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Abstract

Heuristic search is an efficient way to solve complex optimization problems, and

sometimes it is the only way to do so. Differential Evolution (DE) is a population-

based heuristic search suitable mostly for continuous optimization problems. The

efficiency of DE to optimize a problem can largely degrade if the right values for

its parameters are not chosen. Finding the right values for DE’s parameters is a

non-trivial task. Many researchers resort to parameter tuning and self-adaptation

mechanisms. Existing methods vary in their performance and design philosophies.

In this thesis, I start by introducing a semantic evolutionary visualization

framework to investigate evolutionary dynamics. The different visualizations track

the ongoing changes within an evolutionary run by exploring pedigree trees and

the fitness landscapes. The visualization alone was not sufficient to shed light

on a very high dimensional space. Consequently, I resorted to introducing a new

self-adaptive algorithm using Hidden Markov Models (HMMs).

Markov models have been used extensively in the past to analyze convergence

of evolutionary optimization methods. I have leveraged this opportunity to intro-

duce a new algorithm that we call DE-HMM, where HMMs is used for real-time

learning of evolutionary dynamics to allow for dynamic adjustment of the two

intrinsic DE parameters: F and CR.

DE-HMM categorizes each evolutionary transition into two discrete states;

low and high, representing the rate of change in a population over time. The

HMM posterior and likelihood ratios are estimated to assign the values for F and

CR during the evolutionary process. Two unconstrained benchmark set are used

to assess DE-HMM performance, demonstrating its overall superiority in terms of

solution quality and computational resources, when compared to other state-of-the

art algorithms.
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The self-adaptive DE-HMM is then augmented with local search to solve con-

strained optimization problems. A two-stage method is introduced; with the two

states being either global or local based on the degree of feasibility and rate of

diversity. The methodology demonstrated competitive results when tested on the

constrained CEC2010 benchmark dataset.
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Chapter 1

Introduction

In this introductory chapter, firstly, an overview of the background to this study

is provided. Then, its problem formulation, research objectives and principal con-

tributions are discussed and, finally, its structure presented.

1.1. Background

During the last few decades, the field of optimization has received a great deal

of attention for several research application areas, such as finance, science, engi-

neering and air-traffic control [1–3]. The need to solve optimization problems is

not limited to a particular discipline and many real-world systems require opti-

mization methods. An optimization problem can have single or multiple objective

(s), which compete to obtain the best solution. Problems with a single objective,

which is our focus in this thesis, can be classified based on their properties as

linear or non-linear, constrained or unconstrained and with convex or non-convex

functions [4].

Optimization methods are commonly divided into two main categories [5, 6]:

deterministic and stochastic search methods. The former is the classical branch

of optimization techniques in mathematics, which strongly depends on linear al-

gebraic and gradient computations [6]. On the other hand, stochastic methods,

such as Evolutionary Algorithms (EAs), are simple and applicable to any types of

problems with various characteristics [5]. Due to their general applicability, they

have become popular for solving different optimization problems. Usually, it is not

necessary to make any assumption about a problem’s specifications as it works as

black-box optimization methods.
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An EA, which mimics natural evolution, is a population-based stochastic al-

gorithm that uses a set of genetic operators to evolve a population of candidate

solutions with the aim of finding the best [7]. One of the most popular EAs is Dif-

ferential Evolution (DE) [8], which has shown its superiority to other EAs with its

positive features being its easy implementation, fast convergence because it does

not require expensive operators and very simple data structure. It maintains three

main operators, mutation, crossover and selection, which are associated with three

control parameters, the scaling factor (F), crossover rate (CR) and population size

(PS), for determining the optimal solution.

Although DE has a long history of success in solving optimization problems,

it suffers from some drawbacks similar to any global optimization method of being

incapable of delivering global optimal solutions in a reasonable time frame. [3, 8],

stagnation, premature convergence and vulnerable control parameters [7]. Setting

appropriate parameter values is one of the persistent challenges in the DE com-

munity for achieving better performances as no single parameter is effective for all

optimization problems, that is, one value could perform well for one problem but

poorly for another. Even for the same problem, there is no guarantee that a chosen

parameter value is efficient throughout the evolutionary process. Therefore, it is

essential to investigate and analyze the potential process of DE to provide deep

insights into the effects of its control parameters on its performance, which could

assist in the design of an effective parameter control methodology for solving both

Constrained Optimization Problems (COPs) and unconstrained ones.

1.2. Problem Description

It is a big challenge to select the search operators (i.e., mutation and crossover

schemes) and settings of the control parameter (i.e., F, CR and PS) for population-

based stochastic search algorithms, particularly DE, which greatly influence their

performances [7, 9]. The main purpose is to determine the optimal solution that
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satisfies the objective function, variable boundaries and/or functional constraints

that is affected by the choice of suitable parameter values. This can be achieved by

automatically adapting these parameters and restricting them to adequate values

without a user having prior knowledge of the relationship between their settings

and the characteristics of the optimization problem [5, 7, 9]. Since an a-priori

identification of the best parameter settings is always time-consuming and often

not realistic [8, 9], one should employ an effective strategy for adjusting them

according to the following three main points.

• Parameter settings are problem dependent [10]: it is noted that there

is no ‘free lunch’ theory for optimization problems as individual parameter

values represent different search directions. In other words, a parameter

value may be optimal for one optimization problem but insufficient for an-

other.

• Parameter settings are evolution dependent [11]: setting DE’s control

parameters involves using good parameter values through various DE stages

because they generally affect the success of the evolving search process; for

instance, this process may proceed quickly in its early stages but then slow

down as it approaches near-optimal solutions in its later ones.

• Interactions among the parameters can be complex [12]: DE’s pa-

rameters can affect each other and improve or deteriorate the DE’s per-

formance. These interactions are always complex due to the difficulty of

selecting appropriate parameter values that reflect the best solutions.

In the literature, there are several adaptive and self-adaptive methods for control-

ling DE’s parameters [8, 9, 12]. However, most have shortcomings as they adapt

the F and CR parameters independently whereas the performance of DE depends

mainly on a combination of them. Therefore, these control parameters have to be

carefully adjusted to improve the quality of candidate solutions according to the

ongoing evolutionary dynamics of the DE process [7, 9].
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The abovementioned issues provide inspiration for developing effective meth-

ods, which investigate and provide insights into the evolutionary search process so

that a better way of adjusting DE’s control parameters for solving unconstrained

and COPs.

1.3. Gaps and Objectives of Our Research

Setting the intrinsic parameters of DE (F and CR) through its evolutionary process

can, itself, be a complex optimization problem, as discussed in the previous section.

Although several methods have been introduced, none can guarantee the best

choices for solving different optimization problems and different stages in a problem

considering these parameters’ actual dependencies.

Since it seems that these intrinsic parameters should be automatically adjusted

when the DE evolutionary process is interpreted, it is necessary to develop new

methods that help to explore the internal procedure of DE and effectively control

these parameters.

Therefore, the main objective of this thesis is to develop a novel

method, which aims to automatically adjust the F and CR parameters

of DE by coupling the Hidden Markov Model (HMM) with the classical

DE to enhance the performance of DE for solving a wide range of

COPs and unconstrained ones. To achieve this, the following three sub-

objectives are proposed.

• To develop a Semantic Evolutionary Visualization (SEV) framework for

tracking and interpreting the various dynamics of the DE search process in order

to conduct direct analyses of the impacts of different settings of DE’s intrinsic

parameters to improve its performance.

• To develop a novel self-adaptive method that automatically adapts the DE’s

control parameters (F and CR) by incorporating the HMM into the DE procedure,
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called the DE-HMM method, for solving unconstrained optimization problems.

The major motivation behind using HMM learning algorithms is that the previous

studies have applied finite Markov models as a way to analyze the evolutionary

methods’ behavior, however, there is no research study that has focused on employ-

ing Markov Chains to enhance the performance of evolutionary computation. In

contrast, differential evolution was developed for improving Markov chains [13]. It

demonstrates competitive performances compared with those of its own variants

and other state-of-the-art methods, as validated using two different benchmark

datasets.

• To extend the self-adaptive DE-HMM method to solve COPs by combining

the local search operator as an alternative way for guiding and accelerating the

search toward the feasible regions. Then the DE basic procedure is applied to

find the optimal solution within the feasible era. Through these two processes,

two different mutation strategies and estimated F and CR are assigned separately

based on the nature of each process. This proposed methodology is known as MS-

DEHMM-L. It is tested and compared with previously constrained algorithms,

showing promising results.

1.4. Thesis Contributions

This thesis contributes to the field of Evolutionary Computation (EC), particularly

DE, by developing three methodologies that address the above three problems

and improve the performance of DE for solving both unconstrained and COPs, as

detailed below.

• SEV framework: this new visualization framework aims to provide a full

understanding and analysis of all the evolutionary dynamics occurring during

an EA procedure, particularly those in DE, to demonstrate the influence of

different control parameter settings on the quality of its solutions.
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• Self-adaptive DE-HMMmethodology: a classical DE incorporated with

the HMM as a parameter control method, which is developed to automat-

ically adjust the F and CR parameters to efficiently solve unconstrained

problems. It demonstrates outstanding performances compared with those

of several DE and non-DE variants. In addition, the speed of DE is not

greatly impacted by using a HMM for problems with different dimensions.

• MS-DEHMM-L methodology: a new DE algorithm with a HMM for

controlling its F and CR parameters uses the strengths of the local search

specialized operator and different mutation strategies for increasing the fea-

sibility and optimality through the evolution until the best solution is ob-

tained at the end of the search process. An evaluation of this new method

demonstrates its superior performance compared with some state-of-the-art

algorithms in the literature in terms of the quality of solutions.

1.5. Thesis Structure

This dissertation has six chapters and is systematically divided as follows.

• Chapter 1: Introduction

• Chapter 2: Background Study and Literature Review

• Chapter 3: Semantic Evolutionary Visualization Framework For Visualizing

EA

• Chapter 4: A Novel Self-adaptive DE-HMM for Solving Unconstrained Op-

timization Problems

• Chapter 5: Two Strategies DE-HMM with Local Search For Constrained

Optimization Problems

• Chapter 6: Conclusions and Future Research

6



Chapter 1 discusses the background to, and problem formulation, objectives

and contributions of this study as well as the structure of this thesis.

Chapter 2 presents the theoretical background to this research, reviews the

related literature and introduces the basics of EAs, especially DE, and visualization

concepts. Then, previous work related to visualization in EAs and other research

studies that adapt DE control parameters are discussed. Finally, the fundamentals

of COPs and constraint-handling techniques combined with recent EA variants are

illustrated.

Chapter 3 proposes a new SEV framework for visualizing DE and exploring

its processes as a way of understanding the impact of its control parameters on its

performance. The experimental results and analysis of this framework are reported

and compared with those from previous studies.

In Chapter 4, a novel self-adaptive DE-HMMmethod for solving unconstrained

optimization problems is proposed. It couples a HMM with the DE process to

automatically adjust the DE’s F and CR control parameters. The benchmark

test suites used to evaluate this method are described and the DE-HMM’s re-

sults and analysis provided to demonstrate its superiority to other state-of-the-art

algorithms.

Chapter 5 details a new method for dealing with COPs that incorporates the

best variant obtained from Chapter 4 with a local search operator. The benchmark

dataset used for its assessment shows that our method performs well.

Finally, Chapter 6 presents this study’s conclusions and contributions, and

suggests potential research directions.
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Chapter 2

Background Study and Literature

Review

This chapter briefly describes the theoretical background and previous studies

related to the work in this thesis. Firstly, the basic concepts of Evolutionary

Algorithms (EAs), particularly Differential Evolution (DE), are discussed and then

the significance of DE control parameters (CPs) and the criteria for classifying

their strategies is provided, with previously proposed DE variants for automatically

adapting them reviewed. Descriptions of the concepts of constrained optimization,

including well-known constraint-handling techniques (CHTs), and the recent EA

variants combined with them to solve constrained optimization problems (COPs)

are presented. Then, the basic concepts of Hidden Markov Model are illustrated

followed by the recent visualization techniques used to explore EAs’ dynamics to

reveal the importance of adjusting the CPs to enhance its performance. The aim

of this literature review is to demonstrate the role of visualization in revealing

an EA’s potential processes using different parameter settings and determine the

main gaps in attempts undertaken in previous studies to adjust DE’s parameters

to improve its performances for both unconstrained and constrained problems.

2.1. Evolutionary algorithms

An EA is a stochastic, population-based mechanism, which tries to mimic the

biological concepts of the Darwinian Theory of Evolution through three basic

features, namely, mutation, recombination and natural selection (‘survival of the

fittest’), in order to solve an optimization problem [14]. The procedures of all
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current EAs are quite similar, with only slight differences in their sequences. An

EA maintains an initial population consisting of a set of individuals and then uses

some rules to select and recombine operators such as mutation and crossover, as

described below.

1. Initialization: an initial population of individuals, which can be represented

in various formats such as a real value, integer or string is randomly gener-

ated.

2. Evaluation: each individual in the population is evaluated based on a fitness

function.

3. Recombination: this perturbs the individuals to generate new solutions via

mutation and/or crossover operators. In a crossover operation, new offspring

are created using two or more original parents while a mutation operation

maintains diversity [15] by slightly altering the parent, balancing between

exploitation and exploration of the population.

4. Selection: this focuses mainly on individuals with lower fitness values by ex-

ploiting their fitness information. Note that, in this thesis, the minimization

problems are considered and the lower fitness value is taken to be a better

solution, representing the objective value of f(x)

These steps are iteratively repeated until the stopping conditions are met.

2.1.1. Differential Evolution (DE)

DE was first proposed in 1995 by Kenneth Price and Rainer M. Storn [16] and,

over the last few decades, has become a desirable algorithm for real and continuous

optimization [7] due to its simple implementation. It belongs to population-based

stochastic search methods and uses the same methodology. In more detail, a popu-

lation of vectors is initialized randomly over the whole search space. Each of these
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vectors (i.e., target vectors) and a new one (i.e., donor vectors) are generated using

a mutation operator with a scaling factor. Then, a final trial vector (i.e., offspring)

is obtained by combining the target and donor vectors using a crossover operator

with a pre-determined crossover rate. Finally, a selection tournament is used to

determine which of these vectors survives for the next generation. Although DE

usually performs better/well for solving different complex optimization problems,

it often suffers from premature convergence, stagnation and/or misadjustments

of its CPs [17]. Its three main components [14] are discussed in detail in the

following subsections.

A. Mutation

Several mutation schemes for exploring the entire search space with specified

boundaries have been proposed. The procedure of mutation aims to produce

intermediate population vectors (donor/mutant vectors) from the current ones

(target vectors), including one base and some difference ones [16, 18, 19]. A mu-

tation strategy can select a base vector, also called the target vector or parent,

and a number of perturbed difference ones [14]. The basic form of mutation is

DE/rand/1, where “DE” refers to a DE algorithm, “rand” is the method for se-

lecting the parent to act as a base vector and “1” refers to a single difference

vector [14]; for example, a mutant vector is produced by adding a random vector

to the processed ones resulting from multiplying the difference between two ran-

dom vectors by the scaling factor (F ) and computed by one of the following five

best-known mutation strategies [20].

1. DE/rand/1

vi,G = xr1,G + F ∗ (xr2,G − xr3,G) (2.1)

2. DE/rand/2

vi,G = xr1,G + F ∗ (xr2,G − xr3,G) + F ∗ (xr4,G − xr5,G) (2.2)
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3. DE/current-to-rand/1

vi,G = xi,G + F ∗ (xr1,G − xi,G) + F ∗ (xr2,G − xr3,G) (2.3)

4. DE/best/1

vi,G = xbest,G + F ∗ (xr1,G − xr2,G) (2.4)

5. DE/current-to-best/1

vi,G = xi,G + F ∗ (xbest,G − xi,G) + +F ∗ (xr1,G − xr2,G) (2.5)

6. DE/rand-to-best/1

vi,G = xr1,G + F ∗ (xbest,G − xr1,G) + F ∗ (xr2,G − xr3,G) (2.6)

where r1, r2, r3, r4, and r5 are randomly chosen integer indices within the range

of [1, PS], which are different from index i and xbest is the best fitness vector

chosen at generation G. F is a positive CP specified in a range of [0, 1] to scale

the difference vectors, and G is the generation number.

B. Crossover

The crossover operator is applied after executing the mutation operator using the

original population (i.e. parents). It combines the components of the current tar-

get and mutant vectors (xi,G and vi,G), respectively, with respect to the crossover

rate CR, with the aim of creating offspring that will maintain the population’s

diversity. In DE, there are two key types of crossover variants, namely, binomial

and exponential [21], as discussed below.

• Binomial Crossover
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The binomial crossover, which is similar to the uniform crossover in EAs, is the

most commonly used in DE. It generates a random number from a range of [0, 1]

for each component as it is compared with the pre-specified probability of the CR

to determine which components can be taken from the mutant and target vectors.

In other words, a variable is obtained from a mutant vector with a CR probability

and 1− CR from the current target vector.

In order to generate a trial vector using the binomial crossover,

ui,j,G =


vi,j,G if(rand() ≤ CR) || (j = K)

xi,,jG otherwise

(2.7)

where rand ∈ [0, 1], k ∈ [1 . . . . . . ..D] is an index chosen randomly to ensure

that there is at least one component inherited from vi,jG, and CR the crossover

probability within the range of [0, 1] for controlling the exploitation of a mutant

vector towards new offspring.

• Exponential Crossover

The exponential crossover operates from starting positions randomly chosen from

1, ..., D and the L consecutive components are selected from the mutant vector.

The crossover probability determines the number of exchanged components for

obtaining the trial vector, calculated by

ui,G =


vi.G ∀j = �l�D,�l + 1�D, ...,�l + L− 1�D

xi,G otherwise

(2.8)

where l is the starting position and the brackets �l�D denotes a modulo function

with modulus D.
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C. Selection

In the selection stage, a greedy selection is used to determine the vector, either

target or trial vector, to survive for the next generation using the fitness value (i.e.,

objective function value); for instance, in a minimization problem, the candidate

in a population with the minimum objective function value is selected to be one

of the members in the next generation as

xi,G+1 =


ui.G if(f(ui,G) ≺ f(xi,G))

xi,G otherwise

(2.9)

A simple cycle of mutation, crossover and selection is repeated in subsequent

generations until the termination conditions are satisfied. Algorithm 2.1 summa-

rizes the DE steps used in this thesis to demonstrate the main procedures of DE

for any optimization problem.

Algorithm 2.1 DE
1: Set initial control parameters F , CR and PS
2: Initialize randomly a population of PS individuals, called target_vectors

3: while (!stoppingcriteria) do
4: for (i = 1 to PS) do
5: Evaluate each individual in the population using the objective function

f(x)
6: Apply Mutation strategy to produce mutant_vector using equation 2.1

7: Create a new trial_vector using the crossover operator using equation 2.7

8: if (f(trial_vector) <f(target_vector)) then
9: Maintain trial_vector in the next generation
10: end if
11: end for
12: end while
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2.1.2. Significance of DE parameters

All the procedures in a DE algorithm have been used for different real-life prob-

lems [7]. Although the mechanism of DE appears to be simple, it has some limita-

tions which affect its performance, such as stagnation, premature convergence and

vulnerable CPs [8]. Stagnation is an undesirable situation in which a population-

based algorithm does not converge to a better solution, even a sub-optimal one,

while the population’s diversity is still high [20]. In other words, stagnation oc-

curs in DE when the population cannot be improved over a prolonged number of

generations and is incapable of determining a new search space to find the desired

candidate solution [22]. Several factors cause stagnation, including bad choices of

DE’s CPs and a problem’s dimensions [20, 23].

Premature convergence is a situation whereby the population converges to a

local optima due to a loss of diversity, that is, when no more offspring solutions

better than the parents can be generated [24]. Convergence can be categorized

as good, premature and slow, with good achieved when the global optimum is

obtained in an acceptable amount of generations and there is a good trade-off

between exploration and exploitation [25].

The sensitivity or insensitivity of its CPs is considered a significant drawback

of DE because it can either improve DE’s performance or decrease its efficiency, re-

spectively [11, 26]. Several studies have investigated the relationships between the

aforementioned problems to determine how to adjust DE’s CPs [27]. The reasons

for the success of DE are discussed in [14] in which the implicit self-adaptation

within DE’s algorithmic structure is highlighted. During the optimization process,

for each candidate solution, the search rule states that generating new offspring

solutions depends on the distribution of other solutions belonging to the current

population in the search space.

In DE, as solutions in the early stage of the optimization process tend to

be spread out in the search space, the mutation scaling factor seems to produce
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Figure 2.1: Overlaying meta-optimization conceptual model

new promising offspring ones by exploring the search space with a large step size.

Then, as existing solutions of populations are concentrated in specific regions in the

search space, this step size is progressively reduced. Therefore, a DE algorithmic

scheme is highly explorative at the beginning of an evolutionary optimization

process and successively becomes more exploitative during subsequent stages [7, 9].

The canonical DE requires very few CPs, in particular, PS, F and CR [16],

each of which has a great influence on its performance in terms of effectiveness,

efficiency and robustness. Determining their correct values to achieve a balance

between the reliability and efficiency of running DE is a crucial task [27]. PS

provides the possible moves, some of which are beneficial during the evolutionary

process for reaching the optimal solution while others are not as they consume

more computational resources. Therefore, suggesting a too-large PS could mislead

a search in terms of convergence [23] but a too-small one could cause stagnation

during the evolutionary process [28].

Several researchers [8, 17, 19] have suggested guidelines for setting the PS

with different ranges of [2D − 40D], where D is the number of dimensions of a

particular problem. However, a high-dimensional problem cannot follow this rule

as its processing time takes long. Therefore, setting the PS values depends mainly
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on the problem’s characteristics; for instance, separable and unimodal problems

require low ones and multimodal problems high ones [9, 29].

Setting the F and CR parameters is neither a simple nor straightforward task

because of its significance for guaranteeing the algorithm’s effectiveness in finding

the desired solution. Their optimal values depend basically on the problem’s

characteristics, such as linear or separable. Several studies [5, 30, 45] have reported

that using F = 1 is not recommended as it leads to low exploration in the search

space. Likewise, CR = 1 is not preferred because it dramatically decreases the

number of offspring solutions generated [28]. Storn and Price (1997) and Liu and

Lampinen (2002a) suggested settings of F ∈ [0.5, 1] and CR ∈ [0.8, 1] whereas,

after conducting some experimental analyses, Zielinski et al. (2006) showed that

F ≥ 0.6 and CR ≥ 0.6 provide better solutions thereby indicating that powerful

parameter settings are required for different optimization problems.

The aforementioned studies reveal that the ‘no free lunch’ theory can be ap-

plied to different DE schemes. The F and CR parameters considerably affect the

convergence speed and robustness of the search space as F impacts directly on di-

versity in the search space and CR provides the means for successively undertaking

exploitation.

In the context of randomizing the scaling factor of DE, two new terms, jitter

and dither, are defined in [14]. The former represents the procedures of individual

parameters whereby different F values are generated and associated with their

corresponding indices. Although jitter is not rotationally invariant, it seems to be

effective for non-deceptive objective functions which possess strong global gradient

information [14]. On the other hand, dither represents a situation in which a F

value is created for each individual and assigned to its corresponding index, with

each characteristic of the same individual evolved using the same scaling factor [8].

Although dither is rotationally invariant, when the level of variation is very small,

the rotation has only a small influence. The application of these principles (i.e.,

dither and jitter) is used in multiple studies, for example, in [30], F is generated
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for each individual in the range of [0.4, 1] and CR chosen from the interval [0.5, 0.7]

which is fixed for each iteration. Nevertheless, setting these CPs is still a crucial

problem and an active area of research.

2.1.3. Classification of parameters control strategies

Since DE’s inception, it has been claimed that the task of selecting promising

CPs (i.e., behavioural ones) and search operators (i.e., mutation and selection

strategies) for diverse optimization problems is not simple [31]. The general idea

is to have a black-box optimization method act as an overlaying meta-optimizer

[26] to discover the effective parameters for an optimization technique to enhance

some problems, as depicted in Figure 2.1.

Parameter tuning is divided into three layers [32], application, optimization

and configuration, which are incorporated together to tackle an optimization prob-

lem. However, as shown in Figures 2.1 and 2.2, we divide the entire search scheme

into two components, a main optimizer and meta-optimizer (tuner), to clarify the

main steps in adjusting the DE’s CPs. In Figure 2.2, the DE acts as the optimiza-

tion algorithm for locating the best/ optimal solution for the problem obtained

from the application layer while the other component (meta-optimizer or tuner)

operates as a behavioral modifier; it acts as a modifier for the optimization al-

gorithm configurations and parameter setting, achieving the best outcome in the

optimization algorithm. On other words, the optimizer component evolves a prob-

lem in the application layer and DE in the optimizer one to determine an optimal

solution. Conversely, the meta-optimizer component attempts to determine the

optimal choices of the DE’s parameters and configuration layer that can be used

in the configuration stage.

Of the variety of factors that influence DE, setting its CP process is not a

simple task. Based on the ‘how’ stages of parameter-setting approaches, there are

two classes: parameter tuning; and parameter control [20]. The former searches for
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Figure 2.2: Hierarchy of parameter control schema

acceptable values before running the algorithm, with its main drawbacks related

to: (a) the impossibility of trying all possible combinations; (b) its time-consuming

process; (c) the parameter values selected for a given problem not necessarily being

optimal even if the effort put into setting them is significant; and (d) using adaptive

processes and rigid parameters is contrary to this idea because EAs are dynamic

[11].

In parameter control, the CP values change during runs [33] according to

some defined rules based on four aspects: which parameters change; how the

control mechanisms are made; the scope of change at the population, individual

and sub-individual levels; and evidence of which points change [34].

To tackle the problem of choosing the CPs, Eiben and Schut (2007) classified

parameter control methods into four classes based on the ‘how’ criterion: (a)

deterministic; (b) adaptive; (c) self-adaptive; and (d) hybrid. However, Takahama

and Sakai (2012) categorized CP methods as: (a) deriving the parameter values

based on observation; and (b) performing more adjustments for successful cases.

A new taxonomy for organizing parameter control mechanisms [35] applied to

only the F and CR parameters is given by: (a) their numbers, i.e., continuous
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or discrete; (b) the number of them used per generation; and (c) the source of

reflected information.

Based on the previous discussion, it is difficult to classify DE parameter con-

trol methods using a unified and well-known taxonomy. In this thesis, we focus

on approaches involving ‘how’ criterion classes because our proposed methodolo-

gies in the next chapters follow this type of classification and categorize them as

three major types: (a) deterministic; (b) adaptive; and (c) self-adaptive, as

explained below.

A. Deterministic control methods

In deterministic control methods, the CPs are altered using pre-defined determin-

istic rules for assigning new parameter settings regardless of receiving any feedback

from the system, such as a fixed schedule and time-dependent change in the mu-

tation rates [14, 36]. Although replacing fixed CPs (i.e., parameter tuning) using

stochastic methods could help researchers easily tune the dynamic behaviour of

any optimiser, their settings should be chosen carefully at the beginning of DE

processing which could require a large number of samples [25]; for example, the

MDDE algorithm [37] initialises the parameters with relatively large F0 and CR0

values to prevent premature convergence and then monotonically decreases these

values over generations (g) in a geometric sequence according to

Fg := F0.exp(−a0
g

gmax
) (2.10)

CRg := CR0.exp(−a1
g

gmax
) (2.11)

: gmax is the maximum number of generations. Another example is L-SHADE [38]

in which the PS linearly decreases during the evolution process.
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B. Adaptive control methods

In adaptive control methods, the CPs are dynamically updated to incorporate

some feedback from the search procedure for adjusting them and determining the

directions and/or magnitudes of their changes [33]. This leads to their adaptations

being enhanced during running of the optimization process to achieve a reasonable

balance between exploration and exploitation in the search space [9]. Feoktistov

(2006) designed two paradigms for an adaptive control method. The first refreshes

a population-based approach which either changes bad individuals or pushes new

ones inside the population. These procedures are repeated periodically until the

diversity level reaches the stopping point to rebuild the population’s diversity.

It is expected that it improves the exploration of new parts in the search space

and increases the convergence ratio. The second is a parameter adaptation-based

approach which follows the state of the population [7].

C. Self-adaptive control methods

The parameters in self-adaptive control methods are directly encoded into the al-

gorithm itself and follow the co-evolutionary perception for selecting the CPs of

DE which is effective for decomposing the structure of a complex problem to im-

prove its performance [14]. In other words, the algorithm reconfigures by evolving

the parameters with encoded candidate solutions and combines the decision vari-

ables, with the better fitness values surviving so that the feedback from the search

process is fully utilized. Although this assists users to perform any intractable

task [39, 40], the convergence of such an approach is not guaranteed because the

DE norm in which it operates is random-based [12].
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2.2. Recent advances of automatic approaches

for DE parameter control

Deterministic parameter control strategies are usually conducted through trial and

error (empirical) processes which require long processing times with no guarantee

of achieving the best choice for the problem at hand. Therefore, investigating

adaptive and self-adaptive methods is necessary because they usually outperform

classical DE algorithms (i.e., DE without parameter control), as measured in terms

of their reliability and convergence rates for solving optimization problems. Tech-

nically speaking, in this thesis, we try to modify the values of the parameters of

DE with respect to the actual search progress while running the algorithm. As

previously discussed, there are two ways of achieving this. Firstly, some heuristic

rules which obtain feedback from the current state of the search are used and then

the parameter values subsequently modified (adaptive parameter control), for ex-

ample, as in JADE [42]. Secondly, it is better to incorporate parameters with the

candidate solutions subject to evolution (self-adaptive parameter control), as in

CoDE [48].

As previously discussed, it is very difficult to classify adaptive and self-adaptive

DE parameter control methods using any well-known taxonomy because some of

them combine multiple mechanisms that have different procedures. Consequently,

we discuss these methods according to their internal adaptation processes shown in

Figure 2.3 as follows: (a) DE adaptation methods with multiple strategies

and control parameter settings, (b) DE with only control parameter (F

and CR) adaptation, (c) DE that introduce new offspring strategy, (d)

DE with PS control.
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Figure 2.3: Classification of parameter control methods

2.2.1. DE adaptation methods with multiple strategies

and control parameter settings

Rather than using a particular strategy during the evolutionary process, DE meth-

ods can choose one from a pool of suggested ones incorporated with some specific

rules for adapting their F and CR.

To calibrate a DE algorithm’s evolution using a pool of candidate strategies

with different CP settings, a plethora of research studies have been undertaken

over the last few decades; for example, Tang et al. [41] included an individual-

dependent mechanism with a new DE, called IDE, which uses the information

of fitness differences to rank the population members and balance exploration
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and exploitation over runs. In this method, a collection of parameter values of

the mutation and crossover operators (F and CR) and four distinct mutation

strategies are used. It defines individuals based on their fitness ranks as inferior or

superior and then determines the appropriate CP values and mutation strategy

to be assigned for the process which is a very competitive approach. Another DE

based on an ensemble of parameters and mutation strategies [29] called EPSDE

defines a pool of three mutation strategies that ensure diverse characteristics (i.e.,

DE/best/2/bin, DE/rand/2/bin and DE/current-to-rand/1) with respect to the

crossover operator (i.e., binomial or exponential). It is worth noting that the

DE/current-to-rand/1 procedures use the special type of mutated recombination,

vi,G = xi,G +K ∗ (xr1,G − xi,G) + F ∗ (xr1,G − xr2,G) (2.12)

where K is an additional combination coefficient. Also, the F and CR are

defined within specific ranges of [0.4, 0.9] and [0.1, 0.9], respectively, both with step

sizes of 0.1. It selects certain values from the chosen collection for each individual

during the search process, particularly at the beginning (i.e., the initialization

phase) when each population candidate is assigned a mutation scheme and values

of F and CR for generating a trial vector, and then either the trial or target

vector is chosen as the surviving one. If the trial vector is replaced by the target

one, it follows the successful strategy in the following generation, otherwise the

target vector can either select a new strategy or retain the old one with the same

probability.

Using the diverse characteristics of mutation strategies that exhibit distinct

performance characteristics during different stages in the evolution of a particular

problem does not guarantee that the performance is reasonable while the evolution

progresses using the combination of a mutation strategy and CPs . In EPSDE, the

interactions between the intrinsic CPs are not elaborated and it is observed that its

different combinations of parameter settings for each test function cannot achieve
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the necessary efficiency to converge to the global optima for different test functions,

especially multi-modal and scalable ones, compared with state-of-the-art methods

over 10, 30 and 50 dimensions. SaDE [42] was proposed in order to incorporate two

additional mutation strategies from different learning ones, that is, ‘rand/2/bin’

and ‘current to rand/1/bin’ because the first could provide more exploration and

the other be effective for rotated problems, as represented in equations 2.2 and

2.3, respectively. To generate a trial vector, trial learning strategies with the two

parameters (F and CR) are probabilistically assigned to each target vector in each

generation using the corresponding probabilities gradually learned from previous

experiences of generating promising solutions.

In SaDE, as the crossover probability is assumed to be more sensitive to a prob-

lem’s characteristics [21, 42], it is accumulated from previous learning experiences

over generations and randomly generated according to an independent normal

distribution with a mean CRm and standard deviation of 0.1. To properly adapt

CR, the CRm is updated based on the successful CR values recorded. Although

SaDE is considered more effective and converges faster than other peer algorithms

tested, it seems that it converges much more slowly for some functions (i.e., the

shifted sphere, shifted Ackley, shifted rotated Ackley, shifted Griewank’s, shifted

Rastrigin’s and other composition ones). Also, it does not successfully optimize

the shifted Schwefel’s function with noise, and the shifted rotated Rastrigin’s and

composition Ackley functions for high-dimensional problems.

Wang et al. [43] developed a new adaptive DE algorithm, called composite DE

(CoDE), the main principle of which is to randomly combine three well-studied

learning strategies with three parameter settings in each generation and generate

a trial vector according to its function scheme. In order to generate trial vec-

tor candidates with different characteristics, the three strategies, DE/rand/1/bin,

DE/rand/2/bin and DE/current-to-rand/1, and three popular parameter settings

(F = 1.0, Cr = 0.1;F = 1.0, Cr = 0.9;F = 0.8, Cr = 0.2) chosen have distinct

effects and suppose different search behaviours of the algorithm; for example,
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(F = 1.0, Cr = 0.9) provide high degrees of variation and perturbation to the

donor and parent, respectively, with most components of the trial vector com-

ing from the donor one which results in exploration of the search space while

(F = 0.8, Cr = 0.2) do the opposite, that is, facilitate exploitation of the space

around the target (parent) vector.

Wenchao et al. [44] provided a hybrid DE method (HSDE) which integrates

two mutation strategies with a co-existing self-adaptive parameter control method

[40]. It applies two mutation strategies (i.e., DE/rand and DE/current-to-best)

to balance the exploration and exploitation strengths of DE while the F and CR

are generated according to jDE [40] to effectively control them using a feedback

indicator.

Ghost [45] proposed an effective adaptation strategy which aims to tune the

F and CR based on their objective function values of the population members

during the course of a run to run DE automatically. An executive comparison of

different variants and some real-life engineering problems reveals its superiority

for achieving better solutions with acceptable convergence speeds. A novel DE

algorithm with an intersect mutation operator for improving the global search

ability, called IMDE, is proposed in [56]. In it, the population is categorized into

two groups, superior and inferior individuals, according to their fitness values,

with different mutation strategies playing different roles in different groups. The

experiment results showed that, empirically, this algorithm is relatively better than

jDE [40] and other state-of-the-art EAs.

DMPSADE was implemented by Fan and Yan [46] to act for self-adaptive

parameter control and mutation strategies. In it, each variable of an individ-

ual has its own mutation parameter and each individual is evolved using a dif-

ferent crossover parameter and one of five mutation strategies, i.e., DE/rand/1,

DE/rand-to-best/2, DE/rand-to-best/1, DE/best/2 and DE/rand/2. The F and

CR are generated by a normal distribution function and, based on their perfor-

mance rankings, a successful combination for the next generation is found. In
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the experiments, more than 25 test functions with different dimensions were as-

sessed and compared with other DE variants, with the statistical results implying

that DMPSADE produces an overall outstanding performance in terms of solution

quality.

Elsayed et al. [47] introduced a new DE variant algorithm called SAMODE

which uses different mutation strategies with distinct characteristics. It selects

one during the evolutionary process from a pool of suggested mutation operators,

each with an equal chance of being selected during the search stages. It divides

the population into four parts, each of which executes one mutation strategy on

its individuals. Recently, based on a/the multi-operator framework, Elsayed et

al. [48] presented a self-adaptive parameter control technique called UMOEA. In

it, the population is clustered into three sub-populations of similar sizes to each

of which a multi-operator algorithm is independently applied. The success rates

for some fixed numbers of generations are recorded to determine the best multi-

operator for the next generations. The UMOEA demonstrates great performances

for different testing functions with less time complexity than other algorithms as it

uses the three operators for only half the number of maximum evaluations rather

than the whole evolutionary process.

