
Flexible representation for genetic programming : lessons
from natural language processing

Author:
Nguyen, Xuan Hoai

Publication Date:
2004

DOI:
https://doi.org/10.26190/unsworks/18064

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/38750 in https://
unsworks.unsw.edu.au on 2024-05-03

http://dx.doi.org/https://doi.org/10.26190/unsworks/18064
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/38750
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

A Flexible Representation for

Genetic Programming:

Lessons from Natural Language

Processing

MANU E T MENTE

SCIENTIA

A thesis submitted to the

School of Information Technology and Electrical Engineering

University College

University of New South Wales

Australian Defence Force Academy

for the degree of Doctor of Philosophy

By

Nguyen Xuan Hoai

December 2004

c© Copyright 2004 by Nguyen Xuan Hoai

Certificate of Originality

I hereby declare that this submission is my own work and to the best of

my knowledge it contains no material previously published or written by another

person, nor material which to a substantial extent has been accepted for the award

of any other degree or diploma at UNSW or any other educational institution,

except where due acknowledgment is made in the thesis. Any contribution made

to the research by colleagues, with whom I have worked at UNSW or elsewhere,

during my candidature, is fully acknowledged.

I also declare that the intellectual content of this thesis is the product of my

own work, except to the extent that assistance from others in the project’s design

and conception or in style, presentation and linguistic expression is acknowledged.

Nguyen Xuan Hoai

i

Abstract

This thesis principally addresses some problems in genetic programming (GP) and

grammar-guided genetic programming (GGGP) arising from the lack of operators

able to make small and bounded changes on both genotype and phenotype space.

It proposes a new and flexible representation for genetic programming, using

a state-of-the-art formalism from natural language processing, Tree Adjoining

Grammars (TAGs). It demonstrates that the new TAG-based representation

possesses two important properties: non-fixed arity and locality. The former

facilitates the design of new operators, including some which are bio-inspired, and

others able to make small and bounded changes. The latter ensures that bounded

changes in genotype space are reflected in bounded changes in phenotype space.

With these two properties, the thesis shows how some well-known difficulties

in standard GP and GGGP tree-based representations can be solved in the new

representation. These difficulties have been previously attributed to the tree-

based nature of the representations; since TAG representation is also tree-based,

it has enabled a more precise delineation of the causes of the difficulties.

Building on the new representation, a new grammar guided GP system known

as TAG3P has been developed, and shown to be competitive with other GP and

GGGP systems.

A new schema theorem, explaining the behaviour of TAG3P on syntactically

constrained domains, is derived.

Finally, the thesis proposes a new method for understanding performance dif-

ferences between GP representations requiring different ways to bound the search

space, eliminating the effects of the bounds through multi-objective approaches.

ii

Acknowledgments

The first person I would like to thank is my principal supervisor, Dr Robert (Bob)

Ian McKay for introducing me to the field of genetic programming. Bob has been

the ideal mentor that I was looking for. He taught me how to love research and

how not to be a research-alcoholic. His genius has been a constant source of help.

His encouragement and constructive criticism have been the triggers for much of

the research work in this thesis.

I wish also to thank my co-supervisors Dr Daryl Essam and Dr Hussein Aly

Abbass. It is a pleasure and luxury for me to work with such briliant people dur-

ing my candidature. The seemingly never-ending, but always useful, discussions

between us on the matters related to the work presented in this thesis will be in

my mind forever.

I would like to express my gratitude to Professor Jason Daida for sending some

of the figures in his papers on the problem of structural difficulty in GP and for

also allowing me to reproduce them in chapter 8 of this thesis. I must also thank

Dr Zitzler for promptly replying to my questions related to the implementation

of his SPEA2 algorithm.

During my candidature, I have had opportunities to attend a number of top

academic conferences in the field, such as: CEC, EuroGP and GECCO. I wish

to thank the school of IT&EE, University of New South Wales at the Australian

Defence Force Academy, for providing me the necessary funding to go and present

my research papers at those conferences. While attending those conferences, I was

lucky to have had a number of useful and interesting discussions with a number

of researchers in the field. The exchange of ideas and information with them was

iii

iv

very important to my research. For that reason, I wish to thank those people who

were generous to me by giving information, suggestions, and discussions related

to my work and research interests. I would like to mention some of their names

in no particular order: Bill Langdon, Michael O’Neil, Man Leung Wong, Una-

OReilly, Peter Whigham, Vic Ciesielski, Ivan Tanev, Karl Lehre, Sung-Bae Cho,

Andras Kornai. Also, when I asked for people who have done some work related

to grammar-guided genetic programming over the GP mailing list, a number of

respondents stood out and sent me information about their work. Thank you.

During my period of three and a half years at ADFA, I shared my room with

Shan Yin, a nice and briliant Chinese PhD student, whom I share interest in

research, morden chinese history and politics. I wish to thank him for sharing

with me many interesting discussions both related and not related to research.

Hoang Tuan Hao, my former student, must also be thanked for helping me to

draw some of the figures in this thesis.

I am also indebted to Professor Nguyen Xuan Huy at the Vietnamese Insti-

tution of Information Technology and Professor Pham The Long, Vice Rector of

Vietnamese Military Technical Academy for their care, support, and encourage-

ment when I was a university student in Vietnam.

Last, but most important, I would like to dedicate this work to my family,

my wife, Nguyen Thi Thu Huyen for having gone side by side with me through

all the ups and downs in life for the last five years, and to my parents, Nguyen

Tai and Nguyen Thi Lai, for working so hard to bring up their son and for never

losing the hope, that one day, he will become one of the best in his generation.

Contents

Certificate of Originality i

Abstract ii

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Statement of the Thesis . 3

1.3 Outline of Dissertation . 4

2 Related Work 7

2.1 Evolutionary Algorithms . 7

2.2 The Genetic Algorithm . 8

2.3 Genetic Programming . 10

2.3.1 Standard tree-based GP 11

2.3.2 Some Problems with Tree-Based Genetic Programming . . 15

2.3.3 GP with Linear Representation 16

2.4 Grammar Guided Genetic Programming 20

2.4.1 Some Early Systems . 22

2.4.2 Grammar Guided Genetic Programming with Tree-Based

Representation . 23

2.4.3 Grammar-Guided Genetic Programming with Linear Rep-

resentation . 27

v

CONTENTS vi

2.4.4 Some Problems with Grammar-Guided Genetic Programming 30

2.4.5 Applications of Grammar-Guided Genetic Programming . 31

2.5 Conclusion . 31

3 TAG-based Representation 33

3.1 Tree Adjoining Grammars . 34

3.1.1 Definitions of Tree Adjoining Grammars 35

3.1.2 Derivation Trees in Tree Adjoining Grammars 39

3.1.3 Some Properties of TAGs 44

3.2 Tree Adjoining Grammar Based Representation for Genetic Pro-

gramming . 48

3.2.1 Representation in Evolutionary Algorithms 48

3.2.2 TAG-based representation 51

3.2.3 A Working Example of TAG-based representation 54

3.2.4 Why TAG-based representation ? 55

3.3 Conclusion . 57

4 TAG3P System 58

4.1 Introduction . 58

4.2 The Components of a Tree Adjoining Grammar Guided Genetic

Programming (TAG3P) . 59

4.2.1 Program Representation 60

4.2.2 Initialisation Procedure . 62

4.2.3 Fitness Evaluation . 65

4.2.4 Main Genetic Operators 65

4.2.5 Other Operators . 72

4.2.6 Parameters . 76

4.3 Some Information on TAG3P Implementation 77

4.4 Conclusion . 77

CONTENTS vii

5 TAG3P: Preliminary Comparisons 79

5.1 Test Problems . 79

5.1.1 Simple Symbolic Regression Problem 80

5.1.2 6-Multiplexer Problem . 81

5.1.3 Symbolic Integration Problem 81

5.1.4 Symbolic Differentiation Problem 82

5.2 Experiment Setup . 82

5.3 Results and Discussion . 85

5.4 Some further analyses on TAG3P 89

5.5 Conclusion . 94

6 Some Operators 95

6.1 Insertion and Deletion Operators 96

6.1.1 Description of Insertion and Deletion Operators 97

6.1.2 Experiments . 99

6.1.3 Insertion and Deletion Conclusion 113

6.2 Relocation Operator . 113

6.2.1 Description of the Relocation Operator 115

6.2.2 Experiments . 117

6.2.3 Relocation Operator Conclusion 126

6.3 Duplication Operator . 126

6.3.1 Description of Duplication Operator 128

6.3.2 Experiments . 129

6.3.3 Duplication Operator Conclusion 136

6.4 Conclusion and Future Work . 137

7 A Schema Theory for TAG3P 139

7.1 Schema Theory in GP . 140

7.2 Schema Theory in GGGP . 141

7.3 Schema Definition in TAG3P . 142

7.4 A Schema Theorem for TAG3P 144

CONTENTS viii

7.4.1 Expected Number of Individuals Matching a Schema after

Selection . 145

7.4.2 Schema Disruption due to Genetic Operators 145

7.4.3 A Schema Theorem for TAG3P 146

7.5 Conclusion . 148

8 Structural Difficulty in GP 149

8.1 Structural Difficulty in Genetic Programming 150

8.2 Insertion and Deletion Operators and the Structural Difficulty in

Genetic Programming . 154

8.3 Experiments . 155

8.3.1 Experiment Setup . 157

8.3.2 Results and Discussion . 157

8.4 Conclusion . 160

9 Fitness Landscape Study 162

9.1 Fitness Landscape Study in EAs 163

9.2 Problems with GP and GGGP in Fitness Landscape Study 164

9.3 TAG-based Representation and Fitness Landscape Study 166

9.4 Experiments . 167

9.4.1 Experiment Setup . 171

9.4.2 Results and Discussion . 172

9.5 Conclusion . 177

10 EMO comparison 179

10.1 Difficulties in Making Meaningful Comparison between Genetic

Programming Systems . 180

10.2 Multi-objective Evolutionary Optimization 181

10.3 The Use of Multi-objective Techniques for Comparisons 182

10.4 Experiments and Results . 184

10.4.1 Experiment Design . 184

CONTENTS ix

10.4.2 Results . 185

10.4.3 Discussion of Results . 186

10.5 Conclusion . 192

11 Conclusions 194

11.1 Contributions of this thesis . 195

11.2 Future Work . 197

11.2.1 Future Work on TAG-based Representation 197

11.2.2 Future Work on TAG3P 199

A Some More Information on Grammars 201

A.1 Context Free Grammars . 201

A.2 Attribute Grammars . 203

A.3 Definite Clause Grammars (DCGs) 203

A.4 Definite Clause Trabslation Grammars 204

A.5 Schabes’s Lexicalisation Algorithm 204

A.6 The Grammars for Some Problems in the Thesis 206

A.6.1 Some Grammars for the Problems in Chapter 6 206

A.6.2 Some Grammars for the Problems in Chapter 9 208

B Schema Theory 211

B.1 Introduction . 211

B.2 Holland’s Schema Theorem for GAs 211

B.3 Fixed Shape and Size Schema Theorem for GP by Poli and Langdon213

B.4 Whigham’s Schema Theorem for CFG-GP 215

C Techniques for Fitness Landscape Analysis 217

C.1 Correlation Analysis of Fitness Landscapes 217

C.2 Information Content Measures for Fitness Landscape 219

D SPEA2 222

E Some Supplementary Figures 225

List of Figures

2.1 The basic flow chart for evolutionary algorithms (EAs) [Fog1995] . 8

2.2 Representation for individuals in standard GA 8

2.3 Basic genetic operators in standard GA 9

2.4 Lisp-expression tree representation in standard GP, where F =

(AND, OR, NOT) and T = (a, b, c) 12

2.5 Crossover operator in standard GP 14

2.6 Mutation operator in standard GP 14

2.7 Genotype and Phenotype in GEP, where AND=0, OR=1, NOT=2,

a=3, b=4, c=5. 18

2.8 Genotype to phenotype map in GEP is not causal. The top-left

corner is an genotype and the top-right corner is its corresponding

phenotype. Just by one mutation taken in the first gene (bottom-

left corner), the phenotype has changed completely (bottom-right

corner) . 19

2.9 Strongly Typed GP . 20

2.10 Derivation tree as programs in GGGP 24

2.11 Crossover operator in GGGP . 25

2.12 Mutation operator in GGGP . 26

2.13 An example of GE genotype-phenotype mapping 28

3.1 A simple TAG for some English sentences 36

3.2 Adjunction Operation. 37

3.3 Substitution . 37

x

LIST OF FIGURES xi

3.4 Weir’s TAG derivation tree . 40

3.5 Schabes-Shielber TAG derivation tree 41

3.6 Joshi-Schabes TAG derivation tree 42

3.7 Example of the new form of TAG derivation tree. 44

3.8 Another simple TAG for some English sentences 47

3.9 An example of ELD in TAGs . 48

3.10 An example of FRD in TAGs . 48

3.11 An example of the conflict between tree alignment metric and the

intuitive sense of the similarity between two trees. The left and

the right trees are very similar in the intuitive sense but far from

each other using tree alignment metric 52

3.12 The elementary trees for Glex. L1 is a lexicon that can be substi-

tuted with any lexeme in (p,n,s,t,l,o,co,chla,r1,r2) 55

3.13 Translation from a genotype to a phenotype. The first four parts

are the intermediate steps. The final genotype and final phenotype

are given at the bottom of the figure 56

4.1 Mapping Process . 61

4.2 Crossover in TAG3P . 68

4.3 Subtree mutation in TAG3P . 71

4.4 Node replacement in TAG3P . 74

4.5 Truncation in TAG3P . 75

5.1 A 6-multiplexer and a solution . 81

5.2 TAG elementary trees for symbolic regression, symbolic integra-

tion, and symbolic differentiation problems 83

5.3 TAG elementary trees for the 6-multiplexer problem 84

5.4 Cumulative Frequencies for Symbolic Regression Problem 87

5.5 Cumulative Frequencies for 6-Multiplexer Problem 88

5.6 Cumulative Frequencies for Symbolic Integration Problem 88

5.7 Cumulative Frequencies for Symbolic Differentiation Problem . . . 89

LIST OF FIGURES xii

5.8 Average Fitness of the population 90

5.9 Average fitness of the best in the population 90

5.10 Evolution of size in the runs for the symbolic regression problem . 92

5.11 Evolution of size in the runs for the 6-Multiplexer problem 93

6.1 Insertion Operator . 98

6.2 Deletion Operator . 99

6.3 Cumulative Frequencies for ORDER Problems 104

6.4 Cumulative Frequencies for MAJORITY Problems 105

6.5 Cumulative Frequencies for symbolic regression Problem 105

6.6 Cumulative Frequencies for 6-Multiplexer Problem 106

6.7 Cumulative Frequencies for ORDER Problems 108

6.8 Cumulative Frequencies for MAJORITY Problems 109

6.9 Cumulative Frequencies for symbolic regression Problem 109

6.10 Cumulative Frequencies for 6-Multiplexer Problem 110

6.11 Relocation Operator . 116

6.12 Cumulative frequencies for four problems 121

6.13 Cumulative Frequencies for four problems 123

6.14 Duplication Operator . 129

6.15 Cumulative frequencies for X4-X9 132

6.16 Cumulative frequencies for X4-X9 134

7.1 An example for Whigham’s schema, where a schema can match

more than once in an individual 142

7.2 An example for a schema on TAG-based representation 143

8.1 Four regions in the space of tree structures. Reprinted with per-

mission from [Dai2003b] . 151

8.2 The “horizontal and vertical cuts”. Reprinted with permission

from [Dai2003b] . 152

LIST OF FIGURES xiii

8.3 Proportion of Success for GP on the “Horizontal cut”. Reprinted

with permission from [Dai2003b] The lower half of the figure shows

which part of the structure space the problem instances belong to.

It can be seen that the hard-to-find instances are those in region

II, and III . 153

8.4 Proportion of Success for GP on the “Vertical cut”. Reprinted with

permission from [Dai2003b]. The lower half of the figure shows

which part of the structure space the problem instances belong to.

It can be seen that the hard-to-find instances are those in region

II, and III . 154

8.5 Elementary trees of Glex for LID problem 156

8.6 Results of TAG-HILL on the “horizontal cut” 158

8.7 Results of TAG-HILL on the “vertical cut” 159

8.8 Average number of fitness evaluations for the ”horizontal cut” . . 160

8.9 Average number of fitness evaluations for the ”vertical cut” 161

9.1 Graph of functions F1(X3) to F4(X6) 174

10.1 Cumulative Frequencies (POPSIZE=500) 187

10.2 Average First Fitness (POPSIZE=500) 187

10.3 Average Second Fitness (POPSIZE=500) 188

10.4 Tree Size Frequencies for Symbolic Regression Problem, POP-

SIZE=500 . 190

10.5 Tree Size Frequencies for 6-multiplexer Problem, POPSIZE=500 . 191

A.1 An example of CFG derivation sequences and trees 203

A.2 Elementary trees for the grammar of the ORDER and MAJORITY

problems . 207

A.3 Elementary trees for the grammar of the SEXTIC and QUINTIC

problems . 207

A.4 Elementary trees for the grammar of the TRIGO problems 208

A.5 Elementary trees for the grammar of the TWOBOX problem . . . 208

LIST OF FIGURES xiv

A.6 TAG elementary trees for G1lex 209

A.7 TAG elementary trees for G2lex 209

A.8 TAG elementary trees for G3lex 210

A.9 TAG elementary trees for G4lex 210

B.1 An example of a fixed-shape and -size schema in GP expression

tree representation . 214

B.2 An example for a CFG-GP schema. The Schema is F ⇒ A A . . 216

E.1 Cumulative Frequencies (POPSIZE=250) 225

E.2 Cumulative Frequencies (POPSIZE=1000) 226

E.3 Average First Fitness (POPSIZE=250) 226

E.4 Average First Fitness (POPSIZE=1000) 226

E.5 Average Second Fitness (POPSIZE=250) 227

E.6 Average Second Fitness (POPSIZE=1000) 227

E.7 Tree Size Frequencies for Symbolic Regression Problem, POP-

SIZE=250 . 228

E.8 Tree Size Frequencies for 6-multiplexer Problem, POPSIZE=250 . 229

E.9 Tree Size Frequencies for Symbolic Regression Problem, POP-

SIZE=1000 . 230

E.10 Tree Size Frequencies for 6-multiplexer Problem, POPSIZE=1000 231

Chapter 1

Introduction

If you want to go far in life - make a series of small steps

Old Vietnamese Proverb

1.1 Motivation

Genetic programming (GP), a new paradigm of evolutionary algorithms, has

attracted increasing interest from academic researchers and/or practitioners over

the last decade. Consequently, GP has been widely developed, and applied to

solve many real-world problems. One of the important extensions is grammar-

guided genetic programming (GGGP), where formal grammars (usually string

rewriting systems) are used to relax the closure requirement, which states that

every primitive in GP must be of the same type, and set a chosen declarative

bias on the space of the programs. Moreover, formal grammars can be used to

set declarative bias on the search process of genetic programming.

Given GP’s deep roots in Genetic Algorithm (GA) research, it is not surpris-

ing that many researchers and practitioners view GP as a natural extension of

GA, simply extending GA’s fixed-shape and -size chromosomal representation to

tree-based structures with variable shape and size. However there is a price to

pay. The natural topology on tree-based GP search spaces, corresponding to the

Hamming distance in binary GA, is some form of edit distance. The tree struc-

1

CHAPTER 1. INTRODUCTION 2

ture in standard GP is of fixed arity, i.e a function of arity n must have exactly n

children, wherever it occurs in the tree. This renders it very difficult to design op-

erators which make small and bounded changes with respect to the topology, or to

build natural analogues of many of the important biological variation operators.

Operators making small changes are important both for theoretical purposes –

helping to characterize the neighbourhood structure of the search space – and

practically, as valuable operators in particular types of problems. Furthermore,

biologically-based operators have formed an important source of inspiration for

GAs. Arguably, their availability in GP would be a corresponding asset. These

issues become even more acute when we move to GGGP (despite its many other

advantages and successes) because the tree structure is even further constrained

by the production rules of the grammar.

Viewing the tree-based nature of the representation as the culprit for these

limitations, several researchers have developed linearisations of the tree represen-

tation in GP and in GGGP, introducing a genotype-phenotype mapping, with a

linear genotype. This linearity means that these representations inherit some of

the characteristics of the GA linear chromosome that have been lost in GP and

GGGP tree-based representation. However, the genotype-phenotype mapping in

these linearised GP and GGGP systems usually lack the locality (or causality)

property, which states that small changes in the genotype of an individual cause

small changes on the phenotype level. Thus even though there exist operators

which can make small and bounded changes of the genotype, the corresponding

effects on the phenotype may be unbounded and uncontrollable.

In the field of natural language processing, which has had very limited interac-

tion with the GP and GGGP fields, a new formalism has become increasingly im-

portant to linguists: the tree adjoining grammar (TAG). TAGs are tree-rewriting

systems proposed with linguistic motivations. An important observation from lin-

guistics and natural language processing is that complex sentences can be built

up from very simple ones by operations that act directly on the syntactic tree

structure of sentences, modifying them bit by bit. The applications of the modi-

CHAPTER 1. INTRODUCTION 3

fication operations can themselves be recorded in a tree structure, recording the

history of the transformation from the original simple sentence to a more complex

one. This results in the concept of a TAG-derivation trees. One of the important

properties of the TAG derivation tree is that a node can have a variable number of

children. Each node records a particular modification operation which took place

on the parent node; hence its presence or absence does not affect its siblings. In

this thesis, we denote this property as non-fixed arity. It provides greater free-

dom to shuffle nodes or subtrees within the tree than is possible in fixed arity

trees. Furthermore, any small change on the TAG-derivation tree (modification

operation history tree) results in only a small change in the tree derived from it,

since the modification operation defined in TAGs, adjunction, does not change

the contents of the nodes that are already in the modified sentence tree, but adds

a bounded number of new nodes, the bound being determined by the specific

grammar. It is interesting whether some of the properties of TAG-derivation

trees, which have been shown to be useful in the context of linguistics and nat-

ural language processing, are also useful in the field of GP and GGGP, and in

particular, whether they can help to solve some of the problems mentioned above.

This thesis is an attempt to provide an answer to that question.

1.2 Statement of the Thesis

This thesis describes a number of representation-related issues arising from the

extension from genetic algorithms (GAs) to genetic programming (GP), and to

grammar guided genetic programming (GGGP). We argue that these difficulties

are the consequence of the lack of operators that can make small and bounded

changes.

A new GP representation, called TAG-based representation, is proposed, in

which the structure of programs is also a tree. However, the new tree-based rep-

resentation is non-fixed arity rather than fixed arity as in GP representation, and

it is object-based rather than rule-based as in GGGP representation. The thesis

CHAPTER 1. INTRODUCTION 4

shows how a wide variety of bio-inspired and other operators can be supported in

TAG-based GP because of the non-fixed arity property, and also how a number

of important related difficulties in tree-based representation can be solved.

The thesis proposes a new grammar guided genetic programming system,

based on TAG representation and known as TAG3P. It is shown to be competitive

with other standard GP and GGGP systems. A schema structure for TAG-based

representation is defined, which unifies the three principal aspects of schemata

on syntactically constrained domains. A simple schema theorem for TAG3P is

derived, helping to cast light on how it works.

Since TAG-based representation naturally uses size as a search-space bound,

whereas the natural comparators, GP and GGGP, most naturally use depth,

the thesis must necessarily face the issue of how to compare algorithms with

different search spaces; and in particular, how to determine whether differences

in performance are the result of differences in representation, operators and fitness

landscape, or merely the result of different search space size. The thesis proposes

an alternative comparison method, using multi-objective search, eliminating the

effects of search space bounds by eliminating the bounds themselves.

1.3 Outline of Dissertation

Chapter 2 give a brief overview of related work in genetic programming, and a

survey of grammar guided genetic programming. Some issues in the current GP

and GGGP representations are formulated. The chapter is intended to provide

a general understanding of the history in the development of grammar-based

genetic programming systems.

The body of the thesis is intended to cover a wide spectrum of topics and

issues in the comparison between GP systems (and in particular, TAG3P); these

are not particularly closely connected to each other except through their relevance

to the TAG3P comparisons. Rather than present a somewhat disconnected series

of backgrounds on particular issues in this chapter, we decided to include an

CHAPTER 1. INTRODUCTION 5

overview of the background and related work on each particular topic at the

beginning of the relevant chapter (chapters 6,7,8,9,10).

The concepts of tree adjoining grammars (TAG) and their derivation trees

are given in chapter 3. In that chapter, a new form of TAG derivation tree,

combining important aspects of two previous formulations, is given. This forms

the basis for a new GP representation. The chapter serves as the foundation for

the thesis, giving a framework and arguments for the new representation.

The rest of the thesis, except the last chapter, can be divided into two parts.

Part 1 includes chapters 4, 5 and 6, and a part of chapter 7. This part describes

the TAG3P system, built upon the representation in chapter 3. In detail, chapter

4 presents the design of TAG3P. Chapter 5 gives some examples, presenting

some experimental results for TAG3P on some standard problems from the GP

literature, and comparing the results with standard GP and GGGP systems.

Based on some unique features of the representation, some further analyses are

also presented to probe deeper into the TAG3P evolutionary process than is

possible with the other representations. Chapter 6 presents some new operators

made possible by the non-fixed arity property, and demonstrates their value on

specific problems. Chapter 7 provides a theoretical framework for TAG3P by

formulating a schema concept and proving an inexact schema theorem.

Part 2 includes the rest of chapter 7, together with chapters 8, 9 and 10.

This part shows how TAG-based representation can provide solutions to some

difficulties in GP and GGGP. In chapter 7, we show how it is possible to define

rooted schemata for a syntactically constrained domain with TAG3P because

of the object-based aspect of the representation. We explain how this schema

definition unifies three important aspects of schemata on syntactically constrained

domains, as component of the representation, as search subspace, and as a sub-

language of the grammar. Chapter 8 provides a hypothesis for the cause of a well-

know problem in GP, Daida’s problem of structural difficulty. Using TAG-based

representation, and in particular its structural mutation operators, we show that

the problem can be greatly ameliorated, providing evidence for our hypothesis

CHAPTER 1. INTRODUCTION 6

as to the cause of the problem. Chapter 9 presents what is, to the best of

our knowledge, the first fitness landscape analysis on syntactically constrained

domains. This is facilitated by the TAG representation’s facilitation of the design

of bounded-change operators, and the locality (causality) property. In particular,

that chapter studies the effects of changing target functions over a family of

functions, and of changing the language bias (grammar) on the difficulty of the

fitness landscape. Chapter 10 presents an alternative approach to comparing

GP representations that use different methods of bounding search space size. In

this approach, the use of multi-objective selection pressure enables us to separate

the effects on performance resulting from different bounds on the complexity of

individual programs from the more interesting effects arising from differences in

representation and operators.

Chapter 11 summarises the thesis, reviews the contributions, and comments

on future directions. Five Appendices are provided, incorporating some more

detailed background material and some detailed experimental results. A bibliog-

raphy is presented at the end of the thesis.

Chapter 2

Related Work

In this chapter, we survey previous research on representation for genetic pro-

gramming and grammar guided genetic programming. We also explore and dis-

cuss some problems which arise in the extension of ideas from genetic algorithms

to genetic programming (GP), and to grammar-guided genetic programming

(GGGP).

2.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of search algorithms that simulate

biological evolution [Bac1996]. The simulation can be seen in three aspects.

An EA uses a population of individuals; those individuals compete with each

other, according to Darwin’s principle of natural selection, to reproduce; and the

evolution is carried out by random variation in the genetics of chosen individuals.

Since the pioneering work by Friedberg ([Fri1958, Fri1959]),Fogel ([Fog1966]),

Schwefel ([Shw1968]) Rechenberg[Rec1973]), and Holland ([Hol1975]), EAs have

diverged into three main streams, namely evolution strategies, evolutionary pro-

gramming and genetic algorithms. However, the basic algorithms of all EAs are

still very similar, as shown in the flowchart in Figure 2.1.

7

CHAPTER 2. RELATED WORK 8

by genetic operators
Generation of variants

END

Selection

sufficiently good?

Solution is

Evaluation

Generation of initial solutions

Figure 2.1: The basic flow chart for evolutionary algorithms (EAs) [Fog1995]

2.2 The Genetic Algorithm

The original genetic algorithm (GA) proposed by Holland ([Hol1975]) is currently

the most popular evolutionary algorithm. It is known as the standard (or simple)

GA. It has been intensively studied, and shown to be useful in solving a wide

range of real-world problems ([Mit1996]). The GA is viewed as the predecessor

of genetic programming (GP), from which the latter gets its name.

The original GA uses linear and fixed length binary strings as the represen-

tation for its chromosomes as depicted in Figure 2.2.

In [Hol1975] three genetic operators were proposed, namely, one-point crossover,

110010110

Figure 2.2: Representation for individuals in standard GA

one-point mutation, and inversion. Crossover was designated as the main genetic

operator. It resembles genetic recombination in biological genome evolution. The

one-point crossover between two chromosomes is done by exchanging segments

of strings. One-point mutation and inversion are secondary mutation operators,

which are used to keep a degree of genetic diversity in the population. One-point

CHAPTER 2. RELATED WORK 9

mutation is implemented as the flipping of a random bit in the string, and inver-

sion is the rewriting a segment of the string in reverse order. Figure 2.3 shows

how one-point crossover, one-point mutation, and inversion work.

Since Holland invented the first GA, there have been a wide variety of new GA

1 0 1 1 1 0 1 1 0

1 0 1 0 1 1 00

One−Point Mutation

1 0 1 1 1 00 1 1

Invertion

1

0 1 1 0 0

One−Point Crossover

0 0 1 1

0 0 1 11 0 1 1 0 1 1 0 0 1

0

1 0 1 1 1 0 1 1 0

1

0 1 1 0

1 0 1 1 1 0 1

Figure 2.3: Basic genetic operators in standard GA

systems using different representations such as real coding, gray coding, messy

coding, variant length chromosomes, and so on [Mit1996]. It is important to note

that all these codings use a linear representation of the chromosome. The linearity

of chromosomes facilitates the design of many different genetic operators. Indeed,

from three operators in the beginning, there have been a vast number of new

and bio-inspired ones derived in the literature [Mit1996, Bac2000a, Bac2000b].

Moreover, it is not difficult in GA’s linear chromosome representation to design

operators that make limited changes. In other words, if there is a topological

structure (neighbourhood) on GA’s linear chromosome, it is easy to design oper-

ators that respect this structure. For example, in the standard GA linear binary

representation, if we use Hamming distance to define the neighbourhood struc-

ture on GA chromosome space, the one-point mutation operator makes minimal

CHAPTER 2. RELATED WORK 10

change in terms of Hamming distance (1), and therefore respects the topological

order defined by Hamming distance, i.e it transforms a point to another point in

its neighbourhood.

2.3 Genetic Programming

Genetic programming has been defined as a machine learning method to evolve

computer programs by evolutionary means [Ban1998]. It is inspired by GAs,

and seen as a branch of GAs by many researchers. The distinction between the

two is partly philosophical, and there are generally exceptions for any nominated

distinctions. However, it is generally agreed that their task and motivation are

different. While GAs are commonly used for optimisation task, GP systems are

usually used for learning. The scenario that a GA might be used to optimise a

function given the definition of the function, while GP might be used to learn

the definition of the function itself from sampled data, is an almost perfect illus-

tration of the distinction between GAs and GP. The more important point for

distinguishing between GA and GP systems is that GP systems usually employ

more flexible chromosome representations, with variable size and shape. There-

fore, it is believed that GAs are suited to the task of optimising parameters for

solutions when their structure is known, while GP is preferred if the task is to

learn and discover both content and structure of solutions [Ban1998]. GP has

been successfully used to solve a vast ranges of real-world problems ([Ban1998] -

chapter 12).

The early dawn of program evolution (or in Koza’s words “the program-

ming of computer by means of natural selection”) includes work by Friedberg

([Fri1958, Fri1959]) on a learning machine, where the task is to teach a com-

puters to learn to program for itself. Fogel et al. ([Fog1966]) proposed the

evolutionary programming method to learn finite state machines (FSM), which

are simple form of computer programs. Smith ([Smi1980]) in 1980 was probably

the first researcher to study a variant of classifier systems, in which the individ-

CHAPTER 2. RELATED WORK 11

uals have variable sizes. Cramer introduced more features resembling the GP we

know today, in particular tree representation and subtree crossover ([Cra1985]).

In 1987, Dickmanns, Schmidhuber, and Winklehofer publish a paper, in which,

the authors presented how to evolve programs with loops using genetic algorithms

[Dic1987]. In his diploma thesis, Schmidhuber even went further on developing

meta learning for program evolution. His system that can use the techniques

in program evolution to learn for program evolution itself (learning to learn)

[Sch1987].

2.3.1 Standard tree-based GP

Althought there had been a number of work that was very closed to genetic

programming, the field of genetic programming was first clearly delineated by

Koza in his seminal book [Koz92], which first demonstrated the power of GP

and set the foundations for the field. In his work, a program induction system

based on Darwin’s natural selection principles was proposed. His system, which

in this thesis is called standard GP, consists of five components: a representation

for programs, a procedure for initialising the population of programs, a fitness

evaluation procedure, genetic operators, and parameters.

Program Representation

Program representation in standard GP is Lisp-expression trees (or in brief, ex-

pression tree in this thesis) where the nodes are labeled by primitives from the

set of function (F) and terminal (T) symbols. The function set F = (f1, f2, ..fn)

consists of functions with arity (number of children or arguments) greater than

0, whereas the terminal set T = (t1, t2, ..., tm) contains 0-arity functions or con-

stants. We note that all primitives (F ∪ T) in standard GP have fixed arities. In

other words, if a primitive h is of t-arity, it must have exactly t children in any

individual. Figure 2.4 shows the program representation for standard GP.

CHAPTER 2. RELATED WORK 12

AND

a
b NOT

c

OR

ORNOT

a

a

c

Figure 2.4: Lisp-expression tree representation in standard GP, where F =

(AND, OR, NOT) and T = (a, b, c)

Creating Initial Population

There are two procedures in standard GP for creating an initial population of

programs, namely ramped and ramped-half-and-half. Ramped initialisation of

a program (expression tree) commences by selecting a function fi from F at

random. For each argument pi of f , this process is repeated with either a function

or terminal being randomly picked to fill each argument position. If a terminal

is selected, this branch of the function is terminated. If a function is chosen, the

process is recursively called for that function. A maximal expression tree depth

is usually used to limit the size of the initial program. Ramped initialisation of

the population uses ramping for all individual programs. Ramped-half-and-half

initilisation is the application of ramped initialisation for half of the population

with, for the other half, full expression trees being generated randomly. The

depth of the full trees is the specified maximal depth. Each of them is generated

by a procedure that is similar to ramped initialisation of a program. However,

before reaching the maximal depth, only primitives in F are used to grow the tree,

whereas upon reaching the maximal depth, only primitives from T are selected.

Fitness Evaluation

Each program is assigned a numerical value called fitness. This fitness is obtained

by evaluating the program against a set of test problems called fitness cases.

These fitness cases represent the environment that the program is attempting to

CHAPTER 2. RELATED WORK 13

learn. The fitness of each program is usually normalised before selection (de-

scribed below) is applied. The process for normalising expression tree programs

in standard GP can be found in [Koz92].

Genetic Operators

The operators used in standard GP are a selection mechanism, reproduction,

crossover, and mutation. Selection mechanisms are the way individual programs

are selected from the population to enter the mating pool, where the genetic

recombination and other operations take place. There are a substantial number

of selection mechanisms in evolutionary algorithms, all of which are usable in

standard GP [Bac1997] (part C2). Among them, the most popular are fitness-

proportionate selection and tournament selection. In fitness-proportionate selec-

tion (otherwise known as roulette wheel selection), each program i is selected with

probability pi = fi∑n

j=1
fj

, where fi is the fitness of the individual i. In tournament

selection, m individuals are randomly selected from the population to go though

a competition, and the winner (in terms of fitness) is selected to go to the mating

pool. Reproduction selects a program using the selection mechanism, and copies

it to the next generation. Crossover (subtree crossover) selects two parents using

the selection mechanism, and creates two children by swapping subtrees between

the two parent programs. Figure 2.5 depicts how crossover works. In a muta-

tion (subtree mutation) of an expression tree, a node is selected at random and

the subtree below this node is deleted. A new subtree is randomly generated to

replace the deleted subtree. Figure 2.6 shows how mutation works. In [Koz92],

it is suggested that crossover and reproduction should be the main operators for

GP, while the use of mutation should be very limited.

Parameters

Parameters in standard GP include the population size (POPSIZE), the maximal

number of generations (MAXGEN), the maximal depth for initialisation and

CHAPTER 2. RELATED WORK 14

AND

a

c

OR

AND

a

OR

NOT

c

NOT a

a

a c

OR

a c

OR

Figure 2.5: Crossover operator in standard GP

a

AND AND

NOT

ca c

OR a

Figure 2.6: Mutation operator in standard GP

for the whole evolutionary process (MAXDEPTH), and the probabilities for the

application of genetic operators (operator rates). Recently, GP has been extended

to include ADF (automatically-defined functions) [Koz2004]. Consequently, a

number of other parameters have been added such as: number of ADFs, number

of each ADF’s parameters, probability for ADF architecture altering operators,

etc [Koz2004].

Sufficiency and Closure Requirements

In [Koz92], Koza stated two conditions that a GP system must satisfy in order to

be applicable to a specific problem, namely, sufficiency and closure. Sufficiency

CHAPTER 2. RELATED WORK 15

requires GP to have a sufficient primitive set (functions and terminals) to rep-

resent the problem solutions [Koz92]. The closure condition was expressed in

[Koz92] as a requirement that all functions and terminals must be of the same

type, so that the application of genetic operators does not result in invalid expres-

sion trees. Therefore, the problem domain of standard GP is restricted to typeless

problems. This limitation was one of the motivations for grammar guided genetic

programming (described in the next section).

2.3.2 Some Problems with Tree-Based Genetic Program-

ming

Viewed as a descendant of GAs, standard GP has inherited many aspects of GAs

such as the evolutionary process, heavy use of crossover, and so on. It is tempting

to believe that because of this ancestry, many properties and concepts from GA

will transfer naturally to GP.

However, this is not necessarily the case. The representation for the chro-

mosome in standard GP is a fixed arity expression tree. Compared with linear

(and usually fixed size) GA chromosomes, it has much greater complexity. While

in GA the evolution only affects the contents of genes in the chromosome, in

standard tree-based GP the evolution proceeds in three dimensions: content,

shape, and size. With the tree-based structure, it is not obvious that useful bio-

inspired operators such as insertion, deletion, duplication, relocation, etc can be

implemented in GP in the way they were on GA chromosomes (though [Koz92]

proposed a permutation operator which was claimed to resemble inversion in

GAs). Moreover, unlike GAs, it is not clear what might be a natural topological

structure on the space of tree-based genotypes in GP [Lan2002], or that one can

design operators that respect such topological structures (i.e operators which only

make bounded changes, so that they can be used to explore the neighbourhood

structure. Lacking a natural topological structure, and operators which make

bounded changes within the topology, means it is more difficult with GP than

CHAPTER 2. RELATED WORK 16

GAs to study various aspects involving the concepts of neighbourhood and ad-

jacency, including fitness landscape investigation, application of heuristic search

strategies that require neighbourhood definitions, etc.

The crossover and mutation operators in standard GP are indeed very disrup-

tive. Since the early days, there have been a number of studies suggesting that

crossover in standard tree-based GP is too disruptive [Nor1995a, Nor1996]. Some

researchers went further, suggesting that crossover in standard GP acts merely as

a macro-mutation operator ([Lan1995]). However it is in mutation that we can

see the greatest incompatibility between GAs and standard GP. In the simple

GA, the one-point mutation operator resembles natural mutation in biological

genome evolution, where mutation usually involves a very small change made on

the genotype [Rid1996]. Subtree mutation in standard GP is very disruptive, and

the degree of change caused by it is not bounded or predictable. If the subtree

mutation site is a leaf of the expression tree, and the new subtree generated by

subtree mutation is small, then the degree of change is small. However, if the

site of subtree mutation is at the root of the expression tree, it could change the

tree completely.

We note that although the problems in this subsection are only discussed

for tree-based representation, they appear to be equally applicable to GP sys-

tems with more complicated program representations, such as graph-based GP

([Tel1996], [Pol1999]).

2.3.3 GP with Linear Representation

The problems mentioned in the previous subsection could melt away with a lin-

ear representation for programs. A number of linear GP representations have

been proposed in the literature. They can be divided into three groups: stack-

based GP, machine-code GP (otherwise known as linear GP) and gene expression

programming (GEP).

In stack-based GP [Per1994, Kei1994, Spe2001], each program instruction

takes its arguments from a stack. After performing the calculation, it pushes the

CHAPTER 2. RELATED WORK 17

result back onto the stack. To guard against the problems of stack overflow and

underflow, some checks are needed. When the checks detect these stack defects,

it might allow the program to continue its execution by supplying default values

on underflow and discarding data on overflow.

In machine-code GP (linear GP) ([Nor1997, Ban1998]), data are stored in

registers. Each instruction reads its data from one register and write its output

to another. The program inputs are written to registers before the program is

executed, and its output is given by the final contents of one ore more registers.

The instruction are direct binary machine codes, making the linear GP evaluation

much faster than other GP systems.

Of the extant non-grammar based GP systems, possibly the closest to the

approach in this thesis, especially in its emphasis on representation and opera-

tors, is gene expression programming (GEP) ([Fer2001], [Fer2002a], [Fer2002b],

[Fer2002c], and [Fer2002d]). In GEP, a genotype to phenotype mapping is used.

The phenotype is a standard GP expression tree, and the genotype is represented

as follows. First, all the primitives (functions and terminals) used to solve prob-

lems in standard GP are indexed by integer numbers. The genotype is a linear

and fixed length string of integers taken from {0..n} (n is the cardinality of the

primitive set). It is divided into two parts. The first and left part is filled with

integers representing either function or terminal symbols. The second and right

part is filled with integers representing terminal symbols only. The length of the

first part is l, while the length of the second part is h× l, making the total (fixed)

length of the genotype (h + 1) × l – where l is a predefined integer (parameter)

and h is the maximal arity over all the primitives. The translation from genotype

to phenotype, which is a standard GP expression tree, is processed from left to

right. At each step, a primitive (function or terminal) represented by the current

gene is picked to fill the next uncompleted branch of the phenotype in top-down

and left-to-right fashion. The process is terminated if the expression tree built

from the genotype is completed. If there are still unused genes when the phe-

notype is completed, they are ignored and considered as introns (the part of the

CHAPTER 2. RELATED WORK 18

genotype that is not coding for the phenotype). At the completion of processing

of the left part of the genotype, there can be at most l function symbols with

unfilled arguments (in practice, rather less), and each has at most h arguments,

so that there can be at most h × l unfilled arguments when processing of the

right part is initiated. Since the right part is filled with terminals only, and the

its length is h × l, it is not possible to run out of genes in the translation from

a genotype to its phenotype (thus avoiding a counterpart to the stack underflow

problem of stack GP). Therefore for every valid genotype, a valid phenotype is

created by the translation process. Figure 2.7 depicts the genotype structure and

an example of translation from genotype to phenotype in GEP.

As claimed in [Fer2001, Fer2002a] the linearity of the GEP reprentation is one of

...

AND

a

c

OR

l l*h

0 3 1 3 5 4 2

a

Figure 2.7: Genotype and Phenotype in GEP, where AND=0, OR=1, NOT=2,

a=3, b=4, c=5.

its main advantages over standard GP. It allows GEP to design and experiment

with various bio-inspired operators in order to study how they can be useful in

the context of genetic programming. They also capable of making bounded and

small change on the genotype level just as in GAs.

However, one problem with GEP linear representation (and we believe it

is equally applicable to stack GP, and to some degree to linear GP) is that its

mapping from the genotype to the phenotype space violates the causality principle

for representations for evolutionary algorithms [Rec1973, Pal1994b, Sen1997],

CHAPTER 2. RELATED WORK 19

which states that “small changes in genotype should result in small changes in

phenotype”. In other words, the causality principle states that if a designer

wants to obtain genetic operators with locality property (i.e, making small and

bounded changes), it is essential for him to ensure the mapping between genotype

and phenotype space causal. In GEP case, Although the change on the genotype

caused by an operator can be bounded and small, the effect on the phenotype

is hard to control. In particular, even a small change in genotype can change

vastly the expressiveness (coding or non-coding) of the genes after the position

where the change takes place. For example, if the first gene of the genotype is

mutated, the phenotype could be changed completely. In other words, although

the operator respects the topological structure of the genotype space, this effect

is not replicated in the phenotype space. Figure 2.8 show an example of this

situation.

AND

a

c

OR

...3 1 3 5 4 2

...0 3 1 3 5 4 2

4 b

a

Figure 2.8: Genotype to phenotype map in GEP is not causal. The top-left

corner is an genotype and the top-right corner is its corresponding phenotype.

Just by one mutation taken in the first gene (bottom-left corner), the phenotype

has changed completely (bottom-right corner)

CHAPTER 2. RELATED WORK 20

2.4 Grammar Guided Genetic Programming

As mentioned earlier, the closure requirement restricts the domain of problems

solved by standard GP to typeless problems. However, in reality, many problem

domains are typed. For example many problems in decision tree induction in data

mining ([Fre2002]), require that attributes have different types. Consequently, the

space of expression trees used in standard GP would contain a vast number of

infeasible individuals (i.e their fitness is not calculable). Even were it to start with

a population of entirely valid individuals, the genetic operators might transform

them into invalid ones during the evolutionary process.

One solution is to constrain the primitives of GP (both functions and termi-

nals) by attaching types to them. The genetic operators are designed so that

they respect the types of the primitives. This results in a branch of genetic

programming, called strongly-typed genetic programming (STGP), proposed by

Montana ([Mon1994, Mon1995]). Figure 2.9 depicts an example of representation

and crossover used in strongly-typed GP.

<AND, B>

<NOT, B>

<a, B>

<==, B>

<d, N>

<==, B>

Crossover

<c, N>

<c, N><c, N>

<+, N><b, N>

<==, B>

<d, N><c, N>

<==, B>

<a, B>

<NOT, B>

<AND, B>

<b, N>

An individual

<AND, B>

<NOT, B>

<a, B>

<==, B>

<c, N> <d, N>

<c, N><c, N>

<+, N>

Figure 2.9: Strongly Typed GP

CHAPTER 2. RELATED WORK 21

One important aim of STGP is to reduce the search space by avoiding the

exploration of invalid programs. Therefore, it increases the chances of finding so-

lutions compared with typeless GP systems. For instance, in [Hay1995b], it was

demonstrated that by searching in the space of valid programs only, STGP out-

performed standard GP for the problem of evolving cooperation strategies. STGP

has been found useful in solving problem in various typed domains ([Hay1995a],

[Hay1996b], [Har1997] [Sar1999],[Alb1999]). Extensions to STGP have been

made by the use of a type hierarchy and type inheritance in the manner of object-

oriented programming [Hay1996b, Bru1996]. By doing so, it helps to extend the

constraints to multiple levels of nodes in tree-based programs, rather than just

one level between parent and child nodes as in the original STGP. STGP has

become highly popular, as almost all modern implementations of GP software

provide users with the capability of using strong typing.

Another approach to relax the closure requirement in genetic programming

is to use formal grammars to syntactically constrain the programs. Outside GP,

formal grammars have been widely used to defined languages for a number of

typed domains, such as programming and natural languages [Mol1988]. There

has been a substantial volume of work in using grammar-based constraints on GP

programs. They have shaped a subfield of GP, which we call grammar guided

genetic programming in this thesis (GGGP). A number of definitions and related

concepts for the different types of grammars mentioned in this section are given

in Appendix A of the thesis.

We note that overcoming the restrictions of the closure requirement in GP is

not the only motivation for using formal grammars. There are a number of rea-

sons suggested in the literature of GGGP. Firstly, the use of grammars helps to

encode the domain knowledge about the syntactical structure of programs. Since

the domain knowledge might constrain the structure of solutions (such as that

it must start with a certain function), the use of grammars helps to capture this

structure by restricting the corresponding formal languages. In [Koz92] (chapter

19), some simple and ad hoc mechanisms were used to encode the known syntac-

CHAPTER 2. RELATED WORK 22

tical structures of programs in standard GP. However the use of formal grammars

provides a more flexible and general way to deal with the issue. Secondly, by using

grammars, it is easy to re-bias the syntactical structure of programs by changing

grammars. Since the grammar is external to the GP system, rather than being

a component, the bias can be tuned by changing the grammar without reimple-

menting the whole system to suit the bias. Since the grammar is declarative,

no programming is required to accomplish this. Thirdly, the setting of bias on

programs leads to a reduction in the search space and thus may help to increase

the chances of finding desired solution(s). We note that the reduction in search

space may not only limit the space to searching valid programs as in STGP, it

can also limit it so that the new language of programs is a sub-language of the

original [Whi1995b, Whi1996]. Finally, the use of grammars facilitates the design

of homologous operators, which will be discussed in the sequel.

