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Chapter 1

Preliminary remarks

1.1 The story of this thesis

The unifying theme of this thesis is the following numerical integration problem:
approximate an integral of the form∫

[0,1]s
f(y1, y2, . . . , ys) dy1dy2 . . . dys , (1.1)

where the dimension s is very large—in the hundreds, thousands or often even
infinite—and bounds on the first mixed derivatives of the integrand are known. We
will look at different aspects of numerical integration, from a new application in
Uncertainty Quantification where a problem of this form arises, to abstract imple-
mentation and algorithmic aspects relating to, in particular, Quasi-Monte Carlo
quadrature rules and Multivariate Decomposition Methods.

Numerical approximation of integrals with high dimension is a difficult task
that arises in numerous practical applications, from statistics [56, 78] to the pricing
of financial derivatives [11, 34, 72] to quantifying the uncertainty in models from
engineering and the natural sciences [38, 94]. The difficulty comes from the fact that
for most traditional methods, such as the product of one-dimensional quadrature
rules, the cost of an approximation increases exponentially with dimension, which
means that very quickly computing even the simplest approximation is completely
untenable. As an example, consider the product of one-dimensional trapezoidal
rules. The simplest non-trivial approximation requires two points in each dimension,
hence, in ten dimensions this product trapezoidal rule will evaluate the integrand at
210 points. By the time we reach 100 dimensions such a rule requires 2100 function
evaluations—which it may interest the reader to know is more than the current
estimate of stars in the universe!

Having said all this, classical Monte Carlo methods, see e.g., [41], deserve an
honourable mention. A Monte Carlo approximation of an integral is performed by
taking the average of evaluations of the integrand at a number n, say, of randomly
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distributed points. They are extremely robust, in that they work for any function
that is square-integrable and the error does not explicitly depend on the dimension.
The catch of this robustness is that the error decays very slowly, at a rate of only
1/
√
n.
Nowadays, one of the state-of-the-art techniques for high-dimensional integration

are Quasi-Monte Carlo, or QMC, methods, which for certain classes of integrands are
able to achieve errors that converge significantly faster than Monte Carlo methods
and that are independent of dimension, see, e.g., [18, 20]. Similarly to Monte Carlo,
QMC methods approximate the integral by the average of n of function values, but
now the points where the integrand is evaluated are chosen deterministically, with
the explicit purpose of being well-distributed and exhibiting desirable approximation
properties.

The classical study of QMC methods has roots in number theory from the mid-
twentieth century, such as the works [40, 47, 51, 84], but during this period the
interest was focussed on using number theoretic tools to construct well-distributed
point sets, with little attention paid to the integrand or to the dimension of the
problem. And because of the occurrence of pesky (log n)s factors in the classical
error bounds, the efficacy of classical QMC techniques for the approximation and
error analysis of truly high-dimensional integrals was limited. The modern theory
of QMC methods, however, takes a more rounded view, focussing not only on the
point sets but also on identifying classes of functions for which QMC methods can
achieve fast convergence and for which it is possible to alleviate the dependence of
the error on the dimension.

A resurgence of interest in QMC rules occurred in the 1990’s when they were
used to efficiently approximate a 360-dimensional integral coming from a model for
the value of a financial derivative, see [72]. Following on from this success, there
was an interest in attempting to explain why the QMC rules had performed so
well. One explanation was that although formally the integral depended on 360
dimensions, perhaps it was actually a low-dimensional problem masquerading as a
high-dimensional problem, see, e.g., [11]. Shortly thereafter, a similar concept was
formalised by Sloan & Woźniakowski [82], whose general idea was that to success-
fully tackle high-dimensional integration with QMC rules, not all of the variables
can contribute equally to the integral. This concept was captured theoretically by
introducing a function space that depends on a sequence of weight parameters, one
for each variable, that model the relative importance of different variables. Most
importantly, they identified conditions on the decay of the weights that allowed
them to show that for integrands belonging to such a weighted function space it is
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possible to construct QMC methods that perform well with no dependence of the
error on dimension. Since then, there have been many advances in QMC methods
based around analysis of the error in the setting of weighted function spaces. Major
contributions include proving that error bounds for a class of specific QMC rules,
called lattice rules, converge arbitrarily close to 1/n independently of dimension
[55], and also the development of fast algorithms for the construction of such rules
[69, 70]. Along with, more recently, the invention of higher-order QMC rules that,
under additional assumptions on the higher-order derivatives of the integrand, can
achieve convergence rates of 1/nα for α > 1, also independent of dimension, see e.g.,
[14, 15, 19].

At the extreme of high-dimensionality, there has recently been significant in-
terest in studying integration of functions that depend on infinitely-many vari-
ables, both from an approximation perspective but also concerning the theory of
infinite-dimensional integration in its own right. For the successful numerical inte-
gration of infinite-variate functions, one must first somehow truncate the problem
to finitely-many dimensions, because only then can quadrature rules be used. One
method of truncation is to choose a large, but finite, number s and discard all of
the variables beyond ys. Another more sophisticated truncation algorithm is the
Multivariate Decomposition Method, which approximates the infinite-dimensional
integral by the sum of many integrals with small or moderate dimension, see, e.g.,
[31, 58, 63, 75, 76, 89, 90]. Both of these truncation methods will be discussed
throughout this thesis.

Although the study of infinite-variate integration is of a deep theoretical inter-
est, there are several applications where such an integral must be computed, which
provides the practical motivation for studying the approximation of infinite-variate
integrals. Notable examples come from the field of Uncertainty Quantification, where
one is interested in modelling how a physical model behaves when the input param-
eters are uncertain. The prototypical example of such problems is the flow of fluid
through a porous medium such as rock or sand, see e.g., [38]. In this problem, the
quantities we are interested in (such as pressure at a point) are obtained from the
output of a physical model for the porous flow (a diffusion equation) that takes as
input the permeability at each point in the domain (as a coefficient in the diffusion
equation). Motivated by the fact that it is not possible to know the permeability
everywhere in the domain exactly, the permeability is modelled as a random field,
which is assumed to be parametrised by an infinite number of stochastic parameters
(e.g., by a Karhunen-Loève expansion). This stochastic dependence carries through
the model to our quantities of interest, and so the goal now is to compute their
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expected value with respect to the infinitely-many parameters, which is an infinite-
dimensional integral. In Chapter 3 we will study a new application that fits this
mould, and analyse the application of QMC methods to it.

Clearly, the study of high and infinite-dimensional numerical integration is of
significant interest, both practically and theoretically. In terms of practical appli-
cations, key topics are the development, implementation and analysis of efficient
algorithms. And the aim of this thesis is to tackle different aspects of these three
topics.

1.2 Structure of this thesis

The structure of the remainder of this thesis is as follows. The next chapter intro-
duces the relevant mathematical background on numerical integration, in a more
technical manner than here. The topics discussed will be Quasi-Monte Carlo meth-
ods, Smolyak/sparse grid quadrature rules and the Multivariate Decomposition
Method.

The first original contribution of this thesis, in Chapter 3, is the application of
Quasi-Monte Carlo quadrature to an elliptic eigenvalue problem with coefficients
that depend on countably-many stochastic parameters. The goal here is to approx-
imate the expectation, with respect to the stochastic parameters, of the smallest
eigenvalue. The physical motivation is the criticality problem for a nuclear reactor:
in steady state the fission reaction can be modelled by an elliptic eigenvalue prob-
lem, and the smallest eigenvalue provides a measure of how close the reaction is to
equilibrium—in terms of production/absorption of neutrons. The rates of absorp-
tion and production of neutrons are inputted into the model through the coefficients,
which are parametrised by countably-many stochastic variables so as to model the
uncertainty of the composition of materials inside the reactor, e.g., the control rods,
reactor structure, fuel rods etc. The approximation is performed by truncating the
stochastic dimension, discretising the spatial domain using Finite Element methods
and approximating the expected value using QMC methods. A large portion of the
work is devoted to proving bounds on the mixed derivatives in order to rigorously
prove bounds on the approximation error.

Chapters 4 and 5 deal with computational and algorithmic aspects of the Mul-
tivariate Decomposition Method (MDM). Chapter 4 develops strategies for the effi-
cient implementation of the MDM, and numerical results for the performance of our
implementations are also presented. Then Chapter 5 introduces a new method for
performing the truncation component of the MDM (known as constructing active
sets) for a specific case of input parameters.
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Finally, in Chapter 6 two user-friendly Component-by-Component algorithms for
constructing QMC lattice rules are introduced. The purpose of both algorithms is
to construct good lattice rules without the need for the user to specify the function
space weights as inputs. Instead, the user supplies bounds on the mixed first deriva-
tives and good choices of weights are calculated automatically inside the algorithm.

1.3 Original research contributions

The content of each chapter corresponds to one of the research projects that I have
worked on throughout my PhD. All four projects have culminated in an original
research article, two of which have been published already, one has been submitted
and the other manuscript is in the very final stages of preparation (at the time of
writing, it will be submitted within a month). Here I briefly outline the original
contributions of this thesis. At the end of each chapter, in the Conclusion section,
I will give further details on the context of the work from that chapter, explicitly
stating what is original and what was my contribution. The original contributions
are:

1. A full error analysis of the application of Quasi-Monte Carlo methods to a
class of elliptic eigenvalue problems with stochastic coefficients. Including the
derivation of explicit upper bounds on the derivatives of the smallest eigen-
value (and the corresponding eigenfunction) with respect to the stochastic
parameters.

2. Details and strategies to efficiently implement the Multivariate Decomposition
Method using Smolyak and Quasi-Monte Carlo quadrature rules. Including
explicit pseudocodes and numerical results.

3. A new method of constructing optimal active sets for use in the truncation
step of the Multivariate Decomposition Method.

4. Two new Component-by-Component constructions of lattices rules that auto-
matically choose good function space weights.

1.4 List of original research articles

1. A. D. Gilbert, I. G. Graham, F. Y. Kuo, R. Scheichl, and I. H. Sloan. Analysis
of Quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic
coefficients. In progress, 2018.

2. A. D. Gilbert, F. Y. Kuo, D. Nuyens, and G. W. Wasilkowski. Efficient im-
plementations of the Multivariate Decomposition Method for approximating
infinite-variate integrals. Submitted to SIAM J. Sci. Comp., arXiv: https:
//arxiv.org/pdf/1712.06782.pdf, version December, 2017.
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3. A. D. Gilbert and G. W. Wasilkowski. Small superposition dimension and ac-
tive set construction for multivariate integration under modest error demand.
J. Complexity, 42:94–109, 2017.

4. A. D. Gilbert, F. Y. Kuo, and I. H. Sloan. Hiding the weights — CBC black box
algorithms with a guaranteed error bound. Math. Comp. Simul., 143:202–214,
2018.
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Chapter 2

Mathematical introduction

In this chapter we summarise the specific aspects of numerical integration that will
form the foundation for the work presented throughout this thesis, including Quasi-
Monte Carlo methods, Smolyak/sparse grid quadrature rules and the Multivariate
Decomposition Method. We also introduce the notation that will be used throughout
this thesis. To begin with we formalise the integration problem introduced in the
previous chapter.

2.1 The integration problem

Previously, we discussed an important, but specific, high-dimensional integration
problem. However, we are also interested in integrals over general product domains,
with respect to different probability measures, or of infinite-variate functions, and in
this section we formalise such concepts. To this end, consider the product domain
Ys where Y ⊆ R, and let y := (y1, y2, · · · , ys) ∈ Ys denote the variables with respect
to which integration will be taken. Also, let ρ : Y → [0,∞) be a probability density
function and denote the s-dimensional product density by

ρs(y) :=
s∏
j=1

ρ(yj) .

An s-dimensional integral with respect to this product density will be written as

Is(f) :=

∫
Ys
f(y)ρs(y) dy . (2.1)

As the title suggests, for much of the work in this thesis we are interested in
integration problems as the dimension tends to∞. Consider now an infinite-variate
function f : YN → R, where N := {1, 2, 3 . . .} denotes the natural numbers and the
domain is a countable product of Y as defined by

YN := {y = (y1, y2, . . .) : yj ∈ Y , j ∈ N} .
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Then the infinite-dimensional integral is defined to be

I(f) := lim
s→∞

∫
Ys
f(y1, y2, . . . , ys, 0, 0, . . . )

s∏
j=1

ρ(yj) dyj , (2.2)

provided of course, that this limit exists and 0 ∈ Y .
The theoretical study of infinite-dimensional integration is a deep and active

topic of research, which, because our focus is on the practical aspects of approxima-
tion, is beyond the scope of this thesis. For further details on infinite-dimensional
integration and tractability studies of such problems the reader should see, e.g.,
[35, 36, 46, 58, 63, 75].

A common thread of the problems dealt with in this thesis is not only numerical
integration, but also the interaction between the regularity of the integrand and the
integration problem (2.1) or (2.2). At different points we will either assume or prove
that the mixed first derivatives of the integrand satisfy collections of bounds of the
following form: ∣∣∣∣ ∂|u|∂yu

f(y)

∣∣∣∣ ≤ Bu ,

where, as appropriate, either u ⊆ {1, 2, . . . , s} or u ⊂ N with finite cardinality and
each 0 < Bu < ∞ will be known or computable. In the bounds above yu = (yj)j∈u

are the active variables and
∂|u|

∂yu

:=
∏
j∈u

∂

∂yj

is the first-order, mixed partial derivative with respect to yu.

2.2 An integration problem from Uncertainty Quantification

A common problem in Uncertainty Quantification (UQ) is to compute the expected
value of a quantity of interest—which may represent a physical quantity such as pres-
sure at a point or average displacement—with respect to countably-many stochastic
parameters that model the uncertainty of a physical model. A prominent example
is the model for the flow of fluid through a porous medium discussed in the previous
chapter.

Formally, let the quantity of interest f : YN → R depend on the stochastic
parameters y = (yj)

∞
j=1, where each yj ∈ Y is distributed according to the probability

density function ρ : Y → [0,∞). Then the expected value is an infinite-dimensional
integral as defined as above in (2.2):

Ey [f ] :=

∫
YN
f(y) dy := lim

s→∞

∫
Ys
f(y1, y2, . . . , ys, 0, 0, . . .)

s∏
j=1

(ρ(yj) dyj) . (2.3)
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In Chapter 3 we will study a new application from nuclear physics, which yields
problems of the form (2.3).

2.3 Quasi-Monte Carlo methods

A Quasi-Monte Carlo (QMC) approximation of the integral (2.1)—when the domain
is the unit cube, Ys = [0, 1]s, and the density is uniform, ρ ≡ 1—is an equal-weight
quadrature rule

Qn,s(Pn)f :=
1

n

n−1∑
k=0

f(t(k)) , (2.4)

where the quadrature points, t(k) = (t
(k)
1 , t

(k)
2 , . . . , t

(k)
s ), are chosen deterministically

from [0, 1]s. The whole point set will be denoted by Pn := {t(k)}n−1
k=0 .

In this section we fix notation and briefly introduce aspects of QMC theory that
are relevant to this thesis. The topics include randomly shifted lattice rules, weighted
function spaces for error analysis, and the Component-by-Component construction.
For a more comprehensive overview the reader is referred to the review papers [18, 61]
or the book [20].

2.3.1 Lattice rules

A rank-1 lattice rule [67, 79] is a QMC rule for which the quadrature points are
generated by scaled multiples of a single integer vector z called the generating vector :

t(k) =

{
kz

n

}
for k = 0, 1, · · · , n− 1 ,

where the braces denote that we take the fractional part of each component to
ensure that each point belongs to [0, 1]s. Because the operation of taking the frac-
tional component is periodic, {x} = {x+ 1}, each component zi is restricted to the
multiplicative group of integers modulo n, denoted by

Un := {z ∈ N : z < n, gcd(z, n) = 1} ,

and z ∈ Us
n = Un× · · · ×Un. Restricting each zi to be co-prime with n also ensures

that every one-dimensional projection of the quadrature points defines a set of n
distinct points in [0, 1]. The number of positive integers less than and co-prime to
n is given by the Euler totient function ϕ(n) = |Un|. So, for an n-point lattice rule
in s dimensions there are (ϕ(n))s possible generating vectors, which suggests that
when looking for good generating vectors a brute force search is infeasible even for
modest n and s. Details on how to construct good generating vectors will be given
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in Section 2.3.3. With a slight abuse of notation, when a QMC point set Pn is a
lattice rule generated by z we will replace dependence on Pn by dependence on z,
instead of the cumbersome Pn(z). For example, a lattice rule QMC approximation
is written Qn,s(z)f .

It is also practically beneficial to incorporate randomness into the QMC approx-
imation, and for lattice rules this is easily done by randomly shifting the points.
Given some random shift ∆ ∈ [0, 1)s, where each component ∆i is independent and
uniformly distributed on [0, 1), the ∆-shifted rank-1 lattice rule corresponding to a
generating vector z has points

t(k) =

{
kz

n
+ ∆

}
for k = 0, 1, . . . , n− 1 .

The practical benefits of random shifting are that the final estimate of the integral
is unbiased, performing several random shifts provides a practical estimate of the
error, and also that the construction of good generating vectors is simplified in the
case of randomly shifted lattice rules. The latter two points will be discussed further
in the following two sections.

To illustrate the structure of lattice rules, the points for a two-dimensional lattice
rule with 55 points generated by z = (1, 34) are plotted in Figure 2.1. The left axes
plot an ordinary rank-1 lattice while the right axes plot the randomly shifted rule
for the same generating vector.

1

10

1

10

Figure 2.1: Quadrature points for a 2D lattice rule with N = 55, z = (1, 34):
unshifted rule (left) and randomly shifted rule (right).

A key attribute of lattice rules is that given z they are incredibly simple to
implement, but how does one choose a good generating vector? To answer this we
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first require a measure of the quality of a QMC rule, which leads us to introduce
some standard concepts of QMC error analysis.

2.3.2 Error analysis in weighted Sobolev spaces

The modern setting for the error analysis of a QMC approximation (2.4) with a
point set Pn, was introduced by Sloan & Woźniakowski [82] and assumes that the
integrand f belongs to some s-variate weighted function space Ws,γ . In the original
formulation each variable has an associated “weight” parameter γi > 0 whose size
describes the importance of yi. Weights of this kind γ = (γi)

∞
i=1 are incorporated

intoWs,γ through the weighted norm ‖·‖s,γ and are nowadays referred to as product
weights.

In general, given a collection of positive real numbers γ = {γu}u⊂N, where u

denotes a finite subset of N and each γu represents the importance of the collections of
variables yu, letWs,γ be the s-dimensional weighted Sobolev space with unanchored
norm

‖f‖s,γ =

( ∑
u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂yu

f(y) dy−u

)2

dyu

) 1
2

, (2.5)

where {1 : s} is shorthand for {1, 2, . . . , s} and y−u = (yj)j∈{1:s}\u denotes inactive
variables.

In practice it is difficult to work with general weights γu and so often weights
with some inherent structure are used. The three most common forms are:

1. product weights (see [82]) where for some sequence 1 ≥ γ1 ≥ γ2 ≥ · · · > 0,

γu =
∏
j∈u

γj ; (2.6)

2. order dependent weights (see [21]) where each weight depends only on the
cardinality of the set:

γu = Γ|u| , (2.7)

for a sequence of positive real numbers Γ0 := 1,Γ1,Γ2, . . . ; and
3. product and order dependent (POD) weights, which first appeared in [60] and

are a hybrid of the previous two with

γu = Γ|u|
∏
j∈u

γj . (2.8)
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In the weighted function space Ws,γ , the worst-case error of Qn,s(Pn) over the
unit ball of Ws,γ is defined by

en,s,γ(Pn) := sup
‖f‖s,γ≤1

|Isf −Qn,s(Pn)f | , (2.9)

from which it follows by linearity that the error of a QMC approximation satisfies

|Isf −Qn,s(Pn)f | ≤ en,s,γ(Pn) ‖f‖s,γ . (2.10)

The above error bound on a QMC approximation is particularly useful because it
easily splits into two relatively independent factors: the worst-case error, which
measures the quality of the point set and is independent of the integrand; and
the norm of the integrand, which is often considered fixed since the integrand is
determined by the problem given. However, a subtle connection between the two
quantities is that they both depend on the function space weights γ, this will be
investigated further in Chapter 6.

The benefits of random shifting outlined in the previous section are not limited to
lattice point sets. Indeed, for Pn = {t(k)}n−1

k=0 , given a uniformly distributed random
shift ∆ ∈ [0, 1)s the randomly shifted point set (Pn; ∆) = {t̃k}n−1

k=0 is obtained by
taking t̃k =

{
t(k) + ∆

}
, where the braces again ensure that the shifted point still

belongs to [0, 1]s. We will write the shifted QMC approximation as Qsh
n,s(Pn; ∆).

In this setting, the shift-averaged worst-case error is used as a measure of the
quality of a point set. It is simply the worst-case error of the shifted point set,
averaged in the root-mean-square sense over all possible shifts

esh
n,s,γ(Pn) :=

√
E∆

[
e2
n,s,γ(Pn; ·)

]
=

√∫
[0,1]s

e2
n,s,γ(Pn; ∆) d∆ . (2.11)

It then follows from the error bound (2.10) that the root-mean-square error of a
shifted QMC approximation (where the expected value is again taken with respect
to the shift ∆) satisfies√

E∆

[∣∣Isf −Qsh
n,s (Pn; ·) f

∣∣2] ≤ esh
n,s,γ(Pn) ‖f‖s,γ . (2.12)

As before, this error bound is useful because the right hand side splits into two
factors, which respectively depend on the quadrature points and the integrand.

In practice, to estimate the quadrature error we perform a small number R
of approximations that are generated by independent and identically distributed
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random shifts, see e.g., [18]. Letting ∆(r) be the rth random shift, the corresponding
QMC approximation is Qsh

n,s(Pn; ∆(r))f , and then the final estimate is taken to be
the average of the R independent approximations

Qn,s,R(Pn)f :=
1

R

R∑
r=1

Qsh
n,s(Pn; ∆(r))f . (2.13)

Taking the sample variance over the R approximations gives an estimate of the
mean-square error

E∆

[∣∣Isf −Qsh
n,s(Pn; ·)f

∣∣2]
≈ 1

R(R− 1)

R∑
r=1

∣∣∣Qn,s,R(Pn)f −Qsh
n,s(Pn; ∆(r))f

∣∣∣2 . (2.14)

Typically, R is of the order 10-30.
The shift-averaged worst-case error of a randomly shifted lattice rule in the space

Ws,γ with general weights, is given explicitly by (see [18, Eq. (5.12)])

esh
n,s,γ(z) =

√√√√ ∑
∅6=u⊆{1:s}

γu

(
1

n

n−1∑
k=0

∏
j∈u

B2

({
kzj
n

}))
, (2.15)

where B2(x) = x2− x+ 1
6
is the Bernoulli polynomial of degree 2. This provides us

with a computable measure of the quality of a randomly shifted lattice rule.

2.3.3 The Component-by-Component construction

The Component-by-Component (CBC) construction, first invented by Korobov [52]
and rediscovered in [80, 81], is an efficient method of constructing generating vectors
that result in “good” lattice rules in the context of minimising the worst-case error.
The CBC construction is a greedy algorithm that works through each component of
the generating vector sequentially, choosing zi to minimise the shift-averaged worst-
case error (2.15) in that dimension while all previous components remain fixed.

Algorithm 2.1 The CBC algorithm

Given n, s and a sequence of weights γ = {γu}u⊆{1:s}.

1. Set z1 to 1.
2. For i = 2, . . . , s choose zi ∈ Un so as to minimise esh

n,i,γ(z1, . . . , zi−1, zi) given
that all of the previous components z1, . . . , zi−1 remain fixed.

13



Setting z1 to be 1 is done by convention, since in the first dimension every choice
results in an equivalent quadrature rule. Using structured weights (product, order
dependent or POD form) simplifies the formula for the shift-averaged worst-case
error (2.15) even further, allowing the calculation of esh

n,i,γ(z1, . . . , zi−1, zi) for all
zi ∈ Un together to be performed as one matrix-vector product. In general a naive
implementation of this algorithm costs O(s n2) operations, however a fast construc-
tion performs the matrix-vector product using a fast Fourier transform (FFT), which
reduces this to O(s n log n) in the case of product weights and O(s n log n+ s2n) for
order dependent or POD weights. For full details on the Fast CBC construction see
[18, 69, 70].

A key result in the modern theory of QMC is that the shift-averaged worst-case
error of a CBC generated lattice rule satisfies the following upper bound:

esh
n,s,γ(z) ≤

 1

ϕ(n)

∑
∅6=u⊆{1:s}

γηu

(
2ζ(2η)

(2π2)η

)|u| 1
2η

for all η ∈
(

1
2
, 1
]
, (2.16)

where ζ(x) =
∑∞

j=1 1/jx for x > 1 is the Riemann zeta function. This result was
proved in [18] for general weights and in [13, 55] for product weights. In many cases,
such as when n is prime or a prime power, 1/ϕ(n) = O(1/n) and hence the upper
bound (2.16) states that in the setting of weighted function spaces Ws,γ the CBC
algorithm generates lattice rules that achieve convergence in error that is arbitrarily
close to 1/n.

A crucial strength of QMC rules is that not only do they achieve good conver-
gence rates but they are also well-suited to very high-dimensional problems; however,
notice in (2.16) that the upper bound still depends on the dimension through the
sum. The strategy to remove this dependence on dimension is to impose conditions
on the weights—which equate to restrictions on the functions in Ws,γ—that ensure
that the sum in (2.16) can be bounded independently of s. For example, in the
case of product weights (2.6) a common condition is to assume that the weights are
summable:

∞∑
j=1

γj < ∞ .

2.4 Smolyak/sparse grid quadrature rules

Smolyak methods [83], also known more recently as sparse grid rules [10, 27], are
efficient tensor product-type quadrature rules that have proven to be very effective
in approximating moderate to high-dimensional integrals. The basis of Smolyak’s
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method is to take the tensor product of one-dimensional quadrature rules, but in-
stead of taking the full tensor product—which is renowned for being extremely
expensive as the dimension increases—a Smolyak approximation is a restricted sum
of the tensor product of the differences of one-dimensional rules.

More precisely, let {Ui}i≥0 be a sequence of one-dimensional quadrature rules
that are designed to approximate integrals of the form∫

Y
g(y)ρ(y)dy ,

with U0 ≡ 0, the zero approximation. It is also commonly assumed that the rules
{Ui}i≥0 are ordered such that the number of quadrature points increases with i,
which also generally means that the “precision” of the rule increases. A level m > 0

Smolyak approximation of the s-dimensional integral (2.1) is

Qs,m(f) :=
∑
i∈Ns

|i|≤s+m−1

(
s⊗
j=1

(
Uij − Uij−1

))
(f) , (2.17)

where i = (i1, i2, . . . , is) and |i| =
∑s

j=1 |ij|. The elements ij of the vector i deter-
mine the precision in dimension j of each term in the sum, and the name “sparse
grids” refers to the fact that the condition |i| ≤ s + m − 1 restricts how many di-
mensions can have higher precision difference rules simultaneously, see Figure 2.2.
Most notably, the highest precision difference (Um−Um−1) can only ever be present
in one dimension at a time.

1

10

1

10

Figure 2.2: 2D quadrature points based on trapezoidal rules for level m = 6: full
tensor product grid (left), and Smolyak’s method (right).
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A graphical comparison of the quadrature points used by a full tensor product
approximation and a Smolyak approximation in two dimensions is given in Fig-
ure 2.2. The grids in each rule are generated by using trapezoidal rules on Y = [0, 1]

as the one-dimensional rules and correspond to levelm = 6. The full product grid on
the left consists of 1089 points whereas the Smolyak grid uses only 145 points—this
discrepancy only increases with dimension and level.

The tensor product formula (2.17) can also be written as an explicit weighted
quadrature rule, which is easier to compute in practice. This quadrature formula
depends on whether the one-dimensional rules are nested and will be presented in
Chapter 4.

Also, note that Smolyak’s method is not specific to numerical integration. The
underlying product-of-differences structure is also very effective for function approx-
imation, again see, e.g., [10].

This summary on Smolyak’s method concludes with a typical error bound, which
will hold for all integrands in the s-dimensional space of functions with bounded
mixed derivatives up to order r:

Wr
s (Ys) :=

{
f : Ys → R :

∥∥∥∥ ∂|q|f

∂yq11 ∂y
q2
2 · · · ∂y

qs
s

∥∥∥∥
L∞(Ys)

<∞, q ∈ {0, 1, . . . , r}

}
.

First, suppose that the number of points in the one-dimensional rules are of
the order ni = O(2i), and that for g ∈ Cr(Y), the space of r times continuously
differentiable functions on Y , the rule Ui satisfies∣∣∣∣∫

Y
g(y)ρ(y) dy − Ui(g)

∣∣∣∣ = O(n−ri ) = O(2−i r) .

Then, it can be shown, see, e.g., [10, 91], that for f ∈ Wr
s (Ys) Smolyak’s methods

achieve an approximation error of

|Is(f)−Qs,m(f)| = O
(
m(s−1)(r+1) · 2−mr

)
. (2.18)

2.5 The Multivariate Decomposition Method

The Multivariate Decomposition Method (MDM) is an algorithm for approximat-
ing the integral of an infinite-variate function, which works by approximating the
infinite-dimensional integral by many low-dimensional integrals that can then be
handled more easily by quadrature. The general idea of the MDM, see [31, 33, 58,
76, 89, 90] (as well as [63, 75] under the name of Changing Dimension Algorithm),
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goes as follows. Assume that f admits a decomposition

f(y) =
∑
u⊂N

fu(yu), (2.19)

where the sum is taken over all finite subsets of N, and where each function fu

depends only on the variables in yu = (yj)j∈u. With ρ a given probability density
function on Y and ρu(y) :=

∏
j∈u ρ(yj), we define the integral of f by

I(f) :=
∑
u⊂N

Iu(fu), with Iu(fu) :=

∫
Y|u|

fu(yu)ρu(yu) dyu, (2.20)

and let I∅(f∅) := f∅. Under certain conditions the integral above (2.20) coincides
with the infinite-dimensional integral as defined in (2.3), see e.g., [58].

The MDM algorithm for approximating the integral (2.20) is

Aε(f) :=
∑
u∈Uε

Au(fu), (2.21)

where Uε is the “active set”—a family of sets u ⊂ N that represent the terms Iu(fu)
that contribute most to the integral—and for u 6= ∅, each Au is a |u|-dimensional
quadrature rule using nu function evaluations. Since f∅ is constant we set A∅(f∅) :=

f∅.
The error of the MDM algorithm satisfies the trivial bound

|I(f)−Aε(f)| ≤
∑
u/∈Uε

|Iu(fu)| +
∑
u∈Uε

|Iu(fu)− Au(fu)|. (2.22)

Given ε > 0, the strategy is to first choose an active set Uε such that the first sum
in (2.22) is at most ε/2, and then specify the quadrature rules such that the second
sum in (2.22) is also at most ε/2, giving a total error of at most ε. With this in
mind, the subscript ε is included to stress that, by necessity, the MDM algorithm
Aε and the active set Uε depend on the error request ε.

We would need to impose additional conditions on the class of functions to ensure
that the sum (2.19) is absolutely convergent, the integral (2.20) is well defined, and
the quadrature rules in (2.21) converge appropriately to the corresponding integrals.
The precise details will depend on the mathematical setting within which we choose
to analyse the problem. We will outline some variants below, but a theoretical study
of the MDM is not the purpose of this thesis.
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2.5.1 The class of infinite-variate functions

The input parameters for the MDM, which determine the active set and the quadra-
ture rules, depend on the theoretical setting within which we choose to perform the
error analysis. There are two broad settings for the MDM in the literature: the
weighted function class setting, from e.g., [33, 76, 89, 90], and the setting without
weights, as in [58]. In the weighted setting, it is assumed that the integrand be-
longs to a function class equipped with a weighted norm and that the importance
of subsets of variables are represented by the weights, which act as the algorithm
inputs. Whereas in the setting without weights, instead of weights it is assumed
that bounds on the norms of the decompositions functions fu are known and given
as inputs. In this introductory chapter we follow the setting without weights, or
“norm-bounds setting”, and now give a brief summary of the key concepts that will
be required in later chapters, for further details see [58]. The MDM in the context
of the weighted setting will be introduced in Chapter 5.

The class of infinite-variate functions will be denoted F and we will outline its
structure now. For each u ⊂ N let Fu be a Banach space of functions of |u| variables
with norm denoted by ‖·‖Fu

, and assume that the functions in Fu are integrable with
respect to Iu. We define F∅ to be the space of constant functions. Then F is defined
to be the class of infinite-variate functions that admit a decomposition (2.19), with
each decomposition function fu belonging to Fu. Further, assume that for each u

there exists some 0 < Bu <∞, which is either known or computable, such that

‖fu‖Fu
≤ Bu , (2.23)

and that the collection of bounds {Bu}u⊂N is summable:

∑
u⊂N

Bu < ∞ . (2.24)

In order to ensure that the integral (2.20) is well-defined we make further as-
sumptions on f ∈ F . Assume that each Iu : Fu → R is continuous with

Cu := ‖Iu‖Fu
:= sup

gu∈Fu, ‖gu‖Fu≤1

|Iu(gu)| < ∞ . (2.25)

Finally, we assume that there exists α > 1 such that

∑
u⊂N

(CuBu)
1/α <∞ , (2.26)

18



and define the maximum decay to be

α0 := decay ({CuBu}u⊂N) := sup

{
α :

∑
u⊂N

(CuBu)
1/α <∞

}
> 1 . (2.27)

Then (2.26) implies that for all f ∈ F the integral (2.20) is well-defined. Actually,
the integral is still well-defined with α = 1, however, the definition of the active set
(see (2.33) below) requires α > 1, again see [58].

The two collections of bounds {Bu}u⊂N and {Cu}u⊂N must be known because they
are the inputs to the MDM, that is, they are required as inputs when we choose the
active set and the quadrature rules.

2.5.2 The anchored decomposition

Rarely in practice is the integrand given in the form of a decomposition (2.19), how-
ever, there are known decomposition formulas that provide a way to compute the
terms fu, see [64] for a discussion. Perhaps the two most well-known decomposi-
tions are the ANOVA (Analysis of Variance) decomposition, see e.g., [85], and the
anchored decomposition. The general idea of both decompositions for evaluating fu
is to apply successive projections to f , where each projection eliminates the depen-
dence on a variable yj for j 6∈ u, see [64]. The ANOVA decomposition eliminates
variables by integrating them out (and as such is not of much practical use in the
context of MDM), whereas the anchored decomposition fixes a variable at a specific
value in Y . Thus, the anchored decomposition allows us to evaluate fu using only
evaluations of the original integrand, and will be the decomposition of choice for
the remainder of this thesis. The following formula from [64] allows us to explicitly
compute the anchored decomposition term fu via

fu(yu) =
∑
v⊆u

(−1)|u|−|v|f(yv;a) , (2.28)

where the “anchor” is a = (a1, a2, a3, . . .) ∈ YN and the jth element of the anchored
point (yv;a) is given by

(yv;a)j :=

yj if j ∈ v ,

aj otherwise.

Another practical consideration is how to choose the anchor so that evaluating
f at an anchored point—which is still an infinite-dimensional vector—is actually
possible. Often there is a natural choice of anchor, and in the section to follow we
introduce an example integration problem where the choice a = 0 is obvious.
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2.5.3 An example integration problem

In this section we give an example of how to set up the framework for applying the
MDM to numerically integrate the function (2.29) below. Namely, we explain how
to choose the spaces Fu and ultimately the input parameters {Bu}u⊂N, {Cu}u⊂N. Let
Y = [−1

2
, 1

2
], ρ ≡ 1 and consider the integrand f : [−1

2
, 1

2
]N → R given by

f(y) =
1

1 +
∑

j≥1 yj/j
β
, (2.29)

with different parameters β ≥ 2. This integrand is considered a prototype function
for some PDE applications, see e.g., [60], and, for β = 2, has previously been
considered in, e.g., [58, Example 5]. It will serve as the test integrand for our
numerical results when we consider implementing the MDM in Chapter 4.

The decomposition terms of (2.29) will be computed using the anchored de-
composition (2.28) with anchor 0 := (0, 0, 0 . . .). By taking 0 as the anchor, the
anchored variables simply drop out of the sum in the denominator and for v ⊂ N
we can compute f at an anchored point (yv; 0) simply using

f(yv; 0) =
1

1 +
∑

j∈v yj/j
β
.

Let each Fu be a reproducing kernel Hilbert space with norm

‖gu‖Fu
:=

(∫
[−1

2
,
1
2

]|u|

(
∂|u|

∂yu

gu(yu)

)2

dyu

) 1
2

, (2.30)

which for fu given by the anchored decomposition (2.28) simplifies to

‖fu‖Fu
:=

(∫
[−1

2
,
1
2

]|u|

(
∂|u|

∂yu

f(yu; 0)

)2

dyu

) 1
2

. (2.31)

In Fu we have that ‖Iu‖ = 12−|u|/2 =: Cu, and for the integrand (2.29) the norm
is bounded by (see [58, Subsection 5.4] for a derivation of the case β = 2)

‖fu‖Fu
≤
(
1− 1

2
ζ(β)

)−(|u|+1) |u|!
∏
j∈u

j−β =: Bu, (2.32)

where ζ(x) is again the Riemann zeta function.
Clearly, the summability assumptions (2.24) and (2.26) are satisfied for all β ≥ 2

and the maximum decay (2.27) is α0 = β.
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2.5.4 Constructing the active set

The following criteria for constructing the active set Uε from [58, 75] ensures that
the truncation error (the first term in (2.22)) is less than ε/2 as required. Let the
active set be given by

Uε = {u : CuBu > T} , (2.33)

where for any α ∈ (1, α0) the threshold is

T :=

(
ε/2∑

v⊂N(CvBv)1/α

) α
α−1

. (2.34)

Then it was shown in [89] that

∑
u/∈Uε

|Iu(fu)| ≤
ε

2

and the size of the active set is controlled by

|Uε| <
(

2

ε

) 1
α−1

(∑
u⊂N

(CuBu)
1/α

) α
α−1

< ∞ . (2.35)

Note that for a given integration problem the choice of the active set is not unique.

