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Abstract

Knowledge-based optimization is a recent direction in evolutionary optimization re-
search which aims at understanding the optimization process, discovering relation-
ships between decision variables and performance parameters, and using discovered
knowledge to improve the optimization process, using machine learning techniques.

This thesis makes two major contributions in the existing body of knowledge
in the area of evolutionary multi-objective optimization. First, in addition to the
well-researched objective space, it highlights the need for focusing on decision space
performance analysis for benchmarking multi-objective evolutionary algorithms in
general, and more specifically the knowledge-based class of these algorithms. In this
respect, the thesis proposes a new method to generate multi-objective optimization
test problems with clustered Pareto sets in hyper-rectangular defined areas of the
decision space, which mimics knowledge representation in propositional logic. Fur-
ther, a new metric is introduced for performance measurement in terms of their
coverage of the optimal decision sub-space. The proposed test problems and metric-
s are used to benchmark multi-objective evolutionary algorithms in both objective
and decision spaces.

Second, this thesis introduces a novel evolutionary optimization framework that
incorporates a knowledge-based representation to search for Pareto optimal pat-
terns in decision space replacing the conventional point-based representation. Com-
pared to the extant approaches, which process the post-optimization Pareto sets for
knowledge discovery using statistical or machine learning methods, the framework
facilitates online discovery of knowledge during the optimization process in the form
of interpretable rules. The core contributing idea is that the multi-objective evo-
lutionary process is applied on a population of bounding hypervolumes, or rules,
instead of evolving individual point-based solutions. The framework is generic in
the sense that existing algorithms can be adapted to evaluate the quality of rules
based on sampled solutions from the bounded space. Two algorithmic instantiations
of the framework are presented in this thesis for both the multi and many objective
optimizations respectively. The results and analysis of the experimentation with
standard and proposed test benchmarks demonstrate the capabilities of the pro-
posed optimization algorithm in comparison to the state-of-the-art multi-objective
evolutionary algorithms.
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Chapter 1

Introduction

1.1 Context

Optimization refers to the searching process of one or more solutions with best per-

formance from a given set according to some objectives (criteria) [4]. It usually

requires maximizing or minimizing certain objective function(s) under a set of con-

straints and has been a significant approach for problem solving. Optimization is

ubiquitous with various challenging applications and critical for decision making in

practice, i.e. the determination of the structure and materials for the minimization

of manufacturing cost of a car model.

Usually, there are many factors that make a decision problem and hence the

optimization of the problem challenging. These include the number of decision

variables which define the size of the search space, the number and complexity of

the objective functions, types of constraints that limit the feasibility of the solutions,

noise in objective functions and the computational cost to estimate solution quality

and so on.

Multi-objective optimization problems (MOPs) are a well-known class of opti-

mization problems which require dealing with multiple objectives simultaneously to

achieve the best outcomes. Usually, the objectives in MOPs are conflicting with each

other and no single solution exists to optimize all objectives unilaterally. On the
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contrary, there is a number of, or even infinite, solutions in the search space trading

off these objectives. Such problems are prevalent and can be found in a diverse range

of application domains including science, engineering, economics, business, finance

and other fields. The resolution of an MOP requires the identification of the most

efficient trade-off frontier of solutions, where none of the objective functions can be

improved in value without degrading some of the others. However, these problems

are complex and difficult to solve and many of them fall under the NP-hard category

because of their properties and structure [135].

Researchers study MOPs from different viewpoints and, thus, there exists d-

ifferent methodologies and goals when setting and solving them. If the guarantee

of optimality is most important, there exist exact algorithms for linear and small

size problems, which can return optimal solutions, especially for bi-objective opti-

mization problems, such as branch and bound algorithms [148][127], A* algorithms

[131][99], dynamic programming algorithms [125], to name a few. If the goal is

to approximate or compute all or a representative set of optimal solutions when

analysing and solving an MOP, evolutionary multi-objective optimization methods

are more popular.

Multi-objective Optimization Evolutionary Algorithms (MOEAs), as a repre-

sentative of population-based metaheuristics, have emerged as an alternative to solve

and analyse this class of problems. They have gained significant attention over the

last two decades1 and have been successfully applied to a wide variety of MOPs.

These algorithms, generally, tackle optimization problems as search problems by

representing the solution space in an appropriate form and by iteratively searching

for a set of optimal solutions in this space by sampling a set (or population) of

solutions, evaluating the quality of sampled solutions based on the given objectives

and determining the direction of search using some heuristics based on the sampled

solutions and their quality.

The Evolutionary Multi-objective Optimization (EMO) enjoys a number of ad-

1while references to evolutionary multi-objective optimization exist from much earlier [146],
MOEAs were popularized during early to mid-90s by several researchers including the infamous
NSGA [128].
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vantages [57]. First, they have shown applicability and adaptability on a variety

of optimization problems and they are able to deal with large problems efficient-

ly, despite being simple and flexible for implementation. Given the difficulties and

complexities, evolutionary multi-objective algorithms are the only viable techniques

when dealing with MOPs in many cases. They are easy to be implemented and the

conceptual simplicity enable them to be applicable broadly, especially for problems

that have no known approaches. They outperform the classic methods enumerated

above when complex conditions are imposed, such as nonlinear constraints, noisy

observations or dynamic objective functions, that do not conform well to the prereq-

uisites of classic optimization techniques. Second, when decision making is empha-

sized, the objective of solving an MOP is to support a decision maker in finding a

potential solution according to his/her subjective preferences for implementation in

practice while satisfying some performance metrics and other considerations. The

population-based evolutionary computation methods are able to provide simultane-

ous information over the trade-off frontier for efficient and flexible decision making.

1.2 Motivation

Although as famous general-purpose optimizers, MOEAs are successfully applied to

MOPs. They are considered as black box techniques, which means that it is hard to

tell how the optimal solutions are retrieved [4]. Presenting only a set of approximate,

discrete and static optimal solutions is often insufficient for decision makers in a

multi-objective context. The decision makers often deal with a dilemma where no (or

only a few) solutions are viable for implementation even though the so-called pseudo

optimized results have been returned. In such situations, what interests the decision

makers more is not only an optimized set of solutions but also an understanding of

the problem and an identification of patterns in the design space that lead to better

objective performance. This becomes even critical when there is a need to generalize

optimization results for problems with similar design structures, or when the problem

definition changes dynamically. Knowledge extraction or discovery from a multi-

objective optimization process, thus, has important implications including better
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understanding of the optimization process as well as of the relationship between

decision variables.

There is great effort in the literature to deal with the extraction of knowledge

from MOPs to support decision making. They try to identify important and hid-

den information or properties either from the problem definition or common to the

optimal or high-performing solutions.

One of the extant approaches relies on pre-optimization formulation and mono-

tonicity analysis of the objective functions [114]. While these techniques can provide

insights into the relationship between decision variables and optimal solutions, their

use is limited due to the monotonic assumptions required for constraints and ob-

jective functions. On the other hand, recent research [12] has focused on devising

techniques to automatically extract knowledge from post-optimization processing

of the Pareto optimal solutions. The objective of these approaches is to determine

important design rules by approximating the final Pareto set with respect to the

decision variables using statistical and machine learning techniques.

There are two problems with the post-optimization approaches: First the knowl-

edge discovery process does not start until the optimization process is completed and

second no information is available about how the search has progressed during the

optimization process. The first problem implicates higher computational time, a

longer wait to obtain the extracted knowledge and hence waste of resources; while

the second problem relates to a poor understanding of the optimization process – a

key motivation for carrying out the knowledge discovery process. The second prob-

lem is also restrictive for dynamic optimization problems where the search or fitness

landscapes may change over time and there is never a final Pareto set which might

be post-processed for knowledge extraction and discovery. The parsing of Pareto

set and application of regression techniques to approximate the Pareto front can

also become a bottleneck for high-dimensional MOP as most simple regression tech-

niques do not scale to high dimensional data spaces. Finally, the post-optimization

extracted knowledge is regarded irrelevant for improving the optimization problem

at hand.
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Based on the discussion above, knowledge-based evolutionary multi-objective

optimization tries to use a knowledge-based representation to search for patterns

of Pareto optimal design variables. It integrates knowledge extraction and solution

optimization into a single process. At the end of the evolution, it does not only return

a set of competitive solutions, but also a set of knowledge capturing interesting

patterns in the decision space.

1.3 Research Hypothesis and Questions

The research problem in this thesis is to deal with online knowledge-based evolution-

ary multi-objective optimization. Overall, the research questions can be summarized

as following:

• How to design knowledge based evolution? We have to choose appropriate

knowledge representation, figure out the relationship between knowledge and

solutions and coordinate knowledge optimization as well as the evolution of

solutions.

• How to integrate the current techniques into the knowledge based evolution?

Developments in multi-objective optimization and many-objective optimiza-

tion literature can assist the design of knowledge-based algorithms regarding

common issues, such as solution fitness assignment, objective space diversity

and so on.

• How to benchmark the performance in the decision space? The decision space

is seldom analysed compared to objective space. Decision space performance

analysis requires new test problems and performance metrics to reflect the

distribution or diversity of the Pareto set for testing evolutionary algorithms.

1.4 Thesis Contributions

The thesis contributes to the current multi-objective optimization field as following:
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• A Knowledge-Based Evolutionary Multi-objective Optimization Framework

(KB-EMO Framework) is proposed. The framework applies a multi-objective

evolutionary process on a population of bounding hypervolumes, or rules, in-

stead of evolving individual point-based solutions. The evolutionary process

coordinates both rule optimization and solution optimization to extract knowl-

edge online, which is patterns in the design space that lead to Pareto optimal

solutions in the objective space.

• Knowledge-Based Multi-objective Optimization Evolutionary Algorithms (KB-

MOEA) are proposed for multi and many-objective optimization problems, re-

spectively. As instantiations of the KB-EMO framework, an algorithm termed

as RB − MOEANS is implemented using rule-based knowledge and non-

dominated sorting based rule-quality evaluation mechanism for multi-objective

optimization. The KB-EMO framework is further extended to many-objective

optimization with a resulting algorithm termed as RB − MOEAREF using

a hybrid approach. The optimization capabilities has been validated with

experimentation using standard and proposed test benchmarks.

• A set of test problems, which we refer to as Hyperrectangular Pareto Sets

(HPS), are proposed. HPS problems define clustered Pareto sets in hyper-

rectangular areas in the decision space. HPS test suite can be used to bench-

mark the performance of multi-objective evolutionary algorithms in the deci-

sion space.

• A new metric, which we refer to as Pareto Set Volume (PSV), is proposed.

It focuses on measuring the MOEA decision space performance in terms of

the percentage of covered volume by the solution set with respect to the total

volume occupied by the Pareto sets. The PSV metric, together with HPS

test suites, provide an evaluation framework to investigate performance in the

decision space, compensating the current objective-space centric performance

assessment.
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1.4.1 KB-EMO Framework

The points listed above will be explained with details in this and following subsec-

tions.

The KB-EMO framework facilitates the online identification of optimal patterns

in the decision space in the form of interpretable rules during the optimization

process. The knowledge-based evolutionary multi-objective optimization means that

a set of rules are available during the evolutionary process capturing the current

state of the optimization problem. The rules, using a hypervolume representation,

provide a powerful and intuitive way of capturing knowledge. This is especially

useful for robust optimization and dynamic optimization problems where decision

makers might need a set of solutions and hence the knowledge about them at any

point in time. However, it is worth mentioning that the framework is representation

independent in that different rule representations can be used, and is not only limited

to hyperrectangles which allow expressing rules in a simple if-then form.

The rule-based representation of the optimal design space also provides deci-

sion makers with a greater flexibility in exercising their preferences. Structured

information of Pareto optima approximation provide insights over the problem and

avoid selection pressures from only a set of approximate, discrete and static optimal

solutions, which the classic algorithms present. For decision makers, especially in

the case when the number of solutions is large and the number of dimensions is

high, choosing one solution for implementation is difficult and extra analysis and

corresponding tools are required. On the contrary, the knowledge-based evolution

extracts rules alongside of the optimization process to support an understanding of

the decision space and areas of good solutions with a greater depth.

The KB-EMO framework is generic in the sense that development for exist-

ing MOEAs can be adapted to support rule-based evolution. Instantiation for

multi-objective optimization with hyper-rectangular rule representation and non-

dominated sorting based rule evaluation is implemented. The framework is also

able to deal with many-objective optimization problems with a hybrid design that
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combine the knowledge-based method with the state-of-the-art algorithms, such as

NSGA3.

It is important to note that our framework is different from the convention-

al evolutionary rule learning systems [56] that use MOEA to evolve classification

rules [129][155][123]. The main purpose of the above class of systems is to learn

rules for data classification during a training phase where a system receives input

data with class labels. The evolutionary algorithms are used to generate and refine

these rules during training which are then used to classify future cases. There is no

input data with correct labels in our context.

1.4.2 Performance Evaluation Benchmark and Metric

In the development and validation of MOEAs, the evaluation methodology has

played an important role, involving test problem and performance metric design.

Compared to the current benchmarks and metrics emphasizing objective space anal-

ysis, this thesis complements the research in multi-objective test problems with

performance in the decision space in mind.

Specifically, we are interested in designing test problems where Pareto sets are

sparsely clustered in the decision space to simulate optimal design patterns, while

still maintaining the conflicting relationship in the objective space over multiple

objectives. In comparison to the research in many-objective test problem generation,

we restrict ourselves to only bi-objective problems but instead focus on scaling the

decision space, and hence the Pareto optimal design patterns, in multiple dimensions.

In addition to providing a better visualization ability, such a formulation allows to

investigate the impact of increasing dimensions in the decision space in isolation

of the increasing dimensionality in the objective space. We believe that such test

problems could improve the development efforts for knowledge-based, specifically

rule-based, multi-objective optimization algorithms.

The thesis also complements related research by proposing a new metric to

measure MOEA performance in the decision space, especially in those problems
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where the Pareto sets are distributed over the search space in patterns. The proposed

metric aims at measuring the performance based on the coverage of Pareto sets in

the decision space. The metric is generic in the sense that it can be adopted for both

existing MOEAs and rule-based MOEAs that work on a solution representation at

a higher level of abstraction.

The proposed test problem as well as classic benchmarks can be used to e-

valuate the KB-MOEAs and current representative algorithms. Existing metrics

and our proposed metric are used to compare their performance in both the design

and objective space for a comprehensive investigation. Hence, when organizing the

structure of the thesis, we first elaborate on the design of the evaluation tools first,

and followed by the design of online knowledge-based evolutionary multi-objective

optimization.

1.5 Thesis Outlines

The rest of the thesis is organized as following.

In Chapter 2, we provide a summary of background concepts and related work

to build up the context of this research. First, the literature on MOPs, MOEAs,

many-objective optimization, benchmarks and metrics is reviewed. It covers brief

introduction of classic and state-of-the-art research in each area to provide the basic

materials of knowledge-based multi-objective optimization. Second, the related work

that highlights decision space performance analysis of multi-objective optimization,

and knowledge discovery from multi-objective optimization is covered. The related

research is categorized and analysed to identify the research gaps that this thesis

will build on.

In Chapter 3, based on current development over the performance evaluation

benchmarks and metrics, this thesis makes two contributions by providing a set of

test problems and a metric highlighting performance analysis in the decision space.

First, the chapter proposes a new method to generate multi-objective optimization

test problems with clustered Pareto sets in hyper-rectangular defined areas of the
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decision space. Second, a new metric is introduced to measure the performance of

algorithms in terms of their coverage of the optimal decision sub-space. The pro-

posed test problems and metric are used to benchmark multi-objective evolutionary

algorithms in both objective and decision spaces.

In Chapter 4, the online Knowledge-Based Evolutionary Multi-objective Op-

timization (KB-EMO) is set up. First, it presents the KB-EMO framework and

then instantiates the framework using hyperrectangular representation and non-

dominated sorting based rule evaluation. Comprehensive experimentation and anal-

ysis are performed based on the aforementioned test benchmarks. They are pre-

sented to demonstrate the working and convergence properties of Knowledge-Based

Multi-Objective Evolutionary Algorithms (KB-MOEAs).

In Chapter 5, the KB-MOEA is extended to a many-objective environment. By

combining the latest development of many-objective evolutionary algorithms, such as

NSGA3, a hybrid approach is designed which combines both the point-based solution

evolution and hypervolume-based rule evolution in a single run. The performance

of the hybrid approach is evaluated with a group of scalable test problems with up

to 15 objectives.

Finally, the thesis concludes in Chapter 6. First, the contributions of this thesis

are summarized. Then the limitations are explained and potential future research

directions are presented.



Chapter 2

Background and Related Work

This chapter builds up the context of the thesis and provides a brief background

of the concepts related to the work presented in this thesis. It also covers a review

of the existing work in the literature related to main contributions of this thesis

with an aim to position the presented work appropriately in the literature. Broadly,

the research work in this thesis falls under the area of EMO with a specific focus

on developing the KB-MOEAs for multi and many-objective optimization and their

performance evaluation. Figure 2.1 presents an overview of the areas related to this

thesis and highlights the connection between the main contributions of the thesis

and related concepts.

The chapter is structured as following: Section 2.1 covers background on MOPs,

their formulation, the concept of Pareto optimality and considerations for solving

MOPs. Sections 2.2 and 2.3 cover background on EMO and provide descriptions

of some famous multi and many objective optimization evolutionary algorithms.

Sections 2.4 and 2.5 cover background on performance evaluation of MOEAs and

provide descriptions of the widely accepted benchmarks and performance metrics

respectively. Section 2.6 reviews the existing methods for knowledge-based EMO.

Finally, the chapter concludes in Section 2.7.
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Figure 2.1: Background and Related Work of Concepts Covered in This Chapter in
the Context of Thesis Contributions

2.1 Multi-objective Optimization Problems

In many real life cases, people are usually concerned about large and complex op-

timization problems involving several objectives (criteria), instead of a single one.

A typical definition of MOP is as following (considering minimization of objectives

without the loss of generality):

Definition:Multi-objective Optimization Problem (MOP)

Minimize F (X) =


f1(X)

f2(X)

· · ·

fm(X)


subject to X ∈ Ω

where Ω = {X|X ∈ Rn, H (X) = 0 and G(X) ≤ 0}

(2.1)
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Here, solution X is a n-dimensional vector X = (x1, x2, · · · , xn) and Ω is the

feasible set of solutions restricted by equality or inequality constraints and variable

bounds. (f1, f2, . . . , fm) is the corresponding objective vector of X of size m.

In real cases, the objectives f1, f2, · · · , fm are usually conflict with each other

and lead to tradeoffs among themselves. Hence, the optimal solution for MOPs is

not a single solution, but a set of solutions instead. The optimality for MOP is based

on a partial order relation, known as Pareto dominance and the related concepts are

defined below:

Definition: Pareto Dominance

For two objective vectors U = (u1, u2, . . . , um) and V = (v1, v2, . . . , vm) of MOP

2.1, U is said to dominate V (U ≺ V ), if and only if all the m objective values

of U are not greater than the objective values of V and at least one of them, say

fi, is strictly smaller.

∀i ∈ {1, 2, . . . ,m} : ui ≤ vi ∧ ∃i ∈ {1, 2, . . . ,m} : ui < vi

Definition: Pareto Optimality

Solution X∗ is said to be Pareto optimal for MOP 2.1 if there is no solution that

dominates X∗.

{X|F (X) ≺ F (X∗), X ∈ Ω, X∗ ∈ Ω} = ∅

Definition: Pareto Set (PS)

The Pareto set P∗ of MOP 2.1 is the set of all the Pareto optimal solutions in

decision space.

P∗ = {X∗|X∗ ∈ Ω ∧ @X ∈ Ω, F (X) ≺ F (X∗)}
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Definition: Pareto Front (PF)

The Pareto front PF of MOP 2.1 is the set of objective vectors of solutions in

Pareto set.

PF = {F (X∗)|X∗ ∈ P∗}

The concept of Pareto optimality is proposed early in [54][115][130] and a Pare-

to optimal solution means it is not possible to improve a given objective without

deteriorating at least another. The Pareto front represents the best compromise

between the different conflicting objectives.

2.1.1 MOP Complexity and Resolution Approaches

The resolution of MOP requires the identification of the Pareto optimality. How-

ever, this is not easy since most MOPs are NP-hard problems [135]. Generally, the

complexity and difficulty when solving an MOP is:

• There are usually many or even infinite Pareto optimal solutions in the Pareto

front. The number of Pareto optimal solutions increases according to the size

of the problem, especially the number of objectives under consideration. It is

clear that all Pareto solutions in an m-objective environment are still optimal

of the same problem with an additional objective (m + 1) [135]. The size of

Pareto front can go exponential with respect to the number of objectives.

• The landscapes of objective functions of MOPs hinder the exploration of op-

timality with factors such as parameter dependency, modality, many-to-one

mappings, non-differentiability and so on. The optimizers may either find re-

quired information like gradient unavailable or be trapped around the local

optima in feasible areas. Sometimes for many problems in practical appli-

cations, one has to resort to simulation or physical models to evaluate the

objective values, where the objectives cannot be formulated with analytical

representation, referred to as black box optimization [83].
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• The geometry of Pareto front challenges the exploitation of optimizers with

complicated structures regarding linearity, convexity and continuity.

• The feasible area in decision space is commonly constrained. The distribution

of optimal solutions in decision space is scattered or follow certain patterns

and make it hard to be fully identified.

There exist exact algorithms when analysing and solving MOPs, which can

return optimal solutions and guarantee their optimality, especially for bi-objective

optimization problems, such as branch and bound algorithms [148][127], A* algo-

rithms [131][99], dynamic programming algorithms [125] and so on. However, given

the difficulties and complexities as above, metaheuristic methods are more popular

when dealing with MOPs, with the aim to obtain high quality solutions in practical

cases to approximate the Pareto optimality nicely instead guarantee of the global

optima.

Generally, in objective space, the goal for solving an MOP is to achieve good

convergence to the Pareto front and diversity along the entire front. The convergence

is to minimize the distance from the obtained set of solutions to optimal solutions,

while the diversity indicates uniform distribution of these solutions along the entire

front so that no valuable information is lost. In decision space, the obtained set

of solutions is required to represent the whole Pareto set sufficiently for the sake

of diversity, flexibility, robustness and applicability to support design making and

implementation. In these regards, MOEAs are more prominent for the tackling of

MOP.

2.2 Multi-objective Optimization Evolutionary Al-

gorithms

As a famous population-based metaheuristics, MOEAs are able to approximate the

Pareto front in a single run. Compared to other methods, MOEAs enjoy a lot of

attraction and effort from the community during the last few decades, and this is
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still one of the hottest research topics in the field of evolutionary computation [136].

We have witnessed quite a number of successful designs, to name a few in chronolog-

ical order and their updates, Vector Evaluated Genetic Algorithms (VEGA) [119],

Multi-objective Genetic Algorithm (MOGA) [59], Niched Pareto Genetic Algorithm

(NPGA) [67], Non-dominated Sorting Genetic Algorithm (NSGA) [128], Strength

Pareto Evolutionary Algorithm (SPEA) [172], SPEA2 [167], Pareto Archived Evolu-

tion Strategy (PAES) [84], Pareto Envelope-based Selection Algorithm (PESA) [35],

PESA2 [32], Pareto-frontier Differential Evolution (PDE) [1], Fast Non-dominated

Sorting Genetic Algorithm (NSGA2) [41], Multi-objective Evolutionary Algorithm

based on Decomposition (MOEA/D) [162], IBEA [170], HypE [8], Direction-based

Multi-objective Evolutionary Algorithm (DMEA) [21] and DMEA2 [109].

Since the huge volume of related literature1, it’s not easy to categorize the

algorithms appropriately. From the perspective of evolutionary framework, there

are Genetic Algorithm based approaches [41], Differential Evolution based approach

[1][117], Particle Swarm based approach [30], and so on. From the perspective of fit-

ness assignment, there are Pareto dominance based approaches, aggregation and de-

composition based approaches and indicator based approaches, and so on. From the

perspective of objective vector diversity, there are fitness sharing based approaches,

distance based approaches, cell density based approaches, and so on. From the per-

spective of elitism implementation, there are combined population based approaches,

external archive based approaches and so on. People can also classify MOEAs from

the perspective of constraint handling and others. A brief categorization is shown

in Table 2.1. The classification of approaches is extremely difficult determined by

the broad variety of methodologies for MOEA design.

This section is not going to enumerate and review all the MOEA designs here.

Instead, it reviews especially the recent developments to MOEAs and groups them

mainly from the perspective of fitness assignment, and focus on the approaches that

have been more popular in the research community. For comprehensive knowledge

1See the literature repository at http://delta.cs.cinvestav.mx/∼ccoello/EMOO/ for reference,
created and maintained by Professor Carlos A. Coello Coello.



CHAPTER 2. BACKGROUND AND RELATED WORK 17

about all the specific issues, we have several reviews and surveys in the literature

[27][28][86][166][39].

2.2.1 Dominance Based Approach

Directly based on the definition of Pareto optimality, a non-dominated sorting

method is proposed by David E. Goldberg for fitness assignment of the solutions in

evolution [64]. The general idea is as following: first, identify the non-dominated

solutions and assign the best rank value to them. Usually lower ranking corresponds

to better solution quality. Next, exclude the solutions with best rank, identify the

new non-dominated solutions from the rest and assign the next rank value to them.

This process will be repeated until the all the solutions are ranked. By doing this,

it actually maps the multi-objective space into a single dimension in order to allow

a direct comparison among solutions and hence to establish preferences for selection

operation. Influenced by his ideas, many actual implementations emerged.

Srinivas and Deb proposed Non-dominated Sorting Genetic Algorithm (NSGA)

[128]. NSGA first ranks the individuals on the basis of non-dominated sorting. Then

a fitness value is assigned to each non-dominated ranking levels. For solutions of

each ranking, a fitness sharing method is used to maintain the diversity of the pop-

ulation. NSGA2 [41][44] also utilizes Pareto dominance to promise the convergence

of the evolutionary search. In order to obtain a wide spread over the whole Pareto

front, NSGA2 uses the crowding distance in objective space to maintain a diverse

population. It is defined as the distance of two neighbouring solutions on either side

of a solution for each objective. This density formulation helps preserve diversity

since we only pick solutions with higher estimation. As a representative algorithm,

NSGA2 has been successfully applied to a wide range of multi-objective problems.

It is a benchmark algorithm for the performance analysis and comparison in the

literature, also adopted in this thesis.

Pareto dominance based fitness assignment is popular in the design of MOEAs

besides NSGA and NSGA2. They come with different diversity maintaining mech-

anisms and elitism mechanisms to form quite a number of variants. Some selected
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algorithms are introduced below.

