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ABSTRACT

This thesis develops a general procedure for a robust and convenient collapse

(limit) load determination of engineering structures using the elastic compensation

method (ECM), which only involves a series of linear elastic analyses, and therefore

is suitable for practical applications.

This research attempts to improve the robustness and automation of the tradi-

tional ECM and its modified versions. Two shortcomings of them reported in the

literature are presented. Firstly, they use the number of iterations, input by the

user, as the convergence criterion due to the presence of the sporadic oscillations

with different amplitudes in the limit load curve. This criterion is baseless and might

prevent a decent solution to be obtained. Secondly, they need a fine and high-quality

mesh to produce acceptable results. Generation of such a mesh for complex struc-

tures is time-consuming and often requires tedious human interventions. The first

shortcoming is overcome by developing a robust sensitivity-based ECM. It is shown

theoretically and confirmed numerically that the use of the sensitivity-based ECM

is robust in preventing the oscillations. This scheme provides accurate results by

defining the convergence directly on limit loads. The second shortcoming is tackled

through the use of the scaled boundary finite element method (SBFEM) and the

automatic quadtree (in 2D) and octree (in 3D) mesh generation. Such technique

automatically and efficiently handles structures with complex geometries and allows

the SBFE discretizations to be constructed from an in-plane solid (2D) or of a solid

3D CAD model.

The combination of the sensitivity-based ECM with the SBFEM leads to an

automatic scheme for the collapse load determination of structures. This scheme

minimizes the required interference of the user in both mesh generation and analy-

sis parts. However, it may be computationally demanding when uniformly refined

meshes are used. To deal with this problem, an adaptive sensitivity-based ECM is

proposed. The adaptive scheme generates non-uniform refinements efficiently by the
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ability of the SBFEM in handling the hanging nodes. This reduces the number of

elements while still guaranteeing the required level of accuracy. Therefore, the size

of the problem is significantly reduced and hence also the required computational

resources.
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Chapter 1

INTRODUCTION

1.1 General

Structural engineering is a sub-discipline of civil engineering which involves the ana-

lysis and design of structures, such as buildings, bridges, towers, etc. Structural

analysis is the determination of structural responses (i.e. deformations, internal

forces, stresses, etc.) due to the loads applied on a structure and its components.

Structural design is the economical determinations of the structural components’

properties (i.e. suitable materials, section dimensions, etc.) based on the structu-

ral responses to ensure the structure performs in such a way to meet some criteria

under the applied loads. These criteria are normally known as limit states. The

term limit state is used to describe a condition at which a structure or part of a

structure ceases to perform its intended function [6]. There are two categories of

limit states; serviceability limit state and ultimate limit state (strength). A servi-

ceability limit state is correspondent to a condition beyond which specified service

requirements (i.e. deflection, vibration, durability, fire resistance, local deformation,

etc.) resulting from the planned utility of the structure are no longer satisfied. The

ultimate limit sate is regarded as an inability to sustain any increase in loads [7]. In

other words, the ultimate limit state shows the maximum load that the structure

1
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can sustain. The ultimate limit state can be described as

R ≤ αL (1.1)

, where R shows the structural resistance and L represents the applied loads. α

shows the factor of safety (or safety factor) of the structure under the applied loads.

Essentially, the factor of safety shows how much stronger the structure is than it

needs to be for an applied load.

For a given load pattern (the spatial distribution of a set of forces), the exact

value of the safety factor is different from one structure to another. The safety

factor of a structure can be obtained by determining the maximum load that the

structure can sustain under the given load pattern. This maximum load is known

as the collapse load or the limit load of the structure. The traditional approach

to obtain the limit load of a structure is a nonlinear, incremental analysis up to

the failure of the modeled structure. This methodology is often computationally

very demanding for realistic structures. Additionally, the complexity of the method,

specially in defining suitable load steps and iteration controls, usually restricts its

engineering applications.

The importance of the safety factor concept in the design and such difficulties

of the nonlinear numerical solution have motivated the development of simplified

schemes. They include two general kinds of methods; (1) classical limit analysis and

(2) iterative linear analyses.

The classical limit analysis which is based on the well-known upper (kinematic)

and lower (static) bound theorems is widely used for the direct collapse load deter-

mination (e.g. [8, 9, 10]). It is found on the mathematical programming framework

and is suitable for sufficiently ductile structures, as it assumes the material behavior

as elastic-perfectly plastic. Being path independent and a single-step determination

of the collapse load are the main advantages of the classical limit analysis over the

nonlinear incremental technique [11]. However, despite its popularity and matu-
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rity within research communities over decades, the classical limit analysis does not

gain much of interest from practitioners. This is mainly due to their lack of fa-

miliarity with the model construction within a generic mathematical programming

framework.

Alternatively, methods based on iterative analyses schemes are efficient schemes

approximating the limit load using bounding theorems. The materials are assumed

to be rigid-perfectly plastic. At each iteration, an elastic stress analysis is performed

on the finite element model of the structure. The elastic stiffness properties of the

finite elements are systematically adjusted such that the stresses with high intensity

are redistributed. The iterations continue until the distribution corresponding to

the collapse state is reached.

Various iterative elastic analysis methods have been proposed to perform the

limit analysis of structures [12]. In particular, the methods known as elastic com-

pensation method (ECM) and its modified version, modified elastic compensation

method (MECM), are developed based on a very simple scheme which make them

applicable to many large and complex structures [13, 11, 14, 15, 16, 17] . At each

iteration, an arbitrary nominal stress between the maximum and minimum stress

is chosen. Then, the finite elements whose stresses sit above the nominal stress are

selected and their elastic moduli are scaled down to bring the stresses of the selected

elements back to the nominal stress. Ponter et al. [15] showed that this procedure

results in a series of analyses which converge to a stress state field on the yield surface

if Poisson’s ratio is taken as 0.5 (i.e. incompressible material). This condition impo-

ses the required volume conservation in plastic analyses, as the plastic deformations

do not change the volume of the material. He mentioned this stress field then can

be used along with upper and lower bound theorems to determine the collapse load

of structures. ECM is usually referred as a lower bound approach and the upper

bound scheme is more often known as linear matching method (LMM). Although

the upper bound collapse load given by the LMM is generally more accurate (as

the convergence is directly defined on the limit load), the collapse load obtained
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by the lower bound scheme in the ECM is safer for the design of structures [17].

This is because of the nature of the employed lower bound theorem, which produces

conservative computations of the limit load, if its criteria are met.

1.2 Motivation of Research

The use of iterative elastic analyses based on the current ECMs for the determination

of collapse loads of structures is quite advantageous. Some of the main merits of

this scheme over the other approaches are as follows.

• The use of linear elastic analysis allows the methods to be numerically efficient,

even in case of large-size complex (3D) structures.

• Computer software for linear elastic analysis are readily available.

• The method is simple, easy to understand, and applicable to engineering ap-

plications, as it only requires the knowledge of linear elastic analysis.

• The use of linear elastic analyses guarantees the existence of a stress state

which is in equilibrium with applied loads [18].

The mentioned benefits of the ECM scheme provides the engineers with a simple,

efficient, and familiar tool for collapse load determination of practical engineering

structures. However, there are some problems which need to be addressed. These

problems are either related to the ECM itself or the finite element model on which

the ECM is applied.

The main problem is the convergence criterion defined by the method to stop

the iterations. The convergence criterion defined by current ECMs is the number of

iterations selected by the user as an input [12]. This criterion might not necessarily

be sufficient and some trial and error processes are usually required by the user to

obtain an approximate solution. The reason for this definition is multiple oscillations

of the collapse load with sporadic amplitudes during the iterations, which prevents
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defining the convergence directly on the limit load. The main reason of the oscilla-

tions is rested in the nature of the scheme employed in the ECM when the elastic

moduli of finite elements are scaled down; the elastic modulus of each element is

reduced individually by a factor without consideration of the other elements whereas

the equivalent stresses are computed with contributions of all elements. This appro-

ach may eventually lead to the stress overshooting of some elements, preventing the

convergence on the limit load. The stress overshooting phenomenon may also affect

the level of accuracy of the limit load and the collapse mechanism obtained by the

method.

In a finite element model which is utilized for the ECM, the mesh density plays

a vital role. Since the behavior of each element is described by one elastic modulus,

usually a very fine mesh is needed, specially if a localized plasticity occurs [18].

However, in case of a poor structural discretization, the estimated stress distribu-

tion by the method cannot be a good representative of the real, continuous stress

distribution in the domain, which is required for the lower bound collapse load cal-

culation. Constructing a high quality fine mesh, specially for 3D structures with

sophisticated geometries, often requires tedious human interventions. Additionally,

in case of the incompressibility (i.e. Poisson’s ratio close to 0.5), the accuracy and

robustness of the element itself is of high importance, as the the choice of an unsuit-

able element will result in numerical difficulties, and can exhibit overly stiff behavior

of the structure.

Current research in the area of the limit analysis is primarily motivated by two

aims; (a) to develop a new and robust scheme based on the ECM to remove the

oscillations, which leads to the convergence directly on limit load, and (b) to remove

the mentioned mesh-related challenges to solve the problem more efficiently.

The present study is concerned with both aims. The former will be pursued

by developing a novel sensitivity-based ECM which considers the contribution of

other elements. In each iteration, the elastic moduli of the selected elements will be

altered considering the effect of the change in elastic moduli of the other selected
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elements. This goal is achieved through the definition of a stress sensitivity matrix.

Then, the method predicts the values of equivalent stresses of all elements in the

next iteration, and modifies the changes in elastic moduli of elements in case of the

stress overshooting. Hence, the stress overshooting will be prevented and the limit

load solution can accurately be obtained.

The later will be tackled through the use of the novel scaled boundary finite

element method (SBFEM) and the automatic quadtree/octree mesh generation.

Firmly established in [19, 20], the SBFEM has simple mesh requirements, a sound

theoretical basis and a robust convergent solution for linear elastic analysis. The

use of polygon-shaped (in 2D) or polyhedral-shaped (in 3D) SBFEs gives rise to a

key algorithm that enables all hanging nodes to be modeled effectively whilst still

maintaining the numerical stability [21, 22]. This ability allows the SBFEM to be

efficiently combined with quadtree/octree mesh generator schemes [3, 5]. Each cell

in the quadtree/octree scheme acts as a polygon/polyhedron where the hanging

nodes are behaved as normal corner nodes. The implementation of automatic mesh

generator through quadtree/octree schemes, allows the SBFE discretizations to be

constructed from an in-plane solid (in 2D problems) or of a solid 3D CAD model

(in 3D problems). This technique automatically handles structures with complex

geometries (e.g. curved boundaries, holes, etc.) using a modest number of discrete

elements, compared to standard finite element methods. This effectively reduces the

burden of the fine mesh generation required for the ECM. Additionally, SBFEs do

not suffer from the nearly incompressible condition when Poisson’s ratios of 0.4999

and smaller are used [3], making it suitable for the ECMs.

The combination of the proposed sensitivity-based ECM with the SBFEM results

in an automatic scheme for the collapse load determination of structures. This

automatic scheme minimizes the required interference of the user in both mesh

generation and analysis parts, and therefore highly reduces the errors which might

be caused by the user.
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1.3 Objective and Scope of the Study

The main aim of the current research is to contribute to the improvement and deve-

lopment of current methods used for the determination of limit loads of structures.

In particular, the primary objective of the work reported herein is to develop a ro-

bust scheme based on the ECM that avoids the limit load oscillations often occur

in the ECMs. This allows the convergence to be directly defined on limit load curve

and eliminates the unfounded need of using the number of iterations as the con-

vergence criterion. Additionally, investigations into improving the automation and

convenience of the method through implementing automatic mesh generators will

be carried out. Particular emphasis is on the implementation of the SBFEM and

the quadtree/octree scheme. This results in an efficient and automatic mesh gene-

ration for the analysis of structures in 2D- and 3D-spaces. Additionally, the ability

of handling the hanging nodes in SBFEM permits the efficient use of the adaptive

refinement, and hence reduces the computational resources required for large-size

problems.

The specific measures towards the achievement of the objectives of this thesis

are as follows:

1. A full discussion on the ECM and its modifed versions.

2. Investigate the reason for the oscillatory behavior of the ECM and the de-

velopment of an oscillation-free scheme for the limit load determination by

introducing a novel sensitivity-based ECM.

3. Improve the efficiency of both sensitivity-based and traditional ECMs by com-

bining these techniques with SBFEM. This brings the advantages of SBFEM

in automatic and adaptive mesh construction, and in handling the condition

of incompressibility required in the ECMs.

4. Improve the efficiency of the proposed sensitivity-based ECM in terms of com-

putational resources needed by the use of efficient adaptive SBFEM; the re-
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sulting SBFE mesh will have a non-uniform h-refinement pattern, which helps

to reduce the number of degrees of freedom (DOFs) required, but still guaran-

tees the required level of accuracy of the solution. As a consequence, the size

of the model will be reduced.

1.4 Organization of the Thesis

This thesis deals with improvements on the ECM for computations of the limit

load. It consists of 7 chapters, including the introduction. Each chapter begins

with a brief review and a more specific introduction of its contents and ends with

conclusion remarks. The contents of the chapters are briefly outlined as follows.

In chapter 2, fundamentals for limit load computations are concisely stated. An

overview on historical developments on limit load computations is provided. A brief

literature review on the nonlinear analysis and classical limit analysis is given which

are followed by a detailed and comprehensive literature review on iterative elastic

analysis methods, including the ECM. The basis and assumptions used in these

methods are covered and merits and drawbacks of each method are discussed.

In chapter 3, the MECM is comprehensively explained. A full discussion on the

proper values of Poisson’s ratios is provided. The incompressibility and the suita-

ble elements for it are explained. The implementation of the method is presented

using the finite element method with the selective integration. Various 2D and 3D

numerical examples are then presented and the performance of the method is com-

pared with available results reported in the literature. It also addresses the question

whether the collapse load limit computed by the present numerical scheme is a lower

bound or an upper bound solution through a mesh refinement study.

Chapter 4 extends the MECM introduced in chapter 3 for the finite element

method with the selective integration to the SBFEM. The chapter reviews the for-

mulations that describe the generic SBFE discretization of structures in 2D and 3D

spaces. The quadtree and octree mesh generation methods are described. Numerical
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examples are given to exhibit the performance of the methodology.

Chapter 5 is devoted to the development of a thorough sensitivity-based ECM,

which removes the oscillations happening in the ECM and MECM. First, the reason

for the oscillations in the limit load is explained and illustrated through a simple

example. Then, the sensitivity-based ECM along with its formulations for deriving

the sensitivity matrix is discussed in detail for the FEM. Various numerical examples

are given to verify the accuracy and robustness of the method.

In chapter 6, the formulation derived for the sensitivity-based ECM with the

FEM is extended to the SBFEM. This results in an automatic scheme, in both

mesh generation and analysis parts, for the collapse load determination of structu-

res. The formulations are verified through some numerical examples and the results

are compared with reported solutions in the literature. In addition, to improve the

efficiency of the sensitivity-based ECM, an adaptive refinement approach for 2D

problems is discussed. The method utilizes the ability of the SBFEM for handling

the hanging nodes without additional refinements. The method is verified using se-

veral examples and the results are compared with the solutions obtained by uniform

refinement.

Finally, in chapter 7, the conclusions and the key findings of the study are sum-

marized and some various aspects for future research are proposed.

1.5 List of Publications

Some of the materials and results obtained from this thesis have been published or

submitted to journals and conference proceedings. They are listed as follows.
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(COMPLAS XIII). Barcelona, Spain, 2015.
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Chapter 2

FUNDAMENTALS AND THE

LITERATURE REVIEW

2.1 Introduction

In chapter 1 different methods for determination of the limit load for structures

were shortly discussed. The use of iterative methods, and particularity the ECM,

where the elastic moduli of the elements are systematically reduced in a series of

linear elastic analyses to simulate stress distributions, was found to be effective as

discussed in sections 1.1 and 1.2. The problems with the current ECMs used in the

literature were also highlighted in section 1.2 and the measures taken to solve them

were discussed in sections 1.2 and 1.3.

In this chapter the fundamental relations/theoretical basis and the relevant lite-

rature on methods for limit load determination are more comprehensively reviewed.

The fundamentals relations governing the elastic and limit analyses are discussed

which are mainly based on the books by Martin [23], Kaliszky [24] and Wong [25].

Different methods for limit load computations are discussed and the merits and dra-

wbacks of each of them are presented. The emphasis is on the simplified methods

using linear elastic analysis, and hence they are reviewed in detail.

11
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Figure 2.1: Structural model

2.2 Fundamentals

2.2.1 Stress States

This section is based on the book by Kaliszky [24] and the reader is referred to it

for further information.

2.2.1.1 Stress tensors

The generic structural model used throughout this thesis (Fig. 2.1) is a bounded

domain V consisting of a rigid- or elastic-perfectly plastic material. The boundary

of the structure, S, is made of two regions shown as Su and St. On St and V

the surface forces per unit surface area q(x) and body forces per unit volume g(x)

are prescribed, where x= (x1, x2, x3) shows the coordinates of each point in the

domain V . The displacements of the points due to the applied forces are shown by

u= u(x). Su represents the fixed part of the boundary where the the displacements

are prescribed (i.e. u= u0).

Consider a section which passes from a point P (x) of the body and is defined

by a unit outward normal vector n (Fig. 2.2). The stress vector p(n) at the point P
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t
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Figure 2.2: A section passing from a point P in the structural body

acting on this section is defined as

p(n) = lim
∆A→0

∆Q
∆A (2.1)

and shows the stress state of the point P in the section. ∆Q is the force acting on

the small area ∆A of this section.

The stress vector is a function of the outward normal vector. To completely

define the stress states at a point P , the stress vectors related to any section passing

from that point should be specified. In other words, the following function F in Eq.

(2.2) needs to be derived.

p(n) = F (n) (2.2)

For this purpose, it is assumed that the stress vectors on the sections perpendicular

to Cartesian coordinate axes x1 (or x), x2 (or y), and x3 (or z) are given (Fig. 2.3),

and expressed by

p(1) (σ11 σ12 σ13) = p(x) (σx τxy τxz)

p(2) (σ21 σ22 σ23) = p(y) (τyx σy τyz)

p(3) (σ31 σ32 σ33) = p(z) (τzx τzy σz) . (2.3)
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Figure 2.3: Stresses on an infinitesimal cube inside the body

Now the stress vector p(n) associated with an arbitrary section intersecting with

the mentioned sections perpendicular to Catresian coordinate axes, can be obtained

by writing the force equilibrium equations as

p(n)
x = σxnx + τxyny + τxznz

p(n)
y = τyxnx + σyny + τyznz

p(n)
z = τzxnx + τzyny + σznz. (2.4)

In other words,

p(n) = Tn (2.5)

, where T is the second order stress tensor, and in the Cartesian system of coordi-

nates is of the form

T =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ≡

σx τxy τxz

τyx σy τyz

τzx τzy σz

 ≡

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 . (2.6)
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Additionally, writing the moment equilibrium for the infinitesimal cube displayed in

Fig. 2.3 shows the stress tensor is symmetric. That is

τxy = τyx

τyz = τzy

τxz = τzx . (2.7)

Therefore, The stress state of a point in 3D space can be shown by six indepen-

dent scalar components. More often, it is convenient to show these components in

a vector (the Voigt notation representation of the stress tensor) of the form

σ = [σx σy σz τxy τyz τxz ]T . (2.8)

2.2.1.2 Principal stresses and stress invariants

At each point in a body at least three orthogonal normal vectors l(k), (k = I, II, III)

can be found that the associated stress vectors are parallel to the normal vectors.

That is

p(k) = σkl
(k). (2.9)

The directions of the normal vectors are known as principal directions and the

corresponding coordinate axes are the principal axes (I, II, III). σk shows the prin-

cipal (normal) stresses (i.e. σI, σII, σIII). The shear stresses on the planes associated

with the principal directions are equal to zero by definition.

The principal stresses and directions can be obtained by considering Eqs. (2.4)

and (2.9). i.e.

p(k)
x = σkl

(k)
x = σx l

(k)
x + τxyl

(k)
y + τxz l

(k)
z

p(k)
y = σkl

(k)
y = τyx l

(k)
x + σyl

(k)
y + τyz l

(k)
z

p(k)
z = σkl

(k)
z = τzx l

(k)
x + τzyl

(k)
y + σz l

(k)
z . (2.10)
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These equations can be rearranged to

(σx − σk) l(k)
x + τxyl

(k)
y + τxz l

(k)
z = 0

τyx l
(k)
x + (σy − σk) l(k)

y + τyz l
(k)
z = 0

τzx l
(k)
x + τzyl

(k)
y + (σz − σk) l(k)

z = 0. (2.11)

For this set of linear equations to have a nontrivial solution for l(k)
x , l(k)

y , and l(k)
z ,

the determinant of coefficients should be equal to zero. That is

∣∣∣∣∣∣∣∣∣∣∣∣

(σx − σk) τxy τxz

τyx (σy − σk) τyz

τzx τzy (σz − σk)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.12)

Expansion of the determinant leads to the follows equation for σk

σ3
k − I1σ

2
k − I2σk − I3 = 0 (2.13)

, where

I1 = σx + σy + σz

I2 = − (σxσy + σyσz + σzσx) +
(
τ 2

xy + τ 2
yz + τ 2

xz

)
I3 = σxσyσz + 2τxyτyzτxz −

(
σxτ

2
yz + σyτ

2
xz + σzτ

2
xy

)
. (2.14)

The roots of the Eq. (2.13) are the principal stresses shown by σI, σII, and σIII.

The subscripts of the principal stresses are selected in a way that σI ≥ σII ≥ σIII is

met. The coefficients I1, I2, and I3 are called the first, second and third principal

invariants of the stress tensor, respectively. They also can be written in the form of
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principal stresses as

I1 = σI + σII + σIII

I2 = − (σIσII + σIIσIII + σIIIσI)

I3 = σIσIIσIII. (2.15)

Using Eq. (2.4), the principal shear stresses (τI, τII, and τIII) acting on the section

which consist of one of the principal axes and bisects the angle between the other

two principal axes, can also be obtained as follows

τI = 1
2 (σII − σIII)

τII = 1
2 (σI − σIII)

τIII = 1
2 (σI − σII) . (2.16)

2.2.1.3 Stress deviator tensor

It is a common approach in plasticity to divide the stress tensor into two parts

T = T0 + S (2.17)

, where T0 defines the spherical stress tensor correspondent to the hydrostatic part

of the stress state. It can be written as

T0 =


σm 0 0

0 σm 0

0 0 σm

 (2.18)

, where σm is called the mean normal stress and is defined as follows

σm = 1
3 (σx + σy + σz) = 1

3 (σI + σII + σIII) . (2.19)
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S is the stress deviator tensor. From Eq. (2.17) it can be expressed as

S = T−T0 =


(σx − σm) τxy τxz

τyx (σy − σm) τyz

τzx τzy (σz − σm)

 =


sx sxy sxz

syx sy syz

szx szy sz

 . (2.20)

The principal directions are the same for the stress deviator tensor and for the

stress tensor. Similar to the section 2.2.1.2, the principal normal stresses of the

deviator tensor are denoted by sI, sII, and sIII and can be obtained from the following

equation

s3
k −K1s

2
k −K2sk −K3 = 0 (2.21)

, where

K1 = sx + sy + sz = 0

K2 =

∣∣∣∣∣∣∣∣
sx sxy

syx sy

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
sy syz

szy sz

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
sz sxy

szx sz

∣∣∣∣∣∣∣∣

K3 =

∣∣∣∣∣∣∣∣∣∣∣∣

sx sxy sxz

syx sy syz

szx szy sz

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.22)

K1, K2, and K3, do not depend on the chosen coordinate axes and are called the

first, second, and third invariants of the stress deviator tensor.

2.2.1.4 Equilibrium equations

The stress state in a body is a function of the coordinates. The nine scalar compo-

nents of a stress tensor cannot be independent of each others. They need to satisfy

some relationships which can be derived from equilibrium equations.

In section 2.2.1.1, it was mentioned that writing the moment equilibrium equa-

tions for the infinitesimal cube shown in Fig. 2.3 leads to the symmetricity of the
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stress tensor shown in Eq. (2.7). Similarly, writing the force equilibrium equations

for the same infinitesimal cube with small changes in the stress state leads to the

following three differential equilibrium equations

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ gx = 0

∂τyx

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ gy = 0

∂τzx

∂x
+ ∂τzy

∂y
+ ∂σz

∂z
+ gz = 0. (2.23)

, where gx, gy, and gz are the body force per unit volume g components (see Fig.

2.1) in Catresian coordinate axes. These equations are called Cauchy’s equilibrium

equations. Eqs. (2.23) are only valid for infinitesimal cubes inside the domain

and not the infinitesimal neighborhood of a point on the surface on the body. To

investigate the equilibrium of a point on the surface of the body, the equilibrium of

the infinitesimal tetrahedron made by the coordinate planes and the surface elements

in Fig. 2.4 is considered. Then, the following equilibrium equations can be obtained

using the Eqs. (2.4)

σxnx + τxyny + τxznz = qx

τyxnx + σyny + τyznz = qy

τzxnx + τzyny + σznz = qz. (2.24)

, where where qx, qy, and qz are the surface forces per unit area (q) components

(see Fig. 2.1) in Catresian coordinate axes. These are called the static boundary

conditions.

The Eqs. (2.23) and (2.24) can be shown in short form as follows

∇σ + g = 0 in V,

σn = q on St (2.25)
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Figure 2.4: The infinitesimal tetrahedron

, where the operator ∇ indicates the differential operator, and is defined as follows

∇ =


∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x

 . (2.26)

A stress field is called an admissible stress field if it satisfies these equilibrium and

boundary conditions equations.

2.2.2 Strain States

In the following, it is assumed that the body has continuous deformations. That is,

no gaps or overlapping will be seen, and the displacement is only a function of the

coordinates. The infinitesimal strain theory is considered where the displacements

are assumed infinitesimally smaller than the dimensions of the body. This section

is based on the book by Kaliszky [24] and the reader is referred to it for further



CHAPTER 2. FUNDAMENTALS AND THE LITERATURE REVIEW 21

information.

2.2.2.1 Strain tensor and strain rates

The state of strain at any point in the body can be defined by the strain tensor E

as follows

E =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =


εx εxy εxz

εyx εy εyz

εzx εzy εz

 =


∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u2
∂x1

+ ∂u1
∂x2

)
∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
1
2

(
∂u3
∂x1

+ ∂u1
∂x3

)
1
2

(
∂u3
∂x2

+ ∂u2
∂x3

)
∂u3
∂x3

 (2.27)

, where u1, u2, and u3 are the displacement components in the Cartesian coordinates

axes x1, x2, and x3 at the considered point.

In the theory of plasticity, the strain increments play an important role. Strain

increments represent the small changes in strains due to the small changes in a

certain parameter in the loading process ( i.e. time, iteration, etc.). The strain

increment tensor is denoted as follows

dE =


dε11 dε12 dε13

dε21 dε22 dε23

dε31 dε32 dε33

 =


dεx dεxy dεxz

dεyx dεy dεyz

dεzx dεzy dεz

 (2.28)

, where each entry of it is defined as follows

dEij = 1
2

(
∂dui
∂xj

+ ∂duj
∂xi

)
. (2.29)

The strain rate tensor, Ė, can be obtained by associating the strain increments
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to the time increment as follows

Ė = dE
dt =


ε̇x ε̇xy ε̇xz

ε̇yx ε̇y ε̇yz

ε̇zx ε̇zy ε̇z

 . (2.30)

By introducing the displacement rate (velocity) as

u̇ = v = du
dt (2.31)

, the strain rates can also be written as

Ėij = 1
2

(
∂u̇i

∂xj
+ ∂u̇j

∂xi

)
. (2.32)

2.2.2.2 Kinematic equations

As shown in Eq. (2.27), the strain tensor entries are not independent of each other.

The strain tensor is symmetric. That is

Eij = Eji. (2.33)

Therefore, the following relationships can be written as

εx = ∂ux

∂x
, εy = ∂uy

∂y
, εz = ∂uz

∂z

εxy = εyx = 1
2

(
∂ux

∂y
+ ∂uy

∂x

)
,

εyz = εzy = 1
2

(
∂uy

∂z
+ ∂uz

∂y

)
,

εxz = εzx = 1
2

(
∂ux

∂z
+ ∂uz

∂x

)
. (2.34)

These relations are known as strain-displacement or kinematic equations. Similar to

the stress state and due to symmetricity of the strain tensor, the strain components
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are more often shown as strain vector ε in the form of

ε = [εx εy εz εxy εyz εxz ]T . (2.35)

Similarly, the strain rate vector is defined as

ε̇ = [ε̇x ε̇y ε̇z ε̇xy ε̇yz ε̇xz ]T . (2.36)

On Su (see Fig. 2.1) the displacements are prescribed. Therefore, the displace-

ment field should satisfy the kinematic boundary conditions on Su as follows

u= u0. (2.37)

The kinematic equations, therefore, in short form can be described as follows

Eij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
in V,

u= u0 on Su. (2.38)

These equations can also be extended to show the strain rate-displacement rate as

follows

Ėij = 1
2

(
∂u̇i

∂xj
+ ∂u̇j

∂xi

)
in V,

u̇ = 0 on Su. (2.39)

Similar to the admissible stress fields, the kinematically admissible strain rate and

the velocity fields are the ones satisfying the kinematic equation and the kinematic

boundary conditions.
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2.2.3 Stress-Strain Relations and Material Models

The equilibrium equations (Eqs. (2.25)) and the kinematic equations (Eqs. (2.38)

and (2.39)) do not uniquely determine the stresses, strains, and displacements in the

domain. To obtain a unique solution, some further equations known as constitu-

tive equations are needed. These equations represent the stress-strain relationship.

These equations are based on the material model which has been employed.

Fig. 2.5 shows the linear or multi-linear material models usually assumed to

simulate the real stress-strain relations: (a) linear elastic; (b) rigid-perfectly plastic;

(c) rigid-plastic hardening; (d) linear elastic perfectly plastic; and (e) linear elastic-

plastic hardening. In this study, the material models (a) and (b) are considered.

The materials with linear elastic models (a) follow the same linear stress-strain re-

lationships during loading and unloading processes. Therefore, after unloading, no

permanent strain remains. For rigid-perfectly plastic materials (b), it is assumed

that the elastic deformation is so small that it can be ignored. Although this as-

sumption has some restrictions in its use, its simplicity still has certain merits for

the plastic design, and thus is adopted in many design codes (such as European

standard, EN 13445-3 [26], for pressure vessel design). Hence, in this thesis, it has

been assumed that the material behaves as if the structure does not deform unless

it collapses plastically.
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Figure 2.5: Material models; (a) linear elastic (b) rigid-perfectly plastic (c) rigid-plastic
hardening (d) linear elastic perfectly plastic and (e) linear elastic-plastic hardening

2.2.4 Constitutive Equations for Linearly Elastic, Isotropic

Material

The stress-strain relations for linearly elastic, isotropic material can be described by

the Hook’s law as follows

εx = 1
E

[σx − ν (σy + σz)]

εy = 1
E

[σy − ν (σx + σz)]

εz = 1
E

[σz − ν (σx + σy)]

εxy = 1
2Gσxy, εyz = 1

2Gσyz , εxz = 1
2Gσxz (2.40)

, where E is the Young’s modulus or elastic modulus, G is the shear modulus, and

ν is the Poisson’s ratio of the material. These parameters are dependent on each
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other and should satisfy the relationship

G = E

2 (1 + ν) . (2.41)

The Hook’s law in the matrix form can be written as follows

σ = Dε (2.42)

, where D is the elasticity matrix and is defined as

D = λ

ν



(1− ν) ν ν 0 0 0

ν (1− ν) ν 0 0 0

ν ν (1− ν) 0 0 0

0 0 0 (1− 2ν) 0 0

0 0 0 0 (1− 2ν) 0

0 0 0 0 0 (1− 2ν)



. (2.43)

Here λ is the Lamé’s modulus of material and is defined as

λ = νE

(1 + ν) (1− 2ν) . (2.44)

2.2.5 Yield Conditions for Perfectly Plastic Materials

The yield conditions defines the valid range of Hook’s law and the constitutive

equations when plastic deformation occurs. Consider the uniaxial stress state for

the sake of simplicity. The yield function, f , is defined as follows

f = σ2 − σ2
0 (2.45)

, where σ0 shows the yield stress of the material. This function expresses two

different behaviors of the material; when f < 0, it shows the elastic phase of the
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material and when f = 0, it shows the plastic region of the material.

The state f > 0 is not stated, as the yield stress σ0 cannot be exceeded in

perfectly plastic materials. Generally, the yield function depends on different factors

and can be written as

f = f(σ, ε, σ̇, ε̇,x, T, t) (2.46)

, where σ, ε are the stress and strain fields, and σ̇, ε̇ are their associated rates

defined in subsections 2.2.1 and 2.2.2. T and t represents temperature and time,

respectively. However, the yield function is usually simplified to be easy to be

implemented; for instance, the medium usually is considered as a homogeneous

body and is independent on the temperature and the time. Consequently, the yield

function will be independent of the coordinate x, the stress and strain rates (σ̇,ε̇),

the temperature T and time t. Additionally, the yield function is path-independent,

which means it is independent of deformation field history. As a result, the yield

function in Eq. (2.46) can be reduced to be represented only by the stress state in

the medium and the material property as

f = f(σ, κ) (2.47)

, where κ is the plastic property constant of the material.

When isotropic material is employed, which states that the material properties

do not change in different directions, the yield function can be further simplified to

be expressed by only the invariants of the stress tensor I1, I2, I3 or principal stresses

σI, σII, σIII (which are defined in Eqs. (2.14) and (2.15)) as

f = f(I1, I2, I3) = f(σI, σII, σIII). (2.48)

Considering the fact that the hydrostatic pressure normally does not have sig-

nificant effects on plastic deformations, the addition of hydrostatic stresses to the

existing stress states does not affect the occurrence of yielding. Therefore, the yield
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function can finally be described only in terms of invariants K2 and K3 of stress

deviator tensor (defined in section 2.2.1.3) as

f = f(K2, K3, κ). (2.49)

The yield function in Eq. (2.49) has two important properties; it is closed and

convex [24].

The yield function of the materials can be obtained by experimental results and

theoretical justifications. In practice, von Mises yield criterion and Tresca yield

conditions are the most well-known yield functions utilized for metals, which are

stated briefly in the following.

2.2.5.1 The von Mises yield condition

The von Mises yield condition, in its general form, can be stated as

f = K2 − τ 2
0 = 0. (2.50)

Here, τ0 is the yield stress in pure shear. The second invariant of the stress deviator

tensor, K2, can also be written in terms of invariant stresses or principal stresses.

Therefore, the yield function for von Mises condition can be developed to

f = 1
6
[
(σx − σy)2 + (σy − σz)2 + (σx − σz)2

]
+ τ 2

xy + τ 2
yz + τ 2

xz − τ 2
0 = 0 (2.51)

or

f = 1
6
[
(σI − σII)2 + (σII − σIII)2 + (σI − σIII)2

]
− τ 2

0 = 0. (2.52)

Eq. (2.52) describes an equation for a cylinder in the principal stress space where

the hydrostatic stress lies along the axis of the cylinder (Fig. 2.6).

In case of a uniaxial stress state (σII = σIII = 0), the form of the von Mises yield
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Figure 2.6: The von Mises yield function in principal stress space.

function in Eq. (2.52) can be reduced to

f = 1
3σ

2
I − τ 2

0 = 0. (2.53)

In this case, the material can also yield when the stress equals the yield stress in

pure tension. As a result, the relationship between the yield stress in pure tension

and yield stress in pure shear can be derived as

τ0 = 1√
3
σ0. (2.54)

For two-dimensional problems, two plane states can be considered: plane stress

and plane strain states.

