, Gao, Tin-Loi, et al., 

2016; Wu and Gao, 2017a, 2017b), as well as random fuzzy analysis (Haldar and Reddy, 

1992; Möller et al., 2009). 

This review will mainly focus on the probabilistic/stochastic approach, more 

specifically, the stochastic finite element method (SFEM). 

2.3.2 Uncertainty modelling 

The stochastic structural analysis must start with the modelling of uncertainties, which 

are the inputs the stochastic system and usually are related with the mechanical, geometric, 

and the external loading conditions (Stefanou, 2009). Usually, uncertainties can be 

divided into two categories, spatially independent and spatially dependent. The first type 

includes random variables or random vectors with specific distribution type. However, 

some characteristic uncertainties, for example, the Young’s modulus, the Poisson’s ratio, 

and the density, are spatially dependent so that they can be physically compatible. A 

single value or several values are incapable of considering this characteristic. Therefore, 

a more realistic way to describe these uncertainties is stochastic/random processes or 

fields. Rationally, the probability distributions and correlation structures of these 

stochastic processes or fields should be defined through experimental measurements. 

Unfortunately, in most cases, due to the lack of relevant experimental data, assumptions 

are made regarding these probabilistic characteristics. Two main categories of stochastic 
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processes and fields can be defined based on their probability distribution: Gaussian and 

non-Gaussian (Stefanou, 2009). 

2.3.2.1 Gaussian distribution 

Gaussian random field is widely applied in engineering disciplines, not only due to its 

simplicity, but also because of the computability with the central limit theorem (Spanos 

and Zeldin, 1998). Numerous methods are developed for the simulation of Gaussian 

random fields. Among these methods, the Karhunen–Loève (K–L) expansion method 

(Ghanem and Spanos, 1991) and the spectral representation method are two most used in 

applications (Shinozuka and Deodatis, 1991, 1996). 

The K-L expansion is used to represent both stationary and non-stationary stochastic 

processes. Ghanem and Spanos (Ghanem and Spanos, 1991) dealt with the K-L expansion 

in the context of spectral stochastic finite elements. Huang et al. (Huang, Quek and Phoon, 

2001a) analysed the K-L expansion as a simulation tool for both stationary and non-

stationary Gaussian processes focusing on convergence and accuracy. Phoon et al. (K. . 

Phoon, Huang and Quek, 2002) presented a simple wavelet-Galerkin approach to solve 

the Fredholm integral equation for K–L simulation. K. K. Phoon et al. (K. K. Phoon, 

Huang and Quek, 2002) developed a unified and practical framework for generating 

second-order stationary and non-stationary, Gaussian and non-Gaussian processes with a 

specified marginal distribution function and covariance function. Later, they improved 

the simulation technique by prescribing a fractile covariance function (Phoon, Quek and 

Huang, 2004). Then, in the work of Grigoriu (Grigoriu, 2006), the Karhunen–Loève, 

spectral, and sampling representations, referred to as the KL, SP, and SA representations, 

are defined and some features/limitations of KL-, SP-, and SA-based approximations 

commonly used in applications are stated. Stefanou and Papadrakakis (Stefanou and 

Papadrakakis, 2007) did an in-depth assessment on the capabilities of the two commonly 
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used method, namely, the spectral representation method and the K-L expansion, in the 

simulation of Gaussian stochastic processes and fields. Liu et al. (Liu, Liu and Peng, 2017) 

proposed a random function embedded K-L expansion method to break through the 

barrier that conventional K-L expansions for simulation of stochastic processes often 

encounter the challenge of dealing with hundreds of random variables. Zheng and Dai 

(Zheng and Dai, 2017) developed a consistent generalization of K–L expansion for multi-

dimensional random field simulation. 

The spectral representation method originates from the simulation of a one-

dimensional stochastic process using harmonic wave superposition method (Rice, 1945). 

Then, the concept of spectral representation method and the corresponding principle for 

applications are defined and proposed in the works of Shinozuka (Shinozuka, 1971; 

Shinozuka and Jan, 1972). After that, Shinozuka and Deodatis (Shinozuka and Deodatis, 

1991) derived the theoretical formulation for the one-dimensional stochastic processes 

with single variables (Shinozuka and Deodatis, 1991). Then, they extended the 

formulations to the multi-dimensional Gaussian random fields (Shinozuka and Deodatis, 

1996). Meanwhile, Deodatis (Deodatis, 1996b) investigated an analogous method for the 

multi-variant stationary process featuring the ergodic behaviours. At the same, he also 

suggested the spectral representation-based simulation algorithm to generate sample 

functions of a non-stationary, multi-variate stochastic process with evolutionary power 

spectral (Deodatis, 1996a). Spanos and Zeldin (Spanos and Zeldin, 1998) investigated the 

characteristics of sample functions of spectral representation scheme, including 

computational efficiency and applicability. Also, Li and Kareem (Li and Kareem, 1991) 

utilized the fast Fourier transform (FFT) technique to simulate a multivariate 

nonstationary Gaussian random process with prescribed evolutionary spectral description. 

Di Paola (Di Paola, 1998) discussed some computational aspects on the generation 
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procedure of n-variate wind velocity vectors in detail. Katafygiotis et al. (Katafygiotis, 

Zerva and Malyarenko, 1999) introduced a rigorous methodology for the simulation of 

homogeneous and partially isotropic multidimensional random fields. Di Paola and Gullo 

(Di Paola and Gullo, 2001) proposed a very efficient procedure for the generation of 

multivariate wind velocity stochastic processes by wave superposition as well as 

autoregressive time series is proposed.  Cacciola and Deodatis  (Cacciola and Deodatis, 

2011) proposed a spectral-representation-based methodology for generating fully non-

stationary and spectrum-compatible ground motion vector processes at a number of 

locations on the ground surface. Liu et al. (Liu, Liu and Peng, 2016) proposed a family 

of renewed spectral representation schemes in conjunction with the formulation of 

random functions, which are served as a random constraint correlating the random 

variables included in the spectral representation schemes. Shields and Kim (Shields and 

Kim, 2017) generalized the Spectral Representation Method for simulation of 

asymmetrically nonlinear (skewed higher-order) stochastic processes. Peng et al. (Peng 

et al., 2017) introduced a stochastic wave-based simulation scheme for the multivariate 

nonstationary random process along a straight line in conjunction with either a direct 

summation of cosine functions or the application of a two-dimensional (2D) FFT. J. Chen 

et al. (Chen, Kong and Peng, 2017) extended the stochastic harmonic function (SHF) 

representation originally to evolutionary non-stationary processes, where the time-

domain representation of non-stationary stochastic processes is expressed as the linear 

combination of a series of stochastic harmonic components. Liu et al. (Liu, Liu and Peng, 

2018) deduced an unified formulation accommodating spectral representation method 

(SRM) and proper orthogonal decomposition (POD). 

Except for the K-L expansion and spectral representation methods, some other 

methods are also available for the simulation of Gaussian random fields. Zhang and 
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Ellingwood (Zhang and Ellingwood, 1994) derived a general continuous orthogonal 

series expansion of the random field, and examined its relationship with the K-L 

expansion used in recent stochastic finite-element studies. Li and Der Kiureghian (Li and 

Der Kiureghian, 1993) proposed a more efficient method called optimal linear estimation 

(OLE) for the approximation of Gaussian random field. It is sometimes referred to as the 

Kriging method. The expansion optimal linear estimation (EOLE) is an expansion method 

of OLE. A comprehensive comparison between the K–L expansion and the EOLE method 

can be found in (Sudret and Kiureghian, 2000). Zhang et al. (Zhang, Liu and Huang, 2019) 

presented a high-order polynomial based Ritz–Galerkin approach. In their work, the 

Legendre, the Chebyshev, and the Gegenbauer orthogonal polynomials are used to realize 

the Ritz–Galerkin approximation. 

2.3.2.2 Non-Gaussian distribution 

The most commonly used probability distribution to model the stochastic processes 

and fields is certainly the Gaussian, however, such choice is made mostly for convenience 

rather than for mathematical or physical reasons. In fact, various material properties and 

external load conditions are intrinsically bounded for physical reasons. That is, they 

usually display strong non-Gaussian characteristics. Therefore, the simulation of non-

Gaussian stochastic/random processes and fields is significant for stochastic structural 

analysis. 

In 1988, based on spectral representation method (SRM),Yamazaki and Shinozuka 

(Yamazaki and Shinozuka, 1988) proposed an iterative methodology to simulate a non-

Gaussian stochastic field according to a target non-Gaussian SDF and a target non-

Gaussian marginal CDF, with zero mean and variance 2  compatible with that of the 

target SDF. This method is based on the work of Grigoriu (Grigoriu, 1984, 1995). Gurley 

et al. (Gurley, Kareem and Tognarelli, 1996) addressed the simulation of a class of non-
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normal processes based on measured samples and sample characteristics of the system 

input and output. Gurley et al. (Gurley, Tognarelli and Kareem, 1997) examined state-of-

the-art analysis and simulation tools for applications to wind engineering, introduced 

improvements recently developed by the authors, and directions for future work at that 

time. Then, Grigoriu (Grigoriu, 1998) addressed the available methods at that time is 

cannot be extended to generate realizations of non-Gaussian processes, and developed a 

simulation algorithm for generating realizations of non-Gaussian stationary translation 

processes with a specified marginal distribution and covariance function, called 

translation process. Also, Deodatis and Micaletti (Deodatis and Micaletti, 2001) have 

identified that Yamazaki and Shinozuka’s algorithm cannot match accurately the 

prescribed non-Gaussian marginal CDF when it deviates significantly from the Gaussian, 

and explained in detail the theoretical reasons for this problem. Shi and Koutsourelakis 

(Shi and Koutsourelakis, 2006) have developed a methodology with similar accuracy to 

the Deodatis and Micaletti algorithm, but without the drawback of generating non-

Gaussian fields that are not translation ones according to Grigoriu’s classic definition 

(Grigoriu, 1984, 1995). Puig et al. (Puig, Poirion and Soize, 2002) gave a mathematical 

justifications for a Monte Carlo simulation technique based on memoryless 

transformations of Gaussian processes. Their method is based Hermite polynomial 

expansion. Sakamoto and Ghanem (Sakamoto and Ghanem, 2002) developed a method 

for representing and synthesizing random processes that have been specified by their two-

point correlation function and their nonstationary marginal probability density functions. 

The target process is represented as a transformation based on polynomial chaos 

expansion of an appropriate Gaussian process. Must of abovementioned methods are 

based on translation process. Since a translation process is characterized by the covariance 

of the underlying Gaussian process, efforts have been devoted to determining the 
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unknown underlying Gaussian covariance function from the known non-Gaussian target. 

Most of the work assumes that correlation in the non-Gaussian process can be specified 

using a suitably correlated Gaussian process. However, this is not always possible. For 

an arbitrarily prescribed marginal distribution function and an arbitrarily prescribed 

covariance function (or equivalently, spectral density function), the underlying Gaussian 

process which would yield the target covariance function after transform may not exist. 

Therefore, Phoon et al. (Phoon, Huang and Quek, 2005) proposed a K-L expansion based 

method for non-stationary and multi-dimensional non-Gaussian stochastic processes. 

Then, Li et al. (Li, Phoon and Quek, 2007) demonstrated that K–L expansion can be used 

to address the situation with incompatible target functions where the commonly used 

translation approach may not be applicable. It is therefore a more robust method for 

simulation of non-Gaussian processes because it can generate different processes 

satisfying the same target spectral density function and the same target marginal 

distribution function regardless of their compatibility. Graham-Brady and Xu (Graham-

Brady and Xu, 2008) introduced a short-range-correlation (SRC) model in the framework 

of Markov/Gibbs random field theory to characterize and simulate random media. 

Zentner et al. (Zentner et al., 2016) proposed a new method for the identification and 

simulation of non-Gaussian and non-stationary stochastic fields given a database. Dai et 

al. (Dai, Zheng and Ma, 2019) developed a new method for explicitly representing and 

synthesizing non-Gaussian and non-stationary stochastic processes that have been 

specified by their covariance function and marginal cumulative distribution function. The 

target process is firstly represented in the Karhunen-Loève (K-L) series form, the random 

coefficients in the K-L series is subsequently decomposed using one-dimensional 

polynomial chaos (PC) expansion. Zhang’s method can also be applied for non-stationary 

non-Gaussian stochastic processes and fields (Zhang, Liu and Huang, 2019). 
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2.3.3 Uncertainty quantification 

After successfully modelled the stochastic/random processes and fields, the 

uncertainty should be propagated through the investigated system, and the stochastic 

responses of the system should be assessed. Thus, uncertainty quantification is another 

significant component should be addressed. The SFEM is an extension of the classical 

deterministic FEM approach for the stochastic engineering problems. From a 

mathematical point of view, SFEM is a powerful tool for the solution of stochastic partial 

differential equations (PDEs). The SFEM has been successfully applied to different 

engineering disciplines with satisfactory results. 

One of the most popular method is the straight Monte Carlo Simulation (MCS) method. 

By adopting MCS method, a deterministic problem is solved numerous times (usually 

large than 1 million), and for each time, the uncertainty is sampled by elaborated designed 

algorithm. After that, the response variability can be easily calculated using simple 

statistical method. Due to its robustness and simplicity. MCS is often used in many 

researches as a reference method in order to check the accuracy of other approaches. 

However, a large number of circles of deterministic analysis usually means a significant 

computational cost especially for large-scale systems with considerable stochastic 

dimension. The basic direct MCS method is inefficient, thus, many other variants haven 

developed to address such issue (Kardara, Bucher and Shinozuka, 1989; Papadopoulos, 

Deodatis and Papadrakakis, 2005; Schuëller, 2006). Nowadays, the development of 

efficient and robust algorithm and the powerful computers made the direct MCS a 

powerful tool for complex SFEM problems. Thus, it is often used as a reference approach 

for validating the results of the other methods now (Papadrakakis and Papadopoulos, 
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1996; Elishakoff and Ren, 1999; Argyris, Papadrakakis and Stefanou, 2002; Bielewicz 

and Górski, 2002; Stefanou and Papadrakakis, 2004; Tartakovsky and Xiu, 2006). 

Perturbation method is also a popular method under SFEM. It is based on a Taylor 

series expansion of the response vector of a physical system. Vanmarcke and Grigoriu 

(Vanmarcke and Grigoriu, 1983) developed a method for solving a variety of engineering 

mechanics problems in which physical properties exhibit one-dimensional spatial random 

variation. Liu et al. (Liu, Belytschko and Mani, 1986) developed a perturbation approach 

for the determination of the probabilistic distribution of the dynamic response of truss 

structures. Kleiber and Hien (Kleiber. and Hien, 1994) provided a comprehensive 

monograph about the perturbation method in SFEM. Matthies et al. (Matthies et al., 1997) 

presented an perturbation approach for uncertainties in probabilistic numerical analysis 

of structures and solids. Cavadar et al. (Cavdar et al., 2008) developed perturbation 

method based SFEM for the structures with composite sections under earthquake forces. 

Under the framework of IGA, perturbation method is also paid attention by some 

researchers. Hien and Noh (Hien and Noh, 2017) developed stochastic isogeometric 

analysis for the free vibration of functionally graded plates with spatially varying random 

material properties in conjugation with perturbation method. Ding et al. (Ding et al., 2018) 

proposed a novel generalized nth order perturbation isogeometric method (GNP-IGA) for 

efficient steady heat transfer stochastic analysis with material uncertainty. Then, Ding et 

al. (Ding et al., 2019) developed this method for exactly modelling/representing 

composite structures comprising of different materials with particular attention to both 

static and dynamic analysis of structures with random material characteristics. 

Stochastic Galerkin (SG) is another important uncertain quantification method under 

SFEM framework. It is introduced in the work of Ghanem and Spanos(Ghanem and 

Spanos, 1990, 1991), spectral stochastic finite element method (SSFEM), which extended 
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deterministic FEM for the solution of boundary value problems with random material 

properties (Sudret and Kiureghian, 2000; Stefanou, 2009). Ghanem and Kruger (Ghanem 

and Kruger, 1996a) addresses the issues involved in solving systems of linear equations 

which arise in the context of the spectral stochastic finite element (SSFEM) formulation. 

Two efficient solution procedures are presented that dramatically reduce the amount of 

computations involved in numerically solving these problems. Anders and Hori (Anders 

and Hori, 2001) applied it for the problem of three-dimensional softening elasto-plastic 

bodies with random material properties. Ngah and Young (Ngah and Young, 2007) 

demonstrated an application of the spectral stochastic finite element method (SSFEM) for 

predicting the performance of a composite structure with variable material constitutive 

properties. Ghosh and Farhat (Ghosh and Farhat, 2008) focused on the computation of 

statistical moments of strains and stresses in a random system model where uncertainty 

is modelled by a stochastic finite element method based on the polynomial chaos 

expansion. Aahikari (Adhikari, 2011) combined the spectral finite element and SSFEM 

for the linear structural dynamics problems. Giovanis et al. (Giovanis, Papadopoulos and 

Stavroulakis, 2015) proposed a methodology to construct an adaptive sparse polynomial 

chaos (PC) expansion of the response of stochastic systems whose input parameters are 

independent random variables modelled as random fields. Do et al. (Do, Gao and Song, 

2016) presented a study on non-deterministic problems in the presence of the multiple 

imprecise-random-field uncertainties by extending the spectral stochastic finite element 

framework. Do et al. (Do et al., 2016) described a method for discretising planar C2-

regular domains immersed in non-conforming triangulations. Do et al. (Do et al., 2017) 

extended the scaled boundary finite element method (SBFEM) to non-deterministic 

framework defined on random domain wherein random behaviour is exhibited in the 

presence of the random-field uncertainties. 
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The computation through the SG method is always involved with a large system of 

equations. When direct solution techniques are used for this purpose, the required 

computing time is prohibitive and impractical. In order to solve this disadvantage, 

Krylov-type iterative techniques like preconditioned conjugate gradient method (PCG) 

are developed. leading to a substantial reduction of the number of iterations irrespectively 

of the coefficient of variation of the input random field and thus the convergence 

behaviour of the iterative algorithms (Ghanem and Kruger, 1996b; Pellissetti and Ghanem, 

2000; Chung et al., 2005; Eiermann, Ernst and Ullmann, 2007; Chen and Guedes Soares, 

2008). Also, in order to solve this problem, a stochastic reduced basis method (SRBM) is 

developed (Nair and Keane, 2002; Sachdeva, Nair and Keane, 2006; Doostan, Ghanem 

and Red-Horse, 2007; Surya Mohan, Nair and Keane, 2008). Recently, Stavroulakis et al. 

(Stavroulakis et al., 2017) explored the applicability of modern GPU for this problem, 

and the benefits achieved with the exploitation of the GPU capabilities are demonstrated.  

Usually, the SG method is used in the conjugation with the K-L expansion of Gaussian 

random fields. For non-Gaussian random fields, PCE can be used to represent the 

stochastic input (Ghanem and Kruger, 1996a; R. Ghanem, 1999a; Roger Ghanem, 1999). 

In particular, the use of PCE for a lognormal random field can lead to a closed-form 

expression since a lognormal random field can be defined by a simple transformation of 

Gaussian field. However, the application of PCE for both input and output can lead to a 

loss of accuracy (Sudret and Kiureghian, 2000; Sudret and Der Kiureghian, 2002). Then, 

the use of generalized polynomial chaos expansion (gPCE) is more suitable for the 

general non-Gaussian random fields. (Xiu and Karniadakis, 2003; Lucor, Su and 

Karniadakis, 2004; Foo, Yosibash and Karniadakis, 2007). 
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Chapter 3  

SPECTRAL STOCHASTIC 

ISOGEOMETRIC ANALYSIS OF 

LINEAR ELASTICITY 

3.1 Summary 

This chapter presents a novel stochastic analysis framework for the linear elasticity 

problem. The spectral stochastic analysis is introduced into isogeometric analysis (IGA), 

and a novel, yet robust, stochastic analysis framework, namely the spectral stochastic 

isogeometric analysis (SSIGA), is freshly proposed. 

Chapter 3 is organized as follows. The concept of IGA is briefly introduced in Section 

3.3. Subsequently, the proposed SSIGA approach is presented in Section 3.4. Particularly, 

the concept of random field, the SSIGA spectral decomposition of the random field, as 

well as the concept of polynomial chaos are presented in subsections 3.4.1, 3.4.2 and 3.4.3, 

respectively. Consequently, the proposed SSIGA approach for linear elasticity problem 

is formulated in Subsection 3.4.4. In order to illustrate the effectiveness and efficiency of 

the proposed method, three distinctive numerical examples are thoroughly explored in 

Section 3.5. Finally, conclusions are drawn in Section 3.6. 

The research work developed in Chapter 3 has produced one journal paper which has 

been published in Computer Methods in Applied Mechanics and Engineering, detailed as: 
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Li, K., Gao, W., Wu, D., Song, C. and Chen, T., 2018. Spectral stochastic isogeometric 

analysis of linear elasticity. Computer Methods in Applied Mechanics and Engineering, 

332, pp.157-190. 

3.2 Introduction 

A new stochastic computational analysis framework, namely the spectral stochastic 

isogeometric analysis (SSIGA), is introduced. According to the authors’ best knowledge, 

the presented work herein is the first reported work to integrate the spectral stochastic 

computational scheme into the isogeometric analysis. Unlike traditional numerical 

solutions of the Karhunen-Loève (K-L) expansion, the non-uniform rational B-spline 

(NURBS) and T-spline basis functions are employed within the proposed framework of 

SSIGA, so the random fields acting on a continuous physical medium with complex 

geometry can be handled in an appropriate, physically feasible and efficient fashion. The 

polynomials chaos expansion (PCE) is implemented to represent the stochastic structural 

response (e.g., displacement, strain and stress), such that all corresponding statistical 

characteristics (e.g., mean and standard deviation) can be robustly acquired. Furthermore, 

by utilizing the nonparametric statistical analysis (Silverman, 2018), both probability 

density functions (PDFs) and cumulative distribution functions (CDFs) of concerned 

structural displacements and stresses can be effectively established. Within the 

framework of IGA, by meticulously implementing the concept of the higher-order k-

refinement, the proposed SSIGA provides a more legitimate and efficient stochastic 

computational approach for modern engineering structures which are complicated by both 

spatially dependent uncertainties and complex geometries. The accuracy, the efficiency, 

and the applicability of SSIGA for linear elasticity are comprehensively investigated and 

demonstrated through three numerical examples. 
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By succeeding the advantage of IGA, the proposed SSIGA provides a novel, yet 

effective, stochastic computational approach with several unique superiorities. First of all, 

the proposed SSIGA approach is applicable to situations where the physical domains of 

the random fields are possessing complex geometries. In particular, the proposed SSIGA 

can exactly represent commonly encountered shapes such as, ellipse, circles, spheres and 

cylinders. That is, exact geometries of the physical domains can be promised even at a 

relatively coarse level of discretization and consequently, the corresponding geometrical 

errors can be significantly diminished. Secondly, by freshly adopting NURBS and T-

spline based isogeometric basis functions within the scheme of the K-L expansion, a more 

appropriate, smoother and effective spectral decomposition of the covariance function of 

the random field can be accomplished. The homogeneous nature of the NURBS and T-

spline based isogeometric basis functions can improve the quality of the approximation 

of the covariance function of the random field, thus the entire stochastic analysis can be 

upgraded into a new level in which a reliable and meaningful results can be anticipated. 

Finally, the proposed SSIGA can also inherit the efficiency of IGA in real-life engineering 

projects by integrating the Computer-Aided Engineering (CAE) into the Computer-Aided 

Design (CAD). 

3.3 Isogeometric analysis (IGA) 

3.3.1 The knot vector and basis function 

The one-dimensional knot vector is a non-decreasing set of coordinates in the 

parameter space, which can be denoted as 1 2 1{ , , , }
cpn p   + + = , where i   is the ith 

knot; i  is the knot index, such that 1 2 1cpi , , , p= + +N ; p  denotes the polynomial 

order; and cpN  denotes the number of the B-spline basis functions. 
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For a given knot vector, the B-spline basis functions are defined recursively by the 

Cox-de Boor recursion formula, starting with piecewise constants ( 0p = ): 

 
1

,0

1 if
( )

0 otherwises

i i

iN
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 (3.1) 

For 1 2 3p , , ,=  the B-spline basis functions are defined as: 
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 (3.2) 

3.3.2 The B-spline curves and surfaces 

The B-spline curve is defined as the sum over the n  basis functions with polynomial 

order p , i.e., 1 2i,pN ,i , , ,n=  and the corresponding control points , 1, 2, ,d

iB i n = , 

where 1, 2,3d =  is the dimensionality of space. 

 
,

1

( ) ( )
n

i p i

i

C N B 
=

=  (3.3) 

Moreover, a B-spline surface is defined as a tensor product of two one-dimensional 

parametric B-spline bases with a generic control net ,{ }, 1, 2, , , 1, 2, ,i jB i n j m= = , 

which can be expressed as follows: 

 , , ,

1 1

( , ) ( ) ( )
n m

i p j q i j

i j

S N M B   
= =

=  (3.4) 

where , ( )i pN   and , ( )j qM   are the B-spline basis functions of order p  and q , which are 

corresponding to the knot vectors 1 2 1{ , , , }n p   + + =  and 1 2 1{ , , , }n p   + + = , 

respectively. 
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3.3.3 The non-uniform rational B-spline (NURBS) curves and surfaces 

The one-dimensional NURBS basis functions can be built from the B-spline basis 

functions as: 

 
, ,

,

1

( ) ( )
( )

( )
( )

i p i i p ip

i n

i p i

i

N w N w
R

W
N w

 





=

= =


 (3.5) 

where p

iR  denotes the ith NURBS basis function with pth order ; ,i pN  denotes the ith B-

spline basis function with pth order; iw  denotes a set of positive weights corresponding 

to each NURBS basis function.  

Therefore, for a given set of control points { }iB  with size n , the NURBS curve can 

be defined as: 

 
1

( ) ( )
n

p

i i

i

C R B 
=

=  (3.6) 

Similarly, the two-dimensional NURBS basis functions can be defined as: 

 
, , , , , ,,

,

, ,

1 1

( ) ( ) ( ) ( )
( , )

( , )
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i p j q i j i p j q i jp q

i j n m
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 

 
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
 (3.7) 

Consequently, for a given control net ,{ }i jB , the NURBS surface can be defined as: 

 
,

, ,

1 1

( , ) ( , )
n m

p q

i j i j

i j

S R B   
= =

=  (3.8) 

Furthermore, a generalization of the NURBS, also known as T-spline, is proposed in 

(Sederberg et al., 2003), and has already been applied to IGA in (Bazilevs, Calo, et al., 
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2010). Some related evaluation techniques can be found in (Borden et al., 2011; Scott et 

al., 2011) 

Without loss of generality, the following alternative notation is adopted in this study 

for both T-spline and the NURBS surface. 

 ( ) ( )
cp

S R B=
N

P

I I

I

ξ ξ  (3.9) 

where ξ  denotes the parameters of each dimension; I  denotes the global basis function 

index; P  denotes the degree of basis function of each dimension; cp m n= N  denotes the 

total number of control points. By representing in such alternative fashion, a generalized 

formulation can be accomplished for one-, two- and three-dimensional T-spline and 

NURBS geometries. 

3.3.4 Isogeometric analysis for linear elasticity problem 

Generally, the strong form of the linear elasticity problem can be illustrated as a 

boundary value problem (Hughes, 2012). That is, 

Given :if D → , Dg :
ii  → , and Nh :

ii  →  such that 

 0 inij, j iσ f  D+ =  (3.10) 

 on
ii i Du g  Γ=  (3.11) 

 on
iij j i Nσ n h  Γ=  (3.12) 

where D  denotes the physical domain; ij  denotes stress tensor; Eq.(3.10) denotes the 

governing partial differential equations; Eqs.(3.11) and (3.12) respectively denote the 

Dirichlet and Neumann boundary conditions, which are applied in each direction 
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independently, namely, 
i iD N  =   and 

i iD N  =  for 1i , ,d= ; ig  denotes the 

prescribed boundary displacements; ih  denotes tractions.  

By combining with the Galerkin’s method, the strong form of the linear elasticity 

problem finally can be expressed in matrix form with size N N , where N  is the 

number of degrees of freedom of the system, as follows, 

 =KU F  (3.13) 

where NU  is the displacement vector; NF  is the force vector; N NK  is the 

global stiffness matrix, which can be obtained from assembling the elemental stiffness 

matrices, e

e

=K K , where 

 d
e

e T

e
D

D= K B DB  (3.14) 

where B  denotes the matrix relates strain vector to the displacement of elemental control 

points; D  denotes the elasticity matrix; eD  denotes the physical domain of the eth 

element. 

3.4 Spectral stochastic isogeometric analysis (SSIGA) 

3.4.1 Preliminary 

Regarding a probability space ( , , )F  ,   denotes the sample space;   denotes the 

 -algebra, and F  denotes the probability measure which is a function on   such that

: [0,  1]F → . 

A random field ( , )H x  is a collection of continuously indexed random variable, and 

the continuous parameter dx . For a given parameter 0x , 0( , )H x  denotes a random 
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variable, such that, 0

d x , 
00 ( , )( , ) ~ ( )HH f r

x
x , where 

0( , ) ( )Hf rx  denotes the 

corresponding probability density function (PDF) of the random variable. On the other 

hand, for a given outcome 0 , 0( , )H x  denotes a realization of the random field. 

Based on the data obtained from engineering projects, various types of random fields 

have been adapted for different engineering applications. Among all available random 

fields, the homogeneous Gaussian random field ( , )GH x  has been prevalently 

implemented in numerous engineering analyses to model the spatially dependent 

uncertain parameters. Therefore, in order to effectively illustrate the proposed SSIGA 

approach, this study selects the homogeneous Gaussian random field as a representative 

to model the spatially dependent uncertainties. 

Regarding the homogeneous Gaussian random field, the random variable at an 

arbitrary point 0x , which is located at any position within the domain of the random field, 

follows a Gaussian distribution. That is, 
0 00 ( , ) ( , )( , ) ~ ( , )H HH N    

x x
x , 0

d x , 

where 
0( , )H 

x , 
0( , )H  

x  denote the corresponding mean and standard deviation of the 

random variable at 0x , respectively; ( )N  denotes the probability density function (PDF) 

of the Gaussian random variable at 0x . 

In addition to the adoption of the underpinned distribution type for the random field, 

the frequently implemented exponential covariance function, which is also motivated 

from realistic engineering applications, is adopted to model the dependency of the 

uncertain parameters in this study. The incorporated exponential covariance functions 

have generalized forms as follows: 
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x x  (3.15) 

where H +  denotes the standard deviation of the random field; , ,x y zl l l + denote 

the correlation lengths in x-axis and y-axis, respectively. 

3.4.2 Generalized isogeometric basis function based Karhunen-Loève 

expansion 

After the successful establishment of the random field, the next step involved is the 

random field discretization. The K-L expansion is one type of series expansion methods 

which has been prevalently implemented for random field discretization. The K-L 

expansion is based on the spectral decomposition of the covariance function ( , )HHC x x , 

which is bounded, symmetric and positive definite. It has the following spectral or eigen-

decomposition: 

 
1

( , ) ( ) ( )HH i i i

i

C  


=

 =x x x x  (3.16) 

and its eigenvalues and eigenfunctions are the solutions of the homogeneous Fredholm 

integral equation of second kind given by: 

 x1 ( , ) ( ) ( )HH i i i
D

i , ,n C dD 
  = = x x x x  (3.17) 
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where i  denotes the ith eigenvalue and ( )i x denotes the corresponding eigenfunction. 

Eq.(3.17) arises from the fact that the eigenfunctions form a complete orthogonal set 

satisfying the equation: 

 ( ) ( )i j ij
D

dD  = x x  (3.18) 

where ij  is the Kronecker symbol.  

Consequently, by implementing the K-L expansion, the random field ( , )H x , can be 

explicitly discretised as: 

 
1

( , ) ( ) ( ) ( )i i i

i

H      


=

= +x x x  (3.19) 

where ( ) x  denotes the mean function of the random field; { ( ), 1, }i i  =  denotes a set 

of random variables; { ( ), 1, }i i =x  denotes the set of eigenfunctions corresponding to

{ ( ), 1, }i i  = ; and i  denotes the corresponding eigenvalue.  

Based on the orthonormality of the eigenfunctions presented in Eq.(3.16), each random 

variable in the K-L expansion can be easily expressed as the following closed form: 

 
1

( ) [ ( , ) ( )] ( )i i
D

i

H dD    


= − x x x  (3.20) 

According to Eq.(3.18), { ( ), 1, }i i  =  is a set of uncorrelated random variables, with 

mean E( ( )) 0i  =  and covariance. E( ( ) ( )) (Kronecker Symbol)i j ij    =  It is 

highlighted that for the case of Gaussian random field, { ( ), 1, }i i  =  becomes a 

collection of mutually independent standard Gaussian random variables. Furthermore, the 
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well-preserved convergence of a Gaussian random field represented by the K-L 

expansion has been theoretically proved (Michel, 1977). 

When it comes to the SSIGA decomposition of the random field, both the geometry 

representation and the K-L expansion should be simultaneously considered. The 

geometry representation of a two-dimensional random field can be formulated generally 

as:  

 ( ) ( )
cp

S R B=
N

P

I I

I

ξ ξ  (3.21) 

where ξ  denotes the parameters of each dimension; I  denotes the global basis function 

index; P  denotes the degree of basis function of each dimension; cpN  denotes the total 

number of control points. BI  denotes the Ith control points coordinate. 

According to the K-L expansion presented in Eq.(3.19) , the random field can be 

divided into two parts as follows: 

 ( , ) ( ) ( , )H H H = +x x x  (3.22) 

where ( )H x  denotes the mean field; ( , )H x  denotes a random field with zero mean 

value and covariance function ( , )HHC x x . 

Without loss of generality, the mean field ( )H x  of a Gaussian random field can be 

represented by the generalized isogeometric basis function as:  

 ( ) ( ) ( )
cp

H R = =
N

P

I I

I

x x ξ  (3.23) 
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where, I  denotes the mean corresponding to the Ith control point; For homogeneous 

Gaussian random field, I  possesses a constant value   for each index I, so  . 

The essence of the K-L expansion of ( , )H x  is mainly hinged on the solving of the 

homogeneous Fredholm integral equation of the second kind as expressed in Eq.(3.17). 

However, the analytical solution of Eq.(3.17) can only be easily accessible to the 

problems with simple geometry and special forms of the covariance function. Therefore, 

in order to extend the applicability of such analytical tool over situations involving 

random fields acting on physical domain with complex geometries, a new numerical 

method, namely the generalized isogeometric basis functions (i.e., NURBS and T-spline 

based isogeometric basis functions) based Galerkin type approach, is proposed for solving 

the Fredholm equation. 

Since the generalized isogeometric basis functions are a complete basis of the Hilbert 

space 2 ( )L  , each eigenfunction of ( , )HHC x x  may be represented by its expansion over 

this basis as follows: 

 ( ) ( )
cp

k

k R =
N

P

I I

I

x ξ  (3.24) 

where ( )k x  denotes the kth eigenfunction; k
I  are the unknown coefficients 

corresponding to the Ith generalized isogeometric basis function ( )RP

I
ξ . Thus, 

( , )HHC x x  can be reformulated as: 

 
1

( , ) ( ) ( )
cp cp

i i
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C R R  
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For practical implementation, the series is approximated by a finite number of terms, 

that is 

 
1

ˆ( , ) ( , ) ( ) ( )
cp cpM

i i

HH HH M i

i

C C R R  
=
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I I

x x x x ξ ξ  (3.26) 

where ˆ ( , )HH MC x x  denotes the spectral approximation of ( , )HHC x x  with M-terms, That 

is, 0, ( )a N a    ˆs.t. if  , | ( , ) ( , ) |HH M HHM N C C a  − x x x x . 