Strength Pareto Evolutionary Algorithm (SPEA) was introduced by Zitzler

and Thiele [171][172]. SPEA designs an external archive to store non-dominated

solutions found previously. In each generation, non-dominated individuals are copied

to the external archive. For each archived individual, a strength value proportional

to the number of solutions which that individual dominates is calculated. The fitness

is based on individual’s strength value and takes both the distance to the Pareto

front and distribution of individuals. SPEA2 [167] improves the design by: (1)

finer-grained fitness design that is based on both the number of individuals that

dominate the individual under evaluation and the number of individuals dominated

by the individual under evaluation; (2) a nearest neighbour density estimation to

improve the search efficiency, and (3) archive truncation that preserves the boundary

solutions.

Pareto Archived Evolution Strategy (PAES) was introduced by Knowles and

Corne [84]. PAES also utilizes a historical archive that stores the non-dominated

solutions previously found for the evaluation of offspring individuals. This archive

keeps the elitist and maintains diversity using a crowding procedure based on a grid

division of the objective space. In improved versions, PESA [35], prefers the solutions

with lower density in the cell of the grid partition and PESA2 [32] would assign

higher probability to sparsely occupied cells, instead of solutions when selecting.
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2.2.2 Aggregation and decomposition based approach

Using aggregation functions to evaluate solutions is another typical approach [80].

The basic idea of aggregation based decomposition is based on the observation that

a Pareto optimal solution to the original MOP is an optimal solution of an aggregate

function of the entire original fi’s. By optimizing a set of such different aggregate

functions simultaneously, we can expect the set of solutions to approximate the

Pareto front of original MOP. If the aggregate functions are organized properly

in a way, such as by using a set of evenly spread reference points, the solutions

returned are supposed to have a similar distribution along the Pareto front. Hence,

this approach first decomposes an MOP into a number of subproblems in aggregate

function form. Aggregate function can be constructed via weighted sum approach

[104], Tchebycheff approach [104] and the boundary intersection method [36][100].

Then optimizes them collaboratively.

The best representative of the decomposition based algorithm is MOEA/D

[162]. It is based on conventional aggregation approaches and it explicitly decom-

poses an MOP into scalar optimization subproblems and solves these subproblems

simultaneously by evolving a population of solutions. The objective of each sub-

problem, is an aggregation of the individual objectives. At each generation, the

population is composed of the best solutions found so far (i.e. since the start of the

run of the algorithm) for each subproblem. Each subproblem (i.e., scalar aggrega-

tion function) is optimized in MOEA/D by performing evolutionary operations on

its own solution or using information only from its neighbouring subproblems. The

neighbourhood relations are defined based on the distances between their aggrega-

tion coefficient vectors, based on the assumption that the optimal solutions to two

neighbouring subproblems should be very similar.

Several improvements on MOEA/Ds have been made recently. Li and Zhang

[95] suggested using two different neighbourhood structures for balancing exploita-

tion and exploration. Zhang et al. [163] proposed a scheme for dynamically allo-

cating computational efforts to different subproblems in an MOEA/D in order to
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reduce the overall cost and improve the algorithm performance. This implementa-

tion of MOEA/D is efficient and effective and has won the Congress on Evolutionary

Computation (CEC) 2009 MOEA competition. Nebro and Durillo [106] developed

a thread-based parallel version of MOEA/D, which can be executed on multicore

computers. Ishibuchi et al. [77] proposed using different aggregation functions at

different search stages. MOEA/D algorithms have also been successfully applied to

a number of applications, such as the flowshop scheduling problem [23] and sensor

network routing [87].

2.2.3 Indicator Based Approach

The quality of an approximated Pareto front can be measured by performance indi-

cators (reviewed in Section 2.5), such as the generational distance and hypervolume.

The design of MOEAs can be directly based on an indicator to guide the search,

particularly to perform environmental selection.

Zitzler and Knzli first suggested a general indicator-based evolutionary algorith-

m (IBEA) [170]. This framework incorporates any indicator to compare a pair of

candidate solutions. An indicator-based model for handling uncertainty is proposed

by Basseur and Zitzler [15]. General approach to incorporate objective reduction

techniques into hypervolume-based algorithms is discussed by Brockhoff and Zit-

zler [20] and different objective reduction strategies are studied for improving the

performance of hypervolume-based MOEAs. Bader and Zitzler suggested a fast

hypervolume-based MOEA for many-objective optimization [8]. To reduce the com-

putational overhead in hypervolume computation, a fast method based on Monte

Carlo simulations is proposed to estimate the hypervolume value of an approxi-

mation set. Therefore, the proposed hypervolume-based MOEA is reported to be

applied to problems with many objectives. Very recently, they [7] further investi-

gated the robustness of hypervolume-based multi-objective search methods. Three

existing approaches for handling robustness in the area of evolutionary computing,

modifying the objective functions, additional objectives, and additional robustness

constraints, are integrated into a multi-objective hypervolume-based search. An
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extension of the hypervolume indicator is also proposed for robust multi-objective

optimization.

2.2.4 Other Approaches

Besides the algorithms described above, many other approaches are utilized for ap-

propriate MOEA design from different perspectives. For example, while the size of

Pareto front can be very large or infinite, the decision maker may be only interested

in part of solutions they prefer. Hence, such information can be useful to guide

the evolutionary search. Many attempts fall into this category even before the in-

troduction of user preference to MOEA design [139]. For example, see [2][3]. Deb

et al. suggested an interactive MOEA based on reference directions that decision

makers provide to guide the search towards the interested region [43]. The author

also proposed an interactive MOEA with an approximate value function progres-

sively and periodically generated every few generations [47]. Several non-dominated

solutions are presented to the decision maker for ranking from the worst to the best

to take preference information into consideration. Thiele et al. represent preferences

interactively in the form of reference points for the calculation of an achievement

scalarization function [141]. The selection is expected to lead the search to focus on

the most interesting parts with the support of achievement scalarization functions,

which project a given reference point onto the Pareto optimality.

Another important point of concern is that genetic search is not well suited

for fine-tuning structures which are too close to optimal solution [64]. Many al-

gorithms started to introduce local search models into the population-based global

search methods, which resulted in the development of memetic computing by sim-

ple hybridization and incorporation of separate rule based meme population for

coevolution [113]. In a simple memetic algorithm, a population of solutions is ini-

tialized. After selection, reproduction operations, a local improvement procedure

such as hill climbing is highlighted. The update to the population can use either

Lamarckian inheritance or Baldwinian inheritance [24]. The process repeats and

terminates when a criterion is satisfied. Multiple local search operators can also
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be used within this evolutionary system [22][108]. Coevolving memetic algorithms

further include a population of memes and letting the gene and meme populations

progress cooperatively or competitively [124]. The representation of meme for this

coevolution adopts the form of rules which undergo their own initialization, varia-

tion, fitness assignment, selection and replacement operations. The rules serve the

purpose of sampling solutions from neighbourhood after pairing with certain solu-

tions. The memetic computation framework combined with the fitness assignment

approaches explained in this section can be applied to deal with MOPs. There are

multi-objective memetic algorithms using either dominance relations or aggregation

function proposed in the literature [107] shown as competitive problem solvers for

domains such as scheduling [14], decision making [121], engineering design [65] and

game development [102].

The design of MOEAs is an open area and new ideas are also developed. Re-

cently, Bui et al. proposed a novel direction-based multi-objective evolutionary

algorithm (DMEA) [21], showing competitive results over the classic algorithms. In

DMEA, two types of direction are of interests: convergence direction and spread

direction. The direction information is obtained from the current population and

archived non-dominated solutions are used to perturb the current parental popula-

tion to produce offspring and then to create both the next-generation archive and

parental pools. The diversity is maintained using niching criterion based on emit

rays from ideal point into the hyper-quadrant that contains the current front esti-

mate. In the improved version DMEA2 [109], an adaptation of the balance between

convergence and spread direction, ray-based density niching and corresponding up-

dated selection mechanism are highlighted.

2.2.5 Section Summary

The current MOEAs attempt to maintain the balance between convergence and di-

versity for optimization to approximate the entire Pareto front in objective space.

Convergence requires to minimize the distance between populated solutions and

the real Pareto front while the diversity encourages the population to occupy and
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represent the whole front [96]. When emulating natural selection for the purpose

of optimization, an MOEA has to implement a fitness measurement to guide the

evolution to converge, and also design diversity maintaining method to get a wide

and even distribution. We briefly classified current algorithms mainly based on the

fitness assignment and reviewed the mechanisms for both convergence and diver-

sity. Due to the considerable volume of research on evolutionary multi-objective

optimization, we only pick the representative algorithms for each category.

2.3 MOEA for Many-objective Optimization

Recently, many-objective optimization (typically four or more objectives involved),

has attracted increasing attention in evolutionary multi-objective optimization com-

munity. The research is first motivated by real world applications optimizing a high

number of objectives, e.g., control system design [66], industrial scheduling [134],

software engineering [105]. Second, there is no effective optimizer to solve these prob-

lems in practice. The popular Pareto-dominance based MOEAs, such as NSGA-II

[44] and SPEA2 [167], have encountered great difficulties in many-objective opti-

mization, although they have shown excellent performance on problems with two

or three objectives. Detailed information over the recent development regarding

many-objective optimization is provided in survey [94].

Generally, the current algorithms may face the following difficulties [42][78]:

• Explosion of non-dominated solutions: When the number of objectives grows,

the number of non-dominated solutions to one randomly generated solution

will grow exponentially [61]. This will occupy almost all the population slots

very soon. When an algorithm utilize non-dominated relations for selection,

this will lead to the severe loss of selection pressure towards the Pareto front

when handling many objectives [160]. Therefore, the overall performance of

corresponding algorithm will deteriorate significantly.

• Inefficient diversity measure: Taking crowding distance in NSGA2 as an ex-

ample, first, the identification of neighbour solutions for the calculation of
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hyper-cuboid distance is computationally expensive in a comparatively larger

objective space. Second, the crowding distance in many-objective environ-

ments will cause an unacceptable distribution of solutions at the end [78].

New mechanism for the estimation of diversity is required in evolutionary

many-objective computation.

• Inefficient recombination operation: In a many-objective problem, the distri-

bution of Pareto optimal solutions are likely to be widely distant from each

other and sparsely located in the objective space. In this case, extra effort

should special recombination operators (mating restriction or other schemes)

may be necessary for handling many-objective problems efficiently.

• Representation of Pareto Front: In order to fully represent the high dimen-

sional Pareto front, exponentially more solutions are required. This will cause

pressure on the limited population size in MOEAs. In addition, it will be

difficult for a decision-maker to understand and implement a preferred so-

lution from a much larger population for the representation of the resulting

Pareto-optimal surface.

• Expensive computation for performance evaluation: Since more decision and

performance variables are introduced in many-objective optimization prob-

lems, comparatively more computational effort is required for the evalua-

tion of performance metrics. For instance,the computing of hypervolume re-

quires exponentially more computations with the increase in objective numbers

[60][150]..

The difficulties listed above are new challenges for current MOEAs working

well with 2 or 3 objectives. They overall require certain modifications to existing

methodologies for the improvement to their performance in many objective environ-

ments.
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2.3.1 Current Methodologies

Very intuitively, the very simple starting point for tackling many objectives is by

the reduction of the number of objectives. If we can choose only a few important

objectives, almost all difficulties in evolutionary many-objective optimization are e-

liminated and we successfully change a many-objective problem to a multi-objective

problem applicable by traditional methods. Deb and Saxena [46][45] proposed an

objective reduction method, which is based on principle component analysis. Their

idea is to remove unnecessary objectives while maintaining the shape of the Pare-

to front in the reduced objective space. On the other hand, Brockhoff and Zitzler

[19][20] proposed a different idea where objective reduction is based on Pareto dom-

inance. That is, an objective is removed when it does not change (or only slightly

change) the Pareto dominance relation among solutions.

To overcome the drawback of Pareto-dominance based MOEAs, some efforts

have been made in the literature [78]. Many improvements to the current designs

have been proposed. The developing techniques can be roughly classified into the

following two groups: Adoption of new preference relations and adoption of new

diversity promotion mechanisms.

Since the Pareto-dominance relation scales poorly in many-objective optimiza-

tion, it is natural to use other preference relations, including modified Pareto-

dominance and different ranking schemes, so as to produce fine selection pressure

towards Pareto front. Up to now, many alternative preference relations have been

proposed.

Modification of Pareto dominance in EMO algorithms has often been discussed

in the evolutionary multi-objective optimization community. Sato et al. [118]

demonstrated that the use of a modified dominance clearly improved the perfor-

mance of NSGA2 for many-objective problems. Instead of the standard Pareto

dominance, a wider angle of the dominated region of a solution is suggested to

refuse large deterioration in one objective for the tradeoff of a small improvement in

another objective. Similar ideas, such as the concept of α-dominance [70], preference
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incorporation [18][17], are also discussed in the literature.

Besides the modification of standard Pareto dominance, different ranking meth-

ods are also recommended. Drechsler et al. [52] proposed the use of a relation

called favour to differentiate between non-dominated solutions for the handling of

many-objective problems. They defined the relation favour based on the number of

objectives for which one solution is better than the other. The relation favour was

modified by taking into account not only the number of objectives for which one

solution is better than the other but also the difference in objective values between

the two solutions [134]. Corne and Knowles [33] reported that the best results were

obtained using a simple average ranking method. Kukkonen and Lampinen [91]

examined the average and minimum ranking methods. More complicated ranking

methods based on ε-dominance and fuzzy Pareto dominance are also analysed [88].

The introduction of different ranks to non-dominated solutions for the purpose of

increasing selection pressure toward the Pareto front seems to decrease the diversity

of solutions. In some cases, the population converges to a few solutions (or a single

solution) as reported in [33]. In short, the performance of approaches above has not

been validated systematically.

Adoption of new diversity promotion mechanisms is also considered. In many-

objective optimization, Pareto-dominance could not provide sufficient selection pres-

sure to make progress in a given population, so the diversity criterion begins to play

a key role in such cases. However, the existing diversity preservation criteria, such as

crowding distance [44], are not suitable for many-objective problems [88][90]. Thus,

a new mechanism promoting the diversity is needed. Adra and Flemming proposed

two mechanisms for managing diversity and investigate their impacts on overall

convergence in many objective optimization [5]. The recently proposed NSGA3 [42]

replaced the crowding distance operator in NSGA2 with an association operator aid-

ed by a set of well-distributed reference points. Hence, NSGA3 is more dedicated for

many-objective optimization only and it utilizes a set of reference points to achieve

diversity. Solutions that are closer to reference points are more preferred. Hence,

if the reference points are evenly spread, good distribution of solutions in objective
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space can be induced.

It is worth noting that, unlike Pareto-dominance based MOEAs, other two class

of approaches in Section 2.2, decomposition based and indicator-based approaches,

have been found very promising in many-objective optimization. The former decom-

poses a problem with multiple objectives into a set of single-objective subproblems

and the latter employs a single performance indicator, such as hypervolume, to opti-

mize a desired property of evolutionary population. One issue is regarding the exact

calculation of hypervolume is especially computationally expensive in high dimen-

sional objective space, the fast algorithm [8] that uses Monte Carlo simulation to

approximate the exact hypervolume values has been developed.

2.3.2 Section Summary

During the rapid growth of evolutionary multi-objective optimization, algorithms for

problems with 2 and 3 objectives seem to be well-established regarding the objective

space and now the research trend moves to many objective environments with four

and more objectives. It has been one of the major research topics for the community

in recent years. However, this is still an open area and no dominating algorithms

exist. The current methodologies still suffer limitations regarding many issues. For

instance, in reference points related algorithms, such as NSGA3 and MOEA/D, the

reference points or weight vectors are likely to be distributed very sparsely in the

objective space and hence lead to inefficiency when representing the whole Pareto

front.

2.4 Test Problems for MOEAs

Test problems play an important role in performance evaluation under controlled

experimental conditions and hence development of MOEAs. Historically the two

topics in multi-objective evolutionary optimization, algorithm development and test

problem design, have been developed hand-in-hand and have helped promote each

other [74].
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Generally, test problems are synthetically constructed and have tunable fea-

tures, such as number of decision variables, to generate a number of specific prob-

lem instances with varying degrees of complexities. Test problem design is a well-

researched area in EMO literature. In this section, we only go through some promi-

nent test suites.

Since 1990s, the construction of test problems has drawn special interest from

the research community and many instances are proposed since then. To name a few,

we have Binh and Korn function [16], Farina Function [55], Fonseca and Fleming

Function [58], Ishibuchi and Murata Function [76], JOS Function [81], LDZ Function

[93], TKLY Function [137], Schaffer Function [119], Kursawe Function [92], and so

on. The utility of these functions, however, depends on a number of considerations,

such as dimensionality scalability in objective space and decision space, modality

in function landscapes and other features. Huband et al. [69] provides a good

discussion of different test functions introduced in EMO. A more recent review can

be found in [74].

2.4.1 Classic Benchmarks

The ZDT [169] test suite was introduced in 2000 and is a widely adopted benchmark

in the field of EMO. Some commonly used ZDT instances are shown in Table 2.2.

It provides test problems using a modularized structure. Theoretically, the Pareto

set is allocated at x1 ∈ [0, 1] and the other xi = 0, forming a simple pattern in the

decision space. ZDT benchmark is usually criticized for the bi-objective design and

the extreme location of optima.

DTLZ [50] is another benchmark test suite with richer features than ZDT,

such as scalability in the number of objectives, scalability in the number of decision

variables to control the location of Pareto front and support generation of various

geometries of Pareto front. This flexibility makes it a suitable candidate to be used

in multiple and many objective optimization problems [42]. Some selected instances

are shown in Table 2.2. The set of Pareto solutions of m-objective DTLZ problems

is 0 ≤ xi ≤ 1, i = 1, 2, . . . ,m − 1 and xi = 1/2, i = m,m + 1, . . . , n except DTLZ6,
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Table 2.2: ZDT and DTLZ Benchmarks: # of Variables(n) and # of Objectives(m)
Problem Objective Functions Decision Space n/m

ZDT1
f1 = x1, f2 = g · h

xi ∈ [0, 1] 30 / 2g = 1 + 9 · Σn
i=2xi/(n− 1), h = 1−

√
f1/g

ZDT2 as ZDT1, except h = 1− (f1/g)2 xi ∈ [0, 1] 30 / 2

ZDT4 as ZDT1, except g = 1 + 10(n− 1) + Σn
i=2(x2

i −
10 cos(4πxi))

x1 ∈ [0, 1],
x2,...,n ∈ [−5, 5]

10 / 2

ZDT6
f1 = 1− exp(−4x1) sin6(6πx1)

xi ∈ [0, 1] 10 / 2g = 1 + 9 · (Σn
i=2xi/(n− 1))0.25

h = 1− (f1/g)2

DTLZ1

f1 = 0.5(1 + g)Πm−1
i=1 xi

xi ∈ [0, 1] 7 / 3
fi=2:m−1 = 0.5(1 + g)(Πm−i

j=1 xj)(1− xm−i+1)

fm = 0.5(1 + g)(1− x1)
g1 = 100[k + Σk

i=1((xi+m−1 − 0.5)2 −
cos(20π(xi+m−1 − 0.5)))]

DTLZ2

f1 = (1 + g)Πm−1
i=1 cos(π2xi)

xi ∈ [0, 1] 12 / 3
fi=2:m−1 = (1+g)(Πm−i

j=1 cos(π2xj)) sin(π2xm−i+1)

fm = (1 + g) sin(π2x1)
g2 = Σk

i=1((xi+m−1 − 0.5)2

DTLZ3 As DTLZ2, except g is replaced by g1 xi ∈ [0, 1] 12 / 3

DTLZ4 As DTLZ2, except xi is replaced by x100
i xi ∈ [0, 1] 12 / 3

DTLZ5 As DTLZ2, except x2,...,m−1 is replaced by (1 +
2gxi)/(2(1 + g))

xi ∈ [0, 1] 12 / 3

DTLZ6 As DTLZ5, except g is replaced by g =
Σk
i=1x

0.1
i+m−1

xi ∈ [0, 1] 12 / 3

where xi = 0, i = m,m+ 1, . . . , n.

Huband et al. [69] provides a rigorous review of the test problems for multi-

objective optimization. They consider fitness landscape and Pareto front geometry

properties and provide a set of recommendations and features that a good test suite

should follow. A summary of these recommendations is given in Table 2.3. A group

of test problems, named WFG, are then proposed. The Pareto set for WFG problems

forms a simple pattern similar to ZDT and DTLZ and the first few variables are

specified over the whole range and others at certain values.

Overall, the existing benchmarks mainly concentrate on function landscape

design and the front geometries in the objective space. It’s worth noting that the

variable dependencies and separability has been considered in WFG problems [69].

A group of modified ZDT problems also looked at enhancing the linkage between
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Table 2.3: Features for EMO Test Problems [69]
Feature (F) Comment

F1: Pareto Optimal Geometry Linear, Convex, Concave, Mixed,
Degenerate, Disconnected, or some
combination

F2: Parameter Dependencies separable or non-separable
F3: Bias Substantially more solutions exist

in some regions of fitness space than
they do in others

F4: Many-to-one mappings Pareto one-to-one/many-to-one,
flat regions, isolated optima

F5: Modality uni-modal or multi-modal (possibly
deceptive multi-modality)

decision variables [48]. However, the distribution of Pareto set in decision space is

not considered under these problems. The simple rules emerged in the benchmarks

above are defined on the whole range of some variables. They are useful but not

sufficient for comprehensive performance analysis for algorithms in design space.

2.4.2 Test Problems with Complicated Pareto Sets

Although the classic benchmarks are used widely in the literature, one argument

over them is the shape simplicity of Pareto sets [111, 95]. Some research effort has

been made on the construction of test problems which consider shapes of Pareto sets

in their design. [111] proposed a mechanism to generate complicated Pareto sets in

parameter space through a series of mappings for mainly bi-objective optimization

problems. Instances of their test problems are shown in Table 2.4. A set of more

complicated test instances are recently provided with quadratic or trigonometric

relationships for the distribution of Pareto sets [95, 164], as shown in Table 2.4.

While the above problems aim at introducing difficult Pareto front and set

geometries for MOEA evaluation, they are not specifically designed for the perfor-

mance evaluation of MOEAs in the decision space.
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Table 2.4: OKA and LZ Test Problems (examples shown, not all the instances)
Problem Objective Functions Pareto Optimality

OKA1

f1 = x′1 PS :

f2 =
√

2π −
√
|x′1|+ 2|x′2 − 3 cos(x′1)− 3|

1
3 x′2 = 3 cos(x′1) + 3

x′1 = cos( π12)x1 − sin( π12)x2 PF :

x′2 = sin( π12)x1 − cos( π12)x2 f2 =
√

2π −
√
f1

LZ1

f1 = x1 + 2
|J1|Σj∈J1(xj − x

0.5(1.0+
3(j−2)
n−2

)

1 )2 PS :

f2 = 1−√x1 + 2
|J2|Σj∈J2(xj − x

0.5(1.0+
3(j−2)
n−2

)

1 )2 xj = x
0.5(1.0+

3(j−2)
n−2

)

1

J1 = j|j is odd and 2 ≤ j ≤ n j = 2, . . . , n
J2 = j|j is even and 2 ≤ j ≤ n

2.4.3 Test Problems with Pattern-based Pareto sets

As noted before, introduction of test problems which explicitly focus on decision

space performance evaluation of MOEAs is an important direction and can have

important implications for better design of MOEAs, specifically the more recent

knowledge-based MOEAs. In this regard, [73] has recently proposed a polygon-based

test problem for decision space diversity investigation and compared the related

performance of several mainstream MOEAs on these problems [72, 79].

(a) Square Based 4 Objectives (b) Pentagon Based 5 Objectives

Figure 2.2: Ishibuchi et al.’s Multi-Objective Test Problems for Decision Space
Diversity Investigation to Minimize the Distances to Vertices Ais, Bis, Cis, . . . Si-
multaneously

The Polygon based test problems for the investigation of decision space diver-

sity is defined as shown in Figure 2.2. The number of objectives is in fact equal

to the number of chosen polygon vertices. Each objective function corresponds to
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minimization of the distance to one of the vertices at the same position of corre-

sponding polygons in a 2-dimensional decision space. The Pareto set clusters in

optimal areas bounded by the polygons (including edges) as shown in grey in the

figure. The problem design allows better visualization, scalability of function num-

bers supporting many objective optimization, scalability of optimal area numbers

increasing the diversity of decision space and also creating distribution patterns in

decision space. However, there are also a number of limitations of this test problem.

First, the test function is defined in a two-dimensional decision space and it is not

clear if it can scale to higher dimensions. Second, no mechanisms are provided for

defining fitness landscapes and front geometries. In addition the function definition

lacks in explaining controls for function modality, parameter dependencies, front

convexity and other features.

2.5 Performance Metrics

Since the optimal solutions to an MOP, specifically a continuous optimization prob-

lem, can be unlimited, performance metrics are introduced to measure the quality

of obtained solutions and benchmarking either different variants of the same MOEA

(or an MOEA run with different parameter settings) or compare performance of

different MOEAs on same problems. Zitzler et al. [169] suggested three aspects of

MOEA search for consideration in objective space: 1) distance from the obtained

set to the global Pareto optima; 2) distribution of obtained solutions in objective

space; and 3) the extent of the obtained solutions along the whole Pareto front. Ef-

fectively, the first consideration focuses on evaluating the convergence while the rest

two emphasize diversity measurement of obtained solution sets [158]. The following

broad classification can be used to introduce current metrics.

2.5.1 Convergence Focused Metrics

The metrics under this category are used to measure the extent to which the true

PF is approximated or deviation from the true PF. There are two approaches in

this category which can be grouped either based on the number of Pareto optimal
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solutions in the obtained set, or based on the distance from the obtained set to the

global optima.

• Ratio of Non-dominated Solutions [138]: This measurement records the per-

centage of non-dominated solutions in the obtained set and is defined as

|SND|/nP , where |SND| is the number of non-dominated solutions in the pop-

ulation of size nP .

• Error Ratio [147]: Non-dominated solutions do not necessarily imply Pareto

optimality. This measurement is interested in the ratio of optimal objective

vectors in the obtained set and is evaluated as
∑nP

i=1 e(Xi)/nP , where e(Xi) is

0 if Xi is Pareto optimal, 1 otherwise.

• Nondominance Ratio [63]: This metric takes two or more different obtained

sets into consideration, say A1, A2, . . . , AnA and evaluate the contribution of

these different sets by comparing the number of non-dominated solutions in

these sets against number of non-dominated solutions across all the sets. Let

B denote the set of non-dominated solutions in ∪nAi=1Ai, the measurement of

set Ai is then given by: |Ai ∩B|/|B|.

