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Abstract 

Capillary penetration of liquids in porous media is of great importance in many applications and the 

ability to tune such penetration processes is increasingly sought after. In general, liquid penetration can 

be retarded or restricted by the evaporation of volatile liquid at the surface of the porous media. Moreover, 

when capillary penetration occurs in a porous layer with non-uniform cross section, the penetration 

process can be accelerated or impeded by adjusting the section geometry. In this work, on the basis of 

Darcy’s Law and mass conservation, a theoretical model of capillary penetration combining evaporation 

effects in two-dimensional homogeneous porous media of varying cross-section is developed and further 

examined by numerical simulations. The effects of sample geometry and liquid evaporation on capillary 

penetration are quantitatively analyzed. Results show that the penetration velocity is sensitive to the 

geometry of the porous layer, and can be tuned by varying the evaporation rate for a given geometry. 

Under given evaporation conditions, penetration is restricted to a limited region with a predictable 

boundary. Furthermore, we find that the inhibition of liquid penetration by evaporation can be offset by 

varying the geometry of the porous layer. In addition, the theoretical model is further extended to model 

the capillary flow in three-dimensional porous media, and the interplay of geometry and evaporation 

during the capillary flow process in 3D conditions is also investigated. The results obtained can be used 

for facilitating the design of porous structures, achieving tunable capillary penetration for practical 

applications in various fields. 

Keywords: Porous media; Tunable capillary penetration; Geometrical shape; Evaporation effect 

 

                                                 
1 Corresponding author. Tel/Fax: +86 10 62783488; Email: chencq@tsinghua.edu.cn (C.Q. Chen) 



Cite as: Liu, M., Wu, J., Gan, Y., Hanaor, D. A., & Chen, C. Q. (2018). Tuning capillary penetration in porous media: 

combining geometrical and evaporation effects. International Journal of Heat and Mass Transfer, 123, 239-250. 

2 

1. 

Introduction 

When a dry porous medium contacts a liquid 

reservoir, the liquid is transported into the 

porous medium driven by capillary force. 

This phenomenon is known as capillary 

penetration. Capillary penetration in porous 

media is commonly observed in phenomena 

such as water absorbing into paper [1] and 

rising damp in concrete walls [2]. Recently, 

capillary penetration has attracted increasing 

scientific and industrial attention, owing to 

the high value of its diverse contemporary 

applications including paper-based 

microfluidics [3, 4], medical diagnosis [5], 

energy-harvesting devices [6, 7], advanced 

textile engineering [8, 9], cooling devices 

[10], architectural conservation [11], and oil 

recovery [12]. Capillary penetration has also 

been utilized as an inverse method to 

determine the effective properties (e.g., the 

pore size distribution and porosity) of porous 

media in both numerical [13, 14] and 

experimental [15-17] approaches. 

 

Capillary penetration in porous media shares 

a similar dynamic mechanism with capillary 

flow in hollow tubes, with both processes 

resisted by viscous forces [18]. For a 

capillary tube with a one-dimensional (1D) 

uniform geometry, dynamic liquid 

penetration is quantified by a diffusive 

relationship between the position of the 

liquid front L  and time t , i.e., 
2L Dt , 

where D  is the diffusive coefficient 

depending on the tube size and the liquid 

properties [19]. This relationship is best 

known as the “Lucas−Washburn (LW) law”, 

presented by Lucas [20] and Washburn [21] 

a century ago. This classical result has been 

found to be valid for both unidirectional and 

radial capillary penetration in porous media 

[22-25], and is further extended to the 

hemispherical penetration in a semi-infinite 

porous medium [26] and imbibition in 

structured porous media with axially variable 

geometries [27]. However, recent studies 

have also indicated that this simple model is 

not applicable for some complex cases, such 

as flow processes in heterogeneous and 

random porous media, and some other effects, 

e.g., fractal and disorder, should be 

incorporated into the analysis [28-32]. 

 

Tuning capillary penetration processes in 

porous media, with an emphasis on 

penetration velocity, is of increasing interest 

in the burgeoning field of microfluidics [33]. 

However, the control of fluid flow is not 

readily achievable by tuning the pore size 

and porosity for most commonly used porous 

media such as paper substrates [34]. For the 

purpose of facilitating control, applied 

porous media are commonly considered to 

have different cross sections in the direction 

of capillary flows [27, 35]. Recently, Benner 

and Petsev [36] pointed out that varying the 

shape of a porous material leads to 

qualitative differences in the resulting flow 

patterns. Additionally, Shou et al. [37] 

explored the geometry-induced asymmetric 

capillary flow in porous structures. They 

found that the geometrical shape has a 

significant effect on the flow behavior. 

Subsequently, rational design of porous 

structures for enhanced and controlled 

capillary flows have been investigated 

[38, 39]. Notably, previous studies have 

revealed that the capillary penetration in non-

uniform porous structures should be treated 

as a two- (2D) or three-dimensional (3D) 

situation, and the time dependence of the 

flow deviates from the LW 1D case 

[26, 36, 39]. 

 

A key factor affecting capillary penetration is 
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the evaporation of liquid from the surface of 

porous media [40, 41], with particular 

relevance for highly volatile liquids, such as 

the detecting reagent, used in paper-based 

sensors and diagnostics [42]. Evaporation 

also has a significant effect on some practical 

respects, such as soil penetration of water in 

irrigation processes [43], liquid flow in fuel 

cells [44], and liquid transfer in capillary 

evaporators [45]. Experimental results 

revealed that capillary penetration in porous 

media is strongly affected by evaporation, 

which restricts liquid penetration to a limited 

region [46]. In order to quantitatively 

investigate the evaporation effect in 

unidirectional penetration, the 

Lucas−Washburn law was employed and 

augmented by Fries et al. [40] to model 

dynamic wicking processes. Recently, Liu et 

al. [47] reported a model based on Darcy’s 

law and the principle of mass conservation 

for radial capillary penetration, in which the 

boundary of the limited liquid penetrated 

region was predicted theoretically. In their 

study the geometry was held constant and 

thus the penetration process was not tunable. 

 

Although capillary penetration in porous 

systems has been extensively investigated, 

little work has dealt with the combined 

effects of geometry and evaporation during 

capillary penetration. The development of 

capillary-driven microsystems for energy 

and biotechnology applications requires 

precise control and regulation of the 

penetration process, including velocity and 

total penetration time. An improved 

mechanistic understanding of capillary 

penetration with combined geometrical and 

evaporation effects will facilitate the 

application and design of porous structures. 