The Galerkin type method aims at obtaining the best approximation of a function when 

truncating the infinite series after specific terms. Generally, this process is accomplished 

by projecting the function onto the space spanned by the adopted basis functions. 

Therefore, the truncating error ( )e x  introduced by the Galerkin procedure formulated in 

Eq.(3.17) can be determined as: 

 ( ) ( , ) ( ) ( )
cp

k

HH k
D

e C R dD R 
 = −
  

N

P P

I I x I

I

x x x ξ ξ  (3.27) 

Requiring the truncated series being the projection of k  onto the space N  spanned 

by { ( )}RP

I
ξ  indicates that the residual should be orthogonal to N  in 2 (D)L , that is 

 
D

, ( ) ( ) 0e R e R dD =
P P

I I
x ξ  (3.28) 

Through mathematical transformation, Eq.(3.28) can be further simplified as follows: 

 = C B  (3.29) 

where C , B  and   are cp cpN N  matrices, which are defined as: 
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( ) ( )

( ) ( )

D

D D

R R dD

R R dD dD



 

=

=

 =

=



 

IJ I J x

IJ I J x x

J

IJ I

IJ IJ J

Β ξ ξ

C ξ ξ

Λ

 (3.30) 

where 1,..., cp=I N , and 1,..., cp=J N . 

By implementing the proposed Galerkin approach, the eigenvectors   and 

eigenvalues i  of the Fredholm integral equation can be robustly determined even the 

physical domain is irregular. Consequently, the generalized isogeometric basis functions 

based K-L expansion of a generic random field ( , )H x  can be formally expressed as: 

 
1

( , ) ( ) ( , ) ( ) ( ) ( )
cp cpM

i

i i

i

H H H R R      
=

 
= +  +   

 
  
N N

P P

I I I I

I I

x x x ξ ξ  (3.31) 

In order to evidently illustrate the applicability and accuracy of such novel 

computational procedure, the first numerical example presented in Section 4 is dedicated 

to such purpose. 

In the proposed K-L expansion, the generalized isogeometric basis functions (NURBS 

and T-spline) are adopted to represent the eigenfunction of Fredholm integral equation. 

The benefits of such adoption can be reflected in the following areas:  

1. The generalized isogeometric basis functions can achieve higher order continuity 

within the entire physical domain, even at the boundary of the element. Generally, the 

random field is defined upon a continuous physical medium, which intrinsically requires 

not only continuity but also smoothness within the physical domain, namely, more than 

0C  continuity in mathematical model. Such intrinsic physical requirement of random 

field can be easily achieved by the generalized isogeometric basis functions;  
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2. With the application of Bézier extraction technique, global basis information can be 

localized to local element. It is possible to improve numerical calculation efficiency for 

subsequent calculation when the order of basis function for each local element is the same. 

What’s more, the localization mechanism can be easily incorporated into the existing 

finite element codes, which means the proposed K-L expansion can be easily integrated 

into the existing application.  

Therefore, the proposed K-L expansion provides an appropriate, physically feasible 

and efficient way to discretise random field. 

3.4.3 The polynomial chaos expansion (PCE) 

Since the information regarding the covariance functions of the structural responses is 

unknown, the polynomial chaos expansion (PCE) is implemented to quantify the 

evolution of the considered uncertainties in the linear elastic analysis through SSIGA. 

The following presents a brief introduction on PCE. Interested readers can refer to 

(Ghanem and Spanos, 1991; Sudret and Kiureghian, 2000) for detailed explanation of the 

theory of PCE. 

In order to achieve a more effective illustration, a random variable, ( ) :X  →  is 

considered. Based on the concept of PCE, the random variable ( )X   can be alternatively 

represented as: 
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 (3.32) 

where 1{ ( )}
ki k  

=  denotes a set of orthogonal Gaussian random variables; ˆ
p  denotes all 

the polynomials in 1{ ( )}
ki k  

=  of degree not exceeding p ; p  denotes the collection of 

all polynomials in ˆ
p  orthogonal to 1

ˆ
p− ; 

1 1 2 1 2 3 1 2 3 4
, , , ,i i i i i i i i i ia a a a denote the corresponding 

coefficient of each polynomial. Detailed evaluation on the coefficient of the polynomials 

can be refereed to (Ghanem and Spanos, 1991; Sudret and Kiureghian, 2000). 

The Gaussian random field is implemented in this study to represent spatially 

dependent uncertainties, and the generalized isogeometric basis functions based K-L 

expansion proposed in Section 3.4.2 is adopted to discretise the input Gaussian random 

field. As mentioned previously, 1{ ( )}
ki k  

=  is a collection of orthogonal Gaussian 

random variables. Consequently, the Hermite polynomials of Gaussian random variable 

set 1{ ( )}
ki k  

=  are selected to construct the PCE, which can be described as: 

 
2 21 1

2 2
1 1

1
1

( ( ), , ( )) ( )
( )

p p

i ik k
k k

k

p

p i i
k

i

e e
 

   
 

= =



 

=


 =  −


 (3.33) 

For the purpose of achieving a more effective notations, Eq.(3.32) can be alternatively 

expressed as follows: 
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0 0 1 1 2 2 3 3

0

( ) ( ) ( ) ( ) ( )

( )j j

j

X X X X X

X

    




=

= + + + +

=

Ψ Ψ Ψ Ψ

Ψ
 (3.34) 

where 1{ ( )}j j 

=Ψ  denotes the series of the Hermite polynomials of a set of random 

variables 1{ ( )}i i  

= . In addition, 1{ ( )}j j 

=Ψ  is a collection of orthogonal polynomials 

which satisfies 

 2( ), ( ) ( )j k j jk   =Ψ Ψ Ψ  (3.35) 

where jk  is the Kronecker delta and •  defines the inner product in the Hilbert space, 

that is: 

 ( ) ( )
S

d• = •
ζ

W ζ ζ  (3.36) 

The weight function ( )W ζ  adopts the product of PDF of each Gaussian random variable 

in the set 1{ ( )}i i  

=  as follows: 

 

1

2 ) )

1

1
( )

(2 )

T

i

(θ (θ

pi

f e  




−

=

= = W ζ  (3.37) 

3.4.4 SSIGA for linear elasticity problems 

With the consideration of the uncertain Young’s modulus, the stochastic linear 

elasticity problem formulated within the analysis framework of SSIGA can be formulated 

as: 

 ( ) ( )  =K U F  (3.38) 
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and the global stochastic stiffness matrix ( )K  is assembled from element stochastic 

stiffness matrices ( )e K , where: 

 ( ) ( , )
e

e T

e
D

dD = K B D x B  (3.39) 

Since the B  matrix of Eq.(3.39) is constant, the only source of uncertainty of the 

stochastic linear elasticity problem is reflected by the stochastic elasticity matrix: 

 0( , ) ( , )GE D x x D  (3.40) 

where 0D  denotes the deterministic elasticity matrix; ( , )GE x  denotes the Young’s 

modulus of the material that is modelled as homogeneous Gaussian random field.  

Subsequently, the random field ( , )GE x  can be discretised by the proposed 

generalized isogeometric basis functions based K-L expansion as:  

 
1

( , ) ( ) ( ) ( )
cp cp

G i

i i

i

E R R     


=

 
= +   

 
  
N N

P P

I I I I

I I

x ξ ξ  (3.41) 

By substituting Eq. (3.41) into Eq.(3.40), the stochastic D matrix can be reformulated 

as: 

 

0

0 0

1

( , ) ( , )

( ) ( ) ( )
cp cp

G

i

i i

i

E

R R

 

    


=

 

 
= +   

 
  
N N

P P

I I I I

I I

D x x D

ξ D ξ D
 (3.42) 

Moreover, by substituting Eq.(3.42) into Eq.(3.39), the elemental stiffness matrix can 

be transformed into: 

 
0

1

( ) ( )e e e

i i

i

  


=

= +K K K  (3.43) 
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where 0

e
K  denotes the mean element stiffness matrix and e

iK  denotes deterministic 

element stiffness matrix corresponding to each Gaussian random variable ( )i  . 

Specifically: 

 0 0( )
cp

e

e T

e
D

R dD= 
N

P

I I

I

K ξ B D B  (3.44) 

 
0( )

cp

e

e i T

i i e
D

R dD 
 

=   
 

N

P

I I

I

K ξ B D B  (3.45) 

Consequently, by assembling across entire structural domain, the governing equation 

of the stochastic linear elasticity problem through the analysis framework of SSIGA can 

be reformulated as: 

 0

1

( ) ( )i i

i

  


=

 
+  = 

 
K K U F  (3.46) 

Without loss of generality, let 0 ( ) 1   , Eq.(3.46) can be simplified as follows 

 
0

( ) ( )i i

i

  


=

 
 = 

 
K U F  (3.47) 

Furthermore, by implementing the PCE, the structural displacement of the stochastic 

linear system can be expanded as: 

 

0 0 1 1 2 2 3 3

0

( ) ( ) ( ) ( ) ( )

( )j j

j

    




=

= + + + +

=

U U Ψ U Ψ U Ψ U Ψ

U Ψ
 (3.48) 

By substituting Eq.(3.48) into Eq.(3.47), the governing equation of the stochastic 

linear system can be further reformulated as: 
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0 0

( ) ( )i i j j

i j

  
 

= =

  
 =  

   
 K U Ψ F  (3.49) 

For practical implementation, the series involved in Eq.(49) should be truncated at 

finite number of terms. In particular, by truncating the generalized isogeometric basis 

functions based K-L expansion at the Mth terms and the PCE at Pth terms, Eq.(3.49) can 

be alternatively expressed as: 

 
1

0 0

( ) ( )
M P

i i j j

i j

  
−

= =

  
 =  

   
 K U Ψ F  (3.50) 

where the number of terms P  of the PCE can be evaluated by the truncation order M  of 

the K-L expansion and the polynomial order p as follows: 

 
M p

P
M

+ 
=  
 

 (3.51) 

As a result, the residual produced by the truncating process can be defined as: 

 
1

, 1

0 0

( ) ( )
M P

M P i i j j

i j

e   
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−
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  
=  −  
   
 K U Ψ F  (3.52) 

Minimizing the residual formulated in Eq.(3.52) in the sense of mean square to obtain 

the optional approximation of the space spanned by 
1

0{ ( )}P

j k −

=Ψ  yields: 

 
1

0 0

( ) ( ), ( ) , ( ) , 0, , 1
M P

i j i j k k

i j

k P    
−

= =

= = −K U Ψ Ψ F Ψ  (3.53) 

By introducing the following notations: 

 ( ) ( ) ( )ijk i j kc    = Ψ Ψ  (3.54) 
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 , ( )k k =F F Ψ  (3.55) 

Eq.(3.53) can be alternatively expressed as: 

 
1

0 0

M P

ijk i j k

i j

c
−

= =

= K U F  (3.56) 

For the purpose of simplicity, introducing 

 
0

M

jk ijk i

i

c
=

=K K  (3.57) 

Then, Eq.(3.56) can be reformulated as: 

 
1

0

, 0, , 1
P

jk j k

j

k P
−

=

 = = −K U F  (3.58) 

After solving the above stochastic system presented in Eq.(3.58), the stochastic 

structural displacement ( )U  can be adequately approximated as: 

 
1

0

( ) ( )
P

j j

j

 
−

=

=U U Ψ  (3.59) 

Consequently, the related statistical characteristics of the stochastic structural response

( )U , namely the mean vector and covariance matrix, can be explicitly determined as: 
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By taking a step further, the stochastic strain, at location x  within a generic structural 

element, can also be formulated through the PCE as: 

 
1

0

( , ) ( ) ( )
P

j j

j

 
−

=

=ε x Ψ ε x  (3.62) 

where ( ) { }T e

j jx =ε B U  denotes the polynomial chaos coefficient of the strain vector 

corresponding to a specific element.  

Thus, the mean vector and covariance matrix of the stochastic strain can be determined 

as: 

 0E[ ( , )] =ε x ε  (3.63) 

 
1

2

0

Cov[ ( , )]
P

T
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i
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=

= ε x Ψ ε ε  (3.64) 

From the Hooke’s law, the stochastic stress, at location x  within a generic structural 

element, can be also formulated through the PCE as: 
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 (3.65) 

Consequently, the mean vector and covariance matrix of the stochastic stress at 

location x  within a generic structural element can be calculated as: 
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 (3.66) 

 

1 1
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where ( ) ( ) ( ) ( )ijkl i l j kc      = Ψ Ψ  can be solved similarly as Eq.(3.54). 

To achieve a more effective communication on the proposed SSIGA, a flowchart on 

the entire process of the proposed spectral stochastic isogeometric analysis is presented. 
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Figure 3.1 Flowchart of the proposed SSIGA analysis framework for linear elasticity 
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3.5 Numerical examples 

In order to demonstrate the applicability, accuracy and effectiveness of the proposed 

SSIGA analysis scheme, three numerical examples are thoroughly explored within this 

section. For the first numerical example, the freshly proposed generalized isogeometric 

basis functions based K-L expansion approach is rigorously verified against the well-

established theoretical results. Subsequently, the proposed SSIGA analysis framework is 

further implemented for the stochastic static analysis of a circular Mindlin plates in the 

second example, and a torpedo-shape Kirchhoff-Love shell in the third example. 

Moreover, for the last two examples where analytical solutions are absent, the accuracy 

of the results obtained by the SSIGA is partially verified by the Monte Carlo simulation 

method with large simulation cycles. The Monte-Carlo Simulation adopted herein is 

achieved by repeatedly executing the deterministic IGA with one possible realization of 

the random field at each cycle until the predefined total number of simulations is reached. 

Within the context of the presented numerical examples, all random numbers are 

generated by employing the Statistics toolbox of MATLAB R2016b, also the evaluation 

of IGA basis functions is based on the technique presented in (V. P. Nguyen et al., 2015). 

3.5.1 Numerical example: generalized isogeometric basis functions 

based Karhunen-Loève expansion 

In order to rigorously verify the accuracy and the applicability of the freshly proposed 

generalized isogeometric basis functions based K-L expansion approach, a two-

dimensional square Gaussian random field, with mean 1 = , standard deviation 0.2 = , 

and side length 2l =  is considered. Since T-spline are defined locally, whereas NURBS 

are defined globally, the proposed K-L expansion is implemented by NURBS to achieve 

a globally conclusion. The considered covariance function of the Gaussian random field 
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is the typical two-dimensional exponential function, that is, 

1 2 1 22( , ) exp( )HH

x y

x x y y
C

l l


− −
 = − −x x , where the correlation lengths are 2x yl l= = . 

The general layout and three possible normalized realizations of the two-dimensional 

Gaussian random field are showed in Figure 3.2. For this particular example, exact 

solutions of the eigenvalues and eigenfunctions of the spectrum decomposition are 

achievable by taking the tensor product of two one-dimensional Gaussian random fields 

(Ghanem and Spanos, 1991; Sudret and Kiureghian, 2000).  

For the two parametric directions,  and  , a second order basis functions in each 

direction is adopted. The corresponding polynomial orders and knot vector of the coarse 

mesh of the geometry are given in Table 3.1, and the control points are also presented in 

Table 3.2. The h- and k-refinements are employed to further refine the mesh of the 

geometry of the random field. 

    

 (a) (b) 

x 

y 
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 (c) (d) 

Figure 3.2 (a) Physical domain and (b)-(d) possible normalized realizations of 

random field with square geometry 

Table 3.1 Polynomial orders and knot vectors for square random field 

Direction Order Knot Vector 

  2p =  {0,0,0,1,1,1} =  

  2q =  {0,0,0,1,1,1} =  

 

Table 3.2 Control points for square random field 

i  j  ,i jB  ,i jw  

1 1 (0, 0)  1 

1 2  (0,1)  1 

1 3  (0, 2)  1 

2  1 (1, 0)  1 

2  2  (1, 1)  1 
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2  3  (1, 2)  1 

3  1 (2, 0)  1 

3  2  (2,1)  1 

3  3  (2, 2)  1 

 

Firstly, the influence of the h-refinement is investigated. Given the coarsest mesh 

information presented in Tables 1 and 2 with basis order 2p q= = , the h-refinement with 

order 2, 3, 4 and 5 are applied respectively to both directions as illustrated in Figure 3.3. 

By implementing the proposed K-L expansion, the first six eigenvalues in Eq.(3.31) of 

the different h-refinement meshes are calculated based on Eq.(3.30) and then reported in 

Table 3.3 and Figure 3.4. In addition, the analytical solutions of the eigenvalues are also 

presented in Table 3.3 and Figure 3.4 for the purpose of result verification. Moreover, the 

covariance function obtained from the proposed K-L expansion with 6 terms for each 

considered mesh is constructed in Figure 3.5. To illustrate the applicability and accuracy 

of the proposed K-L expansion, the target covariance function is also presented in Figure 

3.5. 
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 (a) (b) 

    

 (c) (d) 

Figure 3.3 The (a) 2-, (b) 3-, (c) 4-, and (d) 5-order of the h-refinement 

Table 3.3 Eigenvalues of the different order of the h-refinement 

 

Generalized isogeometric basis functions 

based K-L expansion 

Analytical 

(Ana) 

The order of the 

h-refinement 

2 3 4 5 - 

1  2.19173 2.18545 2.18389 2.18350 2.18337 

2  0.41285 0.40907 0.40814 0.40791 0.40783 

3  0.41285 0.40907 0.40814 0.40791 0.40783 

4  0.13775 0.13436 0.13352 0.13332 0.13325 

5  0.13775 0.13436 0.13352 0.13332 0.13325 

6  0.07777 0.07657 0.07628 0.07620 0.07618 
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Figure 3.4 Eigenvalues of the different order of the h-refinement 

As illustrated in both Table 3.3 and Figure 3.4, by increasing the order of the h-

refinement, the considered eigenvalues converge to the analytical solutions. In particular, 

a relative error of 0.01% can be achieved when the 4-order h-refinement is implemented. 

Also, the convergent trend of using different order of the h-refinement is illustrated in 

Figure 3.5. Therefore, the convergence of the covariance function of the random field 

estimated by the proposed K-L expansion using the h-refinement can be confirmed when 

higher orders are implemented. 

Subsequently, the influence of the k-refinement on the proposed K-L expansion is 

investigated. Similarly, given the coarsest mesh information as Table 3.1 and Table 3.2 

with basis order 2p q= = , the “pure” k-refinement (Cottrell, Hughes and Reali, 2007) 

with an increasing order of the basis function from 2 to 5 are applied as shown in Figure 

3.6. In order to minimize the influence of the h-refinement, each “pure” k-refined mesh 

in Figure 3.6 with different order of basis functions is the 4-order h-refined as shown in 

Figure 3.7. In this way, although different meshes have different number of control points, 

the same number of elements can be anticipated. The eigenvalues corresponding to 

different meshes with different basis orders are listed in Table 3.4 and plotted in Figure 
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3.8. Moreover, the corresponding covariance functions are also plotted in Figure 3.9. It is 

noticed that the exponential covariance function of Gaussian random field under 

consideration is non-differentiable at the four edges of the physical domain, so the relative 

errors at origin and points along the edges are larger than other parts (Huang, Quek and 

Phoon, 2001b). To further elaborate this point, considering a one-dimensional Gaussian 

random field with exponential covariance function with a unit correlation length, that is, 

( , ')HHC x x = 2 2x x lagx

H He e 
− − −

 =  . The function 
lagx

e
−

 is 0C  continuous at 0lagx = , 

namely, its derivative is discontinuous at 0lagx = . However, the spectral expansion 

process is based on continuous functions, which can’t represent the discontinuity properly 

even no derivative terms exist in the spectral expansion process. Therefore, the 0C  

continuity results the inaccurate approximation at 0lagx =  within in the K-L expansion. 

    

 (a) (b) 

    

 (c) (d) 
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Figure 3.5 Covariance function estimated by the proposed K-L expansion of (a) 2-, 

(b) 3-, (c) 4-, and (d) 5-order h-refinement.   

    

 (a) (b) 

    

 (c) (d) 

Figure 3.6 Mesh of the “pure” k-refinement for different orders of the basis function 

(a) 2p q= = ; (b) 3p q= = ; (c) 4p q= = ; (d) 5p q= = . 
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 (a) (b) 

    

 (c) (d) 

Figure 3.7 Mesh of different basis order of the k-refinement (a) 2p q= = ; (b) 

3p q= = ; (c) 4p q= = ; (d) 5p q= =  

Table 3.4 Eigenvalues of different basis order with order 4 h-refinement 

 

Generalized isogeometric basis functions 

based K-L expansion 

Analytical 

(Ana) 
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The basis order of 

the k-refinement 

2 3 4 5 - 

1  2.18389 2.18368 2.18358 2.18352 2.18337 

2  0.40814 0.40802 0.40796 0.40792 0.40783 

3  0.40814 0.40802 0.40796 0.40792 0.40783 

4  0.13352 0.13341 0.13336 0.13333 0.13325 

5  0.13352 0.13341 0.13336 0.13333 0.13325 

6  0.07628 0.07623 0.07622 0.07621 0.07618 

 

 

Figure 3.8 Eigenvalues of different basis order with order of the k-refinement 

    

 (a) (b) 
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 (c) (d) 

Figure 3.9 Covariance function estimated by the proposed K-L expansion with 6 

terms based on (a) 2p q= = ; (b) 3p q= = ; (c) 4p q= = ; (d) 5p q= =  order of the k-

refinement 1 2 1 2( ) | |, ( ) | |lag x x x lag y y y= − = −  

From Table 3.4, Figures 3.8 and Figure 3.9, it is evidently demonstrated that the 

convergence of the freshly proposed K-L expansion with 6 terms by using the k-

refinement can be anticipated when the higher order basis functions are implemented.  

Finally, the accuracy of the proposed K-L expansion is investigated. The analysis is 

based on the NURBS basis functions with order 2p q= =  and 5-order h-refinement. 

Different numbers of the proposed K-L expansion term are adopted to represent the 

random field. Also, the corresponding point-wise error estimator and mean variances are 

employed to epitomize the accuracy as shown in Figure 3.10. The point-wise estimator 

of the error variance is: 

 
Var[ ( , ) ( , )]

( )
Var[ ( )]

H H
err

H

 −
=

x x
x

x
 (3.68) 

and the mean variance (MV) can be formulated as: 

 
( )

Mean variance = 
1

D

D

err dD

dD





x
 (3.69) 
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From Figure 3.10, it can be observed that by increasing the number of terms used in 

the proposed K-L expansion, the point-wise error is also decreasing. 

    

 (a) (b) 

    

 (c) (d) 

    

 (e) (f) 

Figure 3.10 (a)-(e) Point-wise estimator for variance error, represented for different 

number of SSIGA-K-L expansion terms; (f) Mean variance corresponding to different 

proposed K-L expansion terms. 
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The proposed generalized isogeometric basis functions based K-L expansion can 

represent random field geometry in a more proper way, and for some conic geometry (e.g., 

a random field with the geometry as shown in Figure 3.11), exact representations are 

accessible. Therefore, insufficient consideration of the stochastic parameter caused by the 

approximation of geometry can be eliminated at the coarsest level of geometry 

representation, and further the h- or k- refinement will not change the geometry anymore. 

Moreover, by increasing the order of the h- and k- refinement, all considered eigenvalues 

are converging to analytical solutions. In particular, the k-refinement can improve the 

accuracy of the eigenvalues when higher order basis function is adopted. The 

decomposition of the random field is hinged on the choice of the basis functions. The 

proposed K-L expansion can provide a higher continuity of the covariance function, so a 

smoother, yet adequate, representation of the random field can be accomplished. 

    

 (a) (b) 

x 
y 
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 (c) (d) 

Figure 3.11 (a) Physical domain and (b)-(d) possible normalized realizations of the 

random field of a square domain with a curved corner 

3.5.2 Numerical example: circular ring Mindlin–Reissner plate 

In the second numerical example, a circular ring-shape Mindlin-Reissner plate 

involving spatially dependent uncertain Young’s modulus is investigated. As 

aforementioned, the Young’s modulus is modelled as a Gaussian random field, with mean 

73 10 =  , standard deviation 63 10 =  . An exponential function is employed to 

describe the covariance of the Young’s modulus, 

 1 2 1 22( , ) expHH

x y

x x y y
C

l l


 − −
 = − −  

 

x x  (3.70) 

where 2x yl l= =  denote the correlation lengths in the x- and y-direction respectively. The 

general structural layout of the investigated circular ring plate is presented in Figure 3.12 

and a normalized possible realization of the random field is presented in Figure 3.13. 

For the structure member shown in Figure 3.12, the thickness of the plate is 1.2, the 

inner radius is 2 and the outer radius is 4. The plate is subjected to a uniformly distributed 
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load with magnitude of 31 10q =   and both left and right edges of the plate, as indicated 

in Figure 3.12(a), are clamped. In this example, a two-dimensional NURBS basis 

functions is implemented. The two parametric directions,   and  , are selected which 

are corresponding to the radial and circumferential directions, respectively. The 

corresponding polynomial orders and knot vector of the initial geometry are given in 

Table 5, and the control points are presented in Table 3.6 

The coarsest mesh is plotted as Figure 3.14(a). In this case, in order to obtain a mesh 

with sufficient convergence for further analysis, the coarsest mesh is h-refined with order 

3, 4, 5 for both directions as shown in Figure 3.14 (b)-(d). Meanwhile, ABAQUS based 

finite element analysis with different structural meshes are also implemented as 

comparisons, whose meshes are plotted in Figure 3.15. 

    

 (a) (b) 

Figure 3.12 Circular ring plate structural layout (a) three-dimensional view; (b) top 

View; 

y 

z 

x 

x 

y 
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 (a) (b) 

Figure 3.13 (a) Physical domain and (b) a possible normalized realization of random 

field with circular ring geometry 

Table 3.5 The polynomial orders and knot vectors of the circular ring plate 

Direction Order Knot Vector 

  2p =  {0,0,0,1,1,1} =  

  2q =  {0,0,0,1,1,1} =  

 

Table 3.6 The control points of the circular ring plate 

i  j  ,i jB  ,i jw  

1 1 (2, 0)  1 

1 2  (2, 2)  1/ 2  

1 3  (0, 2)  1 

2  1 (3, 0)  1 

2  2  (3, 3)  1/ 2  

x 

y 
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2  3  (0, 3)  1 

3  1 (4, 0)  1 

3  2  (4, 4)  1/ 2  

3  3  (0, 4)  1 

 

    

 (a) (b) 

    

 (c) (d) 

Figure 3.14 Circular ring plate meshes. (a) Coarsest mesh; (b) 3-order h-refinement 

mesh; (c) 4-order h-refinement mesh; (d) 5-order h-refinement mesh. 
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 (a) (b) (c) 

Figure 3.15 ABAQUS based FEM meshes with (a) 10 10 ; (b) 18 18 ; (c) 34 34

control number 

Table 3.7 compares the displacement of the point 3x (4 / 2,4 / 2) , which is the 

midpoint at outer edge, obtained from different meshes of IGA and FEM with 

corresponding control points (nodes) and knot spans (elements) information being 

outlined in Table 3.7. 

Table 3.7 Comparisons of deflection   at point 3x between IGA and FEM 

 

 

Method 

Number of Control 

Points/Nodes 

Number of Knot 

Spans/Elements 

Deflection  at 

point 3x  

IGA 

100 64 9.19267e-04 

324 256 9.20752e-04 

1156 1024 9.20939e-04 

FEM 

100 81 8.90099e-04 

324 289 9.12210e-04 

1156 1089 9.18648e-04 

1002001 1000000 9.21002e-04 
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According to Table 3.7, IGA based Mindlin plate analysis is applicable and shows 

good convergence rate when comparing with the FEM. Within the analysis framework of 

IGA, relatively fewer amounts of control points are possible to adequately solve a linear 

system to satisfy specific precision requirement so the size of the stiffness matrix of IGA 

will also be relatively smaller. Generally, the polynomial chaos expansion based 

stochastic analysis framework enlarges the deterministic stiffness matrix significantly. 

For example, when adopting four terms in the traditional K-L expansion and 4-order PCE, 

the stiffness matrix will be enlarged by 70 times along each dimension. Since IGA is 

possible to result a deterministic stiffness matrix with relatively smaller size in this 

particular example, the computational tractability of SSIGA can be further maintained 

after the Galerkin process. In this example, a 5-order h-refinement is adopted for the 

generalized isogeometric basis functions based K-L expansion in both directions.  

Within the proposed SSIGA analysis framework, the Gaussian random field is 

decomposed by the proposed K-L expansion with four terms and all concerned structural 

responses are estimated by three types of PCE, namely 2-order PCE, 3-order PCE, and 4-

order PCE. Moreover, due to the unavailability of analytical solutions of the statistical 

characteristics of the concerned structural responses, the Monte-Carlo Simulation (MCS) 

with 100,000 simulation cycles were adopted for partially verifying the results of SSIGA. 

Figure 3.16-3.18 show the means and standard deviations of iU , xi , yi  of all 

presented control points determined by both the SSIGA with different PCE orders and 

MCS approaches. By closely examining Figures 3.16-3.18, a fairly well agreement 

between the proposed SSIGA and MCS approaches can be observed for both the means 

and standard deviations of the structural deformations of all control points.  
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 (a) (b) 

Figure 3.16 Comparison of (a) means and (b) standard deviations of iU  of control 

points between SSIGA and MCS approaches 

    

 (a) (b) 

Figure 3.17 Comparison of (a) means and (b) standard deviations of xi  of control 

points between SSIGA and MCS approaches 

    

 (a) (b) 
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Figure 3.18 Comparison of (a) means and (b) standard deviations of yi  of control 

points between SSIGA and MCS approaches 

Moreover, since the control points are not interpolated on the plate, three physical 

points on the plate with coordinates, 
1(2 / 2,2 / 2)x , 

2(3 / 2,3 / 2)x and 

3(4 / 2,4 / 2)x , are selected for further investigation. 

Once again, by implementing the SSIGA and MCS with 100,000 simulations, the 

means and standard deviations of the concerned structural responses (i.e., deflection i , 

rotation xi , strain xi , stress xi , i = 1, 2, 3) of the three selected physical points are 

calculated and the corresponding results are shown in Figures 3.19-3.22. Furthermore, 

Table 3.8-3.11 report the maximum and minimum relative errors of the means and 

standard deviations of the considered structural responses of the three selected physical 

points between the SSIGA and MCS approaches. From both illustrative figures and 

numeric tables, excellent agreements of the means and standard deviations of the three 

selected points between SSIGA and MCS approaches can be clearly observed. Therefore, 

the accuracy of the proposed SSIGA on the determination of the first two moments of 

statistics of the structural responses is evidently demonstrated. 

    

 (a) (b) 
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Figure 3.19 Comparison of (a) means and (b) standard deviations of the deflection i  

between SSIGA and MCS approaches 

Table 3.8 Relative difference of the means and standard deviations of the deflection 

i  between SSIGA and MCS approaches 

Relative 

Difference 

of i  

Mean Standard deviation 

Max (%) Min (%) Max (%) Min (%) 

SSIGA(2-order 

PCE) 

2.9309604e-

02 

2.4825263e-

02 

3.3606602e-

01 

3.1238819e-

01 

SSIGA(3-order 

PCE) 

2.9309604e-

02 

2.4825263e-

02 

2.9947100e-

01 

2.8464993e-

01 

SSIGA(4-order 

PCE) 

2.9309604e-

02 

2.4825263e-

02 

2.9947100e-

01 

2.8464993e-

01 

 

    

 (a) (b) 

Figure 3.20 Comparison of (a) means and (b) standard deviations of rotation xi  

between SSIGA and MCS approaches 
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Table 3.9 Relative difference of the means and standard deviations of the rotation xi  

between SSIGA and MCS approaches 

Relative 

Difference  

of xi  

Mean Standard deviation 

Max (%) Min (%) Max (%) Min (%) 

SSIGA(2-order 

PCE) 

2.3829029e-

02 

2.1380565e-

02 

3.2917076e-

01 

3.2475204e-

01 

SSIGA(3-order 

PCE) 

2.3829029e-

02 

2.1380565e-

02 

2.9818244e-

01 

2.9575506e-

01 

SSIGA(4-order 

PCE) 

2.3829029e-

02 

2.1380565e-

02 

2.9818244e-

01 

2.9575506e-

01 

 

    

 (a) (b) 

Figure 3.21 Comparison of (a) means and (b) standard deviations of the strain xi  

between SSIGA and MCS approaches 
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Table 3.10 Relative difference of the means and standard deviations of the strain xi  

between SSIGA and MCS approaches 

Relative 

Difference  

of xi  

Mean Standard deviation 

Max (%) Min (%) Max (%) Min (%) 

SSIGA(2-order 

PCE) 

3.0644336e-

02 

2.5289660e-

02 

2.9219806e-

01 

1.9574417e-

01 

SSIGA(3-order 

PCE) 

3.0644336e-

02 

2.5289660e-

02 

2.5788016e-

01 

1.4832411e-

01 

SSIGA(4-order 

PCE) 

3.0644336e-

02 

2.5289660e-

02 

2.5788016e-

01 

1.4832411e-

01 

 

    

 (a) (b) 

Figure 3.22 Comparison of (a) means and (b) standard deviations of the stress xi  

between SSIGA and MCS approaches 
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Table 3.11 Relative difference of the means and standard deviations of the stress xi  

between SSIGA and MCS approaches 

Relative 

Difference  

of xi  

Mean Standard deviation 

Max (%) Min (%) Max (%) Min (%) 

SSIGA(2-order 

PCE) 

6.3440741e-

03 

2.2965962e-

04 

4.9125830e-

01 

3.6745915e-

02 

SSIGA(3-order 

PCE) 

6.3440741e-

03 

2.2965962e-

04 

5.0268595e-

01 

6.2972845e-

02 

SSIGA(4-order 

PCE) 

6.3440741e-

03 

2.2965962e-

04 

5.0268595e-

01 

6.2972845e-

02 

 

In addition to the validation of the proposed SSIGA approach on the determination of 

the first two statistical moments of some selected structural responses, the SSIGA 

approach is further implemented for estimating the PDFs and CDFs of the structural 

responses. Within the scheme of the proposed SSIGA, 100,000 samples were generated 

after applying the proposed K-L expansion on the inputs and the PCE on the outputs to 

effectively establish the PDFs and CDFs. Once again, the MCS approach is employed for 

verification purposes. With this part of investigation, all PDFs and CDFs of the concerned 

structural responses were established by implementing a non-parametric statistical 

inference technique known as the kernel density estimation approach. For this particular 

part of investigation, the physical point 2x (3 / 2,3 / 2)  is selected again, and the PDFs 

and CDFs of the deflection  , rotation x , strain x , and stress x  at point 2x  are 

established and reported in Figures 3.23, 3.25, 3.27, and 3.29, respectively. Moreover, in 
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order to quantitatively measure the differences of CDFs between the SSIGA approach 

and MCS with 100,000 calculations, the relative errors between the two computational 

methods of each considered structural responses are also presented in Figures 3.24, 3.26, 

3.28, and 3.30. From the information presented in Figures 3.23-3.30, it is evidently 

illustrated that the proposed SSIGA approach is adequate for establishing the PDF and 

CDF of any concerned structural response. Also, another important point can be realized 

from this exercise is that when the order of the PCE is increased, the relative errors are 

also reduced. 