2.5.5 Choosing the quadrature rules

The strategy for choosing the algorithms Au is to select the number of points nu

that minimise the total cost of (2.21) while ensuring that the quadrature error (the
second term in (2.22)) is bounded by ε/2. To that end we introduce the cost model
from [58].

For finite u ⊂ N and arbitrary yu ∈ Y |u|, let the cost of evaluating fu(yu) be
given by £(|u|) where the function £ : N ∪ {0} → (0,∞) is non-decreasing. Then
the information cost of the algorithm Aε is defined to be

cost(Aε) :=
∑
u∈Uε

nu£(|u|) . (2.36)

In the case of the anchored decomposition, if the cost of evaluating f(yu; 0) is
given by $(|u|) where $ : N∪ {0} → (0,∞) is a non-decreasing function, then based
on the formula (2.28)

£(k) =
k∑
`=0

$(k)

(
k

`

)
.
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We will also require knowledge of the error of the linear algorithms {Au}u⊂N in
the spaces {Fu}u⊂N. For all u ⊂ N, assume that there there exists a single q > 0 and
known real numbers 0 < Gu,q <∞ such that the algorithm Au,n (the extra subscript
denotes using n function evaluations) satisfies the worst-case error bound

sup
gu∈Fu,‖gu‖Fu≤1

|Iu(gu)− Au,n(gu)| ≤
Gu,q

(n+ 1)q
for n = 0, 1, 2, . . . . (2.37)

It then follows that the total quadrature error is bounded above as follows∣∣∣∣∣∑
u∈Uε

Iu(fu)−Aε(f)

∣∣∣∣∣ ≤ ∑
u∈Uε

Gu,qBu

(nu + 1)q
. (2.38)

The number of points nu are now chosen so as to minimise the information cost
(2.36) subject to the right hand side of the upper bound (2.38) equalling the error
request ε/2. The real number solution to this constrained minimisation problem is
obtained by Lagrange multipliers and is given by

hu =

(
2

ε

∑
v∈Uε

£(|v|)q/(q+1)(Gv,qBv)
1/(q+1)

)1/q (
Gu,qBu

£(|u|)

)1/(1+q)

. (2.39)

Then letting each Au be a quadrature rule using nu = bhuc points it follows that∣∣∣∣∣∑
u∈Uε

Iu(fu)−Aε(f)

∣∣∣∣∣ ≤ ε

2
.
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Chapter 3

Applying Quasi-Monte Carlo to a stochastic eigenvalue

problem

3.1 Introduction

In this chapter we propose methods for solving random second-order elliptic eigen-
value problems (EVP) of the general form

−∇ ·
(
a(x,y)∇u(x,y)

)
+ b(x,y)u(x,y) = λ(y) c(x)u(x,y), for x ∈ D, (3.1)

where the derivative operator ∇ is with respect to the physical variable x and where
the stochastic parameter

y = (yj)j∈N ∈ U := [−1
2
, 1

2
]N (3.2)

is an infinite-dimensional vector of independently and identically distributed uniform
random variables on [−1

2
, 1

2
]. For simplicity, the physical domain D ⊂ Rd, for

d = 1, 2, 3, is assumed to be a bounded convex domain with Lipschitz boundary. To
guarantee well-posedness of the eigenvalue problem (3.1), we impose homogenous
Dirichlet boundary conditions:

u(x,y) = 0 for x ∈ ∂D. (3.3)

Under the initial assumption that a(·,y), b(·,y), c ∈ L∞(D), together with

a(x,y), c(x) ≥ amin > 0 for all (x,y) ∈ D × U ,

the eigenvalues in (3.1) are real and bounded from below (this is a simple extension of
the results in [87, Sec. 3.2]), and the leftmost (or dominant) eigenvalue λ1 is simple.
Since the coefficients a(x,y) and b(x,y) depend on the stochastic parameters, the
eigenvalues λ(y) and corresponding eigenfunctions u(x,y) will also be stochastic.
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Problems of the form (3.1) appear in many areas of engineering and physics. Two
prominent examples are in nuclear reactor physics [23, 49, 77, 87] and in photonics
[22, 29, 54, 68]. Problems of a similar type also appear in quantum physics, in
accoustic, electromagnetic or elastic wave propagation, and in structural mechanics,
where there is a huge engineering literature on the topic (see e.g. [28, 74]).

In nuclear reactor physics, the eigenproblem (3.1) corresponds to the mono-
energetic diffusion approximation of the neutron transport equation [23, 49, 77, 87].
The dominant eigenvalue λ1 of (3.1) describes the criticality of the reactor, while
the corresponding eigenfunction u1 models the associated neutron flux. The coeffi-
cient functions a, b and c correspond, respectively, to the diffusion coefficient, the
absorption cross section and the fission cross section of the various materials in the
reactor. These coefficients can vary strongly in x and are subject to uncertainty in
the composition of the constituent materials (e.g. liquid and vapour in the coolant),
due to wear (e.g. “burnt” fuel) and due to geometric deviations from the original
reactor design [3, 4, 92, 93].

In photonic band gap calculations in translationally invariant materials, e.g. in
photonic crystal fibres (PCFs), two decoupled eigenproblems of the type (3.1) have
to be solved (with periodic boundary conditions): the transverse magnetic (TM)
and the transverse electric (TE) mode problem [22, 29, 54, 68]. Here, b ≡ 0 and we
have either a ≡ 1 and c = κ2 (TM mode problem) or a = 1/κ2 and c ≡ 1 (TE mode
problem), where κ = κ(x,y) is the refractive index of the PCF. The refractive index
can be subject to uncertainty, due to heterogeneities or impurities in the material
and due to geometric variations [24, 95].

The current chapter demonstrates the power of Quasi-Monte Carlo (QMC) meth-
ods for computing statistics of the eigenvalues of (3.1) with boundary conditions
(3.3). Our analysis will be restricted to approximating the expected value of the
dominant eigenvalue λ1 and linear functionals of the corresponding eigenfunction,
but the method is applicable much more generally, and in particular to the appli-
cations listed above. We assume that, for all x ∈ D and y ∈ U , the stochastic
coefficients admit series expansions of the following form:

a(x,y) = a0(x) +
∞∑
j=1

yjaj(x) and b(x,y) = b0(x) +
∞∑
j=1

yjbj(x) . (3.4)

Although the fields a and b are parametrised by the same infinite sequence of ran-
dom variables (yj)j≥0, this setting for the coefficients allows complete flexibility with
respect to the correlation between a and b. To model two fields that are not corre-
lated with each other, it suffices to set a2j−1 ≡ 0 and b2j ≡ 0, for all j ≥ 1. On the
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other hand, if there exists a j ≥ 1 such that aj 6≡ 0 and bj 6≡ 0 then the two random
fields will be correlated.

For a function f : U → R, its expected value with respect to the product uniform
probability distribution is the infinite-dimensional integral as defined by:∫

[− 1
2
, 1
2

]N
f(y) dy := lim

s→∞

∫
[− 1

2
, 1
2

]s
f (y1, . . . , ys, 0, . . .) dy1 · · · dys ,

provided that the limit exists. Our quantity of interest is then

Ey [λ1] =

∫
[− 1

2
, 1
2

]N
λ1(y) dy . (3.5)

Our strategy for approximating (3.5) is to first truncate the expansions in (3.4) to
s parameters by setting yj = 0, for j > s, thus reducing (3.5) to a finite-dimensional
quadrature problem. Then, for each y ∈ [−1

2
, 1

2
]s, we approximate (3.1) using a finite

element (FE) discretisation on a mesh Th with mesh size h, to obtain a parametrised
generalised matrix eigenproblem that can be solved iteratively (e.g. via an Arnoldi
method or similar). The corresponding approximate dominant eigenvalue is de-
noted λ1,s,h(y). Now to approximate the integral in (3.5), we construct n suitable
QMC quadrature points in the s-dimensional unit cube [0, 1]s via a rank-1 lattice
rule with generating vector z ∈ Ns (cf. [18]). The entire pointset is shifted by a
uniformly-distributed random shift ∆ ∈ [0, 1]s and then translated into the cube
[−1

2
, 1

2
]s. The final estimate of Ey [λ1] is then the (equal-weight) average of the

approximate eigenvalues λ1,s,h at these n shifted QMC quadrature points and is
denoted Qsh

n,s(z,∆)λ1,s,h.
The error depends on h, s and n and to estimate it we make some further assump-

tions on the coefficients, which are all detailed in Assumption A3.1. In particular,
to bound the FE error (w.r.t. h), we require some spatial regularity of (aj)j≥0,
(bj)j≥0 and c. To bound the dimension-truncation error (w.r.t. s) and the quadra-
ture error (w.r.t. n), we assume p-summability of the sequences

(
‖aj‖L∞(D)

)
j≥0

and(
‖bj‖L∞(D)

)
j≥0

, for some p ∈ (0, 1).
The main result we present in this chapter is that, under these assumptions,

there exists a constant independent of h, s and n such that√
E∆

[∣∣Ey[λ1]−Qsh
n,s(z,∆)λ1,s,h

∣∣2] ≤ C
(
h2 + s−2( 1

p
−1) + n−α

)
, (3.6)

where α = min(1 − δ, 1/p − 1/2) for arbitrary δ ∈ (0, 1/2). This result, for which
a full statement is given in Theorem 3.15 (along with a similar result for linear
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functionals of the corresponding eigenfunction), summarises the individual contri-
butions to the overall error from the three approximations, that is, discretisation
(h), dimension-truncation (s) and quadrature (n). The errors in the three separate
processes are established individually in Theorems 3.6, 3.12 and 3.13, respectively.
To give a simple example of the power of estimate (3.6), if p is small enough, then
the truncation error is negligible and the error is bounded by the optimal FE con-
vergence rate h2 plus a QMC convergence rate which is arbitrarily close to 1/n.
Importantly, the constant C does not depend on s.

A key result in obtaining (3.6) is Lemma 3.10, where we establish the regularity of
λ1 and u1 with respect to y. The bounds on the mixed partial derivatives |∂νyλ1(y)|
of λ1 are of product and order-dependent (POD) form, as in the case of (linear)
boundary value problems [60]. Here, ν is a multi-index with finitely many non-zero
entries νj ∈ N. The order dependence of the bounds in Lemma 3.10 is (|ν|!)1+ε,
for ε arbitrarily close to zero, which is only slightly larger than in the bounds in
[60] and still allows us to achieve the (nearly) optimal dimension-independent QMC
convergence rates. The constants in the bounds depend on the gap between λ1(y)

and the second smallest eigenvalue λ2(y). This is bounded away from zero uniformly
in y under the assumptions which we shall make on a, b and c (cf. Assumption A3.1).

Although stochastic eigenproblems have been of interest in engineering for some
time, the mathematical literature is less developed. A common method of tackling
these problems is the reduced basis method [25, 48, 66, 73], whereby the full para-
metric solution (eigenvalue) is approximated in a low-dimensional subspace that is
constructed as the span of the solution at specifically chosen parameter values. For
the current work the most relevant paper is [1], where a sparse tensor approxima-
tion was used to estimate the expected value of the eigenvalue. A key result there is
that simple eigenpairs are analytic with respect to the stochastic parameters, shown
using the classical perturbation theory of Kato [50]. However, no bounds on the
derivatives are given, which are required to theoretically justify the application of
QMC rules. Here, we extend the results from [1] by proving explicit bounds on
the derivatives, which in turn allows us to derive a priori error bounds. Alterna-
tively, this chapter can also be viewed as extending the results on QMC methods
for stochastic elliptic source problems [60] to eigenvalue problems, and we remark
that because of the nonlinearity of eigenvalue problems this is not merely a trivial
extension. Despite the increased difficulty of this nonlinearity, for all p ∈ (0, 1), our
error bound (3.6) achieves the same rates of convergence as the equivalent result for
the PDE source problem in [60]. The only difference is that our result does not hold
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for p = 1, in which case the result in [60] requires an additional assumption on the
summability anyway.

The structure of this chapter is as follows. In Section 3.2, we provide some rel-
evant background theory of elliptic eigenproblems and of randomised lattice rules
and establish the FE error bound. Section 3.3 contains the parametric regularity
analysis, which is then used in Section 3.4 to bound the quadrature and the trun-
cation error. This chapter concludes with a brief numerical experiment in Section
3.5, which demonstrates the sharpness of the bounds.

3.2 Preliminary theory

In this section we present some preliminary theory on variational eigenvalue prob-
lems, FE discretisation and QMC methods. However, we will only very briefly touch
on QMC theory since we have already provided a summary in Section 2.3. First we
outline all of our assumptions on the coefficients, which, in particular, ensure that
the problem (3.1) is well-posed.

Assumption A3.1.

1. a and b are of the form (3.4) with aj, bj,∈ L∞(D) for all j ≥ 0 and c ∈ L∞(D).
2. There exists amin > 0 such that a(x,y) ≥ amin, b(x,y) ≥ 0 and c(x) ≥ amin

for all x ∈ D, y ∈ U .
3. For some p ∈ (0, 1]

∞∑
j=1

‖aj‖pL∞(D) < ∞ and
∞∑
j=1

‖bj‖pL∞(D) < ∞ .

4. aj ∈ W 1,∞(D) for j ≥ 0 and

∞∑
j=1

‖aj‖W 1,∞(D) < ∞ .

The assumption that b(x,y) ≥ 0 is made without loss of generality because any
EVP with b < 0, but satisfying the rest of Assumption A3.1, can be shifted to an
equivalent problem with “new b” non-negative by adding a constant multiple σ of
c(x) · u(x,y) to both sides of (3.1). To ensure non-negativity, the shifting factor σ
is chosen so that −b(x,y) ≤ σ · c(x) for all x, y. Such a σ exists due to Assump-
tion A3.1.3. The eigenvalues of the original EVP are simply the eigenvalues of the
shifted problem shifted by −σ, and the corresponding eigenspaces are unchanged.
For specific details see, e.g., [29].
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Throughout the chapter, when it is unambiguous we will drop the x-dependence
when referring to a function defined on D at a parameter value y. For example, we
will write the coefficients and eigenfunctions as a(y) := a(·,y), b(y) := b(·,y) and
u(y) := u(·,y).

Assumption A3.1 (1, 2 and 3) implies that for all y ∈ U we have a(y), b(y) ∈
L∞(D). Furthermore, by the triangle inequality, the L∞-norms of these two coeffi-
cients can be bounded from above independently of y: for all x,y

‖a(y)‖L∞(D) ≤ ‖a0‖L∞(D) +
1

2

∞∑
j=1

‖aj‖L∞(D) ,

and similarly for ‖b(y)‖L∞(D). For convenience we define a single upper bound for
all three coefficients

amax := max

{
sup
y∈U
‖a(y)‖L∞(D) , sup

y∈U
‖b(y)‖L∞(D) , ‖c‖L∞(D)

}
. (3.7)

In Assumption A3.1.4, W 1,∞(D) is the usual Sobolev space of functions with
essentially bounded gradient on D, to which we attach the norm

‖v‖W 1,∞(D) := max
{
‖v‖L∞(D) , ‖∇v‖L∞(D)

}
.

This assumption is needed to obtain the regularity result in Proposition 3.1.

3.2.1 Abstract theory for variational eigenproblems

To construct the variational formulation of the EVP (3.1), we introduce the test
space V := H1

0 (D), the usual first-order Sobolev space of real-valued functions with
vanishing boundary trace, its dual V ∗ = H−1(D), and equip V with the norm

‖v‖V := ‖∇v‖L2(D) .

We identify L2(D) with its dual and note that we have the following compact
embeddings V ⊂ L2(D) ⊂ V ∗. The L2(D) inner product is denoted by 〈·, ·〉 and we
use the same notation for the extension to the duality pairing on V ×V ∗. Multiplying
the eigenproblem (3.1) by v ∈ V and integrating (by parts) over D, we obtain the
variational formulation∫

D

(
a(x,y)∇u(x,y) · ∇v(x) + b(x,y)u(x,y)v(x)

)
dx

= λ(y)

∫
D

c(x)u(x,y)v(x) dx for all v ∈ V . (3.8)
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Correspondingly, for each y we define the symmetric bilinear forms B(y; ·, ·) : V ×
V → R by

B(y;w, v) :=

∫
D

(
a(x,y)∇w(x) · ∇v(x) + b(x,y)w(x)v(x)

)
dx , (3.9)

and D(·, ·) : V × V → R by

D(w, v) :=

∫
D

c(x)w(x)v(x) dx , (3.10)

which are both inner products on their respective domains. Again we will use the
same notation for the corresponding duality pairings on V ×V ∗. The induced norm
for D is denoted

‖v‖D =
√
D(v, v)

and is equivalent to the L2(D)-norm:

√
amin ‖v‖L2(D) ≤ ‖v‖D ≤

√
amax ‖v‖L2(D) , for v ∈ L2(D) . (3.11)

For each y ∈ U , the variational eigenproblem equivalent to (3.1) is then: Find
0 6= u(y) ∈ V and λ(y) ∈ R such that

B(y;u(y), v) = λ(y)D(u(y), v), for all v ∈ V ,

‖u(y)‖D = 1 . (3.12)

In the following, let y ∈ U be fixed. The bilinear form B(y; ·, ·) is coercive

B(y; v, v) ≥ amin ‖v‖2
V , for all v ∈ V , (3.13)

and bounded

B(y;w, v) ≤ amax

(
1 + C2

D

)
‖w‖V ‖v‖V , (3.14)

with both constants independent of y. To establish (3.14) we have used the upper
bound (3.7) and the Poincaré inequality:

‖v‖L2(D) ≤ CD ‖v‖V , for v ∈ V . (3.15)

Throughout the chapter we shall repeatedly refer to the eigenvalues of the negative
Laplacian on D, with boundary condition (3.3). These are strictly positive and,
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counting multiplicities, we denote them by

0 < χ1 ≤ χ2 ≤ · · · . (3.16)

The optimal value of the Poincaré constant in (3.15) is CD = χ
−1/2
1 .

The bilinear form B(y; ·, ·) in (3.9) is coercive and self-adjoint on V . Moreover
D is self-adjoint on L2(D), and V is compactly embedded in L2(D). Thus, (3.12)
admits countably-many eigenvalues (λk(y))k∈N, which are all positive, have finite
multiplicity and accumulate only at infinity. Counting multiplicities, we write them
as

0 < λ1(y) ≤ λ2(y) ≤ λ3(y) ≤ · · · . (3.17)

with λk(y)→∞ as k →∞. For an eigenvalue λ(y) of (3.12) we define its eigenspace
to be

E(y, λ(y)) := {u : u is an eigenfunction corresponding to λ(y)} , (3.18)

and from these eigenspaces, we can choose a sequence of eigenfunctions (uk(y))k∈N

corresponding to (λk(y))k∈N that form an orthonormal basis in V with respect to
D(·, ·).

The min-max principle (e.g. [6, (2.8)]) gives a representation of the kth eigen-
value as a minimum over all subspaces Sk ⊂ V of dimension k:

λk(y) = min
Sk⊂V

dim(Sk)=k

max
06=v∈Sk

B(y; v, v)

D(v, v)
. (3.19)

Combining the min-max representation with the fact that due to (3.7) both
bilinear forms in (3.19) are bounded and since B(y; ·, ·) is coercive we can bound
the kth eigenvalue above and below independently of y. Indeed, we have

λk(y) ≥ amin

amax

min
Sk⊂V

dim(Sk)=k

max
06=v∈Sk

〈∇v,∇v〉
〈v, v〉

and

λk(y) ≤ amax

amin

min
Sk⊂V

dim(Sk)=k

max
06=v∈Sk

〈∇v,∇v〉+ 〈v, v〉
〈v, v〉

,

but now the right hand side of both bounds contains the bilinear form corresponding
to the negative Laplacian on D. Hence, using the min-max representation of the
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kth Laplacian eigenvalue χk the bounds on λk(y) can be equivalently written as

λk :=
amin

amax

χk ≤ λk(y) ≤ amax

amin

(χk + 1) =: λk . (3.20)

Taking v = uk(y) as a test function in (3.12), we obtain

λk(y) = B (y;uk(y), uk(y)) . (3.21)

Then, using coercivity (3.13) and then the upper bound (3.20) on λk(y), we obtain

‖uk(y)‖V ≤

√
λk(y)

amin

≤
√
amax(χk + 1)

amin

=: uk . (3.22)

Of particular interest is the smallest (also referred to as the minimal, dominant
or fundamental) eigenvalue λ1(y). It follows by the Krein-Rutman Theorem that
for every y the fundamental eigenvalue λ1(y) is simple, see e.g. [44, Theorems 1.2.5
and 1.2.6]. The fact that λ1(y) is simple for all y along with the uniform bound
(3.20) ensures that the integral (3.5) is well-defined.

In order to obtain an optimal order convergence estimate for the piecewise lin-
ear finite element approximations of the eigenvalue problem (3.12), we require H2-
regularity of the eigenfunctions. To this end, we introduce the space Z := V ∩H2(D),
which we equip with the norm

‖v‖Z :=
(
‖v‖2

L2(D) + ‖∆v‖2
L2(D)

) 1
2
. (3.23)

Similarly, to achieve optimal order FE convergence for linear functionals G ∈
H−1+t(D), with t ∈ [0, 1], of eigenfunctions we introduce the subspace Zt ⊂ V given
by

Zt :=
{
v ∈ V : ∆v ∈ H−1+t(D)

}
, (3.24)

with norm
‖v‖Zt :=

(
‖v‖2

L2(D) + ‖∆v‖2
H−1+t(D)

) 1
2
. (3.25)

For r ∈ [−1, 2] the fractional-order Sobolev norm is given by

‖v‖Hr(D) :=

(
∞∑
k=1

χrk〈v, φk〉Hr(D)×H−r(D)

) 1
2

,

where 〈·, ·〉Hr(D)×H−r(D) is the duality pairing on Hr(D) × H−r(D), obtained by
continuously extending the L2(D) inner product. Also, recall that (χk)

∞
k=1 are the
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eigenvalues of the negative Laplacian (3.16), and denote the corresponding eigen-
functions by (φk)

∞
k=1, which are chosen so as to form an orthonormal basis in L2(D).

Note that since D is convex, Z1 = Z = V ∩ H2(D) and the norm is given by
‖·‖Z1 = ‖·‖Z as in (3.23).

The proposition below shows that under Assumption A3.1, in particular A3.1.4,
the eigenfunctions belong to H2(D) with norm bounded in terms of the correspond-
ing eigenvalue.

Proposition 3.1. Let y ∈ U , Assumption A3.1 hold and suppose (λ(y), u(y)) is
an eigenpair of (3.12). Then u(y) ∈ Z = V ∩ H2(D) and there exists a constant
C > 0 such that

‖u(y)‖Z ≤ Cλ(y) , for all y ∈ U. (3.26)

Proof. Since u(y) ∈ L2(D) we can apply [60, Theorem 4.1] with t = 1 and

f = (λ(y)c− b(y))u(y) ∈ L2(D) ,

to give u(y) ∈ V ∩H2(D) with

‖u(y)‖Z ≤ C ‖(λ(y)c− b(y))u(y)‖L2(D)

≤ C
(
λ(y) ‖c‖L∞(D) + ‖b(y)‖L∞(D)

)
‖u(y)‖L2(D)

Then, using (3.7), (3.11) and the normalisation in (3.12), we obtain

‖u(y)‖Z ≤ C
amax√
amin

(λ(y) + 1) ‖u(y)‖D = C
amax√
amin

(λ(y) + 1)

≤ C
amax√
amin

(
1 +

1

λ1(y)

)
λ(y),

and the result follows by the lower bound in (3.20).

3.2.2 Bounding the spectral gap

Although the Krein-Rutman Theorem gives us that the smallest eigenvalue λ1(y)

is simple for all y, it turns out that in order to estimate the derivatives of λ1(y) in
Section 3.3 we require that the spectral gap λ2(y)− λ1(y) is uniformly positive over
all y ∈ U . Here, under the summability assumption in Assumption A3.1, we prove
the required uniform positivity. We remark that this proof provides a theoretical
justification for an assumption made previously without proof in [1]. The first step is
the following elementary lemma, which shows that subsets of `∞ that are majorised
by an `q sequence (for some 0 ≤ q <∞) are compact.
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Lemma 3.2. Let α ∈ `q for some 1 < q <∞. The set U(α) ⊂ `∞ given by

U(α) :=

{
w ∈ `∞ : |wj| ≤

1

2
|αj|
}

is a compact subset of `∞.

Proof. Since `∞ is a normed (and hence a metric) space, U(α) is compact if and
only if it is sequentially compact. To show sequential compactness of U(α), take
any sequence {y(k)}k≥1 ⊂ U(α) and, for each k ≥ 1, write y(k) = (y

(k)
j )j≥1. Clearly,

by definition of U(α), each y(k) ∈ `q and moreover,

‖y(k)‖`q ≤ ‖α‖`q < ∞ for all k ∈ N .

So y(k) is a bounded sequence in `q. Since q < ∞, `q is a reflexive Banach space,
and so by [9, Theorem 3.18] {y(k)}k≥1 has a subsequence that converges weakly to
a limit in `q. We denote this limit by y∗, and, with a slight abuse of notation, we
denote the convergent subsequence again by {y(k)}k≥1.

We now prove that y∗ ∈ U(α) and that the weak convergence is in fact strong,
that is, we show y(k) → y∗ in `∞, as k → ∞. For any j ∈ N, consider the linear
functional fj : `q → R given by fj(w) = wj, where wj denotes the jth element of
the sequence w = (wj)j≥1 ∈ `q. Clearly, fj ∈ (`q)′ (the dual space) and using the
weak convergence established above, it follows that

y
(k)
j = fj(y

(k)) → fj(y
∗) = y∗j as k →∞ , for each fixed j.

That is, we have componentwise convergence. Furthermore, since |y(k)
j | ≤ |αj| it

follows that |y∗j | ≤ |αj| for each j, and hence y∗ ∈ U(α).
Now, for any N ∈ N we can write

∥∥y(k) − y∗
∥∥q
`q

=
N∑
j=1

|y(k)
j − y∗j |q +

∞∑
j=N+1

|y(k)
j − y∗j |q

≤ N max
j=1,2,...,N

|y(k)
j − y∗j |q +

∞∑
j=N+1

|αj|q . (3.27)

Letting ε > 0, since α ∈ `q we can choose N ∈ N such that

∞∑
j=N+1

|αj|q ≤
εq

2
,
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and since y(k) converges componentwise we can choose K ∈ N such that

|y(k)
j − y∗j | ≤ (2N)−1/qε for all j = 1, 2, . . . , N and k ≥ K .

Thus, by (3.27) we have that
∥∥y(k) − y∗

∥∥q
`q
≤ εq for all k ≥ K, and hence that∥∥y(k) − y∗

∥∥
`q
→ 0 as k →∞.

Because ‖w‖`∞ ≤ ‖w‖`q when w ∈ `q, and 1 < q < ∞, this also implies that
y(k) → y∗ in `∞, completing the proof.

A key property following from the perturbation theory of Kato [50] is that the
eigenvalues λk(y) are continuous in y, which for completeness is shown below in
Proposition 3.3. First, we require some notation. Let Σ(T ) denote the spectrum of
an operator T . For each y ∈ U consider the solution operator T (y) : V ∗ → V given,
for f ∈ V ∗, by

B(y;T (y)f, v) = D(f, v) for all v ∈ V . (3.28)

Due to the symmetry of both B(y; ·, ·) and D(·, ·), each operator T (y) is self-adjoint
with respect to D. Since B(y; ·, ·) is coercive (3.13) and bounded (3.14), by the
Lax-Milgram Theorem, see, e.g., [9], for every f ∈ V ∗ there exists a unique solution
T (y)f ∈ V to (3.28), which satisfies ‖T (y)f‖V ≤ ‖f‖V ∗ /amin. Hence, each T (y) :

V ∗ → V is bounded and invertible.
We can also consider the operators T (y) : L2(D) → L2(D), in which case due

to the the compact embedding of V into L2(D), each T (y) : L2(D) → L2(D) is
compact. In this case, for f ∈ L2(D) the Lax-Milgram Theorem again gives a
unique solution T (y)f ∈ V with the bound

‖T (y)f‖V ≤
√
amax

amin

‖f‖L2(D) , (3.29)

where we have also used the equivalence of norms (3.11).
From the spectral theory for compact, selfadjoint operators we know that each

T (y) admits countably-many eigenvalues, which are all finite, real, strictly positive
and have finite multiplicity. Counting multiplicities, the eigenvalues of T (y) are
denoted (in decreasing order) by

µ1(y) ≥ µ2(y) ≥ · · · > 0 .

Comparing (3.12) with (3.28) we have that λ(y) is an eigenvalue of (3.12) if and only
if µ(y) = 1/λ(y) is an eigenvalue of T (y), and their eigenspaces coincide. Moreover,
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because λk(y) are enumerated in increasing order whereas µk(y) are decreasing we
also have that µk(y) = 1/λk(y).

Proposition 3.3. Let Assumption A3.1 hold. Then the eigenvalues λ1, λ2, . . . are
Lipschitz continuous in y.

Proof. We prove the result by establishing the continuity of the eigenvalues µk(y)

of T (y). Let y, y′ ∈ U and consider the operators T (y), T (y′) : L2(D) → L2(D)

as defined in (3.28). Since T (y), T (y′) are bounded and self-adjoint with respect to
D, it follows from [50, V, §4.3 and Theorem 4.10] that we have the following notion
of continuity of µ(·) in terms of T (·)

sup
µ∈Σ(T (y))

dist(µ,Σ(T (y′))) ≤ ‖T (y)− T (y′)‖L2(D)→L2(D) (3.30)

where for an operator T : L2(D)→ L2(D) we define the norm

‖T‖L2(D)→L2(D) := sup
f∈L2(D), ‖f‖L2(D)≤1

‖Tf‖L2(D) .

For an eigenvalue µk(y) ∈ Σ(T (y)), (3.30) implies that there exists a µk′(y
′) ∈

Σ(T (y′)) such that

|µk(y)− µk′(y′)| ≤ ‖T (y)− T (y′)‖L2(D)→L2(D) . (3.31)

Note that this states that at y′ there exists an eigenvalue of T (y′) close to µk(y),
but does not imply that at y′ the kth eigenvalue of T (y′) is close to µk(y), that is, in
(3.31) k is not necessarily equal to k′. However, consider any µk(y) and let m denote
its multiplicity. Since m < ∞ the collection µk(y) = µk+1(y) = · · · = µk+m−1(y)

is a finite system of eigenvalues in the sense of Kato. It then follows from the
discussion in [50, IV, §3.5] that the eigenvalues in this system depend continuously
on the operator with multiplicity preserved. This preservation of multiplicity is key,
and in other words it states that for T (y′) sufficiently close to T (y) there are m
eigenvalues µk(y′), µk(y′), . . . , µk+m−1(y′) ∈ Σ(T (y′)), no longer neccesarily equal,
that are close to µk(y).

This can be done for each eigenvalue µk(y) ∈ Σ(T (y)), and a simple induction
argument then shows that each µk is continuous in the following sense

|µk(y)− µk(y′)| ≤ ‖T (y)− T (y′)‖L2(D)→L2(D) .
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It then follows from the relationship µk(y) = 1/λk(y) along with the upper bound
in (3.20) that we have a similar result for eigenvalues λk of (3.12):

|λk(y)− λk(y′)| ≤
(
amax(χk + 1)

amin

)2

‖T (y)− T (y′)‖L2(D)→L2(D) . (3.32)

All that remains is to bound the right hand of (3.32) by CLip ‖y − y′‖`∞ , with
CLip > 0 independent of y and y′.

To this end, note that since the right hand side of (3.28) is independent of y we
have

B(y;T (y)f, v) = B(y′;T (y′)f, v) for all f ∈ L2(D), v ∈ V .

Rearranging and then expanding this gives

B
(
y; [T (y)− T (y′)]f, v)

)
=

∫
D

(
[a(x,y′)− a(x,y)]∇[T (y)f ](x) · ∇v(x)

+ [b(x,y′)− b(x,y)] [T (y)f ](x) v(x)
)

dx .

Letting v = (T (y) − T (y′))f , the left hand side can be bounded from below using
the coercivity (3.13) of B(y; ·, ·), and the right hand side can be bounded from above
using the Cauchy-Schwartz inequality to give

amin ‖(T (y)− T (y′))f‖2
V ≤ max

(
‖a(y)− a(y′)‖L∞(D) , ‖b(y)− b(y′)‖L∞(D)

)
·
(
‖T (y)f‖V ‖(T (y)− T (y′))f‖V + ‖T (y)f‖L2(D) ‖(T (y)− T (y′))f‖L2(D)

)
.

Applying the Poincaré inequality (3.15) to both L2-norm factors, dividing through
by amin ‖(T (y)− T (y′))f‖V and using the upper bound in (3.29) we have

‖(T (y)− T (y′))f‖V

≤
√
amax(1 + 1/χ1)

a2
min

‖f‖L2(D) max
(
‖a(y)− a(y′)‖L∞(D) , ‖b(y)− b(y′)‖L∞(D)

)
.

Applying the Poincaré inequality (3.15) to the left hand side now and taking the
supremum over f ∈ L2(D) with ‖f‖L2(D) ≤ 1, in the operator norm we have

‖T (y)− T (y′)‖L2(D)→L2(D)

≤
√
amaxχ1(1 + 1/χ1)

a2
min

max
(
‖a(y)− a(y′)‖L∞(D) , ‖b(y)− b(y′)‖L∞(D)

)
.
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Using this inequality as an upper bound for (3.32) we have that the eigenvalues
inherit the continuity of the coefficients

|λk(y)− λk(y′)| ≤ Ck max
(
‖a(y)− a(y′)‖L∞(D) , ‖b(y)− b(y′)‖L∞(D)

)
, (3.33)

where

Ck =
a

5/2
max
√
χ1(χk + 1)2(1 + 1/χ1)

a4
min

< ∞ ,

depends on k but is clearly independent of y and y′.
Finally, to establish continuity in terms of y, we expand the coefficients in (3.33)

above and use the triangle inequality to give

|λk(y)− λk(y′)| ≤ Ck

∞∑
j=1

|yj − y′j|max
(
‖aj‖L∞(D) , ‖bj‖L∞(D)

)
≤ Ck

(
∞∑
j=1

max
(
‖aj)‖L∞(D) , ‖bj‖L∞(D)

))
‖y − y′‖`∞ .

By Assumption 3.1 the sum is finite, and hence the eigenvalue λk(y) is Lipschitz
in y.

Now that we have shown continuity of the eigenvalues and identified suitable
compact subsets, we can show that the spectral gap is bounded uniformly away
from 0.

Proposition 3.4. Let Assumption A3.1 hold. Then there exists a δ > 0, indepen-
dent of y, such that

λ2(y)− λ1(y) ≥ δ . (3.34)

Proof. The idea of the proof is to transfer some of the summability of the terms aj,
bj in the coefficients onto the parameters by defining new parameters ỹj = αjyj, and
then rewriting a(x,y) as

a(x,y) = a0(x) +
∞∑
j=1

ỹj
aj(x)

αj
.

The sequence α ∈ `q is chosen to decay slowly enough so that
∑∞

j=1 ‖aj‖L∞(D)/αj

is still finite. We apply a similar reparametrisation procedure to b(x,y). Then us-
ing an intermediate result from the proof of Proposition 3.3 we can show that the
eigenvalues of the “reparametrised” problem are continuous in the new parameter ỹ,
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which now ranges over the compact set U(α). The required bound on the spec-
tral gap is obtained by using the equivalence of the eigenvalues of the original and
reparametrised problems.

To give some details, note that there is no loss of generality in assuming p > 1/2.
We consequently set ε = 1− p ∈ (0, 1/2) and consider the sequence α defined by

αj = ‖aj‖εL∞(D) + ‖bj‖εL∞(D) + 1/j, for each j = 1, 2, . . . . (3.35)

Setting q = p/ε = p/(1 − p) ∈ (1,∞), using Assumption A3.1.3 and the triangle
inequality, it is easy to see that α ∈ `q. Moreoever, the inclusion of 1/j in (3.35)
ensures that αj 6= 0, for all j ≥ 1. Hence, from now on, for w = (wj)

∞
j=1 ∈ `∞, we

can define the sequences αw = (αjwj)
∞
j=1 and w/α = (wj/αj)

∞
j=1. Then, recalling

the definition of U(α) in Lemma 3.2, it is easy to see that

ỹ ∈ U(α) if and only if ỹ/α ∈ U and moreover y ∈ U if and only ifαy ∈ U(α) .

