
Deconstructing code that works

Author:
Wildman, Peter

Publication Date:
2018

DOI:
https://doi.org/10.26190/unsworks/20330

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/59788 in https://
unsworks.unsw.edu.au on 2024-05-06

http://dx.doi.org/https://doi.org/10.26190/unsworks/20330
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/59788
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

 2

Deconstructing code that works

Peter Wildman

A thesis in fulfilment of the requirements for the degree of
 Masters of Fine Arts

 UNSW Art and Design
 Faculty of Fine Art

 Supervisor Dr Tim Gregory

 26th of February 2018

PLEASE TYPE
THE UNIVERSITY OF NEW SOUTH WALES

Thesis/Dissertation Sheet

Surname or Family name: Wildman

First name: Peter Other name/s: Charles

Abbreviation for degree as given in the University calendar: MFA

School: Art and Design Faculty: Fine Art

Title: Deconstructing code that works.

Abstract 350 words maximum: (PLEASE TYPE)

'Deconstructing Code that Works' is a practice led research project that frames theoretical critique as
practice in a gallery setting. The work uses a deconstructive methodology derived from Jacques
Derrida's practice of 'sous rature' to perform critique upon a particular moment in the historical formation
of the field of 'codework'. The term codework was established in 2001 and attempted to describe literary
works that were developed from or included elements of computer code. The taxonomy of this field,
formalised by Alan Sondheim, was contested by John Cayley on the basis that non-executable work
should not be included into the field as code or executable text. By bringing the thesis of this research
into the gallery space the performer uses the theoretical methodology as a practical methodology to
produce critical artefacts. The thesis is placed under erasure within a system that produces
computational exceptions or non-executables as work. These exceptional texts are caught and handled
within the gallery as a mode of production and are transformed into physical objects to be thrown into the
space. The resulting exceptional texts are developed from this codework divide yet they can no longer
be read along these terms

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or
dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of
the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as
articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is
applicable to doctoral theses only).

……………………………………………………………
 Signature Witness Signature

……….……………
Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use.
Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be
considered in exceptional circumstances and require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award:

9/3/2018

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.’

Signed ……………………………………………..............

Date ……………………………………………..............

 COPYRIGHT STATEMENT

‘I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed ……………………………………………...........................

Date ……………………………………………...........................

 AUTHENTICITY STATEMENT

‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format.’

Signed ……………………………………………...........................

Date ……………………………………………...........................

Acknowledgements

As the author of this thesis I would like to acknowledge that it has been done with the

support and input of many others.

I acknowledge and pay respect to the traditional owners of the land, past, present and

future, on which this thesis has been written; the Gadigal people of the Darug Nation.

I acknowledge the extensive support of my supervisor Dr Tim Gregory as it is difficult

to determine the elements of this thesis that were not intertwined with his input as we
discussed it throughout the creative process.

I acknowledge the support of others from the University of NSW who have engaged

with me in feedback on the campus and also provided assistance and resources in
developing this thesis.

I acknowledge the support of those outside of this university system who also

contributed by providing conversations that undoubtedly guided the ideas and arguments
present in this thesis.

 3

Table of Contents

Introduction and Methodology

0.1 Introduction 4

0.2 Methodology 7

Chapter 1

1.1 Delimiting a field of codework 12

Chapter 2

2.1 Making exceptions 18

2.2 How exceptional texts work 23

2.3 Throwing exceptional messages 24

2.4 Maintaining coded structures 32

Conclusion

3.1 Conclusion 40

Chapter 3

3.1 Documentation of exhibition 46

 4

 ​INTRODUCTION

The purpose of this thesis is to return to the historical context of Alan Sondheim’s

formalisation of a general field called codework and to trace a subsequent binary discourse

through John Cayley, Rita Raley and N. Katherine Hayles that addresses the separation of

the field of codework between executable/non-executable forms. This thesis is a practice

based research project that deconstructs theoretical critique of an historical discourse and

positions this critique as a contemporary art practice by implementing a methodology based

upon Jacques Derrida’s post-structural practice of sous rature as it has been translated by

Gayatri Chakravorty Spivak as placing under erasure. This methodology will be further

described in the following section of this thesis. Introducing the topics of this thesis is

nuanced and complex, as the method of deconstructing theory/practice has an effect of

erasing a discernible origin by collapsing the reading/writing of this thesis. Whilst reading

this thesis you are situated within an art gallery setting. These words are being read upon

the walls of this gallery. These words have been previously written outside of this gallery,

using a method of deconstruction, then printed on paper, to be further deconstructed in the

gallery through a system developed from the conclusions within the written words. Whilst

reading this thesis you are reading chapter three of this work, which is offered as a

deconstruction of these previously written words in chapters one and two. Chapter three has

been previously enacted within this gallery space leaving these artefacts as a trace. Upon

entering the gallery you saw this deconstructive system being performed in a video

documentation. This introductory video documentation shows the process of this

deconstructive system being applied to the abstract of this thesis. This documentation is

offered as another trace of the deconstructive system that was previously enacted to

produce the creative outcome of this research.

The following is an attempt to describe chapters one, two and three in chronological

order. Chapter one of this paper is an introduction to the aforementioned discourse of

codework and asks what power dynamics are at play when a general field is used to

 5

redefine works that already exist under their authors own terms. I claim that a general field

is one that attempts to gather a multitude of works into its definition and in doing so places

works into the field despite differences of terms that do not fit or are not addressed in the

field’s taxonomy. To establish this line of inquiry I present Alan Sondheim’s formation of

the codework taxonomy, as a theoretical act of reauthoring works to form codework as a

general field. I claim that this is a process of reauthoring because the subsequent discourse

of these included works as codework focuses on the definition and validity of these works

as codework, rather than addressing the terms of reference offered by the authors whose

work were being discussed. Sondheim’s formation of the field in this thesis is followed by

John Cayley’s alternate terms of reference for codework, based upon the binary distinction

of executable/non-executable code, which divided and attempted to exclude works that

could not compile that were included within Sondheim’s original taxonomy. Rita Raley’s

inclusion in the discourse covers her attempt to move beyond the binary discourse offered

by Cayley as a means to unify and expand the field. The republishing of N. Katherine

Hayles’ survey of the field of electronic literature is also addressed. In this survey Hayles

applies a colonial context to the codework discourse by referring to executable codework as

a pure machine language and non-executable codework as a broken creole. The

republication of Hayles’ survey in 2017 offers this paper the impetus to readdress the

executable/non-executable terms that were historically formed in this field. It acts as an

important element, situating this historical formalisation of codework and this research as

contemporary issues for codework and electronic literature more generally.

Chapter two mentions some examples of programming languages and concepts to

show the multitude of approaches that can be taken in the formation and use of computer

code as a programming language structure. This chapter begins by taking the position that

all programming languages are particularly constructed and hence there is no one structure

that can describe their formation. The executable/non-executable binary discourse is then

deconstructed by taking a particular programming language called Processing and

discussing the process that takes place when non-executable text is written and executed

 6

within this programming environment. What occurs here is a process of exception handling,

which is an executed process for handling exceptional text that is not written according to

the Processing language programming structure. The processes in place for handling these

exceptional texts are then deconstructed in this thesis to show how non-executable or

exceptional text is executed as a corrective message. This corrective message is used to

maintain the executability of the language structure. This paper concludes that the

non-executable in the Processing language is always executed, as the maintenance of the

language structure depends on the programmer understanding the executable properties of

the language.

Chapter three is situated within this gallery setting and framed as a creative

theoretical practice. The artefacts of this theoretical practice are produced by procedurally

placing the words of this paper under erasure. This procedure forms this as a deconstructive

practice and as a means of throwing exceptional messages. Conclusions drawn from

theoretical critique in chapter two inform the materials and methods that are used to create

this deconstructive system. These materials are presented as a particular, idiosyncratic

deconstructive critique of the general field of codework. The artefacts that form this

research are presented as creative outcomes that work as critique of the binary divide. This

practice acts upon the field of codework by deconstructing the terms used to form it, and

places these terms sous rature, offering the practice as a creative work of critical difference

that is from this field but can no longer be read from the binary division from where it has

been deconstructed.

 7

METHODOLOGY

The following section is the establishment of a methodology to be applied in this

practice based research project. This methodology is derived from the post-structural

deconstructive practice of sous rature developed by Jacques Derrida as he used it in

philosophical discourse. More specifically this deconstructive practice will be an

interpretation and implementation of Gayatri Chakravorty Spivak’s reading of sous rature

as under erasure found in Spivak’s preface to her translation of Derrida’s ​Of Grammatology

40​th ​ Anniversary Edition ​. For the purpose of this practice based research, the method of

sous rature will be used to deconstruct the discourse outlined in the introduction to this

thesis, which is further described in chapter one. This deconstruction will take place as

chapter two of this thesis, where a particular programming language called Processing is

used as a case study for this method. Chapter two also introduces other approaches to

programming languages and concepts that support the findings of this case study. Chapter

three is presented as a further deconstruction of chapters one and two. Chapter three places

chapters one and two under erasure materially and within a gallery setting, where all three

chapters are read as an idiosyncratic, practice based research outcome. The process of

deconstruction is framed as a performative critical act, as a practice based theory, yet this

act can only be seen through the artefacts that are left as the trace from this performance.

