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Abstract

It is well known that su�ciently smooth, hyperbolic dynamical systems admit

strong statistical descriptions e.g. limit laws such as a central limit theorem or

large deviation principle. Given the existence of these laws one is led to the ques-

tion of their stability: do nearby systems have similar statistical descriptions, and

to what extent can one numerically approximate the statistics of any particular

system? In this thesis such questions are investigated by building on the so-called

functional analytic approach, and in particular the spectral perturbation theory of

Keller and Liverani. For deterministic systems it is shown that the Keller-Liverani

perturbation theory is compatible with the naive Nagaev-Guivarc’h method – the

method used to obtain the aforementioned statistical limit laws – yielding a general

framework for deducing the statistical stability of deterministic dynamical systems

under a variety of perturbations. This theory is then applied to piecewise expanding

maps in one and many dimensions, in addition to Anosov maps on tori. Of particu-

lar note is the development of new, e�cient and rigorous numerical methods for the

approximation of the statistical properties of multidimensional piecewise expanding

maps and Anosov maps. In the second part of this thesis this program is begun

again for random systems. Here there is no analogue of the Keller-Liverani pertur-

bation theory, and so an appropriate random version of the theory is developed.

This theory is then applied to smooth random expanding maps on the circle, and

the stability of some basic statistical properties is deduced with respect to fiber-wise

deterministic perturbations and a Fourier-analytic numerical method.
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Introduction

While the presence of uniform hyperbolicity is a well-known driver of chaotic be-

haviour in smooth dynamical systems, it is this same hyperbolicity that leads to

precise statistical characterisations for such systems. For instance, uniform hy-

perbolicity guarantees the existence of physically meaningful invariant measures

[19, 74, 93, 98], and, under additional hypotheses, stronger properties such as ex-

ponentially decaying correlations for smooth observables [60, 77] or statistical limit

laws such as a Central Limit Theorem (CLT) or Large Deviation Principle (LDP)

[85, 88, 92]. The research in this thesis is concerned with questions of the stabil-

ity of such statistical properties. Here ‘stability’ is to be understood in quite a

general sense, for a number of practically important questions can be recast as sta-

bility problems. To name a critical few: When (and how) does a system’s statistics

change continuously with the system itself? Are the statistics of an isolated system

robust to the presence of small amounts of external random noise? Do the statis-

tical properties of su�ciently granular numerical discretisations approximate those

of the original system? This last question, on the potential for numerical approxi-

mation of the statistics of a given system, will be a common thread throughout this

thesis and has motivated much of the research contained herein.

One of the most e↵ective techniques for attacking these kinds of problems is the

functional analytic approach (see, for a modern overview, any of [10, 11, 45, 78, 79]).

This approach builds on the observation that many of the statistical properties of

su�ciently smooth, uniformly hyperbolic dynamical systems are accessible via the

spectral properties of the associated Perron-Frobenius operator, provided that one

considers the operator on a Banach space that is appropriately matched to the

dynamics. In particular, one wishes to find a Banach space that is small enough

so that the Perron-Frobenius operator is quasi-compact, but rich enough so that

one may study the statistics of as many observables as possible. Many relevant

perturbations manifest naturally as perturbations to the Perron-Frobenius operator,
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and so the question of stability of statistical properties then becomes one of spectral

stability. Unfortunately, very few perturbations continuously perturb the Perron-

Frobenius operator in the operator norm, e↵ectively ruling out the application of

classical operator perturbation theory1 (as in Kato [65]). The spectral perturbation

theory of Keller and Liverani [68, 71] (and, later, Gouëzel [54]) was developed to

address this problem, and the theory consequently forms the technical backbone of

this thesis.

We start in Part I by focusing on deterministic (i.e. non-random) uniformly

hyperbolic maps and on the stability of the variance of the CLT and the rate func-

tion of the LDP for such systems. The stability of the variance has been previously

studied in a number of specific cases: stability to deterministic perturbations was

proven for Anosov maps and flows [54, 24], Lorenz flows [8] and Lasota-Yorke maps

[70], while various rigorous numerical methods have been developed for estimating

the variance of one-dimensional expanding maps [7, 63, 106]. The stability and

estimation of the rate function has received much less attention: a positive result

is noted in [24] for deterministic perturbations to Anosov flows, and some partial

results exist for numerical approximations of one-dimensional expanding systems

[102]. In the functional analytic approach the CLT and LDP (and a host of oth-

ers: [5, 22, 51, 52, 58, 80, 89, 92, 36]) are often obtained via the Nagaev-Guivarc’h

method [82, 56, 58, 53], in which one aims to code the moment or cumulant gener-

ating functions of a sequence of Birkho↵ sums in terms of an analytically twisted

Perron-Frobenius operator. As a result of this coding one obtains various limit laws,

the parameters of which are determined by the spectral data of the twisted Perron-

Frobenius operators, including the variance of the CLT and the rate function of the

LDP. The first main contribution of this thesis is to show that the perturbation

theory of Keller and Liverani is compatible with the Nagaev-Guivarc’h method,

resulting in a general, abstract stability theorem for the variance and rate function

(Theorem 2.2.1).

Throughout the remainder of Part I we reap the rewards of Theorem 2.2.1 for

a cohort of systems and perturbations. In Chapter 3 we examine a classical exam-

ple: one-dimensional Lasota-Yorke maps. For these maps we consider the Perron-

Frobenius operator on the space of functions of bounded variation, and examine

stability to stochastic and deterministic perturbations [68], in addition to numeri-

cal approximations via Ulam’s method [50, 75]. While these systems are well studied

1
Analytic systems are a notable exception; for a recent example of stability theory for analytic

maps see [13].
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[20, 74] and the stability of the variance has been proven here by other methods

[7, 70], our results on the stability of the rate function are new. We also take

the opportunity in this relatively simple setting to illustrate with a case study on

Ulam’s method how one might use our theory to adapt existing numerical methods

to approximate the variance and rate function. In Chapter 4 we apply our theory

to the class of multidimensional piecewise expanding maps considered by Saussol

in [94]. For these maps we show that stochastic perturbations and Ulam’s method

verify the conditions of Keller-Liverani stability theory when the Perron-Frobenius

operator acts on quasi-Hölder functions, and so we obtain stability of various statis-

tical parameters to these perturbations. Despite there being some earlier results on

the numerical approximation of the absolutely continuous invariant measure asso-

ciated to similar maps via Ulam’s method [32, 81], our results are the first to show

that the rate function and variance may also be approximated. Lastly, in Chap-

ter 5 we turn to Anosov di↵eomorphisms on tori and construct two new, e�cient,

Fourier-analytic numerical methods for approximating the statistical properties of

Anosov maps that are compatible with Keller-Liverani perturbation theory and

the anisotropic Banach spaces of Gouëzel and Liverani [54]. The computational

experiments that conclude Chapter 5 constitute the first rigorous computations of

the variance and rate function for any Anosov maps, although we note the ex-

istence of other numerical methods for estimating the statistical data of Anosov

maps [37, 31, 14, 100].

In Part II we shift to considering random dynamical systems (RDSs) and their

quenched statistical properties i.e. properties that are exhibited by almost every

realisation of the system. The functional analytic approach, as formulated for de-

terministic systems, does not generalise to the random setting and, in particular, it

does not su�ce to consider the spectral data of a single Perron-Frobenius operator to

access the system’s statistical properties. Rather, one is lead to consider a random

cocycle of Perron-Frobenius operators and apply tools from multiplicative ergodic

theory to obtain a Oseledets splitting for the cocycle [43, 47, 48]. It is this Oseledets

splitting, and its associated Lyapunov exponents, that encodes the quenched sta-

tistical behaviour of the system. This approach, which was pioneered in [42, 43] by

extending the techniques of [103], has developed into a rapidly expanding literature:

quenched statistical limit laws may be obtained under a random Nagaev-Guivarc’h

method [33, 34], and some results on the stability (and linear response) for random

equivariant measures exist [12, 35, 39, 83, 96, 97].
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However, the question of stability of the Oseledets splittings and Lyapunov

exponents for Perron-Frobenius cocycles has only been considered on a few prior

occasions and is yet of high practical importance, having applications to the de-

tection and characterisation of oceanic and atmospheric flows (see [46, Section 6]

for an overview, and e.g. [44, 41, 40] for applications). Stability for these objects

to ‘asymptotically small random perturbations’ of cocycles satisfying certain hyper-

bolicity conditions was proven in [16], but unfortunately this result only has limited

applicability to Perron-Frobenius operator cocycles. Secondly, in [49] the stability,

and lack thereof, of Lyapunov exponents was studied for the Perron-Frobenius op-

erator cocycle associated to a RDS consisting of expanding Blaschke products when

subjected to a variety of perturbations. This last setting is quite special, since the

dynamics are all analytic and each Perron-Frobenius operator is compact. In par-

ticular, the perturbations considered are small in the operator norm, which is a

substantial simplification, and so the techniques used for this result are unlikely to

generalise to non-analytic maps.

Hence, as it stands, there is no analogue of the Keller-Liverani perturbation

theory for the stability of Oseledets splittings and Lyapunov exponents that is well-

adapted to random Perron-Frobenius cocycles. As such, the goal of Part II is to

propose, develop and apply an appropriate generalisation of the Keller-Liverani per-

turbation theory for the random case. In Chapter 7 a Keller-Liverani-esque stability

theorem (Theorem 7.1.7) is proved for hyperbolic splittings associated to certain

linear automorphisms over vector bundles. Then, in Chapter 8, Theorem 7.1.7 is

applied to deduce the stability of Oseledets splittings and Lyapunov exponents for

cocycles with hyperbolic Oseledets splittings. Chapter 9 contains an application to

the stability of the quenched statistical properties of random C
k expanding maps

on the circle: we deduce stability under perturbations arising from a Fejér kernel

numerical method and to fiber-wise deterministic perturbations.

A notable di↵erence between our approach in Part II and the existing statistical

stability literature [71, 54, 39, 96, 97, 35] is the usage of Saks spaces, which, among

other things, allows us to weaken the hypotheses of Keller-Liverani stability results

in the deterministic case (see Remark 8.1.12). The theory of Saks spaces unifies

many of the concepts from the functional analytic approach such as the relationship

between weak and strong norms, Lasota-Yorke inequalities, and the ‘triple norm’

of Keller-Liverani perturbation theory. We posit that by studying these spaces one

may better understand the potential for, and limitations of, the functional analytic

4



approach. For example, using Saks space theory one can precisely characterise

the set of norms |·| on a Banach space (X, k·k) such that the closed unit k·k-

ball is |·|-compact (see Theorems 6.2.22 and 6.2.23), which has applications to the

construction of anisotropic Banach spaces adapted to hyperbolic dynamical systems.

A note on the originality of content in this thesis: the research contained herein

has appeared previously in a number of journal articles. Part I contains the publi-

cations [28, 29], which have been lightly edited for coherency. Part II is wholly the

article [27], which has also been lightly edited.
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Part I

Deterministic Systems
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Chapter 1

Spectral stability for twisted quasi-compact

operators

The goal of this chapter is to prove some abstract spectral stability results for ana-

lytic families of quasi-compact operators with respect to the kinds of perturbations

considered by Keller and Liverani [71]. In Section 1.1 we discuss previous results

on the stability of the spectrum of individual quasi-compact operators and then

in Section 1.2 we state our main results for this chapter (Theorem 1.2.2): a spec-

tral stability theorem for ‘analytically twisted’ families of quasi-compact operators.

Lastly, in Section 1.3, we prove a useful technical result on the robustness of the

hypotheses for the main result in Section 1.2 to operator norm perturbations.

1.1 Spectral stability of quasi-compact operators

The aim of this section is to review the spectral stability theory for quasi-compact

operators from [71], but first we recall some basic facts about quasi-compact oper-

ators. Let (E, k·k) be a complex Banach space, and denote by L(E) the Banach

space of bounded linear operators on E, and by k·k the operator norm on L(E).

For A 2 L(E) we denote the spectrum of A by �(A), and recall that the essential

spectrum of A is

�ess(A) = {! 2 �(A) : ! is not an eigenvalue of A of finite algebraic multiplicity}.

Denote the spectral radius and essential spectral radius of A by ⇢(A) and ⇢ess(A),

respectively. We say that A is quasi-compact if ⇢ess(A) < ⇢(A). If A is quasi-

compact and �(A) \ {! : |!| = ⇢(A)} consists of a single simple eigenvalue � then

7



we call A a simple quasi-compact operator and say that � is the leading eigenvalue

of A. In this case A has decomposition [65, III.6.4-5]

A = �⇧+N, (1.1)

where ⇧ is the rank-one eigenprojection corresponding to �, N 2 L(E) is such that

⇢(N) < ⇢(A), and N⇧ = ⇧N = 0. We call (1.1) the quasi-compact decomposition

of A. Let |·| be a norm on E such that the closed, unit ball in (E, k·k) is |·|-pre-

compact. After possibly scaling |·|, we may assume that |·|  k·k. Define the norm

|||·||| on L(E) by

|||A||| = sup
kfk=1

|Af | .

It is classical that ifA is a simple quasi-compact operator and kA0
� Ak is su�ciently

small for some A0
2 L(E) then A0 is also a simple quasi-compact operator with

leading eigenvalue close to � (see e.g. [65, IV.3.5]). However, this condition of

closeness in k·k is seldom satisfied in applications to dynamical systems. In [71] it

was showed that if A0 is close to A in the weaker topology of |||·|||, both operators

obey a Lasota-Yorke inequality, and growth restrictions are placed on the (various)

operator norms of iterates of A and A0, then one can recover appropriately modified

versions of the spectral stability results from operator norm based perturbation

theory. We now detail the requirements for these results, referring to [71] for exact

statements.

Definition 1.1.1. We say that a family of operators {A✏}✏�0 ✓ L(E) satisfies the

Keller-Liverani (KL) condition if each of the following conditions is verified:

(KL1) There exists a monotone upper-semicontinuous function ⌧ : [0,1) ! [0,1)

such that |||A✏ � A0|||  ⌧(✏) and ⌧(✏) > 0 whenever ✏ > 0, and ⌧(✏) ! 0 as

✏! 0.

(KL2) There exists C1, K1 > 0 such that |An

✏
|  C1Kn

1 for every ✏ � 0 and n 2 N.
(KL3) There exists C2, C3, K2 > 0 and ↵ 2 (0, 1) such that

kAn

✏
fk  C2↵

n
kfk+ C3K

n

2 |f | (1.2)

for every ✏ � 0, f 2 E and n 2 N.
Remark 1.1.2. The inequality (1.2) is known as a Lasota-Yorke inequality after

[74], and provides a wealth of information about the spectral data of any operator

that may satisfy it. In particular, the Ionescu-Tulcea–Marinescu Theorem [62] (also

8



known as Hennion’s Theorem after a later strengthening by Hennion [57]), asserts

that if the closed, unit ball in (E, k·k) is |·|-pre-compact, and if A 2 L(E) satisfies

(KL2) and (KL3) then ⇢ess(A)  ↵. This result provides a commonly-trodden path

to proving the quasi-compactness of any particular operator: if, in addition, one

can show that ⇢(A) > ↵, then A is quasi-compact.

The following result summarises the conclusions of [71].

Theorem 1.1.3 ([71]). Let {A✏}✏�0 ✓ L(E) satisfy (KL), where A0 is a simple

quasi-compact operator with decomposition A0 = �0⇧0 + N0 and ↵ < |�0|. For

su�ciently small � > 0 and each r such that max{↵, ⇢(N0)} < r < |�0| there

exists ✏�,r > 0 such that A✏ is a simple quasi-compact operator with decomposition

A✏ = �✏⇧✏+N✏ whenever ✏ 2 [0, ✏�,r). Furthermore, for each ✏ 2 [0, ✏�,r) the spectral

data of A✏ satisfies �✏ 2 B(�0, �) and ⇢(N✏) < r, in addition to the following Hölder

estimate: there exists C such that for all ✏ su�ciently small one has

max {|�✏ � �0| , |||⇧✏ � ⇧0|||, |||N✏ �N0|||}  C⌧(✏)⌘,

where ⌘ := ln(r/↵)
ln(max{K1,K2}/↵)

.

Remark 1.1.4. If rates of convergence are not required in Theorem 1.1.3 then it

su�ces to prove that |||A✏ � A0||| ! 0 instead of constructing the function ⌧ in

(KL1). After possibly passing to a sub-family {A✏}✏2[0,✏0) for some ✏0 > 0, the two

conditions are equivalent. We will use this fact frequently without further comment.

1.2 Spectral stability of twisted quasi-compact operators

In the setting of the previous section, rather than just considering a single, simple

quasi-compact operator one sometimes considers an analytic, operator-valued map1

A : U ! L(E), where U ✓ C is an open neighbourhood of 0 and A(0) is a simple

quasi-compact operator. This is the case, for instance, when trying to prove the

stability of statistical laws for dynamical systems, which is the topic of Chapter 2

and motivates the work of the present chapter. When one considers such an analytic,

operator-valued map, classical analytic perturbation theory for linear operators [65]

posits the existence of a � > 0 such that A(z) is a simple quasi-compact operator

for each z 2 D� = {! 2 C : |!| < �}. Moreover, the quasi-compact decomposition

of A(z) depends analytically on z i.e. there are analytic maps � : D� ! C, ⇧ :

D� ! L(E), and N : D� ! L(E) such that A(z) has quasi-compact decomposition

1
Recall that an operator-valued map P : U ! L(E) is analytic if U is an open subset of C and

P is locally representable by a k·k-convergent power series.
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A(z) = �(z)⇧(z) + N(z). In this section we consider the question of spectral

stability of such analytic, operator-valued maps under conditions similar to (KL)

and when the analytic families are induced by a ‘twist’:

Definition 1.2.1. If M : U ! L(E) is analytic on an open neighbourhood U ✓ C of

0 and M(0) is the identity, then we call M a twist. If A 2 L(E) then the operators

A(z) := AM(z) are said to be twisted by M . We say that M is compactly |·|-

bounded if for every compact V ✓ U there exists CM,V > 0 such that

sup
z2V

|M(z)|  CM,V .

Our main result asserts that one can ‘uniformly extend’ the application of The-

orem 1.1.3 to a family of operators satisfying (KL) to the corresponding twisted

family of operators in some neighbourhood of 0, provided the twist is compatible

with |·|. We use the superscript (n) to denote the nth derivative.

Theorem 1.2.2. Let {A✏}✏�0 satisfy (KL), where A0 is a simple quasi-compact

operator with leading eigenvalue �0 satisfying ↵ < |�0|, and let M : U ! C be a

compactly |·|-bounded twist. Then there exists ✓ > 0 such that for every compact

V ✓ D✓ there exists ✏V > 0 and, for each ✏ 2 [0, ✏V ), analytic functions2 �✏ :

V ! C, ⇧✏ : V ! L(E), and N✏ : V ! L(E) such that A✏(z) is a simple quasi-

compact operator with decomposition A✏(z) = �✏(z)⇧✏(z) + N✏(z) whenever z 2

V . Additionally, the derivatives of all orders of the spectral data of A✏(z) satisfy

the following uniform Hölder estimate: there exists ⌘(V ), and, for each n 2 N, a
constant On such that for all z 2 V and su�ciently small ✏ one has

max

8
<

:

����(n)✏ (z)� �(n)✏ (0)
��� ,
���
���
���⇧(n)

✏ (z)� ⇧(n)
✏ (0)

���
���
���,���

���
���N (n)

✏ (z)�N (n)
✏ (0)

���
���
���

9
=

;  On⌧(✏)
⌘(V ).

Let us describe the strategy for proving Theorem 1.2.2. Firstly, using the fact

that {A✏}✏�0 satisfies (KL), we show that there exists  > 0 such that {A✏(z)}✏�0

satisfies (KL) uniformly in z on compact subsets of D . In our setting standard

arguments [92, 82, 65, 58] imply that A0(z) is a simple quasi-compact operator on

some D✓, where we may also assume that ✓ 2 (0, ). Using a technical lemma

concerning the boundedness of the resolvents of A0(z) on every compact V ✓ D✓,

we then apply the theory of [71] to obtain a uniform version of Theorem 1.1.3 for

2
Recall that a map is said to be analytic on an arbitrary compact subset V of C if it may be

extended to an analytic map on some larger open subset of C.
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the family of operators {A✏(z)}✏�0 whenever z 2 V . Theorem 1.2.2 immediately

follows.

Lemma 1.2.3. Suppose {A✏}✏�0 satisfies (KL), M : U ! L(E) is a twist and

V ✓ U is compact. Let ⌧V : [0,1) ! [0,1) be defined by

⌧V (✏) =

✓
sup
z2V

kM(z)k

◆
⌧(✏).

Then ⌧V is an upper-semicontinuous function, and (KL1) holds for {A✏(z)}✏�0 for

every z 2 V with ⌧V in place of ⌧ .

Proof. Note that ⌧V is finite as V is compact and M is continuous on V . For

each ✏ > 0 and z 2 V the definition of |||·||| implies that |||A✏(z)� A0(z)||| 

|||A✏ � A0||| kM(z)k, and so using (KL1) we find that

sup
z2V

|||A✏(z)� A0(z)|||  |||A✏ � A0|||

✓
sup
z2V

kM(z)k

◆
 ⌧V (✏),

as required.

Lemma 1.2.4. If {A✏}✏�0 satisfies (KL), M : U ! L(E) is a compactly |·|-bounded

twist, and V ✓ U is compact, then there exists K1,V > 0 such that for every ✏ � 0

and n 2 N we have

sup
z2V

|A✏(z)
n
|  Kn

1,V .

In particular, (KL2) holds for {A✏(z)}✏�0 for every z 2 V .

Proof. As M is compactly |·|-bounded there exists CM,V > 0 such that |M(z)| 

CM,V for every x 2 V . Set K1,V = C1K1CM,V . Then for each z 2 V , n 2 N and

✏ � 0 we have

|A✏(z)
n
|  |A✏|

n
|M(z)|n  (C1K1)

nCn

M,V
= Kn

1,V .

Lemma 1.2.5. Under the hypotheses of Theorem 1.2.2 for every � 2 (↵, 1) there

exists  (�) > 0 and C2,�, C3,�, K2,� > 0 such that D (�) ✓ U (the domain of the

twist M) and

kA✏(z)
nfk  C2,��

n
kfk+ C3,�K

n

2,� |f |

for every z 2 D (�), f 2 E, n 2 N and ✏ � 0.

11



Proof. Fix m su�ciently large so that 2C2↵m < �m. Using (KL3) for {A✏}✏�0 yields

kA✏(z)
mfk  kAm

✏
fk+ kA✏(z)

m
� Am

✏
k kfk


�
2�1�m + kA✏(z)

m
� Am

✏
k
�
kfk+ C3K

m
|f | .

(1.3)

By telescoping and applying (KL3) again we obtain

kA✏(z)
m
� Am

✏
k 

m�1X

k=0

kA✏k
k+1

kM(z)�M(0)k kA✏(z)k
m�1�k

 kM(z)�M(0)k
m�1X

k=0

(C2↵ + C3K)m kM(z)km�1�k .

(1.4)

Since the right side of (1.4) is continuous in z and vanishes at z = 0, there exists

 (�) > 0 such that

sup
z2D (�)

sup
✏�0

kA✏(z)
m
� Am

✏
k  2�1�m.

Applying this to (1.3), for each ✏ � 0 and z 2 D (�) we have

kA✏(z)
mfk  �m

kfk+ C3K
m
|f | .

We can use Lemma 1.2.4 to iterate this inequality, obtaining (KL3) for {A✏(z)m}✏�0

for each z 2 D (�) with coe�cients uniform in z. Standard arguments imply that

(KL3) also holds for {A✏(z)}✏�0 for each z 2 D (�) with suitable modified, but

still uniform in z, coe�cients After possibly shrinking  (�) we may assume that

D (�) ✓ U , which finishes the proof.

Lemmas 1.2.3, 1.2.4 and 1.2.5 verify that, under the hypotheses of Theorem

1.2.2, the families of operators {A✏(z)}✏�0 satisfy (KL) uniformly in z on every

su�ciently small compact neighbourhood of the origin. The next result, which is

a standard application of analytic perturbation theory for linear operators [92, 82,

65, 58], provides a description of the spectrum of A0(z) for z close to 0. We provide

an outline of the proof in our setting.

Lemma 1.2.6. Assume the hypotheses of Theorem 1.2.2 and let � 2 (↵, |�0|).

There exists ✓(�) 2 (0, (�)) and maps �0 : D✓(�) ! C, ⇧0 : D✓(�) ! L(E) and

12



N0 : D✓(�) ! L(E) such that for each z 2 D✓(�) the operator A0(z) has quasi-

compact decomposition A0(z) = �0(z)⇧0(z) +N0(z) and

max

(
�, sup

z2D✓(�)

⇢(N0(z))

)
< inf

z2D✓(�)

|�0(z)| .

Proof. As z 7! A0(z) is analytic and A0 is quasi-compact with decomposition

A0 = �0⇧0 + N0, it is standard that there exists ✓(�) > 0, and analytic maps

�0 : D✓(�) ! C, ⇧0 : D✓(�) ! L(E) and N0 : D✓(�) ! L(E) such that A0(z) is

a simple quasi-compact operator with decomposition A0(z) = �0(z)⇧0(z) + N0(z)

for each z 2 D✓(�). By possibly shrinking ✓(�) we may assume that ✓(�)   (�).

Since z 7! �0(z) is analytic and � < |�0(0)|, after shrinking ✓(�) we may guar-

antee that � < infz2D✓(�) |�0(z)|. Furthermore, as the spectral radius is upper-

semicontinuous as a function of the operator [65, IV.3.1], we may further shrink

✓(�) so that sup
z2D✓(�)

⇢(N0(z)) < infz2D✓(�) |�0(z)|.

A close examination of the proof of Theorem 1.1.3 reveals that in order to

apply the theory in [71] ‘uniformly’, and thereby obtain Theorem 1.2.2, one needs a

uniform bound for the norms of the resolvents of the twisted operators A0(z). For

this we need some notation: for A 2 L(E), � > 0 and r > ⇢ess(A) define

V�,r(A) = {! 2 C : |!|  r or dist(!, �(A))  �}.

Noting that �(A) ✓ V�,r(A), let

J�,r(A) = sup
���(! � A)�1

�� : ! 2 C \ V�,r(A)
 
.

Lemma 1.2.7. Assume the hypotheses of Theorem 1.2.2. Let � 2 (↵, |�0|) and

recall ✓(�) from Lemma 1.2.6. For every compact V ✓ D✓(�), � > 0 and r >

sup
z2D✓(�)

⇢(N0(z)) we have

sup
z2V

J�,r(A0(z)) < 1.

Proof. For every z 2 D✓(�) and ! 2 C\�(A0(z)) let R(!, z) = (!�A0(z))�1 denote

the resolvent of A0(z) at !. Fix z 2 V . Recall from Lemma 1.2.6 that A0(z) is a

simple quasi-compact operator with decomposition A0(z) = �0(z)⇧0(z)+N0(z). As

13



�0(z) is an isolated simple eigenvalue of A0(z), the partial-fraction decomposition

of the resolvent [65, III-(6.32)] yields

R(!, z) = (! � �0(z))
�1⇧0(z) + S(!, z), (1.5)

where for each ! 2 {�0(z)} [ (C \ �(A0(z))) the operator

S(!, z) := lim
!0!!

R(!0, z)(Id�⇧0(z))

is the reduced resolvent of A0(z) with respect to �0(z) at ! [65, III-(6.30), III-(6.31)].

We have

sup
!2C\V�,r(A0(z))

kR(!, z)k  ��1 sup
z2V

k⇧0(z)k+ sup
!2C\V�,r(A0(z))

kS(!, z)k . (1.6)

Since z 7! ⇧0(z) is analytic on V , which is compact, we have sup
z2V

k⇧0(z)k < 1.

Hence, to complete the proof it su�ces to bound sup
!2C\V�,r(A0(z)) kS(!, z)k uni-

formly in z 2 V . As noted immediately after [65, III-(6.25)], when restricted

to the image of Id�⇧0(z) the operator S(!, z) coincides with the resolvent of

A0(z)(Id�⇧0(z)) = N0(z) at !. Since S(!, z) vanishes on the image of ⇧0(z),

this implies that S(!, z) = (! � N0(z))�1(Id�⇧0(z)). As r > sup
z2D✓(�)

⇢(N0(z)),

for ! 2 C \Dr the standard Neumann series3 for the resolvent [65, I-(5.10)] yields

S(!, z) =

 
1X

k=0

!�k�1N0(z)
k

!
(Id�⇧0(z)). (1.7)

By the spectral radius formula, the upper-semicontinuity of the spectral radius and

the continuity of z 7! N0(z), we have that for any fixed s 2
⇣
sup

z2D✓(�)
⇢(N0(z)), r

⌘

there exists H > 0 such that for every n 2 N and z 2 V we have kN0(z)nk  Hsn.

Using (1.7) we therefore have

sup
!2C\V�,r(A0(z))

kS(!, z)k  sup
!2C\B(0,r)

kS(!, z)k

 sup
!2C\B(0,r)

 
1X

k=0

��!�k�1
�� ��N0(z)

k
��
!
kId�⇧0(z)k


H

r

 
1X

k=0

⇣s
r

⌘k
!✓

sup
z2V

kId�⇧0(z)k

◆
,

3
While the formula in [65, I-(5.10)] is only given for the finite-dimensional case, it also holds

in the current setting by the same arguments.
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which is finite as z 7! Id�⇧0(z) is analytic on V and s < r. The proof is completed

by recalling (1.6) and the definition of J�,r(A0(z)).

The proof of Theorem 1.2.2. Fix � 2 (↵, |�0|), recall ✓(�) from Lemma 1.2.6, and

let V ✓ D✓(�) be compact. Out of necessity, we construct �✏(z),⇧✏(z) and N✏(z) for

z in a larger compact set whose interior contains V . As V is compact there exists

some � 2 (0, ✓(�)) such that V ✓ D�. By Lemmas 1.2.3, 1.2.4 and 1.2.5, for each

z 2 D� the family of operators {A✏(z)}✏�0 satisfies (KL) with data

⌧�, C1,�, C2,�, C3,�, K1,�, K2,� and �, (1.8)

uniform in z over D�.

By Lemma 1.2.6 there exists r > max{�, sup
z2D✓(�)

⇢(N0(z))} and � > 0 such

that r + � < inf
z2D�

|�0(z)|. It follows that

{�0(z)} = {! 2 �(A0(z)) : |! � �0(z)| < �}.

for every z 2 D�. Hence, by [71, Theorem 1 and the inequality (10)] for each z 2 D�

there exists ✏�,r,z > 0 such that for ✏ 2 [0, ✏�,r,z) and ! 2 C, with |! � �0(z)| = �,

the operator (! � A✏(z))�1 is bounded and so the spectral projection

⇧✏(z) =
1

2⇡i

Z

|!��0(z)|=�

(! � A✏(z))
�1 d! (1.9)

is a well-defined element of L(E). From the definitions of ✏0 and ✏1 in the proof

of [71, Corollary 1], and the definition [71, (13)] we see that ✏�,r,z may be chosen

independently of z 2 D� as (KL) is satisfied for each {A✏(z)}✏�0 with data (1.8)

independent of z 2 D� and as

sup
z2D�

J�,r(A0(z)) < 1, (1.10)

which is a consequence of Lemma 1.2.7. The same argument applied to [71, part

(3) of Corollary 1] implies that there exists ✏V 2 (0, ✏�,r,z) and �� > 0 such that

if � 2 (0, ��) then rank(⇧✏(z)) = rank(⇧0(z)) = 1 for every ✏ 2 [0, ✏V ) and z 2

D�. Since rank(⇧✏(z)) = 1, each A✏(z) has a simple eigenvalue �✏(z) such that

|�✏(z)� �0(z)| < �. By [71, (10)] we have �(A✏(z)) ✓ {! 2 C : |! � �0(z)| <
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� or |!| < r}. Since {! 2 �(A✏(z)) : |! � �0(z)| < �} = {�✏(z)}, it follows that

�(A✏(z)) \ {�✏(z)} ✓ Dr. Hence,

Id�⇧✏(z) =
1

2⇡i

Z

|!|=r

(! � A✏(z))
�1 d!. (1.11)

Defining N✏(z) = A✏(z)(Id�⇧✏(z)), for every z 2 D� and ✏ 2 [0, ✏V ) we therefore

have that A✏(z) is a simple quasi-compact operator with decomposition A✏(z) =

�✏(z)⇧✏(z) +N✏(z).

We will now show that for each ✏ 2 [0, ✏V ) the maps z 7! �✏(z), z 7! ⇧✏(z), and

z 7! N✏(z) are analytic on D�. As the contour in the integral in (1.11) is fixed,

it is well-known that z 7! Id�⇧✏(z) is analytic on D� [65, VIII.1.3 Theorem 1.7].

Hence z 7! ⇧✏(z) is analytic on D�. The map z 7! N✏(z) is analytic on D� as

z 7! A✏(z) is analytic and by the definition of N✏(z). That z 7! �✏(z) is analytic on

D� follows from �✏(z) having algebraic multiplicity 1 and by the discussion in [65,

II.1.8]. Hence z 7! �✏(z), z 7! ⇧✏(z) and z 7! N✏(z) are analytic on V as they may

be extended to analytic maps on an open subset of C that contains V , namely D�.

We now confirm that the required Hölder estimate holds for the various spectral

data using (KL) for {A✏(z)}✏�0 and with uniform data as in (1.9). By [71, Corollary

1], there exists H�,r,z > 0 such that |||⇧✏(z)� ⇧0(z)|||  H�,r,z⌧V (✏)⌘(V ) for every

✏ 2 [0, ✏V ) and z 2 D�, where

⌘(V ) =
ln(r/�)

ln(max{K1,�, K2,�}/�)
.

Recalling the bound (1.10) and that (1.8) is independent of z 2 D�, we conclude

from the proof of [71, Corollary 1] thatH�,r,z can be chosen independently of z 2 D�.

Moreover, by Lemma 1.2.3 we have ⌧V (✏) = sup
z2D�

kM(z)k ⌧(✏). Hence, if we set

O0

0 = H�,r,z supz2D�
kM(z)k⌘(V ) then for all ✏ 2 [0, ✏V ) we have

sup
z2D�

|||⇧✏(z)� ⇧0(z)|||  O0

0⌧(✏)
⌘(V ). (1.12)

By definition we have

(�0(z)� �✏(z))⇧0(z) = (�✏(z)� A✏(z))(⇧✏(z)� ⇧0(z)) + (A0(z)� A✏(z))⇧0(z),
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and so

|�0(z)� �✏(z)| |||⇧0(z)||| (|�✏(z)|+ |A✏(z)|)|||⇧✏(z)� ⇧0(z)|||

+ |||A0(z)� A✏(z)||| k⇧0(z)k .
(1.13)

For every ✏ 2 [0, ✏V ) and z 2 D� we have |A✏(z)|  K1,� and |�✏(z)|  |�0(0)| + �.

Provided that � is su�ciently small, which we may guarantee by shrinking ✓(�), by

the analyticity of z 7! ⇧0(z) we have that sup
z2D�

k⇧0(z)k < 1 and that

inf
z2D�

|||⇧0(z)||| � |||⇧0(0)|||� sup
z2D�

k⇧0(z)� ⇧0(0)k > 0.

By the estimates in the previous two sentences, Lemma 1.2.3 and (1.12) it follows

that for every z 2 D� and ✏ 2 [0, ✏V ) we have

✓
|�✏(z)|+ |A✏(z)|

|||⇧0(z)|||

◆
|||⇧✏(z)� ⇧0(z)|||+

k⇧0(z)k

|||⇧0(z)|||
|||A0(z)� A✏(z)|||



 
(K1,� + � + |�0(0)|)O0

0 + sup
z2D�

k⇧0(z)k

inf
z2D�

|||⇧0(z)|||

!
⌧(✏)⌘(V )

:= O00

0⌧(✏)
⌘(V ) < 1,

which, when applied to (1.13), yields

sup
z2D�

|�0(z)� �✏(z)|  O00

0⌧(✏)
⌘(V ).

Examining the proof of [71, Corollary 2] and using the same arguments as before,

we similarly find a constant O000

0 such that

sup
z2D�

|||N✏(z)�N0(z)|||  O000

0 ⌧(✏)
⌘(V ).

Since V ✓ D�, the required uniform Hölder estimate for the undi↵erentiated spec-

tral data holds on V with O0 = max{O0

0, O
00

0 , O
000

0 } (i.e. we obtain the conclusion

of Theorem 1.2.2 in the case where n = 0). For every compact subset of D� one

derives a uniform Hölder estimate for the nth derivative of z 7! �✏(z), z 7! ⇧✏(z)

and z 7! N✏(z) by a standard application of Cauchy’s integral formula along the

contour @D�. In particular, we obtain the required uniform Hölder estimate on V ,

which concludes the proof of Theorem 1.2.2.
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1.3 On the robustness of (KL)

In this section we discuss a result on the robustness of the condition (KL) to per-

turbations that are simultaneously small in the operator norms k·k and |·|. This

result will be useful in Chapter 5, where we will use it to reduce the proof of (KL)

for some classes of perturbations into a number of more manageable cases. The

flow of the proof is similar to that of Lemmas 1.2.3, 1.2.4 and 1.2.5.

Proposition 1.3.1. Suppose that {A✏}✏�0 satisfies (KL) and {B✏}✏2[0,✏1) ✓ L(E)

satisfies B0 = 0, lim✏!0 kB✏k = 0 and sup
✏2[0,✏1) |B✏| < 1. Then there exists

✏2 2 (0, ✏1) so that {A✏ +B✏}✏2[0,✏2) satisfies (KL).

Proof. We prove (KL1), (KL2) and (KL3) separately.

(KL1) As kB✏k ! 0, there exists ✏0 > 0 so that sup
✏2[0,✏0) kB✏k < 1. As {A✏}✏�0

satisfies (KL1), {B✏}✏2[0,✏0) is bounded in L(E), kB✏k ! 0, and

|||A✏ +B✏ � A0|||  |||A✏ � A0|||+ kB✏k ,

it is clear that (KL1) is satisfied.

(KL2) As {A✏}✏�0 satisfies (KL2) and sup
✏2[0,✏1) |B✏| < 1, we have

sup
✏2[0,✏1)

|A✏ +B✏|  C1K + sup
✏2[0,✏1)

|B✏| < 1.

The required bound follows by iterating this inequality.