• Generational Distance (GD) [147]: GD is a statistics that tries to capture

the distance of the obtained set from the true PF. Let P ∗ be a set of optimal

solutions uniformly distributed on the PF of a MOP and P an approximate

of P ∗. Then the GD value is calculated as

GD (P, P ∗) =

∑
s∈P d (s, P ∗)

|P |

where d (s, P ∗) is the minimum Euclidean distance from solution s ∈ P to all

the optimal solutions in P ∗.

• Maximum Pareto Front Error [147]: Different from the GD that uses the aver-

age, this measurement is interested in measuring the worst case performance,

defined as maxs∈P d (s, P ∗).
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2.5.2 Diversity Focused Metrics

Metrics falling into this category are dedicated to evaluate the spread of the ob-

tained set. They can be used to rank obtained sets sharing similar convergence

measurements.

• Spacing [120, 112]: It estimates how evenly the distribution of obtained solu-

tions is, defined as √√√√ 1

nP − 1

nP∑
i=1

(di − d̄)2

where di = minj(
∑m

k=1 |fk(si)− fk(sj)|) and sj is the solution in the obtained

set but different from si, d̄ is the average of di.

• Maximum Spread [169, 159]: This metric evaluates the coverage of the ob-

tained set over PF, given by:√√√√ 1

m

m∑
i=1

[
min(max(fi),max(f ∗i ))−max(min(fi),min(f ∗i ))

max(f ∗i )−min(f ∗i )

]2

2.5.3 Metrics Evaluating Both Convergence and Diversity

Metrics in this group are able to reflect both the convergence and diversity of objec-

tive vectors. They comparatively enjoy more application in the literature. However,

their accuracy is highly affected by the setting of reference points used in the calcu-

lation [75, 6].

• Inverted Generational Distance (IGD) [31, 75]: It can measure both the con-

vergence and diversity of an approximation set to the optima. Let P ∗ be a

set of optimal solutions uniformly distributed on the PF of a MOP and P an

approximation of P ∗. Then the IGD value is calculated as

IGD (P ∗, P ) =

∑
s∗∈P ∗ d (s∗, P )

|P ∗|
(2.2)
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where d (s∗, P ) is the minimum Euclidean distance from the optimal solution

s∗ in P ∗ to the solutions in P .

• Hypervolume [168, 6, 149]: It measures the volume of the objective subspace

that is dominated by the current obtained solution set A under evaluation,

defined as (with a reference set R) λ(H(A,R)) where H(A,R) denotes the

area dominated by solutions in A but dominates the reference points in R and

λ stands for the Lebesgue measure as
∫

1H(A,R)(z)dz.

2.5.4 Solow-Polasky Diversity Measure for Pareto Set

The Solow-Polasky Diversity (SPD) [126] is dedicated to evaluate the diversity of

decision vectors, instead of objective vectors and hence is a decision space measure

[145, 143]. For a set of output solutions P from an MOEA, this measure is calculated

as:

SPD = eM−1eT (2.3)

where M is a square matrix with each element defined as

mij = exp(−θ × d(si, sj))

. Coefficient vector e is (1, 1, . . . , 1) and θ = 1 is suggested.

The properties of Solow-Polasky diversity measure is summarized as follows

[145, 143]:

• Monotonicity in Varieties: SPD(P ) < SPD(P ∪ s) if solution s /∈ P . Intro-

ducing new solution to P will increase its diversity.

• Twinning: SPD(P ) = SPD(P ∪ s) if solution s ∈ P . The duplication of

solutions won’t change the diversity of set under evaluation.

• Monotonicity in Distance: SPD(P ) ≤ SPD(Q) if d(Xi, Xj) ≤ d(Yi, Yj) for

all pairs of solutions Xi, Xj ∈ P and Yi, Yj ∈ Q. This enables the performance

comparison between different sets using this measurement.
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Although the metric have some good features, its limitations include a very

high computational complexity requiring pair-wise distance calculations between all

solutions as well as an expensive matrix inversion, obscure definition and complicated

computations which are difficult to interpret.

2.5.5 Section Summary

From the brief review over test problems and performance metrics existed in the

literature, we can clearly see they emphasize on the objective space, rather than the

decision space. The current designs mainly focus on creating challenges and quanti-

fying performance regarding the convergence or diversity or both to show how good

MOEA performs in identifying and approximating the Pareto front, but seldom con-

siders and evaluates Pareto set. Only some of them, such as the Ishibuchi problems

and Solow-Polasky Diversity, touch the distribution of Pareto sets. However, they

have many limitations the application in evolutionary multi-objective optimization

research is highly constrained. The current lack of appropriate evaluation tools mo-

tivates us to design new benchmarks for MOEA in order to evaluate the performance

relating decision space from new perspectives.

2.6 Knowledge Extraction from Multi-objective

Optimization

The MOEA community has witnessed considerable volume of research dedicated

to enhancing evolutionary algorithms via machine leaning techniques or adapting

evolutionary algorithms for machine learning purposes in the literature.

When using machine learning techniques for better design of evolutionary al-

gorithms, one important point is that the evolution in process has stored ample

information about the MOP, search space, problem features, and population di-

versity. The information, patterns and knowledge extracted from these pieces of

information can be utilized to make the evolutionary search process more effective

and efficient. This can be done by embedding learning capabilities into the de-
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sign of evolutionary algorithms or through interactive ways to provide knowledge

or preference to guide the evolutionary search. For instance, a knowledge model is

integrated into an evolutionary algorithm for flexible job-shop scheduling problems

[156] and domain knowledge is provided interactively for the analysis of capability

planning problems [152][157]. The authors extended the knowledge assisted evolu-

tionary approaches to deal with complex group decision making [153] and resilient

project scheduling [154]. Knowledge-based interactions are used for a multi-agent

genetic algorithm design for global numerical optimization [165]. If the knowledge

is used to enhance the local search, the problem can also be solved using coevolv-

ing memetic algorithms which includes an independent rule-based meme population

that progresses adaptively with the solution population for efficient sampling from

the neighbourhood of a solution [124].

At the same time, many attempts have been made to apply variants of evolu-

tionary algorithms as types of effective and efficient techniques to extract knowledge,

patterns and useful information. As an example, multi-objective evolutionary algo-

rithms have been utilized to detect interesting local community structures in signed

social networks [97][98]. Evolutionary algorithms are also reported for knowledge

extraction purposes in [37][82]. Multi-objective memetic algorithms are also em-

ployed for association rule mining [53], clustering [68], tree induction [122], and high

order learning [101].

Although there is a big overlap of these two fast growing fields of machine

learning and evolutionary computation, in this section, we focus on the knowledge

extraction from multi-objective optimization problems. The knowledge here is gen-

eral, not constrained by the form of rules mentioned in Section 5.1. The discovery

of knowledge from a MOP context is then briefly reviewed. A simple taxonomy of

the related work is based on the time and source of knowledge extraction, the form

of knowledge, the methodology and purpose of knowledge extraction. Some selected

publications are listed in Table 2.5.

First, the knowledge discovery process can occur either before or after opti-

mization process for non-dominated solutions. Before the optimization starts, the
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Table 2.5: Selected Publications on Knowledge Extraction from Multi-objective
Optimization

Publication Type Optimization + Knowledge Extrac-
tion Methodology

Knowledge
Forms

Michelena and Agogino,
1988 [103]

a priori Hypergraph Partitioning N/A

Sarkar et al., 2008 [116] a priori Singular Value Decomposition
(SVD)

Semantic
patterns

Obayashi and Sasaki, 2003
[110]

posteriori MOGA + Self Organizing Map Clusters

Sugimura et al., 2007 [133] posteriori MOGA + Decision Tree Analysis or
Rough Set Theory

Rules

Chiba et al., 2007 [25] posteriori Adaptive Range MOGA + Self Or-
ganizing Map

Clustering

Ulrich et al., 2008 [144] posteriori SPEA2 + Clustering Dendrogram
Sugimura et al., 2009 [132] posteriori Kriging Surrogate Model Based +

Association Rule Mining
Quantitative
rules

Doncieux and Hamdaoui,
2011 [51]

posteriori NSGA2 + Regression Analytical
Function

Kudo and Yoshikawa,
2012 [89]

posteriori NSGA2 + Multidimensional Scaling Isomap

Bandaru and Deb, 2013
[12]

posteriori NSGA2 + Clustering Polynomials

Tatsukawa et al., 2013
[140]

posteriori NSGA2 + Multi-objective Genetic
Programming

Analytical
Relation-
ships

Ulrich, et al., 2013 [142] online Biobjective Partitioning Optimizer -
PAN

Clusters

Zhang, et al.,2014 [161] online Knowledge Based MOEA Rules

source of knowledge is naturally and directly from the definition and formulation

of specific multi-objective problem, such as monotonicity analysis [114]. It is a

pre-optimization technique for investigation of important properties among decision

variables and the optimal solutions when there are monotonic objective function-

s or constraint functions. Such methods [116][151] try to capture and utilize the

mathematical characteristics of functions to model the original problem to get some

insights for the understanding of MOP. However, they are often restricted by strong

conditions and not popularly used. On the contrary, the mainstream of knowledge

discovery from multi-objective optimization employs an extra analysis of the Pareto

optimality after optimization, although the dominated solutions can also be of high

value [26]. Deb et al. first created the concept of innovization (innovation through

optimization) aimed to unveil innovative design principles by means of multiple con-
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flicting objectives [38][49]. Then they proposed a post-optimization analysis frame-

work for automated discovery of vital knowledge from Pareto optimal solutions [9]

and successfully demonstrated the applicability of this framework with applications

such as truss structure design [10][11]. They finally differentiate the knowledge to

higher levels and lower levels [12]. In their methodology, the knowledge denotes

hidden problem structure characteristics, such as the correlations between variables

and objectives, sensitivity to variables or constraints and so on, and is formulated

as polynomials. Then they exploited and optimized these polynomial relationships

between variables and objective functions with another evolutionary process after

optimization to original MOP under the belief that the optimal solutions satisfy-

ing strong relationships will cluster together and the dominating cluster reveals the

design principle. However, polynomial relationships are not general patterns and

the application seems to be restricted with one or two well-designed examples. The

methodology has not been validated with systematic experimentation, although the

performance on a simplified and modified ZDT1 benchmark was reported by Gaur

and Deb [62].

Beside the mathematical form of knowledge, many other forms are also of in-

terest in practice. Association rules are targeted for extraction from the Pareto

front by combining optimization and data mining techniques [132]. Clusters in both

decision space and the non-dominated front are partitioned for a truss bridge design

problem [142].

Not only does the form of knowledge varies, but also many techniques are

involved for different purposes regarding this topic. For instance, self-organizing

maps (SOMs) [85] are often utilized when grouping data. It is used to visualize

tradeoffs of Pareto solutions for data mining in order to find clusters with high

correlations [110], to identify the variable of greatest impact, such as in aircraft wing

design [25][51]. Paper [144] clustered optimized solutions hierarchically through

the construction of dendrograms. Isometrics feature mapping is used to extract

design principles in a hybrid rocket design problem [89]. The rough set theory is

employed for the knowledge discovery purposes in [133]. A new multi-objective
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genetic programming is also proposed for multi-objective design exploration [140].

To be summarized, all the approaches above tend to integrate data mining

and machine learning techniques, such as clustering, into the optimization process

to obtain interesting knowledge. They have focused on knowledge extraction from

optimized solutions, or MOPs themselves in advance. The implementations are

highly dependent on the specific problems they are facing.

2.7 Summary

In this chapter, we first briefly reviewed the viable designs of MOEAs, the current

test instances for benchmarking MOEA performance and the metrics in use. We

can see that the current theory to supervise the construction of algorithms, test

problems and metrics has primarily focused on the features of objective space. The

current research on multi-objective optimization mainly deal with location and dis-

tribution of the optimized objective vectors, but seldom consider factors such as the

distribution patterns, implementation viability of the optimized parameters and so

on. There are only a few attempts in the literature with decision space features

regarding solution diversity in mind. Overall, decision space, compared to objec-

tive space, doesn’t attract much attention. Different from traditional optimization

techniques, evolutionary computation is often criticized as a black-box optimization

technique working on a black-box problem without any insight of the MOP provided.

The investigation over decision space, not only the objective space, can make the

causative side of the problem clearer hence facilitate the understanding of resulting

optimal front. The parameter space, instead of the objective space, is where the

decision makers and designers can manipulate. Hence, we suggest a transition from

objective space to decision space.

Second, there is great effort in the literature dedicated to extract interesting

information from both the objective space and the less explored decision space to

support final decision making. They vary in knowledge representation, which can

be formulated as self-organizing maps, or association rules and so on for better
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visualization and classification purposes. The knowledge extraction process can be

performed either before evolutionary optimization process starts through monotonic-

ity analysis on objective functions, or after optimization process to extract knowl-

edge automatically using machine learning techniques from the non-dominated set.

Many real engineering design problems are also discussed. However, the current ap-

proaches are usually criticized by introducing extra process either pre-optimization

or post-optimization to obtain knowledge and the consequent high computational

complexity. These methods are also restrictive on certain applications, not general

knowledge extraction methodology for multi-objective environment.

Overall, there are many aspects to consider for the design online knowledge-

based evolutionary multi-objective optimization approach. Apparently, based on

the review of background and related research, we need new algorithm designs,

benchmarks and performance metrics to serve this purpose. In the next chapters,

we will elaborate the designs over both evaluation tools and the algorithm and

analyse the performance comprehensively.



Chapter 3

Evaluation Criteria for

Multi-objective Optimization

This chapter establishes the performance evaluation criteria for multi-objective evo-

lutionary algorithms with decision space analysis in mind. First, we attempt to

design test problems which increase the distribution complexity of optimal solutions

in decision space to verify the capability of algorithms to capture the Pareto set.

Specifically, the distribution that Pareto sets are sparsely clustered is of interests.

The distribution clusters of optimal solutions in the decision space allow the gener-

ation of simulate optimal design patterns, and hence improve the development for

knowledge-based (rule-represented) multi-objective optimization algorithms. Sec-

ond, in order to measure the corresponding performance of MOEAs, a novel metric

is proposed aiming at measuring the performance based on the coverage of Pareto

sets in the decision space. Three leading MOEAs are then evaluated on the pro-

posed test problem and a comparison of their performance in both the design and

objective space is presented based on existing and our proposed metrics.

This chapter is organized as follows: Section 3.1 introduces the current bench-

marks and metrics simply to motivate the design of new evaluation tools. Section 3.2

presents our proposed multi-objective test problem with pattern-based Pareto set-

s. Section 3.3 describe the proposed convex-hull based metric for measuring the
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decision space performance. The experimental setup and results are discussed in

Sections 3.4 before the concluding of the chapter in Section 3.5.

3.1 Introduction

In the development of MOEAs, evaluation methodology has played an important

role, involving test problem and performance metric design. Since the optimal solu-

tions for most real world MOPs are not known a-priori, test problems are designed

with known optimal solutions to guide development and evaluation of MOEAs. Nu-

merous test problems have been proposed in the literature over the years and some

of them, including ZDT [169], DTLZ [50], and WFG [69], have become the de-facto

benchmarks in MOEA research. The main motivation behind the design of most

benchmarks is to represent the various challenges faced in real optimization problems

at some level of abstraction. Hence they provide parameterized frameworks to gen-

erate specific test problem instances with varying degrees of complexities in terms

of number of decision and objective variables, shape and configuration of optimal

trade-off surface (Pareto front), modality of search space, and so on. Subsequently,

the MOEAs are tested for their performance in these problems based on several

factors such as convergence to Pareto optimal front, speed of convergence, diversity

of solutions in terms of coverage of Pareto front, etc. A number of metrics have

been proposed in the literature to this effect including generational distance metric

(GD), inverse generational distance metric (IGD), etc.

The current test problems and metrics help benchmark the objective space per-

formance and substantially facilitate the design of MOEAs. However, in comparison

to MOEAs performance evaluation in objective space, research in performance e-

valuation of MOEAs in the decision space has not attracted as much attention in

the literature. While evaluating MOEAs with respect to their performance in objec-

tive space is necessary, performance analysis in decision space can have important

implications for the EMO research field. Some motivations for such an analysis in-

clude understanding the diversity of solutions in the decision space, designing robust

optimizers, design of problems which are closer in characteristics to the real-world
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optimization problem and knowledge-based optimization.

Overall, in order to do a comprehensive performance evaluation covering not

only the objective vectors, but the decision variables for the proposed algorithm, test

suites and performance metrics that reflect both the decision space and objective

space are required.

3.2 Hyper-rectangular Pareto Set Test Function

This section introduces our proposed test function, which we refer as Hyper-rectangular

Pareto Sets (HPS). Our goal in this work is to design test problems where Pareto

sets are sparsely clustered in the decision space. Specifically, we are interested in

maintaining hyper-rectangular clusters. Such patterns are most suitable to bench-

mark rule-based MOEAs as they allow specifying the precise number of rules to be

learnt by such algorithms. However, same design principles can be adopted to gen-

erate test problems with other shaped clusters such as hyper-spheres. The proposed

HPS is bi-objective but scalable in the decision space and allows investigation of

solution diversity by underlying MOEAs.

In designing our test problem we observed the following general principles sug-

gested in the literature [169, 50, 69]:

• Test function should be composed of several functional units which are easy

to understand and manipulate. In general, at least two parts are required in a

test function. The first one determines the characteristics of Pareto optimum

and the second determines its location.

• Test problems should support customization without much expert knowledge.

A variety of example functions should be provided and the number of control

parameters should be minimized.

Keeping in view the principles above, HPS construction involves two main

components or functions Gamma (Γ) and Delta (∆), as shown in Equation 3.1,

where the decision vector includes n variables X = (x1, · · · , xk, xk+1, · · · , xn) and
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Algorithm 1: The Construction of HPS Test Problems

Intput : The number of dimensions (decision variables) in the test problem,
n.
The number of dimensions to be partitioned (or define Pareto set

clusters), k.
1 Divide k-dimensional space into a given number of partitions s.t.

∏k
i=1 di,

where di is the number of divisions for each of the k dimensions;
2 Assign a rank value r (front level) for each cell in the partitioned area based

on either a pre-define scheme or uniform random assignment;
3 Define mapping between the partitioned decision space and the objective

space using cell ranks and inversely related Γ functions defined over the k
variables;

4 Define mapping between the remaining decision variables and the objective
space using the ∆ function;

5 Define the overall mapping and final objective functions as the product of
both Γ and ∆ functions;

xi ∈ [0, 1], ∀i ∈ {1, 2, . . . , n}.

f1(X) = Γ1(x1, x2, · · · , xk)×∆(xk+1, · · · , xn)

f2(X) = Γ2(x1, x2, · · · , xk)×∆(xk+1, · · · , xn)

Subject to X ∈ Ω

(3.1)

The overall procedure to generate an HPS test function instance involves dis-

cretising part of an n−dimensional decision space and creating a mapping between

this discretised space and the objective space using inversely related bi-objective

Γ functions defined over the decision variables used in discretisation and using the

∆ function defined over the remaining variables, to create a continuous mapping

between the decision variables and the objective space. The detailed procedure is

given in Algorithm 1.

In effect, the Γ component serves to control the geometry of Pareto fronts in

objective space and their mapping to the parts of the decision space or the Pareto set

clusters defined by hyper-rectangles. The function is parameterized to allow defining

local and global optimal fronts using a rank assignment procedure discussed later in

Section 3.2.1. The ∆ component, on the other hand, is used to configure and control
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(a) Partition and Ranking of Cells (b) Optimal Patterns in Red

(c) Objective Space of Γ Functions

Figure 3.1: Examples of Partitions, Cell Rank Settings, and Objective Space for Γ
Functions When k = 2

complexity of objective functions with challenges such as multi-modality, variable

dependency and so forth. It is discussed in Section 3.2.2.

3.2.1 The Discretisation and Pareto Set Definition Compo-

nent

This component corresponds to the first three steps listed in Algorithm 1 and in-

volves discretisation of the decision space and mapping the resulting rectangular or

hyper-rectangular cells into ranked Pareto fronts in a bi-objective space using the

Γ functions. The discretisation is carried out as following: suppose the first k of

n dimensions are to be discretised. The next step is to determine the number and

length of divisions for each of the k dimensions.
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(a) Partition and Ranking of Cells (b) Optimal Patterns in Red

(c) Objective Space of Γ Functions

Figure 3.2: Examples of Partitions, Cell Rank Settings, and Objective Space for Γ
Functions When k = 3

Let the number of divisions for each of the k dimensions is denoted by the

vector d1, d2, . . . , dk and let the lengths of di divisions for the ith dimension is given

by li1, li2, . . . , lidi s.t
∑di

j=1 lij = 1. In the simplest division scheme each of the k

dimensions can be divided into d divisions of equal length. For the test instances

generated for experiments reported in this chapter, we used di = d = 5 and lij = 0.2

that divides each dimension into five equal partitions.

The next step is to assign a rank to each hyper-rectangle or cell in the par-

titioned space, using either a predefined scheme or uniform randomly, where each

rank would correspond to a front level defined by non-dominated sorting in a bi-

objective space. Finally, each of the ranked cells in the discretised decision space is

mapped to the objective space using the Γ functions given in Equation 3.2, where
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ς−→
λ
,
−→
λ = (λ1, λ2, . . . , λk) represents the rank assigned to the cell bounded by the low-

er (xlλi) and upper bounds (xuλi) with i ∈ {1, 2, . . . , k} and λi with λi ∈ {1, 2, . . . , di}

representing the corresponding division in each of the k dimensions.

Γ1 = ς−→
λ
×

(
k∑
i=1

xi − xlλi
xuλi − x

l
λi

+ 1

)
Γ2 = ς−→

λ
× 1

k∑
i=1

xi − xlλi
xuλi − x

l
λi

+ 1

(3.2)

The relationships in Equation 3.2 ensure that the minimum rank value (e.g. 1)

is used to define the global front (for minimization tasks). For the test instances

generated for experiments reported in this chapter, we only used integer values

({1, 2, 3}) as ranks for better interpretability and visualization of the test functions,

but any other values including real values can be used to create as many fronts as

desired.

An example of dicretization, pre-defined assignment of ranks and corresponding

fronts in objective space for a two (k = 2) and three (k = 3) dimensional decision

space partitioning is shown in Figures 3.1 and 3.2 respectively. Note that cells

with rank 1 are mapped to the global Pareto fronts (considering minimization of

objectives) in these cases.

3.2.2 ∆ Component and Overall Decision to Objective S-

pace Mapping

The procedure used in the discretisation step allows a simple mechanism to define H-

PS and their mapping to a bi-objective space. However, a number of other features

(see Table 2.3) are generally needed to define a challenging problem that reflects

characteristics of the real-world optimization tasks. The ∆ component allows inte-

grating such features in the HPS problems as well as re-mapping the decision and

objective space association to a continuous domain.

In ZDT [169] & DTLZ [50] problems, a few different g functions are proposed
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Figure 3.3: Examples of Landscapes of ∆ Function

to promise separability and modality for various function geometries. For the WFG

problems [69] a few different operations are recommended, such as shift and reduc-

tion, over decision variables to achieve similar objectives. In this chapter, we adopt

the g function from DTLZ1 problem given in Equation 3.3 as the ∆ component in

generating the HPS instances in this chapter for demonstration. But other functions

can also be easily adopted to define HPS test problems.

∆(xk+1, . . . , xn) = 1+100×
[
n−k+

n∑
i=k+1

(
(xi−0.5)2−cos

(
20π(xi−0.5)

))]
(3.3)

Notice that this function has a global optimum at ∀i, xi = 0.5. The landscape

for a one and two variables ∆ function is illustrated in Figure 3.3. For HPS1–HPS5

the number of decision variables in ∆ function (n− k) is set to 5, as recommended

in DTLZ1. HPS6 is built with a ten variables ∆ function.

The overall mapping from decision to objective space in HPS test problems is

finally defined by combining both Γ and ∆ functions using the relations shown in

Equation 3.2 and Equation 3.3. The Pareto front of this bi-objective optimization

is shwon in Equation 3.4.

f1 × f2 = 1 and f1 ∈ [1, k + 1] (3.4)
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3.2.3 Test Problem Instantiation

Table 3.1: Instances of HPS Test Problem with Number of Dimensions for Partition
k, Number of Overall Variables n, Number of Optimal Patterns in Decision Space,
Shape of the Optimal Pattern, and the Volume of Pareto Sets

Problems k n # of Patterns Shape of Patterns Volume
HPS1 1 6 2 Line Segment 0.4
HPS2 2 7 4 Square 0.16
HPS3 3 8 8 Cube 0.064
HPS4 4 9 16 4-D Hyper-Cube 0.0256
HPS5 5 10 32 5-D Hyper-Cube 0.01024
HPS6 2 12 4 Square 0.16

A number of test instances using the proposed procedure and different param-

eter settings can be created. Table 3.1 shows six such test instances generated by

varying the k and n parameters.

In the simplest case k maybe equal to n, in this case the ∆ component does

not apply in the construction of objective functions and the resulting test instance

will only have discrete distribution patterns. Equation 3.5 shows the objective func-

tion representation of the simplest test problem (HPS0) and Figure 3.4 shows the

corresponding visualizations for function landscapes, decision space and objective

space.

To increase the level of complexity, n needs to be greater than k. For the ∆

component adopted in this chapter, n − k ≥ 5 provides a mapping with better

complexity (notice that this corresponds to the DTLZ1’s g function which uses 5

variables). HPS6 comes with n − k = 10 to enhance the search difficulty. Note

that the indexing used for our test instances does not necessarily indicate increasing

complexity, e.g. HPS6 may not be the most difficult problem in this set, because

the complexity of HPS problems is determined by both k and n parameters.
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f1 = ςλ1 ×
(

x1−xlλ1
xuλ1
−xlλ1

+ 1

)
× (1 + 100× (1 + (x2 − 0.5)2 − cos(20π(x2 − 0.5))))

f2 = ςλ1 × 1
x1−xlλ1
xu
λ1

−xl
λ1

+1

× (1 + 100× (1 + (x2 − 0.5)2 − cos(20π(x2 − 0.5))))
(3.5)

(a) Landscape of f1 of HPS0 (b) Landscape of f2 of HPS0

(c) Decision Space of HPS0 with the
Optimal Areas in Red

(d) Objective Space of HPS0 with the
Pareto Front in Red

Figure 3.4: the Landscapes of Test Functions, the Decision Space and Objective
Space of HPS0

3.3 A Metric to Measure Pareto Set Coverage

The use of metrics to evaluate MOEA performance has been discussed in detail

in Section 2.5. As noted, given the scarcity of research in decision space perfor-

mance analysis of MOEAs, only a few metrics have been proposed for measuring

the decision space performance [126, 79, 143, 145]. The metric proposed in this

chapter, which we refer as Pareto Set Volume (PSV) metric, focuses on measuring
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the MOEA decision space performance in terms of the percentage of covered volume

by the solution set with respect to the total volume occupied by the Pareto sets. Here

the covered volume for a given MOEA corresponds to the volume or area bounded

by the convex hull (or convex envelope) of all optimal solutions in decision space

over the overall areas of optimal region of the MOP.

