
On Capacity Estimation and Capacity-Safety Relationship in an
Air Transportation Network

Author:
Hossain, Md Murad

Publication Date:
2016

DOI:
https://doi.org/10.26190/unsworks/19118

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/56624 in https://
unsworks.unsw.edu.au on 2024-05-05

http://dx.doi.org/https://doi.org/10.26190/unsworks/19118
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/56624
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


On Capacity Estimation and
Capacity-Safety Relationship in an Air

Transportation Network

Md. Murad Hossain

M.Sc (Computer Sc.) University of New South Wales, Australia

B.Sc (Computer Sc. & Engg.) Rajshahi University of Engg. & Tech., Bangladesh

MANU E T MEN
TE

SCIENTIA

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosopy at the

School of Engineering and Information Technology (SEIT)

University of New South Wales

Australian Defence Force Academy

c⃝ Copyright 2016 by Md Murad Hossain

February, 2016





Abstract

Air transportation is a complex system of interlinked distributed networks in which
different components have their own constraints and performance measures. For
example, an airport network in which each airport is treated as a node and models
the departures/arrivals of flights as links considers capacity as its limiting factor.
Whereas, an airspace network that consists of airways (as links) and waypoints
(as nodes) providing an orderly flow of air traffic and safe separation between
flights considers collision risk as its limiting factor. To accommodate the increas-
ing demand to safely manage air traffic flow, it is imperative to understand the
interactions between these two components and the limiting factors that define
their characteristics. Understanding this relationship is a major consideration
when determining whether and which components should aim to increase safety
and capacity. In this thesis, I propose a model for airport network capacity esti-
mation and a model of airspace network risk analysis. I then develop a framework
for modelling and integrating airport and airspace networks in an overall air trans-
portation system. Finally, I propose a methodology for determining their complex
interactions to analyse the relationship between capacity and safety.

One challenge in analysing the capacity-safety relationship for air transportation
is measuring its capacity. In air transportation, capacities have traditionally been
measured based on the individual elements of the network, such as links (sector
capacity and airspace complexity) and nodes (terminals and runway throughput).
These measures obviously do not constitute the overall system-level capacity of
a network. This research involves developing a network-level capacity estimation
model and method. The proposed model does not require knowledge of an indi-
vidual airport’s capacity and offers an understanding of the relationship between
the flow capacity and safety metric of its corresponding airspace.

Experimental and empirical results establish the nature of the relationship between
airport network capacity and airspace safety when considered in an interacting air
transport system. As the hourly flow increases in the airport network, the overall
collision risk increases linearly and, after a certain level, crosses the target level of
safety. Such a capacity-safety relationship indicates that the capability of existing
air traffic control systems to safely handle projected growth in aircraft operations
appears to be artificially limited by the airspace.

i





Keywords

Air Transportation Network

Airport Network

Airspace Network

Network Capacity

Collision Risk

Complex Network

iii





Dedicated to
my family

v





Acknowledgements

All praises are due to Allah the almighty God, the most beneficent and the most
Merciful. I thank Him for bestowing His Blessings upon me to accomplish this
task.

No words of gratitude are enough to thank my supervisors, Dr. Sameer Alam and
Professor Hussein A. Abbass, School of Engineering and Information Technology,
UNSW, Canberra, who provided endless support, guidance and motivation to fulfill
this work. Their technical guidance, moral support and thoughtful approach to
study have trained me to complete this work. I give special thanks to Dr. Sameer
Alam for the intense concentration he gave to the writing of my publications and
this thesis.

I would like to thank the School of Engineering and Information Technology for
providing me with a full-fee studentship, and sponsoring my conferences. I am also
grateful to the University of New South Wales at the Australian Defence Force
Academy for providing me with the TFS with UCPRS, one of the most prestigious
scholarships in Australia, to complete this research.

I would like to thank Mr. Fareed Alawai and Mr. Fathi Thawadi of ICAO-
MIDRMA for providing the necessary traffic data and aeronautical information.

I would like to thank the Australian National Computational Infrastructure (NCI)
and INTERSECT, for providing a massive high-performance computing facility
which helped me to execute a large numbers of experiments.

I also express my heartiest gratefulness to my wife, Sharmin Aktar for her endless
encouragement, moral support and kindness and also to my adorable daughter
Manha Hossain and my other family members.

Appreciations also goes to my friends Dr. Mohammad Nurul Islam and his family,
Dr. Bin Zhang and many others for their help support and encouragements.

vii





Originality Statement

I hereby declare that this submission is my own work and, to the best of my knowl-
edge and belief, contains no material previously published or written by another
person, nor material that to a substantial extent has been accepted for the award
of any other degree or diploma at UNSW or any other educational institution,
except where due acknowledgement is made in the thesis. Any contribution made
to the research by colleagues, with whom I have worked at UNSW or elsewhere,
during my candidature, is fully acknowledged.

I also declare that the intellectual content of this thesis is the product of my own
work, except to the extent that assistance from others in the project’s design and
conception or in style, presentation and linguistic expression is acknowledged.

Md. Murad Hossain
UNSW, Canberra

ix





Authenticity Statement

I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations of formatting, they are the result of the
conversion to digital format.

Md. Murad Hossain
UNSW, Canberra

xi





List of Publications

Journal Publications

1. Md Murad Hossain, Sameer Alam, Fergus Symon and Henk Blom, A
Complex Network Approach to Analyze the Effect of Intermediate Waypoints
on Collision Risk Assessment, Journal of Air Traffic Control Quarterly, Vol.
22, Number 2, Page 87-114, 2014.

2. Sameer Alam,MdMurad Hossain, Fareed Al-Alawi, and Fathi Al-Thawadi,
Optimizing Lateral Airway Offset for Collision Risk Mitigation Using Differ-
ential Evolution, Journal of Air Traffic Control Quarterly, Vol. 23, Number
4, Page 1-24, 2015.

3. Md Murad Hossain and Sameer Alam, A Complex Network Approach
Towards Modeling and Analysis of Australian Airport Network, Journal of
Air Transport Management, Elsevier, Submitted.

4. Murad Hossain and Sameer Alam, An Evolutionary Optimization Ap-
proach for Capacity-Collision Risk Trade-off Analysis in Air Transportation
Network, Journal of Transportation Research Part C: Emerging Technolo-
gies, Elsevier, Submitted.

Conference Publications

5. Md Murad Hossain, Sameer Alam, Tim Rees and Hussein Abbass, Aus-
tralian airport network robustness analysis: a complex network approach.
Proceedings of the 36th Australasian Transport Research Forum (ATRF
2013), Brisbane, Queensland, Australia.

6. Fergus Symon, Sameer Alam,MdMurad Hossain and Henk Blom, Airspace
Network Characterization for Effect of Intermediate Waypoints on Collision
Risk Assessment, Proceedings of the 6th International Conference on Re-
search in Air Transportation, ICRAT-2014, Page 1-8, Istanbul, Turkey (Best
paper award).

7. Sameer Alam,MdMurad Hossain, Fareed Al-Alawi, and Fathi Al-Thawadi,
Shift for Safety: A Diffrential Evolution Approcah to Optimize Lateral Air-
way Offset for Collision Risk Mitigation, Eleventh USA/Europe Air Traf-
fic Management Research and Development Seminar (ATMRnD 2015),June
23rd - 26th 2015, Lisbon, Portugal (Best paper award ).

xiii



8. Sameer Alam, Murad Hossain, C. Lokan, S. Barry, G. Aldis, R. Butcher,
and Hussein Abbass, Real time prediction of worst case air traffic sector col-
lision risk using evolutionary optimization. Proceedings of the IEEE Sym-
posium on In Computational Intelligence, 2013, (pp. 72-79) (Nominated
for best paper award).

9. Murad Hossain, Sameer Alam and Hussein Abbass, A Dynamic Multi-
Commodity Flow Optimization Algorithm for Estimating Airport Network
Capacity, Proceedings of the 4th ENRI International Workshop on AT-
M/CNS, (EIWAC 2015), Tokyo, Japan.

xiv



Contents

Abstract i

Keywords iii

Acknowledgements vii

Originality Statement ix

Authenticity Statement xi

List of Publications xiii

List of Figures xxi

List of Tables xxvii

List of Acronyms 1

1 Introduction 3

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Research Questions and Hypothesis . . . . . . . . . . . . . . . . . . 8

1.3.1 Key Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Organisation of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Literature Review 17

xv



2.1 The Air Transportation System . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Airport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Airspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Air Navigation Service Providers . . . . . . . . . . . . . . . 27

2.2 Network Representation of Air Transportation System . . . . . . . 30

2.2.1 Air Transportation Network . . . . . . . . . . . . . . . . . . 32

2.2.1.1 Airport Network . . . . . . . . . . . . . . . . . . . 34

2.2.1.2 Airspace Network . . . . . . . . . . . . . . . . . . . 35

2.2.2 Interaction Between Networks . . . . . . . . . . . . . . . . . 39

2.3 Air Transport Network Constraints . . . . . . . . . . . . . . . . . . 41

2.3.1 Capacity Constraints . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1.1 Airport Capacity Constraints . . . . . . . . . . . . 42

2.3.1.1.1 Airport Capacity Estimation: . . . . . . . 43

2.3.1.2 Airspace Capacity Constraints . . . . . . . . . . . 45

2.3.1.2.1 Airspace Capacity Estimation: . . . . . . 45

2.3.2 Separation minima . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.3 Target Level of Safety . . . . . . . . . . . . . . . . . . . . . 48

2.3.4 Collision Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.4.1 Collision Risk Modelling Approaches . . . . . . . . 50

2.3.4.2 The Hsu Model . . . . . . . . . . . . . . . . . . . . 54

2.4 Network Capacity Estimation . . . . . . . . . . . . . . . . . . . . . 56

2.5 Evolutionary Computation in Air Transportation Problem . . . . . 58

2.5.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.2 Differential Evolution . . . . . . . . . . . . . . . . . . . . . . 62

2.5.3 Airport Capacity Management Using GA . . . . . . . . . . . 65

2.5.4 Application of EAs in Traffic Scenarios Generation . . . . . 66

2.6 The Emergent Questions . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Airport Network Modelling and Topological Analysis 71

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Airport Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 74

xvi



3.2.1 Unweighted AAN . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.2 Weighted AAN . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Network Characterization and Topological Features . . . . . . . . . 77

3.4 Topological Analysis of AAN . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 Degree and Weight Distribution Analysis . . . . . . . . . . . 86

3.4.2 Average Shortest Path Length . . . . . . . . . . . . . . . . . 89

3.4.3 Clustering Coefficient Analysis . . . . . . . . . . . . . . . . . 91

3.5 Centrality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5.1 Statistical Distribution of Centralities . . . . . . . . . . . . . 93

3.5.2 Relation Among Centralities . . . . . . . . . . . . . . . . . . 94

3.6 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6.1 Degree Correlation . . . . . . . . . . . . . . . . . . . . . . . 96

3.6.2 Clustering-Degree Correlation . . . . . . . . . . . . . . . . . 98

3.7 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.7.1 Failure Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.7.2 Measures for Robustness . . . . . . . . . . . . . . . . . . . . 100

3.7.3 Tolerance to Vertex Failure . . . . . . . . . . . . . . . . . . 101

3.7.4 Critical Node Identification . . . . . . . . . . . . . . . . . . 103

3.7.5 Tolerance to Link Failure . . . . . . . . . . . . . . . . . . . . 106

3.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4 Airport Network Flow Capacity Estimation 109

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Proposed Heuristic Solution Approach . . . . . . . . . . . . . . . . 116

4.3.1 Initial Feasible Solution Generation . . . . . . . . . . . . . . 118

4.3.2 Iterative Solution Improvement . . . . . . . . . . . . . . . . 119

4.3.2.1 Shifting . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.2.2 Swapping . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.2.3 Inserting . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xvii



4.4.1 Test Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 Airspace Network Modelling and Topological Analysis 133

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 Modelling of an Airspace . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.1 Airspace Network . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.1.1 Direct Route Network (DRN) Model . . . . . . . . 138

5.2.1.2 Intermediate Waypoints Network (IWN) Model . . 139

5.2.2 ICAOs Form 4 Data . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Topological Properties of Airspace Network . . . . . . . . . . . . . . 141

5.3.1 Comparison Between DRN and IWN . . . . . . . . . . . . . 142

5.4 Collision Risk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.1 Vertical Collision Risk Model . . . . . . . . . . . . . . . . . 146

5.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6.1 Region and Traffic Data . . . . . . . . . . . . . . . . . . . . 151

5.6.2 Experimental Parameters and Supplementary data . . . . . 152

5.7 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7.1 Network Features . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7.2 Collision Risk and Passing Frequency . . . . . . . . . . . . 158

5.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Airspace Network Optimization for Collision Risk 163

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 Navigation Precession and Collision Risk . . . . . . . . . . . . . . . 170

6.3.1 Vertical Collision Risk . . . . . . . . . . . . . . . . . . . . . 170

6.3.2 Strategic Lateral Offset Procedure (SLOP) . . . . . . . . . . 171

6.4 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xviii



6.4.1 Optimization Stage . . . . . . . . . . . . . . . . . . . . . . . 172

6.4.2 Correlation Stage . . . . . . . . . . . . . . . . . . . . . . . 173

6.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5.1 Evolutionary Framework . . . . . . . . . . . . . . . . . . . . 174

6.5.2 Chromosome Representation . . . . . . . . . . . . . . . . . . 174

6.5.3 The Airway Structure and Lateral Offset . . . . . . . . . . . 175

6.5.4 Evolution Process . . . . . . . . . . . . . . . . . . . . . . . . 176

6.5.5 Airway Traffic Features . . . . . . . . . . . . . . . . . . . . . 178

6.5.6 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . 179

6.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.6.1 Test Network . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.6.2 Collision Risk model . . . . . . . . . . . . . . . . . . . . . . 181

6.6.3 Evolution Parameters . . . . . . . . . . . . . . . . . . . . . . 181

6.6.4 Air Traffic Simulator . . . . . . . . . . . . . . . . . . . . . . 182

6.7 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7 An Integrated Air Transportation Network for Capacity-Collision

Risk Relationship 193

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.3 Air Transportation Network Model . . . . . . . . . . . . . . . . . . 198

7.3.1 Network Generation . . . . . . . . . . . . . . . . . . . . . . 198

7.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.4.1 Network Capacity Estimation . . . . . . . . . . . . . . . . . 202

7.4.2 Traffic Scenario Generation . . . . . . . . . . . . . . . . . . 203

7.4.2.1 Evolutionary Framework Design . . . . . . . . . . . 203

7.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

xix



8 Conclusion 217

8.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.1.1 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Appendix A 223

Bibliography 235

xx



List of Figures

1.1 Conceptual representation of the interactions in ATN . . . . . . . . 8

1.2 Relationships among research questions . . . . . . . . . . . . . . . . 11

1.3 Organisation of thesis chapters . . . . . . . . . . . . . . . . . . . . . 15

2.1 Ranking of countries according to its number of airport. . . . . . . . 19

2.2 Geographical distribution of airports in Australia . . . . . . . . . . 20

2.3 Flight information region in Australia . . . . . . . . . . . . . . . . . 25

2.4 Sector configurations in Australian airspace . . . . . . . . . . . . . 26

2.5 Flight route (air-route) between Sydney and Melbourne . . . . . . 27

2.6 Multiple network layered composition in air transportation . . . . . 31

2.7 Infrastructure network layer . . . . . . . . . . . . . . . . . . . . . . 32

2.8 An Air Transportation Network (ATN) and its sub-networks . . . . 33

2.9 Airspace map and its corresponding network representation . . . . . 36

2.10 Vertical separation of airspace using flight levels. . . . . . . . . . . 37

2.11 Airway network in different flight levels. . . . . . . . . . . . . . . . 38

2.12 Airport and airspace network interaction by flight path . . . . . . . 40

2.13 Capacity envelope for an airport for VFR and IFR condition . . . . 44

2.14 A geometric representation of the Hsu collision risk model of two

aircrafts in a crossing scenario ( upper part- the concept of overlap-

ping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.15 Principle of genetic algorithms . . . . . . . . . . . . . . . . . . . . . 60

3.1 The Australian Airport Network. . . . . . . . . . . . . . . . . . . . 75

3.2 Cumulative degree distribution of AAN . . . . . . . . . . . . . . . 86

xxi



3.3 Cumulative weight distribution of AAN . . . . . . . . . . . . . . . 87

3.4 Average strength s(k) as a function of degree(k). . . . . . . . . . . . 88

3.5 Statistical distribution of different centralities . . . . . . . . . . . . 92

3.6 Spatial distribution of degree, closeness and betweenness. . . . . . . 93

3.7 Degree Correlation of AAN (left-unweighted, right-weighted) . . . 97

3.8 Correlation between degree and clustering coefficient . . . . . . . . 98

3.9 AAN robustness against different node failure strategies . . . . . . . 102

3.10 AAN robustness against different edge failure strategies . . . . . . . 106

4.1 An illustration of shifting operation in a SB. . . . . . . . . . . . . . 119

4.2 An example of swapping operation. . . . . . . . . . . . . . . . . . 120

4.3 Example network-I, a fully connected network of three identical

nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 Network of hub nodes of AAN . . . . . . . . . . . . . . . . . . . . . 124

4.5 Status of the nodes in network-I during steady state. . . . . . . . . 125

4.6 Hourly traffic flow for Network-I over a period of 24 hours. . . . . . 126

4.7 Hourly traffic of Network-I. . . . . . . . . . . . . . . . . . . . . . . 127

4.8 Hourly traffic of Network-II. . . . . . . . . . . . . . . . . . . . . . . 127

4.9 Network capacity vs network size with constant average degree . . 129

4.10 Network capacity vs average degrees for constant size network . . . 130

5.1 Airspace network modelled as a graph . . . . . . . . . . . . . . . . 137

5.2 An example of DRN . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Difference between a DRN and IWN generation process. . . . . . . 139

5.4 Flight paths direct routes vs intermediate waypoints routes . . . . 140

5.5 DRN and IWN of Oman FIR . . . . . . . . . . . . . . . . . . . . . 142

5.6 Comparison of topological properties of Omans DRN and IWN . . . 144

5.7 Proposed methodology for network characteristics analysis . . . . . 148

5.8 Map of MIDRMA region comprising of 12 ARTCC/FIR/UIRs. . . 151

5.9 Technical Vertical Risk Computation Process. . . . . . . . . . . . . 154

5.10 Average Degree of DRN and IWN for MIDRMA countries. . . . . 155

xxii



5.11 Clustering Coefficient measure of DRN and IWN for MIDRMA

countries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.12 Closeness Centrality measure of DRN and IWN for MIDRMA coun-

tries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.13 Betweenness Centrality measure of DRN and IWN for MIDRMA

countries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.14 Characteristics Path Length in DRN and IWN for MIDRMA coun-

tries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.15 Technical Vertical Risk with DRN and IWN for MIDRMA coun-

tries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.16 Highly structured airway route in UAE and in northern part of

Bahrain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.1 Merging of waypoints in an airspace network . . . . . . . . . . . . 166

6.2 Example of shifting waypoints in an airspace network . . . . . . . . 167

6.3 Proposed approach for airspace collision risk management . . . . . 169

6.4 Vertical collision risk due to vertical error with and without lateral

offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5 Airspace network optimisation methodology by airway’s offset evo-

lution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.6 Chromosome design with offset values for each airway for a traffic

scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.7 Airway structure with 4nm spacing from airway centreline . . . . . 176

6.8 Bahrain RVSM airspace and airway structure . . . . . . . . . . . . 180

6.9 Fitness value after the final generation with different crossover rates 182

6.10 Convergence of DE process over 100 generations . . . . . . . . . . . 183

6.11 Offset frequency in each discrete lateral offset interval . . . . . . . . 188

6.12 Error residual plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.1 Interactions and constraints of airport and an airspace network in

an ATN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.2 Hypothetical safety-capacity relationship curves . . . . . . . . . . . 196

xxiii



7.3 Conceptual approach for analysing capacity-collision risk relation-

ship in an ATN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.4 Example of Delaunay triangulation network . . . . . . . . . . . . . 198

7.5 Random airport network configuration generated from Delaunay

triangulation point set (Q) . . . . . . . . . . . . . . . . . . . . . . . 199

7.6 ATN of 20 airports (filled squares (�) represents present airports

and stearics (∗) waypoints) . . . . . . . . . . . . . . . . . . . . . . . 200

7.7 Evolutionary framework for analysing capacity-collision risk rela-

tionship in ATN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.8 Chromosome design with encoded flight level (FL) for each flight in

a given traffic scenario . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.9 Layout of test ATNs . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.10 Selection of evolution parameter (maximum generation and crossover

rate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.11 Best fitness values after final generation with different crossover

rates (cr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.12 Hourly flow of test ATNs for es = 0) . . . . . . . . . . . . . . . . . 212

7.13 Percentages of usage of different flight levels . . . . . . . . . . . . . 214

7.14 Capacity-Collision risk relationship . . . . . . . . . . . . . . . . . . 214

9.1 A one-to-one comparison of topological properties of Barhains DRN

and IWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.2 A one-to-one comparison of topological properties of Egypts DRN

and IWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.3 A one-to-one comparison of topological properties of Irans DRN

and IWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9.4 A one-to-one comparison of topological properties of Iraqs DRN

and IWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

9.5 A one-to-one comparison of topological properties of Jordans DRN

and IWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

xxiv



9.6 A one-to-one comparison of topological properties of Kuwaits DRN

and IWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

9.7 A one-to-one comparison of topological properties of Saudis DRN

and IWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9.8 A one-to-one comparison of topological properties of Syrias DRN

and IWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9.9 A one-to-one comparison of topological properties of UAEs DRN

and IWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9.10 A one-to-one comparison of topological properties of Yemens DRN

and IWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

9.11 Initial feasible solution generation process . . . . . . . . . . . . . . 233

xxv





List of Tables

2.1 Features of different airspace class ([169]) . . . . . . . . . . . . . . 23

2.2 Characteristics of airport network of different countries/regions . . . 35

2.3 Various TLS for airspace operations . . . . . . . . . . . . . . . . . . 49

3.1 Top 20 cities in Australia by number of passengers. . . . . . . . . . 76

3.2 Network Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Characteristics of various networks (unweighted). . . . . . . . . . . 85

3.4 Distribution of the air routes by number of connection flights. . . . 89

3.5 Characteristics of AAN and other countries/regions . . . . . . . . . 90

3.6 Top 20 Cities by Degree, Closeness and Betweenness . . . . . . . . 95

3.7 Relationship between centralities. . . . . . . . . . . . . . . . . . . . 96

3.8 Node importance in terms of robustness measures. . . . . . . . . . . 104

4.1 Separation minima (in minutes) between aircraft considered in this

chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Hourly capacity of test networks (average of 30 different runs) . . . 126

4.3 Summary of the node’s hourly utilisation of Network-II at steady

state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Summary of the node uses of Network-I . . . . . . . . . . . . . . . . 128

4.5 Summary of delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 Number of flights in each region/country for the month of October

2012 and the total number of flight hours flown . . . . . . . . . . . 152

5.2 Collision Risk Model’s parameters . . . . . . . . . . . . . . . . . . . 153

xxvii



5.3 Vertical collision risk assessment (passing frequency and technical

vertical risk) For MIDRMA region . . . . . . . . . . . . . . . . . . . 158

6.1 Best Fitness Value after 100 Generations . . . . . . . . . . . . . . . 184

6.2 Evolved optimal lateral offset value for each airway and features of

the best individual in the final population . . . . . . . . . . . . . . 184

6.3 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.4 Summary of Regression Statistics . . . . . . . . . . . . . . . . . . . 189

6.5 Regression Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.1 Diameters of cylinder (in metres) for different proximity pairs . . . 207

7.2 Connectively of the airports in ATN-I. . . . . . . . . . . . . . . . . 210

7.3 ATN-I link’s distance and number of way points . . . . . . . . . . . 210

7.4 ATN-II link’s distance and number of way points . . . . . . . . . . 211

7.5 Hourly flight movements in test ATN I . . . . . . . . . . . . . . . . 213

7.6 Hourly flight movements in test ATN II . . . . . . . . . . . . . . . 213

xxviii



xxix





List of Acronyms

ANSP Air Navigation Service Provider

ASE Altimetry System Error

ATC Air Traffic Controller

ATM Air Traffic Management

ATOMS Air Traffic Operations and Management Simulator

ATS Air Transportation System

CNS Communication, Navigation and Surveillance

DRN Direct Route Network

FL Flight Level

GNSS Global Navigation Satellite System

IATA International Air Transport Association

ICAO International Civil Aviation Organization

IFR Instrument Flight Rules

IMC Instrument Meteorological Conditions

IWN Intermediate Waypoints Network

MCF Multi-Commodity Flow

MIDRMA Middle East Regional Monitoring Agency

RVSM Reduced Vertical Separation Minimum

SLOP Strategic lateral Offset Procedure

TLS Target Level of Safety

VFR Visual Flight Rules

VMC Visual Meteorological Conditions

1





Chapter 1

Introduction

This chapter contains a brief introduction to the perceived problem and motivation

for conducting this research, its specific objectives and major contributions, and

organisation of this thesis.

1.1 Overview

The air traffic has grown dramatically worldwide during the last few decades and is

projected to continue. According to the International Civil Aviation Organization

(ICAO) forecast, worldwide air traffic is expected to continue to increase at a

rate of 4.7% per annum until 2025 [50]. There is growing concern among airlines

and air navigation service providers (ANSPs) that the air transportation network

(ATN) in some regions is experiencing severe capacity-demand imbalances [231].

In the light of unprecedented growth in air traffic worldwide, ANSPs are exploring

new paradigms (e.g. SESAR [98] and NextGen [185]) and air traffic procedures

such as dynamic sectorisation [215], automated separation assurance [70, 142, 152],

and Reduced Vertical Separation Minimum (RVSM) [116] for the efficient and safe

management of an ATN. An ATN can be considered a composition of two major

networks: (i) an airport network–in which each airport is treated as a node and the

flights connecting them create the links; (ii) an airspace networkwhich considers

waypoints as nodes and airways as making the links. Although in many cases the

3
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airports and airspace system of an ATN act as temporal bottlenecks [165], they

are expected to support such growth if managed efficiently and effectively.

It is usually understood that the capacity is dependent mainly on the airports,

with the airspaces considered relatively unconstrained [76, 219]. In the air trans-

portation domain, the capacity of an airspace or airport normally represents its

ability to safely handle a number of aircraft per unit of time [24]. However, one

of the major constraints in air traffic operations is maintaining safe separation

among the aircrafts. One key measure for judging the safety of operations in an

airspace is the collision risk estimate. According to the ICAO, the unit of colli-

sion risk is fatal accidents per aircraft flight hour [113]. Increasing the number of

flight operations (arrivals and departures) in an airport network will increase the

traffic flow in the upper airspace, which will increase the crossing frequency and

possibility of loss of separation. In such a situation, it is vital to understand the

relationship between the capacity and safety of an ATN. Despite the interest in

increasing both capacity and safety in an ATN, there is no industry- or regulatory-

recognised ‘standard’ to limit the capacity of an ATN based on a ceiling imposed

by the regulation authorities on airspace safety. Virtually no research has been

accomplished that links the upper limits of capacity to safety.

In current operational concepts, air traffic flow management (ATFM) plays a cen-

tral role in maintaining capacity-demand balancing by adjusting traffic flows ac-

cording to the capacity of an airport or air traffic control airspace. Each airport

and air traffic control sector declares its maximum capacity. When the declared

capacity is exceeded, ATFM approaches are taken to reduce the traffic demand

to manage congestion. There are two popular ATFM strategies: holding patterns

and ground delay programmes. Of these, the ground delay programme is proven

to be very effective as it delays flights before they depart from their origin airports,

keeping traffic at an acceptable level for the effected airport or airspace. However,

the real challenge is to manage the congestion of an airspace that may lead to an

increase in the risk of collision when demand exceeds the capacity limit.

The capacity of an air transportation network has generally been measured at

Murad Hossain July 2016
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the levels of its individual elements, such as links (sector capacity and airspace

complexity) and nodes (terminals and runway throughput), which obviously does

not constitute its overall system-level capacity. From the network point of view,

the system-level capacity of an ATN can be measured from its underlying airport

network. In an airport network the nodes are serving as a source/sink for the

traffic flow, which enables us to develop a mathematical model to estimate the

capacity upper bound. However, for complex metrics such as the collision risk

of an airspace, it is necessary to develop high-fidelity discrete-event simulations.

Although significant effort has been expended on developing large-scale, discrete-

event simulations of an air transportation network system, a simple macroscopic

theoretical model for estimating the system-level capacity of an airport network is

lacking. Developing an airport network capacity estimation model and integrating

it with a large-scale simulation environment will enable us to gain insights into

the relationship between capacity and safety in an ATN. Moreover, the utility

of such a framework should allow policy decision-makers to understand the basic

relationships between observable metrics and macroscopic investment options in

the airport network or the airspace infrastructure.

Traditionally, a network’s flow capacity is determined by modelling it as a classi-

cal multi-commodity flow (MCF) problem [190], examples being in communication

networks, and water distribution and electric power systems. One of the major

requirements of existing algorithms for solving an MCF problem is that the re-

sources required by the commodities at a node or link need to be static (not change

over time) and must be independent of the mixing/interactions among the com-

modities. As a result, MCF problem modelling and its algorithms are limited to

certain types of network and not precisely applicable to air transportation. MCF

modelling and algorithms are not directly applicable to an air transportation net-

work for the following reasons: (a) its movements involve flows of aircraft with

different speeds; (b) its flow is heterogeneous given the different wake vortices and

categories of aircraft, viz. light, medium and heavy; (c) different types of air-

craft require different amounts of resources at arrival and departure airports; (d)

there must be a minimum separation distance between two consecutive aircraft,

Murad Hossain July 2016
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which depends on the type of operation (landing or take-off) and the preceding

aircraft’s type and operation for managing wake vortices; (e) aircraft departing

from an airport are expected to land at destination airports within a time win-

dow because they cannot remain in the air indefinitely; (f) slot management; and

(g) the flows between different multiple origin-destination (O-D) pairs are not ex-

changeable or substitutable. In addition, managing safe separation among the

aircraft in an airspace and keeping overall collision risk within it below a certain

threshold leads to yet another set of constraints. Maintaining the collision risk

below a certain threshold and considering the abovementioned flow characteris-

tics make estimating the capacity of an air transportation network a complex, yet

interesting, problem to solve, which this thesis addresses.

In this thesis, I develop a model that extends the MCF formulation for estimating

the capacity of a given airport network without knowing its individual airports’

capacities. The key assumption of the proposed model is that it considers these

capacities as fixed time slots per hour that remain constant over time, with the

flows between connected airports considered as different commodities. Then, a

hill-climbing-based heuristic algorithm is developed to solve the MCF-based for-

mulation for an airport network. Finally, to investigate the capacity-safety rela-

tionship due to the interaction(s) between the airport and airspace network in an

ATN, I develop a framework that integrates the airport and airspace network. To

estimate the collision of the airspace network of a given airport network capacity

limit, the capacity of an airport network needs to be translated into traffic sce-

narios from which airspace collision risk can be estimated. For that purpose, I

propose an evolutionary computation-based framework that converts an airport

network’s capacity into air traffic scenarios. The traffic scenarios are then executed

in an air traffic simulator to calculate the airspace network’s collision risk. Then,

the capacity-safety relationship curves for different scenarios are generated and ac-

tual capacity limit due the airspace safety threshold are analysed. The proposed

methodology will facilitate a better understanding of the bottlenecks in an ATN

and pave the way for discovering where the major bottlenecks that cause system

inefficiencies occur.

Murad Hossain July 2016
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1.2 Motivation

In an ATN, it has been considered that an airspace network is relatively uncon-

strained and is the main bottleneckt[76, 219]. An airspace network, which is

mainly responsible for an orderly flow and safe separation between flights, con-

siders safety its limiting factor. The interactions between two network, which are

created by actual flow between them, plays an important role for an ATN’s actual

capacity estimation. Figure 1.1 shows a hypothetical representation of an airport

and airspace network and the interactions between them. The capacity of an air-

port network can be increased by adding more runways or by utilising the regional

airports around a country’s major airports in a hub-spoke manner. However, the

question is whether increasing airports capacity will actually increase the overall

capacity of the entire ATN. It is obvious that increasing the flow among airports

will increase flight densities in the airspace network and, as a result, eventually

may increase the risk of collision. In such a situation, it is necessary to determine

the relationship between the capacity and airspace collision risk for an ATN. This

thesis is motivated to address this issue.

The non-linear, stochastic and time-dependent interdependency among compo-

nents in the above airport-airspace interactions make classical mathematical as-

sumptions of linearity and homogeneity obsolete. Nature-inspired techniques such

as evolutionary computation, genetic algorithms, differential evolution etc. have

proven to be highly effective in addressing complex problems of the air trans-

portation domain for which traditional methodologies are ineffective or infeasible

[62, 63, 69, 181, 203]. In this thesis, I have developed an evolutionary computation-

based framework and techniques for translating the airport network capacity into

air traffic scenarios to estimate the collision risk of a given airspace network. The

proposed methodology may facilitate a better understanding of the actual bottle-

necks in an air transportation network.

Murad Hossain July 2016
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Figure 1.1: Conceptual representation of interactions and constraints of air-
port and airspace network

1.3 Research Questions and Hypothesis

For an ATN, its major components, the airport and airspace network, have their

own limitations and performance measures. How these two networks with their

own limitation(s) can interact to achieve an overall system objective to balance

the two is the focus of my dissertation. This thesis hypothesises that an airspace

network contributes significantly to the upper bound of the overall capacity of an

ATN due to the safety threshold and, in some cases, could be a bottleneck for

the whole system. Also, increasing the flow density in the airport network will

increase the risk of collision for en-route airspace. To support this hypothesis, the

thesis specifically investigates the following research question.

What is the relationship between the airport network capacity and

airspace safety in an air transportation network?

Murad Hossain July 2016
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In order to answer this main research question, the following related sub-questions

need to be considered.

1. What is an appropriate model for an airport network for capacity analysis?

An airport network forms the backbone of an air transportation network.

In such a network, the links between origins and destinations results in a

complex network of routes that can be complemented with associated infor-

mation about the routes themselves; for instance, traffic loads and distances.

Complex network theory provides a theoretical framework that may help to

develop models and analyse the topology and characteristics of the result-

ing network. Based on this, airports are modelled as graphs (networks)

consisting of airports as vertices linked by flights connecting them. Complex

network metrics can further be correlated with system performance measures

such as capacity.

2. How to estimate the flow capacity of an airport network?

The capacity of a network indicates the maximum throughput it can handle

without becoming congested. A good network capacity estimation model

would enable us to predict how much additional demand could be accommo-

dated by an airport network. Furthermore, it could enable us to determine

what measures can be taken to prepare for the time when additional capac-

ity will be required for future growth. Estimating a networks capacity is

generally known as one of the most difficult problems in the transportation

field [46]. Conventionally, in traffic flow networks, the maximum flow ca-

pacity is estimated using an MCF model [46]. However, this model is not

directly applicable to an air transportation network, which has non-linear

interactions among its different components and heterogeneous flows that

make modelling its capacity a complex problem.

3. What is an appropriate model for an airspace network for collision risk anal-

ysis?

Murad Hossain July 2016
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Collision risk is one of the key safety indicators of an air transportation sys-

tem and is usually compared with a defined threshold value. This threshold

value is defined by ANSPs and is known as the Target Level of Safety (TLS).

TLS provides a quantitative basis for judging the safety of operations in an

airspace network [144]. I hypothesise that the collision risk of an airspace

network is correlated to its structure and, to handle the increasing traffic

demand, the underlying network structures need to be managed. To answer

this research question I used real-world traffic data to estimate the collision

risk of different airspaces. I then developed network models to represent

an airspace and measure its structural properties and features. Finally, the

network features are correlated with the estimated collision to investigate

the relationship between collision risk and network structure.

4. What changes in airspace network be made to manage collision risk?

The continued increase in air traffic and the limited airspace resources have

resulted in serious congestion and flight delay due to maintaining the collision

risk of an airspace below the target level of safety. One of the ways to

increase the capacity and safety of an airspace is to optimise its network

structure. However, a complete new design or extensive modification of

an existing airspace network will make the controllers experience irrelevant

in managing the air traffic flow. One of the possible ways to optimise an

airspace for collision risk with minimal or virtually no change in its structure

is to laterally offset the airways to its right or left. Offsetting an airway will

not change the number of waypoints within it or its network structure. I

applied this concept and designed an evolutionary algorithm to find the

optimal lateral shift for each airway in a given airspace that may reduce the

overall collision risk.

5. How the interaction between the airport and airspace network effect capacity-

risk trade-off?

Murad Hossain July 2016
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To address this question, I developed a framework to integrate the air-

port and airspace network for an air transportation network and proposed

a methodology for the interaction of the two networks to analyse the rela-

tionship between capacity and safety. The framework comprises user-defined

airport system simulation, a network-level capacity model and an airspace

network collision risk estimation. The capacity estimation model provides

the hourly flow density (flight movements per hour) and a traffic schedule.

The traffic schedule consists of scheduled departure and arrival time for each

flight. To analyse the collision risk of a given traffic scenario, an evolutionary

computation-based scenario generation technique is developed. Finally, the

capacity upper bound is determined by simulating different traffic scenarios

in the Air Traffic Operations and Management Simulator (ATOMS) [11].