From this perspective, we present here a 

theoretical and numerical study on the 

combined effects of geometry and 

evaporation on penetration processes in 

porous media, with a view towards tunable 

capillary flow. Porous structures with 2D 

non-uniform cross-sectional geometric shape 

are considered first, and the analysis is 

further extended to 3D porous structures. 

 

2. Theoretical model 

To investigate the combined effects of 

geometry and evaporation on the capillary 

penetration through homogenous porous 

media, a trapezoidal thin porous plate with 

one end contacting with an unlimited 

reservoir is considered, as shown in Fig. 1. 

As a simple case of 2D porous sample with a 

non-uniform cross section, the trapezoidal 

structure has essential geometric features 

such as asymmetry and shape variation that 

facilitate the investigation of the basic effect 

of the sample geometry on fluid penetration 

in porous media [37]. The penetration 

processes takes place from the liquid 

reservoir to the other end of the plate (see, 

Fig. 1a), and is weakened by the concurrent 

evaporation of liquid from the plate surfaces 

(see Fig. 1b). 
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FIG. 1. Schematic illustration of capillary penetration incorporating evaporation effect in a 

trapezoidal porous plate: (a) oblique view; (b) side view. 

 

As shown in Figure 1a, the considered porous 

plate has a trapezoidal geometrical shape. 

The width of the plate varies with the 

position as the following relation, 

 

   0

0

1 1w w
l


 

 
   

 
 , (1) 

where 0w  is the width of the edge in contact 

with the reservoir, 0l  the length of the plate 

sample, and   the local position in the 

penetrated region. The thickness of the 

porous plate H  is much smaller than its 

length dimension 0l  such that it can be 

treated as a planar problem. To study the 

effect of plate geometry we define a 

parameter 1 0w w  , where 1w  is the 

width of the top edge. The geometry of the 

plate can also be characterized by the base 

angle   of the trapezoid, which is related 

to the geometrical factors by 

 

 

 
0

0

1 , 1
cot

2 1 , 1

w

l

 


 

 
  

 

 . (2) 

It is noteworthy that the liquid penetration in 

this trapezoidal porous plate is technically 

not a simple 1D problem. As discussed in the 

previous work [36], the liquid flux in the 

transverse direction of the flow is not 

generally zero and depends on the opening 

angle of the expansion (contraction), which 

is different from the penetration in a uniform 

plate (i.e., 1  ). The liquid front is in 

general not a straight line perpendicular to 

the flow direction, which is involved in the 

1D case, but an elliptic curve. Therefore, this 

case should be regarded as a 2D problem. 

According to the results of Elizalde et al., [39] 

however, the relative error of flat liquid front 

assumption in the 1D model, in comparison 

with the 2D model, is small even if the 

opening angle as large as 90°, which 

corresponds to a base angle   of 135° in 

our model. Therefore, to simplify the 

analysis, we adopt the 1D assumption of flat 

liquid front (see Fig. 1a) to establish the 

theoretical model involving the evaporation 

effect, and the predictions are further 

examined using numerical simulations in 

following Section. 

 

We consider the evaporation of liquid from 

the penetrated region shown in Fig. 1b. A 
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constant and uniform evaporation rate is 

assumed for a given liquid, ambient 

temperature, and relative humidity. The total 

mass flow rate due to evaporation can be 

calculated as 

 

   
1

2 0
2

e eM m w w l l        , (3) 

where em  is the evaporation rate, which is 

used to characterize the evaporation of liquid 

(i.e., the mass loss due to the evaporation per 

area and time) with the dimension of 

[kg/m2·s], and l  is the length of the 

penetrated region. From Eq. (1),  0w  can 

be calculated as 0w . Note that the factor “2” 

in the right side of Eq. (3) indicates the 

assumption of equal evaporation from front 

and back surfaces in Fig. 1a. Moreover, 

evaporation from the secondary side surfaces 

are neglected owing to the negligible 

thickness assumed here. 

 

When evaporation is included, mass transfer 

in porous media conforms to the law of mass 

conservation. For the considered thin porous 

plate with porosity   and assuming 

negligible volume changes, the conservation 

of mass can be expressed as 

 

         
1

2
2

em
w H l w l H w w l l     


          

 

, (4) 

where   is the fluid density, and 

d dt   and l dl dt  are the local 

fluid velocity and the liquid front velocity, 

respectively. Furthermore, in the penetration 

process, the flow rate Q  in a porous 

medium is obtained based on Darcy’s law as 

 

Ak P
Q A 

 


  


 , (5) 

where  A w H   is the cross sectional 

area of the plate at position z , k  is the 

permeability of the porous medium,   is 

the viscosity of the liquid, and P  is the 

pressure of liquid. 

 

Combining Eqs. (4) and (5), one obtains 

 

 

 

0

0

2

0 0

0

ln 1 -1
-1

2
ln 1 -1

-1 2 -1

c

e

l l dl
P l

k l dt

m l l l l
l l

k H l









  

  
    

   

     
         

      

 

, (6) 

where 2 cosc s effP R   is the capillary 

force, governed by the air–liquid surface 

tension,  , the equilibrium contact angle of 

the liquid with the solid, s , and the 

effective pore radius of the porous medium, 

effR . The second part of the right side in Eq. 

(6) refers to the evaporation-induced viscous 

pressure loss mP , which represents the 

viscous resistance to liquid front movement 

in the penetration process. According to the 

above equation, the penetration distance (i.e., 

the liquid front position) can be predicted as 

a function of time. It should be noted that this 

model is valid only for cases exhibiting a 

sharp liquid front, i.e., the penetrated region 

behind the interface is fully-saturated. In 

addition, its validity is limited to horizontal 

penetration or vertical penetration without 

gravity. 
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Asymmetric penetration is examined by 

changing the value of  . As a limiting case 

of uniform cross section, 1  , Eq. (6) 

reduces to the solution provided by Fries et 

al.40 Another limiting case is that of 

negligible evaporation, 0em  , whereby Eq. 

(6) reduces to the classical model [38].When 

1   and 0em   both meet, the original 

LW relation [20, 21] is recovered. 