Spivak notes that Derrida collapses binary constructions because he reads them as

“a violent hierarchy” of control where one term “holds the superior position.” Derrida poses

that “… one could reconsider all the pairs of opposites… not in order to see opposition

erase itself but to see the announcement of a necessity such that one of the terms appears as

the differance of the other, as the other different and differed in the economy of the

same…” (Derrida 2006, xlviii) The executable/non-executable definition of computer code

is focused on in this thesis. As will be discussed further in chapter one, the position of the

executable was offered by John Cayley as the dominant position that he believed should be

 8

applied to the codework taxonomy and further discourse was either aimed at reinforcing the

importance of the non-executable within the field, as can be seen through Sondheim and

Raley, or to further describe the qualities of the executable as opposed to the

non-executable, as is seen through Hayles. The aim of placing codework’s

executable/non-executable binary position under erasure in this thesis is not to reinforce or

maintain either of these binary constructions, but rather to announce the construction of

these binaries as a system that maintains the hierarchy of the coded structure. As Spivak

quotes Derrida “… the issue is… to deconstruct the metaphysical and rhetorical schema

which are at work in [a text], not in order to reject and discard them, but to reinscribe them

otherwise.” (Derrida 2006, xcviii) This thesis is offered as an artwork that reinscribes the

historical discourse of executable/non-executable codework as a contemporary reading that

can no longer be read with these binary terms.

The following is an attempt to outline the deconstructive method applied in the

particular case of this thesis. At first, Spivak’s preface to Derrida’s methodology has been

taken as the primary source informing this thesis’ particular method. Spivak quotes Derrida

at length in her preface and the following quote was the starting point for this thesis.

“If in the process of deciphering a text in the traditional way we come across a word

that seems to harbor an unresolvable contradiction, and by virtue of being ​one​ word is made

sometimes to work in one way and sometimes in another and thus is made to point away

from the absence of a unified meaning, we shall catch at that word. If a metaphor seems to

suppress its implications, we shall catch at that metaphor. We shall follow its adventures

through the text and see the text coming undone as a structure of concealment, revealing its

self-transgression, its undecidability… I am not speaking simply of locating a moment of

ambiguity or irony ultimately incorporated into the text’s system of unified meaning but

rather a moment that genuinely threatens to collapse that system.” (Derrida 2006, xcviii)

 9

Chapter one of this thesis is my own reading of the discourse of the

executable/non-executable divide of codework as it was constructed by Sondheim’s

formalisation, through taxonomy, and further debated through Cayley, Raley and Hayles.

This chapter is the text, through which, the adventures of deconstruction have been

followed. Chapter two uses a point from chapter one that seems to threaten to collapse the

executable/non-executable unification in the codework discourse and unravels this to place

it under erasure. This particular point is discussed in more detail in chapter two, but it can

be named simply as the exception or exception handling in the Processing language

structure. The exceptional text, or non-executable, is then interrogated and revealed as a

construct of the executable structure. What will be shown is how the system of the

executable, in the particular language called Processing, designs the non-executable as an

exception that can be handled, caught and thrown back to the author of the exceptional text

as an exceptional message. It is here that the seemingly separated binary of the

executable/non-executable reveals itself as a constructed metaphor that conceals the

structure as one always maintaining its own executability.

The conclusions from this deconstruction in chapter two are then taken as a point of

departure for further deconstruction. This further deconstruction can be read as a material

system of deconstruction that is chapter three. In an interview on the ​Culture Machine Live

podcast series Federica Frabetti argues for a material understanding of deconstructive

methodologies that do not only comprise of what can typically be read as literal written

text. She states “we can deploy a deconstructive methodology and at the same time firmly

believe in the materiality of matter, in the materiality of the word, of the economy, of

technology and of course the materiality of software.” (Frabetti 2015) The system that

produces the work, the trace of deconstruction in this gallery, is one that embraces the

multifaceted material readings of computer programming language structures. In describing

the deconstructive methodology that she applied to her book titled ​Software Theory: A

cultural and Philosophical Study ​ Frabetti states she attempts to “…wrench deconstruction

out of the linguistic turn in the humanities and to bring it back to its roots, which I believe

 10

take into consideration materiality, starting with the materiality of language and what

Derrida calls the trace.” (Frabetti 2015) The deconstructive system to be described below is

an attempt to wrench the executable/non-executable binary discourse out of the codework

discourse through a material deconstruction and place it back into a discourse of

multiplicity and difference.

Chapter three is made through a system that places the material of this thesis under

erasure. This system resembles the theoretical system of deconstruction that was also used

in chapter two. Spivak reads sous rature as placing under erasure and states that it “is to

write a word, cross it out, and then print both word and deletion. (Since the word is

inaccurate, it is crossed out. Since it is necessary, it remains legible.)” (Derrida 2006, xxxii)

This crossing out and leaving legible is applied in a number of ways and is present in this

gallery space to be read accordingly. The point of origin of this system is difficult to find,

but for the purpose of providing a concise way of describing this system, I will begin with

the more literal crossing out that can be read directly here with these words upon this

gallery wall.

Each word of this thesis has been crossed out with a red marker. This crossing out

has occurred over time and according to a piece of code that has been written in pencil on a

number of pieces of paper. This code is a piece of executable code poetry, with the

executed outcome being a random number generated between the numbers five and seven.

The number is used to cross out a sequence of words in each iteration of this deconstructive

practice. This code that appears to be executable is never executed within the computer as

executable code. Rather it is read aloud as a poem as it is erased with the red part of an

eraser that is shaped in the form of a tool. The erasings are handled like executable code,

carefully carried and thrown onto a black rectangle shaped piece of fabric placed upon the

floor. The piece of paper is then placed into the printer. The written thesis is then crossed

through with a red marker according to the number generated by the code poem. The words

 11

that are crossed out are typed into the Processing Development Environment (PDE) and are

executed. The written words generate an exceptional message that is thrown to the error

console of the PDE. This message is written into another window of the PDE and both the

words from this thesis and the exceptional message are edited to form two lines of

approximately equal length. The words of the thesis and the exceptional message are then

digitally cut out from the PDE and are sent to the printer via another computer program that

is written in order to compile these lines in a particular way. This compilation is one line

printed on top of the other. This compilation is printed upon the piece of paper that was

previously placed in the printer. This printed piece of paper is then taken from the printer,

scrunched into a ball and thrown against two walls in the corner of the gallery. This process

is then repeated until all of the words of this thesis have been deconstructed in the gallery.

Each page of the written thesis is pinned to the gallery wall once all words on that page

have been crossed out. This deconstructive process, as it has been applied to the abstract of

this thesis, is placed outside of the gallery, along with a video documentation of this

process, as an introduction to the deconstructive system. The performance of this

deconstructive system as it was applied to the introduction, methodology, chapter one,

chapter two and the conclusion remains only accessible through the artefacts in this gallery

that are presented as a trace, a creative outcome of this research methodology.

 12

CHAPTER 1

Delimiting a Field of Codework

In 2001 Alan Sondheim published an article in the American Book Review which

sought to delimit a field he termed codework. In this introduction to codework he proposed

a taxonomy placing authors and their works into three separate categories to unify a field

within the limits of one terminology. These categories describe an “interplay” between a

“surface language” and a “submerged code” where work is created either by making

submerged code “emergent”, referring to submerged code on the surface, or by creating a

combination of both code on the surface and language in the depth. (Sondheim 2001) In a

discussion that took place on the ​Nettime Mailing ​List in February 2004 Sondheim stated

that codework for Sondheim would tend “toward inclusivity,” an approach that could be

seen to benefit a collective and encourage an emergent community. (Sondheim 2004, par

53) Sondheim’s taxonomy uses works that had already existed as a way of constructing the

terms of this field and he lists the creators of these works in the taxonomy’s defining

characteristics. This is troublesome as these characteristics were already present in the

included works, but were termed by the creators themselves before Sondheim decided to

form his taxonomy. One example of this is the inclusion of m[ez]ang.elle which is work

termed and created by Mez Breeze. Breeze had terms for m[ez]ang.elle and through

Sondheim’s taxonomy/authority found its place within the field under his terms. (Breeze

2001) Another example of this was the work of Talan Memmott who termed rich.lit and

this, like m[ez]ang.elle, found its place within these new terms of codework. (Raley 2002)

Whilst I believe it is reasonable to accept that work can be viewed from differing

perspectives and a person can relate qualities between different works, it should be

maintained that these critiques are from one author. Sondheim attempted to formalise a

field that reauthored work rather than offering a critique of these works according to

Sondheim’s terms of understanding, obfuscating an idiosyncratic point of view and

 13

taxonomic system of reference by assigning a perspective to the term codework that was to

become a general field. Discussions about the included works of codework were then

centred around a taxonomy that belonged to the term codework and was no longer viewed

as an idiosyncratic critique of Alan Sondheim. This became troublesome as debates about

codework in relation to the included works were had without the inclusion of the authors on

the terms of reference they had created before Sondheim implemented his terms and

taxonomy upon them. In turn, Sondheim positioned himself as an authority on these works

as codework and these works were then being spoken about according to their classification

within the field and toward Sondheim’s understanding.