    

 (a) (b) 

Figure 3.23 Estimated (a) PDF and (b) CDF of the deflection   at point 2x  

     

 (a) (b) (c) 

Figure 3.24 Relative error of the estimated CDF of   between SSIGA and MCS (a) 

2-order PCE (b) 3-order PCE and (c) 4-order PCE 



 

89 

    

 (a) (b) 

Figure 3.25 Estimated (a) PDF and (b) CDF of the rotation x  at point 2x  

     

 (a) (b) (c) 

Figure 3.26 Relative error of the estimated CDF of x  between SSIGA and MCS (a) 

2-order PCE (b) 3-order PCE and (c) 4-order PCE 

    

 (a) (b) 

Figure 3.27 Estimated (a) PDF and (b) CDF of the strain x s at point 2x  
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 (a) (b) (c) 

Figure 3.28 Relative error of the estimated CDF of x  between SSIGA and MCS (a) 

2-order PCE (b) 3-order PCE and (c) 4-order PCE 

    

 (a) (b) 

Figure 3.29 Estimated (a) PDF and (b) CDF of the stress x  at point 2x  

     

 (a) (b) (c) 

Figure 3.30 Relative error of the estimated CDF of x  between SSIGA and MCS (a) 

2-order PCE (b) 3-order PCE and (c) 4-order PCE 
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3.5.3 Numerical example: torpedo-shape Kirchhoff-Love shell 

In order to further explore the applicability of the proposed SSIGA approach for 

stochastic system with complex geometry, a torpedo-shape shell is investigated. The 

general structural layout is depicted in Figure 3.31. The spatially dependent uncertain 

Young’s modulus of the shell is modelled as a Gaussian random field, which has mean 

73 10 =  , standard deviation 63 10 =   and the covariance function as: 

 

'

2( , ) yx z

y yx x z z

ll l

HHC e e e

−− −
−− −

 =   x x  (3.71) 

where 50x y zl l l= = =  denote the correlation lengths in x-, y-, and z-direction respectively. 

The structure showed in Figure 3.31 is modelled by T-spline, and it is investigated 

underneath the Kirchhoff-Love shell theory (Kiendl et al., 2009). Without loss of 

generality, a unit thickness is assumed in this particular example. A uniformly distributed 

load with magnitude of 31 10q =   is applied on the structure surface along the positive 

direction of z-axis. 

           

 (a) (b) 

y 
x 

z 

y 

z 



 

92 

                      

 (c) (d) 

Figure 3.31 Structural layout of torpedo-shape shell (a) 3D view, (b) front view, (c) 

top view, (d) T-Splines Mesh 

Within the analysis framework offered by the SSIGA, the Gaussian random field of 

the Young’s modulus is decomposed by the 4-term generalized isogeometric basis 

functions based K-L expansion, and a 5-order PCE is implemented for estimating all 

concerned stochastic structural responses in this case. Once again, the MCS with 100,000 

simulations is employed for the purpose of partial result verification. 

In this example, a physical point 1(10,0,40)x  on the shell is analysed directly. By 

utilizing the SSIGA and MCS with 100,000 simulations, the first two statistical moments 

of zu , b

z  and zm  of the considered physical point is determined and the results are 

reported in Table 3.12-3.14, respectively. In order to quantitatively assess the 

performance of the SSIGA approach, absolute relative errors, which are compared with 

the results of the MCS with 100,000 simulations, are also calculated and reported in each 

table for zu , b

z , and zm . As evidently illustrated in Tables 3.12-3.14, the means and 

y 

x 
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standard deviations of the considered physical point obtained by the SSIGA are having 

excellent agreement with the MCS approach. 

Table 3.12 Means, standard deviations and absolute relative error of zu  between 

MCS and SSIGA 

zu  Mean Standard deviation 

SSIGA (5-order PCE) 7.6150000e-02 6.3825000e-03 

MCS 7.6143375e-02 6.3533808e-03 

Absolute Relative Error (%) 8.6997718e-03 4.5832494e-01 

 

Table 3.13 Relative difference of the means and standard deviations of b

z  between 

MCS and SSIGA 

b

z  Mean Standard deviation 

SSIGA (5-order PCE) -3.4540000e-05 6.4657000e-06 

MCS -3.4534706e-05 6.4712063e-06 

Absolute Relative Error (%) 1.5327267e-02 8.5090745e-02 

   

Table 3.14 Relative difference of the means and standard deviations of zm  between 

MCS and SSIGA 

zm  Mean Standard deviation 

SSIGA (5-order PCE) -45.3080000 6.9262000 

MCS -45.3025557 6.9278478 

Absolute Relative Error (%) 1.2017569e-02 2.3786305e-02 
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In addition to the determinations of the means and standard deviations of the concerned 

structural responses, the PDFs and CDFs of the structural responses at point 1(10,0,40)x  

is established by utilizing the SSIGA and the results are also verified by comparing with 

the MCS with 100,000 simulations. The PDFs and CDFs of the concerned structural 

responses at point 1(10,0,40)x  are systematically established as shown in Figures 31-33. 

Particularly, the relative errors of the CDFs of the concerned structural responses are also 

reported in Figures 3.32-3.34. 

     

 (a) (b) (c) 

Figure 3.32 Estimated (a) PDF, (b) CDF and (c) relative errors of CDF of zu  at point 

1x  

     

 (a) (b) (c) 

Figure 3.33 Estimated (a) PDF, (b) CDF and (c) relative errors of CDF of b

z  at point 

1x  
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 (a) (b) (c) 

Figure 3.34 Estimated (a) PDF, (b) CDF and (c) relative errors of CDF of zm  at point 

1x  

From the quantitative assessment on the relative errors between the SSIGA and MCS 

approaches, the maximum relative errors between SSIGA results and MCS results are 

less than 0.05% , which is small enough to prove the accuracy and applicability of the 

proposed SSIGA scheme for stochastic analysis of engineering structures with irregular 

geometries. 

Furthermore, the results of the MCS approach was obtained by running at ten nodes 

on a cluster, with each nodes has 2 8  cores (Intel Xeon E5-2670 (Sandy Bridge) 

2.6GHz), namely 160 cores in total. The MCS with 100,000 simulations were executed 

by parallel computing with 160 workers on MATLAB 2016b at the cluster and costed 7 

hours 7 mins 50 seconds. On the other hand, all results of the SSIGA approach was 

obtained by running at a node on a cluster with 2 14  cores (Intel Xeon Broadwell 

technology, 2.6 GHz). However, parallel computing was not implemented in the 

calculation of the SSIGA approach. The total computational time of SSIGA approach, 

which includes both the determinations of the means and standard deviations of the 

structural responses of the selected point and the establishments of the PDFs and CDFs 

presented in Figures 3.32-3.34, was 5 hours 43 mins 0 seconds. Therefore, based on the 

reported technical information, the proposed SSIGA approach certainly shows superior 
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computational efficiency over the exhaustively simulative MCS approach for a torpedo-

shape shell structure which suffers from both spatially dependent uncertainties and 

irregular geometry. 

3.6 Conclusion 

Spectral Stochastic Isogeometric Analysis (SSIGA), as a significant extension of the 

Spectral Stochastic Analysis, is thoroughly investigated in this paper for the first time. 

Within the proposed SSIGA analysis framework, a generalized isogeometric basis 

functions based Karhunen-Loève expansion approach is firstly proposed to spectrally 

decompose the input random fields. Subsequently, by employing the polynomial chaos 

expansion, the statistical characteristics of any concerned structural responses can be 

adequately estimated. In addition, by combining with the non-parametric statistical 

inference techniques (e.g., the kernel density estimation approach), the PDFs and CDFs 

of any concerned structural responses can be robustly established. Consequently, the 

proposed SSIGA approach provides an integrated, yet physically valid, stochastic 

analysis framework for engineering structures that are suffering from both inevitable 

spatially dependent uncertainties and complex geometries. By comprehensively 

investigating three distinctive numerical examples, the applicability, accuracy, and 

efficiency of the SSIGA approach are evidently illustrated. 
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Chapter 4  

SPECTRAL STOCHASTIC 

STOCAHSTIC ISOGEOMETRIC 

ANALYSIS FOR STATIC RESPONSE 

OF FGM PLATE 

4.1 Summary 

In this chapter, the nondeterministic structural responses of functionally graded 

material (FGM) plates under static loads with uncertain material property is investigated. 

The considered spatially dependent uncertainties are modelled as random fields with 

Gaussian distribution. A novel spectral stochastic isogeometric analysis (SSIGA) 

framework is proposed for such uncertainty quantification through the first-order shear 

deformation theory. 

The Chapter 4 is structured as follows. The deterministic static analysis of FGM plate 

through IGA is presented in Section 4.3. After that, the proposed SSIGA approach is 

introduced in Section 4.4. Subsequently, two numerical examples are investigated in 

Section 4.5 to illustrate the effectiveness and efficiency of the SSIGA approach. Finally, 

the conclusion is drawn in Section 4.6. 
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The research work developed in Chapter 4 has produced one journal paper which has 

been published in Thin-Walled Structures, detailed as: 

Li, K., Wu, D. and Gao, W., 2018. Spectral stochastic isogeometric analysis for static 

response of FGM plate with material uncertainty. Thin-Walled Structures, 132, pp.504-

521. 

4.2 Introduction 

A novel computational stochastic analysis framework, namely the spectral stochastic 

isogeometric analysis (SSIGA) (Li, Gao, et al., 2018), is presented for quantitatively 

assessing the performance of FGM plates with uncertain material properties under static 

load. Unlike traditional stochastic analysis methods, the SSIGA approach introduced 

herein is capable of handling uncertainty analysis involving both spatially independent 

(i.e., random variables) and dependent (i.e., random fields) uncertain parameters. By 

implementing the NURBS as the basis functions for the Karhunen-Loève (K-L) 

expansion, a new, yet practical, random field discretization technique is forged. The 

benefit of such novel technique is that the random field of uncertain parameter that is 

acting on complex physical domain can be more systematically and effectively handled. 

By further implementing the polynomial chaos expansion (PCE) approach, explicit 

formulations on the first two statistical moments (i.e., means and standard deviations) of 

any concerned structural responses (i.e., displacements, strain, and stress) of the FGM 

plate can be expressed. In addition to the estimations on the means and standard 

deviations of the structural responses, the proposed SSIGA approach can also adequately 

establish the probability density functions (PDFs) and cumulative distribution functions 

(CDFs) of the concerned structural responses through the kernel density estimation 

approach. Consequently, such critical information provides a quantitative measure of 
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performance, which is known as the structural reliability, of FGM plate. Yet, such 

competence on offering PDFs and CDFs has distinguished the proposed method from the 

previously developed first-order perturbation based stochastic analysis framework. Two 

numerical examples are thoroughly investigated to illustrate the applicability, 

effectiveness and efficiency of the proposed computational approach. 

In addition to the superiority on the uncertainty quantification, the proposed SSIGA 

analysis framework also possesses some unique advantages. By developing the stochastic 

analysis grounding on the success of the deterministic IGA, the introduced SSIGA 

framework can maintain the exact geometries of both FGM plate and random field acting 

on the plate between the design model and stochastic analysis model. Such rigor can 

eliminate the modelling errors that often occur during the model transformation in 

practical engineering. That is, by establishing a stochastic analysis in Computer-Aided 

Design (CAD) framework, the consistency of the geometry of an FGM plate in CAD 

model, deterministic Computer-Aided Engineering (CAE) model, and structural safety 

assessment model can be exactly maintained. In fact, the proposed SSIGA meticulously 

combines the CAD, CAE as well as structural safety assessment into a unified framework. 

This unique feature is extremely important for practically stimulated FGM plates with 

complex geometries and spatially dependent uncertain system parameters. Without a 

consistent geometry of an FGM plate between the CAD model and the stochastic analysis 

model, the outcome of the stochastic analysis would become meaningless which could 

potentially jeopardize the safety of the FGM plate. In such cases, the SSIGA approach 

can certainly bring ease of modelling with desirable level of accuracy. 

4.3 Isogeometric static analysis of FGM plate 

4.3.1 The material properties of the FGM plate 
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For this paper, the top and bottom surfaces of the considered ceramic-metal FGM plate 

with thickness h  are assumed to be purely ceramic and metallic respectively. The mid-

plane of the plate is the x-y plane, and the positive z-axis is perpendicularly upward from 

the mid-plane. For the considered FGM plate, the Young’s modulus E , mass density  , 

and Poisson’s ratio   vary along the thickness direction with a power law distribution as 

following 
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where n  denotes the gradient index; z  denotes the thickness coordinate within 

[ / 2, / 2]h h− ; and the subscripts m  and c  represent the metal and ceramic constituents, 

respectively. The material properties of some common FGM components are presented 

in Table 4.1. 

Table 4.1 Functionally graded material properties 

Property 

Aluminium 

Al 

Zirconia-1 

ZrO2-1 

Zirconia-2 

ZrO2-2 

Alumina 

Al2O3 

( )E GPa  70 200 151 380 

  0.3 0.3 0.3 0.3 

3(kg/m )  2707 5700 3000 3800 
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4.3.2 First-order shear deformation theory of plate 

In this subsection, the formulation of first-order shear deformation theory (FSDT) of 

plate is briefly presented. Let D  be the domain in 2  occupied by the mid-plane of the 

plate. Within the analysis framework of the FSDT, the displacement fields ( , , )u x y z , 

( , , )v x y z , and ( , , )w x y z  are defined as: 
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 (4.4) 

where 0 0( , )Tu v=u , 0w  and ( , )x y =β  denote the membrane displacements, the 

deflection of the mid-plane and the rotations in the x-z, y-z planes, respectively. 

Adopting the small strain assumption, the relationship between in-plane strain 

( , , )T

xx yy xy  =ε  and displacement can be established as: 
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The transverse shear strain ( , )T

xz yz =γ  can be defined as: 
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The weak form of the static problem of FGM plates within the FSDT can be formulated 

as following 

 0

T T

s
D D D

dD dD wq dD  + =  ε Dε γ D γ  (4.7) 
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where 0q  denotes the transverse loading per unit area, and  

 [ ]s s

b

 
= = 
 

A B
D D D

B D
 (4.8) 

with 
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where ( )zQ  and ( )zG  denote the constitutive matrices, which can be explicitly 

expressed as:  
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where 5 / 6k =  denotes the shear correction factor; ( )E z , ( )z  are formulated as Eq.(4.1) 

and Eq.(4.3) respectively. 

4.3.3 Isogeometric analysis of FGM plate 

By implementing the two-dimensional NURBS basis functions presented in Eq.(3.9), 

the displacement field can be interpolated as  

 ( ) ( )
cp

R=
N

P

I I

I

u ξ ξ u  (4.13) 
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where RP

I  denotes the two-dimensional NURBS basis function; ( , , , , )T

x yu v w  =
I I I I I I

u  

and ( , , , , )T

x yu v w  =u . 

Therefore, the membrane, bending, and the shear strains can be explicitly expressed as 

follows: 
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 (4.15) 

and RP

I , ,xRP

I , and , yRP

I  denote the function value, the derivative along x-axis, and the 

derivative along y-axis of the Ith NURBS function at a specific parametric point ξ . 

By substituting Eq.(4.15) into Eq.(4.7), the governing equation of the static problem 

of the FGM plate through the FSDT can be formulated as: 

 =KU F  (4.16) 

where K  denotes the global stiffness matrix which has formulation as 
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T
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 (4.17) 
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and F  denotes the force vector which is given by 

 0
D

q dD= F N  (4.18) 

where 0q  denotes the uniformly distributed load; N  can be expressed as follows, 

 1 5 5 2 5 5 5 5[ ]
cp

R R R  = P P P

NN I I I  (4.19) 

and 5 5I  is an identity matrix with size 5 5 . 

4.4 SSIGA for stochastic static analysis of FGM plate 

By following the generalized isogeometric analysis basis function based K-L 

expansion in Chapter 3, the random field ( , )H x  can be discretised as: 
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Then, by truncating the second part with M  terms, the random field ( , )H x  can be 

approximated as  
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In this paper, the Young’s modulus of the FGM plate is considered as a spatially 

dependent uncertain parameter which is modelled as a Gaussian random field, that is 

( , , )GE z x , and: 
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where ( , )GH x  is a homogeneous Gaussian random field with mean  , standard 

deviation  and covariance function ( , )HHC x x .  

By implementing the aforementioned K-L expansion, the discretization of the spatially 

dependent uncertain Young’s modulus of the FGM plate with M  terms, i.e., ˆ ( , , )GE z x  

can be explicitly formulated as: 
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With the consideration of the uncertain Young’s modulus of the FGM plate, the 

stochastic static analysis of FGM plates based on FSDT within the SSIGA analysis 

framework can be formulated as: 

 ( ) ( )  =K U F  (4.24) 

and the stochastic global stiffness matrix ( )K  is assembled from the stochastic 

elemental stiffness matrices ( )e K , 
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Since matrices m
B , b

B , and s
B  are constant, the only source of uncertainty within the 

stochastic static analysis of FGM plate is reflected from the stochastic elasticity matrices 

ˆ ( , )A x , ˆ ( , )B x , ˆ ( , )b D x , and ˆ ( , )s D x , that is 
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where ˆ ( , , )z Q x  and ˆ ( , , )z G x  are the stochastic constitutive matrices, which can be 

explicitly expressed as: 
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where ( )z  is defined as Eq.(4.3). 

By implementing the NURBS-based K-L expansion, ˆ ( , , )GE z x  can be expressed as 

Eq.(4.23), and consequently ˆ ( , , )z Q x  and ˆ ( , , )z G x  can be formulated as: 
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Consequently, ˆ ( , )A x , ˆ ( , )B x , ˆ ( , )b D x , and ˆ ( , )s D x  can be expressed as follows: 
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By substituting Eqs.(4.32) and (4.32) into Eq.(4.25), the stochastic elemental stiffness 

matrix of the FGM plate can be formulated as: 
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Finally, by assembling across entire structural domain, Eq.(4.24) can be reformulated 

as 
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Without loss of generality, let 0 ( ) 1   , Eq.(4.37) can be simplified as follows 
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Meanwhile, by implementing the PCE in Chapter 3, the structural displacement of the 

stochastic linear system associated with FGM plate can be represented as: 
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Substituting Eq.(4.39) into Eq.(4.38), the stochastic governing equation of the static 

analysis of the FGM plate can be transformed to: 
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For real-life engineering applications, the series involved in Eq.(4.40) should be 

truncated at finite number of terms. Thus, by truncating the PCE at Pth term, Eq.(4.40) 

can be alternatively expressed as: 
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where the number of terms P  of the PCE can be evaluated by the truncation order M  

of the NURBS-based K-L expansion and the polynomial order p as follows: 
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Accordingly, the residual produced by the truncating process can be defined as: 
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Minimizing the residual formulated in Eq.(4.43) in the sense of mean square to obtain 

the optional approximation of the space spanned by 
1
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=ψ  yields: 
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By introducing the following notations: 

 ( ) ( ) ( )ijk i j kc    = ψ ψ  (4.45) 

 , ( )k k =F F ψ  (4.46) 

Eq.(4.44) can be alternatively expressed as: 
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By introducing 
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Eq.(4.47) can be reformulated as: 
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, 0, , 1
P

jk j k

j

k P
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=

= = −K U F  (4.49) 

After solving the above stochastic system presented in Eq.(4.49), the stochastic 

structural displacement ( )U can be adequately approximated as: 
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Consequently, the related statistical characteristics of the stochastic structural response 

( )U , namely the mean vector and covariance matrix of the structural displacement of 

the FGM plate, can be directly determined as: 
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By taking a step further, the stochastic in-plane strain ( , , )z  =ε x

( ( , , ), ( , , ), ( , , ))T

xx yy xyz z z     x x x  of the FGM plate at location ( , )zx , and shear strain 

( , ) ( ( , ), ( , ))T

xz yz    =γ x x x  of the FGM plate at location x  can also be formulated 

through the PCE as follow: 
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P
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=ε x ψ ε x  (4.53) 
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( , ) ( ) ( )
P

j j

j

 
−

=

=γ x ψ γ x  (4.54) 

where ( , ) ( ( )) { } ( ( )) { }m T e b T e

j j jz z= + ε x B x U B x U  and ( ) ( ( )) { }s T e

j j=γ x B x U  denote 

the polynomial chaos coefficient of the in-plane strain and shear strain vectors 

respectively. 
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Thus, the mean vector and covariance matrix of the stochastic in-plane strain ( , , )z ε x  

and shear strain ( , )γ x  of the FGM plate can be determined as: 

 0E[ ( , , )]z  =ε x ε  (4.55) 
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 0E[ ( , )] =γ x γ  (4.57) 
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Furthermore, from the Hooke’s law, the stochastic in-plane stress ( , , )z σ x  and shear 

stress ( , , )z τ x  of the FGM plate at location ( , )zx  can also be formulated through the 

PCE as follows: 
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 (4.60) 

Consequently, the mean vector and covariance matrix of the stochastic in-plane stress 

( , , )z σ x  and shear stress ( , , )z τ x  of the FGM plate at location ( , )zx  can be calculated 

as: 
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where ( ) ( ) ( ) ( )ijkl i l j kc      = ψ ψ  can be obtained through a similar fashion that is 

utilized in Eq.(4.45). 

4.5 Numerical examples 

To demonstrate the effectiveness and efficiency of the proposed SSIGA framework on 

stochastic static analysis of FGM plate, two numerical examples are thoroughly explored 

in this section. For the first numerical example, the proposed SSIGA analysis framework 

is implemented for the stochastic static analysis of an Al2O3/Al FGM dart shape plate. In 

addition, a ZrO2-1/Al FGM plate with irregular curvatures is investigated in the second 

example. Due to the absence of analytical solutions on the statistical moments of the 

structural responses of the two considered FGM plates, the accuracy of the results 

determined by the proposed method is partially verified by the exhaustive Monte Carlo 

Simulation (MCS) approach with large simulations. For all numerical examples 

investigated in this paper, all random numbers are generated by employing the Statistics 

toolbox of MATLAB R2016b, and the evaluations of IGA basis functions are based on 

the technique presented in (V. P. Nguyen et al., 2015). 

4.5.1 Numerical example: dart shape FGM plate 

In the first numerical example, a dart shape Al2O3/Al FGM plate involving spatially 

dependent uncertain Young’s modulus is investigated. The general structural layout and 

the adopted IGA refinement of the investigated dart shape FGM plate are presented in 

Figure 1. The considered FGM plate is subjected to a uniformly distributed load with 

magnitude of 3 21 10 /q kN m=   along the z-axis. The FGM plate is fully clamped by the 

red supports as shown in Figure 4.1. The Young’s modulus of the FGM plate is modelled 

as a Gaussian random field as follows: 
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E z H E E E
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 

 
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 
x x   (4.65) 

where ( , )GH x  denote a Gaussian random field with mean 1.0 = , standard deviation 

0.1 = , and covariance function 
1 2 1 22( , ) exp

2 2
HH

x x y y
C 

 − − 
 = − − 

 
x x ; 0.01 mh =

denotes plate thickness; 4n =  denotes volume fraction exponent; cE  denotes Young’s 

modulus of Al2O3; mE  denotes Young’s modulus of Al. In order to visualize the impacts 

of the material uncertainty, one possible realization of the random field of the Young’s 

modulus of the FGM plate is illustrated in Figure 4.2. The values of mE  and cE  are 

adopted from Table 4.1. 

    

 (a) (b) 
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 (c) (d) 

Figure 4.1 Dart shape FGM plate (a) 3D view; (b) top view; (c) front view; (d) IGA 

refinement 

    

 (a) (b) 

Figure 4.2 Realization of the random field of the dart shape FGM plate (a) from top 

surface to bottom surface; (b) from bottom surface to top surface 

Since the convergence study of the NURBS-based Karhunen-Loève expansion has 

been evidently illustrated in (Li, Gao, et al., 2018; Rahman, 2018), a repeating 

convergence study is omitted herein. Interested readers can refer to (Li, Gao, et al., 2018; 

Rahman, 2018) for the detailed convergence study of the NURBS-based Karhunen-Loève 

expansion for Gaussian random field with the considerations of different types of 

refinement. For this study, the Gaussian random field is decomposed by the NURBS-

based K-L expansion with four terms. Moreover, all concerned structural responses are 

estimated by different orders of PCE, namely 1-order PCE, 2-order PCE, 3-order PCE, 4-

order PCE, 5-order PCE, 6-order PCE, 7-order PCE, and 8-order PCE. Moreover, the 

MCS approach with 1,000,000 simulation cycles was adopted for partially verifying the 

results. 
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Table 4.2 compares the mean and standard deviations of zu , xx , xx , xz , and xz  at 

0x  obtained from SSIGA and MCS approaches. By closely examining Table 4.2, a good 

agreement between the SSIGA and MCS approaches can be observed for both the means 

and standard deviations of all the concerned structural responses at 0x . 

In addition to the validation of the SSIGA approach on the determination of the first 

two statistical moments of the concerned structural responses of the FGM plate, the 

SSIGA approach is further implemented for estimating the PDFs and CDFs of the 

structural responses. Within this part of investigation, all PDFs and CDFs of the 

concerned structural responses were established by implementing a non-parametric 

statistical inference technique known as the kernel density estimation approach. For this 

particular part of investigation, the point 0x  is selected again, and the PDFs and CDFs of 

zu , xx , xx , xz , and xz  at 0x  are established and reported in Figures 4.3-4.7, 

respectively. From the information presented in Figures 4.3-4.7, it is evidently illustrated 

that the proposed SSIGA approach is competent for establishing the PDFs and CDFs of 

the concerned structural responses. Also, another crucial point can be realized from this 

investigation is that when the order of the PCE is increased, the PDFs and CDFs estimated 

by the SSIGA approach would converge to the results of the MCS approach.  

Table 4.2 Comparison for statistical characteristics of zu , xx , xx , xz , and xz  at 0x  

between SSIGA and MCS approaches 

Method Statistical 

characteris

tics 

zu  xx  xx  xz  xz  
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MCS Mean 0.0573 -1.0435e-4 -5.6291e+7 6.9452e-5 1.0090e+

7 

Standard 

deviation 

0.0037 9.1814e-6 1.6938e+6 6.7698e-6 6.7935e+

5 

SSIGA 

(1-

order 

PCE) 

Mean 0.0573 -1.0432e-4 -5.6296e+7 6.9429e-5 1.0090e+

7 

Standard 

deviation 

0.0037 8.9905e-6 1.7647e+6 6.6232e-6 6.8550e+

5 

SSIGA 

(2-

order 

PCE) 

Mean 0.0573 -1.0433e-4 -5.6293e+7 6.9433e-5 1.0090e+

7 

Standard 

deviation 

0.0037 9.1487e-6 1.6964+6 6.7409e-6 6.7987+5 

SSIGA 

(3-

order 

PCE) 

Mean 0.0573 -1.0433e-4 -5.6293e+7 6.9434e-5 1.0090e+

7 

Standard 

deviation 

0.0037 9.1523e-6 1.6957e+6 6.7480e-6 6.7949e+

5 

SSIGA 

(4-

order 

PCE) 

Mean 0.0573 -1.0433e-4 -5.6293e+7 6.9429e-5 1.0089e+

7 

Standard 

deviation 

0.0037 9.1522e-6 1.6956e+6 6.7483e-6 6.8005e+

5 

SSIGA 

(5-

order 

PCE) 

Mean 0.0573 -1.0433e-4 -5.6293e+7 6.9437e-5 1.0091e+

7 

Standard 

deviation 

0.0037 9.1522e-6 1.6956e+6 6.7406e-6 6.8011e+

5 
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SSIGA 

(6-

order 

PCE) 

Mean 0.0573 -1.0433e-4 -5.6293e+7 6.9431e-5 1.0090e+

7 

Standard 

deviation 

0.0037 9.1524e-6 1.6957e+6 6.7449e-6 6.7980e+

5 

SSIGA 

(7-

order 

PCE) 

Mean 0.0573 -1.0433e-4 -5.6293e+7 6.9431e-5 1.0090e+

7 

Standard 

deviation 

0.0037 9.1523e-6 1.6957e+6 6.7424e-6 6.7972e+

5 

SSIGA 

(8-

order 

PCE) 

Mean 0.0573 -1.0433e-4 -5.6293e+7 6.9432e-5 1.0090e+

7 

Standard 

deviation 

0.0037 9.1523e-6 1.6957e+6 6.7438e-6 6.7955e+

5 

 

    

 (a) (b) 
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 (c) (d) 

Figure 4.3 Estimated (a) PDF(3D), (b) PDF(2D), (c) CDF(3D), and (d) CDF(2D) of 

zu  at 0x  

    

 (a) (b) 

    

 (c) (d) 
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Figure 4.4 Estimated (a) PDF(3D), (b) PDF(2D), (c) CDF(3D), and (d) CDF(2D) of 

xx  at 0x  

    

 (a) (b) 

    

 (c) (d) 

Figure 4.5 Estimated (a) PDF(3D), (b) PDF(2D), (c) CDF(3D), and (d) CDF(2D) of 

xx  at 0x  
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 (a) (b) 

    

 (c) (d) 

Figure 4.6 Estimated (a) PDF(3D), (b) PDF(2D), (c) CDF(3D), and (d) CDF(2D) of 

xz  at 0x  

    

 (a) (b) 

    

 (c) (d) 
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Figure 4.7 Estimated (a) PDF(3D), (b) PDF(2D), (c) CDF(3D), and (d) CDF(2D) of 

xz  at 0x  

Furthermore, the results of the MCS approach were obtained by running on one node 

of a cluster. The implemented node had 2 8  cores (Intel Xeon E5-2670 (Sandy Bridge) 

2.6GHz), namely 16 processors in total. The MCS with 1,000,000 simulation cycles were 

executed by parallel computing with 16 workers on the cluster and costed 40 hours 30 

mins 0 seconds as showed in Table 4.3.  

Table 4.3 Comparison of computational time between SSIGA and MCS 

 

Method 

Time 

(hh:mm:ss) 

MCS 
40:30:00 

SSIGA(1-order PCE) 00:05::21 

SSIGA(2-order PCE) 00:15:06 

SSIGA(3-order PCE) 00:40:00 

SSIGA(4-order PCE) 01:38:14 

SSIGA(5-order PCE) 01:55:04 

SSIGA(6-order PCE) 03:29:11 

SSIGA(7-order PCE) 06:49:39 

SSIGA(8-order PCE) 12:44:01 

 

On the other hand, all the results of the SSIGA approach were obtained by running at 

a node on a cluster with 2 14  cores (Intel Xeon Broadwell technology, 2.6 GHz). 

However, parallel computing was not implemented in the calculation of the SSIGA 

approach. The computational time of the SSIGA approach are also reported in Table 4.3. 
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According to the results reported in Table 4.2, when the truncation order of the PCE is 

higher than 5, all the results obtained from the SSIGA are almost identical to the MCS 

approach but with much less computational time. Overall, based on the reported technical 

information, the proposed SSIGA approach certainly shows superior effectiveness and 

computational efficiency over the exhaustively simulative MCS approach for the dart 

shape FGM plate which suffers from both spatially dependent uncertainty and irregular 

geometry. 

4.5.2 Numerical example: irregularly curved FGM plate 

In the second numerical example, an irregularly curved ZrO2-1/Al FGM plate 

involving spatially dependent uncertain Young’s modulus is investigated to further 

explore the applicability of the proposed approach for system with complex geometry. 

The general structural layout and IGA refinement of the irregularly curved FGM plate is 

presented in Figure 8. The plate is subjected to a uniformly distributed load with 

magnitude of 3 21 10 /q kN m=   along the z-axis. The considered FGM plate is fully 

clamped to the red column as illustrated in Figure 4.8. Once again, the Young’s modulus 

of the FGM plate is modelled as a Gaussian random field as follows: 

 
1

( , , ) ( , ) ( )( )
2

G G n

m c m

z
E z H E E E

h
 

 
= + − + 

 
x x   (4.66) 

where ( , )GH x  denote a Gaussian random field with mean 1.0 = , standard deviation 

0.1 = , and covariance function 
1 2 1 22( , ) exp

2 2
HH

x x y y
C 

 − − 
 = − − 

 
x x ; 0.2 mh =

denotes plate thickness; 2n =  denotes volume fraction exponent; cE  denotes Young’s 

modulus of ZrO2-1; mE  denotes Young’s modulus of Al. Also, one possible realization 

of the random field of the Young’s modulus is illustrated in Figure 4.9. 
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Within the proposed method, the Gaussian random field of the Young’s modulus is 

decomposed by 4-terms NURBS-based K-L expansion, and 5-order PCE is implemented 

to estimate all concerned stochastic structural responses in this case. Once again, the MCS 

with 1,000,000 simulation cycles was employed for the purpose of partial result 

verification. 

    

 (a) (b) 

     

 (c) (d) 

Figure 4.8 Irregularly curved FGM plate (a) 3D view; (b) top view; (c) front view; (d) 

IGA refinement 
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 (a) (b) 

Figure 4.9 Realization of the random field of the irregularly curved FGM plate (a) 

from top surface to bottom surface; (b) from bottom surface to top surface  

In this example, a point 0x  on the top surface of the curved plate is analysed. The first 

two statistical moments of zu , xx , xx , xz , and xz  at 0x  are determined and the 

corresponding results are reported in Table 4.4. As evidently illustrated in Table 4.4, the 

means and standard deviations of the concerned structural response at 0x  obtained by the 

proposed method are having excellent agreement with the MCS approach. 

Table 4.4 Statistical characteristics comparisons of zu , xx , xx , xz , and xz  at 0x  

between SSIGA and MCS approaches 

Method Statistical 

characteristics 

zu  xx  xx  xz  xz  

MCS Mean 3.0927e

-8 

-3.1475e-

7 

-8.9545e+4 -1.1613e-

9 

-88.47 

Standard 

deviation 

1.0066e

-7 

2.1591e-

8 

2.7570e+3 1.6016e-

9 

124.69 
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SSIGA 

(5-

order 

PCE) 

Mean 3.0750e

-8 

-3.1473e-

7 

-8.9548e+4 -1.1641e-

9 

-88.68 

Standard 

deviation 

1.0064e

-7 

2.1538e-

8 

2.7485e+3 1.6026e-

9 

124.76 

 

In addition to the determinations of the means and standard deviations of the concerned 

structural responses, the PDFs and CDFs of the concerned structural responses at point 

0x  are established by utilizing the SSIGA and the results are also verified by comparing 

with the MCS results with 1,000,000 simulation cycles. The PDFs and CDFs of zu , xx , 

xx , xz , and xz  at 0x  are systematically established as shown in Figures 10-14. 

Particularly, the relative errors of the CDFs of the concerned structural responses are also 

reported in Figures 4.10-4.14. 

   

 (a) (b)  (c) 

Figure 4.10 Estimated (a) PDF, (b) CDF and (c) relative errors of CDF of zu  at point 

0x  
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 (a) (b)  (c) 

Figure 4.11 Estimated (a) PDF, (b) CDF and (c) relative errors of CDF of xx  at 

point 0x  

   

 (a) (b)  (c) 

Figure 4.12 Estimated (a) PDF, (b) CDF and (c) relative errors of CDF of xx  at 

point 0x  

   

 (a) (b)  (c) 

Figure 4.13 Estimated (a) PDF, (b) CDF and (c) relative errors of CDF of xz  at 

point 0x  
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 (a) (b)  (c) 

Figure 4.14 Estimated (a) PDF, (b) CDF and (c) relative errors of CDF of xz  at 

point 0x  

From the quantitative assessment on the relative errors between SSIGA and MCS 

approaches, the maximum relative error between SSIGA results and MCS results are less 

than 0.5% , which is small enough to demonstrate the accuracy and applicability of the 

proposed SSIGA scheme for stochastic analysis of FGM plates with intricate geometries. 

