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Abstract 

The urban heat island (UHI) is one of the most documented manifestations of urbanisation 

and the subject of intensive research over recent decades. Australia, as many other highly 

urbanised countries, has developed policies and strategies to promote more compact 

settlements; however, new urban development is characterised by higher urban densities 

and larger proportion of impervious surfaces that can potentially intensify UHIs. Among 

mitigation strategies, green infrastructure (GI) has proved effective in reducing urban 

temperatures. However, more research is needed to determine which compositions, 

amounts and spatial distributions are more effective in providing cooling benefits. This 

PhD research responds to this need by proposing a new taxonomy of green infrastructure 

typologies (GITs) to classify urban landscapes into 34 standard classes. Very high-

resolution thermal, spectral imagery and LiDAR data were employed to examine the 

relationships between functional, structural and configurational descriptors of GI and the 

diurnal and nocturnal thermal patterns across the Sydney metropolitan area. Remote 

sensing data were collected by aircraft in February 2013 (summer) and August 2012 

(winter) in calm, clear and dry conditions. This study demonstrates the applicability of the 

proposed methodological framework and classification scheme in urban climatology by 

analysing the inter- and intra-variability of land surface temperatures (LSTs) among 

typologies. Results show that water bodies, well irrigated grasses and aligned and clustered 

trees provide the largest cooling effects at daytime. However, at night well irrigated grasses 

are much cooler than forested areas, while water features are among the warmest GITs. It 

was also found that: (1) the composition and abundance of land covers is more influential 

in LSTs than the spatial distribution; (2) the lack of irrigation significantly affects the 

cooling capacity of vegetation, and (3) the cooling effect of vegetation is significantly 

outweighed by the warming effect of surrounding impervious surfaces. Several statistical 

models were produced for an accurate prediction of LSTs based on the individual 

contributions of derived GI parameters. Resulting estimates were employed to propose key 

principles, mitigation strategies and guidelines that can be implemented by researchers, 

governments and practitioners to prioritise greening interventions, improve urban 

microclimates and mitigate the urban heat more effectively.  
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Chapter 1  

Introduction 

1.1 Statement of the problem  

Cities are centres of cultural and economic activity that over the last century have 

uninterruptedly welcomed newcomers migrating from rural areas in search of a better life 

and economic growth (United Nations, 2012; Zupancic et al., 2015). This incremental 

changes to the urban population have resulted in an unprecedented urbanisation that has 

led to the radical territorial expansion of urban settlements, especially in developing 

countries (UN, 2012). The so-called urban sprawl has caused the loss of natural habitats, 

biodiversity, vegetation and permeable soils that have been irremediably replaced by sealed 

surfaces, buildings and roads (Forest Research, 2010a; Lehmann, 2014; Motazedian & 

Leardini, 2012; Zupancic et al., 2015). Furthermore, rapid urbanisation has considerably 

altered the natural balance through significant changes in land-uses causing serious 

environmental and climatic impacts such as land degradation, soil erosion, air and water 

pollution, noise, habitat loss and temperature increase (Roy et al., 2012; Santamouris, 2015; 

Stewart, 2011b).  

This thesis specifically focuses on the context of Australia, which is one of the most 

urbanised countries in the world with nearly 85% of its population residing in major urban 

centres; expected to grow up to 93% by 2050 (UN, 2012). Urbanisation exacerbates heat 

extremes, which  makes Australian cities extremely vulnerable to climate change (CSIRO 

& BOM, 2015; IPCC, 2013). In response to urban sprawl, Australia –like many other 

countries– has developed policies and strategies to promote more compact cities (Irger, 

2014). Through this vision, authorities intended to concentrate infrastructure, services and 

resources; however, they failed in decreasing car dependency because of a poor public 

transport provision.  

Hence, major Australian cities are still characterised by sparsely built precincts of detached 

houses, large plot sizes, extensive parking areas, paved driveways, and a large proportion 
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of wide roads (Irger, 2014). To some extent, densification policies have succeeded as the 

average plot size has decreased and the number of apartments per hectare have grown in 

recent years. However, larger and denser urban developments have been erected at the 

expense of private and public greenspaces and under-utilised brownfields; consequently, 

these new neighbourhoods are characterised by impervious surfaces, higher local 

temperatures and greater energy consumption and carbon emissions associated with 

cooling (Irger, 2014; Newton et al., 2013). Despite these facts, there is scant research 

conducted in Australian cities analysing the interplay between vegetation loss, changes in 

land surface properties and the rise of urban temperatures (Coutts et al., 2007; Hunter et 

al., 2012; Norton et al., 2013). 

In terms of the urban climate, the combined effects of urbanised land, densification of cities 

and human activities raises the amount of anthropogenic heat liberated to the atmosphere, 

lowers evaporative cooling, affects natural ventilation, and alters the urban heat balance by 

increasing the available sensible heat emerging from pavements and buildings 

(Santamouris, 2015). As a consequence, urban cores experience higher ambient 

temperatures compared to their natural surroundings, a phenomenon known as the urban 

heat island (UHI) (Gill, 2006; Oke, 1982, 1988b; Oke et al., 1989; Oke, 1992; Stewart, 

2011b; Voogt & Oke, 2003). However,  UHIs are influenced by both local and regional 

aspects including the urban morphology and structural parameters of cities, synoptic 

weather conditions, thermal properties of materials, and the presence and magnitude of the 

heat sources and sinks (Santamouris et al., 2017). The interest in UHI has considerably 

grown in the last decades as it addresses two major environmental problems: global 

warming and human over-population (Stewart & Oke, 2012). Hence, it is one of the most 

documented phenomenon associated with climate change (Santamouris, 2014). In fact, 

many cases have been documented in which the magnitude of the climatic effects of UHI 

equalled or exceeded those of the global climate changes, a situation that alarms the 

scientific community worldwide (Grimmond, 2006; Santamouris, 2015). 

In this context, primary concerns of current climate studies are the extremely high urban 

temperatures and the increase in the intensity, frequency and duration of heatwaves that 

cause significant impacts on different spheres of human life and cities’ economy (Bowler 

et al., 2010b; Hunter et al., 2012; Steffen et al., 2011; Völker et al., 2013). It has been 

demonstrated that higher urban temperatures have serious consequences on indoor and 

outdoor thermal comfort (Coutts et al., 2012; Santamouris et al., 2017). In fact, UHI has 

been pointed out as a major threat to human health and well-being due to the inability of 

urban populations, especially vulnerable sectors such as the elderly and children, to adapt 
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and respond effectively to severe thermal stress (Coutts et al., 2015; Norton et al., 2013; 

Norton et al., 2015; Tzoulas et al., 2007). Hence, there is a strong connection between 

increased mortality and extreme heat (Baccini & Schindler, 2008; Zupancic et al., 2015).  

Moreover, numerous studies have indicated the remarkable impact of UHI on the urban 

economy and the environment as it increases the energy consumption and peak electricity 

demand used for cooling purposes, rises carbon and greenhouse gas emissions, and 

facilitates the concentration of certain air pollutants and tropospheric ozone (Lehmann, 

2014; Santamouris, 2015; Santamouris et al., 2017; Wang, Z.-H. et al., 2016; Zupancic et 

al., 2015). 

Among several mitigation technologies and strategies, green infrastructure –including 

parks, trees, water bodies, green roofs and vertical greenery systems– has been identified 

as a nature-based and efficient solution for reducing urban temperatures and mitigating the 

negative effects of UHI (Erell et al., 2011; Gill et al., 2007; Santamouris, 2014, 2015; 

Spronken‐Smith et al., 2000). Also referred to as urban greenery or urban greenspaces, 

urban green infrastructure has been defined as the interconnected network of natural and 

engineered features and spaces capable of providing a broad range of ecological, economic 

and social functions and services, maintaining natural processes, and protecting the 

biodiversity of urban and rural settings (Benedict & McMahon, 2002, 2006; European 

Environment Agency, 2011; Faehnle, 2014; Naumann et al., 2011; Roy et al., 2012; 

Williamson, 2003). Therefore, green infrastructure networks –as opposed to grey (or 

conventional) infrastructure– play a key role in delivering more sustainable and resilient 

settlements as they can be implemented to reduce carbon emissions and remedy the 

negative consequences of urban warming and climate change at lower capital, maintenance 

and operational costs, and with fewer negative impacts on the environment (Gill, 2006; 

Pakzad, 2017). 

Four high level categories of (1) provisioning, (2) regulating, (3) supporting, and (4) 

cultural have been proposed to organise different ecosystem services (ESS) provided by 

green infrastructure and measure their effects on human health and well-being (Mazza et 

al., 2011; Millennium Ecosystem Assessment, 2005). Among regulating services, urban 

greenery is capable of modifying urban microclimates, reducing extreme weather 

conditions and mitigating urban warming by: (1) providing protection and shading from 

solar radiation, (2) cooling ambient air through evapotranspiration, and (3) modifying air 

movement and heat exchange throughout the city (Bowler et al., 2010b; Coutts & Harris, 

2012; Forest Research, 2010b; Hunter et al., 2012; Norton et al., 2013; Oke et al., 1989; 

Santamouris, 2015). Simultaneously, urban greenery can help to reduce noise, filter 
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ambient pollutants, reduce erosion and facilitate soil stabilisation, decrease human stress, 

increase property values and cities attractiveness (Mazza et al., 2011; Santamouris, 2015). 

In terms of climate modification, shading potential is mostly associated with the 

biophysical and morphological characteristics of vegetation (Hunter et al., 2012). However, 

evapotranspiration is usually an overlooked parameter since its estimation is laborious, 

costly and mostly conducted for agricultural purposes (Nouri et al., 2015). Indeed, little 

research has focused on estimating evapotranspiration in highly heterogeneous urban 

contexts and exploring the relationships between evaporative cooling, water availability 

(irrigation regimes), vegetation abundance and temperature reductions (Nouri, Beecham et 

al., 2013). 

Numerous studies have demonstrated –through observational, experimental and simulated 

methods– that an increase in vegetation cover corresponds with lower ambient 

temperatures within and near to vegetation features (parks, trees, green roofs, green walls, 

etc.); which corresponds with the moderation of the canopy layer urban heat island 

(CLUHI) (Bowler et al., 2010b; Santamouris, 2015, 2015; Taha et al., 1991). Furthermore, 

remote sensing studies suggest that greater vegetation cover results effective in attenuating 

the surface urban heat island (SUHI) and reducing land surface temperatures (LST) (Coutts 

et al., 2016; Harris & Coutts, 2011; Huang et al., 2015). 

Additionally, studies on park cool island (PCI) and urban cool island (UCI) reported 

significant temperature differences between greenspaces and their urban surroundings 

either during night and day periods (Skoulika et al., 2014; Spronken-Smith & Oke, 1998; 

Yang et al., 2017). Existing evidence suggests that cooling benefits of trees and greenspaces 

vary as a function of the bio-physical, morphological and spatial arrangement of green 

infrastructure (i.e. size and shape of parks, crown width and arrangement of trees and 

greenspaces) (Bartesaghi Koc, Osmond, & Peters, 2017; Bowler et al., 2010a; Cao et al., 

2010; Motazedian & Leardini, 2012; Santamouris, 2015; Zhou et al., 2011). Studies also 

indicate that the intensity, magnitude and extent of these temperature reductions are 

affected by several factors such as prevailing weather conditions, season, irrigation and 

maintenance, distance from the vegetation or water body, the surrounding urban 

morphology, local anthropogenic heat, and distance to coast (sea breeze effect) (Al-

Gretawee et al., 2016; Cao et al., 2010; Hiemstra et al., 2017; Manteghi et al., 2015; Yang 

et al., 2017).  

Despite the current evidence on the positive climatic benefits of green infrastructure, more 

research is still required to determine the most efficient typologies, amounts, composition 

and spatial configuration necessary to provide an optimal thermal cooling of urban 
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environments using empirical data and predictive models with higher accuracy and 

precision (Bowler et al., 2010b; Coutts & Harris, 2012; Kong et al., 2013; Motazedian 

& Leardini, 2012; Zupancic et al., 2015). Moreover, no commonly agreed typologies and 

protocols have been proposed yet to confidently compare, report and predict the 

combinatory climatic effects of distinct types of green infrastructure (parks, trees, green 

roofs, etc.) across multiple locations and spatial scales. Therefore, it is necessary to develop 

a standardised classification system for green infrastructure dedicated to climate-related 

studies (Bowler et al., 2010b). Such system should be based on a holistic approach 

embracing the fundamental principles of green infrastructure, namely multi-functionality, 

connectivity and spatio-temporal heterogeneity and should combine functional, 

morphological and configurational attributes of vegetation and water bodies into one single 

scheme (Ahern, 2007; Bartesaghi Koc, Osmond, & Peters, 2017; Cadenasso et al., 2013; 

Pickett et al., 2017). 

Oke (2006, 2009) and Erell et al. (2011) have defined three main spatial scales for climate 

studies, namely the meso- (city-wide), local- (neighbourhoods/precincts) and the micro- 

(street canyons, buildings) scales. Among these, the local scale corresponds to the level in 

which urban planning and design mostly occurs and that concerns local governments, 

planning authorities, developers and practitioners (Norton et al., 2013). Nonetheless, most 

of the literature has concentrated on meso and micro scales; while studies at local scale are 

less numerous since these are costly, challenging and laborious (Motazedian & Leardini, 

2012; Norton et al., 2013). In this respect, there is a lack of assessment frameworks for a 

more detailed and comprehensive evaluation of the thermal performance of green 

infrastructure at a local level using a combination of empirical (in-situ and remote sensing) 

and inferential methods (numerical modelling). Furthermore, more attention should be put 

on defining the appropriate indicators, measurements, data sources and optimal spatio-

temporal resolutions necessary to achieve a more accurate and precise analysis of urban 

precincts or neighbourhoods. 

Current urban developments in Australia and around the world do not fully incorporate 

climate sensitive considerations at the local level, not because of lack of evidence, but 

because of the extreme complexity that requires multi-disciplinary approaches and due to 

the lack of specific guidelines and climatological information (Coutts & Harris, 2012; 

Hunter et al., 2012; Irger, 2014; Norton et al., 2015; Oke, 2006). There are still enormous 

communication gaps between climate scientists and planners, designers and policy makers 

that have to be bridged (Coutts et al., 2016). To address this problem, it is imperative to 

develop frameworks and predictive models for faster mapping, evaluation, and estimation 
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of the best types and amounts of green infrastructure required for a specific place. In 

addition, there is an urgent need for evidence-based guidelines to inform policy and support 

practitioners on the best strategies to design and implement green infrastructure into new 

and retrofitted urban precincts for a more effective mitigation of urban warming (Bowler 

et al., 2010b; Buchholz, 2013; Hunter et al., 2012; Irger, 2014; Lehmann, 2014; Norton et 

al., 2015; Zupancic et al., 2015).  

1.2 Research gaps and contributions 

A critical look at the previous section and the reviewed literature (extensively discussed in 

Chapters 2, 3 and 4) highlights the urgent necessity to better understand the thermal 

performance of green infrastructure on urban microclimate, in particular the analysis of the 

underlying factors influencing LST reductions and SUHI mitigation at the local level 

(precinct/neighbourhood scale). 

The relationship between green infrastructure and both air and surface temperatures 

reductions has been well established in the literature; however, more research is needed to 

determine which types, compositions, abundance and spatial arrangement of greenery and 

water bodies are more effective in providing cooling benefits (Bowler et al., 2010b; Coutts 

& Harris, 2012; Kong et al., 2013; Morakinyo & Lam, 2016; Norton et al., 2013; Shashua-

Bar & Hoffman, 2000; Zupancic et al., 2015).  

The present dissertation responds to this gap by proposing a more comprehensive and 

holistic methodological framework to analyse the interplay and cumulative thermal effects 

of natural and artificial features of green infrastructure over large urban areas. Spaceborne 

remote sensing has been commonly employed to undertake such analysis; however, 

satellite imagery currently has a spatial resolution of several metres, which is not always 

suitable for microclimatic modelling of urban precincts and buildings (Coutts et al., 2016; 

Gaitani et al., 2017; Irger, 2014).  

Therefore, the present research explores the capacity of airborne remote sensing to perform 

microclimatic analyses with a high level of detail, precision and accuracy. Accordingly, 

airborne-based imagery in very high resolution is employed to analyse the influence of the 

bio-physical and configurational characteristics of green infrastructure on the seasonal 

variation and spatial patterns of diurnal and nocturnal LSTs of several precincts across the 

Sydney metropolitan area. 
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The lack of robust and widely accepted green infrastructure typologies to support climate 

research has forced researchers to adopt terminology from related disciplines, a situation 

that hinders the comparability of climatic results.  Thus, improvements in collecting and 

reporting temperature data on several types of green infrastructure and at various spatial 

scales and sites are urgently needed. To address this issue, current green infrastructure 

terminology and classification approaches were systematically reviewed. As a result, a new 

taxonomy of green infrastructure based on three key principles: dynamic spatial and 

temporal heterogeneity, connectivity, and multi-functionality was introduced to classify 

vegetation and water bodies according to physical and spatial parameters. This scheme is 

critically evaluated as a standardised classification system intended for climate-related 

studies; also, it is practically tested and validated in the Australian context. The 

implementation of this new scheme provided the opportunity to develop an innovative GIS-

based methodology for the automated classification and thermal mapping of green 

infrastructure and built surfaces; a workflow that can be easily implemented by researchers 

and practitioners with different skill levels. 

Presently, there is lack of technical guidance on how to design, plan and implement urban 

greenery to provide a maximum thermal cooling and mitigate urban warming more 

effectively. In this regard, the successful application of the abovementioned classification 

scheme and workflow within the proposed methodological framework has facilitated the 

development of a statistical model for a more precise and accurate prediction of LSTs at 

local scale; and consequently, a better estimation of the cooling effects of green 

infrastructure. 

Overall, this research contributes to advancing the knowledge of how neighbourhoods and 

urban precincts should be planned and designed to incorporate green infrastructure for 

SUHI amelioration. The present study also compares the thermal profiles of different urban 

precincts with attention to vegetation (and its spatial distribution), water bodies and other 

urban surface characteristics. This analysis identifies which characteristics and factors are 

more influential on the modification of the local microclimate, particularly on elevated 

surface temperatures. 

Additionally, a set of design guidelines and recommendations are provided as a crucial step 

towards better communication between climate scientists, policy makers and practitioners. 

Ideally, this technical guidance can provide valuable information to help city planners, 

urban designers and landscape architects inform their decisions, identify critical areas, 

prioritise interventions and deliver more sustainable, climate-resilient and cooler cities with 

greater confidence. It is expected that these changes in policy and design will trigger 
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positive impacts on communities in terms of human health and wellbeing as well as on the 

reduction of carbon emissions, pollutants and electricity consumption. It is also anticipated 

that studies from related disciplines would benefit from the contributions of this thesis. 

 

1.3 Research aims, objectives and questions 

This research aims, firstly, to explore and understand the interplay and cumulative effects 

of different types of green infrastructure on urban microclimate; and secondly, to identify 

the optimal types, amount, compositions and arrangements of green infrastructure 

necessary to provide maximum thermal cooling and mitigate urban warming more 

effectively. 

To achieve these aims, the following objectives and research questions were defined: 

 

Objective 1. To propose an assessment framework to examine the relationships between 

green infrastructure, urban characteristics and land surface temperatures at local 

scale; and to test and validate this framework using very high-resolution data 

for the automated classification of green infrastructure and thermal assessment 

of a large urban area of Sydney in summer and winter. 

Questions to be answered in Chapter 3: 

1.1 What are the different methods, indicators, data sources, data collection 

requirements (duration, seasons and times), spatial scales, type of 

measurements, and instruments that are commonly used to study the cooling 

effects of green infrastructure on the urban climate?  

1.2 What are the advantages and disadvantages of available methods, approaches 

and indicators of one over another? 

Question to be answered in Chapter 5: 

1.3 What is the most adequate methodological framework for a precise and accurate 

analysis of the thermal profiles of green infrastructure at local scale using very 

high-resolution data? 
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Question to be answered in Chapters 8 and 9: 

1.4 What are the strengths and limitations of the proposed assessment framework? 

1.5 Which improvements or modifications are necessary to implement the proposed 

assessment framework in other climate conditions and locations?  

 

Objective 2. To advance taxonomies of green infrastructure by proposing a standardised 

classification scheme dedicated to climate-related studies. This is intended to 

assist in the analysis, comparability and reporting of the seasonal and spatial 

variability of diurnal and nocturnal land surface temperatures of different urban 

precincts of the Sydney metropolitan area. 

Questions to be answered in Chapter 4: 

2.1 What are the available methods, approaches, parameters and terminology 

currently used to catalogue green infrastructure? 

2.2 What are the principles and criteria for designing a green infrastructure 

classification scheme that can be applied in climate research? 

Questions to be answered in Chapters 5 and 6: 

2.3 What are the typologies and their structural and configurational parameters and 

threshold values to classify green infrastructure using remotely sensed data? 

Questions to be answered in Chapter 7: 

2.4 Which green infrastructure typologies, compositions, abundance and spatial 

configurations are the most and least efficient in reducing surface temperatures 

at local scale? 

2.5 What are the spatio-temporal patterns and variability of diurnal and nocturnal 

land surface temperatures among typologies? 

2.6 Is there any statistically significant difference among typologies? 
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Objective 3. To develop a statistical model for a precise and accurate prediction of land 

surface temperatures in different urban contexts, times of the day and seasons. 

This model is intended to quantify the relationships between land surface 

temperatures and different green infrastructure parameters, as well as to 

determine which urban design interventions or aspects can help reducing land 

surface temperatures of neighbourhoods more effectively.   

Questions to be answered in Chapters 7 and 8: 

3.1 What are the relationships between land surface temperatures and different 

functional, structural and configurational attributes of green infrastructure? 

3.2 What is the extent and magnitude of the contributions of green infrastructure in 

the urban microclimate, and which variables and factors are more influential in 

modifying land surface temperature conditions of urban precincts? 

3.3 How much vegetation cover and what type of changes in surface covers are 

necessary for reducing surface temperatures more effectively? 

 

Objective 4. To explore the implications of the evidence in urban planning and design by 

developing cooling scenarios from predictive models and proposing general 

guidelines and recommendations on the most effective strategies to implement 

green infrastructure for heat mitigation and climate adaptation. 

Questions to be answered in Chapters 8 and 9: 

4.1 What principles, strategies, and practical guidance can be derived from the 

evidence to incorporate green infrastructure in urban planning and design to 

moderate urban microclimates and mitigate SUHI more effectively? 

4.2 How can the thermal differentiation and statistical analysis of typologies be 

utilised to improve the communication of evidence by proposing different heat 

mitigation scenarios? 
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1.4 Thesis structure  

This dissertation involves four fundamental phases that are structured into nine chapters 

and 8 appendices [Table 1.1]. The first part –‘Context’– corresponds to Chapter 1, which 

presents a brief overview of the topic and provides background information necessary to 

understand the problem and the significance of this research. It also outlines the aims and 

objectives, defines the gaps and questions, and describes the thesis structure. 

The second part –‘Literature review’– encompasses Chapters 2, 3 and 4. Chapter 2 

provides a theoretical overview of the interdisciplinary contexts relevant to green 

infrastructure, its modifying effect on the urban microclimate and its relationship with 

urban morphology and the design and planning of cities. The chapter begins with a review 

of overarching definitions and principles of green infrastructure, followed by a brief 

discussion of the impacts of climate change, and urbanisation on vegetation loss and land 

use changes. The chapter also describes basic theory around urban climatology with special 

attention to the scales of study, the energy balance of built and vegetated surfaces and the 

characterisation of UHIs. Finally, it concentrates on the main benefits of green 

infrastructure on urban microclimate and human life and discusses the effects of urban 

morphology on vegetation performance.  

Chapter 3 presents a comprehensive systematic review of studies that quantified and 

reported on the relationship between vegetation-related characteristics and their effect on 

human thermal comfort, air and surface temperatures. It takes a critical look at 

methodological aspects to identify gaps, capabilities and limitations of the reviewed studies 

and determine the most adequate approaches, methods and variables that can serve this 

research. 

Chapter 4 focuses on developing a new taxonomy of green infrastructure that can be 

applied in climate research. It starts with a systematic review and evaluation of the existing 

evidence on how green infrastructure is being categorised and characterised worldwide. It 

then defines the classification criteria, approaches and indicators, and proposes a new 

conceptual matrix to classify green infrastructure from a climate-oriented perspective. 

Finally, it presents a streamlined typology, parameters and threshold values for remotely 

sensed classifications. 

The third part – ‘Methodology’– encompasses Chapters 5 and 6. Chapter 5 introduces the 

proposed methodological framework (based on the literature review) and explains the 

research methods employed in different sections of this dissertation. Chapter 6 describes 



 
12  |  Thesis structure 

the case study area and gives a full account of the equipment, data sources, and data 

collection protocols and measurements. It finally discusses the methods and procedures for 

the estimation of variables and presents the workflow for the automated mapping and 

classification of green infrastructure based on remote sensing data. 

The fourth part – ‘Empirical analysis’– is composed by Chapters 7, 8 and 9. Chapter 7 

provides the statistical analysis of data and results from both seasons, summer and winter. 

It begins with an assessment of the quality of classifications (from Chapter 6) followed by 

a detailed statistical and spatial analysis of diurnal and nocturnal surface temperature 

patterns. This section also describes the correlations between variables and estimates of the 

cooling capacity of all identified typologies. Furthermore, it presents, compares and 

analyses the results of several multivariate linear regression and spatial autocorrelation 

models formulated to predict surface temperatures for the study area. 

Chapter 8 interprets and discusses the significance of the evidence and evaluates the 

relevance and applicability of the proposed assessment framework, the introduced 

classification system and findings of this research for policy making, and urban design and 

planning. It further provides a list of guidelines and recommendations on the most effective 

strategies to implement green infrastructure for urban warming adaptation and mitigation. 

Finally, Chapter 9 concludes with a summary of the main research outcomes and 

contributions to knowledge, discusses the limitations of the present study and proposes 

suggestions, improvements and recommendations for further research. Table 1.1 provides 

a synthesis of the thesis structure and the links between research phases, chapters, 

objectives, questions, gaps, employed methods and outcomes. 
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Table 1.1 Synthesis of the thesis structure and the links between research phases, chapters, objectives, questions, 

gaps, employed methods and outcomes. 

Part Chapter Obj.* Quest.* Gaps Methods Outcomes 
C

o
n

te
xt

 

1. Introduction - - - 

Literature 
review 

Defined context, 
research gaps, aims 
& questions. 

L
it

er
at

u
re

 r
ev

ie
w

 

2. Theoretical 

Background 
- - - 

Understood theories 
& concepts related to 
the topic. 

3. Assessing 

the cooling 
effects of GI 

OB1 Q1.1, Q1.2 

G1 - Need for a 
holistic framework 
to assess the 
thermal profiles of 
GI at local level. Systematic 

literature 
review 

Reviewed & 
determined the most 
appropriate methods, 
indicators & data for 
the research. 

4. Developing 

a GI typology 
for climate 
studies 

OB2 Q2.1, Q2.2 

G2 - Lack of 
adequate 
taxonomies of GI to 
assess, compare 
and report climatic 
data 

Identified key 
classification 
principles & criteria. 

Defined a new GI 
typology. 

M
et

h
o

d
o

lo
g

y 

5. Research 

methodology 
OB1 Q1.3, Q2.3 G1 

Airborne 
remote 
sensing 
 
Systematic 
literature 
review 

Defined the 
assessment 
framework based on 
the literature. 

6. Data 

collection 
& Data 
processing 

OB2 Q2.3 
G1 
G2 

Selected the case 
study. 

Collected data & 
computed required 
variables. 

E
m

p
ir

ic
al

 A
n

al
ys

is
 

7. Data 

analysis & 
results 

OB2, 
OB3 

Q2.4, Q2.5, 
Q2.6, Q3.1, 
Q3.2, Q3.3 

G1 
G2 

Statistical 
analysis & 
modelling 

Tested & validated 
the proposed 
classification scheme 
& framework. 

Developed a 
predictive model.  

Addressed objectives 
and questions. 

8. Discussion 
OB3, 
OB4 

Q1.4, Q1.5, 
Q3.2, Q3.3, 
Q4.1, Q4.2 

G3 - Lack of 
technical guidance 
on how to design, 
plan and implement 
GI to provide a 
maximum thermal 
cooling 

Proposed set of 
guidelines and 
recommendations. 

Discussed 
implications on 
planning, design and 
future research. 

9. Conclusive 

summary 

OB1, 
OB4 

Q1.4, Q1.5, 
Q4.1, Q4.2 

A: Aim, OB: Objective, Q: Question, G: gap, GI: Green Infrastructure 
* See section 1.3 for specific objectives and questions 
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Chapter 2  

Theoretical background 

2.1 Introduction 

This chapter provides a review of the theoretical background and interdisciplinary contexts 

relevant to green infrastructure, its modifying effect on the urban microclimate and its 

relationship with urban morphology and the design and planning of cities. 

Initially, the chapter describes the main definitions, approaches and principles that have 

been formulated around green infrastructure and summarises the multiple benefits and 

services that can be obtained from the implementation of green infrastructure in cities. 

The chapter further discusses the negative impacts of climate change, population growth, 

urban development and the loss of vegetation influencing urban climates and the rising of 

urban temperatures. It also analyses the importance of spatial scales in climate research, 

defines and classifies the different types of UHIs, and summarises the multiple benefits of 

green infrastructure on urban microclimate, human thermal comfort and buildings. 

Finally, it reviews the effect of urban morphology on both the local climate and green 

infrastructure performance. It additionally presents a detailed analysis of the local climate 

zones (LCZ) (Stewart & Oke, 2012), as it is an important approach currently used to 

characterise, examine and compare UHIs in a standardised way and is the basis of our 

conceptual-methodological framework. 

2.2 Definitions, principles and importance of green 

infrastructure 

Green infrastructure is a relatively new concept –historically rooted in a long line of 

thinking– that in recent decades has concentrated the attention of researchers and 

practitioners of multiple disciplines as it offers a contemporary approach to conceptualise, 



 

16  |  Scales of climatic study 

plan, design and manage natural and built resources in a sustainable way (Ahern, 2007; 

Mell, 2010; Youngquist, 2009). The concept originated in the United States in the 1990s, 

and rapidly developed in the UK and Europe as a result of the opportunities that provided 

for spatial and landscape planning and for the development, maintenance and enhancement 

of environments  (Mell, 2010; Mell, 2013). 

The intrinsic multi-dimensionality –in  time, space and perceptions– of green infrastructure 

has led to variability and subjectivity in its discussion and application; limiting to some 

extent, a consensual understanding of its implications at both local and global levels (Mell, 

2014; Pauleit et al., 2014). As an evolving and contested term, the conceptualisation of 

green infrastructure depends on particular approaches, research scopes, priorities and 

people’s interests (Davies et al., 2006; Mell, 2010; Naumann et al., 2011). Initially, green 

infrastructure was described in terms of ecology and conservation goals and the role it plays 

in the management of natural landscapes and biodiversity (Benedict & McMahon, 2002, 

2006). 

In recent years, research has brought together aspects from human geography, urban 

planning and landscape ecology into the green infrastructure concept (Mell, 2008). These 

approaches include the protection of natural life and biodiversity (Williamson, 2003), the 

benefits to human health and well-being (Tzoulas et al., 2007), the capacity for water 

management and run-off control, also known as the Low Impact Development (LID) 

approach (Buchholz, 2013; United States Environmental Protection Agency, 2011), the 

connectivity capacity (Benedict & McMahon, 2002; TEP, 2005; Williamson, 2003), and 

the multi-functionality of ‘green’ resources (Davies et al., 2006; Office of the Deputy Prime 

Minister, 2002a, 2002b; TEP, 2005). 

While there is no single definition, green infrastructure is generally recognised as ‘the 

interconnected network of natural, semi-natural and engineered features and spaces capable 

of providing a broad range of ecological, economic and social ecosystem services. These 

networks provide functions and benefits capable of maintaining natural processes and 

protecting the biodiversity of urban and rural settings’ (Benedict & McMahon, 2002, 2006; 

Davies et al., 2006; East Midlands Green Infrastructure Network, 2006; EEA, 2011; 

Faehnle, 2014; MEA, 2005; Naumann et al., 2011; Tzoulas et al., 2007; Williamson, 2003).  

According to Benedict and McMahon (2006), green infrastructure comprises a 

conglomerate of natural and man-made elements (core areas) organised in ‘hubs’ which 

provide the space for plant and animal species to develop, acting as the ecological building 

blocks for the network (Pakzad, 2017). These hubs are spatially connected and integrated 



 

Chapter 2 – Theoretical background  |  17 

 

through corridors that facilitate the interrelation and communication among species, and 

the interchange of nutrients and information. These linkages are determined by the 

morphological composition and spatial configuration of natural systems and are essential 

to prevent the fragmentation of habitats and enhance the resilience of the network (Benedict 

& McMahon, 2006; Pickett et al., 2017; Weber & Allen, 2010) [Figure 2.1]. 

 

Figure 2.1  Conceptual diagram of a green infrastructure network showing core areas, hubs and corridors. 

     (Adapted from Benedict & McMahon, 2002 and Weber & Allen, 2010).  

From a holistic view, there are three overarching principles underpinning the concept of 

green infrastructure as a ‘life support system’ that should be understood under a multi-scale 

approach (Ahern, 2007). These principles are: (a) dynamic spatial and temporal 

heterogeneity (Cadenasso et al., 2007; Cadenasso et al., 2013; Pickett et al., 2017), (b) 

spatial interconnectivity or integration (blue-green-grey continuum) (Benedict 

& McMahon, 2006; Davies et al., 2006; Mazza et al., 2011; Mell, 2008; Pauleit et al., 

2014), and (c) multi-functionality (Davies et al., 2006; European Commission, 2012; 

Landscape Institute, 2009; Mell, 2008; Pauleit et al., 2014; TEP, 2005; The Mersey Forest, 

2011).  

Green infrastructure, as an urban system, should be conceived and studied as a spatially 

heterogeneous and temporally dynamic phenomenon encompassing a combination of 

natural, semi-natural and engineered landscape elements (Cadenasso et al., 2013; Pickett 

et al., 2017). For instance, urban parks comprise different pavements and types of 

vegetation. Heterogeneity can appear at all spatial scales; however, finer scales are usually 
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characterised by a large number of features so exhibit highly heterogeneous conditions 

compared to coarse scales that may be made up of more homogenous elements. Urban 

design plays a key role in determining these levels of heterogeneity by defining the amount 

and configuration of those elements, for example in the case of the uniformity of a 

streetscape (Cadenasso et al., 2013). Furthermore, the concept of dynamic heterogeneity is 

extremely important both as a driver and an outcome of a mosaic of biophysical 

(ecological) and social processes, and is a key feature defining temporal changes, spatial 

patterns, hierarchical organisations and the ecological functioning of urban landscapes 

(Cadenasso et al., 2013; Pickett et al., 2017).  

The maintenance and enhancement of ‘ecological connectivity’ is a key aim of green 

infrastructure that is crucial to support ecosystems’ functioning and ensure the connectivity 

of habitats and wildlife (Mazza et al., 2011; Naumann et al., 2011; Weber & Allen, 2010). 

Connectivity has two main components; the ‘structural connectivity’ which refers to the 

physical interactions among elements within an ecological network, and secondly, the 

‘functional connectivity’ that relates to the behavioural responses between the species and 

the landscape structure (Mazza et al., 2011). These structural and functional 

interrelationships are meant to create valuable linkages to maintain the ecological balance 

between natural and built environments (East Midlands Development Agency, 2010; 

Lehmann, 2014; Williamson, 2003).   Therefore, the provision of green infrastructure 

networks is increasingly valued in a variety of planning contexts since they can serve 

multiple functions and to deliver a broad range of human and environmental services 

(Davis, 2010; Ely & Pitman, 2014; EMDA, 2010; Forest Research, 2010b; Natural 

Economy Northwest, 2010; Pakzad & Osmond, 2016; Szulczewska, 2012).  

The multiple benefits that people can obtain from natural ecosystems and from the 

transformation of resources into essential goods are called ‘ecosystem services’ (ESS) (Ely 

& Pitman, 2014; MEA, 2005; Pitman et al., 2015). These benefits include recreation, stress 

relief, increased property values, noise attenuation, stormwater retention, air purification, 

heat reduction, aesthetic enhancement and protection of biodiversity among many others 

(Naumann et al., 2011; Norton et al., 2013). These ESS have been organised into the four 

main categories of (a) provisioning, (b) supporting, (c) regulating and (d) cultural services 

(Ely & Pitman, 2014; Mazza et al., 2011; MEA, 2005). Researchers have found a strong 

linkage between green infrastructure, ESS and different components of human well-being 

such as security, health, good social relations and high quality of life (Groot et al., 2010; 

Tzoulas et al., 2007). Therefore, ESS can be used as performance indicators of the 

magnitude and extent of the impacts and effectiveness of green infrastructure (MEA, 2005; 
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Naumann et al., 2011). A summary of main ecosystem categories and services is presented 

in Table 2.1. 

The benefits and contributions of green infrastructure are vast and concern economic, social 

and environmental aspects  (Davis, 2010; EMDA, 2010; Forest Research, 2010b; Groot et 

al., 2002; NEN, 2010; Szulczewska, 2012). For instance, green infrastructure can 

potentially reduce the capital, operational and maintenance costs for climate change 

mitigation and adaptation by increasing urban resilience, providing healthy environments, 

preventing natural disasters, reducing carbon emissions and ameliorating the effects of the 

UHI (Benedict & McMahon, 2006; European Environment Agency, 2013; Pakzad 

& Osmond, 2016).   

Table 2.1  Ecosystem service categories to measure green infrastructure effectiveness. 

               Based on Gómez-Baggethun and Barton (2013); Mazza et al. (2011) and Pakzad and Osmond (2016). 

Categories Ecosystem services Examples  

Provisioning 

services 

Food supply - Production of vegetables and livestock  

- Area of agricultural land 

Water provision - Total of freshwater resources 

- Water storage capacity 

Raw materials - Provision of fuel 

- Forest growing stock 

- Resources production (i.e. paper, cotton, wood, 

etc.) 

- Biomass and bioenergy production 

Genetic resources (for food 

security) 

- Increase of crop varieties 

- Livestock and fish variety 

Medical resources - Species for natural and homeopathic medicine 

Ornamental resources - Handcraft work 

- Ornamental plant species from sustainable sources 

Supporting  

services 

Nutrient cycling - Soil organisms/functional groups 

- Nutrient retention, circulation and removal 

Primary production - Net primary production 

Provision of habitats - Conservation of biodiversity and habitats of birds, 

insects and other animals 

- Animal sighting 

- Species connectivity 

Maintenance of genetic 

diversity 

- Enhancement of species diversity 

- Phylogenetic diversity 

- Gene conservation 

Regulating 

services 

Air quality regulation - Air purification/avoided emissions 

- Removal and fixation of pollutants 

Climate modification - Urban temperature regulation (Evaporative cooling 

and shading) 

- Wind flow alteration 

Climate change 

mitigation/adaptation 

- Carbon sequestration and exchange 

- Reduced energy-related emissions 

Moderation of extreme 

events 

- Storm, wave, and floods attenuation and 

prevention 

- Heat absorption during severe heatwaves 
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Categories Ecosystem services Examples  

Water management - Water flow regulation and mitigation 

- Run-off control 

- Water infiltration capacity 

- Soil water storage capacity 

Waste treatment - Effluent filtering 

- Water quality control 

- Nutrient fixation, circulation and removal 

Erosion prevention - Soil erosion reduction 

- Enhancement of soil quality and compactness 

Maintenance of soil fertility - Regulation of soil-carbon content 

- Soil formation 

Pollination - Pollination of plants and seed dispersal through 

birds and insects 

Biological control - Changes in disease burden 

- Control of species richness (i.e. predators) 

- Control of biological agents and species 

Noise control - Noise absorption by vegetation barriers 

Cultural 

services 

Landscape and amenity 

values 

- Change of number of residents and visitors 

- Real state economic valuation 

- Cultural identity 

Recreation and cognitive 

development 

- Opportunities for recreation, community 

engagement, meditation and pedagogy 

- Increase or nature tourism 

Cultural values, educational 

and inspirational services 

- Sense of place and belonging 

- Human health benefits 

- Research improvements 

 

Researchers from the United States (US) reveal a particular interest in water management 

and LID projects since the provision of green infrastructure can also help to reduce the 

costs related to soil erosion, run-off control and rainwater management, and to mitigate the 

negative effects of extreme weather events such as storms, floods, landslides and bushfires 

(Beauchamp & Adamowski, 2013; Buchholz, 2013; EPA, 2011). Similarly, Australian 

experts have concentrated on water management and climatic benefits of greenspaces, 

green roofs and vertical greenery from a Water Sensitive Urban Design (WSUD) 

perspective (Coutts et al., 2012, 2012; Coutts et al., 2013; Hunter et al., 2014; Norton et al., 

2015; Williams et al., 2010). 

Among all ESS, the regulating services including the climate modification, climate change 

mitigation and adaptation, air quality regulation and reduction of carbon emissions (carbon 

sequestration and energy savings) have attracted an enormous interest from researchers 

given the unparalleled effects of climate change, particularly the increment of urban 

temperatures, and the severity, duration and frequency of heat waves (Forest Research, 

2010a, 2010b; Gill, 2006; Hunter et al., 2012; Motazedian & Leardini, 2012; Norton et al., 

2013; Norton et al., 2015; Willemsen & Pardyjak, 2012).  
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Increasing and implementing green infrastructure networks in urban areas, including 

vegetation and water features1, is regarded as an effective strategy to substantially reduce 

air and surface temperatures by shading people and surfaces from high solar radiation, 

reducing UV exposure, increasing evaporative cooling and altering wind patterns (Bowler 

et al., 2010b; Coutts & Harris, 2012; Norton et al., 2013; Norton et al., 2015; Oke et al., 

1989; Taha, 1997). Since this dissertation particularly focuses on the climate regulation 

services and benefits of green infrastructure, a more detailed discussion on these aspects is 

provided in following sections of this chapter. 

2.3 Climate change, population growth, urban densification 

and the loss of vegetation 

It is widely recognised that human influence has been the dominant cause of the 

accelerating increase of the observed global temperature since mid-20th century; that 

according to the Intergovernmental Panel on Climate Change (IPCC) has risen by around 

0.85°C from 1880 to 2012 and 0.12°C every ten years since 1951 (CSIRO &  BOM, 2015; 

IPCC, 2013). The influence of human activities and economic growth cannot only be 

detected in the warming of the atmosphere and oceans, but also in the global change of 

water and nutrients cycles, the decrease of snow and polar ice, in the global mean sea level 

rise and the increasing number of extreme weather events (CSIRO &  BOM, 2015; IPCC, 

2013). Compared to the climate of 1986-2005, the IPCC has not only projected a significant 

change on temperatures, but has also indicated that warming will be stronger over land than 

oceans; hotter days and stronger heatwaves will become more frequent; cold weather and 

snowfall is expected to decline; and extreme rainfall and drought events will become more 

intense in the following decades (IPCC, 2013). 

The Australian continent possesses extensive arid and semi-arid areas, highly variable 

rainfall cycles and weather patterns dominated by El Niño-Southern Oscillation (ENSO) 

that make the country extremely vulnerable to global warming (Irger, 2014). Indeed, 

Australia has experienced a substantial warming since last century, evidenced by the 

increment of the mean, daily minimum and daily maximum temperatures, the recurrent 

anomalous warm seasons and the more frequent number of heat-related records broken 

very recently (Bureau of Meteorology, 2018; Bureau of Meteorology & Commonwealth 

Scientific and Industrial Research Organisation, 2016; CSIRO &  BOM, 2015). 

                                                      

1  Also referred as ‘blue infrastructure’ or ‘urban blue spaces’ (Völker et al. (2013).  
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Extreme heat conditions were experienced in Australia during the summer of 2012-2013 –

the so-called ‘angry summer’– in which near-surface air and sea-surface temperatures were 

the highest ever recorded for Australia (Bureau of Meteorology, 2013; CSIRO &  BOM, 

2015). Furthermore, annual average temperatures have increased by 0.9°C since 1910 and 

are expected to rise up to 2°C by 2030 and up to 5°C by 2070 (BOM &  CSIRO, 2016; 

Bureau of Meteorology, 2016; CSIRO &  BOM, 2015). Furthermore, it is projected that 

major capital cities across Australia will experience significant rise in the already elevated 

temperatures and the number of consecutive hot days as a consequence of the combined 

effects of climate change and existing UHIs (BOM, 2016; BOM &  CSIRO, 2016).  The 

ability of Australian cities to adapt and mitigate the impacts of climate change and urban 

warming are likely to be challenged by the rapid urban development and substantial 

population growth that is currently experiencing.  

Australia is one of the most highly urbanised countries in the world with nearly 85% of 

residents living in urban areas (Australian Bureau of Statistics, 2017). In 2012, 66% of 

Australians resided in major capital cities, a proportion that will substantially grow to a 

projected 74% by 2061 (ABS, 2017). According to the ABS (2017), Sydney is expected to 

remain as the most populous city in the country with predicted 8.0 million people in 2061, 

closely followed by Melbourne with 7.6 million. Perth is projected to experience the 

highest growth (187%) increasing from 1.9 million in 2012 to 5.5 million in 2061; while 

the second highest growth (118%) will be experienced by Brisbane increasing from 2.2 

million to 4.8 million over the same period. 

Australia has experienced significant population growth over the last 20 years at an average 

rate of 1.3% per year, and in the last two years at a rate of 1.6% per year as a consequence 

of higher fertility and immigration rates (ABS, 2017). The estimated resident population 

(ERP) at September 2017 reached 24.7 million and is projected to increase up to 48.3 

million by 2061 and 70.1 million people by 2101 (ABS, 2017). Similarly, the ageing of 

Australia's population is expected to continue. The proportion of people aged 65 years and 

over is projected to increase from 14 percent in 2012 to 22% in 2061 and to 25% in 2101. 

People aged 85 years or older making up 2% of the total population in 2012 are predicted 

to grow up to 5% by 2061 and up to 6% by 2101 (ABS, 2017). Under these demographic 

conditions, more people will live in urbanised areas in the next decades. Additionally, a 

more elderly population is likely to be affected by elevated urban temperatures and global 

warming who may experience severe discomfort, health issues and premature death. 

During the 20th century, the planning policies in Australia were mainly influenced by the 

desire of affordable housing, cheap fuel prices and the rise of car ownership which favoured 
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the urban sprawl of major cities. This led to the development of dispersed and unsustainable 

urban patterns with a lack of efficient public transport and community services, segregated 

land-uses, large proportion of roads, traffic congestion and pollution, economic 

disadvantage and social inequity (Irger, 2014). In response, current development strategies 

in Australia promote urban densification as an alternative to accommodate new residents 

and promote better standards of life, economic growth, affordable housing, and the 

provision of better infrastructure services (water, energy, and transportation).  Accordingly, 

new urban development has reduced plot sizes and accommodated larger numbers of 

dwellings per hectare, so typical suburban dwellings are steadily being replaced by larger 

residential complexes (Irger, 2014; Newton et al., 2013).     

However, as urban density increases, the proportion of vegetation decreases as public and 

private open spaces are eventually replaced by hard surfaces (i.e. bitumen, concrete, bricks 

and tiles) of high thermal conductivity, low albedo values and high heat storage capacity 

(Erell et al., 2011; Hunter et al., 2012; Oke, 1982). The lack of pervious surfaces and the 

removal of tree canopy cause a dramatic decrease of available shading, evapotranspiration 

and water infiltration rates, resulting in drier and hotter conditions for urban environments 

(Coutts et al., 2007). After a period of rain, impervious surfaces tend to dry/evaporate much 

faster than natural soils contributing to a rapid evaporative cooling of the air for a short 

period of time. However, over the following days, a significant increment of air temperature 

is often registered since the absence of available moisture contributes to a rapid increase in 

sensible heat near surfaces (Coutts et al., 2007; Erell et al., 2011).  

Also, densely developed urban areas possess distinctive urban geometries (urban canyons) 

that contribute to further urban warming by facilitating the creation and intensification of 

UHIs (Coutts et al., 2007; Hunter et al., 2012) (see Section 2.4.5). Large quantities of solar 

radiation are absorbed and stored during the day due to large proportion of horizontal and 

vertical urban surfaces including building facades and multiple reflections from glazing. 

All this heat is released at night and remains trapped in between deep and narrow street 

canyons that inhibit the dissipation of long-wave radiation to the sky and prevent natural 

ventilation by reducing the rate of air-flow (wind speeds) through building spaces (Erell et 

al., 2011; Hunter et al., 2012).  

There is not enough evidence to demonstrate that urban compactness is necessarily 

sustainable (Neuman, 2005); in fact, a move towards denser urban morphologies extends 

the time that cities and residents are exposed to unfavourable climatic conditions which 

demand a higher consumption of energy and resources (Coutts et al., 2007). Since the local 

microclimate is highly dependent on the presence of vegetation and building density, 



 

24  |  Scales of climatic study 

compact cities should be planned and designed in the future to mitigate urban warming and 

climate change more effectively. This implies the adoption of climate-sensitive measures 

including the strategic provision of green infrastructure and ESS, appropriate design of the 

urban form, and the thorough selection of building materials (i.e. lighter-coloured roofs and 

facades with higher albedo) to reduce heat storage (Santamouris, 2014, 2015).  

2.4 The urban climate  

The climatic conditions of urban areas should be understood as the combination of different 

physical phenomena such as temperature, humidity, wind, precipitation, radiation, 

cloudiness and general air quality (pollutants and particulate matter). The urban climate at 

a macro level is mainly influenced by geographical and meteorological factors (i.e. 

topography, latitude, longitude, prevailing winds) (Oke, 1992). Conversely, the urban 

microclimate, which refers to the unique conditions of a given location, is predominantly 

affected by the highly heterogeneous nature of urban environments, specifically the 

physical structure of the urban form such as height and shape of buildings, the presence of 

vegetation, and the orientation of streets (Erell et al., 2011; Oke, 1988b).  

The relationship between climates, the outside urban environments and the indoor thermal 

conditions has been the topic of study of a large number of investigations since last century. 

However, only in recent decades have investigations undertaken appropriate systematic 

research given the interest in understanding and mitigating global warming and climate 

change (Erell et al., 2011). The climate of London by Luke Howard (1818) can be 

considered the first scientific study in urban climate that identified and analysed the UHI 

in London based on empirical measurements (Erell et al., 2011; Grimmond, 2006). Given 

the widespread availability of meteorological instruments, subsequent research analysed 

the differences in energy fluxes between urban areas and their rural surroundings by 

comparing the records of different weather stations or mobile traverses (Erell et al., 2011; 

Irger, 2014; Oke, 1988b).  

Since the 1970s the discipline of urban climatology has progressed significantly. 

Investigations have focused on observing the atmospheric processes such as the radiant 

energy budget and understanding the mechanisms behind the creation of particular urban 

climates (Erell et al., 2011; Grimmond, 2006; Oke, 1988b). In recent decades, the advent 

of spaceborne (satellite) and airborne (aircrafts and drones) imagery has enabled analysis 

of the spatial and temporal variability of surface temperatures, particularly the evolution of 

UHI, in relation to vegetation and the urban form (Amiri et al., 2009; Voogt & Oke, 2003; 

Weng, 2009, 2012).  
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The UHI is considered the most compelling focus of urban climate research in the last 

decades as it has been well documented in most large and medium cities around the world 

(Grimmond, 2006; Santamouris, 2015). Thermal remote sensing has also been used to 

determine the biophysical properties of surfaces (i.e. emissivity, albedo, roughness, land 

cover fractions), and to study surface-atmosphere exchanges including evapotranspiration, 

net radiation, and sensible heat flux (Grimmond, 2006; Weng, 2009).  

2.4.1 Scales of climatic study 

Urban climates are characterised by particular processes and phenomena occurring at 

varying scales imposed by the biophysical characteristics of cities and the layered 

stratification of the atmosphere (Erell et al., 2011; Roth, 2012). Recognition of the impact 

of scale is crucial to understand the functioning and the genesis of particular climatic 

phenomena such as heat islands (Roth, 2012). Scale is also important for the study of the 

interactions among different atmospheric layers and for the discernibility of the elements 

of the urban surface (Arnfield, 2003; Roth, 2012).  

Urban features, either natural or artificial, possess distinctive energy budgets that generate 

significant modifying effects both within urbanised areas, and in the atmospheric volume 

of air above and beyond its boundaries (Erell et al., 2011). For instance, the thermal budgets 

of horizontal ground-level surfaces result from the combination of paved areas, irrigated 

and non-irrigated greenspaces with contrasting thermal, spectral, radiative, and 

aerodynamic and moisture characteristics. Furthermore, building surfaces (walls and roofs) 

are unevenly exposed to solar radiation, net long-wave radiation, humidity and ventilation 

at varying times. (Arnfield, 2003; Oke, 1988a). 

The distinction of atmospheric layers has been a guiding principle and fundamental in 

urban climate research to fully understand the issues of scale, and more importantly, to 

investigate the causality of urban climate modifications (Arnfield, 2003; Oke, 1982). 

Accordingly, the portion of the troposphere affected by the terrestrial surface is known as 

the ‘planetary boundary layer’ (PBL) that comprises the urban boundary layer (UBL) and 

the urban canopy layer (UCL) (Erell et al., 2011; Oke, 1976, 1982, 1988b, 1992, 1997) 

[Figure 2.2].  

The UBL is defined as the lowest portion of the atmosphere that is affected by the surface 

characteristics of urban areas and the activities within it (Erell et al., 2011; Oke, 1988b). 

As depicted in Figure 2.2, the UBL situates directly above the UCL and extends upward 

up to approximately ten times the height of the buildings or up to where the influence of 
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urban surfaces no longer exists (Erell et al., 2011; Hunter et al., 2012; Oke, 1988b). Overall, 

the conditions within the UBL are relatively homogeneous since they are principally 

influenced by local- to meso-scale processes such as rainfall, prevailing winds or major 

land uses which operate at larger spatial and temporal scales (Arnfield, 2003; Hunter et al., 

2012; Irger, 2014; Oke, 1988b). 

The UBL can be additionally divided into a number of sub-layers with distinctive 

characteristics (Oke, 1992). The upper part of the UBL corresponds to the ‘mixed layer’ 

which presents homogeneous conditions and is less likely to be influenced by urban 

surfaces. Immediately below, the ‘surface layer’ is composed by the ‘inertial or constant 

flux sub-layer’ that develops because of the passing air above buildings and the heat 

generated within the city. Since this sub-layer is characterised by a turbulent mixing of air, 

it is not affected by individual urban elements (i.e. single buildings or tress), but rather by 

the urban texture as a whole (Erell et al., 2011; Oke, 1992). The transition between the 

relatively homogeneous conditions of upper sub-layers and the highly variable air-flow 

conditions (wakes and plumes) generated by buildings of different heights, vegetation and 

open spaces of various dimensions occur in the ‘roughness sub-layer’ [Figure 2.2].       

The very lowest part of the atmosphere within the roughness sub-layer corresponds to the 

UCL which extends from the ground to about roof-level of buildings, trees and other 

objects [Figure 2.2] (Oke, 1988b, 1997). In comparison to the UBL, the conditions in the 

UCL are highly heterogeneous and widely vary from place to place. The UCL presents a 

mosaic of individual microclimates whose character is determined by the physical 

characteristics of the immediate surroundings such as height and shape of buildings, 

amount of vegetation, proportion of open space and the thermal and spectral attributes of 

materials (Erell et al., 2011).  

Within the atmospheric layers, the natural and artificial elements of the urban surface can 

be hierarchically aggregated into different spatial scales which possess distinctive climates, 

energy balances and climatic interactions (Arnfield, 2003; Oke, 1992). In fact, the spatial 

variability of urban elements is likely to be reduced as spatial scale becomes coarser 

(Ahern, 2007; Arnfield, 2003, 2003; Erell et al., 2011; Mell, 2010; Oke et al., 1989). For 

instance, there is less thermal difference between larger areas across the city (i.e. large 

forested areas) than between individual features of a street such as trees or buildings 

(Arnfield, 2003; Oke et al., 1989; Stewart & Oke, 2009).  
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Figure 2.2 Conceptual view of the different atmospheric layers and their relationship with the climatological 

scales and the natural and artificial elements of the built environment. (Redrawn from Grimmond 

(2006); Harris and Coutts (2011); Oke (1988b); Oke (1997) and Roth, 2012). 

 

Experts recognise three spatial scales that can be used for the study of climatological 

phenomena, namely the meso-, the local- and the micro-scale (Erell et al., 2011; Harris 

& Coutts, 2011; Hunter et al., 2012; Oke et al., 1989; Oke, 1992, 2006, 2009; Roth, 2012) 

[Table 2.2]. The meso-scale refers to climate processes of extensive areas, usually over tens 

of kilometres, which encompass entire regions or city-wide networks of green and grey 

infrastructure. The local-scale is appropriate for describing the climatic profiles of a portion 

of the city, usually a neighbourhood or array of buildings covering a horizontal area of 

hundreds to a thousand metres. The microscale is the smallest spatial scale which refers to 

surface energy balances and the surrounding climate of individual structures and spaces 
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such as streets, buildings, facets, courtyards, green roofs and green walls (Erell et al., 2011; 

Hunter et al., 2012; Oke et al., 2017; Roth, 2012). It is at the local- and micro- scales within 

the UCL where people mostly experience the thermal effects of climate change and UHI 

and where most design intervention occurs (Hunter et al., 2012; Roth, 2012). Hence, these 

are the more pertinent scales to measure the potential benefits and effectiveness of green 

infrastructure on human beings (Hunter et al., 2012).  

Urban climatologists are required to deal with the complexity and heterogeneity of urban 

landscapes when interpreting the observations at a particular spatial scale (Arnfield, 2003; 

Cadenasso et al., 2013; Harris & Coutts, 2011). Figure 2.2 and Table 2.2 shows the 

relationship between the atmospheric layers, the climatological scales and the typical urban 

scales by incorporating a description of common features and dimensional ranges as 

reference. It should be noted that these dimensional ranges may sometimes overlap due to 

the variability of terrain conditions and climatic phenomena (Erell et al., 2011).  

As scale is an important consideration for studying the urban climate, abovementioned 

climatological scales are also applicable to the study and discernibility of the so-called 

‘urban forest’ (Oke et al., 1989). This research will particularly focused on analysing the 

cooling effects of green infrastructure at local scale. This focus corresponds to a 

comprehensive review of the literature, and reasons and justifications are presented and 

discussed in Chapter 3.  

Table 2.2 Comparison of atmospheric layers, climatological scales and typical urban scales. 

    Adapted from Oke et al. (2017); Oke (2006); Oke et al. (1989) and Erell et al. (2011). 

Atmosph. 

layers 

Climatic 

scales 
Urban units Green/water features Built features 

Dimensiona

l ranges 

UBL Meso 

Region City plus surrounding countryside 25 - 100 km 

City Complete urban forest 
Large urban areas and  

several districts 
10 - 100 km 

UCL 

Local 

Neighbourhoods, 

LCZs, precincts 

Greenbelt, forest, lake, 

swamps, ocean 

City centres, residential 

areas, suburban zones, etc. 
1 - 10 km 

Block 
Park, wood, storage pond, 

streams 

City blocks: several 

buildings and open spaces 
100 - 1000 m 

Micro 

Street canyon 
Line of street trees or 
gardens, river, canals 

Building facades, streets, 
roads, trees, gardens, etc. 

5 - 50 m 

Building Tree, fountain  Single buildings 10 - 100 m 

Facets Leaf, lawn, pond Roof, wall, road 1 - 10 m  

2.4.2 The energy balance of urban surfaces 

To understand the meteorology of the boundary layer and the climatology of any site 

(commonly referred as microclimate) is crucial to analyse the energy balance of urban and 
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vegetated surfaces as these are responsible for the thermodynamic behaviour of air and 

surface temperatures, humidity, airflow and concentration of pollutants (Oke, 1988b). The 

concept of ‘energy balance’ is derived from the first law of thermodynamics, which states 

that energy can never be created or lost, just converted; therefore, the energy input must 

equal the sum of stored energy and the energy output (Erell et al., 2011). When applied to 

urban systems, this means that the sum of the heat from the sun and anthropogenic 

processes must equal the heat that is stored in materials, transferred to the atmosphere or 

has been taken up by the evaporation process (Irger, 2014). 

The surface energy balance of an urban area can be expressed in an equation (Oke, 1988b) 

which describes the heat exchanges between different surfaces (Erell et al., 2011), and it is 

written as follows: 

𝑄∗ + 𝑄𝐹  =  𝑄𝐻 + 𝑄𝐸 +  ∆𝑄𝑆 +  ∆𝑄𝐴                                  [Eq. 2.1] 

 

where Q* represents the net all-wave radiation (short- and long-wave); QF is the 

anthropogenic heat flux that is usually generated by buildings and human activities; QH is 

the convective (or turbulent) sensible heat flux which is the energy transferred from surfaces 

to the air; QE is the latent heat flux resulting from evaporation; ∆QS is the net storage heat 

flux or heat stored in materials and ∆QA is the net horizontal heat advection which is the 

energy required for air velocity (Erell et al., 2011; Oke, 1988b). To illustrate and evaluate 

the energy fluxes within an urban area, Oke (1988b) suggested an imaginary volume which 

extends from a depth in the substrate where energy exchanges are negligible to a level in 

the atmosphere near the limits of the UCL (Grimmond, 2006) [Figure 2.3a].  

The net exchange of radiation occurring over any outdoor surface in the urban canopy can 

be described with the following balance equation (Oke, 1988b): 

Q* = (Kdir + Kdif ) - K ↑ + L ↓ - L ↑                              [Eq. 2.2] 

where Q* is the net radiative balance, Kdir represents the direct short-wave radiation 

coming directly from the sun, Kdif  is diffuse short-wave radiation scattered by the 

atmosphere (i.e. clouds, aerosols), K ↑ is short-wave reflected by surfaces, and L ↓ and L 

↑ are the long-wave radiation received and emitted by a surface, respectively (Erell et al., 

2011; Oke, 1988b). 

Figure 2.3b illustrates the surface radiation budget of an urban area which depends on 

seasonal aspects (time of the day and year), amount of suspended particulate matter such 

as dust, pollutants, water vapour, and the albedo and emissivity of surfaces. Hence, the 
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amount of reflected, absorbed and emitted short- and long-wave radiation within the UCL 

is the direct result of the combined effects of the urban geometry and the properties of 

natural (vegetation and water features) and man-made materials (Erell et al., 2011; Irger, 

2014).  

 

Figure 2.3 (a) Schematic volume showing the surface energy balance components of an urban area and (b) a 

section of the net radiation exchanges of outdoor surfaces. (Redrawn based on Oke, 1988b). 
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The anthropogenic heat (QF) is the amount of energy produced by human processes which 

basically comprises (a) the heat from vehicular traffic, (b) the waste heat from buildings 

(mainly heating and cooling) and industrial activities, and (c) the heat released from human 

metabolism (i.e. large-scale movements of people) (Erell et al., 2011; Oke, 1988b). The 

magnitude of anthropogenic heat largely varies among cities, and between rural and urban 

areas as depends on population density and per capita energy consumption. The latter also 

depends on multiple factors including the local climate, the degree and type of industrial 

activity, the transport system, etc. (Arnfield, 2003; Oke, 1988b).  

The portion of energy transferred from surfaces to the adjacent air is known as the 

convective sensible heat (QH) (Oke, 1988b). The size of this convection depends on two 

factors, the resistance to heat transfer and the magnitude of the temperature difference 

between surfaces and the surrounding air, both affected by air velocity (Erell et al., 2011). 

Thus, sensible heat transfer is constrained by the roughness of urban surfaces (density and 

height of trees and buildings) that modifies wind flows (Oke et al., 1989; Oke, 1997).  

The latent heat flux (QE) represents the amount of energy that has been taken up during 

evaporation and transpiration commonly associated with natural surfaces such as 

permeable soils, vegetation and water bodies. The urban water budget affects the magnitude 

of the latent heat flux which in turns affects the available radiant energy, causing air 

temperature fluctuations (Erell et al., 2011). In-depth discussions on evapotranspiration and 

its influence on urban microclimates are presented in Section 2.5.3. 

The net storage heat flux (QS) describes the continual change in the amount of heat 

available in the urban fabric which depends on the ability of materials to emit, reflect, 

absorb and store radiant energy (Erell et al., 2011). The rate of these changes is determined 

by the thermal conductivity (capacity of dispersion) and the heat capacity of surfaces; 

however, their size and spatial arrangement are also influential factors (Erell et al., 2011). 

Therefore, the replacement of vegetation and pervious surfaces with man-made materials 

is the main reason for the increment of heat storage within urban areas, and a major 

contributor to the formation of UHIs (Oke, 1988b).  

Finally, the net horizontal heat advection (QA) represents the energy required for the 

transport of moisture and heat from one to another location (air velocity). Advection is 

affected by differences in latent and sensible heat that depend on the geometry and density 

of the urban form (Erell et al., 2011; Oke, 1988b). Since cities are highly heterogeneous, 

advection is variable and influenced by local features (roughness) such as the extent of 

planted areas and building density (Erell et al., 2011). For instance, the irrigated grass and 
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tree cover of a local park can influence the advection of paved streets in its vicinity, 

resulting in site-specific microclimatic characteristics (Oke, 1988b; Oke et al., 1989).   

2.4.3 The energy balance of vegetated surfaces 

To analyse the cooling effects of green infrastructure on urban microclimate, a basic 

understanding of the fluxes involved in the energy balance of vegetated and aquatic 

surfaces is necessary. The energy balance of vegetated surfaces requires defining a soil-

plant-air system as a volume which extends from the top of plants to a depth in the soil 

where there are no significant vertical heat fluxes [Figure 2.4] (Oke, 1992). These energy 

exchanges can be expressed in following equation (Oke, 1992): 

Q* = QH + QE + ∆QS + ∆QP                                                 [Eq. 2.3] 

where ∆QS represents the net rate of physical heat storage which results from the absorption 

or release of heat by the plant biomass (i.e. leaves, stems), the soil and air,  and ∆QP is the 

net rate of biochemical heat storage as a consequence of plant photosynthesis (Oke, 1992). 

Depending on the characteristics of the surrounding environment, heat advection (∆QA) 

may be also considered to account for the loss and gain of energy due to latent and sensible 

heat transport (Erell et al., 2011; Oke, 1992). 

 

Figure 2.4  Schema of the energy exchanges involved in a soil-plant-air volume. (Redrawn based on Oke, 1992). 

 

The energy balance of vegetation is complex and deserves further study (Oke et al., 1989). 

In urban landscapes, the non-homogeneity of vegetated surfaces results in unequal 

radiative, sensible and latent heat fluxes that are spatially variable (Erell et al., 2011; Oke, 
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1992). For instance, greater foliage density may cause a reduced penetration of short-wave 

solar radiation, the interception of long-wave radiation emitted by ground surfaces, reduced 

advection, lower air velocity and increased surface water infiltration compared to 

impervious surfaces or bare soil that might modify existing thermal conditions (Erell et al., 

2011).  

Figure 2.5 illustrates the daytime energy fluxes of a single street tree affecting the 

micrometeorology of an urban canyon (Oke et al., 1989). The heat gains mainly correspond 

to direct short-wave radiation from the sun, long-wave radiation from the atmosphere, and 

large amounts of reflected short-wave and long-wave radiant energy from surrounding 

walls and floor. In cases in which the air temperature in the street canyon exceeds the 

temperature of leaves, trees are also subject to the advection of sensible heat (Oke et al., 

1989).  

This considerable heat load is dissipated through transpiration as part of the photosynthesis, 

a process that is fundamentally dependent upon the water content and wind balance of the 

tree (Oke et al., 1989). Well irrigated vegetated surfaces increase evaporation from soil and 

transpiration from plants, resulting in an increment of the latent heat flux and a 

simultaneous reduction of the sensible heat flux to the atmosphere; this is perceived as a 

temperature drop (Erell et al., 2011; Oke et al., 1989; Oke, 1992). For many years, the study 

of these aspects has been the subject of agricultural and forest meteorology; however, these 

are also of great importance for urban planning and the mitigation of UHI given their 

influence on the thermal efficiency of green infrastructure (Erell et al., 2011). 

 

Figure 2.5 Schematic view of the daytime energy fluxes between an isolated tree and the environment of a street 

canyon. (Tl and Ta, temperatures of leaf and air respectively).  (Redrawn based on Oke et al., 1989). 
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2.4.4 The energy balance of water systems 

The thermal capacities of water bodies (i.e. oceans, rivers, lakes, etc.) should be also 

considered when examining the microclimatic effects of green infrastructure as they are 

significant transporters and stores of energy (Oke, 1992). Given that water is fluid, the 

thermal behaviour and heat exchanges between aquatic surfaces and the air are complicated 

as these occur not only by conduction and radiation, but also by advection and convection. 

As with vegetated surfaces, the energy balance of the surface layer of a water body can be 

represented through a hypothetical volume [Figure 2.6] that extends to the depth where 

there are no more vertical heat transfers, and can be expressed in the following equation: 

Q* = QH + QE + ∆QS + ∆QA                                   [Eq. 2.4] 

where ∆QS represents the change of heat storage in the layer and ∆QA corresponds to the 

net horizontal heat transfer due to water currents (Oke, 1992). In Figure 2.6, it can be 

observed that ∆QA is a form of horizontal heat flux divergence and convergence. 

Depending on the amount of rainfall and depth of the water surface, the net heat transfer 

(QR) and the heat conduction from the underlying soil (QG) should also be added to the 

equation (Oke, 1992). 

Water bodies are excellent heat absorbers due to their low albedo values and because the 

short-wave absorption occurs within a considerable volume, while most of the long-wave 

radiation from the atmosphere is absorbed with no significant reflection (Oke, 1992). 

Accordingly, a large body of water (i.e. ocean, lake) acts as a major heat sink (∆QS) during 

the day, absorbing most of the incoming solar radiation and leaving little energy to be 

transported into the atmosphere until late afternoon. Conversely, a large volume of water 

becomes a major heat source at night as the energy stored (approx. 300 W m-2) generates 

an upward flow of heat towards the atmosphere (Oke, 1992). However, differences from 

the above patterns and observed surface temperatures may arise due to localised advection 

currents, the effect of waves, the presence of organic components (i.e. plankton) and 

turbidity (Oke, 1988b, 1992).  

Although all water bodies are good absorbers of radiation, they may exhibit very little 

thermal response which is generally attributable to four aspects: 

a. penetration of short-wave radiation to considerable depths, so the absorbed energy is 

diffused through a large volume; 
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b. mixing of heat gain/losses throughout a large volume due to convection and mass 

transport by fluid motions; 

c. evaporative cooling tends to destabilise surfaces which further enhance the mixing effect; 

d. the exceptionally large thermal capacity of water, which requires enormous amounts of 

heat to raise its temperatures to the same level as most dry soils.  

 

Figure 2.6  Schematic representation of the heat fluxes involved in the energy balance of a water volume. 

(Redrawn based on Oke, 1992). 

Since these properties clearly contrast with those of land (terrestrial) surfaces, their thermal 

performance/behaviour are evidently different. Indeed, aquatic surface temperatures tend 

to exhibit less spatial variability than soils (Oke, 1992). Most of the previous discussion 

refers to relatively large bodies of water and may differ for smaller systems (i.e. rivers, 

ponds) since the latter present a reduced thermal inertia due to a smaller volume of water 

involved.  

Oke (1992) has also pointed out that edge-effects (i.e. in riversides or coastline areas) must 

be considered when examining the thermal profiles of shallow water because short-wave 

radiation can penetrate to the floor, warming up the lower part of the aquatic system. The 

presence of vegetation in water surfaces –like in creeks or swamps– further enhance the 

warming process due to the additional heat absorption of plants. All the aspects mentioned 

in this section were taken into account for developing both the new classification system 

for green infrastructure and the assessment framework presented in Chapters 4 and 5, 

respectively. 
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2.4.5 The urban heat island: definition and types 

The UHI is one of the most important and well-documented manifestations of climate 

change that has been the subject of research since it was first described for the city of 

London by Luke Howard in the early 19th century (Erell et al., 2011; Howard, 1818; Oke, 

1982; Santamouris, 2015). The UHI has been commonly defined as the phenomenon in 

which urban areas experience higher temperatures compared to their undeveloped 

surroundings (Erell et al., 2011; Gartland, 2008; Oke, 1982; Roth, 2012). When isotherms 

are drawn over a city as a series of concentric lines, it can be observed an island-like pattern 

of urban temperatures increasing from city’s edge towards the densest areas (Erell et al., 

2011) [Figure 2.7b]. The same schematic pattern of the UHI structure can be seen in the 

corresponding cross-section of the city that starts with a large gradient (‘cliff’) at the city’s 

periphery, continues steadily across suburban areas (‘plateau’) and reaches its maximum 

(‘peak’) at the city centre [Figure 2.7a].  

The conventional way to measure the UHI intensity (∆Tu-r) is by calculating the temperature 

difference between representative locations of rural and urban conditions (Erell et al., 

2011). However, the urban-rural dichotomy provides a coarse description of cities that it is 

not adequate for an accurate analysis of the UHI as it is a continuum and dynamic 

phenomenon (Erell et al., 2011; Stewart & Oke, 2012). Although the UHI has been mostly 

reported during the daytime, this is more typically experienced at night (Oke, 1979). As air 

temperatures decline after sunset, rural areas release radiative energy to the sky more 

rapidly than the urban counterparts, resulting in a sharp temperature contrast. Conversely, 

the trend is shortly reversed after sunrise when urban areas warm at a slower rate than the 

rural surroundings (Erell et al., 2011; Oke, 1982).  

UHIs are primarily driven by urban development, rather than climate change; however, 

they both have a compounding effect upon each other (Harris & Coutts, 2011). The causes 

of the formation of heat islands can be mainly attributed to the following factors: reduced 

evaporation and convection, and increased net radiation2, heat storage and anthropogenic 

heat (Gartland, 2008).  

The presence of the city entails a multitude of man-made modifications to the natural 

environment by replacing vegetation with dark-coloured surfaces of low albedo and high 

heat capacity (Harris & Coutts, 2011; Oke, 1982). This alters the individual components of 

the radiative and energy exchanges of the built environment as such type of hard surfaces 

                                                      

2  According to Gartland (2008), Net radiation consists of four separate radiation processes taking place at the 

Earth’s  surface: incoming solar radiation, reflected solar radiation, atmospheric radiation and surface radiation. 



 

Chapter 2 – Theoretical background  |  37 

 

absorb and retain large amounts of thermal energy that are slowly emitted at night 

(Gartland, 2008; Harris & Coutts, 2011; Oke, 1982; Roth, 2012). Furthermore, the removal 

of vegetation increases the exposure of impervious surfaces to direct short-wave radiation 

from the sun and decreases water infiltration, soil moisture and evapotranspiration 

(Gartland, 2008; Oke, 1979; Roth, 2012).  

 

Figure 2.7 (a) Schematic cross-section of a typical urban heat island, its corresponding diurnal and nocturnal 

air/surface temperature traverses and different types of urban heat island. (b) Isotherms map of a 

typical CLUHI. (Redrawn based on Erell et al., 2011; Roth, 2012 and Voogt, 2002). 
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Moreover, complex and dense urban geometries reduce air-flow, generate multiple 

reflections from the incoming short-wave radiation and trap the emitted long-wave 

radiation in deep and narrow street canyons (Oke, 1988b; Roth, 2012). Urban air pollution 

and anthropogenic heat released to the atmosphere also affects considerably the net long-

wave radiation balance of cities (Erell et al., 2011; Gartland, 2008; Roth, 2012). 

UHIs are better understood and measured as either a surface (surface urban heat island – 

SUHI and sub-surface urban heat island - SSUHI) or atmospheric (atmospheric urban heat 

island) phenomena. The latter type can be additionally subdivided into boundary-layer 

urban heat island (BLUHI) and canopy-layer urban heat island (CLUHI) (Erell et al., 2011; 

Oke, 1976, 1979, 1982) (Figure 2.7b).  

Table 2.3 Classification of UHI types according to their underlying processes, spatial coverage, timing and 

magnitude and methods of observation. Adapted from Roth (2012). 

UHI type /  

spatial 

coverage 

Underlying processes Timing: Magnitude 
Observation 

methods 

BLUHI / 

Meso-scale  

Day: bottom-up sensible heat flux 

through top of roughness sub-layer, 

top-down heat entrainment into the 

UBL, and radiative flux divergence 

due to polluted air 

 

Night: Similar to day, but intensity 

of processes is reduced 

Anthropogenic heat under special 

conditions 

Day/night: small and 

positive, decreasing with 

height in UBL. 

Vertical sensing: 

tall buildings, 

radiosondes, 

tethered balloons, 

aircraft-mounted 

instrumentation; 

 

Regional numerical 

modelling 

CLUHI/ 

Local- & 

micro-scales  

Day: strong positive sensible heat 

flux at surface; sensible heat flux 

convergence in canyon. 

 

Night: often positive sensible heat 

flux from the release of stored heat, 

long-wave radiative flux 

convergence and anthropogenic 

heat 

Day: small, sometimes 

negative if shading is 

extensive 

 

Night: large and positive, 

increases from sunset; 

maximum between a few 

hours after sunset to 

predawn hours  

Fixed stations; 

Mobile traverses; 

Urban flux towers 

 

 

SUHI / 

Meso-, local- & 

micro-scales 

Day: strong radiation absorption 

and heating by exposed dry and 

dark surfaces; surface energy 

balance 

 

Night: larger cooling at roofs (large 

sky view) compared to canyon 

facets (restricted sky view); surface 

energy balance 

Day: very large and 

positive 

 

Night: large and positive 

Remote sensing: 

ground-based, 

spaceborne, and 

airborne (including 

unmanned aerial 

vehicles- UAV) 

SSUHI 

Micro-scale 

Sub-surface energy balance; heat 

diffusion into the ground 

Day/night: small, follows 

the patterns of SUHI 

Underground in-situ 

probes 

 

Although they are related, these main UHI types differ in terms of properties, intensity, 

genesis, spatial distribution, temporal behaviour and level of homogeneity (Roth, 2012). 
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Hence, they are not necessarily studied concurrently (in space and time) and their 

distinction is sometimes introduced according to the observation method (Erell et al., 2011; 

Roth, 2012). For instance, heat islands identified from fixed weather stations are different 

from those measured by car traverses, or obtained from remote sensing imagery (Roth, 

2012). Table 2.3 lists the main types of UHIs and their main characteristics, processes, 

spatial coverage, and methods of observation. 

2.4.5.1 Subsurface urban heat island (SSUHI) 

SSUHI refers to temperatures under the city which results from the conductive properties 

of substrates, soils and underground infrastructure (if any) (Harris & Coutts, 2011; Irger, 

2014). The spatial variability of SSUHIs depend on the ability of particular surfaces to 

reflect and emit energy as well as the interaction of radiative energy with the ground (Harris 

& Coutts, 2011).  

2.4.5.2 Surface urban heat island (SUHI) 

SUHI describes the temperature differences of the entire three-dimensional urban surface 

interface of a city and its surroundings (streets, walls, roofs, greenspaces, trees, etc.) (Oke, 

1982; Roth, 2012). However, the distinction between the energy exchanges of horizontal 

(roofs, roads, grass and top of trees) and vertical (walls) facets is important as their 

processes contribute differently to the duration and magnitude of the SUHI (Harris 

& Coutts, 2011; Voogt & Oke, 2003).  

The SUHI is governed by the physical properties of surfaces such as emissivity, reflectivity, 

conductivity, absorptivity and sensible heat storage capacity, and their orientation to the 

sun (Roth, 2012; Voogt & Oke, 2003). SUHIs are usually strongest in summer and during 

daytime just after noon when solar heating reaches its maximum and creates large thermal 

differences between dry and wet, and built and vegetated surfaces (Roth, 2012). Relating 

surface and ambient temperature differences is complex; hence, misinterpretations may 

occur when using surface measurements to analyse CLUHIs (Roth, 2012).  

Remote sensing has been commonly used to capture the spatio-temporal patterns of SUHI 

since large areas can be monitored and analysed simultaneously and continuously 

(Arnfield, 2003; Gartland, 2008; Weng, 2009). While spaceborne and airborne imagery 

provide a bird’s eye view of horizontal surfaces due to the view angle of sensors, surface 

temperatures of walls and facades have been captured through hand-held thermal cameras 

(Voogt & Oke, 2003). However, studies of complete three-dimensional surface 

temperatures are scarce (Voogt & Oke, 1997). In comparison to ground-based 
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measurements, the remotely sensed SUHI is an indirect measurement requiring the 

consideration of the intervening atmosphere and radiative properties of surfaces within 

specific spectral wavelengths (Gartland, 2008; Voogt & Oke, 2003). The accuracy and 

precision of remotely sensed SUHI is generally constrained by spatial resolution since the 

interpretation and analysis of the data mainly depends on the camera resolution and its 

relevance to the scale where the processes occur. The literature around the application of 

remote sensing to investigate green infrastructure and its effects on SUHI is further 

described in Chapters 3 and 6. 

2.4.5.3 Canopy layer urban heat island (CLUHI) 

The CLUHI refers to the air temperature differences observed in the volume of the air 

closest to the ground surface that extends upwards to the roof-top level of buildings and 

tree canopy (Erell et al., 2011; Oke, 1976, 1988a). The overall morphology of CLUHIs can 

be related to the shape, geography of cities (i.e. topography, water bodies, trees, etc.) and 

the meso-scale background climate (air intermixes with the UBL) of the urban region (Oke, 

1979, 1982). Its internal pattern, however, is an expression of the surface energy transfers 

occurring inside urban canyons, which are strongly influenced by micro-scale factors such 

as urban form, building density, convection, evapotranspiration, and radiative properties of 

nearby surfaces (Oke, 1979; Roth, 2012).  

CLUHI intensity is typically more pronounced at night when the volume of the air is 

affected by the sensible heat transferred from buildings and roads into urban canyons. 

Conversely, during daytime, the urban-rural difference is less prominent, especially in 

dense areas, because tall buildings promote shading of surfaces (Roth, 2012). However, 

recently developed schemes such as the LCZ have demonstrated that these differences may 

vary depending on the time of the day and the areas that are compared (see Section 2.6.3) 

(Stewart, 2011b). The CLUHI has been the most investigated type of UHI as it is the most 

relevant to human health, well-being and energy consumption (Roth, 2012); and because it 

is generally inexpensive and easier to measure. Typical methods to measure CLUHI 

include a network of fixed weather stations (in-situ sensors and flux towers) at standard 

(screen-level3) meteorological heights and mobile traverses (usually cars) (Oke, 1988b; 

Voogt & Oke, 2003) (see Section 3.8.1). The collected weather data from two or more 

locations is then compared by using scatterplots or UHI transects (Gartland, 2008).   

                                                      

3 Air temperature that is normally measured at 2m above the ground surface in correspondence to the human height 

(Steeneveld et al. (2011).  
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2.4.5.4 Boundary layer urban heat island (BLUHI)   

BLUHI describes the urban warmth of entire cities and regions that extends into the UBL 

up to a height of hundreds of metres (Oke, 1982; Roth, 2012). BLUHIs result from the 

cumulative effects of the climatic condition of the UCL below. Indeed, the BLUHI is a 

phenomenon that extends from local to meso-scales and whose intensity is comparatively 

less than the CLUHIs (Roth, 2012). Depending on wind conditions, BLUHIs form domes 

of hot air that extend downwind above and beyond cities and that may influence and 

exacerbate CLUHIs due to the air exchanges with the canopy layer below (Oke, 1982).  

 The BLUHI has been investigated with the aid of vertical sensing including tall towers, 

radiosondes, tethered balloon flights and aircraft-mounted instruments (Gartland, 2008; 

Oke, 1979; Roth, 2012). Nonetheless, it has not received the same attention as its UCL 

counterpart given the difficulties of probing the air at large heights (Oke, 1979; Roth, 

2012). Regional climate models such as the NCAR-MM5 (Fifth-Generation Penn 

State/NCAR Mesoscale Model) (Grell et al., 1994) have been employed to evaluate the 

large-scale effects of the BLUHI and its mitigation measures (Gartland, 2008; Oke, 1982).  

2.4.6 Responding to the urban heat island 

To compensate for urban warming is necessary to apply appropriate mitigation strategies 

to increase thermal losses and decrease thermal gains in cities (Santamouris, 2015). 

Managing extreme heat and reducing its associated morbidity and mortality is an enormous 

challenge for communities, state and local governments (Harris & Coutts, 2011). So far, 

the most common response has been the use of air conditioning; however, this entails a 

higher consumption of energy, larger greenhouse gas emissions as well as additional urban 

warming through anthropogenic heat (Harris & Coutts, 2011). Furthermore, relying on air 

conditioning reduces the adaptation capacity of populations to warm environments and 

propitiates the dependency to assisted cooling technologies that may fail in some instances 

(Harris & Coutts, 2011; Lam et al., 2016; Spagnolo & Dear, 2003b).  

The most effective and common countermeasures to mitigate UHI include: (a) increasing 

the use of reflective, high-albedo, surface wetness and cool materials in pavements, roofs 

and building envelopes; (b) increasing the use of low temperature natural sinks for heat 

dissipation; (c) decreasing the generation of anthropogenic heat; and (d) expanding green 

infrastructure networks through additional greenspaces, street trees, green roofs, green 

walls and water features (Santamouris, 2015). These and other UHI mitigation approaches 

are summarised in Table 2.4.  



 

42  |  Responding to the urban heat island 

Table 2.4  Mitigation approaches for urban heat island. 

(Summarised from Coutts et al., 2010; Harris & Coutts, 2011; Irger, 2014; Osmond & Sharifi, 2017 

and Santamouris, 2014, 2015). 

Mitigation approach How it works 

Increase green infrastructure 

(trees and green open spaces)  

• Vegetation is a natural cooling system as it provides evapotranspiration 

and dissipates heat through latent heating instead of sensible heating. 

• Vegetated open spaces and tree canopy provide cooling for areas 

downwind and through park/urban cool islands. 

Use of green roofs/walls • Green roofs/walls reduce heat transfers into buildings and encourage 

evapotranspiration. Green roofs can help to collect rainwater and to 

decrease stormwater intensities and nutrients loads. 

Increased evaporative cooling • Active systems (i.e. evaporative spray coolers and misting fans) located 

in public spaces and passive cooling systems such as vegetation and 

water features can be used to increase evaporation and remove heat from 

the atmosphere. 

Water sensitive urban design 

(WSUD) 
• Enhancing evapotranspiration and heat dissipation by improving 

irrigation, water infiltration and retention.  

Increased shading & 

reduce solar exposure 

• Strategic location of vegetation (east, west and north in Australia) and 

shading devices can reduce solar exposure and heat storage of buildings 

in summertime. 

Increased reflectivity & albedo • Highly reflective and light-coloured materials (i.e. cool roofs) limit heat 

transfer into buildings and heat storage by reflecting great amounts of 

solar radiation. This reduces the need for summertime indoor cooling. 

High thermal emittance surfaces • Albedo can be increased by covering existing materials (cool 

pavements) with coatings that reflect in the near infrared. 

Streetscape design • Increasing the sky-view factor up to a certain point by widening streets 

as building heights increase enables better ventilation and cooling. 

• Defining an appropriate orientation of streets and buildings can help to 

control the exposure to incoming solar radiation. 

Energy efficiency • Waste heat production can be minimised by using more products with 

excellent energy efficiency ratings. 

Building design • Appropriate insulation in walls and roofs and the use of double glazing 

can reduce the need for assisted cooling and heating which in turns 

reduces the amount of anthropogenic heat. 

• Non-technical design solutions of facets and buildings such as proper 

orientation, façade treatment, shading, cooling surface materials, etc. 

Mass transport • Shifting commuter travel to public transport helps reducing 

anthropogenic heat produced by private vehicle usage. 

 

Among all mitigation strategies, green infrastructure has concentrated the attention of many 

researchers given its demonstrated capacity to lower urban air and surfaces temperatures 

and because of the multiple benefits and ecosystem services (ESS) that provides to nature 

and human populations (Bowler et al., 2010b; Harris & Coutts, 2011; McPherson et al., 

2011). Notwithstanding the existing evidence, there is not enough guidance on how best to 

plan, implement and design green infrastructure to provide maximum cooling benefits 

(Bowler et al., 2010b; Harris & Coutts, 2011; Kong et al., 2013; Motazedian & Leardini, 

2012; Zupancic et al., 2015). An in-depth discussion on the specific benefits and effects of 

green infrastructure on urban microclimates is provided in Section 2.5 of this chapter. 

Researchers, policy-makers and practitioners require better methodological frameworks 

and tools to inform their decisions about the best approaches, priority locations, 
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distributions and combinations of green infrastructure for a more effective mitigation of 

different types of UHI at different spatial scales (Bartesaghi Koc, Osmond, Peters, & Irger, 

2017a; Beauchamp & Adamowski, 2013; Buchholz, 2013; Harris & Coutts, 2011; Newton 

et al., 2013).  

Remote sensing and geographical information systems (GIS) have been identified as 

potential tools for monitoring and understanding the cooling effects of green infrastructure 

on the spatio-temporal variability of SUHIs (Harris & Coutts, 2011). Compared to satellite 

remote sensing, airborne remote sensing (from aircrafts or UAVs) can provide a more 

accurate and detailed information of SUHIs across large urban areas. Since SUHIs have a 

large influence on the adjoining air, remotely sensed observations can be used to analyse 

its relationship with CLUHIs (Harris & Coutts, 2011; Weng, 2009). Further discussion on 

the application of remote sensing on climate and green infrastructure research is presented 

in Chapter 3. 

2.5 Benefits of green infrastructure on urban microclimate 

Urban green infrastructure also known as ‘urban greening’ or ‘urban vegetation’ is capable 

of providing multiple benefits and improve the microclimate conditions of urban areas and 

its surroundings (Erell et al., 2011; Irger, 2014; Oke et al., 1989). Nonetheless, the cooling 

mechanisms and climate-relevant functions of vegetation and water features are complex 

as they largely vary with the type, size, composition, structure, and spatial distribution of 

their elements [Figure 2.8] (Bowler et al., 2010b; Erell et al., 2011; Mathey et al., 2011).  

In contrast to urban surfaces, vegetated areas are characterised by distinctive thermal, 

morphological, aerodynamic and physiological features that can significantly alter urban 

microclimates by: (a) lowering the penetration of short-wave solar radiation to the ground 

through shading, (b) blocking the upwelling long-wave radiation emitted by the ground, (c) 

providing evapotranspiration,  (d) reducing surface run-off, (e) increasing water infiltration 

and storage in soils, biomass and natural surfaces (leaves), and (f) altering wind patterns, 

speed and advection [Figure 2.8] (Arlt et al., 2005; Erell et al., 2011; Hunter et al., 2012; 

Mathey et al., 2010; Mathey et al., 2011). However, the cooling effects of urban greenery 

are quite complex and are affected by external (intervening or confounding) factors 

including wind speed and direction (especially the sea breeze), the surrounding built-up 

structures and orientation, the overall meteorological conditions, the season, and time of 

day (Erell et al., 2011; Mathey et al., 2011).  
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Figure 2.8  Schema of the climate-related functions that vegetation provides to the environment.  

     (Modified and translated from Arlt et al., 2005 and Mathey et al., 2011). 

2.5.1 The urban cool island and the park cool island 

Contrary to the UHI, the ‘urban cool islands’ (UCIs) and ‘park cool islands’ (PCIs) refer 

to the phenomena where greenspaces and water bodies establish a zone of larger advective 

influence beyond its borders, resulting in lower temperatures than those of the immediate 

impervious surfaces (Chen et al., 2014; Oke et al., 1989; Spronken-Smith & Oke, 1998); 

however unlike PCIs, UCIs can also be attributed to urban morphology descriptors (Yang 

et al., 2017).  

Several studies on the cooling benefits of urban parks have demonstrated that air 

temperatures of greenspaces can be from 1 to 4°C cooler than those of the surrounding 

built-up areas, with the greatest ‘zone of influence’ extending downwind from parks 

(Bowler et al., 2010a, 2010b; Chen & Wong N. H., 2006; Hunter et al., 2012; Oke et al., 

1989; Potchter et al., 2006; Shashua-Bar & Hoffman, 2000; Spronken-Smith & Oke, 1998). 

As with heat islands, cool islands can be classified into two types: ‘atmospheric cool 

islands’ which are calculated from air temperature measurements and ‘surface cool islands’ 

that are derived from thermal remote sensing imagery (Chen et al., 2014).  
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It is not appropriate, however, to assume that all parks are cooler than their surrounding 

area at all times, as cooling intensities are the result of a number of factors (Erell et al., 

2011). For instance, if a park is well irrigated, day-time PCIs typically develop due to the 

combined effects of shading and soil moisture, whereas night-time PCIs form in relatively 

dry and sparse tree canopy conditions. A comparison of the characteristics of diurnal and 

nocturnal UCIs/PCIs attributed to vegetation is presented in Table 2.5.  

Table 2.5 Characteristics of urban/park cool islands attributed to vegetation. 

    (Adapted from Erell et al., 2011). 

Characteristics Diurnal UCIs/PCIs Nocturnal UCIs/PCIs 

Type of park Irrigated park with substantial tree canopy Dry parks with sparse tree canopy 

Mechanism 

involved 

Evaporation and shading: trees shade the 

surface, while well irrigated grass is 

typically cooler than paved surfaces  

Long-wave radiant cooling:  

sky view factor is close to one 

Duration:  

Time of max. 

intensity 

Afternoon (forest type) or early evening 

(garden, savannah and multi-use types) 

Several hours after sunset 

Comments Masked by anthropogenic heat and  

heat from nearby materials 

Warmer during the night than 

neighbouring areas 

 

Furthermore, evidence suggests that cool islands are more likely to be observed during 

calm and clear nights as day-time cool islands might be masked by anthropogenic heat and 

the continued supply of warm air from nearby artificial materials (Chen et al., 2014; Hunter 

et al., 2012; Jansson et al., 2007; Shashua-Bar & Hoffman, 2000; Spronken-Smith & Oke, 

1998; Spronken‐Smith et al., 2000). Other aspects affecting the magnitude of cool islands 

include the geographic latitude, canyon geometry and orientation, and the urban thermal 

mass (Erell et al., 2011).  

The presence or absence of tree canopy, is also a crucial factor influencing the UCIs/PCIs 

formation (Erell et al., 2011; Spronken-Smith & Oke, 1998). For instance, parks with dense 

tree coverage may exhibit cooler temperatures in the afternoon because of shading and 

warmer conditions at night due to the heat trapped under the canopy and the reduced 

advection. Conversely, parks with sparse canopy cover are typically warmer during the day 

since most surfaces are exposed to short-wave solar radiation and are cooler at night due to 

long-wave radiation losses (Hunter et al., 2012; Spronken-Smith & Oke, 1998). 

Other critical aspects affecting the cooling benefits of greenspaces are the characteristics 

of vegetated surfaces and the water availability –mainly conditioned by changes in 

irrigation and rainfall– as these properties govern the surface energy balance, the water 

balance and the evaporative cooling processes of vegetation (Erell et al., 2011; Spronken-
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Smith & Oke, 1998). The study of the role of irrigation and evapotranspiration in cooling 

the built environment remains a knowledge gap and a critical research issue (Hunter et al., 

2012). These aspects are discussed in detail in Section 2.5.3 of this chapter. 

The cooling effects from parks are highly localised and rapidly decline as the distance from 

parks’ edge increases (Hunter et al., 2012; Upmanis et al., 1998). Moreover, park size, 

composition and distribution also cause a significant effect on the magnitude of UCIs/PCIs 

(Cao et al., 2010; Erell et al., 2011; Kong, Yin, Wang et al., 2014; Upmanis et al., 1998). 

For example, the cooling effect of a small and isolated park is usually limited to its 

boundaries, so may be negligible in its surroundings (Bowler et al., 2010b; Erell et al., 

2011; Hunter et al., 2012). Nonetheless, the relationship between park sizes and cool island 

intensity is non-linear and not fully understood yet (Cao et al., 2010; Spronken-Smith 

& Oke, 1998). Up to now, research suggests that larger single parks may have more 

pronounced climatic effects than small parks distributed throughout urban areas, but the 

critical size is a question that remains unresolved (Bowler et al., 2010b; Cao et al., 2010; 

Hunter et al., 2012). Since large vegetated areas are increasingly less frequent in inner city 

areas, future studies should concentrate on how to maximise the cooling potential of fine-

meshed network of small greenspaces (Mathey et al., 2011).  

2.5.2 Shading 

Plants provide shade for buildings, pedestrian spaces and heat-absorbing surfaces by 

intercepting incoming solar radiation; a crucial aspect to reduce air and surface 

temperatures (Erell et al., 2011; Hunter et al., 2012). Additionally, vegetation on buildings 

such as green roofs and vertical greenery systems contribute to reduce the heat transfer to 

buildings, resulting in improved indoor thermal conditions and lower overall energy 

consumption used for cooling (Hunter et al., 2012; Pérez et al., 2014; Santamouris, 2014). 

Nevertheless, greenery can also trap the upwelling long-wave heat reflected or emitted 

from horizontal and vertical surfaces to the sky, situation which may alter the heat fluxes 

and inhibit convective cooling of urban areas and buildings, especially at night (Akbari, 

2002; Hunter et al., 2012).  

The quality, effectiveness and amount of shade is determined by factors such as placement, 

form/shape, size, type and angle of leaves, density, height, clumpiness, and continuity of 

canopy layers  (Arlt et al., 2005; Hunter et al., 2012). The reflection of short-wave solar 

radiation to the atmosphere is also greatly influenced by the size, structure, angle and 

epidermal properties of leaves. On the other hand, absorption of radiation is determined by 

the chlorophyll and water content on leaves as heat is dissipated as part of the 



 

Chapter 2 – Theoretical background  |  47 

 

photosynthesis process (Hunter et al., 2012). For instance, a recent study found that small-

leaved species tend to be more effective at cooling than broad-leaved species, since the 

former exhibit lower crown temperatures (Kong et al., 2016). Another important factor is 

the effect of vegetation arrangement as the amount and distribution of shading over the 

ground varies between single, clusters and rows of trees (Erell et al., 2011). 

The provision of ideal shading conditions [Figure 2.9] is a difficult task as several spatial- 

and time-specific factors come into play. For example, trees may not always shade desired 

areas, deciduous plants might lose their foliage in a season when it is not required, and in 

winter, branches may partially obstruct sun’s rays in a given location where solar 

penetration is required (Erell et al., 2011). Hence, the selection of plant species and specific 

type of foliage (deciduous and evergreen) is crucial to achieve desirable microclimatic 

effects (Erell et al., 2011).  

 

Figure 2.9 General proportions of reflected, absorbed and transmitted radiation through a deciduous canopy in 

summer and winter. (Redrawn based on Hunter et al., 2012). 

 

The vegetation canopy consists of branches and twigs that are opaque to sunlight which 

either absorb or reflect almost all the incident radiation. On the other hand, leaves are 

translucent at different degrees, allowing radiation to penetrate mainly in the near infrared 

part of the solar spectrum (Erell et al., 2011). Transmissivity is a dimensionless parameter 

that allows quantifying the amount or proportion of total solar radiation passing through 

branches and leaves to the ground or other surfaces below; values that largely vary among 

plants species (Erell et al., 2011; Hunter et al., 2012).  

The Leaf Area Index (LAI) is another key dimensionless variable that has been widely used 

as an indicator of ecological function and as a factor for controlling energy exchanges, 

transpiration and photosynthetic activity (Osmond & Zakiur Rahman, 2016). LAI has been 

defined by Kjelgren and Montague (1998) as: 
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the total 'single-sided
'
leaf area of canopy (m2)

the ground area (m2) directly under the crown 
                       [Eq. 2.5] 

LAI has also emerged as a metric providing areal estimation of the shading potential of 

vegetation canopies. Accordingly, vegetation with multiple foliage layers and thick, large 

and dense leaves exhibit high LAI values; while plants with few branches and sparse and 

thin leaves have low LAI values (Hunter et al., 2012). Nonetheless, the use of LAI raises 

some issues. Firstly, it is a highly dynamic index depending on multiple factors such as 

vegetation phenology, season, species composition and maturity, management regimes 

(water availability), meteorological conditions (i.e. vapour pressure deficit and 

temperature) and site conditions (soil nutrient availability) (Hunter et al., 2012; Osmond 

& Zakiur Rahman, 2016). Secondly, LAI cannot fully represent the physiological 

functionality and morpho-anatomical features of plants (such as stomatal conductance and 

photosynthetic activity) influencing the overall capacity of vegetation to provide 

evaporative cooling and withstand dry conditions (Hunter et al., 2012). Other common 

vegetation-related indices and indicators employed in climatic research are reviewed in 

Chapter 3.  

2.5.3 Evapotranspirative cooling 

Urban greenery is capable of modifying air and surface temperatures through the combined 

effects of evaporation and transpiration; a phenomenon which is commonly referred to as 

evapotranspirative cooling (Allen et al., 1998; Erell et al., 2011; Hunter et al., 2012). 

Evaporation refers to the process in which liquid water present in soil and other surfaces 

(i.e. water bodies, wet vegetation, pavement, etc.) is converted to water vapour. On the 

other hand, transpiration consists of the conversion of liquid water contained in plant tissues 

into water vapour. This vapour is released to the atmosphere through leaf stomata which 

also enable the exchange of carbon dioxide and oxygen as part of the photosynthesis 

process (Allen et al., 1998). Evaporation and transpiration occur at the same time; hence, 

it is difficult to differentiate and analyse both processes separately (Allen et al., 1998) 

[Figure 2.10]. 

Since energy is required to change the state of water from liquid to vapour, sensible heat 

from direct solar radiation and the surrounding air is absorbed and transformed into latent 

heat (Hunter et al., 2012). This is perceived as a temperature reduction in the portion of the 

atmosphere adjacent to natural surfaces (Allen et al., 1998; Erell et al., 2011; Oke et al., 

1989). In response to external heat, transpiration enables plants to keep a moderate surface 

temperature and avoid overheating which may cause permanent physiological damage 
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(Hunter et al., 2012; Oke et al., 1989). Plants also cool their leaves through two other 

mechanisms: conduction and convection. Conduction is the process of transferring the 

absorbed heat to the air mass in direct contact to the leaf; and convection refers to heat 

transfer by mass motion of the air (wind movement) passing around leaves (Hunter et al., 

2012; Oke et al., 1989).  

 

Figure 2.10 Schematic representation of the evapotranspiration process. 

Evapotranspiration is a complex phenomenon that varies greatly from place to place as it 

depends on factors such plant species/physiology, energy supply (radiation), vapour 

pressure gradient, available water, wind speed, prevailing meteorological conditions, 

season, and time of day (Allen et al., 1998; Irger, 2014). As photosynthesis is only possible 

in the presence of sunlight, transpirative cooling can only occur during the day. In fact, as 

most of the vapour transfer occurs on the portion of the plant directly exposed to sunlight, 

the cooling of air temperatures is usually strongest at the top of the vegetation canopy with 

a lesser effect on the air near the ground (Erell et al., 2011; Oke et al., 1989).  

The dissipation of heat through evapotranspiration greatly depends on the wind conditions 

and water balance (Arlt et al., 2005; Erell et al., 2011). As evapotranspiration increases, the 

surrounding air gradually saturates up to a point of equilibrium in which no more vapour 

can be transferred to the atmosphere. Wind is responsible for the replacement of this 
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saturated air with drier air; hence, evapotranspiration rates greatly depends on wind speed 

and air humidity (Allen et al., 1998).  

Furthermore, in the presence of unrestricted water, the cooling potential of plants is 

noticeably enhanced; however, evaporative cooling can be significantly affected by 

restricted water supply, poor irrigation conditions and scarce precipitation. Leaf stomata 

may also be blocked by the presence of particulates or be closed as a response to excessive 

heat stress as a result of UHIs, hot weather,  heatwaves or severe droughts (Irger, 2014).  

The response of plants to heat stress largely varies in terms of the species, the amount of 

exposed vegetated surface and humidity. For instance, plant species from hot and arid 

climates are usually more tolerant to drought and high temperatures by dissipating heat 

through their small leaves or by closing their stomata to prevent extreme water loss (Erell 

et al., 2011; Hunter et al., 2012). However, evapotranspiration rates from such species can 

be sometimes negligible or minimal compared to those of broad-leaved plants, resulting in 

a reduced cooling effects (Chen et al., 2014; Erell et al., 2011; Hunter et al., 2012).  

2.5.4 Wind flow modification 

Wind conditions in urban areas are complex and depend on several factors including the 

presence of vegetation, and the morphology and orientation of streets and buildings (Erell 

et al., 2011; Pitman et al., 2015). Winds provide multiple benefits to urban environments 

such as decreasing air temperatures and improving the air quality by transporting pollutants 

away from the city. However, winds may also contribute to increased ‘wind-chill’ factor, 

compromise comfort and safety, and carry dust, smoke and other harmful particulate 

emissions (Erell et al., 2011; Pitman et al., 2015). 

Vegetation can contribute to the modification of wind patterns and advection in two ways. 

On one hand, greenery influences wind speeds and funnel cool breezes towards open 

spaces, streets and buildings, which can help reduce air temperatures and remove air 

pollutants. On the other hand, vegetation used as windbreaks and shelterbelts can obstruct 

cooling breezes, reduce wind velocity, trap excess heat under their canopy and reduce cold 

air infiltration into buildings, resulting in higher air temperatures in both indoor and outdoor 

spaces (Caborn, 1965; Hunter et al., 2012; Miller et al., 2015; Pitman et al., 2015; 

Stathopoulos et al., 1994).  

