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Abstract

Aviation has grown dramatically over the last decades. Worldwide air traffic is
expected to continue to grow at rates of 3-5% per year. Air traffic currently expe-
riences long delays at major airports, noticeable impact on the environment, and
high work load on air traffic controllers. Future operational concepts to deal with
these problems and to support sustainable growth of the Air Navigation Industry
have been defined by International Civil Aviation Organization (ICAO) and major
Air Traffic Control (ATC) authorities including both Eurocontrol and Federal Avia-
tion Administration (FAA). One of these concepts is User Preferred Routes (UPR),
representing the routes with the best business outcome from the airspace user’s per-
spective. Aircraft would generally be free to fly user-preferred routes, and modify
their trajectories without, or with minimal, intervention by ATC. There has been
limited research on optimisation methods for UPR and on investigating the impact
of UPR on the environment, delays, safety, etc.

In this thesis a framework is designed and developed to find user preferred routes
for flights and evaluate the UPR concept. The main contribution of the thesis is a
set of three different methods for finding UPR. Through the experiments with the
two first methods, which are based on Genetic Algorithms and Learning Classifier
Systems and act as the black and white box optimisation approaches, we found the
pros and cons for these different optimisation philosophies. The third method is
a scalable algorithm that is fast and reliable. It can optimise routes efficiently for
different mixes of users.

To enable the investigation and optimisation of UPR, a simulation and evaluation
environment is established. In this environment, I developed a real time weather
system to retrieve and process weather data. This data is then stored in a database
for aviation decision support in general and for aircraft UPR in particular. Second,
flight and weather scenarios are designed to test UPR methods and assess user
preferred routes provided by these methods. Third, a segment based simulation
environment is developed to simulate any type of route segment (climb, cruise, or
descent). The simulation uses point mass model of aircraft, and is implemented in a
continuous environment, as well as in a fast time mode. This simulation environment
is applied effectively and flexibly to evaluate UPR.

The impact of different emissions on the environment is measured effectively. I
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developed a real time flight data management system with algorithms to process,
estimate, and integrate information for every flight in the airspace and to construct
flight objects. Then another real time system is developed to estimate aviation
emission using the flight objects provided by the flight data management system.
The aviation emission is stored in 4-D database to analyse the impact of aviation
emission on the environment. A number of models for emissions analysis are designed
and implemented. The models developed here are then used for the calculation and
analysis of fuel and emissions for UPR routes.

I demonstrate that, if UPR routes that have been optimised either vertically or
horizontally, they can help to reduce on average about 3% and 2% fuel burn in com-
parison with the original flight plans respectively. If UPR routes are optimised both
vertically and horizontally, they can save on average 5% fuel burn. I also demon-
strate that the delay in departure times of UPR and non-UPR flights is insignificant
(the average delay is less than 1 minute).
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Introduction

Chapter 1

Introduction

1.1 Overview

Aviation has grown dramatically over the last decades. There are some areas

in the world with a very high air traffic density (e.g US and Europe). For example,

on any given day, more than 87,000 flights are in the skies of the United States, in

which about one-third are commercial carriers [129]. According to an International

Civil Aviation Organization (ICAO) forecast, worldwide air traffic is expected to

continue to grow at rate of 5% per annum until 2020 [82].

The current air traffic systems and procedures have served the international

civil aviation successfully and safely. The global accident rate remained essentially

unchanged, at approximately four accidents per million scheduled departures [89].

However, air traffic currently experiences long delays at major airports [57, 30],

and accounts for between 2.5% and 3% global human-made CO2 emissions [160].

The air traffic controller workload limits the increase in the airspace capacity [55].

Future operational concepts based on the principles of Trajectory Based Opera-

tions (TBO) to deal with these problems and to support sustainable growth of the

Air Navigation Industry have been defined by ICAO and major Air Traffic Control

(ATC) authorities including both the European Organisation for the Safety of Air

Navigation (Eurocontrol) and Federal Aviation Administration (FAA) [100, 164, 65].
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These concepts are provided by SESAR (Single European Sky ATM Research) pro-

gram in Eurocontrol and NextGen (NextGen Next Generation Air Transportation

System) program in FAA. Trajectory-Based Operations will be based on User Pre-

ferred Route (UPR) which is the route with the best business outcome from the

airspace user’s perspective. User Preferred Routing will be implemented in Free

Route airspace while a fixed Route Network is still maintained. Aircraft would gen-

erally be free to fly user-preferred routes, and modify their trajectories without or

with minimal intervention by air traffic control [134, 78].

In trajectory-based airspace, all trajectory management functions use the air-

craft’s 4D trajectory with the support of digital data communication and ground-

based and airborne automation. The uncertainty of an aircraft’s future path in

terms of predicted spatial position (latitude, longitude, and altitude) and times along

points in its path is reduced dramatically as the result of using precise 4D trajecto-

ries. This enables more effective use of airspace to safely accommodate high demand

and maximize the use of capacity-limited airspace and airport resources [100].

TBO in general can provide greater capacity, better efficiency, better pre-

dictability, and ground automation, improve safety, reduce fuel burn and emissions,

and increase flexibility [100]. UPR in particular allow users to plan and fly opti-

mal routes consistent with business priorities, thus minimizing flight time, mileage

and/or fuel consumption, and contributing to the reduction in green house emis-

sions [14].

This thesis addresses the UPR problem to find the best business outcome route

for the airspace user. Particularly this thesis proposes a number of methods to

resolve the problem. The advantages and disadvantages of the methods are investi-

gated. A systematic use of methods is proposed to take advantage of each method

in specific routing circumstances (strategic or tactical routing, and centralized or

decentralized routing). The environmental impact of UPR routes, which are op-

timised vertically, horizontally or both for time and discomfort minimization are

investigated. Here passenger discomfort is caused by bad weather and is measured

by the bad weather levels and time durations a flight passes the bad weather ar-

Viet Van Pham October 2, 2012
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eas. The analysis can support airspace users in making decision on their preference

for a flight by weighing the environmental impact with other benefit. Besides that

the impact of UPR routes on departure time deviation is also analysed. This can

relatively refer to the impact of UPR routes on the delays of flights.

Real Time Weather

Information System

Real Time Flight Data 

Management System

User Preferred Routes 

Planning

Real Time Fuel and 

Aviation Emission 

Calculation and 

Analysis

UPR and 

Non-UPR Flight Objects

All Flight Objects

Wind, Temperature, and

 Meteorological Warning (Bad Weather)

UPR Flight Objects

Figure 1.1: System Architecture.

In order to find user prefer routes satisfying constraints of safety and aircraft

performance, and to evaluate UPR concept, a system including a number of com-

ponents as in Figure 1.1 is designed and developed.

• A “Real Time Weather Information System” is designed and developed to

process and integrate weather data for UPR Planning. Neural networks are

designed and trained to recognize numeric atmospheric data in image for-

mat accurately and export to text format for further use. This data is also

considered for use in aviation emission calculation and analysis where wind,

temperature and weather effects on aviation emission are taken into account

in the future.

• A “Real Time Flight Data Management System” is developed with algorithms

Viet Van Pham October 2, 2012
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to process, estimate, and integrate information for every flight in the airspace

to construct flight objects in real time. The information includes flight plan,

flight route and radar data. In the flight data management system, a number of

estimation techniques are used. For example when information about runway,

cruising altitude, departure, arrival routes are not received, they are estimated

using statistics from historical data; some information such as actual departure

times and actual arrival times are estimated through trajectory prediction.

The flight objects are then used as input data for UPR planning and for

calculating fuel and emission.

• “User Preferred Route (UPR) Planning” (also called User Preferred Routing)

finds UPR routes for UPR flights.

• “Real Time Fuel and Aviation Emission Calculation and Analysis” estimates

fuel burn and emissions in real time using flight objects provided by the flight

data management system, and analyses the environmental impact of aviation

emissions.

UPR planning, in this thesis, uses artificially generated flight plans because of

the confidential character of the real data. The generated flights plans include

UPR plans that user preferred routing needs to find user preferred routes for,

and non-UPR plans that user preferred routing needs to consider to avoid

conflicts with. It uses real wind data processed by the real time weather

information system. However bad weather scenarios are generated artificially

for testing and assessing UPR algorithms as the of quantity and distribution

of bad weather cells in reality is not challenging enough for this purpose. The

UPR algorithms can also work well in a real system.

In this thesis, we apply the real time fuel and aviation emission calculation

and analysis system to prepare an aviation emission inventory and do analysis

based on the emission data. We expect that we will be able to quantitatively

determine the impact of different emissions on different flight levels, airspace

areas, seasons, and weather conditions by studying aviation emission. From

Viet Van Pham October 2, 2012
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this, some particular environmental objectives may be defined in UPR plan-

ning. In this thesis, the models for aviation emission calculation and analysis

from the system are also used to investigate the environmental impact of User

Preferred Route sets.

1.2 Research Motivation

SESAR determines that 4 dimension trajectory management will be based on

User Preferred Routes (UPRs), while NextGen states that Flight Operation Centers

(FOCs) need to develop and maintain information technology systems to achieve

the development of User Preferred Routes as one of three basic objectives. User

Preferred Routes (UPRs) help to achieve the “overall philosophy driving the de-

livery of Air Traffic Management (ATM) services in the NextGen to accommodate

flight operator preferences to the maximum extent possible” [100]. Restrictions are

only imposed when a need for operation exists, to meet capacity, safety, security,

or environmental constraints. Though UPR is described in literature, there is lim-

ited research of UPR. In [7], a continuous descent approach is discussed as an im-

plementation of user preferred trajectories, but this is only for fuel and emission

optimisation preference rather than other user preferences such as minimal discom-

fort. Furthermore, there has been little study to investigate the impact of UPR on

the environment, delays, safety, etc. This is the motivation for studying the User

Preferred Routing problem from the points of view of formulating User Preferred

Problem comprehensively, developing methods to resolve the UPR problem properly

and efficiently, and analysing the impact of UPR routes.

There are many methods for formulating the problem to aircraft route optimisa-

tion. Several methods work with a single aircraft only (e.g. [127]), while others focus

on multiple aircraft. However they usually deal with a small number of aircraft. For

example, in [148], only experiments with one, three and four aircraft were reported,

while [35] reported only the case with 3 aircraft. Further, the problem is usually

formulated without taking weather conditions into account such as in [127, 46, 27],

Viet Van Pham October 2, 2012
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without considering aircraft performance [127, 35], or in discrete environment [35],

where there are a finite number of positions that aircraft can reach. This motivates

us to study the problem of User Preferred Routing as aircraft route optimisation

problem for large numbers of flights, taking into account user preference/intention,

wind, bad weather and aircraft performance data.

UPR problem needs to find 3-D or 2-D routes accomplishing user preferred

objectives (which cannot be calculated through aircraft route simulation) while sat-

isfying constraints such as aircraft performance. These requirements create a search

space with multi-dimension, multi-modal, and combinatorial-explosion. This is a dif-

ficult challenge for conventional optimisation techniques. Evolutionary Algorithms

(EAs) as stochastic search methods are well suitable for this problem, because these

algorithms are designed to find a good approximation rather than guaranteeing to

find the best solutions. There has been a lot of research using evolutionary com-

putation to resolve aircraft trajectory/route optimisation. These studies can be

categorized into two branches. One is a black box approach, which can find optimal

routes for an aircraft but gives no reasons for the aircraft movement. For example

there has been a number of studies using Genetic Algorithms (GAs) [200, 9], and

ant colony optimisation [4]. The main difference in these studies is in the represen-

tation and simulation of aircraft route. The other is a white box approach, which

can give the reasons for aircraft navigation. There is little study in this branch.

In [170], a genetics-based machine learning system is implemented to acquire rules

for novel fighter combat maneuvers through simulation. In this study, a Learning

Classifier System (LCS) is designed for discovering rules that dictate combat ma-

neuver logic. There is no study using LCS to navigate civilian flights in a continuous

environment, to optimise objectives such as time, fuel, emissions or comfort. There

is also no study to investigate the advantages and disadvantages of these two black

and white approaches. This study can support a route planner to apply algorithms

properly in specific routing circumstances.

In addition to designing and developing methods based on Genetic algorithms,

with an innovative and efficient representation and simulation of aircraft routes,

Viet Van Pham October 2, 2012
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this thesis also proposes methods based on LCS for user preferred routes for civilian

flights in continuous environment to minimize time travel and maximize passenger

comfort. Then the advantages and disadvantages of the two approaches are pointed

out.

Another approach in aircraft trajectory/route optimisation is network based al-

gorithms. Some methods consider pre-determined potential flight segments for find-

ing an optimal or near-optimal route [103, 6]. Other research constructs networks

for finding an optimal aircraft trajectory/route [41, 133, 128, 20, 202, 201, 111].

A network is constructed first, then a shortest path algorithm (e.g Dynamic Pro-

gramming [38], A* [45], and Dijkstra [38]) is applied to find the optimal path. The

main difference in these studies is in constructing the network. In this thesis we

propose efficient network models for finding user preferred routes. Algorithms for

determining the nodes and weights of network links to construct the networks are

developed. Then Dijkstra’s algorithm (with a modification to improve the speed

of the algorithm) is applied to find UPR routes in the networks. This method can

find UPR routes successfully satisfying the user preference in short time. Here we

don’t use A* which can achieve better performance (with respect to time) by using

heuristics. The reason is that it is not easy or may be time consuming to have an

admissible heuristic estimate of the distance from a point in airspace to the destina-

tion since the estimation needs to consider multiple objectives, and these objectives

are determined in a weather environment, taking into account aircraft performance.

Therefore the application of A* in this case may be more time consuming than

Dijkstra.

The evaluation of UPR concept is limitedly researched. In this thesis we par-

ticularly study the environment impact of UPR concept. The aviation industry

currently pays high attention on the environment impact of aviation as the high

and growing volume can lead to high impact of aviation emissions on the envi-

ronment. Aircraft release between 2.5% and 3% of the total global emissions of

CO2 as a result of fossil fuel burning [160]. Besides that aviation emissions have

a special impact compared to the other emission sources as they are produced in

Viet Van Pham October 2, 2012
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high altitude. Therefore studying aviation emissions to understand their impact

is important. However, the current state of knowledge of aviation impacts on the

atmosphere is severely limited due to unavailability of timely and accurate aviation

emission data. Most aviation emission inventories do not use real time air traffic

data such as inventories developed by the U.S. National Aeronautics and Space Ad-

ministration (NASA) [178], FAA [61], and Eurocontrol [59]. Several assumptions are

used, to simplify complex flight trajectories and to deal with a few representative

aircraft types. Moreover the emission inventories are not comprehensive i.e. they do

not have details of emission in different flight phases (such as taxi-out and taxi-in).

Therefore the emission data obtained are not very accurate or detailed, and by the

time they are compiled they become outdated. New approaches and models are

required in order to reduce the considerable uncertainties in emission calculations.

This motivates us to develop a real time system for aviation emission inventory de-

velopment and analysis with more accurate fuel flow and emissions computation.

The availability of this real time aviation emission database will help environmental

analysts and aviation experts, providing an indispensable source of information for

making timely decisions regarding applying route charges based on environmentally

congested airways, and restructuring air traffic flow to achieve sustainable air traffic

growth, expansion of runways, building new airports. Another advantage of devel-

oping the system is that the aviation emission calculation and analysis tools can

be applied to investigate the environmental impact of UPR route sets provided by

different methods. This investigation is important for the implementation of UPR

in the future.

In summary, the above reasons motivate us to develop a system to find UPR

routes from origins (taking-off points) to destinations (landing-down points) for large

numbers of flights in a weather and safety constrained airspace. The core of the sys-

tem is UPR methods using evolutionary computation and networks with innovative

and efficient design. UPR routes are found by these algorithms in continuous space,

taking into account weather information and aircraft performance, and targeting

objectives of civilian flights such as time, fuel, emissions and comfort. The perfor-

Viet Van Pham October 2, 2012
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mance of different algorithms is compared, then a systematic use of algorithms is

proposed. A variety of weather and flight scenarios are designed to test and assess

algorithms. In addition, a real time system for aviation emission inventory and

analysis is developed. The environmental impacts of different sets of UPR routes,

which are optimised vertically, horizontally or both for time and passenger discom-

fort minimization, are then analysed using the aviation emission calculation and

analysis tools from the system. The departure time deviation of UPR routes is also

analysed to relatively see the impact of UPR routes on the delays of flights.

1.3 Research Question And Hypothesis

Our hypothesis is that User Preferred Routes could have a significant Savings

for the Aviation Industries.

As presented in Section 1.2, there is little study for finding UPR routes for

flights in the literature, particularly studying the impact of UPR routes. In this

thesis, we wish to answer the following research question:

What is the impact of User Preferred Routes?

This question is addressed systematically by resolving the following supportive

questions.

1. How can we effectively measure the impact of different emissions on

the environment?

Air traffic increasingly impacts on the environment. One of the important

objectives of the future concepts is to reduce the environment impact. A

system to calculate aviation emissions to assess and analyse the environmental

impact in real time (which includes any test of future concept) is needed. This

system needs to have algorithms and models to process, estimate, predict,

and integrate flight data in real time to construct flight objects. Then fuel,

and emissions models can be applied to calculate fuel and emissions, using

these flight objects. An efficient database to restore fuel, and emissions in

Viet Van Pham October 2, 2012
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real time and analytic models are required for emission analysis. The emission

calculation and analysis models in this system can be also applied for historic

and simulated traffic, so that future concepts (such as UPR concept in this

thesis) can be evaluated. All these problems are addressed in Chapter 4.

2. What are the pros and cons for different optimisation philosophies?

Finding optimal solutions for a real world problem may be computationally

expensive or even impossible, as the complexity of the problem prevents exact

methods from being applicable. Finding an aircraft’s optimal trajectory/route

in continuous airspace is such a problem. Evolutionary Algorithms (EAs) are

broadly used for these types of problem. These algorithms are stochastic

search methods. They try to find a good approximation but do not guarantee

to find optimal solutions. In this thesis we present two major sub-fields of EAs:

Genetic Algorithms (GA) and Learning Classifier Systems (LCS) for solving

user preferred route problem. They correspond to two different approaches:

black box approach and white box approach respectively. Especially we are

interested in investigating the difference (the advantages and disadvantages)

between the two approaches. This can support route planners to choose a

method corresponding to a routing circumstance properly. The question of

“What are the pros and cons for different optimisation philosophies (black

and white box approaches)?” is addressed in Chapter 5.

3. How can we optimise routes efficiently for different mixes of users?

Real time optimisation requires fast optimisation engines to efficiently run

the optimisation in a time-constrained environment. In this sub-question,

an algorithm for dynamic generations of networks is used to constructively

provide a fast optimisation algorithm for UPR. This question is addressed in

Chapter 6.
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1.4 Organization of the thesis

This thesis is organized in seven chapters as follows:

Chapter 1 presents an introduction to the thesis. The motivation and research

questions are defined. Besides that, an outline of the thesis structure and the main

contributions are given.

Chapter 2 reviews key concepts in the thesis. The development of air traffic

management systems is introduced first, with the emphasis on future operational

concepts. Then multi-objective optimisation is reviewed, presenting basic concepts

of multi-objective optimisation, popular user preference elicitation techniques, and

discrete and continuous optimisation algorithms (or shortest path algorithms using

graph and evolutionary algorithms). Aircraft trajectory management is presented

next, with technology enablers for future operational concepts, flow planning tools,

and trajectory and route optimisation. User Preferred Routing is then presented,

with types and nature of users in air traffic management, and variants of user pre-

ferred routes. A chapter summary and emergent questions are finally presented.

In Chapter 3, two user preferred route problems are formulated and described

first. One is with flights given 2-D (latitude, longitude) routes and the other is with

flights given cruising altitudes. Then a bad weather model is presented, followed by

weather data processing. Conflict Detection and Resolution (CDR) algorithms used

in the thesis are then presented. The simulation environment in general is presented

next, followed by the mathematics of the evaluation environment and the algorithms

to simulate a route. Finally the overall experimental framework to test and evaluate

algorithms for User Preferred Routing is presented, followed by the summary of the

chapter.

In Chapter 4, an aviation emission inventory using real time air traffic trajec-

tory data is presented. The overview of the chapter is presented first, followed by the

introduction of the chapter. Environmental impact of aviation emissions in general

are presented next, followed by the description and comparison of our aviation emis-

sion inventory with other inventories. Then aviation emission results are presented
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in summary and for particular aircraft categories and aircraft phases. Geographical

distribution of emissions in horizontal and vertical views is presented next. The

discussion on the impact of aircraft emissions is given in the following section. Then

limitations and assumptions in the study are presented. Recommendations for re-

ducing the environmental impact of aviation emissions are given, followed by the

summary of the chapter.

Chapter 5 presents two approaches using evolutionary computations for User

Preferred Routing. One uses Genetic Algorithms and works as a black box approach

and the other uses Learning Classifier Systems and works as a white box approach.

The discussion and comparison of the two approaches are presented.

In Chapter 6, the design and experiment of UPR algorithms using dynamic

networks of control points are presented. The overview of the chapter is presented

first. UPR using a control point network for a flight, given either a 2-D route or a

cruising altitude are presented. UPR algorithms using control point networks, Ge-

netic Algorithms, and Learning Classifier Systems are compared in terms of running

times and quality of solutions. The environmental impact of different sets of user

preferred routes is analysed. A systematic use of UPR methods, which are based

on Genetic Algorithms, Learning Classifier Systems, and control point networks is

then described. Finally conclusions are presented.

Chapter 7 concludes the thesis. The major contributions of the thesis are

highlighted. A number of directions for future research are pointed out.

1.5 Original Contributions

The main contribution of this thesis is to design a real time system for User

Preferred Routing. Further contributions of the thesis are listed as follows:

• A simulation and evaluation environment is designed and developed

to support User Preferred Routing.

To enable the investigation and optimisation of UPR, a simulation and evalu-
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ation environment is established. In this environment, I developed a real time

weather system to retrieve and process weather data. This data is then stored

in a database for aviation decision support in general and for aircraft UPR

in particular. Second, flight and weather scenarios are designed to test UPR

methods and assess user preferred routes provided by these methods in this

environment. Third, a segment based simulation environment is developed to

simulate any type of route segment (climb, cruise, or descent). The simula-

tion uses point mass model of aircraft, and is implemented in a continuous

environment, as well as in a fast time mode. This simulation environment is

applied effectively and flexibly to evaluate flight routes.

• The impact of different emissions on the environment are effectively

measured.

First, I developed a real time flight data management system with algorithms

to process, estimate, and integrate flight data to construct the flight objects

in real time, using statistic techniques and heuristics. Then another real time

system is develop to estimate aviation emission using the flight objects pro-

vided by the flight data management system. The aviation emission is stored

in 4-D database to analyse the impact of aviation emission on the environment.

The fuel flow and emissions of a flight are calculated every time step using the

speed, altitude, and phase of the flight, along with aircraft-specific aerody-

namic models. These results are combined with aircraft position and time

to generate a 4D (latitude, longitude, altitude and time) emission database.

With these characteristics, the system provides more accurate fuel flow and

emissions computation than previously possible. The real time emission data

can be used to analyse the impact on the environment and support timely

decision making. A number of models for emissions analysis are designed and

implemented. The models developed here are then used for the calculation

and analysis of fuel and emissions for UPR routes.

• The advantages and disadvantages of the two optimisation methods

(black and white box approaches) using evolutionary algorithms are
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pointed out.

Two approaches using evolutionary algorithms are designed and developed to

find user preferred routes. One is the black box approach (which uses Genetic

Algorithms) and the other is the white box approach (which uses Learning

Classifier Systems). The two approaches are compared in the thesis.

GA is designed with an innovative and efficient chromosome representation,

where a chromosome is a series of commands. These commands tells an aircraft

to climb, or descend an additional altitude, or cruise an additional distance

from current point. This representation makes sure the aircraft can perform

and goes towards the destination. The algorithm to generate the 4-D trajec-

tory by simulating the execution of the commands is developed. The 3-D route

is then obtained by removing the time dimension from the trajectory.

An efficient design of a Learning Classifier System for multi-flight navigation is

presented. A classifier is represented by a set of ordered rules, which are used

to simultaneously navigate all the flights in the airspace. Navigation of a flight

is based on the relation of the flight with factors of the air traffic environment

such as wind, and bad weather. This system continually learns and refines

the rules of classifiers by Genetic Algorithm, to discover the classifiers that

navigate flights with minimal time of flying, and minimal discomfort (which is

defined by bad weather level and the time duration of flights passing through

bad weather area).

We found that both approaches are able to find user preferred routes for flights

in an acceptable time. These approaches have the same running times. In the

black box approach, user preferred routes are found with better objectives of

time and discomfort, while in the white box approach the classifier outputs its

rules in a symbolic representation, making the overall process transparent to

the user and reusable.

• User preferred routes are optimised efficiently for different mixes of

users.
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In this thesis we propose innovative network models and algorithms to generate

a dynamic network of 3-D control points using real aircraft performance and

real wind data. A network is generated for a combination of an origin, a desti-

nation, an aircraft type, flight route or flight cruising altitude, and a weather

environment. The term “dynamic” means when the combination changes the

network changes. The 3-D network can be also considered as a 4-D network

as the weight of time travelled is determined in links of the network. The

advantage of the generated network is that it does not depend on departure

time and user preference. Therefore it can be used efficiently to find UPR

routes for flights with different departure times and user preferences.

• The impacts of user preferred routes on environment and the devia-

tion between the adjusted departure times and the original ones are

studied.

The models, which are developed for fuel and emissions calculation and anal-

ysis, are applied to assess the impact of user preferred routes on the envi-

ronment. In addition, given the highest purpose to optimise the time and

discomfort for a flight, departure time adjustment is applied to resolve con-

flicts between UPR flights with each other and with non-UPR flights. The

deviation of departure times from the original ones is then analysed to see the

impact on flight departure time deviation when UPR routes are applied.
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Chapter 2

Background

2.1 The Air Traffic Environment

2.1.1 Historical View

The air traffic management system in the past was mainly based on fixed route

network and centralized. In early day of aviation, there were few planes in the

airspace. They flied at low altitude and navigated from one landmark to another.

They could not travel during night time. The first airway was constructed as a line

of bonfires on the ground. They were then replaced with high-intensity rotating light

beacons located along airways. This allowed aircraft to travel at night. However

they could not work in low visibility conditions (e.g cloudy conditions), or when

they were not turned on, or when they were distracted by other lights, especially

in urban areas. These weaknesses led to the development of radio beacons. These

beacons were located approximately 200 miles from each other to construct elec-

tronic airways. These beacons could help pilots follow to their destinations through

the transmission of directional beams, allowing for navigation in limited visibility

conditions. Then radar were used for navigation. The air traffic control system re-

mained using fixed air corridors and was primarily manual. The system comprised

of rules and procedures, and was under centralized control from the ground by air
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traffic controllers. The system was later increasingly supported by computer and

the satellite system.

This structured and centralized system combing with the growth of aviation

demand resulted in a number of problems regarding the efficiency, safety, delays,

environmental impact, and air traffic control workload. These problems will be

presented in details in the next section.

2.1.2 Present Picture

Air traffic continues growing worldwide. This leads to a substantial increase in

delays and congestion. Nowadays air traffic planners face a problem that how to

increase airspace capacity and flight efficiency while still ensuring the current set of

safety standards [26].

The current air traffic management system with fixed route structure, where a

number of routes are very busy, and air traffic growth leads to a significant delay.

For example in Europe the air traffic in 2006 grew by 4.3% on 2005 and the average

delay per movement, for all causes of delay, was 12.4 minutes for departure traffic;

an increase of 9.5% on previous year and 12.3 minutes for arrival traffic; an increase

of 11.4% on 2005 [57]. The Eurocontrol Performance Review Report for 2006 states

that air traffic delays are expected to increase further, as capacity plans do not match

traffic growth. There have been annually at least 15 percent of flights delaying at

least 15 minutes since 2000 in United States [186].

The global accident rate was almost unchanged in the last 10 years. However,

this current accident rate, applied to the industry growth, may cause one major

accident per week [187]. Combining with the increased potential of conflicts at

crossing points in the fixed route network, the safety may be getting higher concern.

This, in turn, will lessen public confidence in the system and Civil Aviation may

face a greater financial risk.

The current air traffic control system is centralized, where the separation is

mainly the responsibility of air traffic controllers. This leads to capacity of the en
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route and transition (arrival/departure) airspace of the system is principally limited

by the controller workload related to monitoring and controlling aircraft separation.

As indicated in [134], the lack of airspace is not the reason of most of the traffic

flow management problems in the US, but an inability of the controller to make

separation predictions accurately and confidently. Hence, the key to achieving a

large increase in the capacity of this airspace is to reduce controller workload [55].

Besides that the aviation industry is responsible for from 2.5% to 3% of CO2

emissions [160]. Moreover it is more concerned that aviation emissions happen in

high altitudes. The growth of aviation will make this number even higher in the

future. The current air traffic management system is mainly based on a fixed route

network. This limits flights to choose their best routes. A more flexible choice of

flight routes in a “unfixed” route network may help to provide more efficient routes

regarding minimization of time, fuel, and emissions, or maximization of passenger

comfort.

All these challenges request an evolution in air traffic for sustainable develop-

ment.

2.1.3 Future Concepts

In response to the ATM challenges, major air navigation service providers such

as Eurocontrol and FAA indicated that the 4 dimension trajectory management

(TM) will be based on User Preferred Routes (UPRs), the route with the best

outcome from airspace user’s perspective [58, 63]. The outcome may be with respect

to the minimum time for the flight, the minimum cost, the minimum passenger

discomfort, etc. The routing will be implemented in Free Route airspace while a

fixed Route Network is still maintained. Here, Free Route Airspace [58] is a specific

airspace where users shall freely plan their routes from an entry point to an exit point

without reference to the Air Traffic Services (ATS) route network. In this airspace,

flights will still conform to air traffic control. Aircraft outside of terminal areas

would generally be free to fly user-preferred routes, and modify their trajectories
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enroute, without or with minimal intervention by air traffic control (ATC) [134, 78].

The air traffic management system will be increasingly decentralized and users can

obtain more efficient routes.

The routing in free route airspace can provide the most efficient route possible in

terms of minimum time, fuel, etc. This cannot be achieved in a fixed route network,

where aircraft follow predefined routes and waypoints in the network. The “best

overall outcome” trajectory (which is called Business Trajectory) can be obtained

through flying aircraft as closely as possible to the User Preferred Route, while

taking into account ATC constraints.

The workload of air traffic controller reduces as the result of providing aircraft

the rights to fly user preferred route and modify the trajectories enroute. These fi-

nally can provide greater capacity, better efficiency, better predictability, and ground

automation, improve safety, reduce fuel burn and emissions, and increase flexibility.

Here trajectory management is the process for establishment, agreement, up-

date, and revision of the Business Trajectory through Collaborative Decision Mak-

ing (CDM) processes between the aircraft operator, ATM service providers and

Airports, except in time-critical situations, when only Flight Crew and Controller

are involved [54]. It should be noted that trajectory management is a fundamental

principle of Trajectory Based Operations (TBO) and is at the core of both SESAR

and NextGen [100, 164, 65]. TBO uses 4D trajectories as the basis for planning and

executing all flight operations supported by the air navigation service provider.

With the implementation of 4-D trajectory management based on User Pre-

ferred Routes as one of important future concepts in air traffic management, SESAR

expects to achieve “a future European ATM System for 2020 and beyond, which can,

relative to today’s performance: Enable a 3-fold increase in capacity which will also

reduce delays, both on the ground and in the air; Improve the safety performance

by a factor of 10; Enable a 10% reduction in the effects flights have on the environ-

ment; Provide ATM services at a cost to the airspace users, which is at least 50%

less” [165]. NextGen estimates that by 2018, “NextGen will reduce total delays (in
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flight and on the ground) by about 35 percent compared with what would happen if

nothing is done. That delay reduction will provide, through 2018, 23 billion dollars

in cumulative benefits to aircraft operators, the traveling public and the FAA. In

the process, NextGen will save about 1.4 billion gallons of aviation fuel during this

period, reducing carbon dioxide emissions by 14 million tons” [63].

2.2 Multi-objective Optimisation

In this thesis, we resolve aircraft User Preferred Route Problem. The problem

deals with multiple objectives that are given weights presenting user preferences.

These objectives usually conflict with each other. For example minimizing passenger

discomfort may lead to the increase of time traveled. So UPR Problem can be seen as

Multiple Objective Optimisation Problem and can be categorized in the broader area

of aircraft trajectory/route optimisation. In this section, we review Multi-Objective

Optimisation in general and then introduce techniques to elicit user preference. Next

optimisation methods dealing with discrete and continuous search space and their

application in aircraft trajectory/route optimisation problem are reviewed.

2.2.1 Basic concepts of Multi-Objective Optimisation

When we resolve a real world problem, we usually have to deal with multi-

ple objectives and objectives are in conflict with each other. For example, when

purchasing a car we usually have to find a way that minimizes the cost, while max-

imizing the quality of the car. This type of the problems is called multi-objective

optimisation problems (MOPs). The task of solving MOPs is called multi-objective

optimisation.

Mathematically, a general MOP is defined as follows:

min q = f(x) = (f1(x), ..., fk(x))
T

s.t. x ∈ X
(2.1)
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where x ∈ Rn is a vector of decision variables, fi, i = 1, 2, ..., k are objective func-

tions, and X is the set of feasible solutions (called the feasible search region). The

set of feasible solutions in the criterion space Rk is called the feasible region and

denoted by Q:

Q = {f(x)|x ∈ X} (2.2)

This problem almost always doesn’t give an unique solution, i.e, an optimal

solution that is the best on all objectives, but rather a set of solutions called the

Pareto optimal set. A vector of decision variables (a solution) belonging to the

Pareto optimal set is defined as follows.

Definition. A vector of decision variables x∗ ∈ X is Pareto optimal if and

only if there does not exist another x ∈ X such that fi(x) ≤ fi(x
∗) for all i ∈ K =

1, 2, ..., k and fi(x) < fi(x
∗) for at least one i ∈ K.

The vectors x∗ (corresponding to the solutions included in the Pareto optimal

set) are called nondominated. The plot of the objective functions whose nondomi-

nated vectors are in the Pareto optimal set is called the Pareto front.

However, users usually only need one solution from the set of optimal trade-off

solution in practice. Therefore, the combination of searching and decision making

is needed to solve MOPs [84]. Depending on the combination of searching and

decision making, solving MOPs can be categorized into four main approaches [121].

The first one is no-preference approach that does not use preference information.

A solution is given directly to the decision maker after solving a problem. The

second one is decision making after search, or posterior approach. This approach

finds the non-dominated set and then the most suitable one is determined, using

the user preference. The third one is decision making before search, or priori. In

this approach, the use of preference is incorporated before the optimisation process.

As the result only one solution is provided at the end. The forth is decision making

during search, or interactive approach. It is a hybrid approach of the second and

third ones. The search is guided by a human decision making that is periodically

used to refine the obtained trade-off solutions.
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In this thesis, the third approach is used to find the most suitable solution for

the MOP, where the importance weights presenting user preferences on objectives

are predefined.

2.2.2 User Preference Elicitation

As mentioned above in order to choose the most suitable solution from a set of

solutions, the Decision Maker (DM) needs to base on user preference. There are a

variety of techniques to elicit user preferences. They are divided into two categories.

One includes techniques to construct value functions, where decisions involves no

element of risk and uncertainty. The other includes techniques to construct utility

functions, where decisions involve risk and uncertainty.

In order to elicit value/utility function for solutions with multiple criteria, a

value/utility function for each criteria is elicited first by a number of methods such

as bisection and probability-equivalence (the most widely applied for value and utility

function elicitation respectively). Then a value/utility function is elicited for all cri-

teria, based on the importance weights of criteria, where the importance weights can

be achieved by swing weights for example. Please refer to [72] for more information.

The formation of multiple criteria value function is different from that of mul-

tiple criteria utility function. For example the value function for two criteria is

v = w1v1 + w2v2 (2.3)

while the utility function is

u = w1u1 + w2u2 + (1− w1 − w2) ∗ u1 ∗ u2 (2.4)

where v is the multiple criteria value function; w1 and w2 are the importance

weights of criteria 1 and 2; v1 and v2 are the value functions for criteria 1 and 2; u1

and u2 are the utility functions for criteria 1 and 2.
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If original values of criteria can present DM preference, the value function is

linear. Otherwise the value function is non-linear.

2.2.3 Discrete Optimisation

The aircraft trajectory/route optimisation problem in general and UPR prob-

lem in particular can be solved in discrete search space. A graph can be predefined

or artificially generated, then a shortest path algorithm is used to find the optimal

route. In this section, basic concepts of graphs are presented first, followed by pop-

ular shortest path algorithm. Next, study of aircraft trajectory/ route optimisation

in discrete environment is reviewed.

2.2.3.1 Basic Concepts of Graphs

It is well known that Euler, with his solution for the problem of Seven Bridges of

Königsberg, established the theory of graphs in 1735. However, its first application

to a problem in physical science did not arise till 1847, when Kirchhoff developed

the theory of trees for its application in the study of electrical networks. Then graph

theory and application become increasingly popular in various aspects of science and

engineering until today.

A graph G = (V,E) [180] contains two sets. The first set is a finite set V or

elements called nodes. The second set is a finite set E of elements called links. Each

link is identified with a pair of nodes. If the links of a graph G are identified with

ordered pair of nodes, then G is called a directed or an oriented graph. Otherwise

G is called an undirected or a nonoriented graph.

The symbols v1, v2, v3, ... are used to represent the nodes, and the symbols

e1, e2, e3... are used to represent the links of a graph. The nodes vi and vj associated

with an link el are called the end nodes of el. The link el is then denoted as

el = (vi, vj). Note that while the elements of E are distinct, more than one link in

E may have the same pair of end nodes. All links having the same pair of end nodes

are called parallel links. Further, the end nodes of an link need not be distinct. If
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el = (vi, vi), the the link el is called a self − loop at node vi. A graph is called a

simple graph if it has no parallel links or self-loops. A graph G is of order n if its

node set has n elements [180].

A walk in a graph G = (V,E) is a finite alternating sequence of nodes and links

v0, e1, v1, e2, ..., vk−1, ek, vk beginning and ending with nodes such that vi−1 and vi

are the end nodes of the link ei, 1 ≤ i ≤ k. Alternately, a walk can be considered as

a finite sequence of nodes v0, v1, v2, ..., vk, such that (vi−1, vi, 1 ≤ i ≤ k, is an link in

the graph G. This walk is usually called a v0 − vk walk with v0 and vk referred to

as the end or terminal nodes of this walk. all other nodes are internal nodes of this

walk. Note that in a walk, links and nodes can appear more than once [180].

A walk is open if its end nodes are distinct; otherwise it is closed.

A walk is a trail if all its links are distinct. A trail is open if its end nodes are

distinct; otherwise, it is closed.

An open trail is a path if all its nodes are distinct.

2.2.3.2 Shortest Path Algorithms

Let G be a connected directed graph in which each directed link is associated

with a real positive number called the length of the link. The length of an link

directed from a node i to a node j is denoted by w(i, j). If there is no link directed

from node i to node j, then w(i, j) = ∞. The length of a directed path in G is the

sum of the lengths of the links in the path. A minimum length directed s− t path

is called a shortest path from s to t. The length of a shortest directed s− t path is

called the distance from s to t, and it is denoted as d(s, t). Clearly, d(i, i) = 0 for

all i.

There are many algorithms which can be used to find the shortest paths. They

may be used to find the shortest paths from a node s to another node t, or from

a node s to all other nodes in G, or between all the ordered pairs of nodes in G.

These algorithms are listed below.
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• Depth first search: DFS traverses or searches a graph, starting at the root

then exploring as far as possible along each branch before backtracking. The

complexity of DFS is O(|V |+ |E|) time. The algorithm is complete. [38]

• Breadth first search: BRFS begins at the root node and explores all the neigh-

bouring nodes. Then for each of the nodes, it explores their unexplored neigh-

bour nodes,.. Until it finds the goal. The complexity of the algorithm is

O(|V |+ |E|). The algorithm is complete. [107]

• Dijkstra: The algorithm starts with the object’s starting point. Then repeat-

edly examines the closest not-yet-examined node, adding its nodes to the set

of nodes to be examined. Expands outwards from the starting point until it

reaches the goal. The complexity of the algorithm is O(|V |2). The algorithm

is complete. [38]

• Bellman-Ford: The main idea of the algorithm is that the distance of any

node to the starting node is equal to the minimum of all neighbouring node

distances plus the length of the corresponding path. The algorithm solves

this by successive approximations. Bellman-Ford is for graphs without nega-

tive circles that are reachable from the starting node. The complexity of the

algorithm is O(|V ||E|) and the algorithm is complete. [38]

• Floyd Warshal: Assume that we have a function SP (i, j, k − 1) which is the

shortest possible path from i to j using only nodes 1 through k − 1 as inter-

mediate points along the way. The shortest path from each i to each j using

only nodes 1 through k is

SP (i, j, k) = min(SP (i, j, k − 1), SP (i, k, k − 1) + SP (k, j, k − 1))

The algorithm works by first initializing SP (i, j, 0) for all (i, j) pairs by the

equation below:

SP (i, j, 0) = w(i, j) (2.5)
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Then using that to find SP (i, j, 1) for all (i, j) pairs, etc. This process contin-

ues until k = n, and we have found the shortest path for all (i, j) pairs using

any intermediate nodes.

The complexity of the algorithm is O(|V |3) and the algorithm is complete. [38]

• Johnson: The algorithm makes improvement for sparse graphs with reweight-

ing technique. If all weights are non-negative, running Dijkstra with each

node as starting node else reweighing. The complexity of the algorithm is

O(|V |2log(|V |) + |V ||E|) and the algorithm is complete. [38]

• Hill climbing 1: The algorithm performs depth-first, but instead of left-to-

right selection, the algorithm selects the child with the best heuristic value

first. The complexity of the algorithm is O(|V | + |E|) and the algorithm is

complete. [154]

• Beam search: Assume a pre-fixed WIDTH , the algorithm performs breadth-

first, but only keep the WIDTH best new nodes, depending on heuristic at

each new level. The complexity of the algorithm is O(WIDTH ∗ d) (d is

maximum depth) and the algorithm is not complete. [166]

• Hill climbing 2: The algorithm is beam search with a width of 1.

• Local search: Hill climbing 2 is an example of local search. In local search, we

only keep track of 1 path and use it to compute a new path in the next step.

• Best first search [154]: The algorithm always expands the heuristically best

nodes first. The Best-First-Search (BFS) algorithm works in a similar way to

Dijkstra, except that

– It has some estimate (called a heuristic) of how far from the goal any

node is.

– Instead of selecting the node closest to the starting point, it selects the

node closest to the goal.

– BFS is not guaranteed to find a shortest path
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• A* Search [45]: A* is like:

– Dijkstra’s algorithm in that it can be used to find a shortest path

– BFS in that it can use a heuristic to guide itself

A* computes the function f(n) = g(n)+h(n), where g(n) is the actual shortest

distance traveled from initial node to current node, and h(n) is the estimated

(or “heuristic”) distance from current node to the goal, then f(n) is used to

determine the order in which the search visits nodes.

2.2.3.3 Aircraft trajectory/route optimisation in discrete search space

A graph is constructed in the airspace through the predefinition or artificial

generation of nodes (or waypoints) and links between these nodes. In [41] the model

for the airspace is composed of a set nodes, and the routes are formed by computing

the Delaunay triangulation of these nodes. In [133] a rectangular gridding system

is used to represent the airspace, where each grid point is considered as a waypoint.

In [202], the airspace is divided to a square grid (2-D grid), nodes are located in

the cross-points of the grid. The network is constructed by connecting the nodes

to plan for military flights for threat avoidance in no-wind environment. In [128],

the airspace is divided to 3-D cubes. The network is constructed by connecting

nodes of cubes. The network generation is for military flights and does not consider

wind. Some research using a fixed or dynamic route network is particulary to find

optimal routes in the transition/terminal area around a airport [141, 5]. The wind

information is also not taken in these studies. In this thesis, we present a novel

and efficient network model and algorithms to generate a network, taking aircraft

performance and weather information into consideration for finding optimal aircraft

routes from origins to destinations.
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2.2.4 Evolutionary Computation

Finding optimal solutions for a real world problem may be computationally ex-

pensive or even impossible, as the complexity of the problem presents exact methods

from being applicable. Finding the aircraft optimal trajectory/route in continuous

airspace is such kind of problem. Evolutionary Algorithms (EAs) are broadly used

to these types of problem. These algorithms are stochastic search methods. They

try to find a good approximation but do not guarantee to find the optimal solutions.