One example of this is seen in discourse between Alan Sondheim and John Cayley

that focused on the inclusion of m[ez]ang.elle into the field of codework. John Cayley, an

electronic literature author whose work termed programmable poetry prior to it being

termed as codework, did not agree that work which Cayley believed was not functionally

executable within the computer as a computer program should be included into the field.

Cayley sought to critique Sondheim’s categorisation and inclusion of work that

“references… computer language and engagement” (Sondheim 2001, par 5) as codework. It

was not enough for a work to reference computer language and engagement, for Cayley

codework must instead act in and engage the computer as code, and address the machine in

this way - it must be executable. For Cayley non-executable works were considered

interface text, or pseudo code, and in an article Cayley introduces as an “argument against

the collapse of categories” (Cayley 2002, par 1) titled ​The Code is not the Text (unless it is

the Text) ​he states that “we would not try to compile the code in the interface texts of

Memmott, Mez or Sondheim.” (Cayley 2002, par 25) Here Cayley refers to the process of

compilation that takes place within the computer when one code translates into another

code and so on until the binary structure of machine code is reached. One recognised early

conceiver and developer of this process, Grace Hopper, defined this as an interpretation

process between the “main program” and a “subroutine” that is written in a “pseudo-code”

to allow the execution of the pseudo code within the main program of the computer.

 14

(Hopper 1953, 2) Although Cayley states while he would not compile these interface texts

into the computer as code it is my claim that he does compile/interpret the non-executable

works in his critique as a means to exclude them from the field of codework. It is not my

intention here to place a computational framework of computer programming onto the field

of literary critique but rather to introduce a question of interpretation of computational

critique that is used in literary critique. Cayley’s perspective that the works of these authors

would not compile is a literary critique of computational compilation theory and one that I

disagree with. It is my opinion that literal text that does not compile as it is written within

the computer is most often compiled or executed as computer code, as exceptional texts.

This position will be further addressed in chapter two of this paper. It is my intention to

show that executability of computer code within a field of literary critique is a topic that

can have multiple perspectives. Cayley takes one perspective to judge the compilability of

these works by stating that he would not attempt to compile them and then subsequently

(depending on this perspective of non-executable code) interprets these works or compiles

and handles them as exceptions to be excluded from the field.

Alan Sondheim disagreed with Cayley’s reading of the terms of code and

compilation in regard to the executable/non-executable divide he placed upon codework. In

a discussion between Sondheim and Cayley on the ​Nettime Mailing List ​ Cayley raised

questions on the “properties and methods of code” to be considered in codework and

Sondheim replied by highlighting that these questions were Cayley’s approach and not

Sondheim’s. (Cayley 2004, par 17) This response shows that the terms of code in reference

to the field of codework were being considered idiosyncratically. It is my critique that this

comment reveals the importance of framing codework, not as a general field, but rather as

the perspective of an individual who attempts to gather other works into a discourse based

upon the terms defined by them. By pivoting on this critique I argue that both Sondheim

and Cayley were working toward the formation of a general field of understanding that

separates and conceals their subjective positions through the general term codework and

their disagreements on the terms of reference were therefore about whose terms of

 15

reference the field will be formed upon. A field that was named by Sondheim (according to

his terms of reference) to bring together a multitude of already established and differing

terms on behalf of the creators of these works was now split into two fields based upon the

executable/non-executable binary position of Cayley. In lieu of this contention, the

discourse was aimed at resolving and unifying these binary positions within the field of

codework.

In an article published in 2002 titled ​Interferences: [Net.Writing] and the Practice

of Codework​ Rita Raley also contributed to this debate. Raley framed this

executable/non-executable point of contention between Sondheim and Cayley’s terms of

reference as a first wave of codework and suggested that other questions needed to be

raised as the field approached a “second wave of critical discourse”. (Raley 2002, par 8)

Raley suggested a resituating of the codework discourse to move on from the

executable/non-executable divide that can be seen at this point in time as one of the issues

destabilising the foundations of a unified general field. She noted that the “descriptive

foundation still needs to be articulated as we move on to consider some of the more

important questions and issues raised by the practice.” (Raley 2002, par 8) One of these

more important issues that she lists are the “relations between natural and programming

languages,” (Raley 2002, par 8) a move that I would argue here is related to the occupation

of the executable/non-executable binary and one that can be seen at play in N. Katherine

Hayles’ survey of codework as it later became termed within the field of electronic

literature. But Raley’s position on the necessity for codework to compile as code according

to Cayley’s perspective of executability and compilation was to disagree with the necessity

of Cayley’s terms and in turn place works like m[ez]ang.elle back within the field of

codework. Raley attempted to reunify the field, or more precisely Sondheim and Cayley’s

divided terms of reference, by incorporating the binary divide of executable/non-executable

into the qualities of the field itself. She states that “codework tries on the whole to move

beyond this schism - the code and its ‘work’ or operation - to make something new. It relies

on this schism in order to produce its effects, but then there is a mixing, an interfusion, and

 16

something other emerges.” (Raley 2002, par 31) Yet, this reunification of codework has not

taken hold as we can still see this schism being referenced fourteen years on.

In 2016 Routledge Press published a book titled ​Doing Digital Humanities:

Practice, Training, Research ​, in which the editors republished an article titled ​Electronic

Literature: What is it? ​ written by N. Katherine Hayles ​. ​Version 1.0 of Hayles’ article

published in 2007 was written as “the first systematic attempt to survey and summarise the

fast-changing field of electronic literature.” (Hayles 2007, par 1) In this article Hayles

segments the field of electronic literature into separate genres, one being the field of

codework, which she describes as “a linguistic practice in which English (or some other

natural language) is hybridized with programming expressions to create a creole evocative

for human readers… in its purest form is machine-readable and executable… more typical

are creoles using "broken code," code that cannot actually be executed but that uses

programming punctuation and expressions to evoke connotations appropriate to the

linguistic signifiers.” (Hayles 2007, par 30) Hayles includes a note at the end of this

description that points to John Cayley’s 2002 article ​The Code is not the Text (unless it is

the Text) ​. In this article Cayley critiques Hayles’ use of the terms creole and pidgin as a

“significant misdirection” (Cayley 2002, par 26) because the “complexities of address

should not be bracketed within a would-be creolized language of the new media utopia.”

(Cayley 2002, par 8) The new media utopia that Cayley is referencing here draws back to

his position that executable code is addressing or executing computational processes, while

codework that does not do this, non-executable computer code, is based in a context where

the code is situated in a utopian setting where for example an “invasion of an empire of

machinic colonizers whose demands of trade and interaction require the creation of a pidgin

by economically and linguistically disempowered human users.” (Cayley 2002, par 26)

Whilst Cayley is critiquing Hayles’ misdirection of the terms of non-executable codework

within colonial terms of language creation and use, he is also reasserting his position on the

importance of the computational executability of code within the field of codework.

 17

Cayley uses the utopian setting to state that code which is not addressed to the

compilation and execution processes of the machine are left for the human only, in other

words natural readings of language and hence should not be considered as code within the

computer according to a computational theory of compilation. This position, albeit shown

in a different context in response to Hayles, was exceedingly similar to the one held in the

formation of Sondheim’s field of codework. What can be seen here, despite Hayles’

reframing of codework into a colonial context, is the continuation of the separation of

codework as two fields divided in the discourse between Sondheim and Cayley in 2001.

Hayles’ contribution to this discourse in 2007 was to take this executable/non-executable

divide, place a colonial rhetoric upon it and in doing so reassert an

executable/non-executable binary dominance and division of power that Raley had

previously attempted to resolve. Furthermore, Hayles frames the non-executable, or the

creole text, as a broken form. This colonial context and perspective of the executable/pure

non-executable/broken will be further addressed in more depth in chapter two. And it is

from this position of the executable/non-executable divide that this thesis will attempt to

deconstruct the field of codework to reveal the arbitrary constructions of the binary as a

means to control. What will be produced from this process will be situated outside of these

binary terms as these terms will have been placed under erasure and thrown into the gallery

as exceptional text.