Now for x ∈ D and ỹ ∈ U(α), we define

ã(x, ỹ) = a0(x) +
∞∑
j=1

ỹj
aj(x)

αj
and b̃(x, ỹ) = b0(x) +

∞∑
j=1

ỹj
bj(x)

αj
,

from which it is easily seen that

ã(x, ỹ) = a(x, ỹ/α) and b̃(x, ỹ) = b(x, ỹ/α) . (3.36)

Then we set

B̃(ỹ;w, v) :=

∫
D

(
ã(x, ỹ)∇w(x).∇v(x) dx+ b̃(x, ỹ)w(x)v(x)

)
dx for w, v ∈ V ,

and we consider the reparametrised eigenvalue problem find λ̃(ỹ) ∈ R and 0 6=
ũ(ỹ) ∈ V such that

B̃(ỹ; ũ(ỹ), v) = λ̃k(ỹ)D(ũ(ỹ), v) for all v ∈ V ,

‖ũ(ỹ)‖D = 1 . (3.37)

Note that because we have equality between the original and reparametrised
coefficients (3.36), for each y ∈ U , and corresponding ỹ = αy ∈ U(α), (3.12)
and (3.37) are simply different ways of writing the same eigenvalue problem. In
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particular, (3.36) implies that there is equality between eigenvalues λk(y) of (3.12)
and λ̃k(ỹ) of the reparametrised eigenvalue problem (3.37)

λk(y) = λ̃k(ỹ) for k ∈ N , (3.38)

and their eigenspaces coincide.
From the proof of Proposition 3.3 we know that the eigenvalues λk(y) of (3.12)

share the same continuity as the coefficients, see (3.33), which we now use to establish
continuity of the reparametrised eigenvalues in ỹ. For an eigenvalue λ̃k(ỹ) of (3.37),
using (3.38) in the inequality (3.33) we have

|λ̃k(ỹ)− λ̃k(ỹ′)| ≤ C max
(
‖a(ỹ/α)− a(ỹ/α)‖L∞(D) ,

∥∥b(ỹ/α)− b(ỹ′/α)
∥∥
L∞(D)

)
,

which after expanding the coefficients and using the triangle inequality becomes

|λ̃k(ỹ)− λ̃k(ỹ′)| ≤ C

(
∞∑
j=1

1

αj
max

(
‖aj‖L∞(D) , ‖bj‖L∞(D)

))
︸ ︷︷ ︸

C̃Lip

∥∥ỹ − ỹ′∥∥
`∞

,

where C̃Lip is clearly independent of ỹ and ỹ′. Now by (3.35) together with Assump-
tion A3.1, we have

∞∑
j=1

‖aj‖L∞(D)

αj
≤

∞∑
j=1

‖aj‖1−ε
L∞(D) =

∞∑
j=1

‖aj‖pL∞(D) < ∞ ,

with the analogous estimate for
∑∞

j=1 ‖bj‖L∞(D)/αj. Thus, C̃Lip <∞ and hence the
reparametrised eigenvalues are continuous on U(α).

It immediately follows that the spectral gap λ̃2(ỹ) − λ̃1(ỹ) is also continuous
on U(α), which by Lemma 3.2 is a compact subset of `∞. Therefore, the non-
zero minimum is attained giving that the spectral gap λ̃2(ỹ) − λ̃1(ỹ) is uniformly
positive. Finally, because there is equality between the original and reparametrised
eigenvalues (3.38) the result holds for the original problem over all y ∈ U .

Remark 3.5. An explicit bound on the spectral gap can be obtained by assuming
tighter restrictions on the coefficients. For example, if a ≡ 1 ≡ c and b is weakly
convex then [2] gives an explicit lower bound on the fundamental gap. Alternatively,
using the upper and lower bounds on the eigenvalues (3.20), we can determine
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restrictions on amin and amax such that the gap is bounded away from 0. Explicitly,
if

amin

amax

>

√
χ1 + 1

χ2

,

then λ2(y)− λ1(y) ≥ λ2 − λ1 > 0.

3.2.3 Finite element discretisation

To approximate eigenpairs (λ(y), u(y)) we introduce a collection of finite element
subspaces Vh ⊂ V with dimension Mh, which are associated with a conforming
triangulation Th of the domain D and a basis (φh,i)

Mh
i=1. The parameter h =

max{diam(τ) : τ ∈ Th} is called the mesh width. The method works for very
general spaces Vh, however to fully exploit higher rates of convergence stronger as-
sumptions on the regularity of the coefficients and the domain would be required.
As such, in the current chapter we restrict our attention to piecewise linear finite
elements, that is, each Vh is the space of continuous functions that are linear on
the elements of Th and vanish on the boundary ∂D. It is well-known that the best
approximation error for the space Zt (as defined in (3.24) and (3.25)) by functions
in Vh satisfies

inf
wh∈Vh

‖v − wh‖V ≤ Cht ‖v‖Zt for all v ∈ Zt . (3.39)

For each y ∈ U the discrete eigenvalue problem is to find λh(y) ∈ R and uh(y) ∈
Vh satisfying

B(y;uh(y), v) = λh(y)D(uh(y), v) for all v ∈ Vh ,

‖uh(y)‖D = 1 . (3.40)

For each y ∈ U , the discrete eigenvalue problem (3.40) admits Mh eigenvalues

0 < λ1,h(y) ≤ λ2,h(y) ≤ · · · ≤ λMh,h(y) ,

with corresponding eigenfunctions

u1,h(y), u2,h(y), . . . , uMh,h(y) ∈ Vh .

For each fixed k, the kth finite element eigenvalue λk,h(y) converges from above to
the kth eigenvalue of (3.12), that is, for each k,

λk,h(y) → λk(y) with λk,h(y) ≥ λk(y)
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and the corresponding FE eigenfunctions (uk,h(y))Mh
k=1 satisfy

distV (uk,h(y), E(y, λk(y))) → 0

Where distV (v,P) is the distance of v ∈ V from the subspace P ⊂ V

distV (v,P) := inf
w∈P
‖v − w‖V .

The classical results on FE error estimates for eigenproblems are found in [5, 6, 7];
however, we cannot simply use these results verbatim since their constants depend in
complex and often hidden ways on the eigenvalues and eigenvalue gaps. For us, this
means that they depend on y, and so care must be taken to ensure that all constants
that occur can be bounded independently of y. Theorem 3.6 below quantifies the
FE convergence and in the proof we track the dependence of all constants on y. The
proof is rather long and technical, and as such is left for the appendix.

Theorem 3.6. Let y ∈ U and suppose that Assumption A3.1 holds. Then for
h > 0 sufficiently small

|λ1(y)− λ1,h(y)| ≤ C1h
2 , (3.41)

and u1,h(y) ∈ E(y, λ1,h(y)) can be chosen such that

‖u1(y)− u1,h(y)‖V ≤ C2h . (3.42)

Moreover, for G ∈ H−1+t with t ∈ [0, 1]

|G(u1(y))− G(u1,h(y))| ≤ C3h
1+t , (3.43)

and C1, C2, C3 > 0 are independent of y.

3.2.4 Quasi-Monte Carlo methods

In this section we briefly summarise the relevant aspects of QMC rules from Sec-
tion 2.3, the main purpose being to fix notation. In this chapter we use randomly
shifted lattice rules, where recall from Section 2.3.1 the points are constructed using
a generating vector z ∈ Ns and a uniformly distributed random shift ∆ ∈ [0, 1)s.
Specifically, letting Y = [−1

2
, 1

2
] and ρ ≡ 1 in the definition of the integral Isf (2.1),
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a shifted lattice rule approximates Isf by an equal-weight quadrature rule

Qsh
n,s(z,∆)f =

1

n

n−1∑
k=0

f

({
kz

n
+ ∆

}
− 1

2

)
, (3.44)

where we have subtracted the vector 1
2

:= (1
2
, . . . , 1

2
) to map the points from [0, 1]s

to [−1
2
, 1

2
]s. Also, for the remainder of this chapter, to ease notation we will not

include the dependence on the generating vector z or the random shift ∆.
Following Section 2.3 we will use the CBC algorithm to construct the generating

vector and perform the error analysis in the weighted Sobolev spaceWs,γ of functions
with square-integrable mixed first derivatives. The space Ws,γ is equipped with the
unanchored norm (2.5) and has weights, which will be specified later, denoted by
γ = {γu}u⊂N. In this case, for f ∈ Ws,γ the RMS error of a CBC-generated lattice
rule approximation is bounded above by

√
E∆

(∣∣Isf −Qsh
n,sf

∣∣2) ≤
 1

ϕ(n)

∑
∅6=u⊆{1:s}

γηu

(
2ζ(2η)

(2π2)η

)|u| 1
2η

‖f‖s,γ (3.45)

for all η ∈ (1
2
, 1]. This error bound was obtained by combining the upper bound

(2.12) with the upper bound on the shift-averaged worst-case error (2.15).
Finally, to estimate the quadrature error for the numerical results in Section 3.5,

we will perform R approximations generated by R independent random shifts.

3.3 Parametric regularity

In this section we examine the regularity of the minimal eigenpair (λ1(y), u1(y)) of
the variational eigenproblem (3.12) with respect to the stochastic parameter y. The
results we obtain show that λ1(y) belongs to the weighted space Ws,γ with norm
defined in (2.5). This is required for the analysis of the QMC error in computing
λ1(y). Also, to obtain an a priori bound on the QMC error we require a bound
on the norm of λ1(y) in Ws,γ , hence we must bound its mixed first derivatives, see
Lemma 3.10. There we use the bounds on the spectral gap obtained in Section 3.2.2,
and present results not only for the first-order mixed derivatives but also for higher-
order derivatives.

We begin with the following coercive-type estimate, which is required in order
to bound the norm of the derivatives of the eigenfunction.
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Lemma 3.7. Let Assumption A3.1 hold, and for each y ∈ U and λ ∈ R define
Bsh
λ (y; ·, ·) : V × V → R to be the shifted bilinear form given by

Bsh
λ (y;u, v) := B(y;u, v)− λD(u, v) , (3.46)

with B and D defined by (3.9) and (3.10), respectively. The λ1(y)-shifted bilinear
form restricted to the D-orthogonal complement of the eigenspace corresponding to
λ1(y), denoted by E(y, λ1(y))⊥, is coercive. More precisely,

Bsh
λ1(y)(y; v, v) ≥ amin

(
1− λ1(y)

λ2(y)

)
‖v‖2

V for all v ∈ E(y, λ1(y))⊥ . (3.47)

Proof. Since the eigenfunctions (uk(y))k∈N form a basis in V that is orthonor-
mal with respect to the inner product D, for v ∈ E(y, λ1(y))⊥, letting vk(y) :=

D(v, uk(y))uk(·,y) for k = 1, 2, . . ., we can write

v =
∞∑
k=2

vk(y) ,

where we have used v1 = 0 since D(v, u1(y)) = 0. Henceforth, we will suppress the
dependence of the eigenvalues and vk on y. For v ∈ E(y, λ1)⊥ we have

Bsh
λ1

(y; v, v) = Bsh
λ1

(
y;

∞∑
k=2

vk,
∞∑
`=2

v`

)
=

∞∑
k,`=2

(B(y; vk, v`)− λ1D(vk, v`)) .

Since all vk are just scaled versions of uk, they also satisfy the variational equation
(3.8) so that B(y; vk, v`) = λkD(vk, v`), and they are orthogonal with respect to
D(·, ·) implying that B(y; vk, v`) = 0 for k 6= `. Thus we can reduce the above
double sum to

Bsh
λ1

(y; v, v) =
∞∑
k=2

(
B(y; vk, vk)−

λ1

λk
B(y; vk, vk)

)
≥
(

1− λ1

λ2

) ∞∑
k=2

B(y; vk, vk)

=

(
1− λ1

λ2

)
B(y; v, v) ≥ amin

(
1− λ1

λ2

)
‖v‖2

V .
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Remark 3.8. A similar estimate holds for the shifted bilinear form on Vh × Vh,
provided h is sufficiently small such that the FE eigenvalue gap is uniformly bounded
from below. Indeed, we can write

λ2,h − λ1,h = (λ2,h − λ1)− (λ1,h − λ1) ,

and since the FE eigenvalues converge from above we can bound this from below by

λ2,h − λ1,h ≥ λ2 − λ1 − |λ1 − λ1,h| ≥ δ − Ch2 .

with C > 0. The second inequality follows from Proposition 3.4 and Theorem 3.6,
which give us λ2 − λ1 ≥ δ > 0 and |λ1 − λ1,h| ≤ Ch2, respectively. Thus, choosing
h such that Ch2 < δ, or equivalently, taking h < h0 with

h0 :=

(
δ

C

) 1
2

, (3.48)

is a sufficient condition for λ2,h − λ1,h > 0, and then Lemma 3.7 can be rewritten
for the FE eigenproblem.

We also require the following technical lemma to handle some combinatorial
factors that arise when bounding the derivatives.

Lemma 3.9. Let ε ∈ (0, 1). For all N ∈ N the following holds:

SN(ε) :=
N−1∑
k=1

(
N

k

)−ε
≤ Cε :=

21−ε

1− 2−ε

(
e2

√
2π

)ε
.

Proof. For N = 1 the sum is empty and so S1(ε) = 0 < Cε; thus for the remainder
of the proof we assume N ≥ 2. By the symmetry of the binomial coefficient the sum
can be bounded by

SN(ε) ≤ 2

bN
2
c∑

k=1

(
N

k

)−ε
≤ 2

(
e2

√
2π

)ε bN2 c∑
k=1

(
kk+ 1

2 (N − k)N−k+ 1
2

NN+ 1
2

)ε

,

where we used the following bounds given by Stirling’s formula

√
2πNN+ 1

2 e−N ≤ N ! ≤ eNN+ 1
2 e−N .
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Since k ≤ N
2
we have the bound kk+ 1

2 ≤ (N
2

)k
√
k, which gives

SN(ε) ≤ 2

(
e2

√
2π

)ε bN2 c∑
k=1

((
N
2

)k√
k(N − k)N−k+ 1

2

NN+ 1
2

)ε

= 2

(
e2

√
2π

)ε bN2 c∑
k=1

1

2εk

(√
k

(
1− k

N

)N−k+ 1
2
)ε

= 2

(
e2

√
2π

)ε bN2 c∑
k=1

[RN(k/N)]ε

(2ε)k
.

where for N = 2, 3, . . . we define the functions RN : [0, 1/2]→ R by

RN(x) :=
√
Nx (1− x)N(1−x)+ 1

2 .

The next step is to prove, by induction, that for N = 2, 3, . . .

RN(x) ≤ 1 for all x ∈ [0, 1
2
] . (3.49)

For N = 2

R2(x) =
√

2x (1− x)2(1−x)+ 1
2 ≤

√
2 · 1

2
(1− x)2(1−x)+ 1

2 ≤ 1 .

Then for N ≥ 2, suppose RN(x) ≤ 1 and consider RN+1. For x ∈ [1/(N + 1), 1/2]

we have

RN+1(x) =
√

(N + 1)x (1− x)(N+1)(1−x)+ 1
2

=

√
N + 1

N

√
Nx (1− x)1−x(1− x)N(1−x)+ 1

2

= (1− x)1−x

√
N + 1

N
RN(x) ≤ (1− x)1−x

√
N + 1

N
.

To bound this from above we bound one x below by 1/(N + 1) to give

RN+1(x) ≤
(

1− 1

N + 1

)1−x√
N + 1

N
=

(
N

N + 1

) 1
2
−x

≤ 1 .

And for x ∈ [0, 1/(N + 1)]

RN+1(x) ≤
√

(N + 1)
1

N + 1
(1− x)(N+1)(1−x)+ 1

2 = (1− x)(N+1)(1−x)+ 1
2 ≤ 1 .

Thus, for all N = 2, 3, . . . and x ∈ [0, 1/2] we have RN(x) ≤ 1.
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Returning to the sum SN , since

k

N
∈ [0, 1

2
] for all k ≤ N

2
, and RN

(
k
N

)
=
√
k

(
1− k

N

)N−k+ 1
2

we have, by (3.49),

SN(ε) ≤ 2

(
e2

√
2π

)ε bN2 c∑
k=1

[RN(k/N)]ε

(2ε)k
≤ 2

(
e2

√
2π

)ε bN2 c∑
k=1

1

(2ε)k

≤ 2

(
e2

√
2π

)ε ∞∑
k=1

1

(2ε)k
=

21−ε

1− 2−ε

(
e2

√
2π

)ε
=: Cε ,

where we used the formula for the sum of a geometric series.

Lemma 3.10 below gives the bounds on the derivatives of λ1 and u1 required for
our QMC error analysis. We prove the bounds for higher order mixed derivatives,
which will be written in multi-index notation. Let ν = (νj)j∈N, with νj ∈ N ∪ {0},
be a multi-index with only finitely many non-zero entries and |ν| :=

∑
j≥1 νj <∞.

Let F denote the set of all admissible multi-indexes. We will use ∂νy to denote the
mixed partial derivative where the element νj is the order of the derivative with
respect to yj. Operations between multi-indices are handled component wise. Thus,
form = (mj)j∈N,ν = (νj)j∈N we use the following notation: ν−m := (νj−mj)j∈N;
m ≤ ν ifmj ≤ νj for all j ∈ N;m < ν ifm ≤ ν andm 6= ν; and

(
ν
m

)
:=
∏

j∈N
(
νj
mj

)
.

For j ∈ N, the jth unit multi-index is denoted by ej, that is, ej is 1 in the jth position
and 0 everywhere else.

Since the coefficients a(x,y) and b(x,y) in (3.4) are linear in the parameter y,
their derivatives are (suppressing the x, y dependence below)

∂νya =


a if ν = 0 ,

aj if ν = ej ,

0 otherwise,

and ∂νy b =


b if ν = 0 ,

bj if ν = ej ,

0 otherwise.

(3.50)

Lemma 3.10. Let ε ∈ (0, 1), ν ∈ F be a multi-index, and suppose that Assump-
tion A3.1 holds. Then for all y ∈ U the derivative of the smallest eigenvalue of
(3.12) is bounded by

|∂νyλ1(y)| ≤ λ1 (|ν|!)1+ε βν , (3.51)
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and the norm of the derivative of the corresponding eigenfunction is similarly bounded
by

∥∥∂νyu1(y)
∥∥
V
≤ u1 (|ν|!)1+ε βν , (3.52)

where λ1 and u1 are defined in (3.20) and (3.22), respectively. The sequence β =

(βj)j∈N is defined by

βj := Cβ max
(
‖aj‖L∞(D) , ‖bj‖L∞(D)

)
, (3.53)

with Cβ > 0 independent of y given by

Cβ :=
1

aminCgap

(
1 + 1

χ1

)(3a2
max

2a2
min

(
1 + 1

χ1

)
Cε + 1

)
, (3.54)

where χ1 is again the fundamental eigenvalue of the negative Laplacian, Cε is as in
Lemma 3.9, and

Cgap := inf
y∈U

(
1− λ1(y)

λ2(y)

)
. (3.55)

Proof. First of all, since the spectral gap is uniformly bounded away from 0 (see
Proposition 3.4), we have 0 < Cgap < 1 and the constant Cβ is finite. Also, for
ν = 0 the bounds (3.51) and (3.52) clearly hold by (3.20) and (3.22), respectively.

For ν 6= 0, we will prove the two bounds by induction on |ν|. To this end, we first
obtain recursive bounds by differentiating the variational form (3.8) with respect to
the stochastic parameters y ∈ U . From [1] we know that simple eigenpairs of (3.12)
are analytic in y, so the partial derivatives ∂νyλ1, ∂νyu1 exist and we further have
∂νyu1 ∈ V . Hence, we can differentiate (3.8) with λ = λ1 and u = u1 using the
Leibniz general product rule to obtain the following formula, which is true for all
v ∈ V ,

∑
m≤ν

(
ν

m

)(
−
(
∂my λ1(y)

) ∫
D

c(x)
(
∂ν−my u1(x,y)

)
v(x) dx

+

∫
D

(
∂my a(x,y)

)
∇
(
∂ν−my u1(x,y)

)
· ∇v(x) dx

+

∫
D

(
∂my b(x,y)

) (
∂ν−my u1

)
v(x) dx

)
= 0 . (3.56)
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Henceforth, we consider y ∈ U to be fixed and will suppress the dependence of
a(x,y), b(x,y) , c(x) , λ1(y), u1(x,y), and their respective derivatives, on x and y.

To obtain a bound on the derivatives of the eigenvalue, we take v = u1 in (3.56).
In this case, the m = 0 term vanishes since (3.8) is satisfied for λ = λ1 and u = u1

with ∂νyu1 ∈ V as a test function. Separating out the ∂νyλ1 term gives

(∂νyλ1)D(u1, u1) = −
∑

0 6=m<ν

(
ν

m

)
(∂my λ1)

∫
D

c (∂ν−my u1)u1

+
∑

0 6=m≤ν

(
ν

m

)(∫
D

(∂my a)∇(∂ν−my u1) · ∇u1 +

∫
D

(∂my b)(∂
ν−m
y u1)u1

)
.

The left-hand side can be simplified using ‖u1‖D = 1, and by (3.50) the terms
involving higher-order derivatives of the coefficients are 0, so we have the recursive
formula

∂νyλ1 = −
∑

0 6=m<ν

(
ν

m

)
(∂my λ1)

∫
D

c
(
∂ν−my u1

)
u1

+
∞∑
j=1

νj

(∫
D

aj∇
(
∂ν−ejy u1

)
· ∇u1 +

∫
D

bj
(
∂ν−ejy u1

)
u1

)
.

Taking the absolute value then applying the triangle and Cauchy-Schwarz inequali-
ties gives the upper bound

|∂νyλ1| ≤
∑

0 6=m<ν

(
ν

m

)
|∂my λ1|

∥∥∂ν−my u1

∥∥
D ‖u1‖D

+
∞∑
j=1

νj

(
‖aj‖L∞(D)

∥∥∂ν−ejy u1

∥∥
V
‖u1‖V + ‖bj‖L∞(D)

∥∥∂ν−ejy u1

∥∥
L2(D)

‖u1‖L2(D)

)
.

Then, by the equivalence of the norms ‖·‖D and ‖·‖L2(D) in (3.11), the Poincaré
inequality (3.15), the upper bound (3.22) on ‖u1‖V , and the normalisation of u1, we
have

|∂νyλ1| ≤
√
amax

χ1

∑
0 6=m<ν

(
ν

m

)
|∂my λ1|

∥∥∂ν−my u1

∥∥
V

+

√
amax(χ1 + 1)

amin

∞∑
j=1

νj

(
‖aj‖L∞(D) + 1

χ1
‖bj‖L∞(D)

)∥∥∂ν−ejy u1

∥∥
V
.
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Defining βj as in (3.53) but leaving Cβ > 0 to be specified later, we obtain

|∂νyλ1| ≤
√
amax

χ1

∑
0 6=m<ν

(
ν

m

)
|∂my λ1|

∥∥∂ν−my u1

∥∥
V

+

√
amax(χ1 + 1)

amin

(
1 + 1

χ1

) ∞∑
j=1

νj
βj
Cβ

∥∥∂ν−ejy u1

∥∥
V
. (3.57)

Observe that this bound on the derivative of λ1 depends on the lower order deriva-
tives of both λ1 and u1.

To obtain a similar bound on the derivatives of the eigenfunction one might
suppose that we let v = ∂νyu1 in (3.56), but this will not work. This is because
in (3.56) the bilinear form acting on ∂νyu1 (exactly Bsh

λ1
from Lemma 3.7) is not

coercive on the whole domain V ×V . The way around this is to note that ∂νyu1 can
be decomposed as a linear combination of the eigenfunctions and utilise the estimate
in Lemma 3.7. We write ∂νyu1 as

∂νyu1 =
∑
k∈N

D(∂νyu1, uk)uk = D(∂νyu1, u1)u1 + ṽ , (3.58)

so that ṽ ∈ E(y, λ1(y))⊥ is the D-orthogonal projection of ∂νyu1 onto E(y, λ1(y))⊥.
Applying the triangle inequality to this decomposition and then using (3.22) we can
bound the norm by

∥∥∂νyu1

∥∥
V
≤
√
amax(χ1 + 1)

amin

|D(∂νyu1, u1)|+ ‖ṽ‖V . (3.59)

Hence, it remains to boundD(∂νyu1, u1) and ‖ṽ‖V . For the former, sinceD(u1, u1) =

1 we have

0 = ∂νyD(u1, u1) =
∑
m≤ν

(
ν

m

)
D(∂my u1, ∂

ν−m
y u1) .

By separating out the m = 0 and m = ν terms, which are equal by symmetry, we
obtain

|D(∂νyu1, u1)| =

∣∣∣∣∣−1

2

∑
0 6=m<ν

(
ν

m

)
D(∂my u1, ∂

ν−m
y u1)

∣∣∣∣∣
≤ amax

2χ1

∑
0 6=m<ν

(
ν

m

)∥∥∂my u1

∥∥
V

∥∥∂ν−my u1

∥∥
V
, (3.60)
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where we used the Cauchy-Schwarz inequality, the norm equivalence (3.11) and then
the Poincaré inequality (3.15) to obtain V -norms.

For the V -norm of ṽ we let v = ṽ in (3.56) and separate out the m = 0 term to
give

B
(
∂νyu1, ṽ

)
−λ1D

(
∂νyu1, ṽ

)
=

∑
0 6=m<ν

(
ν

m

)
(∂my λ1)

∫
D

c (∂ν−my u1)ṽ

−
∞∑
j=1

νj

(∫
D

aj∇(∂ν−ejy u1) · ∇ṽ +

∫
D

bj(∂
ν−ej
y u1)ṽ

)
, (3.61)

where the m = ν term vanishes from the right-hand side since ṽ is orthogonal to
u1. Decomposing ∂νyu1 as in (3.58) and then expanding, the left-hand side of (3.61)
becomes

LHS of (3.61) = B
(
D(∂νyu1, u1)u1 + ṽ, ṽ

)
− λ1D

(
D(∂νyu1, u1)u1 + ṽ, ṽ

)
= D(∂νyu1, u1)

(
B(u1, ṽ)− λ1D(u1, ṽ)

)
+ B(ṽ, ṽ)− λ1D(ṽ, ṽ)

= B(ṽ, ṽ)− λ1D(ṽ, ṽ)

≥ amin

(
1− λ1

λ2

)
‖ṽ‖2

V ≥ aminCgap ‖ṽ‖2
V ,

where the first term on the second line is 0 by (3.8) with ṽ as a test function.
The lower bound follows by the coercivity estimate (3.47) in Lemma 3.7, since
ṽ ∈ E(y, λ1(y))⊥.

We can bound the right-hand side of (3.61) from above using a combination
of the triangle, Cauchy-Schwarz, equivalence of norms (3.11) and Poincaré (3.15)
inequalities to obtain

aminCgap ‖ṽ‖2
V ≤

amax

χ1

∑
0 6=m<ν

(
ν

m

)
|∂my λ1|

∥∥∂ν−my u1

∥∥
V
‖ṽ‖V

+
∞∑
j=1

νj

(
‖aj‖L∞(D) + 1

χ1
‖bj‖L∞(D)

)
‖∂ν−ejy u1‖V ‖ṽ‖V .

Dividing through by aminCgap ‖ṽ‖V and using the definition of βj in (3.53), again
leaving Cβ > 0 to be specified later, we obtain

‖ṽ‖V ≤
1

Cgap

(
amax

amin χ1

∑
06=m<ν

(
ν

m

)
|∂my λ1|

∥∥∂ν−my u1

∥∥
V

+
1

amin

(
1 + 1

χ1

) ∞∑
j=1

νj
βj
Cβ

∥∥∂ν−ejy u1

∥∥
V

)
. (3.62)
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Substituting the two bounds (3.60) and (3.62) into (3.59), the norm of the deriva-
tive of the eigenfunction is bounded above by

∥∥∂νyu1

∥∥
V
≤
amax

√
amax(χ1 + 1)

2χ1amin

∑
0 6=m<ν

(
ν

m

)
‖∂my u1‖V ‖∂ν−my u1‖V

+
amax

χ1aminCgap

∑
0 6=m<ν

(
ν

m

)
|∂my λ1|

∥∥∂ν−my u1

∥∥
V

+
1

aminCgap

(
1 + 1

χ1

) ∞∑
j=1

νj
βj
Cβ

∥∥∂ν−ejy u1

∥∥
V
. (3.63)

We are now ready to prove the bounds (3.51) and (3.52) by induction, but for
the inductive step to work we require tighter constants than λ1 and u1, otherwise
at each step they grow too large. Since the bounds (3.57) and (3.63) are true for
all ν 6= 0, and these bounds do not involve the ν = 0 cases, we will use them to
establish the base step of the induction |ν| = 1. Letting ν = ei in (3.57) and (3.63)
gives, with the aid of (3.22),

|∂eiy λ1| ≤
amax(χ1 + 1)

a2
min

(
1 + 1

χ1

) βi
Cβ

, and

∥∥∂eiy u1

∥∥
V
≤
√
amax(χ1 + 1)

a2
minCgap

(
1 + 1

χ1

) βi
Cβ

.

Thus we proceed to prove that, for ν 6= 0,

|∂νyλ1(y)| ≤ C1 (|ν|!)1+ε βν , and (3.64)∥∥∂νyu1(y)
∥∥
V
≤ C2 (|ν|!)1+ε βν , (3.65)

where

C1 :=
amax(χ1 + 1)

a2
min

(
1 + 1

χ1

) 1

Cβ
, and

C2 :=

√
amax(χ1 + 1)

a2
minCgap

(
1 + 1

χ1

) 1

Cβ
,

with Cβ > 0 still to be specified later to ensure that C1 ≤ λ1 and C2 ≤ u1.
For the inductive step for the eigenvalue derivative bound, suppose that |ν| ≥ 2

and that the bounds (3.64) and (3.65) hold for all multi-indices of order < |ν|.
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Substituting the induction assumptions into (3.57) gives

|∂νyλ1| ≤
√
amax

χ1

∑
0 6=m<ν

(
ν

m

)
C1 (|m|!)1+εβm · C2 (|ν −m|!)1+ε βν−m

+

√
amax(χ1 + 1)

amin

(
1 + 1

χ1

)∑
j∈N

νj
βj
Cβ
· C2 [(|ν| − 1)!]1+ε βν−ej .

Factoring out C1β
ν this simplifies to

|∂νyλ1| ≤ C1β
ν

(√
amax

χ1

C2

∑
0 6=m<ν

(
ν

m

)
(|m|!)1+ε(|ν −m|!)1+ε

+

√
amax(χ1 + 1)

amin

(
1 + 1

χ1

) C2

C1Cβ
|ν|[(|ν| − 1)!]1+ε

)
.

Using the identity
∑
m≤ν,|m|=k

(
ν
m

)
=
(|ν|
k

)
along with Lemma 3.9, we can bound

the sum as follows

∑
0 6=m<ν

(
ν

m

)
(|m|!)1+ε(|ν −m|!)1+ε

=

|ν|−1∑
k=1

∑
m≤ν,|m|=k

(
ν

m

)
(k!)1+ε[(|ν| − k)!]1+ε

= (|ν|!)1+ε

|ν|−1∑
k=1

(
|ν|
k

)
(k!)1+ε[(|ν| − k)!]1+ε

(|ν|!)1+ε

= (|ν|!)1+εS|ν|(ε) ≤ Cε(|ν|!)1+ε . (3.66)

Substituting this into the bound on |∂νyλ1| yields

|∂νyλ1| ≤C1(|ν|!)1+ε βν
[√

amax

χ1

C2Cε +

√
amax(χ1 + 1)

amin

(
1 + 1

χ1

) C2

C1Cβ

]
.

Substituting in the values for C1 and C2, the expression in between the square
brackets simplifies to

1

Cβ

1

aminCgap

(
1 + 1

χ1

)(amax

amin

√
1 + 1

χ1
Cε + 1

)
, (3.67)

and we will later specify Cβ to ensure that this expression is bounded by 1, thus
giving the required result (3.64).
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For the eigenfunction derivative bounds, substituting the induction hypotheses
(3.64) and (3.65) into (3.63) gives

∥∥∂νyu1

∥∥
V
≤

amax

√
amax(χ1 + 1)

2χ1amin

∑
0 6=m<ν

(
ν

m

)
C2(|m|!)1+εβm · C2(|ν −m|!)1+εβν−m

+
amax

χ1aminCgap

∑
0 6=m<ν

(
ν

m

)
C1(|m|!)1+εβm · C2 (|ν −m|!)1+εβν−m

+
1

aminCgap

(
1 + 1

χ1

) ∞∑
j=1

νj
βj
Cβ

C2[(|ν| − 1)!]1+εβν−ej .

Factoring out C2β
ν and using (3.66) this becomes

∥∥∂νyu1

∥∥
V
≤ C2 (|ν|!)1+εβν

[
amax

√
amax(χ1 + 1)

2χ1amin

C2Cε

+
amax

χ1aminCgap

C1Cε +
1

aminCgap

(
1 + 1

χ1

) 1

Cβ

]
.

Substituting in C1 and C2, the expression in between the square brackets simplifies
to

1

Cβ

1

aminCgap

(
1 + 1

χ1

)(3a2
max

2a2
min

(
1 + 1

χ1

)
Cε + 1

)
. (3.68)

We now define Cβ as in (3.54) so that the expression in (3.68) is exactly 1, thus
proving the required bound for the eigenfunction (3.65), and ensuring also that the
expression in (3.67) is bounded by 1 as required. This completes the induction proof
for (3.64) and (3.65) for all ν 6= 0.

With this definition of Cβ it can be verified that C1 ≤ λ1 and C2 ≤ u1 as
required. Hence we have also proved (3.51) and (3.52) for all ν ∈ F.

Remark 3.11. Since Vh ⊂ V , similar results hold for the FE approximations pro-
vided h is sufficiently small. In this case the constants are replaced by their FE
counterparts Cβ,h, λ1,h, u1,h.

3.4 Error analysis

Since we are only interested in the fundamental eigenpair, to aid in the notation we
drop the subscript 1 and define (λ, u) := (λ1, u1). Henceforth, with a slight abuse of
notation, we will use combinations of the subscripts s, h, n to denote, respectively,
truncating the stochastic dimension to s variables, a FE approximation with mesh-
width h and a lattice rule approximation with n points. Also, for the dimension
truncation we will denote the truncated parameter vector by ys := (y1, y2, . . . , ys).
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3.4.1 Dimension truncation error

To prove estimates on the strong and weak truncation error of the fundamental
eigenpair we will make extensive use of Taylor series expansions in the variables
y{s+1,...} = (yj)j≥s+1 about 0.

Clearly, if the functions (aj)j≥1, (bj)j≥1 satisfy Assumption A3.1.3 then the se-
quence β is summable with the same p. Also, we will henceforth assume that β is
ordered such that β1 ≥ β2 ≥ · · · .

Theorem 3.12. Let s ∈ N. For all y ∈ U the strong truncation error of the
minimal eigenpair is bounded by

|λ(y)− λs(ys)| ≤
λ1

2

∑
j≥s+1

βj , (3.69)

‖u(y)− us(ys)‖V ≤
u1

2

∑
j≥s+1

βj . (3.70)

The weak truncation error is bounded by

|Ey [λ− λs]| ≤ 2λ1

( ∑
j≥s+1

βj

)2

, (3.71)

and for G ∈ V ∗

|Ey [G(u)− G(us)]| ≤ 2u1 ‖G‖V ∗
( ∑

j≥s+1

βj

)2

. (3.72)

Here λ1 and u1 are given in (3.20) and (3.22), respectively.

Proof. We will prove the four bounds in order and by using different order Taylor
series expansions with integral remainders. Since λ is analytic in y, Taylor’s Theo-
rem allows us to expand λ as a zeroth order Taylor series in the variables (yj)j≥s+1

about the point 0:

λ(y) = λ(ys; 0) +
∑
j≥s+1

∫ 1

0

∂λ

∂yj
(ys; ty{s+1,...})yj dt .

Using the triangle inequality, that |yj| ≤ 1
2
and the upper bound (3.51) we have

|λ(y)− λs(ys)| ≤
∑
j≥s+1

λ1

2
βj .
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The eigenfunction is also analytic so using a Taylor series expansion again the trun-
cation error for the eigenfunction is

‖u(y)− us(·,ys)‖V =

∥∥∥∥∥ ∑
j≥s+1

∫ 1

0

∂u

∂yj
(ys; ty{s+1,...})yj dt

∥∥∥∥∥
V

≤
∑
j≥s+1

1

2

∫ 1

0

∥∥∥∥ ∂u∂yj (ys; ty{s+1,...})

∥∥∥∥
V

dt ≤
∑
j≥s+1

1

2
u1 βj ,

where we have used the upper bound (3.52).
For the weak error consider the first order Taylor series expansion of λ:

λ(y) =λ(ys; 0) +
∑
j≥s+1

∂λ

∂yj
(ys; 0)yj

+
∑

i,j≥s+1

2

(ei + ej)!

∫ 1

0

(1− t) ∂2λ

∂yi∂yj
(ys; ty{s+1,...})yiyj dt .

Taking the expected value with respect to y, by linearity we obtain

Ey[λ− λs] =
∑
j≥s+1

Ey
[
∂λ

∂yj
(ys; 0)yj

]
+
∑

i,j≥s+1

Ey
[

2

(ei + ej)!

∫ 1

0

(1− t) ∂2λ

∂yi∂yj
(ys; ty{s+1,...})yiyjdt

]
.