In this section we will present two major sub-fields of EAs: Genetic Algorithms (GA)

and Learning Classifier Systems (LCS). GA outputs the descriptive representation

of solutions as an arrays of bits, integers, floats or data structures. From these

arrays, solutions are usually obtained through simulation. LCS is a machine learn-

ing system, based on Genetic Algorithms. LCS consists of a population of rules.

A Genetic Algorithm is used to evolve the population to find the best rules. LCS

outputs rules. Solutions are then inferred from these rules. Evolutionary Multi-

objective Optimisation, which is suitable for Multi-Ojective Optimisation Problem,

is presented at the end of this section.

2.2.4.1 Genetic Algorithms

(a) Genetic Algorithm Concept

Genetic algorithm (GA) was first proposed by Holland in 1975 [81]. It is a search

heuristic that mimics the process of natural evolution. This heuristic is routinely

used to generate useful solutions to optimisation and search problems. Genetic

algorithms belong to the larger class of evolutionary algorithms (EA), which generate

solutions to optimisation problems using techniques inspired by natural evolution,

such as inheritance, mutation, selection, and crossover.

GA evolves a population of strings (chromosomes or the genotype of the genome),

which encode candidate solutions (individuals, creatures, or phenotypes) to an op-

timisation problem, toward better solutions. A solution is originally represented by

a binary string. Then other encodings [181] are also applied such as real number,
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order-based, embedded lists, variable element lists etc. A population is normally

initialized randomly. Then it is evolved through generations. In each generation,

the fitness of every individual in the population is calculated. A set of individuals

are selected from the current population by stochastic methods, based on their fit-

ness. A new population is generated by modifying the set of selected individuals

(recombination or mutation). There are many criteria to terminate the algorithms.

The two most common criteria are the maximum number of generations that the

algorithm produces, or fitness level satisfactory the current generation achieves.

Figure 2.1 presents a simple generational genetic algorithm procedure.

Step 1. Initialize a population of individuals.

Step 2. Evaluate the fitness of each individual in the population.

Step 3. Select individuals for reproduction.

Step 4. Reproduce new individuals by crossover and mutation 

operators.

Step 5. Evaluate the fitness of new individuals.

Step 6. The new population may be the set of new individuals or the 

combination between the current population with the set of new 

individuals.

Step 7. If terminating condition is satisfied Stop, otherwise goto Step 3

Figure 2.1: Simple generational genetic algorithm procedure

Initialization

The individuals of the initial population is usually generated randomly. The

number of individuals depends on the problem. Typically the population contains

several hundreds to thousands of possible individuals. The randomly generated

population can help to explore the entire search space. However, some research may

seed solutions in promising areas, where the likelihood of optimal solutions existing
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in is high.

Evaluation

Fitness value is to show how good an individual is in relative comparison with

other individuals in the population. Fitness function can be objective function of

the problem or a different function.

In some complex problems, the exact fitness function may request a lot of time

to evaluate (such as a number of hours). Furthermore the fitness evaluation is

repeated in every individual of a population through generations. Typical genetic

algorithms cannot resolve such types of problem. In this case, an approximated

fitness that request less time to evaluate can be a solution. Besides that, some

fitness function cannot be defined explicitly. Human interaction is required for

assessing the goodness of solutions. This approach is known as Interactive Genetic

Algorithm or Human-Based Genetic Algorithm [108], which has human interfaces

for initialization, mutation, crossover, selection, and evaluation.

Selection

In each generation, a pool of individuals are selected from the current popula-

tion to breed a new generation. Selection is implemented, based on the fitness of

individuals. Some selection methods rank the fitness of each solution, and the best

solutions are preferentially selected. However this method may consume a lot of

time. Other methods only rank a number of random individuals.

Reproduction

In reproduction process, a new population is created from the pool of selected

individuals by genetic operators (crossover and/or mutation). Biologically inspired,

two “parent” solutions are selected from the pool to reproduce a new child until the

the set of offsprings reaches a predefined size. However, some research suggests to

use more than two parents to breed a good child [53, 185].

The probabilities of crossover (pc) and mutation (pm) play an important role

in determining the degree of solution accuracy and the convergence speed that ge-
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netic algorithms can achieve. Generally pc is high, while pm is low (where the role

of mutation is to avoid the loss of potential solutions). However, some research

uses mutation as the main operator because the crossover operator may not be use-

ful in some cases. For example, when individuals in a population are similar, the

crossover operator will create children similar to their parents. Some genetic algo-

rithms with adaptive parameters (AGAs - Adaptive Genetic Algorithms) use the

population information to adjust the pc and pm to obtain the population diversity

and convergence. The population information can be simply the fitness values of the

solutions [174] or the optimisation states, which can be assessed through clustering

analysis [204].

In addition to the two main operators: crossover and mutation, other genetic op-

erators have been used such as regrouping, colonization-extinction, or migration [2].

The new population may be the set of new individuals. This is known as

non-elitist selection. Another strategy is known as elitist selection, where the new

population also includes the better solutions from the current population.

Termination

The evolution terminates until a certain condition has been satisfied. Com-

monly, the terminating conditions are a found solution meeting minimum criteria,

or reaching maximum number of generations, or reaching allocated budget (such

as computation time), or successive iterations no longer producing better results.

Manual inspection and combinations of these conditions can be applied.

Genetic algorithms have been applied in many fields such as bioinformatics,

phylogenetics, computational science, engineering, economics, chemistry, manufac-

turing, mathematics, physics and other fields. The major requirements, when apply-

ing GA in a real world problem, are the representation and evaluation of solutions.

Once the genetic representation and the fitness evaluation are defined, a GA can

simply follow a set of standard mutation, crossover, and selection operators to evolve

a population of individuals towards better solutions. In this thesis we apply GA to

aircraft User Preferred Route Problem.
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(b) Aircraft Trajectory/Route Optimisation using GA

There have been many studies, which apply GA to resolve aircraft trajec-

tory/route optimisation. The main designs in these study are the representation

and simulation of aircraft routes. In [142], the flight route, which connects A and B,

is supposed a single value function; Fourier transform is applied for it and keep the

low frequencies parts due to the constraint that the aircraft only maneuvers at low

altitude, it is found that the flight route can be described as a series of sine waves

with angle frequencies and amplitudes.

In [70], authors use the differentiable quadratic spline wavelets for decompo-

sition of an Unmanned Aerial Vehicle (UAV) route into wavelet coefficients. With

a wavelet-based route representation, the trajectory optimisation problem convert

to the problem to identify the wavelet coefficients. When the multiple wavelets are

combined, the generated trajectory satisfies mission requirements (hitting a target,

avoiding threats, not flying into terrain, avoiding severe weather) while ensuring

that the maneuvers are flyable and, some mission specific criterion (e.g., minimum

altitude flight, or minimum fuel expenditure) is optimised.

In [127] B-Spline curves are used to represent the UAV path.

In this thesis, we propose another innovative and efficient way to present and

simulate aircraft routes.

2.2.4.2 Learning Classifier Systems

(a) Learning Classifier Systems Concept

A Learning Classifier System (LCS) is a machine learning system [126] related

to reinforcement learning [179] and Genetic Algorithms. The origin of LCSs can

be seen in Holland’s work on complex adaptive systems and his early proposal on

schemata [79]. This established the basis for the first practical implementation of a

classifier system, which was called CS-1 (Cognitive System Level One) [80]. CS-1

had capability to capture and react appropriately to events from the environment.

This system maintained a population of binary rules. Genetic Algorithm was used
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to adjust and select the best rules, where a rule fitness was evaluated using a rein-

forcement learning technique. The system inspired a stream of research, named as

the Michigan approach. Another line of LCSs, named as the Pittsburgh approach,

was also investigated simultaneously with the early developments of Michigan LCSs.

In Michigan approach, a population is a single set of rules. The GA evolves

and selects the best classifiers from that set. A population of rules is generated

first. A reinforcement-learning technique is used to evaluate rules through credit

assignment. The bucket brigade algorithm [80] was a popular algorithm for credit

assignment. This algorithm assigns the strength for rules, based on the predicted

payoffs that the environment gives to them. GA searches towards the best rules

(which are given high reward) by considering the strength of a rule as its fitness,

while maintaining the diversity of the population by using niching techniques and a

non-generational scheme [71].

The Pittsburgh approach was emerged with the LS-1 classifier system [171],

which was the inspiration for the classifier scheme GABL [99]. In Pittsburgh ap-

proach, LCS has a population of rule-sets. The GA task is to recombines and

reproduces these rule-sets to find the best rule-sets. The fitness evaluation of a

rule-set is based on the performance of its rules.

In Pittsburgh LCS each individual is a complete rule set, which eliminates the

need for cooperation among individuals required in the Michigan approach. A such,

the operation of the GA is simpler, the GA does not need to converge to a single

solution. However, since Pittsburgh LCSs searches in the space of feasible rule-sets,

the search space is larger and usually requires more computational resources than

the Michigan approach. In addition, few controls can be exercised on the rule level.

Two additional operators were designed in GABIL to overcome these issues. GIL [95]

was another proposal that included a large set of operators acting at different levels

with the aim to achieve control over the type of rules evolved, but an increased

parameterisation cost is paid.

While an increase in flexibility, resulted from the use of variable sized individ-
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uals, parsimony pressures [69], and the use of multiobjective fitness [113, 15], were

necessary to control the excessive growth of individuals.

(b) Aircraft Trajectory/Route Optimisation using LCS

There have been studies on designing LCS for aircraft trajectory/route gen-

eration. Genetic-based machine learning techniques are used for multi-agent route

planning in discrete environments, where the movement of one agent is from one cell

to another cell in an environment of grid cells [35]. In [170], a genetics-based machine

learning system is implemented to acquire rules for novel fighter combat maneuvers

through simulation. The LCS is designed for discovering rules that dictate combat

maneuver logic rather than presenting the interaction between flight and weather

environment to achieve optimal routes for civilian flights in terms of time, fuel, emis-

sions or comfort. This thesis designs and develops LCS for user preferred routes for

civilian flights in continuous environment to achieve such objectives.

2.2.4.3 Evolutionary Multi-objective Optimisation

As presented above finding optimal solutions is hard for some real world op-

timisation problem. It is harder for multi-objective optimisation problem as the

algorithm needs to deal with multiple objectives (usually conflicting) and the out-

put is a set of non-dominated solutions rather than a single solution. EAs with

stochastic and population based optimisation mechanism are particularly suitable

to solve multiobjective optimisation problems. A set of candidates are maintained

in these algorithms. Therefore several solutions of the Pareto set are found in a sin-

gle run of the algorithm, while traditional mathematical programming techniques

request a number of runs. EAs are also less affected by the shape or continuity of

the Pareto front. It is easy for EAs to deal with discontinuous or concave Pareto

fronts, while it is not for mathematical programming techniques.

Multi-Objective Evolutionary Algorithms (MOEAs) have to design to guide the

search towards the Pareto Set and to keep the diversity of non-dominated set [42].

These two goals are conflicting. while the first goal is minimizing the distance from
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the generated solutions to the Pareto set, the second is maximizing the diversity of

the obtained Pareto set. It is also not easy to define the closeness to the Pareto set

and the diversity of the Pareto set.

The first goal is mainly related to the selection of individuals for reproduction,

in particular to the problem of assigning scalar fitness values in the presence of

multiple optimisation criteria. The second goal deals with selection in general to

avoid the identicalness in the population (most of individuals are identical) regarding

to both objective space and decision space. Finally, a third issue addressing both of

the goals is elitism to prevent nondominated solutions from being lost.

Fitness Assignment

While fitness function is the same to objective function for single-objective

optimisation, fitness function and selection involve in several objectives for multi-

objective optimisation problems. There are generally three ways to assign fitness:

aggregation-based, criterion-based, and Pareto-based [205]. Aggregation-based fit-

ness assignment approaches are to aggregate the objectives into a single parameter-

ized objective function. The parameters of this function are systematically altered

during the optimisation process to find a set of nondominated solutions instead of

a single trade-off solution. A popular way is weighted-sum aggregation, where the

weights represent the changing parameters during the evolution process [93]. In

criterion-based approaches, each time an individual is selected for reproduction, po-

tentially based on a different objective. The objective may be chosen randomly, or

based on its distinct level, or a predefined probability [109, 159]. Pareto-based ap-

proaches use dominance relation among individuals to assign fitness values. In these

approaches, fitness assignment is related to the whole population, while aggregation

based approaches concern only the individual itself. In Pareto-based approaches, the

fitness assignment can be based on dominance rank (the number of individuals an

individual is dominated) [68], dominance depth (the population is divided into sev-

eral fronts and the depth reflects to which front an individual belongs to) [175, 43],

dominance count (the number of individuals dominated by a certain individual), or

a combination of these dominance types [207].
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Diversity Preservation

The diversity of the current pareto set is maintained through selection process.

The probability of an individual being selected is lower, the higher the density of its

neighbor individuals. MOEAs use techniques in statistics to estimate density such

as Kernel methods [68], Nearest neighbor techniques [206], and Histograms [105].

In Kernel methods [169], the density around an individual is estimated by the sum

of the values of Kernel function, which has the argument being one of the distances

from the individual to all other individuals. In nearest neighbor techniques [169],

the density is estimated, based on the distance from an individual to kth nearest

neighbor individuals [169]. A function of the inverse of this distance is usually used

for the estimation. Histograms [169] divide the space by a hypergrid. The density

around an individual is estimated by the number of indviduals in the same box of

the grid.

Elitism

Elitism is to keep the best individuals through generations. This can be ob-

tained by combining the current population and the offspring to create a new popula-

tion, where the promising individuals from both current population and offspring are

preserved. Another way is maintaining an archive of promising solutions. Archive

members can be used in the selection process. However, the archive may just work as

an external storage (may be not taken into account during selection). The selection

of individuals to be preserved is usually based on dominance and density informa-

tion. The non-dominated solutions are preferred to the dominated ones, and the

less density solutions are preferred to the high density ones. Algorithms such as

PAES [106], SPEA2 [206], PDE [1], NSGA-II [44], and MOPSO [37] are typical in

this category.

In contrast, the non-elitism does not clearly preserve good solutions from the

current population for the next generation [42]. The population of the next gen-

eration is created by all crossover and mutation operators from the mating pool,

which contain individuals selected from the current population. In [36], all algo-
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rithms using this approach are illustrations of the first generation of MOEAs. The

only difference from conventional EAs is that they use the dominance relation, when

solutions are assessed. Illustrations of this category include MOGA [68], NPGA [85]

and NSGA [42].

In this thesis, we use weighted sum technique to convert the multiple objective

optimisation problem into single objective optimisation problem. Therefore we don’t

use any EMO techniques to resolve UPR problem in this thesis. However, these EMO

techniques will be considered to use in the future to deal with objectives that we

cannot simply convert them to single objective optimisation problem by weighted

sum technique.

2.3 Aircraft Trajectory Management

Trajectory Management (TM) in general and User Preferred Routing (which

is the base for TM) in particular need to use information such as airspace, flight,

weather, and terrain data. These information is determined, and broadcasted, based

on air traffic control technology (e.g communication, navigation, and surveillance

systems). In this section, we mainly present technology that will be used to support

the future operational concept. UPR Planning can be categorized in broader areas

that are trajectory or route optimisation with the same objectives such as minimizing

flight cost, guaranteeing flight safety or avoiding conflicts. For safety management,

the potential aircraft conflicts can be generally minimized through Air Traffic Flow

Management (ATFM). In the following sub-sections, we will present these closely

related areas of TM as well as UPR planning in details.

2.3.1 Technology enablers and airspace data

While the routing will be implemented in Free Route airspace, a fixed Route

Network is still maintained. In this section, while presenting technology enablers

mainly for the future TM, we present airspace data belonging to the traditional
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fixed route network.

2.3.1.1 Technology

In order to manage air traffic in general and to generate aircraft routes in

particular efficiently, relative information needs to be provided timely, accurately,

and to the right people. The more updated accurate information the better plan-

ning. These information can be flight, weather, or terrain information. Technol-

ogy enablers (such as communication systems, navigation systems, and surveillance

systems, which meet the identified operational and architecture requirements in

providing and distributing the information in time and to the right location with

the required availability, continuity and integrity) have been identified by FAA and

Eurocontrol [63, 165].

The communication systems will increasingly use digital/data technology and

protocols. A full integration of terrestrial and satellite networks towards System

Wide Information Management (SWIM), connecting all ATM sub-systems will be

established. SWIM will carry digital information. It provides the IT infrastructure

necessary for air traffic systems to share information, increase interoperability, and

encourage reusability of information and services. SWIM will decrease the reliance

on voice communication and significantly reduce opportunities for error. It will

enable cost-effective, real-time data exchange and sharing among users. SWIM will

improve agility to deliver the right information to the right people at the right time.

The primary navigation system will be based on satellite. When satellite navi-

gation services are not available, a fall back solution is provided.

The surveillance systems will be based on Automatic Dependent Surveillance

Broadcast (ADS-B). They will increasingly provide improved 4D-position informa-

tion (3-D spacial position and time). Utilizing Global Positioning System (GPS)

satellite signals, ADS-B helps pilots and air traffic controllers to locate and con-

trol aircraft more precisely and in real time. The position information combines

with other data and broadcast out to other aircraft and air traffic control facilities.
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Through ADS-B, pilots can access to weather services, terrain maps and flight in-

formation services. This helps them improve situational awareness and maintain a

safe separation from one another with less assistance from controllers.

2.3.1.2 Airspace data

The traditional airspace structure is still available with airspace data such as

sector, waypoint, airway, and route.

A sector is a piece of airspace with a polygon boundary as lateral limits and with

defined bottom and top altitudes/levels as vertical limits. The airspace controlled

by a controller is his/her sector [39]. Sector capacity is one important factor in

aircraft route planning as indicated in [41].

A waypoint is a reference location, which is used for navigation. Waypoints may

correspond to a specific latitude/longitude or may be conditional (also called float-

ing). Waypoints can be specified in a variety of manners such as: latitude/longitude,

fix-radial-distance, intersection of two radials, etc [64]. A conditional waypoint is

conditional on the trajectory (e.g., turn to heading 270 upon crossing 2000 feet).

In another definition, a way point is a predetermined geographical position used

for route definition and/or progress reporting purposes that is defined by lati-

tude/longitude [60]. A fly-by waypoint requires the use of turn anticipation to

avoid overshoot of the next flight segment. A fly-over waypoint precludes any turn

until the waypoint is overflown and is followed by an intercept maneuver of the next

flight segment.

Airway is a control area or portion thereof established in the form of a corridor

equipped with radio navigation aids [56]. The earliest airways in the United States

were constructed by the US Post Office to guide airmail pilots on their delivery

routes. These airways were between major cities and identified at night by a series

of flashing lights and beacons, which pilots flew over in sequence to get from one

city to the next.

In a joined document between FAA and Eurocontrol in 2004 [64], a route is a

Viet Van Pham October 2, 2012



Background 41

combined series of way points and airways, that specifies the approximate lateral

path to be followed by a flight. The way points are approximate since turn dynamics

will result in aircraft flying by, or over, a way point. It is also known as the host track

defined by the way points in the active flight plan. However, more recently in 2007,

in Concept of Operations for the Next Generation Air Transportation System [100],

a route is a 3D path through space without time component. In SESAR Definition

Phase: The Concept of Operations at a glance [164], a route can either be a 2D route

(with lateral containment), or 3D routes (with lateral and vertical containment).

This means a route can specify both lateral and vertical profiles.

2.3.2 Flow Planning Tools

As presented in Section 2.1.3, air traffic congestion is a critical problem. The

costs impact on both airlines and passengers is huge. Congestion happens as the

consequence of the exceed of airport and sector capacities. It usually occurs in

peak travel times in a year and in a day, or in bad weather period. The long-term

solutions can be constructing new airports and runways, using larger aircraft, using

advances in ATC. In the short-term, air traffic flow management (ATFM) is the best

available way for delay reduction [22]. ATFM is the regulation of air traffic in order

to avoid exceeding airport or air traffic control capacity in handling traffic, and to

ensure that available capacity is used efficiently. ATFM can be classified into two

categories: strategic and tactical TFM.

Strategic TFM is taken before aircraft take off through route planning, and

ground holding. The routes of scheduled flights can be strategically planned in

advance to ensures that the distribution of traffic flows can minimize congestions.

Ground holding is the action of delaying take-off. Ground holding helps to translate

predicted air-borne delays to the ground. The reason for doing so is the costs of

airborne delays much higher than ground delays. An aircraft in the ground con-

sumes less fuel, and request less control effort (be safer) than in the air. It can be

considered as a way to reduce controller workload by limiting the number of air-
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craft, which are airborne at any given time. There have been massive studies on

Ground-Holding Problem (GHP). Models in GHP attempt to assign ground holding

delays to flights, with the objective of minimizing the cost of delays, while satisfy-

ing any existing constraints on ATM capacities at airports or en route. The GHP

can be categorized into two subproblems, the Single-Airport Ground-Holding Prob-

lem (SAGHP) and the Multi-Airport Ground-Holding Problem (MAGHP). In the

SAGHP, ground holding times are assigned to flights scheduled to travel to some

particular airport, where scheduled demand is expected to exceed available capacity

during some period of time. In the MAGHP, delays are assumed to propagate in the

network of airports, as aircraft perform consecutive flights, thus the examination of

an entire set of airports simultaneously is necessary [22]. The GHP can be further

categorized into a “deterministic” version (deterministic GHP) and a probabilistic

version (stochastic GHP). The deterministic GHP is resolved with assumption that

the sector and airport capacities and weather can be predicted with perfect accu-

racy. The stochastic version arises as the GHP is often solved in the considerable

uncertainty of sector and airport capacities, and weather. Small changes of weather

may cause large differences in sector and airport capacities. So far meteorologists are

almost impossible to forecast weather changes with high accuracy, even in a short

time-period of an hour or less. Therefore, ground-holding decision making is under

uncertainty. When a decision is made, there needs to consider the trade-off between

“conservative” strategies which may have assigned times exceed ground-holds and

more “liberal” ones, which may have expensive airborne delays [22]. There are three

models to resolve the SAGHP: deterministic model [182, 183], stochastic model [11]

and both deterministic and stochastic model [153, 152]. For the MAGHP, all models

are deterministic ones [22] such as in [184, 193, 10, 23].

Tactical TFM is taken while aircraft are airborne though re-routing aircraft in

“real time”, possibly changing flight plan, speed controlling, and airborne holding

en route and, especially, in the vicinity of destination [184, 193, 23].

Various algorithms have been proposed for the above TFM models and actions

such as dynamic programming [182], integer programming [193, 23], stochastic pro-
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gramming [151], and heuristic methods [182]. In this thesis, we use taking-off time

adjustment as a flow planning technique to resolve conflicts among flights.

2.3.3 Trajectory and Route Optimisation

2.3.3.1 Trajectory and Route Smoothing Techniques

In order to find the best route meeting user preference, a route needs to be

simulated for evaluation as well as to be smooth to satisfy the curvature and speed

constraints.

In [8, 34, 49, 199], the shortest path between two points are constructed as

combination of circles and straight-line path segments to meet curvature constraints.

In [127], B-Spline curves are used to smooth flight route in 3-D space. A

number of similar techniques can be also considered to smooth aircraft trajectory

such as Lagrange Interpolating Polynomial [176], Least Squares Fitting [66], Least

Squares FittingExponential [66], Least Squares FittingPolynomial [66], Nonlinear

Least Squares Fitting [17], Polynomial Curve, Spline [16], and Bzier Curve [16].

In [142], a flight route is described by a series of sine waves with different

frequencies and amplitudes.

Neural networks can be applied to the problem of curve fitting [25]. In order

to smooth aircraft trajectory, neural networks are first trained by a set of recorded

trajectories. Then these neural networks are used to generate unavailable points of

a trajectory, which is given a reduced set of known points. The set of generated

points will be best fit the set of know points. In [167], neural network has been

applied to predict the future aircraft altitude and speed, based on the set of last

points.

Kalman filter is a mathematical method to use the measured values containing

noise and other inaccuracies, and produce values that tend to be closer to the true

values of the measurement. In [12], Kalman Filters has been used for tracking a

maneuvering aircraft, this technique can be further developed to smooth aircraft
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trajectory.

In this thesis, we have not used any above techniques to smooth a flight route

for curvature constraint salification. However, for speed constraint aircraft speed is

generated based on its altitude and BADA (The Base of Aircraft Data) database

for evaluation of aircraft route. In our future work, we will consider to apply the

above techniques to smooth aircraft routes.

2.3.3.2 Trajectory and Route Optimisation Techniques

In this section, we review the problem of aircraft trajectory/route optimisation

(ATRO) problems and the methodologies for resolving these problems in literature.

In route optimisation problem, a state of aircraft is defined by coordinates (latitude,

longitude, and/or altitude) (see aircraft route definition in Section 2.3.1.2), while

in trajectory optimisation problem a state of aircraft includes not only coordinates

but also time (see the definition and attributes of 4D trajectory in [100]) or in other

words in addition to optimising spatial trajectory, speed, turning rate and turning

angle of aircraft also need to be optimised.

The UPR problem is a branch of aircraft route optimisation, where aircraft route

optimisation deals with multiple objectives and objectives are given weights in this

thesis. From the literature, we found that there have been a lot of study in this field

dealing with single objective. However there are few dealing with multiple objectives.

As pointed out by Mittal and Deb [127] in 2007, all the existing methods for path

planning do not take into account the fact that the problem involves a number of

conflicting objectives which must be taken into consideration while generating a

path, especially for aircraft path planning problem which is formulated to deal with

multiple aircraft in a weather environment.

(a) Category by Problem Definitions

ATRO problems are categorized by input data into 2 different trees for Single

Aircraft, and Multiple Aircraft. Each tree continues branching by other input data:
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• Whether the problem considers wind.

• Whether the problem considers bad weather, threat, or obstacle.

• Whether a flight is given cruising altitude, route or not given these information.

In these trees, “BW” can be considered as bad weather, threat, or obstacle flights

need to avoid. “Alt” means the cruising altitude of a flight is given. “Route” means

the route of a flight is given. “NA” means both route and cruising altitude are not

given.

The current ATRO problem category trees show that there is a number of study

on the problem considering wind and storm. However, most studies deal with single

objective only and user preferences are not taken into account. For example, only

time is minimized in [104]. In [70] only obstacle avoidance is considered.

Single Aircraft

Wind

BW

Route Alt NA

No-BW

Route

[33, 172]

Alt NA

[118]

No-Wind

BW

Route Alt

[156, 144]

[202, 90]

NA

[96, 4]

[128, 122]

[201, 127]

[110, 142]

[189, 191]

No-BW

Route

[76]

Alt NA
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Multi Aircraft

Wind

BW

Route Alt

[104]

NA

[70]

No-BW

Route Alt

[98]

NA

No-Wind

BW

Route Alt

[41, 133]

[19, 146]

[20, 145]

[40]

NA

No-BW

Route Alt

[143, 149]

[161, 147]

NA

[190, 170]

In these above trees, study in [202, 4, 201, 127, 110, 142, 191, 70, 98, 41, 133,

170] is to optimise aircraft route, while study in [33, 172, 118, 156, 144, 90, 96, 128,

122, 189, 76, 104, 19, 146, 20, 145, 40, 143, 149, 161, 147, 190] is to optimise aircraft

trajectory.

(b) Category by Algorithms

Many methods have been proposed to resolve aircraft route and trajectory

optimisation problems. These methods are based on a number of approaches which

are categorized as follows.

Mixed integer linear programming Aircraft trajectory optimisation including

collision avoidance can be written as a linear program subject to mixed in-

teger constraints known as a mixed-integer linear program (MILP). This can

be solved using commercial software written for the operations research com-

munity [149, 19, 161, 156, 145, 110, 40, 104, 147]. In these studies aircraft

is approximated as a point mass, a state of aircraft may include geographic

position, velocity, turning rate and turning angle. Approaches based on MILP

for trajectory optimisation are in [149, 161, 156, 145, 40, 147] and those for

route optimisation are in [110].

Nonlinear programming Nonlinear programming (NLP) is the process of solving

a system of equalities and inequalities, collectively termed constraints, over a
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set of unknown real variables, along with an objective function to be maxi-

mized or minimized, where some of the constraints or the objective function

are nonlinear [21]. Aircraft trajectory optimisation problem is formulated as

optimal control problem and then it can be resolved by NLP. Approaches based

on NLP for trajectory optimisation are in [190, 96, 192, 156, 90, 191, 150].

Singular perturbation In [144], methods of time-controlled optimal flight trajec-

tory generation that included the effects of risk in a threat environment are

developed. Singular perturbation (SP) theory [83] is used to obtain a reduced

order airplane model of the transport class and then Pontryagin’s Minimum

Principle [140] is used with a Fibonacci search method [67] to minimize a

cost functional that consists of a weighted linear combination of risk, fuel-

flow, time, and position constraints. The paper presents research results on a

method to perform waypoint rendezvous in conjunction with multiple-threat

avoidance with the horizontal plane trajectory optimisation algorithm. The

approach based on singular perturbation for trajectory optimisation can also

be found in [189].

Petal Algorithm The petal algorithm uses a heuristic method to prune out the

solutions that are not likely to be part of the optimal solution, which signifi-

cantly speeds up the task assignment process. This technique is used to find

optimal aircraft trajectory in [146].

Graph Based Algorithms The optimal trajectory or route of a flight is searched

in a graph of nodes which may be real waypoints or artificial waypoints and

arcs connecting nodes. The search algorithms can be Dynamic Programming,

Dijkstra, Label Setting Algorithm, etc. These approaches for trajectory op-

timisation can be found in [128, 20] and those for route optimisation can be

found in [41, 133, 202, 201, 111].

Sequential quadratic programming In [122], a approach based on a combina-

tion of nonlinear control theory, spline theory, and sequential quadratic pro-

gramming is proposed to generate trajectories in real-time.
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Evolutionary Algorithms Many methods based on Evolutionary Algorithms to

find optimal routes for aircraft. For example, in [142, 70, 127] methods based

on Genetic Algorithms are used; a method based on Ant Colony Optimisation

is used in [4]; and in [170] a method based on Classifier Systems is proposed.

Analytical optimisation approach based on calculus of variations In [202,

201], analytical optimisation approach for routing an aircraft in a threat envi-

ronment have been developed. Using this approach, an aircraft’s optimal risk

trajectory with a constraint on the path length can be efficiently calculated.

The analytical approach based on calculus of variations reduces the original

risk optimisation problem to the system of nonlinear differential equations.

Optimal Control In [98] Neighboring Optimal Control(NOC) is applied to the

problem of optimising aircraft route in a general wind field. The family of

sequential gradient-restoration algorithms for optimal control problems is used

for Take-off optimal trajectory problem in wind shear in [119]. Dual sequential

gradient-restoration algorithm (DSGRA) for optimal control problems is used

for landing optimal trajectory problem in wind shear [120].

Decision analysis In [191], an approach for modeling and solving an aircraft tra-

jectory optimisation problem by the methods of decision analysis [196, 102,

198] is introduced.

(c) Category by Phases

There are a variety of study on ATRO. Some optimise the whole trajectory/route

from origin to destination. Some only optimise the trajectory/route for a particular

flight-phase such as ground, take off, land down, climb, cruise, or descent phase.

Study is categorized by optimisation phase as follows. Most study are for cruise

phase as this phase is the longest phase and it can reduce significantly the amount

of time, fuel, and emissions if the optimal trajectory or route are found. Algorithms

can be developed to find optimal time, fuel etc in cruise phase taking into account

wind, weather, and air traffic conditions including algorithms for route optimisa-

tion [98, 199, 133] and trajectory optimisation [143]. Take-off and land down phases
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also receive special concern where algorithms are designed to avoid and minimize the

impact of windshear as windshear at these phases is a threat to the aircraft safety.

Most study in this phase is for trajectory optimisation [157, 120, 124, 125, 123].

Study on descent phase mainly relates to Continuous Descent Approach (CDA) or

Optimised Profile Descent (OPD). This approach can help to reduce significantly

fuel, noise and emissions [5]. CDA has been implemented in many airports. The

climb performance of an aircraft is an important design requirement for establishing

trajectories to reach a specified altitude and airspeed after takeoff in some optimal

manner. A number of study has been carried out to minimize fuel consumption

or time in climb phase [132, 155]. There is little study, which optimise aircraft

trajectory/ route from origin to destination. Smiths Industries (SI) has developed

software to compute optimal fuel/time flight profiles and accurately predicting flight

trajectories from origin and destination [162]. However the detailed methodology is

not provided. In this thesis we propose algorithms to find user preferred routes for

flights from origins to destinations.

(d) Category by Objectives

ATRO may consider different objectives which may be minimal time, noise,

fuel, emissions, threat, and discomfort. Most study on military and unmanned

aerial vehicles consider obstacle avoidance which may be terrain, radar avoidance or

bad weather avoidance [149, 19, 96, 146]. The objective of these study is to minimize

threat of radar, weather, and terrain to aircraft. The objective of noise is mainly

concerned around airport area because of the growth of air traffic demand and

urbanization around airports [192, 5]. Many airports need to deal with the impact

of noise and emissions on communities around the airports. Time optimal trajectory

can reduce fuel, emissions and air traffic controller workload. As indicated in [98],

minimizing time in route phase is also to minimize fuel. In [98], time travelled is

optimised by flying aircraft in optimal wind route. Air traffic flow management by

ground holding is also an efficient method to reduce the time of the aircraft in the air,

as ground holding can help to avoid predicted air-borne delays [22]. There have been

a lot of work to study and minimize the impact of aviation emissions [172, 31, 203,
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76, 194, 173, 5]. These work may directly minimize emissions produced or indirectly

through minimize fuel burn. A recent study [194] reports that persistent contrails

may have a three to four times greater effect on the climate than CO2 emissions.

However, the complete effect of persistent contrails on climate change is still not

known as they have both negative and positive effects and the resulting net effect is

uncertain. In [173] an algorithm is developed to calculate wind optimal trajectories

for aircraft while avoiding the regions of airspace that facilitate persistent contrails

formation. The trade-off between persistent contrails formation and additional fuel

consumption is investigated.

2.3.3.3 Summary

In summary, there have been a lot of study for solving aircraft trajectory/route

optimisation. However there are few dealing with multiple objectives, and resolving

the problem with multiple aircraft taking into account aircraft models, and weather

information. In this thesis we will solve this kind of problem with innovative and

efficient methods in both discrete search space and continuous search space.

2.4 User Preferred Routes

2.4.1 Types and Nature of Users in Air Traffic Management

User Preferred Routing today involves a number of users who are directly re-

sponsible for or may be not directly responsible for the operation of commercial

aircrafts. They are the Air Navigation Service Providers (ANSPs), the Airline Op-

eration Centers (AOC), the Pilots, Civil Aviation Authorities (CAA), and Public.

These users may have different preferences in UPR planning. When an airline does

UPR planning, it considers all these preferences and figure out a suitable preference

(the preference may be for timely, economical, environmental, or passenger comfort

objective).
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The details of roles and preferences of each user group are presented in following

sections.

2.4.1.1 Air Navigation Service Providers

ANSPs are in charge of avoiding collisions, avoiding system overflow through

balancing the capacity and demand of the airspace, and providing a smooth traffic

flow, minimizing cost related to congestion (delay, additional distance, non optimum

flight level), providing information about weather, navigation, and other relevant

information to pilots. This work is usually called Air Traffic Control. The air traffic

control includes three segments: En route ATC, Terminal Area ATC, and Airport

ATC.

The en-route ATC has responsibility for the controlled airspace between air-

ports. The terminal area (the airspace around airport) is managed by a local Ter-

minal Area ATC in order to deal with the high-density traffic in this area. The

Terminal Area ATC works with the arrival and departure routes. However the ac-

tual arrivals and departures from airports (the airspace close to the runways and on

ground) are handled by Airport ATC.

Air Traffic Controllers need to interact with specially trained personnel, ad-

vanced technical equipment and precise, well proven work methods. They pass

instructions and authorizations to the pilots, maintain contact with them, and con-

trol the position of an aircraft in the airspace. They also need to assure a safe

separation between aircraft.

2.4.1.2 Air Safety Authorities

The Civil Aviation Authority (CAA) is the national organization for governing

civil aviation in a country. CAA is responsible for providing the community with

a safe, cost-effective and environmental friendly civil airspace. They develop na-

tional regulations based on international regulations by International Civil Aviation

Organization (ICAO) for the national airspace stakeholders such as air navigation

Viet Van Pham October 2, 2012



Background 52

service providers, airline, pilots etc. They provide authorization and certificates to

airlines, aircraft and crew. They supervise the implementation of regulations by the

airspace stakeholders. They publish airspace chart and procedures for the standard

use of the national airspace. They carry out studies relating to the security level of

the airspace and the aviation environmental impact.

CAA’s preferences to UPR include safety, fuel, emissions and passenger comfort.

CAA is responsible for strategy in air traffic rather than participating in flight

planning. CAA direct users in UPR planning through general policy and regulations.

Therefore this thesis does not consider CAA as a user in UPR planning.

2.4.1.3 Air Lines

Airline Operation Center (AOC)

The AOC is responsible for the safe and efficient operation of flights of the

airline, following legal regulations. The AOC includes a number of entities such as

dispatch, flight crews, ground crews, gate managers, and others. They are coordi-

nated within the AOC for flight operations. The AOC is also in coordination with

meteorology, engineering, crew and route planning staff.

At large airlines, all the planning process for the flight is implemented by dis-

patchers. Primarily dispatchers are in charge of planning and controlling flights

safely and legally. They coordinate planning for a specific flight and its impact on

the airline’s overall schedule. Dispatchers are responsible for flight preparations, and

monitor the flights status and weather conditions during the flight. In preparing a

flight plan, the fuel required, payload, route to be flown, and alternate airports for

each flight are provided.

The concern of aircraft dispatchers in making decision is whether or not a flight

is safely operated. Items taken into account are the deferred Minimum Equipment

List (MEL) or Configuration Deviation List (CDL) items (which identify particular

equipment inoperative, subject to specified conditions or any external parts of an

aircraft type which may be missing at the commencement of a flight, and which
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contains, where necessary, any information on associated operating limitations and

performance correction [87]), aging aircraft restrictions, and the required technical

and operational support at the departure, destination and alternate airports includ-

ing fuel, gates, ground power unit (which is a vehicle capable of supplying power

to aircraft parked on the ground), and stairs etc. The role of aircraft dispatcher is

expanded to deal with the additional coordination when irregular operations and

emergencies happen.

In smaller airlines, the pilots take many functions of the dispatcher. The pilots

can access to all the essential weather data and aircraft status and then do all the

flight planning.

AOC’s preferences to UPR include safety, fuel, emissions and passenger comfort.

Dispatchers work in airline operation centers and are responsible for strategic flight

planning.

Pilots

Flight planning can be a task of the dispatchers or the flight crew. During

the actual flight, through communication systems the pilots have access to data to

support flight planning safely, economically, and environmentally. The pilots can

operate the flight as planned and also can even optimise it, taking into account the

updated weather conditions and flight status.

The details of the trajectory are usually kept on the aircraft. Air traffic con-

trollers only know aircraft flying from an origin to a destination through certain

points at certain times. They control aircraft (especially in approach and landing

phase) by informing the pilots to slow down or to achieve a certain heading at a

certain altitude so that aircraft flies some traffic pattern or a flow to the airport.

The controllers don’t know the optimum aircraft performance (which depends on

aircraft model, weight, weather etc.), so their commands often don’t fly the aircraft

the optimal user preferred trajectory. On the other hand, the pilots don’t have a

clear picture about the objectives and restrictions from the controller, so they can’t

use updated information to find optimal trajectory. What the pilots do is trying
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to figure out the traffic situation around by using means of information especially

through the conversation with the controllers and then do find out what flight path

the controllers can expect.

Pilot’s preferences to UPR include: safety, fuel, emissions and passenger com-

fort.

2.4.1.4 Public

Safety is always the first expectation from the public (particularly passengers),

because ultimately passengers will suffer the consequences of an unsafe system, or a

safe system that is operated unsafely. In addition, passengers concern about flight

schedules. They may have some favorable departure times, and wish to depart

and arrive on time. They may also wish to have sufficient choices of flights and

itineraries, cheap and comfortable flights. Another expectation from the public is

national security and environment. Particularly the public in the vicinity of airports

expects less noise pollution. These expectations are responded in different ways by

the airspace user community, e.g. by airlines in their flight paths, schedules and fare

structures.

2.4.2 Variants of User Preferred Routes

User Preferred Routes is a link in the progress towards User Preferred Trajecto-

ries (UPTs). In [138] Paglione mentioned that “While the initiatives in Europe and

the United States were still just discussions among aviation stake-holders, Australia

embarked on a world first initiative to develop an ATM Strategic Plan as early as

1999. Based on a collaborative approach with User Preferred Trajectories as the

ultimate goal; the ATM Strategic Plan established a framework that enables Aus-

tralia to keep at the forefront of the Communications, Navigation, and Surveillance

(CNS) systems and ATM development and its associated benefits”. According to

the plan, the transition towards UPTs will begin with flex tracks, followed by User

Preferred Routes, and User Preferred Trajectories [14]. In Europe and the United
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States UPRs are determined as the base for 4D Trajectory Management as presented

in Section 2.1.3.

There have been research on User Preferred Routes and User Preferred Tra-

jectories carried out by FAA and Eurocontrol [29]. Since late 1995, the Eurocon-

trol Experimental Centre (EEC) launched a project named FREER, for Free-Route

Experimental Encounter Resolution to investigate the feasibility of the concept fol-

lowing which ATC functions could be transferred to the flight deck to allow more

freedom of movement to airspace users, and to support the implementation of Free

Flight, Free-Route and User-Preferred Route concepts [51]. NASA Ames Research

Center is developing decision support tools for air traffic controllers to improve the

efficiency and capacity of the National Airspace System. The goal is to provide

technology and procedures that result in the highest possible level of user preferred

routing whenever possible with efficient traffic management when necessary [115].

As presented in Section 2.3.3.2, there have been a lot of study on aircraft trajectory

and route optimisation in general, but there is little study dealing with multiple

objectives, especially proposing methods for solving UPR or UPT problems.

Following sections describe Flex tracks, User Preferred Routes, and User Pre-

ferred Trajectories.

2.4.2.1 Flex Tracks

As defined by ASTRA (The Australian Strategic Air Traffic Management Group),

“Flex Tracks are the non-fixed air traffic services routes calculated and promulgated

daily by the air navigation service provider to provide the most efficient operational

flight conditions between specific city pairs, taking advantage of prevailing wind

conditions. The Flex Track will commence and terminate at designated waypoints

to allow for transition to the fixed route network for arrivals and departures” [14].

Flex Tracks will save fuel and benefit the environment. It is a block towards

achieving user preferred routes [14].
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2.4.2.2 User Preferred Routes

User preferred routes are defined as “the routes generated and flown by an

airspace user that reflect the optimum point-to-point flight path subject to overrid-

ing system constraints with links to waypoints from/to structured routes at both

ends. They provide further flexibility, efficiency and cost effectiveness to airspace

users compared to Flex Tracks that are pre-determined and agreed by a service

provider.” [14]. A route can either be a 2D route (with lateral containment), or 3D

routes (with lateral and vertical containment).

With the support of appropriate conflict detection tools, user preferred routes

will enable airspace users to achieve specific operational/businees objectives (e.g.

minimum flight time, fuel, or discomfort) subject to overriding ATM system con-

straints. [14].

The gradual maturity of the operational concept, procedures, air traffic con-

troller automation tool proficiency and enhanced ATC/AOC/flight crew collabo-

ration will make user preferred routes available progressively. Flex Tracks will be

gradually removed as user preferred routes are fully in practice [14].