In plane stress case, the out of the plane stresses (i.e. τxz, τyz, σz) or simply σIII

are zero everywhere in the body. The use of σIII = 0 in Eq. (2.52) leads to

f = σ2
I − σIσII + σ2

II − 3τ 2
0 . (2.55)

Alternatively, substituting τxz, τyz, σz with zero in Eq. (2.51) and using Eq. (2.54)
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give

f = σ2
x + σ2

y − σxσy + 3τ 2
xy − σ2

0 = 0. (2.56)

In plane strain case, the out of plane strains (i.e. εxz, εyz, εz) are zero everywhere

in the body. However, the stress in principal axis III is not zero. In fact, the

deformation condition is met if

σIII = 1
2 (σI + σII) , (2.57)

so that the tendency for one pair of principal stresses to extend the material along

axis III is balanced by the other pair to contract it along this axis [27, 23]. The Eq.

(2.57) can also be derived by the use of Prandtl-Reuss constitutive equations [24].

These equations for a rigid-perfectly plastic material can be written in the term of

strain rates as follows

ε̇x = λ̇sx

ε̇y = λ̇sy

ε̇z = λ̇sz

ε̇xy = λ̇sxy, (2.58)

where λ̇ is the plastic multiplier and {sx , sy, sz , sxy} are the stress deviator tensor

components defined in section 2.2.1.3 in Eq. (2.20). Since in plane strain case εz = 0,

the third equation can be extended to

sz = σz − σm = σz −
1
3 (σx + σy + σz) = 0. (2.59)

From Eq. (2.59) it can be derived that the normal stress σz is equal to the mean of

the other two normal stresses. That is

σz = σm = 1
2 (σx + σy) . (2.60)
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As in plane strain condition, τxz = τyz = 0, σz also shows a principal stress (σIII),

and thus the other principal stresses (σI, σII) are parallel to the x, y plane. Hence,

the Eq. (2.57) is proved. Substituting σIII from Eq. (2.57) into Eq. (2.52), the von

Mises yield function in this case can be reduced to the form of

f = (σI − σII)2 − 2τ 2
0 = 0. (2.61)

Alternatively, by having τzx , and τzy as zeros, and the use of Eq. (2.60) and Eq.

(2.54), Eq. (2.51) can be simplified to

f = 1
4 (σx − σy)2 + τ 2

xy −
σ2

0
3 = 0. (2.62)

2.2.5.2 The Tresca yield condition

The Tresca yield condition states that when the maximum shear stress becomes

equal to the yield stress in pure shear, yielding occurs. The Tresca yield function

can be written as

f = |τmax| − τ0 = 0. (2.63)

, where τmax is the maximum shear stress and equals to τII in Eq. (2.16) when the

relationship σI ≥ σII ≥ σIII is satisfied. However, this relationship is not generally

known a priori [24]. Therefore, using the Eqs. (2.16) and eliminating the absolute

sign in Eq. (2.63), the general form of the Tresca yield condition is as follows

f1 = (σI − σII)2 − 4τ 2
0 = 0

f2 = (σII − σIII)2 − 4τ 2
0 = 0

f3 = (σI − σIII)2 − 4τ 2
0 = 0. (2.64)

These equations constitute a hexagonal cylinder in principal stress space. Yiel-

ding occurs if at least one of the Eqs. (2.64) is satisfied.

In uniaxial stress state, the principal stresses of σII and σIII are equal to zero and
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Eqs. (2.64) will be reduced to

f = σ2
I − 4τ 2

0 = 0. (2.65)

In this state, the yield condition is reached when the axial stress becomes equal to

the yield stress in pure tension. Hence, from Eq. (2.65), one can write

τ0 = σ0

2 . (2.66)

In biaxial stress state, two cases are considered; plane stress and plane strain.

In case of plane stress condition, the principal stress in axis 3 is zero. By substi-

tuting σIII with zero in Eq. (2.64) and use of Eq. (2.66), the Tresca yield condition

can be written as

f1 = σ2
II − σ2

0 = 0

f2 = σ2
I − σ2

0 = 0

f3 =
(
σ2

I − σ2
II

)
− σ2

0 = 0. (2.67)

In plane strain condition, the Tresca yield function is similar to the von Mises

yield condition. Substituting the Eq. (2.57) into Eqs. (2.64) leads to

f = (σI − σII)2 − 4τ 2
0 = 0 (2.68)

, or

f = (σx − σy)2 + 4τ 2
xy − σ2

0 = 0. (2.69)

2.2.5.3 Comparison between the von Mises and Tresca yield conditions

Both the von Mises and Tresca yield conditions are widely used for plasticity of

metals. Fig. 2.7 shows the difference of the two yield functions in 2D biaxial

principal stress state. As it is illustrated, the Tersca yield condition is engulfed



CHAPTER 2. FUNDAMENTALS AND THE LITERATURE REVIEW 33

σ1

σ2

σ0

σ0

von Mises 

Tresca 

Figure 2.7: von Mises and Tresca yield conditions in biaxial stress states.

with the von Mised yield function. The maximum difference between the two yield

functions is 15.5% for any possible stress states [24].

From limit analysis point of view, the former is stated as one nonlinear function

in principal stress space, while the latter can be described as three linear functions.

Thus, the von Mises function requires less constraints to be described. However, its

disadvantage is that the function is nonlinear, whereas the Tresca yield functions

are linear. In some cases, such as plane strain condition in biaxial stress state, both

functions have an identical form as mentioned before in Eqs. (2.68) and (2.61).

2.2.6 Principle of Virtual Work and Complementary Vir-

tual Work

For rigid-perfectly plastic material, the principles of virtual work and complementary

of virtual work is also valid. These principles will be explained in this section.

2.2.6.1 Principle of virtual work

The principle of virtual work exhibits the equilibrium between the external forces

applied on the structure and the internal stress field in the body. It demonstrates

that the virtual work done by a possible statically admissible stress filed σ on any
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virtual strain filed δε equals the virtual work done by the external forces (q, g)

(defined in section 2.2.1.1) on the virtual displacements δu associated with the

virtual strains. That is

∫
V
σδεdV =

∫
St

qδudSt +
∫
V

gδudV . (2.70)

The principle of virtual power can also be written based on the above equations

by substituting virtual strain filed δε and virtual displacement δu by kinematically

admissible strain rates ε̇ and velocities u̇, respectively. Therefore,

∫
V
σε̇dV =

∫
St

qu̇dSt +
∫
V

gu̇dV . (2.71)

2.2.6.2 Principle of complementary virtual work

The principle of complementary virtual work states that the internal complementary

virtual work done by any possible virtual stresses on the kinematically admissible

strains is equal to the external complementary virtual work done by the associated

virtual forces on the displacements. Considering the fact that virtual forces are zero

on the part St which has prescribed forces, thus, we can write

∫
V
εδσdV =

∫
Su

u0δqdSu +
∫
V

uδgdV . (2.72)

, where u0 denotes the defined kinematic boundary on Su. The principle of comple-

mentary virtual work is also known as principle of virtual forces. The principle of

complementary virtual power can also be derived as

∫
V
εσ̇dV =

∫
Su

u0q̇dSu + +
∫
V

uδġdV . (2.73)

that describes the works in terms of stress and force rates.



CHAPTER 2. FUNDAMENTALS AND THE LITERATURE REVIEW 35

2.2.7 Plastic Limit Analysis

Plastic limit analysis has widely been used by researchers in engineering mechanics.

The main purpose of the limit analysis is finding the value of the limit load and its

associated safety factor known as limit load multiplier in plastic limit analysis. It can

briefly be described as follows. Consider a rigid-perfectly plastic material under the

external load distribution of (q, g). This external load is governed by a proportional

load multiplier α and can be written as α(q0, g0), where (q0, g0) shows the reference

loads. When α is small, the deformations are assumed to be small (which are

neglected) and no plastic deformations are occurred. As α increases, some yielding

occurs at some point in the structure; however, it is not enough to cause the collapse

of the structure. By increasing the load multiplier, the plastic areas are developed in

the structure, and finally at some value of the load multiplier, known as the collapse

or limit load multiplier, αcol, the structure collapses. This process can be depicted

by the well-known classical Prandtl’s punch problem. Consider a semi-infinite rigid

plastic medium under a uniformly distributed vertical force of 2α. Fig. 2.8 shows

the geometry and loading of this problem. The plane strain condition and Tresca

yield function were adopted. The associated theoretical mechanism is plotted in

Fig. 2.9 [24]. By increasing the loads, plastic regions start to develop at the points

A and B. However, due to the material rigidity between these local plastic regions,

any plastic deformation in the plastic regions are ruled out. As the load increases,

the plasticity develops under the load. When the plastic region extends below the

entire loading area, the indentation happens and collapse occurs. The plastic area

development is plotted in Fig. 2.10, where the plasticity is shown by the reduction

in elastic modulus. Due to the symmetric nature of the problem, only the right half

is shown. As the load multiplier increases, the plastic zone develops (stages a-l)

until the collapse occurs at stage l.

The purpose of the limit analysis is finding the collapse load multiplier and its

associated collapse load.
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Figure 2.9: The theoretical collapse mechanism for the Prandtl’s punch problem

2.2.8 Static Theorem (Lower Bound Theorem)

Any load multiplier α is called a static admissible solution provided that the as-

sociated stress field σs in the body and the force field αs(q0, g0) applied on the

structures satisfy the equilibrium equations

∇σs + αsg0 = 0 in V,

σsn = αsq0 on St (2.74)

and the yield condition (i.e yield conformity)

f(σs, κ) ≤ 0. (2.75)

at any point in the structure.

The static theorem states that any static admissible limit load multiplier is either

less than or equal to the true plastic collapse load multiplier of the structure. That
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Figure 2.10: The development of plasticity for the Prandtl’s punch problem



CHAPTER 2. FUNDAMENTALS AND THE LITERATURE REVIEW 38

is,

αs ≤ αcol. (2.76)

In other words, the collapse load multiplier that is obtained from any collapse mode

other than the true one, can be considered conservative when the structure satisfies

the equilibrium and yield conformity.

Eq. (2.76) can be proved by applying the principle of virtual power (mentioned in

section 2.2.6.1) on a structure where the actual stress σ in the body is in equilibrium

with the collapse load αcol(q0, g0). This leads to

∫
V
σε̇dV = αcol

(∫
St

q0u̇dSt +
∫
V

g0u̇dV
)

(2.77)

, where ε̇ and u̇ are the kinematically admissible actual strain and displacement rate

fields (defined in section 2.2.2.2), respectively. In a similar manner, considering a

statically admissible stress field satisfying the yield condition and the force field of

αs(q0, g0), the principle of virtual power can be written as

∫
V
σsε̇dV = αs

(∫
St

q0u̇dSt +
∫
V

g0u̇dV
)
. (2.78)

Subtracting Eq. (2.77) from Eq. (2.78) leads to

∫
V

(σ − σs)ε̇dV =
(
αcol − αs

) (∫
St

q0u̇dSt +
∫
V

g0u̇dV
)
. (2.79)

Considering the convexity of the yield surface and the normality rule, which states

that the plastic strain increments vector must coincide with the outward normal

vector of the yield surface [24], we can write

(σ − σs)ε̇ ≥ 0, (2.80)

at every point in the body. Eq. (2.80) is obvious from the Fig. 2.11, as the angle

φ between the vectors (σ − σs) and ε̇ cannot be larger than 90◦. Larger angles
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Figure 2.11: Convexity of the yield surface and normality rule - lower bound theorem

contradict either the convexity of the yield surface or the normality rules (Fig.

2.12).

Consequently, the right hand side of the Eq. (2.79) should also be positive, i.e.

(
αcol − αs

)(∫
St

q0u̇dSt +
∫
V

g0u̇dV
)
≥ 0. (2.81)

Here, the second bracket shows the work done by the external loads on the displa-

cement rates of the body and cannot be negative by its definition. As a result, the

Eq. (2.76) is proved.

2.2.9 Kinematic Theorem (Upper Bound Theorem)

Any load multiplier αk is called a kinematically admissible load multiplier if it

satisfies

αk
(∫

St
q0u̇kdSt +

∫
V

g0u̇kdV
)
≥
∫
V
σk ε̇kdV , (2.82)

and ∫
St

q0u̇kdSt +
∫
V

g0u̇kdV ≥ 0 (2.83)
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Figure 2.12: Contradictory examples (a) lack of convexity of the yield surface (b) lack of
normality rule

, where ε̇k and u̇k are the kinematically admissible plastic strain rate and velocity,

respectively., which are defined in section 2.2.2.2. σk is the stress field associated

with ε̇k and meets yield conformity anywhere in the domain.

The kinematic theorem states that any kinematically admissible load multiplier

is either greater than or equal to the collapse load multiplier

αk ≥ αcol. (2.84)

In other words, the true collapse load multiplier is the smallest value between all

the load multipliers obtained from all the possible cases of the collapse mechanisms

for the structure.

Inequality (2.84) can be proved by applying the principal of virtual power (section

2.2.6.1) for an arbitrary kinematically admissible strain rate ε̇k and velocity u̇k .

Considering the actual stress field as σ which maintains equilibrium with the plastic

limit load, we can write

αcol
(∫

St
q0u̇kdSt +

∫
V

g0u̇kdV
)

=
∫
V
σε̇kdV . (2.85)
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Figure 2.13: Convexity of the yield surface and normality rule - upper bound theorem

Subtracting Eq. (2.82) from Eq. (2.85) results in

(
αk − αcol

)(∫
St

q0u̇kdSt +
∫
V

g0u̇kdV
)
≥
∫
V

(σk − σ)ε̇kdV . (2.86)

By the convexity of the yield function and the normality rule, we can write

(σk − σ)ε̇k ≥0, (2.87)

as can be seen from Fig. 2.13. Consequently, the following relation can be obtained

(
αk − αcol

)(∫
St

q0u̇kdSt +
∫
V

g0u̇kdV
)
≥ 0. (2.88)

Considering the Eqs. (2.83) and (2.88) the kinematic theorem is proved.

In summary, the limit load multiplier is the largest value among all statically

admissible load multipliers and the smallest value among all kinematically admissible

load multipliers. Therefore, the following relation can be written

αcol = maxαs = minαk. (2.89)
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It is obvious that there are three ways to calculate the limit load multiplier:

1. find the value satisfying Eq. (2.76), which is a lower bound limit load multi-

plier.

2. find the value satisfying Eq. (2.84), which is an upper bound limit load mul-

tiplier.

3. find the value satisfying Eqs. (2.76) and (2.84) simultaneously, which is a dual

value.

The first approach is known as a lower bound scheme. The second one is the upper

bound scheme, and the third approach is the basis for establishing a dual formulation

of the limit analysis.

2.3 Incremental Nonlinear Finite Element Met-

hod

The finite element method (FEM) [28] was initially introduced by practitioners

rather that mathematicians using abstract methods. Its concept is based on sub-

dividing the body under the load to some smaller shapes or finer finite dimensions

which are so-called “finite elements”. The original body is then reproduced by the as-

semblage of these finite elements connected at some joints called “nodes”. Fig. 2.14

and Fig. 2.15 illustrate these two concepts for 2D and 3D structures, respectively.

The unknown field quantities over the elements can be interpolated in a piece-wise

fashion from the known field values at nodes using the “shape functions”. The best

field values at nodes is usually obtained through minimizing a function such as total

energy. The minimization is done through solving a set of algebraic equations for

field variables at nodes. By having the nodal values, and the use of shape functions,

the element field quantities, such as stresses and strains, are computed.
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Figure 2.14: A 2D structure (a) geometry (b) the associated FE model
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Figure 2.15: A 3D structure (a) geometry (b) the associated FE model
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In incremental nonlinear finite element analysis (FEA) [29, 30, 31], the external

load is incrementally increased up to failure of the structure. At each load increment,

which is known as time step, the equilibrium between the external loads and the

internal loads at nodes is satisfied through a series of linear analyses.

The most outstanding feature of the nonlinear FEM is its generality and ro-

bustness [29, 30, 31]; for the inelastic problems, due to the nonlinear nature of the

problem, the analytical solution is difficult to obtain and for complex cases, such as

three-dimensional cases, it is practically impossible to solve. In nonlinear FEM, the

material is assumed to be elasto plastic and the hardening and even the softening

behavior of the material can be taken into consideration. A complete solution for

the monotonic increasing load is determined. The analysis continues until the failure

of the structure; the load where the uncontained plastic flow happens is the limit

load.

Additionally, one of the most advantageous capabilities of the incremental non-

linear FEA, in comparison to the other limit analysis techniques, is providing useful

and comprehensive information on the behavior of the structure up to its failure in

a complete package. This information can be important in the design of structu-

res. In particular, a full nonlinear FEA can produce the correct deformations that

are needed for designs based on serviceability criteria, whereas some other limit

load analysis methods may not be able to provide such accurate information on the

deformation of structures.

Aside from the mentioned merits of the method, the incremental nonlinear FEM

has its own disadvantages; it is more demanding than its comparable limit analysis

technique in terms of computational resources, definition of the material models,

and user’s knowledge and expertise.

Firstly, the necessity of performing the analysis incrementally and in an iterative

manner, due to the dependence of the method on the loading history, makes the

incremental nonlinear FEM computationally expensive, specifically for large-size

problems (i.e. 3D problems). A high amount of time and computational resources
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are needed for carrying out the iterations and storage of the intermediate results.

Secondly, the nonlinear FEM is dependent on the sound definition of material

properties under all loading conditions and the exact inelastic flow rule. The material

constitutive relationship should be precisely defined before the analysis. At initial

stages of the design, this may not be the case.

Convergence of the solution could also be burdensome in some cases. As the

solution approaches the limit load, achieving the convergence becomes more and

more difficult by spreading the plastic zone in the structure. A large load step

may produce convergence failure and lead to sudden changes in the load deflection

curve. There are some guidelines for the proper definition of convergence criteria and

tolerances, but the user’s experience and expertise are usually needed for obtaining

a good solution.

The mentioned drawbacks of the incremental nonlinear FEM motivated the re-

searchers to develop simplified approaches to find the limit load solutions. These

simplified solutions contain two general methods; the classical limit analysis based

on mathematical programming and methods based on linear elastic analyses.

2.4 Classical Limit Analysis by Mathematical Pro-

gramming

By combining the mathematical programming method and finite element method,

the classical limit analysis [32, 33, 8] was developed based on the lower and upper

bound theorems mentioned in sections 2.2.8 and 2.2.9, respectively. The classical

limit analysis can be divided into two groups based on the type of the mathematical

programming method used. The first approach is to use a linearized yield function

and treat the limit analysis problem as a linear programming (LP) method [8]. The

other approach is the nonlinear programming (NLP) method, which utilizes the non-

linear yield condition and higher order approximations for the stress and velocity
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fields. In both cases, the numerical formulation of the limit analysis is described

as an optimization problem. In this problem, the objective function is either max-

imized or minimized subjected to some equality and inequality constraints. In the

following, this optimization problem under both static and kinematic approaches

are formulated.

2.4.1 Static Limit Analysis

The static limit analysis is formulated as finding the maximum load multiplier,

α, such that the equilibrium (Eq. (2.74)) and yield condition (Eq. (2.75)) are

simultaneously satisfied. That is

αcol = maxα

subject to

∇σ + αg0 = 0 in V,

σn = αq0 on St

f(σ, κ) ≤ 0. (2.90)

2.4.2 Kinematic Limit Analysis

In case of the limit load analysis, the Eq. (2.71) can be written in the following form

α
(∫

St
qu̇dSt +

∫
V

gu̇dV
)

=
∫
V
σε̇dV =

∫
V
D (ε̇) dV . (2.91)

, where D (ε̇) is the energy dissipation function related to ε̇. Therefore

α =
∫
V D (ε̇) dV∫

St
qu̇dSt +

∫
V gu̇dV . (2.92)
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The kinematically admissible fields ε̇ and u̇ can be normalized such that

∫
St

qu̇dSt +
∫
V

gu̇dV = 1. (2.93)

The kinematic limit analysis can be formulated as finding the maximum limit

load multiplier α based on Eqs. (2.92) and (2.93) such that ε̇ and u̇ satisfies the

kinematic equation and the kinematic boundary conditions mentioned in section

2.2.2.2 [23]. That is

αcol = minα

subject to∫
St

qu̇dSt +
∫
V

gu̇dV = 1

Ėij = 1
2

(
∂u̇i

∂xj
+ ∂u̇j

∂xi

)
in V

u̇ = 0 on Su.

Recent works [34, 35, 36, 37, 38] have been done to overcome the limitations un-

derlying the classical limit analysis (viz. the main ones being rigid perfect plasticity,

associativity and small deformations). The focus is on the development of a so-

called extended approach that can tackle various nonstandard conditions underpin-

ning practical engineering applications. For instances, the inclusion of elastoplastic

(strain hardening and/or softening) material properties [34, 35] and/or geometric

nonlinearity of structures [39] has been furnished through the formulations and so-

lutions of a challenging (nonconvex and/or nonsmooth) mathematical programming

problem with equilibrium constraints [40]. Moreover, the limit analysis of structures

with non-associative constitutive responses (e.g. Coulomb’s frictional contacts and

cohesive fracture interfaces) has been presented in [41, 42, 43, 36, 37, 38].

Despite of its popularity and maturity within research communities over deca-

des, the classical limit analysis does not gain much of interest from practitioners.
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This is mainly due to their lack of familiarity of the classical limit analysis model

construction within a generic mathematical programming framework. Furthermore,

this method is usually applied to 2D problems and relatively simple 3D problems

due to the computational time and resources required. This motivates the use of

iterative methods based on the linear analysis.

2.5 Iterative Methods Based on the Linear Elastic

Analysis

The iterative methods based on the linear elastic analysis are simplified methods

which uses the finite element analysis and a series of the linear elastic analysis.

In these methods, the effect of the plastic flow on the stiffness of the structure is

considered by altering the elastic moduli of elements. Hence, these methods are

often known as elastic modulus adjustment procedures (EMAPs)

EMAP was firstly introduced by Jones and Dhalla [44] for the classification of

clamp-induced stresses in thin-walled strait pipes. The method was named adjusted

secant for piping (ASP), as the inelastic effects in pipes are simulated by a modified

secant modulus of material. The key purpose of the ASP is to discern trends of the

simulated inelastic response near structural discontinuities, so that the discontinuity

of stresses can be properly classified to satisfy the requirement of the American

society of mechanical engineers (ASME) code [45].

Marriott [46] modified ASP to estimate the lower bound limit load. He menti-

oned the modulus adjustment technique by the finite element analysis generates a

statically admissible stress field which can be used for lower limit load approxima-

tions. In this scheme, the first elastic analysis at the first iteration, r = 1, adopts

the initial given elastic modulus of the material for all elements. In the next itera-

tion, r+ 1, all the elements whose stress intensities, (SI), sit above the ASME code

allowable stress (Sm), are selected and their elastic moduli are adjusted according
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to

Er+1
i = Er

i ×
Sm
SIi

(2.94)

, where Er+1
i is the modified elastic modulus of the element i. The process is

repeated until the maximum stress intensity converges to some value which can be

less or greater than Sm. The load multiplier at each iteration, αr, can be obtained

as

αr = σ0

σrmax
(2.95)

, where σ0 is the yield stress, and σrmax represents the maximum equivalent stress at

iteration r.

Marriott showed that the mentioned procedure leads to a distribution of stresses

which does not entirely characterize the actual stress distribution happening in the

nonlinear analysis; however, it could be used to approximate the inelastic solutions.

The advent of EMAP enabled engineers to simulate the nonlinear solution of

large-size problems with limited computing resources. This is the key reason that

EMAP has attracted much interest from researches. So far, a number of EMAPs

have been developed which can be classified as the following four groups.

(1) Stress classifications; this includes the ASP method and Marriott’s procedure,

which were introduced for stress classifications.

(2) Local inelastic analysis; this covers the problems with local plasticity, such

as the approximation of stress and strains at notches. The related EMAPs are the

generalized local stress and strain (GLOSS) method by Seshadri et al. [47, 48, 49]

and the modulus adjustment and redistribution of stress (MARS) method by Babu

[50, 51]. In these schemes, the elastic moduli of the elements sitting above the yield

stress are systematically modified through some iterations.

(3) Limit analysis; the EMAPs for limit analysis include GLOSS R-node method,

the variational mα multiplier technique and the elastic compensation method.

(4) Shakedown and ratchet analysis; this includes the methods introduced by

Mackenzie and Boyle [52] and Mackenzie et al. [53]. Further development of these
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methods is made by Ponter et al. and Chen and Ponter [15, 54, 55, 56, 57, 58, 59].

As the focus of this research is on the limit analysis by iterative methods, all the

major EMAPs for the determination of the limit load are explained in follows.

2.5.1 R-Node Method

2.5.1.1 General concept

Seshadri et al. [48, 60] suggested a procedure based on the elastic moduli adjustment

procedures which uses the concept of r-nodes, from the creep design, rather than

the lower bound theorem to obtain the limit load. The r-node method is based on

two linear analyses. In first elastic analysis, the stress of all elements are obtained

based on the specific material properties of the structure. Next, the elastic moduli

of all elements will be individually modified such that the stresses are scaled to an

arbitrary stress. In the second analysis, the new equivalent stresses for all elements

are computed; those elements whose equivalent stresses remain unchanged during

the two analysis are treated as r-nodes and are statistically determinate. The r-node

stresses are then considered as reference stresses and associated with the limit load

of the structure.

2.5.1.2 Redistribution nodes and plastic collapse

In creep solution of beams, Schulte [61] noticed that as the solution progressed

from the initial elastic stage to the final plastic stage, there are some points in the

cross section at which the stress hardly varies. Marriott and Leckie [62] named

these locations as “skeletal points”. Seshadri and Marriott [63] later extended the

skeletal point concept to a more general inelastic material behavior and showed

that the skeletal points can be thought of as nodes of the redistribution of stresses

(r-nodes). The r-node stresses can be considered load controlled and are statically

determinate. When plastic stage occurs, which involves the entire cross section, the

stress at r-nodes remain constant while the stress at other statically indeterminate
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Figure 2.16: R-nodes in a beam subjected to bending.

points undergo a redistribution.

Consider a beam which is subjected to a bending moment, where the stress-strain

relationship of the material is given by

ε = Bσn. (2.96)

Here, B and n are material parameters, where n = 1 represents the elastic stage

and n → ∞ corresponds to perfect plasticity. Fig. 2.16 shows different stress

distributions for various values of n. R-nodes can be designated from the intersection

of stress distributions for n = 1 and n → ∞. The stress distributions for all other

points pass through the r-nodes. The r-nodes can be considered by a uniaxial bar

with the given material properties.

As the stresses of r-nodes (i.e. (σe)r−node) are statically determinate, they are

proportional to the applied loads (P ). That is

(σe)r−node = γP (2.97)

, where γ is the constant of proportionality. The collapse happens when the stress
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at r-nodes reaches the yield stress. i.e.

σ0 = γPL (2.98)

, where σ0 is the yield stress and PL represents the limit load. Therefore, the limit

load can be obtained as

PL = P
σ0

(σe)r−node
(2.99)

For structures which need multiple plastic hinges to be formed in order to col-

lapse, a multi-bar model can be employed to simulate the collapse process. The

model allows the loads to be transferred to proper bars until the collapse occurs.

The combined r-node effective stress, σ̄n, is defined as

σ̄n =

N∑
j=1

σnj

N
(2.100)

, where σnj is the jth r-node stress and N is the number of r-nodes. The limit load,

therefore, can be obtained as

PL = P
σ0

σ̄n
. (2.101)

2.5.1.3 Limit load determination using r-nodes method

The r-node method can be implemented as follows [64].

• A linear elastic analysis for a given load is performed based on the specific

material properties.

• The elastic moduli of all the elements are modified according to the following

equation

Ee = E0
σarb
σe

(2.102)

, where Ee is the new elastic modulus of the element e and E0 is the initial

elastic modulus of all the elements. σarb is an arbitrary nonzero value and σe

is the equivalent stress of the element.
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Figure 2.17: The GLOSS diagram [1].

• The second linear analysis is carried out using the modified elastic moduli of

the elements.

• Based on the two analyses, the follow up angle θ on the GLOSS diagram can

be determined for each element (Fig. 2.17). R-nodes are the elements whose

associated follow up angles is 90 degrees.

• The r-node stresses are then treated as reference stresses. The effective r-node

stress is determined from Eq. (2.100) and the limit load of the structure is

obtained from Eq. (2.101).

2.5.1.4 Discussion of the R-node method

Although the conceptual model for r-nodes has been developed by Mangalaramanan

[65], the concept of r-nodes in creep design and its extension in the limit analysis
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is not fully understood [2, 12]. The R-node detection is generally straightforward

for a simple structure such as a beam or a cylinder; however, for more complex

structures such as three-dimensional structures, it becomes difficult and is relied on

practical experiences. This undermines the robustness of the method and makes the

determination of the limit load indirect.

2.5.2 mα Multiplier Method

To remove the hassles of the r-node method for more complex structures, Seshadri

and Mangalaramanan [2] proposed the mα multiplier method based on the varia-

tional theorem of Mure et al. [66]. As stated before, yield conformity necessitates

the statically admissible stress field to lie inside the yield surface. Mure et al. made

this constraint more straightforward by introducing the concept of “integral mean of

yield” into the variational theorem. This allows the stress distributions to be used

for estimating the upper and lower bounds of the limit load. The “integral mean of

yield” is written as ∫
V
µ0
(
f(s0

ij) +
(
φ0
)2
)
dV. (2.103)

Here, s0
ij is the deviatoric tensor (defined in 2.2.1.3) related to the statically ad-

missible stress field and µ0 ≥ 0. φ0 is a point function which assumes to be zero

at yield and a positive value below yield. By satisfying Eq. (2.103) and through

implementing variational principles, lower bound and upper bound multipliers, na-

mely m′ and m0 respectively, can be obtained using two linear elastic analyses. The

first elastic analysis corresponds to a conventional linear elastic analysis based on

the uniform material properties of the structure. The second linear analysis invol-

ves the modifications on the elastic modulus of all elements based on the following

formulation:

(Es)e = E0

(
σarb
σe

)q
(2.104)

, where (Es)e is the new elastic modulus of the element e and E0 is the initial elastic

modulus of all the elements. σarb is an arbitrary nonzero value and σe is the equi-
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valent stress of the element. q is the modulus adjustment parameter and normally

is taken as 1, but can be less than 1 in case of sensitive pressure components. The

upper and lower bound multipliers can be obtained as follows

m0 = σy
√
V√

N∑
k=1

(σek)2 ∆Vk
(2.105)

m′ =
2m0σ2

y

σ2
y + (m0)2 (σ0

M)2 (2.106)

, where k represents the element number and N is the total number of elements. σy

is the yield stress, σek is the effective stress of element k, and σ0
M is the maximum

equivalent stress in the structure. V is the total volume of structure and ∆Vk shows

the volume of element k.

The lower bound multiplier based on Eq. (2.106) will be overestimated when

the plastic collapse occurs over a localized region of the structure. This is due

to the fact that Eq. (2.106) is based on the total volume of the structure. The

corresponding upper bound m′ will be consequently underestimated. Seshardi and

Mangalaramanan [2] addressed this issue, and defined the new concept of reference

volume based on the theorem of nesting surfaces [67, 68]. With the idea of “leap-

frogging” to the limit state, they proposed an improved upper bound multiplier

which can be obtained based on the following formulation

m0(VR) = σy
√
VR√

α∑
k=1

(σek)2 ∆Vk
(2.107)

, where VR (VR ≤ V ) is the reference volume introduced to identify the “kinema-

tically active” portion of the structure participating in the plastic response. The

reference volume can be obtained by plotting the variations of m0
1 and m0

2 corre-

sponding to the first and second linear elastic analyses (Fig. 2.18). The reference

volume is the volume at which the two curves intersects (i.e. m0
1(VR) = m0

2(VR)). α

in Eq. (2.107) can be obtained by arranging the elements in the descending order
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Figure 2.18: Identification of reference volume [2].

of their energy dissipations (i.e. (σek)2 ∆Vk). α (α ≤ N) is the number of elements

with highest amount of dissipation energy which theoretically satisfy

VR =
α∑
j=1

∆Vk. (2.108)

The phrase “mα method” also refers to the use of these α elements that contributes

to the identification of the reference volume.

The mα multiplier method can also be performed on the basis of iterative itera-

tions, where Eq. (2.104) is used for elastic modulus modifications at each iterations

[49]. This allows a better estimation of load multipliers as the number of iterations

increase. In this case, the lower bound multiplier at each iteration can be determined

as

m′(ζ) =
2m0(ζ)σ2

y

σ2
y + (m0(ζ))2 (σ0

M(ζ))2 . (2.109)

, where ζ represents the iteration number. The convergence of the upper and lower

bounds within the successive linear elastic iterations is schematically shown in Fig.

2.19.
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2.5.3 Elastic Compensation Method

Meckenzie et al. [13, 69, 11], Nadarajah et al. [70] and Shi et al. [71] developed a

straightforward iterative method for the collapse load determination named as the

elastic compensation method (ECM). It is based on a series of linear elastic finite

element analyses where the elastic moduli of highly stressed elements are reduced

and those of low stressed elements are increased.

For a structure with an isotropic homogeneous material with the yield stress of

σ0 under the nominal load set P d, initially a finite element model is constructed and

a linear elastic analysis is performed as the first iteration (r=1, where r denotes the

iteration number). From the stress responses, the maximum equivalent stress (i.e

by use of von Mises or Tresca yield criteria) for each element, i, is obtained, namely

σ̄ri . A series of linear elastic analyses are then performed where the elastic moduli

of elements in the next iterative step (r+1) are adjusted by

Er+1
i = Er

i

σrn
σ̄ri
, i = 1, 2, . . . (2.110)

, where Er
i is the elastic modulus of the element i at the current iteration and Er+1

i

is the elastic modulus used in the next iteration. σrn is an arbitrary nominal stress
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often defined as

σrn = σ̄rmax + σ̄rmin
2 (2.111)

, where σ̄rmax and σ̄rmin are the maximum and minimum equivalent stresses within

the domain. This modification of the elastic modulus of an element is known as the

fixed strain method (FSM) and schematically depicted in Fig. 2.20.

At the end of the iterations, an admissible stress field and a kinematically strain

field is produced which can be used with both the lower bound (section 2.2.8) and

upper bound (section 2.2.9) theorems as follows.

2.5.3.1 Lower bound limit load

The lower bound limit load requires a statically admissible stress field which satisfies

the yield conformity in order to define a lower bound limit load. The ECM generates

a series of stress fields which are in equilibrium with external forces. As all the

analyses are linear, the algorithm ensures the yield conformity for each analysis

iteration by adjusting the applied forces with a load multiplier αr defined as

αr = σ0

σ̄rmax
. (2.112)
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The ECM is performed for r=1 to a iterations, and it selects the maximum value

of load multipliers αr for all a iterations as the plastic collapse load multiplier, αcol.

That is

αcol = max(αr), r = 1, 2, . . . , a (2.113)

2.5.3.2 Upper bound limit load

To apply the upper bound theorem, the kinematically admissible strain and de-

formation fields are required. The ECM automatically generates these strain and

deformation modes. Recalling the Eq. (2.92), the upper bound collapse load multi-

plier can be obtained from

α =
∫
V ḊdV∫

St
qu̇dSt +

∫
V gu̇dV (2.114)

, where Ḋ is the increment of plastic dissipation per the unit volume, and for the

von Mises yield condition is as follows

Ḋ = σ0

√
2
3 (ε̇21 + ε̇22 + ε̇23). (2.115)

The calculation of the work term can be done by invoking the linear elastic nature of

the solution [12]. Since the external work done is equal to the elastic strain energy

calculated in the finite element analysis, the upper bound multiplier at each iteration

r can be calculated as

αr =
∫
V ḊdV∫
V σε̇dV . (2.116)

In a series of a iterations, the best estimate of upper collapse load multiplier is the

lowest of upper bound multipliers. That is

αcol = min(αr), r = 1, 2, . . . , a. (2.117)
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2.5.3.3 Theoretical justifications and discussion

Ponter and Carter [15] provided a more rigorous interpretation of the ECM by

implementing a similar scheme to it, where the shear modulus, G, of elements is sy-

stematically modified rather than the elastic modulus. They identified an important

feature of the procedure for limit analysis. They showed that the mentioned iterative

procedure results in a monotonically reducing upper bound which converges to the

exact limit load solution for von Mises material, providing an incompressible mate-

rial is used (i.e. Poisson’s ratio is 0.5) and elastic solutions are evaluated exactly.