The alteration of wind patterns by vegetation imply advantages and disadvantages at 

various times of the year (Miller et al., 2015). For instance, the wind-shielding effect of 

trees and vegetative walls may result in reduced building space heating costs in winter, 
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while the energy consumption through air-conditioning can significantly increase in 

summer as beneficial cooling breezes are restricted (Akbari & Taha, 1992; Heisler, 1986; 

Huang et al., 1990; Hunter et al., 2012; Pitman et al., 2015; Stathopoulos et al., 1994). 

The effect of greenery on wind direction and velocity depends on various characteristics of 

vegetation including height, type of species, porosity of branches, type and density of 

foliage, number of rows, spacing between rows and dispersion between features (Heisler 

& Dewalle, 1988; Miller et al., 2015; Stathopoulos et al., 1994). Accordingly, small and 

localised trees in a single row may not provide a substantial channelling, deflection or 

obstruction of wind compared to dense rows of trees  (Erell et al., 2011; Heisler & Dewalle, 

1988).  

2.5.5 Benefits to human thermal comfort 

Human thermal comfort (HTC) can be defined as the physiological and perceptual 

condition of the body that expresses satisfaction with the thermal qualities of a specific 

place and at a given time, (ASHRAE, 2017; Erell et al., 2011; Hiemstra et al., 2017; Norton 

et al., 2013). HTC largely depends on individual perception since the underlying basis for 

this subjective sensation lies in the way that person’s body absorbs and dissipates heat to 

the surrounding environment (ASHRAE, 2017; Erell et al., 2011; Norton et al., 2013).  

People’s perception of HTC is influenced by four microclimatic conditions, namely (1) air 

temperature, (2) mean radiant temperature (MRT), (3) relative humidity, and (4) air 

velocity; as well as by personal factors such as the person’s level of activity or ‘metabolic 

rate’, and the amount of clothing (Hiemstra et al., 2017; Hunter et al., 2012; Irger, 2014; 

Miller et al., 2015; Norton et al., 2013; Spagnolo & Dear, 2003b).  

While the relative humidity and air determine the ability of the body to cool through 

transpiration and ventilation, the MRT represents the amount of radiation perceived by a 

person –so it can be considered as the result of the radiative exchange of energy between 

the human body and the environment (ASHRAE, 2017). There is a large variability in the 

limits of temperature, humidity and other microclimatic factors that define a comfort zone, 

since different populations and individuals are acclimatised to various set of conditions. 

Nonetheless, it is widely accepted that thermal discomfort is caused when thermal gain or 

loss occurs very rapidly (Erell et al., 2011; Pearlmutter et al., 2014).  

Several indices combining thermo-physiological and meteorological parameters have been 

developed to evaluate HTC for both indoor and outdoor spaces. Among an extensive list, 

the physiologically equivalent temperature (PET) model is one of the most commonly used 
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(Mayer & Höppe, 1987). PET values ranging between 18 and 23°C are considered as 

comfortable, while values of 29, 35 and 41°C are defined as moderate (warm), great (hot) 

and extreme (very hot) heat stress (thermal perception) thresholds respectively (Hiemstra 

et al., 2017; Matzarakis & Mayer H., 1996). Other common indices are the Outdoor 

Standard Effective Temperature (OUT-SET*) (Spagnolo & Dear, 2003b) and predicted 

mean vote (PMV) (Fanger, 1972). 

At the microscale, the body of standing person can be influenced in various ways by 

different types of vegetation which may help to moderate thermal stress under hot outdoor 

conditions (Erell et al., 2011). The impact of trees on pedestrian’s energy balance is mainly 

radiative as they prevent a body from overheating by limiting the exposure to short-wave 

radiation from the sun and reducing the long-wave radiation reflected by surrounding 

surfaces (primarily impervious ground and buildings). The latter occurs due to the lower 

surface temperatures of shaded areas [Figure 2.11] (Emmanuel & Loconsole, 2015; Erell 

et al., 2011; Hiemstra et al., 2017; Hunter et al., 2012; Norton et al., 2013).   

 

Figure 2.11 Schematic representation of energy exchanges between a pedestrian and the surrounding urban 

environment; and the influence of green infrastructure (GI) on human thermal comfort. 

(Modified after Pearlmutter et al., 2014) 

The other important determinant of pedestrian comfort is the rate at which each body 

dissipates heat by both evaporation (sweating) and convection (wind); factors that can be 

significantly modified by the amount and arrangement of transpiring trees (Erell et al., 

2011; Shashua-Bar et al., 2011). For instance, dense clusters of trees may trap significant 
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radiant heat and limit air-flows underneath their canopies; which may be perceived by 

pedestrians as warmer air temperature conditions, especially at night (Erell et al., 2011). 

Contrastingly, vegetated ground covers moderate pedestrian’s thermal stress in a different 

way. A typical well-irrigated lawn or grass exhibits low albedo and reflect considerably 

less short-wave radiation onto pedestrians than paved ground. Additionally, ground 

vegetation transforms most of the absorbed energy into latent heat through 

evapotranspiration. This does not only contribute to reduce the sensible heat of the adjacent 

air, but it also features a much lower surface temperature than hard surfaces (Erell et al., 

2011; Norton et al., 2013; Pearlmutter et al., 2009; Shashua-Bar et al., 2011).  

However, the irrigation of vegetative surfaces places a significant burden on water 

resources, that in some regions may be restricted in terms of quality and quantity. Hence, 

under hot weather conditions, the potential effects of low vegetation can be enhanced when 

used in combination with shrubs and trees, which in turn, may help to moderate the rate of 

water loss and improve water savings (Erell et al., 2011; Shashua-Bar et al., 2011).   

2.5.6 The impacts of vegetation on energy savings 

It has been demonstrated that green infrastructure can be effectively used as passive energy 

saving systems in buildings due to their cooling effects on outdoor surface temperatures 

and indoor air temperatures (Akbari, 2002; Pérez et al., 2014; Wang, Z.-H. et al., 2016). 

This is possible because adjacent and integrated vegetation to buildings –such as green 

roofs/walls and green facades– enable the interception of solar radiation, provide thermal 

insulation and evaporative cooling, and alter wind velocities or change wind patterns (if 

necessary) (Ottelé et al., 2011; Pérez et al., 2011b). 

A review of recent studies has demonstrated that the thermal performance of extensive and 

intensive green roofs can reduce the dependence on air-conditioning and energy 

consumption of the whole building, resulting in energy savings ranging between 40% and 

110% (Hunter et al., 2012; Santamouris, 2014). Nonetheless, most of the energy savings 

attributed to green roofs correspond to summer cooling rather that winter heating (Hunter 

et al., 2012).  

Similarly, studies on vertical greenery systems have reported significant improvements on 

the thermal performance and reduced energy consumption of buildings in summer periods, 

with less emphasis on winter seasons (Hunter et al., 2012; Olivieri et al., 2014; Ottelé et 

al., 2011; Pérez et al., 2011b; Pérez et al., 2014). Reported energy savings differ between 

greening systems, climates and for heating and cooling (Ottelé et al., 2011). For instance, 
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direct and indirect green facades4 can reduce up to 1.2% of the energy consumption of the 

whole building required for heating and up to 43% for cooling in a Mediterranean climate 

(Alexandri & Jones, 2008). While the percentage of energy savings for cooling remains the 

same for planter boxes and felt layers living wall systems, the energy savings for heating 

can be increased up to 4% and 6.3% respectively in the same climate conditions (Alexandri 

& Jones, 2008; Ottelé et al., 2011). 

Although the number of available observational studies is high, comparability of results is 

hindered by a lack of consistency between studies in terms of parameters measured, design, 

functionality and the construction system used, the type of plant species used, differences 

in building’s construction and operational mechanisms, and the variability of external 

micro-climatic conditions and air-conditioning and heating systems installed (Hunter et al., 

2012; Pérez et al., 2014). Furthermore, most studies and measurements have been 

conducted at the building scale; hence, empirical analyses of energy saving potentials at 

local and meso-scale are scarce or results have been mostly estimated through simulation 

(Hunter et al., 2012).     

2.6 Urban morphology and green infrastructure 

performance 

2.6.1 Urban morphology: definition and characteristics 

Urban morphology refers to a set of natural and man-made objects, their arrangements, 

interrelationships, classifications, and dynamic variations that shape the built environment 

and cities (Kropf, 1993; Osmond, 2008). Also referred as urban form, it comprises 

buildings, city blocks or plots, streets and open spaces, different surface covers, vegetation 

and water features; which combination and distribution (in different patterns) generate and 

support distinct land uses, characters, appearance and functioning (Irger, 2014). 

From a holistic view, urban morphologies should be conceived and studied not as 

deterministic objects, but as living systems encompassing multiple and dynamic economic, 

socio-cultural, and environmental processes (Osmond, 2008). Precisely, these metabolic 

processes and energy fluxes govern the urban ambience, microclimate, vegetation 

performance and human activities (Irger, 2014; Osmond, 2008); aspects that are the key 

focus of the present research. Under this systemic approach, green infrastructure’s features 

can be influenced by other elements and aspects of urban form and vice versa. These 

                                                      

4    Direct green facades refer to climbing vegetation that uses the wall as supporting system while indirect green 

facades employ an additional structure such as trellis, cables or meshes affixed to walls (see Section 4.5.4). 
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interrelationships should be understood and interpreted at different levels of hierarchical 

organisation: building → lot → block → city → region, as each level exhibits distinct 

climates, physical characteristics and metabolic processes (Kropf, 1993; Osmond, 2008).  

Based on above-mentioned facts, a series of urban morphology aspects that influence and 

affect the thermal performance of green infrastructure were identified. A discussion of 

these aspects is presented in next sections as this can help understand the complex bio-

physical and climatological processes and interpret the results that will be analysed in 

subsequent chapters. 

2.6.2 Factors influencing the thermal performance of green infrastructure 

2.6.2.1 Urban geometry: the urban canyon  

The urban canyon is the most widely used model for describing and quantifying the 

physical properties of the urban fabric and the open spaces between buildings that influence 

the microscale climate of a place (Erell et al., 2011). A typical urban canyon refers to a 

three-dimensional linear space (i.e. a street) between two adjacent buildings that comprises 

a horizontal surface flanked on both sides by vertical walls (Nunez & Oke, 1977) [Figure 

2.12]. Although this model cannot accurately and universally represent the highly 

heterogeneous characteristics of the real world, the principles and descriptors can be 

generally applied in most urban contexts, including one-sided and non-linear shapes (Erell 

et al., 2011).  

The generation of UHIs and promotion of urban warmth is mostly governed by urban 

geometry and urban compactness since they determine the amount of admitted and 

reflected short-wave radiation and radiative loss (long-wave) emitted to the sky, the amount 

of energy stored, and the dispersion of heat and pollutants through wind (Nunez & Oke, 

1977; Oke, 1988a; Oke et al., 1989). The geometry of an urban canyon can be described 

by three main parameters: the height-width ratio (H/W), the sky view factor (SVF), and the 

canyon axis orientation (θ). Their study is crucial to understand the energy balance of the 

natural and artificial components and surfaces within the urban canyon.  

Height-width ratio (H/W) 

The H/W ratio –also known as aspect ratio– refers to the proportion between the average 

height of the adjacent vertical walls (H) and the average width of the space between them 

(W) that controls the amount of shade, short-wave, and long-wave radiation available for 

increasing air and surface temperatures (Erell et al., 2011; Oke, 1981). Although this ratio 
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mostly applies to symmetrical canyons with continuous heights, the averaging of both H 

and W enables a general categorisation of most streets (Erell et al., 2011); and can be also 

applied to courtyards, parks, circular and irregular spaces [Figure 2.12].  

However, the relevant limit for solar access to street canyons does not only depend on the 

H/W ratio, but also on the latitude, season and time of the day when it is measured (Oke, 

1988a) [Figure 2.13]. For instance, shading in shallow canyons is mostly likely if solar 

altitude is low; therefore, daytime UCIs are more likely to occur in high-latitude locations 

(Erell et al., 2011). 

 

Figure 2.12 Schematic views of a (a) symmetrical urban canyon (b) one-sided open space, (c) circular plaza, 

and (d) rectangular courtyard, its geometric descriptors, and SVF parameters. 

     (Redrawn based on Erell et al., 2011 and Nunez & Oke, 1977). 

The sky view factor (SVF) 

The ability of any surface to cool is determined by the magnitude of its long-wave radiative 

loss –usually occurring at night–, that is proportional to the extent to which a surface is 

exposed to the sky (Oke, 1988a). The sky view factor, SVF (ψ), is a unitless parameter that 
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can help quantifying the cooling of a space by measuring the proportion of the viewing 

hemisphere occupied by the sky in a specific point or over the entire area of a horizontal 

surface (Oke, 1988a). When measured from the centre line on a horizontal surface in a 

symmetrical and infinitely long canyon [Figure 2.12], the SVF can be expressed as: 

ψ = cosβ                                                    [Eq. 2.6] 

where β = tan -1 (H/0.5W), and where H and W corresponds to the height and width of the 

canyon respectively. Accordingly, both, SVF and H/W ratio can be correlated to each other 

(Erell et al., 2011; Oke, 1988a). As depicted in Figure 2.12, the SVF may also be estimated 

for other types of space (i.e. a large plaza or a courtyard) whose geometries are non-linear; 

in which case, variations of the above equation are required.  

 

Figure 2.13 Common effects of urban geometry on the penetration, absorption and reflection of solar radiation 

at noon and in different seasons in (a) shallow and (b) deep urban canyons oriented E-W.  

(Redrawn based on Erell et al., 2011 and Oke, 1988a) 
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SVF values range between 0 and 1, where 1 represents an unobstructed horizon that is 

completely open to the sky. Lower SVF values indicate a larger proportion of the sky 

occupied by obstacles with a radiative emission greater than the portion of the sky they 

obstruct. This usually corresponds with an enhanced long-wave emission from the 

overlying hemisphere and reduced radiative losses from surfaces (Oke, 1988a).  

The interpretation of SVF values varies among types of UHIs. For example, taller buildings 

create deeper urban canyons (with low SVFs) that increase the mutual reflection and 

absorption of radiation among building facets; so, the heat trapped within the canyon is one 

of the main causes of daytime peak values of net radiation (Q*) and the generation of 

nocturnal CLUHIs (Oke, 1981, 1982) [Figure 2.13]. On the other hand, a flat, unobstructed 

and poorly irrigated vegetated surface exposed to the sun throughout the day may exhibit 

higher LST than a narrow street canyon where individual facets are sequentially exposed 

to the sun for a couple of hours and shaded most of the remaining time (Erell et al., 2011). 

Conversely, the same flat natural surface may exhibit lower surface temperatures at night, 

as most of the radiative heat is released to the sky at a faster pace than its urban counterpart. 

Estimation methods, and other applications of SVF in climate research are further discussed 

in Chapter 3. 

The canyon axis orientation (θ) 

This parameter describes the direction or cardinal orientation (i.e. N-S, NW-SE) of an 

elongated space measured as the angle (expressed in degrees) between a line running from 

north to south and the main axis (or centre line) running the length of a street or linear 

space, measured in a clock-wise direction (Erell et al., 2011) [Figure 2.12]. As well as 

previous geometric descriptors, street orientation has a significant impact on air-flows 

(discussed in next section), the degree of shading at street level, and the exposure of 

horizontal and vertical surfaces to direct solar radiation, [Figure 2.13] (Erell et al., 2011; 

Oke, 1988a). However, the significance of these impacts may vary according to seasonal 

and diurnal patterns, and the specific location of a city (Oke, 1988a). 

2.6.2.2 Air-flow 

Wind speed and wind direction are extremely variable within the UCL as these are affected 

by the built form, the patterns and orientation of streets and open spaces, the presence of 

vegetation, the local topography and other meteorological factors; hence, its measurement 

and inclusion in microclimatic models is extremely complex (Erell et al., 2011). Oke 

(1988a) defined distinct types of air-flows within the UCL, that largely depend on the array 
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of buildings, so at closer spacings the wakes are highly disturbed compared to well 

separated buildings where flows do not interact with each other [Figure 2.14].  

Moreover, the surface roughness of an urban environment –defined by the H/W ratio, the 

orientation of streets and the configuration of buildings– affects wind patterns, the degree 

of wind penetration into the urban fabric and the amount of shelter provided from intense 

winds (Oke, 1988a). Thus, compact urban form inhibits the exchange and infiltration of air 

at both pedestrian level and the mixing layer above roofs, leading to a large concentration 

of pollutants and heat between buildings; factors affecting the thermal comfort of 

pedestrians, the cooling performance of vegetation and the electricity demand used for 

cooling (Oke, 1988a).  

 

Figure 2.14 Air-flow regimes over different arrays of buildings with increasing H/W ratio. 

 (Redrawn from Oke, 1988a) 

2.6.2.3 Properties of urban surfaces: Albedo 

Man-made structures of the urban environment, such as buildings and impervious surfaces 

(i.e. pavements, asphalt, concrete) exhibit thermal and optical properties that differ 

considerably from those of natural features and surfaces. These differences are of special 

significance for studying the thermal conditions of a given location due to the substantial 

heterogeneity and variation of conditions at local and micro scales (Oke et al., 1989). 

According to Erell et al. (2011), two characteristics determine the differences between 

natural and artificial surfaces: 
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a. The moisture content of pervious surfaces –absorbed from precipitation or irrigation– leads 

to changes in thermal conductivity, thermal diffusivity and admittance, and volumetric heat 

capacity of ground surfaces. Thus, in the absence of available moisture, a positive net 

radiant balance contributes to a rapid increase of sensible heat near built surfaces, so this is 

reflected in a higher air temperature. In contrast, the evapotranspiration provided by 

vegetated surfaces leads to reduced sensible heat which is registered as lower air 

temperatures during daytime. Additionally, the albedo of natural ground surfaces decreases 

at the time that moisture content increases because of the air-water interactions between 

soil particles and the inter-space between them.  

b. Seasonal changes in vegetation cause variations in surface albedo of a given area, since the 

albedo of full foliage is typically lower than that of most soils.  

Although the precise effect of urban materiality on UHI intensity is laborious and difficult 

to quantify, it has been identified that highly absorptive and dark-coloured materials tend 

to exacerbate SUHIs compared to lighter and highly reflective materials. This is possible 

due to the lower absorption of short-wave radiation and increased infrared emission of the 

latter, that help release sensible heat to the atmosphere and decrease surface temperatures 

(Santamouris, 2015). Similarly, whereas the effects of built surfaces on urban microclimate 

are well-established, the interactions between natural and artificial surfaces are not fully 

understood yet. 

Another crucial factor of the surface energy balance influencing the local- and micro- 

climate is the amount of heat stored in materials that depends on the thermal capacity (C) 

and thermal conductivity (k) of materials (Erell et al., 2011). The relationship between both 

is referred as thermal diffusivity (α = k/C) and represents the heat dispersion rate of a 

material. The higher the thermal diffusivity, the more constant and evenly distributed its 

temperature over time (Gartland 2008). This is considered a key factor in the creation of 

CLUHIs and SUHIs as urban landscapes are characterised by a large variation of natural 

and artificial materials with different thermal diffusivity characteristics (Oke, 1992).  

Albedo 

One property of materials is their hemispherically and wavelength-integrated capacity to 

reflect incoming short-wave radiation (Akbari, 2009; Taha, 1997). This is commonly 

referred as albedo (α) and is calculated through the following equation: 

𝛼 =
𝐾𝑑𝑖𝑟+𝐾𝑑𝑖𝑓

𝐾↑
                                              [Eq. 2.7] 



 

Chapter 2 – Theoretical background  |  61 

 

where Kdir represents the direct incoming short-wave radiation from the sun, Kdif is the 

incoming diffuse short-wave radiation and K↑ is the total amount of short-wave radiation 

reflected by the surface5. Albedo values range from 0 representing surfaces that absorb all 

the radiation (i.e dark-coloured surfaces), to 1  for surfaces reflecting all the radiation (i.e. 

light-coloured materials) (Akbari, 2009).  

In the context of climatology, there exists two types of albedo, the surface albedo which 

refers to values of individual materials and the urban albedo that responds to diverse 

combinations of multiple surfaces and the geometric aspects of urban form at larger urban 

scales. According to Taha (1997), typical urban albedo of most North-American and 

European cities range between 0.15 to 0.20 due to the high proportion of pavements and 

roads, compared to North African towns with urban albedos of 0.30 to 0.45. Similar 

differences were found between city cores and their surroundings given the presence of 

extensive vegetated areas which normally exhibit higher albedos than hard surfaces (Taha, 

1997).   

Regarding surface albedos, the capacity of materials to reflect solar radiation is determined 

by their physical (i.e. roughness) and chemical properties, as well as the angle of solar 

incidence (Akbari, 2009). A list of typical albedo values for common urban surfaces is 

presented in Table 2.6. Since the emissivity of materials defines its ability to emit radiative 

heat, the consideration of surface albedo is key to understand the modification of air and 

surface temperatures within the UCL. For instance, rough and dark-coloured surfaces like 

asphalt have low albedo, so they absorb almost all the solar energy throughout the day. 

This combined with their low moisture content and inability to evaporate water, 

significantly raises surface temperatures of streets and parking lots in sunny summer 

afternoons (Akbari, 2009).  

Table 2.6 Typical albedo values for common urban surfaces. (Based on Akbari 2009; Oke 1992)  

Man-made materials Albedo Natural materials Albedo 

Asphalt 0.05 – 0.20  Trees 0.15 – 0.20 

Concrete 0.10 – 0.35  Grass 0.25 – 0.30  

Brick/stone 0.20 – 0.40  Wet soil 0.10 – 0.25  

Corrugated iron 0.10 – 0.16  Dry soil 0.20 – 0.40  

Tar & gravel 0.08 – 0.18    

Red/Brown tile 0.10 – 0.35    

Coloured paint 0.15 – 0.35    

Highly reflective roof 0.60 – 0.70   

Fresh white paint 0.70 – 0.90    

                                                      

5   Albedo differs from ‘reflectivity’ since the former is measured across all wavelengths instead of just the visible 

spectrum (Akbari (2009). 
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Generally, pervious surfaces exhibit low albedos compared to impervious materials as they 

absorb most of the radiation in the visible and ultra-violet spectrums, so this energy is taken 

up for the photosynthesis process (Erell et al., 2011). However, this hampers a clear 

correlation between the average surface albedo of a given area and its mean temperatures 

as the energy balance of natural and artificial surfaces are considerably different. 

Accordingly, Irger (2014) demonstrated that two spatial units with a completely different 

proportion of vegetation cover and thermal profiles may display similar average urban 

albedos and vice versa.  

In addition, it has been found that higher air temperatures inside parks can be attributed to 

a decreased albedo of vegetated surfaces along with other bio-physical aspects such as lack 

of water content, the heat released by grass decomposition, or photosynthesis midday 

depression (Chang et al., 2007; Santamouris, 2015). Furthermore, in highly urbanised 

contexts, the cooling benefits that vegetation provides at night may be outweighed or 

masked by the thermal impact of surrounding paved areas and low albedo materials (Erell 

et al., 2011; Santamouris, 2015).  

2.6.3 Classification of urban morphology: the local climate zone scheme for 

urban heat island studies 

The ambiguity around the classification of urban form to support various analyses has been 

identified as an important gap in the literature (Osmond, 2008). From a spatial perspective, 

the study of climate-related phenomena such as the UHI also requires the subdivision and 

description of distinct urban morphologies for a multi-temporal, multi-scale and 

meaningful comparison of their thermal profiles (Irger, 2014; Stewart, 2011b).  

The urban structural units (USU) scheme developed by German ecologists Pauleit, Duhme 

and Wickop is an attempt to define urban areas with physiognomically homogeneous 

characteristics based on built-up form, open spaces and human activities (Pauleit & Duhme, 

1998; Wickop, 1998). Originally developed for German cities, the USU framework has 

been successfully applied for the comparative assessment of urban patterns against 

economic, social and ecological performance indicators (Pauleit & Duhme, 2000).  

Osmond (2008) developed a broader framework and tested the USU in the Australian 

context for a robust and comprehensive examination of the interrelationships between 

various aspects of urban form, ambience and metabolism (material flows). However, 

despite the potential applications and expandable nature of the USU scheme, this has not 

yet been embraced by climate scientists as there have not been defined universal qualitative 

and quantitative descriptors for a clearer differentiation of classes and for its application in 
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non-German contexts or by urban mapping disciplines such as remote sensing (Heldens, 

2010; Irger, 2014; Osmond, 2008).  

The local climate zones (LCZ) scheme 

More recently, the local climate zones (LCZ) scheme introduced by Stewart and Oke 

(2012) has attracted the attention of the urban climate community as it enables a 

standardised classification of urban areas with uniform land cover, structures, materials and 

human activity that span hundreds of metres to several kilometres and display similar 

thermal regimes. Originally based on Oke’s urban climate zones (UCZs) (Oke, 2006); the 

LCZ system was developed for a generic and universal description and classification of 

observation sites for UHI studies based on the thermal and physical properties of the built 

environment, rather than the traditional and ambiguous urban-rural characterisation 

(Stewart & Oke, 2012). 

This classification system targets investigations at local scale; and requires the estimation 

of key indicators such as building and vegetation height and density, H/W ratio, SVF, 

surface fractions and vegetation content (pervious, built and impervious ground), surface 

properties (albedo, thermal admittance), and anthropogenic heat. The unique combination 

of these properties defines the thermal regimes of each class, particularly the characteristic 

air temperature at pedestrian level and observed surface temperature from a bird’s eye view 

(Stewart & Oke, 2012). 

The scheme comprises 17 LCZs distinguished between two groups: built zones numbered 

from 1 to 10 and natural zones named with letters from A to G. It also enables the 

combination of classes from both groups if necessary. Table 2.7 provides a summary of 

LCZ classes, their definitions and main geometric and surface cover cut-off values as 

defined by Stewart and Oke (2012). 

The system shows potential for universal applicability, so the interest from other disciplines 

has recently grown as the spatial and temporal variability of air and surface temperatures 

within and among classes has become a key research question (Geletič et al., 2016; Geletič 

& Lehnert, 2016; Irger, 2014). For example, LCZs have been extensively implemented in 

climate research to (a) define the magnitude of UHIs by examining the correspondence 

between air temperatures and LCZ types (Alexander & Mills, 2014; Bokwa et al., 2015; 

Emmanuel & Krüger, 2012; Irger, 2014; Leconte et al., 2015; Ng., 2015; Stewart, 2011b; 

Stewart et al., 2014; Stewart & Oke, 2010; Wang, Z. et al., 2016), (b) identify and classify 

meteorological sites (Lehnert et al., 2015; Lelovics et al., 2014), and (c) for modelling 

purposes (Alexander et al., 2015; Bokwa et al., 2015; Irger, 2014).  
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Table 2.7 Summary of LCZ classes, their definitions, visual description, and main geometric and surface cover 

cut-off values as defined by Stewart and Oke (2012). 

LCZ Definition SVF 
Aspect 

ratio 

Impervious 
fractions (%) 

Pervious 
fraction 

(%) 

Height 
elements 

(m) Built Ground 

BUILT ZONES 

1 – Compact high-rise 
 

 

Dense mix of tall 
buildings to tens of 
stories. Few or no trees. 
Land cover mostly 
paved. Concrete, steel, 
stone, and glass 
construction materials. 

0.2-0.4 >2 40-60 40-60 <10 >25 

2 – Compact mid-rise 

 

 

Dense mix of mid-rise 
buildings (3–9 stories). 
Few or no trees. Land 
cover mostly paved. 
Stone, brick, tile, and 
concrete construction 
materials. 

0.3-0.6 0.75-2 40-70 30-50 <20 10-25 

3 – Compact low-rise 

 

 

Dense mix of low-rise 
buildings (1–3 stories). 
Few or no trees. Land 
cover mostly paved. 
Stone, brick, tile, and 
concrete construction 
materials. 

0.2-0.6 0.75-1.5 40-70 20-50 <30 3-10 

4 – Open high-rise 
 

 

Open arrangement of tall 
buildings to tens of 
stories. Abundance of 
pervious land cover (low 
plants, scattered trees). 
Concrete, steel, stone, 
and glass construction 
materials. 

0.5-0.7 0.75-1.25 20-40 30-40 30-40 >25 

5 – Open mid-rise 

 

 

Open arrangement of 
mid-rise buildings (3–9 
stories). Abundance of 
pervious land cover (low 
plants, scattered trees). 
Concrete, steel, stone, 
and glass construction 
materials. 

0.5-0.8 0.3-0.75 20-40 30-50 20-40 10-25 

6 – Open low-rise 
 
 

 

Open arrangement of 
low-rise buildings (1–3 
stories). Abundance of 
pervious land cover (low 
plants, scattered trees). 
Wood, brick, stone, tile, 
and concrete 
construction materials. 

 

0.6-0.9 0.3-0.75 20-40 20-50 30-60 3-10 

7 – Lightweight low-rise 

 

 

Dense mix of single-story 
buildings. Few or no 
trees. Land cover mostly 
hard-packed. Lightweight 
construction materials 
(e.g., wood, thatch, 
corrugated metal). 

 

0.2-0.5 1-2 60-90 <20 <30 2-4 

8 – Large low-rise 

 

 

Open arrangement of 
large low-rise buildings 
(1–3 stories). Few or no 
trees. Land cover mostly 
paved. Steel, concrete, 
metal, and stone 
construction materials. 

 

>0.7 0.1-0.3 30-50 40-50 <20 3-10 

9 – Sparsely built 

 

 

Sparse arrangement of 
small or medium-sized 
buildings in a natural 
setting. Abundance of 
pervious land cover (low 
plants, scattered trees). 

 

>0.8 0.1-0.25 10-20 <20 60-80 3-10 
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LCZ Definition SVF 
Aspect 

ratio 

Impervious 
fractions (%) 

Pervious 
fraction 

(%) 

Height 
elements 

(m) Built Ground 

10 – Heavy industry 

 

 

Low-rise and mid-rise 
industrial structures 
(towers, tanks, stacks). 
Few or no trees. Land 
cover mostly paved or 
hard-packed. Metal, 
steel, and concrete 
construction materials. 

 

0.6-0.9 0.2-0.5 20-30 20-40 40-50 5-15 

NATURAL ZONES 

A – Dense trees 
 

 

Heavily wooded 
landscape of deciduous 
and/or evergreen trees. 
Land cover mostly 
pervious (low plants). 
Zone function is natural 
forest, tree cultivation, or 
urban park. 

<0.4 >1 <10 <10 >90 3-30 

B – Scattered trees 

 

 

Lightly wooded 
landscape of deciduous 
and/or evergreen trees. 
Land cover mostly 
pervious (low plants). 
Zone function is natural 
forest, tree cultivation, or 
urban park. 

0.5-0.8 0.25-0.75 <10 <10 >90 3-15 

C – Bush, scrub 

 

 

Open arrangement of 
bushes, shrubs, and 
short, woody trees. Land 
cover mostly pervious 
(bare soil or sand). Zone 
function is natural 
scrubland or agriculture. 

0.7-0.9 0.25-1.0 <10 <10 >90 <2 

D – Low plants 

 

 

Featureless landscape of 
grass or herbaceous 
plants/crops. Few or no 
trees. Zone function is 
natural grassland, 
agriculture, or urban 
park. 

>0.9 <0.1 <10 <10 >90 <1 

E – Bare rock or paved 

 

 

Featureless landscape of 
rock or paved cover. Few 
or no trees or plants. 
Zone function is natural 
desert (rock) or urban 
transportation. 

>0.9 <0.1 <10 >90 <10 <0.25 

F – Bare soil or sand 

 

 

Featureless landscape of 
soil or sand cover. Few 
or no trees or plants. 
Zone function is natural 
desert or agriculture. 

>0.9 <0.1 <10 <10 >90 <0.25 

G – Water 

  

 

Large, open water bodies 
such as seas and lakes, 
or small bodies such as 
rivers, reservoirs, and 
lagoons. 

>0.9 <0.1 <10 <10 >90 – 

 

LCZs were designed specifically for air temperature observations since geometric and 

surface cover parameters defining each class were selected because of their immediate 

influence on the thermal conditions at pedestrian level. Accordingly, few studies have 

applied the approach to examine SUHIs since classification values require further 

modifications for its implementation based on remotely sensed data (Bartesaghi Koc, 

Osmond, Peters et al., 2018). From the urban mapping perspective, these improvements 

should also address problems related to the optical and thermal mapping of urban surfaces 

such as the correct standardisation of the classification procedure; adequate image 
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resolutions (pixel size) and collection times; the temporal variability of physical properties, 

and the appropriate quantity and quality of images for time series analyses (Bechtel et al., 

2015; Cai et al., 2017; Geletič et al., 2016; Geletič et al., 2017; Gémes et al., 2016; Irger, 

2014; Skarbit et al., 2015).  

Beyond its primary function, LCZs have also being used to map intra-urban land covers, 

so several GIS-based and remotely sensed classification methodologies were introduced 

and tested based on satellite data (Bechtel et al., 2016; Bechtel & Daneke, 2012; Kaloustian 

& Bechtel, 2016; Kotharkar & Bagade, 2016; Lelovics et al., 2014; Mitraka et al., 2015; 

Skarbit et al., 2015; Wicki & Parlow, 2017; Zheng, Y. et al., 2016). In fact, the World 

Urban Database and Access Portal Tools (WUDAPT) initiative (Bechtel et al., 2016) has 

emerged as a global cooperative effort to develop a widely available classification method 

that can be easily replicated in different cities using open-source data and software.  

Despite the latest advances in the application of LCZs to urban mapping and thermal remote 

sensing, some methodological issues have arisen such as the standardisation of 

classification methods for different research purposes, the definition of appropriate spatial 

units for observations, the need for very high-resolution imagery and the temporal changes 

in the surface properties (i.e. vegetation phenology) (Bartesaghi Koc, Osmond, Peters, & 

Irger, 2017b; Bechtel & Daneke, 2012; Geletič & Lehnert, 2016; Lehnert et al., 2015; 

Zhongli & Hanqiu, 2016).  

Although the LCZ system is well suited for the generic classification of urban form, its 

classification parameters have not been specifically developed for the differentiation of 

green infrastructure in terms of its abundance, composition and spatial arrangement. Thus, 

the application of this construct to the present dissertation is unsuitable and limited as it 

requires further modifications and improvements. These include the combination of several 

types of pervious surfaces (grasses, shrubs, deciduous/evergreen trees) within the same 

spatial unit, the consideration of the effect of water availability (rain and irrigation) and the 

incorporation of three-dimensional descriptors (i.e. derived from LiDAR) to consider the 

effects of vertical surfaces, the size of buildings and vegetation height (Bartesaghi Koc, 

Osmond, Peters et al., 2018). 

However, in the absence of internationally agreed classification standards for green 

infrastructure (as demonstrated in Chapter 3), the conceptual and methodological 

frameworks proposed by Stewart and Oke (2012) for the development of LCZs have been 

adopted by the present thesis for the formulation of a new categorisation system enabling 

the analysis of the thermal regimes of green infrastructure at local scale. This new 
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taxonomic framework, typologies and specific value ranges are presented in Chapter 4; the 

methodological aspects for its implementation based on remote sensing data are discussed 

in Chapters 5 and 6; and the testing and validation results described in Chapter 7.   

2.7 Summary 

The intent of this chapter is to provide an overview of key interdisciplinary concepts, 

principles and aspects relevant to green infrastructure and the urban microclimate. These 

are necessary to achieve clarity in relation to the spatial scales and the climatic and physical 

phenomena governing the cooling effects of natural and artificial elements and surfaces in 

urban contexts. 

 From a systemic or holistic view, green infrastructure should be conceived and studied as 

a multi-scale, multi-temporal, highly heterogeneous and dynamic system comprising 

natural, semi-natural and man-made features; and their integrated flows of material and 

energy. Accordingly, three fundamental principles: (a) dynamic spatio-temporal 

heterogeneity, (b) spatial interconnectivity, and (c) multi-functionality are adopted for the 

development of new taxonomic and assessment frameworks that are presented in 

subsequent chapters.  

Fundamental concepts and ideas about climatological scales, energy balance of surfaces 

and the types of UHI are also presented as these are crucial to define the classification 

framework for green infrastructure and the most adequate methods for the assessment of 

the thermal regimes of different typologies. Scientists recognise three main spatial scales 

for the study of the urban climate: the meso-, the local- and the micro-scale. Since a limited 

number of studies have been conducted at local-scale (as argued in Chapter 3), this thesis 

will particularly focus on this level as it is the most appropriate for planning and 

implementing green infrastructure cooling strategies. Furthermore, this is an intermediate 

level that corresponds to the urban planning and design of cities that is the concern of most 

local governments, planning authorities, developers and practitioners.  

The study of thermal regimes of green infrastructure at the local scale also requires defining 

the type of climatological phenomena (particularly UHI) that will be targeted, as they differ 

in terms of physical properties and interactions, observational methods and data 

requirements. In this sense, this research specifically concentrates on studying the effects 

of green infrastructure on SUHIs. A systematic literature review on different 

methodological aspects is presented in Chapter 3 to support this choice. The review of 
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studies is also intended to identify key methods, indicators and data sources that are 

incorporated into the proposed assessment framework described in Chapter 5. 

Examining the climatic benefits of green infrastructure over large urban areas presupposes 

a method of classification for a meaningful comparison of multiple sites. The LCZ is 

evaluated and discussed at the end of this chapter as a potential classification system to 

achieve this aim. Despite the multiple applications of the LCZs for the study of UHIs and 

urban mapping, this was designed specifically for heat island observations within the UCL 

(air temperatures), with less attention to the vegetation content (I. Stewart, personal 

communication, 2016); therefore, it is not well suited for the purposes of this thesis. 

However, this research draws on the methodological aspects, and classification criteria and 

descriptors implemented in the LCZ framework to propose a more targeted categorisation 

system which is further described in Chapter 4 and will serve to support the empirical 

investigations discussed in Chapters 7 and 8.  
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Chapter 3  

Assessing the cooling effects 

of green infrastructure:  

A systematic review
6

 

3.1 Introduction 

Nowadays, a primary concern of the broad scientific community and, more specifically, of 

climatologists is the increase in the frequency and intensity of heatwaves and extreme urban 

temperatures associated with UHIs, which are causing significant impacts on the global 

economy, and the human health and well-being (Bowler et al., 2010b; Manteghi et al., 

2015; Oke et al., 1989; Oke, 1992; Völker et al., 2013). As demonstrated in Chapter 2, 

green infrastructure can be implemented as an effective heat mitigation strategy as it 

moderates the negative effects of urban warming through shading, evaporative cooling, and 

the modification of airflows and heat exchange (Bowler et al., 2010b; Hunter et al., 2012; 

Oke et al., 1989; Santamouris, 2015; Völker et al., 2013). 

Intensive research has been conducted in recent years to understand the impacts of green 

infrastructure on urban microclimate, and results have been extensively documented in the 

literature. However, the critique of key methodological aspects (i.e. methods, parameters, 

data collection procedures) and the advantages or disadvantages of one over another 

remains unattended. The main purpose of this chapter is to identify current knowledge gaps 

to define the most adequate methodological framework for this research. Furthermore, it is 

intended to analyse the existing evidence for a more integrated understanding and 

interpretation of the findings given the disparity of exiting studies in terms of geographic 

contexts, climates, scales, types of vegetation studied, research methods, needs and 

resources (data, instrumentation).  

                                                      

6    A version of Chapter 3 has been published: Bartesaghi Koc, Osmond, and Peters (2018), Evaluating the cooling 

effects of green infrastructure: A systematic review of methods, indicators and data sources, Solar Energy, 166, 

p. 486-508. 
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This chapter begins with an overview of the evidence summarised by most recent literature 

reviews followed by a systematic review of studies investigating the cooling effects of 

green infrastructure. Given the extensive number of studies published in recent years, this 

review is restricted to the most representative research conducted since 2010 comprising 

air and surface temperatures, CLUHI, SUHI, thermal comfort and heat stress observations.  

The results of the review and synthesis of evidence consists of six major sections. The first 

section analyses the geographic patterns and typical climate zones that have attracted the 

most attention from climate researchers around the world. In the second section scholarly 

papers are organised into topics and sub-topics according to their main research focus and 

interests to examine the interactions among them. The third section describes which green 

infrastructure types receive most attention in the literature and examines the relationship 

between climatological scales and green infrastructure types studied.  

The fourth section summarises the most common parameters investigated; meanwhile in 

the fifth section, different methods of investigation, data sources, data acquisition and data 

processing protocols are discussed followed by an analysis of the advantages and 

disadvantages of one over another. Finally, the last section focuses on the investigation 

period of studies, particularly seasons, times of the day and duration of measurements. The 

remainder of the chapter critically examines the results of this systematic review to provide 

a summary of key methodological shortcomings, gaps, and suggestions that will be 

addressed by and incorporated to the proposed frameworks described in Chapters 4 and 5. 

3.2 Methods  

This chapter applies a systematic literature review following the approaches of  Khan et al. 

(2003), Pickering and Byrne (2013) and Pullin and Stewart (2006). This method differs 

from typical critical reviews since it integrates a body of literature by methodically 

extracting specific data from a representative number of studies within a certain period 

(Pullin & Stewart, 2006; Stewart, 2011a, 2011b). This information is integrated into a 

single study for the quantitative and qualitative analysis and synthesis of evidence. 

Moreover, a systematic review must be reproducible by other researchers, explicit in 

defining specific research questions and selection criteria, and comprehensive in examining 

the full literature (Khan et al., 2003). In this chapter, a systematic review was conducted to 

identify geographical patterns7, theoretical trends and, more importantly, methodological 

gaps. 

                                                      

7   Affiliations of main authors were used to determine the origin of publications. 
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In accordance to Khan et al. (2003), Pullin and Stewart (2006) and  Stewart (2011a) the 

present review followed five key stages. Firstly, specific review questions were formulated 

in terms of the aims and objectives of this thesis and are listed in Appendix A. These were 

necessary to define the review protocols, the screening criteria and the data to be extracted 

from each paper. The second stage consisted in identifying relevant publications. This 

searching process was carried out using three major databases including Google Scholar, 

Web of Science and Scopus, and combined terms such as cooling, vegetation, green 

infrastructure, urban heat island, thermal comfort and temperature. The search results 

were limited to the most recent journal papers using Bowler et al. (2010b) review as a time 

limit. In the third phase, a representative sample of relevant articles was selected and 

assessed against the following quality selection criteria: 

a. Publications were peer-reviewed and in English (the exclusion of non-English studies is a 

limitation that could imply a possible bias in the interpretation of findings). 

b. Studies evaluated any of the following green infrastructure categories: (1) tree canopy; (2) 

green open spaces; (3) water bodies; (4) green roofs; and (5) vertical greenery (green walls 

and green facades).  

c. Studies measured or simulated climatic conditions based on a specific geographic location 

and/or climate zone and compared results against vegetation-related indicators. Studies 

only measuring or reporting on SUHI, CLUHI or temperature reductions were not included.  

d. Articles reporting on simulations using synthetic data or with unspecified sites were also 

excluded.  

e. Studies at global scale, over vast regions, or using community land models (Kvalevåg et 

al., 2010; Lawrence & Chase, 2010; Peng et al., 2014; Shen, M. et al., 2015; Shen, X. et 

al., 2015; Wang, M. et al., 2015; Xiao, 2014) were not included.  

f. Operational definitions, instrument specifications and data sources were explicitly or 

implicitly stated. 

 

In the fourth phase, the extraction of information and analysis of evidence was based on a 

set of thematic aspects corresponding to commonly agreed criteria identified from the 

literature [Figure 3.1]. These are fundamental aspects to be considered for investigating the 

climatic effects of green infrastructure. In the last phase, the data synthesis and 

interpretation of findings was conducted using both qualitative and quantitative analysis 

with basic statistical methods.  
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Figure 3.1 List of thematic aspects identified in the reviewed literature that are fundamental for 

investigating the climatic effects of green infrastructure. 

      (Based on Bartesaghi Koc, Osmond, and Peters (2018)) 
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3.3 Overview of existing evidence 

In recent years, intensive research has been carried out to explore and understand the 

impacts of qualitative and quantitative attributes of green infrastructure on the urban 

climate; evidence that has been well-documented in previous literature reviews. A 

comprehensive meta-analysis on the cooling effects of parks, trees and green roofs 

provided by Bowler et al. (2010b) suggests that an urban park can be up to 1°C cooler on 

average compared to a non-green site. However, their review was mostly based on air 

temperature observations of small number of green sites, excluding studies focusing on 

surface temperature and simulation. The lack of an appropriate description and 

classification of the urban greenery has been identified as an important barrier hindering 

the reliability and comparability of studies (Bowler et al., 2010b). Further research is also 

required to understand the impact of abundance, distribution and type of greenery in the 

modification of urban microclimates (Bowler et al., 2010b).  

Zupancic et al. (2015) presented a review to examine the capacity of greenspaces and urban 

tress to help mitigate heat and air pollution. Their findings also suggest that the thermal 

capacities of vegetation are clearly influenced by physical and configurational 

characteristics and that further research is required on these two particular aspects 

(Zupancic et al., 2015). They also identified multiple confounding variables that may affect 

the cooling capacity of urban greenery, especially building density or urban compactness, 

which deserve more control and attention.  

The critical review conducted by Motazedian and Leardini (2012) exclusively focused on 

studies measuring air temperatures within and near parks by comparing two 

methodological approaches, on-site measurements and numerical modelling. Since costs 

and time constraints limit comparative analyses over longer periods, simulations and 

modelling have been frequently employed to overcome these limitations (Motazedian 

& Leardini, 2012). Accordingly, Motazedian and Leardini (2012) suggest the combination 

of both approaches for better, more reliable and comprehensive analyses. 

The UCIs and PCIs refer to phenomena where greenspaces and their immediate 

surroundings have lower temperatures than that of impervious surfaces (Chen et al., 2014; 

Spronken-Smith & Oke, 1998). Unlike PCIs, UCIs can be also attributed to urban 

morphology descriptors (i.e. H/W ratio and SVF), the properties of materials (i.e. albedo, 

emittance), air flow rates and the presence of anthropogenic heat (Yang et al., 2017). Zhao-

wu et al. (2015) summarised current research on UCIs by identifying aspects such as UCI 

thresholds, cooling intensities, and maximum cooling extents of greenspaces using remote 
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sensing and simulation. They concluded that future studies should pay more attention to 

the types of species, location and altitude of greenspaces, and morphological (i.e. size, 

shape, area), and configurational aspects of both vegetation and water bodies (Zhao-wu et 

al., 2015). Furthermore, long-term observations should be strengthened and more attention 

should be paid to the spatial scale and image resolution for a more accurate analysis of the 

spatial and temporal evolution of UCIs (Zhao-wu et al., 2015). 

UCIs and PCIs are also important for improving HTC conditions by decreasing mean 

radiant temperatures. Thus, the quantitative evaluation of the urban greening contributions 

to HTC and heat stress reduction has been the subject of several reviews (Hiemstra et al., 

2017; Jamei et al., 2016; Taleghani, 2017). Hiemstra et al. (2017) presented the main 

findings of studies from several European and Mediterranean countries by comparing their 

reported PCI magnitudes. Results show that cooling effects of greenspaces are quite 

substantial for all studies despite the disparity of climate and physical characteristics, which 

reported maximum PCI magnitudes between 1.5 and 9.5 ºC. 

Similarly, Jamei et al. (2016) undertook a review of studies focusing on the effects of 

vegetation and urban geometry on pedestrian thermal comfort. They found that 

geographical, structural (i.e. Aspect ratio, orientation, SVF) and seasonal factors from each 

urban context should be considered for the correct choice of vegetation (i.e. type of foliage, 

size, location within the canyon) since this may provide different outdoor thermal effects 

in summer and in winter. However, planning policies and urban design strategies do not 

fully incorporate these aspects at the moment of proposing a new settlement (Jamei et al., 

2016). Taleghani (2017) reviewed the effect of different heat mitigation strategies on 

outdoor thermal comfort and concluded that the use of vegetated and artificial surfaces with 

high albedo (reflective) properties is the most effective solution for reducing MRT and 

thus, for improving the thermal conditions at pedestrian level. 

Santamouris (2014) reviewed simulation studies on reflective and green roofs to evaluate 

the capacity of meso-scale predictive modelling to inform city scale interventions. 

Evidence suggests that green roofs, when applied at the city level, may decrease average 

air temperatures between 0.3 and 3K (Santamouris, 2014). Furthermore, Charoenkit and 

Yiemwattana (2016), Hunter et al. (2014) and Pérez et al. (2014) evaluated several 

simulations and experimental studies on vertical greenery used to improve the indoor 

thermal comfort and energy savings in buildings. These papers mainly focused on climatic 

conditions, morpho/physiological characteristics, and operability of green facades/walls at 

microscale, putting aside the methodological aspects. Generally, the application of living 
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walls and green facades shows a reduction of surface temperatures of building facades 

between 1 to 15 ºC for studies in warm temperate climates (Pérez et al., 2014). 

From a remote sensing perspective, Weng (2009) focused on studies examining the 

influence of vegetation on LST reduction by undertaking a comprehensive review of 

methods, indicators and data sources. He concluded that most previous work mainly 

concentrated on understanding the relationships between bio-physical properties of 

surfaces, vegetation abundance (i.e. vegetation indices and land use/land cover types) and 

their corresponding LST patterns (Weng, 2009). There were also identified gaps for 

potential research which include the derivation of UHI parameters from LST data and the 

implementation of remote sensing to calculate surface energy fluxes (Weng, 2009). 

Although there is an increasing number of remote sensing studies giving special attention 

to the influence of spatial patterns and configuration of green spaces on LST, reviews on 

this topic are scarce.  

Heat reductions have been broadly attributed to vegetation, but cooling effects have not 

been established with the same accuracy and precision for water bodies (Völker et al., 

2013). Literature has reported on the cooling benefits of water bodies irrespective of 

vegetation since the thermal properties and cooling mechanism of water differ from those 

of vegetated surfaces (Manteghi et al., 2015; Oke, 1992; Spronken‐Smith et al., 2000; 

Völker et al., 2013). Although literature on water bodies remains sparse, Gunawardena et 

al. (2017), Manteghi et al. (2015) and Völker et al. (2013) have presented detailed reviews 

on this topic, and meta-analyses suggest an air temperature reduction within and near water 

bodies up to 2.5K (CI 95%, p<0.01) (Völker et al., 2013); and between 2 to 6ºC (Manteghi 

et al., 2015). Until now, evidence on the impacts of water in SUHI mitigation and LST 

reductions has not been properly reviewed. 

3.4 Geographic patterns and climate zones 

After the screening process, a total of 165 journal articles from 31 countries and/or 

territories were identified as eligible for the systematic review of this chapter. In addition, 

a total of 178 single-studied sites were extracted from the scholarly papers. This number 

differs from the numbers of articles because many papers investigated more than one 

location at a time. A complete list of authors, investigated sites, and the extracted data from 

each study is chronologically presented in Appendix B. 

Papers were published in 52 different journals from a wide range of disciplines [Table 3.1], 

although three journals were dominant −Building and Environment, Landscape and Urban 
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Planning and Urban Forestry and Urban Greening. This demonstrates the trans-

disciplinary interest of scholars in this topic, with special interest of those in the fields of 

environment/ecology, urban planning/landscape, arboriculture/forestry, climatology, and 

energy.   

Analysis based on author affiliations shows reviewed papers are predominantly written in 

Asia (43%), Europe (31.5%) and North America (15.8%), with a strong bias toward three 

countries: China (18.2%), USA (14.5%) and Hong Kong (7.3%). These figures show the 

increasing interest of climatologists in developed and industrialised countries in the thermal 

benefits provided by nature, while these aspects remain unattended by most developing 

countries [Figure 3.2a, 3.2b]. The geographic distribution of study sites displays an 

analogous pattern [Figure 3.2c]. From 178 single-studied sites, research is predominantly 

conducted in Asia (n=71, 39.9%), Europe (n=62, 34.8%) and North America (n=26, 

14.6%). Much fewer locations correspond to Oceania (n=7, 3.9%), South America (n=7, 

3.9%) and Africa (n=5, 2.8%).  

In a country-based analysis, it can be observed a heavy geographic bias toward three 

countries: China (n=28, 15.7%), USA (n=25, 14%) and Hong Kong (n=12, 6.7%). In a city-

based analysis, Beijing (n=13), Hong Kong (n=12) Phoenix (n=9), Athens (n=6), Nagoya 

(n=6) and Singapore (n=6) are the most investigated. Some other cities are also investigated 

and include Chicago (n=4), Melbourne (n=4), Nanjing (n=4), Shanghai (n=4), Tel Aviv 

(n=4) and Taipei (n=4) [Figure 3.2a].  

Most studies (83%) corresponds to the northern hemisphere and at higher latitudes, while 

research within the tropics (n=28, 15,7%) and the southern hemisphere (n=12, 6.7%) are 

underrepresented [Figure 3.2a]. According to the updated Köppen-Geiger climate 

classification (Kottek et al., 2006), studies show a strong bias toward warm, temperate and 

fully humid climates, particularly the Temperate oceanic (Cfb) (n=47, 26.4%) with warm 

summers and the Humid subtropical (Cfa) (n=36, 20.2%) and Cwa (n=13, 7.3%) with hot 

summers. Studies also concentrate on the Hot-summer Mediterranean (Csa) (n=22, 

13.4%), the Humid continental (Dwa) (n=15, 8.4%), and the Hot desert (BWh) (n=13, 

7.3%) climates [Figure 3.2d].  Vere few studies correspond to Hot semi-arid (Bsh) (n=4, 

2.3%), Cold semi-arid (Bsk) (n=4, 2.3%), Cold desert (Bwk) (n=3, 1.7%), Tropical 

monsoon (Am) (n=2, 1.1%), Warm summer Mediterranean (Csb) (n=2, 1.1%), Subtropical 

highland (Cwb) (n=1, 0.6%) and Continental Mediterranean (Dsa) (n=1, 0.6%) climates. 

However, knowledge about these climate zones is crucial as vegetation, irrigation and 

cooling requirements are considerably different to those proposed for temperate climates 

[Figure 3.2d]. 
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Table 3.1 List of journals and disciplines containing most papers that investigated the cooling effects of green 

infrastructure. Disciplines based on Roy et al. (2012) categorisation. 

Discipline 

(# journals per discipline) 
Name of journal # papers per 

journal 

# papers per 

Discipline 

Arboriculture and 

forestry (3) 

Agricultural and Forest Meteorology 2 20 

HortScience 1 

Urban Forestry & Urban Greening 17 

Architecture  

(2) 

Architectural Science review 5 6 

Building Services Engineering Research and 

Technology 

1 

Climatology 

(9) 

Atmosfera 1 19 

Boundary-Layer meteorology 1 

Climatic Change 1 

International Journal of Climatology 4 

International Journal of Biometeorology 1 

International Journal of Global Warming 1 

Journal of Applied Meteorology and 

Climatology 

2 

Theoretical and Applied Climatology 5 

Urban Climate 3 

Energy  

(6) 

Applied Energy 2 15 

Energy and Buildings 8 

Energy Procedia 1 

Energy Conversion and management 1 

Renewable Energy 2 

Solar Energy 1 

Environment and 

ecology (14) 

Asian Journal of Atmospheric Environment 1 62 

 

 
Building and Environment 38 

Ecological Indicators 3 

Ecological Engineering 1 

Environmental monitoring and assessment 1 

Environmental pollution 1 

Environmental Research letters 1 

Hydrological Processes 1 

Indoor and Built Environment 1 

Landscape ecology 4 

Science of the total environment 1 

Sustainability 3 

Sustainable Cities and Society 4 

Urban Ecosystems 2 

Geography 

(6) 

Applied Geography 1 7 

Geographical Analysis 1 

International Journal of Geomate 1 

Journal of Geophysical Research 2 

Journal of Geophysical Research 1 

Progress in Physical Geography 1 

Remote sensing 

(6) 

 

 

GIScience & Remote Sensing 1 11 

 International Journal of Remote Sensing 4 

ISPRS Journal of Photogrammetry and 

Remote Sensing 

2 

Journal of Applied Remote sensing 1 

Remote Sensing 1 

Remote Sensing of Environment 2 

Urban 

planning/landscape (3) 

Journal of Urban Planning and Development 2 22 

Landscape and Ecological Engineering 1 

Landscape and Urban Planning 19 

Other 

(3) 

International Journal of Simulation 1 3 

 Natural Hazards 1 

Procedia Engineering 1 

TOTAL  165 165 
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Figure 3.2 Geographic distribution of reviewed literature based on affiliations, study locations, and climate 

zones. 
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Factors influencing these geographic patterns may be attributed to: (a) the restriction of the 

review to publications in English and the limited time and resources to include papers in 

other languages; (b) the country-based disparity in terms of the number of researchers and 

available funding; (c) the inability to retrieve and access articles and data from 

underrepresented regions; (d) the interest of climate researchers in studying cities with 

severe UHIs (i.e. Athens, Beijing, Hong Kong); and (e) research driven by need; for 

instance, it is not expected temperature-related studies in high latitude cities with low solar 

intensity or in desert regions with little or no green spaces because of adverse growing 

conditions. 

Previous results demonstrate that more research is necessary regarding the thermal benefits 

of urban greening in developing countries, southern-hemisphere regions, and many tropical 

and desert climates. This is particularly important for many cities located in Africa, South 

America, Oceania, Middle East, South-East Asia and India which are highly urbanised, 

with large populations, and severely affected by extreme weather conditions. 

3.5 Research focus and topics 

Generally, researchers study the thermal performance of green infrastructure by analysing 

the magnitude and intensity of its thermal effects in different types of UHIs (Oke, 2009). 

In this sense, the papers can be grouped in three main research topics: (a) the regulatory 

effect of vegetation on air temperatures which is associated to CLUHIs (n=115, 69.7%); 

(b) the reduction of the temperature of urban surfaces which relates to SUHIs (n=86, 

52.1%); and (c) the analysis of the relationship between air and surface temperature 

reductions (n=36, 21.8%) [Figure 3.3].  

Studies can also be divided on specific sub-topics; for example, 42 studies (25.5%) pay 

attention to HTC, 16 studies (9.7%) focus on evapotranspiration, and 17 studies (10.3%) 

examine the impact of the spatial configuration of greenspaces on the patterns of SUHIs. 

Several papers analyse the intensity, extent and spatial variability of PCIs (n=11, 6.7%) and 

UCIs (n=7, 4.2%); while very few papers (n=3, 1.8%) are interested in thermal sub-surface 

conditions. Figure 3.3 presents the distribution, interactions and overlaps among reviewed 

studies within each topic and sub-topic. A full summary of reviewed bibliography is 

presented in Appendix B. 

As can be observed in Figure 3.3, research scopes are diverse, although studies typically 

examine the cooling effects of green infrastructure on air and surface temperatures 

separately. HTC is a sub-topic that attracts the attention of most air-temperature studies; 



 

80  |  Research focus and topics 

nonetheless, the effect of evapotranspiration on pedestrian thermal comfort is not fully 

quantified and analysed in the literature. Similarly, the evaluation of human perceptions 

could be incorporated in or compared against results from simulation and models (i.e. 

ENVI-met). UCI and PCI are commonly used interchangeably among many studies; 

however, as previously discussed, these are two different phenomena that should properly 

be differentiated as the former can be also attributed to urban morphology aspects and 

human activities (i.e. building density, street orientation, traffic, abundance of air-

conditioning) (Yang et al., 2017). Furthermore, the effect of spatial configuration of 

vegetation on air temperatures remains relatively unexplored and it mainly concentrates on 

surface temperature distributions.   

 

Figure 3.3 Venn diagram depicting the percentage distribution, interactions and overlaps of main research 

topics and sub-topics investigated by the reviewed literature on thermal performance of green 

infrastructure. 

AIRT Air temperature, SUT Surface temperature, ET evapotranspiration, HTC Human thermal comfort, UCI 

Urban cool island, PCI Park cool island, SC Spatial configuration, SST Sub-surface temperature. Shape sizes 

and widths of outlines are proportional to level of interest per topic. 

 



 

Chapter 3 – Assessing the cooling effects of green infrastructure  |  81 

 

3.6 Green infrastructure types and scale of analysis 

Due to the lack of robust and widely accepted typologies to support climate research, 

investigations adopted terms from related disciplines which restrain the comparability of 

evidence and case studies (Bowler et al., 2010b). To respond to this need, five high level 

green infrastructure categories are identified in Chapter 4 as a result of a systematic review 

of classification methods and approaches.  

These categories are also employed in this section to identify the interest of studies on 

particular green infrastructure types; and correspond to (a) tree canopy (TC); (b) green open 

spaces (GOS); (c) green roofs (GR); (d) vertical greenery systems (VGS); and (e) water 

bodies (WB) (Bartesaghi Koc et al., 2016, 2017).  

Among these categories, two-thirds of papers (n=113, 68.5%) studied the cooling benefits 

of greenspaces (n=38, 23.0%) and tree canopies (n=31, 18.8%) either individually, or 

jointly (n=44, 26.7%) [Table 3.2]. The latter generally applies when trees are part of a major 

greenspace (i.e. trees within parks) or are analysed at large scales (i.e. trees considered as 

woodland or forest). The increased attention on these two categories responds to the wide-

ranging implications and multiple services that both provide to the built environment, 

especially on outdoor thermal comfort. 

Table 3.2   Distribution of different green infrastructure types studied by literature according to their scale of 

analysis.  

 

Colour shows details about scale and size shows details about the total number of publications. 

Contrastingly, studies examining the thermal profiles of vertical greening (n=19, 11.5%), 

and green roofs (n=16, 9.7%) are less numerous [Table 3.2]; and their cooling benefits are 

typically associated with indoor thermal comfort and energy consumption. It is evident that 

more research is necessary to evaluate the effects of greenery on buildings at the pedestrian 

level and to investigate their large-scale cooling potentials beyond simulation. 
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Studies on water bodies (n=9, 5.5%) are very few and usually combined with those of 

greenspaces [Table 3.2]. Therefore, forthcoming research should focus on understanding 

the role of geometry and spatial distribution in the thermal performance of water bodies 

and on examining the diurnal and nocturnal patterns and differences of both surrounding 

air and surface temperatures. 

Few papers conducted analyses of multiple green infrastructure types simultaneously (n=8, 

4.8%) [Table 3.2]. Indeed, green infrastructure types are commonly analysed individually 

due to several limitations such as lack of adequate taxonomies and issues related to data 

collection (deployment, cost, data mismatch, etc.). Hence, the comprehensive study of the 

combinatory effects of different vegetation surfaces and features, along with other urban 

characteristics is very challenging, although a very promising area for upcoming research. 

Nonetheless, as pointed out by  Bowler et al. (2010a, 2010b), a confident comparison, 

reporting and prediction of the thermal regimes of multiple types at once requires 

universally agreed typologies and protocols. Since the development of such standardised 

classification scheme is crucial for climate studies, and more especially for this research, 

this gap is addressed in Chapter 4.  

The selection of a specific spatial scale of observation depended on several factors, namely 

the type of green infrastructure, the extent of the case study area and the type of 

climatological phenomena targeted. Since the types of measurements, indicators, and 

methods vary across spatial scales (Erell et al., 2011; Oke, 2006); studies can be categorised 

according to the three main climatological scales –meso, local and micro– as per section 

2.4.1 from Chapter 2.  

In accordance, most papers investigated the thermal effects of green infrastructure at the 

microscale (n=81, 49.0%), which include the study of the cooling effects of trees on air 

temperatures and HTC conditions of street canyons, small and medium courtyards and 

other outdoor spaces (n=40), as wells as the thermal benefits and energy savings of green 

walls/facades (n=18) and green roofs (n=14) in indoor spaces.  

Studies at the meso scale (n=39, 23.6%) covered larger areas such as cities and regions and 

mainly examined the widespread role of greenspaces and tree canopy in reducing LST and 

mitigating SUHIs. A similar number of studies (n=38, 23.0%) evaluated the effects of trees 

and greenspaces in neighbourhoods and urban precincts, corresponding to the local scale.  

Although the local scale is the level at which most urban planning and design occurs 

(Norton et al., 2013); there is still little knowledge about the most effective types, 

abundance, composition and arrangement of green infrastructure needed for mitigating heat 
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and improving thermal comfort at urban precinct, neighbourhood and street canyon levels 

(Bowler et al., 2010b; Coutts & Harris, 2012; Kong et al., 2013; Morakinyo & Lam, 2016; 

Norton et al., 2013; Shashua-Bar & Hoffman, 2000; Zupancic et al., 2015). Moreover, 

comprehensive knowledge on how green infrastructure heterogeneity influences the spatio-

temporal variability of temperatures at multiple spatial scales is still missing (Buyantuyev 

& Wu, 2010). Furthermore, multi-scale analyses were not common among the literature 

(n=7, 4.2%) [Table 3.2]. 

3.7 Common parameters of analysis 

The thermal analysis of green infrastructure typically involves the study of the relationships 

between quantitative and qualitative descriptors of green infrastructure (considered as 

independent variables) and the climatological conditions (considered as dependent 

variables) of the study site [Table 3.3]. In this review, vegetation-related parameters were 

categorised into three main groups corresponding to: (a) the functional indicators (i.e. 

photosynthetic activity and evapotranspiration), (b) the structural composition (i.e. type, 

size, height, morphology, area, type of leaf, etc.), and (c) the spatial distribution of 

vegetation. 

In some cases, the abovementioned relationships are also influenced by intervening or 

confounding variables resulting from morphological, climatological and anthropogenic 

factors (i.e. wind effects, distance to coast, building shade and traffic load) [Table 3.3]. 

However, this information is often vaguely reported or completely obviated in the 

literature. Generally, the selection of variables mostly depends on the research focus, scales 

and types of green infrastructure under study.  

Ideally, studies should incorporate indicators from these three categories for a more 

comprehensive analysis. Nonetheless, it was observed that better data collection and 

reporting protocols should be established as well as a better control of the effect of 

intervening variables such as wind, precipitation, topography, surrounding urban form and 

anthropogenic heat. This could significantly reduce the bias and inaccuracy of results and 

facilitate the comparability of results among different settings.  

The remainder of this section concentrates on describing and analysing the main methods 

of analysis and their corresponding data sources and data acquisition protocols used for 

retrieving and estimating the most widely used parameters from Table 3.3. This 

information is accompanied by a discussion on current shortcomings and potential 

improvements.  
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Table 3.3 List of common dependent (DEP), independent (IND) and intervening (INT) variables analysed 

by studies. 

Variable Type Focus Key parameters  

DEP Climatological Ambient air, 

thermal comfort 
- Air temperature (Tair) 

- Mean radiant temperature (Tmrt) 

- Relative humidity 

  Surfaces  - Surface temperature (Tsurf) 

- Soil temperature (sub-surface) 

- Short-/long-wave radiation 

- Heat flux 

IND Functional Photosynthetic 

activity 
- Normalised difference vegetation 

index (NDVI) 

- Enhanced vegetation index (EVI) 

- Greenness index (VGI) 

- Stomatal conductance/resistance 

- Photosynthetically active 

radiation (PAR) 

  Vegetation abundance 

/ shading 
- Leaf area index (LAI) 

- Leaf area density (LAD) 

- Biophysical composition index 

(BCI) 

  Evapotranspirative 
 cooling 

- Evapotranspiration rate (ETo)  

- Wetness Index (WI) 

- Normalised difference water 

index (NDWI) 

 Morphological Surface fractions 

  

 

- Land-use/land-covers (LULC) 

- Vegetation, impervious (ISF), 

building and water fractions 

- Normalised difference built-up 

index (NDBI)  

- Local Climate Zones (LCZ) 

  Surface properties - Surface emissivity (ε) 

- Surface albedo 

- Brightness index (BI) 

- Thermal conductivity 

- Solar absorption capacity 

- Surface permeability 

- Substrate type (green roofs)  

- Depth of substrate (green roofs) 

- Soil moisture 

- Soil water content 

- Soil density 

- Irrigation rate 

  Bio-physical 

attributes 

 

- Type of foliage  

- Plant species  

- Plant solar transmissivity 

- Leaf colour and thickness 

- Leaf absorptivity  

- Leaf transmittance 

- Leaf radiation attenuation 

coefficient 

  Formal attributes - Geometry, size, shape, area & height  

  Supporting structure 

attributes 
- Training system/attachment mode 

(for green walls/facades) 

- Type of supporting material 

- Dimensions of structures 

 Configurational 
 

Spatial distribution - Vegetation arrangement 

- Local Moran’s I index1 
- Size-distance index 

  FRAGSTATS 

Landscape metrics 1 

- Percentage of landscape 

- Landscape shape index  

- Patch area  

- Patch density 

- Largest patch index 

- Shape Index  

- Number of patches 

- Mean patch area/size 

- Mean patch shape index 

- Largest patch index  

- Total edge 

- Edge density 

- Class area   

- Perimeter area ratio 

- Mean patch area 

- Perimeter-area ratio 

- Aggregation index 

- Fractal dimension  

- Contagion 

- Shannon's diversity 

- Euclidian nearest-neighbour 

distance  

- Neighbourhood green area 

- Neighbourhood green 

proportion  

- Area-weighted mean radius of 

gyration 

INT Climatological Air cooling  - Wind direction (Vd) 

- Wind velocity (Va) 

- Roughness length (Zo) 
 

- Coastal proximity 

  Surface cooling,  

other influencers 
- Solar radiation 

- Air pressure (Pa) 

- Rainfall 

- Cloud cover 

 Morphological Moderating effect  
of built forms

- Aspect ratio (H/W)  

- Sky view factor (SVF) 

- Local climate zones (LCZ) 

- Volumetric density of buildings 

- Altitude and elevation 

- Solar orientation (aspect) 

- Topography 

- Urban vegetation structure types 

(UVST) 
 Other  Human-related 

factors 
- Land-use types 

- Anthropogenic heat (traffic 

flow) 

- Pollution levels 

- Socio-economic status 

1  Metrics by McGarigal and Marks (1995) and calculated with FRAGSTATS software (McGarigal et al., 2002) 
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Figure 3.4 Main methodological approaches and methods used to investigate the cooling effects of green 

infrastructure. Based on Hunter et al. (2014); Motazedian and Leardini (2012); Ng et al. 

(2012); Völker et al. (2013) and Zhao-wu et al. (2015). 

 

 

Figure 3.5 Combination of different methods employed in the literature. Note: sizes are proportional to 

the number of studies. 
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3.8 Methods, data sources, data acquisition and data 

processing  

The selection of methods to investigate the cooling effects of green infrastructure depend 

on the research aims, the spatial scale and the green infrastructure types studied. Four main 

methods of investigation have been identified in this review: (a) on-site observations; (b) 

remote sensing observations; (c) numerical modelling and simulation; and (c) experimental 

[Figure 3.4]; and these are applied either separately or in combination [Figure 3.5].    

3.8.1 On-site observations 

On-site observations are extensively used to study the CLUHI, air temperature and HTC 

conditions of green sites, street canyons and greenery on buildings and are mainly focused 

on microscale phenomena (n=113, 68.5%) [Figure 3.5]. In this method, microclimatic 

conditions from representative sites inside greenspaces, beneath trees or near man-made 

vegetation structures are compared against a control. This method aims at finding 

correlations between air temperature reductions and vegetation variables such as 

abundance (i.e. NDVI, LAI), bio-physical/geometrical attributes (i.e. size, shape, species, 

foliage and ground substrates) and surface fractions (i.e. grass, shrubs, trees, impervious) 

(Ng et al., 2012).  

Empirical in-situ observations require the collection of ground-based climatic data using 

two distinct techniques; fixed, and mobile stations. Fixed in-situ measurement involves the 

installation of sensors –for either a short or long term– across representative places (i.e. 

near green facades, within a green space, or across whole cities and regions). The location 

of instruments depends on the type of research; for instance, climatological parameters 

related to HTC and air temperatures are typically collected at pedestrian level (1-2m above 

the ground). In some cases, instruments are mounted at greater heights to avoid vandalism, 

especially in public spaces. Sensors can also be placed beneath trees, distributed inside 

greenspaces and the immediate surroundings, fixed to poles in streets, beneath the ground, 

or near greenery on buildings (i.e. green roofs, vertical greenery). 

Meteorological conditions across cities and regions are regularly monitored through long 

term weather stations placed at various heights and locations defined by local 

meteorological bureaus. Near-surface measurements are collected less than 50cm from the 

ground, while water content, moisture and sub-surface temperature of soils are measured 

by probes placed at different depths. To increase the spatial coverage of in-situ 

measurements, some studies deploy mobile transects across study areas. Sensors are carried 
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by walking personnel, or installed in bicycles or cars depending on the type, extent and 

duration of surveys (Motazedian & Leardini, 2012). Mobile transects also include a GPS 

data logger to record the exact time and location of measurements.  

Generally, on-site observations provide high temporal resolutions and accuracy, although 

they lack good spatial coverage, unless a large number of instruments are deployed. Table 

3.4 presents a summary of common instruments employed to conduct in-situ observations. 

The geometrical and structural attributes of vegetation (i.e. shape, volume, leaf type, 

height) are usually retrieved from terrestrial data obtained through ground-truthing. For 

instance, Kong et al. (2013) and Rahman et al. (2017) retrieved three-dimensional tree 

canopies using terrestrial laser scanning (TLS) while Lehmann et al. (2014) combined 

aerial views with in-situ inspections to classify urban vegetation structure types (UVST) 

based on height, green volume, crown shapes and spatial arrangement of trees. As 

mentioned in Chapter 2, LAI is another indicator associated with the vegetation canopy 

structure used to describe the amount of foliage, evapotranspiration and the potential 

interception of solar radiation and wind (Hunter et al., 2012; Kong et al., 2016). LAI is 

commonly estimated using optical instruments, fish-eye photographs, TLS and spectral 

imagery with ENVI software (Exelis, 2015).  

Aspect ratio (H/W) and SVF are used in UHI research as indicators of built form density 

and geometry that strongly influence the energy balance of urban areas (Irger, 2014; 

Konarska, Holmer et al., 2015). Aspect ratio can be calculated from the relationship 

between building heights and street widths. In contrast, the calculation of SVF requires 

more sophisticated methods including hemispherical (fish-eye) photographs processed in 

RayMan software (Cohen et al., 2012; Coutts et al., 2015; Kong et al., 2016; Shashua-Bar 

et al., 2011; Tan, Z. et al., 2015; Tsiros & Hoffman, 2014) and PIXEL DE CIELO software 

developed by DELPHI5.0 (Stocco et al., 2015); estimations from digital surface models 

(DSM) (Steeneveld et al., 2011), and through a simulation available in SOLWEIG software 

(Konarska, Holmer et al., 2015). More recently, new techniques and software have been 

developed for the estimation of SVF based on remotely sensed data. These are discussed 

in the following section. 
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Table 3.4  List of common instruments used for ground-based observations. 

Measurements Instruments Models (Manufacturers)  

Air temperature 

 

Air temperature sensors, 

portable thermometers; 

thermohygrometers 

 

6382OV Davis Funk station / Vantage Pro2 (Davis); DMA 572.1 (LSI-

Lastem); DS1921G (Dallas semiconductors); EHT (Decagon); EL-USB-2-

LCD (Lascar); HOBO U12-014 / U23-001 / U14-001 / H21 weather station / 
TMB-M006 (Onset); ibuttons Hygrochron DS1923 (Maxim); iMETOS-ag 

weather station (Pessl); Kestrel 4000 series; CS215L / HMP45C (Campbell); 

LM-8000 (Lutron Electronic); Platinum PT100-8160.TFF (Lufft); PT100 
(Omega); Q-track 8552 (TSI); RFT-325 (Driesen+Kern); RTR-53 (T&D Co.); 

SDL310 (Extech); T351-PX1(Vector); Testo 625 (Testo); TinyTag Plus series 

(TinyTag); TR-10 (Endress+Hause); TR-72U (A&D Co.); Vaisala Weather 

Transmitters WXT520 (EcoTech); WatchDog 2550 station (Spectrum) 

Geographic location GPS receiver and data loggers GPS16X-HVS (Garmin); Holux M-1200E (Holux Technology)  

Heat flux Heat flux plates / gauges HFP01-03 (Huseflux); WYP-II (JT Science & Technology Co.) 

LAI LAI meters, hemispherical 

(fish-eye) camera  

LAI-2200 / 3100 (Li-Cor); Nikon Coolpix E4500 and P5100 w/ FC-E8 fisheye 

converter; Panasonic Lumix DMC-FZ100 w/ fisheye wide-angle lens 

VLB1658B; 

Leaf transmittance Spectrophotometers V-570DS w/ integrating sphere INS-470 (Jasco Co.) 

Leaf colour/thickness Colorimeter, thickness gauge SM-112 (Teclock); MiniScan Plus 4500L (HunterLab) 

Mean radiant temper. Globe thermometer WBGT-2010SD (Lutron Electronic) 

PAR PAR smart & quantum sensors PQS1/ PAR lite (Kipp & Zonen); SQ110 (Apogee); S-LIA-M003 (Onset);  

Plant 

evapotranspiration  

Sap flow meters; leaf 

transpiration sensor, lysimeters 

Sap flow module EMS 62 (EMS); LI-1600 (Li-Cor); iMETOS-ag station 

(Pessl); Thermal dissipation probes (TDPs) (Ecomatik) 

Plant geometry / 

height 

TLS, Laser canopy & height 

analyser 

Leica ScanStation 2 TLS (Leica); VL400 (Haglof); Riegl LMS-Z420i TLS 

system. 

Rainfall Weather stations, rain gauges HOBO RG3 (Onset); iMETOS-ag station (Pessl);  

Relative humidity Relative humidity sensors, 

hygrometers 

6382OV Davis Funk station / Davis weather station Vantage Pro2 (Davis); 

DMA 572.1 (LSI-Lastem); EHT (Decagon); EL-USB-2-LCD (Lascar); 
CS215L / HMP45C (Campbell); HOBO U23-001 (Onset); HC2-S3 (Rotronic 

Messgeräte); ibuttons Hygrochron DS1923 (Maxim); iMETOS-ag station 

(Pessl); MP100A (Rotronic); RTR-53 (T&D Co.); Testo 625 (Testo); TinyTag 
Plus series (TinyTag); TR-72U (A&D Co.); WatchDog 2550 station 

(Spectrum) 

Short-/long-wave 

radiation 

Net radiometers, pyranometers, 

pyrgeometers 

CGR3 (Kipp and Zonen);  CM7B (Vaisala Oyj); LP02-05 (Hukseflux Thermal 

Sensors B.V); REBS Q7.1 (Campbell); SP-110 (Apogee);  

Soil moisture Soil moisture probes,  CS616 (Campbell); ECH2O-5 / EC-TCM (Decagon); ML2x ThetaProbe, 

(Delta-T); MP406 (ICT); TDR 100 (Spectrum); Tensiomark 1 (EcoTech) 

Soil temperature Soil temperature probes Platinum PT100-8160.TF (Lufft); T107 (Campbell); STP-1, (REBS, Inc.); 

Thermister (Acorn) 

Solar absorption  Spectrophotometers (visible light) Spectrum Analyser Model 554 / GX 1 / Spectrum One NTS (Spectrum) 

Solar radiation Pyranometers; illumination 

meters 

250A (Li-COR); CM5 / CM11-P / CMP3 / CMP6 (Kipp & Zonen); iMETOS-

ag weather (Pessl); MS-601 (Eko); S-LIB-M003 (Onset); SP110 (Apogee);  

Stomatal 

conductance 

Open gas-exchange systems Portable HCM-1000  (Heinz Walz GmbH); SC-1 Sensor (Decagon) 

Surface 

reflectivity/albedo 

Spectrophotometer, 

albedometers 
Lambda 950- UV/Vis/NIR (Perkin Elmer); CM7B (Vaisala Oyj);  

Surface temperature  

(ground-based) 

Thermocouples, infrared 

camera/radiometers, 

thermoresistances, thermistors, 

laser guns 

 

EL-USB-TC (Lascar); FLIR A615 / FLIR-i5 / AGEMA Thermovision 570 

(FLIR Systems); Fluke 572 (Fluke); HOBO U12-014 (Onset); IRTS-P 

(Campbell); Laser gun PTD1 (Bosch);  Laser Temp-Gun 2268-20 

(Milwaukee); PT100 (LSI-Lastem); S1-121 / S1-111 (Apogee); Si-111 
(Campbell); SKTS 200 U−110K (Umweltanalytische); Testo 830-T1 / 845 

(Testo); Thermo Shot F30 (InfRec); Thermo Tracer TH7800 (NEC); Type T 

copper–constantan (Reotemp); T-type shielded thermocouple (Omega); 

VarioCam HR inspect 700 (InfraTec). 

Sky view factor Hemispherical camera Nikon Coolpix E4500 camera with FC-E8 fisheye converter; 

Wind speed and 

direction 

Anemometers, 2-D  and 3-D 

ultrasonic anemometers 

014A (Campbell); 05103 (Young); 7911 (Davis); 81000 (Young); A100L2 / 

A100K-Pulse (Vector); CSAT3 (Campbell);  LCA501, (TSI); MAX 40+ 
(Ekopower); Gill WindSonic 2D (Gill); HOBO U30-NRC / H21-001 stations 

(Onset); HOBO S-WCA-M003 (Onset); iMETOS-ag station (Pessl); SDL310 

(Extech); W200 Porton Windvane (Vector);  WatchDog 2550 station 

(Spectrum) 
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3.8.2 Remote sensing 

Remote sensing refers to the acquisition of information of an object or surface from a 

distance using sensors that capture electromagnetic and thermal properties emitted by them 

(Brown & Harder, 2016). There are two types of sensors: on one hand, passive sensors 

such as thermal and spectral imagers capture the light and radiation reflected and emitted 

by a surface across the electromagnetic spectrum [Figure 3.6]. On the other hand, active 

sensors such as LiDAR (Light detection and ranging), radar or sonar technologies, firstly 

emits energy and then senses the radiation reflected back from the earth’s surface or targets 

(Brown & Harder, 2016). 

 

Figure 3.6 The electromagnetic spectrum and differentiation of bands for spectral analyses. 

Remotely sensed imagery is based on the spectral reflectance of a surface which in turn 

also depends on surface roughness. Since this reflected radiation is unique for every surface 

in a specific wavelength, with sufficiently high resolution, particular spectral signatures 

can be distinguished for each material (Brown & Harder, 2016). However, this reflected 

radiation must travel through the atmosphere before being captured by the sensor, so it is 



 

90  |  Methods, data sources, data acquisition and data processing 

absorbed and scattered by gases and aerosols in the air. Consequently, there are required 

atmospheric and radiometric corrections based on the flight altitude, humidity, and other 

meteorological factors prior to the analysis of images. In addition, to generate accurately 

georeferenced images it is necessary to apply corrections for optical distortions originated 

from the sensor system, commonly referred as orthorectification. These corrections require 

an accurate description of the sensor, the angle of the sensor, the topographic conditions of 

the surveyed area, the flight path and the orientation of the image (Brown & Harder, 2016).  

In urban mapping and climatology, remote sensing has been extensively applied to analyse 

the relationships between LST and surface-related characteristics –particularly vegetation 

coverage– of multiple sites or whole cities and regions (n=57, 34.5%). Compared to on-

site observations, remotely sensed methods offer wider spatial coverage as enable a 

synchronised capture of conditions over larger areas or across multiple locations (Harris 

& Coutts, 2011; Weng, 2009). However, remote sensing provides single snapshots of urban 

surfaces that may not be sufficient for time series analyses, might not be captured at 

desirable times, and their quality could be affected by poor weather conditions.  

Remotely sensed imagery is typically acquired from two main sources. On one hand, 

satellites (spaceborne remote sensing) continuously orbit the planet and capture images 

with medium and low resolutions (pixel size) that generally vary between dozens of metres 

and several kilometres. In recent years, the advent of high-resolution satellite imagery (i.e. 

QuickBird, RapidEye, WorldView-2 and IKONOS) has facilitated the acquisition of highly 

detailed and accurate images with resolutions of a couple of metres (2-10m).  

On the other hand, airborne remote sensing is increasingly utilised to capture high-

resolution images (0.5-2m) with sensors mounted in aircrafts (i.e. fixed wing, helicopters) 

that can be deployed at desirable times. More recently, the development of unmanned aerial 

vehicles (UAVs) and smaller spectral imagers makes possible to obtain images at very high 

spatial resolutions in a flexible, straightforward and less costly way (Gaitani et al., 2016; 

Gaitani et al., 2017). 

Accordingly, the selection of remotely sensed imagery depends on acquisition costs, scale, 

extent of analysis, amount of detail (spatial and temporal resolutions), and type of 

information (number of bands) required. Most remotely sensed studies are conducted at 

meso-scale employing medium (n=43) and low (n=13) spatial resolution imagery acquired 

from Landsat 5TM (n=18), Landsat 7ETM+ (n=12), ASTER (n=10) and MODIS (n=11) 

satellites as this is freely accessible. However, coarse image resolutions have proved 

inadequate to conduct accurate and reliable analyses of the microclimatic impacts of 
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vegetation on urban precincts, street canyons and individual buildings (Gaitani et al., 2016; 

Weng, 2009). 

Contrastingly, the use of high-resolution satellite imagery (IKONOS and QuickBird) 

(n=13) and very high resolution airborne-based imagery (n=11) offers high levels of 

flexibility and detail; unfortunately, this is less common due to the complex logistics and 

prohibitive costs for most users. A summary of the main remote sensing data sources is 

presented in Table 3.5. 

3.8.2.1  Thermal imagery 

Remotely sensed thermal infrared (TIR) images retrieved from satellites and aircrafts are 

largely employed to estimate surface radiant temperatures. An accurate retrieval of LST 

from TIR data requires corrections for spectral emissivity as sensors do not directly 

measure the temperature of surfaces, but instead the radiances emitted in the long-wave 

spectrum. However, it should be noted that emissivity correction methods may differ 

between satellite and airborne sensors (Coutts et al., 2016; Harris & Coutts, 2011; Weng, 

2009).  

Alternatively, spectral unmixing techniques (i.e. MESMA) can be implemented to estimate 

the total emissivity of a pixel by assigning emissivity values to each cover type using 

spectral libraries and estimating their weighting average (N. Chrysoulakis, personal 

communication, 2017; Kotthaus et al., 2014). However, this technique requires advanced 

skills and knowledge, as well as hyperspectral data that might not be available in some 

cases.  

The Normalised Emissivity Method (NEM) initially described by Gillespie (1985) and 

validated by Realmuto (1990) assumes a constant emissivity value in all N channels for a 

specific pixel to calculate temperatures (Tsi) from the measured radiances, provided that the 

atmospheric effects are corrected. The maximum of those N temperature is considered as 

the LST, as per the following equation: 

LST =  𝑇𝑁𝐸𝑀 = max(𝑇𝑠𝑖)   with  𝑇𝑠𝑖 =  𝐵−1   (
𝑅𝑔𝑖 −(1− 𝜀𝑐𝑠𝑡) 𝑅𝑎𝑡𝑖 ↓ 

𝜀𝑐𝑠𝑡
)      [Eq. 3.1] 

 

where 𝐵−1 is the inverse function of Planck’s law, 𝜀𝑐𝑠𝑡 corresponds to the assumed channel 

constant emissivity for a given pixel, 𝑅𝑔𝑖  represents the radiance observed at ground level 

in channel i, and 𝑅𝑎𝑡𝑖 ↓ is the downward atmospheric thermal radiance (Gillespie, 1985).  
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It has been demonstrated that the NEM can be also applied to generate reliable LST 

estimations for a wide range of materials in a rapid and easily replicable way, therefore, it 

can be implemented by users with different skill levels (Gillespie, 2015). Moreover, the 

NEM approach has been tested using high-resolution radiance spectra collected by hyper- 

and multi-spectral imagers with satisfactory results (Gillespie, 2015; Mushkin et al., 2005; 

Sobrino et al., 2008; Tang & Li, 2014).  

 

Table 3.5 List of main remote sensing data sources utilised by studies. 

Data product  Imagery Acquisition Spatial resolution Temporal resolution 

Low resolution satellite imagery (>100 m) 

AVHRR/NOAA VIS, NIR, SWIR, TIR Free 1100m Twice daily 

MODIS VIS, NIR, SWIR, TIR Free 250, 500, 1000m Daily at 10h30  

& 13h30 (local time) 

FY-2C  

(FengYun-2) 

VIS, TIR, WV Free 1250, 1440, 5000, 

5760m 

Every 30 minutes 

Medium resolution satellite imagery (10-100 m) 

Landsat 5TM VIS, NIR, SWIR, TIR Free 30, 120m Every 16 days at 9h45 

(local time) 

Landsat 7ETM+ VIS, NIR, SWIR, TIR Free 15, 30, 60m Every 16 days at 10h00 

(local time) 

Landsat 8 VIS, NIR, SWIR, TIR, 

PAN 

Free 15, 30, 60, 100 m Every 16 days at 10h00 

(local time) 

SPOT VIS, NIR, SWIR, PAN Purchased 2.5, 10, 20m Every 1-3 days 

ASTER VIS, NIR, SWIR, TIR Free & 

purchased 

15, 30, 90m Daily at 10h30 

(local time) 

Sentinel-2 VIS, NIR, SWIR, WV Free 10, 20, 60 m Every 5 days 

High resolution satellite imagery (<10 m) 

IKONOS VIS, NIR, PAN Purchased 0.8, 4m Every 3 days 

WorldView-2 NIR, TIR, PAN Purchased 0.5, 1.8, 2.4 m Every 1-2 days 

QuickBird VIS, NIR, PAN Purchased 0.6, 2.4, 2.6 m Every 2-6 days at 10h30 

(local time) & on demand 

Airborne imagery (resolutions depending on sensors) 

MASTER VIS, NIR, SWIR, TIR Purchased 7, 50 m  On demand 

AVIRIS VIS, NIR, SWIR Purchased 4, 20 m On demand 

ATLAS VIS, NIR, SWIR, TIR Purchased 2.5m On demand 

TASI TIR Purchased 0.6, 1.25 m On demand 

SASI SWIR Purchased 1.25 m On demand 

DAMS TIR, NIR, UV Purchased 5 m On demand 

DIMAP VIS, NIR, SWIR, TIR, 

LiDAR 

Purchased 1, 2m On demand 

Deadalus 1268 

ATM 

VIS, NIR, SWIR, TIR Purchased 2.5 – 30m  On demand 

HySpex VIS, NIR Purchased 0.5, <1m On demand 

HyVista (HyMap) VIS, NIR, SWIR Purchased 3 – 10m On demand 

Infratec TIR Purchased 0.7 m On demand 

FLIR TIR Purchased 0.5 m On demand 

Other airborne-based data 

LiDAR Point clouds, intensity Purchased N/A On demand 

NIR Near infrared, PAN Panchromatic, SWIR Short-wave infrared, TIR Thermal infrared, UV Ultraviolet, VIS Visible light, 

WV Water vapor. * Some studies used more than one data product at a time, ** Percentage calculate out of 57 remotely-

sensed studies 
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3.8.2.2  Spectral imagery 

Spectral sensors can detect electromagnetic radiation reflected and emitted by surfaces in 

different wavelength ranges or bands across the visible (VIS), near infrared (NIR), 

shortwave infrared (SWIR) and thermal infrared (TIR) spectrum. One of the most common 

imagery types collected by remote sensing is the multi-spectral, which is limited to a 

portion of the whole spectrum and is usually stored in a small number (4-8) of broad bands. 

Conversely,  hyper-spectral sensors provide a high spectral resolution since the information 

is captured in hundreds of narrow bands that enable the identification of detailed spectral 

signatures of specific materials (Brown & Harder, 2016) [Figure 3.7].  

The use of spectral data is increasingly crucial for urban climatologists as it can facilitate 

the identification and quantification of surface-derived indices (i.e. NDVI, LAI), land-use 

land-cover (LULC) classes, LCZs, surface fractions, and surface properties (albedo, 

emissivity, reflectance) (Irger, 2014; Weng et al., 2004; Weng, 2012). 

3.8.2.3  Vegetation abundance and coverage: the NDVI 

Vegetation abundance and coverage, commonly described by indices such as NDVI and 

Enhanced Vegetation Index (EVI), have been extensively employed in regression analyses 

to predict LST (Carlson et al., 1994; Weng et al., 2004). The NDVI is the most common 

index used to assess plant activity and differentiate general land covers that is estimated 

from spectral data using the following equation: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                                [Eq. 3.2] 

where RED corresponds to the visible red reflectance band (600-700 nm), and NIR is the 

near infrared reflectance band (750-1300 nm).  NDVI values range between 0 and 1, where 

lower values represent absence of vegetation and higher values correspond to vegetated 

areas with high chlorophyll density (Gandhi et al., 2015) [Figure 3.6].  

A simple threshold NDVI classification analysis can be applied to distinguish different land 

covers and estimate surface fractions. Typically, negative values indicate the presence of 

water; values around zero (≤0.1) are rock, sand or snow; small values (0.1–0.2) represent 

impervious surfaces (i.e. soils and pavements); moderate values between 0.2 and 0.5 

correspond to sparse vegetation usually grasses and shrubs; and high values (>0.60) 

represent dense vegetation canopy (Badamasi et al., 2010; Bartesaghi Koc, Osmond, 

Peters, & Irger, 2017b; Black & Stephen, 2014; Cheng et al., 2008; Gaitani et al., 2016; 

Gandhi et al., 2015; Irger, 2014).  
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Figure 3.7 Differences between multispectral and hyperspectral imagery. (Redrawn based on Irger, 2014) 

 

Given the differences in radiative temperature between ground surfaces and the vegetation 

canopy, most remote sensing research has examined the thermal variability of vegetation 

cover using simple linear correlations. For example, the thermal-vegetation index combines 

NDVI and LST as a ratio which significantly correlates with surface evapotranspiration 

and soil moisture (Weng et al., 2004; Weng, 2009). Sun et al. (2015) improved a 

temperature vegetation index by estimating day-time and night-time air temperatures from 

MODIS-LST and EVI using a binary linear regression equation. This study identifies 

evapotranspiration as a crucial factor behind the differences between CLUHI and SUHI 

that should receive more attention from remote sensing studies (Sun et al., 2015). 

Weng (2009) has argued that NDVI-LST models require further calibration since NDVI 

does not provide areal estimations, but instead it represents the photosynthetic activity or 

vegetation health. Contrastingly, remotely sensed studies employing LAI and LAD are 

more scarce (Peters & McFadden, 2010; Shen, M. et al., 2015; Skelhorn et al., 2014; Xiao, 

2014). This happens because LAI is typically employed as key input in ENVI-met models 

by most studies on HTC. Since the use of LAI/LAD has not been fully explored in remote 

sensing research, more research is required to fully understand the relationships between 

LAI, NDVI and surface temperature reductions because these have proved to be non-linear 

(Weng, 2009).  

Despite the wide applications of the NDVI, its use has raised concerns as it is sensitive to 

season, vegetation phenology, irrigation levels, and climatic conditions prior and during 
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data collection (i.e. different values after a heatwave or severe drought than after heavy 

rainfall). A better understanding of the role of these factors on NDVI values would be 

useful for a more precise estimation of vegetation fractions and for interpreting the seasonal 

variability of UHIs. 

Evapotranspiration is a key parameter influencing air and surface temperatures that is 

strongly correlated to NDVI (Nouri, Anderson et al., 2013). The estimation of 

evapotranspiration is commonly estimated in-situ using lysimeters, sap flow meters and 

leaf transpiration sensors [Table 3.4]; and primarily conducted for agricultural purposes, 

and in rural areas. Hence, a promising direction for future research is the estimation of 

evapotranspiration rates in heterogeneous urban contexts at local and microscales, and the 

study of its role on CLUHI and SUHI mitigation (Nouri et al., 2015). The reviews presented 

by Nouri et al. (2016) and Nouri, Beecham et al. (2013) evaluate general techniques and 

remote sensing approaches to predict evapotranspiration from complex vegetated surfaces 

that could be incorporated by climate scientists.  

3.8.2.4  Surface fractions: LULC and LCZs 

LULC types originally proposed by Anderson et al. (1976) can be also retrieved from 

spectral imagery and have been extensively used to analyse the influence of geometrical 

and physical properties of urban surfaces and built forms on the spatial patterns of LST. 

Nonetheless, LULC have proved inadequate to analyse certain ecological processes 

because knowing the purpose (land use) of an area does not necessarily explains its climatic 

functioning (Cadenasso et al., 2013; Zhou, Cadenasso et al., 2014).  

Furthermore, LULC types and typical surface fractions provide areal estimations; thus, they 

are limited in describing the characteristically fine-scaled, three-dimensional and highly 

heterogeneous elements of urban landscapes. Since a clear differentiation between biotic 

and abiotic elements and their spatial distribution is increasingly difficult at coarse scales, 

LULC may be insufficient to analyse the spatial interrelationships among elements 

(Bartesaghi Koc, Osmond, & Peters, 2017; Cadenasso et al., 2007; Zhou, Cadenasso et al., 

2014). A further discussion on the applications and limitations of LULC is provided in 

Chapter 4. 

Since LCZs provide estimates of surface fraction, some studies employed them to identify 

and cluster urban areas with similar thermal conditions for the comparison of vegetation’s 

cooling benefits in different contexts (Milošević et al., 2017; Müller et al., 2014; Rasul et 

al., 2015; Steeneveld et al., 2011; Tan et al., 2017). Although this scheme is specifically 
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developed for UHI research (as explained in Chapter 2), it can be implemented to 

standardise observations and analyses (Colunga et al., 2015; Emmanuel & Loconsole, 

2015). Nonetheless, the use of LCZs implies several shortcomings: firstly, LCZs lack 

sufficient detail for microclimatic analysis as they only include general surface/roughness 

descriptors for vegetation; and secondly, the LCZs scheme requires further calibrations for 

local contextualisation that would enrich the approach overall. 

3.8.2.5  Spatial configuration: FRAGSTATS metrics 

Configuration of green infrastructure is an important aspect considered by studies 

evaluating the spatial patterns of UHIs, UCIs, and PCIs as it is necessary to understand how 

the cooling efficiency, intensity and magnitude of greenspaces are influenced by geometry, 

placement or composition (spacing, clumpiness and dispersion), and the type and 

combination of plant species and other surfaces. 

Remote sensing researchers have employed spatial autocorrelation indices such as Local 

Moran’s I (Anselin, 1995) and landscape pattern metrics (McGarigal & Marks, 1995) to 

analyse the relationship between greenspaces characteristics and the spatio-temporal 

variability of UCIs, PCIs and SUHIs at city-wide level (Cao et al., 2010; Chen et al., 2014; 

Fan et al., 2015; Kong, Yin, James et al., 2014; Li et al., 2013; Maimaitiyiming et al., 2014; 

Zhou et al., 2011).  

FRAGSTATS (McGarigal & Marks, 1995) is a computer software program that has been 

designed to compute a large variety of landscape metrics that has attracted the most 

attention of researchers (McGarigal et al., 2002; McGarigal, 2015). FRAGSTATS metrics 

simply quantify the spatial heterogeneity of a landscape; therefore, they have proved useful 

to assess the composition and configuration of greenspaces that can affect ecological 

processes such as climate regulation (McGarigal, 2015). 

FRAGSTATS normally requires raster images of green patches retrieved from spectral data 

with a spatial grain or grid (pixel) resolution larger than 0.001m to compute several 

statistics at three distinct levels, namely patch, class and landscape metrics. Since some 

metrics quantify landscape composition and others landscape configuration, it is important 

to understand for each metric which specific aspect of landscape pattern is being analysed. 

Also, some metrics may be partially or completely redundant as they quantify a similar 

aspect at various levels. Common FRAGSTATS metrics applied by studies are listed in 

Table 3.3. 
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Despite the proved capabilities of FRAGSTATS metrics, studies have mostly applied them 

at a coarse level to understand the effect of greenspace distribution, overlooking the spatial 

heterogeneity inside greenspaces. Future studies could equally draw upon the same 

approach and apply landscape metrics to classify and analyse vegetation features (i.e. tree 

patches) at finer scales.  

3.8.2.6  LiDAR data 

Current research is not only constrained by the type, quality and resolution of images, but 

also it is limited in providing sufficient detail of vertical surfaces. Accordingly, the 

integration of a three-dimensional approach with current methodologies is crucial to 

examine the interaction of horizontal and vertical surfaces and for a complete study of the 

temperature ranges and spatio-temporal dynamics of urban temperatures, in which cases 

time-series analyses may be also required (Voogt & Oke, 1997).  

Airborne LiDAR has proved useful to provide detailed and accurate three-dimensional 

information on terrains, building heights and vegetation. Notwithstanding, few studies 

(n=5) utilised LiDAR to generate digital surface models (DSMs) which represents the 

height elevations of all surfaces and features above the bare earth (trees, buildings and 

ground), and DEMs (also referred as digital terrain models – DTMs) which only shows the 

elevation of the ground surface (Brown & Harder, 2016). LiDAR data has been also 

implemented to generate vector-based Triangular irregular network (TIN), to estimate SVF 

and aspect ratio, and to identify different types of vegetation covers (i.e. grasses, shrubs, 

tress) by creating raster images (Coutts et al., 2016; Emmanuel & Loconsole, 2015; 

Konarska, Holmer et al., 2015; Lin et al., 2016; Su et al., 2014).  

The continuous development of LiDAR technology has enabled the expansion of its 

application to other disciplines, such as environmental sciences, archaeology and 

anthropology; advances that can be equally useful for climatic research. For instance, 

Kokalj et al. (2011) and Zakšek et al. (2011) proposed a new method of relief mapping 

which enables a rapid generation of SVF rasters based on remotely sensed DSM images 

(Kokalj et al., 2017; Zakšek et al., 2011). As a result, a ‘SVF based relief visualisation 

toolbox (RTV)’ has been successfully developed and is publicly available online (Institute 

of Anthropological and Spatial Studies, 2018). 

This open source and standalone software computes SVF based on diffuse illumination 

using an imaginary light source that illuminates the relief surface from a celestial 

hemisphere; so SVF values are calculated using different search radius of the horizon in a 
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specific number of directions (i.e. 8, 16, 32) for each pixel [Figure 3.8]. Hence, the 

resolution of the resulting GeoTIFF is the same as that of the DSM raster image provided 

for calculations (Kokalj et al., 2011; Zakšek et al., 2011).  

 

Figure 3.8 Estimation of SVF from a DSM using RVT software: (a) value is determined as a proportion of 

visible sky (Ω) above certain point (pixel), and (b) the algorithm computes the horizon angle (y) for 

'n' directions (eight in the image) in a specific search radius (R). 

3.8.3 Experimental methods 

Experimental methods are typically adopted by studies focusing on the thermal 

performance of greenery on buildings due to logistic limitations for its application across 

large areas. Experimental studies (n=33, 20.0%) involve the manipulation of green features 

by investigators, enabling measurements under relatively controlled conditions (Bowler et 

al., 2010b).  

The vast majority of experiments used on-site observations to analyse the microscale 

effects resulting from the variation of foliage density and surface properties of green roofs 

and vertical greenery. The effect of tree shade and grass on thermal comfort is also 

investigated through experimental sites, though these studies are very scarce (Shashua-Bar 

et al., 2011; Snir et al., 2016). Furthermore, measurements collected in experimental sites 

serve to validate predictive models and to parameterise computer simulations [Figure 3.4]. 

The thermal performance of green roofs is usually compared against that of conventional 

and cool roofs. Studies analyse the simple correlations between microclimatic parameters 

(and indoor thermal comfort) and the properties of substrates (albedo, emissivity, 
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temperature, moisture, depth) and plant composition (foliage density, species) (Di 

Giuseppe & D'Orazio, 2014; Jim, 2012, 2015a; Libelle et al., 2011; Lin et al., 2013; Olivieri 

et al., 2013; Ouldboukhitine et al., 2011; Razzaghmanesh et al., 2016).  

The thermal profiles of living walls and green façades are contrasted with those of bare 

concrete walls (control), the immediate surroundings and several simulated scenarios 

(Hunter et al., 2014). Besides the variation of foliage density and species, studies also 

quantify the influence of construction materials, training systems, climate, behind-façade 

air flow and orientation on the cooling effectiveness of vertical greenery systems (Cameron 

et al., 2014; Chen et al., 2013; Cheng et al., 2010; Djedjig et al., 2015; Kontoleon & 

Eumorfopoulou, 2010; Koyama et al., 2013; Mazzali et al., 2013; Olivieri et al., 2014; 

Pérez et al., 2011a; Perini et al., 2011; Susorova et al., 2014; Tan et al., 2014; Wong et al., 

2010).  

Most of the abovementioned methods emphasise the shading potential of green 

infrastructure, but fewer concentrate on the evaporative cooling capacities of green roofs 

(Coutts et al., 2013; Schweitzer & Erell, 2014; Tan, C. L. et al., 2015; Zinzi & Agnoli, 

2012), vertical greenery (Davis et al., 2015; Davis & Hirmer, 2015; Hoelscher et al., 2016; 

Koyama et al., 2013; Koyama et al., 2015) and tree canopy or green open spaces  (Gillner 

et al., 2015; Gromke et al., 2015; Konarska, Uddling et al., 2015; Rahman et al., 2017; Ryu 

et al., 2015; Shashua-Bar et al., 2011; Wang, Z.-H. et al., 2016).  

With some exceptions, experiments lack adequate replication, are conducted during short 

timeframes or repeated under unidentical conditions. Installation of real-time sensors 

integrated to facades and roofs of new and retrofitted buildings and urban precincts would 

facilitate future experimental research of extensive areas.   