2.4.2.3 User Preferred Trajectories

The User Preferred Trajectory can be considered as the extension of User Pre-

ferred Route in time dimension. As defined by ASTRA, “The User Preferred Tra-

jectory (UPT) is normally determined in terms of best business outcome, which

considers time, fuel burn, and/or systemic cost. The UPT may take into account

known and/or predicted environmental constraints and is described in terms of 4D

coordinated and a statement of operational preference. Operational preference in-

dicates the priority for application” [13]. The four dimensions are three spatial

dimensions, plus time. A UPT begins when an aircraft is established at the gate for

the purpose of the flight until the aircraft has arrived the destination arrival gate.

UPTs therefore contain en-route, terminal area (TMA) and ground phases of the

trajectory.
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2.5 Chapter Summary

Though User Preferred Routes (UPRs) is described in literature, there is lit-

tle study to resolve UPR problem. Furthermore, there has been little study to

investigate the impact of UPR on the environment, delays, safety, etc. This mo-

tivates us to study the User Preferred Routing problem in aspects of formulating

User Preferred Problem more comprehensively, developing methods to resolve the

UPR problem properly and efficiently, and analysing the impact of UPR routes (or

evaluating UPR concept) in this thesis. Specifically the UPR problem takes aircraft

models, user preferences, and weather data such as wind, and hazards as input and

multiple objectives as output for finding user preferred routes for large number of

aircraft in continuous environment. The impacts of UPR routes on environments

and departure time deviation are analysed.

Particularly we will find answers for following research questions in this thesis.

• What is an appropriate simulation environment for User Preferred Routing?

• What are efficient designs for GA and LCS for finding UPR?

• What is the difference between black box (GA) and white box (LCS) ap-

proaches in finding UPR?

• What is the efficient method to detect and resolve conflicts between flights?

• What is a systematic use of UPR methods to take advantages of each method

in a specific routing circumstance?

• How is a real time system for aviation emission computation, inventory devel-

opment and analysis designed?

• What is the difference of environmental impact between UPR routes optimised

only vertically, only horizontally, and both vertically and horizontally?

• What is the impact on departure time deviation when UPR routes are applied?
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The Simulation and Evaluation Environment

Chapter 3

The Simulation and Evaluation

Environment

This chapter is partially based on following publications:

1. V. Bui, V. V. Pham, A. W. Iorio, J. Tang, S. Alam, and H. A. Abbass. Bio-inspired robotics for air traffic

weather information management. Transactions of the Institute of Measurement and Control, pp. 1-27,

ISSN: 0142-3312, 2010

3.1 Overview

The problems to find 3-D (latitude, longitude, altitude) UPR routes are de-

scribed first. The bad weather model and weather data processing, which provide

the input data for determining UPR routes, are presented next. Then the simula-

tion environment is presented. The simulation is used to evaluate and provide 4-D

trajectories with high resolution. UPR routes are then obtained by removing time

dimension from the 4-D trajectories. The conflict detection and resolution method is

presented next, and is applied to detect and resolve conflicts among UPR flights and

with other non-UPR flights, when the 4-D trajectories of flights are provided by al-

gorithms and through the simulation environment. Finally we present experimental

framework to investigate algorithms for finding 3-D UPR routes.
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3.2 Problem Formulation

A user at the current time wishes to find 3-D UPR for a set of flights in a time-

frame into the future. For example at 6am in a day, he wishes to find 3-D UPR for

a set of flights whose given departure time is from 2pm to 3pm. While finding the

routes for the set of UPR flights, he also needs to consider how to resolve conflict

among UPR flights and other flights in the airspace (which are called non-UPR

flights). The non-UPR flights may be active or set to take off. Both types of these

non-UPR flights are given flight plans.

In this thesis, we propose a framework and algorithms to find 3-D (latitude, lon-

gitude, altitude) user preferred routes for flights in a constrained environment. We

study two problems separately. Flights in Problem 1 are pre-assigned 2-D (latitude,

longitude) routes, while those in Problem 2 are pre-assigned cruising altitudes. By

studying two problems separately we can see how each dimension can be optimised.

Further the methodologies proposed for the two problems can then be combined to

optimise both horizontally and vertically. Though we can simulate a 3-D route to

obtain the 4-D trajectory by using aircraft speed profile from BADA database, we

consider this problem as 3-D User Preferred Routing as the speed of the aircraft,

which is used to determine the time dimension of the trajectory, is not optimised.

3.2.1 Problem 1

Problem 1 is given a set of UPR flights whose routes are user preferred, a time

frame that contains departure times of the UPR flights, a set of non-UPR flights

in the airspace that are predicted to be time-overlapping with UPR flights, and

weather environment with wind and bad weather information. Each flight has a

origin, an destination, given departure time, an aircraft type, a route, and a utility

(which represents the preference between the objectives: time, and comfort). The

task is to find 3-D user preferred routes for UPR flights, so that UPR flights can

avoid conflict with each other and with non-UPR flights, and can minimize time and

discomfort. Conflicts between UPR flights and other flights are resolved by shifting
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the departure times of the UPR flights.

This problem is named as GRP (Given Route Problem).

The problem is formulated mathematically as follows.

Input Data

• A departure time frame [T1, T2]

• A set of n1 UPR flights: f0,... fn1−1 which depart in the time frame [T1, T2]

and which need to find user preferred routes. Each UPR flight fi has the

following information.

– Origi is the origin of fi

– Desti is the destination of fi

– DTi is the departure time of fi in the time frame [T1, T2].

– ACi is the aircraft type of fi

– Routei is the route which is a series of mi 2-D (latitude, longitude) way-

points: WPi,0, WPi,1,... WPi,mi

– ui is the utility of fi. The utility of a flight ranges from 0 to 1. If the

utility is high, minimizing the time travelled is more preferred, otherwise

minimizing the discomfort is more preferred. For example, for Cargo

flights that have no passengers, an airline is likely to prefer a quicker

route than a comfortable one.

• A set of n2 non-UPR flights: f
′

0,... f
′

n2−1. A non-UPR flight f
′

i has the following

information

– 4-D predicted trajectories which are generated from its flight plan.

– Its travelled time from the departure time to the arrival time must overlap

with the period [T1, T3] where T3 is large enough so that all UPR flights

arrive to their destination before T3. The travelled time of the flight can

be received from the 4-D predicted trajectories.
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• A 3-D wind cell grid WindAtmi,j,k, where i, j, k are the latitude, longitude,

and altitude indices. A wind cell WindAtmi,j,k has the following information

– Speed is the speed of wind at cell i, j, k. Wind speed is measured in knots

– Direction is the direction of wind at cell i, j, k. Wind direction is mea-

sured in degree from 0 to 360◦ (from North in clockwise direction).

• A 3-D bad weather cell grid BWCi,j,k, where i, j, k are the latitude, longi-

tude, and altitude indices. A bad weather cell BWCi,j,k has the following

information

– BWL is the bad weather level at cell i, j, k. Bad weather level can take an

integer value between 0 and 5 which correspond to none, low, medium−
low, medium, medium− high, or high respectively.

– Down is the lower altitude of the bad weather at cell i, j, k

– Up is the upper altitude of the bad weather at cell i, j, k

Find

3-D user preferred routes from origin to destination through the constrained envi-

ronment for UPR flights so that they can satisfy the constraint and minimize the

objective below.

Constraint

- UPR flights must avoid conflict with each other and with the non-UPR flights.

- All flights must operate within their specific aircraft allowed performance param-

eters.

Objective

For UPR flights, minimize the following objective

n1−1
∑

i=0

nsi−1
∑

j=0

(ui ∗ timei,j + (1− ui) ∗BWLi,j ∗ timei,j) (3.1)

where nsi is the number of segments of the 4-D trajectory of flight fi, timei,j is the

time travelled by flight fi through the segment j of the flight, BWLi,j is the bad
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weather level of the segment. Here we assume that the segment is small enough that

the bad weather level is constant in the whole segment.

As the time travelled of a flight is usually proportional to fuel burn as well

as emissions [98], minimizing time travelled is an indicator to minimize fuel and

emissions.

3.2.2 Problem 2

Problem 2 is formulated identically to Problem 1, except for one thing. The

input data for a UPR flight fi does not include Routei (a set of 2-D waypoints);

instead, it includes CruiseAlti, the cruising altitude of fi.

This problem is named as GAP (Given cruising Altitude Problem).

3.3 Bad weather model

A variety of bad weather phenomena can affect aircraft, such as wind shear,

turbulence, icing, atmospheric electricity, stratospheric ozone, volcanic ash, conden-

sation trail, whiteout, low-level inversions, and thunderstorm [112]. Wind shear

can cause turbulence and large airspeed fluctuations particularly during the takeoff

and landing phases of flight. Turbulence results in velocity fluctuations in a chaotic

manner. The fluctuations found within the atmosphere are often weak and barely

noticeable in flight. However, turbulence of high magnitude occasionally causes air-

craft damage or passenger and crew injury. Icing is possible in clouds or rain at

temperature near or below 0◦C. It can quickly become a factor and threaten the

safety of flight. Atmospheric electricity can be lighting and static discharges which

are the concern for pilots. The air with high ozone concentration from stratosphere

may create a hazard of flights at and above the tropopause. Volcanic ash can speed

around the world and remain in the stratosphere for months, which can lead to

the interruption of air traffic. Condensation trail (clound-like streamer) that forms

behind an aircraft flying in clear, cold, humid air can reduce visibility at a flight
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level. Whiteout (Snow-covered regions at high altitudes) can present some special

visibility problems because of the reflection of light by snow-covered surfaces or the

diffusion of light from the sun by the cloud layer. Strong low-level inversions are

common in snow-covered regions in the winter. An aircraft climbing out under such

conditions experiences a marked decrease in climb performance due to higher tem-

peratures at the top of the inversion. The dangers a thunderstorm may cause are

loss of control, loss of power, and damage by hail, lightning, or extreme turbulence.

However these dangers can all be foreseen and precautions can be taken to minimize

their effect [74].

In this thesis, we abstract the impact of these different weather phenomena by

weather cells with sizes of 1◦ x 1◦ x 1,000 feet. The intensity of a bad weather cell

is assumed to be constant in the whole cell. Flights can pass through bad weather

cells, but they will create discomfort. In reality a wether cell can scale from 2 to

200 km [114] and can be from the ground to 60,000 feet [74] and the weather cells

are changing continually. In this thesis we simplify these weather facts to study

UPR problems. However the proposed methodologies can be adapted to deal with

the real weather data by replacing the 3-D weather grid with 4-D weather grid. For

example, in order to detect a point in a bad weather area in the 3-D bad weather

cell grid, its position is mapped to 3-D grid. The detection in 4-D grid the point is

almost the same where the point with estimated time of arrival is mapped to the

4-D grid to see if the grid cell containing the point is the bad weather area.

3.4 Weather Information System

In this thesis we designed a system to process and integrate aviation weather.

The research work is published in [32]. The resulting wind data is then used in User

Preferred Routing.

A weather monitoring system typically consists of sensors (both airborne as

well as ground) located in or near the terminal area as well as local and regional

forecast information. The main types of information generated by aviation weather
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Figure 3.1: Process flow diagram for weather data processing.

monitoring systems are the SIGMET (Significant Meteorological Hazard Warning),

AIRMET (Airmen’s Meteorological Warning), TTF (Trend Type Forecast), TAF

(Terminal Aerodrome Forecast), ARFOR (Low-level Area Forecasts), Area QNH

(air pressure), SIGWX (Significant Weather Charts) and grid-point wind, and tem-

perature forecasts [112].

The weather information system can retrieve and process SIGMET, ARFOR,

and numerical grid-point wind, and temperature data. This data consists of semi-

structured and structured data. The system accesses the BoM (Bureau of Mete-

orology, Australia) website, downloads the HTML messages containing SIGMETs,

and parses them. The SIGMET parser extracts structured data from the SIGMET,

identifying the region, weather phenomena, flight level, and time of the event. This

data is then stored in a database for retrieval and future updates.

The interpretation of region information in a SIGMET is typically reported as

vertices of a polygon in latitude and longitude coordinates. Sometimes this data is

presented as a mix of waypoint codes, or latitude and longitude coordinates. For

ATCs that may look at more than one sector in a day, depending on traffic load,

this can be burdensome as the ATCs have to have familiarity with the waypoints in

each region.
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The weather information system automates the extraction of the waypoint codes

and converts this data to latitude and longitude coordinates, and can provide the

most current SIGMET within a specified time window. Furthermore, the system

extracts numerical grid-point wind, and temperature data from different sources. In

addition to the SIGMET and numerical grid-point wind, and temperature data, the

weather information system also downloads and parses the low-level ARFOR (Area-

forecast) data. Figure 3.1 illustrates the process flow for weather data processing.

3.4.1 Neural Networks for Wind and Temperature Image

Processing

Wind and temperature data in Australia is generated every 6 hours by the

Bureau of Metrology in image format. This data is unavailable in a textual format

so this image needs to be converted into a text format for further machine processing.

Each image (map of Australian airspace) is divided into grid cells based on latitude

and longitude. The size of each cell is 5◦ x 5◦. Each cell has wind and temperature

information for 9 different altitudes (5000, 10000, 14000, 18500, 23500, 30000, 34000,

38500, and 44500 feet).

Figure 3.2 is an example of a wind and temperature map from 5000 to 23500 feet.

The wind and temperature information is in the format of ddffftTT. dd are the two

digits for wind direction with the unit of 10 degrees. These two digits present

approximately 1/10 of the real wind direction. The value made from the two digits

is from 0 to 36. This means the real wind direction is 10 multiplied by the integer

value made of the two digits. fff are the three digits for wind speed with the unit

of knots. t is the sign of temperature. It is “+” if the temperature is positive and

it is “-” if the temperature is negative. TT are the two digits for the temperature

with the unit of Celsius degree.
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Wind and temperature data from 30000 to 44500 feet are received from another

similar wind and temperature map. The information in this wind and temperature

map is in the format of ddfffTT without temperature sign as all the temperatures

are negative.

In general, the problem is seen as a pattern recognition problem where the

patterns to identify are 10 digits from 0 to 9 and the two temperature signs (“+”

and “-”). The problem of converting this image into a system readable text file is

dealt with in two stages; in the first stage we filter out the background clutter (map

of Australia) and localize and segment the image based on the location of individual

digits and temperature signs. In the second stage an off-line trained neural network

is used to identify the digits in wind and temperature image files. The temperature

signs are simply recognized by the difference between the two signs. Sign “+” has

pixels in different rows while all pixels of sign “-” are in the same row.

3.4.1.1 Pre-processing of Wind and Temperature Images

Before we can train a neural network to identify digits in wind and temperature

images, several preprocessing steps need to be performed in order to generate the

cases used for training. The map of Australia overlaps a number of digits and tem-

perature signs and the size (width and height) of one digit sometimes varies from one

to another. Utilizing several wind and temperature image files the unchanging back-

ground pixels associated with the grid and map of Australia are identified. Following

this, we acquire the digits and temperature signs from each image by subtracting

the background image and drawing another automatically constructed grid on the

image in order to segment the digits and temperature signs. The segmentation of

the grid is generated by iterating over every pixel row and column of the image; the

pixels that become associated with the segmentation grid are the rows and columns

with white pixels only. If there are several consecutive white rows and columns we

consider them as one. The grid then allows us to segment the individual digits and

temperature signs with high precision. The temperature signs are simply recognized

as presented above. The segmented set of digits is then used in the second stage
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Table 3.1: Parameter for two neural network models.

Parameters Values
Network type Feed-forward backprop
Hidden layer Transfer function is tansig.
Output layer Transfer function is tansig.
Goal 0
Epochs 100
Momentum constant 0.95
Learning rate 0.01

where a neural network is used to recognize digits in new wind and temperature

images. The size of the training set used by the neural network is 317, where the

number of templates for each digit from 0 to 9 is 29, 16, 25, 52, 19, 31, 50, 9, 30,

and 56 respectively. These numbers were used to reflect the variations associated

with the font used in the image for the digits.

3.4.1.2 Training the Neural Network

We used a set of neural networks that are trained separately to recognize each

digit. Each trained network has one hidden layer with 10 units and one output.

The output reports true if an image of a digit is matched, otherwise it reports false.

The architecture of the 10 neural networks is presented in Figure 3.3. The neural

network parameters are reported in Table 3.1. As shown in the table:

• The network type we use is feed-forward backpropagation [77]. In a feed-

forward neural network, neurons are only connected forward. Each layer of the

neural network contains connections to the next layer (for example, from the

input to the hidden layer), but there are no connections back. Backpropagation

is a form of supervised training. When using a supervised training method, the

network must be presented with both sample inputs and predicted outputs.

The predicted outputs are compared with the actual outputs corresponding

to a given input. On the basis of the predicted outputs, the backpropagation

training algorithm then takes a calculated error and alter the weights of the

layers backwards from the output layer to the input layer.
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Figure 3.3: The architecture of the 10 neural networks with one output.

• The transfer function used in the network is the tansig function. This function

transfers the weighted sum of the input nodes to the output as shown in

Equation 3.2

y = f(a) = f(

n
∑

i=0

xiwi) (3.2)

where xi(i = 1, ..., n) are elements of an input vector x, x0 is a threshold input,

wi is a weight from an input i to a neuron, and f(a) is the tansig function

given in Equation 3.3.

f(a) = tansig(a) =
2

1 + e−2∗a
− 1 (3.3)

• Goal, Epochs, and Momentum constant are training parameters. Training

stops when a maximum number of epochs occurs or the performance goal is

met. Momentum constant (MC) determines the amount of momentum. MC is

ranged from 0 (no momentum) to values close to 1 (lots of momentum). When

the momentum constant is 1, the network is completely insensitive to the local

gradient and, hence, does not learn properly. The learning rate for both input

weights and biases is 0.01. This constant is used in error backpropagation

learning and other artificial neural network learning algorithms to control the

speed of learning.

The training set for each neural network consists of the set of template images

for all 10 digits, even though a neural network is trained to recognize a specific digit

only. This is necessary so that each network can see negative as well as positive

examples in order to correctly distinguish between digits. The 84-bit strings used in
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Figure 3.4: Five samples of digit 0.

training originate from the binary matrix representing the black and white image of

a digit, where the width of the matrix is 7 and the height is 12. These digit images

are extracted from Figure 3.2 by the method, which is described in Section 3.4.1.1.

In a binary matrix representing a digit image, bit 0 represents a white pixel, and

bit 1 represents a black pixel. In Figure 3.4, examples of this binary matrix are

presented for digit 0.

Figure 3.5 shows the performance of the training process for the neural network

to recognize digit 0. It reaches the goal with the performance very close to 0.

3.4.1.3 Using Neural Networks for Classifying Wind and Temperature

Images

Once the neural network is trained it can then be used to process new grid-point

wind and temperature data images. When a new image arrives for processing, we

perform the same preliminary preprocessing steps that were used before training.

After this, the segmented digits can be recognized using the trained neural networks.

In order to recognize one new image of a digit, all ten trained neural networks are

used. If only one of the neural networks has the output of true during classification,

the digit that this neural network is responsible for identifying is deemed to be the

digit corresponding to the new image, otherwise the new image is deemed to be

unrecognised. The neural networks are applied to each digit in the image until there
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Figure 3.5: Training performance.

are no more digits to classify. The wind, and temperature information extracted from

the image is then integrated to give a complete picture. The graphical representation

of this meta-data generated by processing weather, and wind information is then

visualized as given in Figure 3.6.

We test the trained neural networks on 10 different image files of wind data.

The image files are converted to text files by using these networks. The results show

that the accuracy obtained is 100%. Table 3.2 is an example of the text file of wind

and temperature, converted from the image file in Figure 3.2. The cells in the table

with only 0 digits correspond to the description area of the wind and temperature

map.
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Figure 3.6: Graphical output of meta-data generated by processing weather and
wind information.
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10010-15 09015-15 07010-15 06010-15 08010-15 05010-14 06010-15 11020-14 12025-14 20010-14 36025-14 03020-15
11010-05 10020-04 09015-05 08010-05 08005-04 05005-04 06010-05 11015-04 14020-05 23010-04 36025-05 03025-05
12005+02 09015+03 09015+03 07010+03 04005+03 03005+03 06010+03 11010+03 15015+03 24015+04 36025+03 03025+01
20005+11 11005+10 10015+11 09010+11 07005+11 04005+11 05010+12 12010+11 15015+11 25015+11 36030+11 03020+10
25010+18 22005+18 14005+19 00000+19 00000+19 00000+20 09010+19 13005+20 17015+19 25020+19 36030+19 03020+19
08010-16 07010-16 07010-15 08005-15 12010-14 12005-14 35015-15 09010-15 12025-14 12040-13 05045-14 06025-14
09005-04 06010-04 08015-05 08010-04 11015-05 02005-05 36010-05 08015-04 12025-04 12045-04 05045-04 06025-05
04005+04 04010+04 10015+03 11025+03 11020+03 03005+03 02010+03 08015+04 12025+04 11050+03 05045+02 06025+02
01005+11 04015+12 08020+11 12010+11 11010+10 06005+11 04010+11 09015+11 12025+11 11050+11 05050+10 06025+11
14005+17 21005+20 27005+23 26005+22 31005+22 02005+19 03005+19 08010+21 13015+21 11050+19 05050+20 06025+20
25010-16 29010-17 28005-17 21005-16 16005-16 17015-15 34015-16 36010-16 08015-16 07010-15 04020-15 06025-16
26005-04 32010-05 00000-05 17005-06 12010-06 14020-05 36020-06 03010-05 09015-05 09020-05 07025-06 07025-05
33010+04 33010+03 33015+02 30010+02 12010+03 14020+02 36020+02 03010+03 09015+03 09025+03 07030+02 07025+04
00000+10 32005+12 33020+13 33005+12 02005+12 14015+10 36020+10 05015+10 09015+12 08025+11 07025+10 08020+12
13010+16 17005+20 30010+24 13005+26 33010+25 32015+23 36020+19 02005+23 09010+22 08025+18 07025+20 07020+20
27040-19 29035-19 29035-18 29025-18 30015-17 23005-16 02010-17 36020-16 32010-16 36010-17 33015-18 02030-17
25020-08 28025-06 29020-06 30015-07 28010-07 18010-07 04005-07 35020-06 32015-06 02010-07 36015-06 04015-05
20010+02 28015+03 31020+04 29025+03 27015+02 20005+01 36010+01 33015+02 34015+03 03010+02 02015+01 03015+03
18010+10 26010+11 32015+12 32025+11 30005+11 07005+12 01015+10 05010+10 29010+11 02015+12 03015+10 07010+11
14010+12 16015+14 17005+19 36015+24 02015+25 34020+24 36015+22 32015+24 33020+22 02015+19 04015+19 07010+19
21020-20 22020-21 21015-22 30050-22 30040-21 30030-18 33010-18 34015-17 04005-15 34010-17 03010-19 36035-17
20020-08 21015-08 27010-10 29030-09 30035-07 30020-07 31015-06 30015-07 10005-05 36020-07 36015-08 36025-05
20015+02 20010+01 29010+00 30020-00 31035+02 31030+02 31020+01 31015+00 05010+03 36025+02 34010+02 36020+04
20015+07 19010+07 26005+09 31020+09 30025+10 32030+10 32025+10 32015+11 04020+10 35020+11 06010+09 33015+11
15015+13 15015+14 16005+13 36005+15 00000+14 35010+16 35010+22 31020+24 03020+18 36025+20 30005+22 34010+20
21010-22 22020-23 20035-23 27025-24 29030-24 31055-22 31060-18 31050-17 32035-18 32030-17 32030-16 32035-17
17005-10 21020-10 21030-11 27025-12 30040-11 31040-11 31050-09 31040-07 32030-07 31030-07 31035-07 31035-05
18010+00 17020+01 22020-02 27020-03 30030-01 31035-00 32030-01 31035+01 31035+01 30025+01 30030+00 29025+03
20015+06 19020+07 24015+05 26020+04 28025+05 32025+07 32020+08 31035+10 30040+10 31025+11 33020+09 29020+09
18015+11 20015+10 22010+08 22010+09 27010+07 29010+09 31005+11 31020+15 32030+20 33030+20 33015+24 32020+22
00000000 00000000 00000000 00000000 00000000 00000000 30070-25 31060-24 31065-22 31060-21 30055-19 28060-18
00000000 00000000 00000000 00000000 00000000 00000000 31070-12 31060-11 31055-08 31050-07 31040-07 29040-07
00000000 00000000 00000000 00000000 00000000 00000000 30065-04 30055-02 30045-01 32045+03 32030+01 28035+02
00000000 00000000 00000000 00000000 00000000 00000000 30050+02 31040+04 32035+06 33030+06 31030+08 28030+08
00000000 00000000 00000000 00000000 00000000 00000000 29030+04 31025+06 34020+08 34020+08 31010+12 25015+13
00000000 00000000 00000000 00000000 00000000 00000000 30095-28 31105-25 31095-24 31080-24 29080-23 27095-24
00000000 00000000 00000000 00000000 00000000 00000000 29085-15 31105-16 31085-15 30080-14 29075-13 27080-13
00000000 00000000 00000000 00000000 00000000 00000000 29060-12 31090-10 31070-07 31065-05 29055-04 26065-02
00000000 00000000 00000000 00000000 00000000 00000000 29050-10 31070-04 32065-01 31050+01 28045+03 26060+02
00000000 00000000 00000000 00000000 00000000 00000000 28040-01 31060+01 31045+01 31035+05 28025+05 26030+01

Table 3.2: Wind and temperature data in text converted from image using trained neural networks.
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3.4.2 Wind and Temperature Data Structure and Approx-

imation

Wind and temperature information are real information from processing the

Australian wind and temperature map of 5◦ x 5◦ cells, as presented in Section 3.4.1.

Each cell has wind and temperature information for 9 different altitudes (5000,

10000, 14000, 18500, 23500, 30000, 34000, 38500, and 44500 feet).

A 3-D matrix is used to store wind and temperature information WindAtmi,j,k,

where i, j, k are the latitude, longitude, and altitude indices. Latitude index is from

0 to 7 corresponding to the latitudes from 12.5S to 47.5S with interval 5◦. Longitude

index is from 0 to 11 corresponding to the longitudes from 102.5E to 157.5E with

interval 5◦. Altitude index is from 0 to 8 corresponding to the altitude of 5000,

10000, 14000, 18500, 23500, 30000, 34000, 38500, and 44500 feet.

Each 5◦ x 5◦ cell has one tuple including wind direction, wind speed and tem-

perature for a number of flight levels. Therefore, in this thesis, we interpolate tuples

to get the weather information in every point in the airspace. Given a point (Lat,

Lon, Alt) in a cell which is temporarily called cell0, call neighboring cells of cell0 as

cell1, cell2, ... celln (which are the upper, lower, left, right, upper-left, upper-right,

lower-left, or lower-right cells if they exist). For each cell, we calculate the tuple at

Alt by linear approximation.

If there is one tuple in the cell at Alt, this tuple will be the tuple which needs

to be determined. If there is no available tuple in the cell below Alt, the linear

approximation will be based on the two tuples above Alt. If there is no available

tuple in the cell above Alt, the approximation will be based on the two tuples below

Alt. Otherwise it will be based on one tuple below Alt and one tuple above Alt.

Assume that the altitudes of the two tuples are Altx, and Altx+1; the wind direction,

wind speed and temperature of the two tuples are (dx, fx, tx) and (dx+1, fx+1, tx+1),
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the 3 values of the tuple (d, f , t) at Alt are calculated by Equation 3.4.

d =
dx+1 − dx

Altx+1 −Altx
× (Alt− Altx) + dx

f =
fx+1 − fx

Altx+1 −Altx
× (Alt− Altx) + fx (3.4)

t =
tx+1 − tx

Altx+1 −Altx
× (Alt− Altx) + tx

Let the latitude and longitude of cell0, cell1,... , celln be (lat0, lon0), (lat1, lon1),...

(latn, lonn) and the tuples of cell0, cell1,... , celln at Alt be (d0, f0, t0), (d1, f1, t1),...,

(dn, fn, tn). At first the great circle distances from the point (Lat, Lon) to (lat0,

lon0), (lat1, lon1),... (latn, lonn) are calculated. These distances are called Dist0,

Dist1, ... Distn. The 3 values of the tuple (d, f , t) at the point (Lat, Lon, Alt) are

then calculated by Equation 3.5.

d =

∑n
i=0 di(1− Disti∑n

j=0 Distj
)

n

f =

∑n
i=0 fi(1− Disti∑n

j=0 Distj
)

n
(3.5)

t =

∑n
i=0 ti(1− Disti∑n

j=0 Distj
)

n

The number of neighboring cells (n) of cell0 depends on the position of this cell. If

the cell is in middle of the map, n is 8. If the cell is in the corner of the map, n is

3. If the cell is in edge of the map and is not in the corner, n is 5.

3.5 Simulation environment

In order to find the best 3-D UPR routes, algorithms in this thesis use a simu-

lation environment to evaluate 3-D routes. The simulation environment using a 3-D

route profile simulates the 4-D trajectory to evaluate the 3-D route.

The simulation of a 4-D trajectory for an aircraft, which is given aircraft per-

formance, a 2-D (latitude, longitude) route, and altitude profile in a weather envi-
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ronment, includes the following three basic cases:

• The aircraft follows the 2-D route to climb from a starting point (Lat1, Lon1,

Alt1) to the altitude Alt2 of an ending point. The segment from the starting

to the ending point is called a climb segment. The outputs of this simulation

include the latitude and longitude of the ending point, the weights (Distance,

Time, Discomfort, Fuel), and the list of sub-segments of the segment.

• The aircraft follows the 2-D route to descend from a starting point (Lat1,

Lon1, Alt1) to the altitude Alt2 of an ending point. The segment from the

starting to the ending point is called a descent segment. The outputs of this

simulation include the latitude and longitude (Lat2, Lon2) of the ending point,

the weights, and the list of sub-segments of the segment.

• The aircraft cruise from a starting point (Lat1, Lon1, Alt) to an ending point

(Lat2, Lon2, Alt). The segment from the starting to the ending point is called

a cruise segment. The outputs of this simulation include the weights, and the

list of sub-segments of the segment.

Also, as the Top Of Descent (TOD) is not given, the simulation of the aircraft

following the 2-D route to move backward from the destination to a given flight

level is needed to determine the TOD at the flight level. In this thesis, we generalize

this case as the simulation of the aircraft following the 2-D route to move backward

from an ending point (Lat2, Lon2, Alt2) to the given altitude Alt1 of a starting

point. The outputs of this simulation include the latitude and longitude (Lat1,

Lon1) of the starting point, the weights, and the list of sub-segments of the segment

from the starting point to the ending point.

In all cases the ending point of a segment is the starting point of the next

segment, except for the ending point being the destination. The 3-D route of the

aircraft is the series of these segments.

A segment following the 2-D route is simulated by the simulation of aircraft

following the great circle route between every two waypoints of the 2-D route.
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The mathematics of the evaluation environment relating to the atomic calcula-

tions of a moving step and the simulation of a whole route are presented in following

sections.

3.6 The mathematics of the evaluation environ-

ment

The evaluation of an aircraft route is based on the simulation of a moving step.

A number of variables need to be determined in a step. These include the change

in altitude, the distance and time traveled, fuel burn, and the discomfort caused

by bad weather cells. The calculation of these variables is based on the true air

speed, the vertical speed (rate of climb or rate of descent), and the fuel flow of

the aircraft. In this section, the calculation of true airspeed and vertical speed is

presented first, followed by fuel flow calculation. Then the calculation of additional

altitude, distance, time, fuel, and discomfort of a moving step is presented.

3.6.1 Calculation of True Airspeed and Vertical Speed

The problem is given aircraft type, flight phase, and the altitude (Alt) of the

current position of an aircraft, with the condition that Alt is less than or equal to

the maximum altitude the aircraft can reach. The task is determining true airspeed,

and vertical speed.

From the aircraft type, the flight phase and BADA database, we can determine

a set of true airspeeds and vertical speeds in different flight levels. Assume that

the two closest flight levels from the set are Altx and Altx+1. The couples of true

airspeeds and vertical speeds at these altitudes in the given flight phase are (TASx,

V Sx) and (TASx+1, V Sx+1). The couple of (TAS, V S) at Alt is then linearly

approximated by Equation 3.6.
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TAS =
TASx+1 − TASx

Altx+1 − Altx
× (Alt−Altx) + TASx

V S =
V Sx+1 − V Sx

Altx+1 −Altx
× (Alt− Altx) + V Sx (3.6)

3.6.2 Calculation of Fuel Flow

The problem is given aircraft type, flight phase, altitude (Alt) and the temper-

ature (Temp) of the current position, true airspeed (TAS ), and weight (W ) of an

aircraft with the condition that Alt is less than or equal to the maximum altitude

the aircraft can reach. The task is to calculate fuel flow for the aircraft at the current

position.

The BADA aerodynamic model is used to calculate lift and drag as well as

thrust and fuel flow in all flight phases [135]. It is used in air traffic simulation models

of several organizations, research institutes and government organizations in ATM

research such as Future ATM Concepts Evaluation Tool (FACET) of NASA [24],

Early Demonstration & Evaluation Platform (eDEP) of Eurocontrol [52], and the Air

Traffic Operations and Management Simulator (ATOMS) [3]. Most aircraft types

currently modeled in BADA demonstrate mean error in vertical speed lower than

100 feet per minute (fpm), over previously specified normal operation conditions.

This corresponds to mean error of vertical speed lower than 5% for operational range

of flight envelope under the assumption that 2000 fpm is an average vertical speed

value. Fuel consumption is modeled with mean error lower than 5% for the same

conditions [136].

The aircraft type is used to determine aircraft performance parameters from

BADA database. This database is developed by the Eurocontrol Experimental Cen-

tre [135]. Version 3.6 includes detailed information on 91 supported aircraft types,

gathered from reference sources like flight and operating manuals. BADA includes

a total of 51 parameters per aircraft, which specify the aircraft’s mass and flight

envelope together with its aerodynamics, engine thrust, and fuel flow coefficients.
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The thrust T is calculated first. Then fuel flow is calculated based on the

thrust.

The thrust, T (N), in general is calculated as follows with the input of true air

speed (TAS ), altitude, temperature, and weight (W ) and operations performance

parameters from BADA database. The details of calculation is presented in BADA

document [135].

• If the flight is in cruise phase, thrust is the minimum of the maximum cruise
thrust and drag. The maximum cruise thrust and drag are in Sections 3.7.2
and 3.6.1 in BADA document [135] respectively.

• If the flight is in climb or take off phases, the thrust is the maximum climb
or take off thrust. Their calculations are presented in Section 3.7.1 in BADA
document [135].

• If the flight is in descent phase, the thrust is the descent thrust. Its calculation
is presented in Section 3.7.3 in BADA document [135].

The thrust specific fuel consumption, η, in kg/minute/kN is specified as a func-

tion of true airspeed, TAS (knots), for the jet and turboprop engines. The nominal

fuel flow, fnom (kg/minute), can then be calculated using the thrust, T. These aus-

cultations also use two BADA performance paraments (Cf1 and Cf2): the first and

second thrust specific fuel consumption coefficients.

jet : η = Cf1 × (1 +
TAS

Cf2
) (3.7)

where:

fnom = η × T (3.8)

turboprop : η = Cf1 × (1− TAS

Cf2
)× (TAS/1000) (3.9)

where:

fnom = η × T (3.10)

These expressions are used in all flight phases except during cruise and for

descent/idle conditions.
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Minimum fuel flow, fmin , corresponding to idle thrust or descent conditions for

both jet and turboprop engines, is specified in kg/minute as a function of altitude

above sea level, Alt (ft). This calculation uses two BADA performance paraments

(Cf3 and Cf4): the first and second descent fuel flow coefficients.

jet/turboprop : fmin = Cf3(1−
Alt

Cf4

) (3.11)

Cruise fuel flow, fcr, is calculated using the thrust specific fuel consumption η

and a BADA performance parameter (Cfcr): cruise fuel flow factor.

jet/turboprop : fcr = η × T × Cfcr (3.12)

For piston engines the fuel flow, f, in kg/minutes is specified to be a constant,

that is,

fcr = Cf1 × Cf2 (cruise) (3.13)

fmin = Cf3 (idle/descent) (3.14)

fnom = Cf1 (all other phases) (3.15)

3.6.3 Additional Altitude, Distance, Time, Fuel, and Dis-

comfort of a Moving Step

The problem is given the current point of an aircraft A, the horizontal target

point C, the magnitude of aircraft true airspeed
−−→
TAS, the vector of aircraft vertical

speed
−→
Vy, and the vector of wind speed

−−→
WS as in Figure 3.7; also the bad weather

level (BWL), and the fuel flow (FF ) of the aircraft at A. The task is determining

additional altitude h, distance traveled d, the time duration t, discomfort dc, and

fuel burn f when the aircraft moves from A to F.

From |−−→TAS| and |−→Vy|, we can calculate the magnitude of horizontal aircraft
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Figure 3.7: A Climb Moving Step.

speed |−→Vx| as Equation 3.16.

Vx =
√

TAS2 − V 2
y (3.16)

We assume that AC is short enough that while the flight is moving from A to F,
−−→
WS,

−→
Vx,

−→
Vy, and FF are the same as at A.

To reach the horizontal target C, the flight needs to have a proper heading,

so that when the flight movement is affected by
−−→
WS, it can horizontally reach the

destination. In Figure 3.16, the flight chooses the heading
−−→
AD to go to C, as

−→
AC =

−−→
AD +

−→
AB, where

−−→
AD presents the movement of the flight by

−→
Vx and

−→
AB presents

the movement of the flight by
−−→
WS.

As the two points A, C, and
−−→
WS are known, the initial bearing from A to C

and the wind direction are known. We call them α and β respectively. These angles

are measured in degrees. Then the angle B̂AC is determined as α − β. According

to the law of cosines in a triangle, we have Equation 3.17.

cos(α− β) =
AC2 + AB2 − BC2

2AC ∗ AB (3.17)

⇒ cos(α− β) =
AC2 + (WS ∗ t)2 − (Vx ∗ t)2

2AC ∗WS ∗ t (3.18)

⇒ (V 2
x −WS2) ∗ t2 + 2AC ∗WS ∗ cos(α− β) ∗ t− AC2 = 0 (3.19)

We can assume that Vx > WS and AC > 0, so the quadratic equation 3.19 with

variable t has two roots. One root is greater than 0, and the other is less than 0.
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The root which is greater than 0 is t.

t =
AC(

√

V 2
x −WS2sin(α− β)2 −WScos(α− β))

V 2
x −WS2

(3.20)

If ABC is not a triangle, α − β will be 0◦ or 180◦. We can also consider the case

when WS is 0 as when α− β is 0 and use the same set of following equations.

If α− β is 0◦, the ground speed is calculated by Equation 3.21

GS = Vx +WS (3.21)

If α− β is 180, the ground speed is calculated by Equation 3.22

GS = Vx −WS (3.22)

Then t is calculated by Equation 3.23

t =
AC

GS
(3.23)

After having time duration t, we calculate the additional altitude h by Equation 3.24

h = Vy ∗ t (3.24)

Then the distance traveled is calculated by Equation 3.25

d =
√
AC2 + h2 (3.25)

The fuel consumption f is calculated by Equation 3.26

f = FF ∗ t (3.26)

These equations are applied to all types of aircraft movement: climb, cruise and

descend. If the aircraft climbs, Vy > 0. If the aircraft cruises, Vy = 0. If the aircraft
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descends, Vy < 0.

The discomfort of a moving step is calculated by Equation 3.27, where BWL

is the bad weather level at the first point of the moving step.

dc = t ∗BWL (3.27)

3.7 4-D trajectory simulation

In this section, the simulations of all the basic segments in simulating a route

description to generate a 4-D trajectory with high resolution are presented.

3.7.1 Simulating a 2-D route to climb to an altitude

The problem is given the weather environment, aircraft performance, a 2-D

(latitude, longitude) route, a starting point (Lat1, Lon1, Alt1) and an altitude Alt2

(Alt2 > Alt1). The task is to simulate aircraft climbing from the starting point to

the altitude Alt2, following the 2-D route. The output includes latitude, longitude,

and altitude of the ending point (Lat2, Lon2, Alt2) (where Alt2 is already given),

the weights, and the list of sub-segments of the climb segment.

Algorithm 1 is to resolve the problem. The simulation of the climb segment

begins with the starting point. This point is considered as the current simulated

point currentpoint of the aircraft. The next waypoint nextpoint to the current point

in the route is determined. If nextpoint is not available, the simulation terminates.

Otherwise the destination altitude Alt, the weights and the list of sub-segments

when the aircraft climbs from currentpoint to nextpoint following the great circle

route between the two points are determined. This will be presented in Section 3.7.2

(⋆). If Alt is higher than Alt2 or Alt is not determined, a point at altitude Alt2

between currentpoint and nextpoint, the weights, and the list of sub-segments when

the aircraft follows the great circle route from currentpoint to nextpoint to climb

to Alt2 are determined. This will be presented in Section 3.7.3 (∗). The weights of
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the segment and the list of sub-segments are updated by those determined in (∗)
and the simulation finishes. If Alt is equal to Alt2, the weights of the segment and

the list of sub-segments are updated by those determined in (⋆) and the simulation

finishes. If Alt is lower than Alt2, a new point newpoint is created with latitude

and longitude being those of the nextpoint and altitude of Alt. The weights of the

segment and the list of sub-segments are updated by those determined in (⋆). If

there is a point next to nextpoint in the route, currentpoint becomes newpoint and

nextpoint becomes the point next to nextpoint. Otherwise the simulation finishes.

Algorithm 1 The algorithm for the simulation of aircraft following a 2-D route to
climb from a starting point to a point given altitude.
1: currentpoint = startingpoint.
2: nextpoint = the next point of currentpoint in the 2-D route.
3: if nextpoint is available then

4: F inish = false
5: while not Finish do

6: Determine the altitude Alt, the weights, and the list of sub-segments when aircraft climbs from the
currentpoint to the nextpoint. This will be presented in Section 3.7.3 (⋆).

7: if Alt > Alt2 or Alt is NaN then

8: Determine a point between currentpoint and nextpoint, the weights, and the list of sub-segments
when aircraft climbs from currentpoint to the point when the flight follows the great circle route from
currentpoint to nextpoint to climbs to Alt2. This will be presented in Section 3.7.2 (∗).

9: The weights of the segment and the list of subsegments are updated by those determined in (∗).
10: F inish = true
11: else

12: if Alt = Alt2 then

13: The weights of the segment and the list of subsegments are updated by those determined in (⋆).
14: F inish = true
15: else

16: Create a new point newpoint whose latitude and longitude are those of the nextpoint and altitude
is Alt.

17: The weights of the segment and the list of subsegments are updated by those determined in (⋆).
18: if there is a point next to nextpoint then
19: currentpoint = newpoint
20: nextpopint = the point next to nextpoint.
21: else

22: F inish = true
23: end if

24: end if

25: end if

26: end while

27: end if

Figure 3.8 is an example of a descent segment. The aircraft follows 2-D (latitude,

longitude) route of 4 consecutive waypoints j, j + 1, j + 2, and j + 3 to climb from

the starting point (Lat1, Lon1, Alt1) to the altitude Alt2. The figure shows points

of the climb segment at the places the aircraft passes waypoints of the 2-D route,

the starting point, and the ending point by symbol N.
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Waypoints

j-1 j j+1 j+2 j+3 j+4 j+5 j+6 j+7

Starting point 

(lat1, lon1, alt1)

Ending point 

(lat2, lon2, alt2)

Figure 3.8: An example of the simulation of aircraft following a 2-D route to climb
from a starting point to the given altitude of an ending point.

3.7.2 Simulating a great circle route to find the closest climb

altitude

The problem is given the weather environment, aircraft performance, a starting

point S (Lat1, Lon1, Alt1), and the latitude and longitude (Lat2, Lon2) of an ending

point E. The task is to simulate the aircraft following the great circle route to climb

from S to E. The outputs include the altitude of the ending point Alt2 (Alt2 > Alt1),

the weights, and the list of sub-segments of the climb segment. If the aircraft climbs

to the maximum cruising altitude but it still does not pass the ending point, Alt2 is

not determined and it is given a value of NaN (Not a Number). In computing, NaN

is a value of the numeric data type representing an undefined or unrepresentable

value.

Figure 3.9 presents the algorithm flow for the simulation of aircraft climbing

from a starting point S (Lat1, Lon1, Alt1) to the latitude and longitude (Lat2, Lon2)

of an ending point E. The simulation is implemented by flying the aircraft step by

step following the great circle route from S to E. At each step the aircraft moves

a horizontal distance of DistStep, except in the final step the aircraft may move

directly to E. The simulation finishes when the aircraft moves to E or the aircraft

climbs to the maximum cruising altitude but it does not reach E.