For the finite element solutions, the produced upper bound limit load converges to

the least upper bound corresponding to the class of displacement and strain fields

permitted by the finite element formulation. In this case and in the sense of the lo-

wer bound limit load, the solutions provided by the ECM reported in section 2.5.3.1,

are more precisely lower bounds to the upper bounds, namely pseudo-lower bounds.

Additionally, Ponter and Carter added a fresh insight to the nature of itera-

tive process and showed that the strain field corresponding to a spatial variation

of the shear modulus can be found from the solution to a nonlinear mathematical

programming problem. The difference is that, unlike the computationally expen-

sive mathematical programming methods, there is no need of a search on a global

functional; the ECM prescribes an explicit search direction by adjusting the elastic

modulus in such a way that the equivalent stresses are factored to some nominal

stress.

Although the upper bound collapse load given by the ECM may generally be

more accurate (as it is monotonically reducing [15]), the lower collapse load may

be of more importance as it is safer (providing that the requirements needed for

the lower bound theorem are completely satisfied). Therefore, the implementation

of the ECM via the lower bound scheme results in a safe, yet close to the exact

collapse load solution. Hence, in this thesis the focus is on the lower bound ECM.

The lower bound ECM reported in section 2.5.3.1 is shown to provide sufficiently
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accurate results for simple structures, specially for pressure vessels [13, 11, 14]; ho-

wever, for more complex structures, such as the structures containing flaws, the

analyses might abort before a better solution is obtained. This is due to the nu-

merical singularity arising from the excessive increase of the elastic modulus of the

elements whose equivalent stresses are approaching zero [16, 17]. In addition, the

convergence criterion defined by the ECM is the number of iterations which might

not be sufficient. The reason for this definition is the multiple oscillations happening

during the iterations. Chen et al. [17] by implementing the Banach’s contraction

mapping theorem in mathematical analysis discussed the convergence problem of

the ECM. They demonstrated that a good limit load solution can be obtained only

when iterative elastic modulus adjustments are contraction mappings.

Yang et al. [16] and Chen et al. [17] proposed two modified elastic compensation

methods (known as MECM and KtECM respectively) which just allow the reduction

of the elastic modulus to improve the convergence of the ECM. Therefore, they

amended the Eq. (2.110) to

Er+1
i =


Er
i
σrn
σ̄ri
, for σri > σrn

Er
i , for σri ≤ σrn

(2.118)

, where only the elastic moduli of elements whose equivalent stresses are bigger than

the nominal stress are decreased; the elastic moduli for the other elements remain

unchanged. In addition, they introduced an adjustable factor, λ, to the definition

of σrn in order to ensure that only the elastic moduli of highly stressed elements are

being modified. The nominal stress is defined as

σrn = σ̄rmax − λ (σ̄rmax − σ̄rmin) , λ ∈ (0, 1). (2.119)

They asserted that while small value of λ increases the computational precision,

it is more time-consuming. On the other hand, a large value of λ may lead to
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a reduction in accuracy level. Yang et al. suggested λ = 0.4 for limit analysis

of nozzle-to-cylinder junctions [16]. Chen et al. [17] associated λ with the stress

concentration factor (Kt) of the structure, which is defined as

Kt = σ̄rmax
σrN

(2.120)

, where σrN is the standard nominal stress of the structure. It is usually defined in

three forms [17]; (1) the mean stress of the net section at the stress concentration

area; (2) the mean stress of the unreduced section; (3) the stress of the associated

point away from the stress concentration region. λ is then defined as

λ = 1
1 +Kt

(2.121)

Yang et al. [16] and Chen et al. [17] showed the modified ECMs can generally

give a better estimation of the collapse load for complex structures, specially for

structures with flaws. However, they do not completely resolve the oscillation pro-

blem; when Eq. (2.121) is used for λ, the lack of a unique definition for the standard

nominal stress for a structure leads to different values for λ and, therefore, different

collapse loads. In addition, the Eq. (2.121) may produce very small value of λ. In

this case, the procedure not only highly increases the computational time, but also

might lead to a wrong convergence, as the changes in the associated load multipliers

are significantly small too. Yang et al. [16] and Chen et al. [17] also did not consider

the condition of incompressibility for their numerical examples. This might not be

a major issue for some examples, but can be in highly constraint problems, such as

limit analysis for cracked components [12].

For further improving the convergence of the ECM, Adibi-Asl et al. [72] proposed

a new scheme for adjusting the elastic moduli in the ECM by implementing the strain

energy equilibrium principle [73]. The principle assumes that the strain energy in

an element before performing the rth iteration is equal to the sum of the strain
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Figure 2.21: Strain energy equilibrium principle scheme.

energies remained and dissipated in the element after the rth iteration (Fig.2.21).

Hence, the new point B can be determined by equalizing the area of the triangle

AOb with that of the quadrelateral BaOc. Therefore, by considering the linear

relationships between stresses and strains based on Hook’s law (section 2.2.4 ), the

elastic modulus for the elements sitting above the nominal stress can be modified

as follows

Er+1
i = Er

i

2 (σrn)2

(σ̄ri )
2 + (σrn)2 . (2.122)

Based on this scheme, Yu and Yang [74] and Yang et al. [75] extended the

ECM to shell structures and truss and framed structures, respectively. However,

these modified schemes still use the number of iterations, input by the user, as the

convergence criterion. As discussed in chapter 1 and in section 1.2, this is due to the

oscillations in load multipliers with different amplitudes which might happen during

the iterations. These oscillations do not allow the convergence to be defined on limit

load solutions. The main reason is rooted in the modification scheme implemented in

the ECM; at each iteration, the stiffness of the elements is discretely modified at the

individual element level and without considering the contribution of other elements.

However, in the next iteration, the stresses are computed with considering the effects
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of all elements. This causes a discontinuous stress distribution that estimates but

never replicates the smooth limit state stress field [12]. This concept will be further

investigated in chapter 5 of this thesis.

Another problem associated with the ECM is its inherent degree of over-conservatism

when the lower bound scheme is implemented. This is due to the use of the max-

imum equivalent stress of an element, rather than an averaged equivalent stress,

for modification of its elastic modulus. Although this approach satisfies the yield

conformity better, it might underestimate the collapse load of the structure. Ad-

ditionally, the use of the maximum equivalent stress of an element as the stress

representative of an element, may even exacerbate the oscillations occurring in load

multipliers of the structure. This is due to the fact that the averaged equivalent

stress of an element, as a representative of stress filed of the element, is more similar

to the smooth stress field within the element than the maximum equivalent stress

of the element.

2.6 Concluding Remarks

In the limit analysis, the EMAPs for determination of the collapse load of struc-

tures are direct, simple and applicable to complex structures compared to other

methods; the incremental nonlinear FEA is costly and laborious and the classical

limit analysis is complex for engineers without the mathematical programming fami-

liarity. Among the EMAPs for the limit analysis, the ECM provides a better lower

bound performance than the r-node method and is simpler than the mα- method.

Therefore, there are adequate incentives for further development of ECM, not only

to extend its applications to other structures through automated mesh generation

scheme, but also to improve the basic formulation of the method.

The following chapter provides a detailed implementation of the modified elastic

compensation method (MECM). In particular, the well-known FEM is used for

performing the linear elastic analyses.



Chapter 3

THE MECM FOR COLLAPSE

LOAD DETERMINATION OF

STRUCTURES USING FINITE

ELEMENT METHOD

3.1 Introduction

This chapter explains the implementation of the modified ECM (MECM) as an

efficient limit load determination scheme for a range of 2D and 3D ductile struc-

tures. The organization of this chapter is as follows. In section 3.2, the MECM

is comprehensively described and its implementation via the well-known FEM is

explained. In section 3.3, the effect of Poisson’s ratio on the collapse load multiplier

is investigated through an example. To consider the effect of incompressiblity, the

robust mixed finite element method [76, 77, 78] is used, and it is shown that the

true estimation of the collapse load is obtainable providing the condition of incom-

pressibility (or nearly incompressible condition) is satisfied. Section 3.4 shows the

performance of the finite element method and explains that the very widely-used low

order displacement-based finite elements along with the selective integration scheme

65
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can be used in the MECM. Section 3.5 illustrates the performance of the MECM

within FEM by selective integration scheme through implementing the method on

a range of 2D benchmarks and 3D structures. This section also seeks the answer

to the question whether the collapse load limit computed by the present numerical

scheme shows a lower bound or upper bound on the analytical solution. In essence,

the computed numerical examples illustrate that all of the collapse load results tend

to converge to the lower bound limits when a sufficient number of structural discre-

tization has been attained. Section 3.6 summarizes the concluding remarks.

3.2 MECM Implementation

The MECM performs an iterative elastic analysis of sufficiently ductile structures

that are modeled within the finite element framework to determine the maximum

load capacity at plastic collapse. The method involves a lower-bound limit analysis

theorem. The generic idea is trivial in that a series of elastic finite element analyses

are iteratively processed. At the end of each iteration r, the computed statically

admissible stress resultants are collected to calculate the corresponding load factor

αr that complies with the plastic capacity of materials employed. At the beginning of

the next iteration r + 1, the stress resultants are collected to systematically adjust

the elastic stiffnesses of critical elements. The procedures are repeated until the

predefined maximum number of iterations (rmax) has been reached. The collapse

load multiplier (αcol) is selected as the maximum of the statically admissible load

factors computed over all analysis computations. The structural system is suitably

discretised into n finite elements and d degrees of freedom. Each finite element

contains g integration points. The ECM numerical analysis determines the collapse

load factor αcol that can be safely sustained by the structure under monotonically

applied forces αFG ∈ Rd, where FG ∈ Rd is a vector of global nodal forces. The

approach enforces the stress resultants at all integration points of an element j = 1 to

g to comply with the failure conditions imposed by the specific material properties,
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such as the von Mises (M) and Tresca (T ) yield criteria explained in sections 2.2.5.1

and 2.2.5.2 respectively, in 2D (or 3D) space as follows.

• 2D plane strain

From Eqs. (2.62) and (2.69):

(
σ̄ri, j

)
M

=
√

3
4
{

(σx − σy)2 + 4τ 2
xy

}
(3.1)

(
σ̄ri, j

)
T

=
√

(σx − σy)2 + 4τ 2
xy (3.2)

• 2D plane stress

From Eqs. (2.56) and (2.67):

(
σ̄ri, j

)
M

=
√

(σx − σy)2 + σxσy + 3τ 2
xy (3.3)(

σ̄ri, j
)
T

= max (|σI|, |σII|, |σI − σII|) (3.4)

• 3D space

From Eqs. (2.51) and (2.54) for von Mises condition, and from Eqs. (2.64)

and (2.65) for Tresca condition:

(
σ̄ri, j

)
M

=
√
σ2
x + σ2

y + σ2
z − σxσy − σyσz − σxσz + 3

(
τ 2
xy + τ 2

xz + τ 2
yz

)
(3.5)(

σ̄ri, j
)
T

= max (|σI − σII|, |σII − σIII|, |σIII − σI|) . (3.6)

In above equations σx, σy, σz, τxy, τxz, τyz and σI, σII, σIII are the standard sets of

stress tensors and principal stresses explained in sections 2.2.1.1 and 2.2.1.2, re-

spectively; σ̄ri, j shows the equivalent stress resultant at the integration point j of

the element i at the iteration r. Different material laws can be enforced by simply

defining the stress resultants, such as ones given in Eqs. (3.1) to (3.6).

At the beginning of each subsequent iteration r + 1, the stress redistribution of

some critical elements i is implemented by systematically adjusting stiffness pro-
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perties (i.e. Young’s modulus) of an elastic body. The critical elements contain

the averaged stress resultants σ̄ri (where σ̄ri =
g∑
j=1

σ̄ri, j/g) computed in the current

iteration r that are greater than the nominal value σrn, and the corresponding elastic

stiffnesses are modified by

Er+1
i =


Er
i
σrn
σ̄ri
, if σ̄ri > σrn

Er
i , if σ̄ri ≤ σrn

(3.7)

, where

σrn = σ̄rmax − λ (σ̄rmax − σ̄rmin) (3.8)

λ ∈ (0, 1) is a modification factor; and σ̄rmax and σ̄rmin are the maximum and mi-

nimum stress resultants developed in iteration r in the whole structure, namely

σ̄rmax = max (σ̄ri ) and σ̄rmin = min (σ̄ri ) for all i = 1 to n elements, respectively.

The factor λ plays an important role, in which its smaller value admits a fewer

number of elements with elastic stiffness adjustment. Whilst a good convergence

to the collapse load solution is expected, the method employing the smaller value

of λ is likely to experience a larger number of numerical simulations for solution

convergence. Vice versa, the higher value of λ results in the a higher number of

elements entering elastic stiffness modifications, and hence less computing effort.

The analysis with a higher λ value, however, does not consistently guarantee a good

numerical stability and accuracy of the collapse load limit [16, 17]. This matter is

further discussed in section 3.5 and illustrated in figures 3.11, 3.17, 3.23, 3.28, 3.33,

and 3.40.

Of the conditions underpinning the lower bound limit analysis theorem is the

yield conformity over the whole structural system. Numerically, the plastic ma-

terial properties are enforced solely at some predefined critical locations, namely

integration points for each of the finite elements. The proposed algorithm impo-

ses such conditions by determining the associated (positive scalar) load factor of

αr = σ0/σ̄
r
max that adjusts the magnitude of stresses to lie within the maximum
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allowable yield stress σ0, where σ̄rmax is the maximum stress resultant of the whole

structure at iteration r. This ensures that the statically admissible stress resul-

tants satisfy the allowable yield limit σ0. Therefore, for the total number (viz.

rmax) of iterative elastic analyses, the lower bound limit analysis determines the

collapse load limit αcol of the structure by maximizing the load factor αr, namely

αcol = max {αr|r = 1, . . . , rmax}.

The pseudo code summarizing key steps underlying the MECM is prescribed

below:

Step 0: Initialization

• At iteration r = 0, initialize: maximum number of iterations rmax, λ ∈ (0, 1),

yield limit σ0, and elastic Young’s modulus for all i = 1 to n finite elements.

• Construct a finite element model, and assemble the global nodal forces vector

and global stiffness matrix associated with 2D (or 3D) structure.

Step 1: Iterative elastic analyses

• For r = 1 to rmax

– Perform an elastic analysis

– Determine the equivalent stress resultants using Eqs. (3.1) to (3.6) and

the averaged stress resultants σ̄ri and σ̄rmax.

– Update the elastic modulus Er
i for all elements using Eqs. (3.7) and (3.8).

– Compute the load multiplier αr = σ0/σ̄
r
max.

• end

Step 2: Termination
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• Determine the collapse load αcol = max {αr|r = 1, . . . , rmax}.

It is useful to make some additional remarks regarding the MECM algorithm

used in this thesis.

(1) The selection of both the modification parameter λ and the maximum num-

ber of numerical iterations rmax is problem dependent. Our numerical experience

indicates that the values of λ = 0.05 and rmax = 300 give accurately enough con-

vergence to the collapse load solutions computed for all examples tested in section

3.5; however, a better convergence can be achieved by using lower values of λ and

higher values of rmax (please refer to section 3.5 and figures 3.11, 3.17, 3.23, 3.28,

3.33, and 3.40).

(2) In the original ECM and its modified versions, the maximum stress resultant

between the integration points of an element is taken as the representative stress

resultant of the element. The main purpose of this selection is to satisfy the yield

conformity better in the domain. However, as indicated in chapter 2, this action

makes a larger gap between a real smooth stress field within an element and the

stress resultant used as the representative of the elements. A larger gap leads to

more oscillations in the load multiplier curve. Additionally, adjusting the elastic

modulus of an element based on its maximum equivalent stress might be over-

conservative. In this thesis, to make the simulated stress field in an element closer

to the real stress field in it, the averaged stress resultants of integration points is

taken as the representative of the stress resultant of the element. In this case, the

yield conformity will be satisfied better in the domain by refining the mesh.

(3) The MECM stated herein is straightforward and thus ideal for computer pro-

gramming. Mackenzie et al. [79, 12] developed the original ECM method to work

with the ANSYS program using APDL macrolanguage to automate the procedure.

The user inputs the material properties and the number of iterations. The pro-

gram runs the ECM and prints a summary of results, and highlights the maximum

lower limit load solution computed. The advantage of using commercial software

such as ANSYS is that the extensive library of element types, pre-processors and
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post-processors is available. However, there is the disadvantage that it is not pos-

sible to change the standard procedures within such codes. The implementation

involves the solution of a sequence of linear problems where the material moduli are

changed at each iteration according to the algorithm equations. At each iteration,

the element stiffness matrices for all elements are constructed and assembled to ge-

nerate the structural stiffness matrix. Generation of element stiffness matrices is

time-consuming and not needed at each iteration. As the analyses are linear, these

matrices can be computed by factoring the previously computed element stiffness

matrices at the first iteration. Therefore, in this thesis, the MATLAB environment

is utilized for programming the MECM. In this way, the element stiffness matrices

are computed only once in the first iteration, and then stored. In the subsequent ite-

rations, their factored matrices will be used for assembling the total stiffness matrix.

This increases the efficiency of the method.

(4) The mentioned MECM algorithm leads to the collapse load multiplier pro-

viding the incompressible (or nearly incompressible) condition is implemented (i.e

Poisson’s ratio, ν = 0.5) [80, 81]. Although the MECMs proposed by Yang and Chen

[16, 17] do not consider this condition, the use of Poisson’s ratios highly less than

0.5 might be problematic, and could be a major issue in highly constraint problems.

In next section, the effect of Poisson’s ratio on a very well-known Prandlt’s punch

problem is discussed.

3.3 Poisson’s Ratio Effect

As illustrated before, the ECM uses a series of linear elastic analyses where the

elastic moduli of elements are systematically modified at each iteration to simulate

the stress distribution. Ponter et al. [54, 15, 81] showed that this procedure will

converge to stress states on the yield surface if Poisson’s ratio is 0.5 to reflect plastic

incompressibility. They proved that a sufficient condition for convergence of upper

bound limit load solution is provided by the requirement that the complementary
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energy surface for the linear material defined by the elastic modulus, must either

coincide with the yield surface or lie outside it. They concluded that for the von

Mises yield condition the complementary energy surface coincides with the yield

surface when Poisson’s ratio ν = 0.5, but for ν < 0.5 it lies within the yield surface

and contravenes the conditions of the convergence proof. Though the convergence

proof they made is for the upper bound solution, the necessity of incompressibility is

found to be vital for the lower bound limit load solution too. This is due to the fact

that the condition of incompressibility in linear analyses (i.e. the use of Poisson’s

ratio as 0.5) imposes the required volume conservation in plastic analyses, as the

plastic deformations do not change the volume of the material [23].

To further investigate the effect of the Poisson’s ratio on the lower bound limit

load solution, in this section, the behavior of the MECM under different Poisson’s

ratios is investigated through studying the very well-known Prandtl’s punch problem

defined in chapter 2 in section 2.2.7. The classical plane strain problem consisting

of a semi-infinite rigid plastic medium under a uniformly distributed vertical force

of 2α is shown in Fig. 3.1a. The dimensions were taken large enough to simulate

the semi-infinite condition. This does not allow the boundaries to affect the collapse

mechanism. The sufficiency of the dimensions were tested in another example,

where the mesh size was kept the same, but the dimensions were increased. It

was concluded that the same results were obtained, signifying the adequacy of the

dimensions. The perfectly plastic Tresca material was adopted. The elastic modulus

was given as E = 10000 whose unit is the same as stress unit. The analytical ratio

of the collapse load multiplier to the yield stress (i.e. αcol

σ0
) is 2.5708. In view

of the symmetry in geometry and loading involved in this problem, only half of

the structure was modeled (Fig. 3.1b). To properly cover all ranges of Poisson’s

ratios including the nearly incompressible condition, the model was constructed

from mixed finite elements of Capsoni and Corradi [76, 77], which allows accurate

solutions even for nearly incompressible material.

The MECM using λ = 0.05 and 300 iterations for various Poisson’s ratios was
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Figure 3.1: Prandtl’s punch problem (a) geometry and loading and (b) mixed finite
element model, where thick solid lines denote nodal restrained directions

carried out on a sufficiently fine mesh (i.e 32768 mixed-elements, 33153 nodes, and

66306 degree of freedoms (DOFs) ). The reason that this mesh is chosen as an

adequately fine mesh is later explained through a convergence study at the end of

this section. The results are shown in Table 3.1. Fig. 3.2 also shows the variation

of limit loads. As can be seen from the Table 3.1, the values of Poisson’s ratio equal

to or higher than 0.499 lead to adequately accurate limit load solutions. A value

higher than 0.45, for this example, can also be used for appropriate estimations of

the collapse load; however, the values less than 0.45 lead to a convergence of wrong

limit load values. This conveys the importance of employing the incompressibility

in MECM.

A convergence study on the mesh size is also performed on this problem with

Poisson’s ratio of 0.499. The mixed finite elements were uniformly refined to pro-

duce a range of coarse to fine meshes. At each refinement level, each element is

subdivided into four similar elements. This allows the uniform refinement. The
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Table 3.1: Collapse load solutions for different Poisson’s ratios

Poisson’s ratio (ν) αcol/σ0 error %

0 1.2315 -52.10
0.1 1.2680 -50.68
0.2 1.3248 -48.47
0.3 1.5435 -39.96
0.4 2.1726 -15.49
0.45 2.5625 -0.32
0.49 2.5725 0.07
0.499 2.5742 0.13
0.4999 2.5798 0.35
0.49999 2.5798 0.35
0.499999 2.5798 0.35
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Figure 3.2: Variation of the collapse load multiplier with Poisson’s ratio



CHAPTER 3. THE MECM FOR COLLAPSE LOAD DETERMINATION OF STRUCTURES USING
FINITE ELEMENT METHOD 75

Table 3.2: The collapse load solutions of the Prandtl’s punch problem for different mixed
FE discretization using the MECM

No. of elements (NE) element mesh size (h) αcol

σ0
error%

32 1.00000 3.1679 23.23
128 0.25000 2.8471 10.75
512 0.06250 2.6946 4.82
2048 0.01563 2.61845 1.85
8192 0.00391 2.5918 0.82
32768 0.00098 2.5798 0.35

results are shown in Table 3.2, where the errors between the final solutions and

the analytical value (αcol

σ0
= 2.5708) are also derived. The normalized ratio of the

collapse load multipliers to the yield stress is also plotted versus different number of

elements in Fig. 3.3. The convergence shows that the mesh with 32768 mixed finite

elements, used for investigation of the Poisson’s ratio on the collapse load multiplier,

is reasonably fine.

3.4 Selective Integration Technique for Finite Ele-

ment Implementation of MECM

Low order standard displacement-based finite elements are preferred and used widely

in engineering structural analysis due to their simplicity and data sparsity; However,

for incompressible or nearly incompressible media, numerical difficulties limit their

usage. There has been a long history of attempts to develop accurate finite element

formulation for these media [82]. In particular, the reduced and selective integra-

tion procedures found to be effective when incompressible medium is targeted [83];

however, the use of reduced integration scheme may lead to spurious modes [84]

and thus the selective integration scheme is preferred. In this method, the element

stiffness matrix is divided into the volumetric and deviatoric (described in section

2.2.1.3) terms. A lower order integration is only performed on the volumetric term

and the deviatoric term is fully integrated.

The aim of this section is to show the performance of MECM when low order
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Figure 3.3: Variation of the collapse load solution with the number of elements for the
Prandtl’s punch problem using the MECM and mixed FEM (a) natural scale (b) loga-
rithmic scale
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Figure 3.4: Finite element model with selective integration

finite elements with the selective integration scheme are used. For this purpose,

the same Prandtl’s punch problem discussed in section 3.3 is considered, as its true

collapse load solution is highly dependent on the right choice of Poisson’s ratio.

The structure was modeled using the four-node low order finite elements with the

selective integration (Fig. 3.4). The MECM using λ = 0.05 and 300 iterations for

various Poisson’s ratios was carried out on a very fine mesh (i.e 32768 elements,

33153 nodes, and 66306 DOFs). The convergence study performed in section 3.5.1.1

validates that the chosen mesh is reasonably fine enough. The results are tabulated

in Table 3.3, where the errors between the final solutions and the analytical value

(αcol

σ0
= 2.5708) are also derived. Fig. 3.5 also shows this variation of limit loads.

The final results show that the collapse load solutions are in good agreement with

the analytical solution when Poisson’s ratios of 0.499 and higher are used. Poisson’s

ratios of 0.45-0.499 also can lead to acceptable collapse loads for this example.

3.5 Numerical Examples

A number of numerical examples are provided to illustrate applications of the MECM

using the FEM with selective integration scheme that can capture the collapse load

and stress distributions at the failure of ductile structures. The examples cover not

only 2D in-plane (benchmark) examples, but also 3D structures. In all examples,

the nearly incompressible condition was considered by using the Poisson’s ratio

ν = 0.499. The numerical examples show that this value should be close enough to
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Table 3.3: Collapse load solutions for different Poisson’s ratios using FEM with selective
scheme

Poisson’s ratio (ν) αcol/σ0 error %
0 1.2316 -52.09
0.1 1.2681 -50.67
0.2 1.3318 -48.19
0.3 1.5542 -39.55
0.4 2.1600 -15.98
0.45 2.5456 -0.98
0.49 2.5625 -0.32
0.499 2.5676 -0.12
0.4999 2.5683 -0.10
0.49999 2.5683 -0.10
0.499999 2.5683 -0.10
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Figure 3.5: Variation of collapse load multiplier with Poisson’s ratio using FEs with
selective scheme
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0.5 to provide sufficiently accurate collapse load solutions. Plasticity was conformed

solely at Gauss’s integration points. In all examples, λ = 0.05 and rmax = 300

were considered. The analysis procedures were implemented within a MATLAB

programming environment.

3.5.1 2D In-plane Structures

3.5.1.1 Prandtl’s punch problem

The first example concerns the Prandtl’s punch problem of a flexible footing discus-

sed in section 2.2.7 and used in sections 3.3 and 3.4 for validation of the incompressi-

blity condition. This problem is challenging because of the strong discontinuity that

occurs at the footing edge, leading typically to high computational costs [85, 78, 86].

This classical plane strain problem consisting of a semi-infinite rigid plastic medium

under a uniformly distributed vertical force of 2α is shown in Fig. 3.6a. The di-

mensions were taken sufficiently large to simulate the semi-infinite condition. The

perfectly plastic Tresca material was adopted. The elastic modulus was taken as

E = 10000 whose unit is the same as the stress unit. The analytical solution of the

ratio of the collapse load multiplier to the yield stress (i.e. αcol

σ0
) is 2.5708. In view of

the symmetry in the geometry and loading involved in this problem, only half of the

structure was modeled using four-node low order finite elements and the selective

integration procedure was used to simulate the nearly incompressible condition. Fig.

3.6b displays the schematic model used in this study, where each element shown was

subdivided into 16 similar elements (i.e. 2048 elements). The actual obtained model

is plotted in Fig. 3.6c.

The MECM was successfully performed and the plot of the ratio of load mul-

tipliers to the yield stress αr

σ0
collected at all analysis iterations r is displayed in

Fig. 3.7. As can be seen, due to the crudity of the mesh, the yield conformity as

a requirement for the lower bound theorem is not completely satisfied and thus the

solution exceeds the analytical solution after some iterations [80] and converges to
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Figure 3.6: Prandtl’s punch problem (a) geometry and loading and (b) schematic finite
element model, where thick solid lines denote nodal restrained directions (c) actual finite
element model
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Figure 3.7: The MECM iterative scheme for the Prandtl’s punch problem with 2048 finite
elements

its maximum value after 300 iterations. This trend shows that although the MECM

is a lower bound scheme, it does not produce strict lower bound solutions unless

sufficient number of elements is used. The ratio of the collapse load multiplier to

the yield stress αcol

σ0
was obtained as 2.6392. The error compared to the analytical

solution is 2.66% .

The plots of the stress and elastic modulus distributions corresponding to the

collapse load solution are displayed in Fig. 3.8, which agree well with the analytical

collapse mechanism discussed in section 2.2.7 and the collapse mechanisms reported

in the literature (e.g. [87]). The scaled displacement field is also displayed in Fig.

3.9. Fig. 3.10 also shows the sequences of developments of plastic areas, where the

elastic moduli of the highly loaded elements have been iteratively reduced. At the

end of the iterations, the smallest values of elastic moduli belong to the elements

contributing to the collapse mechanism.

The diagram in Fig. 3.11 presents the relationship between the number of ite-

rations and the ratio of load multipliers to the yield stress αr

σ0
for different values of

λ (viz. ranging from 0.05 to 0.5). In this figure, it is illustrated that the analysis

with a high value of λ (e.g. values equal or higher than 0.2) may quickly attain the

collapse load limit, but later experience some numerical instabilities (i.e. oscillation
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Figure 3.8: Stress and elastic modulus distributions for the Prandtl’s punch problem
using the MECM and FEM (a) stress distribution (b) elastic modulus distribution

Figure 3.9: The schematic displacement field for the Prandtl’s punch problem using the
MECM and FEM

of the αr responses) in the algorithm leading to solution divergence. The reason of

the shown oscillations is the stress overshooting which will be discussed in chapter 5.

The analysis with a small λ value (e.g. values less than 0.2) provides a better chance

to obtain good (numerically stable) convergence of the solution, but often requires

a sufficiently large number of numerical iterations. This leads to more computing

effort for the load limit to converge. The choice of λ = 0.05 and rmax = 300 has

led to an acceptable convergence in this example.

Finally, the influence of the total number of elements on the accuracy of the col-

lapse load solution (mesh study) was investigated. The FEM was uniformly refined

for different (ranging from coarse to fine) numbers of elements. At each refinement

step, each element was subdivided into four similar elements to guarantee the uni-

form refinement. The results are presented in Table 3.4. The ratio of load multipliers

to the yield stress with respect to variation of the number of elements are also plot-

ted in Fig. 3.12. As seen, the values of collapse load multipliers generally decrease
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Figure 3.10: The mechanism development for the Prandtl’s punch problem using the
MECM and FEM
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Figure 3.11: Variation of collapse load solutions with λ for the Prandtl’s punch problem
using the MECM and FEM
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Table 3.4: The collapse load solutions of the Prandtl’s punch problem for different FE
discretization using the MECM

No. of elements (NE) element mesh size (h) αcol

σ0
error%

32 1.00000 3.1926 24.19
128 0.25000 2.8589 11.21
512 0.06250 2.7092 5.38
2048 0.01563 2.6392 2.66
8192 0.00391 2.5935 0.88
32768 0.00098 2.5676 -0.12

to a value below the analytical solution by reducing the mesh size (increasing the

number of elements). This shows the importance of mesh density in the ECM. As

only one elastic modulus is defined for each element, a fine mesh is usually requi-

red if the localized plasticity occurs [18]. If the mesh is too coarse, the estimated

stress field cannot represent the real continuous stress filed which is vital for the

lower bound application, and usually causes the load capacity of the structure to

be overestimated. Additionally, increasing the number of integration points in the

domain, as the byproduct of discretization, leads to a better yield conformity and,

therefore, better limit load solutions. This emphasizes that although the MECM

is a lower bound scheme (see Fig. 3.7), it is not a strict lower bound method. In

fact, the strict lower bound solutions can be obtained only if sufficient number of

elements is used.

3.5.1.2 Double-edge notched specimen

This problem is a popular benchmark test used for elastoplastic analysis procedures.

It was first introduced by Nagtegaal et al. [88] to illustrate locking and later studied

in [89, 90]. The structure in Fig. 3.13a consists of a rectangular specimen with two

thin notches under a reference load consisting of in-plane tensile stresses 2α. The

perfectly plastic von Mises material was adopted. The elastic modulus was given as

E = 70 whose unit is the same as stress unit. The reported ratio of the collapse load

multiplier to the yield stress (i.e. αcol

σ0
) is 4.6749. Due to symmetry, only a quarter

of the tensile specimen was modeled using finite elements. The schematic figure of



CHAPTER 3. THE MECM FOR COLLAPSE LOAD DETERMINATION OF STRUCTURES USING
FINITE ELEMENT METHOD 85

0 0.5 1 1.5 2 2.5 3 3.5

Number of elements (NE) 104

2.4

2.6

2.8

3

3.2

 
 c

o
l  /

  
0

 Analytical solution

 MECM

(a)

101 102 103 104 105

Number of elements (NE)

2.5

3

3.5

4

 
 c

o
l  /

  
0

 MECM

Analytical solution

(b)

Figure 3.12: Variation of the collapse load solution with the number of elements for the
Prandtl’s punch problem using the MECM and FEM (a) natural scale (b)logarithmic scale
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Figure 3.13: Double-edge notched specimen (a) geometry and loading and (b) schematic
finite element model, where thick solid lines denote nodal restrained directions (c) actual
finite element model

the model is shown in Fig. 3.13b, where each element was subdivided into 4 similar

elements. In total, 1024 elements, 1089 nodes and 2178 DOFs were considered. Fig.

3.13c displays the actual employed mesh after these subdivisions.

The MECM was implemented on the model and the ratio of the collapse load

multiplier to the yield stress αcol

σ0
of 4.765 was obtained, which is some 1.937% higher

than the reported solution. Fig. 3.14 displays the variations of αcol

σ0
with the number

of iterations.

Additionally, Fig. 3.15 shows the corresponding stress and elastic modulus dis-

tributions at the collapse load solution, which both agree well with the reported
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Figure 3.14: The MECM iterative scheme for the double-edge notched specimen with
1024 finite elements

0.05 0.1 0.15 0.2

(a)
10 20 30 40 50 60 70

(b)

Figure 3.15: Stress and elastic modulus distributions of the double-edge notched specimen
using the MECM and FEM (a) stress distribution (b) elastic modulus distribution

mechanism [87]. The schematic displacement field showing the collapse mechanism

is also depicted at Fig. 3.16

The effect of λ on the collapse load solutions for the current mesh and a finer

mesh (with 4096 elements) was studied and the results are plotted in Fig. 3.17. As

illustrated, the higher values of λ resulted in a faster convergence (for the coarser

mesh (a)), however, they diverged in later iterations due the numerical instability.

This prevented a better solution to be obtained. For the finer mesh (b), the use of

higher values of λ (such as 0.4 and 0.5) could not even give a relative convergence

due to the oscillations of αr responses. In both cases, use of the proposed value of

λ = 0.05 led to an acceptable convergence and numerical stability.
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Figure 3.16: The schematic displacement field of the double-edge notched specimen using
the MECM and FEM
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Figure 3.17: Variation of the collapse load solution with λ for the notched problem using
the MECM and FEM (a) 1024 elements (b) 4096 elements
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Table 3.5: The collapse load solutions of the double-edge notched specimen for different
FE discretization using the MECM

No. of elements (NE) element mesh size (h) αcol

σ0
error%

4 0.5 7.2551 55.19
16 0.25 5.8807 25.79
64 0.125 5.3004 13.38
256 0.0625 4.9424 5.72
1024 0.03125 4.7654 1.94
4096 0.01563 4.6543 -0.44
16384 0.00781 4.5885 -1.85
65536 0.00391 4.5556 -2.55
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Figure 3.18: Variation of the collapse load solution with the number of elements for the
notched specimen using the MECM and FEM

The effect of the number of elements on the accuracy of the collapse load is

investigated through the mesh study on the problem. Eight models were considered

and the number of elements were uniformly increased from a very coarse mesh to

the finest mesh. At each refinement step, each element was subdivided into four

similar elements to guarantee the uniform discretization. The results are tabulated

in Table 3.5 and illustrated in Fig. 3.18. As expected, the collapse load monotoni-

cally decreased to a value below the reference solution by increasing the number of

elements. It should be noticed that no justification about the trend of the solutions

(i.e. lower bound solutions or strict lower bound solutions) can be provided in this

example, as the results are compared with the available reported solution in the

literature and not the analytical one.
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Figure 3.19: Perforated plate problem (a) geometry and loading and (b) finite element
model, where thick solid lines denote nodal restrained directions

3.5.1.3 Perforated plate problem

The third example involves a plane stress square plate perforated with a central cir-

cular hole [86, 90, 87] as in Fig. 3.19a. The structure was subjected to the uniformly

tensile forces of 10α. The perfectly plastic von Mises material was adopted. The

elastic modulus was given as E = 10000 whose unit is the same as the stress unit.