 18

CHAPTER 2

In the following chapter I will be using the deconstructive methodology previously

outlined to place the executable/non-executable binary discourse of codework under

erasure. What this section seeks to show is how the executable/non-executable distinction is

a constructed principle of a computer programming language used to maintain an

idiosyncratic language structure. It is my claim that there is no general structure that defines

a code, but rather there is the ability to form structures called codes and ways of adapting

and maintaining these structures. Rather than accepting code as a general construction and

arguing for the inclusion/exclusion of codework based upon it, I seek to claim that the

non-executable is designed into the structure of a language and is furthermore used as a

means of maintaining a language’s authorship. By deconstructing the

executable/non-executable binary position using a computer programming language

environment I hope to offer a new way of considering these environments to produce

codework artefacts that cannot fit within authoritative or correctional

executable/non-executable binary terms. These new approaches will take form within the

gallery setting as chapter three of this thesis and be presented as a production of

contemporary codework. These artefacts will be made and presented as both/neither

executable/non-executable exceptionally coded texts.

Making Exceptions

 Within John Cayley’s critique of Alan Sondheim’s field of codework he raises

questions on the terms of reference used to define code in the codework taxonomy. There

are a number of points of critique in Cayley’s argument against Sondheim’s taxonomy for

codework, including questions of whether code addresses a machine or human; whether a

code can be compiled; whether a text is surface language as opposed to a programming

language; or if the text is being read as natural language or programmable code. There are

too many binary positions of critique in Cayley’s discourse to deconstruct at once in this

 19

thesis, so the following chapter will focus on one, namely the question of

executable/non-executable code. Rita Raley reads the executable/non-executable binary

critique into Cayley’s argument and she addresses this in her 2002 article when she states

that “for all of the differences among particular instances or events of codework, they all

incorporate elements of code, whether executable or not.” (Raley 2002, par 7) Both Raley

and Sondheim address Cayley’s suggestion that non-executable codework should be

excluded from the field by acknowledging the divide, and in doing so suggest that

non-executable work should be included. N. Katherine Hayles also acknowledges this

executable/non-executable divide in her survey of codework as electronic literature. Hayles

frames the non-executable as a broken creole and the executable as a pure form of

codework and attributes the critique to Cayley at this point of her survey.

Within his article titled ​The Code is not the Text (unless it is the Text) ​ Cayley refers

to the issues of reading what he terms interface text as code. One argument Cayley makes

throughout this article is that the consideration of works that are non-executable as

examples of codework is a utopian scenario. He states that “the utopia of codework

recognises that the symbols of the surface language (what you read from your screen) are

the ‘same’ (and are all ultimately reducible to digital encoding) as the symbols of the

programming languages which store, manipulate, and display the text you read” (Cayley

2002, par 5) and for Cayley this “simplifies the intrinsically complex address of writing in

programmable media.” (Cayley 2002, par 8) But rather than simplifying the complexity of

writing in programmable media, it is my claim that considering all readable textual

elements as digitally encodable reveals the way codes are constructed and how the

executable/non-executable codes in programming languages are authored or designed. A

computer programer writing with literal textual computer code can do so according to a

syntax that defines the ways in which the programmer’s code will function according to the

design of language being used. The programmer composes literal text, often through a

keyboard, into a text editor. The typed code will be sent, either through the editor or

separately, to a compiler or interpreter, which is a computer program written by the

 20

designer of the language. This compilation or interpretation process can continue through

different languages to translate the textual code into electronic functions of the computer. If

the code is valid according to the syntax of a language, or a number of connected

languages, then the code will eventually be passed to the central processing unit (CPU) of

the computer. The computer’s compilation process that transforms languages between

structures and contexts is one reason for the multitude of coding languages that are

available. Some examples of the diversity of language structures include ones based on

Arnold Schwarzenegger (ArnoldC), lolcat lolspeak (LOLCODE) or non-ascii character sets

like the Arabic programming language قلب (Alb).

Literal text as computer code is flexible and interpretable to the point where you

could assign programming properties to every character in an alphabet transforming all

natural language elements into a computer programmable syntax. A computer

programming language that assigned all literal text elements to functions of the CPU within

its syntax would be considered a valid language in the field of computer science. Such a

language could be considered verbose and lack expressive power yet it would not be

excluded. Verbosity, terseness and expressive power are qualities that may be considered

by a programmer before they decide to use a language, but even if a language was not used

because of its inappropriateness for the programmer, it would still be valid. Although

Sondheim attempts to frame Cayley’s critique as being based on a subjective definition of

code, for Cayley, he is arguing for general definition. To deny in the validity of a

programming language that encoded all compilable marks and symbols as functions of the

computer would overlook an entire group of programmable codes called esoteric

programming languages. Daniel Temkin is an artist who has written programming

languages like ​Entropy​, a language that decays the data of the program as it is run; ​Folders ​,
a language where a program is written using empty file folders; and ​Light Pattern ​ a

programming language that is written with photographs. Temkin also writes a blog called

esoteric.codes ​ ​in which he presents, as the title to his website states, “programming

languages as experiments, jokes, and experimental art.” (Temkin, 2015) In a post published

 21

in 2015 titled ​Executing code off the machine, or: non-deterministic processes don’t have to

give you a heart attack ​, Temkin suggests that computer programming languages do not

even have to be executed on a computer at all, for example he suggests that an esolang

could be “a person scratching symbols in the sand.” (Temkin 2015, par 2) Rather than

simplifying the complexities of executability and code, a computer programming language

that could execute a function within the computer by encoding all literal text reveals the

complexities of how programming languages are designed and function. Furthermore if

such a language were constructed the executable/non-executable critique of Cayley would

no longer be relevant, or would shift, as there would no longer be any

executable/non-executable codework written in literal encodable text. Works of Breeze,

Memmott and Sondheim would be executable just as this paper would be executable. The

existence of such a language compiler would make all readable literary works potentially

executable, whether written online, in a book or in the sand.

 22

Figure. 1: screen shot of text written into the Processing Development Environment

 23

How Exceptional Texts Work

 Rather than rely upon a hypothetical esoteric programming language to deconstruct

the executable/non-executable binary we can take an existing programming language and

compile some literal text to further investigate John Cayley’s critique. The language that

will be used to attempt this is called Processing and it started in 2001 by Ben Fry and Casey

Reas. The above image is a screen shot of an attempt to compile some natural or surface

language in the Processing Development Environment (PDE). In this example I have taken

a sentence from Cayley’s critique of non-executable code, typed it within the PDE and

attempted to compile the statement as programmable code. In this example the PDE has

presented a number of outcomes that are returned once the program is made to play or run.

These outcomes include the line of text written being highlighted in yellow; some words in

the written text being underlined red; a phrase being presented in white text upon a red

background; and a phrase being presented in red text upon a black background. I will refer

to these three outcomes as a series of exceptional messages and the process that creates

these messages will be referred to as throwing exceptional messages. When Cayley states

that “the code has ceased to function as code” in his critique of codework he seeks to place

non-executable text, which is not written according to any programming language syntax,

outside of the field of codework. (Cayley 2002, par 26) Throughout the codework

discourse, through Sondheim, Raley, Cayley and Hayles, these texts are referred to as

interface, surface, broken, natural language texts and set against programmable, narrow or

pure codes. Despite being included/excluded within the field of codework, all of the theory

posed by these academics above asserts that this binary position of

executable/non-executable literal text exists and can be differentiated in these general

terms. But any literal text placed within most programming language development

environments will function or create a response within the computer and therefore cannot

be represented in this way. The code that has ceased to function as code in the example

above has functioned as code by design. In this example, the Processing language is

designed so it executes this text as exceptional text and in doing so an exceptional message

 24

is thrown. This message reads: ​Syntax error, maybe missing a semicolon? ​ and ​expecting

SEMI, found ‘code’ ​.

 ​Throwing Exceptional Messages

When a computer programmer writes text into the development environment of

their chosen language they are expected to do so according to the structure, or syntax, of

that language. Once a programmer has written some text, for example in the PDE, they

compile and run it. Compilation begins with a screening process, a parsing of the text

according to the syntax found in the pre-processor of the programming language. If the text

is written according to the syntax of the language it is then compiled and run, or executed.