The rest of this section is dedicated to an overview of the different grammar

guided genetic programming system proposed in the literature.

2.4.1 Some Early Systems

Antonisse ([Ant1991]) appears to be the first researcher to propose the use of

context-free grammars for generating grammar-based chromosomes in GAs. The

proposed system, which is called grammar-based GAs, uses as chromosomes the

strings from the language generated by a CFG G. When crossover is to be carried

out between two chosen individuals, they have to be parsed into two derivation

trees of G. Then, the crossover acts in a similar way as in the GGGP systems

with tree based representation described in the next subsection. For each string,

there might be more than one derivation tree for each string if the grammar is

ambiguous. Therefore, in ([Ant1991]), it was suggested that the use of ambiguous

grammars should be forbidden. Antonisse argued that this restriction was not

problematic, as ambiguous grammars would cause slow convergence in any case.

However, as pointed out in [NXH2002d], this may not be correct.

Some years after Antonisse proposed his grammar-based GA, a number of

CHAPTER 2. RELATED WORK 23

researchers suggested that grammars might be used to control the structure of

programs in GP. Stefanski ([Ste1993]) proposed the use of abstract syntax trees

to set a declarative bias for GP; Robston ([Ros1994]) demonstrated how a formal

grammar might be used to specify constraints for GP in the context of engineer-

ing design; Mizoguchi and Hemmi ([Miz1994, Hem1994]) suggested the use of

production rules to generate hardware language descriptions during the evolu-

tionary process. Roston used the grammar for generating the initial population

only, while the other works gave only a formal description. None of the systems

maintained the derivation trees of the grammar, either re-parsing from the string

(Stefanski) or combining with STGP (Roston).

2.4.2 Grammar Guided Genetic Programming with Tree-

Based Representation

The first full-fledged grammar guided genetic programming (GGGP) systems

were independently invented at about the same time by three different researchers.

Whigham ([Whi1994, Whi1995a]) proposed his CFG-GP system, in which a

context-free grammar was used to generate the population, which are deriva-

tion trees of the CFG. Schultz ([Shz1995]) derived his grammar guided genetic

programming system for learning knowledge rules for expert systems. His system

is similar to Whigham, differing mainly in the algorithm for initialising the pop-

ulation ([Boh1997]). Wong ([Won1994]), [Won1995a], [Won1995b], [Won1995c],

[Won1995d], [Won1997]) proposed the LOGENPRO system, which uses definite

clause grammars (DCGs), a type of logic grammars, in LISP to generate (logic

and functional) programs to learn first order relations. DCGs are far more expres-

sive than CFGs, being able to generate some context-sensitive languages. This is

the primary difference between the systems; in other respects, LOGENPRO and

CFG-GP are very similar. Given the similarity of the three systems, we base the

description below primarily on one, CFG-GP [Whi1994, Whi1996]. The five basic

components of a grammar guided genetic programming system are as follows:

CHAPTER 2. RELATED WORK 24

Program Representation. Each program is a derivation tree generated by a

grammar G (CFG for Whigham’s and Schultz’s systems, DCG logic grammar for

Wong’s system). Figure 2.10 depicts an individual in grammar guided genetic

programming

Procedure for initialising population. In [Whi1995a], a simple algorithm

b

BA

S

aa

Figure 2.10: Derivation tree as programs in GGGP

was proposed to generate random derivation trees up to a depth bound, based

on a procedure for labeling the production rules. Bohm and Schultz ([Boh1997]

derived an algorithm for initialising the population based on the derivation-step-

uniform distribution. The initialisation procedure LOGENPRO for was embodied

in LISP inspired by the deduction mechanism of PROLOG [Won2003].

Fitness evaluation. Fitness evaluation is carried out on the individuals, i.e.

derivation trees of G, in a similar way to standard GP.

Genetic Operators. The genetic operators are the selection mechanism, re-

production, crossover, and mutation. Selection and reproduction are as in stan-

dard GP. In crossover, two internal nodes labeled with the same non-terminal

symbol of the grammar (G) are chosen at random, and the two sub-derivation

tree underneath them are exchanged. Figure 2.11 depicts crossover in the GGGP

system. We term crossovers exchanging sub-derivation trees stemming from the

same non-terminal symbols homologous crossovers. Genetic recombination in

biological systems is usually homologous, i.e. the genetic materials are not

exchanged in completely random fashion but between genes that have similar

CHAPTER 2. RELATED WORK 25

function [Rid1996]. In the grammar guided genetic programming system, the

metaphor of that homology is two sub-derivation trees starting with the same

non-terminal symbol.

Mutation is performed by selecting an internal node at random. The non-

terminal on this node is noted, and the sub-derivation tree rooted there is deleted.

A new sub-derivation tree starting from the same non-terminal is randomly gen-

erated to replace the deleted one. Figure 2.12 shows how the mutation operator

works.

b

B

a

c

S

S

c

S

S

A

S

BA

S

a ab b

B

b

B

a

Figure 2.11: Crossover operator in GGGP

Parameters. Parameters include the population size (POPSIZE), maximal

number of generations (MAXGEN), maximal depth for the individual (G deriva-

tion trees), and probabilities for the application of the operators.

Apart from the work by Whigham, Wong, and Schultz, there have been a num-

ber of similar grammar guided genetic programming systems, using derivation

trees from a grammar as the representation for individuals. Gruau ([Gru1996])

presented some strong arguments for the use of context-free grammars as a tool

CHAPTER 2. RELATED WORK 26

a b

S

A B

b aa

S

A B

Figure 2.12: Mutation operator in GGGP

to set language bias on individuals. His resultant grammar guided genetic pro-

gramming system is very similar to Whigham’s CFG-GP. However, no depth

was used to restrict the size of programs, potentially leading to code bloat prob-

lems. [Kei1999, Rat2000], introduced a grammar guided genetic programming

system similar to Whigham’s CFG-GP, but with a different initialisation pro-

cess [Rat2000], to solve some industrial problems. The resultant system was

known as dimensionally-aware genetic programming. Some recent versions of

CFG-GP were also implemented in specific programming or web languages, in

which the CFG is represented in Backus-Naur Form (BNF) [Tan2003a, Tan2003b,

Tan2003c], [Mac2003].

During the past ten years, there have been a number of on-going projects

on extensions to tree-based grammar-guided genetic programming, mainly by

using formalisms that are extensions of, and therefore more expressive than,

CFGs and/or logic grammars. These include using CFGs with linear constraints

[Bru2002]; Stochastic Context-Free Grammars (SCFGs) [Whi1996], [Rat2001a],

[Rat2002]; attribute grammars [Hus1998, Hus1999, Zva2004]; Definite Clause

Translation Grammars (DCTG - an extension of the DCG grammars used in

Wong’s LOGENPRO system to incorporate semantics) [Ros2001].

CHAPTER 2. RELATED WORK 27

2.4.3 Grammar-Guided Genetic Programming with Lin-

ear Representation

As in standard genetic programming, there have been a number of attempts to

linearise the representation of programs in grammar guided genetic programming.

The main methodology was to use a genotype to phenotype mapping, where the

genotype is a linear sequence, and the phenotype is the derivation tree of the

grammar (G). In the early work ([Kel1996],[Pat1996, Pat1997] 1,[Fre1998]), the

genotype was a fixed string that is used to encode the index for derivation rules

in G. The translation from a genotype to a phenotype is carried out from left

to right, and the phenotype (G derivation tree) is built correspondingly. At each

step, if there is still an uncompleted branch in the phenotype marked by a non-

terminal A, a gene (number of bits) is read and interpreted as an integer number,

indicating which, among the rules in the rule set P of G having left hand side

A, will be used to extend that branch of the phenotype. If the phenotype is

completed while there are still unused genes in the genotype, they are ignored

(considered as introns). In the case that the translation uses all the genes, but

the phenotype is still incomplete, some random or default sub-derivation trees

will be used to complete the phenotype. The genetic operators are just those

used in GAs.

The work on GGGP with linear representation that is closest to that in this

thesis is grammatical evolution (GE) [Rya1998a, O’Ne2001b, O’Ne2003]. GE

is an extension of the GGGP systems with linear representation as described

above. Three innovations were added in GE: variable length, redundancy using

the MOD rule, and the wrapping operation. The chromosome in GE has variable

length rather than being fixed. Each gene is an 8-bit binary number, which is

used to determine the rule for a non-terminal symbol when it is expanded. If

the decimal number represented by the gene is bigger than the number of rules

for the non-terminal, the modulo operation is used to calculate the rule number.

1Paterson has more recently extended his system to handle context-sensitive grammars

[Pat2002]

CHAPTER 2. RELATED WORK 28

For example, suppose the non-terminal symbol A is currently being expanded,

and A has 3 rules; if the next gene in the translation process is 7, then the rule

used to expand A is 7 MOD 3= 1. The wrapping operation is used when the

translation from genotype to phenotype has run out of genes when the phenotype

is still incomplete. The translation process starts to re-use the gene from left to

right. If the number of wrappings exceeds a predetermined maximal bound, then

the translation finishes and the (invalid) individual is assigned a very low fitness.

The following is an example of the GE genotype to phenotype mapping process.

Suppose we have a CFG G = (
∑

, N, P, EXP), where
∑

= {+,−, x, y} is the set

of terminal symbols, N = {EXP, OP} is the set of nonterminal symbols, and the

rule set P is as follows (definition of context-free grammars is given in appendix

A)

0 : EXP → EXP OP EXP

1 : EXP → X

2 : EXP → Y

0 : OP → +

1 : OP → −

Figure 2.13 shows an example of genotype to phenotype mapping in GE with

the above grammar. For convenience, decimal rather than binary numbers are

depicted.

Since it was proposed, there have been a range of on-going researches to develop,

EXP

EXP

OP

X Y

0 4 3 5 EXP

−

Figure 2.13: An example of GE genotype-phenotype mapping

CHAPTER 2. RELATED WORK 29

extend, and apply GE in many ways, including a study of the effect of GE

crossover on the phenotype [O’Ne2000a, O’Ne2001a, Kei2001], alternatives to the

MOD rule in genotype-phenotype translation [Kei2002], different search strategies

[O’Su2002], new representations based on the GE representation aiming to reduce

the effects of positional dependence [Rya2002a], implementation of GAs through

GE using an attribute grammar [Rya2002b], and so on.

There are two key problems with the GE representation. Firstly, a valid geno-

type may code for an infeasible (not fitness calculable) phenotype. In the above

example, a genotype such as “0310” cannot be decoded, because the translation

will never finish (it produces unbounded derivation trees of the infinite expres-

sion (X-(X-(X-(X-...)))). Although the problem can be treated by assigning these

individuals very low fitness values, it can become an obstacle for evolution and

search on the GE representation if the proportion of genotypes coding for infea-

sible phenotypes is large 2.

The second problem with GE is that, as with GEP, it does not fulfill the

causality principle. Although there are operators that make small (bounded) and

controllable changes on the genotype, the resulting changes on the phenotype are

unpredictable (and uncontrollable). A small change in a gene at one position may

completely change the expressiveness (coding or non-coding), or even the meaning

(if there is more than one non-terminal in the grammar) of all the genes following

that position. In the extreme, it may change the corresponding phenotype from

feasible to infeasible. For instance “011100001” in the preceeding grammar codes

a valid phenotype; if gene 4 mutates to “0” the genotype becomes “01100001”,

whose phenotype is infeasible.

2Since the mapping is redundant, a genotype like “0310” may have many equivalents - in

this case, 3310 etc.

CHAPTER 2. RELATED WORK 30

2.4.4 Some Problems with Grammar-Guided Genetic Pro-

gramming

As with GP, grammar-guided genetic programming is still far from resembling

GAs despite some significant efforts in this direction. The problems are similar

as those discussed in section 2.3.2.

In tree-based GGGP systems [Whi1994, Won1994, Shz1995], it is even more

difficult than in GP to design operators that can make small and bounded

changes. In addition to the constraints imposed by the GP tree grammar, the

derivation trees in GGGP are even more constrained by the rewriting rules of

the grammars. Therefore, a change to a program, which is the derivation tree

of the grammar [Whi1994, Won1994, Shz1995], could easily result in an invalid

program (invalid derivation tree). The change caused by the operators imple-

mented in those systems so far (sub-derivation tree crossover and sub-derivation

tree mutation), are not controllable as they could destroy large sub-derivation

trees underneath the chosen points for genetic operation. It is also difficult to

implement bio-inspired operators in those GGGP systems. We argue that the

reason is not only the tree-based nature, as in GP, of the derivation trees used

in tree-based GGGP systems for representing programs, but also it is the set of

rewriting rule constraints it must conform.

For GGGP systems with linear representation [Kel1996, Pat1996, Rya1998a,

O’Ne2001b, O’Ne2003] (including, we believe, the recent extensions of GE), the

problems are only partly solved in the sense that it is possible to design operators

that could make small and bounded changes and operators that are bio-inspired

in the genotype space. However, the non-causality in their genotype-phenotype

mapping means that the effect of small and bounded changes disappears in the

phenotype space. Furthermore, as argued later in the thesis, even the bio-inspired

operators could be designed in the genotype space, the context for using those op-

erators might be vague, since the effect on the phenotype space of those operators

might be unpredictable.

CHAPTER 2. RELATED WORK 31

The lacking of operators that could make small and bounded changes could

create a number of problems for GGGP. For example, the absence of such op-

erators means GGGP systems have not had any powerful tool to explore the

neighbourhood structure of their syntactically-constrained search spaces. There-

fore, it is difficult to conduct fitness landscape study on the search spaces of

GGGP systems. Fitness landscape analysis not only helps to reveal the search

difficulty of the problems but also helps to investigate the effect of changing lan-

guage bias (grammars) on the characteristics of the syntactic-constrained search

spaces as shown in chapter 9 of the thesis. The lacking of bio-inspired operators

makes GGGP are very operator-poor (almost all of tree-based GGGP systems

have only two genetic operators mentioned above). The usefulness of bio-inspired

operators are demonstrated in chapter 6 of the thesis.

2.4.5 Applications of Grammar-Guided Genetic Program-

ming

For the last decade, grammar-guided genetic programming systems have been

used to successfully solve a substantial number of academic and real-world prob-

lems, including learning control knowledge for planning [Ale2001]; evolving neural

networks [Tsa2002]; composing music [Put1996, Pue2002]; Predicting time series

[Whi2001a], [Whi2001b], [Bra2002]; estimating software size [Sha2002]; accom-

plishing data mining task [Fre2002], [Won2000]; analysing biological sequences

[Ros2002]; and solving problems in industry [Rat2001b].

2.5 Conclusion

In this chapter, we surveyed a range of works on representation for genetic pro-

gramming and grammar-guided genetic programming. We raised the issues of

preserving topological structures and defining operators that make small and

bounded changes. We pointed out that there is a trend toward linearising tree-

based structures in GP and GGGP, in order to increase its similarity to GAs and

CHAPTER 2. RELATED WORK 32

solve these problems. However, most of the linear representations for GP and

GGGP proposed in the literature do not possess the causality property. There-

fore, the problems persist in the phenotype space.

In the succeeding chapters, a new representation for GP and GGGP is pro-

posed and analysed. The new representation is tree-based but flexible, facilitating

the design of bio-inspired operators making small and bounded changes. More-

over, its genotype to phenotype mapping satisfies the causality property, so that

the changes are also small and bounded on the phenotype space. Those properties

turn out to be very useful, as shown in subsequent chapters of the thesis.

Chapter 3

A Tree Adjoining Grammar

Based Representation for

Genetic Programming

This chapter is intended as a foundation for the thesis, laying out a new represen-

tation for genetic programming (grammar-guided genetic programming), namely

tree adjoining grammar based representation (TAG-based representation). It

starts with some concepts of tree adjoining grammars and tree languages. In

particular, a brief description of some current versions TAG derivation tree is

given, followed by our variant of the concept of TAG derivation trees, specif-

ically optimised as a GP representation. Next, we give an overview of some

general representation principles and guidelines from the literature of evolution-

ary algorithms. Based on these, we define a TAG based representation and dis-

cuss the potential benefits of TAG based representation for genetic programming

(grammar-guided genetic programming). Finally, the conclusion of the chapter

lays out how subsequent chapters will provide more detailed justification for the

use of TAG-based representation.

33

CHAPTER 3. TAG-BASED REPRESENTATION 34

3.1 Tree Adjoining Grammars

Tree adjoining grammars (TAGs) are tree-generating and analysis systems, first

proposed by Joshi et al in [Jos1975]. Tree Adjoining Grammars (TAGs) have

become increasingly important in Natural Language Processing (NLP) since their

introduction.

The aim of TAGs is to more directly represent the structure of natural lan-

guages than is possible in Chomsky languages, and in particular, to represent the

process by which natural language sentences can be built up from a relatively

small set of basic linguistic units by inclusion of insertable sub-structures. Thus

‘The cat sat on the mat’ becomes ‘The big black cat sat lazily on the comfortable

mat which it had commandeered’ by the subsequent insertion of the elements

‘big’, ‘black’, ‘lazily’, ‘comfortable’, ‘which it had commandeered’. In context-

free grammars (CFG)(Chomsky’s formalisms of type 2), the relationship between

these two sentences can only be discerned by detailed analysis of their derivation

trees; in TAG representation, the derivation tree of the latter simply extends

the frontier of the former. To put it another way, the edit distance between

the derivation trees of these closely related sentences is much smaller in TAG

representation than in CFG representation.

Furthermore, one of the primary motivation for TAGs is to reply to the chal-

lenge in natural language processing for building a formalism to capture the long

distance relationships between sub-structures such as subject-verb agreement.

This capture is required even when the distance might change arbitrarily such

as in ’wh-movement’ phenomenon (given in 3.1.3). By using elementary trees

(defined in the next subsection) rather than flat rules as in CFGs, TAGs can

extend the domain of locality to cover through several equivalent rules level in

CFG derivation trees; and, by using the adjunction operation (defined in the

next subsection), TAGs can simulate the moving relationships between the sub-

components of sentences as in ’wh-movement’ phenomenon.

In the initial formulation, the only tree rewriting operation in TAGs was ad-

CHAPTER 3. TAG-BASED REPRESENTATION 35

junction (described below) and the formalisms were called tree adjunct grammars.

After a sequence of developments in [Jos1977, Jos1985, Jos1987, Jos1991], a new

operation called substitution (described below) was added, and the formalisms

were re-named tree adjoining grammars.

Since TAGs (tree adjunct grammars and tree adjoining grammars), from their

only days were shown to possess a number of invaluable properties for han-

dling various issues in natural language processing [Jos1985, Kro1985, Kro1987].

Therefore, from the mid-1980s, there has been a surge in the study and applica-

tions (mainly in natural language processing) of TAGs. An entire international

journal issue was devoted to the study of TAGs [SPECI1994] and a project was

dedicated to develop a tree adjoining grammar for English [XTA1995]. A recent

comprehensive overview of TAGs can be found in [Jos1997].

In the next four subsections, some basic concepts of TAGs and TAG derivation

trees is given.

3.1.1 Definitions of Tree Adjoining Grammars

In this subsection, a number of the basic definitions of tree adjoining grammars

are given. Firstly, the standard definition of tree adjoining grammars (and their

lexicalised version) from [Jos1997], and then the concepts of their languages (both

tree and string), is defined.

Definition 3.1 (Tree Adjoining Grammars)

A tree adjoining grammar is a tree-rewriting system comprised of a quintuple

(
∑

, N, I, A, S), where:

(i)
∑

is a finite set of terminal symbols.

(ii) N is a finite set of non-terminal symbols: N ∩ ∑
= ∅.

(iii) S is a distinguished non-terminal symbol: S ∈ N .

(iv) I is a finite set of finite trees, called initial trees (or α-trees). In an initial

tree, all interior nodes are labeled by non-terminal symbols, while the nodes on

the frontier are labeled either by terminal or non-terminal symbols. Non-terminal

symbols on the frontier of an initial tree are marked as ↓ for substitution.

CHAPTER 3. TAG-BASED REPRESENTATION 36

(v) A is a finite set of finite trees, called auxiliary trees (or β-trees). In an

auxiliary tree, all internal nodes are labeled by non-terminal symbols. A node

on the frontier is labeled either by a terminal or a non-terminal symbol, and all

nodes on the frontier labeled by non-terminal symbols, except for one special

distinguished node, are marked as ↓ for substitution. That distinguished node is

known as the foot node. The foot node must be labeled by the same non-terminal

symbol as that of the trees root node, and is usually marked with an asterisk (*).

The trees in E = I∪A are called elementary trees. Initial trees and auxiliary trees

are denoted α and β respectively. A node labeled by a non-terminal (terminal)

symbol is sometime called a non-terminal (terminal) node. A tree with a root

labeled by a non-terminal symbol X is called an X-type elementary tree. In

essence, an α-tree with all terminal symbols on its frontier is just like a minimal

complete sentence, while a β-tree is a minimal recursive structure used to modify

complete sentences (by using adjunction described below).

An example of TAGs. G1={∑
, N, I, A, S}, where

∑
is a set of English words,

N = {S, V P, NP, V } and E = I ∪ A as in Figure 3.1.

V

loved

NP

VPpeanuts NP

NP

α1 α2 α3 β1
NP

Hoai

S VP

VP*

Has

V

Figure 3.1: A simple TAG for some English sentences

The key operations used with tree-adjoining grammars are the adjunction and

substitution of trees. Adjunction builds a new (derived) tree γ from an auxiliary

tree β and a tree λ (initial, auxiliary or derived). If a tree has an interior node

labeled A, and β is an A-type tree, the adjunction of β into λ to produce γ is as

follows. Firstly, the sub-tree λ1 rooted at A is temporarily disconnected from λ.

Next, β is attached to replace the sub-tree. Finally, λ1 is attached back to the

CHAPTER 3. TAG-BASED REPRESENTATION 37

foot node of β. γ is the final derived tree achieved from this process. Adjunction

is illustrated in Figure 3.2.

V
has

VP

V

S

NP

X

X

X*

X

X

loved

NP VP

NP

loved

S

V

α3

NP

VP

β1

has

VP

VP*V

Figure 3.2: Adjunction Operation.

In substitution, a non-terminal node on the frontier of an elementary tree is

substituted by another initial tree with a root labeled with the same non-terminal

symbol. Substitution is illustrated in Figure 3.3.

X

X

X

VP

NP

loved

S

V

NP

Hoai

NP

Hoai

α2 α3

NP VP

NP

loved

S

V

Figure 3.3: Substitution

The tree set (tree language) of a TAG G can be defined as follows:

Definition 3.2 (Tree Set of TAGs)

CHAPTER 3. TAG-BASED REPRESENTATION 38

TG = { all trees t / t is completed and t is derived from some initial S-trees

through some adjunctions and substitutions }.
where a tree t is completed if all of the leaf nodes of t are labeled by terminal

symbols. The string language generated by G is defined as follows:

Definition 3.3 (String Set of TAGs)

LG = { w ∈ ∑∗ / w is the yield of some tree t ∈ TG }.
where the yield of a tree is the string composed by reading off all the leaves of

the tree in left-to-right order.

We previously noted that in the early days [Jos1975, Jos1977, Jos1985], the

only operation in TAGs was adjunction. Later, substitution was added. The

addition of substitution does not change the generative power of TAGs. In other

words, it is possible to use TAGs with adjunction as the sole operation to generate

all the tree and string sets which can be generated by TAGs using both adjunction

and substitution [Jos1997]. However, the addition of substitution, in practice,

helps to make the formalism more compact, by reducing the size of its elementary

tree set.

A special type of TAG known as a lexicalised TAG (LTAG) can be defined as

follows [Jos1997]

Definition 3.4 (Lexicalised TAGs)

A lexicalised tree adjoining grammar (LTAG) is a tree adjoining grammar (TAG)

satisfying the requirement that each of its elementary trees contains a terminal

node.

Although there are more constraints on LTAGs, it can be shown that LTAGs

are equivalent to TAGs, in the sense that LTAGs are capable of generating any

TAG tree or string set. In this thesis, we will subsequently only need to use LT-

AGs. So we will abbreviate by using the terms tree adjoining grammars (TAGs)

and lexicalised tree adjoining grammar (LTAGs) interchangeably. We will usually

denote an LTAG with the notation Glex.

CHAPTER 3. TAG-BASED REPRESENTATION 39

3.1.2 Derivation Trees in Tree Adjoining Grammars

In TAGs, there is a distinction between the derivation and the derived tree,

where the former encodes the history of adjunctions (and substitutions) used to

generate the latter. There are at least three definitions of TAG derivation trees in

the literature, given in [Sha1987, Wei1988], [Sch1994], and [Jos1997]. After they

are given and discussed briefly below, we will present our own variant specialised

for our application as a GP representation.

Standard Definitions of TAG-derivation trees

The concept of TAG derivation trees was first given in [Sha1987], and clarified

in [Wei1988]. The following definition of TAG-derivation trees is adapted from

[Wei1988]. We note that, at the time Shanker, and subsequently Weir, defined

the concept of TAG derivation trees, the only operation they used in TAGs was

adjunction.

Definition 3.5 (Weir’s conception of TAG derivation trees)

A TAG derivation tree is a labeled object tree, characterised as follows. The root

node is labeled with the name of an S-type initial (α) tree in the elementary tree

set; the nodes other than the root are each labeled with the name of an auxiliary

(β) tree in the elementary tree set. Each link between a parent and a child

node is labeled with an index number, indicating the place in the elementary tree

represented by the parent node to which the auxiliary tree represented by the child

node is to be adjoined. For instance, suppose the parent node is labeled γ1 (an

elementary tree of the grammar), the child node is labeled β1 (an auxiliary tree

of the grammar), and the link between the two nodes is labeled with an integer

5. Assuming that all the nodes of an elementary tree are indexed by an integer,

namely its occurrence position when the elementary tree is traversed in preorder,

the two above nodes and the link between them mean, when constructing the

derived tree from the derivation tree, that an adjunction of β1 into γ1 is carried

out at node 5 (in preorder traversal) of γ1.

CHAPTER 3. TAG-BASED REPRESENTATION 40

Figure 3.4 depicts Weir’s concept of a derivation tree in TAGs. We note that

the translation (decoding) of a derivation tree into a derived tree proceeds in a

bottom-up manner using adjunctions.

2
1

1

1 2

β1β4 β3

β2β1

α1

Figure 3.4: Weir’s TAG derivation tree

In Weir’s derivation tree, each adjoining address (node) permits only one

adjunction. In other words, all the labels on the links from a parent node to

each of its child nodes are unique. Thus the order of adjunctions at each node is

not important. However, in practice, it is more convenient if this order is fixed

(for example from left to right). If a fixed order of adjunction is employed, the

derivation tree is said to be in canonical form. From this point on, we will assume

that all derivation trees are in canonical form (i.e. that there is a fixed order for

carrying out adjunctions). Consequently, for each TAG derivation tree, there is

only one way to translate (decode) it into the corresponding derived tree.

TAG-derivation trees defined as above have a rather interesting property

which, to the best of our knowledge, has not been discussed and/or used in

the field of natural language processing. Since (Weir’s) TAG derivation tree is

an object tree, it is possible to remove any subtree, and the resultant tree is

still a perfectly valid TAG derivation tree (so its derived tree is still a complete

derived tree). In other words, the arity (number of children) of each node in a

TAG derivation tree is not fixed. For instance, suppose that the elementary tree

γ labels a node a in a TAG derivation tree t. Moreover, assume that γ has k

CHAPTER 3. TAG-BASED REPRESENTATION 41

available adjoining addresses. Then, a can have j children, for any 0 ≤ j ≤ k.

This property of (Weir) TAG derivation trees we call the non-fixed arity property.

The usefulness of this property will be subsequently discussed and shown in this

thesis.

Definition 3.6 (Schabes-Shielber conception of TAG derivation trees)

The definition of TAG derivation tree in [Sch1994] is essentially the same as

Weir’s, with the exception that it permits multiple adjunctions at each adjoining

address. Figure 3.5 depicts a Schabes-Shielber TAG derivation tree.

1111

21

Figure 3.5: Schabes-Shielber TAG derivation tree

Despite the extension in allowing multiple adjunctions at one address, it was

shown in [Sch1994] that the Schabes-Shielber definition of derivation tree is ex-

actly equivalent to Weir’s. Although it is argued in [Sch1994] that the admission

of multiple adjunctions at each address makes TAG derivation trees more rel-

evant to linguistics, it has an important limitation for our purposes. Allowing

multiple adjunctions at an address can potentially lead to an unbounded-arity

phenomenon in the TAG derivation tree (i.e. there is no limit to the number of

children which might be adjoined at a given node). There is a strong possibility

that unbounded arity would increase the complexity of GP search.

Definition 3.7 (Joshi-Schabes conception of TAG derivation trees)

The root of a derivation tree is labeled by an S-type initial (α) tree. All other

nodes are labeled by auxiliary (β) trees in the case of adjunction, or initial (α)

trees in the case of substitution. A tree address is associated with each node

(except the root node) in the derivation tree. This tree address is the node in

CHAPTER 3. TAG-BASED REPRESENTATION 42

the elementary tree labeling the parent node on which the adjunction or substi-

tution is performed. Figure 3.6 depicts such a TAG derivation tree, in which the

unbroken lines denote adjunction and the broken lines denote substitution.

α2α1

2
1

1

1 2

β4

β2β1

α1

Figure 3.6: Joshi-Schabes TAG derivation tree

In essence, Joshi-Schabes conception of TAG derivation trees [Jos1997] is the

natural extension of Weir’s to include substitution. However, we note that Joshi-

Schabes’ TAG derivation trees have lost the non-fixed arity property satisfied by

Weir’s. Although the derivation tree is still valid when any subtree is removed, the

derived tree might not remain completed if an initial tree used for substitution is

deleted (e.g if in figure 3.6, α1 is deleted). Nevertheless, Joshi-Schabes definition

of TAG-derivation tree is equivalent to Weir’s definition, since it is always possible

to use TAG with adjunction only [Jos1997].

A Special Form of TAG-derivation Trees

As discussed above, the Schabes-Shielber conception of TAG derivation tree raises

the problem (from a GP perspective) of unbounded arity. On the other hand,

Weir’s conception possesses a potentially useful property, namely non-fixed arity.

However Weir’s TAG conception does not allow substitution. To use Weir’s form,

one must use a TAG without substitution, in practice resulting in a very verbose

formalism. Joshi and Schabes incorporated substitution in their definitions but

in the process lost the non-fixed arity property.

CHAPTER 3. TAG-BASED REPRESENTATION 43

In order to maintain the non-fixed arity property, while incorporating sub-

stitution in TAG derivation trees, we give a new formulation of TAG derivation

trees below.

Definition 3.8 (TAG derivation tree with restricted substitution)

A TAG derivation tree is defined as in definition 3.7, except that no adjunc-

tion is permitted at a node representing an initial tree used for substitution (in

other words, this ensures that all adjunctions occur before any substitutions are

attempted).

In essence, our conception of TAG derivation tree is very similar to Joshi-

Schabes. The only difference is that if a node is labeled by an initial tree, and

the link to its parent node indicates that the operation is substitution, then

this node must not have any children. With this restriction, we can regard

substitution as an in-node operation. In other words, our form of TAG derivation

tree is a tree of objects in which the links between them indicate adjunction (at

specified) addresses, and each node has an attached list of initial trees (called

lexemes) to be substituted into opened nodes (called lexicons) in the elementary

tree labeling this node. Since the type of the derivation tree is a object-tree, the

non-fixed arity property in Weir’s definition is maintained, while it also facilitates

the substitution operation for compacting the formalism just like in Joshi-Schabes

derivation trees. Figure 3.7 shows the structure of this type of TAG derivation

tree. The places for the substitutions of α1 and α2 into α3 are determined by

the preorder tree traversal of α3 (i.e at N and at V).

It should be noted that our new formulation of TAG derivation tree does not

change the generative power of TAGs, since TAG can work without substitution

(and hence with restricted substitution). In practice, our type of TAG derivation

tree can be realised simply by designing TAGs with no adjoining addresses in

initial trees that are used for substitution.

Notational conventions:

• From now on, we use the term “TAG derivation tree” to denote the form

defined in definition 3.8.

CHAPTER 3. TAG-BASED REPRESENTATION 44

β1

α3α1, α2

peanutsloved

NPV

V

Has

VP

VP

Hoai

NP

S

β2β1 β3

β1β2

α1Lexemes

Lexemes

Lexemes Lexemes

LexemesLexemes

211

21

Figure 3.7: Example of the new form of TAG derivation tree.

• Since the substitution is an in-node operation in this representation, it is

often omitted (e.g. in figures) where this does not cause confusion.

• The initial trees used for substitution (i.e. the list attached to nodes of a

TAG derivation tree as in Figure 3.7) are called lexemes. The locations into

which lexemes are substituted are known as lexicons.

• For the sake of brevity and convenience, we use the phrase “node n” in a

TAG derivation tree to mean the elementary tree node labeled by n.

3.1.3 Some Properties of TAGs

Apart from the non-fixed arity property of their derivation trees, TAGs have a

number of other interesting properties, especially from a linguistic perspective.

A comprehensive survey can be found in [Jos1997]. In this subsection, we restrict

our attention to some properties of TAGs that are relevant to GP. We simply

state their relevance here, and explore them in more detail later in the thesis.

Regarding the generative power of TAGs, we have the following:

CHAPTER 3. TAG-BASED REPRESENTATION 45

• The TAGs string languages strictly include CFG languages, and are strictly

included in indexed languages.

• The set of CFG derivation trees is strictly included in the set of TAG tree

languages.

• For every context-free grammar G, there is an LTAG Glex such that the tree

language of Glex is the set of G derivation trees. Glex is said to strongly

lexicalised G.

• A number of algorithms for finding Glex for a given CFG G are proposed in

[Sch1990], [Sch1993a], [Sch1993b], [Sch1995], and [Jos1997]. The algorithm

given in appendix A and used in this thesis is from [Sch1990]. We note that

this algorithm is based on the ideas of separation between the recursive

parts (structure) and non-recursive parts (lexicon) of the CFG G.

• The only operation necessary in the resultant LTAG (Glex) is adjunction.

However substitution can be added to make the elementary set more com-

pact. Moreover, it is possible to restrict the substitution trees to the non-

recursive parts of the grammar. In so doing, the initial tree used for sub-

stitution can not be adjoined by other auxiliary trees.

• Glex derivation trees are represented as our special form of TAG derivation

tree defined in the previous subsection.

Two very important characteristics of TAGs have been emphasized in the lin-

guistic literature, namely the extended domain of locality (ELD) and factoring

recursion from the domain of dependencies (FRD) [Jos1997].

Extended domain of locality (ELD). In CFG, the domain of dependencies

between lexicons is restricted to one (string) rewriting rule. Consequently, it

is difficult for CFGs to represent the long-distance dependencies between lexi-

cons that extend over several grammar rules, for example English subject-verb

agreement. In TAGs, since the primitives of the formalism are elementary trees,

which can incorporate several CFG rules, the domain of dependencies is generally

CHAPTER 3. TAG-BASED REPRESENTATION 46

larger, so that useful dependencies between lexicons in an elementary tree can be

specified. ELD means that TAGs can capture long-distance dependencies that

are difficult to represent with CFGs.

Factoring recursion from the domain of dependencies (FRD). As well

as capturing specific long-distance dependencies directly into elementary trees,

TAGs can also capture expandable long-distance dependencies. The expand-

able long distance dependencies are an important phenomenon in natural lan-

guages such as English. An example is the well-known “wh-movement” [Gri1986,

Mol1988, Bar1998]. For instance, the long-distance dependency between “who”

and “like” in “who did Maria like?” can be factored into an even longer sub-

jacency as in “who did Bill say that Maria likes?”. In TAGs, the adjunction

operation helps to factorise the dependencies captured in the elementary trees,

since it can increase the subjacency distance between the lexicons [Jos1997].

The following example illustrates ELD and FRD in an LTAG.

An example of ELD and FRD in TAGs. We give a simple context-free

grammar G for a fragment of English as follows. G = (N,
∑

, P, S), where N={S,

NP, VP, ADVP, ADV, V, NP}, ∑
= {Hoai, I, You, They, We, likes, like, peanuts,

passionately, absolutely, really,...}. The (string) rewriting rule set P is:

Syntactical rules

1. S → NP V P

2. V P → ADV P V NP

3. V P → V NP

4. ADV P → ADV P AV

Lexical rules

5. NP → Hoai|I|Y ou|We|They

6. NP → peanuts

7. V → likes|like

8. ADV → really|absolutely|passionately

We apply the algorithm in [Sch1990, Jos1997] (given in Appendix A), to generate

Glex strongly lexicalising G: Glex = (
∑

, N, I, A, S), where
∑

and N are as in G.

CHAPTER 3. TAG-BASED REPRESENTATION 47

The elementary tree set E = I ∪ A is given in Figure 3.8 (the lexicons L1 and

L2 are to be substituted with lexemes using the above lexical rules; i.e L1 can be

replaced with one lexeme in the left part of rule 5, and L2 can be replaced with

one lexeme in the left part of rule 8).

ADVP

VP

V

like(s)

NP

L1

S ADVP

ADV ADVP*

ADV

L2

L2

β1

L1

α1

NP

Figure 3.8: Another simple TAG for some English sentences

The sentence “Hoai passionately likes peanuts” exemplifies ELD: Figure 3.10

shows its derivation tree and derived tree. The dependency is the subject-verb

agreement between “Hoai” and “likes”. We note that it is not possible to enforce

this dependency in G, since it stretches through a number of the rule levels. Since

the domain of dependency of Glex consist of several rule levels, it is much larger

than that of G, which is limited to one rule level. So it is easier for Glex to capture

the long distance dependency than is is for G.

The effect of FRD can be seen by adjoining β1 at node ADVP, giving “Hoai

absolutely passionately likes peanuts”. Again, this effect cannot be reproduced

in the CFG.

CHAPTER 3. TAG-BASED REPRESENTATION 48

likes

passionately

Hoai

ADV

S

NPV

VP

ADVP

NP

α1

peanuts

Figure 3.9: An example of ELD in TAGs

Hoai

S

NPV

VP

ADVP

NP

peanuts

ADVP*

ADVP

ADVP likeslikes

passionately

Hoai

ADV

S

NPV

VP

ADVP

NP

α1

peanuts

β1

absolutely

ADV

absolutely

ADV

passionately

ADV

Figure 3.10: An example of FRD in TAGs

3.2 Tree Adjoining Grammar Based Represen-

tation for Genetic Programming

3.2.1 Representation in Evolutionary Algorithms

In the field of evolutionary algorithms (EAs), the representation is the first de-

cision a designer has to make. For example, the differences between the genetic

programming systems discussed in the previous chapter lay primarily in their

representations. Although representation is such a vital issue for EAs, there is

only limited theory on what makes a good representation [Rot2002], though a

number of general guidelines or principles have been proposed.

Goldberg’s Principles of representation. Goldberg [Gol1989], proposed two

very early general principles for designing a representation, the principles of mean-

CHAPTER 3. TAG-BASED REPRESENTATION 49

ingful building blocks and of minimal alphabets:

• Principle of meaningful blocks: The schemata should be short, of low order,

and relatively unrelated to schemata over other fixed positions.

• Principle of minimal alphabets: The alphabet of the encoding should be as

small as possible, while still allowing a natural representation of solutions.

From analysing representation issues, Palmer and Kershenbaum in [Pal1994a,

Pal1994b, Pal1994c] formulated general guidelines for representation in evolu-

tionary algorithms [Pal1994b]:

• A representation should be able to represent all possible phenotypes.

• A representation should be unbiased in the sense that all possible individ-

uals are equally represented in the set of all possible genotypic individuals.

• A representation should not permit infeasible solutions.

• The process to translate a genotype to its corresponding phenotype should

be simple.

• A representation should possess locality (or causality). Small changes in

the genotype should result in small changes in the phenotype.

A few year later, Ronald ([Ron1997]) surveyed a number of principles for repre-

sentation in genetic algorithms from the literature and summarised the following

set of guidelines:

• Representation should be adjusted to a set of genetic operators so that the

building blocks are preserved from the parents to the offspring.

• Representation should minimise epistasis.

CHAPTER 3. TAG-BASED REPRESENTATION 50

• Feasible solutions should be preferred.

• The problem should be represented at the correct level of abstraction.

• Representation should exploit an appropriate genotype-phenotype mapping

process, if a simple mapping to the phenotype is not possible.

• The phenotype should not be represented by more than one genotype.

In [Rot2002], a framework for analysing an EA representation was proposed. A

representation can be investigated from three perspectives, namely redundancy,

building block scaling, and distance distortion.

The redundancy perspective studies whether a representation’s genotype-

phenotype mapping is many-to-one, and whether any redundancy is useful. As

demonstrated in [Shi1999, Sha2000, Shi2000], redundancy is useful if it can form

extended and connected neutral walks on the genotype space. By drifting along

this neutral walk, an evolutionary search can escape from local optima. In

[Sha2000, Rot2002], it was shown that uniform redundancy is harmful for EAs.

Thus Ronald’s principle 6 should be expanded with “for redundant genotype-

phenotype mappings, keep in mind that some will be useful whereas other might

be harmful”.

The building block scaling perspective studies how a representation changes

the size of primitive building blocks for solving a problem.

The last perspective, distance distortion, considers the degree of distortion a

genotype-phenotype mapping introduces into the mapping between their distance

metrics. It was argued in [Rot2002] that a low distance distortion is desirable.

Moreover, it is argued in [Rot2002] that achieving a low distance distortion,

requires the locality property, i.e. Palmer’s last principles of representation. We

note that the locality property is perhaps the most thoroughly studied in the

EA literature, and has been thoroughly validated throughout the subfields of

EA as one of the most important properties that a representation should possess

[Rec1973, Ros1995, Sen1997, Ige1998, Dro1998, Got1999, Sta2000, Leh2003].

CHAPTER 3. TAG-BASED REPRESENTATION 51

For most EA fields, the representation imposes only very limited restrictions

on the design of operators; however as discussed in the previous chapter, this is not

generally the case for GP and GGGP. Hence we add a further principle, namely

that it is desirable for a representation that it facilitates the design of a wide

range of search operators, especially those which cause bounded and controllable

variation. In the next subsection, we introduce a new representation for GP

(GGGP). We aim to investigate throughout this thesis the extent to which it

satisfies the principles above, and to show that it possesses a number of the

proposed useful properties.

3.2.2 TAG-based representation

In this section, a new representation, namely TAG-based representation, for ge-

netic programming (GGGP) is introduced. We discuss its compliance with the

preceding principles, and give some arguments why TAG-based representation

might be desirable, indicating how the detail is provided in the rest of the thesis.

Our TAG-based representation for GP (GGGP) uses the LTAG derivation

trees from the previous section as the representation for the GP genotype. The

problem domain is described by an LTAG grammar, Glex, just as in [Whi1995b,

Whi1995c], it is constrained or biased by a Chomsky grammar (CFG or other-

wise). Since TAGs can generate the tree set of context-free languages and of

some context-sensitive languages, the TAG-based representation can be used to

solve problems in the domain of context-free as well as of some context-sensitive

languages as in [Won1997].

While the search of the problem domain is conducted on TAG derivation

trees, the fitness evaluation is carried out on the derived trees decoded from them.

Therefore, the TAG-based representation has a natural genotype-phenotype map-

ping, whereby genotypes are TAG derivation trees and phenotypes are their cor-

responding derived trees (or course, just as in GGGP, there is often a further

mapping from the derived tree to a term tree or other phenotype, so that the

derived tree is only an intermediate phenotype). A grammar guided genetic

CHAPTER 3. TAG-BASED REPRESENTATION 52

programming (called TAG3P) using this representation is designed in the next

chapter.

While Palmer’s first four general principles are relatively straightforward, it

may not be obvious that the TAG representation satisfies Palmer’s locality prop-

erty. In more mathematical terms, this requires us to prove that the mapping

from TAG derivation trees to derived trees is Lipschitzian [Rud1976] (described

below). However, before proving this, it is necessary to discuss potential metrics

in the derivation tree and TAG derived tree spaces.

In the GP literature, a number of researchers ([Eka2002],[Cle2002], [Van2003a],

[Van2003b], [Eka2004]) have used the tree-alignment metric to measure the dif-

ference between two labeled trees. To compute the tree-alignment metric, the two

trees are aligned top-down from the root, and the differences (in terms of label,

arity) between nodes are accumulated by certain calculating functions. However

this metric, while it has some useful properties, corresponds poorly to our intu-

ition of labeled tree distance. For instance, if the difference between two trees

t1 and t2 is only at the root node, (e.g t1 is formed from t2 by adding a new

root node), the tree alignment distance between them is large while our intuition

views them as similar (i.e the distance between them should be small). Figure

3.11 depicts the situation in this example.

b

bb

b b

a

b

bb

b b

Figure 3.11: An example of the conflict between tree alignment metric and the

intuitive sense of the similarity between two trees. The left and the right trees are

very similar in the intuitive sense but far from each other using tree alignment

metric

CHAPTER 3. TAG-BASED REPRESENTATION 53

Consequently, the tree metric adopted here is the tree edit distance proposed

in [Lu1979] and used elsewhere in genetic programming [ORe1997]. In [Lu1979],

the tree edit distance between two labeled trees is defined as the length of the

shortest sequence of editing operations that transforms one tree to another. The

editing operations are deleting a node, inserting a node, or changing the label of

a node. With edit distance as the metric, the mapping between derivation and

derived trees is Lipstchitzian, so that the mapping has the locality property.

Theorem 1 For every TAG Glex, suppose that f is the map used to decode Glex

derivation trees into corresponding Glex derived trees, then, for all pairs of Glex

derivation trees u, v, there is always a fixed constant M > 0 such that f satisfies

the following inequality:

d(f(u), f(v)) ≤ M × d(u, v) (3.1)

where f(u) and f(v) are the two derived tree of u and v respectively, and d is

the tree edit distance (If a map f satisfies the above inequality, it is called a

Lipschitzian map).

Proof: Let M be the maximal number of nodes in an elementary tree in the

elementary tree set E of Glex. Since E is finite, and all elementary trees in E

are finite, it is always feasible to choose such an M . If the tree editing distance

between u and v is k, then there are k operations involving the addition and/or

deletion of nodes to transform u to v (and vice versa). Thus, each node in u (or

v) is labeled by an elementary tree t ∈ E, that has at most M nodes. Moreover,

since an adjunction between two elementary trees does not change the meaning

or the number of nodes in them, it is deduced that the number of node differences

(using node addition, deletion, or relabeling) between f(u) and f(v), two derived

trees of u and v, are at most M ×k. Therefore, the tree editing distance between

f(u) and f(v) is less than or equal to M × d(u, v).

Theorem 1 shows that the genotype-to-phenotype map in the TAG-based

CHAPTER 3. TAG-BASED REPRESENTATION 54

representation has the locality property: “small change in genotype will result

in small change in phenotype”. In fact the scale of change from genotype to

phenotype is bounded by the size of the biggest elementary tree in Glex. Having

proven that, it is also possible to change this scale of change by crafting the

elementary trees of Glex with different sizes. In practice, throughout this thesis,

M is usually relatively small.

For Rothlauf’s framework [Rot2002], we discuss the redundancy properties in

chapter 8. The other issues are discussed in concrete terms in the next subsection.

3.2.3 A Working Example of TAG-based representation

In this subsection, an example of TAG-based representation and its translation

from genotypes to phenotypes are illustrated. The grammars are taken from one

of our work [Hao2005]. The task in citehoaihao2 is to elvolve equations defined

by the following CFG:

G = (N,
∑

, P, S), where N={S,T,OP}, ∑
={pow,+,-,*,/,p,n,s,t,l,o,co,chla,r1,r2}.

The rule set P is as follows:

S → T

T → T OP T

T → T pow r1

T → p|n|s|t|l|o|co|chla|r2
OP → +| − | ∗ |/

Using algorithm given in appendix A, we have the corresponding LTAG Glex

as follows: Glex = (
∑

, N, I, A), where
∑

, N are the same as in G. The elementary

tree set I ∪ A of Glex is given in figure 3.12.

Figure 3.13 follow demonstrates how a genotype in TAG-based representation

for this problem (a derivation tree in Glex) can be translated into its corresponding

phenotype (a derivation tree in G).