3.8.4 Numerical modelling and simulation 

Compared to empirical methods, numerical modelling, simulations and statistical analysis 

have been extensively used by most studies (n=117, 70.9%) to predict thermal conditions 

and assess different greening scenarios. In most cases, modelling studies are validated with 

observational data collected using on-site observations (n=73, 44.2%) and remote sensing 

(n=45, 27.3%). In some other cases, simulations are implemented individually (n=12, 

7.3%) or as part of experimental studies (n=11, 6.7%). Only a limited number of articles 

(n=13, 7.9%) combined the three methods, where data from on-site measurements and 

experiments were used to cross-check remote sensing estimations and calibrate simulations 
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[Figure 3.5]. Occasionally, model input and output parameters are not clearly distinguished 

or reported, hindering replication. 

Meso-scale atmospheric models such as the Weather Research and Forecasting System 

(WRF) (Georgescu et al., 2011; Shen, M. et al., 2015) and the coupled WRF-NOAH Land 

surface model (Zhou & Shepherd, 2010) enable the prediction of climatic impacts of green 

infrastructure on extensive regions and whole cities. Unlike previous models, the urban 

climate model MUKLIMO_3 provides a more sophisticated boundary-layer turbulence 

scheme which is independent of spatial scale (Žuvela-Aloise et al., 2016). The impact of 

greenspaces on the daytime atmospheric boundary layer conditions has been simulated 

using a coupled large-eddy simulation-land surface model (Huang et al., 2011). Also 

employed at city level is the vegetation and atmosphere model HIRVAC-2D (High 

Resolution Vegetation Atmosphere Coupler) (Lehmann et al., 2014). 

At the microscale, urban canopy models (UCM) such as the single-layer Princeton UCM 

enable the parameterisation of vegetation-related variables and built forms to study the 

physical processes and heat exchange within the urban canopy (Krayenhoff et al., 2014; 

Ryu et al., 2015). Another approach includes coupling UCM to the WRF to model the 

potential large-scale cooling effects of green features on street canyons and buildings 

through single- and multiple-layer parameterisations (Li & Norford, 2016; Smith & 

Roebber, 2011; Wang, Z.-H. et al., 2016). However, limitations of UCMs include the 

advanced mathematical knowledge required for their implementation and their limited 

application for the study of extensive or large areas. 

Several studies have quantified the effects of trees and green open spaces on HTC using 

several indices and models: the Physiological Equivalent Temperature (PET) 

biometeorological index, the Temperature of Equivalent Perception (TEP) thermal index, 

the urban microclimate model Green-CTTC (Shashua-Bar et al., 2012; Shashua-Bar, 

Potchter et al., 2010; Shashua-Bar, Tsiros et al., 2010), the Outdoor Standard Effective 

Temperature (OUT-SET*) (Yahia & Johansson, 2014) , the COMFA method (Correa et 

al., 2012; Stocco et al., 2015), the Mediterranean Outdoor Comfort Index (MOCI) (Salata 

et al., 2017), the index of thermal stress (ITS) (Snir et al., 2016), the Universal Thermal 

Climate Index (UTCI) (Milošević et al., 2017), the Simulation Platform for Outdoor 

Thermal Environment (SPOTE) (Hong & Lin, 2015), and the temperature-humidity Index 

(THI) and relative strain index (RSI) (Morakinyo et al., 2016) 

Computational fluid dynamic (CFD) models have been developed to simulate the surface-

plant-air interactions based on either monitored data or synthetic microclimatic parameters. 
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ENVI-met (Bruse, 2011) is a three-dimensional small-scale CFD model extensively used 

to analyse the thermal comfort regimes of street canyons and greenspaces at fine spatial 

resolutions (to 0.5m x 0.5m) and short time frames (every 10 seconds) (Bruse, 2011; Ng et 

al., 2012).  

In recent years, ENVI-met has become increasingly popular because it enables scenario 

testing of different urban design strategies in a variety of contexts; something that is not 

possible in the real world (Emmanuel & Loconsole, 2015). Nonetheless, ENVI-met poses 

some limitations as (a) it is relatively limited in calculating the effect of wind speed 

changes, especially at boundary level, and (b) anthropogenic heat is excluded in canyon-

level calculations (Morakinyo & Lam, 2016; Yahia & Johansson, 2014).  

Other CFD models utilised at building scale include PHOENICS (Fintikakis et al., 2011; 

Gaitani et al., 2011), ANSYS FLUENT v.12.4.1 (Gromke et al., 2015; Vidrih & Medved, 

2013), the plant-covered wall model, building envelope model, and foliage canopy model 

(Kontoleon & Eumorfopoulou, 2010). Furthermore, the transient building simulation 

program (TRNSYS) has recently integrated a heat and moisture transfer model to assess 

the performance and impacts of green envelopes on buildings’ indoor thermal quality 

(Djedjig et al., 2015). 

Simple- and multiple-linear regressions are the most common statistical methods used for 

the analysis of the relationships between climatological and vegetation-related variables. 

One- and two-way analysis of variance (ANOVA), t-Tests, and other non-parametric 

methods were carried out to identify significant differences between variables, 

experiments, locations, samples, seasonal heat patterns and slopes (means) of regression 

models (Alavipanah et al., 2015; Armson et al., 2012; Cameron et al., 2014; Gillner et al., 

2015; Peters & McFadden, 2010, 2010; Rahman et al., 2017, 2017; Scheitlin & Dixon, 

2010; Zhang et al., 2013).  

A series of spatial autocorrelation models can be applied to calculate the extent and 

magnitude of cooling effects. For instance, Declet-Barreto et al. (2013) employed the local 

indicator of spatial autocorrelation (LISA) method which analyses the degree of significant 

spatial clustering of variables (Anselin, 2005). Publications focusing on spatial 

configuration performed spatial auto-regression estimations, which include the spatial error 

model (SEM) that analyses the spatial dependency within error terms across neighbouring 

locations, and the spatial lag model (LAG) that quantifies the spatial dependency of the 

same variable in different locations (Anselin, 2005; Connors et al., 2013; Irger, 2014; Li et 
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al., 2012). Further discussion on these two spatial regression models is presented in Chapter 

7 for the analysis of results [Figure 7.22]. 

3.9 Investigation period 

The investigation period includes the season, time of the day and duration of measurements. 

The vast majority of studies (n=137, 83.0%) are typically conducted in summer when UHIs 

and heatwaves are more frequent and stronger. Investigations during autumn (n=41, 

24.8%), spring (n=34, 20.6%) and winter (n=32, 19.4%) are comparably fewer, while only 

23 studies (13.9%) were conducted across all seasons. Since SUHI is commonly greatest 

during the day, 62 studies (37.6%) were performed during late morning and early afternoon 

(12m–4pm); and only three investigations (1.8%) were exclusively carried out during the 

evening. Notwithstanding, half the literature (n=86, 52.1%) measured diurnal and nocturnal 

conditions simultaneously to analyse the temperature fluctuations and evolution of UHIs 

throughout the day.  

The duration of measurements varies among studies and depends on the type of research 

design (longitudinal or cross-sectional). Half the literature was longitudinal (n=83), mainly 

comprised by observational (on-site) and experimental studies employing data (mostly air 

temperature and humidity) collected by fixed meteorological stations over consecutive 

days, months or years. The other half of the investigations reported cross-sectional research 

(n=82) that mainly corresponds to remote sensing studies that monitored surface 

temperatures at specific times of the day and year since satellite- and airborne-based data 

are not continuously available. Exceptionally, some satellite-based research had access to 

time-series imagery that enabled the study of thermal variations over longer periods.  

In many studies the spatial and temporal mismatch between ground-based and remotely-

sensed measurements is very common as datasets are collected for different purposes and 

at separate times, so air-surface correlations cannot be easily established. It was also found 

that compared to air temperatures, remotely-sensed estimations tend to be overestimated 

during the day and underestimated at night. Therefore, simultaneous collection of ground-

based and remotely sensed data is strongly recommended for the validation of data and a 

better understanding of the relationship between air and surface temperatures.   

Moreover, longitudinal studies should be strengthened as cooling effects vary between day 

and night and among seasons as a consequence of vegetation phenology, irrigation levels 

and the variation of evapotranspiration rates (Cheng et al., 2014; Feyisa et al., 2014; Li et 

al., 2013; Zhao-wu et al., 2015). In fact, little work has been done to define adequate 
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timeframes for reassessing sites and to compare the evidence before and after green 

infrastructure interventions. 

In response to previous shortcomings and needs, the advent of UAV technology makes 

possible to obtain high-resolution and multi-temporal 2D and 3D imagery in a flexible and 

more affordable way (Gaitani et al., 2017) . Despite UAVs representing a promising 

opportunity for a more precise, accurate and continuous monitoring of green infrastructure 

implementations, many restrictions in terms of privacy and safety act as barriers for their 

widespread use in many countries, particularly in urban areas. 

3.10 Summary 

The aim of this chapter is to systematically review and analyse the most recent and 

representative peer-reviewed publications investigating the cooling effects of green 

infrastructure. This review is intended to identify critical knowledge gaps to be 

incorporated in the research design of this thesis, and to achieve clarity to ensure an 

integrated understanding and interpretation of findings. In this sense, there have been 

identified five major gaps in the literature, those that are tackled in the present research. 

First, climate scientists should pay attention to developing countries with limited resources 

and developed countries from the southern hemisphere as we know little about the cooling 

effects of green infrastructure on these regions. Particularly, this is the case of Australia, a 

country where green infrastructure strategies are urgently needed, as it is experiencing 

significant urbanisation and population growth and is severely affected by climate change-

related events such as heatwaves, droughts, bushfires and flooding. Furthermore, 

forthcoming research should also concentrate on defining specific greening 

recommendations for tropical, semi-arid and desert climates since vegetation, irrigation and 

cooling strategies are substantially different to those of temperate climates. This gap is 

addressed in Chapters 6 and 7. 

Second, improvements in collecting and reporting temperature data on different green 

infrastructure typologies and sites are urgently needed. Further research should address this 

issue by developing standardised protocols and climate-related classification systems for 

vegetation to facilitate inter-site and inter-typology comparisons at multiple spatial scales. 

This classification approach should facilitate the three-dimensional analysis of urban areas 

by incorporating the effect of vertical surfaces and volumetric indicators in current 

methodologies. The development of a dedicated scheme for vegetation combining 

approaches such as the LULC (Anderson et al., 1976), the LCZ (Stewart & Oke, 2012)  and 
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the UVST (Lehmann et al., 2014) could help respond to this gap. Thus, a classification 

framework to respond to this need is proposed in Chapter 4. 

Third, most of the literature overlooked the dynamic spatial and temporal heterogeneity, 

the connectivity, and the multi-functionality principles that govern green infrastructure (as 

defined in Chapter 2). Accordingly, future research should be strengthened by considering 

the temporal changes of vegetation (i.e. foliage type, phenology, maturity, etc.). It is also 

recommended a more holistic or integrative approach to examine and understand the 

interplay and cumulative effects of natural, semi-natural, and artificial surfaces and 

elements of the built environment.  

Moreover, future research should include functional, structural and spatial configuration 

parameters for a comprehensive thermal analysis of urban vegetation and water features. 

The use of landscape metrics has been more common in large scale analyses; hence, future 

studies may explore the possibility of downscaling the use of FRAGSTATS metrics to 

analyse the fine-scaled composition and distribution inside greenspaces and street canyons. 

The aspects related to the third gap are considered in the formulation of the green 

infrastructure typology (GIT) presented in Chapter 4 and in the research methodology and 

indicators defined in Chapter 5. 

Fourth, vegetation abundance, plant structure and shade from trees are aspects that 

attracted the most attention from researchers; however, the role of water in the provision 

of optimal cooling has not been fully examined (Coutts et al., 2012; Norton et al., 2013). 

Accordingly, the study of the influence of irrigation and evapotranspiration rates in air and 

surface temperature reductions is an interesting area for future research. These 

considerations are also incorporated in the formulation of the green infrastructure typology 

(GIT) presented in Chapter 4 and in the definition of the research variables listed in Chapter 

5. 

Furthermore, minimum irrigation and humidity requirements could be a promising research 

in the future, as not all vegetated surfaces and plant species are capable of tolerating severe 

temperatures or providing the same amount of evaporative cooling (Hunter et al., 2012; 

Norton et al., 2015). The application of remotely sensed techniques for the estimation of 

evapotranspiration could help reducing the amount of work, time and costs compared to 

traditional in-situ observations. Advances in the most appropriate selection and spatial 

distribution of plant species are also crucial to ensure the tolerance of communities to 

extreme heat events and to maintain or improve ideal climate conditions.  
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Fifth, a comprehensive methodological framework is required for a more precise and 

accurate analysis of the thermal profiles of green infrastructure at multiple scales and over 

large urban areas. Particularly, little is known about the most optimal types, abundance and 

distribution of green infrastructure necessary to maximise the mitigation of heat at 

neighbourhood and street canyon levels. This assessment framework is presented in 

Chapter 5, tested in Chapter 6 and results analysed in Chapter 7.  

Key implementations that could be additionally used to tackle this gap include a 

simultaneous deployment of drone-based technology with in-situ measurements (fixed 

stations and mobile transects). However, these need to be matched in space and time and 

should be accompanied by further statistical analysis. Furthermore, UAVs and real-time 

sensors installed in buildings and across smart precincts/cities are a fantastic opportunity 

to collect the quantity and quality of data necessary for permanent monitoring of several 

types of UHIs, and for analysing the effectiveness of green infrastructure interventions at 

different stages. These suggestions are not implemented in this research due to time and 

resource constraints.  

Finally, despite all the efforts and increasing interest of scientists and governments to 

mitigate the negative effects of global warming and already increased urban temperatures, 

future research should focus on translating the existing evidence into an effective set of 

practical rules and design guidelines for policy makers, industry partners and practitioners 

in general. This is addressed in Chapters 8 and 9.  
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Chapter 4  

Developing a green 

infrastructure typology for 

climate studies 

4.1 Introduction 

As described in previous chapters, the definition, identification, characterisation and 

classification of green infrastructure is necessary for the performance-based assessment of 

green infrastructure across multiple ESS, particularly the climate regulation, and for 

identifying and delivering more effective planning initiatives and strategies (Jacobs et al., 

2014; Naumann et al., 2011).  

The development of typologies is considered a powerful planning tool and a cross-

disciplinary exercise for the holistic comprehension of intricate problems, and for 

advancing current practices and policies (Mell, 2008, 2010; Young et al., 2014). Hence, the 

inventory of different types of vegetation and water bodies is crucial to evaluate existing 

conditions and to develop well-targeted guidelines for designing, planning and managing 

urban landscapes more effectively (Jacobs et al., 2014; Liu & Yang, 2013; Mell, 2010; 

Pauleit & Duhme, 2000; Woolley, 2006; Young et al., 2014).  

The formulation of a comprehensive classification scheme for green infrastructure, 

however, requires an understanding of the theoretical basis triggering classifications to be 

able to  distil and organise a whole body of knowledge into standardised terms according 

to specific goals, subject areas or research focuses (Aldous, 2014; Jacobs et al., 2014; 

Young et al., 2014). However, existing classification systems offer limited insights on the 

identification and categorisation of green infrastructure across different urban settings, and 

are insufficient to support climate studies at fine spatial scales (Bowler et al., 2010b; Young 

et al., 2014). This represents a significant research gap, in terms of both theory and practice. 
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Accordingly, the aim of this chapter is to synthesise and evaluate the existing evidence on 

how green infrastructure is being categorised and characterised worldwide to distil the most 

relevant approaches and clarify existing typologies. This is intended to provide a 

conceptual framework which will be applied to propose a classification scheme that can 

support the mapping and assessment of green infrastructure in the context of this research.  

To achieve this, the first part of the chapter integrates evidence from across a broad range 

of literature by systematically reviewing 85 studies to answer the following questions: (a) 

what is the geographic location of the key literature dealing with the classification of green 

infrastructure; (b) what are the different methods, principles, approaches and parameters 

employed for cataloguing green infrastructure; (d) which high level categories can green 

infrastructure be classified into; (e) which  typologies and terminology can be assigned to 

each category; and (f) how this knowledge can be translated into a conceptual framework 

to develop a more comprehensive typology. 

The second part of the chapter brings together the conclusions and evidence of this 

systematic review and defines a conceptual framework and criteria for classifying green 

infrastructure from a climate-oriented perspective. A new taxonomy (also referred as 

conceptual matrix) is then proposed consistent with this framework. These taxa are further 

reduced to streamlined typologies for application based on remote sensing data. The 

remainder of the chapter presents the definitions, classification parameters and threshold 

values for all the 34 typologies. The methods for the computation of parameters and the 

workflow for the automated classification of typologies is presented in Chapter 6. 
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PART I: Towards a comprehensive green infrastructure 

typology: A systematic review
8

 

4.2 Methods 

Similarly to Chapter 3, the present chapter applies a systematic literature review following 

the approaches and procedures defined by Khan et al. (2003), Pickering and Byrne (2013), 

Pullin and Stewart (2006) and Stewart (2011b). The searching process was carried out using 

three major databases including Google Scholar, Web of Science and Scopus, and printed 

material; and combined terms such as vegetation, green infrastructure, urban greening, 

greenery, water bodies, types, taxonomy, classification and typologies.   

The number of documents identifying or cataloguing different types of green infrastructure 

is extensive and non-standardised; hence, this systematic review concentrates on the most 

cited and representative sample of the literature, which includes scholarly papers 

(conferences and journals), theses, and high-quality grey literature (i.e. technical reports, 

government guidelines). To be included in this review, publications complied with the 

following selection criteria: 

a. The literature belonged to any of the following fields: urban planning and design, landscape 

architecture, street design, urban forestry, remote sensing and land surveying, geography 

and urban climatology or meteorology.  

b. Articles considered any of the following classification aspects: ESS, multi-functionality, 

morphological and structural attributes, LULC.  

c. The literature studied, described or discerned an identifiable set of typologies, categories, 

terminology or taxonomies. Literature focusing on specific plant species and types, 

biological taxonomy, horticultural and gardening classifications were excluded because 

this are beyond the scope of this research. 

d. Documents were in English, Spanish and German.  

The content analysis and interpretation of the findings was based on: (a) type of publication, 

(b) differing terminology, (c) geographic location of studies under each green infrastructure 

category identified, (d) classification approaches and parameters, and (d) typologies 

identified per category. One limitation is the exclusion of other languages which can 

                                                      

8   A version of Chapter 4 – Part I has been published: Bartesaghi Koc, Osmond, and Peters (2017), Towards a 

comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies, 

Urban Ecosystems, 20, p.15-35. 
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potentially bias interpretation of the findings. The context and the main authors’ affiliations 

are used to determine the geographical origin of studies. 

There were identified a total of 100 potential articles that distinguished at least one type of 

green infrastructure; however, only 85 met the final quality and selection criteria. This 

systematic review is organised in four main sections including (a) the analysis of the 

geographic patterns and contextual response; (b) the analysis of classification approaches, 

methods and parameters; (c) the analysis of categories and typologies and spatial scales 

identified per category; and (d) a summary of findings that will help in constructing the 

classification framework proposed in the Part II.  

4.3 Analysis of geographic patterns 

Geographical context plays an important role on classifying green infrastructure and 

commonly depends on: (a) the site-related conditions, (b) research objectives, and (c) the 

country-based geopolitical conditions and regulations (Mell, 2010). This suggests that it is 

impractical to propose universal and unique classification typologies that can serve for all 

research purposes and settings since there is a regional bias to particular locations where 

the classification of green infrastructure concentrates the attention of experts (Davis, 2010; 

Mazza et al., 2011; Mell, 2014; Naumann et al., 2011). 

Table 4.1  Number and type of articles per geographic location. 

Type of 

Publication 
UK 

Rest of 

Europe a 

USA &  

Canadab 
Australasia c Asiad 

Number 

of papers 

Percent 

of papers 

Journal 7 12 11 6 7 44 50.5 

Report/Guidelines 14 4 1 8 - 27 31.8 

Book/Chapter 2 2 5 - 1 9 11.8 

Thesis 1 1 1 - - 3 3.5 

Conference - 2 - - - 2 2.4 

Number of 

papers 
24 21 18 14 8 85 100.0 

Percent of papers 28.2 24.7 21.2 16.5 9.4 100.0  

Number of studies per country: aGermany (n=7), Spain (n=4), European Union-EU (n=3), The Netherlands 

(n=2), Austria (n=1), Denmark (n=1), Greece (n=1), Italy (n=1). bUSA (n=13), Canada (n=5). cAustralia 

(n=12), New Zealand (n=2). dHong Kong (n=3), China (n=3), Singapore (n=2). 

 

Table 4.1 presents the number and type of publications grouped according to their 

geographic location.  The review includes publications from 15 countries and/or territories, 

split fairly evenly between peer reviewed and grey literature. It can be observed that there 

is a strong geographic bias towards European countries, particularly the United Kingdom 

(UK) (n=24), followed by other European countries (n=21), especially Germany (n=7) and 
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Spain (n=4), together representing more than half of the reviewed literature (n=45). The 

remaining 50% of publications originate in the USA and Canada (n=18) and Australasia 

(n=14) with fewer from Asian countries (n=8).  

The majority of studies come from peer-reviewed publications (52%); with the exception 

of the UK, where the discussion on green infrastructure is led by grey literature such as 

government reports and technical papers. For instance, the Planning Policy Guidance Note 

17 (PPG17) produced by the Urban Green Spaces Taskforce (ODPM, 2002a, 2002b), has 

served as a guideline and benchmark for most reports produced across England since 2002.  

The process of identifying and characterising the different assets or components of green 

infrastructure largely depends on the terminology and definitions employed by each study. 

In fact, the characterisation of vegetation at different spatial scales and geographical 

contexts can be performed in a myriad of ways, hindering their standardisation (EEA, 2011; 

Oke et al., 1989). In a preliminary analysis it was identified that despite the large variety 

of overlapping terminology, green infrastructure can be generally organised into five main 

high-level categories: (a) tree canopy (TC), (b) green open spaces (GOS), (c) water bodies 

(WB), (d) green roofs (GR) and (d) vertical greenery systems (VGS) (green walls/facades) 

[Table 4.2]. The number and origin of studies concentrated in each category are 

summarised in Table 4.3. 

Table 4.2  Different terminology organised into four main categories of green infrastructure. 

Tree canopy 

(TC) 

Green Open 

Spaces (GOS) 

Water bodies 

(WB) 

Green 

Roofs 

(GR) 

Vertical 

Greenery 

Systems (VGS) 

Green canopy 

Green streets 

Green alleys 

[Street] 

[Roadside] 

[Avenue] trees 

Shrubs, shrubbery 

Tree cover 

Urban forestry 

Urban tree canopy 

Woodland 

[Forest]land 

 

Green belts 

Green corridors 

Green covers 

[Urban] Green spaces 

Greenways 

[Vegetated] Ground 

covers 

Ground surfaces 

Land covers 

[Public] [Urban] open 

spaces 

Urban land 

[Urban] vegetation 

structures /  

Vegetative covers 

[Water] features 

[Open] water 

Blue infrastructure 

Urban water 

Aquatic surfaces 

Water- 

[courses/ways] 

Waterside 

[areas/zones] 

Eco-roofs 

Green 

rooftops 

Living roofs 

Rooftop 

gardens 

Bio-walls 

Green façades 

Green walls 

Living walls 

Vertical 

landscaping 

Vertical 

vegetation 

Based on: Abunnasr (2013); Ahern (1995); Arlt et al. (2005), Bowler et al. (2010a, 2010b), Brady et al. (1979); Byrne 

and Sipe (2010); DTLR (2002); Dunnett et al. (2002); English Nature (2003); Foster et al. (2011); Francis and Lorimer 

(2011); Hunter et al. (2012); Jacobs et al. (2014), Jim (1989, 2015b), Jim and Chen (2003); Landscape Institute (2009); 

Lehmann et al. (2014); Mathey et al. (2010); Mathey et al. (2011); Norton et al. (2013); Norton et al. (2015); 

Oberndorfer et al. (2007); Ochoa (1999), ODPM (2002a, 2002b), OEH (2015); Oke et al. (1989); Ottelé et al. (2011); 

Pauleit et al. (2003); Pauleit and Duhme (2000); Pérez et al. (2014); Peters et al. (2011); Stewart and Oke (2012); 

Susorova (2015); Tooke et al. (2009); VEAC (2011); Wong (2011); Wong and Chen (2010); Woolley (2006). 
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Table 4.3 Number and origin of studies focusing on different green infrastructure categories 

GI 

Category 
UK 

Rest of 

Europe 

USA & 

Canada 

Australa

sia 
Asia 

Number 

papers 

Percent 

papers * 

GOS 22 13 13 10 5 63 74.1 

TC 13 10 13 7 4 47 55.3 

WB 17 7 7 3 1 35 29.8 

GR 7 3 5 7 1 23 27.1 

VGS 2 8 3 7 4 24 28.2 

OC1 1 - - 1 - 2 2.4 

1OC=other classification. * Percentage calculated from 85 articles. 

 

Green open spaces and tree canopy attract more attention in European countries where 

planning strategies are well-established and intervention priorities have focused on the 

provision of large greenways, corridors and networks at city and regional level. These 

policy-oriented interests are largely due to the wide implications of green open spaces 

(including trees) in the quality of life, health  and wellbeing of population (Pauleit et al., 

2003; Tzoulas et al., 2007); their multi-scale applicability; the rapid inventory process; and 

the easy multi-sectorial understanding and alignment with existing land-use classes (Davies 

et al., 2006; Mazza et al., 2011; Mell, 2014; TMF, 2011; Tzoulas et al., 2007).  

Studies from Germany can be differentiated from the rest by combining the principle of 

urban biotopes with the structural characteristics of vegetation (Arlt et al., 2005; Lehmann 

et al., 2014; Mathey et al., 2010; Pauleit & Duhme, 2000). Furthermore, the study and 

classification of vertical greenery systems have been the concern of experts from The 

Netherlands (Ottelé et al., 2011; Perini et al., 2011); and more especially, from 

Mediterranean countries such as Spain (Pérez et al., 2011a, 2011b; Pérez et al., 2014) and 

Greece (Kontoleon & Eumorfopoulou, 2010).  

Asian countries have also demonstrated a particular interest in green roofs and vertical 

greenery systems that represent the most suitable solutions in the context of high-density 

and land scarcity. In Australia, classifications have been triggered by the necessity of 

prioritising green infrastructure to respond to the UHI phenomenon (Norton et al., 2015), 

while literature from North America has been more focused on biodiversity conservation 

and water management implications of green infrastructure, through the notion of low 

impact development (LID). 
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4.4 Analysis of approaches, methods and parameters 

Literature review (89%), case studies (52%) and remote sensing (including land surveying) 

(37%) are the most common methods employed to identify and classify green 

infrastructure.  Among these, remote sensing and GIS-based tools have not been fully 

explored; signifying a great opportunity for a more accurate and time-saving visualisation 

and analysis of highly complex and heterogeneous settings (Hawken et al., 2014).  

The available evidence suggests that green infrastructure can be classified according to (a) 

functional (services); (b) structural (form/morphology); and (c) configurational (spatial 

interrelationships) principles; in accordance with the tripartite approaches proposed by 

Ahern (1995, 2007) and Mell (2008, 2010), and the spatial scales defined by Oke et al. 

(1989) and Oke (2006). Table 4.4 and 4.5 provide a summary of main principles applied 

by each study; albeit some classifications are underpinned by more than one principle. 

Additionally, there are listed different approaches, theoretical concepts and classification 

parameters that depended on the types of green infrastructure under investigation.   

4.4.1 Functional-configurational classification 

Green infrastructure is mostly classified from a functional-configurational perspective. The 

multi-functional network and connectivity have been widely accepted as the most common 

classification approach, encompassing aspects such as land uses, purpose, intensity of use, 

connectivity, spatial scale, spatial configuration, catchment, maintenance, accessibility, 

values and significance (ecological, cultural, social, political and economic) of functions. 

For instance, Figure 4.1 depicts an environmentally-based classification system for urban 

greenspaces as defined by Hough (2002), which combines several functional aspects to 

define a hierarchical set of greenspace typologies. 

Concepts such as ‘Landscape ecology’ (Abunnasr, 2013; Ahern, 2007; Jim & Chen, 2003; 

Li et al., 2005), ‘Greenspace continuity & Green grid concept’ (Byrne & Sipe, 2010; 

Cooper, 2010; Davis, 2010; DEFRA, 2008; Gill et al., 2007; Jim & Chen, 2003; Mazza et 

al., 2011; Wang, 2001), ‘Value of public space’ (Bell et al., 2007), ‘Patch-corridor-Matrix-

Model’ (Ahern, 2007) and ‘Need-based approaches’ (DTLR, 2002; ODPM, 2002a, 2002b) 

are complementary approaches associated to multi-functionality that are commonly 

incorporated by studies. 

The criteria defined by the Urban Green Space Taskforce (UGST) (DTLR, 2002) and the 

‘Planning Policy Guidelines 17 (PPG17)’ (ODPM, 2002a, 2002b) have largely influenced 

approaches and classifications across the UK. This key literature drew on stakeholder 
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forums and remote sensing to propose a need-based approach for auditing green spaces, 

providing the groundwork for most of the later publications. For instance, Gill et al. (2007) 

updated the PPG17 typology by including urban morphology types (UMT) for the spatial 

integration of natural processes and human activities. Similarly, the Mersey Forest 

approach (Landscape Institute, 2009; The Mersey Forest, 2010, 2011), and the East 

Midlands scoping study (EMDA, 2010; TEP, 2005) utilised the PPG17 to propose a 

mapping framework to audit green infrastructure for planning development purposes. 

 

Figure 4.1 An environmentally-based and hierarchical classification system for urban greenspaces combining 

several functional aspects (Redrawn based on Hough, 2002). 

The PPG17 illustrates the strong influence of government planning policies on the 

identification, characterisation and deliverability of green infrastructure. Its value lies in 

the broad applicability and flexibility across different geographical settings, ownerships 

and purposes within the UK (Sheate et al., 2012; Tzoulas et al., 2007). However, 

government-based taxonomies should be adopted with caution since they are extremely 

contextualised to particular land uses that reduce their applicability in other geo-political 

contexts and research scopes. 

Indeed, classifications that solely rely on land uses and accessibility (public/private 

differentiation) are usually constrained in representing the ecological processes of green 

infrastructure (i.e. carbon sequestration, biodiversity or thermal regulation). This is because 

green infrastructure functionality does not only depend on purpose, but most importantly 
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on the physiognomic attributes and spatial interdependency of vegetation assets (Ahern, 

2007; Cadenasso et al., 2007; Cadenasso et al., 2013; English Nature, 2003; Hawken et al., 

2014; Jacobs et al., 2014; Pauleit et al., 2003; Peters et al., 2011; Stewart & Oke, 2012; 

Tooke et al., 2009; Wilmers, 1988).  

In this regard, Mell (2008, 2010) proposes a tripartite approach to classify green 

infrastructure in terms of ‘form’, ‘function’ and ‘context’ following Ahern (1995) 

greenways classification system. Mell’s work emphasises the role of green infrastructure 

beyond land use types, addressing this problem both theoretically and practically by 

considering the aspects of connectivity, accessibility and multi-functionality (Mell, 2010). 

On the other hand, Young et al. (2014) proposed a very distinctive categorisation that 

focuses on the social and ecological aspects of green infrastructure. Both studies attempt to 

reconcile different overarching classification approaches such as hierarchy (Ahern, 1995; 

Dunnett et al., 2002), ecological values (Davies et al., 2006), human health  (Tzoulas et al., 

2007); and valuation of ESS (Dobbs et al., 2011; EEA, 2011; Groot et al., 2002; MEA, 

2005).  

‘Hierarchy and significance’ is a concept linked to the principle of multi-functionality that 

has been pioneered by Ahern (1995). The primary focus of this approach is the importance 

of landscape contexts and goals across different spatial scales. For example, the hierarchical 

characterisation introduced in the UK by the London Planning Advisory Committee 

(LPAC) (Llewelyn-Davies Planning, 1992) has been adopted by a considerable number of 

studies for the stratified classification of green open spaces at national, regional, 

metropolitan and local levels (Byrne & Sipe, 2010; Cheltenham Borough Council, 2008; 

Christchurch City Council, 2010; Dunnett et al., 2002; The Scottish Government, 2008; 

VEAC, 2011; Wong, 2011).  

This has had a great acceptance among local governments and authorities because audit 

and strategic planning of green infrastructure can be easily assigned to specific jurisdictions 

(Woolley, 2006). Moreover, the stratified subdivision has the capacity to aggregate or 

disaggregate categories depending on the level of detail required; nonetheless, there is 

always the possibility of double counting or overlapping types across scales (Dunnett et al., 

2002).  

The complexity of the built environment precludes the definition of precise boundaries 

between the natural and the artificial world. Consequently, there is still no consensus of 

what can or cannot be considered green infrastructure, which may prove detrimental to 

understand the discernibility of features (Mell, 2010). To address this limitation, the 
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accessible natural greenspace standard model (ANGSt) proposed by English Nature 

(2003) incorporates accessibility, structural complexity and intensity of use as 

classification parameters based on a gradual progression from grey (artificial) to green 

(natural) conditions.   

Likewise the abiotic-to-biotic spectrum proposed by Ahern (2007), the ANGSt model 

conceives green infrastructure as a continuum phenomenon where spatial interrelationships 

play an important role in supporting bio-physical and ecological processes (Davies et al., 

2006; Pauleit et al., 2003). Critically discussed by Pauleit et al. (2003), this model illustrates 

the difficulties that arise when attempting to reconcile two points of view: the conservation 

of nature and the public use of greenspaces. 

Supporting the functional classification principle, the concept of ESS has been employed 

to differentiate distinctive delivery capacities of vegetation among the high level ESS 

themes of supporting, providing, regulating, and cultural (Mazza et al., 2011; MEA, 2005). 

Among these categories, the climate-regulating services have captured the attention of 

climate change researchers (Bowler et al., 2010b; Hunter et al., 2012; Norton et al., 2013; 

Norton et al., 2015; Wong & Chen, 2010).  

For instance, Bowler et al. (2010b) used an ESS approach to undertake a systematic review 

of the potential cooling effects of three types of green infrastructure: parks, trees/forests 

and green roofs. Studies conducted in Australia identified evapotranspiration, albedo, 

shading and wind flow as key parameters for classification (Coutts et al., 2012; Coutts et 

al., 2015; Hunter et al., 2012; Norton et al., 2013; Norton et al., 2015).  

Returning to ESS as a functional approach, some authors have emphasised the 

classification of land uses (Cooper, 2010; DEFRA, 2008; Ely & Pitman, 2014; Panduro & 

Veie, 2013; Sheate et al., 2012), often using remote sensing to inform the spatial 

distribution of ESS. Reports from the European Union have similarly focused on the use 

of spatial planning and mapping tools to guide design interventions (Davis, 2010; Mazza 

et al., 2011; Naumann et al., 2011). In contrast to the holistic overview of ESS proposed 

by European research, studies from other countries have concentrated on particular 

services. For instance, Foster et al. (2011) appealed to the low impact development (LID) 

concept in the USA. In Australia,  Ely and Pitman (2014) and Coutts et al. (2012) described 

the environmental potentialities of green infrastructure appealing to water sensitive urban 

design (WSUD), while the New South Wales Office of Environment and Heritage (OEH, 

2015) addressed green infrastructure from an environmental point of view and Rupprecht 

et al. (2015) considered biodiversity implications. 
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Table 4.4 presents a list of the reviewed studies that employ functional and configurational 

principles to classify green infrastructure by summarising their classification approaches, 

parameters, and research methods.  

Table 4.4  List of methods, approaches and parameters used by ‘functional-configurational’ classifications. 

Citation 
Classif. 

Methods 
Categories 

Classification 

approaches 

Classification 

parameters 

Abunnasr (2013) a LR 

TC, GOS, 

WB, GR, 

VGS 

• Network approach 

• Multi-functionality 

• Landscape ecology 

1. Size 

2. Location & catchment 

3. Scale & hierarchy 

4. Spatial configuration & 

complexity  

5. Land-use types 

6. Purpose 

7. Significance 

8. Accessibility & ownership 

9. Management & 

maintenance 

  10.Intensity of 

intervention/use  

  11. Functions & values: 

 a. Socio-cultural  

 b. Economic  

 c. Environmental  

 d. Political 

12. Ecosystem services: 

       a. Provisioning   

       b. Regulating 

    - Shading (LAI) 

    - Evapotranspiration 

    - Wind modification 

    - Water supply 

    - Thermal properties 

    - Plant support 

    - Surface properties  

    - Anthropogenic heat 

    - Type of vegetation  

        c. Cultural  

        d. Supporting  

Ahern (1995) LR, CS GOS, WB 
• Hierarchy & significance 

• Multi-functionality 

Ahern (2007) LR GOS 
• Multi-functional network  

• Patch-Corridor-Matrix 

Aldous (2014) 
LR, GIS, 

CS 
GOS • Multi-functionality 

Bell et al. (2007) b LR, RM GOS 
• Multi-functionality 

• Value of public space 

Bowler et al. (2010b) LR 
TC, GOS, 

GR • Climate regulating ESS 

Byrne and Sipe (2010) LR GOS 

• Hierarchy & significance 

• Multi-functionality 
CBC (2008) b 

LR, GIS, 

APS 
GOS 

CCC (2010) LR, CS GOS 

Cooper (2010) b 
CS, NA, 

GIS, SF 

TC, GOS, 

WB 

• ESS  

• Network analysis (Green 

grid) 

Davis (2010) 
LR, GIS, 

CS 
TC, GOS 

• ESS 

• Connectivity 

Davies et al. (2006) LR, SF 
TC, GOS, 

WB, GR 
• Multi-functionality 

DEFRA (2008) b LR, CS 
TC, GOS, 

WB 

• ESS 

• Green grid concept 

DTLR (2002) b LR GOS, WB 
• Multi-functionality 

• Need-based approach 

Dunnett et al. (2002) 
LR, CS, 

SI 

TC, GOS, 

WB 

• Hierarchy 

• Multi-functionality 

Ely and Pitman (2014) LR 

TC, GOS, 

WB, GR, 

VGS 

• ESS 

• Water sensitive urban 

design 

EMDA (2010) b LR, CS 
TC, GOS, 

WB 
• Multi-functional network  

English Nature (2003)b 
LR, APS, 

CS 
GOS, WB 

• Accessible Natural 

greenspace standard 

(ANGSt) model 

• Multi-functionality 

Foster et al. (2011) LR, CS TC/GR 
• ESS 

• LID  

Gill et al. (2007) 
LR, GIS, 

CS 
GOS, WB 

• Multi-functional network 

• ESS 

• Urban morphology types 

Hunter et al. (2012) LR 
TC, GR, 

VGS 

• Climate regulating ESS 

• Hierarchy 

Jim and Chen (2003) LR, CS TC, GOS 
• Multi-functional network 

• Landscape ecology 

Keeley (2011) LR 
GOS, WB, 

GR 

• Climate regulating ESS 

• Green area ratio 
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Citation 
Classif. 

Methods 
Categories 

Classification 

approaches 

Classification 

parameters 

Landscape Institute 

(2009) b 
LR, CS 

TC, GOS, 

WB, GR, 

VGS 

• Multi-functional network 

• ESS 

Llewelyn-Davies 

(2000) 
LR 

TC, GOS, 

WB 

• Hierarchy & significance 

• Multi-functionality 

Li et al. (2005) 
LR, GIS, 

CS 

TC, GOS, 

GR, VGS 

• Multi-functional network 

• ESS 

• Landscape ecology 

Mazza et al. (2011) c LR, CS TC, GOS 
• ESS 

• Multi-functional network 

Mell (2010) d LR, SI Other • Multi-functionality 

Naumann et al. (2011)c LR, CS TC, GOS 
• ESS 

• Ecosystem habitats 

Norton et al. (2013); 

Norton et al. (2015) 
LR, GIS 

TC, GOS, 

GR, VGS • Climate regulating ESS 

ODPM (2002a, 2002b) 

(PPG17) 
LR GOS, WB 

• Multi-functionality 

• Need-based approach 

OEH (2015) LR 
TC, GOS, 

GR, VGS 

• Climate regulating ESS 

• Urban green cover 

Panduro and Veie 

(2013) e 

LR, GIS, 

CS 
GOS 

• Hedonic Valuation Model 

• ESS 

Pauleit et al. (2003) f 
LR, GIS, 

SI 
GOS, WB 

• Multi-functional network   

• ANGSt model 

Rupprecht et al. (2015) LR 

TC, GOS, 

WB, GR, 

VGS 

• ESS 

• Biodiversity 

Schilling and Logan 

(2008) 
LR 

TC, GOS, 

WB, GR • Multi-functionality 

Sheate et al. (2012) b 
LR, NA, 

GIS 

TC, GOS, 

WB 

• ESS 

• Network analysis 

TEP (2005) b 
LR, GIS, 

SF 

TC, GOS, 

WB 

• Multi-functionality TMF (2010) b LR, CS 
TC, GOS, 

WB, GR 

TMF (2011) b LR, GIS 
TC, GOS, 

WB, GR 

TSG (2008) LR GOS 
• Hierarchy & significance 

• Multi-functionality 

VEAC (2011) LR GOS • Hierarchy 

Wang (2001) LR GOS, WB • Multi-functionality 

Wong (2011) g 
LR, GIS, 

CS 
GOS • Multi-functional network 

Wong and Chen 

(2010) 
LR, GIS, 

CS 

TC, GOS, 

GR, VGS • Climate regulating ESS 

Woolley (2006)  LR, CS 
TC, GOS, 

WB, GR 

• Hierarchy 

• Value of space (home 

range concept) 

Young et al. (2014) LR, CS Other • Multi-functionality 

  (Triple-Bottom-Line)  

APS=Aerial & photographic survey; CS=Case study; GIS=Geographic information systems; LR=Literature review; 

NA=Network analysis; RM=Research mapping; SF=Stakeholders forum; SI=Survey & interviews. ESS=Ecosystem 

Services. 

a  Typology after Gill et al. (2007) and Ahern (2007); 

b  Classification based on ODPM (2002b) (PPG17);  

c  Classification based on Davis (2010); 

d  Typology based on Ahern (1995); 

e  Typology after Bell et al. (2007); 

f  Evaluates English Nature (2003) approach; 

g  Urban space typology based on Woolley (2006). 
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4.4.2 Structural-contextual classification 

The identification and study of the structural characteristics of vegetation is another 

important principle underpinning classifications; nevertheless, it was found that in some 

cases a functional approach is additionally included to achieve more comprehensive and 

explanatory typologies. Table 4.5 organises the studies that employed the structural and 

configurational principles to classify green infrastructure by summarising their 

classification approaches, parameters, and research methods.    

Table 4.5 List of methods, approaches and parameters used by studies under ‘structural-configurational’ 

classifications. 

Citation 
Classif. 

methods 
Categories 

Classification 

approaches 

Classification 

parameters 

Anderson et al. 

(1976) 

LR, GIS, 

CS 

TC, GOS 

WB 
• Land use/land cover 

(LULC)  1. LULC types 

2. Spatial scale 

3. Urban morphology 

types 

4. Vegetation 

attributes: 

    a. Foliage geometry 

& shape 

    b. Foliage contiguity 

& distribution 

    c. Foliage density 

(LAI, NDVI) 

dimensions / 

volume 

    d. Foliage type 

(deciduous, 

evergreen) 

    e. Extension & 

orientation 

    f. Segment attributes 

of trees 

    g. Derived fractions 

of vegetation 

    h. Thermal 

properties of 

plants 

5. Surface properties: 

a. Biological 

b. Physical & 

thermal  

c. Structural 

6. Supporting structure 

attributes (only for 

green roofs and 

vertical greenery 

systems): 

a. Construction 

material 

b. Installation  

c. Location & 

orientation 

d. Operation & 

maintenance 

e. Intensity of use 

f. Accessibility 

Arlt et al. (2005) 
LR, GIS, 

CS 
TC 

• Vegetation structure 

• Urban biotopes & land-

use 

Brady et al. (1979) b LR, CS TC, GOS 
• LULC 

• Urban ecosystem types 

Cadenasso et al. 

(2007); Cadenasso et 

al. (2013) 

LR, GIS, 

CS 

TC, GOS, 

WB • LULC 

Di Gregorio and 

Jansen (1998) 
LR 

TC, GOS, 

WB 

• LULC 

• Hierarchy 

Dunnett and 

Kingsbury (2004) 
LR, CS 

WB, GR, 

VGS • Morphological attributes 

Francis and Lorimer 

(2011) 
LR GR, VGS 

• Morphological attributes 

• Urban reconciliation 

ecology 

Höfle and Hollaus 

(2010) 
GIS, CS TC • Vegetation edge-based 

segmentation 

Hunter et al. (2014) LR VGS 
• Morphological attributes 

• Climate regulating ESS 

Jacobs et al. (2014) GIS, ITM 
TC, GOS, 

WB 

• Vegetation cover 

attributes 

• Multi-functionality 

Jim (1989) GIS, APS TC 
• Morphological attributes 

• Spatial configuration 

Jim (2015b) LR VGS 

• Morphological attributes Kontoleon and 

Eumorfopoulou 

(2010) 

LR VGS 

La Rosa and Privitera 

(2013) 

LR, CS, 

GIS 
TC, GOS • LULC 

Lehmann et al. 

(2014) a 

LR, GIS, 

CS 

TC, GOS, 

WB 

• Urban vegetation 

structure types (UVST) 

• Urban biotopes 

• Climate regulating ESS 

Liu and Yang (2013) b GIS, CS 
TC, GOS, 

WB • LULC 

Mathey et al. (2011) a 
LR, GIS, 

CS 

TC, GOS, 

WB 
• UVST 

• Urban biotopes 

• Climate regulating ESS Mathey et al. (2010) a LR 
TC, GOS, 

WB 
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Citation 
Classif. 

methods 
Categories 

Classification 

approaches 

Classification 

parameters 

Oberndorfer et al. 

(2007) 
LR GR 

• Morphological attributes 

• Provisioning ESS 

Ochoa (1999) LR, CS 
TC, GOS, 

WB • Morphological attributes 

• Climate regulating ESS Oke et al. (1989) LR TC, GOS 

Ottelé et al. (2011) LCA, CS VGS 
• Morphological attributes 

• Life cycle analysis (LCA) 

Pauleit and Duhme 

(2000) 
GIS, CS TC, GOS • LULC 

Pérez et al. (2011a, 

2011b), Pérez et al. 

(2014) 

LR, CS VGS • Morphological attributes 

Perini et al. (2011) LR, CS VGS 
• Morphological attributes 

• Climate regulating ESS 

Peters et al. (2011) GIS, CS 
TC, GOS, 

WB 

• LULC 

• Climate regulating ESS 

Stewart and Oke 

(2012) 
LR, GIS 

TC, GOS, 

WB 

• LULC 

• Local climate zones 

(LCZ) 

Susorova (2015) LR VGS 
• Morphological attributes 

• ESS 

Tooke et al. (2009) GIS, CS TC, GOS 

• Morphological attributes 
Williams et al. (2010) LR,CS GR 

Wilmers (1988) GIS, APS 
TC, GOS, 

WB 

• LULC 

• Morphological attributes 

Wong et al. (2010) LR, CS VGS • Morphological attributes 

Zhou, Cadenasso et 

al. (2014) 
LR, GIS, 

CS 
TC, GOS • LULC 

APS=Aerial & photographic survey; CS=Case study; GIS=Geographic information systems; LR=Literature 

review; NA=Network analysis; RM=Research mapping; SF=Stakeholders forum; SI=Survey & interviews. 

ESS=Ecosystem Services. 

a  Approach based on Arlt et al. (2005) vegetation structures classification;  

b  Classification based on Anderson et al. (1976). 

The tremendous importance of spatial configuration for understanding the heterogeneity of 

green infrastructure, and for discovering how different patterns and physical interactions 

shape multi-functional networks has been acknowledged by Hawken et al. (2014). The 

identification of the physical and formal attributes of greenery has been the primary focus 

of research concerning tree canopy, green roofs and vertical greenery systems categories; 

whereas land and vegetation cover classifications served for inventorying tree canopy and 

green open spaces.  

In relation to green open spaces and tree canopy, a classification scheme of major LULC 

types for remote sensing studies in conservation and ecology was initially introduced by 

Anderson et al. (1976), adopted by Brady et al. (1979) and modified and expanded by Liu 

and Yang (2013). This classification was originally aimed at studies on natural resource 
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management at very coarse levels. Over the last decades, Anderson et al. (1976) scheme 

has become almost a standard for the industry and researchers all over the world, being an 

influential approach dominating the characterisation of greenspaces and tree canopy (Brady 

et al., 1979; Jacobs et al., 2014; La Rosa & Privitera, 2013; Liu et al., 2013; Pauleit 

& Duhme, 2000; Peters et al., 2011). 

The LULC scheme has also been adopted by other schemes such as the National Land 

Cover Characterisation (NLCC) (United States Geological Survey, 2003), the Multi-

resolution Land Characteristics (MRLC) [EPA and USGS (1992)], and the global land-

cover classification [Food and Agriculture Organisation (FAO) (Di Gregorio & Jansen, 

1998)] (Cadenasso et al., 2007; Cadenasso et al., 2013; Di Gregorio & Jansen, 1998).  

In some cases, LULC classes have combined vegetated and built-up areas (homes, 

buildings), derelict land, brownfield land and utilities (i.e. roads, power lines) as an effort 

to integrate engineered and natural elements in a more comprehensive manner (Anderson 

et al., 1976; Pauleit & Duhme, 2000). However, green roofs and vertical greenery systems 

are completely excluded from LULC types.  

Extensively criticised by Cadenasso et al. (2013) and Cadenasso et al. (2007), Anderson 

and related approaches have proved to be more suitable for studies at coarse scales as they 

remain inadequate to capture the spatial interrelationships and heterogeneity of biotic and 

abiotic elements at fine scales. Cadenasso et al. (2007) also notes that LULC types combine 

socio-economic functions and purposes (land-uses) with the physical structures of 

landscapes (land-covers), having left aside the ecological functioning of vegetation and 

water bodies. 

The classification scheme called HERCULES (High Ecological Resolution Classification 

for Urban Landscapes and Environmental Systems) also relies on land classification, 

although it separates function (land use) and structure (land cover), and entirely focuses on 

the latter (Cadenasso et al., 2007; Cadenasso et al., 2013; Zhou, Cadenasso et al., 2014; 

Zhou & Troy, 2009). This scheme acknowledges the heterogeneity of urban landscapes by 

proposing the combination of three sets of elements: buildings, surfaces and vegetation, 

distinguished in terms of form, amount and organisation [Table 4.6]. In contrast to 

Anderson and related schemes, the HERCULES classification can be applied at medium 

scales and in varied urban contexts (Cadenasso et al., 2013; Zhou & Troy, 2009). 

To amend the deficiencies of urban-rural classifications, and in similar way to the 

HERCULES approach, Stewart and Oke (2012) proposed LCZs (previously discussed in 

Chapter 2) as a scheme combining different surface properties, urban morphologies and 
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human activities. The LCZ characterisation provides a series of standardised land cover 

types that can be recombined into subclasses, facilitating the investigation of vegetation in 

particular conditions. Similarly, other studies have used the physical properties of canopy 

and surface covers as parameters to compare green and non-green open spaces and to 

differentiate pervious and impervious surfaces (Jacobs et al., 2014; La Rosa & Privitera, 

2013; Liu & Yang, 2013; Pauleit & Duhme, 2000; Peters et al., 2011; Wilmers, 1988).  

Table 4.6  Example of the characterisation of patches using HERCULES parameters.  

     (Redrawn based on Cadenasso et al., 2007) 

Patch 
Coarse 

vegetation 

Fine 

vegetation 
Bare soil Pavement 

Building 

proportion 

Building 

type 

 

4 1 0 1 2 S 

 

4 0 0 0 0 N 

 

1 2 0 3 2 C 

 
1 1 4 1 0 N 

 

1 1 0 3 2 M 

 
2 4 0 0 0 N 

Proportional cover of vegetation, surfaces and buildings is scored using five categories:  

0 = none; 1 = present-10%; 2 = 11-35%; 3 = 36-75% and 4 = > 75%. Building types are identified 

as: N = none; S = single; C = connected; and M = mixed. 

 

In Germany, an approach initially proposed by Arlt et al. (2005) incorporating the urban 

biotope theory and vegetation structures has served as the basis for subsequent studies 

investigating the correlation between tree-derived attributes (i.e. volume, size, geometry 

and height), surface permeability and air temperature differences (Lehmann et al., 2014; 

Mathey et al., 2010; Mathey et al., 2011). All these parameters interact with existing 

building structures and land uses to create particular ‘urban vegetation structure types’ 

(UVSTs). Table 4.7 presents a summary of the 13 main categories divided into 57 UVST 

by considering the specific green volume (m3/m2) of each vegetated layer. 
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Table 4.7 Summary of the 13 main categories and 57 urban vegetation structure types (UVSTs) including their 

proportion of vegetated layers and specific green volume. 

(Based on Arlt et al., 2005 and Mathey et al., 2011) 

Category 

Urban Vegetation Structure Type (UVST) 

Proportion of vegetation (%) Green 

volume 

(m3/m2) Low 
Mediu

m 
High 

1. Residential, mixed-uses, industrial, commercial and specialised sites 

1.1 Built-up land with richly structured, park-like gardens 21 16 42 6.2 

1.2 Built-up land with richly structured gardens, medium to high 

proportion of deciduous trees 

40 8 23 2.5 

1.3 Built-up land with poorly structured, intensively maintained gardens 31 10 11 1.5 

1.4 Built-up land with little or no vegetation 16 6 6 0.7 

1.5 Built-up land with no or few trees and shrubbery 41 7 13 1.1 

1.6 Built-up land with trees and extensive shrubbery 35 19 15 1.5 

2. Transport facilities and infrastructure     

2.1 Railway site and facilities, tracks, embankments 36 4 12 1.0 

2.2 Road site with bordering greenery 14 0 21 1.4 

2.3 Transport facilities and areas largely to completely sealed 0 0 0 0 

2.4 Transport areas with greened carparks 9 3 24 1.67 

3. Greenspaces     

3.1 Green space with trees and closed canopy 30 8 53 7.6 

3.2 Green space with diverse amounts of trees and shrubbery 48 7 25 3.2 

3.3 Lawn and sports field 83 1 9 1.2 

3.4 Green space with little or no vegetation 14 3 12 1.5 

3.5 Green space with young trees and partly with dense woodland 28 16 44 4.6 

3.6 Green space with a lot of trees and extensive shrubbery, fruit 

trees  

44 20 14 2.3 

3.7 Green space with few trees and shrubbery, primarily decorative 

function 

44 19 12 1.3 

3.8 Green space with few trees and shrubbery, primarily lawns 54 10 16 1.4 

4. Urban wastelands     

4.1 Urban wasteland with ruderal and other herbaceous plants, early 

stage of succession 

69 8 7 0.7 

4.2 Urban wasteland with pioneer trees, groves and woodland, 

middle stage of succession 

76 12 7 1.6 

4.3 Urban wasteland with mature trees, groves and woodland, late 

stage of succession 

44 22 18 3.0 

5. Landfills and quarries     

5.1 Partly or fully overgrown; restored landfill or quarry 32 61 1 2.1 

5.2 Landfill or quarry with little vegetation, partly overgrown 70 19 0 0.6 

5.3 Landfill or quarry with no or little vegetation 88 7 1 0.3 

6. Agricultural sites     

6.1 Arable land 94 2 0 0.8 

6.2 Land for fruit cultivation, orchard 16 77 3 1.4 

6.3 Horticultural site, commercial use 40 11 6 0.9 

6.4 Horticultural site, private use 64 10 12 1.1 

6.5 Vineyard 78 5 13 1.4 

7. Grassland     

7.1 Intensive grassland 78 6 7 1.2 

7.2 Grassland with little or no trees and shrubbery 92 2 6 1.2 

7.3 Grassland with communities of tall herbaceous vegetation 84 4 6 1.4 

7.4 Grassland with trees and shrubbery 80 8 8 1.4 

8. Trees, shrubs and bushes     

8.1 Bushes; pre-forest shrubbery 1 31 55 5.3 

8.2 Hedges; row of shrubs 21 55 21 2.5 

8.3 Row of trees; group of trees 25 22 50 6.1 

8.4 Meadow with scattered fruit trees 52 33 13 2.6 

8.5 Prominent individual tree 0 0 100 9.55 

9. Woodland (deciduous, coniferous and mixed)     

9.1 Wood 3 24 73 7.7 

9.2 Reforestation; tree nursery 4 81 12 1.8 
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9.3 Clear-felling; cleared corridor 64 12 23 2.6 

9.4 Clearing with herbaceous vegetation 70 16 13 1.8 

9.5 Clearing with meadow 96 1 3 0.6 

9.6 Developed edge of the wood 19 7 14 10.4 

10. Near-natural     

10.1 Near-natural wetland with reed beds, bulrush and sedge-

marshland 

77 23 0 1 

10.2 Near-natural wetland with communities of tall herbaceous 

vegetation 

84 13 3 1 

10.3 Near-natural wetland with shrubbery 71 27 2 0.9 

10.4 Near-natural wetland with trees 65 12 20 2.3 

11. Waterside zones     

11.1 Waterside zone with reeds, bulrushes and sedges 28 37 4 1.0 

11.2 Waterside zone with tall herbaceous vegetation, trees and 

shrubbery 

23 18 55 6.3 

11.3 Waterside zone with grassy banks 19 2 3 0.3 

11.4 Waterside zone with little or no vegetation  15 9 2 0.2 

12. Arid grasslands, heathland     

12.1 Arid and semi-arid grassland; heathland 67 28 0 0.5 

12.2 Bushy to wooded dry grassland and heathland 35 58 0 1.9 

13. Open sites     

13.1 Rocky area - - - - 

13.2 Sandy area - - - - 

13.3 Dune - - - - 

 

Table 4.8 Example of a typical urban vegetation structure type matrix (Type 1.1) showing a list of 

structural attributes (horizontal axis) and the three height classes of vegetation layers (vertical axis).  

(Modified after Lehmann et al., 2014 and Mathey et al., 2011) 

UVST 1.1 Built-up land with richly structured, park-like gardens 

Height class  

of vegetated layers 

 

Selected structural characteristics 

Spatial coverage and 

arrangement 
Intensity & 

maintenance 

Distinctive 

features 
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 Lawn       X     

Meadow      X    

Shrubbery and herbs (≤ 1m)          

M
ed

iu
m

 

Shrubbery and herbs (> 1m)            

Low hedges (≤ 1m)          

Medium hedges (> 1 ≤ 2.5m)     X X    

Tree hedges (> 2.5m)          

Bushes (≤ 2m)  X        

Bushes (> 2m)      X     

Small trees (≤ 3m) X         

H
ig

h
 

Medium trees (> 3 ≤ 10m)   X  X       

Tall trees (> 10m)  X   X     

Other areas within the urban vegetation structure type 
Proportionate 

area (%) 

Areas without vegetation  

Built-up areas  
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The novelty of this scheme is that urban greenery is characterised both individually and 

collectively in terms of the height of vegetated layers (named as low, medium, and high 

vegetation), selected qualitative characteristics such as spatial coverage, arrangement of 

vegetation, intensity of use and maintenance, and presence of distinctive features [Table 

4.8] (Lehmann et al., 2014; Mathey et al., 2011).  

Similar to the LULC and the PPG17, the UVST is a well-established scheme that is 

extensively applied in the German context for both research and planning policy. Ochoa 

(1999) has also proposed the study of ground cover characteristics along with the spatial 

configuration, orientation, geometry and type of vegetation to identify the capacities of 

green infrastructure for controlling urban microclimate conditions.  

Classification systems such as the LCZ, HERCULES and UVST highlight the importance 

of integrating functional, morphological and configurational aspects of man-made 

structures, vegetation features, human activities, and surface properties in a holistic way. 

Despite their broad applicability and versatility across different urban settings, these 

schemes are primarily aimed for city and district levels (meso-scale) with relatively 

homogeneous characteristics. Thus, future research should suggest potential improvements 

for their application in more heterogeneous conditions and finer spatial scales. 

To classify tree canopy structures, Höfle and Hollaus (2010), Jim (1989) and Tooke et al. 

(2009) employed remote sensing approaches such as decision tree classification (spectral 

mixture analysis) and vegetation edge-based segmentation to discriminate green elements 

independently from the functions and services provided. Their main focus is the technical 

and descriptive study of spatial configurations, patterns of distribution and deciduous-

evergreen differentiation.  

The classification approaches of green roofs and vertical greenery systems are more 

straightforward in comparison to other categories due to their structural simplicity. Studies 

primarily divide green roofs into intensive and extensive, depending on substrate depths, 

roof dimension and intensity of use. In comparison, vertical greenery systems are 

differentiated according to the location of greening (rooted on the ground or rooted on the 

wall), the characteristics of the supporting structures and the level of maintenance (Jim, 

2015b; Susorova, 2015). Besides structural attributes, Ottelé et al. (2011) incorporated life 

cycle analysis (LCA) for a comparative study of the functionality of green facades and 

living walls. Mostly, green roofs and vertical greenery system typologies have supported 

studies concerning building energy performance, stormwater benefits, and microclimatic 

effects at fine scales.  
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4.5 Identification of categories and typologies 

4.5.1 Tree canopy 

The classification of tree canopy depends on (a) the functional aspects referring to extent, 

location, hierarchy, land use and purpose; (b) the structural characteristics such as size, 

geometry, type of foliage; and (c) the spatial arrangements (isolated, dense, and aligned) of 

vegetation elements. The differentiation of the tree canopy typologies also depends on the 

geographic context, within or outside the urban boundary, and more importantly, the spatial 

scale of observation. For instance, at the meso scale tree canopy can be classified as 

forestland while at local scale a specific area within could include street trees. This situation 

causes double counting and/or overlapping of typologies across scales. Table 4.9 offers a 

list of typologies identified in the literature and the corresponding spatial scales.  

Table 4.9 List of tree canopy typologies identified by studies. Spatial scales: Me=Meso; Lo=local; Mi=Micro. 

Citation Spatial scale Tree canopy typologies 

Abunnasr (2013) Me, Lo 

1. Street trees / green streets / green 

alleys / road trees / urban tree 

canopy 

2. Street greenways / greenbelts 

3. Street verges / hedges / hedgerows 

4. Shrubs / scrub / bushes 

5. Urban forestry / forest / 

community forests / forestland / 

forest reserves 

6. Woodlands / community 

woodlands 

7. Parkland trees 

Anderson et al. (1976) Me 

Bowler et al. (2010b) Lo, Mi 

Cadenasso et al. (2007);  

Cadenasso et al. (2013) 
Me, Lo, Mi 

Cooper (2010) Me, Lo 

Davies et al. (2006) Me, Lo, Mi 

DEFRA (2008) Me, Lo 

Dunnett et al. (2002) Me, Lo 

Ely and Pitman (2014) Lo, Mi 

EMDA (2010) Me, Lo 

Foster et al. (2011) Lo 

Hunter et al. (2012) Lo, Mi 

Jacobs et al. (2014) Me 

Jim and Chen (2003) Me, Lo 

Landscape Institute (2009) Me, Lo 

Li et al. (2005) Me, Lo 

Llewelyn-Davies (2000) Me, Lo 

Mazza et al. (2011) Me 

Naumann et al. (2011) Me 

Norton et al. (2013);  

Norton et al. (2015) 
Me, Lo, Mi 

OEH (2015) Lo, Mi 

Oke et al. (1989) Me, Lo, Mi 

Pauleit and Duhme (2000) Me, Lo 

Rupprecht et al. (2015) Lo, Mi 

Schilling and Logan (2008) Me, Lo 

Sheate et al. (2012) Me, Lo 

TEP (2005) Me, Lo 

TMF (2010, 2011) Me 

Wilmers (1988) Me, Lo 

Woolley (2006) Me, Lo, Mi 



 

Chapter 4 – Developing a green infrastructure typology for climate studies  |  127 

 

Citation Spatial scale Tree canopy typologies 

Wong and Chen (2010) Lo, Mi 

Zhou, Cadenasso et al. (2014) Me, Lo, Mi 

Arlt et al. (2005) Me, Lo 1. Trees (tall vegetation):  

a. Isolated / scattered / sparse / 

detached / semi-detached 

b. Linear / in rows / aligned / 

connected 

c. Dense clusters (high density)   

d. Grouped (medium and low 

density) 

e. Geometry (ovoid, cylindrical, 

conical, conical inverted, 

spherical) 

2. Shrubs, bushes (medium 

vegetation) 

3. Turf, lawn, meadow (low 

vegetation) 

Höfle and Hollaus (2010) Lo 

Jim (1989) Lo, Mi 

Lehmann (2014) Me, Lo 

Mathey et al. (2010); 

Mathey et al. (2011) a 
Me, Lo 

Ochoa (1999) Mi 

Stewart and Oke (2012) Me, Lo 

Arlt et al. (2005) Me, Lo 

1. Evergreen trees / forest 

2. Deciduous trees / forest 

3. Mixed trees / forest 

4. Vegetated wetland 

Dunnett et al. (2002) Me, Lo 

Liu and Yang (2013) Me 

Ochoa (1999) Mi 

Peters et al. (2011) Me, Lo 

Tooke et al. (2009) Lo 

a  See Table 4.7 for a specific list of typologies. 

4.5.2 Green open spaces and water bodies 

Green open spaces attract the most research attention due to their importance for defining 

planning strategies and interventions. Their classification depends on (a) the spatial scale 

(hierarchy), dimension and location of spaces (urban core versus periphery); (b) their 

primary purposes (land uses/land covers) and intensities of use; (c) accessibility and 

ownership (private versus public); and (d) Biophysical surface characteristics 

(permeability, amount of vegetation cover, thermal attributes). Contrastingly, water bodies 

are commonly neglected since these are usually considered as typologies of green open 

spaces. Table 4.10 lists the different green open space and water body typologies identified 

by studies at different spatial scales. 

The major differentiation of green open spaces emerges from the rural-urban dichotomy 

(criticised by Stewart & Oke, 2012), the identification of land-use types and the different 

scales of resolution. Green open spaces have primarily been distinguished into those within 

urban cores and those beyond the urban periphery, both studied at local- and meso-scales 

(Abunnasr, 2013; Landscape Institute, 2009; Woolley, 2006). Ahern (2007) classifies 

greenspaces according to their spatial dimension into urban patches, corridors and matrix; 

meanwhile Davis (2010) appeals to conservationist approaches, identifying spaces in terms 
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of their connectivity and biodiversity restoration capacities (Mazza et al., 2011; Naumann 

et al., 2011).   

In the UK, the PPG17 guidelines list 17 distinctive types of greenspaces predominantly 

focused on land uses for the implementation of planning policies and the delivery of 

government objectives (ODPM, 2002a, 2002b). The majority of subsequent studies based 

their own typologies on this list, and whether adopting, extending or modifying it, this has 

facilitated the identification of needs and opportunities to broaden the community benefits 

of green infrastructure (Cooper, 2010; DEFRA, 2008; EMDA, 2010; Sheate et al., 2012; 

TMF, 2010). Likewise, the work of Gill et al. (2007) and TEP (2005) applied PPG17 

categories to develop a more complete terminology on green open spaces for North West 

England (Landscape Institute, 2009). 

The intensity of use and level of human intervention has served to discriminate natural and 

designed greenspaces (English Nature, 2003; Lehmann et al., 2014; Mathey et al., 2010; 

Mathey et al., 2011; Pauleit et al., 2003). Typologies derived from this approximation 

resulted from land-cover classifications which have mainly distinguished between hard and 

soft landscapes (pervious and impervious surfaces) (Keeley, 2011; Norton et al., 2013; 

Ochoa, 1999; OEH, 2015; Peters et al., 2011; Wilmers, 1988).   

Likewise, some studies acknowledge the heterogeneity and complexity of built 

environments by incorporating a mix of biotic, semi-natural and man-made elements to 

characterise open spaces as an amalgam of uses, urban biotopes and vegetation features 

(Anderson et al., 1976; Brady et al., 1979; Cadenasso et al., 2007; La Rosa & Privitera, 

2013; Lehmann et al., 2014; Mathey et al., 2010; Mathey et al., 2011; Stewart & Oke, 2012; 

Zhou, Cadenasso et al., 2014). Accessibility and ownership are also applied to discriminate 

and audit different types of open spaces (CBC, 2008; TSG, 2008).  

4.5.3 Green roofs 

Green roofs are a relatively simple category to characterise despite the overlapping 

terminology used by different authors (i.e. eco-roofs, green rooftops, living roofs and 

rooftop gardens) [Table 4.2]. Table 4.11 summarises different studies organised in sub-

groups depending on the typologies that were identified at different spatial scales. The 

identification of typologies depends mainly on spatial extent, dimensions, substrate 

thickness, intensity of use, level of maintenance and vegetation size (Dunnett & Kingsbury, 

2004; Francis & Lorimer, 2011; Oberndorfer et al., 2007; OEH, 2015; Williams et al., 

2010).   
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Table 4.10 List of green open spaces and water bodies typologies identified by studies. 

                    Spatial scales: Me = Meso; Lo = local; Mi = Micro. 

Citation Spatial scale 
Green open spaces / 

water bodies typologies 

Abunnasr (2013) Me, Lo 

I. According to the purpose: 

1. Parks and gardens: country, urban and local 

parks, public & private gardens, courtyards 

2. Natural & semi-natural green spaces:  

woodlands, forests, reserves, heathlands, 

grassland, meadow, conservation land 

3. Greenways, green corridors, ecological 

buffers, green streets/alleys, green wedges, 

cycle paths, pedestrian trails, routes.  

4. Wetlands:  marshlands, intertidal mudflats. 

5. Brownfield land: quarries, wastelands, 

landfills, vacant and derelict land 

6. Amenity green spaces:  recreation grounds, 

sport fields/facilities, golf courses, 

playgrounds, racecourses,  

7. Community green spaces:  allotments, 

community gardens, orchards 

8. Green links, utility areas: roads, rails, power 

lines, drainage-ways, transport corridors 

9. Agricultural land, farms, ranches 

10. Landscaped and incidental areas 

11. Churchyards, cemeteries, burial grounds 

12. Institutional grounds 

13. Civic spaces: squares, plazas, malls, foyers 

14. Built-up areas residential land, multistorey 

buildings, mixed uses, construction sites. 

15. Waterbodies and waterside areas: coasts, 

beaches, seafronts, rivers, canals, ponds, 

lakes, estuaries, swales, ditches 

 

II. According to the scale and location: 

1. Urban periphery  

a.  National-regional  

• Patches, corridors, matrixes 

2. Urban cores  

a.  City-district  

3. Neighbourhood  

a.  Local / parcel  

 

III. According to accessibility/ownership: 

1. Unrestricted 

2. Limited 

3. Not accessible 

Ahern (1995, 2007) Me 

Aldous (2014) Me 

Anderson et al. (1976) Me 

Bell et al. (2007) Me 

Bowler et al. (2010b) Lo, Mi 

Byrne and Sipe (2010) Me, Lo 

CBC (2008) Me, Lo 

CCC (2010) Me, Lo 

Cooper (2010) Me, Lo 

Davies et al. (2006) Me, Lo, Mi 

DEFRA (2008) Me, Lo 

DTLR (2002) Me, Lo 

Dunnett et al. (2002) Me, Lo 

Ely and Pitman (2014) Me, Lo 

EMDA (2010) Me, Lo 

Gill et al. (2007) Me 

Jim and Chen (2003) Me, Lo 

Landscape Institute (2009) Me, Lo 

La Rosa and Privitera (2013) Me 

Li et al. (2005) Me, Lo 

Llewelyn-Davies (2000) Me, Lo 

ODPM (2002a, 2002b) Me. Lo 

Pauleit and Duhme (2000) Me, Lo 

Panduro and Veie (2013) Me, Lo 

Rupprecht et al. (2015) Lo, Mi 

Schilling and Logan (2008) Me, Lo 

Sheate et al. (2012) Me, Lo 

TEP (2005) Me, Lo 

TMF (2010, 2011) Me 

TSG (2008) Me, Lo 

VEAC (2011) Me, Lo 

Wang (2001) Me, Lo 

Wong (2011) Me 

Wong and Chen (2010) Lo, Mi 

Woolley (2006) Me, Lo 
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Brady et al. (1979) Me 

1. Cliff/organic detritus 

2. Derelict/weedy grasslands 

3. Derelict savannah 

4. Mowed grassland 

5. Urban savannah 

6. Abiotic/weedy complex 

7. Urban/forest plantation 

8. Rail-highway/grassland 

9. Remnant ecosystem/natural island 

10.Remnant ecosystem/agricultural island 

11. Lake-stream/aquatic complex 

12. Dump/organic detritus 

Cadenasso et al. (2007); 

Cadenasso et al. (2013) 
Me, Lo, Mi 

According to surface characteristics: 

1. Pervious surfaces (permeable) 

a. Irrigated green space  

b. Non-irrigated green space  

c. Vegetated surfaces (grasslands, 

pasture, crops, forests, fields, 

greenspaces)  

d. Non-vegetated / bare soils / sands / 

snow 

e. Porous pavements 

f. Rain-gardens / biofilters / bioswales 

2. Impervious surfaces (impermeable) 

a. Reflective pavements / hard surfaces  

b. Bare rocks 

3. Water bodies 

a. Vegetated wetlands / wet grounds 

b. Open water / lakes / rivers 

Di Gregorio and Jansen (1998) Me 

English Nature (2003) Me 

Jacobs et al. (2014) Me, Lo 

Keeley (2011) Me 

Liu and Yang (2013) Me, Lo 

Norton et al. (2013); 

Norton et al. (2015) 
Me, Lo, Mi 

Ochoa (1999) Mi 

OEH (2015) Lo, Mi 

Pauleit et al. (2003) Me, Lo 

Peters et al. (2011) Me, Lo 

Stewart and Oke (2012) Me, Lo 

Tooke et al. (2009) Me 

Wilmers (1988) Me, Lo 

Zhou, Cadenasso et al. (2014) Me, Lo, Mi 

Davis (2010) Me 
1. Protected areas 

2. Restoration ones 

3. Sustainable use areas 

4. Green urban and peri-urban features 

5. Natural connectivity features 

6. Artificial connectivity features 

7. Multifunctional zones 

Mazza et al. (2011) Me 

Naumann et al. (2011) Me 

Lehmann et al. (2014) a Me, Lo 

• Main categories: 

1.  Residential sites, mixed-use sites as well 

as industrial, commercial and 

specialized sites 

2. Transport facilities and infrastructure 

3. Green spaces 

4. Urban wastelands 

5. Landfills and quarries 

6. Agricultural sites 

7. Grassland 

8. Trees, shrubs and bushes 

9. Woodland  

10. Near-natural wetlands 

11. Waterside zones 

12. Arid grasslands, heathlands 

13. Open sites 

Mathey et al. (2010); 

Mathey et al. (2011) a 
Me, Lo 

a  See Table 4.7 for a specific list of typologies.  
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Table 4.11 List of green roof typologies identified by studies. 

       Spatial scales: Me = Meso; Lo = local; Mi = Micro. 

Citation 
Spatial 

scale 
Green roofs typologies 

Abunnasr (2013) Lo 

1. Green roofs 

Bowler et al. (2010b) Lo, Mi 

Davies et al. (2006) Lo, Mi 

Ely and Pitman (2014) Lo, Mi 

Keeley (2011) Lo 

Landscape Institute 

(2009) 
Lo 

Mazza et al. (2011) Me 

Naumann et al. (2011) Me 

Schilling and Logan 

(2008) 
Lo 

TMF (2010, 2011) Lo 

Woolley (2006) Lo, Mi 

Dunnett and Kingsbury 

(2004) 
Mi 

1. Green roofs 

a. Intensive green roofs 

b. Extensive green roofs 

• Complete 

• Modular 

• Pre-cultivated vegetation 

blanket  

c. Semi-extensive 

2. Living roofs 

a. Intensive green roofs 

b. Extensive green roofs 

3. Brown roofs 

4. Eco-roofs 

5. Cool roofs 

a. White roofs 

b. Cool coloured roofs 

c. Blue roofs 

Foster et al. (2011) Lo 

Francis and Lorimer 

(2011) 
Mi 

Hunter et al. (2012) Lo, Mi 

Norton et al. (2013); 

Norton et al. (2015) 
Mi 

Oberndorfer et al. (2007) Mi 

OEH (2015) Lo, Mi 

Williams et al. (2010) Mi 

Wong and Chen (2010) Lo, Mi 

 

Intensive and extensive roofs are the two main types recognised by most authors. Intensive 

roofs have deeper substrates and consequently more capacity to sustain larger plant species 

than extensive roofs; and their use depends on this differentiation (Francis & Lorimer, 

2011; OEH, 2015) [Figure 4.2]. Some studies also consider brown roofs (gravel substrates), 

blue roofs (water harvesters) and cool roofs (light coloured roofs) as types within this 

category (Dunnett & Kingsbury, 2004; Francis & Lorimer, 2011; OEH, 2015); although 

this is disputable. Dunnett and Kingsbury (2004) have additionally identified a third 

typology, the semi-extensive roofs (also called semi-intensive), which combines the 

characteristics of intensive and extensive roofs, requiring occasional irrigation and 

moderate maintenance levels.  
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Figure 4.2 Typical cross-sections of intensive and extensive green roofs. 

                         (Redrawn based on Osmond & Sharifi E., 2017). 

4.5.4 Vertical greenery systems 

Key aspects for the classification of vertical greenery system typologies are the structural 

characteristics of supporting systems, the selection and types of plants and the level of 

maintenance required (Jim, 2015b; Susorova, 2015). From a functional perspective, most 

vertical greenery systems studies relate to their climatic effects and indoor or outdoor 

thermal performance benefits at micro scales.  

Vertical greenery systems are commonly divided into two main types as summarised in 

Table 4.12; green facades and living walls. The term green facades refers to vegetation 

rooted on the ground, that make use of either the wall itself for climbing (traditional direct 

systems) or independent supporting systems such as trellis, wires, cables or meshes 

(double-skin indirect systems) affixed to walls. Figure 4.3 provides a graphic representation 

of several typologies of green facades organised according to the type of anchor system 

and planter. 

Conversely, living walls have been made of felt, geotextile, pots, panels or boxes where 

pre-cultivated vegetation has been planted and subsequently suspended and fixed to a larger 

vertical structure; hence, plants are not in contact with the ground. Living walls demand 

more complex construction and imply higher installation and maintenance costs in 

comparison to green facades (Dunnett & Kingsbury, 2004; Francis & Lorimer, 2011; 

Hunter et al., 2012; Kontoleon & Eumorfopoulou, 2010; Ottelé et al., 2011; Pérez et al., 
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2014; Perini et al., 2011; Susorova, 2015; Wong et al., 2010; Wong & Chen, 2010). Figure 

4.4 shows two common types of living walls differentiated in terms of the fixings and 

planter. 

Table 4.12 List of vertical greenery systems typologies identified by studies. 

       Spatial scales: Me = Meso; Lo = local; Mi = Micro. 

Citation 
Spatial 

scale 
Vertical greenery systems typologies 

Abunnasr (2013) Lo 

1. Green facades  

    (rooted on ground / base – extensive) 

a. Traditional direct system (self-

climbing) 

b. Double-skin indirect systems 

• Cable and wire net system 

• Trellis and container system 

• Modular trellis panels 

• Mesh 

 

2. Green walls / living walls  

    (rooted on wall– intensive) 

a.  Felt/Mat System (geo-textiles) 

b.  Modular panel system 

c.  Flowerpots (planter boxes) 

d.  Hydroponic systems 

 

3. Bio-walls (indoor) 

Dunnett and Kingsbury (2004) Mi 

Ely and Pitman (2014) Lo, Mi 

Francis and Lorimer (2011) Mi 

Hunter et al. (2012); 

Hunter et al. (2014) 
Mi 

Kontoleon and Eumorfopoulou (2010) Mi 

Landscape Institute (2009) Lo 

Li et al. (2005) Lo 

Mazza et al. (2011) Lo 

Naumann et al. (2011) Lo 

Norton et al. (2013); 

Norton et al. (2015) 
Mi 

OEH (2015) Mi 

Ottelé et al. (2011) Mi 

Pérez et al. (2011a, 2011b), 

Pérez et al. (2014) 
Mi 

Perini et al. (2011) Mi 

Susorova (2015) Mi 

Wong et al. (2010) Mi 

Wong and Chen (2010)  Mi 

Jim (2015b) Mi 

1. Climber green walls 

a. Wall-toe-substrate 

• In-ground 

    (wall-toe) 

• Hanging planter-

single 

• Ground planter 

• Hanging planter-

serial 

 

b. Training-

system 

• Veneer 

(appressed)       

• Netting (web) 

• Trellis (mesh)                 

• Wirerope 

(cable) 

2. Herb-shrub green walls 

a. Substrate-system 

• Box (pot) 

• Tray (panel) 

• Bag (pocket) 

• Absorbent-layer 

b. Elevated-

substrate 

• Containerized soil 

• Mineral-wool slab 

• Containerized 

mix 

• Geotextile-fabric 

felt 
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Figure 4.3 Several typologies of green facades organised according to the type of anchor system and planter.  

(Redrawn from Osmond & Sharifi, 2017; based on Jim, 2015b; Ottelé et al., 2011 and Susorova, 2015). 
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Jim (2015b) has proposed a more comprehensive typology based on a triple-criteria 

scheme: (a) plant growth-forms, (b) the supporting systems and (c) the substrate systems 

(on ground and elevated) along with wall design factors. The final typology consisted of 

24 possible permutations, used for informing designers and researchers about the 

variations, potentials, and limitations of vertical greenery systems (Jim, 2015b) [Table 

4.12]. 

 

Figure 4.4 Different typologies of living walls differentiated in terms of the type of fixings and planter. 

                   (Redrawn from Osmond & Sharifi, 2017; based on Jim, 2015b; Ottelé et al., 2011 and Susorova, 

2015). 

4.5.5 Other classifications 

Mell (2010) and Young et al. (2014) proposed comprehensive classification frameworks 

instead of focusing on identifying discreet elements and specific typologies [Table 4.13]. 

Both studies addressed a knowledge gap in terms of understanding the different factors and 

possibilities of cataloguing green infrastructure not only based on land uses and purposes, 
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but also in terms of opportunities for intervention (Young et al., 2014), research aims, and 

planning scenarios (Mell, 2010).  

On one hand, Mell (2010) thoroughly analysed Ahern (1995) scale-goal-context approach 

to propose a refined typology where ecological, economic and social aspects have been 

translated into form, function and context [Table 4.13]. Form refers to the physical 

characteristics of vegetation elements, function to the processes and services provided, and 

context to the different influences on urban landscapes. On the other hand, Young et al. 

(2014) classification considers the ecological, political and economic triggers for green 

infrastructure intended to distinguish intervention opportunities based on social and 

ecological systems. Whereas this typology may be more suitable for strategic planning, it 

is limited for identifying vegetation assets for performance-based analysis. 

Table 4.13 List of other types of classification of green infrastructure. 

      Spatial scales: Me = Meso; Lo = local; Mi = Micro. 

Citation Spatial scale Other typologies 

Mell (2010) Me 

A typology classification based on vegetation’s 

1. Form: 

a. Ecological element (physical space, connectivity, 

elements) 

b. Economic (costs of a space, design) 

c. Social & cultural (users of a space, aesthetics of a space, 

motivations) 

2. Function: 

a. Ecological element (biodiversity, conservation) 

b. Economic (industry, business, regeneration) 

c. Social & cultural (education, recreation, health) 

3.Context: 

a. Ecological element (biodiversity, supporting networks, 

ecological mobility) 

b. Economic (costs of a space, economic development, 

sustainability) 

c. Social & cultural (location, facilitations, motivations, 

perceptions) 

Young et al. 

(2014) 
Me 

1. Social system: 

a. Setting: type of social system 

b. Drivers (social components driving GI) 

c. Social production units 

• GI production units 

• GI social configuration of labour 

d. External relationships 

• Upstream relationship 

• Downstream relationship 

2. Ecological system: 

a. Setting: type of ecological system 

b. Drivers (ecological components driving GI) 

c. Cultivated ecosystems 

• GI subparts 

• System 

• Ecosystems connection/relation 

d. External relationships (impact on ESS). 
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4.6 Summary of findings 

A comprehensive classification of green infrastructure is necessary for studying the thermal 

regimes and cumulative cooling effects of biotic and abiotic elements on urban 

microclimate. Accordingly, the systematic review presented in the first half of this chapter 

investigates how different authors identify, characterise and catalogue green infrastructure 

worldwide. 

Present evidence suggests that a universal set of typologies cannot be proposed for all 

scenarios or research purposes. However, most studies grouped green infrastructure 

features into five high-level categories of (a) tree canopy; (b) green open spaces; (c) water 

bodies, (d) green roofs; and (e) vertical greenery systems. In the second half of this chapter, 

these categories are further disaggregated into specific typologies to support the goals of 

the present research. A significant amount of overlapping terminology has created 

ambiguity and loss of clarity when cataloguing green infrastructure. Among the main 

categories, tree canopy and green open spaces concentrate more interest from researchers 

and are more difficult to catalogue due to their inherent complexity. In contrast, living 

architecture such as green roofs and vertical greenery systems are more straightforward to 

classify.  

Defining clear boundaries between the natural and the built world is difficult, a gap in 

knowledge that responds to contrasting views on what constitutes green infrastructure and 

if typologies should be studied individually or holistically. Hence, there is a necessity to 

develop a more robust classification system capable of integrating key principles governing 

green infrastructure, namely (1) dynamic spatio-temporal heterogeneity, (2) connectivity 

(blue-green-grey continuum), and (3) multi-functionality (Ahern, 2007; Bartesaghi Koc, 

Osmond, & Peters, 2017; Cadenasso et al., 2013; Pickett et al., 2017); tailored according 

to specific needs and scopes. 

It is observed that classification of greenspaces is strongly linked to land uses, purposes, 

functions, hierarchy and connectivity. However, land use based classifications are 

insufficient to explain the ecological functioning of vegetated elements and water bodies 

since knowing the purpose of an area does not necessarily explains its climatic functioning 

(Cadenasso et al., 2013). In contrast, the categorisation of trees, green roofs and vertical 

greenery systems is mainly addressed from physical and morphological perspectives.  It is 

strongly suggested that a comprehensive classification scheme should consider a ternary 

classification approach based on the capacities to provide ESS (functional principle), the 

bio-physical attributes (structural principle) and the way elements organise and relate to 
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each other (configurational principle); in line with approaches from Ahern (1995, 2007) 

and Mell (2008, 2010). 

The scope and scale of analysis are crucial when identifying the contribution of different 

typologies in either urban or natural landscapes. For instance, tree canopy and green open 

spaces are mostly studied from meso to local scales, while green roofs and vertical greenery 

systems always concentrate on street canyons and buildings. Moreover, spatial scale is a 

factor influencing the discernibility of vegetation since at large scales the differentiation of 

features and their spatial arrangements is hampered by the lack of detail, leading to the 

homogenisation and generalisation. Hence, sometimes green infrastructure features can be 

classified into more than one category. That is the case of trees which are typically 

described as woodland when forming large clusters studied at meso scale, while linear 

plantations of trees constitute alleys at microscale (Cadenasso et al., 2007; Cadenasso et 

al., 2013; Oke et al., 1989; Stewart & Oke, 2009). 

Accordingly, neglecting or underestimating the influence or hierarchy and scale can lead 

to an erroneous characterisation of green infrastructure (Lehmann et al., 2014; Oke et al., 

1989; Stewart & Oke, 2009). This confirms the necessity of developing a multi-scale and 

multi-purpose typology that contemplates the heterogeneity of green infrastructure and is 

suitable for varied contexts and locations. Remote sensing may be suggested as a time-

effective method that could help map, classify and evaluate highly complex and diverse 

geographic settings in a rapid, standardised and automated way. 

Most studies emphasise the comparison between tree canopy and green open spaces versus 

green roofs and vertical greenery systems, because the latter are engineered features with 

less natural complexity and variability, and because they are partially segregated from 

larger green infrastructure networks. Furthermore, several researchers consider blue roofs, 

brown roofs and cool roofs as additional typologies within the green roof category. On one 

hand, they can provide certain ESS and functions such as climate regulation, while on the 

other hand their biological content or capacity to sustain complex forms of life is 

considerably smaller compared to other types of green roofs and green infrastructure. In 

this sense, future research should concentrate on how to integrate green roofs and vertical 

greenery systems into natural systems/networks in a more holistic manner. Their inclusion 

or exclusion may also depend on the scope and intention of a particular research. 

The rest of this chapter focuses on developing a classification framework and specific 

typologies based on the analysis and the evidence from the current and previous (Chapter 

3) systematic reviews.  
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PART II: Establishing a classification framework and 

typologies to support climate studies
9

 

4.7 Need for a new classification scheme 

No commonly agreed taxonomies and protocols have been proposed yet to confidently 

analyse, report and predict the cumulative climatic effects of different categories of green 

infrastructure (Bartesaghi Koc, Osmond, Peters, & Irger, 2017a, 2017b; Bowler et al., 

2010b; Young et al., 2014); a critical knowledge gap identified in the systematic literature 

reviews presented in Chapters 3 and 4 (Part I). The development of such classification 

scheme is crucial to determine the optimal typologies, amounts and spatial distributions of 

green infrastructure for reducing increased urban temperatures more effectively (Bowler et 

al., 2010b; Zupancic et al., 2015).  

In this regard, the second part of this chapter aims: (1) to define the criteria for classifying 

green infrastructure from a climate-oriented perspective, (2) to formulate a conceptual 

green infrastructure typology (GIT) matrix, and (3) to propose streamlined typologies for 

the automated mapping and classification of green infrastructure based on remote sensing 

data.  

The purpose of developing this GIT is to establish order and conventions to perform a faster 

mapping and classification of large urban areas, facilitate inter-site and inter-typology 

comparisons, facilitate climate predictions and numerical modelling, and enable the 

transferability of results and systematisation of acquired knowledge into standardised 

guidelines. The GIT is also intended to enable a more precise use of terminology and reduce 

vagueness when describing the vegetation conditions of sites under study.  

The new classification system is constructed in four steps: (1) classification criteria are 

defined combining the approaches proposed by the LULC, the LCZ, the HERCULES and 

the UVST schemes; (2) green infrastructure elements are divided into appropriately defined 

classes and sub-classes –based on the procedures defined by Grigg (1965)– for the 

characterisation of urban landscapes and the observation of thermal conditions; (3) a 

conceptual typology is presented in a matrix format resulting from the combination of 

multiple classes and sub-classes; and (4) streamlined typologies are proposed with 

                                                      

9    Versions of Chapter 4 – Part II have been published or have been submitted for publication: 

- Bartesaghi-Koc et al. (2019), Mapping and classifying green infrastructure typologies for climate-related 

studies based on remote sensing data. Urban Forestry and Urban Greening. 

- Bartesaghi Koc et al. (2016), A Green Infrastructure Typology Matrix to Support Urban Microclimate Studies, 

Procedia Engineering, 169, p.183-190. 
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corresponding qualitative (definitions) and quantitative (spatial and surface) descriptors, 

and cut-off values for remotely sensed applications. 

4.8 Classification criteria  

The formulation of a green infrastructure typology (GIT) for climate research entails 

enormous challenges due to the dynamic spatial and temporal heterogeneity of urban 

systems, which precludes a clear identification of types (Cadenasso et al., 2013; Mell, 2010; 

Pickett et al., 2017). According to Grigg (1965) and Stewart (2011b) the formulation of a 

robust and standardised classification system should also satisfy certain requirements. First, 

classifications must propose simple and logical nomenclatures for the elements or 

conditions that are described. Second, the system must facilitate the transferability of 

information and replicability by other users, so they can perform comparative analyses. 

Third, the classification system should enable generalisation, so complex objects or 

conditions can be simplified into classes grouped based on common properties and 

relations. Hence, the differentiating characteristics should be carefully chosen (Grigg, 

1965). Based on the evidence identified and discussed in Chapters 3 and 4, the requirements 

established by Grigg (1965) and the approaches and criteria applied by the LULC 

(Anderson et al., 1976), the LCZ (Stewart & Oke, 2012), the HERCULES (Cadenasso et 

al., 2007) and the UVST (Arlt et al., 2005; Lehmann et al., 2014; Mathey et al., 2011) 

schemes; the classification  system and criteria proposed in this chapter must: 

1. Consider the spatio-temporal heterogeneity, connectivity (blue-green-grey spectrum), and 

multi-functionality of green infrastructure by including natural, semi-natural and man-

made features. 

2. Be sufficiently flexible to allow the optimum number of typologies and the aggregation of 

additional types in the future. 

3. Be broadly accessible for a broad spectrum of users with different skill levels, from novices 

to experts. 

4. Be simple, manageable and easily understood by users from different disciplines. 

5. Be repeatable and objectively measurable by incorporating functional, morphological and 

configurational properties to ensure that classifications can be performed with the same 

accuracy and consistency by other users and in other contexts. 

6. Be generic (standardised) and testable at different spatial scales and urban settings; and not 

dependent on land uses or socially-constructed factors.  

7. Be suitable for use with remote sensing data. 
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4.9 Classification by logical division 

A standardised classification scheme requires the division of green infrastructure into a 

hierarchy of classes [Figure 4.5]. Each rank (or level) of classes is a set or category where 

association of elements can be done according to similarity and contiguity on the basis of 

common attributes and relationships. These principles were proposed by Grigg (1965) and 

applied by Stewart (2011b) and Stewart and Oke (2009, 2012) for the development of the 

LCZ scheme. 

For purposes of this research, the association by similarity refers to the grouping of 

individuals from the universe (or objects) based on common inherent bio-physical 

characteristics. For instance, there exist obvious differences between a plant (i.e. tree) and 

the soil in which it grows. This is the type of association applied in initial stages of 

classifications. On the other hand, the association by contiguity refers to functional and 

structural relationships (configurations) among assets of the urban landscape; which may 

be either similar or dissimilar. This type of association is usually established at later stages 

of classifications (Grigg, 1965). 

In accordance with the LCZ, UVST and HERCULES classification schemes, the urban 

green infrastructure –considered as the universe class– can be divided into three main 

groups of elements that provide distinct thermal functions to the urban climate; namely, 

vegetation layers, ground surfaces, and building structures (Cadenasso et al., 2007; 

Cadenasso et al., 2013; Erell et al., 2011; Lehmann et al., 2014; Stewart, 2011b; Zhou, 

Cadenasso et al., 2014) [Figure 4.5 – Figure 4.6]. 

The vegetation layers comprise a series of stratified natural features such as herbaceous 

plants, shrubs, trees and climber species of different height and shape (Lehmann et al., 

2014; Mathey et al., 2011) that contribute to the modification of airflow, air/surface 

temperatures, transpiration rates and shading potential. The ground surfaces and building 

surfaces comprise a combination of natural and/or man-made objects and surfaces that offer 

biophysical support for the growth of vegetation and contribute with different values of 

evaporation, moisture and permeability to the modification of surface temperatures and the 

microclimate near the ground (Erell et al., 2011; Stewart, 2011b; Stewart & Oke, 2009) 

[Figure 4.6].  Subsequently, the vegetation layers can be divided into ground vegetation 

and climbing vegetation; ground surfaces into terrestrial surfaces and aquatic surfaces; 

and building structures into roof structures (rooftops of buildings) and vertical structures 

(indoor and outdoor walls) [Figure 4.5].  
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Figure 4.5  Logical division of urban green infrastructure according to the climatic function, structural   

properties and spatial relationship of its elements for the formulation of typologies. 

      (Modified after Bartesaghi Koc et al., 2016) 
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At the next levels of the hierarchy the division into classes and sub-classes (in parenthesis) 

obeys different morphological factors. Ground vegetation can be sub-divided according to 

vegetation height into low, medium, and high; and climbing vegetation can be sub-divided 

in terms of the length of climbers into short and tall.  

Terrestrial surfaces can be differentiated in terms of permeability, water content and 

presence of ephemeral and vegetative attributes into impervious surfaces (natural and 

artificial), and pervious surfaces (porous pavements, bare soils, non-irrigated and 

irrigated). Similarly, aquatic surfaces can be differentiated in terms of the presence of 

plants into vegetated (wetlands) and non-vegetated (open water) surfaces. 

Roof structures are sub-divided according to the extension, substrate depth, intensity of use 

into intensive, semi-intensive, extensive classes; and each of them into vegetated and semi-

vegetated sub-classes. Finally, vertical structures are sub-divided in terms of the location 

of vegetation and type of supporting structure into living walls rooted on walls (panel/geo-

textile, elevated box) and green walls rooted on the ground (direct system, indirect system). 

Figure 4.5 depicts all the stages involved in the logical division of green infrastructure. 

 

Figure 4.6 Spatial conceptualisation of five high level categories of green infrastructure resulting from the 

combination of vegetation layers, ground surfaces and building structures.  

(Modified from Bartesaghi Koc, Osmond, & Peters, 2017 and Bartesaghi Koc et al., 2016) 

When considering the principle of contiguity (Grigg, 1965), the resulting classes and sub-

classes can be combined in different ways and spatial arrangements to give rise to specific 

typologies that can be grouped into the five level categories identified in this chapter 

[Figure 4.6]. These typologies are further defined and described in the following section. 
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4.10 Conceptual green infrastructure typology (GIT) matrix 

Hereafter, all the combinations of classes and sub-classes that emerge from the logical 

division of green infrastructure is called green infrastructure typology (GIT). The proposed 

conceptual GIT encompasses a total of 14 classes and 16 sub-classes organised in a double-

entry matrix [Figure 4.7]. The y-axis comprises five classes corresponding to the vegetation 

layers plus a no vegetation class; while the x-axis encompasses the remaining 9 classes and 

16 sub-classes corresponding to ground surfaces and building structures.  

The matrix allows the combination of classes and subclasses from both axes with a 

maximum of 108 permutations; however, not all combinations exist in reality. In Figure 

4.7 it can be observed the most probable combinations organised like in a periodic table of 

elements. The matrix also enables the recombination of different permutations aimed at 

representing the complex heterogeneity of urban landscapes. In essence, all proposed 

typologies are self-explanatory and compatible with existing terminology as per Table 4.2 

and the five high level categories previously identified earlier in this chapter. 

In detail, ground vegetation (GV) comprises three classes (low, medium and high 

vegetation), while climbing vegetation (CV) consists of 2 classes (short and tall climbers). 

Terrestrial surfaces (TS) are constituted by two classes (impervious and pervious) and six 

sub-classes; while aquatic surfaces (AS) include two classes (vegetated and non-vegetated) 

[Figure 4.7].  

Roof structures (RS) are constituted by three classes (intensive, semi-intensive and 

extensive) and six sub-classes; while vertical structure (VS) includes two classes (living 

walls and green facades) and four sub-classes. In addition, to represent areas totally lacking 

in green assets, a section of no vegetation has been included at the bottom of the matrix 

[Figure 4.7]. 

Besides the differentiation of vegetation layers, four types of spatial arrangements have 

been proposed according to Lehmann et al. (2014) and Mathey et al. (2011). These can be 

found in the lower-right corner of the table and correspond to aligned, scattered, clustered, 

and dense.  

Given the simple and flexible nature of the conceptual matrix, this enables the addition, 

subtraction and recombination of typologies according to specific purposes and site 

conditions. Hence, the nomenclature is governed by names rather than codes; those that 

obey a set of conventions described below.  
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Figure 4.7  Proposed conceptual green infrastructure typology (GIT) as a double-entry matrix. 

(Modified after Bartesaghi Koc et al., 2016). 
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1. The nomenclature starts with the ground surface or building structure sub-/class chosen 

from the x-axis (i.e. impervious) followed by a vegetation layer class (if applicable) from 

the y-axis (i.e. shrubs) preceded by the word ‘with’. For example, this is the case of the 

‘Impervious with trees’ typology. 

2. If applicable, vegetation layers classes may be also preceded by a spatial arrangement 

descriptor (i.e. ‘irrigated grasses with aligned trees’). 

3. A combination of sub-classes is also allowed, in which case the word ‘and’ must be added.  

For instance, a possible typology can be ‘Non-irrigated grasses with shrubs and scattered 

trees’. 

4. Fine-grain typologies may be required to represent smoother transitions from one landscape 

condition to another. In case the typology comprises a combination of ground surfaces; the 

word ‘Mostly’ should be used before the most dominant one. For example, ‘Mostly 

impervious with grasses and scattered trees’. If a dominant surface cannot be clearly 

identified the term ‘Mixed’ might be used instead (i.e. Mixed surfaces or Mixed grasses). 

This sort of typologies is presented in the streamlined and practical version of this matrix; 

which is described in the next section. 

4.11 Streamlined green infrastructure typology for remotely 

sensed applications  

Mapping and classifying GITs with distinctive functional behaviour requires defining a 

spatial unit characterised by morphological and configurational descriptors as well as 

determining specific threshold values given the large variability of surface fractions and 

possible permutations that each typology can contain. To respond to this need, a 

streamlined GIT for remote sensing applications is introduced in this section [Figure 4.8]. 

This GIT particularly focuses on the green open spaces, tree canopy and water bodies 

categories; and is tested and validated in Chapters 6 and 7.  

This simplified version comprises 34 GITs representing the grey-green-blue spectrum that 

are organised in four subgroups of GITs: (a) impervious, (b) mixed, (c) pervious, and (d) 

aquatic [Figure 4.8]. The GITs are individually named, ordered and coded based on surface 

properties and height of vegetated features for an easy identification and standardised 

comparison.  
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Figure 4.8 Streamlined green infrastructure typology (GIT) for remotely sensed applications. 

 

The impervious subset consists of 6 GITs (IM1 – IM6) characterised by a large proportion 

of impermeable surfaces (i.e. roads, pavements, ballast, bitumen) and buildings of various 

characteristics with scarce vegetated features and permeable surfaces.  
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The mixed subset comprises 10 GITs (MX1-MX10) characterised by a large variety of land 

covers and structures. Within this subset, odd numbered GITs (i.e. MX1, MX3) encompass 

a mixture of natural and man-made surfaces; while even numbered GITs (i.e. MX2, MX4) 

are only comprised of natural components.  

The pervious subset encompasses 11 GITs (PV1-PV11) where odd numbered GITs (i.e. 

PV1, PV5), excepting PV11, are constituted by non-irrigated surfaces; while even 

numbered GITs (i.e. PV6, PV8) are constituted by irrigated surfaces.  

The aquatic subset consists of 7 GITs (AQ1-AQ7) which are either open water (AQ1) or 

include different proportions of greenery and pavements (AQ3 to AQ7). The latter are 

meant to characterise transitional conditions between terrestrial and aquatic surfaces (i.e. 

coastlines, shorelines, and riversides).  

The differentiation between ground surfaces (impervious, non-irrigated pervious, irrigated 

pervious, water)  and vegetation layers (shrubs and trees) is essential as each element has 

specific bio-physical and thermal properties that contribute in different ways to the energy 

budget of a place and to the modification of airflows, amount of shading and 

evapotranspiration (Erell et al., 2011; Oke, 1988b; Oke et al., 1989).  

Thus, the streamlined GIT applies a morphological-based approach combining different 

remotely sensed data such as spectral imagery (multi-/hyper-spectral) and LiDAR. It 

emphasises the distinction between irrigated and non-irrigated pervious surfaces as water 

content significantly influences the photosynthetic activity and evapotranspirative capacity 

of plants, and consequently their thermal and radiative effects on near-surface air (Erell et 

al., 2011; Oke et al., 1989; Oke, 1992).  In the present research, irrigated pervious surfaces 

correspond to all types of well-irrigated low plants (grasses, turf, lawn) no higher than 0.5 

m; while non-irrigated pervious surfaces refer to permeable bare-soil and drought tolerant 

low plants (<0.5m) without artificial irrigation.   

However, the estimation of the proportion of different land cover types is not sufficient for 

a comprehensive thermal analysis since the local climate may also be affected by the height 

of vegetation layers and the patterns of tree coverage (Bowler et al., 2010b; Lehmann et 

al., 2014).  

For example, a continuous and compact row of trees can provide more substantial shading 

and function as a windbreak compared with a discontinuous line of small trees that tends 

to be more permeable (Erell et al., 2011; Heisler & Dewalle, 1988; Stathopoulos et al., 

1994). A comparable situation occurs between clustered and dispersed trees even though 
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they account for the same proportion of a greenspace, since the former tend to trap more 

heat underneath the canopy at night than the latter (Bowler et al., 2010b; Lehmann et al., 

2014; Stewart & Oke, 2009).  

Configurational parameters can be estimated using LiDAR data and landscape metrics. 

FRAGSTATS metrics are typically utilised to assess landscape composition and 

configuration of greenspaces that can affect ecological processes (McGarigal, 2015). 

Accordingly, the GIT differentiates between low (<0.5m), medium (0.5-2.0m) and high 

(>2m) vegetation and combines two FRAGSTATS indices to distinguish between 

scattered, aligned, clustered, and dense trees: the related circumscribing circle (area-

weighted mean) or CIRCLE_AM, and the normalised landscape shape index (nLSI) 

(McGarigal et al., 2002).  

On the one hand, CIRCLE_AM provides a measure of the overall elongation and 

narrowness of a patch in relation to the whole landscape (or grid in our case), so it is used 

to distinguish aligned trees from other arrangements. The index ranges between zero and 

one (0≤ CIRCLE_AM <1), where a rounded patch corresponds to a value approaching to 

zero while a narrow and linear patch has a high index value (McGarigal, 2015).  