Since each yj are independent with mean zero, for j ≥ s+ 1 we have

Ey
[
∂λ

∂yj
(ys; 0)yj

]
= Ey

[
∂λ

∂yj
(ys; 0)

]
Ey[yj] = 0 .

By (3.52), for all y ∈ U and i, j ∈ N∣∣∣∣ ∂2λ

∂yi∂yj
(y)yiyj

∣∣∣∣ ≤ 1

4
λ1 21+εβiβj ≤ λ1 βiβj ,

since ε ≤ 1. From this and the triangle inequality it follows that the error is bounded
by

|E[λ− λs]| ≤ 2
∑

i,j≥s+1

Ey
[∫ 1

0

(1− t)λ1 βiβj dt

]
≤ 2λ1

( ∑
j≥s+1

βj

)2

.
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Similarly, the first order Taylor expansion for the eigenfunction is

u(y) =u(ys; 0) +
∑
j≥s+1

∂u

∂yj
(ys; 0)yj

+
∑

i,j≥s+1

2

(ei + ej)!

∫ 1

0

(1− t) ∂2u

∂yi∂yj
(ys; tys)yiyj dt .

Taking the linear functional G and then the expected value of both sides

Ey
[
G(u)− G(us)

]
=
∑
j≥s+1

Ey
[
G
(
∂u

∂yj
(ys; 0)yj

)]
+
∑

i,j≥s+1

Ey
[
G
(

2

(ei + ej)!

∫ 1

0

(1− t) ∂2u

∂yi∂yj
(ys; tys)yiyj dt

)]
.

For j ≥ s+ 1, using the linearity of G and the independence of the variables y

Ey
[
G
(
∂u

∂yj
(ys; 0)yj

)]
= Ey

[
G
(
∂u

∂yj
(ys; 0)

)]
Ey[yj] = 0 .

For all y ∈ U , i, j ∈ N using the upper bound (3.52)∣∣∣∣G ( ∂2u

∂yi∂yj
(y)yiyj

)∣∣∣∣ ≤ 1

4
‖G‖V ∗

∥∥∥∥ ∂2u

∂yi∂yj
(y)

∥∥∥∥
V

≤ 1

4
‖G‖V ∗ u1 21+εβiβj ≤ ‖G‖V ∗ u1 βiβj .

Using these and the triangle inequality gives the last result

|Ey [G(u)− G(us)]| ≤ 2
∑

i,j≥s+1

Ey
[∫ 1

0

(1− t) ‖G‖V ∗ u1 βiβj dt

]

≤ 2 ‖G‖V ∗ u1

( ∑
j≥s+1

βj

)2

.

This completes the proof.

Furthermore, in [60, Theorem 5.1] it was shown that under Assumption A3.1.3
the tail of the sum over βj is bounded above by

∑
j≥s+1

βj ≤ min

(
p

1− p
, 1

)( ∞∑
j=1

βpj

)1/p

s−
1
p

+1 . (3.73)
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3.4.2 QMC error

Given the bounds in Lemma 3.10 on the mixed derivatives of the minimal eigenpair
we obtain an upper bound on the root-mean-square error of the QMC approximation
of the truncated problem.

Theorem 3.13. Let n ∈ N be prime, G ∈ V ∗ and suppose that Assumption A3.1
holds. Then the root-mean-square errors of the CBC-generated randomly shifted
lattice rule approximations of Ey [λs] and Ey [G(us)] are bounded by√

E∆

[∣∣Ey [λs]−Qsh
n,sλs

∣∣2] ≤ C1,αn
−α , and (3.74)√

E∆

[∣∣Ey [G(us)]−Qsh
n,sG(us)

∣∣2] ≤ C2,αn
−α , (3.75)

where

α =

1− δ, for arbitrary δ ∈ (0, 1
2
), if p ∈ (0, 2

3
] ,

1
p
− 1

2
if p ∈ (2

3
, 1) ,

(3.76)

and the constants C1,α and C2,α are independent of s.

Proof. Since the estimates from Lemma 3.10 are independent of y they can be used
to bound the norm (squared) of λs in Ws,γ . By (3.51) we obtain

‖λs‖2
s,γ ≤ λ1

2 ∑
u⊆{1:s}

Λ2
u

γu
, Λu := (|u|!)1+ε

∏
j∈u

βj ,

with weights γ and ε ∈ (0, 1) as yet unspecified. Then using (3.45) the mean-square
error of the lattice rule approximation is bounded above

E∆

[∣∣Ey [λs]−Qsh
n,sλs

∣∣2] ≤ Cs,γ,η ϕ(n)−
1
η , (3.77)

where

Cs,γ,η := λ1
2

 ∑
∅6=u⊆{1:s}

γηu ρ(η)|u|

 1
η
 ∑

u⊆{1:s}

Λ2
u

γu


We now choose the weight parameters such that Cs,γ,η can be bounded inde-

pendently of s. From [60, Lemma 6.2] the choice of weights that minimises Cs,γ,η
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are

γu(η) =

(
Λ2

u

ρ(η)|u|

) 1
1+η

(3.78)

which are of POD (product and order-dependent) form. With these weights it
follows that Cs,γ,η ≤ λ1

2
S

(1+η)/η
s,η , where

Ss,η :=
∑

u⊆{1:s}

(
Λ2η

u ρ(η)|u|
) 1

1+η ,

so we must show that the sum Ss,η can be bounded independently of s. Let

q :=
2η(1 + ε)

1 + η
and αj :=

(
ρ(η)(βj)

2η
) 1

1+η for all j ∈ N ,

so that

Ss,η =
s∑
`=0

(`!)q
∑

u⊆{1:s}
|u|=`

∏
j∈u

αj ≤
s∑
`=0

(`!)q−1

( s∑
j=1

αj

)`
< ∞ ,

which holds by the ratio test provided that q < 1 and
∑∞

j=1 αj < ∞. Under
Assumption A3.1.3, we therefore require that

2η(1 + ε)

1 + η
< 1 ⇐⇒ ε <

1− η
2η

and
2η

1 + η
≤ p ⇐⇒ η ≥ p

2− p
.

To balance these conditions with the requirement that η ∈ (1
2
, 1], we choose a differ-

ent η depending on the decay rate p and then choose ε := (1 − η)/(4η). Note that
η = 1 has to be excluded to ensure that ε > 0.

For p ∈ (0, 2
3
], we have p

2−p ≤
1
2
so there is no further restriction on η and we

take η := 1
2(1−δ) for arbitrary δ ∈ (0, 1

2
). However, for p ∈ (2

3
, 1) the value of η is

restricted and we take it as small as possible, namely, η := p
2−p . Substituting these

choices of η into (3.77) and taking n to be prime (for simplicity) yields the result
(3.74).

The error bound (3.75) follows in the same way, after observing that the norm
of G(us) can be bounded using (3.52)

‖G(us)‖2
s,γ ≤

∑
u⊆{1:s}

1

γu

∫
[0,1]|u|

(∫
[0,1]s−|u|

‖G‖V ∗
∥∥∥∥∂|u|us∂yu

(·,ys)
∥∥∥∥
V

dy−u

)2

dyu

≤ ‖G‖2
V ∗ u1

2
∑

u⊆{1:s}

Λ2
u

γu
.
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This completes the proof.

Remark 3.14. The main ingredients in this proof are the bounds on the deriva-
tives of the eigenvalue, which are needed to show that λs ∈ Ws,γ . As was stated in
Remark 3.11, these bounds also hold for the derivatives of λs,h. Thus, for h suffi-
ciently small (see (3.48)) the same error bound holds for the QMC error of the FE
error approximation λs,h, but with the constants possibly depending on h.

3.4.3 Total error

Using the triangle inequality, the mean-square error of the combined truncation-FE-
QMC approximation of the expected value of λ1 can be bounded above by

E∆

[∣∣Ey[λ]−Qsh
n,sλs,h

∣∣2] ≤ C
(
E∆

[
|Ey[λ− λs]|2

]
+ E∆

[∣∣Ey[λs]−Qsh
n,sλs

∣∣2]+ E∆

[∣∣Qsh
n,s(λs − λs,h)

∣∣2] ) , (3.79)

for C > 0. Here we have conveniently split the total error into three separate errors:
one each for the truncation, QMC and FE errors, respectively. Note that there are
different ways of splitting the total error, but we have chosen the above technique
because now the second term is the QMC error for the actual eigenvalue and not
the FE approximation λs,h. This is important because it means that we do not need
specific bounds on the parametric regularity of the FE eigenvalue.

The terms in the upper bound on the mean-square error (3.79) can be bounded
using (3.71), (3.74) and (3.41), respectively, leading to the following theorem. A
similar splitting argument using (3.70), (3.42) and (3.75) instead gives a bound on
the error of the approximation for the corresponding eigenfunction.

Theorem 3.15. Let Assumption A3.1 hold with p ∈ (0, 1), h > 0 be sufficiently
small, s ∈ N, prime n ∈ N and let z ∈ Ns be a generating vector constructed
using the CBC algorithm with weights given by (3.78). Then the root-mean-square
error—with respect to the random shift ∆ ∈ [0, 1]s—of our truncation-FE-QMC
approximation of the expectation of the minimal eigenvalue λ is bounded by√

E∆

[∣∣Ey[λ]−Qsh
n,sλs,h

∣∣2] ≤ C1

(
h2 + s−2( 1

p
−1) + n−α

)
. (3.80)

For any functional G ∈ H−1+t(D) of the corresponding eigenfunction u, with t ∈
[0, 1], the truncation-FE-QMC approximation of its expected value is bounded by√

E∆

[∣∣Ey[G(u)]−Qsh
n,sG(us,h)

∣∣2] ≤ C2

(
h1+t + s−2( 1

p
−1) + n−α

)
, (3.81)
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where

α =

1− δ, for arbitrary δ ∈ (0, 1
2
), if p ∈ (0, 2

3
] ,

1
p
− 1

2
if p ∈ (2

3
, 1) .

Comparing this with the corresponding result for the elliptic source problem [60,
Theorem 8.1], observe that we obtain the exact same rates of convergence in s and
n for all p ∈ (0, 1). The only exception is that our results do not hold when p = 1,
whereas [60, Theorem 8.1] presents a result when p = 1. However, for that case
they do require an additional assumption. To compare the two FE convergence
rates recall that the number of degrees of freedom in the FE grid is Mh = O(h−d).
Letting G ∈ H−1+t(D), note that the correct comparison is the case when the source
term belongs to L2(D), so that in [60, Theorem 8.1] τ = 1 + t. In this case the FE
error convergence rate from [60, Theorem 8.1] for the linear functional G of the
solution to the source problem is M−τ/d

h = O(h1+t), which is exactly the rate in
(3.81) for eigenfunction.

3.5 Numerical results

Now we present numerical results on the performance of our truncation-FE-QMC
algorithm in approximating the expected value of the smallest eigenvalue of an
eigenvalue problem of the form (3.1). In our example, the stochastic coefficients a
and b are composed of scaled trigonometric functions, with the purpose being to
imitate the behaviour of a Karhunen-Loève expansion of a random field. We are
interested in whether the quadrature component of the error matches the theoretical
estimate (3.80) in Theorem 3.15, and so we will study different scalings of the basis
functions aj, bj in the coefficients, which will correspond to different values of the
decay parameter p.

As detailed in Section 2.3, to estimate the quadrature error, instead of performing
a single randomly shifted approximation Qsh

n,sλs,h we conduct a small number R of
different approximations based on independently and identically distributed random
shifts, then the final approximation is taken to be the average over the R independent
approximations as in (2.13). In this way, we obtain an unbiased estimate of the
integral (of λs,h) and the sample variance over the different shifts gives an estimate
of the quadrature component of the mean-square error using (2.14).

The purpose of this chapter is to study the application of QMC methods to
stochastic eigenvalue problems, thus in the numerical experiments below we fix the
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truncation dimension at s = 100 and the FE meshwidth at h = 1/256 while varying
the number of QMC points n. Also, we set the number of random shifts to be R = 8.

The smallest eigenvalue of each FE system is approximated using the eigs func-
tion in Matlab, which in turn runs the implicitly restarted Arnoldi method using
the ARPACK library. We set the tolerance for the accuracy of this eigensolver to
be 10−14, so as to ensure that the numerical errors incurred by approximating the
FE eigenvalues are negligible compared to the integration error.

In practice, we cannot compute the optimal function space weights γu according
to the formula (3.78) from the proof of Theorem 3.13, because (3.78) depends on
the sequence β, and Cβ (3.54) contains factors that cannot be computed explicitly.
As such, in our numerical experiments for u ⊂ N we set the function space weight
γu to be

γu = |u|!
∏
j∈u

(
max

{
‖aj‖L∞(D) , ‖bj‖L∞(D)

})η
, (3.82)

where η = 4/3 if p ∈ (0, 2/3] and η = 2− p if p ∈ (2/3, 1). Note that η in (3.82) is
not the same as in (3.78).

For our numerical experiments we consider an eigenvalue problem (3.1) on the
domain D = (0, 1)2 where the only non-trivial coefficient is a(y) in the second-order
term. Explicitly, the coefficient a(y) is given as in (3.4) (with aj defined below) but
b(y) ≡ 0 and c ≡ 1. For some decay q ≥ 4/3, the basis functions for the coefficient
a(y) are defined to be

a0 ≡ 2 , aj(x) =
1

1 + (πj)q
sin(jπx1) sin((j − 1)πx2) , for x = (x1, x2) ∈ (0, 1)2 .

Clearly, for all j ∈ N we have that

‖aj‖L∞(D) =
1

1 + (πj)q
<

1

jq
,

and hence
∑∞

j=1 ‖aj‖L∞(D) < ζ(q). It follows that the coefficient is bounded above
and below as required with

amin = 2− ζ(q)

2
and amax = 2 +

ζ(q)

2
.

Similarly, the parameter q determines the rate of decay of the norms of the basis
functions, and in turn we can take p in Assumption A3.1.3 to satisfy p ∈ (1/q, 1).

In our numerical experiments for this problem we consider q = 4/3, 2, 3 and the
number of quadrature points given by n = 251, 503, 997, 199, 4001, 8009, 16001.
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The RMS quadrature error is estimated by the square root of (2.14) and the rate of
convergence is estimated using a least-squares fit of the RMS error estimates.

Regarding the convergence rates to expect, for q = 4/3 we have that the sequence
β is p-summable for p > 3/4, whereas for the faster decays of q = 2, 3 we have
that β is summable with exponent p > 1/2 and p > 1/3, respectively. Based on
these restrictions on p, for each n we construct a generating vector by the CBC
algorithm using weights given by (3.82) with η = 2 − 1/q = 5/4 for q = 4/3, and
η = 4/3 for q = 2, 3. Hence from Theorem 3.15, for q = 4/3, because p > 2/3, we
are in the regime where the convergence is limited and so expect a rate of around
−5/6 ≈ −0.83. However, for q = 2, 3 the rate is not restricted and we expect
convergence close to 1/n.

Figure 3.1 plots the estimated RMS quadrature error of our QMC approximation
along with a Monte Carlo (MC) approximation for comparison, for q = 4/3 (left)
and q = 2 (right). To ensure that the MC and QMC approximations use the same
number of points, each MC approximation used R×n points. In Figure 3.1 the circle
data points (triangles for MC) represent the estimated RMS errors, the dashed lines
portray the expected convergence rates and the solid lines are a least-squares fit.
Note that the axes of the two graphs are equal. Observe that the least-squares fit
matches very closely to the expected rates. In fact, for the QMC error the least-
squares computed rates are−0.826, −0.997 and−1.019 for q = 4/3, 2, 3, respectively,
which are very close to the expected rates of −5/6 ≈ −0.83, −1, and −1 from the
theory. Also, as is expected for a problem of this smoothness QMC significantly
outperforms the MC approximations, which decay at the anticipated rate of 1/

√
n.

For completeness, the computed values of the QMC RMS error estimates and the
convergence rates for q = 4/3, 2 and 3 are given below in Table 3.1. We use the
notation “e” to denote the base 10 exponent.

RMS error estimate
n R× n q = 4/3 (p ≈ 3/4) q = 2 (p ≈ 1/2) q = 3 (p ≈ 1/3)

251 2008 4.6 e−6 4.9 e−7 2.5 e−8
503 4024 1.8 e−6 2.3 e−7 1.0 e−8
997 7976 1.0 e−6 1.0 e−7 3.6 e−9
1999 15992 3.5 e−7 5.6 e−8 2.1 e−9
4001 32008 4.8 e−7 2.5 e−8 1.3 e−9
8009 64072 2.9 e−7 1.5 e−8 6.5 e−10
16001 128008 9.4 e−8 7.5 e−9 3.0 e−10
Estimated rate −0.826 −0.997 −1.019

Table 3.1: QMC RMS error estimates for q = 4/3, 2, 3.
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Figure 3.1: QMC and MC convergence for q = 4/3, p ≈ 3/4 (left) and q = 2,
p ≈ 1/2 (right).

3.6 Conclusion

In this chapter we developed and analysed an algorithm that uses QMC rules to
approximate the expectation of the eigenvalue of an elliptic eigenvalue problem with
coefficients that depend on infinitely-many stochastic parameters. The algorithm,
which can also be applied to linear functionals of the corresponding eigenfunction,
performs an approximation by first truncating the stochastic domain to finitely-many
parameters and discretising the spatial domain using FE methods. The expected
value of the truncated-FE eigenvalue is then approximated using a randomly shifted
lattice rule.

The main theoretical results presented were a rigorous analysis of the total ap-
proximation error and explicit bounds on the mixed derivatives (with respect to the
stochastic parameters) of the smallest eigenvalue and the corresponding eigenfunc-
tion. Actually, the bounds on the derivatives were instrumental to analysing the
error. In particular, they allowed us to bound the truncation error independently
of the parameters, and then bound the QMC error independently of the truncation
dimension. As with the source problem the convergence rate of the total error de-
pends on the decay parameter p, and in almost all cases the convergence rate of the
error was exactly the same as the corresponding rate in the error bounds for the
source problem. The only exclusion was that our results do not hold when p = 1, in
which case the result for the source problem also requires an additional assumption.

Finally, we applied our algorithm to an eigenvalue problem in two spatial di-
mensions for coefficients with different decays p, and presented results on the QMC
component of the error. In all cases, the quadrature errors converged at the rate
predicted by our theory, and decayed noticeably faster than a MC approximation.
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Original research and my contribution

The work presented in this chapter was conducted jointly with Ivan Graham and
Rob Scheichl (both at the University of Bath) along with my supervisors Frances
Kuo and Ian Sloan.

Approximation of parametric, elliptic eigenvalue problems has previously been
studied in [1] using sparse tensor products, and in that paper the authors proved
that simple eigenvalues (along with the corresponding eigenfunctions) are analytic
with respect to the stochastic parameters. The method of using truncation, finite
elements and QMC to approximate the expected value has also been used previously
for the source problem in, e.g., [60]. However, the application of QMC rules to
stochastic eigenvalue problems is original, and so too is the error analysis. Loosely
speaking, Section 3.2.2 and then everything from Section 3.3 onwards is original
work. Auxiliary to our error analysis, we also provide an explicit proof that the
spectral gap is bounded independently of y (see Section 3.2.2) prove explicit bounds
on the derivatives of the smallest eigenvalue and eigenfunction (see Lemma 3.10).

Motivated by an interest in uncertainty quantification of the criticality problem
for nuclear reactors, our colleagues Ivan Graham and Rob Scheichl had the idea
to apply QMC to stochastic eigenvalue problems. After it was decided that we
should study self-adjoint, elliptic eigenvalue problems, I took the lead responsibility
for the error analysis, with corrections and input from Frances, Ian, Ivan and Rob.
However, I should mention that much of the work on bounding the spectral gap was
due to Ivan Graham. I also implemented the truncation-FE-QMC approximation
algorithm and performed the numerical results.
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3.A Proof of Theorem 3.6

In this appendix we follow [86] to bound the FE error, tracking the dependence of
all constants on y. We have opted for the classical min-max argument as opposed
to the Babuška-Osborn theory [5, 6, 7] because it is more elementary and allows
us to determine the influence of the constants. We begin with some preliminary
definitions.

For y ∈ U and h > 0, define the orthogonal projection Ph : V → Vh of u ∈ V
with respect to the inner product B(y; ·, ·) by

B(y;u− Phu, vh) = 0 for all vh ∈ Vh .

Although Ph depends on y through the bilinear form B(y; ·, ·) we have suppressed
this y dependence. Letting ‖·‖B(y) =

√
B(y; ·, ·), due to B-orthogonality the projec-

tion satisfies
‖u− Phu‖B(y) = inf

vh∈Vh
‖u− vh‖B(y) .

Due to (3.13) and (3.14) the energy norm is equivalent to the V -norm:

√
amin ‖v‖V ≤ ‖v‖B(y) ≤

√
amax(1 + C2

D) ‖v‖V for all v ∈ V. (3.83)

Analogously to the min-max principle (3.19), when the k-dimensional subspaces
Sk are restricted to Vh we have the min-max representation for the FE eigenvalues

λk,h(y) = min
Sk⊂Vh

dim(Sk)=k

max
uh∈Sk

B(y;uh, uh)

D(uh, uh)
. (3.84)

The strategy of the proof is to first bound the difference between u(y) and its
projection Phu(y), which is fairly straightforward and follows from the FE results for
elliptic source problems. The difficulty lies in the fact that the projections Phu(y)

are not the same as the FE eigenfunctions uh(y). However, they are close. The next
stage of the proof is to bound the eigenvalue and eigenfunction error in terms of the
projection error. For the eigenvalue error a key ingredient is the classical min-max
principle. Finally, combining the FE error bounds with the projection error bounds
yields the required results.

Lemma 3.16. Let y ∈ U . The projection of u1(y) ∈ E(y, λ1(y)) ⊂ V into Vh
satisfies

‖u1(y)− Phu1(y)‖V ≤ Ch , (3.85)
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where C > 0 is independent of y.

Proof. The projection Phu1(y) can be equivalently viewed as the solution to the FE
approximation of an elliptic source problem. Indeed, the variational eigenproblem
(3.12) for the eigenpair (λ1(y), u1(y)) can be written as

B(y;u1(y), v) = 〈f(y), v〉 for all v ∈ V ,

where f(y) = λ1(y)c · u1(y) is now assumed fixed. The FE approximation problem
is then to find ũh(y) ∈ Vh such that

B(y; ũh(y), vh) = 〈f(y), vh〉 for all vh ∈ Vh ,

for which, due to B-orthogonality, the solution is exactly the projection of the eigen-
function: ũh(y) = Phu1(y). This allows us to bound the projection error using the
results from elliptic source problems. In particular, our differential operator fits the
setting of affine parametric operator equations from [17]. Since u1(y) ∈ Z, it follows
that f(y) ∈ L2(D) for all y. The spaces Vh satisfy the approximation property
(3.39), thus by Theorem 2.4 in [17] we have

‖u1(y)− Phu1(y)‖V ≤ C ′ ‖f(y)‖L2(D) h , (3.86)

with constant C ′ independent of y and h.
To bound ‖f(y)‖L2(D), we use the upper bound in (3.20), the bound (3.7) on c,

and then the fact that u1(y) is normalised to give

‖f(y)‖L2(D) ≤ λ1(y)
√
‖c‖L∞(D) ‖u1(y)‖L2(D) ≤

a
3/2
max

amin

(χ1 + 1) .

Substituting this into (3.86) we have our desired result with a constant independent
of y and h.

The lemmas that follow relate the eigenvalue error (Lemma 3.17) and the eigen-
function error (Lemma 3.19) to the projection errors that we have just bounded.
Lemma 3.18 in the middle relates to the separation between the FE eigenvalues and
λ1(y), it is used in the proof of Lemma 3.19.

Lemma 3.17. Let y ∈ U and let h > 0 be sufficiently small. Then

|λ1(y)− λ1,h(y)| ≤ C ‖u1(y)− Phu1(y)‖2
V , (3.87)
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where C > 0 is independent of y.

Proof. To prove the result we apply the min-max principle to λ1,h(y), where to
obtain an upper bound, in the right hand side of (3.84) we take the particular
subspace S1,h(y) := PhE(y, λ1(y)). The argument requires that S1,h(y) be a 1-
dimensional subspace of V . Clearly, since E(y, λ1(y)) is 1-dimensional it follows
that dim(S1,h(y)) ≤ 1. Suppose for a contradiction that Phu1(y) = 0, then by the
B-orthogonality of Ph

1 = ‖u1(y)‖D =
1

λ1(y)
‖u1(y)‖B(y) =

1

λ(y)
‖u1(y)− Phu1(y)‖B(y) .

Then using the lower bound in (3.20) and the equivalence of norms (3.83) we have
that

1 ≤ a2
max(1 + χ1)

aminχ1︸ ︷︷ ︸
C′

‖u1(y)− Phu1(y)‖2
V ≤ C ′C2h2 (3.88)

where in the last step we have used Lemma 3.16 with constant C > 0, which is
independent of h and y. For h sufficiently small this yields a contradiction, and so
dim(S1,h(y)) = 1. Therefore, choosing S1,h(y) in the min-max principle (3.84) gives
the inequality

λ1,h(y) ≤ max
0 6=vh∈S1,h(y)

B(y; vh, vh)

D(vh, vh)
=
B(y;Phu1(y), Phu1(y))

D(Phu1(y), Phu1(y))
. (3.89)

Using the fact that the norm of the projection is bounded by 1, the numerator
is bounded by

B(y;Phu1(y), Phu1(y)) ≤ B(y;u1(y), u1(y)) = λ1(y) , (3.90)

where for the equality in the last step we have used the representation (3.21).
Expanding the denominator gives

D(Phu1(y), Phu1(y))

= ‖u1(y)‖2
D − 2D(u1(y), u1(y)− Phu1(y)) + ‖u1(y)− Phu1(y)‖2

D .

The first term on the right is 1 since u1(y) is normalised and the last term is positive,
so we can bound D(Phu1(y), Phu1(y)) by

D(Phu1(y), Phu1(y)) ≥ 1− 2D(u1(y), u1(y)− Phu1(y)) .
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Then using the fact that u1(y) is an eigenfunction satisfying (3.12) and B-orthogonality
of the projection Ph we have

D(Phu1(y), Phu1(y)) ≥ 1− 2

λ1(y)
B(y;u1(y)− Phu1(y), u1(y)− Phu1(y))

≥ 1− 2C ′ ‖u1(y)− Phu1(y)‖V , (3.91)

with C ′ as in (3.88), where in the last step we have used the lower bound in (3.20)
and the equivalence of norms (3.83).

For h sufficiently small the lower bound on the denominator in (3.91) is positive,
and substituting it along within the upper bound on the numerator (3.90) into (3.89)
then rearranging gives

|λ1(y)− λ1,h(y)| ≤ 2C ′λ1,h(y) ‖u1(y)− Phu1(y)‖V .

Now all that remains is to show that λ1,h(y) can be bounded from above inde-
pendently of y and h. Analogously to (3.20), using the FE min-max representation
(3.84) we have

λ1,h(y) ≤ amax

amin

(χ1,h + 1) ,

where χ1,h the smallest eigenvalue corresponding to the negative Laplacian on D

with boundary conditions (3.3), discretised in the FE space Vh. It is well-known,
see, e.g. [8, Theorem 10.4], that in the current setting χk,h ≤ χ1 +C ′′h2 with C ′′ > 0

independent of h. Thus for h sufficiently small there exists a constant such that
λ1,h(y) can be bounded independent of y and h as required.

Lemma 3.18. Let y ∈ U and h > 0 be sufficiently small. Then for all k =

2, 3, . . . ,Mh = dim(Vh)

λ1(y)

λk,h(y)− λ1(y)
≤ ρ , (3.92)

where ρ > 0 is independent of y and h.

Proof. We show that
λ2,h(y)− λ1(y) ≥ 1

ρ
λ1(y) ,

which is equivalent since the left hand side of (3.92) attains its maximum when
k = 2.
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Since the eigenvalues converge from above, it follows from Proposition 3.4 and
the upper bound on λ1(y) in (3.20) that

λ2,h(y)− λ1(y) ≥ λ2(y)− λ1(y) ≥ δ ≥ δamin

amax(χ1 + 1)
λ1(y) /

Lemma 3.19. Let y ∈ U and h > 0 be sufficiently small. Then

‖u1(y)− u1,h(y)‖D ≤ C ‖u1(y)− Phu1(y)‖D , (3.93)

where C is independent of y and h.

Proof. The FE eigenfunctions form an orthonormal basis for Vh with respect to
D(·, ·), and so the projection of u1(y) can be written as

Phu1(y) =

Mh∑
k=1

αk,h(y)uk,h(y) ,

where αk,h(y) := D (Phu1(y), uk,h(y)).
The key coefficient in this expansion is α1,h(y)—if we assume that α1,h(y) ≥ 0

(which we can always ensure by controlling the sign of u1,h(y)), then the size of
α1,h(y) gives a measure of how close Phu1(y) is to u1,h(y). As a first step towards
(3.93), consider the difference

‖u1(y)− α1,h(y)u1,h(y)‖D
≤ ‖u1(y)− Phu1(y)‖D + ‖Phu1(y)− α1,h(y)u1,h(y)‖D . (3.94)

The first term is exactly our target upper bound. The square of the second term
can be written as

‖Phu1(y)− α1,h(y)u1,h(y)‖2
D =

Mh∑
k=2

αk,h(y)2 .

By [86, Lemma 6.4] (or as is easily verified) we can replace αk,h(y) by

αk,h(y) =
λ1(y)

λk,h(y)− λ1(y)
D (u1(y)− Phu1(y), uk,h(y)) .
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Then using Lemma 3.18 and letting Qh denote the D-orthogonal projection we have
the upper bound

‖Phu1(y)− α1,h(y)u1,h(y)‖2
D ≤

Mh∑
k=2

ρ2D (u1(y)− Phu1(y), uk,h(y))2

= ρ2

Mh∑
k=2

D (Qh (u1(y)− Phu1(y))), uk,h(y))2

≤ ρ2 ‖u1(y)− Phu1(y)‖2
D .

Thus, our intermediate bound (3.94) can be written as

‖u1(y)− α1,h(y)u1,h(y)‖D ≤ (1 + ρ) ‖u1(y)− Phu1(y)‖D . (3.95)

The final step is to show that α1,h(y) is close to 1 and that the FE eigenfunction
error can be bounded in terms of our intermediate bound (3.95). To that end, by
the reverse triangle inequality together with the fact that both u1(y) and u1,h(y)

are normalised we have

‖u1(y)− α1,h(y)u1,h(y)‖D ≥
∣∣‖u1(y)‖D − α1,h(y) ‖u1,h(y)‖D

∣∣
≥ |1− α1,h(y)| . (3.96)

Finally, by the triangle inequality and then using our intermediate bound (3.95)
along with (3.96) we have

‖u1(y)− u1,h(y)‖D ≤ ‖u1(y)− α1,h(y)u1(y)‖D + |1− α1,h(y)| ‖u1,h(y)‖D
≤ 2(1 + ρ) ‖u1(y)− Phu1(y)‖D ,

We now have all of the ingredients needed to prove our FE error bounds.

Proof of Theorem 3.6. The eigenvalue error (3.41) follows by the chain of inequal-
ities (3.87) from Lemma 3.17 then (3.85) from Lemma 3.16. All of the constants
involved are independent of y and h, so the final constant is also. Inside this proof
we label this constant as C1.

For the eigenfunction error, we use Lemma 3.1 from [6] to write

‖u1(y)− u1,h(y)‖2
B(y) = λ1,h(y)− λ1(y) + λ1(y) ‖u1(y)− u1,h(y)‖2

D .
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Using the equivalence of norms (3.83) on the left hand side, taking the absolute
value then the triangle inequality on the right and using the upper bound (3.20) on
λ1(y), this gives

‖u1(y)− u1,h(y)‖2
V ≤

1

amin

(
|λ1,h(y)− λ1(y)|

+
amax

amin

(χ1 + 1) ‖u1(y)− u1,h(y)‖2
D
)

≤ C ′2
(
|λ1,h(y)− λ1(y)| + ‖u1(y)− u1,h(y)‖2

D
)
,

where we have combined the constants into C ′2, independent of y. The first term is
exactly the eigenvalue error, which we have just shown is bounded above by C1h

2,
and for the second term by Lemma 3.19 we have

‖u1(y)− u1,h(y)‖D ≤ C ′′2 ‖u1(y)− Phu1(y)‖D
≤ C ′′2 ‖u1(y)− Phu1(y)‖V ≤ C ′′2h ,

where for the second inequality we have used the equivalence of norms (3.11) and
then the Poincaré inequality (3.15), and the last inequality follows by (3.85) from
Lemma 3.16. At each step we have absorbed the constants, which are all indepen-
dent of y, into C ′′2 . Finally, combining everything the upper bound on the squared
eigenfunction error is

‖u1(y)− u1,h(y)‖2
V ≤ C ′2

(
C1h

2 + C ′′2h
2
)
,

we have shown that C ′2, C1, C
′′
2 are all independent of y and h, so after taking the

square root we have the result (3.42).
Having established the error in the V -norm, for the final error bound (3.43) we

use the classical Aubin-Nitsche duality argument. Let G ∈ H−1+t(D) and consider
the dual problem: find vG(y) ∈ V such that

B(y;w, vG(y)) = G(w) for all w ∈ V . (3.97)

By the symmetry of B(y; ·, ·) and the standard theory for elliptic problems there
exists a unique solution vG(y), which is also in H1+t(D) and has norm bounded
independently of y: ‖vG(y)‖V ≤ C ′3 ‖G‖V ∗ . It is a classical result that the constant
is independent of h, and that it is also independent of y has been shown in [60].
Thus, using the equivalence of norms (3.11) and the best-approximation property
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of PhvG(y) in the energy norm we have

‖vG(y)− PhvG(y)‖V ≤
amax(1 + C2

D)

amin

inf
wh∈Vh

‖vG(y)− wh‖V ≤ C ′′3h
t , (3.98)

where in the last inequality we have used approximation property (3.39) and the
upper bound on the Zt-norm.

Letting w = u1(y)− u1,h(y) in (3.97), by B-orthogonality of Ph and the bound-
edness of the bilinear form (3.14) we have

|G(u1(y))− G(u1,h(y))| = |B(y;u1(y))− u1,h(y), vG(y))|

= |B(y;u1(y)− u1,h(y), vG(y)− PhvG(y))|

≤ amax(1 + C2
D) ‖u1(y)− u1,h(y)‖V ‖vG(y)− PhvG(y))‖V

≤ C3h
1+t .

In the last step we have used the upper bounds on the FE error for the eigenfunction
(3.42) and the FE error in approximating vG(y) (3.98).
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Chapter 4

Efficient implementations of the Multivariate

Decomposition Method

The main focus of this chapter is on the implementation of the MDM algorithm

Aε(f) =
∑
u∈Uε

Au(fu) , (4.1)

for approximating the integral of an ∞-variate function of the form

f(y) =
∑
u⊂N

fu(yu) ,

as outlined in Section 2.5. That is, given the definition of the active set Uε and
the choice of quadrature rules Au, we develop computationally efficient strategies
to evaluate (4.1) in certain scenarios by exploiting specific structures in the MDM
algorithm and the quadrature rules of choice. Specifically,

• we assume a product and order dependent (POD) structure in the definition
of the active set Uε;
• we utilise the anchored decomposition of functions; and
• we consider Quasi-Monte Carlo methods and Smolyak’s methods as two alter-

natives for the quadrature rules Au.

In Section 4.1 we explain the structure of our active set Uε and provide an
efficient strategy to construct it. Once the active set Uε has been constructed, we
need to evaluate the quadrature rules Au(fu) for each u ∈ Uε; this is formulated in
Section 4.2. In this chapter we use the anchored decomposition [64] of f to compute
the terms fu explicitly:

fu(yu) =
∑
v⊆u

(−1)|u|−|v|f(yv; 0), (4.2)

where f(yv; 0) indicates that we evaluate the function at f(t) with components
tj = yj for j ∈ v and tj = 0 for j /∈ v. Throughout this chapter, by a “naive”
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implementation of the MDM algorithm, we mean an implementation that computes
the sum in (4.1) term by term, with each fu evaluated using (4.2).

We consider only linear algorithms Au as the quadrature rules and our MDM
algorithm can therefore be expressed as

Aε(f) =
∑
u∈Uε

∑
v⊆u

(−1)|u|−|v|Au(f(·v; 0)). (4.3)

Notice inside the double sum in (4.3) that we would be applying a |u|-dimensional
quadrature rule to a function which depends only on a subset v ⊆ u of the variables.
Moreover, the same evaluations of f could be repeated for different combinations of
u and v, while in practice the cost of evaluating f could be quite expensive. We will
exploit structures in the quadrature rules to save on repeated evaluations in (4.3).

In Section 4.2.1 we first consider Smolyak quadrature to be used as the quadrature
rules Au (see, e.g., [27, 83]). Then in Section 4.2.2 we consider instead an extensible
Quasi-Monte Carlo (QMC ) sequence to be used for the quadrature rules (see, e.g.,
[12, 18]). In both sections we explain how to regroup the terms by making use of the
recursive structure and how to store some intermediate calculations for the specific
quadrature rules to evaluate (4.3) efficiently.

Section 4.3 considers two different approaches to implement the Smolyak quadra-
tures: the direct method and the combination technique. In Section 4.4 we consider
a randomised Quasi-Monte Carlo sequence for the quadrature rules. This enables
us to obtain an unbiased result and a practical estimate of the quadrature error for
the MDM algorithm.