Another adaptation of a parameter candidate pool called TSED is introduced

in [59]. As the evolution progresses, the process is split into two stages according

to the number of fitness evaluations whereby different mutation strategies are

implemented with corresponding settings to obtain balance between exploration

and exploitation in different stages.

More recently, Rammohan et al. [49] proposed a multi-population DE variant

with an ensemble of learning strategies called MPEDE. In it, the entire population

of size NPw is divided in each generation into four equal parts, three indicator

sub-populations of the same size (NP1, NP2 andNP3) and one relatively large

reward one. Three distinct mutation strategies are assigned for each indicator

sub-population and a constituent mutation for the reward one. Subsequently,
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while the search proceeds, the best-performing mutation strategy captured will

consume more computational resources in the following generations. The mutation

performance can be assessed by the ratio of the fitness improvements to function

evaluations consumed as

pm,i = ∆fj
∆FESj

(2.13)

2.2.2. Adaptation of F and CR DE control parameters

Many studies [19, 32, 34] have been conducted to individually adapt DE’s CPs; for

instance, Liu and Lampinen [50] developed a new DE called a fuzzy adaptive DE

(FADE) based on the fuzzy logic technique in which a fuzzy logic controller (FLC)

applies IF-THEN rules based on previous knowledge to gain broader knowledge

[50]. The F and CR are adapted using FLCs, the inputs to which are provided with

their function values. These parameters reflect the population’s information (i.e.,

their parameter vectors and function values, and changes during the search pro-

cess). Their results outperform those from the classical DE for higher-dimensional

problems.

Some optimization algorithms rely on probabilistic models, such as covariance

matrix adaptation (CMA) [51, 52], that maximize the reproduction growth in a

search’s path. Wang et al. [52] suggested a new approach called CoBiDE which

dynamically adapts the F and CR using the covariance matrix’s learning and bino-

mial distribution parameters to achieve equilibrium between the exploration and

exploitation of DE. A covariance matrix is used in CoBiDE to implement a coor-

dinate system for the crossover operator with the binomial distribution including

the two Cauchy distributions
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FG =


randc(0.65, 0.1) ifrand(0, 1) ≤ 0.5

randc(1.0, 0.1) otherwise

(2.14)

CRG =


randc(1.0, 0.1) ifrand(0, 1) ≤ 0.5

randc(0.95, 0.1) otherwise

(2.15)

where rand is a random uniform number∈ [0, 1] . Overall, the performances of

CoBiDE is effective because it can compute the central parameters precisely.

A self-adaptive DE for estimating the CPs is the jDE technique designed by

Brest et al. [12] in which the F and CR values are encoded into individuals

and initialised using F = 0.5 and CR = 0.9 for each individual. Then, they

are reproduced using uniform distributions of [0.1, 1] and [0, 1], respectively, with

respect to the probabilitiesτ1 = τ2 =0.1. New F and CR values generated over

generations are calculated by

FG+1 =


Fl + rand1.Fu ifrand2 ≤ τ1

Fi,G otherwise

(2.16)

CRG+1 =


rand3 ifrand4 ≤ τ2

CRi,G otherwise

(2.17)

where rand1, rand2, rand3 and rand4 are random numbers, which follow a uniform

distribution of [0, 1], whereas Fl and Fu are initialized by 0.1 and 0.9, respectively

with the range of F values [0.1, 1], and τ1 = τ2=0.1. In [53], another adaptive

approach for computing the F and CR based on an exponential weighted moving

average called EWMA-DECrF is proposed. The results of this study show rea-

sonable performances compared with those of some variants. Sarker et al. [54]

designed a dynamic selection method for choosing the desired combination of pa-

rameter settings, which ranks them in subsequent generations. Recently, Corriveau
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et al. [55] developed a genetic adaptive method based on the Bayesian network

(BN) called BNGA, where the BN represents a graphical model for optimising the

relationships between the GA parameters which are updated depending on a new

reward emanating from the entire DE process.

Tanabe and Fukunaga [56] presented an improved version of the JADE algo-

rithm [42] called SHADE, both of which update the F and CR values based on

the probability distribution of the successfully yielded offspring. However, SHADE

samples the F and CR using the historical archives of recent generations which en-

hances its performances, to analyze which it was tested using the IEEE CEC2013

competition and ranked third of 21 algorithms. Tanabe and Alex [38] further

extended the SHADE algorithm in a new version called L-SHADE in which the

population size (PS) linearly decreases during the search progress. It can auto-

matically adjust the F,CR values based on their success-history adaptations. The

experimental results show that it outperforms SHADE and other peer variants

but requires more space resources to maintain three archives for the solutions and

CPs.

Elsayed et al. [57] proposed an improved algorithm called DE-APC which

finds the most appropriate parameter settings for the F and CR. Two sets of

the F and CR are defined, with each individual in the population generating a

random combination of their values. For a specified number of iterations, the

ranking of each combination is calculated to decide which will remain for the next

generations. When applied to a set of problems, this algorithm demonstrated its

high-quality solutions.

Yu et al. [58] presented an individual-dependent parameter control adaptation

method called ADE which has two main components. The first is implemented in a

new mutation strategy (DE/lbest/1) which is a variant of DE/best/. It guides the

search toward multiple locally best individuals instead of only one global best in

order to obtain a balance between population diversity and fast convergence during

the search process. The second contains an adaptation function involving two main
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steps. The first adapts the F , CR parameters at the population level according

to the nature of the population (i.e., optimization states) while, in the second,

an individual’s F and CR values are adjusted by the population-level parameters

in which the individual’s fitness values and the distance of any individual from

the global best are computed. In this approach, the parameters can estimate

both the evolution’s state (i.e., explorative or exploitative) and the individuals’

characteristics, with the state of the population of a generation estimated using

an indicator of the current evolution’s state as

IOS =
PS∑
i=1
|fi − di| (2.18)

where the individuals are first sorted based on their fitness values according to

their (f ) fitness ranks, and then the distance of the best-fit individual with a di
distance. An IOS refers to the exploration and exploitation states being high and

low, respectively. The F,CR values at the population level are estimated using

the evolution state as

F t
p =


F t−1
p + cp∆Fp if(population : explorative)

F t−1
p − cp∆Fp if(population : exploitative)

(2.19)

CRt
p =


CRt−1

p + cp∆CRp if(population : explorative)

CRt−1
p − cp∆CRp if(population : exploitative)

(2.20)

∆Fp,∆CRp =


IOS−IOSmin

IOSmax−IOSmin
if(population : explorative)

IOSmax−IOS
IOSmax−IOSmin

if(population : exploitative)
(2.21)

where cF=0.1 and cCR=0.05 are used for estimating the F,CR. This algorithm is

competitive with peer ones although it requires several computations which lead

to it being complex for handling high-dimensional problems.
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In a new self-adaptive DE introduced by Mallipeddi et al. [59], a Guassian

Adaptation (GaA) is applied to adjust the F,CR parameters. This is a stochastic

process based on maximizing the entropy (H) of a multivariate Gaussian distri-

bution with its mean (m) and variance information (C) as

H = log(
√

(2πe)Ddet(C)) (2.22)

The GaA has a threshold for the fitness-dependent acceptancecT , which is

reduced until the convergence criteria are satisfied. This algorithm was tested

on 25 problems with different dimensions and, although it showed remarkable

performances in terms of solution quality, its complexity increases with increases

in its algorithmic dimensions.

2.2.3. DE methods with new offspring strategy

Researchers have tried to develop new learning strategies, including different forms

of decision vectors, to improve the search procedure; for instance, Zhang et al. [60]

used a new mutation strategy, ‘DE/current-to-pbest’ with an optional archive. It

is the basis of the adaptive DE algorithm for adapting the F,CR called JADE in

which the strategy can interact with or without the archive whereby the mutation

vectors are generated, respectively, as

vi,G = xi,G + F ∗ (xpbest,G − xi,G) + +F ∗ (xr1,G − xr2,G) (2.23)

vi,G = xi,G + F ∗ (xpbest,G − xi,G) + +F ∗ (xr1,G − x̃r2,G) (2.24)

where xpbest,G is randomly chosen from the top 100p of the current individuals in

the population with p ∈ [0, 1] as well as F is the scaling factor, which is updated

per generation in the adaptive manner xi,G, xr1,Gand xr2,G are randomly chosen
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from P, but x̃r2,Gobtained from the union of the current population and the archive

in equation 2.24.

This parameter adaptation is performed automatically and does not require

any prior information [43]. The F,CR values are sampled using the Cauchy and

normal distributions of their respective mean values which are updated by the

individual ones successfully generated as better trial vectors than the target ones.

JADE is considered a competitive DE variant because it incorporates the best

solution information in the evolutionary process and maintains a high level of reli-

ability. However, despite the benefits of incorporating this information, it could/-

can cause problems, such as premature convergence due to the resultant reduced

population diversity. Moreover, it incurs a higher computational cost than other

DE variants.

Wang et al. [61] used the cumulative distribution information of a population,

which implements an Eigen coordinate system to the crossover operator, called

CPI-DE. This operator is executed for the original and Eigen coordinate systems,

with the better offspring selected for the next generations.

Wenyin and Cai [62] developed a different strategy for the mutation operator,

claiming that it is better for the difference vectors used in mutation to be selected

based on their fitness rankings instead of randomly selected from the population.

This proposed mutation enhances the original DE’s exploitation capability with

no increase in its complexity. The population is ascendingly sorted according to

the individuals’ fitness values and then the ranking measure for computing the

decision vector (xi) is calculated as

Ri = PS − i (2.25)

In order to select the new vectors for mutation, the selection probability (pi)

is estimated as the ratio of the ranking measure to the PS as
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Pi = Ri

PS
(2.26)

DE was improved by Zhou et al. [63] who modified the mutation and crossover

schemes for generating new vectors. This method, IMDE, improves the search

proficiency with two main processes employed for the next generation’s population.

In each generation, the whole population is sorted ascendingly and separated into

two portions, better and worse solutions, by applying two different variants. In

more detail, the better part in the first variant uses the DE/rand/1 mutation

strategy with the worst part and other two difference vectors chosen from the

better part. While the second variant uses a new mutation strategy (i.e., DE/

current-to-best/bin/1), its vectors are selected according to the part to which it

applies. The first and last vectors are chosen from the worst part and the others

from the best one. The main issue of this algorithms is that, to determine the

proportions for the global search capability, the additional parameters have to be

carefully chosen.

To speed up the convergence of DE and escape the local optimum, Wen et

al. [64] proposed new learning strategies for mutation inspired by the 2-Opt al-

gorithm [90] using the two mutation schemes DE/2-opt/1 and DE/2-opt/2 rather

than DE/rand/1 and DE/rand/2, respectively. The original 2-Opt algorithm at-

tempts to find routes in the travelling salesperson problem, such as, in [90], using

self-crossing which offers a powerful opportunity to avoid local optima. There-

fore, it replaces the DE/rand/1 and DE/rand/2 strategies by exchanging the new

individuals in the population while the mutation operates. It is worth mention-

ing that the base vectors in these two new mutation schemes always have better

objective values than the first difference vector. However, although they achieve

good performances, they require long processing times to ensure the superiority of

the selected vectors.
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Wang et al. [65] proposed a DE framework called OXDE which uses an or-

thogonal crossover operation instead of a binomial or exponential one to generate

enhanced solutions, with this crossover adjusted using a quantisation methodology

(QOX) [91]. In it, the QXD is combined with DE in each generation to obtain

the advantages of both techniques but it consumes high amounts of computational

resources while running.

Several studies [19, 65, 66] have tried to enhance the performance of DE by

adapting its crossover operator. The binomial crossover is widely used in different

DE variants because of its capability to handle rotated and invariant function

landscapes in order to provide better trial vectors. Yong et al. [52] replaced

the standard co-ordinate system with an appropriate one using covariance matrix

learning based on the distribution of the current population to generate a new trial

vector. However, it degrades the performance of DE for some complex landscapes,

such as multimodal, rotated problems, because establishing such a matrix requires

using some of the best population vectors and to adjust its new CPs is an arduous

task.

Although DE has a mutation operation that helps to explore new solutions in

order to obtain optimal results, researchers have not focused on designing decent

strategies for efficiently handling complex problems which requires careful analysis

to choose the correct mutation vectors. However, these vectors are currently ran-

domly selected without further analysis of the neighbourhood information which

could properly guide the search process. Also, the best solutions in the population

are exploited while the others are ignored whereas determining the latter in depth

would improve the performance of DE. Cai and Wang [88] proposed two schemes

for directing a search towards the desired solutions without exploring undesired

areas using the neighbourhood and directional information of the population in-

volved in the search procedure to relatively enhance DE’s performance. Firstly,

a neighbourhood-guided selection scheme selects the mutation vectors, such as

probability selection operators calculated by the neighbourhood information (i.e.,
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Euclidean distance measure), as the individual’s probability is inversely propor-

tional to its distance.

A roulette wheel method is applied to select three vectors to estimate their

probabilities, with the base one the champion vector of the tournament. Secondly,

a direction-induced mutation strategy uses the direction information to generate

a new vector called a direction one which is accumulated with the other vectors

obtained from the neighbourhood-guided selection scheme. Then, the nearest best

and nearest worst neighbours are calculated by the maximum ratio of the fitness

difference to Euclidean distance between the two vectors (xi and xj). Based on this

information, three types of directional characteristics designed are Directional At-

traction (DA), Directional Repulsion (DR) and Directional Convergence (DC) [67].

Finally, the two components, the neighbourhood-guided selection and direction-

induced mutation, are combined to design the NDi-DE framework. Although this

framework is effective in terms of results, its complexity is quite expensive because

it consumes high amounts of resources to compute its components.

2.2.4. DE with PS control

As the PS is one of DE’s CPs, it has some attraction for researchers and a few

studies have concentrated on controlling it using a DE methodology; for example,

Brest and Maucec [68] proposed a new mechanism called jDElscop for adapting

the population with three different parameter-learning strategies which uses jDE

as a baseline algorithm and involves three well-known variants of the F,CR (i.e.,

jDEbin, jDEexp and jDEbest). In each iteration, only one strategy is active and

then an/the iterative DE procedure is applied, with the F,CR values updated in

the iterations similarly to equations 2.16 and 2.17 but for different strategies as

FG+1,S =


F S
l + rand1.F

S
u ifrand2 ≤ τ1

F S
i,G otherwise

(2.27)
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CRG+1,S =


CRS

l + rand3.CR
S
u ifrand2 ≤ τ1

CRi,G otherwise

(2.28)

where the lower and upper boundaries of F S
l , F S

u , CRS
l , CRS

u can be set for

different strategies S = 1, 2, 3, for example, if s = 1, then the bounds of F and CR

are [0.1, 1] and [0, 1], respectively. It offers a population reduction method with a

pre-defined schedule for reducing the PS whereby the population is divided into

some parts with some strategies applied to each one. In this way, individuals

can compete with their corresponding offspring in the same strategy period which

helps to avoid stagnation during the search process. The computational budget

of this mechanism is expensive and increases considerably for high-dimensional

problems.

Later, Brest et al. [69] improved the jDE using two mutation strategies com-

bined with a population reduction mechanism, which are dependent on the PS

that reduces with increases in the number of function evaluations. The results

obtained from assessing this algorithm using a toolkit of CEC2011 proved that

its performance is reasonable compared with those of two existing algorithms. In

[70], a population reduction mechanism based on jDE with two learning strategies

and a structured PS reduction procedure is called SPSRDEMMS.

Yang et al. [71] introduced a population adaptation technique in which the PS

is regenerated based on the loss of diversity whereby, if there is poor population

diversity or stagnation occurs, it is adapted using the Euclidean distance measure

to increase diversity and avoid stagnation. This technique is capable of identifying

the loss of diversity or stagnation time using an indicator instead of monotonically

reducing it. However, computing the Euclidean distances many times is computa-

tionally expensive. Gonuguntla et al. [72] extended the technique in [59] whereby

the Gaussian adaptation technique is accumulated for population adaptation. It

samples a huge number of solutions and then, for each generation, a fixed num-

ber of individuals is selected from the large set either randomly or based on the
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distribution of the objective values using/in the current evolution.

Zhu et al. [73] proposed an approach for dynamically adjusting the PS via

the search process in a specific range. In each iteration, it monitors the status of

the search space to keep track of an individual’s progress to determine whether

the current/concurrent PS needs to increase or decrease; for instance, if no bet-

ter solution is detected in the next generations, the new population is provided

with new individuals. However, if the DE finds one or two better solutions, the

redundant solutions in the population should be eliminated to remove redundancy

and reduce the computational load. If the population’s individuals stagnate for

some generations at either the lower or upper search boundary, the population

is updated in accordance with this boundary. In order to decrease the PS, the

iterative solutions are sorted ascendingly and their rankings calculated as

ranki = quo(fi − fmin,
fmax − fmin

ω
) (2.29)

where quo is calculated by considering the floor by dividing fi − fmin, which rep-

resents the difference between the fitness of the solution i and the lower fitness

boundary, and fmax−fmin

ω
, which refers to the interval length. The ranking of the

ith solution should belong to [0, ω], signifying its location in the objective space, in

which ω = b0.8 ∗ PSc. For each individual, the ranking of solutions is transformed

into being probability-based and calculated based on their ranks to represent their

locations with [0, 1] values instead of [0, ω]. Some of elite individuals are selected

and new solutions are generated by perturbing them to increase the population

size and avoid the stagnation as well as premature convergence. However, this

approach requires other new parameters to detect the status or generate new in-

dividuals.

Teng et al. [74] proposed a self-adaptive PS methodology based on two encod-

ing approaches, absolute and relative, namely DE-Abs and DE-Rel, respectively.

The former sets the PSs of the next iterations as the average of that of the current

37



one while the latter uses the growth rate of the population rather than its absolute

value.

A novel self-adaptive technique for dynamically controlling the PS parameter

without setting it a-priori, namely DEAPS, was proposed by Leung et al. [75]. In

it, the main objective is to preserve a/the proportion of the centre of the population

in relation to the standard deviation of the whole population as constant. More

precisely, if the proportion is greater or less than a pre-defined threshold, the PS

increases or decreases, respectively.

2.3. Constrained Optimization

COPs often appear in real-world problems as either minimization or maximization

problems subject to a set of constraints which have to be satisfied to obtain any

feasible solution. The mathematical process of a COP is as follows.

Minimise f (−→x )

subject to :

Ld ≤ xd ≤ Ud , d = 1, 2, ....D

gi(−→x ) ≤ 0 , i = 1, 2, ....IQ

hj(−→x ) = 0 , j = 1, 2, ....EQ (2.30)

where f(x) is the objective function to be minimized and −→x = [x0, x1, ..............xD]

the dimensional vector of D decision variables. Each vector should be defined

within the lower and upper boundaries (Ld and Ud, respectively) with gi(−→x ) and

hj(−→x ) the ith inequality and jth equality constraints, respectively. Any solution

in the search space can be defined as feasible or infeasible according to its level of

constraint satisfaction. If −→x can satisfy all the equality and inequality constraints
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within the defined boundaries, it is called a feasible solution, otherwise an infea-

sible one. It is necessary to point out that, as EAs were originally used to solve

unconstrained problems, COPs need additional techniques for handling their con-

straints. Therefore, different Constraint Handling Techniques (CHTs) have been

combined with optimization algorithms to solve them.

A COPs’ solution is considered an optimal one if two main characteristics are

achieved, that is, it is feasible and has the minimum fitness value (i.e., objective

function value). COPs can be categorized in different classes according to their

properties, such as their functions could be unimodal or multimodal, discrete or

continuous and the data types of their decision variables real or integer while the

feasible area can be a small or large portion of the whole search space [4].

It is worth noting that all these characteristics influence the choice of op-

timization methods for solving COPs to simultaneously achieve feasibility and

optimality [76]. Also, any problem without an EQ or IQ problem is considered an

unconstrained optimization one that achieves optimality but not feasibility.

2.3.1. Constrained Handling Techniques (CHTs)

EAs have proven their success for solving unconstrained optimization problems,

with mainly meta-heuristic algorithms used during the last few decades. However,

as the other constrained functions involved in COPS (i.e., equality or inequality)

lead to more difficult optimization problems, it is necessary to adopt some ap-

proaches for solving them, with CHTs having been incorporated with EAs to deal

with constraints [76] (both equality and inequality) with the fitness function.

CHTs can be categorized as different basic techniques [77], with the most pop-

ular: (a) penalty functions; (b) distinction of objective functions and constraints;

(c) stochastic ranking; (d) the ε-constraint method; and (c) multi-objective con-

cepts. The first two are considered classical or early CHTs while the rest are

currently used, with the most frequently used ones described below.
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A. Penalty functions

This is the most common technique for handling constraints. In it, a penalty term

is added to the fitness function with the aim of transforming a constrained problem

into an unconstrained one based on its constraint violations. The main reason for

this is to reduce the chance of obtaining infeasible solutions.

This can be accomplished by adding or subtracting the value of a current

constraint violation from the objective function depending on the type of problem

(i.e., minimization or maximization). Mathematically speaking, there are two

kinds of penalty functions, interior and exterior. For the latter, a small penalty

value is added or subtracted to the feasible points inside the feasible region while

the former starts from infeasible solutions and propagates towards feasible ones

[78], with the basic form of a new penalty function described as

newfpenalty(−→x ) = f(−→x ) +
 IQ∑
i=1

φi ∗ gi +
EQ∑
j=1

γj ∗ hj

 (2.31)

whereφand γjare the penalty’s constant factors, giand hjare the inequality and

equality constraints, f(−→x ) is the original objective function. There are different

approaches for using penalty functions in EAs [122, 119], as explained below.

• The death penalty function is the simplest and most popular method for

handling COPs, where infeasible solutions are rejected from the population

by assigning their fitness values to zero. However, it is only suitable and

considered efficient for problems in the feasible search region which is a

fairly large part of the whole search space [78] and, for a problem with high

constraints, too much time is required to find a feasible solution. Moreover,

exploiting the search process based on the feasible space without considering

the infeasible information limits the possibility of finding better solutions

[79].
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• The static penalty function uses the same value constant as the penalty

factors during the evolutionary process. Although an advantage of this ap-

proach is that its parameters do not depend on the number of generations,

as it seems that it is not a good idea to generalize the penalty factors for

all problems as they are problem-dependent, it is necessary to adapt a large

number of parameters [79, 80].

• The dynamic penalty function is a type of penalty approach in which the

stages in the evolutionary process that are involved as the penalty factors

increase over time. In other words, for more generations, the values of these

factors increase. Although many researchers have recommended using the

dynamic rather than static penalty method for any arbitrary COPs [4, 81],

its parameters must still be chosen carefully for good optimization.

• The adaptive penalty functionmaintains the diversity of a population. In

it, the penalty factors are iteratively re-formed as the number of generations

increases according to the fitness information of the best solution obtained

from a set of generations. Updating these penalty parameters requires using

the information of the optimal individual with the least fitness regardless

of its constraints. Its main disadvantage is the way in which it chooses a

threshold to guide the search towards feasibility [76, 82, 83].

• The annealing penalty function mimics the idea of the simulated anneal-

ing algorithm in which all the constraints involved are separated into four

sets: linear equations and inequalities; and non-linear equations and inequal-

ities. Then, it initiates a starting point for establishing an active constraint

set. Its main interesting idea is its use of a cooling factor to update the

penalty parameters to prevent it becoming stuck in local optima [78, 84] but

it is very sensitive to the settings of these parameters’ values.

• The segregated EA uses two penalty parameters for two different popula-

tions to balance their high and low penalties. Its main issue is that choosing

these penalties takes a long processing time.
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B. Distinction of objective function and constraints

To handle constraints through an evolutionary process, the search is divided into

the two main steps of handling the constraints and isolating the objective function.

The first aims to find feasible solutions without considering their objective values

while the second attempts to obtain the best objective function value [78, 85]. Two

techniques are used to handle the constraints of a COP based on the distinction

between its objective function and constraints.

Firstly, the technique for determining the superiority of the feasible points [85]

considers any feasible solution superior to an infeasible one and can handle them

subject to the following three main rules [86].

• If there are two feasible solutions, the better objective value is chosen to

survive.

• If the first solution is feasible and the second is infeasible, then the feasible

is preferred.

• If the two solutions are infeasible, the solution with the least sum of con-

straints violations is better.

Despite the capability of this technique to direct the search towards the feasible

region, it loses diversity in the population [85, 86].

Secondly, a multi-objective optimization technique based on a multi-objective

optimization principle, such as Pareto dominance, population-based selection and

Pareto ranking, is used [87]. In it, a constrained problem is transformed into a

bi-objective one in order to handle the objective function and constraints sepa-

rately, that is, each constraint is considered an additional objective function. This

technique is considered simple for applying to solve a COP because there is no

need for extra updating of its fitness values. However, it could require additional
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parameters to handle the constraints and consumes a high amount of computa-

tional resources. It is the same idea of multi-objective optimization evolutionary

algorithms, which comprise two inconsistent objectives such as the DE in feature

selection (DEMOFS) [88].

C. Stochastic Ranking (SR)

SR was developed by Runarsson and Yao [89] to handle the constraints of non-

linear problems. It can overcome the disadvantages of using penalty methods,

particularly inappropriate selections of the penalty parameters. It uses a bubble

sort based on the problem’s constraint violations to rank the candidates in the

population and swaps every two adjacent individuals to reduce the number of

infeasible solutions reaching feasible ones until all have been swapped. In it, FSR
is a user-defined parameter for randomising between infeasible solutions in the

selection process according to their constraint violations and objective functions

[89]. Although it is simple in terms of processing, it cannot preserve the level of

diversity during the evolutionary process.

D. ε-Constraint method

The ε-Constraint method method defines two levels [90]: (i) a feasibility one for

the constraints of a problem called a relaxation parameter; and (ii) an ε level

which defines a mechanism for lexicographic order that easily handles the equality

constraints [85, 90]. A constraint violation precedes an objective value as the

feasibility of any individual which is very significant as this minimises the objective

function. Unlike previous approaches, the ε-method can retain the diversity of the

population but its extra parameters are an issue.
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2.4. Recent advances of handling constraints in

DE

Because of the significance of solving COPs in the real world, CHTs have become

essential supplements for improving the performances of EAs, particularly DE.

Several researchers [91] have undertaken to improve DE methods to address con-

straint problems using different approaches: (i) directly combining CHTs with

DE; (ii) incorporating repaired methods in DE; and (iii) hybridising an

ensemble of CHTs or any other EA operators and methods.

2.4.1. Combining CHTs into DE

Over the last few decades, many studies [82, 92] have suggested solving COPs

by incorporating CHTs with EAs, in particular DE, through either proposing a

new CHT, new DE operator schemes or multi-objective optimisation techniques,

as discussed below.

A bi-objective optimisation problem degrades the constraint violations for in-

feasible individuals and enhances the objective functions for feasible solutions [76].

In [84], the authors formulated a co-evolutionary dual-population DE (DPDE) al-

gorithm in which the initial population is divided into two sub-populations, one

containing infeasible solutions and the other feasible ones, with each handled sep-

arately by randomly selecting the mutation difference vectors as follows. Firstly,

the base vector and terminal point of the difference vector are chosen from the

target vector’s sub-population, secondly, the third vector is arbitrarily selected

from the entire population and, finally, information is shared amongst the differ-

ence vectors. This algorithm was evaluated on 35 test functions (CEC2006 and

CEC2010 datasets) and shown to be significant compared with other algorithms.

However, in some cases, this strategy could drive some feasible solutions towards

infeasible regions.
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A new CHT called MRS (multi-objective optimisation-based reverse strategy)

[82] uses two main steps. The first, which is based on transforming a C-constraints

problem into a C-objective one and then selecting the best feasible individual from

the objective value of the current generation, is denoted as gbest [82]. In MRS, the

objective function is a constraint and its value has to be less than or equal to gbest,

with the Pareto dominance used as the selection operator in DE to determine the

individuals to survive in the next generations. The experiments showed that it

performs better than other algorithms except that, for equality constraints, it

considers finding feasible solutions a difficult optimisation task.

In 2012, Haibo and Rangaiah[92] introduced a new CHT for handling equality

and inequality constraints in an integrated DE (IDE). It uses an adaptive con-

straint relaxation function incorporated with a selection feasibility approach, with

the constraint relaxation rate dependent on the proportion of feasibility (i.e., num-

ber of feasible individuals). Although it performs well for solving test benchmark

functions and some application problems, solving the latter requires expensive

computations to obtain promising results. Later, Guohua et al. [93] proposed a

new strategy for reducing both the equality constraints and variables involved in

COPs (ECVRS). It exploits the relationships between them using a local search

technique with equality constraints and demonstrates significant results.

In addition to the new CHTs, a new DE algorithm for determining the most

suitable environmental economic dispatch (EED) strategy called DEFS was de-

veloped by Pandit et al. [94]. It employs a fuzzy selection mechanism in which

the fuzzy logic used in the selection phase ranks each individual solution in the

population with respect to multiple objectives. It also maintains diversity while

satisfying the objective constraints and demonstrates effective results for an EED

problem.

Zhang and Duan [95] introduced an improved selection DE operator called

mDELC. This approach is based on involving an ε-CHT with the selection operator

in DE so that the global search performance of DE can be enhanced. The ε value
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indicates the priority level (i.e., scaler parameter) for comparing two solutions

and its value is dynamically updated when dealing with a small feasible region,

where the information of the early infeasible solutions obtained is used. This

proposed algorithm was compared with the original DELC and other state-of-the-

art algorithms using a route-planning problem, which resulted in it being capable

of determining an optimal feasible route. However, although this approach can be

appropriate for solving some constraint problems, it is not suitable for all.

As the mutation operation is one of the core procedures in DE, many re-

searchers have focused on improving its search capability; for instance, an adaptive-

ranking mutation operator (ARMOR) was employed in DE [96] in 2015. In it, the

solutions are adaptively ranked according to their status in the current genera-

tion and classified as feasible, infeasible and semi-feasible. Feasible solutions are

treated as unconstrained problems and ranked based on their objective values, in-

feasible ones sorted according to their constraint violations and semi-feasible ones

ranked based on transforming the fitness model. The selection probability for

each solution in the current population is calculated according to its classification

for generating a trial vector. The base vector and terminal point of the differ-

ence vector in the mutation strategy are randomly chosen based on the selection

probability and the other vectors.

Recently, Wei et al. [97] proposed a novel constrained DE framework called

MS-CDE in which the current population is sorted using the fitness and diversity

information. It uses non-dominated sorting of previous information to rank the

parents in the same front as that chosen for the mutation operator. Although the

authors consider that its generality can be applied to other CDE variants, despite

this and its simplicity, it incurs additional computational costs for its diversity

and sorting calculations.

A new mutation scheme called COMDE for obtaining fitter solutions in DE

was proposed [99]. In it, the difference vectors are chosen based on the global
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best and worst vectors in the population with a 0.5 probability, instead of being

randomly selected, as

if (rand[0, 1] ≤ 0.5) (2.32)

then vi,G+1 = xi,G + Fl ∗ (xbest,G − xworst,G)

Else vi,G+1 = xr1,G + Fg ∗ (xr2,G − xr3,G)

Also, the selection procedure is used to choose the trial vector in subsequent

generations according to the following three criteria for handling a problem’s con-

straints.

• If both vectors are feasible, the one with the lowest fitness value has to

survive.

• If both vectors are infeasible, the one with the fewest constraint violations

is preferred.

• If the mutant vector is feasible and the target one infeasible, the mutant is

better.

Constrained problems are considered complex because they not only have to opti-

mise the objective function but also determine the imposed constraints. Therefore,

the best way to handle one is to quantify its constraint violations and its objective

function so that each solution can be properly optimised [76].

Wang and Cai [96] integrated a (µ+λ)-DE with an improved ATM, named

(IATM), which first normalises each constraint violation ((µ+λ)-CDE) in order

to proficiently handle COPs. Each solution vector uses three mutation strategies

(rand/1, current-to-best/1 and rand/2) and then the selection process-based ES

is applied to determine which of a parent and new offspring can be allocated to
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the next generation. The main disadvantage of this technique is that the tolerance

parameter for the equality constraints is set as a constant value. Later, Jia et al.

[97] proposed a new variant of (µ+λ)-DE called ICDE that dynamically changes

the tolerance, with an archive-based ATM (ArATM) using infeasible individuals

to maintain the population’s diversity.

2.4.2. Repairing methods for EAs

Since constraint gradient information can be used to steer an infeasible solution

towards a feasible one, some researchers have focused on using it to modify a/the

constrained DE to enhance CHTs; for instance, Tetsuyuki and Sakai [90] intro-

duced a ε-constraint method with an archive gradient-based mutation incorporated

in DE called εDEag. It can maintain diversity by storing solutions in an archive

with the ε-level parameter adopted to solve some well-defined constrained prob-

lems. The infeasible solutions obtained in each generation are repaired to feasible

ones using the gradient matrix. The authors claim that the results of this technique

are competitive with those of peer techniques but its processing is expensive.

More recently, Luo et al. [98] suggested an approach for selecting the infea-

sible solutions to be repaired rather than choosing them randomly as in [90]. It

combines SRS with the εDEag algorithm and is called SRS-εDEag. In it, the

whole population is classified into species using a clustering method [99] and then

a number of the fittest infeasible solutions in each, as determined by the ratio of

them to the feasible solutions in the same species, are repaired. The experimental

results demonstrated that this algorithm achieved better results for most of the

tested problems than the original εDEag.

Alducin et al. [100] proposed a coupling of two DE variants for solving dynamic

COPs called DDECV+. In it, the two variants, DE/ rand/1 and DE/best/1, are

combined with a repair method for re-sampling based on a mutation scheme, with

the repair method applied only if the mutant vector is infeasible. From extensive
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comparisons of its results, DDECV+ shows faster recovery than other algorithms

but the main concern is the time it takes to repair all the generated infeasible

solutions.

A gradient-based repair method was introduced into a DE/rand/1/bin scheme

with a new constrained optimiser [81]. In it, if the solutions generated in each gen-

eration are infeasible, the repair method converts them to feasible ones. Overall,

the proportion of the feasible to whole search space increases which leads to both

the infeasible solutions and algorithm’s performance improving.

2.4.3. Hybrid ensemble of EAs and operators

Motivated by the fact that no single CHT is preferable for all problems, recent re-

search studies have introduced hybrid ensembles of different CHTs and/or different

EA operators, as briefly described below.

Mallipeddi and Suganthan [87] proposed a new DE with an ensemble of CHTs

(ECHT) in which a population is clustered into parts with each sub-population

having its own CHT. The CHTs are chosen for different search phases according

to some characteristics of the problem, such as the fraction of the feasible search

space in the whole one, the problem’s modality and the current stage in the search

process (i.e., global exploration, local exploitation). The key issue in the ECHT is

how to use each function call by each population associated with each CHT and

adapt their evolutionary requirements.

In the multi-operator DE (SAMODE) method for solving COPs introduced

in [101], the population is split into four sub-populations to which different DE

operators are applied to generate new trial vectors. While the search proceeds,

emphasis is placed on selecting the best-performing one for producing feasible

solutions. It was observed that this technique performs better than other state-

of-the-art algorithms.
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Another DE-based algorithm with multiple search operators and two CHTs

(i.e., the feasibility rule and epsilon constraint method) adopted by Elsayed et al.

[80] is called ISDE-L. In it, each individual is assigned to a random combination

of operators and then an improvement measure calculated for each combination

with the best one selected to be re-used in the next set of generations. A local

search method is applied to speed up its convergence while solving COPs. The

results showed that this proposed algorithm is superior to state-of-the-art ones.

To accomplish a better CDE, a surrogate model integrated with DE, called

ESMDE, is applied to generate competitive offspring in [102]. Specifically, dif-

ferent candidate solutions are generated using various combinations of mutation

strategies and parameter values, and then the surrogate model helps to select the

solutions for use in the next generation. ESMDE’s performance was shown to be

superior to those of self-adaptive DEs.

Based on hybridising different EAs, Zhou et al. [103] applied a hybrid of DE

and PSO called HPSODE to solve constrained numerical problems. It aims to

solve COPs in two phases using: (i) an information-sharing mechanism to prevent

premature convergence; and (ii) a feasibility rule to rapidly find feasible solutions.

The simulation results showed that it can effectively solve constrained engineering

problems.