On the other hand, nLSI is a metric measuring the level of aggregation or clumpiness of 

features, hence, it is used to distinguish between scattered and clustered trees. Values also 

range from zero to one (0≤ nLSI <1) where zero corresponds to a single and maximally 

compacted patch and the index value increases as the patch becomes increasingly 

disaggregated and randomly dispersed (McGarigal, 2015). Both indices are unitless and 

not affected by the grain size or spatial resolution of imagery, resulting in standardised 

metrics that can be applied across multiple spatial scales and grid sizes.  

Qualitative descriptions (definitions) and quantitative classification parameters and cut-off 

values for all GITs are presented in Table 4.14.  A complete overview of all GITs is 

presented in Appendix E. Whereas values of surface cover descriptors are based on 

modified values defined by  Bartesaghi Koc, Osmond, Peters et al. (2018), Irger (2014) and 

Stewart and Oke (2012); values for landscape metrics were determined after multiple tests 

using Jenks optimization method (Jenks, 1967) and decimal values adjusted according to 

the local context.   



 

150  |  Streamlined green infrastructure typology for remotely sensed applications 

Table 4.14 Overview of quantitative and qualitative descriptors for all the 34 green infrastructure 

typologies (GITs) proposed.   

GIT Definition 

Surface fractions [%] Configuration 
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IMPERVIOUS GITs 

IM1 Highly impervious 

 

Extensive built-up land with little 
or no grasses and shrubs; few or 
no trees. Abundance of buildings 
of different heights and 
arrangements (open and close), 
paved areas, roads and bare 
rocks. 

>75 ≤ 25 ≤ 25 ≤ 25 ≤ 25 ≤ 25 - - 

IM2 Mostly impervious with grasses 

 

Treeless built-up land with 
abundant pavements and/or 
buildings with different heights 
and arrangements. Few and 
sporadic herbaceous plants and 
mix of irrigated and non-irrigated 
grasses.  

>50 ≤75 < 50 < 50 ≤ 25 ≤ 5 ≤ 25 - - 

IM3 Mostly impervious with shrubs 

 

Built-up land with abundant 
pavements and/or buildings with 
different heights and 
arrangements. Few and sporadic 
bare soil, grasses, and small 
trees. Extensive shrubbery and 
hedges. 

>25 ≤75 < 40 < 40 >25 ≤50 ≤25 ≤ 25 - - 

IM4 Mostly impervious with aligned trees 

 

Built-up land with abundant 
pavements and/or open 
arrangement of buildings with 
different heights. Few bare soils, 
and grasses with poorly- to well-
structured trees in rows.  

>50 ≤75 < 40 < 40 ≤ 25 >5 ≤40 ≤ 25 ≥ 0.61 < 0.25 

IM5 Mostly impervious with scattered trees 

 

Built-up land with abundant 
pavements and buildings with 
different heights and 
arrangements. Individual or few 
dispersed trees with sporadic 
bare soils, grasses, and 
shrubbery.   

>50 ≤75 < 40 < 40 ≤ 25 >5 ≤25 ≤ 25 < 0.61 > 0.065 

IM6 Mostly impervious with clustered trees 

 

Built-up land with extensive 
pavements and open 
arrangement of buildings with 
different heights. Small clusters 
of small, medium or large trees; 
bare soils, grasses and 
shrubbery. 

>50 ≤75 < 40 < 40 ≤ 25 >5 ≤40 ≤ 25 < 0.61 ≤ 0.065 
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GIT Definition 

Surface fractions [%] Configuration 
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MIXED GITs 

MX1 Mostly non-irrigated grasses with impervious 

 

Treeless landscape with sparsely 
distributed pavements and small 
or medium-sized buildings. 
Abundance of non-irrigated 
plants, dry grasses, bare soils 
and sporadic paving.  

>25 ≤50 > 50 ≤ 25 ≤ 25 ≤ 5 ≤ 25 - - 

MX2 Mostly irrigated grasses with impervious 

 

Treeless landscape with sparsely 
distributed pavements and small 
or medium-sized buildings. 
Abundance of well-irrigated and 
healthy grasses, with sporadic 
shrubbery and paving. 

>25 ≤50 ≤ 25 > 50 ≤ 25 ≤ 5 ≤ 25 - - 

MX3 Mixed surfaces without trees 

 

Treeless landscape with sparsely 
distributed pavements and small 
or medium-sized buildings 
interspersed with non-irrigated 
and irrigated plants, bare soils 
and shrubbery. 

>25 ≤50 ≤ 50 ≤ 50 ≤ 25 ≤ 5 ≤ 25 - - 

MX4 Mixed grasses and bare soils 

 

Treeless greenspace of 
extensive natural covers 
including non-irrigated and 
irrigated grasses, bare soils, and 
shrubbery is spots. 

≤ 25 ≤ 75 ≤ 75 ≤ 25 ≤ 5 ≤ 25 - - 

MX5 Mixed surfaces with aligned trees 

 

Lightly to moderately wooded 
landscape with aligned trees 
surrounded by sparsely 
distributed pavements, small or 
medium-sized buildings, non-
irrigated and irrigated grasses, 
bare soils and shrubbery. 

>25 ≤50 ≤ 50 ≤ 50 ≤ 25 >5 ≤50 ≤ 25 ≥ 0.61 < 0.25 

MX6 Mixed grasses with aligned trees 

 

Lightly to moderately wooded 
greenspace with well-structured 
aligned trees surrounded by non-
irrigated and irrigated grasses, 
bare soils and sporadic 
shrubbery.  

≤ 25 ≤ 50 ≤ 50 ≤ 25 >5 ≤75 ≤ 25 ≥ 0.61 < 0.25 

MX7 Mixed surfaces with scattered trees 

 

Lightly wooded landscape with 
individual or few trees 
interspersed by pavements and 
small or medium-sized buildings, 
non-irrigated and irrigated 
grasses, bare soils, and sporadic 
shrubs. 

>25 ≤50 ≤ 50 ≤ 50 ≤ 25 >5 ≤50 ≤ 25 < 0.61 > 0.065 
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GIT Definition 

Surface fractions [%] Configuration 
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MX8 Mixed grasses with scattered trees 

 

Lightly wooded greenspace with 
individual or few dispersed trees 
surrounded by extensive non-
irrigated and irrigated grasses, 
and sporadic bare soils, and 
shrubbery. 

≤ 25 ≤ 50 ≤ 50 ≤ 25 >5 ≤75 ≤ 25 < 0.61 > 0.065 

MX9 Mixed surfaces with clustered trees 

 

Moderately wooded landscape 
with small and medium trees 
arranged in medium-sized 
clusters surrounded by sparsely 
distributed pavements, small-
sized buildings, non-irrigated and 
irrigated grasses, bare soils, and 
shrubbery. 

>25 ≤50 ≤ 50 ≤ 50 ≤ 25 >5 ≤75 ≤ 25 < 0.61 ≤ 0.065 

MX10 Mixed grasses with clustered trees 

 

Moderately wooded greenspace 
with mature and tall trees 
arranged in medium and large-
sized clusters surrounded by 
non-irrigated and irrigated 
grasses, bare soils, and 
shrubbery in spots. 

≤ 25 ≤ 50 ≤ 50 ≤ 25 >5 ≤75 ≤ 25 < 0.61 ≤ 0.065 

PERVIOUS GITs 

PV1 Mostly non-irrigated grasses 

 

Featureless greenspace of 
extensive non-irrigated plants, 
dry grasses, sands, bare soils 
and sporadic shrubbery. 

≤ 25 > 75 ≤ 25 ≤ 25 ≤ 5 ≤ 25 - - 

PV2 Mostly irrigated grasses 

 

Featureless greenspace of 
extensive well-irrigated grasses, 
and sporadic shrubbery. 

≤ 25 ≤ 25 > 75 ≤ 25  ≤ 5 ≤ 25 - - 

PV3 Mixed grasses with shrubs and trees 

 

Greenspace with individual or 
small group of trees, sporadic 
shrubbery and abundance of 
non-irrigated and irrigated 
grasses, bare soils and sands. 

≤ 25 < 60 < 60 >25 ≤50 ≤ 50 ≤ 25 - - 

PV4 Mostly shrubs 

 

Greenspace with close 
arrangement of bushes, shrubs 
and small trees interspersed with 
grasses and bare soils. Few or 
no trees.  

≤ 25 < 50 < 50 > 50 ≤ 25 ≤ 25 - - 
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GIT Definition 

Surface fractions [%] Configuration 

T
o

ta
l i

m
p

er
vi

o
u

s 
[F

r_
T

ot
_I

m
p]

 

N
o

n
-i

rr
ig

at
ed

 
g

ra
ss

es
 

[F
r_

Lo
w

_N
IR

] 

Ir
ri

g
at

ed
  

g
ra

ss
es

 
[F

r_
Lo

w
_I

R
R

] 

S
h

ru
b

s 
[F

r_
M

ed
_V

eg
] 

T
re

es
 

[F
r_

H
ig

h_
V

eg
] 

T
o

ta
l w

at
er

 
[F

r_
T

ot
_W

at
] 

C
IR

C
L

E
_A

M
 

n
L

S
I 

PV5 Mostly non-irrigated grasses with aligned trees 

 

Lightly to moderately wooded 
greenspace with well-structured 
aligned trees surrounded by non-
irrigated grasses, dry plants, bare 
soils, sands and sporadic 
shrubbery. 

≤ 25 > 50 < 40 ≤ 25 >5 ≤50 ≤ 25 ≥ 0.61 < 0.25 

PV6 Mostly irrigated grasses with aligned trees 

 

Lightly to moderately wooded 
greenspace with well-structured 
aligned trees surrounded by well-
irrigated grasses, and sporadic 
shrubbery. 

≤ 25 < 40 > 50 ≤ 25 >5 ≤50 ≤ 25 ≥ 0.61 < 0.25 

PV7 Mostly non-irrigated grasses with scattered trees 

 

Lightly wooded greenspace with 
individual or few dispersed trees 
surrounded by extensive non-
irrigated grasses, and sporadic 
bare soils, sands and shrubbery. 

≤ 25 > 50 < 40 ≤ 25 >5 ≤50 ≤ 25 < 0.61 > 0.065 

PV8 Mostly irrigated grasses with scattered trees 

 

Lightly wooded greenspace with 
individual or few dispersed trees 
surrounded by extensive well-
irrigated grasses, and sporadic 
shrubbery. 

≤ 25 < 40 > 50 ≤ 25 >5 ≤50 ≤ 25 < 0.61 > 0.065 

PV9 Mostly non-irrigated grasses with clustered trees 

 

Moderately wooded greenspace 
with mature and tall trees 
arranged in large clusters 
surrounded by non-irrigated 
grasses, bare soils, and sporadic 
shrubbery. 

≤ 25 > 50 < 40 ≤ 25 >5 ≤50 ≤ 25 < 0.61 ≤ 0.065 

PV10 Mostly irrigated grasses with clustered trees 

 

Moderately wooded greenspace 
with mature and tall trees 
arranged in large clusters 
surrounded by well-irrigated 
grasses, healthy plants and 
sporadic shrubbery. 

≤ 25 < 40 > 50 ≤ 25 >5 ≤50 ≤ 25 < 0.61 ≤ 0.065 

PV11 Dense trees with shrubs and grasses 

 

Heavily wooded greenspace with 
mature, tall and dense trees, 
extensive shrubbery, and variety 
of grasses and bare soils. 

≤ 25 ≤ 25 ≤ 25 ≤ 75 > 75 ≤ 25 - - 
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GIT Definition 

Surface fractions [%] Configuration 
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AQUATIC GITs 

AQ1 Water 

 

Large open water bodies with few 
or no presence of vegetation. 

≤ 25 ≤ 25 ≤ 25 ≤ 25 ≤ 25 > 75 - - 

AQ2 Mostly water with grasses 

 

Treeless waterfront landscape 
with minimal presence of 
herbaceous plants, grasses, 
reed-beds and shrubbery. 

≤ 25 < 40 < 40 ≤ 25 ≤ 5 >50 ≤75 - - 

AQ3 Mostly grasses with water 

 

Treeless waterfront landscape 
with moderate presence of tall 
herbaceous plants, grasses, 
reed-beds and mature shrubbery. 

≤ 25 < 60 < 60 ≤ 25 ≤ 5 >25 ≤50 - - 

AQ4 Mixed surfaces with water 

 

Waterfront landscape with 
moderate presence of pavements 
and small buildings, herbaceous 
plants, grasses, and sporadic 
shrubbery and small trees. 

>25 ≤50 ≤ 50 ≤ 50 ≤ 25 ≤ 25 >25 ≤75 - - 

AQ5 Water with aligned trees 

 

Lightly to moderately wooded 
waterfront landscape with poorly 
to well-structured trees in rows, 
and presence of herbaceous 
plants, grasses, and sporadic 
shrubbery. 

≤ 25 < 40 < 40 ≤ 25 >5 ≤75 >25 ≤75 ≥ 0.61 - 

AQ6 Water with scattered trees 

 

Lightly wooded waterfront 
landscape with individual or few 
dispersed trees and moderate 
presence of herbaceous plants, 
grasses, and sporadic shrubbery. 

≤ 25 < 40 < 40 ≤ 25 >5 ≤40 >25 ≤75 < 0.61 - 

AQ7 Water with clustered trees 

 

Moderately wooded waterfront 
landscape with medium and large 
clusters of mature and tall trees 
and presence of herbaceous 
plants, grasses, and sporadic 
shrubbery. 

≤ 25 < 40 < 40 ≤ 25 > 40 >25 ≤75 < 0.61 - 
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4.12 Summary  

The comparison of the thermal benefits provided by different typologies of green 

infrastructure across varied urban contexts is of great importance in climate research. 

However, there is a lack of classification frameworks and commonly agreed protocols to 

describe and compare the vegetation characteristics under study. 

Several approaches for assessing the microclimatic conditions of urban greenery have been 

discussed in theory and practice, particularly the LULC (Anderson et al., 1976), LCZ 

(Stewart, 2011b; Stewart & Oke, 2012), HERCULES (Cadenasso et al., 2007) and UVST 

(Lehmann et al., 2014; Mathey et al., 2011). In this chapter, approaches, parameters and 

criteria of the above-mentioned schemes are combined to propose a new classification 

framework for identifying and cataloguing green infrastructure assets from a climatological 

perspective.  

This new scheme requires the logical division of green infrastructure into three main 

groups: vegetation layers, ground surfaces and building structures, which are subdivided 

into classes and sub-classes. These are combined in a double-entry matrix to generate a 

conceptual green infrastructure typology (GIT). This GIT is capable to represent the 

continuity and heterogeneity of urban landscapes at different locations and spatial scales. 

A set of conventions are introduced for the nomenclature of typologies to ease the inter-

site and inter-typology comparison and reporting. Furthermore, the GIT has been 

conceptually conceived to work in line with the LCZ scheme if necessary. Although this 

scheme is essentially intended for climate-related studies, it is sufficiently flexible to be 

applied for other performance-based analyses.  

No classification scheme can represent precisely and accurately the complex characteristics 

of urban landscapes. Thus, a streamlined GIT is specifically developed for remotely-sensed 

applications. This includes surface parameters, landscape metrics, and their corresponding 

threshold values. Although classification parameters and thresholds respond to a specific 

method and context, the scheme is flexible and can be equally applied to other locations 

with modifications where necessary.  

Methods for the computation of variables and the automated classification based on 

remotely-sensed data are presented in Chapter 5; and validated in Chapters 6, using Sydney 

as case study. The streamlined GIT is aimed at supporting the analysis of thermal 

conditions of green infrastructure and for LST predictions; the results of these analyses are 

presented in Chapter 7 and discussed in Chapter 8.  



 

156  |  Summary 

 

 

 

 

 

 

 

 

 



 

Chapter 5 – Research methodology  |  157 

 

 

 

Chapter 5  

Research methodology10 

This chapter outlines the methodological framework that is implemented in this research, 

which is aimed at answering the research questions and achieving the aims and objectives 

outlined in the introductory chapter. This is also intended to tackle important knowledge 

gaps identified in the literature. The present methodology draws on the theoretical 

background discussed in Chapter 4 and the approaches, methods and parameters reviewed 

in Chapters 3 and 4.  

5.1 The methodological framework 

The methodological framework presented here, requires identifying pertinent dependent 

and independent variables and corresponding data sources, defining adequate data 

acquisition protocols and designing a logical workflow for its implementation based on the 

reviewed literature. These aspects are summarised and described in the following sections. 

5.1.1 Dependent and independent variables 

Based on the theoretical assumptions discussed in Chapters 1 and 2 and the review of 

common variables of investigation conducted in Chapters 3 and 4, the following dependent 

and independent variables have been identified for this research.  This selection was guided 

by the research aims and considered available resources (equipment and funding), data 

sources, and technical expertise for data processing and analysis. Table 5.1 presents a 

                                                      

10 Versions of Chapter 5 have been published or have been submitted for publication: 

- Bartesaghi Koc, C., Osmond, P., Peters, A. (2019), Mapping and classifying green infrastructure typologies for 

climate-related studies based on remote sensing data. Urban Forestry and Urban Greening. 

- Bartesaghi Koc, Osmond, Peters et al. (2018), Understanding land surface temperature differences of Local 

Climate Zones based on airborne remote, Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing (JSTARS). 

- Bartesaghi Koc, Osmond, Peters, and Irger (2017a) A methodological framework to assess the thermal 

performance of green infrastructure through airborne remote sensing, Procedia Engineering, 180, p. 1306-1315. 

- Bartesaghi Koc, Osmond, Peters, and Irger (2017b) Mapping Local Climate Zones for urban morphology 

classification based on airborne remote sensing data. In 2017 Joint Urban Remote Sensing Event (JURSE) (p. 1–

4). IEEE Xplore. 
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detailed list of variables and their corresponding units, abbreviations and symbols. Detailed 

descriptions of the methods and procedures for the computation of these variables are 

provided in Chapter 6, as these depended on the type of data collected and the conditions 

for each case study. 

Table 5.1  List of dependent and independent variables selected for the present research 

Variables Type Indicator 
Abbreviation 

/ symbol 
Unita 

Dependent Climatological Diurnal surface temperature DAY_Ts °C 

Nocturnal surface temperature NIG_Ts °C 

Independent Functional Normalised difference vegetation 

index 

NDVI  

Morphological Fraction of total impervious 

(buildings and ground) 

Fr_Tot_Imp % 

Fraction of impervious building Fr_Imp_Bld % 

Fraction of impervious ground Fr_Imp_Grnd % 

Fraction of non-irrigated low 

vegetation (grasses) 

Fr_Low_NIR % 

Fraction of irrigated low vegetation 

(grasses) 

Fr_Low_IRR % 

Fraction of medium vegetation 

(shrubs) 

Fr_Med_Veg % 

Fraction of high vegetation (trees) Fr_High_Veg % 

Fraction of total water  Fr_Tot_Wat % 

Altitude Alt m 

Configurational 

(FRAGSTATS) 

Related circumscribing circle 

(area-weighted mean) 

CIRCLE_AM  

Normalised landscape shape index nLSI  

a. Unitless indicators are blank 

5.1.2 Data sources  

As defined in previous chapters and in line with the aims of this dissertation, airborne 

remote sensing has been selected as an ideal tool for investigating the relationships between 

diurnal and nocturnal surface temperatures (dependent variables) and independent 

variables corresponding to functional, morphological and configurational attributes of 

green infrastructure at the local scale (Bartesaghi Koc, Osmond, Peters, & Irger, 2017a). 

This is because airborne-based analysis (1) enables capturing the thermal and physical 

conditions of a diversity of urban landscapes simultaneously in a single mission, and in 

very high resolutions (0.5-2m); (2) allows the identification of individual landscape 

elements and surfaces that are essential for an accurate, precise and detailed analysis of 



 

Chapter 5 – Research methodology  |  159 

 

highly heterogeneous conditions at the local scale; and (3) provides the necessary flexibility 

in prescribing the flight times and flight paths according to the requirements of this 

research. The advantages and limitations of this methodology are further discussed in 

Chapter 8.  

 

Figure 5.1 Schematic overview of dependent (red) and independent (green) variables derived from their 

corresponding data sources (dark grey). Complementary ground-based data (blue) may be 

incorporated if available or necessary. 

Figure 5.1 presents a schematic overview of the most essential dependent, independent and 

intervening variables [as per Table 5.1] and how these can be derived from airborne-based 
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data sources. A detailed review of the data sources relevant to this research (listed below) 

is presented in Section 3.8.2. Procedures for the collection, and pre-/post-processing of 

datasets to compute each variable are described in Chapter 6. Besides airborne-based data, 

cadastral data provide auxiliary information about the shape, geometry and location of 

private and public parcels (or lots) that is required for the generation of building footprints. 

Additionally, complementary air temperature measurements may be used for cross-

validation to ensure accurate LST estimations from remotely-sensed thermal imagery. This 

should be taken on the ground at the time that flights are deployed. For this research, 

ground-based measurements obtained from car transects were only available for winter and 

did not cover the total extent of the study area. Given the focus of this thesis on LST, and 

the lack of sufficient data for summer, air temperature measurements were obviated; 

however, they are recommended for studies documenting surface-air temperature 

correlations.  

5.1.3 Airborne-based data acquisition protocols  

Following a review of studies (Coutts et al., 2016; Harris & Coutts, 2011; Irger, 2014), a 

set of specifications is proposed for data acquisition that can be applied irrespective of 

geographic locations; even so, flight protocols depend on several temporal, meteorological 

and sensor requirements (Harris & Coutts, 2011; Irger, 2014). A summary of 

abovementioned requirements and specifications are presented in Table 5.2. 

Temporal considerations 

Most severe UHIs are likely to happen during summer after several days of continuous 

heatwave; however, such warming conditions may be more desirable in winter as this 

reduces energy demand used for heating (Irger, 2014).  

The best time to study the thermal profiles of vegetation, collect spectral imagery and study 

SUHIs is during the day, especially around noon given the high angle and intensity of the 

sun which enables capturing the maximum surface temperatures with minimal shading 

effects (Harris & Coutts, 2011; Roth, 2012).  

Contrastingly, UHIs within the urban canopy layer are usually more pronounced at night-

time, especially in the early morning (pre-dawn) when surfaces have lost the maximum 

amount of radiative energy and the urban-rural thermal differences are greatest (Coutts et 

al., 2016; Harris & Coutts, 2011; Irger, 2014). Nocturnal flights may also be beneficial 

since surface to air temperature correlations are stronger at night due to higher atmospheric 
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stability, and the lack of building shade and traffic flows contributing to the anthropogenic 

heat (Harris & Coutts, 2011). 

Furthermore, flight paths and times should focus on areas suffering excessive urban 

warming and should ideally be undertaken during periods of two to three consecutive hot 

days. Missions should be brief (<60 minutes) to avoid large temperature differences 

between locations (Coutts et al., 2016; Harris & Coutts, 2011).  

Nevertheless, some degree of flexibility when allocating the flight times and duration is 

needed to reduce the risk of missing suitable opportunities. The acquisition of LiDAR data 

can be carried out either simultaneously or separately from the TIR and spectral imagery; 

however, this must correspond to the same period/season to prevent changes caused by the 

vegetation phenology. 

Table 5.2  Summary of protocols for the acquisition of airborne remotely sensed and ground-based data. 

      Modified after Coutts et al. (2016) and Harris and Coutts (2011). 

Flight time • Seasons: Summer and winter.  

• Day-time flights: At the time of maximum solar exposure 

(around noon), between 12:00h – 15:00h.  

• Night-time flights: Ideally pre-dawn between 03:00h – 05:00h. 

Flights around midnight, between 23:00h – 2:00h are also useful 

and more practical in certain conditions. 

Flight duration • Ideally <60 minutes.  Possibly between 60 – 120 min. 

Flight altitude • Constant altitude during the whole flight, between 1000 and 3000 

metres. 

Sensors and resolution • Best resolution between 0.5 – 5.0 metres. Thermal camera, 

LiDAR scanner and hyper-spectral camera (preferable); multi-

spectral camera is also useful.    

Meteorological conditions • Preferable 2 – 3 consecutive hot days. 

• Clear skies. 

• Low or no wind speeds (< 5ms-1). 

• No precipitation 3 – 5 days prior observations. 

Ground validation 

(conditional) 

• Canopy layer observations concurrently with flights.  

• Mobile transects (with a GPS tracker) and/or fixed 

meteorological stations across the whole study area. 

• All instruments must be installed between 1 – 2 metres above the 

ground. 

Meteorological conditions 

Successful data collection requires suitable meteorological conditions. Clear skies are 

essential since cloud cover may obstruct the aircraft’s sensors. Cloudy skies hinder 

capturing accurate thermal imagery by irregularly shading the ground at daytime and 

preventing long-wave radiative cooling at night-time (Harris & Coutts, 2011).  
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Similarly, low or no wind speeds are preferable as high velocities increase surface cooling 

effects, reduce atmospheric stability, and cause air turbulence (Harris & Coutts, 2011; 

Irger, 2014; Oke, 1992). Increasing wind speeds may also affect the accuracy of thermal 

data and prevent optimal correlations between air and surface temperatures due to 

microscale advection conditions. Another crucial factor is that study areas must not have 

experienced any precipitation three to five days prior to the flights as this can alter 

estimations and distort surface temperatures. 

Sensor requirements 

The type of sensors and altitude of flights are important to determine the spatial resolution 

of imagery and corrections required, that also depend on the type of analysis. It is 

recommended to use very high-resolution imagery (<2m) for the identification of 

individual elements and surfaces and for a more precise and accurate thermal analysis of 

green infrastructure at local and micro scales.  

Additionally, airborne-based measurements can be complemented by concurrent ground-

based monitoring (Coutts et al., 2016; Harris & Coutts, 2011). Mobile transects can be used 

to obtain a good spatial coverage of canopy layer conditions and should include a GPS 

tracker, meanwhile fixed meteorological stations can be used if higher temporal resolutions 

are required. In both cases, devices must be placed between one to two metres above the 

ground.  

5.1.4 Workflow and implementation  

This section presents the overall workflow for the implementation of the proposed 

methodological framework [Figure 5.2], which draws on a method developed by Irger 

(2014), modified and tested by (Bartesaghi Koc, Osmond, Peters et al., 2018; Bartesaghi 

Koc, Osmond, Peters, and Irger (2017b) and Bartesaghi Koc, Osmond, Peters, and Irger 

(2017a).  

In the first place, the airborne-based data collection campaign must be arranged as per the 

protocols outlined in the previous section [Table 5.2]. In particular, this requires the control 

of intervening climatological variables [see Table 3.3] as these have a considerable 

influence on the thermal performance of green infrastructure and the variability of UHIs. 

Accordingly, measurements must be conducted in calm, clear and dry conditions to reduce 

the confounding effects of wind (especially sea breezes), cloud cover and rainfall. A 

detailed description of the flights, the extent of the case study and the data collected are 

provided in Chapter 6. 
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Figure 5.2  Schematic representation of the implementation of the methodological framework and list of relevant data 

sources and variables. 

Based on Bartesaghi Koc, Osmond, Peters, and Irger (2017a). 
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Secondly, a DEM is calculated from LiDAR data to determine the altitude of ground 

surfaces; while a DSM is applied in conjunction with cadastral data to identify and extract 

building footprints. After performing the necessary orthorectification, atmospheric and 

radiometric corrections, a NDVI image is derived from spectral data to extract different 

surface types (impervious, pervious, water) using a simple threshold NDVI classification 

analysis and implementing the Jenks optimization method (Jenks, 1967) for defining 

thresholds according to the literature. To improve and validate spectral-based extractions 

and discriminate between grasses, shrubs and trees, LiDAR data is utilised to extract 

medium and high vegetation. Pre- and post-processing of collected data for the calculation 

of initial airborne-based products is presented in Chapter 6.  

Once land covers (as raster images) have been extracted from LiDAR and spectral data, all 

surface fractions are computed using zonal statistics in ArcGIS® (ESRI, 2012); and values 

assigned to grids of 50x50m. The size of grids has been defined after applying a sensitivity 

analysis which is presented in Chapter 7. The high vegetation raster is used in 

FRAGSTATS 4.2 software (McGarigal et al., 2002) to calculate CIRCLE_AM and nLSI 

values for all grids. After estimating independent variables, grids are automatically 

classified into GITs according to the threshold values defined in Table 4.14 (Chapter 4). 

The workflow and steps for the computation of all variables and automated classification 

of grids are summarised in Chapter 6. 

For the purpose of this research, only a portion of the total extent of the case study is 

selected for accuracy assessment due to time and resource constraints. To assess the 

accuracy of classification results, independent validation data for ground-truthing are 

selected using very high resolution (0.5m) aerial images. Four quality indices are employed 

to evaluate the accuracy of predictions. The producer accuracy (PA), the user accuracy 

(UA), the overall accuracy (OA) and, the kappa coefficient. Then, a percentage of the total 

number of classified grids per typology are chosen for accuracy assessment through a 

confusion matrix using a stratified random sampling method. To reduce flaws in the 

assessment, the percentage of grids for validation was increased for typologies with an 

insufficient number of samples. In addition, the classification learner app available in 

Matlab® software (MathWorks, 2017b) is applied to assess the predictability of the 

classification scheme using various supervised machine learning classifiers (i.e. decision 

trees, discriminant analysis, support vector machines). Further details on the 

implementation of each method and the results of accuracy evaluations are presented in 

Section 7.2.3. 
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The next step in the methodology involves the computation of absolute LSTs using a 

normalised emissivity method (NEM) [Eq. 3.1] (Gillespie, 2015; Realmuto, 1990) 

assuming a constant emissivity value of 0.96 for each channel (see Section 3.8.2.1). This 

approach enables reliable and rapid estimations that can be easily implemented by 

researchers with varied skill levels. As with spectral data, TIR imagery has to be 

orthorectified, and corrected for atmospheric and radiometric errors. Further information 

on the computation of LSTs is provided in Chapter 6. 

As per LCZ-related analyses, the statistical analysis in this research is based on the initial 

assumption that GITs should exhibit mean LST distinct from each other (Bartesaghi Koc, 

Osmond, Peters et al., 2018; Geletič et al., 2016). Hence, average diurnal and nocturnal 

LST (in both summer and winter periods) are estimated for each GIT using zonal statistics 

in ArcGIS® (ESRI, 2012). The statistical significance of variances is evaluated with the 

Welch’s one-way ANOVA test; while post hoc tests are used for pairwise comparisons of 

means to identify statistically significant differences between GITs. 

Before applying ANOVA, normality tests using the Kolmogorov-Smirnov tests, Q-Q plots, 

histogram comparisons and test of homogeneity of variances (Levene’s test) are carried out 

for the assessment of assumptions. These tests are also utilised to analyse the statistical 

distribution and spatio-temporal patterns and seasonal differences of mean LSTs. 

Additionally, the cooling capacity of each GIT is estimated (1) to identify the coolest and 

warmest typologies, and (2) to analyse the temporal (diurnal versus nocturnal) and seasonal 

(summer versus winter) differences of mean LST. Correlational analysis is complementary 

applied to examine the strength of the relationship between different vegetation-related 

variables (i.e. NDVI, imperviousness) and the cooling capacities of typologies.  

In the last stage, preceding analyses lead to the development of a statistical model for the 

prediction of average surface temperature using the independent variables computed for 

GITs as predictors. To find the best predictive model(s), various statistical methods are 

tested and compared, such as the classic multiple linear regression (MLR) using an ordinary 

least squares (OLS) model; the spatial autoregressive models such as spatial error model 

(SEM) and spatial lag model (LAG) (Anselin, 1995, 2005); the artificial neural network 

(ANN) method; and the adaptive neuro-fuzzy inference system (ANFIS). The results of all 

statistical tests are provided in Chapter 7. 
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5.2 Summary 

This chapter outlines the overall methodological framework that is applied in the thesis and 

draws on the theoretical background presented in Chapter 2, the systematic review of 

methods and indicators described in Chapter 3 and incorporates the classification system 

proposed in Chapter 4. 

Airborne remote sensing and numerical modelling have been identified as ideal tools for 

mapping, quantifying and examining the cooling effects of green infrastructure at the local 

scale in a precise, accurate, reliable, and time-effective manner. Information on the data 

collection and specific data processing methods required for the implementation of this 

framework are presented in Chapter 6; while results of its application in a case study located 

in Sydney, Australia are provided in Chapter 7. Although this methodology has been 

developed for a specific context and goals, it can be equally replicated for similar 

researches in other urban settings.  
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Chapter 6  

Data collection and 

data processing11 

Initially, this chapter describes the location, extent, physical characteristics and climate of 

the study area. Next, it documents the equipment and procedures utilised for the collection 

of datasets through airborne remote sensing, as well as the meteorological conditions 

experienced during the flight campaign. Finally, it presents the pre- and post-processing 

methods applied for the calculation of variables required for subsequent analysis.  

6.1 Case study area 

The methodological framework defined in Chapter 5 has been implemented in two related 

case studies of the Sydney metropolitan area [Figure 6.1], corresponding to summer and 

winter seasons. The morphological characteristics, vegetation abundance, climate, UHI 

conditions and sporadic extreme weather events (i.e. heatwaves, droughts) of Sydney are 

advantageous for the data acquisition and study of the cooling capacities of green 

infrastructure in different seasons and times of the day. 

Due to prohibitive costs, time constraints, logistic problems (i.e. adequate weather and air 

traffic conditions) and limited resources for the acquisition of airborne-based imagery of 

desirable areas, the selection of case studies mainly responds to data availability. Although 

both case studies differ in terms of data acquisition times, extent, and climatic conditions, 

the selected study area represents a cross section of distinct green infrastructure typologies, 

typical urban morphologies and varied microclimate conditions of the Sydney metropolitan 

area. 

                                                      

11  Versions of Chapter 6 have been published or have been submitted for publication: 

- Bartesaghi Koc, C., Osmond, P., Peters, A. (2019), Mapping and classifying green infrastructure typologies 

for climate-related studies based on remote sensing data, Urban Forestry and Urban Greening. 

- Bartesaghi Koc, Osmond, Peters et al. (2018), Understanding land surface temperature differences of Local 

Climate Zones based on airborne remote, Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing (JSTARS). 

- Bartesaghi Koc, Osmond, Peters, and Irger (2017b), Mapping Local Climate Zones for urban morphology 

classification based on airborne remote sensing data. In 2017 Joint Urban Remote Sensing Event (JURSE) 

(p. 1–4). IEEE Xplore. 
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Figure 6.1 Map of main geographical features, location of case studies and spatial coverage of the 

datasets within the Sydney metropolitan area. 
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6.1.1 Geographic location and climate 

The study area is located within the greater metropolitan area of Sydney which is the capital 

of the state of New South Wales (NSW) and the largest and most densely populated city in 

Australia, with a population of 4.8 million distributed across 12,368 km2
 (ABS, 2017). 

Sydney is located on the south-eastern coast of the country (33°45’S latitude) and is made 

up to 43 local councils (2011 subdivision) that have been amalgamated into 30 since this 

research was conducted; hence, the content of this thesis refers to pre-amalgamation 

conditions. 

The geography of Sydney is characterised by coastal conditions, and it is located in a basin 

bordered by the Pacific Ocean to the east, the Blue Mountains to the west, the Woronora 

Plateau to the south and the Hawkesbury River to the north. Sydney sprawls over two major 

geographical regions: the hilly Hornsby Plateau towards the North which elevates up to 

200 metres and is dissected by steep valleys; and the relatively flat Cumberland Plain 

which extends towards the South and West of Sydney Harbour (Department of the 

Environment and Energy, 2018) [Figure 6.1].  

The Nepean River originates in the southern side of the Woronora Plateau and wraps 

around the western fringe of the city. The south and southwest areas of Sydney are drained 

by the Georges River, which rises near Appin, flows north towards Liverpool and finally 

turns east towards Botany Bay. Another major tributary of Botany Bay is the Cooks River 

which runs throughout the inner-south western suburbs from Strathfield South to Wolli 

Creek (near Sydney International Airport). Parramatta River is another important water 

course –which main tributaries are the Toongabbie Creek and Hunts Creek– that flows into 

Port Jackson, commonly known as Sydney Harbour. Lane Cove River and Middle Harbour 

Creek are other major tributaries that flow into the same harbour (WaterNSW, 2018) 

[Figure 6.1]. 

In general, Sydney exhibits mixed urban form dominated by low and medium density (to a 

lesser degree) areas interspersed with greenspaces, brownfield, industrial land and transport 

facilities (such as railway corridors). Compact, dense and high-rise structures are mainly 

located in the central business district (CBD) (A) in the eastern side, City of Parramatta (B) 

in the western side, and North Sydney (C) and Chatswood (D) in the northern side [Figure 

6.1]. The largest forested areas and greenspaces typically concentrate along the rivers and 

creeks mentioned above that are usually low-lying. 

According to the Köppen-Geiger climate classification, Sydney has a humid subtropical 

(Cfa) climate with cool winters and warm summers (Bureau of Meteorology, 2017; Kottek 
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et al., 2006). The annual monthly average temperature registered by Observatory Hill 

weather station in Sydney’s CBD ranges from 16.4°C to 26.0°C according to the average 

data estimated between 1859 to 2018 (BOM, 2018). 

 The mean daily maximum and minimum air temperatures vary between 25.9°C during the 

summer (January) and 8.1°C during the winter (July). January is typically the warmest 

month with an average daily air temperature fluctuating between 18.7 °C and 25.9°C and 

the highest recorded maximum of 45.8°C. Contrastingly, July is commonly the coldest 

month with temperatures usually staying above 5°C with the lowest recorded minimum 

temperature of 2.1°C (BOM, 2018). 

However, inland Western suburbs exhibit daily average maximum and minimum 

temperatures that are considerably higher than those of Sydney CBD (2°-5°C), with an 

average of 45.5 days per year with temperatures falling above 30°C (BOM, 2018). These 

conditions are significantly influenced by wind speed and direction, and coastal proximity 

as the effect of sea breeze decreases towards inland western suburbs (Santamouris et al., 

2017). The cooling effect of wind is normally less pronounced on calm days as well as in 

locations further than two kilometres from the coastal border (Irger, 2014). In average wind 

speeds range from 11.5 to 14 km/h at a height of 10 m, but these values largely vary across 

the region (Spagnolo & Dear, 2003a).  

Average rainfall patterns follow a similar east-west gradient, with higher mean annual 

rainfall towards the coast (above 1500 mm/annum) and the north shore around Turramurra 

(above 1400 mm/annum) (BOM, 2018). 

6.1.2 Vegetation conditions 

Multiple biomes including rainforests, wet/dry sclerophyll forests, grassy woodlands, 

heathlands, and freshwater, forested and saline wetlands can be found across the Sydney 

metropolitan region (Office of Environment and Heritage, 2018).  

The plant communities in the Sydney metropolitan area (Cumberland Plain) are 

predominantly dry and wet Sclerophyll forests. These plants are characterised by perennial 

hard leaves, short internodes (distance between leaves and stem) and leaf oriented parallel 

or oblique to sunlight. Common wet sclerophyll plant species within the study area include 

the forest red gums, blue gums, boxes, iron barks, peppermints, karrabina, mahoganies, 

eucalyptus and green-leaved ashes (OEH, 2018).  The most dominant native plant species 

in Sydney are the eucalyptus trees, which possess narrow, relatively tall, and dense 

canopies (10-30 metres height) and are usually found in open woodlands with dry shrubs 
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and sparse grasses in the understory. Estuaries and riparian zones are characterised by 

swamp oaks, common reeds and mangroves (OEH, 2018).  

6.1.3 Case study 1: Summer 

The first case study, corresponding to the summer season, comprises the inland Western 

suburbs within the Parramatta City Council (PCC)12 local government area (LGA) covering 

a total area of 61.33km2. Parramatta is situated 19 km from Sydney’s CBD and is 26km 

from the coast. It is a prominent and major business and commercial centre, that was settled 

by the British in 1788, and it is popularly regarded as the second CBD of the Sydney 

metropolitan area (Domain, 2016).   

Over the last 40 years, the Western Sydney suburbs have experienced exacerbated urban 

warming and a significant rise in the number of extreme temperature events such as 

heatwaves. These are particularly stronger in Parramatta, as well as in Blacktown, Camden, 

Liverpool, Penrith and Richmond LGAs. For instance, the number of days over 35°C has 

considerably increased since 1965 (Beshara, 2018). These patterns are also consistent with 

the considerable increase in population and new urban development that Parramatta has 

been experiencing in recent decades.   

Compared to the coastal suburbs, Parramatta exhibits a hotter climate as it is not influenced 

by the cooling easterly sea breezes, especially during the afternoon when air temperatures 

reach their maximum values (Osmond & Sharifi, 2017). Moreover, this hotter climate may 

be also exacerbated by occasional western hot winds coming from the desert.  For example, 

a maximum temperature difference of up to 9°C between PCC and Sydney’s CBD was 

recorded on a hot summer day (around 1pm) in January 2017 (BOM, 2018; Hannam, 2017).  

The morphological composition of Parramatta also plays a key role in defining particular 

microclimate conditions across the LGA. Parramatta’s suburbs predominantly lie on the 

Cumberland Plain; hence, they exhibit a relatively flat topography with a number of ridges 

towards the north-eastern portion of the area [Figure 6.2]. Accordingly, since it is situated 

in a rain shadow due to the hills to the northeast, it tends to be drier than coastal areas and 

less green than the hilly Northern suburbs. Typically, summer rainfall is lower than in 

autumn and higher than winter and spring, with a monthly average rainfall in summer 

ranging between 73 to 121 mm (Osmond & Sharifi, 2017). 

                                                      

12  Currently named as City of Parramatta Council.  
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Figure 6.2 Location, extent, and main morphological characteristics of case study 1. 
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Like the vast majority of Sydney, Parramatta is dominated by low and medium density 

residential suburbs characterised by semi-detached and detached dwellings on medium 

sized lots featuring gardens and sporadic trees. Streets are generally wide and dominated 

by asphalt, and paved driveways with sparse trees and grasses [Figure 6.2].  

However, over the last few decades average plots sizes have shrunken, size of houses 

increased, and minimum setbacks reduced as part of state government policies to increase 

density and affordability (City of Parramatta, 2018; Irger, 2014). Furthermore, the 

Parramatta CBD is currently undergoing a significant transformation due to unprecedented 

levels of private and public investment, triggered by state and federal government and 

property developers (City of Parramatta, 2018).  

On the other hand, the areas located in the central core and along the Parramatta river 

(Clyde, Northmead, Parramatta CBD, Rosehill, Rydalmere, and Westmead) mainly 

comprise compact and highly dense commercial zones, largely paved low-rise precincts, 

brownfield land, heavy industry (i.e. refinery, waste facilities, factories, warehouses) and 

railway facilities with scarce or no vegetation [Figure 6.2].  

Most parkland and greenspaces are located towards the north and northeast of the LGA 

along the main tributaries of Parramatta River; the Toongabbie Creek and Hunts Creek. 

Lake Parramatta, located in the northern edge, is an important recreational area and nature 

reserve surrounded by extensive bushland and forest. Parramatta Park is another major 

greenspace which is adjacent to the River and the Parramatta Stadium and close to the 

CBD. There are also a number of golf courses to the North (Oatlands) and South 

(Woodville, Rosnay), and medium and small parks sparsely distributed across the whole 

LGA, and along the Parramatta River and creeks [Figure 6.2]. 

Based on previous facts, Parramatta possesses many physical characteristics and climate 

conditions that make it an ideal case study to assess the thermal performance of green 

infrastructure, especially in summer and during extreme temperature conditions. The 

sampling intensity of the summer case study is defined by the number of GITs or grid cells 

classified using the frameworks proposed in Chapters 4 and 5 (see Sections 6.3 and 7.2 for 

further information).   
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6.1.4 Case study 2: Winter 

Since airborne-based imagery corresponding to the winter season were not available for 

Parramatta LGA, a second case study within the Sydney metropolitan region was chosen 

from the data collected for a similar research (see Irger, 2014 ).  

This comprises two longitudinal strips: one over the Sydney’s northern suburbs with a 

swath length of 25.7km and varying width (0.8-1.5km), covering an area of 44.6km2; and 

a second strip over the southern suburbs with an average swath width of 1.9km and a length 

of 23.4km, covering an area of 31.93km2 [Figure 6.3]. The shape, extent and path of both 

strips respond to the flight transects defined by Irger, 2014; progressing from the coast 

inland.  

On the one hand, the southern strip comprises multiple LGAs and extends from Sydney’s 

CBD towards the southwest middle ring suburbs of the Sydney metropolitan area. Like 

Parramatta, the topography of this area is relatively flat, low-lying and contains relatively 

compact residential areas interspersed by pockets of green. Major greenspaces concentrate 

along the Cooks River and near Centennial Park [Figure 6.3].  

Contrastingly, the northern strip presents a steep and rough topography with extensive and 

dense tree canopy (forest, reserves) and higher vegetation content in residential areas 

(mature trees, larger gardens and parks) than its southern counterpart. Greenspaces are also 

mostly concentrated along rivers and creeks [Figure 6.3].  

In summary, the morphological characteristics of the second case study are varied and 

include: (1) extensive parkland, bushland, or forestland; (2) open low-/mid-rise zones of 

detached houses with large gardens and matures trees; (3) compact mid-/high-rise areas 

with few vegetation (mostly street trees, roadside verges and small parks) typical of city 

centres; (4) large mid-/low-rise and industrial areas (i.e. factories, warehouses, shopping 

malls); (5) compact low-rise zones of terraced and semi-detached houses; and (6) highly 

paved transport facilities (i.e. Bankstown airport, central station) [Figure 6.3].   

In addition, both strips cover a sufficient number and variety of vegetation types and 

abundance, topography, distances to the coast and local climate conditions to investigate 

the cooling effects of green infrastructure in winter and across different urban contexts. 

The sampling intensity of the winter case study is defined by the number of GITs or grid 

cells classified using the frameworks proposed in Chapters 4 and 5 (see Sections 6.3 and 

7.2 for further information).   
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Figure 6.3 Location, extent, and main morphological characteristics of case study 2.  
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6.2 Airborne data collection and pre-processing 

For this research, four main datasets were employed separately for each case study (summer 

and winter), namely TIR imagery, hyper-/multi-spectral data (including aerial images), 

LiDAR data, and cadastral data as listed in Chapter 5 (Section 5.1.2). The spatial coverage 

of datasets for each case study are shown in Figure 6.1.  

6.2.1 Summer data collection 

On January 2013, Spatial Scientific Inc. undertook a thermal and multispectral imaging 

survey commissioned by the PCC in the context of an UHI-related project. Due to technical 

problems, the data collection was repeated and completed on February 2013 in similar 

meteorological and temporal conditions as those outlined in Chapter 5. The airborne 

campaign was carried out with a Piper Comanche 250 single-engine aircraft that flew at 

average ground speeds of 120 to 140kn. 

Initially, it was planned to acquire thermal and multispectral imagery on 17 and 18 January 

2013 as weather conditions were favourable with maximum air temperatures of 31.2°C and 

45.5°C respectively (BOM, 2018). On the afternoon of 17 January multispectral imagery 

was captured between 2:48 and 3:26pm EDT13 at a flight height of 10000 ft (3048m) above 

ground level. The aircraft departed from Bankstown aerodrome at 2:20pm and landed at 

3:41pm EDT. The acquisition took place under clear skies and with light northerly winds. 

Maximum air temperatures of 32.5°C and 26°C were recorded the days preceding the flight 

without rainfall, except for 14 January that recorded 12mm of rain (BOM, 2018).  

On the evening of 17 January thermal imagery was captured at an altitude of 6000ft 

(1829m) between 11:18pm and 1:10am EDT on 18 January. The data was also captured 

under adequate weather conditions. However, on the 18 January the acquisition of day-time 

thermal imagery was suspended due to extreme temperatures (45.7°C) that damaged the 

traffic control radar and prevented the aircraft from entering controlled airspace. To 

complete the data acquisition and ensure the best quality in terms of temporal requirements, 

both day-time and night-time thermal imagery were acquired on 8 February 2013, which 

was the hottest day of the month with 34°C. The day was cloudless and calm, with light 

northerly winds and no precipitation 72 hours prior to the flight. Maximum air temperatures 

recorded the days preceding the flight ranged between 26°C and 30°C (BOM, 2018). 

                                                      

13  Eastern Daylight Time (EDT) 
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Figure 6.4 Extent of the airborne diurnal and nocturnal thermal images acquired in summer. 
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Figure 6.5 Diurnal thermal imagery of representative sites in summer captured around 1pm on 8 

February 2013. 
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Figure 6.6 Nocturnal thermal imagery of representative sites in summer captured around 1am on 

9 February 2013. 
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The day-time image was captured at an altitude of 10000ft (3048m) between 1:36 and 

2:20pm EDT. The aircraft departed Bankstown aerodrome at 1:06pm and landed at 2:35pm 

EDT. The night-time image was acquired at a flight height of 6000ft (1829m) between 

11:24pm and 12:58am EDT. The aircraft departed Bankstown aerodrome at 11:13pm and 

landed on 9 February at 1:11am EDT.  

Several overpasses were carried out across the LGA to secure the best quality of images 

and the adequate number of swaths to avoid missing information. Adjacent flight swaths 

were scanned consecutively rather than in a continuous loop to minimise temperature 

differences among distinct locations that may be caused by the time lag of scans. All multi-

spectral and thermal swaths were mosaicked and cropped using the LGA as boundary.  

Thermal imagery 

Diurnal and nocturnal thermal data were collected using a FLIR A615 thermal camera that 

measured surface brightness temperature with a thermal accuracy of ±2°C or ± 2% of 

reading, and a broad field of view (FOV) of 80° x 64.4° (92.8° diagonal). At a flight height 

of 3048m the day-time thermal recording produced an image with a spatial (pixel) 

resolution of 2.11m; while at an altitude of 1829m the night-time thermal recording 

produced an image with a spatial resolution of 1.20m. The spatial coverage of both TIR 

images is shown in Figure 6.4. 

The pre-processing of recorded images was performed by the remote sensing contractor 

which included the following procedures: (1) the ortho-rectification and geo-referencing 

using aerial photography; (2) the calculation of LSTs using constant emissivity value; (3) 

resampling images to 1m pixel resolution (16 bits per pixel); (4) the continuous mosaicking 

and cropping of images using the LGA as boundary; (5) aligning and projecting rasters to 

GDA 1994 MGA Zone 56 projected coordinate system; and (6) the creation of look-up 

tables with temperatures in Kelvin and Celsius degrees.    

To estimate absolute LSTs the contractor applied a NEM model  (Gillespie, 2015; 

Realmuto, 1990) assuming a constant emissivity value of 0.96 for all channels based on 

measured radiances. The maximum of those temperatures (TNEM) is considered as the 

absolute LST for a given pixel as per Eq. 3.1 described in Section 3.8.2.1. 

Detailed samples of diurnal and nocturnal thermal images are presented in Figures 6.5 and 

6.6.  These will also serve as representative sites for the reminder of the airborne-based 

products and data processing steps conducted in this research. It is worth mentioning that 

since thermal images only provide a bird’s eye view of the study area, surfaces beneath the 
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tree canopy and building facades are not considered in the analysis of results presented in 

Chapter 7. 

Multi-spectral imagery 

Airborne multi-spectral data were acquired on 17 August 2013 as per the flight plan 

detailed in Section 6.2.1 using a SpecTerra’s HiRAM sensor (Serial 0502). The sensor 

recorded short-wave radiation in four bands (16-bit integers): blue (450nm), green 

(550nm), red (670nm) and NIR (780nm); with a spatial resolution of 0.8m.  

 

Figure 6.7 Extent of the airborne-based multispectral imagery acquired in summer 2013 presented as a NDVI 

image. 

The data were pre-processed by the contractor using SpecTerra’s proprietary image 

processing software and included the following procedures: (1) the geometric corrections 

of spectral swaths, (2) the radiometric corrections to reduce errors in the digital numbers 

and remove illumination effects, (3) mosaicking swaths into a single continuous image 

covering the extent of the LGA; (4) resampling images to 1m pixel resolution, and (5) 

projecting rasters to GDA 1994 MGA Zone 56 projected coordinate system.  
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The data were delivered by the contractor as a continuous multi-spectral true colour (RGB) 

image and a separate multi-spectral false colour infrared (CIR) image (NIR, Green, Red 

bands), instead of a single image with four bands and bandwidths. Figure 6.7 shows the 

spatial coverage of the multispectral data presented as a NDVI raster created using the NIR 

and Red bands from both images (see Section 6.3 for details). 

LiDAR data 

LiDAR data were not collected in the flight campaign organised by the PCC. Hence, 

LiDAR point clouds, known as LAS datasets, were acquired from the ELVIS – Elevation 

Foundation Spatial Data portal managed by Geoscience Australia (2018). 

The acquisition of LiDAR data over the Sydney metropolitan area was undertaken by the 

‘spatial services’ division of the New South Wales Land and Property Information (LPI) 

service14. The mission was conducted between 10 and 24 April 2013 at an average flying 

height of 1530m from east to west. It employed a Leica ALS50-II (S/N: 101m) sensor 

scanner that generated LAS tiles of 2 x 2km with an average point density of 1.57/m2 and 

nadir point density of 1.03/m2. The LAS data have a spatial horizontal accuracy of 0.8m 

and spatial vertical accuracy of 0.3m at 95% confidence. A metadata statement for these 

LiDAR datasets is provided in Appendix C. 

Table 6.1 Standard point classification of LiDAR data based on LPI protocols. (Modified after Land Property 

Information, 2015) 

No. Point class Description No. Point class Description 

0 Unclassified Created, never classified  7 
Low high 

points 

Spurious high/low point 

returns (not useable) 

1 Default Unclassified 8 
Model key 

points 

Reserved for ‘Model 

Key Points’ 

2 Ground Bare ground 9 Water Any point in water 

3 
Low 

vegetation 
0 – 0.3m vegetation  10 Bridge Any bridge or overpass 

4 
Medium 

vegetation 
0.3 – 2m vegetation 11 Not used 

Reserved for future 

definition 

5 
High 

vegetation 
>2m vegetation 12 

Overlap 

points 
Flight line overlap points 

6 Building Houses, shed, etc. 13-31 Not used 
Reserved for future 

definition 

 

The LAS datasets were pre-processed and points clouds classified as per the LPI’s Category 

3 (C3) classification level which included manual ground correction of misclassified points 

(LPI, 2015). LiDAR point clouds were classified by LPI’s operators according to the 

American Society of Photogrammetry and Remote Sensing (ASPRS) guidelines, which are 

                                                      
14 Currently named as New South Wales Land Registry Services as a division of NSW Finance, Service and Innovation. 
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presented in Table 6.1. Model key points (MKP) and intensity images of 0.5m of spatial 

resolution for all point returns were also supplied along with the LAS datasets. All datasets 

were projected to GDA 1994 MGA Zone 56 projected coordinate system.  

During the classification process, several anomalies or issues were identified by LPI which 

include: (1) interpolation lines can be observed across water courses when a DEM/DSM is 

generated using a triangulation process; (2) dropout from the sensor due to close proximity 

between the ground and the scanner (not present within the study area); (3) edges of 

buildings (particularly pitched roofs) misclassified as vegetation; (4) linear surfaces in tree 

canopy were misclassified as buildings; and (5) presence of spurious points over water 

caused by excessive solar glare and intense reflection.  

A DSM of 1m spatial resolution was generated from the LAS datasets and is presented in 

Figure 6.8 to illustrate the spatial coverage of the LiDAR data retrieved for the case study 

1. Figure 6.9 presents three-dimensional representations of classified point cloud data of 

several representative sites visualised with LP360 software (QCoherent, 2012). 

 

Figure 6.8 Digital surface model (DSM) depicting the spatial extent of LiDAR data acquired for the case study 1. 



 

184  |  Airborne data collection and pre-processing 

 

Figure 6.9 Examples of three-dimensional representations of LiDAR point cloud data of representative sites. 
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Cadastral data 

Cadastral data, specifically information of diverse types of administrative boundaries 

(suburbs, statistical areas, LGA, etc.), land tenures (parcels), land uses, and geographical 

features (greenspaces, water bodies) were obtained from multiple sources including the 

Australian Statistical Geography Standard (ASGS) (Australian Bureau of Statistics, 2018); 

the Australian Urban Research Infrastructure Network portal (AURIN, 2018); public 

datasets from the Australian Government accessible through the data.gov.au portal 

(Australian Government, 2018) and by courtesy of the PCC and Irger (2014).  

6.2.2 Winter data collection 

Digital Mapping Australia (DIMAP), a contractor to the Commonwealth Scientific and 

Industrial Research Organisation (CSIRO), carried out the collection of hyper-spectral, 

thermal and LiDAR data using a twin-engine fixed wing aircraft in the context of a doctoral 

research conducted by Irger (2014).  

Initially, airborne-based data were supposed to be captured for both summer and winter 

periods; however, unusual wet and cold weather during the summers of 2011 and 2012 –

due to a strong La Niña event– prevented the acquisition of data (Irger, 2014). Instead a 

winter campaign was carried out in early August 2012 that met the meteorological and 

temporal requirements established in Chapter 5. These winter datasets are employed in the 

present research. 

The day-time flight was undertaken on 6 August 2012 between 12:00pm and 2:00pm EDT 

at an altitude of 10000ft (3048m) while the night-time flight was deployed on 4 August 

2012 between 11:30pm and 1:30am EDT (on 5 August). Both flights were carried out under 

cloud free, windless and dry conditions with no precipitation 72 hours prior to the flight. 

Also, according to the BOM (2018), the weeks preceding the winter mission were the 

warmest and driest recorded in recent years. 

The area covered by flights [Figure 6.1]–corresponding to two longitudinal strips (northern 

and southern)– is a result of the swath width, which in turn, depends on the type of sensor 

and flying height. Despite the efforts of maintaining a constant altitude of 1500m on the 

afternoon of 6 August, the flying height was increased to 3000m due to heavy air traffic. 

This produced a temporal failure in the thermal recording that created gaps in the data and 

caused a lower spatial resolution in the hyperspectral data (from 90cm to 2m). Accordingly, 

the width, length and shape of diurnal and nocturnal swaths differ from each other [Figure 

6.10].  
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Figure 6.10 Extent of the airborne diurnal and nocturnal thermal images acquired in winter. 
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Thermal imagery 

Diurnal and nocturnal thermal data were collected on 6 and 4 August 2012 respectively 

using a FLIR SC series camera (formerly Cedip Infrared Systems) that measured surface 

brightness temperature at a spatial resolution of 0.5m and thermal resolution of 0.018K. 

The spatial coverage of both TIR images (32-bit integers) is shown in Figure 6.10. 

The pre-processing of recorded images was performed by the remote sensing contractor 

which included the following procedures: (1) correcting radiometric and atmospheric noise 

using Altair software and IDL script, (2) ortho-rectification and geo-referencing of images 

representing radiances using ISAT software for triangulation and LPS software for ortho-

photo corrections; (3) calculating absolute LSTs using a NEM approach (Gillespie, 1985; 

Realmuto, 1990) assuming a constant emissivity value of 0.96 as per Eq. 3.1 presented in 

Section 3.8.2.1 and equally applied in  case study 1 presented in Section 6.2.1; and (4) 

aligning and projecting rasters to GDA 1994 MGA Zone 56 projected coordinate system. 

Pre-processing results produced thermal images with a spatial accuracy of 0.5m and 

nominated thermal accuracy of ±1K. Detailed samples of diurnal and nocturnal thermal 

images of exemplary sites are presented in Figures 6.11 and 6.12. As with the summer TIR 

images, several consecutive overpasses were carried out across the study area as per the 

flight path defined by Irger (2014) to minimise thermal differences and avoid missing 

information. In this way the average time lag between two adjacent swaths was limited to 

a maximum of six minutes. 

Hyper-spectral imagery 

Airborne hyper-spectral data were acquired during the day-time flight on 6 August 2012 

(see flight details in Section 6.2.2) using a Norsk Elektro Optikk (NEO) VNIR1600 

HySpex Hyperspectral Camera. The sensor collected short-wave radiation in 160 spectral 

bands (400 – 1000nm) at 2m spatial resolution and 2.5nm spectral resolution. Figure 6.13 

presents the spatial coverage of the hyperspectral data presented as NDVI rasters 

corresponding to the northern and southern swaths. 

Atmospheric corrections were performed for all datasets by the data supplier using ATCOR 

4 software, while orthorectification and geometric corrections were applied using PARGE 

software. The pre-processing also includes the correction for aircraft movements such as 

roll, pitch, and changes in altitude due to variations in the flight path caused by heavy air 

traffic at the time of the mission. A boresight calibration was performed to correct possible 

angular misalignments of the sensor. This was conducted by the data supplier using ground 

control points from a DEM that were compared against an RGB aerial image.  
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Figure 6.11 Diurnal thermal imagery of representative sites in winter captured around 12pm on 6 

August 2012. 
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Figure 6.12 Nocturnal thermal imagery of representative sites in winter captured around 12am 

on 4 August 2012. 
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Figure 6.13 Extent of the airborne-based hyperspectral imagery acquired in winter 2012 presented as a NDVI 

image. 

LiDAR data 

LiDAR data were collected during the night-time flight commissioned by CSIRO on 4 

August 2012. LiDAR point clouds with average point density of 0.8/m2 were supplied to 

Irger (2014) for the purpose of his research. However, the relatively low point cloud density 

of datasets was inadequate to extract accurate and precise three-dimensional information, 

specifically building footprints and tree crowns. 

Alternatively, LiDAR data for the extent of the winter case study were acquired from the 

ELVIS – Elevation Foundation Spatial Data portal (Geoscience Australia, 2018); which 

have the same data collection period/sensor, specifications, quality (point density) and 

point cloud pre-classification that the data used for case study 1 (see Section 6.2.1and 

Appendix C). Since LiDAR and spectral data for this case study were collected in two 

different periods (early autumn and late winter respectively), additional corrections were 

applied for excluding deciduous tree canopy as this enables solar penetration to the ground 

in winter. These corrections are explained in detail in the Section 6.3. 
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Figure 6.14 Digital surface model (DSM) depicting the spatial extent of LiDAR data acquired for the case study 2 

and three-dimensional representations of LiDAR point cloud data of exemplary sites. 
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Two DSMs of 1m spatial resolution corresponding to the northern and southern suburbs 

were generated to show the spatial coverage of the LiDAR data retrieved for case study 2 

[Figure 6.14]. Figure 6.14 also presents three-dimensional representations of classified 

point cloud data of some representative sites visualised with LP360 software (QCoherent, 

2012). 

Cadastral data 

Cadastral data employed for case study 2 corresponds to the same data utilised in case study 

1, which includes diverse types of administrative boundaries (suburbs, statistical areas, 

LGA, etc.), land tenures (parcels), land uses, and geographical features (greenspaces, water 

bodies). 

6.3 Computation of variables 

This section presents the workflow and procedures conducted to derive the independent 

and dependent variables from the airborne remote sensing data, and the computation of all 

variables for each spatial unit for the automated classification of GITs and subsequent 

statistical analysis (Chapter 7). These procedures were applied to both case studies with 

minor variations.  

The workflow for the data processing and automated classification of GITs implemented 

by this research draws on a method introduced by Irger (2014) for the classification of 

LCZs, which was subsequently modified by Bartesaghi Koc, Osmond, Peters, and Irger 

(2017b) and applied by Bartesaghi Koc, Osmond, Peters et al. (2018) [Figure 6.15]. 

Descriptions of all critical steps and specifications of the data processing are detailed in 

Appendix D. 

6.3.1 Surface covers 

6.3.1.1 Initial identification of surface covers from NDVI  

To identify different surface covers (vegetated, impervious, water), NDVI images for 

summer and winter case studies were calculated based on the available multi-spectral and 

hyper-spectral data respectively. Since the type of spectral data differ for both cases, two 

different methods were employed. 

For case study 1 (summer), an NDVI image was generated as per Eq. 3.2 below using the 

Raster calculator tool in ArcGIS 10.3 software (ESRI, 2012): 
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(𝑁𝐷𝑉𝐼) =
𝐹𝑙𝑜𝑎𝑡 (𝑁𝐼𝑅−𝑉𝐼𝑆)

𝐹𝑙𝑜𝑎𝑡 (𝑁𝐼𝑅+𝑉𝐼𝑆)
                                               [Eq 6.1] 

where Float indicates the pixel type, in this case a floating point; the near-infrared (NIR) 

band corresponds to the Band 1 from the CIR image and the visible (VIS) band is the Band 

1 (Red band) of the aerial imagery. The resulting raster (in .Tiff format) was projected to 

GDA 1994 MGA Zone 56 and resampled from 0.8 to 0.5m spatial resolution [Figure 6.7]. 

 

Figure 6.15 Workflow for the computation of variables, automated classification of GITs, and statistical and 

spatial analysis based on airborne-based data. 

For case study 2 (winter), two NDVI images corresponding to the north and south swaths 

were derived from hyperspectral data using the Spectral indices - NDVI tool in ENVI 5.3.1 

software (Exelis, 2015). Both rasters were mosaicked together, exported as .Tiff files, 
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projected to GDA 1994 MGA Zone 56, and resampled from 2 to 1m spatial resolution 

[Figure 6.13]. 

Calculated NDVI values range from -1 to +1, and particular thresholds can be typically 

used to distinguish different types of surfaces. For instance, values from 0.2 to 0.9 

correspond to various vegetated surfaces, values close to zero represent impervious 

surfaces, rock, bare soils and sand, and very negative values indicate the presence of water 

(Badamasi et al., 2010; Black & Stephen, 2014; Cheng et al., 2008; Gaitani et al., 2016; 

Gandhi et al., 2015; Irger, 2014; Weier & Herring, 2000). However, these thresholds are 

sensitive to factors such as season, vegetation phenology, irrigation levels, and the climatic 

conditions prior and during the data collection (Cheng et al., 2008); thus, in this research 

classification thresholds differ between case studies. 

Accordingly, a simple threshold NDVI classification analysis was applied individually for 

each case study to identify total impervious (ground and buildings), non-irrigated and 

irrigated pervious, and water surfaces. Thresholds were defined using the Jenks 

optimization method (Jenks, 1967) and readjusted by human operator according to ranges 

found in the literature (Badamasi et al., 2010; Black & Stephen, 2014; Cheng et al., 2008; 

Gaitani et al., 2016; Gandhi et al., 2015; Irger, 2014). Even though this approach is highly 

replicable, the threshold values summarised in Table 6.2 may differ for other locations and 

seasons.  

Table 6.2  NDVI thresholds defined for the identification of surface covers in summer and winter. 

Surface cover 
NDVI threshold values 

Summer Winter 

Water ≤ -0.50 ≤ -0.20 

Total impervious (including barren land, rock, 

sand, ground and buildings) 
-0.50 to -0.15 -0.20 to 0.25 

Non-irrigated pervious (including bare soil 

and dry low plants) 
-0.15 to 0.08 0.25 to 0.60 

Irrigated pervious (including low plants, 

shrubs, sparse and dense trees) 
≥ 0.08 ≥ 0.60 

 

NDVI images were reclassified, using the Reclassify tool in ArcGIS, to create separate 

rasters for each surface cover with a spatial resolution of 0.5m. Figure 6.16 shows some 

examples of surface covers identified from the NDVI for summer and winter. This initial 

identification of surfaces is refined in subsequent steps to discriminate between impervious 

ground and impervious building, and between low (grasses), medium (shrubs), and high 

(trees) vegetation layers. Since seasonal variation is expected due to the presence of 
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deciduous trees, additional corrections were applied for the estimation of true tree coverage 

in winter. 

 

Figure 6.16 Identification of surface covers from reclassified NDVI images. 
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6.3.1.2 Estimation of building footprints and impervious ground surfaces 

Building footprints were extracted from LiDAR data in LP360 software (QCoherent, 2012) 

using a Point group tracing operation (object-based approach) applied to only points pre-

classified as buildings.  

This algorithm consists of creating vector polygons from similar points that are clustered 

based on user-specified proximity parameters (Graham, 2013; Irger, 2014). The Grow 

window parameter controls the point clustering by defining which points of the same class 

will be grouped within a specified distance, so larger values generate coarser clusters. On 

the other hand, the Trace Window parameter determines the minimum distance between 

vertices of the polygon created around the clusters; in other words, it controls the 

smoothness of the traced outlines of the polygon so smaller values create more detailed 

edges (Graham, 2013). 

Different settings were tested, and optimum results were achieved when the group tracing 

occurred within a distance of 2m (grow window) and a trace window of 3m. Buildings 

smaller than 10m2 were filtered out from the extracted output. These parameters returned 

extremely irregular polygons with innumerable line segments and relatively good amount 

of detail along outlines. Additionally, adjacent buildings with narrow distances between 

them were combined into a single polygon, while some buildings and smaller gardens or 

courtyards were not identified [Figure 6.17]. 

Since the complexity and number of vector polygons are inadequate and impractical for 

further analysis, additional corrections were performed to improve the accuracy and 

simplify the geometry of extracted building footprints. Firstly, extracted features were 

converted from polygons ZM to normal polygons by disabling the M and Z values in 

ArcGIS15. Secondly, geometries were repaired, duplicates deleted, multipart polygons were 

separated and resulting polygons split along parcel (property) lines obtained from cadastral 

data. Thirdly, polygons smaller than 15m2 were deleted and remaining features squared 

using the Square-Up algorithm available in Feature-Analyst software (Overwatch, 2015). 

In this process, a smoothing tolerance of one metre and squaring tolerance of 5.5-6m 

(depending on the area) were utilised. Furthermore, adjoining features were considered 

when computing all likely feature orientations.  

The squaring process significantly improved the geometry and quality of extractions 

[Figure 6.17]. However, the process returned round shapes as hexagonal polygons, so these 

                                                      

15  A Polygon ZM typically results from LiDAR extractions.  This represents a 3D polygon feature class with z- 

and m- values that have to be disabled in order to perform certain operations. 
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were manually redrawn in all datasets. Missing or wrongly extracted features due to low 

point cloud density in some areas were also added manually. Squared polygons less than 

12m2 were discarded to remove small fragments from the process.  

After generating building footprints, height information was calculated from a nDSM 

which contains the absolute height for each polygon. LiDAR data were processed in LP360 

software to generate a DEM representing the elevation of bare earth (employing only points 

reclassified as ground) and a DSM combining ground and building points. A nDSM with 

a spatial resolution of 0.5m was produced in ArcGIS by subtracting the DEM from the 

DSM.  

The average height of each building footprint was computed with the Zonal statistics tool 

in ArcGIS using the nDSM as input value raster and the vector building footprints as feature 

zone data. Figure 6.18 shows the building footprints extracted from LiDAR represented 

according to the average building height. 

To obtain the impervious building surfaces, vector footprints were converted into a raster 

image with a spatial resolution of 0.5m using the Polygon to raster tool in ArcGIS and the 

average building height as value field. The impervious surfaces derived from the NDVI 

image presented some errors; for instance, some buildings were misclassified as pervious 

surfaces and water surfaces as impervious ground cover. To solve this issue, the impervious 

building surface image generated from LiDAR was added to and the water surface image 

subtracted from the impervious surfaces derived from NDVI to obtain the true total 

impervious surface cover. After that, building surfaces were subtracted from the total 

impervious surfaces to distinguish between impervious ground and impervious building 

surfaces [Figure 6.18].  

Appendix D provides a detailed summary of procedures, tools and values implemented for 

the estimation of impervious ground and impervious building surfaces from LiDAR and 

spectral data. 

6.3.1.3 Estimation of vegetation layers and water surfaces 

LiDAR data was processed in LP360 software (QCoherent, 2012) to extract medium (0.3–

2m) and high (>2m) vegetation features using a Point group tracing operation. Different 

settings were tested, and optimum results were achieved when the point tracing (known as 

grow window) occurred within a distance of 2m in areas with medium and small green 

patches and 1.75m in areas with large patches. The limit for aggregating point groups to 

patches (known as trace window) was limited to a maximum of 3m for medium and small 
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patches and 2.75m for large patch sizes. Features smaller than 5m2 were excluded while 

overlapping polygons larger than 850m2were disaggregated into smaller shapes.  

 

Figure 6.17 Comparison of building footprints extracted from LiDAR data using LP360 software 

and the results after the splitting and squaring process. 
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Figure 6.18 Differentiation between impervious ground and impervious building coloured according to the 

average building height. 

In areas with extensive and dense tree canopies, extractions showed several errors including 

vegetated areas considered as empty spaces and buildings, man-made structures, and 

treeless spaces extracted as vegetation. These errors may be attributed to wrong pre-

classification of point clouds by the data provider due to similar waveform of LiDAR laser 
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returns reflected by leaves, branches and building edges (see Section 6.2.1). To correct 

these issues, erroneous features were deleted and replaced with vector polygons reextracted 

from a smaller spatial extent. Overlapping polygons were then combined using the Merge 

tool from the editor mode in ArcGIS. Multipart polygons were disaggregated, duplicated 

polygons deleted, and geometries repaired for all features. Vector files containing medium 

and high vegetation footprints were converted to raster images with a spatial resolution of 

0.5m using the Polygon to raster tool in ArcGIS.  

To improve the spatial accuracy of all LiDAR-derived extractions and discard areas without 

real vegetation content, high and medium vegetation raster images were overlayed on 

NDVI-derived total pervious surfaces, so nonintersecting pixels were eliminated.  

Discrepancies between LiDAR and spectral extractions occurred in the case study 2 

(winter) because datasets were collected in different periods (early autumn and late winter 

respectively). Hence, a complete tree canopy (evergreen and deciduous) was only retrieved 

by LiDAR data, since winter’s NDVI values for leafless deciduous trees corresponded to 

ground surfaces (identified as non-irrigated pervious or impervious ground) underneath the 

canopy. To solve these discrepancies and discard deciduous trees in winter, LiDAR-derived 

high vegetation surfaces were assessed against irrigated pervious surfaces derived from the 

NDVI, so non-intersecting pixels were filtered out. 

Since total irrigated pervious surfaces included low plants, shrubs, and trees; corrected high 

and medium vegetation were subtracted to obtain true irrigated low plants. The same 

process was repeated to obtain non-irrigated low vegetation cover. Medium vegetation as 

well as irrigated and non-irrigated low vegetation pixels overlapping buildings and water 

surfaces were discarded.  

Water surface extracted from NDVI images also presented errors as some pixels were 

misclassified as impervious or pervious surfaces. To solve this problem, water features (in 

vector format) from cadastral data were converted to raster with a pixel size of 0.5m and 

added to the NDVI-derived image. The resulting image was then refined by removing 

pixels that intersect with high vegetation and building footprints.  

When visually assessing the resulting rasters against aerial images, a small number of errors 

were identified. These include impervious surfaces misclassified as bare soils or non-

irrigated grasses, missing tree canopy, non-irrigated grasses wrongly classified as irrigated 

plants, some elongated buildings (i.e. chimneys) misidentified as high vegetation, and 

industrial machinery, trucks, cars and containers erroneously classified as shrubs or trees. 
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These inherent errors can be mostly attributed to the cut-off values used in the classification 

of NDVI images and problems in the LiDAR datasets. 

Figure 6.19 presents the results of the estimation of different vegetation layers and water 

surfaces for both case studies. Appendix D provides a detailed summary of steps, tools and 

specific values for the estimation of vegetation layers and water bodies from LiDAR and 

spectral data. 

6.3.2 Landscape metrics  

The high vegetation raster (with 0.5m spatial resolution) was used in FRAGSTATS 4.3 

software (McGarigal et al., 2002) to quantify the spatial configuration of trees by 

computing the CIRCLE_AM (shape metric) and nLSI (aggregation metric) indices at a 

class level. Uniform tiles (also referred as grids or spatial units) of 50 x 50m of side length 

and an 8 cell neighbourhood rule were applied over the entire extent of both case studies.  

Since FRAGSTATS was unable to process large rasters due to lack of virtual memory, tiles 

were grouped in sections that were merged into single polygons used to clip the raster 

images in smaller sections. For each section, calculations returned a GeoTIFF image (.tif) 

with tiles’ IDs, and a table with FRAGSTATS indices associated to each ID. GeoTIFFs 

were converted into vector polygons and values from tables assigned to each tile using IDs 

as universal identifiers. These spatial units correspond to GITs that will be used for 

statistical analyses. 

In some cases, nLSI values were reported as N/A in the output files whenever the maximum 

class edge equalled the minimum class edge. This occurred when trees (the focal class) 

covered the totality of the grid. To correct this issue, N/A values were replaced with 0 as 

these tiles contain a single or maximally compacted patch. Examples of landscape metrics 

computed for grid cells are shown in Figure 6.20.  

6.3.3 Altitude 

In a similar research, Irger (2014) found that the average altitude of a given location has a 

warming effect on mean LSTs, especially at night-time; thus, it was decided to include this 

variable in the present thesis. The average ground surface height (or altitude above sea 

level) was estimated from the DEM generated in LP360 from LiDAR data by computing 

the mean of all pixel values within each grid with the Zonal statistics tool in ArcGIS. 
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Figure 6.19 Identification of vegetation layers (based on height and irrigation regimes) and water 

surfaces using a refinement method combining spectral-derived imagery and LiDAR 

data. 
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Figure 6.20 Examples of landscape metrics (CIRCLE_AM and NLSI) calculated for each grid cell to 

determine the compactness and linearity of tree arrangements. 
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6.3.4 Computation of variables per each spatial unit 

6.3.4.1 Generation of spatial units 

Regular spatial units of 25 x 25m, 50 x 50m and 100 x 100m were chosen to conduct 

statistical and comparative analyses at the local scale instead of using conventional precinct 

or neighbourhood delineations as the latter respond to non-standardised –and somehow 

subjective or ambiguous– administrative or jurisdictional boundaries that largely vary 

among cities and contexts. Furthermore, the above grid sizes are those suggested for the 

study of climatic phenomena at the local scale (Bechtel et al., 2015; Erell et al., 2011; Oke 

et al., 1989; Oke, 2006; Stewart & Oke, 2012) (see Section 2.4.1) 

Among the three sizes, a 50 x 50m was selected as an adequate spatial unit for this research 

as finer grids were too small to identify different spatial arrangements of trees, so large 

greenspaces and buildings are extremely fragmented, and cells tend to be occupied by a 

single surface cover. Conversely, coarser grids were more heterogeneous as features are 

highly disaggregated (except for very large and homogenous areas). Results and 

justifications for this selection are presented in Chapters 7 and 8 respectively.  

Accordingly, grids of 50 x 50m were created with the Grid index feature available in 

ArcGIS to identically duplicate (same extent and location) those tiles generated as a sub-

product of FRAGSTATS calculations (see Section 6.3.2). Grids that were not completely 

within the study area were discarded. Unique IDs were created to differentiate grids from 

both cases studies. A total number of 23774 grids were generated for case study 1 (summer) 

and 29009 grids for case study 2 (winter) of 2500m2 each.  

6.3.4.2 Computation of surface fractions and other variables 

Surface fractions per grid were estimated using Zonal statistics and Field calculator tools 

in ArcGIS by dividing the total number of pixels (SUM) of each surface cover by the total 

number of pixels (COUNT) per grid (10000 pixels of 0.5 x 0.5m each). Results were 

multiplied by 100 to be expressed in percentage and tables were joined to the attribute 

tables of the vector grids generated in Section 6.3.4.1. Landscape metrics and altitude 

values previously estimated in Sections 6.3.2 and 6.3.2 were directly assigned to each 

vector grid. Figure 6.21 presents examples of calculated surface fractions and other 

independent variables for each spatial unit. 
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Figure 6.21 Examples of computed surface fractions and other independent variables per spatial unit 

using Zonal statistics in ArcMap. 
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Figure 6.22 Examples of mean diurnal and nocturnal temperature calculated per spatial unit using Zonal 

statistics in ArcMap. 
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6.3.4.3 Estimation of mean NDVI and mean surface temperatures 

Average NDVI, diurnal and nocturnal surface temperatures per grid were calculated with 

Zonal statistics tool in ArcGIS by computing the mean of all pixels (MEAN) within each 

spatial unit using the NDVI and TIR images as input value rasters and the vector grids as 

feature zone data.  

As described in Section 6.2.2 the diurnal and nocturnal thermal images collected for the 

case study 2 (winter) are dissimilar and covered a smaller spatial extent than the 

hyperspectral and LiDAR data. Consequently, in winter, temperature data were only 

retrieved for 25238 grids at daytime, and for 23752 grids at night-time. Figure 6.22 shows 

some examples of mean diurnal and nocturnal temperature calculated per each spatial unit. 

6.4 Classification of green infrastructure typologies (GITs) 

As previously outlined in Chapters 4 and 5, a main component of this research is the 

mapping and classification of green infrastructure typologies (GITs) using an automated 

GIS-based workflow for an accurate and precise thermal analysis of green infrastructure at 

the local scale. 

To achieve this, a new classification scheme for green infrastructure was developed 

(described in Chapter 4 – Part II) to categorise each spatial unit (or grid) into a GIT class 

according to the surface descriptors and configurational parameters computed in previous 

sections. This classification was conducted by using the quantitative descriptors defined 

for all the 34 green infrastructure typologies (GITs) [see Table 4.14] as threshold (or cut-

off) values in a conditional algorithm implemented in ArcGIS ®.  

The classification process required writing VB scripts (if-then-logic) for each GIT using 

the Field calculator available in the attribute table of grid features. Accordingly, a specific 

GIT code was automatically assigned to each grid after running the generic statement on 

the next page.  

This algorithm classifies grids in a hierarchical way as it tests if conditions based on 

defining parameters are met for a specific GIT. The complete statement of the algorithm in 

VB script format is presented in Appendix D. Table 6.3 summarises the number of 

classifiable and non-classifiable (unknown) grids identified for each case study. A 

complete analysis of results is presented in Chapter 7. 
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IF “Fraction of total impervious [Fr_Tot_Imp] <a1 and >a2 AND 

  “Fraction of non-irrigated low vegetation [Fr_Low_NIR] <b1 and 

>b2 AND 

  “Fraction of irrigated low vegetation” [Fr_Low_IRR] <h1 and 

>h2 AND 

  “Fraction of medium vegetation” [Fr_Med_Veg] <i1 and >i2 AND 

  “Fraction of high vegetation” [Fr_High_Veg] <w1 and >w2 AND 

   “Fraction of total water” [Fr_Tot_Wat] <x1 and >x2 AND  

  “Related circumscribing circle” [CIRCLE_AM] <y1 and >y2 AND 

  “Normalised landscape shape index” [nLSI] <z1 and >z2 AND 

THEN “Green infrastructure typology” [GIT_type] = “N1” 

ELSEIF “Fraction of total impervious [Fr_Tot_Imp] <a1 and >a2 AND 

  “Fraction of non-irrigated low vegetation [Fr_Low_NIR] <b1 and 

>b2 AND 

  “Fraction of irrigated low vegetation” [Fr_Low_IRR] <h1 and 

>h2 AND 

  “Fraction of medium vegetation” [Fr_Med_Veg] <i1 and >i2 AND 

  “Fraction of high vegetation” [Fr_High_Veg] <w1 and >w2 AND 

   “Fraction of total water” [Fr_Tot_Wat] <x1 and >x2 AND  

  “Related circumscribing circle” [CIRCLE_AM] <y1 and >y2 AND 

  “Normalised landscape shape index” [nLSI] <z1 and >z2 AND 

THEN “Green infrastructure typology” [GIT_] = “Nn” 

ELSE [GIT_type] = “Unknown” 

END IF 

___________________________ 

Table 6.3 Distribution of ‘classifiable’ and ‘unknown’ number of grids per case study. 

Case study 
# Classifiable grids 

(%) 

# Non-classifiable 

grids (%) 
Totals 

1. Summer 23460 (98.68) 314 (1.32) 23774 

2. Winter 28830 (99.38) 179 (0.62) 29009 

Totals 52290 (99.07) 493 (0.93) 52783 

 

Figures 6.23 and 6.24 present datasheets containing the grid ID, independent variables, 

classification parameters, and mean diurnal/nocturnal surface temperature calculated for 

selected GITs. A complete summary of datasheets for all GITs is provided in Appendix E. 
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Figure 6.23 Datasheet containing all variables and classification parameters calculated in summer for the 

green infrastructure typology IM4: Mostly impervious with aligned trees.  
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Figure 6.24 Datasheet containing all variables and classification parameters calculated in winter for the 

green infrastructure typology PV9: Mostly non-irrigated grasses with clustered trees. 
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6.5 Summary 

This chapter presents the location, extent, and morphological characteristics of two related 

case studies of the Sydney metropolitan area. It also describes the extent, protocols, 

equipment and procedures employed for the collection of airborne-based data that was 

conducted in two different seasons: summer and winter. Furthermore, this chapter presents 

the GIS-based pre- and post-processing workflow, methods and tools applied for the 

computation of variables required for the automated classification of GITs that will be used 

for subsequent statistical analyses. 

This chapter demonstrates the capacity and quality of airborne remote sensing for acquiring 

high-resolution information of the built environment in a time-efficient way through the 

combination of multiple remote sensing products. It also demonstrates the applicability and 

effectivity of the classification scheme developed in Chapter 4 and the methodological 

approach presented in Chapter 5 for an accurate and precise mapping and classification of 

green infrastructure for climate-related studies. 

 The following chapter describes the results and assesses the quality of the above 

classifications. It also presents several statistical and spatial analyses conducted for a better 

understanding of the spatio-temporal variability of thermal conditions of different types of 

green infrastructure. This includes the formulation of a statistical model based on the 

variables computed for all GITs for the prediction of LSTs in summer and winter. 
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Chapter 7  

Data analysis and results16 

7.1 Introduction  

As described in the previous chapter, two related case studies of the Sydney metropolitan 

area –corresponding to summer and winter seasons– were selected according to the 

available data. Airborne-based data were processed for both case studies to assess the 

cooling effects of green infrastructure across different urban morphologies, seasons and 

times of the day. Accordingly, the key aim of this chapter is to present and analyse the 

processed data and results from both case studies to address the research questions and 

objectives outlined in Chapter 1. 

This Chapter is organised as follows: Section 7.2 presents and evaluates the results of the 

automated classification of GITs introduced in Chapter 4; this section addresses objective 

2 of this thesis. Section 7.3 validates the research framework presented in Chapter 5 by 

analysing the spatio-temporal variability of LSTs and the cooling capacity of identified 

GITs; this section addresses objectives 1 and 2 of this research. Finally, Section 7.4 presents 

the results of several statistical models for an accurate and precise prediction of LSTs of 

GITs at the local scale. This section also includes the estimation of regression coefficients 

and the analysis of the contributions of each variable to the modification of diurnal and 

nocturnal temperatures in both seasons, which are necessary to develop the cooling 

scenarios and heat mitigation strategies discussed in Chapter 8; this last section addresses 

objectives 3 and 4 of this dissertation.  

The extent of the data analysis and results differs between case studies and times of the day 

as it is governed by the spatial coverage of the remotely-sensed spectral, TIR and LiDAR 

data. The area of the spatial units corresponding to the ‘Case study 1: Summer’ (same for 

diurnal and nocturnal data analyses) totals 59.44km2 [Figure 7.1a-b]. In the ‘Case study 2: 

Winter’, the area of the spatial units considered for the diurnal data analysis totals 63.10km2 

[Figure 7.1a]; while the area of the spatial units considered for the nocturnal data analysis 

totals 59.38km2 [Figure 7.1b].  

                                                      

16 A portion of Chapter 7 has been submitted for publication: Bartesaghi Koc, C., Osmond, P., Peters, A. (2019), 

Mapping and classifying green infrastructure typologies for climate-related studies based on remote sensing 

data. Urban Forestry and Urban Greening. 
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Figure 7.1 Extent of the (a) diurnal and (b) nocturnal data analyses conducted for the summer and winter 

case studies. 
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7.2 Green infrastructure typologies classifications 

7.2.1 Classification results at different spatial scales 

The classification framework for green infrastructure proposed in Chapter 4 – Part II and 

described in detail in Section 4.11 was successfully applied to both case studies. The 

classifications were automatically performed using a conditional algorithm implemented in 

ArcMap® (see Section 6.4 and Appendix D for details) based on the quantitative descriptors and 

threshold values defined in Table 4.14.  

Since the notion of local scale [see Table 2.2] refers to horizontal dimensions between hundreds 

of meters and several kilometres, this allows a certain range of appropriate scales in which valid 

GITs can be identified (contingent on image pixel resolution); and that sometimes may lie 

between micro- (less than 100m) and meso-scales (more than 5km) (Bechtel et al., 2015; Erell et 

al., 2011). In this sense, before conducting the automated classification of GITs for the totality of 

the study area, it was necessary to determine the most adequate spatial unit (or grid size) for the 

comparative analysis of mean diurnal and nocturnal LSTs at the local scale. 

 Due to the considerable extent of the study area and potential processing time of remote sensing 

data, a small portion of 15.50km2 –hereinafter referred as pilot study– representing a cross-section 

of Sydney’s urban conditions was selected to test the classification framework using spatial units 

lying between the micro and local scales (25m, 50m and 100m). The extent of the pilot study and 

the results of classifications at three spatial scales is presented in Figure 7.2. 

The pilot study was successfully classified into 23812 grids of 25 x 25m, 5953 grids of 50 x 50m 

and 1445 grids of 100 x 100m [Figure 7.2]. The classification approach and thresholds were 

effective in identifying GITs at different spatial scales, and results were satisfactory with less than 

0.25% of unclassified grids for all cases. GITs at 50m grid resolution exhibit the lowest percentage 

(0.10%) of unknown spatial units in comparison to 25m (0.243%) and 100m (0.21%) grid 

resolutions.  

Consequently, and as mentioned in Section 6.3.4, a 50 x 50m grid was identified as an optimal 

spatial unit for this research as it was found to be the smallest possible grid size in which structural 

characteristics and spatial patterns of surfaces and features can be distinctively recognised. In fact, 

100 x 100m grids were highly heterogeneous and showed an increased aggregation of features. 

Contrastingly, 25 x 25m grids resulted in a much larger fragmentation of the landscape, providing 

a limited amount of contextual information to the grids as these were mostly occupied by single 

surface covers [Figure 7.3]. Further discussion on defining this optimal grid size is presented in 

Chapter 8. 



 

216  |  Green infrastructure typologies classifications 

 

Figure 7.2 Extent of the pilot study and results of classifications using spatial units of 25 x 25m, 50 x 50m 

and 100 x 100m. Note: See comparison of detailed portion in Figure 7.3.  
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Figure 7.3 Comparison of classification results of a small portion of the pilot study area into 25x25m, 50x50m 

and 100x100m grid resolutions. 

7.2.2 Classification results at the local scale (50m grid) 

7.2.2.1 Case study 1: Summer  

The automated classification of GITs at the local scale for the whole extent of the case 

study 1 using a grid size of 50 x 50m is presented in Figure 7.4. A total of 23774 grid cells, 

for which either daytime or night-time LSTs were available, were generated for the case 

study 1. Due to an erroneous extraction of surface covers from spectral and LiDAR data, 

340 grids (1.43%) were excluded from further analyses (see Section 8.3.3 for further 

details). From the remaining total (23434 grids), 23120 grids (98.65%) were successfully 

classified into 33 typologies as per Table 4.14; leaving 314 grids (1.34%) as non-

classifiable.   

Figure 7.5 presents a comparison of the total number of grids, percentage of total area, 

distribution of surface fractions, and mean values of independent and dependent variables 

(listed in Table 5.1) estimated for each GIT identified for the case study 1.  
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Figure 7.4 Automated GIT classification for the Case study 1: Summer (above) and a detailed fraction 

(below) using spatial units of 50 x 50m. 
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Figure 7.5 Comparison of the total number of grids, percentage of total area, distribution of surface fractions, and mean 

values of independent and dependent variables estimated for each GIT identified for the case study 1. 
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By analysing the four high-level subgroups of GITs [see Figure 4.8], it can be observed that the 

case study 1 is mostly dominated by mixed (n=10689, 46.23%) and impervious (n=10442, 

45.16%) GITs, with a small proportion of pervious (n=1590, 6.88%) and aquatic (n=399, 1.72%) 

GITs. The most abundant GITs are MX5 Mixed surfaces with aligned trees (n=4475, 19.36%) 

and IM4 Mostly impervious with aligned trees (n=3742, 16.19%), followed by MX9 Mixed 

surfaces with clustered trees (n=2461, 10.64%), IM1 Highly impervious (n= 2313, 10.0%), and 

IM5 Mostly impervious with scattered trees (n=2090, 9.04%). Other popular GITs identified are 

MX7 Mixed surfaces with scattered trees (n=1255, 5.43%), IM6 Mostly impervious with clustered 

trees (n=1228, 5.31%), MX10 Mixed grasses with clustered trees (n=1073, 4.64%), IM2 Mostly 

impervious with grasses (n=1062, 4.59%), PV11 Dense trees with shrubs and grasses (n=829, 

3.59%), and MX6 Mixed grasses with aligned trees (n=820, 3.55%).  

The least common GITs (n<20) correspond to PV8 Mostly irrigated grasses with scattered trees 

(n=5, 0.02%), IM3 Mostly impervious with shrubs (n=7, 0.03%), PV4 Mostly shrubs (n=14, 

0.06%), AQ3 Mostly grasses with water (n=15, 0.06%), AQ2 Mostly water with grasses (n=16, 

0.07%), PV10 Mostly irrigated grasses with clustered trees (n=18, 0.08%), and MX2 Mostly 

irrigated grasses with impervious (n=19, 0.08%). Unidentified grids named as unknown (n=314, 

1.34%) correspond to areas that were not properly classified as these possess characteristics of 

multiple GITs and/or a large variability of parameters. 

In Figure 7.6, it can be observed the correspondence between the urban patterns described in 

Section 6.1.3 and the degree of imperviousness and proportion of tree canopy estimated for GITs. 

Most highly impervious GITs (IM1), were identified in areas comprising office, retail, residential 

and industrial buildings, that were situated in the central core of the LGA, namely Parramatta 

CBD and adjacent suburbs (Rosehill, Harris Park, Rydalmere, Westmead, Clyde, and North 

Parramatta). Other impervious GITs (IM4-6) were commonly found in the suburbs of Granville, 

Guildford, Chester Hill and Melrose Park which are typical suburban neighbourhoods of low and 

very low density where street trees and bushes are generally absent as these are replaced by a 

large proportion of impermeable surfaces and dry lawns. In these areas, mature and large clusters 

of trees were mostly confined to large parks, golf courses and nature reserves.  

Most of the wooded mixed GITs (MX5-10) are located in the Northwest (Dundas, Oatlands, 

Telopea, Dundas Valley, Ermington, Carlingford, Eastwood, Epping) and Northeast (Winston 

Hills, Toongabbie, Constitution Hill) suburbs of the LGA, where neighbourhoods exhibit a higher 

proportion of trees and grasses. Although pervious and aquatic GITs were scarcer, the automated 

classifications were successful in identifying small, medium and large green spaces with various 

amounts of tree canopy and different types of water bodies (lakes, rivers, swamps) across the 

LGA, and particularly concentrated to the north and northeast.  



 

Chapter 7 – Data analysis and results  |  221 

 

 

Figure 7.6 Degree of imperviousness and proportion of tree canopy measured for GITs identified for the 

case study 1. 
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The most abundant surface covers across all GITs and the case study 1 were impervious 

ground (26.15% of the case study area) and impervious buildings (19.78%). On the other 

hand, the most common pervious surfaces were trees (22.37%) and non-irrigated grasses 

(17.25%), followed by irrigated grasses (10.52%). Bushes (2.24%) and water (1.69%) 

were the least common among all surfaces.  

The differences between identified GITs in terms of the proportion of surface fractions is 

presented in Figure 7.5. A close similarity can be seen in the distribution of surface 

fractions between sets of typologies, such in the case of IM4-5-6, MX5-7-9, MX6-8-10, 

PV5-7-9, PV6-8-10 and AQ5-6 GITs. However, these differ from each other in terms of 

tree arrangement quantified by landscape metrics (CIRCLE_AM and nLSI).  

Regarding the relationships between low, medium and high vegetation surface fractions, it 

is evident that mixed GITs have the highest proportion of wooded areas among GITs 

excepting for PV11 Dense trees with shrubs and grasses that possess the largest proportion 

of trees among all typologies (88.8%). Conversely, pervious GITs have a very high 

proportion of grasses (irrigated and non-irrigated), shrubs and bare soil compared to other 

typologies.  

Regarding the aquatic GITs, AQ1 Water contains a minimal amount of vegetation features 

(5.8%) that correspond to transitional zones with terrestrial surfaces. Conversely, AQ 7 

Water with clustered trees exhibits the largest proportion of trees (53.2%) followed by AQ5 

Water with aligned trees (32.1%) and AQ6 Water with scattered trees (24.3%). AQ3 

Mostly grasses with water and AQ4 Mixed surfaces with water present the same amount of 

water (36.7%); however, the former has more mixed grasses while the latter has more 

impervious surfaces.  

In few cases, aquatic GITs with grasses (i.e. AQ2, AQ3) were identified in the middle of 

open water; this can be attributed to the presence of superficial vegetation or to errors at 

the sensor due to excessive water reflections. All abovementioned surface and spatial 

distributions match with the typical characteristics defined for GITs as per Table 4.14.  

While GITs are classified in terms of morphological and configurational parameters, these 

enable the estimation of indicators for performance-based analyses across different ESS 

such as climate regulation. For this research, mean NDVI, mean altitude, and mean diurnal 

and nocturnal LSTs were additionally calculated per typology based on average values of 

grids. All the variables presented in Figure 7.5 are employed in the statistical analyses 

presented in Sections 7.3 and 7.4. 
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Figure 7.5 presents a statistical summary of mean NDVI vales for individual GITs. Overall, 

mean NDVI is significantly low for all GITs due to the severe water stress, dryness of the 

land, and extreme weather conditions experienced during the data collection campaign. 

Boxplots indicate considerable differences among GITs in terms of mean NDVI values. 

GITs combining larger proportions of irrigated grasses and forested areas were among the 

highest, specifically PV2 Mostly irrigated grasses (0.31), PV11 Dense trees with shrubs 

and grasses (0.26), PV8 Mostly irrigated grasses with scattered trees (0.23), PV6 Mostly 

irrigated grasses with aligned trees (0.22), PV10 Mostly irrigated grasses with clustered 

trees (0.21), PV4 Mostly shrubs (0.20) and PV3 Mixed grasses with shrubs and trees (0.20).  

Mean NDVI of pervious GITs with irrigated grasses were generally higher than mixed GITs 

as the latter are constrained by the presence of pavements, buildings, poorly irrigated 

grasses and bare soils. A similar situation occurs with pervious GITs with considerable 

amount of non-irrigated grasses that have very low or even negative mean NDVI values. 

Generally, impervious GITs exhibit negative mean NDVI values (-0.20 to -0.05), except 

for IM3 Mostly impervious with shrubs that presents a positive and higher mean value 

(0.11) due to the presence of hedges, shrubbery and small trees. Aquatic GITs and IM1 

Highly impervious display the lowest and very negative mean NDVI (-0.25 to -0.08) 

corresponding to the presence of extensive water and impermeable surfaces. However, the 

disproportion in the number of grids among GITs may also have influenced in the average 

NDVI value of each typology. 

Furthermore, the variation of mean NDVI is higher (long boxplots) on aquatic GITs and 

typologies with a substantial variation of green cover and levels of irrigation. In contrast, a 

lower variation of mean NDVI (short boxplots) is observed for GITs with a dominant 

surface (i.e. MX1, PV1, PV7). It is observed repetitive spikes on mean NDVI and mean 

diurnal LSTs between GITs, specifically MX2-3, MX3-4, PV5-6, PV6-7 [Figure 7.5]. This 

can be explained by differences in the proportion of irrigated and non-irrigated low plants 

that have a significant impact on mean NDVI and LSTs.  

In terms of mean altitude, the majority of GITs exhibit varied values ranging between 15 

and 47 metres above sea level (MASL), except for the aquatic GITs which are mostly low-

lying with mean altitudes between 0 and 17.5MASL. A comprehensive analysis of summer 

diurnal and nocturnal LST differences in summer and among GITs is presented in Section 

7.3. 
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7.2.2.2 Case study 2: Winter 

The automated classification of GITs at the local scale for the whole extent of the case 

study 2 using a grid size of 50 x 50m is presented in Figure 7.7. A total of 29009 grid cells, 

for which either daytime or night-time LSTs were available, were generated for the case 

study 2. Due to an erroneous extraction of surface covers from spectral and LiDAR data, 

173 grids (0.60%) were excluded from further analyses (see Section 8.3.3 for further 

details). From the remaining total (28836 grids), 28657 grids (99.38%) were successfully 

classified into 34 typologies as per Table 4.14; leaving 179 grids (0.62%) as non-

classifiable. PV4 Mostly shrubs were not identified for this case study. From the total 

amount of classifiable grids, diurnal LSTs were only available for 24981 grids, while 

nocturnal LSTs were available for 23501 grids.   

Figure 7.8 presents a comparison of the total number of grids, percentage of total area, 

distribution of surface fractions, and mean values of independent and dependent variables 

estimated for each GIT identified for the case study 2. It also shows the number of grids 

for which either diurnal or nocturnal LSTs were available.  

Similar to the previous case study, the case study 2 is mostly dominated by impervious 

(n=13292, 46.3%) and mixed (n=12007, 41.83%) GITs, with a smaller proportion of 

pervious (n=3033, 10.57%) and few aquatic (n=375, 1.31%) typologies. The most 

abundant GITs are MX5 Mixed surfaces with aligned trees (n=4935, 17.19%), IM4 Mostly 

impervious with aligned trees (n=3976, 13.85%), and IM1 Highly impervious (n= 3876, 

13.5%). Other prevalent GITs identified are IM2 Mostly impervious with grasses (n=2325, 

8.10%), PV11 Dense trees with shrubs and grasses (n=1943, 6.77%), IM5 Mostly 

impervious with scattered trees (n=1836, 6.40%), MX9 Mixed surfaces with clustered trees 

(n=1755, 6.11%), MX6 Mixed grasses with aligned trees (n=1656, 5.77%), MX10 Mixed 

grasses with clustered trees (n=1633, 5.69%), IM6 Mostly impervious with clustered trees 

(n=1277, 4.45%), and MX7 Mixed surfaces with scattered trees (n=961, 3.35%). 

The least common GITs (n<20) correspond to IM3 Mostly impervious with shrubs (n=2, 

0.01%), AQ3 Mostly grasses with water (n=5, 0.02%), AQ4 Mixed surfaces with water 

(n=9, 0.03%), AQ2 Mostly water with grasses (n=10, 0.03%), MX2 Mostly irrigated 

grasses with impervious (n=10, 0.03%) and PV7 Mostly non-irrigated grasses with 

scattered trees (n=14, 0.05%). 179 unknown grids (0.62%) correspond to areas with large 

surface fraction variability that were difficult to classify. 

Figure 7.9 illustrates different levels of imperviousness and tree cover estimated for GITs 

which correspond to distinct urban patterns described in Section 6.1.4. The winter case 
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study can be differentiated into two longitudinal areas –northern and southern– defined by 

the spatial extent of the airborne remote sensing data. These areas exhibit distinct 

morphological and vegetation characteristics that are described below. 

The northern swath is mostly dominated by pervious and mixed GITs characterised by 

sparsely distributed buildings, large proportion of irrigated grasses, bushes and mature trees 

(Castle Hill, West Pennant Hills, Beecroft, Cheltenham, Epping, North Epping, Marsfield 

and Northbridge). Large clusters of trees and dense forested areas situate along the Lane 

Cove River (Chatswood West, Lindfield, Macquarie Park and West Pymble), near Middle 

Harbour (Northbridge), and in the suburbs of North Epping, Cheltenham, Beecroft and 

West Pennant Hills. Most of the impervious GITs, featuring scant vegetation mostly in the 

form of scarce street trees, concentrate within or adjacent to major city centres or industrial 

parks, namely Chatswood, Macquarie Park and Castle Hill. An increased level of 

imperviousness is also observed to the east of Chatswood. Most aquatic GITs (AQ1-7) 

were identified in Middle Harbour and Lane Cove River. 

In contrast, a higher degree of imperviousness and significantly smaller proportion of trees 

is observed in the southern swath. Most impervious GITs with no or few trees are largely 

dominant and principally identified within or adjacent to major city centres of medium and 

high urban density (Sydney CBD, Haymarket, Surry Hills, Chippendale, Redfern, Ultimo, 

Newtown, Enmore, Stanmore, Petersham, Lewisham, Ashfield), industrial sites, and 

transport facilities/corridors (Redfern, Strathfield South, Lakemba, Campsie, Bankstown 

Aerodrome). For instance, the Bankstown airport was mainly classified into treeless 

impervious and mixed GITs comprising a combination of non-irrigated low plants, large 

low-/mid-rise buildings and extensive paved areas. 

Impervious and mixed GITs with trees arranged in rows or small groups were commonly 

found in middle ring suburbs characterised by a distinct decline in vegetation cover, open 

arrangements of low-rise buildings, and large paved areas (i.e. roads, parking and 

driveways). Pervious GITs were scarcer and mostly situated along the Cooks River 

(Croydon Park, Canterbury, Campsie), within and nearby Moore Park and the University 

of Sydney (Camperdown), and towards the inner ring suburbs to the west of Bankstown 

airport (Milperra, Chipping Norton). A limited number of aquatic GITs were found along 

the Cook and Georges rivers as water features were commonly smaller than the size of 

spatial units.  
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Figure 7.7 Automated GIT classification for the Case study 2: Winter (above) and a detailed fraction 

(below) using spatial units of 50 x 50m. 
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Figure 7.8 Comparison of the total number of grids, percentage of total area, distribution of surface 

fractions, and mean values of independent and dependent variables estimated for each GIT 

identified for the case study 2. 
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Figure 7.9 Degree of imperviousness and proportion of tree canopy measured for GITs identified for the 

case study 2. 
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The most abundant surface covers across all GITs and the case study 2 were impervious 

ground (23.17% of the case study area) and impervious buildings (21.16%). On the other 

hand, the most common pervious surfaces were trees (22.08%) and non-irrigated grasses 

(18.42%), followed by irrigated grasses (10.65%). Bushes (3.26%) and water (1.27%) 

were the least common surfaces. These values are similar to those estimated for the case 

study 1, with slight differences in the proportion of buildings (19.78% versus 21.16%) and 

bushes (2.24% versus 3.26%) respectively. 