Each variant of our MDM algorithm involves three stages, as outlined in the
pseudocodes; a summary is given as follows:

Pseudocodes 4.1 + 4.2A + 4.3A Smolyak MDM – direct implementation
Pseudocodes 4.1 + 4.2A′ + 4.3A′ Smolyak MDM – combination technique
Pseudocodes 4.1 + 4.2B + 4.3B Extensible QMC MDM
Pseudocodes 4.1 + 4.2B + 4.3B′ Extensible randomised QMC MDM

Section 4.5 is concerned with deriving a computable expression for estimating
an infinite series that may appear in the definition of the active set. Finally in
Section 4.6 we combine all ingredients and follow the mathematical setting of [58]
(see Section 2.5) to construct the active set and choose the quadrature rules. We then
apply the MDM algorithm to an example integrand that mimics the characteristics
of the integrands arising from some parametrised PDE problems (see, e.g., [60] and
Section 2.2).
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4.1 Constructing the active set

Letting w(u) be a measure of the “significance” of the subset u, we assume that the
mathematical analysis yields the definition of an active set of the general form

Uε := {u ⊂ N : w(u) > T}, (4.4)

where T is a “threshold” parameter that depends on the overall error demand ε >
0 and possibly on all of w(u). For example, w(u) can be related to the weight
parameters from a weighted function space setting (as in [33, 76, 89, 90], see also
Section 2.3.2), or it can be related to the bounds on the norm of fu (as in the setting
of [58] outlined in Section 2.5).

We assume w(∅) > T so that we always have ∅ ∈ Uε. Furthermore, we assume
specifically for u 6= ∅ that w(u) takes the product and order dependent (POD) form:

w(u) := Ω|u|
∏
j∈u

ωj, (4.5)

where ω1 ≥ ω2 ≥ · · · is a non-increasing sequence of nonnegative real numbers
controlling the “product aspect", and Ω1,Ω2, . . . is a second sequence of nonnegative
real numbers controlling the “order dependent aspect", cf. (2.8). The only restriction
on Ω` is that its growth is controlled by ω`, i.e., Ω`+1ω`+1 ≤ Ω` for all ` ∈ N. This
avoids pathological examples that may fool our stopping criteria.

With the active set defined by (4.4) and (4.5), we make a couple of obvious
remarks:

1. If v ∈ Uε then u ∈ Uε for all sets u satisfying w(u) ≥ w(v).
2. If u /∈ Uε then v /∈ Uε for all sets v satisfying w(u) ≥ w(v).

We identify any finite non-empty set u ⊂ N with a vector containing the elements
of u in increasing order, i.e., if |u| = ` then

u := (u1, u2, . . . , u`), u1 < u2 < · · · < u`.

Then, due to our assumed POD structure in (4.5), we note that

3. w(u) ≥ w(v) if |u| = |v| and ui ≤ vi for all i = 1, . . . , `.
4. w({1, . . . , `}) ≥ w({1, . . . , `+ 1}) for all ` ∈ N.
5. For any u ∈ Uε, a subset of u need not be included in Uε.

Note that if the opposite of Item 5 were true, i.e., every subset of u ∈ Uε also belongs
to Uε, then the set Uε is said to be “downward closed” in some papers; we do not
impose this condition.
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Combining the above, we deduce the following simple lemma.

Lemma 4.1. Assume that the active set Uε is defined by (4.4) and (4.5).

• Superposition dimension: Let σ(Uε) be the largest possible value of ` for which
(1, 2, . . . , `) ∈ Uε, i.e., w({1, 2, . . . , `}) > T . Then for all u ∈ Uε we have
|u| ≤ σ(Uε).
• Truncation dimension for sets of order `: For any ` = 1, . . . , σ(Uε), let τ`(Uε)

be the largest possible value of j ≥ ` for which (1, 2, . . . , ` − 1, j) ∈ Uε, that
is, w({1, 2, . . . , ` − 1, j}) > T . Then for all u ∈ Uε with |u| = `, we have
u` ≤ τ`(Uε); and consequently, i ≤ ui ≤ τ`(Uε)− `+ i for all 1 ≤ i ≤ `.
• Truncation dimension: Let τ(Uε) be the largest possible value of j for which
j ∈ u ∈ Uε, i.e., τ(Uε) = maxu∈Uε maxj∈u j. Then τ(Uε) = max1≤`≤σ(Uε) τ`(Uε).

Proof. For the first point, suppose on the contrary that u = (u1, . . . , uσ(Uε)+1) ∈ Uε.
Then letting v := (1, . . . , σ(Uε) + 1) we have w(v) ≥ w(u) > T , which indicates that
v ∈ Uε, contradicting the definition of σ(Uε).

To demonstrate the second point, suppose on the contrary that u = (u1, . . . , u`) ∈
Uε with u` > τ`(Uε). Then we have v = (1, . . . , ` − 1, u`) with w(v) ≥ w(u) > T ,
which indicates that v ∈ Uε, but this contradicts the definition of τ`(Uε). The bound
on ui then follows easily.

The third point is straightforward.

We construct the active set as outlined in Pseudocode 4.1. The algorithm adds
the qualifying sets to the collection in the order of increasing cardinality. For each
` ≥ 1, starting from the set (1, 2, . . . , `), the algorithm incrementally generates and
checks sets to be added to the collection. The algorithm terminates when it reaches
a value of ` for which (1, 2, . . . , `) /∈ Uε, i.e., w({1, 2, . . . , `}) ≤ T .

The assumptions on the structure of w(u) and properties 1.–5. above ensure that
this stopping criteria is valid, and hence that Pseudocode 4.1 does indeed construct
the active set (4.4). In particular, property 3. implies w(u) ≤ w({1, 2, . . . , `}) for
all sets with |u| = `, and then property 4. implies w(u) ≤ w({1, 2, . . . , `}) for all
sets with |u| ≥ `. Thus, if {1, 2, . . . , `} /∈ Uε then no set with cardinality ` or higher
is in Uε.

We recommend storing the active set Uε as an array of hash tables, with one
table for each cardinality, since in the next section we will have to iterate over all
subsets v ⊆ u ∈ Uε and be able to update a table stored with each such v.

Remark 4.2. In the case where w(u) is of product form, i.e., Ω` = 1 for all ` ≥ 0,
an alternative method for constructing active sets that are “optimal” will be detailed
in Chapter 5.
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Pseudocode 4.1 Constructing the active set
1: Add ∅ to Uε
2: for ` from 1 to `threshold do . `threshold is a computational threshold
3: u← (1, 2, . . . , `)

4: i← ` . i is the index for the next increment
5: while i > 0 do

6: if w(u) > T then

7: i← ` . continue updating u at last index
8: Add u to Uε . add u to the active set
9: else

10: i← i− 1 . increment from lower index
11: end if

12: if i = 0 then break while loop . move to next cardinality
13: for j from i to ` do . increment u from ui

14: uj ← ui + j − i+ 1

15: end for

16: end while

17: break the outer loop if no sets of size ` found . terminate
18: end for

4.2 Formulating the MDM algorithm

In this section we outline how to formulate the MDM algorithm (4.3) in a way that is
specific to the quadrature rules used, so that the implementation can be as efficient
as possible. We do this by exploiting the structure in the anchored decomposition
(4.2), and also in the quadrature rules, which will be Smolyak’s methods (also known
as sparse grid methods) and Quasi-Monte Carlo rules.

Recall from (4.3) that the MDM algorithm using the anchored decomposition is
given by

Aε(f) =
∑
u∈Uε

∑
v⊆u

(−1)|u|−|v|Au(f(·v; 0)) .

Clearly there will be subsets v that will occur many times over, so implementing the
MDM in this way could be severely inefficient, because it would evaluate the same
functions f(·v; 0) at the same quadrature points over and over again. The goal of
this section is to detail how to implement the quadrature approximations in such a
way that each function f(·v; 0) is evaluated at each quadrature point once only.
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The first step is to introduce the extended active set :

U ext
ε := {v ⊂ N : v ⊆ u for u ∈ Uε} ,

that is, it includes all subsets of the sets in the active set. Then we can swap the
sums above to give

Aε(f) =
∑

v∈Uext
ε

∑
u∈Uε
u⊇v

(−1)|u|−|v|Au(f(·v; 0))

= c∅ f(0) +
∑

∅6=v∈Uext
ε

∑
u∈Uε
u⊇v

(−1)|u|−|v|Au(f(·v; 0)) , (4.6)

where we separated out the v = ∅ terms, with

c∅ :=
∑
u∈Uε

(−1)|u|.

After constructing the active set Uε, we go through it again to construct the extended
active set U ext

ε , and at the same time store information regarding the superset struc-
ture of each element in U ext

ε . We would like to store just enough details so that for
each v ∈ U ext

ε we can compute the approximation
∑

u∈Uε : u⊇v(−1)|u|−|v|Au(f(·v; 0))

without the need to access the supersets of v. Specific details on how this is done
will depend on the quadrature rule used.

4.2.1 Quadrature rules based on Smolyak’s method

For a nonempty set u ⊂ N and integerm ≥ 1, from (2.17) Smolyak’s method applied
to a function gu of the variables yu takes the form

Qu,m(gu) :=
∑
iu∈N|u|

|iu|≤|u|+m−1

⊗
j∈u

(Uij − Uij−1)(gu), (4.7)

where recall that |iu| :=
∑

j∈u ij,m ≥ 1, and {Ui}i≥1 is a sequence of one-dimensional
quadrature rules, not necessarily nested, with U0 := 0 denoting the zero algorithm.
Furthermore, we now assume that constant functions are integrated exactly, so that
Ui(1) = 1 for i ≥ 1—because ρ is a probability density.
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For a nonempty subset v ⊆ u, suppose now that the function gv depends only
on the variables yv. Then we have

Qu,m(gv) =
∑
iu∈N|u|

|iu|≤|u|+m−1

(⊗
j∈v

(Uij − Uij−1)(gv)

)(⊗
j∈u\v

(Uij − Uij−1)(1)

)

=
∑
iu∈N|u|

|iu|≤|u|+m−1, iu\v=1

⊗
j∈v

(Uij − Uij−1)(gv) =
∑
iv∈N|v|

|iv|≤|v|+m−1

⊗
j∈v

(Uij − Uij−1)(gv)

= Qv,m(gv). (4.8)

In the second equality above we used the assumption that the one-dimensional
quadrature rules integrate the constant functions exactly and thus (Uij − Uij−1)(1)

is 1 if ij = 1 and is 0 otherwise. The above derivation (4.8) indicates how a Smolyak
quadrature rule is projected down when it is applied to a lower dimensional function.
This property is important in our efficient evaluation of (4.6).

In (4.6) we take
Au ≡ Qu,mu ,

where the level mu has a direct relation to the number of quadrature points nu,
depending on the choice of the one-dimensional quadrature rules {Ui}.

We define

mmax := max{mu : ∅ 6= u ∈ Uε}.

Since the value of mu is roughly the logarithm of nu and |u| ≤ σ(Uε) (recall that
σ(Uε) is the superposition dimension of the active set as defined in Lemma 4.1), we
expect mmax to be relatively small, e.g., mmax ≈ 25.

Using (4.8) we can rewrite (4.6) as follows (note the change from Qu,mu to Qv,mu):

AS
ε(f) = c∅ f(0) +

∑
∅6=v∈Uext

ε

∑
u∈Uε
u⊇v

(−1)|u|−|v|Qu,mu(f(·v; 0))

= c∅ f(0) +
∑

∅6=v∈Uext
ε

∑
u∈Uε
u⊇v

(−1)|u|−|v|Qv,mu(f(·v; 0))

= c∅ f(0) +
∑

∅6=v∈Uext
ε

mmax∑
m=1

c(v,m)6=0

c(v,m)Qv,m(f(·v; 0)) , (4.9)
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where for v 6= ∅ and m = 1, . . . ,mmax we define

c(v,m) :=
∑

u∈Uε, u⊇v
mu=m

(−1)|u|−|v| . (4.10)

The values of c(v,m) can be computed and stored while we construct the ex-
tended active set U ext

ε as follows. We work through the sets in the active set in order
of increasing cardinality. For each nonempty set u ∈ Uε, we calculate the required
level mu then generate all nonempty subsets v ⊆ u, adding the missing subsets to
U ext
ε and updatingc(v,m) as we go. This procedure is given in Pseudocode 4.2A.
This formulation (4.9)–(4.10) allows us to compute theQv,m(f(·v; 0)) for different

supersets u with the same value of mu only once. If the Smolyak MDM algorithm
is implemented in this way then there is no need to access the superset structure.
Obviously, if c(v,m) = 0 then we do not perform the quadrature approximation.

Note that in practice calculating the number of Smolyak levelsmu (or the number
of QMC points in the next subsection) normally requires knowledge of the entire
active set Uε, see (2.39) in Section 2.5.5, hence we compute them when constructing
U ext
ε .
Note also that we do not need a separate data structure for U ext

ε : we can simply
extend Uε to U ext

ε since Step 9 in Pseudocode 4.2A only adds subsets with lower
cardinalities and would not interfere with Step 3 since we iterate in increasing car-
dinality. As we explained in the previous section, we store the active set Uε, and by
extension the extended active set U ext

ε , as an array of hash tables to easily retrieve
the c(v, ·) table for each v.

A direct implementation of the MDM algorithm with Smolyak quadratures is
given in Pseudocode 4.3A. The different formulas (4.17)–(4.18) or (4.19)–(4.20) for
implementing the Smolyak quadrature, which depend on whether we have a non-
nested or nested rule, will be discussed in Section 4.3.
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Pseudocode 4.2A Constructing the extended active set for Smolyak
1: Initialise U ext

ε ← Uε . start from the active set
2: Initialise c∅ ← 1 . for u = ∅
3: for ∅ 6= u ∈ Uε with |u| from 1 to σ(Uε) do . traverse in increasing cardinality
4: Calculate mu . formula for mu is given from theory
5: Update c∅ ← c∅ + (−1)|u|

6: Initialise c(u,m)← 0 for m from 1 to mmax

7: for ∅ 6= v ⊆ u do . generate nonempty subsets
8: if v 6∈ U ext

ε then . look up and add missing subset
9: Add v to U ext

ε

10: Initialise c(v,m)← 0 for m from 1 to mmax

11: end if

12: Update c(v,mu)← c(v,mu) + (−1)|u|−|v| . update relevant entry
13: end for

14: end for

Pseudocode 4.3A Smolyak MDM
1: Initialise AS

ε(f)← c∅ × f(0)

2: for ∅ 6= v ∈ U ext
ε do

3: for m from 1 to mmax do

4: if c(v,m) 6= 0 then

5: Calculate Qv,m(f(·v; 0)) using (4.17)–(4.18) or (4.19)–(4.20)
6: Update AS

ε(f)← AS
ε(f) + c(v,m)×Qv,m(f(·v; 0))

7: end if

8: end for

9: end for

10: return AS
ε(f)

4.2.2 Quadrature rules based on Quasi-Monte Carlo methods

In this section we assume for simplicity that Y = [0, 1] and ρ ≡ 1. Recall from
Section 2.3 that an s-dimensional Quasi-Monte Carlo (QMC) rule with n points
t(i) = (t

(i)
1 , t

(i)
2 , . . . , t

(i)
s ), i = 0, . . . , n − 1, approximates the integral of a function g

by the equal-weight average

∫
[0,1]s

g(y) dy ≈ 1

n

n−1∑
i=0

g(t(i)). (4.11)
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In (4.1) each Au could be a different |u|-dimensional QMC rule with nu points, but
in that case we would not be able to reuse any function evaluation.

Instead, we consider here an “extensible Quasi-Monte Carlo sequence”. By “ex-
tensible” we mean that we can take just the initial dimensions of the initial points
in the sequence. By “Quasi-Monte Carlo” we mean that a quadrature rule based on
the first n points of this sequence has equal quadrature weights 1/n. We choose to
use a QMC rule with σ(Uε) dimensions instead of τ(Uε), since τ(Uε) can be really
large (e.g., 30000) while σ(Uε) is rather small (e.g., 15), and QMC rules with fewer
dimensions are of better quality.

Now we consider how to evaluate the terms in (4.6) where each Au is a QMC
approximation (4.11); since QMC rules are designed to favour earlier dimensions
they are not invariant under permutations of dimensions like Smolyak rules. Hence,
applying the QMC rule Au to a function of the variables yv only (with v ⊂ u) is
more complicated because an equation like (4.8) does not hold in general for QMC
rules. For any nonempty set u ∈ Uε and nonempty subset v ⊆ u we have

Au(f(·v; 0)) =
1

nu

nu−1∑
i=0

f
(
t

(i)
u|v→v; 0

)
, (4.12)

where, loosely speaking, tu|v→v indicates that we map a point t to the variables yu

and then to yv, which is not the same as mapping t directly to yv. More explicitly,
recalling that u = (u1, u2, . . . , u|u|) with ordered elements, the subscript u|v → v

represents two steps. First, u|v denotes that we take the first |u|-dimensions of the
point t and apply them to the variables in yu, retaining only those components in v.
Second, w → v denotes that we map the component indexed by wi to the variable
yvi for i = 1, 2, . . . , |v|. Thus, for j ∈ v, the jth component of the mapped point
tu|v→u is given explicitly by

(tu|v→v)j = ti with ui = j ∈ v ,

where the notation (t)j denotes the jth entry of t. The function f is then evaluated
by anchoring all components outside of v to zero; for j ∈ N the jth component of
the mapped-then-anchored point is (tu|u→v)j = ti if ui = j ∈ v, and 0 otherwise.

As an example of the how the mapping works, take u = (1, 5, 7) and v = (1, 7).
We get u|v = (1, 3) since the set v originates from the position w = (1, 3) of its
superset u. We assign the quadrature point (t

(i)
1 , t

(i)
2 , t

(i)
3 ) to the variables (y1, y5, y7).

Then the point (t
(i)
1 , t

(i)
3 ) is assigned to the variables (y1, y7), and hence we evaluate

f(t
(i)
1 , 0, 0, 0, 0, 0, t

(i)
3 , 0, . . .).
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Substituting in (4.12) the algorithm (4.6) in this case is given by

AQ
ε (f) = c∅ f(0) +

∑
∅6=v∈Uext

ε

∑
u∈Uε
u⊇v

(−1)|u|−|v|

(
1

nu

nu−1∑
i=0

f
(
t

(i)
u|v→v; 0

))
. (4.13)

Note that the same set v = (1, 7) can originate from the position w = (1, 3) of
different supersets u: for example, u = (1, 6, 7), u = (1, 4, 7, 13), and many others.
We can make use of this repetition to save on computational cost.

Let M(v) denote the set of all different positions that a nonempty set v can
originate from for all its supersets in the active set:

M(v) := {w ⊆ {1, . . . , σ(Uε)} : w ≡ u|v for some u ∈ Uε with u ⊇ v} .

For simplicity and for convenience, we assume further that nu = 2mu , with 0 ≤ mu ≤
mmax (e.g., with mmax ≈ 25). This allows us to rewrite each QMC approximation
as a sum of blocks of points (recall that the QMC points are extensible)

1

2mu

2mu−1∑
i=0

f
(
t

(i)
u|v→v; 0

)
=

1

2mu

mu∑
m=0

2m−1∑
i=b2m−1c

f
(
t

(i)
u|v→v; 0

)
,

where the floor function is used to specifically take care of the m = 0 case. Substi-
tuting this into (4.13) and introducing a sum overM(v), we have

AQ
ε (f) = c∅ f(0) +

∑
∅6=v∈Uext

ε

∑
w∈M(v)

∑
u∈Uε
u⊇v

u|v≡w

(−1)|u|−|v|
1

2mu

mu∑
m=0

2m−1∑
i=b2m−1c

f
(
t

(i)
w→v; 0

)
,

where in the third sum we have added the restriction that u|v is equivalent to the
position w. Collecting the sums

Sv,w,m(f) :=
2m−1∑

i=b2m−1c

f
(
t

(i)
w→v; 0

)
, (4.14)

we can then rewrite the QMC MDM (4.13) as

AQ
ε (f) = c∅ f(0) +

∑
∅6=v∈Uext

ε

∑
w∈M(v)

mmax∑
m=0

c(v,w,m) 6=0

c(v,w,m)
Sv,w,m(f)

2mmax
, (4.15)
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where for a nonempty set v, a position w ∈M(v), and m = 0, . . . ,mmax we define

c(v,w,m) :=
∑

u∈U , u⊇v
u|v≡w,mu≥m

(−1)|u|−|v| 2mmax−mu . (4.16)

Note that we have chosen to multiply and divide by 2mmax to ensure that each
c(v,w,m) is integer valued.

We can compute and store a list of positions M(v) and the values c(v,w,m)

when we construct U ext
ε by extending the active set Uε, in a similar way to the

Smolyak case in the previous subsection. This is presented in Pseudocode 4.2B. The
new algorithm is more complicated due to the need to store the positionsM(v).

The MDM implementation using the formulation (4.14)–(4.16) does not require
access to any subsets or supersets. For each nonempty v ⊆ U ext

ε , each position
w ∈ M(v) and for the different m, with c(v,w,m) 6= 0, the sums Sv,w,m(f) are
over disjoint sets of QMC points. In this way we will only evaluate each function
f(·w→v; 0) at each quadrature point once. An implementation of the MDM algorithm
with QMC quadratures is given in Pseudocode 4.3B.
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Pseudocode 4.2B Constructing the extended active set for QMC
1: Initialise U ext

ε ← Uε . start from the active set
2: Initialise c∅ ← 1 . for u = ∅
3: for ∅ 6= u ∈ Uε with |u| from 1 to σ(Uε) do . traverse in increasing cardinality
4: Calculate mu . formula for mu is given from theory
5: Update c∅ ← c∅ + (−1)|u|

6: InitialiseM(u)← ∅
7: for ∅ 6= v ⊆ u do . generate nonempty subsets
8: if v 6∈ U ext

ε then . look up and add missing subset
9: Add v to U ext

ε

10: InitialiseM(v)← ∅
11: end if

12: Set w← u|v . identify the position where v originates from u

13: if w 6∈ M(v) then . look up and add missing position
14: Add w toM(v)

15: Initialise c(v,w,m)← 0 for m from 1 to mmax

16: end if

17: for m from 0 to mu do . update relevant entries
18: Update c(v,w,m)← c(v,w,m) + (−1)|u|−|v| × 2mmax−mu

19: end for

20: end for

21: end for

Pseudocode 4.3B QMC MDM
1: Initialise AQ

ε (f)← c∅ × f(0)

2: for ∅ 6= v ∈ U ext
ε do

3: for w ∈M(v) do

4: for m from 0 to mmax do

5: if c(v,w,m) 6= 0 then

6: Calculate Sv,w,m(f) using (4.14)
7: Update AQ

ε (f)← AQ
ε (f) + c(v,w,m)× Sv,w,m(f)/2mmax

8: end if

9: end for

10: end for

11: end for

12: return AQ
ε (f)
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4.3 Two implementations of Smolyak MDM

Here we compare two approaches to implement Smolyak quadrature in the context
of MDM: the direct implementation and the combination technique.

4.3.1 Direct Smolyak implementation

From a practical point of view, it is more useful to write Smolyak’s method as
an explicit weighted quadrature rule as opposed to the tensor product form (4.7),
see, e.g., [27]. We summarise this formulation below and provide the derivation in
Appendix 4.A for completeness.

For each one-dimensional rule Ui, let ni denote the number of quadrature points,
(wi,k)

ni−1
k=0 the quadrature weights, and (ti,k)

ni−1
k=0 the quadrature nodes. Here for

simplicity of notation we present the formula for an s-dimensional rule, with s ≥ 1,
which would need to be mapped to the set v appropriately. The formula depends on
whether the quadrature rules are nested, i.e., whether Ui includes all the quadrature
points from Ui−1.

Non-nested case: For non-nested one-dimensional rules, Smolyak’s method can be
written explicitly as

Qs,m(g) =
∑
i∈Ns

s≤|i|≤s+m−1

n(i1)
−1∑

k1=0

· · ·
n(is)−1∑
ks=0

wi,k g(ti,k) , (4.17)

where the quadrature point ti,k ∈ Ys has coordinates (ti,k)j = tij ,kj for j = 1, 2, . . . , s

and

wi,k =
∑

p∈{0,1}s
s≤|i+p|≤s+m−1

s∏
j=1

(
(−1)pj wij ,kj

)
. (4.18)

Nested case: When {Ui} are nested, we assume that the quadrature points and
weights are ordered such that at level i the new points occur at the end of the
point set, from index ni−1 onwards. That is, for all i ∈ N we have ti,k = ti+1,k for
k = 0, 1, . . . ni− 1. Then, to ensure that the function is only evaluated at each node
once, (4.7) can be rewritten as

Qs,m(g) =
∑
i∈Ns

s≤|i|≤s+m−1

n(i1)
−1∑

k1=n(i1−1)

· · ·
n(is)−1∑

ks=n(is−1)

wi,k g(ti,k) , (4.19)
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with weights

wi,k =
∑

q∈Ns, q≥i
s≤|q|≤s+m−1

s∏
j=1

(
wqj ,kj − wqj−1,kj

)
, (4.20)

where we set w0,k ≡ 0 for all k ≥ 0 and wq,k ≡ 0 when k ≥ nq. In particular, when
qj = ij in (4.20) the weight that is subtracted is 0, that is, wqj−1,kj = wij−1,kj = 0,
since in (4.19) kj ≥ nij−1.

4.3.2 Smolyak quadrature via the combination technique

The combination technique (it combines different straightforward tensor product
rules, hence the name) provides an alternative formulation to (4.7) as follows (for a
derivation see Appendix 4.B or, e.g., [39, 91])

Qs,m(g) =
∑
i∈Ns

max(m,s)≤|i|≤s+m−1

(−1)s+m−1−|i|
(
s− 1

|i| −m

)( s⊗
j=1

Uij

)
(g)

=
m∑

r=max(m−s+1,1)

(−1)m−r
(

s− 1

s+ r − 1−m

) ∑
i∈Ns

|i|=s+r−1

( s⊗
j=1

Uij

)
(g)

=
m∑

r=max(m−s+1,1)

(−1)m−r
(
s− 1

m− r

) ∑
i∈Ns

|i|=s+r−1

( s⊗
j=1

Uij

)
(g) , (4.21)

where we have simplified using the symmetry of the binomial coefficient:
(
n
k

)
=(

n
n−k

)
. We adopt the usual convention that

(
0
0

)
:= 1.

Using (4.21), we can now rewrite the MDM algorithm from the second equality
in (4.9) as

AC
ε (f) = c∅ f(0) +

∑
∅6=v∈Uext

ε

∑
u∈Uε
u⊇v

(−1)|u|−|v|

×
mu∑

m=max(mu−|v|+1,1)

(−1)mu−m
(
|v| − 1

mu −m

) ∑
iv∈N|v|

|iv|=|v|+m−1

(⊗
j∈v

Uij

)
(f(·v; 0))

= c∅ f(0) +
∑

∅6=v∈Uext
ε

mmax∑
m=1

c̃(v,m)6=0

c̃(v,m) Q̃v,m(f(·v; 0)) , (4.22)
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where for a nonempty set v and m = 1, . . . ,mmax we define

Q̃v,m(gv) :=
∑
iv∈N|v|

|iv|=|v|+m−1

(⊗
j∈v

Uij

)
(gv) , (4.23)

and

c̃(v,m) :=
∑

u∈Uε, u⊇v
mu−|v|+1≤m≤mu

(−1)|u|−|v|+mu−m
(
|v| − 1

mu −m

)
. (4.24)

The formulation (4.22)–(4.24) is very similar to the formulation (4.9)–(4.10),
and the computation of the values c̃(v,m) can also be done while constructing the
extended active set. This is shown in Pseudocode 4.2A′, which works in a similar
way to Pseudocode 4.2A. The key change is that Step 12 of Pseudocode 4.2A is
replaced by Steps 12–14 of Pseudocode 4.2A′.

Pseudocode 4.2A′ Constructing the extended active set for Smolyak with com-
bination technique
1: Initialise U ext

ε ← Uε . start from the active set
2: Initialise c∅ ← 1 . for u = ∅
3: for ∅ 6= u ∈ Uε with |u| from 1 to σ(Uε) do . traverse in increasing cardinality
4: Calculate mu . formula for mu is given from theory
5: Update c∅ ← c∅ + (−1)|u|

6: Initialise c̃(u,m)← 0 for m from 1 to mmax

7: for ∅ 6= v ⊆ u do . generate nonempty subsets
8: if v 6∈ U ext

ε then . look up and add missing subset
9: Add v to U ext

ε

10: Initialise c̃(v,m)← 0 for m from 1 to mmax

11: end if

12: for m from mu − |v|+ 1 to mu do . update relevant entries
13: Update c̃(v,m)← c̃(v,m) + (−1)|u|−|v|+mu−m

( |v|−1
mu−m

)
14: end for

15: end for

16: end for
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The quantity Q̃v,m(gv) is a straightforward tensor product quadrature rule

Q̃s,m(g) :=
∑
i∈Ns

|i|=s+m−1

n(i1)
−1∑

k1=0

· · ·
n(is)−1∑
ks=0

wi,k g(ti,k) , (4.25)

with wi,k =
∏s

j=1wij ,kj and (ti,k)j = tij ,kj for j = 1, . . . , s. So the implementation of
the Smolyak MDM algorithm using the combination technique can be obtained anal-
ogously by modifying Pseudocode 4.3A, shown in Pseudocode 4.3A′. The essential
changes are in Steps 5 and 6.

Pseudocode 4.3A′ Smolyak MDM with combination technique
1: Initialise AC

ε (f)← c∅ × f(0)

2: for ∅ 6= v ∈ U ext
ε do

3: for m from 1 to mmax do

4: if c̃(v,m) 6= 0 then

5: Calculate Q̃v,m(f(·v; 0)) using (4.25)
6: Update AC

ε (f)← AC
ε (f) + c̃(v,m)× Q̃v,m(f(·v; 0))

7: end if

8: end for

9: end for

10: return AC
ε (f)

4.3.3 Direct Smolyak vs. combination technique

Here we compare the computational cost between the direct Smolyak implementa-
tion AS

ε given by (4.9)–(4.10) and the combination technique implementation AC
ε

given by (4.22)–(4.24). Throughout, we will use the notation cost(·) to denote the
whole cost, #(·) to denote the number of function evaluations, and $(|v|) to denote
the cost of evaluating the original integrand f at some anchored point (yv; 0).

The cost of the direct Smolyak implementation is

cost(AS
ε) =

∑
∅6=v∈Uext

ε

mmax∑
m=1

c(v,m) 6=0

cost
(
Qv,m(f(·v; 0))

)
.

Similarly for the combination technique the cost is

cost(AC
ε ) =

∑
∅6=v∈Uext

ε

mmax∑
m=1

c̃(v,m)6=0

cost
(
Q̃v,m(f(·v; 0))

)
.
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We expect that c̃(v,m) will be nonzero more often than c(v,m) would be nonzero,
so that the combination technique approach needs to compute more quadrature
approximations. We need to account for both the cost to construct the quadrature
weights and the cost of function evaluations.

In terms of the number of function evaluations, we have for the direct Smolyak
implementation

#(Qs,m) =


∑

|i|≤s+m−1

s∏
j=1

nij if non-nested,

∑
|i|≤s+m−1

s∏
j=1

(nij − nij−1) if nested.
(4.26)

For the combination technique, we have

#(Q̃s,m) =
∑

|i|=s+m−1

s∏
j=1

nij

=
∑

|i|=s+m−1

s∏
j=1

(
ij∑

pj=1

npj − npj−1

)

=
∑

|i|=s+m−1

∑
p∈Ns,p≤i

s∏
j=1

(npj − npj−1)

=
∑

|p|≤s+m−1

(
2s+m− |p| − 2

s− 1

) s∏
j=1

(npj − npj−1).

So #(Qnested
s,m ) ≤ #(Q̃s,m) ≤ #(Qnon-nested

s,m ).
For the direct Smolyak implementation we note that (4.17) (or (4.19) in the

nested case) using the weights (4.18) (respectively (4.20)) is simply a grouping of all
of the quadrature points, but the total collection of one-dimensional weights that
need to be evaluated is the same as in (4.7); so the cost of computing the weights
is
∑
|i|≤s+m−1 s

∏s
j=1(nij + nij−1). On the other hand, the cost of computing the

weights in (4.23) is clearly
∑
|i|=|v|+m−1 |v|

∏
j∈v nij .

Thus for the direct Smolyak implementation we have

cost(Qv,m) =



∑
|i|≤|v|+m−1

(
|v|
∏
j∈v

(nij + nij−1) + $(|v|)
∏
j∈v

nij

)
if non-nested,

∑
|i|≤|v|+m−1

(
|v|
∏
j∈v

(nij + nij−1) + $(|v|)
∏
j∈v

(nij − nij−1)

)
if nested,
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and for the combination technique

cost(Q̃v,m) =
∑

|i|=|v|+m−1

(
|v|
∏
j∈v

nij + $(|v|)
∏
j∈v

nij

)
.

To summarise, the combination technique implementation is likely to require
more quadrature approximations than the direct method (more nonzero c̃(v,m)

than c(v,m)), and it uses more function evaluations than the direct method in the
nested case, but the cost of computing the weights is cheaper. It is not immediately
clear which method would be the overall winner.

4.4 MDM with randomised QMC

A randomly shifted version of the QMC approximation (4.11), see Section 2.3, takes
the form

1

n

n−1∑
i=0

g
({
t(i) + ∆

})
,

where ∆ ∈ [0, 1)s is the random shift with independent and uniformly distributed
components ∆j ∈ [0, 1) for j = 1, . . . , s, and the braces indicate that we take the
fractional part of each component. Recall that a randomly shifted QMC method
provides an unbiased estimate of the integral, and moreover, one can obtain a prac-
tical error estimate by using a number of independent random shifts.

In this section we outline how to implement randomised QMC (RQMC) versions
of the QMC MDM from Section 4.2.2 by random shifting. One approach that
comes to mind is to use a completely different set of independent shifts for each
Au(f(·v; 0)) in (4.12). But with this approach none of the function evaluations can
be reused. Another approach would be to use the same set of independent shifts
for those Au(f(·v; 0)) with the same cardinality |u|, in a similar way to how the
QMC method is applied to the MDM. But this approach also conflicts with our
strategy to reuse function values based on the position where a subset v originates
from u. Furthermore, it is unclear in this case how to obtain a valid error estimate
of the overall MDM algorithm because of the dependence between many shifts. So,
instead of these two approaches, we will describe a third approach which allows for
a valid error estimate and the complete reuse of function values as in the case of the
non-randomised QMC MDM.

Our approach is to randomise the MDM algorithm itself, treating the integrand
as a function of τ(Uε) variables, where we recall from Lemma 4.1 that τ(Uε) is the
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truncation dimension, i.e., the largest index of the variables that appear in the active
set. We need R independent random shifts ∆(1), . . . ,∆(R) ∈ [0, 1)τ(Uε), and we take

AR
ε (f) =

1

R

R∑
r=1

Aε,r(f) , (4.27)

where each Aε,r(f) is a shifted QMC MDM algorithm analogous to (4.14)–(4.16),

Aε,r(f) := c∅ f(0) +
∑

∅6=v∈Uext
ε

∑
w∈M(v)

mmax∑
m=0

c(v,w,m)6=0

c(v,w,m)
S̃

(r)
v,w,m(f)

2mmax
, (4.28)

but now with function values shifted by ∆(r) in

S̃
(r)
v,w,m(f) :=

2m−1∑
i=b2m−1c

f
({
t

(i)
w→v + ∆

(r)
v

}
; 0
)
. (4.29)

Since Aε,1(f), . . . ,Aε,R(f) are independent random variables each with the same
mean

∑
u∈Uε Iu(fu), their average AR

ε (f) also has the same mean. Moreover, the
variance of AR

ε (f) is 1/R times the variance of each Aε,r(f). The quadrature com-
ponent of the root-mean-square error is given by

√
E∆ |

∑
u∈Uε Iu(fu)−AR

ε (f)|2 and
can be estimated from these R sample values by√√√√ 1

R(R− 1)

R∑
r=1

(AR
ε (f)−Aε,r(f))2 =

√√√√ 1

R(R− 1)

(
R∑
r=1

(Aε,r(f))2 −R (AR
ε (f))2

)
.

The computation of M(v), c(v,w,m) and U ext
ε is exactly the same as in Pseu-

docode 4.2B. We only need to replace Pseudocode 4.3B for running the QMC MDM
by Pseudocode 4.3B′, where we include also the error estimation.