Convex hull is a concept from computational geometry. For a set X of points in

Euclidean space, the convex hull or convex envelope is mathematically the smallest

convex set that contains X. For a finite point set X on a plane, its convex hull can

be visualized as the convex polygon shown in Figure 3.5.

Figure 3.5: Convex Hull in Two Dimensional Space

The convex hull can be explained in two ways. The first is to define it as the

intersection of all convex sets containing X. Alternatively, the convex hull can be

regarded as the set of all convex combinations of points in X. A convex combination

of points x1, x2, . . . , xn is a point of the form Σn
i=1αi × xi with all αi ≥ 0 and

Σn
i=1αi = 1. Based on this, the formal expression of convex hull is as following:

Given a finite point set X = {x1, x2, . . . , xn}, its convex hull is the set

{
n∑
i=1

αixi

∣∣∣ (∀αi ≥ 0) ∧
n∑
i=1

αi = 1

}

In computational geometry, finding convex hull of a finite set of points in Eu-

clidean spaces is a well-researched problem. Numerous algorithms have been pro-

posed for computing the convex hull of a finite set of points, with various com-

putational complexities including Package Wrapping Algorithm, Graham Scan Al-
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gorithm, Quickhull Algorithm, Divide and Conquer Algorithm, Monotone Chain

Algorithm, the Ultimate Planar Convex Hull Algorithm and so on. In this work we

used the Quickhull Algorithm [13] to compute the convex hull in 2D, 3D, and higher

dimensions1.

Algorithm 2: The Computation of PSV Metric

Intput : A MOP with nopti optimal regions in decision space;
A set of obtained solutions with size ns;

1 Calculate the total area of predefined optimal regions S =
∑nopti

i=1 si;
2 for i = 1 : ns do
3 for j = 1 : nopti do
4 if solution i ∈ optimal region j then
5 solution i→ group j;
6 cntj + +;

7 end

8 end

9 end
10 for i = 1 : nopti do
11 if cnti > 0 then
12 Calculate the area of the convex hull of solutions in group i, denoted

as ci;
13 else
14 ci = 0;
15 end

16 end
17 PSV=

∑nopti
i=1 ci/S;

It may be argued that a volume metric will be more suited to a rule-based

MOEA and hence may give such algorithms an advantage over the general class

of point based MOEAs, however, the convex hull method to compute the covered

volume ensures against such biases.

The procedure to compute PSV is shown in Algorithm 2 and is pictorially

demonstrated using the example in Figure 3.6. Given four Pareto sets represented

by the rectangles s1, s2, s3, s4 in the decision space and a solution set represented by

the blue asterisks, PSV is computed as
∑4

i=1Ci/Si. Where Ci and Si represent the

areas for the ith convex hull ci and rectangle si respectively. Any solutions that do

1For more information, see http://www.qhull.org/.
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not fall within the bounds of any of the optimal areas, such as those represented by

points A and B, are excluded from the computation of convex hull.

Figure 3.6: The Calculation of PSV Metric in 2D Decision Space with Optimal
Areas s1, s2, s3, s4 respectively in blue and Convex Hull Volumes as c1, c2, c3, c4 in
red

3.4 Experiments

3.4.1 Experimental Setup

This section presents the results of the experiments conducted to test the perfor-

mance of three leading MOEAs, including NSGA2, NSGA3 and MOEA/D, intro-

duced in Chapter 2 Section 2.2, with different instances, listed in Table 3.1, of our

proposed HPS test function.

Three metrics, including the traditional Inverted Generational Distance (IGD)

described in Chapter 2 Section 2.5.3, Solow-Polasky Diversity (SPD) described in

Chapter 2 Section 2.5.4 and our proposed PSV metric introduced in Section 3.3,

are used to compare the performance of these algorithms in terms of their ability to

maintain solution diversity and learn optimal distribution patterns in the decision

space as well as in the objective space.

For all three algorithms same genetic operators, i.e. Simulated Binary Crossover
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(SBX) with default distribution index 20 and polynomial mutation with distribution

index 10, are adopted. The crossover and mutation rates are set to 1 and 1/n re-

spectively, where n is the number of variables in the decision space. All experiments

are repeated with five different population size settings, including 100, 500, 1000,

5000 and 10000, for sensitivity analysis. The maximum generation number is set to

1000 for all experiments and the results are averaged over 10 independent runs.

The MOEA/D version with Tchebycheff approach [162] is used here. Both

NSGA3 and MOEA/D use the same set of vectors as their reference points and

weight vectors respectively. Since the test problems have only 2 objectives, for N

points the vectors are generated are as follows:{( i

N − 1
,
N − 1− i
N − 1

)∣∣∣i = 0, . . . , N − 1

}

3.4.2 Results and Discussion

The experimental results are organized in Tables 3.2– 3.4 and Figures 3.7– 3.12. The

tables summarize the average results for the three algorithms on six different problem

instances HPS1–HPS6 (organized in multirows) and five different population sizes

(organized in columns) at the final generation based on the three metrics listed

above respectively. Figures 3.8, 3.10, and 3.12 complement the tabular results for

a easier interpretation. Figures 3.7, 3.9, and 3.11 present the performance of each

algorithm over time, or the number of generations, based on the three metrics. The

results for each of the six problem instances are organized in subfigures and results

are presented for only two population sizes. For all figures, the legend is consistent,

NSGA3 performance is represented by a red line, NSGA2 in green and MOEA/D

in blue.

3.4.2.1 Objective Space Performance Comparison using IGD

IGD evaluates both convergence and diversity in objective space. The lower IGD

values are considered better with a zero value representing ideal solutions. From
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(a) Average IGD Over Time When Population Size is 1000
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(b) Average IGD Over Time When Population Size is 10000

Figure 3.7: Average IGD Over Time Using Logarithmic Y-Axis
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(b) HPS2
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(c) HPS3
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(d) HPS4
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(e) HPS5
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(f) HPS6

Figure 3.8: Average IGD values achieved by the three algorithms in each of the six
problems at the last generation for different population sizes.
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Table 3.2: Average IGD at Last Generation

Population Size 100 500 1000 5000 10000

HPS1

NSGA3 3.065e-03 5.328e-04 2.640e-04 2.631e-04 2.637e-04
NSGA2 4.191e-03 6.834e-04 3.939e-04 7.817e-05 3.764e-05

MOEA/D 9.757e-03 7.121e-04 4.209e-04 7.227e-05 4.218e-05

HPS2

NSGA3 6.706e-03 1.173e-03 6.124e-04 6.145e-04 6.093e-04
NSGA2 8.396e-03 1.491e-03 7.846e-04 1.396e-04 7.278e-05

MOEA/D 1.568e-02 3.013e-03 1.376e-03 2.932e-04 1.420e-04

HPS3

NSGA3 1.060e-02 2.107e-03 1.099e-03 1.030e-03 1.009e-03
NSGA2 1.178e-02 2.253e-03 1.043e-03 2.215e-04 1.078e-04

MOEA/D 3.901e-02 7.398e-03 3.587e-03 8.341e-04 4.054e-04

HPS4

NSGA3 1.630e-02 3.236e-03 1.807e-03 1.473e-03 1.501e-03
NSGA2 1.665e-02 3.130e-03 1.489e-03 3.095e-04 1.653e-04

MOEA/D 8.153e-02 1.933e-02 8.371e-03 1.996e-03 9.350e-04

HPS5

NSGA3 2.266e-02 4.601e-03 2.426e-03 2.144e-03 2.123e-03
NSGA2 1.980e-02 3.891e-03 2.030e-03 4.038e-04 2.315e-04

MOEA/D 1.361e-01 3.639e-02 1.517e-02 4.249e-03 2.127e-03

HPS6

NSGA3 7.270e-03 1.202e-03 6.293e-04 6.148e-04 6.041e-04
NSGA2 9.369e-03 1.519e-03 6.990e-04 1.485e-04 8.128e-05

MOEA/D 3.181e-01 2.964e-03 1.420e-03 3.070e-04 1.551e-04

Table 3.2 and Figure 3.8 we can see that generally all algorithms show improved

performance in terms of IGD values with increasing population sizes. When com-

paring the performance of the three algorithms in terms of this metric, it can be

observed that MOEA/D almost always performs relatively poor in all problems when

the population size is small. Whereas there is no clear winner between NSGA2 and

NSGA3 as in some problems one algorithm performs better than other and vice

versa. All algorithms perform almost equally with higher population sizes. For low-

er population sizes (100 in the figures) we can see that the algorithm performance

degrades, as they achieve higher IGD values, when we move from simpler to more

difficult problems HPS1 to HPS6. This indicates that IGD values are probably a

good representative of the problem difficulty in this context. However note that,

since the IGD calculations are dependent upon the geometry of the true optimal

and the obtained sets [75], this metric may not be considered true representative of

the problem difficulty.

Figure 3.7 shows the IGD curves over time or number of generations. It can be

seen that all algorithms converge nicely as the number of generations increase. This
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happens around 200 to 300 generations when the population size is 100 and around

50 to 100 generations when the population size is 10000. It is interesting to note

that although all algorithms achieve lower IGD values in HPS6 but the convergence

is the slowest of all problems. This is most likely because of the number of more

local optima in this problem than any other.

A small fluctuation in IGD values over time can also be observed. This is

probably because of the artefact of IGD computation which is not strictly monotonic

with the quality of solution sets, as noted by [75].

To sum up, IGD is popular in literature and has wide application in evolution-

ary computation for performance evaluation. We also used IGD here to compare

the performance of algorithms regarding new test problems. The information IGD

provides relates only to objective space. Next sections investigate decision space

performance as well.

3.4.2.2 Decision Space Performance Comparison using SPD

Table 3.3: Average SPD at Last Generation

Population Size 100 500 1000 5000 10000

HPS1

NSGA3 1.288e+00 1.297e+00 1.299e+00 1.298e+00 1.297e+00
NSGA2 1.298e+00 1.299e+00 1.299e+00 1.300e+00 1.300e+00

MOEA/D 1.100e+00 1.218e+00 1.195e+00 1.254e+00 1.267e+00

HPS2

NSGA3 1.309e+00 1.500e+00 1.579e+00 1.592e+00 1.591e+00
NSGA2 1.509e+00 1.572e+00 1.539e+00 1.596e+00 1.594e+00

MOEA/D 1.276e+00 1.286e+00 1.267e+00 1.432e+00 1.462e+00

HPS3

NSGA3 1.332e+00 1.631e+00 1.813e+00 1.792e+00 1.860e+00
NSGA2 1.430e+00 1.757e+00 1.704e+00 1.792e+00 1.837e+00

MOEA/D 1.312e+00 1.301e+00 1.388e+00 1.494e+00 1.557e+00

HPS4

NSGA3 1.435e+00 1.712e+00 1.998e+00 2.050e+00 2.124e+00
NSGA2 1.513e+00 1.914e+00 1.798e+00 1.969e+00 2.033e+00

MOEA/D 1.261e+00 1.364e+00 1.378e+00 1.558e+00 1.649e+00

HPS5

NSGA3 1.600e+00 1.900e+00 2.265e+00 2.153e+00 2.322e+00
NSGA2 1.461e+00 1.919e+00 2.071e+00 2.253e+00 2.385e+00

MOEA/D 1.325e+00 1.476e+00 1.554e+00 1.579e+00 1.631e+00

HPS − 6
NSGA3 1.244e+00 1.479e+00 1.359e+00 1.572e+00 1.576e+00
NSGA2 1.401e+00 1.558e+00 1.509e+00 1.589e+00 1.610e+00

MOEA/D 1.221e+00 1.203e+00 1.203e+00 1.342e+00 1.392e+00

The SPD, as introduced in Chapter 2 Section 2.5.4, is dedicated for the evalua-
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(a) Average SPDiveristy Over Time When Population Size is 1000
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(b) Average SPD Over Time When Population Size is 10000

Figure 3.9: Average SPD Over Time with Error Bars
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(a) HPS1
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(b) HPS2
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(c) HPS3
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(d) HPS4
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(e) HPS5
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(f) HPS6

Figure 3.10: Average SPD Values achieved by the three algorithms in each of the
six problems at the last generation for different population sizes.



CHAPTER 3. EVALUATION CRITERIA FOR MULTI-OBJECTIVE
OPTIMIZATION 63

tion of solution diversity in decision space. Usually, higher metric value corresponds

to better decision space diversity. From Table 3.3 and Figure 3.10, generally the per-

formance of all three algorithms improves with the increase in population size. When

comparing between the three algorithms, the results are similar to the IGD metric

and it can be seen that MOEA/D performs the poorest of the three algorithms, even

with increasing population sizes. NSGA2 and NSGA3 perform equivalently in most

cases based on this metric, with NSGA3 showing slightly better performance overall.

The most interesting and counter-intuitive observation is that almost all algorithms

achieve higher SPD scores going from problem HPS1 to HPS5. This is in contrast

with IGD values which generally became worse in this direction for all algorithms.

However, this makes sense because SPD is calculated based on pair-wise distances

between solutions and the values tend to grow when the solution set is sparse. In

our test problem set, the problem sparsity increases from HPS1 to HPS5 due to

number of dimensions and hence the sparsity of Pareto sets also increases leading

to higher values for this metric. In summary we can say that SPD, like IGD, is a

problem oriented metric. The values only are comparable for the same problem but

not across problems.

The change of SPD value over time is shown in Figure 3.9. For all test problems,

a similar pattern can be observed where small fluctuations in the values are observed

for all algorithms at the start of the evolution but the trends flat out in the end,

showing a convergence. Notice that in the beginning we observe the best SPD values,

but this is due to the random initialization of the solutions and does not mean that

the optimal solutions have been identified. This is another artefact of this measure.

Moreover, the quality of solution set in decision space over time is generally not

static (e.g. as shown by IGD or our PSV metric in the next section), however as

mentioned before SPD metric tends to lose this sensitivity. This can be clearly

seen from the levelling of SPD curves over time in Figure 3.9. Nonetheless, SPD is

perhaps the main metric available currently to measure decision space performance

for EMO.



CHAPTER 3. EVALUATION CRITERIA FOR MULTI-OBJECTIVE
OPTIMIZATION 64

0 200 400 600 800 1000
0

50

100

HPS
1

Generation

M
ea

n 
of

 C
on

ve
xH

ul
l

0 200 400 600 800 1000
0

50

100

HPS
2

Generation

M
ea

n 
of

 C
on

ve
xH

ul
l

0 200 400 600 800 1000
0

50

100

HPS
3

Generation

M
ea

n 
of

 C
on

ve
xH

ul
l

0 200 400 600 800 1000
0

50

100

HPS
4

Generation

M
ea

n 
of

 C
on

ve
xH

ul
l

0 200 400 600 800 1000
0

50

100

HPS
5

Generation

M
ea

n 
of

 C
on

ve
xH

ul
l

0 200 400 600 800 1000
0

50

100

HPS
6

Generation

M
ea

n 
of

 C
on

ve
xH

ul
l

(a) Average PSV When Population Size is 1000
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(b) Average PSV When Population Size is 10000

Figure 3.11: Average PSV Over Time With Error Bars
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(b) HPS2
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(c) HPS3
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(d) HPS4
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(e) HPS5
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(f) HPS6

Figure 3.12: Average PSV Values achieved by the three algorithms in each of the
six problems at the last generation for different population sizes.
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3.4.2.3 Decision Space Performance Comparison using PSV

Table 3.4: Average PSV at Last Generation

Population Size 100 500 1000 5000 10000

HPS1

NSGA3 9.214e+01 9.711e+01 9.952e+01 9.937e+01 9.949e+01
NSGA2 9.484e+01 9.953e+01 9.960e+01 9.993e+01 9.996e+01

MOEA/D 4.989e+01 5.817e+01 5.946e+01 7.028e+01 8.006e+01

HPS2

NSGA3 3.215e+01 5.908e+01 7.179e+01 8.688e+01 9.002e+01
NSGA2 5.291e+01 6.470e+01 6.299e+01 8.110e+01 8.921e+01

MOEA/D 1.823e+01 2.672e+01 2.505e+01 3.093e+01 4.082e+01

HPS3

NSGA3 9.693e+00 2.134e+01 4.515e+01 3.903e+01 4.943e+01
NSGA2 1.121e+01 2.401e+01 2.625e+01 3.999e+01 5.516e+01

MOEA/D 3.702e+00 6.573e+00 8.007e+00 1.259e+01 1.481e+01

HPS4

NSGA3 2.503e+00 6.213e+00 1.113e+01 2.087e+01 3.102e+01
NSGA2 4.042e+00 9.213e+00 8.578e+00 1.757e+01 2.232e+01

MOEA/D 3.389e-01 1.448e+00 2.280e+00 3.821e+00 4.706e+00

HPS5

NSGA3 4.812e-01 1.974e+00 3.728e+00 7.524e+00 1.024e+01
NSGA2 1.012e+00 2.095e+00 4.252e+00 8.707e+00 1.274e+01

MOEA/D 2.743e-02 2.937e-01 4.364e-01 1.092e+00 1.398e+00

HPS6

NSGA3 2.585e+01 5.484e+01 4.475e+01 8.419e+01 8.585e+01
NSGA2 3.635e+01 6.431e+01 5.939e+01 8.480e+01 9.647e+01

MOEA/D 4.812e+00 2.056e+01 2.293e+01 2.431e+01 3.242e+01

The PSV evaluates the percentage of the area of convex hull determined by

solutions over the overall area of optimal patterns. Higher value is preferred. If

more than one regions are involved, they are treated separately and averaged in the

final measurement. The definition of PSV requires that the obtained solutions are

close enough to the optimal region. Based on the construction of test problems, we

only consider solutions with the first k variables to be in [0.2, 0.4] or [0.6, 0.8] and

the rest n− k variables to be in [0.5− p, 0.5 + p] when calculating the convex hull.

Here, p is the precision of obtained solutions and p = 0.001 is adopted.

From Table 3.4 and Figure 3.12 we can see that generally all algorithms show

improved performance with respect to the population size. It clearly reveals that

population size is a key factor to improve performance in decision space for current

algorithms. Among the three algorithms adopted in this experimentation, NSGA

algorithms perform better against MOEA/D with Tchebycheff approach. This is

consistent with the observations in the two metrics above. From the problems

perspective, PSV shows that HPS5 is the most difficult problem for the algorithms
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to identify the optimal patterns. It can also be observed that the PSV metric is

sensitive to the problem complexity as the PSV values drop significantly going from

HPS1 to HPS5. For HPS2 and HPS6, where HPS6 is more difficult for the number

of variables in ∆ function to challenge the convergence, the algorithms can achieve

equivalent performance when population size is 10000. But for other population size

settings, they are better when dealing with HPS2 rather than HPS6. This further

supports that PSV is more sensitive to problem complexity than SPD.

Figure 3.11 shows the variation of PSV values over time with different popu-

lation sizes. The PSV usually starts with a 0 value at the start of the runs and

gradually improves when the obtained sets get closer the optimal regions.

An interesting observation is that in many cases, the best PSV value may be

obtained before the last generation, especially for NSGA algorithms. This means

that this metric can be used effectively for a stopping criteria instead of a fixed

number of generations.

Overall, these results show that the PSV metric being more sensitive to problem

difficulty is a more suitable metric to be used for comparing the performance across

different problems, especially when decision space performance analysis is a major

concern.

3.5 Summary

MOEAs are popular approaches to deal with MOPs. A number of test problems

and metrics exist that support MOEA development as well as benchmark their

performance. In comparison to MOEAs performance evaluation in objective space,

research in performance evaluation of MOEAs in the decision space is rather scant.

Attention to decision space analysis has important implications for the field of EMO

in general. Specifically, such a research effort may help designing of additional test

problems that are closer to real world MOPs, gaining better understanding of the

search process and the rules or patterns that lead to optimal and robust designs,

and in the design and evaluation of knowledge-based optimization algorithms.
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This chapter complements the existing research in this area. We proposed a

mechanism to generate test problems where the solutions belonging to efficient or

Pareto frontier are mapped to defined hyper-rectangular patterns in the decision

space. A modular design approach is employed which allows generating a number

of test problem instances with varying degrees of complexity in terms of number of

decision variables, number of optimal patterns and other interesting features. We

also proposed a new metric to evaluate the performance of MOEAs in the decision

space. The proposed metric relies on computing the ratio of volume covered by

the solution set obtained by an MOEA to the total volume occupied by the defined

Pareto sets in decision space. Compared to existing test problems and metrics which

mainly focus on objective space performance evaluation, the new test problems

and metric proposed in this chapter can be used to benchmark the performance of

MOEAs from decision space performance perspective.

Experimental results are presented to compare the performance of three lead-

ing MOEAs, NSGA2, NSGA3 and MOEA/D using the proposed test problems and

metric. The results show that the test problems pose new learning challenges for

MOEAs and suggest that new mechanisms are probably needed to improve algo-

rithm performance when dealing with such problems. In future, we aim to focus on

exploring such mechanisms and algorithms that may better suit when dealing with

such problems.



Chapter 4

Online Knowledge-based

Evolutionary Multi-objective

Optimization

This chapter introduces the main idea of knowledge-based evolutionary multi-objective

optimization (KB-EMO). To reiterate, here we refer knowledge as patterns in the

design space that lead to Pareto optimal solutions in the objective space. While the

traditional EMO algorithms aim at searching for individual solutions that are Pare-

to optimal, the aim of KB-EMO is to search for Paretor optimal patterns or areas

in the design space. In other words, the aim of KB-EMO is to move from specific

to general optimization solutions. This can primarily be done in two ways: 1) by

using an MOEA to solve an optimization problem, retrieving the set of most optimal

solutions and using a machine learning or statistical technique to find the patterns

that contain this set of solutions; 2) by designing an MOEA that search for optimal

patterns while solving the optimization problem. These approaches can be classed

as post-optimization and online KB-EMO techniques, respectively.

The techniques introduced in this chapter fall under the latter category and

hence referred as online KB-EMO. The contents of this chapter are organized as

follows: A generic framework, to design online knowledge-based multi-objective
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optimization algorithms (KB-MOEAs) that evolve MOP solutions in the form of

interpretable rules representing optimal design patterns, is first presented in Section

4.1. A specific instantiation of this framework is then presented, in Section 4.2, that

relies on commonly used non-dominated sorting principle for evolving a solution

to a MOP in the form of hyper-rectangular or simple if-then rules. The resulting

algorithm is referred to as RB −MOEANS. The experimental setup to conduct a

thorough investigation of the proposed online KB-MOEA with classic benchmarks

and new problems introduced in Chapter 3 is then reported in Section 4.3 and the

results are discussed in Section 4.4. Conclusions of this chapter are provided in

Section 4.5.

4.1 The Online KB-EMO Framework

The core idea behind the KB-EMO framework is that the evolutionary process is

applied on a population of n-dimensional bounding hypervolumes (or rules), where

n corresponds to the number of variables or dimensions in the design space. The

rule population is then evolved towards Pareto optimal areas instead of evolving

towards individual Pareto solutions. The fitness of rules is partly dependent upon

the quality of the sampled solutions from the bounded volume of the rule according

to a multi-objective criterion, such as non-dominated sorting, and partly on other

characteristics, such as, the relative volume of the rules and proportion of good

solutions.

An algorithmic description of the proposed online KB-EMO framework is pro-

vided in Algorithm 3. The framework requires initializing a KB-MOEA with a

population of rules covering parts of the design space. Different representations

can be used for rules including a simple axis-parallel hyper-rectangular representa-

tion or a more complex kernel-based representation. Obviously there are important

tradeoffs that affect choice of representation such as interpretability, computational

effort, etc. Similarly, different schemes can be used in the initialization step; for

instance, rules can be initialized completely randomly in terms of their volumes and

locations in the search space with or without allowing overlapping between rules and
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constraining the initialization to fully or partially cover parts of the design space.

Alternatively, a fully regular scheme with a grid-like rule initialization can also be

employed. Again the design of the initialization operator will be influenced by the

type of problems and available resources, etc.

This initial population of rules is then evolved iteratively to generate the final

rule-based solution to the underlying optimization problem. This involves:

• generating new rules through evolutionary operations;

• sampling a set of solutions from each rule in the population, where the sam-

pling method may vary from simple random sampling to more systematic

sampling methods that would ensure coverage of bounded space by a rule.

Furthermore the amount of sampling may also vary based on the problem as

well as computational resource requirements;

• evaluating the quality or fitness of rules which in turn is computed as a function

of volume of the rule and the relative fitness of locally sampled solutions, i.e.

within a rule, to the quality of complete sample, i.e. over entire rule population;

• keeping an archive of best overall solutions discovered during the entire search

at any point in time; and

• evolving next generation of rule population through systematically selecting

fitter rules.

The complete algorithm is shown in Algorithm 3.

KB-EMO is generic in a sense that any existing MOEA can be adapted to

evaluate the solution and in-turn the rule quality in the objective space based on

the sampled solutions from the bounded space represented by each rule. Moreover,

the framework is representation independent in that different hyper-volume repre-

sentations can be used, including hyperrectangles which allow expressing rules in a

simple if-then form. Lastly, other components, such as solution sampling scheme
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Algorithm 3: An online Knowledge-Based Evolutionary Multi-objective Op-
timization (KB-EMO) Framework

Intput : An MOP;
A stopping criteria;

Output: A set of rules approximating the Pareto optimal patterns in the
decision space;
An archive of solutions;

1 Initialization: Generate a population PR
1 of rules according to a given

representation and a given initialization method;
2 Solution Archive: Initialize an empty archive to keep a set of best found

solutions;
3 while no stopping criterion is satisfied do
4 Rule Evolution: Apply genetic operations (selection, crossover, mutation)

to generate a new rule population PR
2 ;

5 Solution Sampling: Select a given number of solutions from the space
bounded by each rule in both PR

1 and PR
2 according to a given sampling

scheme;
6 Solution Evaluation: Evaluate quality or fitness of the sampled solutions,

including those stored in the solution archive if it is not empty, according
to a given mechanism, such as Pareto dominance ranking;

7 Solution Archive Updating: Update archive based on current ranking of
solutions;

8 Rule Adjustment: Adjust rule boundaries by applying specific rule
operations such as generalization, specialization and pruning;

9 Rule Evaluation: Evaluate adjusted rules in the population based on the
quality of the sampled solutions and other rule characteristics, such as
rule volume;

10 Environmental Selection: Apply a selection operator to choose the next
generation population PR

1 ;
11 end
12 return The final rule population and the solution archive.