(KL3) By expanding (A✏+B✏)n, applying a counting argument, and using (KL3)

for {A✏}✏�0 we have

k(A✏ +B✏)
nfk  kAn

✏
fk+

n�1X

k=0

n!

k!(n� k)!
kA✏k

k
kB✏k

n�k
kfk

 C2↵
n
kfk+ C3K

n

2 |f |+ 2n
n�1X

k=0

kA✏k
k
kB✏k

n�k
kfk .

(1.14)

Let � 2 (↵, 1) and choose n 2 N so that C1↵n < �n. As (KL3) holds for {A✏}✏�0, it

follows that {A✏}✏�0 is bounded in L(E). Hence, as kB✏k ! 0, there exists ✏00 > 0
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so that for every ✏ 2 [0, ✏00) we have

C1↵
n + 2n

n�1X

k=0

kA✏k
k
kB✏k

n�k
 �n.

By applying (1.3.1) to (1.14) for all ✏ 2 [0, ✏00) we have

k(A✏ +B✏)
nfk  �n

kfk+ C3K
n

2 |f | . (1.15)

Using (KL2) for {A✏ + B✏}✏2[0,✏1) one may iterate (1.15) to obtain for all ✏ 2 [0, ✏00)

and k 2 Z+ that
��(A✏ +B✏)

nkf
��  �nk

kfk+ C4K
nk

3 |f | , (1.16)

where C4, K3 > 0 are independent of k and ✏. Since sup
✏2[0,✏00) kA✏ +B✏k is finite

one easily obtains (KL3) from (1.16).
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Chapter 2

Stability of statistical laws

In this chapter we consider the stability of parameters of statistical limit laws for

sequences of weakly-dependent random variables when said laws are obtained via

the naive Nagaev-Guivarc’h spectral method. In Section 2.1 we review the details of

the method, and recall how it may be used to obtain a central limit theorem (CLT)

or large deviation principle (LDP). In Section 2.2 we state and prove our main

result for this chapter (Theorem 2.2.1), which is a stability result for the variance

of a CLT and the rate function of a LDP when these limit laws were obtained

via the Nagaev-Guivarc’h method in a setting compatible with the perturbation

theory developed in Chapter 1. Lastly, in Section 2.3 we also provide a explicit,

computationally-tractable formula for the variance of a CLT that holds under the

same hypotheses as Theorem 2.2.1, which will be used to estimate the variance of

a CLT for dynamical systems in later chapters.

2.1 Review of the Nagaev-Guivarc’h method

The naive Nagaev-Guivarc’h spectral method is an approach to obtaining statis-

tical limit laws for weakly-dependent sequences of random variables when the de-

pendence structure of these random variables is ‘coded’ by an analytic family of

simple quasi-compact operators. Importantly, the parameters of the resulting limit

laws are often completely determined by the behaviour of the leading eigenvalue of

the aforementioned analytic family of operators, which will allow us to use spectral

stability theory to prove the stability of these parameters.

In this section we recall how a CLT and LDP may be obtained via the naive

Nagaev-Guivarc’h method. These results only constitute a small component of a
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large, developing literature. We refer the interested reader to [53] for a compre-

hensive overview of the application of the method to dynamical systems, and to

[58, 92, 56, 82] for historical context on the method’s development.

In what follows let {Yk}k2N is a sequence of real-valued random variables with

partial sums Sn =
P

n�1
k=0 Yk satisfying limn!1 E(Sn)/n = 0.

Theorem 2.1.1 (Central limit theorem [53, Theorem 2.4]). If there exist a Banach

space E, operator-valued map A : I ! L(E), where I is a real open neighbourhood

of 0, and ⇣ 2 E, ⌫ 2 E⇤ such that:

1. A(0) is a simple quasi-compact operator with ⇢(A(0)) = 1.

2. The mapping t 7! A(t) is C
2 as a map into (L(E), k·k).

3. E(eitSn) = ⌫(A(t)n⇣) for all n 2 N and t 2 I.

Then {Yk}k2N satisfies a CLT: there exists �2
� 0 such that Sn/

p
n converges in

distribution to a N(0, �2) random variable as n ! 1.

Theorem 2.1.2 (Large deviation principle [36, Remark 2.3]). If there exist a Ba-

nach space E, operator-valued map A : I ! L(E), where I is a real open neigh-

bourhood of 0, and ⇣ 2 E, ⌫ 2 E⇤ such that:

1. A(0) is a simple quasi-compact operator with ⇢(A(0)) = 1.

2. The mapping t 7! A(t) is C
1 as a map into (L(E), k·k) and t 7! ln ⇢(A(t)) is

strictly convex in some neighbourhood of 0.

3. E(etSn) = ⌫(A(t)n⇣) for all n 2 N and t 2 I.

Then {Yk}k2N satisfies a LDP: there exists a non-negative, continuous and convex

rate function r : J ! R, where J is an open neighbourhood of 0, such that for every

✏ 2 J \ (0,1) we have

lim
n!1

1

n
ln Prob(Sn � n✏) = �r(✏).

Remark 2.1.3. As stated, Theorem 2.1.2 di↵ers slightly to the result in [36, Remark

2.3], however a straightforward modification of the arguments from [36] readily

yields Theorem 2.1.2. In particular, see Lemma 2.1.5.

Both the CLT and LDP are parameterised, and under the settings of Theorems

2.1.1 and 2.1.2 these parameters are determined by the spectral data of A(t) as

follows. As t 7! A(t) is Ck (k = 1, 2) and A(0) is a simple quasi-compact operator,

by [53, Proposition 2.3] there exists ✓ > 0 and C
k maps � : (�✓, ✓) ! C, ⇧ :

(�✓, ✓) ! L(E), and N : (�✓, ✓) ! L(E) such that A(t) is a simple quasi-compact
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with decomposition A(t) = �(t)⇧(t)+N(t) for t 2 (�✓, ✓). In this case the variance

of the CLT is

�2 = �(2)(0). (2.1)

After possibly shrinking ✓ one may show that �(z) > 0 and ⌫(⇧(z)⇣) 6= 0 for all

z 2 (�✓, ✓) (see Lemma 2.1.5), in which case the rate function of the LDP is

r(s) = sup
t2(�✓,✓)

(st� ln�(t)). (2.2)

Moreover, due to the strict convexity and continuous di↵erentiability of t 7! ln�(t)

on (�✓, ✓), and the application of the local Gartner-Ellis Theorem [58, Lemma

XIII.2] used to obtain Theorem 2.1.2, we have that the domain of the rate function

is ✓
�0(�✓)

�(�✓)
,
�0(✓)

�(✓)

◆
. (2.3)

In Theorem 2.1.1 the characteristic function of Sn is encoded by ⌫(A(t)n⇣) whilst

in Theorem 2.1.2 it is the moment-generating function of Sn that is encoded. These

settings are frequently unified by the following condition, which implies both The-

orem 2.1.1 and 2.1.2 and is frequently verified by applications of the naive Nagaev-

Guivarc’h method to dynamical systems.

Definition 2.1.4. Suppose that {Yk}k2N is a sequence of real random variables

on a common probability space (⌦,m) with partial sums Sn =
P

n�1
k=0 Yk satisfying

limn!1 E(Sn)/n = 0. We say that {Yk}k2N satisfies (NG) if there exists a Banach

space (E, k·k), ⇣ 2 E, ⌫ 2 E⇤, and an analytic operator-valued map A : U 7!

L(E), where U ✓ C is an open neighbourhood of 0, such that A(0) is a simple

quasi-compact operator, ⇢(A(0)) = 1, t 7! ⇢(A(t)) is strictly convex in some real

neighbourhood of 0, and

E(ezSn) = ⌫(A(z)n⇣) (2.4)

for every z 2 U and n 2 N. When {Yk}k2N satisfies (NG) as in the previous

sentence we shall say it has coding (A, ⇣, ⌫).

We finish this section by substantiating the claims about the choice of ✓ in the

definition of the rate function in (2.2).

Lemma 2.1.5. Under the hypotheses of Theorem 2.1.2, if ✓ is su�ciently small

then �(z) > 0 and ⌫(⇧(z)⇣) 6= 0 for z 2 (�✓, ✓).
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Proof. We start by proving that ⌫(⇧(0)⇣) = 1. By (2.4) and the quasi-compact

decomposition of A(0) we have

1 = �(0)n⌫(⇧(0)⇣) + ⌫(N(z)n⇣).

Hence, as |�(0)| = ⇢(A(0)) = 1, we have

⌫(⇧(0)⇣) = �(0)�n
� �(0)�n⌫(N(0)n⇣).

Since ⇢(N(0)) < 1 by taking n to infinity we see that limn!1 �(0)�n exists and is

equal to ⌫(⇧(0)⇣). Since |�(0)| = 1 it follows that ⌫(⇧(0)⇣) = �(0) = 1. Since

z 7! ⇧(z) is C
1 on a neighbourhood of 0 it follows that by shrinking ✓ we may

guarantee that ⌫(⇧(0)⇣) 6= 0 for z 2 (�✓, ✓).

We will now show that �(z) > 0 for z 2 (�✓, ✓). Let S1 denote the circle,

which may be identified with (�⇡, ⇡], and let Arg : C ! S1 denote the principal

argument. For z 2 (�✓, ✓) and n 2 Z+ we have by (2.4) and the quasi-compact

decomposition of A(z) that

0 = Arg
�
E(ezSn)

�

= Arg
�
�(z)n⌫

�
⇧(z)⇣ + �(z)�nN(z)n⇣

��

= nArg(�(z)) + Arg
�
⌫(⇧(z)⇣) + �(z)�n⌫ (N(z)n⇣)

�
.

(2.5)

Since ⌫(⇧(z)⇣) 6= 0 and ⇢(N(z)) < �(z) for z 2 (�✓, ✓), if we divide (2.5) by n and

then let n ! 1 we find that Arg(�(z)) = 0. Since �(z) 6= 0 for z 2 (�✓, ✓) we

therefore obtain the required claim.

2.2 A stability result for statistical laws obtained via the

Nagaev-Guivarc’h method

The main result for this chapter is the following.

Theorem 2.2.1. Let {Yk}k2N be a sequence of real random variables satisfying (NG)

with coding (A, ⇣, ⌫). Suppose that |·| is a second norm on E so that the closed, unit

ball in (E, k·k) is |·|-pre-compact and that there exists a compactly |·|-bounded twist

M : U ! L(E) such that A(z) = A(0)M(z) for every z 2 U . If {A✏}✏�0 satisfies

(KL), where A0 = A(0), then there exists ✓, ✏0 > 0 and, for every ✏ 2 [0, ✏0), analytic

maps �✏ : D✓ ! C, ⇧✏ : D✓ ! L(E) and N✏ : D✓ ! L(E) such that A✏(z) is a

simple quasi-compact operator with decomposition A✏(z) = �✏(z)⇧✏(z) + N✏(z) for
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every ✏ 2 [0, ✏0) and z 2 D✓. Moreover, we have stability of the parameters of the

CLT and LDP for {Yk}k2N in the following sense:

1. The variance is stable: lim✏!0 �
(2)
✏ (0) = �2.

2. The rate function is stable: for each su�ciently small compact subset U of

the domain of the rate function r there exists an interval V ✓ (�✓, ✓) so that

lim
✏!0

sup
z2V

(sz � ln |�✏(z)|) = r(s)

uniformly on U .

We split the proof of Theorem 2.2.1 into two parts. First we prove the easier

claims regarding the spectral properties of A✏(z) and the stability of the variance.

The stability of the rate function requires some more work, and so we must prepare

a few lemmas before attempting the remainder of the proof.

Part 1 of the proof of Theorem 2.2.1. By Theorem 1.2.2 there exists ✓, ✏0 > 0 and,

for each ✏ 2 [0, ✏0), maps z 7! �✏(z), z 7! ⇧✏(z) and z 7! N✏(z) as required by

Theorem 2.2.1. Moreover, by Theorem 2.2.1 we have

lim
✏!0

�(2)
✏
(0) = �(2)0 (0) = �2,

which is the claimed stability of the variance.

We now turn to the proof of stability of the rate function, for which we shall

assume that ✓ is small enough so that the conclusions of Lemma 2.1.5 hold. We

begin with the definition of the convex conjugation (also known as the Legendre-

Fenchel transform).

Definition 2.2.2. The convex conjugate of a function f : I ! R, where I ✓ R is

an interval, is the function f ⇤ : R ! R defined by

f ⇤(y) = sup
x2I

(xy � f(x)).

It is clear that the rate function r of the LDP is exactly the convex conjugate

of z 7! ln�0(z) restricted to (2.3). Naively, one might define approximate rate

functions by taking the convex conjugate of z 7! ln |�✏(z)|; this approach is some-

what messy since the resulting approximations have substantially di↵erent asymp-

totic behaviour. However, this obstruction is ultimately not too large and only
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some diligent bookkeeping is required to prove the claimed convergence. Specif-

ically, for each closed interval V ✓ (�✓, ✓) and ✏ 2 [0, ✏0) let ⇤✏,V : V ! R be

defined by ⇤✏,V (z) = ln |�✏(z)|. We notice from the proof of Theorem 1.2.2 that

infz2(�✓,✓),✏2[0,✏0) |�✏(z)| > 0 and so ⇤⇤

✏,V
is well defined.

Lemma 2.2.3. For every closed interval V ✓ (�✓, ✓) we have

lim
✏!0

sup
y2R

��⇤⇤

✏,V
(y)� ⇤⇤

0,V (y)
�� = 0.

Proof. For every ✏ 2 [0, ✏0) we have

|⇤0,V (z)� ⇤✏,V (z)| 

 
sup

z2V,✏2[0,✏0)
|�✏(z)|

�1

!
|�✏(z)� �0(z)| := ⌘✏(z).

Let y 2 R. Since V is compact and z 7! zy � ⇤0,V (z) is continuous on V there

exists zy 2 V such that ⇤⇤

0,V (y) = zyy � ⇤0,V (zy). Hence,

��⇤✏,V (zy)� (zyy � ⇤
⇤

0,V (y))
�� = |⇤✏,V (zy)� ⇤0,V (zy)|  ⌘✏(zy),

and so by the definition of convex conjugation one has

⇤⇤

0,V (y)  ⌘✏(zy) + zyy � ⇤✏,V (zy)  ⌘✏(zy) + ⇤
⇤

✏,V
(y).

The same argument yields the same bound with ⇤⇤

✏,V
and ⇤⇤

0,V swapped. Thus

sup
y2R

��⇤⇤

0,V (y)� ⇤
⇤

✏,V
(y)
��  sup

z2V

⌘✏(z). (2.6)

By Theorem 1.2.2 we have infz2V,✏2[0,✏0) |�✏(z)| > 0 and �✏(z) ! �0(z) uniformly on

V as ✏! 0. We therefore obtain the required claim by taking the limit as ✏! 0 in

(2.6).

While Lemma 2.2.3 confirms that ⇤⇤

✏,V
and ⇤⇤

0,V are close, it is not enough to

conclude that ⇤⇤

0,V and r are close. To clarify this relationship we will use the fact

that z 7! ln(�0(z)) is convex on (�✓, ✓), which is the content of the next lemma.

While the strict convexity of z 7! ln ⇢(A0(z)) (recall that ⇢(A0(z)) = �0(z) for

z 2 (�✓, ✓)) in a real neighbourhood of 0 was a requirement of (NG), the proof

fo this next lemma reveals that it is only the strictness of the convexity that is

non-trivial, and that the restriction of z 7! ln ⇢(A0(z)) to R is convex whenever the

coding relationship (2.4) holds.
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Lemma 2.2.4. The map z 7! ln�0(z) is convex on (�✓, ✓).

Proof. For z 2 (�✓, ✓) we have by (2.4), the quasi-compact decomposition of A0(z)

and the fact that ⌫(⇧(z)⇣) 6= 0 that

lim
n!1

1

n
lnE(ezSn) = lim

n!1

1

n
ln
��E(ezSn)

��

= lim
n!1

ln�0(z) +
1

n
ln
���⌫
�
⇧(z)⇣ + �0(z)

�nN0(z)
n⇣
����

= ln�0(z).

(2.7)

It is a standard result from probability theory that the moment-generating function

of a real-random variable is log-convex. Since the limit of log-convex functions is

also log-convex, the required claim then follows from (2.7).

We may now finish the proof of Theorem 2.2.1.

Part 2 of the proof of Theorem 2.2.1. Let ⇤0 : (�✓, ✓) ! R be defined by ⇤0(z) =

ln�0(z), and note that r = ⇤⇤

0 on the interval

⇤0

0((�✓, ✓)) = (⇤0

0(�✓),⇤
0

0(✓)) =

✓
�0(�✓)

�(�✓)
,
�0(�✓)

�(�✓)

◆
.

Since ⇤0

0 is continuous on (�✓, ✓) for any compact U ✓ ⇤0

0((�✓, ✓)) there exists a

closed interval V ✓ (�✓, ✓) such that U ✓ ⇤0

0(V ). By the definition of the convex

conjugate we have

⇤⇤

0,V (y) = sup
z2V

(yz � ⇤0(z)). (2.8)

As a consequence of Lemma 2.2.4, for each y 2 R the function z 7! yz � ⇤0,V (z) is

concave on (�✓, ✓). By di↵erentiating, we therefore see that if y 2 ⇤0

0(V ) then the

supremum in (2.8) is attained by some z satisfying ⇤0

0(z) = y. Hence, for y 2 ⇤0

0(V )

we have

⇤⇤

0,V (y) = y(⇤0

0)
�1(y)� ⇤0(⇤

0

0)
�1(y)).

The same argument shows that the same formula holds for r on ⇤0

0(V ), and so the

r = ⇤⇤

0,V on ⇤0

0(V ). Since ⇤0

0 is monotonic and continuous we have that ⇤0

0(V ) is a

closed interval, and so by Lemma 2.2.3 we have

lim
✏!0
⇤⇤

✏,V
(y) = ⇤⇤

0,V (y)
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uniformly on ⇤0

0(V ). Since r = ⇤⇤

0,V on ⇤0

0(V ) and U ✓ ⇤0

0(V ) we obtain the

required claim.

2.3 An explicit formula for the variance

In Chapters 3, 4 and 5 we will apply Theorem 2.2.1 in the case where A✏ is a numer-

ical approximation of A, which will provide a rigorous method for approximating

�2 (with �(2)✏ (0)). Rather than computing a second derivative numerically, in these

settings we are able to obtain an explicit, computationally-tractable expression for

�(2)✏ (0) in terms of the (undi↵erentiated) spectral data of A✏(0). The key extra

hypothesis that we require is that the twist has a particular form: there exists

G 2 L(E) such that M(z) = ezG for every z su�ciently close to 0.

Proposition 2.3.1. Assume the hypotheses of Theorem 2.2.1 and that there exists

G 2 L(E) such that M(z) = ezG for all su�ciently small z. Let ✓ denote the

constant produced by Theorem 2.2.1. If for any z 2 D✓ and su�ciently small ✏ � 0

we choose v✏,z 2 E and '✏,z 2 E⇤ so that ⇧✏(z)f = '✏,z(f)v✏,z, then1

�(2)
✏
(z) = �✏(z)'✏,z(G

2v✏,z)

+ 2�✏(z)'✏,z(G(�✏(z)� A✏(z))
�1A✏(z)(Id�⇧✏(z))G(v✏,z)).

(2.9)

Proof. Di↵erentiating the identity (�✏(z)� A✏(z))⇧✏(z) = 0 once with respect to z

yields

�(1)
✏
(z)⇧✏(z) = A(1)

✏
(z)⇧✏(z)� (�✏(z)� A✏(z))⇧

(1)
✏
(z), (2.10)

while di↵erentiating a second time yields

�(2)
✏
(z)⇧✏(z) =A(2)

✏
(z)⇧✏(z)� 2(�(1)

✏
(z)� A(1)

✏
(z))⇧(1)

✏
(z)

� (�✏(z)� A✏(z))⇧
(2)
✏
(z).

(2.11)

As ⇧✏(z)(�✏(z)� A✏(z)) = 0, by applying ⇧✏(z) on the left of (2.10) we obtain

�(1)
✏
(z)⇧✏(z) = ⇧✏(z)A

(1)
✏
(z)⇧✏(z). (2.12)

Similarly,

�(2)
✏
(z)⇧✏(z) = ⇧✏(z)A

(2)
✏
(z)⇧✏(z)� 2⇧✏(z)(�

(1)
✏
(z)� A(1)

✏
(z))⇧(1)

✏
(z). (2.13)

1
We note that while �✏(z) � A✏(z) is not invertible on E it is invertible on the image of

Id�⇧✏(z), which is an invariant subspace under A✏(z), and so (2.9) is well defined. The details

are clear from the proof and the citations therein.
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As �✏(z) is an isolated simple eigenvalue, by [65, II-(2.14)] we have2

⇧(1)
✏
(z) = ⇧✏(z)A

(1)
✏
(z)S✏(z) + S✏(z)A

(1)
✏
(z)⇧✏(z), (2.14)

where S✏(z) = (�✏(z)� A✏(z))�1(Id�⇧✏(z)). Note that ⇧✏(z)S✏(z) = S✏(z)⇧✏(z) =

0. Applying (2.14) to (2.13), we find that

�(2)
✏
(z)⇧✏(z) =⇧✏(z)A

(2)
✏
(z)⇧✏(z)� 2�(1)

✏
(z)⇧✏(z)⇧

(1)
✏
(z) + 2⇧✏(z)A

(1)
✏
(z)⇧(1)

✏
(z)

=⇧✏(z)A
(2)
✏
(z)⇧✏(z)� 2�(1)

✏
(z)⇧✏(z)A

(1)
✏
(z)S✏(z)

+ 2⇧✏(z)A
(1)
✏
(z)(⇧✏(z)A

(1)
✏
(z)S✏(z) + S✏(z)A

(1)
✏
(z)⇧✏(z)).

Applying ⇧✏(z) on the right then yields

�(2)
✏
(z)⇧✏(z) = ⇧✏(z)A

(2)
✏
(z)⇧✏(z) + 2⇧✏(z)A

(1)
✏
(z)S✏(z)A

(1)
✏
(z)⇧✏(z). (2.15)

Recall that the A✏(z) = A✏M(z), where M(z) = ezG. For each n 2 N we therefore

have

A(n)
✏

(z) = A✏M
(n)(z) = A✏M(z)Gn = A✏(z)G

n. (2.16)

As ⇧✏(z)(f) = '✏,z(f)v✏,z, the v✏,z and '✏,z are eigenvectors of A✏(z) and A✏(z)⇤,

respectively, for the eigenvalue �✏(z). Moreover, as ⇧✏(z) is a projection, we have

'✏,z⇧✏(z) = '✏,z and ⇧✏(z)v✏,z = v✏,z. Using (2.16), and then applying '✏,z on the

left and v✏,z on the right to (2.15), we obtain

�(2)
✏
(z) = �✏(z)

�
'✏,z(G

2v✏,z) + 2'✏,z(G(�✏(z)� A✏(z))
�1(Id�⇧✏(z))A✏(z)G(v✏,z))

�
.

We obtain the required statement upon noting that Id�⇧✏(z) and A✏(z) commute.

Remark 2.3.2. The expression (2.9) provides an alternative approach for proving

the stability of the variance, which has been exploited previously (e.g. in [54]): each

of the terms on the right side of (2.9) may be approximated using Theorem 1.1.3.

In contrast, our proof for the stability of the rate function requires uniform control

of �✏(z) for z in a real neighbourhood of 0, for which the theory developed in [71]

is insu�cient and so a result such as Theorem 1.2.2 is required.

2
We note that the sign discrepancy between [65, II-(2.14)] and (2.14) is due to an additional

factor of �1 in the definition of the resolvent in [65].
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We will use a slightly di↵erent formula to approximate �(2)✏ (0) in Chapters 3,

4 and 5. In these chapters we start with a compact, C1, Riemannian manifold

M , possibly with boundary, a Banach space (E, k·k) such that C1(M,C) ,! E ,!

C
1(M,C)⇤, and consider Markov3 numerical perturbations A✏. Since A✏ is a Markov

operator we may take '✏,0 to be the map f 7!
R
f dm, which implies that

R
v✏,0 dm =

1. Moreover, 1 2 �(A✏) since '✏,0 is an eigenvector of A✏ for the eigenvalue 1. Since

A✏ is a simple quasi-compact operator for su�ciently small ✏, Theorem 1.1.3 implies

that �✏(0) = 1 for all su�ciently small ✏. Evaluating (2.9) with z = 0 then yields

�(2)
✏
(0) =

Z
G2v✏,0 + 2G(Id�A✏)

�1A✏(Id�⇧✏)Gv✏,0 dm, (2.17)

which is the approximation used in the computation of the variance. We note that

when ✏ = 0 the expression (2.17) is equal to the expression for �(2)0 (0) from [58,

Corollary III.11], which also contains an alternative derivation.

3
That is A✏ preserves the k·k-completion of the positive cone in C

1
(M,C) and integrals with

respect to the Riemannian measure m on M .
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Chapter 3

Application to piecewise expanding interval maps

In this chapter we demonstrate the utility of the theory developed in Chapters 1

and 2 through an application to a classical example: piecewise expanding interval

maps. For such maps we obtain stability of the variance and rate function under

standard classes of perturbations, including perturbations arising from the Ulam

numerical scheme [75]; the specifics details are contained in Section 3.1. In Section

3.2 we focus on the application of Ulam’s method, which we then use to compute

rigorous approximations of the variance and rate function, respectively. While

the computation of the rate function is, to the best of our knowledge, new, there

are existing methods for approximating the variance for one-dimensional expanding

maps. We argue in Section 3.2.1 that our method applies to a large class of irregular

examples, and is the more e�cient than existing methods with equivalent scope.

3.1 Lasota-Yorke maps and functions of bounded variation

The aim of this section is to describe how the naive Nagaev-Guivarc’h method

and Theorem 2.2.1 apply to piecewise expanding interval maps. This literature

concerning this setting is substantial and so rather than give a full account of the

subject we will frequently direct the reader to various references for further details

(of particular note are [20, 10]).

Definition 3.1.1. We call T : [0, 1] ! [0, 1] a Lasota-Yorke map if there is a

sequence 0 = a0 < a1 < · · · < ar = 1 and � > 1 such that for each i = 1, . . . , r we

have

1. T is C1 on (ai�1, ai) with a C1 extension to [ai�1, ai];

2.
���T 0
��
(ai�1,ai)

��� � �; and

3.
���T 0
��
(ai�1,ai)

���
�1

2 BV.
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Let Leb denote Lebesgue measure on [0, 1]. If T : [0, 1] ! [0, 1] is a Lasota-Yorke

map then we define the Perron-Frobenius operator L associated to T via duality:

for every f 2 L1(Leb), h 2 L1(Leb) we set

Z
L(f) · h dLeb =

Z
f · (h � T ) d Leb . (3.1)

Rather than considering the action of L on L1(Leb) for our purposes it is more pro-

ductive to consider it as an operator on the space of complex-valued functions of

bounded variation on [0, 1], denoted BV. The following result, which is a paraphras-

ing of the results proved in [20, Section 7.2] together with [20, Theorem 8.2.2], makes

this claim precise. Recall that BV is a complex Banach algebra when equipped with

the norm k·kBV = Var(·) + k·k
L1(Leb), and that an absolutely continuous invariant

probability measure (ACIP) is a T -invariant measure ⌫ such that ⌫ ⌧ Leb.

Proposition 3.1.2. If T is a Lasota-Yorke map then L is a bounded, quasi-compact

operator on BV with spectral radius 1 and 1 is an eigenvalue of L. Moreover, if T

is topologically mixing then L is a simple quasi-compact operator on BV and T has

a unique ACIP µ such that dµ
dLeb is the unique fixed point of L in BV.

For real-valued g 2 BV one may consider the sequence of random variables

{g � T k
}
1

k=0 on the probability space ([0, 1],Leb). We can deduce a CLT and LDP

for such sequences by verifying (NG) and then applying Theorems 2.1.1 and 2.1.2;

the details of the former claim are contained in the following proposition, which

summarises the content of [20, Section 8.5]. But first we note that if g 2 BV

then the map Mg : C ! L(BV), defined by Mg(z)(f) = ezgf , is well-defined by

virtue of BV being a Banach algebra. Moreover, it is clear that z 7! Mg(z) is

analytic and that Mg(0) = Id, and so Mg is a twist (as per Definition 1.2.1). Recall

that g 2 L2(µ) is said to be a L2(µ)-coboundary with respect to T if there exists

� 2 L2(µ) such that g = �� � � T .

Proposition 3.1.3. Suppose that T : [0, 1] ! [0, 1] is a topologically mixing Lasota-

Yorke map with unique ACIP µ and that g 2 BV is real-valued, satisfies
R
g dµ = 0

and is not a L2(µ)-coboundary with respect to T . Let ' : BV ! C denote the map

f 7!
R
f dLeb and for z 2 C let L(z) be defined by L(z)f = (L � Mg(z))(f) =

L(ezgf). Then z 7! L(z) is analytic (in the operator norm on L(BV)) and {g �

T k
}
1

k=0, when considered on the probability space ([0, 1],Leb), satisfies (NG) with

coding (z 7! L(z),', dµ
dLeb). In particular, if Sn :=

P
n�1
k=0 g �T

k then for every z 2 C
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we have

ELeb

�
ezSn

�
=

Z
L(z)n

✓
dµ

dLeb

◆
dLeb .

With g as in Proposition 3.1.3 one therefore has a CLT and LDP for {g �T k
}
1

k=0

on the probability space ([0, 1],Leb) per Theorems 2.1.1 and 2.1.2. Hence we obtain

a variance �2
g
� 0 and rate function rg associated to the CLT and LDP, respectively.

Since g is not a L2(µ)-coboundary with respect to T one may deduce that �2
g
> 0

(see e.g. the proof of [79, Lemma 2.5.]). To prove the stability of these parameters

we aim to apply Theorem 2.2.1, for which we require the verification of (KL) and

that the map z 7! L(z) is induced by a twist. The latter condition is obvious

given the definition of z 7! L(z), and so it remains to verify (KL). Helly’s selection

theorem states that the closed unit ball in BV is k·k
L1(Leb)-pre-compact, and so we

may take k·k
L1(Leb) to be the weak norm |·|. Since L is Markov one obtains (KL2)

(for this particular operator) and by standard arguments, as in [20, Section 5.2],

one obtains a Lasota-Yorke inequality (i.e. (KL3)) for L too. Thus we obtain the

stability of the �2
g
and rg as a corollary to Theorem 2.2.1 and Proposition 3.1.3.

Theorem 3.1.4. Let T : [0, 1] ! [0, 1] be a topologically mixing Lasota-Yorke map,

µ be T ’s unique ACIP, L0 be the Perron-Frobenius operator induced by T , {L✏}✏�0

be a family of operators satisfying (KL) and g 2 BV be a real-valued observable

such that
R
g dµ = 0. There exists ✓, ✏0 > 0 so that for each ✏ 2 [0, ✏0) and z 2

D✓ the operator L✏(z) is quasi-compact and simple with leading eigenvalue �✏(z)

depending analytically on z. Moreover, we have stability of the following statistical

data associated to T and {g � T k
}k2N as ✏! 0:

1. The variance is stable: lim✏!0 �
(2)
✏ (0) = �2

g
.

2. The rate function is stable: for every compact subset U of the domain of rg

there exists a closed interval V such that

lim
✏!0

sup
z2V

(sz � ln |�✏(z)|) = rg(s)

uniformly for s 2 U .

For the remainder of this section we detail three specific examples of perturba-

tions for which (KL), and therefore also Theorem 3.1.4, hold. In what follows we

take L0 to be the Perron-Frobenius operator associated to a topologically mixing

Lasota-Yorke map T with |T 0
| � 2.
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NP: Numerical approximations of L by some finite-rank operator, such as in Ulam’s

method [75] (see also [50, 68]). Let En be the conditional expectation operator

induced by the uniform partition of [0, 1] into elements of diameter 1/n and

let L1/n = En � L. Then {L1/n}n2Z+[{1} satisfies (KL) (see the discussion in

Section 3.2 for details).

SP: Stochastic perturbations that arise via convolution of the Perron-Frobenius

operator with an appropriate bistochastic, nonnegative kernel K✏(x, y):

L✏f(x) =

Z
(Lf)(y)K✏(y, x) d Leb(y).

If the measure K✏dLeb
2 converges weakly to dLeb2 on the diagonal of [0, 1]

and {K✏}✏>0 satisfies mild monotonicity conditions then {L✏}✏�0 satisfies (KL)

by [68, Corollary 17].

DP: Deterministic perturbations of T in an appropriate metric space. For example,

in a “Skorohod”-type metric in the case of piecewise expanding maps on the

interval [68, Section 3]:

d(T, T✏) := inf

8
>>>><

>>>>:

� > 0 :

9U ⇢ [0, 1] such that Leb(U) > 1� �;

9 a di↵eomorphism h : [0, 1] ! [0, 1],

such that T
��
U
= T✏ � h

��
U
, and 8x 2 U ,

|h(x)� x| < �, |(1/h0(x))� 1| < �

9
>>>>=

>>>>;

. (3.2)

It is shown in [68, §3] that if lim✏!0 d(T, T✏) = 0 and {T✏}✏>0 is appropriately

regular as ✏ ! 0 (see [68, Remark 15]) then the family of operators {L✏}✏�0

satisfies (KL).

Corollary 3.1.5. The conclusion of Theorem 3.1.4 holds for the the numerical,

stochastic, and deterministic perturbations ((NP), (SP), and (DP) resp.) and so

we obtain the corresponding approximation and stability of the variance and rate

function under these perturbations.

Remark 3.1.6. We note that the stability of the variance for (DP) and (NP) have

been obtained before in [70] and [7], respectively. The stability of the rate function

is new in this setting.

3.2 Application to Ulam’s method

In this section we will compute rigorous approximations of the variance and rate

function for an example Lasota-Yorke map. The map we consider for the remainder
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of this chapter is the following non-Markov, piecewise a�ne map (with a = 2.1):

Ta(x) =

8
>>>><

>>>>:

ax, 0  x < 1/4;

�a(x� 1/2), 1/4  x < 1/2;

�a(x� 1/2) + 1, 1/2  x < 3/4;

a(x� 1) + 1, 3/4  x  1.

(3.3)

By standard arguments one obtains a Lasota-Yorke inequality for L for any ↵ >

2.1�1 and thus L is quasi-compact. Moreover, it is clear from the graph of Ta

(Figure 3.1, upper left) that forward images of any interval I ⇢ [0, 1] eventually

cover all of [0, 1]; thus, Ta is topologically mixing.

Figure 3.1: Graph of Ta (upper left), an approximation of the invariant density

with n = 25000 (upper right), a zoom of an apparent “flat” section of the invariant

density showing fine structure (lower left), and an approximation of the second

eigenfunction with eigenvalue �2 ⇡ 0.8079 (lower right).
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Note that the dynamics of Ta for a ' 2 has infrequent transitions between the left

and right halves of the unit interval; in such a situation, these sets are sometimes

called almost-invariant sets [31, 30]. We select observables g (taking values approx-

imately in the range [�1, 1]) that emphasise this structure to varying extents, and

illustrate the combined e↵ects of the dynamics and the observable on variances and

rate functions; see Figure 3.2 for graphs of the various g. For example, the Birkho↵

sums of g(x) = �[0,1/2]��(1/2,1] will typically take longer to converge because of fre-

quent long sequences of similar g values (in this case either 1 or �1). On the other

hand, the observable g(x) = cos(2⇡x) � 0.0614 is not strongly correlated with the

almost-invariant dynamics and one expects a more rapid convergence of Birkho↵

sums. These arguments are reflected in the table of variances, Table 3.1, and the

graph of rate functions, Figure 3.2 (right).

Our choice of numerical scheme is dictated by the class of map. As was outlined

in the previous section, because we are considering general (non-Markov) Lasota-

Yorke maps the natural choice of Banach space is BV, with the weak and strong

norms being the L1 and BV norms, respectively. Since the eigenfunctions of L

can be discontinuous (see Figure 3.1 upper right and lower right), we use locally

supported functions for our approximation space, and in particular, locally constant

functions, leading to the well-known Ulam scheme [104]. If, on the other hand, we

restricted ourselves to globally di↵erentiable, full-branched maps (a smaller and

better-behaved class), then it would be natural to work with Cr functions and use

a globally supported basis consisting of Chebyshev polynomials, if the phase space

is an interval, or trigonometric polynomials (or Fourier modes), if the phase space

is a circle. By exploiting the smoothness of the map these bases could produce

commensurately more accurate estimates.

For a partition of [0, 1] into subintervals I1, . . . , In, setting Bn = span{�Ii : 1 

i  n}, we define the conditional expectation operator En : L1([0, 1]) ! Bn by

Enf =
nX

i=1

R
Ii
f dLeb

Leb(Ii)
�Ii . (3.4)

It is well known (e.g. [75]) that the matrix representation of EnL on Bn is

Pij =
Leb(Ii \ T�1Ij)

Leb(Ij)
, (3.5)
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under multiplication on the left. In our experiments, we use equipartitions of [0, 1]

of increasing cardinality n. Putting ✏ = 1/n, we set L✏ = L1/n = EnL. The

property (KL1) is satisfied; see e.g. the discussion in §16–18 [68]. The operators

L1/n are Markov for every n and therefore satisfy (KL2) and are positive. The

expectation operator En reduces variation, and thus (KL3) is also satisfied. Our

estimate of the twisted operator L(z) will be the operator L1/n(z) := L1/nMgn(z),

where gn =
P

n

i=1 g((i� 1/2)/n)�Ii takes the value of g at the midpoint1 of each Ii,

i = 1, . . . , n.

3.2.1 Estimating the variance

We numerically evaluate the expression (2.17) for �(2)(0) by taking G to be the

multiplication operator induced by g. The term (Id�L✏)�1
L✏(gv✏,0) is numerically

determined by solving the single linear system of equations (Id�L✏)v0(0) = L✏(gv✏,0)

for the unknown v0(0) (i.e. d

dz
v
��
z=0

), restricting v0(0) to the codimension 1 subspace

of zero-Lebesgue-mean functions. The MATLAB function for computing the vari-

ance is given in Listing 3.1.

Ulam Variance estimates for observable g(x)
subintervals cos(2⇡x)� 0.0614 2x� 1 sin(2⇡x) �[0,1/2] � �(1/2,1]

200 0.51057 4.3355 6.5368 17.006
1000 0.50496 4.2886 6.4959 16.859
5000 0.50430 4.2871 6.4950 16.855
25000 0.50396 4.2860 6.4936 16.851

Table 3.1: Computed variances for four di↵erent observables and at four di↵erent
Ulam resolutions.