 

3. Numerical simulation and results 

analysis 

3.1 Numerical methods 

As mentioned in the preceding section, a flat 

liquid front is assumed in the theoretical 

model, which is only accurate and valid for 

the 1D situation. COMSOL Multiphysics 

5.2a finite element software (COMSOL Inc., 

Burlington, MA) is used to simulate a full 2D 

problem to verify the proposed model (i.e., 

eq. (6)). 

 

The 2D capillary penetration process in 

porous media can be controlled by a set of 

simultaneous partial differential equations, 

viz., Darcy’s law 

 

= - ik
P


v  , (7) 

and the conservation of mass 

 

ik
P F



  
     

  
 , (8) 

where   is the fluid density, ik k   is 

the interstitial permeability, and F  is a 

source term, which is related to the 

evaporation of liquid. For negligible 

evaporation, F  is set to zero; otherwise, it 

can be calculated as = eF m H . 

 

The above Eqs. (7) and (8) govern the 2D 

penetration process in the full region. When 

the cross section of the region is uniform, 

they reduce to the 1D case, as given by Eqs. 

(5) and (4) with 1  . By solving the set 

of equations, we can obtain the distribution 

of liquid flow velocity and the boundary of 

the penetration region at any time. 

 

In finite element analysis, the boundary 

conditions of the numerical model are 

defined such that the left and right surfaces 

are non-penetrable and symmetric and the 

reservoir-contacting boundary is stationary. 

Note that the reservoir is exposed the 

ambient atmosphere and thus the 

atmospheric pressure, atmP , is fixed at the 

reservoir-contacting edge, while the pressure 

at the fluid front is set as atm cP P , where 

cP  is the capillary pressure. To track the 

velocity of a moving liquid front, a Moving 

Mesh module is used in the COMSOL 

software [35]. To accommodate upward 

motion of the boundary of the fluid front, 

side boundaries are allowed to be stretched in 

the direction of flow, but not in the direction 

perpendicular to flow. As the liquid front 

moves automatic re-meshing is implemented 

to avoid mesh distortion. Moreover, a mesh 

sensitivity study has also been conducted a 

priori to ensure the convergence of the 

numerical models. 

 

3.2 Results and analysis 

By applying the developed numerical model, 

the capillary penetration process can be 

simulated for different geometrical shapes 

and evaporation conditions. The simulation 
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results of the time dependent penetration 

distance are shown in Fig. 2 as symbols. Also 

included are the theoretical predictions given 

by Eq. (6), represented by lines. Two sets of 

geometrical shapes, (a) 100   (with 

three base angles   = 105°, 120°, and 135°) 

and (b) 0.01   (with   = 45°, 60°, and 

75°), are considered under different 

evaporation rates (i.e., 
c

e em m  = 0, 1, 2 and 

5). The results are made dimensionless by 

two scaling parameters 0l  and 0t , where 

0l  is the length of the plate sample, and 

2

0 0 2 ct l kP  is the time scale of the 

liquid penetrating from the reservoir to the 

other end of a uniform porous plate (i.e., the 

special case of 1  ). The parameter 
c

em  

is the critical evaporation rate that allows 

liquid to reach the end of the porous plate 

away from the reservoir. The definition and 

characteristics of 
c

em  will be discussed later. 

For illustration, the representative simulated 

results of penetration region with pressure 

profiles (i.e., (a)   = 120° and (b)   = 

60° with 
c

e em m  = 0 and 2) are included as 

inserts in Fig. 2. 

 

 

FIG. 2. Comparison of numerical simulations (symbols) and theoretical predictions (lines) of 

penetration distance versus time for asymmetric capillary penetration in a porous sample with 

(a)  =100 (with base angles β = 105°, 120°, and 135°) and (b) =0.01 (β = 45°, 60°, and 75°) 

under different evaporation rates (
c

e em m  = 0, 1, 2 and 5). Dotted lines indicate the critical 

penetration distance. The insets show the simulated results of the penetration region with 

pressure profiles. The contours of the insets, from red to blue, indicate the pressure level varying 

from atmP  to atm cP P . 

 

It can be clearly seen from the inserts in Fig. 

2 that the liquid fronts are not straight lines 

in the simulations. For 100  , the liquid 

front is a convex curve (relative to the 

reservoir position), but a concave curve for 

0.01  . For simplification, we choose the 

middle point of the concave/convex curve to 

represent the liquid front position, with 

results are plotted in Fig. 2 as symbols. It 

should be noted that other selections of the 

representative point for the liquid front 

position are also feasible. Although those 

selections may lead to different relative 

errors, they do not affect the conclusion 
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drawn here. Numerical simulation and 

theoretical predictions match closely for all 

geometrical shapes and evaporation 

conditions. Specifically, relative error for all 

the three cases of 100   (i.e.,   = 

105°, 120°, and 135°) is less than 5%. The 

small error found may arise owing to the 

liquid flow velocity, which depends on the 

pressure gradient following Darcy’s law, and 

is almost the same at the centre line in 1D and 

2D conditions. However, for the set of 

0.01   (i.e.,   = 45°, 60°, and 75°), 

due to the effect of the initial reservoir-

contacted boundary condition being more 

significant than for the case of 100  , the 

relative error is also greater. It can be found 

that the relative error is larger for smaller 

base angles and larger evaporation rates, and 

the maximum value at the extreme case of 

  = 45° and 
c

e em m  = 0 is about 20%. 

While for the cases of   = 60° and 75° at 

the same condition, relative errors are 

approximately 10% and 5%, respectively. 

Consequently, the theoretical model based on 

a 1D assumption is considered valid for most 

samples with non-uniform geometrical shape. 

 

Figure 2 also shows the evaporation effect on 

asymmetric capillary penetration. It can be 

seen that the penetration distance 0l l  

increases with time 0t t  and the speed of 

penetration is smaller for larger values of 

c

e em m  for both two sets of geometries 

( 100   and 0.01  ). In similarity to 

the case of radial capillary penetration,47 we 

identify a critical state whereby the 

penetrating liquid can just reach the end of 

the porous plate under conditions of 

c

e em m , as shown by the dash lines in Fig. 

2. For evaporation rates greater than the 

critical value, i.e., 1c

e em m  , the 

penetration distance approaches an 

asymptote (i.e., the critical 0l l ) for 

sufficiently long timeframes. It is thus an 

evaporation-limited penetration, with the 

critical length of penetration decreasing with 

increasing the evaporation rate. In contrast, 

when 1c

e em m  , liquid penetrates into the 

entire region for all geometries. 