The analytical ratio of the collapse load multiplier to the yield stress (i.e. αcol

σ0
) is

0.8. Due to symmetry, only a quarter of the plate was modeled using finite elements

(Fig. 3.19b). Totally, 120 finite elements, 143 nodes and 286 DOFs were employed.

The MECM was performed on the finite element model and αcol

σ0
was computed

as 0.8165 (some 2.06% higher than the analytical solution). The iterative scheme is

shown in Fig. 3.20. As can be seen, the drop at the iteration 70 prevented the scheme
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Figure 3.20: The MECM iterative scheme for the perforated plate with 120 finite elements
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Figure 3.21: Stress and elastic modulus distributions of the perforated plate using the
MECM and FEM (a) stress distribution (b) elastic modulus distribution

to define the convergence of the collapse load multiplier. In another note, this figure

shows that although the MECM is a lower bound scheme, it is not a strict lower

bound method. The strict lower bound solution is only obtained if sufficient number

of elements is used to satisfy yield conformity. This matter is further discussed in

convergence study of the example.

The stress and elastic modulus distributions corresponding to the last iteration

are plotted in Fig. 3.21, which agree well with the reported mechanism [87]. The

schematic deformed structure is also plotted in Fig. 3.22.

The variation of the collapse load solution with λ was also investigated for the

current mesh and one mesh finer (600 elements) and the results are plotted in Fig.
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Figure 3.22: The schematic displacement field of the perforated plate using the MECM
and FEM
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Figure 3.23: Variation of the collapse load solution with λ for the perforated problem
using the MECM and FEM (a) 120 elements (b) 600 elements

3.23. As seen, for the coarser mesh, a rough collapse load limit was quickly obtained

for higher values of λ, but the the numerical instabilities led the solution to diverge

in the later iterations and prevented a better collapse load solution to be obtained.

For the finer mesh, the oscillations increased for high values of λ, and the divergence

occurred before a better collapse load is obtained. In both cases, the proposed value

of λ = 0.05 led to an acceptable convergence and numerical stability.

The mesh study on the perforated problem was also carried out, where finite

element models were constructed for a range of coarse to fine meshes. The results

are reported in Table 3.6, where αcol

σ0
is reduced to a safe value below the analytical

solution by increasing the number of elements. Fig. 3.24 also shows these variations.

This figure shows that the strict lower bound solution for the MECM is obtainable
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Table 3.6: The collapse load solutions of the perforated plate for different discretizations
using the MECM

No. of elements (NE) αcol

σ0
error%

120 0.8165 2.06
600 0.8066 0.82
2080 0.8022 0.27
8320 0.7997 -0.04
33280 0.7983 -0.21
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Figure 3.24: Variation of the collapse load solution with the number of elements for the
perforated plate problem using the MECM and FEM

only if sufficient number of elements is used to satisfy the yield conformity.

3.5.2 3D Structures

The MECM can also compute the collapse load limits of 3D structures. The three

examples presented in this section are the well-known thick cylinder under uniform

pressure [16], the pressurized hollow sphere [91], and the pipeline with defected

surface [86]. For all the examples, the von Mises (perfectly plastic) materials were

employed and the Poisson’s ratio was taken as 0.499. Low order 8 node elements

(brick elements) with selective integration were employed.

3.5.2.1 Thick cylinder

To evaluate the performance of the MECM, first, a thick cylinder under internal

pressure is considered. The geometry and mesh are shown in Fig. 3.25. The
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Figure 3.25: The geometry and finite element model of the thick cylinder

geometry and material properties were taken as follows:

• Outer radius: R = 200 mm

• Inner radius: r = 100 mm

• Length of thick cylinder:L = 700 mm

• Elastic modulus: E = 209 GPa

• Yield stress: σ0 = 276 MPa

The analytical solution of the problem is 220.9 MPa obtained from

αcol = 2√
3
σ0 ln

(
R

r

)
(3.9)

, which gives the ratio of the collapse load multiplier to the yield stress (i.e. αcol

σ0
) as

0.8004.

The MECM was performed on the finite element mesh (Fig. 3.25) with 2016

elements, 2639 nodes and 7917 DOFs. The value of αcol

σ0
was computed as 0.8020

which is some 0.25% higher than the analytical solution. Fig. 3.26 shows the

iterative procedure for the problem. The corresponding stress and elastic modulus

distributions for the last iteration are plotted in Fig. 3.27.
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Figure 3.26: The MECM iterative scheme for the thick cylinder with 2016 finite elements

(a) (b)

Figure 3.27: Stress and elastic modulus distributions of the thick cylinder using the
MECM and FEM (a) stress distribution (b) elastic modulus distribution
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Figure 3.28: Variation of the load multiplier solutions with λ for the thick cylinder with
2016 elements using the MECM and FEM (a) normal version (b) magnified version

Table 3.7: The collapse load solutions of the thick cylinder for different discretization
using the MECM and FEM

No. of elements (NE) αcol

σ0
error%

252 0.8074 0.87
756 0.8056 0.66
2016 0.8020 0.20
4725 0.8015 0.14
36288 0.8002 -0.02

The variation of the normalized load multipliers with respect to λ was also stu-

died for the current mesh and the results are shown in Fig. 3.28. As seen in Fig.

3.28a, almost for all values of λ an acceptable level of convergence is obtained. Ho-

wever, as it is emphasized in Fig. 3.28b, where the same results in Fig. 3.28a are

magnified, there is still some oscillations for higher values of λ.

The variation of the collapse load limit with the the number of elements was also

investigated, and the associated results are tabulated in Table 3.7. Fig. 3.29 also

shows these variations. As illustrated, by increasing the number of elements, the

collapse load solution decreased to a value below the analytical solution. This trend

illustrates that the MECM is a lower bound scheme (see Fig. 3.26), but not a strict

lower bound method. In fact, a strict lower bound solution can be obtained only if

sufficient number of elements is employed.
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Figure 3.29: Variation of the collapse load solution with the number of elements for the
thick cylinder problem using the MECM

3.5.2.2 Hollow sphere

The second 3D example considers a homogeneous hollow sphere with an internal

radius a, and external radius b, which is subjected to a uniform internal pressure.

The geometry and the corresponding finite element model are illustrated in Fig.

3.30. Due to the symmetric nature of the problem, only one-eights of the problem

was modeled, where 2916 elements, 3523 nodes and 10569 DOFs were employed.

The geometry and material properties were taken as follows:

• Outside radius: b = 6 mm

• Inside radius: a= 2 mm

• Elastic modulus: E = 10000 MPa

• Yield stress: σ0 = 1 MPa

The analytical solution of the problem is 220.9 MPa obtained from

αcol = 2σ0 ln
(
b

a

)
(3.10)

, which gives the ratio of the collapse load multiplier to the yield stress (i.e. αcol

σ0
) as

2.197.
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(a)

(b)

Figure 3.30: The hollow sphere problem (a) geometry (b) finite element model



CHAPTER 3. THE MECM FOR COLLAPSE LOAD DETERMINATION OF STRUCTURES USING
FINITE ELEMENT METHOD 99

0 100 200 300

Iterative steps,  r

0.5

1

1.5

2

2.5

 
 r  /

  
0

MECM

Analytical solution = 2.197

Figure 3.31: The MECM iterative scheme for the hollow sphere with 2916 finite elements

(a) (b)

Figure 3.32: Stress and elastic modulus distributions of the hollow sphere problem using
the MECM and FEM (a) stress distribution (b) elastic modulus distribution

The MECM was implemented on the finite element model and the αcol

σ0
was

obtained as 2.2044, which is only 0.34% higher than the analytical solution. Fig.

3.31 shows the iterative procedure for the first 300 iterations, where the lower bound

scheme of the MECM is shown. The corresponding stress and elastic modulus

distributions for the last iteration are also plotted in Fig. 3.31.

The effect of the parameter λ on the variation of the normalized load multipliers

is also studied on the current mesh, and the results are shown in Fig. 3.33. As seen,

the convergence is obtained for all values of λ. This matter indicates that for simple

3D structures such as hollow spheres, the ECM can be accurate and efficient.

The influence of the number of elements on the collapse load solution is shown
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Figure 3.33: Variation of load multiplier solutions with λ for the hollow sphere problem
using the MECM and FEM

Table 3.8: The collapse load solutions of the hollow sphere for different FE discretizations
using the MECM

No. of elements (NE) αcol

σ0
error%

252 2.2537 2.58
864 2.21 0.59
2916 2.2044 0.34
6912 2.199 0.09

in Table 3.8 and Fig. 3.34. As illustrated, by increasing the number of elements, the

collapse load solution has been reduced and become closer to the analytical solution.

This illustrates that although the MECM is a lower bound scheme, it is not a strict

lower bound method.

3.5.2.3 Defected pipeline

The pipeline with defected surface shown in 3.35 was simultaneously subjected to a

uniform internal pressure of P = 1 MPa and a uniform axially compression force of

PN = πR2
iP kN, where Ri is the inner radius of the pipeline (Ri = 50mm), and the

pipe thickness is 20 mm. The von Mises material properties employed were E = 207

GPa, and σ0 = 200 MPa. Two finite element discretization models (Fig. 3.36) were

considered, namely a courser mesh case a (viz. consisting of 316 elements, 558 nodes
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Figure 3.34: Variation of the collapse load solution with the number of elements for the
hollow sphere problem using the MECM and FEM

Figure 3.35: Defected pipeline - geometry and loading

and 1674 DOFs) and a finer mesh case b (with 2528 elements, 3437 nodes, and 10311

DOFs).

The MECM successfully computed the collapse load solutions of αcol = 73.49 in

case a and αcol = 68.1126 in case b. Fig. 3.37 shows the employed iterative scheme

for case b. The proposed approach provides good accuracy of the collapse load

results, as the solutions computed agree well with the reference values reported from

various numerical algorithms, namely αcol
ref = 64.05 using the incremental method

[92], αcol
ref = 67.13 using the kinematic method [86], and αcol

ref = 63.42 using the

static method [92]. The diagrams in Fig. 3.38 depict the von Mises stress and

elastic moduli distributions computed at αcol for case b. The schematic collapse

mechanism associated to αcol is also plotted for case b in Fig. 3.39.

The influence of the parameter λ is also studied for this example for the case b.

Fig. 3.40 shows the variation of the normalized load multipliers over the iterations
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(b)
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Figure 3.36: Finite element models of the defected pipeline a) case a b) case b

0 100 200 300

Iterative steps,  r

0.15

0.2

0.25

0.3

0.35

 
 r  /

  
0

Figure 3.37: The MECM iterative scheme for the defected pipeline with 2528 finite
elements
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(a) (b)

Figure 3.38: Stress and elastic modulus distributions of the defected pipeline problem
(case b) using the MECM and FEM (a) stress distribution (b) elastic modulus distribution

Figure 3.39: The collapse mechanism for the defected pipeline using the MECM and
FEM



CHAPTER 3. THE MECM FOR COLLAPSE LOAD DETERMINATION OF STRUCTURES USING
FINITE ELEMENT METHOD 104

0 50 100 150 200 250 300

Iterative steps

0.15

0.2

0.25

0.3

0.35

 
 r  /

  
0

  = 0.05

  = 0.1

  = 0.2

  = 0.3

  = 0.4

  = 0.5

Figure 3.40: Variation of load multiplier solutions with λ for the defected pipeline problem
(case b) using the MECM and FEM
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Figure 3.41: Variation of the collapse load solution with the number of elements for the
defected pipeline using the MECM and FEM

for different values of λ. As seen, the oscillations are increased for high values of λ,

and the divergence occurred before a better collapse load is obtained. The choice of

λ = 0.05, however, leads to an acceptable level of accuracy for this example.

The variation of the normalized collapse load solution with respect to the number

of elements is shown in Fig. 3.41. As seen, by increasing the number of elements,

the collapse load solution is decreased. However, as the analytical solution is not

available for this example, no justification about the trend of the solution (i.e. a

lower bound solution or a strict one) can be done.
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3.6 Concluding Remarks

In this chapter, the implementation of the MECM for a range of 2D and 3D problems

was explained. In particular, the importance of the value of the Poisson’s ratio in the

MECM procedure was studied through an example and use of mixed finite element.

It was emphasized that the incompressibility is vital for a true collapse load solution.

It was illustrated that the use of Poisson’s ratio less than 0.45 may lead to a wrong

convergence in the MECM. The value of ν = 0.499 was shown to be close enough

to 0.5 to satisfy the nearly incompressible condition.

The use of the finite element method in the MECM was evaluated and it was

shown that the popular widely-used low order displacement-based finite elements

can be used along with the MECM when selective integration scheme is applied

to evaluate the element stiffness matrices under nearly incompressible condition.

The performance of this scheme was validated for a range of 2D benchmarks and

3D structures. The analysis procedures were implemented within a MATLAB pro-

gramming environment, allowing the element stiffness matrices to be computed only

once in the first iteration, and then stored. In the subsequent iterations, their facto-

red matrices were used for assembling the total stiffness matrix. This increases the

efficiency of the method.

The numerical examples illustrated that all of the estimated collapse load results

tend to converge to the lower bound limits when a sufficient number of structural

discretization has been attained. This emphasizes the importance of using a high

quality fine mesh along with the scheme. Constructing a high quality fine mesh,

specially for 3D structures, often requires tedious human interventions and is time-

consuming. The next chapter illustrates the use of SBFEM, which allows the user to

incorporate the automatic mesh constructions using quadtree and octree algorithms

for the analysis of structures in 2D and 3D spaces.



Chapter 4

THE MECM FOR COLLAPSE

LOAD DETERMINATION OF

STRUCTURES USING THE

SCALED BOUNDARY FINITE

ELEMENT METHOD

4.1 Introduction

The success of the MECM depends on the precision and quality of the structural

discrete model employed during elastic analyses, as poor structural discretization will

lead to overestimation of the collapse load solution as discussed in the last chapter.

Constructing a high quality mesh, specially for 3D structures, often requires tedious

human efforts and is time-consuming. Even for semi-automatic procedures, it is

tedious, error prone and does not contain safeguards to ensure the validity of the

discretization for the medium of interest.

The automatic mesh generation has been a topic of active research for decades

[93, 94, 95, 96]. In 2D structures, quadtree decomposition has been widely utilized

106
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Figure 4.1: Hanging nodes in a quadtree mesh [3]

in the automatic mesh generation [97, 98, 99] due to its simplicity, efficiency and

ability in achieving rapid and smooth transitions of element sizes between region of

mesh refinements. Employment of the quadtree approach within the scheme of the

finite element, however, is not widespread. The main reason for this is the presence

of hanging nodes, shown in Fig. 4.1 as filled circles. The hanging nodes cause

displacement incompatibility between the adjacent elements. Special treatments of

the hanging nodes are necessary in a finite element analysis.

In 3D spaces, techniques to reduce the burden on automatic mesh generation

from the computer-aided design (CAD) models have been extensively researched.

Hughes et al. [100] first proposed the idea of the isogeometric analysis (IGA) and

used NURBS (non-uniform rational B-splines) to construct the basis functions of

the solution. The key advantage of the IGA is that there is no need of meshing,

which leads to a seamless integration of analysis and engineering design. Kim et al.

[101] made the IGA method available for the analysis of complex surfaces by adding

the trimming techniques to the method. Bazilevs et al. [102] further improved the

IGA by employing the T-splines as a replacement of NURBS. T-splines allow local

refinement and watertight combination of parts, which is more versatile in presenting

CAD models. The IGA concept has been used to resolve many problems such as

structural vibrations [103], large deformations [104], and fluid-structure interactions

[105].
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With respect to the representation of the geometry, the standard tessellation

language (STL) has been widely supported in the present CAD industry. This is

due to its unique use in 3D printing and rapid prototyping [106, 107]. The advantage

of STL is its simplicity. For an STL model only unstructured triangular facets are

required, which can be ill-shaped, overlapping, and self intersecting. This simplicity

has made its applications even wider than NURBS. This drew the attention of the

mesh generation community to develop automatic mesh generators from the STL

model. So far, a number of surface re-meshing methods have been developed to

generate computational meshes from STL models for the FEM [108, 109]. However,

these methods are dependent on the characteristics of the STL models, and require

surfaces which are manifold, watertight, not overlapping, and not self-intersecting.

Otherwise, mesh repairing technique [110] should be performed which is a challen-

ging and non-trivial topic. Additionally, even if high-quality triangular surfaces can

be generated, the corresponding mesh is tetrahedral, and inferior to hexahedral mesh

concerning the stress analysis accuracy required for the ECM/MECM. Until now,

the well-known commercial FE software (e.g. ANSYS and Abaqus) cannot robustly

perform analyses on STL models.

In 3D problems, similar to 2D quadtree technique, octree structure has been

used for the purpose of the automatic mesh generation; however, the application of

this efficient algorithm is relatively rare due to the difficulty of handling the hanging

nodes by the FEM [111].

To reduce the burden of the mesh generation in producing reasonably fine meshes

required for the MECM, in this chapter, the scaled boundary finite element method

(SBFEM) is employed to be used along with the MECM. Firmly established in

[19, 20], the SBFEM has simple mesh requirements, a sound theoretical basis and

a robust convergent solution for the linear elastic analysis. The use of polygonal-

shaped (in 2D) [21, 22, 3] or polyhedral-shaped (in 3D) [5, 112] SBFEs enables

all hanging nodes to be modeled effectively whilst still maintaining the numerical

stability. This feature is the main advantage of using the SBFEM over the FEM
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and iso-geometric FEM in this study. Therefore, the automated quadtree/octree

algorithms can be incorporated directly within the SBFE framework. This allows

the SBFE discretization to be constructed from an in-plane solid (in 2D problems) or

of a solid 3D CAD model (in 3D problems). The use of the subdomains (analogous to

elements in the FEM) with polygonal/polyhedral shapes and of an arbitrary number

of edges/faces automatically and efficiently handles the structures with complex

geometries (e.g. curved boundaries, holes, etc.), and minimizes the user interference

and its associated errors in mesh generation part. Additionally, the performance

of the SBFEM under the nearly incompressible condition is sufficiently accurate

without any specific treatment [113], which makes it suitable for MECM.

This chapter is organized as follows. First, in section 4.2, the important formu-

lation for the SBFEM are explained for 2D and 3D structures. Then, in section

4.3, the automated mesh generation for 2D and 3D domains are discussed using the

quadtree and octree algorithms, respectively. In section 4.4, the use of the MCEM

along with the SBFEM for the determination of the collapse load of a structure

is proposed, and its implementation is described. The application of the proposed

scheme to some 2D benchmarks and 3D structures are shown in section 4.5 to high-

light its performance. The conclusion and remarks are summarized in section 4.6 of

this chapter.

It is acknowledged that some of the materials used in this chapter are used in

publications/submissions 1 and 3 mentioned in section 1.5.

4.2 Scaled Boundary Finite Element Formulation

This section reviews the SBFEM formulations [19, 20, 114, 112] of structures in 2D

(and 3D) spaces. The relations are based on the assumptions of geometric linearity

and elastic material properties.
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Figure 4.2: Generic SBFE subdomain (a) 2D case, (b) 3D case

For clarity of the following expressions, a generic polygon-type SBFE subdomain

[115, 19, 20] is considered in Fig. 4.2, where a scaling centre “O” is defined at a

location directly visible from the whole boundary of the subdomain. The boundary

is divided into line elements (see Fig. 4.2a). The geometry of the 2D domain

is expressed in a 2D curvilinear scaled boundary coordinates (η, ξ) . For a 3D

subdomain, the boundary is divided into doubly-curved surface elements (Fig. 4.2b).

The 3D scaled boundry coordinates (η, ζ, ξ) are introduced.

The geometry of the boundary along a circumferential direction is described

using standard shape functions, namely N(η) for −1 ≤ η ≤ 1 and N(η, ζ) for

−1 ≤ η ≤ 1 and −1 ≤ ζ ≤ 1 in 2D and 3D spaces, respectively. The dimensionless

radial coordinate ξ describes the subdomain by scaling the boundary between the

scaling center (where ξ = 0) and the boundary (ξ = 1).

The coordinate transformation between the Cartesian (x, y) and (x, y, z) coordi-

nates and the local scaled boundary coordinate systems (η, ξ) and (η, ζ, ξ) are given
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by the scaled boundary transformation equations [115], viz.

- In a 2D space

x (ξ, η) = ξxb (η) = ξN (η) xb

y (ξ, η) = ξyb (η) = ξN (η) yb (4.1)

- In a 3D space

x (ξ, η, ζ) = ξxb (η, ζ) = ξN (η, ζ) xb

y (ξ, η, ζ) = ξyb (η, ζ) = ξN (η, ζ) yb

z (ξ, η, ζ) = ξzb (η, ζ) = ξN (η, ζ) zb (4.2)

, where {x (ξ, η) y (ξ, η)} and {x (ξ, η, ζ) y (ξ, η, ζ) z (ξ, η, ζ)} are the coordinates of

a point in the subdomain in 2D and 3D spaces, respectively. xb = [x1 x2 . . . xQ]T

and yb = [y1 y2 . . . yQ]T (in Eq. (4.1)) are the vectors containing the nodal coor-

dinates on each line elements, and xb = [x1 x2 . . . xQ]T, yb = [y1 y2 . . . yQ]T, and

zb = [z1 z2 . . . zQ]T (in Eq. (4.2)) are the vectors containing the nodal coordinates

on each surface elements. The subscript Q is the total number of nodes on the line

elements (in 2D) or on the surface elements (in 3D). N (η) and N (η, ζ) are the shape

function matrices, which are defined as follows:

- In a 2D space

N (η) = [N1 (η) , N2 (η) , . . . , NQ (η)] (4.3)

- In a 3D space

N (η, ζ) = [N1 (η, ζ) , N2 (η, ζ) , . . . , NQ (η, ζ)] . (4.4)

For a generic SBFE subdomain, the displacement field adopts
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- In a 2D (ξ, η) coordinate system

u (ξ, η) = Nu (η) u (ξ) (4.5)

- In a 3D (ξ, η, ζ) coordinate system

u (ξ, η, ζ) = Nu (η, ζ) u (ξ) (4.6)

, where Nu (η) and Nu (η, ζ) are the interpolation shape functions and defined as

- In a 2D space

Nu (η) = [N1I (η) , N2I (η) , . . . , NQI (η)] (4.7)

- In a 3D space

Nu (η, ζ) = [N1I (η, ζ) , N2I (η, ζ) , . . . , NQI (η, ζ)] . (4.8)

I represents a 2×2 identity matrix in 2D spaces and a 3×3 identity matrix in 3D spa-

ces. u (ξ)in Eqs. (4.5) and (4.6) is the radial displacement function and is obtained

by solving the scaled boundary finite element equations in displacement[115]:

E0ξ
2u (ξ),ξξ +

(
(s− 1) E0 − E1 + ET

1

)
ξu (ξ),ξ +

(
(s− 2) ET

1 − E2
)

u (ξ) = 0 (4.9)

, where s = 2 and 3 in 2D and 3D spaces, respectively. The coefficient matrices are

as follows:

• In a 2D space

E0 =
∫ +1

−1
BT

1 (η) DB1 (η) |J (η)|dη (4.10)

E1 =
∫ +1

−1
BT

2 (η) DB1 (η) |J (η)|dη (4.11)

E2 =
∫ +1

−1
BT

2 (η) DB2 (η) |J (η)|dη (4.12)
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• In a 3D space

E0 =
∫
S

BT
1 (η, ζ) DB1 (η, ζ) |J (η, ζ)|dηdζ (4.13)

E1 =
∫
S

BT
2 (η, ζ) DB1 (η, ζ) |J (η, ζ)|dηdζ (4.14)

E2 =
∫
S

BT
2 (η, ζ) DB2 (η, ζ) |J (η, ζ)|dηdζ (4.15)

In above equations, D is the material constitutive matrix. {B1 (η) ,B2 (η)} and

{B1 (η, ζ) ,B2 (η, ζ)} are the SBFEM strain-displacement matrices in 2D and 3D

respectively. |J (η)| and |J (η, ζ)| are the Jacobians on the boundary required for

coordinate transformation in 2D and 3D spaces.

The internal nodal forces along the radial direction are expressed as

q (ξ) = ξs−2
(
E0ξu (ξ),ξ + ET

1 u (ξ)
)
. (4.16)

Further, formulating the two Eqs. (4.9) and (4.16) as the first-order ordinary

differential system with twice the number of unknowns results in

ξX (ξ),ξ = −ZX (ξ) (4.17)

, where the variable X (ξ) is defined as

X (ξ) =
[
ξ+0.5(s−2)u (ξ) ξ−0.5(s−2)q (ξ)

]T
. (4.18)

Z is the Hamiltonian matrix as follows

Z =

 E−1
0 ET

1 − 0.5 (s− 2) I −E−1
0

E1E−1
0 ET

1 − E2 −
(
E1E−1

0 − 0.50.5 (s− 2) I
)
 (4.19)

, and I is an identity matrix of appropriate size.

The scaled boundary finite-element equation is solved with the eigenvalue met-
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hod. The formal solution of X (ξ) can be considered as

X (ξ) =ξ−λiΦi. (4.20)

Substituting Eq. (4.20) into Eq. (4.17) results in the eigenproblem of matrix Z

ZΦi = λiΦi (4.21)

with the eigenvalue λi and eigenvectors Φi, where if λi is an eigenvalue of Z matrix,

−λi is also an eigenvalue. If the translational motions, denoted as ut, are not

constrained, the vector Φt corresponding to the translational motion is formed as

Φt =


ut

0

 . (4.22)

It can be proved [114] that Φi is an eigenvector of Z, and its corresponding eigen-

values are

λt = ±0.5 (s− 2) . (4.23)

In three dimensions, λt = ±0.5, and no zero eigenvalues exist in Eq. (4.21). Bet-

ween 2n eigenvalues of Z, n of them are with positive real parts and n of them are

with negative real parts. In two dimensional problems, λt = 0 is concluded from Eq.

(4.23). Each translational motions is corresponding to a pair of zero eigenvalues.

Here, to facilitate the solution procedure, the zero eigenvalues are removed by sub-

stituting E2 with E2 + εI, where ε is a highly small value with the same dimensions

of E2. This action separates the eigenvalues into two two groups of equal sizes and

based on the signs of their real parts [114].

The eigenvalue decomposition of Z gives

ZΦ = ΦΛ =

 Φ(n)
u Φ(p)

u

Φ(n)
q Φ(p)

q


 Λ(n) 0

0 Λ(p)

 . (4.24)
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Λ(n) and Λ(p) are the eigenvalue matrices, whose real parts are negative and positive,

respectively. Φ(n)
u and Φ(n)

q are the eigenvectors of Λ(n), and Φ(p)
u and Φ(p)

q are the

eigenvectors of Λ(p).

The bounded domain is considered, where the associated eigenvalues retain only

the negative real parts, satisfying the condition of finite displacements at the scaling

center “O”. Hence, substituting Eq. (4.24) into Eq. (4.17) provides the solutions of

displacements and nodal internal forces as follows

u (ξ) = Φ(n)
u ξ−(Λ(n)+0.5(s−2)I)c(n), (4.25)

q (ξ) = Φ(n)
q ξ−(Λ(n)−0.5(s−2)I)c(n) (4.26)

, where c(n) is integration constants. The solutions of Eqs. (4.25) and (4.26) on the

boundary (ξ = 1 ) of the subdomain, that is ub = u (ξ = 1) and qb = q (ξ = 1), can

be written as

ub = Φ(n)
u c(n), (4.27)

qb = Φ(n)
q c(n). (4.28)

The stiffness matrix of each subdomain, K, can be formulated in terms of ub and

qb (defined in Eqs. (4.27) and (4.28)) as

qb = Kub. (4.29)

Using Eqs. (4.27) and (4.28), K can be also written as

K = Φ(n)
q

(
Φ(n)

u

)−1
. (4.30)

Having all the stifness matrices of all subdomains, the global stiffness matrix of

the domain can be obtained by the assembly of all subdomain’s stiffness matrices in
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the same way as the FEM to be used in the following global equation

KGuG = FG. (4.31)

Here, KG is the global stiffness matrix, FG is the global nodal force vector and uG is

the global nodal displacements of the whole domain. After enforcing the boundary

conditions, a system of linear equations is solved (similar to the FEM) to obtain the

global nodal displacements uG.

The nodal displacement on the boundary ub of a subdomain is extracted from the

global displacements uG according to the connectivity of the elements. Thereafter,

the integration constants c(n) in Eqs. (4.25) and (4.26) can be determined from the

nodal displacements as

c(n) =
(
Φ(n)

u

)−1
ub. (4.32)

For each SBFE subdomain, the stresses are computed at an element level using

the Hooke’s law (section 2.2.4) and the strain-displacement relationship, and defined

by

• In a 2D space

σ (ξ, η) = D
(

B1 (η) u (ξ),ξ + 1
ξ
B2 (η) u (ξ)

)
(4.33)

• In a 3D space

σ (ξ, η, ζ) = D
(

B1 (η, ζ) u (ξ),ξ + 1
ξ
B2 (η, ζ) u (ξ)

)
. (4.34)

Substituting Eq. (4.25) into Eqs. (4.33) and (4.34) yields

• In a 2D space

σ (ξ, η) = Ψσ (η) ξ−(Λ(n)+I)c(n) (4.35)
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• In a 3D space

σ (ξ, η, ζ) = Ψσ (η, ζ) ξ−(Λ(n)+1.5I)c(n) (4.36)

, where

Ψσ (η) = D
(
−B1 (η) Φ(n)

u Λ(n) + B2 (η) Φ(n)
u

)
, (4.37)

Ψσ (η, ζ) = D
(
−B1 (η, ζ) Φ(n)

u

(
Λ(n) + 0.5I

)
+ B2 (η, ζ) Φ(n)

u

)
(4.38)

define stress modes associated with structures in 2D and 3D geometry systems,

respectively.

4.3 Automatic Mesh Generation Using the SBFEM

4.3.1 Polygonal Quadtree Mesh Generation

For the structural system that can be defined in a 2D space, the structural dis-

crete model adopts the computationally advantageous quadtree mesh generation

technique using polygon-shaped SBFEs [3]. Such methodology provides a rapid and

automated procedure to discretize structures with (complex) 2D geometries.

The algorithmic implementation of the quadtree SBFE model is summarized in

Fig. 4.3, where Smax is the maximum allowed number of seed points in a cell, Sb

seed points on each boundary, and Sroi seed points around each region of interest,

and lmax the maximum difference between the division levels of adjacent cells. In

this scheme, the geometry information of the whole structural system is controlled

by the signed distance function. The function of a point X ∈ R2 within a SBFE

subdomain Ω is graphically described in Fig. 4.4, and its mathematical description

is given by

dΩ (x) = sΩ (x) min
y∈∂Ω
||x− y||, (4.39)

, where ∂Ω represents the boundary of the subdomain, ||x−y|| is the Euclidean norm

in R2 with y ∈ ∂Ω, and sΩ (x) the sign function (namely –1 inside the subdomain or
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Start

Initialise quadtree grid

Trim quadtree cells to 

conform boundary

Assign curve information 

to cells attaching curves 

for node distribution

End

Cover geometry 

with root cell

Identify cells with

Identify cells with

For all the cells,

?

For all the cells,

?

Divide each 

identified cell into 4 

equal-sized cells

Yes

Yes

No

No

Define geometry with 

mesh control parameters 
l

l l

l l

Figure 4.3: Flowchart for quadtree mesh generation procedures

1 otherwise). Boolean operations are employed to implement the complex geometry

of the structure concerned [116].

A series of seed points are predefined to control the local density and quality of

the quadtree cells adopted in the boundary. The entire domain is initially covered by

a single square, called root cell. The root cell is divided into 4 square cells, provided

that the number of seed points Si is larger than the maximum allowable limit of the

corresponding cell, Smax. This process is iteratively performed until the number of

seed points of all cells are less than a predefined value. At each iteration, the cell with

the high division level between the contiguous cells, namely li > lmax, is subdivided.

The diagram in 4.5 illustrates this recursive process used to obtain an initial grid

in 4.5b of a square plate with a circular perforation (Fig. 4.5a). In Fig. 4.5b, the

initial quadtree mesh does not exactly conform to the boundary. Therefore, cells that
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Ω
x3

x1

x2

x4
d (x4)>0Ω

d (x3)>0Ω

d (x1)<0Ω

d (x2)=0Ω

Figure 4.4: Signed distance function of a point inside the domain (X1), on the boundary
(X2), and outside the domain (X3 and X4)

Figure 4.5: Square plate with circular hole (a) geometry, (b) initial quadtree grid mesh

intersect with the boundary are trimmed to form polygon shapes. The locations of

vertices are determined by the signs and magnitudes of the signed distance functions;

the vertices on the boundary are assigned with solid square markers, whilst those

inside the boundary with open square markers.

It is noted that ill-shaped polygon cells, which contain much shorter edges as

compared to the others, can be generated around the vertices close to the boundary.

A threshold distance (e.g. 1/10 of the smallest cell edge attached to the vertex)

determines whether those points are required to move to the boundary. In Fig. 4.6,

the implementation of the quadtree SBFE model over a circular perforated plate is
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(a)

(b)

Figure 4.6: SBFE meshes around circular hole (a) standard polygon subdomains, (b)
quadtree refinement

illustrated. In essence, Fig. 4.6a shows that coarse polygon cells are first assigned

on the circular inner boundary. In Fig. 4.6b, the quadtree mesh is further refined

to enhance the SBFE discretization around the circular hole using polygon-shape

cells.

4.3.2 Polyhedral Octree Mesh Generation

In 3D problems, the typical elements available in the conventional FEM are limited

to tetrahedrons and hexahedrons. Due to the limitations employed in these ele-

ments, the computer algorithms used for the analysis process are relatively simple.

However, these restrictions shift the challenges to the meshing process. Therefore,

the discretization of the problems with curved or complex geometrical features which

cannot be easily modeled with tetrahedral or hexahedral elements, normally requi-

res extensive pre-processing. This causes a tedious effort for mesh constructions of

structures with complex geometries.
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Figure 4.7: A cubic domain meshed with arbitrary polyhedral elements [4]

One solution to this problem is to relax the restrictions by using arbitrary po-

lyhedral elements in the meshing process. An example showing the discretization

of a cubic domain using polyhedral elements is provided in Fig. 4.7. With the new

library of these polyhedral elements, the tetrahedral or hexahedral elements are au-

tomatically included. The use of polyhedral elements brings more flexibility in the

meshing process. This is because a mesh for a complex boundary shapes can be

constructed without the limitation of using very fine tetrahedral meshes.

In this section, the automatic octree mesh generation from CAD models by the

use of scaled boundary polyhedral subdomains for 3D structures is explained. The

basic idea of the ployhedral meshing method is to trim an octree grid by a CAD

model and then converting the trimmed grid to a polyhedral mesh. In particular

the STL surfaces, discussed in sections 4.1 and 4.3.2.1, are considered as the CAD

input due to their popularity and ubiquitous applications in CAD software. The

reader is referred to [5] for the comprehensive discussion on the method.

4.3.2.1 3D surface models in the STL format

An STL file describes the surface of a solid object in CAD software by using the unit

normal and vertices of unstructured triangles. The simplicity of the STL model has
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Figure 4.8: A surface model of a sphinx in the STL format [5]

made it one of the most popular formats for CAD software. Its simplicity is rooted

in the fact that it does not enforce any closeness and connectedness requirements.

Fig. 4.8 shows an example of an STL model of a sphinx [5]. The left model is

the surface with shading features. The right model presents the the unstructured

triangles.