A fuzzy control scheme for quantifying the feasibility of a solution is proposed

in [104]. In it, each candidate solution is given a contentment level based on its

constraint penalty using a basic DE framework (rand/1/bin) and modified selec-

tion procedure. It compares an offspring with its parent using the α-comparison

strategy, with the value of α iteration-dependent, while the number of feasible

solutions is increased in later sets of generations.
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2.5. Hidden Markov Model (HMM)

A HMM is a powerful and popular stochastic tool for modelling and analyzing a

large volume of sequential data characterized as a sequence of observations with

probabilistic measures [105]. It has been successfully applied to a wide range of

applications, such as speech and image recognition [106, 107], weather forecasting

[108] and financial stock market predictions [109]. Generally, it is used to represent

a sequence of observations using probability distributions and modelling stochastic

processes in which two types of states, observed and hidden, are involved [110].

Baum and Petrie [111] introduced the basic theory of HMM in the 1960s based on

Bayes’ theorem which is given as

P (A | B) = P (B | A) ∗ P (A)
P (B) , (2.33)

where A and B are events and P (A) and P (B) are the prior probability and

marginal probability used for normalization targets (i.e., towards obtaining evi-

dence), respectively. P (B|A)is the conditional probability of B assuming that A

is true and P (A|B) denotes to the posterior of A.

Rabiner et al. [112] stated that the HMM is determined by a double stochastic

procedure in which one process is a discrete-time finite-state Markov chain with

unobserved (hidden) states while the other, which is observable, forms a sequence

of observations for identifying its corresponding states. As a further explanation of

how the HMM works, we use a simple example in which the weather is considered

to have two states in one day, rainy or sunny, depending on observations. As the

probabilities of a rainy day being followed by another rainy day and a sunny day

by another sunny day are 0.6 and 0.8, respectively, we can express these transition

probabilities by the state-transition matrix

51



S1 S2 SG

O1 Ofev….. …...O1 Ofev
…..O1 Ofev

Generations G

Fitness Change rate dependency

Observation “pop”

Figure 2.4: General HMM structure

R S

R 0.6 0.4

S 0.2 0.8

(2.34)

To predict the probable daily weather for the next five days, we need to define

an observation sequence that reflects the previous states which is called a HMM.

2.5.1. Elements of HMM

The HMM is formulated by the following set of elements characterized by the

Rabiner and Juang notations

• N : the number of hidden states,

• M : the number of observation symbols for each state in the N states;

• T : the state transition probability matrix (i.e., hidden states);

• E: the observed probability matrix ( Emission matrix); and
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• π: the initial state probabilities (at t=1) with some states with π = 0 unable

to be initial states.http://digital.cs.usu.edu/~cyan/CS7960/hmm-tutorial.pdf

Its general structure is depicted in Figure 2.4 in which any hidden state is deter-

mined by the current state and previous observation sequence.

Using the Rabiner notation, the HMM is expressed as follows. The set of

hidden states is denoted by S = (s1, s2, ........., sN) with each state producing

one observation set V = (v1, v2, ........., vM). For any system that can change

one state to another, a set of states Q = (q1, q2, ........., qT ) and their associated

sequences of observations O = (O1, O2, ........., OT ), such that Ot ∈ V , are attained.

The transition probabilities from states i to j , following a Markovian property

representing a N ×N transition probability matrix, namely (Tij), should fulfills:

Tij = P (qt = sj | qt−1 = si) (2.35)

Using the sets of states and observations, an emission matrix E can be ex-

pressed asN×M observation with the probability of observation (V ) being created

through state i as

Ei(vm) = P (qt = vm | qt = si) (2.36)

A complete HMM includes three core parameter set is symbolized as M =

(T,E, π) whereas it should satisfy the following conditions:

•
N∑
j=1

Tij = 1 where 1 ≤ i ≤ N

•
M∑
j=1

Eij = 1 where 1 ≤ i ≤ N

•
N∑
i=1

πi = 1 where π ≥ 0
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2.6. Visualization and reasoning for EAs

Visualization is defined as an interactive interface for analyzing and providing

powerful depictions of large solution spheres [113]. It is an appropriate way for

a family of population-based search algorithms to gain understanding of the evo-

lutionary process. While using a visualization technique, users need a great deal

of flexibility to anatomise various slices of the data [114]. Interactive interfaces

and tools can help non-expert users accomplish the processes of data manipulation

and analysis in terms of the search algorithm used [115]; for example, evaluating

the huge amount of data produced by population-based algorithms, such as DE,

can be significant using an efficient visualization tool to explore and analyze the

potential procedure of DE, investigating different parameter setting’s influence on

its performance.

This comprises transmuting many of the data’s values to a mental model of the

underlying procedure which created them. Visualization is a method for analyz-

ing information using different approaches, such as statistical measures regarding

clusters, correlations and data distributions [113, 116]. Visualization techniques

can be integrated with reasoning theory facilitated by interactive visualization so

that visualizations can provide different ways of revealing correlated and complex

information to users. They can simplify the means of obtaining the information,

analyses and knowledge required to be manipulated to gain insights into advanced

reasoning [115].

Visualization is described in [116] as the process for establishing a mental

understanding and new insights using interactive abstract visual representations

of the internal procedure of EA (i.e., DE). Interactive investigations of search data

can produce many findings in terms of relations, patterns, outliers, etc. Due to the

difficulty of tracking all the discovered patterns, synthesizing several discoveries

and their relationships increases the cognitive overload [117] and, thus, controls

the reasoning process, as discussed in the following section. Visual analytics is the

54



discipline of analytical reasoning expedited by interactive visual interfaces [115],

which syndicates approaches from information visualization and computational

data analysis to boost the analytical reasoning process [115, 117, 118].

Analytical reasoning is generally not a systematic process for choosing a suit-

able visual representation that simplifies understanding and explores iterations

of searching or hypothesis testing [118]. However, in visualization, information

seeking can be represented as steering in the ground pool with various interac-

tions which support an analyst sighting the data in some way through the search

process and interpreting the potential data generated. Users can extract and ex-

plore what has occurred during an evolution to direct them towards an effective

approach for improving search and achieving better performance.

Based on the above discussion of visualization and analytical reasoning, the

former is an essential part of a user interface rather than a final outcome of an

analytical process [113, 118]. Moreover, representing the reasoning process using

different visual methods could aid in determining and enhancing the next step

in reasoning towards better solutions, as in DE. In DE, revealing different stages

with different parameter settings through its process can provide a deeper under-

standing of the significance of parameter adaptation. This type of visualization

is a significant part of an EA’s cycle for obtaining the desired results. The entire

visual analytical reasoning process is depicted in Figure 2.5.

Visualization techniques act as interactive visual paradigms to analyze and

provide users with insights into the significance of enormous solution domains.

Users with limited awareness of the underlying search process need an overview

of the data, the effects of different parameter settings and resilience for analyzing

specific parts of the data that can be manipulated proficiently; for instance, using

an interactive visualization methodology can be beneficial for evaluating the huge

amounts of data emanating from population-based algorithms, particularly DE

which is considered in this thesis [16]. In general, EA visualization techniques

have been developed for both on-line and off-line systems. The former provide
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Figure 2.5: Process of visual analytical reasoning

users with the flexibility to interactively guide the progress of an EA while the

latter allow users to evaluate the EA process only after their runs are completed

[119]. Indeed, without using an on-line visualization of an EA, a user can only

retrospectively detect its impact based on the yield data.

2.6.1. Basic concepts behind reasoning

Reasoning is defined as how to draw some inferences (i.e., outcomes) from pre-

defined information (i.e., propositions) which requires going beyond the given

propositions to obtain the correct inferences [115]. Basically, an inference process

is categorized as deductive, inductive or abductive based on the level of validity

of the inference [120]. On the one hand, if the given propositions or information

can guarantee a true inference, this is called deductive reasoning. On the other,

if the initial information can provide some conclusion with no assertion regarding

its truth, this is called inductive or abductive reasoning. Researchers interested

in developing a task have to more clearly distinguish between these two types of

logical reasoning than those examining the performance of a task [121].
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Generally, reasoning is the attempt to infer some rules, patterns or conclu-

sions to describe the common relationships among all the elements involved and

deduce the consequences from a certain premise that is assumed to be true by the

community; for example, suppose that we have the following information about

natural phenomena.

• If we observe that the sky is dark, we can infer that it may rain. There-

fore, the information about the contours of the dark sky can be considered

premises, which can help to correctly infer the high likelihood of rain.

• In particular, the process of inferring a conclusion from a set of premises

usually assists people to scrutinise the internal steps taken towards it, as

shown in Figure 2.6. For further explanation, the ground information and

yield inferences can be expressed as statements containing either words or

numbers that simplify the reasoning process, such as the following syllogism

of the nature of an animal, which consists of two given premises from which

to draw a conclusion.

We can explicitly define reasoning as the process of drawing some conclusions in

different forms given a set of propositions containing assumed information. Peo-

ple use all the available connections between their experiences and knowledge in

reasoning to see, think and then arrive at a pattern [115, 120, 122]. Mathemat-

ically speaking, reasoning can be used to validate and provide some proof for

different arguments with the aim of verifying and explaining why the mathemat-

ical conclusions arrived at are correct [121, 123]. Different forms of reasoning are

used in different contexts and it is desirable to model it using a variety of visual

graphs through a sequentially directed process. In an analytical reasoning pro-

cess, visualization of the information describes the search space based on different

interactions, which enable a user to explore and analyze the findings obtained and

infer the importance of applying an automatic parameter tuning method in DE

[113].
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Reasoning can be applied to an EA to analyze its vast amount of information

in depth and explore that to obtain a full insight into its evolutionary state and

dynamics like in DE process. For any iterative search process, its explanations

of the actual/current states of the individuals involved should provide some clues

about the evolutionary process and determine the proper configuration and setup

of an EA for achieving outstanding outcomes. Data analysis and visualization

are considered the fundamentals of visual analytics for EA data because of the

usefulness and importance of this data, especially that of DE, for guiding its search

algorithm. Through the data analysis phase, an EA user looks for some indications

from the data to validate and emphasize pre-defined problem hypotheses.

Reasoning in an EA is best defined in relation to providing: (1) a suitable

methodology for a DE algorithm which looks for solutions that interpret its infor-

mation; (2) some justification for the suggested settings of the DE control param-

eters; and (3) critical thinking that involves the evaluation and meta-cognition of

the merits of the DE methodology.

A. Types of reasoning

There are three major types of reasoning, as shown in Figure 2.7, logical, case-

based and memory-based, the natures, functionalities and epistemologies of which
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are discussed below.

• Logical reasoning

Logical reasoning is a basic kind of reasoning which depends on arguments in dif-

ferent forms. It is rule-based, whereby its most common logic is the syllogism,

which states that “an argument can be both a major or minor proposition and

a conclusion” [124]. The validity of a conclusion relies on the forms of the argu-

ment and premises, with a true premise leading to a true conclusion. This is an

umbrella definition that encompasses the sub-types of deductive, inductive and ab-

ductive reasoning, as shown in Figure 2.7. Logic can provide distinctions between

its sub-types of reasoning which are forms of logic that arrive at a conclusion or

inference based on assuming that the given hypothesis is true [125]. They require

conceptual knowledge with respect to their roles during justification of the truth.

More specifically, deductive reasoning can achieve a specific conclusion from gen-

eralized premises while inductive and abductive reasoning move from some events

to achieve generalisations, as described below.
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1. Deductive Reasoning- derives specific conclusions from a given set of general

facts. It is a form of logical reasoning comprising a chain of basic statements

(i.e., premises) that is followed by some complex truths assembled from

ground statements [121], that is, when studying some mathematical theories,

such as those of geometry, we can begin with some basic assumptions, inherit

a proposition proven by these assumptions and so on for increasingly complex

propositions.

2. Inductive Reasoning- attempts to derive general principles (‘propositions’)

from several particular occurrences (‘conclusions’). It incorporates all rele-

vant experiences and then builds specific principles which are very beneficial

for explaining another procedure [125], for example, the internal dynamics of

DE. Inductive reasoning cannot provide actual proof of a theory with a 100%

certainty but progressively finds some patterns and achieves generality by

inferring from some specific situations or knowledge. It includes statistical

and demographic reasoning, predictions, analogies and explanations based

on a large number of observations with the possibility that a conclusion can

easily be incorrect [126].

3. Abduction Reasoning- is the third form of logical reasoning, is quite similar

to inductive reasoning. It was first introduced by ‘guessing’ [126], which sug-

gested that conclusions inferred based on probabilities are used as premises

for further predictions. It has gained a great deal of attention from philoso-

phers of science as a means of scientific innovation It is the process of de-

ducing or inferring the best rules and guesses that reveal conclusions and

discover some new phenomena or information. It is thought of as a theory-

forming or explanatory corollary, which shares inductive generalizations that

are implicative inferences, that is, at the end of an abductive process; there

is a putatively superlative explanation [124].

• Case based reasoning
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CBR is a procedure for solving new issues based on the solutions to similar previous

ones. It involves reasoning by remembering which includes analysing theoretical

basics, system improvements and real applications using experience-based problem

solving.

• Memory based reasoning

MBR is a way of categorizing cases with the same characteristics based on ex-

perience and stratifying the information from them to a problem. It discovers

neighbours similar to a new feature and customizes them for prediction and clas-

sification purposes. The hidden Markov model (HMM), which is a technique that

depends on the MBR, involves two processes, combination and distance functions.

The former associates the consequences from the neighbours to obtain an answer

while the latter computes the distance between any two records. Therefore, we

use it as a basic component for adjusting DE control parameters, as will discuss

in the next chapter.

In this thesis, we use the benefits of reasoning to visualize the internal pro-

cesses of EA techniques, especially DE presented in Chapter 3, which helps to

understand DE’s random normality and the difficulty of finding its optimal pa-

rameters (F,CR). In Chapter 4 and 5, the HMM is used to adapt these parameters

due to its advantages for handling random variables and time series data.

2.6.2. Existing EA visualization techniques and tools

The visualization of EAs can be helpful for analyzing a search space in depth.

It can explore the convergence behaviours, fitness landscapes and dynamic pa-

rameter rates (i.e., CR and mutation) of evolutionary mechanisms. Visualization

techniques can be executed to study EAs both on-line and off-line, and can be

categorized as: (1) Population Based Feature (PBF); (2) Local Dynam-

ics Based Features (LDBF); and (3) Global Dynamics Based Features
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Figure 2.8: Visualisation techniques classification in EAs.

(GDBF). Figure 2.8 elaborates on them with respect to their types, method-

ologies used, advantages and drawbacks to demonstrate their relationships to our

work in this chapter.

A. Population Based Feature (PBF) technique

Some forms of data visualization have been developed using population data matri-

ces, which represent data sets; for instance, an imaging matrix shows the frequency

of individual values (i.e., chromosome values) at their positions (i.e., chromosome

positions) rather than illustrating broad population data sets [127]. Because of

the massive amount of information in a data matrix, it is difficult to determine
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the relationship between observations just by looking at the matrix. Therefore,

multi-dimensional scaling techniques were developed to reduce high-dimensional

data to two or three dimensions [116, 128], which led to the evolutionary process

being efficiently determined by human observations. However, these techniques

[116], which include glyphs, projections, parallel coordinates and Principal Compo-

nent Analysis (PCA), fail to handle non-linear structures and biplots, and present

graphs without meaningful information in different generations. Although self-

organizing maps (SOMs)[18] have been used as visualization techniques to reduce

high-dimensional data, they face some problems of arbitrarily high dimensional

counts. ViSNE [129] is a mapping tool for transposing high-dimensional cytome-

try data into two dimensions. It can plot individual cells in a visual graph similar

to a scatter plot but, as it uses a pairwise distance to locate each cell point, it

does not ensure an efficient outcome.

B. Local Dynamics Based Features (LDBF) technique

Visualizing the search space has been applied in classical techniques, such as

PCA [130] and glyphs [131] , to represent one generation. The Sammon Mapping

[132] technique analyses the parental relationship between generations while the

GEATbx toolbox [133] presents the off-line global optimisation capabilities over

Genetic Algorithms (GAs) and EAs. It provides some graphs that visualize the

convergence behaviours of search algorithms and supports multi-objective optimi-

sation as well as multi-population and constraint-handling evolutions. Although

it has large built-in plotting tools and runs on different operating systems (e.g.,

Windows and Linux), its environment requires mathematical and programming

skills to manipulate the data and generate different graphs.

Another off-line tool is the VIS [134]which aims to visualize the information of

an individual and describes parental information to reflect the effect of genetic op-

erators when creating or removing an individual. Hart [135] proposed the GAVEL
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system which is very similar to the VIS tool but extends it by including its capabil-

ities for viewing individual parental information and showing the ancestry of single

genes. The GAVEL tool assists a GA user to analyze and determine the dynamics

of an evolutionary process. The GEVOL graph-based system [136] can help to

understand changes in the evolution of software by generating a series of graphs

which characterize its evolving states at different times using different colours. It

also uses advanced force-directed layout algorithms to preserve a viewer’s mental

map obtained while observing different graphs. However, it cannot be a stand-

alone system and, indeed, is intended to be integrated with other tools to provide

a programmer with the capabilities to examine all aspects of a system.

The GONZO tool, which was developed by [119] for both on-line and off-line

simulations, enables a system user to interact and adapt its control parameters.

It is very helpful for obtaining good results from algorithms which is considered

its key advantage. Also, it displays the decision space using metrics and provides

summary graphs of a population’s members and information of their ancestry.

However, it does not offer a way of improving our understanding of how an algo-

rithm works. Its on-line interactive tuning is criticized because the adoption of an

algorithm is problem-dependent [119]. Rysselberghe and Demeyer [137] proposed

a technique called Tomcat for visualising the histories of different states of soft-

ware applications. It enables unstable components, coherent entities, and design

and architecture evolutions to be detected but does not use a colouring approach.

Some other off-line methods for manipulating and visualizing the historical

data of evolutionary studies have been proposed. The work in [138] focuses on

two ideas: mapping a massive amount of historical data into a network graph

to represent nodes and edges through an evolutionary process; and determining

how to use spectrographs rather than different aggregation techniques. The data

studied is elaborated at a relatively high level which leads to the discovery of more

interesting patterns; for example, spectrographs are useful for highlighting trends

and anomalies in the entities of data metrics.
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Shine and Eick [139] described another methodology for visualizing the search

space which generates coverage maps that include some means of estimating the

solutions explored with respect to the whole search space. In particular, a map

works as if there is an individual acting in more than one generation, always de-

picted in an identical locus, but the referred maps cannot provide any genetic in-

formation about the distance between individuals in the population. A tree-based

methodology proposed in [140] visualizes the relationships among the objectives in

multiple-objective optimization problems. It uses an iterative reduction approach

and non-parametric metrics to gain an insight into the relationships among the

objectives and conflict areas in these problems to help the decision-maker group

the more effective objectives.

EvoLens [141] is a developmental approach for navigating and visualizing the

software development process off-line which was specifically designed for object-

oriented systems. It is based on a temporal lens view and its visual representation

incorporates enhanced zooming using software hierarchy navigation. An illustra-

tion of visualization is presented in [142] in which a comprehensive set of graphs

is reported to be capable of detecting the behaviours of evolutionary techniques

and the type of information required to understand them mentioned. Some com-

puter technologies for cool visualization have been introduced (e.g., Java/Java3D,

VRML, MATLAB and NetMap) and the main criteria for choosing them indi-

cated. However, they do not adequately cover evolutionary visualization. EAVis

is a visualization tool that can assist the understanding of how EAs act by using

several graphs [143]. It is considered to be an on-line rather than off-line visual-

ization system, such as the VIS one [143], and enables an EA user to supervise

the generation process on-line. Pohlheim [131] proposed a set of ‘standard’ visu-

alization techniques for providing information on the progress of the evolutionary

process which, combined with other advanced techniques, helps an EA user. How-

ever, using multi-dimensional scaling to visualize an explored search space is still

an open research field.
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SwarmViz [144] is an open-source visualization tool for Particle Swarm Op-

timization (PSO), which aims to monitor the progress of a specific optimization

problem and adjust the relevant PSO parameters through a dedicated Graphical

User Interface (GUI) to provide a visual insight into PSO for students studying

optimization techniques. Although it enables a user to set the corresponding pa-

rameters and follow the algorithm’s progress step by step, it cannot directly adapt

the parameters of the evolutionary process. Also, extending it to the visualization

of high dimensions incurs other problems.

Paterson [145] produced the VIPER tool which explores large animal pedigrees

off-line in two stages of evolution represented in interactive visualization graphs.

The first stage ensures that VIPER can handle and exhibit the types of data re-

quired in the next stage which leads to identification of the critical data features

and documentation of errors. The second stage reveals the consequence of inject-

ing errors into real and artificial pedigree data sets and, moreover, explores the

possibility of visualizing them in a recognizable form for a domain expert.

C. Global Dynamics Based Features (GDBF) technique

The task of visualizing the whole search space of a problem has been addressed in

the following different ways.

The Search Space Matrices (SSM) approach introduced in [130] visualizes low-

dimensional graphs based on high-dimensional evolutionary data. It is based on a

configuration space analysis which uses a single mapping for the entire search space

and then generates comparisons of parental relationships between individuals over

a set of iterations. This visualization can provide a user with the opportunity to

observe and analyze a search’s evolutionary path and be informed of the quality

of the findings.

Khemka and Jacob [114] suggested an off-line toolkit called VISPLORE, the

main aim of which is to run and analyze experiments using the PSO algorithm
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which shares some similarities with evolutionary computational techniques such

as GAs and DE. It is much easier to visualize the individuals, population or set of

populations in an experiment during all its independent runs using this tool rather

than other methods. Also, it is capable of visualizing the relationships among a

PSO’s parameters, clusters and other shapes in an analysis. Its visualization

is very interactive and allows users to customize different graphs to explore the

solutions generated by the algorithm on different levels. It begins with individual

solutions, passes to the population that includes a set of individuals, and then a

single experiment is conducted using a set of populations over generations followed

by a pool of experiments. Although it is implemented as a mathematical palette,

it provides a user with valuable insights into how to improve the PSO algorithm

and, consequently, gain a better understanding of the high-dimensional fitness

landscape.

The various visualization techniques discussed above facilitate the study of the

convergence attitude of an EA’s fitness landscape to provide a better understand-

ing of the dynamics in the evolutionary process. However, they cannot provide a

methodology for tracing the progress of evolutionary visualization to help a user

follow the changes throughout this process, with respect to different DE configu-

rations in order to improve performance due to:

• the high dimensionality of data which is very complicated to display;

• the inability to integrate existing tools to view and analyze the data; and

• existing tools not directly reflecting the adaptive parameters of an EA to

achieve the best solution as they still work on a trial and error principle.

In summary, as attempts to use visualization techniques to analyze the potential

processes of DE are limited, we propose a visualization framework as a possible

alternative for analyzing a typical DE search to investigate its procedures as well as

providing a deeper insight of the influence of DE’s control parameters for enhancing

its performance.
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2.7. Chapter Summary

Since visualisation has a great effect on representing and investigating the potential

procedures of EAs, particularly DE, with different parameter settings, in this

chapter, a brief review of the visualisation theory and some recent studies in this

area followed by an overview of EAs, including DE, are provided. Then, the CPs of

DE, their significance for improving its performance and how they can be adjusted

are discussed. Although several studies have attempted to solve the problem of

controlling these parameters, most have adapted them independently.

Based on the literature illustrated in this chapter for both visualisation and

parameter control, although we determine that DE’s performance is highly de-

pendent on controlling the combination of the F and CR parameters, their actual

interdependencies have not been effectively investigated. Therefore, in Chapter 4,

we aim to develop a novel algorithm by incorporating the Hidden Markov Model

(HMM) in DE as a self-adaptive method for dynamically adapting these param-

eters through its procedure and improving its performance in terms of reliability

and efficiency.

This chapter also presents a brief introduction to constrained optimisation

with a review of different CHTs incorporated with EAs (i.e., DE) for COPs. The

literature claims that a CHT is important for facilitating the rapid achievement of

feasibility while solving evolutionary constrained optimisation. This is the motiva-

tion for extending the adaptation of DE’s parameters to solve COPs by combining

a specialised local search operator with HMM, as discussed in Chapter 5.
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Chapter 3

Semantic Evolutionary

Visualization framework for

visualizing EA

This chapter discusses a proposed Semantic Evolutionary Visualization (SEV)

framework 1 for demonstrating the depth relationship between the individuals of

an Evolutionary Algorithm (EA), particularly Differential Evolution (DE), and

retrieving information that can help EA users control its evolutionary parameters

to considerably improve the performance of DE. Then, brief descriptions of the

concepts of reasoning and evolutionary visualization are provided to identify the

relationships among EA information. Following that, a review of recent techniques

for visualizing EAs is presented to demonstrate the importance of the proposed

framework. Finally, the benchmark dataset and experimental configurations used

to visualize DE information and the results obtained are illustrated.

3.1. Introduction

Visualization has a great impact on different applications as it graphically repre-

sents the potential information of any task. The conceptual images provided by
1

• The work presented in this chapter has been published in:
M. Keshk.”Semantic Evolutionary Visualization”, In International Conference in
Swarm Intelligence (pp. 624-635). Springer, Cham. (July 2017)
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various visual methods assist a user to conduct an in-depth analysis of any prob-

lem/procedure [115]. Generally, visualization is considered a form of the theoret-

ical and analytical analyses [113] used in the EA literature as one of the primary

means of gaining deeper insights into the dynamics of an EA during a search pro-

cess. Thomas and Cook (2006) defined visual analytics as “the science of analytical

reasoning facilitated by visual interactive interfaces". In analytical reasoning, the

visual representation of EA information provides users with different graphs for

exploring and analyzing the internal processes in a semantic visualization [113].

Visualization techniques can be applied to EAs to interpret the arbitrary in-

formation that changes over time. In an evolutionary process, the individuals in a

population undergo cycles of selection, crossover, mutation and other parameters

aimed at obtaining the optimal solution [117]. These operators enrich evolution-

ary dynamics where the population data is complicated to analyze. Therefore,

EA researchers use visualizations to understand and test the search dynamics of

a changing population. Although there is a long history of off-line EA visualiza-

tions reported in the literature, interpretations of their characteristics and changes

during a search are often inadequate [32, 131, 143].

DE [16], which is a simple, nature-inspired meta-heuristic method, is one of the

most popular EAs. Like any EA, it is a population-based algorithm that evolves

a set of individuals which represent solutions to different types of optimization

problems. Because of its various advantages, it has become a powerful alterna-

tive to other EAs, with its main difference of its differential mutation operator

[16, 117]. DE has three main control parameters, namely, a scaling factor (F ),

crossover rate (CR) and population size (PS), which can considerably affect its

overall performance because of its natural random process. While these intrinsic

parameters should be automatically adjusted, the randomness norm of DE requires

an accurate analysis using visualization techniques to display its information.

In this chapter, a visualization framework called SEV, which depends mainly
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on the theory of reasoning defined as the process for drawing conclusions from pre-

defined propositions [2] to infer that they are true, is designed. Using reasoning to

describe the internal procedure of an EA, particularly DE, has become an active

research area. Its methodology provides some ways of determining the main prob-

lems in the DE algorithm, in particular, proper settings of its intrinsic parameters.

As dynamic changes in the process of DE affect its overall performance over time,

it is difficult to achieve optimal solutions. This proposed SEV framework is spe-

cially designed to track and reflect the various dynamics of DE, and conduct direct

analyses of the influence of different parameter settings on its effectiveness. To

demonstrate its concepts, the DE algorithm uses two test functions with different

parameter settings and characteristics.

The rest of this chapter is organized as follows. Section 2 introduces the

proposed framework, explaining its major components. The experimental setup

and results in section 3. Finally, a summary of this chapter is presented in section

4.

3.2. Semantic Evolutionary Visualization (SEV)

3.2.1. Main components of SEV

In this section, the SEV framework designed to integrate a visualization of poten-

tial evolutionary functions, especially parental information, with an analysis of the

parameters (the CR and F ) using different kinds of graphs, for instance, fitness

of generations, correlation and linear regression (LR) ones, is discussed. It seman-

tically analyses the possible relationships among individuals over generations of

evolution to adapt the parameters and evaluate the performances of EAs.

As the main motivation is to offer visualization tools which can help a user with

no experience to reason, we choose the word ‘semantic’ to reflect the evolutionary

dynamics at the right level of resolution which can be identified by direct and
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Figure 3.1: Semantic Evolutionary Framework (SEV)

readily available information that helps a user to steer the evolutionary process.

This framework contains two new proposed visualization tools as well as a con-

ventional one. Managing the three together triangulates three different pieces of

complementary information which aids a user to understand the internal changes

in evolution over time.

The DE algorithm, which is employed as an evolutionary heuristic optimiza-

tion, is known as one of the most popular and fastest EA. However, any evolution-

ary optimization method can fit the framework without any modifications. Figure

3.1presents the three major components of SEV and their relationships: the evolu-

tionary optimization algorithm, DE in this thesis; hierarchy profiling which works

as a pre-processing stage for formulating the generated data for visualization; and

the visualization procedure which involves three different types of plots, as detailed

below.
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A. Hierarchy Profile algorithm (HP)

Because of the vast amount of data generated from DE, the HP algorithm de-

scribed in Algorithm 3.2 is developed. It acts as an intermediate stage in the

corresponding visualization process, repeatedly pre-processing the data produced

by the evolutionary process and fixing it in a proper format for the visualization

stage.

The HP algorithm recognizes the best individual (solution) found and then uses

it recursively to create an ancestry table from it up to the first generation via evo-

lution. In particular, its inputs are the outputs generated from the DE algorithm

(i.e., IDdata) and the best individual found (i.e., best_fitness_individual). The

IDdata of the child and parents are stored in NodeParts to trace the hierarchy

of each parent while V ertices logs the child attribute to institute the relationship

between the parents and their children to avoid replication during the represen-

tation of a pedigree tree. DE algorithm starts its procedure seeking to find the

optimal solution (best_fitness_individual). We employ the HP algorithm as a

pre-processing stage to re-format the targeted data (data needed for analysis and

visualization) into such format that can simplify the visualization stage. DE out-

puts a set of elements IDdata (Gen, parent, child1, child2, child3) whereas Gen

refers to the generation-number and (parent, child1, child2, child3) represent their

numeric identifiers (IDs). HP uses the best_fitness_individual for starting the

recursive process for creating ancestry table in which it includes the IDs for each

child and its corresponding parents that generate it. After finalizing the process

of HP algorithm, the hierarchy of each parent and the child attribute are stored in

NodeParts and V ertices, respectively for use by next visualization component.

This format facilitates the representation and analysis of the evolutionary hi-

erarchy process since it declares the direction of the best solution towards the

first generation. Figure 3.2 shows the parameters extracted from the results of
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Algorithm 3.2 Hierarchy Profile algorithm (HP)
Input: IDdata , best_fitness_individual
Output: Nodes , V ertices

1: Set d=1
2: for (r =1 to length (IDdata)) do
3: if (IDdata[r].child =best_fitness_individual) then
4: Node1←IDdata(child, parents)
5: end if
6: end for
7: while (d < length(Node1)) do
8: for (k =1 to length(IDdata)) do
9: for (u =1 to length(Node1)) do
10: if (Nodes[u, d] = IDdata[k].child ) then
11: NodeParts← IDdata(child,parents)
12: d = d+ 1
13: end if
14: end for
15: end for
16: end while
17: Nodes← Node1 and NodeParts
18: V ertices←IDdata.child
19: return (Nodes, V ertices)

the DE algorithm using the HP algorithm which pass to the visualization process

(component C).

Figure 3.2: Example of transforming DE data using HP algorithm
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B. Visualization process

The visualization component in the SEV framework describes the techniques used

to build different visualizations. This process consists of three visualizations, one

classical and the others newly proposed which, for an EA, can be categorized as

off-line and on-line and are capable of working in both modes. The classical one

is the fitness graph which aims to determine the changes undergone during the

evolutionary process and can be drawn as a line graph showing the best, average

and worst fitness values in each generation. Although it is considered classical, it

is important to provide an analyst with the critical information of the evolutionary

dynamics (i.e., convergence). The other two are the pedigree tree and correlation

graph, which are proposed for the first time. The former tracks and explores the

ancestry information of the best solution found while the latter is a measure of

the inheritance between the children and their parents. We illustrate each type of

visualization in the following subsections.

• Pedigree Graphs

The main aim of a pedigree graph is to show the parental hierarchy from the

best solution and its corresponding parents back to the first generation. It is a

multipartite graph in which there are multiple connections among the nodes. We

can see that all the parents in the graph’s leaves represent solutions from the first

generation. This graph is proposed mainly to visualize the evolutionary trajecto-

ries of the best solutions as well as those of their ancestors. Consequently, it can

be drawn concurrently while the evolutionary process progresses and dynamically

recalculated for each better solution found, with no need to wait for the comple-

tion of the evolution. There are two profiles with different settings for plotting

the pedigree graph with different labels, one of which has a unique identifier id

to show the ancestry order while the other is its fitness value which shows the

relationship between each child and its parents from a fitness perspective.
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To further explore the dynamics analysis, we consider the frequencies of dif-

ferent solutions for each generation. The frequencies of different solutions for each

generation means that the number of nodes (pedigree tree) generated over gener-

ations is calculated and visualized to reflect the influence of changing CR values

and the fitness function norm on the generated nodes. This can be helpful for

measuring the performance of DE with a certain CR (i.e., convergence) as well as

the nature of the fitness function.

• Fitness Graphs

These graphs are common visualizations used mainly in the community of EA

computations. They usually describe different statistics of the fitness values in

each generation over time, with their plots showing the best, average and worst

ones based on the minimum, average and maximum objective values.

They can also comprise other statistical measures as well as plus the mode,

median and exact percentile values. They help users to monitor the changes oc-

curring in different setups, achieve the optimal solutions and determine how fast

a population could lose diversity. Therefore, a EA user can directly control and

adapt the parameters to enhance an EA’s performance.

• Correlation Graphs

We use the correlation coefficient between two different solutions in a continuous

space which acts as a measurement of inheritance equivalent to the schema length

in a binary representation, that is, we estimate the correlations of the fitness

values between children and their parents. In order to measure a correlation score

between parents and children, the scores are ranked ascendingly for estimating to

what extent the parents are close to their children. This type of correlation can

be used as an indicator of the fitness landscape; for instance, if it is high, it may

imply a non-rugged fitness landscape while, if it is low, we can conclude that, as
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the local fitness values of individuals vary significantly, the fitness landscape is

very rugged. We use the Pearson’s Correlation Coefficient (PCC) [146] to measure

the strength of the relationship between the fitness values of parents and children

as

PCC (Children, Parents)← cov (Children, Parents)
δ (Children) .δ (Parents) (3.1)

This is the classic correlation coefficient that measures the rate of variations

in the fitness values among children and their parents in each generation which

demonstrates the dependency ratio between the generated child and its parents as

Cor_CP ← Child ∼ Parents (3.2)

This equation reflects the general relationship among a child and its parents

which indicates their proximity, that is, it calculates the standard deviation (std

) of the correlation. As it is observed that, if the CR increases, the std increases,

this helps to adapt the CR to achieve the best solution; in other words, if the std

decreases, it is necessary to change the crossover as

δ(fitted_value_generation)αCrossover (3.3)

Also, we use a LR analysis as an extension of the correlation one of DE to

determine the dependency relationship among the children and their corresponding

parents. This is a well-established technique for analyzing and predicting the

behaviours of data [147]. Equation 3.4 represents the potential process of executing

the LR method where α is the intercept and β is the slope. In this chapter, a linear

regression model formulated from the trend of fitness values over generations is

computed against their child and parents to determine the relationship between a
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dependent variable (i.e., generation) and one or more independent ones (i.e., child

and each of its parents) as follows

f(x) = α + βx (3.4)

Fitted_GCP ← [Generation ∼ (Child+ Parents)] (3.5)

In this equation, LR fits the correlation between each generation and its in-

dividuals (children and parents) whereas a correlation analysis focuses on the

relationship between children and their parents, that is, this correlation indicates

the dependency ratio between a generation and its individuals while LR (Equa-

tion (34)) reflects the general relationship between a child and its parents which

displays their proximity.

3.3. Evaluation of SEV framework

In this section, we discuss the experimental results obtained from our SEV frame-

work based on its components.