 

For unlimited penetration, under conditions 

of 1c

e em m  , it is interesting to note that 

the total penetration time also depends on the 

geometrical shape for a given evaporation 

rate. Specifically, penetration is faster for 

samples with small values of . Moreover, 

the penetration velocity for the case of 

100   (see Figure 2a) decreases over the 

entire penetration process. However, for the 

case of 0.01   shown in Figure 2b, it is 

obvious that the penetration velocity first 

increases and then decreases with increasing 

time. This indicates that we can tune the 

capillary penetration process, e.g., the 

penetration velocity or the total penetration 

time, by controlling the geometrical shape of 

the porous layer and the evaporation rate of 

the liquid. 

 

4. Tuning capillary penetration in 

porous media 

With the sustained development of capillary-

based microsystems, such as paper-based 

microfluidics, medical diagnosis and energy-

harvesting devices [3-7], precisely tuning of 

the capillary penetration process in porous 
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media is of emerging interest for both 

scientists and engineers in recent years. 

 

4.1 Transition of the penetration velocity 

Capillary-driven devices for energy and 

biotechnology applications require precise 

control of the capillary penetration velocity. 

As shown in the preceding section, for some 

porous samples with special geometrical 

shapes under the appropriate evaporation 

conditions, the penetration velocity can 

increase with time following an initial 

deceleration. This interesting feature of 

tunable capillary penetration has 

ramifications towards potential 

multifunctional applications in microfluidic 

devices for chemical analysis and catalysis, 

which necessitate the precise control of flow 

velocity [48]. 

 

 

FIG. 3. Variations of the normalized distance against the normalized time for asymmetric 

capillary penetration with different geometrical shapes, the diamond symbols refer to the 

transition position of the penetration velocity. Insert: The normalized velocity transition 

position as a function of the geometrical factors. 

 

Variation of the normalized capillary 

penetration distance with normalized time 

for six geometries (  = 0, 0.1/e, 0.2/e, 0.5/e, 

1/e, 3/e and 10/e, with e being Euler's number) 

are plotted in Fig. 3. As is evident from the 

inflection of the plotted curves, the 

penetration velocity transitions from a 

decreasing to an increasing trend during the 

penetration process for samples with 

1 e  . The transition points are marked 

with diamond symbols for each line (see Fig. 

3), and occur at increasing distances for α 

values from 0 to 1 e . When 1 e  , the 

transition disappears and the penetration 

velocity decreases throughout the entire 

process. The variation of the transition 

position with the geometrical factor is shown 

in the insert in Fig. 3. 

 

The penetration velocity v dl dt  can be 

determined from Eq. (6). Noting that 

0dv dt   at the transition position tl , the 

relationship between evaporation rate, 

geometrical factor and transition position can 

be obtained from Eq. (6), as 
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 , (9) 

where 
2

0

c

eu cm P k H l    is a scaling parameter used to make the evaporation rate 

dimensionless. For negligible evaporation, the above equation reduces to an explicit expression 

for the transition position as 

 

1

0

1 e

1

tl

l 





 . (10) 

This equation relates the transition point to the geometrical factor as shown in the insert of Fig. 

3. 

 

 
FIG. 4. (a) The distribution of the penetration velocity (acceleration or deceleration) under 

different evaporation conditions and geometrical shapes; (b) Transition position of the 

penetration velocity plotted versus evaporation rate for different geometrical shapes. 

 

When the evaporation effect is non-

negligible, by using Eq. (9), the transition 

position 0tl l  can be predicted as a 

function of 
c

e eum m  and  , as illustrated 

in Fig. 4a. In the blue region, the penetration 

exhibits acceleration, while the decelerating 

penetration is described by the green region. 

The interface between these two regions 

presents the transition position of penetration 

velocity 0tl l  and its dependence on 

parameters 
c

e eum m  and  , which is 

predicted quantitatively by Eq. (9). In this 

3D phase diagram, the interface between 

deceleration and acceleration reduces to a 

linear boundary when evaporation is 

negligible, which has been discussed before 

and given in a special case as shown in the 

insert in Fig. 3. 

 

In order to more clearly show the transition 

position of penetration velocity for different 
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geometry and evaporation conditions, 0tl l  

is plotted as a function of 
c

e eum m  for 

different values of   in Fig. 4b. It can be 

found that the transition to accelerating 

penetration occurs at higher positions for 

higher evaporations rates for different 

geometries. Furthermore, for a given 

evaporation rate, the transition position is 

higher for larger geometrical factors. Based 

on such charts, the transition position can be 

readily determined for analytical purposes, 

and for informing the design of porous 

structures, such as chemical detection 

devices with controllable reaction times 

applied at different temperatures [5]. It 

should be mentioned that tuning the 

penetration velocity, especially the 

acceleration is challenging and necessitates 

the informed control of sample properties 

and environmental conditions. 

 

4.2 Evaporation limited capillary 

penetration 

As previously mentioned, the evaporation 

effect acts as a viscous resistance to the liquid 

front moving in the penetration process 

[40, 47]. When the evaporation-induced 

viscous pressure loss equals the capillary 

pressure (viz., c mP P ), the velocity of 

liquid front reduces to zero, and the 

penetration will be restricted to a limited 

region with a critical length (see Fig. 2). By 

considering the critical condition of 

c mP P , the critical length cl  can be 

obtained as  

 

 
2

0 0 0 0

1 2
ln 1 -1

-1 2 -1

c

c c c c eu

e

l l l l m

l l l l m


 

     
        

     

 , (11) 

where 
2

0

c

eu cm P k H l    is the critical 

evaporation rate for a uniform porous plate 

that allows penetration through the entire 

material. This value has been used as a 

scaling parameter to normalize the 

evaporation rate in Eq. (9). Furthermore, if 

we focus on a special circumstance of the 

critical length exactly equaling to the length 

of the plate, i.e., 0cl l , the critical 

evaporation rate 
c

em  can be given as 

 

 
2

2 2

2 1

1 2 ln

c

e

c

eu

m

m



  




 
 . (12) 

This equation reveals the relation between 

c

em  and 
c

eum . The right hand side will 

reduce to 1 while 1  , meaning 

c c

e eum m  for the case of a uniform porous 

plate. 