The Processing language is derived from another language called Java and according to the

Java language documentation “when a program violates the semantic constraints of the Java

programming language, the Java Virtual Machine [JVM] signals this error to the program

as an exception.” (Oracle 2011, par 1) A Java tutorial on the language designer’s website

goes on to state that an exception is defined as “an event, which occurs during the

execution of a program, that disrupts the normal flow of the program's instructions.”

(Oracle 2015, par 1) In regard to the PDE the compilation and execution of the program

happens with one action, as the programmer selects the play button or run option on the

PDE. The written text will be run if there are no checked exceptions at compile-time

checking but if the program does run and there are run-time exceptions they will either be

handled within the code or stop the program entirely. (Oracle 2011) In either example there

is a distinct process that the Java language carries out through the JVM. When the JVM

identifies that there is an exception in the syntax of the text written by the programmer it

creates an object called an exception object, moves this object to the runtime-system, a

process called throwing an exception, and searches for code called an exception handler

that can manage the text. (Oracle 2015) “The exception handler chosen is said to ​catch the

exception ​. If the runtime system exhaustively searches… without finding an appropriate

exception handler… the runtime system (and, consequently, the program) terminates.”

 25

(Oracle 2015, par 5) And when a Processing application terminates or even fails to run, due

to exceptional text being present, the JVM handles the exception by throwing an

exceptional message to the programmer. Exceptional text, created as an exceptional object,

caught, handled and thrown is executed as a non-executable exceptional message. The

execution of the non-executable exceptional text is a process of object construction and the

exceptional object it produces differs between programming languages.

Figure. 2: screen shot of text written into the Processing Development Environment with area labels

The Processing language throws exceptional messages to the PDE in a number of

different ways and these can be seen in different places within the PDE. Three of these

areas are the text editor, message area and console. The Processing website describes the

text area as the place where programs are written; the message area as a place that displays

 26

errors; and the console as a place that displays complete errors. (Processing 2017,

Environment) As Processing is a programming language built from the Java language we

can understand how these exceptional messages are thrown by referring to the Java

documentation page titled ​How to Throw Exceptions ​. This documentation begins by stating,

“before you can catch an exception, some code somewhere must throw one. Any code can

throw an exception: your code, code from a package written by someone else such as the

packages that come with the Java platform, or the Java runtime environment. Regardless of

what throws the exception, it's always thrown with the throw statement.” (Oracle 2015, par

1) The code, which is the throw statement that threw the exceptional message in the

example above can be seen in the diagram below, which has been taken from the PDE

source code. This code is written by the developers of the Processing language and it

functions within the PDE in a number of ways. Code within computer programming

languages such as Processing can catch exceptional text and handle it by throwing it in

particular ways according to the authorship or design of the language developers. As can be

seen from the diagram above there are a number of exceptional messages being thrown in

the PDE when exceptional text is written. I claim these messages are the executed functions

of non-executable text as computer code in the PDE. The so called non-executable critique

of John Cayley has executed or functioned as code; it has highlighted itself in the text

editor, thrown a particular message in the message area that is determined by the particular

structure of the text written and thrown a particular message to the console that includes a

part of the text. These functions are particular as each written word and its context within

the text editor determines the messages executed by the throw statement. These messages

are a functional outcome of the text written that can be accessed when the syntax of the

designed language is not followed.

 27

Figure. 3: screen shot of code that is stored on the Processing Github code repository (Github 2016)

Exceptional messages are a pedagogical tool to correct the programmer and tell them

that what they have entered as input does not fit the structure of the language. In Java there

are a number of built in exceptional messages that are sent to the programmer when they

compile and run their code. Java also allows programmers to modify the messages that are

sent so the designer of a language or program can make exceptional messages of their own.

The designer of a language also designs the messages sent to correct the programmer using

that language and one motivation for this is to improve exceptional message readability.

Java system exceptional messages can be considered difficult to read as is documented on a

website offering tutorials in the Java programming language. A tutorial written by a senior

software engineer, Chaitanya Singh, describes Java system exceptional messages as “not

user friendly” that the user would find hard to comprehend. (Singh 2014, par 5) In the

SketchException.java file of the Processing language, which throws exceptional messages,

a programmer contributing to the design of the Processing language has written a comment

that states, “nix the java.lang crap out of an exception message because it scares the

children.” (Github 2015, line 134) And the children should not be scared of the exceptional

messages thrown by the Processing language because these messages are used as a way to

correct their written text. Processing was initially designed as “a first programming

language” (Processing 2017, par 4) that “promoted software literacy.” (Processing 2017,

par 1) So, for this language in particular, exceptional messages are thrown to someone who

may be encountering programming language syntax for the first time. Designers of

programming languages often depend on transparent and comprehendible documentation of

 28

their language’s syntax so people are able to learn and use their language. If a programmer

learning a language cannot amend their mistake, according to the syntax, then they will not

be competent in that language. It is my claim that the reason why exceptional texts written

into a programming environment are thrown as exceptional messages is to correct the

programmer.

Any deviation from the structure of the Processing language is designed to go back

into the structure as a corrective, pedagogical, exceptional message that points the

programmer to the language structure itself. One feature of Processing that can be enabled

from the system preferences has the PDE “continuously check for errors and show

warnings.” (Processing 2017, par 75) As the programmer types each letter of their text the

PDE is checking to see if what is being written is an error or exception. In the figure bellow

we can see that when this preference is enabled the exceptional text is underlined in red and

the exceptional message is shown in the message area. It is important to make the point that

in this example the programmer has not attempted to run their code. There is anticipation

that occurs when the PDE is checking the text as it is being written that does not occur

when the continuous preference is off. When the continuous checking is on, the PDE

throws error and warning messages even when the programmer is writing their text

according to the language structure, but has just not completed the text they are writing.

This anticipation of what the programmer is writing is an interruption or intervention into

the writing process. When the programmer is able to complete their text, without

interruption and attempt to compile their text in the PDE, they are able to do so in their own

time without their text being thrown back at them as an exceptional, correctional message,

whilst they are writing. Now, with continuous checking for these exceptions, the

programmer is constantly made aware of the structure, even when they are writing

according to it, and are being corrected before they have had a chance to complete their text

 29

whether it is or is not according to the structure. It is my claim that this process of

continuous exception checking, one based on continuous anticipation and interruption,

alters the way that the programmer is framed by the design of the checking system. The

programmer is now assumed wrong as soon as they make a mark by way of typing a letter

or symbol and they are constantly suggested what is wrong with their attempt. It is in my

opinion that this form of exception checking is not handling the code, checking for and

correcting exceptions in the code, but rather is handling the programmer. The programmer,

with a hand on their shoulder as they write each piece of text, is never allowed to make a

mistake as the program is never completed before being corrected.

 30

Figure. 4: screen shot of text written into the Processing Development Environment with continuous
checking enabled

 It is possible for exceptions to be handled in other ways that do not utilise them as

corrective opportunities. ​FuckItJs ​ is a Javascript Library written by web developer and

composer Matt Diamond. It is stated on the github description page where the library can

be downloaded from that “through a process known as Eval-Rinse-Reload-And-Repeat,

FuckItJS repeatedly compiles your code, detecting errors and slicing those lines out of the

script.” (Diamond 2012, par 2) Javascript is typically used for and compiled inside of a web

browser. This library acts as an intermediary between the text and the browser’s

 31

compilation process. When this library detects that a line of code has an error or exception

it handles it by removing that line entirely from the code. It continues this process, line by

line, until all lines that have exceptions in them are deleted. Another Javascript library that

is designed to handle exceptional text before reaching the Javascript compiler of the

browser is ​FatFingerJS ​ developed by Daniel Temkin. FatFingerJS is described as a “library

expanding JS [Javascript] to allow typos and misspellings.” (Temkin 2017, par 1) Temkin

asks, “why bother with clean, well-formatted code when you can write this and FatFinger

will guess at your intentions?” (Temkin 2017, par 1) FatFingerJS changes the

programmer’s code so it fits the Javascript structure and then the changed code is passed to

the Javascript compiler within the browser. The text that contains exceptions in these two

libraries is still being corrected, but the corrections are being made by the designer of the

library, rather than by the programmer via the instruction of an exceptional message. The

designers of Processing show that they are bothered with the programmer knowing clean,

well-formatted code by having the programmer correct their own code, as opposed to

removing, or assuming what is meant by the programmer’s exceptions to the structure. It is

my claim that the approach that the designers of Processing take is once again a means of

maintaining and controlling the Processing language structure by correcting the

programmer and especially a programmer in the process of learning.