Airspace network vs collision riskAirport network vs capacity

Sub-question 1

Modelling of airport network 

Sub-question 2

Airport network capacity estimation 

model and methodology

Sub-question 3

Modelling of airspace network and 

collision risk estimation

Sub-question 4

Managing airspace collision risk 

Sub-question 5

Interaction between the airport and airspace network for 

capacity- collision risk trade-off

Main Research question

 Relationship between airport network capacity and airspace safety

Figure 1.2: Relationships among research questions

To address the main research question, I first need to develop models that estimate

the flow capacity limit of an airport network to answer sub-questions 1 and 2. On

the other hand, to analyse the safety of an airspace, I need to answer sub-question

Murad Hossain July 2016
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3. The answer to sub-question 3 provides models to represent an airspace as a

network and find the collision risk of an airspace with its network features. The

relationship of airspace collision risk with its network model paves the way for

developing a methodology to manage the collision risk, which answers sub-question

4. Then, I combine the outputs of questions 1 and 2 with those of questions 3

and 4 to answer sub-question 5, which investigates the capacity-risk trade-off due

to the interaction between the airport and airspace network. Answering all of the

sub-questions in an integrated manner will eventually answer the main research

question of this thesis. Figure 1.2 illustrates the relationship among the sub-

questions and their flow to answer the main research question.

1.3.1 Key Assumptions

To answer the sub-questions of this thesis, I make the following key assumptions:

• The air transportation network is considered a combination of two major

sub-networks: (i) airport network and (ii) airspace network.

• The airport and airspace networks are considered to be static. The compo-

nents of these network nodes (airports and waypoints) and the connections

among them (links) do not change.

• To estimate the capacity of an airport network and the collision risk of an

airspace, tactical flight management operations are not considered. Once

a flight path is set or defined, it remains unchanged in my experimental

simulation. In the present day, the modern flight management system inte-

grates with the data link interface, which allows it to transmit its current

position, velocity, wind and weather data and to receive update flight plans

from the ground. Given the technological advancement, especially with the

improvement of communication, navigation and surveillance technologies, it

is possible to generate 4D trajectories that will be conflict free in an airspace

network.
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1.4 Organisation of Thesis

This thesis aims to provide specific insights into the capacity-safety relationship

in an air transportation network. It consists of the following seven chapters.

Chapter 1 begins with an overview of the research topic, discusses the motivation

behind this study, defines the research question and presents the thesis’s organi-

sation.

Chapter 2 provides a background to this thesis. Despite the fact that there are

many studies that can be related to this work (from a very wide perspective), this

chapter provides a brief but comprehensive survey covering the important aspects

and familiarises the reader with the concepts and notations used. It presents

some general background information on air transportation systems. Then, the

modelling approaches used to analyse an air traffic network, capacity estimation

and the constraints for different sub-systems/networks are discussed. Finally, a

summary of the collision risk models is provided.

In Chapter 3, I address the first sub-question and develop a complex network

model to analyse an airport network. An airport network forms the backbone of

an air transportation network. In such a network, the links between origin and

destination of flights result in a complex network of routes. In this chapter, I pro-

pose a complex network approach to model an airport network for understanding

the dynamics of its topology and features. As a case study, an Australian civil

domestic airport infrastructure is modelled as a complex network. I then com-

pute complex network measures such as degree distribution, characteristics path

length, clustering coefficient and centrality measure as well as the correlation be-

tween them to gain an understanding of the topology and the robustness of the

Australian airport network.

Chapter 4 presents a model for estimating the flow capacity of an airport network

that is an extension of the MCF problem and considers the wake-vortex interac-

tions during landing and take-off. In it, flows between two nodes (airports) are

considered as different commodities and the local airport capacity is formulated
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using a time slot of one hour, with the hourly rate of flow (landings and take-

offs) bound by a capacity constraint. Also, a novel heuristic algorithm for solving

the capacity estimation problem is proposed. I validate the effectiveness of the

proposed model and heuristic algorithm using randomly generated networks of

different topologies and the Australian airport network.

Chapter 5 addresses the research question of What is an appropriate model for an

airspace network for collision risk analysis? In this chapter, two different models

– a direct route model and intermediate-waypoints-based model – are proposed

for an airspace. Traffic data (more than 200,000 flights) from 12 countries in

the Middle East region is analysed to estimate the collision risk. The estimated

collision risk is then correlated with the network features from the two proposed

models.

Chapter 6 addresses the research sub-question of What changes in airspace network

be made to manage collision risk?? In recent years, the ICAO has introduced

SLOP, which allows suitably equipped aircraft to fly with a 1nmi or 2nmi lateral

offset to the right of the airway’s centreline in oceanic airspace. I utilise the SLOP

concept to minimise the collision risk in an airspace. I propose an evolutionary

framework using a differential evolution process to identify optimal lateral offsets

for each airway in a given airspace in order to reduce the overall collision risk.

Airway-specific lateral offsets are then correlated with airway-traffic features using

multiple regression models to identify which features can determine the optimal

lateral offset, based on which, the proposed approach establishes a generic mapping

that can suggest optimal lateral offsets to mitigate the collision risk for a given

airspace.

In Chapter 7, the relationship between capacity and mid-air collision risk is inves-

tigated. I propose a methodological framework for understanding the relationship

between the capacity and safety of an air transportation system. I first present a

conceptual approach to the problem and then integrate a collision risk model with

an air traffic simulator. Then, I develop an evolutionary method for generating

traffic scenarios to estimate the mid-air collision risk and a simulation framework.
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Details of the simulation, including air traffic network generation, traffic scenario

generation and collision risk estimation, are presented. Finally, the overall ex-

perimental framework for testing and evaluating the proposed methodology is

presented.

Finally, chapter 8 provides a summary of the research conducted and its key find-

ings, with potential future research directions indicated.

Figure 1.3 shows a graphical organisation of the chapters and their relationship.

Chapter 2p

Literature review

Chapter 2

Literature review

Chapter 1

Problem statement and research 

hypothesis

Chapter 8p

Conclusions

Chapter 8

Conclusions

Chapter 3p

Modelling, topology and

characteristics analysis of airport

network

Chapter 3

Modelling, topology and 

characteristics analysis of airport 

network

Chapter 6p

Methodology for airspace network

optimisation to minimise collision risk

Chapter 6

Methodology for airspace network 

optimisation to minimise collision risk

Chapter 4

Modelling and methodology for 

airport network capacity estimation

hapter 5p

Modelling, collision risk estimation and

network features of airspace network

Chapter 5

Modelling, collision risk estimation and 

network features of airspace network 

Chapter 7

Methodology for airports- airspace 

interactions simulation and capacity-

safety relationship

Figure 1.3: Organisation of thesis chapters

1.5 Key Contributions

A list of the scientific contributions arising from this thesis is given bellow:

• a model and methodology for estimating the capacity of an airport network

considering different fleet mixes and travel times
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• a methodology for investigating the relationship between an airspace net-

works features and its collision risk

• a differential evolution methodology for identifying the optimal lateral offset

of the airways of an airspace network required to minimise the collision risk;

and

• an evolutionary framework in which traffic scenarios are generated, capacity

estimated and collision risk evaluated in an integrated manner to identify

the capacity-safety relationship of a given air transportation network.
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Literature Review

Despite the fact that there are a huge number of studies that can be related to this

thesis (from a very wide perspective), this chapter provides a brief but comprehen-

sive survey covering the important aspects, and familiarises the reader with the

concepts and notations. It presents a general description of the air transportation

system.

2.1 The Air Transportation System

Air transportation is one of the most important components of the world’s trans-

portation systems. It is a large-scale (extends worldwide geographically), complex

(exhibits structural as well as behavioural complexity), adaptive (changes dynami-

cally in response to continuous and punctual stimuli) and socio-technical (has both

social and technical components) system. The key function of this system is to

provide domestic and international air transportation services for both passengers

and freight.

Air traffic has grown dramatically during the last few decades and is projected

to continue. However, there are concerns that, in future, the system, due to its

structured and centralised nature, may not scale to meet demand [37, 38, 133]. As

a result, I can anticipate a more congested and potentially problematic airspace,

17



Chapter 2. Literature Review 18

particularly in and around major transportation hubs. Higher traffic densities will

cause more flights to be rescheduled or rerouted to avoid conflicts, more delays

for aircraft arriving and departing from terminals, and increased instances of near

misses between aircraft. To help develop a better, more efficient air transporta-

tion system, it is important to understand the capacity and safety constraints

of the system. Several research analyses, including one conducted by the Office

of Technology Assessment, have demonstrated that linear increases in air traffic

operations result in a quadratic decrease in airspace safety [53].

Both operationally and structurally, an air transportation system is a complex sys-

tem with the main components including airlines, airports, airspaces and air traffic

controllers. All of these components interacting with each other and constitute

a very complicated, highly distributed network of human operators, procedures

and technical systems. The topology of the air transportation system is coupled

in such a way that changes/disturbances in one sub-system may have significant

impact on other sub-systems or the whole. For example, the volcanic ash clouds

over Iceland recently effected over 70% of worldwide air traffic [5]. Such disruption

due to airspace and traffic constraints or other uncertainties also have significant

impact on the systems performance. Therefore, there is an urgent need to ex-

plore, investigate and understand the relationship between the interaction and

performance of different components of air transportation systems. In this thesis,

I am looking to develop a method to analyse the relationship between the airport

network capacity and the safety of the airspace/en-route network.

In addition to the key components of an air transportation system a more complex

depiction of it must include passengers, the organisations that run and control the

systems, communication navigation and surveillance (CNS) and other stakeholders

that are affected by its operations. However, because this thesis emphasises in

relationship between flow capacity and safety between the sub-components, the

focus is on those factors and components. The following sections describe some of

the key components.
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2.1.1 Airport

The airport is an essential element in the air transport system (ATS) for all pay-

loads – passenger as well as cargo – to gain access to the aircraft for transport from

origin to destination. The air traffic flow in an ATS originates and also terminates

at the airports. In other words, airports are the sources and sinks of an ATS.

The airport can have a very simple structure, with a small runway for the aircraft

for take-off and landing and a type of hangar to prepare for passenger boarding,

baggage treatment and formalities such as customs or passenger checks. It should

have the infrastructure to allow the preparation of the flight with meteorological

information, route planning and aircraft loading. On the other hand, there are

the big airports that handle several hundred-thousand passengers per day, have

up to six parallel runways and can handle thousands of aircraft per day, with a

very sophisticated infrastructure, hotels, conference centres and business areas as

an integral part of the airport.

Figure 2.1: Ranking of countries according to its number of airport.

There are approximately 50,000 airports around the world, with approximately

32% situated in the United States, whereas, Australia has only 500 airports. Figure

2.1 shows the distribution of the number of airports in the major countries.
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Hossain, M., Alam, S., and Abbass, H (2013) 

75 million passengers 

Three million Fights  

131 Airports 

Figure 2.2: Geographical distribution of airports in Australia

Figure 2.2 shows the geographical distribution of airports in Australia. Of the 500

airports in Australia, only 131 operate passenger flights regularly [108]. In Aus-

tralia, there are almost three million flight movements per year, carrying approx-

imately 75 million passengers [6]. From the geographical locations of Australian

airports, I have found that higher concentrations of airports are situated in the

south coast region that forms a typical ‘J’curve. This concentration of airports is

generally correlated with the distribution of population. Due to the lack of pop-

ulation in the middle part of the country, there are very few airports in central

Australia.

2.1.2 Airspace

Airspace is the portion of the atmosphere controlled by a country above its terri-

tory, including its territorial waters or, more generally, any specific three-dimensional

portion of the atmosphere. It is not the same as aerospace, which is the general

term for Earth’s atmosphere and the outer space in its vicinity.
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According to general operating rules and procedures, airspace is classified into

four different classes. The intention of the classification is to ensure pilot flexibil-

ity with acceptable levels of risk appropriate to the type of operation and traffic

density within each class of airspace. In general, the classification schema is de-

signed to provide maximum separation and active control in areas of dense or

high-speed flight operations. According to the FAA, all airspaces fall into four

general categories [169].

• Positive Controlled Airspace (PCA): In this type of airspace, the air traffic

controller (ATC) separates all aircraft, whether instrument flight rules (IFR)

or visual flight rules (VFR). PCA is reserved for either very-high-altitude

flights at or above 18,000 feet from mean sea level or around high-density

airports.

• Controlled Airspace: In this airspace, ATC separation services are provided

to IFR aircraft. IFR aircraft are authorised to fly into clouds or areas of

reduced visibility and are provided ATC assistance to remain separate from

other IFR aircraft. IFR aircraft, when operating in areas in which weather

conditions and traffic density permit other aircraft to be safely observed and

avoided, are still responsible for separating themselves from VFR aircraft.

VFR aircraft operating in controlled airspace are also responsible for separat-

ing themselves from all other aircraft. VFR flight operations are permitted

as long as the weather conditions are sufficient to enable pilots to “see and

avoid”other aircraft in this type of airspace.

• Uncontrolled Airspace: In uncontrolled airspace, ATC separation services are

not provided by the FAA. Regardless of the weather conditions, all aircraft,

IFR or VFR, must ensure their own separation.

• Special Purpose Airspace: Special purpose airspace is an area designated

for operations of a nature such that limitations may be imposed on aircraft

not participating in those operations. Often, these operations are of a mil-

itary nature. Special purpose airspace can lie within either controlled or

uncontrolled airspace and can potentially affect both IFR and VFR aircraft.
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Apart from the general operating rules and procedures, based on the altitude

range, all of the airspace above the US has been designated by the FARs into six

classes. Table 2.1 reports the general descriptions of these classes.
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ZEIT 3803      

organizations as required.  

 

Figure 2.3: Flight information region in Australia

Airspace is a complex system that is partitioned for several reasons, mainly for

air traffic control to maintain safe separation among the flight flow within it.

Each country has its own National Airspace, which is typically partitioned into air

control centres. For example, Australia has two control centres, one in Melbourne

and the other in Brisbane. Figure 2.3 shows the location of flight information

regions (FIRs) in Australia. Australian airspace includes the nation’s sovereign

airspace and international airspace over the surrounding oceans including the FIR’s

of the Solomon Islands and Nauru. Its airspace stretches in latitude from two

degrees to 90 degrees south, and in longitude from 75 degrees west to 163 degrees

east. The total area is almost 20 million square nautical miles (51.7 million square

kms) or approximately 11

From the air traffic control perspective, flights in controlled airspace are managed

by ground-based air traffic controller (ATC). An ATC is responsible for managing

air traffic flow in a portion of airspace, known as a ‘sector’, which is the smallest

unit of control [215]. However, the human cognitive limitations of an ATC restrict
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ZEIT 3803      
Figure 2.4: Sector configurations in Australian airspace

the number of aircraft that can be safely managed by an ATC. The typical tasks

conducted by an ATC include safe and efficient flow of air traffic, monitoring air-

craft movements, conflict detection and resolution and aircraft handover from/to

his sector. Hence, the airspace is partitioned into sub-airspace as sectors in which

air traffic is distributed to ensure that ATCs can safely and efficiently manage the

air traffic without being overloaded. Figure 2.4 shows the current sectors in the

Australian FIR. Finally, inside the sectors, the actual routing of aircrafts operates

in a network of airways. These airways consist of navigational aid (NAVAIDs) that

define a point on the ground, which is also known as a waypoint. The position of a

waypoint is given by a latitude and a longitude, but not an altitude. A flight plan

is therefore a succession of waypoints, together with time stamps and altitudes
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that an aircraft is supposed to follow. So, the routing of an aircraft consists of

maintaining its assigned set of waypoints and defined altitude, or, equivalently,

a set of jet routes that create a path from the origin to the destination airport.

Figure 2.5 shows an air route (airway) between Sydney and Melbourne.

 

Figure 2.5: Flight route (air-route) between Sydney and Melbourne

2.1.3 Air Navigation Service Providers

An air navigation service provider (ANSP) is a body that manages air traffic on be-

half of a company, region or country. ANSPs are either government departments,

state-owned companies or privatised organisations. The ANSPs provide informa-

tion designed to ensure the safe and socially efficient provision of air transportation

[65] and air traffic management (ATM) [156] services. The key responsibility of

ANSPs is to provide communication, navigation and surveillance (CNS) services.

• Communication: Air traffic communication is typically divided into two

parts: air-to-ground and ground-to-ground. For ground-to-ground voice
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communication, telephone lines are commonly used. For ground-to-ground

data exchange, the primary means is the Aeronautical Fixed Telecommuni-

cation Network (AFTN). The AFTN is used mainly by the control centres

and air traffic service provider, but not the airline operation centres. In

Europe, alongside AFTNs, the ‘Socièt é Internationale de Telecommunica-

tions Aronautiques’(SITA) network is also used for ground-to-ground data

exchange, mainly by AOCs [51]. In the US, airline operation centres often

use AviNet by ARINC Inc., which provides advanced data communications

such as message switching and content services. An integrated communica-

tion system can greatly benefit both ATSP and AOCs in the form of col-

laborative decision making. Both air-to-ground and/or ground-to-air voice

communication involves HF (high frequency), VHF (very high frequency)

and UHF (ultra-high frequency), using both analogue and digital signals

[169]. The VHF spectrum is primarily used by civilian air traffic, whereas

the HF spectrum is mainly used by long-distance oceanic flights. The UHF

spectrum is reserved for military aircraft. As an aircraft flies over different

air traffic service providers, it must tune to the appropriate frequency. FMS

systems in modern aircraft can automatically select and tune to appropriate

frequency. All communications over this frequency can be heard by any pi-

lot who tunes to it. This provides pilots with a major source of situational

awareness regarding neighbouring traffic. A standard set of communication

procedures is followed between the ATCs and pilots to avoid any misunder-

standing or confusion [169]. The only means of data link between the air-to

ground and ground-to-ground network is ACARS (Airborne Communication

and Addressing System), which uses VHF radio and the satellite communi-

cation link [54]. However, it is not yet approved for flight safety critical

messages.
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• Navigation: Traditionally, aircraft have relied on ground-based radio bea-

cons and inertial navigation systems to navigate. The present navigation

system consists of airways and a variety of ground-based navigation systems

such as VHF Omnidirectional Range (VOR), Distance Measuring Equipment

(DME), LOng RAnge Navigation (LORAN) and Tactical Air Navigation

(TACAN), to name a few [169]. The airways depending upon their alti-

tude are named as “victory”airways (up to 18,000ft MSL) and “Jet”airways

(18,000ft to 45,000ft MSL). In the US, they are known as Federal Airways

and in Europe and Australia they are known as designated airways. At the

moment VOR/DME is the ICAOs approved primary means of navigation

[117]. For departure control and arrival management, a set of published

routes and procedures known as Standard Integrated Departures (SIDs) and

Standard Terminal Arrival Rules (STARs) are used. With advances in satel-

lites navigation, in-flight GPS is becoming an important means of navigation

in the cockpit and a primary means of navigation in oceanic and remote areas

[117]. GPS provides not only higher accuracy but also greater redundancy.

Due to accuracy and worldwide availability, the Global Navigation Satellite

System (GNSS) has been designated by the ICAO as the future navigation

system for all civil aviation needs. In addition, required navigation perfor-

mance (RNP) is introduced, which is a measure of the lateral navigational

accuracy of an aircraft in an airspace[117]. An RNP-certified aircraft has

the ability to maintain specified navigational accuracy during flight, which

improves the en-route and approach accuracy.

• Surveillance: In present day ATM systems, surveillance is performed by an

array of radars that consist of primary surveillance radars (PSR) and sec-

ondary surveillance radars (SSR) [169]. The PSR provides information about

the bearing and distance of the aircraft and the SSR provides information
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about aircraft identification and its altitude. PSR radars are further sub-

divided into long-range air-route surveillance radar (ARSR), which scans

a wide area (generally a 250-mile radius), and airport surveillance radar

(ASR), which uses a shorter range and scans a narrower area (generally a

60-mile radius). SSR radars have a variety of modes called A, C and S.

Mode C and S provides pressure-altitude referenced to 29.92in of mercury

in 100ft increments from 1,000ft to 126,700ft. SSR Mode S is the current

standard for civil aircraft [1]. The PSR and SSR radar data are processed by

the radar data processor to assess the quality and integrity of the data. The

data are further processed to identify aircraft, calculate their positions, track

their movements, transform the data to display coordinates and display the

resulting information along with maps on the controllers’ plan view displays.

A new system known as automatic dependant surveillance (ADS) is pro-

posed, which will eventually replace ground-based surveillance systems. In

ADS, an aircraft transmits its position based on on-board navigational in-

struments. There are two versions of ADS, ADS-A (addressable), also known

as ADS-C (contract), and ADS-B (broadcast). The ADS-A system ex-

changes information about specific aircraft and ATC on request. The ADS-B

system broadcasts information periodically to all aircraft in the immediate

vicinity and all ATM facilities in specified areas.

2.2 Network Representation of Air Transporta-

tion System

The Air Transportation System (ATS) is a complex network composed of several

heterogeneous and mutually interacting sub-systems [17]. The mobility of passen-

gers and goods is just the final result, which is carried by flight movements from

airport to airport. Therefore, it is not surprising that most analyses have focused
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on the mobility of aircraft, disregarding other technical details. With this point

of view, the construction of a network is straightforward and an ATS can easily

be represented by an interlinked set of networks. It can easily be decomposed in

several layers, from the mobility (or demand) to the capacity (or infrastructure)

layer. Figure 2.6 illustrates the composite nature of networks in an ATS.

Capacity layer

(Airports / air-route)

Transport layer

(Flights / Routings)

Operator layer

(Pilots -crew/ Missions)

Mobility layer

(Passengers / Freight)

Hub-and-Spoke Point-to-Point

Figure 2.6: Multiple network layered composition in air transportation

The multiple-layered representation considers the physical layer as the network

of airports (as nodes) linked by airways and departure and approach procedures

(see Figure 2.6); the transport layer is the network of aircraft (as nodes) linked

by ATC radar; the operations layer is the network of pilots, crew, dispatchers

and controllers (as nodes) linked by VHF communications; and the applications

layer is the mobility of people, packages and travel planners (as nodes) linked by

telephone (or internet) to produce tickets or bills of lading.
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The flow capacity of the overall transport system is dependent hugely on the

physical layer, which is also known as the capacity or infrastructure layer. This

layer is composed of the foundational elements of a National Airspace system

(NAS). It is further decomposed into two major sub-layers: (i) airport network

and (ii) airspace network. Figure 2.7 shows the decomposition of the infrastructure

layer.

Air route

Airports

Infrastructure

Capacity layer

Figure 2.7: Infrastructure network layer

The next lower layer network is the operator layer, which is comprised of the

schedule flights flown by airlines, regional carriers etc. Below this, the mobility

layer is the reflection of the demand layer. The demand layer is defined as the set

of true airport-to-airport paths that passengers and cargo go through regardless

of constraints on supply.

2.2.1 Air Transportation Network

According to Barthélemy “A transport network, or transportation network, is a

realisation of a spatial network, describing a structure that permits either vehicular

movement or flow of some commodity ” [30]. Examples are networks of roads and

streets, railways, pipes, aqueducts and power lines. Following the definition of a

transportation network, I can clearly find that the air transportation network is

the infrastructure layer of ATS that facilities the flow of commodities in the form

of aircraft from source airport to destination airport. In this thesis, I define the air

transportation network (ATN) as a transport network of airports and waypoints
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that connects the actual path for the aircraft. Mathematically, an ATN is modelled

as graph G(N,L), where N is the set of vertices or nodes and L is the set of links.

Let,AP and W denote the set of airports and the set of all waypoints, respectively,

then N = AP ∪W . There are several assumptions related to the characteristics

of nodes and links in an ATN, which are given below:

• each of the nodes (AP or W ) embedded in a geographical location.

• the nodes in the AP set are treated as both source and destination and the

waypoints (W ) are treated as intermediate nodes that only deliver flights

from one to another.

• there are two sets of links: (i) connection between an Ap to an W or vice

versa, and (ii) connection between two W nodes.

 

 

 

 

 

Air Transportation Network 

Airport Network 

Airspace Network 

Figure 2.8: An Air Transportation Network (ATN) and its sub-networks

Since, in a real-world situation, a flight starts from an airport and goes through

airways (a series of connected waypoints), there is no actual direct connection

between two airports. However, from the source destinations of the flight links,

I can model the direct connection among the airports as a sub-network. As a

result, it is possible to decompose an ATN into two different sub-networks: (a)

airport network and (a) airspace network. Figure 2.8 shows an ATN and its two

sub-networks.
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2.2.1.1 Airport Network

The airport network is defined as a graph in which nodes are airports and two

nodes are connected if at least one flight per day goes from one node to another in

a defined time interval. The topology and the characteristics of airport networks

has been analysed by using the tools of complex network theory in recent years

[14, 36, 213]. In these studies, the world airport network is in some cases described

as a graph formed with the passenger commercial airports as vertices and the di-

rect flights between airports as edges [101, 102]. Each edge also bears a weight

corresponding to the number of seats available in the connection. These studies

include a network description with an analysis of the degree (number of connec-

tions per node) and node strength (sum over the weights of the connections of a

node) distributions, degree-degree correlations, density of triangles, etc. In this

work, Guimera focuses on the correlations between network topology and fluxes of

passengers finding a non-linear relation between them [101, 102]. The world air-

port network also is analysed later with graph clustering techniques[200] to classify

airports according to their connectivity patterns. The airport network structure

has also been investigated on domestic levels [21, 108, 217], involving countries

with different economic and politic situations, and population/area sizes. Some

attempts to model the world airport network (WAN) have been proposed con-

sidering geopolitical constraints [101], passenger behaviour [111] and optimisation

principles [31]. Table 2.2 compares the topological properties of different airport

networks. These studies measure network features that include degree distribu-

tion, average path length and clustering coefficient. From these studies, it has

been found that most of the airport networks share a common small-word topol-

ogy and a scale-free degree distribution. The scale-free connectivity is mainly due

to the existence of the hub-and-spoke system, where the major big airports serve

as the hub and provide connectivity to a large number of small airports. The data

presented in Table 2.2 are discussed in detail in Chapter 3.
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Table 2.2: Characteristics of airport network of different countries/regions

Author Country No.
Nodes
(n)

No.
Edges
(m)

Average
degree
⟨k⟩

Average
path
length (L)

Clustering
coefficient
(C)

Network structure

Bagler [21] India 79 455 11.52 2.26 0.66 Small-world(SW)

Guimera et al. [101] World 3883 27051 13.93 4.4 0.62 Scale-free (SF) SW

Guida et al. [100] Italy 50 310 12.4 1.98∼2.14 0.07∼ 0.1 SF SW Fractal

Xu & Harriss [222] US 272 6566 48.28 1.84∼1.93 0.73∼0.78 SW

Wang et al. [217] China 144 1018 14.14 2.23 0.69 SW

Hossain al. [108] Australia 131 596 9.10 2.90 0.50 SW

An airport network is a complex entity by virtue of its topology and traffic dynam-

ics [21, 22], whereby the complex network analysis of the network reveals useful

information for travellers. For example, the average degree measures the average

number of direct links between two airports (cities), and the average path length

reveals the depth of the air transportation, which also measures the convenience

of travel [108]. Whereas, the clustering coefficient reflects the intensity of the

inter-connectivity of the system. Apart from topological studies, the airport net-

work also has been investigated for the performance measures of air transportation

systems [21, 188].

2.2.1.2 Airspace Network

An airspace can be considered as a multi-scale, dynamic network of interconnected

entities. It is possible to define different networks describing an airspace. At

a microscopic level, the first graph is the network of waypoints or the airways

network. In this network, each node is a waypoint and two nodes are connected if

at least one flight goes directly from one node to another in the considered time

interval.

Similarly, at a macroscopic level, the second graph is the network of sectors. Each

sector is a node and two nodes are connected if at least one flight per day goes

directly from one to another in the considered time interval. Both of these networks

are directed and can be weighted. The weight can be the number of flights between
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two connected nodes in the given time interval. Usually, the time interval is set

by the nature of the analysis. Whereas, in the case of the direction, I have noticed

that most of the graphs are almost symmetric. As a result, considering a small

error, it can be viewed as a symmetric undirected network.

 

(a) A portion of airspace (b) Graph based representation of a portion of airspace

Figure 2.9: A portion of Australian airspace map and its corresponding net-
work representation (airspace network).

In this thesis, I am mainly concerned about the first representation of the airspace

network – the network of waypoints or the airway network. Mathematically, the

airway network is defined as a directed graph G = (V,E) with vertices V and

edges E. Edges connect one vertex to another, which is to say that an edge e

connecting vertex vi to vertex vj has head(e) = vi and tail(e) = vj. In some

cases, each edge e ∈ E may have a minimum transit time. Figure 2.9(a) shows

an example of airspace in which the waypoints and navigational aids are circle in

red, and these are considered as nodes to model an airspace as a graph/network.

In the subsequent part of this thesis, I define the airspace network as a network

of waypoints and I use these two terms interchangeably.

In the vertical dimension, airspace is divided into different levels to separate flights

vertically from each other. A flight level (FL) is a specific barometric pressure,

expressed as a nominal altitude in hundreds of feet. More specifically, a flight level
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(a) non-RVSM
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(b) RVSM

Figure 2.10: Vertical separation of airspace using flight levels.

is defined as a level of constant atmospheric pressure related to a reference datum

of 29.92 inches of mercury [169]. Each flight level is stated using three digits that

represent hundreds of feet. For example, FL250 represents a barometric altimeter

of 25,000 feet.

Among the flight levels, the standard vertical separation is set to 1,000 feet from

the surface to FL290 and 2,000 feet above the flight level FL290. With the tech-

nological improvement of altimeter systems and pilots being able to maintain a

set flight level, the vertical separation is reduced to 1,000 feet, which is known as

reduced vertical separation minima or minimum (RVSM) [64]. Figure 2.10 shows

the concept of flight levels in standard and RVSM. RVSM is implemented to reduce

the vertical separation above FL290 from 2,000-ft minimum to 1,000-ft minimum.

The benefit of RVSM allows aircraft to fly more optimum profiles safely, gain fuel

savings and increase airspace capacity.

The inclusion of flight level in the model and representation of the airspace network

makes it very complicated. Since an air traffic controller advises the pilot to change

flight level to avoid potential conflict, and a pilot also can climb up or descend

to another flight level for the aircrafts optimal level to minimise fuel burn and

Murad Hossain July 2016



Chapter 2. Literature Review 38

environmental impact, changing a cruise flight level is considered a rare event and

I can ignore this information to model an airspace network. Thus, the airway

networks at different flight levels eventually remain same. So, I can consider the

overall airspace network as single waypoint networks stacked on top of each other,

separated by at least 1,000 feet. Figure 2.11 shows such a stack-based visualisation

of airspace networks at different flight levels.

light LevelsFlight Levels

Figure 2.11: Airway network in different flight levels.

Several studies have been investigated to reveal the topological properties of the

airspace network [129, 146, 204]. One such example is the Chinese air route net-

work, which is found to be more homogeneous compared to its underlying airport

network [129]. The shortest path length and the network diameter of it is much

higher than the airport network, with a very low clustering coefficient. Apart

from the topological properties, the effect of the waypoints network model with

the mid-air collision risk for the 13 countries in the Middle East region has also

been investigated in recent years [214].
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2.2.2 Interaction Between Networks

The major actors in the air transportation network (ATN) are the air service

providers (e.g. airlines, regional carrier operators, freight service operators, etc.),

which present the interface between the foundation of the system (the National

Airspace system) and the passengers and freight that are transported [38]. In ATS,

the majority of the interactions among air traffic actors have relatively localised

interaction in space and time, and the complex interactions present among all

the actors of this system make it a ‘system-of-systems’ structured as a layered

collection of interacting networks [58]. The sub-networks of the ATN are not

independent of each other since they interact through the transport layer. Figure

2.12 shows the interactions between an airport network and an airspace using the

actual flow of flights. The main ingredient of the interaction between an airport

network and the corresponding airspace is the flow of the traffic. In these two

sub-networks, the traffic management procedures and constraints are different. In

an airport network, the management of traffic involves the allocation of slots for

landing or take-off of different flights and maintaining a time gap between them.

A time gap is imposed between two consecutive flight operations to avoid wake

turbulence. Whereas, in the case of airspace, flights usually fly at a constant speed

and the main constraint is maintaining the safe separation among the flights where

there is a spacing between the mutual location of the airways. Aircraft separation

generally refers to the horizontal and vertical spacing between aircraft as they

transit through an airspace or sector. The air traffic controller is responsible

for aircraft separation assurance in controlled airspace. In general, the minimum

separation standards are affected by accuracies of navigation and surveillance, by

controller/pilot response and communications delays, and by response times of

aircraft manoeuvres. As a result, any loss of separation that occurs may result in

a probability of collision. So, to ensure the safety of an airspace, the probability
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of collision always needs to be below a define threshold, which is known as the

target level of safety [144].

AirspaceAirspace

Airport NetworkAirport Network

Figure 2.12: Interaction between airport network and airspace network in the
form of flight path.

Currently, the movements of flights do not follow a smooth and optimised trajec-

tory. Instead, they follow a predefined path from the departure airport through
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sets of waypoints together with time stamps and altitude to the destination air-

port. Assigning the flight plan is considered a traffic assignment problem that

creates the interaction between the airport network and the airspace network.

The traffic assignment problem consists of distributing flow across the air trans-

portation network in order to optimise a certain number of predetermined criteria

such as delay, cost, environmental impact and complexity. The problem is in-

herently multi-objective and each of the sub-networks (for example, airports and

airspace networks) has its own set goal and constraints. As I know that the

different sub-networks has its own different characteristics and performance mea-

sures, solving the traffic assignment in a collective manner (considering all the

constraints of different sub-networks) is quite impossible. As a result, it is very

important to investigate the relationship of the key performance metrics of differ-

ent sub-networks, in particular, the safety and capacity and their joint emergent

behaviours [52, 78, 83]. Understanding the interactions between the airport net-

work and the airspace is crucial, especially when anticipating growth in traffic on

both layers.

2.3 Air Transport Network Constraints

2.3.1 Capacity Constraints

In the air transportation domain, the capacity of an airspace or airport normally

represents its ability to safely handle a number of aircraft per unit of time [219].

In an ATN, capacity depends on many factors, such as the configuration of an

airspace, the layout of the airport ground infrastructure, ATM operations and

procedures, the capability and availability of air traffic control, and the capacity

and availability of element resources in the airspace or airport. Some of these

factors are inherently dynamic (e.g. disturbance to the availability of an element
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resource in the airport due to adverse weather), and any change in such factors

can influence the overall capacity. Air traffic demand is normally measured by

the number of flights per unit of time serving an airspace or airport. It is usually

represented by the space and time information of the aircraft fleet mix. Any

variation in these factors can affect air traffic demand. When the amount of

aircraft allocated to an airspace or airport mismatches the number of aircraft

it can safely handle, capacity and demand imbalance occurs. In addition, both

airport and sector capacity depend on weather conditions such as visibility, cloud

ceiling and the location of thunderstorms, and are therefore prone to uncertainty

[182]. There are two major capacity constraints in an ATN: (i) airport capacity

and (ii) airspace capacity.

2.3.1.1 Airport Capacity Constraints

Airport capacity constraints limit the flow through an airport at any time. In the

case of an airport, if there is a spacing requirement of 2 minutes between successive

aircraft, this translates to an airport’s throughput of 30 aircraft per hour. However,

the situation at an airport is more complex since different types of operations –

arrival and departure – can occur at any time simultaneously. It is even more

complex since there are different types of aircraft, such as light, medium and heavy,

which require different separation minima among them. Different combinations of

aircraft and their operations (arrival and/or departure) will result in different

throughputs. As a result, the true capacity estimation of an airport network

system is considered an NP-hard problem.

Airport capacity is the number of operations, either take-offs or landings that

can be performed in a unit of time, usually an hour, without violating aircraft

safety regulations. Airport capacity can be discussed from two viewpoints: airside

capacity and landside capacity. The airside capacity includes components such
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as the runway, the taxiway system, and adjacent airspace to the airport. Land-

side capacity includes the terminal, gate and access roads. Combining these two

sides together, the capacity of an airport is determined by its arrival capacity (the

number of aircraft landings per hour) and its departure capacity (the number of

departures per hour). The arrival or departure capacity is primarily limited due to

the temporal separation requirements imposed by predefined guidelines between

successive operations. The inter-operational separations are used to avoid poten-

tial physical conflicts when using airport resources. Due to the shared nature of

ground resources such as runways and taxiways, there is a trade-off between the

simultaneous arrival and departure capacity at an airport [93]. The trade-off be-

tween an airport’s arrival and departure capacity is quantified using the concept

of the capacity envelope. An airport capacity envelope is the boundary (generally

approximated as a convex polygon on the plane with the arrival and departure

rates as axes) that defines the envelope of the maximum capacities that can be

achieved under specified operating conditions, and captures the trade-off between

the maximum arrival and departure rates [60]. The operating conditions influ-

encing the trade-off encompass factors such as the relative alignment of arrival

and departure runways (defined as the runway configuration), meteorological fac-

tors such as wind and visibility, the aircraft fleet mix, etc. Each of these factors

dictates the required inter-operational separations that, in turn, determine the

airport’s operational capacities. Figure 2.13 illustrates the representative capacity

envelopes of an airport for an arbitrary runway configuration split between two

visibility categories typically defined for operations.