 

According to Eq. (11), the critical length of 

the evaporation-limited penetration region 

0cl l  is plotted as a function of the 

evaporation rate 
c

e eum m  and geometrical 

factor   in Fig. 5a. It is clear that when 

evaporation rate is smaller than a critical 

value, i.e., 
c

e em m , the critical length 

remains the length of the sample, which 

means the liquid can penetrate the whole 

region. However, the critical length 

decreases from 0l  and approaches 0 when 

c

e em m . Note that there is a boundary at the 

top surface in Fig. 5a, as shown by a blue line, 

which delineates 0cl l  at critical 

conditions of evaporation rate and 
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geometrical factor, and can be quantitatively 

described by Eq. (12) as shown in Fig. 5b. 

Figure 5 indicates that the limited penetration 

region can be tuned by controlling the 

evaporation rate and geometry of the sample. 

A tunable penetration region allows for 

optimized distribution of chemical reagents 

in a specific test zone in detection devices 

[34]. 

 

 

FIG. 5. (a) Normalized critical penetration distance versus normalized evaporation rate for 

asymmetric capillary penetration with different geometrical shapes; (b) Normalized critical 

evaporation rate as a function of geometrical factor. 

 

It should be noted that all the results are given 

in a dimensionless form in the above analysis. 

Particularly, the evaporation rate em  is 

normalized by a critical value 
c

em  (or 
c

eum ). 

According to the expression of 
c

em  (i.e., Eq. 

(12)), we know that it depends on the 

properties of the liquid and the porous 

medium, and the geometrical parameters of 

the porous media. Moreover, the physical 

properties of a liquid (i.e., surface tension, 

density and viscosity) are influenced by 

environmental conditions, including 

temperature and vapor pressure [40, 44, 47]. 

In order to investigate the effects of these 

factors on the critical rate of evaporation, 

variations of the critical evaporation rate 

against the length of the sample and 

temperature are plotted in Fig. 6a and 6b, 

respectively. Two types of commonly used 

liquid, i.e., water and hydrofluoroether 

(HFE-7500), are considered. For each case, 

three different geometries,   = 0.5, 1, and 

1.5, are taken into account. The layer 

thickness is set to be H  = 0.1mm. Other 

parameters of the porous medium, water and 

HEF-7500 under different temperatures are 

retrieved from Fries et al.,40 Vargaftik et al. 

[49] and Rausch et al. [50], respectively. 

Figure 6 represents the linear relation 

between critical evaporation rate and the 

sample size and temperature. These findings 

demonstrate how liquid penetration can be 

tuned by changing ambient conditions, 

adopting different liquids and controlling 

porous media geometries. 
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FIG. 6. Variation of the critical evaporation rate against (a) length of the sample at T=20C and 

(b) temperature with l0=0.1m for porous plates with different geometries. 

 

4.3 Geometry-based compensation of penetration time 

In the above analyses, we have found that the penetration process is affected by not only liquid 

evaporation but also the geometry of the porous media. On one hand, the penetration process 

will be retarded by evaporation, on the other hand, changing the geometrical shape of the porous 

sample affects penetration in both accelerating and decelerating regimes. It indicates that the 

evaporation-retarded penetration can be compensated by choosing a proper geometrical shape 

of the porous sample. In other words, we can tune the capillary penetration in porous media by 

combining the geometry and evaporation effects. This inspires us to design suitable porous 

structures for particular using environment. 

 

 

FIG. 7. (a) The critical penetration time versus evaporation rate for the penetration in porous 

plate with different geometrical shapes; (b) The coordination condition between geometrical 

factor and evaporation effect for compensating the evaporation-retarded penetration time. 

 

For capillary penetration in porous media, 

the total penetration time is an important 

parameter attracting significant attention in 

industrial applications such as chemical 

analysis [37, 38]. As shown in Fig. 7a, the 

normalized critical time for penetration in the 

whole region (i.e., 0ct t , where 0t  is the 

critical penetration time of a uniform porous 

plate without evaporation) is plotted as 

function of normalized evaporation rate for 

samples with different geometries. It is clear 
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that the penetration time increases with 

increasing evaporation rate for each 

geometrical factor, and approaches infinity 

when the evaporation rate tends to a critical 

value. After exceeding this critical 

evaporation rate, the penetration will be 

restricted to a limited region within the 

sample. The dotted line in Fig. 7a, which 

extends horizontally at 0 1ct t  , reveals 

that tailoring the geometrical shape of a 

porous sample can compensate for the 

evaporation-retarded penetration. 

 

To further understand this compensation 

mechanism, as shown in Fig. 7b, we plot the 

distribution of penetration time in a phase 

diagram in the space of 
c

e eum m  and  . It 

can be seen that there are three regions in two 

main parts, i.e., the complete penetration part 

(i.e., 0cl l , the liquid can penetrate into the 

whole sample, including the shaded blue and 

cyan regions) and the incomplete penetration 

part (i.e., 0cl l , the liquid is limited to a 

finite region, see the shaded yellow region), 

with a purple solid line boundary, which 

indicates the limiting condition of complete 

penetration with infinite time (i.e., ct   ). 

In the complete penetration region, there is a 

boundary between the blue and cyan regions 

shown as a green solid line, which is 

transplanted from the dotted line in Fig. 7a, 

and gives the coordination condition for the 

geometrical shape compensating the 

evaporation-retarded penetration time to be a 

constant (i.e., 0ct t ). In the blue region, the 

total penetration time ct  under the 

combination of evaporation rate and 

geometrical factor is smaller than the critical 

value 0t  (i.e., 0ct t ). Thus, this region 

can be considered as an overcompensated 

region. In contrast, under-compensation is 

found in the cyan region, that is, the total 

penetration time is larger than the critical 

value, i.e., 0ct t .  

 

In practical applications, the reference state 

for compensation may not always be the 

uniform porous plate. For any given 

reference state, the coordination condition of 

  and 
c

e eum m  can be obtained by 

moving the dotted line in Fig. 7a up (for the 

case of 1  ) or down (for 1  ). 

Accordingly, the position of the green solid 

line in the phase diagram in Fig. 7b also 

needs to be adjusted corresponding to the 

dotted line. This compensation mechanism 

can be used as a basis to precisely control 

penetration processes in chemical analytical 

devices, with implications towards 

improving their accuracy [34, 48]. 