CHAPTER 3. TAG-BASED REPRESENTATION 55

Figure 3.12: The elementary trees for Glex. L1 is a lexicon that can be substituted

with any lexeme in (p,n,s,t,l,o,co,chla,r1,r2)

.

3.2.4 Why TAG-based representation ?

In this subsection, the justifications for the use of TAG derivation tree as a new

representation for genetic programming are outlined. These discussions will be

amplified in more detail in later chapters.

The main justification for the use of TAG-based representation in GP is that

it can be exploited to solve a number of difficulties in GP and GGGP metioned in

chapter 1 and 2. Of course, it is not the only representation able to provide such

solutions, and indeed our primary emphasis is on the importance of these design

issues as exemplified by TAG representation. However it is, perhaps, unusual in

the range of issues that it is able to handle (as depicted in the sequel chapters).

The non-fixed arity property of TAG derivation tree permits the design of a

wide range of genetic and/or search operators, which are difficult to implement

in many other representations, notably GP and GGGP. This is discussed in chap-

ters 4 and 6. In particular, it is easy to design operators that make small and

bounded changes. In other words, the degree of change is controllable. Together

with the locality property of the genotype-phenotype mapping, it means that

CHAPTER 3. TAG-BASED REPRESENTATION 56

S

τ

T

T

chla

T+

0.12powT*

T

τ

T

S

τ

S

0

1

1

α4 τ

T

pow

+ T

chla

T

T

τ

0.12

α4

chla

T+T*

T

+chlaβ2

β2

+chlaβ2

0.12β1

chla +

α4 τ

β1 0.12

Figure 3.13: Translation from a genotype to a phenotype. The first four parts

are the intermediate steps. The final genotype and final phenotype are given at

the bottom of the figure

the change induced by those operators is also bounded and controllable in the

phenotype space. These properties, in turn, can be used (chapter 8) to soften

the structural difficulty problem in GP (and GGGP), which appears to result

from the unboundedness (or discontinuity) of standard GP operators. A second

advantage of the controllability of the scale of operator change lies in the ability

to simply conduct studies of GP fitness landscapes, especially on syntactically

constrained domains, since it is possible to make short moves from one point in a

search space to others in its neighbourhood; this is otherwise particularly difficult

on syntactically constrained domains. The study of fitness landscapes is covered

in chapter 9.

Finally, since the TAGs are tree grammars, and their derivation trees are

CHAPTER 3. TAG-BASED REPRESENTATION 57

hierarchical object-trees, it is possible to define and investigate the propagation

of search schemata, in which the concept of schemata unifies all three aspects of

schemata in GGGP, namely as program component, as search space component,

and as language formalism. This is discussed further in chapter 7.

3.3 Conclusion

In this chapter, a new representation for GP and GGGP has been introduced,

based on a relatively new formalism from the field of natural language processing,

namely tree adjoining grammars (TAGs). We pointed out that a number of well-

known virtues of TAGs for handling issues in natural language processing might

also be helpful in the field of GP (and especially GGGP). The representation has

been informally tested against well-known principles for EA representation from

the literature. As a foundation chapter for the thesis, it not only outlines some

justifications for the use of the new representation, but also points to where those

justifications are examined in detail in the thesis.

Chapter 4

A Tree Adjoining Grammar

Guided Genetic Programming

System (TAG3P)

4.1 Introduction

This chapter describes in detail the major components of a tree adjoining gram-

mar guided genetic programming system (TAG3P) based on TAG-based repre-

sentation in the previous chapter. Firstly, TAG3P program representation is

introduced. Then, it presents an algorithm for initialising a random population

for TAG3P and prove its correctness. Next, the fitness evaluation and genetic op-

erators in TAG3P are described. Finally, the parameters for TAG3P are defined.

It is assumed that a tree adjoining grammar Glex is used to generate programs.

On the top level, TAG3P main evolution cycle is similar to other genetic pro-

gramming systems as follows:

58

CHAPTER 4. TAG3P SYSTEM 59

1) Create a population of individuals, where each individual is

a Glex derivation tree. It is called the old population.

2) All individuals (Glex derivation tree) in the old population

are translated into Glex derived trees.

Then, on these derived trees, the fitness of the individuals

in the old population are calculated.

3) Select individual(s) from the old population according to

some fitness-based selection mechanisms.

4) Apply selected genetic operator(s) on selected individual(s)

according to the operator probability

and copy the product(s) to the new population.

5) Repeat from 2 to 4 until the new population is filled up with

new individuals of Glex derivation trees.

6) The old population are removed and

the new population becomes the old population.

7) Repeat from 2 to 6 until a number of generations is reached

or some terminating criteria are met.

8) Report the best individual (in terms of fitness)

in the last generation as the solution.

4.2 The Components of a Tree Adjoining Gram-

mar Guided Genetic Programming (TAG3P)

As in a standard genetic programming system [Koz92], TAG3P consists of five

basic components, namely, program representation, initialisation procedure, ge-

netic operators, fitness evaluation, and parameters. The first component defines

how each individual (program) in the population is structured. As indicated in

the algorithm in the previous section, each individual in a TAG3P population

is a derivation tree of the LTAG (GLex) used to syntactically constrain the lan-

CHAPTER 4. TAG3P SYSTEM 60

guage of the programs for solving the problem being concerned. The second

component is an algorithm for creating an initial population of individuals at

random. Its main task is to accomplish step 1 in the algorithm in the previous

section. Genetic operators, the third component, are a set of transformations

from Xn → X, where X is the space of all feasible individuals and Xn is the

n-product space of X. In TAG3P, X is the set of Glex derivation trees and n

is 2 for the crossover operator and 1 for the other operators. It is noted that

selection mechanisms, the ways that individuals are chosen in step 3, are also

considered as a part of this component [Koz92]. The fourth component, which is

problem dependent, specifies how the goodness of each individual (program) in

the population is measured. The last component is tunable parameters used to

adjust various aspects of TAG3P ranging from the bound of the individual size to

the likelihood of applying different genetic operators and so on. In the following

subsections, each of the five basic components of TAG3P are discussed in more

detail.

4.2.1 Program Representation

Similar to GE and GEP described in chapter 2, TAG3P uses a genotype-phenotype

map. The special form of derivation tree in LTAG presented in the previous chap-

ter is used as genotype structure for program representation. TAG3P can handle

problems with context-sensitive syntactical constraints, context-free syntactical

constraints, or (as in standard GP) no syntactical constraints. Therefore, the

phenotype can be one of three cases. In the first, an LTAG grammar Glex is used

on its own as the formalism for language bias declaration. In that case, the phe-

notype is the derived tree of Glex. In the second case, the context-free grammar

(CFG) G is used to generate the strongly lexicalised LTAG Glex. The derivation

tree of Glex is used as the genotype, and the phenotype in that case is the deriva-

tion tree of G (derived tree of Glex). In the final case, a set of GP functions and

terminals is used to create a context-free grammar G in the manner described

in [Whi1996] (page 130). It was proven in [Whi1996] that there is a one-to-one

CHAPTER 4. TAG3P SYSTEM 61

correspondence between the derivation trees of G and the expression trees in GP.

Based on this, Whigham concluded that standard GP is just a special case of

GGGP. The mapping process can be summarised in Figure 4.1 follows, where the

second phase of the map is optional.

Figure 4.1: Mapping Process

A subcode in each individual chromosome in TAG3P is a subtree. Every

subcode is expressed (i.e. it is used to code for the phenotype). However, unlike

other GP and GGGP systems, in TAG3P, it is possible to measure how each

subcode contributes to the fitness of the individual. Thanks to the non-fixed

arity properly described in the previous chapter, it is possible to temporarily

remove any subcode in an individual and leave the individual still valid (fitness

calculable). Therefore, one way to determine how each subcode contributes to the

fitness of an individual is accomplished by comparing the fitness of the individual

with and without the presence of the subcode. This is the usual way that a

genetic engineer determines the effect of a gene in genetic engineering [Drl1984].

The possibility of measuring the contribution of each subcode to the fitness of

the individual can be useful in a number of ways. Firstly, it helps TAG3P to

pinpoint which subcode is not contributing to the fitness of the individual; it

could be eliminated to simplify the individual. This might be done by checking

if the fitnesses of the individual, before and after the subcode is temporarily

removed are the same. We note that the way the individual scores its fitness

on individual fitness case might change, so long as the overall fitness does not

change. For instance, if the fitness of the individual is measured by summing up

its scores on 10 fitness cases, then a subcode is called non-fitness contributing

in this individual if the sum score on 10 fitness cases of the individual does not

CHAPTER 4. TAG3P SYSTEM 62

change when the subcode is removed, though the individual’s fitness score on

some of the 10 fitness cases might change. In the next chapter, we will show how

this can be used to simplify the solutions when they are found, which is usually

complex and somewhat cumbersome problem in GP (GGGP). Furthermore, it is

also possible to simplify the solution (or any individual) by sacrificing some of its

fitness quality. To do this, one can detect and eliminate any subcode within this

individual such that, when removing it, the amount of change in the individual

fitness does not exceeds a predefined bound. This might be potentially useful

in the application of genetic programming to machine learning as in [Fre2002],

as it becomes possible to trade off the fitness (accuracy) of the evolved decision

tree against its complexity (generalisation). However, this is not studied in this

thesis. In similar manner, one can determine which subcode contributes most

to the fitness of the individual, and which makes the individual’s fitness bad.

By looking at those subcodes, as in the next chapter, some useful information

about the evolutionary process can be extracted. Lastly, it is possible in TAG3P

to turn on and turn off any subcode at will. Although it is not yet shown in

this thesis, this property might be potentially useful when one wants to set a

bias controlling which part of the chromosome (program) will undergo changes

by genetic operators.

4.2.2 Initialisation Procedure

The second component in TAG3P is an algorithm for creating an initial random

population of individual (Glex derivation trees). It is a repetition of the process

of generating one individual (one Glex derivation tree) at random. The process

to generate a Glex derivation tree at random starts with choosing a random size

in a predefined range of integer numbers. Then, it proceeds by randomly picking

an α-tree from the elementary tree set in Glex to make an initial Glex derivation

tree. This derivation tree is subsequently extended with β-trees drawn at random

from the elementary tree set in Glex by using adjunction at random places. This

process finishes when the size randomly chosen above is reached. The initialisa-

CHAPTER 4. TAG3P SYSTEM 63

tion procedure for TAG3P is formalised as the following algorithm

1) FOR i = 1 TO POPSIZE DO

2) Choose a a random size l between MINSIZE and MAXSIZE.

3) Pick an α-tree α1 at random and set tree T = α1.

4) FOR j = 1 TO l − 1 DO

5) Set V ={ node n in T such that n has at least

one NULL-adjoining address}
6) Pick a node n in V in an uniformly random manner.

7) Randomly pick a NULL-adjoining address a in elementary tree n.

8) Among all β-trees in the elementary tree of Glex

that can adjoin to a, choose a tree t.

9) Adjoin t to a in T and update T.

10) ENDFOR

11) Set individual i-th as T

12) ENDFOR

where MINSIZE and MAXSIZE are adjustable parameters for designating the

range of individual size and will be described in section 4.2.6; a NULL-adjoining

address means at this adjoining address there is no elementary tree being adjoined

at it yet. In order to be a genuine algorithm, it is strictly required that the above

process always stop and give the desired results. However, it is not obvious that

this process will finish and give a population of only valid Glex derivation trees.

Therefore, a theorem is given and proven here.

Theorem 2 Given that every α-tree in Glex can be adjoined by at least one β

tree, the initialisation procedure above always finishes and gives the desired results.

Proof: To prove the theorem, it is sufficient to prove that for all steps from 3 to

8, the procedure always produces desired results.

For step 3, since the set of α-trees in Glex is not empty, it is always possible

to choose an α-tree α1 from it. If l is 1, the process stops after setting T = α1

in step 3. On the other hand, if l ≥ 2 the above process will extend the tree

CHAPTER 4. TAG3P SYSTEM 64

with some β-trees since, according to the hypothesis in the theorem, it is always

possible to adjoin some β-trees to α1. Consequently, at all times, T has some leaf

nodes that are β-trees. As a leaf node is defined in the previous chapter as a node

that has no adjunction to it, it guarantees that V = ∅ in step 5. Consequently, it

is always possible to choose n in V as in step 6. According to the definition of β-

trees, there is always at least one address that can be adjoined by a β tree in the

elementary tree set of Glex (the trivial case is that the root or the foot of the tree

can be adjoined by itself). Therefore, it is always possible to choose the address

a in 7. As defined in the previous chapter, for every adjoining address, there is

at least one β-tree that can adjoin to that address (according to the definition,

an adjoining address in an elementary tree is a node that has the same label as

at least one β-tree). Thus, it is always possible to choose t in 8. Therefore, all

steps from 2 to 8 always finish and produce meaningful and desired results. That

completes the proof.

The proof of theorem 2 also shows that the time complexity for randomly

creating an individual (Glex) is quadratic in its size, since before each node is

added, the tree is searched to find all possible adjoining address for the new

node. It is stated as an corollary as follows:

Corollary: The time complexity of the algorithm for initialising an indivdual

in TAG3P is O(l2), where l is the size of the individual. Therefore, the time

complexity of the initialising procedure is M ×l2, where M is the population size.

We note that an algorithm, in which adjoining addressed are cached while the

individual is being built, could potentially reduce the initialisation times cost to

linear, but also requiring more memory.

The condition of the theorem is not a hard constraint. In general, Glex should

always satisfy it, since if there is any α-tree in the elementary tree set of Glex that

cannot be modified by adjoining with some β-trees then we can simply discard

such α trees to treat them separately. The number of such trees are finite because

it cannot exceed the number of elementary trees in Glex.

Theorem 2 shows that given any size, TAG3P can produce randomly an in-

CHAPTER 4. TAG3P SYSTEM 65

dividual with this exact size. This unique size control property allows TAG3P

to have an absolutely uniform initialisation according to size, which is difficult

for other genetic programming systems. As pointed out in [Rat2000], the ini-

tialisation process should not be underestimated in grammar guided genetic pro-

gramming. In one of the author’s work [Hao2004], it has been shown that using

the above initialisation procedure and exporting the population to a GGGP sys-

tem instead of using the standard initialisation procedure as in [Whi1996] helps

GGGP perform better on a number of standard problems.

4.2.3 Fitness Evaluation

To evaluate the fitness of an individual, it is first translated into an derived tree

in Glex (derivation tree of G if G is used). Then, the evaluation is processed on

that derived tree.

In the next two subsections, the third component of TAG3P - the genetic

operators- will be described.

4.2.4 Main Genetic Operators

This subsection discusses the main genetic operators in TAG3P, namely, selection

mechanisms, reproduction, subtree crossover, and subtree mutation. Some more

innovative operators are described in the next subsection.

Selection Mechanisms

In TAG3P, all common selection mechanisms from other evolutionary algorithms

can be used. In particular, the two most common selection mechanisms are fitness

proportionate and tournament selection as described in chapter 2.

Reproduction

Reproduction in TAG3P is just like other genetic programming systems, wherein

a proportion of the population is chosen based on fitness and then copied to the

CHAPTER 4. TAG3P SYSTEM 66

new population.

Crossover

To do crossover, firstly, two parent individuals t1 and t2 are chosen from the pop-

ulation by a selection mechanism. Then, the crossover between these is applied.

It is done, by first choosing two nodes in the two trees that are compatible. Two

nodes in the two trees are compatible if the subtrees under each of them can

adjoin to the parent node of the other in each other’s tree. The above process of

choosing two compatible nodes is repeated until either two such nodes are found

in t1 and t2, or the number of trials exceeds a predefined bound. In the second

case, crossover is aborted. If the two compatible nodes are found, the crossover

is completed by swapping the two subtrees underneath these two nodes. In ad-

dition, there might be some overhead checking that the individuals produced by

crossover satisfy some conditions such as size constraints (e.g. if the size of the

produced individuals must stay within a predefined range between MINSIZE and

MAXSIZE). The crossover operator process is summarised as follows:

CHAPTER 4. TAG3P SYSTEM 67

1) Randomly choose a node n in t1, except the root.

Suppose that in t1, n is currently adjoined to node h

at address a1.

2) Randomly choose a node m in t2, except the root.

Suppose that in t2, m is currently adjoined to node k

at address a2.

3) IF { elementary tree n can be adjoined into elementary tree k

at address a2 }
AND { m can be adjoined into elementary tree h

at address a1 }
THEN

The two subtrees underneath n and m in t1 and t2 are swapped.

Goto 5.

4) LOOP from 1 to 3 for a maximal MAXATTEMPT times.

5) Set two resultant trees as children of t1 and t2.

Figure 4.2 illustrates how the crossover operator works.

There are some possible variants on the implementation of the crossover oper-

ator. In the above procedure, the crossover operator is implemented in adjoining-

context preserving manner. In other words, the adjoining addresses a1 and a2 are

still adjoining addresses for m and n after the crossover. It is possible to imple-

ment crossover in non-adjoining-context preserving manner. This form allow m

and/or n to change the adjoining address after the crossover. This can be done

if step 3 is changed as follows:

CHAPTER 4. TAG3P SYSTEM 68

Figure 4.2: Crossover in TAG3P

3) IF { elementary tree n can be adjoined into elementary tree k

at an address ad1, where ad1 is not currently adjoined }
AND {m can be adjoined into elementary tree h

at address ad2, where ad1 is not currently adjoined }
THEN

The two subtrees underneath n and m in t1 and t2 are swapped.

Goto 5.

Moreover, unlike standard GGGP, it is easy to add size constraints on the

individuals produced by the crossover operator in TAG3P. For instance, in order

to keep the size of the produced individuals always within a predefined range of

sizes, a checking procedure can be added at the end of step 3. The case that the

size of any produced individual exceeds the predefined range between (two integer

numbers) MINSIZE and MAXSIZE can be handled in two ways. The first is to

reduce/increase the size of the individual by randomly deleting/inserting some

CHAPTER 4. TAG3P SYSTEM 69

nodes in it. The other is to simply discard the produced individuals and restart

the crossover process from the beginning, provided that the number of trials

has not exceeded a predefined bound. A Boolean predicate called cut is used

to control whether the first or the second ways should be used. The following

pseudo code summarises the implementation of this type of size constraint.

IF the sizes of the two resultant trees

are between MINSIZE and MAXSIZE

Goto 5.

ELSE

IF predicate cut is set THEN

IF the size of resultant tree(s) exceeds MAXSIZE

Randomly trim the subtree under n (or m) using

deletion operator described in the next subsection until

the size of the resultant tree(s) is MAXSIZE.

IF the size of resultant tree(s) is below MAXSIZE

Randomly add to the subtree under n (or m) using

Insertion operator described in the next subsection until

the size of the resultant tree(s) is MINSIZE.

Another instance of size constraints is size-fair constraint. The size-fair form of

crossover requires the size of the two subtree to be equal. As shown in [Lan2000b],

the size-fair crossover can help tree-based genetic programming systems to reduce

the code-bloat effect (i.e, the size of trees in the population expands quickly). The

code-bloat effect also appears in grammar guided genetic programming [Whi1996]

(pages 54-55). However, since the rule-based nature of derivation tree in CFGs,

it is difficult to implement size-fair constraints in GGGP. On the other hand,

the LTAG-derivation tree is an object-based tree. It is easy to define size-fair

crossover. In order to implement it, step 3 above is amended as follow:

CHAPTER 4. TAG3P SYSTEM 70

3) IF { elementary tree n can be adjoined into elementary tree k

at address a2 }
AND { m can be adjoined into elementary tree h

at address a1 }
AND { the difference in size between the subtrees

under m and n is less than or equal to δ }
THEN

The two subtrees underneath n and m in t1 and t2 are swapped.

Goto 5

δ above is a predefined positive integer to limit the maximal difference allowed

in size-fair crossover. When δ is 0, the crossover is called absolutely size-fair.

Subtree Mutation

In sub-tree mutation, a randomly chosen subtree (subcode) is removed and re-

placed with a newly generated subtree (subcode), which is about the same size.

The new subtree is generated in a similar way in step 3 to 9 in the initialisation

procedure in the previous section. The procedure for mutation of a tree (pro-

gram) t is as follows:

CHAPTER 4. TAG3P SYSTEM 71

1) Randomly choose a node n in t. Suppose that n is

currently adjoined to node h at address a in t.

The size of t is l.

2) Calculate the size l1 of the subtree under n.

3) Remove the subtree under n.

4) Randomly choose a positive l2 such that

|l1 − l2|≤ δ and l − l1 + l2 is between MINSIZE and MAXSIZE.

5) Randomly choose an elementary tree e that can be

adjoined to h at a.

6) Set tree T = e.

7) Randomly grow T with size ll2 in the same manner as

Steps 3 to 9 in the population initialisation procedure above.

8) Adjoin (connect) T in h at a.

δ is the maximal difference allowed between the removed subtree and the

newly generated subtree. Figure 4.3 depicts how the subtree mutation works in

TAG3P.

After mutationBefore mutation

en

aa

h h

Figure 4.3: Subtree mutation in TAG3P

From theorem 2, it is obvious that the subtree mutation procedure always

finishes (in time quadratic in the size of the tree) and gives desired results.

As with subtree crossover, it is possible to implement subtree mutation in

adjunction-context-preserving (in the above procedure) and non-adjunction-context-

CHAPTER 4. TAG3P SYSTEM 72

preserving manners. For non-adjunction-context preserving subtree mutation,

the above procedure is modified accordingly as follows:

....

4) Randomly choose an currently adjunction-free address ad in h.

4b) Randomly choose an elementary tree e that can adjoined to h

at ad.

....

7) Adjoin (connect) T in h at ad.

4.2.5 Other Operators

Thanks to the non-fixed arity property in TAG-based representation, a number

of search operators can be designed. They can ben seen either as general-purpose

local search operators or as asexual genetic operators. Some of them are bio-

inspired. They can be divided into two groups. The first group of operators

operates on the node level, whereas the second operate within the node level. In

other word, the first group of operators deals with adjunctions in an individual

(a Glex derivation tree), whereas the second deals with substitutions. The first

group consists of insertion, deletion, node replacement, replication, duplication,

and truncation. The second group includes single-lexeme mutation, node-lexeme

mutation, and global lexeme mutation. The first group is only mentioned briefly

here as they will be described in more details in chapter 6 and 8.

Insertion

If the size of the individual is less than MAXSIZE then insertion simply adds

a leaf to the individual. The insertion operator is described in more detail in

chapter 6, where it is coupled with deletion as a dual operator.

CHAPTER 4. TAG3P SYSTEM 73

Deletion

If the size of the individual is more than MINSIZE then deletion simply removes

a leaf of the individual. It is easy to see that deletion is dual to insertion. The

deletion operator is described in more detail in chapter 6, where it is coupled

with insertion.

Node Replacement

Node replacement has been studied elsewhere in GP [MKa95, Lan2002]. Node

replacement resembles the bit-flip in traditional GA, where the change of content

is minimal (i.e the change is at one node of the tree only). However, it is rather

difficult in GGGP to design a similar operator. With TAG-based representation,

such an operator is readily implemented. The procedure for node replacement

on an individual, in TAG3P, is as follows.

1) Randomly choose a node n in t.

Suppose that n is adjoined to node h in t at address a.

Suppose that there are p nodes n1, n2,...,np are adjoined to n

in t at addresses a1, a2,...,ap.

2) Choose a node m at random such that m can adjoin to h at a

and m has (at least) p adjoining addresses that has the same

labels with a1, a2,...,ap.

3) Replace n with m.

Figure 4.4 shows how node replacement works.

Node replacement operators can also be implemented in a biased way. Since

the elementary tree set is predefined and finite, it is possible to craft a predefined

set of replacement elementary tree for each elementary tree in Glex. Thus, when

node n is chosen for replacement in step 1 of the procedure above, node m will

be one of the elementary trees in this set. Unbiased node replacement is used

with insertion and deletion as prime operators for studying fitness landscape on

syntactically constrained domains in chapter 9.

CHAPTER 4. TAG3P SYSTEM 74

After replacementBefore replacement

a2a2 a1a1

aa

mn

hh

Figure 4.4: Node replacement in TAG3P

Relocation

In relocation, a random subtree (subcode) is disconnected from an individual (a

Glex derivation tree). This subcode is then randomly adjoined at other place

in the individual. It is noted that relocation neither changes the size of the

individual nor introduces any new genetic material. Relocation is described in

more detail in chapter 6.

Duplication

In duplication, a random subtree (subcode) is copied and is randomly adjoined

to other place in the chromosome tree. Duplication operator is discussed and

studied in more detail in chapter 6.

Truncation

In truncation, a random subtree (subcode) in an individual t is chosen. Then,

this subtree is removed from t if the the size of the resultant tree is not less than

MINSIZE. The procedure for the truncation operator is as follows.

CHAPTER 4. TAG3P SYSTEM 75

1) Randomly choose a node n in t.

Suppose that size of t is l and size of the subtree under n

is ln.

2) IF l − ln ≤ MINSIZE THEN

Remove the subtree underneath n from t

Goto 4.

3) Loop from 1 to 2 for maximal MAXATTEMPT times.

4) Update and return t.

Figure 4.5 shows how truncation works.

After truncationBefore truncation

t

a2a1 a1

h h

Figure 4.5: Truncation in TAG3P

Lexemes Mutation Operators

The second group of unary operators is lexeme mutations. As described in the

previous chapter, for the special form of LTAG derivation tree used for TAG3P,

substitution becomes an in-node operation. Each node in an individual is at-

tached by a list of lexemes, used for substitutions in the tree, represented at that

node. Therefore, there are three possible levels for implementing lexeme mutation

in TAG3P. The difference among these levels is the scale of change it brings to the

lexemes used in an individual, ranging from one lexeme to all lexemes attached

to one node, and to all lexemes in an individual. In the first and lowest level,

node-based single lexeme mutation, a node in the chromosome tree is chosen at

CHAPTER 4. TAG3P SYSTEM 76

random. Then, one randomly chosen lexeme in the lexeme list attached to that

node will be replaced by another random lexeme from the same vocabulary. In

the second level, node based lexeme mutation, after a node is chosen at random,

the whole lexeme list attached to that node is mutated using node-based single

lexeme mutation. In the last level, all lexeme lists attached to all nodes in the

chromosome tree are mutated using node based lexeme mutation. The lexeme

mutation can also be implemented in a deterministic manner or by using local

search algorithms. Because of the lexicalisation in LTAG-based representation, it

is possible to efficiently implement a mixed strategy search, where the structure

is evolved by genetic search and lexicons are discovered by other heuristics or by

traditional deterministic search strategies.

4.2.6 Parameters

There are a number of user-control parameters in TAG3P. Their meanings are

given below.

POPSIZE - the population size.

MAXGEN - the maximal number of generations.

MAXSIZE - the maximal size (maximum number of nodes) of chromosome trees.

MINSIZE - the minimal size (maximum number of nodes) of chromosome trees.

It must be at least 2.

MAXATTEMPT - the maximal number of attempts in each genetic operator.

OPERATORPROBS - the probabilities for applying operators (crossover, mu-

tation, insertion, deletion,...).

δ - the maximal difference allowed in size between new subcode and old subcode

when the operators (crossover, mutation,...) are implemented in size-fair

fashion.

CHAPTER 4. TAG3P SYSTEM 77

cut - a predicate that can be set as either ON or OFF. It is used in the crossover

operator to trim or fill the resultant trees, when their sizes go out of bounds

(MINSIZE and MAXSIZE).

4.3 Some Information on TAG3P Implementa-

tion

TAG3P was implemented in C/C++. The platform used to run TAG3P for all

experiment in this thesis is Sun Workstation in a cluster marchine, with Linux as

the operating system, at Australian Defence Force Academy. The code is rather

compact and run fast (typically some minutes for problems with population size

500, number of generations 50, number of fitness cases 20). The code is available

for download at:

www.cs.adfa.edu.au/we/hoai.htm.

4.4 Conclusion

In this chapter, the structure of a tree adjoining grammar guided genetic program-

ming (TAG3P) system, built on the TAG-based representation in the previous

chapter, has been laid out. Some useful properties of the TAG-based representa-

tion given in the previous chapter has been transferred into the design of TAG3P.

In particular, the non-fixed arity property in the TAG-based representation is

very useful for implementing components of TAG3P. Firstly, it makes possible

the measurement of how the presence of each subcode affects the individual fit-

ness. That, in turn, can be used to simplify solutions (individual) at the end of

(or during) the evolutionary process. Some examples of this is given in the next

chapter. Secondly, the non-fixed arity property makes initialisation in TAG3P

much easier and more uniform than in CFG-GP. Lastly, it facilitates the design

of a wide range of general-purpose search operators for syntactically-constrained

domains. Some of them are bio-motivated and can potentially be used either as

http://www.cs.adfa.edu.au/we/hoai.htm

CHAPTER 4. TAG3P SYSTEM 78

genetic operators or as local search operators. Moreover, those operators can be

used to make different degree of changes on an individual ranging from a tiny

change within one node (node-based single lexeme mutation) to the whole in-

dividual itself (e.g. subtree mutation when the node chosen to be mutated is

the root node of the individual). More importantly, the degree of change on an

individual induced by some operators (such as insertion, deletion, node replace-

ment) is bounded. Therefore, it is possible to control the degree of change on

each individual when repeatedly using those operators. The usefulness of some

TAG3P operators, and the controllability of the amount of change brought by

them on an individual, is shown in subsequent chapters.

Chapter 5

TAG3P: Preliminary Comparison

In this chapter, the robustness of the genetic programming system (TAG3P)

designed in the previous chapter is tested on a number of standard problems. The

results are compared with standard genetic programming (GP) and Whigham’s

grammar guided genetic programming system (CFG-GP). Some of the results

have been published in [NXH2001a], [NXH2001b], [NXH2002a], [NXH2002b],

[NXH2002c], and [NXH2002d]. This chapter is structured as follows. Firstly,

all the problems are stated. Then, the experiment setup is described. Next,

the results are given and discussed. Finally, using some of the rather unique

properties of TAG3P described in the previous chapter, we conduct some further

analyses on TAG3P runs to discover useful information about the dynamics of

its evolutionary process.

5.1 Test Problems

To test the performance of TAG3P compared to standard GP and CFG-GP, eight

problem instances of four standard problems from [Koz92] are employed as test

suite. The four problems are simple symbolic regression, 6-multiplexer, symbolic

integration, and symbolic differentiation. The description of each problem and

problem instance is briefly stated in the following subsections. It is noted that a

full comparison would compare the performance of the systems over a range of

79

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 80

parameter settings, but that because of computational limitations, only a sample

of values is used in the thesis.

5.1.1 Simple Symbolic Regression Problem

In the simple symbolic regression problem, the task is to learn a function of one in-

dependent variable in symbolic form such that it fits a given finite sample of data.

As in [Koz92], the function and terminal set are F = {+,−, ∗, /, sin, cos, ep, rlog}
and T = {X}. The function set can be divided into three groups. The first group

contains arithmetic operators: addition, subtraction, multiplication, and division.

The division operator is protected in the sense that if the denominator is 0, it

will return 1. The second group has two basic trigonometric functions sine and

cosine. The third group has the two transcendent functions, namely, the expo-

nential function and logarithm function. The logarithm function is protected by

taking logarithm of the absolute value of the input unless the input value is 0, in

which it returns 0. The number of sampled data points is 20 and the sampling

interval is [−1..1].

In [Koz92], the target function for genetic programming is the quadtic poly-

nomial function X4 + X3 + X2 + X. In this chapter, a family of four target

functions in four problem instances are used.

F1 = X3 + X2 + X

F2 = X4 + X3 + X2 + X

F3 = X5 + X4 + X3 + X2 + X

F4 = X6 + X5 + X4 + X3 + X2 + X

It is noted that F1−F4 are a family of polynomial functions of increasing order

of structural complexity, where Fi = Fi−1 ∗ X + X with i = 2, 3, 4. The purpose

of using theses four polynomial target functions of increasing order of structural

complexity is not only to test the robustness of TAG3P against standard GP

and CFG-GP but also to investigate how it copes with a scaling in structural

complexity of the target function.

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 81

5.1.2 6-Multiplexer Problem

A 6-multiplexer is a Boolean device that has six inputs consisting of two address

lines and four data lines. To produce the output, a 6-multiplexer uses the two

address lines as a two binary digit number in order to select one of the four

possible data lines. The task is to learn the Boolean 6-multiplexer function from

all 64 possible examples. The function and terminal sets used here are the same

as in [Koz92]: F = {if, and, or, not} and T = {a0, a1, d0, d1, d2, d3}. Figure 5.1

shows the structure of a 6-multiplexer and one possible solution represented as a

series of if-then-else.

Address Lines
Data Lines

d3d2d1d0

a1

a0
6−Multiplexer

 ELSE d0
 IF a1 THEN d2
ELSE
 ELSE d1
 IF a1 THEN d3
IF a0 THEN

Figure 5.1: A 6-multiplexer and a solution

5.1.3 Symbolic Integration Problem

The problem of symbolic integration involves finding a mathematical expression

that is the integral, in symbolic form, of a given curve. The function and terminal

sets used in [Koz92] are the same as those for the simple symbolic regression

problem and are used here.

The two problem instances experimented in this chapter are cos x+2x+1 and

4x3+3x2+2x+1, of which the target symbolic integral functions are sin x+x2+x

and x4 +x3 +x2 +x respectively. The number of sampled data points are 50 and

the sampling interval is [0..2π] in the first case and [0..1] in the second.

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 82

5.1.4 Symbolic Differentiation Problem

Symbolic differentiation involves finding a mathematical expression that is the

derivative, in symbolic form, of a given curve. The function and terminal sets are

the same as in the simple regression and symbolic integration problems ([Koz92]).

The given curve is sin x + x2 + x, of which the target derivative function is

cos x + 2x + 1. The number of randomly sampled data points is 200 (as numeric

differentiation is considered to be much less accurate than symbolic integration);

and the sampling interval is [0..1].

5.2 Experiment Setup

All three systems: standard genetic programming, CFG-GP, and TAG3P were

tried on eight problem instances of the four standard problems above. The GP

and CFG-GP systems are implemented faithfully to the descriptions in [Koz92]

and [Whi1996]. All three systems used the same random generators and were run

on the same platform. Parameter settings for all three systems were as uniform

as possible. They are listed as follows: population size - POPSIZE=500, maxi-

mal number of generations - MAXGEN=51, crossover probability=0.9, mutation

probability = 0.1, selection mechanism = tournament selection, tournament size

of selection = 3, maximal size for TAG3P - MAXSIZE=40; the size in TAG3P is

the number of tree nodes; maximal depth for GP and CFG-GP - MAXDEPTH

= 15. The initialisation method used for GP was ramped-half-and-half. The

grammars (used for CFG-GP and TAG3P) for all problems are listed as follows:

Grammars for the symbolic regression, symbolic integration, and sym-

bolic differentiation problems. The grammars (G and Glex) used for all three

problems were the same.

G = {∑
, N, P, EXP},

where
∑

= {+,−, ∗, /, sin, cos, ep, rlog, X}, N = {S, PRE, OP, V AR}, and the

rule set P as follows.

S → EXP OP EXP

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 83

S → PRE EXP

S → V AR

OP → +| − | ∗ |/
PRE → sin|cos|ep|rlog
V AR → X

where / is the protected division (return 1 when the denominator is 0), ep

is the exponential function, and rlog is the protected logarithm function (return

the logarithm of the absolute value of the input unless the input is 0, in which

case it return 0). Glex = {∑
, N, I, A, EXP}, where

∑
and N are the same as in

G and the elementary tree set E = A ∪ I is depicted in Figure 5.2.

EXP

OP

−

X

EXP

PRE EXP*

sin

EXP

EXP

PRE EXP*

ep rlog

α β1 β2 β3 β4

β6β5 β7 β8

β9 β10 β11 β12

EXP*

OP

*

EXP

OP

/

EXP

OP

+

EXP* EXP* EXP* EXP*

EXP

PRE EXP*

cos

EXP

PRE

VAR

EXP

VAR

X

EXP

VAR

X

EXP

VAR

X

EXP

VAR

X

EXP

VAR

X

EXP

EXP*OP

+

EXP

VAR

X

EXP

VAR

X

EXP

VAR

X

EXP

/

EXP

EXP*OP

−

EXP

EXP*OP

*

EXP

EXP*OP

Figure 5.2: TAG elementary trees for symbolic regression, symbolic integration,

and symbolic differentiation problems

Grammars for the 6-multiplexer problem. G = {∑
, N, P, B}, where∑

= {a0, a1, d0, d1, d2, d3}, N = {B}, and the rule set P is as follows:

B → if B B B

B → B and B

B → B or B

B → not B

B → a0|a1|d0|d1|d2|d3

Glex = {∑
, N, I, A, B}, where

∑
and N are the same as in G, the elementary

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 84

tree set E = A ∪ I is depicted in Figure 5.3, where TL stands for a lexicon that

can be substituted with any of a0, a1,...,d3.

B

and

B

B*

TL

Bif

B

B*

TL

Bif

B

and

β8β7β6β5β4

β3β2β1α

not B*

B

B* ororB*B*

B

TL

B B*

B

TL

B

TL

B

TL

B

TL

B B*if

B

TL

B

TL

B

TL

B

TL

B

Figure 5.3: TAG elementary trees for the 6-multiplexer problem

The tableaus for symbolic regression, symbolic integration, symbolic differen-

tiation, and 6-multiplexer are as follows.

Table 5.1. Tableau for symbolic regression, integration, and differentiation.

Objective Find a solution for either symbolic regression,

symbolic integration, or symbolic differentiation.

Terminal set X

Function set +,-,*,/,sin, cos, ep, rlog.

Fitness cases Random samples of 20 values (symbolic regression);

50 values (symbolic differentiation);

200 values (for symbolic integration)

from the intervals of interest.

Raw fitness Sum of absolute error for all fitness cases.

Standardized fitness The same as raw fitness.

Hits Number of absolute errors that is smaller then 0.01.

General Parameter POPSIZE=500, MAXGEN=51,

Tournament selection with size 3.

Success Predicate A program hits of 20 (symbolic regression);

50 (symbolic integration); 200 (symbolic differentiation)

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 85

Table 5.2. Tableau for 6-multiplexer.

Objective Find a Boolean function whose output is the same as

the 6-multiplexer function.

Terminal set a0, a1, d0, d1, d2, d3

Function set if, and, or, not.

Fitness cases The 64 possible combinations of 6 the inputs;

Raw fitness Number of fitness cases for which the output is correct

Standardized fitness Number of incorrect outputs over all fitness cases.

Hits Equivalent to raw fitness.

General Parameters POPSIZE=500, MAXGEN=51,

Tournament selection with size 3.

Success Predicate A program scores 64 hits.

5.3 Results and Discussion

For each problem instance, 100 runs were allocated for each system, which made

the total number of runs for all three systems (GP, CFG-GP, TAG3P) to be 2400

runs. The following Table 5.3 summarises the proportion of success of all three

systems on the eight problem instances tried, where SY MFi (with i=1,2,3,4)

stands for symbolic regression problem with Fi as the target function; 6MUL

stands for 6-multiplexer problem; SY MDIFF indicates the symbolic integra-

tion problem; SY MITEGCOSX and SY MITEGX3 are the abbreviations of

symbolic integration problem with the curves cos x+2x+1 and 4x3+3x2+2x+1

respectively.

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 86

Table 5.3. Proportion of success on eight problem instances.

Problem GP CFG-GP TAG3P

SY MF1 66% 47% 100%

SY MF2 9% 27% 93%

SY MF3 3% 12% 82%

SY MF4 1% 8% 43%

6MUL 63% 61% 63%

SY MITEGCOSX 81% 83% 100%

SY MITEGX3 50% 63% 99%

SY MDIFF 70% 77% 87%

Also, Figures 5.4, 5.5, 5.6, and 5.7 depict the cumulative frequencies of success

of GP, CFG-GP (GGGP), and TAG3P on all the problem instances.

The results show that TAG3P is very competitive with GP and CFG-GP. On all

problem instances tried, TAG3P performed significantly better than CFG-GP and

GP (with statistical confidence level α = 0.01 using a one-tailed statistical test of

the difference between two binomial variables), except for 6-multiplexer, where

all the performances of the three systems are rather similar. In particular, on

the symbolic regression problem, TAG3P not only performed substantially better

than GP and CFG-GP but also worked well when the structural complexity of

the target function was scaled up.

We note that, apart from the fact that these three systems use very different

representation and genetic operators, they have different types of complexity

bounds on individual programs in their population. For GP, the bound is the

depth of the expression tree; for CFG-GP, the bound is the depth of the derivation

trees generated by G; and, for TAG3P, the bound is the size of Glex derivation

trees. This usually leads to different absolute types and sizes of bounds and thus

it is very difficult to tune the different bounds so that the complexity bounds on

individual programs in all systems are the same. Therefore, it is possible that

the performance differences between the different GP systems might be caused

by the different representations (operators) and/or the types and values of the

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 87

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
GGGP
TAG3P

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
GGGP
TAG3P

F1 F2

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
GGGP
TAG3P

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
GGGP
TAG3P

F3 F4

Figure 5.4: Cumulative Frequencies for Symbolic Regression Problem

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 88

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
GGGP
TAG3P

Figure 5.5: Cumulative Frequencies for 6-Multiplexer Problem

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
GGGP
TAG3P

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
GGGP
TAG3P

Cos x + 2x + 1 4x3 + 3x2 + 2x + 1

Figure 5.6: Cumulative Frequencies for Symbolic Integration Problem

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 89

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
GGGP
TAG3P

Figure 5.7: Cumulative Frequencies for Symbolic Differentiation Problem

complexity bounds of their individual programs. This problem is investigated in

more detail in chapter 10.

In the following section, some further analyses of the TAG3P runs on two of

the eight problem instances above are given and discussed.

5.4 Some further analyses on TAG3P

In this section, some further analyses of the runs in the previous section are pre-

sented. Some properties of TAG3P inherited from the TAG-based representation

mentioned in the previous chapter are also used to give more information on the

behaviour of TAG3P during the evolutionary process. The runs of two problem

instances used are 6-multiplexer and symbolic regression with function F2 .

Figures 5.8 and 5.9 depict the time series over generation of the average fit-

ness of the population and the average fitness of the best individual for the two

problems. These figures show that the TAG3P population converges to better

and better fitness over time.

As mentioned in the previous chapter, thanks to the non-fixed arity property

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 90

0 10 20 30 40 50 60
−1

0

1

2

3

4

5

Generation

Lo
g

A
ve

ra
ge

 F
itn

es
s

0 10 20 30 40 50 60
5

10

15

20

25

30

Generation

A
ve

ra
ge

 F
itn

es
s

Symbolic regression 6-Multiplexer

Figure 5.8: Average Fitness of the population

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Generation

B
es

t F
itn

es
s

0 10 20 30 40 50 60
2

4

6

8

10

12

14

16

Generation

B
es

t F
itn

es
s

Symbolic Regression 6-Multiplexer

Figure 5.9: Average fitness of the best in the population

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 91

in the TAG-based representation, it is also possible to measure how each subcode

(subtree) contributes to the overall fitness of the program containing it. There-

fore, it is possible to conduct a study on the subcode level in order to gain more

understanding of the dynamics of TAG3P during the evolutionary process.

The first study is to investigate the complexity ratio between active subcode

and the whole individual. A subcode is called “inactive” if, when it is removed,

the overall fitness of the individual containing it does not change; otherwise, it is

called an active subcode. Figures 5.10 and 5.11 show, on the two problems, the

evolution of program size and active subcode size in the population, averaging

over both the whole population and also over just the best individuals.

From the Figures 5.10 and 5.11, there is a clear trend for programs in TAG3P

to bloat to the maximal allowed size. The size of active (fitness contributing)

subcodes evolves on a different trend. For the first half of the evolutionary pro-

cess, the size of active subcodes increases (both for the best individual and for

the population). Presumably, this is because most of the solutions are found in

the first half of the evolutionary process, the active size of the subcode needs to

increase to accumulate useful subcodes, which are partial solutions. Indeed, by

examining some typical successful runs, we found that the most frequent partial

subcodes appearing in the best subcodes detected by the methods described in

the previous chapter, during this period of evolution, were X +(X∗) or X +(∗X)

for the symbolic regression problem, and if(a0, d1, ∗) for the 6-multiplexer prob-

lem. These are all components of full solutions. For the second period, after

the solutions were found, there is a pressure toward solutions with smaller and

smaller sizes of active subcodes. This can be explained by the schema theorem

in chapter 7, where the active subcode belongs to some useful schemata, and in

order to survive they need to be guarded by more and more inactive subcode,

so that the ratio o(H)/n(H) (o(H) is the size of the schema and n(H) is the

size of the individual that matches H) increases. This is some what similar to

conclusion on bloat in [Ban1998]. It is noted that the size ratio of active subcodes

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 92

0 10 20 30 40 50 60
5

10

15

20

25

30

35

Generation

A
ve

ra
ge

 S
iz

e

0 10 20 30 40 50 60
4

6

8

10

12

14

16

18

20

22

Generation

A
ve

ra
ge

 A
ct

iv
e

S
iz

e

Average size for Average sizes of active

the whole population subcodes in the whole population

0 10 20 30 40 50 60
5

10

15

20

25

30

35

Generation

A
ve

ra
ge

 B
es

t S
iz

e

0 10 20 30 40 50 60
4

6

8

10

12

14

16

18

Generation

A
ve

ra
ge

 A
ct

iv
e

B
es

t S
iz

e

Average size of Average sizes of active

the best individual subcodes in the best individual

Figure 5.10: Evolution of size in the runs for the symbolic regression problem

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 93

0 10 20 30 40 50 60
5

10

15

20

25

30

35

Generation

A
ve

ra
ge

 S
iz

e

0 10 20 30 40 50 60
3

3.5

4

4.5

5

5.5

6

6.5

7

Generation

A
ve

ra
ge

 A
ct

iv
e

S
iz

e

Average size for Average sizes of active

the whole population subcodes in the whole population

0 10 20 30 40 50 60
5

10

15

20

25

30

35

Generation

A
ve

ra
ge

 B
es

t S
iz

e

0 10 20 30 40 50 60
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Generation

A
ve

ra
ge

 B
es

t A
ct

iv
e

S
iz

e

Average size of Average sizes of active

the best individual subcodes in the best individual

Figure 5.11: Evolution of size in the runs for the 6-Multiplexer problem

CHAPTER 5. TAG3P: PRELIMINARY COMPARISONS 94

versus the whole individual is much smaller in the 6-multiplexer problem than

in symbolic regression. The reason for this is that Boolean domains have more

redundant structures than numerical domains. The average complexity ratio for

the solution when first found is 0.947% in the symbolic regression problem, and

0.423% in the 6-multiplexer problem.

5.5 Conclusion

In this chapter, the robustness of TAG3P was tested against a number of standard

problem instances, where results were compared with standard GP and CFG-

GP. It has been shown that for the problem instances in this chapter, TAG3P is

very competitive. It outperformed GP and CFG-GP for almost all the problem

instances tried.

The ability to usefully work with subcode fitness described in the previous

chapter also helped to extract useful information from the runs in order to gain

insight into the dynamics of the TAG3P evolutionary process.

Chapter 6

Some Operators

In any intelligent search system, the search operators play an important part.

Usually, search operators are very much representation dependent. Moreover,

in the field of evolutionary computation, there is a desire to design and imple-

ment genetic operators that simulate the operations of genes in genome evolu-

tion [Bac2000a, Bac2000b]. In chapters 3 and 4, it was argued that one of the

advantages of TAG-based representation over other GP and GGGP tree-based

representations is the non-fixed arity property. Thanks to that property, a num-

ber of operators, which are difficult to implement in GP and GGGP, can now be

implemented. Some of these operators are bio-inspired.

In this chapter, we show the usefulness of some of the bio-inspired operators,

which have been mentioned briefly in the context of the TAG3P system designed

in chapter 4. The investigation and analyses will look at two possible uses of

those operators: as mutation and generic-local search operators. Some of these

research results have been published in [NXH2004b, NXH2004d, NXH2005].

In the following sections, these operators are investigated in three groups.

The first group consist of insertion and deletion, the second is relocation, and the

last is duplication and truncation.

95

CHAPTER 6. SOME OPERATORS 96

6.1 Insertion and Deletion Operators

In genome evolution ([Rid1996]), gene insertion and deletion is the addition or

removal of a trunk of genetic codes to or from the genotype. The use of gene

insertion and deletion is motivated by the use of variable-length genotypes in

natural and simulated evolution. From the early days of the field of evolutionary

algorithms, which were very much inspired by natural evolution, researchers have

employed some forms of gene insertion and deletion operators. For instance, Fogel

et al ([Fog1966]) implemented a kind of genetic insertion and deletion by using

random operations likes “add a state” and “delete a state” on variable-length

genotypes, when they involved finite-state machines.