3.3.1. Test functions and parameter setup

In this section, we present an example that illustrates the SEV’s performance and

the potential information that can be gained from these graphs. Table 3.1 presents

the configuration of DE for implementing two trials with two different fitness

functions, a simple unimodal one (DeJong F1) and a multimodal one (Rastrigin

F2) in 2 dimensions (d), respectively defined as

f1(x) =
d∑
i=1

x2
i , i = 1.....d,−5.12 < xi < 5.12 (3.6)
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Table 3.1: Configuration of DE

Trials Trial 1 Trial 2
Strategy DE/rand/1/bin DE/rand/1/bin

population size 20 20
No. of generation 10-dimensional 10-dimensional
Mutation rate 0.5 0.5
Crossover rate 0.1 0.5

f2(x) = 10.d+
d∑
i=1

x2
i − 10.cos(2.π.xi), i = 1...d,−5 < xi < 5 (3.7)

We use DE with the basic strategy of DE/rand/1/bin, a mutation rate of 0.5

and PS of 20 for 10 generations, with the difference between the two trials that

the CR is 0.1 for trial 1 and 0.5 for trial 2. Then, the outputs from both trials are

used in the hierarchy-profiling algorithm to prepare the data for the pedigree graph

visualization. The purpose of this configuration is to evaluate the performances of

DE and how visualization can reflect changes in the parameters, specifically the

CR. The findings from these trials are used to build the HP profile illustrated in

Figure 3.2 which reconfigures the DE results to easily visualize a pedigree graph.

3.3.2. Experiment results

In this section, we discuss how visualization can help to understand the potential

processes of DE and how, by interpreting the graphs, the parameters, such as CR

in this study, can be adapted to enhance the performance of DE. Visualizations

of the two test functions for the two trials using the DE algorithm and the Pajek

[122] tool that designs the two outlines for exploring the best individuals in each

trial, are described as follows.

• Pedigree tree analysis

Firstly, we use the HP profile to easily produce a pedigree graph. As previously

mentioned, the Pajek tool [122] helps to generate two plots with different labels for
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Figure 3.3: Pedigree Graph Visualization of the DeJong’s two trials using DE
algorithm
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Figure 3.4: Pedigree Graph Visualization of the Rastrigin’s two trials using DE
algorithm
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each test trial for each function. The main aim of this graph is to explore the best

individuals and their ancestral hierarchy back to their first-generation parents.

Figures 3.3 and 3.4 show the tree representations of the best solutions obtained

from the Dejong F1 and Rasrigin F2 trials, respectively, as described in Table 3.1.

These figures indicate the backward recursion flow of the best solution obtained

from the last iteration until it reaches its parents in the first generation. It is

worth providing the hierarchies of the best solutions labelled with their identifiers

to enable the orders of generations to be easily understood. The pedigree tree

using the HP profile can also facilitate observations of the potential operations of

DE in a semantic way by representing the useful individuals that influence each

generation moves towards the best solution.

We can see in Figure 3.3 that the identifier of the unimodal F1 trial’s best

solution is 101 and that of the second 80. We can see the effect of changing the

CR value over the two trials as its higher value converges faster than its lower one.

For the multimodal F2, Figure 3.4 displays the identifiers of the best solutions as

78 and 59 for the first and second trials, respectively. Both these figures provide

us with a verification network for query purposes rather than explicit information

on a screen.

Like any verification graph, although it can be more complicated, we simplify it

by using the graph rewrite rule to skip the transitional parents generated between

the DE’s recombination stages; for example, if parent1 acts as the parent of parent2

and parent2 the parent of parent3, we can leverage from the transitive nature of

this clerestory relationship and rewrite it as parent1 is the parent of parent3. At

this time, parent2 is dropped and replaced by its father to be maintained as the

grandfather of a child. In this way, we can skip and replace as many as possible

of the intermediate parents to simplify the graph and it can be observed that all

the solutions generated in the first generation are parents.

Using the fitness function as the other pedigree profile will help to examine

this graph in order to understand evolutionary dynamics; for example, a user can
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Figure 3.5: Frequency ofgraph nodes over generations for DeJong and Rastrigin
functions, respectively.
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estimate the many candidate solutions in this graph from some queries. Similarly,

we can analyse the ruggedness of the fitness landscape by applying a social network

analysis, such as visualizing the energy of the network’s evolution. After the

evolution suffers from stagnation, there are no more changes to the best solution

from one generation to the next as no new node representing a new better solution

is considered and the energy equals zero. However, if new nodes are generated with

better solutions over generations as the evolution continues to move from one good

area to another, the energy will be high.

Secondly, it is interesting to show the number of nodes generated over genera-

tions as this helps to perceive the effects of changing the CR and frequency of new

nodes in the pedigree graph over generations. Figure 3.5 displays the frequencies

of new nodes generated in the tree plots for both the test functions and number

of nodes generated over time. The first plot in Figure 3.5 shows the DeJong uni-

modal function, using which the lower CR in trial 1 leads to more solution nodes

than those generated by the high CR in trial 2. The second plot in Figure 3.5

presents the nodes generated by the Rastrigin multimodal function with multiple

local minima which highlights that the numbers of solution nodes obtained from

both trials fluctuate over time but are more consistent in trial 2 than 1.

• Fitness graph explanation

A fitness graph is a direct illustration of the fitness values of each generation, with

the y-axes in Figures 3.6 and 3.7 expressing their objective values. Its plots are

beneficial for revealing the influence of the recombination strategy (i.e., crossover)

on an/the algorithm’s performance. Figures 3.6 and 3.7 depict the two trials of

both the Dejong and Rastrigin functions, in each of which the three lines that

represent the best, average and worst fitness values over generations lose diversity

over time.

For the Dejong function in Figure 3.6, the best and average solutions are

extremely close and lose diversity linearly; in contrast, the diversity of the worst

84



Figure 3.6: Fitness graph for DeJong function (trial 1 and 2), respectively.

one shifts gradually over generations. In the first trial, the best individual moves

during the first 5 generations to find a stable position. Conversely, in the second, it

doesn’t settle in a stable position until generation 7. It is interesting to use the best

solution as the best indicator of convergence because that in the first trial converges

before that in the second as it reaches a stable position first and, therefore, the

lower CR in trial 1 reflects lower diversity. Similarly, the Rastrigin function in

Figure 3.7 describes the potential evolutions of solutions over generations in the

two trials. We can see that a smooth convergence is not easy because of the

multimodal nature of the function. However, the second trial is more efficient in

finding the best solution with the lowest optima (close to the global ones) than

the first, which may become trapped in local optima during convergence. As this

graph is generally considered a very popular visualization, it is discussed further
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Figure 3.7: Fitness graph for Rastrigin function (trial 1 and 2), respectively.

with the corresponding visualizations for the two evolutionary test functions in

both test trials.

• Correlation analysis interpretations

To demonstrate the strength of the relationship between a child and its parents

over generations, Figures 3.8 and 3.9 show the dependency correlations between
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Figure 3.8: Correlation coefficient of Child & Parents for DeJong trials 1 and 2,
respectively.
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Figure 3.9: Correlation coefficient of Child & Parents for Rastrigin trials 1 and
2, respectively.
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their movements over generations in the trials of test functions F1 and F2, respec-

tively. In more detail, in the F1 correlation relationship depicted in Figure 3.8,

there is a high correlation between the child and parent1 which is normal because

of the nature of the F1 recombination process that is consistently high because of

its fixed step and length and non-rugged nature of the fitness landscape. We can

use this correlation in rugged landscapes and for self-adaptive algorithms, as in

Figure 3.9 in which the correlation between the child and its first parent is reduced

compared with that for F1. It also indicates the equilibrium between exploration

and exploitation as it is expected that the correlation between the fitness values

(objective function values) of the parents and child will be low during the former

and, assuming a less rugged fitness landscape, high during the latter.

Visualising a scatter diagram of the fitness values of the child and first parent

provides an indication of the strong correlation between the two for the DeJong

function as in the first plot of Figure 3.10, a significant sign that the fitness land-

scape is smooth and consistent, as is the case for our unimodal function. Con-

versely, the correlation in the Rastrigin function in the second plot of Figure 3.10

is dropped because the nature of its landscape is relatively rugged and difficult to

explore, as is the norm for the multimodal function.

Finally, the dependency correlation of each child and its parents over time is

interpreted using a LR analysis, with LR applied on Dejong F1 to explain the

concept.

Figures 3.11 show the dependency correlations between the movements of the

child and its parent over time. The graphs on the left-hand side represent the

correlations between each generation and its individuals (i.e., the child and par-

ents), with the fitted line showing that the individuals start and end with almost

no correlations over generations. This indicates the diversity rates obtained by

computing the cumulative standard deviation for the correlated generations with

individuals shown in detail in Figure 3.11. On the other hand, the graphs on the

right-hand side represent the correlations between a child and each of its parents.
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Figure 3.10: A Scatter diagram showing the relationship between the child and
first parent fitness for DeJong and Rastrigin functions, respectively.
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Figure 3.11: Linear regression for trial 1 and 2 of Dejong F1, respectively

Figure 3.12: Standard deviation of fitted values for Dejong F1 linear regression

As comparing these two figures highlights a slight difference between the two CRs

over generations, it is necessary to adapt these values to improve the population’s

dynamics over generations.

Based on Equations 3.3 and 3.5, for each trial, the cumulative standard devi-

ation is computed for the fitted values of LR to measure the variations between

individuals and their relationships with the CR, with Figure 3.12 demonstrating
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the influence of the CR on the fitted correlation values for Dejong F1. The stan-

dard deviation in the first trial is less than that in the second which means that

the higher CR leads to a higher standard deviation. Consequently, the diversity

will increase and the correlation between individuals decrease. Ultimately, this

relationship shows that, if the standard deviation of the fitted values decreases,

the CR should be adjusted to preserve diversity and enhance the performance of

DE.

The visualizations proposed in this chapter can help in determining and ana-

lyzing the potential evolutionary process of the optimization mechanisms, however,

with the increasing of population size and problem dimensionality, the visualiza-

tion needs to be refined to match an increase in problem dimensionality.

3.3.3. Comparison with existing techniques

Our proposed SEV framework is compared with visualization techniques to deter-

mine its influence. Firstly, the techniques in the PBF category [127–129]usually

denote the occurrence of a population of individuals but do not reveal the core in-

teractions between these individuals. In this chapter, we customize the frequency

of graph nodes (candidate solutions) in Figure 3.5 and the scatter diagram in Fig-

ure 3.10 to determine the connections among each child and its parents, which can

refer to the paths produced through evolution in the fitness landscape.

Secondly, the techniques in the LDBF category [140, 144, 145] express the evo-

lutionary changes whereby pedigree tree and fitness demonstrations are developed

to understand the internal evolutionary process, with these visualization methods

complementary in nature. However, some LDBF methods suppose that users have

sufficient experience to examine the dynamics during an evolution whereas pedi-

gree trees are simple heredity concepts which can be equally understood by expert

users and those with less or no experience.
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Finally, the techniques in the GDBF category [114, 130] demonstrate the search

domain features of data matrices while using second-order statistics, especially the

correlation coefficient and regression analysis, as shown in Figure 3.8, 3.9 and 3.11,

which demonstrate the dependency between individuals as they help to recognize

actual deviations of the vectors.

3.4. Chapter summary

Visualization is one of the best ways of understanding, and gaining an instant

impression and representation, of an evolutionary progression. Many studies have

visualized the internal procedure of an EA, with this thesis focusing on DE. Ex-

tracting and using relevant information to determine the progress and concurrent

states of the evolutionary process assists inexpert users to understand complex

evolutionary dynamics in order to work towards achieving better performances.

The amount of data produced by DE to enable analytical reasoning to describe

and explore the findings from the search space present challenges in terms of

obtaining an ultimate visual representation of DE’s useful information to facilitate

the filtering and recognition of some specific inferences. Therefore, in this chapter,

we present a visualization framework called the SEV for achieving these goals,

which proposes visualizing specific features and offering an explicit reflection of

the evolutionary dynamics.

The features of this framework include two new visualizations and a classical

one which provide comprehensive information that can assist users to semanti-

cally reason about the internal process/dynamics of evolution. It presents a novel

hierarchy-profiling algorithm for arranging the data generated from DE to fit the

visualization process which encompasses three types of graphs, pedigree, correla-

tion with LR analysis and fitness, the first two of which are newly proposed while

the third is a conventional one.
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Initially, as an example of EAs, DE is tested on two different functions with

distinct characteristics and parameter settings for two trials. The resultant vi-

sualizations show the relationships between children and their parents as well as

the internal evolutionary dynamics evidenced by correlation and pedigree graphs,

respectively. Overall, this framework can be applied without modification to any

optimization algorithm. The plots track the ongoing changes within an evolution-

ary run by exploring pedigree trees and the fitness landscapes produced and will

help to investigate the influence of different parameter settings so that a new self-

adaptive DE using HMM is introduced for solving unconstrained and constrained

problems in Chapters 4 and 5, respectively.
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Chapter 4

A novel self-tuning methodology

for solving unconstrained

optimisation problems

In this chapter, a novel self-adaptive technique for solving unconstrained opti-

mization problems, which couples the Hidden Markov Model (HMM) with the

classical Differential Evolution algorithm (DE) to automatically adjust the DE

control parameters over its search, is introduced 1. It is called the DE-HMM, with

an overview of the HMM explaining the main elements needed for building it and

a description of our technique presented to indicate the role of HMM in adapting

the DE’s parameters. Details of the benchmark test suites used to evaluate the

performance of the DE-HMM are provided. Finally, the experimental results ob-

tained and an analysis of its components for solving these problems are discussed,

and a comparative study of it and some existing techniques conducted to compare

their performances.

4.1. Introduction

DE is one of the most popular and effective evolutionary algorithms (EAs) [34]

and, similar to some of the others, is a population-based search method [29] in
1

• The study introduced in this chapter has been submitted in:
M. Keshk, H. Singh, and H. Abbass, "Automatic Estimation of Differential Evolution
Parameters using Hidden Markov Models” (Under review).
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which three major operators (i.e., mutation, crossover and selection) with three

control parameters (i.e., a scaling factor (F), crossover probability/rate (CR) and

population size (PS)) are employed during its search process to guide the progres-

sion of its evolution towards the global optimal solution [35]. Although it is easy

to use as it has a simple structure and is faster than other EAs, its performance

is highly influenced by the settings of its control parameters [34].

The most proper configuration of DE’s control parameters can differ from both

one problem to another [148] and in the same problem during the evolutionary

process with respect to their interactions [34, 148]. Therefore, determining their

settings for various optimization problems is a complex issue [48]. Although several

studies have introduced adaptive/self-adaptive methods for parameter control that

tune DE’s intrinsic parameters, as reviewed in Chapter 2, the interactions among

these parameters have rarely been investigated.

The core of this chapter is the proposal of a novel self-adaptive methodology

for automatically adjusting the DE’s intrinsic parameters (the F and CR) in order

to address the parameter control challenges by incorporating the HMM into its

procedure to enhance its performance. The resultant algorithm is denoted as DE-

HMM, which two parameters are self-adaptively chosen in each generation.

The DE-HMM methodology is tested using two benchmark data sets [19, 20]

and its performance extensively compared with those of the classical DE (i.e.,

fixed values of the F and CR) and twelve comparable algorithms, eight of which

are competitive DE variants and four non-DE EAs, with respect to effectiveness

and efficiency.

This chapter is structured as follows: section 1 discusses the general archi-

tecture of the proposed DE-HMM methodology ; in section 2, the experimental

study, including details of the benchmark data sets, configuration used and results

obtained are provided ; and, finally, this chapter is concluded in section 3.
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Figure 4.1: Diagrammatic example of HMM transition diagram for DE. the low
and high states represent the low and high change rates of DE, respectively, and
the observation set (O = {1,2,3}) reflects the three dimensions of a population

4.2. General architecture of the proposed

methodology (DE-HMM)

4.2.1. DE combined with HMM

As previously mentioned in chapter 2, the basic control parameters of DE (i.e., the

F and CR) need to be carefully set for both different problems and throughout the

same problem. Several studies in the literature present various ways of adjusting

them with most adapting them independently; for instance, the JADE algorithm

[60] separately adapts the F and CR using Cauchy and Gaussian distributions,

respectively. In [29], Mallipeddi et al. claimed that, although combining the F

and CR greatly influences the performance of DE, rather than setting their values

separately, their actual dependencies have not been successfully investigated.

Therefore, in this study, a new self-adaptive algorithm is proposed for au-

tomatically adjusting the F and CR using the HMM, namely DE-HMM. It in-

corporates the HMM in the DE procedure for addressing the parameter setting
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challenges (i.e., problem-dependent, evolution-dependent, and the complex inter-

action among them) where the DE parameters are adapted per generation. The

first challenge can be overcome via employing HMM for dynamically setting these

parameters. The second challenge is overcome by coupling each individual vector

with its own parameter set (F and CR) and the third one is achieved by estimating

F as a function of CR.

The speed of DE does not significantly get affected because all the required

statistics for the HMM are calculated based on first-order mathematical measures,

such as the mean and standard deviation at a linear computational cost.

Using such HMMs learning algorithms is motivated from two perspectives.

Firstly, several studies have employed finite Markov models to analyze the behav-

ior of evolutionary computation methods. At the beginning of 1980s, Goldberg

and Segrest [149] used finite Markov chains to anatomize the behavior of simple

genetic algorithms (GAs). Mahfoud [150] continues based on that work and used

finite Markov models to forecast the expected drift time for a Boltzmann tourna-

ment selection strategy. Davis and Principe [151] claimed that there is a unique

stationary distribution for simple GA while mutation is evolved for parameter

control. In essence, the mutation operator represents a source of disorders to the

population, whereas selection influences the transitions from one population to

another. Markov chains have been used widely to examine and demonstrate the

behavior of evolutionary computation in recent years. An old, but very useful sur-

vey is presented in [152], and more recent research studies on the matter including

[153, 154].

Secondly, and Although a great volume of work that focuses on using Markov

Chains for analyzing evolutionary computation techniques, no study has actually

applied Markov Chains to help evolutionary computation, improving its perfor-

mance. In contrast, differential evolution was customized to enhance Markov

chains by building a population of chains [13].
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HMM are known to be more precise and generates smaller models than simple

Markov models. The only research study that we are aware of using HMM for

evolutionary computation is Rees and Koehler study [155]. Their work showed

that HMM can accurately estimate the evolutionary parameters. In their work,

many evolutionary computation algorithms with fixed parameters were ran and

used HMM to estimate these parameters in an offline mode, which conclude that

it was able to precisely estimate the parameters using HMMs. This work basically

motivates this study by enquiring of whether HMM can in fact be used to estimate

the parameters in real-time and use these estimates to adjust the DE’s parameters

to improve the performance of the optimization process?

To model the HMM, it is necessary to define its states (T) and observations

(E) based on actual data. In multivariate time-series models (MTSM) [156],

x0, x1.....;xt, where t is the time consumed for function evaluations, as in DE

and the HMM, with these variables consisting of some values observed in the DE

population. However, as there is no information of the observed sequences of these

values during processing (i.e., the hidden states), the HMM is used to approximate

them, as schematically depicted in Figure 4.1. The types of these states, either

discrete or continuous, depend on the actual data norm [157]. To identify the

internal variations in a population’s individuals over time, as a form of MTSM,

two discrete states are defined in advance in the HMM to measure the changes in

the DE’s fitness probabilities.

The DE-HMM adapts the F and CR by calculating the posterior and likelihood

ratios of the HMM, respectively. Due to the similar functioning of the HMM

and DE, as the basic idea of DE is to change its population over time, which

is the same as the core process of the HMM that reflects those of time-series

models [156], we use the former to adjust the latter’s control parameters. To

identify population changes, we assume two states, ‘low’ and ‘high’ which indicate

negative and positive fitness function behaviours, where the fitness function does

not decrease and increases over time, respectively. These states can be evaluated
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Figure 4.2: Encoding of control parameters with individuals

using the HMM procedure to calculate their posterior probabilities, with values

from 0 to 0.5 considered low and from 0.5 to 1 as high representing the HMM

transition matrix. The advantage for using categories is to avoid over-fitting an

HMM to a certain population as our purpose is not reverse engineer the parameters

as Rees and Koehler [155] did, but to approximate the parameter values that have

to be adopted. The HMM emission matrix is computed by the probability that a

population is generated through the DE stochastic process. A complete example

demonstrating the working of DE-HMM is presented in Appendix G.

To represent the HMM, a weighted graph is used, which is represented as a

transition diagram in Figure 4.1. The nodes denote the states and the edges the

potential transitions among these states weighted by their transition probabilities,

with the summation of them equalling one for each node. Each state has its own

observations represented by an emission probability matrix as HMM deals with

both observed and hidden events.

The DE-HMM estimates the intrinsic F and CR parameters for successful

individual (xi,G) in the population to generate new offspring (i.e., a trial vec-

tor), as shown in Figure 4.2. It self-adapts them by concentrating on their inter-

correlations whereas the preferred parameter values have to produce the most likely

individuals to survive in the next generation. This inter-correlation is modelled by
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first estimating CR then estimate F using the estimated CR in conjunction with

the minimum posterior probability for the given population observation emission

matrix (EM seq).

Figure 4.3 presents the complete procedure for computing the F and CR of

DE. The relationship between DE and HMM is shown, the F and CR calculations

based on various HMM probabilities and the posterior and Likelihood ratio for

F and CR, respectively. The DE population is converted into probabilities to fit

the HMM requirement where the initial population is taken as prior probability;

the parent vectors, referring to the population observations are taken as likelihood

probability; and the mutant vectors, denoting the change from the parent vectors

are taken as the posterior probability. HMM uses these probabilities to compute

CR and F .

Algorithm 4.1 Transformation of population values to probabilities.
Input ← Population popm as a matrix of size R× C

1: Create a new matrix popr of size R× C;
2: Create two vectors µ and σ of length C;
3: for each column j in popm do
4: µ(j)← mean(popm) over all rows for column j;
5: σ(j)← stdev(popm) over all rows for column j;
6: end for
7: for each row i in popm do
8: for each column j in popm do
9: popr(i, j)← prob(popm(i, j) ≤ ζ), ζ ∈ N(µ(j), σ(j));
10: end for
11: end for
Output→ popr

The HMM requires three elements to be computed for its procedure, that is,

M = (T,E, π). We use the DE population values as input for calculating these

parameters, with the HMM built through the running of DE. Firstly, the state-

transition matrix of the HMM (T ) reflects the changes in these values during the

evolutionary process, either low or high, measured internally based on observations

of the DE population [158, 159]. Secondly, the emission matrix (E) is calculated

from those observations, which reflect the interdependencies of the evolutionary
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process. As a population sample has to be transformed into probabilities to achieve

the requirements of the HMM, the parent and mutant vectors of DE are converted

into probabilities using Algorithm 4.1, where it loads a population of size R rows

and C columns and determines the probability distribution for individuals in the

population, popm. The initial states (π) are set at 0.5, 0.5 for low, high to start

building the model with equal probabilities.

To compute the F and CR, we use the likelihood ratio between the actual

sequence of states STseq and the most likely state sequence bestseq estimated us-

ing the Viterbi algorithm [160, 161] (discussed later) to calculate the CR, where

the emission matrix (E) denotes the likelihood. Similarly, an EMseq observation

sequence is derived from the Viterbi algorithm to compute the posteriors, with

the minimum ones averaged with the estimated CR to reveal the F values. The

steps in the procedure for estimating the F and CR parameters are presented in

Algorithm 4.2, and details of the main components of the DE-HMM for adjusting

the F and CR in the following section.

4.2.2. Main components of DE-HMM

A. Computing crossover rate (CR)

The CR usually needs to be carefully set according to the problems’ characteristics,

such as linearity and modality (i.e., unimodal or multimodal) [34]. It is the main

component for determining the potential probability of mixing both the current

target vector (parent) and donor vector (mutant) produced from the mutation

operator to generate a new trial vector (offspring), which is necessary for improving

a population’s diversity as the evolution progresses. In this thesis, we use the

simple binomial crossover scheme that customs the CR to construct the offspring,

as discussed in Chapter 2.
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Figure 4.3: Complete procedure for computing DE control parameters.

The Viterbi algorithm [160] is applied through the process of adapting the

CR, which is the best way of choosing the best state sequence that maximizes its

probability given the observation sequence. This is a type of dynamic program-

ming that acts as a decoder given the model’s parameters (T,E) and observation

sequences O = (O1, O2, ........., OT ) derived from the DE population. It can opti-

mize the CR by finding the most likely state sequence considering the maximum

of all previous ones maxq0,q1....qt−1 . In this way, the Viterbi probability vt(j) for a

current state (qj) at time (t), is estimated as

vt(j) = N
max
t=1

vt−1(i) ∗ Tij ∗ Ej(Ot) (4.1)

where, vt−1(i) is the prior probability of the Viterbi path, Tij denotes the

probability of transition from states qi to qj, and Ej(Ot) the emitted observation

probability with the current state j.

The proposed DE-HMM algorithm estimates the CR value by computing the

likelihood ratio of the actual state sequence (STseq) produced, being better than

the best state sequence (bestseq) produced by the Viterbi algorithm, given as:
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CR = Likelihoodratio (STseq ≥ bestseq) (4.2)

where we use ≥ to indicate that the sequence STseq is better than the sequence

bestseq. The main reason for calculating the CR using the likelihood ratio is

that, using the ratio of a target vector to its mutant vector, constructing new

offspring can be considered the likelihood of the actual state sequence (STseq)

being better than the best state sequence (bestseq) (i.e., being in a state STseq ≥

bestseq), as depicted in Figure 4.3. Therefore, the changes between (STseq) and

(bestseq) produce the CR values, and identify the improvement of the new vector

being through its ratio in each sequence. In other words, comparing the values of

the state sequences (STseq) and (bestseq) and calculating the ratio of obtaining a

number of states with greater values in the actual state sequence STseq than the

best state sequence bestseq would indicates the improvement ratio of the target

and mutant vectors for better offspring.

Algorithm 4.2 Steps for building the HMM from DE information
Input ← Population popm as a matrix of size R× C

1: Convert popm to probability emission matrix E using Algorithm 4.1
2: Initialize T with low, high states
3: Sample random sequence of states STseq and emission symbols EMseq

4: Evaluate the max likelihood of STseq and EMseq

5: Calculate the best state sequence bestseq that maximizes the likelihood of
EMseq using Viterbi algorithm [160, 161]

6: CR is computed as in equation 4.2
7: F is calculated as in equation 4.4
Output→ F , CR

B. Computing mutation factor (F)

The F is an important factor in the core mutation operation of DE. It is essential

for balancing exploration and exploitation and perturbing parents towards a new

offspring in the preferred area of the search space [162] and we use the HMM

posterior to automatically adapt it. .A dynamic F is measured by the minimum
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HMM posterior of a particular state to designate a change in that state (low or

high) in the population sequence with respect to the emission sequence (observa-

tion). The posterior distribution is used to make a Bayesian inference for exploring

the subsequent search region, which is computed as the conditional probability of

terminating the sequence at this particular state given the observed population

sequence, as shown in Figure 4.3 . In more detail, the minimum posterior is cal-

culated in the estimated state-posterior sequence (i.e., the minimum step size)

and averaged with the pre-calculated CR values. The motivation for adapting the

F , which is the ratio of the jump from a parent to its vectors generated from a

mutation operator, is that the posterior in Bayes’s theory is the probability of a

random variable given its prior and likelihood as

posterior ≈ likelihood× prior (4.3)

The CR is estimated by computing the likelihood ratios over the changes be-

tween STseq and bestseq as prior information for employing the mutation operator.

In DE, a new mutant vector is produced to explore various candidate solutions.

The probability of movement between the two vectors (parent and mutant) can

be assessed as the lower probability that occurs in the mutant vector for exploring

more possible sub-regions based on all the preceding information in the original

parents with the emission observations (EMseq) and changes in their CR values

as

F = Average (minposterior|EMseq, CR) (4.4)

Because of the large number of vectors in the population, their average value

is considered to obtain the expected movement rate for any one.
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Algorithm 4.3 An iteration of the DE-HMM algorithm.
1: Define fitness function f ; population size PS; population dimensions D; the

maximum number of function evaluation MaxEval;
2: Set G = 0; Feval = PS; F = CR = 0.5;
3: pop0 ← rand()
4: Evaluate pop0 with f ;
5: while Feval ≤MaxEval do
6: for each xi,G ∈ pop do
7: vi,G ← Mutation (Eq 2.1);
8: ui,G ← Crossover (Eq 2.7);
9: Evaluate ui,G;
10: Select(ui,G,xi,G) (Eq 2.9);
11: end for
12: Sort(popG,ascending on fitness);
13: Update F ,CR for the sorted, successful vectors using HMM in Algorithm 4.2;

14: Feval=Feval+PS;
15: end while

Figure 4.4: General flowchart of the proposed DE-HMM algorithm.
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C. The complete architectural of DE-HMM

The DE-HMM architecture is presented in Algorithm 4.3, which describes the

way of implementing the HMM’s processes in the DE evolution procedure for

controlling the two intrinsic parameters (F, CR), as previously discussed. The

core difference between the classical DE and DE-HMM is the stage that uses the

DE’s sorted population to build the HMM, shown in Figure 4.4.

Firstly, a population of PS individuals is uniformly initialized in random way,

with initially uses F = 0.5 and CR = 0.5. Subsequently, all the individuals are

evaluated according to f(x) producing the objective value, here represented by

fitness value. Secondly, the mutation operation is employed at each generation

via Equation 2.1 to generate the mutant individuals, followed by the crossover

operation as we apply the basic binomial crossover scheme in Equation 2.7 to

produce the trial individuals (offspring).

The procedure for updating the values of F and CR depends on how the DE

population changes over time. In DE-HMM, the DE population is sorted in an

ascending order and gets transformed into probabilities as shown in Algorithm 4.1

in order to fit the HMM parameters. Then random sequences of STseq states and

EMseq observations are sampled from the HMM.

The CR value is estimated by calculating the likelihood ratio between the

actual state sequence STseq that is better than the best state sequence bestseq ,

generated using the Viterbi algorithm, as in Equation 4.1. This is derived from

DE where CR in crossover operation determines the improvement ratio of the new

offspring from the original and mutant vectors. Also, the F value is estimated

based on averaging the minimum posterior (i.e., reflects the change of DE state)

and the estimated CR to recognize the dependency between F and CR, as in

Equation 4.4. Finally, each original individual is compared with its corresponding

offspring and the individual with less fitness value survives to the next generation.
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4.3. Experimental study

4.3.1. Benchmark problems

We use two benchmark test sets from the IEEE CEC2005 [163] and IEEE CEC2014

[164] special sessions on real-parameter optimization, which are mainly employed

to test unconstrained optimisation algorithms, to evaluate the performance of

our proposed algorithm. There is a total of 55 test functions with 10, 30 and 50

dimensions (D), as listed in Tables 4.1 and 4.2. They have different characteristics,

such as uni- and multimodal test functions, which are labelled C1 ~ C25 for the 25

test functions from CEC2005 and F1 ~ F30 for the 30 from CEC2014. For further

details of these benchmarks, refer to [163] and [164].

To demonstrate its effectiveness, the proposed DE-HMM algorithm is com-

pared with the canonical DE that uses pre-defined F and CR values, other peer

algorithms previously introduced to control the parameters and:

• Eight DE variants, four of which are commonly used in the literature and

known as competitive algorithms and the other four the most recent variants

that reflect the latest progress of DE; and

• Four non-DE variants frequently chosen to provide more comprehensive com-

parisons.

4.3.2. Experiments setup

DE-HMM was are coded in Matlab R2015a, and run on a PC with a 3.40 GHz

TM-Core i7 processor, 16 GB RAM and Windows 7 with 64 bits. The PS value

of DE-HMM to 60. The total number of function evaluations (FEs) is set to

10000D, where D indicates a problem’s dimensionality and each problem has 30
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Table 4.1: CEC2005 Benchmark Functions.

No. Functions Bounds Fi*=Fi(x*)

"Unimodal

Functions"

1 Shifted Sphere Function [-100 , 100] f_bias= -450

2 Shifted Schwefel’s Problem [-100 , 100] f_bias= -450

3 Shifted Rotated High Conditioned

Elliptic Function

[-100 , 100] f_bias= -450

4 Shifted Schwefel’s Problem with Noise in

Fitness

[-100 , 100] f_bias= -450

5 Schwefel’s Problem with Global Optimum

on Bounds

[-100 , 100] f_bias= -310

"Basic

Multimodal

Functions"

6 Shifted Rosenbrock’s Function [-100 , 100] f_bias= 390

7 Shifted Rotated Griewank’s Function

without Bounds

Initialization

range[0, 600]

f_bias= -180

8 Shifted Rotated Ackley’s Function with

Global Optimum on Bounds

[-32 , 32] f_bias= -140

9 Shifted Rastrigin’s Function [-5, 5] f_bias= -330

10 Shifted Rotated Rastrigin’s Function [-5, 5] f_bias= -330

11 Shifted Rotated Weierstrass Function [-0.5, 0.5] f_bias=90

12 Schwefel’s Problem [-100 , 100] f_bias= -460

"Expanded

Multimodal

Functions"

13 Shifted Expanded Griewank’s plus

Rosenbrock’s Function

[-3 , 1] f_bias= -130

14 Shifted Rotated Expanded Scaffer’s [-100 , 100] f_bias= -300

"Hybrid

Composition

Functions"

15 Hybrid Composition Function 1 [-5, 5] f_bias= 120

16 Rotated Hybrid Composition Function 1 [-5, 5] f_bias= 120

17 Rotated Hybrid Composition Function 2

with Noise in Fitness

[-5, 5] f_bias= 120

18 Rotated Hybrid Composition Function 2 [-5, 5] f_bias= 10

19 Rotated Hybrid Composition Function 2

with a Narrow Basin for the Global

Optimum

[-5, 5] f_bias= 10

20 Rotated Hybrid Composition Function 2

with the Global Optimum on the Bounds

[-5, 5] f_bias= 10

21 Rotated Hybrid Composition Function 3 [-5, 5] f_bias= 360

22 Rotated Hybrid Composition Function 3

with High Condition Number Matrix

[-5, 5] f_bias= 360

23 Non-Continuous Rotated Hybrid

Composition Function 3

[-5, 5] f_bias= 360

24 Rotated Hybrid Composition Function 4 [-5, 5] f_bias= -473

25 Rotated Hybrid Composition Function 4

without Bounds

Initialization

range[-2, 5]

f_bias= -474
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Table 4.2: CEC2014 Benchmark Functions.

No. Functions Fi*=Fi(x*)

"Unimodal

Functions"

1 Rotated High Conditioned Elliptic Function 100

2 Rotated Bent Cigar Function 200

3 Rotated Discus Function 300

"Simple

Multimodal

Functions”

4 Shifted and Rotated Rosenbrock’s Function 400

5 Shifted and Rotated Ackley’s Function 500

6 Shifted and Rotated Weierstrass Function 600

7 Shifted and Rotated Griewank’s Function 700

8 Shifted Rastrigin’s Function 800

9 Shifted and Rotated Rastrigin’s Function 900

10 Shifted Schwefel’s Function 1000

11 Shifted and Rotated Schwefel’s Function 1100

12 Shifted and Rotated Katsuura Function 1200

13 Shifted and Rotated HappyCat Function 1300

14 Shifted and Rotated HGBat Function 1400

15 Shifted and Rotated Expanded Griewank’s plus

Rosenbrock’s Function

1500

16 Shifted and Rotated Expanded Scaffer’s F6 Function 1600

"Hybrid

Functions"

17 Hybrid Function 1 (N=3) 1700

18 Hybrid Function 2 (N=3) 1800

19 Hybrid Function 3 (N=4) 1900

20 Hybrid Function 4 (N=4) 2000

21 Hybrid Function 5 (N=5) 2100

22 Hybrid Function 6 (N=5) 2200

“Composition

Functions”

23 Composition Function 1 (N=$) 2300

24 Composition Function 2 (N=3) 2400

25 Composition Function 3 (N=3) 2500

26 Composition Function 4 (N=5) 2600

27 Composition Function 5 (N=5) 2700

28 Composition Function 6 (N=5) 2800

29 Composition Function 7(N=3) 2900

30 Composition Function 8(N=3) 3000
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independent runs. We use the mean and standard deviation (mean(std)) statis-

tical measures of the fitness error values (f(x)–f(x∗)) to gauge deviations among

the calculated and optimal results, with values less than 1.0E-08 treated as zero.

Because of the random natures of stochastic algorithms (i.e., DE), we calculate

the mean results over 30 runs to reflect an algorithm’s performance instead of ac-

cepting a good solution in only one run. The detailed results obtained from all the

algorithms are provided in the online appendices, with the best ones presented in

boldface type and the number of best results (No−Best) for each corresponding

algorithm for all problems are summarized at the end of the comparison tables.