With respect to the employed polyhedral mesh generation scheme, the STL mo-

del does not need to be flawless. Degenerated triangles, self-intersecting parts and

overlapping facets are permitted in the input STL files, which makes the input of

the polyhedral octree meshing technique simple and therefore universal.

4.3.2.2 Octree grid generation

Octree structure is first introduced by Meagher [117] for 3D computer graphics.

Similar to the quadtree scheme, the generation procedure starts from a cube (cell),

which is also known as the root. The root is recursively divided into 8 new cells

until some stopping criteria are met (Fig. 4.9). The newly generated cells are called

the children of the subdivided cell.

For an STL model, the entire domain is first covered by defining a bounding box.

The minimum size of an octree cell, Smin, and the ratio between the maximum and

minimum sizes of octree cells, Sratio, are then defined. Therefore, the maximum size

of an octree cell is equal to Smax = Smin × Sratio. The mesh generation is started by
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Figure 4.9: An octree grid with three levels [5]

Figure 4.10: The octree generation of a cylinder (a) the initial subdivision (b) the subdi-
vision considering high curvature (c) the 2:1 balanced octree grid and (d) the octree grid
without external cells [5]

dividing the bounding box into smaller cubes with the size Smax as illustrated in Fig.

4.10a. Then, the cells intersecting the STL surface are identified and subdivided if

their size are larger than Smin and the curvature of the cell surface is higher than

the threshold (Fig. 4.10b). Additionally, the subdivisions are needed for the cells

with multi-intersection edges. After completion of all the cells subdivisions, the

2:1 rule [118] is enforced on the octree grid to provide a balance grid (Fig. 4.10c).

The cells outside the model are later removed in the meshing process. Fig. 4.10d

demonstrates the octree grid which bounds the model.

4.3.2.3 Trimming an octree grid by an STL model

The octree grid bounding the STL model needs to be trimmed by the STL model

to conform the boundary. The trimming process follows the bottom-up scheme

shown in Fig. 4.11. It first splits edges and then trims faces, cells and octree grids

sequentially.

Similar to the quadtree, the trimming operations are based on the signs of the

points. As negative points are inside the model, they are naturally included in
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Figure 4.11: The bottom-up scheme for trimming an octree grid [5]

the polyhedral mesh as nodes. Positive points refer to the points outside the STL

model. The points with the sign value of zero, i.e. the points on the STL surface,

are conditionally included in the mesh as discussed below.

(a) Splitting an edge

For each edge only one intersection point is allowed. If it contains more inter-

section points, then the average location of these intersection points is used as the

intersection point. For an intersection point on an edge, it is assembled into the

mesh only if the edge has both positive and negative end points.

(b) Trimming a face

On a face, if a negative node exists, the edges with a negative point are kept and

the others are removed. Otherwise, all the edges with zero nodes are kept and the

others are removed. Then, the face is trimmed by linking the end nodes of a curve

consisting of the kept edges. Fig. 4.12 shows the process of trimming a face.

(c) Trimming a cell

For trimming a cell, first, the associated surface boundary is detected and then

the new face is constructed by combining the edges on the boundary. This process

is shown on Fig. 4.13.
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Figure 4.12: Trimming a face (a) a face with two intersection nodes, (b) edges with a
negative node and (c) the trimmed face [5]

Figure 4.13: Trimming a cell (a) a surface passing through a face (b) trimmed faces and
(c) the trimmed cell [5]

4.3.2.4 Trimming with the recovery of sharp edges

If the angle between the two facets is sharp, then the edge connecting the two facets

is considered as a sharp feature. A sharp corner is the intersection of sharp edges.

To precisely model the geometry, sharp edges need to be firstly extracted and then

recovered in the corresponding meshes. Once these features are extracted [119, 120],

the recovery of sharp edges can be done following a bottom-up scheme; the edges

are first divided into two parts once they are intersected with these features. Then,

the features on faces are recovered and remade in cells. The details are provided by

Liu et al. [5].
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4.4 Scaled Boundary Finite Element Implemen-

tation of MECM

The scaled boundary finite element implementation of MECM is similar to the

finite element implementation of it discussed in section 3.4. The structural system

is discretised into n SBFE subdomains, where each subdomain contains g integration

points. At each iteration r, the equivalent stress resultants σ̄ri, j for all subdomains

i = 1 to n are obtained at the integration points (j = 1 to g) to comply with the

failure conditions imposed by the specific material properties, such as the von Mises

(M) or Tresca (T ) criteria (explained in Eqs. (3.1) to (3.6)). At the beginning of

the next iteration r+1, stress distributions of some highly loaded subdomains whose

averaged stress resultants σ̄ri (where σ̄ri =
g∑
j=1

σ̄ri, j/g) sit above the nominal stress are

performed using Eqs. (3.7) and (3.8) as in the FEM.

At the end of each iteration, the proposed algorithm imposes the yield conformity

condition by determining the associated (positive scalar) load factor of αr = σ0/σ̄
r
max

that adjusts the magnitude of stresses to lie within the maximum allowable yield

stress σ0. σ̄rmax is the maximum stress resultant of the whole structure at iteration

r. The iterations are carried out for the total number of iterations (viz. rmax) and

the collapse load limit αcol of the structure is defined by maximizing the load factor

αr, namely αcol = max {αr|r = 1, . . . , rmax}.

The pseudo code summarizing the key steps underlying the proposed iterative

elastic SBFE analysis procedure is presented in the following.

Step 0: Initialization

• At iteration r = 0, initialize: maximum number of iterations rmax, λ ∈ (0, 1),

yield limit σ0, and elastic Young’s modulus for all i = 1 to n SBFE subdomains.

• Construct a quadtree polygon/octree polyhedral SBFE model, and assemble

the global nodal forces vector and global stiffness matrix associated with 2D

(or 3D) structure.
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Step 1: Iterative elastic analyses

• For r = 1 to rmax

– Perform an elastic analysis

– Determine the equivalent stress resultants using Eqs. (3.1) to (3.6) and

the averaged stress resultants σ̄ri and σ̄rmax.

– Update the elastic modulus Er
i for all subdomains using Eqs. (3.7) and

(3.8).

– Compute the load multiplier αr = σ0/σ̄
r
max.

• end

Step 2: Termination

• Determine the collapse load αcol = max {αr|r = 1, . . . , rmax}.

It is useful to make some additional remarks regarding the MECM algorithm

using the SBFEM, as follows.

(1) As in the FEM, the subdomain stiffness matrices in the SBFEM are computed

only once based on Eq. (4.30) at the first iteration and stored. In the subsequent

iterations, these matrices for the subdomains whose elastic moduli are changed can

be simply factored by the ratio of the new elastic modulus of the subdomain to the

initial elastic modulus of it at the first iteration (i.e. Eri
Er=1
i

) to create the modified

subdomain stiffness matrices required at iteration r. Similarly, for the calculation of

stresses, the computations of the stress modes are not required to be done at every

iterations; substituting the Eqs. (4.32) and (4.35) into Eq. (4.37) (for 2D) and the

Eqs. (4.32) and (4.36) into Eq. (4.38) (for 3D) leads to

σ = DB̄ub (4.40)

, where

B̄ =
(
−B1 (η) Φ(n)

u Λ(n)
(
Φ(n)

u

)−1
+ B2 (η)

)
ξ−(Λ(n)+I) (4.41)
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in 2D spaces and

B̄ =
(
−B1 (η, ζ) Φ(n)

u

(
Λ(n) + 0.5I

) (
Φ(n)

u

)−1
+ B2 (η, ζ)

)
ξ−(Λ(n)+1.5I) (4.42)

in 3D spaces. In Eqs. (4.41) and (4.42), B̄ is independent of the elastic modulus of

the element. Therefore, it is only computed once in the first iteration and stored,

and will be used in other iterations along with Eq. (4.40) for stress computations.

(2) Similar to the FEM implementation of the MECM, the impressibility con-

dition should be considered during the elastic analyses. As discussed before, the

SBFEM is able to act sufficiently accurate to model nearly incompressible condition

without any specific treatment [113]. In this study, the Poisson’s ratio is taken as

ν = 0.499 to reflect the incompressible material. The accuracy of this assumption

is further investigated in section 4.5.1.1 through the application of the proposed

scheme on the well-known Prandtl’s punch problem.

4.5 Numerical Examples

Seven numerical examples, three 2D benchmarks presented in Chapter 3 and four

3D examples, are presented to illustrate the application of the proposed iterative

SBFE analyses for the determination of the collapse load. As in chapter 3, the

accuracy of the results are validated through comparing them with the reported

solutions. In all examples, the nearly incompressible condition is considered by

using the Poisson’s ratio ν = 0.499. The numerical examples show that this value is

close enough to 0.5 to estimate the collapse load limit sufficiently accurate. Plasticity

was conformed solely at Gauss’s integration points. In all examples, λ = 0.05 and

rmax = 300 are considered. The analysis procedures were implemented within a

MATLAB programming environment.
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Figure 4.14: SBFE model of the Prandtl’s punch problem (a) schematic model where
thick solid lines denote nodal restrained directions (b) actual model

4.5.1 2D Examples

4.5.1.1 Prandtl’s punch problem

The first example deals with the semi-infinite body under a punch load as in Fig.

3.1a, which was discussed in sections 2.2.7, 3.3, 3.4, and 3.5.1.1. The plain strain

condition and the perfectly plastic Tresca material were adopted. The elastic modu-

lus was given as E = 10000 whose unit is the same as the stress unit. The analytical

solution of the ratio of the collapse load multiplier to the yield stress (i.e. αcol

σ0
) is

2.5708. Due to the symmetry, only half of the structure was modeled using the

scaled boundary finite elements. The mesh was acquired quite automatically from a

2D solid. The schematic SBFE model is shown in Fig. 4.14a, where each subdomain

was subdivided into 64 similar subdomains. In total, 2048 subdomains, 2145 nodes,

4290 DOFs, and 8192 integration points are utilized. Fig. 4.14b displays the actual

SBFE model after subdivisions.
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Figure 4.15: The iterative scheme for the Prandtl’s punch problem with 2048 subdomains
in the proposed MECM with SBFEM

The proposed MECM analysis of the structure was performed and αcol

σ0
was obtai-

ned as 2.6302 which is some 2.31% higher than the analytical solution. Fig. 4.15

shows the changes of the normalized load multipliers during the iterations. The

corresponding stress and elastic modulus distributions associated with the collapse

load are also shown in Fig. 4.16. The schematic collapse mechanism is also displayed

in Fig. 4.17.

The ability of the SBFEM in handling the incompressibility condition was also

emphasized in this example by investigating the effect of different Poisson’s ratios on

the example. For this purpose, a sufficiently fine mesh was considered where 32768

subdomains, 33153 nodes, 66306 DOFs, and 131072 integration points were used.

The reason that this mesh is chosen as a reasonably fine mesh is later explained in

this section through a convergence study. The results are tabulated in Table 4.1

and compared with the analytical solution. Fig. 4.18 also shows the variations of

the collapse load solution with different Poisson’s ratios. As seen, the employed

Poisson’s ratio ν = 0.499 can adequately represent the incompressiblility condition

required for the MECM scheme. It should be noted that for the Poisson’s ratio
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(a)

(b)

Figure 4.16: Stress and elastic modulus distributions for the Prandtl’s punch problem
using the proposed MECM with SBFEM (a) stress distribution (b) elastic modulus dis-
tribution

Figure 4.17: The schematic displacement field for the Prandtl’s punch problem using the
proposed MECM with SBFEM
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Table 4.1: Variation of collapse load solutions with different Poisson’s ratios for the
Prandtl’s punch problem using the proposed MECM with SBFEM

Poisson’s ratio (ν) αcol/σ0 error %
0 1.2316 -52.09
0.1 1.2681 -50.67
0.2 1.3226 -48.55
0.3 1.5381 -40.17
0.4 2.1751 -15.39
0.45 2.5465 -0.95
0.49 2.5750 0.16
0.499 2.5768 0.23
0.4999 2.5769 0.24

0 0.1 0.2 0.3 0.4 0.5

 

1.5

2

2.5

 
 c

o
l  /

  
0

Analytical solution = 2.5708

limit load solutions

Figure 4.18: Variation of collapse load solutions with Poisson’s ratio for the Prandtl’s
punch problem using the proposed MECM with SBFEM

values higher than 0.4999 the computations break down, as the constitutive matrix

D is not finite. This agrees well with what stated in [113].

The influence of the total number of SBFE subdomains on the precision of the

limit load solution αcol

σ0
was also investigated using the proposed method. Six SBFE

models are used, where the mesh is uniformly refined (ranging from coarse to fine).

The results are reported in Table 4.2 under the title scheme A, where the error

percentages between the analytical solution and the obtained collapse load solutions

are also presented. The collapse load solutions corresponding to the variation of

mesh sizes are also plotted in Fig. 4.19, where it can be seen that the values of αcol

σ0
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Table 4.2: The collapse load solutions of the Prandtl’s punch problem for different dis-
cretizations using the proposed MECM with SBFEM

No. of subdomains element mesh size Scheme A Scheme B
(NS) (h) αcol

σ0
error% αcol

σ0
error%

32 1.00000 3.3357 29.75 2.4007 -6.62
128 0.25000 2.9122 13.28 2.2873 -11.03
512 0.06250 2.7221 5.89 2.3292 -9.40
2048 0.01563 2.6302 2.31 2.3171 -9.87
8192 0.00391 2.5977 1.05 2.3183 -9.82
32768 0.00098 2.5768 0.24 2.3011 -10.49

decrease by increasing the number of subdomains. It should be emphasized that

although the results reported here are above the true collapse loads, the proposed

scheme should not be interpreted as an upper bound method. As explained in

section 3.5.1.1, if sufficient number of element is used, the yield conformity is satisfied

through the whole domain and the collapse load solution sits below the exact collapse

load. In other words, the proposed method is a lower bound scheme as the MECM

with the FEM described in chapter 3, but not a strict lower bound method. This

matter is more clearly seen in sections 4.5.1.3 and 4.5.2.1.

Table 4.2 also shows the convergence study of the proposed iterative SBFE

scheme for the Prandtl’s punch problem where the maximum stress resultant (instead

of the average stress resultant) in a subdomain is used for the modification of the

elastic modulus of the subdomain (scheme B). As it can be seen, the computed

collapse load solutions are much smaller than the reported analytical solution. This

example illustrates the over conservative behavior of the MECM scheme when the

maximum stress in a subdomain is used for the modification of the elastic modulus

of the subdomain.

4.5.1.2 Double-edge notched specimen

The double edge notch tensile specimen under the plain strain and the von Mises

conditions is considered as mentioned in the last chapter in section 3.5.1.2. The

geometry and loading are shown in Fig. 3.13a. The schematic SBFE model is shown
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Figure 4.19: Variation of the collapse load solution with number of subdomains for
Prandtl’s punch problem using the proposed MECM with SBFEM

in Fig. 4.20a, where each subdomain is subdivided into 4 similar subdomains. In

total, 1024 subdomains, 1089 nodes and 2178 DOFs and 4096 integration points

were considered. Fig. 4.20b displays the actual mesh after these subdivisions.

The proposed MECM with SBFEM was applied to solve the problem and the

collapse load solution αcol

σ0
was obtained as 4.8055 which is 2.79% higher than the

reported solution (
(
αcol

σ0

)
ref

= 4.6749). The iterative scheme is shown in Fig. 4.21.

The corresponding stress and elastic modulus distributions are also depicted in Fig.

4.22. The associated collapse mechanism is plotted in Fig. 4.23.

The variations of the load multipliers with respect to the modification factor λ is

studied in this example for the current mesh, and the results are shown in Fig. 4.24.

As illustrated, the instability of the MECM with higher values of λ is evident, where

the solutions are diverged before better results are obtained. However, λ = 0.05 still

is offered an acceptable level of accuracy for this example.

The sensitivity of the method to the number of subdomains was also investigated

through a convergence study. Seven models were used, where the mesh layout is

uniformly changing from a coarse mesh to a fine mesh. The results are tabulated in

Table 4.3 and plotted in Fig. 4.25. The differences between the reported solution

and obtained results are also given. As expected, by increasing the number of



CHAPTER 4. THE MECM FOR COLLAPSE LOAD DETERMINATION OF STRUCTURES USING
THE SCALED BOUNDARY FINITE ELEMENT METHOD 135

1

1

0.5

(a)

(b)

Figure 4.20: SBFE model of the double edge notched specimen (a) schematic model
where thick solid lines denote nodal restrained directions (b) actual mesh
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Figure 4.21: The iterative scheme for the double-edge notched specimen in the proposed
MECM with SBFEM

(a) (b)

Figure 4.22: Stress and elastic modulus distributions of the double-edge notched speci-
men using the proposed MECM with SBFEM (a) stress distribution (b) elastic modulus
distribution
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Figure 4.23: The schematic displacement field of the double-edge notched specimen using
the proposed MECM with SBFEM
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Figure 4.24: Variation of load multiplier solutions with λ for the double notched specimen
using the MECM and FEM
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Table 4.3: The collapse load solutions of the double-edge notched specimen for different
discretizations using the proposed MECM and SBFEM

No. of subdomains (NS) element mesh size (h) αcol

σ0
difference%

4 0.5 7.1064 52.01
16 0.25 6.1365 31.26
64 0.125 5.4559 16.71
256 0.0625 5.0484 7.99
1024 0.03125 4.8055 2.79
4096 0.015625 4.6733 -0.03
16384 0.0078125 4.6020 -1.56
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Figure 4.25: Variation of the collapse load solution with the number of elements for the
double-edge notched specimen using the proposed MECM and SBFEM

subdomains the collapse load solutions decreased to a value below the reported

solution. However, as the analytical solution is not available for this problem, a

justification on whether the proposed method is a lower bound scheme or a strict

method cannot be done.

4.5.1.3 Perforated plate problem

The third example is the plane stress perforated plate under the von Mises condition

mentioned in section 3.5.1.3 of the last chapter. The geometry and loading are shown

in Fig. 3.19a. Here, the problem was fully modeled with SBFEs (Fig. 4.26), where

the advantage of the quadtree scheme can be seen. The use of polygonal subdomains

allowed the circumference of the circle to be modeled efficiently and automatically

out of a plane solid. Additionally, these type of subdomains allowed the hanging
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Figure 4.26: SBFE model of the perforated plate example
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Figure 4.27: The iterative scheme for the perforated plate with 120 subdomains using
the proposed MECM with SBFEM

nodes to be defined efficiently and hence the burden of the mesh generation was

reduced significantly. In total, 112 subdomains, 152 nodes, 304 DOFs and 476

Gauss’s points were utilized.

The MECM was performed on the structure and the collapse load solution αcol

σ0

was computed as 0.8591, which is some 7.39% higher than the analytical solution,(
αcol

σ0

)
ref

= 0.8. The iterative scheme is plotted in Fig. 4.27. The associated stress

and elastic modulus distributions are also plotted in Fig. 4.28. The schematic

mechanism is also shown in Fig. 4.29.

As the computed collapse load is considerably higher than the true collapse load

solution, the uniform mesh refinement was performed on the structure, where each
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Figure 4.28: Stress and elastic modulus distributions of the perforated plate using the
proposed MECM with SBFEM (a) stress distribution (b) elastic modulus distribution

Figure 4.29: The schematic displacement field of the perforated plate using the proposed
MECM with SBFEM
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Table 4.4: The collapse load solutions of the perforated plate for different discretizations
using the proposed MECM with SBFEM

Scheme A Scheme B
No. of αcol

σ0
error % No. of αcol

σ0
error %subdomains (NS) subdomains (NS)

112 0.8591 7.39 1000 0.8280 3.51
424 0.8354 4.42 3976 0.8130 1.62
1704 0.8187 2.34 15908 0.8064 0.80
6724 0.8087 1.08 63536 0.8023 0.28
26744 0.8023 0.28
106768 0.7980 -0.26

subdomain was recursively subdivided into four smaller subdomains. The proposed

MECM was performed on each of the acquired models, and the results are tabulated

in Table 4.4 under the title scheme A. Fig. 4.30 also shows the influence of the

number of subdomains on the collapse load solution. As shown, the lower strict

bound solution was obtained by increasing the number of subdomains in media.

This shows that although the proposed scheme is a lower bound scheme, it is not a

strict lower bound method. In fact, the strict lower bound solution can be obtained

only if sufficient number of elements is used in the domain. As discussed in chapter

3, this leads to the better satisfaction of the yield condition, as the number of

integration points are increased too.

The results of the uniform refinements are also provided in Table 4.4 under

the title scheme B. In constructing the uniform meshes, the size of the smallest

subdomain, in the corresponding non-uniform mesh in scheme A, is chosen as the

mesh size for the sake of comparison. As it can be seen, for the same level of accuracy,

the use of non-uniform mesh is computationally advantageous, as it contains lower

number of subdomains. For instance, the collapse load solution of 0.8023 with

0.28% error was achieved for both uniform and non-uniform mehses; nevertheless,

the number of subdomains needed for this solution in the non-uniform mesh was

26744. This is almost 40% of the number of subdomains needed for the uniform

mesh (i.e. 63536) and therefore computationally beneficial.
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Figure 4.30: Variation of the collapse load solution with the number of subdomains for
the perforated plate problem using the proposed MECM with SBFEM

4.5.2 3D Example

In this section, three 3D problems were modeled to illuminate the performance of

the proposed MECM with SBFEM for structures in 3D spaces. In particular, the

mesh generation for these examples were done fully automatically and out of the

CAD (STL) models using the mentioned octree scheme.

4.5.2.1 Thick cylinder

The thick cylinder under the uniform pressure introduced in section 3.5.2.1 in last

chapter was employed. Here, considering the fact that the effect of cylinder length

is negligible on the true collapse load of the structure, it was reduced to 220 mm to

accommodate more number of subdomains. The SBFE model with sharp features

was generated by the explained octree meshing method and shown in Fig. 4.31. The

model represents only a quarter of the cylinder due to the symmetric nature of the

problem. In total, 1243 subdomains, 2007 nodes, and 6021 DOFs were defined.

The proposed MECM with SBFEM was carried out for 300 iterations (Fig. 4.32)

and the collapse load solution αcol

σ0
was obtained as 0.8074, which is of 0.88% error

in comparison to the analytical solution of αcol

σ0
= 0.8004. The corresponding stress

and elastic modulus distributions within the domain is also shown in Fig. 4.33.

The influence of the number of subdomains on the collapse load solution was
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Figure 4.31: The SBFE model of the thick cylinder

0 100 200 300

Iterative steps,  r

0.4

0.5

0.6

0.7

0.8

0.9

 
 r  /

  
0

Proposed scheme

Reported solution = 0.8004

Figure 4.32: The iterative scheme for the thick cylinder with 1243 subdomains using the
proposed MECM and SBFEM
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(a) (b)

Figure 4.33: Stress and elastic modulus distributions of the thick cylinder using the
proposed MECM with SBFEM (a) stress distribution (b) elastic modulus distribution

Table 4.5: The collapse load solutions of the thick cylinder for different discretizations
using proposed MECM and SBFEM

No. of subdomains (NS) αcol

σ0
error%

1243 0.8074 0.88
3632 0.8024 0.25
7832 0.7991 -0.16
22080 0.7989 -0.19

investigated by increasing the number of subdomains (reducing the minimum sizes,

Smin). Four models were developed, and the proposed MECM with SBFEM was

performed on them. The results are tabulated in Table 4.5. Fig. 4.34 also shows the

variation of the collapse load solution with the number of subdomains. As illustra-

ted, the lower bound solution is only obtainable if sufficient number of elements is

used in the media. This shows that although the proposed scheme is a lower bound

scheme (see Fig. 4.32), it is not a strict lower bound method.

4.5.2.2 Thick square plate with central elliptical flaw under axial tension

A square plate with a thickness of 5 mm and elliptical flaw at its center (Fig. 4.35a)

was considered . The structure was subjected to a uniaxial uniform stresses of σ

= 10 kPa. The von Mises material with E = 207, 000 MPa and σ0= 294 MPa was

adopted. The collapse load solution of this problem αcol

σ0
is reported as 0.798 [17].
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Figure 4.34: Variation of the collapse load solution with the number of subdomains for
the thick cylinder problem using the proposed MECM with SBFEM

Due to its symmetry in all axes, only a quarter of the structure was modeled using

SBFEs, as shown in Fig. 4.35b. The discrete model consisted of 1098 subdomains,

1885 nodes and 5655 DOFs.

The proposed MECM was performed on the model and the collapse load solution

was obtained as αcol

σ0
= 0.8837 with some 10.74 % difference with the reported

solution. The amount of this relatively high difference is due to the low number

of subdomains, and will be later improved by mesh refinement. The associated

iterative scheme is shown in Fig. 4.36. The corresponding stress and elastic modulus

distributions are also provided in Fig. 4.37.

The effect of the number of subdomains were also studied. Four different SBFE

meshes were considered, ranging from a coarse mesh to a fine mesh. The proposed

MECM was performed on them and the results are illustrated in Table 4.6. The

differences between the reported solution [17] and obtained results are also given.

Fig. 4.38 further shows the variation of the collapse load solution with the number

of subdomains. As seen, the computed collapse load was reduced by refining the

mesh. It should be noticed that no justification about the trend of the method (i.e

a lower bound scheme or a strict lower bound) can be provided for this example, as

the analytical solution is not available.
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(a)

(b)

Figure 4.35: Square plate with a central ellipse flaw (a) geometry and loading (b) SBFE
model
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Figure 4.36: Iterative scheme for the perforated square plate with 1098 subdomains using
the proposed MECM and SBFEM

Table 4.6: The collapse load solutions of the thick square plate for different discretizations
using the proposed MECM and SBFEM

No. of subdomains (NS) αcol

σ0
difference%

188 0.925 15.91
1098 0.8837 10.74
7505 0.8401 5.28
55512 0.8165 2.32
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(a)

(b)

Figure 4.37: Stress and elastic modulus distributions of the perforated square plate using
the proposed MECM with SBFEM (a) stress distribution (b) elastic modulus distribution
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Figure 4.38: Variation of the collapse load solution with the number of subdomains for
the thick square plate problem using the proposed MECM with SBFEM

4.5.2.3 Defected pipeline

The third 3D example is the defected pipeline discussed in section 3.5.2.3 in last

chapter. The geometry and loading is given in Fig. 3.35. Two SBFE models were

automatically generated to show the performance of the proposed method on this

problem; case a consisting of 2216 subdomains, 3437 nodes, 9603 DOFs and a finer

case b with 4734 subdomains, 6653 nodes, 19959 DOFs (Fig. 4.39).

The MECM successfully computed the collapse load solutions of αcol = 69.5526

in case a and αcol = 67.5883 in case b. Fig. 4.40 shows the employed iterative

scheme for case b. The proposed approach provided good accuracy of collapse load

results, as the solutions computed agree well with the reference values reported from

various numerical algorithms, namely αcol
ref = 64.05 using the incremental method

[92], αcol
ref = 67.13 using the kinematic method [86], and αcol

ref = 63.42 using the

static method [92]. The diagrams in Fig. 4.41 depict the von Mises stress and

elastic modulus distributions computed at αcol for case b. The schematic collapse

mechanism associated at αcol is also plotted for case b in Fig. 4.42.

4.5.2.4 The leg of a chair

To highlight the advantageous performance of the SBFEM and its combination with

the octree scheme for the automatic mesh generation, in this example, a ductile leg
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(a)

(b)

Figure 4.39: SBFE models for the defected pipeline (a) case a (b) case b



CHAPTER 4. THE MECM FOR COLLAPSE LOAD DETERMINATION OF STRUCTURES USING
THE SCALED BOUNDARY FINITE ELEMENT METHOD 151

0 100 200 300

Iterative steps,  r

10

20

30

40

50

60

70

L
o

a
d

 m
u

lt
ip

lie
r,

 
 r

Figure 4.40: Iterative scheme for the defected pipeline (case b) using the proposed MECM
and SBFEM

of a chair under the uniform pressure is considered. Fig. 4.43a shows the geometry

of this example. The boundary conditions and loading are emphasized in Fig. 4.43b.

The von Mises material properties used in this problem were E = 207 GPa, and

σ0 = 200 MPa. The SBFE mesh was automatically generated out of the STL file

as per section 4.3.2. Fig. 4.44 shows the produced mesh. The final mesh contains

2730 subdomains, 4072 nodes, 12216 DOFs.

The MECM was performed on the structure and the normalized collapse load

solution was obtained as αcol

σ0
= 0.1310. The iterative scheme is shown in Fig. 4.45.

The von Mises stress and elastic moduli distributions associated with the collapse

load are also shown in Fig. 4.46.

4.6 Conclusion and Remarks

In this chapter, the extension of the MECM to the SBFEM for using some of its

advantages was explained. In particular, two merits of SBFEM suitable for MECM

were discussed. First, the SBFEs satisfy from the nearly incompressible condition

when Poisson’s ratios of 0.499 was used without exhibiting volumetric locking. Se-

cond, the iterative elastic SBFE analysis adopted polygon-type (in 2D) or polyhedral
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(a)

(b)

Figure 4.41: Stress and elastic modulus distributions of the defected pipeline problem
(case b) using the proposed MECM and SBFEM (a) stress distribution (b) elastic modulus
distribution



CHAPTER 4. THE MECM FOR COLLAPSE LOAD DETERMINATION OF STRUCTURES USING
THE SCALED BOUNDARY FINITE ELEMENT METHOD 153

Figure 4.42: The collapse mechanism for the defected pipeline using the proposed MECM
with SBFEM

(a)

1�

(b)

Figure 4.43: The leg of a chair (a) geometry (b) loading and boundary conditions
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Figure 4.44: SBFE model for the leg of a chair
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Figure 4.45: Iterative scheme for the leg of a chair using MECM and SBFEM
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(a)

(b)

Figure 4.46: Equivalent stress and elastic modulus distributions of the leg of a chair using
the proposed MECM and SBFEM (a) stress distribution (b) elastic modulus distribution
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(in 3D) elements that enable structural modeling of problems with complex geome-

tries. Automated quadtree/octree algorithms were incorporated directly within the

SBFE framework, which gave it the capability to efficiently and automatically model

the structural discretization of an in-plane solid (for 2D) or of CAD (STL) models

(in 3D). This advantage alleviated the burden of the mesh generation required in the

MECM. It also reduced the user interference in the mesh generation part and the

associated errors arising from that. A number of numerical examples, ranging from

benchmark tests, 2D and 3D solids, were studied to illustrate the performance of

the proposed scheme. They also served as a platform that highlighted the influences

of some key algorithmic parameters on the accuracy of the method.



Chapter 5

A NOVEL SENSITIVITY-BASED

ECM FOR THE COLLAPSE

LOAD DETERMINATION OF

STRUCTURES USING THE

FINITE ELEMENT METHOD

5.1 Introduction

The MECM uses the number of iterations selected by the user as the stopping

criterion. When the maximum number of iterations is reached, the maximum load

multiplier occurred during the iterations is selected as the solution. This allows

some error to be included in the scheme whose value could vary from one problem

to another or even from one mesh to another. The reason of using the number of

iterations as the stopping criterion is the multiple oscillations which might happen

for some structures during the iterations. Though the adjustable parameter λ,

introduced in the MECM by Yang and Chen [16, 17] improved the convergence of the

method, it does not completely solve the oscillation problem in the load multiplier.

157
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Figure 5.1: The oscillatory behavior of the limit load solutions for the perforated plate
with 33280 FEs using the MECM

As an example, consider the perforated plate mentioned in section 3.5.1.3. Although

the choice of λ = 0.05 has led to a convergence of the limit load multiplier for

the chosen mesh with 120 elements, the limit load solution obtained for the same

example using a mesh with 33280 elements and the same value of λ is of an oscillatory

behavior as shown in Fig. 5.1. As it can be seen, the presence of multiple random

oscillations with different amplitudes prevented the convergence to be defined on

load multipliers. It is obvious that the use of higher values of λ exacerbates the

oscillation as discussed before. The smaller values of λ might reduce (and not

necessarily remove) the oscillatory behavior of the scheme; however, they demand

more number of iterations, and hence more computational time. In addition, the

input number of iterations set by the user might not be sufficient and therefore some

time-consuming trial and error procedures are required to find the suitable number

of iterations for obtaining a reasonable convergence.

In this chapter, a novel sensitivity-based ECM will be proposed which completely

removes the oscillatory behavior of the limit load solution, and therefore the conver-

gence will be defined directly on the limit load solution. In section 5.2, the reasons
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of these oscillations will be discussed in detail. A simple 2D truss is deployed to

illustrate the source of oscillations. In section 5.3, a robust sensitivity-based ECM

will be introduced which eliminates the oscillations by considering the contribution

of all elements through the definition of a sensitivity matrix. Section 5.4 validates

the proposed sensitive scheme through some 2D benchmarks and 3D numerical ex-

amples. The conclusions and remarks will be discussed in section 5.5 of this chapter.

5.2 Source of Oscillations

The main reason of oscillations is rested in the local elastic modulus modification

scheme employed in the ECM, where the elastic modulus of each element is indivi-

dually modified at each iteration r aiming to scale its equivalent stress down to the

nominal stress. However, in the next iteration r+1, the equivalent stresses are com-

puted with the contribution of all elements. Therefore, it is possible for an element,

e.g. element k, to be loaded from other elements and its equivalent stress, namely

σ̄r+1
k , exceeds the equivalent stress of element m (σ̄r+1

m ), which has the maximum

equivalent stress at the current iteration (σ̄rm = σ̄rmax). This phenomenon is called

the stress overshooting in this thesis. If σ̄r+1
k even becomes bigger than σ̄rmax, a drop

in the limit load curve happens. This matter is further illustrated through a simple

example.

Consider the simple truss shown in Fig. 5.2 under reference loads, where F = 1

kN and L = 4m [121]. The truss consists of five elements, where the elastic modulus,

E, and the cross section area, A, for all the members are taken as 1 kPa and

1m2, respectively. The MECM with λ = 0.5 is performed on the structure. The

normalized load multipliers are plotted for different iterations in Fig. 5.3. As seen,

the drop in the limit load curve prevented the convergence to be defined on the

collapse load solution, and therefore, the maximum number of iterations is used for

stopping the iterations.

Fig. 5.4 shows the normalized stresses ( σi
σ0
) for all the five truss elements. From
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Figure 5.2: A simple truss - geometry and loading
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Figure 5.3: The iterative scheme for the considered truss using MECM
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Figure 5.4: Variation of normalized stresses for the simple truss - λ = 0.5

this figure, it is obvious that the collapse of the structure occurs due to the yielding

of both elements 3 and 4. The stresses of both of these elements sat above the

nominal stress at the first iteration and the elastic moduli of them were reduced;

however, the effect of the elastic modulus reduction in element 3 on element 4 had

been more than the effect of the elastic modulus reduction of element 4 on itself and

thus element 4 was loaded. This led to an increase in the stress of element 4. This

loading on element 4 had been continued and led to stress overshooting in iteration

3, where a drop in the iterative scheme in Fig. 5.3 appeared.

The effect of the adjustment parameter λ on the stress overshooting phenomenon

in this example is also investigated, where four smaller values for λ are considered

(i.e. λ = 0.1, λ = 0.05, λ = 0.01, and λ = 0.001). The variations of normalized load

multipliers and the associated normalized stresses for elements 3 and 4 are plotted

in Fig. 5.5 and Fig. 5.6, respectively. Some graphs are zoomed-in to accentuate

the drop and its associated stress overshooting. As seen, although the effect of the
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Figure 5.5: The presence of a drop in normalized load multipliers for the simple truss (a)
λ = 0.1 (b) λ = 0.05 (c) λ = 0.01 (d) λ = 0.001

stress overshooting is reduced by decreasing the λ value, it is never vanished from

the scheme.