2.3.1.1.1 Airport Capacity Estimation: There are two broad categories

of airport capacity estimation models: a) Analytic models b) Simulation-based

models

Analytic models consist of a series of close-form equations that compute hourly
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Figure 2.13: Capacity envelope for an airport under a particular runway con-
figuration, for different meteorological conditions: Visual Flight Rules (VFR)

and Instrument Flight Rules (IFR).

airport capacity with known input parameters. Airport capacity is affected by var-

ious external factors such as air traffic controller procedures and pilot behaviour,

approach and departure speeds, runway and taxiway occupancy times, weather,

etc. [186]. Analytic approaches to capacity estimation have traditionally modelled

these factors through simplified models of aircraft behaviour, and derived the ca-

pacity using the mandated separation time between successive aircraft operations

[35, 106, 167]. These analytic models construct the capacity envelope through lin-

ear interpolation between capacity values computed at specific arrival/departure

mix ratios. Newell [167] and Odoni et al. [173] provide comprehensive reviews of

contemporary analytical and simulation methods that adopt the above approach.

In addition, there are systematic statistical approaches based on the principle of

quantile regression for estimation of intra- and inter-airport capacity envelopes

from observed data [189]. On the statistical estimation methods, quantile regres-

sion attempts to determine statistics such as the median or a general percentile of

the dependent variable as a function of independent variables from a given sample

of observations [125, 136].

Simulation models emulate the movement of aircraft by using discrete-event or

fixed-timed techniques [232]. These models use statistical sampling techniques,
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and then infer the airport capacity with the data generated during the simulation

[80, 202]. One of the key limitations of simulation models is that they do not

estimate airport capacity directly. Capacity is inferred from values of delay calcu-

lated by these models [122]. Lee et al. compared several airport capacity models

developed over the past three decades [143]. In this study, the authors comment

that simulation-based models emulate detailed manoeuvers of airport operations.

However, these models require extensive data and long computing times to gen-

erate results. For this reason, simulation models can only be applied to a limited

number of airports or airport configurations considering practical resources and

data input requirements. In addition, large data inputs and outputs take longer to

collect and analyse for simulation models. In contrast, analytical models require

fewer parameters and many cases can produce adequate capacity estimations.

2.3.1.2 Airspace Capacity Constraints

Airspace capacity constraints limit the number of aircraft that can be in a sector

or airspace at any time, and are driven by the geometry of the sector, the traffic

patterns, overall collision risk and controller workload. The capacity of the ATM

system is fundamentally bound by the separation standards in effect for both the

airspace and successive aircraft at the runway threshold [65]. Airspace throughput

is a measure of the realised flow through it in a given time period and is further

constrained by the controller’s ability to accommodate traffic demand to maintain

the target level of safety [144]. Periods when demand exceeds capacity in parts

of the system can overload the separation assurance agent and thus increase the

collision risk. Thus, it is very important to assess the airspace capacity limit that

can be achieved without violating the safety constraints.

2.3.1.2.1 Airspace Capacity Estimation: An airspace capacity can be de-

fined as the maximum number of aircraft going through a given geometrical
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airspace for a given time period. It is based on the spatial control constraints that

govern the internationally specified separation between any two aircraft given their

performance characteristics [75]. There are several factors that affect the capacity

of an airspace. These are constant demand for service, the aircraft mix, the char-

acteristics of control tasks, the characteristics of avionics, ground navigational aids

and equipment being available to the air traffic controller. These factors may influ-

ence the separation rules that may be applied between the aircraft [158, 170, 172].

Based on the type of airspace managed, airspace capacity models can be classified

as: model of terminal airspace capacity; model of an air route, comprising two

sub-models – capacity model of air route segment and capacity model of air route

intersection; and capacity model of an en-route ATC sector [126]. None of these

models consider the impact of ‘human factor’ such as air traffic controller workload

on the capacity of the airspace [127, 128, 150].

The models of airspace capacity based on the air traffic controller are dependent

on the quantification of human workload generated by the air traffic requesting

handle, control and service, while in the airspace of his/her administration. These

models are based on the assumption that the air traffic controller always performs

two kinds of mutually exclusive activity: monitoring the traffic situation and exe-

cuting the control task to provide safe separation and efficient movement of aircraft

in the defined volume of airspace [126].

Methodologies to estimate the capacity of an airspace can be classified into the

following three groups:

Analytical modelling and judgmental or subjective methods: These types

of method are based on the subjective ratings of subject matter experts, who

have an overall idea of the system performance and base their judgments on

their knowledge about the system [95, 99]. This method is extremely flexible

and quick, although, when lacking an appropriate framework and methodol-

ogy, they can produce biased outputs. A main concern within this method
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is associated with the validation issues.

Fast Time Simulations (FTS) techniques: these techniques are usually com-

prised of a traffic generator and an ATC workload calculator [79, 84, 183].

The key assumption for these kinds of method is that capacity is directly

linked to ATC workload and the controller workload remains the main capac-

ity bottleneck of the system. These methods have the potential of accurately

capturing short-term implementations, in which insignificant functional vari-

ations are held in the system.

Real Time Simulations (RTS) or Human-In-The-Loop (HITL) simulations:

these methods have the potential to accurately model the evaluated concept,

ensuring higher fidelity levels than an FTS in the system modelling. Most of

these methods are focused on workload and some use different human per-

formance metrics [42]. Different studies use different techniques to measure

the workload metric, which can be included in one of the following groups:

performance-based, subjective and physiological/biochemical [82]. The main

drawback of these methods stands in their reduced flexibility to capture dif-

ferent concepts and in their high associated costs along with time-consuming

issues. In addition, controller workload can be estimated from the airspace

configuration [89].

Additionally, an airspace capacity can also be estimated from the average flight

time and human judgment of its complexity [141]. Simplified dynamic density

[134], which is a weighted sum of seven traffic components, is used to measure

the airspace complexity. Since the flight time only partially accounts for the

traffic pattern, it is a partial measure of workload. In such a model, the human

judgment is based on past experience. As a result, traffic in sectors is over and

under constrained. The sector capacity rule of “5/3 of average flight time” has been

used to estimate capacity sector boundaries [40, 223]. The capacity rule is based
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on the flight time without regard to judgment. As a result, the cognitive aspects

of controller workload are not reflected in dynamic density capacity estimation

models.

2.3.2 Separation minima

The paramount goal of an ATC/ATM system is to provide safe air traffic flow. In

order to fulfil this Goal, ATC services separate aircraft during flight. Separation

is very important because it influences airspace capacity and safety. It is recog-

nised as a fundamental capacity constraint for an airspace [196]. Reich [193–195]

defined a set of necessary considerations for safe, practical and least-cost aircraft

separation standards. Aircraft separation standards are used to safeguard against

the uncertainties in aircraft position in the along-track, cross-track and vertical

axes. Reich identified an economic optimum separation standard as one that min-

imises the costs to airlines from route deviations required by the standards and

the costs of collisions. Today, it is the international standards that require aircraft

to maintain a 5 nautical mile horizontal separation and a vertical separation of

2,000 feet for aircraft above 29,000 feet and 1,000 feet below this altitude [177].

2.3.3 Target Level of Safety

The target level of safety (TLS) provide a quantitative basis for judging safety of

operation in an airspace network. The setting and achieving of a target level of

safety is a key concept in aviation safety. TLS sets an important upper bound on

the aspired level of risk [144]. Historically, the International Civil Aviation Or-

ganization (ICAO) has led the development of TLS through sophisticated math-

ematical models, air traffic movements and accident data, together with many

assumptions. For different flight operations and/or flight environments, there are

different TLS values. For example, TLS for airspace operation is different from
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Table 2.3: Various TLS for airspace operations

TLS Value

TLS for access North Atlantic parallel
routs by NATSPG (1960s)

Original TLS 2.34× 10−7 per flight hour (p.f.h)

Improved TLS 4.68× 10−8 p.f.h

TLS with minimum navigation perfor-
mance specification by Brooker and In-
gham (1977) [43]

6× 10−8 p.f.h

TLS for reduced vertical separation
minima RGCSP (1988) [121]

0.25× 10−8 p.f.h

TSL for enroute mid-air collision
RGCSP (1995) [112]

1.5× 10−8 p.f.h

TLS for landing and take-off. Table 2.3 reports some of TLS values for different

airspace operations. For more details, please see the survey paper of Xunguo Lin

et al. [144].

2.3.4 Collision Risk

One of the principal requirements in the daily operation of civil aviation is the pre-

vention of conflicts between aircraft, either while airborne or on the ground, which

might escalate to collision. With the improvement of communication, navigation

and surveillance (CNS) technologies, flying errors have been reduced significantly,

which makes aircraft collision very rare. Although aircraft collisions are very rare

events contributing to a very small proportion of the total fatalities, they always

cause relatively strong impact, mainly due to the relative large number of fatali-

ties per single event and the complete destruction of the aircraft involved. In air

traffic, the term risk is used to represent a numerical index of safety: the unit of

collision risk assessment is fatal accident per aircraft flight hour [113].
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2.3.4.1 Collision Risk Modelling Approaches

In general, separating aircraft using space and time separation standards (min-

ima) has prevented conflicts and collisions. However, due to the reduction of this

separation, in order to increase airspace capacity and thus cope with growing air

transport demand, assessment of the risk of conflicts and collisions under such

conditions has been investigated using several important methods/models.

The Reich-Marks Model: the Reich-Marks model was developed in the early

1960s by the Royal Aircraft Establishment [193–195]. It was originally devel-

oped to estimate collision risk for oceanic traffic over the North Atlantic and

to determine the appropriate lateral separation between aircraft. This is the

first model to specify the separation standards for flight trajectories [207].

It also has been used to evaluate collision risk and perform numerous safety

assessments approved by the ICAO. It also has been used to estimate colli-

sion probability for four EUR-SAM corridors in the South Atlantic [130]. A

fundamental input of this model is the probability distribution of the devia-

tions. One of the key insights of the Reich model is that it is a distance-based

model that assumes that collision risk is a function of navigation position

error and speeds from the expected. The main assumptions of the Reich

model are: (i) the lateral/vertical deviations of aircraft on adjacent tracks

are uncorrelated; (ii) the lateral/vertical speed of an aircraft is not correlated

with its lateral/vertical deviation; (iii) the protected zone of an aircraft is

a rectangular box; and (iv) there is no corrective action by pilots to avoid

collision. According to Reich, the collision rate between aircraft on adjacent

tracks is given by the following equation:
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Nay = Py(Sy)Pz(0)
λx

Sx

 Ey(same)
[
|△v̄|
2λx

+ |¯̇y|
2λy

+ |¯̇z|
2λz

]
+ Ey(opposite)

[
|v̄|
2λx

+ |¯̇y|
2λy

+ |¯̇z|
2λz

]
 (2.1)

where,

Nay y is the expected number of accidents per flight hour due to the loss of

lateral separation between aircraft flying on tracks with nominal spacing

Sy

Sy is the lateral separation of the track centrelines

Pz(Sy) is the probability of lateral overlap of aircraft nominally flying on

the lateral adjacent paths at the same flight level

Pz(0) is the probability of vertical overlap of aircraft nominally flying at the

same flight level

Ey(same) is the same direction lateral occupancy, i.e. the average number

of same direction aircraft flying on the laterally adjacent tracks at the

same flight level within segments of length 2Sx, centred on the typical

aircraft

Ey(opposite) is the opposite direction lateral occupancy, i.e. the average

number of opposite direction aircraft flying on laterally adjacent tracks

at the same flight level within segments of length 2Sx, centred on the

typical aircraft

Sx is the length of the longitudinal window used in the calculation of occu-

pancies

λx is the average length of an aircraft

λy is the average width of an aircraft

λz is the average height of an aircraft
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|△v̄| is the average relative along-track speed of two aircraft flying at the

same flight level in the same direction

|v̄| is the average ground speed of an aircraft

|¯̇y| is the average lateral cross-track speed between aircraft that have lost

their lateral separation

|¯̇z| is the average relative vertical speed of aircraft flying at the same flight

level

The main limitations of the Reich model are that it does not account for

lane change manoeuvers, pilot control loops, or failures of the on-board au-

tomated separation assurance system. As a result, the Reich model does

not adequately cover situations in which ground controllers monitor the air

traffic though radar surveillance and provide tactical instructions to aircraft

crews [34].

The Machol- Reich Model: the Machol-Reich is a modified generalised model

of the Reich-Marks model. It was developed in 1966 with the aim of increas-

ing airspace capacity after the ICAO had established the NAT SPG (North

Atlantic System Planning Group)[148]. To overcome the limitations of the

Reich model, which had been used, so far, to deal only with simple cases,

[194] was extended to a generalised form in the Machol-Reich model. Some

special types of collision scenario, such as overtaking, were accommodated

into this generalised model.

Intersection Models: these models belong to the simplest collision risk mod-

els. They are based on the assumption that aircraft follow pre-determined

crossing trajectories at constant speeds. The probability of a collision at the

crossing point is computed using the intensities of traffic flow on each trajec-

tory, aircraft speeds and airway geometry [110, 208]. The Hsu model [110]

is a perfect example of this kind of model. The Hsu model is based mainly
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on the concept of the Reich model [194], which assumes that each aircraft

is shaped like a 3D cylinder with a diameter (λxy ) and vertical height (λz).

Assuming that an aircraft (A) is a double-sized cylinder, i.e. has a radius of

λxy and height of 2λz, with another aircraft/point in the space denoted by

B, the two aircraft will touch each other when, for example, B moves in any

direction in the cylinder of A. It is assumed that two aircraft are at nominal

distances of d1 and d2 before intersecting at time t0, with constant speeds

of v1 and v2, respectivel during a time interval of t0 to t1 during which a

collision risk is to be estimated. According to Hsu, this risk is:

CR(t0, t1|v1, v2) = Pz(hz)×
(
1 +
|ż|
2λz

× πλxy

2Vrel

)
×HOP (t0, t1|v1, v2) (2.2)

where, HOP (t0, t1|v1, v2) denotes the probability of a horizontal overlap of

these two aircraft during a time interval of [t0, t1] given their speed v1 and v2,

Pz(hz) the probability of their instantaneous vertical overlap at height λz,

their nominal vertical separation by distance hz at the time of a horizontal

overlap, |ż| the average vertical speed of an aircraft with a horizontal overlap

and Vrel the relative difference in speed of the two aircraft.

Geometric Conflict Models: another type of collision risk model are the geo-

metric conflict models. Similar to the intersection model, these models con-

sider the speed of the aircraft as constant but their initial three-dimensional

positions are random. Based on extrapolating the position of the aircraft in

time, it is possible to geometrically describe the set of initial locations that

eventually lead to a conflict. This situation will occur when two aircraft are

closer than the separation minima, for example, of 5nm. In such a situation,

after integrating the probability density of the initial aircraft locations over

the conflicting region, the collision risk can be estimated [23, 124, 177, 178].
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Generalized Reich Model the generalised Reich model was developed by re-

moving restrictive assumptions from the Reich model based on the fact that

the Reich model does not adequately cover certain real air traffic situations.

Such a generalised collision model was developed during the 1990s and has

been in use as part of the TOPAZ (Traffic Optimization and Perturbation

Analyzer) methodology [33, 34].

The ICAO has developed the Collision Risk Model (CRM) as a mathematical tool

used in predicting the risk of mid-air collision. During development of the ICAO

CRM [115, 119], they adopted the Reich [193–195] and Hsu [110] formulae and

further defined a unified framework for derivation of collision risk models. The

ICAO called this the Rice formula [119, 154]. From the Rice formula, it is possible

to derive the Reich and the Hsu formulae [154].

The models discussed above are analytical models to estimate collision risk. A

central problem with these models is that they apply only to simple scenarios. For

example, they generally apply to level flight and do not consider corrective actions

by pilots or controllers. In particular, the analytical models do not account for

corrective actions by the pilots to avoid a collision. However, the Hsu model can

be integrated with an air traffic simulator that can handle these types of situation

and successfully be used to estimate the collision of complex traffic scenarios [13].

In this thesis, I used the same integration principle of a collision risk model with an

air traffic simulator in order to execute complex traffic scenarios and to evaluate

the collision risk of an airspace; for this purpose I have chosen the Hsu model.

2.3.4.2 The Hsu Model

Similar to the intersection-type models, the Hsu model [110] is a slightly more

complex model, which is mainly based on the concept of the Reich model [194].

This model assumes that each aircraft is shaped like a 3D cylinder, with diameter
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Figure 2.14: A geometric representation of the Hsu collision risk model of two
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λxy and vertical height λz. Let us consider that an aircraft (A) is represented as a

double-sized cylinder, i.e. a cylinder of radius λxy and height of 2λz and another

as a point in the space denoted by B. Under these assumptions, two aircraft

are touching each other when, for example, B enters along any direction into the

cylinder of A.

As illustrated in Figure 2.14, in a crossing scenario, two aircraft are assumed to be

at nominal distance of d1 and d2 before the intersection at time t0, with constant

speed v1 and v2 during a time interval t0 to t1 during which collision risk is to be

estimated. According to Hsu, the collision risk between these two aircraft during

the interval [t0, t1] is

CR(t0, t1|v1, v2) = Pz(hz)×
(
1 +
|ż|
2λz

× πλxy

2Vrel

)
×HOP (t0, t1|v1, v2) (2.3)
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where, HOP (t0, t1|v1, v2) denotes the probability of a horizontal overlap of two

aircraft during a time interval of [t0, t1] given their speed v1 and v2. Pz(hz) is

the instantaneous vertical overlap probability of the two aircraft of height λz,

nominally separated vertically by distance hz at the time horizontal overlap occurs.

|ż| is the average vertical speed of an aircraft given that it has a horizontal overlap

and Vrel is the relative speed between the two aircraft.

2.4 Network Capacity Estimation

The network capacity estimation is generally known as one of the most difficult

problems in the transportation field. Pioneering work to solve the network ca-

pacity problem traces back to Ford and Fulkerson [85], who developed a labelling

algorithm for the network maximum-flow problem on the basis of max-flow min-

cut theory. However, the max-flow min-cut algorithm is ideal for solving problems

with a single origin-destination [190]. To obtain realistic network capacity, many

researchers have made contributions in this area. In 1972, Iida [123] developed an

incremental assignment approach in which a certain portion of origin-destination

(OD) demand matrix was iteratively added to the network. On the basis of the up-

dated link cost (travel times), a link was eliminated from the network if it reached

its capacity threshold. Finally, the network capacity was obtained when a certain

OD pair was no longer connected. The main drawback of this approach is the

choice of the route. Realising the effects of route choice behaviour and conges-

tion, Asahura and Kashiwadani proposed a bi-level programming approach to ad-

dress the network capacity problem, in which the traveller route choice behaviours

(routing strategies) and congestions effects were explicitly considered [8, 19]. In a

recent study by Chen et al. [45], the authors developed a bi-level model to deal

with the network turning restriction design problem in which traffic are prohibited

from driving into restricted downstream links at a group of intersections. Along
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with the bi-level model, the importance of developing probabilistic procedures for

quantitative evaluation of the capacity [47, 48] and flexibility [45] of transportation

network capacity has also been investigated in recent years.

Despite the significant contribution of previous studies to various aspects of net-

work capacity modelling, a comprehensive approach is lacking in the literature to

investigate the flow capacity of an air transportation network. A small number

of attempts have been made to estimate the total capacity of an entire air trans-

portation system for any region or country [66, 67]. There is growing concern

among airlines and a small group of policy analysts are concerned that the air

transportation system is running out of capacity [66, 162].

Conventionally, in traffic flow networks, the maximum flow capacity is estimated

using a Multi Commodity Flow (MCF) model [46, 86]. The multi-commodity

network flow problem is defined over a network in which more than one com-

modity needs to be shipped from specific origin nodes to destination nodes while

not violating the capacity constraints associated with the arcs. In general, there

are three major MCNF problems in the literature: the max-MCNF problem, the

max-concurrent flow problem and the min-cost MCNF problem. The max-MCNF

problem is to maximise the sum of flows for all commodities between their re-

spective origins and destinations. The max-concurrent flow problem is a special

variant of the max-MCNF problem, and maximises the fraction (throughput) of

the satisfied demands for all commodities. In other words, the max-concurrent

flow problem maximises the fraction z for which the min-cost MCNF problem is

feasible if all the demands are multiplied by z. The min-cost MCNF problem is

to find the flow assignment satisfying the demands of all commodities with min-

imum cost without violating the capacity constraints on all arcs. The network

capacity problem is generally considered a max-MCNF problem. However, the

existing models and methods for the max-MCNF problem are not directly appli-

cable to the air transportation network, where capacity modelling characteristics
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are quite different, for the following reasons: (a) the movement in a transportation

network involves flows of aircraft with different speeds; (b) flow is heterogeneous

given different wake vortices categories of aircraft, viz. light, medium and heavy;

(c) different types of aircraft require different amounts of resources at landing and

departure airports; (d) there must be a minimum separation distance between two

consecutive aircraft, which depends on the type of operation (landing or take-off)

and the preceding aircraft type and operation for managing wake vortices; (e) air-

craft departing from an airport are expected to land at destination airports within

a time frame, because aircraft cannot hold in the air for a long time, which will

increase the amount of delay; (f) multiple OD pairs exist and the flow between

different OD pairs is not exchangeable or substitutable in an air transportation

network capacity problem. These characteristics make the modelling of air trans-

portation network capacity a complex, yet interesting, problem to solve.

2.5 Evolutionary Computation in Air Transporta-

tion Problem

Finding optimal solution(s) for a real-world problem may be computationally ex-

pensive or even impossible, as the complexity of the problem prevents exact meth-

ods from being applicable. Specifically in the case of air traffic management, for

example, generating traffic scenarios for evaluating complex metrics such as colli-

sion risk for an airspace, capability assessment of conflict detection and resolution

algorithms and evaluating advance ATM concepts are such problems. Traditional

optimisation techniques such as gradient descent, linear programming and integer

programming are not suitable for the problems associated with the air transporta-

tion domain because of the complex interactions among the sub-systems. The large

search space (possibilities) and non-linear interactions between different compo-

nents of an air transportation system make traditional search methods, such as
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Monte Carlo, computationally infeasible [13]. Nature-inspired techniques such as

evolutionary algorithms (EA) have emerged as an important tool to effectively

address complex problems in the air transportation domain [12, 61, 90, 97, 151].

It has been successfully applied in air traffic planning [226], conflict detection and

resolution [140, 160, 216], scenario generation [10, 88, 176] and weather avoidance

[9].

In this section, I present two major evolutionary algorithms: genetic algorithms

(GA) and differential evolution (DE). Both GA and DE output the descriptive

representation of solutions as an array of bits, integers, floats or data structures.

From these arrays, solutions are usually obtained through simulation.

2.5.1 Genetic Algorithm

Genetic algorithms (GAs) are adaptive search algorithms based on the evolu-

tionary concepts of natural selection and genetics. GA represents an intelligent

exploitation of a guided search used to solve optimisation problems. The process

of GA starts with a random solution of the problem and then guides towards

the optimal solution by some operators inherited from nature. Although it starts

with randomised solutions, GAs are by no means stochastic; instead, they exploit

historical information to direct the search into the region of better performance

within the search space. The basic techniques of the GAs are designed to simulate

processes in natural systems necessary for evolution, specifically those that follow

the principles first laid down by Charles Darwin of ‘survival of the fittest’, since,

in nature, competition among individuals for scanty resources results in the fittest

individuals dominating over the weaker ones.

Genetic algorithms simulate the process of natural selection in a hostile environ-

ment linked to the problem under consideration [59]. The basic building blocks

of GAs are solution representation, the process of selection and reproduction of
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better solutions (crossover and mutation). The candidate solution of the problem

is encoded into chromosomes, which refers to individuals in a population.

SelectionSelection

......
Population (k+1)Population (k+1)

......
Population (k)Population (k)

CrossoverCrossover

Child 1Child 1 Child 2Child 2 

MutationMutation MutationMutation

Fitness

evaluation

Fitness 

evaluation
itness

evaluation

Fitness 

evaluation

ParentsParents 

P1P1

P2P2

Figure 2.15: Principle of genetic algorithms

In the context of optimisation, each individual represents a candidate solution

point in the search space, which associates a value of the optimisation problem.

The value of a candidate solution is calculated by the fitness function(s), which

provide the solution to the optimisation problems given value of each independent

variable of the problem. The GAs start with a randomly generated population of

individuals, from which it aims to select the best solution while ensuring efficient
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exploration of the search space. Figure 2.15 shows the steps of operations used in

genetic algorithms.

• Initialization: the individuals of the initial population are usually gener-

ated randomly. The choice of the number of individuals depends on the

problem. Typically, the initial population contains several hundred to thou-

sands of individuals. The randomly generated population can help to explore

the entire search space. In some cases, instead of random initialisation, the

population starts with seed solutions in promising areas of the search space,

where the likelihood of optimal solutions existing is high [131, 132].

• Selection: in each generation, a pool of individuals is selected from the

current population to breed a new generation. Selection is implemented,

based on the fitness of individuals. Some selection methods rank the fitness

of each solution, and the best solutions are preferentially selected. However,

this method may consume a lot of time. Other methods rank only a number

of random individuals.

• Reproduction: In the reproduction process, a new population is created

from the pool of selected individuals by genetic operators (crossover and/or

mutation). Biologically inspired, two parent (in our example, Figure 2.15 P1

and P1) solutions are selected from the pool to reproduce a new child until

the set of offspring reaches a predefined size. In general, crossover is used to

mix the genes of individuals in the population, whereas mutation is used to

generate new genes.

In the reproduction process, the application of crossover is done through a

probability pc, which generates the children, then some of their genes are

modified by applying a mutation operator with a probability pm. The values

of pc and pm play an important role in determining the degree of solution

accuracy, the convergence speed that genetic algorithms can achieve and the
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divergence of the population. Generally, pc is set to a high value, while pm

is low (where the role of mutation is to avoid the loss of potential solutions).

However, some research uses mutation as the main operator because the

crossover operator may not be useful in some cases. For example, when indi-

viduals in a population are similar, the crossover operator will create children

similar to their parents. Some genetic algorithms with adaptive parameters

(AGAs - adaptive genetic algorithms) use the population information to ad-

just the pc and pm to obtain the population diversity and convergence [179].

• Fitness Evaluation: GAs simulate the survival of the fittest among in-

dividuals over consecutive generations to solve a problem through fitness

evaluation. Fitness value is used to show how good an individual is in rela-

tive comparison to other individuals in the population.

In some complex problems, the exact fitness function may require a lot of

time to evaluate (such as a number of hours), for example, estimation of the

collision risk for a traffic scenario [13]. Furthermore, the fitness evaluation

is repeated in every individual of a population through generations. Typical

genetic algorithms cannot resolve such types of problem. In this case, an

approximated fitness that requires less time to evaluate can be a solution.

• Termination: The evolution terminates when a certain condition has been

satisfied. Commonly, the terminating conditions are a found solution meet-

ing the minimum criteria, reaching the maximum number of generations,

reaching the allocated budget (such as computation time) or successive iter-

ations no longer producing better results.

2.5.2 Differential Evolution

Differential evolution (DE) is a branch of evolution algorithms for optimising prob-

lems in continuous spaces to produce multiple solutions in one run [7, 210]. DE
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uses direction information to guide the search and compare the fitness of an off-

spring directly with the fitness of the corresponding parent, which results in faster

convergence speeds than other EAs [104]. In addition, DE is also easy to use,

requires fewer control parameters and can find near optimal solutions regardless

of the initial parameter values [71]. In DE, the gene values are real numbers in

the chromosome. An individual is selected randomly for replacement and three

different individuals are selected randomly as parents, one of which is selected as

the main parent. The child is generated by adding to each variable in the main

parent a ratio of the difference between the values in the two other parents. In

other words, the main parent’s vector is perturbed by the other two parent vec-

tors. This process represents the crossover operator in DE. If the child vector

generated is better than that chosen for replacement, it replaces it; otherwise, the

vector chosen for replacement is retained in the next generation. The steps of a

DE algorithm are described bellow:

A DE starts with a population of NP candidate solutions, which is represented as

Xi,G,= [X1,i,G, X2,i,G, ..., Xd,i,G] , i = 1, ..., NP , where i index denotes the popula-

tion, and G denotes the generation to which the population belongs.

In the initialisation phase, the upper and lower bounds for each chromosome value

XL
j ≤ Xj,i,1 ≤ XU

j are set for each variable. After that, the initialisation is done

by randomly selecting the chromosome values uniformly in the intervals [XL
j , X

U
j ].

After the initialisation, the effective evolution of DE depends on the manipulation

and efficiency of three main operators, mutation, reproduction and selection, which

are described briefly in this section.

Mutation: the mutation operator is the prime operator of DE and it is the im-

plementation of this operation that makes DE different from other evolutionary

algorithms. The mutation operation of DE applies the vector differentials between

the existing population members for determining both the degree and the direc-

tion of perturbation applied to the individual subject of the mutation operation.
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The mutation process at each generation begins by randomly selecting three indi-

viduals (r1, r2, r3) in the population. There are many mutation strategies in the

literature [15]; among them, the following is the most popular.

Vi,G+1 = Xr1,G + F × (Xr2,G −Xr3,G) (2.4)

where, F is the mutation factor, which is set usually between 0 and 2.0, and vi,G+1

is the donor vector.

Crossover: once the mutation phase is complete, the crossover process is applied,

that perturbed the donor vector , Vi,G+1 = V1,i,G+1, ..., Vd,i,G+1, and the current

population member, Xi,G = X1,i,G, ..., Xd,i,G, are subject to the crossover opera-

tion, which finally generates the population of candidates, or ‘trial’ vectors,Ui,G+1 =

U1,i,G+1, ..., Ud,i,G+1 as follows:

Uj,i,G+1 =


Vj,i,G+1 if randj ≤ cr ∨ j = k

Xj,i,G otherwise

(2.5)

where, j = 1, ..., d, k ∈ 1, ..., d is a random parameter’s index, chosen once for

each i, randj ∈ [0, 1], and the crossover rate, cr ∈ [0, 1]. The parameter index, k,

ensures that Vi,G+1 ̸= Xi,G.

Selection: the selection scheme of DE also differs from that of other EAs. The

population for the next generation is selected from the individual in the current

population and its corresponding trial vector according to the following rule:

Xj,G+1 =


Ui,G+1 if f(Ui,G+1) ≤ f(Xi,G)

Xi,G otherwise

(2.6)

Thus, each individual of the temporary (trial) population is compared with its

counterpart in the current population. The individual with the better objective
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function value will survive from the tournament selection to the population of the

next generation. As a result, all individuals of the next generation are as good or

better than their counterparts in the current generation.

The empirical study shows that the differential evolution algorithm has a greater

degree of computational complexity for combinatorial problems than the genetic

algorithm [105]. This largely arises from the encoding scheme used to represent

the permutations as vectors and from redefining those vector operations inherent

to differential evolution. The time required to reach convergence increases greatly

as the problem size increases in both problems. The biggest advantage of the

differential evolution approach over the genetic algorithm approach is its stabil-

ity. The greatest setback for the genetic algorithm approach are problems with

premature convergence.

2.5.3 Airport Capacity Management Using GA

GA is a large-scale parallel stochastic searching and optimising algorithm, and it

is effective for solving a wide range of complex optimisation problems [96]. There

have been many studies that have applied GA to resolve the airport capacity es-

timation problem [92, 155, 206]. The capacity of an airport depends on multiple

factors such as the arrival-departure management, the geometric layout of the

runway, the number of runways, the number of taxiways, the number of gates,

aprons, the efficiency of the ATC and weather conditions [186]. Capacity max-

imisation by utilising multiple resources is a challenging task. The optimisation

of multiple resources makes the airport capacity estimation a NP-hard problem

[206]. To address this problem, evolutionary algorithms such as GA have been

found to be effective in many cases [92, 155, 206]. In [206], the authors used a

self-adaptive mutation-only GA algorithm to optimise the airport capacity curve.
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They viewed this problem as a slot assignment problem and encoded the flight in-

formation such as the number of arrival and departure flights within a time frame,

the time slot of landing and take-off, airborne holding delay, etc., into a chromo-

some. The chromosomes then went through an evolution process using mutation

only to increase the airport capacity while ensuring no conflicts between successive

operations (landing or take-off).

2.5.4 Application of EAs in Traffic Scenarios Generation

Many complex ATM problems require searching through a large number of pos-

sible solutions. Some problems require complex solutions that are difficult to

programme by hand. Air traffic scenario generation is an example of this kind of

problem. EA provide a simple way of addressing these problems when the evolu-

tionary process involves searching among a large number of possibilities. In [160],

Mondoloni applied GA to generate traffic scenarios to access the capabilities of an

airborne conflict resolution algorithm. In [160] the proposed approach, each gene

in a chromosome represents a possible flight plan. These traffic scenarios are first

perturbed through genetic operators and then boundary constraints are imposed

on them. Scenarios in the form of flight trajectories are generated through these

flight plans and a conflict detection function is called. The fitness of each trajec-

tory is evaluated based on conflict information for conflicted flight plans. A flight

rules function is used to accept conflict information and determine whether the

aircraft should move according to the rules of flight. The newly evaluated flight

plans are then combined with the best flight plans from the prior iteration and

ranked according to fitness. In the selection process, flight plans are selected in

proportion to their fitness, where higher fitness flight plans have a higher proba-

bility of selection. In a similar problem, Paglione [176] applied GA for generating

conflict scenarios by time shifting recorded air traffic data. GAs are utilised to

determine the values of time shifts for the recorded air traffic data to obtain the
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desired conflict properties. The time shift of each flight is a gene on a chromosome

that represents a vector of N time shifts for a set of N flights. Therefore, the

number of genes in a chromosome is equal to the number of flights in the scenario.

The fitness function is based on the number of encounters that fall in the defined

primary conflict properties bounds.

Alam [9] used GA for path planning in a weather-constrained free flight air traf-

fic environment. The weather-constrained airspace is discretised into a hyper-

rectangular grid and a GA is used to find weather-free routes while incorporating

other flight optimisation objectives such as minimising deviation from planned

trajectories and reducing excessive climb and descent manoeuvers.

Recently, Alam [13] used a multi-objective GA to generate traffic scenarios to

rank traffic flow management (TFM actions) that lead to high collision risk in

an airspace. In this problem, a scenario is defined as a set of flight paths and a

set of TFM actions with their execution times. The scenarios are encoded into

a chromosome and its collision risk is evaluated using an air traffic simulator.

Based on the fitness of scenario and applying the GA operators, TFM actions are

evaluated over a generation and the scenarios with TFM actions that lead to higher

collision risk are survived in the next generation. Finally, after the final generation,

the TFMs are classified based on their impact on the increase of collision risk.

2.6 The Emergent Questions

From the literature survey, it is evident that, in the ATM domain, the capacity

of an air transportation network has generally been measured at the levels of its

individual elements, such as links (sector capacity and airspace complexity) and

nodes (terminals and runway throughput), which obviously does not constitute

its overall system-level capacity. There is almost no research on estimating the

Murad Hossain July 2016



Chapter 2. Literature Review 68

system-level or network-level capacity of an air transport network. Therefore, it is

necessary to develop a model for air transportation network capacity estimation.

So, the ultimate question that arises is: how can the capacity of an air trans-

portation network be estimated? From the network point of view, the system-

level capacity of an ATN can be measured from its underlying airport network.

Network capacity estimation is an optimisation problem with several constraints

making up an NP-hard problem. It cannot be solved by any simple formulas.

Traditionally, a network’s capacity is determined by modelling it as a classical

multi-commodity flow (MCF) problem [190], which is being applied successfully

in communication networks, and water distribution and electric power systems.

The unique characteristics of air traffic flow and the nature of interaction among

the different components of an ATN makes the MCF formulation obsolete. How-

ever, with some modification, an airport network capacity can be formulated as

an MCF problem. It is a challenge to develop such a formulation of the ATN ca-

pacity estimation problem. Chapter 3 addresses this challenge by the design and

proposes a hill-climbing heuristic algorithm to solve the airport network capacity

problem.

An air transport network is a complex combination of several integrated sub-

components. It can be considered a composition of two major networks: (i) the

airport network – in which each airport is treated as a node and the flights con-

necting them create the links; (ii) airspace network considers the waypoint as a

node and airways make the links. These two sub-network have their own con-

straints and goals. For example, an airport network is mainly concerned with

increasing the throughput or individual capacity. Whereas, the airspace network,

which is mainly responsible for an orderly flow and safe separation between flights,

considers safety its limiting factor. The interaction between these two networks,

which are created by the actual flow between them, plays an important role in

an ATN’s actual capacity estimation. Without considering these interactions, it

Murad Hossain July 2016



Chapter 2. Literature Review 69

will not be feasible to estimate the actual capacity bound/limit of an air trans-

portation network. Although significant effort has been expended on developing

large-scale, discrete-event simulations of an air transportation network system, a

simple macroscopic theoretical model for estimating the system-level capacity es-

timation and integration of it with a simulations is lacking. Such a framework will

enable us to gain insights into the relationship between the capacity and safety

of an ATN. In Chapter 7, I address this issue and propose the abovementioned

framework.