Maintaining and controlling the relevance and use of a programming language

depends on exceptional texts functioning as exceptional messages. The exceptional or

non-executable text cannot be left functionless because it becomes integral for the

persistence of the language. If the non-executable exceptional text was not made executable

as a message then upon attempting to execute the text, the programmer, wanting to make a

program, might be met with something unexpected or unintended. Potentially nothing

would be executed and the programmer would have to return to the written text and find

where it did not fit the structure. This may be a lengthy and uncertain process for a

programmer who is still learning the language. Potentially the code could be corrected by

the structure itself to execute an approximation of what the structure can assume was the

 32

intended meaning of the text, but these assumptions may lead to the programmer being

ambiguous about the language, or the language designers being ambiguous about the

programmer’s knowledge and use of their language. But no matter what the designer of the

language decides to implement for the exceptional text we can see how the exceptional text

can be handled as in the case of exceptional messages where they are thrown to correct the

programmer. The binary terms of executable/non-executable are placed under erasure when

considering the use of the exceptional message in the Processing language structure. The

executable elements of this language depend on the executability of those named as

non-executable to maintain the knowledge of its syntax. The executable/non-executable

distinction can no longer exist in general terms when we consider the exceptional text as

executed code within the PDE. The deconstruction of the executable/non-executable binary

shows that any written literal text that can be encoded by the computer is executable. The

non-executable is executable and we see how it is executed as an exceptional message that

frames the text as a mistake, error or exception to the structure. When there is a division

between executable/non-executable encodable text, or if an exceptional message is used as

a corrective process upon some exceptional text we can read this as the maintenance of a

particularly coded structure. The text itself is not non-executable but rather has only been

named that way by the designers of the structure. The non-executable is named that way so

it can execute the correction of the programmer. The non-executable is structured as a

means for the designers of a language to reassert the language structure back upon the

programmer and disallow any deviation from it.

Maintaining Coded Structures

The so called non-executable or exceptional text is made to be considered a lesser

element of a coded system through its framing as an error or non-functioning contribution,

despite its utilised functionality, as a way of maintaining the dominance of a particular use

of a coded structure. We can see how binary assertions create positions of dominance in the

codework and electronic literature discourse through the inclusion/exclusion of codework

 33

on the basis of the executable/non-executable argument in the discourse. But another

troubling point of comparison in this discourse which reflects on the violent context of

language structuring was made by N. Katherine Hayles when she compared the work of

Mez Breeze and Talan Memmott’s to the colonial context of creolization and furthermore

went on to use this context to contribute to the executable/non-executable codework debate.

In an article published in 2003 titled ​Deeper into the Machine: The Future of Electronic

Literature​ Hayles wrote that “Talan Memmott's ' ​Trans ​lucidity' and MEZ's 'mezangelled'

productions push toward the creation of a creole comprised of English and code.” (Hayles

2003, par 3) Hayles goes on to ask readers to question what kinds of “subjects” and

“subjectivities” will be formed by this “…interplay of human language and machine code.”

(Hayles 2003, par 13) It can be understood, as it was by Cayley, that Hayles is asking us to

envisage a future scenario for languages like Breeze and Memmott’s. It is important to note

here that Cayley referred to the colonial context of the term creole in response, yet he did so

to refute the importance of the use of executable/non-executable languages in a future

scenario. Cayley introduces the colonial context in this debate by ridiculing the assertion

that one day there could be an “invasion of an empire of machinic colonizers” that could

prompt the use of these languages. (Cayley 2002, par 26) But at no point in Hayles’ article

or in the codework discourse have we been asked to reflect on the historical context of

creolization beyond this utopian statement of Cayley’s or question the implications of the

use of the term creole in describing a broken non-executable as opposed to a pure

executable codework. (Hayles 2007)

Non-executable or exceptional texts are not broken but are made to work to

maintain the designed structure of the language. Not only does Hayles frame the

exceptional text as broken but also describes a set of languages, referred to as creole, as

broken or not able to be executed. Furthermore, Hayles decides to place the broken creole

language into a binary position against the executable or pure language that as we have

seen earlier in this thesis was used to position the pure executable in a dominant position

over the broken non-executable. I would like to interrogate this framing further and believe

 34

it is important to do so through a definition of creolization offered by Édouard Glissant. In

his book ​Poetics of Relation ​ Glissant states that “…the word ​creolization ​, approximates the

idea of Relation for us as nearly as possible. It is not merely an encounter… a ​métissage​…

if we posit ​métissage​ as, generally speaking, the meeting point of two differences,

creolization seems to be a limitless ​métissage​, its elements diffracted and its consequences

unforeseeable.” (Glissant 1997, 34) If we consider the meeting points of what Hayles

frames as the English language and machine code in these terms of a process of creolization

we can deconstruct Hayles’ binary use of the terminology. We overlook a multiplicity of

materialities and histories when considering machine code set against English as two pure

or singular forms coming together to create a binary understanding. When writing computer

programming languages we are engaging with a multitude of materialities that make the

computer. The keyboard, mouse, circuitry, to name a few, can all be seen as elements

diffracted and these elements, along with others, collide together to make computer

programming possible. By seeing machine code as one pure formation that has a general

totality is to overlook the many different formations of the computer and how it is used to

create code that we can interact with. Overlooking the possibly limitless collisions that can

happen to form different instances of computer code also risks overlooking the different

forms that computer codes have taken historically. In an article titled ​On Software, or the

Persistence of Visual Knowledge ​ Wendy Chun states that “software and hardware (like

genes and DNA) cannot be physically separated” and reminds us that computer

programming once “comprised the human task of making connections, setting switches,

and inputting values (“direct programming”), as well as the human and machine task of

coordinating the various parts of the computer.” (Chun 2004, 28) When we consider

machine code as a multitude, we can bring into question what Hayles sees as pure, which I

claim can also be read as a singular, ultimate, or correct form of language in the context of

the codework discourse. We can reframe this purest structure as a set of elements

diffracted, which have come together over time as machine codes, in relation to many other

elements.

 35

Similarly the English language could be brought into question considering

Glissant’s definition of creolization. We could turn to its historical formation from a

number of differing languages to remove the limited totality that is given by framing it as a

pure language. Furthermore, English can also be seen as a limitless set of elements if we

were to consider each utterance of the English language as a unique English that is different

than another utterance. ​In My Own Words ​ is a documentary film written and directed by

Erica Glynn that “…follows the journey of adult Aboriginal students and their teachers as

they discover the transformative power of reading and writing for the first time in their

lives.” (Blackfella Films 2017) There is a moment in the film where one of the teachers, a

Cuban man named Chala LeBlanch, addresses a group of young Aboriginal men as he

introduces a DVD that they will be using for their lesson. LeBlanch describes it as “…a

DVD with explanation about the program in general. Those people you will see are from

Grenada, a small island in the Caribbean. So they are black people like us because they

were conquered by the British but they speak a different English. So there will be three

different English here, you, me and them. But we get along very well.” (LeBlanch 2017)

When considering the use of language in this way it is possible to refute the construction of

a singular or pure form of a language. Rather, what is being constructed is a mechanism to

execute a particular use of a language as broken, so those who have authority over the

language can attempt to correct the users of that language and attempt to disallow the

language’s adaptation. Aboriginal English and Australian English are two dialects that have

developed side by side since the colonial settlement of the British began in what is

commonly considered today as a nation called Australia. Emeritus Professor Ian Malcolm

spoke about the developments of the English language in a radio broadcast called ​Awaye

where he stated, “from the time of settlement two different Englishes progressively

developed in Australia, one among the settler community, and the other among the

Indigenous community. The settler varieties were eventually levelled out into Australian

English and Standard Australian English but, meanwhile, the Indigenous people had a

different path towards English.” (Malcolm 2011, par 2) He goes on to state “there are

many, many different Englishes because people in different parts of the world have taken

 36

ownership of English.” (Malcolm 2011, par 14) But these Englishes can face resistance as

he notes has been the case for Aboriginal English in Australia, due to the opinion that there

is only one English. This view has lead to our current environment, where people who

speak other Englishes are being corrected in educational systems, told their English is not

legitimate and then left at the bottom of standardised educational indicators. (Malcolm

2011)

The notion of a pure or singular language structure known as English or even a

coded structure known as machine code is constructed. For Glissant “creolization carries

along then into the adventure of multilingualism and into the incredible explosion of

cultures. But the explosion of cultures does not mean they are scattered or mutually diluted.