5.3 Sensitivity-based ECM

In order to remove the oscillations in the local ECM or its modified versions, in

this section the non-local sensitivity-based ECM is proposed. The proposed scheme

predicts the stresses in the next iteration. The prediction is based on the first-order

Taylor polynomial, where the effect of the elastic moduli changes of all elements is

considered when the change of equivalent stress in an element is computed. In the
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Figure 5.6: The stress overshootings for the simple truss (a) λ = 0.1 (b) λ = 0.05 (c)
λ = 0.01 (d) λ = 0.001
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case of stress overshooting, the proposed scheme simply scales the elastic moduli

down to ensure the monotonic increase of load multipliers.

5.3.1 Stress Variations

Consider a structural system which is suitably discretised into n finite elements. In

such a domain if forces, geometry and boundary conditions are kept constant, and

the only quantity that varies is the elastic moduli, the equivalent stress σ̄i in any

discrete element i can be expressed as a multivariate function of the elastic modulus

of every element in the domain. That is

σ̄i = f (E1, E2, . . . , Ei, . . . En) = f(E) (5.1)

, where Ej represents the elastic modulus of the jth element in the domain, and E

is the vector of elastic moduli of all elements.

Using the second-order Taylor series expansion, the equivalent stress variation

∆σ̄i in any discrete element i can be represented as

∆σ̄i = (∇σ̄i) (∆E) + 1
2 (∆E)T Hi (∆E) (5.2)

, where ∆E represents the vector of elastic moduli changes. ∇σ̄i shows the first-

order derivative vector of the equivalent stress σ̄i with respect to the vector of elastic

moduli, and is defined as

∇σ̄i = ∂σ̄i
∂E

=
{
∂σ̄i
∂E1

∂σ̄i
∂E2

. . .
∂σ̄i
∂En

}
. (5.3)

Hi is known as Hessian matrix and represents the second-order derivatives of the
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equivalent stress σ̄i of the element i with respect to the vector of elastic moduli as

Hi = ∂

∂E

(
∂σ̄i
∂E

)T

=



∂2σ̄i
∂E2

1

∂2σ̄i
∂E1∂E2

· · · ∂2σ̄i
∂E1∂En

∂2σ̄i
∂E2∂E1

∂2σ̄i
∂E2

2
· · · ∂2σ̄i

∂E2∂En

... ... . . . ...
∂2σ̄i

∂En∂E1
∂2σ̄i

∂En∂E2
· · · ∂2σ̄i

∂E2
n


. (5.4)

Assuming that the elastic moduli changes are sufficiently small, the equivalent

stress variations for all elements can be approximated using the first-order Taylor

series expansion as

∆σ̄ = (∇σ̄) (∆E) (5.5)

, where ∇σ̄ shows the first derivatives of equivalent stresses for all elements with

respect to elastic moduli changes. It is referred to as the sensitivity matrix in this

thesis and is defined as

∇σ̄ = ∂σ̄

∂E
=



∂σ̄1
∂E1

∂σ̄1
∂E2

· · · ∂σ̄1
∂En

∂σ̄2
∂E1

∂σ̄2
∂E2

· · · ∂σ̄2
∂En

... ... . . . ...
∂σ̄n
∂E1

∂σ̄n
∂E2

· · · ∂σ̄n
∂En


. (5.6)

5.3.2 Derivation of the Sensitivity and Hessian Matrices

5.3.2.1 Sensitivity matrix

The sensitivity matrix can be computed from the equilibrium equation at the struc-

tural level. That is

FG = KGuG (5.7)

, where FG, KG, and uG show the global structural forces, structural stiffness matrix

and structural displacements. Taking the derivatives of both sides with respect to



CHAPTER 5. A NOVEL SENSITIVITY-BASED ECM FOR THE COLLAPSE LOAD
DETERMINATION OF STRUCTURES USING THE FINITE ELEMENT METHOD 166

the elastic modulus of an element j and using the chain rule lead to

∂FG

∂Ej
= ∂KG

∂Ej
uG + KG

∂uG

∂Ej
. (5.8)

As the loads do not alter during the process of the elastic modulus adjustment, the

left hand side of Eq. (5.8) is zero. ∂KG
∂Ej

shows the derivative of the global stiffness

matrix with respect to the elastic modulus of the element j. It is simply obtained

from the assembly of element stiffness matrix derivatives, ∂K
∂Ej

. The derivative of the

element stiffness matrix for an element i with respect to the elastic modulus of the

element j can simply be obtained by taking the derivative of the definition of the

stiffness matrix and is as

• In 2D spaces
∂Ki

∂Ej
=
∫
S

BT
i

∂Di

∂Ej
BidS (5.9)

• In 3D spaces
∂Ki

∂Ej
=
∫
V

BT
i

∂Di

∂Ej
BidV (5.10)

, where Bi is the strain-displacement matrix in the finite element method, and ∂Di

∂Ej

shows the derivative of the elasticity matrix D of the element i with respect to

the elastic modulus of the element j. Considering the fact that Di has a linear

relationship with the elastic modulus of the element i and using Eqs. (2.43) and

(2.44), ∂Di

∂Ej
can be obtained as

∂Di

∂Ej
=


1
Ei

Di if i = j

O if i 6= j

(5.11)

, where O represents a null matrix of suitable size. Therefore, Eqs. (5.9) and (5.10)

can be rewritten as

∂Ki

∂Ej
=


1
Ei

Ki if i = j

O if i 6= j

(5.12)
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Rearranging the Eq. (5.8) gives the changes of the displacements with respect

to the change of the elastic modulus of the element j as

∂uG

∂Ej
= −K−1

G
∂KG

∂Ej
uG. (5.13)

Having ∂uG
∂Ej

, the changes in strains in the element i due to changes of elastic modulus

in the element j can be obtained by the definition of strains as

∂εi
∂Ej

= Bi
∂ui
∂Ej

. (5.14)

, where ui is the nodal displacements for the element i, which are extracted from the

global displacements uG using the connectivity information of the elements. Finally,

derivatives of stress tensors in the element i with respect to the elastic modulus of

the element j can be computed using the Hook’s law (Eq. (2.42)) and the use of the

chain rule. Taking the derivatives of both sides of Eq. (2.42) for an element i with

respect to the elastic modulus of element j leads to

∂σi
∂Ej

= Di
∂εi
∂Ej

+ ∂Di

∂Ej
εi =

Di
∂εi
∂Ei

+ Di

Ei
εi = Di

(
∂εi
∂Ei

+ εi
Ei

)
if i = j

Di
∂εi
∂Ej

if i 6= j

. (5.15)

By having the stress tensors computed for elements based on the linear elastic

analysis and their derivatives with respect to the elastic modulus of the jth element

(Eq. (5.15)), the changes in equivalent stresses can be derived from Eqs. (3.1) to

(3.6) as

• Plain strain

(
∂σ̄i
∂Ej

)
M

=
√

3
4 ×

σx
∂σx
∂Ej

+ σy
∂σy
∂Ej
− σx ∂σy∂Ej

− σy ∂σx∂Ej
+ 4τxy ∂τxy∂Ej√

σ2
x + σ2

y − 2σxσy + 4τ 2
xy

(5.16)
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(
∂σ̄i
∂Ej

)
T

=
σx

∂σx
∂Ej

+ σy
∂σy
∂Ej
− σx ∂σy∂Ej

− σy ∂σx∂Ej
+ 4τxy ∂τxy∂Ej√

σ2
x + σ2

y − 2σxσy + 4τ 2
xy

(5.17)

• Plain stress

(
∂σ̄i
∂Ej

)
M

=
2σx ∂σx∂Ej

+ 2σy ∂σy∂Ej
− σx ∂σy∂Ej

− σy ∂σx∂Ej
+ 6τxy ∂τxy∂Ej

2
√
σ2
x + σ2

y − σxσy + 3τ 2
xy

(5.18)

• 3D Space

(
∂σ̄i
∂Ej

)
M

=
Aσx +Bσy + Cσz + 6

(
τxy

∂τxy
∂Ej

+ τxz
∂τxz
∂Ej

+ τyz
∂τyz
∂Ej

)
(σ̄i)M

(5.19)

, where

(σ̄i)M =
√
σ2
x + σ2

y + σ2
z − σxσy − σyσz − σxσz + 3

(
τ 2
xy + τ 2

xz + τ 2
yz

)
(5.20)

A = 2∂σx
∂Ej
− ∂σy
∂Ej
− ∂σz
∂Ej

(5.21)

B = 2 ∂σy
∂Ej
− ∂σx
∂Ej
− ∂σz
∂Ej

(5.22)

C = 2 ∂σz
∂Ej
− ∂σx
∂Ej
− ∂σy
∂Ej

. (5.23)

In Eqs. (5.16) to (5.23), {σx, σy, σz, τxy, τxz, τyz} are the standard set of stress tensors

for the element i. Computing ∂σ̄i
∂Ej

for all i = 1, 2, . . . , n and j = 1, 2, . . . , n leads to

the sensitivity matrix shown in Eq. (5.6). It should be noticed that due to the non-

smooth behavior of the Tresca yielding criterion in plain stress and 3D cases, the

derivatives of the Tresca yielding condition for these two cases are not considered.

5.3.2.2 Hessian matrix

Similar to the sensitivity matrix, the Hessian matrix can be computed from the

equilibrium equation in the structural level (Eq. (5.7)). Taking the derivatives of
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Eq. (5.8) with respect to the elastic modulus of the element k leads to:

∂2KG

∂Ej∂Ek
uG + ∂KG

∂Ej

∂uG

∂Ek
+ ∂KG

∂Ek

∂uG

∂Ej
+ KG

∂2uG

∂Ej∂Ek
= 0 (5.24)

, where ∂2KG
∂Ej∂Ek

and ∂2uG
∂Ej∂Ek

show the derivatives of ∂KG
∂Ej

and ∂uG
∂Ej

with respect to Ek.

The term ∂2KG
∂Ej∂Ek

, obtained by the assembly of ∂2Ki

∂Ej∂Ek
for all i = {1, 2, . . . , n}, is a

null matrix with the same size of KG. This is due to the fact that each of ∂2Ki

∂Ej∂Ek

matrices is a null matrix with the same size of Ki. This is proved using Eq. (5.12)

and considering five conditions.

• i 6= j 6= k and i 6= j = k

∂2Ki

∂Ej∂Ek
= ∂

∂Ej

(
∂Ki

∂Ek

)
= ∂O
∂Ej

= O (5.25)

• i = j 6= k

∂2Ki

∂Ej∂Ek
= ∂

∂Ej

(
∂Ki

∂Ek

)
= ∂O
∂Ej

= O (5.26)

• i = k 6= j

∂2Ki

∂Ej∂Ek
= ∂

∂Ej

(
∂Ki

∂Ek

)
= 1
Ei

∂Ki

∂Ej
= 1
Ei

O = O (5.27)

• i = j = k

∂2Ki

∂Ej∂Ek
= ∂

∂Ej

(
∂Ki

∂Ek

)
= ∂

∂Ei

(Ki

Ei

)
= −Ki

E2
i

+ Ki

E2
i

= O (5.28)

The second derivatives of the global displacements can be obtained by rearranging

of Eq. (5.24) as

∂2uG

∂Ej∂Ek
= −K−1

G

(
∂KG

∂Ej

∂uG

∂Ek
+ ∂KG

∂Ek

∂uG

∂Ej

)
. (5.29)
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The second derivatives of strains of the element i can be derived by using the strain-

displacement matrix. That is

∂2εi
∂Ej∂Ek

= Bi
∂2uG

∂Ej∂Ek
. (5.30)

The second derivatives of stress tensors for an element i can be obtained by making

making use of the stress-strain relationship and chain rule. Considering the fact that

the second derivative of elasticity matrix ∂2Di

∂Ej∂Ek
is a null matrix, ∂2σi

∂Ej∂Ek
is obtained

from
∂2σi

∂Ej∂Ek
= Di

∂2εi
∂Ej∂Ek

+ ∂Di

∂Ej

∂εi
∂Ek

+ ∂Di

∂Ek

∂εi
∂Ej

. (5.31)

The second derivative of equivalent stress for the element i can be obtained by

differentiating the Eqs. (5.16) to (5.19) with respect to the elastic modulus of the

element k. This leads to the following equations:

• Plain strain

(
∂2σ̄i

∂Ej∂Ek

)
M

=

3
4(σ̄i)M

{
−( ∂σ̄i

∂Ek
)M(σx ∂σx∂Ej

+ σy
∂σy
∂Ej
− σx ∂σy∂Ej

− σy ∂σx∂Ej
+ 4τxy ∂τxy∂Ej

)
(σ̄i)M

+ ∂σx
∂Ek

∂σx
∂Ej

+ σx
∂2σx

∂Ej∂Ek
+ ∂σy
∂Ek

∂σy
∂Ej

+ σy
∂2σy

∂Ej∂Ek

− ( ∂σx
∂Ek

∂σy
∂Ej

+ σx
∂2σy

∂Ej∂Ek
)− ( ∂σy

∂Ek

∂σx
∂Ej

+ σy
∂2σx

∂Ej∂Ek
)+

4(∂τxy
∂Ek

∂τxy
∂Ej

+ τxy
∂2τxy
∂Ej∂Ek

)} (5.32)
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∂2σ̄i
∂Ej∂Ek

)
T

=

1
(σ̄i)T

{
−( ∂σ̄i

∂Ek
)T (σx ∂σx∂Ej

+ σy
∂σy
∂Ej
− σx ∂σy∂Ej

− σy ∂σx∂Ej
+ 4τxy ∂τxy∂Ej

)
(σ̄i)T

+ ∂σx
∂Ek

∂σx
∂Ej

+ σx
∂2σx

∂Ej∂Ek
+ ∂σy
∂Ek

∂σy
∂Ej

+ σy
∂2σy

∂Ej∂Ek

− ( ∂σx
∂Ek

∂σy
∂Ej

+ σx
∂2σy

∂Ej∂Ek
)− ( ∂σy

∂Ek

∂σx
∂Ej

+ σy
∂2σx

∂Ej∂Ek
)+

4(∂τxy
∂Ek

∂τxy
∂Ej

+ τxy
∂2τxy
∂Ej∂Ek

)} (5.33)

• Plain stress

(
∂2σ̄i

∂Ej∂Ek

)
M

=

1
2(σ̄i)M

{
−( ∂σ̄i

∂Ek
)M(2σx ∂σx∂Ej

+ 2σy ∂σy∂Ej
− σx ∂σy∂Ej

− σy ∂σx∂Ej
+ 6τxy ∂τxy∂Ej

)
(σ̄i)M

+ 2( ∂σx
∂Ek

∂σx
∂Ej

+ σx
∂2σx

∂Ej∂Ek
) + 2( ∂σy

∂Ek

∂σy
∂Ej

+ σy
∂2σy

∂Ej∂Ek
)

− ( ∂σx
∂Ek

∂σy
∂Ej

+ σx
∂2σy

∂Ej∂Ek
)− ( ∂σy

∂Ek

∂σx
∂Ej

+ σy
∂2σx

∂Ej∂Ek
)+

6(∂τxy
∂Ek

∂τxy
∂Ej

+ τxy
∂2τxy
∂Ej∂Ek

)} (5.34)

, where {σx, σy, τxy} are the standard set of stress tensors for the element i

in 2D cases. (σ̄i)M and (σ̄i)T are the von Mises and Tresca equivalent stress

resultants of the element i, respectively. ( ∂σ̄i
∂Ek

)M and ( ∂σ̄i
∂Ek

)T are the equivalent

stress derivatives for the von Mises and Tresca yielding conditions obtained

from Eqs. (5.16) to (5.18).
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• 3D spaces

(
∂2σ̄i

∂Ej∂Ek

)
M

=

1
(σ̄i)M

{
−( ∂σ̄i

∂Ek
)M(Aσx +Bσy + Cσz + 6(τxy ∂τxy∂Ej

+ τxz
∂τxz
∂Ej

+ τyz
∂τyz
∂Ej

))
(σ̄i)M

+ ∂A

∂Ek
σx + A

∂σx
∂Ek

+ ∂B

∂Ek
σy +B

∂σy
∂Ek

+ ∂C

∂Ek
σz + C

∂σz
∂Ek

+ 6(∂τxy
∂Ek

∂τxy
∂Ej

+ τxy
∂2τxy
∂Ej∂Ek

+ ∂τxz
∂Ek

∂τxz
∂Ej

+ τxz
∂2τxz
∂Ej∂Ek

+

∂τyz
∂Ek

∂τyz
∂Ej

+ τyz
∂2τyz
∂Ej∂Ek

)} (5.35)

, where {σx, σy, σz, τxy, τxz, τyz} are the standard set of stress tensors for the

element i in 3D spaces. (σ̄i)M and ( ∂σ̄i
∂Ek

)M are the equivalent von Mises stress

and first derivative if it, which are defined in Eqs. (5.20) and (5.19), respecti-

vely. The factors A, B, and C are based on Eqs. (5.21) to (5.23), whose first

derivatives can be obtained as follows

∂A

∂Ek
= 2 ∂2σx

∂Ej∂Ek
− ∂2σy
∂Ej∂Ek

− ∂2σz
∂Ej∂Ek

(5.36)

∂B

∂Ek
= 2 ∂2σy

∂Ej∂Ek
− ∂2σx
∂Ej∂Ek

− ∂2σz
∂Ej∂Ek

(5.37)

∂C

∂Ek
= 2 ∂2σz

∂Ej∂Ek
− ∂2σx
∂Ej∂Ek

− ∂2σy
∂Ej∂Ek

. (5.38)

5.3.3 Finite Element Implementation of the Sensitivity-based

ECM

Similar to the local ECM, the non-local sensitivity-based ECM performs a series of

linear elastic analyses of sufficiently ductile structures that are modeled within the

finite element framework to determine the maximum load capacity at the plastic

collapse. The structural system is suitably discretised into n finite elements. At

each iteration, r, an elastic analysis is performed and the nodal displacements for

all nodes, uG, strain and stress tensors (viz, εi and σi, respectively) are computed
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for all of the elements i = {1, 2, . . . , n}. The equivalent stresses σ̄r for the von Mises

or Tresca yielding conditions are only computed at the first iteration, and for other

iterations, they are already estimated in the previous iteration as discussed below.

By having these information, the sensitivity matrix of all elements (∇σ̄) in Eq. (5.6)

is derived as discussed in section 5.3.2.1.

As in the ECM, the sensitivity-based ECM carries out the stress redistribution

of some critical elements with high stresses by systematically adjusting the stiffness

properties(i.e. Young’s modulus) of them. Therefore, the methodology firstly selects

the critical elements j whose equivalent stresses σ̄rj are greater than the nominal

stress σrn. These elements are included in a set known as the active set, Sactive. The

complementary set of Sactive, which includes all of the other elements, is called the

non-active set, Snon−active, representing non-selected elements. The definition of the

nominal stress is similar to the MECM and follows

σrn = σ̄rmax − λ (σ̄rmax − σ̄rmin) . (5.39)

λ is a modification factor, σ̄rmax and σ̄rmin are the maximum and minimum stress

resultants developed at iteration r in the whole structure, namely σ̄rmax = max (σ̄ri )

and σ̄rmin = min (σ̄ri ) for all i = 1 to n elements, respectively.

To include the contribution of the other elements, the variation of elastic moduli

of elements, ∆E, can be estimated by rearranging Eq. (5.5), following

∆E = (∇σ̄)−1 (∆σ̄) (5.40)

, where ∆σ̄ is the stress difference vector and can be computed as follows

(∆σ̄)i =


σrn − σ̄ri if i ∈ Sactive

0 if i ∈ Snon−active
. (5.41)

It should be noticed that, similar to the MECM, the elastic moduli of the ele-
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ments in the non-active set should not be altered. This is imposed to the Eq. (5.40)

as initial boundary values (i.e. (∆E)i∈Snon−active
= 0). Therefore, Eq. (5.40) is

solved similar to the equilibrium equation in the FEM (uG = K−1
G FG).

The variation of the elastic moduli obtained from Eq. (5.40) can be used for

approximating the equivalent stresses in the next iteration using the first term of

Taylor series, providing that ∆E is sufficiently small. The proposed sensitivity-based

ECM considers this matter through defining βi factor for each element by comparing

the linear approximation of its equivalent stress variation ((∆σ̄i)1 = (∇σ̄i) (∆E) )

and the second term of the second-order approximation for its equivalent stress

variation ((∆σ̄i)2 = 1
2 (∆E)T Hi (∆E)). If the ratio of β̄i = | (∆σ̄i)2

(∆σ̄i)1
| for the element

is less than a predefined tolerance, ε1, then βi is unit; otherwise, βi is defined to

scale down this ratio to ε1. That is

βi =


1 if β̄i ≤ ε1

ε1
β̄i

if β̄i > ε1

(5.42)

By having the β coefficients for all elements, ∆E can be scaled down by the factor

βmin to ensure the accuracy of the linear approximation of the equivalent stresses

for all elements. βmin is the minimum amount between the computed β factors (i.e.

βmin = min (βi), i = 1, 2, . . . , n).

The predefined tolerance ε1 should be taken sufficiently small to ensure the accu-

racy of the explicit scheme. However, very small values of it are likely to impose

a larger number of numerical iterations for a solution convergence. Our numerical

experience indicates that the value of ε1 = 2.5×10−2 can be taken adequately small

to ensure the validity of the explicit scheme, yet sufficiently large to consider the

efficiency of the method.

By having the updated elastic moduli variations for all elements, the equivalent

stresses can be linearly estimated and used as the prediction of stresses in the next
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iteration. That is

σ̄r+1 = σ̄r + βmin × (∇σ̄) (∆E) . (5.43)

In order to prevent the stress overshooting, the predicted stresses are divided

into the active and non-active sets, σ̄r+1
Sactive and σ̄

r+1
Snon−active , respectively. We define

the maximum predicted equivalent stress for the active set as

σ̄r+1
m = max

(
σ̄r+1

Sactive

)
(5.44)

, where m is the element having this maximum stress.

To avoid the stress overshooting in the next iteration, the predicted equivalent

stresses in the non-active set should not exceed σ̄r+1
m . If this happens, the proposed

scheme simply reduces the elastic moduli by a factor less than 1. Therefore, the

factor γj is defined for all elements j ∈ Snon−active as follows

γj =


1 if σ̄r+1

j ≤ σ̄r+1
m

σ̄rm−σ̄rj
βmin[∇σ̄j−∇σ̄m](∆E) if σ̄r+1

j > σ̄r+1
m

(5.45)

Eq. (5.45) is defined so that in case of stress overshooting of the element j ∈

Snon−active, the predicted equivalent stresses of elements m and j become equal.

Therefore, the most suitable factor to be multiplied by ∆E for prevention of stress

overshooting is the minimum of all γ factors. That is

γmin = min (γj) for all j ∈ Snon−active (5.46)

Finally, the final linear approximation of the equivalent stresses in the next

iteration can be obtained as follows

σ̄r+1 = σ̄r + βmin × γmin × (∇σ̄) (∆E) . (5.47)

, where σ̄r+1 shows the estimation of equivalent stresses in the next iteration. Use
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of these stresses in the next iteration guarantees the oscillation free scheme for load

multipliers. The elastic moduli of all elements to be used in the next iteration can

also be obtained as

Er+1 = Er + βmin × γmin ×∆E (5.48)

At each iteration, the load multiplier, αr, is then obtained by making use of the

estimated stresses as

αr = σ0/σ̄
r
max (5.49)

, where σ0 is the predefined yield stress of the material, and σ̄rmax is the maximum

estimated stress in the whole domain. Considering the fact that there is no stress

overshooting, and consequently no drop in the limit load curve, the convergence of

the scheme can be defined directly on load multipliers as follows

∆ = αr − αr−1

αr
< ε2 (5.50)

where ∆ shows the normalized difference in load multipliers between iterative steps

r and r − 1, and ε2 is a predefined tolerance.

It is useful to make some additional remarks regarding our sensitivity-based

ECM, as follows:

• The elastic moduli computed based on Eq. (5.40) do not allow unloading to

be considered for the elements in active set. This is due to the fact that the

final equivalent stresses obtained by this set of elastic moduli are either equal

to the nominal stress σrn ,if ∆E is small enough (i.e. βmin = 1), or greater than

σrn, if ∆E is not small enough (i.e. βmin < 1). Hence, they will be included

in the active set in the next iteration as σr+1
n < σrn. In other words, the

unloading of the assumed yielded elements in the active set cannot be seen.

This might be true for many structures; however, for some structures, some

active elements might be unloaded due the yielding of some other elements.

Our proposed sensitivity-based ECM is able to identify these elements by
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the unique characteristic of the sensitivity matrix. After the computation of

the elastic moduli based on Eq. (5.40), the associated hollow matrix of the

sensitivity matrix can be defined as follows

(∇σ̄)H = ∇σ̄ − (∇σ̄)D (5.51)

, where (∇σ̄)H only considers the contribution of all the other elements on the

stress variation of each of the element. The matrix (∇σ̄)D shows the diagonal

matrix of the sensitivity matrix, and is defined as follows

(∇σ̄)D = diag (∇σ̄) =



∂σ̄1
∂E1

0 · · · 0

0 ∂σ̄2
∂E2

· · · 0
... ... . . . ...

0 0 · · · ∂σ̄n
∂En


. (5.52)

The matrix (∇σ̄)D is basically the matrix which is implicitly used in the ECM,

and as can be seen, it does not consider the contribution of the other elements.

Therefore, based on Eq. (5.51) the hollow sensitivity matrix is of the form of

(∇σ̄)H =



0 ∂σ̄1
∂E2

· · · ∂σ̄1
∂En

∂σ̄2
∂E1

0 · · · ∂σ̄2
∂En

... ... . . . ...
∂σ̄n
∂E1

∂σ̄n
∂E2

· · · 0


. (5.53)

By having the hollow sensitivity matrix, the direction of the loading for each

of the elements due to the presence of the other elements can be obtained as

(∆σ̄)dir. = (∇σ̄)H (∆E) (5.54)

, where (∆σ̄)dir. shows the direction of loading for all the elements imposed

from the other elements. (∆σ̄)dir
i > 0 represents loading of the element i from
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the other elements, and (∆σ̄)dir
i < 0 shows the unloading of the element i from

the other elements. Therefore, to include the unloading of the elements whose

(∆σ̄)dir
i < 0, the sensitivity matrix, only in Eq. (5.40) is replaced with the

modified sensitivity matrix, (∇σ̄)M, whose rows (i) are defined as follows

(∇σ̄)Mi
=


(∇σ̄)i if (∆σ̄)dir

i > 0

(∇σ̄)Di if (∆σ̄)dir
i < 0

. (5.55)

Definition of the modified sensitivity matrix as in Eq. (5.55) permits the

equivalent stresses of the unloaded elements to sit below the nominal stress.

The updated elastic moduli is then obtained as

∆E = ((∇σ̄)M)−1 (∆σ̄). (5.56)

Eqs. (5.54) to (5.56) are repeated until no difference between two consecutive

sets of ∆E is seen. Thereafter, the final updated set of elastic moduli will be

used in Eqs. (5.42) to (5.48).

• In the control of the stress overshooting, there is a possibility that the factor

γmin becomes very small if the stress overshooting for an element k whose

equivalent stress is slightly below the nominal stress occurs. This might have

a negative effect on the convergence of the method. To prevent this, another

condition is considered. When γmin is computed as less than 0.001βmin, which

represents the occurrence of the mentioned stress overshooting, the nominal

stress is decreased by slightly increasing the parameter λ such that the element

k is included in the active set. Thereafter, this iteration is repeated once

more. This prevents the sudden changes of γmin factor, and allows a smooth

monotonic limit load curve to be obtained.

• Similar to the ECM, the Poisson’s ratio should be taken as close to 0.5 to

represent the incompressibility. This is achieved by implementing the selective
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integration scheme for the low-order elements and by the use of ν = 0.499 as

in the MECM described in chapter 3.

• Similar to the ECM, the suitable choice of the parameter λ is also of impor-

tance. Though, all choices of λ ∈ (0, 1) lead to a smooth monotonic limit load

solutions, the values of converged solutions are different for different values

of λ. High values of λ result in the lower converged collapse loads which are

far away from the actual collapse load, However, the small values of it lead

to converged solutions which are close enough to the true collapse load of the

structure. In this thesis the value of 0.01 for λ is proposed, which makes the

scheme suitable for practical engineering application. More discussions are

provided in the section 5.4.1.1.

The pseudo code summarizing key steps underlying the sensitivity-based ECM is

prescribed below:

Step 0: Initialization

• At iteration r = 1, initialize: tolerances ε1 and ε2, λ = 0.01, yielding limit σ0,

and the elastic Young’s modulus vector E1

• Construct a finite element model, and assemble the global nodal forces vector

and global stiffness matrix associated with 2D (or 3D) structure.

Step 1: Iterative elastic analyses

• If r = 1 obtain the equivalent stresses σ̄r=1 from a linear elastic analysis;

otherwise use the estimated σ̄r.

• Using the finite element solution and σ̄r, obtain/update the variables {σrn (Eq.

(5.39)), Sactive, Snon−active, ∇σ̄ (Eq. (5.6)), Hi (Eq. (5.4)) for all i = 1 to n

finite elements, ∆σ̄ (Eq. (5.41)), (∇σ̄)D (Eq. (5.52)), (∇σ̄)H (Eq. (5.53))} in

order.



CHAPTER 5. A NOVEL SENSITIVITY-BASED ECM FOR THE COLLAPSE LOAD
DETERMINATION OF STRUCTURES USING THE FINITE ELEMENT METHOD 180

• Compute ∆E based on Eq. (5.40).

• Compute (∆σ̄)dir. (Eq. (5.54)) and (∇σ̄)M (Eq. (5.55)) and update ∆E

based on Eqs. (5.54) to (5.56); repeat the step until no difference between two

consecutive sets of ∆E is seen.

• Compute the variables (βmin, σ̄r+1, σ̄r+1
m , γmin) in order and based on Eqs.

(5.42) to (5.46).

• Update the variables (σ̄r+1 and Er+1) using Eqs. (5.47) and (5.48).

• Compute αr, and update ∆ using Eqs. (5.49) and (5.50).

Step 2: Termination

• If ∆ < ε2, terminate. Take αcol = αr.

• Else, update r = r + 1 and go to step 1.

It is useful to make some remarks regarding the MATLAB implementation of our

proposed sensitivity-based ECM as follows.

• The constructions of the sensitivity and Hessian matrices are the most time-

consuming parts of the proposed scheme and require high amount of com-

putational resources. This is due to two reasons. First, the derivatives of

stresses depend on the nodal displacement derivatives. In computation of no-

dal displacements derivatives, Eq. (5.13) should be solved for all of the finite

elements (or at least for the elements in the active set) at each iteration. In

other words, at each iteration, a large number of additional systems of linear

equations, whose quantity is proportional to the number of elements (or at

least to the number of elements in active set), needs to be solved. This impo-

ses a lot of computational cost at each iteration, especially for systems with

large number of elements. Secondly, the computation of the sensitivity matrix

from the nodal displacement derivatives is also time consuming, as calculating
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of equivalent stress derivatives from Eqs. (5.16) to (5.19) is computationally

taxing. The computations of the Hessian matrix is even significantly more

time consuming, as for each of the elements, an n× n matrix (or at least l× l

matrix, where l shows the number of elements in the active set) should be

obtained at each iteration. Therefore, for the full calculation of the Hessian

matrices n3 terms (or at least nl2 terms) need to be computed which is l times

more than the computations of the sensitivity matrix.

In this thesis a significant reduction in computational time is enforced in cal-

culation of these two matrices. For the sensitivity matrix, considering the fact

that only the elastic moduli of the elements in the active set are changing,

the derivatives are only obtained with respect to the elastic moduli of these

activated elements. The set of additional systems of linear equations imposed

by Eq. (5.13) are efficiently solved by the use of the backslash “\” command

and in a matrix form. That is

∇uG = KG\F̄G (5.57)

, where ∇uG is the matrix of derivatives of nodal displacements with respect

to the elastic moduli of elements in the active set and in a system with d

degrees of freedom is as follows

∇uG = ∂uG

∂E
=



∂u1
∂ESactive(1)

∂u1
∂ESactive(2)

· · · ∂u1
∂ESactive(l)

∂u2
∂ESactive(1)

∂u2
∂ESactive(2)

· · · ∂u2
∂ESactive(l)

... ... . . . ...
∂ud

∂ESactive(1)

∂ud
∂ESactive(2)

· · · ∂ud
∂ESactive(l)


. (5.58)

F̄G in Eq. (5.57) is the matrix of pseudo forces defined as

F̄G =
[

∂KG

∂ESactive(1)
uG

∂KG

∂ESactive(2)
uG . . .

∂KG

∂ESactive(l)
uG

]
(5.59)
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, where each term of ∂KG
∂ESactive(k)

uG is a vector of pseudo forces. The computation

of these pseudo forces are also quick, as for each vector k only the values of the

element Sactive(k) need to be obtained; the rest of the entries are zero. That is

∂KG

∂ESactive(k)
uG =

n∑
i=1

f̄ iSactive(k) (5.60)

, where

f̄ iSactive(k) =


∂Ki

∂ESactive(k)
ui if i = k

O if i 6= k

(5.61)

Computations of the nodal displacement derivatives with respect to all the

elastic moduli in the active set in the form of 5.57 is much faster than obtaining

individual vectors of ∂uG
∂ESactive(k)

for all k = 1 to l in a loop, and saves computing

time.

For further reduction in computing time, the nodal displacement derivatives

∇uG obtained at each time is stored and overwritten at each iteration and

used later for computations of the sensitivity matrix. Although this action

reduces the computing time of the sensitivity matrix significantly, it increases

the computational resources demand at each iteration.

To reduce the computational cost of the Hessian matrix, in addition to the

similar actions applied on calculation of the sensitivity matrix, a simple as-

sumption is made and only the diagonal terms of the Hessian matrices are

obtained at each iteration. This assumption is acceptable with high level of

precision, as the effect of the off-diagonal terms in each Hessian matrix in

computing the second order term of Taylor series expansion is quite small and

therefore negligible. This reduces the number of computation terms from nl2

to nl, which is the same as for the sensitivity matrix.

• Similar to the MECM described in chapter 3, the element stiffness matrices

are computed only once in the first iteration, and stored. In the subsequent
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iterations, their factored matrices will be used for assembling the total stiffness

matrix. Similarly, the element stiffness matrix derivatives can be obtained for

all elements only once at the first iteration and stored. However, in case of

the need for computational resources, they can be simply obtained at each

iteration based on Eq. (5.12) by simply dividing the previously stored element

stiffness matrices by the elastic modulus of the elements.

5.4 Numerical Examples

To illustrate the performance of the proposed non-local sensitivity-based ECM, three

2D benchmarks and three 3D examples used in chapter 3 are considered. The

accuracy of the results is validated by comparing them with the reported solutions.

In all examples, λ = 0.01, and the incompressibility is considered by the use of

ν = 0.499. The low-order four-node elements in case of 2D problems and the eight-

node brick elements in case of 3D problems are employed. To reduce the burden

of computations, the selective one-point integration scheme is implemented. The

tolerance for stopping the iteration is considered as ε2 = 1 × 10−6. The analysis

procedures are implemented within a MATLAB programming environment.

5.4.1 2D Examples

5.4.1.1 Prandtl’s punch problem

The first example is the well-known Prandtl’s punch problem dealing with the semi-

infinite body under a punch load as in Fig. 3.1a, which was discussed in sections

2.2.7, 3.3, 3.4, and 3.5.1.1. The perfectly plastic Tresca material and plain strain

condition were adopted. The initial elastic modulus was E = 10000 whose unit is

the same as the stress unit. The ratio of the analytical collapse load multiplier to

the yield stress (i.e. αcol

σ0
) is given as 2.5708.

Due to the symmetry, only half of the structure was modeled using low order
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Figure 5.7: Iterative scheme for the Prandtl’s punch problem with 2048 finite elements
using the proposed sensitivity-based ECM

four-node finite elements. The model is exactly the same model used in chapter 3,

and its schematic figure is illustrated in Fig. 3.6b, where each element was further

subdivided into 16 similar elements (Fig. 3.6c). In total, 2048 elements, 2145 nodes,

4290 DOFs and 2048 integration points were used. The mesh convergence study will

be later performed.