4.6 Conclusion 

In this paper, a new computational stochastic analysis framework, namely spectral 

stochastic isogeometric analysis, is presented for stochastic static analysis of FGM plate 

through first-order shear deformation theory. The uncertain Young’s modulus is modelled 

as a random field to incorporate the spatial variation effects of the uncertain system 

parameter. By implementing the NURBS as basis functions within the K-L expansion, a 

new random field discretization technique is presented which can effectively handle 

random fields defined within very complex geometry. After valid random field 

discretization, the means and standard deviations of structural displacement, strain, and 

stress of the FGM plate can be explicitly estimated through the PCE. In addition to the 

estimation to the estimation of the first two moments of statistics of the structural 

responses, the PDFs and CDFs of the concerned structural responses can also be 

established through the statistical inference techniques. Consequently, the serviceability 

and strength limits of the FGM plate can be effectively determined through the proposed 

SSIGA approach. The major advantage of the SSIGA analysis framework is that the 

proposed method is able to maintain the exact geometry of the structure as well as the 
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random field defined on the structure between the design model and the stochastic 

analysis model. Consequently, the quality of the uncertainty analysis (i.e., the quality of 

the PDFs and CDFs) can be improved. 

In order to verify the applicability, accuracy and efficiency of the proposed 

methodology, two distinctive FGM plates with nonstandard geometries have been 

investigated. By closely examining the results against the MCS approach with large 

simulation cycles, all computational results of the SSIGA approach are satisfactory but 

with much higher computational efficiency. Therefore, the proposed SSIGA approach 

provides a quantitative assessment framework to evaluate the safety of practically 

motivated FGM plate with nonstandard geometry against static loadings and the 

physically inherent uncertainties. 
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Chapter 5  

SPECTRAL STOCAHSTIC 

ISOGEOMETRIC ANALYSIS OF 

FREE VIBRATION 

5.1 Summary 

In Chapter 5, a novel spectral stochastic isogeometric analysis (SSIGA) is proposed 

for the free vibration analysis of engineering structures involving uncertainties. The 

stochastic Young’s modulus and material density of the structure are modelled as random 

fields with Gaussian and non-Gaussian distributions. 

The organization of Chapter 5 is briefed as follows. The stochastic free vibration 

analysis is briefly introduced in Section 5.3. Subsequently, the proposed SSIGA for 

stochastic free vibration analysis of engineering structures involving random fields is 

presented in Section 5.4. Particularly, the discretization of random field with non-

Gaussian within SSIGA and the freshly introduced aPC approach are presented in 

subsections 5.4.1 and 5.4.2 respectively. Consequently, the proposed Galerkin-based 

method is formulated in subsection 5.4.3. To illustrate the accuracy, efficiency, and 

applicability of the proposed SSIGA for stochastic free vibration analysis, two different 

numerical examples are explored comprehensively in Section 5.5. Finally, some 

conclusions are drawn in Section 5.6. 
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The research work presented in Chapter 5 has produced one journal paper which has 

been published in Computer Methods in Applied Mechanics and Engineering, detailed as: 

Li, K., Wu, D., Gao, W. and Song, C., 2019. Spectral stochastic isogeometric analysis 

of free vibration. Computer Methods in Applied Mechanics and Engineering. 350, pp.1-

27 

5.2 Introduction 

To overcome the challenges and revamp the traditional stochastic analysis routine, a 

novel spectral stochastic isogeometric analysis (SSIGA) framework is proposed for the 

free vibration analysis considering spatially dependent stochastic uncertainties. In the 

novel SSIGA approach, the considered stochastic uncertainties, which are including 

Young’s modulus and material density, are modelled as Gaussian and non-Gaussian 

random fields. Since the stochastic analysis model within SSIGA is exactly the same as 

the design model in CAD, the random fields are assuredly acting on the physical domain 

of the intentionally designed model. Therefore, the geometric errors can be eliminated in 

the Karhunen-Loève (K-L) expansion for the random field discretization (Li, Gao, et al., 

2018; Rahman, 2018). Meanwhile, global smoothness representations of random fields 

are accessible by taking the advantage of the higher-order continuity of the basis functions 

in CAD system (Li, Gao, et al., 2018; Rahman, 2018). Such feature also promises a 

globally smooth K-L discretization for random fields. Arbitrary polynomial chaos 

(Witteveen and Bijl, 2006) (aPC) method is freshly adopted to investigate the stochastic 

generalized eigenvalue problems. In this paper, the aPC approach is implemented through 

Stieltjes procedure, which is more stable than the classical Gram-Schmidt algorithm in 

(Witteveen and Bijl, 2006). A Galerkin-based method is proposed to orthogonalize the 

approximation error with respect to the Hilbert space spanned by the truncated aPC. Such 
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approach can circumvent the dependence of the statistical solution on the quality and 

quantity of the underlying random number generator, and provides an approximation to 

the complete probabilistic description of the eigensolutions. Finally, the stochastic 

generalized eigenvalue problem can be transformed into a system of deterministic non-

linear equations. The system is solved by the Newton-Raphson method in this paper. 

Different orders of statistical moments, the probability density function (PDF), and the 

cumulative distribution function (CDF) of the concerned stochastic eigensolutions will 

be obtained. Since the closed-form solutions for the stochastic eigenvalue problems are 

usually unavailable, thus, the Monte Carlo Simulation (MCS) approach is adopted for 

partially verifying all the computational results. The accuracy, efficiency, and 

applicability of the proposed method are comprehensively investigated through two 

numerical examples. 

5.3 Stochastic free vibration analysis 

In isogeometric analysis, given a linear multi-degree-of-freedom structural system, the 

governing equation for the free vibrations can be formulated as: 

 ( ) ( )t t+ =Mu Ku 0  (5.1) 

where 2 2( ) ( ) /t d t dt=u u  denotes the acceleration vector and ( )tu  denotes the 

displacement vector; M  and K  denote the global consistent mass and stiffness matrices 

respectively, and can be assembled by their corresponding elemental matrices e
M  and 

e
K  as follows, 

 e e

e e

= = M M K K  (5.2) 

and 
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e e

e T e T

D D
dD dD= = K B DB M N N  (5.3) 

where e  denotes the element index;   denotes the material density; N  denotes the 

displacement interpolation matrix within an element; B  denotes the compatibility matrix 

which relates strain vector to the displacement vector within an element; D  denotes the 

elasticity matrix; eD  denotes the volume of the eth element. 

The following formulation will be carried out for a single physical mode. Since the 

basis functions within IGA are pointwise non-negative, every component of the consistent 

mass matrix is non-negative. The normal mode, Φ  can be obtained by the separation of 

variables: 

 i( ) tt e =u Φ  (5.4) 

where   denotes the natural frequency with unit rad/s . Combining Eq.(5.1) and Eq.(5.4) 

leads to the generalized eigenvalue problem (Cottrell et al., 2006): 

 =KΦ MΦ  (5.5) 

where   denotes the eigenvalue, and Φ  denotes the corresponding eigenvector. 

The normal modes are defined up to a multiplicative constant. Different ways of 

normalization have been proposed. One of the most widely used is 

 1T =Φ MΦ  (5.6) 

When considering randomness in the parameters of the underlying physical system 

such as elastic and dynamic parameters, the stochastic generalized eigenvalue problem in 

Eq.(5.5) and the normalization condition Eq.(5.6) can be represented as follows, 

 ( ) ( ) ( ) ( ) ( )     =K Φ M Φ  (5.7) 
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 ( ) ( ) ( ) 1T    =Φ M Φ  (5.8) 

where    and ( , , )P   is the probability space associated with the underlying 

physical experiments. The space of square integrable random variables, 2 ( )L  , forms a 

Hilbert pace, with the norm denoted by 
2 ( )L 

 . 

5.4 SSIGA for the generalized stochastic eigenvalue problem 

5.4.1 Generalized isogeometric basis function based Karhunen-Loève 

expansion 

Generally, random system parameters presented in Eqs.(5.7) and (5.8) can be modelled 

as random variables 1{ ( )}m

i i  =  or as random field ( , )H x . In this paper, all random 

parameters are modelled as random fields, which provides a more generalized stochastic 

analysis framework by incorporating both spatially dependent and independent uncertain 

parameters. Particularly, the homogeneous Gaussian and Lognormal random fields are 

implemented herein. Moreover, exponential and Bessel covariance functions are adopted 

to model the dependency of the uncertain parameters. The incorporated covariance 

functions have generalized forms as follows, 

 

2

2

1

( , ')  (Exponential)

( , ') (Bessel)

x x

l
HH H

HH H

C e

x x x x
C K

l l





−
−

= 

 −  − 
=    

 

x x

x x

 (5.9) 

where H +  denotes the standard deviation of the random field;  denotes the norm 

of a vector in 1-, 2-, or 3-dimensional Euclidean space. l  denotes the correlation 

lengths; 1K  is the modified second-kind Bessel function of order one. 
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For general engineering applications, the homogeneous Gaussian random fields can 

be represented with respect to some basis set in 2 ( , , )L F   by the Karhunen-Loève 

expansion. The generalized isogeometric basis functions based K-L expansion within 

SSIGA has already been investigated in (Li, Gao, et al., 2018; Rahman, 2018). 

Given a random field ( , )H x  with spatial geometry represented as Eq.(3.9), by 

implementing the K-L expansion processes and formulations that have already presented 

in Chapter 3, the homogeneous Gaussian random field ( , )H x  can be approximated by 

ˆ ( , )H x  with M  terms as follows, 

 
1

ˆ( , ) ( , ) ( ) ( ) ( )
cp cpM

H i

i i

i

H H R R     
=

 
 = +   

 
  I

N N

P P

I I I

I I

x x ξ ξ  (5.10) 

The utilization of the Gaussian random field to model spatially dependent uncertainties 

is common practice in the context of stochastic analysis. However, Gaussian random 

fields are not well suited to modelling material properties (Young’s modulus, material 

density), which are by their nature positive valued. In contrast, the lognormal field 

appears more suitable in engineering applications to model positive valued physical 

uncertain parameters. For a lognormal random field ( , )LH x , which can be defined as a 

transformation of a Gaussian field ( , )GH x  as 

 ( , ) exp( ( , ))L GH H =x x  (5.11) 

In order to incorporate the lognormal random fields in the proposed SSIGA framework 

for stochastic free vibration analysis, the lognormal random field ( , )LH x  can be 

approximated by the arbitrary polynomial chaos expansion as in (R. Ghanem, 1999b; 

Sudret and Kiureghian, 2000). The concept and formulation of arbitrary polynomial chaos 

expansion will be introduced in the following subsection. 
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5.4.2 The arbitrary polynomial chaos expansion (aPC) 

When solving a stochastic generalized eigenvalue problem, which involves 

charactering the probabilistic measure of the specific eigenvalue   and the 

corresponding eigenvectors Φ  with respect to random parameters, the polynomial chaos 

decompositions provide a rational framework for representing random variables and 

vectors with respect to a basis set of orthogonal polynomials. In order to provide a general 

analysis framework, the arbitrary polynomial chaos expansion (aPC) is adopted to 

represent the stochastic responses, i.e. ( )   and ( )Φ . 

For achieving a more effective illustration, considering a stochastic system response 

( , )u x , which can be expanded by a polynomial chaos expansion. That is, 

 
0

( , ) ( ) ( ( ))j j

j

u u 


=

=x x Ψ η  (5.12) 

where { ( )}ju x  denotes the jth polynomial chaos expansion coefficient; ( ( ))j Ψ η  

denotes the jth multidimensional orthogonal polynomial in terms of an m-dimensional 

vector of random variables ( )η , and m is the number of uncertain parameters. In typical 

numerical analysis, the infinite summation series involved in Eq.(5.12) is truncated at the 

Pth degree, namely, 
1

0
ˆ( , ) ( , ) ( ) ( ( ))

P

j jj
u u u  

−

=
 =x x x Ψ η  with 

 
( )!

! !

m p
P

m p

+
=  (5.13) 

where p is the highest order of the polynomials 
1

0{ ( )}P

j j

−

=Ψ η . The polynomials 
1

0{ ( )}P

j j

−

=Ψ η  

satisfy the following orthogonality relation 

 2( ) ( ) ( ) , , 0,1, , 1i j i ij i j P= = −Ψ η Ψ η Ψ η  (5.14) 
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with ij  the Kronecker delta and •  denotes 

 ( ) ( )
S

d• = •
η

W η η  (5.15) 

where ( )W η  is the weighting function corresponding to the polynomial chaos 

1

0{ ( )}P

j j

−

=Ψ η  and S
η  is the support of η . 

In the framework of aPC expansion, the multidimensional orthogonal polynomials 

1

0{ ( )}P

j j

−

=Ψ η  can be constructed using the tensor product of the one-dimensional 

polynomial 
1

0{ ( )}P

j j −

= , which is constructed numerically with respect to the weight 

function by different algorithms, such as, the classical Gram-Schmidt procedure, the 

modified Gram-Schmidt procedure, the Stieltjes procedure, etc. In this chapter, the 

classical Gram-Schmidt procedure and the Stieltjes procedure are introduced briefly, but 

only the Stieltjes procedure is adopted in the numerical examples. 

For the classical Gram-Schmidt procedure, a set of one-dimensional monic orthogonal 

polynomials 
1

0{ ( )}P

j j −

=  can be generated recursively as follows, 

 
1

0

( ) ( ) ( ), 1,2,..., 1
j

j j jk k

k

e c j P  
−

=

 = −  = −  (5.16) 

with 0 1 =  and 

 
( ) ( )

( ) ( )

j k

jk

k k

e
c

 

 


=

 
 (5.17) 

where the polynomials ( )je   are polynomials of exact degree j. 
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However, the classical Gram-Schmidt procedure, as well as the modified version, 

suffers from numerical instability. That is, the round-off errors can accumulate and 

destroy the orthogonality of the resulting polynomials, especially for the high-order 

orthogonal polynomials. Therefore, the Stieltjes procedure is also introduced briefly 

herein. 

For the Stieltjes procedure in (Gautschi, 2008), a set of one-dimensional monic 

orthogonal polynomials 
1

0{ ( )}P

j j −

=  can be generated by following the recurrence 

relation as follows, 

 
1 0

1 1

( ) 0, ( ) 1,

( ) ( ) ( ) ( ), 0,1,2, , 1k k k k ka b k P

 

   

−

+ −

 =  =

 = −  −  = −
 (5.18) 

where the coefficients ka  and kb  of the aPC expansion can be determined by 

 
( ) ( )

, 0,1,2, , 1
( ) ( )

k k

k

k k

a k P
  

 

 
= = −

 
 (5.19) 

 
0

1 1

( ) ( )
( ) , , 1,2, , 1

( ) ( )

k k

k
S

k k

b w d b k P


 
 

 − −

 
= = = −

   (5.20) 

As aforementioned, lognormal random field can be represented by aPC, and the 

detailed expansion process for a lognormal random field ( , )LH x  through the aPC 

approach is presented herein. 

Considering the following truncated Karhunen-Loève expansion of a homogeneous 

Gaussian random field ˆ ( , )GH x  within SSIGA framework as Eq.(5.10) 

1

ˆ ( , ) ( ) ( , ) ( ) ( ) ( )
cp cpM

G G G G i

i i

i

H H H R R     
=

 
= + = +   

 
  I

N N

P P

I I I

I I

x x x ξ ξ  (5.21) 
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Then, a lognormal random field transformed from ˆ ( , )GH x  can be defined as follows 

 ˆ( , ) exp( ( , ))L GH H =x x  (5.22) 

Now, an arbitrary polynomial chaos expansion is adopted to represent the lognormal 

random field ˆ ( , )LH x  as follows, 

 
1

0

ˆ( , ) ( , ) ( ) ( ( ))
P

L L

i i

i

H H L  
−

=

 =x x x Ψ η  (5.23) 

Finally, each coefficient corresponding to ( )iL x  can be obtained as follows, 

 
2

( , ) ( ( ))
( )

( ( ))

L

i

i

i

H
L

 




=

x Ψ η
x

Ψ η
 (5.24) 

5.4.3 Galerkin-based method within SSIGA for stochastic generalized 

eigenvalue problem 

In this study, both Young’s modulus ( )E x  and material density ( ) x  of the 

engineering structure are considered as random fields, i.e. ( , )E x  and ( , ) x . To 

achieve a generalized computational stochastic mechanics framework, two explicit cases 

of analysis are considered herein. The first case of analysis considers all random fields as 

homogeneous Gaussian random fields, whereas the second case investigates the situation 

when lognormal random fields are implemented to model the spatially dependent 

uncertain system parameters.  

Firstly, considering the case when both ( , )E x  and ( , ) x  are modelled as 

homogeneous Gaussian random fields. By applying the K-L expansion within the 
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proposed SSIGA approach, ( , )GE x  and ( , )G x  can be approximated by ˆ ( , )GE x  

and ˆ ( , )G x  respectively, 

 
1

1

1 1

1 1

ˆ( , ) ( , ) ( ) ( ) ( )
cp cpM

iG G E

i i

i

E E R R      
=

 
 = +   

 
  
N N

P P

I I I I

I I

x x ξ ξ  (5.25) 

 
2

2

2 2

2 1

ˆ( , ) ( , ) ( ) ( ) ( )
cp cpM

iG G

i i

i

R R        
=

 
 = +   

 
  
N N

P P

I I I I

I I

x x ξ ξ  (5.26) 

Substituting Eqs.(5.25) and (5.26) into Eq.(5.3),  

 
0

ˆ( ) ( , )
e

e T G

D
E dD = K B x D B  (5.27) 

 ˆ( ) ( , )
e

e G T

D
dD  = M x N N  (5.28) 

where 0D  denotes the deterministic elasticity matrix. 

Then, by expanding ˆ ( , )GE x , the stochastic elemental stiffness matrix ( )e K .can be 

reformulated as: 

 
1

1 1

1

0

1

( ) ( )
M

e e e

i i

i

  
=

= +K K K  (5.29) 

where 0

e
K  denotes the mean element stiffness matrix and e

iK  denotes deterministic 

element stiffness matrix. Specifically, 

 0 0( )
cp

e

e E T

D
R dD= 

N

P

I I

I

K ξ B D B  (5.30) 

 1

1 1 0( )
cp

e

ie T

i i
D

R dD 
 

=   
 

N

P

I I

I

K ξ B D B  (5.31) 
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Similarly, the stochastic elemental mass matrix can be reformulated as:  

 
2

2 2

2

0

1

( ) ( )
M

e e e

i i

i

  
=

= +M M M  (5.32) 

where 0

eM  denotes the mean element mass matrix and e

iM  denotes the deterministic 

element mass matrix. Specifically, 

 0 ( )
cp

e

e T

D
R dD= 

N

P

I I

I

M ξ N N  (5.33) 

 2

2 2
( )

cp

e

ie T

i i
D

R dD 
 

=   
 

N

P

I I

I

M ξ N N  (5.34) 

Then, by supposing 0 ( ) 1    and 0 ( ) 1   , the stochastic global stiffness and mass 

matrices ( )K  and ( )M  can be reformulated as follows 

 
1

1 1

1 0

( ) ( )
M

i i

i

  
=

=K K  (5.35) 

 
1

2 2

2 0

( ) ( )
M

i i

i

  
=

=M M  (5.36) 

For the second case, both Young’s modulus and material density are modelled as 

lognormal random fields, i.e. ( , )LE x  and ( , )L x . By implementing the aPC approach, 

( , )LE x  and ( , )L x  can be approximated as: 

 
1 1

0

ˆ( , ) ( , ) ( ) ( ( ))
P

L L L

i i

i

E E E  
−

=

 =x x x Ψ η  (5.37) 

 
2 1

0

ˆ( , ) ( , ) ( ) ( ( ))
P

L L L

m m

m

     
−

=

 =x x x Ψ ς  (5.38) 
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By applying the same algorithm as mentioned in the previous section, the stochastic 

stiffness and mass matrices ( )K  and ( )M  can also be reformulated as, 

 
1 1

0

( ) ( ( ))
P

i i

i

 
−

=

=K K Ψ η  (5.39) 

 
2 1

0

( ) ( ( ))
P

m m

m

 
−

=

=M M Ψ ς  (5.40) 

Specifically, for each iK  and mM  of a specific element e , they can be represented as 

follows, 

 
0

e

e L T

i i
D

E dD= K B D B  (5.41) 

 
e

e L T

m m
D

dD= M N N  (5.42) 

Finally, in order to provide a unified formulation, the stochastic stiffness and mass 

matrices ( )K  and ( )M  are approximated by a finite decomposition in the following 

forms, 

 
1

0

( ) ( ( ))
L

i i

i

 
=

=K K φ η  (5.43) 

 
2

0

( ) ( ( ))
L

m m

m

 
=

=M M φ ς  (5.44) 

where all the terms are corresponding to Eq.(5.35), Eq.(5.36) or Eq.(5.39), Eq(5.40) 

respectively, which are depending on whether the Gaussian or lognormal random field is 

adopted to model ( , )E x  and ( , ) x . 
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For the stochastic responses ( )   and ( )Φ  that are formulated in Eq.(5.7), the aPC 

approach can be implemented to approximate them as ˆ( )   and ˆ ( )Φ , respectively. 

Since 
1

{ ( )}i   and 
2

{ ( )}i   are random parameters of the stochastic eigenvalue problem, 

the aPC should be constructed with respect to a 1 2( )M M+ -dimensional random vector 

1 2
{ ( ), ( )}i i    . For the Pth-order truncation, ˆ( )   and ˆ ( )Φ  can be represented as 

follows, 

 
1

0

ˆ( ) ( ( ), ( ))
P

l l

l

    
−

=

= Ψ η ς  (5.45) 

 
1

0

ˆ ( ) ( ( ), ( ))
P

j j

j
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−

=

=Φ Φ Ψ η ς  (5.46) 

Then, substituting Eqs.(5.43), (5.44), (5.45), and (5.46) into Eq.(5.7), the stochastic 

generalized eigenvalue problem can be reformulated as: 

 
1 21 1 1

0 0 0 0 0

L LP P P

i j i j l m j m l j

j i j l m

r
− − −

= = = = =

= + K Φ φ Ψ M Φ φ Ψ Ψ  (5.47) 

where r  denotes a random residual vector due to the finite term approximation. The 

residual can be minimized by requiring it to be orthogonal to the approximation subspace 

spanned by 1

0{ ( ( ))}P

k k −

=Ψ η , resulting in 

1 21 1 1

0 0 0 0 0

, 0,..., 1
L LP P P

i j i j k l m j m l j k

j i j l m

k P
− − −

= = = = =

= = − K Φ φ Ψ Ψ M Φ φ Ψ Ψ Ψ  (5.48) 

Similarly, the normalization condition in Eq.(5.8) can be expressed as follows 

 
21 1

0

0 0 0

, 0,..., 1
LP P

T

i m j m i j k k

i j m

k P
− −

= = =

= = −Φ M Φ φ Ψ Ψ Ψ  (5.49) 
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Assuming N N

i

K , the stochastic generalized eigenvalue problem can be 

transformed into a set of ( )NP P+  nonlinear deterministic equations for each physical 

mode of the structure with stochastic parameters. To solve the system of nonlinear 

equations, different algorithms can be adopted. In this paper, the Newton-Raphson (NR) 

method is adopted to solve the system of nonlinear equations. 

Eqs.(5.48) and (5.49) can be written in the form of ( ) 0=R x  where ( )NP P+x  is a 

vector containing the set 0 1 0 1{ ,..., , ,..., }P P  − −Φ Φ . Expanding ( )R x  by the Taylor series 

around x  results 

 2( ) ( ) ( )O+ = +  + R x x R x J x x  (5.50) 

where  

 i
ij

j


=


R
J

x
 (5.51) 

In order to search for the zeros of ( )R x , imposing ( )+  =R x x 0  and neglecting the 

higher-order terms results: 

  = −J x R  (5.52) 

which can compute x , updating the estimate of x  by 

 new old= +x x x  (5.53) 

For Eq.(5.48), these can be expressed as 

1 21 1 1

0 0 0 0 0

, 0,..., 1
L LP P P

k i j i j k l m j m l j k

j i j l m

k P
− − −

= = = = =

= − = − R K Φ φ Ψ Ψ M Φ φ Ψ Ψ Ψ  (5.54) 
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1 21

0 0 0

, 0,..., 1, 0,..., 1
L LP

k
i i j k l m m l j k

i l mj

k P j P
−

= = =


= − = − = −


 

R
K φ Ψ Ψ M φ Ψ Ψ Ψ

Φ
 (5.55) 

 
21

0 0

, 0,..., 1, 0,..., 1
LP

k
m j m l j k

j ml

k P l P


−

= =


= − = − = −




R
M Φ φ Ψ Ψ Ψ  (5.56) 

where kR  denotes the set of N  functions in Eq.(5.49) that is corresponding each k . 

For Eq.(5.49), by denoting the lth term of the vector jΦ  as jlΦ , these can be 

expressed as  

 
21 1

0

0 0 0

, 0,..., 1
LP P

T

k i m j m i j k k

i j m

k P
− −

= = =

= − = −R Φ M Φ φ Ψ Ψ Ψ  (5.57) 

21

0

0 0

2 ( ) , 0,..., 1, 0,..., 1
LP

k
in m nl m i j k k

i mjl

k P j P
−

= =


= − = − = −




R
Φ M φ Ψ Ψ Ψ

Φ
 (5.58) 

 0, 0,..., 1, 0,..., 1k

j

k P j P



= = − = −



R
 (5.59) 

where kR  denotes the function in Eq.(5.49) that is corresponding to each k. Detailed 

derivations of Eqs.(5.58) and (5.59) are presented in Appendix 5A. The Jacobian matrix 

J  is calculated from Eqs.(5.55), (5.56), (5.58), and (5.59). x  can be obtained from 

Eq.(5.52). Finally, the updated result newx  can be obtained from Eq.(5.53). The whole 

procedure is iterated until a pre-defined tolerance is satisfied, which is imposed here using 

the quantity R . In order to more effectively illustrate the proposed SSIGA approach for 

stochastic free vibration analysis, the following flowchart is presented in Figure 5.1. 
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Figure 5.1 Flowchart of SSIGA approach for stochastic free vibration analysis 
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5.5 Numerical examples 

To demonstrate the accuracy, efficiency and applicability of the proposed SSIGA 

framework for stochastic free vibration analysis of engineering structures with random 

fields, two numerical examples are thoroughly investigated in this section. For the first 

numerical example, the proposed method is implemented for a circular strip Mindlin plate. 

For the second numerical example, a flower-shape Kirchhoff-Love shell is investigated 

by the proposed method. Since the closed-form analytical solutions are absent for the two 

numerical examples, all the results obtained within SSIGA framework are partially 

compared with Monte Carlo Simulation method with large simulation size. The Monte 

Carlo Simulation adopted herein is achieved by repeatedly executing the deterministic 

IGA with one possible realization of the random field at each cycle until the predefined 

total number of simulations is reached. Within the context of the presented numerical 

examples, all random numbers are generated by employing the Statistics toolbox of 

MATLAB R2018a, also the evaluation of IGA basis functions is based on the technique 

presented in (V. P. Nguyen et al., 2015). 

5.5.1 Numerical example: circular strip Mindlin plate 

In the first numerical example, a circular strip Mindlin plate involving spatially 

dependent uncertain Young’s modulus and material density is investigated. The thickness 

of the plate is 0.1m. The general structural layout and the adopted IGA mesh of the 

investigated plate are shown in Figure 5.2. The plate is clamped at its inner edge. Both 

the Young’s modulus and material density of the plate is modelled as homogeneous 

Gaussian random field for the purpose of demonstration only, and for a specific point 0x , 

0
( , )

200GPaGE 
 =

x
,

0
( , )

20GPaGE 
 =

x
, 

0

3

( , )
5700kg/mG 

 =
x

, and 
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0

3

( , )
570kg/mG 

 =
x

. The exponential covariance function in Eq.(16) with 5ml =  is 

adopted in two random field modellings. 

Within the proposed SSIGA framework, the Young’s modulus and material density 

are assumed as homogeneous Gaussian random fields, which are decomposed by the 

generalized isogeometric basis functions based K-L expansion approach with three terms. 

All the stochastic eigensolutions are estimated by different orders of aPC (i.e. 1-order 

aPC, 2-order aPC, 3-order aPC.). The proposed Galerkin-based method is applied to solve 

the coefficients of the aPCs, and the tolerance for the Newton-Raphson method is 

predefined as 710− . Moreover, the MCS approach with 1,000,000 simulation cycles was 

adopted for result verification. 

   

 (a) (b) (c) 

Figure 5.2 Circular stripe plate (a) 3D view; (b) top view; (c) IGA refinement  

By utilizing the proposed SSIGA approach and MCS method with 1,000,000 

simulations, the first two statistical moments (i.e., mean and standard deviation) of the 

first five eigenvalues represented by aPCs with different orders are reported in Table 1. 

As evidently illustrated in Table 5.1, the means and standard deviations of the considered 

eigenvalues obtained by the Galerkin method are having excellent agreement with the 

MCS approach. Moreover, when the order of the aPC is increased, both means and 

standard deviations of the considered eigenvalues are converged. Indeed, an aPC with 
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order 3 has illustrated the competence on providing excellent approximation of the 

eigenvalue in compassion with the MCS method in this numerical example. For each 

investigated eigenvalue, it can be observed that the mean and standard deviation obtained 

by the aPC approach are slightly larger than the MCS results. The reason for such 

phenomenon is that the proposed Galerkin method within the SSIGA provides an 

approximation to the complete probabilistic description of eigenvalues, whereas the MCS 

simulation heavily relies on the quality of underlying random number generator and the 

quantity of simulation cycles, which, in general, cannot provide an approximation to the 

complete probability space. 

In addition to the validation of the proposed SSIGA for stochastic free vibration 

analysis through the Galerkin-based approach on the determination of the first two 

statistical moments of the concerned eigenvalues, the proposed approach is also 

implemented for the estimations of the PDFs and CDFs of the first five eigenvalues based 

on the same 1,000,000 realizations of the considered random fields implemented in the 

MCS approach. Within this part of investigation, all PDFs and CDFs of the concerned 

eigenvalues were established by implementing a non-parametric statistical inference 

technique known as the kernel density estimation approach. All the PDFs and CDFs of 

the first five eigenvalues are established and reported in Figures 5.3-5.7, respectively. 

From the information presented in Figures 5.3-5.7, it is evidently illustrated that the 

proposed SSIGA approach is competent for establishing the PDFs and CDFs of the 

concerned eigenvalues. From the quantitative assessment on the relative errors between 

the SSIGA approach and MCS approach, a crucial point can be realized from this 

investigation is that when the order of the aPC is increased, the quality of estimations on 

the PDFs and CDFs of the proposed SSIGA approach would be improved comparing to 

the MCS results. Also, the maximum relative error between the SSIGA approach with 3-
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order aPC and the MCS results is less than 0.06% , which is small enough to evidently 

demonstrate the accuracy and applicability of the proposed SSIGA approach for the 

stochastic generalized eigenvalue problems. 

Table 5.1 Comparison for the first five eigenvalues between SSIGA and MCS 

approaches 

Statistical 

characteri

stics 

Methods 1  2  3  4  5  

Mean 

 

MCS 

6.2314e+

03 

2.6405e+

04 

5.3217e+

04 

1.6624e+

05 

4.6167e+

05 

SSIGA (1-

order aPC) 

6.2324e+

03 

2.6407e+

04 

5.3219e+

04 

1.6626e+

05 

4.6172e+

05 

SSIGA (2-

order aPC) 

6.2328e+

03 

2.6408e+

04 

5.3221e+

04 

1.6626e+

05 

4.6173e+

05 

SSIGA (3-

order aPC) 

6.2328e+

03 

2.6408e+

04 

5.3221e+

04 

1.6626e+

05 

4.6173e+

05 

Standard 

deviation 

MCS 

7.1930e+

02 

2.8692e+

03 

5.5443e+

03 

1.6297e+

04 

5.0021e+

04 

SSIGA (1-

order aPC) 

7.1270e+

02 

2.8470e+

03 

5.4994e+

03 

1.6182e+

04 

4.9736e+

04 

SSIGA (2-

order aPC) 

7.1999e+

02 

2.8715e+

03 

5.5496e+

03 

1.6319e+

04 

5.0133e+

04 

SSIGA (3-

order aPC) 

7.2017e+

02 

2.8720e+

03 

5.5508e+

03 

1.6321e+

04 

5.1040e+

04 
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 (a) (b) (c) 

Figure 5.3 Esitimated (a) PDF, (b) CDF, (c) relative error of CDF of the 1st 

eigenvalue 1  

   

 (a) (b) (c) 

Figure 5.4 Esitimated (a) PDF, (b) CDF, (c) relative error of CDF of the 2nd 

eigenvalue 2  

   

 (a) (b) (c) 

Figure 5.5 Esitimated (a) PDF, (b) CDF, (c) relative error of CDF of the 3rd 

eigenvalue 3  
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 (a) (b) (c) 

Figure 5.6 Esitimated (a) PDF, (b) CDF, (c) relative error of CDF of the 4th 

eigenvalue 4  

   

 (a) (b) (c) 

Figure 5.7 Esitimated (a) PDF, (b) CDF, (c) relative error of CDF of the 5th 

eigenvalue 5  

Moreover, after assessing the quality of the aPC estimations on the eigenvalues 

through various compassions between the proposed method and the MCS approach, the 

first five physical modes and the eigenvalues that are corresponding to three specific 

events 0 1 2, ,     are obtained by the proposed SSIGA approach. That is, for each 

event, all the random variables characterizing the system are obtained correspondingly 

and the eigenvectors are evaluated through the constructed aPCE. The physical modes 

obtained by the proposed SSIGA approach are compared with the corresponding MCS 

results. Figures 5.8-5.12 report the five physical modes and the corresponding 
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eigenvalues obtained by the MCS and the proposed SSIGA with 3-order aPC approaches. 

By closely examining these figures, different events can certainly result large variations 

on eigenvalues, but barely influence the corresponding physical mode shape of the 

original structure. That is, the considered uncertain material properties in this example 

does not influence the general shape of each physical mode of the structure.  

   

(a) 

   

(b) 

Figure 5.8 1st eigenvalue and eigenvector obtained by (a) the MCS and (b) the 

proposed SSIGA with 3-order aPC approaches at specific events 0 , 1 , and 2 . 
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(a) 

   

(b) 

Figure 5.9 2nd eigenvalue and eigenvector obtained by (a) the MCS and (b) the 

proposed SSIGA with 3-order aPC approaches at specific events 0 , 1 , and 2 . 

   

(a) 

   

(b) 

Figure 5.10 3rd eigenvalue and eigenvector obtained by (a) the MCS and (b) the 

proposed SSIGA with 3-order aPC approaches at specific events 0 , 1 , and 2 . 
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(a) 

   

(b) 

Figure 5.11 4th eigenvalue and eigenvector obtained by (a) the MCS and (b) the 

proposed SSIGA with 3-order aPC approaches at specific events 0 , 1 , and 2 . 

   

(a) 
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(b) 

Figure 5.12 5th eigenvalue and eigenvector obtained by (a) the MCS and (b) the 

proposed SSIGA with 3-order aPC approaches at specific events 0 , 1 , and 2 . 