For developing a framework for capacity – safety relationship analysis of an ATN

– several questions arise, such as: what is an appropriate collision risk model

that can be used in a real simulation environment? Here, an appropriate model

means that the model is efficient to handle a large amount of air traffic data (one

day, one month or one year) and can accommodate different kinds of aircraft and

their performance. Secondly, complex air transportation network modelling with

individual airport and airspace network will be required. Finally, the capacity of

an airport needs to be translated into an air traffic scenario that can be executed

in a simulator from where the collision risk can be estimated. Methodologies of

generating/developing air traffic scenarios for collision risk assessment are highly

tedious and time consuming. Recorded air traffic data does not contain adequate

alternatives, since any possible loss of separation situation is already resolved by

the controllers. Thus, an algorithmic approach to generate traffic scenarios with

desired properties is highly desirable. All of these challenges are addressed in

Chapter 7, where validation and evaluation experiments are conducted with a

set of scenarios representing different air transportation networks with different

capacity limits.
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Chapter 3

Airport Network Modelling and

Topological Analysis

Work in this chapter has been published partially in the following papers:

• Md Murad Hossain, Sameer Alam, Tim Rees and Hussein Abbass, Australian airport network robustness

analysis: a complex network approach. 36th Australasian Transport Research Forum (ATRF 2013),

Brisbane, Queensland, Australia.

• Md Murad Hossain and Sameer Alam, A Complex Network Approach Towards Modeling and Analysis of

Australian Airport Network, Journal of Air Transport Management, Elsevier, Submitted.

An airport network forms the backbone of an air transportation network. In such

a network, the links between the origins and destinations of flights result in a

complex network of routes, which can then be complemented with information

associated with the routes themselves, such as frequency, traffic load and distance.

In this chapter, I propose a complex network approach to model an airport network

for understanding the dynamics of its topology and features. As a case study, the

Australian civil domestic airport infrastructure is modelled as a complex network.

This chapter address the following research question, which has been the focal

point of the ATM community over the years. What is an appropriate model for

an airport network for capacity analysis? To address this question, I compute

complex network measures such as degree distribution, characteristics path length,
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clustering coefficient and centrality measure as well as the correlation between

them to gain an understanding of the topology of an airport network.

3.1 Introduction

In recent years, the transportation domain has witnessed a renewed interest in

network and graph theory due to the understating gained that many natural [94,

157, 213, 218], artificial [26, 230] and combinatorial optimisation problems [109,

197, 198] can be explained in terms of complex networks. More recently, the

advancement of complex network theory has generated a huge interest in the area

of airport networks [16, 21, 102, 217, 222].

To analyse the topology and characteristics of the airport network, at a regional,

national or global level, it is best to abstract and integrate the airports in a way

that allows us to assess uncertainty and other properties of interest without need-

ing to include too much detail. Complex network theory provides a theoretical

framework that may help us to develop such models and to analyse the topology

and characteristics of the resulting network. From the complex network point

of view, airports are modelled as graphs (networks) comprising airports as ver-

tices that are linked by flights connecting them. exhibit two distinct topological

properties:

There have been a few studies applying complex network tools to analyse air trans-

port networks. Notable among them are the Worldwide Airport Network (WAN),

which has been studied from a topological as well as an traffic dynamics perspec-

tive [101]. Guimerá ei al., observed that the WAN is a scale-free (SW) network and

the most connected nodes are not necessarily the “central”-nodes through which

most of the shortest paths pass, implying the anomaly of centrality values [102]. In

2004, Guimerá et al. [101] proposed a model incorporating the geo-political con-

straints to explain this anomaly. Besides the topological features, Barrat et al. [28]
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studied the WAN in more detail by considering the traffic dynamics, specifically

the strength of interactions between nodes. They also proposed [29] a model for

the evolution of weighted evolving networks to understand the statistical proper-

ties of real-world systems. Complex network measures are also used for analysing

the air transport networks of particular countries and airlines, such as Italy [100],

India [21], Brazil [56], China [217] and the Lufthansa airline [192]. Each network

was found to have different characteristics and unique connectedness.

In these research works, though the topology and the structure of airport networks

have been analysed, one common oversight is the lack of robustness analysis of the

air transport networks. There is a research gap in identifying the topological

features to asses airport network robustness or vulnerability. To fill this gap, in

particular, I am interested in two main questions: (i) which network measures

are best suited to assess the damage suffered by airport networks and to charac-

terise the most effective attack (protection) strategies? (ii) how does the network

structure influence the system’s robustness? My attention is, therefore, focused

on the network topology and analysis of the structural vulnerability with respect

to various centrality-driven failure (attack) scenarios. In particular, I propose a

series of topological and centrality-based features that can be used to identify the

key vertices of an airport network. There are two main types of disruption that

could happen to an airport network.

• Short time outage of resources such as: closing of special purpose (military

use) airspaces for a period; runway or airport unavailable due to weather

or congestion; outage of control tower radar; or communication links break

down. These types of shortage are usually recovered within a short period

of time. As a result, these types of disturbance usually have a small impact

on the overall performance of the systems. In the current air transportation

system, if an airport is congested, all departure flights are delayed, the arrival

traffic (if not departed) is delayed in the origin airports and the airborne
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flights, approaching the airports under short-term outage, are either put on

hold if possible or diverted to another airport until the airport recovers.

• Long-term resources outage can include terror action causing the closing

down of air travel in large areas (e.g. 9/11 in 2001); volcanic ash blocking

air travel in large areas (e.g. Iceland volcano in 2010); airports affected

by floods; runway accidents that damage the runway; or airports damaged

by tornados or typhoons. These types of disruption are rare and normal

functioning cannot be recovered in a short period of time; each of these rare

exceptional events could trigger catastrophic failure of the whole system.

In this chapter, I investigate airport network features and the effect of long-term

disruption on the robustness.

3.2 Airport Network Model

An airport network is usually defined as a graph in which nodes are airports and

two nodes are connected if at least one flight goes from one node to another in a

defined time interval. The topology and the characteristics of airport networks has

been analysed by using the tools of complex network theory. Understanding and

analysing an airport network can give useful insights into the future development

of airports and the redesigning of airspace, and can be an important source of

information for policy makers. In this chapter, I have used the AAN as a case

study. Though the AAN is used as an example, the results and insights are

applicable to transportation or airport networks with similar network features.

The AAN consists of domestic and international airports that conduct regular

passenger flights with over 20 airlines (domestic and regional) connecting them.

The air movement data among Australian airport-pairs, for 2011, was obtained

from the Bureau of Infrastructure, Transport and Regional Economics, Australia
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(http://www.bitre.gov.au) and the Official Airline Guide OAG (http://www.oag.com)

[171].

3.2.1 Unweighted AAN

For the purpose of developing the AAN, links are created between each airport-

pair if there is any passenger flight connecting the two airports. From the resulting

network, I found that the AAN is a directed network at which all major airports

have direct connections. The AAN is represented as a connected network G =

(V,E) by V and E, where V = vi : i = 1, 2, ..., n, n = |V | is the number of nodes,

and E = ei : i = 1, 2, ...,m,m = |E| is the number of edges (links). The network

is represented by an adjacency matrix An×n such that aij=1 if a flight link exists

between city-pair i and j, otherwise aij=0. The resulting AAN consists of 131

airports and 596 direct air routes. Most of the links in the AAN are connected in

both ways; as a result, I consider it as an undirected network for the subsequent

analysis in this chapter.
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Figure 3.1: The Australian Airport Network.
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Table 3.1: Top 20 cities in Australia by number of passengers.

Rank City No. of air
routes

Aircraft
Movements
(thousand)

Passenger
volume
(million)

1 Sydney 99 158.212 21.878
2 Melbourne 66 149.196 20.492
3 Brisbane 81 110.209 14.315
4 Perth 57 58.352 7.548
5 Adelaide 47 47.584 5.883
6 Gold Coast 25 31.711 4.554
7 Cairns 46 24.829 2.964
8 Canberra 24 31.011 2.688
9 Hobart 10 14.761 1.843
10 Darwin 41 11.321 1.246
11 Townsville 29 13.330 1.316
12 Williamtown 16 8.236 1.078
13 Launceston 16 9.197 1.013
14 Mackay 14 8.346 0.824
15 Sunshine Coast 4 6.237 0.857
16 Karratha 15 6.905 0.690
17 Rockhampton 14 5.791 0.378
18 Alice Springs 19 6.566 0.597
19 Hamilton Island 13 3.423 0.434
20 Broome 21 3.414 0.333

3.2.2 Weighted AAN

Like many other complex networks, the details of the flow of information (traffic

load) are a crucial factor for a transportation network. To accommodate the infor-

mation about the amount of traffic flowing in the network, the AAN is represented

as a weighted network by considering the number of flights flying on a route as

the weight of that particular link. The weight is defined by a weight matrix Aw,

where each element wij stands for the total number of flights from airport i to

airport j. Figure 3.1 shows the AAN, in which proportional circles represent the

number of air connections of airports (number of routes) and the width of links

represent the monthly average volume of traffic.

Table 3.1 summarises the air traffic volume and air route (number of airports

connected) of the top 20 cities of the AAN from January 2011 to December 2011.
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The passenger data includes the major domestic airlines (Qantas, Jetstar, Virgin

Blue and Tiger Airways) and regional airlines that perform scheduled services.

The air route data includes all the airlines (domestic and regional) that provide

connectivity between airport pairs. Of all the airports, Sydney has the highest

level of air-route connectivity as well as passenger and flight movement.

3.3 Network Characterization and Topological

Features

Network structures arise in a wide range of different contexts such as technologi-

cal and transportation infrastructures, social phenomena and biological systems.

Each class of networks presents specific topological features that characterise its

connectivity, interaction and the dynamical processes executed by the network

[28]. The analysis, discrimination and synthesis of complex networks, therefore,

rely on the use of measurements capable of expressing the most relevant topo-

logical features, which enable us to characterise the complex statistical properties

[55]. Several basic indices are used to measure the topological configuration of the

AAN. Table 3.2 summarises the key metrics used to characterise a network. The

general implications in Table 3.2 indicate how these various measures imply im-

portant roles in a transportation network where the notations and variables have

the following meaning:

n = number of nodes

aij = represent the presence of connection between node i and j

wij = weight of the link between node i and j

⟨wi⟩ = average weight incident to node i

ki = degree of node i
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⟨k⟩ = average degree of a network

nk = number of nodes having degree k

dij = shortest distance between node i to j

Ci = clustering coefficient of node i

C = clustering coefficient of a network

Cw
i = weighted clustering coefficient of node i

Cw = weighted clustering coefficient of a network

L = average shortest path length

Cc(i) = closeness centrality of node i

Cc(i) = closeness centrality of node i

CB(i) = betweenness centrality of node i

Table 3.2: Network Metrics

Measure Symbol or Equation General Implications

Node N/A
Represents an Airport of the Aus-

tralian Airport Network (AAN)

Non-

weighted

adjacency

matrix

A = [aij ]n×n

Mathematical expression for a net-

work. The matrix size depends on

how many nodes compose the net-

work – if there are n nodes in the

network, the matrix size will be n×

n. Where all the entities are binary,

i.e. aij = 0 or 1.

Continued on next page
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Table 3.2 – Network Metrics

Measure Symbol or Equation General Implications

Weighted

adjacency

matrix

Aw = [wij ]n×n

Similar to non-weighted adjacency

matrix but instead of a binary value,

each link has a corresponding scalar

weight that signifies some distin-

guishing traffic such as the number

of aircraft operating in that link.

Node De-

gree
ki =

∑n
j=1 aij

In network theory, degree refers

to the total number of connections

node i has with other nodes in the

network.

Average

Degree
⟨k⟩ = 1

n

∑n
i=1 ki

The average degree of a network

refers to the average number of

neighbours a node has in the net-

work.

Node

weight, or

Strength

si =
∑n

j=1 aijwij

In the transportation network, node

weight or strength represents the

amount of traffic (operations) asso-

ciated with the node.

Degree Dis-

tribution
p(k) = nk

n

Degree distribution, regarded as a

descriptive statistic of the network,

is an important characteristic of the

nodes in the network. For a net-

work with n nodes, if nk of them

have degree k, the degree distribu-

tion p(k) is defined as the fraction

of these k−degree nodes.

Continued on next page
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Table 3.2 – Network Metrics

Measure Symbol or Equation General Implications

Cumulative

Degree Dis-

tribution

P (> k) =
∑∞

k′=k p(k
′)

The degree distribution is very im-

portant in studying both real net-

works, such as the social networks,

transportation networks and theo-

retical random networks. Most real-

world networks have degree distri-

butions very different from the ran-

dom networks.

Cumulative

Weight Dis-

tribution

P (> w)

The cumulative weights distribution

P (> w) of a network defines the

fraction of links with weight greater

than or equal to w. P (> w) also

plays an important role for identify-

ing the level of heterogeneity among

the traffic flow in a transportation

network.

Geodesic

Distance
ℓ = dij

A shortest path between two nodes

is referred to as the geodesic dis-

tance. It quantifies how far apart

is each pair of nodes in the net-

work. The ‘Diameter’ has the

largest geodesic distance in the

(connected) network.

Continued on next page
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Table 3.2 – Network Metrics

Measure Symbol or Equation General Implications

Average

Short-

est Path

Length

L = 1
n(n−1)

∑
i̸=j dij

Average shortest path plays an im-

portant role in the transport and

communication within a network.

The smaller the L, the more com-

pact and reachable the network.

Thus, L could be used as an indica-

tor of the performance of the airport

network [22].

Clustering

Coefficient
Ci =

1
ki(ki−1)

∑
j,k aijajkaik

Capture the local cohesiveness of a

node and also represent the network

transitivity.

Average

Clustering

Coefficient

C = 1
n

∑
iCi

Measure of local cohesiveness for

a collection of nodes. A node

with higher Ci than the network’s

average clustering coefficient C is

more interconnected than the aver-

age. This measure has implications

on local robustness. Higher Ci indi-

cates greater robustness since alter-

native connection paths may exist

when a neighbouring node fails.

Continued on next page
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Table 3.2 – Network Metrics

Measure Symbol or Equation General Implications

Weighted

Clustering

Coefficient

Cw
i = 1

ki(ki−1)

×
∑

j,k
1

⟨wi⟩
wij+wjk

2 aijajkaik

Clustering coefficient C and Ci over-

look the flow of information on the

network and, hence, cannot cap-

ture the correct information about

the network dynamics [28]. To

the overcome this limitation, the

weighted clustering coefficient Cw
i

measures local cohesiveness by tak-

ing into account the interaction in-

tensity present on the local triplets

[174, 201]. The weighted clustering

coefficient of the network Cw is then

given by the average of all individual

Cw
i in the network.

Closeness

Centrality
Cc(i) =

n−1∑
j,i̸=j dij

The centrality measures the relative

importance of a node within a net-

work. Closeness centrality measures

the extent to which a node is close

to all other nodes along the shortest

path and reflects its accessibility in

a given network [199].

Continued on next page
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Table 3.2 – Network Metrics

Measure Symbol or Equation General Implications

Betweenness

Centrality
CB(i) =

∑
k ̸=i ̸=j

σij(i)
σkj

where

σkj is the total number of

shortest paths from node k to

node j, and σkj(i) is the number

of those paths that pass through

node i

Betweenness centrality is a useful

measure of the load placed on a

given node in the network as well as

its importance to the network other

than just connectivity. Betweenness

centrality measures the extent to

which a particular node lies between

other nodes in a network [18, 87].

Degree Cor-

relation
knn(k) =

∑
k′ k

′P (k′ | k) where

P (k′ | k) is the conditional

probability that a node with

degree k is connected to a node

of degree k′

Degree correlation demonstrates the

extent of a node’s degree related to

the average degree of its neighbours.

This index reflects the node’s con-

nection tendency or assortativity of

the network.

Weighted

Degree

Correlation

kwnn,i =
1
si

∑N
j=1 aijwijkj

For a network, kwnn,i(k) is the av-

erage weighted nearest neighbour

degree over vertices of degree k.

kwnn,i(k) measures the effective affin-

ity to connect with high- or low-

degree neighbours according to the

magnitude of the actual interac-

tions.

Continued on next page

Murad Hossain July 2016



Chapter 3. Airport Network Modelling and Topological Analysis 84

Table 3.2 – Network Metrics

Measure Symbol or Equation General Implications

Clustering

Degree

Correlation

C(k) = 1
Nk

∑
viϵV,ki=k Ci

Clustering-degree correlation

demonstrates the extent of a node’s

clustering coefficient related to its

degree. This property provides

insights into how the hub nodes

provide connectivity to the pe-

ripheral nodes in the network and

inter-hub connectivity tendency.

Weighted

Clustering

Degree

Correlation

Cw(k) = 1
Nk

∑
viϵV,ki=k C

w
i

Weighted clustering-degree correla-

tion combines the topological infor-

mation with the weight distribution

of the network. This network fea-

ture provides global information on

the correlation between weights and

topology, specifically by comparing

them with its topological analogues

C(k).

3.4 Topological Analysis of AAN

Network structures arise in a wide range of different contexts such as technologi-

cal and transportation infrastructures, social phenomena and biological systems.

Each class of networks presents specific topological features that characterise its

connectivity, interaction and the dynamical processes executed by the network

[28]. The analysis, discrimination and synthesis of complex networks, therefore,
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Table 3.3: Characteristics of various networks (unweighted).

Network Characteristics
path length
(L)

Clustering
coefficient
(C)

Degree distribution (P(k))

Regular network Long Large point to point

Random network Short Small Poisson or Binomial

Small-world network Short Large Exponential or Power-law

Scale-free network Short Large Power-law

Real network Short Large Similar power-law

rely on the use of measurements capable of expressing the most relevant topologi-

cal features, which enable us to characterise the complex statistical properties [55].

Several basic indices discussed in Table 3.2 are used to measure the topological

configuration of the AAN.

The analysis of the topology of an airport network is important for two main

reasons. First, it allows us to identify the most efficient ways to engineer the

structure of the network. Specifically, having identified the topology, one can

identify which nodes are poorly connected and the way to minimise that problem.

Secondly, it provides a systematic way to identify the most central or critical node

in the network. The most central nodes play an important role to the entire

dynamic and, hence, the risk posed by possible malfunctioning of the airport.

Most network studies rely on measures capable of characterising relevant topologi-

cal features to identify the unifying principles and statistical properties commonly

existing among empirical networks [55]. According to the topological features, the

characteristics of different types of network are summarised in Table 3.3. A reg-

ular network is a connected graph in which each vertex is connected in the same

way exactly as its neighbouring vertices, for example, a ring network. A random

network consisting of n vertices and m edges is constructed by adding m edges

between the nodes at random, avoiding multiple and self-connections. A small-

world network is a network in between the regular and random network and has
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a small characteristics path length and high clustering coefficient, i.e. most ver-

tices can be reached from others through a small number of hops or steps. Many

empirical graphs are well modelled by small-world networks [218]. Many real-life

networks such as the road network, electric power grids and gene networks exhibit

by small-world network characteristics. Another important type of network that

is also found in the real-world network is the Scale-free network. A scale-free(SF)

network is a network whose degree distribution conforms to a power-law [168].

If the connectivity distribution P (k) is the probability that a node is connected

to k other nodes, then SF networks are characterised by a power-law behaviour

P (k) ∼ k−γ, where γ is a characteristic exponent [55].

3.4.1 Degree and Weight Distribution Analysis

The average degree and the distribution of degree measures provide a holistic

view of the structure and organisation of the whole network. The average degree

of the AAN is 9.10 with a maximum degree of 99. The AAN’s cumulative degree
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Figure 3.2: Cumulative degree distribution of AAN
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distribution follows power-law distribution P (> k) ∼ k−1.1211 (R2 = 0.96), which

is shown in Figure 3.2. It is shown in the figure that a small number of busy

airports at the top dominate the system with a large number of air routes. The

number of routes to each airport declines quickly, with most of them having only

1-3 air routes at the long tail. For example, the top 20 airports connected with a

majority (about 56%) of all air routes, and the bottom half of the airports (67 of

the 131 nodes in the network) are only connected with, at most, five other airports.

The AAN is, therefore, a clear example of a network with a heterogeneous degree

distribution, showing scale-free properties on a moderate range of degree values.
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Figure 3.3: Cumulative weight distribution of AAN

Similar to the degree distribution, distribution of weights also plays an important

role in identifying the level of heterogeneity among the traffic flow in an airport

network. The cumulative weight distribution of the AAN is presented in Figure

3.3. The statistical analysis of weights wij between pairs of airports indicates the

presence of right-skewed distributions, which signals a high level of heterogeneity

in the system. This phenomena is also found in the case of Airport Network India

[21], China [217] and WAN [101].
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Figure 3.4: Average strength s(k) as a function of degree(k).

It has been observed that the individual links weights do not provide a general

picture of the network’s complexity [227]. A more significant measure of the net-

work complexity considering the flow of information is the node’s ‘Strength’ (si).

This quantity measures the strength of nodes in terms of the total weight of their

connections. It is a natural measure of the importance or complexity of a node i

in the network.

To capture the relationship between the node’s strength and degree, I investigate

the dependence of si on ki. Figure 3.4 shows the relationship between the average

strength of nodes with degree k. I have found that the s(k) of vertices with degree

k increases with the degree as s(k) ∼ kβ=1.735. The value of β = 1.735 implies that

the strengths of nodes are strongly correlated with their degrees in the AAN. This

behaviour is expected because it is plausible that the larger the airport in terms

of connection, the more traffic it handles. This feature of the AAN is similar to

that of the WAN and the airport network of India [21].
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3.4.2 Average Shortest Path Length

The average shortest path length analysis provides an indicator of the convenience

of traveling in a network. This measurement quantifies the efficiency of the network

in sending information (traffic mobility) between vertices [55].

Table 3.4: Distribution of the air routes by number of connection flights.

Hop
count

No. of
Paths

Percentage of
air routes

Cumulative
percentage of
air routes

No. of flights needed
to be change

1 596 3.5 3.5 0
2 5033 29.554 33.053 1
3 7914 46.471 79.524 2
4 2232 13.106 92.631 3
5 816 4.792 97.422 4
6 291 1.709 99.131 5

Table 3.4 summarises the results of the characteristic path length analysis. It

provides an overview of the network in terms of the ease of travel and summarises

the minimum number of flights needed to be changed (number of stop) for traveling

all city-pair. The AAN has 596 unique paths – node-to-node flight routes. Among

all possible unique city-pairs (131(131− 1) = 17030), 596 are reachable by direct

flight. However, around 33% of the city-pairs are reachable by changing only one

flight, 79.524% and more than 90% are accessible by changing, at best, two and

three flights, respectively. The average shortest path length L of the AAN is 2.90,

which implies that, on average, it requires almost two flight changes to connect

almost all city-pairs. The average path length of the AAN is slightly larger than

a random network (Lr = 2.096) of the same size and slightly smaller than that of

small-world network (LSW = 4.01). For comparison purposes (comparing the AAN

with corresponding small-world networks), a small-world network is generated

using the model described in [218], which starts with a ring lattice of 131 nodes.

In the ring, every node is connected to its four neighbours (two on either side).

After that, each link is rewired with probability p = 0.15, with self-connections

and duplicate edges excluded. The diameter (defined as the longest of all shortest
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paths) of the AAN is 7, which means that one needs to change, at best, six flights

to reach from any airport to any other airport in the AAN, including the small

airports and isolated island airports (Cocos Island, Rottnest Island, Christmas

Island and Norfolk Island). A relatively larger value of D and L implies that, in

the AAN, there is much room to improve efficiency in terms of connection and

passenger mobility.

Table 3.5: Characteristics of the Australian airport network and other coun-
tries/regions.

Author Country No.
Nodes
(n)

No.
Edges
(m)

Average
degree
⟨k⟩

Average
path
length (L)

Clustering
coefficient
(C)

Network
structure

Bagler 2008 India 79 455 11.52 2.26 0.66 SW

Guimera et al. 2004 World 3883 27051 13.93 4.4 0.62 SF SW

Guida et al. 2007 Italy 50 310 12.4 1.98∼2.14 0.07∼ 0.1 SF SW Fractal

Xu & Harriss 2008 US 272 6566 48.28 1.84∼1.93 0.73∼0.78 SW

Wang et al. 2010 China 144 1018 14.14 2.23 0.69 SW

In this chapter Australia 131 596 9.10 2.90 0.50 SW

Table 3.5 compares the topological properties of the AAN with other similar types

of network. From Table 3.5, it is noticeable that the average path length of the

AAN (L=2.90) is slightly larger than that of China (2.23) and India (2.26) but

much larger than that of the US (ranging from 1.84 to 1.93). From the analysis,

it can be inferred that the AAN has evolved the small-world topology. According

to Watts and Strogatz [218], if L grows almost as log(n) where n is the number of

nodes, then the corresponding network can be defined as a small-world network.

In particular, for the AAN, L = 2.90, and log(n) = 2.12 for n = 131. The average

degree of the AAN ⟨k⟩ = 9.10 is the lowest in the group and has a clustering

coefficient of C = 0.5. All of these network features of the AAN confirm that it

has properties similar to small-world characteristics.
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3.4.3 Clustering Coefficient Analysis

Clustering coefficient Ci captures the local cohesiveness of a node, which refers

to the probability that two airports connected with a third are also directly con-

nected to each other. A large value of Ci means that the node i has a more compact

system of connections with its neighbour. Whereas, the average clustering coef-

ficient (C) measures the global density of interconnected nodes in the network.

The AAN’s clustering coefficient is C = 0.50, which is much larger than that of a

random network [72] (Cr = 0.091, ) of the same size and almost similar to that of

a small-world network (Csw = 0.635). A larger clustering coefficient confirms the

high degree of concentration and also implies a high probability for traveling with

fewer transfers in the network. However, the clustering coefficient (C) does not

consider the information provided by the weighted network. To solve this limita-

tion, I introduce the weighted clustering coefficient Cw
i to combine the topological

information with the weighted distribution of the network. This coefficient is a

measure of the local cohesiveness that takes into account the importance of the

clustered structure on the basis of the amount of traffic operating on the local

triplets. Weighted clustering coefficient averaged over all nodes(Cw) of the AAN

is 0.23, which is much smaller than the non-weighted counterpart C = 0.50. In the

case of the AAN, Cw < C signals a network in which the topological clustering is

generated by links with low weight. The clustering coefficient has a minor effect in

the organisation of the network because the largest interactions of traffic frequency

are operating on links not belonging to interconnected triplets. This phenomena

confirms that most of the network traffic is concentrated in a hub-spoke pattern.

In comparison to the other airport networks, the clustering coefficient of the AAN

is slightly smaller than India (0.66) and China (0.69) but much smaller than the

US (0.73-0.78) also (See Table 3.5).

Murad Hossain July 2016



Chapter 3. Airport Network Modelling and Topological Analysis 92

3.5 Centrality Analysis

A key issue in the characterisation of networks is the identification of the most

important nodes in the system. Centrality is a concept that can identify the impor-

tant nodes within the system. Centrality can be quantified by various measures.

The degree (ki) is the first intuitive that gives an idea of the importance of a node

in terms of connectivity. Whereas, the strength(si) quantifies the importance of a

node by taking the level of traffic (operating load) into account. However, these

local measures do not take into account non-local effects, such as the existence of

bottleneck nodes, which may have small degree but act as bridges between differ-

ent parts of the network. In this context, a well-accepted parameter to investigate

node centrality is the betweenness CB(i), closeness Cc(i) and centrality [87].
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Figure 3.5: Statistical distribution of degree, closeness and betweenness cen-
tralities.
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3.5.1 Statistical Distribution of Centralities

The distribution of all three centrality indices (shown in Figure 3.5) generally con-

firms either to a power-law or exponential decay function, with R2 above 0.95. The

degree centrality curve confirms that a small number of nodes carry the majority

of the routes. Indeed, the top 10 most connected airports account for 43% of air

routes. From Figure 3.5, it is observed that the closeness curve has the flattest

slope. The steep curve of degree and betweenness indicates that a few hub cities

account for most of the transfer capacity. In general, high degree vertices have

a large number of topological connections and they usually have high between-

ness. But it is not always the case. It is noticed from Figure 3.5 that only two

nodes have a high betweenness value compared to a large number of high degree

nodes. In the AAN, there are 118 nodes(around 90% of total nodes) have less

betweenness value then average betweenness (CB=0.0145). The sharp decline of
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Figure 3.6: Spatial distribution of degree, closeness and betweenness.
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the betweenness curve and a large number of nodes with low betweenness value

suggests the existence of bottlenecks within the AAN, which is confirmed by a low

value of clustering coefficient C = 0.5 (see table 3.5).

Figure 3.6 shows the spatial distribution of the three centralities. Generally, cities

in the east region have better centrality than those in the west. In terms of degree

and closeness, the most central cities are mainly clustered around Sydney and Can-

berra. State capitals such as Brisbane, Melbourne, Perth, Adelaide and Darwin

also have high centrality values. In terms of spatial distribution, betweenness has

the highest inequality, having high value for only two capital cities (Brisbane and

Sydney), whereas closeness has the least inequality. It can be seen from Figure

3.5 that the highest betweenness value for Brisbane (0.31) quickly drops to 0.045

in Toowoomba (10th rank) and 0.0199 in the Gold Coast (15th rank).

3.5.2 Relation Among Centralities

Table 3.6 reports the top 20 cities by degree, closeness and betweenness. Brisbane

is ranked at the top by closeness and betweenness, whereas Sydney is at the

top by degree index followed by Brisbane. Melbourne is ranked 3rd by degree

and closeness indices and placed in 7th position by betweenness, showing a high

level of inconsistency in the centrality indices. Perth is ranked in 4th, 5th and

6th by the degree, closenness and betweenness indices, respectively. Adelaide is

ranked in 5th, 7th and 5th by the degree, closenness and betweenness indices,

respectively. The national capital, Canberra is ranked in 10th and 9th by the

degree and closeness, but does not manage to get into top 20 by betweenness.

These are the national hubs in the network. However, Broom, Alice Springs,

Newcastle, Karratha, Mackay, Rockhampton and Geraldton are in the top 20 by

degree but not in the top 20 by betweenness. All of these cities have considerably

large numbers of air routes to the peripheral nodes and, thus, have relatively
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small values of betweenness. Similarly, some cities in peripheral regions such

as Toowoomba, Charleville, St. George, Boulia, Quilpie, Doomadgee Mission,

Cunnamulla and Bedourie appear in the top 20 cities by betweenness, but do not

make it into the top 20 cities by degree.

There are 28 cities with the lowest degree (CD = 2, only one air route to other

airports). In terms of closeness, Katherine has the lowest, followed by Thargo-

mindah, Birdsville, Cunnamulla, Windorah and Burketown. All of these airports

have very few air routes to their regional hubs. Therefore, it usually takes multiple

connection flights for them to reach other nodes in the network. In the case of be-

tweenness, 70 airports have a betweenness value of zero, indicating that there are

no shortest paths between other city-pairs passing through them. These airport

Table 3.6: Top 20 Cities by Degree, Closeness and Betweenness

Rank Degree, CD Closeness, CC Betweenness, CB

1 Sydney Brisbane Brisbane

2 Brisbane Sydney Sydney

3 Melbourne Melbourne Cairns

4 Perth Cairns Perth

5 Adelaide Perth Adelaide

6 Cairns Darwin Darwin

7 Darwin Adelaide Melbourne

8 Townsville Alice Springs Mount Isa

9 Gold Coast Canberra Townsville

10 Canberra Gold Coast Toowoomba

11 Broome Broome Launceston

12 Avalon Townsville Charleville

13 Alice Springs Avalon St. George

14 Mount Isa Launceston Boulia

15 Launceston Karratha Gold Coast

16 Newcastle Mount Isa Avalon

17 Karratha Hamilton Island Quilpie

18 Mackay Mackay Doomadgee Mission

19 Rockhampton Rockhampton Cunnamulla

20 Geraldton Newcastle Bedourie
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are the peripheral nodes in the network.

Table 3.6 shows that the rankings by degree, closeness and betweenness are gen-

erally consistent. The same 12 cities appear in the top 20 for all three indices,

whereas 19 cities appear in the top 20 for degree and closeness. Geraldton is the

city that is present in the top 20 by both degree but not in the list of and closeness,

and Hamilton island is the opposite. The top 10 cities are highly connected and

also play an important role in transferability. Whereas, some cities are less con-

nected but serve as important transfer hubs, such as Toowoomba, Charleville, St.

George, Boulia and Bedourie. These are usually located in the peripheral areas

and play an important role as connector hubs for regional traffic.

Table 3.7: Relationship between centralities.

Correlation coefficient Degree, CD Closeness, CC Betweenness, CB)

Degree, CD 1 0.6820 0.9276

Closeness, CC 1 0.5715

Betweenness, CB 1

Table 3.7 reports the correlation coefficient between the three centrality indices.

The correlation coefficient is highest 0.9276 between degree and betweenness,

whereas closeness and betweenness have the lowest correlation. Centrality mea-

sures indicate a significate level of heterogeneity in connections (links) among the

nodes in the AAN.

3.6 Correlation Analysis

3.6.1 Degree Correlation

Degree correlation demonstrates the extent of a node’s degree related to the aver-

age degree of its neighbours. It is measured by the average degree of the nearest
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neighbours, knn(k), for nodes of degree k [180]. In a network without degree cor-

relation, knn(k) is independent of k. In a correlated network, knn(k) increases

or decreases with k. When knn(k) increases with k, high-degree nodes tend to

link with each other, and this tendency is referred to as ‘assortative mixing’. In

contrast, high-degree and low-degree nodes tend to connect with each other when

knn(k) has a decreasing behaviour. This property is referred to as ‘dissassortative

mixing’ [168].
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Figure 3.7: Degree Correlation of AAN (left-unweighted, right-weighted)

Figure 3.7(left) shows the degree correlation of the AAN. From Figure 3.7, it is

found that the AAN shows a disassortative mixing, which means that vertices of

high degree tend to connect with vertices of low degree. For example, Sydney and

Brisbane have the highest and 2nd-highest degree of 99 and 81, respectively, and a

small value of knn (7.374 and 8.975, respectively). The low-degree vertices are the

most correlated. For example, 2-degree airports have the maximum knn(k) value

of 26.315. The consistent disassortativity in the AAN for higher-degree airports

could be attributed to the political compulsions on regional and national hubs to

provide connectivity to a large number of low-degree airports.

In order to take into account the weights on connection, the weighted degree corre-

lation kw
nn(k) has been used to measure the effective affinity to connect with high-

or low-degree neighbours according to the magnitude of the traffic interaction.

Figure 3.7(right) shows the kw
nn(k) as a linear decreasing pattern with the degree.
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The topological knn and the weighted degree correlation kw
nn(k) show a clear dis-

assortativity behaviour when k > 20. The consistent disassortativity in the AAN

(both unweighted and weighted) for higher degree nodes could be attributed to

the political compulsions on regional and national hubs to provide connectivity to

a large number of low-degree destinations.
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Figure 3.8: Correlation between degree and clustering coefficient (left-
unweighted, right-weighted)

3.6.2 Clustering-Degree Correlation

Figure 3.8 shows the relationship between clustering coefficients and degrees that

resemble some kind of inverted ‘V’ shape. The trend can be divided into two parts.

When the degree is below the network average degree ⟨k⟩ = 9.10, the cluster co-

efficient ( C(k) and Cw(k)) and degree indices are positively correlated. When

the degree is above ⟨k⟩ = 9.10, C(k) and Cw(k) are negatively correlated with the

degree. As seen in Figure 3.8, after k > ⟨k⟩, both the weighted and the unweighted

clustering coefficients fall rapidly. This implies that, with increasing degree, air-

ports tend to be surrounded by lower-degree cities (groups of cities), which are less

connected themselves. This decaying behaviour of C(k) and Cw(k) in the AAN is

observed because of the role of national hubs that provide connectivity to a large

number of peripheral airports. Therefore, higher-degree cities are associated with

lower clustering coefficients in this group of cities.
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3.7 Robustness Analysis

Robustness analysis provides an efficient way to analyse the stability of various

complex systems [107]. This analysis is obviously practical, as it affects directly

the efficiency of any process running on top of the network, and it is one of the

important issue to explore in the literature on complex networks [36, 149]. Al-

though robustness is well studied in the literature, it is a rather unknown area in

air transportation, both in practical application as well as in research. It is not

clear how robust an airport network is to tolerate failures or attacks. The use

of complex network-based metrics and simulation provides a promising approach

for addressing the complexity of robustness. This chapter addresses the measure-

ment of airport network robustness through the evaluation of its topological and

reachability metrics.

3.7.1 Failure Scenario

For the study of failure (attack) vulnerability of the transportation network, the

selection procedure of the order in which nodes or links could be removed is an open

choice. I study the behaviour of damage measures in the presence of a progressive

random damage and of several attack strategies. Transportation networks are

inherently resilient to random nodes or edge failure. Even after a large number

of node or link failure, all of the metric measures decrease moderately and do not

seem to have a sharp threshold after the network is virtually destroyed [57]. Since

one of the objectives is to identify the nodes or edges that maximise the disruption

in the network, one of the approaches is to select the most central nodes in the

network. A straightforward choice is to select the vertices in descending order of

degrees of the initial network and then remove vertices one by one starting from

the vertex with the highest degree [25]. In addition, I have used various studies
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based on the different definitions of the centrality ranking of the most important

node. Nodes can be removed according to their strength (si) and topological

betweenness CB(i).

Apart from node failure, edge or link failure play a very important role in analysing

the robustness of an airport network. In the airport network, edge failure corre-

sponds to, for instance, disturbances such as weather or airspace closure preventing

travel between a pair of airports. In addition to weather-related disturbances, a

link could be failed itself if all the fights operating in it are cancelled. The selection

of the edge can be on a random basis or in descending order of weight (traffic) and

bottleneck edge (high betweenness link) in the original network.

3.7.2 Measures for Robustness

To analyse the sensitivity of various failure strategies on the AAN, I primarily

used two types of measures here: topological sensitivity and reachability.