For a transformation T : [0, 1] ! [0, 1] let P denote a row-stochastic Ulam matrix

constructed on an equi-partition of [0, 1] in MATLAB’s sparse format. To compute

an estimate of the variance v for the observable g(x) = sin(2⇡x), use:

obs=@(x)sin(2*pi*x);

[v,~,~,~,~] = variance(P,obs);

1
Strictly speaking, Ulam’s method for twisted transfer operators will involve integrals of g,

which can be numerically evaluated. We have chosen the above midpoint approximation of g
for computational convenience; note that the midpoint rule is the same order of accuracy as

the trapezoidal method of numerical quadrature and often slightly more accurate (errors are

about a factor 1/2 smaller). We additionally computed the values in Table 3.1 with an “exact”

implementation of Ulam and the errors due to the midpoint estimate of g were several orders of

magnitude smaller than the errors due to the overall Ulam discretisation.
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There have been a number of prior rigorous numerical estimates of variance for

interval maps. Bahsoun et al. [7], Pollicott et al. [63], and Wormell [106] de-

velop algorithms that output an interval in which the variance is guaranteed to lie.

Bahsoun et al. applies to general Lasota-Yorke maps, uses Ulam’s method, and

employs a “brute force” approach of taking high powers of L1/n to achieve conver-

gence. The method of [63] applies to real analytic expanding (full-branch) maps

with real analytic observables, and is based on evaluations on all periodic orbits up

to a certain order. Wormell [106] applies to full-branched, C3 expanding maps and

uses an approach most similar to ours, with computations in Chebyshev/Fourier

bases. In each of these papers, an interval containing the variance of the Lanford

map T (x) = 2x + x(1 � x)/2 (mod 1) for the observable g(x) = x2 is obtained.

The latter two papers, exploiting the analyticity of the map T and observable g can

achieve more accurate estimates for the same computational e↵ort.

In comparison to [7] we can avoid raising the very sparse matrix L1/n to high

powers (in the full-branch Lanford map studied in [7] L112
1/n is computed). We ex-

ploit the di↵erentiability properties of the spectral data with respect to the twist

parameter (which exist even for general Lasota-Yorke maps) and preserve the high

degree of sparseness of L1/n, which is quickly destroyed by taking powers. We only

need to solve a single sparse linear equation to obtain an estimate for �(2)(0), which

is related to the equation solved in [106]. In comparison to [63] and [106] we can

treat general Lasota-Yorke maps, via the flexible choice of a locally supported ba-

sis, however, as explained above, for smoother classes of maps as in [63, 106], one

should adapt the basis accordingly as the Ulam basis will not be competitive with

specialised approaches. Our variance estimates rigorously converge to the true value

as n ! 1; and while it is likely possible to provide an “interval of guarantee”, as

in the above methods, we have not pursued this here.

Listing 3.1: This function centres the observable obs (defined by an anonymous

MATLAB function e.g. the code snippet in Section 3.2.1) and computes the required

first and second derivatives at zero to estimate the variance.

1 function [ddLam ,v,dv ,dlam ,ddlam ]= variance(P,obs),

2

3 %P is a row -stochastic matrix

4 %obs is a pre -defined anonymous function representing the

observable

5 %lam is the leading eigenvalue
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6 %v is the leading eigenfunction

7 %dv is dv/dtheta , where theta is the twist parameter

8 %dlam is dlam/dtheta

9 %ddlam is d^2lam/dtheta ^2

10 %ddLam is d^2Lam/dtheta ^2

11

12 %% find v and normalise appropriately

13 n=size(P,1);

14 phi=ones(n,1)/n;

15 [v,~]= eigs(P',1);

16 v=v/sum(v)*n;

17

18 %% centre observable g

19 x=[1/(2*n):1/(n):1 -1/(2*n)]';

20 g=obs(x);

21 g=g-g'*v/n; %ensure g has mean zero by subtracting the

mean

22

23 %% estimate dlam and dv using 1.*v=1 and 1.*dv=0

24

25 A=[P'-speye(n) -v; ones(1,n) 0];

26 b=[-P'*(g.*v); 0];

27 y=A\b;

28 dv=y(1:n);

29 dlam=y(n+1);

30

31 %% compute d^2lam/dtheta ^2 and d^2Lam/dtheta ^2

32

33 ddlam =((g.^2) '*v+2*g'*dv)/n;

34 ddLam =(ddlam -dlam ^2);

3.2.2 Estimating the rate function

For a fixed value of s, we estimate rg(s) = �minz(ln�(z)� zs) by applying MAT-

LAB’s built-in unconstrained function minimising routine fminunc to the function

f(z) = ln�(z)� sz. We use the default quasi-newton algorithm option for fminunc
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(we found the trust-region algorithm used slightly more iterates) and supply an ex-

pression for the first derivative of f(z) with respect to z, namely �(z)(g�(z)v(z))�s

(here �(z) and v(z) are the leading left and right, respectively, eigenvectors of L(z));

all other settings are the defaults. Each evaluation of f(z) requires the computation

of �(z) (we obtain v(z) at the same time) and each evaluation of f 0(z) requires an

additional computation of �(z). These two eigencomputations are made by simply

repeatedly iterating v(0) and �(0) with L(z) and L(z)⇤ (and normalising), respec-

tively until the change in the estimated eigenvalue is below a tolerance (we used

5 ⇥ 10�12). This is relatively e�cient because the Ulam matrix approximation of

L(z) is very sparse, and we found this is also faster than using MATLAB’s built-in

eigs routine to find the single leading eigenvalue. We estimate rg(s) on a grid of s

values (in our experiments s ranges from 0 to 0.8 in steps of 0.01), stepping from

one grid point to the next. We use the previous optimal z as the initial seed for

the quasi-newton algorithm to find the optimal z for the next s grid point, and

found this choice results in slightly fewer quasi-newton steps than choosing a fixed

initialisation.

For a transformation T : [0, 1] ! [0, 1] let P denote a row-stochastic Ulam

matrix constructed on an equipartition of [0, 1] in MATLAB’s sparse format. To

compute estimates of the rate function rg(s), for the observable g(x) = sin(2⇡x),

at s 2 [0, 0.8] spaced 0.01 apart, and store these estimates in a vector r, use:

s=0:.01:.8;

obs=@(x)sin(2*pi*x);

[r,~] = rate_function(s,P,obs);

The necessary MATLAB functions are given in Listings 3.2, 3.3 and 3.4, which

appear at the end of this section. To run the above code to compute these 81

values of the rate function takes2 approximately 1, 4, and 12 seconds for Ulam

matrices of sizes 1000, 5000, and 25000, respectively. We use the same set of four

observables g as in the variance computations (Figure 3.2 left). The corresponding

rate functions are shown in Figure 3.2 right).

2
On a 7th-generation intel core i5 processor.
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Figure 3.2: Graphs of four di↵erent observables (left) and corresponding rate func-

tions (right), computed with n = 1000.

Note that the four observables g yield rate functions of increasingly lower value

(higher likelihood of large deviations occurring). This corresponds to the correlation

between the value of the observable and the almost-invariant sets [0, 1/2], [1/2, 1].

The observable g(x) = cos(2⇡x) � 0.0614 is not particularly correlated with the

almost-invariant sets and thus large deviations have low probability. On the other

hand, the observables 2x � 1 and sin(2⇡x) have moderate correlation with the

almost-invariant sets and large deviations have an increased probability of occurring

(interestingly, there is a crossover of these two rate functions around s = 0.8). The

observable g(x) = �[0,1/2] � �(1/2,1] is very strongly correlated with the almost-

invariant sets and we see a correspondingly small rate function. Figure 3.3 shows

the decrease in errors relative to n = 25000 for the calculations using n = 200, 1000,

and 5000, typically with somewhat larger errors for larger thresholds s, as expected.

40



Figure 3.3: Di↵erences between rate function estimates for n = 200, 1000, 5000 and

the rate function estimate using n = 25000.

We are not aware of prior rigorous numerical methods for estimating rate functions

for deterministic dynamics. Prior work on estimating rate functions includes [64,

91], which use the Legendre transform but not the spectral approach we use here.

Finally, we note that the rate of escape from the interval [0, 1/2] can be esti-

mated via the observable g(x) = �[0,1/2]��(1/2,1] by computing the rate function for

a threshold very close to 1. With n = 1000, and an s threshold of 1�10�15, one ob-

tains a rate function value of 0.04879016416945 (in this experiment, the optimality

tolerance in rate_function.m was decreased to 10�13). Alternatively, computing

the negative logarithm of the leading eigenvalue of the transfer operator restricted

to the interval [0, 1/2] (this is particularly straightforward with an Ulam basis, see

e.g. [6, 18]), one obtains 0.04879016416943. Thus, the rate function calculation

and the escape rate calculation are consistent up to 13 decimal places for an Ulam

matrix of size n = 1000 (note we are not claiming accuracy of the true values up to

this precision).

Listing 3.2: This function centres the observable obs (defined by an anonymous

MATLAB function e.g. the code snippet in Section 3.2.2), and performs the required

minimisation to evaluate the rate function at points specified in the vector s.

1 function [r,optz] = rate_function(s,P,obs)

2

3 %P is a row -stochastic matrix

4 %obs is a pre -defined anonymous function representing the

observable

5 %s is a vector of arguments of the rate function

6

7 %% calc acim for centering observable.

8 [v0 ,~]= eigs(P',1);

9 v0=v0/sum(v0);

10

11 %% set up objects to pass to legendre_function.m

12 n=length(P);

13 [I,J,V]=find(P);

14 xpts=(I-.5)/n;

15 xptsorig =1/(2*n):1/n:1 -1/(2*n);
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16 gmean=obs(xptsorig)*v0;

17

18 %% set up arrays for r and optz and set optimisation

options

19 r=zeros(length(s) ,1);

20 optz=r;

21 options = optimoptions('fminunc ','Algorithm ','quasi -

newton ','SpecifyObjectiveGradient ',true ,'

OptimalityTolerance ',1e-6);

22

23 %% initial seed point for minimisation

24 z0=0;

25

26 %% evaluate rate function at points specified in s

27 for i=1: length(s),

28 minfun =@(z)legendre_function(z,P,v0 ,s(i),obs ,n,I,J,V,

xpts ,gmean);

29 [optz(i),r(i) ,~,~]= fminunc(minfun ,z0 ,options);

30 z0=optz(i); %use previous optimum for next

initialisation.

31 end

32

33 r=-r;

Listing 3.3: This function evaluates the “Legendre function” (the function to be

minimised) and its derivative. This requires twisting the matrix P by z and then

computing the leading eigenvalue and eigenvector of the twisted matrix.

1 function [f,df] = legendre_function(z,P,v0 ,s,fun ,n,I,J,V,

xpts ,gmean)

2

3 %evaluate 'legendre ' function with fixed parameter s,

maximising over z.

4

5 %% twist P by z

6 gvec=z*(fun(xpts)-gmean);

7 Vtwist=V.*exp(gvec);
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8 Ptwist=sparse(I,J,Vtwist);

9

10 %% Calculate objective f

11 [v,lam]= powermethod(Ptwist ,v0 ,1);

12 f=log(lam)-z*s;

13

14 %% Calculate gradient df

15 if nargout > 1 % gradient required

16 v=v/sum(v);

17 [phi ,lam]= powermethod(Ptwist ',ones(n,1) ,1);

18 phi=phi/(phi '*v);

19 gvecbasic=fun (1/(2*n):1/n:1 -1/(2*n))-gmean;

20 dlam=lam*phi '*( gvecbasic '.*v);

21 df=dlam/lam -s;

22 end

Listing 3.4: Estimation of the leading eigenvalue and eigenvector by repeated iter-

ation.

1 function [v1 ,lam1]= powermethod(P,v0 ,lam0),

2

3 %P is a row stochastic matrix

4 %v0 is an initial (guessed) eigenvector

5 %lam0 is an initial (guessed) eigenvalue)

6

7 v0=v0/sum(v0);

8 v1=P'*v0;

9 lam1=sum(v1);

10 while abs(lam1 -lam0) >1e-15,

11 lam0=lam1;

12 v0=v1/lam1;

13 v1=P'*v0;

14 lam1=sum(v1);

15 end
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Chapter 4

Application to multidimensional piecewise

expanding maps

This chapter generalises the setting of the last by moving from one dimension to

many: we will apply the theory of Chapters 1 and 2 to the class of multidimensional

piecewise expanding maps studied by Saussol in [94]. We start in Section 4.1 by

reviewing the functional analytic setting used in [94], describing how it is compatible

with (KL), and how the maps in question satisfy a CLT and LDP for quasi-Hölder

observables under the Nagaev-Guivarc’h method (as is shown in [1]). Hence we have

all the ingredients required to apply Theorem 2.2.1, and we finish the section by

deducing the stability of the variance and rate function to perturbations satisfying

(KL). We then develop two new examples of perturbations satisfying (KL) in this

setting: stochastic perturbations and numerical perturbations arising via Ulam’s

method. That these perturbations satisfy (KL) is shown in Sections 4.2 and 4.3,

respectively.

4.1 Quasi-Hölder spaces for multidimensional piecewise expanding

maps

The aim of this section is to describe how the naive Nagaev-Guivarc’h method and

Theorem 2.2.1 apply to multidimensional piecewise expanding maps considered in

[94]. Let m � 2 and denote by Leb the Lebesgue measure on Rm. Let X ✓ Rm

be compact and satisfy int(X) = X. We denote by B(x, r) the open ball in Rm

centred at x of radius r, and by B(Y, r) the open r-neighbourhood of a set Y ✓ Rm.

Without loss of generality we may assume that Leb(X) = 1.

Definition 4.1.1 ([94, Section 2]). We say that T : X ! X is a multidimensional

piecewise expanding map if there exists a countable family of disjoint open sets
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{Ui ✓ X}, sets {Vi} and maps Ti : Vi ! Rm such that Ui ✓ Vi and for some

� 2 (0, 1] and ⌘0 > 0 one has:

1. For each i, T
��
Ui

= Ti

��
Ui

and B(TUi, ⌘0) ✓ Ti(Vi).

2. For all i, Ti 2 C
1(Vi), Ti is injective and T�1

i
2 C

1(TiVi). Moreover the

determinant of each T�1
i

is uniformly Hölder: for all i, ⌘  ⌘0, z 2 TiVi and

x, y 2 B(z, ⌘) \ TiVi we have

��detDxT
�1
i

� detDyT
�1
i

��  c⌘
��detDzT

�1
i

�� ⌘�,

for some c⌘ > 0.

3. Leb (X \
S

i
Ui) = 0.

4. There exists s = s(T ) < 1 such that for all u, v 2 TVi for which d(u, v)  ⌘0

we have d(T�1
i

u, T�1
i

v)  sd(u, v)

5. Let G(⌘, ⌘0) := sup
x
G(x, ⌘, ⌘0) where

G(x, ⌘, ⌘0) =
X

i

Leb(T�1
i

B(@TUi, ⌘) \B(x, (1� s)⌘0)

Leb(B(x, (1� s)⌘0)

and assume that the map �, which is defined by

�(⌘) = s� + 2⌘� sup
�⌘

���G(�, ⌘),

satisfies sup
⌘⌘0

�(⌘) < 1.

If T : X ! X is a multidimensional piecewise expanding map then the Perron-

Frobenius operator L associated to T is a well-defined bounded operator on L1(X),

and is a.e. given by

(Lf)(x) =
X

y2T�1(x)

f(y)

|detDyT |
.

As in the last chapter, rather than consider L as an operator on L1(X) it is more

fruitful to consider it as an operator on a Banach space of more regular functions,

namely the space of quasi-Hölder functions whose definition we now recall from [1,

Section 4] and [94]. Suppose A ✓ Rm is Borel. For each f 2 L1(Rm) the oscillation

of f over A is defined to be

osc (f, A) := ess sup
(y1,y2)2A2

|f(y1)� f(y2)| ,
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where the essential supremum is taken with respect to the product measure Leb2

on A2. For every f 2 L1(Rm) and ⌘ > 0 the function x 7! osc (f,B(x, ⌘)) is well

defined and lower-semicontinuous, and therefore also measurable. Let

|f |
�
= sup

0<⌘⌘0

⌘��
Z

Rm

osc (f,B(x, ⌘)) dx and,

V�(Rm) = {f 2 L1(Rm) : |f |
�
< 1}.

The space of quasi-Hölder functions on X is defined to be

V�(X) = {f 2 V�(Rm) : supp(f) ✓ X},

and is a Banach space when endowed with the norm k·k
�
= k·k

L1 + |·|
�
[94, 69].

Proposition 4.1.2 ([94, Theorem 5.1, Proposition 5.1]). If T is a multidimensional

piecewise expanding map then L is a bounded, quasi-compact operator on V�(X)

with spectral radius 1 and 1 is an eigenvalue of L. Moreover, if T is topologically

mixing then L is a simple quasi-compact operator on V�(X) and T has a unique

ACIP µ such that dµ
dLeb is the unique fixed point of L in V�(X).

As in the last chapter we consider the sequence of random variables {g �T k
}
1

k=0

on the probability space (X,Leb), where g 2 V�(X) is an appropriate real-valued

observable. In [1] it is shown that a CLT and LDP hold for such sequences via a

version of the Nagaev-Guivarc’h method. In particular, the coding hypothesis (NG)

follows readily from the proofs in [1] and so in our framing of the Nagaev-Guivarc’h

method the laws follow from Theorems 2.1.1 and 2.1.2. As in the last chapter, the

coding is induced by a twist: since V�(X) is a Banach algebra ([94, Proposition

3.4]) for g 2 V�(X) the map Mg : C ! L(V�(X)) defined by Mg(z)(f) = ezgf , is a

well-defined, analytic twist (per Definition 1.2.1).

Proposition 4.1.3. Suppose that T : X ! X is a topologically mixing multi-

dimensional expanding map with unique ACIP µ and that g 2 V�(X) is real-

valued, satisfies
R
g dµ = 0 and is not a L2(µ)-coboundary with respect to T . Let

' : V�(X) ! C denote the map f 7!
R
f dLeb and for z 2 C let L(z) be de-

fined by L(z)f = (L � Mg(z))(f) = L(ezgf). Then z 7! L(z) is analytic (in the

operator norm on L(V�(X))) and {g � T k
}
1

k=0, when considered on the probability

space (X,Leb), satisfies (NG) with coding (z 7! L(z),', dµ
dLeb). In particular, if
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Sn :=
P

n�1
k=0 g � T

k then for every z 2 C we have

ELeb

�
ezSn

�
=

Z
L(z)n

✓
dµ

dLeb

◆
dLeb .

Remark 4.1.4. In [1] it is not shown that t 7! ⇢(L(t)) is strictly convex in a real

neighbourhood of 0. However, the proof of Proposition 4.1.3 is much the same

as that of Proposition 3.1.3, and in particular the claimed strict convexity follows

the observations that ⇢(L(t)) equals the leading eigenvalue �(t) of L(t) for t small

enough, that �00(0) = �2, and that g not being an L2(µ)-coboundary with respect

to T implies that �2 > 0 (for this last claim see [79, Lemma 2.5]).

With g as in Proposition 4.1.3 one therefore has a CLT and LDP for {g �T k
}
1

k=0

on the probability space ([0, 1],Leb) with associated variance �2
g
and rate function

rg. Since z 7! L(z) is induced by a twist, in order to deduce the stability of these

parameters via an application of Theorem 2.2.1 it remains to verify (KL). We will

now gather some important properties of V�(X), and of L acting on V�(X), for this

purpose. The first result shows that we may take k·k
L1(Leb) to be the weak norm |·|

for V�(X).

Proposition 4.1.5 ([94, Proposition 3.3]). The closed, unit ball in V�(X) is pre-

compact with respect to k·k
L1(Leb).

Since L is Markov one obtains (KL2) for L. In later sections we will prove

that (KL3) holds for certain perturbations of L by using the fact that L satisfies a

Lasota-Yorke inequality itself, as confirmed by the following proposition.

Proposition 4.1.6 ([94, Lemma 4.1]). Provided that ⌘0 is small enough, there exists

� < 1 and D < 1 such that for each f 2 V�(X) we have

|Lf |
�
 � |f |

�
+D kfk

L1 .

Remark 4.1.7. In [94] the space V�(X) consists of real-valued functions only and

so the proof of [94, Lemma 4.1] only applies to real-valued f 2 V�(X). Examining

the proof of [94, Lemma 4.1], we note that the same conclusion holds for complex-

valued f after minor modifications to the arguments. In particular, the essential

infimum in [94, Proposition 3.2 (iii)] must be replaced by an essential supremum and

consequently the resulting essential supremum term that appears when bounding

R(1)
i
(x) must be bounded by |f(yi)| + osc (f,B(yi, s✏)). The rest of the argument

holds mutatis mutandis.
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Remark 4.1.8. We will always assume that ⌘0 is small enough so that Proposition

4.1.6 holds.

We have therefore confirmed that it is possible for (KL) to hold for perturbations

to L. Thus we obtain the stability of the �2
g
and rg as a corollary to Theorem 2.2.1

and Proposition 4.1.3.

Theorem 4.1.9. Let T : X ! X be a topologically mixing multidmensional piece-

wise expanding map, µ be T ’s unique ACIP, L0 be the Perron-Frobenius operator

induced by T , {L✏}✏�0 be a family of operators satisfying (KL) and g 2 BV be a

real-valued observable such that
R
g dµ = 0. There exists ✓, ✏0 > 0 so that for each

✏ 2 [0, ✏0) and z 2 D✓ the operator L✏(z) is quasi-compact and simple with leading

eigenvalue �✏(z) depending analytically on z. Moreover, we have stability of the

following statistical data associated to T and {g � T k
}k2N as ✏! 0:

1. The variance is stable: lim✏!0 �
(2)
✏ (0) = �2

g
.

2. The rate function is stable: for every compact subset U of the domain of rg

there exists a closed interval V such that

lim
✏!0

sup
z2V

(sz � ln |�✏(z)|) = rg(s)

uniformly for s 2 U .

Remark 4.1.10. More can be said in this context. In particular, in Theorem 4.1.9

one has stability of the ACIP in the following sense: for su�ciently small ✏, L✏ has

an eigenvector v✏ with
R
v✏ dLeb = 1 and so that lim✏!0

��v✏ � dµ
dLeb

��
L1 = 0. This

claim follows from [38, Proposition 2.4, Remark 2.5], whose hypotheses are verified

due to the convergence of eigenprojections in Theorem 1.2.2.

In the sections that follow we will develop some perturbations to L that satisfy

(KL), and to which Theorem 4.1.9 can therefore be applied. Before doing so we

finish this section by recalling one last result on the quasi-Hölder space on the

continuity of inclusion of V�(X) into L1(m).

Proposition 4.1.11 ([94, Proposition 3.4]). Let ⌫m denote the measure of the m-

dimensional unit ball i.e. ⌫m = Leb(B(0, 1)). For every f 2 V�(X) we have

kfk
L1 

1

⌫m⌘m0
(⌘�0 |f |� + kfk

L1) 
max{1, ⌘�0 }

⌫m⌘m0
kfk

�
.
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4.2 Stability under stochastic perturbations

We now consider the case where the Perron-Frobenius operator is perturbed by

convolution with a stochastic kernel, which naturally arise when considering i.i.d.

additive perturbations to a fixed system (see e.g. the exposition in [10, Section

2.7]).

Definition 4.2.1. We say that {q✏}✏>0 ✓ L1(Rm) approximates the identity if

1. Each q✏ is non-negative and satisfies kq✏kL1 = 1.

2. For every � > 0 we have

lim
✏!0

Z

|x|��

q✏(x) dx = 0.

Suppose {q✏}✏>0 ✓ L1(Rm) approximate the identity. We define the correspond-

ing stochastically perturbed Perron-Frobenius operators by L✏ = (q✏ ⇤L)�X i.e. for

f 2 V�(X) we have

(L✏f)(x) =

8
<

:

R
X
(Lf)(y)q✏(x� y) dy x 2 X,

0 x /2 X.

Our main result for this section is the following.

Theorem 4.2.2 (Stability of statistical parameters under stochastic perturba-

tions). Suppose that T : X ! X be a topologically mixing multidmensional piece-

wise expanding map with Perron-Frobenius operator L0. Let {q✏}✏>0 approximate

the identity, and let {L✏}✏�0 be the corresponding stochastically perturbed Perron-

Frobenius operators. If

✓
1 +

1

⌫m⌘
m��

0

sup
0<⌘⌘0

⌘�� Leb(B(@X, ⌘))

◆
<

1

�
,

where the constant � is from Proposition 4.1.6, then {L✏}✏�0 satisfies (KL). Con-

sequently, the conclusion of Theorem 4.1.9 holds.

Remark 4.2.3. It is not obvious when one might have

sup
0<⌘⌘0

⌘�� Leb(B(@X, ⌘)) < 1.

This is the case if, for example, X is convex [55, Theorem 6.6].

We prove Theorem 4.2.2 by showing that {L✏}✏�0 satisfies (KL).
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Proposition 4.2.4 ((KL1) for stochastic perturbations). If {q✏}✏>0 approximates

the identity and {L✏}✏�0 denotes the corresponding stochastically perturbed Perron-

Frobenius operators, then

lim
✏!0

|||L✏ � L0||| = 0.

Proof. We have

|||L✏ � L0|||  sup
kfk�=1

Z

X

Z

Rm

|(Lf)(x� y)� (Lf)(x)| q✏(y) dy dx. (4.1)

Let � 2 (0, ⌘0). We break the inner integral in (4.1) into two parts: the component

where y 2 B(0, �) and the component where y 2 Rm
\ B(0, �). If f 2 V�(X) then

by the definition of k·k
�
we have

Z

X

Z

B(0,�)

|(Lf)(x� y)� (Lf)(x)| q✏(y) dy dx 

Z

X

osc (Lf,B(x, �)) dx

 �� kLfk
�
.

(4.2)

On the other hand, Proposition 4.1.11 we have

Z

X

Z

Rm\B(0,�)

|(Lf)(x� y)� (Lf)(x)| q✏(y) dy dx

 2 kLfk
L1

Z

X

Z

Rm\B(0,�)

q✏(y) dy dx

 2
max{1, ⌘�0 }

⌫m⌘m0
kLfk

�

Z

Rm\B(0,�)

q✏(y) dy.

(4.3)

By combining (4.1), (4.2) and (4.3) we obtain

|||L✏ � L0|||  �� kLk
�
+ 2

max{1, ⌘�0 }

⌫m⌘m0
kLk

�

Z

Rm\B(0,�)

q✏(y) dy.

As {q✏}✏>0 is an approximation to the identity, taking ✏! 0 yields

lim sup
✏!0

|||L✏ � L0|||  �� kLk
�
.

We conclude the proof by recalling that � may be chosen to be arbitrarily small.

The proof of (KL2) follows from the observation that each L✏ is Markov on

L1(X), and so is therefore also a contraction on L1(X).
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Proposition 4.2.5 ((KL2) for stochastic perturbations). If {q✏}✏>0 approximates

the identity and {L✏}✏�0 denotes the corresponding stochastically perturbed Perron-

Frobenius operators, then for each ✏ � 0 and n 2 Z+ we have kL
n

✏
k
L1  1. In

particular, {L✏}✏�0 satisfies (KL2).

We now pursue (KL3), which requires the following preparatory lemma.

Lemma 4.2.6. If {q✏}✏>0 approximates the identity and {L✏}✏�0 denotes the corre-

sponding stochastically perturbed Perron-Frobenius operators, then for every ✏ > 0

and f 2 V�(X) we have

|L✏f |� 

✓
1 +

1

⌫m⌘
m��

0

sup
0<⌘⌘0

⌘�� Leb(B(@X, ⌘))

◆
|Lf |

�

+
1

⌫m⌘m0

✓
sup

0<⌘⌘0

⌘�� Leb(B(@X, ⌘))

◆
kfk

L1 .

Proof. Fix ✏ > 0 and ⌘ 2 (0, ⌘0]. Since

osc (L✏f,B(x, ⌘)) = ess sup
y1,y22B(x,⌘)

|(q✏ ⇤ L)(y1)�X(y1)� (q✏ ⇤ L)(y2)�X(y2)| ,

we consider three (not necessarily distinct) cases when bounding osc (L✏f,B(x, ⌘)).

Depending on how many of the characteristic function terms contribute to the

essential supremum, we either have osc (L✏f,B(x, ⌘)) = 0,

osc (L✏, B(x, ⌘)) = ess sup
y12B(x,⌘)

|(q✏ ⇤ L)(f)(y1)| , (4.4)

or

osc (L✏f,B(x, ⌘)) = osc (q✏ ⇤ (Lf), B(x, ⌘)) . (4.5)

As the support of f is a subset of X, if x 2 Rm
\B(X, ⌘) then osc (L✏f,B(x, ⌘)) = 0.

By a similar argument, if (4.4) holds, (4.5) does not hold, and osc (L✏f,B(x, ⌘)) 6= 0,

then x 2 B(@X, ⌘). Hence,

Z

Rm

osc (L✏f,B(x, ⌘)) dx 

Z

Rm

osc (q✏ ⇤ Lf,B(x, ⌘)) dx

+

Z

B(@X,⌘)

ess sup
y12B(x,⌘)

|(q✏ ⇤ Lf)(y1)| dx.
(4.6)
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We now bound the quantity (4.4). As kLk
L1  1 and by Proposition 4.1.11 we have

|(q✏ ⇤ Lf)(y1)| =

����
Z

Rm

q✏(y)(Lf)(y1 � y) dy

����

 kLfk
1


1

⌫m⌘m0
(⌘�0 |Lf |� + kfk

L1).

Hence,

Z

B(@X,⌘)

ess sup
y12B(x,⌘)

|(q✏ ⇤ Lf)(y1)| dx 
Leb(B(@X, ⌘))

⌫m⌘m0
(⌘�0 |Lf |� + kfk

L1). (4.7)

Alternatively, to bound (4.5) we note that

osc(q✏ ⇤ (Lf), B(x, ⌘)) = ess sup
y1,y22B(x,⌘)

����
Z

Rm

q✏(y)((Lf)(y1 � y)� (Lf)(y2 � y)) dy

����



Z

Rm

q✏(y)osc (Lf,B(x� y, ⌘)) dy.

By changing variables and applying Fubini-Tonelli we obtain

Z

Rm

osc (q✏ ⇤ (Lf), B(x, ⌘)) dx 

Z

Rm

Z

Rm

q✏(y)osc (Lf,B(x� y, ⌘)) dy dx



Z

Rm

✓Z

Rm

q✏(x� y) dx

◆
osc (Lf,B(y, ⌘)) dy



Z

Rm

osc (Lf,B(y, ⌘)) dy.

(4.8)

Applying (4.7) and (4.8) to (4.6) yields

Z

Rm

osc (L✏f,B(x, ⌘)) dx 

Z

Rm

osc (Lf,B(x, ⌘)) dx

+
Leb(B(@X, ⌘))

⌫m⌘m0
(⌘�0 |Lf |� + kfk

L1).

Thus,

|L✏f |�  |Lf |
�
+

1

⌫m⌘m0

✓
sup

0<⌘⌘0

⌘�� Leb(B(@X, ⌘))

◆
(⌘�0 |Lf |� + kfk

L1),

which is the required bound.

Proposition 4.2.7 ((KL3) for stochastic perturbations). Under the hypotheses of

Theorem 4.2.2 there exists ↵ 2 (0, 1) and C3 > 0 such that for every ✏ � 0,
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f 2 V�(X) and n 2 Z+ we have

kL
n

✏
fk

�
 ↵n

kfk
�
+ C3 kfkL1 .

Proof. By Lemma 4.2.6, and Propositions 4.1.6 and 4.2.5, for each ✏ > 0 and

f 2 V�(X) we have

|L✏f |�  ↵ |f |
�
+ C kfk

L1 (4.9)

where

↵ = �

 
1 +

⌘�0
⌫m⌘m0

sup
0<⌘⌘0

⌘�� Leb(B(@X, ⌘))

!

and

C = D +
D⌘�0 + 1

⌫m⌘m0

✓
sup

0<⌘⌘0

⌘�� Leb(B(@X, ⌘))

◆
.

Note that ↵ < 1 by the hypotheses of Theorem 4.2.2. By iterating (4.9) and

applying Proposition 4.2.5, for each n 2 Z+ we have

|L
n

✏
f |
�
 ↵n

|f |
�
+

C

1� ↵
kfk

L1 .

Finally, recalling the definition of k·k
�
and then applying Proposition 4.2.5 again

yields

kL
n

✏
fk

�
 ↵n

kfk
�
+

✓
1 +

C

1� ↵

◆
kfk

L1 .

Proof of Theorem 4.2.2. By Lemma 4.2.6 each L✏ is in L(V�(X)). By Propositions

4.2.4, 4.2.5 and 4.2.7 the family of operators {L✏}✏�0 satisfies (KL). The required

result then follows from Theorem 4.1.9.

4.3 Stability under Ulam perturbations

We will now prove that the numerical approximations of the Perron-Frobenius oper-

ator arising from Ulam’s method satisfy (KL) on V�(X). As a corollary to Theorem

4.1.9 we then obtain the stability of the rate function and variance with respect to

Ulam’s method. While (KL2) is simple for Ulam’s method, (KL1) and (KL3) re-

quire significantly more work. In particular, the proof of (KL3) is quite long and

depends critically on the geometry of the partitions inducing the Ulam approxima-

tions, so we defer its proof to Section 4.3.1. The class of partitions we consider is

the following.
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Definition 4.3.1. For  � 1 let P() be the collection of finite measurable parti-

tions Q of X satisfying the following conditions:

1. The elements of Q are compact and convex polytopes with non-empty interiors.

2. For every I 2 Q we have diam(Q)   diam(BI), where BI is a ball of

maximal volume inscribed in I and diam(Q) = maxJ2Q diam(J).

Each Q 2 P() induces a conditional expectation operator EQ on L1(X) that

is given by

EQf =
X

I2Q

f̂I�I ,

where f̂K denotes the expected value of f on a Borel set K i.e.

f̂K =
1

Leb(K)

Z

K

f dLeb .

We adopt the convention that f̂K = 0 if Leb(K) = 1. As in Section 3.2 the Ulam

approximation of L induced by Q is the operator LQ := EQL. If {Q✏}✏>0 ✓ P()

is a sequence of partitions then we define the corresponding sequence of perturbed

Perron-Frobenius operators by L✏ = EQ✏L, with L0 := L.

Theorem 4.3.2 (Stability of statistical parameters under Ulam approximations).

Suppose that T : X ! X be a topologically mixing multidmensional piecewise ex-

panding map with Perron-Frobenius operator L0. Let {Q✏}✏>0 ✓ P() be such that

lim✏!0 diam(Q✏) = 0, and let {L✏}✏�0 be the corresponding Ulam approximations of

the Perron-Frobenius operator. If

2m

0

@1 +
2

m

q
3
2 � 1

1

A
�

<
1

�
,

where the constant � is from Proposition 4.1.6, then there exists ✏0 > 0 such that

{L✏}0✏✏0 satisfies (KL). Consequently, the conclusion of Theorem 4.1.9 holds.

Example 4.3.3. Let X = [0, 1]m. For each n 2 Z+ the set

Qn =

⇢
X + b

n
: b 2 (Z \ [0, n))m

�

is a measurable partition of X consisting of hypercubes congruent to [0, 1/n]m. It is

straightforward to show that Qn 2 P (
p
m) for every n 2 Z+. Thus, Theorem 4.3.2
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applies to any multidmensional piecewise expanding map T : X ! X such that

2m

0

@1 +
2
p
m

m

q
3
2 � 1

1

A
�

<
1

�
.

Proposition 4.3.4 ((KL1) for Ulam approximations). If {Q✏}✏>0 ✓ P() satisfies

lim✏!0 diam(Q✏) = 0, then there exists ✏1 > 0 such that for every ✏ 2 [0, ✏1] we have

|||L✏ � L0|||  2 diam(Q✏)
�
kLk

�
.

In particular {L✏}0✏✏1 satisfies (KL1).

Proof. The statement is clearly true for ✏ = 0, so we may assume that ✏ > 0. One

has

|||EQ✏ � Id||| = sup
kfk↵=1

X

I2Q✏

Z

I

���f̂I � f
��� dLeb . (4.10)

Fix I 2 Q✏. Let fr and fi be the real and imaginary parts of f 2 V�(X), respectively.

By linearity of integration and the triangle inequality we have

Z

I

���f̂I � f
��� dLeb 

Z

I

��� ˆ(fr)I � fr
��� dLeb+

Z

I

��� ˆ(fi)I � fi
��� dLeb .

Applying this to (4.10) yields

|||EQ✏ � Id|||  2 sup

(
X

I2Q✏

Z

I

���f̂I � f
��� dLeb : f is real valued

and kfk↵=1

)
. (4.11)

Let f 2 V�(X) be real valued and fix x 2 I. Then for almost every y1, y2 2 I we

have

|f(y1)� f(y2)|  osc (f,B(x, diam(Q✏))) .

Taking the expectation with respect to y1 over I we find that

���f̂I � f(y2)
��� 

1

Leb(I)

Z

I

|f(y1)� f(y2)| dy1  osc (f,B(x, diam(Q✏))) ,

for almost every y2 2 I. Taking the expectation with respect to both y2 and x over

I we then obtain

Z

I

���f̂I � f
��� dLeb 

Z

I

osc (f,B(x, diam(Q✏))) dx.
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As lim✏!0 diam(Q✏) = 0 there exists ✏1 > 0 such that diam(Q✏)  ⌘0 for all ✏ 2

(0, ✏1]. Recalling the definition of k·k
�
, for each ✏ 2 (0, ✏1] we have

X

I2Q✏

Z

I

���f̂I � f
��� dLeb 

Z

Rm

osc (f,B(x, diam(Q✏))) dx  diam(Q✏)
�
kfk

�
,

which, when applied to (4.11), then yields

|||EQ✏ � Id|||  2 diam(Q✏)
�.

We conclude the proof by noting that |||L✏ � L|||  |||EQ✏ � Id||| kLk
�
.

The proof of (KL2) in this case follows easily from the fact that both L and EQ✏

are Markov operators on L1(X).

Proposition 4.3.5 ((KL2) for Ulam approximations). If {Q✏}✏>0 ✓ P() is a

sequence of partitions, then for each ✏ � 0 and n 2 Z+ we have kL
n

✏
k
L1  1. In

particular, {L✏}✏�0 satisfies (KL2).