Note that due to linearity in (4.27)–(4.28), we can also interpret AR
ε (f) as one

MDM algorithm where each of the quadrature approximations Au is obtained by
the average of R randomly shifted QMC rules. In this case we can also estimate
the root-mean-square error corresponding to each u. However, note that the shifts
between different sets u are correlated and an estimate for the total variance cannot
be obtained by simply summing up the individual variance estimates.
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Pseudocode 4.3B′ RQMC MDM
1: Initialise AR

ε (f)← 0

2: Initialise E ← 0

3: for r from 1 to R do . compute MDM for each shift
4: Generate ∆(r) independently and uniformly from [0, 1)τ∗

5: Initialise Aε,r(f)← c∅ × f(0)

6: for ∅ 6= v ∈ U ext
ε do

7: for w ∈M(v) do

8: for m from 0 to mmax do

9: if c(v,w,m) 6= 0 then

10: Calculate S̃(r)
v,w,m(f) using (4.29)

11: Update Aε,r(f)← Aε,r(f) + c(v,w,m)× S̃(r)
v,w,m(f)/2mmax

12: end if

13: end for

14: end for

15: end for

16: Update AR
ε (f)← AR

ε (f) +Aε,r(f) . sum up from different shifts
17: Update E ← E + (Aε,r(f))2 . estimate error from different shifts
18: end for

19: Compute AR
ε (f)← AR

ε (f)/R . final MDM approximation
20: Compute E ←

√
[E −R× (AR

ε (f))2]/[R(R− 1)] . final error estimate
21: return AR

ε (f) and E

4.5 Computing the threshold T

In the theoretical setting of the paper [58] outlined in Section 2.5, recall that the
threshold parameter T to construct an active set (4.4) takes the form (see (2.34))

T =

(
ε/2∑

u⊂N[w(u)]1/α

)α/(α−1)

, (4.30)

where ε > 0 is a given error tolerance parameter, while α > 1 is a free parameter
with the constraint that

∑
u⊂N[w(u)]1/α <∞.

In a practical implementation, we need to estimate the infinite sum in the denom-
inator from above, to yield an underestimate of T , so that the required theoretical
error tolerance ε is guaranteed, at the expense of enlarging the active set. Under-
standably, we should aim for a tight estimate of the infinite sum to avoid making
the active set too large and thus the algorithm too expensive. Similarly, the free
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parameter α should be chosen so as to make the threshold parameter T as large as
possible.

Here we derive upper bounds on the infinite sum by assuming further structure
in w(u), namely, that the POD form of w(u), see (4.5), is further parametrised for
` ≥ 0 and j ≥ 1 by

Ω` = c1(`!)b1 and ωj = c2j
−b2 , (4.31)

with b1 ≥ 0, b2 > 1, b2 > b1, and c1, c2 > 0. Thus

∑
u⊂N

[w(u)]1/α =
∞∑
`=0

∑
|u|=`

(
c1(`!)b1

∏
j∈u

(c2j
−b2)

)1/α

= c
1/α
1

∞∑
`=0

(`!)a c`
∑
|u|=`

∏
j∈u

j−b, (4.32)

with
a =

b1

α
, b =

b2

α
, and c = c

1/α
2 . (4.33)

We know from [58, Lemma 10] that the infinite sum in (4.32) is finite if b > 1

and b > a. In turn this means that the free parameter α > 1 in (4.30) should satisfy
α < b2.

In the next two lemmas we obtain an upper bound on the infinite sum in (4.32)
for somewhat general parameters a, b, c, without taking into account the constraints
in how they relate to each other or how they relate to α. After the two lemmas we
will discuss when and how the lemmas can be applied in our case.

Lemma 4.3. For any b > 1 and ` ≥ 1 we have

∑
|u|=`

∏
j∈u

j−b ≤ z`−1

(`− 1)!

(
1 +

z

`

)
, z :=

(2/3)b−1

b− 1
. (4.34)

Proof. By identifying u with the vector (u1, u2, . . . , u`) with ordered elements u1 <

u2 < · · · < u`, we see that

∑
|u|=`

∏
j∈u

j−b =
∞∑

u1=1

u−b1

∞∑
u2=u1+1

u−b2 · · ·
∞∑

u`−1=u`−2+1

u−b`−1

∞∑
u`=u`−1+1

u−b` . (4.35)

For any k ∈ N and p > 1 we have

∞∑
j=k+1

j−p ≤
∫ ∞
k+1/2

x−p dx =
(k + 1/2)−(p−1)

p− 1
<

k−(p−1)

p− 1
,
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which holds since the mid-point rule underestimates this integral. Therefore, the
very last sum in (4.35) is bounded by

∫ ∞
u`−1+1/2

x−b dx =
(u`−1 + 1/2)−(b−1)

b− 1
<

u
−(b−1)
`−1

b− 1
,

and in turn the last two sums in (4.35) are bounded by

1

b− 1

∫ ∞
u`−2+1/2

x−(2b−1) dx =
(u`−2 + 1/2)−2(b−1)

2(b− 1)2
<

u
−2(b−1)
`−2

2(b− 1)2
.

Similarly, the last `− 1 sums are bounded by

(u1 + 1/2)−(`−1)(b−1)

(`− 1)! (b− 1)`−1
.

The sum with respect to u1 has to be treated differently since we do not want to
integrate over [1/2,∞). For that purpose, we treat differently u1 = 1 and u1 ≥ 2,
to obtain

∑
|u|=`

∏
j∈u

j−b ≤ 1

(`− 1)! (b− 1)`−1

∞∑
u1=1

u−b1 (u1 + 1/2)−(`−1)(b−1)

<
(2/3)(`−1)(b−1)

(`− 1)!(b− 1)`−1
+

1

(`− 1)! (b− 1)`−1

∞∑
u1=2

u
−` b+(`−1)
1 .

Applying the integration estimate again to the sum over u1 ≥ 2, we get that

1

(`− 1)!(b− 1)`−1

∞∑
u1=2

u
−` b+(`−1)
1 ≤ 1

`!(b− 1)`

(
2

3

)`(b−1)

.

Combining the last two steps yields the estimate in (4.34).

Lemma 4.4. For every a ∈ (0, 1), b > 1, c > 0, s ∈ N and t ∈ (0, 1), we have

∞∑
`=0

(`!)a c`
∑
|u|=`

∏
j∈u

j−b ≤ 1 +
s∑
`=1

(`!)a c`
z`−1

(`− 1)!

(
1 +

z

`

)
+ Es,t,

with z := (2/3)b−1/(b− 1) as in (4.34), and

Es,t := c

(
1 +

z

s+ 1

)[
ts/a

1− t1/a

(
s+

1

1− t1/a

)]a
×
[

exp

((c z
t

)1/(1−a)
)

min

(
1,
(c z
t

)s/(1−a)
)

1

s!

]1−a

. (4.36)
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Proof. The result is obtained by applying Lemma 4.3 and then estimating the tail
sum from ` = s+ 1 by Es,t. Indeed, we have

∞∑
`=d+1

(`!)a c`
z`−1

(`− 1)!

(
1 +

z

`

)
≤ c

(
1 +

z

s+ 1

) ∞∑
`=s+1

`a t`−1
(c z
t

)`−1 1

[(`− 1)!]1−a

≤ c

(
1 +

z

s+ 1

) ( ∞∑
`=s+1

` t(`−1)/a

)a( ∞∑
`=s+1

1

(`− 1)!

(c z
t

)(`−1)/(1−a)
)1−a

,

where the last step follows from Hölder’s inequality with the conjugate pair 1/a and
1/(1− a).

Consider the equality

∞∑
`=s+1

` x`−1 =
d

dx

(
xs+1

1− x

)
=

xs

1− x

(
d+

1

1− x

)
,

which after substituting in x = t1/a yields the third factor in (4.36).
We also have

∞∑
`=s+1

y(`−1)/(1−a)

(`− 1)!
=

ys/(1−a)

s!

s−1∑
`=0

y`/(1−a)

`!
≤ exp(y1/(1−a)) min

(
1,
ys/(1−a)

s!

)
,

with last inequality due to Taylor’s theorem. Substituting y = c z/t yields the fourth
factor in (4.36).

The following corollary summarises the upper bound on the sum. It introduces
two new free parameters: s ∈ N and t ∈ (0, 1).

Corollary 4.5. Let w(u) have product and order dependent components satisfying
(4.31) with b2 > 0, also let α ≥ 1 and α ∈ (b1, b2). Then for every s ∈ N and every
t ∈ (0, 1) we have

∑
u⊂N

[w(u)]1/α ≤ c1/α
1

(
1 +

s∑
`=1

(`!)a c`
z`−1

(`− 1)!

(
1 +

z

`

)
+ Es,t

)
, (4.37)

where a, b, c are specified in (4.33), and z and Es,t are as defined in Lemma 4.4.

Note that when α = 1 the upper bound (4.37) on the sum is valid, even though
in this case the threshold T in (4.30) is undefined.
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Remark 4.6. If b1 = 0 so that w(u) is of product form, then a = 0 in (4.33)
and the sum can be bounded above using the same method as in [33, equation (7)],
namely, for every s ∈ N,

∑
u⊂N

[w(u)]1/α ≤ c
1/α
1 exp

(
c

(b− 1)(s+ 1
2
)b−1

) s∏
j=1

(
1 + cj−b

)
,

where b, c are as given in (4.33), see also (5.16) later. In this case the size of the
active set will be smaller than the general case because with b1 = 0 each w(u) is
smaller so the exact value of the sum

∑
u⊂N[w(u)]1/α is smaller, and moreover our

upper bound on the sum is tighter.
Note that the threshold parameter in the construction of optimal and quasi-

optimal active sets in Chapter 5 also requires a good upper bound on the sum with
α = 1.

4.6 Numerical experiments

Until now we have ignored any theoretical details of the MDM and focussed purely
on the implementation given the arbitrary input parameters ε, {ω(u)}u⊂N, T and
{mu}u∈Uε . Below we give some brief details on how to specify these parameter
values for a particular test integrand following the setting of [58], which was briefly
summarised in Section 2.5. We compare between QMC MDM and Smolyak MDM,
as well as demonstrate the speedup of our efficient implementations over the naive
implementations.

4.6.1 Test integrand

We consider the integrand f : [−1
2
, 1

2
]N → R given by

f(y) =
1

1 +
∑

j≥1 yj/j
β
, (4.38)

with different parameters β ≥ 2, which was studied in Section 2.5.3 and previously
in [58, Example 5] (for the case β = 2). Although we do not know the exact value
of the integral, we are able to calculate a good approximation as a reference value
and use this reference value to calculate the total error of our MDM algorithms.

In the theoretical setting outlined in Section 2.5, it was assumed that each de-
composition function fu belongs to a Banach space Fu with known bounds on their
norms, and in Section 2.5.3 we studied the example integrand (4.38) in the partic-
ular case of the anchored decomposition combined with the anchored norm (2.30).
Recall that in this setting

‖Iu‖ = 12−|u|/2 =: Cu
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and the norms of the decomposition functions are bounded by

‖fu‖Fu
≤
(
1− 1

2
ζ(β)

)−(|u|+1) |u|!
∏
j∈u

j−β =: Bu,

where ζ(x) =
∑∞

k=1 k
−x for x > 1 is the Riemann zeta function.

4.6.2 Active set construction

Following Section 2.5, the above description leads to an active set (4.4) with w(u) :=

CuBu, which is in POD form (4.31) with

c1 =
1

1− 1
2
ζ(β)

, c2 =
c1√
12
, b1 = 1, b2 = β ,

and where the threshold T is given by (4.30) and can be estimated using (4.37). In
our computations we fix s = 1000, t = 0.5, and maximise the threshold T for α over
100 equispaced points in (1, β).

Table 4.1 presents details on the active set for the parameter values β = 4, 3, 2.5

and ε = 10−1, 10−2, 10−3. The rows are labelled as follows: ε is the error request, T
is the computed threshold for the active set, σ(Uε) is the superposition dimension,
τ(Uε) is the maximum truncation dimension, and the last ten rows display the
number of sets of each size in the active set.

β = 4 β = 3 β = 2.5

ε 1e-1 1e-2 1e-3 1e-1 1e-2 1e-3 1e-1 1e-2
T 1.4e-4 2.8e-6 6.4e-8 4.0e-6 3.6e-8 3.8e-10 1.5e-8 4.9e-11

σ(Uε) 3 4 5 5 6 7 8 10
τ(Uε) 10 28 72 86 418 1907 2528 24724
size 1 9 26 68 76 370 1686 2019 19750

2 12 48 159 195 1285 7327 10077 126882
3 5 28 132 202 1828 13117 21996 354377
4 0 4 36 80 1234 11907 26258 559155
5 0 0 1 10 361 5578 17874 536133
6 0 0 0 0 32 1145 6513 313623
7 0 0 0 0 0 69 1088 106877
8 0 0 0 0 0 0 47 18582
9 0 0 0 0 0 0 0 1210

10 0 0 0 0 0 0 0 8
Table 4.1: Results from the active set construction for various β and ε.

We see that although there are many sets to consider in MDM, even in the
hardest case with β = 2.5 and ε = 10−2 we only ever deal with integrals up to 10

dimensions, with the highest coordinate considered being 24724.
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Below we will restrict ourselves to the case β = 3, with error request down to
ε = 10−6.

Actually, the above approach from [58] for prescribing the parameters w(u) and
T overestimates the truncation error for our test integrand and makes the active set
much larger than necessary. A tighter truncation error estimate can be done for this
test integrand using a Taylor series argument (see e.g., [58, Remark 13]) and this
should yield better input parameters w(u) and T to our efficient MDM algorithms.
Analysis on the best strategy to prescribe the active set parameters for any given
practical integrand falls outside the scope of this thesis.

4.6.3 QMC MDM

For the randomised QMC MDM we use an extensible rank-1 lattice rule with gen-
erating vector

z = (1, 756581, 694385, 178383, 437131, 945527, 62405, 1079809,

991997, 750785, 187845, 1666795, 491701, 1092667, 1279469,

817683, 1946073, 1946073, 1530387, 686611, . . .),

with n = 2m points for any m = 0, . . . , 25. It is constructed by a CBC algorithm as
outlined in [12], but the search criterion was appropriately modified to match the
norm (2.30). Also, we apply the tent-transform (see [45]) x 7→ 1− |2x− 1| to each
component of the shifted quadrature points in [0, 1], and then translate it to [−1

2
, 1

2
].

As in Section 2.5.5, we assume that the quadrature error for each decomposition
term fu is bounded above by Gu,q (nu + 1)−q ‖fu‖Fu (see (2.37)) with appropriate
constants Gu,q and q. Then according to Section 2.5.5 we choose the number of
points nu ≥ hu, with

hu =

(
2

ε

∑
v∈U

£(|v|)q/(q+1) (Gv,q Bv)
1/(q+1)

)1/q (
Gu,q Bu

£(|u|)

)1/(q+1)

, (4.39)

where £(|u|) is the cost of evaluating the decomposition term fu.
Although the above formula for hu is precisely (4.39), see also [58, Formula (28)],

how we specify the other parameters here will deviate from [58]. Based on (4.2)
we set £(|u|) = max(2|u||u|, 1). The constant Gu,q arising from the theoretical error
bound is a significant overestimate, so instead we set Gu,q = 1, which the numerical
experiments below suggest is a good choice in practice. Also, in the theoretical
setting with the norm (2.30) involving mixed first order derivatives, we expect only
up to first order convergence, leading to the choice q = 1. However, it is known from
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[45] that randomly-shifted and then tent-transformed lattice rules can achieve nearly
second order convergence if the integrand has mixed second order derivatives; thus
we take q = 2 instead, without formally switching the setting. Again the numerical
results below further motivate this choice. Finally, since we use base-2 extensible
lattice rules we set nu = 2mu with mu = max(dlog2(hu)e, 0).

In Figure 4.1 on the left we plot the error request ε against the estimated standard
error obtained using 8 random shifts, which provides an estimate of the quadrature
error only. The dashed line is the expected rate and is proportional to ε, i.e., it has
slope −1. Notice that for q = 1 the standard error decays at a much faster rate
than the error request ε, whereas for q = 2 the error request ε and the estimated
standard error agree up to a constant factor. In short, setting the parameter to be
q = 1 underestimates the convergence and forces the algorithm to do more work
than is necessary, suggesting that q = 2 is the appropriate choice. For q = 2, is
is possible to tune this constant offset factor by changing the value of Gu,q (which
should be at least as large as ‖Iu‖ = 12−|u|/2 and indeed the theoretical bound yields
Gu,q = g|u| with some g > 1), but taking Gu,q = 1 appears to give reasonable results
in practice. Similar to the case with q, if it is too big then the quadrature rules will
do too much work, while if it is too small they will underperform.
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Figure 4.1: Error request ε against estimated standard error (left) and total error
(right).

In Figure 4.1 on the right we plot the error request ε against the estimated total
error (combining both the truncation error and the quadrature error) by comparing
the results with a reference solution obtained using a higher precision QMC quadra-
ture rule. The reference solution was computed using 222 QMC points and 16 shifts
in quad precision in 600 dimensions and resulted in a standard error of 8× 10−13. A
similar computation in 800 dimensions with 220 QMC points agreed up to 10 digits.
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The two graphs in Figure 4.1 show the same trend, indicating that the truncation
error is no worse than the quadrature error.

4.6.4 Smolyak MDM

For the Smolyak MDM we will use the composite trapezoidal rule as the one-
dimensional rules, which we note are nested. As always, we set U0 := 0 to be the
zero algorithm, and then following [27, Section 3] we take the first one-dimensional
quadrature rule U1 to be the single (mid-)point rule, i.e., n1 := 1 with point t1,0 := 0

and weight w1,0 := 1. This extra level ensures that the number of points does not
grow too quickly. Then for each i ≥ 2 we take the one-dimensional quadrature rule
Ui to be the composite trapezoidal rule in [−1

2
, 1

2
] with ni := 2i−1 + 1 points at

multiples of 1/2i−1, with the weights being 1/2i−1 for the interior points and 1/2i at
the two end points ±1/2.

To ensure that we iterate the points in a nested fashion, we label the points in
the order of 0, ±1/2, ±1/4, ±1/8, ±3/8, . . . and so on. Explicitly, for i ≥ 2 we can
write

ti,k :=

k/2p − 1/2 if k is odd, and p is such that 2p−1 < k < 2p,

−ti,k−1 if k is even,

with the corresponding weights

wi,k :=

1/2i if k = 1, 2,

1/2i−1 if k = 0, 3, 4, . . . , ni − 1 .

We choose the approximation levels mu of our quadrature rules in the direct
Smolyak MDM implementation to be such that the number of function evaluations,
see (4.26) with nested points, is at least hu given by the formula (4.39), with the
same definitions of £(|u|) = max(2|u||u|, 1), Gu,q = 1 and q = 2. The justification
for taking q = 2 here is that composite trapezoidal rules are known to give second
order convergence for sufficiently smooth integrands in one dimension, and recall
from (2.18) that this convergence is transferred, modulo log-factors, to the Smolyak
rule for multivariate integrands with sufficient smoothness. We use the same values
of mu for the combination technique variant even though the actual numbers of
function evaluations are higher.

In particular, our chosen values of mu mean that the naive implementations of
Smolyak MDM and QMC MDM would use roughly the same number of function
evaluations for each fu. However, the actual number of function evaluations for our
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efficient implementations would be lower and hence achieve the savings we aim for;
see the timings in the next subsection.

In Figure 4.1 on the right we also plotted the error request ε against the estimated
total error of the direct Smolyak MDM implementation for q = 1, 2 compared with
the same reference solution as for QMC MDM. Again, the faster than expected rate
of convergence when q = 1 combined with the fact that the q = 2 case converges
at the expected rate, provides empirical evidence that for this example q = 2 is the
appropriate choice for the Smolyak implementation also.

4.6.5 Timing results

In Table 4.2 we present results on the run-time of our efficient MDM implementations
compared with the naive implementations for error request ε from 10−1 down to 10−6.
We include results for QMC MDM with a single random shift, direct Smolyak MDM,
and Smolyak MDM based on combination technique (CT-Smolyak). We report the
total error with respect to the same reference solution in each case, as well as the
run-time in seconds. The QMC results can vary between runs depending on the
random shift, but to ensure consistency between the naive and efficient RQMC
implementations the same seed was used for the pseudorandom number generator.

β = 3, reference value = 1.1011984577041

efficient MDM naive MDM
ε method total error time (s) total error time (s) speedup
1e-01 QMC 2.24e-04 0.0022 2.24e-04 0.0043 2.0

Smolyak 3.21e-05 0.0035 3.21e-05 0.0096 2.7
CT-Smolyak 3.21e-05 0.0035 3.21e-05 0.010 2.9

1e-02 QMC 1.24e-05 0.035 1.24e-05 0.088 2.5
Smolyak 9.32e-06 0.046 9.32e-06 0.17 3.6
CT-Smolyak 9.32e-06 0.049 9.32e-06 0.19 3.9

1e-03 QMC 1.47e-06 0.47 1.47e-06 1.45 3.1
Smolyak 4.94e-07 0.56 4.94e-07 2.61 4.6
CT-Smolyak 4.94e-07 0.64 4.94e-07 3.17 5.0

1e-04 QMC 7.39e-08 5.14 7.39e-08 19.99 3.9
Smolyak 1.22e-08 6.14 1.22e-08 36.69 6.0
CT-Smolyak 1.22e-08 7.44 1.22e-08 47.07 6.3

1e-05 QMC 2.77e-09 51.02 2.76e-09 244.06 4.8
Smolyak 1.55e-09 61.53 1.54e-09 463.77 7.5
CT-Smolyak 1.54e-09 79.79 1.54e-09 622.25 7.9

1e-06 QMC 7.56e-10 467.60 3.38e-10 2758.02 5.9
Smolyak 4.80e-10 570.26 5.40e-10 5244.56 9.2
CT-Smolyak 1.22e-09 762.98 5.37e-10 7342.49 9.6

Table 4.2: Timing comparisons between efficient and naive MDM implementations.
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Figure 4.2: Estimated total error against time.

All calculations were done in x86 long double precision on a single node of the
UNSW Katana cluster with an Intel Xeon X5675 3.07GHz CPU.

As ε decreases there is clearly an increasing speedup of the efficient implementa-
tions over the naive ones, for all three types of implementation. The reformulation
of the MDM algorithm into this efficient formulation is the main result of this work.

We see more speedup in the case of Smolyak MDM compared with QMC MDM.
This is as expected, because for QMC MDM there is extra work in managing the
different positions that a nonempty set can originate from as a subset of another
set in the active set: we need to cope with a more complicated data structure
for (4.16) compared with (4.10) or (4.24), and we need more function evaluations.
Additionally, we expect the QMC algorithms to be much more efficient when the
truncation dimension goes up (i.e., when ε goes down), since the sizes of the Smolyak
grids then increase much much faster than the powers of 2 of the QMC algorithms.

If we compare the direct Smolyak MDM with the combination technique Smolyak
MDM then we notice that for our efficient reformulation the two methods have very
similar running times, with a very minor advantage for the direct method, but with
the naive formulation the direct method is the clear winner. Note that we can see
the effect of rounding errors in the calculations for ε = 10−5 and 10−6, since the total
errors should remain the same between the naive and efficient implementations of
the same algorithm, while the direct Smolyak and combination technique should
also have the same total errors.
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In Figure 4.2 we plot the total error against time for the results in Table 4.2 to
demonstrate the speedup of the efficient implementations. For each pair of efficient
and naive results, we expect the data points to be at the same horizontal level (same
total error) but with bigger and bigger gaps in time (the speedup factor increases)
as the errors go down.

4.7 Conclusion

The MDM is a powerful algorithm for approximating integrals of ∞-variate func-
tions, but care must be taken to ensure the implementation is efficient. In this chap-
ter we have provided details and explicit pseudocodes explaining how to efficiently
run all components of the algorithm: from constructing the active set to running
the MDM for both randomised QMC rules and Smolyak quadrature rules. By re-
formulating the MDM we are able to save cost by reducing the amount of repeated
function evaluations incurred because of the recursive structure of the anchored de-
composition. We applied the MDM to an example integrand that possesses similar
properties to those that arise in recent PDE problems with random coefficients. The
numerical results clearly support the cost savings of the efficient reformulations.

Original research and my contribution

The work in this chapter corresponds to the paper [31], which was recently submitted
to SIAM Journal on Scientific Computing and is available on arXiv: https://

arxiv.org/pdf/1712.06782.pdf. It is joint work with Frances Kuo, Dirk Nuyens
and Grzegorz Wasilkowski.

The MDM has existed in theory for some time, see [58, 63, 75, 76, 89, 90],
however, the work in this chapter details the first implementations. Much of this
project was dedicated to implementing the MDM in two separate pieces of software,
Dirk Nuyens wrote an implementation in C++ and I wrote one in C. Furthermore,
the goal of the project was to not only implement the MDM but to exploit structure
in the algorithm to make the implementation as efficient as possible, which we
achieve by the reformulations from Sections 4.2 – 4.4. These reformulations are a
key contribution of this work and are also original.

Regarding my contributions, first of all, I wrote my own software implement-
ing all of elements the MDM detailed in this chapter. Also, together with Frances
and Dirk, I contributed to the development of the reformulations, including writing
the different Pseudocodes for constructing the extended active set and running the
MDM. The estimates in Section 4.5 were done by Grzegorz Wasilkowski. The nu-
merical results in the paper were obtained using Dirk’s code whereas the results in
the current chapter are the output from my implementation.

104



4.A Calculating the Smolyak weights

For a sequence of one-dimensional quadrature rules {Ui}i≥1, with U0 := 0, the s-
dimensional Smolyak rule with level m ≥ 1 is

Qs,m =
∑
i∈Ns

|i|≤s+m−1

( s⊗
j=1

(Uij − Uij−1)

)
. (4.40)

To avoid repeated function evaluations at the same quadrature point, we write Qs,m
as an explicit sum over the unique quadrature points, and combine the weights for
each point from different levels.

For i ≥ 1, let the ith one-dimensional rule Ui have points Pi := (ti,k)
ni−1
k=0 and

weights (wi,k)
ni−1
k=0 :

Ui(g) =

ni−1∑
k=0

wi,k g(ti,k) .

Defining the weight functions

wi(t) :=

wi,k if t = ti,k ∈ Pi ,

0 otherwise ,
(4.41)

we can write the one-dimensional difference rule as

(Ui − Ui−1) (g) =
∑

t∈(Pi∪Pi−1)

(wi(t)− wi−1(t)) g(t) ,

with P0 := ∅, and write Smolyak’s formula applied to a s-dimensional function g as

Qs,m(g) =
∑
i∈Ns

|i|≤s+m−1

∑
t∈⊗sj=1(Pij∪Pij−1)

( s∏
j=1

(wij(tj)− wij−1(tj))

)
g(t) . (4.42)

We now rewrite (4.42) to sum over all distinct points in the disjoint “difference
grids”:

Qs,m(g) =
∑
i∈Ns

|i|≤s+m−1

∑
t∈⊗sj=1(Pij \Pij−1)

Ws,m(t) g(t) , (4.43)
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where the weight function Ws,m(t) combines the weights for each distinct point t
occurring in the sum in (4.42) as follows:

Ws,m(t) =
∑
q∈Ns

|q|≤s+m−1

∑
τ∈⊗sj=1(Pqj∪Pqj−1)

τ=t

s∏
j=1

(wqj(τj)− wqj−1(τj)) . (4.44)

The above formula essentially came from (4.42) by replacing the labels (i, t) with
(q, τ ) and then imposing the condition τ = t. In the following, we derive explicit
formulas for the weights depending on whether or not the one-dimensional quadra-
ture rules are nested.

Nested case: Suppose first that the points sets Pi are nested such that

ti,k = ti−1,k for all k = 0, 1, . . . n(i−1) − 1 and i ∈ N ,

and that the weights (wi,k)
ni−1
k=0 are ordered accordingly. With this ordering,

Pi \ Pi−1 = {ti,k : k = n(i−1), n(i−1) + 1, . . . , ni − 1}

and (4.43) can be written explicitly as s nested sums

Qs,m(g) =
∑
i∈Ns

|i|≤s+m−1

n(i1)
−1∑

k1=n(i1−1)

· · ·
n(is)−1∑

ks=n(is−1)

Ws,m(ti,k) g(ti,k) ,

where k = (k1, . . . , ks) and ti,k = (ti1,k1 , . . . , tis,ks) belongs to the difference grid
⊗sj=1(Pij \ Pij−1).

To derive Ws,m(ti,k), we note in the second sum in (4.44) that Pqj ∪Pqj−1 = Pqj
since the points are nested, and we can restrict the first sum in (4.44) to q ≥ i

because no component tij ,kj can be in Pqj for qj < ij. This gives

Ws,m(ti,k) =
∑

q∈Ns, q≥i
|q|≤s+m−1

∑
τ∈⊗sj=1Pqj
τ=ti,k

s∏
j=1

(wqj(τj)− wqj−1(τj)) .

Furthermore, since the points are nested we conclude that ti,k will occur exactly
once in every grid ⊗sj=1Pqj with q ≥ i, and due to the ordering of the points it is
given by τ = tq,k = ti,k. Hence, the second sum contains only a single point tq,k
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and it follows from (4.41) that

Ws,m(ti,k) =
∑

q∈Ns, q≥i
|q|≤s+m−1

s∏
j=1

(wqj ,kj − wqj−1,kj) .

Non-nested case: When the points are not nested, (4.43) can similarly be expanded
as s nested sums

Qs,m(g) =
∑
i∈Ns

|i|≤s+m−1

n(i1)
−1∑

k1=0

· · ·
n(is)−1∑
ks=0

Ws,m(ti,k) g(ti,k) .

In this case, ti,k can occur in ⊗sj=1(Pqj ∪Pqj−1) only when q = i or when qj = ij + 1

for any index j (it only occurs in the next level when it is being subtracted), and
moreover, for any q it can occur only once in ⊗sj=1(Pqj∪Pqj−1). Thus we can simplify
the formula (4.44) to

Ws,m(ti,k) =
∑

q∈Ns, qj∈{ij ,ij+1} ∀j
|q|≤s+m−1

s∏
j=1

(wqj(tij ,kj)− wqj−1(tij ,kj)) ,

which is equivalent to

Ws,m(ti,k) =
∑

p∈{0,1}s
|i+p|≤s+m−1

s∏
j=1

(wij+pj(tij ,kj)− wij+pj−1(tij ,kj)) .

Note that in the formula above only one of wij+pj(tij ,kj) and wij+pj−1(tij ,kj) is nonzero
at a time. If pj = 0 then wij+pj(tij ,kj) = wij(tij ,kj) = wij ,kj and wij+pj−1(tij ,kj) =

wij−1(tij ,kj) = 0. If pj = 1 then wij+pj(tij ,kj) = wij+1(tij ,kj) = 0 and wij+pj−1(tij ,kj) =

wij(tij ,kj) = wij ,kj . These yield

Ws,m(ti,k) =
∑

p∈{0,1}s
|i+p|≤s+m−1

s∏
j=1

(−1)pjwij ,kj .

4.B The combination technique formula

Here we give a derivation of the combination technique formula for Smolyak’s
method [39]. The derivation is the same as in [91], with only a change of how
we index the vectors.
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We begin by rewriting the tensor product of differences in (4.40) as

s⊗
j=1

(Uij − Uij−1) =
∑

q∈{0,1}s
(−1)|q|

s⊗
j=1

Uij−qj .

Substituting this into (4.40) we see that each unique tensor product
⊗s

j=1 U`j for ` ∈
Ns, |`| ≤ m + s− 1 ,⊗sj=1U`j occurs with sign (−1)|q| whenever ij = `j + qj for any
j = 1, . . . , s with q ∈ {0, 1}s and |i| = |q + `| ≤ m + s − 1. It is more convenient
to write the last condition as |q| ≤ m + s − 1 − |`|. The Smolyak operator (4.40)
can then be written as a sum over the unique tensor products of one-dimensional
operators instead of differences

Qs,m =
∑
`∈Ns

|`|≤m+s−1

cs,m,`

s⊗
j=1

U`j , with cs,m,` :=
∑

q∈{0,1}s
|q|≤m+s−1−|`|

(−1)|q| .

Summing over all the possible values for |q| we have

cs,m,` =

min(s,m+s−1−|`|)∑
k=0

∑
q∈{0,1}s
|q|=k

(−1)k =

min(s,m+s−1−|`|)∑
k=0

(−1)k
(
s

k

)
.

Then using the identity

n1∑
k=0

(−1)k
(
n2

k

)
=

0 if n1 ≥ n2 ,

(−1)n1
(
n2−1
n1

)
otherwise ,

we see that cs,m,` = 0 if s ≤ m+ s− 1− |`|, or equivalently, |`| ≤ m− 1; otherwise
for |`| ≥ m we have

cs,m,` = (−1)m+s−1−|`|
(

s− 1

m+ s− 1 + |`|

)
= (−1)m+s−1−|`|

(
s− 1

|`| −m

)
.

The formula for the combination technique is then given by

Qs,m =
∑
i∈Ns

m≤|i|≤m+s−1

(−1)m+s−1−|i|
(
s− 1

|i| −m

) s⊗
j=1

Uij .
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Chapter 5

A new method of constructing active sets for product

weights

Again we consider approximating integrals with infinitely-many variables by the
Multivariate Decomposition Method (MDM),

I(f) ≈ Aε(f) =
∑
u⊂Uε

Au(fu) ,

and present here an alternate method of constructing active sets Uε in the case where
the inputs w(u) are in product form (2.6). The goal is to construct active sets that
are smaller than those introduced in Sections 2.5.4 and 4.1, which for some threshold
T were of the form

Uε = {u ⊂ N : w(u) > T} .

In fact, we present two similar algorithms, one that produces active sets that are
optimal, in a certain sense, and then a simplification of the first algorithm that
produces quasi-optimal active sets.

In this chapter, we perform the error analysis in the weighted function space
setting of, e.g., [33, 76, 89, 90] and hence the parameters w(u) are now related to
the function space weights. However, the strategies outlined in this chapter can be
easily adapted to the “norm bounds” setting of [58] and Section 2.5.1, or other more
general spaces. Also, the pseudocodes detailing the two algorithms are presented so
as to take arbitrary inputs.

5.1 Introduction

In this chapter, the functions f : YN → R to be integrated belong to a weighted
tensor product Banach space Fγ , which will be detailed fully in Section 5.2.1, and
are assumed to admit a decomposition

f(y) =
∑
u⊂N

fu(yu). (5.1)
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As in Section 2.3.2, for each finite u ⊂ N the weight parameters γu represents the
importance of the subset of variables yu, and will appear in the norm in Fγ . In this
chapter we assume the weights are of product form

γu =
∏
j∈u

γj .

Again, the inputs to our algorithm are a collection of parameters {w(u)}u⊂N, but
since we are in the weighted function space setting their values will now be trans-
formations of γu, see (5.10) later.

In Section 2.5 we saw that an essential component of the MDM is the construction
of an active set Uε of finite subsets u ⊂ N such that the integral of

∑
u/∈Uε fu can

be neglected because its size is of the order ε. In other words, it is enough to
approximate integrals of the partial sum

∑
u∈Uε

fu.

For a fixed error request ε, the choice of active set is not unique (consider (4.4)
and (2.34), which contained a free parameter), but the size and composition of Uε
directly affects the amount of work done by an MDM approximation. If an active set
is larger than is required then the MDM algorithm must approximate more terms
Iu(fu) than is necessary to achieve the given error. To reduce the work done by
an MDM approximation we want active sets Uε with small size and such that the
largest cardinality among the elements u ∈ Uε, which recall is denoted

σ(Uε) := max {|u| : u ∈ Uε} ,

is also small. Active sets with small maximum cardinality are also desirable because
low-dimensional integrals are computationally easier to approximate.

A specific construction of active sets, denoted here by UPW
ε , was proposed in [75]

(see also Section 2.5.4) and it was shown there that the largest cardinality among
all u ∈ UPW

ε grows very slowly with decreasing ε,

σ
(
UPW
ε

)
= O

(
ln(1/ε)

ln(ln(1/ε))

)
as ε → 0.

Moreover, the size |UPW
ε | grows polynomially in 1/ε, however, the asymptotic con-

stants were not investigated and, as we shall see, they could be very large. As such,
in this chapter we consider constructing the smallest possible, or “optimal”, active
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sets denoted by Uopt
ε . The examples presented in Section 5.4 illustrate that the

difference between the size of Uopt
ε and UPW

ε can be very large.
The active sets Uopt

ε presented in this chapter are optimal in the sense that if Uε is
an active set for the same error request as Uopt

ε then |Uopt
ε | ≤ |Uε|. The idea behind

their construction is quite simple: choose the active set to consist of the subsets
u ⊂ N that correspond to the largest parameters w(u). This strategy gives rise to
two main computational difficulties: ordering the sequence {w(u)}u⊂N and, for a
given error request, determining the number of sets to be included to ensure that
Uopt
ε is a valid active set. The algorithm can be simplified to give a construction of

“quasi-optimal” active sets Uq−opt
ε , which uses an approximate ordering of {w(u)}u⊂N

and leads to active sets with a slightly larger cardinality than Uopt
ε . Once the active

set is constructed, the remaining steps for implementing the MDM algorithm will
be the same as discussed in the previous chapter

Since, we are also interested in active sets with the smallest σ(Uε), we introduce
the following concept of ε-superposition dimension (or superposition dimension for
short) defined by

σε := min{σ(Uε) : Uε is an active set}.

The optimal active sets in our experiments have very small maximum cardinality,
implying that the superposition dimension is also small.

Note that our concept of the superposition dimension depends on the integration
problem as well as the error demand ε. Hence it is in the same spirit as the defi-
nition of truncation dimension introduced recently in [53]. They are different from
the definitions in statistical literature, see, e.g., [11, 65, 71, 88], where superposition
and truncation dimensions are defined based on ANOVA decompositions and with-
out any relation to the integration problem or the error demand ε. Moreover, the
dimensions from [11, 65, 88] depend on specific functions, whereas the dimensions
in [53] and in this chapter are defined in the worst-case sense, i.e., are relevant to
all functions from the space Fγ .