There are several ways of measuring the topological sensitivity of networks. One

key metric is the average geodesic path length L. As the number of removed nodes

or edges is increased, the network will eventually break into disconnected sub-

networks (sub-graphs). The average geodesic length (L), by definition, becomes

infinity for such a disconnected graph, and it is wise instead to study the average

inverse geodesic length,

l−1 = 1
n(n−1)

∑
iϵV

∑
i̸=j dij

which is a finite quantity even for a disconnected graph since 1
dij

= 0 when there

is no path connecting i and j.

Since subsequent node or link failures might fragment the network, the number

of non-overlapping sub-graphs and the size of the largest connected sub-graph

(giant component) are two important quantities for measuring the sensitivity of
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the network. In this chapter, the number of sub-graphs and size of the giant

component are represented asNc and S, respectively. In order to quantify the effect

of any node or link failures, the values of average inverse geodesic length, number

of sub-graphs and giant component are normalised by the corresponding values of

initial or original network and are represented as l̃−1, Ñc and S̃, respectively.

If a node or a link fails in a directed network, it raises the question of whether

the network is fully reachable or not. That is to say, starting from any node, is

it possible to reach any other node in the network or not? In order to assess the

reachability of the AAN, I calculate the probability of the connectivity between

any pair of nodes (i, j) in the network, which is represented as R. The reachability

of a node Ri is calculated using the following equation:

Ri =
number of nodes reachable from node i

n− 1
(3.1)

Where n is the total number of nodes in the network. The reachability R of the

overall network is defined as the average of all Ri. A fully reachable network R

achieves 1 and a case of an isolated network with no physical connection (links)

between the nodes R is always 0.

3.7.3 Tolerance to Vertex Failure

Tolerance to errors (or random failures) is understood as the ability of the system

to its structural properties after random deletion of a fraction of its nodes or links.

At first, I simulated the failure vulnerability of the AAN under a fraction of node

failure fv randomly and according to the rank of degree ki, node betweenness Bv(i)

and strength si.

Figure 3.9(a) illustrates the effect of the removal of nodes on the fragmentation

of the network. Within the range of 50% node failure (remove), the number of
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sub-graphs (Nc) increases more rapidly in the case of centrality-based failure. In

this measure, the degree- and betweenness-based failure strategies bring the most

significant fragmentation effect to the network. Whereas, the random node failure

Nc/n increases almost linearly.

As illustrated in Figure 3.9(b), the removal of only 10% of highly connected or

high-betweenness nodes the size of the gain component (largest sub-graph) re-

duces abruptly to 20% of the original AAN. Similar behaviour also is found in
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Figure 3.9: Comparison of AAN robustness against centrality based node
failure and random node failure. The vulnerability is measured by: (a)the
number of sub-graphs(Nc), and normalised by the initial size of the network;

(b) the average inverse geodesic distance ℓ̃−1; (c) the relative size of the largest
connected sub-graph (giant component) S̃ and; (d) the network reachability R.
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the strength-based failure. After removing 50% of nodes, the network almost be-

comes fragmented at that point, hence the size of the largest sub-graph becomes

too small and, as a consequence, the network loses its functionality. However,

for random node failure, the relative number of sub-graphs Nc/n and the size of

the giant component S̃ changes linearly with fv, which means that random node

failure has almost no effect on the network fragmentation.

Whereas, if I look at the network efficiency measured by the average inverse

geodesic distance l−1 as well as the network reachability R, all of these met-

rics have almost identical behaviour against any method of node failure. For the

centrality-based failures (degree and betweenness), the network efficiency drops

abruptly at the beginning of the process. The values of l̃−1 and R drop to almost

zero just after 10% of highly central node breakdown. This means that, after

removing a small number of hubs or central nodes from the network, the probabil-

ity of connecting a pair of nodes becomes very low, hence increasing the geodesic

distance between them. At this point, the network loses its functionality in terms

of passenger mobility.

On the other hand, in the case of random failure, the network seems highly robust,

and the network is considerably resilient in terms of connectivity, as the graphs

shows in Figures 3.9(c) and 3.9(d). Figure 3.9 demonstrates that the removal of

a small proportion of highly connected nodes or highly central nodes produces

catastrophic changes in the network. This shows that the AAN is very vulnerable

under the targeted failure of its central nodes compared to random unintentional

node malfunctioning.

3.7.4 Critical Node Identification

As in many complex systems, it is important to identify which is the most critical

node in terms of the network functionality. Using comparison of the vulnerability
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Table 3.8: Node importance in terms of robustness measures.

Airport
Network Features robustness Measures

ki si CB(i) Nc ∆L% ∆l̃−1% ∆D̃% ∆R̃%

Sydney 99 114052 0.294 8 7.13 15.90 14.29 11.92

Brisbane 81 72199 0.3118 4 17.18 14.12 100 6.79

Melbourne 66 85033 0.1172 3 1.33 4.77 0 3.05

Perth 57 33345 0.1785 5 6 10.81 14.29 9

Adelaide 47 35242 0.1475 9 11.54 11.77 0 11.93

Cairns 46 18289 0.1846 6 10.02 13.28 28.57 12.62

Darwin 41 9585 0.141 7 11.86 11.4 0 11.89

Townsville 29 10450 0.0621 2 0.05 2.68 0 1.53

Gold Coast 25 16513 0.0199 2 1.13 2.03 0 1.53

Canberra 24 21681 0.0087 2 1.16 2 0 1.53

Broome 21 2824 0.0116 2 1.18 1.96 0 1.53

Avalon 20 3463 0.0196 2 0.86 2.13 0 1.53

Alice Springs 19 3159 0.0029 2 1.14 2 0 1.53

Mount Isa 18 2530 0.0949 2 3.69 3.55 42.86 1.53

Launceston 16 5535 0.0333 3 2.54 3.33 0 3.05

Newcastle 16 7588 0.0013 2 1.32 1.76 0 1.53

Karratha 15 3912 0.0044 2 1.27 1.82 0 1.53

Mackay 14 6684 0.0016 2 1.29 1.78 0 1.53

Rockhampton 14 5759 0.0016 2 1.29 1.78 0 1.53

Geraldton 14 1563 0.0008 2 1.54 1.52 0 1.53

Port Hedland 12 2424 0.0018 2 1.33 1.73 0 1.53

Learmonth 12 629 0.0003 2 1.55 1.5 0 1.53

Kalgoorlie-Boulder 10 1447 0.0018 2 1.38 1.7 0 1.53

Hobart 10 7100 0 2 1.33 1.72 0 1.53

approaches by progressive node failure, it is difficult to determine which node, if

failed, would be most damaging both in terms of topological sensitivity and re-

routing cost. That said, alternative methods, particularly a node-by-node failure

approach and the sensitivity of the topological and the reachability measure, do

provide a better summary measure of node criticality or importance. To measure

the sensitivity of a node, I measure the topological properties by removing the

node from the network then comparing the measures of the metrics with their
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corresponding values of the original AAN.

Table 3.8 shows the importance of a particular airport failure and its impact on

the topological features and robustness metrics. For each of the measures, the bold

text represents the highest value in the corresponding metric. From Table 3.8, I

have found that Sydney is the most connected airport in the network and also

handles the highest amount of traffic as it has highest value of strength. In terms

of the sensitivity, if it is removed from the network, it will increase 7.13% and

14.29% of the characteristics path length and the network diameter, respectively.

However, the failure of Sydney will drop the efficiency of the network by almost

16% efficiency, which is measured by the average inverse path length.

In the case of Brisbane, it is the second highest in terms of connectivity and is

the most central node in the network (highest betweenness value). It serves as

an important bridge in the network, with the result that, if it breaks down, it

will increase the diameter to twice (∆D̃ = 100%) its original size. In particular,

it requires 14 hops to reach Birdsville from Taree or vice versa, which requires

only seven hops if Brisbane is connected. So removing Brisbane from the network

will significantly slow down the physical movement of passengers and goods across

the AAN. From the high betweenness value and the effect of an increase in the

diameter of Brisbane, it is clear that, if I want of protect or break down the flow

of any material or disease, Brisbane would be the first place to stop it. If I look at

the sensitivity of Melbourne, it is found to be in the less sensitive group and has

an impact on the diameter of the network. If I look at the reachability measure,

only the top seven connected airports have a significant impact on this and Cairns

is found to be the most sensitive in this case.
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Figure 3.10: Comparison of AAN robustness against the most weighted link
closure and the bottleneck link closure. The vulnerability measure is the same

as in Figure 3.9

3.7.5 Tolerance to Link Failure

Apart from the node failure (airport shutdown), I examined the vulnerability of

the AAN, subject to various types of edge failure strategy. Figure 3.10 displays

the results for the robustness or the vulnerability to edge failure according to

the descending order of weights (number of traffic) and edge betweenness (edge-

bottleneck). When the edges are removed, the total number of nodes n does

not change, making ℓ̃−1 a monotonically decreasing function with the fraction of

removed edges fe.
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From Figure 3.10(a) and (b), it is observable that the network remains connected

until 20% of its highly weighted links have been removed. But this is not true

in the case of the removed bottleneck edge. However, the number of sub-graphs

increases monotonically with the number of edge failures. It can be inferred from

Figures 3.10(a) and (b) that the most traffic carried links are not the most bot-

tlenecked in the network. However, for all of the measures (topological sensitivity

and reachability), the removed bottleneck link has much more effect compared to

the high weight link, which suggests that the edge betweenness is a more suitable

quantity than the weight to measure the importance of an edge (link). The high-

est difference in all four measures between the two edge failure strategies has been

observed in the range from fe = 0.25 to fe = 0.5. After 80% of edges are removed,

the measure becomes identical for both edge failure strategies. In the case of the

removed bottleneck edge, the reachability R drops sharply to almost 30% of its

original network after a fraction of fe = 0.25 edges are removed.

In a summary of the analysis presented in this section, it is noticeable from Figures

3.9 and 3.10 that, in the case of vertex failure (both degree-based and betweenness-

based) S̃, ℓ̃−1 and R decrease sharply in contrast to edge failure. Due to the hub

and spoke nature of the network, the high-connected node failure is the most de-

structive in all of the robustness measures. However, because of the heterogeneity

of the weights associated with its edges, the network is fairly robust to edge failure

though vulnerable to high-degree nodes failure.

3.8 Chapter Summary

In this chapter, the topological features and robustness of the Australian airport

network have been analysed from the complex network theory point of view. The

AAN has been constructed by associating a node to each airport and a link to

each direct connecting passenger flight operating between different airports using
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real air traffic data for a period of one year (2011). The topological properties

of the AAN confirmed the small-world characteristics such as the airport network

of the world and other countries such as the US, India and Italy. Its degree

distribution is best described by a power-law function, which indicates the presence

of nodes of high degree (called hubs), particularly the big three airports (Sydney,

Brisbane and Melbourne). The traffic of the AAN is found to be accumulated

on an interconnected group of high-degree nodes. It has a disassortative mixing

similar to the US and China, i.e. hubs of the network are surrounded by low-

degree neighbours. It reveals that the most central nodes are not always the most

critical.

The analysis also provides valuable information about the characteristics of the

network and the level of vulnerability that it can be exposed to given a random,

most central node and a link failure. The study on the response of the AAN subject

to different node and edge failure scenarios shows that the network is comparatively

robust on edge or air route shutdown but very sensitive (less robust) to central

node failure, especially high-degree and high-betweenness nodes. However, due to

the limitation of actual passenger movements, the effect on passenger movement

due to a node or link failure is omitted.

Overall, this study offers significant insights that can help planners in their task to

design the systems of tomorrow, and similar undertakings can easily be imagined

in other urban infrastructure systems (e.g. electricity grids, water/ wastewater

systems, etc.) to develop more sustainable networks.
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Chapter 4

Airport Network Flow Capacity

Estimation

This chapter is partially based on the following publication:

• Murad Hossain, Sameer Alam and Hussein Abbass, A Dynamic Multi-Commodity Flow Optimization

Algorithm for Estimating Airport Network Capacity. Proceedings of 4th ENRI International Workshop

on ATM/CNS, (EIWAC 2015), Tokyo, Japan.

In the previous chapter, I modelled and analysed an airport network using complex

network tools. In this chapter, I propose a model and methodology to estimate

the capacity of an airport network. More specifically, this chapter addresses the

following research question: How can the flow capacity of an airport network be

estimated?

The model proposed in this chapter is based on the multi-commodity flow prob-

lem and considers the wake vortex separations during landing and take-off. The

underlying premise is that flow in an airport network can be modelled as a multi-

path, steady-state network of queues, the maximum capacity of which is the sum

of maximum airport operational rates. In my formulation, flow between two nodes

(airports) is considered as different commodities and the local airport capacity is
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formulated using a time slot of one hour where the hourly rate of flow (landings

and take-offs) is bound by a capacity constraint.

4.1 Introduction

There is growing concern among airlines and policy analysts that the air trans-

portation system is running out of capacity [66, 162]. A few attempts have been

made to estimate the total capacity of an entire air transportation system for a

given region or country [66, 67]. The capacity of flow networks indicates the max-

imum attainable throughput without jamming or congestion. A good network

capacity estimation model would enable us to predict how much additional de-

mand can be accommodated by a network and, hence, establish an efficient policy

for traffic restraint and growth. Furthermore, it can enable us to determine what

educative steps should be taken to prepare for the time when additional capacity

will be required to accommodate future growth.

Capacity estimation of an airport network is generally known as one of the most

difficult problems in air transportation. In an airport network, capacity has tradi-

tionally been measured at individual elements of the network, such as links (city-

pairs) and nodes (terminals and runway throughput). These measures obviously

do not constitute the overall system-level airport network capacity. Convention-

ally, in traffic flow networks, the maximum flow capacity is estimated using a

multi-commodity flow (MCF) model [46, 49]. This method is not directly appli-

cable to an airport network, where capacity modelling characteristics are quite

different for the following reasons: (a) the movement in a transportation network

involves flows of aircraft with different speeds; (b) flow is heterogeneous given

different wake vortices categories of aircraft, viz. light, medium and heavy; (c)

different types of aircraft require different amounts of resources at landing and

departure airports; (d) there must be a minimum separation distance between two
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consecutive aircraft, which depends on the type of operation (landing or take-off)

and the preceding aircraft type and operation for managing wake vortices; (e)

aircraft departing from an airport are expected to land at destination airports

within a time frame, because aircraft cannot hold in the air for long time, which

will increase the amount of delay; (f) multiple origin-destination (OD) pairs exist

and the flow between different OD pairs is not exchangeable or substitutable in

an airport network capacity problem. These characteristics make the modelling of

airport network capacity a complex, yet interesting, problem to solve.

4.2 Problem Formulation

The primary objective of an airport network capacity problem is to determine the

maximum attainable flow (upper bound) that it can carry. The graph-based model

developed in the previous chapter (Chapter 3) is applied to describe an airport

network for its capacity problem formulation. The airport network (G(V,E)) is

encoded using an adjacency matrix (An×n) such that aij = 1 if a flight link exists

between the airport-pair i and j, otherwise aij = 0. In such a network, an OD pair

is defined as a pair of nodes that are directly connected by an edge. So, in an air-

port network, there are m = |E| directly connected OD pairs. For each of the OD

pairs, traffic in the form of aircraft enters the network through the origin node and

travels along the link to the destination. In such a scenario, the problem is known

as a multi-commodity flow problem, in which the traffic of individual OD pairs

is considered as commodities and each of the commodities shares common node

capacities at the end nodes. Conventionally, in communication and transportation

networks, the maximum flow capacity is estimated using a multi-commodity flow

model. This method is not directly applicable to an airport network, where the

interaction among the different types of aircraft and the wake vortex separation

among them bring extra non-linear constraints to the problem formulation.
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To model an airport network capacity problem, it is necessary to know the indi-

vidual airport (node) capacity. In air transportation, airport capacity is defined

as the maximum hourly aircraft movements in the network per hour [27]. So,

the question is, how can I define an individual airport capacity? One may argue

that, from the historical traffic data, it is possible to estimate the true capacity of

an airport or runway. However, the true capacity of a runway depends on many

factor such as the operating conditions, the weather and, more importantly, the

mixing of different wake vortices of aircraft classes. The specific characteristics

of aircraft operating in an airport is an important factor to determine its capac-

ity. Under stable conditions (either IMC or VMC), an airport capacity heavily

depends on the traffic mix. Traffic mixes consisting of the aircraft possessing

different weights and speeds require different rules (minima) to separate specific

aircraft while landing and taking-off, which is usually known as the wake vortex

separation minimum. In early 2000, EUROCONTROL started researching time-

based separation (TBS), a new operating procedure for separating aircraft by time

during strong headwind conditions to avoid wake vortex, instead of distance. TBS

addresses headwind disruptions by reducing the spacing between pairs of aircraft

[163]. In this study, I have used a time-based separation minimum to avoid the

wake-vortex turbulence, which is given in the following tables 4.1 (Table 4.1 is just

an example extracted from the report (P 070/2010) published by NATS Ltd., UK

Aeronautical Information Service [164]).

A runway with identical operating conditions may result in different capacity/through-

put only for the difference in sequencing them. Thus, it is better to consider the

local capacity of an airport as the total available slots for landing and take-off. In

my formulation, I assume the airport capacity upper bound as a total number of

slots, where each slot has equal time duration. In other words, I define a node

capacity upper bound as the total available time. Since, my intention is to mea-

sure the hourly flow capacity of an airport network, I define the node capacity
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Table 4.1: Separation minima (in minutes) between aircraft considered in this
chapter

Separation minima (arrival - departure)
Leading

Aircraft
Trailing aircraft

L M H

L 2 2 2

M 2 2 2

H 2 2 3

Separation minima (departure - arrival)
Leading

Aircraft
Trailing aircraft

L M H

L 2 2 2

M 2 2 2

H 2 2 3

Separation minima (arrival - arrival or

departure-departure)
Leading

Aircraft
Trailing aircraft

L M H

L 2 2 2

M 3 2 3

H 3 2 3

C(i) = 60 slots for all the nodes in the network where each slot has a one-minute

duration and one of the key assumptions of the proposed model is that all of the

airports have single runways.

Before going to mode the capacity problem of an airport network, let us define

a commodity. A commodity in an airport network is the flow from a node to

one of its neighbour nodes. Since in a network there are m = |E| directly con-

nected OD pairs, so the total number of commodities will be K = 2 × m. Let

ϕ(F+
i (t), F−

i (t), S) define a slot assignment function that returns the minimum

time required to accommodate the inflow F+
i (t) and outflow F−

i (t) at a node i

during an hourly interval t given the separation matrix S. The separation ma-

trix S has four dimensions: leading aircraft type, trailing aircraft type, leading

aircraft operation and trailing aircraft operation. For example, S[L][M ][A][D]

define the separation distance in minutes between a light aircraft landing at a

node followed by a departure of medium aircraft. With the help of the func-

tion ϕ() and separation matrix S, I can define the departure-arrival constraints as

ϕ
(
F+
i (t), F−

i (t), S
)
≤ C(i), ∀i. In an airport network, an aircraft departing from
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an airport is expected to land at a destination airport within a time frame, which

I have called travel time. This travel time introduces a time dimension into the

problem formulation. I have called this constrain the timing constraint. Let tij

denote the required travel time for a flight from airport i to j. I also assume that

the travel times for all types of aircraft are equal. Let TD(f) and TA(f) denote

the time of departure (take-off) and time of arrival (landing) of a flight f ∈ F k−
i (t)

from node i to j, where k ∈ K denotes the commodity from node i to j and the

minus symbol ‘−’means an outflow from node i. Then, the timing constraints are

defined as TA(f) = TD(f) + tij, ∀f ∈ F k−
i (t). This timing constraint make the

problem very hard to solve. In a real traffic scenario, there is a common practice

to associate some delay to a flight to land at the destination airport for capacity

improvement and to maintain separation safety. I can modify the timing con-

straint as TA(f) = TD(f) + tij + df ,∀f ∈ F k−
i (t), where df represents the delay

of flight f and its value is bound by 0 ≤ df ≤ 15 minutes. The delay variable df

brings some flexibility to the timing constraints and helps to find a better feasible

solution for an optimisation method.

Key assumption: The key assumptions of the proposed model of the airport

network capacity problem are as follows:

All the airports have only single runways that share both the departure and

arrival operations

The maximum arrival delay ≤ df is bound by 0 ≤ df ≤ 15 minutes

The local capacity (C(i) of an airport (node) is considered as the hourly available

slots, more specifically considered as C(i) = 60 slots

In the model formulation, the connection flight constraints are not taken into

account
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Notation: The formulation of an airport network capacity problem requires def-

inition of the following notations.

t = a positive integer that represents the hour of operation

K = set of commodity

For each k ∈ K

sk = source/origin node of commodity k

dk = destination node of commodity k

F k+
i (t) = inflow of commodity k of node i during operation hour t, which is a set

of arrival flights

F k−
i (t) = outflow of commodity k of node i during operation hour t, which is a

set of departure flights

F+
i (t) =

∑
k F

k+
i (t), total inflow of node i operation hour t

F−
i (t) =

∑
k F

k−
i (t), total outflow of node i operation hour t

Let f denote a flight that is schedule to operate during a day. Then

D(f) = departure/source airport of f

A(f) = arrival/destination airport of f

TD(f) = schedule time of departure of f from D(f)

TA(f) = schedule time of arrival of f at A(f)

wvf ∈ {L,M,H} = wake vortex class of f , where L, M and H represent the light,

medium and heavy aircraft, respectively

Op(f) ∈ {A,D} = arrival (landing) and departure (take-off) operation of f
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S(a, b, c, d) = separation distance in time between the leading and trailing aircraft,

where a and b represent the type of leading and trailing aircraft and c and

d represent the take-off or landing of the respective flight

df = delay of f at A(f)

tij = required travel time for a flight from airport i to j

The airport network capacity model can be formulated as follows:

maximize :
∑
k

∑
i

F k−
i (t) (4.1)

Subject to,

TA(f) = TD(f) + tij + df , ∀(i, j, k) (4.2)

ϕ(F+
i (t), F−

i (t), S) ≤ C(i), ∀i (4.3)

F k+
i (t) ≥ 0∀(i, k) (4.4)

F k−
i (t) ≥ 0∀(i, k) (4.5)

∑
t

∑
k

∑
i

F k−
i (t) =

∑
t

∑
k

∑
i

F k+
i (t), ∀(i, k, t) (4.6)

where, TD(f), TA(f) denote the departure and arrival time of a flight f ∈ F
(
i k−)(t)

from node i to j, F+
i (t) =

∑
k F

k+
i (t), ∀i, and F−

i (t) =
∑

k F
k−
i (t), ∀i.

4.3 Proposed Heuristic Solution Approach

To solve the proposed airport network capacity model, a heuristic approach is

developed in which a certain amount of flow is incrementally added to an initial

feasible solution until the network reaches its capacity. The heuristic solution
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approach consists of two key modules: (i) an initial feasible solution generation;

and (ii) an iterative solution improvement method to increase the traffic flow in

the network subject to node capacity and departure-arrival timing constraints.

Algorithm 1 Initial Feasible Solution Generation

procedure Feasible Solution(ri(k),KG(V,E))
K set of commodities
G(V,E) is an airport network having n nodes
ri(k) amount of shared resources of node i assigned to commodity k.
set uri(k) := 0 ∀i, ∀k)
while (all K commodities have not being initialized) do

k ← randomly selected un-initialize commodity
i = sk

j = dk

while uri(k) < ri(k) & urj(k) < rj(k) do
Let f represent a flight, then wvf ← rand(L,M,H)
for all (available slots in SB(i, t)) do

randomly select a slot l from SB(i, t)
find out preceding flight fp and succeeding flight fs of slot l at node i
lp ←slot index of fp
ls ←slot index of fs
if (lp−l) ≥ S[fp, f, op(fp), op(f)] & (l−ls) ≥ S[f, fs, op(f), op(fs)] then

TD(f) := t× 60 + l
if ( slot q available for landing at j & df ≤ 15) then

TD(f) := t× 60 + l
TA(f) := TD(f) + ti,j + df
update SB(i, t′), SB(j, t′) for all operational hours t′ ≥ t
update uri(k)
update urj(k)
break loop for all

end if
else

changed l to next available one and continue
end if

end loop

end while
marked commodity k as initialized

end while
return initial feasible solution
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4.3.1 Initial Feasible Solution Generation

In an airport network capacity estimation problem, the departure-arrival timing

constraint eq.(4.2) (all departure flights from a node must land at the destination

at a specific time within a maximum delay of 15 minutes) and the separation

minima between two aircraft at a node makes it very difficult for a random initial

solution to be feasible. In order to generate an initial feasible solution, I divide

a one-hour time window into 60 equal slots. I call these 60 slots together ‘Slot

box’and represent this as SB. Each SB has a unique identification number for each

airport to represent an hour of operation. For example, a SB(i,5) represents the

flow (both departure and arrival) of node i during the operational hour of 5:00

am. To simulate a full day of operation in a network, I need 24 SBs for each node.

The flow of a commodity consisting of light, medium and heavy aircraft is placed

in the slots of the source and destination node such that the separation between

two consecutive flights is maintained and all of the departed aircraft can land at

the corresponding destinations within a maximum delay of 15 minutes. Once an

aircraft is inserted into an SB of the departure and the landing node, it is copied to

all succeeding slot-boxes of those nodes. For example, if a light aircraft is placed

in the fifth slot of SB(i,1) for departure and the fifth slot of SB(j,2) as an arrival

flight, then all operation hours t ≥ 1 at node i must have a departure flight at the

fifth slot, and node j for all operation hours t ≥ 2 must also have an arrival at the

fifth slot. This means that I consider a continuous deterministic flow, which is a

common practice to determine the capacity upper bound of a network [147, 190].

I also assume that the resources of a node are shared equally by its commodities.

That is, the hourly resources of 60 slots of a node are shared equally by the

commodities associated with its links. If ri(k) represents the amount of shared

resources of node i assigned to commodity k, then the following condition holds
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for all nodes.

C(i) =
∑
k

ri(k), ∀i (4.7)

The initial feasible solution is generated using the algorithm 1, which required a

random initialisation of the resource sharing variables ri(k), ∀i, k, and the network

G(V,E) (a flow chart of the initial feasible solution generation algorithm 1 is also

presented in Appendix A, Figure 9.11).

slot 0 1 2 3 4 5 6 7 8 9 10 … 

 f1    f2     f3  … 

 

   

 

 

                                              Shifting 

slot 0 1 2 3 4 5 6 7 8 9 10 … 

 f1   f2      f3  … 

 

   

 

 

 Op  

H D 15 

 Op  

L D 0 

 Op  

L A 10 

 Op  

H D 15 

 Op  

L D 0 

 Op  

L A 9 

Figure 4.1: An illustration of shifting operation in a SB.

4.3.2 Iterative Solution Improvement

After generating an initial feasible solution, the network capacity can be obtained

using an iterative solution improvement process, which consists of the following

key modules that increase the number of hourly aircraft movements.
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4.3.2.1 Shifting

Shifting is an operation to move a flight from its current slot to an earlier slot such

that (i) the separation minima between its adjacent flights are maintained and (ii)

the delay of the flight remains within the bounds of 0 to 15 minutes. Figure 4.1

shows an example of the shifting operation of a slot-box. In the illustration of a

shifting operation in Figure 4.1, the flight f2 is shifted to slot 3, which decreases

its delay to 9 minutes and the separation distance between f1 and f2 satisfy the

minimum requirement of 2 minutes for a light-light departure-arrival. Whereas,

flight f3, which is a departing from slot 9, cannot shift to an earlier slot because

it will increase its delay beyond the maximum limit of 15 minutes.

4.3.2.2 Swapping

Swapping is an operation to change the sequence of the flights in an SB. Swapping

is considered as a hill-climbing operation to improve the quality of the solution,

which basically changes the slot of two flights at a time and continues the process

until no further improvement is possible, maintaining separation minima and the

travel time constraint. Figure 4.2 shows an example of the swapping operation

slot 0 10 11 12 13 14 15 16 17 18 19 … 

 … f1   f2   f3   f5 … 

 

   Swapping  

slot 0 10 11 12 13 14 15 16 17 18 19 … 

 … f3   f2   f1   f5 … 

 

Figure 4.2: An example of swapping operation.

between flights f1 and f3. The purpose of the swapping operation is to make some

free slot(s) so that one or more flights can be shifted to an earlier slot. In some
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cases, a swapping can increase delay and so I maintain all the constraints and allow

swapping between two flights if, and only if, the new sequence does not violate

any constraint.

4.3.2.3 Inserting

In an initial feasible solution, the operations of swapping and shifting may create

free slots where I can insert new flight(s). A new flight is inserted into SBs of

source and destination nodes that fulfil the following conditions: (a) at the source

node there is enough room between two flights or at the end or beginning of it

such that it maintains the separation minima with the adjacent flights; (b) for any

neighbours ( j ∈ Ng(i)) of the source, if there is also a slot q available for landing

that meets the separation minima and satisfies the timing constraint eq.(4.2). The

type of the newly inserted aircraft is selected randomly. If the new flight cannot

be added to the network due to separation minima and because its type is not a

light aircraft then in such a scenario we try to insert a light aircraft. If no light

aircraft can be added at a node i as source, then it confirms that there is no room

at the slot-box of node i to accommodate extra flow.

After applying the swapping, shifting and inserting operations when no further

improvement is possible for a given sequence (solution), the value of the function

ϕ() (4.3) can be determined by simply calculating the time of the operation of the

last flight in the sequence at a given node. Based on the swapping, shifting and

inserting operations, the quality of an initial feasible solution can be improved.

The algorithm 2 illustrates the procedure to improve a feasible initial solution for

the network capacity estimation problem.

Once the initial feasible solution is improved by the solution improvement algo-

rithm 2, the hourly capacity of the network is calculated by counting the total
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Algorithm 2 Solution Improvement (FS)

procedure Solution Improvement(FS,G(V,E), t)
FS is an initial feasible solution for the network capacity problem
G(V,E) is an airport network with n nodes and K commodities
t is the earliest operation hours where the flow of G(V,E) reaches a steady state
Ng(i) neighbour of node i
isImprove = true
while isImprove do

isImprove = false
i = 1
while i < n do

Repeat for all
fa ∈ SB(i, t)&fb ∈ SB(i, t)|fa ̸= fb,
if swap(fa, fb ) in SB(i, t) then

perform shifting at node i
for all j ∈ Ng(i) do

if insert(fnew, i→ j) of SB(i, t) then
isImprove = true

end if
end loop

end if
i = i+ 1

end while
end while
return solution

number of flight movements in the solution, which is the capacity upper bound of

the steady-state flow.

4.4 Experimental Setup

The overall experiments are divided into two major parts; in the first part, I illus-

trate the effectiveness and applicability of the proposed method on two different

networks. In these test network, all of the nodes have a single runway. In my

experiments, the operating conditions of the nodes do not change over time, i.e.

the separation minima remain unchanged. In the second part, I demonstrate how

the maximum hourly flow changes with the network size for different network

topologies. Each of the network experiments is carried out 30 times with different

seeds.
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4.4.1 Test Networks

In order to assess the effectiveness of the proposed airport network capacity esti-

mation model, I perform experiments for two different types of network. First, I

apply the proposed procedure to a simple network given in Figure 4.3. Our first

experimental network consists of three nodes and six directed links, which are

shown in Figure 4.3. I named this network ‘network-I’. Network-I is a weighted

directed graph. The weight of a link represents the travel time between its start

and end nodes.

3 

3 

3 

2 

2 

3 

 

 1 
2 

3 

Figure 4.3: Example network-I, a fully connected network of three identical
nodes.

Apart from the simple network shown in Figure 4.3, I also test the proposed model

with a complicated network. Our second network is extracted from the AAN,

which I have called ‘network-II’. The AAN is a very large network and has many

peripheral airports that carry out only a small amount of flights. These peripheral

airports have almost no significant contribution to the overall network capacity,

whereas the capacity bottleneck mainly lies on the big hub airports. For more

detail about the AAN, readers are referred to the following paper [108]. Figure 4.4

shows the test Network-II is the network of Australian airports that operate more

than five flights on a daily basis. In Figure 4.4, the size of a node is proportional

to the number of its direct connections with other nodes in the network, which is

known as the degree [36]. In this network, nodes 8 and 11 have a degree of 20 (10

in-degree and 10 out-degree), which is the highest in the network. Whereas, node
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Figure 4.4: Example network-II, network of hub nodes of Australian airport
network.

3 has the lowest degree of 6. In this network, the travel times of the links are set

randomly between 1 hour and 4 hours.

4.5 Results and Analysis

I first present the hourly flow in Network-I over a period of 24 hours. As the

objective of the capacity estimation is to find out the maximum attainable flow

in an airport network, I find the departure sequences at the nodes that remain

unchanged and achieve maximum steady-state flow.

At first, to get an insight into the efficiency of the proposed model, I measure the

number of unused slots for every node in the network. The number of unused slots

is calculated from the flight sequences in the SBs. It is the difference between the

slot positions of consecutive flights and the minimum separation required between
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Figure 4.5: Status of the nodes in network-I during steady state.

them. For example, if two light aircraft are departing from slots 5 and 9, respec-

tively, then the distance used by these two flights is four slots and the minimum

separation required between them is two slots (since each slot is equivalent to one

minute). So the number of unused slots in this case is two (four minus two). Figure

4.5 shows the status of the nodes in Network-I during a portion of steady state.

Figure 4.5 shows that it is noticeable that there is not enough room between any

two nodes to accommodate more flights.

Figure 4.6 shows the hourly departures and arrivals at Network-I. At the very first

hour, there is no arrival in the network and as the time goes on the departed flights

in the early hours start to arrive. After a certain number of hours, the number of

arrivals reaches that of the departures and the flow become steady afterwards. If

one can find the right departure sequence, then it is possible to get a maximum

steady-state flow that is the capacity of the network. Flow in Network-I reaches a

steady state from the 5th hour of operation.
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Figure 4.6: Hourly traffic flow for Network-I over a period of 24 hours.

Table 4.2: Hourly capacity of test networks (average of 30 different runs)

Network Capacity #L #M #H

I 57.7 ± 1.34 38.7 ± 7.60 10.6 ± 4.01 8.4 ± 3.87

II 222.2 ± 21.04 111.7 ± 33.01 57.5 ± 20.22 53.0 ± 20.21

In a network, the total flow consists of a number of light, medium and heavy

aircraft. To better investigate the capacity of a network, I calculate the actual

number of light, medium and heavy aircraft. Table 4.2 summarises the capacity

of the example networks and Figures 4.7 and 4.8 show the total flight movements

thoughout a day of Network-I and Network-II, respectively. In Figures 4.7 and

4.8, it is noticeable that a number of light aircraft dominate in the hourly flow.

This is because, during the insertion operation, in the situation in which heavy or

medium cannot be inserted in the slot boxes (SBs) of the nodes then the chance

is given to a light aircraft.

Tables 4.3 and 4.4 summarise the hourly uses of the nodes of Network-II and

Network-I, respectively, during the steady state. From Tables 4.3 and 4.4, I can

see that the airport’s (nodes) slots are fully utilised, which is confirm by the

number of un-used slots except from node-3 in network-II. This is because this
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Figure 4.7: Hourly traffic of Network-I.
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Figure 4.8: Hourly traffic of Network-II.

node has a very limited number of connections compared to the others in the

network. Though it has some unused slots for departures, its neighbours have

enough space for arrivals. As a result, some slots remain unused.

Apart from the details of flow, I also analyse the delay of the solution provided

by the proposed method. Table 4.5 reports the delay associated with the flights

in Network-I and Network-II over the simulation period of 12 hours. The average
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Table 4.3: Summary of the node’s hourly utilisation of Network-II at steady
state

Node Total Flow #L #M #H # un-used slots

1 19.25 ± 2.34 8.70 ± 3.28 5.60 ± 1.82 4.95 ± 1.67 1.15 ± 0.88

2 17.65 ± 1.69 11.35 ± 2.46 3.50 ± 1.67 2.80 ± 1.01 6.55 ± 3.70

3 14.8 ± 1.85 8.30 ± 1.90 3.50 ± 1.28 3.00 ± 1.30 14.15 ± 5.88

4 19.4 ± 3.20 8.40 ± 3.66 5.50 ± 2.48 5.50 ± 2.46 2.50 ± 1.80

5 18.95 ± 0.69 9.30 ± 2.18 5.45 ± 1.36 4.20 ± 1.91 2.05 ± 1.54

6 18.65 ± 0.99 9.15 ± 2.50 4.80 ± 1.32 4.70 ± 1.75 3.05 ± 2.50

7 18.8 ± 0.62 8.00 ± 2.13 6.00 ± 1.69 4.80 ± 1.61 2.15 ± 1.31

8 20.05 ± 3.20 9.20 ± 4.01 5.30 ± 1.69 5.55 ± 2.14 1.85 ± 1.39

9 19.65 ± 2.80 11.80 ± 3.37 3.90 ± 1.53 3.95 ± 1.28 3.05 ± 2.09

10 18.85 ± 1.04 7.90 ± 2.29 5.65 ± 2.23 5.30 ± 1.63 2.65 ± 1.90

11 18.9 ± 1.41 8.65 ± 2.60 5.00 ± 1.56 5.25 ± 1.86 2.60 ± 1.64

12 17.25 ± 1.21 10.95 ± 2.63 3.30 ± 1.59 3.00 ± 1.59 7.25 ± 3.54

Table 4.4: Summary of the node uses of Network-I

Node
Total
Flow #L #M #H

# un-used
slots

1 19.35 ± 0.99 12.90 ± 2.89 3.50 ± 2.01 2.95 ± 1.19 2.35 ± 1.76

2 19.35 ± 0.87 12.60 ± 3.25 3.85 ± 1.53 2.90 ± 1.94 2.00 ± 1.65

3 19.00 ± 0.56 13.20 ± 2.48 3.25 ± 1.45 2.55 ± 1.54 2.65 ± 1.50

Table 4.5: Summary of delay

Network

Total

Flight

Movement

Delay(D)

Per flight

(minutes)

Number of

flights

delayed

(0 ≤ D ≤ 10)

Number of

flights

delayed

(10 < D ≤ 15)

Network-I 615.55 ± 13.88 4.72 ± 1.13 271.6 ± 53.67 118.9 ± 56.31

Network-II 2271.15 ± 40.91 5.13 ± 0.44 912.1 ± 124.3 516.8 ± 99.87

delay per flight is found to be around 5 minutes for both networks, 4.72 and 5.13,

to be exact, for example networks I and II, respectively, which is well accepted in

a usual air transportation system. Of the total flights, only about 20% are delayed

more than 10 minutes, whereas most have delays less than or equal to 10 minutes.