Initially the weights of the segment are 0, and the list of sub-segments is empty.
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The simulation begins with the starting point, which is considered as the current

simulated point currentpoint of the aircraft. If the horizontal distance from the

current point to the ending point is less than DistStep, latitude and longitude (Lat3

and Lon3) of the next point (which is horizontally DistStep by distance next to the

current point in the great circle route from S to E) are determined. Otherwise Lat3

and Lon3 are the latitude and longitude of the ending point E (Lat2 and Lon2).

After determining the latitude and longitude of the next point of the aircraft,

following steps are implemented.

• Bad weather level at the current point is determined as that of the weather

cell containing it. The weather cell containing the current point is found in

the bad weather grid (see Section 3.3).

• Determine wind direction, wind speed, and temperature at the current point

(as in Section 3.4.2).

• Determine climb true airspeed TAS, vertical speed V y of the aircraft at the

current point (as in Section 3.6.1).

• Determine fuel flow at the current point (as in Section 3.6.2).

• Determine additional altitude of the next point, distance travelled, time, dis-

comfort, and fuel burn while the aircraft moves from the current point to the

next point (as in Section 3.6.3).

• Altitude of the next point Alt3 is the altitude of the current point plus addi-

tional altitude.

• Insert the sub-segment from the current point to the next point into the sub-

segment list of the segment.

• Increase the weights of the segment by the weights of the sub-segment.

When the simulation finishes, the altitude (Alt2) of the ending point E is that

of the current point.
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Starting point S (Lat1, Lon1, Alt1), the latitude and 

longitude (Lat2, Lon2) of the ending point E, 

Horizontal Distance of a moving step (DistStep)

Start

Aircraft Current Simulated 

Point is S

The latitude of the current point is not Lat2 or

The longitude of the current point is not Lon2

Determine Lat3, Lon3 of next point which is horizontally DistStep next to 

the current point in the great circle route from S to E

Determine Bad Weather Level, Wind Direction, Wind Speed, Temperature, Climb 

True Airspeed TAS, Vertical Speed Vy, Fuel Flow at the current point of the aircraft

Determine additional altitude, distance travelled, time duration, discomfort, and 

fuel burn while the aircraft moves from the current point to the next point

The current point is the 

next point

Insert the sub-segment from the current point to the 

next point into the sub-segment list of the segment

Increase the weights of the segment by those of 

the sub-segment

The altitude Alt2 of the 

ending point is that of 

the current point

The weights of the segment are 0, List of sub-

segments is empty

End

YES

NO

Determine the distance (Dist)

from the current point to E

Dist > DistStep

Lat3, Lon3 of 

next point to the 

current point are 

the ones of EYES

NO

Altitude of the next point Alt3 is the altitude 

of the current point + additional altitude

(The altitude of next point > maximum cruising 

altitude) or (the altitude of next point = maximum 

cruising altitude and next point is not E)

The altitude 

Alt2 of the 

ending point 

is NaN

YES

NO

Figure 3.9: Algorithm flow for the simulation of aircraft following a great circle route
to climb from a starting point to a point given latitude, longitude
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3.7.3 Simulating a great circle route to climb to a target

altitude

The problem is given the weather environment, aircraft performance, a starting

point S (Lat1, Lon1, Alt1), and the altitude Alt2 of an ending point E (Alt2 > Alt1),

and an oriented point O (Lat, Lon) which is the waypoint next to the starting point

S. O is far enough that aircraft will not pass O when it reaches Alt2. The task is to

simulate aircraft following the great circle route from S to O to climb from S to the

altitude Alt2 of the ending point E. The output includes the latitude, and longitude

of the ending point (Lat2, Lon2), the weights, and the list of sub-segments of the

climb segment.

Figure 3.10 presents the algorithm flow for the simulation of aircraft following

the great circle route from the starting point S (Lat1, Lon1, Alt1) to the oriented

point O to climb from the starting point to the altitude Alt2 of the ending point.

The simulation is implemented by flying the aircraft step by step following the great

circle route from S to O. At each step the aircraft moves a horizontal distance of

DistStep, until it reaches altitude Alt2.

Initially the weights of the segment are 0, and the list of sub-segments is empty.

The simulation begins with the starting point, which is considered as the current

simulated point currentpoint of the aircraft. If the difference between the altitude

of the current point and Alt2 is greater than a user-defined value y, the latitude

and longitude (Lat3 and Lon3) of the next point (which is horizontally DistStep

by distance next to the current point in the great circle route from S to E) are

determined. Otherwise the simulation finishes.

The altitude of the next point Alt3, the weights of the sub-segment from the

current point to the next point is calculated by steps as presented in Section 3.7.2.

Then the sub-segment from the current point to the next point is inserted into the

sub-segment list of the segment. The weights of the segment increase by those of

the sub-segment.

When the simulation finishes, the latitude (Lat2) and longitude (Lon2) of the
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Starting point S (Lat1, Lon1, Alt1), The altitude of the 

ending point (Alt2), Oriented Point O (Lat, Lon) , 

Horizontal Distance of a moving step (DistStep)

Start

Aircraft current simulated 

point is S

Alt2 – the altitude of current point > y

Determine Lat3, Lon3 of the next point which is horizontally DistStep

next to the current point in the great circle route from O to E

Determine Bad Weather Level, Wind Direction, Wind Speed, Temperature, Climb 

True Airspeed TAS, Vertical Speed Vy, Fuel Flow at the current point of the aircraft

Determine additional altitude, distance travelled, time duration, discomfort, and 

fuel burn while the aircraft moves from the current point to the next point

The current point is the 

next point

Insert the sub-segment from the current point to the 

next point into the sub-segment list of the segment

Increase the weights of the segment by those of 

the sub-segment

The latitude (Lat2) and longitude (Lon2)  of the 

ending point are those of the current point

The weights of the segment are 0, 

the list of sub-segments is empty

End

YES

NO

Altitude of the next point Alt3 is the altitude 

of the current point + additional altitude

Figure 3.10: Algorithm flow for the simulation of an aircraft following a great circle
route to climb from a starting point to a point given altitude

ending point E are those of the current point.

3.7.4 Simulating a 2-D route to descend from a starting

point to a target altitude

The problem is given the weather environment, aircraft performance, a 2-D

(latitude, longitude) route, a starting point (Lat1, Lon1, Alt1) and the altitude Alt2

of an ending point (Alt2 < Alt1). The task is to simulate aircraft descending from
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the starting point to the altitude Alt2, following the 2-D route. The output includes

the latitude, longitude, and altitude of the ending point (Lat2, Lon2, Alt2) (where

Alt2 is already given), the weights, and the list of sub-segments of the descent

segment.

Algorithm 2 is to resolve the problem. The simulation of the descent segment

begins with the starting point. This point is considered as the current simulated

point currentpoint of the aircraft. The next waypoint nextpoint to the current point

in the route is determined. If nextpoint is not available, the simulation finishes.

Otherwise the destination altitude Alt, the weights, and the list of sub-segments

when the aircraft descends from currentpoint to nextpoint following the great circle

route between the two points are determined. This will be presented in Section 3.7.5

(⋆). If Alt is lower than Alt2, a point at altitude Alt2 between currentpoint and

nextpoint, the weights, and the list of sub-segments when the aircraft follows the

great circle route from currentpoint to nextpoint to descend to Alt2 are determined.

This will be presented in Section 3.7.6 (∗). The weights of the segment and the list

of sub-segments are updated by those determined in (∗) and the simulation finishes.

If Alt is equal to Alt2, the weights of the segment and the list of sub-segments are

updated by those determined in (⋆) and the simulation finishes. If Alt is lower than

Alt2, a new point newpoint is created with the latitude and longitude being those

of the nextpoint and altitude of Alt. The weights of the segment, and the list of

sub-segments are updated by those determined in (⋆). If there is a point next to

nextpoint in the route, currentpoint becomes newpoint and nextpoint becomes the

point next to nextpoint. Otherwise the simulation finishes.

Figure 3.11 is an example of a climb segment. The aircraft follows 2-D (latitude,

longitude) route of 5 consecutive waypoints j, j +1, j +2, j +3, and j +4 to climb

from the starting point (Lat1, Lon1, Alt1) to the altitude Alt2 of the ending point.

The figure shows points of the descent segment at the places the aircraft passes

waypoints of the 2-D route, the starting point, and the ending point by symbol H.
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Algorithm 2 The algorithm for the simulation of aircraft following a 2-D route to
descend from a starting point to a point given altitude
1: currentpoint = the starting point (Lat1, Lon1, Alt1).
2: nextpoint = the point next to currentpoint in the route.
3: if nextpoint is available then

4: F inish = false
5: while not F inish do

6: Determine the altitude Alt, the weights, and the list of sub-segments when the aircraft descends from the
currentpoint to the nextpoint. This will be presented in Section 3.7.5. (⋆)

7: if Alt < Alt2 then

8: Determine a point between currentpoint and nextpoint, the weights, and the list of sub-segments
when the aircraft follows the great circle route from currentpoint to nextpoint to descend to Alt2.
This will be presented in Section 3.7.6. (∗)

9: The weights of the segment and the list of sub-segments are updated by those determined in (∗).
10: F inish = true
11: else

12: if The altitude = FLi−1 then

13: The weights of the segment and the list of sub-segments are updated by those determined in (⋆).
14: F inish = true
15: else

16: Create a new point newpoint whose latitude and longitude are those of the nextpoint and its
altitude is Alt.

17: The weights of the segment and the list of sub-segments are updated by those determined in (⋆).
18: if there is a point next to nextpoint in the route then

19: currentpoint = newpoint
20: nextpoint = the point next to nextpoint in the route.
21: else

22: F inish = true
23: end if

24: end if

25: end if

26: end while

27: end if

Ending Point

(Lat2, Lon2, Alt2)

Starting point

(Lat1, Lon1, Alt1)

j-1 j j+1 j+2 j+3 j+4 j+5 j+6 j+7

Figure 3.11: An example of the simulation of aircraft following a 2-D route to
descend from a starting point to a point given altitude
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3.7.5 Simulating a great circle route to descend from a start-

ing point to a target latitude and longitude

The problem is given the weather environment, aircraft performance, a starting

point S (Lat1, Lon1, Alt1), and the latitude and longitude (Lat2, Lon2) of an ending

point E. The task is to simulate aircraft following the great circle route to descend

from S to E. The outputs include the altitude of the ending point Alt2 (Alt2 < Alt1),

the weights, and the list of sub-segments of the descent segment.

Figure 3.12 presents the algorithm flow for the simulation of aircraft descending

from the starting point S (Lat1, Lon1, Alt1) to the latitude and longitude (Lat2, Lon2)

of the ending point E. The simulation is implemented by flying the aircraft step by

step following the great circle route from S to E. At each step the aircraft moves

a horizontal distance of DistStep, except in the final step the aircraft may move

directly to E. The simulation finishes when the aircraft moves to E or the aircraft

descends to the altitude of 3000 feet but it does not reach E. Here the aircraft only

descends to a point which is not the destination, so the constraint that altitude is

higher than or equal to 3000 feet of the ending point is used. The aircraft descending

from TOD to the destination is simulated by backward simulation in Section 3.7.7.

Initially the weights of the segment are 0, and the list of sub-segments is empty.

The simulation begins with the starting point, which is considered as the current

simulated point currentpoint of the aircraft. If the horizontal distance from the

current point to the ending point is less than DistStep, the latitude and longitude

(Lat3 and Lon3) of the next point (which is horizontally DistStep by distance next

to the current point in the great circle route from S to E) are determined. Otherwise

Lat3 and Lon3 are the latitude and longitude of the ending point E (Lat2 and Lon2).

The altitude of the next point Alt3, and the weights of the sub-segment from

the current point to the next point are calculated as in Section 3.7.2. Then the sub-

segment from the current point to the next point is inserted into the sub-segment list

of the segment. The weights of the segment increase by those of the sub-segment.

When the simulation finishes, the altitude (Alt2) of the ending point E is that
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of the current point.

3.7.6 Simulating a great circle route to descend from a start-

ing point to a target altitude

The problem is given the weather environment, aircraft performance, the start-

ing point S (Lat1, Lon1, Alt1), and the altitude Alt2 of the ending point E (Alt2 <

Alt1), and an oriented point O (Lat, Lon) which is the waypoint next to the starting

point S. O is far enough that aircraft will not pass O when it reaches Alt2. The task

is to simulate aircraft following the great circle route from S to O to descend from S

to the altitude Alt2 of the ending point E. The output includes the latitude, and the

longitude of the ending point (Lat2, Lon2), the weights, and the list of sub-segments

of the descent segment.

Figure 3.13 presents the algorithm flow for the simulation of aircraft following

the great circle route from the starting point S (Lat1, Lon1, Alt1) to the oriented

point O to descend from the starting point to the altitude Alt2 of the ending point.

The simulation is implemented by flying the aircraft step by step following the great

circle route from S to O. At each step the aircraft moves a horizontal distance of

DistStep, until it reaches altitude Alt2.

The weights of the segment are firstly initialized as 0. The simulation be-

gins with the starting point, which is considered as the current simulated point

currentpoint of the aircraft. If the difference between the altitude of the current

point and Alt2 is greater than a user-defined value y, the latitude and longitude

(Lat3 and Lon3) of the next point (which is horizontally DistStep by distance next

to the current point in the great circle route from S to E) are determined. Otherwise

the simulation finishes.

The altitude of the next point Alt3, and the weights of the sub-segment from

the current point to the next point are calculated as in Section 3.7.2. Then the sub-

segment from the current point to the next point is inserted into the sub-segment list

of the segment. The weights of the segment increase by those of the sub-segment.
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Figure 3.12: Algorithm flow for the simulation of an aircraft following the great circle
route to descend from a point given latitude, longitude and altitude to another point
given latitude and longitude
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Figure 3.13: Algorithm flow for the simulation of aircraft following a great circle
route to descend from a starting point to a point given altitude

When the simulation finishes, the latitude (Lat2) and longitude (Lon2) of the

ending point E are those of the current point.
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3.7.7 Backward simulation of aircraft following a 2-D route

to descend from a starting point given altitude to an

ending point

The problem is given the weather environment, aircraft performance, a 2-D

(latitude, longitude) route, the altitude Alt1 of a starting point, and an ending point

(Lat2, Lon2, Alt2) (Alt2 < Alt1). The task is to determine the latitude, longitude

of the starting point (Lat1, Lon1) (the altitude of the starting point Alt1 is already

given) so that the aircraft can follow the 2-D route to descend from this point to

the ending point, and also to determine the weights, and the list of sub-segments of

the descent segment.

Backward simulation is used to determine these variables. The simulation be-

gins with the ending point. This point is considered as the current simulated point

currentpoint of the aircraft. The previous waypoint prepoint of the current point

in the route is determined. If prepoint is not available, the simulation finishes. Oth-

erwise the altitude Alt, the weights, and the list of sub-segments are determined

by simulating aircraft’s movement backward from currentpoint to prepoint with

aircraft performance in descent phase. This will be presented in Section 3.7.8 (⋆).

If Alt is higher than Alt1, or Alt is not determined, the destination point (which

is between currentpoint and prepoint), the weights, and the list of sub-segments

when the aircraft follows the great circle route from currentpoint to prepoint to

move backward to Alt1 are determined. This will be presented in Section 3.7.9 (∗).
Then the weights of the segment and the list of sub-segments are updated by those

determined in (∗) and the simulation finishes. If Alt is equal to Alt1, the weights of

the segment, and the list of sub-segments are updated by those determined in (⋆),

and the simulation finishes. If Alt is lower than Alt1, a new point newpoint whose

latitude and longitude are those of the prepoint, and its altitude is Alt is created.

The weights of the segment and the list of sub-segments are updated by those de-

termined in (⋆). If there is a point previous to prepoint in the route, currentpoint

becomes prepoint and prepoint becomes the point previous to prepoint. Otherwise
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the simulation finishes.

The details of the algorithm for backward simulation of aircraft following the

2-D route to descend from a starting point given altitude to an ending point is in

Algorithm 3. Figure 3.14 is an example of a descent segment in this case. The

Algorithm 3 Backward simulation of aircraft following a 2-D route to descend from
a starting point given altitude to an ending point
1: currentpoint = the ending point E.
2: prepoint = the previous point of currentpoint in the route.
3: if prepoint is available then

4: Finish = false
5: while not Finish do

6: Determine the altitude Alt, the weights, and the list of sub-segments by simulating aircraft’s movement
backward from currentpoint to prepoint with aircraft performance in descent phase. This will be pre-
sented in Section 3.7.8 (⋆).

7: if Alt > Alt1 then

8: Determine the destination point between currentpoint and prepoint, the weights, and the list of
sub-segments when the aircraft follows the great circle route from currentpoint to prepoint to move
backward to Alt1. This will be presented in Section 3.7.9 (∗).

9: The weights of the segment and the list of sub-segments are updated by those determined as in (∗).
10: Finish = true.
11: else

12: if Alt = Alt1 then

13: The weights of the segment and the list of sub-segments are updated by those determined as in
(⋆).

14: Finish = true.
15: else

16: Create a new point newpoint whose latitude and longitude are those of the prepoint and its altitude
is Alt.

17: The weights of the segment and the list of sub-segments are updated by those determined as in
(⋆).

18: if there is a point previous to prepoint in the route then

19: currentpoint = newpoint
20: prepoint = the point previous to prepoint in the route.
21: else

22: Finish = true
23: end if

24: end if

25: end if

26: end while

27: end if

aircraft follows the 2-D (latitude, longitude) route of 5 consecutive waypoints j,

j+1, j+2, j+3 and j+4 to move backward from the ending point to the altitude

Alt1 of the starting point. The points where the aircraft passes waypoints of the

2-D route, the starting point, and the ending point are presented by symbol H.
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Ending Point

(Lat2, Lon2, Alt2)

Starting point

(Lat1, Lon1, Alt1)

j-1 j j+1 j+2 j+3 j+4 j+5 j+6 j+7

Figure 3.14: Backward simulation of aircraft following a 2-D route to descend from
a starting point given altitude to an ending point

3.7.8 Backward Simulation of aircraft following the great

circle route to descend from a starting point given

latitude and longitude to an ending point

The problem is given the weather environment, aircraft performance, a 2-D

(latitude, longitude) route, the latitude and longitude (Lat1, Lon1) of a starting

point S, and an ending point (Lat2, Lon2, Alt2) E. The task is to determine the

altitude of the starting point Alt1 (Alt1 > Alt2) so that the aircraft can follow the

great circle route to descend from the starting point to the ending point, and also

to determine the weights, and the list of sub-segments of the descent segment.

Figure 3.15 presents the algorithm flow for the simulation of aircraft moving

backward from the ending point E (Lat2, Lon2, Alt2) to the latitude and longitude

(Lat1, Lon1) of the starting point S. The backward simulation is implemented by

flying the aircraft backward step by step following the great circle route from S to

E. At each step the aircraft moves a horizontal distance of DistStep, except the

final step which may move backward directly to S. The simulation finishes when the

aircraft moves to S or the aircraft reaches the maximum cruising altitude but it does

not reach S. If the aircraft reaches the maximum cruising altitude but it still does

not reach the ending point, Alt2 is not determined and it is given a value of NaN .

Initially the weights of the segment are 0 and the list of sub-segments is empty.
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The simulation begins with the ending point, which is considered as the current sim-

ulated point currentpoint of the aircraft. If the horizontal distance from the current

point to the starting point is less than DistStep, the latitude and longitude (Lat3,

Lon3) of the previous point which is horizontally DistStep by distance previous to

the current point in the great circle route from S to E are determined. Otherwise

Lat3 and Lon3 are the latitude and longitude (Lat1, Lon1) of the starting point S.

The altitude of the next point Alt3, the weights of the sub-segment from the cur-

rent point to the previous point is calculated by steps as presented in Section 3.7.2.

Then the sub-segment from the current point to the next point is inserted into the

sub-segment list of the segment. The weights of the segment increase by those of

the sub-segment.

When the simulation finishes, the altitude (Alt1) of the starting point S is that

of the current point.

3.7.9 Backward simulation of aircraft following the great

circle route to descend from a starting point given

altitude to an ending point

The problem is given the weather environment, aircraft performance, a 2-D

(latitude, longitude) route, the altitude Alt1 of the starting point, the ending point

(Lat2, Lon2, Alt2), an oriented point O (Lat, Lon) which is the waypoint previous

to the ending point in the route. O is far enough that aircraft will not pass O when

it reaches Alt1. The task is to determine the latitude, and longitude (Lat1, Lon1)

of the starting point so that the aircraft can follow the great circle route from O to

E to descend from this point to the ending point. The task is also to determine the

weights, and the list of sub-segments of the descent segment.

Figure 3.16 presents the simulation of aircraft moving backward from an ending

point E (Lat2, Lon2, Alt2) to the altitude Alt1 of the starting point S. The backward

simulation is implemented by flying the aircraft backward step by step following the
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Figure 3.15: Algorithm flow for the backward simulation of aircraft following the
great circle route to descend from a starting point given latitude and longitude to
an ending point
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great circle route from S to E until it reaches Alt1.

Initially the weights of the segment are 0, and the list of sub-segments is empty.

The simulation begins with the ending point, which is considered as the current

simulated point currentpoint of the aircraft. If the difference between Alt1 and the

altitude of the current point is greater than a user-defined value y, latitude and

longitude (Lat3, Lon3) of the previous point (which is horizontally DistStep by

distance previous to the current point in the great circle route from O to E) are

determined. Otherwise the simulation finishes.

The altitude of the previous point Alt3, and the weights of the sub-segment

from the previous point to the current point are calculated as in Section 3.7.2. Then

the sub-segment from the previous point to the current point is inserted into the

sub-segment list of the segment. The weights of the segment increase by those of

the sub-segment.

When the simulation finishes, the latitude (Lat1) and longitude (Lon1) of the

starting point are those of the current point.

3.7.10 Simulation of aircraft following a 2-D route to cruise

from a starting point to an ending point

The problem is given the weather environment, aircraft performance, a 2-D

(latitude, longitude) route, the starting point S (Lat1, Lon1, Alt), and the ending

point E (Lat2, Lon2, Alt). The task is to determine the list of sub-segments, and

the weights when the aircraft follows the 2-D route to cruise from S to E.

The simulation is implemented by flying the aircraft step by step following

the 2-D route from S to E. The simulation begins with the starting point, which

is considered as the current simulated point currentpoint of the aircraft. If the

horizontal distance from currentpoint to the ending point or the next waypoint

nextwp in the 2-D route is less than DistStep, latitude and longitude (Lat3 and

Lon3) of the next point nextpoint (which isDistStep by distance next to the current
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Figure 3.16: Algorithm flow for the backward simulation of aircraft following the
great circle route to descend from a starting point given altitude to an ending point
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point in the route) are determined. Otherwise Lat3 and Lon3 are the latitude and

longitude of the ending point E (Lat2, Lon2) or the next waypoint nextwp.

The weights of the sub-segment from the current point to the next point is

calculated by steps as presented in Section 3.7.2. Then the sub-segment from the

current point to the next point is inserted into the subsegment list of the segment.

The weights of the segment increase by those of the sub-segment.

Figure 3.17 presents the algorithm flow for the simulation of aircraft following a

2-D route to cruise from the starting point S (Lat1, Lon1, Alt) to the ending point

E (Lat2, Lon2, Alt), where Alt is the cruising altitude.

3.8 Conflict Detection and Resolution

Firstly, we find 3-D (latitude, longitude, altitude) user preferred routes and their

4-D simulated trajectories for flights. Three methods are investigated for doing so:

Learning Classifier Systems (LCS), Genetic Algorithm (GA), and Shortest Path

Algorithm (Dijkstra) as presented in chapters 5, and 6.

After having found all the 4-D simulated trajectories for flights, conflicts be-

tween UPR flights with themselves and non-UPR flights are resolved by changing

their given departure times. When a flight is free of conflict, its departure time

is called conflict-free departure time. The conflict-free departure times are deter-

mined for flights one by one. If a flight does not conflict with flights that have

been assigned a conflict-free departure time, this flight will keep its given departure

time, otherwise it will increase or decrease its given departure time by a number

of minutes. This number of minutes increases by one minute until all conflicts are

resolved. If the departure time after decreasing a number of minutes is equal or

less than a given time when all flights must take off after that, the departure time

will increase only. When a flight is assigned conflict-free departure time, its route’s

time dimension is updated. We choose this method to resolve conflicts, because

the flights routes are better optimised than those when conflicts are resolved during
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Figure 3.17: Algorithm flow for the simulation of aircraft following a 2-D route to
cruise from a starting point to an ending point.
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optimisation processes, since the flight routes are deviated from the optimal routes

to avoid conflicts.

In order to detect conflict between a flight and the other flights that have been

assigned a conflict-free departure time, the following method is used.

The 4-D space is divided into 4-D boxes based on latitude, longitude, altitude

and time. The size of a box is 0.5◦ x 0.5◦ x 1000 feet x 5 min. The origin of

the 4-D space is (-80◦, 0◦, 0 feet, 0 min). A box will store all the indices of flight

segments intersecting with the box, so that a segment only needs to detect conflict

with other segments in boxes that both belong to. There has been research dividing

the airspace to a grid for detecting conflicts for example in [97]. However the space

is divided into 3-D grid (latitude, longitude, time) and if the two segments are in

the same box, they are considered to be conflicting with each other. This is also

extended to stochastic conflicts: if the probability that traffic in any 3D grid cell is

greater than a threshold value, then a resource conflict is flagged.

A list of boxes is maintained. This list is to store all boxes that have at least one

intersecting segment. This list is first initialized as empty. When a flight is assigned

a conflict-free departure time and its segment indices are added into corresponding

boxes, these boxes are also added into the list if they are not already in the list.

Conflict detection between a flight with other flights that have been assigned

conflict-free departure time is implemented every time when the departure time of

the flight changes. For each segment of the flight, conflict between the segment with

all the segments in boxes they both belong to is checked. If the segment conflicts

with another segment, conflict detection finishes and a conflict is found. Otherwise,

consideration moves on to the next segment. If there is no conflict detected in any

segment of the flight, the new departure time will be the conflict-free departure

time of the flight. Otherwise, a new departure time is generated by increasing or

decreasing the given departure time by a number of minutes.

In order to detect conflict between a segment with another in a box, the fol-

lowing steps are implemented. We assume that the distance of a segment is short
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enough, so that the velocity vector (defined by bearing, horizontal speed, and verti-

cal speed) is constant in the segment.

The time periods of the two segments are checked to see whether they overlap.

Time periods overlap if the arrival time of the starting point of one segment is within

the time period of the other. The overlap time (if exist) will start from the latest

arrival time (t1) at the two starting points of the two segments to the earliest arrival

time (t2) at the two ending points of the two segments.

If the two time periods do not overlap, the two flights do not conflict in the two

segments. Otherwise the tactical conflict detection algorithm KB3D [47] is used to

detect conflict between the two flights. KB3D detects loss of separation and conflict

between two flights based on their current state including their position (latitude,

longitude, altitude) and velocity vector at a certain time to a lookahead time. Two

flights lose separation or violate when their protected zones overlap. The protected

zone of a flight is a cylinder of diameter D and height H centered around the flight.

In this paper D is chosen as 5 nautical mile and H as 1000 feet. These are standard

values of a protected zone [47, 48]. Two flights conflict if they are predicted to

lose separation in the future up to the lookahead time. In order to apply KB3D,

we need to determine the current state of the two flights at t1 and then use KB3D

to detect loss of separation or conflict between the two flights from their current

state at t1 to a lookahead time (t2 − t1). We only need to determine the position

(latitude, longitude, altitude) at t1 of the flight whose arrival time at the starting

point is earlier than t1 as the position at t1 of the other flight is the starting point

of its segment and the velocity vector of the two flights are also provided. Let the

time period from the arrival time of the starting point to t1 be t. The position is

horizontally the destination point of the flight traveling along the great circle route

from the starting point, given the bearing of the flight and the 2-D distance of the

horizontal speed multiplied by t. The altitude of this position is the altitude of the

starting point plus the additional altitude of the vertical speed multiplied by t.
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3.9 Experimental Framework

In this section, the experimental framework is presented as in Figure 3.18. The

framework has a number of blocks. “Artificial Flight Plan” block is to generate

UPR and non-UPR flight plans. These UPR flight plans combining with a utility

allocation in “User Preference” block results in a flight scenario (UPR flight plans

with user preferences) in “UPR Flight Plans with User Pref.” block. “Bad Weather

Scenarios” block is to generate scenarios of bad weather cells in the airspace with

different distributions. “Real Wind Data” block is to process wind and tempera-

ture data as presented in Section 3.4. These blocks provide input data for “UPR

algorithms” block in general and for “Simulation Environment” in particular. “Sim-

ulation Environment” block is to simulate and create networks of control points for

“UPR using network” block and to simulate and evaluate 3-D routes for “UPR using

GA” and “UPR using LCS” blocks. The fundamental simulations and mathematic

for ‘Simulation Environment” block are presented in Sections 3.5, 3.6, and 3.7. The

application of these to specific problems and UPR algorithms will be presented in

Chapters 5, and 6. In this section, we describe “Artificial Flight Plan” block in sub-

section 3.9.1, “User Preference” and “UPR Flight Plans with User Pref.” blocks in

sub-section 3.9.2, and “Bad Weather Scenarios” block in sub-section 3.9.3.

3.9.1 Generation of test flights

In order to generate a flight scenario, a single flight plan needs to be generated

first. In this thesis, we generate a flight plan as follows.

A table of Origin-Destination-Route-HourOfDepartureTime frequencies is gen-

erated from a database of real Australian air traffic data.

The origin, destination, route and hour of departure time of a flight plan is

selected by stochastic universal sampling technique based on this frequency table.

Then departure time of the flight plan is completed by sampling randomly a

minute from 0 to 55 with the interval of 5 minutes.
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Figure 3.18: Experimental Framework

The aircraft type is selected randomly based on the set of appropriate aircraft

types whose maximum range is greater than the great circle distance between the

selected origin and destination.

The maximum cruising altitude of the flight is determined by reducing the

cruising altitude from the BADA maximum cruising altitude of the selected aircraft

by 1000 feet until the cruising altitude is implementable. If the maximum cruising

altitude is greater than 10,000 feet then the cruising altitude is selected randomly

from 10,000 feet to the maximum cruising altitude. If the maximum cruising altitude

is less than 10,000 feet, it will be the cruising altitude of the flight.

Flight plans for 3 consecutive days are generated. Each day has 3000 flight

plans. A flight plan is generated as above. Either the route or the cruising altitude

is selected, depending on the type of problem (see Section 3.2) to be solved.

Flight plans whose great circle distance between origin and destination is equal

or more than 700 km and whose hour of departure time is from 1 PM to 2 PM in

the second day are chosen as UPR flights to be optimised. Flight plans are with

Viet Van Pham October 2, 2012



The Simulation and Evaluation Environment 110

Utility Allocation UP0 - 0.000001 UP1 - 0.5 UP2 - 0.999999 Sum
(Discomfort) (Neutral) (Time)

UA0 1 0 0 0.000001
UA1 0.5 0.3 0.2 0.3500003
UA2 0.33 0.33 0.33 0.495
UA3 0 1 0 0.5
UA4 0.2 0.5 0.3 0.5499999
UA5 0.2 0.3 0.5 0.6499997
UA6 0 0 1 0.999999

Table 3.3: Flight utility allocation.

distance longer than 700 km are chosen so that UPR flights can significantly take

advantage of wind in enroute phase. For example a flight may choose a longer route

instead of great circle route, as the wind in the route can generally provide the

ground speed faster than that in the great circle route, resulting in shorter travel

time. All other flights are non-UPR flights. However this set of non-UPR flights

can be filtered by time dimension so that non-UPR flights need to conflict with

UPR flights in time first. With this technique of choosing UPR flight plans, we

generated 142 UPR flights and 1,674 non-UPR flights. These 142 UPR flights and

1,674 non-UPR flights are test data for all experiments.

3.9.2 Flight Scenarios

In this thesis, we choose 3 typical user preferences (utilities) to do experiment

with: UP0, UP1, and UP2. UP0 is 0.000001, which present the high preference to

minimize discomfort. UP2 is 0.999999, which present high preference to minimize

time. UP2 is 0.5, which gives neutral preference in minimizing discomfort and time.

By choosing the utility of 0.000001, instead of 0 (which gives higher preference to

minimize discomfort), flights can choose the minimal time route in the case there are

several routes with the same minimal discomfort. If utility is 0, this will not happen,

because time factor will be annulled in the objective function by multiplying with

utility (0). This advantage is also applied to the utility of 0.999999, instead of 1.

The set of UPR flights is allocated with 7 different utility distributions in Ta-
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Utility Allocation User Pref. BW0 - 0% BW1 - 10% BW2 - 50% BW3 - 100%

UA0
Time 0 16 70 142
Neutral 0 0 0 0
Discomfort 0 0 0 0

UA1
Time 0 11 41 72
Neutral 0 1 13 43
Discomfort 0 4 16 27

UA2
Time 0 6 26 47
Neutral 0 6 24 47
Discomfort 0 4 20 48

UA3
Time 0 0 0 0
Neutral 0 16 70 142
Discomfort 0 0 0 0

UA4
Time 0 3 14 29
Neutral 0 9 37 72
Discomfort 0 4 19 41

UA5
Time 0 3 14 29
Neutral 0 8 27 43
Discomfort 0 5 29 70

UA6
Time 0 0 0 0
Neutral 0 0 0 0
Discomfort 0 16 70 142

Table 3.4: Affected flights in different flight and weather scenarios

ble 3.3 to create 7 different sets (7 scenarios) of UPR flights. In Table 3.3 “UP0 -

0.000001”, “UP1 - 0.5” and “UP2 - 0.999999” are the factions of flights with utility

of 0.000001, 0.5 and 0.999999, respectively. “Sum” is 0.000001 ∗UP0+0.5 ∗UP1+

0.999999 ∗ UP2. The utility allocation is indexed in the order of “Sum” values.

3.9.3 Weather Scenarios

A scenario of bad weather cells is generated artificially based on a predefined

percentage of UPR flights whose great circle routes are affected by bad weather

areas. The weather scenario is generated so that it can affect a percentage of UPR

flights closest to the predefined percentage. 4 weather scenarios are created, which

have the predefined percentage of UPR flights of 0%,10%, 50%, and 100%.

Figure 3.19 is an example of a bad weather scenario which has 9 bad weather

cells and affects about 30% of UPR flights. The figure contains two sub-figures. The

upper one shows 3-D bad weather cells and the 3-D routes. The lower one show

the 2-D (latitude, longitude) routes only to make the 3-D bad weather cells more

visible.

Table 3.4 shows the affected flights categorized by user preferences in different
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Flight Route Bad Weather Cell

Airport

Bad Weather Cell

Flight Route in Horizontal View

Airport

Figure 3.19: An example of bad weather scenario.
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weather and flight scenarios. In the table, “Utility Allocation” is the utility allo-

cation for flights from UA0 to UA6; “User Pref.” is the user preference of a flight.

“Time”, “Neutral”, and “Discomfort” are three user preferences corresponding to

three utility values of 0.999999, 0.5, and 0.000001; “BW0 - 0%”, “BW1 - 10%”,

“BW2 - 50%”, and “BW3 - 100%” are bad weather scenarios which affect 0%, 10%,

50%, and 100% of flights effectively.

3.10 Summary

The chapter has set the scene for the experiments described in the rest of the

thesis. It described how the UPR problems are formulated, how input data includ-

ing weather data and flight data are handled, and artificially generated for UPR

planning and for UPR algorithms investigation, and how conflicts between UPR

flights and non-UPR flights are detected and resolved after having found 3-D user

preferred routes and 4-D simulated trajectories of UPR flights. The mathematics

and algorithms for fundamental simulation and evaluation of UPR segments and

the whole UPR routes are presented. How these settings are applied for a particular

problem and a UPR algorithm, and how effectively they work will be presented in

the next chapters.
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Aviation Emission Inventory Development and Analysis

Chapter 4

Aviation Emission Inventory

Development and Analysis

This chapter is partially based on following publications:

1. V. V. Pham, J. Tang, S. Alam, C. Lokan, and H. A. Abbass. Aviation Emission Inventory Development

and Analysis, Environmental Modelling and Software, vol 25 (12), pp. 1738-1753, ISSN: 1364-8152, Dec,

2010

4.1 Overview

An up to date and accurate aviation emission inventory is a prerequisite for

any detailed analysis of aviation emission impact on greenhouse gases and local air

quality around airports. In this chapter we present an aviation emission inventory

using real time air traffic trajectory data. The reported inventory is in the form of a

4D database which provides resolution of 1◦ x 1◦ x 1,000 ft for temporal and spatial

emission analysis. The inventory is for an on going period of six months starting

from October 2008 for Australian Airspace.

In this study we show 6 months of data, with 492,936 flights (in-bound, out-

bound and over flying). These flights used about 2515.83 kt of fuel and emitted

114.59 kt of HC, 200.95 kt of CO, 45.92 kt of NOx, 7929.89 kt of CO2, and 2.11 kt

of SOx.
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It is expected that with the availability of this real time aviation emission

database, environmental analysts and aviation experts will have an indispensable

source of information for making timely decisions regarding expansion of runways,

building new airports, applying route charges based on environmentally congested

airways, and restructuring air traffic flow to achieve sustainable air traffic growth.

4.2 Introduction

Aviation has grown dramatically [117]. Within Australia, air traffic has grown

by more than 50% over the last decade. Australia now has approximately 1 million

domestic and international flights every year, with up to 4,000 flights on the busiest

days. Worldwide air traffic is expected to continue to grow at rates of 3-5% per

year [139]. In Australia, it is forecasted to grow by four per cent per annum on

average, doubling by 2025. This forecast is based on growth in traveling passengers

and the increase in demand for air freight [168].

These levels of growth will mean a considerable increase in aviation traffic and

emissions over the next 10 years. Whilst aviation brings considerable economic

benefits, this growth is also associated with increased environmental pressures, and

consequently a growing need to improve the environmental performance of the in-

dustry. Aviation has considerable environmental impacts both at a local airport

level and at a regional and global level. Local atmospheric issues are related to

airport contributions to local air quality and the potential for health impacts on res-

idential populations in surrounding areas. At a global level, aviation emission has

the potential of atmospheric impacts to affect climate. Aviation emissions are in-

creasingly recognized as a significant contributor to global climate impacts through

global warming [139]. Models of global warming associated with aviation emissions

suggest that aviation contributes approximately 3.5% of the total anthropogenic

forcing, and this may increase to between 7-12% by 2050 [139].

Understanding the impact of aviation emissions is important due to the charac-

teristics of aviation emissions occurring in high altitude, and the growth of air traffic.
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However, the current state of knowledge of aviation impacts on the atmosphere is

severely limited due to unavailability of timely and accurate aviation emission data.

New approaches and models are required in order to reduce the considerable uncer-

tainties in emission calculations. Aviation emission inventories are a critical resource

because of this requirement.

Various aviation emission inventories have been developed worldwide by the

U.S. National Aeronautics and Space Administration (NASA) [178], the U.S. Fed-

eral Aviation Administration (FAA) [61] and the European Organisation for the

Safety of Air Navigation (Eurocontrol) [59]. Most of these inventories use historic

air traffic data, not real time air traffic data. They use several assumptions to sim-

plify the complex flight trajectories, and deal with few representative aircraft types.

Moreover the emission inventories are not comprehensive i.e. they lack details re-

garding emission in different flight phases (such as taxi-out and taxi-in). Therefore

the results obtained are not very accurate, and detailed, and by the time they are

compiled they become outdated.

In this chapter we present an aviation emission inventory methodology that is

generic in nature, but applied to Australian Airspace only because of data avail-

ability. The methodology uses real time air traffic trajectory data and real-time

computation of aviation emissions. We have developed software called TOP-LAT

(Trajectory Optimisation and Prediction of Live Air Traffic), which constructs the

trajectory of a flight based on real time flight plans, routes and radar signatures

of the flight. The fuel flow and emissions of the flight are calculated every time

step using the speed, altitude, and phase of the flight, along with aircraft-specific

aerodynamic models. These results are combined with aircraft position and time

to generate a 4D (latitude, longitude, altitude and time) emission database. With

these characteristics, the model provides more accurate fuel flow and emissions com-

putation than the other models.

We also present a generic temporal and spatial analysis methodology of the

impact of air traffic on the environment, with a case study on the Australian airspace.

Furthermore, spatial distribution and analysis of aviation emissions including HC,
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CO, NOx, CO2 and SOx are presented.

4.3 Environmental Impact of Aircraft Emissions

Typically, aviation emission consists of 71% Carbon dioxide (CO2) and 28%

water vapour (H2O). In the remaining 1%, NOx is the most important emission [139,

p. 28]. Four main factors [94] influencing aviation emissions include

• the intensity and volume of aircraft movements

• the type and spatial concentration and distribution of the particular pollutants

• fuel consumption and energy efficiency

• and the rate of renewing of the aircraft fleet by introducing “cleaner” aircraft.

The effects of aviation emission are classified in the literature as long-range air pol-

lution, effect on the ozone layer, and greenhouse effects [94, 28]. They are presented

in more detail in the following subsections.

4.3.1 Long-range air pollution

Long-range air pollution refers to the effects of air pollution far away from the

polluting source. One such effect is “acid rain” caused partially by SOx and mainly

by NOx produced by air traffic [28]. Acid rain has harmful effects on plants, aquatic

animals, and infrastructure. Acid rain is mostly caused by human emissions of sulfur

and nitrogen compounds which react in the atmosphere to produce acids.

4.3.2 Effect on the ozone layer

When aircraft-related pollution appeared, complex chemical reactions were ini-

tiated. The NOx from aviation emission in the troposphere (where subsonic flights

take place) has enhanced the ozone concentration [94]. Tropospheric (ground level)
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ozone is a damaging oxidant. It is also considered as one of the greenhouse gases

in the troposphere. The concentration of NOx in the upper troposphere has been

large, and during winter months aircraft have been identified as dominant sources

of the NOx at locations in the Northern Hemisphere. At higher altitudes in the

stratosphere (where supersonic flights have taken place), an increase in concentra-

tion of NOx has depleted the ozone layer [139] which absorbs much of the negative

ultraviolet sunlight waves that would otherwise reach the surface of the earth and

affect the biosphere. The crossover surface between production and destruction of

the ozone layer lies roughly between the lower stratosphere and high troposphere —

the tropopause, where long-range aircraft cruise [197]. Aviation-induced nitrogen

oxides (NOx) make up 2% of all human generated NOx emissions [139]. NOx has 10

times higher residual time in the tropopause than at ground level.

4.3.3 Greenhouse effects

CO2, H2O emitted by aircraft absorb thermal infrared radiation, emitted by

the Earth’s surface and by the atmosphere. This causes global warming of the

earth [92]. The aviation sector contributes 1.6–2.2% to all human generated CO2

emissions [163]. H2O emissions from aviation are small compared to the water

evaporating at the Earth’s surface. H2O resulting from aviation emission is mainly

emitted into the troposphere, where it is removed by precipitation. Besides that,

contrails also tend to warm the Earth’s surface, similar to thin high clouds [139].

The condensation trails are triggered from the water vapor emitted by aircraft and

their optical properties depend on the particles emitted or formed in the aircraft

plume and on the ambient atmospheric conditions. Aircraft line-shaped contrails

are estimated to cover about 0.1% of the Earth’s surface on an annually averaged

basis with larger regional values. The contrail cover is projected to grow to 0.5% by

2050.
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4.4 Aviation Emission Inventories

There are two main approaches in the literature for developing aviation emission

inventory. One is on a global basis for determining the impact of aviation emission

on climate change, and the other is on a local basis, which focuses on the level of

air quality surrounding an airport. Emissions of carbon dioxide (CO2) and water

vapour (H2O) are of particular interest in global warming, whereas investigations

of hydrocarbons (HC) and carbon monoxide (CO) are done for their effects on air

quality.

Emission inventories for global aviation are available from different sources,

most prominently the U.S. National Aeronautics and Space Administration (NASA),

the European Community (EC) Working Group, and FAA.