We will now verify (KL3) for the Ulam approximations. The main technical

requirements are the following two lemmas, which we defer the proofs of to Section

4.3.1.

Lemma 4.3.6. If {Q✏}✏>0 ✓ P() satisfies lim✏!0 diam(Q✏) = 0 then there exists

✏2 > 0 such that

sup
0<✏✏2

|EQ✏ |�  2m

0

@1 +
2

m

q
3
2 � 1

1

A
�

.

Lemma 4.3.7. If Q 2 P() then EQ 2 L(V�(X)).

With these lemmas in hand we obtain (KL3).

Proposition 4.3.8 ((KL3) for Ulam approximations). Under the hypotheses of

Theorem 4.3.2 there exists ↵ 2 (0, 1) and C3 > 0 such that for all f 2 V�(X),

n 2 Z+ and ✏ 2 [0, ✏2] we have

kL
n

✏
fk

�
 ↵n

kfk
�
+ C3 kfkL1 .

Proof. By Proposition 4.1.6 we have

|Lf |
�
 � |f |

�
+D kfk

L1 ,
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where � < 1 and D < 1. Let ✏2 be as in Lemma 4.3.6. If ✏ 2 [0, ✏2] then

|L✏f |� 

✓
sup

0<✏✏2

|EQ✏ |�

◆
|Lf |

�
 ↵ |f |

�
+ C kfk

L1 , (4.12)

where

↵ = �2m

0

@1 +
2

m

q
3
2 � 1

1

A
�

and C = 2mD

0

@1 +
2

m

q
3
2 � 1

1

A
�

.

Note that ↵ < 1 by the hypotheses of Theorem 4.3.2. The remainder of the proof

is the same as that of Proposition 4.2.7, with Proposition 4.3.5 being used in place

of Proposition 4.2.5.

Proof of Theorem 4.3.2. With ✏1 as in Proposition 4.3.4 and ✏2 as in Proposition

4.3.8, set ✏0 = min{✏1, ✏2}. By Lemma 4.3.7 and Propositions 4.3.4, 4.3.5 and 4.3.8

the family of operators {L✏}0✏✏0 satisfies (KL). The required result then follows

from Theorem 4.1.9.

4.3.1 The proofs of Lemmas 4.3.6 and 4.3.7

Before discussing our strategy for proving Lemmas 4.3.6 and 4.3.7 we must discuss

the relationship between the space V�(X) and the seminorm |·|
�
. It is noted in [69]

that while V�(X) is independent of ⌘0, the seminorm |·|
�
is obviously not. However,

changing ⌘0 preserves the topology induced by the relevant seminorm, which will

be critical to proofs in this section. The following lemma gives the relevant bounds.

Lemma 4.3.9. For ⇣ > 0 and f 2 L1(Rm) let

|f |
�,⇣

= sup
0<⌘⇣

⌘��
Z

Rm

osc (f,B(x, ⌘)) dx.

If 0 < t  s then

|·|
�,t

 |·|
�,s

 S(t, s) |·|
�,t

,

where S(t, s) denotes the minimal number of balls of radius t required to cover (up

to a set of measure 0) a ball of radius s.

Proof. The inequality |·|
�,t

 |·|
�,s

is trivial. Let f 2 L1(Rm). If

sup
0<⌘t

⌘��
Z

Rm

osc (f,B(x, ⌘)) dx = sup
0<⌘s

⌘��
Z

Rm

osc (f,B(x, ⌘)) dx, (4.13)
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then, as S(t, s) � 1, we clearly have |f |
�,s

 S(t, s) |f |
�,t
. Alternatively, if (4.13)

does not hold then

sup
0<⌘t

⌘��
Z

Rm

osc (f,B(x, ⌘)) dx < sup
t<⌘s

⌘��
Z

Rm

osc (f,B(x, ⌘)) dx.

By the definition of S(t, s) there exists {ci}
S(t,s)
i=1 ✓ Rm and a set N of measure 0

such that

B(x, s) \ (N + x) ✓
S(t,s)[

i=1

B(x+ ci, t)

for every x 2 Rm. Hence, for any ⌘ 2 (t, s] and x 2 Rm we have

osc (f,B(x, ⌘))  osc (f,B(x, s)) 
S(t,s)X

i=1

osc (f,B(x+ ci, t)) .

After integrating, taking the supremum and applying the definition of |·|
�,t

we obtain

sup
t<⌘s

⌘��
Z

Rm

osc (f,B(x, ⌘)) dx  S(t, s)t��
Z

Rm

osc (f,B(x, t)) dx

 S(t, s) |f |
�,t

,

completing the proof.

We obtain Lemmas 4.3.6 and 4.3.7 as corollaries to the following result.

Proposition 4.3.10. If Q 2 P() satisfies diam(Q) < ⌘0, then

|EQ|�  S(⌘0 � diam(Q), ⌘0)

0

@1 +
2

m

q
3
2 � 1

1

A
�

. (4.14)

We prove Proposition 4.3.10 by using Lemma 4.3.9 to extend a bound for

sup
|f |�=1 |EQf |�,⌘0�diam(Q) to a bound for |EQ|�. We do this by combining two

bounds for

⌘��
Z

osc (EQf,B(x, ⌘)) d Leb

over ⌘ 2 (0, ⌘0 � diam(Q)]:

1. We obtain the ‘big’ ⌘ bound by scaling the ⌘-balls in osc (·, B(·, ⌘)) up to

⌘ + diam(Q) balls. This bound is useful for large ⌘, but grows unboundedly

as ⌘ vanishes. We obtain this bound in Lemma 4.3.12.
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2. We obtain the ‘small’ ⌘ bound by using the geometry of the elements of Q

to quantify the decay of the measure of the support of osc (EQf,B(·, ⌘)) as

⌘ vanishes. This bound is used for ⌘ arbitrarily close to 0. Obtaining this

bound is more complicated and is developed in Lemmas 4.3.13, 4.3.14 and

4.3.15.

Before proving these bounds we derive an expression for
R
osc (EQf,B(x, ⌘)) d Leb.

Lemma 4.3.11. Let Q 2 P(), define Q0 = Q [ {Xc
}, and for each ⌘ > 0 and

x 2 Rm let

N(x, ⌘) = {J 2 Q0 : B(x, ⌘) \ J 6= ;}.

For each ⌘ > 0, f 2 V�(X) and S ✓ Q0 let

MS(f) = max
J,K2S

���f̂J � f̂K
��� and AS,⌘ = {x 2 Rm : N(x, ⌘) = S}.

Then each AS,⌘ is measurable, and for every x 2 Rm we have

osc (EQf,B(x, ⌘)) = MN(x,⌘)(f). (4.15)

Hence, Z

Rm

osc (EQf,B(x, ⌘)) dx =
X

S✓Q0

Leb(AS,⌘)MS(f). (4.16)

Proof. For every J 2 Q the equality

{x 2 Rm : B(x, ⌘) \ J 6= ;} =
[

y2J

B(y, ⌘),

implies that both sets are open, and therefore measurable. Recalling from Definition

4.3.1 that Q is finite and noting the equality

AS,⌘ =

 
\

J2S

{x 2 Rm : B(x, ⌘) \ J 6= ;}

!
\
0

@
\

K2Q0\S

{x 2 Rm : B(x, ⌘) \K = ;}

1

A ,

we conclude that each AS,⌘ is measurable. Considering the definition of N(x, ⌘), we

note that the family of sets {AS,⌘ : S ✓ Q0
} partitions Rm. Hence,

Z

Rm

osc (EQf,B(x, ⌘)) dx =
X

S✓Q0

Z

AS,⌘

osc (EQf,B(x, ⌘)) dx,
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where we note that the sum on the right side is well defined as only finitely many

terms are ever non-zero. Thus, in order to prove (4.16) it su�ces to prove (4.15).

If N(x, ⌘) = S then

(EQf)(B(x, ⌘)) =
n
f̂J : J \B(x, ⌘) 6= ;

o
=
n
f̂J : J 2 S

o
,

which is finite as Q0 is finite. By applying the definition of osc, we find that

osc (EQf,B(x, ⌘)) = max
J,K2S

���f̂J � f̂K
��� = MS(f),

which is exactly (4.15).

We may now obtain the ‘big’ ⌘ bound.

Lemma 4.3.12. If Q 2 P() then for each f 2 V�(X) and ⌘ > 0 we have

Z

Rm

osc (EQf,B(x, ⌘)) dx 

Z

Rm

osc (f,B(x, ⌘ + diam(Q))) dx. (4.17)

Furthermore, if diam(Q) < ⌘0 and ⌘ 2 (0, ⌘0 � diam(Q)] then

⌘��
Z

Rm

osc (EQf,B(x, ⌘)) dx 

✓
1 +

diam(Q)

⌘

◆�
|f |

�
. (4.18)

Proof. Fix x 2 Rm. By Lemma 4.3.11, we have

osc (EQf,B(x, ⌘)) = max
J,K2N(x,⌘)

���f̂J � f̂K
��� .

Suppose that y 2 I for some I 2 N(x, ⌘) \ {Xc
}. By the definition of N(x, ⌘) there

exists z 2 I such that |z � x| < ⌘. Since |z � y|  diam(Q) we have |y � x| <

⌘ + diam(Q). Hence

[

I2N(x,⌘)\{Xc}

I ✓ B(x, ⌘ + diam(Q)). (4.19)

Now suppose that J,K 2 N(x, ⌘). In the case where J,K 2 N(x, ⌘) \ {Xc
} the

inclusion (4.19) implies that for almost every (y1, y2) 2 J ⇥K we have

|f(y1)� f(y2)|  osc (f,B(x, ⌘ + diam(Q))) .
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By taking expectations with respect to y1 over J and y2 over K we obtain

���f̂J � f̂K
���  osc (f,B(x, ⌘ + diam(Q))) . (4.20)

Alternatively, if one of J or K is equal to Xc then

���f̂J � f̂K
��� = max

n���f̂J
��� ,
���f̂K
���
o
 max

I2N(x,⌘)\Xc

���f̂I
���

 ess sup
y2B(x,⌘+diam(Q))

|f(y)| ,
(4.21)

where we obtain the last inequality by using (4.19). Noting that the set B(x, ⌘ +

diam(Q)) \Xc has non-zero measure, we have

ess sup
y2B(x,⌘+diam(Q))

|f(y)|  osc (f,B(x, ⌘ + diam(Q))) . (4.22)

By combining (4.21) and (4.22) we obtain (4.20) for the case where one of J or K

is equal to Xc. As J and K were arbitrary elements of N(x, ⌘) this implies that

osc (EQf,B(x, ⌘)) = max
I,J2N(x,⌘)

���f̂I � f̂J
���  osc (f,B(x, ⌘ + diam(Q))) .

By integrating with respect to x over Rm we obtain (4.17). We will now prove

(4.18). If diam(Q) < ⌘0 and ⌘ 2 (0, ⌘0 � diam(Q)] then ⌘ + diam(Q) 2 (0, ⌘0] and

so the definition of |·|
�
implies that

Z

Rm

osc (f,B(x, ⌘ + diam(Q))) dx  (⌘ + diam(Q))� |f |
�
.

Thus

⌘��
Z

Rm

osc (EQf,B(x, ⌘)) dx  ⌘��
Z

Rm

osc (f,B(x, ⌘ + diam(Q))) dx



✓
1 +

diam(Q)

⌘

◆�
|f |

�
.

We will now pursue the ‘small’ ⌘ bound.

Lemma 4.3.13. Let Q 2 P() and let S ✓ Q0 satisfy |S| > 1. If I 2 S \ {Xc
} and

⌘ > 0 then AS,⌘ ✓ B(@I, ⌘).

61



Proof. The claim is trivially true if AS,⌘ is empty, henceforth we assume that it

is not. Let x 2 AS,⌘. We distinguish between two cases: either x 2 I or x /2 I.

Suppose that x 2 I. As |S| > 1 and N(x, ⌘) = S there exists some J 2 Q0
\ {I}

such that B(x, ⌘) \ J 6= ;. Actually, as the closure of the interior of J is J , we

have B(x, ⌘) \ int(J) 6= ;. In this case let y 2 B(x, ⌘) \ int(J); as J and I are

convex elements of a measurable partition we have J \ I ✓ @J \ @I and so y /2 I.

Alternatively, if x /2 I, then let y 2 B(x, ⌘) \ I, which is non-empty by a similar

argument. In both cases we have a pair of points in AS,⌘: one in I and the other

not. Recalling that elements of Q0 have non-empty interior and then considering

the line segment that joins x and y, it is straightforward to verify that there exists

some z 2 @I on this line segment. Clearly |x� z| < ⌘ and so x 2 B(@I, ⌘), which

completes the proof.

Lemma 4.3.14. Let Q 2 P(). If ⌘ > 0 and S ✓ Q0 is such that |S| > 1 and

Leb(AS,⌘) > 0, then for each f 2 V�(X) we have

MS(f)  max
J,K2S

J 6=K

 Z

J

osc (f,B(x, ⌘ + diam(Q)))

Leb(J)
dx

+

Z

K

osc (f,B(x, ⌘ + diam(Q)))

Leb(K)
dx

!
.

Proof. Let J,K 2 S be partition elements satisfying

MS(f) =
���f̂J � f̂K

��� .

We may assume that J 6= K, as this case does not contribute to the maximum. Let

us first consider the case where Xc
2 {J,K}; without loss of generality let K = Xc.

For every j 2 J we have J ✓ B(j, ⌘+diam(Q)). Hence, as B(j, ⌘+diam(Q))\Xc

has non-empty interior, and therefore non-zero measure, for almost every j, j0 2 J

and k0
2 B(j, ⌘ + diam(Q)) \Xc we have

|f(j0)| = |f(j0)� f(k0)|  osc (f,B(j, ⌘ + diam(Q))) .

Taking expectations with respect to j0 and j over J yields

MS(f) =
���f̂J
��� 

Z

J

osc (f,B(x, ⌘ + diam(Q)))

Leb(J)
dx,
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which implies the required conclusion. Alternatively suppose that neither J norK is

equal toXc. Fix j 2 J and k 2 K. For any j0 2 J we have |j � j0|  diam(Q) and so

j0 2 B(j, ⌘+diam(Q)). Similarly, for every k0
2 K we have k0

2 B(k, ⌘+diam(Q)).

As Leb(AS,⌘) > 0, we know that AS,⌘ 6= ;. For z 2 AS,⌘ the intersection B(z, ⌘)\ J

is non-empty and so z 2 B(j, ⌘ + diam(Q)). Similarly, z 2 B(k, ⌘ + diam(Q)).

Hence, for almost every j0 2 J and k0
2 K,

|f(j0)� f(k0)|  |f(j0)� f(z)|+ |f(k0)� f(z)|

 osc (f,B(j, ⌘ + diam(Q))) + osc (f,B(k, ⌘ + diam(Q))) .

By taking the expectation with respect to j0 over J and k0 over K, we find

���f̂J � f̂K
���  osc (f,B(j, ⌘ + diam(Q))) + osc (f,B(k, ⌘ + diam(Q))) . (4.23)

Since (4.23) holds for every j 2 J and k 2 K, we may take expectations again to

obtain

���f̂J � f̂K
��� 

Z

J

osc (f,B(x, ⌘ + diam(Q)))

Leb(J)
dx+

Z

K

osc (f,B(x, ⌘ + diam(Q)))

Leb(K)
dx.

We obtain the required inequality by taking the maximum over all distinct pairs of

J,K 2 S.

Combining the previous two results yields the ‘small’ ⌘ bound.

Lemma 4.3.15. Let Q 2 P(). If diam(Q) < ⌘0, ⌘ 2 (0, ⌘0 � diam(Q)] and

f 2 V�(X) then

⌘��
Z

Rm

osc (EQf,B(x, ⌘)) dx 

✓
max
I2Q

Leb(B(@I, ⌘))

Leb(I)

◆✓
1 +

diam(Q)

⌘

◆�
|f |

�
.

Proof. By Lemma 4.3.11 we have

Z

Rm

osc (EQf,B(x, ⌘)) dx =
X

S✓Q0

Leb(AS,⌘)MS(f). (4.24)

Let G = {S ✓ Q0 : |S| > 1,Leb(AS,⌘) > 0}. Since Leb(AS,⌘)MS(f) = 0 if S /2 G we

may restrict the sum in (4.24) to S 2 G i.e.

Z

Rm

osc (EQf,B(x, ⌘)) dx =
X

S2G

Leb(AS,⌘)MS(f). (4.25)
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Applying Lemma 4.3.14 to each of the terms in (4.25) yields

Z

Rm

osc (EQf,B(x, ⌘)) dx



X

S2G

Leb(AS,⌘) max
J,K2S,J 6=K

✓Z

J

osc (f,B(x, ⌘ + diam(Q)))

Leb(J)
dx

+

Z

K

osc (f,B(x, ⌘ + diam(Q)))

Leb(K)
dx

◆
.

(4.26)

By rearranging the terms in (4.26) to sum over elements of Q we obtain

Z

Rm

osc (EQf,B(x, ⌘)) dx



X

I2Q

P
S2G,I2S

Leb(AS,⌘)

Leb(I)

Z

I

osc (f,B(x, ⌘ + diam(Q))) dx



✓
max
I2Q

P
S2G,I2S

Leb(AS,⌘)

Leb(I)

◆Z

Rm

osc (f,B(x, ⌘ + diam(Q))) dx,

where we omit the case of I = Xc, as it does not contribute to the sum. Since the

sets {AS,⌘}S✓Q0 are disjoint, Lemma 4.3.13 implies that

X

S2G,I2S

Leb(AS,⌘)  Leb(B(@I, ⌘)).

Thus,

Z

Rm

osc (EQf,B(x, ⌘)) dx



✓
max
I2Q

Leb(B(@I, ⌘))

Leb(I)

◆Z

Rm

osc (f,B(x, ⌘ + diam(Q))) dx.

The required inequality follows by applying the definition of |·|
�
.

Before proving Proposition 4.3.10 we require a technical lemma for an inequality

from convex geometry. For U, V ✓ Rm the Minkowski sum of U and V is denoted

by U + V and equal to {u+ v : u 2 U, v 2 V }; for basic properties we refer to [55,

Section 6.1].

Lemma 4.3.16. If I is a compact convex polytope then for every ⌘ > 0 we have

Leb(B(@I, ⌘) \ I)  Leb(B(@I, ⌘) \ Ic).
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Proof. Let Lebm�1 denote m� 1 dimensional Lebesgue measure. By Steiner’s for-

mula [55, Theorem 6.6] there exists a polynomial pI with positive coe�cients and

of degree m such that Leb(B(I, ⌘)) = pI(⌘). The constant coe�cient of pI is

clearly Leb(I), while the coe�cient of the linear term is Lebm�1(@I) i.e. the surface

area of I. Note that Leb(B(@I, ⌘) \ Ic) = pI(⌘) � Leb(I). We aim to prove that

Leb(B(@I, ⌘) \ I)  ⌘ Lebm�1(@I). Since pI has degree greater than or equal to 2

and positive coe�cients, it would then follow that

Leb(B(@I, ⌘) \ I)  ⌘ Lebm�1(@I)  pI(⌘)� Leb(I)  Leb(B(@I, ⌘) \ Ic),

which would complete the proof.

Let F(I) denote the set of set of facets of I. Clearly

Lebm�1(@I) =
X

F2F(I)

Lebm�1(F ).

Let y 2 B(@I, ⌘) \ I and denote by F the (possibly not unique) facet in F(I)

that minimises the distance from y to @I. Let x be the point on F attaining said

minimum. If x� y is not normal to F then the ball B(y, |x� y|) is not tangent to

F and so there exists z 2 B(y, |x� y|) \ Ic. The line segment from y to z must

intersect @I at some point that is strictly closer to y than x, which contradicts x

minimising the distance from y to @I. Hence, x � y must be normal to F and so

y 2 F + [0, ⌘]nF , where nF is the inward facing unit normal vector to F . This

implies that

B(@I, ⌘) \ I ✓

\

F2F(I)

F + [0, ⌘]nF

and so Leb(B(@I, ⌘) \ I)  ⌘
P

F2F(I) Lebm�1(F ) = ⌘ Lebm�1(@I) as required.

The proof of Proposition 4.3.10. We begin by bounding

sup
|f |�=1

|EQf |�,⌘0�diam(Q) .

Let b : R ! R be defined by

b(⌘) =

✓
1 +

diam(Q)

⌘

◆�
.
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By taking the minimum of the bounds in Lemmas 4.3.12 and 4.3.15 we have

|EQf |�,⌘0�diam(Q)  sup
0<⌘⌘0

min

⇢
max
I2Q

Leb(B(@I, ⌘))

Leb(I)
, 1

�
b(⌘) |f |

�
. (4.27)

We will now bound maxI2Q
Leb(B(@I,⌘))

Leb(I) . Lemma 4.3.16 implies that for any I 2 Q

we have
Leb(B(@I, ⌘))

Leb(I)


2 Leb(B(@I, ⌘) \ Ic)

Leb(I)
.

Noting that B(@I, ⌘) \ Ic = B(I, ⌘) \ I and B(I, ⌘) = I +B(0, ⌘), we obtain

Leb(B(@I, ⌘))

Leb(I)
 2

Leb(I +B(0, ⌘))� Leb(I)

Leb(I)
. (4.28)

Let BI be a ball inscribed in I of maximal volume. Then, by scaling and pos-

sibly translating by some vector vI 2 Rm, we find that B(0, 1) ✓
2

diam(BI)
I + vI .

Consequently

Leb (I +B(0, ⌘))  Leb

✓
I +

2⌘

diam(BI)
I

◆
=

✓
1 +

2⌘

diam(BI)

◆m

Leb(I). (4.29)

Applying (4.29) to (4.28), and recalling that 1/ diam(BI)  / diam(Q) (since

Q 2 P()), we find that

Leb(B(@I, ⌘))

Leb(I)
 2

✓
1 +

2⌘

diam(BI)

◆m

� 2  2

✓
1 +

2⌘

diam(Q)

◆m

� 2. (4.30)

By applying (4.30) to (4.27) we obtain

|EQf |�,⌘0�diam(Q)  sup
0<⌘⌘0

min

⇢✓
2

✓
1 +

2⌘

diam(Q)

◆m

� 2

◆
b(⌘), b(⌘)

�
|f |

�
.

(4.31)

It is clear that b is monotonically decreasing. Note that

2

  
1 +

2⌘

diam(Q)

!m

� 1

!
b(⌘) = 2⌘��

✓✓
1 +

2⌘

diam(Q)

◆m

� 1

◆
(⌘ + diam(Q))�.

(4.32)

The map ⌘ 7! (⌘ + diam(Q))� is clearly monotonically increasing on (0, ⌘0]. As

m � 2 and � 2 (0, 1], the map

⌘ 7! ⌘��
✓✓

1 +
2⌘

diam(Q)

◆m

� 1

◆
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is monotonically increasing on (0, ⌘0] too. Thus the left side of (4.32) is monotoni-

cally increasing. Since both b and the left side of (4.32) are continuous on (0, ⌘0], b

is monotonically decreasing and the left side of (4.32) is monotonically increasing,

it follows that if ⌘0 2 (0,1) solves

2

✓
1 +

2⌘0

diam(Q)

◆m

� 2 = 1, (4.33)

then

sup
0<⌘⌘0

min

⇢✓
2

✓
1 +

2⌘

diam(Q)

◆m

� 2

◆
b(⌘), b(⌘)

�
 b(⌘0).

Solving (4.33) yields
diam(Q)

⌘0
=

2

m

q
3
2 � 1

.

By substituting this into (4.31) we obtain the bound

|EQf |�,⌘0�diam(Q) 

0

@1 +
2

m

q
3
2 � 1

1

A
�

|f |
�
.

Applying Lemma 4.3.9 yields the required bound.

With Proposition 4.3.10 in hand we may now prove Lemmas 4.3.6 and 4.3.7.

Proof of Lemma 4.3.6. As lim✏!0 diam(Q✏) = 0 there exists ✏2 > 0 such that for

every ✏ 2 (0, ✏2] we have diam(Q✏) < ⌘0 and

1 + diam(Q✏)/(⌘0 � diam(Q✏)) <
p

m/(m� 1).

By [17, Section 8.5, page 236], this implies

S(1, 1 + diam(Q✏)/(⌘0 � diam(Q✏))) = S(⌘0 � diam(Q✏), ⌘0)  2m.

The desired conclusion follows by Proposition 4.3.10.
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Proof of Lemma 4.3.7. If diam(Q) < ⌘0 then |EQ|� < 1 by Proposition 4.3.10.

Alternatively, if diam(Q) � ⌘0, then repeatedly applying Lemma 4.3.9 yields

|EQ|� = sup
|f |�1

|EQf |�

 sup{|EQf |�,2 diam(Q) : |f |�,2 diam(Q)  S(⌘0, 2 diam(Q))}

 S(⌘0, 2 diam(Q)) |EQ|�,2 diam(Q) ,

which is finite by Proposition 4.3.10 applied to the seminorm |·|
�,2 diam(Q) (i.e. when

⌘0 = 2diam(Q)). In either case we have |EQ|� < 1 and so, as kEQkL1 = 1, we have

kEQk� < 1 too. As Q partitions X, for every f 2 V�(X) the support of EQf is a

subset of X. Hence EQf 2 V�(X) for every f 2 V�(X) and so EQ 2 L(V�(X)).
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Chapter 5

Application to Anosov maps

It is classical that topologically transitive Anosov di↵eomorphisms have a unique

SRB measure and satisfy a CLT and LDP for su�ciently smooth observables; such

results were first established by using Markov partitions to reduce to the case of

subshifts of finite type (see e.g. [85, 88] for proofs of the CLT and LDP in this way).

In this chapter we apply the theory of Chapters 1 and 2 to deduce the stability of

these statistical properties: the SRB measure, the variance of the CLT and rate

function of the LDP. In particular, in Section 5.1 we use the functional analytic

setup of Gouëzel and Liverani [54] to confirm that {g � T k
}k2N satisfies (NG) for

a C
r+1 Anosov map T and appropriate observables g, where r > 1. Theorem 2.2.1

then yields stability of the variance and rate function to perturbations of type (KL).

For the remainder of the chapter we develop some classes of perturbations satisfy-

ing (KL) for Anosov maps on tori. In Section 5.2 we propose a numerical method

for approximating the statistical data of an Anosov map that uses a combination

of mollification and Fourier approximation. In Section 5.3 we then consider per-

turbations arising from non-local stochastic perturbations, which include numerical

approximation via a Fejér kernel method. Having verified (KL) for these pertur-

bations, in Section 5.4 we then use these methods to compute estimates of various

statistical properties for a perturbation of Arnold’s cat map.

5.1 Anisotropic Banach spaces adapted to Anosov maps

We begin by reviewing the functional analytic setup of [54], before moving on to

discussing how (NG) may be verified for Anosov maps. For the sake of exposition

we defer all proofs to the end of the section. Let m > 1 and X be a m-dimensional,

C
1, compact, connected Riemannian manifold and T 2 C

r+1(X,X) be an Anosov

map for some r > 1. In [54] the metric on X is replaced by an adapted metric

x 7! h·, ·ix such that T exhibits strict contraction and expansion in the stable and
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unstable directions, respectively. More specifically, if x 7! k·k
x
denotes the norm

induced by the adapted metric, and x 7! Es(x) and x 7! Eu(x) denote the stable

and unstable bundles, respectively, associated to T , then there exists ⌫�1
u

, ⌫s 2 (0, 1)

such that

sup
x2X

���DxT
��
Es(x)

���
x

 ⌫s and sup
x2X

���DxT
�1
��
Eu(x)

���
x

 ⌫�1
u

.

Following [21, Proposition 5.2.2], we review the construction of such a metric in

Section 5.3.2 as the specific choice of metric will later simplify some arguments. Let

⌦ denote both the Riemannian measure on X induced by the adapted metric and

the linear functional f 7!
R
f d⌦. The transfer operator L : Cr(X,R) ! C

r(X,R)
associated with T is defined by

Z
(Lh) · u d⌦ =

Z
h · (u � T ) d⌦, (5.1)

where u, h 2 C
r(X,R). For L to have ‘good’ spectral properties it is necessary to

consider it as an operator on an appropriately chosen anisotropic Banach space. We

now describe the construction of such a space from [54]. Core to this construction

is a set ⌃ of ‘admissible leaves’: small submanifolds of bounded curvature that are

uniformly close to the stable directions of T ; see [54, Section 3] for the full definition.

For each W 2 ⌃ we denote the collection of Cr vector fields that are defined on a

neighbourhood of W by V
r(W ), and by C

q

0(W,R) the set of functions in C
q(W,R)

that vanish on a neighbourhood of @W . For h 2 C
r(X,R), q > 0, p 2 N with p  r

let1

khk�
p,q

= sup
W2⌃

sup
v1,...vp2V

r(W )
|vi|Cr1

sup
'2C

q
0(W,R)

|'|Cq1

Z

W

(v1 . . . vph) · ' d⌦.

Then

khk
p,q

= sup
0kp

khk�
k,q+k

= sup
p0p,q0�q+p0

khk�
p0,q0 (5.2)

is a norm on C
r(X,R). Denote by Bp,q the completion of C

r(X,R) under this

norm. As the naive Nagaev-Guivarc’h method requires a complex Banach space,

we consider the complexification Bp,q

C of the spaces Bp,q. When endowed with the

norm2

khr + ihikp,q = max{khrkp,q , khikp,q}, (5.3)

1
In an abuse of notation we also let ⌦ denote the induced Riemannian measure on the sub-

manifold W .
2
We abuse notation and denote the norm on Bp,q

C by k·kp,q.
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Bp,q

C is a complex Banach space. It is on this space that the operator L is quasi-

compact.

Theorem 5.1.1 ([54, Theorem 2.3]). If p 2 Z+ and q > 0 satisfy q + p < r then

the operator L : Bp,q

C ! Bp,q

C is bounded with spectral radius one. In addition, L

is quasi-compact with ⇢ess(L) ✓ {! 2 C : |!|  max{⌫�p

u
, ⌫q

s
}}. Moreover, the

eigenfunctions corresponding to eigenvalues of modulus 1 are distributions of order

0, i.e. measures. If the map is topologically transitive, then 1 is a simple eigenvalue

and no other eigenvalues of modulus one are present.

Remark 5.1.2. Some clarification is required about the sense in which one may

consider an element of Bp,q

C to be a measure. Let D
0

q
(X) denote the distributions

of order q on X. Each h 2 C
r(X,C) induces an element of D

0

q
(X) defined by

hD0
q(X) : ' 2 C

q(X,C) 7!
R
X
h · ' d⌦. As is described in [54, Section 4] the mapping

h 7! hD0
q(X) is continuous with respect to k·k

p,q
, and so may be extended to all of

Bp,q

C by taking limits. By [54, Proposition 4.1] this mapping is an injection, and so

we will say an element of Bp,q

C is a probability measure exactly when it induces a

probability measure in D
0

q
(X).

Remark 5.1.3. Recall that a T -invariant probability measure is said to be an SRB

measure if it has absolutely continuous conditional measures on unstable manifolds.

It is well-known that topologically transitive C
2 Anosov di↵eomorphism possess a

unique SRB measure, which we shall denote by µ. In view of the preceding theorem

and remark we deduce that the unique fixed point of L in Bp,q

C \ {h : ⌦(h) = 1}

maps to µ under the injection from Bp,q

C to Dq(X)0. We will also denote this fixed

point by µ.

The first main technical result of this section is Proposition 5.1.5, which verifies

(NG) in the present setting. As 1 2 Bp,q

C , for any g 2 C
r(X,R) we may define

ezg by the power series
P

1

k=0 z
kgk/k!. We define Mg : C ! L(Bp,q

C ) by setting

Mg(z)(h) = ezgh for h 2 C
r(X,C) and then passing to Bp,q

C by density.

Proposition 5.1.4. Let p 2 Z+, q > 0 satisfy p + q < r. If g 2 C
r(X,R) and

Mg : C ! L(Bp,q

C ) is defined by Mg(z)(f) = ezgf , then Mg is a compactly k·k
p�1,q+1-

bounded twist.

Recall that g 2 C
r(X,R) is called a L2(µ)-coboundary with respect to T if there

exists a � 2 L2(µ) so that g = �� � � T

Proposition 5.1.5. Suppose that T 2 C
r+1(X,X), r > 1, is a topologically tran-

sitive Anosov map with unique SRB measure µ and that g 2 C
r(X,R) satisfies

R
g dµ = 0 and is not an L2(µ)-coboundary with respect to T . Let p 2 Z+ and q > 0
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satisfy q + p < r and for z 2 C let L(z) be defined by L(z)f = (L � Mg(z))(f) =

L(ezgf). Then z 7! L(z) is analytic (in the operator norm on L(Bp,q)) and if

⇣ 2 Bp,q is a probability measure then {g � T k
}k2N, when considered on the prob-

ability space (X, ⇣), satisfies (NG) with coding (z 7! L(z),⌦, ⇣). In particular, if

Sn :=
P

n�1
k=0 g � T

k then for every z 2 C we have

E⇣
�
ezSn

�
=

Z
L(z)n⇣ d⌦.

With Proposition 5.1.5 in hand, by Theorems 2.1.1 and 2.1.2 we immediately

obtain a CLT and LDP (on appropriate probability spaces) for {g�T k
}k2N whenever

g 2 C
r(X,R) satisfies

R
g dµ = 0 and is not an L2(µ)-coboundary. Since z 7! L(z)

is induced by a compactly k·k
p�1,q+1-bounded twist, if we can verify (KL) for some

class of perturbations then the stability of the variance and rate functions will follow

from Theorem 2.2.1. By [54, Lemma 2.1] the unit ball in Bp,q

C is relatively compact

in k·k
p�1,q+1. The following result from [54] shows that L satisfies (KL2) and (KL3)

in the present setting.

Lemma 5.1.6 ([54, Lemma 2.2]). For each p 2 N and q � 0 satisfying p + q < r,

there exist Ap,q, Bp,q > 0 such that, for each n 2 N,

kL
nhk0,q  khk0,q 8h 2 B0,q

C ,

kL
nhk

p,q
 Ap,q max{⌫q

s
, ⌫�p

u
}
n
khk

p,q
+ khk

p�1,q+1 8h 2 Bp,q

C .

Hence it is possible, in principle, to obtain the stability of the variance and

rate function for perturbations to Anosov maps via Theorem 2.2.1. While we will

devolp more perturbations satisfying (KL) in later sections, for the moment we give

an application on the stability of the rate function for deterministic perturbations

to topologically transitive Anosov maps, which are known to satisfy (KL) as per

[54, Section 17]. This result should be compared to [54, Theorem 2.8, Remark 2.11].

For y 2 R we denote by ⌧y the map x 7! x+ y.

Theorem 5.1.7 (Stability of the rate function under deterministic perturbations).

Let T 2 C
1([0, 1], Cr+1(X,X)) be such that T (0) is a topologically transitive Anosov

di↵eomorphism. Let p 2 Z+ and q > 0 satisfy p + q < r. Fix a probability

measure ⇣ 2 Bp,q and suppose that g 2 C
r(X,R) satisfies

R
g dµ = 0 and is not

an L2(µ)-coboundary. There exists ✏ > 0 and, for each t 2 [0, ✏], a number At

and map rt : J � At ! R, where J is an open real neighbourhood of 0, so that
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{g � T (t)k � At}k2N satisfies a LDP on (X, ⇣) with rate function rt, At ! A0 = 0

and rt � ⌧�At ! r0 compactly on J .

We now prove Propositions 5.1.4 and 5.1.5, and Theorem 5.1.7.

The proof of Proposition 5.1.4. It is clear thatMg(0) is the identity. For each k 2 N
let Pk : C

r(X,C) ! C
r(X,C) be defined by Pkf = gkf . Multiplication by g

is continuous on Bp,q

C by [54, Lemma 3.2] and so Pk 2 L(Bp,q

C ) for each k 2 N.
Moreover, as kPkkp,q  kP1k

k

p,q
, for each z 2 C the series

P
1

k=0 z
kPk is absolutely

convergent in the k·k
p,q

operator norm, with limit Mg(z). Hence z 7! Mg(z) is a

well-defined analytic map taking values in L(Bp,q

C ). The same argument holds when

Bp,q

C is replaced with Bp�1,q+1
C , and so z 7! Mg(z) is analytic on L(Bp�1,q+1

C ) too. In

particular, it is compactly k·k
p�1,q+1-bounded.

From the beginning of [54, Section 4], for each h 2 Bp,q and � 2 C
q(X,R) we

have ����
Z

h� d⌦

����  C khk
p,q

k�k
Cq ,

for some C > 0 independent of h and �. It is straightforward to show that the

same inequality holds for h 2 Bp,q

C and � 2 C
q(X,C) (although with a di↵erent C,

which is inconsequential). Hence, the functional ⌦ is in (Bp,q

C )⇤. Let ⇣ 2 Bp,q be a

probability measure (i.e. the image of ⇣ under the injection from Bp,q to D
0

q
(X) is a

probability measure) and h 2 C
r(X,C). Since Cr(X,R) is dense in Bp,q, there exists

{⇣i}i2Z+ ✓ C
r(X,R) such that ⇣i ! ⇣ in Bp,q. As Bp,q is continuously injected into

D
0

q
(X) it follows that ⇣i ! ⇣i in D

0

q
(X). Note that ' 2 C

r(X,R) naturally induces

a measure, which we will also denote by ', so that
R
f d' =

R
f' d⌦ for each Borel

measurable function f : X ! C. Hence,

⌦(h⇣) = lim
n!1

⌦(h⇣n) = lim
n!1

Z
h⇣n d⌦ = lim

n!1

Z
h d⇣n =

Z
h d⇣. (5.4)

Proposition 5.1.8. Let g 2 C
r(X,R), Sn(g) =

P
n�1
k=0 g � T k and ⇣ 2 Bp,q be a

probability measure. Then for each n 2 N and z 2 C we have

Z
ezSn(g) d⇣ = ⌦(L(z)n⇣).