For this numerical example, the results of the MCS approach were obtained by running 

on a workstation with Intel Core i7-6700 3.4GHz and 16 GB RAM. For the first five 

physical modes and corresponding eigenvalues, the MCS with 1,000,000 simulation 

cycles were executed by parallel computing with 4 workers on this computer and costed 

16 hours 9 minutes 21 seconds. On the other hand, for each physical mode, the SSIGA 

with 3-order aPC was obtained on the same computer without implementing parallel-

computing. The computational time of the Galerkin approach for a single physical mode 

is 13 minutes 27 seconds, and it is about 68 minutes for the first five physical modes. 

Therefore, based on the reported technical information, the proposed SSIGA approach 

certainly shows superior computational efficiency over the exhaustively simulative MCS 

approach for the circular strip Mindlin plate. 

5.5.2 Numerical example: flower Kirchhoff -Love shell 

In the second numerical example, a flower shaped Kirchhoff-Love shell (Kiendl et al., 

2009) involving spatially dependent uncertain Young’s modulus and material density is 

investigated to further explore the applicability of the SSIGA approach, especially for 

engineering structures with irregular and complex geometry. The thickness of the shell is 
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0.02m. The general structural layout and the adopted IGA refinement of the investigated 

flower shaped shell are shown in Figure 5.13. The shell is constrained at the two edges of 

the base of the shell with 0, 0, 0u v w= = =  as indicated in Figure 13(a). Both the Young’s 

modulus and material density of the shell are modelled as homogeneous Lognormal 

random fields, and for a specific point 0x , 
0

( , )
210GPaLE 

 =
x

, 
0

( , )
21GPaLE 

 =
x

, 

0

3

( , )
7800kg/mL 

 =
x

, and 
0

3

( , )
780kg/mL 

 =
x

. The Bessel covariance function 

expressed in Eq.(16) with 5ml =  is adopted for the two random fields modelling. 

  

 (a) (b) 

  

3m 

4m 

4m 
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 (c) (d) 

Figure 5.13 Flower shell (a) 3D view; (b) front view; (c) top view; (d) IGA 

refinement 

Within the proposed SSIGA framework, the underlying Gaussian random fields of the 

corresponding Lognormal random fields are both decomposed by the K-L expansion with 

three terms, and the Lognormal random fields are represented by the aPC with 4-order. 

All the stochastic eigensolutions are estimated by the aPC approach with three different 

orders of expansion (i.e. 1-order aPC, 2-order aPC, 3-order aPC.). The proposed Galerkin-

based method is applied to solve the coefficients of the aPCs, and the tolerance for 

Newton-Raphson method is predefined as 710− . Moreover, the MCS approach with 

1,000,000 simulation cycles was adopted for partially verifying the results. 

In this example, the first two statistical moments of the first five eigenvalues obtained 

from the MCS and the proposed SSIGA approaches are reported in Table 2. By closely 

examining Table 5.2, an agreement of results between the SSIGA and MCS approaches 

can be observed for both the means and standard deviations of the first five eigenvalues. 

In addition to the validation of the proposed method on the determination of the first 

two statistical moments of the concerned eigenvalues, the SSIGA approach is further 

implemented to estimate the PDFs and CDFs of the first five eigenvalues. All the PDFs 

and CDFs of the first five eigenvalues are established based on the SSIGA result and 

reported in Figure 5.14-5.18, respectively. From the quantitative assessment on the 

relative errors between the SSIGA and MCS approaches, higher order aPCs can always 

deliver a better approximation than the MCS approach. Also, the maximum relative error 

between the SSIGA with 3-order aPC and MCS methods is less than 0.04% , which is 
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small enough to prove the accuracy and applicability of the proposed SSIGA method for 

the stochastic free vibration analysis for shell structures with complex geometries. 

Table 5.2 Comparison for the first five eigenvalues between the SSIGA and MCS 

approaches 

Statistical 

characteri

stics 

Methods 1  2  3  4  5  

Mean 

MCS 

6.7216e+

03 

2.9467e+

04 

8.6343e+

04 

1.2122e+

05 

1.8887e+

05 

SSIGA (1-

order aPC) 

6.7219e+

03 

2.9468e+

04 

8.6346e+

04 

1.2123e+

05 

1.8888e+

05 

SSIGA (2-

order aPC) 

6.7220e+

03 

2.9469e+

04 

8.6348e+

04 

1.2123e+

04 

1.8888e+

05 

SSIGA (3-

order aPC) 

6.7220e+

03 

2.9469e+

04 

8.6348e+

04 

1.2123e+

04 

1.8888e+

05 

Standard 

deviation 

MCS 

8.9758e+

02 

3.8973+0

3 

1.1311e+

04 

1.5874e+

04 

2.4681e+

04 

SSIGA (1-

order aPC) 

8.9043e+

02 

3.8672e+

03 

1.1226e+

04 

1.5757e+

04 

2.4490e+

04 

SSIGA (2-

order aPC) 

8.9824e+

02 

3.9005e+

03 

1.1320e+

04 

1.5887e+

04 

2.4701e+

04 

SSIGA (3-

order aPC) 

8.9831e+

02 

3.9008e+

03 

1.1321e+

04 

1.5888e+

04 

2.4702e+

04 
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 (a) (b) (c) 

Figure 5.14 Esitimated (a) PDF, (b) CDF, (c) relative error of CDF of the 1st eigenvalue 

1  

   

 (a) (b) (c) 

Figure 5.15 Esitimated (a) PDF, (b) CDF, (c) relative error of CDF of the 2nd 

eigenvalue 2  

   

 (a) (b) (c) 

Figure 5.16 Esitimated (a) PDF, (b) CDF, (c) relative error of CDF of the 3rd 

eigenvalue 3  
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 (a) (b) (c) 

Figure 5.17 Esitimated (a) PDF, (b) CDF, (c) relative error of CDF of the 4th 

eigenvalue 4  

   

 (a) (b) (c) 

Figure 5.18 Esitimated (a) PDF, (b) CDF, (c) relative error of CDF of the 5th 

eigenvalue 5  

Furthermore, after successfully establishing the aPC estimations of eigenvalues and 

eigenvectors by the proposed method, the first five physical modes and eigenvalues that 

are corresponding to three specific events 3 4 5, ,     are obtained by the aPC approach 

with 3-order. Once again, the physical modes obtained from the SSIGA approach is 

compared with the results of the MCS method. Figures 5.19-5.23 report the five physical 

modes and the corresponding eigenvalues obtained by the MCS and the proposed SSIGA 

approaches with 3-order aPC. Once again, as illustrated in Figures 5.19-5.23, different 

events do result large variations on the eigenvalues, but still barely influence the 

corresponding physical mode shape. 
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(a) 

   

(b) 

Figure 5.19 1st eigenvalue and eigenvector obtained by (a) the MCS and (b) the 

proposed SSIGA with 3-order aPC approaches at specific events 3 , 4 , and 5  

   

(a) 
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(b) 

Figure 5.20 2nd eigenvalue and eigenvector obtained by (a) the MCS and (b) the 

proposed SSIGA with 3-order aPC approaches at specific events 3 , 4 , and 5 . 

   

(a) 

   

(b) 

Figure 5.21 3rd eigenvalue and eigenvector obtained by (a) the MCS and (b) the 

proposed SSIGA with 3-order aPC approaches at specific events 3 , 4 , and 5 .  
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(a) 

   

(b) 

Figure 5.22 4th eigenvalue and eigenvector obtained by (a) the MCS and (b) the 

proposed SSIGA with 3-order aPC approaches at specific events 3 , 4 , and 5 . 

   

(a) 
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(b) 

Figure 5.23 5th eigenvalue and eigenvector obtained by (a) the MCS and (b) the 

proposed SSIGA with 3-order aPC approaches at specific events 3 , 4 , and 5 . 

For the flower shaped Kirchhoff-Love shell example, the results of the MCS approach 

were obtained by running on a workstation with Intel Core i7-6700 3.4GHz and 16 GB 

RAM. For the first five physical modes and corresponding eigenvalues, the MCS with 

1,000,000 simulation cycles were executed by parallel computing with 4 workers on this 

computer and costed 49 hours 51 minutes 33 seconds. On the other hand, for each physical 

mode, the SSIGA approach with 3-order aPC was executed on the same computer without 

implementing the parallel-computing techniques. The computational time of the SSIGA 

approach for a single physical mode was about 1 hour 5 minutes 26 seconds, and it was 

about 5 hour 27 minutes 10 seconds for the entire computation of the first five physical 

modes. Therefore, the proposed SSIGA approach certainly demonstrates much higher 

superiority on the computational efficiency over the exhaustively simulative MCS 

approach for the Kirchhoff-Love shell with complex geometry example. 

5.6 Conclusion 

In this chapter, a brand new SSIGA approach is proposed for the stochastic free 

vibration analysis for engineering structures involving random fields. The uncertain 
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Young’s modulus and material density are modelled as Gaussian and non-Gaussian 

random fields to incorporate the spatial variation effects of the uncertain system 

parameters. The arbitrary polynomial chaos expansion is firstly introduced into SSIGA 

framework to investigate the stochastic generalized eigenvalues problems. A Galerkin-

based computational approach is proposed to transform the stochastic generalized 

eigenvalue problem into a group of nonlinear equations, whose solution is the coefficients 

of the aPC for eigenvalues and eigenvectors. Newton-Raphson method is adopted to solve 

the nonlinear equations. Finally, statistical moments with different orders can be 

effectively obtained. In addition, PDFs and CDFs of the eigenvalues can also be 

established through statistical inference techniques. Two distinctive numerical examples 

are comprehensively investigated, so the accuracy, efficiency and applicability of the 

proposed SSIGA for stochastic free vibration of engineering structures can be evidently 

illustrated. 

Appendix 5A. Detailed derivations of Eqs.(5.58) and (5.59) 

The detailed formulation for the derivatives of Eq.(5.57), i.e. Eq.(5.58) and Eq.(5.59), 

are formulated in this section. 

Firstly, the Eq.(5.57) is as follows 

 
21 1

0

0 0 0

, 0,..., 1
LP P

T

k i m j m i j k k

i j m

k P
− −

= = =

= − = −R Φ M Φ φ Ψ Ψ Ψ  (5A.1) 

Obviously, this equation does not contain any terms containing j , therefore, Eq.(5.59) 

can be obtained easily, 

 0, 0,..., 1, 0,..., 1k

j

k P j P



= = − = −



R
 (5A.2) 
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Denoting mijk m i j k = φ Ψ Ψ Ψ , and representing kR  in a tensor form as follows, 

 
21 1

0

0 0 0

( )
LP P

k in m nl jl mijk k

i j m


− −

= = =

=  −R Φ M Φ  (5A.3) 

Expanding above expression 

 

2

2

1

0 0 1 1

0 0

( 1) ( 1) 0

0 0 00 0 1 01

0

0 ( 1) 0( 1)

( 1) 0 ( 1)0 ( 1)

[ ( ) ( )

( ) ]

[ ( ) ( )

( )

( ) ( )

LP

k in m nl l mi k in m nl l mi k

i m

in m nl P l mi P k k

L

n m nl l m k n im nl l m k

m

n m nl P l m P k

P n m nl l m P k P n m nl
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−

= =

− −

=

− −

− − −

=  + 

+ +  −

=  + 

+ + 

+ +  +





R Φ M Φ Φ M Φ

Φ M Φ

Φ M Φ Φ M Φ

Φ M Φ

Φ M Φ Φ M Φ

2 2

1 ( 1)1

( 1) ( 1) ( 1)( 1) 0( ) ]

l m P k

P m i ml P l i P P k k

−

− − − −



+ +  −Φ M Φ
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where jlΦ  denotes the lth term of jΦ .  

The partial derivative of Eq.(5A.4) with respect to any element, for example 0lΦ , is 
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Because 
2 2i ijk i jik =  , which can be easily proved by the definition, the above 

expression can be expressed as 
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Then, in general, Eq.(5.58) can be obtained 
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Chapter 6  

SPECTRAL STOCHASTIC 

ISOGEOMETRIC ANALYSIS FOR 

LINEAR STABILITY ANALYSIS OF 

PLATE 

6.1 Summary 

Chapter 6 presents spectral stochastic isogeometric analysis (SSIGA) scheme for the 

stochastic linear stability analysis of plate with uncertain material properties. Within the 

proposed SSIGA scheme, the first-order shear deformation theory of plate is adopted for 

modelling the kinematic relationship. 

The structure of Chapter 6 is briefed as follows. The concept of IGA and the linear 

stability analysis of FGM plate via IGA are briefly introduced in Section 6.3. 

Subsequently, the proposed SSIGA for the stochastic linear stability analysis of FGM 

plate is presented in Section 6.4. Two numerical examples are thoroughly investigated to 

illustrate the accuracy, efficiency and applicability of the proposed stochastic analysis 

framework in Section 6.5. Finally, some conclusions are drawn in Section 6.6. 

The research work developed in Chapter 6 has produced one journal paper which has 

been published in Computer Methods in Applied Mechanics and Engineering, detailed as: 
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Li, K., Wu, D. and Gao, W., 2019. Spectral stochastic isogeometric analysis for linear 

stability analysis of plate. Computer Methods in Applied Mechanics and Engineering. 

352, pp.1-31. 

6.2 Introduction 

A novel computational stochastic analysis framework, namely the spectral stochastic 

isogeometric analysis (SSIGA), is introduced for the stochastic linear stability analysis of 

plates with uncertain material properties and complex geometries. The proposed SSIGA 

scheme is applicable to different material models, for example homogeneous material, 

functionally graded material, and functionally graded porous material (Li, Wu, et al., 

2018), etc. Within the proposed stochastic linear stability analysis framework, both 

spatially independent (i.e. random variables, random vectors) and dependent (i.e. random 

fields) uncertain parameters are taken into consideration. Also, random fields with 

Gaussian and non-Gaussian distributions can be incorporated within this new 

computational stochastic analysis. Moreover, by adopting the geometric representation 

techniques of the CAD environment (e.g., NURBS, T-spline etc.), both the geometry of 

the engineering structure and the associated material uncertainties can be consistently 

represented within a single scheme. Consequently, the SSIGA approach can robustly 

maintain the precise geometric information of the engineering structure at both initial 

design and stochastic analysis stages (Li, Gao, et al., 2018). Moreover, the basis functions 

within the CAD environment possess higher-order continuity over the whole physical 

domain. Such feature offers a globally smooth Karhunen-Loève (K-L) discretization for 

the considered random fields. In addition, since the geometric transformation between 

CAD and CAE is eliminated, the computational efficiency of the stochastic linear stability 

analysis of FGM plate can be dramatically improved. Furthermore, an extended support 
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vector regression (X-SVR) with a generalized Gegenbauer polynomial kernel is 

developed, and then implemented within the SSIGA approach for establishing the 

statistical characteristics (e.g., mean and standard deviation etc.) of the structural buckling 

load. Since the proposed X-SVR approach is a non-intrusive sampling scheme, both the 

probability density function (PDF) and cumulative distribution function (CDF) of the 

critical buckling load of the FGM plate can be effectively established with relatively small 

sampling size. Therefore, the computational efficiency can be significantly reduced when 

comparing with the crude full-scale Monte-Carlo simulation (MCS) technique. The 

accuracy, efficiency, and applicability of the proposed approach are illustrated through 

two numerical examples. 

6.3 Stochastic linear stability analysis 

6.3.1 The first-order shear deformation theory of plate 

Let D  denote a domain in 2  occupied by the mid-plane of a plate with thickness h . 

According to the FSDT, the kinematic relationship of the plate is defined as: 

 

0

0

0

( , , ) ( , ) ( , )

( , , ) ( , ) ( , ),
2 2

( , . ) ( , )

x

y

u x y z u x y z x y

h h
v x y z v x y z x y z

w x y z w x y





= −



= − −  


=

 (6.1) 

where 0u  and 0v  are the in-plane displacements of the mid-plane; 0w  is the out-of-plane 

displacement of the mid-plane; x  and y  are the rotations in the x-z, y-z planes, 

respectively. Thus, the displacement fields of the plate are: 

 
T{ , , , , }x yu v w  =u  (6.2) 
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Since the FSDT plate is well developed, the relevant formulation derivations are 

provided in Appendix A. Based on Appendix A, an eigenvalue problem for the pre-

buckling equilibrium state based on load step nt  is obtained through Eq.(6A.9). The 

lowest eigenvalue is considered as an estimation of the critical load factor cr . By 

neglecting the second-order term, the final eigenvalue problem can be formulated as 

 1( , , ) ( , , ) ( , , ) 0n n n n na A G     = + =u y y u y y u y y  (6.3) 

6.3.2 The linear stability analysis through IGA 

By implementing the IGA basis functions to represent the mid-plane of the plate, the 

displacement fields of the plate, which is presented in Eq.(6.2), can be interpreted as 

follow, 

 ( ) ( )
cp

R=
N

P

I I

I

u ξ ξ u  (6.4) 

where RP

I  denotes the isogeometric basis function of the Ith control point; 

T

0 0 0{ , , , , }x yu v w  =
I I I I I I

u  denotes the degrees of freedom of the Ith control point 

Therefore, the in-plane strains iε , the bending strains bε , and the shear strains sε  are 

represented as follows, 

 
1

( )
2

L NL L NL

i i i i i= + = +ε ε ε B B a , b b=ε B a , s s=ε B a  (6.5) 

where T

1 2{ , , , }
cp

= Na u u u  denotes the degree of freedoms of the whole system; 

1 2{ , , , }
cp

L L L L

i i i i= NB B B B , 1 2{ , , , }
cp

NL NL NL NL

i i i i= NB B B B , 1 2{ , , , }
cpb b b b= NB B B B , and 
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1 2{ , , , }
cps s s s= NB B B B  are kinematic matrices with L

iIB , NL

iIB , bIB , and sIB  are 

formulated as, 
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(6.6) 

Subsequently, the variations of the in-plane strains iε , the bending strains bε , and 

the shear strains sε  are represented as follows, 

 ( )L NL L NL

i i i i i   = + = +ε ε ε B B a , b b =ε B a , s s =ε B a  (6.7) 

And iε , bε , and sε  are obtained as 

 ( )L NL L NL

i i i i i =  +  = + ε ε ε B B a , b b = ε B a , s s = ε B a  (6.8) 

By adopting the IGA formulations, the linear stiffness matrix can be formulated as: 

 ib s= +K K K  (6.9) 

where ibK  denotes the linear in-plane-bending stiffness matrix 

 

T
L L

i i

ib
D

b b

dD
    

=     
    


b

A BB B
K

B DB B
 (6.10) 

and sK  denotes the shear stiffness matrix 

 
T

s s s s
D

dD= K B D B  (6.11) 
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Moreover, the nonlinear in-plane stiffness matrix within the scheme of IGA is 

formulated as: 

 ( )T T( ) ( )NL L NL NL L

i i i i i
D

dD= +K B AB B AB  (6.12) 

and the initial stress matrix can be formulated as: 

 
T Tˆ
i i

D D
dD dD =  = K ε σ S σS  (6.13) 

where 
x xy

xy y

N N

N N

 
=  
 

σ  is composed of in-plane stress resultants ˆ
iσ  at load step nt ; S  is 

defined as 

 
1, ,

1, ,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

cp

cp

x x

y y

R R

R R

 
 =
  

P P

N

P P

N

S  (6.14) 

Consequently, the linear stability of the plate through the analysis framework of IGA 

can be explicitly formulated as: 

 ( ) ( )n NL

ib s i  + + + = K K K K y 0  (6.15) 

6.3.3 Stochastic linear stability analysis for the plate 

The intrinsic randomness of a physical system has been widely acknowledged. By 

considering the uncertainties through the physical system parameters, i.e., Young’s 

modulus ( )E  , Poisson’s ratio ( )  , and the gradient index of FGM ( )n  , the stochastic 

linear stability analysis of plate is transformed into a stochastic eigenvalue problem, 

 ( ( ) ( )) ( )( ( ) ( )) ( )n NL

ib s i        + + + = K K K K y 0  (6.16) 
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where    and ( , , )F   is the probability space associated with the underlying 

physical experiments. 

The stochastic linear stability analysis aims to characterize the stochastic buckling load 

with the consideration of the whole sample space  , which represents all the possible 

events involved within the physical system. Such problem is very challenging to be solved 

by traditional uncertainty quantification methods. Firstly, the stochastic eigenvalue 

problem has always been a very complex problem in mathematics. Both generalized 

analytical and numerical solutions are unavailable for stochastic eigenvalue problem 

inspired from engineering practices. Moreover, compared with the stochastic linear 

elasticity analysis, the stochastic linear stability analysis is a stochastic eigenvalue 

problem coupled with a stochastic linear elasticity analysis. Two levels, yet coupled, of 

randomness have forged the stochastic linear stability analysis to become an intricate 

problem that is extremely difficult for the traditional non-sampling stochastic methods. 

However, the stochastic linear stability analysis is critical for engineering practices since 

the structure may fail before yielding. Therefore, it is necessary to develop an effective 

and efficient method to conquer such difficulty. 

6.4 SSIGA for the stochastic linear stability analysis 

6.4.1 The extended support vector regression (X-SVR) 

6.4.1.1 The linear X-SVR 

The Support Vector Machine (SVM) is a supervised learning algorithm which was 

initially introduced by Vapnik (Vapnik, 2013) for binary classification problem and 

subsequently, extended to regression (Drucker et al., 1997) and multinomial 

classifications (Hsu and Lin, 2002). Among many established SVMs, the pq-SVM 
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(Dunbar et al., 2010) is an excellent candidate for binary classification. By extending the 

pq-SVM, a decomposition process is firstly adopted to eliminate the L1-norm 
1

w  

computation so a new X-SVR is developed. 

Given a particular training dataset with input T

1 2[ , ,..., ,..., ] m n

train i m

= x x x x x  

( , 1, 2,...,n

i i m =x ) and output T

1 2[ , , , , , ] m

train i my y y y= y , the hyperplane that 

separating the two classes can be defined as Tˆ ( )f = −x w x  where m  denotes the 

number of training samples; n  denotes the number of input variables; 

T

1 1[ , , , , , ] n

i nw w w w= w denotes the normal vector of the hyperplane; and    

denotes the bias. A quadratic  -insensitive loss function (i.e., 2l
 ) is implemented herein 

as: 

 
2

2
ˆ ˆ( ( )) ( ) , 1,...,i i i il y f y f i m − = − =x x  (6.17) 

to improve the numerical stability when solving the succeeding mathematical programs. 

Consequently, the governing formulation for the proposed X-SVR can be explicitly 

expressed as: 

 ( ) ( ) ( )2 21
22 2ˆ, , , ,

ˆ
ˆ ˆ ˆmin :

2 2

T T T

n

c




+ + + + +

p q ξ ξ
p q e p q β β β β  (6.18a) 
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 

 
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

− − +  +


 

x p q e y e β

y x p q e e β

p q 0 β β 0

 (6.18b) 

where 1 2
ˆ ˆ,  +  denote two toning parameters which balance the classification 

performance and feature selection; ˆ, mβ β  are two non-negative slack variable vectors; 
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T[1,1,...,1] m

m = e  and [0,0,...,0]T n

n = 0  denote unit vector and zeros vector in 

dimensions of n , respectively; , np q  are two non-negative variables such that: 

0,   0 ,  0
: ( )  and : ( ) ,   1,2,...,

,  0 0,     0

w w w
p w q w for n

w w w
+ −

 −  
= = = = = 

  
 (6.19) 

Therefore, for , 0j jp q =  is guaranteed. Thus,  
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... ... ( )
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
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w e p q

w p q p q p q p q
 (6.20) 

To achieve a more simplified formulation, Eq.(6.18) can be alternatively formulated 

as: 

 ( )2

2
,
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2
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
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z Cz b z  (6.21a) 
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where 
(2 2 ) (2 2 )

(2 2 ) (2 2 )

m n m n

m n m n

+  +

+  + I  denotes an identity matrix. Also, the square of the 

bias parameter (i.e., 2 ) is added to the objective function, which provides the benefits 

of optimizing the orientation and location of the regression model simultaneously 

(Mangasarian and Musicant, 2000; Dunbar et al., 2010).The matrices Ĉ , Ĝ  and Â  are 

defined as: 
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and the vectors b , ê , d̂  and (2 2 )m n+z  are defined as: 
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 (6.23) 

The constraints on p and q being non-negative have been reinforced by Eq.(6.21b).  

Alternatively, Eq.(6.21) can be also solved through its dual formulation as follows, 

 
1

min :
2

T T−
u

u Qu m u  (6.24a) 

 2 2. .    m ns t +u 0  (6.24b) 

where 2 2m n+u  denotes the Lagrange multiplier vector;  
(2 2 ) (2 2 )m n m n+  +Q  and 

2 2m n+m  are defined as:  
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 (6.25) 

Proposition 1. Given the training dataset with input m n

train

x  and output m

train y , 

with pre-defining the positive tuning parameters for X-SVR as 1 2
ˆ ˆ, , ,c   + , the 

optimization problem defined in Eq. (6.24) is a convex quadratic programming problem.  

The proof of Proposition 1 is presented in Appendix 6B. 

Subsequently, the global optimum of the proposed X-SVR approach can be efficiently 

determined by solving the associated dual problem by any available quadratic 

programming solvers. Let 2 2m n +u  be the solution of the X-SVR, then the variables 
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z  and   can be calculated as 1

(2 2 ) (2 2 ) 2
ˆ ˆ( )T

m n m n − 

+  +
 = + −
 

z C A I u b  and ˆˆT = e Gu , 

and w  can be obtained as: 

 (1: ) ( 1: 2 )n n n= − = − +w p q z z  (6.26) 

Consequently, the established linear regression function by the proposed X-SVR 

approach can be formulated as: 

 ˆ ˆˆ( ) ( )T Tf = − −x p q x e Gu  (6.27) 

6.4.1.2 The nonlinear X-SVR 

The proposed X-SVR can also be extended to the nonlinear regression. To effectively 

transform the linear X-SVR to a kernelized learning approach, an alternative method, 

namely the empirical kernel map (Scholkopf et al., 1999; Kung, 2014), is employed 

herein. The implemented empirical kernelization can be expressed as: 

1 1
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Φ x Φ x x x

x xΦ x Φ x
x k x

x xΦ x Φ x

 (6.28) 

where ( )iΦ x  denotes the appropriate mapping function, implicitly mapping the ith input 

data n

i x  into a higher-dimensional Euclidian space or even infinite dimensional 

Hilbert feature space; ˆ ( )ik x  denotes the ith empirical feature vector with the empirical 

degree m  which is equal to the number of training samples (Kung, 2014). Such m -

dimensional vector space is defined as the empirical feature space (Xiong, Swamy and 

Ahmad, 2005). Then, the empirical feature vector ˆ ( )ik x  is regarded as the ith training 

sample for constructing the learning model. The empirical feature space is finite-
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dimensional and jointly defined by the employed kernel function and training samples 

(Kung, 2014). This kernel map approach has also been prevalently implemented in other 

kernelized learning methods, including the kernelized LASSO (Least Absolute Selection 

and Shrinkage Operator) (Gao, Kwan and Shi, 2010), the kernelized elastic net (Feng et 

al., 2016), the linear programming SVR (Dai, Zhang and Wang, 2015) as well as the 

multiple empirical kernel learning machine (Fan et al., 2017). 

Thus, given the training dataset trainx  and a specific kernel function ( , )K • • , the initial 

training samples can be transferred through the kernel matrix m m

train

K  as: 
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x x x x x x
K

x x x x x x

 (6.29) 

and the kernel matrix trainK  is utilized as the training dataset. Consequently, the nonlinear 

X-SVR problem can be formulated as: 

 
2 21

22 2ˆ, , , ,
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k k m k k

c
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
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p q ξ ξ
p q e p q β β β β  (6.30a) 
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y K p q e e β

p q β β 0

 (6.30b) 

where , m

k k p q  serve the same functions as p  and q  for the linear X-SVR; the 

subscript k  indicates a kernelized learning model. Similarly to Eq.(6.18), the kernelized 

X-SVR can also be reformulated into: 
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 4 4 4 4 4
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where the kernelized matrices ˆ
kC , ˆ

kG  and 4 4ˆ m m

k

A  are defined as: 
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  (6.32) 

and the kernelized vectors kb , ˆ
ke , ˆ

kd and 4m

k z  are defined as: 
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Once again, the mathematical program defined in Eq.(6.31) can be equivalently solved 

through its dual formulation by using the Lagrange method with the KKT conditions. By 

introducing the non-negative Lagrange multiplier 4m

k u , the proposed kernelized X-

SVR can be alternatively calculated through a quadratic program. That is, 
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 4. .    k ms t u 0  (6.34b) 

where 4 4m m

k

Q  and 4m

k m  are defined as:  
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Let 4m

k

 λ  be the solution of Eq.(6.34), the variables kz  and k  can be determined 

as 1

4 4 2
ˆ ˆ( )T

k k k m m k k− 


 = + −
 

z C A I u b  and ˆˆT

k k k = e G u . Then, the coefficient w  can be 

obtained as: 

 (1: ) ( 1: 2 )k k k km m m= − = − +w p q z z  (6.36) 

Consequently, the nonlinear regression function obtained by the proposed kernelized 

X-SVR can be formulated as: 

 ˆ ˆˆ( ) ( ) ( )T T

k k k k k kf = − −x p q k x e G u  (6.37) 

The difference between the linear and nonlinear X-SVR is that the input dataset has 

been mapped into an empirical space by utilizing the specified kernel function within the 

non-linear model. Subsequently, the kernelized X-SVR is equivalent to a linear X-SVR 

with a manipulated input samples and therefore, the convexity of the mathematical 

program is well preserved regardless of the type of kernel function. 

6.4.1.3 The generalized Gegenbauer polynomial kernel 

Inspired by the remarkable performance of the orthogonal polynomial based kernels 

for SVR/SVM, the Gegenbauer polynomial (San Kim, Kim and Rim, 2012) is 

implemented herein as a new type of kernel for X-SVR. The proposed orthogonal 

polynomial kernel is constructed by using the partial sum of the inner products of 

generalized Gegenbauer polynomials, namely the Generalized Gegenbauer Kernel 

(GGK). By adopting the strategy utilized for defining the generalized Chebyshev 

polynomial for vector inputs (Ozer, Chen and Cirpan, 2011), the generalized Gegenbauer 

polynomials are defined recursively as following: 
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where nx  denotes the column vector of input variables. It can be revealed from Eq. 

(6.38) that the generalized Gegenbauer polynomial ( )dP x  yields a scalar value when the 

polynomial order d  is an even number, otherwise it will yield a column vector. 

Moreover, the Gaussian kernel function is implemented as the weighting function for 

the proposed GGK. Consequently, the proposed nth order Generalized Gegenbauer 

Kernel function ( , )GGK i jK x x  of two arbitrary input vectors ix  and jx  is defined as: 
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l i l j
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i j

P P
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
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−

 x x

x x
x x

 (6.39) 

where each element of ix  and jx  is defined in [ 1,1]− . In this context, both   and   are 

considered as the kernel scales or the so-called decaying parameters of the proposed 

kernel function. 

It is emphasized that the proposed GGK satisfies the Mercer Theorem (Vapnik, 1998, 

2013; Smola and Schölkopf, 2004; Campbell and Ying, 2011; Kung, 2014).  

Proposition 2. The proposed GGK expressed in Eq.(6.39) is a valid Mercer kernel. 

The detailed proof of Proposition 2 is presented in Appendix 6C. 

6.4.1.4 The selection of the X-SVR model parameters 

Within the proposed X-SVR with GGK, there are seven hyperparameters presented in 

this approach which are including the two regularization parameters 1  and 2 , the 
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penalty parameter C , the insensitive tube width  , the polynomial order d  and two 

positive kernel scale parameters   and  . 

The k -fold cross-validation (CV) over the training samples is adopted herein to ensure 

the adequacy of the regression model for accurate prediction of the training dataset 

without overfitting into certain extent. Practically, k  is commonly set between 5-10 as a 

trade-off of computational cost and prediction accuracy. In this paper, the k-fold CV error 

which denoted by kCVErr  is employed as the training error measure for X-SVR.  

 
1

1 k

kCV i

i

Err err
k =

=   (6.40) 

where ierr  denotes the mean squared error (MSE) between the predicted output ˆ ( )f x  

obtained by the X-SVR model and the output of the true function ( )f x  in each fold i . 

ierr  is expressed as: 

 
2

1

1 ˆ( ( ))
im

i j j

ji

err y f
m =

= − x  (6.41) 

where im  denotes the number of training samples in the fold i . To minimize kCVErr , the 

Bayesian optimization method is integrated within the proposed X-SVR with GGK for 

adaptively selecting the suitable learning parameters. 

6.4.2 SSIGA for stochastic linear stability analysis of FGM plate 

In this paper, the Young’s modulus ( )E z  and the Poisson’s ratio ( )z  of the FGM 

plate are considered as random fields, whereas the gradient index of FGM n  is modelled 

as a lognormal random variable as presented in Chapter 5. 
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For random field ( , , )E z x  and ( , , )z x  with different distribution types, they are 

defined as  
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where ( , )G

EH x  and ( , )GH x  are homogeneous Gaussian random fields with 

predefined means, standard deviations and covariance functions; ( , )L

EH x  and ( , )LH x  

are homogeneous lognormal random fields with predefined means, standard deviations 

and covariance functions; ( )   is a lognormal random variable with predefined mean 

and variance. 

By implementing the K-L expansion, the discretization of the spatially dependent 

uncertain Young’s modulus and Poisson’s ratio of FGM plate, with 1M  and 2M  terms 

respectively, are explicitly formulated as, 
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As aforementioned, the X-SVR model is proposed within the SSIGA for the stochastic 

linear stability analysis of plate. Subsequently, an X-SVR compatible SSIGA formulation 

is proposed herein. First of all, an experiment design algorithm is meticulously proposed 

to generate the training input samples for the X-SVR model. The algorithm is briefly 

introduced in Algorithm 1. 

 

Algorithm 1. Experiment design algorithm of the SSIGA for linear stability analysis 

of plate 

where MCSn  denotes the number of MCS simulation cycles. By following Algorithm 1, 

the training input T

1 2( , , , , )train i m=x x x x x  can be generated, where m  denotes the 

size of training sample;  1 2

1 2 21 1{ ( )} ,{ ( )} , ( )
i

M M

i i i i i i i i     = ==x  denotes the random 

variables for the Young’s modulus, Poisson’s ratio and gradient index of the FGM 

corresponding to the event i  . To construct the X-SVR model for the stochastic 

linear stability problem, the corresponding output iy  (i.e., the buckling load ( )cr

i iP  , of 

Input: m , MCSn , 1M , 2M  

Output: trainx , x  

• Generate MCSn  realizations for 1M  independent Gaussian random variables, i.e., 

1MCSn M
ζ , of the random field of the Young’s modulus. 

• Generate MCSn  realizations for 2M  independent Gaussian random variables, i.e., 

2MCSn M
η , of the random field of the Poisson’s ratio. 

• Generate MCSn  realizations for the random variable with the specific distribution, i.e., 

MCSn
χ  

• Construct the inputs, i.e., 1 2( 1)
( , , ) MCSn M M + +

= x ζ η χ , for the Monte Carlo Simulation. 

• Sort x  in a descending order of the first column of x .  

• Divide x  into m  groups, select the midpoint of each group as the ith component (i.e., ix ) 

of the training sample 1 2( , , , , )T

train i m=x x x x x  
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each ix  should be calculated in prior. The calculation for the output iy  of a specific event 

i  can be formulated as follows, 

 ( ( ) ( )) ( )( ( ) ( )) ( )n NL

ib i s i i i i i i       + + + = K K K K y 0  (6.44) 

After solving the eigenvalue problem, the output iy  can be obtained as ( )cr n

i P  . 