Two non-parametric statistical hypothesis tests, the Friedman and Wilcoxon

ones [165], are used to evaluate and assess the output from the DE-HMM algo-

rithm which resembles those from the augmented algorithms using the well-known

SPSS statistical tool [166] to execute them. The Friedman test ranks the algo-

rithms’ means while the Wilcoxon one evaluates the significance of performances

of DE-HMM and other compared algorithms. In particular, the null hypothesis

of these tests supposed that there is no significant difference between the mean

error values of two samples while the alternative one attempts to determine if

there is a significant difference using a 5% significance level. From the Friedman

and Wilcoxon tests, three marks “ + ” or “ − ”or “ = ” are considered to reflect

the significant difference in the average fitness values between DE-HMM and the

peer algorithms, where “ + ” or “ − ” mean that DE-HMM is significantly better

or worse than the competing algorithm, respectively while “ = ” means that no

significant difference between the two algorithms. The critical difference (CD) of

the Nemenyi post-hoc test [165] is required to detect the significant differences be-

tween the estimated ranks whereas the rejection of the null hypothesis is followed

by a post-hoc analysis (one common test is Nemenyi) for assessing the significance

between these algorithms. CD is calculated using equation 4.5 as discussed in

[165], whereas qα is the critical value at α significance level, listed in [165], which

get estimated based on studenized range statistic divided by
√

2 and K and N

refer to the number of compared algorithms and the number of tested problems,
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Table 4.3: Critical values qα=0.05 for calculating CD of Nemenyi post-hoc test at
different K .

K = 10 6 5 4
qα=0.05 = 3.164 2.850 2.728 2.569

Table 4.4: F and CR values used for DE-HMM variants.

Variant F posterior CR likelihood ratio
DE-HMM-minG min current > best
DE-HMM-minL min current < best
DE-HMM-minE min current = best
DE-HMM-meanG mean current > best
DE-HMM-meanL mean current < best
DE-HMM-meanE mean current = best
DE-HMM-maxG max current > best
DE-HMM-maxL max current < best
DE-HMM-maxE max current = best

respectively. Since the significance level is 5%, the qα for each group of comparison

is shown in Table 4.3. The smaller CD means more significance differences can be

detected than larger CD.

CD = qα
√
k(k + 1)/6N (4.5)

4.3.3. Experimental results

A. Analysis of performances of DE-HMM and its own variants

When DE is used to solve an optimization problem, a combination of different

parameter settings with different learning strategies significantly influences its per-

formance. We use the HMM as an adaptation method for automatically adjusting

the two intrinsic parameters (F and CR) which are estimated by applying the two

main components using the posterior of the HMM and likelihood ratio, respec-

tively.
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In this experiment, the different roles of the two components previously de-

scribed are used to analyze their behaviours, with the best chosen as the better

one for adaptation. We employ a case study using the 30D CEC2005 benchmark

test problems to compare eight different selected parameters. The best choice of

DE-HMM is denoted in this section by DE-HMM-minG to differentiate it from

other variants and to indicate it uses minimum posterior and maximum fitness

improvements. It is compared with a DE which has its parameters set randomly

for each generation, namely Rand-gen. The comparison involves all variants and

Rand-gen to allow for an appropriate test of significance to be used [165].

The eight DE-HMM variants are displayed in Table 4.4 in which the second

column denotes the posterior movement of the next area, that is, the minimum,

maximum or mean step size, and the third the number of candidate individuals

that can be improved (>, < or no improvement), also, compare DE-HMM against

a DE with random control parameters that we call (Rand-gen). The complete

results, including the mean function error values, presented in Tables A.1 and A.2

in Appendix A. As previously discussed, we use the Wilcoxon’s and Friedman tests

to summarize the performances of all the DE-HMM variants and Rand-gen for the

30D CEC2005 test problems, shown in Figure 4.5 and Table 4.5, respectively. In

Figure 4.5, it is clear that our proposed DE-HMM algorithm with the minimum

posterior and greater suggested improvement values achieves better average fitness

values (i.e., fewer errors) for more problems than the other DE-HMM variants

where “Better” means that DE-HMM outperforms each of the compared variants

while “Worse” indicates that the competitor variant has better results relative

to DE-HMM. Moreover, the significance difference is shown in the last column

in Table A.3 in Appendix A based on the p-values as it shows that DE-HMM-

minG is significantly better than all the DE-HMM variants. Friedman statistical

analysis is reported in table 4.5, which demonstrates that DE-HMM attains the

highest ranking. Since the p-value computed by the Friedman test is smaller than

the significance level (0.05), the hypothesis that there is no significance difference
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Table 4.5: Friedman statistical analysis of different variants of DE-HMM.

Method 30D
Ranks

DE-HMM-minG “DE-HMM” 2.42
Rand-gen 3.2
DE-HMM-minL 3.62
DE-HMM-minE 4.18
DE-HMM-meanG 4.52
DE-HMM-meanL 5.16
DE-HMM-maxG 7.4
DE-HMM-meanE 7.94
DE-HMM-maxL 8.28
DE-HMM-maxE 8.28
“p-value” 3.23E-26
"Significance" +
“CD” 2.709

in that 10 competing algorithms is rejected. The smaller CD value detects the

significance difference in that test.

For further analysis, we select two test problems to act as typical ones with

different characteristics (i.e., C2 and C12) to validate the potential variations in

the ranges of their F and CR values through the evolutionary process.

They evidence the consequences of our choices for assessing the DE parameters.

It can be seen that the DE-HMM-minG performs significantly better than the

other eight, that is, it achieves better optimal solutions for the first two unimodal

functions while DE-HMM-minL and DE-HMM-meanL obtain better ones for both

C3 and C4, and C5, respectively. Furthermore, none of the eight variants can

provide better results better than our DE-HMM for any other test functions.

The main reason for this is that the proposed DE-HMM improves solutions by

seeking a higher ratio while estimating the CR (i.e., CR [0.7, 1]) and the minimum

posterior acts as the minimum step size when averaged with the configured CR

(i.e., F [0.3, 0.5]), as preferred in the literature discussed in Chapter 2.

Regarding the ranges of the F and CR, two main observations are shown in

Figures 4.6 and 4.7. The first is that the proper settings of the DE-HMM variants
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Figure 4.5: Comparison of numbers of problems with better or worse or
equivalent performances achieved by DE-HMM and its own variants.

Figure 4.6: F and CR evolution of DE-HMM variants for C2
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Figure 4.7: F and CR evolution of DE-HMM variants for C12

are changed for solving one optimisation problem; for instance, for C2 in Figure 4.6,

the F value with the minimum posterior is in the range of [0.3, 0.5] and the mean

and maximum posterior within [0.6, 0.75] and [0.85, 1], respectively. Similarly, the

CR for greater proportions of improvement has values within [0.7, 1] while those

for lower ones or no further improvement are within [0.6, 0.9] or [0.5, 1]. Secondly,

the DE-HMM exhibits the same behaviour when dynamically estimating the F

and CR for solving different optimization problems (C2 and C12).

In summary, it is proven that our DE-HMM is superior to Rand-gen in terms

of robustness and effectiveness because the chance of producing a good solution

by choosing the F and CR in a random way is likely to be much lower. Conversely,

choosing the appropriate F and CR probabilities through the evolutionary proce-

dure using the proposed approach exhibits significantly improved results.
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B. Performance analysis of DE-HMM

Based on the aforementioned analysis of the DE-HMM and all its variants, we

determine that the best variant is DE-HMM-minG (i.e., that with the minimum

posterior and greatest improvement). Therefore, it is compared with other state-

of-the-art algorithms in the next sections to demonstrate its performance in terms

of the quality of the solutions obtained.

• Comparisons of DE-HMM and classical DEs performances

Firstly, to validate its performance, our DE-HMM is compared with the canonical

DE DE/rand, namely C-DE, which has its control parameters fixed as PS =

100, F = 0.5 and CR = 0.9, the detailed results for which are presented in

Tables C.1, C.2, C.3 and C.4 in Appendix C. A summary of comparisons of these

algorithms with respect to the results obtained from the Wilcoxon statistical test

is depicted in Figure 4.8 in which it can be seen that our algorithm achieves

superior performances for most of the problems used in the experiment and similar

improvements for problems with higher dimensions using different datasets.

We extend our comparison to differ the crossover operator and mutation strat-

egy in DE-HMM. The four DE-HMM distinct setups, shown in Table 4.6 where the

first column shows the best strategy against binomial crossover shown in Equations

4.6 and 4.7, respectively. In Equation 4.6, xbest,G is the best fitness vector cho-

sen at generation G and F is the scaling factor, generated by DE-HMM method.

l and�l�D, in Equation 4.7 are the starting position, and the modulo function

with modulus D, respectively. The second column shows the mutation strategies

‘rand’ versus ‘best’. The third column refers to the crossover scheme binomial and

exponential, used for generating offspring solutions.

vi,G = xbest,G + F ∗ (xr1,G − xr1,G) (4.6)
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Figure 4.8: Comparison of numbers of problems with better or worse or
equivalent performances achieved by DE-HMM and C-DE.

Table 4.6: Description of the four mutation and crossover setups used in
DE-HMM analysis.

Mutation strategy Crossover scheme
DE-HMM "rand/bin" rand binomial
DE-HMM “rand/exp” rand exponential
DE-HMM “best/bin” best binomial
DE-HMM “best/exp” best exponential

ui,G =


vi.G ∀j = �l�D,�l + 1�D, ...,�l + L− 1�D

xi,G otherwise

(4.7)

We use the CEC2005 and CEC2014 benchmark functions at 30 dimensions

to assess their performances in terms of the obtained solution quality, where the

detailed results are reported in Tables B.1 and B.2 in Appendix B, respectively.

The Wilcoxon statistical results for the four setup are shown in Tables 4.7 and
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Table 4.7: Comparison summary between DE-HMM with rand and binomial
operators versus other setups at 30D CEC2005 test functions.

DE-HMM "rand/bin" vs. "Better" "Worse" "Equal" "p-value" "Significance"
DE-HMM/rand/exp 18 2 5 0.005 +
DE-HMM/best/bin 12 3 10 0.11 =
DE-HMM/best/exp 14 3 8 0.0125 +

Table 4.8: Comparison summary between DE-HMM with rand and binomial
operators versus other setups at 30D CEC2014 test functions.

DE-HMM "rand/bin" vs. "Better" "Worse" "Equal" "p-value" "Significance"
DE-HMM/rand/exp 21 5 4 0.001 +
DE-HMM/best/bin 15 9 6 0.155 =
DE-HMM/best/exp 16 10 4 0.146 =

4.8 for both CEC2005 and CEC2014 test set, respectively. In Table 4.7, DE-

HMM employing best strategy with binomial crossover achieves better results in

three unimodal and one multimodal functions while using best and exponential

operators get optimal results of two unimodal functions. Nevertheless, DE-HMM

using rand strategy and binomial crossover is better for the majority of time.

Moreover, for CEC2014 results in Table 4.8, DE-HMM with rand and binomial

crossover operators is superior to the other variants.

• Comparisons of DE-HMM and the state-of-the-art variants

Veček et.al [167] stated that comparisons in the literature should be made either

against parameter settings that has been tuned using a parameter tuning algo-

rithm, or against algorithms with abilities for parameter control. Given that our

proposed method falls in the second category, we have compared against similar

algorithms.

The DE-HMM is compared with some state-of-the-art control algorithms con-

taining four DE variants (i.e., SaDE [42], JADE [60], jDE [12] and CoBiDE [52])

and four non-DE EAs (i.e. BNGA [55], CLPSO [168], CMA-ES [169] and IPOP-

CMA-ES [170]), procedures which are regularly used for comparison in the litera-

ture. IPOP-CMA-ES was the champion of the CEC2005 competition. Note that
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the results of BNGA are presented for 10D only because the original paper only

reported for 10D.

It is clear that the DE-HMM, JADE and CoBiDE produce significant results

better than SaDE and jDE and, particularly, DE-HMM provides more substantial

improvements for many test problems. It also produces promising results for

various problem sizes, as shown in Table 4.9, which presents the algorithms’ ranks

determined by the Friedman test, reporting the p-values at 10, 30, 50 dimensions

and the CD value for this comparison results. From that table, it is observed that

there are significance differences for all assessed dimensions based on the p-values

as well as the calculated CD value.

For the 10D problems, similar to JADE, DE-HMM obtains the optimal so-

lutions for all the unimodal functions except C4 and can proficiently solve most

of the multimodal and hybrid test problems. The DE-HMM also shows superior

outcomes for most functions, particularly those with multimodalities and complex

hybrid compositions for the 30D problems. Nevertheless, JADE is the best algo-

rithm for solving the unimodal functions and produces optimal results for C9, as

do jDE and CoBiDE. For the 50D problems, the DE-HMM is still the best al-

gorithm, followed by CoBiDE. Overall, the performances of DE-HMM are better

than or competitive with the other algorithms as its way of estimating the F and

CR parameters basically analyses the potential dynamics in the DE evolutionary

process. The computational results obtained from these experiments are presented

in Appendix D.

The DE-HMM is also compared with the non-DE variants, as detailed in Ap-

pendix D, and succeeds in obtaining better results for the majority of the functions

tested. DE-HMM obtains the best results for most of the unimodal functions with

10D and 30D similar to CMA-ES while CMA-ES can achieve better results at
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Figure 4.9: Comparison of numbers of problems with better or worse or
equivalent performance achieved by DE-HMM and all the state-of-art variants

Table 4.9: Rankings obtained from Friedman’s test of 10, 30, and 50
dimensional CEC2005 functions of DE-HMM and its DE variants.

Method Ranks
10D 30D 50D

DE-HMM 2.56 2.72 2.80
CoBiDE 2.60 2.74 2.90
JADE 3.32 3.12 3.16
jDE 3.52 4.04 3.52
SaDE 4.10 3.88 4.56
C-DE 4.90 4.50 4.06
“p-value” 7.75e-07 3.12e-04 0.002
"Significance" + + +
“CD” 1.508
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50D. Considering the general trends of these algorithms for the multimodal prob-

lems, DE-HMM and IPOP-CMA-ES achieve good results for the 10D, 30D and

50D ones. For the group of functions with complex compositions, the DE- HMM

clearly demonstrates better performances than the other algorithms.

The statistical analysis by Friedman test confirms the superiority of the DE-

HMM over the non-DE algorithms for the 10D, 30D and 50D test functions, as

shown in Table 4.10, which includes the average ranking for each competing al-

gorithm, p-values at each dimensions and the CD value, all show that DE-HMM

has the highest ranking and the small p-values and CD reject the hypothesis that

there is no significance difference between the algorithms. Moreover, the Wilcoxon

statistical test provides results that demonstrate the significant performances of

the DE-HMM as it obtains greater number of better results than the other al-

gorithms, as shown in Figure 4.9. More specifically, Table D.13 in Appendix D

shows test of significance results and demonstrate that DE-HMM is significantly

better than all competing algorithms (except JADE and CoBiDE), based on the

average results obtained for all test problems at 10D and 30D problems. For JADE

and CoBiDE, DE-HMM offers significantly better solutions for 10D test problems

and equivalent performance for 30D and 50D. DE-HMM in Table D.13 achieves

significance results better than the augmented non-DE variants at 10D problems

whilst there is no significance difference for the other problems’ dimensionality.

Table 4.10 shows that DE-HMM still has the best average ranking compared with

non-DE variants, whereas the CD is calculated at 10D and (30 and 50D) for 5 and

4 competing algorithms, respectively.

To further illustrate the DE-HMM’s performance compared with those of the

state-of-the-art-techniques, convergence graphs of the different algorithms for 6

test problems (F1, F2, F4, F11, F14 and F16) are presented in Figure 4.10 in

which the x-axis refers to evolutions of generations (within the same function

evaluations) and the y-axis the median function error values over 30 independent

runs. It is clear that our DE-HMM algorithm is able to converge to better solutions
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Table 4.10: Rankings obtained from Friedman’s test of 10, 30, and 50
dimensional CEC2005 functions of DE-HMM and its non-DE variants.

Method Ranks
10D 30D 50D

DE-HMM 2.10 2.12 1.92
IPOP-CMA-ES 2.42 2.16 2.40
CLPSO 2.92 2.84 2.56
BNGA 3.74 - -
CMAES 3.82 2.90 3.12
“p-value” 3.39E-05 0.016 0.008
"Significance" + + +
“CD” 1.21 0.938

for most test problems. From the graphs, one can see that HMM works well

on F11, F14, and F16 and not on F1, F2, and F4, this could be because The

greedy mutation strategy, i.e., current-to-pbest/1in JADE algorithm results in

fast convergence speed and high convergence precision for unimodal functions.

For example, all algorithms almost perform similar performance in F1, the only

difference in the generation period to obtain these results. JADE is the best in F2

as mentioned because of its greedy strategy while the difference between DE-HMM

and CoBiDE is slight. The same behaviour for F4 as DE-HMM is the second best

after JADE algorithm. For multi-modal function such as F11, F14, and F16, the

best performing algorithm is DE- HMM as it can explore better regions in such

complex fitness landscapes.

• Performance evaluations of DE-HMM versus recent DE variants

In this subsection, we employ the four DE variants most recently developed to

improve the performance of DE (i.e., CPI-DE [61], TSDE [148], LSHADE [38] and

UMOEA [48]) for comparison with our proposed DE-HMM. The reason for choos-

ing these algorithms is that they all have either been published in the proceedings

of CEC2014 and/or recently proposed to imitate the current progress of DE. This
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Figure 4.10: Convergence plots of DE-HMM on F1, F2, F11, F14, and F16 with
30 dimensions where y-axis in log scale.
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experiment is conducted for 30 functions with 10, 30 and 50 decision variables over

30 independent runs, with their computational outcomes reported in Appendix E.

It is obvious in Table E.1 in Appendix E that both the DE-HMM and other

compared variants perform well for the 10D problems, especially the unimodal

and multimodal functions and most hybrid and composition instances. It reaches

optimal solutions for two multimodal functions (F6 and F8) and is considered

the best of the peer algorithms for 6 functions while the LSHADE algorithm

achieves the best results for 4 and UMOEA outperforms the others for 3. Table

E.3 in Appendix E recaps the experimental results for the 30D problems for which

UMOEA, LSHADE and TSDE obtain optimal solutions for 3, 2 and 1 unimodal

functions, respectively, while DE-HMM’s are close to the optimal solution for

F3. The DE-HMM is able to find the optimal solution for the multimodal F7 and

better results for 3 functions as well as competitive results for the other hybrid and

composition ones. The results for the 50D problems show that DE-HMM exhibits

superior performances for the majority of multimodal, hybrid and composition

functions.

Finally, as a further comparison, the Wilcoxon and Friedman tests are con-

ducted, to detect the significance difference of these algorithms, and their results

shown in Figure 4.11 and Table 4.11, respectively, for all the dimensions studied in

our experiment. In conclusion, the proposed DE-HMM yields significantly better

results than the four CPI-DE for 10D and 50D, while it is significantly better than

TSDE, LSHADE, and UMOEA for 30D, 50D, and 10D, respectively, as illustrated

in Table E.7 in Appendix E.

4.3.4. Time Complexity

This section describes the time complexity for comparing DE-HMM against other

algorithms (either compared based on CEC2005 or CEC2014 benchmark datasets).

The computational time is measured as defined in [163, 164] for CEC2005 and
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Figure 4.11: Comparison of numbers of problems with better or worse or
equivalent performance achieved by DE-HMM and the up-to-date DE variants.

Table 4.11: Rankings obtained from Friedman’s test of 10, 30 dimensional
CEC2014 functions of DE-HMM and its up-to-date variants.

Method Ranks
10D 30D 50D

DE-HMM 2.67 2.78 2.67
LSHADE 2.82 2.90 2.72
TSDE 2.83 3.68 4.22
UMOEA 3.43 3.08 2.78
C-DE 4.55 4.10 4.38
CPI-DE 4.70 4.45 4.23
“p-value” 2.64e-08 4.50e-04 5.57e-05
"Significance" + + +
“CD” 1.376
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Figure 4.12: Time complexity for C3 of CEC 2005 test problems at 10, 30, and
50 dimensions.

CEC2014, respectively. The comparisons are reported in Tables F.2 and F.3 for

CEC2005 and CEC2014 benchmark datasets, accordingly. We employ the two

standard functions used in the literature for this comparison.

Two plots are drawn to depict the performance of each algorithm in terms

of the quality of the obtained solution and the time consumed for achieving it.

Firstly, Figure 4.13 shows the trade off between the effectiveness and efficiency of

DE-HMM and C-DE and DE variants, use the CEC2005 test set in the previous

comparison. Function 3 is employed as defined in [163] at different dimensions (10,

30, and 50 dimensions). From this figure, it is clear that DE-HMM could consume

more time than C-DE, JADE, and jDE but it achieves less error (better result)

than them at 30D and 50D. In regard to the 10D results, although C-DE, jDE,

and JADE are better in terms of time and quality for 10D, the difference when

compared to the performance of DE-HMM is negligible.

Secondly, we test the time consumed for F18 in CEC2014 dataset as defined
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Figure 4.13: Time complexity for F18 of CEC 2014 test problems at 10, 30, and
50 dimensions.

in [164] to evaluate the performance of the proposed DE-HMM algorithm and

up-to-date DE variants. The comparisons are described in Figure 4.13, where

DE-HMM performs better in terms of quality of solutions obtained, albeit with a

slight increase in computational cost when compared to classical DE and LSHADE

algorithms.

4.4. Chapter summary

Setting the intrinsic parameters of a DE stochastic algorithm has a great effect

on the efficiency and effectiveness of the obtained solutions, with less processing

time required to adjust them through the evolutionary process than tune them

manually using a trial and error approach.
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In this chapter, a combination of the HMM procedure and classical DE pro-

cess, the DE-HMM self-adaptive parameter control method for effectively adapt-

ing the F and CR control parameters considering the three main issues mentioned

in Chapter 2 (i.e., problem and evolution dependencies, and the complex inter-

actions between the F and CR) is discussed. It improves DE’s performance as

better solutions are obtained in less computational time than required by other

adaptive/self-adaptive algorithms.

In DE-HMM method, to assign the F and CR values during the evolutionary

process, the HMM posterior and likelihood ratios are calculated, as inspired by

the usefulness of the HMM and its similar way of operating to DE as both change

naturally over time. Experiments were conducted using two groups of benchmark

problems comprising 55 test functions (i.e., IEEE CEC2005 and CEC2014) with

different dimensions (i.e., 10, 30 and 50) to demonstrate the DE-HMM algorithm’s

performance in terms of the quality of solutions obtained. Also, the computational

times for different dimensions were calculated.

Subsequently, DE-HMM was compared with different algorithms, the classical

DE and other competitive ones with four DE and four non-DE variants, and

also other recent state-of-the-art ones using two non-parametric statistical tests to

analyze and demonstrate its overall outstanding performance.

Based on the results, DE-HMM can obtain better solutions than the other

algorithms for different problems even with increased number of dimensions.
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Chapter 5

Two Strategies DE-HMM

Combined with Local Search for

Constrained Optimization

Problems

In dealing with constrained problems (COPs), this chapter introduces a DE frame-

work that extends the DE-HMM self- adaptation method discussed in Chapter 4.

This framework incorporates DE-HMM with a local search method to solve various

types of COPs. The benchmark dataset, experimental settings and computational

results and analysis are provided. The results are compared with other state-of-

art algorithms, demonstrating the effectiveness of the proposed method in solving

COPs.

5.1. Introduction

Most real world optimization problems in various fields like engineering and com-

puter science frequently involve additional requirements on the variables and/or

objective functions, which comprise “ constraints”. These problems are termed as

constrained optimization problems (COPs) [19]. In COPs, the objective function

is minimized or maximized subject to certain constraints (such as cost, geometry,

sequence, etc.) [19]-[84]. Evolutionary algorithms (EAs) have proved their po-

tential success in solving COPs over the last few decades; including Differential

Evolution (DE), which is one of the highly competitive EA [91]. Handling any
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COP requires two main elements; the search mechanism and constraint handling

techniques (CHTs) [78]. The search performance primarily depends on these ele-

ments. The main purpose of DE here is to adjust the exploration and exploitation

of the evolving population, achieving promising performance while CHTs are in-

troduced to find the best way of handling the constraints during the evolution

process.

As previously discussed in Chapter 2, DE, as a simple and highly competitive

EAs, has the characteristics of global direct search, including three main operators

(i.e., mutation, crossover and selection) and their associated control parameters

(i.e., scaling factor F , crossover rate CR and population size PS) [91] for finding

the optimal solution. However, DE still needs specialized mechanisms (CHTs) to

discover both feasible and optimal solutions. The main operator in DE is muta-

tion, where the original parents are selected randomly to generate new solutions,

improving the exploration of the search space. In the literature, choosing the

search operators and control parameters have proven to be a complex task due

to the variability and complexity of COPs characteristics [16]. In other words,

no specialized processes, operators or parameters are suitable for all problems, or

even for a problem at hand.

I propose the idea of augment DE with different operators and/or different

processes. This idea is inspired from memetic algorithms (MAs) [171, 172] re-

search. Qin et al. [171] state that the MAs are often more competitive than the

global search methods for solving complicated optimization problems. Also, their

performance is sensitive to the frequency and the strength of the local search, how

it operates and the interaction between the global and local search operator.

In this study, a local search is combined with the basic DE search, as a spe-

cialized search operator, representing two stages, each with their own mutation

strategy and its F and CR based on the ongoing dynamics in the search process.

One strategy is to enhance the exploration abilities and the other is to accelerate
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the convergence towards the optimal solution. In addition, the HMM model is em-

ployed for automatically adjusting F and CR parameters, as discussed in Chapter

4, to tackle the parameter control issue.

This research focuses on a general framework that capitalizes on the power of

local search to guide and accelerate the search convergence for the feasible regions

as well as the strength of mutation characteristics that fit each stage. Furthermore,

the application of HMM for adjusting F and CR parameters is extended to COPs.

The resultant framework is referred to MS-DEHMM-L.

The proposed framework is evaluated using a well studied constrained bench-

mark suite, which was introduced in the CEC2010 IEEE competition [173]. The

results obtained confirm the effectiveness of the MS-DEHMM-L framework in solv-

ing COPs compared to some of the state-of-art constrained algorithms.

This chapter is structured as follows: section 2 discusses the algorithmic frame-

work components; the experimental study, including details of the benchmark data

set, configuration used and results obtained are provided in section 3; and, finally,

this chapter is concluded in section 4.

5.2. Algorithmic Framework of MS-DEHMM-L

There is no guarantee that a single search procedure or operator would be suit-

able for all problem types, as it could perform best for a class of problems but its

behaviour is not satisfactory for another class of problems, especially for COPs.

This is formally recognized in the literature as the No Free Lunch theorem [10].

Therefore, the focus in this chapter is to determine the appropriate search method,

either global or local search, through the evolution procedure based on the per-

formance of such population’s individuals regards to the feasibility and diversity

ratios. For each generation, the feasibility and diversity ratios are calculated of the

entire population for deciding which search procedure should be employed? Then,
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different mutation strategies and control parameters are assigned to each process

according to their nature. The constraints are managed using the multi-objective

optimization concepts, detailed below.

Three major components are incorporated in the proposed framework to solve

COPs. Firstly, the local search method, which aims to explore and guide the

search towards the feasible regions instead of focusing on guiding the whole pop-

ulation to optimal solution using the global search only. Therefore, the proper

balance between finding the best solution and maintaining population diversity

(i.e., exploitation and exploration) can be achieved by integrating the local search

within the main DE procedure as two search stages; local for exploration and

global for exploitation. The second component is to set the F and CR parame-

ters dynamically during the evolutionary process, which is accomplished by using

HMM as an extension of the work in Chapter 4. The last one is to assign two

different strategies and estimated F and CR values for the local and global stages’

processes.

5.2.1. Constrained Handling

As reviewed in Chapter 2, there are two types of constraints, equality and in-

equality in which the equality constraints are transformed into inequalities using a

smaller tolerance δ. In this study, an approach based on multi-objective optimiza-

tion concepts [78] is implemented as CHT in which the constraint violations G(x)

are treated as an additional objective besides the objective function (i.e., fitness

function f(x)), calculated as equation 5.1

G(−→x ) =


max{0, gi(−→x )} i = 1, 2, ....IQ

max{0, |hj(−→x )| − δ} j = 1, 2, ....EQ
(5.1)

G(−→x ) =
IQ∑
i=1

Gi(−→x ) +
EQ∑
j=1

Gj(−→x ) (5.2)
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where −→x = [x0, x1, ..............xD], D is the number of dimensions, each vector

has gi(−→x ) and hj(−→x ) inequality and equality constraints, thus G(−→x ) is consid-

ered as the summation of constraint violations for the inequality and equality

constraints as in equation 5.2.

Two objectives are considered to select better individuals to survive in the

next generation. The Pareto-dominance (≺) is usually used in this CH category

(i.e., multi-objective optimization) for comparing and selecting the desired coming

solutions [19, 78] whereas the objective function f(x) and the constraint violations

G(x) are considered as two conflicting objectives to be achieved. To explain the

Pareto-dominance concept, assume that there is a population pop with solutions

x1 and x2. x1 is considered to dominate x2 if two conditions are satisfied, shown

in equation 5.3

c1) if the values of f(x1) and G(x1) are less than or equal to the values of

f(x2) and G(x2), respectively (x1 is not worse than x2).

c2) if the value of f(x1) is less than to the value of f(x2) or the value of G(x1)

is less than to the value of G(x2) (x1 is better than x2 for one objective at least).

x1 ≺ x2←− if


c1 : f(x1) ≤ f(x2) &G(x1) ≤ G(x2)

c2 : f(x1) < f(x2) ||G(x1) < G(x2)
(5.3)

In particular, x1 is chosen for the next generation if x1 Pareto dominates x2

(achieves c1 and c2). However, if x1 and x2 cannot hold the Pareto-dominance

between them, then they are called non-dominated with each other. The same

for x2 with respect to x1, the former can be survived to the next generation if it

Pareto dominates to x1.
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5.2.2. HMM for control parameter setting (F and CR)

In this section, the DE parameter control self-adaptive methodology proposed in

Chapter 4 is extended. As mentioned in the previous chapter, HMM has three

inputs to be defined from the DE internal information: the state transition matrix

(T ), the emission matrix (E) and the initial state probabilities (π). HMM defines

two states to reflect the status of DE individuals as feasible or infeasible states,

with initial values of 0.1 and 0.9, respectively because the infeasible solutions have

are likely to be higher in proportion in the start of the search. The emission ma-

trix including the population observations is transformed into probabilities as in

Algorithm 4.1 to reveal the interdependencies in the evolutionary process, rep-

resenting the HMM likelihood. According to the ongoing process, either global

or local process, the population individuals are sorted regarding its target, either

obtaining the best solution or achieving the feasible region, respectively. For ex-

ample, the population is sorted ascendingly according to the constraint violations

in the local search process as it focuses on reaching the feasible region while the

global search focuses on achieving the optimal solution so that its individuals are

sorted in ascending order according to the fitness function value.

CR is calculated by computing the likelihood proportion between the current

state sequence and the best state sequence by the Viterbi algorithm [161] and

F is calculated from the posterior probability of a certain state with respect to

the observation sequence (population). Two different values for F and CR are

computed for the two processes’ stages based on their procedures. Since the local

search guides the population to the feasible region from different directions, F and

CR should be relatively large to preserve the population diversity while exploring

more promising eras. However, they should be slightly smaller for the basic DE

search as the main target in that case is to locate the optimal solution.

The updated steps of estimating both F,CR for the two processes are described

in Algorithm 5.1 and illustrated in detail in the previous chapter.
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Algorithm 5.1 Updated steps of building the HMM from constrained DE prob-
lems’ information
Input ← Population popm as a matrix of size R× C

1: Transform popm to probability emission matrix B using Algorithm 4.1
2: Initialize A with feas, infeas states
3: Sample random sequence of states STseq and emission symbols EMseq

4: Evaluate the max likelihood of STseq and EMseq

5: Calculate the best state sequence bestseq that maximizes the likelihood of
EMseq using Viterbi algorithm [15, 16]

6: CRL = Likelihoodratio (STseq ≥ bestseq)
7: CRG = Likelihoodratio (STseq ≤ bestseq)
8: FL = Average (maxposterior|EMseq, CRL)
9: FG = Average (minposterior|EMseq, CRG)
Output→ FL, CRL,FG, CRG

The MS-DEHMM-L mainly estimates the F and CR control parameters based

on the evolution changes for the two stages’ processes. The core difference between

the DE-HMM and MS-DEHMM-L regading computing the F and CR is that the

latter computes two values for each of F and CR according to the entire process,

described in Algorithm 5.1. Initially, the population observation is transformed

into probabilities using Algorithm 4.1 to achieve the HMM requirements, then two

sequences are randomly sampled STseq and EMseq, representing the sequence of

states and observations, respectively from HMM.

CR value is calculated by estimating the likelihood ratio between the actual

state sequence STseq that is better or worse than the best state sequence bestseq
(produced from the Viterbi algorithm) for local and global search stages, respec-

tively. Since CR in the crossover operator identifies the improvement in the new

offspring from the parent and mutant vectors, the local search needs high change

in the offspring (inherit little information from the parent one) but the global

search here can accelerate the convergence by getting more information from the

original vectors.

F value is calculated using two values; the posterior probability and the es-

timated CR, therefore, two values are estimated for the local and global search
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stages. A higher probability of change/step is needed in the local search proce-

dure for distributing the mutant vector widely while the jumping step of F in

the global search should be smaller as this search process focuses on finding the

optimal solution so exploring the most possible individuals is essential. Therefore,

F is estimated by averaging the posterior probability (that reflects evolutionary

changes) and the pre-estimated CR to realize the F and CR dependencies, as

discussed before in Chapter 4.

5.2.3. DE combined with local search

In this section, the optimization process is classified into two different stages; global

and local DE processes. The main search process focuses on exploring the whole

search space and obtaining the best individual and this could lead to continuing

the evolution until finding an individual with better performance. It could be

time-consuming either by exploring more and more regions when the best solution

is located in small region or in case of no new solutions having better performance

than their parents for large number of generations.

To tackle these issues, the evolutionary process is divided into two processes

based on two factors: the feasibility ratio FP [78] and the diversity ratio ϕ [174,

175] of the population, computed as follows.

FP = No_Feas_Sols
PS

(5.4)

ϕ = 1−
∣∣∣∣ savg − sbestsworst − sbest

∣∣∣∣ (5.5)

L_firing =


1 if rand(0, 1) < 1− FP ∨ rand(0, 1) < ϕ

0 otherwise

(5.6)
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where No_Feas_Sols is the total number of feasible solutions per generation

and PS is the population size. In equation 5.5, savg , sbest and sworst are the

average, best and worst fitness values of the population solutions.

At the beginning of the evolutionary process, the majority of the population are

infeasible solutions and the population diversity still high. Therefore, the offspring

could be infeasible or nondominated with its parent individual, which could affect

on the population so as to stagnate in the infeasible region and cannot progress in

the search process. To address and tackle these problems, the local search is used

for locally exploring a solution’s neighbourhood, while approaching the feasible

region. During the local search procedure (steps 5-10 in algorithm 5.2), the pop-

ulation pop is divided into a number of subpopulations with equal sizes (assume

that subpopulation with slight large size is better). Using large size for the sub-

population is preferred as it would contain both feasible and infeasible individuals

with higher probability than those with small subpopulation, which increases the

chance of finding the desired optimal solution in the feasible region. The subpop-

ulations are evaluated by the fitness and constraint functions and then mutation

and crossover are invoked for generating new offspring. After obtaining the new

offspring populations, the selection comparison using the Pareto-dominance crite-

ria is applied to replace the non-dominated individuals by dominated ones so that

each subpopulation can motivate the search towards the feasible region. Finally,

all subpopulations are combined to gather the whole population. The steps from 5

to 10 keep executing along the evolution until the population converge to the fea-

sible region and there are enough feasible solutions with low diversity (L_firing

is not satisfied). In this stage of the search, the probability of applying the global

process becomes higher than local one for improving the solution quality until

finding the optimal solution.

In other words, The local searcher operates when most of the population in-

dividuals are infeasible and the diversity still high, therefore, it is essential to

use the local search method for locally exploring the neighbourhood approaching
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Figure 5.1: Flow Chart of MS-DEHMM-L methodology
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the feasible region instead of applying global one. In global search, the search

may stagnate in infeasible region because the newly generated offspring could be

infeasible or non-dominated with its parents.

5.2.4. Two strategies and control parameters in

MS-DEHMM-L

The variability of COPs’ characteristics leads to the difficulty of using single strat-

egy or control parameter while the evolutionary progresses. Therefore, there is a

requirement to use multiple strategies and parameter values in order to consistently

solve a wide range of COPs effectively. The proposed MS-DEHMM-L based on

two mutation strategies, shown in Figure ,should utilize the strengths of their var-

ious characteristics for various search stages. Two distinct mutation strategies and

two parameter sets are implemented according to the nature of each search stage

dynamics and behaviour. In particular, DE/rand/1 and DE/best/1 is chosen to

be applied in the local and global DE search processes, respectively. The main

reasons for choosing those strategies are the powerful exploration capability of

DE/rand/1 that can improve the search ability while DE/best/1 has greedy ex-

ploitation capability, which it comprises the best individual information to direct

the search evolution with no bias.