In the field of genetic programming, when the length (or effective length)

of genotypes is variable, gene insertion and deletion are potentially important.

Compared to its predecessor, GAs, whose length and structure of genotypes are

usually fixed, GP genotype space is much more complicated, since it has three

dimensions, namely, content, length (size), and structure. Therefore, it is de-

sirable that insertion and deletion operators can help genetic programming to

explore the genotype space in all dimensions. In [Koz99, Koz1995a, Koz1995b],

gene deletion was used in a multi-part program representation, where deletion is

the removal of a randomly chosen automatically defined functions (ADF) in the

function branch. However, gene deletion implemented in that way can lead to

the effect that the amount of changes on the program structure is not bounded

and controllable. The implementation of genetic deletion directly on expres-

sion tree representation in standard GP is more difficult. Recently, Vanneschi

et al ([Van2003a, Van2003b]) have defined two new structure-altering operators

on GP-expression tree representation, which they name inflate and deflate mu-

tations. However, since their definition is based on the concept of increment-

ing/decrementing arity (number of children) of primitive sets in GP-expression

trees, the operators will become meaningless if all the functions have the same

arity. Moreover, with the arity-dependent definition, it is difficult to extend their

CHAPTER 6. SOME OPERATORS 97

ideas to grammar guided genetic programming, because derivation trees in gram-

mars are rule-constraint trees rather than trees of different arity nodes.

In grammar guided genetic programming, we believe that it is even harder

than GP to implement gene insertion and deletion, since derivation trees of gram-

mars are more constrained with rules from the formalism. Any attempt to add

or remove part of an derivation tree might easily result in an invalid derivation

tree, with the possible exception of some very ad-hoc and grammar-dependent

approaches. In GE, because of the linearity of the genotype, it is possible to

implement gene insertion and deletion [Rya1998a]. However, as discussed in

chapter 2, the degree of change on the phenotype can be unbounded and not

controllable, because the GE representation does not have the locality property.

To date, there has not been any work investigating the use of gene insertion and

deletion in GE. In the next subsection, two operators, insertion and deletion,

on TAG-based representation are defined, and their usefulness in the context of

TAG3P is shown.

6.1.1 Description of Insertion and Deletion Operators

Thanks to the non-fixed arity property, gene insertion and deletion can be imple-

mented easily in TAG-based representation. For each node in a TAG derivation

tree, its maximal arity is the maximal number of children it can have. In other

words, the maximal arity of that node is the number of adjoining addresses in

the elementary tree represented by that node. Let’s suppose that it is n. Then,

because of the non-fixed arity property, in a TAG derivation that node might

have any of 0, 1, ..., n children. In the case that the number of children of that

node in a TAG derivation tree is m and m < n, it is said that there are m − n

NULL-adjunctions in that node, i.e. there are m − n adjoining addresses in the

elementary tree represented by that node, that are not yet adjoined by any other

elementary trees. More specifically, the insertion and deletion operators can be

implemented as follows.

Insertion Operators. For an individual (a TAG Glex derivation tree) t:

CHAPTER 6. SOME OPERATORS 98

1) Find the set V defined as

V ={nodes n in t/ n has at least one NULL-adjunction}
2) Choose m uniformly randomly from V .

3) Choose a NULL-adjunction in m at random.

4) Among all β-tree that can adjoin at this NULL-adjunction

(adjoining address),choose a tree β1 at random.

5) Adjoin β1 to the selected NULL-adjunction.

Figure 6.1 depicts how insertion works (the rectangles represent NULL-adjunction).

Before insertion After insertion

Figure 6.1: Insertion Operator

Deletion Operators. The deletion operator works in exactly the opposite

way to the insertion operator. For an individual (a TAG Glex derivation tree) t.

1) Find the set V defined as

V ={nodes n in t/n has all NULL-adjunction}
2) Choose m randomly from V .

3) Delete m from t.

geneThe deletion operation is shown in Figure 6.2.

Essentially, the insertion and deletion operations are the addition and deletion

of one leaf node to or from the TAG-derivation tree representing an individual

program. They are just the simulation of growth and shrinkage of natural trees.

Moreover, the degree of change on genotype level (Glex derivation trees) is mini-

mal (i.e. the distance between tree t and the resultant tree t′ being the resultant

CHAPTER 6. SOME OPERATORS 99

After DeletionBefore Deletion

Figure 6.2: Deletion Operator

tree after insertion or deletion is 1 (using the tree distance defined in chapter

3). Also, because the genotype-phenotype map in TAG-based representation has

the locality (causality) property, the degree of change on phenotype level is also

bounded (i.e. the distance between the derived tree of t and the derived tree of

resultant tree t′, being the resultant tree after insertion or deletion, is bounded

by the maximal number of nodes in an elementary tree of Glex). This property,

which is formally proven in chapter 9, allows control of the amount of change,

both on genotype and phenotype level, by repeatedly applying insertion and/or

deletion a number of times. It is also noted that, when using insertion and dele-

tion as dual twin operators (i.e. they are used as a combined operator with 50%

chance each will be applied), the size (length) of the individual will remain fairly

constant.

The next subsection shows the usefulness of insertion and deletion when used

as a dual twin operator in the context of TAG3P. Their capability in solving the

problem of structural difficulty in genetic programming is shown in chapter 8.

6.1.2 Experiments

To investigate the usefulness of insertion and deletion in solving problems, a

number of problems were chosen for TAG3P to solve while using those two oper-

ators. Since the nature of insertion and deletion is to make minimal changes on

genotype space and bounded changes on phenotype space, they might be useful

for problems for which a small change to an individual can affect and lead to a

CHAPTER 6. SOME OPERATORS 100

small change to its fitness. Therefore, two families of problems, namely, ORDER

and MAJORITY from [Gol1998, ORe1998] are chosen. In addition, two stan-

dard GP problems from the previous chapter, simple symbolic regression and

6-multiplexer, are also used.

Test Problems

In [Gol1998, ORe1998], two families of test-suite problems for genetic program-

ming, ORDER and MAJORITY, were designed. They are claimed to be GP-

versions of one of the popular test-suite problems in GA literature, the ONE-

MAX problem ([Mit1996, Ree2003]).

In the ORDER problems, the function set for GP consists of only one function

{Join} and the terminal set consists of 2 × n (the size of the problem) possible

leaves, P1, P2, ..., Pn and N1, N2, ...Nn. For a GP expression tree, a leaf is called

expressed if it is labeled as Pi, for some i from 1, 2, .., n, and there is no leaf node

labeled with either Pi or Ni, which appears before Pi in the pre-order traversal

of that tree. The fitness of an individual (GP expression tree) is the number of

expressed leaves in that individual. The task is to find a tree with the maximal

fitness, which is n.

The MAJORITY problems have the same function and terminal sets as OR-

DER. However, a leaf, in an individual (GP expression tree) is called expressed if

and only if it is labeled with Pi, for some i from 1, 2, .., n; and if it is the first leaf

(in pre-order traversal of the tree) that is labeled with Pi; and, the number of

occurrences of leaves labeled with Pi is bigger than the number of occurrences of

leaves labeled with Ni in the individual. The task is to find a tree with maximal

fitness, which in that case, as in the ORDER problems, is n.

The ORDER and MAJORITY problems have some interesting aspects. Firstly,

they are two families of problems, where the difficulties are scalable. Secondly,

small changes on one tree, such as “add a leaf” and/or “delete a leaf”, might lead

to (small) changes of its fitness. Finally, although they are artificial problems,

they share a number of properties with other standard and real world problems

CHAPTER 6. SOME OPERATORS 101

for genetic programming [Gol1998].

The simple symbolic regression (SYMREG) and 6-multiplexer (6MUL) prob-

lems were described in the previous chapter. For the simple symbolic regression

problem in this chapter, the function F2 (the quadtic polynomial) is used as the

target function.

Experiment Setup

To investigate the usefulness of the insertion and deletion operators, two possible

ways of using them on test problems were studied, namely, as the mutation op-

erator for TAG3P, and as generic-local search operators in combination with the

genetic search in TAG3P. The reason for them being called generic-local search

operators, is to distinguish them from the problem-specific local search operators

used in combinatorial optimisation [Aar1997, Hro2003]. The design of local search

operators used in combinatorial optimisation is usually problem dependent, and

also search space representation dependent ([Aar1997]). Examples of such kinds

of local search operators include the well-known 2-opt and 3-opt local search oper-

ators for the traveling salesman problem based on Lin and Kernighan’s heuristic

[Lin1973]. On the contrary, insertion and deletion operators, as defined on TAG-

based representation in this chapter, are only dependent on the representation.

They are problem independent.

The performance of TAG3P using insertion and deletion operators was com-

pared against a control of TAG3P using standard subtree crossover and subtree

mutation. The settings of the TAG3P base runs for simple symbolic regression

and 6-multiplexer, were exactly the same as in the previous chapter (such as

POPSIZE=500, MAXGEN=51, MAXSIZE=40,...). For the ORDER and MA-

JORITY problems, the setting are summarised in Table 6.1. As a reference, the

same number of base runs was also conducted for GP with similar settings.

CHAPTER 6. SOME OPERATORS 102

Table 6.1. Tableau for MAJORITY and ORDER problems.

Objective Find a tree with maximal possible fitness.

Terminal set P1, P2, .., Pn; N1, N2, .., Nn

Function set Join.

Fitness cases None.

Raw fitness Number of expressed leaves

Standardised fitness n-Raw fitness.

Hits Equivelent to raw fitness.

Parameters POPSIZE=100, MAXGEN=51,

Tournment selection with size 3.

MAXSIZE=1000 for TAG3P, MAXDEPTH=15 for GP.

Crossover rate=0.9, mutation rate=0.1.

Success Predicate A program scores n hits.

The grammars (G and Glex) for the simple symbolic regression problem and 6-

multiplexer problems are the same as in the previous chapter, while the grammars

for the ORDER and MAJORITY problems are given in Appendix A.

Experiment 1

In the first experiment, the insertion and deletion operators were used as mutation

operators in TAG3P (TAG3PM) and the results were compared with standard

GP and TAG3P using subtree mutation. For the ORDER and MAJORITY, four

problem sizes were used, n = 25, 30, 35, 40 (ORDER25, ORDER30, ORDER35,

ORDER40, MAJ25, MAJ30, MAJ35, MAJ40). To separate out the effect of

using insertion and deletion as mutation operators from the pure power of subtree

crossover in TAG3P, a set of runs was dedicated to TAG3P (TAGCROSS) using

subtree crossover as the sole genetic/search operator. For each of these system

and problem instances, 100 runs was allocated, making a total number of 4000

runs.

Table 6.2 below shows the proportion of success on the ten problem instances.

CHAPTER 6. SOME OPERATORS 103

Figures 6.3, 6.4, 6.5, and 6.6 depict the cumulative frequencies of GP, TAG3P,

TAGCROSS, and TAG3PM on all problem instances.

Table 6.2. Proportion of success on test problem instances.

Problem GP TAG3P TAGCROSS TAG3PM

ORDER25 68% 68% 56% 93%

ORDER30 45% 47% 28% 77%

ORDER35 26% 21% 11% 54%

ORDER40 18% 9% 2% 27%

MAJ25 73% 75% 55% 88%

MAJ30 46% 52% 30% 71%

MAJ35 25% 25% 8% 53%

MAJ40 15% 14% 5% 25%

SYMREG 9% 93% 93% 90%

6MUL 63% 63% 61% 79%

The results in table 6.2 and Figures 6.3, 6.4, 6.5, and 6.6 show that for al-

most all of the problem instances tried, insertion and deletion are a much better

mutation operator than subtree mutation in TAG3P. They helped TAG3PM to

converge to solutions more quickly and outperformed TAG3P and GP. The su-

perior performance of TAG3PM over TAG3P and GP is statistically significant

(using one-tailed statistical test on the difference between two random binomial

variables with α = 0.05) on 7 out of 10 problem instances. Moreover, compared

to TAGCROSS on these problem instances, it is clear that the superior perfor-

mance of TAG3PM over TAG3P and GP comes from the use of insertion and

deletion as mutation operators but not from the power of subtree crossover.

The three exceptions are ORDER40, MAJ40, SYMREG. For the symbolic

regression problem (SYM), the results of TAGCROSS shows that the success

rate of TAG3P was very high due to subtree crossover. Therefore, it is not

surprising that TAG3PM had a similar result with TAG3P and TAG3PCROSS.

For ORDER40 and MAJ40, TAG3PM outperformed TAG3P and GP slightly,

but not statistically significantly. Those results, and the decline in performance

CHAPTER 6. SOME OPERATORS 104

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
TAGCROSS
TAG3PM

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
TAGCROSS
TAG3PM

n = 25 n = 30

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
TAGCROSS
TAG3PM

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30
C

um
ul

at
iv

e
F

re
qu

en
cy

Generation

GP
TAG3P
TAGCROSS
TAG3PM

n = 35 n = 40

Figure 6.3: Cumulative Frequencies for ORDER Problems

CHAPTER 6. SOME OPERATORS 105

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
TAGCROSS
TAG3PM

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
TAGCROSS
TAG3PM

n = 25 n = 30

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
TAGCROSS
TAG3PM

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
TAGCROSS
TAG3PM

n = 35 n = 40

Figure 6.4: Cumulative Frequencies for MAJORITY Problems

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
TAGCROSS
TAG3PM

Figure 6.5: Cumulative Frequencies for symbolic regression Problem

CHAPTER 6. SOME OPERATORS 106

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
TAGCROSS
TAG3PM

Figure 6.6: Cumulative Frequencies for 6-Multiplexer Problem

of TAG3PM on the other ORDER and MAJORITY problem instances, might

indicate that although insertion and deletion are better mutation operators for

TAG3P on those problems (MAJORITY and ORDER), they do not scale well

against increasing size (i.e. increasing difficulty) of the problems.

Experiment 2

In the second experiment, insertion and deletion are used as a dual meta local

search operator in combination with TAG3P genetic search (LSTAG3P) using

subtree crossover and subtree mutation. The results are compared with TAG3P

(TAG3P) using subtree crossover and subtree mutation. To ensure that the

number of fitness evaluations was the same between LSTAG3P and TAG3P the

population size in LSTAG3P was reduced to a very small size. For the OR-

DER and MAJORITY problems, the population size of LSTAG3P was set as

10 (LSTAG3P10). Correspondingly, the number of local search steps was 10.

For symbolic regression and 6-multiplexer problems, two sizes of population for

LSTAG3P were used, namely, 50 (LSTAG3P50) and 10 (LSTAG3P10). There-

fore, the number of local search steps for these were 10 and 50 respectively. Other

settings of LSTAG3P (such as MAXGEN, MAXSIZE, operator probabilities,...)

were exactly the same as TAG3P. The local search strategy used was stochastic

hill-climbing. Lamarckian inheritance was used (i.e. whenever a better individual

CHAPTER 6. SOME OPERATORS 107

was found in the neighbourhood of an individual in the population, this individ-

ual was replaced by the new and better individual). For each setting of each

system, some 100 runs were conducted, thus making the total number of runs for

this experiment 1200.

The following table shows the proportion of success for all systems. For the

sake of reference, GP results are also given. Figures 6.7, 6.8, 6.9, and 6.10 depicts

their cumulative frequencies.

Table 6.3. Proportion of success on test problem instances.

Problem GP TAG3P LSTAG3P50 LSTAG3P10

ORDER25 68% 68% N/A 96%

ORDER30 45% 47% N/A 89%

ORDER35 26% 21% N/A 89%

ORDER40 18% 9% N/A 80%

MAJ25 73% 75% N/A 93%

MAJ30 46% 52% N/A 92%

MAJ35 25% 25% N/A 92%

MAJ40 15% 14% N/A 79%

SYMREG 9% 93% 78% 55%

6MUL 63% 63% 59% 64%

The results shown in table 6.3 and Figures 6.7, 6.8, and 6.9, 6.10 demon-

strate that LSTAG3P10 outperformed GP and TAG3P statistically significantly

on the ORDER and MAJORITY problems (using the one-tailed statistical test

for the difference between two binomial random variables with α = 0.01). More-

over, LSTAG3P performance scaled very well (compared to GP, TAG3P, and

TAG3PM) against the increasing problem complexity. The performances of

both LSTAG3P50 and LSTAG3P10 are similar to or worse than TAG3P (and

GP) on the 6-multiplexer and symbolic regression problems respectively (though

LSTAG3P50’s performance was not very far behind TAG3P). However, it is

noted that the population sizes used in the LSTAG3P runs are very small com-

pared to the normal population sizes in the genetic programming literature. The

CHAPTER 6. SOME OPERATORS 108

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
LSTAG3P

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
LSTAG3P

n = 25 n = 30

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
LSTAG3P

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
LSTAG3P

n = 35 n = 40

Figure 6.7: Cumulative Frequencies for ORDER Problems

CHAPTER 6. SOME OPERATORS 109

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
LSTAG3P

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
LSTAG3P

n = 25 n = 30

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
LSTAG3P

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
LSTAG3P

n = 35 n = 40

Figure 6.8: Cumulative Frequencies for MAJORITY Problems

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
LSTAG3P50
LSTAG3P10

Figure 6.9: Cumulative Frequencies for symbolic regression Problem

CHAPTER 6. SOME OPERATORS 110

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
LSTAG3P50
LSTAG3P10

Figure 6.10: Cumulative Frequencies for 6-Multiplexer Problem

power of LSTAG3P and the similarity of LSTAG3P50 and LSTAG3P10 on the

6-Multiplexer problem indicate that using insertion and deletion as a dual generic-

local search operator can help LSTAG3P to achieve a better or at least similar

performance with TAG3P (and GP) even with very small population sizes. It

might be hoped that insertion and deletion are useful, in real world applications,

where very big population sizes of GP are usually required. For instance, in

[Koz99], population sizes of hundreds of thousand to tens of millions were used.

If the problems possess some heuristics indicating that insertion/deletion might

work well (such as “small change in genotype will likely cause small change in

phenotype and its fitness” as in ORDER and MAJORITY), then it might be pos-

sible to solve them with very small population sizes by using insertion/deletion

as a generic-local search operator, and, therefore, reduce the memory storage

requirements.

Experiment 3

In any evolutionary algorithm (EAs), there is always a trade-off between exploita-

tion and exploration capability ([Hol1975]). One of the many possible ways for

EAs to shift the search process toward exploitation is to use a smaller popula-

tion size with bigger number of generations (longer evolution time). Therefore,

the purpose of experiment 3 is to show that the result from experiment 2 really

CHAPTER 6. SOME OPERATORS 111

do come from the power of insertion/deletion as a meta-local search operator

and not from the effect of increasing the exploitation of TAG3P by reducing the

population sizes. To achieve that goal, TAG3P was run with population sizes

of 50 (TAG3P50) and 10 (TAG3P10) with the correspondingly longer number

of generations. The maximal number of generations (MAXGEN) of TAG3P10

was 511 for the ORDER and MAJORITY problems; an 2551 for the symbolic

regression, and 6-multiplexer problems. Similarly, MAXGEN of TAG3P50 for

symbolic regression problem and 6-multiplexer problems was 511. Consequently,

TAG3P10 and TAG3P50 had the same maximal number of fitness evaluations as

other systems in experiment 1 and 2. Similarly, the same settings were used for

GP (GP50, GP10) and the results of those GP runs are also shown as a reference.

Each of the settings was allocated 100 runs, which makes the number of runs

for this experiment as 2400. The following table depicts the results of TAG3P10

and TAG3P50 (compared to GP50, GP100 and LSTAG3P10, LSTAG3P50).

Table 6.4. Proportion of success on the test problems.

Problem GP50 TAG3P50 LSTAG3P50 GP10 TAG3P10 LSTAG3P10

ORDER25 N/A N/A N/A 55% 29% 96%

ORDER30 N/A N/A N/A 37% 19% 89%

ORDER35 N/A N/A N/A 13% 12% 89%

ORDER40 N/A N/A N/A 12% 7% 80%

MAJ25 N/A N/A N/A 49% 27% 93%

MAJ30 N/A N/A N/A 30% 21% 92%

MAJ35 N/A N/A N/A 12% 16% 92%

MAJ40 N/A N/A N/A 10% 3% 79%

SYMREG 12% 70% 78% 4% 51% 55%

6MUL 52% 19% 59% 28% 15% 64%

The results show that LSTAG3P50 (for 6-Multiplexer problems) and LSTAG3P10

significantly outperformed TAG3P50 (GP50) and TAG3P10 (GP10) respectively.

The only exception is on symbolic regression, whereby LSTAG3P50 (LSTAG3P10)

CHAPTER 6. SOME OPERATORS 112

was better than TAG3P50 (TAG3P10), but not statistically significantly. There-

fore, the power of LSTAG3P clearly comes from the use of insertion/deletion

as a dual generic-local search operator, not from the exploitation effect of the

reduction in population sizes.

Experiment 4

In GP literature, there has been some works suggesting that local search could

sometime defeat genetic search in GP [ORe1994, Lan1995]. Therefore, the pur-

pose of this experiment is to investigate whether the high performance of LSTAG3P

was attributed to the use of insertion/deletion as (generic) local search operators

or attributed to the local search strategy alone. To accomplish that task, GP

(LSGP10) and 50 (LSGP50 - for 6-multiplexer and symbolic regression only) and

was combined with local search using subtree mutation as the local search opera-

tor. The other parameter settings were the same as in the previous experiments.

Each setting was allocated 100 runs, which made the total number of runs as

1200. Table 6.5 depicts the results.

Table 6.5. Proportion of success on the test problem.

Problem LSGP50 LSTAG3P50 LSGP10 LSTAG3P10

ORDER25 N/A N/A 82% 96%

ORDER30 N/A N/A 76% 89%

ORDER35 N/A N/A 67% 89%

ORDER40 N/A N/A 60% 80%

MAJ25 N/A N/A 90% 93%

MAJ30 N/A N/A 78% 92%

MAJ35 N/A N/A 62% 92%

MAJ40 N/A N/A 52% 79%

SYMREG 6% 78% 7% 55%

6MUL 64% 59% 41% 64%

The results from Table 6.5 show that except for MAJ25 and 6-MUL, LSTAG3P

outperformed LSGP significantly on all problem instances. For MAJ25, LSTAG3P10

CHAPTER 6. SOME OPERATORS 113

was just slightly better than LSGP10 (not statistical significance). On the other

hand, LSGP50 performed better than LSTAG3P with a very small margin. For

population size of 10, LSTAG3P10 outperformed LSGP10 statistically signifi-

cantly. Consequently, the results show that the good performance of LSTAG3P

did really come from the usefulness of insertion/deletion operators when being

used as local operators but not from the local search strategy itself.

6.1.3 Insertion and Deletion Conclusion

On the problems tried, insertion and deletion work well both as mutation oper-

ators and as a dual generic-local search operator combining with genetic search.

However, when acting as mutation operators insertion and deletion did not per-

form well when the problem complexity is scaled up. On the contrary, when

using insertion and deletion as a dual genetic-local search operators on relevant

problems, it not only helped TAG3P to perform well in general, but also scaled

well against the problem complexity, using very small population sizes.

6.2 Relocation Operator

Genetic transposition in genome evolution is a phenomenon whereby a region of

DNA copies itself to another place on the genome. These mobile genetic sequences

are called transposable elements [Drl1984, Rid1996], transposons, or more infor-

mally jumping genes [Wat1995]. It is conjectured that genetic transposition plays

an important role in forming scattered clusters of related genes in the genome of

organisms.

There are two types of genetic transposition, namely, replicative transposition

and conservative transposition [Rid1996]. In the former, a transposon makes a

repeated copy of itself elsewhere using reverse transcription on an RNA, while

in the latter a transposon moves to another place by copying itself [Rid1996]. In

this section, we investigate the metaphor of conservative genetic transposition in

TAG3P, which we call the relocation operator. Replicative tranposition is studied

CHAPTER 6. SOME OPERATORS 114

in the next section.

In genetic programming, genetic relocation can be seen as the process of

internal rearrangement of sub-codes (sub-trees in tree-based representation, sub-

sequences in linear representation) in each individual. This rearrangement is very

useful in at least two ways. Firstly, if one sees the process of genetic evolution in

GP as discovering and accumulating necessary building blocks for the solution(s),

then rearrangement within one individual helps to accelerate this accumulation, if

some useful genetic materials (sub-codes) already appear in the individual itself.

Secondly, the rearrangement of subcode within an individual helps to bring the

related and useful subcodes together, thereby protecting them from the destruc-

tive effect of the crossover operator [Nor1995a, Nor1995b, Nor1996, Ban1998].

In standard GP, using expression tree representation, it is hard to see how

this subcode rearrangement (genetic relocation) can be done. We believe that

the expression tree representation makes it difficult to design a general purpose

search operator to accomplish this task. As an alternative, standard GP uses

mechanisms such as automatically defined functions (ADF) to shorten the so-

lution length, therefore accelerating the accumulation of building blocks for the

desired solution during its evolutionary process [Koz94, Koz99]. However, we

argue that when the length of the solution is long, the use of genetic relocation

provides a more flexible way to accumulate the building blocks needed to solve

the problem. Unlike GP with ADF, it does not require users to provide extra

information such as the number of ADFs, number of ADF parameters, and so

on.

For GEP, its linear representation allows the ready design of genetic relocation

(which was called transposition in [Fer2001, Fer2002a]). However, the relocation

of any trunk of genes (subcode) in GEP can potentially affect the positions as

well as the expressiveness (i.e. coding or non-coding) of many other genes not

just at the source and destination positions. The reason for this is, as discussed

in chapter 2, that the GEP genotype-phenotype map does not have the locality

(causality) property. Therefore, it creates a global random side effect on the

CHAPTER 6. SOME OPERATORS 115

phenotype. Nevertheless, it improved the performance of GEP in some cases as

shown in [Fer2002a]. Furthermore, in [Fer2002a], it is suggested that it is better

to use genetic relocation in combination with crossover.

In grammar guided genetic programming (GGGP), where the language of

the programs is dictated by a grammar (usually a string-rewriting grammar), it

is even harder to implement genetic relocation on the genotypic level (usually

derivation trees of the grammar) because of the rule-based nature of the formal-

ism. GE is an exception. Thank to the linear structure of the genotype, it is easy

to implement genetic relocation. However, as with GEP, since the GE genotype-

phenotype map does not possess locality (causality) property, the relocation of

trunk of genes (subcode) in GE might completely change the meaning (if there

is more than one non-terminal symbol in the grammar) and the expressiveness

of the genes following the destination position. The meaning of the relocated

genes might also change vastly, depending on the context before the destination

position. Therefore, as with GEP, it creates a global random side effect on the

phenotype. To date, there has not been any concrete results in the use of genetic

relocation in GE that we are aware of.

6.2.1 Description of the Relocation Operator

In TAG-based representation, the non-fixed arity property helps to design a re-

location operator in a simple and natural way. Moreover, since TAG-based rep-

resentation has the locality property, the movement of a particular subcode does

not affect the meaning of others. Therefore, it is hoped that relocation will

help to assemble together the useful codes within an individual. The relocation

operator on an individual, a Glex derivation tree t, can be implemented as follows.

CHAPTER 6. SOME OPERATORS 116

1) Choose a subtree v (subcode) in t as random.

Assume that v rooted with node l.

2) Find the set V defined as

V ={nodes n in (t-v)/n has at least

one NULL-adjunction that l can adjoin into}
3) IF V = ∅ THEN

Choose m uniformly randomly from V .

Randomly choose an address a among all the adjoining addresses

in m that l can adjoin into.

Detach v from t.

Attach v to t at m with adjoining address a.

Exit.

4 Loop from 1 to 3 until a maximal number of attempts is exceeded.

where (t-v) means all nodes in tree t that are not in subtree v. Figure 6.11

demonstrates how the relocation operator works. Note that the relocation oper-

ator does not change the size of the individual.

After RelocationBefore Relocation

Figure 6.11: Relocation Operator

CHAPTER 6. SOME OPERATORS 117

6.2.2 Experiments

As with the insertion and deletion operators, in this subsection, the role of the

relocation operator is investigated, in the context of TAG3P, in two ways. The

first role will be as a mutation operator, while the second will be as a generic-local

search operator. Therefore, some relevant standard problems from GP literature

were chosen as test problems. Then the experiments were conducted in a very

similar way as for insertion and deletion operators in the previous section.

Test Problems

The chosen test problems for relocation were learning the quintic and sextic

polynomials, trigonometric identities, and two box problems [Koz92, Koz94]. In

the first two problems, the tasks was to learn the quintic polynomial (QUINTIC)

X5 − 2X3 + X and sextic polynomial (SEXTIC) X6 − 2X4 + X, from sample

data. In the third problem (TWOBOX), it is required to learn the formula for

calculating the difference in volume between two rectangular boxes from random

integer samples of box sizes. The task for the last problem (TRIGO) was to

discover the trigonometric identities of cos 2x using the sine function.

In [Koz94], the first three problems were used to test the applicability of

automatically defined functions (ADFs) in GP. Although the lengths for the

solutions in those problems are long, they have some repeated patterns, which can

be potentially exploited by using ADFs, therefore making them shorter. However,

the results of GP using ADFs was not particularly good on those problems.

One possible explanation is that although there are some repeated patterns in

the solution, perhaps their number of occurrences are not high enough to be

usefully exploited by ADFs [Koz94]. This is the place, we believe, where the

relocation operator will play an important role. In the last problem, as pointed

out in [NXH2001b], there is a strong tendency for GP search to converge to the

approximate solutions, namely, sin(2x+π/2) and sin(π/22x). However, in order

to approximate the constant π/2, it is necessary to accumulate a long sequence of

code (including *,/,+,1.0). Consequently, all four of standard problems above are

CHAPTER 6. SOME OPERATORS 118

appropriate as test-beds for investigating the usefulness of the relocation operator

in TAG3P.

Experiment Setup

The performance of TAG3P using the relocation operator was compared against

TAG3P using standard subtree crossover and subtree mutation, which comprises

the set of base runs. Tables 6.6, 6.7, and 6.8 summarise the settings for TAG3P

base runs on the four test problems. As a reference, the same number of base runs

was also conducted for GP with similar settings. It is noted that the population

size (POPSIZE) for the TWOBOX problem was set as 4000, since this problem

is considered as a much more difficult problem than other three. In the follow-

ing section, parameters will, in general, be stated for all problems. However, a

shorthand will be used for the population size of the TWOBOX problem: when

it is different from other problems it will be enclosed in the curly brackets. The

grammars for all problems are given in Appendix A.

Table 6.6. Tableau for QUINTIC and SEXTIC problems.

Objective Learning quintic (sextic) polynomial from data.

Terminal set X

Function set {+,−, ∗, %}
Fitness cases A random sample of 50 points in the interval [-1..+1].

Raw fitness The sum, taken over 50 fitness cases, of the errors.

Standardised fitness Same as raw fitness.

Hits The number of fitness cases for which the error is

less than 0.01.

Parameters POPSIZE=1000, MAXGEN=51,

Tournament selection with size 3.

MAXSIZE=40 for TAG3P, MAXDEPTH=15 for GP.

Crossover rate=0.9, mutation rate=0.1.

Success Predicate A program scores 50 hits.

CHAPTER 6. SOME OPERATORS 119

Table 6.7. Tableau for TRIGO problem.

Objective Discovering identities for cos2x from data.

Terminal set {X, 1}
Function set {+,−, ∗, %, sin}
Fitness cases A random sample of 20 points in the interval [0..2π].

Raw fitness The sum, taken over 20 fitness cases, of the errors.

Standardised fitness Same as raw fitness.

Hits The number of fitness cases for which the error is

less than 0.01.

Parameters POPSIZE=1000, MAXGEN=51,

Tournament selection with size 3.

MAXSIZE=40 for TAG3P, MAXDEPTH=15 for GP.

Crossover rate=0.9, mutation rate=0.1.

Success Predicate A program scores 20 hits.

Table 6.8. Tableau for TWOBOX problem.

Objective Learning the function for calculating the difference.

between two volumes.

Terminal set {W, H, L, w, h, l}
Function set {+,−, ∗, %}
Fitness cases A random sample of 10 integers between 1 and 10.

Raw fitness The sum, taken over 10 fitness cases, of the errors.

Standardised fitness Same as raw fitness.

Hits The number of fitness cases for which the error is

less than 0.01.

Parameters POPSIZE=4000, MAXGEN=51,

Tournment selection with size 3.

MAXSIZE=40 for TAG3P, MAXDEPTH=15 for GP.

Crossover rate=0.9, mutation rate=0.1.

Success Predicate A program scores 10 hits.

CHAPTER 6. SOME OPERATORS 120

Experiment 1

In the first experiment, the relocation operator was used as the mutation op-

erator in TAG3P(TAG3PM) and the results were compared with standard GP

and TAG3P (TAG3P) using subtree mutation. To separate out the effect of us-

ing relocation as mutation operators, from the pure power of subtree crossover

in TAG3P, a set of runs was dedicated to TAG3P (TAGCROSS) using subtree

crossover as the sole genetic operator. For each of the system and problem in-

stances, 100 runs were allocated, making the total number of runs as 1600.

Table 6.9 below shows the proportion of success on the four problems. Figure

6.12 shows the cumulative frequencies of GP, TAG3P, TAGCROSS, and TAG3PM

on those problems.

Table 6.9. Proportion of success on the test problems.

Problem GP TAG3P TAGCROSS TAG3PM

QUINTIC 65% 78% 88% 92%

SEXTIC 51% 70% 55% 61%

TRIGO 36% 36% 22% 47%

TWOBOX 6% 23% 17% 22%

The results indicate that relocation works moderately well as a mutation oper-

ator compared to TAG3P using subtree mutation. On SEXTIC and TWOBOX,

the TAG3PM performs worse than TAG3P, but the difference is not statistically

significant. The use of relocation as a mutation operator made TAG3PM out-

perform TAG3P (using subtree mutation) statistically significantly on QUINTIC

(using one-tailed statistical test of the difference between two random binomial

variables with α = 0.05) and only slightly (not statistically significantly) on

TRIGO. The difference in performance between TAGCROSS and TAG3PM in-

dicates that relocation seems to be a moderately good mutation operator for

those problems.

CHAPTER 6. SOME OPERATORS 121

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
TAG3PCROSS
TAG3PM

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
TAG3PCROSS
TAG3PM

QUINTIC SEXTIC

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
TAG3PCROSS
TAG3PM

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25
C

um
ul

at
iv

e
F

re
qu

en
cy

Generation

GP
TAG3P
TAG3PCROSS
TAG3PM

TRIGO TWOBOX

Figure 6.12: Cumulative frequencies for four problems

CHAPTER 6. SOME OPERATORS 122

Experiment 2

In the second experiment, relocation was used as the generic-local search op-

erator in combination with TAG3P genetic search (LSTAG3P) using subtree

crossover and subtree mutation. The results were compared with TAG3P using

subtree crossover and subtree mutation. To guarantee that the number of fit-

ness evaluation was the same between LSTAG3P and TAG3P, the population

size in LSTAG3P was reduced to very small numbers. For the SEXTIC, QUIN-

TIC, and TRIGO problems, the population sizes of LSTAG3P were set as 100

(LSTAG3P100), 50 (LTAG3P50), and 20 (LSTAG3P20). Therefore, the number

of local search steps was 10, 20, and 50. For the TWOBOX problem the sizes

of population for LSTAG3P were 200 (LSTAG3P200), 100 (LSTAG3P100), and

50 (LSTAG3P50); and the number of local search steps were 20, 40, and 80.

Other settings of LSTAG3P (such as MAXGEN, MAXSIZE, operator probabili-

ties,...) were exactly the same with TAG3P. The local search strategy used was

stochastic hill-climbing. Lamarckian inheritance was used. For each setting of

each system, some 100 runs were conducted, making the total number of runs for

this experiment 1200.

The following table shows the proportion of success for all systems. Once

again, GP results are also given. Figures 6.13 depicts the cumulative frequencies

of all systems and settings on four test problems.

Table 6.10. Proportion of success on the test problems.

Problem GP TAG3P LSTAG3P100 LSTAG3P50 LSTAG3P20

{200} {100} {50}
QUINTIC 65% 78% 90% 85% 78%

SEXTIC 51% 70% 85% 85% 74%

TRIGO 36% 36% 62% 58% 53%

TWOBOX 6% 23% 38% 41% 29%

The results clearly show, that for all problems, LSTAG3P performed better

than TAG3P (and GP). For each problem, there are at least two settings, in which

the superiority of LSTAG3P over TAG3P and GP is statistically significant (using

CHAPTER 6. SOME OPERATORS 123

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
LSTAG3P100
LSTAG3P50
LSTAG3P20

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
LSTAG3P100
LSTAG3P50
LSTAG3P20

QUINTIC SEXTIC

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
LSTAG3P100
LSTAG3P50
LSTAG3P20

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45
C

um
ul

at
iv

e
F

re
qu

en
cy

Generation

GP
TAG3P
LSTAG3P200
LSTAG3P100
LSTAG3P50

TRIGO TWOBOX

Figure 6.13: Cumulative Frequencies for four problems

CHAPTER 6. SOME OPERATORS 124

one-tailed statistical test of the difference between two random binomial variables

with α = 0.01). This means that for all problems, whose solutions have some

repeated pattern, using relocation as a meta-local search operator helps TAG3P

to improve its performance. Moreover, as in the case of insertion and deletion,

LSTAG3P could solve the problem with exceedingly small population sizes.

Experiment 3

The purpose of experiment 3 is similar to that of the previous section, where

we want to confirm the claim that the superior performance of LSTAG3P comes

from the power of relocation, not from shifting towards the exploitation end in

evolutionary search by reducing the population size. In other words, the purpose

of the comparison here is to compare between TAG3P using the relocation oper-

ator and TAG3P, GP having more exploitative power by using small population

sizes.

Consequently, GP and TAG3P were run with the same population sizes as in

LSTAG3P. However, for each TAG3P (GP) run in this experiment, the number of

generations was correspondingly increased so that the maximal number of fitness

evaluation is the same with LSTAG3P. Each system and setting was allocated

100 runs. Therefore, the total number of runs for this experiment was 2400. The

four following tables show the proportion of success for all systems and settings.

Table 6.11. Proportion of success on the test problems (POPSIZE=100{200}).
Problem GP100 TAG3P100 LSTAG3P100

{200} {200} {200}
QUINTIC 60% 64% 90%

SEXTIC 49% 59% 85%

TRIGO 15% 18% 62%

TWOBOX 1% 23% 38%

CHAPTER 6. SOME OPERATORS 125

Table 6.12. Proportion of success on the test problems (POPSIZE=50{100}).
Problem GP50 TAG3P50 LSTAG3P50

{100} {100} {100}
QUINTIC 42% 74% 85%

SEXTIC 32% 55% 85%

TRIGO 13% 16% 58%

TWOBOX 0% 14% 41%

Table 6.13. Proportion of success on the test problems (POPSIZE=20{50}).
Problem GP20 TAG3P20 LSTAG3P20

{50} {50} {50}
QUINTIC 48% 60% 78%

SEXTIC 45% 65% 74%

TRIGO 9% 19% 53%

TWOBOX 0% 14% 29%

The results in the above tables 6.11, 6.12, and 6.13 show the superiority of

LSTAG3P over TAG3P and GP using the same population sizes. It shows that

the superior performance of LSTAG3P over TAG3P (and GP) actually comes

from the power of relocation when used as a meta-local search operator, not from

the effect of reduced population sizes.

Experiment 4

Similar to the previous subsection on insertion/deletion, GP also was run with

local search using subtree mutation as the local search operator (LSGP). The

population sizes were 100 (200 for TWOBOX problem), 50 (100 for TWO BOX

problem), and 20 (50 for TWOBOX problem). The purpose is to separate out the

effect of using relocation as the local search operator and the local search strategy

itself. Each setting of LSGP was allocated 100 runs, which made the total number

of runs for this experiment as 1200 runs. Table 6.14 shows the results for LSGP

and LSTAG3P (to keep the table within the page margin, LSGP100 (50, 20) is

shorten as GP100 (50, 20), and LSTAG3P100 (50, 20) is shorten as TAG100 (50,

CHAPTER 6. SOME OPERATORS 126

20)).

Table 6.14. Proportion of success on the test problems.

Problem GP100 TAG100 GP50 TAG50 GP20 TAG20

{200} {200} {100} {100} {50} {50}
QUINTIC 62% 90% 61% 85% 48% 78%

SEXTIC 66% 85% 68% 85% 60% 74%

TRIGO 19% 62% 16% 58% 20% 53%

TWOBOX 12% 38% 18% 41% 16% 29%

The results in Tables 6.14 show that LSTAG3P outperformed LSGP on all

problem instances in all setting. Thus, it leads to the conclusion that the high

performance of LSTAG3P did indeed come from the use of relocation as local

search operator but not from the local search strategy it self.

6.2.3 Relocation Operator Conclusion

As in the case of the insertion and deletion operators, the same conclusion on the

usefulness of relocation is reached. For relevant problems, such as those that have

solutions or partial solutions with repeated patterns, relocation can help TAG3P

to improve its performance by rearranging the subcodes within each individual

of the population. Moreover, when acting as a generic-local search operator, it

helps TAG3P solve problems with very small population sizes.

6.3 Duplication Operator

The second kind of genetic transposition in genome evolution is genetic dupli-

cation, whereby a transposon makes copies of itself in other places [Drl1984,

Rid1996]. Ohno ([Ohn1970]) even went further, to suggest that genetic duplica-

tion is the major force of evolution.

In the field of evolutionary algorithms (EAs), Schwefel ([Shw1968]) was prob-

ably the first researcher to use gene duplication in solving real-world problems

in industry. In [Hol1975], the operation of gene duplication was also proposed in

CHAPTER 6. SOME OPERATORS 127

order to raise the power of EAs. In general, the use of gene duplication has the po-

tential to multiply useful building blocks within individuals, and later the copied

building blocks can be subjected to change at their new locations by subsequent

gene operations.

In the field of genetic programming, gene duplication has been studied in sev-

eral forms. In [Koz1995a, Koz1995b, Koz1995c, Koz1996], gene duplication was

implemented by copying automatically defined function branches in multi-part

programs. Hayes ([Hay1998a, Hay1998b]) also implemented a kind of gene dupli-

cation for evolving collective behaviours whereby codes were exchanged between

individuals in the population. However, the implementation of general purpose

gene duplication operators acting directly on standard GP expression trees (or the

executing branch of GP with ADFs) has not been done. Although, in [Hay1996a],

a gene duplication operation was defined for GP expression trees and was shown

to be useful, the implementation is ad-hoc and problem dependent. We believe

that this difficulty comes from the fixed-arity property of the GP expression tree

representation.

For GEP, the linear representation facilitates the design of genetic duplication

[Fer2001, Fer2002a]. However, just as in the case of relocation, the duplication of

any trunk of genes (subcode) in GEP can potentially affect the positions as well

as the expressiveness (i.e. coding or non-coding) of many other genes, not just

at the source and destination positions. Therefore, it creates a global random

side effect on the phenotype. Nevertheless, it was shown to be useful for GEP in

some cases [Fer2002a].

In grammar guided genetic programming (GGGP), where the structure of

the programs is constrained by grammar rules, it is more difficult than in GP

to implement genetic relocation on the genotypic level (derivation trees of the

grammars) because of the rule-based nature of the formalism. GE is once again

an exception, as with the linear structure of the genotype, it is easy to implement

genetic duplication [Rya1998a]. However, as with GEP, since the GE genotype-

phenotype map does not posses locality property, the duplication of trunks of

CHAPTER 6. SOME OPERATORS 128

genes (subcodes) in GE might completely change the meaning (if there is more

than one non-terminal symbol in the grammar) and the expressiveness of the

genes following the destination position. The meaning of the duplicated genes

might also change vastly, depending on the context before the destination po-

sition. Therefore, as with GEP, it creates a global random side effect on the

phenotype. To date, there has not been any concrete results in the use of genetic

relocation in GE of which we are aware of.

6.3.1 Description of Duplication Operator

With the non-fixed arity property of TAG-derivation trees, gene duplication on

the TAG-based representation can be implemented in a simple and natural way.

Furthermore, thanks to the locality property of the TAG-based representation,

copying a subcode affects neither the meaning of the subcode itself, nor other

parts of the tree. Therefore, it is hoped that duplication will help to multiply

correct building blocks within each individual.

The duplication operator on an individual, a Glex derivation tree t, is imple-

mented as follows.

1) Choose a subtree v (subcode) in t as random.

Suppose that v rooted with node l.

2) Find the set V defined as

V ={nodes n in (t)/n has at least

one NULL-adjunction that l can adjoin into}
3) IF V = ∅ THEN

Choose m uniformly randomly from V .

Choose the address a from all the adjoining addresses in m

that l can adjoin into.

Create a copy of v from t.

Attach the copy of v to t at m with adjoining address a.

Exit.

4 Loop from 1 to 3 until a maximal number of attempts is exceeded.

CHAPTER 6. SOME OPERATORS 129

Figure 6.14 depicts how duplication operator works. It is noted that the

duplication operator does change the size of the individual.

Before Duplication After Duplication

Figure 6.14: Duplication Operator

6.3.2 Experiments

Although gene duplication is bio-inspired and potentially useful for genetic pro-

gramming in general, and TAG3P in particular, a direct application of the du-

plication operator might not work. The duplication operator increases the size

of the individuals that it is applied to, so, without any size control strategy, code

size will potentially bloat very quickly. Some preliminary runs support this as-

sumption. Therefore, in the experiments in this chapter, we used duplication

with its counterpart, namely, the truncation operator described in chapter 4.

As in the cases of the insertion, deletion and relocation operators, the roles of

duplication and truncation both as mutation operators and as a dual generic-local

search operator were investigated.

Test Problems

The problem for experimentation in this section is simple symbolic regression.

The details of the problem description and its grammars were given in the previ-

ous chapter. The target functions used here are a family of 6 polynomial functions

CHAPTER 6. SOME OPERATORS 130

of increasing structural complexity: X4+X3+X2+X (X4), X5+X4+X3+X2+X

(X5),X6 + X5 + X4 + X3 + X2 + X (X6), X7 + X6 + X5 + X4 + X3 + X2 + X

(X7), X8 +X7 +X6 +X5 +X4 +X3 +X2 +X (X8), X9 +X8 +X7 +X6 +X5 +

X4 +X3 +X2 +X (X9). It is noted that there is a great self-similarity (repeated

patterns) in the structures of the above polynomials, and on the interval of in-

terest ([-1..+1]), the polynomials with higher degree can be well approximated

by those with lower degree. Therefore, the multiplication of building blocks by

the copying of useful subcodes within a polynomial lower degree might help to

accumulate more partial polynomial parts (such as X + X∗) to thus become (or

approximate well) a higher degree polynomial.

Experiment Setup

The base runs of TAG3P (TAG3P) used the same setting as in the previous chap-

ter (such as POPSIZE=500, MAXGEN=51, MAXSIZE=40, crossover rate=0.9,

mutation rate=0.1,..). The same number of runs with similar settings as in the

previous chapter for GP were also allocated and the results are also given here

as a reference.

Experiment 1

In the first experiment, as in the previous section, the duplication and truncation

operators are used as mutation operators in TAG3P(TAG3PM), and the results

were compared with standard GP and TAG3P (TAG3P) using subtree mutation.

To separate out the effect of using duplication as the mutation operator from the

pure power of subtree crossover in TAG3P, a set of runs was allocated to TAG3P

(TAGCROSS) using subtree crossover as the sole genetic operator. For each of

the system and problem instances, 100 runs were allocated, making total number

of runs to be 2400.

Table 6.15 below shows the proportion of success on all six problem instances.

Figure 6.15 shows the cumulative frequencies of GP, TAG3P, TAGCROSS, and

TAG3PM on those problem instances.

CHAPTER 6. SOME OPERATORS 131

Table 6.15. Proportion of success on the test problems.

Problem GP TAG3P TAGCROSS TAG3PM

X4 9% 93% 93% 93%

X5 3% 82% 87% 90%

X6 1% 43% 61% 64%

X7 2% 48% 43% 53%

X8 2% 12% 27% 29%

X9 0% 22% 22% 20%

The results indicate, that on the problem instances tried, TAG3PM works

better than TAG3P (and GP) with a statistical significant (α = 0.05) for X5,

X6, and X8, while its performance was just slightly better than (not statistically

significant) or about the same with TAG3P on the others. Moreover, for almost

al problem instances above (except X9), TAG3PM’s performance was better than

TAGCROSS but not statistically significantly. This means that for the problem

instances tried, duplication and truncation are better mutation operators than

the more standard subtree mutation in TAG3P. However, there is not enough

statistical evidence to draw a conclusion that the better performance of TAG3PM

is due to the power of duplication and truncation, as mutation operators as its

performance was only slightly better than TAG3P using crossover as the sole

genetic operator (TAGCROSS). In addition, it is noted that the performance

of TAG3PM deteriorates rather quickly when the structural complexity of the

target functions was scaled up (from X4 to X9).