 

5. Evaporation effect on the capillary 

flow in 3D porous structures 

In the previous sections, by applying the 

proposed theoretical model, the combined 

effects of geometry and evaporation on the 

capillary penetration in 2D porous structures 

are investigated systematically. Nevertheless, 

capillary flow processes are also commonly 

found in 3D porous structures, such as 

capillary evaporators, drug delivery systems, 

and construction and geotechnical structures 

[10, 11, 45], and most of the 3D porous 

structures with non-uniform cross sections 

[27]. Here we extend the proposed 

theoretical model to cover 3D porous 

structures and investigate the interplay of 

sample geometry and liquid evaporation 
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during the capillary flow process. 

 

5.1 Theoretical model for capillary flow in 

3D structures 

As shown in Fig. 8, we choose a hollow 

circular frustum cone (see Fig. 8a) and a 

hollow square frustum pyramid (see Fig. 8b) 

as two examples of 3D porous structures. 

When the porous samples attach with liquid 

reservoir, the liquid will transfer to the other 

end from the reservoir driven by the capillary 

pressure. For the hollow circular frustum, it 

is clear that the structure is axisymmetric. Its 

intermediate cross-section, i.e., the plane of 

symmetry, is an isosceles trapezoid. 

According to the symmetry, half of the 

intermediate cross-section, i.e., 0 1 1 0O O Q Q , 

can be illustrated in Fig. 8c. For the hollow 

square frustum, the axisymmetry is not valid, 

but half of symmetrical plane 0 1 1 0O O Q Q  

can also be chose to characterize the basic 

geometric features of the whole structure. 

Similar to the previous analysis of 2D cases, 

half of the width and the porous layer 

thickness are assumed to vary with the 

position as 

 

   0

0

1 1 R

z
R z R

h


 
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 
 , (13) 

and 
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0

1 1 T

z
T z T

h


 
   

 
 , (14) 

where 0R  and 0T  are the half width and 

layer thickness at the edge in contact with the 

reservoir, respectively, 0h  is the length of 

the central axis of the hollow circular frustum 

cone and the hollow square frustum pyramid, 

z  is the local position in the penetrated 

region along the central axis, and R  and 

T  are the geometric parameters with 

respect to the half width and layer thickness, 

respectively. Similar to the 2D trapezoidal 

porous plate, the geometric feature of these 

3D porous sample can be characterized by 

the geometric parameters R  and T . 

 

 

FIG. 8. Schematic illustration of 3D porous structures: (a) hollow circular frustum, (b) hollow 

square frustum, and (c) Intermediate cross-section of the 3D porous structures with capillary 

penetration incorporating evaporation effect. 

 

For these 3D hollow porous structures, the liquid front is in general not a flat surface (i.e., 
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a straight line in 2D sample) perpendicular to 

the flow direction but a curve surface, similar 

to the 2D trapezoidal structures. Specifically, 

for the hollow circular frustum (see Fig. 8(a)), 

the liquid front is axisymmetric about z axis, 

thus the 1D assumption of flat liquid front 

(see Fig. 8c) is valid when the opening angle 

is not large enough. For the hollow square 

frustum (see Fig. 8(b)), it should be noted 

that the 1D assumption will induce larger 

error, but it can be adopted for the theoretical 

model to investigate the basic characteristics 

of capillary flow in 3D structures. In addition, 

when the liquid penetrates through these 

hollow structures, evaporation will take place 

at both the inner and outer surfaces of the 

penetrated region. To simplify, only the 

evaporation at the outer surface is considered, 

as shown in Fig. 8c. 

 

For the hollow circular frustum (see Fig. 

8(a)), the mass conservation under the 

evaporation condition can be expressed as 

             

         
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         
   

            

 ,  (15) 

where z  and h  indicate the local position in the penetrated region and the liquid front 

position, respectively, as shown in Fig. 8(c). 

 

Technically, one can obtain the fully control equation for the moving liquid front position by 

combining Eqs. (5) and (15). However, it should be noted that the pressure gradient, which is 

used to determine the flow rate in Eq. (5), is depending on the flow direction. It is clearly seen 

from Fig. 8c that the flow direction is not along the central axis (i.e., z axis) anymore, only if 

the hollow structure becomes solid. Here, it is assumed that the flow direction is along the inner 

boundary of the porous layer, i.e., 0 1P P  in Fig. 8c. Introducing the slant angle  , Eq. (5) can 

be rewritten, and the control equation can be obtained by combining with Eq. (15) as 
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 . (16) 

where  
2

sinc cP P    , in which cP  is the capillary force with the same expression as 2D 

case as 2 cosc s effP R  . 

 

By substituting the expressions of  R z ,  T z ,  R h  and  T h , through Eqs. (13) and 

(14), into Eq. (16), the penetration distance, i.e., the liquid front position, can be calculated as 

a function of penetration time. It should be noted that the mass conservation of the hollow 

square frustum (see Fig. 8(b)) has the similar expression as Eq. (15) for the hollow circular 

frustum, and we can further confirm that Eq. (16) is also valid for the hollow square frustum. 
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Noted that there are two integral functions in Eq. (16), the explicit expression is not easy to 

obtain for general case. Here we focus on two special cases, i.e., uniform thickness and varying 

thickness, to derive the explicit expressions of control equation. When the 3D hollow porous 

structure has a uniform thickness, i.e.,   0T z T , the geometrical parameters can be set to 

R   and 1T  . Following these conditions, the control equation can be obtained as 
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 , (17) 

where 0l  is the distance of the sample along the flow direction and can be related to the axial 

length 0h  via 0 0 sinh l  . 0h h h  is the projected length of the penetrated region, 

 
2 2

0 0 1 1T T       is the effective thickness of the porous layer at the bottom surface, 

and 0 0T R   is the relative thickness with respect to the half width. Following the flat front 

assumption, one can find that 0l l l h  , where l  is the length of the penetrated region 

along the flow direction. 

 

When the thickness of the porous layer is much smaller than the width of the sample, i.e., 

0 , hollow square frustum pyramid can be unfolded as four trapezoids. Correspondingly, 

Eq. (17) will reduce to Eq. (6) by replacing h  as l . Furthermore, hollow circular frustum 

cone can be unfolded as a sector ring when 0 . Hence Eq. (17) can reduce to the 

theoretical model for radial penetration in our previous work [47], by replacing h  as r  

through the relation  1 1r h     . 