Proof. For h 2 C
r(X,C) we have Lh = (h |detT |�1) � T�1. It is straightforward

to verify that for every f1, f2 2 C
r(X,C) we have L(f1 � T · f2) = f1L(f2). By

[54, Lemma 3.2], multiplication by f1 is continuous on Bp,q

C . Hence, by passing to
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the completion we may take f2 2 Bp,q

C . Setting f1 = ezg and f2 = ⇣, and then

inductively using this identity, it follows that for each n 2 N and z 2 C we have

L(z)n⇣ = L
n
�
ezSn(g)⇣

�
. Upon integrating, and using (5.4) and that L preserves

⌦-integrals, we have

⌦(L(z)n⇣) = ⌦
�
L

n
�
ezSn(g)⇣

��
= ⌦

�
ezSn(g)⇣

�
=

Z
ezSn(g) d⇣.

The proof of Proposition 5.1.5. The expectation of g � T k with respect to ⇣ is

Z
g � T k d⇣ = ⌦

�
(g � T k) · ⇣

�
= ⌦

�
(Lk⇣) · g

�
.

By our assumptions, L = L(0) is a simple quasi-compact operator on Bp,q

C with

⇢(L) = 1. Let L
k = ⇧ + Nk be the quasi-compact decomposition of Lk. As µ is

T -invariant and ⌦L = ⌦, it follows that ⇧(f) = ⌦(f)µ. Hence, as Nk
! 0 and ⇣

is a probability measure, we have L
k⇣ = ⌦(⇣)µ+Nk

! µ in Bp,q

C . Using (5.4) and

the fact that ⌦ 2 (Bp,q

C )⇤ we have

lim
k!1

Z
g � T k d⇣ = lim

k!1

Z
g · (Lk⇣) d⌦ = ⌦(µg) =

Z
g dµ = 0.

It follows that limn!1 E⇣(Sn)/n = 0. By Proposition 5.1.4 the map z 7! Mg(z) is

analytic and so z 7! L(z) must be analytic too (both with respect to the operator

norm on L(Bp,q

C )). That z 7! ln ⇢(L(z)) is strictly convex follows (as in Remark

4.1.4) from the fact that ⇢(L(t)) equals the leading eigenvalue �(t) of L(t) for t in a

small real neighbourhood of 0 and as g not being a L1(µ)-coboundary with respect

to T implying that �00(0) > 0 (see e.g. [92, Lemma 6]). Thus {g � T k
}k2N satisfies

(NG) on the probability space (X, ⇣) with coding (z 7! L(z),⌦, ⇣).

The proof of Theorem 5.1.7. For t 2 [0, 1] let Lt denote the Perron-Frobenius oper-

ator induced by T (t). By [54, Theorem 2.3], topological transitivity of T (0) implies

that L0 is a simple quasi-compact operator on Bp,q

C with ⇢(L0) = 1. By [54, Sec-

tion 7], there exists some t0 > 0 for which {Lt}t2[0,t0] satisfies (KL) on Bp,q

C with

|·| = k·k
p�1,q+1. Applying Theorem 2.2.1 to {g � T k

}k2N, which satisfies (NG) by

Proposition 5.1.5, we obtain ✓ > 0 and ✏ 2 (0, t0) so that whenever t 2 [0, ✏] and

z 2 D✓ the operator LtMg(z) is quasi-compact and simple with leading eigenvalue

�t(z). In particular, 1 is a simple eigenvalue of Lt for t 2 [0, ✏] and so T (t) has
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a unique SRB measure µt in Bp,q

C . By [38, Proposition 2.4, Remark 2.5], for each

t 2 (0, ✏) there exists an eigenvector vt of Lt associated to the eigenvalue 1 such

that vt ! µ in Bp�1,q+1
C as t ! 0. By simplicity of the eigenvalue 1, for su�ciently

small t we have µt =
vtR
vt d⌦

and so the continuity of f 7!
R
f d⌦ on Bp�1,q+1

C implies

that µt ! µ in Bp�1,q+1
C too.

Fix t 2 [0, ✏]. Let At =
R
g dµt and gt = g � At. As multiplication by g is

continuous on Bp�1,q+1
C [54, Lemma 3.2] and ⌦ 2 (Bp�1,q+1

C )⇤, we have limt!0 At =

limt!0⌦(gµt) = ⌦(gµ) =
R
g dµ = 0. Note that ezAtLtMgt(z) = LtMg(z) for every

z 2 C, and so LtMgt(z) is quasi-compact exactly when LtMg(z) is. In particu-

lar, LtMgt(z) is a simple quasi-compact operator for every z 2 D✓ with leading

eigenvalue t(z) = e�zAt�t(z). From the material in this section and the last,

it is routine to verify that {gt � T (t)k}k2N satisfies (NG) on (X, ⇣) with coding

(z 7! LtMgt(z),⌦, ⇣). Hence, by Theorem 2.1.2 the sequence {gt � T (t)k}k2N satis-

fies a LDP on (X, ⇣) with rate function rt : Jt ! R defined by

rt(s) = sup
z2(�✓,✓)

(sz � ln |t(z)|).

Recall from (2.3) that rt has domain

Jt =

✓
0
t
(�✓)

t(�✓)
,
0
t
(✓)

t(✓)

◆
.

As t(z) = e�zAt�t(z), we therefore have Jt = J0 � At and

rt(s) = sup
z2(�✓,✓)

((s+ At)z � ln |�t(z)|).

By Theorem 2.2.1, for each compact U ✓ J0 there is a closed interval V ✓ (�✓, ✓)

so that the map s 7! sup
z2V

(sz � ln |�t(z)|) converges uniformly to r0 on U . Since

the map z 7! ln |�t(z)| is convex on (�✓, ✓), by the arguments from the proof of

Theorem 2.2.1 we have

rt(s� At) = sup
z2V

(sz � ln |�t(z)|).

Hence, rt � ⌧�At ! r0 compactly on J0.
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5.2 Approximating the statistical data of Anosov maps

In this section we introduce a scheme for approximating the spectrum of the Perron-

Frobenius operator associated to an Anosov map on the m-dimensional torus Tm,

which we identify with Rm/Zm. The scheme proceeds by convolving the Perron-

Frobenius operator with a compactly supported mollifier, and then approximating

the smoothened operator using Fourier series. A similar idea is developed in [14],

where Ulam’s method is considered instead of Fourier series and convergence of the

SRB measure and variance are obtained. We note that [14] did not include any

computations (as we do, in Section 5.4) nor did they consider the stability of the

rate function.

Throughout this section we adopt the setting, assumptions and notation of Sec-

tion 5.1, and fix p 2 Z+ and q > 0 satisfying p + q < r. Let Leb denote the

normalised Haar measure on Tm. For some ✏1 > 0, suppose that the family of

stochastic kernels {q✏}✏2(0,✏1) ✓ C
1(Tm,R) satisfies the following conditions:

(S1) q✏ � 0 and
R
q✏ dLeb = 1;

(S2) The support of q✏ is contained in B(0, ✏).

For such a family we define operators Q✏ : Cr(Tm,C) ! C
r(Tm,C) by Q✏f =

f ⇤ q✏. Recall that convolution is defined with respect to the Haar measure Leb on

Tm, which may di↵er from the measure ⌦ that is induced by the adapted metric.

It is evident, however, that the Radon-Nikodym derivatives dLeb
d⌦ and d⌦

dLeb both

exist, and are elements of C1(Tm,R). As a consequence we obtain the following

characterisation of Q✏:

Lemma 5.2.1. Q✏ extends to a bounded operator Q✏ : B
p,q

C ! C
1(Tm,C). Con-

sequently, Q✏ is compact as an element of L(Bp,q

C , Ck(Tm,C)) for every k 2 Z+.

Moreover, Q✏ is compact as an element of L(Bp,q

C ) and, for each k1, k2 2 Z+, as an

element of L(Ck1(Tm,C), Ck2(Tm,C)).

Let L0 = L and, for each ✏ 2 (0, ✏1), let L✏ = Q✏L0, which is in L(Bp,q

C ) by virtue

of the previous lemma.

Lemma 5.2.2. There exists ✏2 2 (0, ✏1) so that {L✏}✏2[0,✏2) satisfies (KL) on Bp,q

C

with |·| = k·k
p�1,q+1.

By Lemma 5.2.1, for each ✏ 2 (0, ✏1) the operator L✏ is compact and, for every

k 2 Z+, maps the unit ball of Bp,q

C into a bounded subset of C
k(Tm,C). For

this reason L✏ may be approximated with Fourier series for each ✏ > 0. For ` =
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(`1, . . . , `d) 2 Zm we set kkk
1

= maxi |`i| and k`k1 =
P

i
|`i|. For each n 2 Z+

define ⇧n : C(Tm,C) ! C(Tm,C) by

(⇧nf)(x) =
X

`2Zm

k`k1n

f̂(`)e2⇡ihx,`i,

where f̂ denotes the Fourier transform3 of f . For every ✏ 2 (0, ✏1) and n 2 Z+ let

L✏,n = ⇧nL✏. To simplify our notation, we set L✏,1 = L✏. Our main technical result

for this section is the following.

Proposition 5.2.3. There exists ✏3 2 (0, ✏2) and a map N : [0, ✏3) ! N[{1} with

N�1(1) = {0}, so that for any map n : [0, ✏3) ! N [ {1} with n � N the family

of operators {L✏,n(✏)}✏2[0,✏3) satisfies (KL) on Bp,q

C with |·| = k·k
p�1,q+1.

Remark 5.2.4. By Proposition 5.2.3 we may apply the results in [71] (see Section 1.1

for a review) to {L✏,n(✏)}✏2[0,✏3). A careful examination of the proof of Proposition

5.2.3 shows that the ↵ term in (KL3) for {L✏,n(✏)}✏2[0,✏3) may be taken to be any

number in (max{⌫q
s
, ⌫�p

u
}, 1). Hence, all the isolated eigenvalues of L with modulus

strictly greater than max{⌫q
s
, ⌫�p

u
} are approximated by eigenvalues of L✏,n(✏), with

error vanishing as ✏ ! 0. When such an eigenvalue of L is simple, we additionally

have that the corresponding eigenprojection and eigenvector are approximated by

those of L✏,n(✏) in |||·||| and |·|, respectively (see [38, Proposition 2.4, Remark 2.5] for

an extension of this idea).

Remark 5.2.5. From the proof of Proposition 5.2.3 it is clear that asymptotic be-

haviour of n(✏) as ✏ ! 0 is determined by the family of stochastic kernels {q✏}✏>0.

By restricting to a specific family of kernels one could more explicitly describe the

dependence of ✏ on n(✏). This is exactly what is done in [14, Section 2.6]: in their

scheme it is shown that n(✏) = O(✏�r) for an exponent r > 0 that may be estimated

in terms of dynamics, where n represents the maximum size of a polytope used in

an Ulam discretisation, and ✏ represents the dilation of a fixed stochastic kernel q

(i.e q✏(x) := ✏�kq(✏�1x)). See [14, Section 2.6] for more details.

Propositions 5.2.3 and 5.1.5 allow us to apply Theorem 2.2.1 to obtain the

stability of the invariant measure, variance and rate function. We note that Anosov

di↵eomorphisms on tori are automatically topologically transitive [66, Proposition

18.6.5], and so T has a unique SRB measure µ, and 1 is both a simple eigenvaue of

L and the only eigenvalue of L of modulus 1 ([54, Theorem 2.3]).

3
Specifically, f̂(`) =

R
Tmf(x)e�2⇡ix·`

dLeb(x).
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Theorem 5.2.6. Suppose that T 2 C
r+1(Tm,Tm), r > 1, is a topologically transi-

tive Anosov di↵eomorphism with unique SRB measure µ, and that g 2 C
r(Tm,R)

satisfies
R
g dµ = 0 and is not a L2(µ)-coboundary with respect to T . Let N, n satisfy

the conditions of Proposition 5.2.3. There exists ✓, ✏0 > 0 so that for each ✏ 2 [0, ✏0)

and z 2 D✓ the operator L✏,n(✏)(z) is quasi-compact and simple with leading eigen-

value �✏(z) depending analytically on z. Moreover, we have stability of the following

statistical data associated to T and {g � T k
}k2N as ✏! 0:

1. The invariant measure is stable: there exists eigenvectors v✏ 2 Bp,q

C of L✏,n(✏)

for the eigenvalue �✏(0) for which lim✏!0 kv✏ � µk
p�1,q+1 = 0.

2. The variance is stable: lim✏!0 �
(2)
✏ (0) = �2.

3. The rate function is stable: For each su�ciently small compact subset U of

the domain of the rate function r there exists an interval V ✓ (�✓, ✓) so that

lim
✏!0

sup
z2V

(sz � log |�✏(z)|) = r(s)

uniformly on U .

Remark 5.2.7. In Section 5.4 we aim to estimate the statistical properties of an

Anosov map T using Lemma 5.2.2, Proposition 5.2.3 and Theorem 5.2.6. However,

these results concern the stability of the spectral data of the transfer operator asso-

ciated to an Anosov map T on them-dimensional torus Tm equipped with an adapted

metric. In particular, this operator, say L⌦, is defined by duality with respect to

the adapted Riemannian measure ⌦. From a computational perspective one would

much rather approximate the transfer operator LLeb that is defined by duality with

respect to Leb, the Haar probability measure on Tm, since this removes the need to

compute any quantities that depend on the adapted metric. Luckily, the relation-

ship between these operators (and their twists) is simple: they are conjugate and

therefore have the same spectrum (see Proposition 5.4.1). Hence an approxima-

tion of the spectrum of LLeb(z) is also an approximation of the spectrum of L⌦(z).

However, it is not clear from the proofs in this section that if {⇧n(✏)Q✏L⌦}✏2[0,✏0)

satisfies (KL) due to Proposition 5.2.3 then so too does {⇧n(✏)Q✏LLeb}✏2[0,✏0) i.e. a

numerical scheme that is valid for L⌦ may not be valid for LLeb. In Section 5.4.4

we show that this obstruction does not occur, at least not in the current setting;

the relevant results are Propositions 5.4.1, 5.4.2 and 5.4.3.

The remainder of this section is dedicated to the proofs of the aforementioned

results.
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The proof of Lemma 5.2.1. Let ✏ 2 (0, ✏1), ` 2 Nm and f 2 C
r(Tm,C). Denote

@
k`k1

@x
`1
1 ...@x

`m
m

by @`. From the beginning of [54, Section 4] the map h 7!
R
h d⌦ is

bounded on Bp,q

C . Moreover, multiplication by C
r functions is bounded on Bp,q

C by

[54, Lemma 3.2]. These facts, together with standard properties of convolutions,

imply that there exists a constant C independent of f, ` and ✏ such that

sup
x2Tm

|(@`(q✏ ⇤ f))(x)| = sup
x2Tm

����
Z
(@`q✏)(x� y)f(y) d Leb(y)

����

= sup
x2Tm

����
Z
(@`q✏)(x� y)f(y)

d Leb

d⌦
(y) d⌦(y)

����

 C

����f
dLeb

d⌦

����
p,q

k@`q✏kCq .

Since dLeb
d⌦ 2 C

1(Tm,R), using the continuity of multiplication by C
r functions

again yields

kQ✏fkCk`k1  C 0

����
dLeb

d⌦

����
Cr

kfk
p,q

kq✏kCq+k`k1

for some appropriate constant C 0. Hence, Q✏ extends to a bounded operator

Q✏ : Bp,q

C ! C
k(Tm,C) for every k 2 Z+. It follows that Q✏ also extends to a

bounded operator Q✏ : Bp,q

C ! C
1(Tm,C). As bounded sets in C

1(Tm,C) are

compact in C
k(Tm,C) for every k 2 Z+, each operator Q✏ : B

p,q

C ! C
k(Tm,C) is

therefore compact. That Q✏ : Bp,q

C ! Bp,q

C is compact follows from the continu-

ous embedding of Cr(Tm,C) into Bp,q

C [54, Remark 4.3]. It is then standard that

Q✏ 2 L(Ck1(Tm,C), Ck2(Tm,C)) for each k1, k2 2 Z+.

The proof of Lemma 5.2.2. For each y 2 Tm let Ty : Tm
! Tm be defined by

Ty(x) = T (x) + y, and let LTy denote the transfer operator associated with Ty

(defined by duality as in (5.1)). Let h 2 C
r(Tm,C) and x, y 2 Tm. Let ⌧y : Tm

! Tm

denote the translation map induced by y. As DxTy = (DT (x)⌧y)(DxT ) we have

(Lh)(x� y) =
�
(h |detDT |�1) � T�1

�
(x� y)

=
�
h � T�1

y

�
(x)
���detDT

�1
y (x)Ty

���
�1 ��det(Dx�y⌧y)

�1
���1

= (LTyh)(x) |detDx⌧�y| .
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Hence,

(L✏h)(x) =

Z
q✏(y)(Lh)(x� y) d Leb(y)

=

Z
q✏(y) |detDx⌧�y| (LTyh)(x) d Leb(y).

(5.5)

For ✏ 2 (0, ✏1) let A✏ be defined by

(A✏h)(x) =

Z
q✏(y)(LTyh)(x) d Leb(y).

Set A0 = L and, for each ✏ 2 [0, ✏1), let F✏ = L✏�A✏. We aim to apply Proposition

1.3.1 to {A✏}✏2[0,✏1) and {F✏}✏2[0,✏1), which would imply the required result as L✏ =

A✏ + F✏.

We begin by proving that {A✏}✏2[0,✏1) satisfies (KL). Note that {A✏}✏2[0,✏1) is a

perturbation of the kind considered in [54]. Specifically, we take Tm to be their

⌦, the Haar measure Leb to be their µ, and set g(!, x) = q✏(!). Therefore, by

the discussion between Corollary 2.6 and Theorem 2.7 in [54], there exists some

✏0 2 (0, ✏1) such that {A✏}✏2[0,✏0) satisfies (KL) on Bp,q

C with |·| = k·k
p�1,q+1 provided

that

(C1) For a fixed, small, open (in the C
r+1(Tm,Tm) topology) neighbourhood U of

T we have Ty 2 U whenever y 2 B(0, ✏0); and

(C2) lim✏!0

R
q✏(y) dCr+1(Ty, T ) d Leb(y) = 0.

The condition (C2) is derived from [54, equation (2.5)] by setting g(!, x) = q✏(!),

and observing that x 7! q✏(!) is constant and so has C
p+q norm |q✏(!)| = q✏(!).

The other term in [54, equation (2.5)] is 0 since
R
q✏(!) d Leb(!) = 1. As Tm is

compact and T 2 C
r+1(Tm,Tm), the map x 7! Dk

x
T is uniformly continuous for

each 0  k  r + 1. It then follows from the definition of Ty that

lim
✏!0

sup
y2B(0,✏)

dCr+1(Ty, T ) = 0.

Recalling that q✏ satisfies (S1) and (S2), it is clear that there exists ✏0 2 (0, ✏1) so

that {A✏}✏2[0,✏0) satisfies both (C1) and (C2), and therefore also (KL).
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We will now prove that {F✏}✏2[0,✏0) satisfies the requirements of Proposition 1.3.1.

For y 2 Tm let fy : Tm
! R be defined by fy(x) = 1� detDx⌧�y. One verifies that

(F✏h)(x) =

Z
q✏(y)fy(x)(LTyh)(x) d Leb(y)

From the definition of k·k
p,q

and (S1) we obtain

kF✏hkp,q 

Z
q✏(y)

��fy · (LTyh)
��
p,q

dLeb(y).

As multiplication by C
r functions is continuous on Bp,q

C ([54, Lemma 3.2]), using

(S1) there is some C > 0 such that

kF✏kp,q  C sup
y2supp q✏

��LTy

��
p,q

Z
q✏(y) kfykCr dLeb(y). (5.6)

As mentioned at the beginning of [54, Section 7], the estimates in [54, Lemma

2.2] apply uniformly to every map in U and so there exists some ⌘ > 0 such that

sup
y2B(0,⌘)

��LTy

��
p,q

< 1. Since detDx⌧y = d⌦
dLeb(x + y)dLeb

d⌦ (x), and d⌦
dLeb ,

dLeb
d⌦ 2

C
1(Tm,R), we have limy!0 fy = 0 in C

r(Tm,R). Applying these facts and (S1) to

(5.6) yields

lim
✏!0

kF✏kp,q  C lim sup
✏!0

sup
y2B(y,✏)

kfykCr sup
y2B(0,✏)

��LTy

��
p,q

= 0. (5.7)

The same argument applies when estimating kF✏kp�1,q+1, and so there exists ✏00 2

(0, ✏0) so that {F✏}✏2[0,✏00) satisfies the requirements for Proposition 1.3.1.

Hence Proposition 1.3.1 applies to {A✏}✏2[0,✏00) and {F✏}✏2[0,✏00). Namely, there

exists ✏2 2 (0, ✏00) so that {A✏ + F✏}✏2[0,✏2) satisfies (KL). Since A✏ + F✏ = L✏, this

completes the proof.

We require the following classical result on the convergence of Fourier series on

Tm (see e.g. [90, Proposition 5.6 and the proof of Theorem 5.7]).

Proposition 5.2.8. For each k 2 N we have ⇧n ! Id strongly in L(Ck+d
m+1

2 e, Ck).

The proof of Proposition 5.2.3. By Lemma 5.2.2 the family of operators {L✏}✏2[0,✏2)

satisfies (KL) on Bp,q

C with |·| = k·k
p�1,q+1. We plan to find N : (0, ✏2) ! N so that

we may apply Proposition 1.3.1 with A✏ = L✏ and B✏ = L✏,N(✏) � L✏.

81



By Proposition 5.2.8, ⇧n ! Id strongly in L(Cr+d
m+1

2 e, Cr). As the unit ball

of Cr+1+d
m+1

2 e is compact in C
r+d

m+1
2 e, Proposition 5.2.8, the uniform boundedness

principle and standard estimates imply that ⇧n ! Id in L(Cr+1+d
m+1

2 e, Cr). As Cr

embeds continuously into Bp,q

C [54, Remark 4.3], there exists C > 0 so that, for each

✏ 2 [0, ✏2) and n 2 N, we have

kL✏,n � L✏kp,q  C k⇧n � Idk
L

 
C
r+1+d

m+1
2 e

,Cr

! kQ✏k
L

 
B

p,q
C ,C

r+1+d
m+1

2 e
! kLk

p,q
.

Hence, as kQ✏k
L

 
B

p,q
C ,C

r+1+d
m+1

2 e
! is finite by Lemma 5.2.1, for each ✏ 2 (0, ✏2) there

exists N1(✏) so that kL✏,n � L✏kp,q  ✏ whenever n > N1(✏). The same argument

produces for each ✏ 2 (0, ✏2) an N2(✏) so that kL✏,n � L✏kp�1,q+1  ✏ whenever

n � N2(✏). To summarise, if N(✏) := max{N1(✏), N2(✏)} and n : (0, ✏2) ! N is such

that n � N , then lim✏!0

��L✏,n(✏) � L✏

��
p,q

= 0 and

sup
✏2(0,✏2)

��L✏,n(✏) � L✏

��
p�1,q+1

< 1. (5.8)

Hence for each map n � N we may apply Proposition 1.3.1 as planned to produce

an ✏n 2 (0, ✏2) so that {L✏,n(✏)}✏2[0,✏n) satisfies (KL) on Bp,q

C with |·| = k·k
p�1,q+1.

Examining the proof of Proposition 1.3.1, we observe that ✏n may be chosen inde-

pendently of n since lim✏!0 sup`�N(✏) kL✏,` � L✏kp,q = 0 and

sup
✏2(0,✏2)

sup
`�N(✏)

kL✏,` � L✏kp�1,q+1 < 1.

The proof of Theorem 5.2.6. Hence, by Proposition 5.1.5, the sequence {g �T k
}k2N

satisfies (NG) on the probability space (X, ⇣) with coding (z 7! L(z),⌦, ⇣). Since

{L✏,n(✏)}✏2[0,✏3) satisfies (KL), we have verified all the requirements of Theorem 2.2.1,

and so all the claims in the statement of Theorem 5.2.6 follow, with the exception

of the stability of the invariant measure. This claim follows from [38, Proposition

2.4, Remark 2.5], whose hypotheses are verified due to the convergence of eigenpro-

jections in Theorem 1.2.2.
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5.3 Statistical stability for some Anosov maps under non-local

stochastic perturbations

The main goal of this section is to show that the statistical properties of some

Anosov maps on them-dimensional torus Tm may be approximated using (weighted)

Fourier series by realising the Fejér kernel as a stochastic perturbation. More gen-

erally, our results expand upon the stability to stochastic perturbations results of

[54] (see [54, Theorem 2.7]) by allowing the stochastic kernel to be supported on all

of Tm at the cost of additional requirements on the dynamics. As a consequence of

this generalisation, we no longer require a mollifier to estimate the spectral and sta-

tistical properties of Anosov maps as in Section 5.2, which improves computational

potential of our theory.

We adopt the setting, assumptions and notation from Section 5.1 and fix p 2 Z+

and q > 0 satisfying p + q < r. Our main assumption on the dynamics is that the

associated transfer operator L satisfies

sup
y2Tm

max{k⌧yLkp,q , k⌧yLkp�1,q+1} < 1, (5.9)

where ⌧y denotes the translation operator4 induced by y 2 Tm. In Section 5.3.1 we

show that (5.9) implies (KL) for non-local stochastic perturbations (i.e. for stochas-

tic kernels supported on all of Tm), which then yields the stability of the invariant

SRB measure, variance and rate function to such perturbations. In Section 5.3.2 we

then provide conditions for a map to satisfy (5.9). For example, Proposition 5.3.6

implies that (5.9) holds for an iterate of T provided that T is close to a hyperbolic

linear toral automorphism. Lastly, in Section 5.3.3 we verify these conditions for a

family of perturbations to Arnold’s cat map.

5.3.1 (KL) for non-local stochastic perturbation

For some ✏1 > 0, suppose that {q✏}✏2(0,✏1) ✓ L1(Leb) is a family of stochastic kernels

satisfying (S1) and

(S3) For every ⌘ > 0, we have lim✏!0

R
Tm\B(0,⌘)q✏ dLeb = 0.

The condition (S3) replaces (S2) from Section 5.2, and consequently allows the

support of each q✏ to be all of Tm. Also note that we place no regularity requirements

4
Throughout this section we treat ⌧y as both a composition operator and map.
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on the kernels q✏. For ✏ > 0 define L✏ := q✏ ⇤L, and let L0 := L. Our main technical

result for this section is the following.

Proposition 5.3.1. If (5.9) holds then there exists ✏2 2 (0, ✏1) so that {L✏}✏2[0,✏2)

satisfies (KL) on Bp,q

C with |·| = k·k
p�1,q+1.

Remark 5.3.2. The same comments as those in Remark 5.2.4 apply to the family

of operators {L✏}✏2[0,✏2). That is, the spectral data associated to the eigenvalues of

L0 with modulus strictly greater than max{⌫q
s
, ⌫�p

u
} are well approximated by the

spectral data of associated to eigenvalues of L✏, with error vanishing as ✏! 0.

As noted before the statement of Theorem 5.2.6, since T is an Anosov di↵eo-

morphism on a torus, L is a simple quasi-compact operator on Bp,q

C . Thus, if (5.9)

holds then Propositions 5.3.1 and 5.1.5 allow us to apply Theorem 2.2.1 to obtain

the stability of the peripheral spectral data, invariant measure, variance and rate

function with respect to the class of stochastic perturbations in consideration. The

proof is the same as that of Theorem 5.2.6.

Theorem 5.3.3. Suppose that T 2 C
r+1(Tm,Tm), r > 1, is a topologically transitive

Anosov di↵eomorphism with unique SRB measure µ, and that the Perron-Frobenius

operator L associated to T satisfies (5.9). Further suppose that g 2 C
r(Tm,R)

satisfies
R
g dµ = 0 and is not an L2(µ)-coboundary. There exists ✓, ✏0 > 0 so that

for each ✏ 2 [0, ✏0) and z 2 D✓ the operator L✏(z) is quasi-compact and simple with

leading eigenvalue �✏(z) depending analytically on z. Moreover, we have stability of

the following statistical data associated to T and {g � T k
}k2N:

1. The invariant measure is stable: there exists eigenvectors v✏ 2 Bp,q

C of L✏ for

the eigenvalue �✏(0) for which lim✏!0 kv✏ � µk
p�1,q+1 = 0.

2. The variance is stable: lim✏!0 �
(2)
✏ (0) = �2.

3. The rate function is stable: For each su�ciently small compact subset U of

the domain of the rate function rg there exists an interval V ✓ (�✓, ✓) so that

lim
✏!0

sup
z2V

(sz � log |�✏(z)|) = r(s)

uniformly on U .

A key application of the results in this section is the rigorous approximation

of the spectral and statistical data of some Anosov maps using Fourier series. We
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define the nth 1-dimensional Fejér kernel Kn,1 on T1 = R/Z by

Kn,1(t) =
nX

`=�n

✓
1�

|`|

n+ 1

◆
e2⇡i`t.

The nth m-dimensional Fejér kernel Kn,m on Tm is defined by

Kn,m(t) =
mY

i=1

Kn,1(ti),

where ti is the ith component of t 2 Tm. It is well known that the 1-dimensional

Fejér kernels satisfy (S1) and (S3) as n ! 1 (they are a summability kernel ; see

[67, Section 2.2 and 2.5]). It is routine to verify that the m-dimensional kernels

consequently satisfy the same conditions, and so we may apply Proposition 5.3.1

with q1/n = Kn,m. A straightforward computation yields

Kn,m(t) =
X

`2Zm

k`k1n

mY

i=1

✓
1�

|`i|

n+ 1

◆
e2⇡ih`,ti,

and, therefore, convolution with the Fejér kernel may be represented using weighted

Fourier series:

(Kn,m ⇤ f)(x) =
X

`2Zm

k`k1n

mY

i=1

✓
1�

|`i|

n+ 1

◆
f̂(k)e2⇡ih`,xi. (5.10)

By the above considerations, Proposition 5.3.1 and Theorem 5.3.3 we obtain the

following stability result for stochastic perturbations induced by the Fejér kernel.

Corollary 5.3.4. Assume that T , L and g are as in 5.3.3. For n 2 N let L1/n :=

Kn,m ⇤ L, where Kn,m is the m-dimensional Fejér kernel, and let L0 = L. There

exists N > 0 so that the family of operators {L1/n}n�N satisfies (KL) on Bp,q

C with

|·| = k·k
p�1,q+1. Consequently, we have stability of the invariant measure, variance,

and rate function associated to T and {g � T k
}k2N as in Theorem 5.3.3.

The operators L1/n are finite-dimensional and leave the span of {e2⇡ih`,xi :

k`k
1

 n} invariant. Therefore, we could compute all of the spectral data of

L1/n via its matrix representation with respect to the basis {e2⇡ih`,xi : k`k
1

 n}

and use Corollary 5.3.4 to estimate the statistical properties of T .
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Remark 5.3.5. The comments made in Remark 5.2.7 also apply here: the stability

results in Proposition 5.3.1, Theorem 5.3.3 and Corollary 5.3.4 apply to the transfer

operator L⌦ that is associated to T via duality with respect to ⌦, rather than the

transfer operator LLeb that is associated to T via duality with respect to Leb. In

Section 5.4.4 we show that these operators, and their twists, are conjugate, and

therefore have the same spectrum, and that if Proposition 5.3.1, Theorem 5.3.3 and

Corollary 5.3.4 apply to L⌦ then they also hold true when L⌦ is replaced by LLeb.

Proof of Proposition 5.3.1. For each ⌘ 2 (0, 1/2) let s⌘ be the characteristic func-

tion of B(0, ⌘). For ✏ � 0 let a✏,⌘ =
R
q✏s⌘ dLeb, A✏,⌘ = a�1

✏,⌘
(q✏s⌘) ⇤ L and

B✏,⌘ = (q✏(1 � a�1
✏,⌘
s⌘)) ⇤ L. Set A0,⌘ = L and B0,⌘ = 0. Our goal is to apply

Proposition 1.3.1 by showing that for some ⌘ > 0 there exists ✏0 2 (0, ✏1) so that

{A✏,⌘}✏2[0,✏0) satisfies (KL), and then proving that {B✏,⌘}✏2[0,✏0) satisfies the neces-

sary requirements of Proposition 1.3.1. As L✏ = A✏,⌘+B✏,⌘, this yields the required

statement.

Since {a�1
✏,⌘
q✏s⌘}✏2(0,✏1) satisfies (S1) the perturbation {A✏,⌘}✏2[0,✏1) is similar to

the (convolution type) perturbation considered in Lemma 5.2.2. We will explain

how to modify the proof of Lemma 5.2.2 to obtain the required result. Examining

the proof of Lemma 5.2.2, we note that it was not important that the family of

kernels was in C
1, indeed it is su�cient for the kernels to be contained in L1(Leb).

We must verify the conditions (C1) and (C2), and a di↵erent argument is required

here since {a�1
✏,⌘
q✏s⌘}✏�0 does not satisfy (S2). By choosing ⌘ su�ciently small we

may make the support of every a�1
✏,⌘
q✏s⌘ small enough so that for every ✏ 2 [0, ✏1)

and y 2 supp q✏s⌘ the map Ty(x) := T (x) + y is in the set U from (C1) in Lemma

5.2.2. This verifies (C1) in our setting; we will now verify (C2). By (S1) and (S3)

for {q✏}✏�0 we have lim✏!0 a
�1
✏,⌘0 = 1 for every ⌘0 2 (0, ⌘]. Hence, for every ⌘0 2 (0, ⌘)

we have

lim
✏!0

Z
a�1
✏,⌘
|q✏(y)s⌘(y)|dCr+1(Ty, T )d Leb(y) = lim

✏!0

Z

B(0,⌘)

q✏(y)dCr+1(Ty, T ) d Leb(y)

= lim
✏!0

✓Z

B(0,⌘)\B(0,⌘0)

q✏(y)dCr+1(Ty, T ) d Leb(y) +

Z

B(0,⌘0)

q✏(y)dCr+1(Ty, T ) d Leb(y)

◆

 lim
✏!0

 
sup

y2B(0,⌘)\B(0,⌘0)
dCr+1(Ty, T )

!Z

Tm\B(0,⌘0)

q✏(y) d Leb(y) + sup
y2B(0,⌘0)

dCr+1(Ty, T )

= sup
y2B(0,⌘0)

dCr+1(Ty, T ),

(5.11)
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where we have used both (S1) and (S3). Since lim⌘0!0 supy2B(0,⌘0) dCr+1(Ty, T ) = 0

we obtain (C2) from (5.11). It remains to provide an alternative proof of the

convergence of F✏ ! 0 from (5.7) i.e. that the operators

F✏ : h 7!

Z
a�1
✏,⌘
q✏(y)s⌘(y)fy(x)(LTyh)(x) d Leb(y)

converge to 0 in L(Bp,q) and L(Bp�1,q+1) as ✏! 0, where fy = 1� detDx⌧�y as in

the proof of Lemma 5.2.2. Using (S3) and the fact that lim✏!0 a�1
✏,⌘

= 1 we have for

each ⌘0 2 (0, ⌘) that

lim
✏!0

Z
a�1
✏,⌘
q✏(y)s⌘(y) kfykCr dLeb(y)

 lim
✏!0

✓Z

B(0,⌘0)

q✏(y) kfykCr dLeb(y) +

Z

B(0,⌘)\B(0,⌘0)

q✏(y) kfykCr dLeb(y)

◆

 sup
y2B(0,⌘0)

kfykCr + lim
✏!0

✓Z

B(0,⌘)\B(0,⌘0)

q✏(y) d Leb(y)

◆
sup

y2B(0,⌘)
kfykCr

= sup
y2B(0,⌘0)

kfykCr .

(5.12)

Since limy!0 kfykCr = 0, by letting ⌘0 ! 0 in (5.12) we can conclude that the left

side of (5.12) is 0. Recalling that Ty 2 U for every y 2 supp q✏s⌘, it follows that

sup
y2supp q✏s⌘

��LTy

��
p,q

< 1. Hence

lim
✏!0

kF✏kp,q  lim
✏!0

sup
y2supp q✏s⌘

��LTy

��
p,q

Z
a�1
✏,⌘
q✏(y)s⌘(y) kfykCr dLeb(y) = 0,

which proves (5.7) in our setting. The comments made in the sentence following

(5.7) apply here too. Hence the arguments in Lemma 5.2.2 apply to {A✏,⌘}✏2[0,✏1),

and so {A✏,⌘}✏2[0,✏1) satisfies (KL) on Bp,q

C with |·| = k·k
p�1,q+1.

We will prove that lim✏!0 B✏,⌘ = 0 in both L(Bp,q) and L(Bp�1,q+1), as this

readily implies the same for L(Bp,q

C ) and L(Bp�1,q+1
C ). Let h 2 C

r(Tm,R), k  p

be a non-negative integer, W 2 ⌃, {vi}ki=1 ✓ V
r(W ) with kvikCr  1, and ' 2
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C
q+k

0 (W,R) with k'k
Cq+k  1. With u✏,⌘ = q✏(1� a�1

✏,⌘
s⌘), we have

����
Z

W

(v1 . . . vk)(u✏,⌘ ⇤ Lh)(x) · '(x) d⌦(x)

����



Z

Tm

|u✏,⌘(y)|

����
Z

W

(v1 . . . vk)(⌧�yLh)(x) · '(x) d⌦(x)

���� dLeb(y)



✓
sup
y2Tm

k⌧yLkp,q

◆
khk

p,q

Z

Tm

|u✏,⌘| dLeb(y).

Hence,

kB✏,⌘kp,q 

✓
sup
y2Tm

k⌧yLkp,q

◆Z

Tm

|u✏,⌘| dLeb(y)



✓
sup
y2Tm

k⌧yLkp,q

◆Z
q✏(y)

��1� a�1
✏,⌘
s⌘(y)

�� dLeb(y).
(5.13)

Since lim✏!0 a✏,⌘ = 1, using (S3) we have

lim
✏!0

Z
q✏(y)

��1� a�1
✏,⌘
s⌘(y)

�� dLeb(y)

 lim
✏!0

✓Z
q✏(y)(1� s⌘(y)) d Leb(y) +

Z
q✏(y)s⌘

��1� a�1
✏,⌘

�� dLeb(y)
◆

 lim
✏!0

✓Z

Tm\B(0,⌘)

q✏(y) d Leb(y) +
��1� a�1

✏,⌘

��
◆

= 0.

(5.14)

Together (5.9), (5.13) and (5.14) imply that lim✏!0 kB✏,⌘kp,q = 0. The same argu-

ment proves that lim✏!0 kB✏,⌘kp�1,q+1 = 0, and so there exists ✏0 2 (0, ✏1) so that

sup
✏2(0,✏0) kB✏,⌘kp�1,q+1 < 1. We have verified the conditions of Proposition 1.3.1,

concluding the proof.