To investigate the flow capacity of different networks, I consider networks with
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Figure 4.9: Estimated network capacity as a function of network size (number
of nodes) with constant average degree.

(i) random, (ii) scale-free and (iii) small-world topologies. For each type of net-

work topology, instances are generated using the methods described previously in

Chapter 2. For this experiment, network instances are generated by varying the

network size, starting from N = 20 to 65 nodes with increments of 5. To see how

the network capacity varies with different topologies, I first keep the average degree

constant and vary the number of nodes. Figure 4.9 shows that the average hourly

flow capacity changes with the network size. From Figure 4.9, I can see that the

network capacity increases linearly with the number of nodes in the network for

all network topologies. Of the three network topologies, small-world (SW) has the

highest flow capacity, whereas scale-free has the lowest when the average degree

is kept constant at ⟨k⟩ = 6.0. In the next analysis, I keep the number of nodes

constant but change the average degree. Figure 4.10 shows the hourly flow changes

with the network average degree for different network topologies with 50 nodes.
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Figure 4.10: Estimated network capacity as a function of network average
degree with constant network size.

4.6 Chapter Summary

In this chapter, I proposed a methodology to estimate the airport network capacity

by modelling the problem as a multi-commodity flow problem. In my formulation,

flows between two nodes (airports) were considered as different commodities and

the local airport capacity was formulated using a time slot of one hour where the

hourly rate of flow (landings and take-offs) was bound by a capacity constraint. A

heuristic algorithm was designed to solve the network capacity model in which all

flow constraints of air traffic were maintained. The proposed model and algorithm

were applied to different test networks; the numerical results reveal that the pro-

posed model is capable not only of estimating the network capacity under different

levels of aircraft mix but also of identifying individual flows at different links and

the amount of delay for each and every aircraft. In addition, the proposed model

provides details of the flow (the actual number and mix of aircraft: light, medium

and heavy) and a flight schedule (the departure and arrival of each flight). The

experimental results show that an airport network with a small-world topology

Murad Hossain July 2016



Chapter 4. Airport Network Flow Capacity Estimation 131

can accommodate the largest number of traffic compared to random and scale-free

topologies with equal numbers of nodes and links.
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Chapter 5

Airspace Network Modelling and

Topological Analysis

This chapter is partially based on the following publications:

• Md Murad Hossain, Sameer Alam, Fergus Symon and Henk Blom, A Complex Network Approach to

Analyze the Effect of Intermediate Waypoints on Collision Risk Assessment, International Journal of

Engineering and Operations, Air Traffic Control Quarterly, Vol. 22, Number 2, pages 87-114, 2014.

• Fergus Symon, Sameer Alam, Md Murad Hossain and Henk Blom, Airspace Network Characterization

for Effect of Intermediate Waypoints on Collision Risk Assessment, Proceedings of the 6th International

Conference on Research in Air Transportation, ICRAT-2014, pages 1-8, Istanbul, Turkey (Best paper

award).

In the previous two chapters, I have analysed the airport network and developed a

model and methods to estimate its capacity. To analyse the relationship between

airport network capacity and airspace safety, now I shift to analyse an airspace

network. In this chapter, I propose two different models to analyse airspace as a

network and relate its network features to estimate collision risk. The proposed

airspace network models are characterised using several complex network indica-

tors, which are then correlated with its collision risk.
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5.1 Introduction

One of the key challenges faced by the Air Navigation Service Providers (ANSPs)

is how to accommodate continued growth in air traffic while meeting the safety

targets. ANSPs are exploring new paradigms (e.g. SESAR [4] and NextGen [3])

and procedures (e.g. reduced vertical separation minima [113]) for efficient and

safe management of airspace. In the light of predicted traffic growth, maintaining

safe separation among the aircraft in an airspace is considered its key limitation

factor. One of the vital indicators for estimating air traffic safety is the airspace

collision risk [74].

Although mid-air collision is a rare event, the impact is significant due to the

large number of fatalities involved. The International Civil Aviation Organiza-

tion (ICAO) standards separating aircraft in time and space have well served the

purpose, until the surge in air traffic during the last decade. ANSPs are now

compelled to relax these standards and adopt new procedures to accommodate

increasing traffic [166]. There is also a compelling need for safety risk assessment

of these new procedures [212].

Most of the collision risk estimation models are based on the Reich Model [193–

195], which was developed in the early 1960s to estimate the collision risk for flights

over the North Atlantic and to specify appropriate separation rules for the flight

trajectories. However, there is no universal model for collision risk assessment due

to the different communication, navigation and surveillance capabilities of ANSPs

in different regions of the world.

EUROCONTROL uses a sophisticated collision risk model developed by Math-

ematical Drafting Group, which uses precision 4D radar data/ADS-B data to

account for flights vectoring frequently in European airspace [73]. Whereas the

African region (ARMA) and the Middle East region (MIDRMA) use the ICAO
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Collision Risk Model [193–195] based on entry and exit flight plan data due to

the presence of large volumes of procedural airspace and limited communication,

navigation and surveillance (CNS) capabilities.

Measuring collision risk based on only the entry and exit flight plan data may

lead to reasonable variations from the actual collision risk value. In particular,

when an airway network structure is more complex, this may lead to significant

variations in collision risk estimates between different Flight Information Regions

(FIRs) of the world. One of the motivations of this chapter is how to model

an airspace as a network and identify the features that can improve the collision

risk estimates given the limited amount of flight data available in regions with

limited CNS capabilities. Another research question that I attempt to address is

how the collision risk estimate varies with network measures for airspace network

complexity. This chapter addresses the abovementioned research questions.

The approach of this chapter is to adopt a complex network approach to model

an airspace that can be related to its collision risk. I believe that modelling an

airspace as a complex network is important for two reasons. It obviously helps

us to characterise the networks based on the measurement of standard metrics of

network topology (degree distribution, betweenness centrality, closeness centrality,

clustering coefficient, etc.). Secondly, I believe that characterisation of airspace

network features and their impact on collision risk estimates may guide the design

or modification of airspaces in order to better control air traffic to reduce collision

risk.

5.2 Modelling of an Airspace

An airspace is a complex system that is partitioned for a series of reasons, mainly

to safely manage/control air traffic. The national airspace of a country is typically

partitioned into air traffic control centres. Each of the traffic control centres is
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also partitioned into sectors, which is the smallest unit of control, being under

the direct supervision of air traffic controllers. Finally, inside the sector, a set

of navigational waypoints constitutes a grid-like structure where the flight move.

The position of a waypoint is defined by a latitude and a longitude, but not an

altitude.

There are several airspace analysis models and tools that provide some capabil-

ity to quantify airspace complexity such as traffic density [139], conflict potential

[205] and collision risk [135]. Airspace complexity depends on both structural and

flow characteristics of the airspace. The structural characteristics are fixed for a

sector/centre and they depend on the spatial and physical attributes of the sector

such as terrain, number of airways, airway crossings and navigation aids. On the

other hand, the flow characteristics vary as a function of time and depend on fea-

tures such as the number of aircraft, mix of aircraft, weather, separation between

aircraft, closing rates, aircraft speeds and flow restrictions. These characteristics

(both structural and flow) of an airspace make it very challenging to model an

airspace or NAS operations for collision risk. In general, the collision risk of an

airspace depends on the nature of conflict paths, sector density and intervention

rules used by ATCs to separate air traffic. It has been proved that the collision

risk of an airspace depends on the underlying airspace structure and the traffic

scenarios [13]. So it is clear that there is a relation between the airspace structure

and the overall collision risk. The modelling of an airspace should include details

of its elements that help to estimate the collision risk properly [135].

5.2.1 Airspace Network

In recent years, complex network science has been largely applied to air trans-

portation network analysis [21, 22, 100, 108, 129]. From a complex network point
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of view, an airspace can be considered a multi-scale, dynamic network of inter-

connected entities. In an airspace, flights do not always follow a smooth and

optimised trajectory. Instead, they follow a path on a predefined grid. The actual

flight path is, therefore, a succession of waypoints together with timestamps and

altitudes. Based on the flight path information and the location of waypoints in

the airspace, I can model it as a graph (network), comprising the waypoints as

vertices or nodes linked by the airways connecting them. Figure 5.1 shows an

example of an airspace that can easily be modelled as a graph. [13].

 

 

Figure 1: Airspace network modelled as a graph (network), comprising of 

.

Sector Volume 

(Flight Time) 

Figure 5.1: Airspace network modelled as a graph (network), comprising way-
points as vertices or nodes linked by the airways (links) connecting them.

Beside the entry/exit points and the navigation waypoints, two line segments may

also intersect each other, which might virtually create a crossing. As illustrated in

Figure 5.1, if there is a direct flight between C to D and A to B, the crossing of the

two line segments at X is considered a crossing point. As a result, in addition to

the entry/exit points A, B, C, D, E, F and G, the crossing of the two line segments

at Y and X are also considered node in an airspace network. So, to model the
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Figure 5.2: An example of DRN. The entry/exit nodes are represented as a
filled circle and the square represents a crossing node.

airspace network, I consider two different network models: (i) direct route network

(DRN) and (ii) intermediate waypoints network (IWN).

5.2.1.1 Direct Route Network (DRN) Model

There are airspaces that are not covered by radar and without any ATC monitoring

or separation support. Aircraft are expected to fly direct routes between entry and

exit points along the rhumb line of the entry to exit point, confirming the agreed

plan with air traffic flow management (ATFM) in such airspaces [81]. Moreover,

within a non-radar airspace, although there is a well-defined airway structure,

flights generally consider a direct route from entry to exit point (rhumb line of

the entry to exit point) for collision risk estimation [159]. To accommodate this

concept, I define a direct route network as a graph where the entry/exit points

and crossing of the straight lines among them are also considered nodes. In this

model, links are created among the nodes by the direct lines among them. Figure

5.2 shows an example of airspace network created by a DRN model.

The direct route model assumes that there is a great circle route between entry

and exit waypoints for estimating the crossing frequency. However, in any given

airspace/sector, a flight may go through several intermediate waypoints before it
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features such as number of airways, crossing angle, number of 

Figure 2: Difference between a DRN and IWN generation process.

DRN crossing node

IWN crossing node

Figure 5.3: Difference between a DRN and IWN generation process.

reaches the exit point. As a result, the actual flight path may not be a straight

line between entry and exit waypoints but a segment of chords that join the in-

termediate waypoints. Assumption of a great circle route between entry and exit

waypoints results in a simplified airspace network structure and, therefore, an in-

correct number of crossings computed as well as an incorrect crossing frequency,

which in turn affects the collision risk estimates.

5.2.1.2 Intermediate Waypoints Network (IWN) Model

In the direct route network model, only the entry/exit points are considered nodes

and the crossings of the straight line routes from entry to exit points. However,

the in-flight route actually consists of a collection of waypoints. A waypoint is a

navigation marker the longitude and latitude coordinate of which is determined by

the ground navaids and keeping the pilots informed about the desired track and

heading direction of the aircraft. To quantify the effect of the waypoints on the

topology and the collision risk of an airspace network, I also propose a model that

considers all of the waypoints. Figure 5.3 illustrates the difference to calculate

the crossing points between the DRN and the IWN models. In Figure 5.3, the

intermediate waypoints air route is denoted by the solid line and the direct route

is shown by the dotted straight line.
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Figure 5.4: Direct flight paths (without intermediate waypoints) (left) and
flight paths with intermediate waypoints (right).

In the IWN model, the intermediate waypoint for a given entry-and exit point in

the airspace in considered. This may lead to fairly complex routes. The introduc-

tion of an intermediate waypoint model has several effects. A higher number of

intermediate waypoints will increase the likelihood of an aircraft crossing to occur.

This is because it is not uncommon for two flight paths, if represented by the naive

flight path (Figure 5.4, left), not to have any possible intersection. However, often,

the airway structure is such that these two flights will meet along a common path

and then split and deviate, as seen in Figure 5.4 (right).

5.2.2 ICAOs Form 4 Data

To construct an airspace network and estimate it collision risk, I have used the

ICAO Form 4 Data (a sample of ICAO Form 4 data can be found in Appendix K

in [116]). The ICAO has stipulated the use of Form 4 Air Traffic Flow data [116]

for collecting RVSM traffic data from ANSPs. The ICAO Form 4 data provides

sufficient detail, but often to quite low resolution for collision risk models to give

an estimate of technical vertical collision risk.

ICAO Form 4 records following flight data:

Flight date, Aircraft call sign, Aircraft type, Departure aerodrome, Arrival aero-

drome, Entry Waypoint, Entry level, Entry time, Exit Waypoint, Exit level and
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Exit time. The ICAO Form 4 data is then processed to compute:

• Total flight time for each region

• Average ground speed for each region

• Number of flight crossings in each region

• Flight time proportions for each aircraft, which is used to calculate:

– Average aircraft dimensions: The type of aircraft flown in the region

is used to determine its dimensions from the BADA (Base of Aircraft

Data) database to calculate the average aircraft dimensions

– Altimetry system error (ASE) probability

The airspace in consideration for this chapter is reduced vertical separation mini-

mum (RVSM) airspace. Within RVSM airspace, air traffic control (ATC) separates

aircraft by a minimum of 1,000 feet vertically between flight levels (FL) 290 and

410 inclusive [113]. In my experiment, the flight data was collected for the month

of October 2011 for all 12 member countries of the MIDRMA region using ICAO

Form 4. In total, there were 203,764 flights flying in the region (FL290 to FL420

inclusive).

5.3 Topological Properties of Airspace Network

In the above DRN and IWN models, the edge set E represents all line segments

of air routes between nodes (waypoints, crossing and entry/exit points). However,

after generating the initial network, a crossing node can be very close to an existing

waypoint; in such a case, the crossing node is merged with the closest node if

the distance between them is less than 1 nautical mile. Finally, the network is

represented by an adjacency matrix An×n such that aij = 1 if a link exists between
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the city-pair i and j, otherwise aij = 0. From the resulting network, I have found

that the networks always remain connected and the IWN is more highly structured

than the DRN. Figure 5.5 shows the DRN and IWN of the airspace network of

Oman.

Different networks have different topological features that characterise its connec-

tivity, interaction and the dynamical processes executed by the network [28]. The

analysis, discrimination and synthesis of airspace networks, therefore, rely on the

use of measurements capable of expressing the most relevant topological features,

which enable us to characterise the airspace properties. Several network indices

– network degree distribution, average degree, clustering coefficient, betweenness

centrality, closeness centrality, degree centrality and characteristics path length

(discussed in Chapter 3) – are used in this chapter to measure the topological

configuration of the airspace network.

))
) are often 

encountered. More precisely, in many cases, the degree 
distributions exhibit heavy tails which are often well 

-

is used to describe the airspace network, 

represents all waypoints and the 

As illustrated in 

entry/exit points A, B, C, D, G, F and the 

crossing of two line segments at Y also consider as node in 

the network.  To model the airspace network we have 

 =

Figure 3: The DRN (left) and IWN (right) of Oman one of the countries in 

.
Figure 5.5: The DRN (left) and IWN (right) of Oman, one of the countries

in the Middle East (MIDRMA) region.

5.3.1 Comparison Between DRN and IWN

Interestingly, many real networks, including airspace networks, share a certain

number of topological properties; for example, most are small worlds [102], that
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is, the average topological distances between nodes increase very slowly (logarith-

mical or even more slowly) with increases in the number of nodes. Additionally,

hubs (nodes with very large degrees (k)) compared with the mean of the degree

distribution (k) are often encountered. More precisely, in many cases, the degree

distributions exhibit heavy tails, which are often well approximated for a signifi-

cant range of values of k by a power-law behaviour [14].

Figure 5.6 shows some key topological properties of Oman’s DRN and IWN. First,

I focus on the degree distribution of the networks. In Figures 5.6(a) and 5.6(b),

it is noticeable that the degree distribution of DRN follows normal distribution.

It gives strong evidence that the DRN is a kind of random network. Whereas

that of IWN is right skewed. In the case of centrality-based measures, both of the

networks betweenness and closeness centrality follow exponential function. That

is to say, the centrality value declines exponentially with the nodes ranking.

The steep curve of betweenness indicates that a few hub nodes account for most

of the traffic transfer capacity. Next, I investigate the clustering coefficient that

captures the local cohesiveness of a node. It measure the how the neighbours of

a node are connected themselves. A network with a high clustering coefficient is

always beneficial to find an alternative if some of its nodes (waypoints) have failed

due to bad weather.

The distribution of the clustering coefficient of DRN and IWN are found to be

significantly different, as DRN clustering coefficient exhibits a linear decay, while

IWN is an exponential decay. Besides the centrality measures, I also investigate

the degree-degree correlation of the networks. Figure 5.6(i) and Figure 5.6(j) show

the degree-degree correlation of DRN and IWN, respectively. For DRN, there is

no significant correlation among the nodes in the network, whereas, for IWN there

is apparent positive degree-degree correlation. That is, the high-degree nodes tend

to be connected with high-degree nodes.
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Figure 5.6: A one-to-one comparison of topological properties of Omans DRN
and IWN (a) and (b) the degree distribution of DRN and IWN respectively, (c)
and (d) betweenness centrality, (e) and (f) closeness centrality, (g) and (h)
clustering coefficient, ((i) and (j) degree-degree correlation of DRN and IWN.

Thus, it confirms that the IWN is more highly structured than the DRN. Similar

behaviour is also observed for the other airspace networks (DRN and IWN) of the

countries in the MIDRMA region. The topological properties of the rest of the

countries in the MIDRMA region are presented in Appendix A.
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5.4 Collision Risk Analysis

Collision risk is defined by the ICAO [119] as “the expected number of mid-air

aircraft accidents in a prescribed volume of airspace for a specific number of flight

hours due to loss of planned separation”. The collision risk assessment methodol-

ogy consists of two elements: first, risk estimation, which concerns the development

and use of methods and techniques with which the actual level of risk of an activ-

ity can be estimated; and second, risk evaluation, which concerns the level of risk

considered to be the maximum tolerable value for a safe system. The level of risk

that is deemed acceptable is termed the target level of safety (TLS) [114]. The

risk evaluation process consists of comparing the estimated risk against a TLS to

provide a quantitative basis for judging the safety of air traffic operations in a

given volume of airspace.

The challenge in modelling collision risk for an airspace operation is the nature

of conflict paths, sector structure and the intervention of rules used by air traffic

controllers to separate traffic. Several collision risk estimation models have been

developed in the past [110, 148, 193–195, 208]. Almost all collision risk assessment

models are intrinsically based on estimating the expected number of conflicts due

to separation violation in the airspace over time. Many of the well-known models

for collision risk estimation have used procedural uncontrolled airspace assump-

tions [41, 194]. Some studies have concentrated on the development of suitable

mathematical functions and models to estimate the probabilities of lateral and ver-

tical overlaps [110, 161] (detail of the collision risk models are discussed in Chapter

2). To consider both the DRN and IWN models, I have used the following collision

risk stigmatisation model developed by the ICAO [119, 159].
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5.4.1 Vertical Collision Risk Model

Technical vertical risk represents the risk of a collision between aircraft on adjacent

flight levels due to normal or typical height deviations of RVSM-approved aircraft.

The technical vertical collision risk is assessed against a technical TLS of 2.5×10−9

fatal accidents per flight hour using a suitable collision risk model [121].

Following [4] the vertical collision risk model for aircraft on adjacent flight levels

of the same route, flying in either the same or the opposite direction satisfies:

Naz = 2Pz(Sz)Py(0)nz(equiv)

[
1 +
|ẏ|
2V

+
θxy|ż|
λz2V

]
(5.1)

where

nz(equiv) = nz(opp) + nz(same)

|ẏ|
∇V

+ λxy |ż|
λz2V

1 + |ẏ|
2V

+ λxy |ż|
λz2V

+

1

Py(0)

1

1 + |ẏ|
2V

+ λxy |ż|
λz2V

n∑
i=1

nz(θi)

[
1 +

π
2
λxy

Vral(θi)

|z|
2λz

]
(5.2)

with the various symbols in (5.1)-(5.1) explained below.

The left-hand side variable Naz represents the expected number of aircraft acci-

dents due to normal technical height deviations of RVSM-approved aircraft for the

given traffic geometry. The longitudinal overlap frequency parameters nz(same)

and nz(opp), together with the kinematics factors in brackets (as functions of the

relative speeds and aircraft dimensions), represent a major part of the different

levels of exposure to the risk of the loss of vertical separation for the two traffic

geometries covered by the collision risk model of equation (5.1). (The subscript z

in nz(same) and nz(opp) refers to aircraft on adjacent flight levels.)

There are two aircraft dimensions used by the technical vertical risk: the average

diameter ( λxy) and the average height (λz). The probability of vertical overlap
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Pz(Sz) is the probability that two aircraft will overlap vertically, separated by

1,000ft (Sz ). This indicates the probability that they will overlap while correctly

flying at adjacent flight levels. The probability of lateral overlap (Py(0) ) is the

probability of two aircraft being in lateral overlap, if they are both correctly flying

at adjacent flight levels. This is calculated by taking the proportion of time that

an aircraft in the region is flying using satellite navigation (GNSS) versus radio

navigation (VOR/DME).

There are five relative speed parameters that appear in the technical vertical risk:

• ∇V is the relative along-track airspeed between two aircraft flying at adja-

cent flight levels and flying in the same direction.

• V is the average ground speed of the aircraft.

• |ẏ| is the average relative cross-track speed between two aircraft flying at

adjacent flight levels.

• |ż| is the average relative cross-track vertical speed between two aircraft that

have lost feet of vertical separation.

• Vrel(θ) is the average relative horizontal speed between aircraft flying at

adjacent flight levels and intersecting at an angle given by the equation

(5.3):

Vrel(θ) = V
√
2(1− cos(θ) (5.3)

5.5 Methodology

This section explains the methodology used for comparing the collision risk and

network characteristics of the direct route model (great circle route between airspace
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entry and exit point) and the intermediate waypoint model (waypoints between

entry and exit points). The airspace network features for both models were char-

acterised for each country and analysed given the collision risk estimates. As

illustrated in Figure 5.7, the ICAO Form 4 data is the basis for the flight data

input to the two models. Both models use the same collision risk model and

databases for aircraft positional error distribution and kinematic factors (speed

and dimension).

Form 4 traffic Data

Assigned Altitude 

Deviation Data

Altimetry Systems 

Error Data

Aircraft Kinematic 

Data

Direct Route Network 

Model

(DRN)

Intermediate Waypoint 

Network Model

(IWN)

Airspace Network
Airspace Network

Network Characteristics Network Characteristics

Collision Risk Assessment Model

Collision Risk

For DRN

Collision Risk

For IWN

Analysis

Figure 5.7: Proposed methodology for network characteristics analysis of di-
rect route model and intermediate waypoints model for technical vertical risk.

Collision Risk with Direct Route Network Model: In the direct route model,

technical vertical risk is computed using the direct route model. In this

stage, an airspace network is generated using the entry and exit point data

extracted from the Form 4 data. Network analysis is performed and network

characteristics are identified.

Murad Hossain July 2016



Chapter 5. Airspace Network Modelling and Topological Analysis 149

Collision Risk with Intermediate Waypoint Network Model: In the inter-

mediate waypoint model, technical vertical risk is computed. Again, the

airspace network is generated incorporating the intermediate waypoints be-

tween entry and exit points using the ICAO Form 4 data.

Processing ICAO Form 4 Data: The two pieces of required information for

calculating the number of crossings for an FIR/UIR are the completed ICAO

Form 4 data for the time period and a list of waypoints and their coordinates

corresponding to the names used in the ICAO Form 4 data. The first step in

the process is to read in the list of waypoints and their coordinates. These

are stored for use in the later calculations.

The second step in the process is to read in the ICAO Form 4 data, filtering

out any data that is either incomplete or suspected to be incorrect. From the

first pass of the data, the number of flights (N), total flying time (T , in hours)

and average ground speed (V in knots) can be calculated. Additionally taken

is a list of entry-exit point pairs flown within the FIR/UIR.

The third step is to determine the crossing pairs within the data. This is

done by taking the list of entry-exit points from the ICAO Form 4 data

scan and computing whether the great circle arc formed by that flight path

intersects with any of the other entry-exit great circle arcs.

Finally, each flight in the ICAO Form 4 data is processed to count the number

of flights with which it intersects. This is done by picking a flight and

checking it against all other flights. For each flight that it is adjacent to, the

entry and exit points are compared; if they are both the same, then we check

whether they intersect in the same or opposite directions. If the flight has a

different entry and exit pair, then then we check whether the two entry-exit

pairs intersect; if they do, then we check whether the two flights intersect in

a crossing path.
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Estimating Crossing Frequency: The passing frequencies are the frequency at

which two aircraft at adjacent flight levels pass each other. They can be in

the same direction (nz(same)), opposite directions (nz(opp) ) or pass each

other on crossing tracks nz(θ).

The same and opposite direction crossing frequencies can be calculated by

taking the number of plane passings divided by the total hours of flight

and multiplying by the probability of lateral overlap, as shown in equations

eq(5.4) and eq(5.5)

nz(same) =
number of crossing× Py(0)

total flight time in FIR/UIR
(5.4)

nz(same) =
number of crossing× Py(0)

total flight time in FIR/UIR
(5.5)

The crossing traffic frequency is calculated in a similar manner to the same

and opposite directions (with a value calculated for each crossing angle).

However, it is not multiplied by the probability of lateral overlap, and a larger

crossing diameter is taken when the crossings are counted. This is because, if

the crossings were counted on the average aircraft diameter (λxy), this would

result in a very small number of crossings. Therefore, a larger, proximity

distance (Sx) is taken in order to better estimate the frequency. The number

of crossings is then scaled down by a factor of the aircraft diameter on the

proximity distance, as shown in eq(5.6).

nz(θ) =
number of crossing× λxy

Sx

total flight time in FIR/UIR
(5.6)
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Figure 5.8: Map of MIDRMA region comprising of 12 ARTCC/FIR/UIRs.

5.6 Experiments

5.6.1 Region and Traffic Data

The traffic data used in this chapter is provided by the ICAOs Middle East

Regional Monitoring Agency (MIDRMA). MIDRMA is the administrator of the

RVSM airspace in the Middle East region. The MIDRMA region consists of the

following countries: Bahrain, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Oman,

Qatar, Saudi Arabia, Syria, the UAE and Yemen. A map of the MIDRMA region

is shown in Figure 5.8.

MIDRMA provided Air Traffic data, waypoint data and aeronautical information

data for all 12 member states. Data was collected for the month of October 2011
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Table 5.1: Number of flights in each region/country for the month of October
2012 and the total number of flight hours flown

Country
Flight Data (Oct 2011) RVSM Airspace

Number of Flights Flight Duration (hours)

Bahrain 39206 23624

Egypt 26322 18160

Iran 17030 20165

Iraq 2810 2795

Jordan 6277 1513

Kuwait 12122 3395

Lebanon 1151 190

Oman 30000 18846

Saudi Arabia 7716 2049

Syria 7716 5398

UAE 20725 3445

Yemen 5025 23624

for all member countries using ICAO Form 4. In total, there were 203,764 flights

flying in the RVSM airspace (FL290 to FL420, inclusive) in the region.

In order to collect information about intermediate waypoints for given entry and

exit points in an FIR/UIR, MIDRMA issued a circular to all member states to

develop a database for all entry and exit points and the most commonly flown

routes in the respective regions. The data collection and verification exercise was

undertaken over a period of two months. All twelve member states collected and

reported data on intermediate waypoints for all entry and exit points in their

respective FIR/UIRs. Table 5.1 reports the summary of one months traffic data

used to model the national airspace system (NAS) of the constituent countries in

the MIDRMA region.

5.6.2 Experimental Parameters and Supplementary data

Table 5.2 reports the parameters of the collision risk model used in the experi-

ments.
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Table 5.2: Collision Risk Model’s parameters

Parameter Value

Relative along-track airspeed ∇V 15 kn/s

average relative cross-track speed |ẏ| 20 kn/s

average relative cross-track vertical speed |ẏ| 1.5 kn/s

σGNSS standard deviations for satellite nav 0.0612 NM

σV OR/DMEstandard deviations for radio nav 0.3 NM

α proportion of flights flying with satellite navigation 75%

Length (λx ) 173.51 ft

Wingspan (λy ) 163.35 ft

Diameter (λxy ) 159.91 ft

Height (λz ) 45.451 ft

Aircraft dimension parameters (representing the average dimension of aircraft that

fly in the region) are calculated and weighted as per the flight time proportion of

each aircraft group.

Based on the navigation data provided by the member states, the proportion of

flights flying with satellite navigation in the MIDRMA region was set to 75%.

Airspeed parameters were used as recommended by the ICAO [113]. Aircraft

performance was modelled using Eurocontrol’s Base of Aircraft Data (BADA).

For computing the probability of vertical overlap, Eurocontrol’s altimetry system

error (ASE) parameter database and aircraft aerodynamic parameters (AAD) were

used.

The collision risk computation process is illustrated in Figure 5.9. First, the coun-

tries for which the collision risk is to be done are selected. Various supplementary

data files such as waypoint/airport names and coordinates, BADA database, ASE

and AAD parameters and aircraft dimension files are then read and processed.

After that, the flight data for the selected countries is read and processed to com-

pute flight time proportion and crossing frequencies. The probability of lateral

overlap and the probability of vertical overlap are then computed. These inter-

mediate results are then inputted into equation (5.1) and technical vertical risk is
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Figure 5.9: Technical Vertical Risk Computation Process.

computed.

5.7 Results and Analysis

5.7.1 Network Features

In this section, I compare each of the complex network metrics of the DRN and

IWN among the constituent nations of MIDRMA.

Average Degree: Figure 5.10 compares the average degree between the DRN

and IWN of the MIDRMA nations. For the intermediate waypoint model,

the average degree for almost all of the countries (except Lebanon) increased

significantly. This mainly occurred due to the presence of major crossings

(especially in large airspaces), which were not captured in the direct route
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Figure 5.10: Average Degree of DRN and IWN for MIDRMA countries.
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Figure 5.11: Clustering Coefficient measure of DRN and IWN for MIDRMA
countries.

model, affecting the collision risk computation. Lebanon is a small FIR with

a semi-circular design. The airspace structure is simple, with all airways

from the boundary of the FIR merging at the Beirut VOR.

Clustering Coefficient: The cluster coefficients are show in Figure 5.11. The
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Figure 5.12: Closeness Centrality measure of DRN and IWN for MIDRMA
countries.

nodes in the Bahrain, Lebanon and Syrian airspace networks appear to have

higher tendency to form clusters in the intermediate waypoint model. In

Egypt, Iran and Saudi Arabia, a lower clustering coefficient indicates a low

collision risk.

Closeness Centrality: From the closeness centrality measures (Figure 5.12), it

is noticeable that Iran and Saudi Arabia have the lowest closeness centrality,

which is because of their large airspaces. For Lebanon, this measure is

high (in both models) due to its very small airspace and very few airways

merging at VOR. In Bahrain and Syria, closeness centrality is reduced for

the intermediate waypoint model due to their structured airspaces, leading

to minimal or no change in collision risk estimates.

Betweenness Centrality: The betweenness centrality is presented in Figure

5.13. As expected, this measure has gone down for all FIRs in MIDRMA,

except Lebanon. The intermediate waypoint model reduces the possibility of

a particular node lying between other nodes, as opposed to the direct route

model, in a network. This indicates that a more unstructured network will

lead to a higher collision risk.
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Figure 5.13: Betweenness Centrality measure of DRN and IWN for MIDRMA
countries.
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Figure 5.14: Characteristics Path Length in DRN and IWN for MIDRMA
countries.
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Characteristic Path Length: From the characteristic path length (Figure 5.13),

the airspace networks of Iran and Saudi Arabia appear to be denser (lower

characteristic path length) with the intermediate waypoint network. This is

possibly due to the presence of large areas of procedural airspace.

5.7.2 Collision Risk and Passing Frequency

To compare the DRN and IWN in terms of collision risk, I first present the results

of crossing frequency per flight hour and the technical vertical risk with the direct

route model and the intermediate waypoint model. As can be seen from Table

5.3 and Figure 5.15, with the intermediate waypoint model, Egypt, Iraq, Lebanon

and Oman show a significant increase in crossing frequency as well as technical

vertical risk.

From Figure 5.15, it is noticeable that, in both models, Bahrain, Iran and Saudi

Arabia do not have any significant change in their crossing frequency and technical

Table 5.3: Vertical collision risk assessment (passing frequency and technical
vertical risk) For MIDRMA region

Country

Collision Risk Assessment

Passing Frequency Technical Vertical Risk

Direct Route Inter. Waypoint Direct Route Inter. Waypoint

Bahrain 0.020211 0.02019 3.63×10−11 3.62×10−11

Egypt 0.019650 0.02843 3.53×10−11 5.10×10−11

Iran 0.023403 0.02348 4.20×10−11 4.21×10−11

Iraq 0.009957 0.05476 1.79×10−11 9.82×10−11

Jordan 0.012597 0.01288 2.26×10−11 2.31×10−11

Kuwait 0.000297 0.00117 5.34×10−13 2.10×10−12

Lebanon 0.003515 0.00872 6.31×10−12 1.56×10−11

Oman 0.027840 0.04504 5.00×10−11 8.07×10−11

Saudi Arabia 0.020981 0.02096 3.77×10−11 3.76×10−11

Syria 0.028031 0.02904 5.03×10−11 5.21×10−11

UAE 0.009877 0.00640 1.77×10−11 1.15×10−11

Yemen 0.006218 0.00720 1.12×10−11 1.29×10−11
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Figure 5.15: Technical Vertical Risk with DRN and IWN for MIDRMA coun-
tries.

vertical risk. Most surprisingly, the UAE shows a decrease in its crossing frequency

as well as technical vertical risk in the IWN model compare to the DRN model.

The highest variability can be seen in Iraq and Oman, where the collision risk

increases significantly with the intermediate waypoint model.

The collision risk for Saudi Arabia and Iran, in both models, remains the same

due to large airspaces where the intermediate route has less variability and is more

or less similar to the direct route model. As illustrated in Figure 5.16, Bahrain

and the UAE have highly structured airways. However, UAE airspace is smaller

and more structured when compared to Bahrain airspace. The southern airspace

of Bahrain, which adjoins Saudi Arabia, has an unstructured pattern. This might

have led to the decrease in collision risk for the UAE in the intermediate waypoint

model.

Similarly, the increase in the collision risk estimate of Iraq, for the intermediate

waypoint model, can be attributed to the significant increase in crossings (five-

fold increase) due to crossing traffic from Iran and Saudi Arabia. So, it can be
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Figure 5.16: Highly structured airway route in UAE and in northern part of

Bahrain.

concluded that a denser network results in higher collision risk estimates.

5.8 Chapter Summary

In this chapter, I proposed two different models to represent an airspace, a direct

route network model and an intermediate waypoints network model. The degree

of distribution of the DRN follows normal distribution, whereas that of the IWN is

right skewed. In the case of centrality-based measures, both of the networks show

similar exponential distribution. In the IWN, the high-degree nodes tend to be

connected with high-degree nodes. For the DRN, there is no significant correlation

among the nodes in the network. The network measures confirm that the IWN is

more highly structured than the DRN.
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Complex network measures were also employed to gain an insight into how the

collision risk estimates vary with network measures for airspace network complex-

ity. To estimate the collision risk, one months traffic data from 12 countries in the

Middle East region was used. The experimental results indicate that the interme-

diate waypoints led to a significant increase in collision risk estimates specifically

for airspace networks with higher average degree and higher closeness centrality

measures. This demonstrates that it is possible to improve the collision risk esti-

mates given the limited amount of flight data available in regions with limited CNS

capabilities by using intermediate waypoint data available with ANSPs. The re-

sults also indicate that collision risk decreases in networks with lower betweenness

centrality. It was also found that a highly dense network results in higher collision

risk estimates. From an operational point of view, this indicates that countries

that have highly structured airspaces are actually overestimating the collision risk

with the direct route model.
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Chapter 6

Airspace Network Optimization

for Collision Risk

This chapter is partially based on the following publications:

• Sameer Alam, Md Murad Hossain, Fareed Al-Alawi, and Fathi Al-Thawadi, Optimizing Lateral Airway

Offset for Collision Risk Mitigation Using Differential Evolution, International Journal of Engineering

and Operations, Air Traffic Control Quarterly, Vol. 23, Number 3, 2016.