Despite differences in extent and season, the distribution of surface fractions across all 

GITs in winter are very similar to those estimated for summer [Figure 7.8] (see Section 

7.2.2.1). In all cases, this match with the typical properties defined for GITs [Table 4.14].  

Among the mixed GIT subgroup, MX8 Mixed grasses with scattered trees presents a 

significant difference in the proportion of trees when comparing winter (25.8%) and 

summer (43.9%) results. This may be explained by the considerable presence of deciduous 

trees and the variation in the proportion of irrigated and non-irrigated grasses between both 

case study areas.  

Figure 7.8 presents a statistical summary of mean NDVI vales for all GITs identified in the 

case study 2. Overall, boxplots show similar patterns in the variability and differences of 

mean NDVI among GITs as those observed for the case study 1 (see Section 7.2.2.1 and 

Figure 7.5). Nonetheless, mean NDVI values for winter are significantly higher than 

summer, especially for terrestrial GITs. For instance, GITs with the largest proportion of 

irrigated grasses and forested areas, namely PV11, PV2, PV6, PV10 and PV8, display very 

high mean NDVI values (0.69 to 0.80) compared to summer that vary between 0.20 and 

0.31.  

Due to the presence of healthier vegetation in winter, mean NDVI of impervious GITs show 

low positive values (0.08 to 0.36) while mixed GITs are considerably higher (0.31 to 0.65). 

Overall, mean NDVI variability (length of boxplots) for all GITs is relatively lower in 

winter than summer. Aquatic GITs commonly present the lowest NDVIs values and the 

highest variation of means (longer boxplots) compared to other typologies; however, AQ1 

Water was the only GIT with a very negative mean NDVI value of -0.20.  

In terms of mean altitude, the majority of GITs display varied values ranging between 13 

and 72 MASL. Particularly, the altitudes of GITs identified for the northern portion are 

among the highest as these situate in the hilly Hornsby Plateau of Sydney (see Section 

6.1.4). Aquatic GITs are usually low-lying with most of mean altitudes between 0 and 5 
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MASL. A comprehensive analysis of diurnal and nocturnal LST differences in winter and 

among GITs is presented in Section 7.3. 

7.2.3 Accuracy and quality evaluation 

The quality evaluation of the proposed classification scheme for green infrastructure was 

conducted using two distinct methods. The first method consists of comparing the accuracy 

of classified GIT maps against validation data from ground-truthing using a confusion 

matrix. The second method consists of assessing the accuracy or performance of several 

supervised machine learning algorithms (or classifiers) based on the parameters and 

threshold values defined for each GIT class. The results of both assessment methods are 

presented in the following sections. 

7.2.3.1 Accuracy analysis of classifications using ground-truthing and confusion 

matrix 

In this research, the extent of the pilot study (see Section 7.2.1) was selected for accuracy 

assessment of classification results since conducting an evaluation for the whole extent of 

both case studies was resource intensive and time consuming.  

Accordingly, 5.4% (n=322) of the total number of classified grids per typology were chosen 

for accuracy assessment through a confusion matrix. The total number of grids of each GIT 

class employed for validation were determined proportionally to its fraction of the total 

area using a stratified random sampling method. The resulting classified GIT maps were 

compared against very high resolution (0.5m) aerial imagery provided by Nearmap (2017) 

at each validation point by applying a careful visual interpretation based on expert 

knowledge. To reduce flaws in the assessment, the proportion of validation points was 

increased for GITs with an insufficient number of samples.  

The accuracy of predictions was estimated using a confusion matrix where true classes (y-

axis) were plotted against predicted classes (x-axis). The diagonal cells show the number 

of observations where true and predicted classes matched well, while other cells show the 

number of misclassifications. In addition, four quality indices were calculated based on the 

confusion matrix. First, the producer accuracy (PA) estimates the fraction of correctly 

classified grids of a certain typology regarding the total number of grids of that ground 

truth typology. Second, the user accuracy (UA) represents the reliability of classifications 

by measuring the proportion of correctly classified grids of a certain typology divided by 

the total number of predicted grids of that typology. Third, the overall accuracy (OA) 

corresponds to the total number of correctly classified grids divided by the total number of 
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grids. Fourth, the kappa coefficient measures the agreement between predicted and ground 

truth grids where a value of 1 represents a perfect agreement, while a value of 0 represents 

no agreement at all.  

Table 7.1 Confusion matrix of the GIT classification results for the pilot study at 50m grid resolution showing 

user accuracy (UA), producer accuracy (PA), overall accuracy (OA) and Kappa index. 

 

Table 7.1 shows the error matrix and quality indices for the classification accuracy 

assessment of the pilot study at 50m grid resolution. The overall accuracy of the GIT 
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classification is 76.4%, while the kappa coefficient value is 0.741, which represents overall 

satisfactory classification results. 

When observing the user accuracy, it can be found that pervious GITs obtained the highest 

accuracy among GITs (>85%), while impervious and mixed GITs had a relatively lower 

accuracy than other GITs (58-77%). A similar situation occurs when observing the 

producer accuracy; however, mixed and aquatic GITs achieved much lower values 

compared to other typologies. Particular attention causes the variability of accuracies 

exhibited by aquatic GITs as the number of validation points was too small.  

The results also show that there is considerable confusion between IM4, IM5 and IM6; 

between IM2, IM5 and MX3, and between MX5, MX7 and MX9 given the large variability 

of surface fractions and the difficulty of distinguishing different arrangement of trees. This 

has resulted in relatively low user accuracies for MX9 (0.58), IM4 (0.64), MX3 (0.67), 

MX6 (0.70), IM6 (0.71) and IM2 (0.72). The lowest user accuracies (0.00) were calculated 

for IM3 and AQ4 due to the very small number of validation points and grids identified for 

these classes.  

7.2.3.2 Quality assessment of the classification scheme using deep learning  

After performing the accuracy evaluation of GIT classifications, it was conducted an 

evaluation of the predictability or performance of the classification scheme (implemented 

using the conditional algorithm in ArcGIS presented in Section 6.4) which is based on 

parameters and threshold values defined for each GIT. 

Due to the extensive coverage of the study area and the large number of classified grids 

(51827 samples), deep learning was selected to perform the quality assessment for the 

totality of the extent of each case study. Deep learning is defined as a type of machine 

learning in which several classifiers or models learn to perform classifications tasks from 

a large amount of training data provided by the user. Deep learning is usually implemented 

using a neural network architecture (which typically contains multiple nonlinear processing 

layers), so it is suitable for non-parametric data (MathWorks, 2017a). In fact, it is an 

excellent classification technique that in recent years has concentrated the attention of 

remote sensing researchers as it proved effective in implementing and evaluating 

supervised object-based classification frameworks like the GIT scheme proposed in this 

thesis (Ma et al., 2017). 

The classification learner app available in Matlab® software (MathWorks, 2017b) was 

applied to assess the accuracy of categorical predictions (or responses) and the overall 
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quality of the classification parameters (or predictors) by training several supervised 

machine learning classifiers (also referred as models or algorithms). Model comparisons 

were performed to determine their sensitivity or specificity by plotting true positive rates 

versus false positive rates (MathWorks, 2018b).  

Table 7.2 Summary of selected and excluded predictors and responses for the supervised machine learning 

models performed for each case study. 

Predictors Responses Summer dataset Winter dataset 

# samples Included  

 

# samples Included  

 
Included 

 

IM 1 2313 Yes 3876 Yes 

- Fraction of total impervious IM 2 1062 Yes 2325 Yes 

- Fraction of trees 

 

IM 3 7 No 2 No 

- Fraction of shrubs IM 4 3742 Yes 3976 Yes 

- Fraction of non-irrigated grasses IM 5 2090 Yes 1836 Yes 

- Fraction of irrigated grasses IM 6 1228 Yes 1277 Yes 

- Fraction of total water MX 1 91 Yes 222 Yes 

- CIRCLE_AM MX 2 19 No 10 No 

- nLSI MX 3 212 Yes 386 Yes 

 MX 4 225 Yes 388 Yes 

Excluded  

 

MX 5 4475 Yes 4935 Yes 

- Fraction of impervious building MX 6 820 Yes 1656 Yes 

- Fraction of impervious ground MX 7 1255 Yes 961 Yes 

- Mean altitude MX 8 58 Yes 61 Yes 

- Mean NDVI MX 9 2461 Yes 1755 Yes 

 MX 10 1073 Yes 1633 Yes 

 PV 1 192 Yes 328 Yes 

 PV 2 44 Yes 103 Yes 

 PV 3 27 Yes 36 Yes 

 PV 4 14 No 0 No 

 PV 5 223 Yes 104 Yes 

 PV 6 36 Yes 232 Yes 

 PV 7 35 Yes 14 No 

 PV 8 5 No 33 Yes 

 PV 9 167 Yes 64 Yes 

 PV 10 18 No 176 Yes 

 PV 11 829 Yes 1943 Yes 

 AQ 1 156 Yes 168 Yes 

 AQ 2 16 No 10 No 

 AQ 3 15 No 5 No 

 AQ 4 24 Yes 9 No 

 AQ 5 101 Yes 133 Yes 

 AQ 6 32 Yes 26 Yes 

 AQ 7 55 Yes 24 Yes 

 TOTALS 23120 23026 28707 28657 

 

Initially, information of classified GIT grids corresponding to each case study were pre-

processed to extract meaningful parameters or features to help improve the machine 

learning algorithms by focusing on the data that will produce more accurate predictions. 

This step is crucial to eliminate redundancy and facilitate the generalisation during the 
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learning phase to avoid model overfitting (MathWorks, 2018a). Accordingly, GITs with 

less than 20 samples were excluded as well as several redundant variables. Table 7.2 

provides a summary of selected and excluded predictors and responses for each case study. 

Before training classifiers, datasets were divided into training and validation sets to reduce 

the possibility of model overfitting. The validation set is usually employed to measure the 

accuracy of the model developed from the training data (MathWorks, 2018a). Due to the 

large number of samples [Table 7.2], a holdout validation was performed with 25% of the 

data. 

A total of 22 machine learning algorithms were trained and included: (1) decision trees 

(fine, medium, coarse), (2) discriminant (linear, quadratic), (3) support vector machine 

(SVM) (linear, quadratic, cubic, Gaussian), (4) k-nearest neighbour (KNN) (fine, medium, 

coarse, cosine, cubic, weighted), and (5) ensemble classifiers (boosted trees, bagged trees, 

subspace discriminant, subspace K-nearest neighbour and RUSBossted trees). Classifiers 

were tested for each case study individually to assess the reliability of the scheme using 

two different datasets. Table 7.3 presents a summary of accuracy scores achieved by each 

classifier.  

Table 7.3  Summary of model’s accuracy achieved for each dataset accompanied by a description of classifiers. 

Models with highest accuracies (in bold) were selected for further assessment. 

Descriptions based on MathWorks (2018b). 

Classifiers Model accuracy Description Interpreta-

bility Summer  Winter  

Decision trees (Tree)  It is fast for fitting and prediction but tends to have 

low predictive accuracy and is prone to overfitting   

  Fine tree 

  

99.8 % 100.00 % Many leaves (splits) to make many 

fine distinctions 

Easy 

interpretation 

  Medium tree 

  

95.8 % 96.8 % Medium number of splits for finer 

distinctions 

Easy 

interpretation 

  Coarse tree 

  

65.5 % 59.5 % Few splits to make coarse 

distinctions between classes 

Easy 

interpretation 

Discriminant  It estimates a Gaussian distribution for each class. 

Good for large datasets, fast and accurate 

predictions.   

  Linear 

  

71.4 % 71.7 % Create linear boundaries between 

classes 

Easy 

interpretation 

  Quadratic 

  

80.4 % 81.8 % Creates non-linear boundaries 

between classes 

Easy 

interpretation 

Support vector machines 

(SVM) 

 Classifies data by finding the best hyperplane 

(largest margin) that separates points between 

classes. Good for medium to large datasets. 
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  Linear SVM 

   

96.6 % 97.2 % Makes a linear separation between 

classes. Good for small problems 

Easy 

interpretation 

  Quadratic SVM 

   

96.8 % 97.1 % Makes a quadratic separation 

between classes. Good for large 

datasets 

Hard 

interpretation 

  Cubic SVM 

   

95.5 % 96.0 % Makes a cubic separation between 

classes. Good for large datasets 

Hard 

interpretation 

  Fine Gaussian SVM 

   

80.4 % 84.3 % Makes finely detailed distinctions 

between classes using a kernel 

scale set to sqrt(P)/4.  

Hard 

interpretation 

  Medium Gaussian 

SVM 

   

94.0 % 94.9 % Makes medium distinctions 

between classes using a kernel 

scale set to sqrt(P). 

Hard 

interpretation 

  Coarse Gaussian SVM 

   

91.2 % 92.3 % Makes medium distinctions 

between classes using a kernel 

scale set to sqrt(P)*4.  

Hard 

interpretation 

K-nearest neighbour (KNN)  Identifies classes based on the distance to a n 

number of neighbours. It has good predictive 

accuracy in low dimensions 

  Fine KNN 

  

80.8 % 82.7 % Finely detailed distinctions 

between classes. # neighbours=1 
Hard 

interpretation 

  Medium KNN 

  

84.8 % 86.1 % Medium distinctions between 

classes. # neighbours=10 
Hard 

interpretation 

  Coarse KNN 

   

81.1 % 83.8 % Coarse distinctions between 

classes. 

# neighbours=100 

Hard 

interpretation 

  Cosine KNN 

   

76.8 % 76.4 % Medium distinctions between 

classes using a cosine distance 

metric. 

# neighbours=10 

Hard 

interpretation 

  Cubic KNN 

   

82.7 % 84.7 % Medium distinctions between 

classes using a cubic distance 

metric. 

# neighbours=10 

Hard 

interpretation 

  Weighted KNN 

   

85.5 % 86.7 % Medium distinctions between 

classes using a distance weight. 

# neighbours=10 

Hard 

interpretation 

Ensemble  It melds results from many weak learners into one 

high-quality ensemble model. High accuracy and 

good performance for small to medium datasets 

  Boosted trees 

   

98.0 % 98.6 % It merges AdaBoost with Decision 

Tree learners 

Hard 

interpretation 

  Bagged trees 

   

99.8 % 99.9 % It merges Breiman’s ‘random 

forest’ algorithm with Decision 

Tree learners. It tends to achieve 

high accuracies 

Hard 

interpretation 

  Subspace discriminant 

   

65.2 % 68.9 % It merges Subspace with 

Discriminant learners. Good for 

many predictors. 

Hard 

interpretation 

  Subspace KNN 

   

66.3 % 74.2 % It merges Subspace with Nearest 

neighbour learners. Good for many 

predictors 

Hard 

interpretation 

  RUSBossted trees 

   

92.5 % 93.1 % It merges RUSBoost with Decision 

Tree learners. Good for skewed 

data 

Hard 

interpretation 

    P = Number of predictors 
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Results in Table 7.3 shows a high accuracy (>80%) of predictions for most models, and 

especially for classifiers including fine decision trees learners such as Ensemble-Bagged 

trees (99.8% summer – 99.9% winter) and Fine Tree (99.8% summer – 100.0% winter), 

linear and quadratic discriminations such as Linear SVM (97.2% winter), Quadratic SVM 

(96.8% summer), and Quadratic discriminant (80.4% summer – 81.8% winter), and 

weighted distance learners such as Weighted KNN (85.5% summer – 86.7% winter). Only 

very few models achieved low scores (≈65%), corresponding to classifiers implementing 

coarse and subspace learners. Very close similarities on the accuracy scores were identified 

between summer and winter datasets; however, the latter obtained slightly higher values.  

Models with the highest accuracy scores (highlighted in bold in Table 7.3) were selected 

for further evaluation. Figures F1 to F10 in Appendix F show the performance assessment 

of selected models using confusion matrices and the results of receiver operating 

characteristic (ROC) curves17 calculated for each GIT class. Confusion matrices were 

calculated using the predictions on the held-out observations to identify areas where the 

model performed poorly. The diagonal cells in green show where the classifier performed 

well and classified observations of the true GIT class correctly.  

Values of the false positive rate (FPR), true positive rate (TPR) and area under curve 

(AUC) are provided along confusion matrices to compare the predictability of each class. 

For instance, FPR of 0.1 means that the selected model assigned 10% of observations 

incorrectly to the actual class, while TPR of 0.8 indicates that the selected classifier 

assigned 80% of the observations to the positive class. The AUC measures the overall 

quality of the model per class, so larger AUC values indicates better classification 

performance (MathWorks, 2018b).  

Results at class level show that FPRs were significantly low and AUCs considerable high 

for all selected models, while TPRs were relatively varied. This means that all classifiers 

tend to assign most observations correctly to actual GIT classes. Fine tree algorithms 

outperformed among classifiers by exhibiting a very high classification performance for all 

classes (average AUC of 99%); except for PV3 Mixed grasses with shrubs and trees, AQ6 

Water with scattered trees, and PV7 Mostly non-irrigated grasses with scattered trees with 

29%, 22%, and 12% of misclassifications respectively [Figure F1]. Similar high 

classification scores (AUCs ≈100%) for all GIT classes were obtained by the Ensemble–

                                                      

17  In machine learning, a ROC curve is typically used to select a threshold for a classifier which maximises the 

true positives, while minimising the false positives. Values of the ROC curve (i.e. FPR, TPR and AUC) can 

also be interpreted as estimates of the performance of the classifier over its entire operating range. 



 

Chapter 7 – Data analysis and results  |  237 

 

bagged trees classifier –as it also implements a decision tree learner–, except for PV3 with 

only 44% of the observations correctly assigned to the actual class [Figure F10].  

Linear and Quadratic SVM classifiers also achieved a considerably high classification 

performance for all classes (AUCs ≈100%) [Figures F3 and F8]; however, low 

classification rates (TPRs as percentages) can be seen for PV7 Mostly non-irrigated grasses 

with scattered trees (38%), PV8 Mostly irrigated grasses with scattered trees (50%), AQ6 

Water with scattered trees (56%), AQ7 Water with clustered trees (67%), and MX8 Mixed 

grasses with scattered trees (60-71%). The rate of misclassifications for the remaining 

classes ranges from 1% to 25%. 

The classification performance of the Weighted KNN classifier for the majority of classes 

was slightly lower than previously mentioned algorithms (average AUCs of 98%). The 

lowest rates of correctly classified classes corresponded to MX8 Mixed grasses with 

scattered trees (21%), MX3 Mixed surface without trees (32%), AQ6 Water with scattered 

trees (33%), and PV7 Mostly non-irrigated grasses with scattered trees (38%). 

Additionally, medium classification rates were obtained by IM2 Mostly impervious with 

grasses (56%), MX1 Mostly non-irrigated grasses with impervious (64%), and MX4 Mixed 

grasses and bare soils (66%), and AQ5 Water with aligned trees (68%) [Figure F4]. 

Quadratic discriminant classifier displayed the lowest classification performance among 

models and for most classes with a minimum AUC of 76% and average AUC of 93%. The 

lowest percentage of correctly classified GITs corresponded to PV8 (25%) Mostly irrigated 

grasses with scattered trees, PV5 (46%) Mostly irrigated grasses with aligned trees and 

AQ7 Water with clustered trees (50%), while misclassification rates of remaining GITs 

ranges from 6% to 37% [Figure F7].  

7.3 Land surface temperature differences and cooling 

capacity of green infrastructure typologies 

After classifying the study area into identifiable GITs, a comprehensive thermal evaluation 

was conducted involving the estimation of mean diurnal and nocturnal LST for each 

individual grid in summer and winter, and the subsequent analysis of the spatial and 

temporal LST variability and the cooling capacity of identified GITs. 

7.3.1 Thermal differentiation of GITs  

In summer, daytime and night-time thermal imagery were simultaneously available for a 

total of 23022 GITs; while in winter, thermal data were only available for 24948 GITs at 
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daytime and 23458 GITs at night-time. Figures 7.10 to 7.13 show the number of grids per 

GIT class for which mean LSTs were calculated for each season and time of the day. 

Typologies with less than 20 observations were excluded.  

A general comparison between GITs in terms of their mean LSTs shows a clear 

differentiation among typologies; thus, further statistical analysis was carried out to 

examine their variability and the occurrence of outliers. Boxplots summarising the 

maximum, minimum, median, average and interquartile values of mean diurnal and 

nocturnal LSTs for each GIT and case study are presented in Figures 7.10 to 7.13. Detailed 

summary statistics of mean LSTs for each GIT are presented in Appendix G.  

When analysing the inter-typology differences of boxplots, in a rank order –from one 

(warmest) to 14 (coldest)– and within particular subgroups (impervious, mixed, pervious 

and aquatic GITs), the following observations were made [Figures 7.10 and 7.13]: 

 

A. Summer case study: 

• Mean daytime LSTs varied significantly across the summer case study area with a 

maximum difference of 12.12°C between the warmest (IM1) and coldest (AQ1) GITs. 

However, this variance was less pronounced at night-time, with only 3.54ºC between the 

highest (AQ1) and the lowest (PV1) recorded mean LSTs. 

• The highest diurnal mean LSTs were achieved by impervious GITs, namely IM1 (38.13°C), 

IM2 (37.79°C), IM5 (37.55°C), IM4 (37.41°C) and IM6 (37.31°C). A second tier of warm 

GITs is comprised by a subset of mixed GITs with a considerable presence of impermeable 

surfaces (25-50% of the grid) corresponding to MX3 (36.09°C), MX7 (36.03°C), MX1 

(35.72°C), MX5 (35.58°C) and MX9 (35.26°C). The average LST of previous subset was 

up to 2.23°C warmer than the average temperature of pervious GITs with more than 50% 

of non-irrigated surfaces (PV1//5/7/9) and 4.69°C warmer than pervious GITs with a 

substantial presence of irrigated grasses and trees (PV2/6/11).  

• The lowest diurnal mean LSTs corresponded to open water AQ1 (26.01ºC), while lower 

temperatures also occurred in classes with a high proportion of water and dense trees, such 

as AQ7 (27.88ºC), AQ5 (28.14ºC), AQ6 (28.78ºC), and PV11 (29.95ºC). 

• At night, the highest mean LSTs were achieved by aquatic GITs such as AQ1 (24.66ºC), 

AQ5 (24.00ºC), AQ6 (23.94ºC), AQ4 (23.90ºC) and AQ7 (23.73ºC). The second warmest 

group, with mean LSTs ranging from 22.19 to 23.16ºC, corresponded to GITs comprising 
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a variety of impervious, non-irrigated grasses and trees. The lowest nocturnal temperatures 

occurred in treeless GITs with a large proportion of grasses such as PV1 (21.12ºC), PV2 

(21.20ºC) and MX4 (21.37ºC); followed by pervious GITs with aligned and dispersed trees 

(PV3/5/6/7/9) showing temperatures between 21.43 and 21.67ºC. 

• A repetitive pattern of ups and downs (spikes) on mean diurnal LSTs occurred between 

pairs of mixed and pervious GITs. Accordingly, GITs finishing with odd numbers 

(MX1/3/5/7/9; PV1/5/7/9/11) exhibited higher temperatures (from 1.87ºC to 3.84ºC) than 

typologies with even numbers (MX4/6/8/10; PV2/6) as the latter display a larger proportion 

of irrigated grasses and the presence of paved areas is negligible. These peaks were not so 

obvious for nocturnal LSTs, with differences between 0.08ºC and 1.20ºC. 

• Distinct temperature variances were observed among forested GITs sharing the same 

configuration of trees (i.e. IM5, MX7/8, PV7/8) due to the disproportion in pervious and 

impervious surface fractions. For instance, typologies with dense and clustered trees 

(PV11, MX10) displayed lower mean diurnal LSTs (up to 5.35ºC) than those with clusters 

of trees enclosed by impermeable surfaces (IM6, MX9). Similarly, GITs with scattered and 

aligned trees that were surrounded by irrigated grasses (i.e. PV6, MX8) were up to 6.09ºC 

cooler than typologies encircled by abundant pavements and/or buildings (i.e. IM4, MX7). 

Although a similar situation occurred at night (except for aquatic GITs), the temperature 

differences were substantially lower with a maximum of 1.49ºC.  

• Conversely, a close similarity of mean LSTs was observed when forested GITs were 

compared within the same subgroup (i.e. pervious, mixed, etc.) regardless of tree 

configuration. At daytime, it was identified a maximum difference of 0.24ºC among 

IM4/5/6; 0.39ºC among PV5/7/9; 0.57ºC among MX6/8/10; 0.77ºC among MX5/7/9; and 

0.9ºC among AQ5/6/7. Whereas a similar situation occurred at night, the temperature 

variance is considerable smaller for all subsets, ranging from 0.14 to 0.29ºC.  

• Intra-typology variability of diurnal LSTs (length of boxplots) is relatively homogenous 

for most classes (except for IM1), with generally symmetrical boxes and whiskers. This 

indicates a not significant departure from normality. Outliers mostly occurred in 

impervious GITs and PV11, with special attention to IM1 that also exhibited the larger 

temperature variation among classes. Outliers rarely occurred in the rest of the typologies. 

Nocturnal LSTs show a similar pattern with relatively symmetrical boxes and whiskers; 

nonetheless, a larger disparity on LST variation was observed among typologies. A larger 

occurrence of outliers was identified in impervious and mixed GITs compared to daytime. 
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Figure 7.10 Box-plots, number of samples and frequency distribution of mean diurnal LSTs recorded in 

summer. Average mean LSTs estimated per each GIT are presented in bold. 
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Figure 7.11 Box-plots, number of samples and frequency distribution of mean nocturnal LSTs recorded 

in summer. Average mean LSTs estimated per each GIT are presented in bold. 



 

242  |  Land surface temperature differences and cooling capacity of green infrastructure typologies 

 

B. Winter case study: 

• The winter case study shows similar LST patterns, differences and variability than results 

in summer. Nonetheless, the maximum LST differences between the warmest and coldest 

GITs were less pronounced with only 6.27ºC during the day and 4.34ºC at night, but still 

considerable. 

• At daytime, treeless impervious GITs (IM1/2/3) displayed the highest mean LSTs (13.95°-

14.25°C); while aquatic GITs and Dense trees (PV11) showed the lowest (7.98°-9.18°C). 

Within the mixed and pervious subgroups, GITs with a considerable presence of paved and 

non-irrigated surfaces (11.53°-13.27°C) were warmer than those with a large proportion of 

irrigated surfaces (10.53°-11.08°C). 

• During night-time, open water AQ1 (5.87°C) was significantly warmer than other 

typologies; while temperature differences among remaining GITs were not as pronounced 

as daytime, ranging from 2.12°C to 3.75°C. Likewise summer, lower nocturnal 

temperatures occurred in treeless GITs with a large proportion of grasses, namely PV1, 

PV2, MX4 and MX1 (1.53°-1.93°C). 

• Repetitive peaks on mean diurnal LSTs also occurred between pairs of mixed and pervious 

GITs; however, temperature variances between typologies with and without irrigated 

surfaces were smaller in winter (0.24 to 1.99ºC) than summer (from 1.87°C to 3.84ºC). In 

contrast, nocturnal spikes of LST are relatively more evident in winter than summer, with 

differences of up to 1.57ºC.  

• Temperature differences among GITs sharing the same tree configuration (i.e. IM6, MX9, 

MX10, PV9, PV10) were evident and followed a similar pattern than summer, although 

variances were less marked with a maximum of 2.85ºC during day and 1.49ºC during night. 

When comparing forested GITs within subgroups and irrespective of the spatial 

configuration of trees, a maximum difference of 0.63ºC was detected for IM4/5/6, 

MX5/7/9, PV6/8/10 and AQ5/6/7. However, this is not the case of MX6/8/10, with a 

maximum variance of 1.28ºC among classes. Similar temperature differences within each 

subgroup were also observed at night-time. 

• Intra-typology variability of diurnal LSTs is relatively homogeneous and symmetrical for 

most GITs –except for aquatic GITs. This indicates a no significant departure from 

normality for most typologies. Outliers mostly occurred in impervious GITs and PV11 with 
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special attention to IM1 which shows the larger temperature variability among classes. 

Overall, outliers were less frequent in winter than summer. At night, there is an increased 

variation and asymmetry of boxplots which indicate a departure from normality, especially 

for aquatic GITs. Also, occurrences of outliers were more common in impervious GITs.  

 

Aggregated histograms representing the frequency distributions of mean LSTs for all GITs in 

summer and winter are presented in Figures 7.10 to 7.13. GIT subgroups are displayed with four 

distinct sequential colours for an easier identification of typologies. In summer, the most frequent 

diurnal temperatures are between 35.0°C and 38.0ºC and display a bimodal distribution with two 

LSTs peaks, a smaller at 30º-32ºC and a larger at 36ºC. Compared to other subgroups the mean 

diurnal LSTs of pervious and aquatic GITs have larger frequencies (wide temperature range) with 

most bars shifted to the left [Figure 7.10]. In contrast, mean nocturnal LSTs for all GITs displayed 

a unimodal distribution with most temperatures ranging between 22ºC and 23ºC [Figure 7.11]. 

Winter histograms display a similar pattern with the most frequent diurnal temperatures ranging 

between 12.0 ºC and 14.0ºC; however, the bimodal distribution is more pronounced than summer 

with two distinct peaks, a smaller at 9º-10ºC and a larger at 12.5º-14ºC. Compared to other 

subgroups the mean diurnal LSTs of impervious GITs are relatively higher with most frequency 

bars shifted to the right [Figure 7.12]. Although mean nocturnal LSTs for all GITs displayed a 

unimodal distribution with most temperatures ranging between 2.5 and 3.5ºC, pervious GITs have 

no specific range with large frequencies and most frequency bars shifted to the left [Figure 7.13]. 

Normality tests for each GIT were carried out as it is an important assumption to consider for the 

subsequent analysis of variance and due to the large variability of the number of samples among 

typologies. The analysis of normality of LST distribution for each GIT has also served to 

corroborate the relevance of previous observations and for an exploratory data analysis before the 

formulation of the predictive models presented in Section 7.4. 

Table 7.4 summarises the frequency distribution of mean diurnal LSTs in summer for each GIT 

with a fitted Gaussian curve representing a normal distribution. A summary of histograms for 

both case studies and times of the day are provided in Appendix G. The Kolmogorov-Smirnov test 

is a nonparametric test that that has been applied in similar climate studies to determine if two 

samples (or datasets) have significantly different distributions (Geletič et al., 2016; Geletič et al., 

2017; Zheng et al., 2017) . Results of the Kolmogorov-Smirnov test are presented alongside graphs 

in Appendix G with significant departures from normality corresponding to p-values less than 

0.05. 
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Figure 7.12 Box-plots, number of samples and frequency distribution of mean diurnal LSTs recorded in 

winter. Average mean LSTs estimated per each GIT are presented in bold. 
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Figure 7.13 Box-plots, number of samples and frequency distribution of mean nocturnal LSTs recorded in 

winter. Average mean LSTs estimated per each GIT are presented in bold. 
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Results show that in summer departures from normality were more common at day (48.1% of 

GITs) than at night (37.0%) and mostly occurred for impervious and aquatic GITs [Tables G2 

and G3]. Overall, departures from normality were more common in winter than summer. These 

were more common at night (63.0% of GITs), especially for impervious, aquatic and mixed GITs. 

In contrast, departures from normality at daytime (51.9%) mostly occurred for impervious and 

mixed GITs [Tables G5 and G6]. 

Results of normality tests and comparison of LST variances indicate that analysis of variance 

(ANOVA) can be employed to determine whether the differences in mean LSTs among GITs 

described before are statistically significant or not. Since the assumption of homogeneity of 

variances was violated for both case studies as assessed by Levene's test for equality of variances 

(p=0.000), one-way Welch-ANOVA and Games-Howell post hoc test were chosen for multiple 

comparisons. 

In summer, results show statistically significant differences among mean diurnal LSTs (Welch’s 

F(26, 838.410, p=0.000)) and nocturnal LSTs (Welch’s F(26, 839.110, p=0.000)) for all GITs. In 

winter, results also reveal statistically significant differences among mean diurnal LSTs (Welch’s 

F(26, 660.848, p=0.000)) and nocturnal LSTs (Welch’s F(26, 868.509, p=0.000)) for all GITs.  

Subsequently, results of the Games-Howell post hoc tests for pairwise comparisons were 

interpreted in the form of binary matrices (diurnal versus nocturnal results) for each case study 

[Figures 7.14 and 7.16]. Points in table’s cells indicate no statistically significant difference in 

mean LSTs between two specific GITs (p-value >0.05); so, these represent a poor differentiation 

between a pair of GITs in terms of their mean LSTs. Conversely, empty cells indicate a 

statistically significant difference between two typologies (p-value <0.05); hence, a good thermal 

differentiation between two typologies. 

Considering that well-delineated GITs should exhibit distinct LST variability (Bartesaghi Koc, 

Osmond, Peters et al., 2018; Geletič et al., 2016; Geletič & Lehnert, 2016); Figures 7.15 and 7.17 

present estimations of the total number of multiple comparison tests in which statistically 

significant differences (p<0.05) among GITs were identified. The scores –expressed in 

percentage– allow the identification of typologies with unique thermal profiles (those with higher 

scores). By analysing the results of multiple comparisons presented in Figures 7.14 to 7.17, the 

following observations and patterns were identified: 
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Table 7.4 Frequency distribution of mean diurnal LSTs in summer for each GIT with a fitted normal distribution 

and results of the Kolmogorov-Smirnov test (N=sample size; standard deviations are in parenthesis, 

p-values <0.05 indicates a non-normal distribution, * This is a lower bound of the true significance). 
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• Overall, it is observed that significant LST differences prevail for most GITs at daytime 

(86.9% in summer and 85.5% in winter) and night-time (80.9% in summer and 73.8% in 

winter); however, temperature differences are more distinguishable in summer and during 

the day.  

A. Summer case study: 

• Mean LSTs of all impervious GITs were well differentiated at daytime especially IM1, IM2 

(100.0%) followed by IM5, IM6 (>96%), and IM4 (92.3%). Although most impervious 

GITs were also well delineated at night, their temperatures were not significantly different 

to AQ4 as it also comprises impermeable surfaces. In addition, IM1 was relatively 

distinguishable at night (73.1%) and exhibited similar temperatures to some mixed and 

pervious GITs. 

• Most mixed GITs were well differentiated at daytime, especially MX9 (96.2%) and MX5, 

MX7 (92.3%). At night-time, MX9 was also well distinguished (100.0%); nonetheless, 

treeless GITs such as MX1 and MX3 registered similar LSTs than GITs with few or aligned 

trees (MX5 to MX8). Also, the thermal profiles of MX4 and MX8 were not significantly 

different from pervious GITs with no or few trees (PV1 to PV7).  

• At daytime, pervious GITs were relatively well differentiated from other typologies 

(average 81.3%), particularly PV11 was the most distinguishable within this subgroup 

(92.3%). Compared to previous subgroups, the effect of tree configuration on diurnal 

temperature differences was not significant. In fact, PV7 (65.4%) was the least 

distinguishable as mean diurnal LSTs were similar to mixed and pervious GITs dominated 

by non-irrigated grasses. Despite disparities in tree arrangement and proportion/type of low 

plants, there were no significant temperature differences among pervious GITs at night-

time, except for PV11 that has a considerable amount of tree canopy and bushes. 

• A comparable situation occurs with aquatic GITs that are better differentiated at daytime 

than night-time. Accordingly, AQ1 (100.0%) was the most distinguishable during the day, 

while AQ4 was the least distinguishable at both daytime (61.5%) and night-time (69.2%). 
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B. Winter case study: 

• Most impervious GITs were well differentiated at daytime, especially IM1, IM2, IM5 that 

achieved the highest scores among all typologies (100.0%). Conversely, at night-time the 

thermal profiles of GITs within this subgroup were comparable to those of MX8 and 

forested aquatic GITs (AQ5 to AQ7).  

• At daytime, mean LSTs of mixed GITs were significantly different within the same 

subgroup, yet relatively distinguishable compared to average temperatures from some 

pervious GITs (i.e. PV3, PV5, PV8, PV9). MX7 and MX10 were the most distinguishable 

during the day (96.2 and 92.3% respectively); in contrast, MX8 was poorly distinguished 

at both day (69.2%) and night (38.5%). Also, thermal conditions from forested mixed GITs 

(MX5 to MX10) were not significantly different from those of forested aquatic GITs (AQ5 

to AQ7). 

• Treeless pervious GITs (PV1, PV2) were well differentiated at both times of the day 

(>76%). On the contrary, forested pervious GITs were relatively distinguishable at daytime 

(average 77.5%), but poorly differentiated at night (average 63.5%). This ambivalence 

typical from forested typologies was also observed in PV11 that was better differentiated 

at daytime (96.2%) than night-time (69.2%). Only in this subgroup, the influence of tree 

configuration on LSTs was negligible, as there were no statistically significant differences 

among pervious GITs with scattered, aligned and clustered trees. 

• A similar pattern is observed in aquatic GITs that became less distinguishable as the 

proportion of trees and paved areas increase; especially at night-time. Except for AQ1 that 

was well differentiated at both times of the day (>88.5%), mean LSTs of aquatic GITs were 

very similar to several mixed and impervious GITs as explained before.  

Detailed explanations and discussion on the reasons behind the abovementioned results are 

provided in Section 8.4. 
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Figure 7.14 Binary matrix showing the results of the Games-Howell post hoc tests for all pairwise 

comparisons of mean diurnal and nocturnal LSTs in summer. Points in cells indicate pairs of 

GITs for which mean LSTs were not significantly different (p >0.05). 

Figure 7.15 Percentage of significant diurnal and nocturnal LST differences in summer (p<0.05) achieved 

by each GIT as a result of multiple comparison tests. Dotted lines represent average values 

for both times of the day. 
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Figure 7.16 Binary matrix showing the results of the Games-Howell post hoc tests for all pairwise 

comparisons of mean diurnal and nocturnal LSTs in winter. Points in cells indicate pairs of 

GITs for which mean LSTs were not significantly different (p >0.05). 

Figure 7.17 Percentage of significant diurnal and nocturnal LST differences in winter (p<0.05) achieved 

by each GIT as a result of multiple comparison tests. Dotted lines represent average values for 

both times of the day. 



 

252  |  Land surface temperature differences and cooling capacity of green infrastructure typologies 

 

Figure 7.18 Cooling effect of GITs in summer relative to the base case (IM1 Highly impervious). 
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Figure 7.19 Cooling effect of GITs in winter relative to the base case (IM1 Highly impervious). 
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7.3.2 Assessing the cooling effects of GITs 

The overall cooling effect (ΔTs °C) of different types of green infrastructure is expressed 

here as the reduction in mean LST produced by a given typology (as a combination of 

different surface covers and tree arrangements), relative to that measured in a reference 

case corresponding to highly impervious contexts with no vegetation or the IM1 Highly 

impervious typology. Figures 7.18 and 7.19 illustrate the diurnal and nocturnal cooling 

effects of different GITs in summer and winter respectively. Negative values indicate 

cooling while positive values indicate relative heating effects compared to the base case. 

In summertime, the maximum LSTs reductions were obtained in the daytime hours by the 

aquatic and pervious GIT subgroups. The largest temperature departures from the base case 

(between 9.99ºC and 12.12°C) were achieved by aquatic GITs combining water and 

vegetated surfaces (AQ1, AQ5-7); except for AQ4 that comprised up to 35% of paved areas 

and reduced temperatures by only 5.55°C.  

The effect of tree configuration on cooling capacity was negligible when GITs from the 

same subgroup shared the same proportion of surface covers (i.e. PV5/7/9 or MX6/8/10), 

while considerably large temperature reductions (between 5.61°C and 8.26°C) were 

achieved by irrigated grasses and shrubs when combined with dense, clustered and aligned 

trees (PV3/6/11, MX6/8/10). In contrast, trees (with different spatial configurations) were 

only capable to reduce LSTs by 2.10°C when surrounded by mixed surfaces (MX5/7/9) 

and by 4.94°C when combined with non-irrigated grasses (PV5/7/9).  

In the absence of trees, irrigated grasses (PV2) exceeded the cooling capacity of non-

irrigated low plants (PV1) by 2.2°C. Lower cooling capacities (between 2.04°C and 

4.92°C) were observed for treeless GITs when grasses with different irrigation regimes 

were combined with paved areas (MX1/3/4). The lowest cooling capacity (between 0.34°C 

and 0.83°C) was registered by impervious GITs (IM2/4/5/6) with a limited amount of 

vegetation [Figure 7.18]. 

During the night, the cooling effects of vegetation shows a reverse pattern for most 

typologies. Compared to highly impervious areas (IM1), aquatic and impervious GITs 

provided a relative heating effect of up to 2.47°C and 0.97°C respectively. Mixed GITs and 

dense trees (PV11) were warmer than the base case by 0.03°-0.56°C; however, the presence 

of irrigated grasses reduced this relative heating effect (between 0.21°C and 1.38°C) as 

occurred with MX4 and MX8. In contrast, pervious GIT was the only subgroup that 

contributed to reduce LSTs in a relatively same proportion (between 0.52°C and 1.07°C), 

yet this was not as significant as during the day.  
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In wintertime, the largest cooling capacity (between 5.08°C and 6.28°C) was observed for 

aquatic GITs (AQ1, AQ5/6/7) and dense trees (PV11). Trees (in different arrangements) 

surrounded by non-irrigated grasses and mixed surfaces (PV9/5, MX5/7/8/9) were not as 

effective in reducing LSTs (between 1.33°C and 2.28°C) as when surrounded by irrigated 

grasses (MX6/10, PV3/6/8/10) (between 3.18°C and 3.72°C).  

In the absence of trees, irrigated grasses (PV2) surpassed the cooling effect of non-irrigated 

low plants (PV1) by 1.09°C and had a similar cooling capacity as typologies with scattered 

trees. Low plants with diverse irrigation regimes (MX4) reduced temperatures by 2.03°C, 

and by 1.09°C when combined with impervious surfaces (MX1, MX3). The lowest cooling 

capacity (between 0.31°C and 0.87°C) was observed for impervious GITs (IM2/4/5/6) 

[Figure 7.19].  

During night-time, the cooling capacity of most GITs was considerably greater than 

summer as mostly aquatic GITs provided a considerable heating effect. The largest cooling 

capacity (1.27°-1.67°C) was achieved by treeless GITs (PV1/2, MX1/4) with considerable 

amount of grasses. GITs combining scattered trees and irrigated grasses (PV3/8/6) caused 

temperature reductions between 0.81°C and 1.08°C; while a comparable cooling capacity 

(0.69° to 1.08°C) was also observed when trees (in different arrangements) were encircled 

by a large proportion of grasses (irrigated and non-irrigated). Lower LST reductions (0.03°-

0.42°C) occurred when aligned or scattered trees were added to paved areas (MX7/8, IM4-

5).  In contrast, open water (AQ1) provide the largest heating effect of 2.67°C and increased 

nocturnal LTSs between 0.24°C and 0.55°C when combined with aligned and scattered 

trees respectively. Conversely, water surfaces combined with clustered trees (AQ7) caused 

a temperature reduction of 0.32°C. Dense, clustered and aligned trees also provided a 

relative heating effect of up to 0.39°C when combined with mixed grasses and/or 

impervious surfaces (IM6, MX5/6/9/10, PV11).  

7.3.2.1 Correlation between vegetation abundance and cooling capacity of GITs 

As mentioned in Section 3.8, the effect of vegetation on SUHI mitigation has been 

extensively studied by examining the relationship between LSTs and vegetation abundance 

–usually described by vegetation indices such as NDVI or fractional vegetation covers 

(Weng, 2009).  

In this section, three directions were chosen to analyse the correlation between the cooling 

effects of GITs and the amount of vegetation. First, the TVX (thermal-vegetation index) 

approach (Carlson et al., 1994; Quattrochi & Ridd, 1994) was implemented by combining 
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LSTs and NDVI values from all observations (or samples) in a scatterplot to analyse their 

associations and the effect of wetness (i.e. irrigation, evapotranspiration, etc.) in thermal 

cooling (Carlson, 2007). Second, it was conducted a statistical analysis between the cooling 

capacity (calculated in previous section) and mean NDVI and fractional vegetation cover 

averaged for each GIT class. Third, a hierarchical cluster analysis was conducted to 

partition terrestrial GITs into subsets of similar cooling capacity; represented here by the 

nearest mean LST reduction of typologies at daytime and night-time, and for both seasons. 

TVX analysis of NDVI-LST relationship 

Figure 7.20 presents a TVX matrix of scatterplots of NDVI values plotted against mean 

diurnal and nocturnal LSTs for summer and winter seasons. Given that water bodies show 

a different thermal behaviour and higher heat capacity than terrestrial surfaces (Oke, 1992; 

Zhao, 2018), aquatic GITs were excluded and new results compared to scatterplots 

including all GITs. Except for nocturnal LSTs in winter, TVX scatterplots including all 

GITs resulted in a typical triangular pattern with distinct warm and cold edges that also 

correspond to driest and wettest grids respectively (Carlson, 2007). These shapes are better 

defined for diurnal temperatures and summer; in contrast, triangular shapes are not well 

preserved when aquatic GITs are excluded.  

Scatterplots with well-defined triangular patterns (S-d1, W-d1) exhibit a sharp warm edge 

defined by the right side of the data envelope that corresponds to dry surfaces (Carlson et 

al., 1994; Carlson, 2007). Accordingly, it is observed a decrease in LSTs with increasing 

NDVI and evapotranspiration which are typical of pervious GITs with irrigated grasses and 

dense tree canopy (dark green dots). Conversely, higher LSTs are correlated with lower 

NDVI and drier surfaces corresponding to impervious GITs (grey dots) and treeless GITs 

with non-irrigated grasses and paved areas (light brown/green dots). The bottom vertices 

of triangles show a smaller variation in LSTs due to the presence of dense vegetation; in 

contrast, the top vertices exhibit a larger variation in LSTs linked to impervious GITs, 

especially IM1 Highly impervious.  

A clear cold edge of the data envelope is also well defined in diurnal scatterplots (S-d1, W-

d1), exhibiting a small tail toward low NDVI values [Figure 7.20]. This edge comprises the 

lowest LSTs that are associated to fully wetted surfaces with high vegetation (high NDVI) 

and water (low NDVI) content. Hence, aquatic GITs (blue dots) and pervious GITs with 

trees over irrigated grasses (dark green dots) can be recognised on this side of the triangle. 

Scatterplots with poorly defined triangular patterns correspond to LSTs (S-n1, W-n1) in 

which a cold edge cannot be identified as water bodies exhibit high nocturnal LSTs.  
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Figure 7.20 TVX matrix with scatterplots of mean NDVI versus mean diurnal and nocturnal LSTs for 

summer and winter times. Sequential colours represent each GIT subgroup. 
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Most scatterplots in Figure 7.20 exhibit a typical slope (also referred as TVX slope) toward 

the left, that indicate a negative correlation between NDVI and LSTs (decreasing LSTs 

with increasing vegetation fraction); however, these relationships varied during the day and 

between seasons. Results of the Spearman’s correlations18 for all samples (including 

aquatic GITs) shows a moderate negative correlation between diurnal LSTs and NDVI 

values in summer (rs=-0.618, p<0.0005) and winter (rs=-0.647, p<0.0005) respectively. 

Conversely, weak and no relationships were identified between nocturnal LSTs and NDVI 

values in summertime (rs=-0.201, p<0.0005) and wintertime (rs= 0.026, p<0.0005) 

respectively [Figure 7.20]. 

Nonetheless, TVX scatterplots include a large number of observations reflecting a full 

range of water and ground surfaces with different fractional vegetation cover and wetness. 

As suggested by Carlson (2007), observations corresponding to standing water were 

excluded to favour monotonic relationships and reduce their outlying effect. After 

discarding aquatic GITs, slight improvements were achieved in diurnal LST-NDVI 

relationships for both summertime (rs=-0.661, p<0.0005) and wintertime (rs=-0.661, 

p<0.0005) (S-d2, W-d2). This moderate correlation can be attributed to the large disparity 

of temperatures observed for the impervious and mixed subgroups. On the other hand, the 

results of nocturnal LSTs remained unchanged for both seasons (S-n2, W-n2). Further 

analysis on these findings is provided in Section 8.4.  

Statistical analysis  

Correlation analysis and simple linear regression were used to understand the statistical 

relationship between the LST reductions achieved by each GIT (summarised in Figures 

7.18 and 7.19), and different indicators of vegetation abundance. As previously suggested, 

aquatic GITs were excluded from this analysis to favour linear relationships and minimise 

their outlying effect as the thermal behaviour and cooling mechanisms of aquatic surfaces 

differ from those of terrestrial surfaces. 

Values of mean NDVI, pervious fraction (aggregated high, medium and low fractional 

surface covers), and tree cover fraction were averaged per typology and used as indicators 

of vegetation abundance. Statistics (means and standard deviations) per GIT class are 

presented in Appendix G [Table G7].  

The bivariate Pearson’s correlation coefficients (r) between vegetation abundance 

descriptors and the cooling capacity of GITs are shown in Table 7.5. Figure 7.21 presents 

                                                      

18 Spearman’s rank-order correlation test was selected since the assumption of normality was violated by all 

variables as assessed by the Kolmogorov-Smirnov test (p=0.000). 
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the results of simple linear regressions between vegetation-related indicators and LST 

reductions achieved by typologies.  

Table 7.5  Bivariate correlations between mean NDVI and vegetation abundance indicators. 

Season Time of day LST reduction / 
Mean NDVI 

LST reduction / 
Mean pervious 
fraction 

LST reduction / 
Mean tree cover 
fraction 

Summer  Daytime -0.879** -0.899** -0.529* 

Night-time -0.428* -0.738** 0.215 

Winter Daytime -0.952** -0.841** -0.737** 

Night-time -0.189 -0.469* 0.557** 
 

Correlation 
strengths 

0.01-0.19 
Negligible 0.2-0.39 Weak 0.4-0.59 Moderate 0.6-0.79 Strong 0.8-1.0 Very strong 

** Correlation is significant at the 0.01 level (2-tailed) 

* Correlation is significant at the 0.05 level (2-tailed) 

 

 

Based on bivariate correlations [Table 7.5], the impact of vegetation abundance on diurnal 

and nocturnal cooling capacity (LST reduction) of terrestrial GITs is better explained in 

summer by the proportion of pervious surfaces rather than by the mean NDVI or amount 

of tree cover. In contrast, in winter the cooling effects of typologies are better explained by 

the photosynthetic activity (represented by NDVI) during the daytime, while by the percent 

of trees at night-time.  

By inspecting the results of simple linear regressions [Figure 7.21], mean NDVI and mean 

pervious fraction have very-/strong negative relationships with LST reductions at daytime 

for both summer (R2=0.74, R2=0.82, p<0.0001) and winter (R2=0.91, R2=0.67, p<0.0001). 

In comparison, at night-time percent of perviousness (R2=0.75 p<0.0001) has a strong 

effect on cooling capacities compared to mean NDVI that showed weak (R2=0.21 p<0.05) 

or inexistent associations (R2=0.01 p=0.61) with LST reductions. 

On the other hand, tree coverage has a moderate negative influence on diurnal LST 

reductions in winter (R2=0.541 p<0.0001) while a weak and statistically not significant 

influence in summer (R2=0.26, p<0.189). Although the coefficient of determination 

between nocturnal cooling effects and the proportion of trees was relatively low in winter 

(R2=0.37, p<0.005), this was negligible and statistically not significant in summer 

(R2=0.05, p=0.334). 
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Figure 7.21 Results of simple linear regressions between vegetation abundance descriptors and diurnal and 

nocturnal LST reductions of terrestrial GITs in summer and winter. Clusters identified through 

hierarchical analysis are represented by distinct colours.  
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Cluster analysis  

A hierarchical cluster analysis was conducted in SPSS (IBM, 2016) to partition terrestrial 

GITs into subsets based on the average LST reduction (or cooling capacity) of each 

typology at daytime and night-time, and for both seasons. A between-groups linkage 

method with Squared Euclidean distance was implemented as cluster method. Statistical 

results (dendrograms) are provided in Appendix G [Table G8].  

Generally, terrestrial GITs can be grouped into four to six clusters –depending on the 

season and time of the day– each exhibiting distinct thermal cooling capacities. Cluster 

memberships are listed in Table G8 and represented in Figure 7.21 by different colours. 

Detailed lists and discussion on the cooling capacity and significance of detected GIT 

clusters is provided in Section 8.4.2. These clusters are consistent with GIT subgroups 

presented in Figure 4.8 and confirm the thermal differentiations described in Section 7.3.1. 

In Figure 7.21 it can be observed that the proximity of cluster members vary considerably 

between scatterplots from different seasons and time of the day since their relative location 

within the data space also depends on the vegetation-related descriptor used in the 

regression. For instance, Mixed surfaces with aligned (MX5) and Clustered trees (MX9) 

are separated from other cluster members when using the percent of perviousness instead 

of mean NDVI to predict their diurnal cooling effect in winter. Similarly, whereas PV11 

Dense trees registered similar LST reductions than impervious GITs (IM4/5/6), this has a 

considerably higher proportion of tree cover, so it is visually segregated from the rest of 

the group (see winter night-time scatterplot).  

7.4 Prediction of land surface temperatures 

In regard to the third objective of this thesis (see Section 1.3), this section describes the 

methodology and the results of the statistical models developed for a more accurate and 

precise prediction of LSTs based on GIT classifications. The following statistical analysis 

is intended to: 

1. propose a set of equations to predict diurnal and nocturnal LSTs at local-scale for each 

season using a combination of functional, morphological and configurational variables 

listed in Table 5.1. 

2. understand the relationships between LSTs and different functional, structural and 

configurational attributes of green infrastructure. 
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[Eq. 7.1] 

3. calculate the extent and magnitude of the contributions of green infrastructure in the urban 

microclimate to determine the amount of vegetation cover and type of changes in built 

surfaces necessary to reduce LSTs more effectively. 

7.4.1 Multiple linear regressions 

On a first stage, multiple linear regression (MLR) was used to produce predictive models 

using all the independent variables listed in Table 5.1 as predictors in SPSS software (IBM, 

2016). Since the abundance of certain roofing materials associated with building fractions 

proved to be an important factor contributing on LSTs differences within a same GIT class 

(see Section 8.4.2); fraction of total impervious surfaces (Fr_Tot_Imp) is excluded and 

replaced instead by the fraction of impervious building (Fr_Imp_Bld) and ground 

(Fr_Imp_Grnd) surfaces. 

In climate research, MLR has been widely applied for the analysis of spatial data and to 

predict a continuous dependent variable (i.e. air and surface temperatures) based on 

multiple independent variables (Adams & Smith, 2014; Cao et al., 2010; Heusinkveld et 

al., 2014; Kong et al., 2016; Li et al., 2012; Onishi et al., 2010; Sun & Chen, 2012; Zhou 

et al., 2011). MLR also enables to determine the overall fit (variance explained) of the 

model and the relative contribution of each temperature predictor to the total variance 

explained (Laerd Statistics, 2015).  

The classic Ordinary Least Square (OLS) method was implemented to produce MLR 

models for each time of the day (daytime and night-time) and season (summer and winter). 

The OLS estimator aims to minimise the sum of squared vertical distances between the 

observed dependent variable and those predicted by the linear function for a number of 

observations (n) of a given dataset; and can be expressed by the following equation: 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗

𝑗=1..𝑝

 𝑥𝑖𝑗 +  𝜀𝑖  

where 𝑦𝑖  is the dependent variable (in this case LST),  𝛽0 is the constant (or intercept) of 

the model, 𝛽𝑗 are the regression coefficients for j independent variables, 𝑥𝑖𝑗 are the 

independent variables and 𝜀𝑖 is the error term for spatial units indexed by i. Before running 

a multiple regression, major assumptions or conditions have to be fulfilled to generate a 

valid OLS model and these are: 

Assumption #1, non-autocorrelation: there should be an independence of observations 

and their residuals. This means that errors from adjacent observations are not correlated, 
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including temporal and spatial dependencies between measurements. This condition was 

initially checked using Durbin-Watson statistic (Durbin & Watson, 1951) as part of the 

MLR procedure in SPSS. As MLRs tested positively for spatial autocorrelation, this 

condition was further investigated (see Section 7.4.2.1) using the Moran’s I test, Lagrange 

Multiplier (LM) test and Local Indicators of Spatial Association (LISA) (Anselin, 1995) 

using GeoDA (Anselin et al., 2006). This analysis helped in identifying appropriate spatial 

regression models presented in Section 7.4.2.2; 

Assumption #2, exogeneity: this means that errors (also known as residuals) from 

regression are not correlated with the regressors, so they have a mean of zero. 

Assumption #3, linearity:  a linear relationship should exist between the dependent variable 

and each of the independent variables separately and collectively. This was assessed by 

inspecting the scatterplots of the studentised residuals against the unstandardized predicted 

values; 

Assumption #4, homoskedasticity: this means that residuals have a constant variance, in 

other words, the errors are equally distributed along the line of best fit for all values of the 

predicted dependent variable. To check for homoskedasticity, the Breusch-Pagan (Breusch 

& Pagan, 1979) and Koenker-Bassett (Koenker & Bassett, 1982) tests were used along with 

the scatterplots generated for the previous assumption; 

Assumption #5, no multicollinearity: this means that two or more independent variables 

must not be highly correlated with each other as this leads to problems with understanding 

the individual contribution of each independent variable to the variance of the dependent 

variable. The violation of this condition was determined by inspecting Pearson’s 

correlation coefficients between variables and the Variance Inflation Factor (VIF) values 

generated as part of the MLR procedure in SPSS; 

Assumption #6, no significant outliers: this means that the data should not contain 

significant outliers, high leverage points or highly influential points. This condition was 

assessed by checking the leverage points, influential points, and Cook’s Distance (Cook, 

1977) values generated for n observations of each dataset as part of the multiple 

regressions; and 

Assumption #7, normality of residuals: this condition establishes that residuals (errors) 

should be approximately normally distributed. The Jarque-Bera test (Jarque & Bera, 1987), 

P-P plots and histograms with superimposed normal curves were used to check for this 

assumption. 
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Table 7.6 Summary statictics of Ordinary Least Square (OLS) regression models for the prediction of diurnal 

and nocturnal LSTs in summer and winter using all independent variables. 

Season SUMMER WINTER 

Time of day Day-time Night-time Day-time Night-time 

Model 
(dependent variable) 

1A 
(DAY_Ts) 

2A 
(NIG_Ts) 

3A 
(DAY_Ts) 

4A 
(NIG_Ts) 

Regression OLS OLS OLS OLS 

N cases 23022 23022 24948 23458 

R 0.802 0.626 0.777 0.737 

R2 0.643 0.391 0.603 0.543 

Adjusted R2 0.643 0.391 0.603 0.543 

Standard Error (S.E) 1.763 0.937 1.196 0.626 

F-statistic 3767.942 1345.201 3446.427 2537.152 

df1 11 11 11 11 

df2 23010 23010 24936 23446 

Sig. F (p-value) 0.000 0.000 0.000 0.000 

Log-Likelihood -45720.3 -31171.7 -39856.2 -22298.8 

Akaike information criterion (AIC) 91464.5 62367.4 79736.3 44621.7 

Schwarz criterion (SC) 91561.1 62463.9 79833.8 44718.4 

Durbin-Watson 1.065 0.943 1.015 1.074 

Multicollin. cond. number 218.001 218.001 199.910 185.675 

Jarque-Bera 
(Sig.) 
DF 

107148.5507  
 (0.000) 

2 

140438.0544 
 (0.000) 

2 

2452.7424 
(0.000) 

2 

1964.0973 
(0.000) 

2 

Breusch-Pagan 
(Sig.) 
DF 

23670.8246 
 (0.000) 

11 

34768.8775 
 (0.000) 

11 

2438.8289 
(0.000) 

11 

4684.8502 
(0.000) 

11 

Koenker-Bassett 
(Sig.) 
DF 

3934.6607 
(0.000) 

11 

5033.0809 
(0.000) 

11 

1461.0536 
(0.000) 

11 

2774.7879 
(0.000) 

11 

Predictors 
(Constant), Fr_Imp_Bld, Fr_Imp_Grnd, Fr_Low_NIR, Fr_Low_IRR, 
Fr_Med_Veg, Fr_High_Veg, Fr_Tot_Wat, Mean_NDVI, CIRCLE_AM, 
nLSI, Altitude 

 

Initially, four OLS models (1A, 2A, 3A, 4A) were produced in SPSS for the prediction of 

diurnal and nocturnal LSTs in summer and winter using all independent variables listed in 

Table 5.1 (excepting Fr_Tot_Imp as explained before) that were calculated for each grid 

cell (or spatial unit) as explained in Section 6.3.4. The total number of cases (or 

observations) used in each model correspond to the total number of valid grid cells correctly 

classified for each case study as described in Section 7.2.2. The resulting statistics for the 

four models are summarised in Table 7.6. 
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The coefficient of determination –also referred as R2– provides a measure of how well 

performs a predictive model, in other words, it represents the proportion of variance in the 

dependent variable that is explained by the independent variables (Laerd Statistics, 2015). 

As R2 is based on the sample, this is positively-biased by the number of cases. The adjusted 

R2 corrects for this bias as it only increases if additional variables improve the model 

performance more than would be expected by chance; hence, it is a better indicator of the 

goodness-of-fit of models (Theil, 1961).  

The results of OLS regressions indicate that the 11 independent variables statistically 

significantly predicted diurnal LSTs in summer, F(11, 23010) = 3767.942, p<0.001, adj.R2 

= 0.643; and winter F(11, 24936) = 3446.427, p<0.001, adj.R2 = 0.603, indicating a 

moderate performance for these models. The same number of variables also predicted the 

nocturnal LSTs in summer, F(11, 23010) = 1345.201, p<0.001, adj.R2 = 0.391; and winter 

F(11, 23446) = 2537.152, p<0.001, adj.R2 = 0.543, showing a weak and moderate 

performance respectively. 

By checking the regression assumptions, there were no leverage values greater than 0.2, 

and values for Cook's distance above one. Nevertheless, the models violated several 

statistical assumptions which suggests stability problems and compromise the reliability of 

the regression models. First, the assumption of normality of residuals was violated, as 

assessed by P-P plots and the Jarque-Bera test (p<0.001). Second, the Durbin-Watson 

statistic19 generated relatively low values of 1.065, 0.943, 1.015 and 1.074 for models 1A, 

2A, 3A and 4A respectively [Table 7.6]; which shows a significant positive correlation 

between residuals.  

Third, the results of the Breusch-Pagan and Koenker-Bassett tests shows there is evidence 

of serious heteroskedasticity (no constant variance of errors) as p-values for both tests20 

were less than 0.05 [Table 7.6], so the null-hypothesis of homoskedasticity was rejected 

(Breusch & Pagan, 1979; Koenker & Bassett, 1982).  

Fourth, the explanatory variables are significantly correlated with each other and provide 

insufficient separate information as demonstrated by the very high multicollinearity 

condition numbers (218.01 for model 1A and 2A, 199.91 for model 3A, and 185.675 for 

model 4A) that suggest considerable problems for values over 30 [Table 7.6] (Anselin, 

                                                      

19 The Durbin-Watson statistic ranges from 0 to 4, with an approximate value of 2 indicating no correlation 

between residuals; < 2 indicating a positive and > 2 a negative correlation respectively (Durbin and Watson , 

1951). 

20 Interpretation of results from both tests is similar, except that the residuals in the Koenker-Bassett test are 

studentised; therefore, they are more robust to outliers or non-normality (Anselin , 2005). 
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2005). The Variance Inflation Factor (VIF) also provides information regarding the 

magnitude of the multicollinearity between variables. If a tolerance value is less than 0.1 –

which corresponds to a VIF greater than ten21 –typically signals the presence of problems, 

so it may be required to exclude certain variable(s) from regressions (Laerd Statistics, 

2015). As observed in Table H1 (Appendix H), the VIF values are considerably high for a 

number of variables which confirm the presence of multi-collinearity that may cause 

parameter instability, reduce the predictability power of models, and increase the presence 

of standard errors. 

The t-statistic provides a measure of the precision with which the regression coefficient of 

variables is measured; therefore, it can help determining which variable could be included 

or omitted in models. Accordingly, the larger the t-value, the smaller the p-value (or Sig.), 

and the greater the evidence against the null-hypothesis; in other words, p-values<0.05 

(95% of confidence) indicates a greater significance of the variable in the model. Table H1 

in Appendix H shows the results of the t-statistic for the OLS models. The null-hypothesis 

was rejected at a significance level of 0.01 for all variables except Fr_Tot_Wat (p=0.804) 

in model 1A; nLSI (p=0.396) and Fr_Med_Veg (p=0.012) in model 2A; Fr_Low_NIR 

(p=0.635) in model 3A; and Fr_Low_NIR (p=0.046) in model 4A.  

The results of the t-statistic confirm that further analysis is required to determine which 

variable(s) should be omitted to reduce multicollinearity. To respond to this need, the 

Pearson’s product-moment correlation coefficient (or Pearson’s r statistic) demonstrates 

the magnitude, direction and significance of the linear relationships between variables. 

Thus, Pearson’s r values close to -1 (perfect negative correlation) and +1 (perfect positive 

correlation) can be interpreted as problematic, while values close to zero as favourable. 

Results of Pearson’s correlations for all models are presented in Tables H3 to H6 

(Appendix H) and indicate a moderate to strong correlation between mean NDVI and most 

surface covers as the latter were directly derived from this index. These relationships are 

particularly stronger in winter due to the good quality of the hyperspectral image retrieved 

for this season. As a strong relationship between NDVI and vegetation fractional vegetation 

cover (as well as impervious surfaces) has been confirmed in this research (see Section 

7.3.2.1) and extensively reported in the literature (Weng, 2009), this variable should be 

omitted from all models to minimise multicollinearity. Indeed, it has been demonstrated in 

previous sections the little or no contribution of NDVI to explain the thermal conditions of 

a place at night-time. 

                                                      

21  Recommended cut-off values of three and five are also found in the literature (Ott and Longnecker , 2004). 
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On the other hand, weak to moderate negative relationships were identified between 

impervious surfaces (Fr_Imp_Bld and Fr_Imp_Grnd) and pervious covers (low plants, 

shrubs and trees) as the increment in the proportion of one naturally results in the 

decreasing of the other. Among pervious surfaces, fraction of water (Fr_Tot_Wat) and 

irrigated low plants (Fr_Low_IRR) showed to be uncorrelated with the majority of land 

covers.  

Similarly, CIRCLE_AM and nLSI are mostly uncorrelated with other independent 

variables, yet weakly correlated with each other, as both reflect the spatial configuration of 

tree cover. Altitude is a variable that shows no relationship with other independent variables 

in summer. An exception to this can be found in winter, where a weak relationship between 

altitude and impervious ground and tree cover responds to varied topographic conditions 

displayed in this case study.  

Furthermore, for each spatial unit (50x50m) it is assumed that Fr_Imp_Bld + Fr_Imp_Grnd 

+ Fr_Low_IRR + Fr_Low_NIR + Fr_Med_Veg + Fr_High_Veg + Fr_Tot_Wat ≥ 100%, 

indicating that the seven variables are collinear. Therefore, in an attempt to reduce 

collinearity, fraction of non-irrigated grasses (Fr_Low_NIR) was omitted in subsequent 

regressions and became the reference variable. Several OLS models were tested with 

different combinations of the remaining variables guided by the results of the t-statistic, 

Durbin-Watson statistic, the VIF values of selected predictors, the multicollinearity 

condition number, and overall model performance. A summary of resulting statistics for 

the best regressions for each time of the day and season are presented in Table 7.7. 

Although the regression performances of models have not improved (except for model 3B 

that slightly decreased), multicollinearity between independent variables improved 

considerably as it can be observed in the multicollinearity condition numbers presented in 

Table 7.7 with values at an acceptable level less than 30. Similarly, Table H2 in Appendix 

H shows that VIF values of all independent variables reduced significantly up to an 

acceptable level of less than 3.5.  

Despite previous improvements, heteroskedasticity is still a present issue as demonstrated 

by the high and significant values of Breusch-Pagan and Koenker-Bassett statistics 

(p<0.05). Non-normality of residuals is also a recurrent problem as assessed by P-P plots 

and the Jarque-Bera test (p<0.001). As shown by Durbin-Watson statistics (between 0.9 

and 1.1), there is strong evidence of autocorrelation of residuals that may be caused by 

spatial dependencies. As this is a serious issue affecting the overall predictive performance 

of models, this is properly investigated and addressed in the following section.  
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Table 7.7 Summary statictics of revised OLS regression models for the prediction of diurnal and nocturnal 

LSTs in summer and winter using a selection of independent variables. 

Season SUMMER WINTER 

Time of day Day Night Day Night 

Model 
(dependent variable) 

1B 
(DAY_Ts) 

2B 
(NIG_Ts) 

3B 
(DAY_Ts) 

4B 
(NIG_Ts) 

Regression OLS OLS OLS OLS 

N cases 23022 23022 24948 23458 

R 0.800 0.595 0.776 0.734 

R2 0.640 0.354 0.603 0.539 

Adjusted R2 0.640 0.353 0.602 0.539 

Standard Error (S.E) 1.771 0.965 1.197 0.629 

F-statistic 4538.556 1403.516 4200.067 3048.077 

df1 9 9 9 9 

df2 23012 23012 24938 23448 

Sig. F (p-value) 0.000 0.000 0.000 0.000 

Log-Likelihood -45828.6 -31851 -39878.6 -22408.6 

AIC 91677.3 63722.1 79777.3 44837.2 

SC 91757.7 63802.5 79858.5 44917.8 

Durbin-Watson 1.052 0.907 1.018 1.062 

Multicollin. cond. number 20.485 20.485 18.521 18.887 

Jarque-Bera 
(Sig.) 
DF 

112182.5236 
(0.000) 

2 

150644.4182 
(0.000) 

2 

2571.2485 
(0.000) 

2 

2019.8261 
(0.000) 

2 

Breusch-Pagan 
(Sig.) 
DF 

22177.1111 
(0.000) 

9 

36322.8178 
(0.000) 

9 

2445.5106 
(0.000) 

9 

5013.832  
(0.000) 

9 

Koenker-Bassett 
(Sig.) 
DF 

4149.5824 
(0.000) 

9 

5113.7158 
(0.000) 

9 

1454.5364 
(0.000) 

9 

2934.3725 
(0.000) 

9 

Predictors 
(Constant), Fr_Imp_Bld, Fr_Imp_gr, Fr_LowIRR, Fr_Med_Veg, 
Fr_High_Veg, Fr_Tot_wat, CIRCLE_AM, nLSI, Altitude,  

7.4.2 Spatial regression models 

7.4.2.1 Spatial autocorrelation analysis 

The independent variables used for the OLS models are discrete and represent the 

composition and spatial distribution of urban landscape. As a consequence, the physical 

boundaries between spatial units (or observations) and different surface covers are abrupt 

as they were derived from spectral and LiDAR data. Nonetheless, LST is a continuous 

phenomenon that gradually varies across those delineations in space and time (Stewart, 

2011b); thus, LST observations made at different locations might not be totally 
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independent. This spatial dependency and interaction between variables and the residuals 

is commonly referred as spatial autocorrelation (Anselin, 1995; Getis, 2010); which is also 

explained by Tobler’s first law of geography: “Everything is related to everything else, but 

near things are more related than distant things” (Tobler, 1970). 

If spatial association exists, the performance of OLS regressions is affected as this causes 

spatial structural instability or spatial drift leading to an inefficient estimation of predicted 

values and serious mistakes in the interpretation of regressions (Anselin, 1995; Getis & 

Ord K. J., 2010; Ward & Gleditsch, 2008). Assuming that spatial autocorrelation is 

observed, the next step is to determine the proper regression models to incorporate the 

effect of spatial dependencies. Figure 7.22 illustrates the two most common types of spatial 

autocorrelation from which two common spatial autoregressive models have been 

developed; as explained below (Baller et al., 2001; Ward & Gleditsch, 2008): 

A. Spatial dependence among residuals. This occurs when the error terms across 

neighbouring locations are correlated. The Spatial Error Model (SEM) deals with this issue 

by evaluating the extent to which the clustering of the dependent variable –not explained 

by the measured independent variables– can be accounted for the clustering of error terms. 

In other words, the SEM captures the effect of unknown predictor variables by introducing 

a spatial error term or Lambda (λ) at the end of the regression equation which is calculated 

with the use of a spatial connectivity matrix or spatial weight matrix  (Baller et al., 2001) 

(left-hand diagram in Figure 7.22). 

B. Spatial dependence among variables. This occurs when the values of a dependent variable 

y in a specific location i are directly influenced by the values of y in neighbouring locations 

(for example j and k) as well as by the spatial influence of unmeasured independent 

variables (Baller et al., 2001). To deal with this type of spatial dependence, the Spatial Lag 

Model (LAG) –also called spatially lagged y model (Ward & Gleditsch, 2008)– 

incorporates a spatially lagged dependent variable at the end of the regression equation 

which is also estimated through contiguity-based spatial weights (right-hand diagram in 

Figure 7.22). 

In this research, spatial autocorrelation analysis was performed using two well-known tests 

and visualisations available in GeoDa software (Anselin et al., 2006), namely, the global 

spatial autocorrelation index Moran’s I 22 –a test to determine if ‘clustering’ exists– (Moran, 

1950); and its local version known as local indicators of spatial association (LISA) or 

                                                      

22  Measured between -1, indicating negative spatial autocorrelation or dispersion of like-values, and +1, signalling 

positive spatial autocorrelation or clustering of like-values; while a value of zero signifies spatial randomness.  
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Local Moran’s I –a test for identifying the location of ‘clusters’ based on the contribution 

of each individual observation (Anselin, 1995). Along with the diagnostics for spatial 

dependence, five Lagrange multiplier (LM) test statistics are provided, which and can be 

used as criteria to identify the spatial regression model that best fits the current datasets. 

 

Figure 7.22 Main types of spatial dependence applied to spatial regression models. 

      (graphs adapted from Baller et al., 2001 and equations from Song et al., 2014) 

Before running above tests, a spatial weight matrix (SWM) using the queen criterion of 

contiguity23 was constructed for each case study (or dataset) to identify neighbouring 

observations with at least one point of common boundary in a regular grid (middle diagram 

in Figure 7.22). Table 7.8 present the results of the diagnostics for spatial dependence for 

revised OLS models produced in previous section (Models 1B, 2B, 3B, and 4B) which 

include the statistics of Moran’s I test of residuals and Lagrange multipliers.  

Global Moran’s I statistics are significant (p=0.000) for all the revised OLS models 

showing a considerable positive spatial autocorrelation of residuals with reported values of 

more than 0.55 and z-values of more than 160.0. This indicates that it exists homogeneity 

of residuals and hence a clustering of like-values.  

                                                      

23  With a first-order queen contiguity as recommended by Song et al. (2014). 
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Table 7.8  Diagnostics for spatial dependence for revised OLS models 1B, 2B, 3B, and 4B. 

Season SUMMER WINTER 

Time of day Day Night Day Night 

Model 
(dependent variable) 

1B 
(DAY_Ts) 

2B 
(NIG_Ts) 

3B 
(DAY_Ts) 

4B 
(NIG_Ts) 

Regression OLS OLS OLS OLS 

N cases 23022 23022 24948 23458 

Global 
Moran’s I 
(errors) 

MI 
z-value 
(Sig.) 

0.5678 
167.4366   

(0.000) 

0.6584 
194.1534 

(0.000) 

0.6064 
187.0957  

(0.000) 

0.6262 
186.1231 

(0.000) 

Lagrange 
multiplier 
(lag) 

DF 
z-value 
(Sig.) 

1 
11433.5357  

(0.000) 

1 
21692.7033 

(0.000) 

1 
17678.6676 

(0.000) 

1 
27619.9025 

(0.000) 

Robust LM 
(lag) 

DF 
z-value 
(Sig.) 

1 
0.4823  
(0.487) 

1 
16.9387 

(0.00004) 

1 
0.1411 

(0.70721) 

1 
486.8075 

(0.000) 

Lagrange 
multiplier 
(error) 

DF 
z-value 
(Sig.) 

1 
27969.6203 

(0.000) 

1 
37611.7092 

(0.000) 

1 
34927.3914 

(0.000) 

1 
34556.0368 

(0.000) 

Robust LM 
(error) 

DF 
z-value 
(Sig.) 

1 
16536.5669 

(0.000) 

1 
15935.9446 

(0.000) 

1 
17248.8649 

(0.000) 

1 
7422.9418 

(0.000) 

Lagrange 
multiplier 
(SARMA) 

DF 
z-value 
(Sig.) 

2 
16536.5669 

(0.000) 

2 
37628.6478 

(0.000) 

2 
34927.5325 

(0.000) 

2 
35042.84429 

(0.000) 

Predictors 
(Constant), Fr_Imp_Bld, Fr_Imp_gr, Fr_LowIRR, Fr_Med_Veg, 
Fr_High_Veg, Fr_Tot_wat, CIRCLE_AM, nLSI, Altitude,  

 

Furthermore, the LM-Lag and LM-Error statistics are highly significant (p=0.000) for all 

revised OLS models. However, as the rejection of the null-hypothesis for both statistics is 

commonly found in practice, Anselin (2005) recommends to consider the robust forms and 

select the appropriate test with the most significant p-value, or otherwise, with the largest 

z-value.  

In general, results favour SEM over LAG as the Robust LM-Error has a significantly higher 

z-value than the Robust LM-Lag. In addition, Robust LM-Lag was not significant for 

models 1B and 3B suggesting there is no spatial dependence among variables from 

neighbouring locations (or grid cells). Indeed, this coincides with Irger (2014) who 

suggested that it is improbable that LSTs in a given location are directly influenced by 

those of neighbouring areas or their independent variables since surface temperatures result 

from the thermal properties of the immediate context. 

On the contrary, Robust LM-Error tests suggest that it is more likely that the spatial 

clustering of LST could be caused by geographic patterning (i.e. typical urban morphology) 

of measured independent variables and unmeasured factors that were obviated in the 

models. Thereupon, LISA or Local Moran’s I test (Anselin, 1995) was used to identify 
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local spatial clusters (hot- and cold-spots) of like-values that may explain the observed 

spatial dependence of LSTs.  

Firstly, the typical pair of cluster and significance maps were generated using the dependent 

variable (LST) of each model with default permutations (n=99) and significance level 

(p=0.05). As suggested by Anselin (2005), the number of permutations was increased to 

9999 to obtain more robust results followed by a sensitivity analysis to determine the 

presence of spatial clusters and spatial outliers with different significance cut-off values. 

Secondly, the same univariate Local Moran’s I was computed for residuals and results 

compare to those of the dependent variable. LISA values –at a significance level of 0.01–, 

maps and Moran scatterplot for model 1B are presented in Table 7.9 and for all models in 

Tables H7 to H10 in Appendix H.  

The high-high (HH) and low-low (LL) locations are considered as the spatial clusters of 

high and low LSTs respectively, corresponding to areas with positive local spatial 

autocorrelation. On the other hand, high-low (HL) and low-high (LH) are typically referred 

as the spatial outliers and represent areas with a negative spatial autocorrelation 

(dispersion).  

A significant positive local spatial autocorrelation (spatial concentration) of the dependent 

variable and residuals were identified for all models, with no significant evidence of spatial 

outliers in either case. As expected, the overall pattern of clusters coincides with typical 

urban forms of Sydney described in Sections 6.1.3 and 6.1.4 and particular distributions 

and clustering of GITs explained in Section 7.2.2; therefore, this is likely the main cause 

of the spatial dependence between residuals.  

Accordingly, at daytime, HH clusters (hotspots) of LSTs typically occurred in compact, 

dense, and highly impervious areas, while LL clusters correspond to places with high 

vegetation intensity and water surfaces. On the contrary, at night-time, HH clusters 

comprise water surfaces, compact mid- and low-rise buildings with extensive paved areas 

and highly forested zones; while LL clusters (cold-spots) occurred in places with extensive 

grasses and large low-rise buildings with light-coloured/high-albedo roofing materials. 

Interestingly, in model 4B (night-time LSTs in winter) HH clusters mostly situated in high-

lying areas (and vice versa) as in the case of the hilly suburbs in Sydney’s north; this 

suggests a considerable influence of topography on nocturnal LSTs (which is demonstrated 

in next section). In comparison with the clusters of LSTs, the spatial clusters from residuals 

occurred in similar locations, but were smaller in extent as areas with dense tree canopy 

and water surfaces were omitted. 
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Table 7.9 LISA results (Moran scatterplot, cluster and significance maps) for the dependent variable and residuals 

of Model 1B showing the presence of spatial clusters (hot-/coldspots) and spatial outliers. 
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[Eq. 7.2] 

7.4.2.2 Spatial error models (SEM) 

In light of evidence of spatial autocorrelation and in accordance with the results of Robust 

Lagrange Multiplier statistics, the SEM was chosen as an appropriate spatial regression 

method for predicting LSTs using the same combination of independent variables selected 

for the revised OLS models 1B to 4B. As shown in Figure 7.22, the SEM is implemented 

for the standard ordinary least squares regression with spatial dependency supported by a 

Maximum Likelihood (ML) estimator (Anselin et al., 2006) as expressed in the following 

equation:  

𝑦𝑖 =  𝛽0 +  ∑  

𝑝

𝛽𝑝 𝑥𝑖𝑝 + 𝜆𝑤𝑖𝜉𝑖 + ɛ𝑖  

  

where  𝑦𝑖 is the dependent variable (in this case the mean LST of spatial units) indexed by 

i,  𝛽0 is the constant (or intercept) of the model, 𝛽𝑝 are the regression coefficients for p 

independent variables, 𝑥𝑖𝑝 are the predictors or independent variables, λ is the 

autoregressive coefficient signalling the extent of the spatial correlation, 𝑤𝑖 is the vector of 

connectivities indicating the proximity of spatial units, ξi is the spatial component of errors, 

and 𝜀𝑖 is the spatially uncorrelated error of the regression (Song et al., 2014; Ward 

& Gleditsch, 2008). 

Four separate SEM were estimated in GeoDa and results compared against the predictive 

performance of typical OLS MLR models produced in previous section (Table 7.10). 

As shown in Table 7.10, the estimates and measures of fit have a considerable improvement 

with very high coefficients of determination (R2) of 0.844 for Model 1C, 0.798 for Model 

2C, 0.837 for Model 3C, and 0.866 for Model 4C. However, this traditional measure is not 

appropriate in a spatial regression model as the spatial lag does not generate a real R2, but 

a so-called pseudo-R2 that cannot be compared with classic OLS results (Anselin, 2005). 

Instead, Anselin (2005) recommends to use Log-Likelihood, Akaike information criterion 

(AIC), and Schwarz criterion (SC) as proper metrics of fit to determine if the introduction 

of an error term coefficient improves the regression performance of OLS. 

 By analysing the three statistical tests presented in Table 7.10, it is noticed a considerable 

increase in the Log-Likelihood of Models 1C, 2C, 3C and 4C compared with the classic 

OLS Models 1B, 2B, 3B, and 4B. Compensating the improved fit for the added spatially 

autocorrelated variable, the AIC and SC also decrease relative to OLS; consequently, 

estimates in Table 7.10 also confirm a significant improvement of regressions for the spatial 

error specification.  
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Table 7.10 Summary of the Maximum Likelihood Estimation of SEMs for the prediction of diurnal and 

nocturnal LSTs in summer and winter, in comparison with the performance of revised OLS models. 

Season SUMMER WINTER 

Model 
(dependent var.) 

1B 
(DAY_Ts) 

1C 
(DAY_Ts) 

2B 
(NIG_Ts) 

2C 
(NIG_Ts) 

3B 
(DAY_Ts) 

3C 
(DAY_Ts) 

4B 
(NIG_Ts) 

4C 
(NIG_Ts) 

Regression OLS SEM OLS SEM OLS SEM OLS SEM 

N cases 23022 23022 23022 23022 24948 24948 23458 23458 

Adj. R2 / R2 0.640 0.844 0.353 0.798 0.602 0.837 0.539 0.866 

S.E. 1.771 1.165 0.965 0.540 1.197 0.767 0.629 0.339 

df1 9 9 9 9 9 9 9 9 

df2 23012 23012 23012 23012 24938 24938 23448 23448 

Lag coefficient 
(Sig.) 

- 0.829 
(0.000) 

- 0.886 
(0.000) 

- 0.829 
(0.000) 

- 0.908 
(0.000) 

Log-Likelihood -45828.6 -37792.87 -31851 -20459.63 -39878.6 -30496.31 -22408.6 -10125.3 

AIC 91677.3 75605.7 63722.1 40939.3 79777.3 61012.6 44837.2 20270.6 

SC 91757.7 75686.2 63802.5 41019.7 79858.5 61093.9 44917.8 20351.2 

Breusch-Pagan 
(Sig.) 
DF 

22177.1
1 (0.000) 

9 

19069.77 
(0.000) 

9 

36322.8
2 (0.000) 

9 

33816.04 
(0.000) 

9 

2445.51 
(0.000) 

9 

4467.24 
(0.000) 

9 

5013.83  
(0.000) 

9 

5807.74 
(0.000) 

9 

Likelihood R. 
(Sig.) 
DF 

- 16071.52 
(0.000) 

1 

- 22782.82 
(0.000) 

1 

- 18764.65 
(0.000) 

1 

- 24566.59 
(0.000) 

1 

Predictors 
(Constant), (Lambda)a, Fr_Imp_Bld, Fr_Imp_gr, Fr_LowIRR, Fr_Med_Veg, Fr_High_Veg, 
Fr_Tot_wat, CIRCLE_AM, nLSI, Altitude 

a. Only for SEMs.  Results of revised OLS models are greyed-out. 

 

The Likelihood Ratio (LR) test is a classic specification test that enables comparison between the 

null-model (or classic regression) and the alternative SEM. The very high values and low 

probability (p<0.000) for Models 1C, 2C, 3C and 4C confirm a strong significance of the spatial 

autoregressive coefficient; and hence, a superior performance of SEM compared to OLS.  

The results confirm a strong and highly significant (p<0.000) spatial autoregressive (lambda) 

coefficient for all models24, estimated as 0.829 for Model 1C, 0.886 for Model 2C, 0.829 for 

Model 3C, and 0.908 for Model 4C. There are some slight differences in the magnitude of most 

regression coefficients between SEM and revised OLS [Table 7.11]; however, the coefficients of 

CIRCLE_AM and nLSI varied significantly. This illustrates the misleading effect that spatial error 

autocorrelation has on OLS estimates and justifies the use of spatial regression models.  

 

                                                      

24  According to Anselin (2005) this is typical for large datasets (>1000 cases) and partially caused by the 

asymptotic characteristic of the analytical expressions used for the variance. 
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Table 7.11 Comparison of regression coefficients (β) for all variables included in SEM versus revided OLS. 

Season SUMMER WINTER 

Model 1B 1C 2B 2C 3B 3C 4B 4C 

Regression OLS SEM OLS SEM OLS SEM OLS SEM 

βCONSTANT 
(z-value) 

33.8028 ** 
   (398.696) 

34.4474 ** 
(338.949) 

20.7854 ** 
(449.909) 

21.444 ** 
(364.966) 

12.8710 ** 
(256.3317) 

  12.2598 ** 
(182.731) 

1.2598 ** 
(45.2001) 

1.8262 ** 
(42.899) 

βFR_IMP_BLD 
(z-value) 

0.0579 ** 
(61.4008) 

0.0526 ** 
(59.4232) 

–0.0097 ** 
(–18.7882) 

–0.0166 ** 
(–39.9763)   

0.0259 ** 
(41.1557) 

0.0337 ** 
(57.699) 

0.0057 ** 
(16.3694) 

–0.0084 ** 
(–30.7744) 

βFR_IMP_GRND 
(z-value) 

0.0525 ** 
(48.8229) 

0.0566 ** 
(58.3693) 

  0.0399 ** 
(68.0378) 

0.0399 ** 
(87.7915) 

0.0115 ** 
(16.9678) 

0.0222 ** 
(35.9959) 

0.0224 ** 
(58.8993) 

0.0164 ** 
(56.2468) 

βFR_LOW_IRR 
(z-value) 

–0.0270 ** 
(–15.7777) 

–0.0310 ** 
(–21.5122) 

 0.0034 ** 
(3.6608)   

0.0026 ** 
(3.9479) 

–0.0212 **  
(–23.3988) 

–0.0132 ** 
(–17.1847) 

–0.0037 ** 
(–7.5728) 

–0.0064 ** 
(–18.164) 

βFR_MED_VEG 
(z-value) 

–0.0176 ** 
(–4.2781) 

–0.0210 ** 
(–6.4883) 

–0.0077 ** 
(–3.4089) 

–0.0018 
(–1.1878) 

–0.0069 ** 
(–3.4525) 

–0.0065 ** 
(-4.1090) 

–0.0313 ** 
(–32.0240) 

–0.0082 ** 
(–12.2608) 

βFR_HIGH_VEG 
(z-value) 

–0.0497 ** 
(–50.8823) 

–0.0497 ** 
(–56.6522) 

0.0136 ** 
(25.6184)     

0.0147 ** 
(35.7224) 

–0.0415 ** 
(–68.6225) 

–0.0329 ** 
(–54.5499) 

0.0176 ** 
(55.5057) 

  0.0152 ** 
(55.9317) 

βFR_TOT_WAT 
(z-value) 

–0.0933 ** 
(–63.4058) 

–0.0873 ** 
(–56.9353) 

0.0343 ** 
(42.7583)   

0.0334 ** 
(46.0094)     

–0.0731 ** 
(–41.5504) 

–0.0614 ** 
(–43.1389) 

0.0423 ** 
(81.5689) 

  0.0278 ** 
(50.6653) 

βCIRCLE_AM 
(z-value) 

1.7380 ** 
(22.7574) 

0.3427 ** 
(6.1181) 

  1.1233 ** 
(26.9931) 

0.1405 ** 
(5.4167) 

–0.1046 * 
(–2.3231) 

–0.3597 ** 
(–9.94251) 

0.6735 ** 
(27.9144) 

0.1789 **  
(10.7363)   

βNLSI 
(z-value) 

–1.6885 ** 
(–8.3614) 

–0.6950 ** 
(–4.7634) 

–0.1389 
(–1.2626) 

0.0444 
(0.6576) 

0.9062 ** 
(5.2358) 

0.5508 ** 
(4.56278) 

–1.4003 ** 
(–15.1849) 

–0.3589 ** 
(–6.6706) 

βALTITUDE 
(z-value) 

0.0049 ** 
(10.8379) 

0.0090 ** 
(5.71575) 

–0.0012 ** 
(–4.8143) 

–0.0004 
(–0.3609)     

0.0036 ** 
(11.9375) 

0.00520 ** 
(5.34192)   

0.0128 ** 
(114.6258) 

0.0146 ** 
(27.3852) 

βLAMBDA 
(z-value) 

n/a 
0.8292 ** 
(171.189) 

n/a 
0.8863 ** 
(233.76) 

n/a 
0.8285 ** 
(176.802) 

n/a 
0.9075 ** 
(276.071) 

* Significant at the 0.05 level (two-tailed); ** Significant at the 0.01 level (two-tailed). Results of OLS regressions are greyed-out. 

Global Moran’s I scatterplots were constructed for the residuals of each SEM and results indicate 

that the introduction of the error term eliminated all spatial autocorrelation as statistics are 

essentially zero (MI<0.06) [Table 7.12]. 

Table 7.12 Global Moran's I of residuals for SEM 1C, 2C, 3C and 4C. 

Model 1C Model 2C Model 3C Model 4C 

MI: -0.038 MI: -0.039 MI: -0.057 MI: -0.052 

    
 

Despite the abovementioned favourable results, the highly significant values of Breusch-Pagan 

test indicate that heteroskedasticity is still a serious problem as shown in the residual plots of 

Table H12 in Appendix H; therefore, further refinements of SEM are necessary. 
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7.4.2.3 Improved spatial error models (SEM) 

Although the introduction of the spatial autoregressive error term improved the 

performance of classic OLS regressions significantly, it did not entirely reduce 

heteroskedasticity; hence, further improvements are required. Accordingly, residual plots 

in Table H12 show increasing funnel shapes for Models 1C and 3C; and a decreasing funnel 

shape for Model 2C which are typical of non-homoskedastic data.  

By taking a close look at the tails of funnel shapes it is noticed that the majority of farthest 

residuals with respect to the line of good fit correspond to observations classified as IM1 

Highly impervious and aquatic GIT classes, contributing both substantially to 

heteroskedasticity. This is because LSTs from highly impervious contexts (IM1) cannot be 

predicted accurately from the combination of independent variables defined in this study 

as their thermal condition is influenced by unmeasured factors related to the built form and 

material-specific properties (i.e. building volume, H/W ratio, SVF, albedo, emissivity, etc.) 

of horizontal and vertical impervious surfaces. On the other hand, the distinct thermal 

capacity of water bodies relative to terrestrial surfaces also partially contributed to 

heteroskedasticity.  

Consequently, it is demonstrated that a single spatial regression equation is not suitable for 

all locations using the totality of observations. To correct for this issue and minimise 

heteroskedasticity to the maximum extent possible, datasets were partitioned into aquatic 

observations, and terrestrial observations25. Cases classified as IM1 were also excluded 

from the terrestrial subset and subsequent statistical models as per previous assumptions 

and because the presence of vegetation covers, and water surfaces is negligible.  

Spatial regressions were calculated in GeoDa to produce Models 1D, 2D, 3D, and 4D that 

are applicable to aquatic locations; and Models 1E, 2E, 3E, and 4E that are applicable to 

terrestrial locations using the combination of independent variables defined for the revised 

OLS models 1B, 2B, 3B, and 4B. A statistical summary for revised SEMs is presented in 

Table 7.13. 

Tables H11 and H12 provide a summary of statistical estimations and residual plots for all 

SEM and OLS models produced in this thesis respectively. Except for Model 3D, all 

revised SEMs exhibit a superior goodness-of-fit as demonstrated by the substantial 

improvement of Log-Likelihood, AIC, and SC values. Whereas heteroskedasticity was not 

                                                      

25  This coincides with the findings of TVX analysis which demonstrated that aquatic cases (GITs) possess a 

distinct diurnal and nocturnal thermal behaviour than terrestrial surfaces that causes an outlying effect on 

regressions. 



 

278  |  Prediction of land surface temperatures 

completely eliminated, it was significantly reduced as demonstrated by the smaller values 

of Breusch-Pagan tests and the randomly dispersed data points in residual plots [Table 

H12]. 

Table 7.13 Summary of the Maximum Likelihood Estimation of revised SEMs for the prediction of diurnal 

and nocturnal LSTs in summer and winter that are applicable separately to aquatic and terrestrial locations. 

Locations Aquatic Terrestriala 

Season 
SUMMER WINTER SUMMER WINTER 

Model 
(dependent var.) 

1D 
(DAY_Ts) 

2D 
(NIG_Ts) 

3D 
(DAY_Ts) 

4D 
(NIG_Ts) 

1E 
(DAY_Ts) 

2E 
(NIG_Ts) 

3E 
(DAY_Ts) 

4E 
(NIG_Ts) 

Regression SEM SEM SEM SEM SEM SEM SEM SEM 

N cases 368 368 155 322 20345 20345 21024 20012 

R2 0.861 0.909 0.565 0.907 0.860 0.799 0.846 0.876 

S.E. 0.841 0.311 0.529 0.472 0.958 0.408 0.695 0.310 

df1 9 9 9 9 9 9 9 9 

df2 358 358 145 312 20335 20335 21014 20002 

Lag coefficient 
(Sig.) 

0.551 
(0.000) 

0.915 
(0.000) 

0.383 
(0.000) 

0.801 
(0.000) 

0.782 
(0.000) 

0.862 
(0.000) 

0.810 
(0.000) 

0.887 
(0.000) 

Log-Likelihood -478.455 -181.203 -126.736 -262.824 -29335.9 -12429.57 -23747.31 -6946.26 

AIC 976.911 382.407 273.472 545.649 58691.8 24879.2 47514.6 13912.5 

SC 1015.99 421.487 303.906 583.394 58771.0 24958.4 47594.2 13991.6 

Breusch-Pagan 
(Sig.) 
DF 

247.4531 
(0.000) 

9     

382.9133 
(0.000) 

9 

63.8665 
(0.000) 

9 

56.6246   
(0.000) 

9 

3313.721 
(0.000) 

9 

6898.934 
(0.000) 

9 

980.105 
(0.000) 

9 

568.682 
(0.000) 

9 

Likelihood R. 
(Sig.) 
DF 

96.9575 
(0.000) 

1 

558.6579 
(0.000) 

1 

18.4510 
(0.000) 

1 

162.4745 
(0.000) 

1 

12027.35 
(0.000) 

1 

18961.35 
(0.000) 

1 

16138.4 
(0.000) 

1 

19855.3 
(0.000) 

1 

Predictors 
(Constant), (Lambda), Fr_Imp_Bld, Fr_Imp_gr, Fr_LowIRR, Fr_Med_Veg, Fr_High_Veg, Fr_Tot_wat, 
CIRCLE_AM, nLSI, Altitude 

a Observations classified as IM1 Highly impervious are excluded. 

 

 

Table 7.14 presents the regression coefficients (βn), standard errors and significance values 

for all the independent variables included in SEMs 1D-4D and 1E-4E. As a result of data 

partitions, some independent variables became statistically insignificant for the aquatic 

context. As a consequence, confidence levels can be used to determine which variables 

should be omitted in the final equations presented in Section 8.5. 
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Table 7.14 Summary of regression coefficients (β) for all variables included in the revised SEM applicable 

for aquatic and terrestrial contexts. 

Context Aquatic Terrestriala 

Season SUMMER WINTER SUMMER WINTER SUMMER 

Model 
1D 

(DAY_Ts) 
2D 

(NIG_Ts) 
3D 

(DAY_Ts) 
4D 

(NIG_Ts) 
1E 

(DAY_Ts) 
2E 

(NIG_Ts) 
3E 

(DAY_Ts) 
4E 

(NIG_Ts) 

Regression SEM SEM SEM SEM SEM SEM SEM SEM 

βCONSTANT 
S.E.  
z-value 
(Sig.) 

39.2647 
0.932064   
42.1266 
(0.000) 

20.0435 
0.345076   
  58.0842 

(0.000) 

9.59973 
1.00808 
9.52281 
(0.000) 

3.88436 
0.840143 
4.62345 
(0.000) 

34.292 
 0.0810004 

423.355   
(0.000) 

21.5092 
0.0422614 

508.955  
(0.000)     

12.2815  
0.0626628   

195.993 
(0.000)     

1.78813 
0.0363625  

49.1751   
(0.000)     

βFR_IMP_BLD 
S.E.  
z-value 
(Sig.) 

0.0650234 
0.0168159 

3.86678 
(0.000)     

0.00342534 
0.00602178 

0.568825 
(0.56947)   

0.181019 
0.105876 
1.70973 

(0.08732)   

0.0765922 
0.0319444 

2.39767 
(0.0165) 

0.0616927 
0.00085338 

72.2921 
 (0.000) 

–0.0105317 
0.00036799 

–28.6198 
 (0.000) 

0.0316284 
0.00064248 

49.2289    
(0.000)     

–0.00642942 
0.000299391  

–21.475  
(0.000)     

βFR_IMP_GRND 
S.E.  
z-value 
(Sig.) 

–0.0243743 
0.0133013 
–1.83248 
(0.0669) 

0.0373822 
0.00472993   

7.90334 
(0.000) 

–0.00464001 
0.0288914  
–0.160602 
(0.87241)     

–0.0346662 
0.0198017 
–1.75067 

(0.08) 

0.0634627 
0.00086048 

73.7525   
 (0.000) 

0.0421121 
0.000370488  

113.667 
   (0.000) 

0.0228746 
0.00065143 

35.1145  
(0.000)     

0.0184353 
0.000305167 

60.4105 
 (0.000)     

βFR_LOW_IRR 
S.E.  
z-value 
(Sig.) 

–0.0922489  
0.0198972 
–4.63628 

(0.000)  

–0.00350875 
0.00732081 
–0.479285 
(0.63174) 

0.0177194 
0.0132043 

1.34194 
(0.17962) 

–0.0102109   
0.0113426 
–0.900223   

   (0.368) 

–0.029133 
0.00120683 

–24.1402  
(0.000) 

0.0023836 
0.000519446  

4.58874    
(0.000) 

–0.0129012 
0.00071966 

–17.9269  
(0.000)     

–0.00597982 
0.000330868 

–18.0732   
(0.000)     

βFR_MED_VEG 
S.E.  
z-value 
(Sig.) 

0.00316143 
0.0162053 

0.195086 
(0.84533) 

–0.00430663 
0.00585805 
–0.735165 
(0.46224) 

–0.0072801 
0.01033 

-0.704752 
(0.48096) 

0.00827245 
0.00809914 

1.0214 
(0.30707) 

–0.026064  
0.00272564 

–9.56252 
  (0.000) 

–0.0039772 
0.00116578 

–3.41163  
(0.00065) 

–0.00651486 
0.001454 
–4.48063    

(0.000)     

–0.00887949  
0.000616157 

–14.4111 
(0.000)     

βFR_HIGH_VEG 
S.E.  
z-value 
(Sig.) 

–0.105179 
0.00951147 

–11.0582 
(0.000)     

0.0198475   
0.00337171 

5.88649 
(0.000)     

–0.0124776 
0.0100146 
–1.24594 
(0.21278) 

–0.0108237 
0.00849349 

–1.27436 
(0.20254)      

–0.0465437 
0.000742196   

–62.7108 
 (0.000) 

0.0154435 
0.000321481 

48.0384     
(0.000) 

–0.0329822 
0.0005664 
–58.2318 

 (0.000)     

0.0159509 
0.000256383   

62.2151   
(0.000)     

βFR_TOT_WAT 
S.E.  
z-value 
(Sig.) 

–0.136812 
0.00922572 

–14.8295 
(0.000)     

0.0390074 
0.00325552 

  11.9819 
(0.000) 

–0.0254368 
0.00990869 

–2.56712 
(0.01025) 

0.0150019 
0.00836143 

1.79418 
(0.07278) 

–0.0864254 
0.00361254   

-23.9237 
(0.000) 

0.0259394 
0.00153975 

16.8465 
(0.000) 

–0.116303 
0.00412332  

–28.2061  
(0.000)     

0.0288495 
0.00172743 

16.7008   
(0.000)     

βCIRCLE_AM 
S.E.  
z-value 
(Sig.) 

0.134762 
0.204617 
0.658605 
(0.51015) 

–0.138563 
0.0731579 
–1.89402 
(0.05822)   

0.394851 
0.352269 
1.12088 

(0.26234) 

–0.567041 
0.141528 
–4.00656 

(0.000) 

0.188179  
0.057477 

3.274 
(0.001) 

–0.0992245 
0.0244222  
–4.06289 

(0.000) 

–0.34953 
0.0423606  

  –8.2513  
(0.000)     

0.191559  
0.0198415 

9.65448 
(0.000)     

βNLSI 
S.E.  
z-value 
(Sig.) 

1.18417 
1.01493 
1.16676  

(0.24331)   

0.321217 
0.321217 
0.94825 

(0.34300)   

0.950073   
2.18236 

0.435342 
(0.66331) 

–1.19175   
0.809946 
–1.47139  
(0.14119)      

–0.230356 
0.168859 
–1.36419     
(0.17251) 

0.139828 
0.0719525 

1.94334 
(0.05198) 

0.806862 
  0.128347 

  6.28656 
(0.000)     

–0.440389 
0.0567956 
–7.75393  

(0.000)     

βALTITUDE 
S.E.  
z-value 
(Sig.) 

–0.0112455 
0.00877362 

–1.28174 
(0.19993)   

0.0283315 
0.00627242 

4.51683  
(0.000)     

–0.00764065 
0.0107472 
–0.710941 
(0.47712)    

–0.00077340 
0.00920217 
–0.0840453 
  (0.93302) 

0.00556751 
0.00109105 

5.10287 
     (0.000) 

–0.00190106 
0.000696389 

–2.72988   
(0.00634) 

0.00535216  
0.00084278 

6.35062  
(0.000)     

0.0138517 
0.000423005 

32.746  
(0.000)     

βLAMBDA 
S.E.  
z-value 
(Sig.) 

0.55133 
0.0435905 

12.6479 
(0.000)     

0.915327 
0.0111999 

81.7262 
(0.000)     

0.382638 
0.0691887 

5.53036 
(0.000) 

0.800643   
0.0251691   

31.8106 
(0.000) 

0.782332  
0.00554605 

141.061 
(0.000) 

0.862121 
0.00414646 

207.918      
(0.000) 

0.809815 
0.00492091 

164.566   
(0.000)     

0.887256 
     0.0035974   

246.638  
(0.000)     

a Observations classified as IM1 Highly impervious are excluded.   