 

For the special case of equal proportional thickness, i.e., R T    , the control equation 

can be derived as 
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0

= 1 1
2 1 2

e
c

l dh m l h
P h h

k dt kT
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


          

 . (18) 

In this case, when 1  , the hollow structure becomes solid. Furthermore, when 1  , Eq. 

(18) will reduce to the classical 1D model given by Fries et al. [40]. 
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According to the developed theoretical 

models, i.e., Eqs. (17) and (18), the 

capillary penetration process in 3D porous 

structures can be predicted for samples with 

different geometrical shapes and under 

different evaporation conditions. Here we 

focus on the hollow porous sample with 

uniform layer thickness as an example. As 

shown in Fig. 9, the normalized penetration 

distances are plotted as a function of 

normalized penetration time for two sets of 

geometric parameters, i.e., 2.0   and 

0.5  . For each geometry, three samples 

with different relative layer thickness, i.e., 

  = 0.01  , 0.5   and 1.0   (where 

   when 1   and 1   when 

1  ), are considered, as shown by solid 

lines with different colors. For the purpose of 

comparison, the prediction of 2D model (Eq. 

(6)) are also plotted by symbols and 

definitely consist with the 3D case of   = 

0.01 . 

 

 

FIG. 9. Normalized penetration distance versus penetration time for capillary penetration in 

hollow porous sample (lines) with: (a)  = 2.0 (under evaporation rates 
c

e em m  = 0.0 and 1.0) 

and (b)  = 0.5 (
c

e em m  = 0.0, 0.3 and 1.0) with relative layer thickness П = 0.01 , 0.5  

and 1.0 . The results of 2D model prediction (symbols) are also included for the purpose of 

comparison. 

 

It can be seen from Fig. 9 that, for both two 

sets of geometries, the evaporation of liquid 

weaken the penetration process generally, i.e., 

higher evaporation rate leads to slower flow 

velocity for all the three samples with 

different relative thickness. However, for a 

given evaporation condition, the effect of 

relative layer thickness on the penetration 

will depend on the geometric shape of the 

sample. Specifically, for the case of 

2.0   under two evaporation rates (i.e., 

c

e em m  = 0 and 1.0), as shown in Fig. 9(a), 

slower flow velocity can be found for the 

sample with larger relative thickness. 

However, for the case of 0.5  , it is 

interesting to find that there is a transition of 

the effect of relative layer thickness on the 

penetration from negative to positive by 

varying the evaporation rates, see Fig. 9(b). 

When 
c

e em m  = 0, slower flow velocity is 

found for the thicker sample, but on the 

contrary, faster flow velocity is obtained in 

the thinner sample when 
c

e em m  = 1. The 

transition is approximately occurred at 

c

e em m  = 0.3, and the flow velocity is not 
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dependent on the relative layer thickness at 

this special evaporation condition. This 

interesting transition phenomenon will have 

significant effect on the compensation 

mechanism in 3D conditions. 

 

5.2 Compensation mechanism in 3D 

conditions 

As we have discussed in Section 4.3, the 

evaporation-retarded penetration can be 

compensated by tailoring geometrical shape 

of the porous sample. For the 2D porous 

sample, only the geometric factor is tunable, 

but for the 3D porous sample, one more 

parameter (i.e., the relative layer thickness) 

will be introduced to increase the design 

flexibility. Here we also choose the critical 

penetration time for the whole region ( ct ) as 

an object variable of the compensation, and 

the corresponding reference is the critical 

penetration time of a uniform porous cylinder 

without evaporation ( 0t ). 

 

First, we focus on the 3D hollow porous 

structure with uniform thickness. As shown 

in Fig. 10, the normalized critical penetration 

time (i.e., 0ct t ) is plotted as a function of 

evaporation rate for porous samples with 

different geometrical shapes (i.e.,  = 0, 0.1, 

0.25, 0.5, 1.0 and 2.0). For each geometry, 

three samples with different relative 

thickness, i.e.,   = 0.01 , 0.5  and 1.0

 , are considered. When the relative layer 

thickness approaches zero (e.g.,   = 0.01

 ), the results of 3D cases are consistent 

with the 2D results (as shown by symbols). 

Similar as the 2D cases (see Fig. 7(a)), the 

penetration time increases with increasing 

evaporation rate for each sample with 

different geometric factor and relative 

thickness. Additionally, the penetration time 

approaches infinity when the evaporation 

rate tends to a critical value, and the limited 

penetration will occur when the evaporation 

rate exceeds the critical value. 

 

 

FIG. 10. The critical penetration time versus evaporation rate for the penetration in 3D porous 

samples (lines) with different geometrical shapes (i.e.,  = 0, 0.1, 0.25, 0.5, 1.0 and 2.0). The 

results of 2D model prediction (symbols) are also incorporated as comparison. 

 

For the samples with given geometric factor, 

the relation between critical penetration time 

and evaporation rate is dependent upon the 

relative layer thickness of the sample. 

However, it can be interestingly found that 

this dependence vanishes at the state of 
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0 1ct t  , which reveals that the 

coordination condition of compensation for 

the evaporation-retarded penetration is not 

depending on the relative layer thickness. By 

extracting the intersection point at the 

horizontal dotted line in Fig. 10, the 

compensation condition for 3D porous 

structures can be plotted in Fig. 11(a). This 

condition is corresponding to the phase 

boundary line in left side of Fig. 7(b) for the 

2D compensation. Similar as the 2D case, for 

a given 3D porous structure, when the 

condition of evaporation and geometric 

shape situate in the overcompensated region, 

which is located in the left side of the red line, 

the total penetration time ct  is smaller than 

the critical value 0t  (i.e., 0ct t ). On the 

contrary, the larger total penetration time (i.e., 

0ct t ) can be found in the under-

compensation region, which is located in the 

right side of the red line. 

 

 

FIG. 11. (a) The coordination condition between geometrical factor and evaporation effect for 

compensating of the evaporation-retarded penetration time; (b) Normalized critical evaporation 

rate for the complete penetration in 3D porous sample with different relative layer thickness 

(i.e.,   = 0.01, 0.25, 0.50, 0.75 and 1.00) are plotted as a function of geometrical factor (lines). 

The critical condition for the complete penetration in 3D sample (symbols) are also 

incorporated as compression. 