The NASA study, commonly known as “Scheduled Civil Aircraft Emission In-

ventories for 1999” [18, 178], was done by the Boeing Group. Three-dimensional

data of aircraft fuel burn and emissions of NOx, CO and HC were determined for

the year 1999.

The AERO2K emission inventories [117] were developed by the European Com-

munity in a common project by QinetiQ, Eurocontrol, Manchester Metropolitan

University, the National Aerospace Laboratory (NLR) of the Netherlands and the

German Aerospace Centre (DLR). Emissions of CO2, H2O, NOx, CO and HC were

calculated along with the fuel-use and distance travelled.

The System for Assessing Aviation’s Global Emissions (SAGE) [62] has been

developed by FAA. Currently SAGE is a research tool and not available in the public

domain. However, preliminary results of the model are available.

All the models are used to estimate the amount and the distribution of different

emissions from aviation. All of them are designed to calculate aircraft emissions over

the world’s airspace by latitude, longitude, and altitude. Historical inventories of

aviation emissions and future trend forecasts have been produced by these models.
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NASA AERO2K SAGE This study

General
information

Years 1976, 1984, 1992, forecast for 2015 2002, forecast for 2025 2000 - 2004, forecasts in develop-
ment

Real time emission database 2008 on-
wards

Coverage Scheduled aviation, Charter
aviation, the former Soviet
Union/China unreported flights,
Military aviation

Scheduled and unscheduled avia-
tion, Military aviation

Scheduled and unscheduled avia-
tion

Scheduled and unscheduled aviation

Working mode Off-line Off-line Off-line On-line
Processed data Historical data Historical data Historical data Real time data

Movements
data

Sources OAG flight schedules ATC data from ETMS & Air Traffic
Flow Management Modelling Ca-
pabilities (AMOC), BACK flight
schedules

ATC data from ETMS, OAG flight
schedules

EUROCAT (Thales Radar Data Pro-
cessing Software) radar data, Flight
plans

Data collection
period

Each month of 1992, 4 months of
1976 and 1989

6 representative weeks of 2002
(ATC), Each month of 2002 (sched-
ules)

Each month of 2000 - 2004 Real time data

Contents of
database

Scheduled information (no way-
points/trajectories)

4D trajectories from ATC data, Ar-
tificial routing for scheduled flights

4D trajectories from ATC data,
Dispersed great-circles for sched-
uled flights

Flight plan, Ground Movement Report,
4D Automatic Dependent Surveillance –
Broadcast (ADS-B) fused Radar track
data

Performance
Representative
Aircraft/Engine
(AC/Eng) combi-
nations

27 / 36 / 76 for 1976 / 1984 / 1992
(jets and generic turboprops)

40 (jets and turboprops) 91 (jets and turboprops) 91 (jets and turboprops) mapping to 200
aircraft

Performance
data, Perfor-
mance model

Boeing proprietary data, Boeing
Mission Analysis Program (BMAP)

PIANO aircraft models, PIANO
performance software

BADA & Integrated Noise Model
(INM) aircraft models, BADA &
INM performance methodologies

BADA & aerodynamic performance
model

Selected mission
assumptions

Great-circle routes, 70% passenger
load factor, Continuous climb cruise

Real routing, 60.9% load factor (by
mass), Cruise with step climbs

Real routing for ETMS flights,
Take-off weight estimated from
INM, Cruise with step climbs, De-
lay modelling

Real routing from flight trajectory data,
actual flight mission plan, airport-
runway-aircraft specific Taxi-in and
Taxi-out Time, nominal aircraft weight
with fuel burn reduction.

Emissions Emission data,
Emission model

ICAO emission indices + industry
data, Boeing-2 fuel flow method
(NOx, CO, HC)

ICAO emission indices + industry
data, DLR fuel flow method (NOx),
DLR Omega method (CO, HC),
DLR Soot method (particles)

ICAO emission indices + Emissions
and Dispersion Modeling System
(EDMS) data, Boeing-2 fuel flow
method (NOx, CO, HC)

ICAO emission indices + industry data,
Boeing-2 fuel flow method (HC, CO,
NOx, CO2, SOx)

Assumptions Atmosphere &
wind

ISA atmosphere and zero wind ISA Atmosphere and zero wind ISA Atmosphere and zero wind Actual atmosphere and actual wind

Results
Allocation soft-
ware

Boeing-developed Global Atmo-
spheric Emissions Code (GAEC)

AERO2k data integration tool SAGE fuel burn and emission mod-
ule

TOP-LAT

Species covered Fuel burn, NOx, CO, HC Fuel burn, CO2, H2O, NOx, CO,
HC, soot + distance per grid cell

Fuel burn, CO2, H2O, NOx, CO,
HC, SOx + distance per grid cell

Fuel burn, HC, CO, NOx, CO2, SOx

Resolution 3D data in a 1◦ x 1◦ x 1 km world
grid

3D data in a 1◦ x 1◦ x 500 ft world
grid, 4D data in a 1◦ x 1◦ x 500 ft
x 6h grid

3D data in a 1◦ x 1◦ x 1 km world
grid, 4D raw data at any resolution
required

3D data in a 1◦ x 1◦ x 1 kft grid, 4D
raw data at any resolution required

Table 4.1: State of the Methodologies in Aviation Emission
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There is a common approach in all of the aforementioned 3D emissions models.

All of them operate in off-line mode. They all involve combining a database of

global air traffic (fleet mix, city-pairs served, and flight frequencies) with a set of

assumptions about flight operations (flight profiles and routing) and a method to

calculate altitude-dependent emissions of aircraft/engine combinations. Idealized

flight routings and profiles, with no winds or system delays are assumed. Thus there

can be a vast discrepancy between actual fuel burn and emissions and estimated fuel

burn and emissions using idealized scenarios.

The trajectory of a flight in these models is also not very accurate. It is modelled

via a number of waypoints. For example, SAGE models the trajectory of a flight

by 30–40 chords, AERO2K uses 20–30 waypoints to represent the trajectory. This

affects the accuracy of fuel and emission computation.

In the emission inventory developed by NASA, aircraft emissions of CO2, H2O

and SO2 were determined directly from fuel consumption. Since great-circle routes

were assumed between city-pairs, the results are more suited for trend analyses.

A major drawback, however, is the incomplete coverage of global aviation, since

only scheduled air traffic was accounted for. Furthermore, the output data does not

contain any four-dimensional results (emission data with time) limiting any seasonal

and temporal trend analysis.

In AERO2K, the generation of a movement database from Air Traffic Control

(ATC) data is highly time-consuming and cumbersome, due to legacy systems and

different data formats, and can only be done with historic air traffic data.

Table 4.1 provides a comparative analysis of the above mentioned state of the

art aviation emission inventories, together with our methodology which is used to

develop the emission inventory. This table is developed based on [158] and compares

our methodology with others in the literature.

The main advantage in our study is that the system is on-line and processes air

traffic data in real time, capturing not only effects of wind & flight delays (holdings)

but also complex vectoring maneuvers during approach by Air Traffic Controllers
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(ATCs). The 4D emission database is updated in real time, giving a live picture of

emission both for local air quality as well as greenhouse impact. The system uses

actual 4D flight trajectories, thus it provides a more accurate estimate of fuel burn

and emissions.

4.5 Australian Emission Inventory Development

The emission inventory is in the form of a relational database which records

emissions data in four dimensions. Latitude, longitude and altitude divide Aus-

tralian Airspace into a 3D grid; the fourth dimension is time. The dimensions of

the grid are the National Airspace’s start latitude, start longitude, end latitude, and

end longitude, with altitude ranging from ground level to 61,000 ft. The size of one

cell in the grid is 1 ◦ (longitude) x 1 ◦ (latitude) x 1,000 ft (altitude). This can be

changed to increase or decrease the resolution of the grid. Fuel and emissions are

calculated for all of the grid cells as and when the flights transit through them.

Calculation of fuel and emissions is based on accurate flight trajectories, con-

structed from real time data on latitude, longitude and altitude at a number of

intervals throughout each flight. This allows appropriate fuel and emission data

for the actual flight route and altitude to be estimated. Computing fuel and emis-

sions from real time radar data is a significant improvement over previous models.

Previous models usually assume a great circle route between origin and destination

airports and also a typical cruise altitude. There can be a large difference between

the actual route flown and the great circle route, due to air traffic control (conges-

tions, flight corridor), restriction on airspace (SUAs), weather (turbulence, storm),

or avoiding/taking advantage of prevailing winds.

There are two estimates available for the aviation fuel and emissions in Aus-

tralia. U.S FAA’s System for assessing Aviation’s Global Emissions (SAGE) es-

timated the global aviation fuel and emissions from 2000 to 2004 and National

Greenhouse Gas Inventory Committee (NGGIC), Department of Climate Change,

Australia from 1990 to 2007. However, SAGE is a global aviation emission inventory
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where the focus is on aggregated numbers for fuel burn and emissions using flight

plan data alone for Australian Airspace. NGGIC’s estimation is undertaken using

a Tier 2 methodology [91] and was based on aviation fuel sold rather than flight

trajectories or even flight plans [131]. Therefore, these estimates provide only an

aggregate number for fuel burn and aviation emission in Australia. The aviation

emission inventory developed in this chapter is not only a step ahead (for it uses

actual aircraft trajectory data) but also attempts to quantify data from spatial and

temporal perspectives.

4.5.1 Proposed Methodology

The essence of our approach is that radar, flight plan and aircraft specific aero-

dynamic models are used to predict and construct accurate flight trajectories. A

flight trajectory consists of a set of chords where the start and end of the chord

represents a valid radar position for that flight. This can be as small as 30 seconds

or as long as 2 hours depending upon radar coverage. For every chord the fuel flow

and emission is computed by forward integrating the aircraft position over time us-

ing the aerodynamic model for that aircraft and its associated engine. This allows

for fine-grained computation of fuel flow and emission at every time step between

two valid radar signatures. Figure 4.1 illustrates the computation process used for

developing the aviation emission inventory. It consists of four main components,

described in the following sections.

4.5.2 Real time Data Processing

Real time Data Processing performs the assimilation of flight plan, flight route

and radar data; structuring of air traffic and flight plan data; elimination of mili-

tary, helicopters and recreational flights; assigning flight type (over flying, inbound,

outbound, inland); aircraft mapping; aircraft-engine assignment; runway allocation;

estimating time of departure; and building the initial flight plan and route profile.

This component continuously updates the initial flight plan information regarding
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Real Time Flight Plan Processing
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Figure 4.1: Aviation Emission Inventory Development Process

the runway, arrival and departure route as data for the respective flight is received.

Air Traffic Control (ATC) data from the EUROCAT radar system is used for

generating flight trajectories. Both flight plan and trajectory information from the

EUROCAT radar data need to be aligned in space and time, get processed for data

integrity, data validation, and mining data connection. As a consequence, checks

and assessments are required before the data can be used for baseline inventory

production. The processing of flight plan and radar data includes the substitution

of missing data (departure route, arrival route, departure runway, arrival runway,

cruising altitude, aircraft performance data) from other available sources, and the

identification and removal of inconsistent or redundant information.

The system focuses on civilian air traffic only. Some flights, such as small recre-

ational flights and helicopters, are not processed by the system as aircraft/engine

data is not available yet. Military flight data is also not taken into account because

they are classified. The amount of emissions produced by these flights is relatively

small when compared with commercial flights.
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4.5.3 Trajectory prediction and reconstruction

This is mainly performed by a system called Trajectory Optimisation and Pre-

diction of Live Air Traffic (TOP-LAT), developed by the authors 1. The system

reconstructs the trajectory of a flight based on information about the flight includ-

ing flight plans, flight routes (the system can receive several flight plans and flight

routes of the flight; representing different updates for the flight plan) and all radar

data of the flight.

The trajectory prediction component of TOP-LAT predicts the aircraft tra-

jectory from one radar point to the next radar point. When it reaches a radar

point it computes the time of arrival at the next waypoint and computes the ac-

celeration/deceleration rate as well as the climb/descent profile to meet the next

radar point requirements. These computations are based on the aircraft’s current

position, altitude, speed and aircraft performance parameters. The trajectory re-

construction component of TOP-LAT updates the flight trajectory for flights that

have missing/incomplete radar data. It then forms the completed flight plans which

are compliant with the flight plan structure. The radar data positions are converted

into the route of the flight plan with necessary modifications (considering distances,

heading, speed, and time between two consecutive radar signatures).

Trajectories based on EUROCAT radar data often need to be smoothed, i.e.

kinks and altitude spikes need to be removed. Trajectory kinks may result from

the limited accuracy of radar stations, if closely spaced waypoints originate from

different radar centers. Similarly, altitude spikes are identified and smoothed by

defining a maximum rate-of-climb (ROC) value between successive waypoints.

To determine the taxi-in time of a flight, firstly the departure route of the flight

is estimated, based on the flight’s current trajectory which includes waypoints and

1Involved people include: H.A. Abbass, S. Alam, A. W. Iorio, C. Lokan, V.V. Pham and J.
Tang in alphabetical order. My role includes: Develop tools to process and integrate air traffic
data such as flights, airports, waypoints, SIDs, STARs and airspace sectors data; develop a tool
to predict flight trajectories, track and visualize flight trajectories; develop a tool to query and
analyse air traffic data fuel, and aviation emissions; develop wind and atmospheric data processing
and integrating tool; develop User Preferred Trajectory tool
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radar signatures, the aircraft type, the operator of the flight and the matrices of

departure route probability by waypoints, destination, operator, and aircraft. Then

the departure runway is estimated based on departure route, the destination, way-

points in the trajectory, and departure runway frequency matrices by destination,

waypoints, and aircraft type. If arrival runway and taxi-in time of the arrival runway

is available in the database, taxi-in & taxi-out time of the flight is determined, else

a default value is assigned for taxi-in time. The database contains taxi-in times for

all major airports in Australia.

The trajectory of a flight in the system is constructed based on the actual flight

plan and actual radar data. Therefore it is more accurate than a trajectory that is

based upon a single great circle route in other inventory and modeling studies such

as those by NASA/Boeing [178].

4.5.4 Fuel flow and emission computation

4.5.4.1 Aircraft Performance and Fuel Flow

Fuel flow is computed between two consecutive radar positions by forward in-

tegrating the aircraft position over time, using the aerodynamic parameters of the

specific aircraft. The 91 supported aircraft types from BADA database are mapped

to another 200 aircraft to deal with aircraft types which are not available in BADA

database.

For each position of the aircraft in a discrete time interval of 1 second, the

fuel flow is computed based on BADA thrust specific fuel consumption model as in

Section 3.6.2. The absolute amount of fuel burn in a flight segment is calculated by

multiplying fuel flow with time.

The effect of wind on aircraft during flight is intrinsically incorporated as they

impact directly on flight time. The real take-off weight of an aircraft is not provided

by airlines, thus the nominal mass, as suggested by ICAO, is used. It is around

60.9% of maximum take-off weight (ICAO average value for scheduled air traffic).
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Figure 4.2: Emission computation phases.

The weight of the aircraft is reduced as a result of fuel burn while it is flying. This

is done by subtracting aircraft take-off weight with the instantaneous fuel burn.

4.5.4.2 Emission computation

Emission is calculated using Boeing Emission Method 2 (BEM2) methodology

and ICAO Engine Exhaust Emissions Data Bank. SOx, NOx, CO, HC and CO2

emissions are computed for each flight.

The emission computation process is divided into two phases, below 3000 ft and

above 3000 ft, as shown in Figure 4.2.

Below 3000 ft, the emission calculation is based on the ICAO Engine Exhaust

Emissions Data Bank [86]. The fuel burn calculation is based on the Landing
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and Take-Off Cycle (LTO) defined by the ICAO Engine Certification specifica-

tions. ICAO LTO covers four engine operation modes, which are used to model

the six phases of aircraft operations. In order to calculate fuel and emissions for an

aircraft/airframe type using the ICAO data bank, we firstly find the engine corre-

sponding to the aircraft type by using Airplane/Engine Substitution tables as used

in the NASA study [178, Appendix B]. Then we use the ICAO Engine Exhaust

Emissions Data Bank for the given engine to calculate fuel and emissions for a flight

while it’s in idle, approach, climb-out and take-off states. It can be seen that in the

ICAO Engine Exhaust Emissions Data Bank, the HC and CO emission indices of

jet engines in idle state are higher than in the other states [86]. The emission and

fuel data is given for single engine, it is then multiplied by the number of engines

depending upon the type of aircraft it is fitted on.

In this study the time-in mode is derived from actual flight trajectory data,

and runway timings are specific for each airport and aircraft type. This gives the

emission computation a high level of fidelity as compared to using generic ICAO

LTO cycle timings.

Above 3000 ft, the emission calculation is also based on the ICAO Engine Ex-

haust Emissions Data Bank, but emission factors are adopted to the atmospheric

conditions at altitude by Boeing Emission Method 2 (BEM2) [18, 62], which calcu-

lates emission indices based on fuel flow and ICAO certification data. ICAO data

at the four certified power settings at sea-level conditions are used to compute the

resulting emissions, while correcting for atmospheric conditions. BEM2 allows for

the estimation of emissions for pollutants such as NOx, HC, and CO. The emission

for CO2 is directly proportional to fuel burn with CO corrections. ICAO’s Commit-

tee on Aviation Environmental Protection (CAEP) has recommended the adoption

of Boeing Method 2 as a standard method for calculating emissions [88].

BEM2 method for emission computation is described here as detailed in [18,

50]. BEM2 computes flight emissions using, as a base, the measured fuel flow and

the engine ICAO data sheets. It accounts for ambient pressure, temperature and

humidity as well as Mach number.
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Figure 4.3: Reference EI and Fuel Flow Factor.
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The ICAO data sheet contains complete information about the fuel flow, the Hy-

drocarbons (HC), the Carbon Monoxides (CO), and the Oxides of Nitrogen (NOx)

for the four power settings. These settings are 7%, 30%, 85%, and 100%.

BEM2 steps of emission computation are as follows:

1. Curve fitting the ICAO engine emission data

The fuel flow is converted from kg
s
to lbm

hr
by multiplying by 7936. The emission

index (EI) values will not change but the units are lbm
1000lbm

The fuel flow given does not account for the installation effects of engine air

bleed for aircraft use so a correction must be made. The adjusted EI is defined

as the reference EI or REI. The correction rates for the four power settings

are 1.100, 1.020, 1.013, and 1.010 respectively.

Once the conversions and corrections are made, the emission indices (EI) are

plotted against the corrected Wf on log10 − log10 scale as in Figure 4.3. The

data points are curve-fitted to show trends of EI for different fuel flows.

The HC and CO are bi-linear least square fitted curves. The NOx curve is a

simple point-to-point linear fit, on the log10 paper, between the ICAO emission

data points.

2. Compute fuel flow factor

(a) Calculate the values ∂amb (ambient pressure correction factor) and θamb

(ambient temperature correction factor) where:

• ∂amb =
Pamb

14.696
(Pamb = ambient(inlet) pressure) and

• θamb =
Tamb+273.15

288.15
(Tamb = ambient(inlet) temperature)

• θboiling =
Tamb+273.15

373.15

(b) The fuel flow values are further modified by the ambient values and are

denoted by Wff :

• Wff = [Wf/∂amb]θ
3.8
ambe

0.2M2
( lbm

hr
) where M is the Mach number.
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3. Compute Emission Indices (EI)

Calculate the emission indices of HC, CO and NOx:

• EIHC = REIHC
θ3.8
amb

∂1.02
amb

( lbm
1000lbm

)

• EICO = REICO
θ3.8
amb

∂1.02
amb

( lbm
1000lbm

)

• EINOx = REINOxe
H〈∂

1.02
amb

θ3.3
amb

〉(1/2) ( lbm
1000lbm

)

where REIHC, REICO, REINOx = intersection of corresponding curves

and Wff , and the humidity correction factor H is calculated as follows

• H = −19.0(ω − 0.0063), ω = specific humidity assumed to be 60% for

the entire flight duration.

• ω = 0.62198×Φ×Pv

Pamb−Φ×Pv
, where Φ is relative humidity and Pv = saturation vapour

pressure in psia (Pounds per square inch absolute (including atmospheric

pressure)) where Pv = 0.014504× 10β

• β = 7.90298(1− 1
θboiling

)+3.00571+5.03808log( 1
θboiling

)+(1.3816×10−7)[1−

1011.344(1−θboiling)] + (8.1328× 10−3)[10
3.4919(1− 1

θboiling
) − 1]

4. Total Emission

Assume that a flight segment has n sub-segments (moving steps). The fuel flow

factor and time travelled at sub-segment i are Wfi and timei respectively. The

corrected fuel flow factor Wffi is calculated by Step 2. EI(HC,CO,NOx)i are

then calculated by Step 3. The total amount of emissions for the segment is

computed by

S(HC,CO,NOx) = Number of Engines×
∑n

i=1EI(HC,CO,NOx)i×Wfi ×
timei × 10−3 (lbm)

Then S(HC,CO,NOx) are multiplied by 0.45359237 to convert to kg.

CO2 emission methodology [59, p. 32]: Carbon dioxide and water are the main

products of the combustion of hydrocarbon fuel and are therefore a function of

fuel flow. One kg of Jet fuel produces 3156 g of CO2 and 1237 g of H2O [59, p.

31]. For accurate computation of CO2, partially or unburnt species of CO and
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HC must be subtracted. Since the amount of hydrocarbons emitted is less than

1% of CO2 and H2O emissions and their hydrogen-carbon ratio is unknown,

they are neglected in our computations. The formula for CO2 computation is

given by

• EICO2 = EICO2,ideal − (44/28) × EICO, where EICO2,ideal is 3156

(grams CO2/kg fuel burned) and 44/28 ratio represents their different

molar masses.

SOx emission methodology [59, p. 64]: The maximum sulfur content in

kerosene according to international regulations is 0.3 mass percent with ac-

tual values often below this limit. For a sulfur content of between 0.001 and 3

g per kg fuel one can expect SOx production during combustion of 0.6-1 g/kg.

The formula for SOx computation is given by:

• SOx = 0.8 ∗Wf (kg)

This value is based on [75] and was used in the NASA and SAGE inventories.

4.5.5 Emission Database

The database acts as a dynamic repository of flight state information and emis-

sion data. The database is divided into two main parts: flight database, and gridded

emission database.

The flight database stores all the flight-related information (e.g trajectory, flight

plan).

The emission database stores aggregated fuel burn and emissions per grid cell.

Lambert Canonical Projection system is utilized based on longitude and latitude;

these are supplemented by an altitude coordinate which is oriented orthogonally to

the earth’s surface. Based on this coordinate system, the three-dimensional airspace

is divided into cells, which span the whole Australian National Airspace from ground

level up to a maximum altitude of 61,000 ft. Fuel burn and emissions of each flight
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are calculated and allocated to a grid cell. For the purpose of emission allocation,

the intersections of the flight path with the grid cell boundaries are determined by

their three dimensional coordinates. The process is repeated for all flights processed

from the radar data, and the respective emissions per grid cell are summed.

From the database, we can query the emission data in any area at any time.

Emission data can also be presented with any required resolution by the system.

4.5.6 Software and Data Availability

This chapter presents the aviation emission inventory developed by using Tra-

jectory Optimisation and Prediction of Live Air Traffic (TOP-LAT) software. How-

ever, the emission database is owned by Airservices and TOP-LAT is currently being

commercialized. TOP-LAT is developed in Microsoft Visual C# and it is based on a

distributed client-server architecture. The main server processes real time air traffic

data, and other sub-systems compute fuel, emission, safety, etc.

The system provides a comprehensive emission inventory in the form of emis-

sions and fuel data as well as flight specific information which is updated by TOP-

LAT and stored in a 4D gridded database in real time which represents national

airspace in the form of a 4D grid, representing the latitude, longitude, altitude and

time which can be used for spatial and temporal analysis of emission.

This emission inventory provides valuable information on the quantity and lo-

cation of emissions in the Australian National Airspace. The previous international

studies only used published flight plans and assumed a great circle route between

origin and destination airports. The use of radar data has considerably enhanced

the knowledge and accuracy of the actual position (latitude, longitude and alti-

tude) at which these emissions actually occur. This provides Air Navigation Service

Providers with a higher fidelity and more accurate estimate of aviation emissions.

This emission database provides a major new data source for aviation climate impact

assessment.

From the database, we can query the emission data in any area at any time.
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Flights Distance Fuel HC CO NOx CO2 SOx

Total 492,936 295,303 2515.83 114.59 200.95 45.92 7929.89 2.11
Domestic 83.86% 58.61% 41.68% 96.57% 96.34% 32.37% 41.68% 41.68%
International 16.14% 41.39% 58.32% 3.43% 3.66% 67.63% 58.32% 58.32%

Table 4.2: Flight movements, distance traveled, fuel used, and emissions of domestic
and international Flights in Australian National Airspace during the 6-month study
period. Distance is measured in knm, and fuel and emissions in kt.

Emission data can also be presented with any required resolution by the system.

4.6 Aviation Emission Results

We report the key summary results for the period October 2008-March 2009.

The results are only a subset of queries that can be used to extract desired data

from the emission database.

4.6.1 Summary of Flight & Emission Data

In the study period there were 413,359 domestic flights and 79,577 international

flights. Domestic flights burned a total of 1048.57 kt of fuel and international flights

burned a total of 1467.26 kt of fuel. Domestic flights flew a distance of 173,074 knm

and international flights flew a distance of 122,229 knm.

Figure 4.4 presents a one-day snapshot of the domestic and international flights

in Australian Airspace. Some of the trajectories in the figure are discontinued over

the sea, because they belong to international flights. The terminal points are the

flights’ first or the last radar signature (waypoints) in the Flight Information Region

(FIR) of Australia, the system received. Table 4.2 presents the total numbers of

flights, distance flown, fuel used and emissions produced during the 6-month study

period starting from October, 2008, and breaks them down into percentages for

domestic and international flights.

Table 4.3 shows the averages of flight movements, fuel and emissions in one

month for the study period. The standard deviations show that the number of
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Figure 4.4: One day domestic and international air traffic in Australian National
Airspace; trajectory of latitude and longitude, south (S) and East (E), respectively.
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Flights Fuel HC CO NOx CO2 SOx

Average 82,156 419.30 19.10 33.49 7.65 1321.65 0.35
Stdev 3,336 26.89 1.14 1.40 0.54 84.74 0.02

Table 4.3: Monthly averages of flight movements, fuel and emissions. Fuel and
emissions are measured in kt.
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Figure 4.5: Temporal distribution of HC, CO, NOx, CO2, and SOx (kt) from October
2008 to March 2009.

flights, fuel burn and emissions are not much different between the months.

Figure 4.5 presents temporal distribution in the study period. It shows a small

decrease of CO2, NOx and SOx in February due to reduced demand for air travel

after the Christmas holiday period. We also can see that the emissions of HC, CO,

NOx and SOx are small in comparison with CO2 emission.

4.6.2 Fuel and Emissions of Different Aircraft Categories

Table 4.4 presents the fuel and emissions data for different aircraft categories.

It can be seen that almost all HC and CO emissions are produced by turbo prop and

piston aircraft, while NOx, CO2 and SOx are mainly emitted by jet aircraft. 81.66%
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Aircraft Flights Fuel HC CO NOx CO2 SOx

Jet 53.08% 92.46% 5.27% 5.28% 95.74% 92.46% 92.46%
Turbo Prop 29.21% 4.83% 13.07% 31.47% 2.11% 4.83% 4.83%
Piston 17.71% 2.70% 81.66% 63.25% 2.15% 2.70% 2.70%

Table 4.4: Percentages of number of Flights, Fuel burn & Emissions based on aircraft
categories

of HC and 63.25% of CO are emitted by piston flights, 13.07% of HC and 31.47%

of CO by turbo prop flights, while 95.74% of NOx, 92.46% of CO2, and 92.46% of

SOx are produced by jet flights.

Although the total distance traveled by international flights is less than that by

domestic flights, the fuel burn by international flights is more than that by domestic

flights. This is because 92.51% of international aircraft types are jet, only 4.27%

and 3.23% are turbo prop and piston respectively. In contrast, in domestic aircraft,

jet accounts for 45.50%, followed by turbo prop 34.01%, and piston 20.50%. As a

result of this aircraft distribution, most HC and CO is emitted by domestic flights,

while international flights emit more NOx, CO2, and SOx than domestic ones.

In general, CO and HC emissions are produced when engines are at low thrust

settings (e.g. Idle, Approach etc); thus in turbo props and piston driven aircraft

these emissions are high, as they are mostly short distance flights. The majority

of fuel is consumed at cruise flight level of altitude, which for long and medium

distance flights can be up to 70% of flight time. Thus for jet aircraft, CO2 emissions

is higher as it is directly proportional to fuel burn. NOx and SOx also follow the

trend in fuel consumption in jet aircraft.

In Table 4.5, the fuel and emissions of each aircraft type are calculated as the

average of all flights of the aircraft type for first 14 days of a month, 2008. All

the aircraft in the table are jet aircraft. From the table, we can see that there is a

difference in fuel consumption and emission between different aircraft types. Some

aircraft/engine types consume fuel and produce emissions twice of others.
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Aircraft Fuel HC CO NOx CO2 SOx

AC1 2876.66 1.45 21.75 40.40 9067.24 2.42
AC2 5240.87 2.36 13.03 144.58 16519.21 4.40
AC3 2710.29 2.40 17.05 31.19 8542.83 2.28
AC4 3016.98 2.14 12.07 34.75 9509.52 2.53
AC5 5749.47 2.34 11.61 239.74 18122.32 4.83
AC6 9208.64 31.51 65.39 219.92 29025.64 7.74
AC7 5762.91 2.37 13.33 225.81 18164.70 4.84
Average 4937.97 6.37 22.03 133.77 15564.50 4.15
Stdev 2329.92 11.09 19.45 96.85 7343.91 1.96

Table 4.5: Fuel burn & Emissions in kg for 7 representative jet aircraft; Fuel and
emissions are measured in kilograms

4.6.3 Emissions distribution in different flight phases

Figure 4.6 presents the aviation emissions distribution in different flight phases:

Figures 4.6(a), 4.6(b), 4.6(c) present the emission distribution in different phases for

a short, a medium and a long distance flight respectively, and Figure 4.6(d) shows

the emission phase distribution for all the flights in the study period. The reason

for presenting the altitude range of cruise phase as in the figures is that the cruise

phase of a flight is determined from the top of climb to the top of descent, and the

cruise altitude fluctuates slightly around a certain value. From the figures, we can

see that NOx, CO2 and SOx in climb phase are much higher than in the other phases

in the short distance flight, while in the medium distance flight, CO2 and SOx are

highest in cruise phase following by climb phase; NOx in cruise phase is not much

lower than in climb phase. In both short and medium distance flights, HC and CO

are highest in descent phase. For the long distance flight, all emissions are mostly

produced in cruise phase due to the long distance of this flight phase. Overall,

Figure 4.6(d) shows that the cruise phase of flight consumes the most fuel and

generates the most pollutants (more than 60%). The descent and climb phases come

next, and the remaining phases account for a small amount of the total emissions.

Although emissions from the descent and climb phases are much less than from the

cruise phase, they are highly concentrated around airports, so the impact of these

emissions is considerable. During cruise the rate of emission of HC is low. However
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the cruise phase accounts for so much more of a flight than other phases that the

percent of HC emitted in the cruise phase is still high compared to other phases.

The same applies to emissions of CO.

4.6.4 Result Comparison

In Table 4.6, we compare the fuel burn and emission in one year for domestic and

international flights in Australia from our study with SAGE in 2004 and NGGIC in

2007. In “This Study 2008”, The values of variables such as “Flights”, “Distance”,...

in one year for domestic and international flights in Australia are extrapolated from

those in the 6 month study period in Table 4.2. In SAGE 2004, the number of

flights (“Flights”) is estimated from the total fuel burn (“Fuel”) and fuel per flight

(“Fuel/F”); total distance flights travelled (“Distance”) is estimated from fuel per

distance (“Fuel/Dis”) and the total fuel burn (“Fuel”).

In the table 4.6,“Flights” is the number of flights; “Distance” is the total dis-

tance flights travelled, measured in knm; “Distance/F” is the knm per flight; “Fuel”

(“CO2” or “NOx”) is the total fuel burn (“CO2” or “NOx”) measured in kt; “Fuel/F”

(“CO2/F” or “NOx/F”) is the kt of fuel (“CO2” or “NOx”) per flight; “Fuel/Dis”

(“CO2/Dis” or “NOx/Dis”) is the fuel (“CO2” or “NOx”) per 1 knm; These variables

are calculated for domestic (“D”) flights and international (“I”) flights separately;

“Value” is the value of variables; “%Diff” is the percentage difference of variables

between our study with other study.

From Table 4.6, we can see that the number of flights in “This study 2008” is

higher than in the two other studies. This is because air traffic grows by 4% per

year. Further the definition of international flights between our study and SAGE

is different. In SAGE, international flights are flights with departure airport in

Australia, and arrival airport in another country, while in our study international

flights are all flights whose departure airport or arrival airport is in another country.

Therefore, the number of international flights in our study is much higher than

in SAGE. However, the distance travelled by international flights in our study is
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(a) Emission phase distribution of a short distance flight.
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(b) Emission phase distribution of a medium distance flight.
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(c) Emission phase distribution of a long distance flight.
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(d) Emission phase distribution of all flights in the study
period.

Figure 4.6: Emissions distribution in different flight phase. The numbers below
phases in (a), (b), (c) are the altitude range of each phase, measured in kft.
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This study SAGE NGGIC
2008 2004 2007
Value Value %Diff Value %Diff

Flights
D 826718 454248 82.00% NA NA
I 159154 49600 220.88% NA NA

Distance
D 346148 194945 77.56% NA NA
I 244458 160179 52.62% NA NA

Distance/F
D 0.4187 0.4292 -2.44% NA NA
I 1.5360 3.2294 -52.44% NA NA

Fuel
D 2097.13 1390 50.87% NA NA
I 2934.52 2480 18.33% NA NA

Fuel/F
D 0.0025 0.00306 -17.10% NA NA
I 0.0184 0.05 -63.12% NA NA

Fuel/Dis
D 0.0061 0.0071 -15.03% NA NA
I 0.0120 0.0155 -22.47% NA NA

CO2
D 6610.16 NA NA 5291.94 19.94%
I 9249.62 NA NA NA NA

CO2/F
D 0.0080 NA NA NA NA
I 0.0581 NA NA NA NA

CO2/Dis
D 0.0191 NA NA NA NA
I 0.0378 NA NA NA NA

NOx
D 29.73 19.9 49.40% NA NA
I 62.12 39.9 55.69% NA NA

NOx/F
D 0.000036 0.000044 -18.45% NA NA
I 0.000390 0.000797 -51.03% NA NA

NOx/Dis
D 0.000086 0.000103 -16.44% NA NA
I 0.000254 0.000256 -0.57% NA NA

Table 4.6: Result comparison with other methodologies.
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not much higher than in SAGE in comparison with the difference in the number

of flights. The reason is that our study includes more international flights with

short distance. The higher “Flights” in our study results in higher “Distance”,

“Fuel”, “CO2” and “NOx” than in the other study. Another reason is that NGGIC

considers the fuel consumption as the same in every segment in the whole cruise

phase [131]. However, the fuel consumption is not constant in different segments in

the cruise phase. Therefore, total emissions summed in every segment are likely to

be different from the total emission estimated by using the fuel consumption in the

whole cruise phase. This model also does not take into account international flights

and other phases of flight, for instance taxi-out, climb, climb-out, approach, landing

and taxi-in. As a result, the amount of aviation emissions calculated by the NGGIC

methodology are likely to be an underestimate and cannot provide required insight

into emissions, needed for a deeper analysis.

“Distance/F” in this study is less than in SAGE for domestic flights and es-

pecially for international flights. For international flights, the reason is the differ-

ence in the definition of international flights which results in more short-distance

international flights in our study. For domestic flights, there may be more short dis-

tance flights in Australia in 2008 than in 2004. This leads to “Fuel/F”, ”Fuel/Dis”,

“CO2/F”, “CO2/Dis”, “NOx/F”, and “NOx/Dis” in our study being less than in

SAGE.

4.7 Geographical Distribution of Emission

In this section, we present the spatial analysis of emissions in Australian Airspace

with cumulative emission values on a planar and a vertical display. Here, we only

show the distributions of CO and CO2 emissions, because the distribution of HC is

similar to CO, and the distributions of SOx and NOx are similar to CO2.
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4.7.1 Spatial distribution of aviation emission

Figures 4.7 and 4.8 show that the areas around Sydney, Melbourne, Brisbane,

Perth, Darwin, Cairns, and Adelaide are most impacted by aviation emissions. The

emission distribution is concentrated along the South coast line because flight paths

are mainly concentrated there.

Figure 4.7 shows HC and CO emissions are mainly between S31◦ and S36◦, and

below 10000 ft. They are concentrated around Brisbane, Cairns, Adelaide, Perth,

Sydney, and Melbourne. HC and CO are emitted due to incomplete combustion

process of jet engines at low thrust level, which explains the high concentration of

CO and HC during descent and approach phases of flight. From Figure 4.8 we can

see that NOx, CO2, and SOx emissions affect both the local air quality and the

upper airspace. Sydney, Melbourne and Brisbane airports shows high density of

NOx, CO2, SOx emissions. Besides that, the NOx, CO2, and SOx distributions are

mainly from S31◦ to S36◦, and from 35,000 to 40,000 ft.

4.7.2 Distribution of Aviation Emissions by Altitude

Figure 4.9 shows that most emission of NOx, CO2 and SOx is in high altitude,

while emission of HC and CO is mainly in low altitude. About 50% of NOx, CO2 and

SOx are between the altitude band 35,000–40,000 ft and 20% between the altitude

band 30,000–35,000 ft. Around 30% of HC and CO emissions are between 5,000-

10,000 ft and 0–5,000 ft.

The reason for this is most jet flights, which emit a lot of NOx, CO2 and SOx,

cruise between the altitude band 30,000–40,000 ft, and the number of jet flights is

much more than that of the other flights. On the contrary, piston aircraft, which

produce a high amount of HC and CO, usually fly in low cruising altitude. Many

piston flights have cruising altitude equal or less than 10,000 ft. Therefore, the

percentage of HC and CO is large in altitude bands 0–5,000 ft and 5,000-10,000 ft.

As a result the percentages of HC and CO in the other altitude bands are lower
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(a) CO Emission by altitude and latitude aggregated longitudinally.

(b) CO Emission by longitude and latitude aggregated from ground level to 45 kilo-feet.

Figure 4.7: CO spatial emission distribution in the study period.
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(a) CO2 Emission by altitude and latitude aggregated longitudinally.

(b) CO2 Emission by longitude and latitude aggregated from ground level to 45 kilo-feet.

Figure 4.8: CO2 spatial emission distribution in the study period.
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Figure 4.9: Distribution of aviation emissions by altitude in the study period.

than the two altitude bands. In addition, flights with cruising altitude higher than

10,000 ft produce a lot of HC and CO while they are at low altitude.

Because there are few flights with cruising altitude between 40,000 and 45,000 ft

(high altitude band), not only the percentages of HC and CO in this band are low

but the other emissions as well.

4.8 Discussion

From the aviation emissions data, we found that the amount of emitted CO2 at

several cells is much higher than the others. Such cells are identified in Table 4.7,

where “long (deg)” is the longitude of a cell in degree; “lat (deg)” is the latitude of
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Long (deg) Lat (deg) CO2 (kt) Airports
E144 S38 196.17 Melbourne, Point Cook, Yarra Bank, Penfield, Essendon
E151 S34 177.46 Sydney
E153 S28 162.87 Brisbane, Archerfield, Dunwich
E150 S34 97.6 Bankstown, Westmead, Richmond, Glenbrook, Katoomba
E115 S32 63.79 Perth, Gingin

Table 4.7: 5 grid cells with largest amount of CO2 emitted in troposphere layer.

a cell in degree; “CO2 (kt)” is the kilotonnes of CO2 emitted at a cell in troposphere

layer in the 6-month study period; “Airports” is the list of airports at a cell, the

amount of CO2 of one cell is summed from ground level to an altitude of 14 km.

This altitude is used, because the depth of the troposphere in Australia varies lati-

tudinally, seasonally, and daily. For example, it is about 16 km above Australia at

year-end, and between 12–16 km at midyear, being lower at the higher latitudes [177,

p. 23]. Therefore we adopt a mean depth of 14 km for the troposphere to calculate

CO2 from the ground to this altitude. If the air traffic growth of 4% per year [168]

and other emissions sources are taken into account, the temperature around these

cells may increase faster than in other regions, potentially with significant impact

on the local people’s health.

Because the main species for ozone change in aviation emissions is NOx, we try

to find some cells where flights emit NOx much more than at others. Furthermore,

since most aviation emissions in Australia occur below 45,000 ft (about 13.7 km) (see

Figure 4.9), we only consider cells in the upper troposphere in Australia between

10 km and 14 km (about 32,000 ft to 46,000 ft), where ozone is one important

greenhouse gas. This means the NOx emission of aviation in Australia does not

impact directly on the ozone layer in the stratosphere, where ozone absorbs the

sun’s high frequency ultraviolet light. Understanding how ozone varies will reveal

how this constituent buffers the temperature increase. In Table 4.8, we found some

cells between 10 km and 14 km with much more NOx emitted than the other cells

at the same altitude level. In Table 4.8 “long (deg)” is the longitude of a cell in

degree; “lat (deg)” is the latitude of a cell in degree; “NOx (kt)” is the kilotonnes

of NOx emitted at a cell between 10 km and 14 km altitude in the 6-month study

period. In the future, we will consider other factors such as wind effect and chemical
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Long (deg) Lat (deg) NOx (kt)
E148 S34 0.14
E119 S14 0.13
E118 S13 0.13
E146 S37 0.13
E149 S33 0.12
E120 S15 0.12
E148 S36 0.12
E150 S32 0.12
E152 S30 0.11
E121 S16 0.10

Table 4.8: 10 grid cells with largest amount of NOx emitted in upper troposphere
layer

interactions which affect the concentration and distribution of emissions to estimate

the impact of aviation on the environments as a whole and at these cells we found

above. That may provide a better view of aviation emissions impact. The system’s

output of gridded emissions with high temporal resolution may also be incorporated

with general emission processing systems or specific chemical-transport models to

create a general picture about emissions in Australia. This will help environmental

specialists to analyse the impact of emissions as well as the air quality in Australia.

4.9 Limitations and Assumptions

The first limitation in this study arises from lack of availability of high fidelity

emission & fuel flow data. An aviation engine’s fuel consumption and emissions

at higher altitudes is commercially sensitive. The second limitation arises from

some of the assumptions underlying the study. In this section, the most significant

assumptions are summarized and discussed.

Flight with a standard payload and no fuel tankering: Payload affects the fuel

flow and hence the emission computation. However, data about payloads or actual

fuel amounts carried by the individual flights are not available from ATC data. Thus

we have assumed an average payload and do not account for fuel tankering.
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No consideration of delays and holdings: Ground based (taxi) delays may be

approximated by the use of aircraft-specific times-in-modes, whereas airborne delays,

such as holding, are more difficult to consider if not captured in trajectory data.

Simplified routing and trajectory modeling: Flight routing does not account

for different mixing heights at different airports and are assumed fixed at 3000 ft.

Further noise abatement procedures are not considered, simplifying the landing and

take off cycle. No aircraft and engine deterioration: Since such data is difficult to

obtain and model, the effects due to deterioration and engine aging are excluded in

our study.

Military, helicopters, and recreational flights are not included: Apart from the

fact that military flight data is classified and data on engine and aircraft type is

not available, military flights mostly operate in special use airspace and use upper

airspace (above 41,000 ft). Emission modeling for helicopters is not yet developed

and they constitute a very small number of operations. Data on the engines of

recreational aircraft is also not available.

A series of parametric studies was conducted to evaluate the effects of wind,

temperature, payload, tankering, and cargo on the calculated fuel use [18]. These

studies show that the main uncertainty is in the assumption about fuel tankering,

in which the actual fuel burn is 8% more than the fuel estimated with no fuel

tankering. Next in uncertainty are assumptions about passengers load factor and

wind, where the uncertainty is about 2.5%. The uncertainty caused by assumption

about standard temperature is less than 1%. Therefore, the overall uncertainty in

our assumptions and limitations is small (likely less than 10%).