In the early stages of the evolution process, the number of feasible solutions is

usually small or there is no feasible solutions and the population diversity is high so

that employing local search with the DE/rand mutation and high F and CR values

is recommended as a better way for approaching the feasible region. However, the

global search is encouraged when the population achieves the feasible region, then

applying the greedy DE/best strategy with slightly smaller values, reaching the

best solution. In general, the intent of applying both local and global search as

two stages, associated with different strategies and parameter values is to balance

between the feasibility and optimality. In other words, the way of maintaining
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the balance between approaching the feasible region and converging to the best

solution.

The basic steps of MS-DEHMM-L procedure are illustrated below.

Algorithm 5.2 Steps of MS-DEHMM-L
Input ← f(x), g(x), h(x), PS, D and Maxeval = 20000 ∗D

1: Initialize pop of PS ∗D randomly under uniform distribution.
2: f(x), G(x)← Evaluate pop by f(x) , g(x) and h(x)
3: Apply algorithm 5.1 for FL, CRL,FG, CRG

4: if (L_firing) then
5: Cluster pop into sub_pops with equal sizes
6: Evaluate sub_pops
7: trial_sub_pops ←Evolve mutation and crossover using equations 2.1, 2.7,

with FL, CRL

8: Evaluate trial_sub_pops
9: Using Pareto-dominance, replace the non-dominated by another dominated

solution in sub_pops
10: Combine whole sub_pops to form pop
11: end if
12: Evolve mutation and crossover as in equations 2.4, 2.7, with FG, CRG

13: Evaluate pop
14: Using Pareto-dominance, select the dominated solutions to G+ 1
15: if (Stopping condition is met) then
16: Stop
17: else
18: Update eval = eval + PS and G = G+ 1
19: Go Step 4
20: end if
Output→ best_solution

5.3. Experimental Results and Analysis

5.3.1. Benchmark problems

18 benchmark test problems are collected from the CEC2010 special competition

on constrained optimization problems [173], as one of the most widely used test

suite for evaluating the evolutionary constrained optimization algorithms. We
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Table 5.1: Characteristics of CEC2010’s test functions where I refers to the
number of inequality constraints, E is the number of equality constraints, S is

seperable, Non-Sep is not seperable and feasibility pro denotes the ratio between
feasible region and whole search space

prob Range Objective No of Constraints Feas-ratio
E I 10D 30D

H1 [0,10] Non-S 0 2 Non-S 0.99768 1
H2 [5.12,5.12] S 1 S 2 S 0 0
H3 [1000,1000] Non-S 1 S 0 0 0
H4 [50,50] S 2 Non-S , 2 S 0 0 0
H5 [600,600] S 2 S 0 0 0
H6 [600,600] S 2 Rotated 0 0 0
H7 [140,140] Non-S 0 1 S 0.50512 0.50372
H8 [140,140] Non-S 0 1 Rotated 0.37951 0.37527
H9 [500,500] Non-S 1 S 0 0 0
H10 [500,500] Non-S 1 Rotated 0 0 0
H11 [100,100] Rotated 1 Non-S 0 0 0
H12 [1000,1000] S 1 Non-S 1 S 0 0
H13 [500,500] S 0 2 S, 1 Non-S 0 0
H14 [1000,1000] Non-S 0 3 S 0.00311 0.00612
H15 [1000,1000] Non-S 0 3 Rotated 0.00321 0.00602
H16 [10,10] Non-S 2 S 1 S, 1 Non-S 0 0
H17 [10,10] Non-S 1 S 2 Non-S 0 0
H18 [50,50] Non-S 1 S 1 S 0.00001 0

use these functions, known as CEC2010 benchmark suite to evaluate/ judge the

efficiency of our MS-DEHMM-L algorithm with 10 and 30 dimensions (D), as

provided in Table5.1. In this table, different problems, labelled as H1 ~ H18, with

different characteristics, such as linearity or non-linearity or equality or inequality

for constrained functions are evolved either objective or constrained functions.

5.3.2. Experiment setup

The proposed algorithm was implemented in Matlab R2015a, and run on a PC

with a 3.40 GHz TM-Core i7 processor, 16 GB RAM and Windows 7 with 64

bits. The PS value of MS-DE-HMM-L is set to 100. The total number of function

evaluations (eval) is set to 20000∗D, where D is the number of dimensions for each

problem, 25 independent runs are performed as suggested in [173]. For describing
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the best results, we highlight them in boldface type and the number of best results

(No−Best) for each competing algorithm are reported at the end of results’ tables.

In this chapter, the Wilcoxon and Friedman statistical tests [176] are applied

to show the significant difference between the proposed MS-DEHMM-L and the

comparable algorithms. SPSS statistical analysis software [166] is used. These

tests assume in the null hypothesis that there is no significant difference between

the mean values of two samples whilst the alternative hypothesis tries to find the

significant difference by conducting a 5% significance level. Based on the Wilcoxon

and Friedman tests, three different symbols “ + ” or “ − ” or “ = ” (shown in

the significance columns) are considered to reflect the significant difference in the

average fitness values between MS-DE-HMM-L and the peer algorithms, where

“ + ” or “ − ” mean that DE-HMM is significantly better or worse than the peer

algorithm, respectively, while “ = ” means that there is no significant difference

between the two algorithms. The critical difference (CD) of the Nemenyi post-hoc

test [165] that is used to identify the significant differences between the computed

ranks when the null hypothesis is rejected, calculated as discussed in Chapter 4

(section 4.4).

5.3.3. Experimental Results

Four well-known state-of-the-art algorithms representing different EA are chosen

as competitors for demonstrating the performance of MS-DEHMM-L algorithm

against them. All of them were published in the competition of CEC that was

held in 2010 of the evolutionary constrained optimization competition. Note that

all the results of the competing algorithms are taken from their original papers.

1. Constrained DE with an archive and gradient-based mutation (εDEag) [90]

that won the CEC2010 constrained optimization competition;

2. Co-evolutionary comprehensive learning particle swarm optimizer (Co-CLPSO)

[177];
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Table 5.2: Mean and std of function error values of MS-DEHMM-L and the
state-of-art algorithms on CEC2010 18-test problems at 10D.

10D

εDEag CO-CLPSO eABC jDEsoco MS-DEHMM-L

mean mean mean mean mean

(std) (std) (std) (std) (std)

H1
-7.470402E-01 -7.335800E-01 -7.162570E-01 -7.383600E-01 -7.473104E-01

(1.323339E-03) (1.784800E-02) (2.689780E-02) (1.600600E-02) (1.350625E-03)

H2
-2.258870E+00 -2.266600E+00 -1.248950E-01 5.635900E-01 -2.277710E+00

(2.389779e ) (1.461600E-02) (1.583590E+00) (1.104400E+00) (1.447037E-02)

H3
0.000000E+00 3.550200E-01 2.445070E+12 7.810500E+00 9.262631E-21

(0.000000E+00) (1.775100E+00) (1.009670E+01) (2.943700E+00) (1.678290E-07)

H4
-9.918452E-06 -9.338500E-06 8.563060E-01 -1.00000E-05 -1.000000E-05

(1.546730E-07) (1.074800E-06) (3.006280E+00) (9.483100E-16) (4.887269E-07)

H5
-4.836106E+02 -4.836000E+02 3.652470E+02 -3.021700E+02 -4.835068E+02

(3.890350E-13) (1.957700E-02) (1.172050E+02) (3.025600E+02) (1.426070E-01)

H6
-5.786528E+02 -5.786600E+02 4.381680E+02 -5.740800E+02 -5.796248E+02

(3.627169E-03) (5.728900E-04) (8.595360E+01) (1.646100E+01) (1.581617E+01)

H7
0.000000E+00 7.973200E-01 7.160940E+01 6.419200E-27 3.231059E-05

(0.000000E+00) (1.627500E+00) (5.191130E+01) (1.351500E-26) (7.913326E-01)

H8
6.727528E+00 6.087600E-01 4.107890E+02 3.742100E+00 2.125510E-20

(5.560648E+00) (1.425500E+00) (9.356030E+02) (1.033000E+01) (4.466395E-02)

H9
0.000000E+00 1.993800E+10 2.019340E+12 5.289800E-01 2.136711E+01

(0.000000E+00) (9.968800E+10) (1.810830E+12) (1.462000E+00) (2.292318E+00)

H10
0.000000E+00 1.395100E+09 1.746200E+12 3.171200E+01 6.322286E-03

(0.000000E+00) (2.487100E+11) (2.583000E+12) (1.818800E+01) (4.706813E+01)

H11
-1.522713E-03 -1.612500E-01 -1.230170E+00 -8.255500E-03 -3.342758E-03

(6.341035E-11) (6.602500E-01) (3.035560E+00) (2.380700E-02) (1.668680E-10)

H12
-3.367349E+02 -2.336900E+00 -1.800890E+02 -2.236500E+01 -8.870370E+02

(1.782166E+02) (2.432900E+01) (2.757580E+02) (1.108300E+02) (3.131391E+02)

H13
-6.842936E+01 -6.527800E+01 -6.568060E+01 -6.831500E+01 -6.842937E+01

(1.025960E-06) (2.576300E+00) (2.502700E+00) (5.701800E-01) (2.271798E-05)

H14
0.000000E+00 3.189300E-01 8.004100E+10 9.122100E-01 3.262775E-01

(0.000000E+00) (1.103800E+00) (2.366080E+11) (2.453800E+00) (7.633829E-01)

H15
1.798978E-01 2.988500E+00 2.565760E+13 1.245200E+09 2.170927E+08

(8.813156E-01) (3.314700E+00) (2.862760E+13) (3.812700E+09) (3.326661E+12)

H16
3.702054E-01 5.986100E-03 8.347410E-02 4.110200E-01 0.000000E+00

(3.710479E-01) (1.331500E-02) (9.106390E-02) (3.835900E-01) (0.000000E+00)

H17
1.249561E-01 3.798600E-01 2.680100E+01 8.895800E+01 2.957758E-02

(1.937197E-01) (4.528400E-01) (6.831360E+00) (9.913100E+01) (8.591504E+00)

H18
9.678765E-19 2.319200E-01 3.470230E+02 4.050000E+02 1.350433E+00

(1.811234E-18) (9.955900E-01) (3.710760E+02) (7.376200E+02) (2.564924E+02)

No-Best 8 0 1 2 9
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3. Elitist artificial bee colony (eABC) [178][13]; and

4. An Improved Self-adaptive Differential Evolution Algorithm in Single Ob-

jective Constrained Real-Parameter Optimization (jDEsoco) [179].

The detailed results at 10 and 30 dimensions are shown in Table 5.2 and 5.3,

respectively. Some promising observations are derived from these tables.

• For 10D test functions, MS-DEHMM-L and εDEag can produce better

results than Co-CLPSO, eABC and jDEsoco on the majority of the test

functions. Co-CLPSO achieves promising findings in some cases such as

H1, H2, H4 and H6 while jDEsoco can reveal acceptable findings in three

functions (H1, H4 and H6). MS-DEHMM-L is able to achieve the 100%

feasibility rate for all test functions except H10 and H11 as they record 80%

and 40%, respectively as listed in Table 5.4. In addition, it can be seen from

this table that the feasibility ratio of εDEag is 100% for all problems. Co-

CLPSO reported 100% proportion for all problems but it cannot produce any

feasible solutions for H11 while jDEsoco could not achieve 100% feasibility

ratio for seven functions.

• On 30D test functions, although MS-DEHMM-L is still the superior

method to solve most instance against the compared competitors with re-

spect to the quality of solution; its feasibility ratio is not as good as those in

10D. In particular, the proposed methodology is unable to achieve feasible

outcomes for functions H3, H9 and H15 but it is still 100% for the remain-

ing functions. As shown in Table 5.4, εDEag is able to achieve 100% for

all problems except H12 (12% only) while Co-CLPSO and jDEsoco have 12

functions out of 16 achieving 100% feasibility proportion.

• Regarding the Wilcoxon test results, from Table 5.5 , it is clear that

MS-DEHMM-L shows significantly better results than all the compared al-

gorithms for 10D except εDEag. On the other hand, MS-DEHMM-L is only

145



Table 5.3: Mean and std of function error values of MS-DEHMM-L and the
state-of-art algorithms on CEC2010 18-test problems at 30D.

30D

εDEag CO-CLPSO eABC jDEsoco MS-DEHMM-L

mean mean mean mean mean

(std) (std) (std) (std) (std)

H1
-8.208687E-01 -7.159800E-01 -7.305540E-01 -8.123800E-01 -8.218841E-01

(7.103893E-04) (5.025200E-02) (4.875890E-02) (1.318700E-02) (1.760511E-03)

H2
-2.151424E+00 -2.202900E+00 2.556470E+00 1.560300E+00 -2.271995E+00

(1.197582E-02) (1.926700E-01) (9.429490E-01) (8.470500E-01) (2.246615E-02)

H3
2.883785E+01 3.510600E+01 1.070870E+13 6.144700E+01 1.615494E+10

(8.047159E-01) (3.310100E+01) (2.208900E+12) (5.757700E+01) (7.253518E+11)

H4
8.162973E-03 1.126900E-01 2.145720E+01 3.518700E-04 2.198817E-06

(3.067785E-03) (5.633500E-01) (6.219130E+00) (2.394800E-04) (3.004453E-08)

H5
-4.495460E+02 -3.124900E+02 3.718920E+02 1.082200E+02 3.409147E+02

(2.899105E+00) (8.833200E+01) (7.888540E+01) (1.520300E+02) (6.397773E+01)

H6
-5.279068E+02 -2.447000E+02 4.738410E+02 -4.728400E+02 -5.306080E+02

(4.748378E-01) (3.948100E+01) (6.302590E+01) (1.274300E+02) (3.349227E-02)

H7
2.603632E-15 1.116300E+00 1.332900E+02 8.739600E-02 3.029077E-18

(1.233430E-15) (1.826900E+00) (2.058280E+02) (3.252900E-23) (5.720746E-14)

H8
7.831464E-14 4.751700E+01 1.501960E+02 8.258500E+01 3.886901E-21

(4.855177E-14) (1.125900E+02) (7.148770E+01) (2.439500E+02) (4.264525E-17)

H9
1.072140E+01 1.482200E+08 1.607560E+13 2.474300E+00 2.966268E+06

(2.821923E+01) (2.450900E+08) (9.287410E+12) (8.778200E+00) (1.522197E+05)

H10
3.326175E+01 1.395100E+09 1.498640E+13 2.938600E+01 2.835986E+00

(4.545577E-01) (5.843800E+09) (9.773360E+12) (7.178600E+00) (1.533118E-01)

H11
-2.863882E-04 2.818600E-02 -5.885290E-01 1.166700E-03 -1.250024E+00

(2.707605E-05) (3.212400E-02) (6.486250E-01) (5.269000E-03) (1.688888E+00)

H12
3.562330E+02 -1.991100E-01 5.071100E+01 -1.992500E-01 -3.910930E+02

(2.889253E+02) (1.184000E-04) (3.704680E+02) (2.345300E-05) (4.312008E+00)

H13
-6.535310E+01 -6.077400E+01 -6.485590E+01 -6.753700E+01 -6.741601E+01

(5.733005E-01) (1.117600E+00) (1.382130E+00) (5.055300E-01) (1.480811E+00)

H14
3.089407E-13 1.275700E+00 9.947190E+03 1.594600E-01 2.881985E-04

(5.608409E-13) (1.898000E+00) (1.916060E+04) (7.973200E-01) (2.312628E+02)

H15
2.160376E+01 5.105900E+01 3.785130E+13 1.535700E+09 9.639835E+12

(1.104834E-04) (9.175900E+01) (3.440730E+13) (1.604500E+09) (5.962591E+13)

H16
2.168404E-21 5.240300E-16 8.207220E-01 7.320600E-01 7.838309E-16

(1.062297E-20) (4.672200E-16) (2.569880E-01) (2.994300E-01) (1.390063E-11)

H17
6.326487E+00 1.391900E+00 2.680100E+01 5.039800E+02 1.229338E+00

(4.986691E+00) (4.262100E+00) (1.634550E+01) (4.483200E+02) (6.437713E+02)

H18
8.754569E+01 1.087700E+01 2.933360E+02 3.084900E+02 2.056003E+02

(1.664753E+02) (3.716100E+01) (3.528430E+02) (3.053800E+02) (1.167261E+04)

No-Best 5 1 0 2 10
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Table 5.4: Feasibility Rate ( %) of MS-DEHMM-L and the state-of-art
competitors on CEC2010 18-test problems at 10D and 30D

prob D εDEag CO-CLPSO eABC jDEsoco MS-DEHMM-L

H1
10 100 100

Not-reported

100 100
30 100 100 100 100

H2
10 100 100 88 100
30 100 100 100 100

H3
10 100 100 100 100
30 100 0 100 0

H4
10 100 100 100 100
30 100 80 100 100

H5
10 100 100 88 100
30 100 100 88 100

H6
10 100 100 100 100
30 100 100 88 100

H7
10 100 100 100 100
30 100 100 100 100

H8
10 100 100 100 100
30 100 100 100 100

H9
10 100 100 100 100
30 100 100 100 92

H10
10 100 100 100 80
30 100 100 100 100

H11
10 100 0 92 40
30 100 0 88 100

H12
10 100 100 96 100
30 12 92 100 100

H13
10 100 100 100 100
30 100 100 100 100

H14
10 100 100 100 100
30 100 100 100 100

H15
10 100 100 100 100
30 100 100 100 65

H16
10 100 100 100 100
30 100 100 100 100

H17
10 100 100 100 100
30 100 100 92 100

H18
10 100 100 100 100
30 100 100 100 100
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Table 5.5: Comparison summary between MS-DEHMM-L and the state-of-art
algorithms on CEC2010 18-test problems at 10D and 30D.

MS-DE-HMM-L "Better" "Worse" "Equal" "p-value" "Significance"

εDEag 10D 8 4 6 0.4225 =
30D 11 5 2 0.474 =

CO-CLPSO 10D 14 4 0 0.039 +
30D 13 5 0 0.143 =

eABC 10D 17 1 0 0.0195 +
30D 18 0 0 0.02 +

jDEsoco 10D 14 3 1 0.003 +
30D 12 4 2 0.223 =

Table 5.6: Rankings obtained from Friedman’s test of 10, 30D of
MS-DEHMM-L and the state-of-art algorithms on CEC2010 18-test problems.

Method Ranks
10D 30D

MS-DEHMM-L 1.97 1.94
εDEag 2.11 2.22
CO-CLPSO 3.00 3.22
eABC 4.33 4.56
jDEsoco 3.59 3.06
“p-value” 9.32E-06 4.50E-06
"Significance" + +
“CD” 1.44

significantly better than eABC algorithm for 30D problems. For a further

step of comparison, the Friedman statistical test is employed and reported

in Table 5.6 for both 10 and 30D. Based on these results, it is observed that

our proposed MS-DEHMM-L occupies the best ranking followed by εDEag.

5.4. Chapter summary

Building upon the encouraging results achieved from DE-HMM proposed in Chap-

ter 4 for solving the unconstrained problems, in this chapter, a special local search

operator is incorporated with the DE-HMM as well as employing two different

mutation strategies and estimated parameter values for both the global and local

search stages, separately. The new framework is named MS-DEHMM-L.
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In this framework, the local search is fired at the beginning of the search pro-

cedure, as the majority of population’s individuals are infeasible and the diversity

still high, for exploring the search space to reach the feasible area. In this stage,

the global search starts to exploit the feasible region, reaching the optimal solution

at the end of the search.

MS-DEHMM-L is tested on the CEC2010 constrained problems and compared

with four different constrained EA, with the results showing that our proposed

algorithm has the first ranking between them and outperforms them in most cases.
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Chapter 6

Conclusions and

Recommendations for Future

Work

This chapter summarizes the research work undertaken for this thesis, the conclu-

sions drawn from it and potential research directions

6.1. Summary of research conducted

In this study, the effects of setting the control parameters of Evolutionary Al-

gorithms (EAs), especially Differential Evolution (DE), for obtaining successful

solutions to various unconstrained or constrained optimization problems are in-

vestigated. Chapters 1 and 2 discuss the importance of selecting the search op-

erators and control parameters of DE that can improve its performance. Setting

the control parameters is a common challenge in the DE community because: no

single value is successful for all problems; for the same problem, each stage in

the evolutionary process requires different parameter values; and obtaining all the

interactions between these parameters is complex. Although, in the literature,

several studies introduce different ways of adapting the parameter values, most

do not consider their actual inter-dependencies. Therefore, three methods for ex-

ploring and interpreting the potential process of DE which can help to effectively

control its parameters (F and CR) for solving a wide range of unconstrained and

constrained optimization problems are developed in this study.
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The main objective of this research is to dynamically control the parameters of

DE which could remove a burden from users by reducing the time-consuming effort

required to manually determine their most appropriate values and improve the

quality of solutions. To achieve this, the following three methods are implemented.

Firstly, in Chapter 3, a Semantic Evolutionary Visualization (SEV) framework

that uses the theory of reasoning to visualize the evolutionary dynamics of DE’s

internal procedure helps an analysis of the effects of different parameter settings

on DE’s performance. It contains three primary components: an EA (i.e., DE); a

hierarchical profiling algorithm, namely HP; and a visualization process. Firstly,

although the DE algorithm is an evolutionary optimization heuristic that is fast

and popular, SEV can be applied for any other EA. The DE algorithm has two

main parameters (F and CR) which need to be set up and slightly modified to fit

the requirements of the SEV framework. Secondly, HP is a pre-processing step

that recursively transforms the great amount of DE data into a suitable format for

the visualization stage. Finally, this framework focuses on three types of visual-

izations, two new and one classical that is, pedigree, correlations associated with

a linear regression analysis and fitness graphs, respectively, where the DE ongoing

evolutionary procedure can be semantically reasoned under different setups.

In Chapter 4, a novel methodology for dynamically adjusting the control pa-

rameters of DE (i.e., F and CR) is developed to potentially improve the per-

formance of the conventional DE for solving unconstrained problems in terms of

solution quality and computational resources. In it, the classical DE is coupled

with the procedure for a Hidden Markov Model (HMM), resulting in the DE-HMM

self-adaptive algorithm for tackling the challenges of setting the parameters (i.e.,

the dependencies of the problem and its evolution, and the complex interactions

among the F and CR parameters) with no need for any external information.

The DE-HMM starts by initializing the whole population according to pre-

defined boundaries and then evaluates each individual in it by the fitness function

to be optimized (minimization in this study). New offspring are generated with
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regard to the main operators of DE, mutation, crossover and selection, with the

first two requiring the parameters F and CR to be set up, respectively. These

parameters are automatically adapted for each individual during the evolutionary

process by estimating the posterior and likelihood proportions of the HMM, re-

spectively, while the approach for estimating them is inspired by the nature of the

HMM’s operation. HMM functions similarly to DE whereby, like DE’s population

changes over time, its core procedure reflects time-series models. The speed of

DE is not greatly impacted because the statistics required for HMM calculations

are based mainly on first-order mathematical computations which consume linear

costs.

Furthermore, the self-adaptive DE-HMM is extended by classifying DE pro-

cedure into two main stages’ processes; global and local for solving constrained

problems and achieving both feasibility and optimality, called the MS-DE-HMM-

L framework. In it, the local search is integrated within the DE process based on

the feasibility status and diversity ratio and the strengths of two different muta-

tion strategies provided in the literature is utilized to employed through the two

search processes. In it, the population is initialized at the start of an evolution

and candidate solutions evaluated by the fitness and constraint functions. The

HMM estimates the required F and CR for each process, then check the local

search firing condition to start working. The COP is treated as a multi-objectives

problem for handling the evolved constraints.

The three methodologies introduced in this thesis demonstrate outstanding

performance of our method compared with those of both the conventional DE or

other state-of-art algorithms as enhanced solutions are obtained without no much

computational resources.
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6.2. Research Findings

Each of the proposed algorithms implemented in this thesis is evaluated using dif-

ferent benchmark datasets containing unconstrained and constrained optimization

problems. Their results are summarized and compared with those from different

popular and recently published algorithms in the literature. After conducting a

comprehensive and statistical analysis, the following conclusions are drawn.

6.2.1. SEV framework

In Chapter 3, DE is used as a testbed algorithm for evaluating and demonstrat-

ing the effectiveness of the proposed SEV framework. Two test functions with

different characteristics (i.e., unimodal and multimodal functions) are developed

with different settings of DE’s control parameters, the influence of which on DE’s

performance is determined. The graphs obtained provide insights into all the re-

lationships among the children solutions and their parental candidates evidenced

by pedigree visualisation. Although the fitness graphs are quite traditional, they

assist tracking of the ongoing dynamics during evolutionary convergence. The

correlation graphs supported by a linear regression analysis are significant mea-

surements of the inheritance of the fitness landscape that indicate the features of

the search domain as either smooth or rugged. As these plots can demonstrate the

actual progression of the evolutionary procedure with different parameter settings,

this simplifies the design of a self-adaptive method.

6.2.2. Methodology of self-adaptive DE-HMM

In Chapter 4, two benchmark problem sets with 55 test functions (i.e., IEEE

CEC2005 and CEC2014) and 10, 30 and 50 dimensions are used to conduct com-

prehensive experiments to analyse the effect of the HMM on the performance of

DE. Different combinations of learning strategies and crossover operators for the
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30D CEC2005 and CEC2014, and different variants of the DE-HMM for the 30D

CEC2005 test problems, indicate the roles of different components and/or differ-

ent operators in the DE-HMM. The findings from this experiment demonstrate

the superiority of the DE-HMM (minimum posterior for F and greater improve-

ment for CR) over the other DE-HMM variants, including random generations of

the parameters. Comparing the DE-HMM using a rand mutation strategy and

binomial crossover, which are the most common and basic operators of DE, with

other variants, including the best mutation strategy and exponential crossover,

shows that the former achieve better results for most of the instances/problems in

the CEC2005 and CEC2014 test sets.

Furthermore, the DE-HMM is compared with twelve DE- and non-DE-based

state-of-the-art methods comprising the most common, competitive and recently

published. Firstly, the results obtained for the two test sets are analyzed using

two non-parametric statistical tests, the Wilcoxon signed-rank and Friedman. It is

clear that the DE-HMM outperforms both the classical DE and other algorithms

regarding solution quality. Although some algorithms produce better results for

some problems, as the differences between them and those from the DE-HMM are

small, the majority of test functions can be effectively solved by the DE-HMM. Sec-

ondly, while the computational times taken are measured based on the pre-defined

benchmark, those consumed to achieve the best solutions for some functions with

10D, 30D and 50D are computed. The performances of the DE-HMM and each

competing algorithm are described as trade-offs between the quality of solutions

obtained and times consumed to achieve them. Although the DE-HMM consumes

more time than the classical DE and the other two peer algorithms to solve the

CEC2005 test functions at different dimensions, it can obtain better solutions.

In conclusion, combining a HMM with a DE algorithm improves the perfor-

mance of DE in terms of both the solution quality and computational cost. As

it deals with the evolutionary process as a black box, there is no need for any

external information, with the DE population used to build the HMM model and
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the control parameters F and CR automatically computed regardless of any user

reward.

6.2.3. Multi-stage mutation MSMODE-HMM

methodology

In Chapter 5, MS-DEHMM-L algorithm is compared with other four constrained

methods developed and published in CEC2010 competition to solve COPs. It is

evaluated using the CEC2010 benchmark dataset, which was designed specifically

for constrained optimization.

Based on the results, MS-DEHMM-L outperforms the other competing state-

of-art-algorithms as it can obtain better feasible solution on most of the test func-

tion, followed by ε DEag. The feasibility ratio for our proposed algorithm to reach

these results are reported as it achieves 100% feasibility rate for 16 out of 18 test

problems at both 10 and 30 dimensions. Two non-parametric statistical tests,

namely Wilcoxon and Friedman tests are applied for assessing the significant dif-

ference and ranking of our MS-DEHMM-L against other compared constrained

methods. MS-DEHMM-L performs significantly better than all peer algorithms

except ε DEag at 10D while it is significantly better than eABC method for 30D.

Finally, our proposed method achieves the best ranking. Therefore, the idea of

using HMM to estimate the F and CR parameters as well as employing different

mutation strategies through the two stages’ processes facilitates the movement of

search from infeasible solutions to explore feasible regions towards optimal solu-

tions.

Overall, the three proposed framework in this thesis study are beneficial to

explore and analyze the search space efficiently and automatically adjusting F and

CR intrinsic parameters of DE, improving the capability of solving unconstrained

and constrained optimization problems.
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6.3. Recommendations for Future Work

The current methodologies developed in this thesis could be extended in the various

following ways.

1. Applying the HMM to adapt the parameters of other EAs.

2. Developing new search operators that can facilitate the search procedure and

save computational resources.

3. Applying other learning strategies through DE’s evolutionary stages to inves-

tigate their influence on enhancing its capabilities to obtain better solutions.

4. Solving a number of real-world problems using either the proposed uncon-

strained or constrained approaches.

5. Testing the proposed algorithms in this thesis on a variety of difficult bench-

mark suites, including dynamic, niching and large-scale problems.

6. Improving the visualization framework by considering other landscape ma-

trices.

7. Incorporating other constraint-handling mechanisms in the proposed meth-

ods to provide alternatives for obtaining optimal feasible solutions rather

than inferior infeasible ones.

8. Evaluating the capabilities of the proposed algorithms to solve multi-objective

optimization problems.

9. Employing the concept of local search techniques with different settings to

accelerate the convergence of search.
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Appendix A

CEC2005 Comparison of

DE-HMM different variants

(different parameter-choices)
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Table A.1: Mean function error values among DE-HMM variants at 30D of
CEC2005 over 30 independent runs. (DE-HMM-minL - DE-HMM-meanE)

DE-HMM-minL DE-HMM-minE DE-HMM-meanG DE-HMM-meanL DE-HMM-meanE

mean mean mean mean mean

C1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

C2 0.00E+00 6.35E-05 5.84E+00 6.37E+00 6.35E+02

C3 2.94E+05 2.72E+06 2.79E+06 3.02E+06 3.89E+07

C4 3.99E-04 6.04E-02 7.77E+01 6.88E+01 1.88E+03

C5 3.65E+02 6.56E+02 6.34E+01 5.09E+01 5.12E+01

C6 7.11E+01 4.85E+04 1.48E+01 1.58E+01 7.46E+00

C7 4.70E+03 4.70E+03 4.70E+03 4.70E+03 4.70E+03

C8 2.09E+01 2.09E+01 2.10E+01 2.09E+01 2.10E+01

C9 1.14E+01 3.76E+01 7.84E+01 7.50E+01 1.50E+02

C10 9.18E+01 1.68E+02 2.02E+02 2.07E+02 1.95E+02

C11 2.13E+01 3.93E+01 3.92E+01 3.97E+01 3.94E+01

C12 4.01E+03 5.28E+03 2.04E+03 2.28E+03 5.18E+04

C13 5.82E+00 1.28E+01 1.52E+01 1.55E+01 1.67E+01

C14 1.31E+01 1.32E+01 1.33E+01 1.34E+01 1.33E+01

C15 3.42E+02 3.70E+02 3.77E+02 3.97E+02 3.43E+02

C16 1.06E+02 1.92E+02 2.22E+02 2.33E+02 2.26E+02

C17 2.20E+02 2.23E+02 2.48E+02 2.57E+02 2.56E+02

C18 9.05E+02 9.05E+02 9.05E+02 9.05E+02 9.06E+02

C19 9.05E+02 9.05E+02 9.05E+02 9.05E+02 9.06E+02

C20 9.05E+02 9.05E+02 9.05E+02 9.05E+02 9.06E+02

C21 5.10E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02

C22 8.83E+02 8.83E+02 8.83E+02 8.85E+02 8.85E+02

C23 5.34E+02 5.34E+02 5.34E+02 5.34E+02 5.34E+02

C24 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02

C25 1.63E+03 1.63E+03 1.64E+03 1.64E+03 1.64E+03

No-Best 12 9 8 8 6
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Table A.2: Mean function error values among DE-HMM variants at 30D of
CEC2005 over 30 independent runs. (DE-HMM-maxG - DE-HMM-minG)

DE-HMM-maxG DE-HMM-maxL DE-HMM-maxE Rand-gen DE-HMM-minG

mean mean mean mean mean
C1 1.16E+01 1.16E+01 2.07E+01 0.00E+00 0.00E+00
C2 6.27E+03 7.10E+03 1.49E+04 1.13E-03 0.00E+00
C3 4.67E+07 3.17E+07 1.12E+08 9.56E+06 3.56E+05
C4 1.65E+04 1.41E+04 1.98E+04 5.39E-01 1.49E-03
C5 3.94E+03 3.32E+03 5.61E+03 1.09E+02 1.83E+02
C6 1.43E+04 1.26E+04 1.66E+05 3.31E+01 2.19E+02
C7 4.70E+03 4.70E+03 4.70E+03 4.70E+03 4.70E+03
C8 2.10E+01 2.09E+01 2.09E+01 2.10E+01 2.09E+01
C9 7.70E+01 7.61E+01 1.65E+02 1.94E+01 1.21E+01
C10 2.54E+02 2.48E+02 2.33E+02 1.73E+02 2.44E+01
C11 3.91E+01 3.97E+01 3.92E+01 3.89E+01 7.53E+00
C12 8.08E+04 7.59E+04 4.59E+05 2.53E+03 3.11E+03
C13 1.75E+01 1.65E+01 2.30E+01 1.36E+01 2.68E+00
C14 1.35E+01 1.35E+01 1.35E+01 1.32E+01 1.29E+01
C15 4.21E+02 4.12E+02 4.20E+02 3.57E+02 3.37E+02
C16 2.69E+02 2.76E+02 2.55E+02 1.91E+02 4.43E+01
C17 3.05E+02 3.02E+02 2.93E+02 2.28E+02 2.18E+02
C18 9.08E+02 9.08E+02 9.07E+02 9.04E+02 9.05E+02
C19 9.08E+02 9.08E+02 9.07E+02 9.04E+02 9.05E+02
C20 9.08E+02 9.08E+02 9.07E+02 9.04E+02 9.04E+02
C21 5.02E+02 5.01E+02 5.04E+02 5.00E+02 5.00E+02
C22 9.33E+02 9.31E+02 9.39E+02 8.83E+02 8.76E+02
C23 5.34E+02 5.34E+02 5.43E+02 5.34E+02 5.34E+02
C24 2.04E+02 2.03E+02 2.08E+02 2.00E+02 2.00E+02
C25 1.66E+03 1.66E+03 1.65E+03 1.63E+03 1.63E+03

No-Best 2 3 1 9 20
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Table A.3: Comparison summary among DE-HMM and its variants and
Rand-gen method on 30D CEC2005 test problems.