Experiment 2

The second experiment is similar to those in the previous two sections, whereby

duplication and truncation were used as a dual generic-local search operator in

combination with genetic search in TAG3P using subtree crossover and subtree

mutation. The results were compared to TAG3P (using full population size -

500). To compensate for the fitness evaluations taken for local search, the pop-

ulation sizes were set as 50 (LSTAG3P50) and 10 (LSTAG3P10). Consequently,

CHAPTER 6. SOME OPERATORS 132

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
TAG3PCROSS
TAG3PM

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
TAG3PCROSS
TAG3PM

X4 X5

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
TAG3PCROSS
TAG3PM

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
TAG3PCROSS
TAG3PM

X6 X7

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
TAG3PCROSS
TAG3PM

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

TAG3P
TAG3PCROSS
TAG3PM

X8 X9

Figure 6.15: Cumulative frequencies for X4-X9

CHAPTER 6. SOME OPERATORS 133

the numbers of local search steps were 10 and 50 respectively. Therefore, the

maximal number of fitness evaluation is just the same as in TAG3P (using POP-

SIZE=500). Other parameter settings of TAG3P50 and TAG3P10 are similar to

those for TAG3P (such as POPSIZE, MAXGEN, MAXSIZE,...). The local search

strategy was stochastic hill-climbing, and Lamarckian inheritance was used. On

each problem instance, each system was allocated 100 runs, which made the total

number of runs in this experiment as 1200.

Table 6.16 below shows the proportion of success on all six problem instances.

Figures 6.16 shows the cumulative frequencies of GP, TAG3P, LSTAG3P50, and

LSTAG3P10 on those problem instances.

Table 6.16. Proportion of success on the test problems.

Problem GP TAG3P LSTAG3P50 LSTAG3P10

X4 9% 93% 93% 79%

X5 3% 82% 91% 80%

X6 1% 43% 85% 69%

X7 2% 48% 74% 71%

X8 2% 12% 59% 61%

X9 0% 22% 67% 60%

From the results in table 6.16 and figure 6.16, it is obvious that, on the all

problem instances tried, LSTAG3P50 outperformed TAG3P significantly, espe-

cially when moving to target functions with higher complexity in their structure

(i.e. with high repeated and self-similarity patterns); for TAG3P10 the, same

conclusion holds except the first two functions. This indicates that duplica-

tion and truncation, when being used as a dual generic-local search operator in

combination with genetic search, can help TAG3P to significantly improve the

performance. Moreover, this performance is still very reliable as the structural

complexity of the target function is scaled up.

CHAPTER 6. SOME OPERATORS 134

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
LSTAG3P50
LSTAG310

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
LSTAG3P50
LSTAG310

X4 X5

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
LSTAG3P50
LSTAG310

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

GP
TAG3P
LSTAG3P50
LSTAG310

X6 X7

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

GP
TAG3P
LSTAG3P50
LSTAG310

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

TAG3P
LSTAG3P50
LSTAG310

X8 X9

Figure 6.16: Cumulative frequencies for X4-X9

CHAPTER 6. SOME OPERATORS 135

Experiment 3

Similarly, as for the relocation, insertion/deletion operators, the purpose of the

third experiment in this section is to show that the superior performance of

LSTAG3P did come from the power of duplication/truncation, and not from

favouring exploitation by reducing the population sizes. Therefore the same pop-

ulation sizes (50 and 10) were used for TAG3P (TAG3P50, TAG3P10 - using sub-

tree crossover and subtree mutation), while the maximal numbers of generation

(MAXGEN) was made bigger correspondingly (511 and 2551). Tables 6.17 and

6.18 shows the results of TAG3P50 and TAG3P10 compared with LSTAG3P50,

LSTAG3P10.

Table 6.17. Proportion of success on the test problems (POPSIZE=50).

Problem GP50 TAG3P50 LSTAG3P50

X4 12% 70% 93%

X5 6% 66% 91%

X6 0% 48% 85%

X7 2% 47% 74%

X8 2% 32% 59%

X9 3% 29% 67%

Table 6.18. Proportion of success on the test problems (POPSIZE=10).

Problem GP10 TAG3P10 LSTAG3P10

X4 4% 51% 79%

X5 2% 46% 80%

X6 4% 36% 69%

X7 4% 26% 71%

X8 2% 27% 61%

X9 2% 28% 60%

These results clearly show that LSTAG3P outperformed GP50 (10) and TAG3P50

(10) statistically significantly (with α = 0.01). Therefore, the superiority of

LSTAG3P does indeed come from the power of duplication/truncation operator,

CHAPTER 6. SOME OPERATORS 136

and not from the exploitation bias caused by using small population sizes. It is

noted however, the claim here for duplication operator, as indicated from the ex-

periments, might be only applicable for problems with highly repeated patterns

like the family of polynomials used in this part.

Experiment 4

The purpose of experiment 4 is similar to those in the previous subsections, which

is to determine whether the high performance of LSTAG3P did really come from

the power of duplication/truncation operators when being used as the local search

operator or from the local search strategy itself. GP again was run with local

search using subtree mutation as the local search operators (LSGP). The number

of runs for each setting was 100, which made the total number of runs as 1200.

Table 6.19 shows the results.

Table 6.19. Proportion of success on the test problems.

Problem LSGP50 LSTAG3P50 LSGP10 LSTAG3P10

X4 6% 93% 7% 79%

X5 3% 91% 1% 80%

X6 2% 85% 0% 69%

X7 0% 74% 1% 71%

X8 4% 59% 0% 61%

X9 0% 67% 0% 60%

The results clearly show that LSTAG3P outperformed LSGP with wide mar-

gin. Therefore it backs the conclusion that the high performance of LSTAG3P

did come from the power of duplication/truncation when being used as the local

search operator but not from the use of local search strategy itself.

6.3.3 Duplication Operator Conclusion

The experiments in this section show that duplication, when using with trunca-

tion, can play two roles in TAG3P. Firstly, duplication and truncation are better

CHAPTER 6. SOME OPERATORS 137

mutation operators than the more standard subtree mutation on problems where

duplication of subcodes is likely to cause the fitness to improve, such as for the

test problem in this section, where the task was to learn a family of polynomials

of increasing degree. However, when being used as mutation operators, they did

not help TAG3P to solve the problems reliably when the structural complexity

of the target function was increased. On the contrary, when duplication and

truncation played their second roles as a dual generic-local search operator, they

not only improved the performance of TAG3P, but also helped TAG3P to cope

well when the problem complexity was scaled up. Moreover, they helped TAG3P

to solve problems with very small population sizes.

6.4 Conclusion and Future Work

Since it was developed, genetic programming (GP) seems to have had a very

limited number of operators that operate directly on its expression trees. There

seems to be a consensus that the reason GP does not have the same benefits of

employing various operators as its predecessor, GAs, is its tree-based represen-

tation. In grammar guided genetic programming (GGGP) the problem is even

more difficult to solve, as the derivation tree representation in GGGP is not only

tree-based, but also grammar(usually rule based) constrained.

There have been a number of successful attempts to linearise standard GP

and GGGP representations. Those attempts resulted in a number of well-known

GP and GGGP systems, notably, GEP and GE. With the linearity in genotype

structure (like in GAs), it is easy for those systems to implement various bio-

inspired operators found in literature. However we argue that, if the genotype-

to-phenotype map achieved by the linearisation does not possess the locality

(causality) property, which certainly is the case for GEP and GE, it might be

difficult to find the context where the operators will work, since the non-locality

property in the genotype-phenotype mapping may create a hard-to-control global

random side effect on the phenotype (e.g the two examples on the noncausality

CHAPTER 6. SOME OPERATORS 138

of GE and GEP in chapter 2).

In this chapter, we have shown that the object-based nature and the non-

fixed arity property of TAG derivation trees help the TAG-based representation

to overcome the difficulty of designing various operators in standard GP and

GGGP. Moreover, since TAG-based representation has the locality property, it is

easier to find the context where those operators are potentially useful.

Three groups of bio-inspired operators have been investigated in this chapter,

namely insertion/deletion, relocation, and duplication/truncation. The results

showed that on relevant problems, they worked well as mutation operators, but

did not cope well as problem complexity was scaled up. However, when they

were used as generic-local search operators in combination with genetic search,

they helped TAG3P to solve the problems well, even with increasing problem

complexity. Moreover, they helped TAG3P to achieve that goal with exceedingly

small population sizes.

The local search strategy used in this chapter (hill-climbing) is very naive.

In the future, we will extend the study towards using some more intelligent lo-

cal search strategies, such as simulated annealing ([Aar1989]) and Tabu search

([Glo1997]).

Chapter 7

A Schema Theory for TAG3P

Since John Holland proposed his schema theorem in the mid-1970s [Hol1975,

Gol1989], schemata are often used to explain why GAs work. Schemata are seen

as similarity templates representing entire groups of chromosomes in the popula-

tion [Lan2002]. Holland’s schema theorem describes how the schemata propagate

from generation to generation under the influence of selection, crossover and mu-

tation. Although there have been a number of criticisms among GA researchers

over the schema theorem [Alt1995, Kar1995, Wol1996, Vos1999], it is still a sim-

ple, easy-to-understand, and concise description of the way GAs conduct their

search. The problem, as stated in [Rad1997], is not the schema theorem but

rather its over-interpretation. In any case, a schema theorem is usually the first

stepping stone in understanding the behavior of GAs. A brief introduction to the

concepts and terminology commonly used when describing the schema theorem

in GAs is given in Appendix B.

In this chapter, we first briefly survey the schema theorems in genetic pro-

gramming and grammar guided genetic programming. Then, we define the con-

cept of a schema on TAG-based representation, and show that it unifies the three

important aspects of a schema on a syntactically constraint domain. Finally, we

present a simple schema theorem, estimating the expected lower bound for the

propagation of a schema in a TAG3P system using fitness-proportionate selection,

subtree crossover, and subtree mutation.

139

CHAPTER 7. A SCHEMA THEORY FOR TAG3P 140

7.1 Schema Theory in GP

In GP, the structure of program chromosomes is usually more complicated than

the linear (and binary) representation in GAs. Consequently, as noted in [ORe1995],

the extension to GP of some concepts in GA schemata such as ”order” and

“defining length” is not straightforward. O’Reilly and colleagues suggested that

different representations will inevitably lead to different concepts of schemata

[ORe1995]. Consequently, there have been a number of different attempts to

define a schema and subsequently a schema theorem in GP.

In the early days of GP, Koza ([Koz92]), Altenberg ([Alt1994]), and O’Reilly

and Oppacher ([ORe1995]) were the first researchers to try to define a schema

for GP systems using expression tree representation. The latter two papers also

gave schema theorems based on their concepts of GP schemata. A detailed sur-

vey of these schema concepts was given in [Lan2002]. However, as pointed out

in [Lan2002], their concepts of schemata as components of programs (usually

as subtrees or subtree fragments) although reflecting the component aspect of

schemata in GAs, do not resemble the subspace aspect of GA schemata. In other

words, GA schemata can potentially match components anywhere in the program

tree. This problem complicates the computation of schema propagation in the

corresponding schema theorems.

For an effective definition, Langdon and Poli ([Lan2002]) argued that a GP

schema should be a component of program trees and should also represent a

subspace of program trees. In GAs, this is not an issue because of their fixed and

linear chromosome structure, so that the Holland definition of a schema satisfies

both requirements at the same time. It is not obvious how to achieve this for GP

with tree-based structure.

In [Ros1997], Rosca was the first person to introduce the concept of positional

schemata in GP, by defining them as rooted schemata. Based on Rosca’s idea,

Poli and Langdon ([Pol1997, Pol1998]) developed a new theory of fixed size and

shape schemata in GP, in which they resurrected the concepts of “order” and

CHAPTER 7. A SCHEMA THEORY FOR TAG3P 141

of “defining length” of a schema. A schema theorem was subsequently proven

for this type of GP schema using some rather specialised operators [Pol1997,

Pol1998, Lan2002]. Their theory for fixed shape and size schemata is given in

Appendix B of this thesis. They subsequently went further to derive a series of

exact schema theorems [Lan2002].

7.2 Schema Theory in GGGP

In grammar guided genetic programming, the program trees are generated and

delimited by a grammar. Therefore, the concept of schema should relate the

schemata to the formalism. Moreover, we argue that, apart from the above

two requirements for a schema, it is important that the schema also represent a

sub-language of the formalism. If it is a sub-language, all the properties of the

formalism language transfer to the schemata, making their syntactical properties

uniform with the language of the whole search space (i.e. the tree set of the

formalism). If we can define schemata to be at once components of programs,

sub-search-spaces, and sub-languages, then we can interpret the propagation of

schemata as propagating good templates, sampling good parts of the search space,

and/or focusing on relevant sub-languages.

To the best of our knowledge, there has been only one attempt at a schema

theory for standard grammar guided genetic programming, namely that proposed

in Whigham’s ([Whi1995c]) schema theorem. Some recent attempts have been

made in GE but no schema theorem for GE has been presented [Rya2004].

Whigham’s concept of schemata for CFG-GP (context-free grammar (guided)

genetic programming) was based on the notion of partial derivation trees in

CFGs. Each schema, in his definition, is a partial derivation tree stemming

from some non-terminal symbols of the formalism. However, as pointed out in

[Lan2002], Whigham’s Schemata are program components but not program sub-

search-spaces. This is because his schemata are non-positioned. Consequently,

they can occur several times in the one program tree. Figure 7.1 illustrates this

CHAPTER 7. A SCHEMA THEORY FOR TAG3P 142

situation. Moreover, since a Whigham schema is only a partial derivation tree,

the string set (and tree set) of the set of programs containing a given schema

does not define a sub-language of the formalism. Nevertheless, this definition

of schemata for CFG-GP led to a simple schema theorem [Whi1995c, Whi1996].

Appendix B contains a brief review of the CFG-GP schema theory.

S

B

S

f

BF

b

A

af

A

a

F

b

B

Figure 7.1: An example for Whigham’s schema, where a schema can match more

than once in an individual

7.3 Schema Definition in TAG3P

The concept of schemata in TAG-based representation is inspired by the rooted

schemata of [Ros1997, Pol1997, Pol1998]. Each schema is a template for TAG

derivation trees, in which some adjoining addresses are closed or opened for ad-

junctions. The definition of a schema in TAG-based representation is given as

follows:

Definition 1 A schema in TAG-based representation is a TAG derivation tree.

However, all leaf nodes of a schema are labeled with # , where a leaf # means

it can be replaced with either a NULL node or a TAG sub-derivation tree, whose

CHAPTER 7. A SCHEMA THEORY FOR TAG3P 143

root is a β-tree that can be adjoined at the address represented by the link between

the leaf and its parent node

Figure 7.2 depicts an example of a schema on TAG-based representation.

##

β3β2

β3β2

α

β1

#

#

#

Figure 7.2: An example for a schema on TAG-based representation

Since a schema in TAG-based representation is a rooted, labeled tree, it can

occur at most once in each program. Therefore, it satisfies the two requirements

for a schema definition proposed by Poli and Langdon. It represents a compo-

nent of TAG-based representation programs, and it represents a search subspace

of TAG derivation trees. It remains to be shown that the set, consisting of all

derivation trees in which a given schema occurs, is a sub-language of the TAG

used to generate the programs.

Lemma 1. Let γ be a completed tree derived from some initial α S-trees of a

TAG Glex = {∑
, N, I, A, S}. Then, the tree set consisting of all trees which can

be derived from γ by repeated adjunctions and/or substitutions is a sub-language

of Glex.

Proof. It is obvious that any tree γ1 derived from γ is also derived from some

CHAPTER 7. A SCHEMA THEORY FOR TAG3P 144

initial S-trees of Glex because γ itself is derived from them. Therefore, the tree

set derived from γ using adjunctions and/or substitution must be a subset of

the Glex tree language. To see that it is also a TAL, we note that γ is also a

completed S-tree, since it is derived from some initial S-trees. Therefore the set

can be generated using TAG G′
lex = {∑

, N, I ′, A, S}, where
∑

, N, A, S are as in

Glex, and I ′ = γ. That completes the proof.

The sub-language aspect of a schema in TAG-based representation is stated in

the following theorem:

Theorem 3 The set of derived trees of the programs initiated by a TAG-based

representation schema is a sub-language of the formalism (Glex) used to generate

the schema.

Proof. For any schema H , if all leaves are replaced with NULL, it becomes

a derivation tree of Glex. Because of the non-fixed arity property, the derived

tree of this derivation tree is a completed tree γ of S-type. Thus, for each Glex

derivation tree matching schema H , its derived trees are completed trees derived

from γ using adjunction and/or substitutions. By Lemma 1, this tree set is a

subset of the Glex tree set, and it is also a TAL. Therefore the set consisting of

all derived trees of programs (Glex derivation trees) matching a given schema H

constitutes a sub-language of Glex. That completes the proof.

With theorem 3, we can conclude that a schema in TAG-based representation,

as defined in Definition 1, unifies all three aspects of a schema on syntactically

constrained domains.

7.4 A Schema Theorem for TAG3P

In this section, a simple schema theorem for TAG-based representation schema is

derived. The operators used are fitness-proportionate selection, subtree crossover,

and subtree mutation. We note that a schema H can only propagate to the next

CHAPTER 7. A SCHEMA THEORY FOR TAG3P 145

generation if the individuals matching it in the population are selected and trans-

ferred to the next generation without being disrupted by genetic operators (of

course, some new instances of the schema may be generated through crossover or

mutation).

7.4.1 Expected Number of Individuals Matching a Schema

after Selection

The aim of a schema theorem is to estimate the rate at which individuals matching

a schema are propagated to the next generation. The first stage of this process,

selection, is largely independent of representation. To be precise, so long as each

individual can match with a schema at most once, and using fitness proportionate

selection, the expected number of individuals matching schema H at generation

t which are selected for generation t +1 is independent of the type of representa-

tion. The proof of this proposition can be found in [Hol1975, Gol1989, Lan2002].

Proposition 1. The number (Ns) of individuals matching a schema H being

selected with fitness-proportionate selection at generation t is:

E[m(H, t + 1)] = m(H, t) × f(H, t)

f(t)
(7.1)

Where m(H, t) is the number of individuals matching schema H at generation t;

f(H, t) is the average fitness of individuals matching H at generation t; and f(t)

is the average fitness of all individuals in the population at generation t.

7.4.2 Schema Disruption due to Genetic Operators

After selection, individuals are transformed using genetic operators. The pos-

sibility arises that the children of an individual h matching a schema H may

no longer match H . This can happen if and only if the genetic code in h that

matches H is destroyed by the genetic operators, usually by choosing operator

point(s) in that part, and the new genetic code generated by the operators does

CHAPTER 7. A SCHEMA THEORY FOR TAG3P 146

not compensate this loss (i.e does not make h match H again). For each h ∈ H ,

we can formulate an upper bound for the probability that its children do not

match schema H as follows:

Proposition 2. The upper bound for the disruptive probability of schema H on

an individual h after the application of a genetic operator on h is o(H)
n(h)

. Where

o(H) and n(H) are the numbers of non-# nodes in H and h respectively.

Proof. Since the number of non-#nodes in an individual h matching H is

n(h), there are n(h) points for genetic operators to act on. The disruption of

H on the children of h (after genetic operations) happens if the chosen points

are in the matching region of h and H , which has o(H) nodes. Therefore the

probability for a point in the matching region to be chosen is o(H)
n(h)

. This is an

upper bound because there is a possibility that even when the points for genetic

operations are chosen in the match region, the children of h might still match H .

7.4.3 A Schema Theorem for TAG3P

Given the previous two propositions, we can state a simple schema theorem for

TAG3P with fitness-proportionate selection, subtree crossover and subtree mu-

tation as genetic operators.

Theorem 4 The propagation of each schema H in the population satisfies the

following bound:

E[m(H, t+1)] ≥ m(H, t)× f(H, t)

f(t)
×

[
1− (pc + pm)

∑
h∈H

o(H)

n(h)

f(h)∑
h∈H f(h)

]
(7.2)

where

m(H, t) is the number of individuals in the population which match schema H

at generation t.

f(H, t) is the mean fitness of all individuals matching schema H .

CHAPTER 7. A SCHEMA THEORY FOR TAG3P 147

f(t) is the mean fitness of all individuals in the population.

pm is the subtree mutation probability.

pc is the subtree crossover probability.

o(H), n(h) are the number of non-# nodes respectively in schema H , and in

individual h ∈ H .

E[m(H, t + 1)] is the expected number of individuals matching the schema H

at generation t + 1.

∑
The sum is taken over the multiset of all individuals in the population that

match schema H (a multiset is a generalisation of a set in which each

element may occur multiple times. It is necessary to use multisets here

because each individual might appear several times in the population).

Proof of Theorem 4. The lower bound for the number of individuals rep-

resenting schema H in the next generation (m(H, t + 1) is determined by two

factors. The first is the expected number of individuals h ∈ H chosen by fitness-

proportionate selection – according to proposition 1, this is m(H, t)× f(H,t

(f)(t)
. The

second factor is the number of selected individuals where the schema may be

disrupted by genetic operators. From proposition 2, an upper bound for the

probability of disruption of a schema in an individual h is o(H)
n(H)

, given that h is

selected. The probability that h is selected from the individuals in m(H, t) is

f(h)∑
h∈H

f(h)
. Therefore, an upper bound for the probability that each individual

h ∈ H is disrupted by the genetic operators is (pm + pc)
o(H)
n(h)

f(h)∑
h∈H

f(h)
. Summing

over h ∈ H , we get an overall upper bound for the probability that at least one

h ∈ H is disrupted by the genetic operators. Subtracting from 1 gives us a lower

bound on the probability that all h ∈ H get through to the next generation still

matching H . Combining the two factors, the inequality of the theorem is derived.

That completes the proof.

From the theorem, it can be seen that if f(H, t) is high compared to f(t),

and o(H) is small (compared to n(h)), the lower bound (the left hand side of the

CHAPTER 7. A SCHEMA THEORY FOR TAG3P 148

inequality) increases. We note that the smaller the starting γ tree in lemma 1,

the larger the sub-language of Glex it produces. That is, when o(H) is small, the

sub-language defined by the derived tree sets from the individuals matching H

is large. Thus the schema theorem may be restated as: “genetic search on TAG-

based representation, using fitness proportionate selection, subtree crossover, and

subtree mutation, has a bias toward individuals belonging to schemata that are

short in length, high in fitness, and large in terms of sub-language”.

7.5 Conclusion

In this chapter, we presented a concept of schemata for TAG-based represen-

tation. We showed that these schemata embody all three aspects of schemata

on syntactically constrained domains, namely search subspaces, program sub-

components, and formalism sub-languages. A simple theorem was given for es-

timating a lower bound for the expected number of individuals instantiating a

schema in the next generation, based on the number in the current generation

(using fitness-proportionate selection, subtree crossover and subtree mutation).

The theorem gives a rough estimate of how each schema propagates during the

evolutionary process. It helps to explain the behavior of TAG3P in terms of

schema sampling, in which the evolutionary process of TAG3P favours schemata

that are high in fitness and of low order. From the perspective of sub-language

sampling, it favours larger sub-languages.

The schemata defined in this chapter are variable in shape and size. Conse-

quently, the process of calculating the lower bound must take into account the

size of every individual in the population. This makes the calculation more com-

plicated and results in a relatively underestimated lower bound. We believe that

it should be possible to define schemata with fixed shape and size, similar to

the approach of [Lan2002]. By so doing, it may be possible to derive a schema

theorem which is more descriptive, simpler to calculate, and subject to a better

lower bound. We leave this for future work.

Chapter 8

TAG-based Representation and

the Problem of Structural

Difficulty in Genetic

Programming

In chapter 6, we saw how insertion and deletion can be used to improve TAG3P

performance on a number of problems. As mentioned, insertion and deletion

simulate the growth and shrinkage of trees in the nature. In other words, insertion

and deletion cause minimal change in the structure of an individual genotype

(Glex derivation tree). Since, in TAG-based representation, the genotype-to-

phenotype map has the locality property, the degree of change caused on an

individual phenotype is always small, bounded, and controllable. This statement

is proven more formally in the next chapter. Consequently, using the insertion

and deletion operators, a search agent can walk “smoothly” through the space

of Glex derivation trees, as well as of Glex derived tree structures. We conjecture

that this property of insertion and deletion might help to soften the well-known

structural difficulty problem in genetic programming.

The structure of this chapter is as follows. In the first section, a brief re-

view of the structural difficulty problem in GP is given. Then we discuss why

149

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 150

the space of tree structures might be hard for GP to search. The usefulness of

insertion and deletion operators for the problem are also discussed. Finally, we

present some experiments and results (of which some parts have been published

in [NXH2004c]).

8.1 Structural Difficulty in Genetic Program-

ming

In a series of works ([Dai1997b, Dai1999, Cha2000, Dai2001, Dai2002, Dai2003a,

Dai2003b]), Daida et. al. discovered that structure alone can pose great diffi-

culty to standard GP search (using expression tree representation and sub-tree

swapping crossover). In particular, they delineated 4 regions of the space of tree

structures, as shown in Figure 8.1

Region I is where most of the standard GP solutions lie, i.e. it is easy for

GP to find a solution in that area; region II (IIa, IIb) is increasingly difficult for

GP to search; region III (IIIa, IIIb), including fuller trees and thinner trees, is

almost impossible for GP to search; and, region IV (IVa, IVb) is out of bounds

(i.e. infeasible tree structures). Moreover, we note that the bounds of regions

II and III are almost linear, meaning that they account for the vast majority of

tree structures – even when, as is usual in practical GP, a relatively small search

space bound (in terms of size or depth) is used.

To further validate this conclusion, in their latest work [Dai2003b], Daida et

al. specified a test problem known as LID. In the LID problem for GP, there

is only one function of arity 2 (join), and one terminal (leaf). The raw fitness

of an individual tr depends purely on the structural difference from the target

solution. It is defined as follows.

Fitnessraw(tr) = Metricdepth + Metricterminal (8.1)

where Metricdepth and Metricterminal are defined as follows:

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 151

IVa

IVb

IIa

IIb

I

IIIa

IIIb

21

23

25

27

29

211

213

215

217

219

221

223

225

227

N
um

be
r

of
 N

od
es

2520151050
Depth

Figure 8.1: Four regions in the space of tree structures. Reprinted with permission

from [Dai2003b]

Metricdepth = Wdepth × (1 − |dtarget − dactual|
dtarget

) (8.2)

Metricterminal =

⎧⎪⎨
⎪⎩

Wterminal × (1 − |ttarget−tactual|
ttarget

) if Metricdepth = Wdepth

0 Otherwise

(8.3)

where dtarget, and ttarget are the depth and number of leaves of the target solution,

dactual and tactual are the depth and number of leaves of the individual (tree)

tr. In [Dai2003b], Wdepth and Wterminal are two weighted numbers satisfying

Wdepth + Wterminal = 100. It is noted that the size s of a tree in the LID problem

is related to its ttarget by the equation: s = 2 × ttarget − 1.

In [Dai2003b], two families of LID problem instances were used to probe the

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 152

search space of tree structures, the “horizontal cut” and the “vertical cut”. In

the first family, the ttarget was fixed as 256 and the dtarget was varied from 8

to 255. In the second, dtarget was fixed as 15 while ttarget was varied from 16 to

32768. For a GP system using either size or depth as the chromosome complexity

measure, these bounds on size and depth (256 and 15) are quite typical. Figure

8.2 is a simplified version of Figure 8.1 with the positions of the problem instances

supperimposed on it.

216

212

28

24

20

N
od

es

1
2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100
2

Depth

Figure 8.2: The “horizontal and vertical cuts”. Reprinted with permission from

[Dai2003b]

Figures 8.3 and 8.4 show the results, based on 90000 runs, of GP on the

two families of problem instances. We note that in the Figure 8.4, the x-axis is

number of target nodes (s), which is approximately twice the value of ttarget. The

upper parts of the figures show the proportion of successful runs, while the lower

show the region to which each problem instance belongs (the cross sign means

region I, while the vertical line means regions II and III).

The results in the two figures, surprisingly, show that standard GP, using

expression tree representation and sub-tree-swapping crossover, performed ex-

tremely poorly on the two families of problem instances, especially for vertical

and horizontal cut problems lying in regions II and III. This provides strong evi-

dence that standard GP has considerable difficulty in finding specific structures.

Daida et al. [Dai2003b] went further, in showing that the results cannot be fully

explained by the sparsity of tree structures in regions II and III (i.e. they are

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 153

26
 29
 212
 215

N
od

es

8 9
10

2 3 4 5 6 7 8 9
100

2

Target Depth

100

80
60

40
20

0Su
cc

es
s

Ra
te

 (
%

)
Figure 8.3: Proportion of Success for GP on the “Horizontal cut”. Reprinted

with permission from [Dai2003b] The lower half of the figure shows which part

of the structure space the problem instances belong to. It can be seen that the

hard-to-find instances are those in region II, and III

not an equilibrium problem). Their explanation pointed to the expression tree

representation itself as the main cause of the structural difficulty.

The structure difficulty problem might play a very important part in the

understanding of the behaviour of genetic programming. One of the potential

uses of this problem is to explain the code bloat effect. The code bloat effect in

GP is a well-documented phenomenon where the code size of evolved programs

get larger and larger quickly during the evolutionary process [Bli1994, Ban1998,

Sou1999, Lan2002]. The implication from the problem of structural difficulty

might be that the reason for bloat is that the target solution has the structure

lying in region II or III. Since it is difficult to get solution with structure in those

regions, GP might have to accumulate the redundant code to maintain the fitness

and as the same time try to find a solution at region I that is equivalent to the

target solution in terms of fitness.

Although the Daida results are on standard GP only, the same problem would

arise in GGGP, since standard GP is a special case of GGGP [Whi1996]. We con-

jecture that the problem would be even worse in more syntactically constrained

domains.

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 154

25

27

29

211

213

215

N
od

es

25 27 29 211 213 215
Target Nodes

100

80

60

40

20

0Su
cc

es
s

Ra
te

 (
%

)

Figure 8.4: Proportion of Success for GP on the “Vertical cut”. Reprinted with

permission from [Dai2003b]. The lower half of the figure shows which part of

the structure space the problem instances belong to. It can be seen that the

hard-to-find instances are those in region II, and III

8.2 Insertion and Deletion Operators and the

Structural Difficulty in Genetic Program-

ming

Elaborating on Daida’s explanation, we conjecture that the problem lies in the

structural step size of the structure editing operators in standard GP. In other

words, sub-tree crossover and sub-tree mutation, the two main operators in GP,

are highly structurally discontinuous - so that the probability of exploring regions

2 and 3 in the space of tree structures can be low despite the presence of selection

pressure. We further argue that this discontinuity is a consequence of the fixed-

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 155

arity property of standard GP representation (that is, each node in the tree has

a fixed number of children, determined by its content), in that fixed arity makes

it difficult to design operators with controllable step size.

There are at least two ways to validate this hypothesis. One is to analytically

analyze the probability of reaching regions 2 and 3 using the particular operator

set; the other is to design structure editing operators and show that they can

help GP to solve the problem of structural difficulty. We adopt the second course

in this thesis.

As pointed out above, our hypothesis is that the problem of structural dif-

ficulty in GP can be solved if the GP system supports some efficient structure-

editing operators. However, we also argue that, since the expression tree rep-

resentation in GP is a fixed arity tree, it is difficult to design general purpose

structure-editing operators. For GGGP, it is even harder to design such opera-

tors, because of the rule constraints at each derivation tree node. On the other

hand, TAG-based representation gives us a non-fixed arity tree, facilitating the

design of many operators as in chapter 4. Among those operators, insertion and

deletion are two structural mutation operators, causing minimal change to the

structure of TAG derivation trees. Since the genotype-to-phenotype map has the

locality property, the degree of change in the phenotype is also relatively small

after applying insertion or deletion. This is formally proven in the next chapter.

The results in the next section show that the transformation of representation

from GP expression tree to TAG derivation tree, and the use of insertion and

deletion, can solve the problem of structural difficulty in GP.

8.3 Experiments

For standard tree-based GP, the LID problem is an extremely difficult search

problem. We have argued that this is a result of the operators available, and that

the addition of point insertion and deletion operators should greatly ameliorate

the difficulty. To demonstrate just how effective the operators are in smoothing

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 156

the fitness landscape, we use a naive stochastic hill-climbing search (TAG-HILL),

which would be readily caught in any local optima remaining in the fitness land-

scape. Specifically, the algorithm is a (1+1) evolutionary algorithm, i.e. the

algorithm uses a population of 1. At each generation, either point insertion or

point deletion is selected (with a probability of 0.5). An individual is generated

by a random application of the selected operator. If it has better fitness than

the parent, it replaces the parent, otherwise it is itself discarded. This loop is

repeated for the specified number of steps.

We experimented on the same families of LID problem instances [Dai2003b],

namely the horizontal and vertical cuts. The grammar for the LID problem is as

follow:

G = {N = {S}, T = {Join, Leaf}, P, {S}} where the rule set P is defined as:

S → S Join S

S → Leaf

The corresponding LTAG (using the process from [Jos1997] as in appendix A) is

Glex = {V = {S}, T = {Join, Leaf}, I, A) where I ∪ A is as in Figure 8.5.

βα

Leaf

S

S

Leaf

Join S*

S

Figure 8.5: Elementary trees of Glex for LID problem

It is noted in [Jos1997] that the mapping from derivation tree of Glex to derived

tree of G (and therefore to its expression tree in GP) is one-to-one. However while

the GP expression tree for LID is a fixed-arity (binary) tree, the derivation tree

in Glex is a non-fixed-arity tree, sometimes called ([Pol1990, Weh1990]) a Catalan

tree.

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 157

8.3.1 Experiment Setup

In our experiments, the maximal number of steps in TAG-HILL is set to 100000

for each run. This gives the same total number of evaluations as in [Dai2003b],

where the size of population and the number of generations are set to 500 and 200

respectively. Consequently, the maximal allowed number of fitness evaluation in

TAG-HILL is the same as in the GP experiments in [Dai2003b]. For the horizontal

cut, ttarget was fixed as 256 while dtarget was varied from 8 to 255. For each varied

dtarget, 100 runs were allocated. Similarly, in the vertical cut, the dtarget was fixed

as 15 while ttarget was varied from 16 to 32768. For each ttarget in [16..1024], we

carried out 100 runs, while for [1025..32768], we ran 100 trials for each point of

the 118 equi-sampled points in that interval. Although the setting of Wdepth and

Wterminal do not affect TAG-HILL search, we set them the same as in [Dai2003b],

i.e. as 30 and 70 respectively.

In Figures 8.5, the β-tree for the LID problem have three adjoining addresses,

namely at the root node, at the foot and at the lower node (labeled S). In the

TAG literature, adjunction at the root and foot nodes in a β-tree are usually not

used simultaneously, since it creates some redundancy in the mapping between

TAG-derivation trees and TAG-derived trees. To investigate the effect of this

redundancy of the genotype-to-phenotype mapping on the LID problem, we di-

vided the TAG experiments into two set of runs. In the first set, we used only

two adjoining addresses (excluding the root node: 2-ADD), while in the second,

all three adjoining addresses were used (3-ADD).

8.3.2 Results and Discussion

The following Figures 8.6 and 8.7 show the proportion of success of TAGHILL

(2-ADD and 3-ADD) based on 275200 conducted runs (137600 for each of 2-ADD

and 3-ADD).

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 158

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Target Depth

F
re

qu
en

cy
 o

f S
uc

ce
ss

3−ADD
2−ADD

Figure 8.6: Results of TAG-HILL on the “horizontal cut”

In Figure 8.3, GP runs were unreliable in finding solutions for dtarget > 70 or

dtarget < 10, and failed to find any solutions for ttarget = 8 or dtarget > 100. By

contrast, as shown in Figure 8.6, TAG-HILL 3-ADD could solve the problems

with 100% reliability for dtarget up to nearly 253, and only failed to find solutions

with 100% reliability when dtarget > 253. TAG-HILL 2-ADD managed to solve

problems with 100% reliability for dtarget up to 120 and for dtarget > 120 it still

found solutions with more than 50% reliability.

For the results on the vertical cut family shown in Figure 8.4, GP runs were

unreliable in finding solutions for ttarget > 500, and failed to find any solutions for

ttarget > 1024. By contrast, as shown in figure 8.7, TAG-HILL 3-ADD could solve

the problems with 100% reliability for ttarget up to nearly 8000, and only failed to

find solutions when ttarget > 11000. TAG-HILL 2-ADD was even more successful,

managing to solve problems with 100% reliability for ttarget up to 17700 and only

failing to find solutions when ttarget > 21000.

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 159

0.0016 0.5016 1.0016 1.5016 2.0016

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Number of Target Leaf Nodes

F
re

qu
en

cy
 o

f S
uc

ce
ss

3−ADD
2−ADD

Figure 8.7: Results of TAG-HILL on the “vertical cut”

Figures 8.8, 8.9, show the average number of search steps for TAG-HILL (2-

ADD and 3-ADD) to find solutions (for those problem instances where 100%

success was achieved). The almost linear scale suggests that, except for some

extreme points, the landscape of the two families of LID problem instances is

quite smooth for TAG-HILL. This is no trivial matter, since when ttarget (dtarget)

approach their extreme values, the tree structure become exponentially sparse

[Sed1996]. To see just how sparse, take the example of the leftmost point on the

horizontal cut, where ttarget= 256 and dtarget= 8. There is only one tree with that

combination of ttarget and dtarget, out of 4255√
π2553

≈ 2497 trees in the search space

([Sed1996]).

The results also show that the redundancy in the genotype-to-phenotype map

helped TAG-HILL 3-ADD perform much better than TAG-HILL 2-ADD on prob-

lems of the “horizontal cut” family, while performing much worse on problems of

the “vertical cut” family. We explain this as follows. In 3-ADD, there are more

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 160

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
4

Target Depth

N
um

be
r

of
 E

va
lu

at
io

ns

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

Target Depth

A
ve

ra
ge

 N
um

be
r

of
 E

va
lu

at
io

ns

2-ADD 3-ADD

Figure 8.8: Average number of fitness evaluations for the ”horizontal cut”

available adjoining addresses than in 2-ADD. When an insertion is to occur, in

2-ADD, many of the adjunction addresses higher in the tree will already have

been used, so that the probability of selecting a lower adjunction address (and

hence deepening the tree) is increased. In 3-ADD, since more addresses higher in

the tree are available, the probability of selecting them is reduced more slowly,

with fuller trees being the result.

8.4 Conclusion

We have argued that GP’s problem of structural difficulty results from the lack

of local structure-editing operators and pointed to the fixed-arity expression tree

representation in GP as the primary culprit. Using TAG-based representation,

we have removed this fixed-arity limitation. In this representation, we were able

to design two local structure-editing operators, namely point insertion and dele-

tion. Applying these operators to Daida’s LID problem, we demonstrated that

the operators significantly ameliorate the structural difficulty problem in GP.

The results also showed that redundancy in the genotype-to-phenotype mapping,

created by using redundant adjoining addresses, can affect the efficiency of the

CHAPTER 8. STRUCTURAL DIFFICULTY IN GP 161

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
x 10

4

Taget Number of Leaf

N
um

be
r

of
 E

va
lu

at
io

ns

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

4

Target Number of Leaf

N
um

be
r

of
 E

va
lu

at
io

ns

2-ADD 3-ADD

Figure 8.9: Average number of fitness evaluations for the ”vertical cut”

operators in finding solutions in tree structure space.

In this chapter, we used the rather naive hill-climbing search strategy. Further

work will investigate the behaviour of other adaptive search strategies. On a the-

oretical level, we are endeavouring to derive a formula to predict the convergence

time for TAG-HILL on the LID problem. We are also attempting to analyze the

behavior of GP using sub-tree crossover and/or sub-tree mutation on the LID

problem, to provide an analytical measure of the structural difficulty problem,

and to validate our hypothesis that the difficulties are caused by the structural

discontinuity of the standard sub-tree operators in GP.

Chapter 9

Fitness Landscape Study on

Syntactically Constrained

Domains

In chapters 4 and 6, we have shown that, thanks to the non-fixed arity property of

TAG derivation trees, it is possible to design operators such as insertion, deletion,

and point replacement on TAG-based representations. These operators make

bounded changes in the genotype space (Glex derivation trees). Since TAG-

based representation possesses the locality property (as argued in chapter 3),

the changes in the phenotype space (Glex derived trees) are also bounded. In

this chapter, we argue that these properties of TAG-based representation are

particularly useful in helping to understand problem difficulty, by investigating

the characteristics of problem fitness landscapes.

The chapter starts with a brief description of the role of fitness landscape study

in the field of evolutionary algorithms (EAs). It is followed by a discussion of

the difficulties in fitness landscape study in genetic programming, and especially

in grammar-guided genetic programming. Next comes an examination of how

those issues relate to fitness landscape studies using TAG-based representation.

Finally, two fitness landscape studies in TAG-based representation are presented.

The purpose of the first is to understand the impact of changing target function

162

CHAPTER 9. FITNESS LANDSCAPE STUDY 163

in a family of functions, and the second to understand the impact of changing

grammars, on the fitness landscape characteristics of some standard problems.

9.1 Fitness Landscape Study in EAs

The idea of fitness landscape was first proposed in [Wri1932]. Since then, it has

been used as a tool for analysing evolutionary theories [Kau1993], as well as to

model the problem difficulties in evolutionary algorithms [Deb1997, Ree2003].

It uses metaphors from nature such as peaks, hills, valleys, ridges, basins, wa-

tersheds etc. to describe the characteristics of a search space that EAs might

encounter when exploring it. Even for real-world problems, of generally much

higher dimensionality than 2 and 3, the study of such metaphors in the higher

dimensional space is still useful. It helps to understand the properties of the

search space, such as its ruggedness (i.e. how each function value is correlated

with the function values of neighbouring points) and modality (i.e. whether it

has one or many local optima). By acquiring and exploiting knowledge about

the fitness landscape of the problem, an EA can improve its search performance

[Deb1997, Ree2003].

In practice, the concept of fitness landscapes is somewhat vague. As noted

in [Ree2003], it has even been misused in the literature to describe fitness func-

tions. Although the fitness function, which is problem dependent, is a defining

component of fitness landscape, the topology of the search space must also be

defined. In fact, one should not use the term “landscape” before defining the

topological structure on the search space [Ree2003]. The topology of a search

space in evolutionary computation consists of a genotype representation and a

neighbourhood structure defined on it [Ree2003, Vas2000, Vas2003]. The neig-

bourhood structure is usually defined through a distance metric d on the genotype

space [Ree2003]. A genotype l2 is in the neighborhood of a genotype l1 if and

only if d(l1, l2) < δ; when δ = 1 (minimal distance), l2 is called a neighboring

point of l1. The third component of a fitness landscape is the genetic (search)

CHAPTER 9. FITNESS LANDSCAPE STUDY 164

operators [Ree2003, Vas2000]. In order to investigate the fitness landscape, it is

important to be able to “walk” on the genotype space, i.e. to transform one point

to a neighbour in the search space. To properly investigate the characteristics of

the fitness landscape, the genetic operators need to be consistent with the topo-

logical structure of the genotype (search) space [Ree2003]. In other words, the

operators should transform a point ideally to its neighbour, or at least within its

neighbourhood. In order to ensure that the genetic (search) operators were con-

sistent with the metric defined on the genotype (search) space, some researchers

([Jon1995a, Jon1995b, Vas1999]) defined the metric in terms of the operators.

However, the use of genetic operators to define the genotype metric makes the

fitness landscape dependent on the operators used, different genetic operators

giving different measures of the fitness landscape of a problem [Jon1995b]. On

the other hand, the tree-edit distance metric defined in chapter 3 gives a natural

distance metric on GP search spaces, independent of particular operators. Gain-

ing an understanding of the fitness landscape with this underlying metric can

help to design appropriate operators. Some recent fitness landscape studies in

genetic programming have already followed this approach [Van2003a, Van2003b].

9.2 Problems with GP and GGGP in Fitness

Landscape Study

In GAs, the task of defining a distance metric on the search space, and designing

operators consistent with it, is not particularly challenging. For instance, with

linear binary representation and using Hamming distance (the total number of

different bits between two strings), one-point mutation is an obvious candidate.

In genetic programming, things are more complicated because of the variability

in shape and size. As pointed out in chapter 2, the expression tree in GP, and the

CFG derivation tree of GGGP, make it difficult to design operators that make

small, bounded changes. A similar conclusion was reached in [Lan2002] (page

24):

CHAPTER 9. FITNESS LANDSCAPE STUDY 165

... However, often there is no natural ordering for the structures in

fitness landscape. Also, even if there is one, the action of a search

operator may be such that it does not respect the natural neighbour-

hood relationship available for the domain; i.e the operator may allow

multi-step jumps...

In [Kin1994b], the autocorrelation function from random walks (described in ap-

pendix C) was used to analyze the fitness landscape on expression tree represen-

tation for a number of standard problems in GP. The results were somewhat in-

conclusive, the autocorrelation being blamed as an inaccurate estimator of fitness

landscape smoothness. However, the problem might also lie in the disruptiveness

of the operators Kinnear used, namely subtree crossover, subtree mutation, and

hoist mutation. The operators take long step jumps, ignoring the natural topo-

logical structure on expression trees. For instance, in the previous chapter, it

seems clear that the disruptiveness of subtree crossover on GP expression trees

is an important factor in Daida’s problem of structural difficulty in GP.

Recently, [Van2003a, Van2003b] proposed some smaller scale operators on GP

expression tree representation, namely the inflate and deflate structural mutation

operators. The operators were shown to be consistent with the tree alignment

metric (mentioned in chapter 3 of the thesis); and some fitness landscape analysis

was conducted using fitness distance correlation techniques. However the opera-

tors rely on incrementing and decrementing the arity of GP primitives, so they

are inapplicable when all functions have the same arity. This difficulty is all the

more pressing in syntactically constrained domains, where it is difficult to imagine

how the operators might be made consistent with the grammar constraints.

For linear representations such as GEP, it is possible to use distance met-

rics and operators from GAs. However, if the representation does not have the

locality property (as in GEP), the fitness landscapes study might tell us the

characteristics of the genotype (search) space, but provide no guidance to the

characteristics of the original (phenotype) space. In other words, although it can

help to understand the search difficulty of the problem under the GEP repre-

CHAPTER 9. FITNESS LANDSCAPE STUDY 166

sentation transformation, it does not help us to understand the difficulty of the

original problem. As noted in [Alb2000, Lan2002], the change of representation

using a genotype-phenotype mapping can change the fitness landscape signifi-

cantly. [Rot2002] showed that this only applies to genotype-phenotype mappings

lacking the locality property. Mappings satisfying the locality property do not

change the fitness landscape much, since the neighborhood structure is preserved

(i.e. if l1 is in a neighborhood of l2 then f(l1) is in a neighborhood of f(l2), where

f is the transformation from genotypes to phenotypes). It is a direct consequence

of “small changes in genotypes resulting in small changes in phenotypes” (locality

property) [Pal1994b].

In the field of grammar guided genetic programming, where the problem do-

mains are further constrained by grammar rules, it is even harder to design op-

erators that make small and bounded changes. Whigham proposed the study of

fitness landscape ([Whi1996] chapter 7) on syntactically constrained domains, so

as to understand the impact of biasing the language of programs on the land-

scape. To the best of our knowledge, there has been no subsequent work on

fitness landscape studies for syntactically constrained domains. For grammar

guided genetic programming systems with linear representation such as GE, it

is easy to define genotype metrics and consistent genetic operators. However if

the representation does not possess the locality property (as with GE), the same

problems arise as with GEP above. Moreover, in some circumstances, infeasible

phenotypes can result from valid genotypes in GE, potentially creating serious

difficulties in making a meaningful study of GE fitness landscapes, especially

when there is a variety of infeasible phenotypes.

9.3 TAG-based Representation and Fitness Land-

scape Study

As mentioned in chapter 4 of the thesis, thanks to the non-fixed arity property,

it is possible to design operators that make small and bounded changes on the

CHAPTER 9. FITNESS LANDSCAPE STUDY 167

genotype level. Moreover, since the mapping from genotype space to phenotype

space has the locality property as proven in chapter 3, if the change on the

genotype is small and bounded, it is so on the phenotype space.

The topological structure chosen for the genotype as well as the phenotype

spaces is the topology induced by the tree-edit distance described in chapter 3. A

complete set of operators respecting that topological structure on the genotype

space consists of insertion, deletion, and point replacement described in chapter

4 and 8. This is formulated in the following proposition.