Another limitation of the inventory is that it does not take into account that

emissions can be moved around by wind after they have been emitted. Particle

emissions are also not available in this inventory currently. These are areas for

possible future work.
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4.10 Recommendations

In terms of air traffic management, several options exist to slow the increase

of CO2 concentration at polluted cells. Current major airports might be replaced

with several other airports in different areas. Passengers will travel to the new

airports by other traffic vehicles which consume less fuel. As a result, the emissions

will be distributed more evenly to different areas. While the development of multi-

airport systems involves and is influenced by a wide range of factors [130], empirically

verifiable concerns about air transport noise and atmospheric pollution are certainly

one of them [73].

Rerouting flights may help to reduce the emission concentration at congested

waypoints and flight paths. Because the depth of the troposphere in Australia varies

regionally, seasonally, and even daily, using flight levels suitable to the regions and

seasons might reduce the impact of NOx emissions on the ozone layer.

Flights can use direct routes to save time and fuel burn. The Direct-To Con-

troller Tool identifies that aircraft can save at least one minute of flying time by

flying direct to a down-stream fix along its route of flight [188]. Our system (TOP-

LAT) also provides User-Preferred Trajectories tool for optimising flight trajectories

in terms of time and distance travelled, fuel burn, emissions produced, and comfort

for passengers.

Efficient departure and arrival planning can also help to reduce the time air-

craft are in runways. As a result, aviation emissions will become less in runways.

For example, the Departure Enhanced Planning And Runway/Taxiway-Assignment

System (DEPARTS) developed by the MITRE Corporation’s Center for Advanced

Aviation System Development can generate optimised recommendations on runway

assignment, departure sequencing and departure fix loading for the air traffic control

tower to reduce taxi-out times [101].

In terms of aviation technology, inventing new engine types which consume less

fuel, or another energy which does not produce emissions, would also be a solution.
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Such decisions could not be made without careful consideration of all their

effects. The emission inventory presented here will be an essential element in that

process.

4.11 Chapter Summary

In this chapter we present an aviation emission inventory for Australian Airspace,

and some discussion based on a subset of data derived from the inventory. This is

the first attempt to develop an emission inventory using real time trajectory and

flight plan data. The emission database is prepared by TOP-LAT. This system is

online and processes air traffic data to compute aviation emissions in real time. The

emission inventory is an ongoing process, making use of real time data as it arrives.

The inventory is in the form of a 4D database which provides resolution of 1◦ x 1◦

x 1,000 ft, for temporal and spatial emission analysis.

The aviation emissions are calculated based on the actual 4D trajectories which

are mixed of actual flight routes and radar data. This can help provide more ac-

curate emission data in comparison with other emissions inventories which only use

flight plans and assume a great circle route between origin and destination airports.

Some information of a flight is not given sometimes. They are also estimated to com-

plete information about the flight. This further improves the accuracy of emission

computation.

The specific emission inventory reported here covers a period of six months

from October 2008. The study processed 492,936 flights for the given period, which

burned 2,515.83 kt of fuel and produced 114.59 kt of HC, 200.95 kt of CO, 45.92 kt

of NOx, 7,929.89 kt of CO2, and 2.11 kt of SOx.

For emission computation, the BEM2 methodology along with ICAO engine

emission data bank is used. Fuel flow is computed using aircraft specific aerodynamic

and thrust model, with weight correction and accounting for atmospheric data.

The emission results show that domestic flights produce much more HC and
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CO than international flights, conversely international flights emit more NOx, CO2,

and SOx than domestic ones. The results also show that HC and CO emissions are

mostly produced by turbo prop and piston, while NOx, CO2 and SOx are emitted

by jet aircraft. 81.66% of HC and 63.25% of CO are emitted by piston flights, and

13.07% of HC and 31.47% of CO by turbo prop flights, while 95.74% of NOx, 92.46%

of CO2, and 92.46% of SOx are produced by jet flights.

The study found that the major international airports such as Sydney, Mel-

bourne and Brisbane airports show high density of aviation emissions. In addition,

the coast line is much more impacted by aviation emission than the other regions.

All the emission distributions are mainly between S31◦ and S36◦ latitude.

Most emission of NOx, CO2 and SOx is in high altitude (the cruising altitude of

most jet flights), while emission of HC and CO is mainly in low altitude (the cruising

altitude of most piston flights). About 50% of NOx, CO2 and SOx are between the

altitude band 35,000–40,000 ft and 20% between the altitude band 30,000–35,000 ft.

Around 30% of HC and CO emissions are between 5,000-10000 ft and 0–5000 ft.

The study found that several cells around major airports such as Melbourne,

Sydney and Brisbane have CO2 emitted by air traffic much more than the other

regions, and some cells in the upper troposphere with much more aviation emissions

of NOx than the others. These areas may be environmentally impacted more than

the other areas.

It is expected that with the availability of a real time aviation emission database

for Australian Airspace, environmental analysts and aviation experts will have an

indispensable source of information to support timely decision-making regarding ex-

pansion of runways, building new airports, applying route charges based on environ-

mentally congested airways, and restructuring air traffic flow to achieve sustainable

air traffic growth.

In the future when we have more information about the assumptions that we

use in this study, we will update the system to compute fuel burn and emissions more

accurately. We will also analyse the impact of aviation emissions on the environment
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in Australia such as the effect on the ozone layer, and greenhouse effects, in which

wind effect and chemical interactions will be taken into account.
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Chapter 5

3-D User Preferred Routes using

Black and White Box Approaches

This chapter is partially based on following publications:

1. V. V. Pham, L. Bui, S. Alam, C. Lokan and H. A. Abbass. A Pittsburgh Multi-Objective Classifier for

User Preferred Trajectories and Flight Navigation, IEEE Congress on Evolutionary Computation, ISBN:

978-1-4244-6909-3, 2010.

5.1 Overview

In this chapter, both black and white box approaches are designed to find 3-D

(latitude, longitude, altitude) user preferred routes for flights in both problems GRP

and GAP (which are formulated in Section 3.2). A black box is an algorithm that

does not provide a reason for the choice of a solution (route), while a white box

provides the cause of choosing a solution (route).

Genetic algorithms (GA) are designed as black box approaches to find 3-D UPR

routes. The output of this heuristic method is a route description (a chromosome).

We can understand the outcome of GA, but not the underlying cause. Therefore

the algorithm works as a black box. GA is run for each flight to find its preferred

route. This route description is simulated to get the 4-D trajectory. The 3-D route

is obtained by removing the time dimension from the 4-D trajectory.
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Though the simulation can be applied to obtain 4-D trajectory, we consider the

problem as 3-D user preferred routing. The reason is that only the 3 dimensions

(latitude, longitude, altitude) of the trajectory are optimised, while the speed of the

aircraft in the 4-D trajectory (which is used to determine the time dimension of the

trajectory) is not optimised; it is calculated by linear approximation from BADA

database as presented in Section 3.6.1.

Learning Classifier Systems are designed as white box approaches. This heuris-

tic method outputs the classifier as a decision table of ordered rules in plain language.

This makes solutions understandable to users and also points out the cause of every

movement of the aircraft. The Learning Classifier Systems find the best classifier to

optimally navigate all flights simultaneously.

The conflicts between the user preferred routes, which are provided by GA and

LCS, are then detected and resolved by the same model presented in Section 3.8.

The experiments are implemented with different flight and weather scenarios

for both black and white box approaches. The hypothesis is that in addition to

the advantage of being transparent to users, the white box approaches can achieve

solutions that are as competitive as the black box approaches.

The remainder of the chapter is organized as follows. Section 5.2 presents the

design of Genetic Algorithms applied to both black and white box approaches, as well

as for the two UPR problems: GRP, and GAP. A summary of the experiments is also

presented in this section. Section 5.3 presents the black box approach, where Genetic

Algorithms are designed to solve the two UPR problems. Section 5.4 presents the

white box approach, where Learning Classifier Systems are designed to find UPR

routes for the two problems. Section 5.5 compares the two approaches in terms

of running time and how good the UPR routes provided by these algorithms are,

and discusses the departure time adjustments of UPR flights for conflict resolution.

Conclusions are presented in the last section.
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5.2 Genetic Algorithm for Black and White box

Approaches

Both black and white box approaches use a Genetic Algorithm to evolve a pop-

ulation of individuals. An individual in the black box approach represents a set of

commands to design a route, while an individual in the white box approach repre-

sents a classifier. Algorithm 4 presents Genetic Algorithm for both approaches used

in this chapter. Here we use Genetic Algorithm (GA) rather than other heuristic

methods, as GA is a population-based method so it has flexibility in choosing a so-

lution, instead of providing only one solution. Other techniques can record multiple

solutions. However the same algorithm may need to be used many times. In addi-

tion, as there are a number solutions being processed simultaneously, it is expected

that GA is able to find a global solution. Furthermore, a genetic algorithm is a

stochastic search method, so it does not require the fitness function to be smooth,

while a traditional search method that follows the path of least resistance does.

This algorithm evolves a population of popsize individuals through ngen gener-

ations. The genetic operators (selection, crossover, mutation) are used to reproduce

a population. These operators are standard; my aim is not to develop innovative

operators, but to apply GA in an innovative way. Particularly, binary tournament

selection is used. The standard one point cross-over with the crossover probability

of 1 is used. The mutation operator is implemented differently for different individ-

ual representations, depending the structure of an element in the individual. The

mutation probability is investigated for use. The best individual is maintained in

the population by replacing a worse individual, which is chosen randomly in the

child population, with the best individual in the parent population. The population

size is 100, the number of generation is 100.

The generation of flight data, flight scenarios, and weather scenarios generations

was presented in Sections 3.9.1, 3.9.2, and 3.9.3. In this algorithm, these data

are loaded as input for the algorithm. The flights can be given routes or cruising

altitudes, which correspond to the two problems GRP, and GAP.
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Algorithm 4 Genetic Algorithm
1: Load wind and bad weather data.
2: Load flights.
3: popsize is the number of individuals in a population.
4: ngen is the number of generations in the evolution process.
5: Initialize parent population of popsize individuals.
6: Evaluate the parent population.
7: for (i=2; i≤ngen; i++) do

8: Select every two individuals in the parent population, cross-over the two to create two new individuals and
add them to a new population called the child population. This is repeated until the child population has
popsize individuals.

9: Mutate the child population.
10: Evaluate the child population.
11: Choose a random individual in the child population.
12: if the chosen individual is worst than the best individual of the parent population then

13: Replace the chosen individual in the child population with the best individual of the parent population.
14: end if

15: Copy all the individuals from the child population to the parent population.
16: end for

17: Return the best individual of the parent population.

The differences in using Algorithm 4 for the black and white box approaches

and the two problems are the representation and the evaluation of an individual.

These are presented in the following sections for each approach and problem.

5.3 3-D User Preferred Routes using Genetic Al-

gorithms

In this section, GA is designed for finding the 3-D user preferred route for a

flight. We propose a new representation and evaluation for a chromosome. We also

design the algorithm to evaluate a chromosome. A 4-D trajectory is achieved through

simulation using the 3-D route description with the given departure time and aircraft

performance from BADA database. The 3-D route is then obtained by removing the

time-dimension from the 4-D trajectory. We experiment with mutation probability

to choose the best mutation probability. The quality of solutions is evaluated using

weighted sum of time, and discomfort.
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5.3.1 3-D User Preferred Routes using Genetic Algorithms

for flights given 2-D routes

In this section, a Genetic Algorithm is used to find the 3-D user preferred route

for the GRP problem, where a flight is given 2-D (latitude, longitude) route and the

flight can change its altitude during cruise phase.

The experiment design is presented in Section 5.3.1.1. In this section we discuss

and propose a suitable representation for a chromosome, representing a flight path.

Genetic operators are presented next. Then we present the algorithm to generate

the 4-D trajectory for a flight, using a chromosome. The evaluation of a chromosome

is then presented. Finally, the mutation probability is investigated to find the best

mutation probability. The objective of experiment is to explore the behavior of GA

and comparing it with local and random search.

Some results are presented in Section 5.3.1.2.

5.3.1.1 Experiment design

a) Representation

A flight path can be represented as a series of points. Each point is defined by

3 coordinates (latitude, longitude, altitude). This representation leads to some

chromosomes giving un-implementable routes. For example, the aircraft may go

backward, as the next point in a series may be behind the point in the airspace

in the direction from the origin to the destination, or with the given aircraft

performance, the aircraft cannot perform all the changes in latitude, longitude,

and altitude between the two consecutive points.

The chromosome can be reordered so points are in forward direction. However

this representation destroys building blocks of the chromosome.

In this thesis we propose to navigate a flight by a series of commands (or seg-

ments). A command tells an aircraft to climb, cruise, or descend in a relative

length. The relative length is then transferred to an additional climb/descent
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altitude, or a cruise distance that the aircraft can perform. This can also make

sure the aircraft goes in the direction towards the destination.

A chromosome is represented as a series of climb, cruise and descent segments for

a flight. The size of the chromosome (number of segments) for a flight depends

on the great circle distance of the flight and it is equal to GCD
100

, where GCD is the

great circle distance of the flight in km. A segment is represented by movement

type (climb, cruise, descent) movetype and a relative length l, which is an integer

value from 1 to MaxLen. MaxLen is the maximum length of the segment. The

absolute length (the additional altitude or the additional cruise distance) of a

segment is determined as follows:

• If a segment is a climb segment, the additional climb altitude is l∗MAA
MaxLen

(ft), where MAA (the Maximum possible Additional Altitude in feet) is the

difference between the maximum cruising altitude the aircraft can climb to

and the current altitude of the aircraft.

• If a segment is a descent segment, the additional descent altitude is − l∗MAA
MaxLen

(ft), whereMAA is the difference between the current altitude of the aircraft

and the minimum cruising altitude. If the maximum cruising altitude is

higher than 10000 feet, then the minimum cruising altitude is 10000 feet.

Otherwise the minimum cruising altitude is the maximum cruising altitude.

• If a segment is a cruise segment, the additional cruise distance is l ∗ 100

(km).

The parameters we used are: the maximum length of a segment MaxLen is 5,

the distance of a default cruise segment is 100km, the number of segments in a

chromosome is GCD
100

, where GCD is the great circle distance between the origin

and destination of a flight measured in km (this number is approximate to the

number of cruise segments for a flight to fly from the origin to the destination).

Figure 5.1 shows the chromosome structure.

b) Genetic Operators
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Segment0 Segment1 Segmenti…... Segmentn-1…...

Type

Climb, Cruise, Descent
Length

1 - MaxLen(5)

Figure 5.1: Chromosome for GA, flights are given routes

The standard genetic operators are used as presented in Section 5.2. The muta-

tion operator goes through every segment in a chromosome. For each segment, a

random number from 0 to 1 is generated. If the number is less than the mutation

probability, the segment is mutated to become a new segment by changing its

type of movement (e.g from a cruise to a climb) and changing the length of the

segment from 1 to a maximum length MaxLen.

c) Generation of the 4-D trajectory

The algorithm to simulate the series of segments to obtain a 4-D trajectory is

separated into two parts: Algorithm 5 and Algorithm 6, because of the algorithm

length. The simulation follows the aircraft performance constraints, and takes

wind information into account. First all the TODs at every flight level from the

minimum cruising altitude to the maximum cruising altitudes are determined

(as the simulation then will continuously check whether the aircraft passes the

TOD at the altitude of the ending point of a segment or not). The simulation

starts from the origin. The first segment tells aircraft to climb to the Top Of

Climb (TOC) point. The next segments can tell aircraft to climb, cruise, or

descend. If after flying a segment, the aircraft passes the TOD at the altitude

of the ending point of the segment, the segment will not be added to the 4-D

trajectory; instead the aircraft will cruise to the TOD at the altitude of the

current point and then continuously descend to the destination. If after flying

all the segments the aircraft has not reached the destination, it will cruise to

the TOD at the altitude of the current point and then continuously descend

to the destination. If a segment tells the aircraft to climb or descend but the
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current altitude of the aircraft is the maximum or minimum cruising altitude, the

segment will be changed to a default cruising segment with a predefined cruise

distance. Here, the simulation of the series of segments integrates the continuous

descent approach, which is proved to save fuel, emissions (including CO2 emission

and noise emission) in literature [195, 116, 5].
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Algorithm 5 Generation of the 4-D trajectory for a flight given 2-D route, using a
chromosome - Part I
1: Determine TOD points at the flight levels from the minimum cruising altitude to the maximum cruising altitude

(depending on the flight). In order to determine TOD at a flight level, Algorithm 3 in Section 3.7.7 is used to

backward simulate the aircraft following a 2-D route to descend from a starting point given altitude to an ending

point, where the ending point is the destination and the starting point is TOD whose latitude and longitude

need to determine.

2: Determine the additional climb altitude of the first segment as presented above.

3: Determine the target altitude of the first segment. It is first calculated as the altitude of the origin airport plus

the additional climb altitude. It is then rounded to become a flight level.

4: Algorithm 1 in Section 3.7.1 is used to simulate a 2-D route to climb to the target altitude, where the starting

point is the origin airport. TOC is the ending point of the simulated segment.

5: The current point is TOC.

6: i=1

7: exit = false

8: while i < number of segments (number of elements in the chromosome) and not exit do

9: if segmenti is a climb (or descent) segment then

10: Determine the additional climb (or descent) altitude as presented above.

11: Determine the target altitude of the segment. It is first calculated as the altitude of the current point

plus the additional climb (or descent) altitude. It is then rounded to become a flight level.

12: if segmenti is a climb (or descent) segment and the target altitude is the maximum (or minimum) cruising

altitude then

13: The segment becomes a default cruise segment.

14: end if

15: end if

16: if The segment is a climb segment then

17: Simulate a 2-D route to climb to an altitude by Algorithm 1 in Section 3.7.1.

18: end if

19: if The segment is a descent segment then

20: Simulate a 2-D route to descend from a starting point to a target altitude by Algorithm 2 in Section 3.7.4.

21: end if

22: if The segment is a cruise segment then

23: Determine the ending point of the segment using the current point and the distance between the current

and the ending points.

24: if The ending point of the simulated segment does not pass TOD at the altitude of the ending point

then

25: Algorithm presented in Section 3.7.10 with algorithm flow in Figure 3.17 is used to simulate the

aircraft following a 2-D route to cruise from the current point to an ending point.

26: end if

27: end if

28: {while loop continues in the next page}

29: ...

30: end while
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Algorithm 6 Generation of the 4-D trajectory for a flight given 2-D route, using a
chromosome - Part II
1: while i < number of segments (number of elements in the chromosome) and not exit do

2: {while loop continues from the previous page}

3: ...

4: if The ending point of the simulated segment passes TOD at the altitude of the ending point then

5: The simulated segment is not taken into the trajectory.

6: Aircraft cruises from the current point to TOD at the altitude of the current point and continuously

descends to the destination. Algorithm presented in Section 3.7.10 with algorithm flow in Figure 3.17

(which is used to simulate the aircraft following a 2-D route to cruise from a starting point to an ending

point) is used, where the starting point is the current point and the ending point is TOD.

7: The cruise segment from the current point to TOD, and the descent segment from TOD to the destination

are added into the trajectory.

8: exit = true

9: else

10: The simulated segment is added into the trajectory.

11: The current point is the ending point of the simulated segment.

12: end if

13: i=i+1

14: end while

15: if exit is false then

16: Aircraft cruises from the current point to TOD at the altitude of the current point and continuously descends

to the destination. The simulation as presented above.

17: The cruise segment from the current point to TOD, and the descent segment from TOD to the destination

are added into the trajectory.

18: end if

Figure 5.2 shows an example of generating the 4-D trajectory for a flight whose

maximum cruising altitude is 40 kft, and the distance from the origin to the

destination is 700 km. The number of elements in a chromosome is 7. The

chromosome is presented in the top of the figure. A element includes two fields:

segment type and length. A segment type can be Cl (Climb), Cr (Cruise), or

D(Descent). A segment length can be from 1 to 5. The first six segments tell the

aircraft to climb to 24 kft, cruise a distance of 100 km, climb to 33 kft, cruise a

distance of 200 km, descend to 21 kft, then cruise a distance of 200 km. These

climb, descent altitudes are the altitudes of the current points plus the additional

climb, descent altitudes (which are calculated as in (a)). The additional distance

is calculated as in (a). The last segment tells the aircraft to climb to 28 kft.

However after climbing to 28 kft, the aircraft passes the TOD at 28 kft, so this
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Cl,3 Cr,1 Cl,3 Cr,3

40 kft;700 km

24;100

33;200

D,2 Cr,2

21;200

Cl,2

Origin Destination

TOD at 28 kft

TOD at 21 kft

Figure 5.2: An example of simulation for chromosome representing a flight given a
route

segment is not added to the 4-D trajectory, the aircraft cruises directly to TOD

at the altitude of the current point at 21 kft, and then continually descends to

the destination.

The 4-D trajectory is converted to the 3-D route by removing the time dimension.

d) Evaluation

Assume that the 4-D trajectory has n simulated segments from 0 to n− 1. For

all segments, time, discomfort and fuel are calculated. The combined objective

from time and discomfort is

Obj =
n−1
∑

i=0

u ∗ timei + (1− u) ∗BWLi ∗ timei (5.1)

where timei is time the aircraft travels through the segment i, BWLi is the bad

weather level at the first point of the segment i. The bad weather level in a

segment is assumed to be constant at every point in the segment. BWLi ∗ timei

is the discomfort of the segment i.

Fuel is not considered in the objective function. It is only considered indirectly,

through time minimization and the decision to assume continuous descent.

e) Mutation probability investigation and parameter settings

Mutation probability investigation

We did an experiment with the following settings to find a good mutation prob-

ability for GA.
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Mutation probability 0 0.1 0.2 0.3 0.4 0.5 0.6
Percentage of flights 8.5% 45.1% 31.0% 35.2% 29.6% 26.1% 27.5%

Table 5.1: Mutation probability investigation; GA for flights given routes

• Flight Scenario: The flight scenario UA2 is used where one third of UPR

flights is allocated for each of the 3 user preferences.

• Weather Scenario: Normal Wind, Bad Weather Cells affecting 50% of UPR

flights.

• Crossover probability: 1

• Mutation probability can be 0, 0.1, 0.2, 0.3, 0.4, 0.5, or 0.6

For each flight, the algorithm was run with 6 different mutation probabilities (0,

0.1, 0.2,... 0.5, or 0.6) and with 10 seeds. The average objective of the 10 best

individuals on the 10 seeds for each mutation probability was determined for a

flight. A mutation probability is the best for a flight if its average objective is

the smallest. Table 5.1 presents the percentage of flights for which each mutation

probability is the best. The total of all the flight percentages is more than 100%

as there may be more than one mutation probability with the average objective

being the smallest for a flight. The table shows that the mutation probability of

0.1 is the best in general. This also proves that GA with mutation probability of

0.1 works better than local search and random search, which correspond to GA

with mutation probability of 0, and 0.6 respectively. The percentage of flights

for which the mutation probability of 0.1 is the best is 45.1% while those for

the mutation probabilities of 0 and 0.6 are only 8.5% and 27.5% respectively.

Therefore we choose the mutation probability of 0.1 for the algorithm.

5.3.1.2 Results

a) Generation of best individuals and the minimum objective through

generations

Table 5.2 shows the average number of generations at which the best individuals
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User Pref. BW0 - 0% BW1 - 10% BW2 - 50% BW3 - 100%
Discomfort NaN 34 36 37
Neutral NaN 49 50 48
Time 49 49 49 49

Table 5.2: The average of generations where the best individual is found; GA for
flights given routes.

are found. In the table “User Pref.” is the user preference to a flight; “BW0 -

0%” is the weather scenario without bad weather cells; “BW1 - 10%”, “BW2 -

50%”, and “BW3 - 100%” are weather scenarios affecting 10%, 50%, and 100% of

flights. “Discomfort”, “Neutral”, and “Time” are user preferences or utilities of

0.000001, 0.5, and 0.999999. The cells of “BW0 - 0%” column and “Discomfort”

and “Neutral” rows are “NaN”, as we chose only one flight scenario, in which all

prefer to minimize time, to experiment with the weather scenario with no bad

weather cells.

Figure 5.3 shows the minimum objective through generations of an example flight.

The flight has the chromosome size of 20 (the average size of chromosomes). It

is given a route and prefers to minimize time or discomfort. The 10 different

colored traces in each sub-figure are for 10 different runs.

Figure 5.3(a) presents the minimum objective for a flight for which the the user

preference is to minimize time. As the discomfort is multiplied by a very small

number 0.000001, the minimum objective can be considered to present time ob-

jective. The figure shows that the objective values from 10 different seeds in the

final generation are only about 1 minute different from each other. The minimum

objective ranges from 158 to 152 minutes.

Figure 5.3(b) presents the minimum objective for a flight for which the user pref-

erence is to minimize discomfort. The minimum objective is less than 1.61*104

from the first generation. This means a route free of discomfort is found from

the first generation. For the next generations, GA searches for the solution with

minimum time travelled. Since the discomfort is 0 and the user preference is

0.000001, the objective is rewritten as 0.000001*time. The minimum objective
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in 5.3(b) reduces from 0.000161 to 0.000152. This means time reduces by about 9

minutes from 161 minutes to 152 minutes. As the minimum discomfort is found

from the first generation, GA will focus on searching for the minimum time so-

lution which also has minimum discomfort. This explains why the generations

where the best solutions are found for flights preferring to minimize discomfort

are smaller than the ones where the best solutions are found for flights preferring

to minimize time.

b) Time and Discomfort Objectives of UPR flights given routes

Figure 5.4 shows the results of time and discomfort objectives of runs for 7 flight

scenarios, 4 weather scenarios and 10 different seeds. Flights are given routes.

Figure 5.4(b) shows that the algorithm can always find solutions to avoid almost

all the bad weather areas. As shown in the figure, the sum of discomfort from all

flights belonging to utility allocation UA0 (all preferring to minimize discomfort)

is very near to 0. This happens even in the weather scenario affecting all the

flights.

Figure 5.4 demonstrates that the times and discomforts of the best solutions

provided by GA from different seeds for each flight-weather scenario behave as

expected, and are very near to each other. The flight scenario UA0, in which all

flights prefer to minimize discomfort, leads to the smallest discomfort and largest

time. The flight scenario UA6, in which all flights prefer to minimize time, leads

to the smallest time and largest discomfort.

The utility allocations UA2 and UA3 are neutral to the time and discomfort

optimisations. UA2 has one third of flights for each of the 3 user preferences,

and UA3 has all flights choosing the neural preference to optimise both time and

discomfort. These utility allocations don’t give a UPR method a strong message

on which objective they prefer to minimize, so UPR methods vary in the UPR

routes they choose for flights. This means the orders of UA2 and UA3 can change

from one method to the other as well as from one problem to the other.

If UA2 and UA3 are discounted, the best order with respect to the time objective
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(a) Minimum objective through generations of an example flight; The flight is given a route and prefers
to minimize time; Each line presents the results for one seed.
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(b) Minimum objective through generations of an example flight; The flight is given a route and
prefers to minimize discomfort; Each line presents the results for one seed.

Figure 5.3: Minimum objective through generations of an example flight. The flight
is given a route and prefers to minimize time or discomfort.
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Utility Allocation UP0 - 0.000001 UP1 - 0.5 UP2 - 0.999999 Pref Discomfort
UA0 1 0 0 1
UA3 0 1 0 1
UA1 0.5 0.3 0.2 0.8
UA4 0.2 0.5 0.3 0.7
UA2 0.33 0.33 0.33 0.66
UA5 0.2 0.3 0.5 0.5
UA6 0 0 1 0

Table 5.3: Flight utility allocation in the order of percentage of the flights preferring
to minimize discomfort.

is UA6, UA5, UA4, UA1, UA0 and that of the discomfort objective is the reverse.

We temporarily call these orders of the 5 utility allocations as “the orders of

5”. These orders happen for all the experiments with the different problems

and methods, as presented in the next sections. If UA2 and UA3 are counted,

although they are not consistent, they still follow some reasonable patterns.

In Figure 5.4(b), when UA2 and UA3 are added, the better order of discomfort

objective for the 7 utility allocations is UA0, UA3, UA1, UA4, UA2, UA5, and

UA6. This corresponds to the pattern in Table 5.3. This table sums the two

columns UP0 and UP1 of Table 3.3 and sorts the utility allocations first by this

sum and then by UP0. The reason for ordering first by the sums of UP0 and

UP1 is that both UP0 and UP1 prefer to minimize discomfort (UP0 extremely,

and UP1 neutrally prefers). The reason for ordering next by UP0 is that if the

sums of the two utility allocations are the same, the one with more flights that

strongly prefer to minimize discomfort, will provide better discomfort.

Applying this sorting to the two column UP1 and UP2 for time preference, we

have the order of utility allocations in Table 5.4 almost the same to that in

Figure 5.4(a). There is only a swap order between UA3 and UA5. However UA3

and UA5 in the figure almost overlap each other.
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(b) Discomfort in different flight and weather scenarios; GA method and GRP problem.

Figure 5.4: Time and discomfort in different flight and weather scenarios; GA
method and GRP problem.
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Utility Allocation UP0 - 0.000001 UP1 - 0.5 UP2 - 0.999999 Pref Time
UA6 0 0 1 1
UA3 0 1 0 1
UA5 0.2 0.3 0.5 0.8
UA4 0.2 0.5 0.3 0.8
UA2 0.33 0.33 0.33 0.66
UA1 0.5 0.3 0.2 0.5
UA0 1 0 0 0

Table 5.4: Flight utility allocation in the order of percentage of the flights preferring
to minimize time.

5.3.2 3-D User Preferred Routes using Genetic Algorithms

for flights given cruising altitudes

In this section, a Genetic Algorithm is used to find the 3-D user preferred route

for the GAP problem, where a flight is given a cruising altitude and the flight does

not change its altitude during cruise phase.

The experiment design is presented in Section 5.3.2.1. The content and purpose

of the experiment are the same as those for the GRP problem in Section 5.3.1.

Some results are presented in Section 5.3.2.2.

5.3.2.1 Experiment design

a) Representation

As UPR flights are given cruising altitudes, only the horizontal path of a flight

needs to be optimised. Therefore, a chromosome here is represented by a series of

horizontal segments for a flight. A horizontal segment is the horizontal projection

of a segment. This segment may be a cruise segment in a cruise phase between

Top Of Climb (TOC) and Top of Descent (TOD), or a climb segment in a climb

phase from the origin to TOC, or a descent segment in an approach phase from

TOD to the destination.

A horizontal segment is defined by the direction dir of an aircraft and the relative

length l the aircraft will fly following the direction. The direction is the deviated
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Segment0 Segment1 Segmenti…... Segmentn-1…...

Direction

0, 10, 20, 30 deg

Length

1-MaxLen(5)

Figure 5.5: Chromosome for GA, flights are given routes

angle of the segment from the direct route from the current position to the

destination. It can be 0, ±10, ±20, or ±30 degrees. The relative length l

of a horizontal segment is an integer value from 1 to a predefined parameter

MaxLen (the maximum length of a horizontal segment). The absolute length

(the distance) of a segment is l ∗ 100 (km). Figure 5.5 shows the chromosome

structure. This representation can ensure that the aircraft always flies towards

its destination, as the result of the deviated angle constraint.

The parameters we used are: the maximum length of a horizontal segment

MaxLen is 5, the number of segments in a chromosome is GCD
100

, where GCD

is the great circle distance between the origin and destination of a flight mea-

sured in km.

b) Genetic Operators

We use the standard genetic operators as presented in Section 5.2. The mutation

operator works similarly to that for GRP problem. The horizontal segment is

mutated to become a new one by changing its direction, which is one of the values

(0, ±10, ±20, or ±30 degrees) or its length, which is from 1 to the maximum

length MaxLen.

c) Generation of the 4-D trajectory

Algorithm 7 generates the 4-D trajectory for a flight, which is given a cruising

altitude, using a chromosome. First the route of 2-D points (the list of points)

from the series of horizontal segments in the chromosome is achieved. The point

list is initialized as empty. The origin airport is first added to the point list, and
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it is considered as the initial current point. At each step, a horizontal segment is

chosen in sequence from the first one in the series of segments. The next point

is determined, based on the distance and the direction from the current point to

the next point (which are indicated in the segment). The next point is added

to the point list and becomes the new current point. When the distance from

the current point to the destination is less than a predefined distance, or all the

segments have been gone through, the destination is added to the point list, and

this process finishes.

The route, which is formed by the point list and indicates horizontal movement

of the aircraft, is simulated to obtain a 4-D trajectory, using the given cruising

altitude. The TOC (TOD) is determined first by climbing (descending) aircraft

from origin (destination) to (from) the cruising altitude following the route (which

is defined by the series of horizontal segments). Then the aircraft cruises from

TOC to TOD following the route.
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Algorithm 7 Generation of the 4-D trajectory for a flight given a cruising altitude,
using a chromosome
1: {Get a 2-D (latitude, longitude) route, which is a series of waypoints, using the chromosome}

2: i=0

3: exit = false

4: The point list is empty

5: The current point is the origin airport

6: Add the current point into the point list

7: while i < number of segments and not exit do

8: Calculate the distance from the current point to the next point(D). It is calculated as l ∗ 100 (km), where l

is the relative length of the horizontal segmenti.

9: if The distance from the current point to the destination is less than D then

10: Determine the ending point of the horizontal segment, based on the current point, the direction and

distance of the horizontal segment.

11: Add the ending point to the point list.

12: The current point is the ending point.

13: else

14: Add the destination to the point list

15: exit = true

16: end if

17: end while

18: if exit is false then

19: Add the destination to the point list

20: end if

21: {Simulate the trajectory, using the 2-D route and the given cruising altitude}

22: Algorithm 1 in Section 3.7.1 is used to simulate a 2-D route to climb to the target altitude, where the starting

point is the origin airport, and the target altitude is the given cruising altitude. The ending point of the

simulated segment is TOC.

23: Algorithm 3 in Section 3.7.7 is used to backward simulate the aircraft following a 2-D route to descend from

a starting point given altitude to an ending point, where the ending point is the destination and the starting

point is TOD whose altitude is the given cruising altitude.

24: Algorithm presented in Section 3.7.10 with algorithm flow in Figure 3.17 (which is used to simulate the aircraft

following a 2-D route to cruise from a starting point to an ending point) is used, where the starting point is

TOC and the ending point is TOD.

Figure 5.6 shows an example of the process to achieve a point list (a 2-D route)

from a chromosome presenting horizontal movement for a flight whose the dis-

tance from the origin to the destination is 700 km. The number of elements in

the chromosome is 7, which are presented in the top of the figure. An element

includes two fields: the segment direction (the deviated angle of the segment

from the direct route to the destination) and segment length. A direction can

be ±0, ±10, ±20, and ±30 (deg). A segment length can be from 1 to 5. The
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Figure 5.6: An example of simulation for chromosome representing a flight given a
cruising altitude

first 3 segments tell aircraft to fly a distance of 200 km with a deviated angle

of 30 (deg), then a distance of 100 km with a deviated angle of 20 (deg), and

then a distance of 200 km with a deviated angle of -10 (deg). These distances

are calculated as in (a). The distance of the forth segment is longer than the

distance from the current point to the destination, so this segment and the last

3 segments are not used to navigate the aircraft, and the aircraft flies directly to

the destination. The point list includes the origin, and the ending points of the

segments (which are added in sequence).

The 3-D route is obtained by dropping the time dimension from the 4-D trajec-

tory.

d) Evaluation

The objective function used to evaluate a flight is given by by Equation 5.1.

e) Mutation probability investigation and parameter settings

Mutation probability investigation

The experiment to investigate mutation probability is the same as for the GRP

problem. The percentage of flights for which each mutation probability is the best

is presented in Table 5.5. The table again shows that the mutation probability of

0.1 is the best choice in general. The percentage of flights for which the mutation

of 0.1 is the best is 44.4% while those for the mutation probabilities of 0 (local

search) and 0.6 (random search) are only 10.6% and 18.3% respectively.
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Mutation probability 0 0.1 0.2 0.3 0.4 0.5 0.6
Percentage of flights 10.6% 44.4% 35.2% 30.3% 25.4% 16.9% 18.3%

Table 5.5: Mutation probability investigation; GA for flights given cruising altitudes

User Pref. BW0 - 0% BW1 - 10% BW2 - 50% BW3 - 100%
Discomfort NaN 29 34 41
Neutral NaN 54 59 62
Time 53 53 53 54

Table 5.6: The average of generations which has the best individual, GA for flights
given cruising altitudes.

5.3.2.2 Results

a) Generation of best individuals and the minimum objective through

generations

Table 5.6 shows the average number of generations at which the best individuals

are found. In the table, the row and column headings have the same meanings as

in the previous section. The results show that GA can reach its best solution more

quickly for flights preferring to minimize discomfort than for flights preferring to

minimize time (in about 35 and 55 generations respectively).

Figure 5.7 shows the minimum objective through generations of an example flight.

The flight has the chromosome size of 20 (the average size of chromosomes). It

is given a cruising altitude and prefers to minimize time or discomfort.

Figure 5.7(a) presents the minimum objective for a flight for which the user

preference is to minimize time. As the discomfort is multiplied by a very small

number 0.000001, the minimum objective can be considered to present time ob-

jective. The figure shows that the objective values from 10 different seeds in the

final generation are around 172 minutes (only about 1 minute different from each

other). They reduce from 177 to 172 minutes overall.

Figure 5.7(b) presents the minimum objective for the flight when the user pref-

erence is to minimize discomfort. The minimum objective is less than 1.79*104

from the first generation. This means a route free of discomfort is found from
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the first generation. For the next generations, GA searches for the solution with

minimum time travelled. Since the discomfort is 0 and the user preference is

0.000001, the objective is rewritten as 0.000001*time. The minimum objective

in 5.7(b) reduces from 0.000179 to 0.000172. This means time reduces by about 7

minutes from 179 minutes to 172 minutes. As the minimum discomfort is found

from the first generation, GA will focus on searching for the minimum time so-

lution which also has minimum discomfort. This explains why the generations

where the best solutions are found for flights preferring to minimize discomfort

are smaller than the ones where the best solutions are found for flights preferring

to minimize time.

b) Time and Discomfort Objectives of UPR flights given cruising altitudes

Figure 5.8 shows the results of time and discomfort objectives of runs for 7 flight

scenarios, 4 weather scenarios and 10 differs seeds. Flights are given cruising

altitudes.

The better orders of time and discomfort objectives follow “the orders of 5”. The

discomfort order of the 7 utility allocations in Figure 5.7 is the same as that for

the GRP problem in Table 5.3. The better order of time objective follows the

same pattern, which sorts the utility allocations by column UP2 (which extremely

prefers to minimize time).

5.3.3 Conclusion

The designed GA is able to find UPR routes for UPR flights which are given

either routes or cruising altitudes. The mutation probability investigation shows

that GA can work better than local search (corresponding to the mutation rate of

0), and random search (corresponding to the mutation rate of 0.6). Furthermore

the solutions provided by the designed GA are similar to those provided by the

algorithm using control point networks, which will be presented in Chapter 6.

The algorithm can provide URP routes satisfying user preference. For example

it can provide discomfort-free routes for flights preferring to minimize discomfort,
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(a) Minimum objective through generations of an example flight; The flight is given a cruising altitude
and prefers to minimize time; Each line presents the results for one seed.
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(b) Minimum objective through generations of an example flight which is given a cruising altitude
and prefers to minimize discomfort; Each line presents the results for one seed.

Figure 5.7: Minimum objective through generations of an example flight. The flight
is given a cruising altitude and prefers to minimize time or discomfort.

Viet Van Pham October 2, 2012



3-D User Preferred Routes using Black and White Box Approaches 180

0 0.2 0.4 0.6 0.8 1
1.96

1.965

1.97

1.975

1.98

1.985

1.99
x 10

4

UA0

UA6

UA3

UA2

UA1

UA5

UA4

Percentage of flights affected by bad weather

Ti
m

e 
(m

in
ut

e)

(a) Time in different flight and weather scenarios; GA method and GAP problem.
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(b) Discomfort in different flight and weather scenarios; GA method and GAP problem.

Figure 5.8: Time and discomfort in different flight and weather scenarios; GA
method and GAP problem.
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even in the worst weather scenario which affects all the flights. This is understand-

able: as the bad weather is not very dense in reality, a discomfort free route can

always be found. Using the utility (weighted sum) can help to minimize not only one

objective but both objectives: discomfort, and time. The results show that the best

solutions for flights preferring to minimize discomfort can be found faster than the

ones for flights preferring to minimize time. The reason is the minimum discomfort

route is usually found quickly. Then GA can focus on improving the time objective

of solutions whose discomforts are minimum.

5.4 3-D User Preferred Routes using Learning Clas-

sifier System

In this section, an efficient design of a Learning Classifier System for multi-

flight navigation is presented for each problem (GRP and GAP). A classifier is

represented by a set of ordered rules, which are used to simultaneously navigate all

the flights in the airspace. Navigation of a flight is based on the relation of the

flight to factors of the air traffic environment, such as wind and bad weather. This

system continually learns and refines the rules of classifiers by a Genetic Algorithm

to discover the classifier which navigates flights with minimal time of flying and

minimal discomfort.

In this section, we do experiments to show that LCS can find good solutions

according to the objectives of time, and discomfort. Furthermore, by showing the

classifier in symbolic representation we demonstrate the decision rules used in the

classifier. The rules are transparent to the user, making this a “white box” approach

to finding UPR routes.
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5.4.1 Algorithm

The algorithm evolves a population of classifiers, using a Genetic Algorithm

similar to Algorithm 4. The difference is that an individual in these algorithms is

a classifier. The population of classifiers is evolved over time in order to find the

best classifiers for flight navigation. Each classifier is a set of normal rules and one

default rule. A normal rule includes two parts: condition and action. The condition

of a normal rule is defined by a relative wind direction with a flight direction and

a bad weather level. The relative wind direction may be either tail, cross up, cross

down, or head (it is determined as in Figure 5.11). The bad weather level may be

none, low, medium-low, medium, medium-high, or high. The action of a rule defines

the segment type (climb, cruise, descent) or the turning angle (0, ±10, ±20, ±30

(deg)) and the additional altitude or additional cruising distance an aircraft needs

to execute.

5.4.2 3-D User Preferred Routes using Learning Classifier

System for flights given 2-D routes

In this section, a Learning Classifier System is designed to find 3-D user pre-

ferred routes for the GRP problem, where flights are given 2-D (latitude, longitude)

routes and the flights can change their altitudes during cruise phase.

Section 5.4.2.1 presents the experiment design. The classifier representation is

presented first, followed by genetic operators. Then the algorithm to generate 4-D

trajectories for flights using a classifier is presented, followed by the evaluation of

a classifier. The purpose of the experiment is to show that LCS can find optimal

routes for UPR flights and it can provide solutions understandable to users.

The results are presented and discussed in Section 5.4.2.2.

5.4.2.1 Experiment design

a) Classifier Representation
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Firing

Figure 5.9: The process of choosing a rule

Rule0 Rule1 Rulei…... Rulen-1…... Default rule

If Condition Then Action Action

If (U = u) and (BWL = bwl) and (RWD = rwd)

Then Action = act 
act

Climb, Cruise, Descend

Figure 5.10: Classifier for flights are given routes

In a learning classifier system, the process of choosing a rule in a set of rules is

described in Figure 5.9. The “Matching” block finds a sub-set of the rules in the

set that satisfy a given condition. The rules in the sub-set can conflict with each

other. This requires some techniques to choose which rule for use. This problem

is solved by the “Conflict Resolution” block. The action of the chosen rule is

then executed in the “Firing” block. In this thesis, we design a classifier as a set

of ordered rules. When there are a number of matched rules in a classifier, the

first matching rule in the order is used.

A classifier with a set of normal rules and one default rule is presented in Fig-

ure 5.10. One normal rule has two parts: condition and action. The default rule

does not have a condition part, it has an action part only.

Table 5.7 lists the parameters (condition and action) of a normal rule and their

values, where U is the utility, BWL is the bad weather level, RWD is the relative

wind direction, and ACT is the action. This rule is interpreted as “if (U = u)

and (BWL = bwl) and (RWD = rwd) then ACT = act”.

• u can be 0.000001, 0.5, or 0.999999, representing time, neutral, and discom-

fort preferences respectively (as presented in Section 3.9.2).