Subsequently, the proposed X-SVR model within the SSIGA scheme can be constructed. 

To verify the accuracy of the proposed X-SVR model, the Monte-Carlo simulation 

(MCS) is implemented with large simulation cycles. In addition, the normalized mean-

square error (NMSE), the normalized average absolute error (NAAE), and the normalized 

maximum absolute error (NMAE) are provided to assess the results. 

 

2

1

2

1

1

1

ˆ( )
NMSE

( )

ˆ
NAAE

ˆmax
NMAE

MCS

MCS

MCS

MCS

n

i ii

n

y ii

n

i ii

MCS y

n

i i i

MCS y

y y

y

y y

n

y y

n







=

=

=

=

 −
 =
 −

 −

=



−
 =








 (6.45) 

where ˆ
iy  and iy  denote the estimated and actual buckling load for the input ix , 

respectively; y  denotes the mean of the actual buckling load; and y  denotes the 

standard deviation of the actual buckling load. The first two error-metrices provide a 

global accuracy measure, whereas the third one relates to a local measure of accuracy. To 

enhance the understanding of the proposed SSIGA for stochastic linear stability analysis 

of plate, a flowchart is provided. 
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Figure 6.1 Flowchart of the SSIGA for stochastic linear stability analysis 
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6.5 Numerical examples 

To demonstrate the accuracy, efficiency and applicability of the proposed SSIGA 

approach for stochastic linear stability analysis of FGM plate with the consideration of 

both spatially dependent and independent uncertain parameters, two numerical examples 

are thoroughly investigated in this section. For the first numerical example, the proposed 

method is implemented for a circular ring FGM plate with only spatially dependent 

uncertain parameters. For the second numerical example, the proposed method is 

implemented for an irregularly shaped FGM plate with both spatially dependent and 

independent uncertain parameters. Since the closed-form analytical solutions are absent 

for the two investigated numerical examples, all the results obtained by the proposed 

method are partially compared with the MCS method with large simulation size. The 

MCS approach is achieved by repeatedly executing the deterministic IGA with one 

possible realization of the randomness at each cycle until the predefined total number of 

the simulation is reached. Within the context of the presented numerical examples, all 

random numbers are generated by employing the Statistics toolbox of MATLAB R2018a, 

also the evaluation of IGA basis functions is based on the technique presented in (V. P. 

Nguyen et al., 2015). 

6.5.1 Numerical example: circular ring plate 

In the first numerical example, a circular ring Al2O3/Al FGM plate is investigated with 

the consideration of spatially dependent uncertain Young’s modulus and Poisson’s ratio. 

The thickness of the plate is 0.1m. The general structural layout and the adopted IGA 

mesh of the investigated plate are shown in Figure 6.2. The adopted IGA mesh is obtained 

by refining the corresponding coarsest IGA mesh. The plate is clamped at the two 

horizontal edges and is under uniformly distributed compression along the normal 
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direction of the outer edge. The Young’s modulus is modelled as a homogeneous 

Gaussian random field as follows, 
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where ( , )G

EH x  denotes a homogeneous Gaussian random field with mean 1 =  and 

standard deviation 0.1 = . The Poisson’s ratio is modelled as a homogeneous lognormal 

random field as follows, 
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where ( , )LH x  denotes a homogeneous lognormal random field with mean 1 =  and 

standard deviation 0.1 = . The exponential covariance function Eq.(5.9) with 4l m=  is 

adopted to consider the spatial dependency of both random fields. mE  and cE  denote the 

Young’s modulus of Al and Al2O3 respectively. m  and c  denote the Poisson’s ratio of 

Al and Al2O3 respectively. The magnitudes of mE , cE , m , and c  are selected from 

Table 4.1. 

Within the proposed SSIGA framework, the generalized isogeometric basis functions 

based K-L expansion with six terms is adopted to decompose both random fields. After 

that, the stochastic buckling loads of the circular ring plate with different gradient indices 

of FGM are estimated by the proposed X-SVR approach. The investigated gradient 

indices of the FGM are 0,5,10,50n = . For each gradient index, two types of kernel 

functions (i.e., Gegenbauer polynomial and Gaussian) are implemented within the 

proposed X-SVR. Moreover, various sampling sizes (i.e., 20, 50, and 100) of the X-SVR 

are also testified. In addition, the MCS approach with 1 million simulation cycles is 
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implemented for each gradient index of FGM. The MCS results are regarded as the actual 

buckling loads in subsequent analyses. 

   

                      (a)                                             (b)                                                  (c) 

Figure 6.2 Circular ring FGM plate (a) 3D view; (b) front view; (c) IGA refinement 

Three error-metrics, NMSE, NAAE, and NMAE, are adopted to assess the 

performance of the X-SVR model. Figures 6.3 reports the NMSE, NAAE, and NMAE of 

the X-SVR model for different gradient indices of FGM with different training sample 

sizes. By closely examining Figure 6.3, The increase of the training sample size can 

produce more accurate approximation al both global and local levels. In addition, the best 

X-SVR model with respect to the three metrics is established through the Gegenbauer 

polynomial kernel. Moreover, even with smaller training sample size, the Gegenbauer 

polynomial kernel is always superior over the Gaussian kernel with equal or larger 

training sample sizes. Figure 4 illustrates the estimated buckling loads by the X-SVR with 

Gegenbauer polynomial kernel against the MCS approach for different gradient indices 

of FGM with different training sample sizes. The three metrics and a reference line 

ˆ
cr crP P=  are also provided in each plot. By closely inspecting Figure 6.4, the scatter plot 

with training sample size 20 is already very close to ˆ
cr crP P= . By increasing the sample 

size, a more convergent training quality can be observed.  

Moreover, the mean and the standard deviation of the buckling load obtained by 

different kernel functions with training sample size 100 are provided in Table 6.1 to 
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quantitatively validate the proposed method. According to the first two statistical 

moments, the X-SVRs with different kernel functions are all able to accurately predict 

the mean of the buckling load. However, only the X-SVRs with Gegenbauer polynomial 

kernel can accurately predict the standard deviation of the buckling load. Additionally, 

for all investigated gradient indices of the FGM, the X-SVR with Gegenbauer polynomial 

kernel has maximum relative error of 0.0199% and 0.4144% for the mean the standard 

deviation, respectively. 

    

    

    

Figure 6.3 NMSE, NAAE, and NMAE of the X-SVR model for different gradient 

index of FGM with different training sample sizes 

  ‘   
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Figure 6.4 The quality of estimation of the X-SVR with Gegenbauer polynomials 

kernel for different gradient indexes of FGM with different sample sizes 

Table 6.1 The mean and standard deviation of the buckling load obtained by different 

kernel functions with training sample size 100 (MN/m)  

Statistical 

Moment 

Gradient 

Index of 

FGM n  

MCS Gegenbauer Gaussian 

Mean 

0 4.6158 4.6162 4.6153 

5 1.0037 1.0039 1.0054 

10 1.0487 1.0487 1.0496 

50 0.8873 0.8872 0.8862 

Std 

0 0.3378 0.3364 0.2963 

5 0.0744 0.0745 0.0632 

10 0.0774 0.0776 0.0663 

50 0.6491 0.6481 0.5543 

 

In addition to the first two statistical moments of the buckling load, the PDF and CDF 

of the buckling load are also estimated through a non-parametric statistical inference 

technique known as the kernel density estimation approach. Figures 6.5-6.6, Figures 6.7-
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6.8, Figures 6.9-6.10 and Figures 6.11-6.12 report the estimated PDFs and CDFs of the 

buckling load with different kernel functions for the gradient index of FGM 0, 5, 10, and 

50, respectively. Evidently, the proposed X-SVR with Gegenbauer polynomial kernel is 

competent for establishing the PDF and CDF of the buckling load. From Figures 6.5-6.12, 

it is evidently illustrated that the proposed X-SVR of Gegenbauer kernel can produce 

higher quality results even at very small sampling size. However, with the same sampling 

size, the X-SVR with Gaussian kernel cannot provide the same level of quality. After 

assessing the performance of the proposed method on estimating the buckling load of the 

FGM plate, the buckling mode shapes corresponding to three specific events 

1 2 3, ,     for different gradient indices of FGM are presented in Figures 6.13-6.16.  

In this numerical example, the results obtained by the MCS approach were executed 

on a cluster node with 2 14  cores Intel Xeon E5-2690v4 (Broadwell) 2.6 GHz), while 

the results obtained by the proposed SSIGA approach were executed on a workstation 

with 4 cores (Intel Core i7-6700 3.4GHz). For the buckling load of each gradient index 

of FGM, the MCS approach with 1 million simulation cycles were executed concurrently 

with 28 works on the cluster node and the total computational cost was 57h 15m 7s. 

Meanwhile, without parallel computation, the proposed X-SVR within SSIGA only 

consumed 1m 27s with training sample size 100. Moreover, by using the constructed X-

SVR model, the prediction of the 1 million random samples with 4 cores on the 

workstation only consumed 4m 11s. Therefore, based on the reported information, the 

proposed method certainly shows superior computational efficiency over the exhaustively 

simulative MCS approach. 
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 (a) (b) 

Figure 6.5 The estimated (a) PDF and (b) CDF of the buckling load by Gegenbauer 

polynomial based X-SVR for 0n =  

    

 (a) (b) 

Figure 6.6 The estimated (a) PDF and (b) CDF of the buckling load by Gaussian 

function based X-SVR for 0n =  

    

 (a) (b) 
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Figure 6.7 The estimated (a) PDF and (b) CDF of the buckling load by Gegenbauer 

polynomial based X-SVR for 5n =  

    

 (a) (b) 

Figure 6.8 The estimated (a) PDF and (b) CDF of the buckling load by Gaussian 

function based X-SVR for 5n =  

    

 (a) (b) 

Figure 6.9 The estimated (a) PDF and (b) CDF of the buckling load by Gegenbauer 

polynomial based X-SVR for 10n =  



 

197 

    

 (a) (b) 

Figure 6.10 The estimated (a) PDF and (b) CDF of the buckling load by Gaussian 

function based X-SVR for 10n =  

    

 (a) (b) 

Figure 6.11 The estimated (a) PDF and (b) CDF of the buckling load by Gegenbauer 

polynomial based X-SVR for 50n =  

    

 (a) (b) 
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Figure 6.12 The estimated (a) PDF and (b) CDF of the buckling load by Gaussian 

function based X-SVR for 50n =  

   

 (a) (b) (c) 

Figure 6.13 The buckling load and buckling mode shape of FGM plate with 0n =  at 

specific event (a) 1 ; (b) 2 ; (c) 3  

   

 (a) (b) (c) 

Figure 6.14 The buckling load and buckling mode shape of FGM plate with 5n =  at 

specific event (a) 1 ; (b) 2 ; (c) 3  

   

 (a) (b) (c) 
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Figure 6.15 The buckling load and buckling mode shape of FGM plate with 10n =  

at specific event (a) 1 ; (b) 2 ; (c) 3  

   

 (a) (b) (c) 

Figure 6.16 The buckling load and buckling mode shape of FGM plate with 50n =  

at specific event (a) 1 ; (b) 2 ; (c) 3  

6.5.2 Numerical example: irregular plate 

In the second numerical example, a ZrO2-1/Al FGM plate with irregular geometry is 

investigated by considering not only the spatially dependent uncertain Young’s modulus 

and Poisson’s ratio, but also the spatially independent uncertain gradient index of the 

FGM. The thickness of the plate is 0.2m. The general structural layout and the adopted 

IGA mesh of the investigated plate are shown in Figure 6.17. The plate is fixed on the red 

column at the inner edge and is under uniformly distributed compression along the normal 

direction of the outer edge. The Young’s modulus is modelled as a homogeneous 

lognormal random field as follows, 

 ( )1
( , , ) ( , ) ( , ) ( , ) ( ) ( )

2

L L

E E m c m

z
E z H E z H E E E

h

    
 

= = + − + 
 

x x x  (6.48) 

where ( , )L

EH x  denotes a homogeneous lognormal random field with mean 1 =  and 

standard deviation 0.1 = ; ( )   denotes the random gradient index of the FGM, which 
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is a lognormal random variable with mean 10 =  and variance 2 0.1 = . The Poisson’s 

ratio is modelled as a homogeneous lognormal random field as follows, 

 ( )1
( , , ) ( , ) ( , ) ( , ) ( )( )

2

L L

m c m

z
z H z H

h

 

         
 

= = + − + 
 

x x x  (6.49) 

where ( , )LH x  denotes a homogeneous lognormal random field with mean 1 =  and 

standard deviation 0.1 = ; ( )   denotes the random gradient index of the FGM, which 

is a lognormal random variable with mean 10 =  and variance 2 0.1 = . The Bessel 

covariance function Eq.(5.9) with 4l m=  is adopted to consider the spatial dependency 

of the Young’s modulus random field, while the exponential covariance function present 

in Eq.(5.9) with 4l m=  is adopted for the Poisson’s ratio random field. mE  and cE  

denote the Young’s moduli of Al and ZrO2-1, respectively. m  and c  denote the 

Poisson’s ratios of Al and ZrO2-1, respectively. The magnitudes of mE , cE , m , and c  

are select from Table 4.1. 

Within the proposed SSIGA framework, the homogeneous lognormal random fields 

are decomposed by the K-L expansion with six terms. Then, the stochastic buckling load 

of the plate is estimated by the proposed X-SVR model. Once again, both Gegenbauer 

polynomial and Gaussian function kernels are implemented to establish the X-SVR model. 

For each kernel function, different training sample sizes (i.e., 20, 50, and 100) are adopted. 

Additionally, the MCS approach with 1 million simulation cycles is also implemented, 

and the results are regarded as the actual buckling loads.  
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                        (a)                                      (b)                                            (c) 

Figure 6.17 Irregular plate (a) 3D view; (b) top view; (c) IGA refinement 

Three error-metrics, NMSE, NAAE, and NMAE, are also adopted to quantify the 

performance of the X-SVR model in this case. Figures 6.18 reports the NMSE, NAAE, 

and NMAE of the X-SVR model. Evidently, increasing the training sample size can 

improve the global and local accuracy of estimation. With respect to the three metrics, 

the best X-SVR model is obtained with the Gegenbauer polynomial kernel, while the 

worst one is obtained by using the Gaussian kernel function. Figures 6.19 shows the 

estimated buckling loads by the X-SVR with different kernels against the actual ones. 

Also, in each figure, the three metrics and a reference line ˆ
cr crP P=  are provided. It is 

evidently illustrated that the more training samples are adopted, the better estimation can 

be anticipated. 

Furthermore, the mean and the standard deviation of the buckling load obtained by 

different kernel functions with training sample size 100 are provided in Table 6.2. Based 

on the first two statistical moments, the X-SVRs with different kernel functions can 

accurately predict the mean of the buckling load, with maximum relative error of 0.28%. 

However, only the X-SVR with Gegenbauer polynomials kernel is able to provide an 

accurate estimation on the standard deviation. 
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Table 6.2 The mean and standard deviation of the buckling load obtained by different 

kernel functions with training sample size 100 (MN/m) 

Statistical 

Moment 
MCS Gegenbauer Gaussian 

Mean 16.0684 16.0232 16.0676 

Std 1.4897 1.4980 1.2570 

 

Additionally, the estimated PDF and CDF of the buckling load based on the X-SVRs 

and the MCS approach are reported in Figures 6.20-6.21. Apparently, the proposed X-

SVR with Gegenbauer polynomial kernel is able to estimate the PDF and CDF of the 

buckling load with 100 training samples. Similarly, the Gaussian function kernel clearly 

shows convergent behaviour as the training sample size increases, but the X-SVR based 

on this kernel is unable to estimate PDF and CDF very well. Finally, the buckling mode 

shapes corresponding to three specific events 4 5 6, ,     are showed in Figures 6.22. 

   

 (a) (b) (c) 

Figure 6.18 (a) NMSE, (b) NAAE, and (c) NMAE of the X-SVR model 
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Figure 6.19 The estimated buckling loads by the X-SVR with different kernels and 

sample sizes against the actual ones by the MCS 

    

 (a) (b) 

Figure 6.20 The estimated (a) PDF and (b) CDF of the buckling load by Gegenbauer 

polynomial based X-SVR 

    

 (a) (b) 
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Figure 6.21 The estimated (a) PDF and (b) CDF of the buckling load by Gaussian 

function based X-SVR 

   

 (a) (b) (c) 

Figure 6.22 The buckling load and buckling mode shape of FGM plate at specific 

event (a) 4 ; (b) 5 ; (c) 6 . 

For this numerical example, the results obtained by the MCS approach were also run 

on a cluster node with 2 14  cores Intel Xeon E5-2690v4 (Broadwell) 2.6 GHz), while 

the results obtained by the proposed SSIGA approach were run on the same workstation 

as the first numerical example. The MCS approach with 1 million simulation cycles were 

executed concurrently with 28 works on the cluster node and costed 140h 7m 10s. Also, 

without parallel computation, the proposed X-SVR within the SSIGA scheme only 

consumed 3m 23s with training sample size 100. Subsequently, by using the constructed 

X-SVR model, the predictions of the same 1 million random samples with 4 cores on the 

workstation only took 10m 23s. Therefore, based on the technical information, the 

proposed method certainly shows superior computational efficiency over the exhaustively 

simulative MCS approach for the stochastic linear stability analysis with the 

consideration of both spatially dependent and independent uncertainties. 
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6.6 Conclusion 

In this paper, a stochastic analysis framework, namely the spectral stochastic 

isogeometric analysis (SSIGA), is freshly developed for the stochastic linear stability 

analysis of plate through the first-order shear deformation theory. The SSIGA framework 

is applicable to different material models including homogeneous material, functionally 

graded material, functionally graded porous material, etc. The uncertain Young’s 

modulus and Poisson’s ratio are modelled as spatially dependent random fields with both 

Gaussian and lognormal distributions. The gradient index of the FGM is modelled as a 

spatially independent random variable. A generalized isogeometric basis functions based 

K-L expansion is adopted for the random field discretization. After successful 

discretisation the random fields, the X-SVR with a new Gegenbaur polynomial kernel is 

developed to establish the relationship between the uncertain system inputs and the 

stochastic buckling load. Finally, through the nonparametric statistical methods, the 

statistical moment up to second order, the PDF, and the CDF of the stochastic buckling 

load can be established. The major advantage of the proposed SSIGA approach is that an 

X-SVR can be effectively and efficiently established through a meticulously proposed 

experiments design algorithm without large simulation cycles and complicated 

formulations. 

In order to verify the accuracy, efficiency, and the applicability of the proposed 

approach, two numerical examples with irregular geometries are thoroughly investigated. 

By closely examining the results against the MCS approach with large simulation cycles, 

all the computational results of the SSIGA approach are satisfactory but with much higher 

computational efficiency. Therefore, the proposed SSIGA provides a quantitative 
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assessment framework for stochastic linear stability analysis on plate with complex 

geometry and physically inherent uncertainties. 

Appendix 6A: The linear stability analysis of plate based on 

FSDT 

With the consideration of the geometric nonlinearity, the virtual work of the plate can 

be formulated as 

 
T Tˆ( , ) ( , ) ( ) 0

D D
a dD dD      = − = − = u u u u u ε σ u P  (6A.1) 

where ε , σ̂ , u  and P  are the variations of the strain, the stress resultants, the 

variation of the displacement, and the external force vectors, respectively. 

The strain vector ε  is defined as 
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 (6A.2) 

where m n0  is a zero matrix with dimension m n ; L

iε  and NL

iε  are the linear and 

nonlinear parts of the in-plane strains iε , respectively; bε  and sε  denotes the bending and 

shear strains, respectively. 

Within the FSDT, the stress resultant vector σ̂  of the plate is defined as 
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where ˆ
iσ , ˆ

bσ , and ˆ
sσ  denote the in-plane stress resultants, the bending stress resultants, 

and the shear stress resultants, respectively. 

Furthermore, the in-plane and bending stress resultants are represented by the in-plane 

and bending strains as follows, 
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and the shear stress resultants are represented by the shear strain as follows, 
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where 5 / 6k =  denotes the shear correction factor. ( )E z  and ( )z  are the same as 

Chapter 4. 

Subsequently, a residual ( , )R u u  can be defined as the virtual work by  
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and, the linearization of the residual ( , )R u u  at u  in the direction of u  is represented 

as 
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where ˆ
iσ , ˆ

bσ , and ˆ
sσ  are the linearization of the in-plane stress resultants, the 

bending stress resultants, and the shear stress resultants, respectively; 

The stability analysis of plate aims to predict the maximum loading capacity of the 

structure against buckling failure, and such capacity is known as the critical buckling load. 

The structural tangent stiffness matrix becomes singular when the plate becomes unstable. 

For the ease of formulation derivation, Eq.(6A.7) can be divided into three parts: 
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For a given critical displacement cr
u  at the critical limit point n crt t= , the governing 

equation of the stability analysis of the plate can be defined as, 
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 1 2( , , ) ( , , ) ( , , ) ( , , ) 0cr cr cr cra A G G    = + + =u y y u y y u y y u y y  (6A.9) 

where the eigen-function y  and its variation  y  are implemented to replace the 

incremental displacement u  and the variation of the displacement u . 

The linear stability analysis of plate assumes that the plate becomes unstable at small 

elastic deformation state. Therefore, the pre-buckling equilibrium state can be obtained 

by linear elasticity analysis. That is, based on the load step nt  with a unit external load 

nP , 

 cr n n=u u , ˆ ˆcr n n=σ σ , 1n −=u K F  (6A.10) 

where K  denotes the linear stiffness matrix; F  denotes the force vector. n
u  and ˆn

σ  

denote the displacement field and the stress resultants at load step nt , respectively; they 

are obtained by linear elasticity analysis as Eq.(6A.10). n  denotes the critical load factor. 

Appendix 6B: Proof of Proposition 1 

Proof. For quadratic programming expressed in Eq. (6.24), the proof of convexity is 

equivalent to proving that 0Q . Moreover, considering that Ĉ  is a positive and 

diagonal matrix by definition, then ˆ 0C , and also 1ˆ 0−
C . Let 2 2m n+v  be a non-

zero column vector, then: 
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Thus, 0Q  is a Positive-definite matrix. Therefore, Eq.(6.24) is a convex 

optimization.  
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This concludes the proof. □ 

Appendix 6C: Proof of Proposition 2 

Proof. The proposed GGK can be alternatively formulated as the product of two kernel 

functions 
2

1 2
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 1 2( , ) ( , ) ( , )GGK i j i j i jK K K=x x x x x x  (6C.1) 

According to (Vapnik, 1998, 2013), the multiplication of two valid Mercer kernels is 

also a valid kernel function. Since that 1( , )i jK x x  is the Gaussian kernel ( 0  ) which 

satisfies the Mercer Theorem, ( , )GGK i jK x x  can be proved as a valid kernel by verifying 

that 2( , )i jK x x  satisfies the Mercer Theorem. 

Given an arbitrary squared integrable function ( )g x  defined as : ng  →  and 

assuming each element in ix  and jx  are independent with each other, then 
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 (6C.2) 

Thus, 2( , )i jK x x is a valid Mercer kernel. Therefore, the proposed GGK ( , )GGK i jK x x  

is an admissible Mercer kernel function. 

This concludes the proof. □ 
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Chapter 7  

CONCLUSION AND FUTURE 

STUDIES 

7.1 Conclusion 

This thesis proposed and developed a CAD-CAE integrated stochastic analysis 

framework, namely, the spectral stochastic isogeometric analysis (SSIGA) framework, 

for modern engineering applications. By meticulously integrating uncertain 

quantification within the CAD system, a geometric consistency between intentionally 

designed model and stochastic analysis model can be achieved within the SSIGA 

framework. Consequently, the stochastic analysis within SSIGA framework is assuredly 

implemented on the intentionally designed model. Such rigor also provides advantages in 

computational efficiency by eliminating the communication process between the CAD 

and CAE environments, which inevitably exists in traditional stochastic analysis models. 

Moreover, the inherent higher order characteristics of basis functions within CAD system 

enables the SSIGA framework properly handle the higher accuracy requirements of 

contemporary engineering applications in modelling and analysis. Furthermore, the 

proposed approach is developed for several stochastic structural analysis problems 

involved with complex geometries. The accuracy, efficiency, and applicability of the 

proposed approach for each problem are comprehensively investigated thorough 

meticulously designed numerical examples. 
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In Chapter 3, the SSIGA framework is firstly proposed and developed by investigating 

the stochastic linear elasticity problem. The basis functions within CAD system are 

employed to represent the random fields, which can maintain the exact geometries of the 

structures and random fields between the CAD model and SSIGA stochastic analysis 

model. Unlike the traditional stochastic analysis methods, the random fields within 

SSIGA is certainly implemented on the same designed model. Moreover, the CAD basis 

function based Karhunen-Loève expansion approach is firstly proposed to spectrally 

decompose the input random fields. The influences of h- and k-refinement of CAD basis 

functions on K-L expansion is thoroughly investigated, and advantages in accuracy and 

efficiency are evidently illustrated. Subsequently, by employing the polynomial chaos 

expansion, the statistical characteristics of any concerned structural responses can be 

adequately estimated. Additionally, by adopting the non-parametric statistical inference 

techniques (e.g., the kernel density estimation approach), the PDFs and CDFs of any 

concerned structural responses can be robustly established. Consequently, the proposed 

SSIGA approach provides an integrated, yet physically valid, stochastic analysis 

framework for engineering structures that are suffering from both inevitable spatially 

dependent uncertainties and complex geometries. By comprehensively investigating three 

distinctive numerical examples, the applicability, accuracy and computational efficiency 

of the SSIGA approach are evidently illustrated. 

Then, in Chapter 4, the novel SSIGA framework is further developed for the stochastic 

static analysis of FGM plate through first-order shear deformation theory. The uncertain 

Young’s modulus is modelled as a random field. The CAD basis functions based K-L 

expansion is presented to effectively handle random fields of composite plates defined 

within complex geometry. Then, the means and standard deviations of structural 

displacement, strain, and stress of the FGM plate can be explicitly estimated through the 
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PCE. In addition to the estimation of the first two moments of statistics of the structural 

responses, the PDFs and CDFs of the concerned structural responses can also be 

established through the statistical inference techniques. Consequently, the serviceability 

and strength limits of the FGM plate can be effectively determined through the proposed 

SSIGA approach. The major advantage of the SSIGA analysis framework is that the 

proposed method is able to maintain the exact geometry of the structure as well as the 

random field defined on the structure between the design model and the stochastic 

analysis model. Consequently, the quality of the uncertainty analysis (i.e., the quality of 

the PDFs and CDFs) can be improved. The accuracy and efficiency of the proposed 

methodology are evidently demonstrated through two distinctive FGM plates with 

nonstandard geometries. 

In Chapter 5, the SSIGA framework is proposed for the stochastic free vibration 

analysis of engineering structures. Both the Young’s modulus and material density are 

considered and modelled as Gaussian or non-Gaussian (i.e., lognormal) random fields to 

incorporate the spatial variation effects of the uncertain material properties. Moreover, 

the arbitrary polynomial chaos (aPC) expansion is firstly incorporated into SSIGA 

framework to provide a more flexible and practical tool for structures confronting various 

complications. Then, a stochastic Galerkin-based computational approach is proposed to 

formulate the stochastic generalized eigenvalue problem into a system of nonlinear 

equations. After successfully solving the nonlinear system by classical Newton-Raphson 

method, the coefficients of the aPC for eigensolutions are efficiently obtained. Finally, 

statistical moments with different orders can be easily calculated. In addition, PDFs and 

CDFs of the eigenvalues can also be established through statistical inference techniques. 

In this chapter, two elaborately designed numerical examples, one Mindlin plate and 

another Kirchhoff-Love shell, are comprehensively investigated. Since the closed-form 
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solutions for the stochastic eigenvalue problems are not unavailable, the Monte Carlo 

Simulation (MCS) method is adopted to partially verify all the computational results. 

In Chapter 6, the SSIGA framework is further developed for the stochastic linear 

stability analysis of plates through the first-order shear deformation theory. Different 

material models, including homogeneous model, functionally graded material, 

functionally graded porous material, etc., are incorporated into the SSIGA framework. 

Both Young’s modulus and Poisson’s ratio are considered and modelled as spatially 

dependent random fields with both Gaussian or lognormal distributions. Meanwhile, the 

gradient index is modelled as a spatially independent random variable. The CAD basis 

functions based K-L expansion is adopted for the random field discretization. Then, the 

X-SVR with a new Gegenbaur polynomial kernel is adopted to estimate the stochastic 

buckling load based on those uncertain parameters. Finally, through the nonparametric 

statistical methods, the second order statistical moments, the PDF, and the CDF of the 

stochastic buckling load are obtained. The main advantage of the proposed SSIGA 

approach is that an X-SVR can be easily and efficiently established through a 

meticulously proposed experiments design algorithm without large simulation cycles and 

complicated formulation. By closely examining the results against the MCS approach 

with large simulation cycles, all the computational results of the SSIGA approach are 

satisfactory but with much higher computational efficiency. 

By the end of this study, the SSIGA framework is proposed and developed for three 

stochastic structural analysis problems, namely, the stochastic linear elasticity analysis 

problem, the stochastic free vibration analysis problem, and stochastic linear stability 

analysis problem. All the proposed approaches within SSIGA in this thesis possess well-

preserved accuracy, high computational efficacy, and most importantly, strong 

applicability to modern engineering applications. 
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7.2 Future Studies 

There are some potential extensions, developments and investigations which can be 

further conducted to enrich the capability of the SSIGA framework on stochastic analysis 

of modern engineering applications. 

Possible future studies are including: 

1. Extension of the SSIGA framework to linear stability of composite shell structures 

involving different uncertain material properties. 

2. Development of new geometry modelling method for more complex geometries to 

enhance the capability of the SSIGA framework. 

3. Development of new random field modelling methods for general and arbitrary 

non-Gaussian distribution. 

4. Development of the SSIGA framework for structural dynamic analysis of 

continuous structures involving different uncertain material properties (i.e., 

Young’s modulus, Poisson’s ratio, and density) 

5. Development of the SSIGA framework for stochastic material nonlinear analysis 

of continuous structures. 

6. Development of the SSIGA framework for the uncertain analysis of 3D continuous 

solid structures. 

7. Development of the SSIGA framework for contact problem involving different 

uncertain material properties. 

8. Development of the SSIGA framework for the stochastic acoustic analysis. 

 

 



 

216 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

217 

REFERENCES 

Adam, C., Bouabdallah, S., et al. (2015) ‘Improved numerical integration for locking 

treatment in isogeometric structural elements. Part II: Plates and shells’, Computer 

Methods in Applied Mechanics and Engineering, 284, pp. 106–137. 

Adam, C., Hughes, T. J. R., et al. (2015) ‘Selective and reduced numerical integrations 

for NURBS-based isogeometric analysis’, Computer Methods in Applied 

Mechanics and Engineering, 284, pp. 732–761. 

Adhikari, S. (2011) ‘Doubly Spectral Stochastic Finite-Element Method for Linear 

Structural Dynamics’, Journal of Aerospace Engineering, 24(3), pp. 264–276. 

Akkerman, I. et al. (2007) ‘The role of continuity in residual-based variational multiscale 

modeling of turbulence’, Computational Mechanics, 41(3), pp. 371–378. 

Anders, M. and Hori, M. (2001) ‘Three‐dimensional stochastic finite element method for 

elasto‐plastic bodies’, International Journal for Numerical Methods in Engineering, 

51(4), pp. 449–478. 

Apostolatos, A. et al. (2014) ‘A Nitsche-type formulation and comparison of the most 

common domain decomposition methods in isogeometric analysis’, International 

Journal for Numerical Methods in Engineering, 97(7), pp. 473–504. 

Argyris, J., Papadrakakis, M. and Stefanou, G. (2002) ‘Stochastic finite element analysis 

of shells’, Computer Methods in Applied Mechanics and Engineering. North-

Holland, 191(41–42), pp. 4781–4804. 

Auricchio, F. et al. (2012) ‘A simple algorithm for obtaining nearly optimal quadrature 



 

218 

rules for NURBS-based isogeometric analysis’, Computer Methods in Applied 

Mechanics and Engineering, 249–252, pp. 15–27. 

Balobanov, V. et al. (2019) ‘Kirchhoff–Love shells within strain gradient elasticity: Weak 

and strong formulations and an H3-conforming isogeometric implementation’, 

Computer Methods in Applied Mechanics and Engineering. North-Holland, 344, 

pp. 837–857. 

Bartezzaghi, A., Dedè, L. and Quarteroni, A. (2015) ‘Isogeometric Analysis of high order 

Partial Differential Equations on surfaces’, Computer Methods in Applied 

Mechanics and Engineering, 295, pp. 446–469. 

Bazilevs, Y., Michler, C., et al. (2007) ‘Weak Dirichlet boundary conditions for wall-

bounded turbulent flows’, Computer Methods in Applied Mechanics and 

Engineering, 196(49–52), pp. 4853–4862. 

Bazilevs, Y., Calo, V. M., et al. (2007) ‘YZβ discontinuity capturing for advection-

dominated processes with application to arterial drug delivery’, International 

Journal for Numerical Methods in Fluids, 54(6–8), pp. 593–608. 

Bazilevs, Y. et al. (2009) ‘Patient-specific isogeometric fluid–structure interaction 

analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left 

ventricular assist device’, Computer Methods in Applied Mechanics and 

Engineering, 198(45–46), pp. 3534–3550. 

Bazilevs, Y., Calo, V. M., et al. (2010) ‘Isogeometric analysis using T-splines’, Computer 

Methods in Applied Mechanics and Engineering, 199(5–8), pp. 229–263. 

Bazilevs, Y., Michler, C., et al. (2010) ‘Isogeometric variational multiscale modeling of 

wall-bounded turbulent flows with weakly enforced boundary conditions on 



 

219 

unstretched meshes’, Computer Methods in Applied Mechanics and Engineering, 

199(13–16), pp. 780–790. 

Bazilevs, Y. et al. (2013) ‘Isogeometric analysis of Lagrangian hydrodynamics’, Journal 

of Computational Physics, 243, pp. 224–243. 

Bazilevs, Y. et al. (2014) ‘Isogeometric analysis of Lagrangian hydrodynamics: 

Axisymmetric formulation in the rz-cylindrical coordinates’, Journal of 

Computational Physics, 262, pp. 244–261. 

BAZILEVS, Y. et al. (2006) ‘ISOGEOMETRIC ANALYSIS: APPROXIMATION, 

STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES’, 

Mathematical Models and Methods in Applied Sciences, 16(07), pp. 1031–1090. 

Bazilevs, Y. and Akkerman, I. (2010) ‘Large eddy simulation of turbulent Taylor–

Couette flow using isogeometric analysis and the residual-based variational 

multiscale method’, Journal of Computational Physics, 229(9), pp. 3402–3414. 

Bazilevs, Y. and Hughes, T. J. R. (2007) ‘Weak imposition of Dirichlet boundary 

conditions in fluid mechanics’, Computers & Fluids, 36(1), pp. 12–26. 

Beer, G., Marussig, B. and Zechner, J. (2015) ‘A simple approach to the numerical 

simulation with trimmed CAD surfaces’, Computer Methods in Applied Mechanics 

and Engineering, 285, pp. 776–790. 

Beirão da Veiga, L. et al. (2011) ‘Some estimates for h–p–k-refinement in Isogeometric 

Analysis’, Numerische Mathematik, 118(2), pp. 271–305. 

Beirão da Veiga, L. et al. (2012) ‘An isogeometric method for the Reissner–Mindlin plate 

bending problem’, Computer Methods in Applied Mechanics and Engineering. 