30D
DE-HMM ”DE-HMM-minG” "Better" "Worse" "Equal" "p-value" "Significance"
DE-HMM-minL 14 4 7 0.0265 +
DE-HMM-minE 17 0 8 0.0018 +
DE-HMM-meanG 16 3 6 0.032 +
DE-HMM-meanL 15 3 7 0.0425 +
DE-HMM-meanE 19 2 4 0.0013 +
DE-HMM-maxG 23 0 2 0.0015 +
DE-HMM-maxL 22 0 3 0.002 +
DE-HMM-maxE 23 0 2 0.003 +
Rand-gen 13 5 7 0.107 =
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Appendix B

Analysis of using different search

operators on DE-HMM

Table B.1: Effect of different search operators on DE-HMM at 30D CEC2005
mean function error over 30 independent runs.

function

30D
/rand/binomial /rand/exponential /best/binomial /best/exponential

Mean Mean Mean Mean
C1 0.00E+00 2.68E+00 0.00E+00 0.00E+00
C2 0.00E+00 2.75E-03 0.00E+00 0.00E+00
C3 3.56E+05 5.75E+05 5.96E+05 1.15E+06
C4 1.49E-03 2.41E+00 1.02E-02 1.85E+00
C5 1.83E+02 1.81E+03 1.01E+02 1.39E+03
C6 2.19E+02 4.73E+06 1.50E+00 7.86E+00
C7 4.70E+03 4.70E+03 4.70E+03 4.70E+03
C8 2.09E+01 2.09E+01 2.10E+01 2.09E+01
C9 1.21E+01 2.48E+01 1.57E+01 2.21E+01
C10 2.44E+01 4.52E+01 1.20E+02 3.66E+01
C11 7.53E+00 1.96E+01 2.91E+01 2.20E+01
C12 3.11E+03 1.22E+04 2.84E+03 3.58E+03
C13 2.68E+00 3.03E+00 8.38E+00 2.72E+00
C14 1.29E+01 1.25E+01 1.31E+01 1.27E+01
C15 3.37E+02 3.97E+02 3.67E+02 3.88E+02
C16 4.43E+01 1.12E+02 1.25E+02 6.81E+01
C17 2.18E+02 6.96E+01 2.18E+02 8.35E+01
C18 9.05E+02 9.05E+02 9.05E+02 9.05E+02
C19 9.05E+02 9.09E+02 9.05E+02 9.05E+02
C20 9.04E+02 9.09E+02 9.04E+02 9.06E+02
C21 5.00E+02 5.47E+02 5.00E+02 5.40E+02
C22 8.76E+02 8.91E+02 8.79E+02 8.87E+02
C23 5.34E+02 6.24E+02 5.61E+02 5.50E+02
C24 2.00E+02 2.00E+02 2.00E+02 2.00E+02
C25 1.63E+03 1.63E+03 1.63E+03 1.63E+03

No-Best 20 7 12 8
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Table B.2: Effect of different search operators on DE-HMM at 30D CEC2014
mean function error over 30 independent runs.

function
30D

/rand/binomial /rand/exponential /best/binomial /best/exponential
Mean Mean Mean Mean

F1 9.58E+04 2.74E+05 1.19E+05 3.41E+05
F2 1.30E+03 4.41E+06 0.00E+00 0.00E+00
F3 2.35E-01 2.38E+02 0.00E+00 0.00E+00
F4 3.25E+01 7.70E+01 2.84E-03 2.63E+00
F5 2.09E+01 2.09E+01 2.09E+01 2.09E+01
F6 1.46E+00 4.04E+00 9.56E-01 3.99E+00
F7 0.00E+00 3.71E-02 2.47E-04 5.83E-03
F8 1.10E+01 2.36E+01 1.44E+01 1.96E+01
F9 1.77E+01 3.64E+01 4.52E+01 3.05E+01
F10 2.13E+01 5.42E+02 1.11E+03 4.59E+02
F11 6.19E+03 2.73E+03 6.49E+03 2.73E+03
F12 2.43E+00 1.46E+00 2.51E+00 2.16E+00
F13 2.59E-01 2.59E-01 2.59E-01 2.59E-01
F14 2.82E-01 2.64E-01 2.77E-01 2.54E-01
F15 1.31E+01 3.83E+00 1.33E+01 3.29E+00
F16 1.20E+01 1.08E+01 1.18E+01 1.11E+01
F17 1.13E+03 7.76E+03 1.52E+03 2.00E+03
F18 1.33E+01 7.26E+01 2.50E+01 5.52E+01
F19 3.50E+00 5.39E+00 4.76E+00 4.13E+00
F20 9.07E+00 2.84E+01 1.10E+01 1.93E+01
F21 2.71E+02 2.95E+02 2.24E+02 2.95E+02
F22 6.87E+01 1.46E+02 7.10E+01 6.93E+01
F23 3.15E+02 3.15E+02 3.15E+02 3.15E+02
F24 2.25E+02 2.33E+02 2.26E+02 2.28E+02
F25 2.03E+02 2.04E+02 2.03E+02 2.04E+02
F26 1.00E+02 1.00E+02 1.00E+02 1.00E+02
F27 3.59E+02 4.17E+02 3.59E+02 3.95E+02
F28 8.27E+02 8.96E+02 8.45E+02 8.72E+02
F29 9.75E+02 6.83E+05 8.05E+02 8.62E+02
F30 1.33E+03 1.70E+03 8.81E+02 1.17E+03
No-Best 18 7 13 9
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Appendix C

CEC2005 Comparison of

DE-HMM and C-DE on

CEC2005 and CEC2014 datasets
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Table C.1: Mean and standard deviation (Mean and std) function error values
of DE-HMM and C-DE over 30 independant runs on CEC2005 25-test functions

with 10, 30, and 50 dimensions (C1-C15)

10D 30D 50D
C-DE DE-HMM C-DE DE-HMM C-DE DE-HMM
mean mean mean mean mean mean
(std) (std) (std) (std) (std) (std)

C1
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C2
0.00E+00 0.00E+00 1.15E-04 0.00E+00 7.47E+00 1.05E-04

(0.00E+00) (0.00E+00) (9.65E-05) (0.00E+00) (4.56E+00) (1.00E-04)

C3
0.00E+00 1.73E-01 1.37E+06 3.56E+05 1.57E+07 4.51E+05

(0.00E+00) (5.20E-02) (9.68E+05) (1.67E+04) (6.03E+06) (2.09E+04)

C4
0.00E+00 0.00E+00 3.86E-02 1.49E-03 5.26E+02 1.27E+02

(0.00E+00) (0.00E+00) (3.58E-02) (1.05E-03) (2.69E+02) (1.50E+02)

C5
8.57E-05 0.00E+00 2.31E+02 1.83E+02 4.58E+03 2.98E+03
(3.61E-05) (0.00E+00) (1.63E+02) (1.55E+02) (5.01E+02) (4.87E+02)

C6
8.67E-05 4.99E+00 2.84E+00 2.19E+02 2.81E+01 3.05E+05
(4.66E-04) (1.61E+00) (2.22E+00) (5.76E+02) (1.46E+01) (9.48E+03)

C7
2.93E-01 1.27E+03 3.29E-04 4.70E+03 1.23E-03 6.20E+03
(1.41E-01) (1.69E-13) (1.80E-03) (2.82E-12) (3.28E-03) (3.44E-12)

C8
2.03E+01 2.03E+01 2.10E+01 2.09E+01 2.11E+01 2.11E+01
(8.86E-02) (9.46E-02) (6.33E-02) (4.74E-02) (3.65E-02) (3.97E-02)

C9
1.87E+01 0.00E+00 1.34E+02 1.21E+01 2.02E+02 3.40E+01
(2.70E+00) (0.00E+00) (2.23E+01) (3.28E+00) (5.31E+01) (7.46E+00)

C10
2.65E+01 5.17E+00 1.81E+02 2.44E+01 3.55E+02 9.15E+01
(3.01E+00) (1.95E+00) (6.89E+00) (1.03E+01) (1.29E+01) (9.39E+00)

C11
8.58E+00 1.61E-01 3.93E+01 7.53E+00 7.28E+01 4.59E+01
(5.60E-01) (3.37E-03) (9.21E-01) (2.02E+00) (1.70E+00) (1.99E+01)

C12
1.04E+04 6.65E-06 7.88E+05 3.11E+03 2.96E+06 1.82E+04
(5.83E+03) (3.64E-05) (1.70E+05) (3.32E+03) (5.57E+05) (1.07E+04)

C13
2.01E+00 1.65E+00 1.51E+01 2.68E+00 3.05E+01 4.77E+00
(3.64E-01) (4.56E-01) (9.96E-01) (8.11E-01) (8.24E-01) (7.74E-01)

C14
3.65E+00 2.98E+00 1.38E+01 1.29E+01 2.37E+01 2.28E+01
(2.16E-01) (2.10E-01) (2.16E-01) (2.08E-01) (1.90E-01) (2.10E-01)

C15
3.49E+02 2.65E+02 7.83E+02 3.37E+02 8.28E+02 3.43E+02
(1.07E+02) (1.52E+02) (5.60E+01) (1.07E+01) (4.90E+01) (2.02E+01)
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Table C.2: Mean and standard deviation (Mean and std) function error values
of DE-HMM and C-DE over 30 independant runs on CEC2005 25-test functions

with 10, 30, and 50 dimensions (C16-C25)

10D 30D 50D
C-DE DE-HMM C-DE DE-HMM C-DE DE-HMM
mean mean mean mean mean mean
(std) (std) (std) (std) (std) (std)

C16
1.49E+02 9.41E+01 2.29E+02 4.43E+01 2.68E+02 8.97E+01
(1.00E+01) (1.88E+00) (4.85E+01) (8.77E+00) (2.52E+01) (3.34E+01)

C17
1.66E+02 1.17E+02 2.52E+02 2.18E+02 2.81E+02 2.83E+02
(1.00E+01) (3.36E+01) (4.01E+01) (5.66E+01) (2.61E+01) (1.17E+00)

C18
8.25E+02 3.00E+02 8.17E+02 9.05E+02 8.37E+02 9.23E+02
(2.13E+01) (0.00E+00) (4.04E-01) (2.07E+00) (1.97E-01) (4.15E+00)

C19
8.21E+02 4.33E+02 8.17E+02 9.05E+02 8.36E+02 9.20E+02
(4.90E-02) (2.25E+01) (4.60E-01) (1.75E+00) (1.49E-01) (1.79E-02)

C20
8.33E+02 4.18E+02 8.17E+02 9.04E+02 8.37E+02 9.21E+02
(3.56E+01) (2.14E+02) (5.16E-01) (1.41E+00) (1.58E-01) (1.08E-01)

C21
1.02E+03 4.67E+02 8.57E+02 5.00E+02 7.18E+02 6.69E+02
(1.42E+02) (7.58E-01) (3.29E-01) (1.95E-13) (2.00E+00) (2.44E+02)

C22
8.02E+02 7.65E+02 9.00E+02 8.76E+02 5.00E+02 9.19E+02
(1.27E+02) (4.08E+00) (1.85E-01) (1.43E+01) (7.65E-02) (1.97E+01)

C23
1.07E+03 5.65E+02 8.65E+02 5.34E+02 7.23E+02 6.87E+02
(6.75E+01) (2.95E+01) (5.25E-01) (3.12E-04) (1.17E+00) (2.21E+02)

C24
3.75E+02 2.00E+02 2.09E+02 2.00E+02 2.14E+02 2.00E+02
(2.22E+00) (0.00E+00) (3.18E-01) (2.89E-14) (7.90E-01) (1.66E-12)

C25
3.74E+02 1.73E+03 2.09E+02 1.63E+03 2.14E+02 1.66E+03
(2.90E+00) (4.23E+00) (3.82E-01) (4.90E-01) (5.27E-01) (5.69E+00)

No-Best 8 21 7 19 10 17
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Table C.3: Mean and standard deviation (Mean and std) function error values
of DE-HMM and C-DE over 30 independant runs on CEC2014 30-test functions

with 10, 30, and 50 dimensions (F1-F15)

10D 30D 50D
C-DE DE-HMM C-DE DE-HMM C-DE DE-HMM
mean mean mean mean mean mean
(std) (std) (std) (std) (std) (std)

F1
0.00E+00 0.00E+00 8.85E+04 9.58E+04 5.58E+05 5.58E+05

(0.00E+00) (0.00E+00) (1.31E+05) (8.97E+03) (1.89E+05) (1.67E+04)

F2
0.00E+00 0.00E+00 5.58E+03 1.30E+03 4.72E+03 1.81E+03

(0.00E+00) (0.00E+00) (2.62E+03) (2.35E-03) (5.41E+03) (2.95E+01)

F3
0.00E+00 0.00E+00 1.16E+01 2.35E-01 2.42E+02 3.80E+03

(0.00E+00) (0.00E+00) (2.01E+00) (2.25E-01) (2.30E+02) (2.93E-02)

F4
1.48E+01 7.25E+00 7.44E+00 3.25E+01 7.86E+01 6.28E+01
(1.67E+01) (1.27E-01) (2.02E+01) (3.64E+00) (2.70E+01) (3.21E+01)

F5
2.00E+01 1.63E+01 2.10E+01 2.09E+01 2.11E+01 2.11E+01
(5.21E+00) (8.28E+00) (5.21E-02) (3.36E-02) (3.10E-02) (3.76E-02)

F6
1.49E-01 0.00E+00 1.91E+00 1.46E+00 7.23E+00 4.46E+00
(3.39E-01) (0.00E+00) (9.76E-01) (1.25E+00) (1.68E+00) (1.74E+00)

F7
3.26E-02 6.24E-03 6.57E-04 0.00E+00 4.27E-03 0.00E+00
(2.53E-02) (1.28E-03) (2.50E-03) (0.00E+00) (6.23E-03) (0.00E+00)

F8
2.96E+00 0.00E+00 1.42E+01 1.10E+01 5.97E+01 3.39E+01
(4.82E+00) (0.00E+00) (4.93E+00) (2.75E+00) (7.18E+00) (8.89E+00)

F9
7.98E+00 2.71E+00 9.06E+01 1.77E+01 1.60E+02 4.85E+01
(5.21E+00) (1.19E+00) (6.49E+01) (4.03E+00) (1.40E+02) (1.19E+01)

F10
1.32E+02 8.92E+01 3.20E+02 2.13E+01 8.24E+02 7.49E+02
(2.07E+02) (2.07E+00) (4.33E+02) (1.19E-01) (3.26E+02) (3.66E+02)

F11
7.01E+02 3.27E+02 6.59E+03 6.19E+03 1.30E+04 1.20E+04
(3.58E+02) (3.50E-02) (3.64E+02) (1.21E-07) (3.15E+02) (2.30E-13)

F12
5.65E-01 1.05E+00 2.67E+00 2.43E+00 3.64E+00 3.39E+00

(2.64E-01) (2.65E-01) (5.64E-01) (4.59E-01) (3.05E-01) (2.67E-01)

F13
1.23E-01 8.49E-02 2.90E-01 2.59E-01 4.13E-01 3.68E-01
(3.61E-02) (1.27E-02) (5.01E-02) (3.44E-02) (4.56E-02) (5.26E-02)

F14
1.56E-01 1.47E-01 2.84E-01 2.82E-01 3.50E-01 3.17E-01
(4.33E-02) (3.94E-02) (3.74E-02) (2.81E-02) (1.47E-01) (2.89E-02)

F15
1.64E+00 1.57E+00 1.46E+01 1.31E+01 2.96E+01 5.85E+00
(4.45E-01) (4.42E-01) (1.08E+00) (2.71E+00) (1.58E+00) (1.05E+00)
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Table C.4: Mean and standard deviation (Mean and std) function error values
of DE-HMM and C-DE over 30 independant runs on CEC2014 30-test functions

with 10, 30, and 50 dimensions (F16-F30)

10D 30D 50D
C-DE DE-HMM C-DE DE-HMM C-DE DE-HMM
mean mean mean mean mean mean
(std) (std) (std) (std) (std) (std)

F16
2.14E+00 1.97E+00 1.21E+01 1.20E+01 2.20E+01 2.15E+01
(6.86E-01) (3.17E-01) (3.87E-01) (3.33E-01) (2.68E-01) (4.36E-01)

F17
1.15E+01 4.56E-01 1.87E+03 1.13E+03 3.66E+04 3.33E+04
(3.16E+01) (4.64E-01) (1.76E+03) (8.16E+02) (1.87E+04) (2.17E+04)

F18
4.71E-01 1.81E-01 1.55E+01 1.33E+01 6.29E+02 1.55E+02
(5.61E-01) (2.24E-01) (1.07E+01) (9.31E+00) (9.00E+02) (8.05E+01)

F19
1.97E-01 1.30E-01 3.66E+00 3.50E+00 3.19E+01 1.28E+01
(1.31E-01) (1.07E-01) (1.21E+00) (8.90E-01) (1.26E+01) (4.13E+00)

F20
1.74E-01 5.67E-02 1.02E+01 9.07E+00 3.58E+02 8.04E+02
(1.89E-01) (9.39E-02) (3.92E+00) (3.91E+00) (4.27E+02) (1.81E+01)

F21
1.09E+00 3.10E-01 3.18E+02 2.71E+02 5.14E+04 4.00E+04
(3.07E+00) (2.82E-01) (1.17E+02) (2.02E+02) (2.23E+04) (3.87E+04)

F22
2.91E-01 7.88E-02 6.96E+01 6.87E+01 7.04E+02 2.35E+02
(2.41E-01) (1.62E-01) (9.21E+01) (7.15E+01) (3.50E+02) (1.47E+02)

F23
3.29E+02 3.29E+02 3.15E+02 3.15E+02 3.44E+02 3.44E+02
(2.89E-13) (2.89E-13) (1.45E-13) (3.72E-02) (2.89E-13) (2.66E-03)

F24
1.11E+02 1.09E+02 2.26E+02 2.25E+02 2.73E+02 2.76E+02
(4.63E+00) (1.95E+00) (4.32E+00) (1.94E+00) (2.67E+00) (2.53E+00)

F25
1.69E+02 1.59E+02 2.03E+02 2.03E+02 2.09E+02 2.08E+02
(4.10E+01) (4.44E+01) (5.41E-01) (4.03E-01) (7.52E-01) (1.53E+00)

F26
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.04E+02 1.00E+02
(4.12E-02) (2.45E-02) (3.77E-02) (3.25E-12) (1.82E+01) (4.62E-02)

F27
9.47E+01 1.41E+02 3.68E+02 3.59E+02 5.57E+02 5.00E+02

(1.71E+02) (1.64E+02) (4.70E+01) (4.70E+01) (5.65E+01) (5.15E+00)

F28
3.88E+02 3.64E+02 8.40E+02 8.27E+02 1.19E+03 1.17E+03
(4.29E+01) (5.59E+00) (4.90E+01) (4.82E+01) (5.34E+01) (6.91E+01)

F29
2.19E+02 2.17E+02 8.07E+02 9.75E+02 1.35E+03 1.20E+06
(1.54E+01) (1.73E+01) (1.37E+02) (2.20E+02) (2.30E+02) (6.58E+06)

F30
4.68E+02 4.70E+02 1.02E+03 1.33E+03 9.02E+03 9.57E+03

(2.03E+01) (1.81E+01) (4.98E+02) (5.87E+01) (5.75E+02) (6.52E+02)
No-Best 8 27 6 26 2 25
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Table D.1: Mean and standard deviation (Mean and std) function error values
among DE-HMM and DE variants on CEC2005 25-test functions with 10D over

30 independent runs (C1-C15).

10D
SaDE jDE JADE CoBiDE DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

C1
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C2
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C3
3.30E+03 2.13E-06 0.00E+00 0.00E+00 1.73E-01
(4.95E+03) (7.71E-06) (0.00E+00) (0.00E+00) (5.20E-02)

C4
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C5
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C6
5.49E+00 3.05E-02 5.52E+00 1.15E-07 4.99E+00
(1.44E+00) (5.22E-02) (2.23E+00) (5.48E-07) (1.61E+00)

C7
1.27E+03 1.27E+03 1.27E+03 3.45E-02 1.27E+03
(9.44E-14) (5.97E-14) (5.97E-14) (1.82E-02) (1.69E-13)

C8
2.04E+01 2.03E+01 2.03E+01 2.03E+01 2.03E+01
(7.72E-02) (8.51E-02) (8.87E-02) (1.19E-01) (9.46E-02)

C9
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C10
6.17E+00 9.75E+00 5.85E+00 6.14E+00 5.17E+00
(2.86E+00) (1.94E+00) (8.82E-01) (2.79E+00) (1.95E+00)

C11
9.39E-01 6.10E+00 4.73E+00 2.44E-01 1.61E-01
(9.28E-01) (5.82E-01) (5.52E-01) (3.10E-01) (3.37E-03)

C12
4.62E+00 4.54E+00 5.89E+01 1.85E+00 6.65E-06
(6.07E+00) (8.85E+00) (2.44E+02) (6.84E+00) (3.64E-05)

C13
5.65E-01 4.24E-01 3.40E-01 5.58E-01 1.65E+00
(7.83E-02) (7.21E-02) (4.33E-02) (1.30E-01) (4.56E-01)

C14
2.96E+00 3.32E+00 2.64E+00 2.78E+00 2.98E+00
(2.96E-01) (1.80E-01) (2.45E-01) (5.22E-01) (2.10E-01)

C15
2.66E+01 2.18E+01 6.39E+01 2.31E+01 2.65E+02
(7.64E+01) (4.27E+01) (1.36E+02) (7.34E+01) (1.52E+02)
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Table D.2: Mean and standard deviation (Mean and std) function error values
among DE-HMM and DE variants on CEC2005 25-test functions with 10D over

30 independent runs (C16-C25).

10D
SaDE jDE JADE CoBiDE DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

C16
9.93E+01 1.11E+02 9.54E+01 1.00E+02 9.41E+01
(5.51E+00) (7.04E+00) (6.59E+00) (7.08E+00) (1.88E+00)

C17
9.94E+01 1.30E+02 1.29E+02 1.18E+02 1.17E+02

(7.92E+00) (9.22E+00) (3.32E+00) (1.46E+01) (3.36E+01)

C18
7.30E+02 5.33E+02 7.27E+02 5.17E+02 3.00E+02
(1.99E+02) (2.54E+02) (1.96E+02) (2.52E+02) (0.00E+00)

C19
7.46E+02 5.33E+02 7.82E+02 5.17E+02 4.33E+02
(1.82E+02) (2.54E+02) (1.35E+02) (2.52E+02) (2.25E+01)

C20
7.33E+02 4.67E+02 7.22E+02 5.17E+02 4.18E+02
(1.73E+02) (2.40E+02) (2.17E+02) (2.52E+02) (2.14E+02)

C21
5.67E+02 5.20E+02 4.67E+02 4.90E+02 4.67E+02
(2.23E+02) (7.61E+01) (1.62E+02) (1.06E+02) (7.58E-01)

C22
7.85E+02 7.67E+02 7.68E+02 7.66E+02 7.65E+02
(1.76E+02) (3.31E+00) (4.47E+00) (1.79E+01) (4.08E+00)

C23
7.75E+02 6.20E+02 7.34E+02 5.89E+02 5.65E+02
(1.80E+02) (1.47E+02) (1.61E+02) (8.49E+01) (2.95E+01)

C24
2.10E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02
(5.48E+01) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C25
1.75E+03 1.74E+03 1.73E+03 3.75E+02 1.73E+03
(4.44E+00) (4.87E+00) (5.56E+00) (3.36E+00) (4.23E+00)

No-Best 6 8 9 12 17
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Table D.3: Mean and standard deviation (Mean and std) function error values
among DE-HMM and DE variants on CEC2005 25-test functions with 30D over

30 independent runs (C1-C15).

30D
SaDE jDE JADE CoBiDE DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

C1
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C2
6.71E-06 1.32E-06 0.00E+00 0.00E+00 0.00E+00
(1.99E-05) (3.72E-06) (0.00E+00) (0.00E+00) (0.00E+00)

C3
4.16E+05 1.41E+05 6.92E+03 7.21E+04 3.56E+05
(1.60E+05) (8.29E+04) (5.66E+03) (4.75E+04) (1.67E+04)

C4
1.00E+02 6.27E-02 0.00E+00 2.05E-03 1.49E-03
(1.32E+02) (1.63E-01) (0.00E+00) (5.19E-03) (1.05E-03)

C5
3.30E+03 5.12E+02 1.01E-07 6.76E+01 1.83E+02
(6.95E+02) (3.97E+02) (2.93E-07) (9.32E+01) (1.55E+02)

C6
4.54E+01 2.68E+01 8.49E+00 2.40E-02 2.19E+02
(3.13E+01) (2.91E+01) (2.66E+01) (2.52E-02) (5.76E+02)

C7
4.70E+03 4.70E+03 4.70E+03 1.89E-03 4.70E+03
(3.71E-12) (2.17E-12) (1.86E-12) (3.97E-03) (2.82E-12)

C8
2.10E+01 2.10E+01 2.09E+01 2.09E+01 2.09E+01
(4.82E-02) (4.53E-02) (1.80E-01) (2.31E-01) (4.74E-02)

C9
1.99E-01 0.00E+00 0.00E+00 0.00E+00 1.21E+01
(4.05E-01) (0.00E+00) (0.00E+00) (0.00E+00) (3.28E+00)

C10
5.04E+01 5.84E+01 2.60E+01 4.19E+01 2.44E+01
(1.21E+01) (8.73E+00) (6.38E+00) (1.42E+01) (1.03E+01)

C11
1.64E+01 2.82E+01 2.52E+01 8.10E+00 7.53E+00
(3.25E+00) (1.81E+00) (1.76E+00) (2.65E+00) (2.02E+00)

C12
4.29E+03 9.25E+03 6.83E+03 3.39E+03 3.11E+03
(3.35E+03) (6.64E+03) (4.68E+03) (4.01E+03) (3.32E+03)

C13
3.84E+00 4.70E+00 3.47E+00 2.88E+00 2.68E+00
(4.48E-01) (1.57E-01) (9.83E-02) (1.06E+00) (8.11E-01)

C14
1.30E+01 1.31E+01 1.29E+01 1.31E+01 1.29E+01
(2.18E-01) (2.11E-01) (3.25E-01) (4.73E-01) (2.08E-01)

C15
3.90E+02 3.94E+02 3.57E+02 4.13E+02 3.37E+02
(6.11E+01) (5.62E+01) (1.21E+02) (5.71E+01) (1.07E+01)
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Table D.4: Mean and standard deviation (Mean and std) function error values
among DE-HMM and DE variants on CEC2005 25-test functions with 30D over

30 independent runs (C16-C25).

30D
SaDE jDE JADE CoBiDE DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

C16
9.61E+01 7.61E+01 9.74E+01 7.21E+01 4.43E+01
(8.60E+01) (1.73E+01) (1.29E+02) (2.49E+01) (8.77E+00)

C17
6.50E+01 1.44E+02 1.40E+02 8.02E+01 2.18E+02

(1.27E+01) (5.94E+01) (1.42E+02) (3.22E+01) (5.66E+01)

C18
8.73E+02 9.05E+02 9.05E+02 9.05E+02 9.05E+02

(6.05E+01) (1.08E+00) (7.52E-01) (8.60E-01) (2.07E+00)

C19
8.76E+02 9.05E+02 9.06E+02 9.05E+02 9.05E+02

(6.33E+01) (9.57E-01) (1.91E+01) (7.34E-01) (1.75E+00)

C20
8.73E+02 9.05E+02 9.05E+02 9.05E+02 9.04E+02

(6.05E+01) (8.38E-01) (8.83E-01) (5.91E-01) (1.41E+00)

C21
5.00E+02 5.00E+02 5.00E+02 5.00E+02 5.00E+02
(3.06E-13) (1.95E-13) (1.80E-13) (1.99E-13) (1.95E-13)

C22
9.30E+02 8.84E+02 8.88E+02 8.85E+02 8.76E+02
(1.42E+01) (2.03E+01) (2.23E+01) (3.42E+01) (1.43E+01)

C23
5.55E+02 5.34E+02 5.48E+02 5.34E+02 5.34E+02
(1.15E+02) (2.35E-04) (7.34E+01) (3.22E-07) (3.12E-04)

C24
2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02
(5.68E-13) (2.89E-14) (2.89E-14) (2.89E-14) (2.89E-14)

C25
1.64E+03 1.63E+03 1.63E+03 2.10E+02 1.63E+03
(5.62E+00) (2.89E+00) (4.42E+00) (6.31E-01) (4.90E-01)

No-Best 7 4 8 9 14
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Table D.5: Mean and standard deviation (Mean and std) function error values
among DE-HMM and DE variants on CEC2005 25-test functions with 50D over

30 independent runs (C1-C15).

50D
SaDE jDE JADE CoBiDE DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

C1
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C2
7.86E-02 1.05E-02 0.00E+00 1.22E-06 1.05E-04
(1.25E-01) (7.41E-03) (0.00E+00) (1.01E-06) (1.00E-04)

C3
9.89E+05 5.03E+05 1.62E+04 5.50E+05 4.51E+05
(2.90E+05) (2.24E+05) (8.11E+03) (9.41E+04) (2.09E+04)

C4
6.43E+03 3.48E+02 8.86E-01 1.56E+02 1.27E+02
(3.18E+03) (2.27E+02) (2.96E+00) (1.17E+02) (1.50E+02)

C5
8.20E+03 3.32E+03 3.51E+03 3.16E+03 2.98E+03
(1.14E+03) (6.41E+02) (5.24E+02) (5.91E+02) (4.87E+02)

C6
9.47E+01 4.60E+01 9.30E-01 2.82E+01 3.05E+05
(3.63E+01) (2.98E+01) (1.71E+00) (2.29E+01) (9.48E+03)

C7
6.20E+03 6.20E+03 6.20E+03 3.69E-03 6.20E+03
(3.10E-12) (3.20E-12) (3.27E-12) (7.15E-03) (3.44E-12)

C8
2.11E+01 2.11E+01 2.11E+01 2.12E+01 2.11E+01
(3.65E-02) (2.38E-02) (1.86E-01) (5.00E-01) (3.97E-02)

C9
1.82E+00 0.00E+00 0.00E+00 0.00E+00 3.40E+01
(1.50E+00) (0.00E+00) (0.00E+00) (1.88E-11) (7.46E+00)

C10
1.27E+02 1.01E+02 9.40E+01 9.97E+01 9.15E+01
(1.78E+01) (1.48E+01) (6.67E+00) (1.77E+01) (9.39E+00)

C11
4.64E+01 5.40E+01 5.24E+01 5.10E+01 4.59E+01
(3.15E+00) (2.30E+00) (2.24E+00) (5.07E+00) (1.99E+01)

C12
4.66E+04 2.61E+04 5.55E+04 2.40E+04 1.82E+04
(1.19E+04) (1.45E+04) (1.81E+04) (1.31E+04) (1.07E+04)

C13
8.67E+00 2.95E+00 2.79E+00 5.15E+00 4.77E+00
(1.16E+00) (1.97E-01) (1.66E-01) (9.90E-01) (7.74E-01)

C14
2.29E+01 2.30E+01 2.29E+01 2.29E+01 2.28E+01
(2.75E-01) (2.93E-01) (4.71E-01) (4.99E-01) (2.10E-01)

C15
3.77E+02 3.03E+02 3.45E+02 3.87E+02 3.43E+02
(6.25E+01) (9.99E+01) (9.10E+01) (5.07E+01) (2.02E+01)
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Table D.6: Mean and standard deviation (Mean and std) function error values
among DE-HMM and DE variants on CEC2005 25-test functions with 50D over

30 independent runs (C16-C25).

50D
SaDE jDE JADE CoBiDE DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

C16
9.42E+01 8.99E+01 9.48E+01 9.89E+01 8.97E+01
(3.76E+01) (9.96E+00) (1.09E+02) (2.65E+01) (3.34E+01)

C17
9.85E+01 1.74E+02 1.12E+02 7.82E+01 2.83E+02
(6.47E+01) (1.91E+01) (6.42E+01) (2.96E+01) (1.17E+00)

C18
9.86E+02 9.25E+02 9.25E+07 9.23E+02 9.23E+02
(1.04E+01) (3.02E+00) (4.82E+00) (2.93E+00) (4.15E+00)

C19
9.87E+02 9.19E+02 9.21E+02 9.07E+02 9.20E+02
(1.72E+01) (2.93E+00) (4.88E+00) (3.62E+01) (1.79E-02)

C20
9.89E+02 9.20E+02 9.22E+02 9.14E+02 9.21E+02
(1.39E+01) (3.50E+00) (5.38E+00) (2.18E+01) (1.08E-01)

C21
7.54E+02 7.85E+02 8.17E+02 6.84E+02 6.69E+02
(3.40E+02) (2.54E+02) (9.29E+01) (1.29E+02) (2.44E+02)

C22
9.86E+02 9.02E+02 8.96E+02 8.82E+02 9.19E+02
(9.45E+00) (1.32E+01) (2.40E+01) (2.01E+01) (1.97E+01)

C23
7.83E+02 8.24E+02 6.90E+02 7.12E+02 6.87E+02
(1.66E+02) (2.34E+02) (5.10E+00) (2.31E+02) (2.21E+02)

C24
4.93E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02
(4.55E+02) (1.65E-12) (1.62E-12) (1.33E-12) (1.66E-12)

C25
1.69E+03 1.66E+03 1.66E+03 2.16E+02 1.66E+03
(6.32E+00) (3.60E+00) (5.82E+00) (9.95E-01) (5.69E+00)

No-Best 2 5 9 6 11
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Table D.7: Mean and standard deviation (Mean and std) function error values
among DE-HMM and non-DE variants at 10D CEC2005 over 30 independent

runs (C1-C15).

(a) 10D
BNGA CLPSO CMA-ES IPOP-CMA-ES DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

C1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C2 1.05E-08 5.52E-03 0.00E+00 0.00E+00 0.00E+00
(1.13E-08) (3.69E-03) (0.00E+00) (0.00E+00) (0.00E+00)

C3 1.43E+05 2.61E+05 0.00E+00 5.68E-07 1.73E-01
(9.73E+04) (1.46E+05) (0.00E+00) (2.82E-08) (5.20E-02)

C4 0.00E+00 2.12E-01 6.07E+04 6.13E-08 0.00E+00
(0.00E+00) (1.48E-01) (1.14E+05) (1.92E-09) (0.00E+00)

C5 3.33E-07 7.65E-01 0.00E+00 6.58E-08 0.00E+00
(1.47E-06) (9.08E-01) (0.00E+00) (1.65E-08) (0.00E+00)

C6 2.22E+01 6.67E+00 9.30E-01 0.00E+00 4.99E+00
(7.40E+01) (2.71E+00) (1.71E+00) (0.00E+00) (1.61E+00)

C7 4.82E-01 0.00E+00 0.00E+00 3.43E-06 1.27E+03
(3.45E-01) (0.00E+00) (0.00E+00) (5.33E-07) (1.69E-13)

C8 2.04E+01 2.03E+01 2.03E+01 2.03E+01 2.03E+01
(7.39E-02) (9.65E-02) (1.20E-01) (3.88E-03) (9.46E-02)

C9 7.24E+00 2.19E-04 1.08E+02 2.39E-01 0.00E+00
(4.08E+00) (6.40E-04) (5.67E+01) (4.48E-01) (0.00E+00)

C10 1.93E+01 1.14E+01 5.70E+01 7.56E-02 5.17E+00
(7.38E+00) (2.92E+00) (9.11E+01) (3.77E-01) (1.95E+00)

C11 4.03E+00 5.05E+00 3.06E+00 9.34E-01 1.61E-01
(1.22E+00) (5.37E-01) (1.62E+00) (9.00E-01) (3.37E-03)

C12 9.21E+02 1.98E+02 6.88E+03 2.93E+01 6.65E-06
(2.31E+03) (1.01E+02) (8.06E+03) (1.42E+01) (3.64E-05)

C13 1.31E+00 9.97E-01 1.19E+00 8.66E+00 1.65E+00
(6.43E-01) (1.97E-01) (4.26E-01) (1.65E-01) (4.56E-01)

C14 3.03E+00 3.26E+00 4.85E+00 4.21E+00 2.98E+00
(3.50E-01) (1.82E-01) (1.47E-01) (2.54E-01) (2.10E-01)

C15 1.94E+02 5.78E+01 5.96E+02 2.88E+02 2.65E+02
(1.10E+02) (3.33E+01) (3.28E+02) (6.50E+01) (1.52E+02)
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Table D.8: Mean and standard deviation (Mean and std) function error values
among DE-HMM and non-DE variants at 10D CEC2005 over 30 independent

runs (C16-C25).

(a) 10D
BNGA CLPSO CMA-ES IPOP-CMA-ES DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

C16 1.52E+02 1.22E+02 3.01E+02 9.53E+01 9.41E+01
(3.47E+01) (8.97E+00) (3.11E+02) (2.21E+00) (1.88E+00)

C17 1.42E+02 1.37E+02 5.29E+02 1.23E+02 1.17E+02
(2.18E+01) (1.26E+01) (5.02E+02) (1.29E+02) (3.36E+01)

C18 9.20E+02 6.16E+02 7.05E+02 3.32E+02 3.00E+02
(1.23E+02) (1.65E+02) (2.56E+02) (1.54E+02) (0.00E+00)

C19 8.19E+02 5.78E+02 7.85E+02 6.26E+02 4.33E+02
(2.19E+02) (1.72E+02) (2.07E+02) (8.94E+02) (2.25E+01)

C20 7.92E+02 5.85E+02 8.34E+02 3.00E+02 4.18E+02
(2.17E+02) (1.54E+02) (3.33E+02) (0.00+00) (2.14E+02)

C21 7.49E+02 6.35E+02 8.45E+02 5.00E+02 4.67E+02
(3.13E+02) (6.94E+01) (2.89E+02) (7.33E-12) (7.58E-01)

C22 7.91E+02 7.10E+02 7.66E+02 7.29E+02 7.65E+02
(3.39E+01) (1.52E+02) (2.93E+01) (1.02E+01) (4.08E+00)

C23 8.55E+02 5.51E+02 1.12E+03 5.59E+02 5.65E+02
(2.83E+02) (3.45E+01) (1.36E+02) (6.21E-10) (2.95E+01)

C24 2.55E+02 2.00E+02 2.77E+02 2.00E+02 2.00E+02
(1.91E+02) (2.86E-04) (1.30E+02) (2.14E-06) (0.00E+00)

C25 2.28E+02 1.75E+03 1.77E+03 3.74E+02 1.73E+03
(1.40E+02) (5.82E+00) (1.08E+01) (3.43E+00) (4.23E+00)

No-Best 3 8 6 7 15
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Table D.9: Mean and standard deviation (Mean and std) function error values
among DE-HMM and non-DE variants at 30D CEC2005 over 30 independent

runs (C1-C15).