Although the algorithms for constructing Uq−opt
ε and Uopt

ε work for rather general
problems and spaces, we applied them to the integration problem and for weighted
spaces of functions with mixed first order partial derivatives bounded in Lp norms
for p ∈ [1,∞]. Such spaces have often been considered (mostly for p = 2) when
analysing Quasi-Monte Carlo methods. The results on the size of active sets will
depend both on the integrability parameter p and on how fast the weights converge
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to zero. In the experiments, we considered

γj =
c

ja
for a = 2, 3, 4 and c > 0.

The remainder of this chapter proceeds as follows. In Section 5.2 we summarise
the mathematical setting of the paper. Then in Section 5.3 we outline the two
new algorithms for constructing optimal and quasi-optimal active sets, along with
explicit pseudocodes. Finally, numerical results giving the size of different active
sets are given in Section 5.4.

5.2 Mathematical background

In this section we introduce the mathematical setting for our new constructions,
namely, the weighted function class and the integration problem, then we conclude
with a summary of the previous method for constructing active sets.

5.2.1 γ-weighted spaces

To define the weighted function space we follow [43], and as previously in the set-
ting without weights from Section 2.5.1 we begin by assuming that f admits a
decomposition of the form (5.1), where each term fu depends only on the variables
yu = (yj)j∈u and belongs to a Banach space Fu defined below. Then for a collection
of positive weights γ = {γu}u⊂N and p ∈ [1,∞] we define Fγ,p to be the Banach
space of functions defined on YN with the norm

‖f‖Fγ,p =

(∑
u⊂N

γ−pu ‖fu‖pFu

) 1
p

,

for p ∈ [1,∞), and for p =∞ the norm is

‖f‖Fγ,∞ = sup
u⊂N

‖fu‖Fu

γu
.

For the remainder of the chapter we assume that the weights γu are of product form
(2.6) with

γu =
∏
j∈u

c

ja
for a > 1 and c > 0. (5.2)

In general choosing the weights (in our case choosing a and c) for a specific integral or
application is a difficult problem that we do not attempt to address in this chapter.
We assume that the parameters a and c are given with the problem. The topic of
how to choose the weights will be studied, albeit in a slightly different setting, in
Chapter 6.
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Comparing with the setting using bounds on the norm instead of weights, the
function class F from Section 2.5.1 corresponds to the unit ball of Fγ,p in the specific
case when γu = Bu and p =∞.

To completely specify Fγ,p we now define each Fu to consist of functions with
Lp-integrable mixed first derivatives. Let Y = [0, 1], so that the integration domain
is the (countably) infinite-dimensional unit cube [0, 1]N, and consider the anchored
decomposition with anchor 0 for evaluating fu (2.28). Then define each Fu to be the
space of functions gu : Y |u| → R that are absolutely continuous, anchored at 0, and
equip Fu with the norm

‖gu‖Fu
:=

∥∥∥∥ ∂|u|∂yu

gu(yu)

∥∥∥∥
Lp(Y|u|)

.

Of course, F∅ is the space of constant functions with the absolute value as its norm.
For fu given by the anchored decomposition (2.28) the norm above simplifies to

‖fu‖Fu
=

∥∥∥∥ ∂|u|∂yu

f(·u; 0)

∥∥∥∥
Lp(Y|u|)

,

so in this case Fγ,p is the Banach space of functions with norm, for p ∈ [1,∞),

‖f‖Fγ,p =

(∑
u⊂N

γ−pu

∥∥∥∥ ∂|u|∂yu

f(·u; 0)

∥∥∥∥p
Lp(Y|u|)

) 1
p

,

and for p =∞

‖f‖Fγ,∞ = sup
u⊂N

1

γu

∥∥∥∥ ∂|u|∂yu

f(·u; 0)

∥∥∥∥
L∞(Y|u|)

.

Note that the space Fγ,p above is a special case of the function spaces studied
in [90], and in particular it is shown in [90] that if

∑
u⊂N

γu =
∑
u⊂N

∏
j∈u

γj < ∞

then
∑

u⊂N fu(yu) is absolutely convergent for all y ∈ YN and the function space
Fγ,p is well-defined.

The space Fγ,p contains in particular the following class of functions.

Example 5.1. For a smooth function g : R → R and fast decaying numbers
a1, a2, . . . , consider

f(y) = g

(
∞∑
j=1

yj aj

)
for yj ∈ Y .
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In particular, the test integrand (2.29) is of this form with Y = [−1
2
, 1

2
]. Then by

the chain rule
∂|u|

∂yu

f (u)(yu; 0) = g(|u|)

(∑
j∈u

yj aj

) ∏
j∈u

aj ,

where g(k) denotes the kth derivative.
Hence, f ∈ Fγ,p if the derivatives of g and the coefficients aj satisfy(∑

u⊂N

∏
j∈u |aj|p

γpu

∫
Y|u|

∣∣∣∣∣g(|u|)

(∑
j∈u

yj aj

)∣∣∣∣∣
p

dyu

)1/p

< ∞.

5.2.2 The integration problem

Consider again the integration functional I : Fγ,p → R given by

I(f) =
∑
u⊂N

Iu(fu) , (5.3)

where the |u|-variate integrals Iu : Fu → R are given by

Iu(gu) =

∫
Y|u|

gu(yu) dyu ,

and are continuous in Fu with

‖Iu‖Fu
=

1

(p∗ + 1)|u| /p∗
, (5.4)

where p∗ denotes the conjugate of p:

1

p
+

1

p∗
= 1 .

The value for the norm of the integration functional (5.4) can be found in, e.g.,
[90], but for completeness we provide an explicit derivation. To begin with, consider
f : [0, 1] → R belonging to F{1}, then since f is anchored at 0 for y ∈ [0, 1] the
integral of f can be written

I{1}(f) =

∫ 1

0

f(y) dy =

∫ 1

0

(∫ 1

0

f ′(t)1[0,y](t) dt

)
dy =

∫ 1

0

f ′(t)

∫ 1

0

1[0,y](t) dy dt ,
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where 1S is the indicator function for a set S. Evaluating the integral with respect
to y and applying Hölder’s inequality gives

I{1}(f) ≤
(∫ 1

0

f ′(t)p dt

)1/p(∫ 1

0

(1− t)p∗ dt

)1/p∗

= ‖f‖F{1}
1

(p∗ + 1)1/p∗
.

Finally, taking the supremum yields the one-dimensional version of (5.4):

∥∥I{1}∥∥F{1} =
1

(p∗ + 1)1/p∗
.

The result for all finite u ⊂ N follows from the fact, see [42], that the norm of Iu is
the product of the norm of the one-dimensional functionals:

‖Iu‖Fu
=
∏
j∈u

∥∥I{j}∥∥F{j} =
1

(p∗ + 1)|u|/p∗
,

as required.
To ensure that the integral (5.3) is well-defined we assume that

(∑
u⊂N

γp
∗

u (p∗ + 1)−|u|

)1/p∗

< ∞ . (5.5)

Indeed, by Hölder’s inequality, for f ∈ Fγ,p we have

|I(f)| ≤

(∑
u⊂N

γp
∗

u ‖Iu‖
p∗

Fu

)1/p∗

‖f‖Fγ,p ,

and in fact there exists an f ∈ Fγ,p that attains equality. It then follows by (5.4)
that

‖I‖Fγ,p =

(∑
u⊂N

γp
∗

u (p∗ + 1)−|u|

)1/p∗

,

and so (5.5) is a necessary and sufficient condition for continuity of I. For our case
of product weights of the form (5.2), we have

‖I‖Fγ,p =

(∑
u⊂N

γp
∗

u (p∗ + 1)−|u|

)1/p∗

=
∞∏
j=1

(
1 +

cp
∗

ja p∗ (p∗ + 1)

)1/p∗

,

which, leaving out the power 1/p∗, can be bounded above and below by using

∞∑
j=1

cp
∗

ja p∗ (p∗ + 1)
≤

∞∏
j=1

(
1 +

cp
∗

ja p∗ (p∗ + 1)

)
≤ exp

(
∞∑
j=1

cp
∗

ja p∗ (p∗ + 1)

)
.
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Both the upper and lower bounds are finite if and only if
∑∞

j=1 j
−ap∗ < ∞, hence

in the present setting, (5.5) is equivalent to a > 1/p∗. For the remainder of the
chapter it is assumed that a > 1/p∗, and thus the integral (5.3) is well-defined.

5.2.3 Constructing active sets for p = 1

A key component of the MDM, see Section 2.5, is the construction of active sets
Uε, which are sets of finite subsets u ⊂ N such that when approximating I(f) it is
enough to restrict the attention to functions

∑
u∈Uε

fu.

Formally, in this chapter we wish to construct active sets such that the truncation
component of the error of an MDM approximation can be controlled by∣∣∣∣∣I

(∑
u/∈Uε

fu

)∣∣∣∣∣ ≤ ε

∥∥∥∥∥∑
u/∈Uε

fu

∥∥∥∥∥
Fγ,p

for all f ∈ Fγ,p. (5.6)

Any algorithm approximating
∑

u∈Uε Iu(fu) with the worst-case error on
⊕

u∈Uε Fu

bounded by ε has its worst-case error on the whole space Fγ,p bounded by

21/p∗ ε.

The factor of 21/p∗ is the result of applying Hölder’s inequality, see, e.g., [53].
To obtain a more practical condition than (5.6), let U be an arbitrary set of finite

subsets u ⊂ N. Then the truncation error corresponding to U is bounded by∣∣∣∣∣I
(∑

u/∈U

fu

)∣∣∣∣∣ ≤ ∑
u/∈U

‖fu‖Fu ‖Iu‖Fu =
∑
u/∈U

‖fu‖Fu

γu
γu ‖Iu‖Fu

≤

∥∥∥∥∥∑
u/∈U

fu

∥∥∥∥∥
Fγ,p

(∑
u/∈U

γp
∗

u ‖Iu‖
p∗

Fu

)1/p∗

.

Hence, if Uε is such that (∑
u/∈Uε

γp
∗

u ‖Iu‖
p∗

Fu

)1/p∗

≤ ε , (5.7)

then it is an active set satisfying (5.6). In fact, since Hölder’s inequality is sharp
(i.e., the equality is attained for some f ∈ Fγ,p) (5.7) is equivalent to (5.6).
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Clearly, there are many sets Uε that meet the criteria (5.7)—any superset of Uε
also satisfies (5.7)—and the goal of this chapter is to construct the smallest possible
active set.

A construction of active sets was first proposed in [75] and in this chapter such
sets are denoted by UPW

ε . Now, we recall the construction of UPW
ε , first for p = 1,

then for p > 1 in the following section.
For p = 1, the conjugate is p∗ = ∞ and ‖Iu‖Fu = 1 for all u. In this case, the

condition (5.7) becomes

(∑
u/∈Uε

γp
∗

u ‖Iu‖
p∗

Fu

)1/p∗

= sup
u/∈Uε

γu ≤ ε , (5.8)

and hence if we define
UPW
ε = {u ⊂ N : γu > ε} , (5.9)

then UPW
ε is an active set satisfying the criteria (5.7). For product weights of the

form (5.2) this reduces to

UPW
ε =

{
u ⊂ N :

∏
j∈u

c

ja
> ε

}
.

Since in this case the truncation error is given by the supremum in (5.8), it is
easy to see that UPW

ε is a subset of any Uε satisfying (5.8). Hence, UPW
ε is the

smallest active set that satisfies (5.6).

5.2.4 Constructing active sets for p > 1

For p > 1, the conjugate p∗ is finite and the construction of Uε is more complicated.
To simplify the notation, let

w(u) =
γp
∗

u

(p∗ + 1)|u|
=

(
cp
∗

p∗ + 1

)|u| ∏
j∈u

1

ja p∗
. (5.10)

Although the parameters w(u) here play the same role as in Chapter 4, that of
inputs into the MDM algorithm, because the theoretical settings differ between
the two chapters the values they take here will be different from their values in
Section 4.6.

For given ε and p, the active set is again given by including all u with w(u)

exceeding some threshold:

UPW
ε =

{
u ⊂ N : w(u) > TPW(ε)

}
,
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but now the threshold is more complicated, and for α ∈ (1/(ap∗), 1) it is given by

TPW(ε) :=

(
εp
∗∑

u⊂N[w(u)]α

)1/(1−α)

,

which is similar to (2.34) and (4.30). It was shown in [75] that such active sets
satisfy (5.6). Note that the interval (1/(ap∗), 1) is non-empty by the assumption that
a > 1/p∗ introduced in Section 5.2.2. In our numerical experiments we approximated
the sum of [w(u)]α for α = i/40 (40/(ap∗) < i ≤ 39) and selected the value which
resulted in the largest T . The approximations are calculated in a similar way as the
computation of St explained later (see (5.16)).

5.3 Optimal active sets

Active sets that are defined by satisfying (5.7) are not unique, and the size of UPW
ε is

dependent on the free parameter α. Also, although the sets UPW
ε contain a number

of u’s with the largest w(u), the number of them could be much larger than is
necessary. To this end we define the following notion of optimality of an active set.

Definition 5.2. An active set, denoted by Uopt
ε , is defined to be optimal if

|Uopt
ε | = min{|Uε| : Uε satisfies (5.6)}.

Also, define the ε-superposition dimension as the smallest σ(Uε) among all active
sets:

σε := min {σ(Uε) : Uε satisfies (5.6)} .

The collection of those u with the largest w(u) that are necessary for (5.6) would
result in the optimal set Uopt

ε , and clearly the optimal set is always a subset of UPW
ε .

Hence, the property that the maximum cardinality behaves like

σ(Uopt
ε ) = O

(
ln(1/ε)

ln(ln(1/ε))

)
as ε→ 0,

is preserved.
More precisely, let (uj)j∈N be a sequence of all u ⊂ N ordered such that

w(u1) ≥ w(u2) ≥ w(u3) ≥ · · · .
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Then the optimal active set is given by

Uopt
ε := {u1, . . . , uk}

with k = k(ε) such that

‖I‖p
∗

Fγ,p −
k∑
j=1

w(uj) ≤ εp
∗
< ‖I‖p

∗

Fγ,p −
k−1∑
j=1

w(uj). (5.11)

Clearly, Uopt
ε satisfies (5.7) and is an active set. In fact, since w(u) > 0 it is also

immediately obvious that Uopt
ε is the smallest set satisfying (5.7), and is by our

definition optimal.
The problem with this approach is that we do not know a priori the number

k = k(ε) and ordering a large number of w(u) is prohibitively expensive. Therefore,
the parameters {w(u)}u⊂N will be ordered online. Actually, we propose two ways of
constructing active sets. The first and simpler one produces what we call, quasi-
optimal sets Uq−opt

ε because it uses an approximate ordering of {w(u)}u⊂N and so
cannot be guaranteed to produce sets that are optimal. The second construction,
uses the proper ordering of {w(u)}u⊂N and produces optimal sets Uopt

ε . However,
the results in Section 5.4 suggest that often the difference between both sets is very
small; sometimes these sets are equal.

To allow for the ordering of the parameters w(u), we assume that they satisfy
the following properties. Let ` be a given cardinality and write u = (u1, . . . , u`),
where u1 < · · · < u`. The two properties are:

1. If

u = (u1, . . . , u`) and v = (v1, . . . , v`) with vj ≥ uj for all j, (5.12)

then w(u) ≥ w(v).
2. There exists L ∈ N such that for all ` > L,

w(u1, . . . , u`) ≥ w(u1, . . . , u`, u`+1). (5.13)

Note that in the case of product weights of the form (5.2), clearly property (5.12)
holds and for property (5.13) we can take L = dc1/a(p∗ + 1)−1/(ap∗)e .

In the following sections we detail the two new constructions more precisely, the
main computational issue is how to order the parameters {w(u)}u⊂N. To make the
presentation as general as possible we consider the following abstract problem given
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arbitrary parameters {w(u)}u⊂N and a threshold T . The condition (5.11) can be
written abstractly as: find a set Uε of finite u ⊂ N such that

∑
u⊂Uε

w(u) ≥ T , (5.14)

where in the setting of this chapter the threshold is

T = T opt(ε) :=
∑
u⊂N

w(u)− εp∗ . (5.15)

The general idea of our construction is to select sets u with the largest w(u) and
subtract w(u) from T , repeating until T ≤ 0. Obviously, in general we cannot order
the entire sequence of parameters, and so they are ordered in batches by partitioning
[0,∞) into intervals Φj such that numbers in Φj are greater than those in Φj+1. The
algorithm works through the intervals in order as follows. For each interval Φk, the
algorithm searches for all of the sets u with w(u) ∈ Φk, sorts them in decreasing
order, and then adds the corresponding u to Uopt

ε until Uopt
ε satisfies (5.14).

In the construction of quasi-optimal active sets Uq−opt
ε we do not sort the weights

inside the intervals, instead we add the sets as they occur until the condition (5.14) is
satisfied. Since the interval structure provides some sense of ordering, the parameters
in this case can be thought of as being “approximately ordered”. The construction
of quasi-optimal sets is presented first because it is simpler.

5.3.1 A simplified construction of quasi-optimal active sets

Consider a partition of [0,∞) into countably-many intervals {Φj}∞j=1, which are
ordered such that for any j ∈ N if x ∈ Φj and y ∈ Φj+1 then y < x. For simplicity,
we used Φ1 = [10−1,∞), and Φj = [10−j, 10−j+1) for j = 2, 3, . . . in our numerical
experiments. We also associate with every interval a list Lj that contains u for with
w(u) ∈ Φj.

To search through the sets in a systematic way, we must keep track of the current
set u and the index i that we are incrementing from, see Section 4.1 since the strategy
is the same as was used there. The subroutine increment_u outlined below in
Algorithm 5.1 details how to increment u from index i.

A naive version of the algorithm for constructing Uq−opt
ε is as follows. For each

j = 1, 2, 3, . . . we work through the sets u in order of increasing cardinality ` =

1, 2, 3, . . ., if w(u) ∈ Φj then we add u to Uq−opt
ε and subtract w(u) from T . The

algorithm terminates when T ≤ 0, in which case Uq−opt
ε is an active set satisfying

(5.14).
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Pseudocode 5.1 Subroutine: increment_u
inputs: u, i
output: u

1: if i = 0 then return u . don’t update u

2: ui ← ui + 1 . updating ui first
3: for r = i+ 1, i+ 2, . . . , |u| do . incrementing u from index i+ 1

4: ur ← ui + r − i
5: end for

6: return u

However, in this case at each interval we would begin the search with all of
the sets that correspond to the previous intervals, resulting in a large number of
unnecessary visits to sets. In order to reduce the double-handling of sets between
intervals we use the lists Lj to keep track of the sets that were visited in step j − 1

but that belong to Φj. Then, at the jth step we begin with the sets u ∈ Lj that
were found in the previous step.

The efficient version of the algorithm for constructing Uq−opt
ε also works through

intervals in the order j = 1, 2, 3, . . ., but then proceeds as follows. For each u ∈ Lj,
if w(u) ∈ Φj then we add u to Uq−opt

ε and subtract w(u) from T . If T ≤ 0 then
Uq−opt
ε satisfies (5.14) and we terminate the algorithm, otherwise we increment u.

Whereas, if w(u) 6∈ Φj then we add u to Lj+1 and move to the next u ∈ Lj.
Once we have searched through Lj we continue the search in increasing cardi-

nality ` = `next, `next + 1, . . ., starting at `next = maxu∈Lj(|u|) + 1. For each u with
|u| = `, if w(u) ∈ Φj then we add u to Uq−opt

ε , subtract w(u) from T , check for
termination (T ≤ 0) and increment u from the final index. Otherwise, we add u to
Lj+1 and increment u from a lower index. When we can no longer increment u (the
incrementing index i is 0) we proceed to the next cardinality. We continue increas-
ing the cardinality until we reach some ` such that ` > L and {1, 2, . . . , `} 6∈ Φj, in
which case, because of the two properties (5.12)–(5.13), we know that there are no
more sets with w(u) ∈ Φj and we proceed to the next interval.

Restarting the search at cardinality `next does not skip any sets because the
way we increment u remains the same throughout. Hence all of the sets for the
current interval with cardinality |u| < `next have been visited when incrementing
from u ∈ Lj.

The main procedure is outlined in Algorithm 5.2. In all of the algorithms jmax

and `max are computational thresholds denoting, respectively, the maximum number
of intervals to be searched through and the maximum allowed cardinality of sets.
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To make the presentation clearer Algorithm 5.2 is broken into two parts: First,
we search starting from the sets found in the previous interval, which is handled
by the subroutine q-opt_search in Algorithm 5.3. Then we continue searching
through sets in order of increasing cardinality (line 9) starting where q-opt_search
finished, at cardinality `next. The basic search structure is the same, however in
q-opt_search each set we visit is checked to reduce multiple visits and ensure that
the same set is not added to Uq−opt

ε more than once.
The notation

(Uq−opt
ε , T, `next,Lj+1) ← q-opt_search(Uq−opt

ε , T, (w(u))u⊂N,Lj,Lj+1,Φj)

denotes that we call q-opt_search with inputs Uq−opt
ε , T , (w(u))u⊂N, Lj, Lj+1, Φj

and then use the output to update Uq−opt
ε , T , `next and Lj+1.

5.3.2 Construction of optimal active sets

The construction of optimal active sets is very similar. The main difference is that
in the jth step, we first create the list Lj and order its elements u according to
decreasing values of w(u), then only after this start subtracting the values w(u)

from T . Again we terminate when T ≤ 0 and the lists Lj will hold the sets visited
in the previous interval.

In fact, if we do not care whether or not all of the sets are ordered but only
that Uopt

ε consists of the sets with the largest weights, then we only need to sort
the sets that come from the final interval. This is because at the previous intervals
all of the sets will need to be added to Uopt

ε , regardless of sorting. To do this in
practice, for each interval we store the sum of all the weights corresponding to that
interval. In Algorithm 5.4 we denote this by Tj. At the end of the jth step, we
check whether Φj is the final interval, i.e., if T − Tj ≤ 0, if so we sort the sets and
add them one-by-one until the active set is complete. Otherwise we add all of the
sets in Lj to Uopt

ε , subtract Tj from T and go to the next interval. For completeness,
the construction of optimal active sets is detailed separately below in Algorithm 5.4
and the subroutines opt_search in Algorithm 5.5, which handles the search from
sets visited in the previous interval, and opt_sort in Algorithm 5.6, which handles
the sorting component.
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Pseudocode 5.2 Constructing the quasi-optimal active set
inputs: T , {w(u)}u⊂N, (Φj)

jmax

j=1

output: Uq−opt
ε

1: Lj ← ∅ for all j = 1, 2, . . . , jmax . initialising
2: Uq−opt

ε ← {∅}
3: T ← T − w(∅) . decrease T with each set added
4: if T ≤ 0 then return Uq−opt

ε . quasi-optimal active set is complete
5: for j = 1, 2, . . . , jmax do . start at sets found previously
6: (Uq−opt

ε , T, `next,Lj+1)←q-opt_search(Uq−opt
ε , T, (w(u))u⊂N,Lj,Lj+1,Φj)

7: if T ≤ 0 then return Uq−opt
ε . quasi-optimal active set is complete

8: for ` = `next, `next + 1, . . . , `max do . search through unvisited sets
9: u = {1, 2, . . . , `}

10: i← ` . i keeps track of index to increment u from
11: if w(u) /∈ Φj and ` > L then break . no more u with w(u) ∈ Φj

12: while i > 0 do . when i = 0 there are no more u of cardinality `
13: if w(u) ∈ Φj then

14: add u to Uq−opt
ε

15: T ← T − w(u)

16: if T ≤ 0 then return Uq−opt
ε . quasi-optimal set is complete

17: i← ` . continue incrementing from last index
18: else

19: add u to Lj+1

20: i← i− 1 . increment from lower index
21: end if

22: u←increment_u(u, i)

23: end while

24: end for

25: end for
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Pseudocode 5.3 Subroutine: q-opt_search
inputs: Uq−opt

ε , T , (w(u))u⊂N, Lj, Lj+1, Φj

outputs: Uq−opt
ε , `next, T , Lj+1

1: `next = 1

2: for u ∈ Lj do
3: i← |u|
4: while i > 0 do

5: Lj ← Lj \ u . reducing the double-handling of sets
6: if w(u) ∈ Φj then

7: if u ∈ Uq−opt
ε then break . already visited future increments

8: add u to Uq−opt
ε

9: T ← T − w(u)

10: if T ≤ 0 then return (Uq−opt
ε , `next, T,Lj+1)

11: i = |u| . continue incrementing from last index
12: else

13: add u to Lj+1 . u to be checked first in next interval
14: i← i− 1 . increment from lower index
15: end if

16: u←increment_u(u, i)

17: end while

18: `next = |u|+ 1 . main search will start at cardinality |u|+ 1

19: end for

20: return (Uq−opt
ε , `next, T,Lj+1)
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Pseudocode 5.4 Constructing the optimal active set
inputs: T , {w(u)}u⊂N, (Φj)

jmax

j=1

output: Uopt
ε

1: Tj ← 0 , Lj ← ∅ for all j = 1, 2, . . . , jmax . initialising
2: Uopt

ε ← {∅}
3: T ← T − w(∅) . decrease T with each set added
4: if T ≤ 0 then return Uopt

ε . optimal active set is complete
5: for j = 1, 2, . . . , jmax do . start at sets found in previous step
6: (`next, Tj,Lj,Lj+1)←opt_search(Uopt

ε , Tj, {w(u)}u⊂N,Lj,Lj+1,Φj)

7: for ` = `next, `next + 1, . . . , `max do . search through unvisited sets
8: u = {1, 2, . . . , `}
9: i← ` . i keeps track of index to increment u from

10: if w(u) /∈ Φj and ` > L then break . no more u with w(u) ∈ Φj

11: while i > 0 do . when i = 0 there are no more u of cardinality `
12: if w(u) ∈ Φj then

13: add u to Lj
14: Tj ← Tj + w(u)

15: i← ` . continue incrementing from last index
16: else

17: add u to Lj+1

18: i← i− 1 . increment from lower index
19: end if

20: u←increment_u(u, i)

21: end while

22: end for . sort the current sets
23: (T,Uopt

ε )← opt_sort (Uopt
ε , T, Tj, {w(u)}u⊂N,Lj)

24: if T ≤ 0 then return Uopt
ε

25: end for
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Pseudocode 5.5 Subroutine: opt_search
inputs: Uopt

ε , Tj, {w(u)}u⊂N, Lj, Lj+1, Φj

outputs: `next, Tj, Lj, Lj+1

1: `next = 1

2: for u ∈ Lj do
3: i← |u|
4: while i > 0 do

5: Lj ← Lj \ u . reducing the double-handling of sets
6: if w(u) ∈ Φj then

7: if u ∈ Lj then break . already visited u and future increments
8: add u to Lj , Tj ← Tj + w(u) , i← |u|
9: else

10: add u to Lj+1 , i← i− 1 . u to be checked first in next interval
11: end if

12: u←increment_u(u, i)

13: end while

14: `next = |u|+ 1 . main search will start at cardinality |u|+ 1

15: end for

16: return (`next, Tj,Lj,Lj+1)

Pseudocode 5.6 Subroutine: opt_sort
inputs: Uopt

ε , T , Tj, {w(u)}u⊂N, Lj
outputs: T , Uopt

ε

1: if Tj ≥ T then . first check if Φj was the last interval
2: sort Lj
3: for u ∈ Lj do . add sorted sets until active set is complete
4: add u to Uopt

ε

5: T ← T − w(u)

6: if T ≤ 0 then break . optimal active set is complete
7: end for

8: else . add all sets for the current interval and continue search
9: add all u to Uopt

ε

10: T ← T − Tj
11: end if

12: return T , Uopt
ε
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5.3.3 Computing the threshold T opt

The algorithms for constructing active sets require the threshold T opt(ε) as input,
and to compute T opt(ε) we must approximate

S :=
∑
u⊂N

w(u) =
∑
u⊂N

∏
j∈u

(c/ja)p
∗

p∗ + 1
=

∞∏
j=1

(
1 +

(c/ja)p
∗

p∗ + 1

)

from above and with the relative error significantly smaller than εp∗ .
This can be done as follows. For a large natural number t

S = exp

(
ln

(
∞∏

j=t+1

(
1 +

(c/ja)p
∗

p∗ + 1

))) t∏
j=1

(
1 +

(c/ja)p
∗

p∗ + 1

)

≤ exp

(
cp
∗

p∗ + 1

∞∑
j=t+1

j−a p
∗

)
t∏

j=1

(
1 +

(c/ja)p
∗

p∗ + 1

)

≤ exp

(
cp
∗

p∗ + 1

∫ ∞
t+1/2

x−a p
∗
dx

) t∏
j=1

(
1 +

(c/ja)p
∗

p∗ + 1

)

= exp

(
cp
∗

(p∗ + 1) (a p∗ − 1) (t+ 1/2)a p∗−1

) t∏
j=1

(
1 +

(c/ja)p
∗

p∗ + 1

)
=: St. (5.16)

See also Remark 4.6. It is easy to see that the relative error between S and its
approximation St is proportional to 1/t2a p

∗−2 with the asymptotic constant

cp
∗

(p∗ + 1) 2ap∗−1

∞∏
j=1

(
1 +

(c/ja)p
∗

p∗ + 1

)
.

Although it only forms a small portion of this chapter, the accurate upper bound
(5.16) is a crucial component of the two new constructions. Suppose we could not
estimate the sum to within an accuracy of εp∗ , then we would have that the input
threshold is such that T > S and both algorithms would never terminate.

5.4 Active set results

In this section we present results on the size of the active sets for parameters p =

1, 2,∞, weights with decays of a = 2, 3, 4 and error requests ε = 10−1, 10−2, 10−3.
A collection of the active sets constructed above have been listed in full in the
Appendix.

For p = 1 the active sets UPW
ε are optimal and the results are given in Table 5.1.

For p > 1 the active sets are no longer optimal and the results for p = 2,∞ are
given in Tables 5.2 and 5.3, respectively. These results indicate that as p increases
the active sets UPW

ε are much larger than is necessary.
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a = 4 a = 3 a = 2
ε 10−1 10−2 10−3 10−1 10−2 10−3 10−1 10−2 10−3

σ(UPW
ε ) 1 2 2 2 2 3 2 3 4

|UPW
ε | 2 6 10 4 8 22 6 22 114

Table 5.1: Active set results for p = 1 and a = 4, 3, 2, ε = 10−1, 10−2, 10−3.

a = 4 a = 3 a = 2
ε 10−1 10−2 10−3 10−1 10−2 10−3 10−1 10−2 10−3

σ(Uopt
ε ) 1 2 2 1 2 3 2 3 4

|Uopt
ε | 2 4 9 2 7 24 4 30 255

|Uq−opt
ε | 2 4 9 2 7 26 6 32 261
|UPW
ε | 3 8 20 5 18 70 15 158 1481

Table 5.2: Active set results for p = 2 and a = 4, 3, 2, ε = 10−1, 10−2, 10−3.

a = 4 a = 3 a = 2
ε 10−1 10−2 10−3 10−1 10−2 10−3 10−1 10−2 10−3

σ(Uopt
ε ) 1 2 2 1 2 3 3 4 6

|Uopt
ε | 2 5 15 3 15 83 33 1346 45,446

|Uq−opt
ε | 2 5 15 3 15 92 38 1904 52,159
|UPW
ε | 7 21 72 21 149 923 2358 120,935

Table 5.3: Active set results for p =∞ and a = 4, 3, 2, ε = 10−1, 10−2, 10−3.

To observe how different choices of parameters a and c affect our construction,
statistics on the resulting optimal active sets are given in Tables 5.4-5.7. Tables 5.4
and 5.5 give, respectively, the size and the superposition dimension of the optimal
active set for p = 2 and an error request of 10−2. For p = ∞, ε = 10−2 the size
and superposition dimension of the optimal active sets are given in Tables 5.6 and
5.7. The results for the quasi-optimal active set are again very similar and so have
not been included here. As expected these results demonstrate that as the decay
of the weights is slower or the weights become larger (a smaller and c larger) the
problem becomes more difficult and the active sets are by necessity larger. However
the superposition dimension remains relatively small, at most 6.

a
c 4 3 2
1
2

3 5 12
1 4 7 30
2 6 14 122

Table 5.4: |Uopt
ε (10−2)| for p = 2

and different a, c.

a
c 4 3 2
1
2

1 2 2
1 2 2 3
2 2 3 4

Table 5.5: σ(Uopt
ε (10−2)) for p = 2

and different a, c.
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a
c 4 3 2
1
2

4 7 150
1 5 15 1346
2 8 43 31,013

Table 5.6: |Uopt
ε (10−2)| for p =∞

and different a, c.

a
c 4 3 2
1
2

2 3 4
1 2 2 4
2 2 3 6

Table 5.7: σ(Uopt
ε ) for ε = 10−2,

p =∞ and different a, c.

5.5 Conclusion

In this chapter we have introduced the notion of optimal active sets to be used
in the MDM for infinite-variate integration, and presented an algorithm detailing
their construction. By simplifying the sorting of the parameters, we also introduced
a second computationally less intensive version of the algorithm that constructs
quasi-optimal active sets. Our numerical results show that the quasi-optimal active
sets are of a similar size to the optimal active sets; often the two sets are exactly
the same. In all of our numerical results the optimal and quasi-optimal active sets
are smaller than, and have superposition dimension less than or equal to, the active
sets using the previous construction from [75].

Original research and my contribution

The work in this chapter was performed in collaboration with Grzegorz Wasilkowsi,
and corresponds to a paper that was published in the Journal of Complexity in 2017
(see [33]).

The following topics have all been studied previously: the MDM algorithm,
see [58, 63, 75, 76, 89, 90]; weighted function space setting, see [43]; and the first
method of constructing active sets, which we denoted UPW

ε , see [75]. The original
content of this chapter is the notion of optimal active sets and the two algorithms for
constructing optimal and quasi-optimal active sets. Loosely speaking, everything in
Sections 5.3 and 5.4 is new.

The ideas behind the algorithms for optimal and quasi-optimal active sets were
due to Grzegorz Wasilkowski. I was responsible for implementing the two algorithms,
formalising them into the pseudocodes and performing the numerical results. I also
contributed to the structure of the two algorithms.
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Chapter 6

Blackbox CBC algorithms for constructing lattice rules

The aim of the current chapter is to develop efficient and user-friendly methods for
generating randomly shifted lattices rules to be used for the numerical computation
of high-dimensional integrals of the form

Is(f) :=

∫
[0,1]s

f(y) dy . (6.1)

This chapter introduces two new variants of the component-by-component (CBC)
algorithm that, given bounds on the mixed first derivatives, choose not only the
QMC points but also the function space weights, with a view to minimising the
error of the QMC approximation. Although still playing an important role in our
constructions, the weight parameters no longer need to be chosen by the practitioner
because this choice is handled automatically inside the algorithms.

We begin with an informal discussion of the role that the weights play in both
theory and practice, also considering previous strategies for choosing the weights.

6.1 How to choose the function space weights in practice?

Recall from Section 2.3 of Chapter 2 that the setting for the error analysis of a
QMC approximation to (6.1) assumes that the integrand f belongs to the weighted
function space Ws,γ , where in general for each u ⊂ {1 : s} the weight γu represents
the importance of the variables yu. For simplicity, in this introductory section we
shall concentrate on product weights: γu =

∏
i∈u γi.

More precisely, in the weighted function space Ws,γ the root-mean-square error
of a randomly shifted QMC approximation satisfies√

E∆

[∣∣Is(f)−Qsh
n,s(Pn; ·)f

∣∣2] ≤ esh
n,s,γ(Pn) ‖f‖s,γ . (6.2)

Even though the right hand side of this error bound conveniently separates into the
product of two factors—one which depends only on the quadrature points and the
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other which depends only on the integrand—a key aspect of the work in the current
chapter is that both the worst-case error and the norm depend on the weights.

In this chapter the user is assumed to have information about the norm ‖f‖s,γ (as
defined in (2.5)) in the form of estimates on the size of the mixed first derivatives of f .
This information is given by the parameters B` and βi in the following assumption.

Standing Assumption for Chapter 6: For two sequences of positive real
numbers (B`)

s
`=1 and (βi)

s
i=1, we assume that the mixed first derivatives of the inte-

grand satisfy the following family of upper bounds, for each u ⊆ {1, 2, . . . , s}:

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂yu

f(y) dy−u

)2

dyu ≤ B|u|
∏
j∈u

β2
j . (6.3)

Bounds of the form given in (6.3), together with explicit values of B` and βi,
have been found for certain PDE problems in several recent papers, including [60]
and also the eigenvalue problem studied in Chapter 3.

The QMC rules used in this chapter are randomly shifted lattice rules, which
will be generated by our new variants of the CBC algorithm. The original CBC
construction works through each dimension i = 1, 2, . . . , s sequentially, choosing the
ith component of the rule by minimising the worst-case error in that dimension
while all previous components remain fixed. Because the worst-case error depends
explicitly on the weights, the CBC algorithm requires the weights as inputs. Thus,
the weights are not only useful for theory, but they are also a necessity for generating
good lattice rules in practice.

The CBC construction also has the virtue that, as was shown in Section 2.3.3,
the worst-case error of the resulting QMC approximation converges to zero at a rate
that, depending on the weights, can be arbitrarily close to n−1, with a constant that
can be independent of s. From (6.2) and (2.16), the root-mean-square error of a
CBC generated randomly shifted lattice rule approximation of Is(f) (in the special
case of prime n and product weights) is bounded above by

(
1

n− 1

s∏
i=1

(
1 + γηi

2ζ(2η)

(2π2)η

)) 1
2η

‖f‖s,γ for all η ∈
(

1
2
, 1
]
, (6.4)

where ζ(x) =
∑∞

k=1 k
−x is the Riemann zeta function.