 

220 

North-Holland, 209–212, pp. 45–53. 

Beirão Da Veiga, L. et al. (2015) ‘A locking-free model for Reissner–Mindlin plates: 

Analysis and isogeometric implementation via NURBS and triangular NURPS’, 

Mathematical Models and Methods in Applied Sciences. World Scientific 

Publishing Company, 25(08), pp. 1519–1551. 

Beirão da Veiga, L., Cho, D. and Sangalli, G. (2012) ‘Anisotropic NURBS approximation 

in isogeometric analysis’, Computer Methods in Applied Mechanics and 

Engineering, 209–212, pp. 1–11. 

Ben-Haim, Y. (1996) Robust Reliability in the Mechanical Sciences, Robust Reliability 

in the Mechanical Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg. 

Ben-Haim, Y. (2006) Information-Gap Decision Theory: Decisions Under Severe 

Uncertainty Academic Press, London. 

Ben-Haim, Y. and Ben-Haim, Y. (2016) ‘Info-Gap Theory’, in Info-Gap Economics. 

London: Palgrave Macmillan UK, pp. 3–13. 

Benson, D. J. et al. (2010) ‘A generalized finite element formulation for arbitrary basis 

functions: From isogeometric analysis to XFEM’, International Journal for 

Numerical Methods in Engineering. 

Benson, D.J. et al. (2010) ‘Isogeometric shell analysis: The Reissner–Mindlin shell’, 

Computer Methods in Applied Mechanics and Engineering. North-Holland, 199(5–

8), pp. 276–289. 

Benson, D. J. et al. (2013) ‘Blended isogeometric shells’, Computer Methods in Applied 

Mechanics and Engineering. North-Holland, 255, pp. 133–146. 



 

221 

Berdinsky, D. et al. (2015) ‘Bases of T-meshes and the refinement of hierarchical B-

splines’, Computer Methods in Applied Mechanics and Engineering, 283, pp. 841–

855. 

Bielewicz, E. and Górski, J. (2002) ‘Shells with random geometric imperfections 

simulation — based approach’, International Journal of Non-Linear Mechanics. 

Pergamon, 37(4–5), pp. 777–784. 

Borden, M. J. et al. (2011) ‘Isogeometric finite element data structures based on Bézier 

extraction of NURBS’, International Journal for Numerical Methods in Engineering, 

87(1–5), pp. 15–47. 

Bornemann, P. B. and Cirak, F. (2013) ‘A subdivision-based implementation of the 

hierarchical b-spline finite element method’, Computer Methods in Applied 

Mechanics and Engineering, 253, pp. 584–598. 

Breitenberger, M. et al. (2015) ‘Analysis in computer aided design: Nonlinear 

isogeometric B-Rep analysis of shell structures’, Computer Methods in Applied 

Mechanics and Engineering. North-Holland, 284, pp. 401–457. 

Buchegger, F., Jüttler, B. and Mantzaflaris, A. (2016) ‘Adaptively refined multi-patch B-

splines with enhanced smoothness’, Applied Mathematics and Computation, 272, 

pp. 159–172. 

Buffa, A., Sangalli, G. and Vázquez, R. (2010) ‘Isogeometric analysis in electromagnetics: 

B-splines approximation’, Computer Methods in Applied Mechanics and 

Engineering, 199(17–20), pp. 1143–1152. 

Buffa, A., Sangalli, G. and Vázquez, R. (2014) ‘Isogeometric methods for computational 

electromagnetics: B-spline and T-spline discretizations’, Journal of Computational 



 

222 

Physics, 257, pp. 1291–1320. 

Cacciola, P. and Deodatis, G. (2011) ‘A method for generating fully non-stationary and 

spectrum-compatible ground motion vector processes’, Soil Dynamics and 

Earthquake Engineering. Elsevier, 31(3), pp. 351–360. 

Campbell, C. and Ying, Y. (2011) ‘Learning with Support Vector Machines’, Synthesis 

Lectures on Artificial Intelligence and Machine Learning. 

Casanova, C. F. and Gallego, A. (2013) ‘NURBS-based analysis of higher-order 

composite shells’, Composite Structures. Elsevier, 104, pp. 125–133. 

Casquero, H. et al. (2017) ‘Arbitrary-degree T-splines for isogeometric analysis of fully 

nonlinear Kirchhoff–Love shells’, Computer-Aided Design. Elsevier, 82, pp. 140–

153. 

Cavdar, O. et al. (2008) ‘Perturbation Based Stochastic Finite Element Analysis of the 

Structural Systems with Composite Sections under Earthquake Forces’, Steel and 

Composite Structures. Techno-Press, 8(2), pp. 129–144. 

Chen, J., Kong, F. and Peng, Y. (2017) ‘A stochastic harmonic function representation 

for non-stationary stochastic processes’, Mechanical Systems and Signal 

Processing. Academic Press, 96, pp. 31–44. 

Chen, L. et al. (2014) ‘Explicit finite deformation analysis of isogeometric membranes’, 

Computer Methods in Applied Mechanics and Engineering. North-Holland, 277, 

pp. 104–130. 

Chen, N.-Z. and Guedes Soares, C. (2008) ‘Spectral stochastic finite element analysis for 

laminated composite plates’, Computer Methods in Applied Mechanics and 



 

223 

Engineering. North-Holland, 197(51–52), pp. 4830–4839. 

Chung, D. B. et al. (2005) ‘Efficient numerical strategies for spectral stochastic finite 

element models’, International Journal for Numerical Methods in Engineering, 

64(10), pp. 1334–1349. 

Coox, L. et al. (2016) ‘A performance study of NURBS-based isogeometric analysis for 

interior two-dimensional time-harmonic acoustics’, Computer Methods in Applied 

Mechanics and Engineering, 305, pp. 441–467. 

Costantini, P. et al. (2010) ‘Quasi-interpolation in isogeometric analysis based on 

generalized B-splines’, Computer Aided Geometric Design, 27(8), pp. 656–668. 

Cottrell, J. A. et al. (2006) ‘Isogeometric analysis of structural vibrations’, Computer 

Methods in Applied Mechanics and Engineering, 195(41–43), pp. 5257–5296. 

Cottrell, J. A., Hughes, T. J. R. and Bazilevs, Y. (2009) Isogeometric Analysis: Toward 

Integration of CAD and FEA, Isogeometric Analysis: Toward Integration of CAD 

and FEA. Chichester, UK: John Wiley & Sons, Ltd. 

Cottrell, J. A., Hughes, T. J. R. and Reali, A. (2007) ‘Studies of refinement and continuity 

in isogeometric structural analysis’, Computer Methods in Applied Mechanics and 

Engineering, 196(41–44), pp. 4160–4183. 

Dai, H., Zhang, B. and Wang, W. (2015) ‘A multiwavelet support vector regression 

method for efficient reliability assessment’, Reliability Engineering and System 

Safety. 

Dai, H., Zheng, Z. and Ma, H. (2019) ‘An explicit method for simulating non-Gaussian 

and non-stationary stochastic processes by Karhunen-Loève and polynomial chaos 



 

224 

expansion’, Mechanical Systems and Signal Processing. Academic Press, 115, pp. 

1–13. 

Dalcin, L. et al. (2016) ‘PetIGA: A framework for high-performance isogeometric 

analysis’, Computer Methods in Applied Mechanics and Engineering, 308, pp. 

151–181. 

Dedè, L. and Santos, H. A. F. A. (2012) ‘B-spline goal-oriented error estimators for 

geometrically nonlinear rods’, Computational Mechanics, 49(1), pp. 35–52. 

Deodatis, G. (1996a) ‘Non-stationary stochastic vector processes: seismic ground motion 

applications’, Probabilistic Engineering Mechanics, 11(3), pp. 149–167. 

Deodatis, G. (1996b) ‘Simulation of Ergodic Multivariate Stochastic Processes’, Journal 

of Engineering Mechanics, 122(8), pp. 778–787. 

Deodatis, G. and Micaletti, R. C. (2001) ‘Simulation of Highly Skewed Non-Gaussian 

Stochastic Processes’, Journal of Engineering Mechanics, 127(12), pp. 1284–1295. 

Dimitri, R. et al. (2014) ‘Isogeometric large deformation frictionless contact using T-

splines’, Computer Methods in Applied Mechanics and Engineering, 269, pp. 394–

414. 

Ding, C. et al. (2018) ‘Modeling and simulation of steady heat transfer analysis with 

material uncertainty: Generalized n th order perturbation isogeometric stochastic 

method’, Numerical Heat Transfer, Part A: Applications. Taylor & Francis, 74(9), 

pp. 1565–1582. 

Ding, C. et al. (2019) ‘Isogeometric generalized n th order perturbation-based stochastic 

method for exact geometric modeling of (composite) structures: Static and dynamic 



 

225 

analysis with random material parameters’, Computer Methods in Applied 

Mechanics and Engineering. North-Holland, 346, pp. 1002–1024. 

Do, D. M. et al. (2016) ‘Interval spectral stochastic finite element analysis of structures 

with aggregation of random field and bounded parameters’, International Journal 

for Numerical Methods in Engineering, 108(10), pp. 1198–1229. 

Do, D. M. et al. (2017) ‘The stochastic Galerkin scaled boundary finite element method 

on random domain’, International Journal for Numerical Methods in Engineering. 

Elsevier, 110(3), pp. 248–278. 

Do, D. M., Gao, W. and Song, C. (2016) ‘Stochastic finite element analysis of structures 

in the presence of multiple imprecise random field parameters’, Computer Methods 

in Applied Mechanics and Engineering, 300, pp. 657–688. 

Doostan, A., Ghanem, R. G. and Red-Horse, J. (2007) ‘Stochastic model reduction for 

chaos representations’, Computer Methods in Applied Mechanics and Engineering, 

196(37–40), pp. 3951–3966. 

Dornisch, W. and Klinkel, S. (2014) ‘Treatment of Reissner–Mindlin shells with kinks 

without the need for drilling rotation stabilization in an isogeometric framework’, 

Computer Methods in Applied Mechanics and Engineering. North-Holland, 276, 

pp. 35–66. 

Dornisch, W., Klinkel, S. and Simeon, B. (2013) ‘Isogeometric Reissner–Mindlin shell 

analysis with exactly calculated director vectors’, Computer Methods in Applied 

Mechanics and Engineering. North-Holland, 253, pp. 491–504. 

Dornisch, W., Klinkel, S. and Simeon, Bernd (2013) ‘Isogeometric Reissner–Mindlin 

shell analysis with exactly calculated director vectors’, Computer Methods in 



 

226 

Applied Mechanics and Engineering, 253, pp. 491–504. 

Dornisch, W., Vitucci, G. and Klinkel, S. (2015) ‘The weak substitution method - an 

application of the mortar method for patch coupling in NURBS-based isogeometric 

analysis’, International Journal for Numerical Methods in Engineering, 103(3), pp. 

205–234. 

Drucker, H. et al. (1997) ‘Support vector regression machines’, in Advances in Neural 

Information Processing Systems 9: Proceedings of the 1996 Conference. 

Du, X., Sudjianto, A. and Huang, B. (2005) ‘Reliability-Based Design With the Mixture 

of Random and Interval Variables’, Journal of Mechanical Design. American 

Society of Mechanical Engineers, 127(6), p. 1068. 

Du, X., Zhao, G. and Wang, W. (2015) ‘Nitsche method for isogeometric analysis of 

Reissner–Mindlin plate with non-conforming multi-patches’, Computer Aided 

Geometric Design, 35–36, pp. 121–136. 

Dunbar, M. et al. (2010) ‘Simultaneous classification and feature selection via convex 

quadratic programming with application to HIV-associated neurocognitive disorder 

assessment’, European Journal of Operational Research. 

Eiermann, M., Ernst, O. G. and Ullmann, E. (2007) ‘Computational aspects of the 

stochastic finite element method’, Computing and Visualization in Science. 

Springer-Verlag, 10(1), pp. 3–15. 

Elishakoff, I. (1997) ‘Comment on “Fuzzy finite element approach for the analysis of 

imprecisely defined systems”’, AIAA Journal, 35, pp. 403–403. 

Elishakoff, I. and Ren, Y. (1999) ‘The bird’s eye view on finite element method for 



 

227 

structures with large stochastic variations’, Computer Methods in Applied 

Mechanics and Engineering. North-Holland, 168(1–4), pp. 51–61. 

Embar, A., Dolbow, J. and Harari, I. (2010) ‘Imposing Dirichlet boundary conditions with 

Nitsche’s method and spline-based finite elements’, International Journal for 

Numerical Methods in Engineering, p. n/a-n/a. 

Evans, E. J. et al. (2015) ‘Hierarchical T-splines: Analysis-suitability, Bézier extraction, 

and application as an adaptive basis for isogeometric analysis’, Computer Methods 

in Applied Mechanics and Engineering, 284, pp. 1–20. 

Evans, J. A. et al. (2009) ‘n-Widths, sup–infs, and optimality ratios for the k-version of 

the isogeometric finite element method’, Computer Methods in Applied Mechanics 

and Engineering, 198(21–26), pp. 1726–1741. 

Evans, J. A. and Hughes, Thomas J. R. (2013) ‘Explicit trace inequalities for isogeometric 

analysis and parametric hexahedral finite elements’, Numerische Mathematik, 

123(2), pp. 259–290. 

Evans, J. A. and Hughes, Thomas J.R. (2013) ‘Isogeometric divergence-conforming B-

splines for the unsteady Navier–Stokes equations’, Journal of Computational 

Physics, 241, pp. 141–167. 

de Falco, C., Reali, A. and Vázquez, R. (2011) ‘GeoPDEs: A research tool for 

Isogeometric Analysis of PDEs’, Advances in Engineering Software, 42(12), pp. 

1020–1034. 

Falsone, G. and Ferro, G. (2007) ‘An exact solution for the static and dynamic analysis 

of FE discretized uncertain structures’, Computer Methods in Applied Mechanics 

and Engineering. North-Holland, 196(21–24), pp. 2390–2400. 



 

228 

Fan, Q. et al. (2017) ‘MREKLM: A fast multiple empirical kernel learning machine’, 

Pattern Recognition. 

Feng, Y. et al. (2016) ‘Kernelized Elastic Net Regularization: Generalization Bounds, and 

Sparse Recovery’, Neural Computation, 28(3), pp. 525–562. 

Foo, J., Yosibash, Z. and Karniadakis, G. E. (2007) ‘Stochastic simulation of riser-

sections with uncertain measured pressure loads and/or uncertain material 

properties’, Computer Methods in Applied Mechanics and Engineering. North-

Holland, 196(41–44), pp. 4250–4271. 

Gao, J., Kwan, P. W. and Shi, D. (2010) ‘Sparse kernel learning with LASSO and 

Bayesian inference algorithm’, Neural Networks, 23(2), pp. 257–264. 

Gao, W. (2007) ‘Random seismic response analysis of truss structures with uncertain 

parameters’, Engineering Structures. Elsevier, 29(7), pp. 1487–1498. 

Gao, W. et al. (2011) ‘Hybrid probabilistic interval analysis of bar structures with 

uncertainty using a mixed perturbation Monte-Carlo method’, Finite Elements in 

Analysis and Design. Elsevier, 47(7), pp. 643–652. 

Gao, W. and Kessissoglou, N. J. (2007) ‘Dynamic response analysis of stochastic truss 

structures under non-stationary random excitation using the random factor method’, 

Computer Methods in Applied Mechanics and Engineering. North-Holland, 

196(25–28), pp. 2765–2773. 

Gao, W., Song, C. and Tin-Loi, F. (2010) ‘Probabilistic interval analysis for structures 

with uncertainty’, Structural Safety. Elsevier, 32(3), pp. 191–199. 

Gautschi, W. (2008) Orthogonal Polynomials Computation and Approximation, 



 

229 

Orthogonal Polynomials Computation and Approximation. 

Ge, J. et al. (2016) ‘Blending isogeometric and Lagrangian elements in three-dimensional 

analysis’, Finite Elements in Analysis and Design, 112, pp. 50–63. 

Ghaffari Motlagh, Y. et al. (2013) ‘Simulation of laminar and turbulent concentric pipe 

flows with the isogeometric variational multiscale method’, Computers & Fluids, 

71, pp. 146–155. 

Ghanem, Roger (1999) ‘Ingredients for a general purpose stochastic finite elements 

implementation’, Computer Methods in Applied Mechanics and Engineering. 

North-Holland, 168(1–4), pp. 19–34. 

Ghanem, R. (1999a) ‘The Nonlinear Gaussian Spectrum of Log-Normal Stochastic 

Processes and Variables’, Journal of Applied Mechanics. American Society of 

Mechanical Engineers, 66(4), p. 964. 

Ghanem, R. (1999b) ‘The Nonlinear Gaussian Spectrum of Log-Normal Stochastic 

Processes and Variables’, Journal of Applied Mechanics, 66(4), p. 964. 

Ghanem, R. G. and Kruger, R. M. (1996a) ‘Numerical solution of spectral stochastic finite 

element systems’, Computer Methods in Applied Mechanics and Engineering. 

North-Holland, 129(3), pp. 289–303. 

Ghanem, R. G. and Kruger, R. M. (1996b) ‘Numerical solution of spectral stochastic 

finite element systems’, Computer Methods in Applied Mechanics and Engineering, 

129(3), pp. 289–303. 

Ghanem, R. G. and Spanos, P. D. (1991) Stochastic Finite Elements: A Spectral Approach, 

Stochastic Finite Elements: A Spectral Approach. New York, NY: Springer New 



 

230 

York. 

Ghanem, R. and Spanos, P. D. (1990) ‘Polynomial Chaos in Stochastic Finite Elements’, 

Journal of Applied Mechanics, 57(1), p. 197. 

Ghosh, D. and Farhat, C. (2008) ‘Strain and stress computations in stochastic finite 

element methods’, International Journal for Numerical Methods in Engineering, 

74(8), pp. 1219–1239. 

Giannelli, C. et al. (2016) ‘THB-splines: An effective mathematical technology for 

adaptive refinement in geometric design and isogeometric analysis’, Computer 

Methods in Applied Mechanics and Engineering, 299, pp. 337–365. 

Giannelli, C., Jüttler, B. and Speleers, H. (2012) ‘THB-splines: The truncated basis for 

hierarchical splines’, Computer Aided Geometric Design, 29(7), pp. 485–498. 

Giovanis, D. G., Papadopoulos, V. and Stavroulakis, G. (2015) ‘An adaptive spectral 

Galerkin stochastic finite element method using variability response functions’, 

International Journal for Numerical Methods in Engineering. 

Goyal, A. and Simeon, B. (2017) ‘On penalty-free formulations for multipatch 

isogeometric Kirchhoff–Love shells’, Mathematics and Computers in Simulation. 

North-Holland, 136, pp. 78–103. 

Graham-Brady, L. and Xu, X. F. (2008) ‘Stochastic Morphological Modeling of Random 

Multiphase Materials’, Journal of Applied Mechanics, 75(6), p. 061001. 

Greco, L. and Cuomo, M. (2014) ‘An implicit multi patch B-spline interpolation for 

Kirchhoff–Love space rod’, Computer Methods in Applied Mechanics and 

Engineering, 269, pp. 173–197. 



 

231 

Grigoriu, M. (1984) ‘Crossings of Non‐Gaussian Translation Processes’, Journal of 

Engineering Mechanics, 110(4), pp. 610–620. 

Grigoriu, M. (1995) Applied Non-Gaussian Processes: Examples, Theory, Simulation, 

Linear Random Vibration, And Matlab Solutions, PTR Prentice Hall. PTR Prentice 

Hall. 

Grigoriu, M. (1998) ‘Simulation of Stationary Non-Gaussian Translation Processes’, 

Journal of Engineering Mechanics, 124(2), pp. 121–126. 

Grigoriu, M. (2006) ‘Evaluation of Karhunen–Loève, Spectral, and Sampling 

Representations for Stochastic Processes’, Journal of Engineering Mechanics, 

132(2), pp. 179–189. 

Guo, J. and Du, X. (2009) ‘Reliability sensitivity analysis with random and interval 

variables’, International Journal for Numerical Methods in Engineering. John Wiley 

& Sons, Ltd, 78(13), pp. 1585–1617. 

Guo, Y. and Ruess, M. (2015) ‘Nitsche’s method for a coupling of isogeometric thin 

shells and blended shell structures’, Computer Methods in Applied Mechanics and 

Engineering. North-Holland, 284, pp. 881–905. 

Gurley, K. R., Kareem, A. and Tognarelli, M. A. (1996) ‘Simulation of a class of non-

normal random processes’, International Journal of Non-Linear Mechanics. 

Pergamon, 31(5), pp. 601–617. 

Gurley, K. R., Tognarelli, M. A. and Kareem, A. (1997) ‘Analysis and simulation tools 

for wind engineering’, Probabilistic Engineering Mechanics. Elsevier, 12(1), pp. 9–

31. 



 

232 

Haldar, A. and Reddy, R. K. (1992) ‘A random-fuzzy analysis of existing structures’, 

Fuzzy Sets and Systems. North-Holland, 48(2), pp. 201–210. 

Hassani, B., Ganjali, A. and Tavakkoli, M. (2012) ‘An isogeometrical approach to error 

estimation and stress recovery’, European Journal of Mechanics - A/Solids, 31(1), 

pp. 101–109. 

Hennig, P., Müller, S. and Kästner, M. (2016) ‘Bézier extraction and adaptive refinement 

of truncated hierarchical NURBS’, Computer Methods in Applied Mechanics and 

Engineering, 305, pp. 316–339. 

Hesch, C. and Betsch, P. (2012) ‘Isogeometric analysis and domain decomposition 

methods’, Computer Methods in Applied Mechanics and Engineering, 213–216, pp. 

104–112. 

Hien, T. D. and Noh, H.-C. (2017) ‘Stochastic isogeometric analysis of free vibration of 

functionally graded plates considering material randomness’, Computer Methods 

in Applied Mechanics and Engineering. North-Holland, 318, pp. 845–863. 

Hillman, M., Chen, J. S. and Bazilevs, Y. (2015) ‘Variationally consistent domain 

integration for isogeometric analysis’, Computer Methods in Applied Mechanics 

and Engineering, 284, pp. 521–540. 

Hsu, C. W. and Lin, C. J. (2002) ‘A comparison of methods for multiclass support vector 

machines’, IEEE Transactions on Neural Networks. 

Hsu, M.-C. et al. (2015) ‘An interactive geometry modeling and parametric design 

platform for isogeometric analysis’, Computers & Mathematics with Applications, 

70(7), pp. 1481–1500. 



 

233 

Huang, J., Nguyen-Thanh, N. and Zhou, K. (2017) ‘Extended isogeometric analysis based 

on Bézier extraction for the buckling analysis of Mindlin–Reissner plates’, Acta 

Mechanica. Springer Vienna, 228(9), pp. 3077–3093. 

Huang, S. P., Quek, S. T. and Phoon, K. K. (2001a) ‘Convergence study of the truncated 

Karhunen–Loeve expansion for simulation of stochastic processes’, International 

Journal for Numerical Methods in Engineering. John Wiley & Sons, Ltd, 52(9), pp. 

1029–1043. 

Huang, S. P., Quek, S. T. and Phoon, K. K. (2001b) ‘Convergence study of the truncated 

Karhunen–Loeve expansion for simulation of stochastic processes’, International 

Journal for Numerical Methods in Engineering, 52(9), pp. 1029–1043. 

Hughes, T. J. R. (2012) The finite element method: linear static and dynamic finite 

element analysis. Courier Corporation. 

Hughes, T. J. R., Cottrell, J. A. and Bazilevs, Y. (2005) ‘Isogeometric analysis: CAD, 

finite elements, NURBS, exact geometry and mesh refinement’, Computer Methods 

in Applied Mechanics and Engineering, 194(39–41), pp. 4135–4195. 

Hughes, T. J. R., Evans, J. A. and Reali, A. (2014) ‘Finite element and NURBS 

approximations of eigenvalue, boundary-value, and initial-value problems’, 

Computer Methods in Applied Mechanics and Engineering, 272, pp. 290–320. 

Hughes, T. J. R., Reali, A. and Sangalli, G. (2008) ‘Duality and unified analysis of 

discrete approximations in structural dynamics and wave propagation: Comparison 

of p-method finite elements with k-method NURBS’, Computer Methods in 

Applied Mechanics and Engineering, 197(49–50), pp. 4104–4124. 

Hurtado, J. E. and Alvarez, D. A. (2012) ‘The encounter of interval and probabilistic 



 

234 

approaches to structural reliability at the design point’, Computer Methods in 

Applied Mechanics and Engineering. North-Holland, 225–228, pp. 74–94. 

Irzal, F. et al. (2014) ‘An isogeometric analysis Bézier interface element for mechanical 

and poromechanical fracture problems’, International Journal for Numerical 

Methods in Engineering, 97(8), pp. 608–628. 

Jari, H., Atri, H. R. and Shojaee, S. (2015) ‘Nonlinear thermal analysis of functionally 

graded material plates using a NURBS based isogeometric approach’, Composite 

Structures. Elsevier, 119, pp. 333–345. 

Jiang, C., Long, X. Y., et al. (2013) ‘Probability-interval hybrid reliability analysis for 

cracked structures existing epistemic uncertainty’, Engineering Fracture Mechanics. 

Pergamon, 112–113, pp. 148–164. 

Jiang, C., Bi, R. G., et al. (2013) ‘Structural reliability analysis using non-probabilistic 

convex model’, Computer Methods in Applied Mechanics and Engineering. North-

Holland, 254, pp. 83–98. 

Jiang, W. and Dolbow, J. E. (2015) ‘Adaptive refinement of hierarchical B-spline finite 

elements with an efficient data transfer algorithm’, International Journal for 

Numerical Methods in Engineering, 102(3–4), pp. 233–256. 

Johannessen, K. A., Kvamsdal, T. and Dokken, T. (2014) ‘Isogeometric analysis using 

LR B-splines’, Computer Methods in Applied Mechanics and Engineering, 269, pp. 

471–514. 

Johannessen, K. A., Remonato, F. and Kvamsdal, T. (2015) ‘On the similarities and 

differences between Classical Hierarchical, Truncated Hierarchical and LR B-

splines’, Computer Methods in Applied Mechanics and Engineering, 291, pp. 64–



 

235 

101. 

Kang, P. and Youn, S.-K. (2015) ‘Isogeometric analysis of topologically complex shell 

structures’, Finite Elements in Analysis and Design. Elsevier, 99, pp. 68–81. 

Kang, Z. and Luo, Y. (2009) ‘Non-probabilistic reliability-based topology optimization 

of geometrically nonlinear structures using convex models’, Computer Methods in 

Applied Mechanics and Engineering. North-Holland, 198(41–44), pp. 3228–3238. 

Kang, Z., Luo, Y. and Li, A. (2011) ‘On non-probabilistic reliability-based design 

optimization of structures with uncertain-but-bounded parameters’, Structural 

Safety. Elsevier, 33(3), pp. 196–205. 

Kapl, M. et al. (2015) ‘Isogeometric analysis with geometrically continuous functions on 

two-patch geometries’, Computers & Mathematics with Applications. Pergamon, 

70(7), pp. 1518–1538. 

Kapoor, H. and Kapania, R. K. (2012) ‘Geometrically nonlinear NURBS isogeometric 

finite element analysis of laminated composite plates’, Composite Structures. 

Elsevier, 94(12), pp. 3434–3447. 

Kapoor, H., Kapania, R. K. and Soni, S. R. (2013) ‘Interlaminar stress calculation in 

composite and sandwich plates in NURBS Isogeometric finite element analysis’, 

Composite Structures. Elsevier, 106, pp. 537–548. 

Kardara, A., Bucher, C. G. and Shinozuka, M. (1989) ‘Structural Response Variability 

III’, Journal of Engineering Mechanics, 115(8), pp. 1726–1747. 

Katafygiotis, L. S., Zerva, A. and Malyarenko, A. A. (1999) ‘Simulation of Homogeneous 

and Partially Isotropic Random Fields’, Journal of Engineering Mechanics, 125(10), 



 

236 

pp. 1180–1189. 

Kiendl, J. et al. (2009) ‘Isogeometric shell analysis with Kirchhoff–Love elements’, 

Computer Methods in Applied Mechanics and Engineering, 198(49–52), pp. 3902–

3914. 

Kiendl, J. et al. (2010) ‘The bending strip method for isogeometric analysis of Kirchhoff–

Love shell structures comprised of multiple patches’, Computer Methods in 

Applied Mechanics and Engineering. North-Holland, 199(37–40), pp. 2403–2416. 

Kiendl, J. et al. (2015) ‘Isogeometric Kirchhoff–Love shell formulations for general 

hyperelastic materials’, Computer Methods in Applied Mechanics and Engineering. 

North-Holland, 291, pp. 280–303. 

Kiendl, J., Marino, E. and De Lorenzis, L. (2017) ‘Isogeometric collocation for the 

Reissner–Mindlin shell problem’, Computer Methods in Applied Mechanics and 

Engineering. North-Holland, 325, pp. 645–665. 

Kim, H.-J., Seo, Y.-D. and Youn, S.-K. (2009) ‘Isogeometric analysis for trimmed CAD 

surfaces’, Computer Methods in Applied Mechanics and Engineering, 198(37–40), 

pp. 2982–2995. 

Kim, H.-J., Seo, Y.-D. and Youn, S.-K. (2010) ‘Isogeometric analysis with trimming 

technique for problems of arbitrary complex topology’, Computer Methods in 

Applied Mechanics and Engineering, 199(45–48), pp. 2796–2812. 

Kleiber., M. and Hien, T. D. (1994) ‘The stochastic finite element method (basic 

perturbation technique and computer implementation)’, Applied Stochastic Models 

and Data Analysis, 10(4), pp. 297–297. 



 

237 

Kleiss, S. K. et al. (2012) ‘IETI – Isogeometric Tearing and Interconnecting’, Computer 

Methods in Applied Mechanics and Engineering, 247–248, pp. 201–215. 

Kleiss, S. K. and Tomar, S. K. (2015) ‘Guaranteed and sharp a posteriori error estimates 

in isogeometric analysis’, Computers & Mathematics with Applications, 70(3), pp. 

167–190. 

Kumar, M., Kvamsdal, T. and Johannessen, K. A. (2017) ‘Superconvergent patch 

recovery and a posteriori error estimation technique in adaptive isogeometric 

analysis’, Computer Methods in Applied Mechanics and Engineering, 316, pp. 

1086–1156. 

Kung, S. Y. (2014) Kernel methods and machine learning, Kernel Methods and Machine 

Learning. 

Le-Manh, T. and Lee, J. (2014) ‘Postbuckling of laminated composite plates using 

NURBS-based isogeometric analysis’, Composite Structures. Elsevier, 109, pp. 

286–293. 

Li, C. and Der Kiureghian, A. (1993) ‘Optimal Discretization of Random Fields’, Journal 

of Engineering Mechanics, 119(6), pp. 1136–1154. 

Li, K., Wu, D., et al. (2018) ‘Isogeometric Analysis of functionally graded porous plates 

reinforced by graphene platelets’, Composite Structures. Elsevier, 204, pp. 114–

130. 

Li, K., Gao, W., et al. (2018) ‘Spectral stochastic isogeometric analysis of linear 

elasticity’, Computer Methods in Applied Mechanics and Engineering, 332, pp. 

157–190. 



 

238 

Li, L. B., Phoon, K. K. and Quek, S. T. (2007) ‘Comparison between Karhunen–Loève 

expansion and translation-based simulation of non-Gaussian processes’, Computers 

& Structures. Pergamon, 85(5–6), pp. 264–276. 

Li, Y. and Kareem, A. (1991) ‘Simulation of Multivariate Nonstationary Random 

Processes by FFT’, Journal of Engineering Mechanics, 117(5), pp. 1037–1058. 

Liu, L. et al. (2014) ‘Volumetric T-spline construction using Boolean operations’, 

Engineering with Computers, 30(4), pp. 425–439. 

Liu, W. K., Belytschko, T. and Mani, A. (1986) ‘Probabilistic finite elements for 

nonlinear structural dynamics’, Computer Methods in Applied Mechanics and 

Engineering. North-Holland, 56(1), pp. 61–81. 

Liu, Z., Liu, W. and Peng, Y. (2016) ‘Random function based spectral representation of 

stationary and non-stationary stochastic processes’, Probabilistic Engineering 

Mechanics. Elsevier, 45, pp. 115–126. 

Liu, Zhangjun, Liu, Zenghui and Peng, Y. (2018) ‘Simulation of multivariate stationary 

stochastic processes using dimension-reduction representation methods’, Journal of 

Sound and Vibration. Academic Press, 418, pp. 144–162. 

Liu, Zhangjun, Liu, Zixin and Peng, Y. (2017) ‘Dimension reduction of Karhunen-Loeve 

expansion for simulation of stochastic processes’, Journal of Sound and Vibration. 

Academic Press, 408, pp. 168–189. 

Long, X. Y. et al. (2015) ‘Stochastic response analysis of the scaled boundary finite 

element method and application to probabilistic fracture mechanics’, Computers & 

Structures. Pergamon, 153, pp. 185–200. 



 

239 

De Lorenzis, L. et al. (2011) ‘A large deformation frictional contact formulation using 

NURBS-based isogeometric analysis’, International Journal for Numerical 

Methods in Engineering, p. n/a-n/a. 

De Lorenzis, L., Wriggers, P. and Hughes, T. J. R. (2014) ‘Isogeometric contact: a 

review’, GAMM-Mitteilungen, 37(1), pp. 85–123. 

De Lorenzis, L., Wriggers, P. and Zavarise, G. (2012) ‘A mortar formulation for 3D large 

deformation contact using NURBS-based isogeometric analysis and the augmented 

Lagrangian method’, Computational Mechanics, 49(1), pp. 1–20. 

Lu, J., Yang, G. and Ge, J. (2013) ‘Blending NURBS and Lagrangian representations in 

isogeometric analysis’, Computer Methods in Applied Mechanics and Engineering, 

257, pp. 117–125. 

Lucor, D., Su, C.-H. and Karniadakis, G. E. (2004) ‘Generalized polynomial chaos and 

random oscillators’, International Journal for Numerical Methods in Engineering. 

John Wiley & Sons, Ltd, 60(3), pp. 571–596. 

De Luycker, E. et al. (2011) ‘X-FEM in isogeometric analysis for linear fracture 

mechanics’, International Journal for Numerical Methods in Engineering, 87(6), pp. 

541–565. 

Mangasarian, O. L. and Musicant, D. R. (2000) ‘Lagrangian support vector machines’, 

The Journal of Machine Learning Research, 1. 

Manni, C., Pelosi, F. and Lucia Sampoli, M. (2011) ‘Generalized B-splines as a tool in 

isogeometric analysis’, Computer Methods in Applied Mechanics and Engineering, 

200(5–8), pp. 867–881. 



 

240 

Martin, T. and Cohen, E. (2010) ‘Volumetric parameterization of complex objects by 

respecting multiple materials’, Computers & Graphics, 34(3), pp. 187–197. 

Martin, T., Cohen, E. and Kirby, R. M. (2009) ‘Volumetric parameterization and 

trivariate B-spline fitting using harmonic functions’, Computer Aided Geometric 

Design, 26(6), pp. 648–664. 

Marussig, B. and Hughes, T. J. R. (2018) ‘A Review of Trimming in Isogeometric 

Analysis: Challenges, Data Exchange and Simulation Aspects’, Archives of 

Computational Methods in Engineering, 25(4), pp. 1059–1127. 