• bwl is an integer from 0 to 5, representing none, low, medium − low,

medium, medium− high, or high respectively.
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Parameter U BWL RWD ACT
Value u bwl rwd act

Table 5.7: Rule parameters and values

Cross up

Cross up Cross down

Cross down

Head

Tail
Flight Direction

Wind Direction

10 deg

80 deg

Figure 5.11: Relative Wind Direction with Flight Direction

• rwd is an integer from 0 to 4, representing none, tail, crossup, crossdown,

or head respectively (see Figure 5.11).

• act tells aircraft to climb, or descend a predefined additional altitude, or

cruise a predefined distance.

The parameters we used are: the predefined additional altitude of a climb/descent

segment is 1000 feet, the predefined distance of a cruise segment is 100 km, the

number of rules in one classifier is 51, including 50 normal rules and one default

rule.

b) Genetic Operators

Tournament selection is used to select classifiers. The crossover operator crosses

two selected classifiers parent1 and parent2 to create two new classifiers child1

and child2. Firstly, it generates a random number rand. If rand is less than

the predefined crossover probability pcross, the algorithm will use the cross over

point site generated randomly from 0 to nrule−1 to cross parent1 and parent2.

If rand is higher than pcross, child1 and child2 will be the clone of parent1 and

parent2 respectively.

In general, the mutation operator works similarly to that of the Genetic Algo-

rithm for the GRP problem. In order to mutate a rule, an integer number mp

from 0 to 3 is generated randomly, which indicates the mutated part of the rule.

If mp is 0, the utility of the rule is mutated. If mp is 1, the bad weather level of
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the rule is mutated. If mp is 2, the relative wind direction of the rule is mutated.

If mp is 3, the action of the rule is mutated. The mutation operator also applies

to default rules.

c) Generating 4-D trajectories

A classifier is evaluated by first obtaining all the 4-D trajectories of flights using

the classifier through simulation.

A flight starts from its origin. In order to determine the segment for the flight to

move, firstly the rule to navigate the flight is chosen. If the flight at the current

state satisfies a normal rule in the classifier, this rule is chosen to navigate the

flight, otherwise the action of the default rule is used. The action can tell the

flight to climb, cruise, or descend. The first segment must be a climb segment.

The execution of an action makes a climb, cruise, or descent segment. The

additional altitude of a climb and descent segment, and the distance of a cruise

segment are predefined parameters as presented above. The algorithm to simulate

the series of segments to obtain the 4-D trajectory is similar to that with two

parts in Algorithms 5 and 6.

The 3-D routes are obtained by removing the time dimension from the 4-D sim-

ulated trajectories.

d) Evaluation

The objective of the simulated route is calculated by equation 5.1. The classifier’s

fitness is the sum of all the objectives of flights.

5.4.2.2 Results

a) Generation of best individuals and the minimum objective through

generations

Table 5.8 shows the average number of generations at which the best individuals

are found. The cells at column “BW0 - 0%” and rows from “UA0” to “UA6” are
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Utility Allocation BW0 - 0% BW1 - 10% BW2 - 50% BW3 - 100%
UA0 NaN 37 55 56
UA1 NaN 69 68 70
UA2 NaN 72 67 70
UA3 NaN 11 40 64
UA4 NaN 74 72 65
UA5 NaN 76 82 63
UA6 1 20 63 58

Table 5.8: The average of generations where the best individual is found; LCS for
flights given routes.

“NaN”, as we chose only one flight scenario “UA6” on which all flights prefer to

minimize time to experiment with weather scenario “BW0 - 0%”.

The results show that LCS can reach its best solution quickly for the simplest

flight scenarios: “UA0”, and “UA6” are faster than other flight scenarios. In

these flight scenarios, all flights have the same user preference (to minimize time

or discomfort). In the other flight scenarios, both user preferences are considered.

In the no-bad weather scenarios, the best classifier is found in the first generation

as shown at the cell of column “BW0 - 0%” and row “UA6”. In this classifier,

the action of rules, which are used to navigate flights, are climb or cruise. This

means flights tend to reach high altitude by climbing. Then they cruise to TOD

and continuously descend to the destination.

Figures 5.12(a) and 5.12(b) show the minimum objective through the generations

for flight scenarios UA6, UA0.

Figure 5.12(a) (UA6) shows that LCS can reduce time travelled by about 14

minutes from 19382 (in the first generation) to 19368 minutes (in the last gen-

eration). Although LCS can minimize time for user preferred routes, the best

classifier is not significantly improved from the first generation to the last gen-

eration. This is explained as follows. Given a 2-D fixed route, what a flight

can do to optimise time is to choose flight levels that has favorable wind and

at which it can perform best with its aircraft performance. However winds at

flight levels where aircraft can perform well (normally at higher altitudes), are

not much different. Therefore the relative wind direction condition of a rule does
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not affect much on the time objective. That is why the time objective is not

improved significantly, while classifiers in general and the relative wind direction

conditions are evolved.

However LCS for discomfort minimization can be improved noticeably. Fig-

ure 5.12(b) (UA0) shows that LCS can help to reduce discomfort from 1320

to 1140. This means LCS can reduce the time period flights pass through bad

weather areas by 60 minutes from about 440 to 380 minutes if all the bad weather

levels are 3 (the average bad weather level).

b) Time and Discomfort Objectives of UPR flights given routes

Figure 5.13 shows the results of time and discomfort objectives of runs for the

combinations of 7 flight scenarios, 4 weather scenarios, and 10 different seeds.

Flights are given routes.

Figure 5.13 demonstrates that the times and discomforts of the best solutions

provided by LCS from different seeds for a flight-weather scenario are very near

to each other. LCS can provide the same optimal time in all 10 runs for flight

scenario UA6 (all flights prefer to minimize time). The flight scenario UA0,

where all flights prefer to minimize discomfort has smallest discomfort and largest

time, while the flight scenario UA6, where all flights prefer to minimize time has

smallest time and largest discomfort.

However, Figure 5.13(b) shows that the LCS cannot help flights to avoid all the

bad weather areas as algorithm using GA can do. This happens in all weather

scenarios with bad weather cells.

The better orders of time and discomfort objectives in Figures 5.13(a) and 5.13(b)

follow “the orders of 5”. The discomfort order for the 7 utility allocations in

Figure 5.7 is the same as in Table 5.3. Figure 5.13(a) shows that LCS can

optimise well for the neutral utility allocations UA2, and UA3.

c) An example classifier

Table 5.9 presents the best classifier for the bad weather scenario affecting 50%
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(a) Minimum objective through generations; Flights are given routes and prefer to minimize time;
Each line presents the results for one seed.
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(b) Minimum objective through generations; Flights are given routes and prefer to minimize discom-
fort; Each line presents the results for one seed.

Figure 5.12: Minimum objective through generations; Flights are given routes and
prefer to minimize discomfort or time.
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(a) Time in different flight and weather scenarios; LCS method and GRP problem.
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(b) Discomfort in different flight and weather scenarios; LCS method and GRP problem.

Figure 5.13: Time and discomfort in different flight and weather scenarios; LCS
method and GRP problem.
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of flights and the flight scenario UA2. In this flight scenario, the 3 types of

preferences (discomfort, neutral, and time) have the same number of flights (33%

of flights). In the table “Rule ID” is the index of a rule, “Usage” is the number

of times a rule is used, and “Content” is the content of a rule. Since the classifier

is a set of ordered rules, rules whose conditions are the same to a previous rule

are removed from the classifier. That is why the classifier does not present all 50

normal rules.

Generally the action to climb is used the most: it is used in 717 times, while those

for cruise and descend are used 238 and 166 times respectively in the classifier.

This means the aircraft tend to reach high altitude to avoid bad weather as well

as to achieve high ground speed. The number of climb actions is higher than

the number of descent actions, as continuous descent is applied from TOD to

destination.

From the classifier we can also see a number of rules using tactical maneuvers to

avoid unfavorable weather or to take advantage of favorable weather condition.

For example, rule 28: “IF U = time AND BWL = none AND RWD = cross

up THEN cruise” and rule 6: “IF U = time AND BWL = none AND RWD =

tail THEN cruise”: these rules mean an aircraft will keep the current altitude

(cruise) if the aircraft prefers to minimize time, there is no bad weather, and

the favorable wind helps to increase the ground speed of the aircraft (cross up

or tail wind). Rule 40 has the content of “IF U = comfort AND BWL = high

AND RWD = cross up THEN descend”. This rule means if an aircraft prefers to

minimize discomfort and the bad weather level is high, the aircraft will change its

altitude to avoid the bad weather. The other rules work as strategic planning.

By using these rules aircraft can reach favorable weather and wind to achieve

global objective.

Table 5.10 shows the frequency of using commands: climb, cruise, and descend

for flights with comfort, neutral, and time preferences. It shows that flights with

comfort preference execute a lot of climb and descend commands, as these com-

mands help them to avoid the bad weather areas. Flights with neutral preference
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Rule ID Usage Content
0 0 IF U = neutral AND BWL = med-high AND RWD = none THEN descend
1 0 IF U = neutral AND BWL = low AND RWD = cross down THEN cruise
2 0 IF U = time AND BWL = med-low AND RWD = none THEN climb
3 62 IF U = time AND BWL = none AND RWD = cross down THEN climb
4 2 IF U = time AND BWL = low AND RWD = cross up THEN descend
5 0 IF U = time AND BWL = med-high AND RWD = tail THEN descend
6 24 IF U = time AND BWL = none AND RWD = tail THEN cruise
7 0 IF U = time AND BWL = med-low AND RWD = cross down THEN descend
8 2 IF U = neutral AND BWL = med-low AND RWD = cross up THEN cruise
9 47 IF U = neutral AND BWL = none AND RWD = head THEN descend
10 0 IF U = neutral AND BWL = low AND RWD = head THEN descend
11 1 IF U = time AND BWL = med-high AND RWD = cross up THEN descend
12 42 IF U = comfort AND BWL = none AND RWD = none THEN climb
13 0 IF U = comfort AND BWL = medium AND RWD = cross down THEN descend
14 0 IF U = comfort AND BWL = medium AND RWD = head THEN cruise
15 0 IF U = time AND BWL = med-low AND RWD = head THEN climb
16 0 IF U = neutral AND BWL = med-low AND RWD = cross down THEN descend
17 0 IF U = time AND BWL = medium AND RWD = none THEN cruise
18 3 IF U = comfort AND BWL = med-high AND RWD = cross up THEN cruise
21 0 IF U = time AND BWL = high AND RWD = head THEN descend
22 147 IF U = neutral AND BWL = none AND RWD = cross down THEN climb
23 0 IF U = comfort AND BWL = low AND RWD = none THEN climb
25 0 IF U = time AND BWL = none AND RWD = none THEN cruise
26 1 IF U = neutral AND BWL = medium AND RWD = cross up THEN cruise
27 25 IF U = neutral AND BWL = none AND RWD = tail THEN cruise
28 183 IF U = time AND BWL = none AND RWD = cross up THEN cruise
29 0 IF U = comfort AND BWL = medium AND RWD = none THEN cruise
30 0 IF U = time AND BWL = high AND RWD = cross down THEN descend
31 55 IF U = comfort AND BWL = none AND RWD = tail THEN climb
32 0 IF U = time AND BWL = medium AND RWD = tail THEN climb
39 0 IF U = time AND BWL = low AND RWD = head THEN climb
40 108 IF U = comfort AND BWL = high AND RWD = cross up THEN descend
41 0 IF U = time AND BWL = low AND RWD = cross down THEN descend
44 0 IF U = comfort AND BWL = med-low AND RWD = head THEN descend
45 8 IF U = time AND BWL = med-low AND RWD = cross up THEN descend
48 0 IF U = neutral AND BWL = medium AND RWD = head THEN descend
default 411 climb

Table 5.9: An example of classifier for flights given routes
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Climb Cruise Descend
Comfort 46.63% 1.44% 51.92%
Neutral 66.22% 12.61% 21.17%
Time 22.14% 73.93% 3.93%

Table 5.10: Frequency of using commands for flights given cruising altitudes

do not climb and descend as much as flights preferring comfort. Flights with time

preference do not make many climb and descend segments. Most of their com-

mands are cruise commands. This means that these flights after climbing to

optimal altitudes tend to keep cruising until approach phase.

5.4.2.3 Summary

The designed LCS for the GRP successfully discovered rules in all runs to opti-

mise the system performance. LCS can help to optimise both discomfort and time.

The better orders of discomfort and time objectives for different utility allocations

are reasonable. The discomfort objective can be improved significantly through gen-

erations. The time objective is not improved much though generations due to the

character of the problem, where the 2-D routes of flights are fixed. A number of

discovered rules in the best classifier for tactical maneuvers agree with what happens

in reality.

5.4.3 3-D User Preferred Routes using Learning Classifier

System for flights given cruising altitudes

In this section a Learning Classifier System is designed to find 3-D user preferred

routes for the GAP, where flights are given cruising altitudes and flights do not

change their altitude during cruise phase.

The experiment and results are presented the same as those for the GRP prob-

lem in Section 5.4.2.
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Rule0 Rule1 Rulei…... Rulen-1…... Default rule

If Condition Then Action Action

If (U = u) and (BWL = bwl) and (RWD = rwd)

Then Action = act 
act

Turn 0, ±10,±20,±30 deg

Figure 5.14: Classifier for flights given cruising altitudes

5.4.3.1 Experiment design

a) Classifier Representation

A classifier is a set of ordered rules including normal rules and one default rule,

which are similar to those of a classifier designing for GRP. Figure 5.14 shows

the classifier structure. The classifier structure is similar to that for the GRP

problem in Section 5.4.2.1. The one difference is in the action of rule. The action

tells an aircraft the direction to move horizontally. ACT is defined by a turn

angle of -30, -20, -10, 0, +10, +20, or +30 (deg) (which is represented by an

integer number 0, 1, 2, 3, 4, 5, or 6), and a predefined length of a segment. The

turn angle of 0 (deg) means an aircraft flies straight from its current point to its

destination. The turn angle less than 0 (deg) means an aircraft turns left. The

turn angle greater than 0 (deg) means an aircraft turns right.

b) Genetic Operators

Genetic operators are the same as those for the GRP problem in Section 5.4.2.1.

c) Generation of 4-D trajectories

In order to obtain the 4-D trajectory of a flight, firstly a set of horizontal seg-

ments is determined, using the classifier. The flight starts from its origin and

it is considered as the current point of the aircraft. If the distance from the

current point of the aircraft to the destination is less than the given distance of

a horizontal segment, the aircraft will fly directly to the destination. Otherwise,

the rule to navigate the flight is chosen. If the flight at the current state satisfies
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Utility Allocation BW0 - 0% BW1 - 10% BW2 - 50% BW3 - 100%
UA0 NaN 5 62 66
UA1 NaN 79 79 76
UA2 NaN 77 75 65
UA3 NaN 47 78 87
UA4 NaN 56 80 76
UA5 NaN 73 61 77
UA6 2 3 67 68

Table 5.11: The average of generations which has the best individual; LCS for flights
given cruising altitudes.

a normal rule in the classifier, this rule is chosen to navigate the flight, otherwise

the action of the default rule is used. At each step, a horizontal segment, which

is a direct segment to the destination or a horizontal segment indicated in the

chosen rule is used to navigate the flight. The algorithm to construct and sim-

ulate the series of horizontal segments to obtain the 4-D trajectory is similar to

Algorithm 7.

d) Evaluation

As in Section 5.4.2.1, the objective of the simulated trajectory is calculated by

Equation 5.1. A classifier’s fitness is the sum of all the objectives of flights.

5.4.3.2 Results

a) Generation of best individuals and the minimum objective through

generations

Table 5.11 shows the average number of generations at which the best individuals

are found. As with the GRP problem, LCS can reach its best solution quickly

for the simplest flight scenarios: “UA0”, and “UA6” are faster than other flight

scenarios. In the no-bad weather scenario “BW0 - 0%”, the best classifier is found

in the second generation as shown at the cell of column “BW0 - 0%” column and

row “UA6”. In this classifier, the action of all rules is to fly straight. This means

aircraft fly great circle routes between their origins and destinations.
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Figures 5.15(a) and 5.15(b) show the minimum objective through generations for

flight scenarios UA6 and UA0 respectively.

Figure 5.12(a) (UA6) shows that LCS can reduce time travelled by about 120

minutes, from 19800 to 19680 minutes. Although the improvement (120 minutes)

is still small, it is significantly bigger than for the GRP problem (only 14 minutes).

This is explained as follows. Given a cruising altitude, when a flight chooses

different routes to fly, the wind impact can be noticeably different as the results

of changing wind directions. Therefore the relative wind direction condition of a

rule affects the time objective.

Figure 5.15(b) (UA0) shows that LCS can help to reduce discomfort from 250 to

100. This means the algorithm can reduce the time period flights pass through

bad weather areas by 50 minutes from about 83 to 33 minutes, if all the bad

weather levels are 3 (the average bad weather level).

b) Time and Discomfort Objectives of UPR flights given cruising altitudes

Figure 5.16 shows the results of time and discomfort objectives of runs for the

combinations of 7 flight scenarios, 4 weather scenarios, and 10 different seeds.

Flights are given cruising altitudes.

Figure 5.16 demonstrates that the times and discomforts of the best solutions

provided by LCS from different seeds for each flight-weather scenario are very

near to each other. LCS can provide the same optimal time for flight scenario

UA6 (all flights prefer to minimize time). The flight scenario UA0, where all

flights prefer to minimize discomfort, has smallest discomfort and largest time,

while the flight scenario UA6, where all flights prefer to minimize time, has with

smallest time and largest discomfort.

However, Figure 5.16(b) shows that the LCS cannot help flights to avoid all

the bad weather areas as the algorithms using GA can do. This happens in all

weather scenarios with bad weather cells.

Figures 5.16(a) and 5.16(b) show that the time and discomfort orders follow “the

orders of 5”. The discomfort order for the 7 utility allocations in Figure 5.16(b)
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(a) Minimum objective through generations; Flights are given cruising altitudes and prefer to minimize
time; Each line presents the results for one seed.
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(b) Minimum objective through generations; Flights are given cruising altitudes and prefer to minimize
discomfort; Each line presents the results for one seed.

Figure 5.15: Minimum objective through generations. Flights are given cruising
altitudes and prefer to minimize discomfort or time

Viet Van Pham October 2, 2012



3-D User Preferred Routes using Black and White Box Approaches 197

is the same to that in Table 5.3. The time order for the 7 utility allocations in

Figure 5.16(a) is similar to that in Table 5.4 with a bit overlap between UA3 and

UA5.

c) An example classifier

Table 5.12 presents the best classifier for the bad weather scenario affecting 50%

of flights and the flight scenario UA2. The action of flying straight is used the

most. Specifically the action of flying straight is used 776 times, while those for

turning left 30, 20, and 10 (deg) and turning right 10, 20, and 30 (deg) are used

459, 407, 12, 28, 21, and 94 times respectively in the classifier.

From the classifier we can see a rule using a tactical maneuver to avoid unfa-

vorable weather condition. The rule is “IF U = time AND BWL = none AND

RWD = head THEN turn right 10”. This means if an aircraft prefers to minimize

time, there is no bad weather, and the wind is head wind, the aircraft will turn

right to avoid the head wind. The other rules are for strategic maneuvers. By

following the rules the aircraft will reach favorable weather and wind conditions

and can then apply straight flying segments to their destination. This can help

to achieve the global objective.

Table 5.13 summarizes the frequency of using commands: Turn ±10, Turn ±20,

and Turn ±30 (deg), for flights with comfort, neutral, and time preferences.

It can be seen that flights preferring to minimize discomfort tend to make the

largest turns (of 30 (deg)), to avoid bad weather areas. The flights preferring

to minimize time tend to make small turns (of 10 (deg)), so that they can take

the advantage of favorable wind and also avoid making large deviations from

direct routes (which are the shortest). The flights with neutral preference tend

to choose the medium turn (of 20 (deg)) so they can avoid bad weather areas

while simultaneously minimizing time traveled.
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(a) Time in different flight and weather scenarios; LCS method and GAP problem.
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(b) Discomfort in different flight and weather scenarios; LCS method and GAP problem.

Figure 5.16: Time and discomfort in different flight and weather scenarios; LCS
method and GAP problem.
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Rule ID Usage Content
0 5 IF U = time AND BWL = none AND RWD = none THEN turn left 10
1 1 IF U = neutral AND BWL = med-low AND RWD = cross up THEN turn left 30
2 0 IF U = neutral AND BWL = medium AND RWD = cross up THEN turn left 20
4 0 IF U = comfort AND BWL = med-high AND RWD = none THEN fly straight
5 0 IF U = comfort AND BWL = med-low AND RWD = none THEN turn right 20
6 0 IF U = neutral AND BWL = low AND RWD = tail THEN turn right 30
7 28 IF U = time AND BWL = none AND RWD = head THEN turn right 10
9 0 IF U = neutral AND BWL = low AND RWD = head THEN turn right 20
10 1 IF U = time AND BWL = low AND RWD = tail THEN turn right 20
11 16 IF U = neutral AND BWL = none AND RWD = head THEN turn right 20
14 0 IF U = time AND BWL = med-high AND RWD = none THEN turn left 20
15 0 IF U = neutral AND BWL = high AND RWD = cross down THEN fly straight
16 0 IF U = time AND BWL = med-high AND RWD = tail THEN turn left 20
18 407 IF U = neutral AND BWL = none AND RWD = cross up THEN turn left 20
19 457 IF U = comfort AND BWL = none AND RWD = cross up THEN turn left 30
20 0 IF U = neutral AND BWL = med-low AND RWD = head THEN turn right 20
22 0 IF U = neutral AND BWL = med-high AND RWD = cross up THEN fly straight
24 0 IF U = comfort AND BWL = medium AND RWD = cross down THEN turn left 30
25 4 IF U = time AND BWL = high AND RWD = cross up THEN turn right 30
26 4 IF U = time AND BWL = med-high AND RWD = cross up THEN turn right 20
28 0 IF U = comfort AND BWL = medium AND RWD = head THEN turn right 10
29 1 IF U = comfort AND BWL = low AND RWD = cross up THEN turn left 30
30 0 IF U = neutral AND BWL = low AND RWD = none THEN turn left 20
31 0 IF U = time AND BWL = medium AND RWD = tail THEN turn left 20
33 90 IF U = comfort AND BWL = none AND RWD = tail THEN turn right 30
34 0 IF U = neutral AND BWL = high AND RWD = tail THEN turn right 30
36 0 IF U = neutral AND BWL = medium AND RWD = cross down THEN turn right 20
37 0 IF U = time AND BWL = med-low AND RWD = cross down THEN turn right 30
38 0 IF U = comfort AND BWL = med-low AND RWD = head THEN fly straight
39 0 IF U = comfort AND BWL = med-high AND RWD = cross down THEN turn right 30
40 0 IF U = comfort AND BWL = high AND RWD = head THEN turn right 10
41 0 IF U = time AND BWL = medium AND RWD = cross up THEN fly straight
42 0 IF U = time AND BWL = med-high AND RWD = head THEN turn left 30
44 0 IF U = comfort AND BWL = med-low AND RWD = cross down THEN turn left 20
45 7 IF U = neutral AND BWL = none AND RWD = none THEN turn left 10
47 0 IF U = comfort AND BWL = low AND RWD = head THEN fly straight
48 0 IF U = time AND BWL = high AND RWD = tail THEN turn left 10
50 776 fly straight

Table 5.12: An example of classifier for flights given cruising altitudes

Turn ±10 Turn ±20 Turn ±30
Comfort 0.00% 0.00% 100.00%
Neutral 1.62% 98.14% 0.23%
Time 78.57% 11.90% 9.52%

Table 5.13: Frequency of using commands for flights given cruising altitudes
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5.4.4 Conclusion

The designed LCS for the GRP and GAP problems successfully discovered

rules in all runs to optimise the system performance. LCS can help to optimise both

discomfort and time.

Although LCS cannot provide solutions as good as “black box” algorithms using

GA, its solution is transparent to users, and reusable. LCS is also able to discover

rules which can be applied to operations in air traffic control. Some of these rules

may be new to ATC. We found a number of rules for tactical maneuver from the

best classifiers. These rules agree with what happens in reality.

In addition, the discovered classifiers can be used to validate or generalize the

results from “black box” algorithms. By using GA, we can find the best 3-D route

for flights, but we may not have a general idea about the 3-D routes. LCS can help

us to have a general view about the routes through the rules in the best classifier.

For example, when we find UPR routes in no-wind and no-bad weather conditions

by the algorithms using GA, it is difficult for us to have a general view of the best

route. However LCS algorithm can find rules which can provide us with a better

view. For example, two rules found here are “IF U = time AND BWL = none and

RWD = none THEN climb” for flights given routes and “IF U = time AND BWL

= none and RWD = none THEN fly straight” for flights given cruising altitudes.

From these rules we can easily understand that in the given weather condition,

flights which are given routes will climb as high as possible then cruise to TOD and

continuously descend to destinations, and flights that are given cruising altitudes

will fly their great circle route from origins to destinations.

5.5 Comparison of black and white box approaches

In general, the running times of GA (the black box approach) and LCS (the

white box approach) are similar. GA can provide better UPR routes than LCS.

However there is no explanation for UPR routes provided by GA, while LCS provides
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a set of ordered rules that are transparent to users and reusable. The departure time

adjustments to resolve conflicts among UPR flights themselves and with non-UPR

flights in the two methods are also almost the same. Details of comparison are

presented in following sections.

5.5.1 Running Time

The experiments were run on HP Workstation Z400. The CPU type is Intel

Xeon Dual-Core W3505 with the speed of 2.53 GHz.

Table 5.14 presents the running times to generate 142 3-D UPR routes by 2

methods using GA, and LCS for the two problems: where flights are given routes

(GRP) and cruising altitudes (GAP). Time was measured for the weather scenario

affecting 50% of UPR flights, and the flight scenario with the same user preference

allocation for the 3 preferences (time, “neutral”, and comfort).

All methods are designed to run in parallel. The running times are presented

when the methods run in 2 computation nodes. The programs corresponding to the

methods can run faster if more computation nodes are provided. For methods using

GA, when a computation node is free, it will be used to find a 3-D UPR-route for a

flight that hasn’t yet got a UPR route. For methods using LCS, when a computation

node is free, it will be used to evaluate a classifier in the population of classifiers in

the current generation. Here, I use combined parallel work-sharing constructs [137]

to assign these independent works to computation nodes. Particularly, the parallel

for construct in OpenMP [137] is used.

The table shows that solving the GRP problem is a bit faster than solving the

GAP problem. The running times of GA and LCS are similar. In terms of practical

feasibility, the running times of GA and LCS are both around 125 minutes. If 8

computation nodes are available, which is easily feasible with current technology,

both GA and LCS will take about 30 minutes. These running times are acceptable

in UPR strategic planning.

In real time mode or in a decentralized routing environment (where the flight
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GA LCS
GRP 123.00 121.90
GAP 136.84 133.72

Table 5.14: Running Times (minutes) for combinations of methods and problems.

crew can choose the flight route without or with minimal support from the ground),

a UPR application is installed in an aircraft so that pilot can use it to choose their

preferred route. The methods now need to find UPR for only one flight, so GA will

take only about 2 minutes. However GA can be designed to run in parallel while it

find UPR for one flight, along the lines of the design of LCS, where an individual

in a population is assigned to a computation node for evaluation when the node is

free. With this design, GA can find the UPR route for a flight in about 13 seconds

by using 8 computation nodes in our experimental environment.

After having found all UPR routes for UPR flights, conflicts between these

routes, and conflicts with non-UPR routes, are detected and resolved. The running

time for conflict detection and resolution for UPR flights with each other and with

non-UPR flights takes only about 30 seconds.

5.5.2 Quality of UPR routes

Table 5.15 presents a comparison of UPR methods with each other and with

the original flight plans in two flight scenarios. The first flight scenario is UA6

with all flights preferring to minimize time. The second is UA0 with all flights

preferring to minimize discomfort. The bad weather scenario that affects all the

UPR flights is used. “M & P” is the combinations of a method which uses GA, or

LCS and a problem which is GRP, or GAP. “FS” is flight scenarios. “Pref Time”

and “Pref DC” correspond to flight scenarios UA6 and UA0. “Value” is the values

of time, fuel, or discomfort objective depending on which column (“Time”, “Fuel”,

and “Discomfort”) it belongs to. “%Diff” is the difference in percentage between the

objectives provided by UPR methods and the ones provided by the original flight

plans.
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Time Fuel Discomfort
M & P FS Value %Diff Value %Diff Value %Diff

F Plan F Plan 20116.9 0.00% 986958.1 0.00% 4558.7 0.00%

GA - GRP
Pref Time 18620.2 -7.44% 897415.8 -9.07% 3042.4 -33.26%
Pref DC 18845.2 -6.32% 870110.2 -11.84% 14.9 -99.67%

GA - GAP
Pref Time 19651.6 -2.31% 968259.9 -1.89% 4928.6 8.11%
Pref DC 19853.5 -1.31% 971931.1 -1.52% 22.2 -99.51%

LCS - GRP
Pref Time 19349.0 -3.82% 976316.4 -1.08% 4973.9 9.11%
Pref DC 21252.8 5.65% 892173.6 -9.60% 2534.2 -44.41%

LCS - GAP
Pref Time 19670.1 -2.22% 965300.3 -2.19% 5320.9 16.72%
Pref DC 22392.6 11.31% 1086769.0 10.11% 855.5 -81.23%

Table 5.15: Time, Fuel, and Discomfort of the original flight plans and UPR flight
routes in different flight scenarios.

In general, GA can provide solutions with higher quality than LCS. For each

flight scenario and each combination of a problem and a method, all the objec-

tive values of solutions provided by LCS are higher (worse) than those of solutions

provided by GA.

The table also shows that when the flight scenario is “Pref DC”, GA can reduce

the discomfort objective by more than 95% in comparison with the original flight

plans, while LCS can reduce discomfort by about 44% and 81% for problems GRP

and GAP respectively; when the flight scenario is “Pref Time”, the time objective

can be reduced by more than 2% in every problem-method combination and the

fuel burn can be reduced by about 2% except for the combination of “LCS - GRP”

with a 1.08% reduction. The reduction of 2% fuel burn results in a fuel saving of

about 150 kg per flight in average. This reduction is normal with the normal wind

conditions as presented in other studies (e.g in [98]).

It can be seen that in the problem where flights are given cruising altitudes

(GAP), when the time travelled is high the fuel burn is also high. This is because

fuel flow for an aircraft is the same at an altitude and the cruising phase in the given

constant cruising altitude accounts for most of the route of the aircraft.

However, this does not apply in the problem where flights are given routes

(GRP). In some cases when the time travelled is high, the fuel is low because of the

trade off between fuel burn and ground speed while an aircraft changes its altitude.
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Dept Time Devi-
ation (min)

Conflict with
UPR

Conflict with
Non-UPR

GA
GRP 63 40 36
GAP 65 41 37

LCS
GRP 64 39 38
GAP 63 39 37

Table 5.16: Departure Time Deviation and Conflicts between UPR flights with UPR
and Non-UPR flights.

5.5.3 Conflict Detection and Resolution

After UPR flights have UPR routes, KB3D is applied to detect conflicts between

these routes with each other and with Non-UPR routes. Conflicts are then resolved

by departure time adjustment.

Depending on the flight and weather scenarios, the total deviation of departure

time from the original ones across all 142 UPR flights is from 63 to 65 minutes.

The maximum departure time deviation of a flight is 2 minutes. On average a flight

only needs to adjust its departure times by less than 1 minute. Table 5.16 presents

the departure time deviation and the number of conflicts between UPR flights with

UPR and Non-UPR flights. “Dept Time Deviation (min)” is the total departure

time deviation of all the flights in minutes; “UPR conflict” is the number of conflicts

between UPR flights with each other; “Non-UPR conflict” is the number of conflicts

between UPR flights and Non-UPR flights; “GA” is the methods using Genetic

Algorithms; “LCS” is the methods using Learning Classifier Systems; “GRP” is the

problem to find UPR routes for flights given routes; “GAP” is the problem to find

UPR routes for flights given cruising altitudes. The figures in the table are from the

flight scenario with the utility allocation UA0 where all flights prefer to minimize

discomfort; and the weather scenario affecting all the flights.
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5.6 Conclusion

In this chapter, we propose methodologies to solve UPR problems by both black

and white box approaches. The experiments show that both approaches are able

to find good solutions. Though the solutions provided by the white box approaches

are not as good as the black box approaches, their solutions are understandable to

users. The running times and the departure time adjustments for conflict resolution

of the both approaches are almost the same.

However both these heuristic approaches are quite time consuming. Depend-

ing on the computers available, they may not work well in real time or tactical

route planning conditions. In addition, in the stage of transition from a fixed route

structure to a free route structure, where the support from air traffic controllers are

still needed, the user preferred routes provided by these approaches may be difficult

for air traffic controllers to control as they do not relate to any structure. In the

next chapter, we will propose models for generating dynamic networks. Then user

preferred routes can be obtained from these networks. This approach can provide

flexible and best routes for users, and also support air traffic controllers in control-

ling aircraft through the relation between the routes and the network structures

(though they are dynamic).
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3-D User Preferred Routes using Dynamic Network of Control Points

Chapter 6

3-D User Preferred Routes using

Dynamic Network of Control

Points

6.1 Overview

In this chapter, we propose methods to solve both GRP and GAP problems,

based on dynamically generated networks of control points. These methods are

called NetM methods. In these methods, algorithms to generate a network of control

points for a flight, which is given a route or a cruising altitude in GRP and GAP

problems respectively, are proposed. The validated aircraft performance is used to

determine nodes (control points) and weights (Distance, Time, Discomfort, Fuel)

for a network. In order to find user preferred routes for all the flights, a network

is generated for each. A network can then be used to find the 3-D user preferred

route for a flight efficiently by a shortest path algorithm. The conflicts between

user preferred routes are then detected and resolved by the model, presented in

Section 3.8.

There has been research constructing networks for finding optimal aircraft tra-

jectory/route [41, 133, 128, 20, 202, 201, 111]. There are many different ways to
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construct a network. Some divide the airspace to a grid of cells and each cell is con-

sidered as a node [133]. Other use available waypoints to construct a network [41].

However, the network is usually constructed in 2-D [41, 133] or does not use real

aircraft performance [41, 133, 128] or does not consider wind factor in calculating

weights of time, fuel and so on.

In this chapter we propose innovative network models and algorithms to gen-

erate these dynamic networks of 3-D control points using real aircraft performance

and real wind data. The 3-D network can be also considered as a 4-D network as

the weight of time travelled is determined in links of the network.

The advantage of the generated network is that a network is generated for a

combination of an origin, a destination, an aircraft type, and a weather environment,

but it can be used to find UPR routes for all the flights having this combination

of information. For example, flights with different user preferences or different de-

parture times can use the same network to find their optimal routes. A network is

generated in one time but it can be used in many times. A network generated is

successful to find UPR routes.

The remainder of this chapter is organized as follows. Sections 6.2 and 6.3

present network models, and algorithms for generating a network for a flight given

a 2-D route or given a cruising altitude, and algorithm for finding UPR route based

on the generated network. Section 6.4 proposes methods to optimise aircraft route

both vertically and horizontally, and analyses the difference among methods using

network models. Section 6.5 compares methods using networks with those using GA

and LCS, and proposes a systematic use of these methods in air traffic management

operation. Section 6.6 analyses the environmental impact of UPR routes using

different methods. Conclusions are presented in Section 6.7.
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6.2 3-D User Preferred Routes using Dynamic

Network of Control Points for a flight given a

2-D route

In this section, NetM for GRP problem is designed. We propose an algorithm

to generate a network of control points for a flight (in GRP problem), which is given

a 2-D (latitude, longitude) route and is allowed to change its altitude during cruise

phase. Then Dijkstra’s algorithm is used to find a 3-D (latitude, longitude, altitude)

user preferred route for the flight.

6.2.1 Network Generation

The problem is given a flight with specified aircraft performance and a 2-D

(latitude, longitude) route. The aircraft performance is given in BADA data [135].

The route is a series of 2-D (latitude, longitude) waypoints from origin to destination.

The task is to generate a network of control points for the flight.

We define that 2-D (latitude, longitude) grid waypoints are points belonging to

great circle routes between two consecutive waypoints of the 2-D route. The first

grid waypoint of a great circle route between two waypoints is the first waypoint.

Each succeeding grid waypoint is a constant distance (a predefined value) from the

previous one. The last grid waypoint is the second waypoint.

The nodes of a network can belong to one of six categories:

1. Grid node: Grid nodes are 3-D (latitude, longitude, altitude) points. The
latitude and longitude of a grid node are the ones of a grid waypoint and its
altitude is one of the standard flight levels.

2. Climb node: Climb nodes are ending points where the aircraft climbs from
grid nodes in a flight level to the next upper flight level.

3. Descent node: Descent nodes are ending points where the aircraft descends
from grid nodes in a flight level to the next lower flight level.

4. TOC (Top Of Climb) node: TOC nodes are ending points where the aircraft
climbs from origin to flight levels.
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5. TOD (Top Of Descent) node: TOD nodes are starting points where the aircraft
descends to the destination airport.

6. Origin and Destination nodes: They are origin and destination airports.

The links of a network are divided to 3 groups: climb links, cruise links, and

descent links. The weights (Time, Distance, Fuel, Emissions) are calculated for each

link.

1. Climb links

• Climb link from the origin to a TOC node: This link is created between
the origin and a TOC node the aircraft climbs from the origin to.

• Climb link from a grid node to a climb node: This link is created between
a grid node and the climb node the aircraft climbs from the grid node to.

2. Cruise links

• Cruise link from a grid node to a grid node: This link is created between
two consecutive nodes in a flight level.

• Cruise link from a grid node to a TOD node: This link is created between
a grid node and the TOD node next to the grid node in the same flight
level

• Cruise link from climb node to grid node: This link is created between a
climb node and the grid node next to the climb node in the same flight
level

• Cruise link from a descent node to grid node: This link is created between
a descent node and the grid node next to the descent node in the same
flight level.

• Cruise link from a TOC node to a grid node: This link is created between
a TOC node and the grid node next to the TOC node in the same flight
level.

• Cruise link from a climb node to a TOD node: This link is created be-
tween a climb node and the TOD node next to the climb node in the
same flight level

• Cruise link from a descent node to a TOD node: This link is created
between a descent node and the TOD node next to the descent node in
the same flight level

3. Descent links

• Descent link from a grid node to a descent node: This link is created
between a grid node and the descent node the aircraft descends from the
grid node to.
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Figure 6.1: Network of control points for a flight.

• Descent link from a TOD node to the destination: This link is created
between a TOD node and the destination node.

Figure 6.1 is one example network for a flight from Melbourne to Sydney. The

aircraft type of the flight is B764. In the figure “Orig” and “Dest” are the origin

and destination airports. Origin and destination nodes are presented by symbol ◦
in red; Grid nodes by • in black; Climb nodes by N in blue; Descent nodes by H in

blue; TOC by △ in red; TOD by ▽ in red.

A network is represented by a list of nodes (LNS). Each node has node index,

and the list of links to its next nodes and the list of its previous nodes which are

used to track the 3-D route. Each link includes the index of the starting node and

the next node, weights (Distance, Time, Discomfort, Fuel), and a list of sub-links
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which are simulated moving steps of the flight through the link. Firstly origin and

destination nodes (which are the origin and destination airports) are created and

added into LNS.

6.2.1.1 Grid Nodes

Algorithm 8 is to generate grid nodes. In order to generate grid nodes we

predefine the width between two consecutive grid nodes (GW ) and flight levels. Grid

nodes are created for each waypoint of the route, and between every two consecutive

waypoints of the flight route in different flight levels. The distance between a grid

node to its next grid node is GW , except for the case the next node is also a waypoint

in the route. In this case, the distance may be shorter than GW . A link is created

between every two consecutive grid nodes. The weights and the list of sub-links of

a link are determined by the simulation of the aircraft cruising from one point to

another point as presented in Section 3.7.10.

Algorithm 8 Creating grid nodes
1: n is the number of waypoints of the route
2: for each flight level do
3: for each waypointi from the first waypoint to (n− 1)th waypoint of the route do

4: nextwp = the next waypoint of waypointi.
5: Creating a new grid node (newnode) whose latitude and longitude are the ones of waypointi and altitude

is the flight level. Adding the new grid node to LNS.
6: currentnode = newnode
7: while Distance from currentnode to the nextwp is more than GW do

8: Creating a new grid node (newnode) which is horizontally between currentnode and nextwp and the
horizontal distance between newnode and currentnode is GW , and its altitude is the flight level.
Then adding newnode to LNS. Adding a link from currentnode to newnode to the list of links
of currentnode. This link is a cruise link. The ways to determine the weights (Distance, Time,
Discomfort, Fuel) and the list of sub-links of the link will be presented in Section 3.7.10.

9: currentnode = newnode
10: end while

11: Creating a new grid node (newnode) whose latitude and longitude are the ones of nextwp and altitude
is the flight level. Adding the new grid node to LNS. Adding a link from currentnode to newnode to
the list of links of currentnode.

12: end for

13: end for

6.2.1.2 Climb Nodes

Climb nodes and their links are determined by climbing an aircraft from a grid

node to the flight level above the one of the grid node. Figure 6.2 presents climb

Viet Van Pham October 2, 2012



3-D User Preferred Routes using Dynamic Network of Control Points 213

Flight Level i

Flight Level i-1

Flight Level i + 1

 
 

 

j-1 j j+1 j+2 j+3 j+4 j+5 j+6 j+7

Flight Level i + 2

Figure 6.2: Aircraft climbs from a grid node to the upper flight level.

nodes (N) and their links when the aircraft climbs from grid node j in flight level i

(FLi) to the flight level i+ 1 (FLi+1).

The determination of the climb point, the weights, and the list of sub-links of

the climb link is presented in Section 3.7.1. If the climb point coincides with a grid

node, the grid node is also the climb node. Otherwise a climb node is created at the

climb point. A link between a grid node and the climb node is created. If there is a

grid node next to the climb node, a cruise link from the climb node to the grid node

is also created. The weights and list of sub-links of the cruise link are determined

in Section 3.7.10.

In Figure 6.2, the aircraft follows 2-D (latitude, longitude) route of 4 consecutive

grid nodes j, j+1, j+2, and j+3 to climb from grid node j in FLi to FLi+1. The

figure presents the points where aircraft passes grid waypoints and the final climb

point by symbol N. A climb link from the grid node to the climb node is created.

In addition a cruise link between the climb node and the grid node j + 3 in FLi+1

is created.

6.2.1.3 Descent Nodes

Descent nodes and their links are determined by descending an aircraft from

a grid node to the flight level below the one of the grid node. Figure 6.3 presents

descent nodes (H) and their links when the aircraft descends from grid node j in
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Figure 6.3: Aircraft descends from a grid node to the lower flight level

flight level i (FLi) to the flight level i− 1 (FLi−1).

The descent point, the weights, and the list of sub-links of the descent link are

determined as presented in Section 3.7.4. If the descent point coincides with a grid

node, the grid node is also the descent node. Otherwise a descent node is created

at the descent point. A link between a grid node and the descent node is created.

If there is a grid node next to the descent node, a cruise link from the descent node

to the grid node is also created. The weights and the list of sub-links of the cruise

link are determined as in Section 3.7.10.

In Figure 6.3, the aircraft follows 2-D (latitude, longitude) route of 4 consecutive

grid nodes j, j + 1, j + 2, and j + 3 to descend from grid node j in FLi to FLi−1.

The figure presents the points where aircraft passes grid waypoints and the final

climb point by symbol H. A descent link from the grid node to the descent node is

created. In addition a cruise link between the descent node and the grid node j +3

in FLi+1 is created.

6.2.1.4 TOC Nodes

A TOC node is determined in the same way as a climb node. The only difference

is that instead of climbing from a grid node to the next flight level the aircraft climbs

from the origin to a certain flight level. The final climb node is the TOC node as

in Figure 6.4. In Figure 6.4, the aircraft follows 2-D (latitude, longitude) routes of
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Figure 6.4: Aircraft climbs from the origin airport to the Top Of Climb (TOC) of a
given flight level.

5 consecutive nodes (the origin node and 4 grid nodes 1, 2, 3, 4) to climb from the

origin j to FL3 step by step. At each step a climb node and a climb link from the

the current node to the climb node are created. In addition a cruise link between

the climb node and grid node 4 in FL3 is created at the final step.