The proposed sensitivity-based ECM was implemented on the problem, and the

normalized load multipliers αr

σ0
were monotonically increased and converged to the

normalized collapse load solution of αcol

σ0
= 2.6449, which is 2.88% higher than the

analytical solution. The iterative scheme is also plotted in Fig. 5.7. As seen, the

curve is monotonically increasing and there is no drops in the curve anymore (in

comparison to Fig. 3.7 in chapter 3), which led the convergence to be defined on

the load multipliers directly.

The plots of stress and elastic modulus distributions corresponding to the collapse

load solution are displayed in Fig. 5.8, where the smallest values of the elastic

moduli belong to the elements contributing to the collapse mechanism. The scaled

displacement field is also displayed in Fig. 5.9.
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Figure 5.8: Stress and elastic modulus distributions for the Prandtl’s punch problem with
2048 finite elements using the proposed sensitivity-based ECM (a) stress distribution (b)
elastic modulus distribution

Figure 5.9: The schematic displacement field for the Prandtl’s punch problem with 2048
finite elements using the proposed sensitivity-based ECM
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The effect of the parameter λ on the collapse load solutions was also investigated

for this problem. Fig. 5.10 shows the iterative scheme for different values of λ. As

illustrated, the increasingly monotonic trend is achieved regardless of the value of λ.

However, the larger values of λ lead to the collapse load solutions which are smaller

than the true collapse load. As the λ values are decreased, the collapse load solutions

are increased and the maximum collapse load solution is obtained for the smallest

value of λ = 0.001. However, this maximum collapse load is obtained at the expense

of the high computational cost due to the high number of iterations (viz. roughly

950 iterations). The collapse load solution for the proposed λ = 0.01 is only 0.42%

less than this maximum collapse load solution (i.e.
(
αcol

σ0

)
λ=0.01

∼= 0.994
(
αcol

σ0

)
λ=0.001

,

but requires almost one-thirds of the number of iterations required for λ = 0.001

(viz. 340 iterations). The collapse load solution for λ = 0.05 is also close enough to(
αcol

σ0

)
λ=0.001

, however it almost demands the same number of iterations required for

λ = 0.01 (i.e. 320 iterations), and therefore λ = 0.01 is superior. The precision of

the accuracy reduces for larger values of λ.

The variation of the collapse load multiplier with respect to different FE dis-

cretizations was also investigated. The results are tabulated in Table 5.1, where

the last column shows the error between the obtained collapse load solution and the

analytical one. As seen, by increasing the number of elements, the element mesh size

is reduced, and the collapse load solution is decreased. This is due to the fact that

the yield conformity is better satisfied as the number of elements (and therefore the

integration points) are increased. Fig. 5.11 also displays this variation. Considering

the robust behavior of the sensitivity-based ECM, a two-term power series is fit on

the obtained collapse load solutions, and its equation is shown on the Fig. 5.11a.

Based on the fit curve, the collapse load solution is converged to the final collapse

load solution of
(
αcol

σ0

)
conv.

= 2.57, which is 0.03% lower than the analytical solution

and therefore safe. Fig. 5.11b also plots the error, eα, between this converged solu-

tion and the collapse load solutions obtained for different FE discretizations, where
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Figure 5.10: The influence of λ on the iterative scheme of the proposed sensitivity-based
ECM

eα is defined as

eα =
|
(
αcol

σ0

)
conv.
− αcol

σ0
|(

αcol

σ0

)
conv.

(5.62)

Fig. 5.11 also shows that although the proposed sensitivity-based ECM is a

lower bound method, it is not a strict lower bound scheme (similar to the MECM).

However, the converged collapse load solution shows that the strict lower bound

solution is obtainable only if sufficient number of elements is used.

Table 5.1: The collapse load solutions of the Prandtl’s punch problem for different FE
discretizations using the proposed sensitivity-based ECM

No. of elements (NE) element mesh size (h) αcol

σ0
error%

32 1.00000 3.1912 24.13
128 0.25000 2.8627 11.35
512 0.06250 2.7234 5.94
2048 0.01563 2.6449 2.88
8192 0.00391 2.6069 1.40
32768 0.00098 2.5804 0.37
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Figure 5.11: Variation of collapse load solutions of the Prandtl’s punch problem for
different FE discretizations using the proposed sensitivity-based ECM (a) variation with
the number of elements (b) error with respect to the extrapolated converged solution
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Figure 5.12: Iterative scheme for the notched specimen with 1024 finite elements using
the proposed sensitivity-based ECM

5.4.1.2 Double-edge notched specimen

The second 2D example is the double edge notch tensile specimen under the plain

strain and perfectly-plastic von Mises conditions, which was described in chapter 3

in section 3.5.1.2. The geometry and loading conditions are shown in Fig. 3.13a.

The ratio of the collapse load multiplier to the yield stress (i.e. αcol

σ0
) is reported

as 4.6749 [89]. The schematic and actual structural finite element models are also

shown in Figs. 3.13b and 3.13c, respectively. Due to the symmetric nature of the

problem, only a quarter of the problem was modeled. In total, 1024 elements, 1089

nodes, 2178 DOFs and 1024 integration points were considered.

The proposed sensitivity-based ECM was performed on the model, and the ite-

rative scheme as shown in Fig. 5.12 is free from oscillation. The normalized load

multipliers are monotonically increased and converged to the normalized collapse

load solution with the value of αcol

σ0
= 4.7812, which is some 2.27% higher than the

reported solution.

The equivalent stress and elastic moduli distributions associated with the collapse

load are also plotted in Fig. 5.13, which agree well with the reported mechanism
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Figure 5.13: Stress and elastic modulus distributions for the notched specimen with 1024
finite elements using the proposed sensitivity-based ECM (a) stress distribution (b) elastic
modulus distribution

Figure 5.14: The schematic displacement field for the notched specimen with 1024 finite
elements using the proposed sensitivity-based ECM

[87]. The related displacement field is also plotted in Fig. 5.14.

The influence of the FE discretizations on the collapse load solution was also in-

vestigated on the problem. The results are shown in Table 5.2. As seen, the collapse

load solutions are decreased and converged to a value below the reported collapse

load solution, due to the better satisfaction of the yield conformity in fine mes-

hes. Fig. 5.15 also displays these variations. Fig. 5.15a shows the two-term power

series fitted to the obtained scattered collapse load solutions, and Fig. 5.15b pre-

sents the error of the solutions with respect to the converged collapse load solution,(
αcol

σ0

)
conv.

= 4.602, which is some 1.56% lower than the reported solution.
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Table 5.2: The collapse load solutions of double-edge notched specimen for different FE
discretizations using the proposed sensitivity-based ECM

No. of subdomains (NE) element mesh size (h) αcol

σ0
difference%

4 0.5 7.2569 55.23
16 0.25 5.8766 25.70
64 0.125 5.2982 13.33
256 0.0625 4.9687 6.28
1024 0.03125 4.7812 2.27
4096 0.015625 4.6714 -0.07
16384 0.0078125 4.6231 -1.11
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Figure 5.15: Variation of collapse load solutions of the notched specimen for different FE
discretizations using the proposed sensitivity-based ECM (a) variation with the number
of elements (b) error with respect to the extrapolated converged solution
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Figure 5.16: The FE model of the perforated plate with 600 elements

5.4.1.3 Perforated plate problem

The third 2D example is the plain stress perforated plate mentioned in section

3.5.1.3 under the perfectly plastic von Mises condition. The geometry and loading

are shown in Fig. 3.19a. Here, a finite element model with 600 elements, 651 nodes,

1302 DOFs, and 600 integration points was considered. Fig 5.16 shows this finite

element model. A convergence study will be later performed for this example.

The sensitivity-based ECM was performed on the model. The iterative scheme

is plotted in Fig. 5.17. As illustrated, the normalized load multipliers are monoto-

nically increased and converged to the collapse load solution of αcol

σ0
= 0.8076, which

is just some 0.95% higher than the analytical solution
(
αcol

σ0

)
ref

= 0.8.

The equivalent stresses and elastic moduli distributions for the problem are also

displayed in Fig. 5.18. The scaled displacement field representing the schematic

collapse mechanism is also shown in Fig. 5.19.

To compare the non-local sensitivity-based ECM and the local MECM in distri-

buting the plasticity in the domain, contour plots of normalized stiffness (Ei/E0),

with E0 being the original elastic modulus of the material) at a few iterations for

both methods are shown in Fig. 5.20. As seen, the MECM has produced more

heterogeneous contour plots for all shown iterations in comparison to the propo-
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Figure 5.17: Iterative scheme for the perforated plate with 600 finite elements using the
proposed sensitivity-based ECM

sed sensitivity-based ECM. Additionally, the collapse shear band in the non-local

sensitivity-based ECM is captured better compared to the local MECM.

The effect of the number of elements on the final collapse load solution was

also studied. Five uniform discretizations were considered ranging from a coarse

mesh (with 120 elements) to a fine mesh (with 33280 elements). The results are

illustrated in Table 5.3. As expected, the collapse load solutions are decreased by

increasing the number of elements. This is because of the better satisfaction of the

yield conformity throughout the whole domain. Fig. 5.21 also shows this pattern.

Fig. 5.21a displays the fitted two-term power series on the obtained collapse load

solutions, and Fig. 5.21b shows the error between these solutions and the converged

collapse load solution,
(
αcol

σ0

)
conv.

= 0.7994, which is 0.075% lower than the analytical

solution, and therefore safe.

Fig. 5.21 also illustrates that although the proposed sensitivity-based ECM is a

lower bound scheme (see Fig. 5.17), it is not a strict lower bound method (similar

to the MECM). However, the converged collapse load solution shows that the strict

lower bound solution is obtainable only if sufficient number of elements is used.

To show the advantageous performance of the proposed sensitivity-based ECM
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Figure 5.18: Stress and elastic modulus distributions for the perforated plate with 600
finite elements using the proposed sensitivity-based ECM (a) stress distribution (b) elastic
modulus distribution

Figure 5.19: The scaled displacement field for the perforated plate with 600 finite elements
using the proposed sensitivity-based ECM

Table 5.3: The collapse load solutions of the perforated plate for different FE discretiza-
tions using the proposed sensitivity-based ECM

No. of elements (NE) αcol

σ0
error%

120 0.8168 2.10
600 0.8076 0.95
2080 0.8041 0.51
8320 0.8019 0.24
33280 0.8007 0.09
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Figure 5.20: Normalized elastic moduli distribution for both MECM and sensitivity-based ECM
for the perforated plate with 600 finite elements at different iterations
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Figure 5.21: Variation of collapse load solutions of the perforated plate problem for
different FE discretizations using the proposed sensitivity-based ECM (a) variation with
the number of elements (b) error with respect to the extrapolated converged solution
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Figure 5.22: Iterative scheme for the perforated plate with 33280 finite elements using
the proposed sensitivity-based ECM

in controlling the oscillations, the iterative sensitivity-based ECM for the same finite

element model used at the beginning of this chapter in section 5.1 is also shown in

Fig. 5.22, where 33280 elements, 33649 nodes, 67298 DOFs, and 33280 integration

points were considered. As illustrated, the oscillations in Fig. 5.1 do not appear

anymore. The equivalent stresses and elastic moduli distributions for this mesh are

also displayed in Fig. 5.23.

5.4.2 3D Examples

5.4.2.1 Thick cylinder

The first 3D example considers the mentioned thick cylinder in section 3.5.2.1 in

chapter 3 under the uniform pressure. The geometry and mesh are shown in Fig.

3.25. In total 2016 elements, 2639 nodes, 7917 DOFs and 2016 integration points

were considered.

The proposed sensitivity-based ECM was performed on the model, and the ite-

rative scheme is shown in Fig. 5.24. The ratio of the load multiplier to the yield

stress is monotonically increased and converged to the value of αcol

σ0
= 0.8023, which

is only some 0.24% higher than the analytical solution of αcol

σ0
= 0.8003.
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Figure 5.23: Stress and elastic modulus distributions for the perforated plate with 33280
finite elements using the proposed sensitivity-based ECM (a) stress distribution (b) elastic
modulus distribution
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Figure 5.24: Iterative scheme for the thick cylinder with 2016 elements using the proposed
sensitivity-based ECM
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Table 5.4: The collapse load solutions of the thick cylinder for different FE discretizations
using the proposed sensitivity-based ECM

No. of elements (NE) αcol

σ0
error%

252 0.8076 0.91
756 0.8056 0.65
2016 0.8023 0.24
4725 0.8019 0.19

The equivalent stress and elastic moduli distributions are also plotted for the

problem in Fig. 5.25, which agree well with the theoretical collapse mechanism,

where the collapse happens due to the yielding of all elements.

The effect of the number of elements on the collapse load solution is also tabu-

lated in Table 5.4. The results are also shown in Fig. 5.26, where the collapse load

solutions are decreased by increasing the number of elements due to the better satis-

faction of the yield condition. The curve fitting is not implemented on the scattered

obtained solutions, as only the results of four meshes were obtained due to the high

computational time and resources needed for finer uniform meshes.

5.4.2.2 Hollow sphere

The second 3D example considers a homogeneous hollow sphere under the uniform

pressure mentioned in section 3.5.2.2 in chapter 3. The geometry and loading and

the associated finite element model are all shown in Fig. 3.30. Due to the symmetric

nature of the problem only an octant of it was modeled. In total, 2916 elements,

3523 nodes, 10569 DOFs and 2916 integration points were employed.

The proposed sensitivity-based ECM was implemented, and the normalized load

multipliers were monotonically increased and converged to the value of αcol

σ0
= 2.2045,

which is some 0.34% higher than the analytical solution
(
αcol

σ0

)
ref

= 2.197. The

iterative scheme of the method is shown in Fig. 5.27

The variation of the collapse load solution with the number of elements was

also investigated. Four meshes ranging from a course mesh to a relatively fine mesh

were considered, where the meshes were uniformly discretized. The sensitivity-based
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Figure 5.25: Stress and elastic modulus distributions for the thick cylinder with 2016
finite elements using the proposed sensitivity-based ECM (a) stress distribution (b) elastic
modulus distribution
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Figure 5.26: Variation of collapse load solutions of the thick cylinder for different FE
discretizations using the proposed sensitivity-based ECM
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Figure 5.27: Iterative scheme for the hollow sphere with 2916 elements using the proposed
sensitivity-based ECM
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Figure 5.28: Stress and elastic modulus distributions for the hollow sphere with 2916
finite elements using the proposed sensitivity-based ECM (a) stress distribution (b) elastic
modulus distribution
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Table 5.5: The collapse load solutions of the hollow cylinder for different FE discretiza-
tions using the sensitivity-based ECM

No. of elements (NE) αcol

σ0
error%

252 2.2541 2.60
864 2.2103 0.61
2916 2.2045 0.34
6912 2.2000 0.14
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Figure 5.29: Variation of collapse load solutions for the hollow cylinder for different FE
discretizations using the sensitivity-based ECM

ECM was performed on each of them and the results are presented in Table 5.5. As

seen, the collapse load solution is decreased by increasing the number of elements

due to the better satisfaction of yield conformity in the domain. Fig. 5.29 also plots

this variation. It should be noted that the curve fitting is not implemented on this

3D example due to the lack of sufficient meshes. The reason for this, is the high

amount of the computational time and more importantly resources required for the

finer meshes.

5.4.2.3 Defected pipeline

The third 3D example is the defected pipeline used in section 3.5.2.3. The geometry

and loading is presented in Fig. 3.35. Two finite element models of the problem are

also shown in Fig. 3.36, where the course mesh (case a) consists of 316 elements, 558

nodes, 1674 DOFs and 316 integration points and the finer mesh (case b) considers

2528 elements, 3437 nodes, 10311 DOFs, and 2528 integration points.
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Figure 5.30: The iterative schemes for the defected pipeline using the proposed sensitivity-
based ECM (a) case a with 316 FEs (b) case b with 2528 FEs

The proposed sensitivity-based ECM was performed on both of the finite ele-

ment models, and the iterative scheme is plotted for both of the meshes in Fig.

5.30. The load multipliers for both of the discretizations are monotonically incre-

ased and converged to αcol = 75.9201 in case a and αcol = 69.7553 in case b. The

proposed approach provides good accuracy of the collapse load results, as the solu-

tions computed agree well with the reference values reported from various numerical

algorithms, namely αcol
ref = 64.05 using the incremental method [92], αcol

ref = 67.13

the kinematic method [86], and αcol
ref = 63.42 the static method [92].

The equivalent stress and elastic modulus distributions for the mesh in case b

are displayed in Fig. 5.31, where the elastic modulus adjustment is started from the

elements in the defected area and then distributed to the adjacent elements. The

schematic collapse mechanism for the structure in case b is also plotted in Fig. 5.32.

5.5 Conclusion and Remarks

In this chapter, the source of the oscillations in the MECM described in chapter

3 was presented. In particular, the stress overshooting phenomenon, which might

lead to drops in the limit load curve, was investigated. The presence of drops in the

limit load curve prevents the convergence to be defined in the limit load, explaining

why the number of iterations is used as the convergence criterion for the ECM or
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Figure 5.31: Stress and elastic modulus distributions for the defected pipeline with 2528
finite elements using the proposed sensitivity-based ECM (a) stress distribution (b) elastic
modulus distribution

Figure 5.32: The collapse mechanism for the defected pipeline with 2528 finite elements
using the proposed sensitivity-based ECM
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MECM.

The robust sensitivity-based ECM was then proposed and explained, which pro-

duces an oscillation-free scheme for the determination of the collapse load multiplier.

The contribution of all elements in each iteration is considered through the defini-

tion of the sensitivity matrix, and the equivalent stresses of all elements in the next

iteration are linearly estimated at the current iteration. By having the predicted

equivalent stresses, the overshooting of them can be prevented by multiplying the

vector of elastic moduli changes by a factor less than 1. This guarantees the non-

oscillatory behavior of obtained load multipliers. A number of 2D and 3D examples

were provided, which verify the robustness and accuracy of the proposed scheme.

The sensitivity-based ECM is robust, and therefore superior to the MECM. It,

however, demands more computational time and resources in comparison to the

ECM and MECM due to the fact that the equivalent stress derivatives for all the

elements are required to be obtained at each iteration. Although a significant re-

duction in computing time was achieved in the MATLAB implementation of the

methodology; however, it is still computationally demanding for large-size structu-

res.

In the next chapter, the sensitivity-based ECM is extended to the SBFEM to use

the advantages it offers such as auto-mesh construction for 2D and 3D structures.

In particular, the adaptive sensitivity-based ECM is proposed which reduces the

need for the computational resources by the use of adaptive meshes produced by

the SBFEM.



Chapter 6

A SENSITIVITY-BASED ECM

FOR THE COLLAPSE LOAD

DETERMINATION OF

STRUCTURES USING THE

SCALED BOUNDARY FINITE

ELEMENT METHOD

6.1 Introduction

The sensitivity-based ECM introduced in last chapter was found to be robust and

accurate for the collapse load determination of structures using the FEM. It was

observed that the level of the accuracy of the results is dependent on the quality of

the employed mesh. In general, a more accurate (and safer) collapse load solution

can be obtained by using uniform fine meshes. The use of uniform mesh in the

sensitivity-based ECM does incur a computing cost, primarily in the effort required

for the calculation of derivatives for all elements. Additionally, construction of a

207



CHAPTER 6. A SENSITIVITY-BASED ECM FOR THE COLLAPSE LOAD DETERMINATION OF
STRUCTURES USING THE SCALED BOUNDARY FINITE ELEMENT METHOD 208

high quality uniform fine mesh, specifically for 3D structures, is a tedious and time-

consuming task.

In the present chapter, firstly, the sensitivity-based ECM is extended to em-

ploy the SBFEM described in chapter 4. This allows the use of automatic (quad-

tree/octree) mesh generator schemes. Therefore, a high quality mesh from an in-

plane solid (in 2D problems) or of a solid 3D CAD (STL) model (in 3D problems)

can be automatically constructed, which effectively reduces the burden of the mesh

generation. This leads to a two-part fully automatic scheme which can robustly

determine the collapse load of the structures and minimizes the need for the user

to interfere. In the first part, the mesh is automatically generated to comply with

the geometry and loading of the structures using quadtree/octree frameworks and

the SBFEM. In the second part, the collapse load of the structure, for the ge-

nerated mesh, is automatically and robustly computed using the sensitivity-based

ECM. This allows the definition of the convergence criterion directly on the limit

load curve, removing the need of the user for finding the right number of iterations

required for traditional ECMs.

Secondly, an adaptive sensitivity-based ECM is proposed for 2D problems to

reduce the demands for computational resources associated with the uniform refi-

nement. This is achieved by the use of polygonal scaled boundary finite elements

along with the quadtree framework, which allows the efficient construction of adap-

tive meshes. The use of these adaptive meshes leads to a reduction in the size of

the problem and leads to a significant gain in computational resources required for

the sensitivity-based ECM.

The organization of this chapter is as follows. Section 6.2 explains the SBFE

implementation of the sensitivity-based ECM for 2D and 3D structures. The de-

velopment of the adaptive sensitivity-based ECM is described in section 6.3. The

numerical examples are then presented in section 6.4 which validate the accuracy

and efficiency of the proposed schemes. Finally, conclusions of the present chapter

are stated in section 6.6.
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6.2 SBFE Implementation of the Sensitivity-based

ECM

The scaled boundary finite element implementation of the sensitivity-based ECM is

similar to its finite element implementation discussed in last chapter. The structural

system is automatically discretized into n subdomains using the quadtree or octree

framework described in chapter 4 of this thesis, where each subdomain is constructed

by some line elements (in 2D spaces) or some surface elements (in 3D). At each

iteration r, an elastic SBFE analysis is carried out and the nodal displacements uG

are obtained, and then the stress and strain tensors (i.e. εi and σi, respectively)

for all of the subdomains i = {1, 2, . . . , n} are computed. To reduce the cost of the

computations, the stresses and strains are only obtained at the scaling center of the

subdomains. The equivalent stresses at the scaling center of subdomains σ̄r for the

von Mises or Tresca yielding conditions are only computed at the first iteration.

By having this information, the sensitivity matrix ∇σ̄ and the Hessian matrices

Hi of all subdomains i = {1, 2, . . . , n} can be obtained as per section 5.3.2.1 with

two minor justifications as follows:

(1) Eq. (5.10) is not applicable to the SBFE formulation for obtaining the

subdomain stiffness matrix. However, the derivative of the stiffness matrix of the

subdomain i with respect to the change in elastic modulus of the subdomain j

can still be obtained from Eq. (5.12). As discussed in chapter 4, this is due to

the fact that the stiffness matrix of a subdomain has linear relationship with its

elastic modulus. Accordingly, the discussion provided for the second derivatives of

the element stiffness matrix for the calculation of the Hessian matrices of elements

in Eqs. (5.25) to (5.28) is also valid for the calculation of Hessian matrices for

subdomains in the SBFEM.

(2) The derivatives of strains of the subdomain i with respect to the elastic

modulus of the subdomain j in the SBFEM is similar to Eq. (5.14), and are defined
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as follows
∂εi
∂Ej

= B̄i
∂ui
∂Ej

(6.1)

, where B̄i is a matrix representing the strain-displacement relationship for the

subdomain i and is defined as per Eqs. (4.41) and (4.42) for 2D and 3D spaces,

respectively. Similarly, the second derivatives of strains in a typical subdomain i

with respect to changes in elastic moduli of elements j and k can be obtained as

∂2εi
∂Ej∂Ek

= B̄i
∂2uG

∂Ej∂Ek
. (6.2)

The stress distributions in the domain is then carried out by changing the elastic

moduli of the subdomains in the active set, Sactive, whose equivalent stresses sit above

the nominal stress σrn at iteration r, defined in Eq. (5.39). The complementary

set of the active set, is the non-active set, Snon−active, including all subdomains

whose equivalent stresses sit below the nominal stress. The change of elastic moduli

in subdomains, ∆E, is initially obtained from Eqs. (5.40) and (5.41), and then

is recursively updated based on Eqs. (5.51) to (5.56) to consider the probable

unloading of some subdomains. The repetitions are continued until no difference

between two consecutive ∆E is observed.

By having the elastic moduli of the subdomains, the equivalent stresses of all

subdomains at their scaling centers in the next iteration can be initially obtained as

follows

σ̄r+1 = σ̄r + βmin × (∇σ̄) (∆E) (6.3)

, where βmin is the minimum amount of βi coefficients obtained from Eq. (5.42),

ensuring that all computed elastic moduli are sufficiently small for the linear approx-

imation of the equivalent stresses. The factor ε1 in Eq. (5.42) is taken as 2.5× 10−2

as in the finite element implementation of the sensitivity-based ECM. To prevent

the stress overshooting, the predicted equivalent stresses of the non-active subdo-

mains should be less than the predicted equivalent stress of the subdomainm having
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the maximum predicted equivalent stress of the subdomains in the active set (i.e.

σ̄r+1
m = max

(
σ̄r+1

Sactive

)
). The scheme simply imposes this condition by reducing the

vector of elastic moduli changes by the factor γmin defined in Eqs. (5.45) and (5.46).

The final predicted equivalent stresses and elastic moduli for all of the subdomains,

which will be used in the next iterations are defined as

σ̄r+1 = σ̄r + βmin × γmin × (∇σ̄) (∆E) , (6.4)

and

Er+1 = Er + βmin × γmin ×∆E. (6.5)

Finally, the load multipler αr and the convergence criterion at iteration r, can be

defined based on the Eqs. (5.49) and (5.50) as per the finite element implementation

of the sensitivity-based ECM.

The pseudo code summarizing the key steps underlying the sensitivity-based

ECM is prescribed below:

Step 0: Initialization

• At iteration r = 1, initialize: tolerances ε1 and ε2, λ = 0.01, yield limit σ0,

and elastic Young’s modulus vector E1.

• Construct the SBFE model using the quadtree/octree framework, and assem-

ble the global nodal forces vector and global stiffness matrix associated with

2D (or 3D) structure.

Step 1: Iterative elastic analyses

• If r = 1 obtain the equivalent stresses σ̄r=1; otherwise, use the estimated σ̄r.

• Using the scaled boundary finite element solution and σ̄r, obtain/update the

variables {σrn (Eq. (5.39)), Sactive, Snon−active, ∇σ̄ (Eq. (5.6)), Hi (Eq. (5.4))

for all i = 1 to n SBFEs, ∆σ̄ (Eq. (5.41)), (∇σ̄)D (Eq. (5.52)), (∇σ̄)H) (Eq.

(5.53)) } in order.
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• Compute ∆E based on Eq. (5.40).

• Compute (∆σ̄)dir. (Eq. (5.54)) and (∇σ̄)M (Eq. (5.55)) and update ∆E

based on Eqs. (5.54) to (5.56); repeat the step until no difference between two

consecutive sets of ∆E is seen.

• Compute the variables (βmin, σ̄r+1, σ̄r+1
m , γmin) in order and based on Eqs.

(5.42) to (5.46).

• Update the variables (σ̄r+1 and Er+1) using Eqs. (6.4) and (6.5).

• Compute αr, and update ∆ using Eqs. (5.49) and (5.50).

Step 2: Termination

• If ∆ < ε2, terminate. Take αcol = αr.

• Else, update r = r + 1 and go to step 1.

6.3 Adaptive Sensitivity-based ECM Using the

SBFEM

Use of adaptive strategies, involving the capability of employing a non-uniform

mesh obtained based on the solution of a numerical scheme, for computation of

the limit load has been the subject of considerable and successful researches (e.g.

[122, 123, 124, 125, 126]). Adaptive improvement of the solution obtained by finite

element methods (SBFEM in this chapter) is achieved by enrichment of the estima-

ted solution in some way, such as refining the mesh, so that the best solution for a

given computational effort can be obtained [127]. The procedure is carried out after

an initial solution is obtained through finding the regions of the domain where the

accuracy is not yet satisfied, and then refining them.

In the proposed adaptive sensitivity-based ECM, initially a basic uniform coarse

mesh is constructed using the SBFEM. Thereafter, the sensitivity-based ECM is
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performed on the mesh to estimate the collapse load solution. In the process, all the

subdomains (cells) which have undergone yielding are identified. These subdomains

are the cells whose elastic moduli are changed during the iterations. A better level

of accuracy, therefore, can be obtained by refining these parent cells into 4 equal

children quadtree cells. This action imposes a hanging node on the adjacent cells, if

they are not identified to be refined too. However, the presence of the hanging node

does not pose a problem to the employed quadtree mesh in the SBFEM, since, as

discussed in chapter 4, each cell is treated as a polygon having an arbitrary number of

sides (Fig. 4.1). Therefore, the imposed hanging node is treated as a normal corner

node in the adjacent polygonal cell. This ability in the quadtree implementation

of the SBFEM allows an efficient adaptive mesh generation and reduces the need

for the high computational resources of it. After the completion of identified parent

cells subdivisions, the 2:1 rule is enforced on the mesh to ensure the balanced grid.

The forces and boundary conditions are applied on the mesh, and the sensitivity-

based ECM is again performed on the structure. The process can be repeated until

a convergence on the collapse load solutions is obtained.

6.4 Numerical Examples

In this section, four 2D problems and five 3D problems were used to illustrate the

performance of the proposed sensitivity-based ECM using SBFEM. In case of 2D

problems, the adaptive sensitivity-based ECM was also implemented to highlight the

superior performance of it in comparison to the uniform refinement and the efficiency

of the SBFEM in handling the hanging nodes. In all examples, λ = 0.01, and the

incompressibility was considered by use of ν = 0.499. The tolerance for stopping the

iterations of sensitivity-based ECM was considered as ε2 = 1 × 10−6. The analysis

procedures were implemented within a MATLAB programming environment.
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Figure 6.1: Prandtl’s punch problem - actual SBFE model

6.4.1 2D Examples

6.4.1.1 Prandtl’s punch problem

The first 2D problem addresses the Prandtl’s punch problem mentioned in sections

2.2.7, 3.3, 3.4, 3.5.1.1, 3.5.1.1, and 5.4.1.1. The geometry and loading are shown

in Fig. 3.1a. The ratio of the analytical collapse load multiplier to the yield stress

(αcol

σ0
) is 2.5708. Due to the symmetry, only half of the structure was modeled using

the scaled boundary finite elements. The schematic model is shown in Fig. 4.14a.

Each subdomain is subdivided into 16 similar subdomains. The actual model is

shown in Fig. 6.1. The model was acquired quite automatically from a 2D solid. In

total, 2048 subdomains, 2145 nodes, 4290 DOFs, and 2048 integration points were

utilized.

The sensitivity-based ECM was performed on the SBFE model and the norma-

lized load multipliers were monotonically increased and converged to the collapse

load solution of αcol

σ0
= 2.6743, which is 4.03% higher than the analytical solution.

The iterative scheme is shown in Fig. 6.2.

The plots of equivalent stress and elastic modulus distributions corresponding to

the collapse load solution are displayed in Fig. 6.3. The scaled displacement field is

also displayed in Fig. 6.4.

The influence of the number of subdomains on the collapse load solution was

also investigated. Six discretizations are uniformly developed ranging from a coarse
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Figure 6.2: Iterative scheme for the Prandtl’s punch problem with 2048 SBFEs using the
sensitivity-based ECM

(a) (b)

Figure 6.3: Stress and elastic modulus distributions for the Prandtl’s punch problem with
2048 SBFEs using the sensitivity-based ECM (a) stress distribution (b) elastic modulus
distribution

Figure 6.4: The schematic displacement field for the Prandtl’s punch problem with 2048
SBFEs using the sensitivity-based ECM
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Table 6.1: The collapse load solutions of the Prandtl’s punch problem for different SBFE
discretizations using the sensitivity-based ECM

Uniform refinement Adaptive refinement

No. of subdomains αcol

σ0
error% No. of subdomains αcol

σ0
error%

32 3.5593 38.45 32 3.5593 38.45
128 3.0056 16.91 101 3.0116 17.15
512 2.7803 8.15 308 2.7833 8.27
2048 2.6743 4.03 887 2.6772 4.14
8192 2.6113 1.58 2783 2.6133 1.65
32768 2.5876 0.65 9323 2.5826 0.46

mesh to a fine mesh. The sensitivity-based ECM was carried out on each of the

models and the final collapse load solutions are shown in Table 6.1. As expected,

the collapse load solutions are reduced by increasing the number of subdomains due

to the better satisfaction of the yield conformity in the whole domain. The variation

of the collapse load solutions for different discretizations is also shown in Fig. 6.5.

A two-term power series was fit on the scattered collapse load solutions in Fig. 6.5b,

which converges to the collapse load solution of
(
αcol

σ0

)
conv.

= 2.576. The variation of

the errors between this converged solution and the obtained collapse load solutions,

eα defined in Eq. (5.62), with respect to the different mesh sizes is also shown in

Fig. 6.5.

The proposed adaptive sensitivity-based ECM was also performed on the ex-

ample. The produced adaptive SBFE meshes are shown in Fig. 6.6, which are

correspondent to the elastic moduli distributions shown in Fig. 6.7. As seen, the

ability of handling the hanging nodes allowed efficient local refinements. The final

collapse load solutions are also tabulated in Table 6.1 for the sake of comparison

with the uniform refinements. In all instances, the adaptive sensitivity-based ECM

requires less computational resources, represented by the number of elements. For

example, the last adaptive mesh with 9323 subdomains converged to the collapse

load solution of αcol

σ0
= 2.5826, which is only 0.46% higher than the true collapse load

solution. However, the corresponding collapse load solution for the uniform mesh

with almost 3.5 times more number of subdomains is αcol

σ0
= 2.5876, which is 0.65%
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Figure 6.5: Variation of collapse load solutions of Prandtl’s punch problem for different
SBFE discretizations using the sensitivity-based ECM (a) variation with the number of
subdomains (b) error with respect to the extrapolated converged solution
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(c) (d)

(e) (f)

Figure 6.6: The produced adaptive meshes for the Prandtl’s punch problem; a) 32 sub-
domains b) 101 subdomains c) 308 subdomains d) 887 subdomains e) 2783 subdomains f)
9323 subdomains

higher than the analytical solution.

Fig. 6.8 shows the variation of the errors eα between the converged solution

and the obtained collapse load solutions for the adaptive meshes. The graph is

also shown for the uniform mesh. The advantageous behavior of using the adaptive

sensitivity-based ECM over its uniform approach is obvious, as almost the same

level of accuracy is achieved using less computational resources.

6.4.1.2 Double-edge notched specimen

The second 2D example considers the double-edge notched specimen provided in

section 3.5.1.2. The geometry and loading are shown in Fig. 3.13a. The normalized

collapse load multiplier for the problem under the shown reference load is reported
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Figure 6.7: The corresponding elastic moduli distributions of the adaptive meshes produ-
ced for the Prandtl’s punch problem; a) 32 elements b) 101 subdomains c) 308 subdomains
d) 887 subdomains e) 2783 subdomains f) 9323 subdomains
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Figure 6.8: Variation of the error eα with the number of subdomains for the Prandtl’s
punch problem using adaptive and uniform refinements

as
(
αcol

σ0

)
ref

= 4.6749 [89]. Due to the symmetric nature of the problem in load

and geometry, only a quarter of it was automatically modeled using SBFEs. The

schematic uniform mesh is shown in Fig. 4.20a, where each subdomain is subdivided

into 16 similar subdomains (Fig. 6.9). In total, 4096 subdomains, 4225 nodes and

8450 DOFs and 4096 integration points were considered.

The proposed sensitivity-based ECM was implemented on the model. The nor-

malized load multipliers were increased monotonically and converged to the norma-

lized collapse load multiplier of αcol

σ0
= 4.6588, which is almost 0.34% lower than the

reported collapse load solution. The iterative scheme is plotted in Fig. 6.10.

The equivalent stress and elastic moduli distribution in domain are also displayed

in Fig. 6.11. The schematic displacement field showing the collapse mechanism is

also plotted in Fig. 6.12.