• Sameer Alam, Md Murad Hossain, Fareed Al-Alawi, and Fathi Al-Thawadi, Shift for Safety: A Differ-

ential Evolution Approcah to Optimize Lateral Airway Offset for Collision Risk Mitigation, Eleventh

USA/Europe Air Traffic Management Research and Development Seminar (ATMRnD 2015), June 23rd

- 26th 2015, Lisbon, Portugal (Best paper award ).

In the previous chapter, I developed models to analyse airspace and its safety.

The airspace network structure is modelled as a graph, including the entry/exit

points and waypoints as nodes and segments as edges. In an airspace network, the

location and configuration of the nodes have significant relation to its structure,

which eventually impacts its safety. One of the important measures to judge

the safety of an airspace is the collision risk estimate. To improve the safety of

an airspace, its network needs to be optimised. The optimisation of a national

airspace network structure becomes imperative for the increase of air traffic. In

163



Chapter 6. Airspace Network Optimization for Collision Risk 164

this chapter, I develop a methodology using differential evolution to optimise an

airspace network structure in order to minimise its collision risk.

6.1 Introduction

The continued increase in air traffic and the limited airspace resources have re-

sulted in more and more serious congestion and flight delay [145]. In the meantime,

heavy congestion challenges airspace safety and flight delay costs the airline in-

dustry heavily every year [175]. Hence, how to safely accommodate high levels of

demand and maximise the use of capacity-limited airspace and airport resources

has become a major concern for both researchers and ANSPs.

A key component of air transportation is the national airspace system (NAS). At

the highest level, the NAS is partitioned into traffic control centres, each of which

is partitioned into sectors. Each sector is managed by one air traffic controller or

a small team of two to three controllers at any given time of day. Traditionally,

the traffic increase has been accommodated by subdividing highly loaded sectors,

which is known as the sectorisation problem. The sectorisation problem has been

studied extensively in the ATM literature [32, 63, 228] as a global optimisation

problem. The concept of sectorisation has partially fulfilled its objective. Nowa-

days, many sectors have become too small to be divided. Duong et al. [68] point

out that sectors are, therefore, a constraint to the increase of air traffic and that

there obviously is a need to explore new practices that could break away from this

major constraint. Eurocontrol [77] also points out that it is time to redesign or

optimise the airspaces to accommodate the future traffic demand.

Apart from the sectorisation, another alternative to increase the capacity and

safety of an airspace is to optimise the airspace network structure itself. A rea-

sonable design of an airspace network can improve the flight efficiency and relieve

airspace congestion [44, 113]. In the design or optimisation of an airspace network
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structure, the most important problem is how to determine the positions and con-

nection of WPs, which is usually referred to as an airspace network optimisation

problem (ANOP).

A few studies have been carried out to address the ANOP to increase its capacity

or safety. For both en-route and terminal airspace, the design of the airspace is

an iterative process that places significant reliance on qualitative assessment and

the operational judgement of controllers and procedure designers involved from

the outset in the design [77]. During the past decades, several methods for the

design of airspace networks have been proposed. The pioneering work was done by

Siddiquee, who modelled an airspace network with various attributes, including

number and duration of potential conflicts etc., which can be used as optimisation

goals and evaluation criteria of different network design alternatives [209]. Al-

though this work did not provide a method for designing an airspace network, it

established the basis for further study of the ANOP. Later, subjected to air traffic

control constraints, Mehadhebi et al. presented a gradient descent algorithm to

minimise the total airline cost by merging and moving the WPs [153], which may

result in the scenario shown in Figure 6.1. The merging of multiple WPs may in-

crease the controller workload as well as increase the likelihood of flight crossings.

For example, as shown in Figure 6.1, merging P , Q and R into a single waypoint

X will definitely increase the number of flight crossings. However, a completely

new design or extensive modification of an airspace network is impractical in terms

of the controllers convenience. Controllers are trained for several years to manage

air traffic flow in an airspace. Radical changes in an airspace network will make

controller experience irrelevant in managing the air traffic flow and will eventually

increase their workload. In addition, it might disrupt the interaction with the

adjacent sectors due to handover timing or location mismatch of the entry/exit

waypoints. Thus, it is necessary to keep the changes in an airspace network as low

as possible while optimising them for either capacity or safety.
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Figure 6.1: Merging of waypoints in an airspace network

6.2 Proposed Approach

In this chapter, I consider the optimisation of an airspace network structure to

enhance its safety. One of the possible ways to increase the safety of traffic within

an airspace with minimal or virtually no changes to its structure is to shift the air-

ways to its right or left. Shifting an airway will not change the number of WPs or

the network structure. However, shifting all of the airways in an airspace network

structure might not increase its safety. But allowing different amounts of shifting

for different airways and splitting some of its WPs may result in a network struc-

ture in which the likelihood of flight crossings can be reduced. Such an example

is shown in Figure 6.2. In such a configuration (figure 6.2-left), flights in opposite

directions in the same airway or segment may offset each other, which will reduce

significantly the probability of separation violation. This concept of shift is similar

to the ICAO SLOP. The ICAO has introduced Strategic Lateral Offset Procedures

(SLOP) that allow suitably equipped aircraft to fly within 1nm (nautical mile) or

2nm lateral offset to the right of the airway centreline. I hypothesise that with the

identification of the right offset for airways in an airspace network can minimise the

overall collision risk. In other words, the airspace network optimisation problem

(ANOP) can be translated into a problem of offset identification for SLOP.
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Figure 6.2: Example of shifting waypoints in an airspace network

ICAO in PANS ATM Doc 4444 [118] has proposed SLOP in oceanic and remote

airspace, which allow aircraft to fly with 1nm or 2nm lateral offset to the right

of airway centrelines on a suitably equipped aircraft (automatic offset tracking

by flight management system – FMS). SLOP provides an additional safety mar-

gin and mitigates the risk of traffic conflict when non-nominal events (normal or

large height deviations) occur [2]. SLOP, however, has not resulted in the desired

reduction in airspace collision risk for two main reasons:

• Limited implementation: SLOP is implemented in oceanic airspace only

and few aircraft use this procedure. The North Atlantic Planning Group

has recently expressed concern that not enough aircraft appear to be flying

the offset procedure in the North Atlantic, thus negating, in part, the safety

benefits [2]. Data collected by the UKs National Air Traffic Services (NATS),

which provide ATC services in the eastern part of the North Atlantic, show

that less than 10% of aircraft are using SLOP due to a lack of understanding

of its safety benefits [220].

• Use of fixed offset in SLOP: The underlying idea behind SLOP was that

a random application of the procedure would dramatically reduce the risk

of loss of separation events. The key to this dramatic reduction in risk is
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the randomness of offset application. To create this randomness, aircraft

operator procedures must not specify any one of the three offset options

(centreline, 1nm and 2nm). Most of the aircraft that fly SLOP elect to use

a fixed offset of 1nm, thereby defeating the underlying idea.

Further, no review has been undertaken of the implications of such offsets, and

there is minimal advice to pilots and guidelines to safety planners/ATC supervi-

sors on such offset procedures and safety benefits [191]. Since the use of offsets

could influence system safety, there is a need to develop criteria enabling the iden-

tification of where and how offsets can be safely used, including any limitations

that need to be applied. Also, defining operational procedures and requirements

for their application is needed to ensure that such offsets can be safely used. Thus,

the key research questions are as follows. Instead of having a fixed lateral offset,

can I achieve an airway-specific lateral offset that can reduce the overall airspace

collision risk? Secondly, which airway and traffic features affect the optimal lateral

offset value? This understanding may provide valuable insight into lateral airway

offset decisions by safety planners and airline operators to mitigate collision risk

in continental airspaces.

The large search space (possible solutions, i.e. lateral offset values for each airway

in a continuous range) and interaction of the collision risk model with airway and

traffic features make traditional search methods unsuitable for this kind of prob-

lem [13]. Nature-inspired techniques such as evolutionary computation [20] have

emerged as an important tool to address this kind of problem. In this chapter,

I propose an evolutionary framework in which I use: differential evolution [211],

a population-based search approach, as a lateral offset optimiser; air traffic simu-

lator ATOMS [11] as a simulator for a given traffic scenario; ICAO collision risk

model [119] as an evaluator of collision risk; and a multiple regression model as an

identifier of correlation between airway-traffic features and optimal lateral offset.
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Figure 1: Proposed approach for airspace collision risk management  

Figure 6.3: Proposed approach for airspace collision risk management

Figure 6.3 illustrates, in an abstract manner, the proposed approach. As shown, let

us assume that, for a given set of traffic data, airspace and time period, its collision

risk is assessed to be above a certain threshold (no offset scenario). Applying a

fixed lateral offset of 1nm or 2nm to the right of the airway centreline may reduce

collision risk (fixed offset scenario). Our approach is to design a framework that

not only estimates the optimal lateral offset for each airway in the given airspace

such that the overall collision is reduced, but also identifies the airway and traffic

features that affect the offset value to predict the optimal lateral offset values

without the need for an optimisation process. This approach is important because

any optimisation process for such a large number of possibilities is inherently an

expensive process (computation time and resources) and would be impractical to

run frequently.
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6.3 Navigation Precession and Collision Risk

The RVSM safety assessment shows that the precision of lateral navigation is an

important factor with regard to vertical collision risk [120]. A general assumption is

that 50% of the flying time is being made with GNSS navigation and the remaining

50% with VOR/DME navigation, while extended use of GNSS navigation should

have a risk-increasing effect. For example, an increase of the GNSS flight time

proportional to 75% would cause the estimate of the technical vertical risk to

increase by a factor of approximately 1.5nm [120]. Therefore, the risk mitigating

effects of lateral offset are significant. Further, there is no practical difference

between two aircraft colliding on a ‘fixed’airway and two aircraft colliding that are

coincidentally flying the same random route. Also, there is no difference between

two aircraft colliding on a fixed airway or two aircraft colliding over the same

random waypoint contained in each of their random routes. In each instance, the

collision might be avoided if one, or both, aircraft is flying an offset.

6.3.1 Vertical Collision Risk

A mid-air collision between two aircraft nominally separated by 1,000ft could occur

only if either one or both aircraft were to deviate vertically from their assigned

flight level such that the vertical separation between the aircraft is lost. There

are two main reasons why an aircraft may not be at its assigned flight level:

normal height deviations and large height deviations. Normal height deviations

arise because of typical assigned altitude deviation (AAD) and altimetry system

errors (ASE), whereas large height deviations occur because of operational issues

such as a level burst or a TCAS alert. The focus of this paper is on normal

height deviations that happen for purely technical reasons. Technical vertical risk

is computed, with the use of a mathematical model, using historic flight data and

Murad Hossain July 2016



Chapter 6. Airspace Network Optimization for Collision Risk 171

takes into account, among several factors, the accuracy of navigation, the airway

structure, the aircraft population and the total flying time within the region.

6.3.2 Strategic Lateral Offset Procedure (SLOP)

SLOP are ICAO-approved procedures [118] that allow aircraft to fly on a parallel

track to the right of the centreline relative to the direction of flight to mitigate

the vertical overlap probability due to navigational accuracy and wake turbulence

encounters in oceanic and remote airspace. As illustrated in Figure 6.4, SLOP

allows crews the discretion to fly either on the airway centreline or, conversely,

offset to the right by a maximum of 1nm or 2nm depending upon the spacing

between route centrelines (30nm or more) in oceanic or remote airspace. The

decision to apply a strategic lateral offset shall be the responsibility of the flight

crew. The flight crew shall apply strategic lateral offsets only in airspace where

such offsets have been authorised by the appropriate ATS authority and when

the aircraft flight management system (FMS) is equipped with automatic offset

tracking capability.
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Figure 2: Vertical collision risk due to vertical error distribution, with and 

Figure 6.4: Vertical collision risk due to vertical error distribution, with and
without lateral offset on adjacent flight levels
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6.4 Problem definition

The problem formulation consists of two stages. First is the optimisation stage,

in which the optimal lateral offset for each airway is determined such that overall

airspace collision risk is minimised; the second is the correlation stage, in which, for

a given optimal lateral offset of an airway, correlation, if any, with that airway and

traffic features is identified such that the optimal lateral offset can be estimated.

This is formulated as follows:

6.4.1 Optimization Stage

Differential evolution [211] is a stochastic, population-based optimisation algo-

rithm belonging to the class of evolutionary computation algorithms. Differential

evolution algorithms are highly effective in optimising real valued parameter (lat-

eral offset values in our case) and real valued function (minimising collision risk in

our case). They are also highly effective in finding approximate solutions to global

optimisation problems (airspace collision risk in our case) [187].

Given an airspace Z with J airways and traffic data Di where i = 1 to m where

m is the number of aircraft flying through airspace Z, determine the lateral offset

in the direction of traffic (right of the airway centreline) to a maximum of Knm

in decimal latitude interval for each airway N ′ such that it minimises the overall

collision risk of the airspace Z. The optimisation function is expressed as follows:

minf(CR)Zs.t.(Nz → Nz
′), whereNz

′ ∈ [0, K] (6.1)
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minimize f(CR)Z

subject to (Nz → Nz
′)

Nz
′ ∈ [0, K]

Nz
′ ≽ 0.

(6.2)

6.4.2 Correlation Stage

Our primary goal in this stage is to determine the best set of parameters (airway

and traffic features), such that the model predicts experimental value y∗ (lateral

offset) of the dependent variable y as accurately as possible. I also determine

whether the model itself is adequate to fit the observed experimental data and

check whether all terms in our model are significant. The function is expressed as

follows:

y∗ = b0 + b1x1 + b2x2 + ...+ bnxn

subject to

minimizef(rj) = y∗j − yj

(6.3)

Where y is the dependent variable (predicted by a regression model), y∗ is the

dependent variable (experimental value), b0 is the intercept (constant), x(i) (i =

1, 2, n) is the ith independent variable from the total set of p variables, bi(i =

1, 2, ..., n) is the ith coefficient corresponding to j = 1, 2, ..., n are data points.
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6.5 Methodology

6.5.1 Evolutionary Framework

The proposed methodology intends to evolve the optimal lateral offsets for each

airway in a given airspace such that it minimises the overall collision risk, as illus-

trated in Figure 6.5. There are two set of processes in the methodology, illustrated

with two different shaded schemes. The process components depicted in white are

of air traffic simulation, which evaluates a given set of traffic data for collision

risk in an airspace with lateral offset applied. The process components depicted

in blue are of evolutionary computation, which involves differential evolution to

evolve optimal lateral offset values using evolutionary operators.

In the evolutionary computation process part, I first establish upper and lower

bounds for airway offset (in nm). I then randomly initialise (within these bounds) a

population of solutions representing a set of vectors in which the size of each vector

is equal to the number of airways, i.e. each vector comprises offset values for each

airway in a given airspace. These vectors undergo mutation and recombination

to generate two vectors, which I call the target vector and the trial vector. These

two vectors compete with each other with their set of offset values in the air traffic

simulator. The vector that minimises the collision risk for a given set of traffic

data is admitted to the next generation and the process continues until maximum

generation is reached. At this stage, the best performing solutions (vectors) are

selected from the final population.

6.5.2 Chromosome Representation

The solution vectors are encoded into a genetic data structure (chromosome) to

facilitate the exchange and crossover of information in the evolutionary process
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Figure 6.5: Airspace network optimisation methodology by airway’s offset
evolution

of optimisation. Each population of solutions consists of several chromosomes,

depending upon the population size, as illustrated in Figure 6.6. Each chromosome

represents a set of lateral offset values that would be applied to each airway. For

example, if there are n airways, then there will be n offset values in a given

chromosome, one for each airway.

6.5.3 The Airway Structure and Lateral Offset

I have chosen the maximum lateral offset as 4nm to the right of the airway cen-

treline. This value is based on the continental airspace airway structure in a radar

control environment. As illustrated in Figure 6.7, this offset may be widened if

the midpoint between two NAVAIDS is more than 51nm.
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stopping criterion is reached.

the final population. This represents the optimal offset values 

for the airways that minimize the overall collision risk.
Figure 6.7: Airway structure with 4nm spacing from airway centreline if dis-

tance between two VOR is less than 51nm

6.5.4 Evolution Process

Given function F to optimise with D real parameters. First select the size of the

population N (it must be at least 4). The parameter vectors have the form:

xi, G = [x1,i,G, x2,i,G; ...xD,i,G], i = 1, 2, ..., N (6.4)

where G is the generation number.

In the initialisation phase, I define the upper and lower bounds for each parameter

such that:

xL
i ≤ xj,i,1 ≤ xU

j (6.5)

The lower bound is 0.0nm, i.e. the centreline, and the upper bound is 4.0nm, the
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maximum proposed offset value in continental airspace. I then randomly select

the initial parameter values uniformly on the intervals: [xL
j , x

U
j ].

After initialisation, each of the N parameter vectors undergoes mutation, recom-

bination and selection. In the mutation phase, which expands the search space,

for a given parameter vector xi,G I randomly select three vectors xr1,G, xr2,G and

xr3,G such that the indices i, r1, r2 and r3 are distinct. I then add the weighted

difference of two of the vectors to the third:

vi,G+1 = xr1,G + F (xr2,G − xr3,G) (6.6)

The mutation factor F is a constant from [0, 2] vi,G+1 and is called the donor

vector.

Recombination incorporates successful solutions from the previous generation.

The trial vector ui,G+1 is developed from the elements of the target vector, xi,G

and the elements of the donor vector, vi,G+1. Elements of the donor vector enter

the trial vector with probability CR.

uj,i,G+1 =


vj,i,G+1 if randj,i ≤ CRorj = Irand

vj,i,G if randj,i > CRandj ̸= Irand

(6.7)

randj,i ∼ U [0, 1], Irand is a random integer from [1, 2, ..., D] and Irand ensures that

vi,G+1 ̸= xi,G.

In selection, the target vector xi,G is compared with the trial vector ui,G+1 and the

one with the lowest function value is admitted to the next generation.

xi,G+1 =


ui,G+1 if f(ui,G+1) ≤ f(xi,G)

xi,G otherwise

(6.8)
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Mutation, recombination and selection continue until any one of the stopping

criteria is reached. The best individual is selected from the final population.

This represents the optimal offset values for the airways that minimise the overall

collision risk.

6.5.5 Airway Traffic Features

In this chapter, I have focused on the upper airspace region, also known as the re-

duced vertical separation minima (RVSM) airspace, for its significance in airspace

collision risk assessment. Each flight level vertically separated by 1000ft is treated

as a unique airway. Even bi-directional routes are treated as unique (one of each

side). Based on our previous research on collision risk assessment [11, 13], I have

identified the following airway and traffic features of interest in establishing cor-

relation between them and the optimal lateral offset:

• Airway distance (nm): This is the great circle distance from entry waypoint

to exit waypoint, including intermediate waypoints for a given airway.

• Number of Aircraft: This is the number of flights that fly on a given airway

(each way independent).

• Intermediate Waypoints: This is the number of waypoints on a given airway

between its entry and exit waypoints.

• Average Flying Time (min): This is the average flying time of aircraft on a

given airway.

• Airway Crossings: This is the number of other airways that cross a given

airway.
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6.5.6 Regression Analysis

The objective of regression analysis is to predict some criterion variable better. The

multiple regression model determines the best set of parameters (b0, b1, b2, ...bp) in

the model yj = b0 + b1x1j + b2x2j + ... + bpxpj by minimising the error sum

of squares. These coefficients allow us to calculate the predicted value of the

dependent variable y (optimal offset).

To make specific predictions using the model, I would need to substitute all five

airways and traffic features scores into the equation and then come up with the

predicted offset value. The difference in the predicted offset and the actual offset is

known as residual error rj, which is the difference between the observed value y∗ of

the dependent variable for the jth experimental data point and corresponding value

y∗ given by the above regression model. If there is an obvious correlation between

the residuals and the independent variable x (say, residuals systematically increase

with increasing x), this means that the chosen model may not be adequate to fit

the experiment. A plot of residuals is very helpful in detecting such a correlation.

6.6 Experimental Setup

I first estimate the baseline collision risk for the given air traffic data. I then

estimate collision risk with 1nm offset and 2nm to the right of airways for the

given traffic data. The evolutionary framework is then employed with differential

evolution to find the optimal offset values for each airway along with associated

airway-traffic features. The multiple regression model is applied to come up with

an equation that can predict the optimal offset value for the given airway-traffic

features.
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Figure 6.8: Bahrain RVSM airspace and airway structure

6.6.1 Test Network

For the experiments, I used the Bahrain airspace network structure and one-day

traffic data (710 flights). The traffic data used was of Bahrain upper airspace

network, i.e. RVSM with FL290 to FL4190, inclusive. Thus, there were 13 flight

levels and I treated each airway uniquely, even bi-directional airways. In total,

there were 94 airways in the Bahrain airspace. Figure 6.8 illustrates the Bahrain

airspace, which is characterised by three well-identified crossing meshes.

For the Bahrain region, it is assumed that 75% of flights use GNSS and 25%

use VOR/DME for navigation. Following the RVSM global system performance
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specification, the standard deviation for VOR/DME navigation is taken as 0.3nm

and a standard deviation of 0.06123nm will be used for the GNSS, i.e. σV OR/DME =

0.3nm and σGNSS = 0.06123nm.

6.6.2 Collision Risk model

The ICAO collision risk model [119] is used to compute vertical collision risk.

The ICAO collision risk model is different to the basic Reich collision risk model

because of the complexity and variability of the traffic patterns in most of the

continental radar-controlled airspace for which it accounts. The model has three

main parameters: the probability of vertical overlap, the frequency of horizontal

overlap events per flight hour and the weighted average of kinematic factors. The

latter is the combined parameters dependent on the geometry of the proximate

pairs.

6.6.3 Evolution Parameters

For the DE process, the number of generations is set to 100, and the population

size (individual solutions) is set to 30. This implies that, for the traffic scenario,

there are 30 independent sets of airways offset (in nautical miles) with the bound

of 0nm to 4nm with 0.1nm for 710 flights, and the evaluation is repeated 100 times.

For the evolutionary process, the DE mutation parameter F is set to 0.25. To

find a proper crossover rate, I have performed experiments with different crossover

rates. Figure 6.9 shows the best fitness value after the final generation for different

crossover rates ranging from 0.05 to 1.0. From Figure 6.9, I found that the best

fitness value is lowest for a crossover rate of 0.65. As a result, the crossover rate

for the DE is set to 0.65 for subsequent analysis.
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All experiments were run independently on the National Super Computing Facility

with a cluster based on Intel Sandy Bridge 8-core processors (2.6 GHz) and 160TB

of main memory.
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Figure 6.9: Fitness value after the final generation with different crossover
rates

6.6.4 Air Traffic Simulator

For air traffic scenario simulation, I have used the Air Traffic Operations and Man-

agement Simulator (ATOMS). ATOMS is a high-fidelity, 4D, point-mass model-

based, five degrees of freedom air traffic simulator developed by the lead author.

The collision risk model is integrated into ATOMS such that every flight pair is

evaluated, in each discrete time interval, for collision risk. Thus, ATOMS is used

as the evaluation objective function for traffic scenarios: every time it is called

with a scenario, it computes the collision risk and other parameters.
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Figure 6.10: Convergence of DE process over 100 generations

6.7 Results and Analysis

The collision risk per flight hour for baseline traffic without any offset is 2.951 ×

10−7, 1nm offset to the right is 3.01×10−7, and 2nm offset to the right is 2.94×10−7.

I then present how the evolution progressed over 100 generations. As shown in

Figure 6.10, the evolutionary process manages to drive the population of initial

solutions towards the optimal solution (to minimise the overall collision risk).

Initially, the average collision risk, with randomly initialised lateral offset values

in the interval of [0.0-4.0]nm for each airway, was 2.06× 10−7 collisions per flight

hour and the best solution in that population had the fitness value of 2.02× 10−7

collisions per flight hour. By the 100th generation, the upper limit on number of
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generation, the DE process appears to have converged, and the best solution for the

average fitness for different runs are reported in Table 6.1. Table 6.1 illustrates the

effectiveness of the DE process in evolving solutions (lateral offsets) for individual

airways such that the overall collision risk of a given airspace and traffic data is

minimised.

Table 6.1: Best Fitness Value after 100 Generations

Run ID Best fitness Run ID Best fitness

1 1.94× 10−07 11 1.86× 10−07

2 1.88× 10−07 12 1.85× 10−07

3 1.83× 10−07 13 1.83× 10−07

4 1.88× 10−07 14 1.84× 10−07

5 1.83× 10−07 15 1.88× 10−07

6 1.87× 10−07 16 1.86× 10−07

7 1.86× 10−07 17 1.87× 10−07

8 1.84× 10−07 18 1.89× 10−07

9 1.87× 10−07 19 1.94× 10−07

10 1.85× 10−07 20 1.95× 10−07

Table 6.2 tabulates the evolved lateral offset values, in the best individual of the

final population, for 94 airways in the Bahrain airspace. The table also shows the

airway and traffic features (distance, intermediate waypoints, number of crossings,

number of flights and average flying time). I then present the frequency chart for

the offset values in the range of [0.0, 4.0] for the best individual of the evolved

population after 100 generations. Figure 9 shows the number of occurrences of

offset values for each value on the range discretised by 0.1nm.

Table 6.2: Evolved optimal lateral offset value for each airway and features of
the best individual in the final population

Airway

ID

Distance

(NM)

Number

of turns

Number

of crossing

Number

of Flight

Average

Fly

Time

Evolved

offset

(NM)

0 93.74 2 10 9 13.67 3.00

1 275.15 3 19 98 41.60 1.10

Continued on next page
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Table 6.2 – Evolved Optimal Lateral Offset Value for Each Airway and

Features of the Best Individual in the Final Population

Airway

ID

Distance

(NM)

Number

of turns

Number

of crossing

Number

of Flight

Average

Fly

Time

Evolved

offset

(NM)

2 279.52 5 21 39 46.03 1.40

3 160.00 1 14 100 25.33 0.10

4 133.80 1 14 0 0.00 2.40

5 154.83 2 16 1 29.00 1.40

6 149.11 2 15 0 0.00 3.20

7 151.26 2 17 14 26.14 1.40

8 104.59 1 5 0 0.00 2.90

9 102.16 1 7 0 0.00 2.90

10 104.59 1 5 0 0.00 0.80

11 102.16 1 6 4 11.50 2.50

12 143.06 2 11 18 15.78 3.30

13 88.19 2 12 0 0.00 0.90

14 133.38 3 17 2 17.00 2.80

15 145.49 1 15 6 17.33 1.70

16 23.59 1 8 0 0.00 1.40

17 44.62 1 12 0 0.00 1.80

18 38.69 1 12 0 0.00 3.30

19 86.16 1 13 1 9.00 2.70

20 193.46 1 16 3 22.33 2.10

21 180.10 1 19 0 0.00 0.80

22 98.15 1 8 0 0.00 1.90

23 37.84 0 13 0 0.00 1.90

24 215.06 3 19 6 23.17 3.10

25 202.47 1 23 83 21.87 1.30

26 158.64 4 23 0 0.00 0.20

27 179.67 4 25 0 0.00 3.00

28 173.95 5 24 0 0.00 0.60

29 133.94 2 18 0 0.00 1.20

30 248.42 5 27 45 35.13 0.10

31 261.41 6 30 2 36.00 0.90

32 46.31 0 4 0 0.00 3.00

33 289.37 4 16 114 30.91 0.90

34 281.21 4 23 6 30.17 1.40

35 46.31 0 4 0 0.00 2.50

36 55.82 1 14 0 0.00 1.10

Continued on next page
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Table 6.2 – Evolved Optimal Lateral Offset Value for Each Airway and

Features of the Best Individual in the Final Population

Airway

ID

Distance

(NM)

Number

of turns

Number

of crossing

Number

of Flight

Average

Fly

Time

Evolved

offset

(NM)

37 77.01 0 18 0 0.00 3.30

38 71.29 1 17 0 0.00 2.10

39 37.84 0 13 5 5.80 1.20

40 73.44 1 19 0 0.00 0.60

41 88.18 0 14 0 0.00 4.00

42 101.17 1 17 0 0.00 3.90

43 76.69 1 18 0 0.00 2.90

44 96.93 2 18 0 0.00 1.10

45 91.21 2 17 0 0.00 0.90

46 98.13 1 17 7 13.71 2.20

47 93.36 2 19 0 0.00 1.30

48 92.48 5 17 0 0.00 3.70

49 250.42 5 27 28 67.79 1.10

50 251.24 6 25 0 0.00 1.60

51 113.46 2 10 8 37.75 1.30

52 108.39 5 22 0 0.00 1.70

53 263.42 5 30 2 64.00 3.10

54 264.24 6 28 1 44.00 1.20

55 126.45 2 13 0 0.00 1.30

56 133.28 2 15 13 19.92 2.80

57 194.80 2 19 8 25.25 3.50

58 178.25 2 21 0 0.00 3.60

59 87.50 2 16 0 0.00 2.70

60 55.82 1 14 0 0.00 0.20

61 153.84 3 16 6 26.50 1.80

62 154.66 4 14 0 0.00 0.90

63 16.58 0 4 0 0.00 1.20

64 154.02 3 17 1 14.00 1.80

65 215.55 2 21 0 0.00 3.40

66 199.00 2 23 0 0.00 0.90

67 108.25 2 18 0 0.00 1.20

68 77.01 0 18 0 0.00 2.50

69 175.44 4 22 0 0.00 1.60

70 176.26 5 20 0 0.00 0.80

71 38.49 1 6 0 0.00 2.60

Continued on next page
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Table 6.2 – Evolved Optimal Lateral Offset Value for Each Airway and

Features of the Best Individual in the Final Population

Airway

ID

Distance

(NM)

Number

of turns

Number

of crossing

Number

of Flight

Average

Fly

Time

Evolved

offset

(NM)

72 148.30 3 17 0 0.00 2.50

73 209.83 2 21 0 0.00 1.20

74 193.28 2 23 0 0.00 3.70

75 102.53 2 18 0 0.00 3.40

76 71.29 1 18 0 0.00 0.70

77 169.72 4 22 0 0.00 3.50

78 170.54 5 20 0 0.00 3.90

79 32.77 1 6 0 0.00 2.50

80 146.78 0 9 6 15.83 3.70

81 101.30 0 8 1 15.00 3.20

82 46.00 0 11 5 5.00 0.00

83 106.17 0 19 11 11.45 2.90

84 264.41 0 16 23 30.04 4.00

85 94.47 0 4 2 10.50 0.10

86 281.96 0 4 2 31.00 0.10

87 162.61 0 8 1 19.00 0.00

88 152.48 0 14 1 29.00 0.00

89 96.62 0 11 20 22.45 0.00

90 230.64 0 29 1 42.00 3.10

91 52.62 0 3 1 19.00 3.80

92 143.80 0 10 4 21.75 0.30

93 172.41 0 18 1 19.00 4.00

94 181.31 0 19 1 18.00 3.80

Figure 6.11 shows that, for 94 airways, the DE process has come up to an even

distribution of offset values in the given intervals. This implies that evenly dis-

tributed lateral offset values result in minimising collision risk in an airspace.

I then present the results from the multiple regression analysis. Table 6.3 presents

the analysis of variance (ANOVA) analysis, which provides the breakdown of the

total variation of the dependent variable (lateral offset) into the explained and

unexplained portions. SS regression is the variation explained by the regression
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Figure 6.11: Offset frequency in each discrete lateral offset interval

Table 6.3: Analysis of Variance

Source Degree of freedom Adjusted Mean Square F-Value

Regression 5 1.9729 1.40

Distance (nm) 1 0.4141 0.29

Intermediate waypoints 1 2.6341 1.86

Crossing 1 0.8990 0.64

Number of Flights 1 4.9425 3.50

Average Flying Time 1 0.421 0.30

Error 89 1.4135

Lack-of-fit 85 1.441 1.89

Pure Error 4 0.7637

Total 94

line, which in our case is 9.8%, of which the number of flights (6.04%) and number

of crossings (1.8%) are the main contributors. Of the 94 airways, the model was

able to predict only five cases. The F-statistic is calculated using the ratio of the

mean square (MS) regression; the positive F value in Table 6.2 indicates a positive

correlation with the lateral offset value.

Table 6.4 presents the summary of regression statistics; the multiple correlation
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Table 6.4: Summary of Regression Statistics

Multiple R 0.269646557

R Square 0.072709266

Standard Error 1.188921049

Observations 94

Table 6.5: Regression Coefficients

Term Coefficient Standard
Error

95% Confidence Inter-
val

T-
Value

P-
Value

Constant 1.809 0.355 (1.103, 2.515) 5.09 0

Distance
(NM)

0.00161 0.00297 (-0.00430, 0.00751) 0.54 0.59

Intermediate
Waypoints

-0.1331 0.0975 (-0.3268, 0.0606) -1.37 0.176

Crossing 0.0222 0.0278 (-0.0331, 0.0774) 0.80 0.427

Number of
Flights

-0.01259 0.00673 (-0.02597, 0.00079) -1.87 0.065

Average Fly-
ing Time

-0.0059 0.0108 (-0.0273, 0.0155) -0.55 0.587

coefficient is 0.269646557. This indicates that the correlation among the inde-

pendent and dependent variables is positive. This statistic, which ranges from

−1 to +1, does not indicate the statistical significance of this correlation. The

coefficient of determination, R2, is 0.072709266. This means that close to 7.2% of

the variation in the dependent variable (optimal lateral offset) is explained by the

independent variables (airway-traffic features).

The standard error of the regression is 1.188nm, which is an estimate of the vari-

ation of the observed optimal lateral offset, in nm, above the regression line. The

results of the estimated regression line include the estimated coefficients, the stan-

dard error of the coefficients, the calculated t-statistic, the corresponding p-value

and the bounds of 95% confidence intervals.

As shown in Table 6.5, the independent variables that are statistically significant in

explaining the optimal lateral offset values are the number of crossings and number
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of flights, as indicated by (a) calculated t-statistics that exceed the critical values,

and (b) the calculated p-values that are less than the significance level of 5%.

Thus, the regression equation is given by (equation 6.9):

Evolved Offset (nm) = 1.809 + 0.00161×Distance (NM)

− 0.1331× Intermediate Waypoints+ 0.0222× Crossings

− 0.01259×Number of Flights− 0.0059×Average Flying Time

(6.9)

I then plotted the residual plots for the number of crossings and number of flights,

as shown in Figures 6.12 ( 6.12(a) and 6.12(b)), respectively. As there is no ob-

vious correlation between the residuals and the independent variable lateral offset

(residuals do not systematically increase with increasing crossings and number of

flights), this indicates that the chosen model may be adequate to fit the experi-

ment.

6.8 Chapter Summary

In this chapter, I proposed a differential evolutionary method to optimise an

airspace network structure that assigns an optimal SLOP value to its airways

such that the overall collision risk is minimised. The evolutionary process con-

vergence and the evolved lateral offsets are evenly distributed in the respective

lateral latitude bands. There is a weak correlation between airway and traffic fea-

tures with only 7.2% of the variation in the dependent variable (optimal lateral

offset) explained by the independent variables. The number of flights and airway

crossings are two features that correlate with the optimal lateral offset, with their

error residual plots indicating usefulness of the model. Applying airway-specific

optimal lateral offset in an airspace may achieve the desired reduction in collision

risk. Further, identifying airway and traffic features that affect the lateral offset
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Figure 11: Error residual plot for number of airway crossings. 

 
(a) Number of airway crossings

 

 
Figure 12: Error residual plot for number of flights  

 
(b) Number of Flights

Figure 6.12: Error residual plot
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may give airline safety and ATC managers an insight into how to manage traffic

flow in their respective airspaces.
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Chapter 7

An Integrated Air Transportation

Network for Capacity-Collision

Risk Relationship

This chapter is partially based on the following publication:

• Murad Hossain and Sameer Alam, An Evolutionary Optimization Approach for Capacity-Collision Risk

Trade-off Analysis in Air Transportation Network, Journal of Transportation Research Part C: Emerging

Technologies, Elsevier, Submitted.

In this chapter, I focus on the final research question: how do the interactions be-

tween airport and airspace networks affect the capacity-risk trade-off? To address

this question, I develop a framework that integrates the airport network capac-

ity estimation model (developed in Chapter 4) and the collision risk assessment

method (developed in Chapters 5 and 6) for an ATN to analyse the relationship

between capacity and collision. The chapter starts with a general approach to

address the above research question, then a brief description of the ATN gener-

ation process followed by an evolutionary method for generating traffic scenarios

for airspace collision risk estimation. Finally, the experimental setup for testing

and evaluating the proposed methodology is presented.
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7.1 Introduction

An air transportation network (ATN) is one of the most important components

of the world transportation systems. In the near future, the ATN is expected

to handle the increasingly heavy demand on air traffic. Significant research ef-

forts are continuing to increase the capacity and safety of an ATN. Ongoing ef-

forts to increase capacity in various ways are numerous and include SESAR [98],

NextGen [184]) and procedures (dynamic sectorisation [215] and automated sepa-

ration [152])).
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Figure 7.1: Interactions and constraints of airport and an airspace network in
an ATN

In an ATN, it has been considered that the airspace network is relatively uncon-

strained and the airport network is the main bottleneck t[76, 219]. The capacity
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of the airport network can be increased by adding more runways or by utilising

the regional airports around a countrys major airports in a hub-spoke manner.