   Non-significant independent variables are greyed-out.  
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Overall, by analysing the signs and magnitude (z-values) of relevant regression coefficients 

[Table 7.14], the following interpretations can be inferred: 

In aquatic locations: 

1. Among all variables, water surfaces contribute most to the modification of LSTs, followed 

by impervious ground surfaces and trees. In summer, irrigated grasses, tree cover and water 

surfaces contribute to the reduction of diurnal LSTs, while the presence of buildings 

contribute to increase diurnal LSTs. At night-time, LSTs increase with increasing 

proportion of buildings, impervious ground surfaces, trees and water as well as with 

altitude.  

2. In winter, proportion of water is the only significant predictor of diurnal LSTs. The sign of 

the coefficient indicates that diurnal LSTs decrease with increasing water surfaces. At 

night-time, the amount of buildings and water contribute to an increase of LSTs while 

increasing elongation of tree patches (high CIRCLE_AM) decreases LSTs.  

In terrestrial locations: 

3. In both seasons, the proportion of buildings and impervious ground surfaces contribute to 

the increase in diurnal LSTs significantly, while increasing amount of irrigated grasses, 

shrubs, trees and water contribute to the drop in diurnal LSTs. Furthermore, diurnal LSTs 

generally increase with increasing altitude. In contrast, nocturnal LSTs decrease with 

increasing proportion of buildings and shrubs, while an increase in the amount of 

impervious ground, water and forested areas leads to an increase in nocturnal LSTs.  

4. The proportion of irrigated grasses has a positive influence on nocturnal LSTs in summer, 

while a negative influence in winter. This means that in summer an increase in the 

proportion of water results in an increasing nocturnal thermal capacity of natural surfaces. 

5. Altitude shows a similar pattern at night-time, thus, nocturnal LSTs are decreasing with 

increasing altitude in summer and with decreasing altitude in winter (see Section 8.5 for 

interpretation of results).  

6. CIRCLE_AM shows an inverse pattern between seasons and times of the day. As a 

consequence, an increasing elongation of tree patches causes a reduction of LSTs during 

the night in summer, while during the day in winter. Conversely, increasing elongation of 

tree patches results in increasing LTSs during the day in summer, and during the night in 

winter. 

7. Dispersion of trees (nLSI) was a significant predictor at night-time in summer and both 

times of the day in winter. In summer scattered trees can be associated with higher LSTs at 
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night-time; conversely, in winter increasing dispersion of trees contribute to higher diurnal 

LSTs and lower nocturnal LSTs.  

8. Among all independent variables, impervious surfaces (buildings and ground) contribute 

the most to mean LSTs, followed by trees, water, and low-irrigated grasses. 

9. In all cases, the composition or abundance of a particular land cover is more influential in 

LSTs than the spatial configuration of trees. 

Further interpretations of regression coefficients in the context of the study area are 

presented in Section 8.5. The application of previous statistical analysis for the formulation 

of SUHI mitigation scenarios at local scale is presented in Section 8.6. 

7.5 Summary 

This chapter demonstrates the applicability of the proposed assessment framework and 

standardised classification scheme for the study of the thermal performance of green 

infrastructure in response to the first, second and third objectives (and their associated 

research questions) of this thesis (Section 1.3). It also presents the quality assessment 

classifications, the analysis of thermal differentiations and the statistical models for the 

prediction of LST using surface composition and spatial configuration predictors.  

The proposed classification framework for green infrastructure was successfully tested 

with three different grid sizes or spatial scales. Classification results were satisfactory for 

all scales with less than 0.25% of unclassified grids. Among the three scales, 50 x 50m was 

identified as an optimal spatial unit for LST analysis of typologies at local scale as it 

provides appropriate spatial information. 

The quality of the proposed classification scheme was assessed through two methods. 

Firstly, a pilot study representing a cross-section of Sydney’s urban conditions was selected 

due to resource and time constraints; where the accuracy of classified spatial units was 

compared versus validation data from ground-truthing using a confusion matrix. Results 

were satisfactory with an overall accuracy of 76.4% and Kappa coefficient value of 0.741. 

Secondly, the evaluation of the predictability and quality of the classification parameters 

and threshold values defined for each GIT class was conducted using 22 supervised 

machine learning algorithms and the totality of observations (or grid cells). Results show a 

high accuracy (>80%) of predictions for all models, and especially for classifiers 

implementing fine decision trees learners. 
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Inter-typology comparisons of mean LSTs show clear thermal differentiations among 

GITs. The warmest typologies during the day are the impervious GIT subgroup followed 

by mixed GITs with a considerable presence of impermeable surfaces; while the coldest 

typologies correspond to aquatic and highly forested GITs. At night the pattern is reversed, 

so the warmest typologies are those characterised by a larger proportion of water bodies 

and dense canopy, while the lowest LSTs occurred in treeless GITs with a large proportion 

of irrigated grasses, followed by pervious GITs with aligned and dispersed trees. These 

patterns are similar in summer and winter; however, intra- and inter- typology thermal 

differences are less pronounced in winter. 

Further statistical tests including the Kolmogorov-Smirnov statistic and one-way Welch-

ANOVA with Games-Howell post hoc test were implemented for multiple comparisons. 

Results show that statistically significant differences among LSTs prevail for most GITs at 

daytime and night-time and for both seasons (73-87% of differentiation); nonetheless, 

temperature differences are more distinguishable in summer and daytime.  

The overall cooling effect of each typology was calculated relative to a reference case 

corresponding to the IM1 Highly impervious typology. In both seasons, maximum diurnal 

cooling capacities were obtained by the aquatic and pervious typologies (especially dense 

and clustered trees) while the lowest cooling capacity was registered by impervious GITs 

due to the limited presence of vegetation and significant amount of buildings and 

pavements.  

It was also found that the influence of tree configuration in thermal cooling depends on 

land cover composition of the immediate environment and the proportion of forested areas. 

Accordingly, larger tree canopy is more effective in reducing diurnal LSTs if this is 

surrounded by irrigated grasses and shrubs. Furthermore, irrigated grasses exceeded by far 

the cooling capacity of non-irrigated low plants. At night, a reversed pattern is observed, 

so aquatic, impervious and heavily forested GITs provided a relative heating effect; 

however, an increased surface wetness can reduce this situation. Despite the similarity of 

results between both seasons, it was observed a relatively greater cooling capacity of most 

vegetated GITs in winter. Previous evidence is corroborated by the results of the TVX, 

correlational and hierarchical cluster analyses. 

TVX analysis and simple linear regression between vegetation abundance descriptors and 

the cooling capacity of GITs demonstrate that aquatic GITs (particularly water bodies) 

exhibit a distinct diurnal and nocturnal thermal behaviour. Since this subgroup has an 

outlying effect, it is recommended to perform statistical analysis separately from terrestrial 
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GITs. Based on bivariate correlations, the impact of vegetation abundance on diurnal and 

nocturnal LST reductions of terrestrial GITs is generally better explained by the proportion 

of pervious surfaces. Since photosynthetic activity is negligible at night, NDVI can only 

explain the cooling effects of typologies in the day. Tree coverage, however, cannot 

completely explain the cooling effects of GITs as single predictor.  

A total of four OLS models (1A, 2A, 3A, 4A) were developed, one each for a time of the 

day and season, for the prediction of LSTs at the local scale using the GIT classifications 

as observations. The statistical analysis process determined that several assumptions were 

violated, particularly multicollinearity, homoskedasticity, and non-autocorrelation. In an 

attempt to address these issues, several combinations of omitted variables were tested to 

produce four revised OLS models. Although multicollinearity between independent 

variables improved considerably, heteroskedasticity was still a serious issue, as well as 

there was strong evidence of autocorrelation of residuals caused by spatial dependencies.  

Accordingly, global and local spatial autocorrelation analysis recognised the presence of 

considerable positive spatial associations among residuals and suggested the Spatial Error 

Model (SEM) as the most appropriate spatial regression method to produce robust 

predictive equations for all four models. Whereas the introduction of the spatial 

autoregressive error term (Lambda) improved the performance of the four classic OLS 

regressions significantly, it did not entirely reduced heteroskedasticity; so further 

corrections were implemented. 

By analysing the residual plots of all models and according to the evidence of TVX 

analysis, it can be concluded that a single spatial regression equation is not suitable for all 

locations using the totality of observations. In this sense, datasets from each model were 

partitioned into aquatic and terrestrial observations, and cases belonging to IM1 class 

excluded. A total of eight revised SEMs were developed than can be applied either in 

aquatic (Models 1D, 2D, 3D, and 4D) or terrestrial (Models 1E, 2E, 3E, and 4E) contexts 

for the prediction of diurnal and nocturnal LSTs in summer and winter. Summary of the 

Maximum Likelihood Estimations of the eight revised SEMs display a superior 

performance in comparison to all previous attempts. Whereas heteroskedasticity was not 

completely eliminated, this was significantly reduced as shown by the new residual plots. 

The interpretation of results of the final eight SEMs (1D, 2D, 3D, 4D, 1E, 2E, 3E, and 4E) 

including the analysis of the individual contributions (from regressions coefficients) of 

each independent variable for the formulation of SUHI mitigation strategies are presented 

and discussed in the next chapter. 
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Chapter 8  

Discussion26 

8.1 Introduction 

This chapter summarises and discusses the research findings in relation to the four 

objectives of this thesis outlined in Section 1.3. First, Section 8.2 evaluates the application 

of the research methodology presented in Chapter 5 which was applied in two related case 

studies of the Sydney metropolitan region. This section also focuses on the advantages and 

disadvantages of the research framework and selected data processing methods, in 

particular, the potential of high-resolution airborne remote sensing to map spatio-temporal 

thermal patterns and analyse the cooling effects of green infrastructure with higher 

accuracy and precision. This section also includes a discussion on the quality of remote 

sensing datasets and derived products for the computation of variables.  

Second, the suitability of the application of the green infrastructure typology –introduced 

in Chapter 4– as a framework for characterising urban green infrastructure and assessing 

thermal conditions is demonstrated in Sections 8.3 and 8.4. Section 8.3 examines the 

quality of the automated classifications of GITs at different spatial scales, evaluates the 

accuracy of these classifications, and explores other potential applications and 

improvements for similar research in the future. Section 8.4 provides an expanded 

summary of research findings and presents a comparative analysis of the spatial and 

seasonal variability of the diurnal and nocturnal LST characteristics of GITs identified for 

the study area. It analyses the factors influencing on the cooling effects of different GITs 

and provides a ranking of typologies according to the provision of their cooling benefits.  

Third, Section 8.5 presents the outcomes of different statistical models developed for the 

prediction of LSTs in different urban contexts, and times of the day and year. This includes 

                                                      

26 A portion of Chapter 8 has been submitted for publication: Bartesaghi Koc, C., Osmond, P., Peters, A. (2019), 

Mapping and classifying green infrastructure typologies for climate-related studies based on remote sensing 

data. Urban Forestry and Urban Greening. 
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the quantification of the relationships between day and night LSTs and the physical and 

configurational descriptors estimated for the spatial units. Additionally, it provides a 

comparison and evaluation of the most adequate statistical methods for the prediction of 

LSTs. 

This chapter concludes with a discussion of the most significant practical implications of 

the research outcomes and model prediction for urban design, planning and policy making 

(Section 8.6). This chapter concludes with the application of the statistical analysis for the 

assessment of SUHI and scenario modelling of heat mitigation strategies.  

8.2 Airborne remote sensing for mapping green 

infrastructure and thermal conditions 

In this thesis, it has been demonstrated that hyperspectral, multispectral, and thermal 

imagery, supported by LiDAR and cadastral data, can be employed to obtain very highly 

detailed two- and three-dimensional information of extensive urban areas; which is 

essential to understand and quantify the impact of green infrastructure on the microclimate 

of a specific site. 

In this research, an array of airborne remote sensors enabled the acquisition of very high-

resolution imagery of 0.5 - 2m per pixel that facilitated the identification of surface 

materials and thermal profiles of large areas more accurately. No significant differences in 

surface cover recognition were found between products derived from images with 0.5, 1 

and 2m pixel resolutions. However, more reliable NDVI values were retrieved from 

hyperspectral imagery, as they covered a wider short-wave spectrum compared to 

multispectral images.  

Although the application of an NDVI threshold method produced good results, these are 

sensitive to season, vegetation phenology, irrigation levels, and climatic conditions prior 

and during the data collection; factors that hampered the definition of consistent threshold 

values for identifying distinct land cover types. Multiple endmember spectral mixture 

analysis (MESMA) and deep learning (i.e. Convolutional Neural Networks-CNN) are 

relatively recent powerful state-of-the-art techniques that have shown superior results for 

image processing and thematic classification of land covers. Despite their demonstrated 

quality and accuracy; it was not possible to implement them in the present research due to 

skill and resource limitations. 
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As spectral and TIR imagery provide a bird’s eye view of horizontal surfaces, the 

incorporation of LiDAR data provided a detailed three-dimensional information 

(specifically height) of structural elements such as buildings, plants and topographic 

characteristics. The combination of an NDVI threshold method with LiDAR extractions 

improved land cover recognition considerably as structures obscured by tree crowns were 

identified. Despite this advantage, initial building extractions required several refinements 

to obtain more accurate and reliable products; and these included: splitting building 

footprints along cadastral property lines, squaring polygons and completing missing 

structures manually. This process was very tedious and time consuming, and it could have 

been obviated if LiDAR data with a higher point cloud density were available. 

Airborne mapping typically provides information of thermal and spectral reflectance of 

horizontal surfaces, rather than urban canopy layer conditions, such as air temperature, 

which are more relevant to HTC. In this sense, evidence presented in this thesis is not 

representative of the overall thermal conditions of GITs as LSTs of vertical surfaces 

(building facades) are obviated. 

As recommended by Geletič et al. (2016), an important condition for an appropriate 

comparison of LSTs between different classes of a typology requires mutual independence 

between thermal and classification data. Whereas the present research fulfils this 

requirement; classifications were assessed using thermal imagery from specific times (day 

and night, summer and winter) from which quantitative information for temperature ranges 

and dynamics for each GIT cannot be retrieved.  

Furthermore, airborne remote sensing provides limited information of the temporal 

evolution of LSTs within each GIT class, unless time-series of imagery are collected. 

However, multi-temporal analysis remains unaffordable and laborious for many users due 

to prohibitive costs and complicated logistics required for conducting periodic flight 

campaigns. For instance, in this thesis, the acquired data was subject to satisfactory 

meteorological conditions, availability of sensors (and imagery), air traffic restrictions 

imposed by local authorities and limited research budget. As a consequence, all data were 

obtained from a third party or contractor, which restricted the quality control of final remote 

sensing products. The advent of unmanned aerial vehicles (UAVs) and smaller spectral 

imagers can help overcome these issues, as very high resolution images can be retrieved 

by drones in a flexible, easy, and less costly way (Gaitani et al., 2016; Gaitani et al., 2017); 

and this is subject to future research. 
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In this thesis, TIR imagery was collected, processed and provided by a contractor who 

opted to use a NEM method initially described by Gillespie (1985) and implemented by 

Realmuto (1990) as it can produce reliable LST estimations for a variety of surface 

materials in an easily replicable and rapid way; thus, it can be implemented by users with 

different skill levels (Gillespie, 2015). Similar satisfactory results were obtained when the 

NEM approach was tested using high-resolution radiance spectra from hyper- and multi-

spectral imagers by other studies (Gillespie, 2015; Mushkin et al., 2005; Sobrino et al., 

2008; Tang & Li, 2014). 

As suggested by N. Chrysoulakis (personal communication, 2017), a constant emissivity 

value can be employed if LST is only required for identifying hotspots and representative 

temperature differences among GIT classes in a specific moment, such as in the case of the 

present dissertation. However, this method should be avoided if analyses are conducted at 

pixel‐/sub‐pixel levels as it may cause certain inaccuracies in the estimation of absolute 

LSTs. If hyperspectral data is available, the application of spectral unmixing techniques 

(i.e. MESMA) is recommended as it assigns emissivity values to specific land cover types 

using spectral libraries and estimating the total emissivity of the pixel as a weighting 

average. 

Due to abovementioned limitations of airborne remote sensing, satellite products (i.e. 

Landsat, Sentinel) could alternatively be tested within the same framework as they are 

routinely captured and easily accessible, offer good spatial coverage, and require 

corrections that are well documented. In fact, Coutts et al. (2016) suggest non-specialised 

users (i.e. municipalities) employ satellite-based imagery for the identification of hotspots 

at neighbourhood and city levels. 

Further discussion on the advantages and disadvantages of the proposed GIS-based 

methodology and the influence of remote sensing data on the quality of classifications, and 

potential latent errors, is provided in Section 8.3.3. 

8.3 Classification of green infrastructure for climate-related 

studies 

Several approaches for assessing the microclimatic conditions of urban greenery have been 

discussed in detail in Chapters 3 and 4, particularly the LULC (Anderson et al., 1976), LCZ 

(Stewart & Oke, 2012), HERCULES (Cadenasso et al., 2007) and UVST (Lehmann et al., 

2014). The classification framework developed for this research –in response to the first 
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and second objectives (Section 1.3)– combines aspects of the above-mentioned approaches; 

however, it is not intended to supersede them, rather to complement them. 

A streamlined GIT and its corresponding GIS-based automated classification framework 

(workflow) were developed to classify green infrastructure (as a combination of biotic and 

man-made features) in a universally applicable convention to support climate research at 

multiple spatial scales. These were successfully tested at the local scale and applied in two 

related case studies of the Sydney metropolitan area. This represents a major outcome of 

this research and a significant contribution to knowledge. 

 The capacity of quantifying green infrastructure descriptors based on high-resolution 

airborne remote sensing data enabled an accurate, realistic, rapid and automated 

representation and classification of extensive areas and varied urban conditions. Although 

the process, parameters and threshold values respond to a specific method and context, the 

scheme can be similarly replicated in any given location if comparable data are available 

(i.e. spaceborne imagery). It is also highly flexible as it allows refinements where 

necessary. For instance, aquatic GITs can be expanded for locations with widespread water 

systems. Furthermore, additional parameters can be explored, and cut-off values updated 

for a specific type of analysis and setting. 

8.3.1 Identifying an optimal grid size for classifications 

The classification scheme and workflow were successfully tested at different spatial scales 

with satisfactory results. However, the application of GITs entails certain constraints 

regarding the most optimal grid size for thermal analyses. When mapping urban contexts, 

finer grids tend to be more aggregated and homogenous as single elements (i.e. large trees, 

warehouses, extensive parking lots) occupy most part of the grid; while coarser grids are 

more heterogeneous since features are highly disaggregated and discontinuous (except for 

very large and homogenous areas, for example, extensive forestland or large lakes). 

Accordingly, the most optimal sampling distance depends on the context of analysis, so it 

should be sufficiently small to reduce granularity and avoid fragmentation and large enough 

to include representative land cover types and arrangements of vegetation structures.  

Unfortunately, defining the ‘best’ grid size for all purposes is impractical as this may 

depend on the morphological characteristics of the built environment, the type of research, 

and the type of climatic phenomena targeted, which will likely differ between locations. 

However, an approximate range of sizes can be specified. In this investigation, three spatial 

units of 25m, 50m and 100m side were tested and compared. As a result, 25 x 25m grid 
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resolution was too small to effectively identify different spatial arrangements of trees, as 

cells were mostly dominated by one or two surfaces [Figure 7.3c]. Conversely, 100 x 100m 

grid resolution was too coarse and exhibited a large variation of surface and configurational 

descriptors, so conditions tend to be generalised for the whole grid [Figure 7.3a].  

After conducting visual inspections and a comparative analysis, grids of 50 x 50m 

demonstrated to be a more appropriate sampling size for local scale analyses 

(neighbourhood, precinct, street) as results preserved representative morphological and 

configurational information necessary for urban microclimate studies [Figure 7.3b]. Hence, 

the remainder of analyses were conducted at this spatial scale. Future research could focus 

on quantifying and comparing the thermal differences of GITs across multiple spatial 

scales.  

8.3.2 Defining relevant classification descriptors and cut-off values 

This research has demonstrated that the classification scheme for green infrastructure 

presented in Chapter 4 can be successfully applied to catalogue urban landscapes into 34 

specific GITs with distinct characteristics. When analysing the classification results, a high 

similarity was found between the spatial pattern of GITs and the existing morphological 

conditions of two case studies of the Sydney metropolitan area. 

A major challenge related to the identification of distinct GITs was selecting appropriate 

classification parameters and threshold values.  Initially, cut-off values for surface fractions 

were based on those defined by Stewart and Oke (2012) for the LCZ scheme. As these 

provided relatively limited information about the bio-physical characteristics of natural 

features, a second step required modifying the values suggested by Irger (2014) and 

readjusted by Bartesaghi Koc, Osmond, Peters et al. (2018) for the application of LCZs to 

the context of Sydney. To reduce the number of unclassified grids, classification values 

were refined and tested several times until obtaining optimum results. Although significant 

modifications to the original LCZ values were introduced in most cases, this process was 

essential to adapt the parameters to typical landscape conditions in accordance with the 

purpose of this research. 

As mentioned earlier, a close similarity is observed in the land cover composition between 

certain set of typologies, such as IM4-5-6, MX5-7-9, MX6-10, PV5-7-9, PV6-8-10 and 

AQ6-8 GITs. As these subsets are part of the same GIT subgroup (i.e. impervious, mixed, 

pervious, aquatic), they are mainly differentiated by the type of tree arrangement –namely 

aligned, scattered, and clustered; hence, the importance of considering the spatial 
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fragmentation of the tree canopy in classifications. Due to time constraints, this research 

only considered the spatial configuration of trees as these can considerably alter wind 

speeds/direction, intercept solar radiation and provide significant transpiration. Future 

research could potentially consider incorporating the spatial distribution of other surface 

covers into the proposed scheme. 

Several FRAGSTATS indices defined by McGarigal and Marks (1995) and McGarigal 

(2015) were evaluated to identify the most optimal combination of metrics and threshold 

values for an effective tree canopy pattern recognition. Tests were conducted at a class 

level using the grid size as the total landscape and tree patches as the target class.  

Contiguity index (CONTIG) and fractal dimension index (FRAC) are perimeter-to-area 

ratio indices that were assessed on their capacity to quantify spatial connectedness and 

complexity of shapes (McGarigal, 2015; McGarigal & Marks, 1995). However, their main 

limitation is the relative insensitivity to differences in patch morphology, so it is difficult 

to discriminate between aligned and clustered patterns, and isolated and small groups of 

trees when patches have similar areas and perimeters. Alternatively, related circumscribing 

circle (CIRCLE) performed better in identifying patch elongation as the index is based on 

the ratio of patch area to the area of the smallest circumscribing circle and is not influenced 

by patch size (McGarigal, 2015). 

Similarly, contagion index (CONTAG), aggregation index (AI), landscape shape index 

(LSI), percentage of like adjacencies (PLADJ), clumpiness index (CLUMPY) and patch 

cohesion index (COHESION) were tested to identify the level of dispersion, interspersion, 

and adjacency of trees. However, indices based on like-adjacencies (i.e. CONTAG, AI, 

PLADJ and CLUMPY) are strongly affected by image resolution and grid sizes, so results 

differed for the same area at different spatial scales. Furthermore, COHESION is based on 

perimeter-area calculations, therefore it is subject to the same limitations described above. 

LSI provides a standardised measure without upper bounds, thus consistent thresholds are 

not possible to be defined; however, better results were obtained when its normalised 

version was applied (nLSI) (McGarigal, 2015; McGarigal & Marks, 1995).  

After multiple trials, the combination of CIRCLE_AM and nLSI proved to be effective in 

distinguishing dispersed, clustered and aligned tree canopies across multiple spatial scales 

as they are normalised metrics (between 0 and 1) that are easier to interpret and robust to 

changes in the grain (grid sizes). Cut-off values for both metrics were determined –after 

several tests– using the Jenks optimization method (Jenks, 1967). Slight variations in cut-

offs were identified when the method was applied to each case study separately due to 
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differences in minimum and maximum values of each dataset. Thus, decimal values were 

repeatedly readjusted until obtaining optimal results that can satisfy both case studies.  

Despite the satisfactory classification results, the range of values proposed for all the 

classification descriptors of GITs, and especially the FRAGSTATS metrics, should be 

treated as guidelines as they are contingent on further adjustments to better reflect the urban 

characteristics of other locations.   

In Figures 7.5 and 7.8 it can be seen that the proportion of high vegetation varies among 

classes sharing the same type of spatial arrangement of trees. For instance, MX10 Clustered 

trees with mixed low plants has a higher proportion of tree cover (>50%) than IM6 Mostly 

impervious with clustered trees and PV10 Mostly irrigated low plants with clustered trees 

(<20%). Likewise, the proportion of aligned trees is larger in MX6 Aligned trees with mixed 

low plants (>35%) and MX5 Mixed surfaces with aligned trees (>20%) than in IM4 Mostly 

impervious with aligned trees, and PV5 Mostly non-irrigated low plants with aligned trees 

(<20%). This disparity occurs because of the presence of a dominant surface (described by 

the adverb ‘mostly’) that tends to occupy the totality of the grid. Therefore, trees are 

surrounded by a high proportion of sealed surfaces and buildings in impervious GITs, and 

by extensive grassy areas in pervious GITs. In contrast, in mixed GITs the amount of tree 

canopy is higher as the proportion of vegetated and non-vegetated ground surfaces is more 

variable.  

These discrepancies are less pronounced among typologies with scattered tree 

arrangements with a difference of 4-9%; except for MX8 Scattered trees with mixed low 

plants that has a disproportionate amount of wooded land compared to other GITs with the 

same spatial distribution (10-20% extra). Consequently, the categorisation into a specific 

spatial arrangement is not indicative of the abundance of tree cover, so this should be taken 

into account when interpreting the LST differences among typologies. 

Significant differences of mean NDVI values were found among GITs, and especially 

between summer and winter case studies. The significantly elevated NDVI in winter can 

be mainly attributed to an increment in vegetation healthiness due to better irrigation 

regimes and reduced heat stress on plants due to mild weather conditions. The deciduous 

nature of some trees throughout the whole study area may also have contributed to 

differences in the percentages of tree canopy and mean NDVI values.  

Despite these facts, the percentage distributions of pervious surfaces for all GITs were 

closely similar for both seasons (with minor exceptions). This demonstrates the robustness 

and applicability of the proposed classification scheme to different contexts, extents and 
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seasons. The findings also suggest that the proposed method for the identification and 

extraction of surface covers from spectral-based imagery and LiDAR data can be 

successfully applied, provided that NDVI thresholds are adjusted according to contextual 

and phenological changes.  

The Jenks optimisation method is a classic data clustering method that arranges values by 

maximising the homogeneity of a group; hence, it proved useful in defining meaningful 

cut-off values for NDVI and FRAGSTATS metrics. Nonetheless, this method was 

dependent on the minimum and maximum values of each dataset, so additional refinements 

may be necessary if applied in future studies. In addition, the differentiation between 

deciduous and evergreen vegetation could potentially be explored in future research, 

although this should be evaluated with care as it may add a number of variations that might 

be redundant or useless in some cases. 

8.3.3 Evaluating the accuracy of classifications  

The accuracy of GIT classifications was assessed through a confusion matrix by comparing 

actual observations from high resolution aerial imagery against class predictions. In this 

research, the extent of the pilot study was selected for accuracy assessment of 

classifications due to time constraints.  

An accuracy rate of 85% has been generally accepted as an optimum target for an accurate 

classification of remote sensing imagery into specific classes (Anderson et al., 1976; Wang 

et al., 2018). Although the overall accuracy of GIT classifications of the pilot study (76.4%) 

has not reached this target, this can be considered as ‘acceptable’ since these were not 

intended for the thematic mapping of major LULC types at a pixel level, but for a newly 

developed scheme considering a combination of morphological and spatial descriptors. The 

achieved rate can be used as an indicative value of the overall quality of classifications for 

both case studies (summer and winter); however, this should be considered with caution as 

it only covers a small portion of the whole study area.  

In-depth analysis was performed to classifications and higher accuracies were obtained by 

treeless typologies and/or with a highly-differentiated proportion of land covers. It was 

identified that common misclassifications, and consequently low user accuracies, occurred 

due to the following reasons:  

1. The considerable disproportion in the number of validation points among typologies (i.e. 

53 samples for IM1 versus 3 samples for PV6). Thus, the present scheme is contingent on 

additional accuracy assessment with a larger number of ground truthing samples.  
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2. Tree canopy was not properly identified and extracted from LiDAR data for some areas 

(errors of commission and omission). This was mainly caused by errors in the pre-classified 

LiDAR points cloud data in which parts of buildings (commonly pitched roofs) were 

recognised as high vegetation [Figure 8.1a]. Small, hollowed or elongated structures (i.e. 

containers, cars/trucks, trains, reservoirs, antennas) were also misidentified as vegetation 

structures [Figure 8.1b]. These errors are potentially produced by similar waveform of laser 

return signals from leaves, branches, and built structures that shared common 

morphological characteristics. To correct erroneous feature extraction from LiDAR data 

and improve the quality and accuracy of vegetation surfaces recognitions, results were 

cross-validated against land covers identified from NDVI imagery. 

 

3. Spectral similarities between some surfaces generated several identification errors which 

include: (a) impervious surfaces (i.e. roads, ballast, paved parking) were mistaken for bare 

soils, (b) non-irrigated grasses confused with compacted soils or pavements, and (c) 

shadows considered as water or non-irrigated grasses [Figure 8.2]. Falsely classified pixels 

are due to distorting errors caused by overshadowed areas, drought, and latent errors in the 

NDVI generation process. These issues could be minimised by performing additional 

shadow corrections, implementing multitemporal analysis to replace erroneous pixels 

based on images captured at other times, and by tuning NDVI classification thresholds; 

which are subject to future research.  

4. The proportion of spectral-based errors was higher in summer datasets as NDVI values 

were derived using the red bands of two separate images (CIR and RGB) rather than from 

a single multi-spectral image (see Section 6.3.1.1). On the other hand, the pixel resolution 

of the hyperspectral image (2m) used for the winter case study –which was twice the pixel 

(a) (b) 

Figure 8.1 Examples of common errors identified in the pre-classified LiDAR points cloud data. 
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size of the multi-spectral image (1m)– was insufficient to identify small vegetation patches 

such as hedgerows [Figure 8.2]. A potential area of research can be the quantification of 

the effect of spatial and spectral resolutions (i.e. number of bands, pixel sizes) on thematic 

mapping using NDVI images. 

 

Figure 8.2 Examples of errors and inaccuracies on the surface cover extractions related to spectral issues and 

spatial resolution of images. 

5. Surface covers underneath the vegetation canopy were not retrieved by spectral imagery in 

summer so these were considered as vegetated areas even though they corresponded to 

other surfaces (i.e. roofs or pavements). Conversely, full tree canopy was not detected in 
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winter, so partially leaved deciduous trees were classified as the land cover below (usually 

non-irrigated grasses) [Figure 8.2]. These errors were reduced for most cases by cross-

validating spectral and LiDAR derived products one against each other. 

6. There was a large variation of pervious and impervious surface fractions within some 

spatial units. Moreover, grids with surface fraction values close to upper or lower bounds 

were incorrectly assigned to the subsequent class.  

7. FRAGSTATS indices were limited in distinguishing different tree patterns when these had 

similar areas and perimeters. Accordingly, common misclassifications include: (a) small 

clusters, discontinuous, convoluted or partial rows of tress were considered as isolated or 

dispersed trees respectively [Figure 8.3a]; (b) typologies with scattered trees were 

classified as aligned [Figure 8.3b]; (c) large mature trees were mistaken for clustered 

arrangements [Figure 8.3c]; (d) wide linear forested areas were considered as clusters 

[Figure 8.3d]. Further research could focus on improving current cut-off values and 

exploring additional combinations of shape and aggregation indices to resolve these 

shortcomings. 

 

Figure 8.3  Example of misclassifications related to the limitations of FRAGSTATS metrics. 

Despite that several corrections were conducted to improve the accuracy and quality of 

LiDAR and spectral derived extractions, a limited number of grids (1.43% of the total 

number of grids in summer and 0.60% in winter) were incorrectly classified. These were 

excluded from statistical analyses to minimise errors and improve the results of models. 
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8.3.4 Assessing the predictability of the classification scheme 

As shown before, the overall accuracy of classified GIT maps was subject to the quality of 

surface cover recognition and adequate discrimination of tree configurations; in contrast, 

the overall quality of the classification scheme mainly depended on defining relevant 

parameters and threshold values for each typology; hence the differences in the results and 

interpretations between both accuracy evaluation methods (described in Section 7.2.3). 

In this sense, the assessment of the performance of the classification scheme was conducted 

by comparing the overall accuracy of GIT predictions from several machine learning 

classifiers. Predictive models used the totality of grids (referred as dataset) from each case 

study that were randomly divided into training and validation data. On one hand, 75% of 

the dataset was employed to train models, so algorithms understood the classification 

parameters or predictors and associated them with a corresponding GIT class. On the other 

hand, 25% of the dataset was held out to validate predictions and avoid overfitting.  

 No single machine learning classifier is suitable for every problem as identifying the right 

model is usually a process of trial and error (MathWorks, 2018a); thus, several algorithms 

available in the classification learner app in Matlab were tested. Moreover, the best overall 

accuracy scores do not necessarily indicate the best model for a particular goal as classifiers 

with a slightly lower accuracy might be more suitable for a certain size of dataset, type of 

phenomenon (non-/linear), and type and number of predictors. 

Findings presented in Section 7.2.3.2 show high to very high predictability for most models 

(>80%) and demonstrate the robustness of classification descriptors and threshold values 

proposed in Chapter 4 [see Table 4.14]. No substantial differences between accuracy scores 

of summer and winter datasets were identified. This proves the applicability and reliability 

of the classification scheme despite differences in location and season. As the winter dataset 

contained a larger number of samples than the summer dataset, this presumably might have 

influenced in their slightly higher accuracy scores. 

Classifiers implementing decision trees learners (Fine decision tree and Ensemble-Bagged 

trees) achieved the highest scores (≈100%) as they are good generalists and subdivided the 

data using a binary format [Figure 8.4a]; however, they are prone to overfitting if no or 

small number of validations are selected. The very high overall accuracy of these learners 

[Table 7.3] can be explained by several factors. First, the class subdivision in decision trees 

is similar to the logical division implemented in Section 4.9 for the standard classification 

of green infrastructure [Figure 4.5] and the cut-off values defined in Table 4.14.  
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Figure 8.4 Comparison of the number of levels (binary splits) and overall accuracies calculated by the fine, 

medium, and coarse decision trees classifiers. 
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Second, the use of many branches or deeper splits (43 levels) provided fine distinctions and 

better results than medium and coarse learners (19 and 4 levels respectively) [Figures 8.4b 

– 8.4c]. Therefore, a fine tree is usually highly accurate and particularly suitable for many 

predictors and large number of classes. Third, Ensemble models are typically characterised 

by a high accuracy and good performance for medium-sized datasets as they combine two 

algorithms to power their predictability.  

SVM classifiers also performed well (80-97% of accuracy), especially the algorithms 

implementing linear and quadratic separation hyperplanes (≈96%). The hyperplane is 

defined as the best margin that segregates data points from two classes [Figure 8.5]. Based 

on the results presented in Table 7.3, it can be assumed that the classification of GITs 

exhibits clear separation boundaries that are characteristic of less complex problems. 

Additionally, SVM classifiers offer confident accuracy rates as they are effective in high 

dimensional spaces (large number of classes and features).  

 

Figure 8.5  Example of class discrimination applied by linear and non-linear support vector machines classifiers 

(SVM) classifiers. 

Despite being the most popular, fast and easy to interpret classifiers, linear and quadratic 

discriminant models did not perform as well as SVM algorithms, achieving between 71% 

and 81% of accuracy. This is because discriminant analysis tends to reduce the dimension 

of data to decrease the computational time; so, such reductions caused a loss of information 

that led to lower classification accuracies. Also, to train the classifier, the algorithm 

calculates the parameters of a Gaussian distribution for each class, which may not be 

appropriate for current datasets (MathWorks, 2018b).  
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KNN classifiers performed slightly better than discriminant models (76-87% of accuracy); 

however, these are typically more suitable and have better predictive accuracy in low 

dimensions rather than high dimensions. Since none of the trained classifiers were tuned to 

improve the accuracy of predictions, advanced KNN options may be potentially explored 

such as testing various distance metrics and weights. 

Despite optimum results, accuracy assessment of selected classifiers indicates that further 

calibrations on certain GIT classes may be required to improve the quality of predictions. 

This is the case for AQ6 Water with scattered trees, AQ7 Water with clustered trees, MX8 

Mixed grasses with scattered trees, PV7 Mostly non-irrigated grasses with scattered trees, 

and PV8 Mostly irrigated grasses with scattered trees that repeatedly showed the lowest 

predictability rates in most models.  

GITs with scattered trees were the most difficult to distinguish from other tree 

configurations as shown in Figures F1 to F10 (in Appendix F). They also indicate that in 

the absence of a considerable number of trees some confusion occurs between mixed and 

pervious GITs (i.e. PV3 predicted as MX4). These issues could potentially be amended in 

future by: (1) improving the cut-off values of FRAGSTATS metrics, (2) introducing more 

accurate spatial configuration descriptors, or (3) simplifying the categorisation of tree 

arrangements (i.e. scattered and clustered trees only). 

8.4 Thermal performance of green infrastructure typologies 

at local-scale 

8.4.1 Understanding the thermal profiles and cooling effects of GITs 

In response to the first and second objectives of this thesis (see Section 1.3), the empirical 

results presented in Section 7.3 demonstrate the applicability of the GIT classification 

system as an assessment framework for the study of the intra- and inter-variability of LSTs 

and cooling effects of different compositions, amounts and spatial arrangements of green 

infrastructure. The cooling effects (or cooling capacity) is expressed here as the difference 

in mean LST between a typology with vegetated and/or water features compared to a base 

case or reference which corresponds to a highly impervious context with no vegetation 

(IM1 Highly impervious). In accordance with this notion, GITs can be considered as 

cooling strategies that can be used to prescribe a potential LST reduction resulting from the 

combination of functional (irrigation, evapotranspiration), structural (fractional cover), and 

configurational characteristics of green infrastructure. 
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During calm and clear conditions, statistically significant thermal contrasts among GITs 

varied as function of the composition, abundance and distribution of surface covers. This 

is the case of IM1 Highly impervious and AQ1 Water which difference in LSTs in summer 

exceeded 12°C during the day and 2.4°C during the night. However, thermal differences 

among typologies are complex in nature as they are also disrupted by surface 

wetness/roughness, concentration/distribution of tree canopy, proportion of buildings and 

impervious ground, as well as the diurnal, seasonal and topographic conditions of surfaces 

(Mathey et al., 2011; Stewart, 2011b).    

Either in summer or winter, the highest diurnal LSTs and consequently the lowest cooling 

capacity correspond principally to typologies with a large proportion of impermeable 

surfaces, reduced surface moisture, and no or few vegetation (IM2-6). Lower cooling 

effects were also registered for open and sparsely built areas with mixed surface covers 

(MX1/3/5/7/9); and by green open spaces with poor irrigation conditions (PV1/5/7/9). On 

the other hand, as the proportion of water features, trees, shrubs, and surface moisture 

increases, the diurnal LST cooling capacity of typologies also increases (i.e. AQ1/5/6/7, 

PV3/6/8/10/11, MX6/8/10).  

In contrast, at night-time a relative heating effect was registered by areas comprising 

considerable amount of water and impervious surfaces (AQ1-7, IM2-6), followed by those 

with aligned, clustered or dense tree canopy surrounded by mixed surfaces (MX3/5/7/9/10). 

Conversely, treeless greenspaces with shrubs and no or few trees were the most effective 

in reducing nocturnal LSTs (PV1/2/3, MX4) in accordance with the literature (Hong & Lin, 

2015; Lehmann et al., 2014). 

Previous evidence confirms the significant role of surface wetness and irrigation in 

reducing LST and mitigating the SUHI by improving the cooling performance of 

typologies through increased evapotranspiration, as described by other studies (Coutts et 

al., 2007; Coutts et al., 2013; Halper et al., 2012; Spronken-Smith & Oke, 1998).  

Evidence also indicates an inverse thermal behaviour of aquatic and pervious GITs 

between day and night [see Figure 7.24]. Accordingly, the higher the proportion of 

superficial water, the lower the diurnal LSTs while the higher the nocturnal LSTs. This 

proves the typical thermal ambivalence displayed by water bodies as described in the 

literature (Oke, 1988b, 1992). Accordingly, a considerable volume of water (AQ1 Water) 

exhibits low LSTs during the day by absorbing most of the incoming solar radiation while 

it becomes a major heat source at night because of the considerable amount of energy stored 

(Oke, 1988b; Oke et al., 2017).  



 

302  |  Thermal performance of green infrastructure typologies at local-scale 

However, thermal patterns of large water bodies differ from smaller systems as the latter 

are affected by the presence of organic components, turbidity and the depth of water due to 

a notable amount of runoff from adjacent urban land (Oke, 1992). This is demonstrated by 

the significant difference of thermal profiles between open water (AQ1) and the remainder 

of aquatic GITs (AQ4/5/6/7). This contrast is more evident during the night and in 

wintertime because of the enhanced warming effect caused by vegetation and impervious 

surfaces. This illustrates the typical edge-effect caused by shallow waters in shorelines as 

short-wave radiation can penetrate to the floor, warming up the lower part of the aquatic 

system (Oke, 1992).  

Similarly, the higher the proportion and concentration of tree canopy, the lower the LST at 

daytime. This confirms the cooling effect of vegetation through shading –by limiting solar 

penetration and reducing the energy absorbed by surfaces during the day–, and through 

evapotranspiration which is essential to cool down surfaces (Erell et al., 2011; Hunter et 

al., 2012; Lehmann et al., 2014; Norton et al., 2015; Oke, 1988a; Oke et al., 1989; 

Spronken‐Smith et al., 2000).  

On the contrary, denser trees and shrubs contribute to a relative heating effect at night as 

medium to high vegetation tend to trap heat by decreasing the SVF which in turn reduces 

advection (air velocity) preventing the rapid dissipation of heat to the open atmosphere 

(Oke et al., 1989) [Figures 7.24 and 7.27]. While this can be arguably desirable during 

winter nights, the nocturnal warming effect of trees during summer was remarkably higher 

than expected, while considerably outweighed by the diurnal cooling effects. An opposite 

situation occurs with featureless mixed and pervious GITs (i.e. PV1/2, MX3/4) as low 

plants open to the sky vault release heat more rapidly than dense forests. Moreover, daily 

temperature fluctuations of typologies were more evident in summer than winter as solar 

radiation is more intense, and more energy is absorbed by materials due to higher solar 

angles. Furthermore, at night the cooling processes in the lower section of the UCL are 

mostly controlled by the thermal properties of surfaces and the radiative geometry of sites 

(Erell et al., 2011). This condition can be clearly evidenced in impervious GITs (IM4/5/6) 

and mixed GITs (MX3/5/7/9) in which the cooling effects of grasses and trees, regardless 

of their spatial configuration, are masked by the influence of surrounding materials. This 

occurs because vegetation traps the radiant heat emitted by pavements and building 

surfaces and reduce cold air infiltration, resulting in higher air temperatures that may 

significantly affect human thermal comfort in both indoor and outdoor spaces. This 

situation is particularly exacerbated in summer due to the low wind speeds and heatwave-

related conditions reported during the data collection.   
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Analysing the inter- and intra-typology variability of LSTs 

Overall, the thermal differentiation of GITs is more pronounced during the day and summer 

conditions as surfaces are exposed to solar radiation which enables a clearer distinction of 

thermal profiles. However, discernibility of thermal profiles is more limited at night-time 

as these are governed by the combinatory radiative responses (i.e. thermal inertia) of 

various surfaces.  

Among typologies, thermal profiles of impervious GITs (IM1/2/4/5/6) are the most 

distinguishable at daytime and night-time and for both seasons. Nonetheless, this subgroup 

is characterised by a high intra-variability of LSTs represented by a non-normal distribution 

of frequencies and a large number of outliers [see Tables G2, G3, G5 and G6]. This is 

particularly more evident for IM1 Highly impervious that displays a diurnal variation 

between the minimum and maximum mean LSTs of 28.14°C in summer and 15.74°C in 

winter; and a nocturnal variation of 17.21°C in summer and 7.17°C in winter. This may be 

attributed to the following reasons: 

1. The proportion of roof area and impervious ground vary greatly across the impervious 

subgroup. Therefore, as the amount of buildings increases, its influence on mean LSTs is 

more pronounced since this is highly dependent on the different thermal and spectral 

properties (i.e. surface emissivity, albedo, admittance) of the roofing materials (Akbari & 

Levinson, 2008; Geletič et al., 2016; Irger, 2014). This is particularly obvious in IM1 

Highly impervious, where large, low-rise warehouses covered by corrugated light-coloured 

metal roofs registered significantly lower average LSTs at daytime and night-time than 

spatial units covered by roofing materials with high thermal inertia such as concrete, 

ceramic tiles, gravel, and dark-coloured surfaces (i.e. asphalt) that are typically found in 

extensive carparks and roads.  

2. The cooling effect of pervious surfaces and trees around buildings might be limited when 

positioned within predominately impervious surfaces; and may be affected by the height 

and compactness of buildings (Erell et al., 2011; Meier & Scherer, 2012; Oke, 1981, 1988a; 

Oke et al., 2017). As such, tall and compact structures generally decrease SVF and provide 

significant amount of shade, so ground surfaces and trees are protected from solar radiation 

during the day while trapping more radiative heat at night, yet this varies depending on the 

season, latitude and background climate and weather of each city. Conversely, open and 

low-rise building arrangements usually expose more area to incoming solar radiation 

during the day, facilitating thermal cooling at night. This can be corroborated by the 

apparent nocturnal heating effect of trees in areas with a substantial presence and 

compactness of impervious surfaces (IM4/5/6, MX5//7/9) [Figures 7.24 and 7.27]. This 
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warming effect is more pronounced in summer than winter as it could be attributed to 

constant warming conditions due to higher solar angles enabling more radiative energy to 

penetrate urban canyons.  

3. The contribution of building facades to thermal cooling is also important as LSTs may be 

biased by the high proportion of vertical surfaces that cause uneven solar exposure of 

surfaces, increased radiative energy balance due to multiple reflections, and thermal 

anisotropy effects (Bechtel et al., 2016; Geletič et al., 2016; Krayenhoff & Voogt, 2016). 

The latter occurs when directional brightness temperatures (or radiances) recorded by a 

radiometer result from the sensor viewing angle, so they are the product of the urban form 

combined with surface temperature variation, instead of being the actual temperature of 

horizontal surfaces (Krayenhoff & Voogt, 2016).  

Considering the nadir (or very close to nadir) position of sensors, the effect of vertical 

surfaces on apparent LSTs should be negligible (Geletič et al., 2016). Nevertheless, 

evidence in this research coincides with Krayenhoff and Voogt (2016) which suggest a 

higher anisotropy in compact high-rise contexts at midday, and in open high-rise areas in 

the morning and afternoon, that simultaneously cause larger temperature variation between 

day and night. However, the occurrence of high and closely-spaced buildings in the study 

area is minimal; so, it could be assumed a limited negative effect of thermal anisotropy. 

The use of multitemporal data (if available) might be effective to ease the effects of 

anisotropy as suggested by Bechtel et al. (2016). Although the present research only 

focused on horizontal surfaces due to data acquisition limitations, the integration of vertical 

surfaces in the proposed framework could be a potential area for future development.  

4. The high concentration of cars (in carparks or streets) as well as air conditioning units, heat 

exchangers (usually located on top of commercial and retail buildings), or isolated hotspots 

such as chimneys may have also contributed to above average LSTs in a limited number of 

cases, which had a localised effect mostly at daytime.  

 

The thermal profiles of mixed GITs were well distinguished among typologies, and better 

differentiated at daytime rather than night-time, despite their high heterogeneity of surface 

covers. Generally, treed typologies (MX5-10, excluding MX8) were among the most 

distinguishable during the day and night, while typologies lacking trees (MX1/3/4, 

including MX8) were not well differentiated, especially at night-time. This confirms the 

important role of trees in defining particular thermal profiles due to different levels of shade 

provided. 
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At daytime, pervious and aquatic GITs were relatively well differentiated from other 

typologies. Conversely, at night-time these cooling effects were relatively similar among 

typologies within each subgroup. As previously mentioned, this confirms the ambivalent 

thermal behaviour of trees and water features as well as their significant temperature-

moderating effect during night-time hours. 

Analysing the effect of spatial configuration 

As described by Millward et al. (2014), this research has shown that changes in tree cover 

configuration (scattered, aligned and clustered) does not necessarily result in additional 

cooling benefits when (1) typologies have a similar proportion of tree cover or (2) when 

holding the land cover composition constant (i.e. IM4/5/6, MX6/8/10 or PV5/7/9) [Table 

8.1]. For instance, when situated over non-irrigated grasses, clustered trees (PV9) were 

0.39°C and 0.28°C cooler than scattered (PV7) and aligned trees (PV5) respectively 

[Figures 8.6a].  

The previous situation occurs because LSTs were averaged per typology, so the thermal 

conditions are generalised for the totality of the spatial unit regardless of the specific 

location and distribution of trees. This is expected to be different for air temperature 

observations as the concentration of trees may influence advection and thermal induced 

circulations. Furthermore, unlike remote sensing, ground-based measurements are affected 

by the location of instruments; for example, lower air temperatures may be registered near 

trees or grassy surfaces than over paved areas. 

Likewise, similar studies on the effects of trees on air temperatures found that tree clusters 

can mitigate high temperatures to a greater extent than individual trees since a higher 

concentration of medium and high vegetation (depending on tree-planting) can 

substantially contribute to a larger shaded area and evapotranspiration and hence to 

improve HTC conditions (Abreu-Harbich et al., 2015; Konarska, Uddling et al., 2015). 

Tree-specific characteristics such as shape, height, distance between crowns, and type of 

foliage were not considered in this research, however, they can also influence on LSTs due 

to variations on shading and transpiration through defoliated trees (Konarska et al., 2014). 

These aspects could be incorporated by future studies since they are important for planting 

design of streets, especially in high latitude cities with limited solar access in winter (Kong, 

Yin, Wang et al., 2014). 

In several cases, GITs categorised as aligned display similar proportions of trees as 

scattered and clustered arrangements [Figures 7.5 and 7.8] as a consequence of the 

threshold values defined for each subgroup as per Table 4.14. Thus, potential 

improvements of the present framework could include: (1) the simplification of tree 
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arrangements by only considering aligned and clustered arrangements and/or (2) 

establishing a better distinction in the proportion of trees among the existing configurations 

(see also discussion in Section 8.3.3). 

 

Figure 8.6 Examples of the combinatory effect of ground surface covers and spatial configuration of trees on 

diurnal LSTs. 
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Given that land cover composition plays an important role in the thermal performance of 

typologies, it was found that the impact of tree clustering in LST reduction is stronger as 

the proportion of impervious surfaces decreases, and surface moisture increases (i.e. 

MX10, PV10) [Figure 8.6b]. For example, in a summer morning, a linear formation of trees 

positioned over well-watered grasses (i.e. PV6) can be up to 4.26°C cooler than when 

surrounded by paved areas (i.e. MX5) and up to 2.15°C cooler than when placed near non-

irrigated plants (i.e. PV5). In addition, the cooling effects of the same proportion of trees 

(irrespective of their configuration) can be severely undermined as perviousness and 

surface wetness decreases (i.e. IM6, MX7) [Figure 8.6c]. 

In summary, composition of pervious surfaces (i.e. proportion of different types of 

vegetation) and their irrigation regimes are more influential in defining the cooling capacity 

of a spatil unit than the spatial configuration of the tree canopy, as confirmed by several 

studies (Cao et al., 2010; Kong, Yin, Wang et al., 2014; Meier & Scherer, 2012; Milošević 

et al., 2017; Zhou et al., 2011). This is also statistically demonstrated in Sections 7.3.2.1, 

8.4.2 and 8.5. 

8.4.2 Understanding the factors that influence the thermal performance of 

GITs at local-scale 

The TVX approach, correlation analysis and simple linear regression were carried out to 

understand the statistical relationships between vegetation abundance descriptors (NDVI, 

percent of pervious area, and percent of tree cover) and the cooling capacity of typologies. 

Additionally, hierarchical cluster analysis was performed to (1) group GITs into subsets 

with similar thermal behaviour that can be used to prescribe different urban cooling 

strategies, and (2) to test whether subgroups of GITs can be distinguished by automated 

cluster algorithms.  

Considering the raw scatterplots composed by LSTs versus NDVI values from all 

observations [Figure 7.26], it can be observed that in both seasons diurnal NDVI-LST 

relationships display a typical triangular shape as described in the literature (Carlson et al., 

1994; Carlson, 2007; Higuchi et al., 2007; Weng, 2009). However, these shapes are not 

identified for nocturnal LSTs as NDVI depends on photosynthetic activity which is 

negligible at night; hence, the weak or no relationship between both variables.  

Figure 8.7 depicts several salient aspects of the triangle that explain the interactions 

between surface dryness, water surfaces and vegetation abundance, and their relationships 

with mean diurnal LSTs. The so-called ‘warm edge’ corresponds to terrestrial GITs which 

slope is defined by the increment of sunlit vegetation. Thus, the larger the percentage, 
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healthiness and wetness of vegetation cover, the higher the NDVI values and 

correspondingly, the lower the mean diurnal LSTs. Accordingly, pervious GITs comprising 

well irrigated grasses and dense trees are found in lower right vertex of the triangle.  

 

Figure 8.7 Interpretation of the TVX scatterplot of mean NDVI versus mean diurnal LSTs for summer. 

In contrast, the higher the imperviousness and dryness of an area, the lower the NDVI 

values and hence, the higher the LSTs. These relationships are commonly found in 

impervious GITs which situate in the upper vertex of the triangle, while mixed GITs and 

pervious GITs with non-irrigated grasses locate half way between both vertices of the warm 

edge. It should be noted the gradual spread of observations towards the upper vertex as the 

percent of imperviousness increases. This can be attributed to the differences in the 

proportion of roof area and impervious ground (as explained in previous section) that create 

a larger intra-typology variation of LSTs within subgroups; those that are more obvious for 

highly impervious areas. Conversely, the lower left vertex shows a smaller LST variability 

that is explained by the high vegetation intensity. 
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The co-called ‘cold edge’ is associated with aquatic and well-irrigated pervious GITs and 

reflects the transition between open water and fully wet terrestrial areas (transition from 

low to high NDVI). In this sense, the higher the amount of water surfaces, the lower the 

NDVI and mean LSTs; while the higher the surface moisture and vegetation content, the 

higher the NDVI and relatively warmer temperatures (compared to water). Whereas the 

lower right vertex is populated by the AQ1 Water, the rest of typologies of this subgroup 

(AQ3-7) locate in intermediate positions depending on their vegetation content. Due to the 

high thermal capacity of water, the lower left vertex virtually disappears at night-time (see 

scatterplots in Figure 7.26).  

Well-defined edges of the data envelope denote a good representation of the full range of 

soil wetness (or dryness) and fractional vegetation cover, reflecting real physical limits 

between surfaces (Carlson, 2007). Although diurnal scatterplots from both seasons show 

these typical characteristics; the triangular shape and edges are sharper in summer since a 

prolonged exposure of surfaces to solar radiation enhanced the already existing dryness 

conditions.  

Despite the demonstrated effectiveness of the triangle method with high resolution 

imagery, the subjectivity in the determination and interpretation of the warm and cold edges 

is one of its major limitations (Carlson, 2007). In this research, this was significantly 

reduced by using a larger number of samples. Another issue that draws attention is the 

significant spread of observations exhibited by highly impervious observations. The 

identification of mean centres for each GIT class has proved effective to correct this 

problem by favouring the statistical relationships between vegetation abundance 

descriptors and estimated cooling capacity of typologies as shown later. 

Among GIT subgroups, aquatic typologies (mostly standing water) have a different 

thermal behaviour than terrestrial GITs, causing an outlying effect that hinders linear 

relationships between NDVI and LSTs (Carlson, 2007). This can be corroborated in Figure 

8.7 where most aquatic observations locate below the dotted line representing the limit of 

the lower interquartile range (or the lower whisker) of a boxplot of mean diurnal LSTs. 

Thus, this subgroup was omitted from linear regressions (presented later) to exclusively 

focus on the cooling capacities of terrestrial typologies. 

Correlation analysis and simple linear regression were carried out to analyse the influence 

of vegetation abundance descriptors (NDVI, pervious surface fraction and tree cover 



 

310  |  Thermal performance of green infrastructure typologies at local-scale 

fraction) on diurnal and nocturnal cooling capacity27 of each typology. As mentioned 

before, mean values of variables were estimated per typology to facilitate this analysis 

[Figure 7.27]. 

In general, pervious surface fraction shows a higher stability and stronger negative 

correlations on diurnal LSTs in summer than the other two parameters, as this can be 

considered the opposite of imperviousness (Weng, 2009). This may happen because NDVI 

cannot provide areal estimates of the amount of vegetation, or because NDVI-LST 

relationships still required further calibration (Weng, 2009). However, results also show 

that diurnal cooling effects of typologies cannot solely be explained in terms of vegetation 

fraction, but also by wetness and healthiness of plants (both associated with high NDVI 

values) as evapotranspirative cooling is dependent upon them. For instance, even though 

PV1 Mostly non-irrigated grasses and PV2 Mostly irrigated grasses display the same 

proportion of pervious land (85-100%), their mean NDVI values are significantly distant 

(>0.3 units); hence, their considerable difference in diurnal cooling capacity (2.2°C in 

summer and 1.09°C in winter).  

As previously explained, nocturnal thermal conditions are mostly dominated by the 

radiative properties of impervious surfaces (buildings and ground), so the relationships 

between vegetation abundance and temperature reductions tend to be weaker, more 

complex and varied between seasons. Whereas there is a strong negative influence of 

fractional pervious cover on nocturnal cooling effects in summer, the amount of wooded 

areas can explain slightly better the relative nocturnal warming effect (positive influence 

on LSTs) of typologies in winter. Nonetheless, the predictive power of tree coverage is 

relatively low, especially for heavily forested areas (PV11) as they combine the effects of 

medium to high vegetation. Additionally, NDVI has shown no relationship with nocturnal 

thermal cooling as this is calculated from sunlit vegetation (representing photosynthetic 

activity) which is absent at night. Hence, typologies with irrigated (PV1) and non-irrigated 

(PV2) grasses display a similar cooling capacity at night (<0.3°C) despite their differences 

in NDVI. 

Results presented in Section 8.4.1 highlight the importance of maintaining well-watered 

and healthy vegetation to mitigate SUHI more effectively. However, irrigation levels are 

linked to water demand and water availability that largely varies among cities and seasons 

as it is tied to precipitation and weather conditions (Oke et al., 2017). Since airborne-based 

                                                      

27 Expressed as the difference in mean LST between each typology and a reference case representing a totally 

impervious area with no vegetation (IM1). 
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data were collected within a period of no rainfall to reduce LST distortions, non-irrigated 

surfaces are more abundant across the whole study area. Consequently, the available soil 

moisture is considerably lower (especially in summer) as it mainly resulted from artificial 

(piped) watering, and the proportion of irrigated grasses and surface wetness might not be 

representative for the entire season. 

8.4.3 Defining SUHI mitigation strategies based on GITs 

Hierarchical cluster analysis was carried out to group GITs with similar cooling effects. 

Between four and six clusters (or subsets) of terrestrial typologies were identified and 

results varied between each time of the day and season [Table G8]. These subsets 

correspond with the subgroups defined in the streamlined GIT matrix in Section 4.11 

[Figure 4.8] and coincide with the thermal differentiations discussed before. When 

analysing the variability of cluster memberships between seasons, a larger disparity was 

observed at night-time as vegetation exhibited a relatively increased cooling capacity in 

winter than in summer.  

As demonstrated in this research, the GIT scheme can support a large-scale SUHI 

assessment by providing a representation of thermal performances of green infrastructure. 

Thus, the thermal capacities of typologies were partitioned according to the subsets defined 

by the hierarchical cluster analysis, which range from very significant decrease to 

significant increase of LSTs. Considering that the thermal behaviour of GITs changes 

during the course of the day, ranges were calculated separately for diurnal and nocturnal 

conditions [Figure 8.8].  

 

Figure 8.8  Diurnal and nocturnal thermal performance of GITs defined by the results of cluster analysis. 

Since members of each cluster display similar cooling capacity, this demonstrates that the 

same climatic outcome can be achieved by different GITs, so they can be used 

interchangeably to prescribe a specific SUHI mitigation strategy at local-scale (or unit area 

of 50 x 50m). Tables 8.1 to 8.4 summarise these strategies along with the average fractional 

surface covers and spatial configuration (from the empirical data) required to attain a given 

thermal effect.  
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Table 8.1 Summary of diurnal SUHI mitigation strategies for summer using GITs. Typologies are 

ordered and organised in groups according to similar thermal performance. 

Diurnal SUHI mitigation strategies for summer 
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Very 
significant 
decrease 
(> 7°C) 

 
AQ1  Water 0.6 0.6 0.4 0.4 5.8 92.5 -12.12 

 
AQ7  Water with clustered trees 1.5 1.4 1.7 3.1 53.2 41.7 -10.25 

 
AQ5  Water with aligned trees 4.5 5.5 4.0 3.4 32.1 52.6 -9.99 

 
AQ6  Water with scattered trees 6.7 9.1 7.4 2.2 24.3 51.4 -9.35 

 

PV3   Mixed grasses with  
shrubs and trees 

8.1 10.8 22.6 33.0 26.2 3.8 -8.26 

 

PV11 Dense trees with 
shrubs and grasses 

4.0 2.8 2.3 6.3 88.8 1.1 -8.18 

 
Significant 
decrease 
(-7° to -5°C) 

 

PV6   Mostly irrigated grasses with 
aligned trees 

9.2 11.5 59.9 1.3 16.7 1.4 -6.81 

 
PV2   Mostly irrigated grasses 3.6 8.6 87.2 0.1 0.3 0.3 -6.24 

 

MX10 Mixed grasses with clustered 
trees 

14.1 19.0 11.6 3.5 51.7 2.0 -6.18 

 

MX8  Mixed grasses with scattered 
trees 

14.6 22.1 15.0 6.1 43.9 1.4 -5.94 

 

MX6  Mixed grasses with 
aligned trees 

15.3 25.3 15.9 3.3 39.2 2.4 -5.61 

 
AQ4  Mixed surfaces with water 36.6 11.2 6.5 0.9 8.6 36.7 -5.55 

 
Moderate 
decrease 
(-5° to -3°C) 

 

PV7   Mostly non-irrigated grasses 
with scattered trees 

12.5 64.8 9.4 1.0 12.2 0.4 -4.94 

 
MX4   Mixed grasses and bare 
soils 

11.2 44.5 41.4 1.0 17.0 0.9 -4.92 

 

PV5   Mostly non-irrigated grasses 
with aligned trees 

10.5 63.2 7.6 0.7 18.1 0.2 -4.66 

 

PV9   Mostly non-irrigated grasses 
with clustered trees 

10.6 64.4 7.6 0.6 16.7 0.2 -4.55 

 
PV1   Mostly non-irrigated grasses 6.3 87.5 5.1 0.2 0.9 0.0 -4.04 

 
Weak 
decrease 
(-3° to -
1.5°C) 

 

MX9  Mixed surfaces with clustered 
trees 

38.7 17.5 11.1 2.1 31.3 0.6 -2.87 

 

MX5  Mixed surfaces with 
aligned trees 

40.6 17.1 13.4 2.6 27.0 0.7 -2.55 

 
MX1  Mostly non-irrigated grasses 
with impervious 

34.8 59.1 4.4 0.4 1.2 0.1 -2.41 

 

MX7  Mixed surfaces with 
scattered trees 

42.9 23.2 16.4 2.5 15.7 0.4 -2.10 

 
MX3  Mixed surfaces without trees 42.2 32.0 20.6 2.0 2.4 1.0 -2.04 

 
Slight 
decrease 
(-1.5° to  
-0.15°C) 

 

IM6   Mostly impervious with 
clustered trees 

58.7 14.0 7.9 1.5 18.5 0.4 -0.83 

 

IM4   Mostly impervious with 
aligned trees 

59.1 13.5 9.2 2.2 17.0 0.4 -0.72 

 

IM5   Mostly impervious with 
scattered trees 

58.6 17.3 11.1 2.1 11.5 0.4 -0.58 

 
IM2   Mostly impervious with 
grasses 

63.1 21.4 10.8 1.8 2.8 0.5 -0.34 
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Table 8.2 Summary of diurnal SUHI mitigation strategies for winter using GITs. Typologies are ordered 

and organised in groups according to similar thermal performance. 

Diurnal SUHI mitigation strategies for winter 

 

Diurnal 
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in winter GIT: Cooling strategy T
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Significant 
decrease 
(-7° to -5°C) 

 
AQ1  Water 1.9 5.7 5.6 0.8 3.9 82.8 -6.28 

 
AQ7  Water with clustered trees 0.5 1.5 3.5 7.5 58.2 35.5 -6.05 

 
AQ5  Water with aligned trees 1.9 5.4 8.6 3.9 31.3 51.7 -5.97 

 
AQ6  Water with scattered trees 3.3 9.6 24.7 1.3 17.6 44.0 -5.30 

 

PV11 Dense trees with  
 shrubs and grasses 

1.3 2.4 3.3 13.2 91.6 0.3 -5.08 

 
Moderate 
decrease 
(-5° to -3°C) 

 

MX10 Mixed grasses with 
clustered trees 

12.8 16.2 16.8 4.6 52.1 0.5 -3.72 

 

PV3    Mixed grasses with 
shrubs and trees 

7.7 21.6 18.2 32.8 27.0 0.0 -3.37 

 

PV6    Mostly irrigated grasses with 
aligned trees 

3.4 11.9 64.0 0.9 19.6 0.5 -3.36 

 

MX6   Mixed grasses with  
aligned trees 

14.6 21.9 21.1 4.3 39.8 0.4 -3.32 

 

PV10  Mostly irrigated grasses with 
clustered trees 

4.1 12.8 62.0 0.6 20.4 0.3 -3.25 

 

PV8    Mostly irrigated grasses with 
scattered trees 

4.7 15.2 69.5 0.9 9.3 0.4 -3.18 

 
Weak 
decrease 
(-3° to -
1.5°C) 

 
PV2   Mostly irrigated grasses 1.3 10.6 86.9 0.1 1.1 0.0 -2.72 

 

MX8  Mixed grasses with scattered 
trees 

14.0 30.1 27.7 5.9 24.1 0.5 -2.44 

 

PV5   Mostly non-irrigated grasses 
with aligned trees 

7.0 61.2 14.2 1.7 16.1 0.2 -2.28 

 

PV9   Mostly non-irrigated grasses 
with clustered trees 

6.1 64.3 15.3 0.8 13.7 0.0 -2.24 

 
MX4   Mixed grasses and bare 
soils 

8.4 49.2 40.1 0.7 1.1 0.6 -2.03 

 

MX9  Mixed surfaces with clustered 
trees 

38.3 20.1 12.0 2.9 27.8 0.3 -1.96 

 

MX5  Mixed surfaces with 
aligned trees 

39.1 21.4 12.7 3.4 24.6 0.5 -1.80 

 
PV1   Mostly non-irrigated grasses 7.3 87.7 4.6 0.2 0.2 0.0 -1.63 

 
Slight 
decrease 
(-1.5° to 
-0.15°C) 

 

MX7  Mixed surfaces with 
scattered trees 

42.4 25.8 16.3 3.2 12.7 0.2 -1.33 

 
MX3  Mixed surfaces without trees 42.3 32.5 20.2 2.5 2.4 0.3 -1.09 

 
MX1  Mostly non-irrigated grasses 
with impervious 

34.8 62.0 2.5 0.4 0.2 0.0 -0.99 

 

IM6    Mostly impervious with 
clustered trees 

60.8 17.1 5.6 1.9 15.0 0.4 -0.87 

 

IM4    Mostly impervious with 
aligned trees 

60.3 18.0 6.6 2.4 13.4 0.3 -0.85 

 

IM5    Mostly impervious with 
scattered trees 

60.4 20.7 7.5 2.3 9.4 0.2 -0.56 

 
IM2    Mostly impervious with 
grasses 

63.6 23.3 8.1 2.1 2.7 0.4 -0.31 
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Table 8.3 Summary of nocturnal SUHI mitigation strategies for summer using GITs. Typologies are 

ordered and organised in groups according to similar thermal performance. 

Nocturnal SUHI mitigation strategies for summer 

 

Nocturnal 
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Moderate 
decrease 
(-2° to -1°C) 

 
PV1   Mostly non-irrigated grasses 6.3 87.5 5.1 0.2 0.9 0.0 -1.07 

 
PV2   Mostly irrigated grasses 3.6 8.6 87.2 0.1 0.3 0.3 -0.99 

 
Weak 
decrease 
(-1° to -
0.5°C) 

 
MX4   Mixed grasses and bare 
soils 

11.2 44.5 41.4 1.0 17.0 0.9 -0.82 

 

PV3    Mixed grasses with 
shrubs and trees 

8.1 10.8 22.6 33.0 26.2 3.8 -0.77 

 

PV6    Mostly irrigated grasses with 
aligned trees 

9.2 11.5 59.9 1.3 16.7 1.4 -0.74 

 

PV7   Mostly non-irrigated grasses 
with scattered trees 

12.5 64.8 9.4 1.0 12.2 0.4 -0.66 

 

PV5   Mostly non-irrigated grasses 
with aligned trees 

10.5 63.2 7.6 0.7 18.1 0.2 -0.60 

 

PV9   Mostly non-irrigated grasses 
with clustered trees 

10.6 64.4 7.6 0.6 16.7 0.2 -0.52 

Almost 
unchanged 
(-0.15° to 
+0.15°C) 

 

MX8  Mixed grasses with scattered 
trees 

14.6 22.1 15.0 6.1 43.9 1.4 -0.12 

 
MX1  Mostly non-irrigated grasses 
with impervious 

34.8 59.1 4.4 0.4 1.2 0.1 +0.02 

 

MX6   Mixed grasses with  
aligned trees 

15.3 25.3 15.9 3.3 39.2 2.4 +0.03 

 
Slight 
increase 
(+0.15° to 
+0.5°C) 

 

MX10 Mixed grasses with 
clustered trees 

14.1 19.0 11.6 3.5 51.7 2.0 +0.17 

 

PV11 Dense trees with  
 shrubs and grasses 

4.0 2.8 2.3 6.3 88.8 1.1 +0.21 

 
MX3  Mixed surfaces without trees 42.2 32.0 20.6 2.0 2.4 1.0 +0.24 

 

MX7  Mixed surfaces with 
scattered trees 

42.9 23.2 16.4 2.5 15.7 0.4 +0.29 

 

MX5  Mixed surfaces with 
aligned trees 

40.6 17.1 13.4 2.6 27.0 0.7 +0.38 

 
Weak 
increase 
(+0.5° to 
+1°C) 

 

MX9  Mixed surfaces with clustered 
trees 

38.7 17.5 11.1 2.1 31.3 0.6 +0.56 

 
IM2    Mostly impervious with 
grasses 

63.1 21.4 10.8 1.8 2.8 0.5 +0.71 

 

IM4    Mostly impervious with 
aligned trees 

59.1 13.5 9.2 2.2 17.0 0.4 +0.74 

 

IM5    Mostly impervious with 
scattered trees 

58.6 17.3 11.1 2.1 11.5 0.4 +0.76 

 

IM6    Mostly impervious with 
clustered trees 

58.7 14.0 7.9 1.5 18.5 0.4 +0.96 

 
Moderate 
increase 
(+1° to +2°C) 

 
AQ7  Water with clustered trees 1.5 1.4 1.7 3.1 53.2 41.7 +1.54 

 
AQ4  Mixed surfaces with water 36.6 11.2 6.5 0.9 8.6 36.7 +1.71 

 
AQ6  Water with scattered trees 6.7 9.1 7.4 2.2 24.3 51.4 +1.74 

 
AQ5  Water with aligned trees 4.5 5.5 4.0 3.4 32.1 52.6 +1.81 

Significant 
increase (>2°)  

AQ1  Water 0.6 0.6 0.4 0.4 5.8 92.5 +2.47 
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Table 8.4 Summary of nocturnal SUHI mitigation strategies for winter using GITs. Typologies are 

ordered and organised in groups according to similar thermal performance. 

Nocturnal SUHI mitigation strategies for winter 

 

Nocturnal 
thermal 
performance 
in winter GIT: Cooling strategy T

o
ta

l i
m

p
er

vi
o

u
s 

[F
r_

T
ot

_I
m

p]
 

 N
o

n
-i

rr
ig

at
ed

 g
ra

ss
es

 
[F

r_
Lo

w
_N

IR
] 

Ir
ri

g
at

ed
 g

ra
ss

es
 

[F
r_

Lo
w

_I
R

R
] 

S
h

ru
b

s 
[F

r_
M

ed
_V

eg
] 

T
re

es
 

[F
r_

H
ig

h_
V

eg
] 

T
o

ta
l w

at
er

 
[F

r_
T

ot
_W

at
] 

N
o

c
tu

rn
a

l 
L

S
T

 

re
d

u
c
ti

o
n

 (
°C

) 

 
Moderate 
decrease 
(-2° to -1°C) 

 
PV1   Mostly non-irrigated grasses 7.4 87.6 4.6 0.2 0.2 0.0 -1.67 

 
PV2   Mostly irrigated grasses 1.0 10.2 87.3 0.1 1.3 0.0 -1.46 

 
MX4   Mixed grasses and bare 
soils 

7.9 49.9 39.7 0.7 1.1 0.7 -1.43 

 
MX1  Mostly non-irrigated grasses 
with impervious 

34.9 62.0 2.4 0.5 0.3 0.0 -1.27 

 

PV8    Mostly irrigated grasses with 
scattered trees 

4.1 15.5 68.8 1.9 9.4 0.5 -1.08 

 

PV9   Mostly non-irrigated grasses 
with clustered trees 

5.8 63.9 15.4 1.3 13.8 0.0 -1.01 

 
Weak 
decrease 
(-1° to -0.5°C) 

 

PV6    Mostly irrigated grasses with 
aligned trees 

3.7 11.2 63.8 1.1 20.4 0.3 -0.87 

 

PV3    Mixed grasses with 
shrubs and trees 

6.6 19.4 19.0 32.8 29.3 0.7 -0.81 

 
MX3   Mixed surfaces without trees 42.1 32.2 20.5 2.7 2.3 0.3 -0.78 

 

PV5    Mostly non-irrigated grasses 
with aligned trees 

6.5 61.2 15.1 2.1 15.2 0.4 -0.73 

 

PV10  Mostly irrigated grasses with 
clustered trees 

3.8 13.0 63.5 0.7 19.0 0.3 -0.69 

 
Slight 
decrease 
(-0.5° to 
-0.15°C) 

 

MX8  Mixed grasses with scattered 
trees 

12.6 31.5 26.3 5.6 26.3 0.0 -0.42 

 
IM2    Mostly impervious with 
grasses 

63.8 23.3 7.9 2.2 2.7 0.4 -0.41 

 
AQ7  Water with clustered trees 0.4 1.4 3.0 8.1 59.6 34.6 -0.32 

 

MX7  Mixed surfaces with 
scattered trees 

42.2 25.5 16.3 3.4 13.1 0.2 -0.31 

 

IM5    Mostly impervious with 
scattered trees 

60.3 20.6 7.6 2.4 9.5 0.2 -0.17 

 
Almost 
unchanged 
(-0.15° to 
+0.15°C) 

 

PV11 Dense trees with  
 shrubs and grasses 

1.3 2.1 3.3 12.8 91.8 0.3 +0.02 

 

IM4    Mostly impervious with 
aligned trees 

60.1 18.7 6.9 2.5 13.4 0.3 +0.03 

 

IM6    Mostly impervious with 
clustered trees 

60.9 17.0 5.7 2.0 15.0 0.4 +0.05 

 

MX5  Mixed surfaces with 
aligned trees 

38.7 21.1 13.3 3.6 24.7 0.2 +0.14 

 

MX9  Mixed surfaces with 
clustered trees  

37.8 19.9 12.2 3.0 28.4 0.3 +0.15 

Slight 
increase 
(+0.15° to 
+0.5°C) 

 
AQ5   Water with aligned trees 2.7 4.8 7.4 4.5 32.0 52.0 +0.24 

 

MX6   Mixed grasses with  
aligned trees 

14.9 20.9 20.5 4.6 40.9 0.5 +0.25 

 

MX10 Mixed grasses with 
clustered trees 

12.8 15.4 17.0 4.8 52.7 0.5 +0.39 

Weak increase 
 

AQ6  Water with scattered trees 3.5 8.2 16.4 4.2 19.9 49.9 +0.55 

Significant 
Increase (>2°)  

AQ1  Water 0.5 0.8 0.5 0.5 1.6 96.4 +2.67 
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Although tables present an overview of which GITs are more and less effective in reducing 

LSTs, these may differ for air temperature observations, other cities and times of the year. 

Therefore, it is important to differentiate which type of climatic effect is desirable for a 

particular aim, location, season and time. 

8.4.4 Caveats 

Despite the demonstrated applicability of the GIT framework to study the spatio-temporal 

variability of LST of extensive urban areas, there are certain limitations that respond to the 

inherently reductionist nature of any classification system. These were also identified for 

similar schemes such as the LCZ (Stewart, 2011b; Stewart & Oke, 2012), HERCULES 

(Cadenasso et al., 2007), the UVST (Lehmann et al., 2014; Mathey et al., 2011), and the 

LULC (Anderson et al., 1976).  

First, the GIT framework cannot capture the singularities of every single location as it tries 

to categorise a general composition of surface covers in varying amounts and arrangements 

into 34 distinct typologies. This simplified and relatively uniform vision of urban 

landscapes is unlikely to be found in the real world (except for some man-made or 

intensively planned interventions) and it is scale-dependent.  

Second, although GITs comprise a combination of different surface and spatial descriptors, 

these are discrete, and hence, the physical boundaries or transitions between materials and 

elements are quite abrupt. Conversely, LSTs across those delineations are continuous and 

gradually change in space and time, so particular or localised thermal conditions caused by 

individual buildings, vegetation features or materials might differ from the average, or 

integrated, LSTs estimated for any spatial unit. Nonetheless, it is the recurrence of these 

individual features what provides the characteristic physical and thermal uniformity of each 

typology. The thermal profile of each GIT is therefore defined by the average of all 

observations available for that particular class; however, this entails a sort of over-

simplification, so inter-typology thermal differentiations should be interpreted according 

to the scale and context. 

Third, in this research the thermal behaviour exhibited by each GIT exclusively refers to 

LST and SUHI conditions; hence, their heating and cooling responses may differ from the 

results of studies focusing on the urban boundary and canopy layers employing air 

temperature observations. Since the thermal climate of a given place is continuously 

variable, findings are only representative for the period of time that data was collected. In 
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fact, a small variation of recorded LSTs is expected for the entire scene that is caused by 

the time lag between the first and last scans over the course of the flight mission.  

Fourth, a GIT class is not strictly permanent for a location and might vary over time due 

to changes in the composition and distribution of elements defined by vegetation 

phenology, irrigation levels, and available built structures. In this sense, classification 

results may be limited for multi-temporal or time-series analyses since the data collected 

in a specific moment might not account for significant urban morphology changes over a 

long period of time. This issue was not identified in this research because seasonal analysis 

was conducted from data retrieved in two different times for two different spatial extents 

within the same study area [see Figure 6.1]. Furthermore, daytime and night-time thermal 

imagery for each season were captured within a short period (1-2 days) and were 

simultaneously available for the same location in the majority of classified grids. 

8.5 Prediction of land surface temperatures  

The thermal differentiation of GITs provided an indication of which land cover 

compositions, vegetation abundance and spatial configurations are the most and least 

efficient in reducing surface temperatures at local scale28; however, previous evidence 

cannot be used to accurately predict the LSTs of a specific place29. To do so, it is necessary 

to quantify the exact contribution (or influence) of each independent variable (or predictor) 

on diurnal and nocturnal LSTs in each season. This section provides the interpretation of 

the statistical analysis and predictive models developed in Section 7.4 and translate them 

into design and planning guidelines for the mitigation of SUHI through scenario modelling. 

In accordance with other studies and previous analysis, evidence presented in Section 7.4 

shows that land cover composition has a statistically significant effect on LSTs, and this is 

more influential than spatial configuration (Song et al., 2014; Zhou et al., 2011). After 

several attempts of producing reliable OLS MLR models, it was identified a strong spatial 

autocorrelation among residuals for all models that was quantified by global and local 

Moran’s I indices. These results confirm the need for incorporating the effect of spatial 

dependency into traditional MLR models, otherwise autocorrelation leads to model 

instability and misleading interpretation of estimates.   

In this regard, the use of spatial regression models was advantageous as it increased the 

overall goodness-of-fit of models substantially by capturing the effect of unmeasured 

                                                      

28  In relation to the research questions established for the second objective of this dissertation (see Section 1.3) 

29  As defined in the third objective of this thesis (see Section 1.3)  
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predictors and incorporating the spatial autocorrelation as an explanatory variable. 

Furthermore, as independence between observations is not required for spatial regression 

models, parameter estimates are more reliable. 

However, Song et al. (2014) suggest that higher model performances do not necessarily 

imply a better understanding of the relationships between independent and dependent 

variables as the explanatory power of the spatial error term can be attributed to a myriad of 

factors. For example, they proved that finer scales contribute to an increased spatial 

autocorrelation as LSTs are likely to be affected by neighbouring locations, thus, higher 

model fitness may result from the powerful explanatory capacity of the spatial error term. 

Owing to limited time and the particular scope of this thesis, the effect of spatial scales and 

resolution on model performance was not fully examined, and it could be potentially 

incorporated in future studies.  

Choosing the appropriate spatial regression model and spatial weight matrix is also crucial. 

In this research, a first-order queen contiguity matrix was selected for all models because 

of the regularity of grids (or cases) and as suggested in the literature (Anselin, 2005; Song 

et al., 2014). As demonstrated by Song et al. (2014), it was found that the spatial association 

of LSTs at local level induced the spatial autocorrelation among residuals in OLS models; 

hence, results of LM tests indicated that either SEM or LAG were suitable to deal with such 

spatial dependencies. As this situation is typically found in practice, Anselin (2005) 

suggests the use of robust LM tests instead; results that finally favoured SEM over LAG 

[see Table 7.8].  

To confirm the appropriateness of SEM as spatial regression method, LAG models were 

also produced with the same combination of independent variables and number of cases. 

Statistics from LAG models (presented in Table H11 – Appendix H) are relatively similar 

to those from SEM; however, they show lower goodness-of-fit as assessed by the pseudo-

R2 and values of the Likelihood Ratio test. This contradicts the results of Song et al. (2014) 

who preferred LAG over SEM for the study of LSTs at coarser scales. This may be 

explained by discrepancies between both studies in terms of predictors, spatial resolutions 

and method for retrieving LSTs, opening new avenues for research. 

Based on the equation of SEM as a multiple linear regression with spatial dependency [Eq. 

7.2] and the results of the statistical analysis presented in Section 7.4.2, the relationship 

between diurnal and nocturnal LSTs and the relevant predictors listed in Table 7.13 at local 

scale can be explained through the following general equation: 
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[Eq. 8.1] 

𝑇𝑠 =  𝛽0 + 𝛽1𝐹𝑟𝐼𝑚𝑝𝐵𝑙𝑑
+ 𝛽2𝐹𝑟𝐼𝑚𝑝𝐺𝑟𝑛𝑑

+ 𝛽3𝐹𝑟𝐿𝑜𝑤𝐼𝑅𝑅
+ 𝛽3𝐹𝑟𝑀𝑒𝑑𝑉𝑒𝑔

+ 𝛽4𝐹𝑟𝐻𝑖𝑔ℎ𝑉𝑒𝑔
+

𝛽5𝐹𝑟𝑇𝑜𝑡𝑊𝑎𝑡
+ 𝛽6𝐶𝐼𝑅𝐶𝐿𝐸𝐴𝑀 + 𝛽7𝑛𝐿𝑆𝐼 + 𝛽8𝐴𝑙𝑡 + 𝜆 + ɛ𝑖  

where 𝑇𝑠 corresponds to the diurnal or nocturnal LST in a given location and season 

(dependent variable), 𝛽0 is the model constant, 𝛽𝑛 represents the regression coefficients of 

each independent variable, 𝜆 is the autoregressive coefficient or spatial error term, and ɛ𝑖 

refers to the spatially uncorrelated error term of the regression. Values in Eq 8.1 were 

replaced by the statistically significant regression coefficients of SEMs listed in Tables 

7.13 and 7.1430 to derive eight equations for the estimation of diurnal and nocturnal LSTs 

for aquatic and terrestrial locations in Sydney metropolitan area during summertime and 

wintertime [Table 8.5]. 

The coefficient βn of a variable n in equations from Table 8.5 indicates that if the variable 

increases by one unit, while other variables are held constant, the predicted LST will also 

increase31 in βn units. Since the fraction of non-irrigated grasses (Fr_Low_NIR) was 

excluded to avoid perfect collinearity (see Section 7.4.1), this variable functions as 

reference to which other included variables are compared. Accordingly, the increase of a 

surface cover fraction by a given amount will result in the decrease in Fr_Low_NIR by the 

same amount and vice versa.  

Taking this into consideration, Tables 8.6 and 8.7 provide an estimation of the relative 

effect that the change in each individual independent variable has on mean LST of a spatial 

unit in Kelvin (K) for a specific context and time of the day, in summer and winter 

respectively, when all other variables are held constant. 

Overall, estimation of the individual contribution of each independent variable in mean 

LST of a spatial unit confirms the theory related to the surface energy balance of urban, 

vegetated and water surfaces (outlined in Section 2.4) and advances the evidence on the 

thermal differentiation of GITs discussed in previous sections. As indicated by the 

magnitude and sign of regression coefficients of the variables, the influence of surface and 

spatial predictors on LSTs varies depending on the context (aquatic versus terrestrial 

locations), season (summer and winter) and time of the day (daytime and night-time) as 

follows. 

                                                      

30  p- and z-values of regression coefficients were used to determine which variables should be omitted from each 

equation. 
31  Or decrease depending on the sign of the coefficient.  
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Table 8.5 Summary of equations for the prediction of diurnal and nocturnal LSTs for aquatic and terrestrial 

locations in Sydney metropolitan area derived from revised SEMs. 

SUMMER Predictability 

Model 1D Estimation of diurnal LSTs for aquatic locations in summer Very high 

DAY_Ts    =   39.2647 + 0.0650234 𝐹𝑟𝐼𝑚𝑝𝐵𝑙𝑑
 – 0.0922489 𝐹𝑟𝐿𝑜𝑤𝐼𝑅𝑅

  – 0.105179 𝐹𝑟𝐻𝑖𝑔ℎ𝑉𝑒𝑔
  –

0.136812 𝐹𝑟𝑇𝑜𝑡𝑊𝑎𝑡
 + 0.55133 + 0.841077 

Model 2D Estimation of nocturnal LSTs for aquatic locations in summer Very high 

NIG_Ts      =   20.0435  + 0.0373822 𝐹𝑟𝐼𝑚𝑝𝐺𝑟𝑛𝑑
+ 0.0198475  𝐹𝑟𝐻𝑖𝑔ℎ𝑉𝑒𝑔

  + 0.0390074 𝐹𝑟𝑇𝑜𝑡𝑊𝑎𝑡
 + 

0.0283315 𝐴𝑙𝑡 + 0.915327 + 0.31049 

Model 1E Estimation of diurnal LSTs for terrestrial location in summer Very high 

DAY_Ts    =   34.292 + 0.0616927 𝐹𝑟𝐼𝑚𝑝𝐵𝑙𝑑
 + 0.0634627 𝐹𝑟𝐼𝑚𝑝𝐺𝑟𝑛𝑑

– 0.029133 𝐹𝑟𝐿𝑜𝑤𝐼𝑅𝑅
  – 

0.026064  𝐹𝑟𝑀𝑒𝑑𝑉𝑒𝑔
– 0.0465437 𝐹𝑟𝐻𝑖𝑔ℎ𝑉𝑒𝑔

 – 0.0864254 𝐹𝑟𝑇𝑜𝑡𝑊𝑎𝑡
 +  

0.188179 𝐶𝐼𝑅𝐶𝐿𝐸𝐴𝑀  + 0.00556751 𝐴𝑙𝑡 + 0.782332 + 0.958335 

 Model 2E Estimation of nocturnal LSTs for terrestrial locations in summer High 

NIG_Ts      =   21.5092  – 0.0105317 𝐹𝑟𝐼𝑚𝑝𝐵𝑙𝑑
 + 0.0421121 𝐹𝑟𝐼𝑚𝑝𝐺𝑟𝑛𝑑

 + 0.0023836 𝐹𝑟𝐿𝑜𝑤𝐼𝑅𝑅
 – 

0.0039772 𝐹𝑟𝑀𝑒𝑑𝑉𝑒𝑔
 + 0.0154435 𝐹𝑟𝐻𝑖𝑔ℎ𝑉𝑒𝑔

 + 0.0259394 𝐹𝑟𝑇𝑜𝑡𝑊𝑎𝑡
 –  

0.0992245 𝐶𝐼𝑅𝐶𝐿𝐸𝐴𝑀  + 0.139828 𝑛𝐿𝑆𝐼 – 0.00190106 𝐴𝑙𝑡 + 0.862121 + 0.408394 

WINTER Predictability 

Model 3D Estimation of diurnal LSTs for aquatic locations in winter Moderate 

DAY_Ts    =   9.59973 – 0.0254368 𝐹𝑟𝑇𝑜𝑡𝑊𝑎𝑡
  + 0.382638 + 0.52887 

Model 4D Estimation of nocturnal LSTs for aquatic locations in winter Very high 

NIG_Ts      =   3.88436 + 0.0765922 𝐹𝑟𝐼𝑚𝑝𝐵𝑙𝑑
+ 0.0150019 𝐹𝑟𝑇𝑜𝑡𝑊𝑎𝑡

– 0.567041 𝐶𝐼𝑅𝐶𝐿𝐸𝐴𝑀  + 

0.800643 + 0.472184 

Model 3E Estimation of diurnal LSTs for terrestrial location in winter Very high 

DAY_Ts    =    12.2815 + 0.0316284 𝐹𝑟𝐼𝑚𝑝𝐵𝑙𝑑
 + 0.0228746 𝐹𝑟𝐼𝑚𝑝𝐺𝑟𝑛𝑑

 – 0.0129012 𝐹𝑟𝐿𝑜𝑤𝐼𝑅𝑅
 – 

0.00651486 𝐹𝑟𝑀𝑒𝑑𝑉𝑒𝑔
 – 0.0329822 𝐹𝑟𝐻𝑖𝑔ℎ𝑉𝑒𝑔

 –  0.116303 𝐹𝑟𝑇𝑜𝑡𝑊𝑎𝑡
 –  

0.34953 𝐶𝐼𝑅𝐶𝐿𝐸𝐴𝑀  + 0.806862 𝑛𝐿𝑆𝐼 + 0.00535216 𝐴𝑙𝑡 + 0.809815 + 0.695283 

Model 4E Estimation of nocturnal LSTs for terrestrial locations in winter Very high 

NIG_Ts      =   1.78813 – 0.00642942 𝐹𝑟𝐼𝑚𝑝𝐵𝑙𝑑
 + 0.0184353 𝐹𝑟𝐼𝑚𝑝𝐺𝑟𝑛𝑑

 – 0.00597982 𝐹𝑟𝐿𝑜𝑤𝐼𝑅𝑅
 – 

0.00887949 𝐹𝑟𝑀𝑒𝑑𝑉𝑒𝑔
 + 0.0159509 𝐹𝑟𝐻𝑖𝑔ℎ𝑉𝑒𝑔

 + 0.0288495 𝐹𝑟𝑇𝑜𝑡𝑊𝑎𝑡
 + 

0.191559 𝐶𝐼𝑅𝐶𝐿𝐸𝐴𝑀   – 0.440389 𝑛𝐿𝑆𝐼 + 0.0138517 𝐴𝑙𝑡 + 0.887256 +  0.309781 
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Table 8.6  Relative effect of each individual independent variable on mean LSTs at local scale in summer. 

  
Effect on mean LSTs in summer 

Aquatic locations Terrestrial locations 

Variable Change Day Night Day Night 

Area of buildings (Fr_Imp_Bld) + 10% ↑   + 0.65K insignificant ↑   + 0.62K ↓   – 0.11K 

Area of impervious ground (Fr_Imp_Grnd) + 10% insignificant ↑   + 0.37K ↑   + 0.63K ↑   + 0.42K 

Area of irrigated grasses (Fr_Low_IRR) + 10% ↓   – 0.92K insignificant ↓   – 0.29K ↑  + 0.02K 

Area of shrubbery (Fr_Med_Veg) + 10% insignificant insignificant ↓   – 0.26K ↓  – 0.04K 

Area of tree cover (Fr_High_Veg) + 10% ↓   – 1.05K ↑   + 0.19K ↓   – 0.47K ↑   + 0.15K 

Area of water surfaces (Fr_Imp_Bld) + 10% ↓   – 1.37K ↑   + 0.39K ↓   – 0.86K ↑   + 0.26K 

Elongation of tree cover (CIRCLE_AM) + 0.1 insignificant insignificant ↑  + 0.02K ↔  – 0.01K 

Dispersion of tree cover (nLSI) + 0.1 insignificant insignificant insignificant ↔  – 0.01K 

Altitude (Alt) + 10m insignificant ↑   + 0.28K ↑   + 0.06K ↓  – 0.02K 

 

Table 8.7  Relative effect of each individual independent variable on mean LSTs at local scale in winter. 

  
Effect on mean LSTs in winter 

Aquatic locations Terrestrial locations 

Variable Change Day Night Day Night 

Area of buildings (Fr_Imp_Bld) + 10% insignificant ↑   + 0.76K ↑   + 0.32K ↓   – 0.06K 

Area of impervious ground (Fr_Imp_Grnd) + 10% insignificant insignificant ↑   + 0.23K ↑   + 0.18K 

Area of irrigated grasses (Fr_Low_IRR) + 10% insignificant insignificant ↓   – 0.13K ↓   – 0.06K 

Area of shrubbery (Fr_Med_Veg) + 10% insignificant insignificant ↓   – 0.07K ↓   – 0.09K 

Area of tree cover (Fr_High_Veg) + 10% insignificant insignificant ↓   – 0.33K ↑   + 0.16K 

Area of water surfaces (Fr_Imp_Bld) + 10% 
↓   – 

0.25K 
↑   + 0.15K ↓   – 1.16K ↑   + 0.29K 

Elongation of tree cover (CIRCLE_AM) + 0.1 insignificant ↓   – 0.06K ↓   – 0.04K ↑   + 0.02K 

Dispersion of tree cover (nLSI) + 0.1 insignificant insignificant ↑   + 0.08K ↓   – 0.04K 

Altitude (Alt) + 10m insignificant insignificant ↑   + 0.06K ↑   + 0.14K 

 

In terrestrial locations, impervious surfaces contributed the most to increase mean diurnal 

LSTs of a spatial unit in both seasons. As a consequence, an increase of 10% of the area of 

buildings increased mean diurnal LSTs by 0.62K in summer and by 0.32K in winter, while 

an increment in impervious ground surfaces by the same amount resulted in an increase of 

0.63K in summer and 0.23K in winter. During night-time hours, an increase of 10% of 

impervious ground surfaces caused an increase of 0.42K in mean nocturnal LSTs in 

summer and 0.18K in winter. In contrast, during the night, many buildings’ roofs exhibited 
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below average LSTs, resulting in a reduction of mean LSTs of 0.11K in summer and 0.06K 

in winter per 10% area fraction. 

The fact that buildings contributed to a general reduction of nocturnal LSTs reflects the 

effect of material-specific properties such as emissivity, albedo, thermal capacity/inertia. 

Indeed, this thermal variation can also be explained by the over-proportional abundance of 

light-coloured, high albedo, or low thermal inertia roofing materials (i.e. corrugated metal 

roofs) which released heat more rapidly than typical ground surfaces materials (i.e. tiles, 

asphalt, bricks) that possess higher heat storage capacity and contributed to an enhanced 

surface warming during the night. 

Moreover, distortion or recorded LSTs and the significant warming conditions in certain 

areas may be caused by (a) the large number of moving and stationary vehicles, –which 

surfaces tend to be significantly hotter than other materials–, and (b) the large proportion 

of asphalt and concrete, (i.e. highways, carparks, driveways and footpaths).This effect 

seems to be amplified in summer due to prevalent heatwave conditions experienced over 

the course of the data collection. This occurs because heatwaves exacerbate the magnitude 

and intensity of SUHIs by enhancing the thermal storage capacity of materials due to 

reduced evaporation and wind speeds (Li & Bou-Zeid, 2013; Oke et al., 2017). On the other 

hand, the accuracy of LSTs might be compromised by the application of a bulk emissivity 

value. In either case, the accuracy of predicted LSTs could be improved by identifying the 

individual thermal contribution of certain materials (i.e. bricks, metal, concrete, asphalt, 

etc.) and the estimation of corresponding material-specific emissivity values as 

implemented by Coutts et al. (2016), which is subject to future research. 

Within the same context, water surfaces and tree cover contributed the most to reduce mean 

LSTs during the day, where for a 10% increase in each of these land covers, there was a 

reduction in LSTs of 0.86K and 0.47K in summer, and 1.16K and 0.33K in winter, 

respectively. Surprisingly, at night-time the magnitude of the warming effect of water and 

trees appeared to be the same in both seasons, so a 10% increase in water and forested areas 

caused a similar increase in mean nocturnal LSTs of 0.26 and 0.29K, and 0.15 and 0.16K 

respectively. Given the similar nocturnal temperature moderating effect of water and 

vegetated surfaces, it is confirmed the significant role that the abundance of impervious 

surface materials plays in defining the thermal profile of a given area. 

The effect of shrubs and hedges on average LSTs is relatively the same throughout the day 

in wintertime, with a cooling effect of 0.07K during the day and an almost identical cooling 

effect of 0.09K at night per 10% area fraction. The cooling effects of medium vegetation 
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in summer, however, are more pronounced during the day (0.26K/10% area fraction) than 

during the night (0.04K/10% area fraction).  

The cooling effect of irrigated grasses is quite distinctive at different times of the day and 

year. In summer, a 10% increase in area fraction resulted in a cooling effect of 0.29K during 

the day, but a warming effect of 0.02K during the night. Contrastingly, in wintertime an 

increment of the same proportion of irrigated grasses decreased diurnal LSTs by 0.13K and 

nocturnal LSTs by 0.06K. This behaviour is in accordance with the literature, so at daytime 

increasing surface wetness reduces LST as the evaporation of this water converts sensible 

into latent heat which is interpreted as a cooling effect (Erell et al., 2011; Oke et al., 1989; 

Oke, 1992). However, in constant warming conditions such as in summer, an increasing 

soil moisture resulted in an enhanced thermal capacity and higher thermal admittance, so 

watered surfaces may not cool as rapidly as dry plants and bare soils at night (Coutts et al., 

2012; Spronken-Smith & Oke, 1998; Spronken‐Smith et al., 2000).  

The thermal effect of the spatial configuration of trees in LSTs was measured by two 

landscape metrics, the dispersion of trees represented by nLSI and the elongation of tree 

patches represented by CIRCLE_AM (see Section 4.11 for further details). As discussed in 

Sections 8.4.1 and 8.4.3, spatial predictors contributed the least to explain the thermal 

conditions of a given area as LSTs depend on areal estimates and thermal conditions are 

averaged for the totality of the spatial unit; hence, it is highly dependent on land cover 

composition rather than spatial configuration. This assumption, however, might be 

different for air temperature observations, particularly if air movement is considered. 

As expected, increasing tree dispersion by 0.1 units resulted in an increment in diurnal 

LSTs of 0.08K and a decrease in nocturnal LSTs of 0.04K, although no significant changes 

were registered in summer. This coincides with other studies that suggest that concentrated 

tree canopy reduces solar penetration during the day (Erell et al., 2011; Norton et al., 2015; 

Oke et al., 1989). However, this should be interpreted with caution as TIR imagery typically 

represents top-of-canopy LSTs instead that those of the underlying ground surfaces. 

Furthermore, it is also proved that at night-time compact arrangements tend to trap more 

heat and reduce advection, which slows the liberation of the energy stored in surfaces to 

the open atmosphere.  

Counter-intuitively, an increase of elongated arrangement of trees by 0.1 units provided a 

slight warming effect of 0.02K during the day in summer and during the night in winter. 

Conversely, the same change resulted in a diurnal LST reduction of 0.04K in winter and a 

nocturnal LST reduction of 0.01K in summer. This can be attributed to the nature of the 
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FRAGSTAT index. Since CIRCLE_AM estimates the narrowness of a patch irrespective of 

its size or area, this is not representative of the abundance of vegetation, and consequently 

the amount of shade provided by trees; thus, it can hardly explain the LST conditions of a 

specific area. 

In both seasons, increasing the average altitude of a given area by 10m had an identical 

warming effect of 0.06K in LSTs during the day. However, at night-time the same change 

in altitude caused a decrease of 0.02K in summer, while an increase of 0.14K in winter. 

Accordingly, higher diurnal LSTs correspond to elevated locations as these are exposed to 

higher solar irradiance and experience less overshadowing, while at night surfaces at higher 

locations cool faster due to a higher longwave radiation loss (Oke et al., 2017). In winter, 

however, lower nocturnal LSTs are associated to low-lying locations (especially in hilly 

conditions) as solar penetration was limited during the day due to lower solar angles.  

In aquatic locations the contributions of independent variables are considerably different 

as many predictors are irrelevant (or statistically insignificant) for this context. In summer, 

a 10% increase of building area resulted in an increase of 0.65K in diurnal LSTs, while the 

same increase in impervious ground surfaces, water and tree cover caused a warming effect 

of 0.37K, 0.39K, and 0.19K at night-time, respectively.  

Conversely, a significant cooling effect of 1.37K, 1.05K and 0.92K during the day was 

reached by increasing by 10% the proportion of water, trees and irrigated grasses 

respectively. Furthermore, increasing elevation of water surfaces by 10m raised mean LSTs 

by 0.28K at night-time, although the effect of altitude was insignificant at daytime. 

In wintertime, for a 10% increase in water surfaces, there was a reduction in LSTs of 0.25K 

during the day and an increase in LSTs of 0.15K at night. The same increment in the area 

of buildings contributed to an increase in nocturnal LSTs of 0.76K; while increased 

elongated tree patches caused a temperature reduction of 0.06K during the night. 

However, the reduction in the number of predictors in models for aquatic locations is 

accompanied by an increase in the coefficient, magnitude (z-value) and significance of the 

spatial error term (lambda), which indicates that LSTs are in fact better explained by 

unknown factors instead of measured variables. For example, this is the case of the 

equations derived from Models 2D and 4D that have considerable high βLambda (0.915 and 

0.80 respectively) and z-values (81.73 and 31.81 respectively) compared to the equations 

derived from Models 1C and 3D [Tables 7.14 and 8.5]. Consequently, the interpretation of 

coefficient estimates for aquatic locations should be considered with caution.    
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8.6 Implications of the evidence in planning and design 

As defined in the fourth objective of this dissertation (Section 1.3), a key reason to study 

the thermal performance of different green infrastructure typologies is to apply the 

knowledge acquired to incorporate climate-sensitive considerations when planning, 

designing and retrofitting settlements, so cities can address and mitigate urban warming 

more effectively. 

Since the microclimatic conditions of a specific place can be managed through purposeful 

design, governments and practitioners are currently exploring how to best implement green 

infrastructure to respond to elevated urban temperatures across the world (Oke et al., 2017). 

Unfortunately, in many cases scientific evidence is not properly communicated to the 

public so there is still little practical guidance and readily accessible, affordable and rapidly 

available tools that can help inform policy and support planners and designers in their 

decision-making processes (Bowler et al., 2010b; Coutts et al., 2016; Irger, 2014; Norton 

et al., 2015).  

To respond to this need, the evidence presented in Chapters 7 and 8 can be utilised to 

propose general principles, strategies (or mitigation scenarios) and guidance on how to 

implement green infrastructure to improve urban microclimates and mitigate the urban heat 

effectively. Given the scope of this thesis and the range of microclimatic aspects that can 

be considered when planning, designing and implementing a project, the recommendations 

and guidance provided in this section are restricted to the local-scale (see Section 2.4.1) 

and mitigation of SUHIs. 

8.6.1 Guiding principles of climate-sensitive green infrastructure 

interventions 

Before applying any particular heat mitigation strategy, it is worth to define some basic 

guiding principles for the implementation of green infrastructure as a countermeasure to 

SUHI; which are based on similar studies (Hansen et al., 2017; Klemm et al., 2017; Mathey 

et al., 2011; Oke et al., 2017). 

The overarching principles of green infrastructure matter  

Green infrastructure, as an urban living system, is spatially heterogeneous and temporally 

dynamic, combining natural, semi-natural and man-made structures (Cadenasso et al., 

2013; Hansen et al., 2017; Pickett et al., 2017). Consequently, the climate effects provided 

by green infrastructure strategies are inherently ephemeral as they vary over the course of 

the day and year. Furthermore, they depend on functional, structural and configurational 
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properties that also change over time and space. In this sense, offsets between different 

possible climatic outcomes for a particular strategy should be considered; and will depend 

on specific climate objectives.  

To support and enhance the multi-functionality and constant provision of ESS, particularly 

climate regulation, the ‘functional and structural connectivity’ of green infrastructure must 

be secured and prioritised (Hansen et al., 2017; Mazza et al., 2011; Naumann et al., 2011). 