The effect of the number of subdomains on the collapse load solution was also

studied. Table 6.2 shows the results of this mesh investigation, where the diffe-

rence percentages between the computed solutions and the reported solution are
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Figure 6.9: Double-edge notched specimen - actual SBFE model
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Figure 6.10: Iterative scheme for the notched specimen with 4096 SBFEs using the
sensitivity-based ECM
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Figure 6.11: Equivalent stress and elastic modulus distributions for the notched speci-
men with 4096 SBFEs using the sensitivity-based ECM (a) stress distribution (b) elastic
modulus distribution
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Figure 6.12: The schematic displacement field of the double-edge notched specimen with
4096 SBFEs using the sensitivity-based ECM

Table 6.2: The collapse load solutions of the double-edge notched specimen for different
SBFE discretizations using the sensitivity-based ECM

Uniform refinement Adaptive refinement

No. of αcol

σ0
difference% No. of αcol

σ0
difference%subdomains subdomains

16 6.2601 33.91 16 6.2601 33.91
64 5.5140 17.95 55 5.5234 18.15
256 5.0630 8.30 193 5.0715 8.48
1024 4.8049 2.78 604 4.8146 2.99
4096 4.6588 -0.34 1882 4.6761 0.03
16384 4.5844 -1.94 5758 4.5845 -1.93

also presented. As expected, the collapse load solution is decreased by increasing

the number of elements (reducing the mesh size). Fig. 6.13 also shows this variation.

Fig. 6.13a plots the variation of collapse load solutions with the number of subdo-

mains, where a two-term power series is fitted to them. The fitted plot converges to

the collapse load solution of
(
αcol

σ0

)
conv.

= 4.458, which is some 4.64% less than the

reported solution. Fig. 6.13b also plots the error eα between the converged solution

and the obtained scattered collapse load solutions with the mesh size. As expected,

this error is almost linearly reduced by reduction in mesh size.
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Figure 6.13: Variation of collapse load solutions of the double-edge notched specimen
for different SBFE discretizations using the sensitivity-based ECM (a) variation with the
number of subdomains (b) error with respect to the extrapolated converged solution
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The adaptive sensitivity-based ECM was also performed on the structure. The

produced adaptive meshes are shown in Fig. 6.14. The corresponding elastic moduli

distributions are also plotted in Fig. 6.15. The collapse load solutions are tabulated

in Table 6.2, where the results for uniform discretizations are also shown. Similar

to the uniform refinements, the collapse load solutions are reduced by increasing

the number of subdomains. However, for obtaining approximately the same level

of accuracy, less computational resources, shown by the number of subdomains, are

needed.

The error eα between the converged collapse load solution and the scattered

collapse load solutions were also obtained for both uniform and adaptive produced

meshes and plotted in Fig. 6.16. As seen, the error is reduced by increasing the

number of elements for both approaches. However, the rate of this reduction is

higher for the adaptive scheme, which saves more computational resources for the

user.

6.4.1.3 Perforated plate problem

This 2D example considers the perforated plate problem mentioned in section 3.5.1.3

of chapter 3. The geometry and loading are illustrated in Fig. 3.19a. The plain

stress condition and the von Mises yield criterion were considered. The analytical

normalized collapse load solution is
(
αcol

σ0

)
ref

= 0.8. The uniform structural SBFE

model is shown in Fig. 6.17. In total, 3976 subdomains, 4295 nodes, 8590 DOFs,

and 3976 integration points were utilized.

The proposed sensitivity-based ECM was performed on the structure and the

normalized load multipliers were monotonically increased and converged to the nor-

malized collapse load multiplier of αcol

σ0
= 0.8215, which is some 2.62% higher than

the analytical solution. The iterative scheme is also shown in Fig. 6.18. The equi-

valent stress and elastic moduli distributions corresponding to the obtained collapse

load are also displayed in Fig. 6.19. The associated schematic displacement field

corresponding to the collapse mechanism is also shown in Fig. 6.20.



CHAPTER 6. A SENSITIVITY-BASED ECM FOR THE COLLAPSE LOAD DETERMINATION OF
STRUCTURES USING THE SCALED BOUNDARY FINITE ELEMENT METHOD 225

(a) (b)

(c) (d)

(e) (f)

Figure 6.14: The produced adaptive meshes for the double-edge notched specimen; a) 16
subdomains b) 55 subdomains c) 193 subdomains d) 604 subdomains e) 1882 subdomains
f) 5758 subdomains
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Figure 6.15: The corresponding elastic moduli distributions of the adaptive meshes pro-
duced for the double-edge notched specimen; a) 16 subdomains b) 55 subdomains c) 193
subdomains d) 604 subdomains e) 1882 subdomains f) 5758 subdomains
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Figure 6.16: Variation of the error eα with the number of subdomains for the double-edge
notched specimen using the adaptive and uniform refinements

Figure 6.17: The uniform SBFE model with 3976 subdomains for the perforated plate
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Figure 6.18: Iterative scheme for the perforated plate problem with 3976 SBFEs using
the sensitivity-based ECM

The influence of the number of subdomains on the collapse load solution was also

investigated. Four discretizations were considered, where the models are uniformly

refined to develop coarse to fine meshes. The sensitivity-based ECM using the

SBFEM was applied on each of the discretizations and the results are summarized

in Table 6.3. As can be seen, the collapse load solution is decreased by increasing the

number of subdomains due to the better satisfaction of the yield conformity in the

domain. Fig. 6.21 also shows the variation of the normalized collapse load solution

with respect to the number of subdomains. In Fig. 6.21a a two-term power-series

is fitted to the scattered obtained data, whose equation is shown. The converged

solution based on this fit is
(
αcol

σ0

)
conv.

= 0.7858, which is some 1.13% less than the

analytical solution. The error between this converged collapse load solution and the

obtained collapse load solutions for the uniform discretizations are also depicted in

Fig. 6.21b.

The adaptive sensitivity-based ECM was also performed on the structure. In

addition to the first uniform mesh, three other adaptive meshes produced automa-

tically are shown in Fig. 6.22. The corresponding elastic moduli distribution for

each of the discretizations are also shown in Fig. 6.23. The results of the computed

collapse load solution for each of the cases are also tabulated in Table 6.3. Similar
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(a)

(b)

Figure 6.19: Stress and elastic modulus distributions for the perforated plate problem with
3976 SBFEs using the sensitivity-based ECM (a) stress distribution (b) elastic modulus
distribution

Figure 6.20: The schematic displacement field of the perforated plate problem with 3976
SBFEs using the sensitivity-based ECM
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Figure 6.21: Variation of collapse load solutions of the perforated plate problem for
different SBFE discretizations using the sensitivity-based ECM (a) variation with the
number of subdomains (b) error with respect to the extrapolated converged solution
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Table 6.3: The collapse load solutions of the perforated plate problem for different SBFE
discretizations using the sensitivity-based ECM

Uniform refinement Adaptive refinement

No. of subdomains αcol

σ0
error% No. of subdomains αcol

σ0
error%

256 0.8846 9.56 256 0.8846 9.56
1000 0.8414 4.92 868 0.8418 4.97
3976 0.8215 2.62 2980 0.8201 2.45
15908 0.8038 0.47 10268 0.8023 0.29

to the uniform refinements, the collapse load solutions are decreased by increasing

the number of subdomains. However, in all instances, the adaptive sensitivity-based

ECM requires less computational resources, represented by the number of elements.

Fig. 6.24 also shows the variation of the errors eα between the converged solution

and the obtained collapse load solutions for the produced adaptive meshes. The

graph is also shown for the uniform refinements for the sake of comparison. The

advantageous behavior of using the adaptive sensitivity-based ECM over its uni-

form approach is obvious. Almost the same level of accuracy is achieved using less

computational resources.

6.4.1.4 The square plate with asymmetric penetrations

The final 2D example considers an in-plane square plate with asymmetric penetra-

tions, where its dimensions in mm and uniformly applied loads of P = 1 N/mm are

shown in Fig. 6.25. The structure employed the von Mises materials. The elastic

modulus was initially taken as 2000 MPa whose unit is the same as the stress unit.

This structure was initially implemented by Díez et al. [128] to study the strain

localization in softening viscoplastic solids undergoing large deformations, and later

by Zouain et al. [129] in the context of the shakedown analysis. Makrodimopoulos

and Matrin [130] employed a second-order cone program to capture the strict lower

bound limit, and concluded that the accuracy of the collapse load depends on the

efficiency of the structural discretization around the circumference area of complex
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(a) (b)

(c) (d)

Figure 6.22: The produced adaptive meshes for the perforated plate problem; a) 256
subdomains b) 868 subdomains c) 2980 subdomains d) 10268 subdomains
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Figure 6.23: The corresponding elastic moduli distributions of the adaptive meshes pro-
duced for the perforated plate problem; a) 256 subdomains b) 868 subdomains c) 2980
subdomains d) 10268 subdomains
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Figure 6.24: Variation of the error eα with the number of subdomains for the perforated
plate problem using adaptive and uniform refinements

holes. Muñoz et al [131] implemented an automated adaptive (triangular) finite

element model in the context of the lower bound limit analysis, and highlighted the

difficulties associated with the construction of the structural discrete model.

In the light of the above comments, this example was initially modeled using a

uniform SBFE discretizations. The mesh was automatically constructed out of an

in-plane solid and is shown in Fig. 6.26. The use of polygonal subdomains efficiently

facilitated the discretization around the circumference area of the complex holes, as

the challenges associated with the construction of a mapped mesh were removed.

The sensitivity-based ECM was performed on the model. The normalized load

multipliers were monotonically increased and converged to the normalized collapse

load multiplier of αcol

σ0
= 1.0733, which is 2.02% higher than the reported collapse

load solution
(
αcol

σ0

)
ref

= 1.052 [129]. The iterative scheme is also plotted in Fig.

6.27. The equivalent stress and elastic moduli distributions corresponding to the

collapse load solutions are also displayed in Fig. 6.28. The schematic displacement

field corresponding to the collapse mechanism is also shown in Fig. 6.29.
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Figure 6.25: The square plate with asymmetric penetrations - geometry and loading

Figure 6.26: The square plate with asymmetric penetrations - SBFE uniform model
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Figure 6.27: Iterative scheme for the square plate with asymmetric penetrations with
8168 SBFEs using the sensitivity-based ECM
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(a)

(b)

Figure 6.28: Equivalent stress and elastic modulus distributions for the square plate with
asymmetric penetrations with 8168 SBFEs using the sensitivity-based ECM (a) stress
distribution (b) elastic modulus distribution

Figure 6.29: The schematic displacement field for the square plate with asymmetric
penetrations with 8168 SBFEs using the sensitivity-based ECM
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Table 6.4: The collapse load solutions of the square plate with asymmetric penetrations
problem for different SBFE discretizations using the sensitivity-based ECM

Uniform refinement Adaptive refinement

No. of αcol

σ0
difference% No. of αcol

σ0
difference%subdomains subdomains

2046 1.1330 7.70 2046 1.1330 7.70
8168 1.0733 2.02 6871 1.0737 2.06
32634 1.0523 0.02 12575 1.0542 0.20

The effect of the number of subdomains on the collapse load solution was investi-

gated. Due to the high computational costs involved in this problem, three uniform

discretizations were automatically constructed, and the sensitvity-based ECM was

performed on them. The normalized collapse load solutions are computed for each

of the discretizations and the results are tabulated in Table 6.4. As expected, the

collapse load solutions are decreased by increasing the number of subdomains and

the number of integration points consequently. It should be noticed that due to the

insufficient number of uniform samples, caused by high computational costs invol-

ved, the curve fitting process is not carried out for this example; performing the

curve fitting process with inadequate samples might overestimate the the collapse

load in the sensitivity-based ECM.

The adaptive sensitivity-based ECM was also conducted for this problem. In ad-

dition to the first uniform mesh, two other adaptive non-uniform meshes produced

automatically are shown in Fig. 6.30. The corresponding elastics moduli distribu-

tions of these discretizations obtained for the collapse load solutions are shown in

Fig. 6.31. The collapse load solutions are also tabulated in Table 6.4. As seen,

the collapse load solutions are reduced by increasing the number of subdomains.

However, the number of subdomains (computational resources) required for almost

the same level of accuracy is lower than the corresponding uniform refinements. Fig.

(6.32) also shows the variation of these collapse load solutions for both uniform and

adaptive discretizations.
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(a) (b)

(c)

Figure 6.30: The produced adaptive meshes for the square plate with asymmetric pene-
trations problem; a) 2046 subdomains b) 6871 subdomains c) 12575 subdomains

It should be emphasized that the adaptive scheme discretises the yielded elements

only. For the first uniform mesh used in this example, many elements experienced

yielding. This is why the difference between the uniform and adaptive refinements

is not so significant in the second step of refinement. However, for the next step of

refinement, the difference is more obvious, as almost 40% of the number of DOFs

employed in the uniform refinement is used in the adaptive scheme. This amount of

reduction in number of DOFs is useful when sufficient computational resources for

uniform refinement are not available.

6.4.2 3D Examples

6.4.2.1 Thick cylinder

The first 3D example involves the thick cylinder under the uniform pressure intro-

duced in section 3.5.2.1 of chapter 3. Here, considering the fact that the effect of the

cylinder length is negligible on the true collapse load of the structure, it is reduced

to 220 mm to accommodate more number of subdomains. The SBFE model was

generated quite automatically and out of the CAD (STL) model directly, and is
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Figure 6.31: The corresponding elastic moduli distributions of the adaptive meshes pro-
duced for the square plate with asymmetric penetrations problem; a) 2046 subdomains b)
6871 subdomains c) 12575 subdomains
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Figure 6.32: Variation of the the normalized collapse load solutions with the number of
subdomains for the square plate with asymmetric penetrations plate problem using the
adaptive and uniform refinements
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Figure 6.33: The SBFE model of the thick cylinder with 3632 subdomains

shown in Fig. 6.33. In total, 3632 subdomains, 5188 nodes, 15564 DOFs, and 3632

integration points were employed.

The sensitivity-based ECM was performed on the model, and the load multipliers

were monotonically increased. The converged normalized collapse load solution αcol

σ0

was obtained as 0.8036, which is some 0.4% higher than the analytical solution of

0.8004. The iterative scheme of the proposed method is shown in Fig. 6.34 The

corresponding von Mises stress and elastic moduli distribution to this collapse load

solution are also depicted in Fig. 6.35.

The effect of the number of subdomains were also investigated on the problem.

Due to the high computational costs involved in this 3D problem, only three dis-

cretizations were automatically produced from the STL format of the CAD model.

The normalized collapse load results and their errors with respect to the analytical

solution are provided in Table (6.5). As expected, the collapse load solutions are

reduced by increasing the number of subdomains, due to the better satisfaction of



CHAPTER 6. A SENSITIVITY-BASED ECM FOR THE COLLAPSE LOAD DETERMINATION OF
STRUCTURES USING THE SCALED BOUNDARY FINITE ELEMENT METHOD 241

0 50 100 150 200 250

Iterative steps,  r

0.4

0.6

0.8

 
 r  /

  
0

Proposed scheme

Analytical solution = 0.8004

Figure 6.34: Iterative scheme for the thick cylinder with 3632 SBFEs using the sensitivity-
based ECM

Table 6.5: The collapse load solutions of the thick cylinder for different SBFE discretiza-
tions using the sensitivity-based ECM

No. of subdomains αcol

σ0
error%

1243 0.8075 0.89
3632 0.8036 0.40
7832 0.8029 0.31

the yield condition.

6.4.2.2 Thick square plate with central elliptical flaw under axial tension

The second example considers the thick square plate with a thickness of 5 mm and

an elliptical flaw at its center, mentioned earlier in section 4.5.2.2. The geometry

and loading is shown in Fig. 4.35a. The collapse load solution of this problem αcol

σ0

is reported as 0.798. Due to its symmetry in all axes, only a quarter of the structure

was modeled using SBFEs. The model was automatically constructed based on the

geometry of the STL format of the CAD model, and shown in Fig. 4.35b. In total,

1098 subdomains, 1885 nodes, 5655 DOFs, and 1098 integration points were utilized.

The proposed sensitivity-based ECM was conducted on the SBFE model and

the load multipliers were monotonically increased and converged. The normalized

collapse load solution was obtained as αcol

σ0
= 0.8746, which is some 9.61% higher

than the reported collapse load solution. The iterative scheme for the proposed
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(a)

(b)

Figure 6.35: The von Mises stress and elastic modulus distributions for the thick cylin-
der with 3632 SBFEs using the sensitivity-based ECM (a) stress distribution (b) elastic
modulus distribution
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Figure 6.36: Iterative scheme for the thick square plate with central elliptical flaw using
1098 SBFEs and the sensitivity-based ECM

Table 6.6: The collapse load solutions of the thick square plate with central elliptical flaw
for different SBFE discretizations using the sensitivity-based ECM

No. of subdomains αcol

σ0
difference%

188 0.9036 13.23
1098 0.8747 9.61
7505 0.8434 5.69

method is shown in Fig. 6.36, where the oscillations in Fig. 4.36 are removed. The

corresponding von Mises stress and elastic moduli distributions are also derived for

the collapse load solution and are shown in Fig. 6.37.

The variation of the collapse load solutions with respect to the number of sub-

domains was also derived by considering three discretizations. Only three different

refinement was used, as the high imposed computational costs prevented the scheme

to be implemented on finer discretizations. The collapse load solutions are provided

in Table (6.6), where the differences between the reported solution and the obtained

results are also given. As seen, the collapse load solutions are reduced by increasing

the number of subdomains. The curve fitting process is not implemented on the

obtained data, due to the lack of sufficient results.
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(a)

(b)

Figure 6.37: The von Mises stress and elastic modulus distributions for the thick square
plate with central elliptical flaw using 1098 SBFEs and the sensitivity-based ECM (a)
stress distribution (b) elastic modulus distribution
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Figure 6.38: Iterative scheme for the defected pipeline using SBFEM and sensitivity-based
ECM (a) case a (b) case b

6.4.2.3 Defected pipeline

The third 3D example is the defected pipeline employed in section 3.5.2.3 . The ge-

ometry and loading is presented in Fig. 3.35. Two SBFE models were automatically

generated to show the performance of the proposed method on this problem; case a

consisting of 2216 subdomains, 3437 nodes, 9603 DOFs and a finer case b with 4734

subdomains, 6653 nodes, 19959 DOFs (Fig. 4.39).

The sensitivity-based ECM was performed on both SBFE models. The load mul-

tipliers for both of the discretizations were monotonically increased and converged

to αcol = 70.8126 in case a and αcol = 68.9292 in case b. The iterative plots for

both cases are shown in Fig.6.38. The proposed approach provided good accuracy

of the collapse load results, as the solutions computed agree well with the reference

values reported from various numerical algorithms, namely αcol
ref = 64.05 using the

incremental method [92], αcol
ref = 67.13 using the kinematic method [86], and αcol

ref =

63.42 using the static method [92]. The von Mises stress and elastic moduli distri-

butions corresponding to the collapse load solution for case b is also shown in Fig.

6.39.

6.4.2.4 The leg of a chair

To show the advantages of the SBFEM in automatic polyhedral mesh generation,

in this example, the ductile leg of a chair under uniform surface load, discussed in

section 4.5.2.4, is considered. The geometry is shown in Fig. 4.43a. Fig. 4.43b shows
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Figure 6.39: The von Mises stress and elastic modulus distributions for the defected
pipeline using 4734 SBFEs and the sensitivity-based ECM (a) stress distribution (b) elastic
modulus distribution
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Figure 6.40: Iterative scheme for the leg of a chair using the SBFEM and sensitivity-based
ECM

the loading and boundary conditions. The von Mises material properties utilized

were E = 207 GPa, and σ0 = 200 MPa. The mesh generation was automatically

conducted out of the STL file as per section 4.3.2. The final mesh contains 2730

subdomains, 4072 nodes, 12216 DOFs, and 2730 integration points.

The sensitivity-based ECM was performed on the structure and the iterative

scheme is given in Fig. 6.40. As illustrated, the normalized load multipliers are

monotonically increased and converged to the normalized collapse load of αcol

σ0
=

0.1259. The associated von Mises stress and elastic modulus distributions at the

collapse load are shown in Fig. 6.41.

6.4.2.5 The bottle cap

The last example involves a ductile bottle cap to show the advantage of the proposed

method in the automatic collapse load determination of structures with complex

geometries. In the first part, SBFEM in combination with the octree scheme is used

for the automatic mesh generation of this complex geometry. In the next part, the

produced mesh is employed in the sensitivity-based ECM for the automatic collapse

load determination.
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Figure 6.41: Equivalent stress and elastic modulus distributions of the leg of a chair
using the SBFEM and sensitivity-based ECM (a) stress distribution (b) elastic modulus
distribution
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(a)

(b)

Figure 6.42: The surface model of a quarter of a bottle cap in STL format (a) view 1 (b)
view 2

Due to the symmetric nature of the problem only a quarter of the cap is consi-

dered. Fig. 6.42 shows the surface models of this quarter in STL format from two

different views. The loading and boundary conditions in the direction of loading

are illustrated in Fig. 6.43. The cap is subjected to a uniform pressure, where it

is assumed that the pressure is only applied on the upper part of the cap. The

upper parts of the teeth (shown in purple triangles) are fixed in the direction of the

pressure to resist it. The von Mises material properties were taken as E = 207 GPa,

and σ0 = 294 MPa.

The construction of an accurate mesh using conventional finite elements requi-

res tedious human efforts and is time-consuming. Here, the mesh was produced

automatically using the STL file as an input, and is shown in Fig. 6.44. In to-

tal, 27112 subdomains, 41660 nodes, 124980 DOFs were used. The modified elastic

compensation method was performed on the produced mesh. The iterations were
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1α

Figure 6.43: A quarter of a bottle cap - loading and boundary conditions in the direction
of loading

continued until the convergence was met on the load multipliers. The final nor-

malized collapse load was obtained as αcol

σ0
= 0.0028. The iterative scheme for the

proposed method is given in Fig. 6.45. The corresponding von Mises stress and

elastic moduli distributions for the collapse load is also plotted in Fig. 6.46.

6.5 Comparison Between Different Proposed Sche-

mes

To provide the additional information to readers to justify the technique of their

own choice, in this section a full comparison between the different proposed schemes

in terms of accuracy, computational time, and number of iterations is conducted.

The Prandtl’s punch problem is chosen because of two reasons. First, the analytical

solution for its collapse load is available. Second, the geometry of this example

allows the use of the same DOFs for all the proposed methods. This permits a

sound comparison to be done between all the schemes. The proposed schemes are

as follows.
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Figure 6.44: SBFE model for a quarter of the bottle cap
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Figure 6.45: Iterative scheme for the quarter of the bottle cap using the SBFEM and
sensitivity-based ECM
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(a)

(b)

Figure 6.46: Equivalent stress and elastic modulus distributions for the quarter of the
bottle cap using the SBFEM and sensitivity-based ECM (a) stress distribution (b) elastic
modulus distribution
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(i) The MECM for collapse load determination of structures using finite element

method proposed in chapter 3 (MECM+FEM)

(ii) The MECM for collapse load determination of structures using the scaled

boundary finite element method proposed in chapter 4 (MECM+SBFEM)

(iii) The sensitivity-based ECM for the collapse load determination of structures

using the finite element method proposed in chapter 5 (sensitivity-based ECM+FEM)

(iv) The sensitivity-based ECM for the collapse load determination of structures

using the scaled boundary finite element method proposed in chapter 6 (sensitivity-

based ECM+SBFEM)

(v) The adaptive sensitivity-based ECM for the collapse load determination of

structures using the scaled boundary finite element method proposed in chapter 6

(adaptive sensitivity-based ECM+SBFEM)

It should be noticed that the main advantage of using the SBFEM, which is the

convenient and automatic mesh generation, is not considered in this section and

the focus is on the analysis part. However, it should be emphasized that the main

purpose of using the SBFEM was the ease and automation in mesh generation. For

some examples, the generation of a sound and robust mesh in the FEM is highly

time-consuming (i.e. the bottle cap in section 6.4.2.5) and might be even impossible.

The final normalized collapse loads of the structure captured by each of the

methods are shown in Fig. 6.47 for a range of mesh sizes. As seen, for all the

methods, the normalized collapse loads are decreased by increasing the number of

elements/sumdomains. For this example, the accuracy level for (iv) and (v) are less

compared to the other methods. This is due to the fact that for decreasing the

computational time of these schemes, the equivalent stresses are only computed in

the scaling center of the subdoamins, whereas for the other methods, the averaged

equivalent stresses from stresses obtained at the integration points are used. It

should be noticed that if sufficient number of elements/subdomains is used, the

accuracy level for all the proposed methods are roughly the same.

Another important note is the fact that although all methods for this example
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Figure 6.47: Variation of the collapse load multipliers for the Prandtl’s punch problem using
different proposed schemes for a range of mesh sizes

provided sufficient accuracy, the key merit of the sensitivity-based schemes over

the MECMs is its stability and robustness as stated before in chapters 5 and 6.

The results obtained by sensitivity-based schemes are based on the convergence on

the load multipliers while in the MECMs the results are obtained after a specified

number of iterations (300 in this case) and might not necessarily be of sufficient

accuracy for other examples.

To provide an idea of the computational efforts for the user in different schemes,

the number of iterations and computational time for this example are reported. It

should be considered that the computational time for the sensitivity-based ECMs

highly depends on the number of elements in the active set (undergoing yielding)

as discussed in section 5.3.3. Therefore, the computational time for other examples

might be quite different from what is reported here and should be taken into account

during the interpretation of the results.

Table 6.7 shows the computational effort for all the five proposed schemes in

terms of the number of iterations, where NE and NS indicate the number of elements

and number of subdomains respectively. The number of iterations in the MECM is

input by the user and in this thesis is taken as 300. The number of iterations for the

sensitivity based ECM depends on the convergence tolerance. It is generally seen

that as the number of elements/subdomains increases, the sensitivity based ECMs
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Table 6.7: Required number of iterations for different proposed schemes

NE/NS NE/NS No. of iterations
uniform adaptive i ii iii iv v

32 32 300 300 153 224 224
128 101 300 300 203 216 440
512 308 300 300 257 277 719
2048 887 300 300 269 404 1127
8192 2783 300 300 362 315 1447
32768 9323 300 300 373 321 1918

require more number of iterations. The number of iterations reported here for the

adaptive scheme indicates the accumulated iterations for all the meshes generated

adaptively, and therefore more than the iterations required for the corresponding

uniform meshes as expected. However, it should be noticed that the main advantage

of the adaptive scheme its more efficiency as discussed in the next paragraph.

The computational time spent for the analysis part of all the proposed schemes in

this thesis is tabulated in Table 6.8. As evident, the proposed sensitivity-based ECM

generally induces more time on the scheme, compared to the original MECM in both

FEM and SBFEM. As discussed before in section 5.3.3, this is mainly due to the

time spent on the construction of sensitivity and Hessian matrices. Additionally, the

difference in time between the MECMs and the proposed sensitivity-based ECMs

is increased as the number of elements/subdomains increases. For example, the

computational time for both the MECM in case (ii) and the sensitivity-based ECM in

case (iv) is similar when 32 subdomains are utilized. However, the consumed time in

(iv) when 32768 subdomains are used is almost 38 times more than the corresponding

MECM in (ii) on the same mesh. In comparison of FEM and SBFEM schemes for

uniform meshes, no significant difference is seen, and the minor differences between

these two methods ( (ii) compared to (i) and (iv) compared to (v) ) arise from

programming the codes in MATLAB.

Another interesting point is the time consumed in the normal uniform refinement

and the adaptive refinement when sensitivity based ECM is used with the SBFEM

(i.e. (iv) and (v) respectively). Although the adaptive scheme requires more number
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Table 6.8: Consumed computational times for different proposed schemes

NE/NS NS computational time (sec.)
uniform adaptive i ii iii iv v

32 32 2.4 2.9 2.07 2.34 2.34
128 101 5.82 7.05 6.35 5.31 5.8
512 308 18.53 22.71 41.09 32.01 24.08
2048 887 80.26 101.65 436.92 353.06 201.47
8192 2783 383.64 475.13 6531.82 5441.2 2376.2
32768 9323 2137.75 2641.32 105201 82772 47597

of iterations (Table 6.7) for providing almost the same level of accuracy (Fig. 6.47), it

requires less computational time and resources (NS); for instance, the computational

time for almost the same level of accuracy in collapse load when uniform mesh with

8192 subdomains is employed, is almost 60% less in the corresponding adaptive

scheme. Additionally, the adaptive scheme only requires 2783 subdomains for almost

the same solution and therefore computationally advantageous in terms of consumed

computational resources.

6.6 Conclusion and Remarks

In this chapter, the sensitivity-based ECM proposed in chapter 5 was extended

to be implemented with the SBFEM. This allowed some advantages of SBFEM,

such as the automatic mesh construction and the adaptive mesh generation, to be

used with the proposed sensitivity-based ECM. Firstly, the implementation of the

automatic mesh generator, allowed the SBFE meshes to be constructed from an in-

plane solid (in 2D problems) or of a solid 3D CAD (STL) model (in 3D problems).

This effectively reduced the burden of the fine mesh generation often needed for

the sensitivity-based ECM. Secondly, an adaptive sensitivity-based ECM for 2D

problems was proposed, which reduces the size of the problem ( in comparison to the

use of uniform refinements) and led to a gain in computational time and resources

required for the sensitivity-based ECM. The adaptive refinement was performed

through the use of the quadtree scheme and the ability of the SBFEM in handling the
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hanging nodes. Initially, a uniform coarse mesh is produced using polygonal SBFEs.

The sensitivity-based ECM is performed on this mesh and the initial collapse load

solution is obtained. The yielded subdomains are then identified and efficiently

refined into smaller subdomains. The generated hanging nodes are considered as

regular corner nodes in polygonal SBFEs. This process is repeated recursively until

the convergence on the limit load is achieved. This scheme allowed almost the same

level of accuracy to be obtained more efficiently.

The use of automatic mesh generators and the adaptive scheme were verified by

some numerical examples. The results showed the robustness and efficiency of the

proposed schemes.



Chapter 7

CONCLUSIONS AND

RECOMMENDATIONS FOR

FUTURE STUDIES

7.1 Concluding Remarks

In this thesis a comprehensive study on the ECM by emphasis on its updated and

modified version, the MECM, for the collapse load determination of engineering

structures was performed. In particular, the study was motivated by two main aims;

(1) to develop a new and robust scheme based on the ECM to remove the oscillations

happening in the limit load curve, which leads to the convergence directly on the

limit load, and (2) to remove the mesh-related challenges to solve the problem more

efficiently and conveniently. This leads to a simple, robust and automatic scheme for

the collapse load determination, which minimizes the need for the user interference

and therefore mostly reduces the errors which might be caused by the user. The key

contributions and conclusions are summarized as follows.

(a) The finite element implementations of the MECM was described in details for

a range of 2D and 3D structures. The importance of using the (nearly) incompressi-

ble condition for accurate collapse load determinations was emphasized. The value

258
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of ν = 0.499 was shown to be close enough to 0.5 to satisfy this condition. It was

shown that the popular widely-used low order displacement-based finite elements

can be used along with the MECM when the selective integration scheme is applied

to allow justification of element stiffness matrices under nearly incompressible con-

dition. The important role of the mesh density in the method was investigated and

it is concluded that all of the estimated collapse load results tend to converge to the

lower bound limits when the sufficient number of structural discretization has been

attained.

(b) The MECM was extended to the SBFEM to use its advantages in automatic

mesh construction. The use of SBFEM along with the quadtree or octree schemes

allowed the SBFE discretizations to be automatically constructed from an in-plane

solid (in 2D problems) or of a solid 3D CAD model (in 3D problems). Such technique

automatically handles structures with complex geometries (e.g. curved boundaries,

holes, etc.), as compared to standard finite element methods. This effectively re-

duced the burden of fine mesh generation required for the MECM. Additionally,

it is shown that the SBFEs do not suffer from the required nearly incompressible

condition when Poisson’s ratios of 0.499 was used. In contrast to the low-order finite

elements, this is achieved directly and without the specific treatment (i.e. use of

selective or reduced integration methods) for subdomain stiffness matrices. A num-

ber of numerical examples, ranging from benchmark tests, 2D and 3D solids, were

studied to illustrate the performance and accuracy of the proposed scheme.

(c) The main shortcoming of the ECM or MECM was described which is the

convergence criterion. The convergence criterion in these methods is the number

of the iterations input by the user, which could be insufficient for a structure. The

reason of using the number of iterations as the convergence criterion is the multiple

oscillations with unknown amplitudes happening in the limit load curve. The reason

of these oscillation was investigated as the stress overshooting phenomenon happe-

ning during the iterative scheme. A robust and novel sensitivity-based ECM was

then introduced which prevents the stress overshooting phenomenon by considering
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the contribution of all elements, and therefore is oscillation-free. This allowed the

convergence to be defined directly on the limit load of the structure, and therefore,

the need for the user interference and its judgment is eliminated.

(d) The proposed sensitivity-based ECM was extended to be used with the

SBFEM and quadtree/octree schemes to use their advantages in mesh generation

and to reduce the burden of mesh generation. This allowed the automatic process

of the collapse load determination of structures in both mesh generation part and

analysis part. This convenient automatic scheme minimizes the user interference

and its associated errors.

(e) The proposed sensitivity-based ECM may be computationally demanding

when uniform (or approximately uniform) refined meshes are used. Therefore, an

automatic adaptive sensitivity-base ECM was introduced, which generates adaptive

non-uniform meshes automatically based on the results of the sensitivity-based ECM

at each step. This guarantees the required level of accuracy using less number of

elements (in comparison to its equivalent uniform mesh), and therefore demands

less computational resources.

(f) The efficiency of the proposed techniques in the analysis part was investi-

gated using the well-known Prandtl’s punch problem. It reveals that the compu-

tational time for the proposed sensitivity-based schemes is more in comparison to

the MECMs under both FEM and SBFEM frameworks. Although this difference

is negligible when coarse meshes are used, it becomes noticeable as the number of

elements/subdomains increases. The proposed adaptive scheme is found to be to

computationally efficient (in terms of time and resources) compared to the uniform

mesh, and hence superior.

(g) A number of numerical examples, in 2D and 3D spaces, have been provided

throughout the thesis to illustrate the performance of all the proposed schemes and

to show the validity of the approaches.
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7.2 Recommendation for Future Studies

The following suggestions are recommended for further research works on this topic.

(a) Considering the fact that the proposed sensitivity-based ECM only involves a

series of linear elastic analysis, its finite element implementation can be extended to

be integrated with the available computer software which are superior and convenient

in elastic analysis, such as ANSYS and ABAQUS. This allows an extensive library

of element types, pre-processors and post-processors, defined in these software, to

be directly used for the collapse load determination of ductile structures.

(b) The proposed extensions of the MECM and the sensitivity-based ECM to

the SBFEM allow the use of some other advantages of it such as the efficient and

automatic image-based stress analysis for 2D [132] or 3D [112] structures. This

leads to an attracting efficient way to perform virtual testing of sufficiently ductile

materials and structures for their collapse load determination.

(c) The computations of the sensitivity and Hessian matrices as parts of the

required computation for the proposed sensitivity-based ECM induces more time

on the scheme, compared to the original ECM/MECM. It is reasonable as any non-

local techniques will require such extra computations for better convergence and

stability/accuracy. However instead of taking into account the effects of all “yielded”

elements in the whole structure, it seems the same procedure can be applied to

yielded elements in a local neighborhood of the considered element. Then there will

be several small operations like involved. This process could be less “non-local” while

still not the strictly local one in the original ECM/MECM. This approach could be

less computationally expensive, as instead of solving a large matrix equation like

Eq. (5.13) and (5.29) for the whole structure, inverting several much smaller ones

separately would help reduce the computational time. However, the level of accuracy

and an appropriate scheme for defining the neighbor elements should be studied.

(d) This thesis only investigated the proposed method as a basic standard scheme

for the collapse load determination, as other special effects such as hardening, geome-
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tric, temperature, etc. or the possibility of the approximation of the displacements

for a better illustration of the failure pattern were not taken into account. It would

be worthwhile to include such effects/possibilities in the sensitivity-based ECM.
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