CHAPTER 4. ONLINE KNOWLEDGE-BASED EVOLUTIONARY
MULTI-OBJECTIVE OPTIMIZATION 73

and rule evolution, of the framework are also open in design and can take advantage

of different techniques proposed in the literature.

KB-EMO is different from the traditional solution-based multi-objective evolu-

tionary algorithms and promises additional advantages. First, it explores the design

space using a rule-based representation. Second, the online multi-objective evolu-

tion of rules means that a set of rules are available at every step of the evolution

capturing the current state of the optimization process. This is especially useful

for the dynamic optimization problems where the decision makers might need a

set of solutions and hence the knowledge about them at any point in time. Third,

the hypervolume representation, and in particular hyper-rectangular representation,

provides a powerful and intuitive way of capturing knowledge. Lastly, the rule-based

representation of the optimal design space further provides decision makers a greater

flexibility in exercising their preferences.

The following subsections further explain the overall principles, different oper-

ations and the implementation in detail.

4.1.1 Interaction Between Rules and Solutions

The introduction of rule based evolutionary optimization implies the evolution deals

with optimization at two levels, the evolution of rules to identify optimal patterns

in decision space and the evolution of solutions to be Pareto optimal. In fact, the

rules and their solutions are evolved interdependently. On one hand, the quality of a

rule is determined mainly by the solutions sampled from this rule. More outstanding

solutions a rule contains the better it is. On the other, the generation of high quality

solutions also depends on the relative location and coverage of rules to optimal

areas. The richness of non-dominated solutions is determined by how close a rule

is to optimal areas since the solutions are sampled from parent rules, not created

by parent solutions. A rule and its sampled solutions support each other to achieve

optimization goals.

The evolution at both rule and solution levels requires two evaluation meth-
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ods. For solutions, their evaluation is naturally conducted using original objective

functions of MOPs. For rules, a new evaluation mechanism is needed that can dif-

ferentiate good rules from bad one. In other words, what we are looking for is an

indicator that can show the relative optimality to distinguish rules. The comparison

against the chosen indicator determines which rules are fitter for reproduction and

surviving to the next generation.

The evolution at both rule and solution levels requires coordination. First,

rules rely on solutions to provide the direction for evolving since the original objec-

tive function can only apply on solutions. In traditional evolutionary computation

methods, this is usually done by employing elitism mechanism for solutions. In rule

based evolutionary optimization, solution elitism has to be implemented explicitly

when ranking the solutions. The necessity is demonstrated in Figure 4.1 using non-

dominated sorting based solution evaluation. Red dots and blue dots are solutions

belonging to rule 1 and rule 2 respectively, in the objective space. Rule 2 is the

offspring of 1 and if there is no solution elitism, it would conclude that the red rule

is better than the blue parent just because it has more non-dominated solutions.

4.1.2 The Role of Solution Archive and Rule Adjustment

Operators

In KB-EMO framework, there is no solution population, therefore a solution archive

is introduced to store elite solutions. When new solutions are sampled from rules,

these solutions have to be estimated against the archived ones to confirm the im-

provement and hence provide direction information for rules to keep optimizing.

Second, a rule adjustment mechanism is introduced to facilitate convergence.

The sampling of solutions brings about several problems for rules to improve. One

is uncertainty. The sampling of solutions is somewhat random and the current

state of rule is just an occasional visit. It cannot promise consistent evaluation

over generations. The other is the counteraction between solutions. Since a group

of solutions are maintained by a rule, the quality of several good solutions can be
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Figure 4.1: Solution Elitism for Rule Evaluation.

cancelled out by the poor quality of others when, for instance, averaging the quality

of solutions to evaluate rules. These two cases make the evaluation over rules noisy

and unstable and may cause stagnation during evolution process, as shown in Figure

4.2. If we simply resample Rule 1 two more times, two possible results are shown in

Rule 1-1 and Rule 1-2. The left one deteriorate and the right one happens to grasp

a best solution found ever but its overall performance could still be worse than the

original Rule 1.

Figure 4.2: Rule resampling dilemma: Red, Green, Blue and Black indicate the
solution quality from high to low.

Hence, adjustment, either pruning or shrinking, is necessary for the convergence

of rules. In our algorithm, a simple shrinking method is integrated, which enables a

2 phase optimization. Firstly, the rules will investigate where the optimal solutions

are. And after that, it will grow itself in size to fully occupy the optimal area. But

the seeming inaccuracy caused by the random sampling doesn’t lead the evolution

to astray since a competent rule will be challenged over generations, only the real
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good rules can survive. Shrinking enables the identification of optimal areas more

effectively by excluding non-optimal areas.

4.1.3 Rule Diversity in Decision Space

The target of the rule evolution is finding the optimal patterns in decision space.

Hence, the distribution of optimal solutions is an important issue for the optimiza-

tion of rules. This determines what rules will survive to the last. Generally, the

knowledge based algorithm would be affected by the continuity, axis parallel, degen-

eration and size of the distribution of optimal solutions in the decision space.

If the optimal area in decision space is continuous, it implies only one optimal

area exists, such as the simple rules in ZDT and DTLZ problems; otherwise, multiple

optimal patterns should be expected, such as the HPS problems. The KB-MOEA

also needs to consider multiple optimal areas of different sizes. If the optimal area

is axis parallel, then exact identification is expected; if non-axis-parallel, the set

of rules in evolution are supposed to approximate the area. Moreover, non-axis-

parallel area can be of various shapes including concave, convex, etc. Degeneration

means the optimal area is of lower dimension than the decision space in which it

is embedded, minus one, e.g., a line segment in three dimensional space or a point

in 2 dimensional space. The degeneration demands the handling of rules to be

compatible with special cases, in which, for instance, there could be no optimal

areas, only isolated optimal solutions existed.

Figure 4.3: Distribution Patterns of Optimal Solutions in Decision Space.

All of the issues above are new challenges to the knowledge based evolutionary
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optimizers. Sometimes the algorithm has to deal with the combination of such issues,

as demonstrated in Figure 4.3. There are three distribution patterns of optimal

solutions: the first group of solutions clusters in a rectangle; the second group

share linear relationship and the last group has only 1 isolated dot. The traditional

MOEAs put an emphasis in objective space where a set of discrete and well spread

solutions are searched. They usually do not take into account the distribution of

optimal solutions in the parameter space, which contains important patterns in a

multi-objective context. Instead, the KB-MOEA has to take both parameter space

and objective space under consideration.

One concern regarding the rule diversity is an extreme case where the distribu-

tion of optimal solutions degenerates to a line or a discrete set of points. In this case,

we say there exists no rules of more than 1 dimension in the MOP. The counter-

measure for this is the introduction of the archive which stores the representatives

of high quality solutions explored from the beginning of the evolution. With the

archive, if we couldn’t get the explicit rules in the end, we have a fruitful archive as

a compromise, plus the rules also allowed to shrink to non-dominated solutions.

4.2 Instantiation of KB-EMO Framework

As an instantiation, a rule based MOEA (RB −MOEANS) is presented and dis-

cussed below with the algorithmic procedure shown in Algorithm 4, which comes

with hyper-rectangular formed rules, random rule initialization, Latin Hyper Cube

based solution sampling and non-dominated sorting based solution evaluation, etc.

The detailed design of the operations of RB −MOEANS is elaborated in following

subsections.

4.2.1 Rule Representation and Initialization

The hyper-rectangular rules use an interval-based representation. In specific, a rule

consists of n intervals representing n decision variable using lower bounds and the
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Algorithm 4: RB −MOEANS
Intput : An MOP;

A stopping criteria;
Output: A set of rules approximating the Pareto optimal patterns in the

decision space;
An archive of solutions;

1 Initialization: Initialize rule population PR
1 = (R1, R2, . . . , RN);

2 while gen ≤ Gen do
3 Perform real crossover pairwise on PR

1 and mutate the rules to generate a
new rule population PR

2 ;
4 Sample SR solutions for each rule in PR

1 and PR
2 using Latin Hypercube

method;
5 Rank all (2×N × SR) solutions in population PR

1 and PR
2 plus the

non-dominated solutions in the archive SA if not empty using the
non-dominated sorting;

6 Update the solution archive SA;
7 Shrink the rules in PR

1 and PR
2 ;

8 Evaluate the quality of all the rules in PR
1 and PR

2 ;
9 Combine PR

1 and PR
2 to generate the offspring rule population PR

c ;
10 PR

1 =PR
c ;

11 end

interval lengths, represented as

(xl1, δ1, x
l
2, δ2, · · · , xln, δn)

where xli and δi denote the lower bound and the length of interval for variable xi,

respectively. Hence, the upper bound will be xui = xli + δi for i-th dimension.

The implementation of RB−MOEANS requires initializing the rules first. Since

the rules follow a hyper-rectangular representation, for problems with fewer design

variables, grid based initialization is preferred. A grid allows covering the entire

decision space systematically without leaving a gap or an overlap between initial

rules and enables effective search over the whole design space. But the grid-based

initialization is not scalable with the number of dimensions. It is usually impossible

to partition a high dimensional design space, where the divisions on each dimension

collectively increases the number of overall rules exponentially. For high dimensional

cases, random selection of rules is suggested to initialize the very first population
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after partitioning of the whole search space.

4.2.2 Sampling of Solutions

While individual solutions can be sampled from the rules uniform randomly. This

would require a large number of samples to get an accurate representation of the

bounded area. A high number of samples however means high computational time

in our framework. On the other hand fewer samples could lead to a biased sampling.

So an effective sampling mechanism is important for the working of our algorithms.

While sampling is a rich area of research, in this thesis we chose to use Latin Hyper-

cube sampling (LHS) [71] which allows stratified and steady sampling of the search

space using a divide and sample approach. When implemented, for a more precisely

representation, only SR−2 solutions are sampled with LHS (S−R is the predefined

sampling size for rules). The other samples are two vertices of the hyper-rectangular

rule: (xl1, x
l
2, · · · , xln) and (xl1 + δ1, x

l
2 + δ2, · · · , xln + δn).

4.2.3 Rule Fitness

For knowledge-based evolution, we prefer the rules which enclose more non-dominated

solutions first and then we encourage larger or more general rules over specific rules.

In RB−MOEANS, a rule has two quality indicators, ρ and ν. ρ is evaluated as the

average Pareto dominance ranking of sampled solutions from the rule and ν is used

to reflect the volume of rule. The definitions emphasize rules with smaller ρ values

and larger volume ν.

The first indicator ρ is calculated as following:

ρ =
1

SR

SR∑
i=1

ri (4.1)

where SR is the number of solutions sampled from a rule and ri corresponds to the

ranking values of solution i after the non-dominated sorting.

The second indicator, size of a rule ν, is computed as the summation of interval
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ranges in each dimension. Based the representation of rules, it is simply evaluated

by:

ν =
n∑
i=1

δi (4.2)

(a) The quality of 4 rules at generation t with the peak repre-
senting the best rule

(b) The quality of same 4 rules at generation t + 1 when the
peak represent new better rule identified

Figure 4.4: Using an Artificial Fitness landscape to Represent the Rule Quality

When doing environmental selection, we first prefer the rules with smaller better

average ranking ρ and if they have the same ρ values, the rules with larger size will be
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Table 4.1: Possibilities of How the Rule Quality Varies After Solution Archive Up-
dating (↑, increased; -, unaltered; ↓, reduced)

Conditions Possibilities of Rule Quality Changes
nA > nA

′ (ρ ↑, ν ↑), (ρ ↑, ν−), (ρ ↑, ν ↓), (ρ−, ν ↑
), (ρ−, ν−),(ρ−, ν ↓),(ρ ↓, ν ↑), (ρ ↓
, ν−), (ρ ↓, ν ↓)

nA = nA
′ (ρ ↑, ν ↑), (ρ ↑, ν−), (ρ ↑, ν ↓), (ρ−, ν ↑

)

preferred. The overall quality determination mechanism of rules can be visualized

as shown in Figure 4.4(a). The peak of this artificial fitness landscape indicates

rules with highest ρ value and largest size ν found so far. All the other rules will

be located relatively to the top. We always prefer rules with better ρ to facilitate

convergence first. In the figure, the black dot will defeat the blue dot although

the latter has a smaller distance to the top. As the evolution goes, the rules will

gradually deteriorate down the hill as better rules will be identified and occupy the

top as shown in Figure 4.4(b). Since we do not a priori know the exact optimal

patterns, this artificial fitness landscape will be dynamically changing over time.

When better rule is found, as shown in Figure 4.4(b), where both ρ and ν are

increased, the quality of the same rules will deteriorate against the new rule.

4.2.4 Solution Elitism and Solution Archive Updating

Since the selection operation only occurs at rule level, solution elitism must be

implemented explicitly, as explained above. On the solution level, in order to keep

the elite, it requires to rank solutions across two consecutive generations and the

solution archive to avoid isolated and misleading ranking in Figure 4.1. This means,

during an evolution loop, the solutions in PR
1 , PR

2 and SA must be pooled together

for ranking rather than independently to ensure the identification and preservation

of elite in current generation. By doing so, the evolution information in solutions

can be transferred to rules by promising accurate rule evaluation.

The updating of solution archive is done as following: first, rank the solutions

sampled from both rule populations PR
1 , PR

2 and the current archive SA if not
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empty. If the number of non-dominated solutions is within the predefined limit of

archive size, move all the non-dominated solutions to archive. If the number of non-

dominated solutions is bigger than the archive size, then choose the non-dominated

solutions with better crowding distance estimation to the archive until it is full.

Suppose the number of non-dominated solutions in solution archive SA is nA

and after the non-dominated ranking, the number of non-dominated solutions in SA

is nA
′ (before the archive gets updated). Since it’s impossible that nA < nA

′, the

possible changes to the rule quality that can be expected are listed in Table 4.1.

When nA > nA
′, that means the original non-dominated solutions in archive are

no longer the best trade-off. This means at least part of the front has been either

moved forward or better diversified. In this case, the convergence of rules doesn’t

necessarily imply the improvement over its quality. In fact, it means comparatively

more optimal areas has been touched by the rules and been explored using sampling.

But the resultant rule can possibly own more, less or equal high quality solutions

compared to rules in last generation.

When nA = nA
′, that means the current non-dominated solutions are still the

best trade-off. No more efficient front has been discovered. The convergence of rules

is just looking for rules with better quality. If a rule with more high quality solutions

has been found, the increase in ρ value is preferred no matter how ν changes. If the

best rule still share the same ρ value, then the convergence is prone to the larger

rule.

On the rule level, a rule’s fitness is not fixed, but variable according to the

updating of the efficient front among generations. As long as the solution archive

keeps the best objective vectors, it will promise that better rules enjoy comparatively

higher fitness over the rest.

4.2.5 Environmental Selection and Rule Diversity

In RB−MOEANS, when doing the environmental selection, extra attention has to

be paid on the rule diversity. After the rule evaluation, if the number of rules having
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non-dominated solutions is not greater than the population size, keep track of all of

them and select the rules with better quality to fill the rest vacancies. Otherwise,

sort the rules having non-dominated solutions into two queues. The first queue

is based on the average distance of its non-dominated solutions to the rest non-

dominated solutions; the other is based on quality (ρ first, ν second). Each queue

contributes to the offspring generation by 50 percent. Then check the first queue by

setting a replaceable flag to the rules. After shrinking, if a rule still has dominated

solutions inside, then it’s replaceable; otherwise, it’s non-replaceable. Then all the

replaceable rules in the first queue will also be replaced by subsequent rules in the

second queue. The aim of survival is to facilitate the convergence of rules by the

second queue while keep the diversity of rules by the first queue.

4.3 Experimental Setup

4.3.1 Test Problems

The design of RB−MOEANS aims to evolve knowledge directly based on traditional

evolutionary operations. There are a few concerns regarding the determination of

test suite for the evaluation of the performance of knowledge-based multi-objective

evolutionary algorithms.

• The test functions have pre-determined optimal area(s) to test the convergence

over time;

• The test functions have multiple optimal areas to test the diversity mainte-

nance of evolution;

• The test functions are scalable to test the search ability of algorithms in com-

paratively high dimensional space, at least in design space;

• The test functions should also take scalable benchmark problems for compar-

ison;
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Based on the discussion above, the ZDT [169] and DTLZ [50] benchmark prob-

lems are adopted. These two suites are widely adopted for the analysis of multi-

objective computation in the literature. Their well-designed Pareto front and opti-

mal solutions facilitate comparisons for the performance of new evolutionary algo-

rithms. The ZDT and DTLZ problems used are listed in Chapter 2. Besides, the

HPS problems proposed in Chapter 3 is employed in order to test the multiple rule

identification and rule diversity maintenance.

4.3.2 Performance Metrics

When assessing the performance of evolutionary algorithm in objective space, what

we are expecting is not only the intuitive approximation of Pareto solutions and front

by generation, but also the quantitative comparison regarding certain performance

metrics. In this chapter, the generational distance (GD) and inverse generational

distance (IGD) are adopted for the performance analysis in objective space.

The generational distance measure the the closeness of the approximate set of

optimal solutions returned by MOEA to the real Pareto front and hence reflect the

convergence level, but is not capable to report the distribution of optimal solutions

over the entire front. The inverse generational distance, on the contrary, can measure

both the convergence and diversity. But IGD can not reflect the quality of the whole

approximate set since it’s calculated inversely. For example, if you add some bad

solutions to the obtained front, the IGD value won’t change. But the GD value

will be increased. Here, we take advantage of both GD and IGD values as our

performance metric for objective space.

Regarding the decision space, the PSV metric proposed in Chapter 3 is em-

ployed. It evaluates the percentage of the convex hull area of obtained set of so-

lutions over the overall area of optimal region. Higher values are preferred. It’s

more suitable to reflect the decision space concerns such as the diversity of solutions

compared to other metrics, as shown in Chapter 3.
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4.3.3 Competing Algorithms

The performance of RB−MOEANS is compared against with other two influential

algorithms in the literature, NSGA2 and MOEA/D. For all the algorithms, they

share the same operations and common parameter settings. For example, Simulated

Binary Crossover (SBX) with default distribution index 20 and polynomial mutation

with distribution index 10 are adopted for all. The rates for crossover and mutation

are 1 and 1/n, where n is the number of variables in decision space.

The maximum generation number is set to 1000 and the evolution is recorded

with different population size settings. For NSGA2 and MOEA/D, the population

sizes are 100, 500, 1000, 5000 and 10000 respectively. The size limit for solution

archive in RB−MOEANS is also set to these values accordingly. For rule evolution,

RB −MOEANS maintains the rule population size of 10, 50, 100, 500 and 1000

respectively and sample 10 solutions for each rule. For each algorithm with a specific

population size, we triggered the evolution 10 times with different seeds for random

number generation.

The MOEA/D version with Tchebycheff approach [162] is implemented and

used here. For problems with 2 objectives, the weight vectors are generated as{( i

np − 1
,
np − 1− i
np − 1

)∣∣∣i = 0, . . . , np − 1

}

where np is the population size. For problems with 3 objectives, the weight vectors

are generated randomly from the objective space. A weight vector is set to have 60

neighbours.

4.4 Experiment Results

This section presents the performance analysis of RB−MOEANS, compared to the

original NSGA2 and MOEA/D, in both objective space and decision space. The

objective space performance is discussed in Section 4.4.1 covering the visualization

of obtained fronts, performance measurement using GD and IGD. The decision
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(a) ZDT1 (b) ZDT2

(c) ZDT4 (d) ZDT6

Figure 4.5: Obtained Front of RB − MOEANS, NSGA2 and MOEA/D at Last
Generation of Run 1 for ZDT Problems respectively.

space performance, is analysed in Section 4.4.2 presenting the rules returned by

RB −MOEANS and result comparison with the PSV metric, proposed in Chapter

3. The legend is consistent with RB −MOEANS result in cyan, NSGA2 result in

green and MOEA/D result in blue.

4.4.1 Objective Space Performance

The objective space performance analysis focuses on the convergence to the Pareto

front and diversity along this front. In objective space, the obtained fronts of these

algorithms are first visualized in Section 4.4.1.1 and then quantitative performance

measure and comparison using GD and IGD are presented in Section 4.4.1.2 and

Section 4.4.1.3.
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

(e) DTLZ5 (f) DTLZ6

Figure 4.6: Obtained Front of RB − MOEANS, NSGA2 and MOEA/D at Last
Generation of Run 1 for DTLZ Problems respectively.

4.4.1.1 Fronts

For the three groups of test problems, ZDT, DTLZ and HPS, the fronts obtained

are shown in Figure 4.5, Figure 4.6 and Figure 4.7 respectively. Only the result of

the first run is plot.

ZDT problems are bi-objective and RB −MOEANS succeed to deal with con-
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(a) HPS1 (b) HPS2

(c) HPS3 (d) HPS4

(e) HPS5 (f) HPS6

Figure 4.7: Obtained Front of RB − MOEANS, NSGA2 and MOEA/D at Last
Generation of Run 1 for HPS Problems respectively.

vex and concave shaped front identification in ZDT1 and ZDT2, multimodality in

ZDT4 and nonuniformity in ZDT6, comparable to the performance of NSGA2 and

MOEA/D.

DTLZ problems are all 3-objective and have enhanced difficulties in search

space. RB−MOEANS not only returned competitive results over DTLZ1-DTLZ5,



CHAPTER 4. ONLINE KNOWLEDGE-BASED EVOLUTIONARY
MULTI-OBJECTIVE OPTIMIZATION 89

but also outperforms NSGA2 in DTLZ6, where the front degenerates to a single

curve in 3 dimensional objective space.

HPS problems are bi-objective with mechanism diversifying the Pareto set in

decision space. All the three algorithms succeed to identify the Pareto front in

objective space.

Table 4.2: Average GD of ZDT Problems at Last Generation with � Showing Sta-
tistical Significance Over the Other Two at 0.95 Level Using Wilcoxon Test When
Population Size is 1000

Population Size 100 500 1000 5000 10000

ZDT1
Archive 4.245e-04 3.986e-04 4.339e-04� 4.282e-04 4.255e-04
NSGA2 5.681e-04 1.906e-01 5.937e-04 6.016e-04 5.842e-04

MOEA/D 8.471e-02 1.601e-02 8.850e-03 9.182e-03 8.674e-03

ZDT2
Archive 3.707e-04 3.663e-04 3.819e-04� 3.678e-04 3.582e-04
NSGA2 1.954e-04 2.708e-01 3.907e-04 4.011e-04 3.936e-04

MOEA/D 6.755e-02 1.176e-02 8.710e-03 8.592e-03 8.329e-03

ZDT4
Archive 5.938e-02 5.478e-04 4.562e-04� 4.693e-04 4.642e-04
NSGA2 9.175e-04 5.300e-04 5.962e-04 6.228e-04 5.961e-04

MOEA/D 2.082e+00 4.155e-01 2.010e-01 1.937e-01 1.876e-01

ZDT6
Archive 1.393e-02 3.427e-03 3.257e-03 3.356e-03 3.296e-03
NSGA2 1.670e-03 2.853e-01 1.677e-03� 1.627e-03 1.605e-03

MOEA/D 1.046e-02 2.999e-03 2.545e-03 2.411e-03 2.482e-03

4.4.1.2 GD

GD evaluates the convergence of the obtained front to the Pareto optima in objective

space. The lower GD values are preferred. The GD values of RB − MOEANS,

NSGA2 and MOEA/D over three groups of test problems with different population

sizes are shown in Table 4.2, Table 4.3 and Table 4.4. A � means it’s significantly

better than the rest using a Wilcoxon signed-rank test at the default 95% significance

level. The change of GD values over time (generation) is shown in Figure 4.4.1.1,

Figure 4.4.1.1 and Figure 4.4.1.1.

When comparing the performance of the three algorithms in terms of this met-

ric, it can be observed that RB−MOEANS almost always performs relatively better

in most problems. In DTLZ3, the MOEA/D with Tchebycheff Approach is much

poorer that the other two competitors where although most of its solutions con-
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Figure 4.8: Average GD Over Time for Each ZDT Problem When Population Size
is 1000

Figure 4.9: Average GD Over Time for Each DTLZ Problem When Population Size
is 1000
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Table 4.3: Average GD of DTLZ Problems at Last Generation with � Showing
Statistical Significance Over the Other Two at 0.95 Level Using Wilcoxon Test
When Population Size is 1000

Population Size 100 500 1000 5000 10000

DTLZ1
Archive 5.779e-01 4.236e-02 6.059e-03� 6.002e-03 5.862e-03
NSGA2 2.415e-02 6.903e-03 6.930e-03 6.763e-03 7.086e-03

MOEA/D 6.045e+00 1.183e+00 6.066e-01 6.028e-01 5.884e-01

DTLZ2
Archive 2.199e-02 1.808e-02 1.760e-02� 1.765e-02 1.736e-02
NSGA2 2.498e-02 1.995e-02 1.873e-02 1.883e-02 1.784e-02

MOEA/D 4.933e-02 2.228e-02 1.891e-02 1.848e-02 1.834e-02

DTLZ3
Archive 4.534e+00 1.145e-01 1.637e-02� 1.657e-02 1.663e-02
NSGA2 5.883e-02 1.871e-02 1.898e-02 1.974e-02 1.855e-02

MOEA/D 1.954e+01 3.523e+00 2.044e+00 2.020e+00 1.056e+00

DTLZ4
Archive 3.881e-02 3.699e-02 3.833e-02� 3.693e-02 3.501e-02
NSGA2 4.306e-02 4.326e-02 4.319e-02 4.535e-02 4.447e-02

MOEA/D 5.983e-02 4.945e-02 4.548e-02 4.622e-02 4.590e-02

DTLZ5
Archive 9.948e-03 1.006e-02 9.939e-03 9.671e-03 9.218e-03
NSGA2 1.016e-02 1.003e-02 1.002e-02 1.053e-02 1.032e-02

MOEA/D 2.831e-02 1.291e-02 1.117e-02 1.115e-02 1.106e-02

DTLZ6
Archive 1.013e-02 1.010e-02 1.008e-02� 1.028e-02 9.779e-03
NSGA2 9.667e-02 9.975e-02 1.034e-01 1.055e-01 9.784e-02

MOEA/D 1.415e-01 3.621e-02 2.010e-02 2.034e-02 2.083e-02

verged very well as shown in Figure 4.6(c), it has several solutions out of the scale

of the figure worsening the overall GD value. It has similar situation in DTLZ1. In

DTLZ6, NSGA2 is shown to be the poorest to identify the degenerated front.