 

When the evaporation rate is larger enough, 

the liquid penetration will be limited in a 

finite region. By employing the equilibrium 

condition of c mP P , the critical condition 

for the complete penetration (i.e., the liquid 

can penetrate into the whole sample exactly) 

can be obtained as 

 

 

2 2
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4 2 1 1 2
ln

1 2 2 11
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eu
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 (19) 

It can be found that, when the relative layer 

thickness 0 , Eq. (19) will reduce to 

Eq. (12), which is governing the critical 

condition for the complete penetration in 2D 

porous samples. By applying Eq. (19), the 

normalized critical evaporation rate for the 

complete penetration in 3D porous sample 

can be plot as a function of geometrical factor 

in Fig. 11(b). Five cases with different 

relative thickness, i.e.,   = 0.01, 0.25, 

0.50, 0.75 and 1.00, are considered here, and 

the case with   = 0.01 is consisting with 

the 2D results (as shown by symbols). Due to 

the relative thickness is confined with 

  , it is clearly seen that the critical 
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condition between geometrical factor and 

evaporation rate is truncated at    for 

each case. Additionally, for a given 

geometrical factor, larger relative thickness 

corresponds to smaller critical evaporation 

rate, that means the complete penetration is 

easier to attain for the sample with larger 

relative thickness. 

 

All the discussion presented above are 

focusing on the 3D hollow porous structures 

with uniform layer thickness. However, we 

cannot access the properties of solid 

cylindrical porous sample by changing the 

geometrical parameters, even if the inner 

radial reduces to zero. To this end, here we 

consider the liquid penetration process in 3D 

hollow porous structures with proportional 

layer thickness. Applying the proposed 

model, i.e., Eq. (18), the variation of the 

liquid front with penetration time can be 

calculated for 3D hollow porous structure 

with different geometrical shape under 

different evaporation condition. 

 

 
FIG. 12. The critical penetration time for the penetration in 3D porous samples versus (a) 

geometrical factor, and (b) evaporation rate for different geometrical shapes. 

 

When the evaporation is negligible, i.e., 

0em  , by integrating Eq. (18), the relation 

between penetration distance and penetration 

time can be obtained explicitly as 

 2 32 3 1h h t     with 0t t t . 

For the complete penetration, i.e., 1h  , the 

critical condition can be further simplified as 

1 3 2 3 ct  , where 0c ct t t  is the 

normalized critical penetration time. The 

critical penetration time ct  is plotted as a 

function of the geometrical factor   in Fig. 

12(a) with semi-log coordinates. The 

asymmetric capillary flow is clearly found 

when   varying from 0.1 to 10. Moreover, 

the linear variation of ct  to   is also 

shown in the insert of Fig. 12(a) with initial 

value of 1 3ct   when 0  . 

 

When the evaporation is non-negligible, as 

we have discussed before, the evaporation -

restarted penetration can be compensated by 

changing the geometrical shape of the porous 

sample. For the 3D hollow porous structures 

with proportional layer thickness, the 

normalized critical penetration time can be 

plotted as a function of evaporation rate for 

samples with different geometrical shapes 

(i.e.,   = 0.5, 1.0 and 2.0), as shown in Fig. 

12(b). Three samples with different relative 
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thickness, i.e.,   = 0.01 , 0.5  and 1.0

 , are considered for each geometry. It is 

clearly seen that the relative thickness has no 

effect on the critical time when the 

evaporation is negligible (i.e., 0em  ). 

With the evaporation rate increasing, the 

significance of the effect of relative thickness 

on the critical time is increasing. Following 

the horizontal dotted line in Fig. 12(b), one 

can find that the coordination condition of 

compensation is depending on the relative 

layer thickness, which is different from the 

results of 3D structures with uniform layer 

thickness. Additionally, the critical condition 

of complete penetration is also depending on 

the relative thickness. 

 

The findings presented in this section provide 

us more clear understanding about the 

capillary flow in 3D porous structures, 

especially the compensation mechanism in 

3D conditions. By means of these findings, 

the design of capillary flow devices can be 

improved to facilitate the applications in a 

wide range, especially for the devices with 

high precision and sensitivity requirements. 

 

6. Conclusion 

In summary, a general framework has been 

developed to quantitatively investigate the 

significant effects of sample geometry and 

the liquid evaporation on capillary 

penetration processes in both 2D and 3D 

porous media with non-uniform cross 

sections. By combining the effects of 

geometry and evaporation, the velocity and 

extent of capillary penetration can be tuned 

with implications for diverse practical 

applications. Numerical simulations have 

been performed to support the developed 

theoretical model for 2D porous media. Good 

agreement is obtained for the base angles 

between 45° and 135°. 

 

For 2D porous media, the velocity of 

capillary penetration is found to be sensitive 

to the geometry of the porous sample, and it 

is found to transition from a decreasing to an 

increasing trend during the penetration 

process for a given geometry. Moreover, the 

distribution of penetration velocity can be 

modified by evaporation effects. The 

transition position has been predicted 

quantitatively as a function of the 

evaporation rate and the geometrical factor. 

Furthermore, a critical value of the 

evaporation was found to exist, above which 

liquid penetration is restricted to a limited 

region with a predictable boundary. The 

critical length of the limited penetration 

region depends on the evaporation rate and 

geometrical factor. It is particularly 

interesting to note that evaporation-retarded 

penetration can be compensated by choosing 

an appropriate sample geometry, and the 

coordination condition is given theoretically.  

 

The capillary penetration in 3D porous 

structures was investigated. It is found that 

the relative layer thickness (uniform of 

variable) has a significant effect on the 

penetration process and the critical condition 

of the complete penetration in 3D structures. 

Another interesting finding is that the 

compensation condition for the evaporation-

retarded penetration in 3D porous structures 

with uniform thickness does not depend on 

the layer thickness, but such dependence is 

found for porous structures with proportional 

thickness. 

 

The present analysis provides a useful 

framework to investigate the underlying 

mechanisms of penetration processes by 

combining geometry and evaporation effects. 

Insights gained from this work warrant new 

designs of more complex and actual porous 
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architectures to achieve active control of the 

capillary penetration processes for a wide 

range of practical applications. Furthermore, 

it is worth mentioning that the present 

framework to consider geometrical factors 

can be applied to alternative shapes, other 

than the trapezoid and hollow circular/square 

frustum we discussed here. 
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