(b)30D
CLPSO CMA-ES IPOP-CMA-ES DE-HMM
mean mean mean mean
(std) (std) (std) (std)

C1 0.00E+00 0.00E+00 0.00E+00 0.00E+00
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C2 9.16E+02 0.00E+00 6.22E-08 0.00E+00
(2.26E+02) (0.00E+00) (8.95E−10) (0.00E+00)

C3 1.62E+07 0.00E+00 0.00E+00 3.56E+05
(3.74E+06) (0.00E+00) (0.00E+00) (1.67E+04)

C4 7.08E+03 4.21E+05 1.11E+04 1.49E-03
(1.65E+03) (1.07E+06) 3.02E+04 (1.05E-03)

C5 3.87E+03 0.00E+00 0.00E+00 1.83E+02
(4.55E+02) (0.00E+00) (0.00E+00) (1.55E+02)

C6 5.98E+00 3.99E-01 0.00E+00 2.19E+02
(5.58E+00) (1.22E+00) (0.00E+00) (5.76E+02)

C7 0.00E+00 0.00E+00 0.00E+00 4.70E+03
(0.00E+00) (0.00E+00) (0.00E+00) (2.82E-12)

C8 2.09E+01 2.09E+01 2.09E+01 2.09E+01
(4.94E-02) (4.72E-01) (2.36E-01) (4.74E-02)

C9 0.00E+00 3.96E+02 9.38E-01 1.21E+01
(0.00E+00) (1.63E+02) (1.18E+00) (3.28E+00)

C10 1.02E+02 4.70E+01 1.65E+00 2.44E+01
(1.67E+01) (1.14E+01) (1.27E+00) (1.03E+01)

C11 2.56E+01 7.87E+00 8.34E+00 7.53E+00
(2.13E+00) (2.38E+00) (3.11E+00) (2.02E+00)

C12 1.62E+04 1.53E+04 4.43E+04 3.11E+03
(4.99E+03) (1.70E+04) (2.19E+05) (3.32E+03)

C13 2.80E+00 3.62E+00 3.49E+00 2.68E+00
(2.67E-01) (1.05E+00) (5.13E-01) (8.11E-01)

C14 1.30E+01 1.47E+01 1.29E+01 1.29E+01
(2.34E-01) (2.79E-01) (4.53E-01) (2.08E-01)

C15 6.59E+01 3.82E+02 4.08E+02 3.37E+02
(2.65E+01) (2.43E+02) (2.22E+01) (1.07E+01)
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Table D.10: Mean and standard deviation (Mean and std) function error values
among DE-HMM and non-DE variants at 30D CEC2005 over 30 independent

runs (C16-C25).

(b)30D
CLPSO CMA-ES IPOP-CMA-ES DE-HMM
mean mean mean mean
(std) (std) (std) (std)

C16 1.73E+02 3.52E+02 5.50E+01 4.43E+01
(3.29E+01) (3.11E+02) (1.26E+01) (8.77E+00)

C17 2.37E+02 5.58E+02 2.91E+02 2.18E+02
(4.40E+01) (3.24E+02) (3.21E+02) (5.66E+01)

C18 9.07E+02 9.06E+02 9.05E+02 9.05E+02
(2.39E+01) (2.59E-01) (2.87E-01) (2.07E+00)

C19 9.06E+02 9.06E+02 9.05E+02 9.05E+02
(2.63E+01) (3.11E-01) (2.71E-01) (1.75E+00)

C20 9.11E+02 9.33E+02 9.04E+02 9.04E+02
(1.89E+01) (1.19E+02) (2.44E-01) (1.41E+00)

C21 5.00E+02 5.00E+02 5.00E+02 5.00E+02
(7.11E-13) (2.31E-12) (1.31E-13) (1.95E-13)

C22 9.67E+02 8.27E+02 8.03E+02 8.76E+02
(1.17E+01) (1.76E+01) (1.68E+01) (1.43E+01)

C23 5.34E+02 5.37E+02 5.34E+02 5.34E+02
(1.15E-04) (3.99E+00) (2.22E-04) (3.12E-04)

C24 2.00E+02 2.00E+02 9.10E+02 2.00E+02
(1.19E-12) (7.86E-14) (1.46E+02) (2.89E-14)

C25 1.65E+03 1.69E+03 2.11E+02 1.63E+03
(4.32E+00) (6.20E+01) 8.21E-01) (4.90E-01)

No-Best 8 8 15 16
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Table D.11: Mean and standard deviation (Mean and std) function error values
among DE-HMM and non-DE variants at 50D CEC2005 over 30 independent

runs (C1-C15).

(b)50D
CLPSO CMA-ES IPOP-CMA-ES DE-HMM
mean mean mean mean
(std) (std) (std) (std)

C1 0.00E+00 0.00E+00 0.00E+00 0.00E+00
(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

C2 1.59E+04 5.29E-03 0.00E+00 1.05E-04
(1.88E+03) (7.64E−05) (0.00E+00) (1.00E-04)

C3 6.53E+07 0.00E+00 2.63E-08 4.51E+05
(1.30E+07) (0.00E+00) (3.55E−12) (2.09E+04)

C4 4.30E+04 8.81E+05 4.68E+05 1.27E+02
(6.97E+03) (4.38E+06) (3.11E+05) (1.50E+02)

C5 1.10E+04 1.32E-02 2.85E+00 2.98E+03
(8.50E+02) (7.26E-02) (4.32E+00) (4.87E+02)

C6 2.84E+01 6.64E-01 0.00E+00 3.05E+05
(1.82E+01) (1.51E+00) (0.00E+00) (9.48E+03)

C7 0.00E+00 0.00E+00 0.00E+00 6.20E+03
(0.00E+00) (0.00E+00) (0.00E+00) (3.44E-12)

C8 4.18E+01 8.26E+01 5.41E+02 2.11E+01
(4.49E-02) (7.39E-01) (2.15E+00) (3.97E-02)

C9 1.48E+02 7.06E+02 5.79E+01 3.40E+01
(1.69E+00) (2.10E+02) (1.64E+00) (7.46E+00)

C10 3.12E+02 9.77E+01 3.52E+02 9.15E+01
(4.10E+01) (1.86E+01) (4.22E+00) (9.39E+00)

C11 5.29E+01 1.21E+02 6.36E+01 4.59E+01
(2.42E+00) (3.91E+00) (1.21E+01) (1.99E+01)

C12 1.02E+05 2.61E+04 2.27E+05 1.82E+04
(2.28E+04) (2.83E+04) (1.11E+06) (1.07E+04)

C13 5.07E+00 6.57E+01 4.59E+00 4.77E+00
(4.92E-01) (1.04E+00) (5.15E-01) (7.74E-01)

C14 2.26E+01 2.45E+01 2.29E+01 2.28E+01
(2.30E-01) (2.53E-01) (5.79E-01) (2.10E-01)

C15 6.02E+02 4.49E+02 4.74+02 3.43E+02
(5.06E+01) (2.04E+02) (1.66E+01) (2.02E+01)
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Table D.12: Mean and standard deviation (Mean and std) function error values
among DE-HMM and non-DE variants at 50D CEC2005 over 30 independent

runs (C16-C25).

(b)50D
CLPSO CMA-ES IPOP-CMA-ES DE-HMM
mean mean mean mean
(std) (std) (std) (std)

C16 2.67E+02 2.67E+02 3.09E+01 8.97E+01
(4.59E+01) (2.05E+02) (2.53E+01) (3.34E+01)

C17 3.39E+02 3.74E+02 2.91E+02 2.83E+02
(3.04E+01) (3.05E+02) (1.44E+02) (1.17E+00)

C18 9.51E+02 9.12E+02 9.13E+02 9.23E+02
(5.70E+00) (4.63E-01) (8.42E-01) (4.15E+00)

C19 9.55E+02 9.22E+02 9.32E+02 9.20E+02
(6.38E+00) (4.34E-01) (1.23E-01) (1.79E-02)

C20 9.46E+02 9.12E+02 9.12E+02 9.21E+02
(2.65E+01) (4.79E-01) (5.05E-01) (1.08E-01)

C21 5.00E+03 6.98E+02 1.00E+03 6.69E+02
(6.65E-11) (2.56E+02) (8.19E-01) (2.44E+02)

C22 1.01E+03 8.55E+02 8.05E+02 9.19E+02
(8.32E+00) (9.20E+00) (8.86E+00) (1.97E+01)

C23 8.39E+02 7.78E+02 1.01E+03 6.87E+02
(1.63E-04) (1.37E+02) (1.86E+00) (2.21E+02)

C24 8.58E+02 2.00E+02 9.55E+02 2.00E+02
(3.62E+02) (1.62E-12) (1.58E+02) (1.66E-12)

C25 1.71E+03 1.84E+03 2.15E+02 1.66E+03
(7.62E+00) (3.03E+01) (9.07E-01) (5.69E+00)

No-Best 2 7 8 15
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Table D.13: Comparison summary among DE-HMM and state-of-the-art on the
10D, 30D and 50D CEC2005 test problems.

DE-HMM "Better" "Worse" "Equal" "p-value" "Significance"

C-DE
10D 17 4 4 0.008 +
30D 1817 6 1 0.0415 +
50D 15 8 2 0.173 =

SaDE
10D 15 4 6 0.0055 +
30D 15 6 4 0.0395 +
50D 19 3 3 0.0035 +

jDE
10D 14 3 8 0.0085 +
30D 14 3 8 0.0245 +
50D 12 8 5 0.185 =

JADE
10D 11 4 10 0.0135 +
30D 10 6 9 0.398 =
50D 12 8 5 0.3405 =

CoBiDE
10D 12 7 6 0.0260 +
30D 10 7 8 0.246 =
50D 13 9 3 0.4165 =

BNGA
10D 19 4 2 0.0105 +
30D -
50D -

CLPSO
10D 17 5 3 0.031 +
30D 16 4 5 0.020 +
50D 21 3 1 0.001 +

CMAES
10D 17 4 4 0.001 +
30D 14 6 5 0.085 =
50D 16 7 2 0.130 =

IPOP-CMA-ES
10D 13 8 4 0.0472 +
30D 8 9 8 0.301 -
50D 13 11 1 0.352 =
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Table E.1: Mean and standard deviation function error values among DE-HMM
and up-to-date DE variants on CEC2014 with 10D over 30 independent

runs(F1-F15)

10D
CPI-DE TSDE LSHADE UMOEA DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

F1
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

F2
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

F3
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

F4
1.01E+01 1.16E+01 3.13E+01 2.13E+01 7.25E+00
(1.52E+01) (1.55E+01) (1.06E+01) (1.68E+01) (1.27E-01)

F5
2.01E+01 1.84E+01 1.82E+01 1.91E+01 1.63E+01
(5.53E-01) (6.10E+00) (8.09E+00) (3.72E+00) (8.28E+00)

F6
1.90E-08 0.00E+00 0.00E+00 9.48E-02 0.00E+00
(9.32E-08) (0.00E+00) (0.00E+00) (2.90E-01) (0.00E+00)

F7
3.65E-01 4.06E-02 6.57E-03 1.45E-04 6.24E-03
(7.41E-02) (1.82E-02) (2.50E-03) (0.00E+00) (1.28E-03)

F8
3.32E-02 0.00E+00 0.00E+00 3.32E-02 0.00E+00
(1.82E-01) (0.00E+00) (0.00E+00) (1.82E-01) (0.00E+00)

F9
1.96E+01 4.41E+00 2.86E+00 3.18E+00 2.71E+00
(3.38E+00) (2.00E+00) (8.86E-01) (1.39E+00) (1.19E+00)

F10
2.01E+01 5.20E-02 8.33E-03 8.45E-01 8.92E+01
(1.46E+01) (6.37E-02) (2.16E-02) (1.64E+00) (2.07E+00)

F11
9.30E+02 9.58E+01 3.39E+01 1.35E+02 3.27E+02
(1.39E+02) (9.46E+01) (4.62E+01) (1.46E+02) (3.50E-02)

F12
7.24E-01 2.95E-02 6.32E-02 8.24E-03 1.05E+00
(1.27E-01) (4.44E-02) (1.91E-02) (2.07E-02) (2.65E-01)

F13
2.21E-01 8.98E-02 8.51E-02 1.75E-02 8.49E-02
(3.26E-02) (2.71E-02) (1.75E-02) (8.98E-03) (1.27E-02)

F14
1.45E-01 1.11E-01 8.27E-02 1.14E-01 1.47E-01
(3.13E-02) (4.15E-02) (3.20E-02) (4.37E-02) (3.94E-02)

F15
2.12E+00 5.76E-01 3.85E-01 7.26E-01 1.57E+00
(3.76E-01) (1.37E-01) (6.11E-02) (2.14E-01) (4.42E-01)
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Table E.2: Mean and standard deviation function error values among DE-HMM
and up-to-date DE variants on CEC2014 with 10D over 30 independent runs

(F16-F30)

10D
CPI-DE TSDE LSHADE UMOEA DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

F16
2.81E+00 2.11E+00 2.23E+00 2.05E+00 1.97E+00
(2.86E-01) (4.62E-01) (2.79E-01) (4.83E-01) (3.17E-01)

F17
1.74E+01 1.76E+00 7.99E-01 1.08E+01 4.56E-01
(8.79E+00) (3.40E+00) (7.17E-01) (1.27E+01) (4.64E-01)

F18
1.36E+00 3.08E-01 1.98E-01 1.09E+00 1.81E-01
(5.83E-01) (5.22E-01) (1.72E-01) (6.05E-01) (2.24E-01)

F19
6.05E-01 1.35E-01 2.11E-01 2.05E-01 1.30E-01
(2.17E-01) (9.34E-02) (3.30E-02) (3.19E-01) (1.07E-01)

F20
3.11E-01 5.85E-02 1.30E-01 3.88E-01 5.67E-02
(1.56E-01) (8.29E-02) (1.25E-01) (3.97E-01) (9.39E-02)

F21
8.01E-01 5.93E-01 3.92E-01 1.11E+00 3.10E-01
(5.39E-01) (2.03E-01) (2.78E-01) (2.97E+00) (2.82E-01)

F22
8.34E-01 6.82E-02 1.16E-01 2.46E-01 7.88E-02

(1.20E+00) (9.69E-02) (9.31E-02) (1.78E-01) (1.62E-01)

F23
3.29E+02 3.29E+02 3.29E+02 3.29E+02 3.29E+02
(2.89E-13) (2.89E-13) (2.89E-13) (2.89E-13) (2.89E-13)

F24
1.29E+02 1.12E+02 1.09E+02 1.09E+02 1.09E+02
(3.79E+00) (3.04E+00) (1.93E+00) (2.00E+00) (1.95E+00)

F25
1.64E+02 1.26E+02 1.32E+02 1.41E+02 1.59E+02
(3.51E+01) (2.57E+01) (3.93E+01) (3.14E+01) (4.44E+01)

F26
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(3.43E-02) (5.64E-02) (1.40E-02) (1.82E-02) (2.45E-02)

F27
6.55E+01 7.52E+01 3.79E+01 3.52E+01 1.41E+02
(1.29E+02) (1.50E+02) (1.13E+02) (1.02E+02) (1.64E+02)

F28
3.72E+02 3.64E+02 3.83E+02 3.66E+02 3.64E+02
(3.40E+01) (3.76E+00) (3.45E+01) (8.40E+01) (5.59E+00)

F29
2.22E+02 2.19E+02 2.22E+02 2.19E+02 2.17E+02
(6.39E-01) (1.64E+01) (5.91E-01) (1.41E+01) (1.73E+01)

F30
4.64E+02 4.66E+02 4.64E+02 4.87E+02 4.70E+02

(4.80E+00) (1.04E+01) (7.29E+00) (3.04E+01) (1.81E+01)
No-Best 6 10 11 10 19

206



Table E.3: Mean and standard deviation function error values among DE-HMM
and up-to-date DE variants on CEC2014 with 30D over 30 independent

runs(F1-F15)

30D
CPI-DE TSDE LSHADE UMOEA DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

F1
2.50E-05 4.34E+04 0.00E+00 0.00E+00 9.58E+04
(2.35E-05) (3.26E+04) (0.00E+00) (0.00E+00) (8.97E+03)

F2
5.58E-06 0.00E+00 0.00E+00 0.00E+00 1.30E+03
(2.95E-06) (0.00E+00) (0.00E+00) (0.00E+00) (2.35E-03)

F3
0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.35E-01

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (2.25E-01)

F4
2.11E+00 6.25E+01 0.00E+00 3.51E+02 3.25E+01
(1.16E+01) (7.26E-01) (0.00E+00) (1.16E+01) (3.64E+00)

F5
2.09E+01 2.01E+01 2.10E+01 2.02E+01 2.09E+01
(5.08E-02) (7.65E-02) (2.17E-02) (1.57E-01) (3.36E-02)

F6
2.32E+01 2.01E+00 8.86E-06 1.80E+00 1.46E+00
(8.96E+00) (1.99E+00) (5.36E-04) (1.45E+00) (1.25E+00)

F7
2.87E-08 2.47E-04 0.00E+00 0.00E+00 0.00E+00
(6.98E-09) (1.35E-03) (0.00E+00) (0.00E+00) (0.00E+00)

F8
9.94E+01 0.00E+00 0.00E+00 1.96E+00 1.10E+01
(8.26E+00) (0.00E+00) (0.00E+00) (1.70E+00) (2.75E+00)

F9
1.94E+02 3.59E+01 1.89E+01 1.98E+01 1.77E+01
(8.66E+00) (1.13E+01) (1.49E+00) (3.22E+00) (4.03E+00)

F10
3.77E+03 1.43E+02 4.86E-03 3.53E+02 2.13E+01
(3.27E+02) (1.34E+00) (1.05E-02) (3.04E+01) (1.19E-01)

F11
6.76E+03 8.92E+03 6.24E+03 7.94E+03 6.19E+03
(2.04E+02) (6.20E+02) (1.69E+02) (7.97E+02) (1.21E-07)

F12
2.57E+00 8.77E-02 1.60E-01 1.95E-02 2.43E+00
(3.26E-01) (4.62E-02) (3.22E-02) (9.35E-02) (4.59E-01)

F13
4.44E-01 3.49E-01 3.15E-01 6.36E-02 2.59E-01
(3.93E-02) (5.07E-02) (1.56E-02) (2.18E-02) (3.44E-02)

F14
3.11E-01 3.04E-01 2.92E-01 2.96E-01 2.82E-01
(2.44E-02) (3.90E-02) (2.13E-02) (4.22E-02) (2.81E-02)

F15
1.64E+01 3.18E+00 2.14E+01 3.16E+00 1.31E+01
(1.25E+00) (1.04E+00) (1.90E-01) (7.35E-01) (2.71E+00)
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Table E.4: Mean and standard deviation function error values among DE-HMM
and up-to-date DE variants on CEC2014 with 30D over 30 independent runs

(C16-C30)

30D
CPI-DE TSDE LSHADE UMOEA DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

F16
1.25E+01 9.38E+00 8.56E+00 1.08E+01 1.20E+01
(2.89E-01) (8.16E-01) (3.06E-01) (4.63E-01) (3.33E-01)

F17
1.34E+03 2.32E+03 1.30E+03 1.19E+03 1.13E+03
(1.65E+02) (2.23E+03) (1.13E+02) (4.01E+02) (8.16E+02)

F18
4.65E+01 1.54E+01 6.16E+01 2.88E+01 1.33E+01
(7.11E+00) (5.12E+00) (3.32E+00) (1.85E+01) (9.31E+00)

F19
5.76E+00 3.88E+00 4.46E+00 4.50E+00 3.50E+00
(1.44E+00) (6.09E-01) (5.79E-01) (9.14E-01) (8.90E-01)

F20
3.51E+01 1.41E+01 1.43E+01 1.22E+01 9.07E+00
(3.37E+00) (8.38E+00) (1.04E+00) (7.11E+00) (3.91E+00)

F21
7.82E+02 2.90E+02 2.92E+02 3.39E+02 2.71E+02
(1.38E+02) (1.67E+02) (7.29E+01) (2.51E+02) (2.02E+02)

F22
1.82E+02 1.54E+02 7.51E+01 9.59E+01 6.87E+01
(7.89E+01) (8.02E+01) (3.23E+00) (7.06E+01) (7.15E+01)

F23
3.15E+02 3.15E+02 3.15E+02 3.15E+02 3.15E+02
(1.93E-13) (1.45E-13) (5.78E-14) (2.31E-13) (3.72E-02)

F24
2.00E+02 2.26E+02 2.25E+02 2.25E+02 2.25E+02
(2.84E-02) (4.01E+00) (2.38E+00) (1.39E+00) (1.94E+00)

F25
2.03E+02 2.04E+02 2.03E+02 2.03E+02 2.03E+02
(2.83E-02) (1.70E+00) (4.99E-02) (1.12E+00) (4.03E-01)

F26
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(4.72E-02) (5.04E-02) (1.44E-02) (5.88E-02) (3.25E-12)

F27
3.32E+02 3.71E+02 3.00E+02 3.60E+02 3.59E+02
(4.53E+01) (4.48E+01) (0.00E+00) (3.49E+01) (4.70E+01)

F28
9.98E+02 8.39E+02 8.33E+02 8.63E+02 8.27E+02
(4.80E+01) (3.19E+01) (2.06E+01) (4.65E+01) (4.82E+01)

F29
7.56E+02 8.30E+02 7.16E+02 6.94E+02 9.75E+02
(1.01E+02) (1.17E+02) (2.27E+00) (1.56E+02) (2.20E+02)

F30
9.78E+02 9.71E+02 1.89E+03 1.53E+03 1.33E+03
(1.91E+02) (4.32E+02) (4.89E+02) (4.02E+02) (5.87E+01)

No-Best 7 6 13 11 14
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Table E.5: Mean and standard deviation function error values among DE-HMM
and up-to-date DE variants on CEC2014 with 50D over 30 independent

runs(F1-F15)

(c) 50D
CPI-DE TSDE LSHADE UMOEA DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

F1
5.77E+05 6.47E+05 8.91E+03 0.00E+00 5.58E+05
(6.44E+05) (3.25E+05) (1.67E+03) (0.00E+00) (1.67E+04)

F2
7.69E+04 2.00E+03 0.00E+00 0.00E+00 1.81E+03
(2.70E+04) (1.32E+03) (0.00E+00) (0.00E+00) (2.95E+01)

F3
3.60E-03 5.42E+02 0.00E+00 5.79E-02 3.80E+03
(1.09E-02) (6.01E+02) (0.00E+00) (2.74E-01) (2.93E-02)

F4
9.21E+01 7.08E+01 9.82E+01 8.25E+02 6.28E+01
(3.44E+00) (2.74E+01) (4.65E+01) (3.57E+02) (3.21E+01)

F5
2.11E+01 2.17E+01 2.13E+01 2.14E+01 2.11E+01
(3.83E-02) (2.25E-01) (2.94E-02) (1.83E-01) (3.76E-02)

F6
3.62E+01 8.17E+02 4.74E+01 6.00E+00 4.46E+00
(1.55E+01) (4.10E+00) (5.34E-01) (2.81E+00) (1.74E+00)

F7
6.64E-02 1.89E-03 0.00E+00 0.00E+00 0.00E+00
(1.93E-04) (4.37E-03) (0.00E+00) (0.00E+00) (0.00E+00)

F8
2.88E+02 9.12E+00 0.00E+00 5.84E+00 3.39E+01
(1.18E+01) (5.45E+00) (0.00E+00) (4.04E+00) (8.89E+00)

F9
3.77E+02 7.77E+01 6.12E+01 5.24E+01 4.85E+01
(1.33E+01) (1.64E+01) (2.29E+00) (6.89E+00) (1.19E+01)

F10
9.36E+03 4.35E+03 3.80E-02 8.52E+02 7.49E+02
(3.50E+02) (1.12E+02) (2.23E-02) (1.79E+02) (3.66E+02)

F11
1.31E+04 4.49E+03 3.31E+03 4.00E+03 1.20E+04
(3.01E+02) (7.98E+02) (2.29E+02) (9.86E+02) (2.30E-13)

F12
3.52E+00 7.27E-01 2.16E-01 3.57E-03 3.39E+00
(3.30E-01) (4.55E-01) (3.34E-02) (1.09E-02) (2.67E-01)

F13
5.99E-01 3.78E-01 3.73E-01 5.11E-01 3.68E-01
(5.18E-02) (6.05E-02) (2.00E-02) (2.87E-02) (5.26E-02)

F14
3.31E-01 3.43E-01 3.31E-01 3.88E-01 3.17E-01
(3.47E-02) (4.06E-02) (2.14E-02) (4.95E-02) (2.89E-02)

F15
3.24E+01 6.90E+00 5.98E+00 5.89E+00 5.85E+00
(1.53E+00) (1.35E+00) (3.94E-01) (7.08E-01) (1.05E+00)

209



Table E.6: Mean and standard deviation function error values among DE-HMM
and up-to-date DE variants on CEC2014 with 50D over 30 independent runs

(F16-F30)

(c) 50D
CPI-DE TSDE LSHADE UMOEA DE-HMM
mean mean mean mean mean
(std) (std) (std) (std) (std)

F16
2.24E+01 3.25E+01 2.70E+01 2.63E+01 2.15E+01
(1.69E-01) (7.43E-01) (3.97E-01) (7.36E-01) (4.36E-01)

F17
3.21E+03 4.38E+04 3.51E+04 2.52E+03 3.33E+04
(3.60E+02) (2.90E+04) (3.68E+02) (6.68E+02) (2.17E+04)

F18
1.66E+02 5.95E+02 1.81E+02 1.66E+02 1.55E+02
(1.16E+01) (6.45E+02) (1.84E+01) (6.01E+01) (8.05E+01)

F19
1.29E+01 1.29E+01 1.29E+01 1.36E+01 1.28E+01
(2.27E+00) (1.77E+00) (1.92E+00) (2.09E+00) (4.13E+00)

F20
1.01E+02 5.36E+02 8.95E+02 8.50E+01 8.04E+02
(9.68E+00) (3.68E+02) (5.28E+00) (5.32E+01) (1.81E+01)

F21
2.07E+03 4.29E+04 4.98E+02 1.63E+03 4.00E+04
(2.10E+02) (4.24E+04) (1.20E+02) (4.71E+02) (3.87E+04)

F22
4.21E+03 6.11E+02 3.07E+02 2.90E+02 2.35E+02
(1.44E+02) (1.94E+02) (6.47E+01) (1.52E+02) (1.47E+00)

F23
3.44E+02 3.44E+02 3.44E+02 3.44E+02 3.44E+02
(3.29E-07) (2.89E-13) (2.59E-13) (2.60E-13) (2.66E-03)

F24
2.60E+02 2.72E+02 2.75E+02 2.73E+02 2.76E+02

(3.91E+00) (2.37E+00) (4.37E-01) (2.16E+00) (2.53E+00)

F25
2.08E+02 2.09E+02 2.08E+02 2.08E+02 2.08E+02
(1.55E-01) (4.26E+00) (3.76E-01) (3.40E+00) (1.53E+00)

F26
1.01E+02 1.07E+02 1.00E+02 1.00E+02 1.00E+02
(7.18E-02) (2.53E+01) (1.69E-02) (8.96E-02) (4.62E-02)

F27
5.49E+03 5.34E+02 5.30E+02 5.25E+02 5.00E+02
(4.02E+02) (7.38E+01) (3.30E+01) (3.55E+01) (5.15E+00)

F28
1.45E+03 1.19E+03 1.18E+03 1.23E+03 1.17E+03
(1.47E+01) (4.43E+01) (2.66E+01) (8.34E+01) (6.91E+01)

F29
8.79E+03 1.23E+03 8.20E+02 1.11E+03 1.20E+06
(6.60E+01) (2.11E+02) (4.78E+01) (2.77E+02) (6.58E+01)

F30
8.14E+03 9.12E+03 8.75E+03 8.76E+03 9.57E+03

(2.70E+02) (5.13E+02) (5.69E+02) (5.28E+02) (6.52E+02)
No-Best 5 1 11 8 17
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Table E.7: Comparison summary among DE-HMM and up-to-date variants on
the 10D, 30D and 50D CEC2014 test problems.

DE-HMM "Better" "Worse" "Equal" "p-value" "Significance"

C-DE
10D 22 3 5 0.001 +
30D 23 4 3 0.008 +
50D 22 5 3 0.0155 +

CPI-DE
10D 20 5 5 0.008 +
30D 18 8 4 0.129 =
50D 20 7 3 0.012 +

TSDE
10D 13 9 8 0.455 =
30D 17 11 2 0.0325 +
50D 21 8 1 0.0815 =

LSHADE
10D 14 8 8 0.480 =
30D 14 11 5 0.4625 =
50D 16 11 3 0.0355 +

UMOEA
10D 15 9 6 0.022 +
30D 15 10 5 0.0565 =
50D 14 12 4 0.0955 =
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Appendix F

CEC2005 and 2014 Time

Complexity

Table F.1: Time complexity computations for CEC2005 and CEC2014 datasets.

CEC2005 dataset CEC2014 dataset

T0 T0 is the time computed by running the following test
program:
for i=1:1000000

x= (double) 5.55;
x=x + x; x=x./2; x=x*x; x=sqrt(x); x=ln(x);

x=exp(x); y=x/x;
end

Same for 10, 30 and 50D

T0 is calculated by running the following test program:
for i=1:1000000

x=0.55+(double) i; x=x+x; x=x/2; x=x * x;
x=sqrt(x); x=log(x); x=exp(x); x=x/(x+2);

end

Same for 10, 30 and 50D

T1 T1is the time to execute 200,000 evaluations of

benchmark function C3 by itself with D dimensions,

T1is the time to execute 200,000 evaluations of

benchmark function F18 by itself with D dimensions,

T2 T2 is the time to execute an algorithm with 200,000
evaluations of C3 in D dimensions.

T̂2 is the mean T2 values of 5 runs.

T2 is the time to execute an algorithm with 200,000
evaluations of F18 in D dimensions.

T̂2 is the mean T2 values of 5 runs.

Table F.2: Time complexity for DE variants on problem C3 of CEC2005
benchmark.

2005

Algorithm 10D 30D 50D

T0 T1 avg-T2 comp-T T1 avg-T2 comp-T T1 avg-T2 comp-T

jDE 0.16 0.172 0.8043 3.94E+00 0.328 1.1345 5.02E+00 0.3779 1.3504 6.06E+00

JADE 0.16 0.1446 0.9187 4.82E+00 0.3259 1.3384 6.31E+00 0.4009 1.5524 7.17E+00

C-DE 0.16 0.2098 1.2843 6.69E+00 0.3341 1.7879 9.05E+00 0.4632 2.0959 1.02E+01

DE-HMM 0.16 0.1685 1.8554 1.05E+01 0.2770 2.6917 1.50E+01 0.4356 3.1988 1.72E+01

CoBiDE 0.16 0.2193 2.2948 1.29E+01 0.3211 3.2968 1.85E+01 0.4735 4.0006 2.20E+01

SaDE 0.16 0.2027 12.1465 7.44E+01 0.3293 14.7644 8.99E+01 0.4430 14.8942 9.00E+01
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Table F.3: Time complexity for up-to-date DE variants on problem F18 of
CEC2014 benchmark.

2014

Algorithm 10D 30D 50D

T0 T1 avg-T2 comp-T T1 avg-T2 comp-T T1 avg-T2 comp-T

C-DE 0.10 0.1458 0.7704 5.73E+00 0.3815 1.0978 6.57E+00 0.7140 1.7073 9.11E+00

LSHADE 0.10 0.1211 1.8671 1.60E+01 0.2897 2.1664 1.72E+01 0.5768 2.6573 1.91E+01

DE-HMM 0.10 0.1061 1.8579 1.61E+01 0.2730 2.1754 1.75E+01 0.5499 2.6928 1.97E+01

CPIDE 0.10 0.2069 2.1326 1.77E+01 0.3988 3.2362 2.60E+01 0.6679 4.2898 3.32E+01

UMOEA 0.10 0.9357 4.4822 3.25E+01 1.2194 5.8698 4.27E+01 1.4831 6.9143 4.98E+01

TSDE 0.10 0.2094 4.5450 3.98E+01 0.4278 4.9192 4.12E+01 0.7177 5.4962 4.38E+01
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Appendix G

Example of DE-HMM procedure

I have started the execution using the steps of Algorithm 3, and in Step 11,

Algorithm 2 will be implemented with the given population pop-m= [3 4 ; 2 1; 4

5]. While Algorithm 2 is running, the first step will be the start of Algorithm 1.

Algorithm3: DE-HMM

1. Initialise pop G=0 uniformly

2. Evaluate pop with fitness function

3. While (Feval < Max-Eval)

4. For each target-vector in pop

5. Mutant-vectors← Mutation

6. Trial-vectors←Crossover

7. Evaluate Trial-vectors , EndFor

8. Pop G=1←Selection between target-vectors and trial-vectors

9. Sort Pop G=1 according to fitness value ascendingly

10. Input Pop G=1 to Algorithm2 to generate newF and newCR

11. EndWhile

Agorithm2: Apply hmm on the population of DE

Inputs: transition matrix A=[0.5 0.5;0.5 0.5]; Population matrix B as emission

matrix // Pop G=1 from Algorithm3 —- Steps:
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1. Apply Algorithm1 to transform population sample into probability as fol-

lowing : // pop-m ←Pop G=1 , Assume that the population input at G=1

is the given matrix pop-m

(a) Pop-m=


3 4

2 1

4 5


(b) create matrix pop-r of the size of pop-m (3,2).

(c) calculate for each variable the mean µ(j)← mean(popm)of pop-m and

standard deviation σ(j)← stdev(popm)

µ(j) =
[
3 3.33333333

]
σ(j) =

[
1 2.08166599

]
(d) For each row in pop-m, calculate the normal distribution underµand σ

(e) return pop-r=


0.5 0.6256

0.158 0.1312

0.8413 0.7883


2. Sample a random sequence of states STseq and emission symbols EMseq (Note

1 refers to state1 and 2 refers to state2), for example 80 sequence.

STseq =2 1 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 1 1 1 1 1 2 2 2 1 2 2 2 1 2 2 2 2 1 1

2 1 2 2 2 2 2 1 2 2 2 1 1 2 1 2 2 1 1 2 2 2 1 1 1 2 2 2 2 2 1 2 2 1 1 1 1 1 2 2

1 2 1 1

EMseq=1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 1 1 2 2 2 1 2 1 1 1 2 1 1 2 1 1 2 2

1 2 1 2 1 1 1 1 2 1 1 1 1 2 2 2 2 2 2 1 1 2 2 2 2 1 2 2 2 1 2 2 1 1 2 2 1 1 1 2

2 2 1 2

3. Apply Viterbi algorithm to find out the best state sequence that can max-

imise the likelihood of the estimated state sequence for given EMseq

bestseq=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2
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4. Calculate CR by the probability ratio of the actual sequence state that over-

head the best state sequence found

CR = ratio(ST seq >= bestseq)

CR = 0.9625

5. Calculate minimum posterior given EMseq

minposterior=

0.409877979685073 0.492632938889084 0.493981187346759 0.380892740874182

0.375386516494484 0.380903354898191 0.493750623681496 0.487920153121753

0.493750622570172 0.380903377678586 0.375387007339577 0.380903377608924

0.493750624083418 0.487920184052916 0.493751256190501 0.380890420399688

0.375107820672939 0.374853333463722 0.375107822111223 0.380890451642884

0.493750578946908 0.487906341071534 0.493467550013981 0.386692103292816

0.499885028923972 0.380619742189386 0.375360281351111 0.380606610183262

0.499829710418849 0.380861295721322 0.380861873528882 0.499842839679907

0.380875002857084 0.381144909034776 0.494024203752374 0.493766210692649

0.386691357395305 0.499602558354115 0.386407427225138 0.499899531081088

0.380607322195910 0.375106415299573 0.375105837944435 0.380594203215016

0.499816068558082 0.380594231238201 0.375106443287529 0.375119533479994

0.380891673788547 0.493735811017673 0.487605022467576 0.487305935330151

0.487305904086064 0.487604350768443 0.493722073477269 0.381172600239570

0.381172568668759 0.493722790846604 0.487619015468394 0.487605781509730

0.493438281377968 0.386991335032673 0.493452206871298 0.487891070978735

0.493452917665603 0.386976764858137 0.493752222319010 0.494022880001193

0.381158046869324 0.381157406015310 0.494037441838434 0.494049900186457

0.380889570965639 0.375386371691094 0.380903380161023 0.493749929251851

0.487905952084370 0.493460226308872 0.386841838606740 0.496658727818858

6. F = average(minposterior, CR)=0.668676666731861
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