Generally all algorithms show improved performance in terms of GD values

with increasing population sizes, although not very obvious as IGD in next section.

In most cases, the results are comparable especially between RB −MOEANS and

the original NSGA2 with an exception in ZDT6.

Overall, the GD curves keep decreasing over time as the evolution approaches

the Pareto front. It can be seen that all algorithms converge nicely as the number

of generations increase. There is no clear winner to show which algorithm converges

fastest across most test problems.

To sum up, GD is popular to measure the convergence. We also used GD here

to compare the performance of algorithms. It reveals that RB −MOEANS enjoys

some advantage over the other two mainstream algorithms in terms of this metric.
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Table 4.4: Average GD of HPS Problems at Last Generation with � Showing Sta-
tistical Significance Over the Other Two at 0.95 Level Using Wilcoxon Test When
Population Size is 1000

Population Size 100 500 1000 5000 10000

HPS1

Archive 2.927e-03 2.909e-03 2.897e-03 2.865e-03 2.860e-03
NSGA2 3.103e-03 2.848e-03 2.905e-03 2.899e-03 2.905e-03

MOEA/D 9.209e-03 2.987e-03 2.995e-03 2.998e-03 2.998e-03

HPS2

Archive 5.418e-03 5.369e-03 5.309e-03� 5.119e-03 5.140e-03
NSGA2 6.397e-03 5.474e-03 5.558e-03 5.574e-03 5.588e-03

MOEA/D 7.187e-03 5.876e-03 5.822e-03 5.822e-03 5.822e-03

HPS3

Archive 7.677e-03 7.793e-03 7.817e-03� 7.581e-03 7.430e-03
NSGA2 8.728e-03 8.171e-03 8.181e-03 8.202e-03 8.198e-03

MOEA/D 1.235e-02 8.619e-03 8.653e-03 8.642e-03 8.635e-03

HPS4

Archive 1.064e-02 1.020e-02 1.031e-02� 1.042e-02 9.969e-03
NSGA2 1.169e-02 1.085e-02 1.082e-02 1.088e-02 1.090e-02

MOEA/D 3.332e-02 1.153e-02 1.152e-02 1.146e-02 1.146e-02

HPS5

Archive 1.248e-02 1.274e-02 1.290e-02� 1.271e-02 1.269e-02
NSGA2 1.322e-02 1.358e-02 1.358e-02 1.351e-02 1.351e-02

MOEA/D 3.891e-02 1.433e-02 1.430e-02 1.428e-02 1.429e-02

HPS6

Archive 5.237e-03 5.256e-03 5.340e-03� 5.310e-03 5.304e-03
NSGA2 7.961e-03 5.583e-03 5.544e-03 5.580e-03 5.567e-03

MOEA/D 2.947e-01 5.894e-03 5.848e-03 5.823e-03 5.823e-03

Table 4.5: Average IGD of ZDT Problems at Last Generation with � Showing
Statistical Significance Over the Other Two at 0.95 Level Using Wilcoxon Test
When Population Size is 1000

Population Size 100 500 1000 5000 10000

ZDT1

Archive 5.738e-03 1.306e-03 4.557e-04 3.325e-04 1.848e-04
NSGA2 5.145e-03 1.151e-01 2.989e-04� 2.155e-04 9.308e-05

MOEA/D 4.161e-03 9.599e-04 5.366e-04 7.946e-06 1.765e-06

ZDT2

Archive 6.579e-03 1.415e-03 5.719e-04 2.300e-04 9.250e-05
NSGA2 2.471e-01 9.194e-02 2.713e-04� 1.082e-04 8.111e-05

MOEA/D 4.319e-03 1.138e-03 5.167e-04 1.606e-04 7.642e-06

ZDT4

Archive 6.347e-02 1.520e-03 4.598e-04 1.902e-04 7.450e-05
NSGA2 3.393e-01 9.807e-04 3.145e-04� 9.742e-05 5.901e-05

MOEA/D 8.375e-03 8.512e-04 4.646e-04 5.263e-05 1.534e-06

ZDT6

Archive 5.392e-03 1.158e-03 5.261e-04 2.005e-04 1.578e-04
NSGA2 4.201e-03 2.888e-03 1.290e-04� 5.219e-05 4.035e-05

MOEA/D 3.568e-03 6.515e-04 1.533e-04 1.646e-05 3.382e-06

4.4.1.3 IGD

IGD evaluates both convergence and diversity in objective space. The lower IGD

values are considered better. The IGD values of RB − MOEANS, NSGA2 and
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Figure 4.10: Average GD Over Time for Each HPS Problem When Population Size
is 1000

Figure 4.11: Average IGD Over Time for Each ZDT Problem When Population Size
is 1000
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Table 4.6: Average IGD of DTLZ Problems at Last Generation with � Showing
Statistical Significance Over the Other Two at 0.95 Level Using Wilcoxon Test
When Population Size is 1000

Population Size 100 500 1000 5000 10000

DTLZ1
Archive 3.653e-01 6.325e-02 2.322e-04 1.727e-04 7.276e-05
NSGA2 2.550e-02 1.108e-02 1.620e-04� 1.233e-04 2.549e-05

MOEA/D 2.718e-02 1.207e-02 2.901e-04 1.393e-05 1.838e-06

DTLZ2
Archive 7.139e-02 3.576e-02 6.183e-04 1.835e-04 9.892e-05
NSGA2 7.144e-02 3.162e-02 3.430e-04� 2.597e-04 5.477e-05

MOEA/D 7.994e-02 3.311e-02 7.267e-04 3.340e-05 2.226e-06

DTLZ3
Archive 3.598e+00 2.770e-02 4.332e-04 3.310e-04 1.699e-04
NSGA2 6.962e-02 2.967e-02 3.428e-04� 1.391e-04 8.477e-05

MOEA/D 1.018e+00 3.376e-02 7.429e-04 3.830e-05 3.320e-05

DTLZ4
Archive 9.230e-02 4.230e-02 3.793e-04 6.694e-05 5.820e-05
NSGA2 1.581e-01 3.110e-02 3.271e-04� 1.069e-04 5.895e-05

MOEA/D 1.318e-01 3.798e-02 6.157e-04 2.975e-05 2.917e-05

DTLZ5
Archive 8.268e-03 2.156e-03 3.909e-04 1.533e-04 1.218e-04
NSGA2 5.607e-03 1.030e-03 1.954e-04� 5.848e-05 3.071e-05

MOEA/D 1.307e-02 2.360e-03 3.580e-04 1.073e-04 1.727e-05

DTLZ6
Archive 1.360e-02 2.073e-03 4.005e-04 1.166e-04 9.836e-05
NSGA2 8.440e-02 8.654e-02 3.071e-04� 2.225e-04 7.201e-05

MOEA/D 1.053e-02 3.917e-03 3.763e-04 8.351e-06 1.205e-06

MOEA/D over three groups of test problems with different population sizes are

shown in Table 4.5, Table 4.6 and Table 4.7. A � means it’s significantly better than

the rest using a Wilcoxon signed-rank test at the default 95% significance level. The

change of IGD values over time (number of generation) is shown in Figure 4.4.1.2,

Figure 4.4.1.2 and Figure 4.4.1.2.

Regarding the performance of the three algorithms in terms of this metric, it

can be observed that RB −MOEANS just sits between the original NSGA2 and

MOEA/D with Tchebycheff Approach, although RB−MOEANS is very close to the

original NSGA2. In some cases of HPS problems, RB−MOEANS performs better.

Overall, RB−MOEANS has comparable performance with NSGA2 sharing the same

order of magnitudes with the competitors, but are slightly worse than the best. The

reason for this is during the evolution process, we have 2 fixed sampling solutions

(xl1, x
l
2, · · · , xln) and (xl1 + δ1, x

l
2 + δ2, · · · , xln + δn) consisting of all the lower bounds

and upper bounds of the rules. When the rules approaches the optimal area, we have

many duplicates of same solutions across the rule population in spite of nominally
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Figure 4.12: Average IGD Over Time for Each DTLZ Problem When Population
Size is 1000

Figure 4.13: Average IGD Over Time for Each HPS Problem When Population
Size is 1000
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Table 4.7: Average IGD of HPS Problems at Last Generation with � Showing
Statistical Significance Over the Other Two at 0.95 Level Using Wilcoxon Test
When Population Size is 1000

Population Size 100 500 1000 5000 10000

HPS1

Archive 1.471e-03 3.378e-04 1.364e-04� 3.040e-05 1.606e-05
NSGA2 4.191e-03 6.834e-04 3.939e-04 7.817e-05 3.764e-05

MOEA/D 9.757e-03 7.121e-04 4.209e-04 7.227e-05 4.218e-05

HPS2

Archive 4.544e-03 1.383e-03 5.904e-04� 1.959e-04 9.124e-05
NSGA2 8.396e-03 1.491e-03 7.846e-04 1.396e-04 7.278e-05

MOEA/D 1.568e-02 3.013e-03 1.376e-03 2.932e-04 1.420e-04

HPS3

Archive 1.114e-02 2.853e-03 1.897e-03 4.541e-04 2.285e-04
NSGA2 1.178e-02 2.253e-03 1.043e-03� 2.215e-04 1.078e-04

MOEA/D 3.901e-02 7.398e-03 3.587e-03 8.341e-04 4.054e-04

HPS4

Archive 2.783e-02 4.099e-03 2.272e-03 5.211e-04 4.379e-04
NSGA2 1.665e-02 3.130e-03 1.489e-03� 3.095e-04 1.653e-04

MOEA/D 8.153e-02 1.933e-02 8.371e-03 1.996e-03 9.350e-04

HPS5

Archive 3.000e-02 9.054e-03 3.252e-03 1.094e-03 3.389e-04
NSGA2 1.980e-02 3.891e-03 2.030e-03� 4.038e-04 2.315e-04

MOEA/D 1.361e-01 3.639e-02 1.517e-02 4.249e-03 2.127e-03

HPS6

Archive 8.601e-03 1.654e-03 5.151e-04� 1.665e-04 4.699e-05
NSGA2 9.369e-03 1.519e-03 6.990e-04 1.485e-04 8.128e-05

MOEA/D 3.181e-01 2.964e-03 1.420e-03 3.070e-04 1.551e-04

the total number of solutions maintained in the rule population is equivalent to the

population size in NSGA2 in the experiment. This duplication hinders the solution

diversity in the archive and hence the IGD values, which take both convergence and

diversity into account.

Generally all algorithms show improved performance in terms of IGD values

with increasing population sizes, more obvious than GD in the section above. The

IGD curves over time or number of generations also converge nicely as the number

of generations increase.

Similar to GD, IGD is also popular and is frequently employed in evolutionary

computation literature to evaluate the performance the convergence. In this section,

it reveals that RB − MOEANS is comparable but slightly worse than the best

performer in terms of this metric. Take both GD and IGD into account, we can

see that RB − MOEANS converges very well but sacrifices a little bit regarding

diversity in objective space.
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4.4.2 Decision Space Performance

The RB −MOEANS algorithm directly evolves rules in decision space expecting

to occupy interesting patterns of the distribution of optimal parameters. Here, we

first represent the rules that RB −MOEANS returned in Section 4.4.2.1 and then

evaluate the performance using PSV metric in Section 4.4.2.2.
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Figure 4.14: The number of distinct rules over time for ZDT problems when rule
population size is 100

4.4.2.1 Rules

For knowledge-based NSGA2, not only a set of high quality non-dominated solutions

are returned, but also the rules converging to the optimal patterns in decision space

are expected. The latter is even more important since this is the strong motivation

for the design of knowledge-based algorithms. The rule population at last generation

of 1st Run for ZDT, DTLZ and HPS problems are plot in Figure 4.15, Figure 4.17

and Figure 4.19 respectively. As the rules evolve, how the number of distinct rules

changes over time of 10 Runs is shown in Figure 4.14, Figure 4.16 and Figure 4.18
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Figure 4.15: The rules achieved by RB −MOEANS for ZDT problems at the last
generation of Run 1.

with respect to different groups of problems.

For ZDT problems, the Pareto set is determined by the pattern x1 ∈ [0, 1] and

x2,... = 0, forming a simple line segment in decision space. Figure 4.15 shows the rule

population at last generation of the 1st run of RB −MOEANS for ZDT problems.

We only pick the first 2 decision variables for visualization (the total number of

decision variables for ZDT problems are 30, 30, 10, 10 respectively). We can see

that the Pareto set has been identified exactly. All the rules have converged to the

optimal pattern and most of them evolved to capture the whole area. The number

of distinct rules in rule population is calculated and averaged over 10 runs shown in

Figure 4.14 with error bars. It is shown that RB−MOEANS is capable to identify

the optimal areas with minimum number of rules.

For DTLZ problems, the Pareto set is determined by the pattern x1,2 ∈ [0, 1]
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Figure 4.16: The number of distinct rules over time for DTLZ problems when rule
population size is 100

and x3,... = 0.5 for DTLZ1∼5 and x1,2 ∈ [0, 1] and x3,... = 0 for DTLZ6. Figure 4.17

shows the rule population at last generation of the 1st run of RB −MOEANS for

DTLZ problems. We only pick the first 3 decision variables for visualization. We can

see that the Pareto set has been identified exactly for DTLZ1, DTLZ3 and DTLZ6.

The perfect rules are extracted to cover the whole optimal pattern and a number

of other rules located in the optimal area are provided. For DTLZ2, DTLZ4 and

DTLZ5, we have a number of rules collectively occupying the majority of optimal

area, where the RB−MOEANS performs worst in DTLZ2. The number of distinct

rules in rule population is calculated and averaged over 10 runs shown in Figure

4.16 with error bars. It is also shown that RB −MOEANS is capable to converge

to a handful of rules for DTLZ1, DTLZ3 and DTLZ6 compared to DTLZ2, DTLZ4

and DTLZ5.

For HPS1 ∼ 6 problems, the number of rules is 2, 4, 8, 16, 32, 4 respectively

with the first k decision variables satisfying x1,...,k ∈ [0.2, 0.4] or x1,...,k ∈ [0.6, 0.8]
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Figure 4.17: The rules achieved by RB−MOEANS for DTLZ problems at the last
generation of Run 1.

and the rest n − k decision variables satisfying xk+1,...,n = 0.5, as introduced in

Section 3.2.3 of Chapter 3. Figure 4.19 shows the rule population at last generation

of the 1st run of RB−MOEANS for HPS problems. For HPS1, HPS2 and HPS6,

we only visualize the first 2 variables and use the first 3 variables for HPS3. For
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Figure 4.18: The number of distinct rules over time for HPS problems when rule
population size is 100

HPS4 and HPS5, we use the box plot to show the range of all rule variables. The

predefined line segment formed optimal pattern in HPS1 has been fully identified.

The four hyper-rectangle formed optimal pattern in HPS2 and HPS6 are explored

efficiently with a number of rules cover these four isolated optimal areas. For HPS3,

HPS4 and HPS5 with 8 and more isolated patterns, RB −MOEANS is able to

capture part of the optimal patterns. The performance is further quantified using

PSV metric in the following section. The number of distinct rules in rule population

is calculated and averaged over 10 runs shown in Figure 4.18 with error bars. Since

the number of optimal patterns is relatively higher than that in ZDT and DTLZ,

many rules exist in the final population to capture different optimal areas.

Overall, RB −MOEANS can successfully deal with the challenges in the test

problems, such as comparatively high dimensionality, different Pareto front land-

scape, multi-modality, nonuniformity, degeneration, etc. The convergence of rules

in decision space is consistent across the test suites with either perfect rules or
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Figure 4.19: The rules achieved by RB−MOEANS for HPS1, HPS2, HPS3, HPS4

problems and the box plot of Rules achieved by RB −MOEANS for HPS4, HPS5

problems at the last generation of Run 1.

multiple rules to capture the optimal patterns in decision space.

These optimized rules returned by knowledge-based algorithm are the most in-

spiring. The rules provide profound understanding towards the optimization prob-

lem and great flexibility for solution implementation in a multi-objective environ-
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ment. Since the optimal area has been identified by the final rule population, no

matter whether a supreme rule emerged or multiple rules returned, the mapping from

patterns in decision space and the Pareto optimality in objective space is therefore

determined. We can further utilize rule formed knowledge to support decision mak-

ing, investigate the diversity issue in both decision space and objective space since

you can sample solutions from the bounded areas of rules, research the robustness

concepts for more reliable engineering design or other practical problems, and so on.

At the same time, the knowledge based evolutionary algorithm still keeps track of

an archive of non-dominated solutions to represent the front just in case that the

convergence of rules in the decision space is immature or even worse there exists no

rules.

Figure 4.20: Average PSV Over Time for Each ZDT Problem When Population Size
is 1000

4.4.2.2 PSV

The PSV evaluates the percentage of the area of convex hull determined by solu-

tions over the overall area of optimal patterns. Higher value is preferred. If more
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Figure 4.21: Average PSV Over Time for Each DTLZ Problem When Population
Size is 1000

Figure 4.22: Average PSV Over Time for Each HPS Problem When Population
Size is 1000
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Table 4.8: Average PSV of ZDT Problems at Last Generation with � Showing
Statistical Significance Over the Other Two at 0.95 Level Using Wilcoxon Test
When Population Size is 1000

Population Size 100 500 1000 5000 10000

ZDT1

Rules 1.000e+02 1.000e+02 1.000e+02 1.000e+02 1.000e+02
Archive 9.945e+01 9.979e+01 1.000e+02 1.000e+02 1.000e+02
NSGA2 1.000e+02 6.954e+01 1.000e+02 1.000e+02 1.000e+02

MOEA/D 9.131e+01 9.975e+01 9.993e+01 1.000e+02 1.000e+02

ZDT2

Rules 1.000e+02 1.000e+02 1.000e+02 1.000e+02 1.000e+02
Archive 9.942e+01 9.969e+01 1.000e+02 1.000e+02 1.000e+02
NSGA2 5.000e+01 4.391e+01 1.000e+02 1.000e+02 1.000e+02

MOEA/D 9.087e+01 9.947e+01 9.991e+01 1.000e+02 1.000e+02

ZDT4

Rules 8.726e+01 9.999e+01 1.000e+02 1.000e+02 1.000e+02
Archive 5.922e+01 9.967e+01 1.000e+02 1.000e+02 1.000e+02
NSGA2 4.000e+01 9.000e+01 1.000e+02 1.000e+02 1.000e+02

MOEA/D 5.683e+00 9.979e+01 9.988e+01 1.000e+02 1.000e+02

ZDT6

Rules 1.000e+02 1.000e+02 1.000e+02� 1.000e+02 1.000e+02
Archive 9.368e+01 9.849e+01 9.986e+01 1.000e+02 1.000e+02
NSGA2 3.933e+01 4.474e+01 4.961e+01 4.944e+01 6.324e+01

MOEA/D 9.261e+01 8.252e+01 5.661e+01 7.946e+01 8.787e+01

than one regions are involved, they are treated separately and averaged in the final

measurement. The PSV values of RB − MOEANS, NSGA2 and MOEA/D over

three groups of test problems with different population size are shown in Table 4.8,

Table 4.9 and Table 4.10. A � means it’s significantly better than the rest using a

Wilcoxon signed-rank test at the default 95% significance level. The change of PSV

values over time (number of generations) is shown in Figure 4.4.2.1, Figure 4.4.1.1

and Figure 4.4.2.1. When evaluating the RB−MOEANS, we calculate not only the

PSV of solutions in the archive, but also the PSV of rule vertices. They have two

rows in the PSV tables called Rules and Archive to differentiate and black marks or

curves are used in the figures to show the result of PSV calculation using rules.

From the tables, it can be observed that RB−MOEANS outperforms NSGA2

and MOEA/D in terms of PSV. Further, the rules are usually better than the

archive. The result reveals the outstanding advantage of rule based algorithms

regarding the identification of optimal patterns and maintaining the diversity in

decision space. This is clearly shown in some HPS problems where multiple or

many patterns existed. RB −MOEANS also obtains much better results in ZDT6



CHAPTER 4. ONLINE KNOWLEDGE-BASED EVOLUTIONARY
MULTI-OBJECTIVE OPTIMIZATION 106

Table 4.9: Average PSV of DTLZ Problems at Last Generation with � Showing
Statistical Significance Over the Other Two at 0.95 Level Using Wilcoxon Test
When Population Size is 1000

Population Size 100 500 1000 5000 10000

DTLZ1

Rules 5.031e+01 9.832e+01 1.000e+02� 1.000e+02 1.000e+02
Archive 1.872e+01 8.889e+01 9.988e+01 1.000e+02 1.000e+02
NSGA2 9.505e+01 9.861e+01 9.855e+01 1.000e+02 9.949e+01

MOEA/D 8.286e+01 9.371e+01 9.628e+01 1.000e+02 1.000e+02

DTLZ2

Rules 3.180e+01 7.326e+01 9.693e+01 1.000e+02 1.000e+02
Archive 5.899e+00 7.503e+01 9.603e+01 1.000e+02 1.000e+02
NSGA2 5.664e+01 8.716e+01 9.649e+01 1.000e+02 9.942e+01

MOEA/D 5.342e+01 9.805e+01 9.827e+01� 1.000e+02 1.000e+02

DTLZ3

Rules 9.960e+00 9.500e+01 1.000e+02� 1.000e+02 1.000e+02
Archive 0.000e+00 8.761e+01 9.974e+01 1.000e+02 1.000e+02
NSGA2 9.641e+01 9.678e+01 9.807e+01 1.000e+02 1.000e+02

MOEA/D 5.494e+01 9.734e+01 9.874e+01 1.000e+02 1.000e+02

DTLZ4

Rules 1.561e+01 5.668e+01 9.975e+01 1.000e+02 1.000e+02
Archive 8.095e+01 9.316e+01 9.999e+01 1.000e+02 1.000e+02
NSGA2 3.116e+01 2.813e+01 4.316e+01 7.015e+01 9.161e+01

MOEA/D 1.284e+01 1.094e+01 4.024e+01 6.356e+01 6.465e+01

DTLZ5

Rules 7.705e+01 9.304e+01 9.967e+01 1.000e+02 1.000e+02
Archive 8.646e+01 9.533e+01 9.967e+01 1.000e+02 1.000e+02
NSGA2 1.003e+01 4.827e+01 6.101e+01 6.371e+01 8.295e+01

MOEA/D 5.267e+01 9.349e+01 9.748e+01 1.000e+02 1.000e+02

DTLZ6

Rules 1.000e+02 1.000e+02 1.000e+02� 1.000e+02 1.000e+02
Archive 7.977e+01 9.802e+01 9.980e+01 1.000e+02 1.000e+02
NSGA2 9.965e+01 9.999e+01 1.000e+02 1.000e+02 1.000e+02

MOEA/D 7.810e+01 9.426e+01 9.837e+01 1.000e+02 1.000e+02

and DTLZ4, which feature nonuniformity with biased density of solutions in the

search space.

Generally, all algorithms show improved performance values regarding PSV

with increasing population sizes. The PSV curves keep increasing over time as the

evolution approaches the Pareto front.

Overall, the rule-based algorithm can not only return comparable results in ob-

jective space, but also improve the decision space performance significantly against

the traditional multi-objective evolutionary algorithms.
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Table 4.10: Average PSV of HPS Problems at Last Generation with � Showing
Statistical Significance Over the Other Two at 0.95 Level Using Wilcoxon Test
When Population Size is 1000

Population Size 100 500 1000 5000 10000

HPS1

Rules 9.425e+01 9.942e+01 1.000e+02� 1.000e+02 1.000e+02
Archive 7.309e+01 9.924e+01 9.985e+01 9.781e+01 1.000e+02
NSGA2 9.484e+01 9.953e+01 9.960e+01 9.993e+01 9.996e+01

MOEA/D 4.989e+01 5.817e+01 5.946e+01 7.028e+01 8.006e+01

HPS2

Rules 3.206e+01 8.006e+01 9.589e+01� 1.000e+02 1.000e+02
Archive 3.179e+01 5.867e+01 8.818e+01 1.000e+02 8.930e+01
NSGA2 5.291e+01 6.470e+01 6.299e+01 8.110e+01 8.921e+01

MOEA/D 1.823e+01 2.672e+01 2.505e+01 3.093e+01 4.082e+01

HPS3

Rules 1.759e+01 3.498e+01 5.398e+01� 1.000e+02 1.000e+02
Archive 8.194e+00 2.161e+01 4.523e+01 4.666e+01 6.209e+01
NSGA2 1.121e+01 2.401e+01 2.625e+01 3.999e+01 5.516e+01

MOEA/D 3.702e+00 6.573e+00 8.007e+00 1.259e+01 1.481e+01

HPS4

Rules 5.745e+00 1.337e+01 2.575e+01� 5.477e+01 7.988e+01
Archive 2.769e+00 8.187e+00 1.583e+01 3.296e+01 2.601e+01
NSGA2 4.042e+00 9.213e+00 8.578e+00 1.757e+01 2.232e+01

MOEA/D 3.389e-01 1.448e+00 2.280e+00 3.821e+00 4.706e+00

HPS5

Rules 2.795e+00 6.671e+00 1.240e+01� 1.780e+01 2.631e+01
Archive 5.522e-01 2.270e+00 4.649e+00 5.940e+00 1.189e+01
NSGA2 1.012e+00 2.095e+00 4.252e+00 8.707e+00 1.274e+01

MOEA/D 2.743e-02 2.937e-01 4.364e-01 1.092e+00 1.398e+00

HPS6

Rules 2.711e+01 6.598e+01 8.736e+01� 1.000e+02 1.000e+02
Archive 2.779e+01 6.248e+01 8.397e+01 1.000e+02 1.000e+02
NSGA2 3.635e+01 6.431e+01 5.939e+01 8.480e+01 9.647e+01

MOEA/D 4.812e+00 2.056e+01 2.293e+01 2.431e+01 3.242e+01

4.5 Summary

This chapter presents a novel knowledge-based multi-objective optimization frame-

work which aims at searching for optimal areas of the design space instead of individ-

ual solutions using a rule-based representation. A population of rules, corresponding

to the bounding areas in the design space, are evolved to search for the optimal ar-

eas. The rules are evaluated based on the quality of sampled solutions from their

bounded area.

An implementation of the framework using a hyper-rectangular rule represen-

tation and non-dominated sorting based rule evaluation is presented in this chapter.

The resulting algorithm is tested on a few standard benchmarks and newly design
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problems. The experimental results show that the algorithm is comparable to other

MOEAs and able to successfully identify the optimal areas with minimum number

of rules.

We believe that the knowledge-based MOEA framework presented in this chap-

ter has important implications for many domains including engineering design and

decision support systems and has a broad scope for extensions. There are a num-

ber of directions stemming from this work for future research including extensions

of the framework using a number of rule and solution evaluation techniques in the

literature; extensions of the framework using a number of other rule representation-

s including fuzzy representations and thorough evaluation of the framework with

robust optimization and dynamic objective functions under the above extension.