It is the violent sign of their consensual, not imposed, sharing.” (Glissant 1997, 34) The

violence that Glissant speaks to here is different from the violence that Derrida speaks to in

the formation of binaries. The violence in a binary comparison is one of dominance, the

formation of one over another, which in the case of the exceptional message is constructed

to correct and control. The violence of creolization is in the collision that creates a

dispersion of new elements at multiple meeting points and these diffractions are propelled

to create further collisions. An important distinction here is in the consensual not imposed

sharing that makes creolization as defined by Glissant a violence of mutual materialisation

and not of control. The Processing language is developed through a system of open source

code where anyone can come and contribute to the code through a Github web repository of

the language. The PDE has been changed over 12,000 times with over 400 versions

released since it has been stored on Github. The colonial reference of Hayles and how she

frames the non-executable as a broken creole are general statements of executability made

without the consideration of cultural power and design. The design of programming

languages are not general or free from culture, but are culturally designed to work in

particular ways for particular people. Ramsey Nasser designed the Arabic programming

language قلب (Alb) as a “conceptual art piece” to ask “could you really build a language that

didn’t use the latin alphabet?” (Nasser 2013) His work not only questions the historical

 37

development of programming languages but it also brings into question the accessibility of

other languages within computers. Nasser explains that “قلب is built entirely on Arabic and

everything broke. Every text editor has no idea what to do, the terminal is useless, all of the

tools that I use to be creative using code fall apart.” (Nasser 2013)

Instead of considering a piece of literal text as being broken because it does not

work within the computer according to a particular syntax we can begin to question the

executing system instead. How has the structure been designed to break when it meets

Ramsey Nasser’s language? Rather than excluding it we can consider what can come from

the meeting of the Arabic language and the computer programming language structure.

Nasser continued the development of his language and found that there are particularities of

the Arabic language that offer new ways of computer programming.

“Arabic language has some very interesting properties that lend itself towards code.

Arabic is a join language where certain letters join with the letter that follows them using a

line so that words form almost like solid forms. What you can do in Arabic is you can

stretch out the length of that join so you can align things perfectly in Alb just by stretching

all the words out and make it look visually beautiful in a way that you couldn’t do with

English code and that’s just entirely the result of just using Arabic as a text.” (Nasser 2013)

Nasser revealed new opportunities for computer programming languages by

breaking through the limitations of the paradigm that was offered to him and created a new

consequence from this collision. Angie Abdilla is the founder and CEO of Old Ways, New,

a company of Indigenous Consultants and Technologists who describe themselves on their

website as people who “tap into Indigenous Knowledge Systems by drawing upon tens of

thousands of years of culture, research, iterative design and innovation of technology.” (Old

Ways New) In an interview on ABC’s Radio National, Angie Abdilla, along with company

Elder Mukgrrngal Wayne Armytage and Director Dr. Robert Fitch spoke about the

possibilities of approaching robotics from the knowledge system of indigenous peoples,

 38

considering ways of mapping and protocols that draw from indigenous ways of relating and

knowing. In the interview Abdilla spoke about the approach the company took whilst

putting together a robotics workshop for indigenous students at the Centre for Indigenous

Excellence. She says, “we were interested in how we could introduce emerging

technologies that could tie us back to the language of code… we thought about robotics and

looked at the different ways in which we could introduce robotics… to look at, how do we

connect indigenous knowledge and an indigenous way of doing things to robotics?”

(Abdilla 2017) Rather than taking the established and widely used Western approach to

coding robotics the workshop took an approach that was particular to Aboriginal culture.

Abdilla states that to do so “first and foremost we have to come back to protocol, and

understanding how indigenous knowledge is different to the Western idea of knowledge, is

fundamental to first of all even understanding your place within it.” (Abdilla 2017)

 For new knowledge to be recognised, the protocols that we have in code must first

diffract, explode and break the dominant paradigm. When Ramsey Nasser created قلب he

witnessed the breaking of protocols, which lead him to redesign all of the elements that he

needed to give the Arabic language structure access to the computer. As Abdilla says

“…when thinking about how we can move forward, we could potentially see code

coming together in a different way if we take the understanding of pattern thinking, which

is an ability to see a relationship between all things and understanding that in its truest

sense, is the embodiment of that. Then for indigenous peoples to be able to look at and

create code in a different way. Then I wonder if there’s an opportunity to create different

types of technologies that have a connection back to country, a connection to a kinship

system that has a more highly nuanced relationship.” (Abdilla 2017)

The ability to see a relationship between all things is something that has been

missing from the discourse and analysis of the executable/non-executable binary

 39

construction in the field of codework. This discourse has been caught handling two-sided

arguments, approaching code as a means of defining and controlling a field. Having

limitless consequences is possible in the field of codework if this discourse is able to cease

from imposing its taxonomy and reducing coded languages to the binary paradigm. This

would be the consensual violence and explosive potentiality of creolization as Glissant has

shown us through his definition. Rather than framing what works or does not work we

should encourage codeworkers to break down the standardised, dominant paradigm as a

means of identifying and dismantling controlling and imposed violent discourse.

 40

CONCLUSION

Through deconstruction of the codework discourse, this thesis has raised two

particular issues that I would like to note in this conclusion as areas that are in need of

further critique, which is not in the scope of this thesis. Firstly, the issue of the exceptional

message as a corrective message in the PDE, which is used as a means of maintaining

Processing’s particular language structure by structuring the language use of the computer

programmer. This is a pedagogic act of correction. This act raises issues in regard to

pedagogical methodologies when determining the accepted, standard, dominant or general

use of a language structure in particular environments. Secondly, the issue of addressing the

use of the term creole in N. Katherine Hayles’ contribution to the codework discourse led to

a discussion of other examples that encompassed creolization such as that of Aboriginal

English. When considering the further trajectory of this research I would suggest that a

starting point be that of aforementioned academic Ian Malcolm, who along with Ellen

Grote, Louella Eggington and Farzad Sharifian with the support of the Australian Institute

of Aboriginal and Torres Strait Islander Studies published what they consider as the first

study of its kind titled ​The Representation of Aboriginal English in School Literacy

Materials ​. (Malcolm et al. 2002, i) This thesis raises questions about the colonial context of

creolization and its presence within the dominant pedagogy of computer programming

structures in the Australian educational context. These questions would need to follow and

address work already being done by Old Ways New founded by CEO Angie Abdilla,

Ramsey Nasser, Ian Malcolm et al. and Édouard Glissant to name a few. Questions could

be asked of what Aboriginal and Torres Strait Islander codes and structures exist in the

Australian education system when considering the pedagogy of computer programming

languages and computational structures? What can computer code as a literary practice

offer pedagogical material in Australia when it is considered from the perspective of the

codes that are present in Aboriginal and Torres Strait Islander cultures? It is my intention to

note that this thesis has raised these questions and due to the scope of the research cannot

attempt to answer them here.

 41

Codework is particular to those who make it and they structure it from their own

process of knowledge creation. Rather than considering particular examples as broken, we

can consider the ​creolization ​ that Glissant offers when considering a consensual space

where cultures and languages diffract both internally and externally, between and within,

across and down, historically and speculatively. The Processing language is one

particularly designed language that can be used according to its structure to produce

computer programs. Within this language syntax are functions that maintain the syntax by

throwing messages to the programmer when the text they have written into the PDE does

not conform to the particular syntax of this language. If a programmer chooses to write text

that is not within the syntax they can expect to be thrown exceptional messages. These

exceptional messages can therefore also be considered as a part of the Processing language

syntax. All literal text that is written within the PDE is therefore executable. Some of this

text is caught and thrown as exceptional messages that correct and support the language

itself. This is particular to the Processing language and it has been structured to correct and

support the language itself. Codework can be written in many languages, some will be

unforeseeable because they will be created at meeting points of difference. If codework is a

place where computer encodable texts meet literature then we should consider how these

works are read on their own terms.

When Alan Sondheim set the taxonomy for the formalised field of codework in

2001 he structured it in a way to describe the qualities of code and literature that come

together to create this field. Since then Sondheim has released an article titled ​Code, work

published in 2016. This article does not open with a formalised purpose but it does speak to

codework in the manner of a descriptive list. It describes what codework is in each point

but often in a way that is not as didactic as Sondheim’s article and taxonomy in 2001. One

point of this list describes codework as “always already _a failure_ or collapse; it swirls and

transforms blankspace into crashed subjectivity; it gnaws itself. It does nothing and to the

extent that it’s a _style,_ it negativizes language past the point of redemption, to useless

 42

hipsterisms. But then this failure is _of interest.” (Sondheim 2016, par 9) What this thesis

has aimed to do is deconstruct Sondheim’s formalisation of the general field of codework

and the subsequent debates over the executable/non-executable. The method of placing the

executable/non-executable part of the discourse sous rature or under erasure is used to

collapse the general definition, to produce a particular critique that shows the power

dynamics at play when including/excluding works of difference in/out of a field. This

collapse is aimed at objective definitions to set them crashing into a context of subjective

critique of works that already have their own defining principles that are always different to

the general field of codework. Code is not a blank space that works according to a pure

paradigm. Code that works is made to work according to a particular set of rules, and these

rules are subjective and a part of particular cultures. The failure of code within coded

structures reveals the structure of failure and how failure is framed. In the case of the

executability of code that does or does not work we have come to see this binary construct

as a correctional act upon texts of difference. The non-executable is the exception to the

rule and is made to execute, to highlight its faults and be changed so that it can be read

according to the design. Code that is made to work in this way and the programmers who

write it experience the authoritative, pedagogical correction that maintains a structure.