5.3.2 A class of maps satisfying Proposition 5.3.1, Theorem 5.3.3, and Corollary

5.3.4

Our main result for this section, Proposition 5.3.6, gives conditions for T to have an

iterate satisfying (5.9). For instance, we will deduce that Proposition 5.3.6 applies

to Anosov maps that are su�ciently close to hyperbolic linear toral automorphisms.

In [54, Section 3] the usual Euclidean metric on Tm is replaced by an equivalent

adapted metric. The choice of adapted metric will be crucial to our arguments in

this section, so we begin by reviewing the construction of such metrics, following [21,

Proposition 5.2.2]. Let |·|Rm denote the usual Euclidean norm on the tangent space

of Tm. Let Es(x) and Eu(x) denote the stable and unstable directions, respectively,
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of T at x, and let ⇡s

x
and ⇡u

x
be the projections induced by the splitting TxTm =

Es(x) � Eu(x). Let ms = dimEs(x) and mu = dimEu(x). Since T is Anosov,

there exists C > 0, �s 2 (0, 1), and �u > 1 so that
���DxT n

��
Es(x)

���
Rm

 C�n
s
and

���DxT�n
��
Eu(x)

���
Rm

 C��n

u
for every n 2 N. Recall ⌫u and ⌫s from Section 5.1, and

that �s < ⌫s < 1 < ⌫u < �u. Let N be such that max{�
N+1
s

⌫
N+1
s

, ⌫
N+1
u

�
N+1
u

} < 1/C. For

vs 2 Es(x) and vu 2 Eu(x) we define

kvsk0 =
NX

k=0

⌫�k

s

��DxT
kvs
��
Rm , and kvuk0 =

NX

k=0

⌫k
u

��DxT
�kvu

��
Rm .

Note that
���DxT

��
Es(x)

���
0
< ⌫s and

���DxT�1
��
Eu(x)

���
0
< ⌫�1

u
. For v 2 TxTm we define

kvk0 =
q
k⇡s

x
vk20 + k⇡u

x
vk20,

and, since k·k0 satisfies the parallelogram law, we may recover a metric h·, ·i0 via

the polarisation identity. Note that Es(x) ? Eu(x) with respect to h·, ·i0. However,

since x 7! h·, ·i0 is not necessarily smooth (and so Tm equipped with h·, ·i0 would

not be a C
1 Riemannian manifold), for each su�ciently small ⇠ > 0 we instead

consider a smooth metric h·, ·i⇠ (with corresponding norm denoted k·k
⇠
) such that

(M1) sup
x2Tm sup v,w2TxTm

kvk0,kwk01
|hv, wi⇠ � hv, wi0| < ⇠;

(M2)
���DxT

��
Es(x)

���
⇠

< ⌫s and
���DxT�1

��
Eu(x)

���
⇠

< ⌫�1
u

; and

(M3) Es(x) and Eu(x) are ⇠-orthogonal: for ws 2 Es(x) and wu 2 Eu(x) with

kwsk⇠ , kwuk⇠  1 we have |hws, wui⇠| < ⇠.

A metric is called adapted if it satisfies (M2). For su�ciently small ⇠, metrics

satisfying (M1)-(M3) can be constructed by approximating h·, ·i0 (see e.g. [59]).

Let ⇠ � 0. For x 2 Tm we denote by �s

x
and �u

x
the orthogonal (with respect to

h·, ·i⇠) projections onto Es(x) and Eu(x), respectively. Although �s

x
clearly depends

on ⇠, we suppress this from our notation. Define

C⌧,⇠ = sup
x,y2Tm

kDx⌧yk⇠ and ⇥T,⇠ = sup
x,y2Tm

���s

x+y
Dx⌧y � (Dx⌧y)�

s

x

��
⇠
. (5.15)

Note that both C⌧,⇠ and ⇥T,⇠ are finite. The key hypothesis for this section’s main

result is that C�1
⌧,0 > ⇥T,0. Roughly speaking, this condition ensures that translated

leaves never lie in the unstable direction of T (recall that leaves are approximately

parallel to the stable directions). One way to see this is by computing the quantities
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C⌧,0 and ⇥T,0 when k·k0 is the usual Euclidean norm (ignoring the issue of whether

the Euclidean norm is adapted). In this case, C⌧,0 = 1 and ⇥T,0 measures the

angle between Es(x + y) and Es(x). If this angle is everywhere close to 0 then

the translate of a leaf will be approximately parallel to the stable direction of T

regardless of the translate.

Our main technical result for this section is the following. We note that in our

proof we select a specific adapted metric to both streamline our arguments and

strengthen our results; although in doing so we impact the definition of the set of

leaves ⌃, and hence also the spaces Bp,q

C and Bp�1,q+1
C .

Proposition 5.3.6. If

C�1
⌧,0 > ⇥T,0, (5.16)

then there exists N 2 Z+, an adapted metric h·, ·i, and a set of leaves ⌃̃, inducing

spaces B̃p,q

C and B̃p�1,q+1
C , so that L is quasi-compact on B̃p,q

C , with the same spectral

data associated to eigenvalues outside of the ball of radius max{⌫�p

u
, ⌫q

s
} as when

considered as an operator on Bp,q

C , and so that

sup
y2Tm

max
n��⌧yLN

��
p,q

,
��⌧yLN

��
p�1,q+1

o
< 1. (5.17)

We make two comments regarding the applicability of Proposition 5.3.6. Firstly,

maps satisfying (5.16) exist as ⇥T,0 = 0 whenever T is a linear hyperbolic toral

automorphism. Secondly, the condition (5.16) is open in C
r+1(Tm,Tm). To see this,

suppose that T satisfies (5.16), and let h·, ·i be the metric one obtains by applying

Proposition 5.3.6 to T . The following comments apply to all T 0 in a su�ciently

small Cr+1-neighbourhood of T : T 0 is Anosov map, h·, ·i is an adapted metric for

T 0, and the stable and unstable directions for T and T 0 are everywhere close in the

Grassmanian. It follows that T 0 also satisfies (5.16) provided that it is su�ciently

close to T in the C
r+1 topology. In Section 5.3.3 we will construct a family of non-

linear Anosov di↵eomorphisms satisfying 5.16 by following this line of reasoning;

in particular, we will consider a family of non-linear perturbations of Arnold’s cat

map.

The proof of Proposition 5.3.6 occupies the remainder of this section. The idea of

the proof is the following: to bound the left side of (5.17) one must control integrals

along the translate of a leaf in ⌃. Taking large enough powers of L corresponds

to applying powers of T�1 to the translated leaf. Since T�1 is expansive along

the stable direction of T , and contractive along the unstable direction of T , if
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the translated leaf does not lie anywhere close to the unstable direction of T (e.g.

the condition (5.16)) then applying a su�ciently large iterate of T�1 will ‘pull’

the translated leaf towards the stable direction of T so that it may be covered by

untranslated leaves. One can then replace the integral over a translated leaf by the

sum of integrals over leaves in ⌃, which yields the claim. Making this idea rigorous

is arduous: we break it into three main steps. In step 1 we begin by constructing

the adapted metric h·, ·i. In step 2 we define a set of leaves ⌃̃, which induce spaces

B̃p,q

C and B̃p�1,q+1
C , and prove the claim in Proposition 5.3.6 regarding the spectral

properties of L. Finally, in step 3 we prove that translated leaves may be covered

by the image under TN of finitely many leaves in ⌃̃ for some large N ; this result is

the core of the proof, and (5.17) then easily follows from the adaption of arguments

from [54]. Steps 2 and 3 lean heavily on the setting in [54, Section 3]. We have

maintained the notation used in [54] whenever possible.

Step 1: Constructing the adapted metric h·, ·i. For su�ciently small ⇠ � 0, as T is

a C
r+1 di↵eomorphism and Tm is compact, the quantity D⇠ := sup

x2Tm kDxT�1
k
⇠

is finite. Moreover, as k·k
⇠
! k·k0 uniformly, it follows that D⇠ ! D0. As Es(x)

and Eu(x) are ⇠-orthogonal with respect to h·, ·i⇠, one easily verifies that k�s

x
�u

x
k
⇠
=

k�u

x
�s

x
k
⇠
< ⇠. What is less obvious, but still true, however, is that

k�s

x
�u

x
k
⇠
= k�u

x
�s

x
k
⇠
= k(Id��s

x
)(Id��u

x
)k
⇠
= k(Id��u

x
)(Id��s

x
)k
⇠
< ⇠.

We refer the reader to the proof of Theorem 2 in [23] for details. For ⇠ > 0, x 2 Tm

and  2 (0, 1) we define the stable cone by

C⇠(x,) = {u 2 TxTm : k(Id��s

x
)uk

⇠
  k�s

x
uk

⇠
}.

The following lemma is classical; we reprove it here to emphasise the quantitative

estimate (5.18).

Lemma 5.3.7. For every J > 0 there exists ⇠J > 0 so that for every ⇠ 2 (0, ⇠J),

� 2 [0, J) and x 2 Tm we have

�
DxT

�1
�
C⇠(x, �) ✓ C⇠

�
T�1x, �⌫s⌫

�1
u

�
. (5.18)
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Proof. Let ⇠ > 0 and suppose that u 2 C⇠(x, �). As DxT�1(Es(x)) = Es(T�1x), it

follows that

(Id��s

T�1(x))DxT
�1u = (Id��s

T�1(x))DxT
�1(Id��s

x
)u.

Consequently,

���(Id��s

T�1(x))DxT
�1u
���
⇠


��DxT

�1�u

x
(Id��s

x
)u
��
⇠

+
��DxT

�1(Id��u

x
)(Id��s

x
)u
��
⇠
.

As k(Id��u

x
)(Id��s

x
)k
⇠
< ⇠ and u 2 C⇠(x, �), it follows that

���(Id��s

T�1(x))DxT
�1u
���
⇠



✓���DxT
�1
��
Eu(x)

���
⇠

+ ⇠
��DxT

�1
��
⇠

◆
k(Id��s

x
)uk

⇠

 �

✓���DxT
�1
��
Eu(x)

���
⇠

+ ⇠
��DxT

�1
��
⇠

◆
k�s

x
uk

⇠
.

Similarly,

����s

T�1(x)DxT
�1u
���
⇠

�

����s

T�1(x)DxT
�1�s

x
u
���
⇠

�

����s

T�1(x)DxT
�1(Id��u

x
)(Id��s

x
)u
���
⇠

�

����s

T�1(x)�
u

T�1(x)DxT
�1(Id��s

x
)u
���
⇠

�

✓���DxT
��
Es(x)

���
�1

⇠

� 2⇠�
��DxT

�1
��
⇠

◆
k�s

x
uk

⇠
.

For su�ciently small ⇠ we have
���DxT�1

��
Eu(x)

���
⇠

< ⌫�1
u

and
���DxT

��
Es(x)

���
⇠

< ⌫s.

Hence, as sup
x2Tm kDxT�1

k
⇠
= D⇠ ! D0, there exists ⇠J > 0 so that for every

⇠ 2 (0, ⇠J) we have

���DxT
�1
��
Eu(x)

���
⇠

+ ⇠
��DxT

�1
��
⇠
 ⌫�1

u
,

and, for all � < J ,

���DxT
��
Es(x)

���
�1

⇠

� 2⇠�
��DxT

�1
��
⇠
� ⌫�1

s
.

In view of the above, whenever ⇠ 2 (0, ⇠J) we therefore have

���(Id��s

T�1(x))DxT
�1u
���
⇠

 �⌫s⌫
�1
u

����s

T�1(x)DxT
�1u
���
⇠
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for every u 2 C⇠(�, x). Thus DxT�1
C⇠(x, �) ✓ C⇠ (T�1x, �⌫s⌫�1

u
) for every ⇠ 2

(0, ⇠J), x 2 Tm and � < J , as required.

We aim to select ⇠ so that C�1
⌧,⇠

> ⇥T,⇠, and so that we can apply Lemma 5.3.7 for

some appropriate J . As the adapted metric h·, ·i⇠ uniformly approximates h·, ·i0,

we have lim⇠!0 C
�1
⌧,⇠

= C�1
⌧,0 . However, upon examining the definition of ⇥T,⇠ we

observe that the projections �s

x
depend on h·, ·i⇠, and so the behaviour of ⇥T,⇠ as

⇠ ! 0 is not clear. We address this now.

Lemma 5.3.8. We have lim⇠!0⇥T,⇠ = ⇥T,0.

Proof. Let ⇡s

x
and ⇡u

x
be the projections induced by the direct sum TxTm = Es(x)�

Eu(x). We have

k�s

x
� ⇡s

x
k
⇠
= k(�s

x
� ⇡s

x
)⇡s

x
k
⇠
+ k(�s

x
� ⇡s

x
)⇡u

x
k
⇠
= k(�s

x
� Id)⇡s

x
k
⇠
+ k�s

x
⇡u

x
k
⇠
.

Since �s

x
= Id on Es(x), k(�s

x
� Id)⇡s

x
k
⇠
= 0. Let v 2 TxTm. As Es(x) and Eu(x)

are ⇠-orthogonal and �s

x
is an orthogonal projection (both with respect to h·, ·i⇠),

we have

k�s

x
⇡u

x
vk

⇠
=
q

|h�s
x
⇡u
x
v, ⇡u

x
vi⇠| 

q
⇠ k�s

x
⇡u
x
vk

⇠
k⇡u

x
vk

⇠


p
⇠ k⇡u

x
k
⇠
.

Thus k�s

x
� ⇡s

x
k
⇠


p
⇠ k⇡u

x
k
⇠
. Let P⇠ = sup

x2Tm k⇡u

x
k
⇠
. For any x, y 2 Tm the

triangle inequality yields

���
���s

x+y
Dx⌧y � (Dx⌧y)�

s

x

��
⇠
�
��⇡s

x+y
Dx⌧y � (Dx⌧y)⇡

s

x

��
⇠

��� 
��(�s

x+y
� ⇡s

x+y
)(Dx⌧y)

��
⇠

+ k(Dx⌧y)(�
s

x
� ⇡s

x
)k
⇠

 2
p
⇠C⌧,⇠P⇠.

It follows that

����⇥T,⇠ � sup
x,y2Tm

��⇡s

x+y
Dx⌧y � (Dx⌧y)⇡

s

x

��
⇠

����  2
p
⇠C⌧,⇠P⇠. (5.19)

As ⇡u

x
is independent of ⇠, we have P⇠ ! P0. Since Es(x) ? Eu(x) with respect

to h·, ·i0, the projections ⇡u

x
and ⇡s

x
are orthogonal with respect to h·, ·i0. Thus the
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uniform convergence of h·, ·i⇠ to h·, ·i0 implies that

lim
⇠!0

sup
x,y2Tm

��⇡s

x+y
Dx⌧y � (Dx⌧y)⇡

s

x

��
⇠
= sup

x,y2Tm

��⇡s

x+y
Dx⌧y � (Dx⌧y)⇡

s

x

��
0
= ⇥T,0.

(5.20)

Hence, as C⌧,⇠ ! C⌧,0, by letting ⇠ ! 0 in (5.19) and applying (5.20) we have

lim
⇠!0

⇥T,⇠ = lim
⇠!0

sup
x,y2Tm

��⇡s

x+y
Dx⌧y � (Dx⌧y)⇡

s

x

��
⇠
= ⇥T,0,

as required.

We now fix, once and for all, the metric that is used in Proposition 5.3.6. As

C�1
⌧,0 > ⇥T,0, C⌧,⇠ ! C⌧,0, and, by Lemma 5.3.8, ⇥T,⇠ ! ⇥T,0, there exists E > 0 so

that

inf
⇠2[0,E]

�
C�1
⌧,⇠

�⇥T,⇠

�
> 0, and sup

⇠2[0,E]
⇥T,⇠ < 1. (5.21)

We apply Lemma 5.3.7 with

J = 1 +
sup

⇠2[0,E]⇥T,⇠

inf⇠2[0,E]
�
C�1
⌧,⇠

�⇥T,⇠

� (5.22)

to produce an adapted metric h·, ·i := h·, ·iE , which may replace the metric defined

in [54, Section 3] after possibly shrinking E further. Until the end of this section

we only deal with the metric just constructed, and so we drop references to ⇠ and

E from our notation.

Step 2: Defining the set of leaves ⌃̃ and the spaces B̃p,q

C and B̃p�1,q+1
C . Our task is

now to define a set of leaves ⌃̃ and spaces B̃p,q

C and B̃p�1,q+1
C so that the spectral

properties of L on Bp,q

C and B̃p,q

C are identical. It is necessary to understand how

leaves are defined; to this end we reproduce material from the beginning of [54,

Section 3]. After fixing the metric, in [54] a small  > 0 satisfying various properties

is fixed; in particular it is required that DxT�1 expands the vectors in C(x,) by

at least ⌫�1
s

. We now choose a smaller value of , as follows. Let C⌧ = C⌧,E and

⇥T = ⇥T,E . By (5.21) and (5.22), there exists 0  min{, 1/2} and ⌘ > 1 such

that

C�1
⌧

> ⇥T (1 + 20⌘), and
⇥T + (C⌧ +⇥T )20⌘

C�1
⌧

�⇥T (1 + 20⌘)
< J. (5.23)

We redefine the original  to be 0, noting that this does not alter the validity of

any arguments in [54] (in [54] it is only requires that  is su�ciently small, so we

are free to make it as small as we require). Two components of this construction
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appear, at first glance, arbitrary: the constant ⌘ and the inequalities (5.23). They

appear so that later we may cover translated leaves by the image under some iterate

of T by finitely many leaves (Lemma 5.3.10).

As in [54], one may construct finitely many C
1 charts { i}

S

i=1, each respectively

defined on (�ri, ri)m ✓ Rm, so that

(B1) D0 i is an isometry;

(B2) (D0 i)(Rms ⇥ {0}) = Es( i(0));

(B3) The C
r+1 norms of  i and  

�1
i

are bounded by 1 + ;

(B4) There exists ci 2 (, 2) such that the cone

Ci = {u+ v 2 Rm
| u 2 Rms ⇥ {0}, v 2 {0}⇥ Rmu , |v|Rm  ci |u|Rm} (5.24)

satisfies the following property: for any x 2 (�ri, ri)m, C( i(x)) ✓ (Dx i)Ci

and (D i(x)T
�1)(Dx i)Ci ✓ C(T�1( i(x))); and

(B5) Tm is covered by { i((�ri/2, ri/2)m)}Si=1.

We require that the charts satisfy the following additional property concerning

the distortion of the cones Ci under Dx .

Lemma 5.3.9. There exist charts { i}
S

i=1 satisfying (B1)-(B5) and so that for any

x 2 (�ri, ri)m we have

(Dx i)Ci ✓ C ( i(x), ⌘ci) ,

where ⌘ > 1 is the constant appearing in (5.23).

Proof. By compactness it is su�cient to construct for each y 2 Tm a chart  y :

(�ry, ry)m ! Tm that satisfies all of the given requirements and for which  y(0) = y.

As noted immediately before the statement of [54, Lemma 3.1], for each y 2 Tm

one can construct a  y satisfying conditions (B1)-(B5) and so that  y(0) = y.

Let Cy denote the corresponding stable cone (from (5.24)) and cy 2 (, 2) denote

the constant corresponding to ci. Let u + v 2 Cy so that u 2 Rms ⇥ {0} and

v 2 {0}⇥ Rmu . Then by (B1) and (B4) we have

��(Id��s

y
)D0 y(u+ v)

�� =
��(Id��s

y
)D0 yv

��  |v|Rm  cy |u|Rm ,

and
���s

y
D0 y(u+ v)

�� =
���s

y
D0 yu

�� = |u|Rm .
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Hence (D0 i)Cy ✓ C (y, cy). Hence, using the compactness of the closed unit ball in

Rm and the uniform continuity of  y on (�ry, ry)m, x 7! �s

x
on Tm, u 7! kuk on the

tangent space of Tm, u 7! |u|Rm on (�ry, ry)m, we may shrink ry so that (Dx i)Cy ✓

C ( y(x), ⌘cy) for every x 2 (�ry, ry)m. Thus  y satisfies all the requirements of the

lemma, and we may conclude using the compactness of Tm.

We are now able to construct our modified set of leaves ⌃̃ and spaces B̃p,q

C and

B̃p�1,q+1
C , and prove the claim in Proposition 5.3.6 regarding the spectral properties

of L. Using the metric h·, ·i constructed in step 1 of the proof of Proposition 5.3.6,

the constant  defined immediately following (5.23), and the charts from Lemma

5.3.9, we may define the set of leaves ⌃̃ exactly as in [54, Section 3]. Recall that

p 2 Z+ and q > 0 satisfy p + q < r. In exactly the same way that the set of

leaves ⌃ from [54] induces spaces Bp,q

C and Bp�1,q+1
C (see [54, Section 3]), our set

of leaves ⌃̃ induces spaces B̃p,q

C and B̃p�1,q+1
C . The proofs of [54, Lemma 2.2] and

[54, Theorem 2.3] hold verbatim for L on B̃p,q

C . Thus the essential spectral radius

of L on B̃p,q

C is bounded by max{⌫�p

u
, ⌫q

s
}. As per [54, Remark 2.5], the spectral

data of L associated to eigenvalues outside of the ball of radius max{⌫�p

u
, ⌫q

s
} are

the same on Bp,q

C and B̃p,q

C , and in particular the generalised eigenspaces of all such

eigenvalues lie in Bp,q

C \ B̃p,q

C .

Step 3: Obtaining the inequality (5.17). Key to establishing (5.17) is the following

lemma, which extends [54, Lemma 3.3] to include translated leaves. Throughout

this step of the proof we assume the reader is familiar with the definition of the set

of leaves ⌃̃ from [54, Section 3].

Lemma 5.3.10. There exists N,M,C > 0 such that for any y 2 Tm and W 2 ⌃̃,

with associated full admissible leaf W̃ , there exists {Wi}
m

i=1 ✓ ⌃̃ with m < M so

that

1. T�N(W + y) ✓
S

m

i=1 Wi ✓ T�N(W̃ + y).

2. There are C
r+1 functions {⇢i}mi=1 so that each ⇢i is compactly supported on

Wi,
P

i
⇢i = 1 on T�N(W + y), and k⇢ikCr+1  C.

We will now give a brief, non-technical overview of the strategy for proving

Lemma 5.3.10. Most of the proof is dedicated to finding leaves {Wi}
m

i=1 which

verify the containment

T�N(W + y) ✓
m[

i=1

Wi ✓ T�N(W̃ + y).
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Let us consider the case where y = 0, which is the subject of [54, Lemma 3.3]. In

this case the idea is to use the expansion and regularisation of T�1 in the stable

direction to prove that T�1(W̃ ) is locally ‘leaf-like’. One then picks certain subsets

of T�1(W̃ ), and proves they are leaves that cover T�1(W ). The main issue resulting

from translation by a non-zero y is the possibility that the translated leaf will not be

‘leaf-like’. Specifically, while all leaves in ⌃̃ lie approximately parallel to the stable

manifold, the translate of a leaf may well lie very near an unstable manifold. Our

main hypothesis, the inequality (5.15), will imply that translated leaves do not lie

too close to the unstable manifold, which allows for the aforementioned distortion

to be corrected using the regularisation of T�n for some large n.

We require some preliminary lemmas before proving Lemma 5.3.10. The follow-

ing gives an estimate of the distortion that stable cones experience under translation,

and is where it is crucial that C⌧⇥T < 1.

Lemma 5.3.11. If � > 0 satisfies C�1
⌧

> ⇥T (1 + �) then for each x, y 2 Tm we

have

(Dx⌧y)C(x, �) ✓ C

✓
x+ y,

C⌧� +⇥T (1 + �)

C�1
⌧

�⇥T (1 + �)

◆
.

Proof. Suppose that u 2 C(x, �). We have

��(Id��s

x+y
)(Dx⌧y)u

�� 
��(Id��s

x+y
)(Dx⌧y)�

s

x
u
��+

��(Id��s

x+y
)(Dx⌧y)(Id��

s

x
)u
�� .

(5.25)

We begin by estimating the first term on the right side of (5.25). By the triangle

inequality we have

��(Id��s

x+y
)(Dx⌧y)�

s

x
u
�� 

��(Id��s

x+y
)�s

x+y
(Dx⌧y)u

��

+
��(Id��s

x+y
)(�s

x+y
Dx⌧y �Dx⌧y�

s

x
)u
�� .

The first term on the right side is 0, whereas the second term may be estimated

using the definition of ⇥T (see (5.15)), yielding

��(Id��s

x+y
)(Dx⌧y)�

s

x
u
��  ⇥T kuk .

As u 2 C(x, �), we have

��(Id��s

x+y
)(Dx⌧y)�

s

x
u
��  ⇥T (1 + �) k�s

x
uk . (5.26)
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We turn to estimating the second term on the right side of (5.25). Using the

definition of C⌧ and as u 2 C(x, �), we have

��(Id��s

x+y
)Dx⌧y(Id��

s

x
)u
��  kDx⌧yk k(Id��

s

x
)uk  C⌧� k�

s

x
uk . (5.27)

Applying (5.26) and (5.27) to (5.25) yields

��(Id��s

x+y
)(Dx⌧y)u

��  (⇥T (1 + �) + C⌧�) k�
s

x
uk . (5.28)

Alternatively, the reverse triangle inequality yields

���s

x+y
Dx⌧yu

�� � kDx⌧y�
s

x
uk �

��(�s

x+y
Dx⌧y �Dx⌧y�

s

x
)u
��

Using a similar process as in the estimation of (5.28), we obtain

���s

x+y
(Dx⌧y)u

�� � kDx⌧y�
s

x
uk �⇥T kuk � (C�1

⌧
�⇥T (1 + �)) k�s

x
uk . (5.29)

By our assumptions C�1
⌧

> ⇥T (1+ �), and so we may combine (5.28) and (5.29) to

obtain
��(Id��s

x+y
)(Dx⌧y)u

�� 
C⌧� +⇥T (1 + �)

C�1
⌧

�⇥T (1 + �)

���s

x+y
Dx⌧yu

�� ,

as required.

In the following lemma we show that the distortion of the stable cones experience

under translation may be corrected by applying T�n for n large.

Lemma 5.3.12. Recall the cones Ci from (B4). There exists N1 > 0 such that for

every x, y 2 Tm, where x 2  i ((�ri, ri)m), we have

(Dx+yT
�N1)(Dx⌧y)(D 

�1
i (x) i)Ci ✓ C

�
T�N1(x+ y),

�
.

Moreover, if T�N1(x+ y) 2  j ((�rj, rj)m) then

(DT�N1 (x+y) 
�1
j
)(Dx+yT

�N1)(Dx⌧y)(D 
�1
i (x) i)Ci ✓ Cj.

Proof. Recall from (B4) that ci  2. Lemma 5.3.9 implies that (D
 
�1
i (x) i)Ci ✓

C (x, 2⌘). By (5.23) we have C�1
⌧

> ⇥T (1 + 2⌘), and so Lemma 5.3.11 yields

(Dx⌧y)(D 
�1
i (x) i)Ci ✓ C

✓
x+ y,

⇥T + (C⌧ +⇥T )2⌘

C�1
⌧

�⇥T �⇥T2⌘

◆
.
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Let N1 2 Z+ be large enough so that

⌫N1
s
⌫�N1
u

⇥T + (C⌧ +⇥T )2⌘

C�1
⌧

�⇥T �⇥T2⌘
 .

By the definition of the adapted metric h·, ·i from step 1 of the proof of Proposition

5.3.6, the second inequality in (5.23), and Lemma 5.3.7, it follows that

(Dx+yT
�N1)(Dx⌧y)(D 

�1
i (x) i)Ci ✓ C

�
T�N1(x+ y),

�
.

Since all our estimates are uniform in x and y we obtain the first claim. The second

claim follows from (B4).

Recall that T�1 is expansive along leaves in ⌃̃, since all leaves are approximately

parallel to the stable direction of T . In the proof of Lemma 5.3.10 we will require

that a version of this property holds for translated leaves as well. Up until now

we have considered how translation a↵ects the stable cones, and how applying T�1

corrects for any distortion in the cones. In the following lemma we apply the

same idea to show that T�n is expansive along translated leaves provided that n is

su�ciently large.

Lemma 5.3.13. Let N1 be as in Lemma 5.3.12 and set H = infx2Tm kDxTk. If

n > N1 and ⌫�n+N1
s

H�N1 > 1 then for any W 2 ⌃̃ and y 2 Tm the map T�n

expands distances on W̃ + y by at least ⌫�n+N1
s

H�N1.

Proof. Let  i be a chart whose image contains W̃ and for which the tangent space

of  �1
i
(W̃ ) is contained in Ci. Suppose a, b 2 W̃+y and that � : [0, 1] ! T�n(W̃+y)

is a distance minimizing geodesic from T�n(a) to T�n(b). Define �n := T n
� � and

note that �n is a di↵erentiable curve from a to b lying in W̃ + y. For n > N1 we

have

d
T�n(W̃+y)(T

�n(a), T�n(b)) =

Z 1

0

kDt�k dt

=

Z 1

0

��(D(T�N1��n)(t)T
�n+N1)(D�n(t)T

�N1)(Dt�n)
�� dt,

(5.30)

where N1 is the constant from Lemma 5.3.12. Since the image of �n is a closed sub-

manifold of W̃+y and the tangent space of W̃ at w is contained in (D �1(w) )Ci, the

image of Dt�n is contained in (D�n(t)�y⌧y)(D( �1
i �⌧�y��n)(t)

 i)Ci. Thus, by Lemma
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5.3.12 we have (D�n(t)T
�N1)(Dt�n) ✓ C(T�N1(�n(t)),). As DT�n expands vectors

in stable cones by at least ⌫�n

s
we may bound (5.30) as follows

d
T�n(W̃+y)(T

�n(a), T�n(b)) � ⌫�n+N1
s

Z 1

0

��(D�n(t)T
�N1)(Dt�n)

�� dt

� ⌫�n+N1
s

H�N1

Z 1

0

kDt�nk dt

� ⌫�n+N1
s

H�N1d
W̃+y

(a, b).

Hence T�n expands distances in W̃ +y by a factor of at least ⌫�n+N1
s

H�N1 provided

that n > N1 and ⌫�n+N1
s

H�N1 > 1.

The following lemma quantifies the regularisation that leaves experience under

T�1, and is a strengthening of [54, Lemma 3.1]. Whereas the previous results

were concerned with the regularisation of the first derivative of the leaves (via the

contraction of stable cones), the forthcoming result concerns the regularisation of

the higher derivatives of leaves.

Lemma 5.3.14. For L > 0 and i 2 {1, . . . , S} let Gi(L) be the set defined imme-

diately before [54, Lemma 3.1], and let

R(L) := inf

(
L0 :

( �1
j

� T�1
�  i)(W ) 2 Gj(L0)

for every W 2 Gi(L) and 1  i, j  S

)
.

For every K su�ciently large the following holds: after possibly refining the charts

{ i}
S

i=1 from Lemma 5.3.9, for each L > 0 there exists N(L) 2 Z+ so that for each

n � N(L) we have Rn(L)  K.

Proof. The finiteness of R(L) and the fact that R(L) < L for L su�ciently large

follow from [54, Lemma 3.1]. Our more general claim is a classical consequence

of the uniform hyperbolicity of T and the regularisation of the associated graph

transform, so we will only sketch the ingredients of the proof.

Suppose thatW 2 Gi(L) is the graph of � : B(x,A�) ! (�ri, ri)mu . As outlined

at the beginning of [66, Section 6.4.b], using the exponential map, [66, Lemma 6.2.7]

and after possibly refining the set of charts { i}
S

i=1 so that each ri is su�ciently

small, one may apply the arguments from [66, Theorem 6.2.8] to conclude that

( �1
j

� T�1
�  i)(W ) is the graph of some map �0 : U ✓ (�rj, rj)ms ! (�rj, rj)mu

(refer to steps 3 and 4 of the proof of [66, Theorem 6.2.8] for context, and to step 5

for the relevant argument). Due to the uniform convergence of the graph transform
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as outlined in step 5 of the proof of [66, Theorem 6.2.8], there exists some L0 < L

so that k�0
k
Cr+1  L0 for every such � provided that L is su�ciently large (i.e.

bigger than K). Hence R(L) exists and satisfies R(L) < L for L large enough.

Further examining the proof of [66, Theorem 6.2.8] yields the stronger claim that

for su�ciently large K we have

sup
L�K

R(L)

L
< 1,

which immediately yields the required claim.

Before we prove Lemma 5.3.10 we recall a quantitative version of the inverse

function theorem.

Lemma 5.3.15 ([73, XIV §1 Lemma 1.3]). Let E be a Banach space, U ✓ E be

open, and f 2 C
1(U,E). Assume f(0) = 0 and f 0(0) = Id. Let r � 0 and assume

that B(0, r) ✓ U . Let s 2 (0, 1), and assume that

kf 0(z)� f 0(x)k  s

for every z, x 2 B(0, r). If y 2 E and kyk  (1 � s)r, then there exists a unique

x 2 B(0, r) such that f(x) = y.

The proof of Lemma 5.3.10. Let A be the constant in [54, equation (3.1)], and let

� be the constant defined immediately afterwards. Let W 2 ⌃̃. Denote by W̃

the associated full admissible leaf, and by � : B(x,A�) ! (�2ri/3, 2ri/3)mu the

map defining W̃ i.e. W̃ =  i � (Id,�)(B(x,A�)). Fix z 2 B(x, �) and note that

B(z, (A � 1)�) ✓ B(x,A�). For any n 2 Z+ and y 2 Tm let `(n, y) be an index

for which T�n( i(z,�(z)) + y) 2  `(n,y)
�
(�r`(n,y)/2, r`(n,y)/2)m

�
(recall (B5)). Let

⇡s : Rm
! Rms be the projection onto the firstms components, and ⇡u : Rm

! Rmu

the projection onto the last mu components. Note that

( �1
`(N,y) � T

�N
� ⌧y �  i � (Id,�))(B(x,A�))

is the union of finitely many disjoint, path-connected subsets; let QN ✓ B(x,A�)

denote the pre-image under  �1
`(N,y) � T

�N
� ⌧y �  i � (Id,�) of the particular subset

containing ( �1
`(N,y) �T

�N
� ⌧y � i � (Id,�))(z). Define FN :=  �1

`(N,y) �T
�N

� ⌧y � i �

(Id,�)
��
QN

. We will show that for su�ciently large N one can use FN to construct

an admissible leaf Wz so that  i(z) 2 T n(Wz) and T n(Wz) ✓ W̃ + y.
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Step I: The invertibility of ⇡s
� FN in a neighbourhood of (⇡s

� FN)(z). Let N1

be the constant from Lemma 5.3.12 and recall H = infx2Tm kDxTk from Lemma

5.3.13. As remarked in the proof of [54, Lemma 3.3] both  �1
i

and  `(N,y) are

(1 + )-Lipschitz. Let N2 > N1 be such that ⌫�n+N1
s

H�N1 > 1 whenever n > N2.

By Lemma 5.3.13, if n > N2 then T�n expands distances on W̃ + y by at least

⌫�n+N1
s

H�N1 . It is clear that ⌧�1
y

is C⌧ -Lipschitz by the definition of C⌧ , and

that d((Id,�)(a), (Id,�)(b)) � d(a, b) for every a, b 2 B(z, A�). Using the above

estimates to bound the Lipschitz constant of F�1
N

for N > N2 we obtain

d(FN(a), FN(b)) � ⌫�N+N1
s

�
HN1C⌧ (1 + )2

��1
8a, b 2 QN .

As in [54, Lemma 3.3] we have |⇡s(v)|Rms � (1 + c2
`(N,y))

�1/2
|v|Rm whenever v 2

C`(N,y). Since sup
i
ci < 2 and, for N > N1, the tangent space of FN is contained

in C`(N,y), for every N > N2 we have

d((⇡s � FN)(a), (⇡s � FN)(b)) �
⌫�N+N1
s

HN1C⌧ (1 + )2
p
1 + 42

, (5.31)

provided that a, b are su�ciently close. Since ⌫s < 1 there exists N3 � N2 so that

for each N � N3 the map ⇡s � FN locally expands distances by at least

⌫�N+N1
s

HN1C⌧ (1 + )2
p
1 + 42

>
A

A� 1
,

from which it follows that Dw(⇡s
� FN)�1 exists for every (⇡s

� FN)(w) 2 QN and

satisfies

��Dw(⇡
s
� FN)

�1
��  ⌫N�N1

s
(HN1C⌧ (1 + )2

p
1 + 42) <

A� 1

A
. (5.32)

We will now obtain a lower bound on the size of QN . Note that the tangent

space of � being a subset of Ci implies that that (Id,�) is (
p
1 + 2)-Lipschitz.

Let P = sup
x2Tm kDxT�1

k. From these estimates, as well as those in the previous

paragraph, we may conclude that FN is (PNC⌧ (1 + )2
p
1 + 2)-Lipschitz. Let

LN := min

⇢
(A� 1)�, (PNC⌧ (1 + )2

p
1 + 2)�1 min

j

rj/2

�
.
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We will prove that B(z, LN) ✓ QN . If w 2 (�ri, ri)ms\B(z, LN) then w 2 B(x,A�)

i.e. w is in the domain of �. Moreover,

d((T�N
� ⌧y �  i � (Id,�))(w), (T

�N
� ⌧y �  i � (Id,�))(z))

 PNC⌧ (1 + )
p
1 + 2 kw � zk .

(5.33)

Since FN(z) 2
�
�r`(N,y)/2, r`(N,y)/2

�m
it follows that  `(N,y) is well defined on

B
�
FN(z),minj

rj

2

�
. Since  `(N,y) is (1+)-Lipschitz and a bijection (onto its range),

we have

 `(N,y)

✓
B

✓
FN(z),min

j

rj
2

◆◆
◆ B

✓
(T�N

� ⌧y �  i � (Id,�))(z),min
j

rj
2(1 + )

◆
.

(5.34)

From (5.33) and (5.34) we deduce that if w 2 B(z, LN) then FN(w) is defined and

in (�r`(N,y), r`(N,y))ms . Moreover, Fn(B(z, LN)) is path-connected, being the image

of a path-connected set under a continuous function, and so B(z, LN) ✓ QN . Let

SN : B(0, LN) ! Rms be defined by

SN(w) = (Dz(⇡
s
� FN))

�1
· ((⇡s

� FN)(w + z)� (⇡s
� FN)(z)) .