While the airspace capacity can be increased through the AAC [137] and AFM

[221], the relationship between airport network capacity and airspace safety in

an ATN is not fully understood [103, 229]. The interactions between these two

networks, which are created by actual flow between them, plays an important role

for an ATN’s actual capacity estimation. Figure 7.1 shows a hypothetical rep-

resentation of an airport and an airspace network and the interactions between

them. Intuitively, as the aircraft density in a given volume of airspace, or even in a

whole ATN, increases, without a change in control procedures, system safety will

degrade as a result of more closely spaced operations [225, 229]. Therefore, it is im-

perative to understand the relationship between capacity and safety in an ATN.

So far, the relationship between the airport network capacity and the airspace

safety of an air transportation network has not been determined. A very limited

body of literature exists on the safety-capacity relationship in an ATN, most of

which analyse the relationship between individual elements or components of an

ATN [103, 138, 225, 229]. Among the relevant literature, Bojis et al. [225] in-

vestigated the trade-off between the collision-risk capacity of an en-route corridor,

Haynie [103] studied the relationship between capacity and safety in near-terminal

airspace for guiding the adoption of information technology and Kopardekar et al.

investigated the sector capacity and complexity.

One way of expressing this relationship is by safety-capacity curves [229], with dif-

ferent possible relationships shown in Figure 7.2. Identifying and understanding

such a relationship between capacity and safety is vital when trying to improve

the ATN so that capacity can be increased at the best cost, while maintaining

or improving airspace safety. In this chapter, I propose a framework for inte-

grating airport and airspace networks for an ATN and develop a methodology for

their interactions to analyse the relationship between airport network capacity and
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Figure 7.2: Hypothetical safety-capacity relationship curves

airspace collision risk.

7.2 Approach

The proposed approach for analysing the capacity-collision risk relationship for

an ATN is radically different from systemic safety assessment [212] and capacity

estimation [66, 91] methods, which, traditionally, have been investigated sepa-

rately. In this thesis, I combine these methods to understand their interactions.

For the given ATN, I define its underlying airport and airspace networks. Its

capacity’s upper bound is estimated from the airport network using the capacity

estimation model described in Chapter 4, which I have called the flow capacity

estimation module in Figure 7.3, in which I have considered the airlines prefer-

ence and the environmental impact. The output of the flow capacity estimation

provides hourly flow densities (flight movements per hour) and a traffic schedule

consisting of scheduled departure and arrival times for each flight. The output of
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Figure 7.3: Conceptual approach for analysing capacity-collision risk relation-
ship in an ATN

the flow capacity estimation module is then converted into traffic scenarios by the

traffic scenario generation module. To estimate the collision risk, systematic plan-

ning is required to ensure that the given traffic scenarios are feasible and conflict

free.

To generate traffic scenario(s) from a given traffic schedule is highly challenging.

The large search space (possibilities) of traffic characteristics and non-linear inter-

actions among collision risk parameters make traditional search methods such as

Monte Carlo unsuitable for this kind of problem. Nature-inspired global optimisa-

tion techniques such as evolutionary computation (EC) [224] have emerged as key

approaches for understanding and solving air transportation problems. I apply a

differential evolution (DE) optimisation technique [187] to convert the output of

the flow capacity estimation module to a traffic scenario, which I simulate in the

high-fidelity air traffic simulator ATOMS [11]. The collision risk model is inte-

grated in ATOMS to estimate the overall collision risk for a given traffic scenario

and then the capacity-safety relationship curves for different traffic densities are

generated and analysed. Figure 7.3 illustrates the formulation of the conceptual
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Figure 7.4: Example of Delaunay triangulation network

problem, in which the objective is to integrate and interact the two networks to

gain an understanding of the relationship between capacity and collision risk.

7.3 Air Transportation Network Model

An ATN is a composite network of airports and waypoints, which links airports

in different areas through a series of crossing waypoints and transmits air traffic

flow, and is modelled as a time space network [108, 129, 214]. In the space domain,

the height is ignored and the ATN is embedded in a two-dimensional Euclidean

space, i.e. the nodes (airports and waypoints) are associated with a stationary

geographical location [129]. Since the objective of this thesis is to investigate the

relationship between two major sub-networks of an ATN, I model it accordingly.

7.3.1 Network Generation

An ATN can be generated in two different ways: (i) generate a network with

two different types of node, airports and waypoints; and (ii) generate the airport

network and airspace network separately and then combine them. Both of the

approaches will result in a similar ATN. As a result, I have considered the first
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Figure 7.5: Random airport network configuration generated from Delaunay
triangulation point set (Q)

approach only. To generate this approach, I extend the technique developed by

Mehadhebi [153], which consists of the following steps.

• Firstly, a Delaunay triangulation network of Q points is created in a given

area. In mathematics and computational geometry, a Delaunay triangulation

for a set (Q) of points in a plane is a triangulation (DT (Q)) such that no

point in Q is inside the circumference of any triangle in DT (Q). I apply

the Paul Bourke Delaunay triangulation algorithm [39] to create Q in a two-

dimensional plane with no overlapping connections among the points, each

of which is an associated value of its latitude and longitude, to define its

geographical location. Figure 7.5 shows a Delaunay triangulation network

of Q = 500 points in an area of 200 square nautical miles.

• As in a Delaunay triangulation network, some of the points tend to be very

close to each other, I merge all the intersecting points that are too close.

Although this will, in some way, increase the overall route distances, its

benefit is reduced complexity of the ATN.

• As I define an ATN as a combination of an airport network and airspace

network (network of waypoints), the next step is to create the underlying

airport network. Let V be a set of airports chosen randomly from Q (V ⊂ Q)
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with the rest of the points (QV ) defined as waypoints. The connections

among the airports (V ) are developed using complex network generation

models (random graphs [72] and small-world networks [218]) to create the

topology of the airport network. In it, the connected airports are separated

by at least 100 nautical miles so that a flight spends at least 70% of its

travel time in the cruise phase. Figure 7.5 presents an example of an airport

network with 20 airports.

• Finally, the ATN is constructed by combining the shortest paths among

the directly connected airports along the Delaunay triangulation network.

Letting P be the set of shortest paths for all the connected airports in the

airport network, the ATN is defined as:

ATN =
∪
pi∈P

pi (7.1)

Figure 7.6 shows an ATN created from the Delaunay triangulation and air-

port network described in the above steps.
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Figure 7.6: ATN of 20 airports (filled squares (�) represents present airports
and stearics (∗) waypoints)
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7.4 Methodology

Having generated the ATN, the methodology for analysing the relationship be-

tween the airport network capacity and airspace collision risk involves the following

three key stages.
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Figure 7.7: Evolutionary framework for analysing capacity-collision risk rela-
tionship in ATN

1. Network Capacity Estimation: The capacity of an ATN is defined as the

maximum traffic that can be accommodated by its airport network subject

to resource constraints, such as fleet mix and node/link capacity, which de-

termines the limit of feasible flow density an air transportation network can
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accommodate. The density level is controlled by the wake-vortex separa-

tion minima, with an increase in the wake-vortex separation among aircraft

during landing and take-off resulting in a decrease in the hourly flow in the

ATN.

2. Traffic Scenario Generation with Defined Flow Density: In this

stage, given the flow density, a complete traffic scenario is generated in a way

that minimises the overall collision risk using evolutionary optimisation. In

this chapter, I have used the terms flow density and capacity interchangeably.

3. Collision Risk Estimation: The given traffic scenario is simulated in

ATOMS to calculate the total number of flight hours and the probability

of collision for each proximate pair of aircraft and, integrated with the Hsu

model [110], the overall collision risk is estimated.

Figure 7.7 illustrates the process for analysing the trade-off between the flow ca-

pacity and collision risk of a given ATN. It begins with a very low flow density and,

once a traffic scenario is generated, the overall collision risk for that scenario is

estimated. Then, the flow density is increased and the process continues until the

flow level reaches the maximum capacity bound. Once all the possible scenarios

for different flow levels are evaluated, the repository data is subsequently analysed

to reveal the trade-off.

7.4.1 Network Capacity Estimation

Estimating the capacity of an airport network system, I use the mathematical

formulation and heuristic solution for estimating the capacity of a given airport

considering different fleet mixes and travel times proposed in Chapter 4 and the

time-based separation minima given in Table 4.1 to avoid wake-vortex turbulence.

I also introduce some extra separation (es) between two consecutive aircraft, the
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value of which will serve as a control parameter for either decreasing or increasing

the maximum hourly flow in the network and, when es = 0, the output from the

capacity estimation module will provide the upper bound of the capacity (maxi-

mum attainable flow). The solution of the capacity estimation module will provide

a list of flights and their scheduled departure and arrival times that I call a traffic

schedule, which is then converted into a traffic scenario by assigning appropriate

flight levels, speeds in different phases using a DE optimisation method and other

parameters for the aircraft using ATOMS.

7.4.2 Traffic Scenario Generation

Generating traffic scenarios using simple rules or hand scripting results in a few

alternatives from which to derive conclusions. In this chapter, I design a method

that combines an airport network capacity estimation model (developed in Chapter

4) and an evolutionary framework to generate traffic scenarios. For a given traffic

schedule, a complete traffic scenario must contain the tracks or air routes, feasible

flight levels and velocities and rates of climb and descent of different flight phases

for all flights. Also, since the ATN is simultaneously shared by many aircraft, the

path of each and every aircraft needs to be conflict free. Therefore, converting the

output from the airport networks capacity module (traffic schedule) to a traffic

scenario is a complex task, to handle which I develop the following evolutionary

optimisation framework.

7.4.2.1 Evolutionary Framework Design

Given an ATN and the schedule of departures and arrivals of N flights and their

routes, the problem of generating a traffic scenario involves determining the flight

path levels ofN flights that minimise the overall mid-air collision risk. In this work,

I assign the shortest path from the origin to the destination in the ATN as the flight
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path for each flight. If there is more than one shortest path, one is chosen randomly

and the flight levels are evolved using a DE algorithm. The proposed evolutionary

methodology for evolving an optimal flight level for each flight is illustrated in

Figure 7.7 in which light green depicts the airport networks capacity estimations,

which generate a traffic schedule; white denotes the air traffic simulation, which

evaluates a given set of traffic data for collision risk in an airspace; and blue depicts

the EC, which applies a DE [187] process to evolve optimal flight levels.

The DE process begins by defining the upper and lower bounds of the flight levels

for each flight. It then undergoes a random initialisation (within the bounds) of a

population of solutions representing a set of vectors, where the size of each vector

is equal to the number of aircraft defined by the traffic schedule. Each vector is

considered a traffic scenario, which is then simulated in ATOMS for its collision

risk estimation, where the speeds of the flights in different stages are determined.

After an initial evaluation, these vectors undergo mutation and recombination to

generate two vectors, the target and trial vectors, which compete with each other.

The vector that minimises the collision risk for the given traffic data is admitted

to the next generation and the process continues until the maximum number of

generations is reached. Then, the best-performing solutions (vectors) are selected

from the final population.
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Figure 7.8: Chromosome design with encoded flight level (FL) for each flight
in a given traffic scenario
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Chromosome Representation: Since the objective of generating a traffic sce-

nario is to evolve the right flight level for each and every flight for a given flight

schedule, the flight level is encoded in a chromosome. Figure 7.8 illustrates a set

of chromosomes that constitute the evolutionary population in which each chro-

mosome represents a set of flight levels to be applied to its corresponding flight;

for example, if there are N flights, there will be N flight levels in a given chromo-

some. In this research, I do not consider semi-circular rules of flying and I choose

only flight levels FL290 (29000ft) to FL-390 (39000ft), which are encoded as real

values from 2.9 to 3.9 with a precession of 1, from which the actual flight levels

are calculated using the equation FL = (encoded value)× 10000ft.

Fitness Function: The role of a fitness function in an evolutionary algorithm

(EA) is to guide the search process by providing feedback on the quality of a

solution represented by a chromosome in the population. Since this quality in our

case depends on the estimated collision risk, I define the fitness as:

Fitness = min(collision risk) (7.2)

Differential Evolution: To minimise the collision risk in a traffic scenario, I

use a DE optimisation process, which begins with a population of M candidate

solutions represented as x⃗i
G=k =

[
xi
1,k, x

i
2,k, ..., X

i
N,k

]
, i = 1, ...,M , where the N

index denotes the dimensions of an individual and G the generation to which the

population belongs.

In the initialisation phase, I define the upper and lower bounds for each chro-

mosome value L ≤ xi
j,G=k ≤ U,∀j, and set them to 2.90 and 3.90, respectively.

I then randomly select the initial chromosome values uniformly in/from the in-

tervals [L,U ]. After initialisation, the effective evolution of DE depends on the

manipulation and efficiency of three main operators, mutation, reproduction and

selection. The DE algorithm applied in this research is illustrated in Algorithm 3.
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Algorithm 3 Traffic Scenario Generation

Let G denote a generation, P a population of size M and x⃗j
G=k the j

th individual
of dimension N in population P in generation k. cr is the crossover probability.
Input: N,M > 4, F ∈ (0, 1), cr ∈ (0, 1)
Initialize the population P
Each chromosome is a real valued vector
k=1
while (the stopping criterion is not satisfied or until maximum generation is
reached) do

j=0
for all j ≤M do

Randomly select r1, r2, r3 ∈ (1, ...,M), j ̸= r1 ̸= r2 ̸= r3
for all l ≤ N do

if (random[0, 1] < cr) then
x′
l = xr3

l,G=k−1 + F × (xr1
l,G=k−1 − xr2

l,G=k−1)
else

x′
l = xj

l,G=k−1

f(x⃗′)=evaluate (x⃗′)
f(x⃗j

G=k−1)=evaluate(x⃗j
G=k−1)

if f(x⃗′) ≤ f(x⃗j
G=k−1) then

x⃗j
G=k = x⃗′

else
x⃗j
G=k = x⃗j

G=k−1

k=k+1
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Figure 7.9: Layout of test ATNs

7.5 Experimental Setup

In the experiments, I control the flow density in the network by changing the

extra separation parameter (es), starting with a low flow density of es=20 and
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Table 7.1: Diameters of cylinder (in metres) for different proximity pairs

Leading
Aircraft

Trailing aircraft

L M H

L 140m 150m 180m

M 150m 192m 192m

H 180m 192m 220m

then gradually decreasing it by 1. For each es value, I generate 20 different traf-

fic scenarios, each with the following parameter settings, using the evolutionary

framework with different seeds and then estimate the collision risk.

• Test Network: In order to assess the effectiveness of the proposed airport

network capacity estimation model, I perform experiments on two different

types of test network: (i) ATN-I, in which the airports and their connec-

tivities are chosen randomly; and (ii) ATN-II, in which the locations of the

airports are placed on the circumference of a circle and their connectivities

are created using the small-world model [218]. Both of these networks consist

of 20 airports, as shown in Figure 7.9, with the difference between them as

their airport network topologies, as ATN-I is considered a random network

and ATN-II a small-world network.

• Collision Risk Parameters: The Hsu collision risk models parameters are set

as follows: vertical overlap probability Pz(0) = 0.55, vertical speed when in

horizontal flight |ż| = 1.5m/s and aircraft position update time Tmin = 0.16

minutes. The diameter of the aircraft cylinder is set based on the aircraft

type of the proximity pair, as shown in Table 7.1, whereas, the height of the

cylinder is set toλz = 55m for all cases.

• Evolution Parameters: In our experiments, I use a population of 50 individu-

als and a DE mutation factor (F ) of 0.40. I conduct a series of experiments to

determine the maximum number of generations for stopping and the proper
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(b) Convergence of collision risk (discretisation after every 50 generations)

Figure 7.10: Selection of evolution parameter (maximum generation and
crossover rate)

crossover rate by running the evolution for up to 500 generations using dif-

ferent crossover rates. Figure 7.10 shows the best fitness values (minimum

collision risks) of the population over generations, from which it is clear that,

after 350 generations, the best individual value does not improve in all cases.
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Therefore, as I can say that 400 generations is sufficient to converge the evo-

lution process, this is set as the stopping criterion for the DE process in the

subsequent analysis.
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Figure 7.11: Best fitness values after final generation with different crossover
rates (cr)

In order to determine a proper crossover rate, I perform experiments with

different rates. Figure 7.11 shows the best fitness values after the final gen-

eration for different crossover rates (cr) ranging from 0.40 to 0.95 with an

increment of 0.05 after 500 generations, which indicates that the best fitness

value is the lowest for a crossover rate of 0.80. Therefore, I set the crossover

rate for DE to 0.80 for the subsequent analysis.

7.6 Results and Analysis

I first present the characteristics of the test ARNs. In the test ATN-I, the under-

lying airport network has a uniform degree distribution, which is shown in Table

7.2. In ATN-II, the small-world topology of the airport network is created with a
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Table 7.2: Connectively of the airports in ATN-I.

Node
Degree

Node
Degree

In Out Total In Out Total

0 2 2 4 10 2 4 6

1 1 3 4 11 5 6 11

2 3 4 7 12 2 5 7

3 4 2 6 13 2 3 5

4 7 4 11 14 4 0 4

5 5 2 7 15 1 2 3

6 1 3 4 16 2 5 7

7 4 3 7 17 2 0 2

8 3 1 4 18 4 5 9

9 5 4 9 19 1 2 3

staring ring lattice in which every node is connected to its first K = 4 (K/2 on

either side), then it undergoes a random rewiring with a probability of 0.05.

Apart from the connectivity pattern, I also present the distance in nautical miles

among the connected airports and number of waypoints along the shortest path

between them for ATN-I and ATN-II in Table 7.3 and Table 7.4, respectively. From

Tables 7.3 and 7.4, it is clear that the minimum distances among the airport’s links

are 100.51nm and 101.59 for ATN-I and ATN-II, respectively.

Table 7.3: ATN-I link’s distance and number of way points

Links Distance
(nm)

WaypointsLinks Distance
(nm)

WaypointsLinks Distance
(nm)

WaypointsLinks Distance
(nm)

Waypoints

0 , 14 341.43 6 5 , 2 154.92 3 10 , 7 537.71 8 13 , 11 176.72 3

0 , 16 225.46 3 5 , 11 565.58 7 10 , 8 417.47 4 15 , 4 100.51 2

1 , 0 628.55 6 6 , 7 333.96 5 11 , 0 323.68 4 15 , 9 219.56 5

1 , 4 547.41 7 6 , 11 503.38 6 11 , 4 405.45 5 16 , 3 694.39 10

1 , 18 702.30 8 6 , 18 552.33 7 11 , 5 565.58 7 16 , 4 367.65 4

2 , 7 334.18 6 7 , 5 198.86 4 11 , 10 325.18 3 16 , 6 439.81 6

2 , 8 583.37 9 7 , 12 203.75 3 11 , 14 255.60 5 16 , 14 360.83 5

2 , 9 518.58 9 7 , 14 184.96 3 11 , 18 103.41 2 16 , 17 587.00 8

2 , 13 511.75 8 8 , 15 257.21 4 12 , 1 297.97 4 18 , 4 457.41 5

3 , 5 285.63 4 9 , 2 518.58 9 12 , 3 298.52 4 18 , 5 617.53 7

3 , 13 415.10 7 9 , 3 646.48 7 12 , 9 462.20 5 18 , 7 483.68 6

4 , 8 344.00 4 9 , 4 240.89 5 12 , 16 434.96 5 18 , 11 103.41 2

4 , 11 405.45 5 9 , 10 167.77 4 12 , 19 534.46 7 18 , 12 404.86 6

4 , 17 293.52 6 10 , 2 660.91 10 13 , 4 286.76 3 19 , 3 687.93 10

4 , 18 457.41 5 10 , 5 622.44 12 13 , 9 300.27 4 19 , 9 140.89 3
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Table 7.4: ATN-II link’s distance and number of way points

Links Distance
(nm)

WaypointsLinks Distance
(nm)

WaypointsLinks Distance
(nm)

WaypointsLinks Distance
(nm)

Waypoints

0 , 3 293.89 7 5 , 8 299.67 4 11 , 14 289.68 5 17 , 0 308.87 8

0 , 11 658.06 10 6 , 8 197.95 2 12 , 14 202.78 4 17 , 19 213.04 4

0 , 16 399.68 9 6 , 9 290.31 2 12 , 15 294.82 4 18 , 0 205.66 4

0 , 18 205.66 4 6 , 16 660.93 14 13 , 3 706.53 13 18 , 1 313.29 5

1 , 3 198.50 4 7 , 9 197.65 2 13 , 15 197.52 2 19 , 1 208.00 4

1 , 4 297.23 5 7 , 10 294.85 3 13 , 16 301.20 6 19 , 2 296.00 7

2 , 4 208.28 3 8 , 10 198.63 3 14 , 16 199.54 2

2 , 5 327.82 5 8 , 11 299.57 5 14 , 17 293.17 4

2 , 9 595.49 11 9 , 2 595.49 11 15 , 17 197.73 4

3 , 5 216.73 4 9 , 11 202.15 5 15 , 18 296.33 5

3 , 6 317.29 5 9 , 12 307.30 6 16 , 0 399.68 9

3 , 13 706.53 13 10 , 11 101.59 3 16 , 6 660.93 14

4 , 6 209.94 4 10 , 12 206.74 4 16 , 14 199.54 2

4 , 7 308.81 5 11 , 0 658.06 10 16 , 18 198.25 4

5 , 7 200.74 4 11 , 10 101.59 3 16 , 19 303.84 5

In each ATN, the traffic schedule consists of light, medium and heavy aircraft

generated using the capacity estimation module and then converted into a traf-

fic scenario by the evolutionary optimisation method. Figure 7.12 presents the

maximum attainable flows in the test ARNs over a period of 24 hours.

As, for a given flow density, there will be many solutions because of the combina-

tion of light, medium and heavy aircraft, I generate 20 traffic scenarios in every

case. In our experiments, I control the flow density by the extra separation pa-

rameter (es). Tables 7.5 and 7.6 summarise the average hourly traffic densities

(hourly flight movements) for test ATN-I and ATN-II, respectively. Their maxi-

mum hourly traffic flows (capacity) are found to be identical, while the small-world

configuration (ATN-II) can accommodate more traffic than its random counterpart

(ATN-I).

For a given flow density, the output from the capacity estimation module is con-

verted to a traffic scenario by a DE process, with the purpose of assigning flight

levels for each that minimise the overall collision risk, while the speed and other

parameters are set by ATOMS. Figure 7.13 shows the percentages of usage of each

flight level averaged over 20 scenarios determined by calculating the total number

Murad Hossain July 2016



Chapter 7. An Integrated Air Transportation Network for Capacity-Collision
Risk Relationship 212

 

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12

F
li

g
h

t 
D

e
n

si
ty

 

Time (hours) 

Light Medium Heavy

(a) Test ATN-I

 

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12

F
li

g
h

t 
D

e
n

si
ty

 

Time (hours) 

Light Medium Heavy

(b) Test ATN-II

Figure 7.12: Hourly flow of test ATNs for es = 0)

of flight flows through a scenario divided by the total number of flights in it. It is

clear that all of the flight levels are almost equally utilised except for some traffic

scenarios with es = 18 in which flight levels FL290 and FL390 are the most used

in ATN-I and ATN-II, respectively.

Figure 7.14 shows the collision risk of each test ATN as a function of the hourly

flow density. As the number of hourly flight movements increases, all collision

risks increase almost linearly for both cases, with the average collision risk always
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Table 7.5: Hourly flight movements in test ATN I

es Density L M H

1 325.10 ± 6.04 131.00 ± 7.25 115.80 ± 6.79 109.55 ± 6.45

2 246.50 ± 3.99 95.00 ± 5.24 88.15 ± 5.91 87.10 ± 7.19

4 166.65 ± 3.13 64.80 ± 4.44 62.90 ± 4.81 61.55 ± 3.85

6 125.10 ± 3.18 50.60 ± 3.22 47.55 ± 3.83 46.85 ± 2.70

8 100.20 ± 3.09 40.80 ± 3.64 38.00 ± 3.31 38.05 ± 3.12

10 83.70 ± 2.30 34.00 ± 2.75 32.30 ± 2.99 32.95 ± 3.33

12 71.65 ± 2.81 30.30 ± 2.54 28.00 ± 3.21 27.05 ± 1.79

14 62.70 ± 2.72 26.95 ± 2.31 23.65 ± 3.00 25.40 ± 2.54

16 54.60 ± 2.16 24.25 ± 2.73 21.50 ± 2.26 21.00 ± 2.66

18 50.05 ± 1.85 22.50 ± 1.99 20.20 ± 2.88 19.65 ± 2.50

20 44.90 ± 1.68 20.40 ± 2.56 18.10 ± 2.13 16.90 ± 2.05

Table 7.6: Hourly flight movements in test ATN II

es Density L M H

1 348.00 ± 3.67 135.70 ± 7.43 125.00 ± 6.62 121.80 ± 6.09

2 265.45 ± 3.99 102.45 ± 6.00 99.65 ± 5.43 93.55 ± 3.73

4 177.50 ± 2.96 70.05 ± 3.32 67.70 ± 4.24 65.35 ± 3.92

6 134.90 ± 2.95 53.50 ± 3.55 53.05 ± 5.41 50.85 ± 4.06

8 108.65 ± 2.37 47.90 ± 4.47 43.10 ± 4.12 42.80 ± 3.78

10 90.30 ± 1.89 38.70 ± 4.35 34.80 ± 2.44 36.15 ± 4.26

12 78.70 ± 2.03 34.30 ± 3.80 31.70 ± 3.63 31.50 ± 3.07

14 69.10 ± 1.45 31.35 ± 3.48 28.30 ± 3.16 29.35 ± 2.92

16 61.20 ± 1.15 27.60 ± 3.17 24.80 ± 2.12 25.85 ± 2.32

18 54.90 ± 1.80 25.55 ± 3.35 22.75 ± 3.11 22.15 ± 2.35

20 50.45 ± 1.54 24.05 ± 2.74 20.75 ± 2.88 20.45 ± 2.28

more for ATN-I than for ATN-II. In both cases, the collision risk hits the TLS

(1.5 × 10−8) [112] as the hourly flight movements among the airports increase,

which I call the critical flow density, with those of ATN-I and ATN-II 140 and 120

(hourly flight movements), respectively.
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Figure 7.13: Percentages of usage of different flight levels
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Figure 7.14: Capacity-Collision risk relationship

7.7 Chapter Summary

With the aim of increasing the capacity and enhancing the safety of air trans-

portation, this chapter proposed a framework for integrating an airport and an

airspace network to analyse the trade-off between capacity and safety. The pro-

posed methodology was tested on two different ATN topologies random (ATN-I)

and small-world (ATN-II) with the same number of airports.
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The experimental results indicate that, if the upper airspace TLS is relaxed, the

maximum hourly flow (capacity) of the small-world configuration (ATN-II) can

accommodate more traffic than the random one (ATN-I). In both cases, as the

flow density increased in the airport network, the overall airspaces collision risk

increased linearly and crossed the TLS because, although the airport network sys-

tem could handle more traffic, the safety barrier of the upper airspace served as

a bottleneck in terms of the overall capacity of the air traffic network. Therefore,

estimating the true capacity of an air transportation network system without con-

sidering safety is unrealistic as its maximum capacity depends on the interactions

of its underlying airport network and upper airspace waypoints network.

It was found that, in general, the capacitys upper bound depends not only on

the connectivity among airports and their individual performances but also on the

configuration of waypoints and mid-air interactions among flights. I demonstrated

that, as the hourly flow in the network increased after a certain level, the overall

collision risk crossed the TLS, which I defined as the critical flow density for the

given ATN. However, as the location of the critical point depends on the particular

network configuration, it may vary from network to network. The critical flow

density of the random topology (ATN-I) was found to be larger than its small-

world counterpart, while, in terms of airspace safety, its collision risk was smaller.

These results may facilitate decision makers in gaining insights into how capacity

and safety interact with each other, discovering system bottlenecks and using such

knowledge to improve an ATNs performance and sustainability.
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Chapter 8

Conclusion

This chapter summarises the research carried out in the thesis, discusses the find-

ings and conclusions and, finally, indicates possible future research work.

8.1 Summary of Results

Estimating the capacity of an air transportation network is generally known to be

NP-hard and one of the most difficult problems in the air transportation domain.

The capacity of an air transportation network has generally been measured at

the levels of its individual elements, such as links (sector capacity and airspace

complexity) and nodes (terminals and runway throughput), which obviously do

not constitute its overall system-level capacity. In this thesis, I developed a model

and methodology for solving the ATN’s capacity estimation problem. One of

the major application of the proposed methodology for transportation

planning and management because it addresses the question of whether

or not the system has adequate capacity to handle continuing economic

surge and traffic congestion. Apart from that, the airport network ca-

pacity estimation will definitely help to investigate the reliability and
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resilience of the network, especially when it undergoes some distur-

bances.

I introduced a multi-commodity-based flow estimation model for estimating the

capacity of an airport network, in which I modelled an airport network as a graph

with links created based on flight connectivity and introduced heterogeneous travel

entities (different aircraft types) and travel times for each link. One of the impor-

tant features of the proposed model is that it does not require advanced knowledge

of the local capacities of the nodes or links, which is a major requirement for most

of the existing capacity estimation models. Also, I developed a heuristic algorithm

for solving the airport network capacity model in which all of the flow constraints

of air traffic are maintained. The proposed model and algorithm were applied to

different test networks, with the numerical results revealing that the model is not

only capable of realistically estimating the network’s capacity with different levels

of aircraft mix but also of identifying individual flows at different links and delays

for each aircraft. In addition, the proposed model provides details of the flow (the

actual number of each type of aircraft, that is, light, medium and heavy) and a

flight schedule (the departure and arrival times of each flight). The experimen-

tal results demonstrate that the flow capacity of a small-world airport network is

greater than that of its random and scale-free counterparts and, surprisingly, it

was found that most of the real-world airport networks are small-world.

Apart from the airport network, I also analysed airspace as a network and related

its network features to estimate collision risk. For that purpose, I modelled an

airspace using two different techniques – a direct route model (which assumes a

great circle route between entry and exit waypoints) and an intermediate waypoint

model (which uses airway-waypoint routes between entry and exit waypoints). The

experimental results demonstrated that the intermediate waypoint model leads to

a significant increase in the accuracy of collision risk estimates. The results also

showed significant correlations between the estimated collision risk and specific
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network complexity measures. From an operational perspective, this means that,

in a highly structured airspace, the collision risk may be underestimated when

using the widely accepted direct route model.

With the increasing traffic demand, managing the collision risk of an airspace net-

work bellow the target level of safety (TLS) involves key changes for air service

providers. To manage the collision risk of a given airspace network, I applied the

ICAO’s strategic lateral offset procedures (SLOP) in such a way as to minimise its

overall collision risk. I proposed an evolutionary method for finding the optimal

strategic lateral offset for the airways of an airspace network to minimise the col-

lision risk. The experimental results obtained from real-traffic data of Bahrain’s

upper airspace (FL290-FL410) showed that, by assigning the right offset to the

airways, the overall collision risk can be significantly reduced. In addition, the

airway’s specific lateral offsets were correlated with airway-traffic features using

multiple regression models and it was found that the numbers of flights and cross-

ings in an airway are the key features affecting the optimal lateral offset. This

approach establishes a generic mapping that can suggest the optimal lateral off-

sets that mitigate the collision risk for a given airspace based on airway-traffic

features.

In this thesis, I developed a methodology for identifying the relationship between

the flow density and mid-air collision risk for a given ATN. To estimate the collision

risk of an airspace network, given a demand or flow density, I applied evolutionary

scenario-generation techniques that can be executed in an air traffic simulator. A

high-fidelity collision risk model (Hsu) integrated with the simulator (ATOMS)

enabled me to include details of flight dimensions and operational status, such as

speed, in the collision risk estimation. From the experimental study, it was found

that the capacity upper bound depends not only on the connectivity among air-

ports and their individual performances but also on the configuration of waypoints

and mid-air interactions among flights. I demonstrated that, as the hourly flow in
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the airport network increases, after a certain level, the overall collision risk crosses

the TLS, which I defined as the critical flow density for the given ATN. However,

as the location of the critical point may depend on the network’s configuration, it

may vary from network to network. In future work, I will examine the relationship

between an ATN configuration and critical flow density.

8.1.1 Key Findings

• A complex network-based analysis reveals that the Australian airport net-

work consisted of small-world characteristics like the world airport network

and the airport networks of other countries/regions.

• In an airport network, the flow capacity depends on the configuration of the

network. A network with small-world topology can accommodate the largest

amount of traffic compared to random and scale-free networks with the same

number of nodes.

• Modelling and analysis of an airspace using complex network tools reveal

that the collision risk of an airspace network depends on the underlying net-

work modelling and its network structure. An intermediate-waypoints-based

model leads to a significant increase in collision risk estimates, specifically for

airspace networks with higher average degree and higher closeness centrality

measures.

• An airspace collision risk can be managed by applying airway-specific opti-

mal lateral offset. The experimental results of Bahrain airspace show that

assigning an optimal offset within a range of 0 to 4 nautical miles can reduce

the collision risk from 2.952 × 10−7 to 1.83 × 10−7, which is almost a 44%

improvement.
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• In an ATN, the capacity’s upper bound depends not only on the airport

network and individual performances but also on the airspace network due

to safety limits. From the simulation results, it was found that, in an ATN,

the overall collision risk of an airspace increase almost linearly with the in-

crease of traffic density in the airport network. If tactical flight management

operations are ignored, after a certain, critical traffic density collision risk

crossed the TLS. The value of the critical traffic density depends on the ATN

configuration. The critical flow density of a random topology is found to be

larger than its small-world counterparts.

8.2 Future Work

One of the limitations, as mentioned in Chapter 4, is that the proposed model for

airport network capacity estimation is limited to airports with only one runway.

However, I believe that a local optimisation or runway slot assignment module

could be easily integrated into the proposed model to extend it for multiple run-

ways.

In Chapter 4, a method for estimating the flow capacity of an air traffic network

using a hill-climbing optimisation technique was proposed. However, a more ver-

satile optimisation technique, such as an evolutionary algorithm, could be used to

solve the problem. Furthermore, adding another dimension to the capacity prob-

lem, such as minimising the overall delay, would be a challenge to investigate. The

solution of such a multi-objective problem would provide a set of Pareto optimal

solutions, the beauty of which would be that different solutions could be employed

at different operational times; for example, during the night when demand is usu-

ally lower than during the day, the priority could shift from maximising the flow,

which is required during peak hours, to minimising the delay. In addition, the

proposed airport network capacity estimation methodology in Chapter 4 can also
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be extended to estimate the capacity of the airspace network and I consider this

to be a potential future work.

The evolutionary methodology for evolving the lateral offset could be extended

in an advanced air traffic management concept, whereby starting a turn to avoid

a bad-weather region would also minimise the collision risk. Airborne weather

avoidance, weather patterns and an airways configuration could be encoded into

the chromosome-based data structure and evolved using an evolutionary algorithm

to determine the optimal solution that would reduce the collision risk. This pro-

cess could also be used to generate 4D trajectories in a given airways network to

minimise the collision risk or other performance metrics such as delay.

In the final technical chapter (Chapter 7), a methodology for identifying the re-

lationship between the airport network capacity and mid-air collision risk was

proposed. Although this study does not consider different tactical flight manage-

ment operations, such as increasing or decreasing speed, climbing or descending,

etc., how they may impact differently on the collision risk and capacity-safety

relationship is an interesting question, the answering of which would definitely

improve the relationship between the flow capacity and collision risk and help to

identify safe operations for airspaces with different traffic densities.
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Figure 9.1: A one-to-one comparison of topological properties of Barhains
DRN and IWN
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Figure 9.2: A one-to-one comparison of topological properties of Egypts DRN
and IWN
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Figure 9.3: A one-to-one comparison of topological properties of Irans DRN
and IWN
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Figure 9.4: A one-to-one comparison of topological properties of Iraqs DRN
and IWN
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Figure 9.5: A one-to-one comparison of topological properties of Jordans DRN
and IWN
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Figure 9.6: A one-to-one comparison of topological properties of Kuwaits
DRN and IWN

Murad Hossain July 2016



Appendix. Appendix A 229

Figure 9.7: A one-to-one comparison of topological properties of Saudis DRN
and IWN
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Figure 9.8: A one-to-one comparison of topological properties of Syrias DRN
and IWN
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Figure 9.9: A one-to-one comparison of topological properties of UAEs DRN
and IWN
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Figure 9.10: A one-to-one comparison of topological properties of Yemens
DRN and IWN
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Randomly select an un-initialize commodity

k = rand(UK);

i = sk; j = dk

 }{};{

;0)(  :initialize   

KUKIK

Kkkui

=F=

Î"=

Does all k in K being initialized?

If( ui(k) < ri(k) & uj(k) < rj(k) )

Let, f is an aircraft;

Randomly select the type of f as

wvf= rand(L,M,H)

select the next available slot l from SB(i,t)

Find out the preceding (fp) and succeeding flight (fs) of slot l at node i

Let, lp = slot index of fp and ls = slot index of fs

If( (lp-l) ≥ S[fp,f,op(fp), op(f)] & (l-ls) ≥ S[f,fs,op(f),op(fs)])

Find out the best available slot q for landing at j

And calculate the arrival delay of f

If( delay(f) ≤ 15)

TD(f) = t ×60 + l; TA(f) = TD(f) + tij+ delay(f)

Update: SB(i,t’), SB(j,t’) for all t’ ≥ t

ui(k) = ui(k) + (lp-l); u
j(k) = uj(k) + (l-ls)

Mark commodity k as initialized;

add k in set IK and remove k from set UK

no

yes
Initial Feasible

Solution is

generated and

saved in SBs

yes

no

no

yes

yes

no

If any slot available in SB(i,t)

yes

no

Figure 9.11: Initial feasible solution generation process
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