Chapter 5

Hybrid Knowledge-Based

Evolutionary Many-Objective

Optimization

The previous chapter defined a general framework for the design of knowledge-based

evolutionary algorithms for multi-objective optimization. An implementation of the

framework was presented as RB −MOEANS. This chapter extends the work in

the previous chapter to problems with four and more objectives, commonly referred

to as many-objective optimization problems. The increase in the number of ob-

jectives introduce additional challenges to the MOP. A number of well-established

MOEAs exists today that handle optimization problems with two or three objec-

tives successfully. However, the performance of these algorithms deteriorates fast

when dealing with problems involving higher number of objectives. A new breed

of evolutionary optimization algorithms has emerged to deal with such problems.

The work presented in this chapter builds on these developments and extends the

knowledge-based evolutionary optimization approach to deal with many-objective

optimization problems.

Similar to knowledge-based algorithms proposed in Chapter 4 which were built

upon multi-objective evolutionary algorithms, the knowledge-based evolutionary
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many-objective optimization algorithms proposed and investigated in this chapter

mainly leverage on NSGA3, a state-of-the-art many-objective evolutionary optimiza-

tion algorithms.

The chapter is organized as follows: Section 5.1 introduces many-objective op-

timization problems and highlights the challenges they pose for evolutionary opti-

mization algorithms. NSGA3 is described and analyzed in Section 5.2. The cor-

responding proposed knowledge-based algorithms are discussed in Section 5.3 and

Section 5.4. Section 5.5 provides the details of experimental setup used for the eval-

uation of the algorithms and the results are presented in Section 5.6. Finally, the

chapter is concluded in Section 5.7.

5.1 Introduction of Many-objective Optimization

Many-objective optimization problems are a subset of MOPs which deal with four or

more objectives. Such problems emerge frequently in research and engineering fields,

such as industrial system design [29], air traffic control [66], and so on. Effective

methods are required to handle such optimization problems.

Dealing with a large number of objectives in optimization is one of the most

active research areas within the evolutionary computation community today that

poses new challenges. The challenges for the scalability of optimization algorithms

in many objective environments are discussed in detail in Chapter 2. A summary

of these challenges using references from existing work [78][42] is presented below.

A major challenge in dealing with these problems is that the number of non-

dominated solutions increase exponentially as more objectives are involved. The

non-dominated solutions of anm-objective optimization problem remain non-dominated

when an extra objective is introduced but bring new trade-offs among old objectives

and this new objective. Since this can lead to a population that is full of non-

dominated solutions, it affects Pareto-dominance based evolutionary algorithms sig-

nificantly weakening their convergence properties.

Suppose F (X) = (f1, f2, ..., fm) and F (X ′) = (f ′1, f
′
2, ..., f

′
m) are two different
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solutions in objective space, since F (X) 6= F (X ′), there must exist an i ∈ N ∩

[1,m] that fi 6= f ′i . Suppose fi > f ′i , then only in the extreme case where all

the rest objectives satisfying fj ≥ f ′j, j ∈ N ∩ [1,m] \ i, a more optimized solution

F (X ′) compared to F (X) can be expected. Otherwise, these two solutions are non-

dominated to each other. The number of cases in this ‘otherwise’ category can be

calculated as:
m−1∑
k=1

(
m− 1

k

)
= 2m−1 − 1 (5.1)

This implies that the non-dominated solutions will soon occupy all the slots

in population and provide no direction information for convergence. Garza-Fabre

et al. [61] shows that from generation 1, the proportion of Pareto non-dominated

solutions in a randomly generated population has exceeded 90% and reached 100%

from generation 3 when optimizing DTLZ1 with more than 10 objectives.

In order to address the vague selection pressure caused by the pervasive ex-

istence of non-dominated solutions, a set of reference points evenly spread in the

objective space can be utilized. After clustering the non-dominated solutions based

on the perpendicular distance to the reference line (from origin to reference points),

the preference over solutions can be established by considering the density of solu-

tions surrounding reference lines. Hence the reference points can be regarded as a

systematic mechanism to divide the objective space and the selection is constrained

within the subdivisions.

The second difficulty is about maintaining diversity in high dimensional objec-

tive space. On the one hand, evaluation of diversity will be more computationally

expensive when dealing with more objectives [42]. On the other, concepts, such as

crowding distance in NSGA2, can be misleading for selection and diversity main-

tenance in many objective environment [78]. However, after the introduction of

reference points, if we are interested in the solutions closest to reference lines in

each subdivision, a good distribution of objective vectors can be incurred over time.

Lastly, recombination operation can be inefficient for many-objective problems

[42]. In order to search more effectively for optimal objective vectors in high dimen-
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sional environment, corresponding changes over parameter setting for evolutionary

operations are required to improve the search performance. Take the SBX crossover

operator [40] as an example, a relatively larger value of distribution index is sug-

gested to mitigate the deterioration of search capability in many-objective context.

The challenge in many-objective optimization problem requires new algorithm-

s or specific modification to current MOEAs for applications extended to many-

objective environments.

5.2 NSGA3 for Many-objective Optimization

NSGA3 is essentially an extension of NSGA2 for scaling to many-objective optimiza-

tion. It has shown to work well with problems up to 15 objectives [42]. It utilizes a

set of predefined reference points to alleviate difficulties encountered by NSGA2 in

many-objective environment.

The fitness assignment in NSGA3 is still based on Pareto dominance. In fact,

NSGA3 tries to take full advantage of the search ability of Pareto dominance with the

support of reference points. The set of reference points not only provide directions to

guide the convergence, but also help maintain a well-spread distribution of optimized

solutions. NSGA3 only keeps non-dominated solutions closest to reference lines

(that extend from the origin to reference points). On the one hand, the diversity

of solutions is promising once the reference points are evenly spread across the

objective space. On the other, the reference lines restrict the search within its

scope of directions to avoid the disturbance of pervasive non-dominated solutions.

Generally, these reference points can be considered as a method to partition the

objective space and mitigate the deterioration of the partial-order Pareto dominance

when checking the solutions surrounding corresponding reference points individually.

NSGA3 still adopts SBX crossover operation and Polynomial mutation as NSGA2,

but recommends larger values for distribution indexes.

The algorithmic description of NSGA3 is shown in Algorithm 5. As can be

seen, the fitness assignment is still based on dominance ranking, but the crowding
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distance concept to choose from competing solutions for survival has been replaced

by a reference point based selection.

Algorithm 5: NSGA3 Algorithmic Description.

Intput : A set of reference points Z;
A stopping criterion, i.e., the maximum number of generations is

Gen;
Output: A population of optimized solutions.

1 Initialization: Initialize solution population P1 of size nP ;
2 while gen ≤ Gen do
3 Evolutionary Operation: Perform crossover and mutation on P1 to

generate a new population P2;
4 Pareto Dominance Ranking: Rank all solutions in populations P1 and P2

based on the non-dominated sorting,
(F1, F2, . . .) = Non− dominated− sort(P1 ∪ P2);

5 From (F1, F2, . . .), find the last ranked set of solutions to be included,

denoted as Fl, which satisfies
∑l

i=1 |Fi| ≥ nP ;

6 if
∑l

i=1 |Fi| = nP then
7 the next generation Pc = ∪li=1Fi;
8 else

9 The next generation Pc = ∪l−1
i=1Fi and choose k = nP −

∑l−1
i=1 |Fi|

solutions from Fl for Pc;
10 Adaptive Normalization of solutions in ∪li=1Fi;
11 Associate solutions in ∪li=1Fi with a reference point based on

perpendicular distance to reference lines;
12 Choose k solutions from Fl one at a time to Pc based on association

count of reference point;
13 end
14 P1=Pc;
15 gen = gen+ 1;

16 end

5.2.1 Generation of Reference Points

The generation of reference points plays an important role in NSGA3. A systematic

approach [36] that places points evenly on a m-dimensional hyperplane, which has

an intercept of 1 on each dimension, is recommended. Hence, for the coordinates

of reference points r1, r2, . . . , rm, they satisfy
∑m

i=1 ri = 1. Given the number of

dimensions m and the number of divisions p on each dimension, the total number

of points is
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Figure 5.1: Generation of Reference Points

(
m+ p− 1

p

)
(5.2)

For instance, when m = 4, p = 3, there are 20 reference points shown in Table

5.1. When m = 3, p = 12, the number reference points generated is 91, as shown in

Figure 5.1(a).

Table 5.1: Reference Points Generated When m = 4, p = 3

r1 r2 r3 r4 r1 r2 r3 r4 r1 r2 r3 r4 r1 r2 r3 r4

0 0 0 1 0 1
3

1
3

1
3

1
3

0 0 2
3

1
3

2
3

0 0
0 0 1

3
2
3

0 1
3

2
3

0 1
3

0 1
3

1
3

2
3

0 0 1
3

0 0 2
3

1
3

0 2
3

0 1
3

1
3

0 2
3

0 2
3

0 1
3

0
0 0 1 0 0 2

3
1
3

0 1
3

1
3

0 1
3

2
3

1
3

0 0
0 1

3
0 2

3
0 1 0 0 1

3
1
3

1
3

0 1 0 0 0

5.2.2 Two Layers of Reference Points

The simple issue regarding the method used here is the combinatorial number of

reference points will grow too fast when raising the number of objectives. For

example, when m = 10, p = 6, the number of reference points will be 5005. To avoid

the pressure on population size caused by the explosion of reference points, NSGA3

adopts two layers of reference points when the number of objectives is greater than

or equal to 8.

The first one is the boundary layer, where the reference points are all located
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on the intersection of Pareto optima and coordinate plane and leave the in-between

space empty. The second layer is the inside layer, which is generated by performing

a transformation on point (r1, r2, . . . , rm):

ri =
1− τ
m

+ τ × ri (5.3)

τ is set to 0.5 in implementation as suggested. Based on this, the vertices of

boundary layer reference points will be transformed to the inside of the hyperplane.

A 3D demonstration is shown in Figure 5.1(b). Why we use two layers of reference

points is simply because we cannot afford the increase of the number of reference

points if we still use the one layer method when there are only a few objectives.

Take a problem with 15 objectives as a demonstration. The number of divisions

for boundary layer is 2 and we have 120 reference points on boundary lines. The

number of divisions for inside layer is 1 and we have 15 reference points, which are

then transformed to the inside space. This example clearly shows the distribution

of reference points is not even and very sparse and restricted to represent the entire

objective space since we have only 135 reference points in total for a problem with

15 objectives and most of them (88.89%) reflects only trade-off of two objectives.

Overall, the introduction of reference points in NSGA3 help maintain the diver-

sity and constrain evolution along certain directions. The drawback is that it limits

the representation of the trade-off surface in many-objective optimization problems.

Since the combinatorial number grows faster compared to the fixed size of popu-

lation, although a set of high quality and well spread solutions can be expected,

they locate very sparsely in the objective space. This may get the decision maker

to a dilemma where he has a set of optimized solutions, but find no one can be

implemented.

5.3 KB-MOEA for Many-objective Optimization

In Chapter 4, a KB-EMO framework is proposed and implemented asRB−MOEANS.

The resulting algorithm evolves a population of rules directly and is evaluated with
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test problems having 2 or 3 objectives. In this section, the framework is implement-

ed with the utilization of a set of reference points based on NSGA3 to facilitate the

online knowledge extraction from many-objective optimization problems.

5.3.1 RB −MOEAREF

The resulting algorithm of KB-EMO Framework using reference points is termed as

RB −MOEAREF . The algorithmic description of RB −MOEAREF is provided in

Algorithm 6.

Algorithm 6: Algorithmic Description of RB −MOEAREF
Intput : A set of evenly spread reference points in objective space;

1 Initialization: Initialize rule population PR
1 of size N ;

2 for gen← 1 to Gen do
3 Evolutionary Operations: Perform real crossover and mutation on

pairwise rules in PR
1 to generate a new rule population PR

2 ;
4 Solution Sampling and Evaluation: Sample SR solutions using each rule in

PR
1 and PR

2 using Latin Hypercube method;
5 Dominance Ranking: Rank all (2×N × SR) solutions in population PR

1

and PR
2 plus the non-dominated solutions in the archive SA if not empty

using the non-dominated sorting to generate front levels (F1, F2, . . .);
6 Solution Archive Updating: Updating the solution archive SA using

Algorithm 7 with the non-dominated ranking result (F1, F2, . . .) and the
set of reference points;

7 Rule Shrinking: Shrink the rules in PR
1 and PR

2 ;
8 Rule Quality Evaluation: Evaluate the quality of all the rules in PR

1 and
PR

2 ;
9 Survival: Combine PR

1 and PR
2 to generate the offspring population PR

c ;
10 PR

1 =PR
c ;

11 end

The biggest difference between RB − MOEAREF in this section and RB −

MOEANS in Chapter 4 is the mechanism for solution archive updating. Although

the solution quality in RB −MOEAREF is still based on Pareto dominance, the

selection is many-objective environment is assisted by a set of reference points. It

calculates the density of solutions associated to reference points and the less crowded

reference points has a larger probability to contribute to the archive update. On the

contrary, in RB −MOEANS, the solution updating is based on Pareto dominance
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Algorithm 7: Solution Archive Updating

Intput : Front levels of solutions after non-dominated ranking (F1, F2, . . .);
A set of evenly spread reference points in objective space Z;

1 if |F1| <= size (the predefined size limit of solution archive) then
2 Solution Archive SA = F1 of actual size |F1|;
3 return;

4 else
5 Normalize objective vectors in F1;
6 Associate each solution in F1 with a reference point in Z, supposing the

number of solutions associated with j-th reference point is εj;
7 while the solution archive is not full do
8 Exclude the reference points without associated solutions (εj = 0);
9 Identify the reference points having the least number of solutions

Jmin = {j : argminjεj};
10 Choose one reference point randomly from Jmin, denoted as the j̄-th

reference point;
11 Move the solution having the shortest perpendicular distance to the

reference line to the solution archive;
12 εj̄ = εj̄ − 1;

13 end

14 end

and crowding distance.

For other components, RB − MOEAREF adopts the same designs as RB −

MOEANS including rule representation, solution sampling mechanism, rule quality

evaluation, rule shrinking mechanism and environmental selection for rules.

5.3.2 Experimentation

The performance of RB − MOEAREF is test with DTLZ1∼4 problems with 5,

8, 10 and 15 objectives respectively, as shown in Figure 5.2, Figure 5.3, Figure

5.4 and Figure 5.5. For DTLZ1 problems, the objective vectors are supposed to

satisfy
∑
fi = 0.5 and for the other

∑
f 2
i = 1. RB −MOEAREF can achieve fair

performance for DTLZ2 and DTLZ4 instances, but not satisfying with DTLZ1 and

DTLZ3, where the objective vectors are far away from the optima.
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Figure 5.2: Obtained Objective Vectors of RB −MOEAREF for DTLZ problems
with 5 Objectives

5.3.3 Discussion Over RB −MOEAREF

The KB-MOEA, RB − MOEAREF , evolves rule-represented knowledge, aims at

investigating the optimal distribution patterns in the decision space when many

objectives are involved. However, the rule-represented knowledge evolution still has

to deal with the same problems, such as the pervasive non-dominated solutions in

objective space. Rules with a comparatively smaller sampling size are more likely

to be full of non-dominated solutions when they are still far away from the optimal

area. Generally, the RB −MOEAREF suffers from finding convergence direction.

This can be mitigated in two ways. First, we can modify Pareto dominance to

decrease the number of non-dominated solutions or assign different ranks to non-

dominated solutions, as proposed in research [118][91][34]. Second, we can adopt

a hybrid design sitting on top of the original NSGA3. The hybrid approach starts
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Figure 5.3: Obtained Objective Vectors of RB −MOEAREF for DTLZ problems
with 8 Objectives

NSGA3 from the very beginning and then after a period of evolution, say half of the

generations have completed, switch to knowledge-based evolution. In other words,

this hybrid handling starts to evolve rules from a comparatively high level. The

purpose is simply to promise the benefits of knowledge evolution but avoid the

stagnation when the rules are immature. The following section will elaborate the

hybrid design of knowledge-based many-objective evolutionary optimization.

5.4 Hybrid Approach for RB −MOEAREF

This section introduces the hybrid approach combining the latest development in

many-objective optimization and knowledge based evolution. The resulting algorith-

m using this hybrid design starts original NSGA3 first but switches to knowledge

based evolution at some generation, to identify optimal patterns in decision space.
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Figure 5.4: Obtained Objective Vectors of RB −MOEAREF for DTLZ problems
with 10 Objectives

5.4.1 Hybrid RB −MOEAREF

Based on the selection of switching point between solution-based NSGA3 evolution

and rule-based knowledge evolution, we adopt two setups in the design of the hybrid

algorithm. First, we start original NSGA3 for the first half of generations and then

switch to the knowledge evolution from halfway to the end. Second, we alternate

original NSGA3 and knowledge evolution every 100 generations.

5.4.2 Hybrid RB −MOEAREF - Single Switch

For the first setup, the Hybrid RB −MOEAREF starts with normal NSGA3 pro-

cedure, such as population initialization, crossover, mutation and environmental

selection until to the middle of the whole optimization process. The middle point is

selected for switching to the rule based search, RB−MOEAREF . It treats the solu-
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Figure 5.5: Obtained Objective Vectors of RB −MOEAREF for DTLZ problems
with 15 Objectives

tion population as the initial archive and utilizes k-means clustering to group these

solutions. The bounds of these groups are further used to initialize the rule popu-

lation and then the rule evolution starts. The whole process is shown in Algorithm

8.

This hybrid approach is still able to bring the benefits that a knowledge-based

algorithm is expected to present:

• A set of rules that reveal the patterns of Pareto optimal solutions in decision

space;

• A set of optimized solutions with comparable quality compared to the result

of original algorithm.

Here, the first benefit is especially useful in many-objective optimization. It’s

clear that even when traditional MOEAs can converge in a many-objective envi-
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Algorithm 8: Hybrid RB −MOEAREF with Single Switch Algorithmic De-
scription.

Intput : A set of reference points Z;
A stopping criterion, i.e., the maximum number of generations is

Gen;
Output: A set of optimized rules;

An archive of optimized solutions.
1 Initialize solution population P S

1 of size nP ;
2 while gen ≤ Gen/2 do
3 Perform crossover and mutation on P S

1 to generate a new population P S
2 ;

4 Utilize NSGA3 operations in Algorithm 5 to obtain next generation P S
C ;

5 P S
1 =P S

C ;

6 end
7 Initialize solution archive SA: SA = P S

1 ;
8 Initialize rule population PR

1 of size N using bounds of clusters from archive
SA generated using k-Means method;

9 while Gen/2 < gen ≤ Gen do
10 Perform real crossover and mutation on PR

1 to generate a new rule
population PR

2 ;
11 Sample SR solutions from each rule in PR

1 and PR
2 ;

12 Rank all (2×N × SR) solutions in population PR
1 and PR

2 plus the
solutions in the archive SA using the non-dominated sorting;

13 Update the solution archive SA using Algorithm 7;
14 Shrink the rules in P S

1 and P S
2 ;

15 Evaluate the quality of all the rules in P S
1 and P S

2 ;
16 Combine PR

1 and PR
2 to generate the offspring population PR

c . Select the
rules with better quality first and then the rules with bigger volume if
sharing the same quality;

17 PR
1 =PR

c ;

18 end
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ronment after improvement, its representation capability of the Pareto optimality is

very limited if it’s individual point based. In this case, patterns, instead of solutions,

are more suitable to describe the Pareto optimality.

An important question here is why we should start rule evolution from the

middle? First, the reason why we make it hybrid is to start the rule evolution

at a comparatively high level to mitigate the influence of pervasive non-dominated

solutions in the many-objective environment. Hence, it will make little sense to

introduce hybridization if we switch to rule evolution too early, for example, at 50th

generation (if the maximum generation number is 500). Second, the rule evolution

will be immature if we switch too late. In the evolution, rules will be evaluated

again and again by resampling solutions over generations before being eliminated

from the rule population. After the optimization, the rules returned are all winners

not only over bad rules, but also over their previous immature forms. Overall, it’s

not a must to switch to rule evolution at the middle point, but a moderate switching

point is recommended.

5.4.3 Hybrid RB −MOEAREF - Alternating Switch

The second setup executes NSGA3 process and knowledge evolutionRB−MOEAREF

alternatively. It has more time points for switching. When switching from NSGA3

to knowledge evolution, the same method as above is used. When switching back, we

just use the solutions in the archive of knowledge evolution as the initial population

of NSGA3.

5.4.4 Rule Initialization at Switching Generation

The initialization of rules at switching point is based on k-means clustering. Two

examples are shown in Figure 5.6 with balanced or unbalanced size of clustering.

When using balanced k-means, one issue is the convergence of clustering. We set

the maximum number of iterations for identifying stable centroids is 100.
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Figure 5.6: Rule Initialization based on k-Means Clustering

5.5 Experimental Setup

5.5.1 Algorithm Setups

Overall, we have four hybrid setups for knowledge based evolution in many-objective

optimization: Hybrid RB−MOEAREF with single Halfway switch setup using Un-

balanced k-means clustering (HHU), Hybrid RB −MOEAREF with single Halfway

switch using Balanced k-means clustering (HHB), Hybrid RB −MOEAREF with

Alternating switch setup using Unbalanced k-means clustering (HAU) and Hybrid

RB−MOEAREF with Alternating switch setup using Balanced k-Means clustering

(HAB). The experiments compare these four hybrid designs to the original NSGA3

algorithm.
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Figure 5.7: Projection of Reference Points to Unit Sphere.

5.5.2 Test Problems

We use DTLZ test problems to evaluate the performance of algorithms, which are

scaled to 3, 5, 8, 10 and 15 objectives respectively in the experiments.

5.5.3 Performance Metric

The performance of algorithms are analysed with respect to the objective space and

decision space. For the objective space, the IGD metric is used to measure the

outcome of the corresponding algorithm. When calculating IGD, a set of optimal

solutions are required. For DTLZ 2-4 problems, the Pareto optimal solutions are

all located on the unit sphere in the first octant. In order to get an even spread

solutions on unit sphere, we just project the reference points to the unit sphere to

get a sample of optimal solutions, as shown in Figure 5.7.

5.5.4 Parameter Settings

Since the reference points used in NSGA3 are generated structurally, we use the

same settings as in its official paper for our experiments for clear comparison, as
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shown in Table 5.2. The parameters m, pB, pI , nREF , nP and N stand for number

of objectives, number of divisions (Boundary Layer), number of divisions (Inside

Layer), number of reference points, NSGA3 population size and rule population

size, respectively. The number of solutions sampled from each rule SR is 10.

Table 5.2: Number of Reference Points and Population Size Settings for NSGA3
and Hybrid RB −MOEAREF (m: number of objectives; pB: number of divisions
on Boundary Layer; pI : number of divisions on Inside Layer; nREF : number of
reference points; nP : NSGA3 population size; N : rule population size.)

m pB pI nREF nP N
3 12 - 91 92 10
5 6 - 210 212 22
8 3 2 156 156 16
10 3 2 275 276 28
15 2 1 135 136 14

(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Figure 5.8: Obtained Front of NSGA3 in Black and HAU Setup in Red for DTLZ
problems with 3 Objectives
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Figure 5.9: Obtained Front of NSGA3 in Black and HAU Setup in Red for DTLZ
problems with 5 Objectives

5.6 Experiment Result

This section presents the performance analysis of the hybrid design for knowledge

evolution in many-objective optimization, compared to the original NSGA3, in both

objective space and decision space. The objective space performance is discussed

in Section 5.6.1 covering the visualization of obtained objective vectors and per-

formance measurement using IGD. The decision space performance, is analysed in

Section 5.6.2 presenting the rules returned by knowledge evolution and result com-

parison with the PSV metric, proposed in Chapter 3.

5.6.1 Objective Space

The objective space performance analysis focus on the convergence to the Pareto

front and diversity along this front. In objective space, the obtained fronts with 3
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Figure 5.10: Obtained Front of NSGA3 in Black and HAU Setup in Red for DTLZ
problems with 8 Objectives

objectives are first visualized in Section 5.6.1.1 and for problems with 5, 8, 10 and

15 objectives, the parallel coordinates plot is used. The parallel coordinates plot

is widely used in many-objective documents and is a straight-forward multivariate

alternative that display all the variables together, allowing to investigate higher-

dimensional relationships among variables. In this plot, the coordinate axes are

all laid out horizontally, instead of using orthogonal axes as in the usual Cartesian

graph. Each observation is represented in the plot as a series of connected line

segments. The quantitative performance measure and comparison using IGD are

presented in Section 5.6.1.2.

5.6.1.1 The distribution of Objective Optimal Vectors

For DTLZ problems with 3 objectives, the distribution of solutions in objective space

is shown in Figure 5.8. Among these four subproblems, the 3-objective DTLZ3
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Figure 5.11: Obtained Front of NSGA3 in Black and HAU Setup in Red for DTLZ
problems with 10 Objectives

(DTLZ3F3) seems to be the most difficult one compared to other problems. In

Figure 5.8(c), the objectives vectors successfully converged to the unit sphere, but

not evenly spread compared to solutions in other problems.

For DTLZ problems with 5, 8, 10 and 15 objectives, the objective vectors of

original NSGA3 and HAU hybrid design are presented in Figure 5.9, 5.10, 5.11 and

5.12 respectively. For most problems, both algorithms can return well distributed

optimal solutions. For DTLZ3 problems, however, outliers can be observed in Figure

5.9(c), 5.10(c) and 5.11(c). Biased distribution exists in DTLZ1 and DTLZ3 with

15 objectives, as shown in Figure 5.12(a) and 5.12(c).

Overall, both the NSGA3 and the hybrid design are successfully providing satis-

fying outcomes with respect to increase in the number of objectives. A quantitative

analysis is performed in the following section.
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(a) DTLZ1 (b) DTLZ2

(c) DTLZ3 (d) DTLZ4

Figure 5.12: Obtained Front of NSGA3 in Black and HAU Setup in Red for DTLZ
problems with 15 Objectives

5.6.1.2 IGD

IGD evaluates both convergence and diversity in objective space. The lower IGD

values are considered better. Since the reference points in the calculation is de-

termined by the reference points used in the algorithm, IGD here evaluates the

convergence and distribution of solutions to the projection of reference points on

the unit hyper-plane in DTLZ1 or unit hyper-sphere in other problems. The aver-

age IGD values (µ) and their standard deviation (σ) of original NSGA3 and four

hybrid setups over DTLZ problem with different number of objectives are shown

in Table 5.3. The value in bold means the best in this row and a � means it’s

significantly better than the original NSGA3 using a Wilcoxon signed-rank test at

the default 95% significance level. The change of IGD values over time (number of

generation) is shown in Figure 5.13.