Our goal is to apply Lemma 5.3.15 to SN , and then deduce the existence of (⇡s
�

FN)�1 on some neighbourhood of (⇡s
� FN)(z) that is not too small, but this will

take some work. For any a, b 2 B(0, LN) we have

kDaSN �DbSNk 
��(Dz(⇡

s
� FN))

�1
�� kDa+z(⇡

s
� FN)�Db+z(⇡

s
� FN)k


��(Dz(⇡

s
� FN))

�1
�� kDa+zFN �Db+zFNk

 |a� b|Rm sup
w2QN

��D2
w
FN

�� := |a� b|Rm JN ,

(5.35)

where we have used (5.32) and the fact that w 7! Dw⇡s is constant and a contrac-

tion. Note that

1�
p

1� 8A�JN3 kDz(⇡s � FN3)�1k

4JN3

=
2A� kDz(⇡s

� FN3)
�1
k

1 +
p

1� 8A�JN3 kDz(⇡s � FN3)�1k
.

(5.36)

In the definition of ⌃̃ we may assume that � is as small as we like. Thus, in view of

(5.32) and (5.36), by choosing � su�ciently small we may guarantee that

0 <
1�

p
1� 8A�JN3 kDz(⇡s � FN3)�1k

4JN3

< LN3 . (5.37)
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If (5.37) holds then there exists s 2 (0, LN3) so that

(1� 2JN3s)s � A�
��Dz(⇡

s
� FN3)

�1
�� . (5.38)

To summarise, we have proven the following

1. SN3 is well-defined on B(0, s) as s < LN3 ;

2. SN3(0) = 0 and S 0

N
(0) = Id; and

3. By (5.35) we have kDaSN3 �DbSN3k  2sJN3 for every a, b 2 B(0, s).

Thus we may apply Lemma 5.3.15 to SN3 on B(0, s) to conclude the existence of an

inverse S�1
N3

that is defined on B(0, (1� 2JN3s)s). Using the definition of SN3 and

(5.38) we recover the existence of an inverse (⇡s
� FN3)

�1 on B((⇡s � FN3)(z), A�).

Step II: The definition and properties of leaves covering T�N(W̃ + y). We may

define a map �0 : B((⇡s � FN3)(z), A�) ! Rmu by

�0 = ⇡u
� FN3 � (⇡

s
� FN3)

�1.

Note that the graph of �0 is a subset of FN3(B(z, s)) by construction. Since the

tangent space of FN3 is contained in C`(N3,y) it follows that kD�0k  c`(N3,y). Hence,

for w 2 B((⇡s � FN3)(z), A�), we have

k�0((⇡
s
� FN3)(z))� �0(w)k  c`(N3,y)A�. (5.39)

Recall from the line before (5.23) that  < 1/2, and from (B4) that c`(N3,y) < 2.

Thus, as A� < minj rj/6 (see the sentence following [54, equation (3.1)]), from

(5.39) we have

k�0((⇡
s
� FN3)(z))� �0(w)k < min

j

rj/6.

As (⇡s
�FN3)(z) 2 (

�r`(N3,y)

2 ,
r`(N3,y)

2 )ms , it follows that �0(w) 2 (
�2r`(N3,y)

3 ,
2r`(N3,y)

3 )mu .

Thus the image of �0 is a subset of (�2r`(N3,y)/3, 2r`(N3,y)/3)
mu . Since the Cr+1 norm

of FN3 may be bounded independently of y 2 Tm, z 2 B(x, �) and W 2 ⌃̃, by the

inverse function theorem there exists some absolute Y so that for any �0 produced

by the construction just carried out we have k�0kCr+1  Y . Thus the graph of �0

belongs to G`(N3,y)(Y ) (recall the definition of the sets Gi(K) from [54, Section 3]).

The issue at this stage is that k�0kCr+1 may not be bounded by the constant K

set in [54, Lemma 3.1] and so may not define a leaf in ⌃̃. Instead, we show that

�0 may be covered by the image of higher-regularity leaves under some iterate of
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T . The following construction is very similar to the one in the proof of [54, Lemma

3.3].

For each j 2 Z+ we define �j inductively as follows, starting with j = 1.

As the graph of �j�1 is in G`(N3+j�1,y)(Rj�1(Y )), by Lemma 5.3.14 the image of

 �1
`(N3+j,y) � T

�1
�  `(N3+j�1,y) � (Id,�j�1) is in G`(N3+j,y)(Rj(Y )) and is therefore the

graph of a map �0

j
which contains  �1

`(N3+j,y) � T�(N3+j)
� ⌧y �  i � (z,�(z)). Using

the expansivity of T�1 as in [54, Lemma 3.3], one deduces that the domain of �0

j

contains the set

B( �1
`(N3+j,y) � T

�(N3+j) � ⌧y �  i � (z,�(z)), A�). (5.40)

We define �j to be the restriction of �0

j
to (5.40). By Lemma 5.3.14 we have

�N4 2 G`(N3+N4,y)(K), where N4 denotes the constant N(Y ) given by Lemma 5.3.14

and K is the constant from [54, Lemma 3.1]. Thus the image of

B( �1
`(N3+N4,y)

� T�(N3+N4) � ⌧y �  i � (z,�(z)), �)

under  `(N3+N4,y) � (Id,�N4) is a leaf in ⌃̃.

Step III: Concluding. We may apply this construction to any z 2 B(x, �) to pro-

duce a leaf Wz 2 ⌃̃ such that TN3+N4(Wz) ⇢ W̃ + y. Moreover, the constants N3

and N4 are independent of y 2 Tm, z 2 B(x, �) and W 2 ⌃̃. Set N = N3 + N4.

By varying z we observe that the set of such leaves covers T�N(W + y). As in

the end of [54, Lemma 3.3], the claim that the number of leaves required to cover

T�N(W +y) may be bounded independently of W and y follows from [61, Theorem

1.4.10], as too does the existence of partitions of unity satisfying all of the required

properties. Hence we have verified all the conclusions of Lemma 5.3.10.

By using Lemma 5.3.10 and adapting arguments from [54, Section 6] we may

now prove (5.17), which completes the proof of Proposition 5.3.6. Let N be the

constant from Lemma 5.3.10. We will show that
��⌧yLN

��
p,q

can be bounded inde-

pendently of y. The argument for bounding
��⌧yLN

��
p�1,q+1

is identical. Moreover,

we will only derive the inequality (5.17) for the spaces B̃p,q and B̃p�1,q+1, since it is

straightforward to then derive the corresponding inequality for their complexifica-

tions. We begin by bounding
��⌧yLN

���
0,q
. Let h 2 C

r(Tm,R), W 2 ⌃̃, ' 2 C
q

0(W,R)
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satisfy k'k
Cq  1, and y 2 Tm. Let JW ⌧�y denote the Jacobian of ⌧�y : W+y ! W .

Then Z

W

⌧yL
Nh · ' d⌦ =

Z

W+y

L
Nh · ' � ⌧�y · JW ⌧�y d⌦. (5.41)

Recall that LNh = (h
��detDTN

���1
) � T�N and let JW+yTN denote the Jacobian of

TN : T�N(W + y) ! W + y. Let {Wi}
j

i=1, {⇢i}
j

i=1 satisfy the conclusion of Lemma

5.3.10. By changing coordinates and applying Lemma 5.3.10 to (5.41) we obtain

Z

W+y

L
Nh · ' � ⌧�y · JW ⌧�y d⌦

=

Z

T�N (W+y)

h ·
��detDTN

���1
· (' � ⌧�y � T

N) · (JW ⌧�y) � T
N
· JW+yT

N d⌦

=
jX

i=1

Z

Wi

h ·
��detDTN

���1
· (' � ⌧�y � T

N) · (JW ⌧�y) � T
N
· ⇢i · JW+yT

N d⌦.

(5.42)

By the definition of k·k0,q the final expression in (5.42) is bounded above by

khk0,q

jX

i=1

���
��detDTN

���1
· (' � ⌧�y � T

N) · (JW ⌧�y) � T
N
· ⇢i · JW+yT

N

���
Cq(Wi)

.

Recall that q  r� 1. Since T is a C
r di↵eomorphism and Tm is compact, it follows

that the Cq(Wi) norms of JW+yTN and
��detDTN

���1
are bounded independently of

W and y. Using continuity and compactness, we observe that sup
x,y2Tm

��Dk

x
⌧y
�� is

finite for every positive integer k. Thus the Cq(Wi) norm of '� ⌧�y �TN is bounded

independently of y and ' (provided k'k
Cq(Wi)

 1). Similarly, it is clear that the

C
q(Wi) norm of (JW ⌧�y) � TN is bounded independently of W and y. Recall from

Lemma 5.3.10 that j and sup
i
k⇢ikCq are bounded above independently of W and

y. Hence, as k·k
Cq(Wi)

is sub-multiplicative, there exists some C0,q > 0 such that

jX

i=1

���
��detDTN

���1
· (' � ⌧�y � T

N) · ⇢i · JW+yT
N

���
Cq(Wi)

 C0,q

for every choice of W, y and ' with k'k
Cq  1. Thus, by taking supremums of the

terms in (5.41) we have
��⌧yLNh

���
0,q

 C0,q khk0,q . (5.43)

We turn to bounding
��⌧yLNh

���
k,q+k

for 0 < k  p. Let h, W and y be as before.

Suppose that ' 2 C
q+k

0 (W,R) satisfies k'k
Cq+k  1 and that {vi}ki=1 ✓ V

r(W ) is
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such that kvikCr  1. Then

Z

W

(v1 . . . vk)(⌧yL
Nh) · ' d⌦ =

Z

W

⌧y(ṽ1,y . . . ṽ1,kL
Nh) · ' d⌦,

where ṽi,y(x) := (Dx�y⌧y)vi(x� y). With JW ⌧�y, {Wi}
j

i=1 and {⇢i}
j

i=1 as before we

have

Z

W

⌧y(ṽ1,y . . . ṽ1,kL
Nh) · ' d⌦ =

Z

W+y

(ṽ1,y . . . ṽ1,kL
Nh) · ' � ⌧�y · JW ⌧�y d⌦

=
jX

i=1

Z

TN (Wi)

(ṽ1,y . . . ṽ1,kL
Nh) · ' � ⌧�y · ⇢i � T

�N
· JW ⌧�y d⌦.

(5.44)

Since the C
q+k norms of ' � ⌧�y and JW ⌧�y are bounded independently of ', y

and W , we may replace ' � ⌧�y · JW ⌧�y by some � 2 C
q+k

0 (W,R) with C
q+k norm

bounded independently of ', y and W . Additionally, the C
r norm of each ṽi,y may

be bounded independently of y and W due to the sup
x,y2Tm

��D`

x
⌧y
�� being finite for

each positive integer `. Upon replacing ' � ⌧�y · JW ⌧�y with �, the expression on

the right side of (5.44) is exactly in the form of [54, (6.4)]. Using the arguments

from [54, Lemma 6.3], one then obtains a bound of the form

����
Z

W

(v1 . . . vk)(⌧yL
Nh) · ' d⌦

����  Cp,q khkp,q + Cp�1,q+1 khkp�1,q+1 ,

for some Cp,q, Cp�1,q+1 > 0 that are independent of h, W , k, y, ' and each vi. By

the definition of k·k�
k,q+k

, and as k·k
p,q

dominates k·k
p�1,q+1, we therefore have

��⌧yLNh
���
k,q+k

 (Cp,q + Cp�1,q+1) khkp,q . (5.45)

The required bound follows by considering (5.43), (5.45) and the definition of k·k
p,q
.

Thus we have established (5.17), which completes the proof of Proposition 5.3.6.

5.3.3 Stability for perturbations of the cat map

We now give a concrete family of maps satisfying the conditions of Proposition

5.3.6. For � 2 R let T� : T2
! T2 be defined by

T�(x1, x2) = (2x1 + x2, x1 + x2) + �(cos(2⇡x1), sin(4⇡x2 + 1)).

Note that T0 is Arnold’s ‘cat map’ – a linear hyperbolic toral automorphism – and

so it satisfies Proposition 5.3.6. Moreover, since � 7! T� is smooth it follows that T�
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is Anosov and satisfies the conditions of Proposition 5.3.6 for su�ciently small �.

The main result of this section is an explicit range of � for which T� is an Anosov

di↵eomorphism and satisfies (5.17).

Proposition 5.3.16. If 0  � < 0.0108 then T� is an Anosov di↵eomorphism and

satisfies the conditions of Proposition 5.3.6.

Hence Proposition 5.3.1, Theorem 5.3.3, and Corollary 5.3.4 apply to T� when-

ever � 2 [0, 0.0108). The proof of Proposition 5.3.16 is broken up into Lemmas

5.3.17, 5.3.19 and 5.3.22. Throughout this section we denote the Euclidean norm

on R2 (and the associated operator norm) by |·|, and the usual Euclidean inner

product by h·, ·i. We begin by proving that T� is a di↵eomorphism for su�ciently

small � by using a quantitative version of the inverse function theorem (Lemma

5.3.15).

Lemma 5.3.17. If � 2 [0, 0.0108) then T� is a di↵eomorphism.

Proof. We have

D(x1,x2)T� =

 
2� 2⇡� sin(2⇡x1) 1

1 1 + 4⇡� cos(4⇡x2 + 1)

!
,

and

detD(x1,x2)T� = 1+8⇡� cos(4⇡x2+1)�2⇡� sin(2⇡x1)�8⇡2�2 sin(2⇡x1) cos(4⇡x2+1).

(5.46)

In particular, D(0,0)T� is invertible if |�| < 1/(8⇡). Denote by T̄� : R2
! R2 the lift

of T�. Define S� : R2
! R2 by

S�(y1, y2) := (D(0,0)T�)
�1
�
T̄�(y1, y2)� T̄�(0, 0)

�
.

Note that S�(0, 0) = 0 and D(0,0)S� = Id. For z 2 R let ez denote the equivalence

class containing z in T = R/Z. We will estimate

��D(y1,y2)S� �D(w1,w2)S�
�� =

��(D(0,0)T�)
�1
�
D( ey1, ey2)T� �D(fw1,fw2)T�

��� .

We clearly have
��D( ey1, ey2)T� �D(fw1,fw2)T�

��  8⇡ |�| . (5.47)
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Use the fact that the Frobenius norm dominates the Euclidean operator norm, we

have
��D(0,0)T

�1
�

�� =
��D(0,0)T�

��
��detD(0,0)T�

�� 
p

6 + (1 + 4⇡� cos(1))2��detD(0,0)T�
�� . (5.48)

Thus, by (5.46), (5.47) and (5.48),

��D(y1,y2)S� �D(w1,w2)S�
�� 

8⇡ |�|
p

6 + (1 + 4⇡� cos(1))2

1� 8⇡�
:= s.

If |�| < 0.0108 then s < 1. Then S� verifies the conditions of Lemma 5.3.15 and has

an inverse S� : B(0, (1� s)r) ! R2, where r > 0. Since there is no dependence on

r in the above procedure, we may extend S�1
�

to R2. Thus T̄� is invertible, and so

T� is invertible too. It is standard that T�1
�

and T� have the same smoothness.

Let x 2 T2. The eigenvalues of DxT0 are � = 3�
p
5

2 < 1 and ��1 = 3+
p
5

2 > 1.

Let eEs(x) be the span of
⇣
1, �

p
5�1
2

⌘
and eEu(x) be the span of

⇣
1,

p
5�1
2

⌘
. Note that

eEs(x) and eEu(x) are the eigenspaces of � and ��1, respectively. It is trivial that the

spaces eEu(x) and eEs(x) depend continuously on x, and that eEu(x)� eEs(x) = TxT2

for every x 2 T2. Let ⇧u,⇧s : R2
! R2 denote the orthogonal projections onto

eEu(x) and eEs(x), respectively. Since T0 is symmetric, eEu(x) ? eEs(x) and so

Id�⇧s = ⇧u. For ↵ > 0 define

Ku

↵
(x) = {v 2 TxT2 : |⇧sv|  ↵ |⇧uv|}, and Ks

↵
(x) = {v 2 TxT2 : |⇧uv|  ↵ |⇧sv|}.

To prove that T� is an Anosov di↵eomorphism it remains to prove that T2 is a

hyperbolic set for T�. We do this by verifying the conditions of the following result,

which we have adapted to our setting for simplicity.

Proposition 5.3.18 ([21, Proposition 5.4.3]). If there exists ↵ > 0 such that for

every x 2 T2 we have

(A1) (DxT�)(Ku

↵
(x)) ✓ Ku

↵
(T�(x)) and (DxT

�1
�

)(Ks

↵
(x)) ✓ Ks

↵
(T�1

�
(x)); and

(A2) |DxT�v| < |v| for v 2 Ks

↵
(x) \ {0} and

��DxT
�1
�

v
�� < |v| for v 2 Ku

↵
(x) \ {0}.

Then there are constants ⌫u,� > 1 and 0 < ⌫s,� < 1, and for each x 2 T2, subspaces

Es

�
(x) and Eu

�
(x) such that

1. TxT2 = Es

�
(x)� Eu

�
(x);

2. (DxT
�1
�

)(Es

�
(x)) = Es(T�1

�
(x)) and (DxT�)(Eu

�
(x)) = Eu(T�(x));

3.
���DxT�

��
E

s
� (x)

���  ⌫s,� and
���DxT

�1
�

��
E

u
� (x)

���  ⌫�1
u,�

; and

4. Es

�
(x) ✓ Ks

↵
(x) and Eu

�
(x) ✓ Ku

↵
(x).
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In particular, T� is Anosov.

Lemma 5.3.19. If � 2 [0, 0.0108) then T� is Anosov and the conclusion of Propo-

sition 5.3.18 holds with ↵ = 0.11872.

Proof. We first diagonalise DxT0 as R�1
✓
⇤R✓, where ⇤ is a 2 ⇥ 2 diagonal matrix

with the vector [�, 1/�] on the diagonal, and R✓ is clockwise rotation by angle

✓ = tan�1((1 �
p
5)/2). Note that DxT� = DxT0 + �x where �x : R2

! R2 is

defined by the matrix

�x =

 
�2⇡� sin(2⇡x1) 0

0 4⇡� cos(4⇡x2 + 1)

!
.

We use the shorthand �1 = �2⇡� sin(2⇡x1) and �2 = 4⇡� cos(4⇡x2 +1). In order to

satisfy the second part of (A1) of Proposition 5.3.18, we require that ⇤+R✓�xR
�1
✓

preserve K
u

↵
:= {(�, �)> 2 R2 : |�|  |�|↵}. One may confirm that

R✓�xR
�1
✓

=

 
�1 cos2 ✓ + �2 sin

2 ✓ (1/2) sin(2✓)(�2 � �1)

(1/2) sin(2✓)(�1 � �2) �2 cos2 ✓ + �1 sin
2 ✓

!
. (5.49)

Multiplying ⇤ + R✓�xR
�1
✓

with the vectors (↵, 1)> and (�↵, 1)> we see that a

su�cient condition to preserve K
u

↵
is that

(�+ �0)↵ + �0

1/�� �0 � �0↵
 ↵,

where �0 = max{sup
x
�1, supx

�2} = 4⇡�. Since 1/���0��0↵ > 0 for 0  �  0.1862

we may rearrange the above in terms of � to obtain

� 
↵(1/�� �)

4⇡(↵ + 1)2
. (5.50)

Since � 2 [0, 0.0108), by Lemma 5.3.17 the map T� is a di↵eomorphism. To

satisfy the first part of (A1) of Proposition 5.3.18, using the notation above, we

note that

(DxT�)
�1 = (1/ det(DxT�))

 
1 + �2 �1

�1 2 + �1

!
, (5.51)
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and that for the purposes of cone preservation we need not consider the determinant

factor. Therefore, (DxT�)�1 = (1/ det(DxT�))((DxT0)�1 +�0

x
), where

�0

x
=

 
�2 0

0 �1

!
. (5.52)

The cone preservation condition will be implied by the preservation of K
s

↵
:=

{(�, �)> 2 R2 : |�|  |�|↵} by DxT
�1
�

. Multiplying ⇤�1 + R✓�0

x
R�1
✓

with the

vectors (1,↵)> and (1,�↵)> yields an identical set of calculations to those for Ku

↵
,

resulting in the same bound for � as in (5.50). Substituting ↵ = 0.11872 into this

bound yields a numerical upper bound for � of 0.0169, which is larger than the value

reported in the proposition statement.

To verify (A2) we demonstrate contraction for elements of Ks

↵
; the same con-

tractions occur in the original (unrotated) cones Ks

↵
(x) and Ku

↵
(x) under DxT� and

DxT
�1
�

, respectively. Writing ⇤+R✓�xR
�1
✓

=

 
�+ a b

c ��1 + d

!
and multiplying

by the unit vector (1/
p

1 + �2)(1, �)> for �↵  �  ↵, the square of the norm of

this vector is ((�+a)2+b2�2+2(�+a)b�+c2+(��1+d)2�2+2c�(��1+d))/(1+�2).

We require the above expression to be strictly less than 1 for contraction. Grouping

terms to obtain a quadratic in � we wish to show

�2(b2 + (��1 + d)2 � 1) + 2�((�+ a) + c(��1 + d)) + ((�+ a)2 + c2 � 1) < 0 (5.53)

for �↵  �  ↵. This quadratic has a local minimum since ��1
� 1 + |d| when-

ever � 2 [0, 0.1288); therefore the maxima are at � = ±↵. Using the fact that

max{|a| , |b| , |c| , |d|}  �0 one may readily check that contraction occurs at � = ±↵

for �0 2 [0, 0.6734) or, equivalently, for � 2 [0, 0.0536).

The contraction of vectors in K
u

↵
under DxT

�1
�

follows similarly. With the

notation above, one easily verifies 1 � (5/2)�0 � (�0)2/2  det(DxT�). Replacing

the two ‘1’s in (5.53) with the factor 1� (5/2)�0� (�0)2/2, one verifies as above that

the polynomial (5.53) has positive leading term for � 2 [0, 0.1288) and is negatively

valued for �↵  �  ↵ provided that � 2 [0, 0.0293). Thus vectors in K
u

↵
are

contracted under DxT
�1
�

for � in the advertised range.

As we have verified all the conditions of Proposition 5.3.18 for T� whenever

� 2 [0, 0.0108), it follows that T� is an Anosov di↵eomorphism for � in the same

range.
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To complete the proof of Proposition 5.3.16 it su�ces to prove that T� satisfies

the conditions of Proposition 5.3.6. Denote by ⇡s

x
(resp. ⇡u

x
) the projection onto

Es

�
(x) along Eu

�
(x) (resp. Eu

�
(x) along Es

�
(x)). Let ws and wu be the unit vectors in

the rays defined by
⇣
1, �

p
5�1
2

⌘
and

⇣
1,

p
5�1
2

⌘
, respectively. Let wu(x) and ws(x) be

the unit vectors in Es

�
(x) and Eu

�
(x) for which hwu(x), wui > 0 and hws(x), wsi > 0.

For v 2 R2 we denote by v? the vector obtained by rotating v anticlockwise by ⇡/2

about the origin. In particular, w?

s
= wu and w?

u
= �ws. For v 2 TxT2 let

kvk0 =
q

|⇡s
x
v|2 + |⇡u

x
v|2.

We can recover a Riemannian metric from k·k0 by the polarisation identity. By

Proposition 5.3.18 we have
���DxT�

��
E

s
� (x)

���  ⌫s,� and
���DxT

�1
�

��
E

u
� (x)

���  ⌫�1
u,�

. Thus the

metric induced by k·k0 satisfies (M2) and is adapted. In the following two lemmas

we collect some useful inequalities, before proving that T� satisfies the conditions

of Proposition 5.3.6 for all � 2 [0, 0.0108) in Lemma 5.3.22. The first such bound

follows from basic trigonometry.

Lemma 5.3.20. If vi 2 Ks

↵
(x), i = 1, 2 with |vi| = 1 and hv1, v2i > 0, then

|v1 � v2| 
2↵

p
1+↵2 . Similar statements hold for vi 2 Ku

↵
(x).

Lemma 5.3.21. If ↵ < 1, then for every v 2 TxT2 we have

p
(1� ↵2)2 � �(↵)

1� ↵2
|v|  kvk0 

p
(1� ↵2)2 + �(↵)

1� ↵2
|v| ,

where

�(↵) :=
p
2↵(3↵ +

p
2 + 3↵2)

q
1 + ↵

p
2 + 3↵2.

Proof. Let v 2 TxT2 with |v| = 1. By writing v = ⇡s

x
v + ⇡u

x
v we find that

kvk0 =
q

|⇡s
x
v|2 + |⇡u

x
v|2 =

p
1� 2h⇡s

x
v, ⇡u

x
vi. (5.54)

One verifies that ⇡s

x
v = hwu(x)?,vi

hwu(x)?,ws(x)i
ws(x) and ⇡u

x
v = hws(x)?,vi

hws(x)?,wu(x)i
wu(x). Hence

|h⇡s

x
v, ⇡u

x
vi| =

����
hws(x), wu(x)ihws(x)?, vihwu(x)?, vi

hws(x)?, wu(x)ihwu(x)?, ws(x)i

���� . (5.55)

Since ws(x) 2 Ks

↵
(x) and wu(x) 2 Ku

↵
(x), basic trigonometry yields

|hws(x), wu(x)i|  cos
⇣⇡
2
� 2 tan�1(↵)

⌘
=

2↵

1 + ↵2
. (5.56)
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Alternatively, as ws(x)? 2 Ku(x),

��hws(x)
?, wu(x)i

�� � cos(2 tan�1(↵)) =
1� ↵2

1 + ↵2
. (5.57)

The same argument yields the same lower bound for
��hwu(x)?, ws(x)i

��. Writing

v = Aws(x) + Bws(x)?, we have

hws(x)
?, vihwu(x)

?, vi = B(�A+ hwu(x)
? + ws(x), vi).

Since ws(x) and ws(x)? are orthogonal and |v| = 1, we have |B| =
p
1� A2. On the

other hand, by Lemma 5.3.20 and Cauchy-Schwarz we have
��hwu(x)? + ws(x), vi

�� 
2↵

p
1+↵2 . Upon substituting we have

��hws(x)
?, vihwu(x)

?, vi
�� 

p
1� A2

✓
|A|+

2↵
p
1 + ↵2

◆
. (5.58)

We may bound the right side of (5.58) from above by di↵erentiating with respect

to A and solving the resulting quadratic equation (noting that we only have to

consider the case where A � 0 due to the symmetry about A = 0 in the right side

of (5.58)). In particular, (5.58) is maximised when

|A| =
�↵ +

p
2 + 3↵2

2
p
1 + ↵2

,

which, when substituted into (5.58), yields

��hws(x)
?, vihwu(x)

?, vi
��  (3↵ +

p
2 + 3↵2)

p
1 + ↵

p
2 + 3↵2

2
p
2(1 + ↵2)

. (5.59)

Applying (5.56), (5.57) and (5.59) to (5.55) yields

|h⇡s

x
v, ⇡u

x
vi| 

↵(3↵ +
p
2 + 3↵2)

p
1 + ↵

p
2 + 3↵2

p
2(1� ↵2)2

. (5.60)

Hence, upon substituting (5.60) into (5.54) we obtain

p
(1� ↵2)2 � �(↵)

1� ↵2
|v|  kvk0 

p
(1� ↵2)2 + �(↵)

1� ↵2
|v|

as announced.
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Lemma 5.3.22. In the setting of Lemma 5.3.19 and Proposition 5.3.18 we have

C⌧,0⇥T� ,0 < 1.

Proof. Since ↵ < 1 the conclusion of Lemma 5.3.21 holds. Since Dx⌧y is an isometry

with respect to the usual Riemannian metric on the tangent space of T2, by Lemma

5.3.21 we have

sup
kvk01

kDx⌧yvk0 

s
(1� ↵2)2 + �(↵)

(1� ↵2)2 � �(↵)
.

Thus

C⌧,0 

s
(1� ↵2)2 + �(↵)

(1� ↵2)2 � �(↵)
. (5.61)

We turn to bounding ⇥T� ,0. Since ⇡
s

x
and ⇡u

x
are complementary orthogonal projec-

tions with respect to the inner product associated to k·k0 we have

⇥T� ,0 = sup
x,y2T2

��⇡s

x+y
Dx⌧y � (Dx⌧y)⇡

s

x

��
0
.

By using Lemma 5.3.21 in the same way as when bounding C⌧,0 we find that

⇥T� ,0 

s
(1� ↵2)2 + �(↵)

(1� ↵2)2 � �(↵)
sup

x,y2T2

��⇡s

x+y
Dx⌧y � (Dx⌧y)⇡

s

x

�� .
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Let v 2 TxT2 with |v| = 1. Recalling the definition of ⇡s

x
and then applying the

triangle and Cauchy-Schwarz inequalities we have

|(⇡s

x+y
Dx⌧y � (Dx⌧y)⇡

s

x
)v|

=

����
hwu(x+ y)?, vi

hwu(x+ y)?, ws(x+ y)i
ws(x+ y)�

hwu(x)?, vi

hwu(x)?, ws(x)i
ws(x)

����



����
hwu(x+ y)?, vi

hwu(x+ y)?, ws(x+ y)i
ws(x+ y)�

hwu(x)?, vi

hwu(x+ y)?, ws(x+ y)i
ws(x+ y)

����

+

����
hwu(x)?, vi

hwu(x+ y)?, ws(x+ y)i
ws(x+ y)�

hwu(x)?, vi

hwu(x)?, ws(x)i
ws(x+ y)

����

+

����
hwu(x)?, vi

hwu(x)?, ws(x)i
ws(x+ y)�

hwu(x)?, vi

hwu(x)?, ws(x)i
ws(x)

����



��hwu(x+ y)?, vi � hwu(x)?, vi
��

|hwu(x+ y)?, ws(x+ y)i|

+

��hwu(x+ y)?, ws(x+ y)i � hwu(x)?, ws(x)i
��

|hwu(x+ y)?, ws(x+ y)ihwu(x)?, ws(x)i|

+
|ws(x+ y)� ws(x)|

|hwu(x)?, ws(x)i|
.

(5.62)

We will bound the various terms on the right side of (5.62). By Lemma 5.3.20 we

have

��hwu(x+ y)?, vi � hwu(x)
?, vi

��  2↵
p
1 + ↵2

, and |ws(x+ y)� ws(x)| 
2↵

p
1 + ↵2

.

(5.63)

By definition we have hwu(x)?, ws(x)i  0 for every x 2 T2. More precisely, by

using Cauchy-Schwarz and (5.57) we find that

�1  hwu(x)
?, ws(x)i 

↵2
� 1

1 + ↵2
.

Hence,
��hwu(x+ y)?, ws(x+ y)i � hwu(x)

?, ws(x)i
��  ↵2

1 + ↵2
. (5.64)

Using (5.64) and (5.57) to bound the second term of (5.62), we obtain

��hwu(x+ y)?, ws(x+ y)i � hwu(x)?, ws(x)i
��

|hwu(x+ y)?, ws(x+ y)ihwu(x)?, ws(x)i|

↵2(1 + ↵2)

(1� ↵2)2
. (5.65)
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Using (5.63) and (5.57) to bound the first term of (5.62), (5.64) and (5.57) to bound

the second term, and the bound (5.65) yields

��(⇡s

x+y
Dx⌧y � (Dx⌧y)⇡

s

x
)v
��  2↵

p
1 + ↵2

1� ↵2
+
↵2(1 + ↵2)

(1� ↵2)2
+

2↵
p
1 + ↵2

1� ↵2


4↵(1� ↵2)

p
1 + ↵2 + ↵2(1 + ↵2)

(1� ↵2)2
.

Thus,

⇥T� ,0 

 s
(1� ↵2)2 + �(↵)

(1� ↵2)2 � �(↵)

! 
4↵(1� ↵2)

p
1 + ↵2 + ↵2(1 + ↵2)

(1� ↵2)2

!
. (5.66)

Combining (5.62) and (5.66) yields

C⌧,0⇥T� ,0 

✓
(1� ↵2)2 + �(↵)

(1� ↵2)2 � �(↵)

◆ 
4↵(1� ↵2)

p
1 + ↵2 + ↵2(1 + ↵2)

(1� ↵2)2

!
.

So if ↵ < 0.11872 then C⌧,0⇥T� ,0 < 1.

5.4 Estimation of the statistical properties of Anosov maps

In this section we implement the numerical schemes described in Sections 5.2 and

5.3. As in these previous sections we consider a C
r+1 Anosov di↵eomorphism T on

the m-dimensional torus Tm. Before describing these methods we recall a complica-

tion that was discussed in Remarks 5.2.7 and 5.3.5. Namely, the numerical methods

proposed in Sections 5.2 and 5.3 apply to the Perron-Frobenius operator L⌦ of T

induced by duality with respect to the Riemannian volume ⌦, while it is desirable

from a computational perspective to estimate the Perron-Frobenius operator LLeb

induced by duality with respect to the normalised Haar measure on Tm. Indeed, es-

timating L⌦ would require knowledge of the adapted metric inducing ⌦, which itself

depends on the dynamics. We address this complication in Section 5.4.4, wherein

it is shown that L⌦ and LLeb (and their twists) are conjugate, and therefore have

the same spectrum. In addition, it is shown that whenever one of the perturbations

from Sections 5.2 and 5.3 satisfies (KL) when approximating L⌦, the same pertur-

bation also satisfies (KL) when used to approximate LLeb. We defer these technical

details to the end of the section, and first describe how our methods may be applied

to the perturbed cat maps of Section 5.3.3. The methods we consider are:
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Fourier approximation of mollified transfer operators. Proposition 5.2.3 says that

if we convolve the (possibly twisted) transfer operator L⌦ with a locally supported

stochastic kernel (parameterised by ✏), Fourier approximations (of order n = n(✏))

of this mollified transfer operator satisfies (KL) as ✏! 0 when considered as a family

of operators in L(Bp,q

C ) with weak norm k·k
p�1,q+1. That the same holds for LLeb

follows from Proposition 5.4.3. The Fourier approximations of LLeb are numerically

accessible and Theorem 5.2.6 and Proposition 5.4.3 then guarantees convergence

of the SRB measure (in the k · kp�1,q+1 norm), convergence of the variance of a

C
r observable, and uniform convergence of the rate function for Cr observables, as

✏! 0.

Direct Fourier approximation via Fejér kernels. Corollary 5.3.4 states that if we

convolve the (possibly twisted) transfer operator L⌦ with a Fejér kernel (param-

eterised by n), this sequence of operators in n satisfies (KL) as n ! 1 when

considered as a family of operators in L(Bp,q

C ) with weak norm k·k
p�1,q+1. That

the same holds for LLeb follows from Proposition 5.4.4. The Fejér kernels directly

arise from Fourier projections and this second numerical scheme requires only direct

Fourier approximation of the transfer operators LLeb. Theorem 5.3.3 and Propo-

sition 5.4.4 guarantees convergence of the SRB measure (in the k · kp�1,q+1 norm),

convergence of the variance of a C
r observable, and uniform convergence of the rate

function for Cr observables, as n ! 1.

For the remainder of this section we will only deal with the operator LLeb,

its twists LLeb(z) and approximations of both these two operators i.e. LLeb,✏ and

LLeb,✏(z). To simplify notation we drop the reference to Leb.

5.4.1 General setup

We note that L✏(z) arising from both (i) the convolution with a locally supported

stochastic kernel q✏ and (ii) convolution with a Fejér kernel, can be considered as

operators on L2(T2) without changing the spectrum of the operators. A numer-

ical approximation L✏(z) of the twisted transfer operator L(z) can be formed in

a number of ways, detailed below, but each of these will be based on Fourier ap-

proximation. This is a natural approach as we have a periodic spatial domain and

the map and observable are smooth. First, we set up the Fourier function basis

and L2-orthogonal projection of the action of L✏ on these basis functions. Using

the usual L2 inner product hf, gi =
R
T2f · g dLeb, for x 2 T2 and j 2 Z2, define a
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complex Fourier basis fj(x) = e2⇡ij·x, so that g =
P

j2Z2hg, fjifj :=
P

j2Z2 ĝ(j)fj. To

obtain a representation of L✏ in this basis, we compute:

[L(z)✏]kj := hL(z)✏fk, fji =

Z

T2

✓Z

T2

q✏(x� y)L(ezg(y)fk(y)) d Leb(y)

◆
fj(x) d Leb(x)

=

Z

T2

✓Z

T2

q✏(x� Ty)ezg(y)fk(y) d Leb(y)

◆
fj(x) d Leb(x)

=

Z

T2

✓Z

T2

q✏(x� Ty)fj(x) d Leb(x)

◆
ezg(y)fk(y) d Leb(y)

=

Z

T2

✓Z

T2

q✏(x)e
�2⇡ij·(x+Ty) dLeb(x)

◆
ezg(y)fk(y) d Leb(y)

=

Z

T2

hq✏, fjie
�2⇡ij·(Ty)ezg(y)fk(y) d Leb(y)

= hq✏, fjihf�j � T · ezg, f�ki

= q̂✏(j) · (f�j � T · ezg)
V

(�k) (5.67)

Notice that (5.67) only involves Fourier transforms of trivial objects (e.g. composi-

tion of a basis function with the map, exponential functions, the stochastic kernel,

and the basis functions themselves). To obtain spectral information for L✏(z) :

L2
! L2 we may solve the generalised eigenvalue problem L✏(z)v✏(z) = �✏(z)v✏(z).

5.4.2 Discrete Fourier transform

To numerically approximate the above Fourier transforms, we first truncate the

Fourier modes so that j 2 {�n/2 + 1, . . . ,�1, 0, 1, . . . , n/2}2, where n = 2n
0
for

some n0
2 Z+. Corresponding to this frequency grid is a regular spatial grid on T2

of the same cardinality; we call these frequency and spatial grids “coarse grids”.

The L2 inner products are estimated using MATLAB’s two-dimensional discrete

fast Fourier transform (DFT) fft2 on equispaced spatial and frequency grids with

cardinalities N = 2N
0
for some integer N 0

� n0; these grids will be referred to as

“fine grids”. The DFT is a collocation process, and by using N � n, we evaluate

our functions on a finer spatial grid and produce more accurate estimates of the

(lower) frequencies in the coarse grid. One may also think of the DFT as a type of

interpolation; for fixed n, as N increases we achieve increasingly accurate estimates

of the L2 inner products. The cardinality n2 of the coarse grid determines the size

of the n2
⇥ n2 matrix L✏,n(✏)(z) (if convolving with stochastic kernels) or Ln(z) (if

convolving with Fejér kernels), while the cardinality N2 of the fine grid determines

the computation e↵ort put into estimating the inner products via the DFT. In our

experiments we will use n = 32, 64, 128 and N = 512.
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The kernel q✏ will be either:

1. A stochastic kernel given by an L1-normalised C
1 bump function with support

restricted to the disk of radius ✏ centred at 0. The particular bump function

we use in the numerics is a well-known transformed version of a Gaussian

given by q✏(x) = (C/✏2) exp(�1/(1 � kx/✏k2)) for x 2 B(0, ✏), where C is a

fixed L1-normalising constant.