Until recently the choice of weights was generally ad hoc or assumed to be given,
but in the paper [60] a new principle was used to determine weights for a particular
problem: having estimated an upper bound on the norm of the integrand (which
like the worst-case error depends on the weights), those authors chose weights that
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minimise an upper bound on the error (6.4). (Note that [60] dealt with a specific
problem of randomly shifted lattice rules applied to PDEs with random coefficients,
however the strategy of that paper can easily be applied to other problems.) The
result is a family of weight sequences indexed by the parameter η, where η affects
the theoretical rate of convergence. The fact that η must be chosen by the user
is a major drawback of the strategy in [60]. One option would be to take η as
close to 1

2
as possible to ensure a good convergence rate, however, because of the

occurrence of the zeta function ζ(2η), the constant goes to ∞ as η → 1
2
. A good

rate of convergence does not help for a fixed value of n if the constant becomes too
large. To obtain the best bound a delicate balance between the two factors in (6.4)
is needed.

Another drawback of the method used in [60] is that the bound (6.4) is often a
crude overestimate. The first algorithm we introduce in this chapter, the double
CBC (DCBC) algorithm, counters this while at the same time removing the
need to choose η by dealing with the exact shift-averaged worst-case error (see
Section 2.3), rather than the upper bound given by the first factor in (6.4). For the
case of product weights, at step i of the DCBC algorithm, after fixing the component
of the lattice rule, the weight γi is chosen so as to minimise a bound on the error in
the current dimension. An advantage of this method is that the choice of weight in
each dimension adds virtually no extra computational cost to the algorithm.

The second algorithm we propose begins with the upper bound (6.4), and hence
the family of weights indexed by η obtained following the strategy in [60]. To choose
the “best” η, and in turn the “best” weights, an iteration of the CBC algorithm with
respect to η is employed to minimise heuristically a bound on the approximation
error. Because of this iteration process it is called the iterated CBC (ICBC)

algorithm.
The philosophy of both algorithms is to concentrate on reducing the guaran-

teed error bounds. This paradigm represents a shift away from the usual focus on
the best rate of convergence. It is particularly useful when dealing with problems
where function evaluations are highly expensive, such as those where QMC methods
have been applied to PDEs with random coefficients [60], for which there is often a
practical limit on the number of quadrature points n.

So far we have discussed only product weights, however, both algorithms can
be extended to cover a more general form of weights called “POD weights” (see
Section 2.3).

The structure of this chapter is as follows. Details on our two new algorithms are
given in Sections 6.2 and 6.3. Then in Section 6.4 we give tables for the guaranteed
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error bounds resulting from the two algorithms, under various assumptions on the
parameters B` and βi in (6.3). The examples show that there are different situations
where each of the algorithms outperforms the other, thus it is not possible to say
that one algorithm is superior.

6.2 The double CBC algorithm

The algorithm introduced in this section (along with the algorithm in the next
section) aims to choose weights so as to make the bound (6.2) on the root-mean-
square error of the QMC approximation as small as possible. Hence we will require
a bound on the norm of the integrand f ∈ Ws,γ to be known and of the specific
form given in the Assumption (6.3) in Section 6.1.

In this way the norm of f in Ws,γ , see (2.5), with some, as yet unspecified,
weights γ will be bounded by

‖f‖2
s,γ ≤

∑
u⊆{1:s}

1

γu
B|u|

∏
j∈u

β2
j =: Ms,γ , (6.5)

and in turn from (6.2) the mean-square error of a lattice rule approximation will be
bounded by

E∆

[∣∣Is(f)−Qsh
n,s(z; ·)f

∣∣2] ≤ (esh
n,s,γ(z)

)2
Ms,γ . (6.6)

The first new algorithm is named the double CBC (DCBC) algorithm since
at each step two parameters are chosen: the component of the generating vector
and the weight. We assume the weights are of product (2.6) or POD (2.8) form. In
the case of POD weights we assume that the order dependent weight factors (Γ`)

s
`=0

are given. Starting with the error bound (6.6), in each dimension, with all previous
parameters remaining fixed, we choose the component of z to minimise esh

n,s,γ and
then the product component of the weight to minimise the entire bound.

6.2.1 The double CBC algorithm for product weights

In the case of product weights, the squared shift-averaged worst-case error (see
(2.15)) of a lattice rule with generating vector z is

(
esh
n,s,γ(z1, . . . , zs)

)2
= − 1 +

1

n

n−1∑
k=0

s∏
j=1

(
1 + γjB2

({
kzj
n

}))
=
(
esh
n,s−1,γ(z1, . . . , zs−1)

)2
+ γsGs(z1, . . . , zs) ,
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in which the first term is independent of γs, and

Gs(z1, . . . , zs) :=
1

n

n−1∑
k=0

B2

({
kzs
n

}) s−1∏
j=1

(
1 + γjB2

({
kzj
n

}))
.

For product weights it is natural to assume that the bound on the norm is also
of product form, that is, B` = 1 for all ` = 1, 2, . . . , s. It follows that this bound
(6.5) can also be written recursively as

Ms,γ =
∑

u⊆{1:s}

∏
j∈u

β2
j

γj
=

s∏
j=1

(
1 +

β2
j

γj

)
=

(
1 +

β2
s

γs

)
Ms−1,γ . (6.7)

In this situation, the bound (6.6) on the mean-square error can be written as

((
esh
n,s−1,γ(z1, . . . , zs−1)

)2
+ γsGs(z1, . . . , zs)

)(
1 +

β2
s

γs

)
Ms−1,γ . (6.8)

Treating (6.8) as a function of γs and zs, and noting that zs is only present in
Gs, at each step of the algorithm we can first choose zs to minimise Gs and then
choose γs to minimise the entire error bound. For future reference, the minimiser of
expressions of this form is given by the following Lemma.

Lemma 6.1. Suppose that a, b, c, d are positive real numbers. Then the function
h : (0,∞)→ (0,∞) given by h(x) = (a+ bx)(c+ d

x
) is minimised by x∗ =

√
ad
bc
.

Proof. The first two derivatives of h with respect to x are h′(x) = bc − ad/x2 and
h′′(x) = 2ad/x3 > 0 for x > 0, so h is convex. Solving h′(x) = 0 yields the formula
for the stationary point x∗, which is the global minimum.

Consequently, the choice of weight that minimises the bound on the mean-square
error (6.8) is given by, with s replaced by i,

γi =

√(
esh
n,i−1,γ(z1, . . . , zi−1)

)2
β2
i

Gi(z1, . . . , zi)
. (6.9)

Note that in the first dimension the upper bound on the mean-square error (6.8)
becomes G1 (γ1 + β2

1), which attains its minimum when γ1 = 0. Since 0 is not a
sensible choice of weight our algorithm requires that γ1 be given.

At each step of the algorithm, the process of choosing zi to minimise Gi is the
same as in the original CBC algorithm. Thus, the methods used in the fast CBC
construction [18, 69, 70] can also be applied in this algorithm.
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Algorithm 6.1 The double CBC algorithm for product weights

Given n, s, bounds of the form (6.3) with B` = 1 for all `, and the weight in the
first dimension γ1. Set z1 to 1. Then for each i = 2, . . . , s,

1. Choose zi ∈ Un to minimise Gi(z1, . . . , zi−1, zi).
2. Set γi as in (6.9) and update the mean-square error bound (6.8).

6.2.2 The double CBC algorithm for POD weights

For weights of POD form (2.8), given a sequence of order dependent weight factors
(Γ`)

s
`=0 and a bound on the normMs,γ the algorithm chooses the product component

of the weights γi in each dimension. Note that, for this case we no longer assume all
B` = 1. As before, the first step is to obtain a recursive formula for the bound on
the norm of the integrand in each dimension. By splitting the sum in (6.5) according
to whether or not s belongs to the set u, we have

Ms,γ =
s∑
`=0

B`

Γ`

∑
u⊆{1:s}
|u|=`

∏
j∈u

β2
j

γj
=

s∑
`=0

B`

Γ`

 ∑
u⊆{1:s−1}
|u|=`

∏
j∈u

β2
j

γj
+

∑
s∈u⊆{1:s}
|u|=`

∏
j∈u

β2
j

γj


= Ms−1,γ +

β2
s

γs

s∑
`=1

B`

Γ`

∑
u⊆{1:s−1}
|u|=`−1

∏
j∈u

β2
j

γj︸ ︷︷ ︸
Hs−1,`−1

= Ms−1,γ +
β2
s

γs

s−1∑
`=0

Hs−1,` , (6.10)

where we have introduced the terms Hi,` to simplify the notation. Applying a similar
method of splitting the sum, a recursive formula for Hs,` is obtained

Hs,` :=
B`+1

Γ`+1

∑
u⊆{1:s}
|u|=`

∏
j∈u

β2
j

γj
=

B`+1

Γ`+1

∑
u⊆{1:s−1}
|u|=`

∏
j∈u

β2
j

γj
+
B`+1

Γ`+1

∑
s∈u⊆{1:s}
|u|=`

∏
j∈u

β2
j

γj

= Hs−1,` +
β2
s

γs

B`+1

Γ`+1

∑
u⊆{1:s−1}
|u|=`−1

∏
j∈u

β2
j

γj

= Hs−1,` +
β2
s

γs

B`+1

B`

Γ`
Γ`+1

Hs−1,`−1 , (6.11)

with Hi,0 = B1

Γ1
for all i = 1, 2, . . . , s and Hi,` = 0 for all ` > i.
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It follows that for POD weights the upper bound (6.6) on the mean-square error
of the QMC approximation can be written recursively as

E∆

[∣∣Is(f)−Qsh
n,s(z1, . . . , zs; ·)f

∣∣2] (6.12)

≤
((
esh
n,s−1,γ(z1, . . . , zs)

)2
+ γsGs(z1, . . . , zs)

)(
Ms−1,γ +

β2
s

γs

s−1∑
`=0

Hs−1,`

)
,

where Gs(z1, . . . , zs) is now given by

Gs(z1, . . . , zs)

=
1

n

n−1∑
k=0

(
B2

({
kzs
n

})
︸ ︷︷ ︸

Ωn(zs,k)

s∑
`=1

Γ`
Γ`−1

∑
u⊆{1:s−1}
|u|=`−1

(
`−1∏
i=1

Γi
Γi−1

)∏
j∈u

(
γjB2

({
kzj
n

}))
︸ ︷︷ ︸

ps−1,`−1(k)

)

=
1

n

n−1∑
k=0

Ωn(zs, k)
s∑
`=1

Γ`
Γ`−1

ps−1,`−1(k) . (6.13)

We have introduced the terms Ωn, ps−1,`−1 to simplify notation, and we have ar-
ranged to deal only with the ratios Γ`/Γ`−1 to improve numerical stability. Again
by Lemma 6.1, the product component of the weight that minimises the bound on
(6.12) is given by, with s replaced by i,

γi =

√(
esh
n,i,γ(z1, . . . , zi−1)

)2
β2
i

∑i−1
`=0Hi−1,`

Mi−1,γ Gi(z1, . . . , zi)
. (6.14)

Calculating Gs for all zs ∈ Un by summing over all u ⊆ {1 : s − 1} as in (6.13)
would cost O(n22s−1) operations and is infeasible for even moderate s. The cost
can be reduced by storing Ωn and constructing ps−1,`−1 recursively. Letting Gs =

[Gs(z1, . . . , zs−1, zs)]zs∈Un , the calculation of Gs for all zs ∈ Un can be performed by
the matrix-vector product

Gs =
1

n
Ωn

s∑
`=1

Γ`
Γ`−1

ps−1,`−1 , (6.15)

where

Ωn :=

[
B2

({
kz

n

})]
z∈Un,k=0,1,...,n−1

.
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At each step the vectors ps−1,`−1 can be constructed recursively as follows

ps,` = ps−1,` +
Γ`

Γ`−1

γsΩn(zs, :) .∗ ps−1,`−1 , (6.16)

where Ωn(zs, :) is the row corresponding the new component of the generating vector
zs, and .∗ denotes component-wise multiplication, and with ps,0 = 1, ps,` = 0 for
all ` > s. Note that (6.16) is obtained by splitting the sum according to whether or
not s ∈ u, as in (6.10) and (6.11). Since the cost of updating ps,` is O(s n) the total
cost of calculating Gs in each dimension has been reduced to O(n2 +sn) operations.
Additionally, using the concepts from the Fast CBC algorithm [69, 70] this product
can be performed more efficiently using the FFT, which would further reduce the
cost to O(n log n + sn). The total cost of the algorithm is now O(s n log n + s2n)

operations.

Algorithm 6.2 The double CBC algorithm for POD weights

Given n, s, bounds of the form (6.3), order dependent weight factors {Γ`}s`=0, and
the weight in the first dimension γ1. Set z1 = 1, H0,0 = B1/Γ1, p0,0 = 1. Then for
each i = 2, . . . , s,

1. For ` = 0, . . . , i− 1, update Hi−1,` using (6.11) and pi−1,` using (6.16).
2. Calculate Gi using (6.15) and FFT.
3. Choose zi ∈ Un to minimise Gi(z1, . . . , zi−1, zi).
4. Set γi as in (6.14) and update the mean-square error bound (6.12).

We have so far neglected the question of how to choose the order dependent
weight factors Γ`. Three possible choices are:

• Γ` given a priori, such as by the common choice Γ` = `!.
• Γ` = Γ`(η), that is, the order dependent weight factors of the weights γu(η)

from the formula (6.17) below. In this case we are still left with the predica-
ment of how to choose η, a choice which this algorithm aimed to circumvent.
• Γ` = B`. Here the recursion for the bound on the norm (6.10) is the same as

the product weight case (6.7), that is, the terms Hi,` are no longer required.
Further, since there is some inherent connection between the form of the bound
on the norm and the weights this choice seems more natural than the other
two.

6.3 The iterated CBC algorithm

Combining (6.6) with the upper bound on the shift-averaged worst-case error (2.16)
we have that the mean-square error of a CBC constructed lattice rule approximation
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is bounded above by

E∆

[∣∣Is(f)−Qsh
n,s(z; ·)f

∣∣2] ≤
 1

ϕ(n)

∑
∅6=u⊆{1:s}

γηu

(
2ζ(2η)

(2π2)η

)|u| 1
η

×

 ∑
u⊆{1:s}

1

γu
B|u|

∏
j∈u

β2
j

 for all η ∈
(

1
2
, 1
]
.

From [60, Lemma 6.2], the weights that minimise this error bound for each η ∈
(

1
2
, 1
]

are of POD form

γu(η) = Γ|u|(η)
∏
j∈u

γj(η) =

(
B|u|

∏
j∈u

(2π2)ηβ2
j

2ζ(2η)

) 1
1+η

. (6.17)

For each η ∈
(

1
2
, 1
]
the corresponding weights γ(η) = {γu(η)}u⊆{1:s} can be taken

as input into the CBC algorithm to construct a lattice rule generating vector that,
through the weights, depends on η. We will label such a generating vector as z(η).
Now that we know the weights γ(η) and generating vector z(η) explicitly, from (6.6),
the mean-square error of the resulting QMC approximation is bounded by

E∆

[∣∣Is(f)−Qsh
s,n(z; ·)f

∣∣2] ≤ (esh
n,s,γ(η)(z(η))

)2
Ms,γ(η) =: En,s,z(η)(η) . (6.18)

The goal of the iterated CBC (ICBC) algorithm is to carry out iterations
of the original CBC algorithm to choose an η that minimises the right hand side of
(6.18). However, since each component zj is obtained by a minimisation over a set of
integers and because this minimisation depends on the weights (and hence η), when
treated as a function of η the shift-averaged worst-case error is discontinuous. Hence,
we cannot guarantee that a minimum exists and as such our algorithm heuristically
searches for a “good” value of η. As mentioned in the introduction, the choice of η
is non-trivial since one needs to balance the size of the constant and the theoretical
convergence rate.

Suppose that in the upper bound (6.18) the generating vector z remains fixed,
then the upper bound, En,s,z(η), is a continuous function of the single variable η
and can be minimised numerically.

The idea behind this algorithm is at each step of the iteration to use En,s,z(k)(η)

as an approximation to the right hand side of the upper bound (6.18). In this way
the next iterate ηk+1 is taken to be the minimiser of En,s,z(k)(η), which can be found
numerically using a quasi-Newton method.
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Algorithm 6.3 The iterated CBC algorithm

Given n, s, bounds of the form (6.3), an initial η0 ∈
(

1
2
, 1
]
, a tolerance τ and a

maximum number of iterations kmax. For k = 0, 1, 2, . . . , kmax:

1. Generate the weights γu(ηk) using (6.17).
2. Construct the generating vector z(k) from the original CBC algorithm with

weights γu(ηk).

3. If
∣∣∣∣ d

dη
En,s,z(k)(ηk)

∣∣∣∣ < τ then end the algorithm.

4. Otherwise, choose ηk+1 to be the minimiser of En,s,z(k)(η), found numerically
using a quasi-Newton algorithm.

Remark 6.2. For the quasi-Newton algorithm in Step 4 we require the derivative
of En,s,z, for fixed z, with respect to η

dEn,s,z
dη

=

 ∑
∅6=u⊆{1:s}

γ′u(η)

(
1

n

n−1∑
k=0

∏
j∈u

B2

({
kzj
n

})) ∑
u⊆{1:s}

B|u|
∏

j∈u β
2
j

γu(η)


−

 ∑
∅6=u⊆{1:s}

γu(η)

(
1

n

n−1∑
k=0

∏
j∈u

B2

({
kzj
n

})) ∑
u⊆{1:s}

γ′u(η)

γ2
u(η)

B|u|
∏
j∈u

β2
j

 ,

where the derivative of each weight with respect η is

γ′u(η) = γu(η)

− log

(
B|u|

∏
j∈u

(2π2)
η
β2
j

2ζ(2η)

)
(1 + η)2

+
|u|
(

log(2π2)− 2ζ′(2η)
ζ(2η)

)
(1 + η)

 .

6.4 Numerical results

For the numerical results we look at how each new method performs for different
types of bounds (6.3), that is, for different sequences β := (βi)

s
i=1 and B := (B`)

s
`=1.

As a figure of merit we will use the upper bound on the root-mean-square (RMS)
error (cf. (6.6)), which we denote by

En,s,β,B(γ, z) := esh
n,s,γ(z)

√
Ms,γ .

Here we have specifically used this notation to indicate the dependence on the se-
quences β, B but also to emphasise that this upper bound is primarily a function
of γ and z, the outputs of our algorithms. Note also that in Tables 6.2–6.8 the
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results given for our algorithms are guaranteed error bounds (in the RMS sense) for
integrands that satisfy the appropriate bounds.

In the examples let the maximum dimension be s = 100 and the number of
points n be prime and ranging up to 32,003. Here we choose n to be prime because
it makes the “fast” aspects of the implementation simpler, but note that n prime is
not a requirement of either algorithm. Also, we use the notation “e” for the base-10
exponent.

6.4.1 Product weights

As a start, let B` = 1 for all ` = 1, . . . , s, and consider the cases βi = i−2, βi = 0.5i

and βi = 0.8i. With B` = 1 it is natural to restrict attention to product weights. The
results for this case are given on the next page in Tables 6.2, 6.3, 6.4, respectively.
These tables compare results for En,s,β,B from the DCBC, ICBC algorithms with the
original CBC algorithm using common choices of product weights. The choices of
common weights are γi = i−1.1, γi = i−2 and γi(η) as in (6.17) with η = 0.6, 1. The
row labelled “rate” gives the exponent (x) for a least-squares fit of the result En,s,β,B
to a power law (n−x). The bold font indicates entries with the lowest worst-case
error bound.

Comparing results for the two new algorithms, note that for βi = i−2 (Table 6.2)
the results of the DCBC algorithm are better, while for βi = 0.5i, 0.8i (Tables 6.3,
6.4) the ICBC algorithm produces better bounds, and so it is not the case that one
algorithm is always better than the other. However, in all cases the ICBC algorithm
performs as well as or better than the original CBC algorithm with common choices
of weights.

Table 6.1 gives the final value of η, denoted η∗, resulting from the ICBC algorithm
for our three choices of β, along with the resulting RMS error bound. Notice that,
as expected the value of η∗ found by the algorithm appears to approach 0.5 as n
increases, albeit very slowly.

n βi = i−2 βi = 0.5i βi = 0.8i

251 0.672 0.616 0.756
499 0.668 0.615 0.744
997 0.661 0.610 0.735
1999 0.657 0.607 0.725
4001 0.652 0.604 0.715
7993 0.645 0.601 0.711
16001 0.642 0.597 0.700
32003 0.637 0.594 0.696

Table 6.1: Value of η∗ from ICBC for product weights with βi = i−2, 0.5i and 0.8i.
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Variants CBC with common weights
n DCBC ICBC γi = i−1.1 γi = i−2 γi(η = 0.6) γi(η = 1)

251 6.8e-3 7.0e-3 3.5e-2 7.5e-3 8.2e-3 1.3e-2
499 3.5e-3 3.6e-3 2.1e-2 4.0e-3 4.2e-3 7.6e-3
997 1.8e-3 1.9e-3 1.3e-2 2.2e-3 2.2e-3 4.3e-3
1999 9.7e-4 1.0e-3 7.8e-3 1.2e-3 1.1e-3 2.4e-3
4001 5.1e-4 5.2e-4 4.8e-3 6.3e-4 5.8e-4 1.4e-3
7993 2.7e-4 2.7e-4 2.9e-3 3.4e-4 2.9e-4 7.8e-4
16001 1.4e-4 1.4e-4 1.8e-3 1.9e-4 1.5e-4 4.4e-4
32003 7.4e-5 7.5e-5 1.1e-3 1.0e-4 7.9e-5 2.5e-4
rate 0.93 0.93 0.71 0.88 0.95 0.82

Table 6.2: Results for the root-mean-square error bound En,s,β,B for βi = i−2:
DCBC, ICBC and CBC results for common choices of weights.

Variants CBC with common weights
n DCBC ICBC γi = i−1.1 γi = i−2 γi(η = 0.6) γi(η = 1)

251 4.1e-3 3.3e-3 2.8e-2 5.5e-3 3.3e-3 6.7e-3
499 2.1e-3 1.7e-3 1.7e-2 2.9e-3 1.7e-3 3.6e-3
997 1.1e-3 8.6e-4 1.0e-2 1.6e-3 8.6e-4 2.0e-3
1999 5.6e-4 4.4e-4 6.2e-3 8.6e-4 4.4e-4 1.1e-3
4001 2.9e-4 2.2e-4 3.8e-3 4.6e-4 2.2e-4 5.8e-4
7993 1.5e-4 1.1e-4 2.3e-3 2.5e-4 1.1e-4 3.1e-4
16001 7.6e-5 5.9e-5 1.4e-3 1.4e-4 5.9e-5 1.7e-4
32003 3.9e-5 3.0e-5 8.7e-4 7.5e-5 3.0e-5 9.3e-5
rate 0.96 0.96 0.71 0.88 0.97 0.88

Table 6.3: Results for the root-mean-square error bound En,s,β,B for βi = 0.5i:
DCBC, ICBC and CBC results for common choices of weights.

Variants CBC with common weights
n DCBC ICBC γi = i−1.1 γi = i−2 γi(η = 0.6) γi(η = 1)

251 9.9e-2 8.3e-2 2.0e-1 2.8 1.6e-1 1.2e-1
499 5.7e-2 5.0e-2 1.2e-1 1.5 8.9e-2 7.2e-2
997 3.5e-2 2.9e-2 7.5e-2 8.2e-1 5.1e-2 4.5e-2
1999 2.1e-2 1.7e-2 4.6e-2 4.4e-1 2.8e-2 2.8e-2
4001 1.2e-2 1.0e-2 2.8e-2 2.4e-1 1.6e-2 1.8e-2
7993 7.3e-3 5.9e-3 1.7e-2 1.3e-1 9.1e-3 1.1e-2
16001 4.3e-3 3.5e-3 1.0e-2 7.1e-2 5.0e-3 6.7e-3
32003 2.5e-3 2.0e-3 6.4e-3 3.9e-2 2.9e-3 4.2e-3
rate 0.75 0.75 0.71 0.88 0.82 0.69

Table 6.4: Results for the root-mean-square error bound En,s,β,B for βi = 0.8i:
DCBC, ICBC and CBC results for common choices of weights.
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Figures 6.1a and 6.1b compare the weight γi in each dimension for the DCBC,
ICBC algorithms, with γi = i−2 as a reference, for βi = i−2 and βi = 0.5i, respec-
tively. Here n = 1999.
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(b) βi = 0.5i

Figure 6.1: Weight in each dimension found from DCBC and ICBC, with γi = i−2

for comparison (n = 1999).

Figure 6.2 compares the RMS error bound in each dimension for the DCBC and
ICBC algorithms, for βi = 0.8i with n = 1999. Notice that due to the greedy nature
of the DCBC algorithm, it performs better in the earlier dimensions, however, the
ICBC algorithm produces weights with a better bound overall.
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Figure 6.2: En,s,β,B in each dimension for DCBC and ICBC with βi = 0.8i (loglog
scale).
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6.4.2 POD weights

Now we look at the performance of each algorithm for combinations of B` = ` and
B` = `! with βi = i−2 and βi = 0.5i, the results are given in Tables 6.5–6.8. Each
table presents the RMS error bound En,s,β,B obtained from the DCBC algorithm
for different choices of order dependent weights, and those obtained from the ICBC
algorithm along with the output η∗. With regards to the strategy for choosing Γ` in
the DCBC algorithm for POD weights, in three out of the four cases the best choice
was to let Γ` = B` (see Tables 6.5–6.7). However, in all cases the results are similar
and indicate that the choice of Γ` does not greatly effect the final bound En,s,β,B.

DCBC ICBC
n En,s,β,B (Γ` = B`) En,s,β,B (Γ` = `!) En,s,β,B η∗

251 8.6e-3 8.5e-3 8.7e-3 0.680
499 4.6e-3 4.5e-3 4.6e-3 0.673
997 2.5e-3 2.5e-3 2.5e-3 0.666
1999 1.3e-3 1.3e-3 1.3e-3 0.659
4001 6.9e-4 7.0e-4 6.8e-4 0.655
7993 3.7e-4 3.7e-4 3.6e-4 0.650
16001 1.9e-4 2.0e-4 1.9e-4 0.645
32003 1.0e-4 1.1e-4 1.0e-4 0.640
rate 0.91 0.90 0.92

Table 6.5: POD weight results with βi = i−2 and B` = `: En,s,β,B from DCBC for
different choices of Γ`, En,s,β,B from ICBC and η∗ from ICBC.

DCBC ICBC
n En,s,β,B (Γ` = B`) En,s,β,B (Γ` = `) En,s,β,B η∗

251 9.2e-3 1.1e-2 9.7e-3 0.692
499 5.0e-3 5.8e-3 5.1e-3 0.685
997 2.7e-3 3.2e-3 2.8e-3 0.679
1999 1.5e-3 1.7e-3 1.5e-3 0.673
4001 7.9e-4 9.6e-4 8.0e-4 0.667
7993 4.2e-4 5.2e-4 4.3e-4 0.661
16001 2.3e-4 2.8e-4 2.3e-4 0.656
32003 1.2e-4 1.6e-4 1.3e-4 0.651
rate 0.89 0.87 0.89

Table 6.6: POD weight results with βi = i−2 and B` = `!: En,s,β,B from DCBC for
different choices of Γ`, En,s,β,B from ICBC and η∗ from ICBC.
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DCBC ICBC
n En,s,β,B (Γ` = B`) En,s,β,B (Γ` = `!) En,s,β,B η∗

251 4.9e-3 5.0e-3 3.8e-3 0.619
499 2.5e-3 2.6e-3 2.0e-3 0.617
997 1.3e-3 1.4e-3 1.0e-3 0.612
1999 6.9e-4 7.2e-4 5.3e-4 0.608
4001 3.6e-4 3.8e-4 2.7e-4 0.605
7993 1.9e-4 2.0e-4 1.4e-4 0.602
16001 9.8e-5 1.0e-4 7.2e-5 0.597
32003 5.1e-5 5.3e-5 3.7e-5 0.595
rate 0.94 0.93 0.95

Table 6.7: POD weight results with βi = 0.5i and B` = `: En,s,β,B from DCBC for
different choices of Γ`, En,s,β,B from ICBC and η∗ from ICBC.

DCBC ICBC
n En,s,β,B (Γ` = B`) En,s,β,B (Γ` = `) En,s,β,B η∗

251 5.1e-3 5.1e-3 4.0e-3 0.625
499 2.6e-3 2.6e-3 2.1e-3 0.622
997 1.4e-3 1.4e-3 1.1e-3 0.618
1999 7.3e-4 7.3e-4 5.6e-4 0.614
4001 3.9e-4 3.8e-4 2.9e-4 0.608
7993 2.0e-4 2.0e-4 1.5e-4 0.604
16001 1.1e-4 1.0e-4 7.9e-5 0.602
32003 5.6e-5 5.5e-5 4.1e-5 0.599
rate 0.93 0.93 0.95

Table 6.8: POD weight results with βi = 0.5i and B` = `!: En,s,β,B from DCBC for
different choices of Γ`, En,s,β,B from ICBC and η∗ from ICBC.

6.5 Conclusion

In this chapter we introduced two new CBC algorithms, the double CBC (DCBC)
algorithm and the iterated CBC (ICBC) algorithm, which only require parameters
specified by the problem to determine the point set for QMC integration, and provide
guaranteed error bounds by also choosing “good” weight parameters. The numerical
results show different examples where each algorithm performs better than the other.
Both algorithms generally outperform the original CBC algorithm with common
choices of weights. In all cases the entries En,s,β,B provide guaranteed upper bounds
on the root-mean-square error for the randomly shifted integration rules, under the
indicated assumptions on the bound parameters B` and βi.

Original research and my contribution

The work in this chapter is based on joint work with my two supervisors Frances Kuo
and Ian Sloan. The corresponding paper appeared in Mathematics and Computers
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in Simulation in early 2018 (see [32]), and has been available online at https:

//doi.org/10.1016/j.matcom.2016.06.005 since 2016.
The CBC algorithm and fast modifications have existed for some time, see, e.g.,

[52, 80, 81] and [69, 70], respectively. However, the idea to modify the CBC to also
choose the weights and the two algorithms, the Double CBC and the Iterated CBC,
are new.

For the first algorithm, Frances and Ian had the idea that the existing CBC
construction could be modified to also choose the weight parameters in a greedy
manner. I was tasked with exploring their idea, implementing the algorithm and
performing numerical tests. During the tests we discovered that our new algorithm
did not produce weights that were guaranteed to result in smaller error bounds than
previous methods. From this I had the idea to choose the “best η” and then devised
the Iterated CBC algorithm. Also, I implemented both algorithms and performed
the numerical results.
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Chapter 7

Concluding remarks

Although each of the previous chapters explored different topics in numerical in-
tegration, they were all concerned in some way or another with high-dimensional
integrals of the form (2.1), or (2.2) when the dimension is infinite, in combination
with how algorithms can utilise information about the derivatives of the integrand,
both theoretically and practically. The main results of this thesis, which are also
original, have been as follows.

In Chapter 3, we successfully applied Quasi-Monte Carlo (QMC) methods to a
class of elliptic eigenvalue problems with coefficients that depend on infinitely-many
stochastic parameters. The full algorithm approximated the expected value of the
smallest eigenvalue (or a linear functional of the corresponding eigenfunction) by
truncating the stochastic dimension, discretising the spatial domain using finite ele-
ments and then approximating the expected value (a high-dimensional integral) by
a QMC lattice rule. The bulk of the theoretical analysis in this chapter was involved
with proving explicit bounds on the mixed derivatives of the minimal eigenvalue and
its eigenfunction. These bounds allowed us to perform a full error analysis, where
we obtained results that in almost all cases give the same convergence rate as the
results for the corresponding PDE source problem. Also, at the end of the chap-
ter we presented numerical results on the QMC convergence of our approximations,
which behave exactly as predicted by our theory.

Chapter 4 explored different ways to efficiently implement the Multivariate De-
composition Method (MDM) using Smolyak and QMC quadrature rules. Here we
developed fast reformulations of the MDM by exploiting the structure in both the
anchored decomposition and the quadrature rules used. We also provided explicit
pseudocodes for constructing the active set and for running each of our fast, refor-
mulated MDM approximations. Finally, we provided numerical results for applying
the MDM to an example integrand, including estimates of the error, which behave
as expected, and timing results comparing naive implementations with our fast
reformulations, which clearly demonstrate the improved efficiency of our new refor-
mulations. Although the main results of this chapter were the fast reformulations,
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until this work the MDM was purely a theoretical algorithm, hence, even the first
naive implementation is an achievement in itself.

Then in Chapter 5 we focussed on the truncation component of the MDM, in-
troducing two new algorithms for constructing active sets in the specific case of
inputs in product form. The first new algorithm produced optimal active sets—in
the sense that for a given error request they have the smallest cardinality of any
active set. The second algorithm was a simplification that constructed quasi-optimal
active sets that were possibly larger. However, in all of the numerical results pre-
sented the difference between the size of the optimal and quasi-optimal active sets
was minimal. Also, both the optimal and quasi-optimal active sets were smaller
than the sets yielded by the previous construction. In this chapter the analysis was
performed in the weighted setting, and the class of functions considered had mixed
first derivatives bounded in Lp spaces. However, the presentation of both algorithms
took generic inputs, and the general strategy for constructing optimal active sets
can easily be adapted to the setting without weights, in which case the inputs would
again involve bounds on the derivatives.

Finally, in Chapter 6 we introduced two algorithms for constructing lattice rule
generating vectors to be used for numerical integration, which also automatically
chose good function space weight parameters. There also the inputs to the algo-
rithms were bounds on the mixed first derivatives. Although there were different
situations where the two algorithms outperformed each other, in all of our numerical
experiments the new algorithms yielded lattice rules with smaller worst-case errors
than the original CBC algorithm with common choices of weights.

7.1 Future work & possible extensions

As discussed in Section 3.1 the study of QMC methods for stochastic eigenvalue
problems can be thought of as an extension of the work on applying QMC to a
PDE source problem with stochastic coefficients, see e.g., [60]. The stochastic PDE
source problem has in recent years inspired a large amount of research, in particular
on developing different QMC-based algorithms or on studying QMC for different
classes of PDE problems, see [57] for a survey. Thus, there is a clear path forward
with respect to future work on stochastic eigenvalue problems. Actually, there are
several clear paths forward, including the following.

Possibly the easiest extension would be to look at using higher-order QMC rules
to approximate the expected value. This should be relatively straightforward, be-
cause in Lemma 3.10 we also proved bounds on the higher-order derivatives that are
required for the error analysis of high-order rules.
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Another possibility would be to consider lognormal coefficients, as in e.g., [37],
where each stochastic parameter is independently, normally distributed. However,
handling such coefficients is not so straightforward, because although the analysis
would follow the same basic structure, most of the results on the regularity of the
eigenvalues (also eigenfunctions) would need to be reproved, and in this case de-
pendence on the stochastic parameters is much harder to control because now each
parameter belongs to R. In particular, one would have to reprove that simple eigen-
values are analytic in y and proving that the spectral gap is bounded independently
of y requires a new strategy.

Following from the success of multi-level algorithms for such PDE problems, see
e.g., [62], one could apply a multi-level QMC algorithm to approximate the expected
value. The difficulty here is that the error analysis for the eigenfunction requires
bounds on the spatial and stochastic derivatives simultaneously.

Other extensions of the eigenvalue problem include studying Bayesian inversion,
see e.g., [16], parametrising the coefficients using locally supported basis functions
as in [26] or instead of parametrising the coefficients using a Karhunen-Loève-type
series expansion one could approximate the random field directly using circulant
embedding techniques such as in [38].

Of course, these extensions are not mutually exclusive, and often it is interesting
to combine different avenues of study. For example, one could explore applying
multi-level QMC to an eigenvalue problem with log-normal coefficients as in [59].

Also, although the work on the source problem provides a template for future
research, as we saw in Chapter 3, for eigenvalue problems the corresponding analysis
presents its own nuances and can be more difficult due to their inherent nonlinear
nature. Clearly the application of QMC methods to stochastic eigenvalue problems
is an interesting new topic, and is one that offers a multitude of directions for future
study.

A possible extension of our work on the MDM is to study applying the algorithm
to different types of integrands, especially given that we now have several efficient
implementations. For example, it would be interesting to apply the MDM to an
integrand that arose from a stochastic PDE problem such as those discussed above.
It is already known that such integrands satisfy the required bounds on the deriva-
tives and so fit into the setting from Section 4.6. However, one would still have to
perform some analysis to combine the MDM with a method of approximating the
PDE, such as finite elements.
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7.2 A final word

Integrals of high and infinite-dimensional problems are, most of the time, very diffi-
cult to approximate numerically, because in general the problems themselves suffer
from the curse of dimensionality. But motivated by several applications there is
a real need to develop numerical integration algorithms that can efficiently handle
such problems, even as the dimension tends to infinity. As we have seen through-
out this thesis, the key to successful numerical integration in high dimensions is to
exploit structure, such as smoothness or sparsity, of the integrand.

As with all areas of numerical analysis, when approximating high-dimensional
integrals nothing comes free.
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