Proposition 9.1. Insertion, deletion, and point mutation make minimal

change on the genotype space (Glex derivation trees) and bounded change on the

phenotype space (Glex derived trees).

Proof. From the definition of tree-edit distance, for any of the three operators

o, and for any TAG-derivation tree t, d(t, o(t)) = 1, where d is the tree-editing

distance. If in theorem 3.2 of chapter 3, we replace d by 1, then it follows that

d(f(t), f(o(t))) ≤ M , where M is the maximal number of nodes in an elementary

tree, and f is the genotype to phenotype mapping.

The three operators are complete in that they provide a path from any labeled

tree to any other labeled tree [Pol1990]. Using the three operators with equal

probability of application, one can walk from any point to any other point both

in the genotype space (TAG-derivation tree) and in the phenotype space (since

the genotype-phenotype mapping f is onto) of TAG-based representation. This

makes these operators ideally suited to study fitness landscape on syntactically

constrained domains.

9.4 Experiments

In this section, the triple operators (deletion, insertion, and point replacement)

are used to create a random walk for fitness landscape studies on some syntac-

tically constrained domains. At each step of the random walk, one of the three

operators is chosen with equal probability (1/3).

CHAPTER 9. FITNESS LANDSCAPE STUDY 168

The experiments in this section are used both to understand how the fitness

landscape changes as the structural complexity of the target functions is varied,

and to study the effects of changing grammars on the fitness landscape while

retaining a fixed target function.

In standard GA problems, the structural complexity is fixed, so that any

difference in difficulty between two problems must arise from their fitness land-

scapes. In GP, the structural complexity is variable; more complex target func-

tions are harder to generate simply because there is more to learn. So there are

two potential sources of differences in problem difficulty for GP, namely structural

complexity and ruggedness of the fitness landscape.

In chapter 5, a family of polynomial functions (F1 to F4), with increasing

structural difficulty, was used to test the robustness of TAG3P compared with

GP, and CFG-GP systems. The results showed that as we pass from F1 to F4,

the problems become increasingly difficult for TAG3P and CFG-GP. Does this

performance degradation stem purely from the increasing structural complexity

of the target functions, or also from an increase in ruggedness of the fitness

landscape? In the first set of experiments, the same grammars (G and Glex)

were used for all target functions. For the symbolic regression problem, where

the task is to learn the target function from sampled data, the structure is not

used in the fitness calculation. However, as indicated by Daida (chapter 8),

structure alone could influence problem difficulty. A fitness landscape study of

these symbolic regression problems, with fixed grammars but varying the target

function from F1 to F4, could cast light on the hypothesis in chapter 5 that the

increasing difficulty of the symbolic regression problem from F1 to F4 stems from

the increase in structural complexity of the target functions.

One of the generally-acknowledged advantages of the use of grammars in ge-

netic programming is their ability to set a declarative bias on the search space.

By changing the grammar, one can bias the search system towards a particular

region of the search space. [Whi1995b, Whi1996] includes a study showing how

incorporating increasing knowledge into the grammar can improve the perfor-

CHAPTER 9. FITNESS LANDSCAPE STUDY 169

mance of CFG-GP. The test problem used was the 6-multiplexer problem, four

grammars (G1, G2,G3, and G4) being used to define four different levels of declar-

ative bias on the search space. The grammars are as follows ([Whi1996], pages

59-61).

G1 = (
∑

, N1, P1, S),
∑

= {a0, a1, d0, d1, d2, d3}, N = {S, B}, and the rule set P1

is

P1:

S → B

B → if B B B

B → B and B

B → B or B

B → not B

B → a0|a1|d0|d1|d2|d3

G2 = (
∑

, N2, P2, S),
∑

is the same as in G1, N = {S, B, ADDRESS}, and

the rule set P2 is

P2:

S → if ADDRESS B B

ADDRESS → a0|a1 B → if B B B

B → B and B

B → B or B

B → not B

B → a0|a1|d0|d1|d2|d3

G3 = (
∑

, N3, P3, S),
∑

is the same as in G1, N = {S, B, ADDRESS, IFTHEN},
and the rule set P3 is

P2:

S → if ADDRESS IFTHEN B

ADDRESS → a0|a1 IFTHEN → if B B B

B → if B B B

CHAPTER 9. FITNESS LANDSCAPE STUDY 170

B → B and B

B → B or B

B → not B

B → a0|a1|d0|d1|d2|d3

G4 = (
∑

, N3, P3, S),
∑

is the same as in G1, N = {S, B, IFA1}, and the rule set

P4 is

P2:

S → if a0 IFA1 B

IFA1 → if a1 B B

B → if B B B

B → B and B

B → B or B

B → not B

B → a0|a1|d0|d1|d2|d3

The corresponding TAGs (Glex) derived from them are given in Appendix A

of the thesis. From the grammar descriptions, it can be seen that G1, which

is similar to the grammar in chapter 5, is the most general. It generates all

Boolean functions that can be formed from the function symbols if, and, or, not

and the Boolean variables a0, a1, d0, d1, d2, d3. The functions generated by G2

are a subset of those generated by G1. G2 only generates functions starting

with an if-then-else statement, with the condition part being an address vari-

able (a0 or a1). G3 is biased even further than G2 since functions are restricted

to start with two nested if-then-else statements, and the condition of the first

if must be an address variable. G4 incorporates the strongest bias of all, only

generating expressions beginning with two nested if-then-else statements whose

condition parts are address variables. As one moves from G1 to G4, the search

space is biased towards smaller and smaller subspaces. The significant reduction

in search space size was argued as the reason for the problem becoming easier as

the bias changed from G1 to G4 [Whi1995b, Whi1996]. Note that even though

CHAPTER 9. FITNESS LANDSCAPE STUDY 171

the grammar changed, the target function in these experiments was fixed.

However apart from the reduction in search space size, the change of grammar

might also change the characteristics of the fitness landscape, through changing

the function representation. It is important to decouple these two effects (search

space size and fitness landscape). Our second set of experiments conducts a

fitness landscape study on the effect of changing the grammars while fixing the

target function for this problem.

9.4.1 Experiment Setup

Two experiments were conducted for two problems, symbolic regression and 6-

multiplexer. For the first experiment, the grammar is taken from chapter 5,

while the target function is varied from F1 (cubic polynomial function) to F4

(polynomial function of degree 6 - see chapter 5 for more details). The aim

was to determine whether increasing problem difficulty might stem partly from

changing fitness landscape, as well as from the increasing structural complexity of

the target functions. In the second experiment, the analysis aimed to determine

whether decreasing problem difficulty with more specific grammars might arise

partly from changing fitness landscape, or whether it was purely a consequence

of the reduction in search space size reduction. The problem chosen was the

6-multiplexer and the grammars were G1 (G1lex), G2 (G2lex), G3 (G3lex), and G4

(G4lex).

For each experiment, a random walk of 10,000 steps was conducted using the

triple operators (insertion, deletion, and point replacement, with equal proba-

bility) to create the walk. All fitness values of individuals encountered during

the random walk were recorded. For each problem, 300 random walks were con-

ducted, making a total of 3,000,000 fitness evaluations for each experiment. The

data were then analysed using two common techniques from the literature, namely

the autocorrelation function and the information content. These techniques are

described in Appendix C.

CHAPTER 9. FITNESS LANDSCAPE STUDY 172

9.4.2 Results and Discussion

Tables 9.1 and 9.2 show the autocorrelation values and the information content of

the random walks for the symbolic regression problem – Length is the correlation

length; Optima No. is the number of optima encountered during the random

walks)

Table 9.1. Autocorrelation analysis for symbolic regression problem.

Length F1 F2 F3 F4

1 0.7892 ± 0.0798 0.8002 ± 0.0715 0.7964 ± 0.0703 0.8025 ± 0.0717

2 0.6470 ± 0.1019 0.6620 ± 0.1046 0.6528 ± 0.1025 0.6656 ± 0.1059

3 0.5390 ± 0.1241 0.5561 ± 0.1213 0.5429 ± 0.1216 0.5626 ± 0.1243

4 0.4572 ± 0.1293 0.4750 ± 0.13 0.4593 ± 0.13 0.4819 ± 0.1337

5 0.3924 ± 0.1314 0.4099 ± 0.1332 0.3932 ± 0.1347 0.4157 ± 0.1388

6 0.3409 ± 0.13 0.3570 ± 0.1333 0.3407 ± 0.1354 0.3624 ± 0.14

7 0.2973 ± 0.1280 0.3145 ± 0.1306 0.2976 ± 0.1344 0.3185± 0.1390

8 0.2609 ± 0.1254 0.2794 ± 0.1271 0.2619 ± 0.1314 0.2811 ± 0.1376

9 0.2310 ± 0.1209 0.2488 ± 0.1237 0.2328 ± 0.1282 0.2502 ± 0.1339

10 0.2053 ± 0.11157 0.2224 ± 0.1201 0.2086 ± 0.1237 0.2243 ± 0.1309

CHAPTER 9. FITNESS LANDSCAPE STUDY 173

Table 9.2. Infomation content analysis for symbolic regression problem.

Function ε H(ε) h(ε) M(ε) Optima No.

F1 0 0.5920 ± 0.0137 0.6708 ± 0.0112 0.5071 ± 0.0075 2535 ± 37

F2 0.5911 ± 0.0142 0.6706 ± 0.0106 0.5064 ± 0.007 2531 ± 35

F3 0.5909 ± 0.0135 0.6711 ± 0.0108 0.5059 ± 0.0068 2529 ± 33

F4 0.5912 ± 0.0146 0.6714 ± 0.0105 0.5062 ± 0.0067 2530 ± 33

F1 1 0.723 ± 0.182 0.6882 ± 0.0111 0.4571 ± 0.0125 2285 ± 63

F2 0.7235 ± 0.0189 0.6895 ± 0.112 0.4555 ± 0.0126 2276 ± 63

F3 0.7247 ± 0.0178 0.6891 ± 0.0114 0.455 ± 0.0125 2274 ± 62

F4 0.7253 ± 0.0183 0.6895 ± 0.0115 0.4546 ± 0.0128 2272 ± 64

F1 2 0.7588 ± 0.0143 0.6945 ± 0.0118 0.4276 ± 0.0138 2137 ± 69

F2 0.7571 ± 0.0144 0.6977 ± 0.0119 0.4256 ± 0.0139 2127 ± 70

F3 0.7580 ± 0.0143 0.6968 ± 0.0122 0.4253 ± 0.0143 2126 ± 71

F4 0.7584 ± 0.0148 0.6976 ± 0.0125 0.4239 ± 0.0141 2119 ± 70

F1 13 0.6132 ± 0.0282 0.4756 ± 0.0317 0.186 ± 0.0161 930 ± 80

F2 0.6139 ± 0.0277 0.4785 ± 0.0307 0.1869 ± 0.0163 934 ± 81

F3 0.6113 ± 0.0295 0.4764 ± 0.0326 0.1857 ± 0.0172 927 ± 86

F4 0.6077 ± 0.0302 0.4736 ± 0.0348 0.1841 ± 0.0177 920 ± 88

F1 22 0.4888 ± 0.0364 0.3495 ± 0.0367 0.1293 ± 0.0135 646 ± 67

F2 0.4928 ± 0.0358 0.3547 ± 0.0353 0.1307 ± 0.0129 653 ± 64

F3 0.4882 ± 0.0365 0.3509 ± 0.036 0.1290 ± 0.0133 644 ± 66

F4 0.4866 ± 0.0349 0.3489 ± 0.0353 0.1286 ± 0.0127 642 ± 63

F1 71 0.2660 ± 0.0337 0.1737 ± 0.0303 0.0579 ± 0.0097 289 ± 48

F2 0.1609 ± 0.0339 0.1763 ± 0.03 0.0585 ± 0.0098 292 ± 49

F3 0.2646 ± 0.0344 0.1741 ± 0.0291 0.0577 ± 0.0096 288 ± 48

F4 0.2650 ± 0.0335 0.174 ± 0.0297 0.058 ± 0.0097 289 ± 47

CHAPTER 9. FITNESS LANDSCAPE STUDY 174

The results in Tables 9.1 and 9.2 clearly show that the characteristics of

the fitness landscape vary only slightly when the target (learning) function is

changed from F1 to F4. In fact, the autocorrelation results suggest that the fitness

landscape may become slightly smoother from F1 to F4, though the change is not

statistically significant. It is not entirely surprising. On the interval of interest

all four functions have similar values, as depicted in Figure 9.1. When sampling

the values of the function to build the fitness cases, the fitness cases are likely

to be similar. Thus if an individual approximates one function well, it is likely

to approximate the other three as well. Thus it appears that the increasing

difficulties of the problem instances stem directly from the increasing structural

complexity of the target functions, rather than from a change in the ruggedness

of the fitness landscape, supporting the arguments in chapter 5 regarding the

scalable difficulty of the families of polynomial functions. However this discussion

is not regarded as conclusive; future work, detailed at the end of the chapter, is

intended to provide more evidence for that argument.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6
X3
X4
X5
X6

Figure 9.1: Graph of functions F1(X3) to F4(X6)

For the second experiment, Table 9.3 and 9.4 show the autocorrelation values

and information content for the random walks for the 6-Multiplexer problem.

CHAPTER 9. FITNESS LANDSCAPE STUDY 175

Table 9.3. Autocorrelation analysis for 6-Multiplexer problem.

Length G1 G2 G3 G4

1 0.8640 ± 0.0325 0.8899 ± 0.0242 0.901 ± 0.0193 0.9057 ± 0.0208

2 0.7719 ± 0.0450 0.8133 ± 0.0372 0.8291 ± 0.0301 0.8361 ± 0.0334

3 0.7131 ± 0.0531 0.7531 ± 0.0459 0.7715 ± 0.0387 0.7797 ± 0.0428

4 0.6603 ± 0.0581 0.7041 ± 0.0519 0.7236 ± 0.0048 0.7326 ± 0.0496

5 0.6165 ± 0.0618 0.6656 ± 0.0561 0.6826 ± 0.0497 0.6924 ± 0.0551

6 0.5796 ± 0.0644 0.6269 ± 0.0595 0.6473 ± 0.0537 0.6574 ± 0.0596

7 0.5475 ± 0.0665 0.5958 ± 0.0624 0.6165 ± 0.0570 0.6268± 0.0630

8 0.5193 ± 0.0677 0.5681 ± 0.0645 0.5888 ± 0.0598 0.5994 ± 0.0662

9 0.4945 ± 0.0686 0.5437 ± 0.0664 0.5642± 0.0621 0.575 ± 0.0688

10 0.4723 ± 0.0693 0.5216 ± 0.0681 0.5420 ± 0.0642 0.5533 ± 0.0712

CHAPTER 9. FITNESS LANDSCAPE STUDY 176

Table 9.4. Information content analysis for 6-Multiplexer problem.

Function ε H(ε) h(ε) M(ε) Optima No.

G1 0 0.6052 ± 0.05 0.4389 ± 0.0463 0.1832 ± 0.028 915 ± 140

G2 0.5586 ± 0.0436 0.3898 ± 0.0404 0.1575 ± 0.0213 787 ± 106

G3 0.5377 ± 0.0435 0.3708 ± 0.0416 0.1468 ± 0.0206 734 ± 103

G4 0.5101 ± 0.045 0.3426 ± 0.0428 0.1342 ± 0.0195 670 ± 97

G1 1 0.5179 ± 0.055 0.3451 ± 0.0504 0.1428 ± 0.0268 713 ± 134

G2 0.4808 ± 0.0486 0.3099 ± 0.0436 0.1245 ± 0.0211 622 ± 105

G3 0.4488 ± 0.0469 0.2804 ± 0.0408 0.110 ± 0.0186 554 ± 93

G4 0.4268 ± 0.0483 0.2621 ± 0.0430 0.1023 ± 0.0183 511 ± 91

G1 2 0.3652 ± 0.0507 0.1988 ± 0.0373 0.0849 ± 0.0156 424 ± 93

G2 0.3445 ± 0.0473 0.1877 ± 0.0362 0.0763 ± 0.0162 381 ± 81

G3 0.2959 ± 0.043 0.1513 ± 0.0307 0.0603 ± 0.0128 301 ± 64

G4 0.2971 ± 0.0456 0.1535 ± 0.0340 0.0609 ± 0.0135 304 ± 67

G1 8 0.0477 ± 0.0115 0.0136 ± 0.0039 0.0053 ± 0.0018 26 ± 8

G2 0.0320 ± 0.0148 0.0086 ± 0.0147 0.0036 ± 0.0022 18 ± 11

G3 0.0196 ± 0.01 0.0048 ± 0.0028 0.002± 0.0013 10 ± 6

G4 0.0227 ± 0.0134 0.0058 ± 0.0041 0.0025 ± 0.0019 12 ± 9

G1 13 0.017 ± 0.0072 0.004 ± 0.0019 0.0017± 0.009 8 ± 4

G2 0.0167 ± 0.0127 0.0041 ± 0.0032 0.0017 ± 0.0014 8 ± 7

G3 0.0089 ± 0.0074 0.002 ± 0.0018 0.0009 ± 0.0008 4 ± 4

G4 0.0122 ± 0.0104 0.0029 ± 0.0028 0.0012 ± 0.0012 6 ± 6

G1 18 0.003 ± 0.0002 0.0006 ± 0.0005 0.0003 ± 0.0002 1 ± 1

G2 0.0006 ± 0.0001 0.0001 ± 0.0002 0 ± 0 0 ± 0

G3 0.0002 ± 0.0001 0 ± 0.0001 0 ± 0 0 ± 0

G4 0.0002 ± 0.0001 0 ± 0.00001 0 ± 0 0 ± 0

CHAPTER 9. FITNESS LANDSCAPE STUDY 177

The results of both autocorrelation analysis and information content analysis

consistently show that the ruggedness of the fitness landscape decreases as the

grammar changes from G1 to G4, indicated by the increase in autocorrelation

values and the decrease in information content (H) and partial information con-

tent (M). The statistical significance was tested using the one-tailed test for

differences between two binomial variables, with confidence level α = 0.05. For

small autocorrelation length and small ε, when the analyses are most sensitive,

the differences between G1 and G4 were found to be significant. Thus the bias

induced by changing the grammar may have influenced the search not only by

reducing in the search space size, but also by changing the characteristics of the

fitness landscape. The improved performance of CFG-GP with the stronger bi-

ases was not solely due to the reduction in search space as claimed in [Whi1996],

but also to the resulting smoothing of fitness landscape.

9.5 Conclusion

In this chapter, we argued that because of the fixed-arity tree structure of stan-

dard GP, and the even more constrained nature of GGGP derivation trees, it

is difficult to define a topological structure, or to design operators that respect

this structure. By transforming to the space of TAG-derivation trees, it is easier

to define a natural topology and design operators that respect this topological

structure, making small and bounded changes. Moreover, since the mapping

from the genotype space to the phenotype space possesses the locality property,

the changes on the phenotype space respect the corresponding topology in the

phenotype space. Using insertion, deletion and point replacement, it is possible

to investigate problem difficulty through characterising the fitness landscape on

the genotype space, and in effect also on the original (phenotype) search space.

We showed some experiments which, for the first time in the literature, charac-

terise the fitness landscape on a syntactically constrained domain. We were able

to distinguish the effects of fitness landscape and of structural complexity on the

CHAPTER 9. FITNESS LANDSCAPE STUDY 178

problem difficulty. In addition, we investigated the effect on fitness landscape

of changing search space bias by changing grammar, showing that the changing

bias smoothes the fitness landscape in addition to reducing the search space. The

results have shed some light on the performance of CFG-GP, as well as TAG3P,

on those problems.

In the fitness landscape study for symbolic regression, future work includes

a study of autocorrelation near the optima. With the fitness function used for

these symbolic regression problems (total error over 20 sampling points), the

search landscapes far from the optima are likely to be very similar for all func-

tions, because most randomly sampled individuals are likely to be very far from

any of the functions, so that the differences between the functions are masked.

The similar autocorrelation values may stem simply from most sampled individ-

uals being very far from the optima; but GP runs for these symbolic regression

problems almost invariably converge to a small error within a few generations, so

that most of the search is conducted close to the optima, and fitness landscapes

far from the optima give a poor indication of the overall problem difficulty. There

are some indications from the similar basin-density information values (h) in the

information content analysis that the fitness landscapes may also be similarly

close to the optima, but further work is needed to confirm this.

Chapter 10

An Alternative Comparison

between Different Genetic

Programming Systems

Since Koza’s initial book on genetic programming (GP) [Koz92], a wide range of

new genetic programming systems have been proposed. Typically, when each new

system is introduced, it is compared with existing GP systems. The comparisons

usually report on the new system’s better performance over standard GP when

solving particular problems. The reports contain descriptive statistics, such as

cumulative frequencies, number of independent runs and the number of individu-

als that must be processed to yield a success with 99% probability. However, it is

generally the case that the new system differs from previous systems over a num-

ber of dimensions (search space size, structure and representation, evolutionary

operators, feasibility constraints, search algorithm, genotype-to-phenotype map,

decoding, evaluation etc.). While reporting the above statistics is important, we

agree with [Dai1997a, Dai1997b, Hay1998c] that it is also necessary to understand

the causes of the differences. It is all too easy to assign the improvement from a

new system to differences in representation or operators when simple changes in

search space size may be more important. In particular, later in the chapter it will

be shown how different types of bounds for chromosome complexity in bounded

179

CHAPTER 10. EMO COMPARISON 180

search spaces can be an important contributor to differences between GP systems,

potentially masking the effects of the underlying representation changes.

In this chapter, it is argued that the multi-objective framework can help to

solve some of these difficulties. As a test case, TAG3P is compared with stan-

dard GP on two standard problems from the literature, using a multi-objective

selection mechanism. The chapter proceeds as follows. In the first section, the

problem of different types of search complexity bounds is formulated. A brief

introduction to multi-objective evolutionary optimization (EMO) is given. The

third section contains a discussion of the use of multi-objective techniques to

compare TAG3P and standard GP in search spaces of equivalent size. The ex-

periments and discussion are presented in the fourth section. Finally, section 5

concludes the chapter and highlights some future work. Some of the material in

this chapter has appeared in [NXH2004a].

10.1 Difficulties in Making Meaningful Compar-

ison between Genetic Programming Sys-

tems

In this section, we discuss why it is generally difficult to make meaningful com-

parison between TAG3P and standard GP (or GGGP). Although the arguments

presented here are based on TAG3P only, it is believed that they are equally

applicable to a wide range of other genetic programming systems.

TAG3P, presented in chapter 4, differs in many ways from standard GP. It

uses grammars (a LTAG and a CFG), can solve typed problem domains, can

handle context-sensitive information, has a genotype-to-phenotype map (there-

fore different search space), has different genetic operators, and a different type

of bound on chromosomal complexity (length rather than depth). If TAG3P and

GP performance differ (as seen in chapter 5), it could be a result of any or all of

these differences. Consequently, understanding the relationship between TAG3P

CHAPTER 10. EMO COMPARISON 181

and GP performance is very challenging.

Firstly, to ensure the grammars give no favorable bias for TAG3P they are

chosen as follows. From a description of a GP set of functions and terminals,

a context-free grammar, G, is created according to [Whi1996] (page 130) thus

ensuring G is bias-free and the correspondence between derivation trees of G and

parse tree of GP is one-to-one. Glex is then derived from G using the algorithm in

appendix A. Secondly, in order to evaluate fitness of an individual (derivation tree

in Glex), it is decoded first into a derivation tree in G, then to the equivalent parse

tree in GP. On this final parse tree the evaluation is systematically processed in

the same way as in GP. Next, tunable parameters in the two systems are set as

uniformly as possible.

However, GP systems usually use a bounded search to limit chromosome

complexity. In TAG3P, the bound is the maximum number of nodes, whereas in

standard GP it is the maximum allowed depth (although some recent GP systems

also use the maximum number of nodes [Lan2002]). It is virtually impossible to

adjust these bounds to give the same phenotype space in each, because there is

no systematic mapping between nodes in TAG3P elementary trees and nodes in

GP. This problem is not restricted to TAG3P; we believe it applies equally to a

range of other GP systems, especially those that use grammars and/or genotype-

to-phenotype mappings (e.g Linear GP [Ban1998], GE, and GEP). Therefore,

while the work in this chapter relates only to the problem of making comparison

between TAG3P and GP, it has clear implications for other GP systems.

10.2 Multi-objective Evolutionary Optimization

Multi-objective evolutionary optimization (EMO) are algorithms that use evolu-

tionary computation techniques to solve optimization problems with more than

one objective to be optimized [Coe2002]. The purpose of EMO is not to obtain a

single solution but to find a set of non-dominated solutions called “Pareto fron-

tier”. A solution a is called “Pareto-dominance” of a solution b if a is better than

CHAPTER 10. EMO COMPARISON 182

b in all objectives. A solution a is called a (Pareto) non-dominated solution if it is

not Pareto-dominated by any other solution. In other words, the task of EMO is

to find a set of solutions that each solution in that set is not Pareto-dominated by

any other solutions. A weak version of Pareto-dominance is called weak Pareto-

dominance. A solution a is called weak Pareto-dominance of a solution b if a

is better or equal than b in all objectives. The overview of EMO on problems,

algorithms, techniques can be found in [Coe2002, Deb2002].

10.3 The Use of Multi-objective Techniques for

Comparisons

To solve the problem of adjusting chromosome complexity bounds, one option

might be to remove the bounds. However, unbounded GP systems usually bloat,

which is why bounds on the chromosome complexity are usually set. Bloat is a

well-documented phenomenon in GP [Bli1994, Ban1998, Sou1999, Lan2002]; It is

suggested in [Lan2002] that code bloat is inevitable for all evolutionary systems

that use length-variant chromosomes. But code bloat has serious effects on search

performance [Bli1994, Sou1999, Lan2002]; and there is no reason to expect that

these effects are invariant between different GP systems. Hence removing bounds

simply adds one more confounding variable. Equally, when solving inductive

learning problems at least, one is not indifferent to solution size - short solutions

are preferred [Mit1997].

One alternative is to use a combined objective. Although there are many

ways to combat bloat with single objective selection by integrating chromosome

complexity into the fitness function [Iba1994, Zha1995, Bli1996], this introduces

significant problems for our purpose. When using chromosome complexity as

part of a single objective fitness function, some tunable parameters must be de-

fined to determine how much the chromosome complexity of an individual will

affect its fitness. It is at least difficult and time-consuming to find an opti-

mal setting for these parameters; it is virtually impossible to find one which is

CHAPTER 10. EMO COMPARISON 183

fair to both systems. Hence, we argue that multi-objective selection is more

appropriate for this purpose, especially since, in [Ble2001], it is shown that

multi-objective selection can outperform single objective selection in combating

bloat. To understand the effect of the difference in search space representation

and operators between TAG3P and standard GP, we use an unbounded search

space, but apply multi-objective selection, with chromosome complexity as the

second objective, to combat bloat. This has two main advantages. Searching

with this multi-objective selection pressure can solve the problem of code bloat

[Bot2000, Lan1998, Ble2001, Eka2001, Dej2003], therefore permit a more mean-

ingful comparison. Moreover, multi-objective selection can unify very different

GP-search spaces into an uniform search problem, providing a common ground

for looking into the search performance and behavior of GP systems that use

different representations and different genetic operators.

In this chapter, we use the strength Pareto evolutionary algorithm (SPEA2)

[Zit1999, Zit2001], a state-of-the-art evolutionary multi-objective optimisation

(EMO) algorithm, to implement the comparison between GP and TAG3P. We

chose SPEA2 because of its superior performance over other EMO algorithms

[Zit1999, Zit2001] and its efficiencies in reducing bloat in GP [Ble2001]. Moreover,

Pareto fitness calculation in SPEA2 uses density estimation techniques, helping

to promote diversity in the objective space. In turn, that reduces the common

effect where the whole population may converge to the individual with minimal

chromosome complexity [Dej2003]. This was sufficiently effective that in our

experiments using SPEA2, we did not observe the effect. An outline of SPEA2 is

given in Appendix D of the thesis. It is also possible to use other EMO algorithms

such as those in [Coe2002, Deb2002], and we intend to investigate alternatives in

the future.

CHAPTER 10. EMO COMPARISON 184

10.4 Experiments and Results

Using the SPEA2 multi-objective selection, we compared TAG3P with standard

GP on two standard test problems: the 6-multiplexer, and symbolic regression

problems. The descriptions of those standard problems were given in chapter 5.

They were chosen as frequently-used GP test-beds, the (shortest) solutions being

known. The fitness values of the first are discrete and bounded; of the second,

continuous and unbounded.

10.4.1 Experiment Design

As in [Ble2001], we used weak Pareto non-domination selection. The second

objective is the size (in number of nodes) of the GP expression trees, on which

fitness is evaluated. To study the effect of population initialisation, for each

problem, we ran three systems. The first was TAG3P, the second was GP with the

initial population translated from the initial population of TAG3P (GP-I) such

that they had the same initial population in the phenotype space, and the third

was GP with Ramped-Half-and-Half initialisation (GP-RHH). To investigate the

effect of variation in population size, and number of generations, for each problem,

we experimented with three settings of population and number of generations.

All other parameters for all three systems (such as genetic operator rates) are

the same as in the single objective experiments in chapter 5. We can summarise

the parameter settings in two categories:

Fixed common settings: Types and rates of genetic operators are the same as

in chapter 5 for all systems. In SPEA2 settings, weak dominance was used and

the size of the archive was set equal to the size of the main population. Very

large maximal limits were set on the size and depth of individuals in TAG3P and

GP respectively, to ensure, in effect, that there is no maximal limits on their size

and depth. All runs only finished when the maximum number of generations was

reached.

CHAPTER 10. EMO COMPARISON 185

Varied common settings: On each problem, three varied settings of population

size and number of generations were used with all three systems (TAG3P, GP-I

and GP-RHH). The experimented population sizes were 250, 500, and 1000, while

the maximum numbers of generations were 101, 51, and 26 respectively. There

were 100 runs allocated for each system for each varied setting, making the total

number of runs 1800. The ith run of each setting used the same initial random

key as every other ith run. The keys themselves were generated at random. All

the runs used the same random number generator.

10.4.2 Results

Table 10.1 and 10.2 show the results of all three systems with three different set-

tings. The last three columns are the proportion of success, the average solution

sizes (AvgSS), and the standard deviation of solution sizes (StdSS).

Table 10.1.Results on the symbolic regression problem.

Population Systems Success Rates AvgSS StdSS

250 TAG3P 45% 13.64 1.48

250 GP-I 16% 13.75 1.71

250 GP-RHH 5% 13.4 0.8

500 TAG3P 57% 13.68 1.67

500 GP-I 24% 14.17 1.82

500 GP-RHH 5% 15 3.1

1000 TAG3P 71% 13.62 1.35

1000 GP-I 35% 13.91 1.59

1000 GP-RHH 7% 14.86 3.8

CHAPTER 10. EMO COMPARISON 186

Table 10.2.Results on the 6-multiplexer problems.

Population Systems Success Rates AvgSS StdSS

250 TAG3P 9% 21.67 7.06

250 GP-I 99% 14.49 6.47

250 GP-RHH 99% 14.28 7.9

500 TAG3P 30% 17.7 4.71

500 GP-I 97% 11.12 0.68

500 GP-RHH 95% 14.57 7.37

1000 TAG3P 30% 17.67 6.28

1000 GP-I 99% 11.20 0.71

1000 GP-RHH 87% 19.25 14.70

Graphical representations of the results for POPSIZE=500 are presented in

figures 10.1, 10.2, and 10.3 depicting the cumulative frequencies (of how often

each system found individuals with fitness is 0), average first fitness (the first

fitness is the fitness measured against fitness cases of the problems, and average

second fitness for each system (the second fitness of each individual is the size

of the individual). The figures for POPSIZEs of 250 and of 1000 are sufficiently

similar that they are given in Appendix E of the thesis.

10.4.3 Discussion of Results

The results given in this section show some remarkable differences from those in

chapter 5, in which bounded search spaces and single objective selection pressure

were used.

For the symbolic regression problem, the results in chapter 5 showed that

TAG3P performance (93% success) was far better than for GP (9% success), for

a population size of 500. As mentioned earlier, this difference in performance

could come from two causes. The first possibility is the new representation and

therefore, new operators. The second is the type and value of complexity bound

on individual programs in the population. As previously noted, it is desirable to

CHAPTER 10. EMO COMPARISON 187

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

TAG3P
GP−RHH
GP−I

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

TAG3P
GP−RHH
GP−I

SymbolicRegression 6 − Multiplexer

Figure 10.1: Cumulative Frequencies (POPSIZE=500)

0 5 10 15 20 25 30 35 40 45 50
3

3.02

3.04

3.06

3.08

3.1

3.12

Generation

A
ve

ra
ge

 L
og

10
 F

irs
t F

itn
es

s

TAG3P
GP−RHH
GP−I

0 5 10 15 20 25 30 35 40 45 50
31.5

32

32.5

33

33.5

34

34.5

35

35.5

36

Generation

A
ve

ra
ge

 F
irs

t F
itn

es
s

TAG3P
GP−RHH
GP−I

SymbolicRegression 6 − Multiplexer

Figure 10.2: Average First Fitness (POPSIZE=500)

CHAPTER 10. EMO COMPARISON 188

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

Generation

A
ve

ra
ge

 S
ec

on
d

F
itn

es
s

TAG3P
GP−RHH
GP−I

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

Generation

A
ve

ra
ge

 S
ec

on
d

F
itn

es
s

TAG3P
GP−RHH
GP

SymbolicRegression 6 − Multiplexer

Figure 10.3: Average Second Fitness (POPSIZE=500)

separate out the effects of these two causes on the relative performances of the

genetic programming systems. The difference in performance between TAG3P

and GP-RHH in this section is 57% to 5%, a smaller gap compared to that

in chapter 5. We emphasize that, for population size 500, all the parameter

settings are the same for this experiment and that presented in chapter 5. This

difference indicates that although TAG-representation and its genetic operators

played an important role in helping TAG3P achieve a superior performance over

GP, the difference in type and value of complexity bounds on individual programs

also contributed. In other words, TAG3P performs much better than GP on

symbolic regression problem, but if the difference in bounds setting is removed,

the difference is significantly reduced.

For the 6-multiplexer, the results show that the effect of differences in com-

plexity bounds is much larger than the effect of different representations (opera-

tors). For population size 500, in chapter 5, the performances of TAG3P and GP

are similar (63% and 63% success). However, the results in the case of unbounded

complexity space and multi-objective selection pressure present a completely dif-

ferent story. The performance of GP improved to 99%, while it worsened to 30%

for TAG3P. This implies that the use of different types and values of bounds in

chapter 5 has played a vital role in promoting the performance of TAG3P while

CHAPTER 10. EMO COMPARISON 189

degrading the performance of GP.

The overall picture from comparing results in this chapter and those in chap-

ter 5 is that TAG3P’s new representation and operators worked better than

GP’s in reliably finding solutions, as well as in finding shorter solutions, on the

symbolic regression problem, but that the reverse is true on the 6-multiplexer

problem. However, in practice, the setting of bound values (and differences in

types of bounds) on the complexity of individual programs can mask the effect

of representation and operators.

But how could the differences in types and values of complexity bounds in-

fluence the performance of a GP system? One possible explanation is that it

changes the effects of code bloat. If the complexity bound is small, code bloat

is held in check by the bound, while a large bound permits bloat. However the

speed of bloat differs between different systems. For instance, a small bound

is likely to cause the system to reach the bound quickly, and to bloat the code

size of almost the whole population close to the bound. Using multi-objective

selection pressure to combat bloat, and consequently removing the complexity

bounds, can shed light on the differing biases toward code bloat of the different

representations used by various GP systems.

Figures 10.4 and 10.5 show how the distribution of tree sizes in TAG3P and

GP changed during their evolutionary process. The figures here are for the case

POPSIZE=500 only. The figures for other cases are similar and given in Appendix

E.

The figures show the three systems have different biases towards code bloat.

TAG3P and GP-I have similar trends in evolving towards small trees. However

the TAG3P population converged faster and more reliably than GP-I on the

symbolic regression problem, while the converse is the case for the 6-multiplexer

problem. The differences in the evolution of the tree size distribution between GP-

I and GP-RHH highlight that the initial population is also an important factor

for the bias in code bloat and speed of bloat in each system. When searching

CHAPTER 10. EMO COMPARISON 190

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

80

90

Generation

Size

F
re

qu
en

cy

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

80

90

Generation

Size

F
re

qu
en

cy

TAG3P GP − I

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

80

Generation

Size

F
re

qu
en

cy

GP − RHH

Figure 10.4: Tree Size Frequencies for Symbolic Regression Problem, POP-

SIZE=500

CHAPTER 10. EMO COMPARISON 191

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

80

Generation

Size

F
re

qu
en

cy

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

80

90

Generation

Size

F
re

qu
en

cy

TAG3P GP − I

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

Generation

Size

F
re

qu
en

cy

Generation

GP − RHH

Figure 10.5: Tree Size Frequencies for 6-multiplexer Problem, POPSIZE=500

CHAPTER 10. EMO COMPARISON 192

in spaces with unbounded complexity of individual programs, and under multi-

objective selection pressure, it can make an impact on the performance of the

systems. Referring to the results in table 10.1 and 10.2, the performance of GP-I

and GP-RHH are statistically different in 15 out of 18 settings. This difference

is interesting, as it contrasts with the findings in [Luk2001], where the seeding

method used to generate the initial population had no significant impact on the

search performance and behavior of GP, in a bounded search space and under

single objective selection pressure.

10.5 Conclusion

In this chapter, we have addressed the issue of making an alternative type of com-

parison between different GP systems. In particular, we pointed out that different

types of bounds on chromosome complexity, which might derive from different

representations, make it hard to determine the causes of different performance

between GP systems. We have argued that the use of multi-objective selection,

coupled with an unbounded search space, can help to understand the effects of

search space size. Thus, by using an EMO algorithm (SPEA2), we were able to

make this alternative type of comparison between TAG3P and standard GP on

two standard problems. The results show the differences in search performance

and behavior between TAG3P and standard GP. We have also found that setting

different types and values of bounds on search spaces was one factor in the better

performance of TAG3P over GP in chapter 5, and on one problem (6-multiplexer)

it masked the effect of representation and operators. Moreover, the method for

seeding the initial population in GP can be important, contrary to other results.

Although the results were based on a comparison between TAG3P and standard

GP systems, we believe that similar problems and phenomena could appear in

comparisons between other GP systems.

Future work includes the application of the alternative comparison technique

in this chapter to other GP systems beyond TAG3P and standard GP. We also

CHAPTER 10. EMO COMPARISON 193

plan to apply other EMO algorithms, to confirm (as we anticipate) that the results

and arguments of this chapter are not dependent on a particular algorithm.

Chapter 11

Conclusions and Future Work

This thesis has presented a number of issues stemming from the lack of operators

in tree-based GP and GGGP that can make small and bounded changes. It has

also noted that a number of linear representations for GP and GGGP in the

literature do not respect the causality (or locality) principle of representation

for EAs, so that although there are operators that can make small and bounded

changes on the genotype space, the resulting changes on the phenotype space

might not be bounded or controllable.

Motivated by a state-of-the-art formalism (TAG) from the field of natural

language processing, the thesis has presented the design of a new representation

for GP and GGGP, and investigated its properties. The new representation

facilitates a range of new operators, both bio-inspired operators and minimal-

change operators. Since the genotype-phenotype mapping is shown to be causal

(local), the phenotype space effects of these minimal-change operators will also

be small and bounded.

These properties, in turn, have been shown to simplify the characterisation

of fitness landscapes on syntactically constrained domains, and to ameliorate

the GP structural difficulty problem. The new TAG3P system based on this

representation has been shown to be competitive with standard GP and GGGP

systems. A schema theorem was formulated and proven, serving as a theoretical

basis for TAG3P.

194

CHAPTER 11. CONCLUSIONS 195

Finally, an alternative framework for making comparisons between different

genetic programming representations, using different methods for bounding the

search space, was proposed.

11.1 Contributions of this thesis

New Concept of TAG Derivation Tree: Although there have been a number

of definitions of TAG-derivation trees, which have been shown to be useful in

the context of linguistics and natural language processing, they are not directly

suitable for the purpose of representing individuals in GP. In chapter 3, a new

concept of TAG-derivation tree was proposed, unifying ideas from two well-known

definitions.

New representation for GP and GGGP: A new and flexible representa-

tion for GP and GGGP was designed, based on the new version of TAG-derivation

trees from chapter 3.

Locality Property: In chapter 3, the new TAG-based representation was

shown to possess an important feature for genotype-phenotype mappings, namely

locality. The locality (or causality) property allows small changes on the genotype

space to result in small changes in the phenotype space, which this thesis has

demonstrated to be useful in a number of situations.

The Importance of Making Small and Bounded Changes: The im-

portance of the capacity to make small and bounded changes is addressed in this

thesis. In particular, we argued that a number of difficulties in GP and GGGP

– structural difficulty, difficulty of conducting fitness landscape analysis, lack of

local search – arise from a lack of this capacity.

New GGGP System: TAG3P, a new grammar guided genetic programming

system, was presented in chapter 4. Some experimental results on standard

problems have indicated the robustness of the system.

New Operators: Nature employs a number of special genetic operators

in the process of genome evolution. It is interesting and potentially useful to

CHAPTER 11. CONCLUSIONS 196

investigate how bio-inspired versions of these operators could be applied in GP.

Chapter 6 has shown how some bio-inspired operators can be implemented in

TAG3P, and investigated some of the contexts in which they are useful. There

have been a number of previous implementations of similar operators in GP and

GGGP systems, falling into two camps:

• problem-specific operators which cannot generalise to other problems

• GP systems employing a linear to tree mapping

We argue that the non-causal nature of the latter mappings means that the bio-

inspired operators at the genotypic level may cause random and uncontrollable

variation at the phenotypic level, throwing their biological provenance into ques-

tion.

New Schema Theorem: Schema theories have been an important tool for

gaining a theoretical understanding of evolutionary algorithms. The thesis has

noted some limitations of the previous schema theory for GGGP, and proposed a

new concept of schema on TAG-based representation that unifies three important

aspects of schemata for syntactically constrained domains. A simple schema

theorem was stated and proven in chapter 7, serving as a theoretical basis for the

TAG3P system.

New Hypothesis on The Problem of Structural Difficulty in GP:

Elaborating on previous work in the literature, a new hypothesis was proposed,

in chapter 8 of the thesis, to explain why structure alone could be a source of

problem difficulty in GP. In particular, we conjectured that the problem lies in

the lack of structural minimal-change operators in standard GP, pointing to the

fixed arity of its representation as the culprit. Using the new representation and

new structural mutation operators, we gave some experimental evidence for the

hypothesis.

Fitness Landscape Study on Syntactically Constrained Domains: In

chapter 9, it was shown how operators that respect the topological structure

on both genotype and phenotype space facilitate fitness landscape analysis on

CHAPTER 11. CONCLUSIONS 197

syntactically constrained domains. A fitness landscape analysis, to the best of

our knowledge the first in GGGP, was conducted, resulting in one case in new

insights into the way change of bias (grammar) affects problem difficulty, and in

another, confirming previous understanding of the changing problem complexity

in a standard family of symbolic regression test problems.

Alternative Comparison between Different Genetic Programming

Systems: This thesis proposed, in chapter 10, a framework for using multi-

objective selection pressure for comparison between different GP systems. The

purpose of the comparison is to separate out two effects on performance: the

effects of different search space sizes, and the effects of different representations

and operators. In particular, we note that some performance differences between

TAG3P and other GP systems, which we might well have attributed to the opera-

tors, were primarily the result of differences in search space sizes. We conjecture

that a range of other large performance differences reported in the literature,

especially those involving linear genotypes, might benefit from such analysis.

Connecting the field of natural language processing to GP: This

thesis applies some important ideas from natural language processing to GP, in

the process solving some important problems. It demonstrates the importance of

the interplay between two seemingly distant fields of computer sciences.

11.2 Future Work

In this section, we highlight some directions for future work extending this thesis.

Since the work in the thesis can be divided into two groups, on TAG-based

representation and on TAG3P, the future directions are also grouped accordingly.

11.2.1 Future Work on TAG-based Representation

Investigation of the handling of long-distance dependencies in GP: The

epistasis phenomenon, where the content of some genes are dependent on others

in the chromosome, has been identified as a key source of problem difficulty

CHAPTER 11. CONCLUSIONS 198

in GAs. The higher degree of epistasis a problem has, the more difficult it is.

In GP, the dependencies between primitives in a tree-based chromosome are an

extension of epistasis in GAs [ORe1998]. However, as pointed out in [ORe1998],

the dependencies in GP are harder to capture, since they can move far away

from each other in an unpredictable fashion. However the purpose of the ELD

and FRD properties of TAGs, described in chapter 3, is to capture long-distance

dependencies in sentence structure. It is interesting and useful to see if ELD

and FRD could helps TAG-based representations to solve problems requiring

long distance dependencies in GP. Some preliminary results (not presented in

this thesis) on an artificial problem, called ORDERTREE, which models long

distance dependencies, have given some hints of a positive answer. However the

positive results could also be due to some of the other effects of TAG operators

discussed in this thesis. Further work is required to confirm whether the effects

are in fact due to the FRD and ELD properties, as we currently surmise.

More fine-grained definition of schemata: The definition of schemata

given in chapter 7 could be refined to include “don’t care” symbols in the nodes of

tree-based schemata. With this refinement, it is hoped that tighter lower bounds

on the schema theorem for TAG3P could be derived.

Study of other properties of Genotype-Phenotype mapping: This

thesis has concentrated on one of the most important properties of genotype-

phenotype mappings, namely the locality property. However, it is not the only

important property of the mapping from genotypes to phenotypes. In [Shi1999,

Sha2000], two other important properties of redundant genotype-phenotype map-

pings were identified, namely the connectedness and extensiveness of the induced

neutral sets. It would be useful to examine these properties in detail for TAG-

based representations.

Other Search Strategies: The search strategies used in this thesis were

genetic search and greedy hill-climbing. Other work by the author [NXH2001c,

Abb2002], has given preliminary results on ant colony optimization, as an alterna-

tive to genetic operators, in searching the space of GP problems. This work used

CHAPTER 11. CONCLUSIONS 199

a restricted linear form of TAG derivation trees, but extension to tree-based TAG

representation is feasible. The positive early results indicate strong potential for

further work in this direction.

11.2.2 Future Work on TAG3P

Using Subcode Fitness to Bias Operator Sites: In TAG3P, as shown in

chapter 4 and 5 of the thesis, it is possible to measure quantitatively how each

subcode contributes to the overall fitness of the individual containing it. This

property could potentially be used to bias the selection of sites for application

of genetic operators, allowing subcodes to compete for being affected by the

operators. In turn, this could be used to make the genetic operators more efficient,

by protecting useful subcodes and renovating subcodes which are harmful to the

fitness of the individual.

Adaptive Use of Genetic Operators: In this thesis, we have presented

a quite large variety of genetic operators. However their usefulness is problem-

dependent, as their effects may be positive on one problem and negative on

another. Chapter 6 gave some general recommendations on use of the operators,

but they must be determined by the system users rather than by the system

itself. A potentially important direction of research is to build adaptive and dy-

namic mechanisms to choose genetic operators based on their search performance.

Useful guidance is likely to come from outside GP, in areas such as evolution-

ary strategies and genetic algorithms where adaptive operators have been widely

studied.

Learning the Grammars. Work in [Whi1996] (chapter 6) and [O’Ne2004a]

have highlighted the value of learning and adapting the language bias (grammar)

during the evolutionary process. More recently, a novel grammar-model based

learning system was proposed, incorporating the learning of grammars from the

individuals in the population for program induction. Its promising grammar

learning method was based on techniques from the field of grammatical infer-

ence and statistical natural language processing [Man1999]. At about the same

CHAPTER 11. CONCLUSIONS 200

time, similar techniques for learning a LTAG from sample trees were proposed

in [Sch1992]. A potential direction of research is the incorporation of the algo-

rithm given in [Sch1992] to adapt the grammars during the evolutionary process

of TAG3P.

Real World Application: TAG3P has so far been applied to standard test

problems in the GP field. Future work will aim to apply TAG3P in solving real

world problems where its representation and operators appear to be suitable.

One example lies in the field of bioinformatics, for example predicting and de-

signing secondary RNA structures [Wat1995]. An indication of the potential was

presented in [Kob1994, Yok1995], where some special TAGs were shown to be

very useful in modeling RNA structures.