Therefore, urban greening interventions should not be conceived and provided in isolation, 

but instead as part of greater interconnected ecological networks.  

The location and background climate define the cooling strategies 

Cooling strategies should be carefully implemented as they should respond to particular 

climate drivers, which in turn depend on geographic locations (i.e. topographic situations, 

latitude, hydrological conditions, existing urban form), background climate, and regional 

weather. This means that to a considerable degree, the selection of green infrastructure 

typologies should be customised to fit the needs of each city or site. In fact, interventions 

are subject to existing urban form parameters such as parcel size, type and size of buildings, 

street canyon characteristics (widths, heights, network), size of open spaces, etc.  

Moreover, cooling scenarios should be chosen according to the background climate 

comprising the integrated effects of temperature, humidity, wind, solar radiation, etc. 

Accordingly, a location and time period with an acceptable range of climate conditions will 

require less intervention than situations exhibiting extreme circumstances (i.e. excessive 

warming or cooling); and this may vary throughout the year. This illustrates the need to 

conduct a pre-assessment of the climate and site to guide green infrastructure planning and 

design. 

Cooling strategies vary across spatial scales 

Green infrastructure typologies (GITs) –considered here as cooling strategies providing 

singular climatic outcomes– can be applied across several spatial scales (as demonstrated 

in Sections 7.2.1 and 8.3.1). However, the magnitude of thermal impacts are scale-

dependent as they are related to the type of surface modification and typical characteristics 

of a given spatial extent (Oke et al., 2017; Song et al., 2014) (see Section 2.4.1). 

In this research, the LST estimates of GITs are more relevant for interventions at street, 

neighbourhood (or precinct), and urban block levels (50-500m), which according to Table 

2.2 correspond to typical horizontal lengths lying between the micro and local scales. 

Although the proposed LST reductions may be of limited value for other scales or climate 



 

Chapter 8 – Discussion  |  327 

 

objectives (i.e. improvement of HTC), the proposed assessment framework is replicable at 

coarser or finer levels, and applicable to comparable climatic data (i.e. air temperature 

observations) if this is available. However, its meaningfulness at other scales is subject to 

further investigation.  

No single best strategy can satisfy all microclimate objectives 

As a consequence of the inherent variability of green infrastructure (over space and time, 

and across scales), there is no single strategy that can respond to all possible climatic 

demands. Thus, green infrastructure interventions should attempt to address the majority, 

and sometimes conflicting needs, so disadvantages have to be outweighed or sometimes 

offset by the benefits.  

For example, aquatic GITs are among the most effective strategies for reducing diurnal 

LSTs by absorbing most of the short-wave radiation from the sun, which is tremendously 

beneficial on hot summer days. On the other hand, a considerable amount of water act as a 

heat sink, promoting night-time heating which is more desirable during winter nights. 

Accordingly, trade-offs between diurnal cooling and nocturnal heating must be considered 

to define the adequate proportion of water bodies for a specific place.  

A comparable situation occurs when defining the amount of tree canopy of a street, so in 

summer it should provide sufficient shelter from the sun during the day while allowing the 

dispersion of heat during night-time hours. An opposite effect is, perhaps, required in the 

same street for winter, so tree canopy should facilitate solar penetration (i.e. by planting 

more deciduous trees) while mid-storey vegetation would be needed to control wind speeds 

and retain some of the heat emitted from surfaces after sunset. 

The same climatic outcome can be achieved by different strategies 

As it can be observed in Tables 8.1 to 8.4, a desirable thermal condition can be achieved in 

a number of different ways and might result from the combination of different surfaces (i.e. 

plan area fractions of grasses, trees, impervious ground and buildings, etc.). For instance, 

during winter nights a desirable heating effect in locations where water is scarce, can be 

comparably achieved by increasing the concentration of trees and proportion of bare 

ground, or by modifying certain urban form parameters (i.e. reducing SVF or increasing 

H/W ratios). Although different strategies (GITs) can be adopted to achieve a similar LST 

reduction, they may entail unforeseen climatic outcomes.  
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8.6.2 SUHI mitigation: strategies and design guidelines at the local scale 

The GIT proposed in this dissertation was implemented to characterise and classify urban 

landscapes based on a typical range of surface cover fractions and the spatial configuration 

of trees. These values can be used as guidance on which amount, composition and 

arrangement of green infrastructure are required to achieve a particular climatic outcome 

(or average LST) at the local scale (spatial units of 50 x 50m). Table 4.14 presents the 

typical ranges of quantitative descriptors for all typologies, while Tables 8.1 to 8.4 provide 

a summary of corresponding SUHI mitigation strategies. 

Interpretations of the relative thermal effects of each independent variable presented in 

Tables 8.6 and 8.7 can be used to prescribe different measures for the reduction of average 

LSTs within the study area (at local scale) by modifying its surface and spatial parameters. 

Figures 8.9 to 8.12 provide examples of individual and combinatory effects of a number of 

SUHI mitigation strategies for representative GIT classes. These illustrate the potential of 

GITs and predictive modelling (SEM) to test different possible climatic scenarios to 

support policy, planning and design decisions.  

 

 

Figure 8.9 Example of potential SUHI mitigation measures and their individual and cumulative effect on 

average diurnal and nocturnal LSTs in a Mostly impervious with grasses (IM2) typology during 

summer. 
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Figure 8.10 Example of potential SUHI mitigation measures and their individual and cumulative effect on 

average diurnal and nocturnal LSTs in a Mostly impervious with scattered trees (IM5) typology 

during summer. 

 

 

Figure 8.11 Example of potential SUHI mitigation measures and their individual and cumulative effect on 

average diurnal and nocturnal LSTs in a Mostly impervious with aligned trees (IM4) typology 

during winter. 
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Figure 8.12 Example of potential SUHI mitigation measures and their individual and cumulative effect on 

average diurnal and nocturnal LSTs in a Mixed surfaces with aligned trees (MX5) typology during 

winter. 

In accordance with the evidence, statistical analysis and cooling scenarios previously 

discussed in this chapter, the following nine general green infrastructure guidelines can be 

implemented for a more effective mitigation of SUHIs at the local scale: 

G.1 Water features (i.e. fountains, lakes, rivers, ponds, ocean, marshes, wetlands, etc.) are the 

most efficient in reducing diurnal LSTs (especially large water bodies); nonetheless, they 

provide a relative heating effect during the night that should also be considered by any 

intervention. The effect of water bodies on built-up areas will depend on how adjacent they 

are, so intermediate greenery can be used to regulate these impacts if necessary. For 

example, nocturnal warming effect can be controlled by increasing the proportion of 

grasses, shrubs and tree cover in the immediate surroundings. Additionally, the thermal 

profiles of water features can be controlled by modifying the depth and extent of water 

surfaces or changing the type of materials of the underlying floor (in case of shallow water). 

G.2 Well-irrigated vegetation can provide a more effective thermal cooling (or LST reduction) 

at all times of the day than dry plants and bare soils. This is because, dryness restricts 

evaporation, so an increasing amount of sensible heat flux is transferred to the atmosphere. 

Ideally, adequate water supply (natural and/or artificial) should be ensured or preserved for 

all greenery interventions to enhanced evapotranspiration and reduce surface radiative 

temperatures, especially during summer. Water regimes should be carefully defined 
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especially with regard to expected climate-related water shortages or periods of droughts 

which are site-related. For instance, passive irrigation systems –by harvesting stormwater 

runoffs– can be applied as it involves less-constructed in-ground works and piping. In cases 

that rainfall is scarce, or locations do not allow for passive irrigation, other technologies or 

solutions should be considered to increase soil moisture and maintain healthy vegetation 

(i.e. planting drought-resistant species).  

G.3 Generally, increasing tree canopy reduces average LSTs more effectively than other types 

of vegetation covers. Despite this fact, low and medium vegetation open to the sky vault 

can achieve a moderate decrease of LSTs either at daytime or night-time provided that 

surfaces are adequately watered so water infiltration, soil moisture and consequently 

evaporation are ensured. In larger contexts, treeless vegetated typologies can help create 

flexible, multi-functional and diverse microclimates to facilitate individual thermal 

adaptation of users. For example, gradients or borders between open and forested vegetated 

areas can be created where sun and sufficient shade or shelter are available in close vicinity. 

G.4 Dense tree canopies can provide significant LST reductions during the day, however, they 

have a considerable warming effect at night-time; therefore, they should be implemented 

with care. Instead, aligned, clustered or closely spaced trees over irrigated grasses as well 

as mixed grasses with shrubs and trees can provide a constant decrease of LSTs irrespective 

of the time and season. This is because they can provide consistent solar protection and 

evapotranspiration in the morning, and spaces for wind circulation to ease heat dissipation 

at night. 

G.5 In large open spaces, scattered trees should be preferably placed over or near vegetated 

surfaces with adequate irrigation. Alternatively, large tree crown species are preferred if 

these are located in highly paved areas (i.e. open plazas, public squares) and should be 

preferably accompanied by shrubbery.  

G.6 In narrow street canyons or areas with highly compacted arrangement of buildings32, it is a 

priority to minimise the contribution of impervious surfaces (especially vertical surfaces or 

building facades) to overall thermal warming. Accordingly, vertical greenery systems 

should be prioritised over other types of green infrastructure as they occupy less space, can 

help reduce solar exposure of building facades, facilitate solar penetration in specific places 

and enhance natural ventilation (if necessary) by reducing wind obstruction. They could 

also be accompanied by permeable pavements, shrubs and hedges (for shelter near the 

                                                      

32  Typically found in compact high-, mid-, and low-rise areas (i.e. LCZ1, LCZ2, and LCZ3). 
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ground), as well as vegetated pergolas in strategic locations. Alternatively, a careful 

selection of deciduous and evergreen trees of elongated crown shapes could be 

implemented with abovementioned strategies to regulate solar access for selected areas at 

certain times of the day and year. 

G.7 In wide street canyons or typical suburban neighbourhoods33, it is recommended consistent 

rows of tall trees with large crowns, or alternatively multiple-lined or staggered layouts for 

increasing shaded areas. Trees should be preferably accompanied by permeable and high 

albedo pavements, and green elements at various heights including irrigated grassy areas, 

shrubbery, and hedges in public and private spaces. Additionally, biofiltration systems (i.e. 

raingardens, bioswales) could be placed in the middle or at either side of the street to collect 

rainwater run-off and facilitate water infiltration (passive irrigation). To reduce solar 

exposure of asphalt and pavements, in some cases, median tree planting should be 

additionally added along with roadside trees. As in previous cases, the proportion and 

location of deciduous and evergreen trees will depend on the amount of solar penetration 

and aerodynamic characteristics required for adjacent areas. 

G.8 Areas with a large proportion of roofs34, for instance, in the case of large warehouses or 

shopping malls could be either replaced by cool roofs covered with light-coloured materials 

or extensive green roofs covered by mixed grasses, shrubs and small trees. In the latter 

case, proper irrigation should be also provided to secure evaporative cooling. 

G.9 In areas with a large proportion of impervious ground (i.e. carparks, transport 

facilities/corridors)35, surfaces should be partially or totally replaced by low plantings 

and/or permeable and high albedo materials (i.e. cool interlocking paving units) with 

extensive canopy crowns strategically distributed to increase shaded areas. Furthermore, 

tree planting in the middle or at both sides of transport corridors should be implemented 

(i.e. in light-rail transport systems, railway corridors). 

A summary of main findings from this and previous chapters in response to the objectives 

and research questions of this dissertation are presented in the next and final chapter. 

 

 

 

 

 

                                                      

33  Commonly found in open high-, mid-, and low-rise and sparsely built areas (i.e. LCZ4, LCZ5, LCZ6, LCZ9). 

34  Typically found in large low-rise and heavy industry areas (i.e. LCZ8 and LCZ10). 

35  Commonly found in LCZE and LCZF. 
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Chapter 9  

Conclusive summary 

The motivation for this research is the apparent gap in knowledge regarding the complex 

interplay and cumulative effects of different types of green infrastructure on urban 

microclimate. Hence, the central aim of this thesis is to close this gap with a special 

emphasis on the amounts, compositions and distributions of greenery that are required for 

a more effective reduction of LSTs at the local scale. In the opening chapter of this 

dissertation, four research objectives were defined in response to the following key gaps 

identified during the review of the literature (see Sections 1.2 and 1.3): 

1. There is a perceived lack of quantitative assessment methodologies to support the analysis 

and accurate prediction of LSTs based on bio-physical and configurational parameters of 

green infrastructure. To respond to this methodological challenge, the first objective of this 

thesis focused on proposing a more comprehensive assessment framework for the 

automated classification of green infrastructure and subsequent statistical analysis using 

very high-resolution airborne remote sensing data.  

To define a practical methodological framework, the strengths and weaknesses of existing 

methods, indicators and data sources were analysed by systematically reviewing 

representative climatic studies. Then, the proposed framework was successfully tested and 

validated in the Australian context in two distinct seasons and times of the day.  

Furthermore, as defined in the third objective, several statistical models were produced to 

better understand, quantify and predict the extent and magnitude of the effects of 

functional, structural and configurational attributes of green infrastructure on average LSTs 

at the local scale.  

2. From a methodological point of view, improvements in collecting and reporting surface 

temperatures associated with different green infrastructure typologies and at various spatial 

scales and sites are urgently needed. To analyse and compare the cooling effects of different 
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types of green infrastructure, the second objective of this research concentrated on 

constructing a standardised classification scheme for green infrastructure based on the 

synthesis and analysis of current terminology, and classification principles, approaches and 

systems.  

The new classification system provided the opportunity to propose an automated GIS-based 

workflow that can be easily replicated by a broad spectrum of users, from novices to 

experts, if comparable data is available. In this thesis, the scheme was satisfactorily applied 

to assist in the evaluation, comparability and reporting of the spatio-temporal variability of 

diurnal and nocturnal LSTs of a variety of typical urban settings. The scheme was also 

rigorously validated using a combination of quality assessment techniques; therefore, it can 

be confidently implemented in future climate research or for similar performance-based 

analyses across other ESS categories. 

3. In terms of the practical use of the existing scientific evidence, it was found that there is 

still little technical guidance on how to plan and design climate-sensitive neighbourhoods 

and urban precincts by incorporating green infrastructure for more effective climate 

adaptation and mitigation of urban warming. In accordance with the fourth objective, the 

comparative thermal analysis of LSTs associated with the different typologies and 

estimates of predictive models was employed to (1) explore the implications of findings in 

planning and design, (2) propose key guiding principles and recommendations, and (3) for 

scenario modelling of different SUHI mitigation strategies. 

Within this context, the next section presents a summary of findings that are based on the 

results of two systematic literature reviews and the successful implementation of the 

methodological framework and classification scheme in two related case studies of the 

Sydney metropolitan area. 

9.1 Summary of findings 

The analysis and evaluation of the cooling effects of green infrastructure on LSTs required 

the formulation of a methodological framework and classification system for green 

infrastructure that overcome the deficiencies identified in the literature (presented below). 

Accordingly, 250 scientific publications were systematically analysed for their key 

concepts, approaches, methodological aspects, and current evidence which resulted in the 

following general findings (see Chapters 3 and 4): 
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• There is limited information about the cooling benefits of green infrastructure in developing 

countries, and locations with tropical, semi-arid and desert climates. Moreover, little 

research has been conducted in Australian cities which are currently experiencing a 

significant population growth, densification process, and increasingly frequent climate 

change-related events such as heatwaves, droughts, bushfires and flooding. 

• As defining clear boundaries between the natural and the built world is difficult, the 

mapping and characterisation of green infrastructure should contemplate the combining 

effects of biotic and abiotic elements using holistic (integrative) and three-dimensional 

approaches.  

• The classification, evaluation, and delivery of green infrastructure should embrace the 

overarching principles of multi-functionality, connectivity, and dynamic spatial and 

temporal heterogeneity, and consider the ecological functioning, physical properties, and 

spatial interrelationships of both natural and artificial features. 

• A universal set of typologies cannot be proposed for all locations and research purposes; 

however, green infrastructure can be grouped into five high-level categories of (1) tree 

canopy; (2) green open spaces; (3) water bodies, (4) green roofs; and (5) vertical greenery 

systems. These categories can be broken down into a flexible number of typologies 

resulting from the combination of different types of surface covers and vegetated features 

of varying heights and distributions. 

• Vegetation abundance, plant structure and shade from trees are the most common aspects 

assessed by studies; nonetheless, less attention is given to the climatic effects of water 

bodies, irrigation and evapotranspirative cooling. 

• Little is known about the most optimal type, abundance and distribution of green 

infrastructure necessary to maximise the mitigation of the urban heat at neighbourhood and 

street canyon levels. Hence, there is a need to translate the existing evidence into an 

effective set of practical rules and design guidelines for policy makers, governments, 

planners and designers. 

 

This thesis has demonstrated that the combination of multiple airborne remote sensing 

technologies can be successfully employed to map, categorise and assess the physical and 

spatial characteristics of extensive urban areas and provide very highly detailed two- and 

three-dimensional information for conducting urban microclimate analyses. Although 



 

336  |  Summary of findings 

airborne remote sensing can be implemented in a flexible and time-efficient way, its 

application among most users is constrained by its relatively high costs, sensor availability, 

complex logistics, and technical knowledge necessary for the acquisition, processing and 

interpretation of some data.  

The methodological framework for the automated mapping and classification of green 

infrastructure into 34 distinct typologies (or GITs) was satisfactorily tested at the local scale 

in two related case studies within Sydney, and fully validated using a confusion matrix and 

deep learning. In this study, classification parameters and threshold values for GITs were 

defined based on the approaches and parameters proposed by similar schemes, particularly, 

HERCULES, LCZ, LULC and UVST. Variables were derived from remote sensing data 

and results of classifications offered the following insights (see Section 8.3): 

• It was demonstrated the applicability of the approach and methodology at various spatial 

scales with less than 0.25% of unclassified areas for all cases. It was observed that the 

accuracy of predictions is scale-dependent and influenced by grid resolution. However, the 

identification of an optimal grid size is impractical as this will depend on the type of 

research, the level of fragmentation of the landscape, and the size of mapped structures, 

therefore it is context-related. For the purpose of this research, a spatial unit of 50 x 50m 

was the most adequate to conduct microclimatic analyses at the local scale (i.e. 

neighbourhood, precinct, street) as grids preserved representative structural and 

configurational information.  

• The quality assessment of classification maps of a portion of the study area shows 

satisfactory results with an overall accuracy of 76.4% and kappa index of 0.741. The main 

flaws and inaccuracies occurred due to erroneous land cover recognition from remote 

sensing products (spectral imagery and LiDAR), large variation of the proportion of land 

cover types, and the difficulty of distinguishing different arrangement of trees (problems 

with FRAGSTATS metrics), so additional improvements are required (Sections 8.2 and 9.3 

provide some recommendations).  

• The overall predictability or performance of the entire classification scheme was assessed 

using several machine learning algorithms. Results show high to very high predictability 

for most classifiers (>80%) and demonstrate the robustness of classification descriptors and 

typical ranges proposed in this research. This proves the applicability and reliability of the 

classification scheme despite differences in location, season and dataset. 
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The empirical results presented in Sections 7 and 8 demonstrate the applicability of the GIT 

scheme as a framework for the study of the intra- and inter-variability of LSTs and the 

estimation of the cooling capacity of different typologies resulting from the variation of the 

composition, abundance and distribution of surface covers. In that sense, the comparative 

analysis of diurnal and nocturnal average LSTs of GITs in summer and winter provided the 

following specific findings (see Section 8.4): 

• 34 typologies were identified across the study area, each of them exhibiting a unique 

average thermal profile and intra-typology variability of LSTs.  

• Temperature differences among GIT classes are statistically significant for both seasons 

and at different times of the day, and these vary as a function of the amount of buildings, 

the proportion of ground surface covers, trees arrangement, and surface wetness. 

• Significant thermal contrasts among GITs are more pronounced at daytime and summer 

conditions. In contrast, thermal profiles are less discernible at night, while diurnal 

temperature fluctuations are smaller in winter.  

• The thermal difference (ΔTIM1-GIT) between each typology and a reference or control class 

–in this case, IM1 Highly impervious– provides a reliable measure of the cooling capacity 

(or effect) of each typology and it can be used as an indicator of SUHI magnitude.  

• In both summer and winter, the highest diurnal LSTs and consequently the lowest cooling 

effects are registered by typologies with a high degree of imperviousness, dryness and lack 

of vegetation (especially tree canopy). Lower cooling capacity also correspond to open and 

sparsely built areas with mixed surface covers, and green spaces with poor irrigation 

conditions. 

• An inverse thermal behaviour is observed for aquatic and pervious GITs between day and 

night. Accordingly, water bodies, well irrigated grasses and aligned and clustered trees 

provide substantial cooling benefits during the day; meanwhile at night a relative heating 

effect is provided in areas with large water bodies, very dense tree canopy and extensive 

shrubbery surrounded by mixed surfaces (especially impervious surfaces). In contrast, 

treeless areas with well irrigated grasses are the most efficient in reducing the SUHI 

intensity during the night. 

• Surface wetness and irrigation play a significant role in reducing LSTs and mitigating the 

SUHI by improving the overall cooling performance of typologies through increased 

evapotranspiration. 
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• Average LSTs also depend on the thermal properties of surfaces (i.e. thermal inertia, 

albedo, emissivity), with particular attention to roof materials that have an important effect 

on the thermal profile of a given area (i.e. contrasting temperatures between light-coloured 

metal roofs and dark-coloured roof tiles). 

• The positive cooling effects of grasses, shrubs and trees are significantly diminished when 

positioned within predominately impervious materials. These are also confounded by the 

height and compactness of buildings due to lower SVF and higher proportion of shade from 

tall buildings. 

• Changes in tree arrangement (scattered, aligned and clustered) does not necessarily result 

in additional LST reductions for a spatial unit if (1) the proportion of tree cover remains 

unchanged or (2) when holding the land cover composition constant.  

• As the composition and abundance of surface covers is more influential in defining the 

thermal profile of GITs than the spatial distribution of vegetated structures; the cooling 

effects of the same proportion of trees are severely undermined as imperviousness and 

surface dryness increases. Indeed, the positive impact of tree clustering in LSTs is stronger 

as the abundance of well irrigated grasses increases in the immediate surroundings. 

 

The thermal characterisation of GITs is particularly valuable as it can be utilised to identify 

which urban areas will be more vulnerable or likely to experience higher urban 

temperatures. To understand which factors can be manipulated to prevent that happening, 

the relationship between the cooling capacity of typologies and vegetation abundance 

descriptors (NDVI, proportion of pervious area, and amount of tree cover) were statistically 

analysed using a TVX approach, correlation analysis and simple linear regression. This 

analysis provided the following insights (see Sections 7.3.2 and 8.4.2): 

• Average diurnal LSTs decrease with increasing percentage, health and wetness of 

vegetation covers, which correspond to higher NDVI values.  

• Among GIT subgroups, the thermal behaviour of aquatic typologies is considerably 

dissimilar from those exhibited by terrestrial GITs; hence, they cause an outlying effect 

which hampers linear relationships between LSTs and NDVI. This should be considered 

when conducting statistical analyses. 
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• Average diurnal LSTs of typologies are well explained by either pervious surface fraction 

or NDVI, as the latter is an indicator of evapotranspirative cooling resulting from the 

wetness and health of plants. Conversely, average nocturnal LSTs are better explained by 

the fraction of pervious surfaces than by NDVI, as the latter is calculated from sunlit 

vegetation (representing photosynthetic activity) which is absent at night. 

• The predictive power of tree coverage is normally low, especially for heavily forested areas 

as they combine the effects of medium to high vegetation. 

• Results reconfirm the importance of maintaining well-watered and healthy vegetation to 

mitigate SUHI more effectively. 

 

Since GITs exhibit a combination of different surface covers and FRAGSTATS metrics, it 

cannot clearly be defined to what extent each parameter contributes to the temperature 

reduction capacity of each type. Thus, previous evidence cannot be confidently used to 

predict the average LST of a place in an accurate and precise way. The assessment 

methodology proposed in this research, however, enables quantifying the relationships 

between green infrastructure descriptors and mean diurnal and nocturnal LSTs in summer 

and winter (see list of dependent and independent variables in Section 5.1.1). The 

interpretation of the statistical analysis and predictive models developed in Section 7.4 

provided the following additional findings: 

• The spatial association of LSTs at local level induced the spatial autocorrelation among 

residuals in OLS models. This confirms the need of incorporating the effect of spatial 

dependency into classic OLS MLR models for a reliable and accurate prediction of LSTs.  

• Spatial regression models (in particular SEM) are found to be more appropriate than OLS 

models as they increased significantly the overall goodness-of-fit of all predictive 

equations.  

• SEM and OLS models show significant heteroskedasticity that is mainly caused by: (1) the 

large temperature variability of the control class (IM1) –as thermal conditions in highly 

impervious areas are influenced by unmeasured factors related to the built form and 

material-specific properties–, and (2) the distinct thermal behaviour of water bodies relative 

to terrestrial surfaces. This issue was solved by partitioning the data and excluding 

observations corresponding to the control case.  
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• In terrestrial locations, imperviousness contributed the most to increase mean diurnal LSTs 

in both seasons. Accordingly, an increase of 10% of building areas results in an increase of 

0.62K in summer and 0.32K in winter; while an increment in impervious ground surfaces 

by the same amount results in an increase of 0.63K in summer and 0.23K in winter.  

• During the night, the same increment in impervious grounds surfaces causes an increase of 

and 0.42K in mean nocturnal LSTs in summer and 0.18K in winter. Conversely, an 

increment of building areas in the same proportion results in a reduction of mean LSTs of 

0.11K in summer and 0.06K in winter. 

• The presence of water surfaces and trees contributed the most to reduce mean LSTs during 

the day, causing a decrease in LSTs at a rate of 0.86K and 0.47K in summer, and 1.16K 

and 0.33K in winter, per 10% increase in area coverage respectively.  

• At night the magnitude of the warming effect of water and trees is relatively the same in 

both seasons, causing an increase in LSTs at a rate of 0.26K and 0.29K, and 0.15K and 

0.16K per 10% increase in area coverage respectively. 

• The cooling effect of irrigated grasses is quite distinctive at different times of the day and 

year. An increase of 10% in area fraction results in a cooling effect of 0.29K during the 

day, and a warming effect of 0.02K at night. In winter, an increment of the same proportion 

decreases diurnal LSTs by 0.13K and nocturnal LSTs by 0.06K. This demonstrates that 

increasing soil wetness results in an enhanced thermal capacity as watered surfaces release 

heat more slowly than dry plants and bare soils during the night. 

• In terms of spatial configuration, an increase in the concentration of trees results in a 

decrease of diurnal LSTs and an increase of nocturnal LSTs as compacted arrangements 

provide more shade during the day yet reduce heat dissipation at night. Counter-intuitively, 

elongated arrangements cause a slight warming effect during the day in summer and during 

the night in winter. This suggests that CIRCLE_AM does not necessarily account for the 

real effect of patch elongation on LSTs. This occurs because the metric is not representative 

of the amount of tree cover, and hence of the amount of shade and evapotranspirative 

cooling.  

• Higher diurnal LSTs correspond to elevated locations as there is less overshadowing, while 

at night surfaces at higher locations cool faster due to a higher longwave radiation loss. In 

contrast, in winter lower nocturnal LSTs correspond to low-lying locations as solar 

penetration was limited during the day due to lower solar angles. Accordingly, the effect 
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of altitude should be interpreted in terms of topographic undulation rather than absolute 

elevation. 

• In aquatic locations the contributions of independent variables are considerably different 

as diurnal and nocturnal LSTs mostly depend on the proportion of water and trees. 

• The reduction in the number of predictors in models for aquatic locations is accompanied 

by an increase in the magnitude and significance of the spatial error term which indicates 

that LSTs are, in fact, better explained by unknown factors instead of measured variables. 

 

Understanding the thermal performance of green infrastructure is crucial to plan, design 

and implement more sustainable, liveable, climate-adapted and low-carbon communities, 

especially in the context of climate change and global warming. With the hope of informing 

policy and assisting governments and practitioners to achieve abovementioned goals, 

previous evidence was translated into practical design guidelines and heat mitigation 

strategies.  

Thus, the GIT framework can be implemented to support a large-scale SUHI assessment 

by facilitating the representation of the magnitude and intensity of SUHI conditions in 

urban and rural settings. On the other hand, the characteristic physical and thermal 

uniformity of each typology can be employed to prescribe specific SUHI mitigation 

strategies, while estimates of predictive equations facilitate simulative scenario modelling 

of desirable climatic outcomes for a given location. 

9.2 Significance of research 

This research advances the study of the thermal performance of green infrastructure on 

urban microclimate and addresses the weaknesses identified in the literature through the 

following innovative contributions to knowledge: 

A more comprehensive and holistic methodological framework to describe the bio-physical 

and configurational characteristics of green infrastructure are proposed to analyse the 

interplay and cumulative cooling effects provided by both biotic and abiotic features. 

Based on this framework, a novel and comprehensive classification system for green 

infrastructure is developed to support climate-related studies by embracing the key green 

infrastructure principles of dynamic spatial and temporal heterogeneity, connectivity, and 
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multi-functionality. This new taxonomy includes guidelines, protocols, and procedures for 

the automated classification of urban and rural landscapes based on remote sensing data. 

Although the scheme is originally intended for climatic research, it is sufficiently flexible 

to be applied in related fields such as nature conservation, water and resource management, 

forestry and agriculture, human health, remote sensing, and more. It is also compatible with 

other similar well-established approaches such as LULC, LCZ, and UVST and can be 

easily replicated and broadly managed by users from novices to experts.  

An illustrative set of datasheets36 to standardise the characterisation and categorisation of 

green infrastructure into typologies based on functional, structural and spatial parameters 

with specific cut-off values is presented. These datasheets can facilitate the inventory, 

comparison and performance assessment of GITs across several ESS categories and 

improve the communication of evidence among scientists, governments and practitioners 

from diverse backgrounds. 

The outcomes of the statistical analyses provide a significant contribution to better 

understand which characteristics and parameters of green infrastructure and urban form are 

more influential on LSTs at the local scale. Furthermore, the proposed statistical models 

enable the prediction of LSTs and subsequent assessment of potential cooling interventions 

by changing the composition, abundance and distribution of land covers. 

Theoretical and empirical evidence discussed on this thesis are examined and synthesised 

to propose a set of guiding principles, recommendations and strategies37 on how 

neighbourhoods and urban precincts should be planned and designed to incorporate green 

infrastructure for a more effective SUHI amelioration. These are intended to inform and 

support various audiences including climate investigators, policy makers, local 

governments, landscape architects, and urban planners and designers. 

9.3 Limitations and potential directions for further research 

This thesis was mainly limited by the type, amount and quality of airborne remote sensing 

data, which were not readily accessible as originally expected. As a result, summer and 

winter datasets were obtained from two different sources so they differ in terms of extent, 

spatial and spectral resolutions and type of products/technologies (i.e. hyper- versus multi-

spectral imaging), sensors and methods employed for the acquisition and processing of 

                                                      

36  Presented in Appendix E. 

37  Provided in Sections 8.4.3, 8.6.1 and 8.6.2 
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data. Furthermore, as data were acquired from a third party or contractor, it was difficult to 

perform a thorough quality control of the final remote sensing products. 

An improved thematic mapping of surface materials at pixel-based level would have been 

possible with the application of state-of-the-art techniques such as Multiple Endmember 

Spectral Mixture Analysis (MESMA) and deep learning (i.e. Convolutional Neural 

Networks-CNN). However, this was out of the scope of this study and it was not technically 

feasible due to time, skill and resource constraints. As information of the materiality of a 

particular place can provide important insights about its thermal conditions, future studies 

could incorporate MESMA and CNN methods into the proposed framework to improve the 

accuracy and precision of surface cover recognitions.  

Thermal imagery was collected, processed and provided by a contractor who opted to use 

a generic value for emissivity corrections. Although this produced reliable LST values that 

served the purpose of this thesis, it is recommended to assign specific emissivity values to 

each land cover type or material for the calculation of surface radiances and absolute LSTs. 

The data collection was limited to thermal and spectral reflectance of horizontal surfaces; 

rather than urban canopy layer conditions, such as air temperature, which are more relevant 

to HTC. Thus, further research could focus on (1) incorporating the effect of vertical 

surfaces, (2) quantifying the relationships between air temperatures and green 

infrastructure parameters defined for each GIT, and (3) analysing the thermal profiles of 

GITs in the context of HTC. Under a three-dimensional and holistic approach, the cooling 

effects of green roofs and vertical greenery systems –as part of a network of green 

infrastructure– could be also mapped and incorporated to the current approach.  

In addition, owing to the large spatial extent of the study area and nature of the present 

research, information regarding the amount, timing and frequency of active irrigation (from 

artificial sources) was not collected; thus, future research can focus on the influence of 

antecedent soil moisture and rainfall on LST reductions.  

A potential development of the present methodological framework is the inclusion of multi-

temporal analysis (time-series) to (1) minimise erroneous pixels and discard shadows from 

surface cover extractions, (2) study the effect of temporal changes of vegetation and surface 

wetness (i.e. foliage type, phenology, maturity, precipitation, etc.), and (3) analyse the 

temporal dynamics of air and surface temperatures of each GIT class. As this could be 

unaffordable and laborious for many users due to high costs and complicated logistics, 

UAVs or drone-based technology could be useful as periodic flights can be deployed in an 

easy, flexible, and less costly way. 
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In terms of the application of the proposed framework, the following aspects or 

improvements could be also explored by future studies: 

• Quantifying and comparing the thermal differences of GITs across multiple spatial scales. 

• Examining the effect of spatial resolution and grid size on classifications and the 

performance of statistical models. 

• Quantifying the influence of different types of species and deciduous and evergreen 

vegetation on air and surface temperatures due to variations on shading, transpiration and 

air velocity.  

• Estimating evapotranspiration rates in heterogeneous urban contexts and analysing their 

role on CLUHI and SUHI mitigation. 

• Determining minimum irrigation and humidity requirements to provide adequate thermal 

benefits, as not all vegetated surfaces and plant species are capable of tolerating severe 

temperatures or providing the same amount of evaporative cooling. 

• Improving the classification results by modifying the proposed NDVI classification ranges, 

calibrating cut-off values of parameters, exploring additional combinations of landscape 

metrics, and simplifying the categorisation of tree arrangements.  

• Extending the present research by conducting similar quantitative and qualitative analyses 

across a diverse selection of ecosystem services (i.e. carbon sequestration, air quality, 

biodiversity, aesthetic impact, etc.).  

 

Although the present thesis entails several limitations and is contingent on further 

developments, it is expected that the findings and recommendations can contribute 

theoretically to the existing body of knowledge. Also, it is hoped that this research can offer 

a few more tools to help scientists, city managers and designers to avoid certain 

methodological pitfalls when examining the thermal behaviour of green infrastructure and 

assist them in the delivery of more sustainable and climate-oriented solutions. 
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Mathey, J., Rößler, S., Lehmann, I., & Bräuer, A. (2010). Urban Green Spaces: Potentials and 

Constraints for Urban Adaptation to Climate Change. Resilient Cities, Local Sustainability Volume 

1, 2011, pp 479-485, Volume 1,, 479. 

Mathey, J., Rößler, S., Lehmann, I., Bräuer, A., Goldberg, V., Kurbjuhn, C., & Westbeld, A. (Eds.). 

(2011). Naturschutz und Biologische VielfaltVol. 111. Noch wärmer, noch trockener? Stadtnatur 

und Freiraumstrukturenim Klimawandel.: Even warmer, even drier? Urban nature and green 

spacedevelopment under climate change. Bonn-Bad Godesberg: Bundesamt für Naturschutz (Bfn. 

Ed.). 

MathWorks. (2017a). Introducing Deep Learning with MATLAB. Tuesday, May 01, 2018. 

MathWorks. (2017b). MATLAB and Statistics Toolbox. Natick, Massachusetts, United States. 

MathWorks. (2018a). Mastering Machine Learning: A Step-by-Step Guide with MATLAB. Wednesday, 

May 02, 2018. 

MathWorks. (2018b). Statistics and Machine Learning Toolbox ™: User's guide. Wednesday, May 02, 

2018. 

Matzarakis, A., & Mayer H. (1996). Another Kind of Environmental Stress: Thermal Stress 

(NEWSLETTER). 

Mayer, H., & Höppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical 

and Applied Climatology, (38), 43–49. 

Mazza, L., Bennett, G., Nocker, L. de, Gantioler, S., Losarcos, L., Margerison, C.,. . . van Diggelen, R. 

(2011). Green Infrastructure Implementation and Efficiency: Final report for the European 

Commission, DG Environment on Contract ENV.B.2/SER/2010/0059. Institute for European 

Environmental Policy, Brussels and London. 

Mazzali, U., Peron, F., Romagnoni, P., Pulselli, R. M., & Bastianoni, S. (2013). Experimental 

investigation on the energy performance of Living Walls in a temperate climate. Building and 

Environment, 64, 57–66. doi:10.1016/j.buildenv.2013.03.005  

McGarigal, K. (2015). Fragstats Help Manual 4.2. USA: University of Massachusetts, Amherst. 

Saturday, October 01, 2016. 

McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002). FRAGSTATS: University of 

Massachusetts, Amherst (www.umass.edu/landeco/research/fragstats/fragstats.html). Retrieved 

from www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed. 



 

References  |  359 

 

McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying 

landscape structure. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific 

Northwest Research Station. Sunday, September 18, 2016. 

McPherson, E. G., Simpson, J. R., Xiao, Q., & Wu, C. (2011). Million trees Los Angeles canopy cover 

and benefit assessment. Landscape and Urban Planning, 99(1), 40–50. 

doi:10.1016/j.landurbplan.2010.08.011  

Meier, F., & Scherer, D. (2012). Spatial and temporal variability of urban tree canopy temperature 

during summer 2010 in Berlin, Germany. Theoretical and Applied Climatology, 110(3), 373–384. 

doi:10.1007/s00704-012-0631-0  

Mell, I. C. (2008). Green Infrastructure: concepts and planning. FORUM Ejournal - Newcastle 

University., (8), 69–80. 

Mell, I. C. (2010). Green infrastructure: concepts, perceptions and its use in spatial planning (PhD). 

Newcastle University, UK. 

Mell, I. C. (2013). Can you tell a green field from a cold steel rail? Examining the “green” of Green 

Infrastructure development. Local Environment, 18(2), 152–166. 

doi:10.1080/13549839.2012.719019  

Mell, I. C. (2014). Aligning fragmented planning structures through a green infrastructure approach to 

urban development in the UK and USA. Urban Forestry & Urban Greening, 13(4), 612–620. 

doi:10.1016/j.ufug.2014.07.007  

Millennium Ecosystem Assessment (MEA). (2005). Ecosystems and Human Well-being: Synthesis. 

Washington, DC.: Island Press. Friday, June 12, 2015. 

Miller, R. W., Hauer, R. J., & Werner L. P. (2015). Urban Forestry: Planning and Managing Urban 

Greenspaces Third Edition (3rd): Waveland Press inc. 

Millward, A. A., Torchia, M., Laursen, A. E., & Rothman, L. D. (2014). Vegetation placement for 

summer built surface temperature moderation in an urban microclimate. Environmental 

management, 53(6), 1043–1057. doi:10.1007/s00267-014-0260-8  

Milošević, D. D., Bajšanski, I. V., & Savić, S. M. (2017). Influence of changing trees locations on 

thermal comfort on street parking lot and footways. Urban Forestry & Urban Greening, 23, 113–

124. doi:10.1016/j.ufug.2017.03.011  

Mitraka, Z., Del Frate, F., Chrysoulakis, N., & Gastellu-Etchegorry, J.-P. (Eds.) 2015. Exploiting Earth 

Observation data products for mapping Local Climate Zones. : Joint Urban Remote Sensing Event 

(JURSE), 2015 Joint. 

Morakinyo, T. E., Adegun, O. B., & Balogun, A. A. (2016). The effect of vegetation on indoor and 

outdoor thermal comfort conditions: Evidence from a microscale study of two similar urban 

buildings in Akure, Nigeria. Indoor and Built Environment, 25(4), 603–617. 

doi:10.1177/1420326X14562455  

Morakinyo, T. E., Kong, L., Lau, K. K.-L., Yuan, C., & Ng, E. (2017). A study on the impact of shadow-

cast and tree species on in-canyon and neighborhood's thermal comfort. Building and Environment, 

115, 1–17. doi:10.1016/j.buildenv.2017.01.005  

Morakinyo, T. E., & Lam, Y. F. (2016). Simulation study on the impact of tree-configuration, planting 

pattern and wind condition on street-canyon's micro-climate and thermal comfort. Building and 

Environment, 103, 262–275. doi:10.1016/j.buildenv.2016.04.025  

Moran, P. A. P. (1950). Notes on Continuous Stochastic Phenomena. Biometrika, 37(1/2), 17. 

doi:10.2307/2332142  

Motazedian, A., & Leardini, P. (Eds.) 2012. Impact of green infrastructures on urban microclimates. A 

critical review. : 46th Annual Conference of the Architectural Science Association (ANZAScA). 

Australia. 

Müller, N., Kuttler, W., & Barlag, A.-B. (2014). Counteracting urban climate change: Adaptation 

measures and their effect on thermal comfort. Theoretical and Applied Climatology, 115(1-2), 243–

257. doi:10.1007/s00704-013-0890-4  

Mushkin, A., Balick, L. K., & Gillespie, A. R. (2005). Extending surface temperature and emissivity 

retrieval to the mid-infrared (3–5 μm) using the Multispectral Thermal Imager (MTI). Remote 

Sensing of Environment, 98(2-3), 141–151. doi:10.1016/j.rse.2005.06.003  

Natural Economy Northwest (NEN). (2010). Building natural value for sustainable economic 

development: The green infrastructure valuation toolkit user guide. Retrieved from 



 

360  |  References 

http://bit.ly/givaluationtoolkit) 

http://www.greeninfrastructurenw.co.uk/resources/Green_Infrastructure_Valuation_Toolkit_User

Guide.pdf. Accessed Thursday, June 18, 2015. 

Naumann, S., Davis, M., Kaphengst, T., Pieterse, M., & Rayment, M. (2011). Design, implementation 

and cost elements of Green Infrastructure projects.: Final report to the European Commission, DG 

Environment. Contract no. 070307/2010/577182/ETU/F.1. 

Nearmap. (2017). High resolution imagery. Retrieved from http://www.nearmap.com.au/. Accessed 

Tuesday, August 08, 2017. 

Neuman, M. (2005). The Compact City Fallacy. Journal of Planning Education and Research, 25(1), 

11–26. doi:10.1177/0739456X04270466  

Newton, P., Marchant, D., Mitchell, J., Plume, J., Seo S., & Roggema R. (2013). Performance 

Assessment Urban Precinct Design: A scoping study. Sydney. 

Ng, E., Chen, L., Wang, Y., & Yuan, C. (2012). A study on the cooling effects of greening in a high-

density city: An experience from Hong Kong. Building and Environment, 47, 256–271. 

doi:10.1016/j.buildenv.2011.07.014  

Ng., Y. X. Y. (2015). A Study of Urban Heat Island using “Local Climate Zones": The Case of 

Singapore. British Journal of Environment & Climate Change, 5(2), 116–133. 

Norton, B., Coutts, A., Livesley, S., & Williams, N. (2013). Technical Report. Decision principles for 

the selection and placement of Green Infrastructure: Technical report. 

Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S.G. (2015). 

Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high 

temperatures in urban landscapes. Landscape and Urban Planning, 134, 127–138. 

doi:10.1016/j.landurbplan.2014.10.018  

Nouri, H., Anderson, S., Beecham, S., & Bruce, D. (Eds.) 2013. Estimation of Urban 

Evapotranspiration through Vegetation Indices Using WorldView2 Satellite Remote Sensing 

Images. : EFITA-WCCA-CIGR Conference Sustainable Agriculture through ICT Innovation. 

Nouri, H., Beecham, S., Anderson, S., Hassanli, A. M., & Kazemi, F. (2015). Remote sensing 

techniques for predicting evapotranspiration from mixed vegetated surfaces. Urban Water Journal, 

12(5), 380–393. doi:10.1080/1573062X.2014.900092  

Nouri, H., Beecham, S., Kazemi, F., & Hassanli, A. M. (2013). A review of ET measurement techniques 

for estimating the water requirements of urban landscape vegetation. Urban Water Journal, 10(4), 

247–259. doi:10.1080/1573062X.2012.726360  

Nouri, H., Glenn, E., Beecham, S., Chavoshi Boroujeni, S., Sutton, P., Alaghmand, S.,. . . Nagler, P. 

(2016). Comparing Three Approaches of Evapotranspiration Estimation in Mixed Urban 

Vegetation: Field-Based, Remote Sensing-Based and Observational-Based Methods. Remote 

Sensing, 8(6), 492. doi:10.3390/rs8060492  

Nunez, M., & Oke, T. R. (1977). The energy balance of an urban canyon. Journal of Applied 

Meteorology, 

Oberndorfer, E., Lundholm, J., Bass, B., Coffman R. R., Doshi, H., Dunnett, N.,. . . Rowe, B. (2007). 

Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. Bioscience, 

57(10). 

Ochoa, J. M. (1999). La vegetacion como instrumento para el control microclimatico (PhD). Universitat 

Politecnica de Catalunya, Barcelona, Spain. 

Office of Environment and Heritage (OEH). (2015). Urban Green Cover. Technical Guidelines. 

Office of Environment and Heritage (OEH). (2018). Dry sclerophyll forests (shrub/grass sub-

formation) | NSW Environment & Heritage. Retrieved from 

http://www.environment.nsw.gov.au/threatenedSpeciesApp/VegFormation.aspx?formationName=

Dry+sclerophyll+forests+(shrub%2Fgrass+sub-formation). Accessed Thursday, February 22, 2018. 

Office of the Deputy Prime Minister (ODPM). (2002a). Assessing needs and opportunities a companion 

guide to PPG17. 

Office of the Deputy Prime Minister (ODPM). (2002b). Planning Policy Guidance 17: Planning for 

open space, sport and recreation. 

Oke, T. R. (1976). The distinction between canopy and boundary-layer heat islands. Atmosphere, 

14(268–277). 



 

References  |  361 

 

Oke, T. R. (1979). Review of urban climatology 1973-1976 (No. 539). Geneva: Secretariat of the World 

Meteorological Organization. 

Oke, T. R. (1981). Canyon geometry and the nocturnal urban heat island: Comparison of scale model 

and field observations. Journal of Climatology, 1, 237–254. 

Oke, T. R. (1982). The energetic basis of the urban heat island. Quaterly Journal of the Royal 

Metereological Society, 108(455), 1–24. 

Oke, T. R. (1988a). Street design and urban canopy layer climate. Energy and Buildings, 11(1-3), 103–

113. doi:10.1016/0378-7788(88)90026-6  

Oke, T. R. (1988b). The urban energy balance. Progress in Physical Geography, 12(4), 471–508. 

Oke, T. R. (1992). Boundary Layer Climates. London [England], New York: Routledge. 

Oke, T. R. (1997). Urban environments. In W. G. Bailey, T. R. Oke, & W. R. Rouse (Eds.), The Surface 

Climates of Canada (pp. 303–327). Montreal: McGill-Queens University Press. 

Oke, T. R. (2006). Towards better scientific communication in urban climate. Theoretical and Applied 

Climatology, 84(1-3), 179–190. doi:10.1007/s00704-005-0153-0  

Oke, T. R. (Ed.) 2009. The Need to Establish Protocols in Urban Heat Island Work. : 8th Symposium 

on Urban Environments. 

Oke, T. R., Crowther, J. M., McNaughton, K. G., Monteith, J. L., & Gardiner, B. (1989). The 

Micrometeorology of the Urban Forest. Phil. Trans. R. Soc. Lond. B, 324, 335–349. 

Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban Climates: Cambridge University Press. 

Wednesday, May 30, 2018. 

Olivieri, F., Di Perna, C., D’Orazio, M., Olivieri, L., & Neila, J. (2013). Experimental measurements 

and numerical model for the summer performance assessment of extensive green roofs in a 

Mediterranean coastal climate. Energy and Buildings, 63, 1–14. doi:10.1016/j.enbuild.2013.03.054  

Olivieri, F., Olivieri, L., & Neila, J. (2014). Experimental study of the thermal-energy performance of 

an insulated vegetal façade under summer conditions in a continental mediterranean climate. 

Building and Environment, 77, 61–76. doi:10.1016/j.buildenv.2014.03.019  

Onishi, A., Cao, X., Ito, T., Shi, F., & Imura, H. (2010). Evaluating the potential for urban heat-island 

mitigation by greening parking lots. Urban Forestry & Urban Greening, 9(4), 323–332. 

doi:10.1016/j.ufug.2010.06.002  

Osmond, P. (2008). An enquiry into new methodologies for evaluating sustainable urban form (PhD 

dissertation). University of New South Wales (UNSW), Sydney. Friday, January 12, 2018. 

Osmond, P., & Sharifi, E. (2017). Guide to Urban Cooling Strategies. Sydney. 

Osmond, P., & Sharifi E. (2017). Guide to Urban Cooling Strategies. Sydney. 

Osmond, P., & Zakiur Rahman, K. M. (Eds.) 2016. Developing a leaf area index database to inform 

green infrastructure and urban microclimate research. : 4th International Conference on 

Countermeasures to Urban Heat Island: National Univeristy of Singapore. 

Ott, R. L., & Longnecker, M. T. (2004). A first course in statistical methods. Belmont, Calif.: Thomson. 

Ottelé, M., Perini, K., Fraaij, A.L.A., Haas, E. M., & Raiteri, R. (2011). Comparative life cycle analysis 

for green façades and living wall systems. Energy and Buildings, 43(12), 3419–3429. 

doi:10.1016/j.enbuild.2011.09.010  

Ouldboukhitine, S.-E., Belarbi, R., Jaffal, I., & Trabelsi, A. (2011). Assessment of green roof thermal 

behavior: A coupled heat and mass transfer model. Building and Environment, 46(12), 2624–2631. 

doi:10.1016/j.buildenv.2011.06.021  

Overwatch. (2015). Feature Analyst for ArcGIS. v5.2.0. 

Pakzad, P. (2017). CITIES WITHIN GARDENS. An indicator-based model for assessing sustainability 

performance of urban green infrastructure (PhD). The University of New South Wales, Sydney. 

Wednesday, January 03, 2018. 

Pakzad, P., & Osmond, P. (2016). Corrigendum to Developing a Sustainability Indicator Set for 

Measuring Green Infrastructure Performance. Procedia - Social and Behavioral Sciences, 216, 

1006. doi:10.1016/j.sbspro.2016.02.001  

Panduro, T. E., & Veie, K. L. (2013). Classification and valuation of urban green spaces—A hedonic 

house price valuation. Landscape and Urban Planning, 120, 119–128. 

doi:10.1016/j.landurbplan.2013.08.009  



 

362  |  References 

Parizotto, S., & Lamberts, R. (2011). Investigation of green roof thermal performance in temperate 

climate: A case study of an experimental building in Florianópolis city, Southern Brazil. Energy and 

Buildings, 43(7), 1712–1722. doi:10.1016/j.enbuild.2011.03.014  

Pauleit, S., & Duhme, F. (1998). Assessing the Metabolism of Urban Systems for Urban Planning. In J. 

Breuste, H. Feldmann, & O. Uhlmann (Eds.), Urban Ecology (pp. 65–69). Berlin, Heidelberg: 

Springer Berlin Heidelberg. 

Pauleit, S., & Duhme, F. (2000). Assessing the environmental performance of land cover types for urban 

planning. Landscape and Urban Planning, 52(1), 1–20. doi:10.1016/S0169-2046(00)00109-2  

Pauleit, S., Liu, L., Ahern, J., & Kazmierczak, A. (2014). Multifunctional Green Infrastructure Planning 

to Promote Ecological Services in the City. In J. Niemelä, J. Breuste, E. Thomas, G. Glenn, J. Philip, 

& M. N. E (Eds.), Oxford biology. Urban ecology. Patterns, processes, and applications (pp. 272–

285). Oxford, ©2011.: University Press. 

Pauleit, S., Slinn, P., Handley, J., & Lindley, S. (2003). Promoting the Natural Greenstructure of Towns 

and Cities: English Nature's Accessible Natural Greenspace Standards Model. Built Environment, 

29(2), 157–170. 

Pearlmutter, D., Jiao, D., & Garb, Y. (2014). The relationship between bioclimatic thermal stress and 

subjective thermal sensation in pedestrian spaces. International journal of biometeorology, 58(10), 

2111–2127. doi:10.1007/s00484-014-0812-x  

Pearlmutter, D., Krüger, E. L., & Berliner, P. (2009). The role of evaporation in the energy balance of 

an open-air scaled urban surface. International Journal of Climatology, 29(6), 911–920. 

doi:10.1002/joc.1752  

Peng, S.-S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z. X.,. . . Zeng, H. (2014). Afforestation in 

China cools local land surface temperature. Proceedings of the National Academy of Sciences, 

111(8), 2915–2919. doi:10.1073/pnas.1315126111  

Pérez, G., Coma, J., Martorell, I., & Cabeza, L. F. (2014). Vertical Greenery Systems (VGS) for energy 

saving in buildings: A review. Renewable and Sustainable Energy Reviews, 39, 139–165. 

doi:10.1016/j.rser.2014.07.055  

Pérez, G., Rincón, L., Vila, A., González, J. M., & Cabeza, L. F. (2011a). Behaviour of green facades 

in Mediterranean Continental climate. Energy Conversion and Management, 52(4), 1861–1867. 

doi:10.1016/j.enconman.2010.11.008  

Pérez, G., Rincón, L., Vila, A., González, J. M., & Cabeza, L. F. (2011b). Green vertical systems for 

buildings as passive systems for energy savings. Applied Energy, 88(12), 4854–4859. 

doi:10.1016/j.apenergy.2011.06.032  

Perini, K., & Magliocco, A. (2014). Effects of vegetation, urban density, building height, and 

atmospheric conditions on local temperatures and thermal comfort. Urban Forestry & Urban 

Greening, 13(3), 495–506. doi:10.1016/j.ufug.2014.03.003  

Perini, K., Ottelé, M., Fraaij, A.L.A., Haas, E. M., & Raiteri, R. (2011). Vertical greening systems and 

the effect on air flow and temperature on the building envelope. Building and Environment, 46(11), 

2287–2294. doi:10.1016/j.buildenv.2011.05.009  

Peters, E. B., Hiller, R. V., & McFadden, J. P. (2011). Seasonal contributions of vegetation types to 

suburban evapotranspiration. Journal of Geophysical Research, 116(G1). 

doi:10.1029/2010JG001463  

Peters, E. B., & McFadden, J. P. (2010). Influence of seasonality and vegetation type on suburban 

microclimates. Urban Ecosystems, 13(4), 443–460. doi:10.1007/s11252-010-0128-5  

Pickering, C., & Byrne, J. (2013). The benefits of publishing systematic quantitative literature reviews 

for PhD candidates and other early-career researchers. Higher Education Research & Development, 

33(3), 534–548. doi:10.1080/07294360.2013.841651  

Pickett, S. T. A., Cadenasso, M. L., Rosi-Marshall, E. J., Belt, K. T., Groffman, P. M., Grove, J. M.,. . . 

Warren, P. S. (2017). Dynamic heterogeneity: A framework to promote ecological integration and 

hypothesis generation in urban systems. Urban Ecosystems, 20(1), 1–14. doi:10.1007/s11252-016-

0574-9  

Pitman, S. D., Daniels, C. B., & Ely, M. E. (2015). Green infrastructure as life support: Urban nature 

and climate change. Transactions of the Royal Society of South Australia, 139(1), 97–112. 

doi:10.1080/03721426.2015.1035219  



 

References  |  363 

 

Potchter, O., Cohen, P., & Bitan, A. (2006). Climatic behavior of various urban parks during hot and 

humid summer in the mediterranean city of Tel Aviv, Israel. International Journal of Climatology, 

26(12), 1695–1711. doi:10.1002/joc.1330  

Pullin, A. S., & Stewart, G. B. (2006). Guidelines for systematic review in conservation and 

environmental management. Conservation biology : the journal of the Society for Conservation 

Biology, 20(6), 1647–1656. doi:10.1111/j.1523-1739.2006.00485.x  

QCoherent. (2012). LP360. v.2012.1.22.0. 

Qiao, Z., Tian, G., & Xiao, L. (2013). Diurnal and seasonal impacts of urbanization on the urban thermal 

environment: A case study of Beijing using MODIS data. ISPRS Journal of Photogrammetry and 

Remote Sensing, 85, 93–101. doi:10.1016/j.isprsjprs.2013.08.010  

Quattrochi, D. A., & Ridd, M. K. (1994). Measurement and analysis of thermal energy responses from 

discrete urban surfaces using remote sensing data. International Journal of Remote Sensing, 15(10), 

1991–2022. doi:10.1080/01431169408954224  

Rahman, M. A., Moser, A., Rötzer, T., & Pauleit, S. (2017). Within canopy temperature differences and 

cooling ability of Tilia cordata trees grown in urban conditions. Building and Environment, 114, 

118–128. doi:10.1016/j.buildenv.2016.12.013  

Rashid, Z. A., Al Junid, S. A. M., & Thani, S. K. S. O. (2014). Trees’ cooling effect on surrounding air 

temperature monitoring system: Implementation and observation. International Journal of 

Simulation, 15(2), 70–77. 

Rasul, A., Balzter, H., & Smith, C. (2015). Spatial variation of the daytime Surface Urban Cool Island 

during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Climate, 14, 176–186. 

doi:10.1016/j.uclim.2015.09.001  

Razzaghmanesh, M., Beecham, S., & Salemi, T. (2016). The role of green roofs in mitigating Urban 

Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban Forestry & Urban 

Greening, 15, 89–102. doi:10.1016/j.ufug.2015.11.013  

Realmuto, V. J. (Ed.) 1990. Separating the effects of temperature and emissivity: Emissivity spectrum 

normalization. : 2nd TIMS Workshop. Pasadena, CA: pp. 31–36. 

Rotem-Mindali, O., Michael, Y., Helman, D., & Lensky, I. M. (2015). The role of local land-use on the 

urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Applied Geography, 

56, 145–153. doi:10.1016/j.apgeog.2014.11.023  

Roth, M. (2012). Urban Heat Islands. In Handbook of Environmental Fluid Dynamics, Volume Two 

(pp. 143–160). CRC Press. 

Roy, S., Byrne, J., & Pickering, C. (2012). A systematic quantitative review of urban tree benefits, costs, 

and assessment methods across cities in different climatic zones. Urban Forestry & Urban 

Greening, 11(4), 351–363. doi:10.1016/j.ufug.2012.06.006  

Rupprecht, C. D.D., Byrne, J. A., Garden, J. G., & Hero, J.-M. (2015). Informal urban green space: A 

trilingual systematic review of its role for biodiversity and trends in the literature. Urban Forestry 

& Urban Greening, 14(4), 883–908. doi:10.1016/j.ufug.2015.08.009  

Ryu, Y.-H., Bou-Zeid, E., Wang, Z.-H., & Smith, J. A. (2015). Realistic Representation of Trees in an 

Urban Canopy Model. Boundary-Layer Meteorology. doi:10.1007/s10546-015-0120-y  

Salata, F., Golasi, I., Petitti, D., Lieto Vollaro, E. de, Coppi, M., & Lieto Vollaro, A. de. (2017). Relating 

microclimate, human thermal comfort and health during heat waves: An analysis of heat island 

mitigation strategies through a case study in an urban outdoor environment. Sustainable Cities and 

Society, 30, 79–96. doi:10.1016/j.scs.2017.01.006  

Santamouris, M. (2014). Cooling the cities – A review of reflective and green roof mitigation 

technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 

682–703. doi:10.1016/j.solener.2012.07.003  

Santamouris, M. (2015). Regulating the damaged thermostat of the cities—Status, impacts and 

mitigation challenges. Energy and Buildings, 91, 43–56. doi:10.1016/j.enbuild.2015.01.027  

Santamouris, M., Haddad, S., Fiorito, F., Osmond, P., Ding, L., Prasad, D.,. . . Wang, R. (2017). Urban 

Heat Island and Overheating Characteristics in Sydney, Australia. An Analysis of Multiyear 

Measurements. Sustainability, 9(5), 712. doi:10.3390/su9050712  

Scheitlin, K. N., & Dixon, P. G. (2010). Diurnal Temperature Range Variability due to Land Cover and 

Airmass Types in the Southeast. Journal of Applied Meteorology and Climatology, 49(5), 879–888. 

doi:10.1175/2009JAMC2322.1  



 

364  |  References 

Schilling, J., & Logan, J. (2008). Greening the Rust Belt: A Green Infrastructure Model for Right Sizing 

America's Shrinking Cities. Journal of the American Planning Association, 74(4), 451–466. 

Schwarz, N., Schlink, U., Franck, U., & Großmann, K. (2012). Relationship of land surface and air 

temperatures and its implications for quantifying urban heat island indicators—An application for 

the city of Leipzig (Germany). Ecological Indicators, 18, 693–704. 

doi:10.1016/j.ecolind.2012.01.001  

Schweitzer, O., & Erell, E. (2014). Evaluation of the energy performance and irrigation requirements 

of extensive green roofs in a water-scarce Mediterranean climate. Energy and Buildings, 68, 25–32. 

doi:10.1016/j.enbuild.2013.09.012  

Shahidan, M. F., Jones, P. J., Gwilliam, J., & Salleh, E. (2012). An evaluation of outdoor and building 

environment cooling achieved through combination modification of trees with ground materials. 

Building and Environment, 58, 245–257. doi:10.1016/j.buildenv.2012.07.012  

Shahidan, M. F., Shariff, M. K.M., Jones, P., Salleh, E., & Abdullah, A. M. (2010). A comparison of 

Mesua ferrea L. and Hura crepitans L. for shade creation and radiation modification in improving 

thermal comfort. Landscape and Urban Planning, 97(3), 168–181. 

doi:10.1016/j.landurbplan.2010.05.008  

Shashua-Bar, L., & Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an 

urban street. An empirical model for predicting the cooling effect of urban green areas with trees. 

Energy and Buildings, 31, 221–235. 

Shashua-Bar, L., Pearlmutter, D., & Erell, E. (2011). The influence of trees and grass on outdoor thermal 

comfort in a hot-arid environment. International Journal of Climatology, 31(10), 1498–1506. 

doi:10.1002/joc.2177  

Shashua-Bar, L., Potchter, O., Bitan, A., Boltansky, D., & Yaakov, Y. (2010). Microclimate modelling 

of street tree species effects within the varied urban morphology in the Mediterranean city of Tel 

Aviv, Israel. International Journal of Climatology, n/a-n/a. doi:10.1002/joc.1869  

Shashua-Bar, L., Tsiros, I. X., & Hoffman, M. (2012). Passive cooling design options to ameliorate 

thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. 

Building and Environment, 57, 110–119. doi:10.1016/j.buildenv.2012.04.019  

Shashua-Bar, L., Tsiros, I. X., & Hoffman, M. E. (2010). A modeling study for evaluating passive 

cooling scenarios in urban streets with trees. Case study: Athens, Greece. Building and Environment, 

45(12), 2798–2807. doi:10.1016/j.buildenv.2010.06.008  

Sheate, W., Eales, R., Day, E., Baker, J., Murdoch, A., Hill, C.,. . . Karpouzoglou, T. (2012). Spatial 

representation and specification of Ecosystem Services: A Methodology using land use/land cover 

data and stakeholder Engagement. Journal of Environmental Assessment Policy and Management, 

14(01), 1250001. doi:10.1142/S1464333212500019  

Shen, M., Piao, S., Jeong, S.-J., Zhou, L., Zeng, Z., Ciais, P.,. . . Yao, T. (2015). Evaporative cooling 

over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of 

Sciences, 112(30), 9299–9304. doi:10.1073/pnas.1504418112  

Shen, X., Liu, B., Li, G., Yu, P., & Zhou, D. (2015). Impacts of grassland types and vegetation cover 

changes on surface air temperature in the regions of temperate grassland of China. Theoretical and 

Applied Climatology. doi:10.1007/s00704-015-1567-y  

Skarbit, N., Gál, T., & Unger, J. (Eds.) 2015. Airborne surface temperature differences of the different 

Local Climate Zones in the urban area of a medium sized city. : Joint Urban Remote Sensing Event 

(JURSE), 2015. 

Skelhorn, C., Lindley, S., & Levermore, G. (2014). The impact of vegetation types on air and surface 

temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban 

Planning, 121, 129–140. doi:10.1016/j.landurbplan.2013.09.012  

Skoulika, F., Santamouris, M., Kolokotsa, D., & Boemi, N. (2014). On the thermal characteristics and 

the mitigation potential of a medium size urban park in Athens, Greece. Landscape and Urban 

Planning, 123, 73–86. doi:10.1016/j.landurbplan.2013.11.002  

Smith, K. R., & Roebber, P. J. (2011). Green Roof Mitigation Potential for a Proxy Future Climate 

Scenario in Chicago, Illinois. Journal of Applied Meteorology and Climatology, 50(3), 507–522. 

doi:10.1175/2010JAMC2337.1  

Snir, K., Pearlmutter, D., & Erell, E. (2016). The moderating effect of water-efficient ground cover 

vegetation on pedestrian thermal stress. Landscape and Urban Planning, 152, 1–12. 

doi:10.1016/j.landurbplan.2016.04.008  



 

References  |  365 

 

Sobrino, J. A., Jimenez-Muoz, J. C., Soria, G., Romaguera, M., Guanter, L., Moreno, J.,. . . Martinez, 

P. (2008). Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors. IEEE 

Transactions on Geoscience and Remote Sensing, 46(2), 316–327. doi:10.1109/TGRS.2007.904834  

Song, J., Du, S., Feng, X., & Guo, L. (2014). The relationships between landscape compositions and 

land surface temperature: Quantifying their resolution sensitivity with spatial regression models. 

Landscape and Urban Planning, 123, 145–157. doi:10.1016/j.landurbplan.2013.11.014  

Song, J., & Wang, Z.-H. (2015). Impacts of mesic and xeric urban vegetation on outdoor thermal 

comfort and microclimate in Phoenix, AZ. Building and Environment, 94, 558–568. 

doi:10.1016/j.buildenv.2015.10.016  

Spagnolo, J., & Dear, R. d. (2003a). A field study of thermal comfort in outdoor and semi-outdoor 

environments in subtropical Sydney Australia. Building and Environment, 38(5), 721–738. 

doi:10.1016/S0360-1323(02)00209-3  

Spagnolo, J., & Dear, R. d. (2003b). A human thermal climatology of subtropical Sydney. International 

Journal of Climatology, 23(11), 1383–1395. doi:10.1002/joc.939  

Spronken-Smith, R. A., & Oke, T. R. (1998). The thermal regime of urban parks in two cities with 

different summer climates. International Journal of Remote Sensing, 19(11), 2085–2104. 

doi:10.1080/014311698214884  

Spronken‐Smith, R. A., Oke, T. R., & Lowry, W. P. (2000). Advection and the surface energy balance 

across an irrigated urban park. International Journal of Climatology, 20. doi:10.1002/1097-

0088(200007)20:9<1033::AID-JOC508>3.0.CO;2-U  

Srivanit, M., & Hokao, K. (2013). Evaluating the cooling effects of greening for improving the outdoor 

thermal environment at an institutional campus in the summer. Building and Environment, 66, 158–

172. doi:10.1016/j.buildenv.2013.04.012  

Stathopoulos, T., Chiovitti, D., & Dodaro, L. (1994). Wind shielding effects of trees on low buildings. 

Building and Environment, 29(2), 141–150. doi:10.1016/0360-1323(94)90065-5  

Steeneveld, G. J., Koopmans, S., Heusinkveld, B. G., van Hove, L. W. A., & Holtslag, A. A. M. (2011). 

Quantifying urban heat island effects and human comfort for cities of variable size and urban 

morphology in the Netherlands. Journal of Geophysical Research, 116(D20). 

doi:10.1029/2011JD015988  

Steffen, W., Persson, Å., Deutsch, L., Zalasiewicz, J., Williams, M., Richardson, K.,. . . Svedin, U. 

(2011). The Anthropocene: From Global Change to Planetary Stewardship. AMBIO, 40(7), 739–

761. doi:10.1007/s13280-011-0185-x  

Sternberg, T., Viles, H., & Cathersides, A. (2011). Evaluating the role of ivy (Hedera helix) in 

moderating wall surface microclimates and contributing to the bioprotection of historic buildings. 

Building and Environment, 46(2), 293–297. doi:10.1016/j.buildenv.2010.07.017  

Stewart, I. D. (2011a). A systematic review and scientific critique of methodology in modern urban heat 

island literature. International Journal of Climatology, 31(2), 200–217. doi:10.1002/joc.2141  

Stewart, I. D. (2011b). Redefining the Urban Heat Island (Doctor of Philosophy - PhD). University of 

British Columbia, Canada. Saturday, October 31, 2015. 

Stewart, I. D., & Oke, T. R. (Eds.) 2009. Newly developed “thermal climate zones” for defining and 

measuring urban heat island “magnitude” in the canopy layer. : T.R. Oke Symposium & 8th 

Symposium on Urban Environment. USA. 

Stewart, I. D., & Oke, T. R. (Eds.) 2010. Thermal differentiation of local climate zones using 

temperature observations from urban and rural field sites. : 9th Symposium, on Urban Environment. 

Keystone, CO. 

Stewart, I. D., & Oke, T. R. (2012). Local Climate Zones for Urban Temperature Studies. Bulletin of 

the American Meteorological Society, 93(12), 1879–1900. doi:10.1175/BAMS-D-11-00019.1  

Stewart, I. D., Oke, T. R., & Krayenhoff, E. S. (2014). Evaluation of the ‘local climate zone’ scheme 

using temperature observations and model simulations. International Journal of Climatology, 34(4), 

1062–1080. doi:10.1002/joc.3746  

Stocco, S., Cantón, M. A., & Correa, E. N. (2015). Design of urban green square in dry areas: Thermal 

performance and comfort. Urban Forestry & Urban Greening, 14(2), 323–335. 

doi:10.1016/j.ufug.2015.03.001  



 

366  |  References 

Su, W., Zhang, Y., Yang, Y., & Ye, G. (2014). Examining the Impact of Greenspace Patterns on Land 

Surface Temperature by Coupling LiDAR Data with a CFD Model. Sustainability, 6(10), 6799–

6814. doi:10.3390/su6106799  

Sun, H., Chen, Y., & Zhan, W. (2015). Comparing surface- and canopy-layer urban heat islands over 

Beijing using MODIS data. International Journal of Remote Sensing, 36(21), 5448–5465. 

Sun, R., Chen, A., Chen, L., & Lü, Y. (2012). Cooling effects of wetlands in an urban region: The case 

of Beijing. Ecological Indicators, 20, 57–64. doi:10.1016/j.ecolind.2012.02.006  

Sun, R., & Chen, L. (2012). How can urban water bodies be designed for climate adaptation? Landscape 

and Urban Planning, 105(1-2), 27–33. doi:10.1016/j.landurbplan.2011.11.018  

Sun, S., Xu, X., Lao, Z., Liu, W., Li, Z., Higueras García, E.,. . . Zhu, J. (2017). Evaluating the impact 

of urban green space and landscape design parameters on thermal comfort in hot summer by 

numerical simulation. Building and Environment, 123, 277–288. 

doi:10.1016/j.buildenv.2017.07.010  

Sung, C. Y. (2013). Mitigating surface urban heat island by a tree protection policy: A case study of 

The Woodland, Texas, USA. Urban Forestry & Urban Greening, 12(4), 474–480. 

doi:10.1016/j.ufug.2013.05.009  

Susca, T., Gaffin, S. R., & Dell'osso, G. R. (2011). Positive effects of vegetation: urban heat island and 

green roofs. Environmental pollution (Barking, Essex : 1987), 159(8-9), 2119–2126. 

doi:10.1016/j.envpol.2011.03.007  

Susorova, I. (2015). Green facades and living walls: vertical vegetation as a construction material to 

reduce building cooling loads. In F. Pacheco-Torgal, J. A. Labrincha, L. F. Cabeza, & C.-G. 

Granqvist (Eds.), Eco-efficient materials for mitigating building cooling needs: Design, properties 

and applications (pp. 127–153). Woodhead Publishing. Thursday, March 31, 2016. 

Susorova, I., Angulo, M., Bahrami, P., & Brent Stephens. (2013). A model of vegetated exterior facades 

for evaluation of wall thermal performance. Building and Environment, 67, 1–13. 

doi:10.1016/j.buildenv.2013.04.027  

Susorova, I., Azimi, P., & Stephens, B. (2014). The effects of climbing vegetation on the local 

microclimate, thermal performance, and air infiltration of four building facade orientations. Building 

and Environment, 76, 113–124. doi:10.1016/j.buildenv.2014.03.011  

Szulczewska, B. (2012). Spatial planning measures for green infrastructure protection and 

development: Urban biodiversity and green infrastructure. Lecture notes. Brussels. 

Taha, H. (1997). Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. 

Energy and Buildings, 25, 99–103. 

Taha, H., Akbari, H., & Rosenfeld, A. (1991). Heat island and oasis effects of vegetative canopies: 

Micro-meteorological field-measurements. Theoretical and Applied Climatology, 44, 123–138. 

Taleghani, M. (2017). Outdoor thermal comfort by different heat mitigation strategies- A review. 

Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2017.06.010  

Taleghani, M., Sailor, D., & Ban-Weiss, G. A. (2016). Micrometeorological simulations to predict the 

impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. 

Environmental Research Letters, 11(2), 24003. doi:10.1088/1748-9326/11/2/024003  

Taleghani, M., Sailor, D. J., Tenpierik, M., & van den Dobbelsteen, A. (2014). Thermal assessment of 

heat mitigation strategies: The case of Portland State University, Oregon, USA. Building and 

Environment, 73, 138–150. doi:10.1016/j.buildenv.2013.12.006  

Tan, C. L., Wong, N. H., & Jusuf, S. K. (2014). Effects of vertical greenery on mean radiant temperature 

in the tropical urban environment. Landscape and Urban Planning, 127, 52–64. 

doi:10.1016/j.landurbplan.2014.04.005  

Tan, C. L., Wong, N. H., Tan, P. Y., Jusuf, S. K., & Chiam, Z. Q. (2015). Impact of plant 

evapotranspiration rate and shrub albedo on temperature reduction in the tropical outdoor 

environment. Building and Environment, 94, 206–217. doi:10.1016/j.buildenv.2015.08.001  

Tan, M., & Li, X. (2013). Integrated assessment of the cool island intensity of green spaces in the mega 

city of Beijing. International Journal of Remote Sensing, 34(8), 3028–3043. 

doi:10.1080/01431161.2012.757377  

Tan, Z., Lau, K. K.-L., & Ng, E. (2015). Urban tree design approaches for mitigating daytime urban 

heat island effects in a high-density urban environment. Energy and Buildings. 

doi:10.1016/j.enbuild.2015.06.031  



 

References  |  367 

 

Tan, Z., Lau, K. K.-L., & Ng, E. (2017). Planning strategies for roadside tree planting and outdoor 

comfort enhancement in subtropical high-density urban areas. Building and Environment, 120, 93–

109. doi:10.1016/j.buildenv.2017.05.017  

Tang, H., & Li, Z. (2014). Quantitative Remote Sensing in Thermal Infrared: Theory and Applications. 

Berlin: Springer. Monday, January 08, 2018. 

Tayyebi, A., & Darrel, J. G. (2016). Increases in the climate change adaption effectiveness and 

availability of vegetation across a coastal to desert climate gradient in metropolitan Los Angeles, 

CA, USA. The Science of the total environment, 548-549, 60–71. 

doi:10.1016/j.scitotenv.2016.01.049  

TEP. (2005). East Midlands Green Infrastructure Scoping Study. Final report: Prepared for East 

Midlands Regional Assembly and partners. 

The Mersey Forest (TMF). (2010). Liverpool Green Infrastructure Strategy: Technical Document. 

Version 1.0. Liverpool, UK. 

The Mersey Forest (TMF). (2011). The Value of Mapping Green Infrastructure. London. 

The Scottish Government (TSG). (2008). Planning Advice Note: PAN 65 Planning and Open Space. 

UK. 

Theil, H. (1961). Economic Forecasts and Policy - Second Revised Edition: Amsterdam, The 

Netherlands, North-Holland Publishing Company. 

Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic 

Geography, 46, 234. doi:10.2307/143141  

Tooke, T. R., Coops, N. C., Goodwin, N. R., & Voogt, J. A. (2009). Extracting urban vegetation 

characteristics using spectral mixture analysis and decision tree classifications. Remote Sensing of 

Environment, 113(2), 398–407. doi:10.1016/j.rse.2008.10.005  

Tsiros, I. X. (2010). Assessment and energy implications of street air temperature cooling by shade tress 

in Athens (Greece) under extremely hot weather conditions. Renewable Energy, 35(8), 1866–1869. 

doi:10.1016/j.renene.2009.12.021  

Tsiros, I. X., & Hoffman, M. E. (2014). Thermal and comfort conditions in a semi-closed rear wooded 

garden and its adjacent semi-open spaces in a Mediterranean climate (Athens) during summer. 

Architectural Science Review, 57(1), 63–82. doi:10.1080/00038628.2013.829021  

Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., & James, P. (2007). 

Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature 

review. Landscape and Urban Planning, 81(3), 167–178. doi:10.1016/j.landurbplan.2007.02.001  

United Nations (UN). (2012). World Urbanization Prospects The 2011 Revision. New York,. 

United States Environmental Protection Agency (EPA). (2011). Evaluation of Urban Soils: Suitability 

for Green Infrastructure or Urban Agriculture. Retrieved from 

http://water.epa.gov/infrastructure/greeninfrastructure/upload/Evaluation-of-Urban-Soils.pdf. 

Accessed Thursday, June 18, 2015. 

United States Geological Survey (USGS). (1992). Multi-resolution land characteristics. Retrieved from 

http://www.mrlc.gov/. Accessed Sunday, December 20, 2015. 

United States Geological Survey (USGS). (2003). National land cover classification. Retrieved from 

http://landcover.usgs.gov/usgslandcover.php. Accessed Sunday, December 20, 2015. 

Upmanis, H., Eliasson, I., & Linqvist, S. (1998). The influence of green areas on nocturnal temperatures 

in a high latitude city (Göteborg, Sweden). International Journal of Climatology, 18, 681–700. 

van Hove, L.W.A., Jacobs, C.M.J., Heusinkveld, B. G., Elbers, J. A., van Driel, B. L., & Holtslag, 

A.A.M. (2015). Temporal and spatial variability of urban heat island and thermal comfort within the 

Rotterdam agglomeration. Building and Environment, 83, 91–103. 

doi:10.1016/j.buildenv.2014.08.029  

Vaz Monteiro, M., Doick, K. J., Handley, P., & Peace, A. (2016). The impact of greenspace size on the 

extent of local nocturnal air temperature cooling in London. Urban Forestry & Urban Greening, 16, 

160–169. doi:10.1016/j.ufug.2016.02.008  

Victorial Environmental Assessment Council (VEAC). (2011). Metropolitan Melbourne investigation 

final report. East Melbourne, Vic. 

Vidrih, B., & Medved, S. (2013). Multiparametric model of urban park cooling island. Urban Forestry 

& Urban Greening, 12(2), 220–229. doi:10.1016/j.ufug.2013.01.002  



 

368  |  References 

Völker, S., Baumeister, H., Claßen, T., Hornberg, C., & Kistemann, T. (2013). Evidence for the 

temperature-mitigating capacity of urban blue space – a health geographic perspective. Erdkunde, 

67(04), 355–371. doi:10.3112/erdkunde.2013.04.05  

Voogt, J. A. (2002). Urban Heat Island. In T. Munn I., M. C. Douglas, MacCracken H. A., P. Mooney, 

M. K. Timmerman, & J. G. Tolba (Eds.), Encyclopedia of Global Environmental Change (pp. 660–

666). Chichester, UK: Wiley. 

Voogt, J. A., & Oke, T. R. (1997). Complete Urban Surface Temperatures. Journal of Applied 

Meteorology, 36(9), 1117–1132. doi:10.1175/1520-0450(1997)036<1117:CUST>2.0.CO;2  

Voogt, J.A., & Oke, T.R. (2003). Thermal remote sensing of urban climates. Remote Sensing of 

Environment, 86(3), 370–384. doi:10.1016/S0034-4257(03)00079-8  

Wang, C., Middel, A., Myint, S. W., Kaplan, S., Brazel, A. J., & Lukasczyk, J. (2018). Assessing local 

climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada. ISPRS Journal 

of Photogrammetry and Remote Sensing, 141, 59–71. doi:10.1016/j.isprsjprs.2018.04.009  

Wang, M., Xiong, Z., & Yan, X. (2015). Modeling the climatic effects of the land use/cover change in 

eastern China. Physics and Chemistry of the Earth, Parts A/B/C, 87-88, 97–107. 

doi:10.1016/j.pce.2015.07.009  

Wang, X.-J. (2001). Type, quantity and layout of urban peripheral green space. Journal of Forestry 

Research, 12(1), 67–70. 

Wang, Y., Bakker, F., Groot, R. de, Wörtche, H., & Leemans, R. (2015). Effects of urban green 

infrastructure (UGI) on local outdoor microclimate during the growing season. Environmental 

monitoring and assessment, 187(12). doi:10.1007/s10661-015-4943-2  

Wang, Z., Xing, W., Huang, Y., & Xie, T. (2016). Studying the Urban Heat Island Using a Local 

Climate Zone Scheme. Polish Journal of Environmental Studies, 25(6), 2609–2616. 

doi:10.15244/pjoes/63672  

Wang, Z.-H., Zhao, X., Yang, J., & Song, J. (2016). Cooling and energy saving potentials of shade trees 

and urban lawns in a desert city. Applied Energy, 161, 437–444. 

doi:10.1016/j.apenergy.2015.10.047  

Ward, M., & Gleditsch, K. (2008). Spatial Regression Models. 2455 Teller Road, Thousand 

Oaks California 91320 United States of America: SAGE Publications, Inc. 

WaterNSW. (2018). Sydney's Water supply. Retrieved from http://www.waternsw.com.au/home. 

Accessed. 

Weber, T. C., & Allen, W. L. (2010). Beyond on-site mitigation: An integrated, multi-scale approach 

to environmental mitigation and stewardship for transportation projects. Landscape and Urban 

Planning, 96(4), 240–256. doi:10.1016/j.landurbplan.2010.04.003  

Weier, J. & Herring, D. (2000). Measuring Vegetation (NDVI & EVI) : Feature Articles. Retrieved from 

https://earthobservatory.nasa.gov/Features/MeasuringVegetation/. Accessed Monday, March 12, 

2018. 

Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: 

Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 

335–344. doi:10.1016/j.isprsjprs.2009.03.007  

Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, 

and trends. Remote Sensing of Environment, 117, 34–49. doi:10.1016/j.rse.2011.02.030  

Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance 

relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. 

doi:10.1016/j.rse.2003.11.005  

Wicki, A., & Parlow, E. (2017). Attribution of local climate zones using a multitemporal land use/land 

cover classification scheme. Journal of Applied Remote Sensing, 11(2), 026001-16. 

doi:10.1117/1.JRS.11.026001  

Wickop, E. (1998). Environmental Quality Targets for Urban Structural Units in Leipzig with a View 

to Sustainable Urban Development. In J. Breuste, H. Feldmann, & O. Uhlmann (Eds.), Urban 

Ecology (pp. 49–54). Berlin, Heidelberg: Springer Berlin Heidelberg. 

Willemsen, P., & Pardyjak, E. R. (2012). Impact of Green Infrastructure on Urban Microclimate & Air 

Quality: Lecture Notes. 



 

References  |  369 

 

Williams, N.S.G., Rayner, J. P., & Raynor, K. J. (2010). Green roofs for a wide brown land: 

Opportunities and barriers for rooftop greening in Australia. Urban Forestry & Urban Greening, 

9(3), 245–251. doi:10.1016/j.ufug.2010.01.005  

Williamson, K. S. (2003). Growing with Green Infrastructure. 

Wilmers, F. (1988). Green for melioration of urban climate. Energy and Buildings, 11(1-3), 289–299. 

doi:10.1016/0378-7788(88)90045-X  

Wong, K. K. (2011). Urban Open Space System in Northern Kowloon Peninsula: An emerging Green 

Infrastructure network in Hong Kong. Asian Geographer, 27(1-2), 13–28. 

doi:10.1080/10225706.2010.9684150  

Wong, N. H., & Jusuf, S. K. (2010). Study on the microclimate condition along a green pedestrian 

canyon in Singapore. Architectural Science Review, 53(2), 196–212. doi:10.3763/asre.2009.0029  

Wong, N.-H., & Chen, Y. (2010). The Role of Urban Greenery. In E. Ng (Ed.), High-Density Cities. 

The Role of Urban Greenery (pp. 227–262). 

Wong, N.-H., Kwang Tan, A. Y., Chen, Y., Sekar, K., Tan, P. Y.,. . . Wong, N. C. (2010). Thermal 

evaluation of vertical greenery systems for building walls. Building and Environment, 45(3), 663–

672. doi:10.1016/j.buildenv.2009.08.005  

Woolley, H. (2006). Urban Open Spaces. London & New York: Spon Press & Taylor and Francis 

Group. 

Xiao, J. (2014). Satellite evidence for significant biophysical consequences of the “Grain for Green” 

Program on the Loess Plateau in China. Journal of Geophysical Research: Biogeosciences, 119(12), 

2261–2275. doi:10.1002/2014JG002820  

Xu, J., Wei, Q., Huang, X., Zhu, X., & Li, G. (2010). Evaluation of human thermal comfort near urban 

waterbody during summer. Building and Environment, 45(4), 1072–1080. 

doi:10.1016/j.buildenv.2009.10.025  

Yahia, M. W., & Johansson, E. (2014). Landscape interventions in improving thermal comfort in the 

hot dry city of Damascus, Syria—The example of residential spaces with detached buildings. 

Landscape and Urban Planning, 125, 1–16. doi:10.1016/j.landurbplan.2014.01.014  

Yang, F., Lau, S. S.Y., & Qian, F. (2011). Thermal comfort effects of urban design strategies in high-

rise urban environments in a sub-tropical climate. Architectural Science Review, 54(4), 285–304. 

doi:10.1080/00038628.2011.613646  

Yang, W., Wong, N. H., & Li, C.-Q. (2016). Effect of Street Design on Outdoor Thermal Comfort in 

an Urban Street in Singapore. Journal of Urban Planning and Development, 142(1), 5015003. 

doi:10.1061/(ASCE)UP.1943-5444.0000285  

Yang, X., Li, Y., Luo, Z., & Chan, P. W. (2017). The urban cool island phenomenon in a high-rise high-

density city and its mechanisms. International Journal of Climatology, 37(2), 890–904. 

doi:10.1002/joc.4747  

Young, R., Zanders, J., Lieberknecht, K., & Fassman-Beck, E. (2014). A comprehensive typology for 

mainstreaming urban green infrastructure. Journal of Hydrology, 519, 2571–2583. 

doi:10.1016/j.jhydrol.2014.05.048  

Youngquist, T. D. (2009). What is green infrastructure? An evaluation of green infrastructure plans 

from across the United States (Master thesis). Iowa State University. Thursday, June 18, 2015. 

Zakšek, K., Oštir, K., & Kokalj, Ž. (2011). Sky-View Factor as a Relief Visualization Technique. 

Remote Sensing, 3(12), 398–415. doi:10.3390/rs3020398  

Zhang, Z., Lv, Y., & Pan, H. (2013). Cooling and humidifying effect of plant communities in subtropical 

urban parks. Urban Forestry & Urban Greening, 12(3), 323–329. doi:10.1016/j.ufug.2013.03.010  

Zhao, C. (2018). Linking the Local Climate Zones and land surface temperature to investigate the 

surface urban heat island, a case study of San Antonio Texas, U.S. ISPRS Annals of 

Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-3, 277–283. 

doi:10.5194/isprs-annals-IV-3-277-2018  

Zhao, T. F., & Fong, K. F. (2017). Characterization of different heat mitigation strategies in landscape 

to fight against heat island and improve thermal comfort in hot–humid climate (Part I): Measurement 

and modelling. Sustainable Cities and Society, 32, 523–531. doi:10.1016/j.scs.2017.03.025  

Zhao-wu, Y. U., Qing-hai, G. U. O., & Ran-hao, S. U. N. (2015). Impacts of urban cooling effect based 

on landscape scale: A review. (基于景观尺度的城市冷岛效应研究综述). Chinese Journal of 

Applied Ecology, 26(2), 636–642. 



 

370  |  References 

Zheng, B., Myint, S. W., & Fan, C. (2014). Spatial configuration of anthropogenic land cover impacts 

on urban warming. Landscape and Urban Planning, 130, 104–111. 

doi:10.1016/j.landurbplan.2014.07.001  

Zheng, S., Zhao, L., & Li, Q. (2016). Numerical simulation of the impact of different vegetation species 

on the outdoor thermal environment. Urban Forestry & Urban Greening, 18, 138–150. 

doi:10.1016/j.ufug.2016.05.008  

Zheng, Y., Ren, C., Wang, R., Ho, J., Lau, K., & Ng, E. (Eds.) 2016. GIS-based Mapping of Local 

Climate Zone in the High-density City of Hong Kong. : 4th International Conference on 

Countermeasures to Urban Heat Island. Singapore. 

Zheng, Y., Ren, C., Xu, Y., Wang, R., Ho, J., Lau, K., & Ng, E. (2017). GIS-based mapping of Local 

Climate Zone in the high-density city of Hong Kong. Urban Climate. 

doi:10.1016/j.uclim.2017.05.008  

Zhongli, L., & Hanqiu, X. (2016). A study of Urban heat island intensity based on “local climate zones”: 

A case study in Fuzhou, China. In Q. Weng (Ed.), Proceedings of EORSA 2016. The Fourth 

International Workshop on Earth Observation and Remote Sensing Applications (EORSA 2016) 

(pp. 250–254). [Piscataway, New Jersey]: IEEE. 

Zhou, J., Chen, Y., Zhang, X., & Zhan, W. (2013). Modelling the diurnal variations of urban heat islands 

with multi-source satellite data. International Journal of Remote Sensing, 34(21), 7568–7588. 

doi:10.1080/01431161.2013.821576  

Zhou, W., Cadenasso, M., Schwarz, K., & Pickett, S. (2014). Quantifying Spatial Heterogeneity in 

Urban Landscapes: Integrating Visual Interpretation and Object-Based Classification. Remote 

Sensing, 6(4), 3369–3386. doi:10.3390/rs6043369  

Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter?: Understanding 

the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and 

Urban Planning, 102(1), 54–63. doi:10.1016/j.landurbplan.2011.03.009  

Zhou, W., Qian, Y., Li, X., Li, W., & Han, L. (2014). Relationships between land cover and the surface 

urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover 

data on predicting land surface temperatures. Landscape Ecology, 29(1), 153–167. 

doi:10.1007/s10980-013-9950-5  

Zhou, W., & Troy, A. (2009). Development of an object-based framework for classifying and 

inventorying human-dominated forest ecosystems. International Journal of Remote Sensing, 30(23), 

6343–6360. doi:10.1080/01431160902849503  

Zhou, Y., & Shepherd, J. M. (2010). Atlanta’s urban heat island under extreme heat conditions and 

potential mitigation strategies. Natural Hazards, 52(3), 639–668. doi:10.1007/s11069-009-9406-z  

Zinzi, M., & Agnoli, S. (2012). Cool and green roofs. An energy and comfort comparison between 

passive cooling and mitigation urban heat island techniques for residential buildings in the 

Mediterranean region. Energy and Buildings, 55, 66–76. doi:10.1016/j.enbuild.2011.09.024  

Zupancic, T., Westmacott, C., & Buyung-Ali, L. (2015). The impact of green space on heat and air 

pollution in urban communities: A meta-narrative systematic review. Vancouver, Canada. 

Žuvela-Aloise, M., Koch, R., Buchholz, S., & Früh, B. (2016). Modelling the potential of green and 

blue infrastructure to reduce urban heat load in the city of Vienna. Climatic Change, 135(3-4), 425–

438. doi:10.1007/s10584-016-1596-2  

 

 

 

 

 

 

 

 

 

 

 



 

Appendices  |  371 

 

 

Appendices 

Appendix A – 

List of questions used for the systematic review of 

studies analysing the cooling effects of green 

infrastructure 

 

1. Which countries are more actively researching on the topic and what is the geographic 

distribution of publications (affiliations)? 

2. What locations and climates zones were investigated most and why? 

3. What are the seasons and times of the day on which studies concentrated most? 

4. Which type of equipment and instruments were employed for collecting relevant data? 

5. What are the typical times, frequency and duration of measurements? 

6. Which datasets were commonly employed by studies and what are the typical data sources 

and resolutions (spatial and temporal)? 

7. What are the main research focus or interest of studies? 

8. Which green infrastructure types receive most attention and why? 

9. What are the available methods, approaches and indicators of investigation and what are 

the advantages and disadvantages of one over another? 

10. What are the climatological scales that are studied most? 

11. What is the relationship between climatological scales and green infrastructure types 

investigated? 
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Appendix B –  

Key extracted information from reviewed studies assessing the cooling effects of green 

infrastructure (ordered by author and year) 

 Geographic patterns Investigation period Methodological aspects 

# Author (year) Country Study area Climate1 Season2 Duration (year) Time 

of day3 

Study 

Design4 

Scale5 Topic  

(sub-topic)6 

Methods7 GI 

Type8 

GI features / 

comparator 

001 Abreu-Harbich et al. 
(2015) 

Brazil Campinas Cfa Su. Wi Several months (2007, 
2010) 

DT, NT LN Mi AIRT (HTC) OS-Fx, 
NMS 

TC 12 tree species  

002 Adams and Smith 

(2014) 

Australia Sydney Cfb Su Dec 2000 - Feb 2001 - LN Me SUT RS, NMS TC-GOS Several GOS / 

non-grass  
003 Alavipanah et al. (2015) Germany Munich Cfb Su 11 years (2002-12) DT, NT LN Me SUT RS, NMS TC-GOS Several LULC /  

built-up  
004 Al-Gretawee et al. 

(2016) 
Australia Melbourne Cfb Au April-May (2015) DT, NT LN Lo, Mi AIRT/SUT 

(PCI) 
OS-Fx, 
OS-Mb 

GOS 1 medium park / 
within & nearby 

005 Armson et al. (2012) UK Manchester Cfb Su June-July (2009 & 

2010) 

DT LN Mi AIRT/SUT OS-Fx, 

EX, NMS 

TC Trees and grasses 

/non-green site 
006 Bencheikh and Rchid 

(2012) 

Algeria Ghardaia BWh Su 7 consecutive days  DT, NT LN Mi AIRT (PCI) OS-Fx TC 4 street with trees 

/ beneath & 
nearby 

007 Bevilacqua et al. (2015) Spain Lleida BSk Su, Wi 2 years (2010-12) DT, NT LN Mi AIRT OS-Fx GR 1 extensive GR   

008 Bilgili et al. (2013) Turkey Ankara Dsa Su Several days (2006 & 
2008) 

DT, NT CS Lo AIRT OS-Fx, 
OS-Mb  

RS, NMS 

GOS 3 parks /  
surroundings 

009 Black and Stephen 
(2014) 

USA Las Vegas BWh Su, Au, 
Wi, Sp 

10 years (2000-10) DT, NT LN Me AIRT OS-Fx, 
RS, NMS 

GOS Several GOS / 
built-up areas 

010 Cameron et al. (2014) UK Reading Cfb Su, Au Several months (2009-

10) 

DT, NT LN Mi AIRT/SUT OS-Fx, 

EX, NMS 

VGS Several VGS / 

near & 
surroundings 

011 Cao et al. (2010) Japan Nagoya Cfa Su, Au, 

Sp 

3 non-consecutive days 

(2000, 2003, 2004) 

DT LN Me SUT  

(PCI, SC) 

RS, NMS GOS 18 parks / 

surroundings 
012 Chang and Li (2014) Taiwan Taipei Cfa Su, Wi Several months (2003 

and 2004) 

DT, NT LN Lo AIRT (PCI) OS-Mb, 

NMS 

GOS 60 parks / nearby 

& built-up  
013 Chen et al. (2014) China Beijing Dwa Su, Au, 

Wi, Sp 

1 day per season (2002) DT CS Me SUT 

(UCI, SC) 

RS, NMS GOS 6 types of GOS 

014 Chen et al. (2013) China Wuhan Cfa Su Several non-consecutive 

days (2012) 

DT, NT CS Mi SUT OS-Fx, EX VGS 2 living walls / 

bare wall 
015 Chen et al. (2012) China Guangzhou Cwa Su, Au 2 non-consecutive days DT CS Me SUT RS GOS 10 parks / 

surroundings 
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016 Chen and Ng (2013) HK Hong Kong Cwa Su 1 day in June (2008) DT CS Mi AIRT (HTC) OS-Fx, 

NMS 

TC 1 site with trees / 

non-green 
017 Cheng et al. (2014) China Shanghai Cfa Su 1 day (2001) DT CS Lo SUT (SC) RS, NMS GOS 37 parks / 

surroundings 
018 Cheng et al. (2010) HK Hong Kong Cwa Su 40 consecutive days DT, NT LN Mi AIRT OS-Fx, 

EX, NMS 

VGS 2 green walls / 

bare wall 
019 Choi et al. (2012) S. Korea Seoul Dwa Su, Au, 

Wi, Sp 

Several days (2002) - CS Me SUT RS GOS Several GOS / 

built-up area 
020 Cohen et al. (2012) Israel Tel Aviv Csa Su, Wi Several days (2007-11) DT CS Mi AIRT (HTC) 

 
OS-Fx TC-GOS 3 parks, 2 

squares, 3 streets 

with trees / 

control case 
021 Colunga et al. (2015) Mexico Queretaro BSh Su, Au, 

Wi, Sp 

1 year (2012-13) DT, NT LN Lo AIRT OS-Fx, 

NMS 

TC-GOS GOS in 4 LCZ 

022 Connors et al. (2013) USA Phoenix BWh Su 2 non-consecutive days 
(2008 & 2009) 

NT CS Me SUT (SC) RS, NMS GOS Several LULC 

023 Correa et al. (2012) Argentina Mendoza BWk Su Several months (2009) DT, NT LN Mi AIRT (HTC) 

 

OS-Fx, 

NMS 

TC 9 street with trees  

024 Coutts et al. (2016) Australia Melbourne Cfb Su Several non-consecutive 

days (2011 & 2012) 

DT, NT CS Me, Lo AIRT/SUT OS-Fx, 

OS-Mb 

RS, NMS 

TC-GOS Several LULC / 

built-up area 

025 Coutts et al. (2015) Australia Melbourne Cfb Su May 2011 – June 2013 DT LN Mi AIRT (HTC) 

 

OS-Fx TC 3 street with trees 

/ beneath and 

nearby 
026 Coutts et al. (2013) Australia Melbourne Cfb Su, Au 3 consecutive days 

(2012) 

DT, NT LN Mi AIRT/SUT 

(ET) 

OS-Fx, EX GR 4 rooftops / 

control  
027 Davis and Hirmer 

(2015) 
Ecuador Quito Cfb - - - LN Mi AIRT (ET) OS-Fx VGS 1 green wall / 

control  
028 Davis et al. (2015) Ecuador Quito Cfb - - - LN Mi AIRT (ET) OS-Fx VGS 1 green wall / 

control 
029 Declet-Barreto et al. 

(2013) 

USA Phoenix BWh Su 1 day (2006) DT, NT CS Lo AIRT/SUT 

(PCI) 

OS-Fx, 

NMS 

GOS 2 modeled 

scenarios  
030 Di Giuseppe and 

D'Orazio (2014) 
Italy Ancona Cfa Su Several days (2011) DT, NT LN Mi AIRT OS-Fx, EX GR 4 types of GR / 

non-green 
031 Djedjig et al. (2015) France, 

Greece 

La 

Rochelle, 

Athens 

Cfb 

Csa 

Su 1 day (2012) DT, NT CS Mi AIRT OS-Fx, 

EX, NMS 

GR 

VGS 

3 GR and 1 green 

wall / control  

032 Dobrovolný (2013) Czech R. Brno Cfb Su 2 non-consecutive days 
(2001 & 2006) 

DT CS Me SUT RS, NMS GOS Several LULC 

033 Duarte et al. (2015) Brazil Sao Paulo Cfb Au Several days, March – 

April (2013) 

DT, NT CS Lo AIRT/SUT 

(HTC) 

OS-Fx, 

NMS 

TC-GOS 4 scenarios  
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034 Emmanuel and 

Loconsole (2015) 

UK Glasgow Cfb Sp 1 day DT, NT CS Lo AIRT/SUT RS, NMS TC-GOS Several LCZ 

035 Fan et al. (2015) USA Phoenix BWh Su, Sp Several non-consecutive 
days (2005 & 2007) 

DT, NT CS Me SUT (SC) RS, NMS TC-GOS Several LULC  

036 Feyisa et al. (2014) Ethiopia  Addis 

Ababa 

Cwb Au 15 consecutive days 

(2010) 

DT LN Mi AIRT/SUT 

(PCI) 

OS-Fx, 

RS, NMS 

GOS 21 parks / 

surroundings 
037 Fintikakis et al. (2011) Albania Tirana Cfa Su Several consecutive 

days (2008) 

DT LN Lo AIRT/SUT 

(HTC) 

OS-Mb, 

NMS 

TC-GOS Several GOS 

038 Gaitani et al. (2011) Greece Athens Csa Sp Several non-consecutive 
days (2009) 

DT CS Mi AIRT/SUT OS-Mb, 
NMS 

TC-GOS 1 square  

039 Georgescu et al. (2011) USA Phoenix BWh Su 1 month (1999) DT LN Me SUT OS-Fx, 

NMS 

GOS Several LULC 

built-up area 
040 Gillner et al. (2015) Germany Dresden Cfb Su Several consecutive 

months (2013) 

DT, NT LN Mi AIRT/SUT 

(ET) 

OS-Fx, 

NMS 

TC 6 tree species / 

beneath & 

control  
041 Gromke et al. (2015) The 

Netherlands 
Arnhem Cfb Su 1 day (2003) DT CS Mi AIRT (ET) OS-Fx, 

NMS 

TC, GR, 

VGS 

1 street with TC, 

GR & VGS / 

non-green site 
042 Halper et al. (2012) USA Tuson BSh Sp Several non-consecutive 

days (1984 – 2008) 

DT CS Me SUT RS, NMS GOS 6 types LULC 

043 Hamada et al. (2013) Japan Nagoya Cfa Su 1 day per year (2000, 
2004, 2006, 2008, 2010-

2011) 

DT CS Lo SUT RS TC-GOS 1 park /  
surroundings 

044 Hamada and Ohta 
(2010) 

Japan Nagoya Cfa Su, Au, 
Wi, Sp 

1 year (August 2006 - 
July 2007) 

DT, NT LN Lo AIRT OS-Fx, 
NMS 

GOS 1 park / 
surroundings 

045 Hathway and Sharples 

(2012) 

UK Sheffield Cfb Su Several consecutive 

days (2010) 

DT LN Me AIRT OS-Fx, 

NMS 

WB 1 urban river / 

urban site 
046 Hedquist and Brazel 

(2014) 

USA Phoenix BWh Su, Au, 

Wi, Sp 

Several days in different 

months (2007, 2008) 

DT, NT CS Lo AIRT (HTC) OS-Fx, 

NMS 

TC 4 scenarios with 

trees 
047 Heusinkveld et al. 

(2014) 

The 

Netherlands 
Rotterdam Cfb Su 1 day (2009) DT, NT CS Lo AIRT OS-Fx, 

OS-Mb, 

RS, NMS  

WB Several GOS 
with WB / built-

up areas 
048 Hong and Lin (2015) China Beijing Dwa Su 1 day in July DT CS Mi AIRT (HTC) NMS TC 6 tree 

configurations 
049 Hoelscher et al. (2016) Germany Berlin Cfb Su Several consecutive 

days (2013 & 2014) 

DT, NT LN Mi AIRT/SUT 

(ET) 

OS-Fx, EX VGS 3 green facades / 

bare wall 
050 Hou et al. (2013) China Beijing Dwa Sp 1 day (2007) DT CS Me AIRT RS WB 7 lakes and 

wetlands / 
residential area 

051 Hsieh et al. (2016) Taiwan Tainan Aw Su 1 day DT CS Lo AIRT (HTC) OS-Fx, 

OS-Mb, 
NMS 

GOS 1 GOS 
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052 Huang et al. (2011) Taiwan  Taipei Cfa Su 1 day (2008) DT CS Mi AIRT OS-Fx, 

NMS 

GOS 6 types LULC / 

non-green  
053 Jenerette et al. (2016) USA Phoenix BWh Su 5 days (2011) DT, NT CS Lo SUT RS, NMS GOS 6 types LULC / 

built-up area 
054 Jim (2015a) HK Hong Kong Cwa Su 1 year (2011-2012) DT, NT LN Mi AIRT/SUT 

(SST) 

OS-Fx, EX GR 2 GR / control 

055 Jim (2015c) HK Hong Kong Cwa Su Several days (2012) DT, NT CS Mi AIRT/SUT OS-Fx, EX VGS 1 cylindrical 

green wall / 

control wall and 
air 

056 Jim (2012) HK Hong Kong Cwa Su, Au, 

Wi, Sp 

1 year (2009) DT, NT LN Mi AIRT/SUT 

(SST) 

OS-Fx, EX GR 3 extensive GR / 

control 
057 Klemm, Heusinkveld, 

Lenzholzer, and van 

Hove (2015) 

The 

Netherlands 
Utrecht  Cfb Su 5 non-consecutive days 

(2012) 

DT CS Mi AIRT (HTC) OS-Mb, 

NMS 

TC-GOS 9 street with trees 

/ non-green 

058 Klemm, Heusinkveld, 

Lenzholzer, Jacobs et 

al. (2015) 

The 

Netherlands 
Utrecht  Cfb Su 2 non-consecutive days 

(2012) 

DT CS Mi AIRT (HTC) OS-Mb, 

NMS 

TC-GOS 13 parks /  

built-up 

059 Kolokotsa et al. (2013) Greece Chania Csa Su Several months DT, NT LN Mi SUT NMS GR 1 GR & 1 cool 

roof / control 
060 Konarska, Uddling et al. 