The purpose of this thesis is to return to the historical context that framed the

formalisation of a general field called codework and trace a discourse through time to this

contemporary moment. Both Hayles’ recent republication and Sondheim’s recent

publishing of ​Code, work​ point to the relevance of this discourse to this day. This thesis is

not situated as a historical analysis, but rather through the use of the deconstructive

methodology it has been placed alongside this contemporary moment to create a critical

artefact that offers a new perspective. The third chapter of this paper is the physical

deconstruction and execution of this methodology as a performative act within a gallery

space. The paper that you are reading is situated within this space where the artefacts can

be read as exceptional messages resulting from the systematic programming of this thesis

within the PDE. This system of programming was developed as a piece of codework that

 43

comes from but cannot be read within the executable/non-executable divide. It is left here

in this space for you to observe as a trace that can be followed back to the formation of the

field of codework, the subsequent debates of the executable/non-executable divide, and

back again to this contemporary moment where what we read is a new paradigm of code

that works as exceptional text.

Works Cited

Abdilla, Angie, interview by Joe Gelonesi. “Robotics, AI and the power of slow.” ​The
Philosopher’s Zone​. ABC Radio National. Accessed August 16, 2017.
http://www.abc.net.au/radionational/programs/philosopherszone/robotics,-ai,-and-the-powe
r-of-slow/8224076.

Blackfella Films. 2017. “In My Own Words Synopsis.” Accessed August 16, 2017.
http://blackfellafilms.com.au/project/in-my-own-words/.

Breeze, Mez. 2001. “THE DATA[H]BLEEDING TEXTS” ​netwurkerz website​. Accessed
August 16, 2017. ​http://netwurkerz.de/mez/datableed/complete/index.htm ​.

Cayley, John. 2004. Discussion. ​Nettime Mailing List ​, February 2004. Accessed August 16,
2017. ​http://www.shadoof.net/in/whitecubebluesky/alsoexchange.html ​.

Cayley, John. 2002. “The Code is not the Text (unless it is the Text).” ​Electronic Book
Review ​. Accessed August 16, 2017.
http://www.electronicbookreview.com/thread/electropoetics/literal ​.

Chun, Wendy. 2004. “On Software, or the Persistence of Visual Knowledge.” ​Grey Room
18​ 28: 26–51.

Derrida, Jacques. 2006. ​Of Grammatology​. Translated by Gayatri Chakravorty Spivak.
[place]

Diamond, Matt. 2012. “FuckItJS.” ​FuckItJS ​ ​Github Repository Description. ​ Accessed
August 16, 2017. ​https://github.com/mattdiamond/fuckitjs ​.

Frabetti, Federica, interview by Janneke Adema, “Software Theory – Federica Frabetti.”
Culture Machine Live ​. Podcast audio, February 25, 2015. Accessed 16 ​th​ August, 2017.
http://culturemachinepodcasts.podbean.com/e/software-theory-federica-frabetti/.

Glissant, Édouard. 1997. ​Poetics of Relation. ​ Translated by Betsy Wing. Michigan: The
University of Michigan Press.

http://netwurkerz.de/mez/datableed/complete/index.htm
http://www.shadoof.net/in/whitecubebluesky/alsoexchange.html
http://www.electronicbookreview.com/thread/electropoetics/literal
https://github.com/mattdiamond/fuckitjs

 44

Github. 2015. “SketchException.java.” Last modified August 14. Accessed August 16,
2017.
https://github.com/processing/processing/blob/0abee5af6ad3b11cf2b73bb794b8a97c157c4
762/app/src/processing/app/SketchException.java.

Github. 2016. “JavaBuild.java.” Last modified November 10. Accessed August 16, 2017.
https://github.com/processing/processing/blob/c6c433ff57c7e60faf5f477591a49691ec70ed
6c/java/src/processing/mode/java/JavaBuild.java.

Hayles, N. Katherine. 2003. “Deeper into the Machine: The Future of Electronic
Literature.” ​Culture Machine​ 5. Accessed August 16, 2017.
https://www.culturemachine.net/index.php/cm/rt/printerFriendly/245/241#Note%205.

Hayles, N. Katherine. 2007. “Electronic Literature: What is it?” ​The Electronic Literature
Organization Website​, v1.0 January 2. Accessed August 16, 2017.
http://eliterature.org/pad/elp.html

Hopper, Grace. 1953. “Compiling Routines.” ​Computers and Automation ​ 2:1-5.

LeBlanch, Chala. 2017. “In My Own Words.” Directed by Erica Glynn. Sydney: Blackfella
Films Pty Ltd.

Malcolm, Ian, interview by Maria Zijlstra, “Aborigibnal English.” ​Awaye​, ABC Radio
National, December 3, 2011. Transcript accessed August 16, 2017.
http://www.abc.net.au/radionational/programs/linguafranca/aboriginal-english/3709226#tra
nscript.

Malcolm, Ian., Ellen Grote, Louella Eggington and Farzad Sharifian. (2002). “The
representation of Aboriginal English in school literacy materials.” ​Edith Cowan University
Research ​Online. Mount Lawley, Australia: Centre for Applied Language and Literacy
Research, Edith Cowan University. Accessed August 16, 2017.
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=7838&context=ecuworks

Nasser, Ramsey. “Arabic Programming Language at Eyebeam.” YouTube video. 3:00.
Accessed August 16, 2017. ​https://www.youtube.com/watch?v=77KAHPZUR8g ​.

Old Ways New. “About”. Accessed August 16, 2017.
http://www.oldwaysnew.com/purpose/#about.

Oracle. 2011. “Chapter 11. Exceptions.” Accessed August 16, 2017.
https://docs.oracle.com/javase/specs/jls/se7/html/jls-11.html.

Oracle. 2015. “How to Throw Exceptions.” Accessed August 16, 2017.
https://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html.

https://www.youtube.com/watch?v=77KAHPZUR8g

 45

Oracle. 2015. “What is an Exception?” Accessed August 16, 2017.
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html.

Processing. “Environment (IDE). Overview.” Accessed August 16, 2017.
https://processing.org/reference/environment/ ​.

Processing. “Overview.” Accessed August 16, 2017. https://processing.org/overview/.

Raley, Rita. 2002. “Interferences: [Net.Writing] and the Practice of Codework.” ​Electronic
Book Review ​. Accessed August 16, 2017.
http://www.electronicbookreview.com/thread/electropoetics/net.writing ​.

Singh, Chaitanya. 2014. “Exception Handling in Java with Example Programs.” ​Beginners
Book​. Accessed August 16, 2017.
https://beginnersbook.com/2013/04/java-exception-handling/.

Sondheim, Alan. 2001. “Introduction to Codework.” ​American Book Review ​ 22, no. 6.
Accessed August 16, 2017. ​http://litline.org/ABR/issues/Volume22/Issue6/sondheim.pdf ​.

Sondheim, Alan. 2004. Discussion. ​Nettime Mailing List ​, February 2004. Accessed August
16, 2017. ​http://www.shadoof.net/in/whitecubebluesky/alsoexchange.html ​.

Sondheim, Alan. 2016. “Code, work.” ​Utsanga #9​. Accessed August 16, 2017.
http://www.utsanga.it/sondheim-code-work/.

Temkin, Daniel. 2015. “Executing Code off the Machine, or: Non-Deterministic Processes
Don’t Have to Give You a Heart Attack.” ​Esoteric.Codes Blog ​, September 29. Accessed
August 16, 2017. http://www.electronicbookreview.com/thread/electropoetics/net.writing.

Temkin, Daniel. 2017. “FatFinger.JS.” ​FatFinger.JS Website ​. Accessed August 16, 2017.
http://fatfingerjs.com.

https://processing.org/reference/environment/
http://www.electronicbookreview.com/thread/electropoetics/net.writing
http://litline.org/ABR/issues/Volume22/Issue6/sondheim.pdf
http://www.shadoof.net/in/whitecubebluesky/alsoexchange.html

 46

CHAPTER 3

Documentation of Exhibition

Abstract Introduction

 47

Deconstructing Code that Works Process: ​https://vimeo.com/258715130

https://vimeo.com/258715130

 48

Gallery

 49

 50

 51

	Title page - Deconstructing code that works
	Acknowledgements
	Table of Contents
	INTRODUCTION
	METHODOLOGY
	CHAPTER 1 - Delimiting a Field of Codework
	CHAPTER 2
	CHAPTER 3 - Documentation of Exhibition Abstract Introduction