CHAPTER 5. HYBRID KNOWLEDGE-BASED EVOLUTIONARY
MANY-OBJECTIVE OPTIMIZATION 131

Regarding the performance of the algorithms in terms of this metric, it can

be observed that in most cases, the best outcomes belong to the hybrid approach-

es. The original NSGA3 outperforms the four hybrid knowledge based evolution

setups in 6 subproblems while in the rest 14 problems it fails to compete with the

best value of hybrid approaches. When compared original NSGA3 to single hybrid

setup, it outperforms with HAU, HAB, HHU and HHB setups with 7, 8, 11 and

12 subproblems. Its performance just sits between the alternating approaches and

halfway-switching approaches.

Among the hybrid setups themselves, the alternating setups are slightly bet-

ter than the halfway-switching approaches with respect to IGD. The alternating

setups enjoys the both benefit from original NSGA3 evolution and knowledge-based

evolution for convergence and diversity.

All the IGD curves over time or number of generations converge nicely as the

number of generations increase.

Generally, for the objective space analysis, the hybrid knowledge based NSGA3

evolution shows comparable performance to the original NSGA3 in terms of IGD

metric.
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Table 5.3: Average IGD and Standard Deviation at Last Generation with � Showing
Statistical Significance at 0.95 Level Using Wilcoxon Test

Prob m Gen NSGA3 HAU HAB HHU HHB

DTLZ1

3 600
µ 1.785e-03 1.277e-03 8.916e-04� 6.109e-03 2.265e-03
σ 3.833e-03 3.021e-03 7.224e-04 2.547e-02 3.428e-03

5 1000
µ 9.632e-04 4.317e-03 3.431e-03 5.251e-03 3.123e-03
σ 6.910e-04 7.126e-03 4.440e-03 3.891e-03 1.512e-03

8 1600
µ 1.409e-01 1.443e-02 4.341e-03� 5.319e-02 4.121e-02
σ 9.161e-02 2.720e-02 4.469e-03 2.763e-02 2.199e-02

10 2000
µ 1.518e-01 3.667e-03� 4.630e-03 6.372e-02 6.064e-02
σ 7.952e-02 3.513e-03 4.723e-03 3.517e-02 3.734e-02

15 3000
µ 3.078e-01 9.949e-02 1.745e-02� 1.700e-01 1.417e-01
σ 6.790e-02 4.650e-02 2.328e-02 4.117e-02 3.335e-02

DTLZ2

3 600
µ 1.312e-03 2.688e-03 2.427e-03 4.671e-03 3.874e-03
σ 8.779e-04 1.291e-03 1.461e-03 3.538e-03 3.025e-03

5 1000
µ 3.537e-03 7.440e-03 6.579e-03 8.252e-03 8.013e-03
σ 1.530e-03 1.933e-03 9.110e-04 1.759e-03 2.894e-03

8 1600
µ 3.997e-02 1.391e-02 1.177e-02� 1.467e-02 1.627e-02
σ 3.822e-02 5.413e-03 2.692e-03 4.375e-03 4.273e-03

10 2000
µ 4.610e-02 2.411e-02 1.810e-02� 4.021e-02 3.154e-02
σ 3.151e-02 1.137e-02 5.253e-03 3.502e-02 2.682e-02

15 3000
µ 1.701e-01 1.061e-01 4.509e-02� 1.686e-01 2.277e-01
σ 3.896e-02 3.464e-02 4.006e-02 4.570e-02 4.091e-02

DTLZ3

3 600
µ 3.117e-02 1.310e-01 2.753e-01 6.623e-01 5.601e-01
σ 1.752e-02 1.780e-01 3.884e-01 6.422e-01 6.533e-01

5 1000
µ 5.970e-02 1.890e-01 1.521e-01 1.555e-01 1.519e-01
σ 5.097e-02 5.333e-02 4.541e-02 3.981e-02 1.228e-01

8 1600
µ 3.408e-01 3.761e-01 6.372e-01 4.688e-01 3.199e-01�
σ 2.427e-01 3.317e-01 1.025e+00 5.841e-01 1.031e-01

10 2000
µ 5.670e-01 2.479e-01 1.637e-01� 4.022e-01 3.909e-01
σ 1.517e-01 1.237e-01 9.159e-02 1.509e-01 1.366e-01

15 3000
µ 9.734e-01 4.472e-01 3.883e-01� 6.977e-01 7.240e-01
σ 7.427e-02 2.739e-01 2.409e-01 1.217e-01 8.738e-02

DTLZ4

3 600
µ 5.969e-02 2.706e-02 2.292e-02� 6.241e-02 7.315e-02
σ 7.914e-02 2.748e-02 1.511e-02 9.944e-02 1.207e-01

5 1000
µ 1.350e-02 8.298e-03� 1.086e-02 1.712e-02 1.480e-02
σ 1.132e-02 1.508e-02 1.416e-02 1.501e-02 1.697e-02

8 1600
µ 7.845e-03 3.036e-03� 3.536e-03 2.499e-02 1.186e-02
σ 2.789e-02 4.749e-03 8.012e-03 3.968e-02 2.571e-02

10 2000
µ 8.134e-04 1.101e-03 1.020e-03 1.392e-03 1.322e-03
σ 1.752e-03 1.294e-04 1.401e-04 1.817e-04 2.917e-04

15 3000
µ 2.367e-02 1.485e-02 3.746e-03� 1.801e-02 2.396e-02
σ 3.151e-02 3.086e-02 1.543e-02 3.258e-02 2.453e-02
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Table 5.4: Solution Average PSV and Standard Deviation at Last Generation with
� Showing Statistical Significance at 0.95 Level Using Wilcoxon Test

Prob m Gen NSGA3 HAU HAB HHU HHB

DTLZ1

3 600
µ 9.563e+01 9.583e+01 9.564e+01 9.612e+01� 9.600e+01
σ 4.372e-01 3.968e+01 4.554e+01 4.509e+01 4.120e+01

5 1000
µ 6.190e+01 6.443e+01 6.471e+01 6.589e+01 6.642e+01�
σ 3.699e+00 1.130e+01 1.843e+01 1.647e+01 1.241e+01

8 1600
µ 3.309e+00 1.040e+01� 1.027e+01 5.812e+00 7.346e+00
σ 4.310e+00 3.641e+00 3.837e+00 3.714e+00 2.790e+00

10 2000
µ 6.074e+01 9.402e+01 9.448e+01 9.615e+01� 9.590e+01
σ 2.837e+01 2.308e+01 2.521e+01 2.978e+01 3.170e+01

15 3000
µ 2.785e+01 8.483e+01 9.198e+01� 8.958e+01 9.168e+01
σ 1.641e+01 2.258e+01 2.092e+01 2.149e+01 1.630e+01

DTLZ2

3 600
µ 9.711e+01 9.710e+01 9.713e+01 9.724e+01 9.729e+01�
σ 1.568e-02 3.130e+00 3.226e+00 3.628e+00 2.811e+00

5 1000
µ 7.324e+01 7.264e+01 7.444e+01 7.457e+01� 7.445e+01
σ 2.577e+00 7.467e+00 1.223e+01 1.347e+01 8.432e+00

8 1600
µ 1.292e+01 1.228e+01 1.310e+01 1.282e+01 1.401e+01�
σ 4.880e+00 2.964e+00 3.026e+00 2.429e+00 2.671e+00

10 2000
µ 9.507e+01 9.473e+01 9.488e+01 9.355e+01 9.415e+01
σ 4.739e-01 1.399e+01 1.967e+01 1.537e+01 1.070e+01

15 3000
µ 8.363e+01 8.771e+01 8.851e+01� 8.398e+01 8.814e+01
σ 1.414e+01 2.132e+01 1.633e+01 2.011e+01 2.202e+01

DTLZ3

3 600
µ 9.592e+01 9.424e+01 9.193e+01 8.346e+01 9.474e+01
σ 1.290e+00 3.917e+01 4.304e+01 4.743e+01 4.490e+01

5 1000
µ 7.081e+01 5.171e+01 6.137e+01 5.922e+01 6.142e+01
σ 4.686e+00 2.326e+01 2.530e+01 2.571e+01 2.203e+01

8 1600
µ 9.523e+00 4.484e+00 5.290e+00 9.492e+00 7.872e+00
σ 7.049e+00 3.477e+00 3.534e+00 5.489e+00 4.329e+00

10 2000
µ 4.916e+01 9.412e+01 9.571e+01� 9.221e+01 9.535e+01
σ 2.809e+01 3.610e+01 3.227e+01 2.703e+01 2.403e+01

15 3000
µ 1.146e+01 8.477e+01 8.076e+01 8.489e+01� 7.890e+01
σ 5.631e+00 2.663e+01 2.860e+01 1.439e+01 1.513e+01

DTLZ4

3 600
µ 1.295e+01 3.568e+01� 3.012e+01 3.156e+01 2.800e+01
σ 9.745e+00 2.393e+01 2.086e+01 2.339e+01 2.102e+01

5 1000
µ 1.290e+01 2.176e+01 2.716e+01� 1.717e+01 1.501e+01
σ 9.469e+00 1.201e+01 1.286e+01 1.044e+01 8.456e+00

8 1600
µ 1.693e+00 3.582e+00� 2.434e+00 3.478e+00 3.187e+00
σ 1.552e+00 3.481e+00 1.479e+00 3.641e+00 2.162e+00

10 2000
µ 6.940e+01 7.974e+01� 7.926e+01 7.464e+01 7.782e+01
σ 1.091e+01 7.896e+00 2.167e+01 1.453e+01 1.693e+01

15 3000
µ 6.009e+01 6.942e+01 7.547e+01� 7.298e+01 7.291e+01
σ 3.731e+00 9.337e+00 8.896e+00 1.035e+01 1.211e+01
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5.6.2 Decision Space

The hybrid design of knowledge based many-objective optimization evolves rules

in decision space in some periods of the optimization process expecting to identify

interesting distribution patterns of Pareto sets. Here, we first represent the rules that

the hybrid approach returned in Section 5.6.2.1 and then evaluate the performance

using PSV metric in Section 5.6.2.2.

5.6.2.1 Rules

When doing the knowledge based evolution in the hybrid setups, the algorithm

maintains an archive of high quality non-dominated solutions as well as a population

of rules evolving to cover the optimal patterns in decision space. The box plots of

the rule population of the first run are shown in Figure 5.14, Figure 5.15, Figure

5.16 and Figure 5.17 with respect to different problem specification.

It is observed that DTLZ2 problems are most difficult for the rule to converge.

For the two groups of decision variables of DTLZ test suite, the first m−1 variables

are used to determine the shape of the tradeoff surface and the rest n − m + 1

variables are used to determine the location of the Pareto front. In DTLZ2 problems,

the second group of variables are close to the optimal value but fluctuate around

xi = 0.5, i = m,m + 1, . . . , n. For the rest DTLZ problems, most rules successfully

converge to the optimal area. And in some subproblems, especially for those with

3 or 5 objectives, the full Pareto set or most of the optimal area can be identified

with rules.

Among the four different setups, the two halfway-switching approaches (check-

ing the rule quality of HHU and HHB in Figure 5.16 and Figure 5.17) are com-

paratively better than the alternating setups (HAU and HAB in Figure 5.14 and

Figure 5.15). HHU and HHB setups allow more generations for the rules to evolve

consistently whereas the other two setups will hinder the evolution of rules since it

switches every 100 generations.

Overall, all the hybrid approaches can successfully provide a set of high quality
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Table 5.5: Rule Average PSV and Standard Deviation at Last Generation with �
Showing Statistical Significance at 0.95 Level Using Wilcoxon Test

Prob m Gen NSGA3 HAU HAB HHU HHB

DTLZ1

3 600
µ 9.563e+01 8.111e+01 8.044e+01 8.627e+01 9.851e+01�
σ 4.372e-01 1.483e+01 1.907e+01 3.001e+01 2.291e+00

5 1000
µ 6.190e+01 5.563e+01 8.296e+01 8.506e+01 9.503e+01�
σ 3.699e+00 2.231e+01 6.684e+00 1.483e+01 7.363e+00

8 1600
µ 3.309e+00 2.555e+01 5.634e+01 5.978e+01 7.438e+01�
σ 4.310e+00 1.388e+01 1.495e+01 2.671e+01 1.941e+01

10 2000
µ 6.074e+01 9.117e+01 9.257e+01 9.628e+01 9.825e+01�
σ 2.837e+01 3.925e+00 4.886e+00 3.402e+00 1.507e+00

15 3000
µ 2.785e+01 7.312e+01 8.463e+01 8.351e+01 8.591e+01�
σ 1.641e+01 1.864e+01 7.186e+00 1.049e+01 9.564e+00

DTLZ2

3 600
µ 9.711e+01 5.371e+01 5.135e+01 1.529e+01 1.845e+01
σ 1.568e-02 9.756e+00 8.095e+00 1.264e+01 1.120e+01

5 1000
µ 7.324e+01 3.054e+01 3.827e+01 6.754e+00 1.452e+01
σ 2.577e+00 1.182e+01 8.739e+00 3.487e+00 1.207e+01

8 1600
µ 1.292e+01 5.676e+00 1.309e+01� 4.097e-01 2.829e+00
σ 4.880e+00 3.793e+00 1.202e+01 4.696e-01 2.107e+00

10 2000
µ 9.507e+01 7.030e+01 6.311e+01 1.259e+01 3.308e+01
σ 4.739e-01 9.614e+00 1.370e+01 1.432e+01 1.880e+01

15 3000
µ 8.363e+01 5.602e+01 5.482e+01 1.326e+01 2.138e+01
σ 1.414e+01 1.505e+01 1.640e+01 1.560e+01 1.744e+01

DTLZ3

3 600
µ 9.592e+01 6.030e+01 5.700e+01 1.477e+01 5.409e+01
σ 1.290e+00 2.587e+01 3.271e+01 1.990e+01 3.705e+01

5 1000
µ 7.081e+01 4.778e+01 7.189e+01 7.089e+01 8.287e+01�
σ 4.686e+00 1.388e+01 1.398e+01 1.632e+01 1.678e+01

8 1600
µ 9.523e+00 1.169e+00 1.228e+01 3.560e+01 3.939e+01�
σ 7.049e+00 2.272e+00 2.559e+01 2.534e+01 3.132e+01

10 2000
µ 4.916e+01 8.545e+01 9.301e+01� 8.080e+01 8.568e+01
σ 2.809e+01 1.031e+01 3.746e+00 1.279e+01 7.766e+00

15 3000
µ 1.146e+01 7.311e+01� 6.844e+01 6.910e+01 6.837e+01
σ 5.631e+00 1.819e+01 1.898e+01 2.005e+01 1.481e+01

DTLZ4

3 600
µ 1.295e+01 3.581e+01 3.779e+01 5.465e+01 5.969e+01�
σ 9.745e+00 1.067e+01 1.125e+01 7.072e+00 1.117e+01

5 1000
µ 1.290e+01 1.859e+01 1.542e+01 3.545e+01� 3.407e+01
σ 9.469e+00 6.152e+00 3.830e+00 4.271e+00 6.908e+00

8 1600
µ 1.693e+00 2.038e+00 1.898e+00 7.905e+00 8.602e+00�
σ 1.552e+00 8.312e-01 6.885e-01 1.911e+00 1.616e+00

10 2000
µ 6.940e+01 5.774e+01 5.486e+01 7.094e+01 7.145e+01�
σ 1.091e+01 4.384e+00 4.178e+00 3.236e+00 2.750e+00

15 3000
µ 6.009e+01 5.438e+01 4.732e+01 7.053e+01� 6.472e+01
σ 3.731e+00 9.157e+00 7.331e+00 5.722e+00 4.191e+00
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rules for decision making from 3-objective to many-objective optimization.

5.6.2.2 PSV

The PSV evaluates the percentage of the area of convex hull determined by solutions

over the overall area of optimal patterns. Higher value is preferred. The quickhull

algorithm is utilized for its calculation. However, when estimating the PSV values in

many-objective environments, one problem is the determination of high dimensional

convex hull. For DTLZ problems with 10 and 15 objectives, we have to identify the

convex hull in 9 and 14 dimensional decision spaces respectively while the quickhull

algorithm can only handle up to 8 dimensions. In this case, we just pick any 2

dimensions and calculate the PSV value with 2-dimensional convex hull and then

take the average as the final metric value. For example, when dealing with DTLZ1

with 10 objectives, there are
(

9
2

)
= 36 combinations if we choose two dimensions

from the corresponding decision space. We treat these combinations individually

and use the average of them as the final PSV value for the problem.

The PSV values of original NSGA3 and four hybrid setups over DTLZ prob-

lems with different number of objectives are shown in Table 5.4. The PSV values

determined by the vertices of corresponding rules are listed in Table 5.5. The value

in bold means the best in this row and a � means it’s significantly better than the

original NSGA3 using a Wilcoxon signed-rank test at the default 95% significance

level. The change of PSV over time (number of generations) is shown in Figure 5.18.

When evaluating the performance in terms of this metric in Table 5.4, the

hybrid approaches generate the best results in most cases, except in 4 subproblems.

The hybrid design utilizes NSGA3 operation for convergence and help the original

NSGA3 with improved diversity in decision space significantly.

When comparing the result of solution archives and the rules in Table 5.4 and

5.5, the rules can outperform the solution archive in most subproblems of DTLZ1,

DTLZ3 and DTLZ4. The HHB hybrid setup provides the best performance compar-

atively. However, in DTLZ2, the rules suffered from the convergence as explained

in Section 5.6.2.1 and the result is not as good as the solution archive.
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Overall, the hybrid design of knowledge based many-objective optimization can

improve the original NSGA3 in performance regarding decision space in terms of

PSV metric.

5.7 Summary

NSGA3 expands the application scope of Pareto dominance based evolutionary al-

gorithm to many objective space. It tries to solve the convergence and diversity

with the support of a set of reference points spread evenly in the objective space,

although the representation of the whole Pareto surface is highly constrained simply

by the distribution of these reference points.

In order to introduce knowledge based optimization into a many-objective envi-

ronment, a hybrid design is adopted. This approach utilizes the NSGA3 operation to

promise the convergence and combined rule based evolution to generate optimal pat-

terns to describe the Pareto set. Four different setups are described in this chapter

and their performance are analyzed with problems having up to 15 objectives.

Generally, the hybrid approaches can benefit many-objective optimization prob-

lems with comparable solution quality in objective space as well as improved per-

formance in decision space. The hybrid design is able to return a set of high quality

rules to describe the distribution of the Pareto set and provides flexibility for decision

making compared to a limited number of isolated optimal solutions.





Chapter 6

Conclusion and Future Work

Online Knowledge-based Evolutionary Multi-objective Optimization is a challeng-

ing task. It transforms the traditional solution based evolution to knowledge based

optimization to improve the performance of algorithms in both decision space and

objective space. It requires effective algorithmic designs for the evolution in multi-

objective optimization context, including many-objective problems and an appro-

priate evaluation methodology for judging on performance. In this thesis, we at-

tempted to address the evaluation benchmarks and metrics first and then focused

on algorithmic design of knowledge-based evolutionary multi-objective optimization.

A summary of contributions in this thesis is provided below.

6.1 Summary of Contributions

The contributions of this thesis focus on online knowledge-based evolutionary multi-

objective optimization design and the development of evaluation benchmarks in the

decision space covering the following points:

• This thesis presents a novel knowledge-based multi-objective optimization

framework which automatically searches for optimal patterns in the decision

space by evolving directly a population of rules. The rules correspond to the

bounding areas in the design space and are evaluated based on the quality
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of sampled solutions from their bounded area. The framework allows using

the existing MOEA design for the evaluation of rule quality. This facilitates

the online discovery of knowledge during the optimization process in an inter-

pretable form.

• An implementation of the framework using a hyperrectangular rule represen-

tation and evaluating rules based on NSGA2 for optimization with multiple

objectives are presented.

• An implementation of the framework using a hybrid design combined with

NSGA3 for many objectives optimization is presented.

• A mechanism is proposed to generate test problems where those solutions be-

longing to the efficient or Pareto frontier are mapped to defined hyperrectan-

gular patterns in the decision space. The modular design allows the generation

of a number of test problem instances (HPS) with varying degrees of complex-

ity in terms of number of decision variables, number of optimal patterns and

other interesting features.

• A new metric is proposed to evaluate the performance of MOEAs in the deci-

sion space. The metric (PSV) relies on computing the ratio of volume covered

by the solution set obtained by an MOEA to the total volume occupied by the

defined Pareto sets in the decision space.

The effectiveness of the resulting algorithms is established through comprehen-

sive experimentation and analysis. The algorithms are tested on some standard

benchmark problems as well as newly proposed test functions. The performance

was analysed using existing metrics and newly designed metrics. The experimen-

tal results demonstrate the optimization capabilities of the proposed algorithms in

comparison to the state-of-the-art multi-objective evolutionary optimization algo-

rithms, such as NSGA2, NSGA3 and MOEA/D. The main findings of this thesis are

summarized below as follows:
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• When compared to state-of-the-art MOEAs, the knowledge-based algorithms

can generate comparable performance regarding the solution quality in the

objective space, such as convergence and diversity issues. In most cases, the

knowledge-based computational methods are able to perform equally or better

than the mainstream algorithms, although no obvious statistical differences are

found.

• The proposed algorithms demonstrate considerable improvement in perfor-

mance in the decision space, including rules of high quality to support decision

making and better solution diversity and coverage over the whole Pareto set.

Firstly, the knowledge-based algorithm is able to capture the high fitness areas

in decision space with minimum number of rules. The rules can be represented

in natural and standard if-then forms which can further facilitate understand-

ing and decision making in multi-objective context. Secondly, the diversity

and coverage of solutions over the whole Pareto set in decision space is sig-

nificantly improved. As shown in Chapter 4, the knowledge-based algorithm

outperforms competing algorithms for all HPS problems in terms of PSV met-

ric, especially for those with more than 4 patterns. The rise in performance

can only be matched when the order of magnitude of the population size is

increased for competing algorithms.

• The new test problems and metric proposed in this thesis can be used to

benchmark the performance of MOEAs from the decision space’s perspective,

contributing to the scant research in performance evaluation of MOEAs in the

decision space.

The thesis reveals that performance in the decision space is not necessarily re-

flecting performance in the objective space. While a MOEA performs comparatively

good in the objective space, its performance in the decision space is not guaranteed.

In fact, the diversity or distribution patterns of optimal solutions in the decision

space enable us to realize and utilize the causative side of the mapping from decisive

optimal parameter settings to the resulting optimal front. When solving engineer-
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ing design problems, it is the design parameter space to be tuned for the generation

of satisfying performance in the objective space. From this perspective, the in-

vestigation over decision space is of important value to facilitate a comprehensive

understanding of the original optimization problem.

Overall, we believe that the knowledge-based MOEA framework presented in

this thesis has important implications for many domains including engineering design

and decision support systems. It helps in understanding the optimization process

better by revealing the relationships between the decision variables and the objective

functions based on the rules or patterns that lead to optimal designs, hence for the

design of robust optimizers. It is able to deal with a wide range of real world

MOPs, presenting the Pareto set in the form of interpretable rules with promising

diversity of solutions in the decision space and improvement in the implementation

of solutions.

6.2 Limitations

There are also a number of limitations in our work.

Scalability of proposed methodology - First, the knowledge-based evolution-

ary algorithms for multi-objective optimization suffers from the cardinality

and the dimensionality of optimal patterns in decision space. The proposed

algorithms can generate dominating results compared to other methods, but

the performance deteriorates when either the number or dimensionality of op-

timal patterns increases. Second, the calculation of convex hull based decision

space performance metric, PSV, get more expensive as we increase the dimen-

sionality of optimal patterns.

Comparison with other Knowledge Extraction Algorithms for Multi-objective

optimization - The proposed knowledge-based evolution is compared against

leading multi-objective evolutionary algorithms regarding performance in both

objective space and decision space, without other knowledge extraction meth-

ods involved. However, it is difficult to do such analysis directly since the
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knowledge representation varies over different applications and there is no s-

tandard benchmarks serving this purpose, as shown in Chapter 2.

Analysis of Learnt Knowledge - The online knowledge-based evolutionary multi-

objective optimization has demonstrated the effectiveness of the identification

of optimal patterns in the form of rules, however, the question how these rules

can be utilized to support decision making has not been researched. This is

thesis is about the establishment of the knowledge-based optimization. We

will address the application of rules in the future research.

Real World Applications - Online knowledge-based evolutionary multi-objective

optimization is evaluated based on classic benchmarks and proposed test prob-

lems. This work needs to extend to real-world applications. In particular, the

nature of the problem is more suitable for optimizing rule-based multi-agent

systems, where the discovery of rules during the optimization process is a

natural way to generalize the optimization process of the multi-agent system.

6.3 Future Work

Overall, this thesis is a first attempt to analyse and set up online knowledge-based

evolutionary multi-objective optimization. There is a broad scope for extensions to

the current research. Based on the limitations and discussions above, there are a

number of directions stemming from this work for future research.

Scaling to bigger problems - Regarding limitations in the scalability of the method,

the knowledge-based optimization requires new improvements to tackle more

complex problems with many and high-dimensional optimal patterns more ef-

fectively. Dynamic resource allocation is probably needed to deal with the

increase in dimensionality of Pareto set to apply more computations on inef-

ficient dimensions.

Generalizing the implementation to other MOEAs - Regarding the instan-

tiations of the framework, the establishment of its generality require exten-
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sions using a number of other leading MOEAs, not only the Pareto dominance

based algorithms and extensions using a number of other rule representations

including hyper-ellipsoids and fuzzy representations.

Extending the application scope of knowledge-based optimization - First,

knowledge-based evolutionary multi-objective optimization requires real world

problems to demonstrate its practical use. Second, knowledge-based evolution

can be successful and needs to be testing in dynamic environments. The on-

line design enjoys the capability to provide knowledge about the problem at

any time during the evolution for dynamic optimization. Last, the hyper-

volume rule-represented knowledge can be transferred to be used in robust

optimization without too much effort. Robust optimization problems can also

be considered in the future to extend the scope of application.

To sum up, the topic of knowledge discovery for optimization problems is rel-

atively new and this thesis is about the design of online knowledge based multi-

objective optimization. This thesis does not solve all problems in this domain, but

instead concentrates on the construction, implementation and establishment of a

framework to provide an alternative approach compared to the existing methods.

Improvement of the proposed framework will provide interesting insights for future

research in the field of evolutionary multi-objective optimization.
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