Matthies, H. G. et al. (1997) ‘Uncertainties in probabilistic numerical analysis of 

structures and solids-Stochastic finite elements’, Structural Safety. Elsevier, 19(3), 

pp. 283–336. 

Maurin, F. et al. (2018) ‘Isogeometric collocation for Kirchhoff–Love plates and shells’, 

Computer Methods in Applied Mechanics and Engineering. North-Holland, 329, 

pp. 396–420. 

Michel, L. (1977) Probability Theory. Springer-Verlag. Springer. 

Mirzaei, M. and Kiani, Y. (2017) ‘Isogeometric thermal buckling analysis of temperature 

dependent FG graphene reinforced laminated plates using NURBS formulation’, 

Composite Structures. Elsevier, 180, pp. 606–616. 

Möller, B. et al. (2009) ‘Fuzzy random processes and their application to dynamic 

analysis of structures’, Mathematical and Computer Modelling of Dynamical 

Systems. Taylor & Francis, 15(6), pp. 515–534. 

Nagy, A. P. and Benson, D. J. (2015) ‘On the numerical integration of trimmed 



 

241 

isogeometric elements’, Computer Methods in Applied Mechanics and Engineering, 

284, pp. 165–185. 

Nair, P. B. and Keane, A. J. (2002) ‘Stochastic reduced basis methods’, AIAA Journal, 

40(8), pp. 1653–1664. 

Ngah, M. F. and Young, A. (2007) ‘Application of the spectral stochastic finite element 

method for performance prediction of composite structures’, Composite Structures, 

78(3), pp. 447–456. 

Nguyen-Thanh, N. et al. (2011) ‘Rotation free isogeometric thin shell analysis using 

PHT-splines’, Computer Methods in Applied Mechanics and Engineering. North-

Holland, 200(47–48), pp. 3410–3424. 

Nguyen-Thanh, N. et al. (2015) ‘An extended isogeometric thin shell analysis based on 

Kirchhoff–Love theory’, Computer Methods in Applied Mechanics and 

Engineering. North-Holland, 284, pp. 265–291. 

Nguyen-Xuan, H. et al. (2014) ‘Isogeometric analysis of functionally graded plates using 

a refined plate theory’, Composites Part B: Engineering. Elsevier, 64, pp. 222–234. 

Nguyen-Xuan, H., Thai, C. H. and Nguyen-Thoi, T. (2013) ‘Isogeometric finite element 

analysis of composite sandwich plates using a higher order shear deformation 

theory’, Composites Part B: Engineering. Elsevier, 55, pp. 558–574. 

Nguyen, H. X. et al. (2017) ‘Geometrically nonlinear isogeometric analysis of 

functionally graded microplates with the modified couple stress theory’, Computers 

& Structures. Pergamon, 193, pp. 110–127. 

Nguyen, L. B. et al. (2019) ‘An isogeometric Bézier finite element analysis for 



 

242 

piezoelectric FG porous plates reinforced by graphene platelets’, Composite 

Structures. Elsevier, 214, pp. 227–245. 

Nguyen, N.-T. et al. (2015) ‘An efficient computational approach for size-dependent 

analysis of functionally graded nanoplates’, Computer Methods in Applied 

Mechanics and Engineering. North-Holland, 297, pp. 191–218. 

Nguyen, V.-H. et al. (2014) ‘A new inverse trigonometric shear deformation theory for 

isotropic and functionally graded sandwich plates’, Composites Part B: Engineering. 

Elsevier, 66, pp. 233–246. 

Nguyen, V. P. et al. (2014) ‘Nitsche’s method for two and three dimensional NURBS 

patch coupling’, Computational Mechanics, 53(6), pp. 1163–1182. 

Nguyen, V. P. et al. (2015) ‘Isogeometric analysis: An overview and computer 

implementation aspects’, Mathematics and Computers in Simulation, 117, pp. 89–

116. 

Oden, J. T. et al. (2003) ‘Research directions in computational mechanics’, Computer 

Methods in Applied Mechanics and Engineering. North-Holland, 192(7–8), pp. 

913–922. 

Ozer, S., Chen, C. H. and Cirpan, H. A. (2011) ‘A set of new Chebyshev kernel functions 

for support vector machine pattern classification’, Pattern Recognition, 44(7), pp. 

1435–1447. 

Di Paola, M. (1998) ‘Digital simulation of wind field velocity’, Journal of Wind 

Engineering and Industrial Aerodynamics. Elsevier, 74–76, pp. 91–109. 

Di Paola, M. and Gullo, I. (2001) ‘Digital generation of multivariate wind field processes’, 



 

243 

Probabilistic Engineering Mechanics. Elsevier, 16(1), pp. 1–10. 

Papadopoulos, V., Deodatis, G. and Papadrakakis, M. (2005) ‘Flexibility-based upper 

bounds on the response variability of simple beams’, Computer Methods in Applied 

Mechanics and Engineering. North-Holland, 194(12–16), pp. 1385–1404. 

Papadopoulos, V. and Papadrakakis, M. (2005) ‘The effect of material and thickness 

variability on the buckling load of shells with random initial imperfections’, 

Computer Methods in Applied Mechanics and Engineering. North-Holland, 

194(12–16), pp. 1405–1426. 

Papadrakakis, M. and Papadopoulos, V. (1996) ‘Robust and efficient methods for 

stochastic finite element analysis using Monte Carlo simulation’, Computer 

Methods in Applied Mechanics and Engineering. North-Holland, 134(3–4), pp. 

325–340. 

Papadrakakis, M., Papadopoulos, V. and Lagaros, N. D. (1996) ‘Structural reliability 

analyis of elastic-plastic structures using neural networks and Monte Carlo 

simulation’, Computer Methods in Applied Mechanics and Engineering. North-

Holland, 136(1–2), pp. 145–163. 

Pauletti, M. S. et al. (2015) ‘Igatools: An Isogeometric Analysis Library’, SIAM Journal 

on Scientific Computing, 37(4), pp. C465–C496. 

Pellissetti, M. . and Ghanem, R. . (2000) ‘Iterative solution of systems of linear equations 

arising in the context of stochastic finite elements’, Advances in Engineering 

Software. Elsevier, 31(8–9), pp. 607–616. 

Peng, L. et al. (2017) ‘Simulation of Multivariate Nonstationary Random Processes: 

Hybrid Stochastic Wave and Proper Orthogonal Decomposition Approach’, Journal 



 

244 

of Engineering Mechanics, 143(9), p. 04017064. 

Phoon, K.-K., Quek, S.-T. and Huang, H. (2004) ‘Simulation of non-Gaussian processes 

using fractile correlation’, Probabilistic Engineering Mechanics. Elsevier, 19(4), pp. 

287–292. 

Phoon, K. ., Huang, S. . and Quek, S. . (2002) ‘Implementation of Karhunen–Loeve 

expansion for simulation using a wavelet-Galerkin scheme’, Probabilistic 

Engineering Mechanics. Elsevier, 17(3), pp. 293–303. 

Phoon, K. K., Huang, H. W. and Quek, S. T. (2005) ‘Simulation of strongly non-Gaussian 

processes using Karhunen–Loeve expansion’, Probabilistic Engineering Mechanics. 

Elsevier, 20(2), pp. 188–198. 

Phoon, K. K., Huang, S. P. and Quek, S. T. (2002) ‘Simulation of second-order processes 

using Karhunen–Loeve expansion’, Computers & Structures. Pergamon, 80(12), pp. 

1049–1060. 

Phung-Van, P., De Lorenzis, L., et al. (2015) ‘Analysis of laminated composite plates 

integrated with piezoelectric sensors and actuators using higher-order shear 

deformation theory and isogeometric finite elements’, Computational Materials 

Science. Elsevier, 96, pp. 495–505. 

Phung-Van, P., Abdel-Wahab, M., et al. (2015) ‘Isogeometric analysis of functionally 

graded carbon nanotube-reinforced composite plates using higher-order shear 

deformation theory’, Composite Structures. Elsevier, 123, pp. 137–149. 

Piegl, L. and Tiller, W. (1997) ‘The NURBS book, 2nd edition’, Springer-Verleg. 

Pigazzini, M. S. et al. (2019) ‘Gradient-enhanced damage modeling in Kirchhoff–Love 



 

245 

shells: Application to isogeometric analysis of composite laminates’, Computer 

Methods in Applied Mechanics and Engineering. North-Holland, 346, pp. 152–179. 

Puig, B., Poirion, F. and Soize, C. (2002) ‘Non-Gaussian simulation using Hermite 

polynomial expansion: Convergences and algorithms’, Probabilistic Engineering 

Mechanics. Elsevier, 17(3), pp. 253–264. 

Rahman, S. (2018) ‘A Galerkin isogeometric method for Karhunen–Loève approximation 

of random fields’, Computer Methods in Applied Mechanics and Engineering, 338, 

pp. 533–561. 

Ratnani, A. and Sonnendrücker, E. (2012) ‘An Arbitrary High-Order Spline Finite 

Element Solver for the Time Domain Maxwell Equations’, Journal of Scientific 

Computing, 51(1), pp. 87–106. 

Rice, S. O. (1945) ‘Mathematical Analysis of Random Noise’, Bell System Technical 

Journal, 24(1), pp. 46–156. 

Riffnaller-Schiefer, A., Augsdörfer, U. H. and Fellner, D. W. (2016) ‘Isogeometric shell 

analysis with NURBS compatible subdivision surfaces’, Applied Mathematics and 

Computation. Elsevier, 272, pp. 139–147. 

Rogers, D. F. (2001) ‘An introduction to NURBS: with historical perspective’, in. 

Ruess, M. et al. (2014) ‘Weak coupling for isogeometric analysis of non-matching and 

trimmed multi-patch geometries’, Computer Methods in Applied Mechanics and 

Engineering, 269, pp. 46–71. 

Rypl, D. and Patzák, B. (2012) ‘From the finite element analysis to the isogeometric 

analysis in an object oriented computing environment’, Advances in Engineering 



 

246 

Software, 44(1), pp. 116–125. 

Sachdeva, S. K., Nair, P. B. and Keane, A. J. (2006) ‘Comparative study of projection 

schemes for stochastic finite element analysis’, Computer Methods in Applied 

Mechanics and Engineering. North-Holland, 195(19–22), pp. 2371–2392. 

Sakamoto, S. and Ghanem, R. (2002) ‘Polynomial Chaos Decomposition for the 

Simulation of Non-Gaussian Nonstationary Stochastic Processes’, Journal of 

Engineering Mechanics, 128(2), pp. 190–201. 

San Kim, D., Kim, T. and Rim, S.-H. (2012) ‘Some identities involving Gegenbauer 

polynomials’, Advances in Difference Equations. Springer, 2012(1), p. 219. 

Sauer, R. A., Duong, T. X. and Corbett, C. J. (2014) ‘A computational formulation for 

constrained solid and liquid membranes considering isogeometric finite elements’, 

Computer Methods in Applied Mechanics and Engineering. North-Holland, 271, 

pp. 48–68. 

Schellekens, J. C. J. and De Borst, R. (1993) ‘On the numerical integration of interface 

elements’, International Journal for Numerical Methods in Engineering, 36(1), pp. 

43–66. 

Schillinger, D., Hossain, S. J. and Hughes, T. J. R. (2014) ‘Reduced Bézier element 

quadrature rules for quadratic and cubic splines in isogeometric analysis’, 

Computer Methods in Applied Mechanics and Engineering, 277, pp. 1–45. 

Schmidt, R., Wüchner, R. and Bletzinger, K.-U. (2012) ‘Isogeometric analysis of 

trimmed NURBS geometries’, Computer Methods in Applied Mechanics and 

Engineering, 241–244, pp. 93–111. 



 

247 

Scholkopf, B. et al. (1999) ‘Input space versus feature space in kernel-based methods’, 

IEEE Transactions on Neural Networks, 10(5), pp. 1000–1017. 

Schuëller, G. I. (2006) ‘Developments in stochastic structural mechanics’, Archive of 

Applied Mechanics. Springer-Verlag, 75(10–12), pp. 755–773. 

Scott, M. A. et al. (2011) ‘Isogeometric finite element data structures based on Bézier 

extraction of T-splines’, International Journal for Numerical Methods in 

Engineering, 88(2), pp. 126–156. 

Scott, M. A. et al. (2012) ‘Local refinement of analysis-suitable T-splines’, Computer 

Methods in Applied Mechanics and Engineering. North-Holland, 213–216, pp. 

206–222. 

Sederberg, T. W. et al. (2003) ‘T-splines and T-NURCCs’, ACM Transactions on 

Graphics, 22(3), p. 477. 

Seo, Y.-D., Kim, H.-J. and Youn, S.-K. (2010a) ‘Isogeometric topology optimization 

using trimmed spline surfaces’, Computer Methods in Applied Mechanics and 

Engineering, 199(49–52), pp. 3270–3296. 

Seo, Y.-D., Kim, H.-J. and Youn, S.-K. (2010b) ‘Shape optimization and its extension to 

topological design based on isogeometric analysis’, International Journal of Solids 

and Structures, 47(11–12), pp. 1618–1640. 

Shi, Y. and Koutsourelakis, S. (2006) ‘A Novel Approach for Simulation of Non-

Gaussian Fields: Application in Estimating Wire Strengths From Experimental 

Data’, in 9th ASCE Specialty Conference on Probabilistic Mechanics and Structural 

Reliability. 



 

248 

Shields, M. D. and Kim, H. (2017) ‘Simulation of higher-order stochastic processes by 

spectral representation’, Probabilistic Engineering Mechanics. Elsevier, 47, pp. 1–

15. 

Shinozuka, M. (1971) ‘Simulation of Multivariate and Multidimensional Random 

Processes’, The Journal of the Acoustical Society of America, 49(1B), pp. 357–368. 

Shinozuka, M. and Deodatis, G. (1991) ‘Simulation of Stochastic Processes by Spectral 

Representation’, Applied Mechanics Reviews. American Society of Mechanical 

Engineers, 44(4), p. 191. 

Shinozuka, M. and Deodatis, G. (1996) ‘Simulation of Multi-Dimensional Gaussian 

Stochastic Fields by Spectral Representation’, Applied Mechanics Reviews. 

American Society of Mechanical Engineers, 49(1), p. 29. 

Shinozuka, M. and Jan, C.-M. (1972) ‘Digital simulation of random processes and its 

applications’, Journal of Sound and Vibration. Academic Press, 25(1), pp. 111–128. 

Shojaee, S. et al. (2012) ‘Free vibration analysis of thin plates by using a NURBS-based 

isogeometric approach’, Finite Elements in Analysis and Design. Elsevier, 61, pp. 

23–34. 

Shojaee, S., Izadpenah, E. and Haeri, A. (2012) ‘Imposition of Essential Boundary 

Conditions in Isogeometric Analysis Using the Lagrange Multiplier Method’, Iran 

University of Science \& Technology. 

Silverman, B. W. (2018) Density Estimation for Statistics and Data Analysis, Density 

Estimation: For Statistics and Data Analysis. Routledge. 

Smola, A. J. and Schölkopf, B. (2004) ‘A tutorial on support vector regression’, Statistics 



 

249 

and Computing, 14(3), pp. 199–222. 

Spanos, P. D. and Zeldin, B. A. (1998) ‘Monte Carlo Treatment of Random Fields: A 

Broad Perspective’, Applied Mechanics Reviews. American Society of Mechanical 

Engineers, 51(3), p. 219. 

Stavroulakis, G. et al. (2017) ‘A GPU domain decomposition solution for spectral 

stochastic finite element method’, Computer Methods in Applied Mechanics and 

Engineering. North-Holland, 327, pp. 392–410. 

Stefanou, G. (2009) ‘The stochastic finite element method: Past, present and future’, 

Computer Methods in Applied Mechanics and Engineering. North-Holland, 198(9–

12), pp. 1031–1051. 

Stefanou, G. and Papadrakakis, M. (2004) ‘Stochastic finite element analysis of shells 

with combined random material and geometric properties’, Computer Methods in 

Applied Mechanics and Engineering. North-Holland, 193(1–2), pp. 139–160. 

Stefanou, G. and Papadrakakis, M. (2007) ‘Assessment of spectral representation and 

Karhunen–Loève expansion methods for the simulation of Gaussian stochastic 

fields’, Computer Methods in Applied Mechanics and Engineering. North-Holland, 

196(21–24), pp. 2465–2477. 

Sudret, B., Defaux, G. and Pendola, M. (2005) ‘Time-variant finite element reliability 

analysis – application to the durability of cooling towers’, Structural Safety. 

Elsevier, 27(2), pp. 93–112. 

Sudret, B. and Der Kiureghian, A. (2002) ‘Comparison of finite element reliability 

methods’, Probabilistic Engineering Mechanics. Elsevier, 17(4), pp. 337–348. 



 

250 

Sudret, B. and Kiureghian, D. (2000) ‘Stochastic Finite Element Methods and Reliability: 

A State-of-the-Art Report’, University of California Berkeley. 

Surya Mohan, P., Nair, P. B. and Keane, A. J. (2008) ‘Multi-element stochastic reduced 

basis methods’, Computer Methods in Applied Mechanics and Engineering, 

197(17–18), pp. 1495–1506. 

Tagliabue, A., Dedè, L. and Quarteroni, A. (2014) ‘Isogeometric Analysis and error 

estimates for high order partial differential equations in fluid dynamics’, Computers 

& Fluids, 102, pp. 277–303. 

Tan, P., Nguyen-Thanh, N. and Zhou, K. (2017) ‘Extended isogeometric analysis based 

on Bézier extraction for an FGM plate by using the two-variable refined plate 

theory’, Theoretical and Applied Fracture Mechanics. Elsevier, 89, pp. 127–138. 

Tartakovsky, D. M. and Xiu, D. (2006) ‘Stochastic analysis of transport in tubes with 

rough walls’, Journal of Computational Physics. Academic Press, 217(1), pp. 248–

259. 

Temizer, İ., Wriggers, P. and Hughes, T. J. R. (2011) ‘Contact treatment in isogeometric 

analysis with NURBS’, Computer Methods in Applied Mechanics and Engineering, 

200(9–12), pp. 1100–1112. 

Temizer, İ., Wriggers, P. and Hughes, T. J. R. (2012) ‘Three-dimensional mortar-based 

frictional contact treatment in isogeometric analysis with NURBS’, Computer 

Methods in Applied Mechanics and Engineering, 209–212, pp. 115–128. 

Tepole, A. B. et al. (2015) ‘Isogeometric Kirchhoff–Love shell formulations for 

biological membranes’, Computer Methods in Applied Mechanics and Engineering. 

North-Holland, 293, pp. 328–347. 



 

251 

Thai, C. H. et al. (2012) ‘Static, free vibration, and buckling analysis of laminated 

composite Reissner-Mindlin plates using NURBS-based isogeometric approach’, 

International Journal for Numerical Methods in Engineering. John Wiley & Sons, 

Ltd, 91(6), pp. 571–603. 

Thai, C. H. et al. (2013) ‘Isogeometric analysis of laminated composite and sandwich 

plates using a layerwise deformation theory’, Composite Structures. Elsevier, 104, 

pp. 196–214. 

Thai, C. H. et al. (2014) ‘Isogeometric analysis of laminated composite and sandwich 

plates using a new inverse trigonometric shear deformation theory’, European 

Journal of Mechanics - A/Solids. Elsevier Masson, 43, pp. 89–108. 

Thai, C. H. et al. (2015) ‘Isogeometric Analysis of Laminated Composite Plates Using 

the Higher-Order Shear Deformation Theory’, Mechanics of Advanced Materials 

and Structures. Taylor & Francis, 22(6), pp. 451–469. 

Thomas, D. C. et al. (2015) ‘Bézier projection: A unified approach for local projection 

and quadrature-free refinement and coarsening of NURBS and T-splines with 

particular application to isogeometric design and analysis’, Computer Methods in 

Applied Mechanics and Engineering, 284, pp. 55–105. 

Tran, L. V. et al. (2014) ‘Isogeometric analysis of laminated composite plates based on a 

four-variable refined plate theory’, Engineering Analysis with Boundary Elements. 

Elsevier, 47, pp. 68–81. 

Tran, L. V., Lee, J., et al. (2015) ‘Geometrically nonlinear isogeometric analysis of 

laminated composite plates based on higher-order shear deformation theory’, 

International Journal of Non-Linear Mechanics. Pergamon, 72, pp. 42–52. 



 

252 

Tran, L. V., Ly, H. A., et al. (2015) ‘Vibration analysis of cracked FGM plates using 

higher-order shear deformation theory and extended isogeometric approach’, 

International Journal of Mechanical Sciences. Pergamon, 96–97, pp. 65–78. 

Tran, L. V., Ferreira, A. J. M. and Nguyen-Xuan, H. (2013) ‘Isogeometric analysis of 

functionally graded plates using higher-order shear deformation theory’, 

Composites Part B: Engineering. Elsevier, 51, pp. 368–383. 

Tran, L. V. and Kim, S.-E. (2018) ‘Static and free vibration analyses of multilayered 

plates by a higher-order shear and normal deformation theory and isogeometric 

analysis’, Thin-Walled Structures. Elsevier, 130, pp. 622–640. 

Tran, L. V., Thai, C. H. and Nguyen-Xuan, H. (2013) ‘An isogeometric finite element 

formulation for thermal buckling analysis of functionally graded plates’, Finite 

Elements in Analysis and Design. Elsevier, 73, pp. 65–76. 

Valizadeh, N. et al. (2013) ‘NURBS-based finite element analysis of functionally graded 

plates: Static bending, vibration, buckling and flutter’, Composite Structures. 

Elsevier, 99, pp. 309–326. 

VALIZADEH, N. et al. (2013) ‘ISOGEOMETRIC SIMULATION FOR BUCKLING, 

FREE AND FORCED VIBRATION OF ORTHOTROPIC PLATES’, International 

Journal of Applied Mechanics. Imperial College Press, 05(02), p. 1350017. 

Vanmarcke, E. and Grigoriu, M. (1983) ‘Stochastic Finite Element Analysis of Simple 

Beams’, Journal of Engineering Mechanics, 109(5), pp. 1203–1214. 

Vapnik, V. (1998) Statistical learning theory. 1998, New York John Wiley and Sons. 

Vapnik, V. (2013) The nature of statistical learning theory. Springer science & business 



 

253 

media. 

da Veiga, L. B. et al. (2014) ‘Mathematical analysis of variational isogeometric methods’, 

Acta Numerica, 23, pp. 157–287. 

Wang, C. et al. (2014) ‘Stochastic interval analysis of natural frequency and mode shape 

of structures with uncertainties’, Journal of Sound and Vibration. Academic Press, 

333(9), pp. 2483–2503. 

Wang, D. and Xuan, J. (2010) ‘An improved NURBS-based isogeometric analysis with 

enhanced treatment of essential boundary conditions’, Computer Methods in 

Applied Mechanics and Engineering, 199(37–40), pp. 2425–2436. 

Wang, P. et al. (2011) ‘Adaptive isogeometric analysis using rational PHT-splines’, 

Computer-Aided Design, 43(11), pp. 1438–1448. 

Wang, W. et al. (2011) ‘Converting an unstructured quadrilateral mesh to a standard T-

spline surface’, Computational Mechanics, 48(4), pp. 477–498. 

Wang, W. et al. (2013) ‘Trivariate solid T-spline construction from boundary 

triangulations with arbitrary genus topology’, Computer-Aided Design, 45(2), pp. 

351–360. 

Wang, Y.-W. et al. (2013) ‘Isogeometric analysis for compound B-spline surfaces’, 

Computer Methods in Applied Mechanics and Engineering, 261–262, pp. 1–15. 

Willberg, C. et al. (2012) ‘Comparison of different higher order finite element schemes 

for the simulation of Lamb waves’, Computer Methods in Applied Mechanics and 

Engineering, 241–244, pp. 246–261. 

Witteveen, J. A. S. and Bijl, H. (2006) ‘Modeling Arbitrary Uncertainties Using Gram-



 

254 

Schmidt Polynomial Chaos’, in 44th AIAA Aerospace Sciences Meeting and 

Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics. 

Wu, D., Gao, W., Tin-Loi, F., et al. (2016) ‘Probabilistic interval limit analysis for 

structures with hybrid uncertainty’, Engineering Structures. Elsevier, 114, pp. 195–

208. 

Wu, D., Gao, W., Song, C., et al. (2016) ‘Probabilistic interval stability assessment for 

structures with mixed uncertainty’, Structural Safety. Elsevier, 58, pp. 105–118. 

Wu, D., Gao, W., Wang, C., et al. (2016) ‘Robust fuzzy structural safety assessment using 

mathematical programming approach’, Fuzzy Sets and Systems. North-Holland, 

293, pp. 30–49. 

Wu, D. et al. (2017) ‘Robust safety assessment of functionally graded structures with 

interval uncertainties’, Composite Structures. Elsevier, 180, pp. 664–685. 

Wu, D. and Gao, W. (2017a) ‘Hybrid uncertain static analysis with random and interval 

fields’, Computer Methods in Applied Mechanics and Engineering. North-Holland, 

315, pp. 222–246. 

Wu, D. and Gao, W. (2017b) ‘Uncertain static plane stress analysis with interval fields’, 

International Journal for Numerical Methods in Engineering. John Wiley & Sons, 

Ltd, 110(13), pp. 1272–1300. 

Wu, D., Gao, W. and Tangaramvong, S. (2017) ‘Time-Dependent Buckling Analysis of 

Concrete-Filled Steel Tubular Arch with Interval Viscoelastic Effects’, Journal of 

Structural Engineering, 143(7), p. 04017055. 

Xia, B., Yu, D. and Liu, J. (2013) ‘Hybrid uncertain analysis of acoustic field with interval 



 

255 

random parameters’, Computer Methods in Applied Mechanics and Engineering. 

North-Holland, 256, pp. 56–69. 

Xiong, H., Swamy, M. N. S. and Ahmad, M. O. (2005) ‘Optimizing the Kernel in the 

Empirical Feature Space’, IEEE Transactions on Neural Networks, 16(2), pp. 460–

474. 

Xiu, D. and Karniadakis, G. E. (2003) ‘The Wiener--Askey Polynomial Chaos for 

Stochastic Differential Equations’, SIAM Journal on Scientific Computing, 24(2), 

pp. 619–644. 

Xu, G. et al. (2012) ‘A New Error Assessment Method in Isogeometric Analysis of 2D 

Heat Conduction Problems’, Advanced Science Letters, 10(1), pp. 508–512. 

Xu, G. et al. (2013a) ‘Analysis-suitable volume parameterization of multi-block 

computational domain in isogeometric applications’, Computer-Aided Design, 

45(2), pp. 395–404. 

Xu, G. et al. (2013b) ‘Constructing analysis-suitable parameterization of computational 

domain from CAD boundary by variational harmonic method’, Journal of 

Computational Physics, 252, pp. 275–289. 

Xu, G. et al. (2013c) ‘Optimal analysis-aware parameterization of computational domain 

in 3D isogeometric analysis’, Computer-Aided Design, 45(4), pp. 812–821. 

Yamazaki, F. and Shinozuka, M. (1988) ‘Digital Generation of Non‐Gaussian Stochastic 

Fields’, Journal of Engineering Mechanics, 114(7), pp. 1183–1197. 

Yin, S. et al. (2014) ‘Isogeometric locking-free plate element: A simple first order shear 

deformation theory for functionally graded plates’, Composite Structures. Elsevier, 



 

256 

118, pp. 121–138. 

Yin, S., Yu, T. and Liu, P. (2013) ‘Free Vibration Analyses of FGM Thin Plates by 

Isogeometric Analysis Based on Classical Plate Theory and Physical Neutral 

Surface’, Advances in Mechanical Engineering. SAGE PublicationsSage UK: 

London, England, 5, p. 634584. 

Yu, T. et al. (2016) ‘NURBS-based isogeometric analysis of buckling and free vibration 

problems for laminated composites plates with complicated cutouts using a new 

simple FSDT theory and level set method’, Thin-Walled Structures. Elsevier, 101, 

pp. 141–156. 

Yu, T. T. et al. (2015) ‘A simple FSDT-based isogeometric analysis for geometrically 

nonlinear analysis of functionally graded plates’, Finite Elements in Analysis and 

Design. Elsevier, 96, pp. 1–10. 

Zareh, M. and Qian, X. (2019) ‘Kirchhoff–Love shell formulation based on triangular 

isogeometric analysis’, Computer Methods in Applied Mechanics and Engineering. 

North-Holland, 347, pp. 853–873. 

van der Zee, K. G. and Verhoosel, C. V. (2011) ‘Isogeometric analysis-based goal-

oriented error estimation for free-boundary problems’, Finite Elements in Analysis 

and Design, 47(6), pp. 600–609. 

Zentner, I. et al. (2016) ‘A biorthogonal decomposition for the identification and 

simulation of non-stationary and non-Gaussian random fields’, Journal of 

Computational Physics. Academic Press, 314, pp. 1–13. 

Zhang, H. (2012) ‘Interval importance sampling method for finite element-based 

structural reliability assessment under parameter uncertainties’, Structural Safety. 



 

257 

Elsevier, 38, pp. 1–10. 

Zhang, J. and Ellingwood, B. (1994) ‘Orthogonal Series Expansions of Random Fields in 

Reliability Analysis’, Journal of Engineering Mechanics, 120(12), pp. 2660–2677. 

Zhang, X., Liu, Q. and Huang, H. (2019) ‘Numerical simulation of random fields with a 

high-order polynomial based Ritz–Galerkin approach’, Probabilistic Engineering 

Mechanics. Elsevier, 55, pp. 17–27. 

Zhang, Y. et al. (2006) ‘Patient-Specific Vascular NURBS Modeling for Isogeometric 

Analysis of Blood Flow’, in Proceedings of the 15th International Meshing 

Roundtable. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 73–92. 

Zhang, Y., Wang, W. and Hughes, T. J. R. (2012) ‘Solid T-spline construction from 

boundary representations for genus-zero geometry’, Computer Methods in Applied 

Mechanics and Engineering, 249–252, pp. 185–197. 

Zhang, Y., Wang, W. and Hughes, T. J. R. (2013) ‘Conformal solid T-spline construction 

from boundary T-spline representations’, Computational Mechanics, 51(6), pp. 

1051–1059. 

Zheng, Z. and Dai, H. (2017) ‘Simulation of multi-dimensional random fields by 

Karhunen–Loève expansion’, Computer Methods in Applied Mechanics and 

Engineering. North-Holland, 324, pp. 221–247. 

Zou, Z. et al. (2017) ‘A Geometrically Exact Isogeometric Blended Shell: Formulation, 

Benchmarking, and Automotive Application’, SAE International Journal of 

Passenger Cars - Mechanical Systems, 10(2), pp. 2017-01–1329. 

 


	Title Page: SPECTRAL STOCHASTIC ISOGEOMETRIC ANALYSIS
	THESIS/DISSERTATION SHEET
	INCLUSION OF PUBLICATIONS STATEMENT
	COPYRIGHT STATEMENT
	AUTHENTICITY STATEMENT
	ORIGINALITY STATEMENT
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF PUBLICATIONS
	LIST OF FIGURES
	LIST OF TABLES
	NOMENCLATURE
	Chapter 1  INTRODUCTION
	1.1 Summary
	1.2 Motivation of research
	1.3 Objective and scope
	1.4 Layout of thesis
	1.5 Acknowledgement

	Chapter 2  LITERATURE REVIEW
	2.1 Summary
	2.2 Isogeometric analysis (IGA)
	2.2.1 Introduction
	2.2.2 Mechanics problems
	2.2.3 Structural analysis

	2.3 Stochastic finite element method (SFEM)
	2.3.1 Introduction
	2.3.2 Uncertainty modelling
	2.3.2.1 Gaussian distribution
	2.3.2.2 Non-Gaussian distribution

	2.3.3 Uncertainty quantification


	Chapter 3  SPECTRAL STOCHASTIC ISOGEOMETRIC ANALYSIS OF LINEAR ELASTICITY
	3.1 Summary
	3.2 Introduction
	3.3 Isogeometric analysis (IGA)
	3.3.1 The knot vector and basis function
	3.3.2 The B-spline curves and surfaces
	3.3.3 The non-uniform rational B-spline (NURBS) curves and surfaces
	3.3.4 Isogeometric analysis for linear elasticity problem

	3.4 Spectral stochastic isogeometric analysis (SSIGA)
	3.4.1 Preliminary
	3.4.2 Generalized isogeometric basis function based Karhunen-Loève expansion
	3.4.3 The polynomial chaos expansion (PCE)
	3.4.4 SSIGA for linear elasticity problems

	3.5 Numerical examples
	3.5.1 Numerical example: generalized isogeometric basis functions based Karhunen-Loève expansion
	3.5.2 Numerical example: circular ring Mindlin–Reissner plate
	3.5.3 Numerical example: torpedo-shape Kirchhoff-Love shell

	3.6 Conclusion

	Chapter 4  SPECTRAL STOCHASTIC STOCAHSTIC ISOGEOMETRIC ANALYSIS FOR STATIC RESPONSE OF FGM PLATE
	4.1 Summary
	4.2 Introduction
	4.3 Isogeometric static analysis of FGM plate
	4.3.1 The material properties of the FGM plate
	4.3.2 First-order shear deformation theory of plate
	4.3.3 Isogeometric analysis of FGM plate

	4.4 SSIGA for stochastic static analysis of FGM plate
	4.5 Numerical examples
	4.5.1 Numerical example: dart shape FGM plate
	4.5.2 Numerical example: irregularly curved FGM plate

	4.6 Conclusion

	Chapter 5  SPECTRAL STOCAHSTIC ISOGEOMETRIC ANALYSIS OF FREE VIBRATION
	5.1 Summary
	5.2 Introduction
	5.3 Stochastic free vibration analysis
	5.4 SSIGA for the generalized stochastic eigenvalue problem
	5.4.1 Generalized isogeometric basis function based Karhunen-Loève expansion
	5.4.2 The arbitrary polynomial chaos expansion (aPC)
	5.4.3 Galerkin-based method within SSIGA for stochastic generalized eigenvalue problem

	5.5 Numerical examples
	5.5.1 Numerical example: circular strip Mindlin plate
	5.5.2 Numerical example: flower Kirchhoff -Love shell

	5.6 Conclusion
	Appendix 5A. Detailed derivations of Eqs.(5.58) and (5.59)

	Chapter 6  SPECTRAL STOCHASTIC ISOGEOMETRIC ANALYSIS FOR LINEAR STABILITY ANALYSIS OF PLATE
	6.1 Summary
	6.2 Introduction
	6.3 Stochastic linear stability analysis
	6.3.1 The first-order shear deformation theory of plate
	6.3.2 The linear stability analysis through IGA
	6.3.3 Stochastic linear stability analysis for the plate

	6.4 SSIGA for the stochastic linear stability analysis
	6.4.1 The extended support vector regression (X-SVR)
	6.4.1.1 The linear X-SVR
	6.4.1.2 The nonlinear X-SVR
	6.4.1.3 The generalized Gegenbauer polynomial kernel
	6.4.1.4 The selection of the X-SVR model parameters

	6.4.2 SSIGA for stochastic linear stability analysis of FGM plate

	6.5 Numerical examples
	6.5.1 Numerical example: circular ring plate
	6.5.2 Numerical example: irregular plate

	6.6 Conclusion
	Appendix 6A: The linear stability analysis of plate based on FSDT
	Appendix 6B: Proof of Proposition 1
	Appendix 6C: Proof of Proposition 2

	Chapter 7  CONCLUSION AND FUTURE STUDIES
	7.1 Conclusion
	7.2 Future Studies

	REFERENCES