(2015) 
Sweden Gothenburg Cfb Su Several days (2012 & 

2013) 
DT CS Mi AIRT (ET) OS-Mb TC 47 trees (7 

species) / beneath 
061 Konarska, Holmer et al. 

(2015) 

Sweden Gothenburg Cfb Su, Au, 

Wi, Sp 

2 years (2012 - 2013) DT, NT LN Lo AIRT (PCI) OS-Fx, 

RS, NMS 

TC-GOS 6 parks, 3 street 

with trees, 1 open 
site / built-up 

areas 
062 Kong et al. (2017) HK Hong Kong Cwa Su 1 day DT, NT CS Mi AIRT (HTC) NMS TC 12 tree species 

063 Kong et al. (2016) China Nanjing Cfa Su 6 consecutive days 

(2013) 

DT, NT LN Mi AIRT OS-Fx, 

NMS 

TC 4 woodlands / 

control (no 
canopy) 

064 Kong, Yin, James et al. 

(2014) 

China Nanjing Cfa Su 2 days (2009) DT CS Me SUT  

(UCI, SC) 

RS, NMS TC-GOS 6 types of GOS 

065 Kong, Yin, Wang et al. 

(2014) 

China Nanjing Cfa Su 2 days (2009) DT CS Me SUT  

(UCI, SC) 

RS, NMS TC-GOS Several GOS 

066 Kontoleon and 
Eumorfopoulou (2010) 

Greece Thessaloniki BSk Su 3 consecutive moths 
(2004-2008) 

DT, NT LN Mi AIRT OS-Fx, 
EX, NMS 

VGS 3 green facades / 
bare wall 

067 Koyama et al. (2015) Japan Nagoya Cfa Au 3 non-consecutive days 

(2010) 

DT CS Lo SUT (ET) OS-Fx, EX VGS 2 green walls / 

control 
068 Koyama et al. (2013) Japan Nagoya Cfa Wi 19 consecutive days 

(2008)  

DT, NT LN Mi AIRT/SUT 

(ET) 

OS-Fx, 

EX, NMS 

VGS 1 green façade / 

plant species 
069 Lehmann et al. (2014) Germany Dresden Cfb Su 2 non-consecutive days 

(1999) 
DT, NT CS Me, Lo AIRT RS, NMS GOS Several GOS / 

non-green site 
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070 Leuzinger et al. (2010) Switzerland Basel Cfb Su 3 non-consecutive days 

(2004 & 2007) 

DT CS Mi SUT OS-Fx, RS TC 10 trees  

071 Li et al. (2013) China Beijing Dwa Su, Au 3 non-consecutive days 
(2004 & 2008) 

- CS Me SUT (SC) RS, NMS GOS Several GOS 

072 Li et al. (2012) China Beijing Dwa Au 3 non-consecutive days 

(2002 & 2004) 

- CS Me SUT (SC) RS, NMS GOS Several GOS 

073 Li et al. (2011) China Shanghai Cfa Su, Wi Several non-consecutiv 

days (2000 and 2001) 

- CS Me SUT (SC) RS, NMS GOS Several GOS / 

built-up areas 
074 Li and Norford (2016) Singapore Singapore Af N/A 36 hrs of simulation 

(April - May 2007 & 

2008) 

DT, NT LN Me AIRT/SUT NMS GOS, GR 12 simulations / 
real conditions 

075 Lin et al. (2016) Australia Sydney Cfb Wi 1 day (2012) DT CS Lo SUT RS, NMS TC-GOS 5 types of LULC  

076 Lin et al. (2015) China Beijing Dwa Su 1 day (2009) DT CS Lo SUT OS-Fx, RS GOS 30 parks / 

surroundings 
077 Lin et al. (2013) Taiwan Taipei Cfa Su, Au, 

Wi, Sp 
11 months (2011) DT, NT LN Mi AIRT OS-Fx, EX GR 2 extensive GR  

078 Lin and Lin (2010) Taiwan Taipei Cfa Su Several non-consecutive 

days (2007) 

DT CS Mi AIRT/SUT OS-Fx TC-GOS 12 trees within a 

park / unshaded  
079 Lindén (2011) Burkina 

Faso 

Ouagadougou BSh Au, Wi Several months (2003 & 

2004) 

DT, NT LN Lo AIRT/SUT 

(PCI) 

OS-Fx, 

OS-Mb, 

NMS 

TC-GOS 18 green sites  

080 Liu et al. (2015) China Shijiazhuang BSk Su Several non-consecutive 

days (2006/07, 2009/10) 

DT, NT CS Me, Mi SUT OS-Fx, RS TC-GOS 5 types of LULC  

081 Luo and Li (2014) China Chongqing Cfa Sp 1 day (2010) - CS Me SUT RS WB Several WB / 
built-up areas 

082 Mackey et al. (2012) USA Chicago Dfa Su 10 non-consecutive 
days (1995, 1996, 2007, 

2009, 2010) 

DT CS Me, Lo SUT RS, NMS GOS Several GOS / 
built-up areas 

083 Maimaitiyiming et al. 
(2014) 

China Aksu BWk Su 1 day (2011) - CS Me SUT (SC) RS, NMS GOS Several GOS 

084 Mazzali et al. (2013) Italy Lonigo, 

Venice, Pisa 

Cfa, 

Csa 

Su, Au Several consecutive 

months (2009, 2011-12) 

- LN Mi AIRT/SUT OS-Fx, EX VGS 3 living walls / 

bare wall 
085 Meier and Scherer 

(2012) 

Germany Berlin Cfb Su 2 consecutive months 

(2010) 

DT, NT LN Mi SUT OS-Fx, 

RS, NMS 

TC 67 urban trees 

and 18 species  
086 Milošević et al. (2017) Serbia Novi Sad Cfb Su Several consecutive 

days in July (2013) 
DT, NT L|N Mi AIRT (HTC) OS-Fx, 

NMS 
TC 3 trees  

087 Morakinyo et al. (2017) HK Hong Kong Cwa Su 1 day in August DT, NT CS Mi AIRT (HTC) NMS TC 8 tree species  

088 Morakinyo et al. (2016) Nigeria Akure Aw N/A Six consecutive months 
(2010-2011) 

DT, NT LN Mi AIRT (HTC) OS-Fx, 
NMS 

TC 2 sites with trees  

089 Morakinyo and Lam 

(2016) 

HK Hong Kong Cwa Su 1 day in August (2015) DT, NT CS Mi AIRT (HTC) NMS TC 4 street scenarios 

with trees 
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090 Müller et al. (2014) Germany Oberhausen Cfb Su, Au, 

Wi, Sp 

14 consecutive months 

(2010-2011) 

 LN Lo AIRT (HTC) OS-Fx, 

NMS 

TC-GOS 4 scenarios, 8 

LCZ / non-green 
091 Ng et al. (2012) HK Hong Kong Cwa Su 1 day (2008) DT CS Lo AIRT OS-Fx, 

NMS 
GOS, GR 33 GOS and GR / 

built-up areas 
092 Olivieri et al. (2013) Italy Agugliano Cfa Su Several days in July and 

September (2008) 

DT, NT LN Mi AIRT/SUT OS-Fx, 

EX, NMS 

GR 1 extensive GR  

093 Olivieri et al. (2014) Spain Madrid Csa Su Several consecutive 

days (2010, 2011, 2012) 

DT, NT LN Mi AIRT/SUT OS-Fx, 

EX, 

VGS 1 green façade / 

bare wall 
094 Onishi et al. (2010) Japan Nagoya Cfa Su, Au, 

Wi, Sp 
Five non-consecutive 
days (2000, 2003, 2004) 

DT, NT CS Me SUT RS, NMS TC-GOS 12 LULC  

095 Ouldboukhitine et al. 

(2011) 

France La Rochelle Cfb Su Several consecutive 

days (2010) 

DT, NT LN Mi AIRT OS-Fx, 

EX, NMS 

GR 1 GR (scale 1/10) 

/ nearby 
096 Parizotto and Lamberts 

(2011) 

Brazil Florianopolis Cfa Su, Wi A couple of weeks on 

March and May (2008) 

DT, NT LN Mi AIRT/SUT OS-Fx, EX GR 1 GR / non-green  

roof 
097 Pérez et al. (2011a) Spain Lleida BSk Su, Au, 

Wi, Sp 
1 year (2008-2009) DT LN Mi AIRT/SUT OS-Fx, EX VGS 1 green façade / 

diff. orientations 
098 Perini et al. (2011) The 

Netherlands 
Delft, 

Benthuizen 
Rotterdam 

Cfb Au Several consecutive 

days (2010) 

DT CS Mi AIRT/SUT OS-Fx, EX VGS 3 types of VGS / 

bare wall and 
surroundings 

099 Perini and Magliocco 

(2014) 

Italy Milan, 

Genoa, 
Rome 

Cfa 

Csa 

Su 3 consecutive months DT LN Lo AIRT (HTC) NMS TC, GOS, 

GR 

72 configurations 

/ non-green site 

100 Peters and McFadden 

(2010) 

USA Minneapolis Dfa Su, Au, 

Sp 

Several months 

(weekly) (2006) 

DT LN Lo SUT OS-Fx, 

RS, NMS 

GOS 29 sites / among 

101 Qiao et al. (2013) China Beijing Dwa Su, Au, 

Wi, Sp 

1 day per season  (2008) DT, NT CS Me SUT RS, NMS TC-GOS Different LULC / 

among  
102 Rahman et al. (2017) Germany Munich Cfb Su 3 consecutive months 

(2015) 
DT, NT LN Mi AIRT (ET) OS-Fx, 

NMS 
TC-GOS One plant species 

/ 2 green squares 
103 Rashid et al. (2014) Malaysia Shah Alam Af N/A 2 consecutive months DT LN Mi AIRT OS-Fx TC Different tree 

species / among 
104 Rasul et al. (2015) Irak Erbil Csa Su Several days (2013) DT CS Me SUT  

(UCI, SC) 

RS TC-GOS Different LULC / 

built-up area 
105 Razzaghmanesh et al. 

(2016) 
Australia Adelaide Csa Su 4 days (2013) DT, NT CS Me, Mi SUT (SST) OS-Fx, 

OS-Mb, 

EX, NMS 

GR 4 intensive and 
extensive GR  

106 Rotem-Mindali et al. 

(2015) 

Israel Tel Aviv Csa Su 3 consecutive months NT LN Lo SUT RS, NMS TC-GOS 20 sites /  

surroundings 
107 Ryu et al. (2015) Switzerland Basel Cfb Su 30 consecutive days 

(2002) (Simulation) 
DT, NT LN Mi AIRT/SUT 

(ET) 
NMS TC 3 street canyons 

with trees / non-

green 
108 Salata et al. (2017) Italy  Rome Csa Su 3 days in July (2014) DT, NT LN Lo AIRT (HTC) OS-Fx, 

NMS 
TC-GOS 12 scenarios / 

control 
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109 Scheitlin and Dixon 

(2010) 

USA Stoneville Cfa Su, Au, 

Wi, Sp 

10 year DT LN Me SUT OS-Fx, 

RS, NMS 

TC-GOS 6 LULC  

110 Schwarz et al. (2012) Germany Leipzig Cfb Au 2 consecutive days 
(2010) 

DT, NT CS Lo AIRT/SUT OS-Fx, 
OS-Mb, 

RS, NMS 

WB Different LULC / 
built-up area 

111 Schweitzer and Erell 
(2014) 

Israel Tel Aviv Csa Su Several consecutive 
months (2009) 

DT, NT LN Mi AIRT (ET) OS-Fx, EX GR 1 extensive GR 
& 4 plant species  

112 Shahidan et al. (2012) Malaysia Putrajaya Af N/A February-March (2009) DT, NT LN Lo AIRT (HTC) OS-Fx, 

NMS 

TC-GOS 12 scenarios 

within a GOS / 
control 

113 Shahidan et al. (2010) Malaysia Selangor Af N/A 7 consecutive days in 

February (2008) 

DT LN Mi AIRT (HTC) OS-Fx, 

NMS 

TC 6 tree species  

114 Shashua-Bar et al. 

(2012) 

Greece Athens Csa Su Several days (2007) DT, NT CS Mi AIRT (HTC) OS-Fx, 

NMS 

TC 1 street with trees 

/ control site 
115 Shashua-Bar et al. 

(2011) 
Israel Beersheba BSh Su Several consecutive 

days 
DT LN Mi AIRT  

(ET, HTC) 
OS-Fx, EX TC-GOS 1 courtyard / 

non-green 

courtyard 
116 Shashua-Bar, Tsiros et 

al. (2010) 
Greece Athens Csa Su, Au Several non-consecutive 

days (2006 & 2007) 
DT, NT LN Mi AIRT OS-Fx, 

NMS 
TC 2 street canyons 

with trees  
117 Shashua-Bar, Potchter 

et al. (2010) 

Israel Tel Aviv Csa Su - DT CS Mi AIRT OS-Fx, 

OS-Mb, 
NMS 

TC-GOS 1 street with trees 

/ non-green site 

118 Skelhorn et al. (2014) UK Manchester Cfb Su 1 day (2010) DT CS Lo AIRT/SUT RS, NMS GOS, GR 7 scenarios  

119 Smith and Roebber 
(2011) 

USA Chicago Dfa Su 1 day (2006) DT CS Me AIRT/SUT RS, NMS GR Several rooftops / 
urban site 

120 Snir et al. (2016) Israel Negev 
desert 

BWh No data Several consecutive 
months (2012-2013) 

DT, NT LN Mi AIRT/SUT 
(HTC) 

OS-Fx, EX, 
NMS 

GOS 6 species of 
ground cover / 

among 
121 Song and Wang (2015) USA Phoenix BWh Su Several consecutive 

days in June and July 

(2012) 

DT, NT LN Me AIRT, SUT 
(HTC) 

NMS GOS 30 vegetation 
scenarios / built-

up 
122 Srivanit and Hokao 

(2013) 
Japan Saga Cfa Su 1 day (2012) DT CS Mi AIRT OS-Mb, 

NMS 
TC, GR 4 scenarios with 

TC and GR / base 

case & non-green 
123 Steeneveld et al. (2011) The 

Netherlands 
Randstad 
region 

Cfb Su, Au, 
Wi, Sp 

1 year (1999-2000) DT, NT LN Me AIRT OS-Fx GOS Several cover 
fractions  

124 Sternberg et al. (2011) UK Byland, 

Ramsey, 

Oxford, 

Dover, 

Nailsea 

Cfb Su, Au, 

Wi, Sp 

1 year (2008-09) DT, NT LN Mi AIRT OS-Fx VGS 5 green facades  
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125 Stocco et al., 2015 Argentina Mendoza BWk Su 40 consecutive days 

(2012-2013) 

DT, NT LN Mi AIRT (HTC) OS-Fx, 

OS-Mb 

TC-GOS 3 squares 

126 Su et al. (2014) China Nanjing Cfa Su, Au 3 non-consecutive days 
(2010) 

DT, NT CS Mi SUT OS-Mb, 
RS, NMS 

TC-GOS 5 parks  

127 Sun and Chen (2012) China Beijing Dwa Su 1 day (2007) DT CS Me SUT 

(UCI, SC) 

RS, NMS WB 197 water bodies 

/ nearby 
128 Sun et al. (2017) China Beijing Dwa Su 1 day in August (2016) DT, NT CS Lo AIRT (HTC) OS-Fx, 

NMS 

GOS 18 zones within a 

park / built-up 
129 Sun et al. (2015) China Beijing Dwa Su, Au, 

Wi, Sp 
Several consecutive 
months (2009-10) 

DT, NT LN Me SUT RS, NMS TC-GOS Several GOS / 
built-up area 

130 Sun et al. (2012) China Beijing Dwa Su 1 day (2007) DT CS Me SUT 

(UCI, SC) 

RS, NMS WB 10 lakes & 5 

rivers / 
surroundings & 

built-up areas 
131 Sung (2013) USA Houston Cfa Su, Au, 

Wi, Sp 
Several consecutive 
days (2000-10) 

DT LN Lo SUT RS TC 2 woodlands / 
control site 

132 Susca et al. (2011) USA New York Dfa Su, Au, 

Wi, Sp 

1 year (2008-2009) DT, NT LN Mi SUT OS-Fx GR 3 roofing systems 

/ non-green 
133 Susorova et al. (2014) USA Chicago Dfa Su 9 consecutive days 

(2013) 

DT, NT LN Mi AIRT/SUT OS-Fx, EX VGS 3 green facades / 

bare wall 
134 Susorova et al. (2013) USA Chicago Dfa Su 4 non-consecutive days 

(2012) 
DT, NT CS Mi AIRT/SUT OS-Fx, 

EX, NMS 
VGS 1 experimental 

wall / bare wall 

& model 
135 Taleghani et al. (2016) USA Los 

Angeles 
Csa Su 1 day in July (2014) DT, NT CS Lo AIRT (HTC) NMS TC, GR 5 scenarios / 

control 
136 Taleghani et al. (2014) USA Portland Csb Su 2 consecutive months 

(2013) 

DT, NT LN Lo, Mi AIRT (PCI) OS-Fx, 

NMS 

TC-GOS 7 sites & 3 

courtyards / non-
green site 

137 Tan et al. (2017) HK Hong Kong Cwa Su Several days in July and 

August (2014) 

DT CS Lo AIRT (HTC) OS-Fx, 

NMS 

TC 3 Street with 

trees / non-green 
site 

138 Tan et al. (2014) Singapore Singapore Af N/A 2 periods of consecutive 

days (2011-12) 

DT, NT LN Mi AIRT/SUT 

(HTC) 

OS-Fx, EX VGS 2 green walls / 

bare wall 
139 Tan, C. L. et al. (2015) Singapore Singapore Af N/A May to December 

(2014) 

DT, NT LN Mi AIRT (ET) OS-Fx, 

EX, NMS 

GR 3 plant settings / 

non-green 
140 Tan, Z. et al. (2015) HK Hong Kong Cwa Su 1 day (2014) DT CS Lo AIRT OS-Mb, 

NMS 

TC Several tree 

arrangements/ 

beneath & nearby 
141 Tan and Li (2013) China Beijing Dwa Su 2 non-consecutive days 

(2009) 

DT CS Me SUT 

(PCI, SC) 

RS, NMS TC-GOS Several GOS / 

nearby & built-up 
142 Tayyebi and Darrel 

(2016) 
USA Los 

Angeles 
Csa Sp 1 day (2013) DT CS Lo SUT RS, NMS TC-GOS 3 climate zones  
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 Geographic patterns Investigation period Methodological aspects 

# Author (year) Country Study area Climate1 Season2 Duration (year) Time 

of day3 

Study 

Design4 

Scale5 Topic  

(sub-topic)6 

Methods7 GI 

Type8 

GI features / 

comparator 
143 Tsiros (2010) Greece Athens Csa Su Several consecutive 

days (2007) 

DT LN Mi AIRT OS-Fx, 

NMS 

TC 5 street with trees  

144 Tsiros and Hoffman 
(2014) 

Greece Athens Csa Su 1 month (2007) DT, NT LN Mi AIRT (HTC) OS-Fx, 
NMS 

GOS 1 courtyard / an 
urban square & 

wooded park 
145 van Hove et al. (2015) The 

Netherlands 
Rotterdam Cfb Su, Wi, 

Au, Sp 
3 consecutive years 
(2010-2012) 

DT, NT LN Me AIRT (HTC) OS-Fx GOS 14 sites / built-up 

146 Vaz Monteiro et al. 

(2016) 

UK London Cfb Su, Au Several non-consecutive 

days (2012) 

NT CS Lo AIRT (UCI) OS-Fx, 

RS, NMS 

TC-GOS 8 parks / nearby 

& control 
147 Vidrih and Medved 

(2013) 

Slovenia Ljubljana Cfb Su 1 day DT CS Lo AIRT (PCI) NMS TC-GOS 1 park with trees 

/ non-green site 
148 Wang, Z.-H. et al. 

(2016) 
USA Phoenix BWh Su 1 year (2012) DT, NT LN Mi AIRT (ET) OS-Fx, 

NMS 
TC 1 street with trees 

(4 simulations) / 

base scenario 
149 Wang, Y. et al. (2015) The 

Netherlands 
Assen Cfb Su, Sp 134 days (2014) DT, NT LN Mi AIRT (HTC) OS-Fx, 

NMS 
GOS 5 sites  

150 Wong et al. (2010) Singapore Singapore Af N/A 3 non-consecutive days  DT CS Mi AIRT/SUT OS-Fx, EX VGS 9 green facades / 

bare wall 
151 Wong and Jusuf (2010) Singapore Singapore Af N/A 4 months (2007) DT, NT LN Mi AIRT OS-Fx TC 2 street with trees  

control 
152 Xu et al. (2010) China Shanghai Cfa Su Consecutive hours  DT LN Mi AIRT/SUT 

(HTC) 
OS-Fx, 
NMS 

WB 3 sites near a lake 
/ nearby, built-up 

153 Yahia and Johansson 

(2014) 

Syria Damascus CSb Su, Wi 1 day in July,  

1 day in January 

DT, NT CS Mi AIRT (HTC) OS-Fx, 

NMS 

TC 3 Streets with 

trees / non-green 
site 

154 Yang et al. (2016) Singapore Singapore Af N/A 3 months (2012) DT, NT LN Mi AIRT (HTC) OS-Fx, 

NMS 

TC 1 street with trees 

& 11 simulations 
/ non-green 

155 Yang et al. (2011) China  Shanghai Cfa Su 3 consecutive days 

(2008) 

DT, NT CS Lo AIRT (HTC) OS-Fx, 

NMS 

GOS 4 types of land 

covers 
156 Zhang et al. (2013) China Shenzhen Cfa Su, Au, 

Wi, Sp 

1 year (2010-11) DT LN Mi AIRT OS-Fx, 

NMS 

TC-GOS 3 parks an 15 

combinations of 

trees & grasses / 
control 

157 Zhao and Fong (2017) HK Hong Kong Cwa Su 3 consecutive days 

(2015) 

DT, NT LN Mi AIRT (HTC) OS-Fx, 

NMS 

TC-GOS 9 sites with green 

/ built-up 
158 Zheng, S. et al. (2016) China Tianjin Dwa Su, Sp 4 non-consecutive days 

in April, May, July & 
August (2015) 

DT CS Mi AIRT (HTC) OS-Mb, 

NMS 

TC-GOS 3 types of 

vegetation 

159 Zheng et al. (2014) USA Phoenix BWh Su 3 non-consecutive days 

(2005) 

DT, NT CS Me SUT (SC) RS GOS Several LULC  
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 Geographic patterns Investigation period Methodological aspects 

# Author (year) Country Study area Climate1 Season2 Duration (year) Time 

of day3 

Study 

Design4 

Scale5 Topic  

(sub-topic)6 

Methods7 GI 

Type8 

GI features / 

comparator 
160 Zhou, Qian et al. (2014) USA Baltimore Cfa Su, Au, 

Wi, Sp 

4 non-consecutive days 

(1 days per season) 

(2000 & 2001) 

DT CS Me SUT RS, NMS GOS Several LULC / 

built-up 

161 Zhou et al. (2013) China Beijing Dwa Su, Au, 

Wi, Sp 

8 days (2 consecutive 

days per season) (2005) 

DT CS Me SUT OS-Fx, RS GOS Several LULC  

162 Zhou et al. (2011) USA Baltimore Cfa Su 1 day (1999) DT CS Lo SUT (SC) RS, NMS TC-GOS 6 LULC types 

163 Zhou and Shepherd 

(2010) 

USA Atlanta Cfa Su Several days (1984 - 

2007) 

DT, NT LN Me SUT OS-Fx, 

NMS 

GOS Several LULC / 

control 
164 Zinzi and Agnoli (2012) Spain, 

Italy, 

Egypt 

Barcelona  
Palermo 

Cairo 

Csa 
BWh 

Su 4 days - CS Mi AIRT 
(ET, HTC) 

NMS GR 1 GR and 1 cool 
roof / 

conventional roof 
165 Žuvela-Aloise et al. 

(2016) 
Austria Vienna Cfb Su Several years (1981-

2010) 
DT, NT LN Me AIRT OS-Fx, 

RS, NMS 
WB 4 parks and water 

bodies / built-up 

areas 
 

1  See the updated Köppen-Geiger climate classification (Kottek et al., 2006),  

2  Su Summer, Au Autumn, Wi Winter, Sp Spring. 

3  DT Day-time, NT Night-time. 

4  LN Longitudinal, CS Cross-sectional. 

5  Me Meso-scale, Lo Local-scale, Mi Micro-scale. 

6  AIRT Air temperature, SUT Surface temperature, SST Sub-surface temperature, HTC Human thermal comfort, PCI Park cool island, UCI Urban cool island, ET Evapotranspiration, SC Spatial configuration. 

7  OS-Fx Fixed on-site observation, OS-Mb Mobile on-site observation, RS Remote sensing, EX Experimental, NMS Statistical modelling and simulation. 

8  TC Tree canopy, GOS Green open spaces, WB Water bodies, GR Green roofs, VGS Vertical greenery systems. 
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Appendix C – 

Metadata statement of LiDAR data 

General Properties 

File Identifier 3BAA0499-FD63-4D62-9405-CF1350EA659E 

Hierarchy Level series 

Hierarchy Level Name series 

Standard Name ANZLIC Metadata Profile: An Australian/New Zealand Profile of 
AS/NZS ISO 19115:2005, Geographic information - Metadata 

Standard Version 1.1 

Date Stamp 2013-06-03 

Resource Title L0106 SydneyNorth 

Alternate Resource Titles  
SydneyNorth  
Sydney  
SydneyCBD  
Parramatta  
Liverpool 

Key Dates and Languages 

Date of creation 2013-06-03 

Date of publication 2013-06-03 

Date of revision 2013-06-03 

Metadata Language eng 

Metadata Character Set utf8 

Dataset Languages eng  

Dataset Character Set utf8 

Abstract The coverage of this dataset is over the Sydney North region. The 
C3 LAS data set contains point data in LAS 1.2 format sourced 
from a LiDAR (Light Detection and Ranging) from an ALS50 
(Airborne Laser Scanner) sensor. The processed data has been 
manually edited to achieve LPI classification level 3 whereby the 
ground class contains minimal non-ground points such as 
vegetation, water, bridges, temporary features, jetties etc. 
Purpose: To provide fit-for-purpose elevation data for use in 
applications related to coastal vulnerability assessment, natural 
resource management (especially water and forests), 
transportation and urban planning. Additional lineage information: 
This data has an accuracy of 0.3m (95 confidence) horizontal with 
a minimum point density of one laser pulse per square metre. For 
more information on the datasets accuracy, refer to the lineage 
provided in the data history. 

Metadata Contact Information 

Name of Individual Shawn Ryan 

Organisation Name Land and Property Information 

Position Name Senior Spatial Technician 

Role author 

Voice 02 6332 8465 

Facsimile 02 6332 8466 

Email Address shawn.ryan@lpi.nsw.gov.au 

Address 346 Panorama Avenue  
Bathurst NSW 2795  
Australia 

Resource Contacts 

Name of Individual Danielle Johnson 

Organisation Name Land and Property Information 

Position Name Business Development Officer (Imagery Projects) 

Role distributor 

Voice 02 6332 8421 
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Facsimile 02 6332 8296  

Email Address Danielle.Johnson@lpi.nsw.gov.au 

Address 346 Panorama Avenue, Bathurst, NSW 2975. Australia. 

Lineage Statement NEDF Metadata  
Acquisition Start Date: Wednesday, 10 April 2013  
Acquisition End Date: Wednesday, 24 April 2013  
Sensor: LiDAR  
Device Name: Leica ALS50-II (S/N: 101m)  
Flying Height (AGL): 1530  
INS/IMU Used: Honeywell URIS (S/N: 56017825)  
Number of Runs: 33  
Number of Cross Runs: 3  
Swath Width: 1174.62  
Flight Direction: East - West  
Swath (side) Overlap: 12.03  
Horizontal Datum: GDA94  
Vertical Datum: AHD71 - using local Geoid model  
Map Projection: MGA56  
Description of Aerotriangulation Process Used: -  
Description of Rectification Process Used: -  
Spatial Accuracy Horizontal: 0.8  
Spatial Accuracy Vertical: 0.3  
Average Point Density (per sqm): 1.57  
Nadir Point Density: 1.03  
Laser Return Types: 4 returns (1st 2nd 3rd 4th and intensity)  
Data Thinning: N/A  
Laser Footprint Size: 0.63  
Calibration certification (Manufacturer/Cert. Company): LPI  
Limitations of the Data: Accuracy specifications (95% CI) meet 
ICSM guidelines for digital elevation data.  
Surface Type: N/A  
Product Type: Mass Points  
Classification Type: C3  
Grid Resolution: UNK  
Distribution Format: LAS  
Processing/Derivation Lineage: As per LPI specification  
WMS: ?  

Jurisdictions 
 

Australia  
New South Wales 

Search Words 
 

CLIMATE-AND-WEATHER-Climate-change  
HAZARDS-Flood  
LAND-Topography  
PHOTOGRAPHY-AND-IMAGERY-Aerial  
PHOTOGRAPHY-AND-IMAGERY-Remote-Sensing  
WATER 

Themes and Categories 

Topic Category elevation 

Topic Category geoscientific Information 

Status and Maintenance 

Status ongoing 

Maintenance and Update 
Frequency 

As needed 

Date of Next Update 
 

Reference system 

Reference System GDA94 / MGA zone 56 

Metadata Security Restrictions 

Classification unclassified 

Authority LPI 

Dataset Security Restrictions 
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Classification unclassified 

Authority LPI 

Dataset Access Constraints 

Identifier license 

Annotation 
 

Identifier Intellectual Property Rights 

Annotation 
 

Dataset Use Constraints 

Identifier license 

Annotation 
 

Identifier Intellectual Property Rights 

Annotation 
 

Extent - Geographic Bounding Box 

North Bounding Latitude -33.728300 

South Bounding Latitude -33.986700 

West Bounding Longitude 150.899900 

East Bounding Longitude 151.337629 

Additional Extent - Temporal 

From Date/Time 2013-04-10 

To Date/Time 2013-04-24 

Distribution Information 

Name of Individual Danielle Johnson 

Organisation Name Land and Property Information 

Position Name Business Development Officer (Imagery Projects) 

Role distributor 

Voice 02 6332 8421 

Facsimile 02 6332 8296  

Email Address Danielle.Johnson@lpi.nsw.gov.au 

Address 346 Panorama Avenue  
Bathurst NSW 2795  
Australia 
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Appendix D – 

Data processing workflow 

 

D.1   NDVI generation (Summer): 

1. NDVI generated using the Band 1 from CIR.tif as the Near-infrared Band and the Band 1 

from the True Colour (Aerial imagery) as the Visible or red band. 

2. NDVI computed using Raster Calculator in ArcGIS using the following expression: 

Float (NIR-Red)/Float (NIR+Red) 

 

3. Image (.TIFF) projected to GDA 1994 MGA Zone 56 and resampled from 0.8 to 0.5m 

spatial resolution using nearest as resampling technique. 

 

D.2   NDVI generation (Winter) 

1. NDVI generated from Hyperspectral data using the Spectral Indices tool in ENVI 5.3.1. 

2. Saved as (ENVI, TIFF, DTEP). Output format: .TIFF. 

3. Images projected to GDA 1994 MGA Zone 56. 

4. Geo-references NDVI rasters as it follows: 

- Strip S01 no-georeferenced 

- Strip S02 georeferenced to strip 1 using auto-registration and adding additional points. 

5. Both strips exported as TIFF with a 1m pixel size. 

6. Mosaic created using ArcGIS: 

- Layer’s order define prevalent values for pixels as these were not averaged 

- Go to Windows > Image analysis > Choose .TIFF. 

- Go to processing choose Blend and tick on the icon next to it to create a mosaic. 

- Exported the mosaic as .TIFF with 1m cell size. 

 

D.3   Thermal imagery 

1. Night-/Daytime images projected using Project raster tool in ArcGIS to GDA 94 MGA 

Zone 56 

2. Night-time images mosaicked using Image analysis tool in ArcGIS. 

3. Night-/Daytime images geo-referenced to NDVI. 

 

D.4   Aerial imagery (summer) 

1. Aerial Image on 17 January 2013 resampled to 0.5m spatial resolution and projected to 

GDA 94 MGA Zone 56 using Project Raster tool in ArcGIS. 

2. Downloaded mosaics from Nearmap on 01 November 2012 with a 0.597m spatial 

resolution. 

3. Downloaded images mosaicked in ArcGIS and resampled to 0.5m spatial resolution using 

Image analysis tool. 

4. Projected to GDA 94 MGA Zone 56 using Project Raster tool in ArcGIS. 
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D.5   Aerial imagery (winter) 

1. Downloaded mosaics from Nearmap on 02 August 2012 with a 0.597m spatial resolution. 

2. Mosaicked in ArcGIS and resampled to 0.5m spatial resolution using Image analysis tool. 

3. Projected to GDA 94 MGA Zone 56 using Project Raster tool in ArcGIS. 

 

 

D.6   Estimation of DSM, DEM and nDSM 

1. Selection of LiDAR grids overlapping thermal and spectral imagery. 

2. Added all LAS using Add as LAS layer to the map in LP360. 

3. Choose Export LAS files: 

a. Export Type: Surface 

b. Surface method: Triangulation (TIN) 

c. NoData: -9999 

d. Cellsize: 1m spatial resolution 

e. Surface Attribute(s) to export: Elevation 

f. Export format: Binary Raster  

g. Filter points:  

- For DSM_bld: Ground, Building, Model Key Points 

- For DSM_bld_veg: Ground, Buildings, High vegetation, Model Key Points 

- For DEM_grnd: Ground, Model Key Points 

4. Exported each binary grid rasters as: .TIF with 32-bit float in ArcCatalog. 

5. Resulted TIF rasters were projected to GDA 94 MGA Zone 56. 

6. nDSM created using Raster calculator tool in ArcGIS by subtraction the ground DEM 

(DEM_grnd) from the building DSM (DSM_Bld).  

(Expression: Float(DSM_Bld – DEM_grnd)) Cell size: 0.5m. 

 

D.7   Extraction of building footprints 

1. Building footprints generated by LP360 using the following parameters: 

a. Grow window: 2.0m 

b. Trace window: 3.0m 

c. Minimum area: 10sqm 

d. Dissolve overlapping polygons: 1000sqm 

NOTE (for the case of large datasets):  

a. In case of large datasets, buildings were extracted in smaller segments (5-8 LAS 

grids per segment) to reduce long processing times. Segments had overlapping areas 

for future joining. 

b. Joined different segments using Merge (data management) tool in ArcGIS.  

c. The segmentation process returned incomplete polygons for overlapping areas. 

Segmented polygons were merged one by one using the Editor toolbar. 

d. Duplicated polygons with same area were deleted using Delete identical tool in 

ArcGIS.  

2. Returned shapefiles were projected to GDA 94 MGA Zone 56 using Define projection  

tool in ArcGIS. 
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3. Generated shapefiles contained ZM polygons which cannot be used in future calculations, 

so these were disabled using Feature class to shapefile tool in ArcGIS: 

a. M Value: Disabled 

b. Z Value: Disabled 

4. Repaired geometries, and features with null geometry deleted using Repair geometry tool 

in ArcGIS. 

5. Returned shapefiles were rechecked again using Check geometry tool in ArcGIS. 

6. Shapefiles containing parcels overlapping the study area were created (only for North & 

South swaths in the winter case study): 

a. All NDVI values corresponding to 1 and NoData were reclassified to NoData. 

b. Resulting rasters (.TIF) were converted into a single polygon using Raster to 

Polygon tool in ArcGIS. 

c. A buffer zone of 250m was created from the polygons (for each study area or strip). 

d. Resulting polygons were used to select overlapping parcels from Cadastral datasets. 

Parcels were combined if necessary. 

e. Multi-part polygons were deleted by selecting all polygons and choosing Explode 

Multipart feature tool in ArcGIS. 

f. Duplicated polygons were deleted using Delete Identical (Data management).  

7. Split polygons with properties boundaries (cadastral) using Intersect (analysis) tool in 

ArcGIS to derive single buildings from continuous buildings. 

a. Input features: cadastral properties/parcels and extracted buildings. 

b. All returned buildings were checked against the extracted buildings from LP360.  

Buildings located in open spaces or vacant land that were not overlapping any 

property polygon were omitted in the results. In those cases, missing buildings were 

selected and copied from the extracted buildings dataset. 

8. Multi-part polygons were deleted by selecting all polygons and choosing Explode 

Multipart feature tool in ArcGIS. 

9. Duplicated polygons were deleted using Delete Identical (Data management) tool. 

10. All irrelevant fields in attribute tables were deleted. 

11. Deleted polygons small 15m2 (a copy was created before this step for backup purposes). 

12. Buildings were squared-up using Feature-Analyst software with the following settings: 

a. Smoothing tolerance: 1m 

b. Squaring tolerance: 5.5-6.0m (values varied depending of the dataset) 

c. Consider all likely feature orientation when squaring: Enabled 

d. Consider adjoining features when computing orientation: Enabled 

e. NDVI was used as based image for rastering 

13. In the case of large areas polygon shapefiles were split to reduce processing errors due to 

lack of memory. Squared polygons were then re-joined using Merge tool in ArcGIS.   

14. The squaring process returned round polygons as hexagonal polygons, so these were 

replaced with the round polygons originally generated with LP360 (Step 1). 

15. Multipart squared polygons were exploded using Explode Multipart feature tool in 

ArcGIS. 

16. Duplicated polygons were deleted using Delete Identical (Data management) tool. 

17. Deleted polygons small 12m2 (a copy was created before this step for backup purposes). 

18. Missing and/or wrongly generated buildings due to errors in the LiDAR datasets (low 

point cloud density) were added manually. 
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D.8   Estimation of building heights 

1. Calculated average building height with Zonal statistics as table tool in ArcGIS using the 

nDSM (from Section D.6) as input value raster and the corrected building footprints (from 

Section D.7) polygons as feature zone data.  

2. Merged resulting table with the attribute table of building footprints using the unique ID of 

features. 

3. Deleted polygons with Null values (small irregular polygons overlapping bigger building 

footprints).  

4. Exported data as a new polygon shapefile. 

Note: some results returned very low values (<1m) when buildings were not detected due to 

errors in the LiDAR point tracing. 

 

D.9   Extraction of high and medium vegetation 

1. High vegetation footprints generated by LP360 using the following parameters: 

a. Grow window: 2.0m (1.75m for areas with large patches) 

b. Trace window; 3.0m (2.75m for areas with large patches) 

c. Minimum area: 5.0m2 

d. Dissolve overlapping polygons: 850m2 

NOTE: In areas with very extensive and dense canopies, high vegetation was wrongly 

extracted. Errors include vegetated areas considered as empty spaces and buildings and 

open spaces extracted as vegetation. To amend this problem, erroneous areas were deleted 

and replaced with re-extractions covering only the affected areas. The process of combining 

and deleting overlapping polygons were done using the Editor mode in ArcGIS.  

 

2. Returned shapefiles were projected to GDA 94 MGA Zone 56 using Define projection in 

ArcGIS. 

3. Generated shapefiles contain ZM polygons which cannot be used in future calculations, so 

these were disabled using Feature class to shapefile tool in ArcGIS: 

a. M Value: Disabled 

b. Z Value: Disabled 

4. Multipart squared polygons were exploded using Explode Multipart feature tool in 

ArcGIS. 

5. Repaired geometries and features with null geometry deleted using Repair geometry tool 

in ArcGIS. 

6. Duplicated polygons were deleted using Delete Identical (Data management) tool.  

7. Deleted all high vegetation polygons completely overlapping building footprints.  

8. Repeat the whole process for medium vegetation. 

 

D.10 Surface cover classifications 

1. Initial classifications: 

a. Raster masks created for each study area (Parramatta, Sydney north and Sydney 

south) and used as a snap raster (processing extent) in the environment settings. 

b. Classified NDVI image into different ranges representing different surface covers as 

per parameters below: 
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- Parramatta dataset (summer): 

* Water    : [-1.00] – [-0.50]    

* Total impervious  : [-0.50] – [-0.15]  

* Total pervious  : [-0.15] – [1.00]  

* Pervious Non-irrigated  : [-0.15] – [0.08] 

* Pervious Irrigated  : [0.08] – [1.00] 

- Sydney North and South datasets (winter): 

* Water    : [-1.00] – [-0.20]    

* Total impervious  : [-0.20] – [0.25]  

* Total pervious  : [0.25] – [1.00]  

* Pervious Non-irrigated : [0.25] – [0.60] 

* Pervious Irrigated  : [0.60] – [1.00] 

 

c. With Reclassify tool created separate rasters for each surface cover assigning a value 

of 1 for all cells corresponding to the respective surface cover and a value of 0 for 

the remaining cells. Kept NoData as NoData and assigned a cell size of 0.5m to all 

rasters.  

 

2. Building surfaces: 

a. Building footprint features (from Section D.7) converted into a raster image with 

Polygon to raster tool with cell size of 0.5m and using the average building heights 

as the value field. 

b. Reclassified all pixel values corresponding to building’s heights to 1, and NoData 

values to 0 to obtain a building surface cover raster that will be used in further raster 

calculations. 

 

3. Water surfaces: 

a. Water surfaces extracted from NDVI presented errors as some pixels were 

misclassified as impervious surfaces. 

b. Surface water polygons obtained from cadastral data converted into a raster image 

with Polygon to raster tool with a cell size of 0.5m. 

c. With Raster calculator (or Plus) tool, added the converted water bodies based on 

cadastral data to the water surface cover raster based on NDVI classifications.   

d. Reclassified raster value 2 to 1. 

e. Some pixels corresponding to building’s roofs were misclassified as water surfaces. 

To correct this error, the building surface cover raster was subtracted from the 

previously reclassified water surface raster with Raster calculator tool.  

f. Reclassified raster value -1 to 0. 

 

4. Impervious surfaces: 

a. Impervious surfaces extracted from NDVI presented errors. For instance, some 

buildings were misclassified as pervious surfaces, and water surfaces as impervious 

ground. With Raster calculator (or Plus) tool, added the building surface cover 

raster to the impervious surface cover raster based on NDVI classifications to obtain 

the total impervious surface cover.  

b. Reclassified raster value of 2 to 1. 

c. Subtracted the water surface cover raster from the total impervious surface cover 

raster with Raster calculator (or Minus) tool to delete misclassified pixels. 
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d. Subtracted the building surface cover raster from the total impervious surface cover 

raster with Raster calculator (or Minus) tool to detect only impervious ground 

surfaces. 

 

5. Pervious surfaces and water: 

a. Converted high vegetation polygons based on LiDAR data (from Section D.9) into 

new raster images of 0.5m pixel resolution with Polygon to raster tool. Note: Use 

FID as a value field. 

b. Reclassified all raster values to 1, and NoData to 0, to be able to use it for further 

raster calculations. 

c. Summer case dataset: with Times tool created a new raster for areas overlapping high 

vegetation based on LiDAR data and all pervious surfaces based on NDVI 

classifications to reduce the LiDAR-based classification errors. 

d. Repeated steps a - d for medium vegetation.  

e. Winter case datasets: with Times tool created a new raster for areas overlapping high 

vegetation based on LiDAR data and only irrigated pervious surfaces based on 

NDVI classifications. This reduces the LiDAR-based classification errors and 

discards areas corresponding to deciduous trees as LiDAR data were not collected in 

winter.  

f. Discarded areas of medium vegetation that overlap building surfaces by subtracting 

the building surface cover raster from the vegetation rasters. 

g. Reclassified raster value of -1 to 0. 

h. Land cover classifications based on the NDVI image presented some errors, for 

instance, pixels corresponding to buildings and water were misclassified as pervious 

surfaces. To correct this issue and obtain the real low (irrigated and non-irrigated) 

vegetation cover, raster images corresponding to medium and high vegetation, water 

and total impervious surfaces were subtracted from both irrigated and non-irrigated 

surface cover rasters based on NDVI classifications. Note: reclassified all negative 

raster values to 0. 

i. Discarded areas of water that overlap high vegetation surfaces to obtain the real 

water surfaces.  

j. Reclassified all negative raster values to 0. 

k. Added irrigated, non-irrigated, medium and high vegetation surface cover rasters 

with Raster calculator tool to obtain the total pervious surface cover image.  

l. Added irrigated and non-irrigated vegetation surface cover rasters with Raster 

calculator tool to obtain the total low vegetation surface cover image.  

m. Reclassified all positive raster values to 1. 

 

D.11 FRAGSTATS calculations for high vegetation  

1. Reclassified high vegetation cove raster value of 0 to 1, 1 to 2, and kept NoData as 

NoData. 

2. Exported resulting image as 16-Bit Signed integer .TIF raster and reassigned NoData 

value as -9999 for further FRAGSTATS calculations. 

3. Created a grid of 50 x 50m with Grid index features tool using the high vegetation 

surface cover raster to the define the spatial extent. 

4. Discarded all grids that were not completely within the raster image extent. 
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5. Given that FRAGSTATS was not able to process large rasters, grids were grouped in 

sections and merged using the Editor mode to generate one single polygon feature that 

can be used to clip the raster image in smaller sections.  

6. Calculated CIRCLE_AM and nLSI using FRAGSTATS 4.3 software using the following 

parameters: 

 

a. Input datasets: GeoTIFF grids (.TIF) corresponding to each high vegetation raster 

section with a background value of 1000. 

b. Class descriptor file: Created a .fcd file with Notepad application with the following 

script: 

 

ID, Name, Enabled, IsBackground 

1,Nontree,false,true 

2,Trees,true,false 

 

c. Analysis parameters: Checked the following options for the sampling strategy 

- General options: Use 8 cell neighbourhood rule. 

- Uniform Tiles: Class metrics using a side length of 50.00m. 

d. Class metrics: Selected CIRCLE Area-Weighted mean (AM) (from Shape tab) and 

Normalised LSI (nLSI) (from Aggregation tab). 

 

7. Process returned a .class file and a raster image (.TIF) with tiles’ IDs for each high 

vegetation raster section. 

8. Converted raster image containing tiles’ IDs into polygons with Raster to polygon tool 

using the pixel value as the field. 

9. Deleted tiles (polygons) that do not overlap the study area. Resulting polygon features 

can be used to define the GIT grids in following steps. 

10. .class files were converted into .csv file (comma delimited) by changing the file extension 

manually.  

11. Eliminated letters and additional 0s located on the left of tiles’ IDs by opening the .csv 

files in Excel: 

a. Created a new column and typed this formula: 

=RIGHT(X, LEN(X)-Y) where 

X corresponds to the column and row value to be changed (e.g. A2) 

Y corresponds to the number of characters to be eliminated 

 

b. Created a new column, copied all values from previous column and pasted as 

numbers to eliminate the formula (paste as special > convert to number). 

c. In some cases, nLSI values were reported as N/A in the output files whenever the 

maximum class edge equalled the minimum class edge. This occurred when trees 

(focal class) occupied the totality of the grid. To correct this issue, N/A values were 

converted to 0. 

d. Saved as .csv file. 

 

12. Joined .csv files with FRAGSTATS indices to the attribute tables of previously generated 

grids (50 x 50m). Note: Keep all records when joining tables. 

13. Exported joined data as new polygon shapefiles. These grids will be used for Zonal 

statistics tool calculations later. 
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D.12 Estimation of variables per spatial unit 

1. Generation of spatial units (grids) 

a. Created unique IDs with Create Unique IDs (http://ianbroad.com/arcgis-toolbox-

create-unique-id-arcpy/) tool for grids generated in previous step.  

Note: Created a back-up copy first. Runned this tool from ArcCatalog, and feature 

class/table was not opened anywhere. Settings: 

- Type  : Interval 

- Group by Field : NO 

- Sort by Field  : NO 

- Range/interval : 1 

- Prefix or Suffix : Prefix 

- Prefix  : GIT-ID_P/N/S_ 

        P (Parramatta), N (North), S (South) 

 

b. Created a new Text field in the attribute table and copied grid ID generated by the 

tool with Raster calculator. 

c. Repeated steps 3 and 4 for grids of 50 x 50m generated as part of FRAGSTATS 

calculations (Section L). 

 

2. Estimation of surface cover fractions 

a. With Zonal Statistics as table tool, calculated the total number of pixels (SUM) for 

each surface cover raster (impervious ground, impervious building, total impervious, 

low, medium, high vegetation and water) with grid features (both 50 x 50m and 100 

x 100m) defining zones. 

b. Joined generated zonal statistics tables to attribute tables of grid features.  

c. Estimated the percentage of the grid cell occupied by each surface cover with Field 

calculator by dividing the SUM value by the total COUNT of cells per grid.  

d. Multiplied results by 100 to be expressed in percentage.   

 

3. Estimation of average NDVI 

a. With Zonal Statistics as table tool, calculated average NDVI per grid by computing 

the mean of all pixel values within each grid from the NDVI raster image. 

  

4. Estimation of average land surface temperature 

a. Calculated mean, maximum and minimum surface temperature values for each 

previously defined grid cells (GIT) with Zonal Statistics as Table tool using day- and 

night-time thermal imagery. 

b. Joined resulting tables to the attribute table of GIT using the ID of grid cells as 

common attribute. 

 

D.13 Automated classification of grid into green infrastructure typologies (GIT) 

1. Classified grid cells with Field calculator based on parameters specified in Table 4.14 

(Section 4.11) using the following algorithm (VB script): 

 

 

http://ianbroad.com/arcgis-toolbox-create-unique-id-arcpy/
http://ianbroad.com/arcgis-toolbox-create-unique-id-arcpy/
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Pre-logic Script code: 

If ([Fr_Tot_Imp] >75 and [Fr_High_Ve] <=25 and [Fr_Med_Veg] <=25 and [Fr_LowIRR] 
<=25 and [Fr_LowNIR] <=25 and [Fr_Tot_wat] <=25) then 

 [GIT_type]= "IM 1" 

 

elseif ([Fr_Tot_Imp] >50 and [Fr_Tot_Imp] <=75 and [Fr_High_ve] <=5 and 
[Fr_Med_Veg] <=25 and [Fr_LowIRR] <50 and [Fr_LowNIR] <50 and [Fr_Tot_wat] <=25) 
then 

 [GIT_type] = "IM 2" 

 

elseif ([Fr_Tot_Imp] >25 and [Fr_Tot_Imp] <=75 and [Fr_High_Ve] <=25 and 
[Fr_Med_Veg] >25 and [Fr_Med_Veg] <=50 and [Fr_LowIRR] <40 and [Fr_LowNIR] <40 
and [Fr_Tot_wat] <=25) then 

 [GIT_type] = "IM 3" 

 

elseif ([Fr_Tot_Imp] >50 and [Fr_Tot_Imp] <=75 and [Fr_High_ve] >5 and 
[Fr_High_Ve] <=40 and [Fr_Med_Veg]<=25 and [Fr_LowIRR] <40 and [Fr_LowNIR]<40 and 
[Fr_Tot_wat]<=25 and [CIRCLE_AM] >=0.61 and  [NLSI] <0.25) then 

 [GIT_type]= "IM 4" 

 

elseif ([Fr_Tot_Imp]>50 and [Fr_Tot_Imp] <=75 and [Fr_High_Ve] >5 and [Fr_High_Ve] 
<=25 and [Fr_Med_Veg] <=25 and [Fr_LowIRR] <40 and [Fr_LowNIR] <40 and 
[Fr_Tot_wat] <=25 and  [CIRCLE_AM] <0.61 and  [NLSI] >0.065) then 

 [GIT_type]= "IM 5" 

 

elseif ([Fr_Tot_Imp] >50 and [Fr_Tot_Imp] <=75 and [Fr_High_Ve] >5 and 
[Fr_High_Ve] <=40 and [Fr_Med_Veg] <=25 and [Fr_LowIRR] <40 and [Fr_LowNIR] <40 
and [Fr_Tot_wat] <=25 and [CIRCLE_AM] <0.61 and [NLSI] <=0.065) then 

 [GIT_type]= "IM 6" 

elseif ([Fr_Tot_Imp] >25 and [Fr_Tot_Imp] <=50 and [Fr_High_Ve] <=5 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] >50 and [Fr_LowIRR] <=25 and [Fr_Tot_wat] <=25) 
then 

 [GIT_type]= "MX 1" 

 

elseif ([Fr_Tot_Imp] >25 and [Fr_Tot_Imp] <=50 and [Fr_High_Ve] <=5 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <=25 and [Fr_LowIRR] >50 and [Fr_Tot_wat] <=25) 
then 

 [GIT_type]= "MX 2" 

 

elseif ([Fr_Tot_Imp] >25 and [Fr_Tot_Imp] <=50 and [Fr_High_Ve] <=5 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <=50 and [Fr_LowIRR] <=50 and [Fr_Tot_wat] <=25) 
then 

 [GIT_type]= "MX 3" 
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elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] <=5 and [Fr_Med_Veg] <=25 and 
[Fr_LowNIR] <=75 and [Fr_LowIRR] <=75  and [Fr_Tot_wat] <=25) then 

 [GIT_type]= "MX 4" 

 

elseif ([Fr_Tot_Imp] >25 and [Fr_Tot_Imp] <=50 and [Fr_High_Ve] >5 and 
[Fr_High_Ve] <=50 and [Fr_Med_Veg] <=25 and [Fr_LowNIR] <=50 and [Fr_LowIRR] <=50 
and [Fr_Tot_wat] <=25 and [CIRCLE_AM] >=0.61 and [NLSI] <0.25) then 

 [GIT_type]= "MX 5" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=75 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <=50 and [Fr_LowIRR] <=50 and [Fr_Tot_wat] <=25 
and [CIRCLE_AM] >=0.61 and [NLSI] <0.25) then 

 [GIT_type]= "MX 6" 

 

elseif ([Fr_Tot_Imp] >25 and [Fr_Tot_Imp] <=50 and [Fr_High_Ve] >5 and 
[Fr_High_Ve] <=50 and [Fr_Med_Veg] <=25 and [Fr_LowNIR] <=50 and [Fr_LowIRR] <=50 
and [Fr_Tot_wat] <=25 and [CIRCLE_AM] <0.61 and [NLSI] >0.065) then 

 [GIT_type]= "MX 7" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=75 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <=50 and [Fr_LowIRR] <=50 and [Fr_Tot_wat] <=25 
and [CIRCLE_AM] <0.61 and [NLSI] >0.065) then 

 [GIT_type]= "MX 8" 

 

elseif ([Fr_Tot_Imp] >25 and [Fr_Tot_Imp] <=50 and [Fr_High_Ve] >5 and 
[Fr_High_Ve] <=75 and [Fr_Med_Veg] <=25 and [Fr_LowNIR] <=50 and [Fr_LowIRR] <=50 
and [Fr_Tot_wat] <=25 and [CIRCLE_AM] <0.61 and [NLSI] <=0.065) then 

 [GIT_type]= "MX 9" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=75 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <=50 and [Fr_LowIRR] <=50 and [Fr_Tot_wat] <=25 
and [CIRCLE_AM] <0.61 and [NLSI] <=0.065) then 

 [GIT_type]= "MX 10" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] <=5 and [Fr_Med_Veg] <=25 and 
[Fr_LowNIR] >75 and [Fr_LowIRR] <=25 and [Fr_Tot_wat] <=25) then 

 [GIT_type]= "PV 1" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] <=5 and [Fr_Med_Veg] <=25 and 
[Fr_LowNIR] <=25 and [Fr_LowIRR] >75 and [Fr_Tot_wat] <=25) then 

 [GIT_type]= "PV 2" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] <=50 and [Fr_Med_Veg] >25 and 
[Fr_Med_Veg] <=50 and [Fr_LowNIR] <60 and [Fr_LowIRR] <60 and [Fr_Tot_wat] <=25) 
then 

 [GIT_type]= "PV 3" 
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elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] <=25 and [Fr_Med_Veg] >50 and 
[Fr_LowNIR] <50 and [Fr_LowIRR] <50 and [Fr_Tot_wat] <=25) then 

 [GIT_type]= "PV 4" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=50 and 
[Fr_Med_Veg] <=25  and [Fr_LowNIR] >50 and [Fr_LowIRR] <40 and [Fr_Tot_wat] <=25 
and [CIRCLE_AM] >=0.61 and  [NLSI] <0.25) then 

 [GIT_type]= "PV 5" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=50 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <40 and [Fr_LowIRR] >50 and [Fr_Tot_wat] <=25 
and [CIRCLE_AM] >=0.61 and [NLSI] <0.25) then 

 [GIT_type]= "PV 6" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=50 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] >50 and [Fr_LowIRR] <40  and [Fr_Tot_wat] <=25 
and [CIRCLE_AM] <0.61 and  [NLSI] >0.065) then 

 [GIT_type]= "PV 7" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=50 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <40 and [Fr_LowIRR] >50 and [Fr_Tot_wat] <=25and 
[CIRCLE_AM] <0.61 and [NLSI] >0.065) then 

 [GIT_type]= "PV 8" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=50 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] >50 and [Fr_LowIRR] <40 and [Fr_Tot_wat] <=25 
and [CIRCLE_AM] <0.61 and [NLSI] <=0.065) then 

 [GIT_type]= "PV 9" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=50 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <40 and [Fr_LowIRR] >50 and [Fr_Tot_wat] <=25 
and [CIRCLE_AM] <0.61 and [NLSI] <=0.065) then 

 [GIT_type]= "PV 10" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >75 and [Fr_Med_Veg] >25 and 
[Fr_Med_Veg] <=75 and [Fr_LowNIR] <=25 and [Fr_LowIRR] <=25 and [Fr_Tot_wat] <=25) 
then 

 [GIT_type]= "PV 11" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >75 and [Fr_Med_Veg] <=25 and 
[Fr_LowNIR] <=25 and [Fr_LowIRR] <=25 and [Fr_Tot_wat] <=25) then 

 [GIT_type]= "PV 12" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] <=25 and [Fr_Med_Veg] <=25 and 
[Fr_LowNIR] <=25 and [Fr_LowIRR] <=25 and [Fr_Tot_wat] >75) then 

 [GIT_type]= "AQ 1" 
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elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] <=5 and [Fr_Med_Veg] <=25 and 
[Fr_LowNIR] <40 and [Fr_LowIRR] <40 and [Fr_Tot_wat] >50 and [Fr_Tot_wat] <=75) 
then 

 [GIT_type]= "AQ 2" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] <=5 and [Fr_Med_Veg] <=25 and 
[Fr_LowNIR] <60 and [Fr_LowIRR] <60 and [Fr_Tot_wat] >25 and [Fr_Tot_wat] <=50) 
then 

 [GIT_type]= "AQ 3" 

 

elseif ([Fr_Tot_Imp] >25 and [Fr_Tot_Imp] <=50 and [Fr_High_Ve] <=25 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <=50 and [Fr_LowIRR] <=50 and [Fr_Tot_wat] >25 
and [Fr_Tot_wat] <=75) then 

 [GIT_type]= "AQ 4" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=75 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <40 and [Fr_LowIRR] <40 and [Fr_Tot_wat] >25 
and [Fr_Tot_wat] <=75 and [CIRCLE_AM] >=0.61) then 

 [GIT_type]= "AQ 5" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >5 and [Fr_High_Ve] <=40 and 
[Fr_Med_Veg] <=25 and [Fr_LowNIR] <40 and [Fr_LowIRR] <40 and [Fr_Tot_wat] >25 
and [Fr_Tot_wat] <=75 and [CIRCLE_AM] <0.61) then 

 [GIT_type]= "AQ 6" 

 

elseif ([Fr_Tot_Imp] <=25 and [Fr_High_Ve] >40 and [Fr_Med_Veg] <=25 and 
[Fr_LowNIR] <40 and [Fr_LowIRR] <40 and [Fr_Tot_wat] >25 and [Fr_Tot_wat] <=75 
and [CIRCLE_AM] <0.61) then 

 [GIT_type]= "AQ 7" 

 

else 

 [GIT_type]= "Unknown" 

end if 

 

GIT_type = [GIT_type] 
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Appendix E – 

Datasheets for Green Infrastructure Typologies (GITs)  

 

E1. Datasheet containing all variables and classification parameters calculated for the typology IM1. 
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E2. Datasheet containing all variables and classification parameters calculated for the typology IM2. 
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E3. Datasheet containing all variables and classification parameters calculated for the typology IM3. 
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E4. Datasheet containing all variables and classification parameters calculated for the typology IM4. 
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E5. Datasheet containing all variables and classification parameters calculated for the typology IM5. 
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E6. Datasheet containing all variables and classification parameters calculated for the typology IM6. 
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E7. Datasheet containing all variables and classification parameters calculated for the typology MX1. 
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E8. Datasheet containing all variables and classification parameters calculated for the typology MX2. 
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E9. Datasheet containing all variables and classification parameters calculated for the typology MX3. 



 

406  |  Appendices 

 

 

E10. Datasheet containing all variables and classification parameters calculated for the typology MX4. 
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E11. Datasheet containing all variables and classification parameters calculated for the typology MX5. 



 

408  |  Appendices 

 

 

E12. Datasheet containing all variables and classification parameters calculated for the typology MX6. 
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E13. Datasheet containing all variables and classification parameters calculated for the typology MX7. 
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E14. Datasheet containing all variables and classification parameters calculated for the typology MX8. 
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E15. Datasheet containing all variables and classification parameters calculated for the typology MX9. 
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E16. Datasheet containing all variables and classification parameters calculated for the typology MX10. 
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E17. Datasheet containing all variables and classification parameters calculated for the typology PV1. 
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E18. Datasheet containing all variables and classification parameters calculated for the typology PV2. 
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E19. Datasheet containing all variables and classification parameters calculated for the typology PV3. 
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E20. Datasheet containing all variables and classification parameters calculated for the typology PV4. 
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E21. Datasheet containing all variables and classification parameters calculated for the typology PV5. 
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E22. Datasheet containing all variables and classification parameters calculated for the typology PV6. 
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E23. Datasheet containing all variables and classification parameters calculated for the typology PV7. 
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E24. Datasheet containing all variables and classification parameters calculated for the typology PV8. 
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E25. Datasheet containing all variables and classification parameters calculated for the typology PV9. 
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E26. Datasheet containing all variables and classification parameters calculated for the typology PV10. 
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E27. Datasheet containing all variables and classification parameters calculated for the typology PV11. 
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E28. Datasheet containing all variables and classification parameters calculated the typology AQ1. 
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E29. Datasheet containing all variables and classification parameters calculated the typology AQ2. 
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E30. Datasheet containing all variables and classification parameters calculated the typology AQ3. 
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E31. Datasheet containing all variables and classification parameters calculated the typology AQ4. 
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E32. Datasheet containing all variables and classification parameters calculated the typology AQ5. 
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E33. Datasheet containing all variables and classification parameters calculated the typology AQ6. 
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E34. Datasheet containing all variables and classification parameters calculated the typology AQ7. 
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Appendix F – 

Performance assessment of selected machine learning classifiers  

 
F1. Performance assessment of predictions using a Fine Tree classifier for the summer dataset. 

 

F2. Performance assessment of predictions using a Quadratic discriminant classifier for the summer 

dataset. 
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F3. Performance assessment of predictions using a Quadratic SVM classifier for the summer dataset. 

 

 

 

F4. Performance assessment of predictions using a Weighted KNN classifier for the summer dataset. 
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F5. Performance assessment of predictions using an Ensemble – Bagged trees classifier for the summer 

dataset. 

 

F6. Performance assessment of predictions using a Fine Tree classifier for the winter dataset. 



 

434  |  Appendices 

 

F7. Performance assessment of predictions using a Quadratic discriminant classifier for the winter dataset. 

 

 

F8. Performance assessment of predictions using a Linear SVM classifier for the winter dataset. 
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F9. Performance assessment of predictions using a Weighted KNN classifier for the winter dataset. 

 

F10. Performance assessment of predictions using an Ensemble – Bagged trees classifier for the winter 

dataset. 
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Appendix G – 

Summary statistics and results of normality tests and 

cluster analysis of GIT classifications 

 

G1 Summary statistics of mean LSTs for each GIT in summer (N=sample size; Std. Dev. = standard 

deviations; Std. Error = Standard error; Min. = Minimum value; Max. Maximum value). 

GIT N 

Summer - Daytime Summer - Night-time 

Mean 
Std. 
Dev. 

Std. 
Error 

Min. Max. Mean 
Std. 
Dev. 

Std. 
Error 

Min. Max. 

IM 1 2309 38.13 3.40 0.07 21.22 49.36 22.19 2.51 0.05 10.48 27.69 

IM 2 1062 37.79 1.83 0.06 29.74 44.08 22.90 1.00 0.03 18.55 25.96 

IM 4 3742 37.41 1.59 0.03 24.23 42.56 22.93 0.97 0.02 14.31 26.24 

IM 5 2090 37.55 1.33 0.03 31.25 42.41 22.95 0.78 0.02 19.54 26.36 

IM 6 1228 37.31 1.62 0.05 25.61 43.01 23.16 1.01 0.03 15.73 26.30 

MX 1 91 35.72 2.27 0.24 30.21 41.35 22.21 1.17 0.12 18.84 25.55 

MX 3 212 36.09 2.04 0.14 29.08 43.12 22.43 0.93 0.06 19.75 25.36 

MX 4 225 33.21 1.72 0.11 27.85 38.51 21.37 0.67 0.04 19.60 23.85 

MX 5 4475 35.58 1.47 0.02 27.31 41.96 22.57 0.76 0.01 19.60 25.46 

MX 6 820 32.53 1.72 0.06 27.41 38.89 22.22 0.72 0.03 19.72 24.76 

MX 7 1255 36.03 1.36 0.04 31.42 40.82 22.48 0.73 0.02 20.09 25.15 

MX 8 58 32.19 1.80 0.24 29.80 36.70 22.07 0.77 0.10 20.59 23.88 

MX 9 2461 35.26 1.63 0.03 23.91 41.33 22.75 0.79 0.02 15.80 26.45 

MX 10 1073 31.96 1.69 0.05 27.24 36.90 22.36 0.71 0.02 19.49 25.50 

PV 1 192 34.09 1.98 0.14 29.22 39.04 21.12 0.77 0.06 18.84 25.30 

PV 2 44 31.89 1.33 0.20 28.99 34.13 21.20 0.63 0.09 20.02 23.00 

PV 3 27 29.88 1.41 0.27 27.43 34.32 21.43 0.97 0.19 20.08 23.86 

PV 5 223 33.47 1.73 0.12 29.08 38.64 21.60 0.82 0.05 19.75 25.77 

PV 6 36 31.32 1.57 0.26 27.69 34.05 21.45 0.60 0.10 19.70 22.74 

PV 7 35 33.19 2.09 0.35 30.19 38.35 21.53 0.69 0.12 20.37 23.01 

PV 9 167 33.58 1.80 0.14 30.28 40.09 21.67 0.72 0.06 20.18 24.73 

PV 11 829 29.95 1.16 0.04 26.44 33.56 22.40 0.72 0.03 19.79 26.34 

AQ 1 156 26.01 1.20 0.10 23.39 29.80 24.66 1.04 0.08 22.23 26.88 

AQ 4 24 32.58 2.79 0.57 28.73 39.02 23.90 1.28 0.26 20.34 25.33 

AQ 5 101 28.14 1.60 0.16 25.53 33.19 24.00 0.87 0.09 21.80 25.35 

AQ 6 32 28.78 1.69 0.30 26.10 31.60 23.94 0.84 0.15 22.21 25.13 

AQ 7 55 27.88 1.00 0.14 26.39 30.26 23.73 0.78 0.11 21.40 25.60 

Total 23022 35.79 2.95 0.02 21.22 49.36 22.64 1.20 0.01 10.48 27.69 
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G2 Frequency distribution of mean diurnal LSTs in summer for each GIT with a fitted normal distribution and 

results of the Kolmogorov-Smirnov test (N=sample size; standard deviations are in parenthesis, p-values <0.05 

indicates a non-normal distribution, * This is a lower bound of the true significance). 
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G3 Frequency distribution of mean nocturnal LSTs in summer for each GIT with a fitted normal distribution and 

results of the Kolmogorov-Smirnov test (N=sample size; standard deviations are in parenthesis, p-values <0.05 

indicates a non-normal distribution, * This is a lower bound of the true significance). 
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G4 Summary statistics for each GIT in winter (N=sample size; Std. Dev. = standard deviations; Std. Error 

= Standard error; Min. = Minimum value; Max. Maximum value). 

GIT 

Winter - Daytime Winter - Night-time 

N Mean 
Std. 
Dev. 

Std. 
Error 

Min. Max. N Mean 
Std. 
Dev. 

Std. 
Error 

Min. Max. 

IM 1 3769 14.25 1.71 0.03 6.04 21.78 3124 3.20 1.00 0.02 -0.97 6.20 

IM 2 2264 13.95 1.27 0.03 7.32 19.06 1827 2.80 0.62 0.01 0.59 5.44 

IM 4 3699 13.40 1.30 0.02 8.25 20.75 3175 3.18 0.66 0.01 1.14 5.97 

IM 5 1770 13.70 1.20 0.03 8.90 17.15 1435 3.03 0.59 0.02 1.49 5.88 

IM 6 1235 13.38 1.27 0.04 8.42 17.67 1013 3.25 0.71 0.02 1.38 5.81 

MX 1 221 13.27 1.03 0.07 9.47 18.88 197 1.93 0.53 0.04 0.54 3.35 

MX 3 361 13.16 1.31 0.07 8.30 16.39 303 2.42 0.59 0.03 0.79 4.25 

MX 4 363 12.22 1.07 0.06 8.78 15.94 326 1.77 0.72 0.04 0.29 3.97 

MX 5 3925 12.46 1.20 0.02 8.18 19.67 4094 3.34 0.71 0.01 0.68 5.98 

MX 6 1185 10.93 1.20 0.03 7.29 14.87 1452 3.46 0.91 0.02 0.79 6.11 

MX 7 852 12.92 1.15 0.04 9.42 16.16 754 2.89 0.60 0.02 1.18 4.97 

MX 8 55 11.81 1.27 0.17 9.18 14.46 46 2.78 0.88 0.13 1.29 4.86 

MX 9 1547 12.29 1.22 0.03 8.49 16.96 1384 3.35 0.75 0.02 1.31 5.95 

MX 10 1215 10.53 1.21 0.03 7.00 14.22 1387 3.60 0.94 0.03 0.52 5.94 

PV 1 327 12.63 0.99 0.05 10.41 16.11 278 1.53 0.74 0.04 0.17 3.83 

PV 2 82 11.53 0.98 0.11 9.13 14.24 88 1.74 0.68 0.07 0.39 3.63 

PV 3 28 10.88 1.03 0.19 8.84 12.70 30 2.39 1.04 0.19 0.63 4.58 

PV 5 90 11.98 1.42 0.15 8.37 15.31 81 2.47 0.98 0.11 0.41 4.93 

PV 6 181 10.89 1.13 0.08 7.84 13.25 170 2.33 0.67 0.05 0.90 4.41 

PV 8 28 11.08 1.12 0.21 9.08 14.12 26 2.12 0.67 0.13 0.94 4.35 

PV 9 55 12.01 1.14 0.15 9.63 15.36 56 2.19 0.77 0.10 0.22 3.73 

PV 10 138 11.00 1.14 0.10 8.00 14.19 141 2.51 0.66 0.06 0.77 4.38 

PV 11 1403 9.18 0.65 0.02 7.12 12.47 1749 3.22 1.26 0.03 0.36 6.12 

AQ 1 15 7.98 0.49 0.13 7.46 9.12 162 5.87 1.00 0.08 2.92 7.10 

AQ 5 103 8.29 0.86 0.08 6.92 10.89 115 3.44 0.80 0.08 1.22 6.56 

AQ 6 14 8.95 0.91 0.24 7.76 10.82 23 3.75 1.34 0.28 2.36 6.61 

AQ 7 23 8.20 0.31 0.07 7.70 8.96 22 2.88 0.27 0.06 2.51 3.39 

Total 24948 12.75 1.90 0.01 6.04 21.78 23458 3.16 0.93 0.01 -0.97 7.10 
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G5 Frequency distribution of mean diurnal LSTs in winter for each GIT with a fitted normal distribution and 

results of the Kolmogorov-Smirnov test (N=sample size; standard deviations are in parenthesis, p-values <0.05 

indicates a non-normal distribution, * This is a lower bound of the true significance). 

 



 

Appendices  |  441 

 

G6 Frequency distribution of mean nocturnal LSTs in winter for each GIT with a fitted normal distribution and 

results of the Kolmogorov-Smirnov test (N=sample size; standard deviations are in parenthesis, p-values <0.05 

indicates a non-normal distribution, * This is a lower bound of the true significance). 
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G7 Mean and standard deviations (in parenthesis) of mean NDVI, percent of pervious surfaces, and percent 

of tree cover per GIT class. 

GIT 
SUMMER WINTER 

Mean NDVI % Pervious % Tree cover Mean NDVI % Pervious % Tree cover 

IM 1 -0.20 (0.06) 12.49 (8.21) 3.86 (4.41) 0.08 (0.08) 11.96 (8.14) 2.55 (3.06) 

IM 2 -0.12 (0.04) 36.77 (6.79) 2.83 (1.49) 0.24 (0.05) 36.14 (6.91) 2.69 (1.53) 

IM 4 -0.07 (0.05) 41.46 (6.56) 17.02 (7.60) 0.29 (0.06) 40.09 (6.85) 13.38 (6.17) 

IM 5 -0.08 (0.04) 41.79 (6.17) 11.52 (4.55) 0.28 (0.05) 39.72 (6.72) 9.42 (3.49) 

IM 6 -0.06 (0.05) 41.57 (6.82) 18.49 (7.16) 0.28 (0.06) 39.38 (7.02) 14.95 (5.90) 

MX 1 -0.11 (0.03) 65.09 (6.64) 1.17 (1.49) 0.31 (0.04) 65.18 (6.64) 0.24 (0.79) 

MX 3 -0.05 (0.06) 56.97 (6.86) 2.37 (1.72) 0.36 (0.06) 57.41 (6.25) 2.43 (1.72) 

MX 4 0.08 (0.10) 87.95 (9.32) 1.12 (1.57) 0.54 (0.09) 91.06 (9.00) 1.16 (1.60) 

MX 5 0.03 (0.06) 59.52 (6.55) 27.02 (10.34) 0.45 (0.06) 61.61 (7.09) 24.76 (10.07) 

MX 6 0.12 (0.07) 82.68 (7.29) 39.16 (13.96) 0.61 (0.07) 85.18 (7.69) 40.86 (13.31) 

MX 7 -0.01 (0.04) 57.51 (5.75) 15.69 (6.45) 0.40 (0.05) 57.95 (6.19) 12.98 (5.35) 

MX 8 0.09 (0.08) 84.53 (7.16) 43.90 (27.95) 0.57 (0.09) 86.55 (8.76) 25.81 (23.87) 

MX 9 0.04 (0.07) 61.44 (7.11) 31.33 (12.65) 0.46 (0.07) 62.42 (7.41) 28.28 (11.96) 

MX 10 0.15 (0.08) 84.25 (7.30) 51.71 (17.16) 0.65 (0.08) 87.39 (7.76) 52.68 (16.08) 

PV 1 -0.06 (0.04) 93.66 (5.93) 0.89 (1.36) 0.41 (0.06) 92.75 (7.54) 0.23 (0.72) 

PV 2 0.31 (0.10) 96.13 (5.00) 0.32 (0.97) 0.72 (0.04) 98.77 (2.46) 1.24 (1.62) 

PV 3 0.20 (0.12) 88.34 (10.27) 26.17 (15.75) 0.63 (0.10) 92.73 (7.96) 29.02 (15.48) 

PV 5 0.01 (0.05) 89.41 (6.91) 18.11 (8.65) 0.51 (0.06) 93.18 (7.03) 15.80 (8.06) 

PV 6 0.22 (0.07) 89.34 (6.80) 16.73 (7.90) 0.71 (0.06) 96.50 (5.36) 20.53 (9.76) 

PV 7 -0.02 (0.04) 87.22 (7.35) 12.17 (5.50) - - - 

PV 8 - - - 0.69 (0.07) 94.71 (5.06) 9.51 (4.15) 

PV 9 0.00 (0.04) 89.24 (7.01) 16.72 (8.30) 0.51 (0.06) 94.04 (6.18) 13.73 (6.90) 

PV 10 - - - 0.71 (0.06) 96.16 (5.28) 19.82 (9.76) 

PV 11 0.26 (0.08) 95.03 (4.59) 88.81 (7.21) 0.80 (0.04) 98.56 (3.15) 91.74 (7.62) 

AQ 1 -0.25 (0.15) 7.02 (7.88) 5.77 (7.26) -0.27 (0.14) 3.56 (6.35) 1.64 (3.88) 

AQ 4 -0.20 (0.16) 27.01 (8.52) 8.56 (8.89) - - - 

AQ 5 -0.08 (0.15) 43.45 (14.72) 32.14 (12.37) 0.21 (0.18) 46.38 (12.61) 31.72 (13.42) 

AQ 6 -0.10 (0.14) 42.20 (15.89) 24.34 (10.80) 0.19 (0.19) 48.42 (13.97) 20.17 (10.15) 

AQ 7 0.04 (0.16) 57.20 (10.86) 53.22 (10.03) 0.46 (0.13) 64.85 (7.61) 58.73 (8.28) 
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G8 Dendrograms of hierarchical cluster analyses performed to terrestrial GITs using average linkage 

between groups. 
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Appendix H – 

Results of regression models 

H1 Summary of t-statistic, correlation and collinearity statistics generated for the OLS models for the 

prediction of diurnal and nocturnal LSTs in summer and winter using all independent variables. 

 Model Variable t Sig. 
Correlations Collinearity statistics 

Zero-order Partial Part Tolerance VIF 

S
U

M
M

E
R

 

1A 
(DAY_Ts) 

(Constant) 29.936 0.000           

Fr_Imp_Bld 17.790 0.000 0.489 0.116 0.070 0.006 162.200 

Fr_Imp_Grnd 17.167 0.000 0.481 0.112 0.068 0.006 157.331 

Fr_Low_IRR 5.341 0.000 -0.108 0.035 0.021 0.022 45.900 

Fr_Low_NIR 10.421 0.000 -0.028 0.069 0.041 0.010 103.943 

Fr_Med_Veg 4.756 0.000 -0.222 0.031 0.019 0.319 3.138 

Fr_High_Veg 2.757 0.006 -0.582 0.018 0.011 0.005 201.445 

Fr_Tot_Wat 0.248 0.804 -0.398 0.002 0.001 0.022 45.416 

CIRCLE_AM 22.308 0.000 0.111 0.145 0.088 0.936 1.068 

nLSI -8.360 0.000 0.222 -0.055 -0.033 0.846 1.182 

Mean_NDVI 10.620 0.000 -0.558 0.070 0.042 0.097 10.332 

Altitude 11.520 0.000 -0.032 0.076 0.045 0.897 1.115 

2A 
(NIG_Ts) 

(Constant) 37.541 0.000           

Fr_Imp_Bld 9.473 0.000 -0.337 0.062 0.049 0.006 162.200 

Fr_Imp_Grnd 20.942 0.000 0.431 0.137 0.108 0.006 157.331 

Fr_Low_IRR 4.477 0.000 -0.168 0.030 0.023 0.022 45.900 

Fr_Low_NIR 9.839 0.000 -0.111 0.065 0.051 0.010 103.943 

Fr_Med_Veg 2.514 0.012 -0.042 0.017 0.013 0.319 3.138 

Fr_High_Veg 7.634 0.000 0.011 0.050 0.039 0.005 201.445 

Fr_Tot_Wat 20.229 0.000 0.166 0.132 0.104 0.022 45.416 

CIRCLE_AM 25.377 0.000 0.120 0.165 0.131 0.936 1.068 

nLSI 0.849 0.396 -0.007 0.006 0.004 0.846 1.182 

Mean_NDVI 36.248 0.000 -0.062 0.232 0.186 0.097 10.332 

Altitude -3.012 0.003 -0.077 -0.020 -0.015 0.897 1.115 

W
IN

T
E

R
 

3A 
(DAY_Ts) 

(Constant) 24.559 0.000           

Fr_Imp_Bld 7.228 0.000 0.531 0.046 0.029 0.008 132.021 

Fr_Imp_Grnd 4.282 0.000 0.467 0.027 0.017 0.007 148.009 

Fr_Low_IRR -4.943 0.000 -0.240 -0.031 -0.020 0.016 60.659 

Fr_Low_NIR 0.475 0.635 0.088 0.003 0.002 0.013 76.765 

Fr_Med_Veg -2.658 0.008 -0.372 -0.017 -0.011 0.373 2.682 

Fr_High_Veg -9.869 0.000 -0.678 -0.062 -0.039 0.005 194.767 

Fr_Tot_Wat -10.890 0.000 -0.197 -0.069 -0.043 0.100 9.953 

CIRCLE_AM -3.353 0.001 -0.030 -0.021 -0.013 0.729 1.372 

nLSI 4.778 0.000 0.164 0.030 0.019 0.785 1.274 

Altitude 10.864 0.000 -0.078 0.069 0.043 0.858 1.165 

Mean_NDVI 6.703 0.000 -0.676 0.042 0.027 0.025 39.899 

4A 
(NIG_Ts) 

(Constant) 3.920 0.000           

Fr_Imp_Bld 3.440 0.001 -0.096 0.022 0.015 0.009 114.131 

Fr_Imp_Grnd 10.373 0.000 0.068 0.068 0.046 0.008 129.240 

Fr_Low_IRR -5.629 0.000 -0.199 -0.037 -0.025 0.018 54.967 

Fr_Low_NIR -2.000 0.046 -0.293 -0.013 -0.009 0.015 66.359 

Fr_Med_Veg -26.459 0.000 -0.053 -0.170 -0.117 0.378 2.643 

Fr_High_Veg 3.138 0.002 0.199 0.020 0.014 0.005 201.376 

Fr_Tot_Wat 19.519 0.000 0.237 0.126 0.086 0.030 33.354 

CIRCLE_AM 24.475 0.000 0.139 0.158 0.108 0.754 1.326 

nLSI -15.780 0.000 -0.098 -0.103 -0.070 0.813 1.231 

Altitude 109.373 0.000 0.506 0.581 0.483 0.813 1.230 

Mean_NDVI 14.620 0.000 0.007 0.095 0.065 0.025 39.830 
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H2 Summary of t-statistic, correlation and collinearity statistics generated for revised OLS models for the 

prediction of diurnal and nocturnal LSTs in summer and winter using a selection of independent 

variables. 

 Model Variable t Sig. 

Correlations Collinearity statistics 

Zero-
order 

Partial Part Tolerance VIF 

S
U

M
M

E
R

 

1B 
(DAY_Ts) 

(Constant) 398.696 0.000      

Fr_Imp_Bld 61.401 0.000 0.489 0.375 0.243 0.492 2.033 

Fr_Imp_gr 48.823 0.000 0.481 0.306 0.193 0.404 2.477 

Fr_LowIRR -15.778 0.000 -0.108 -0.103 -0.062 0.579 1.727 

Fr_Med_Veg -4.278 0.000 -0.222 -0.028 -0.017 0.877 1.140 

Fr_High_Ve -50.882 0.000 -0.582 -0.318 -0.201 0.36 2.776 

Fr_Tot_wat -63.406 0.000 -0.398 -0.386 -0.251 0.757 1.322 

CIRCLE_AM 22.757 0.000 0.111 0.148 0.09 0.941 1.062 

NLSI -8.361 0.000 0.222 -0.055 -0.033 0.858 1.166 

Altitude 10.838 0.000 -0.032 0.071 0.043 0.899 1.112 

2B 
(NIG_Ts) 

(Constant) 449.909 0.000      

Fr_Imp_Bld -18.788 0.000 -0.337 -0.123 -0.100 0.492 2.033 

Fr_Imp_gr 68.038 0.000 0.431 0.409 0.360 0.404 2.477 

Fr_LowIRR 3.661 0.000 -0.168 0.024 0.019 0.579 1.727 

Fr_Med_Veg -3.409 0.001 -0.042 -0.022 -0.018 0.877 1.140 

Fr_High_Ve 25.618 0.000 0.011 0.167 0.136 0.360 2.776 

Fr_Tot_wat 42.758 0.000 0.166 0.271 0.226 0.757 1.322 

CIRCLE_AM 26.993 0.000 0.120 0.175 0.143 0.941 1.062 

NLSI -1.263 0.207 -0.007 -0.008 -0.007 0.858 1.166 

Altitude -4.814 0.000 -0.077 -0.032 -0.026 0.899 1.112 

W
IN

T
E

R
 

3B 
(DAY_Ts) 

(Constant) 256.332 0.000      

Fr_Imp_Bld 41.156 0.000 0.531 0.252 0.164 0.446 2.243 

Fr_Imp_gr 16.968 0.000 0.467 0.107 0.068 0.348 2.872 

Fr_LowIRR -23.399 0.000 -0.240 -0.147 -0.093 0.464 2.154 

Fr_Med_Veg -3.453 0.001 -0.372 -0.022 -0.014 0.660 1.515 

Fr_High_Ve -68.622 0.000 -0.678 -0.399 -0.274 0.290 3.452 

Fr_Tot_wat -41.550 0.000 -0.197 -0.254 -0.166 0.935 1.070 

CIRCLE_AM -2.323 0.020 -0.030 -0.015 -0.009 0.786 1.273 

NLSI 5.236 0.000 0.164 0.033 0.021 0.790 1.266 

Altitude 11.937 0.000 -0.078 0.075 0.048 0.881 1.135 

4B 
(NIG_Ts) 

(Constant) 45.200 0.000      

Fr_Imp_Bld 16.369 0.000 -0.096 0.106 0.073 0.427 2.343 

Fr_Imp_gr 58.899 0.000 0.068 0.359 0.261 0.325 3.078 

Fr_LowIRR -7.573 0.000 -0.199 -0.049 -0.034 0.446 2.243 

Fr_Med_Veg -32.024 0.000 -0.053 -0.205 -0.142 0.669 1.494 

Fr_High_Ve 55.506 0.000 0.199 0.341 0.246 0.260 3.847 

Fr_Tot_wat 81.569 0.000 0.237 0.470 0.362 0.759 1.317 

CIRCLE_AM 27.914 0.000 0.139 0.179 0.124 0.804 1.244 

NLSI -15.185 0.000 -0.098 -0.099 -0.067 0.816 1.225 

Altitude 114.626 0.000 0.506 0.599 0.508 0.854 1.170 
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H3 Pearson's correlation coefficients of variables of regression model 1A with diurnal LSTs in summertime 

as dependent variable. 

Model 
1A 

D
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C
L

E
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S
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M
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n
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D
V

I 

A
lt

it
u

d
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DAY_Ts 1          
 

 

Fr_Imp_Bld 
.489 

** 
1           

Fr_Imp_Grnd 
.481 

** 
-.127 

** 
1          

Fr_Low_IRR 
-.108 

** 
-.133 

** 
-.252 

** 
1         

Fr_Low_NIR 
-.028 

** 
-.349 

** 
-.112 

** 
.117 

** 
1        

Fr_Med_Veg 
-.222 

** 
-.136 

** 
-.204 

** 
.041 

** 
-.167 

** 
1       

Fr_High_Veg 
-.582 

** 
-.385 

** 
-.461 

** 
-.164 

** 
-.274 

** 
.310 

** 
1      

Fr_Tot_Wat 
-.398 

** 
.155 

** 
-.189 

** 
-.111 

** 
-.153 

** 
-.010 

(.070) 
.000 

(.497) 
1     

CIRCLE_AM 
.111 

** 
.043 

** 
-.009 

(.091) 
.008 

(.119) 
-.058 

** 
.055 

** 
.034 

** 
-.070 

(.000) 
1    

nLSI 
.222 

** 
.243 

** 
.154 

** 
-.057 

** 
-.071 

** 
.029 

** 
-.221 

** 
-.113 

** 
.188 

** 
1   

Mean_NDVI 
-.558 

** 
-.444 

** 
-.587 

** 
.348 

** 
-.011 

* 
.338 

** 
.791 

** 
-.131 

** 
.048 

** 
-.250 

** 
1  

Altitude 
-.032 

** 
-.021 

** 
-.145 

** 
.168 

** 
-.083 

** 
.122 

** 
.173 

** 
-.121 

** 
.130 

** 
-.030 

** 
.222 

** 
1 

H4 Pearson’s correlation coefficients of variables of regression model 2A with nocturnal LSTs in 

summertime as dependent variable. 

Model 
2A 

N
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NIG_Ts 1           
 

Fr_Imp_Bld 
-.337 

** 
1           

Fr_Imp_Grnd 
.431 

** 
-.127 

** 
1          

Fr_Low_IRR 
-.168 

** 
-.133 

** 
-.252 

** 
1         

Fr_Low_NIR 
-.111 

** 
-.349 

** 
-.112 

** 
.117 

** 
1        

Fr_Med_Veg 
-.042 

** 
-.136 

** 
-.204 

** 
.041 

** 
-.167 

** 
1       

Fr_High_Veg 
.011 

* 
-.385 

** 
-.461 

** 
-.164 

** 
-.274 

** 
.310 

** 
1      

Fr_Tot_Wat 
.166 

** 
-.155 

** 
-.189 

** 
-.111 

** 
-.153 

** 
-.010 

(.070) 
.000 

(.497) 
1     

CIRCLE_AM 
.120 

** 
.043 

** 
-.009 

(.091) 
.008 

(.119) 
-.058 

** 
.055 

** 
.034 

** 
-.070 

** 
1    

nLSI 
-.007 

(.128) 
.243 

** 
.154 

** 
-.057 

** 
-.071 

** 
.029 

** 
-.221 

** 
-.113 

** 
.188 

** 
1   

Mean_NDVI 
-.062 

** 
-.444 

** 
-.587 

** 
.348 

** 
-.011 

* 
.338 

** 
.791 

** 
-.131 

** 
.048 

** 
-.250 

** 
1  

Altitude 
-.077 

** 
-.021 

** 
-.145 

** 
.168 

** 
-.083 

** 
.122 

** 
.173 

** 
-.121 

** 
.130 

** 
-.030 

** 
.222 

** 
1 

 

Strengths of correlations 
0.01-0.19 No/negligible relationship 

0.20-0.39 Weak relationship 

0.40-0.59 Moderate relationship 

0.60-0.79 Strong relationship 

0.80-1.00 Very strong relationship 

N = 23022 
* Correlation is significant at the 0.05 level (1-tailed) 
** Correlation is significant at the 0.01 level (1-tailed) 

 

Strengths of correlations 
0.01-0.19 No/negligible relationship 

0.20-0.39 Weak relationship 

0.40-0.59 Moderate relationship 

0.60-0.79 Strong relationship 

0.80-1.00 Very strong relationship 

N = 23022 
* Correlation is significant at the 0.05 level (1-tailed) 
** Correlation is significant at the 0.01 level (1-tailed) 
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H5 Pearson's correlation coefficients of variables of regression model 3A with diurnal LSTs in wintertime 

as dependent variable. 

Model 
3A 
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DAY_Ts 1           
 

Fr_Imp_Bld 
.531 

** 
1          

 

Fr_Imp_Grnd 
.467 

** 
.030 

** 
1         

 

Fr_Low_IRR 
-.240 

** 
-.333 

** 
-.372 

** 
1        

 

Fr_Low_NIR 
.088 

** 
-.291 

** 
-.104 

** 
.107 

** 
1       

 

Fr_Med_Veg 
-.372 

** 
-.233 

** 
-.316 

** 
-.072 

** 
-.200 

** 
1      

 

Fr_High_Veg 
-.678 

** 
-.428 

** 
-.563 

** 
-.027 

** 
-.325 

** 
.546 

** 
1     

 

Fr_Tot_Wat 
-.197 

** 
-.074 

** 
-.046 

** 
-.040 

** 
-.120 

** 
-.004 

(.242) 
.000 

(.493) 
1    
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Mean_NDVI 
-.676 

** 
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-.726 

** 
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H6 Pearson's correlation coefficients of variables of regression model 4A with nocturnal LSTs in 

wintertime as dependent variable. 
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Fr_Imp_Bld 
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-.053 
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-.052 
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Strengths of correlations 
0.01-0.19 No/negligible relationship 

0.20-0.39 Weak relationship 

0.40-0.59 Moderate relationship 

0.60-0.79 Strong relationship 

0.80-1.00 Very strong relationship 

N = 24948 
** Correlation is significant at the 0.01 level (1-tailed) 

 

Strengths of correlations 
0.01-0.19 No/negligible relationship 

0.20-0.39 Weak relationship 

0.40-0.59 Moderate relationship 

0.60-0.79 Strong relationship 

0.80-1.00 Very strong relationship 

N = 23022 
* Correlation is significant at the 0.05 level (1-tailed) 
** Correlation is significant at the 0.01 level (1-tailed) 
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H7 LISA results (Moran scatterplot, cluster and significance maps) for the dependent variable and residuals 

of Model 1B showing the presence of spatial clusters (hot-/coldspots) and spatial outliers. 

S
u

m
m

er
 Model 1B 

Local Moran’s I of DAY_Ts Local Moran’s I of residuals 

MI: 0.6103 p-value: 0.01 z-value: 181.1566 MI: 0.5678 p-value: 0.01 z-value: 167.3701 
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H8 LISA results (Moran scatterplot, cluster and significance maps) for the dependent variable and residuals 

of Model 2B showing the presence of spatial clusters (hot-/coldspots) and spatial outliers. 

S
u

m
m

er
 Model 2B 

Local Moran’s I of NIG_Ts Local Moran’s I of residuals 

MI: 0.5324 p-value: 0.01 z-value: 156.7439 MI: 0.6584 p-value: 0.01 z-value: 195.7581 
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H9 LISA results (Moran scatterplot, cluster and significance maps) for the dependent variable and residuals 

of Model 3B showing the presence of spatial clusters (hot-/coldspots) and spatial outliers. 

W
in

te
r Model 3B 

Local Moran’s I of DAY_Ts Local Moran’s I of residuals 

MI: 0.6787 p-value: 0.01 z-value: 208.4631 MI: 0.6064 p-value: 0.01 z-value: 186.2181 

C
lu

s
te

r 
m

a
p

 

 

S
ig

n
if

ic
a
n

c
e
 m

a
p

 
M

o
ra

n
 s

c
a
tt

e
rp

lo
t 



 

Appendices  |  451 

 

H10 LISA results (Moran scatterplot, cluster and significance maps) for the dependent variable and 

residuals of Model 4B showing the presence of spatial clusters (hot-/coldspots) and spatial outliers. 

W
in

te
r Model 4B 

Local Moran’s I of NIG_Ts Local Moran’s I of residuals 

MI: 0.7438 p-value: 0.01 z-value: 222.2758 MI: 0.6262 p-value: 0.01 z-value: 186.5337 
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H11 Summary of statistics of all regression models (OLS, SEM, LAG) produced for the prediction of diurnal and nocturnal LSTs in summer and winter. 

Season SUMMER 

Time of day Day Night 

Model 1A 1B 1C 1D * 1E ** 1F 2A 2B 2C 2D * 2E ** 2F 

Regression OLS OLS SEM SEM SEM LAG OLS OLS SEM SEM SEM LAG 

Predictors 

Fr_Imp_Bld, 
Fr_Imp_Grnd, 
Fr_Low_NIR, 
Fr_Low_IRR, 
Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_Wat, 
Mean_NDVI, 
CIRCLE_AM, 
 nLSI, Altitude 

Fr_Imp_Bld, 
Fr_Imp_Grnd, 
Fr_Low_IRR, 
Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_Wat, 
CIRCLE_AM, 
 nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

W_DAY_Ts, 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

Fr_Imp_Bld, 
Fr_Imp_Grnd, 
Fr_Low_NIR, 
Fr_Low_IRR, 
Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_Wat, 
Mean_NDVI, 
CIRCLE_AM, 
 nLSI, Altitude 

Fr_Imp_Bld, 
Fr_Imp_Grnd, 
Fr_Low_IRR, 
Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_Wat, 
CIRCLE_AM, 
 nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

W_NIG_Ts, 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

N cases 23022 23022 23022 368 20345 23022 23022 23022 23022 368 20345 23022 

R 0.802 0.800 - - - - 0.626 0.595 - - - - 

R2 0.643 0.640 0.844 0.861 0.860 0.763 0.391 0.354 0.798 0.909 0.799 0.680 

Adjusted R2 0.643 0.640 - - - - 0.391 0.353 - - - - 

S.E 1.763 1.771 1.165 0.841 0.958 1.437 0.937 0.965 0.540 0.311 0.408 0.679 

F-statistic 3767.942 4538.556 - - - - 1345.201 1403.516 - - - - 

df1 11 9 9 9 9 9 11 9 9 9 9 9 

df2 23010 23012 23012 358 20335 23011 23010 23012 23012 358 20335 23011 

Lag coeff. (Sig.) - - 0.829 (0.00) 0.551 (0.00) 0.782 (0.00) 0.5373 - - 0.886 (0.00) 0.915 (0.00) 0.862 (0.00) 0.6953 

Sig. F (p-value) 0.000 0.000 - - - - 0.000 0.000 - - - - 

Log-Likelihood -45720.3 -45828.6 -37792.87 -478.455 -29335.9 -41547.8 -31171.7 -31851 -20459.63 -181.203 -12429.57 -24.765.4 

AIC 91464.5 91677.3 75605.7 976.911 58691.8 83117.6 62367.4 63722.1 40939.3 382.407 24879.2 49552.7 

SC 91561.1 91757.7 75686.2 1015.99 58771.0  83206.1 62463.9 63802.5 41019.7 421.487 24958.4 49641.2 

Durbin-Watson 1.065 1.052 - - - - 0.943 0.907 - - - - 

Multicollinearity 218.001 20.485 - - - - 218.001 20.485 - - - - 

Jarque-Bera 
(Sig.) 

107148.551  
 (0.000) 

112182.523
6 (0.000) 

- - - - 
140438.054 

 (0.000) 
150644.418

2 (0.000) 
- - - - 

Breusch-Pagan 
(Sig.) 

23670.8246 
 (0.000) 

22177.1111 
(0.000) 

19069.77 
(0.000) 

247.4531 
(0.000) 

3313.721 
(0.000) 

18685.693 
(0.000) 

34768.8775 
 (0.000) 

36322.8178 
(0.000) 

33816.04 
(0.000) 

382.9133 
(0.000) 

6898.934 
(0.000) 

35442.580 
(0.000) 

Koenker-Bassett 
(Sig.) 

3934.6607 
(0.000) 

4149.5824 
(0.000) 

- - - -  
5033.0809 

(0.000) 
5113.7158 

(0.000) 
- - - - 

Likelihood ratio 
(Sig.) 

- - 
16071.52 

(0.000) 
96.9575 
(0.000) 

12027.35 
(0.000) 

8561.6076 
(0.000) 

- - 
22782.82 

(0.000) 
558.6579 

(0.000) 
18961.35 

(0.000) 
14171.3502 

(0.000) 

* Aquatic context; **Terrestrial context; S.E. = Spatial error; AIC = Akaike information criterion; SC = Schwarz criterion. Note: models with the best performance have been coloured. 
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(Continued Table H11) 

Season WINTER 

Time of day Day Night 

Model 3A 3B 3C 3D * 3E ** 3F 4A 4B 4C 4D * 4E ** 4F 

Regression OLS OLS SEM SEM SEM LAG OLS OLS SEM SEM SEM LAG 

Predictors 

Fr_Imp_Bld, 
Fr_Imp_Grnd, 
Fr_Low_NIR, 
Fr_Low_IRR, 
Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_Wat, 
Mean_NDVI, 
CIRCLE_AM, 
 nLSI, Altitude 

Fr_Imp_Bld, 
Fr_Imp_Grnd, 
Fr_Low_IRR, 
Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_Wat, 
CIRCLE_AM, 
 nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

W_DAY_Ts, 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

Fr_Imp_Bld, 
Fr_Imp_Grnd, 
Fr_Low_NIR, 
Fr_Low_IRR, 
Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_Wat, 
Mean_NDVI, 
CIRCLE_AM, 
 nLSI, Altitude 

Fr_Imp_Bld, 
Fr_Imp_Grnd, 
Fr_Low_IRR, 
Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_Wat, 
CIRCLE_AM, 
 nLSI, Altitude 

Fr_Imp_Bld, 
Fr_Imp_Grnd, 
Fr_Low_IRR, 
Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_Wat, 
CIRCLE_AM, 
 nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

(Lambda), 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

W_NIG_Ts, 
Fr_Imp_Bld, 

Fr_Imp_gr, 
Fr_LowIRR, 

Fr_Med_Veg, 
Fr_High_Veg, 

Fr_Tot_wat, 
CIRCLE_AM, 
nLSI, Altitude 

N cases 24948 24948 24948 155 21024 24948 23458 23458 23458 322 20012 23458 

R 0.777 0.776 - - - - 0.737 0.734 - - - - 

R2 0.603 0.603 0.837 0.565 0.846 0.769 0.543 0.539 0.866 0.907 0.876 0.815 

Adjusted R2 0.603 0.602 - - - - 0.543 0.539 - - - - 

S.E 1.196 1.197 0.767 0.529 0.695 0.913 0.626 0.629 0.339 0.472 0.310 0.399 

F-statistic 3446.427 4200.067 - - - - 2537.152 3048.077 - - - - 

df1 11 9 9 9 9 9 11 9 9 9 9 9 

df2 24936 24938 24938 145 21014 24937 23446 23448 23448 312 20002 23447 

Lag coeff. (Sig.) - - 0.829 (0.00) 0.383 (0.00) 0.810 (0.00) 0.6151 - - 0.908 (0.00) 0.801 (0.00) 0.887 (0.00) 0.7839 

Sig. F (p-value) 0.000 0.000 - - - - 0.000 0.000 - - - - 

Log-Likelihood -39856.2 -39878.6 -30496.31 -126.736 -23747.31 -33914.4 -22298.8 -22408.6 -10125.3 -262.824 -6946.26 -13137 

AIC 79736.3 79777.3 61012.6 273.472 47514.6 67850.7 44621.7 44837.2 20270.6 545.649 13912.5 26296 

SC 79833.8 79858.5 61093.9 303.906 47594.2 67940.1 44718.4 44917.8 20351.2 583.394 13991.6 26384.7 

Durbin-Watson 1.015 1.018 - - - - 1.074 1.062 - - - - 

Multicollinearity 199.910 18.521 - - - - 185.675 18.887 - - - - 

Jarque-Bera 
(Sig.) 

2452.7424 
(0.000) 

2571.2485 
(0.000) 

- - - - 
1964.0973 

(0.000) 
2019.8261 

(0.000) 
- - - - 

Breusch-Pagan 
(Sig.) 

2438.8289 
(0.000) 

2445.5106 
(0.000) 

4467.24 
(0.000) 

63.8665 
(0.000) 

980.105 
(0.000) 

2869.4726 
(0.000) 

4684.8502 
(0.000) 

5013.832  
(0.000) 

5807.74 
(0.000) 

56.6246   
(0.000) 

568.682 
(0.000) 

5410.244 
(0.000) 

Koenker-Bassett 
(Sig.) 

1461.0536 
(0.000) 

1454.5364 
(0.000) 

- - - - 
2774.7879 

(0.000) 
2934.3725 

(0.000) 
- - - - 

Likelihood ratio 
(Sig.) 

- - 
18764.65 

(0.000) 
18.4510 
(0.000) 

16138.4 
(0.000) 

11928.56 
(0.000) 

- - 
24566.59 

(0.000) 
162.4745 

(0.000) 
19855.3 
(0.000) 

18543.159 
(0.000) 

* Aquatic context; **Terrestrial context; S.E. = Spatial error; AIC = Akaike information criterion; SC = Schwarz criterion. Note: models with the best performance have been coloured.
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H12 Histograms, normal P-P plots and scatterplots of residuals for all produced models (OLS, SEM, LAG). 

Model Histogram residuals 
Normal P-P plot of 

standardised residual 
Scatterplot residuals 
(standardised values) 

SUMMER 

OLS 

1A 

 

1B 

SEM 

1C 

1D* 

1E** 

LAG 1F 



 

Appendices  |  455 

 

 

Model Histogram residuals 
Normal P-P plot of 

standardised residual 
Scatterplot residuals 
(standardised values) 

OLS 

2A 

 

2B 

SEM 

2C 

2D* 

2E** 

LAG 2F 
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Model Histogram residuals 
Normal P-P plot of 

standardised residual 
Scatterplot residuals 
(standardised values) 

WINTER 

OLS 

3A 

 

3B 

SEM 

3C 

3D* 

3E** 

LAG 3F 
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Model Histogram residuals 
Normal P-P plot of 

standardised residual 
Scatterplot residuals 
(standardised values) 

OLS 

4A 

 

4B 

SEM 

4C 

4D* 

4E** 

LAG 4F 

* Aquatic context; **Terrestrial context. 
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