6.2.1.5 TOD Nodes

A TOD node is determined by tracing backward from the destination to a flight

level. Figure 6.5 presents the example of a TOD node and descent nodes (H) and

links when tracing backward from the destination to flight level i (FLi), where i is

3.

The TOD point, the weights, and the list of sub-links of the descent link are

determined as presented in Section 3.7.7. If the TOD point coincides with a grid

node, the grid node is also the TOD node. Otherwise a TOD node is created at

the TOD point. A link between a grid node and the TOD node is created. If there

is a grid node previous to the TOD node, a cruise link from the grid node to the

TOD node is also created. The weights and the list of sub-links of the cruise link

are determined as in Section 3.7.10.

In Figure 6.5, the aircraft follows the 2-D (latitude, longitude) route of 5 con-

secutive nodes including origin node and 4 grid nodes n− 2, n− 3, n− 4, n− 5 to
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Figure 6.5: Aircraft moves backward from the destination airport to the Top Of
Descent of a given flight level.

move backward from origin j to FL3. The figure presents the points where aircraft

passes grid waypoints and the TOD node by symbol H. A descent link from TOD

node to the destination node is created. In addition a cruise link between the grid

node n− 5 and the TOD node in FL3 is created.

6.2.2 Finding the 3-D user preferred route for a flight given

2-D route

After having the network for a flight where the distance, time, discomfort, and

fuel weights of every link are calculated, a combined weight of time and discomfort

is calculated by Equation 6.1 where u is the utility of the flight.

CombineWeight = u ∗ time + (1− u) ∗ discomfort (6.1)

Dijkstra’s algorithm is used to find the shortest path from the origin to the destina-

tion based on the network, where the weight of a link is the combined weight. Each

node of the network has properties: the shortest distance from the origin to the

node (dist); the list of links to next nodes (nextlinks); the previous node of the node

in the shortest path (previous); a property determining if the dist of the node is

permanently determined (perm). Each link of the network has properties: starting
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and ending nodes; weights of the link: time, fuel, discomfort; the combined weight:

dist which is considered as the distance from the stating node to the ending node of

the link. An object (a node or a link) accesses its properties by operator dot.

We adopt Dijktra’s algorithm [180] to resolve the problem as in Algorithm 9.

The original algorithm is modified. A set of nodes Q which stores nodes whose

dist is assigned but not permanently determined is maintained, while the original

algorithm maintains a set of all nodes whose dist is not permanently determined.

This modification helps to speed up the algorithm because Q stores only a few nodes

so the node with the smallest dist in Q can be found faster.

Algorithm 9 Algorithm for finding UPR route
1: for each node v in the network do

2: v.dist= infinity {Unknown distance function from origin to v}.
3: v.previous = undefined {Previous node in optimal path from origin}.
4: v.perm = false
5: end for

6: origin.dist = 0 {Distance from origin to origin}.
7: Q = origin {the set of nodes whose dist is assigned but not permanently determined}.
8: while Q is not empty do

9: u = node in Q with smallest distance;
10: if u = destination then

11: break
12: end if

13: for each link l of node u do

14: {u and v are the starting and ending nodes of link l}.
15: if v.perm = false then

16: alt = u.dist + l.dist
17: if v.dist = infinity then

18: v.dist = alt
19: v.previous = u
20: insert v into Q
21: else

22: v.dist = alt
23: end if

24: end if

25: end for

26: u.perm = true
27: remove u from Q
28: end while

29: P = empty {set of nodes of the shortest path from the origin to the destination}
30: {insert nodes from the destination to the origin into P}
31: curnode = the destination
32: while P.previous <> the origin do

33: insert curnode into P as the first element.
34: curnode = curnode.previous
35: end while

36: curnode = curnode.previous {curnode become the origin}
37: insert curnode into P as the first element
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6.2.3 Parameter Settings

The following parameter settings are used:

• Flight levels are standard flight levels.

• The width between two consecutive grid node (GW ) is 100 km.

• Distance of a sub-segment/ a simulated moving step is 1 km.

6.2.4 Results

6.2.4.1 Time and Discomfort Objectives of UPR flights given routes

Figure 6.6(a) shows the time travelled by UPR flights with different flight utility

allocations in different weather scenarios. A flight is given a route. The utility

allocations from Table 3.3 can be UA0, UA1..., UA6 which present the percentage

of flights preferring to minimize time, discomfort, or both time and discomfort with

the same preference. The weather scenarios are presented by percentages of UPR

flights affected by bad weather cells.

The figure shows that the algorithm is successful to find UPR routes. UPR

flights with the utility allocation UA0, where all UPR flights prefer to minimize dis-

comfort, travel the longest time; while those with utility allocation UA6, where all

UPR flights prefer to minimize time, travel the shortest time. In the case where all

UPR flights prefer to minimize time, the total time is not affected by bad weather

scenarios as they all follow the most advantageous wind without bad weather consid-

eration. In general the total times travelled of different flight utility allocations are

directly proportional to the percentage of flights preferring to minimize discomfort.

Figure 6.6(b) shows the discomfort of UPR flights with different flight utility

allocations in different weather scenarios. The figure shows that UPR flights with

the utility allocation UA6, where all UPR flights prefer to minimize time, are most

affected by bad weather; while those with utility allocation UA0, where all UPR

flights prefer to minimize discomfort, are not affected by bad weather. This shows
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that the algorithms can find UPR route for a flight so that the flight can avoid passing

any area of bad weather when the preference of the flight is minimum discomfort.

In general the total discomforts of different flight utility allocations are directly

proportional to the percentage of flights preferring to minimize time.

6.2.4.2 Examples of UPR routes for flights given routes

Figure 6.10 is an example of two 3-D UPR routes of a flight which is given a

route. One route prefers to minimize time and the other prefers to minimize dis-

comfort. The 3-D route preferring to minimize time keeps its time optimal cruising

altitude, while in the other the flight descends from its optimal cruising altitude to

avoid passing the bad weather area. Bad weather cells are black cube with sizes of

1◦ x 1◦ x 5000 feet.

Viet Van Pham October 2, 2012



3-D User Preferred Routes using Dynamic Network of Control Points 220

0 0.2 0.4 0.6 0.8 1
1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

2.02

2.04
x 10

4

UA0

UA6

UA3

UA2

UA1

UA5
UA4

Percentage of flights affected by bad weather

Ti
m

e 
(m

in
ut

e)

(a) Time in different flight and weather scenarios; Flights are given routes.

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

UA0

UA6

UA3

UA2

UA1

UA5

UA4

Percentage of flights affected by bad weather

D
is

co
m

fo
rt

(b) Discomfort in different flight and weather scenarios; Flights are given routes.

Figure 6.6: Time and discomfort in different flight and weather scenarios; Flights
are given routes
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(a) 3-D route preferring to minimize time; The flight is given a route.

(b) 3-D route preferring to minimize discomfort; The flight is given a route.

Figure 6.7: Two 3-D routes preferring to minimize time and discomfort; The flights
are given routes
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Figure 6.8: Discretized Grid for a flight with origin, destination and cruising altitude.

6.3 3-D User Preferred Routes using Dynamic

Network of Control Points for a flight given a

cruising altitude

In this section, NetM method for GAP problem is designed. We propose an

algorithm to generate a network of control points for a flight (in GAP problem),

which is given a cruising altitude and does not change altitude during cruise phase.

Then Dijkstra’s algorithm is used to find a 3-D (latitude, longitude, altitude) user

preferred route for the flight.

6.3.1 Network Generation

In order to generate a network for a flight which is given a cruising altitude,

firstly a list of TOC are generated by climbing aircraft up to the given cruising

altitude via different directions as Figure 6.8. A direction is deviated from the initial

bearing between the origin and the destination an angle of n ∗ α. α is a given angle

as in Figure 6.8 and n is an integer number with constraint that |n∗α| < 45o. A list

of TOD are also generated by moving the aircraft backward from the destination to

the given cruising altitude via different directions. Call the TOC and TOD whose

deviation is 0◦ TOC0 and TOD0. A number of waypoints between TOC0 and TOD0

are generated. These waypoints divide the great circle route between TOC0 and

TOD0 into a number of segments with the same distance D apart. A list of points

is generated for each point from TOC0 to the second last point before TOD0 which
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is WP1 in the example in Figure 6.8. The way to generate a list of points from a

point is similar to generating the TOC list. The only difference is that instead of

climbing aircraft to the given cruising altitude, the aircraft cruises from the point a

distance of D via different directions. A network of control points is constructed by

connecting a point from a previous list to all points in the next list. We can consider

the origin is the first list and the destination is the last list with only one point.

6.3.2 Finding the 3-D user preferred route for a flight given

a cruising altitude

After generating the network for a flight where the distance, time, discomfort,

and fuel weights of every link are calculated, a combined weight of time and discom-

fort is calculated by Equation 6.1 where u is the utility of the flight. Then Dijkstra

is used to determine the 3-D (latitude, longitude, altitude) user preferred route for

the flight in the network with combined weight links. This works the same to finding

3-D UPR route for a flight given a route.

6.3.3 Parameter Settings

The following parameter settings are used:

• α (angle of a deviated unit) is 10◦

• n (largest number of deviated units) is 4

• D (distance to divide the great circle route between TOC0 and TOD0) is 1/5

the great circle distance between origin and destination.

• Distance of a sub-segment (a simulated moving step) is 1 km.
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6.3.4 Results

6.3.4.1 Time and Discomfort Objectives of UPR flights given cruising

altitudes

Figure 6.9(a) shows the time travelled by UPR flights with different flight util-

ity allocations in different weather scenarios. A flight is given cruising altitude. The

figure shows that UPR flights with the utility allocation UA0, where all UPR flights

prefer to minimize discomfort, travel the longest time; while those with utility al-

location UA6, where all UPR flights prefer to minimize time, travel the shortest

time and the total time is not affected by bad weather scenarios as they all follow

the most advantageous wind. In general the total times travelled of different flight

utility allocations are inversely proportional with the percentage of flights preferring

to minimize time.

Figure 6.9(b) shows the discomfort of UPR flights with different flight utility

allocations in different weather scenarios. A flight is given cruising altitude. The

figure shows that UPR flights with the utility allocation UA6, where all UPR flights

prefer to minimize time, are most affected by bad weather; while those with utility

allocation UA0, where all UPR flights prefer to minimize discomfort, are almost not

affected by bad weather. The discomfort of flights with utility allocation UA0 is ap-

proximate to 0. In general the total discomforts of different flight utility allocations

are proportional to the percentage of flights preferring to minimize time.

6.3.4.2 Examples of UPR routes for flights given cruising altitudes

Figure 6.10 is an example of two 3-D UPR routes of a flight which is given

a cruising altitude. One route prefers to minimize time and the other prefers to

minimize discomfort. The 3-D route preferring to minimize time keeps its time

optimal route, while in the other the flight makes a turn from its optimal route to

avoid passing the bad weather area. Bad weather cells are black cube with sizes of

1◦ x 1◦ x 5000 feet.
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(b) Discomfort in different flight and weather scenarios; Flights are given cruising altitudes.

Figure 6.9: Time and discomfort in different flight and weather scenarios; Flights
are given cruising altitudes.
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(a) 3-D route preferring to minimize time; The flight is given cruising altitude.

(b) 3-D route preferring to minimize discomfort; The flight is given cruising altitude.

Figure 6.10: Two 3-D routes preferring to minimize time and discomfort; The flights
are given cruising altitudes.
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6.4 Horizontally and vertically optimised UPR routes

using NetM

6.4.1 Proposed methodology

We will see in Section 6.5 that NetM is the most efficient method for UPR

planning. However this method is so far only developed for optimising aircraft

routes vertically or horizontally. In this section we propose to optimise UPR routes

both horizontally and vertically. Figure 6.11 presents two approaches to resolve this

problem. In Figure 6.11(a), the optimal cruising altitude of a UPR flight is first found

by vertical optimisation as presented in Section 6.2 and then this cruising altitude is

the input for horizontal optimisation as presented in Section 6.3. In Figure 6.11(b)

the horizontal route of a UPR flight is first found by horizontal optimisation and

then this horizontal route is the input for vertical optimisation.

6.4.2 Difference between methods using control point net-

works

Table 6.1 presents a comparison of UPR routes which are optimised vertically

only, horizontally only, and both vertically and horizontally. The routes are com-

pared with each other and with the original flight plans, in two flight scenarios. The

first flight scenario is UA6 with all flights preferring to minimize time. The second

is UA0 with all flights preferring to minimize discomfort. The bad weather scenario

that affects all the UPR flights is used. “Method” is the optimisation methods which

are vertically, or horizontally or both vertically and horizontally optimised routes

using control point networks. “NetM-H” is the horizontally optimised routes using

control point networks. “NetM-HV” is the vertical optimisation with the horizontal

routes given by horizontal optimisation using control point networks. “NetM-VH”

is the horizontal optimisation with the optimal cruising altitudes given by vertical

optimisation. “FS” is one of the two flight scenarios (“Pref Time” or “Pref DC”).

Viet Van Pham October 2, 2012



3-D User Preferred Routes using Dynamic Network of Control Points 228

“Pref Time” and “Pref DC” correspond to flight scenarios UA6 and UA0. “Ave”

is the reduction of time, fuel, or discomfort in average for a flight depending on

which merge column (“Time”, “Fuel”, and “Discomfort”) it belongs to. “Std” is

the standard deviation of the reduction of time, fuel, or discomfort.

Vertical Optimisation

Optimal Cruising 

Altitude

Horizotal Optimisation

Horizontally and 

Vertically 

Optimised Route

(a)

Horizontal Optimisation

Optimal

Horizontal Route

Vertical Optimisation

Horizontally and 

Vertically

Optimised Route

(b)

Figure 6.11: Horizontal and vertical optimisation.

The table shows that UPR routes optimised both horizontally and vertically

are notably better than those only optimised vertically or horizontally. For example,

for “Pref Time” flight scenario, on average “NetM-HV” and “NetM-VH” can reduce

13.11 and 12.97 minutes of time travelled, and 346.26 and 379.48 kg of fuel burn

respectively, while “NetM-V” and “NetM-H” can only reduce 10 and 3.47 minutes

of time travelled and 216.65 and 147.87 kg of fuel burn respectively. For this “Pref

Time” flight scenario, on average “NetM-HV” and “NetM-VH” can also reduce the

discomfort of 9.56 and 9.26, while “NetM-V” can reduce only 9.26 and “NetM-H”

increases discomfort by 3.73. For the flight scenario “Pref DC”, “NetM-HV” and

“NetM-VH” can averagely reduce discomfort by 32.10 and 31.98, while “NetM-V”

and “NetM-H” can reduce discomfort by 32.10 and 31.11. For this “Pref DC”

scenario, “NetM-HV” and “NetM-VH” can also averagely reduce the time travelled

by 9.56 and 2.63 and reduce fuel burn by 271.77 and 126.48 respectively, while

“NetM-V” increases time travelled by 1.71 minutes and fuel burn by 74.06 kg and

“NetM-H” can reduce time travelled by 1.66 minutes and fuel burn by 86.39 kg only.

Here the decrease of discomfort can be roughly mapped to the time period that a

flight passing through weather cells can save as one third of the discomfort value
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Time Fuel Discomfort
Method FS Ave Std Ave Std Ave Std

NetM-V
Pref Time -10.00 15.50 -216.65 1062.90 -9.26 28.60
Pref DC 1.71 24.50 74.06 1417.22 -32.10 28.22

NetM-H
Pref Time -3.47 3.45 -147.87 208.04 3.73 14.87
Pref DC -1.66 4.42 -86.39 195.14 -31.11 27.89

NetM-HV
Pref Time -13.11 16.12 -346.26 1118.17 -9.56 27.80
Pref DC -9.56 18.39 -271.77 1105.97 -32.10 28.22

NetM-VH
Pref Time -12.97 15.97 -379.48 1133.39 -9.26 28.13
Pref DC -2.63 23.91 -126.48 1424.64 -31.98 28.05

Table 6.1: Comparison of different optimisation methods using control point net-
works.

when we assume that the bad weather level in all weather cells is 3 (the average bad

weather level). For example if the discomfort reduction is 30 the time period the

flight passing the bad weather areas can decrease by about 10 minutes. In terms of

fuel reduction in percentage, when UPR flights prefer to minimize time, “NetM-V”

and “NetM-H” can reduce by about 3% and 2% fuel burn in comparison with the

original flight plans respectively; “NetM-HV” and “NetM-VH” can reduce about

5% fuel burn. These percentages are calculated based on the average fuel reductions

per flight by these methods and the total fuel burn of 986958 kg by original flight

plans (which will be presented in Table 6.5).

We also use T-Test to assess the statistical significance of differences between ev-

ery two combinations of a method and a flight scenario. Tables 6.2, 6.3, and 6.4 show

the T-Test values for time, fuel, and discomfort objective respectively. “Method-

FS” is the combination of a method which is “NetM-V”, “NetM-H”, “NetM-HV”, or

“NetM-VH” with a flight scenario which is “Pref Time” or “Pref DC”. For example,

“V-Time” is the combination of “NetM-V” method and “Pref Time” flight scenario.

Assume that the difference assessment is for variable (objective) X . X1 is the

variable of the first method and X2 is the variable of the second one. The T-Test

value is calculated by Equation 6.2.

signal

noise
=

X1 −X2

SE(X1 −X2)
(6.2)

The top part of the formula is the difference between the means of variables of the

two methods. To compute it, we take the variance for each method and divide it by
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Method-FS V-Time V-DC H-Time H-DC HV-Time HV-DC VH-Time VH-DC
V-Time 0.00 4.82 4.91 6.17 -1.65 0.22 -1.59 3.08
V-DC -4.82 0.00 -2.49 -1.61 -6.02 -4.38 -5.98 -1.51
H-Time -4.91 2.49 0.00 3.84 -6.97 -3.88 -6.93 0.41
H-DC -6.17 1.61 -3.84 0.00 -8.16 -4.98 -8.14 -0.48
HV-Time 1.65 6.02 6.97 8.16 0.00 1.73 0.07 4.33
HV-DC -0.22 4.38 3.88 4.98 -1.73 0.00 -1.67 2.74
VH-Time 1.59 5.98 6.93 8.14 -0.07 1.67 0.00 4.29
VH-DC -3.08 1.51 -0.41 0.48 -4.33 -2.74 -4.29 0.00

Table 6.2: T-Test values for time objective.

the number of flights. We add these two values and then take their square root as

in Equation 6.3, where the variance is the square of the standard deviation. Here

n1 is the same to n2.

SE(X1 −X2) =

√

var1
n1

+
var2
n2

(6.3)

we find a tabulated t value of 1.96 in t table with 282 degree of freedom (141

for n1 + 141 for n2) and probability of 0.05. In Tables 6.2, 6.3, and 6.4, v[i, j] (the

T-Test value of cell at row i and column j) is −v[j, i], as v[i, j] is the T-Test value

between method i and method j, while v[j, i] is that between method j and method

i. However when the assessment of the significance of differences is based on the

absolute values of these values.

The results show that most of the significant differences happen when one

method minimizes time and the other minimizes discomfort and they becomes more

significant when one optimises only horizontal or vertical dimensions and the other

optimises both. As shown in these tables, the two methods with the most signif-

icant difference in time are “HV-Time” and “H-DC”, followed by “VH-Time” and

“H-DC”, and “VH-Time” and “V-DC”. The two couples of methods with the most

difference in fuel are “VH-Time” and “H-DC”, and “VH-Time” and “V-DC”. Those

for discomfort are “VH-DC” and “H-Time”, “HV-DC” and “H-Time”.

It can also be seen that the difference in discomfort is highest, followed by time

and fuel with the T-Test maximum values of 13.40, 8.16, and 3.04 respectively.
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Methods V-Time V-DC H-Time H-DC HV-Time HV-DC VH-Time VH-DC
V-Time 0.00 1.96 0.76 1.44 -1.00 -0.43 -1.25 0.60
V-DC -1.96 0.00 -1.85 -1.34 -2.77 -2.29 -2.98 -1.19
H-Time -0.76 1.85 0.00 2.57 -2.08 -1.31 -2.40 0.18
H-DC -1.44 1.34 -2.57 0.00 -2.73 -1.97 -3.04 -0.33
HV-Time 1.00 2.77 2.08 2.73 0.00 0.56 -0.25 1.45
HV-DC 0.43 2.29 1.31 1.97 -0.56 0.00 -0.81 0.96
VH-Time 1.25 2.98 2.40 3.04 0.25 0.81 0.00 1.66
VH-DC -0.60 1.19 -0.18 0.33 -1.45 -0.96 -1.66 0.00

Table 6.3: T-Test values for fuel objective.

Methods V-Time V-DC H-Time H-DC HV-Time HV-DC VH-Time VH-DC
V-Time 0.00 -6.77 4.80 -6.52 -0.09 -6.77 0.00 -6.76
V-DC 6.77 0.00 13.39 0.30 6.78 0.00 6.83 0.04
H-Time -4.80 -13.39 0.00 -13.14 -5.02 -13.39 -4.87 -13.40
H-DC 6.52 -0.30 13.14 0.00 6.52 -0.30 6.57 -0.26
HV-Time 0.09 -6.78 5.02 -6.52 0.00 -6.78 0.09 -6.77
HV-DC 6.77 0.00 13.39 0.30 6.78 0.00 6.83 0.04
VH-Time 0.00 -6.83 4.87 -6.57 -0.09 -6.83 0.00 -6.81
VH-DC 6.76 -0.04 13.40 0.26 6.77 -0.04 6.81 0.00

Table 6.4: T-Test values for discomfort objective.

6.4.3 Summary

In this section, we present methods to optimise aircraft route both vertically

and horizontally. The results show that UPR routes provided by these methods are

noticeably better than those only optimised vertically or horizontally. Besides that

by using T-Test to assess the significance of differences we found that the difference

between a method minimize time and other minimizes discomfort is significant, and

it is more significant if one optimises only vertically or horizontally and the other

optimises both.

6.5 Comparison of NetM, GA, and LCS methods

In this section, we present the running time, the quality of UPR routes, and

conflict detection resolution when UPR routes are found by NetM. A comparative

reference to the results provided by GA and LCS is also presented. Then a systematic

use of UPR methods is proposed.
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6.5.1 Running Time

The experiments with NetM are step up with the same computing capability, the

weather scenario, the flight scenario with GA and LCS as presented in Section 5.5.1.

NetM is also set up to run in parallel similarly to GA method. When a computation

node is free, NetM will be used to find a 3-D UPR-route for a flight (that hasn’t yet

got a UPR route).

The experiments show that the methods using network are fastest. They take

only about 8 minutes by using 2 computation nodes to generate 142 3-D UPR routes

(6.07 minutes and 8.96 minutes for GRP and GAP respectively); the running time

is spent mainly on generating networks, the time to find the UPR route in a network

is just a second. If the methods run in 8 computation nodes, NetM will take only

about 2 minutes. These running times are obviously acceptable for UPR strategic

routing (UPR route from origin to destination).

Further, NetM is especially suitable in tactical routing (which is implemented

in real time) or in decentralized routing environment (which is implemented for the

aircraft itself). When NetM is installed in an aircraft and the flight crew can use

it to choose the preferred route for the aircraft itself, NetM will take only about 10

seconds to find a UPR route for a flight.

The running time for conflict detection and resolution between UPR flights

(after having found UPR routes by NetM) with themselves and with non-UPR

flights is the same to those routes provided by GA and LCS (about 30 seconds).

6.5.2 Quality of UPR routes

Table 6.5 presents a comparison of UPR methods using control point networks

with each other and with the original flight plans in two flight scenarios. The first

flight scenario is UA6 with all flights preferring to minimize time. The second is

UA0 with all flights preferring to minimize discomfort. The bad weather scenario

that affects all the UPR flights is used. “M & P” is the combinations of the method
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Time Fuel Discomfort
M & P FS Value %Diff Value %Diff Value %Diff

F Plan F Plan 20116.9 0.00% 986958.1 0.00% 4558.7 0.00%

NetM-GRP
Pref Time 18696.3 -7.06% 956193.9 -3.12% 3243.4 -28.85%
Pref DC 20360.0 1.21% 997474.3 1.07% 0.0 -100.00%

NetM-GAP
Pref Time 19624.7 -2.45% 965960.4 -2.13% 5088.9 11.63%
Pref DC 19881.6 -1.17% 974690.5 -1.24% 141.3 -96.90%

Table 6.5: Time, Fuel, and Discomfort of the original flight plans and UPR routes
in different flight scenarios.

(NetM) and a problem which is GRP, or GAP. “FS” is flight scenarios. “NetM

- GRP” and “NetM-GAP” are the combinations of the method NetM with the

problem GRP and GAP respectively. “F Plan” is the original flight plans. “Pref

Time” and “Pref DC” correspond to flight scenarios UA6 and UA0. “Value” is

the values of time, fuel, or discomfort objective depending on which merge column

(“Time”, “Fuel”, and “Discomfort”) it belongs to. “%Diff” is the difference in

percentage between the objectives provided by UPR methods and the ones provided

by the original flight plans.

With reference to Table 5.15 it can be seen that NetM and GA can provide

solutions with higher quality than LCS. NetM and GA can provide solutions that

are almost similar, except for the case the flights are given routes (problem GRP)

and the flight scenario is UA6. In this case, the discomfort objective of solutions

provided by GA is almost equal to the one of solutions provided by NetM (14.9

against 0) but the time objective of solutions provided by GA is notably smaller

than the one of solutions provided by NetM (18845.2 against 20360.0).

Table 6.5 shows that when the flight scenario is “Pref DC”, NetM can reduce the

discomfort objective can reduce by more than 95% in comparison with the original

flight plans; when the flight scenario is “Pref Time”, NetM can reduce the time

objective by more than 2% in every problem-method combination and the fuel burn

can be reduced by about 2%.
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6.5.3 Conflict Detection and Resolution

After having found UPR routes by NetM, KB3D is applied to detect conflicts

between these routes with each other and with Non-UPR routes. Conflicts are then

resolved by departure time adjustment. The departure deviation results of UPR

routes provided by NetM are similar to those provided GA and LCS. The total

deviation of departure time is about 65 minutes; and the maximum departure time

deviation of a flight is 2 minutes.

6.5.4 Proposal of a systematic use of UPR methods

NetM is the best to find UPR routes because of its short running time and the

quality of solutions, especially in the context where UPR routes need to be updated

with new traffic situations.

As discussed above GA in general can provide solutions as good as NetM in

terms of the quality of UPR routes, but because of its long running time disadvan-

tage, GA is suitable to find strategic UPR routes. Nevertheless GA can be installed

in each aircraft to find the UPR route for only the aircraft itself in a decentralized

routing environment. The time consumption in this case is also acceptable. GA will

take about 13 seconds to find the UPR route by using 8 computation nodes.

LCS can be used to find a set of rules from the first stage or when the traffic

environment updates. Air traffic controllers can take this set of rules into account

while they are handling the conflicts so that they not only resolve the conflicts but

also advise maneuvers following the set of rules to optimise aircraft routes.

The best classifier can be also found for a single flight, when LCS runs with

the set of only one UPR flight. However, this best classifier can be used by only

air traffic controllers, dispatcher and pilots responsible for that flight. This classifier

can provide the UPR route of the flight with better quality than one that provides

navigation for all UPR flights.

In summary, all methods (GA, LCS, NetM) can be used to find strategic UPR
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routes for flights before departure, as strategic planning can be implemented before

departure a number of hours. Since tactical planning (adjusting UPR routes in real

time) requests fast time computation, NetM is the most suitable for finding tactical

UPR routes. Another option for GA to be applied in tactical planning is that GA

can be installed in the cockpit of an aircraft to find the UPR route in real time for

the aircraft (itself only). The set of rules provided by LCS can be taken into account

while air traffic controllers decide maneuvers to resolve the conflicts among aircraft.

6.5.5 Conclusion

In conclusion, this section provides a comparison of 3 methods for finding UPR

routes in terms to running time, and quality of solutions, and propose a reasonable

application of the 3 methods in air traffic management operation. NetM are ap-

proximately twenty times faster than GA and LCS. While NetM, and GA provide

better solutions than LCS, the set of rules provided by LCS can be reused for other

sets of UPR flights, and can be used in deciding maneuvers for conflict resolution

among flights. The departure time adjustments of UPR route sets provided by these

methods are small, and almost the same (about 65 minutes for the sets of 142 UPR

routes).

6.6 Emission Analysis of UPR routes using NetM

In this section we present and compare emission distributions of UPR routes

provided by the different methods using control point networks. The emission distri-

butions by methods “NetM-HV” and “NetM-VH” described in Section 6.4 are pre-

sented and compared first, followed by those by methods “NetM-V” and “NetM-H”.

The emission distribution analysis is used models which are presented in Section 4.7.

Figures 6.12, 6.13, 6.14, and 6.15 show CO2 and CO emission distributions by

altitude and latitude for the same set of UPR flights, when UPR routes are found

by methods “NetM-HV” and “NetM-VH”. Figures 6.12 and 6.14 show the emis-
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sion distributions when UPR flights prefer to minimize time. Figures 6.13 and 6.15

present the emission distributions when UPR flights prefer to minimize discomfort.

Each figure has 2 sub-figures. The upper sub-figure presents the emission distri-

butions when UPR flights optimise their routes vertically based on the horizontal

routes that are provided by horizontal optimisation (this method is “NetM-HV”).

The lower one presents the emission distributions when UPR flights optimise their

routes horizontally using the optimal cruising altitudes that are provided by vertical

optimisation (this method is “NetM-VH”).

Figures 6.12 and 6.14 show that when UPR flights prefer to minimize time, the

emission distributions by “NetM-HV” and “NetM-VH” are similar. Particularly,

CO2 is mainly from 25,000 feet to 33,000 feet; CO2 in lower altitudes is not significant

(presented in Figure 6.12). For CO emission, in addition to the density in the altitude

range from 25,000 feet to 33,000 feet there is quite significant distribution of CO

in the lower altitude (presented in Figure 6.14), though the time the aircraft is at

the lower altitude range is not much. This is because aircraft produce significant

amounts of CO at low altitude.

However, Figures 6.13 and 6.15 show that when UPR flights prefer to minimize

discomfort, the emission distributions by “NetM-HV” and “NetM-VH” are differ-

ent. The emission distributions (for CO2 in Figure 6.13 and particularly for CO in

Figure 6.15) by “NetM-HV” are mainly from 25,000 feet to 33,000 feet, while the

emission distributions by “NetM-VH” are from this altitude range and also from

10,000 to 15,000 feet. The reason is UPR flights choose various altitudes to avoid

bad weather cells when discomfort minimization is more preferred.

The horizontal emission distributions of UPR routes when UPR flights prefer to

minimize time or discomfort for both “NetM-HV” and “NetM-VH” are all similar.

The high density of emissions is around main airports and the coast line. Figure 6.16

is one example of horizontal distribution of CO2 when UPR flights prefer to minimize

time.

For user preferred routes that are provided by “NetM-V” (vertical optimisa-
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(a) CO2 by altitude and latitude aggregated longitudinally, NetM-HV.

(b) CO2 by altitude and latitude aggregated longitudinally, NetM-VH.

Figure 6.12: CO2 by altitude and latitude aggregated longitudinally, minimal time
routes.
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(a) CO2 by altitude and latitude aggregated longitudinally, NetM-HV.

(b) CO2 by altitude and latitude aggregated longitudinally, NetM-VH.

Figure 6.13: CO2 by altitude and latitude aggregated longitudinally, minimal dis-
comfort routes.
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(a) CO by altitude and latitude aggregated longitudinally, NetM-HV.

(b) CO by altitude and latitude aggregated longitudinally, NetM-VH.

Figure 6.14: CO by altitude and latitude aggregated longitudinally, minimal time
routes.
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(a) CO by altitude and latitude aggregated longitudinally, NetM-HV.

(b) CO by altitude and latitude aggregated longitudinally, NetM-VH.

Figure 6.15: CO by altitude and latitude aggregated longitudinally, minimal dis-
comfort routes.

Viet Van Pham October 2, 2012



3-D User Preferred Routes using Dynamic Network of Control Points 241

(a) CO2 by longitude and latitude aggregated from ground level to 45 kf, NetM-HV.

(b) CO2 by longitude and latitude aggregated from ground level to 45 kf, NetM-VH.

Figure 6.16: CO2 by longitude and latitude aggregated from ground level to 45 kf,
minimal time routes.
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(a) CO2 by altitude and latitude aggregated longitudinally, NetM-V.

(b) CO2 by altitude and latitude aggregated longitudinally, NetM-H.

Figure 6.17: CO2 by altitude and latitude aggregated longitudinally, minimal time
routes.
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(a) CO2 by longitude and latitude aggregated from ground level to 45 kf, NetM-V.

(b) CO2 by longitude and latitude aggregated from ground level to 45 kf, NetM-H.

Figure 6.18: CO2 by longitude and latitude aggregated from ground level to 45 kf,
minimal time routes.
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tion using original flight plans’ routes), the horizontal emission distributions are

even and the vertical emission distributions are as concentrated as those provided

by “NetM-HV” and “NetM-VH”. For user preferred routes which are provided by

“NetM-H” (horizontal optimisation using original flight plans’ cruising altitudes),

the vertical emission distributions are even and the horizontal emission distributions

are as concentrated as those provided “NetM-HV” and “NetM-VH” methods.

Figures 6.17 and 6.18 present the horizontal and vertical CO2 distributions

when UPR flights prefer to minimize time. The emission distributions of UPR

routes provided by “NetM-V” and “NetM-H” methods are presented in the upper

and lower sub-figures in each figure respectively. Figure 6.17 shows that CO2 of

UPR routes provided by “NetM-V” is vertically concentrated around 30,000 feet (in

sub-figure 6.17(a)), while the one provided by “NetM - H” (in sub-figure 6.17(b))

is distributed evenly from 10,000 feet to 42,000 feet. Figure 6.18 shows the CO2

emission of UPR routes provided by “NetM-V” (in sub-figure 6.18(a)) is horizontally

more distributed than the one provided by “NetM-H” (in sub-figure 6.18(b)). The

evidence is that there are more emission cells with high density in sub-figure 6.18(b)

than in sub-figure 6.18(a).

6.7 Conclusion

In this chapter, we propose a network model for finding UPR routes and al-

gorithms to generate networks. The proposed algorithms to generate control point

networks for flights work effectively to find UPR routes for flights. Dijkstra’s algo-

rithm (with a modification to improve the speed of the algorithm) is applied to find

UPR routes in networks. NetM method can find UPR routes in a short period of

time. In the experiments they can find UPR routes for 142 flights in about 6 minutes

using two computational nodes or about 3 minutes if 4 nodes are used. The running

time of NetM is much less than the ones of GA and LCS methods. The solution

provided by NetM can also satisfy user preference. For example, NetM can find al-

most discomfort free UPR routes for flights preferring to minimize discomfort. The
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results also show that discomfort and time objectives are proportional reasonably

to flight utility allocations.
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Conclusion

Chapter 7

Conclusion

7.1 Summary of results

This thesis designs and develops a framework for planning User Preferred

Routes and evaluating UPR concept. The main contribution of the thesis is the

design and development of three methods for User Preferred Routing, which deal

with a large number of flights, taking into account wind, bad weather and aircraft

performance data. The environmental impact of User Preferred Route sets, which

are optimised vertically, horizontally, or both for time and passenger discomfort

minimization is analysed. A proper use of user preferred routing methods for strate-

gic or tactical routing, and centralized or decentralized routing is proposed to take

advantages of each method.

To enable the investigation and optimisation of UPR, a simulation and eval-

uation environment is established. In this environment, I developed a real time

weather system to retrieve and process weather data. This data is then stored in a

database for aviation decision support in general and for aircraft UPR in particular.

Second, flight and weather scenarios are designed to test UPR methods and assess

user preferred routes provided by these methods. Third, a segment based simulation

environment is developed to simulate any type of route segment (climb, cruise, or

descent). The simulation uses point mass model of aircraft, and is implemented in a
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continuous environment, as well as in a fast time mode. This simulation environment

is applied effectively and flexibly to evaluate UPR.

Different emissions are measured effectively and their impact on the environ-

ment is analysed. I developed a real time flight data management system with

algorithms to process, estimate, and integrate information for every flight in the

airspace and to construct flight objects. Then another real time system is developed

to estimate aviation emission using the flight objects provided by the flight data

management system. The aviation emission is stored in 4-D database to analyse the

impact of aviation emission on the environment. A number of models for emissions

analysis are designed and implemented. The models developed here are then used

for the calculation and analysis of fuel and emissions for UPR routes. From the

spatial analysis of emissions data, we found that the CO2 concentration in some

parts of Australia is much higher than other parts, especially in some major cities.

The emission results also show that NOx emission of aviation may have a significant

impact on the ozone layer in the upper troposphere, but not in the stratosphere. It

is expected that with the availability of this real time aviation emission database,

environmental analysts and aviation experts will have an indispensable source of

information for making timely decisions regarding expansion of runways, building

new airports, applying route charges based on environmentally congested airways,

and restructuring air traffic flow to achieve sustainable air traffic growth.

This thesis proposes two approaches using evolutionary algorithms to resolve

the UPR problems. One is the black box approach (which uses Genetic Algorithms)

and the other is the white box approach (which uses Learning Classifier Systems).

The mutation probability investigation shows that GA can work better than random

search. The results show that the best solutions for flights preferring to minimize

discomfort can be found faster than the ones for flights preferring to minimize time.

The reason is the minimum discomfort route is usually found very fast. Then GA can

focus on improving the time objective of solutions whose discomforts are minimum.

Though LCS methods cannot provide solutions as good as “black box” methods

using GA, its solutions are transparent to users, and reusable. LCS is also able to
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discover rules that can be applied to operation in air traffic control. These rules

may be not yet known in air traffic management.

In this thesis, I designed and developed algorithms for UPR planning, based on

dynamically generated networks of control points. This method is named as NetM.

Two models of control point networks are proposed, for a flight which is given either

a route or a cruising altitude. The algorithms to generate a network corresponding to

a network model are designed. The segment simulation base is applied to determine

the nodes and weights of links in a network. A network generated for a combination

of origin, destination, aircraft model, route/cruising altitude, and weather data can

be used for all the flights with the same combination. The algorithms work effectively

to find UPR routes for flights. They can find UPR routes in a short period of time.

The solution provided by these algorithms can also satisfy user preference. For

example, they can find almost discomfort free UPR routes for flights preferring to

minimize discomfort. The results also show that discomfort and time objectives are

proportional reasonably to flight utility allocations.

In general, NetM (the methods using control point network) is the fastest com-

pared to GA (the methods using Genetic Algorithms) and LCS (the methods using

Learning Classifier Systems). If these methods run in 8 computation nodes, NetM

will take only about 2 minutes and GA and LCS will take about 30 minutes for

finding user preferred routes for 142 flights. These running times are acceptable in

UPR strategic planning.

NetM and GA can provide solutions with higher quality than LCS. The UPR

methods using networks of control points are also used to optimise aircraft route both

vertically and horizontally. UPR routes optimised both horizontally and vertically

are notably better than those only optimised vertically or horizontally. In terms of

fuel reduction in percentage, “NetM-V” and “NetM-H” can reduce by about 3% and

2% fuel burn in comparison with the original flight plans respectively; “NetM-VH”

and “NetM-HV” can reduce about 5% fuel burn.

Flight and weather scenarios are designed and generated to test and assess the
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performance of UPR methods. The advantages and disadvantages of UPR algo-

rithms are pointed out. A systematic use of UPR methods is proposed for specific

routing circumstances (strategic or tactical routing, and centralized or decentralized

routing) to take the advantages of each method. In summary, all methods (GA,

LCS, and NetM) can be used for strategic UPR routing for flights before departure.

NetM is the most suitable for finding tactical UPR routes. Another option for GA

to be applied in tactical planning is that GA can be installed in the cockpit of an

aircraft to find the UPR route in real time for the aircraft in decentralized routing.

The set of rules provided by LCS can be taken into account while air traffic con-

trollers decide maneuvers to not only resolve the conflicts among aircraft, but also

to optimise operations.

The environmental impact of user preferred route sets is analysed by using the

tools developed from the aviation emission calculation and analysis system. It is

found that when UPR flights prefer to minimize time, the emission distributions by

“NetM-HV” method (where user preferred routes are optimised horizontally then

vertically) and “NetM-VH” method (user preferred routes are optimised vertically

then horizontally) are similar. However, when UPR flights prefer to minimize dis-

comfort, the emission distributions by “NetM-HV” and “NetM-VH” are different.

When UPR flights prefer to minimize time we also found the following. For user

preferred routes that are provided by “NetM-V” (vertical optimisation using original

flight plans’ routes), the horizontal emission distributions are even and the vertical

emission distributions are as concentrated as those provided by “NetM-HV” and

“NetM-VH”. For user preferred routes which are provided by “NetM-H” (horizon-

tal optimisation using original flight plans’ cruising altitudes), the vertical emission

distributions are even and the horizontal emission distributions are as concentrated

as those provided by “NetM-HV” and “NetM-VH” methods.

An efficient method to detect conflicts between flights is designed. The conflicts

are then resolved by changing the departure time. This helps to reduce the time, fuel,

emissions, and ATC workload as the result of minimizing the probability of applying

maneuvers in the air to resolve conflicts. The CDR algorithms work effectively. The
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running time for both conflict detection and resolution of 142 UPR flights with each

other and with 1,674 non-UPR flights is only about 30 seconds. The adjustment

time is only about 65 minutes. In this thesis, we actually propose to determine

the departure times for UPR flights (the departure times of UPR flights have not

been published), so that UPR flights can minimize the risk of conflicts in the air.

However in the case the departure times of UPR flights have been published, the

result of 65 minute adjustment shows that if UPR planning is applied, the delay

in departure times of UPR and non-UPR flights is insignificant (the average delay

is less than 1 minute). This means UPR concept will likely not affect on delays at

airports. Moreover UPR planning with accurate trajectory prediction can help to

reduce delays at airports by determining accurate departure times for flights.

7.2 Future directions

There are several possibilities to extend and improve the research presented in

this thesis.

• Aircraft route simulation: The route simulation can be improved by trajectory

and route smoothing techniques as presented in Section 2.3.3.1. This will help

to improve the accuracy of simulation.

• Aviation emission analysis: Dispersion of emissions by weather phenomena and

chemical interaction happening in the atmosphere will be considered. This will

help to provide more accurate assessment and prediction of the distribution

and the impact of aviation emission on the environment. From the analysis

we may find quantitative functions representing the impact of aviation emis-

sions on the environment. Then these functions can be integrated into User

Preferred Routing. Such study has been carried in [173] to deal with the trade-

off between persistent contrails formation and additional fuel consumption, as

the result of discovery that persistent contrails may have a three to four times

greater effect on the climate than CO2 emissions [194].
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• Algorithms for UPR planning can be extended by taking not only time and

discomfort as objectives but also departure time adjustments. For example,

the sequence of flights for resolving conflicts by adjusting their departure times

can be optimised to obtain minimum departure time deviation.

• Currently UPR algorithms are designed to find UPR routes from origins to

destinations in static weather environment. However these algorithms can be

easily extended to find UPR from any point in the routes of flights to their

destinations. They can also take updated weather and air traffic situation into

account.

• Learning Classifier System may be improved by integrating more interactions,

not just between flights and weather environment as moment. For example,

the interaction between flights that may conflict with each other may be added

into a rule.

• In the future, we expect to use posterior, and interactive approaches in order

to compare with the current approach (priori). A more efficient method might

be found. In these approaches, multi-objective theory is used to find the non-

dominated set as well as to determine the most suitable solutions, based on

user preference during the search or after the search.

• Other or a new design of evolutionary operators might be investigated to

improve the performance of GA and LCS. A hybrid of GA or LCS with NetM

can be another choice for improvement. For example, GA or LCS can be used

to search user preferred routes in the networks of control points to minimize

time travelled, discomfort, and also delay time.

• In the future we will consider sector capacity and departure and arrival time

slots in UPR planning. Sector capacity is an important factor in aircraft route

planning [41].

• UPR algorithms can be extended to connect with the ground actions of aircraft

such as taxi, pushback, and fuel.
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• We are particulary interested in continuing the evaluation of UPR concept on

the environment and other perspectives such as delay, safety, etc, as well as

its relation with and impact on the whole air traffic management system.
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