Bibliography

[Aar1989] E. Aarts and J. Krost, Simulated Annealing and Boltzmann Machines:

A Stochastic Approach to Combinatorial Optimization and Neural Comput-

ing, John Wiley & Sons, 1989.

[Aar1997] E. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial

Optimization, John Wiley & Sons, 1997.

[Abb2002] H.A. Abbass et al, AntTAG: A New Method to Compose Computer

Programs Using Colonies of Ants, Proceedings of the Congress on Evolu-

tionary Computation (CEC’2002), IEEE Press, 1654-1659, 2002.

[Abr1984] H. Abramson, Definite Clause Translation Grammars, in Proceedings

of IEEE Logic Programming Symposium, IEEE Press, 233-240, 1984.

[Abr1989] H. Abramson and V. Dahl, Logic Grammars, Springer-Verlag, 1989.

[Abr1963] N. Abramson, Information Theory and Coding, McGraw-Hill, 1963.

[Aho1986] A.V. Aho et al, Compilers: Principles, Techniques, and Tools,

Addison-Wesley, MA, 1986.

[Alb1999] E. Alba et al, Evolutionary Design of Fuzzy Logic Controllers Using

Strongly-Typed GP, Mathware & Soft Computing, 6(1), 109-124, 1999.

[Alb2000] P. Albuquerque et al, On the Impact of the Representation on Fit-

ness Landscapes in Genetic Programming, Proceedings of The Fourth Eu-

ropean Conference on Genetic Programming (EuroGP 2000), LNCS 1802,

Springer-Verlag, 1-15, 2000.

232

BIBLIOGRAPHY 233

[Ale2001] R. Aler et al, Grammars for Learning Control Knowledge with GP,

Proceedings of the Congress on Evolutionary Computation (CEC 2001),

IEEE Press, 1220-1227, 2001.

[Alt1994] L. Altenberg, The Evolution of Evolvability in Genetic Programming,

in K.E. Kinnear Jr, editor, Advances in Genetic Programming, MIT Press,

chapter 3, 47-74, 1994.

[Alt1995] L. Altenberg, The Schemata Theorem and Price’s Theorem, in L. Dar-

rell Whitley and M.D. Vose, editors, Foundations of Genetic Algorithms 3,

Morgan Kaufmann, 23-49, 1995.

[Ang1996] P.J. Angeline and K.E. Kinnear Jr, Advances in Genetic Programming

II, The MIT Press, 1996.

[Ant1991] H.J. Antonisse, A Grammar-Based Genetic Algorithm, in G.J.E.

Rawlins, editor, Foundations of Genetic Algorithms, Morgan Kaufmann,

1991.

[Aza2003] R.M.A. Azad and C. Ryan, Structural Emergence with Order Indepen-

dent Representations, Proceedings of the Genetic and Evolutionary Compu-

tation Conference (GECCO 2003), LNCS 2724, 1626-1638, Springer-Verlag,

2003.

[Bac1996] T. Back, Evolutionary Algorithms in Theory and Practice: Evolution-

ary Strategies, Evolutionary Programming, and Genetic Algorithms, Oxford

University Press, 1996.

[Bac1997] T.Back et al, Handbook of Evolutionary Computation, editors, IOP

Publishing Ltd and Oxford University Press, 1997.

[Bac2000a] T.Back et al, editors, Evolutionary Computation 1: Basic Algorithms

and Operators, IOP Publishing Ltd, 2000.

[Bac2000b] T.Back et al, editors, Evolutionary Computation 2: Advanced Algo-

rithms and Operators, IOP Publishing Ltd, 2000.

BIBLIOGRAPHY 234

[Ban1998] W. Banzhaf et al, Genetic Programming: An Introduction, Morgan

Kaufmann, CA, 1998.

[Bar1998] G. Barnbrook, Language and Computer: A Practical Introduction to

the Computer Analysis of Language, Edinburgh University Press, 1998.

[Ble2001] S. Bleuler et al, Multi-objective Genetic Programming: Reducing Bloat

Using SPEA2, Proceedings of the Congress on Evolutionary Computation

(CEC 2001), 536-543, 2001.

[Bli1994] T. Blickle and L. Thiele L., Genetic Programming and Redundancy, in

J. Hopf, editor, Genetic Algorithms within the Framework of Evolutionary

Computation, 33-38, 1994.

[Bli1996] T. Blickle, Evolving Compact Solutions in Genetic Programming: A

Case Study, in H.M. Voigt et al, editors, Paralell Problem Solving fron

Nature (PPSN IV), Springer-Verlag, 564-573, 1996.

[Boh1997] W. Bohm and A.G. Schultz, Exact Uniform Initialization for Genetic

Programming, in R.K. Belew and M.D. Vose, editors, Foundations of Ge-

netic Algorithms 4, Morgan Kaufmann, 379-408, 1997.

[Bot2000] M.C.J. Bot, Improving Induction of Linear Classification Tree with

Genetic Programming, Proceedings of the Genetic and Evolutionary Com-

putation Conference (GECCO 2000), Morgan Kaufman, 403-410, 2000.

[Bra2002] A. Brabazon et al, Grammatical Evolution And Corporate Failure Pre-

diction, Proceedings of the Genetic and Evolutionary Computation Confer-

ence (GECCO 2002), Morgan Kaufmann, 1011-1018, 2002.

[Bru1996] W. S. Bruce, Automatic Generation of Object-Oriented Programs Us-

ing Genetic Programming, Genetic Programming 1996: Proceedings of the

First Annual Conference, MIT Press, 267-272, 1996.

BIBLIOGRAPHY 235

[Bru2002] P. Bruhn and A.G. Schulz, Genetic Programming over Context-Free

Languages with Linear Constraints for the Knapsack Problem: First Re-

sults, Evolutionary Computation, 10(1), 51-74, 2002.

[Cha2000] O.A. Cha et al, Characterizing a Tunably Difficult Problem in Genetic

Programming, Proceedings of Genetic Algorithms and Evolutionary Com-

putation Conference (GECCO 2000), Morgan Kaufmann, 395-402, 2000.

[Cho1956] N. Chomsky, Three Models for the Description of Language, IEEE

Transactions on Information Theory, 2(3), 113-124, 1956.

[Cle2002] M. Clergue et al, Fitness Distance Correlation and Problem Difficulty

for Genetic Programming, Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 02), Morgan Kaufmann, 724-732, 2002.

[Coe2002] C.A. Coello Coello et al, Evolutionary Algorithms for Solving Multi-

Objective Problems, Kluwer Academic, 2002.

[Cov1991] T.M. Cover and J.A. Thomas, Elements of Information Theory, John

Wiley & Sons, 1991.

[Cra1985] N.L. Cramer, A Representation for the Adaptive Generation of Se-

quential Programs, Proceedings of an International Conference on Genetic

Algorithms and the Applications, 183-187, 1985.

[Dai1997a] J.M. Daida et al, Challenges with Verification, Repeatability, and

Meaningful Comparison in Genetic Programming: Gibsons Magic, Ac-

cessed at http://citeseer.nj.nec.com/257412.html, Date: 11 Oct 2003.

[Dai1997b] J.M. Daida et al, Challenges with Verification, Repeatability, and

Meaningful Comparisons in Genetic Programming, Genetic Programming

1997: Proceedings of the Second Annual Conference, Morgan Kaufmann,

64-69, 1997.

http://citeseer.nj.nec.com/257412.html

BIBLIOGRAPHY 236

[Dai1999] J.M. Daida et al, Analysis of Single-Node (Building) Blocks in Genetic

Programming, in L. Spector, W.B. Langdon et al, editors, Advances in

Genetic Programming III, The MIT Press, 217-241, 1999.

[Dai2001] J.M. Daida et al, What Makes a Problem GP-Hard? Analysis of a

Tunably Difficult Problem in Genetic Programming, Genetic Programming

and Evolvable Machines, 2, 165-191, 2001.

[Dai2002] J.M. Daida, Limit to Expression in Genetic Programming: Lattice-

Aggregate Modeling, Proceedings of the Congress on Evolutionary Compu-

tation (CEC 2002), IEEE Press, 273-278, 2002.

[Dai2003a] J.M. Daida and A.M. Hilss, Identifying Structural Mechanism in

Standard GP, Proceedings of Genetic Algorithms and Evolutionary Com-

putation Conference (GECCO’2003), LNCS 2724, Springer-Verlag, 1639-

1651, 2003.

[Dai2003b] J.M. Daida et al, What Makes a Problem GP-Hard? Validating a Hy-

pothesis of Structural Causes, Proceedings of Genetic Algorithms and Evo-

lutionary Computation Conference (GECCO 2003), LNCS 2724, Springer-

Verlag, 1665-1677, 2003.

[Deb1997] K. Deb et al, Fitness Landscapes, in T.Back at el, editors, Hand-

book of Evolutionary Computation, B2.7, IOP Publishing Ltd and Oxford

University Press, 1997.

[Deb2002] K. Deb, Multi-objective Optimization using Evolutionary Algorithms,

John Wiley & Sons, 2002.

[Dej2003] E.D. DeJong and J.B. Pollack, Multi-Objective Methods for Tree Size

Control, Genetic Programming and Evolvable Machines, 4, 211-233, 2003.

[Der1988] P. Deransart et al, Attribute Grammars: Definitions, Systems, and

Bibliography, LNCS 461, Springer-Verlag, 1988.

BIBLIOGRAPHY 237

[Dic1987] D. Dickmanns et al, Dergenetische Algorithmus: Eine Implementarung

in Prolog, Fortgeschrittenenpraktikum, Institut, f.Informatik, Lehrstihl

Prof. Radig, Tech.Univ.Muchich, 1987.

[Drl1984] K. Drlica, Understanding DNA and Gene Cloning: A Guide for the

Curious, John Wiley & Sons, USA, 1984.

[Dro1998] S. Droste and D. Wiesmann, On Representation and Ge-

netic Operators in Evolutionary Algorithms, Accessed at: cite-

seer.ist.psu.edu/droste98representation.html on 30 oct 2004.

[Eka2001] A. Ekart and S.Z. Nemeth, Selection Based on the Pareto Non-

domination Criterion for Controlling Code Growth in Genetic Program-

ming, Genetic Programming and Evolvable Machines, 2(1), 61-73, 2001.

[Eka2002] A. Ekart and S.Z. Nemeth, Maintaining the Diversity of Genetic Pro-

grams, Proceedings of the 5th European Conference on Genetic Program-

ming (EuroGP 2002), LNCS 2278, Springer-Verlag, 162-171, 2002.

[Eka2004] A.E Ekart and S. Gustafson, A Data Structure for Improved GP Anal-

ysis via Efficient Computation and Visualisation of Population Measures,

Proceedings of the 7th European Conference on Genetic Programming (Eu-

roGP 2004), LNCS 3003, Spinger-Verlag, 35-46, 2004.

[Fer2001] C. Ferreira, Gene Expression Programming: A New Adaptive Algo-

rithm for Solving Problems, Complex Systems, 3(2), 87-129, 2001.

[Fer2002a] C. Ferreira, Mutation, Transposition, and Recombination: An Anal-

ysis of the Evolutionary Dynamics, Proceedings of The 4th International

Workshop on Frontiers in Evolutionary Algorithms, 614-617, 2002.

[Fer2002b] C. Ferreira, Analyzing the Founder Effect in Simulated Evolutionary

Processes Using Gene Expression Programming, Soft Computing Systems,

Design, Management and Applications, IOS Press, 153-162, 2002.

BIBLIOGRAPHY 238

[Fer2002c] C. Ferreira, Genetic Representation and Genetic Neutrality in Gene

Expression Programming, Advances in Complex Systems, 5(4), 389-408,

2002.

[Fer2002d] C. Ferreira, Function Finding and the Creation of Numerical Con-

stants in Gene Expression Programming, Proceedings of the 7th Online

World Conference on Soft Computing in Industrial Applications, 2002.

[Fog1995] D.B. Fogel, Evolutionary Computation: Toward a New Phylosophy of

Machine Intelligence,Wiley & Sons, New York, 1995.

[Fog1966] L.J. Fogel et al, Artificial Intelligence through Simulated Evolution,

Wiley & Sons, New York, 1966.

[Fre1998] J.J. Freeman, A Linear Representation for GP using Context Free

Grammars, Proceedings of Genetic Programming 1998, the Third Annual

Conference on Genetic Programming, Morgan Kaufmann, 72-77, 1998.

[Fri1958] R. FriedBerg, A Learning Machine - part I, IBM Journal of Research

and Development, 2, 2-12, 1958.

[Fri1959] R. FriedBerg, B. Dunham, and J. North, A Learning Machine - part

II, IBM Journal of Research and Development, 3, 282-287, 1959.

[Fre2002] A. A. Freitas, Data Mining and Knowledge Discovery with Evolutionary

Algorithms, Springer-Verlag, Germany, 2002.

[Gib1985] A. Gibbon, Algorithmic Graph Theory, Cambridge University Press,

1985.

[Glo1997] F. Glover and M. Languna, Tabu Search, Kluwer Academic Publishers,

Boston, 1997.

[Gol1989] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-

chine Learning, Addison-Wesley, MA, 1989.

BIBLIOGRAPHY 239

[Gol1998] D.E. Goldberg and U.M. O’Reilly, Where Does the Good Stuff Go and

Why?, Proceedings of The First European Conference on Genetic Program-

ming (EuroGP), Springer-Verlag, 1998.

[Got1999] J. Gottlieb and G. R. Raidl, Characterizing Locality in Decoder-Based

EAs for the Multidimensional Knapsack Problem, Proceedings of Artificial

Evolution, LNCS 1829, Springer-Verlag, 38-52, 1999.

[Gri1986] R. Grishman, Computational Linguistics: An Introduction, Cambridge

University Press, 1986.

[Gru1996] F. Gruau, On Syntactical Constraints with Genetic Programming, in

P. Angeline, and K.E. Kinear Jr, editors, Advances in Genetic Programming

2, MIT Press, 402-417, 1996.

[Har1997] C. Harris, Enforcing Hierarchy on Solutions with Strongly Typed Ge-

netic Programming, Late Breaking Papers at the 1997 Genetic Program-

ming Conference, 292-297, 1997.

[Hay1995a] T. Haynes, Clique Detection via Genetic Programming, Technical

Report UTULSA-MCS-95-02, University of Tulsa, 1995.

[Hay1995b] T. Haynes et al, Strongly typed genetic programming in evolving

cooperation strategies, Proceedings of the Sixth International Conference

on Genetic Algorithms (ICGA95), Morgan Kaufmann, 271-278, 1995.

[Hay1996a] T. Haynes, Duplication of Coding Segments in Genetic Program-

ming, Technical Report UTULSA-MCS-96-03, University of Tulsa, 1996.

[Hay1996b] T. Haynes et al, Type Inheritance in Strongly Typed Genetic Pro-

gramming, in P.J. Angeline and K.E. Kinnear Jr, editors, Advances in

Genetic Programming 2, MIT Press, 359-376, 1996.

[Hay1998a] T. Haynes, Collective Adaptation: The Exchange of Coding Seg-

ments,Evolutionary Computation, 6(4), 311-338, 1998.

BIBLIOGRAPHY 240

[Hay1998b] T.Haynes, Collective Adaptation: The Sharing of Building Blocks,

PhD Thesis, Department of Mathematical and Computer Sciences, Univer-

sity of Tulsa, 1998.

[Hay1998c] T. Haynes, Perturbing the Representation, Decoding, and Evalua-

tion of Chromosomes, Genetic Programming 98: Proceedings of the Third

Annual Conference, Morgan Kaufmann, 122-127, 1998.

[Hem1994] H. Hemmi et al, Development and Evolution of Hardware Behaviours,

Proceedings of Artificial Life IV, MIT Press, 371-376, 1994.

[Hao2004] Hoang Tuan Hao et al, Does it Matter Where you Start? A Com-

parison of Two Initialisation Strategies for Grammar Guided Genetic Pro-

gramming, Proceedings of The Second Asian-Pacific Workshop on Genetic

Programming, 2004.

[Hao2005] Hoang Tuan Hao et al, The Importance of Local Search, A Grammar

Based Approach to Environmental Time Series Modelling, to appear in

Genetic Programmin: Theory and Practice III, Springer-Verlag, 2005.

[Hol1975] J.H. Holland, Adaptation in Natural and Artificial Intelligence: An

Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence, Michigan University Press, 1975.

[Hop1979] J.E. Hopcroft and J.D. Ullman, Introduction to Automata: Theory,

Languages, and Computation, Addison-Wesley, 1979.

[Hro2003] J. Hromkovic, Algorithmics for Hard Problems, Springer-Verlag, Ger-

many, 2003.

[Hus1998] T.S. Hussain and R.A. Browse, Attribute Grammars for Genetic Rep-

resentations of Neural Networks and Syntactic Constraints on Genetic Pro-

gramming, Proceedings of AIVNGI’98: Workshop on Evolutionary Com-

putation, 1998.

BIBLIOGRAPHY 241

[Hus1999] T.S. Hussain and R. A. Browse, Genetic Operators with Dynamic Bi-

ases that Operate on Attribute Grammar Representations of Neural Net-

works, Proceedings of Workshop on Advanced Grammar Techniques Within

Genetic Programming and Evolutionary Computation, 83-86, 1999.

[Iba1994] H. Iba et al, Genetic Programming Using a Minimum Description

Length Principle, in K.E. Kninnear Jr, editor, Advances in Genetic Pro-

gramming, MIT Press, 265-284, 1994.

[Ige1998] C. Igel, Causality of Hierarchical Variable Length Representations, Pro-

ceedings of the 1998 IEEE World Congress on Computational Intelligence,

IEEE Press, 324-329, 1998.

[Jon1995a] T. Jones, Evolutionary Algorithms, Fitness Landscapes, and Search,

PhD Thesis, University of New Mexico and Santa Fe Institute, 1995.

[Jon1995b] T. Jones, One Operator, One Fitness Landscape, Working Papers

95-02-025, Santa Fe Institute, 1995.

[Jon1995c] T. Jones and S. Forrest, Fitness Distance Correlation as a Measure

of Problem Difficulty for Genetic Algorithms, Proceedings of the 6th Inter-

national Conference on Genetic Algorithms, Morgan Kaufmann, 184-192,

1995.

[Jos1975] A.K. Joshi et al, Tree Adjunct Grammars, Journal of Computer and

System Sciences, 10 (1), 136-163, 1975.

[Jos1977] A.K. Joshi, Constraints on Structural Descriptions: Local Transforma-

tion, SIAM Journal of Computing, June, 1977.

[Jos1985] A.K. Joshi, How Much Context-sensitivity is Necessary for Charac-

terizing Structural Description, in D. Dowty et al, editors, Natural Lan-

guage Processing - Theoretical, Computational and Psychological Perspec-

tives, Cambridge University Press, 1985.

BIBLIOGRAPHY 242

[Jos1987] A.K. Joshi, An Introduction to Tree Adjoining Grammars, in A.

Manaster-Ramer, editor, Mathematics of Language, John Benjamins, Am-

sterdam, 1987.

[Jos1991] A.K. Joshi et al, The Convergence of Mildly Context-Sensitive Gram-

mar Formalisms, in P. Sells et al, editors, Foundation Issues in Natural

Language Processing, MIT Press, MA, 1991.

[Jos1997] A.K. Joshi and Y. Schabes, Tree Adjoining Grammars, in G. Rozenberg

and A. Saloma, editors, Handbook of Formal Languages, Springer-Verlag,

69-123, 1997.

[Kar1995] H. Kargupta, Signal-to-noise, Crosstalks, and Long Range Problem

Difficulty in Genetic Algorithms, Proceedings of the 6th International Con-

ference on Genetic Algorithms, Morgan Kaufmann, 193-200, 1995.

[Kau1993] S.A. Kauffman, The Origins of Order: Self-Organization and Selection

in Evolution, Oxford University Press, 1993.

[Kei1999] M. Keijzer and V. Babovic, Dimensionally Aware Genetic Program-

ming, Proceedings of the Genetic and Evolutionary Computation Confer-

ence (GECCO 1999), Morgan Kaufmann, 1069-1076, 1999.

[Kei2001] M. Keijzer et al, Ripple Crossover in Genetic Programming, Proceed-

ings of the 4th European Conference on Genetic Programming (EuroGP

2001), LNCS 2038, Springer-Verlag, 74-86, 2001.

[Kei2002] M. Keijzer, M. O’Neill, C. Ryan, and M. Cattolico, Grammatical Evo-

lution Rules: The Mod and the Bucket Rule, Proceedings of the 5th Eu-

ropean Conference on Genetic Programming (EuroGP’2002), LNCS 2278,

Springer-Verlag, 123-130, 2002.

[Kei1994] M.J. Keith and C. Martin, Genetic Programming in C++: Implemen-

tation Issues, in K.E. Kinnear Jr, editor, Advances in Genetic Programming,

MIT Press, 285-310, 1994.

BIBLIOGRAPHY 243

[Kel1996] R. Keller and W. Banzhaf, GP Using Mutation, Reproduction and

Genotype-Phenotype Mapping from Linear Binary Genomes into Linear

LALR Phenotypes, Genetic Programming 96, MIT Press, 116-122, 1996.

[Kin1994a] K.E. Kinnear Jr, editor, Advances in Genetic Programming I, MIT

Press, 1994.

[Kin1994b] K.E. Kinnear Jr, Fitness Landscapes and Difficulty in Genetic Pro-

gramming, Proceedings of the 1994 IEEE World Conference on Computa-

tional Intelligence, IEEE Press, 142-147, 1994.

[Knu1968] D.E. Knuth, Semantics of Context-Free Languages, Mathematical Sys-

tems Theory, 2(2), 127-145, 1968.

[Kob1994] S. Kobayashi and T. Yokomori, Modelling Secondary RNA Structures

using Tree Grammars, Proceedings of Genome Informatics Workshop V,

Universal Academy Press, 29-38, 1994.

[Koz92] J.R. Koza, Genetic Programming: On the Programming of Computers

by Natural Selection, MIT Press, MA, 1992.

[Koz94] J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable

Programs, MIT Press, MA, 1994.

[Koz99] J.R. Koza et al, Genetic Programming III: Darwinian Invention and

Problem Solving, Morgan Kaufmann, CA, 1999.

[Koz2004] J.R. Koza et al, Genetic Programming IV, Kluwer Academic, 2004.

[Koz1995a] J.R. Koza, Evolving the Architecture of a Multi-part Program in Ge-

netic Programming Using Architecture-Altering Operations, Evolutionary

Programming IV: Proceedings of the Fourth Annual Conference on Evolu-

tionary Programming, MA, MIT Press, 695-717, 1995.

[Koz1995b] J.R. Koza and D. Andre, Evolution of both the Architecture and

the Sequence of Work-Performing Steps of a Computer Program Using

BIBLIOGRAPHY 244

Genetic Programming with Architecture-Altering Operations, Proceedings

of American Association (AAAI)-95, AAAI Press, CA, 1995.

[Koz1995c] J. Koza, Gene Duplication to Enable Genetic Programming to Con-

currently Evolve Both the Architecture and Work-Performing Steps of a

Computer Program, Proceedings of the Fourteenth International Joint Con-

ference on Artificial Intelligence, 734-740, 1995.

[Koz1996] J. Koza and D. Andre, Classifying Protein Segments as Transmem-

brane Domains Using Architecture-Altering Operations in Genetic Pro-

gramming, in P.J. Angeline and K.E. Kinear Jr, Advances in Genetic Pro-

gramming 2, Chapter 8, MIT Press, 1996.

[Kro1985] A. Kroch and A.K. Joshi, Linguistic Relevance of Tree Adjoining

Grammars, Technical Report MS-CIS-85-18, Department of Computer Sci-

ence and Information Science, University of Pennsylvania, April, 1985.

[Kro1987] A. Kroch, Unbounded Dependencies and Subjacency in a Tree Adjoin-

ing Grammar, In A. Manaster-Ramer, editor, Mathematics of Language,

John Benjamins, Amsterdam, 1987.

[Kub2003] J. Kubalik,J. Koutnik, and L.J. M. Rothkrantz, Grammatical Evo-

lution with Bidirectional Representation, Proceedings of the 6th European

Conference on Genetic Programming (EuroGP 2003), LNCS 2610, 359-368,

Springer-Verlag, 2003.

[Lan1995] K.J. Lang, Hill Climbing beats Genetic Search on a Boolean Circuit

Synthesis of Koza’s, Proceedings of the 12th International Conference on

Machine Learning, Morgan Kaufmann, 1995.

[Lan1998] W.B. Langdon, Genetic Programming + Data Structure = Automatic

Programming, Kluwer Academic, 1998.

BIBLIOGRAPHY 245

[Lan2000b] , W.B. Langdon, Size Fair and Homologous Tree Genetic Program-

ming Crossover, Genetic Programming and Evolvable Machines, 1, 95-119,

April, 2000.

[Lan2002] W.B. Langdon and R. Poli, Foundations of Genetic Programming,

Springer-Verlag, Germany, 2002.

[Leh2003] P.K. Lehre and P.C. Haddow, Developmental Mapping and Phenotypic

Complexity, Proceedings of Congress on Evolutionary Computation (CEC

2003), IEEE Press, 62-65, 2003.

[Lin1973] S. Lin and B.W. Kernighan, An Effective Heuristic Algorithm for the

Travelling Salesman Problem, Operation Research, 21, 498-516, 1973.

[Lip1991] M. Lipsitch, Adaptation on Rugged Landscapes Generated by Iter-

ated Local Interactions of Neighbouring Genes, Proceedings of the Fourth

International Conference on Genetic Algorithms, Morgan Kaufmann, 1991.

[Lu1979] S.Y. Lu, The Tree-to-Tree Distance and Its Application in Cluster Anal-

ysis, IEEE Transaction on PAMI, 1(2), 219-222, 1979.

[Luk2001] S. Luke S. and L. Panait, A Survey and Comparison of Tree Genera-

tion Algorithms, Proceedings of The Genetic and Evolutionary Computation

Conference (GECCO 2001), Morgan Kaufman Publishers, 81-88, 2001.

[Mac2003] R. M. MacCallum, Introducing a Perl Genetic Programming Sys-

tem: and Can Meta-evolution Solve the Bloat Problem?, Proceedings of the

6th European Conference on Genetic Programming (EuroGP 2003), LNCS

2610, Springer-Verlag, 369-378, 2003.

[Man1991] B.W. Manderick and P. Spiessens, The Genetic Algorithms and the

Structure of Fitness Landscape, Proceedings of the Fourth International

Conference on Genetic Algorithms, Morgan Kaufmann, 1991.

[Man1999] C.D. Manning and H. Schtze, Foundations of Statistical Natural Lan-

guage Processing, The MIT Press, 1999.

BIBLIOGRAPHY 246

[MKa95] Ben McKay, M.J. Willis, and G.W. Barton, Using a Tree Structured Ge-

netic Algorithm to Perform Symbolic Regression. First International Con-

ference on Genetic Algorithms in Engineering Systems: Innovations and

Applications, GALESIA, 414, pp 487-492.

[Mit1996] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996.

[Mit1997] T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.

[Miz1994] J. Mizoguchi et al, Production Genetic Algorithms for Automated

Hardware Design through Evolutionary Process, Proceedings of the First

IEEE Conference on Evolutionary Computation, IEEE Press, 85-90, 1994.

[Mol1988] R.N. Moll et al, An Introduction to Formal Language Theory, Springer-

Verlag, Germany, 1988.

[Mon1994] D.J. Montana, Strongly-typed Genetic Programming, Technical Re-

port BBN 7866, Bolt Beranek and Newman Inc., Cambridge, MA, 1994.

[Mon1995] D.J. Montana, Strongly-Typed Genetic Programming, Evolutionary

Computation, 3(2), 199-230, 1995.

[NXH2001a] Nguyen Xuan Hoai, Solving the Symbolic Regression Problem with

Tree Adjunct Grammar Guided Genetic Programming: The Preliminary

Results, Proceedings of 5th Australasia-Japan Workshop in Evolutionary

and Intelligent Systems, 52-61, 2001.

[NXH2001b] Nguyen Xuan Hoai, Solving Trigonometric Identities with Tree Ad-

junct Grammar Guided Genetic Programming, Proceedings of The First

International Workshop on Hybrid Intelligent Systems (HIS 01), Physica-

Verlag, 339-352, 2001.

[NXH2001c] Nguyen Xuan Hoai et al, Swarm Relational Learning: A New

Leaning Paradigm, Technical Report CS5/01, Australian Defence Force

Academy, University of New South Wales, 2001.

BIBLIOGRAPHY 247

[NXH2002a] Nguyen Xuan Hoai et al, Solving the Symbolic Regression Problem

with Tree Adjunct Grammar Guided Genetic Programming: The Compar-

ative Result, Proceedings of Congress on Evolutionary Computation (CEC

2002), IEEE Press, 1326-1331, 2002.

[NXH2002b] Nguyen Xuan Hoai et al, Some Experimental Results with Tree Ad-

junct Grammar Guided Genetic Programming, Proceedings of the Fifth Eu-

ropean Conference on Genetic Programming, LNCS 2278, Springer-Verlag,

328-337, 2002.

[NXH2002c] Nguyen Xuan Hoai et al, Solving the Symbolic Regression Prob-

lem with Tree Adjunct Grammar Guided Genetic Programming, Australian

Journal of Intelligent Information Processing Systems, 7(3), 114-121, 2002.

[NXH2002d] Nguyen Xuan Hoai et al, Is Ambiguity is Useful or Problematic

for Genetic Programming? A Case Study, Proceedings of 4th Asia-Pacific

Conference on Evolutionary Computation and Simulated Learning (SEAL

02), IEEE Press, 449-453, 2002.

[NXH2002e] Nguyen Xuan Hoai et al, Can Tree-Adjunct Grammar Guided Ge-

netic Programming be Good at Finding a Needle in a Haystack? A Case

Study, Proceedings of IEEE International Conference on Communication,

Circuits, and Systems, IEEE Press, 1113-1117, 2002.

[NXH2003] Nguyen Xuan Hoai et al, Tree Adjoining Grammars, Language Bias,

and Genetic Programming, Proceedings of the 6th European Conference on

Genetic Programming (EuroGP 2003), LNCS 2610, Springer-Verlag, 335-

344, 2003.

[NXH2004a] Nguyen Xuan Hoai et al, Toward an Alternative Comparison be-

tween Different Genetic Programming System, Proceedings of the 7th Eu-

ropean Conference on Genetic programming (EuroGP 2004), LNCS3003,

Springer-Verlag, 67-77, 2004.

BIBLIOGRAPHY 248

[NXH2004b] Nguyen Xuan Hoai and R.I. McKay, An Investigation on the Roles

of Insertion and Deletion Operators in Tree Adjoining Grammar Guided

Genetic Programming, Proceedings of Congress on Evolutionary Computa-

tion (CEC2004), IEEE Press, 472-477, 2004.

[NXH2004c] Nguyen Xuan Hoai and R.I. McKay, Softening the Structural Dif-

ficulty with TAG-based Representation and Insertion/Deletion Opera-

tors, Proceedings of Genetic and Evolutionary Computation Conference

(GECCO 2004), LNCS 3103, 605-616, 2004.

[NXH2004d] Nguyen Xuan Hoai et al, Genetic Transposition in Tree Adjoining

Grammar-Guided Genetic Programming: The Relocation Operator, Pro-

ceedings of the 5th International Conference on Simulated Evolution and

Learning (SEAL 04), 2004.

[NXH2005] Nguyen Xuan Hoai et al, Genetic Transposition in Tree Adjoining

Grammar-Guided Genetic Programming: The Duplication Operator, to

appear in Proceedings of the 8th European Conference on Genetic Program-

ming (EuroGP 2005).

[NXHOAI2006] Representation and Structural Difficulty in Genetic Program-

ming, accepted to IEEE Journal Transaction on Evolutionary Computa-

tion, estimated publication time: 02/2006.

[Nor1995a] P. Nordin and W. Banzhaf, Complexity Compression and Evolu-

tion, Genetic Algorithms: Proceedings of the Sixth International Conference

(ICGA 95), Morgan Kaufmann, CA, 310-317, 1995.

[Nor1995b] P. Nordin et al, Explicitly Defined Introns and Destructive Crossover

in Genetic Programming, Proceedings of the Workshop on Genetic Pro-

gramming: From Theory to Real World Applications, 6-22, 1995.

[Nor1996] P. Nordin, F. Francone, and W. Banzhaf, Explicitly Defined Introns

and Destructive Crossover in Genetic Programming, in P.J. Angeline and

BIBLIOGRAPHY 249

K.E. Kinnear Jr, editors, Advances in Genetic Programming 2, chapter 6,

111-134, 1996.

[Nor1997] P. Nordin, Evolutionary Program Induction of Binary Machine Code

and Its Applications, PhD Thesis, der Unsesitat Dortmund and Fachereich

Informatik, 1997.

[Ohn1970] S. Ohno, Evolution by Duplication, Springer-Verlag, 1970.

[O’Ne1999] M. O’Neill and C. Ryan, Evolving Multi-Line Compilable C Pro-

grams, Proceedings of the Second European Conference on Genetic Pro-

gramming (EuroGP 1999), LNCS 1598, Springer-Verlag, 83-92, 1999.

[O’Ne2000a] M. O’Neill and C. Ryan, Crossover in Grammatical Evolution: A

Smooth Operator? Genetic Programming, Proceedings of the Third Eu-

ropean Conference on Genetic Programming (EuroGP 2000), LNCS 1802,

Springer-Verlag, 149-162, 2000.

[O’Ne2000b] M. O’Neill and C. Ryan, Grammar Based Function Definition in

Grammatical Evolution, Proceedings of the Genetic and Evolutionary Com-

putation Conference (GECCO 2000),Morgan Kaufmann, 485-490, 2000.

[O’Ne2001a] M. O’Neill et al, Crossover in Grammatical Evolution: The Search

Continues, Proceedings of the 4th European Conference on Genetic Pro-

gramming (EuroGP 2001), LNCS 2038, Springer-Verlag, 337-347, 2001.

[O’Ne2001b] M. O’Neill and C. Ryan, Grammatical Evolution, IEEE Transac-

tions on Evolutionary Computation, 5(4), 349-358, 2001.

[O’Ne2001c] M. O’Neill et al, Grammar Defined Introns: An Investigation Into

Grammars, Introns, and Bias in Grammatical Evolution, Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO 2001),

Morgan Kaufmann, 97-103, 2001.

BIBLIOGRAPHY 250

[O’Ne2003] M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Au-

tomatic Programming in a Arbitrary Language, Genetic programming, Vol.

4, Kluwer Academic Publishers, 2003.

[O’Ne2004a] M. O’Neill and C. Ryan, Grammatical Evolution by Grammatical

Evolution: The Evolution of Grammar and Genetic Code, Proceedings of

the 7th European Conference on Genetic Programming (EuroGP 2004),

LNCS 3003, Springer-Verlag, 138-149, 2004.

[O’Ne2004b] M. O’Neill et al, The Automatic Generation of Programs for Clas-

sification Problems with Grammatical Swarm, Proceedings of the IEEE

Congress on Evolutionary Computation (CEC 2004), IEEE Press, 104-110,

2004.

[ORe1994] U.M. OReilly and F. Oppacher, Program Search with Hierarchical

Variable Length Representation: Genetic Programming, Simulated Anneal-

ing, and Hill-Climbing, in Parallel Problem Solving from Nature (PPSN III,

Springer-Verlag, 1994.

[ORe1995] U.M. O’Reilly and F. Oppacher, The Troubling Aspects of a Building

Block Hypothesis for Genetic Programming, in L. Whitley and M.D. Vose,

editors, Foundations of Genetic Algorithms 3, Morgan Kaufmann, 73-88,

1995.

[ORe1997] U.M. O’Reilly, Using a Distance Metric on Genetic Programs to Un-

derstand Genetic Operators, Late Breaking Papers at the 1997 Genetic

Programming Conference, 199-206, 1997.

[ORe1998] U.M. O’Reilly, The Impact of Internal Dependency in Genetic Pro-

gramming, presented at Emerging Technologies Workshop, IEEE Interna-

tional Conference on Evolutionary Computation, London, 1998.

[O’Su2002] J. O’Sullivan and C. Ryan (HP) An investigation into the use of

different search strategies with Grammatical Evolution, Proceedings of the

BIBLIOGRAPHY 251

5th European Conference on Genetic Programming (EuroGP 2002), LNCS

2278, 268-277, Springer-Verlag, 2002.

[Pal1994a] C.C. Palmer and A. Kershenbaum, Two Algorithms for Finding Op-

timal Communication Spanning Trees, IBM Research Report RC-19394,

1994.

[Pal1994b] C.C. Palmer and A. Kershenbaum, Representing Trees in Genetic Al-

gorithms, Proceedings of the First IEEE Conference on Evolutionary Com-

putation, 379-384, 1994.

[Pal1994c] C.C. Palmer, An Approach to a Problem in Network Design Using

Genetic Algorithms, PhD thesis, Polytechnic University, Troy, NY, 1994.

[Pat1996] N. R. Paterson and M. Livesey, Distinguishing Genotype and Pheno-

type in Genetic Programming, Late Breaking Papers at the Genetic Pro-

gramming 1996 Conference, 141-150, 1996.

[Pat1997] N. Paterson and M. Liversey, Evolving Catching Algorithms in C by

GP, Proceedings of Genetic Programming 97, MIT Press, 262-267, 1997.

[Pat2002] Genetic programming with context-sensitive grammars, PhD Thesis,

Saint Andrew’s University, 2002.

[Per1994] T. Perkis, Stack-Based Genetic Programming, Proceedings of the 1994

IEEE World Congress on Computational Intelligence, IEEE Press, 148-153,

1994.

[Per1980] F.C.N. Peireira and D.H.D. Warren, Definite Clause Grammars for

Language Analysis - A Survey of the Formalism and a Comparison with

Augmented Transition Networks, Artificial Intelligence, 13(3), 231-278,

1980.

[Pol1997] R. Poli and B.W. Langdon, A New Schema Theory for Genetic Pro-

gramming with One-point Crossover and Point Mutation, Genetic Program-

BIBLIOGRAPHY 252

ming 1998: Proceedings of the Third Annual Conference, Morgan Kauf-

mann, 278-285, 1997.

[Pol1998] R. Poli and B.W. Langdon, Schema Theory for Genetic Programming

with One-point Crossover and Point Mutation, Evolutionary Computation,

6(3), 231-252, 1998.

[Pol1999] R. Poli, Parallel Distributed Genetic Programming, in D. Corne, M.

Dorigo, and F. Glover, editors, New Ideas in Optimization, McGraw-Hill,

chapter 27, 1999.

[Pol1990] A.D. Polimeni and H.J. Straight, Foundations of Discrete Mathematics,

Second Edition, Brooks/Cole Publishing Company, CA, 1990.

[Pue2002] A. O. Puente et al, Automatic Composition of Music by Means of

Grammatical Evolution, Proceedings of the 2002 conference on APL, 148-

155, ACM Press, 2002.

[Put1996] J.B. Putnam, A Grammar-Based Genetic Programming Technique

Applied to Music Generation, Proceedings of the Fifth Annual Conference

on Evolutionary Programming, MIT Press, 277-286, 1996.

[Rad1997] N.J. Radcliffe, Schema Processing, in T. Back et al, editors, Handbook

of Evolutionary Computation, Oxford University Press, B2.5-1-10, 1997.

[Rat2000] A. Ratle and M. Sebag, Genetic Programming and Domain Knowl-

edge: Beyond the Limitations of Grammar-Guided Machine Discovery, Par-

allel Problem Solving from Nature (PPSN 2000), 211-220, 2000.

[Rat2001a] A. Ratle and M. Sebag, Avoiding the bloat with Probabilistic

Grammar-Guided Genetic Programming, Proceedings of the 5th Interna-

tional Conference on Artificial Evolution, LNCS 2310, Springer Verlag,

255-266, 2001.

BIBLIOGRAPHY 253

[Rat2001b] A. Ratle and M. Sebag, Grammar-Guided Genetic Programming and

Dimensional Consistency: Application to Non-parametric Identification in

Mechanics, Applied Soft Computing, 1(1), 105-118, 2001.

[Rat2002] A. Ratle and M. Sebag, A Novel Approach to Machine Discovery: Ge-

netic Programming and Stochastic Grammars, Proceedings of Twelfth Inter-

national Conference on Inductive Logic Programming, LNCS 2583, Springer

Verlag, 207-222, 2002.

[Rec1973] I. Rechenberg, Evolutionstrategie: Optimierung Technisher Systeme

nach Prinzipien des Biologischen Evolution, Fromman-Hozlboog Verlag,

Stuttgart, 1973.

[Ree2003] C.R. Reeves and J.E. Rowe, Genetic Algorithms: Principles and Per-

spectives, Kluwer Academic Pulisher, 2003.

[Rid1996] M. Ridley, Evolution, Second Edition, Blackwell Science, London,

1996.

[Ron1997] S. Ronald, Robust Encoding in Genetic Algorithms: A Survey of En-

coding Issues, Proceedings of the Forth International Conference on Evolu-

tionary Algorithms, 43-48, 1997.

[Ros1995] J.P. Rosca and D.H. Ballard, Causality in Genetic Programming,

Genetic Algorithms: Proceedings of the Sixth International Conference

(ICGA95), Morgan Kaufmann, 1995.

[Ros1997] J.P. Rosca, Analysis of Complexity Drift in Genetic Programming,

Genetic Programming 1997: Proceedings of the Second Annual Conference,

Morgan Kaufmann, 286-294, 1997.

[Ros2001] B.J. Ross, Logic-based Genetic Programming with Definite Clause

Translation Grammars, New Generation Computing, 19(4), 313-337, 2001.

[Ros2002] B.J. Ross, The Evolution of Stochastic Regular Motifs for Protein

Sequences, New Generation Computing, 20(2), 187-213, 2002.

BIBLIOGRAPHY 254

[Ros1994] G.P. Roston, A Genetic Design Methodology for Configuration Design,

PhD. Thesis, Carnegie Mellon University, 1994.

[Rot2002] F. Rothlauf, Representations for Genetic and Evolutionary Algo-

rithms, Physica-Verlag, 2002.

[Rud1976] W. Rudin, Principles of Mathematical Analysis, Third Edition,

McGraw-Hill, 1976.

[Rya1998a] C. Ryan et al, Grammatical Evolution: Evolving Programs for an Ar-

bitrary Language,Proceedings of the First European Workshop on Genetic

Programming, LNCS 1391, Springer-Verlag, 83-95, 1998.

[Rya1998b] C. Ryan, M. O’Neill, and J. J. Collins, Grammatical Evolution: Solv-

ing Trigonometric Identities, in Proceedings of the 4th International Mendel

Conference on Genetic Algorithms, Optimisation Problems, Fuzzy Logic,

Neural Networks, Rough Sets, 111-119, 1998.

[Rya2002a] C. Ryan et al, No Coercion and No Prohibition, A Position Indepen-

dent Encoding Scheme for Evolutionary Algorithms- The Chorus System,

Proceedings of the 5th European Conference on Genetic Programming (Eu-

roGP 2002), LNCS 2278, Springer-Verlag, 131-141, 2002.

[Rya2002b] C. Ryan et al, Genetic Algorithms Using Grammatical Evolution,

Proceedings of the 5th European Conference on Genetic Programming (Eu-

roGP 2002), LNCS 2278, Springer-Verlag, 278-287, 2002.

[Rya2003] C. Ryan et al, On the Avoidance of Fruitless Wraps in Grammatical

Evolution, Proceedings of the International Conference on Genetic and Evo-

lutionary Computation Conference (GECCO 2003), LNCS 2724, Springer-

Verlag, 1752-1763, 2003.

[Rya2004] C. Ryan et al, A Competitive Building Block Hypothesis, Proceed-

ings of Genetic and Evolutionary Computation (GECCO 2004), Springer-

Verlag, 654-665, 2004.

BIBLIOGRAPHY 255

[Sar1999] A. Sarafopoulos, Automatic Generation of Affine IFS and Strongly

Typed Genetic Programming, Proceedings of the Second European Confer-

ence on Genetic Programming (EuroGP 990, LNCS 1598, Springer-Verlag,

149-160, 1999.

[Sch1990] Y. Schabes, Mathematical and Computational Aspects of Lexicalized

Grammars, PhD Thesis, Department of Computer and Information Science,

University of Pennsylvania, 1990.

[Sch1992] Y. Schabes, Stochastic Tree-Adjoining Grammars, Proceedings of the

15th International Conference on Computational Linguistics (COLLING

92), 425-432, 1992.

[Sch1993a] Y. Schabes, Lexicalized Context-Free Grammars, Technical Report

TR93-01, Mitsubishi Electric Research Laboratories, Cambridge Center,

1993.

[Sch1993b] Y. Schabes and R.C. Waters, Lexicalized Context-Free Grammar: A

Cubic-Time Parsable, Lexicalized Normal Form for Context-Free Gram-

mar That Preserves Tree Structure, Technical Report TR93-04, Mitsubishi

Electric Research Laboratories, Cambridge Center, 1993.

[Sch1994] Y. Schabes and S. Shieber, An Alternative Conception of Tree-

Adjoining Derivation, Computational Linguistics, 20 (1), 91-124, 1994.

[Sch1995] Y. Schabes and R.C. Waters, Tree Insertion Grammar: A Cubic-

Time Parsable Formalism that Lexicalizes Context-Free Grammar without

Changing the Trees Produced, Computational Linguistics, 20 (1), 479-513,

1995.

[Sch1987] J. Schmidhuber, Evolutionary Principles in Self-Referential Learning,

Diploma Thesis, Technische Universitat, Muchen, 1987.

[Shz1995] A.G. Schultz, Fuzzy Rule-Based Expert Systems and Genetic Machine

Learning, Physica-Verlag, 1995.

BIBLIOGRAPHY 256

[Shw1968] H.P. Schwefel, Projekt MHD-Staustrahlrohr: Experimentelle Opti-

mierung einer Zweiphasenduse Teil I Technischer Bericht 11.034/68, 35,

AEG Forschungsinstitut, Berlin, 1968.

[Sed1996] R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Al-

gorithms, Addison-Wesley, 1996.

[Sen1997] B. Sendhoff et al, A Condition for the Genotype-Phenotype Mapping:

Causality, Proceedings of the 7th International Conference on Genetic Al-

gorithms (ICGA 97), Morgan Kaufmann, 73-80, 1997.

[Sha1987] V. Shanker, A Study of Tree Adjoining Grammars, PhD. Thesis, De-

partment of Computer and Information Science, University of Pennsylva-

nia, 1987.

[Sha2000] M. Shackleton et al, An Investigation of Redundant Genotype-

Phenotype Mappings and Their Role in Evolutionary Search, Proceedings

of the Congress on Evolutionary Computation CEC 2000, IEEE Press, 493-

500, 2000.

[Sha2004] Y. Shan et al, Grammar-Model Based Program Evolution, Proceedings

of Congress on Evolutionary Computation (CEC’2004), IEEE Press, 478-

485, 2004.

[Sha2002] Y. Shan, Software Project Effort Estimation Using Genetic Program-

ming, Proceedings of International Conference on Communications Circuits

and Systems, 2002.

[Shi1999] R. Shipman, Genetic Redundancy: Desirable or Problematic for Evolu-

tionary Search ?, Proceedings of the 4th International Conference on Artifi-

cial Neural Networks and Genetic Algorithms, Springer-Verlag, 1-11, 1999.

[Shi2000] R. Shipman, M. Shackleton, I. Harvey, The Use of Neutral Genotype-

Phenotype Mappings for Improved Evolutionary Search, BT Technology

Journal, 18 (4), 103-111, 2000.

BIBLIOGRAPHY 257

[Smi1980] S.F. Smith, A Learning System Based on Genetic Adaptive Algorithms,

University of Pittsburgh, 1980.

[Sou1999] T. Soule and J.A. Foster, Effects of Code Growth and Parsimony Pres-

sure on Population in Genetic Programming, Evolutionary Computation,

6(4), 293-309, 1999.

[Spe1998] L. Spector et al, Advances in Genetic Programming III, The MIT

Press, 1999.

[Spe2001] L. Spector, Autoconstructive Evolution: Push, PushGP, and Push-

pop, Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2001), Morgan Kaufmann, 137-146, 2001.

[SPECI1994] Special Issue of Computational Intelligence: An International Jour-

nal, November, 1994, 10 (4), Devoted to Tree Adjoing Grammars.

[Sta1992a] P.F. Stadler and W. Schnabl, The Landscape of the Travelling Sales-

man Problem, Physics Letters, 161, 337-344, 1992.

[Sta1992b] P.F. Stadler, Correlation in Landscapes of Combinatorial Optimiza-

tion Problems, European Physics Letters, 20(6), 479-482, 1992.

[Sta1992c] Correlation Structure of the Landscape of the Graph-bipartioning

Problem, Journal of Physics, 25, 3103-3110, 1992.

[Sta2000] P. Stagge and C. Igel, Structure Optimization and Isomorphisms, The-

oretical Aspects of Evolutionary Computing, Springer-Verlag, 2000.

[Ste1993] P.A. Stefanski, Genetic Programming Using Abstract Syntax Trees.

Notes from the Genetic Programming Workshop (ICGA 93), 1993.

[Tan2003a] I. Tanev, DOM/XML-Based Portable Genetic Representation of

Morphology, Behavior and Communication Abilities of Evolvable Agents,

Proceedings of the 8th International Symposium on Artificial Life and

Robotics (AROB 03), 185-188, 2003.

BIBLIOGRAPHY 258

[Tan2003b] I. Tanev and K. Shimohara, On the Role of Implicit Interaction and

Explicit Communications in Emergence of Social Behaviour in Continuous

Predators-Prey Pursuit Problem, Proceedings of the Genetic and Evolu-

tionary Computation Conference (GECCO 2003), Springer-Verlag, 74-85,

2003.

[Tan2003c] I. Tanev and M. Brozozowski, The Effect of Explicit Communications

on the Generality and Robustness of Evolved Team of Agents in Pretador-

Prey Problem, Proceedings of the First Asian-Pacific Workshop on Genetic

Programming (ASPGP 2003, 31-37.

[Tel1996] A. Teller and M. Veloso, PADO: A New Learning Architecture for

Object Recognition, in K. Ikeuchi and M. Veloso, editors, Symbolic Visual

Learning, Oxford University Press, 81-116, 1996.

[Teo2003] J. Teo, Pareto Multi-Objective Evolution of Legged Embodied Organ-

isms, DIT Thesis, University of New South Wales, Australia, 2003.

[Tsa2002] A.D. Tsakonas and G. Dounias, A Scheme for the Evolution of Feed-

forward Neural Networks using BNF-Grammar Driven Genetic Program-

ming, Proceedings of European Symposium on Intelligent Technologies, Hy-

brid Systems and Their Implementation on Smart Adaptive Systems, 115-

121, 2002.

[Van2003a] L. Vanneschi et al, Fitness Distance Correlation in Structural Muta-

tion Genetic Programming, in Proceedings of the 6th European Conference

on Genetic Programming (Euro 2003), LNCS 2610, Springer-Verlag, 455-

464, 2003.

[Van2003b] L. Vanneschi et al, Fitness Distance Correlation in Genetic Program-

ming: a Constructive Counterexample, Proceedings of Congress on Evolu-

tionary Computation (CEC 2003), IEEE Press, 289-296, 2003.

BIBLIOGRAPHY 259

[Vas1999] V. K. Vassilev et al, Digital Circuit Evolution and Fitness Landscapes,

Proceedings of the Congress on Evolutionary Computation, IEEE Press,

1999.

[Vas2000] V.K. Vassilev et al, Information Characteristics and the Structure of

Landscapes, Evolutionary Computation, 8(1), 31-60, 2000.

[Vas2003] V. K. Vassilev et al, Smoothness, Ruggedness and Neutrality of Fit-

ness Landscapes: from Theory to Application, Advances in Evolutionary

Computing: Theory and Applications, Springer-Verlag, 3-44, 2003.

[Vos1999] N.M. Vose, The Simple Genetic Algorithm: Foundations and Theory,

MIT Press, 1999.

[Wat1995] M.S. Waterman, Introduction to Computational Biology: Maps, Se-

quences, and Genomes, Chapman & Hall, 1995.

[Weh1990] K.H. Wehrhahn, Combinatorics: An Introduction, Carslaw Publica-

tions, Sydney, 1990

[Wei1990] E.D. Weinberger, Correlated and Uncorrelated Landscapes and How

to Tell the Difference, Biological Cybernetics, 63, 325-336, 1990.

[Wei1991] E.D. Weinberger, Local Properties of Kauffman’s N-k Model: A Tun-

ably Rugged Energy Landscape, Physical Reviews, 44, 63-99, 1991.

[Wei1988] D.J. Weir, Characterizing Mildly Context-Sensitive Grammar For-

malisms, PhD. Thesis, Department of Computer and Information Science,

University of Pennsylvania, 1988.

[Whi1994] P.A. Whigham, Context-Free Grammar and Genetic Programming,

Technical Report CS20/94, Department of Computer Science, ADFA, Uni-

versity of New South Wales, Australia, 1994.

BIBLIOGRAPHY 260

[Whi1995a] P.A. Whigham, Grammatically-Based Genetic Programming, Pro-

ceedings of the Workshop on Genetic Programming: From Theory to Real-

World Applications, Morgan Kaufmann, 33-41, 1995.

[Whi1995b] P.A. Whigham, Inductive Bias and Genetic Programming, Proceed-

ings of the First International Conference on Genetic Algorithms in Engi-

neering System: Innovation and Applications, 461-466, 1995.

[Whi1995c] P.A. Whigham, A Schema Theorem for Context-Free Grammars,

Proceedings of the 1995 IEEE International Conference on Evolutionary

Computation, IEEE Press, 178-182, 1995.

[Whi1996] P.A. Whigham, Grammatical Bias for Evolutionary Learning, PhD

thesis, University of New South Wales, 1996.

[Whi2001a] P. A. Whigham and P. F. Crapper, Modelling Rainfall-runoff Us-

ing Genetic programming, Mathematical and Computer Modelling, 33(6-7),

707-721, 2001.

[Whi2001b] P.A. Whigham and F. Recknagel, An Inductive Approach to Ecolog-

ical Time Series Modelling by Evolutionary computation, Ecological Mod-

elling, 146(1-3), 275-287, 2001.

[Won1994] M.L. Wong and K.S. Leung, Learning First-order Relations from

Noisy Databases using Genetic Algorithms, Proceedings of the Singapore

Second International Conference on Intelligent Systems, 159-164, 1994.

[Won1995a] M.L. Wong and K.S. Leung, An Adaptive Inductive Logic Program-

ming System using Genetic Programming, Proceedings of the Fourth Annual

Conference on Evolutionary Programming, MIT Press, 737-752, 1995.

[Won1995b] M.L. Wong and K.S. Leung, Combining Genetic Programming and

Inductive Logic Programming using Logic Grammars, Proceedings of the

IEEE International Conference on Evolutionary Computing, IEEE Press,

733-736, 1995.

BIBLIOGRAPHY 261

[Wol1996] D.H. Wolpert and W.G. Macready, No Free Lunch Theorems for

Search, technical report SFI-TR-95-02-010, Santa Fe, 1996.

[Won1995c] M.L. Wong and K.S. Leung, Applying Logic Grammars to Induce

sub- functions in Genetic Programming, Proceedings of the IEEE Interna-

tional Conference on Evolutionary Computing, IEEE Press, 737- 740, 1995.

[Won1995d] M.L. Wong and K.S. Leung, Genetic Logic Programming and Ap-

plications, IEEE Expert, 10(5), 68-76, 1995.

[Won1996] M.L. Wong and K.S. Leung, Evolving Recursive Functions for the

Even-parity Problem Using Genetic Programming, in P. J. Angeline and

K. E. Kinnear Jr, editors, Advances in Genetic Programming 2, MIT Press,

221- 240. 1996.

[Won1997] M.L. Wong and K.S. Leung, Evolutionary Program Induction Di-

rected by Logic Grammars, Evolutionary Computation, 5(2), 143-180, 1997.

[Won2000] M.L. Wong and K.S. Leung, Data Mining Using Grammar Based Ge-

netic Programming and Applications, Kluwer Academic Publishers, 2000.

[Won2003] M.L. Wong, Personal Communication, Dec 2003.

[Wri1932] S. Wright, The Roles of Mutation, Inbreeding, Crossbreeding, and

Selection in Evolution, Proceedings of the 6th International Congress on

Genetics,1, 356-366, 1932.

[XTA1995] XTAG-Group, A Lexicalised Tree Adjoining Grammar of English,

Technical Report, Institute for Research in Cognitive Science (IRCS), Uni-

versity of Pennsylvania, 95-03, 1995.

[Yok1995] T. Yokomori and S. Kobayashi, DNA Evolutionary Linguistics and

RNA Structure Modelling: A Computational Approach, Proceedings of the

First International Symposium on Intelligence in Neural and Biological Sys-

tems, IEEE Press, 38-45, 1995.

BIBLIOGRAPHY 262

[Zha1995] B.T. Zhang and H. Muhlenbein, Balancing Accuracy and Parsimony

in Genetic Programming, Evolutionary Computation, 3(1), 17-38, 1995.

[Zit1999] E. Zitzler and L. Thiele, Multi-objective Evolutionary Algorithms: A

Comparative Case Study and The Strength Pareto Approach, IEEE Trans

on Evolutionary Computation, 3(1), 257-271, 1999.

[Zit2001] E. Zitzler et al, SPEA2: Improving the Strength Pareto Evolutionary

Algorithm, Technical Report 103, Computer Engineering and Networks

Laboratory (TK), ETH Zurich, Switzerland, 2001.

[Zva2004] S. Zvada and R. Vanyi, Improving Grammar Based Evolution Al-

gorithms via Attributed Derivation Trees, Proceedings of the 7th Euro-

pean Conference on Genetic Programming (EuroGP 2004), LNCS 3003,

Springer-Verlag, 208-219, 2004.

Appendix A

Some More Information on

Grammars

In this appendix, we briefly revise some important concepts relating to gram-

mars and their derivation trees, as used in grammar guided genetic program-

ming. Apart from the TAGs used for representation in this thesis, as pointed out

in chapter 2, there are four main classes of grammars which have been used in

the grammar guided genetic programming literature, namely context-free gram-

mars (CFGs), attribute grammars (AGs), definite clause grammars (DCGs), and

definite clause translation grammar (DCTGs), so all are covered below. The ap-

pendix concludes with grammars for some of the problems investigated in the

thesis.

A.1 Context Free Grammars

A context free grammar (CFG) ([Hop1979, Mol1988]) is a four-tuple G =
∑

, N, P, S)

where N is a set of nonterminal symbols,
∑

is a set of terminal symbols, with∑∩N = ∅, S ∈ N is the starting symbol, and, P is the set of production rules.

Each rule p ∈ P is of the form A → x, where A is a nonterminal symbol (A ∈ N)

and x is a string composed of nonterminal and terminal symbols (x ∈ (N ∪∑
)*).

In the Chomsky hierachy of formalisms [Cho1956], CFGs are the most popular,

201

APPENDIX A. SOME MORE INFORMATION ON GRAMMARS 202

being widely used in various sciences. The following example depicts a simple

context free grammar for generating arithmetic expressions of two variable (x

and y)

An example of context free grammars. G = (
∑

, N, P, EXP), where

N = {EXP}, ∑
= {+,−, ∗, x, y} and P is as follows:

EXP → EXP + EXP

EXP → EXP − EXP

EXP → EXP ∗ EXP

EXP → EXP/EXP

EXP → x

EXP → y

The languages resulting from CFGs are defined by means of string-rewriting

operations called derivation steps. A derivation step is the application of rewriting

a nonterminal symbol A in a string, by replacing with the right hand side of one

of the rules that have A as the left hand side. In symbolic form, if S = xAy

(where x, y ∈ (
∑∪N)*) is a string and A → α is a rule in P , then S can be

rewritten as S = xαy. The derivation step is denoted as xAy
A→α⇒ xαy. The

string language L of a CFG G = (N,
∑

, P, S) is defined as

LG = {x ∈ (
∑∪N)* /S

∗⇒ x}
where

∗⇒ is the finite transitive closure of ⇒ (i.e it is a finite sequence of

⇒). For each x ∈ LG, there is a finite sequence of derivation step for deriving

x. This derivation sequence can be represented by a tree, called the derivation

tree, built as follows. The derivation tree starts with the root S. Going through

the derivation sequence from left to right if there is a derivation step A ⇒ α,

then scan through the derivation tree in top-down and from left-to-right fashion

to pick up the first leaf node labelled with A. Extend the derivation tree at that

node by creating its child nodes, and label them with the corresponding symbols

appearing in α. Figure A.1 depicts an example of a derivation sequence and its

corresponding derivation tree.

APPENDIX A. SOME MORE INFORMATION ON GRAMMARS 203

EXP EXP + EXP X + EXP X + X

EXP

EXP+EXP

X

EXP

EXP+EXP

EXP

EXP+EXP

XX

Figure A.1: An example of CFG derivation sequences and trees

A.2 Attribute Grammars

Attribute grammars are perhaps the most popular among the many extensions to

context free grammars which augmenting CFGs to handle some level of context-

dependence. They have been widely used to represent the semantics of programs

in compilers [Aho1986]. They were proposed by Knuth in his seminal paper

[Knu1968]. In this paper, an attribute grammar is defined as a pair consisting

of a context free grammar(CFG) and a an attribute system. Terminal strings

are processed in two steps. First, the CFG is used to parse the terminal string.

Then, the nodes in the parse tree are decorated with attribute name/value pairs.

The attribute system associates each CFG rule with a set of semantic rules,

which specify the dependencies between the attributes of a parent node and the

attribute of its children when the parent’s nonterminal is expanded via that CFG

rule.

There is no concept of derivation tree for attribute grammars. Instead they

used the semantic rules to assign sets of attributes values to the nodes of CFG

derivation trees. Different types of attribute grammars have different ways of

assigning and evaluating attribute values. [Der1988] provides a comprehensive

review of different types of attribute grammars.

A.3 Definite Clause Grammars (DCGs)

Definite Clause Grammars, proposed in [Per1980], are special form of logic gram-

mars [Abr1989]. They are based on PROLOG developed by A. Colmerauer in

APPENDIX A. SOME MORE INFORMATION ON GRAMMARS 204

the mid-70s. A DCG is very similar to an attribute grammar, as it is defined

as a generalisation of a context free grammar in which the nonterminal and ter-

minal symbols are allowed to have arguments. The arguments play a similar

role to the attributes in attribute grammars. The only different between definite

clause grammars and attribute grammars are just the notations. Since DCGs are

derived from PROLOG, their notation are heavily dependent on PROLOG syn-

tax. So a rule which includes arguments (attributes) for the symbols might look

like: V erbPhrase(E) → TransitiveV erb, Sent(E).. Similar to what happens in

attribute grammars, the derivation trees of DCGs are essentially the derivation

trees of CFGs further decorated with arguments. In fact, the arguments repre-

sent a fragment of a PROLOG program. More details on DCGs can be found in

[Abr1989].

A.4 Definite Clause Trabslation Grammars

Proposed in citeAbramson1984, definite clause translation grammars (DCTG) are

an extension of DCGs, providing increased semantic expressiveness by allowing

a set of semantic rules, implemented as horn clauses, to be attached to each

nonterminal node in the derivation tree. These rules guide the computation of

semantic properties of the node in terms of the semantic properties of the subtrees

of the node. Futher information on DCTG could be found in [Abr1989].

A.5 Schabes’s Lexicalisation Algorithm

This section describes the algorithm in [Sch1990, Jos1997] for finding a LTAG

Glex that strongly lexicalizes a given context free grammar G. In other words,

the derived tree set of Glex is the same as the derivation tree set of G. The main

idea of the algorithm is to separate the recursive part of the grammar G from

the non-recursive part. The non-recursive part generates a finite number of trees.

We use them as the initial (α) trees in our Glex. Whenever G contains a recursion

APPENDIX A. SOME MORE INFORMATION ON GRAMMARS 205

of the form B
∗⇒ αBβ, we create a set of B-type auxiliary trees in which α and

β are expanded, in all possible ways, by the non-recursive part of the grammar.

The preprocessing of the algorithm is therefore to separate the recursive part

of G from the non-recursive part. To accomplish that task, we need to find out

the recursive symbols and recursive rules in G. They are defined as

Definition (recursive symbols and rules). Let G = (
∑

, N, P, S) be a

finitely ambiguous grammar (i.e there is no B for which B
∗⇒ B for any B ∈ N),

and suppose that λ (empty word) is not in the language of G, L(G). We say that

B ∈ N is a recursive symbol if and only if ∃α, β ∈ (
∑∪N)* such that B

∗⇒ αBβ.

We say that a production rule B → δ is recursive whenever B is recursive through

this rule.

The next step is to partition the rule set P of G into two sets: the set of

recursive rules, R ⊆ P , and the set of non-recursive rules, NR ⊆ P , satisfying

R∪NR = P and R∩NR = ∅. In order to determine whether a rule is recursive, a

directed graph GP is constructed as follows. All the nodes of GP are nonterminal

symbols in G, and each edge of GP is labelled by a production rule in P . For two

nodes B and C in GP , there is an edge labelled with p from B to C if there is a

rule p ∈ P of the form B → αCβ, where α and β ∈ (
∑∪N)*. Then, a symbol B

is recursive if node B belongs to a cycle in GP . A rule p ∈ P is recursive if there

is an edge labelled with p which belongs to a cycle.

The algorithm for finding a LTAG Glex for each CFG G is as follows:

1) Extract all derivation trees of G using the rules

in NR only.

2) Set the set of initial trees, I, of Glex as the set

from step 1.

3) Find the base cycles {c1...ck} in GP using classical

algorithms such as those in [Gib1985].

4) Set the set of auxiliary trees of Glex, A = ∅.
5) Repeat procedure CreateAux given below for all ci (i = 1...k)

until no more trees can be added to A.

APPENDIX A. SOME MORE INFORMATION ON GRAMMARS 206

PROCEDURE CreateAux(ci)

FOR all nodes ni in ci, let Bi be the label of ni,

According to ci, Bi

∗⇒ αiβi,

IF Bi is the label of a node in a tree in I ∪ A THEN

FOR all derivation αi
∗⇒ wi ∈ ∑ ∗, βi

∗⇒ zi ∈ ∑ ∗
that use only rules in NR

Add to A the auxiliary tree correspoinding to all derivations:

Bi
∗⇒ αiBiβi

∗⇒ wiBizi where the node labelled Bi on the frontier

is the foot node.

A.6 The Grammars for Some Problems in the

Thesis

This section give the details of some problem grammars used in chapter 6 and 9.

Note: as is usual in grammar representations, we use the ”—” symbol to

abbreviate productions with the same left hand side, i.e. the notation A → β|γ
is an abbreviation for the pair of productions A → β and A → γ

A.6.1 Some Grammars for the Problems in Chapter 6

Grammars for the ORDER and MAJORITY problems: G = (
∑

, N, P, S),

where
∑

= {Join, P1, P2, ..., Pn, N1, N2, ..., Nn}, N = {S}, and the rule set P is

S → S Join S

S → P1|P2|...|Pn|N1|N2, ...|Nn

Glex = (
∑

, N, S, I, A), where I ∪A is as in Figure A.2 with T being a lexicon

that can be substituted with a member of the set {P1, P2, ..., Pn, N1, N2, ..., Nn}

Grammars for the SEXTIC and QUINTIC problems: G = (
∑

, N, P, S),

where
∑

= {X, +,−, ∗, /}, N = {EXP, OP, V AR}, and the rule set P is

APPENDIX A. SOME MORE INFORMATION ON GRAMMARS 207

T

T

βα S

S Join S*

S

Figure A.2: Elementary trees for the grammar of the ORDER and MAJORITY

problems

EXP → EXP OP EXP | V AR

OP → +| − | ∗ |/
V AR → X

Glex = (
∑

, N, S, I, A), where I ∪ A is as in Figure A.3.

X

VAR

EXP

VAR

X

EXP

VAR

X

EXP

VAR

X

+

EXP* EXP* EXP* EXP*

α β1 β2 β3 β4

β6β5 β7 β8

OP

EXP

OP

−

EXP

OP

*

EXP

OP

/

EXP

EXP

EXP*OP

+

EXP

VAR

X

EXP

VAR

X

EXPEXP

VAR

X

EXP

VAR

X

EXP

EXP*OP

−

EXP

EXP*OP

*

EXP

EXP*OP

/

EXP

VAR

X

Figure A.3: Elementary trees for the grammar of the SEXTIC and QUINTIC

problems

Grammars for the trigonometric indentity (TRIGO) problem: G =

(
∑

, N, P, S), where
∑

= {X, 1.0, +,−, ∗, /, sin}, N = {EXP, OP, PREOP, V AR},
and the rule set P is

EXP → EXP OP EXP | PREOPEXP | V AR

OP → +| − | ∗ |/
PREOP → sin

V AR → X

Glex = (
∑

, N, S, I, A), where I ∪A is as in Figure A.4, with T being a lexicon

that can be substituted with either X or 1.0

APPENDIX A. SOME MORE INFORMATION ON GRAMMARS 208

β7 β8

β9

EXP

VAR

EXP

EXP*OP

−

EXP

EXP*OP

*

EXP

β5

OP

/

EXP

OP

+

EXP* EXP* EXP* EXP*

α β1 β2 β3 β4

β6

EXP*

EXP

VAR

EXP

VAR

EXP

VAR

T

T T T T

T T T T

VAR

OP

/

EXP

EXP*OP

+

EXP

VAR

EXP

VAR

EXP

VAR

EXP

VAR

EXP

EXP

EXP

PRE EXP*

sin

EXP

OP

−

EXP

OP

*

Figure A.4: Elementary trees for the grammar of the TRIGO problems

Grammars for the TWOBOX problem: G = (
∑

, N, P, S), where
∑

=

{W, H, L, w, h, l, +,−, ∗, /}, N = {EXP, OP, V AR}, and the rule set P is

EXP → EXP OP EXP | V AR

OP → +| − | ∗ |/
V AR → W |H|L|w|h|l

Glex = (
∑

, N, S, I, A), where I ∪A is as in Figure A.5, with T being a lexicon

that can be substituted with a member of the set {W, H, L, w, h, l}.

OP EXP*

EXP

*

OP EXP*

EXP

−

OP EXP*

EXP

VAR

EXP

β8

OP

+

EXP* EXP* EXP* EXP*

α β1 β2 β3 β4

β6β5 β7

/

VAR

EXP

VAR

EXP

VAR

T

T T T T

T T T T

EXP

EXP

EXP*OP

+

EXP

VAR

EXP

VAR

EXP

VAR

EXP

VAR

EXP

VAR

EXP EXP

OP

−

EXP

OP

*

EXP

OP

/

Figure A.5: Elementary trees for the grammar of the TWOBOX problem

A.6.2 Some Grammars for the Problems in Chapter 9

The corresponding TAGs Glex of the four grammars given for the 6-multiplexer

are as follows

Corresponding TAG for G1: G1lex = {∑
, N, I, A, B}, where

∑
and N are

APPENDIX A. SOME MORE INFORMATION ON GRAMMARS 209

the same as in G1, the elementary tree set E = A ∪ I is depicted in Figure A.6,

where TL stands for a lexicon that can be substituted with any of a0, a1,...,d3.

B

and

B

B*

TL

Bif

B

B*

TL

Bif

B

and

S

β8β7β6β5β4

β3β2β1α

not B*

B

B* ororB*B*

B

TL

B B*

B

TL

B

TL

B

TL

B

TL

B

TL

B B*if

B

B

TL

B

TL

B

TL

Figure A.6: TAG elementary trees for G1lex

Corresponding TAG for G2: G2lex = {∑
, N, I, A, B}, where

∑
and N are

the same as in G2, the elementary tree set E = A ∪ I is depicted in Figure A.7,

where ADD is a lexicon that can be substituted with either a0 or a1; and T L

stands for a lexicon that can be substituted with any of a0, a1,...,d3.

and

B

and

B

B*

TL

Bif

B

B

Sα

if ADD

TL

B

β8β7β6β5β4

β2β1

not B*

B

B* ororB*B*

B

TL

B B*

TL

B

TL

B

TL

B

TL

B

TL

B

TL

B B*if

B

TL

B

β3

B*

TL

Bif

B

TL

B

Figure A.7: TAG elementary trees for G2lex

Corresponding TAG for G3: G3lex = {∑
, N, I, A, B}, where

∑
and N are

the same as in G3, the elementary tree set E = A ∪ I is depicted in Figure A.8,

where ADD is a lexicon that can be substituted with either a0 or a1; and TL

stands for a lexicon that can be substituted with any of a0, a1,...,d3.

Corresponding TAG for G4: G4lex = {∑
, N, I, A, B}, where

∑
and N are

the same as in G4, the elementary tree set E = A ∪ I is depicted in Figure A.9,

APPENDIX A. SOME MORE INFORMATION ON GRAMMARS 210

TL

B

TL

B
β8β7β6β5β4

not B*

B

B* ororB*B*

B

TL

B B*

B

β2β1

B*

TL

Bif

B

S

TL

ADDif

α

IFTHEN

if B

TL

B

and

TL

Bif

B

TL

B

TL

B

B

if B*B

TL

B

TL

B*

B

and

B

β3

B

TL

B

TL

B

TL

Figure A.8: TAG elementary trees for G3lex

where TL stands for a lexicon that can be substituted with either of a0, a1,...,d3.

TL

B

TL

B
β8β7β6β5β4

not B*

B

B* ororB*B*

B

TL

B B*

B

IFA1

a1

a0

S

TL

BBif

α

if

β2β1

B*

TL

B

if B

and

TL

Bif

B

TL

B

TL

B

B

if B*B

TL

B

TL

B*

B

and

B

β3

B

TL

B

TL

B

TL

Figure A.9: TAG elementary trees for G4lex

Appendix B

Schema Theory

B.1 Introduction

This appendix gives a brief overview of some important schema theories in GA,

GP, and GGGP. First, we present the concept of schema, and a schema theorem,

for fixed-size binary GA representation from [Hol1975]. Next, we present the

definition of fixed-size and -shape schemata, and the schema theorem, for stan-

dard GP using expression tree representation from [Pol1997, Pol1998, Lan2002].

Finally, the schemata and schema theorem for GGGP proposed by Whigham

([Whi1995c, Whi1996]) are briefly presented.

B.2 Holland’s Schema Theorem for GAs

The first schema theory was proposed by Holland for GAs using fixed-length

binary representation. In binary representation the content of each gene in a

chromosome (string) is either of two arbitrary values. Without losing generality

suppose that the alphabet set of such GAs is 0,1. A schema, as defined in

[Hol1975, Gol1989], plays a role of a similarity template describing a subset of

binary strings with similarities at some certain string positions. It is done by,

firstly, extending the alphabet set to 0,1,*, where * is called the ”don’t care”

symbol. Then, a schema is defined as a string (of fixed length equal to the length

211

APPENDIX B. SCHEMA THEORY 212

of each chromosome) of 0,1, and * symbols. In a schema, the positions that have

”don’t care” symbols can be instantiated by replacing them with either 0 or 1.

Thus, a schema represents a set of binary strings. For instance, schema *1**0

represent 8 strings, and 11000 is one of them. 11000 is said to be matched with

schema *1**0.

Each schema H is characterised by two properties, namely, the schema defin-

ing length δ(H) and the schema order o(H). The schema defining length is the

distance between the two furthest non-* symbols, whereas the schema order is

the number of non-* symbols in the schema. For the schema H=*1**0, δ(H) = 4

and o(H) = 2.

The schema theorem for GAs with binary representation, fitness-proportionate

selection, 1-point crossover, and 1-point mutation is stated by the following equa-

tion [Hol1975, Gol1989]:

E[m(H, t + 1)] ≥ m(H, t)
f(H, t)

f(t)
(1 − pm)o(H)

[
1− pc

δ(H)

N − 1
(1 − m(H, t)f(H, t)

Mf (t)
)

]

(B.1)

where

m(H, t) is the number of strings matching schema H at generation t.

f(H, t) is the mean fitness of the strings matching schema H .

f(t) is the mean fitness of all strings in the population.

pm is the probability per bit of the mutation operator.

pc is the probability of the crossover operator.

N is the number of bits in each string (chromosome).

M is the number of strings in the population (population size).

E[m(H, t + 1)] is the expected number of strings matching the schema H at

generation t + 1.

APPENDIX B. SCHEMA THEORY 213

Holland’s schema theorem above describes the lower bound (pessimistic number)

for the number of strings matching a schema H in the next generation. The

theorem is used to explain that schemata which have high average fitness, short

defining length, and low order, will survive and multiply exponentially under

selection pressure during the evolutionary process. Therefore, the essence of GA

search is the exponential increase of parallel sampling of the promising subspaces

represented by schemata [Gol1989]

B.3 Fixed Shape and Size Schema Theorem for

GP by Poli and Langdon

In [Pol1997, Pol1998], Poli and Langdon extended the concept of rooted schema

proposed by Rosca ([Ros1997]) to rooted schemata with fixed shape and size. A

rooted fixed-shape and -size schema is defined as follows ([Lan2002]):

Definition B.1 (GP fixed shape and size Schemata). A GP schema is

a rooted tree composed of nodes from the set F ∪T ∪{=}, where F and T are the

sets of functions and terminals respectively. The operator ”=” is a polymorphic

function whose arity can take any of the arities of the functions in F . The symbol

”=” plays the role played by the “don’t care” symbol in GA schemata. We note

that the terminals in T have zero arity.

The following figure B.1 depicts a fixed-shape and -size schema.

For the fixed-shape and -size schema H defined as above, the concepts of order,

length, and defining length from GA schemata can be extended as follows.

Order The number of non-”=” symbols, written as o(H)

Length The total number of nodes in the schema, written as N(H)

Defining Length The number of links in the minimal tree fragment within the

schema composed entirely of non-”=” symbols, written as L(H)

APPENDIX B. SCHEMA THEORY 214

ZX=

Y =

*

X

=

+

Figure B.1: An example of a fixed-shape and -size schema in GP expression tree

representation

Two further important concepts, of hyperspaces and hyperplanes, are defined

for fixed-shape and -size schemata as folows:

Definition B.2. (hyperspaces and hyperplanes). A schema G is called a

hyperspace if it contains the ”=” symbol only. In other word, o(G) = 0. A schema

H is called a hyperplane if it has at least one non-”=” symbol. The schema G

obtained from a hyperplane H by replacing all non-”=” symbols in H with ”=”

symbols is known as the hyperspace associated with H .

In [Lan2002], the genetic operators used were one-point crossover and one-

point mutation. The one-point crossover between two GP expression trees is

accompished by the following three steps:

1. Alignment. Matching the two parents top down from the roots in a recursive

way, to find the identically shaped sub-parts of the two trees from the

roots (i.e matching the arity of nodes visited between the two trees). The

recursion stops when a mis-match in arity is detected, between two currently

matching nodes. The common top part of the two trees is stored.

2. Crossover point selection. Choosing a crossover point at random from the

APPENDIX B. SCHEMA THEORY 215

common part, with uniform probability.

3. Swap. Swapping the two subtrees beneath the crossover points in the two

parents.

The one-point mutation operator uses the point mutation proposed in [MKa95],

where the function/terminal in a randomly chosen node in the GP expression tree

is replaced by a randomly chosen function/terminal with the same arity.

The formula for estimating a lower bound on the propagation of a fixed-shape

and -size GP schema using fitness-propotionate selection, one-point crossover,

and one-point mutation is as follows [Lan2002]

E[m(H, t+1)] ≥ L×(1−pm)o(H)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − pc

⎡
⎢⎢⎢⎢⎢⎣

pdiff (t)
(
1 − m(G(H),t)f(G(H),t)

Mf(t)

)

+

L(H)
N(H)−1

m(G(H),t)f(G(H),t)−m(H,t)f(H,t)

Mf(t)

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B.2)

where L = m(H, t)f(H,t)

f(t)
; the meaning of m(H, t), f(H, t), pc, pm, f are similar

to those in the GA schema theorem presented in the previous section; m(G(H),t)

is the number of individuals in the population at generation t that match the

hyperspace associated with schema H ; f(G(H), t) is the average fitness of those

individuals; and, pdiff is the probability that schema H is disrupted when an

individual h ∈ H is crossed over with an individual h /∈ G(H).

B.4 Whigham’s Schema Theorem for CFG-GP

In [Whi1995c, Whi1996], a schema theory was derived for context-free grammar

guided genetic programming. The concept of schema is based on partial deriva-

tion trees of the grammar. It is defined as follows [Whi1995c]

Definition B.3 (CFG-GP schema). A schema H for a context-free grammar

based representation is the partial derivation tree A → ∗θ, where A ∈ N (the

nonterminal symbol set) and θ ∈ {N ∪ ∑}∗.

APPENDIX B. SCHEMA THEORY 216

Figure B.2 depicts a schema in CFG-GP.

In [Whi1996], a simple schema theorem for the propagation of CFGGP schemata

a b a

AAa

FS

S

Figure B.2: An example for a CFG-GP schema. The Schema is F ⇒ A A

was derived as

E[m(H, t + 1)] ≥ m(H, t)
f(H, t)

(f)(t)
× {(1 − pmP dm(H, t))(1 − pcP dc(H, t)} (B.3)

where the meanings of m(H, t), f(H, t), pc, pm, f are similar to those in previous

sections; P dm(H, t) and P dc(H, t) are the average disruptions at generation t of

schema H due to crossover and mutation repsectively. More details on how to

calculate P dm(H, t) and P dc(H, t) can be found in [Whi1996] (chapter 6).

Appendix C

Techniques for Fitness Landscape

Analysis

In this appendix, we briefly overview two major techniques for analysing fitness

landscapes based on random walks namely correlation analysis and information

content measures [Deb1997, Ree2003, Teo2003]. The former uses statistical mea-

sures to estimate the smoothness of fitness landscapes, by examining how the

fitness values of neighbouring points correlate with each other; the latter em-

ploys an information metric to investigate the ruggedness and modality of fitness

landscapes.

C.1 Correlation Analysis of Fitness Landscapes

Correlation analysis is a set of statistical techniques used to characterize the

difficulty of search problems by measuring the correlation among the fitnesses of

neighbouring points, and the correlation between parents and offspring. There

are three main techniques of correlation analysis, using the autocorrelation metric

of a fitness landscape, the fitness correlation coefficients of genetic operators, and

fitness-distance correlation [Deb1997]. The first has been used to study fitness

landscapes in the field of evolutionary biology and evolutionary algorithms, and

in this thesis. T details of this technique is given here. Descriptions of the others

217

APPENDIX C. TECHNIQUES FOR FITNESS LANDSCAPE ANALYSIS 218

can be found in [Deb1997], [Man1991], and [Jon1995c].

The autocorrelation function of a random walk in the landscape appears to

have been the first tool used to analyse fitness landscapes [Wei1990]. For a given

fitness landscape ((S, d), f), where (S, d) is the metric space and f is a fitness

function, select a random starting point s0 . Then select a random neighbour

s1 of s0 (i.e. d(s0, s1) = 1). Repeat this process N times, collecting the fitness

sequence F = {f(si)}N
i=0. The autocorrelation function ρ of the random walk is

defined as follows:

ρ(h) =
R(h)

s2
f

(C.1)

Where s2
f is the variance of the fitness sequence, s2

f =
∑N

i=0(f(si) − mF)2; and

R(h) is the autocovariance function of the fitness sequence F . For each h, R(h)

is estimated by:

R(h) =
1

N

N−h∑
i=0

(f(si) − mF)(f(si) − mF) (C.2)

where mF = 1
N+1

∑N
i=0 f(si) is the mean of the fitness sequence F. The auto-

correlation function ρ(h) expresses, for each distance h, the level of correlation

between search points a distance h apart. A second measure derived from the

autocorrelation function is the correlation length, usually denoted as τ , defined

as the distance h where ρ(h) = 1/2. The larger the correlation length τ , the more

correlated and smoother is the fitness landscape. Small τ indicates rugged fitness

landscapes. The autocorrelation ρ and the correlation length τ provide a rough

indication of how difficult a fitness landscape is. They were used in characteris-

ing the fitness landscapes of a number of well known problem families and fitness

landscape models ([Lip1991], [Man1991], [Wei1991], [Sta1992b], and [Sta1992c]).

APPENDIX C. TECHNIQUES FOR FITNESS LANDSCAPE ANALYSIS 219

C.2 Information Content Measures for Fitness

Landscape

[Vas1999, Vas2000] proposed a methodology based on the concept of information

content ([Abr1963, Cov1991]) to analyse fitness landscapes. From an N-step ran-

dom walk to neighbouring points, a sequence of fitness values {ft}N
t=1 is obtained.

Four measures of the entropy and amount of fitness change encountered during

the walk can be calculated:

1. Information Content (H(ε)): indicates the ruggedness of landscape.

2. Partial Information Content (M(ε)): indicates the modality of landscape.

3. Information Stability (ε∗): indicates the magnitude of optima in landscape.

4. Density-Basin Information (h(ε)): characterizes the landscape structure

around optima.

The information content characterizes the amount of ruggedness in the flat areas

of the fitness landscape. It is defined as follows:

H(ε) = −∑
p �=q

P[pq]log6P[pq] (C.3)

The probability P[pq] represents the frequencies of all 6 possible pairs pq in the

string S(ε) = s1s2s3...sN where si ∈ {1, 0, 1}. The string S(ε) indicates the

changes of fitness landscape values with ε-tolerance. Each si in S(ε) is defined as

si = Ψft(i, ε) (C.4)

where

Ψft(i, ε) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if fi − fi−1 < −ε

0 if |fi − fi−1| ≤ ε

1 if fi − fi−1 > ε

(C.5)

In other words, the information content H(ε) measures the entropy of the different

directions of change encountered during the random walk, the parameter ε setting

APPENDIX C. TECHNIQUES FOR FITNESS LANDSCAPE ANALYSIS 220

a threshold for the sensitivity of the entropy measurement. ε is a real number

from the range [0..L], where L is the maximal pair-wise difference in the sequence

{ft}N
t=1. The information measure is most sensitive when ε = 0, and insensitive

when ε = L.

The partial information content is defined as follows:

M(ε) =
μ

N
(C.6)

where μ is the length of the derived string S ′(ε). μ is calculated by calling a

recursive function of three integer arguments and called by ΦS(1, 0, 0). This re-

cursive function is defined as

ΦS(i, j, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k if i > n

ΦS(i + 1, i, k + 1) if j = 0 and si = 0

ΦS(i + 1, i, k + 1) ifj > 0, si = 0 andsi = sj

ΦS(i + 1, j, k) otherwise

(C.7)

When M(ε) = 0, it is an indication that there is no slope in the random walk.

When M(ε) = 1, it indicates that the random walk encountered maximal multi-

modality. Moreover, the expected number of optima can be calculated from the

partial information content as �nM(ε)
2

�.
The information stability (ε∗) is the smallest value of ε where H(ε = 0). The

higher the information stability, the higher largest possible difference between

two neighboring points. Thus it provides an estimate of the magnitude of the

optima on the fitness landscape encountered during the random walk.

The last measure, the density-basin information h(ε), can be calculated as

h(ε) = − ∑
p∈{1,0,1}

P[pp]log3P[pp] (C.8)

where pp is one of the sub-blocks 00, 11, and 11. A high value of h(ε) indicates

a high number of peaks occur within a small area of the landscape. A low value

of h(ε) means that optima are isolated. Therefore, it gives an idea of the sizes of

the basins of attraction of optima.

APPENDIX C. TECHNIQUES FOR FITNESS LANDSCAPE ANALYSIS 221

To summarise, higher values of information content, partial information con-

tent and information stability indicate higher degrees of epistasis and modality,

defining a more rugged landscape which is harder to search. The density-basin in-

formation helps to understand the difficulty of the search space by characterizing

the landscape at the regions near the optima.

Appendix D

The Strength Pareto

Evolutionary Algorithm

In [Zit2001], Zitzler proposed the strength pareto evolutionary algorithm (SPEA2)

as an extension of a previous well-known multi-objective evolutionary algorithm

(SPEA) [Zit1999]. SPEA2 uses a regular population and an archive (external

set). Starting with an initial population and an empty archive, it proceeds as

follows. The fitnesses of all individuals are calculated. Then, all non-dominated

indidividuals (defined below) are copied to the archive. If the archive is full,

a truncation method is used to remove some individuals in the archive. On the

contrary, if the archive is not filled up a procedure is used to add more individuals

to the archive. Next individuals are selected from the archive genetic operators

applied to them, after which the products are copied to the new population. The

process is repeated until some terminating criteria are met. The algorithm for

SPEA2 can be summarised as follows [Zit2001]

222

APPENDIX D. SPEA2 223

Input N (population size)

N (archive size)

T (maximal number of generation)

Output A (nondominated set)

1) Initialisation: Generate an initial population P0 and

create the archive (external set) P 0 =. Set t=0.

2) Fitness assignment: Calculate fitness values of individuals

in Pt and P t.

3) Environment selection: copy all nondominated individuals

in Pt and P t to P t+1. If the size of P t+1 exceeds N then

Reduce P t+1 by means of the truncation operator,

otherwise if the size of P t+1 is less than N then fill P t+1

with dominated individuals in P t and P t+1

4) Termination: if t ≥ T or other stopping criteria

are satisfied then set A to the set of decision vectors

represented by the nondominated individuals in P t+1. Stop.

5) Mating selection: Perform binary tournament selection with

replacement on P t+1 in order to fill the mating pool.

6) Variation: Apply crossover and mutation operators to the

mating pool and set Pt+1 to the resulting population.

t = t + 1 and go to step 2

The fitness assignment is calculated as follows. Firstly, each individual i in

the archive P t and the population Pt is assigned a strength value S(i) represent-

ing the number of solutions it dominates:

S(i) = |{j/j ∈ Pt ∪ P t ∧ i � j}| (D.1)

where | · | denotes the set cardinality and � stands for the Pareto dominance

relation. Next, the raw fitness R(i) of each individual i is calculated as:

APPENDIX D. SPEA2 224

R(i) =
∑

j∈Pt∪P t,j	i

S(j) (D.2)

Finally, the fitness F (i) of each individual i is derived as

F (i) = R(i) + D(i) (D.3)

where D(i) is the density estimation defined by

D(i) =
1

σk
i + 2

(D.4)

where σk
i is the distance between i and its k-th nearest neighbour point, usually,

k =
√

N + N . The density D(i) is used to give encourage the individuals spread

out through the Pareto frontier.

The environmental selection (step 3) is done as follows. The first step is to

copy all nondominated individuals from the archive and population to the archive

of the next generation. We note that a nondominated individual has fitness less

than 1. Therefore, P t+1 = {i/i ∈ Pt ∪ P t ∧ F (i) < 1}. If the number of non-

dominated individuals fits the size of the archive, the environmental selection is

completed. Otherwise, there must be one of two situations: either the archive is

too small or it is too large. In the first case, the next step is fill up the archive. It

is done by sorting the multiset Pt∪P t according to fitness value, and copying the

first N − |P t+1| individuals i with fitness F (i) ≤ 1. In the second case, the next

step is to truncate the archive. It is done by calling a procedure that iteratively

removes individuals from P t+1 until its size returns to N . In particular, at each

iteration, the individual i is chosen for removal if i ≤d j for all j ∈ P t+1, where

i ≤d j is defined as

i ≤d j : ⇔
∀0 < k < |P t+1| : σk

i = σk
j∨

∃0 < k < |P t+1| :
[(

∀0 < l < k : σl
i = σl

j

)
∧ σk

i < σk
j

] (D.5)

Appendix E

Some Supplementary Figures

In this chapter, some of the supplementary figures in chapter 10 are given.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

Generation

C
um

ul
at

iv
e

F
re

qu
en

cy

TAG3P
GP−RHH
GP−I

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

TAG3P
GP−RHH
GP−I

SymbolicRegression 6 − Multiplexer

Figure E.1: Cumulative Frequencies (POPSIZE=250)

225

APPENDIX E. SOME SUPPLEMENTARY FIGURES 226

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

TAG3P
GP−RHH
GP−I

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

F
re

qu
en

cy

Generation

TAG3P
GP−RHH
GP−I

SymbolicRegression 6 − Multiplexer

Figure E.2: Cumulative Frequencies (POPSIZE=1000)

0 10 20 30 40 50 60 70 80 90 100
3

3.01

3.02

3.03

3.04

3.05

3.06

3.07

Generation

A
ve

ra
ge

 L
og

10
 F

irs
t F

itn
es

s

TAG3P
GP−RHH
GP−I

0 10 20 30 40 50 60 70 80 90 100
31.5

32

32.5

33

33.5

34

34.5

35

35.5

36

Generation

A
ve

ra
ge

 F
irs

t F
itn

es
s

TAG3P
GP−RHH
GP−I

SymbolicRegression 6 − Multiplexer

Figure E.3: Average First Fitness (POPSIZE=250)

0 5 10 15 20 25
3

3.05

3.1

3.15

3.2

3.25

Generation

A
ve

ra
ge

 L
og

10
 F

irs
t F

itn
es

s

TAG3P
GP−RHH
GP−I

0 5 10 15 20 25
0.0315

0.032

0.0325

0.033

0.0335

0.034

0.0345

0.035

0.0355

0.036

0.0365

Generation

A
ve

ra
ge

 F
irs

t F
itn

es
s

TAG3P
GP−RHH
GP−I

SymbolicRegression 6 − Multiplexer

Figure E.4: Average First Fitness (POPSIZE=1000)

APPENDIX E. SOME SUPPLEMENTARY FIGURES 227

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Generation

A
ve

ra
ge

 S
ec

on
d

F
itn

es
s

TAG3P
GP−RHH
GP−I

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Generation

A
ve

ra
ge

 S
ec

on
d

F
itn

es
s

TAG3P
GP−RHH
GP−I

SymbolicRegression 6 − Multiplexer

Figure E.5: Average Second Fitness (POPSIZE=250)

0 5 10 15 20 25
5

10

15

20

25

30

Generation

A
ve

ra
ge

 S
ec

on
d

F
itn

es
s

TAG3P
GP−RHH
GP−I

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

Generation

A
ve

ra
ge

 S
ec

on
d

F
itn

es
s

TAG3P
GP−RHH
GP−I

SymbolicRegression 6 − Multiplexer

Figure E.6: Average Second Fitness (POPSIZE=1000)

APPENDIX E. SOME SUPPLEMENTARY FIGURES 228

0

20

40

60

80

100

120

0

10

20

30

40

50

60

70

80

90

Generation

Size

F
re

qu
en

cy

0

20

40

60

80

100

120

0

10

20

30

40

50

60

70

80

90

Generation

Size

F
re

qu
en

cy

TAG3P GP − I

0

20

40

60

80

100

120

0

10

20

30

40

50

60

70

Generation

Size

F
re

qu
en

cy

GP − RHH

Figure E.7: Tree Size Frequencies for Symbolic Regression Problem, POP-

SIZE=250

APPENDIX E. SOME SUPPLEMENTARY FIGURES 229

0

20

40

60

80

100

120

0

10

20

30

40

50

60

70

80

Generation

Size

F
re

qu
en

cy

0

20

40

60

80

100

120

0

10

20

30

40

50

60

70

80

Generation

Size

F
re

qu
en

cy

TAG3P GP − I

0

20

40

60

80

100

120

0

10

20

30

40

50

60

70

80

Generation

Size

F
re

qu
en

cy

GP − RHH

Figure E.8: Tree Size Frequencies for 6-multiplexer Problem, POPSIZE=250

APPENDIX E. SOME SUPPLEMENTARY FIGURES 230

2
4

6
8

10
12

0

10

20

30

0

10

20

30

40

50

60

70

80

90

Generation

Size

F
re

qu
en

cy

0

5

10

15

20

25

30

0

20

40

60

80

100

Generation

Size

F
re

qu
en

cy

TAG3P GP − I

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

80

GenerationSize

F
re

qu
en

cy

GP − RHH

Figure E.9: Tree Size Frequencies for Symbolic Regression Problem, POP-

SIZE=1000

APPENDIX E. SOME SUPPLEMENTARY FIGURES 231

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

80

90

Generation

Size

F
re

qu
en

cy

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

80

Generation

Size

F
re

qu
en

cy

TAG3P GP − I

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

80

Generation

Size

F
re

qu
en

cy

GP − RHH

Figure E.10: Tree Size Frequencies for 6-multiplexer Problem, POPSIZE=1000

	Title Page - A Flexible representation for genetic programming : lessons from natural language processing
	Abstract
	Acknowledgments
	Contents
	List of Figures

	Chapter 1 - Introduction
	Chapter 2 - Related work
	Chapter 3 - A Tree Adjoining Grammar based representation for genetic programming
	Chapter 4 - A Tree Adjoining Grammar Guided Genetic Programming System (TAG3P)
	Chapter 5 - TAG3P : preliminary comparison
	Chapter 6 - Some operators
	Chapter 7 - A Schema theory for TAG3P
	Chapter 8 - TAG - based representation and the problem of structural difficulty in genetic programming
	Chapter 9 - Fitness landscape study on syntactically constrained domains
	Chapter 10 - An Alternative comparison between different genetic programming systems
	Chapter 11 - Conclusions and future work
	Bibliography
	Appendices