2. The square Fejér kernel of order n. Because of the special form of the square

Fejér kernel we have that q̂n(j) = (1� |j1|/(n/2+1))(1� |j2|/(n/2+1)), which

may be inserted directly into (5.67). Another advantage of the Fejér kernel

is that no explicit mollification is required, with the “✏” slaved to the coarse

resolution n.

In our experiments, given a coarse frequency resolution n, we will try to select ✏ so

that the stochastic kernel “matches” the Fejér kernel. We do this by choosing ✏ so

that minj2{�n/2+1,...,n/2}2 |q̂✏(j)| ⇡ minj2{�n/2+1,...,n/2}2 |q̂n(j)|.

5.4.3 Numerical results

The specific map T : T2  on which we carry out our numerics is a small pertur-

bation of a linear toral automorphism:

T (x1, x2) = (2x1 + x2 + 2� cos(2⇡x1), x1 + x2 + � sin(4⇡x2 + 1)),

with � = 0.01. By Proposition 5.3.16 we have that T is an Anosov di↵eomorphism

and satisfies the conditions of Proposition 5.3.6, which is required in order to rigor-

ously estimate the statistical properties of T using the Fejér kernel as per Corollary

5.3.4. The observable we use when computing the variance and the rate function is

g(x1, x2) = cos(4⇡x1) + sin(2⇡x2), displayed in Figure 5.1.

Estimating the SRB measure

Transitive Anosov systems possess a unique Sinai-Ruelle-Bowen (SRB) measure

[107, Theorem 1], which is exhibited by trajectories beginning in a full Lebesgue

measure subset of T2. A trajectory of length 1.5 ⇥ 105 initialised at a random

location is shown in Figure 5.2. To create a numerical approximation of the SRB

measure we compute the leading eigenvector of Ln (the matrix associated with the

Fejér kernel). Figure 5.3 illustrates the results of using n = 128, N = 512. The left

panel of Figure 5.3 is shaded so that higher “density” is indicated by darker shading.

Note that this compares very well with the density of points in the trajectory shown
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Figure 5.1: Graph of the observable used in the variance and rate function calcu-
lations. Left: view from above. Right: view from the side with fine N ⇥N spatial
mesh visible (N = 512).

Figure 5.2: A trajectory of length 1.5⇥ 105 initialised at a random location.

in Figure 5.2, and that Figure 5.3 (left) captures many structures more clearly than

the trajectory image. The right panel of Figure 5.3 shows the same image as the left

panel, but rotated and with the density plotted along the vertical axis. The high

degree of smoothness of the estimate of the SRB measure along unstable directions

is evident. Reducing n from 128 to n = 64 or n = 32 has little e↵ect on the image in

unstable directions as these slow oscillations are still well-captured by lower order

Fourier modes, but the higher frequency oscillations in stable directions will not be

captured as well and the image will be “smoothed” in the stable directions.

As a non-rigorous comparison, we form an Ulam matrix using a 512 ⇥ 512

equipartition of boxes {B1, . . . , B218} on T2. We compute a row-stochastic matrix

P512 as [P512]ij = Leb(Bi\T�1Bj)/Leb(Bi), where the entries [P512]ij are estimated
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Figure 5.3: Approximations of the SRB measure computed as the leading right
eigenvector of L128 (Fejér kernel of order 64), using a fine grid cardinality of N = 512
to evaluate the Fourier transforms. Left: Darker regions indicate higher “density”.
Right: The same image rotated and represented in three dimensions with the ver-
tical axis indicating “density”.

by uniformly sampling 1600 points in each box and counting the fraction of points

initialised in Bi that have their image in Bj. The Ulam estimate of the SRB measure

is then obtained as the leading left eigenvector of P512. The images corresponding

to Figure 5.3 are shown in Figure 5.4. In comparison to Figure 5.3 two things are

Figure 5.4: Approximations of the SRB measure computed as the leading left eigen-
vector of P512 (Ulam grid of size 512 ⇥ 512). Left: Darker regions indicate higher
“density”. Right: The same image rotated and represented in three dimensions
with the vertical axis indicating “density”.

noticeable. Firstly, Figure 5.4(left) appears to produce a finer representation of the

SRB measure than Figure 5.3(left), and secondly, the estimate in Figure 5.4(right)
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is rougher in unstable directions than the estimate in Figure 5.3. Each of these

observations is relatively easy to explain at a superficial level through the di↵erent

approximation bases used. In terms of regularity of approximation basis the Ulam

method is very low order (piecewise constant) because it uses a basis of indicator

functions on the 512 ⇥ 512 grid. On the other hand, the approximation basis for

the Fourier approximation of very high order (analytic). The Ulam basis is thus

very flexible and can adapt well to the roughness of the SRB measure in stable

directions, but has no apriori smoothness in unstable directions. In contrast, the

Fourier basis is less flexible in stable directions, requiring more modes to capture

rapid oscillations, but is extremely e�cient at approximating smooth functions and

easily captures the smooth variation in unstable directions. A recent alternative

non-rigorous collocation-based method of SRB measure approximation has been

explored in [100] for certain families (Blaschke products) of analytic Anosov maps.

In the case of analytic expanding maps, [100] proves that this method produces the

true absolutely continuous invariant measure in the limit of increasing numerical

resolution.

Estimating the variance

To estimate the variance of a centred observable g : T2
! R we employ the method

described in Section 2.3 of Chapter 2 and Section 3.2.1 of Chapter 3. We use the

representation of the (approximate) variance derived from (2.17):

�2
n
:= �(2)

n
(0) =

Z

T2

g2vn(0) + 2g(Id� Ln(0))
�1
Ln(0)(gvn(0)) d Leb . (5.68)

The main di↵erence to the calculations in Chapter 3 is that here we use Fourier

approximation, whereas in Chapter 3 we used Ulam’s method, which was better

suited to the piecewise expanding maps considered there. The key computational

component in (5.68) is the solution of a single linear equation to obtain an estimate

for (Id�Ln(0))�1
Ln(0)(gvn(0)), which is d

dz
vn(z) at z = 0. Because our approximate

transfer operator Ln(z) is represented in frequency space, we set up and solve this

linear equation in frequency space, yielding the DFT of d

dz
vn(z) at z = 0. This

Fourier transform is then inverted with the inverse DFT to produce the required

spatial estimate. Similarly, the DFT of vn(0) is computed as the leading right

eigenvector of Ln(0) and inverted with the inverse DFT to obtain a spatial estimate

of vn(0). These two spatial estimates (analytic functions consisting of a linear

combination of Fourier modes) are then evaluated on the fine spatial grid and the
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integral in (5.68) is computed as a simple Riemann sum over the fine spatial grid.

The Ulam-based variance estimates are calculated identically to those in Chapter

3. In Table 5.1 we report variance estimates over a range of coarse grid resolutions

to roughly indicate the dependence of the estimates on grid resolution.

Coarse grid
resolution n n = 32 n = 64 n = 128 n = 256

Stochastic kernel 0.9359 0.9342 0.9337
(✏ = 0.0693) (✏ = 0.0378) (✏ = 0.0210)

Fejér kernel 0.9447 0.9395 0.9366
Ulam 0.9320 0.9307 0.9348

Table 5.1: Variance estimates from the two Fourier approximation approaches and
Ulam’s method. For the two Fourier approximation methods we use a fine frequency
grid resolution of N = 512 and for Ulam’s method we use 1600 sample points per
box.

Estimating the rate function

We numerically estimate the rate function rg(s) = sup
z2V

(sz � log |�✏(z)|) for a

centred observable g : T2
! R using the Fejér kernel approach. We create the Fejér

kernel estimate Ln(z) of the twisted transfer operator and compute the leading

eigenvalue �n(z) and eigenvector vn(z) of Ln(z). The leading eigenvector vn(z) is

converted from frequency space to a function on T2 by evaluating the linear com-

bination (according to the entries of vn(z)) of the n associated Fourier modes on a

fine N ⇥N spatial grid for N = 512. For a given s, we are now in a position to find

the minimum of �(sz� log |�✏(z)|) as a function of z. We used MATLAB’s fminunc

routine (unconstrained function minimisation) with the default quasi-newton op-

tion, which takes around four to five iterates to converge to the minimum within a

preset tolerance of 10�6. We asked for the values of rg(s) for s between 0 and 1.8

in steps of 0.1, and initialised the search for the optimal z value using the optimal

z from the previous value of s. The results are shown in Figure 5.5 for coarse grids

of size n = 32 and n = 64, with fine grid collocation and function evalution using

N = 512. Note that the range of g is [�2, 2] (see also Figure 5.1), and that g

is already centred with respect to Lebesgue measure on the 2-torus. In the rate

function computations we centre g according to our estimate of the SRB measure,

but do not expect the range of g to vary significantly. The large values of rg(s) as

s approaches 2 are consistent with this observation.
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Figure 5.5: Estimates of the rate function rg using Fejér kernels with n = 32, 64
and N = 512.

5.4.4 Spectral stability results for LLeb

In this section we prove the claims made in Remarks 5.2.7 and 5.3.5 regarding

the relationship between the operators L⌦(z) and LLeb(z), and that the spectral

stability results for L⌦(z) from Sections 5.2 and 5.3 imply the spectral stability

results for LLeb(z).

Proposition 5.4.1. Let R : Bp,q

C ! Bp,q

C be defined

Rh = h ·
d⌦

dLeb
.

Then R,R�1
2 L(Bp,q

C ) \ L(Bp�1,q+1
C ) and for every z 2 C we have

L⌦(z) = R�1
LLeb(z)R. (5.69)

Hence �(L⌦(z)) = �(LLeb(z)) for every z 2 C.

Proof. The fact that R 2 L(Bp,q

C ) \ L(Bp�1,q+1
C ) follows from multiplication by

C
r(Tm,R) functions being continuous on Bp,q

C and Bp�1,q+1
C [54, Lemma 3.2]. Since

dLeb
d⌦ 2 C

r(Tm,R), the same argument implies that R�1 exists and is an element of

L(Bp,q

C ) and L(Bp�1,q+1
C ).
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Let f, h 2 C
r(Tm,C). By definition we have

Z
L⌦(f) · h d⌦ =

Z
f · (h � T ) d⌦ =

Z ✓
f

d⌦

dLeb

◆
· h � T dLeb

=

Z
LLeb

✓
f

d⌦

dLeb

◆
·
dLeb

d⌦
· h d⌦

=

Z
(R�1

LLebR)(f) · h d⌦.

Hence (R�1
LLebR)f = L⌦f for all f 2 C

r(Tm,C), and so the same identity holds

on Bp,q

C by density. The conjugacy relation (5.69) holds for the twisted operators

due to the untwisted conjugacy relation and the definition of the twist Mg (see

Proposition 5.1.4). One has �(L⌦(z)) = �(LLeb(z)) immediately from (5.69).

Proposition 5.4.2. Let {k✏}✏2(0,✏0) ✓ L1(Leb) be an L1(Leb)-bounded family. Set

L⌦,✏ = k✏ ⇤ L⌦ and LLeb,✏ = k✏ ⇤ LLeb. Let L⌦,0 = L⌦ and LLeb,0 = LLeb. Suppose

that {L⌦,✏}✏2[0,✏0) satisfies (KL) and that one of the following conditions holds.

(K1) For every ⌘ > 0 there exists ✏⌘ such that supp k✏ ✓ B(0, ⌘) for every ✏ 2 (0, ✏⌘).

(K2) L⌦ satisfies (5.9) and for every ⌘ > 0 we have lim✏!0

R
Tm\B(0,⌘)|k✏| dLeb = 0

Then {LLeb,✏}✏2[0,✏1) satisfies (KL) for some ✏1 2 (0, ✏0).

Proof. We have

LLeb,✏ = RL⌦,✏R
�1 + (LLeb,✏ �RL⌦,✏R

�1) := A✏ + F✏.

We will prove that {A✏}✏2[0,✏0) satisfies (KL), and that there exists ✏0 2 (0, ✏0) such

that {F✏}✏2[0,✏0) satisfies the conditions required by Proposition 1.3.1, which will

then imply that {LLeb,✏}✏2[0,✏1) satisfies (KL) for some ✏1 2 (0, ✏0).

It is straightforward to confirm that {A✏}✏2[0,✏0) satisfies (KL) by using (KL)

for {L⌦,✏}✏2[0,✏0), the conjugacy identity (5.69) and the properties of the map R as

given in Proposition 5.4.1. For example (KL1) follows from the estimate

|||A✏ � LLeb||| =
������R(L⌦,✏ � L⌦)R

�1
������  kRk

L(Bp�1,q+1
C ) |||L⌦,✏ � L⌦|||

��R�1
��
L(Bp,q

C )
.

The proofs of (KL2) and (KL3) follow from similar arguments.

We will now prove that there exists ✏0 2 [0, ✏0) such that {F✏}✏2[0,✏0) satisfies

the conditions required by Proposition 1.3.1. For brevity let s = d⌦
dLeb . Let h 2
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C
r(Tm,R), k  p be a non-negative integer, W 2 ⌃, {vi}ki=1 ✓ V

r(W ) with kvikCr 

1, and ' 2 C
q+k

0 (W,R) with k'k
Cq+k  1. Since

F✏Rh = R(k✏ ⇤ (L⌦h))� k✏ ⇤ (RL⌦h),

we have

(F✏Rh)(x) =s(x)

Z
k✏(y)(L⌦h)(x� y) d Leb(y)

�

Z
k✏(y)s(x� y)(L⌦h)(x� y) d Leb(y)

=

Z
k✏(y)(L⌦h)(x� y) (s(x)� s(x� y)) d Leb(y).

Hence, as multiplication by C
r functions is continuous on Bp,q

C there exists a C0 such

that

Z

W

v1 . . . vk(F✏Rh)(x) · '(x) dx

=

Z
k✏(y)

✓Z

W

v1 . . . vk(⌧�yL⌦h · (s� ⌧�ys))(x) · '(x) dx

◆
dLeb(y)



Z
|k✏(y)| k⌧�yL⌦h · (s� ⌧�ys)kp,q dLeb(y)

 C0

Z
|k✏(y)| k⌧�yL⌦hkp,q ks� ⌧�yskCr dLeb(y),

and so

kF✏Rhk
p,q

 C0

Z
|k✏(y)| k⌧�yL⌦hkp,q ks� ⌧�yskCr dLeb(y). (5.70)

We will bound the right side of (5.70) di↵erently depending on whether (K1) or

(K2) holds.

The case where (K1) holds. Recall from (5.5) that (⌧�yL⌦h)(x) = (detDx⌧�y) ·

(L⌦,Tyh)(x) where L⌦,Ty denotes the transfer operator associated to Ty := T + y

by duality with respect to ⌦. If we denote x 7! detDx⌧�y by ty then ty(x) =
d⌦

dLeb(x+ y)dLeb
d⌦ (x). Since d⌦

dLeb ,
dLeb
d⌦ 2 C

r(Tm,R) we have

sup
y2Tm

ktykCr := C1 < 1.

As noted at the beginning of [54, Section 7], there is a C
r+1(Tm,Tm) open neigh-

bourhood U of T such that [54, Lemma 2.2] applies uniformly to every S 2 U , and
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so

sup
S2U

kL⌦,Skp,q := C2 < 1.

Hence, by (K1), there exists an ✏0 2 (0, ✏0) such that
��L⌦,Ty

��
p,q

< C2 for every

✏ 2 (0, ✏0) and y 2 supp k✏. Since multiplication by C
r functions on Bp,q

C [54, Lemma

3.2] is continuous there exists a C3 independent of h and y such that

k⌧�yL⌦hkp,q =
��ty · (L⌦,Tyh)

��
p,q

 C3 ktykCr

��L⌦,Tyh
��
p,q

.

Setting C 0 = C0C1C2C3 and applying these estimates to (5.70) yields

kF✏Rk
p,q

 C 0

✓Z

supp k✏

|k✏(y)| dLeb(y)

◆
sup

y2supp k✏

ks� ⌧�yskCr ,

provided that ✏ 2 (0, ✏0). Since ty 2 C
1(Tm,R), by (K1) we have

lim
✏!0

sup
y2supp k✏

ks� ⌧�yskCr = 0.

Recalling that {k✏}✏2(0,✏0) is L
1(Leb)-bounded, we therefore have

lim sup
✏!0

kF✏Rk
p,q

 C 0 lim sup
✏!0

✓Z

supp k✏

|k✏(y)| dLeb(y)

◆
sup

y2supp k✏

ks� ⌧�yskCr = 0.

As R 2 L(Bp,q

C ) is invertible it follows that lim✏!0 F✏ = 0 in L(Bp,q

C ). The same argu-

ment can be used to conclude that lim✏!0 F✏ = 0 in L(Bp�1,q+1
C ), and so {F✏}✏2[0,✏0)

satisfies the requirements of Proposition 1.3.1.

The case where (K2) holds. By (5.9) we have

sup
y2Tm

max{k⌧yL⌦kp,q , k⌧yL⌦kp�1,q+1} := C4 < 1.

Applying this to (5.70) yields

kF✏Rk
p,q

 C0C4

Z
|k✏(y)| ks� ⌧�yskCr dLeb(y). (5.71)

127



Fix ⌘ > 0. By splitting the integral in (5.71) according to the partition Tm =

B(0, ⌘) [ (Tm
\B(0, ⌘)) we obtain

Z
|k✏(y)| ks� ⌧�yskCr dLeb(y)  kk✏kL1 sup

y2B(0,⌘)
ks� ⌧�yskCr

+ sup
y 62B(0,⌘)

ks� ⌧�yskCr

Z

Tm\B(0,⌘)

|k✏(y)| dLeb(y).

By (K2) we have

lim sup
✏!0

kF✏Rk
p,q

 C0C4

 
sup

✏2(0,✏0)
kk✏kL1

! 
sup

y2B(0,⌘)
ks� ⌧�yskCr

!
, (5.72)

where the right side is always finite by virtue of the L1(Leb) boundedness of

{k✏}✏2(0,✏0). Since s 2 C
1, letting ⌘ ! 0 in (5.72) yields lim✏!0 kF✏Rk

p,q
= 0 in

L(Bp,q

C ), which implies that lim✏!0 kF✏kp,q = 0 by the invertibility of R. As before,

the same argument can be used to conclude that lim✏!0 F✏ = 0 in L(Bp�1,q+1
C ), and

so there exists some ✏0 2 (0, ✏0) such that {F✏}✏2[0,✏0) satisfies the requirements of

Proposition 1.3.1.

Using Proposition 5.4.2 we may now confirm that our spectral stability results

for L⌦ from Sections 5.2 and 5.3 also apply to LLeb.

Proposition 5.4.3. If Proposition 5.2.3 applies to L⌦ then it applies to LLeb too.

Hence Theorem 5.2.6 holds verbatim if L⌦ is replaced by LLeb.

Proof. Suppose that {q✏}✏2(0,✏0) ✓ C
1(Tm,R) is a family of kernels satisfying (S1)

and (S2). Recall the definition of Q✏ from the beginning of Section 5.2. By Lemma

5.2.2 there exists ✏1 2 (0, ✏0) so that {Q✏L⌦}✏2[0,✏1) satisfies (KL). Since {q✏}✏2(0,✏0) is

L1(Leb)-bounded (by (S1)) and satisfies (S2), by Proposition 5.4.2 we may conclude

that there exists ✏2 2 (0, ✏1) such that {Q✏LLeb}✏2[0,✏2) satisfies (KL) too. The proof

of Proposition 5.2.3 holds verbatim with L⌦ replaced with LLeb, as does that of

Theorem 5.2.6.

Proposition 5.4.4. If Proposition 5.3.1 applies to L⌦ then it applies to LLeb too.

Hence Theorem 5.3.3 and Corollary 5.3.4 hold verbatim if L⌦ is replaced by LLeb.

Proof. Let {q✏}✏2(0,✏1) ✓ L1(Leb) be a family of stochastic kernels satisfying (S1)

and (S3). Since L⌦ satisfies (5.9), by Proposition 5.3.1 there exists some ✏2 2 (0, ✏1)

such that {q✏ ⇤ L⌦}✏2[0,✏2) satisfies (KL). The family {q✏}✏2(0,✏1) is L
1(Leb)-bounded
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by (S1). This, together with (S2) and the fact that (5.9) holds for L⌦, means that

we can apply Proposition 5.4.2 to conclude that there exists ✏3 2 (0, ✏2) such that

{q✏ ⇤ LLeb}✏2[0,✏3) satisfies (KL) too. The proofs of Theorem 5.3.3 and Corollary

5.3.4 are the same as before.
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Part II

Random Systems
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Chapter 6

Preliminaries and conventions

In this chapter we recall some preliminary theory that will be extensively used

throughout Part II of this thesis. Section 6.1 reviews the Grassmannian associated

to a Banach space, while Section 6.2 serves as a primer on the theory of Saks spaces.

We now fix some conventions for the remainder of Part II. We shall only consider

Banach spaces over C. If X1 and X2 are Banach spaces then L(X1, X2) denotes the

set of bounded operators from X1 to X2. When k·k is a norm on a vector space

X we denote the associated closed-unit ball by either Bk·k or, when unambiguous,

BX . If X1 and X2 are topological vector spaces then we write X1 ,! X2 to mean

that X1 is continuously included into X2. We denote the spectrum of an operator

A 2 L(X) by �(A), the spectral radius by ⇢(A), and the essential spectral radius

by ⇢ess(A). When (Y, d) is a metric space the Borel �-algebra on Y is denoted BY .

6.1 Graphs and the Grassmannian

This section summarises some old, but not particularly well-known, material for

the reader’s convenience, and has been collated from [65, Chapter IV, §2 and §4],
[15, Section 2.1], [43, Section 2], and [87, Appendix A.2]. If (X, k·k) is a Banach

space then the set of closed subspaces of X is called the Grassmannian of X, and

is denoted by G(X). It is a complete metric space when equipped with the metric

dH(E,F ) = max

8
><

>:
sup
e2E

kek=1

inf
f2F

kfk=1

ke� fk , sup
f2F

kfk=1

inf
e2E

kek=1

ke� fk

9
>=

>;
.
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The metric dH is hard to work with directly. Instead, it is convenient to work with

the gap between two subspaces:

Gap(E,F ) = sup
e2E

kek=1

inf
f2F

ke� fk .

We can work with the gap in place of dH due to the following inequality

max{Gap(E,F ),Gap(F,E)}  dH(E,F )  2max{Gap(E,F ),Gap(F,E)}. (6.1)

We say that E,F 2 G(X) are topologically complementary subspaces if E+F =

X and E \ F = ;, in which case we will write E � F = X. Denote by ⇧E||F the

projection onto E and parallel to F (i.e. the image and kernel of ⇧E||F are E and

F , respectively), and note that ⇧E||F 2 L(X) by the closed graph theorem. For

every d 2 Z+ we denote by Gd(X) and G
d(X) the sets of closed d-dimensional and

d-codimensional subspaces, respectively. The sets Gd(X) and G
d(X) are closed for

every d 2 Z+. For each F 2 G(X) the set

N (F ) = {E 2 G(X) : E � F = X}

is open in G(X), and has a convenient representation in terms of certain charts.

Specifically, for any E 2 N (F ) we define �E�F : N (F ) ! L(E,F ) by

�E�F (E
0) =

�
⇧E||F

��
E0

��1
� Id .

We call �E�F the graph representation of N (F ) induced by E � F . The following

lemma, which is an easy exercise, confirms that �E�F is well-defined.

Lemma 6.1.1. If F 2 G(X) and E1, E2 2 N (F ) then ⇧E1||F : E2 ! E1 is invert-

ible.

We summarise the properties of the graph representation in the next proposition.

Proposition 6.1.2. If E � F = X then the associated graph representation �E�F

is a homeomorphism. Moreover, for every E 0
2 N (F ) we have

⇧E0||F = (Id+�E�F (E
0))⇧E||F , (6.2)
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and for every A 2 L(E,F ) we have

��1
E�F

(A) = (Id+A)(E). (6.3)

The identities (6.2) and (6.3) follow from straightforward algebraic manipu-

lations. That �E�F is a homeomorphism is a consequence of the following two

lemmas.

Lemma 6.1.3. If E � F = X and A1, A2 2 L(E,F ) then

dH(�
�1
E�F

(A1),�
�1
E�F

(A2))  2
��⇧E||F

�� kA1 � A2k .

Proof. For every ✏ > 0 there exists u1 2 �
�1
E�F

(A1) with ku1k = 1 such that

Gap(��1
E�F

(A1),�
�1
E�F

(A2))  ✏+ inf
u22�

�1
E�F (A2)

ku1 � u2k .

Since A1 =
⇣
⇧E||F

��
��1

E�F (A1)

⌘�1

� Id, by taking u = ⇧E||Fu1 and u2 = (Id+A2)u we

get

Gap(��1
E�F

(A1),�
�1
E�F

(A2))  ✏+ k(Id+A1)u� (Id+A2)uk

 ✏+ kA1 � A2k
��⇧E||F

�� .

Since ✏ was arbitrary the same inequality holds for ✏ = 0. The same bound clearly

holds Gap(��1
E�F

(A2),�
�1
E�F

(A1)), and so we obtain the required inequality from

(6.1).

Lemma 6.1.4. If E � F = X and E1, E2 2 N (F ) then

k�E�F (E1)� �E�F (E2)k  min
���⇧F ||E1

�� ��⇧E2||F

�� ,
��⇧F ||E2

�� ��⇧E1||F

�� dH(E1, E2).

Proof. By (6.2) we have ⇧Ei||F = (Id+�E�F (Ei))⇧E||F for i = 1, 2, and so ⇧Ei||F �

⇧E||F = �E�F (Ei) on E. Thus

k�E�F (E1)� �E�F (E2)k =
��⇧E1||F � ⇧E2||F

�� =
��⇧F ||E1⇧E2||F

�� 

���⇧F ||E1

��
E2

���
��⇧E2||F

�� .

For ui 2 Ei with kuik = 1, i 2 {1, 2}, we have

��⇧F ||E1

�� ku2 � u1k �
��⇧F ||E1(u2 � u1)

�� =
��⇧F ||E1u2

�� ,
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Taking the infimum over u1 and then the supremum over u2 yields

sup
u22E2
ku2k=1

inf
u12E2
ku1k=1

ku1 � u2k �
���⇧F ||E1

����1
���⇧F ||E1

��
E2

���

�
���⇧F ||E1

�� ��⇧E2||F

����1
k�E�F (E1)� �E�F (E2)k .

We obtain the required inequality upon noting that the roles of E1 and E2 may be

swapped in the above argument, and then recalling the definition of dH .

Suppose that X1, X2 are Banach spaces with Ei�Fi = Xi for i 2 {1, 2}, and let

S 2 L(X1, X2) and d 2 Z+. Then S induces natural actions on Gd(X1) and G(X2),

defined by V1 2 Gd(X1) 7! S(V1) 2 G(X2) and V2 2 G(X2) 7! S�1(V2) 2 G(X1),

respectively. If dim(E1) = d = dim(E2) then these mappings induce actions on

the graph representations of N (F1) and N (E2). If U 2 L(E1, F1) is such that

⇧E2||F2S(Id+U)
��
E1

: E1 ! E2 is invertible then we define the forward graph trans-

form of U by S to be

S⇤U = ⇧F2||E2S(Id+U)
⇣
⇧E2||F2S(Id+U)

��
E1

⌘�1

,

in which case S⇤U 2 L(E2, F2). Alternatively, if ⇧E2||F2(Id�U⇧F2||E2)S : E1 ! E2

is invertible for U 2 L(F2, E2) then backward graph transform of U by S is defined

to be

S⇤U =
⇣
⇧E2||F2(Id�U⇧F2||E2)S

��
E1

⌘�1

(U⇧F2||E2 � ⇧E2||F2)S.

Using Proposition 6.1.2, a quick calculation confirms that S⇤ and S⇤ agree with the

usual action of an operator on a subspace.

Proposition 6.1.5. Fix S 2 L(X1, X2) and suppose that Ei � Fi = Xi for i = 1, 2

where dim(E1) = d = dim(E2) for some d 2 Z+.

1. For any E 0
2 N (F1) such that ⇧E2||F2S⇧E0||F1 : E1 ! E2 is invertible we have

S(E 0) = ��1
E2�F2

(S⇤(�E1�F1(E
0))) .

2. For any F 0
2 N (E2) such that ⇧E2||F2⇧E2||F

0S : E1 ! E2 is invertible we have

S�1(F 0) = ��1
F1�E1

(S⇤(�F2�E2(F
0))).
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6.2 A Saks space primer

In this section we review the basic theory of Saks spaces, and prove some new

results of relevance to dynamical systems. In particular, Saks spaces provide a

unified abstract framework for many of the concepts from Part I e.g. the strong

and weak norms of Keller-Liverani perturbation, and Lasota-Yorke inequalities.

More a thorough introduction we refer the reader to [26, Chapter 1]. Throughout

this section X will denote a vector space.

Lemma 6.2.1 ([26, Lemma 3.1]). Let X be a vector space, ⌧ be a locally convex

topology on X, and k·k be a norm on X. Then the following are equivalent:

1. Bk·k is ⌧ -closed;

2. k·k is lower-semicontinuous for ⌧ ;

3. k·k = sup{' : ' is a ⌧ -continuous seminorm with '  k·k}.

Definition 6.2.2 (Saks space). Let (X, k·k) be a normed space and ⌧ be a Hausdor↵

locally convex topology on X such that Bk·k is ⌧ -bounded and any of the conditions

from Lemma 6.2.1 are satisfied. Denote by �[k·k , ⌧ ] the finest linear topology on

X that coincides with ⌧ on Bk·k. The tuple (X, k·k , ⌧) equipped with the topology

�[k·k , ⌧ ] is called a Saks space; when clear we simply denote this space by X and

the topology by �. We say that X is complete (resp. compact, pre-compact) if Bk·k

is ⌧ -complete (resp. ⌧ -compact, ⌧ -pre-compact).

Remark 6.2.3. If X is complete as a Saks space then (X, k·k) is a Banach space.

The converse is false.

Remark 6.2.4. Sometimes one produces a tuple (X, k·k , ⌧) satisfying the Definition

6.2.2 bar for the conditions in Lemma 6.2.1. In such a case we could instead

consider the Saks spaces (X, k·k0 , ⌧), where k·k0 denotes the Minkowski functional1

associated to the ⌧ -closure of k·k. We do not lose any continuous linear maps by

performing this procedure [26, Lemma 3.3].

Remark 6.2.5. As outlined in [26, Chapter 1, Section 3.6], there is a canonical com-

pletion of a non-complete Saks space (X, k·k , ⌧). Let X⌧ denote the ⌧ -completion

of X, and define k·k
⌧
to be the Minkowski functional of the ⌧ -completion of Bk·k

in X⌧ . If X denotes the linear span of Bk·k⌧
then (X, k·k

⌧
, ⌧) is a complete Saks

1
If K is a balanced, convex body in a vector space X then the Minkowski functional of K is the

map ⇢K : V ! [0,1) defined by ⇢K(x) = inf{� 2 [0,1) : �x 2 K}. The Minkowski functional of

a balanced, convex body is always a seminorm, and if K has non-empty interior then it is also a

norm.
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space: the Saks space completion of (X, k·k , ⌧). We refer the reader to [26, Propo-

sition 3.8] and the discussion at the end of [26, Chapter 1, Section 3.6] for further

properties of the Saks space completion.

Example 6.2.6. Let (X, k·k) be a Banach space, and let ⌧ denote the weak-star

topology on X⇤. Then (X⇤, k·k⇤ , ⌧) is a compact Saks space by the Banach-Alaoglu

Theorem. Actually, every compact Saks space has this form (see Proposition 6.2.21).

Example 6.2.7. Suppose that (Xi, k·ki), i 2 {1, 2} are Banach spaces withX2 ,! X1.

Hence Bk·k2
is k·k1-bounded, however it may not be the case that Bk·k2

is k·k1-closed.

If we let k·k02 denote the Minkowski functional of the k·k1-completion of Bk·k2
, then

(X, k·k02 , k·k1) is a Saks space per Remark 6.2.4. The relevance of this construction

to the functional analytic approach to dynamical systems was recognised in [14,

Section 2.7]; in addition, in [14] a formula for k·k02 was obtained:

kvk02 = lim
�!0

inf{kwk2 : kw � vk1  �}. (6.4)

For a Saks space (X, k·k , ⌧) it is possible to give an explicit description of a

topological basis for �[k·k , ⌧ ]. If (Un)n2Z+ denotes a family of absolutely convex

⌧ -open neighbourhoods of 0, then all the sets of the form

1[

n=1

(U1 \ Bk·k + · · ·+ Un \ 2n�1Bk·k) (6.5)

form a neighbourhood basis about 0 for a locally convex topology on X. By [26,

Proposition 1.5], this locally convex topology is the �[k·k , ⌧ ] topology.

Remark 6.2.8. Any Banach space (X, k·k) induces a Saks space with the structure

(X, k·k , k·k). From the definition of the neighbourhood basis for �[k·k , k·k], it is

clear that the k·k-topology is equivalent to �[k·k , k·k].

Let (X, k·k , ⌧) be a Saks space. Despite X being a locally convex vector space,

for practical purposes it is better to forget this characterisation and adopt the

following philosophy: provided that one works on k·k-bounded sets, the topological

properties of � are the same as ⌧ . The following three propositions demonstrate

this principle.

Proposition 6.2.9 ([26, Proposition 1.10]). Suppose (xn)n2Z+ ✓ X and x 2 X.

Then (xn)n2Z+ is �-convergent to x if and only if (xn)n2Z+ is k·k-bounded and ⌧ -

convergent to x.

Proposition 6.2.10 ([26, Proposition 1.11, 1.12]). If V ✓ X then:
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1. V is �-bounded if and only if it is k·k-bounded.

2. V is �-compact (resp. �-pre-compact) if and only if it is k·k-bounded and

⌧ -compact (resp. ⌧ -pre-compact).

Proposition 6.2.11 ([26, Corollary 1.6]). If (X, k·k , ⌧) and (X, k·k , ⌧ 0) are Saks

spaces then �[k·k , ⌧ ] and �[k·k , ⌧ 0] are equivalent if and only if ⌧ and ⌧ 0 are equiv-

alent on Bk·k.

Having described the basic theory of Saks spaces, we mention a few more con-

crete examples.

Example 6.2.12. Let P denote the set of strictly increasing finite sequences in S1

(the circle). Fix p 2 [1,1). For f 2 Lp(S1) the p-variation of f to be

Varp(f) = inf

8
<

:

 
sup

{xi}
n
i=02P

nX

i=1

|g(xi)� g(xi�1)|
p

!1/p

: g = f a.e.

9
=

; .

The set of functions of bounded p-variation on S1 is

BVp(S
1) = {f 2 L1(S1) : Varp(f) < 1}.

Functions of bounded p-variation have been used to study the statistical properties

of piecwise expanding dynamical systems: for p = 1 see [9, Chapter 3] or [20],

while for general p see [69]. On BVp(S1) the map f 7! Varp(f) is a seminorm and

lower-semicontinuous with respect to k·k
Lp . It follows that BVp(S1) is a Banach

space when endowed with the norm k·kBVp
= k·k

Lp + Varp(·), and is also a Saks

space with structure (BVp(S1), k·kBVp
, k·k

Lp). In fact, standard arguments show

that (BVp(S1), k·kBVp
, k·k

Lp) is a compact Saks space [69].

Example 6.2.13. Fix p 2 [1,1). The Sobolev space W 1,p(S1) is defined by

W 1,p(S1) = {f 2 Lp(S1) : f 0 exists in the weak sense and kf 0
k
Lp < 1}.

Each W 1,p(S1) becomes a Banach space when equipped with the norm kfk
W 1,p =

kf 0
k
Lp + kfk

Lp . It is well-known that W 1,1(S1) coincides with the set of absolutely

continuous functions on S1, and that W 1,p(S1) ✓ W 1,1(S1). Hence every f 2

W 1,p(S1) is Riemann integrable. A short calculation then shows that Varp(f) =

kf 0
k
Lp and so kfkBV = kfk

W 1,p for every f 2 W 1,p(S1). By Example 6.2.12 it

follows that (W 1,p(S1), k·k
W 1,p , k·kLp) is a pre-compact Saks space. In fact, it is
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a straightforward exercise to show that (BVp(S1), k·kBVp
, k·k

Lp) is the Saks space

completion of (W 1,p(S1), k·k
W 1,p , k·kLp).

An obvious question at this stage is whether �[k·k , ⌧ ] is metrisable, since a

positive answer would reduce the study of Saks spaces to that of classically studied

objects. For interesting examples, however, this is never the case.

Proposition 6.2.14 ([26, Proposition 1.14]). If �[k·k , ⌧ ] is metrisable then ⌧ and

k·k are equivalent, in which case �[k·k , ⌧ ] and k·k are equivalent too.

We now specialise to the case where ⌧ is induced by a norm |·|. In this case

we call (X, k·k , |·|) a normed Saks space2. Normed Saks spaces are also known as

two-norm spaces, due to the series of papers by Alexiewicz and Semadeni (see e.g.

[2, 3, 4]). If Saks space (X, k·k , |·|) is a normed Saks space such that |·|  k·k then

we say (X, k·k , |·|) is normal. Since Bk·k is |·|-bounded we can make any normed

Saks space normal after rescaling either |·| or k·k.

We turn our attention to continuous linear maps between normed Saks spaces3.

Let (Xi, k·ki , |·|i), i 2 {1, 2}, be Saks spaces. Let LS(X1, X2) denote the set of

continuous linear operators from X1 to X2, k·k denote the strong operator norm:

kAk = sup
kfk1=1

kAfk2 ,

and |||·||| denote the triple norm:

|||A||| = sup
kfk1=1

|Af |2 .

Proposition 6.2.15. (LS(X1, X2), k·k , |||·|||) is a Saks space.

The following two result are used to prove Proposition 6.2.15.

Proposition 6.2.16 ([26, Proposition 1.9]). Suppose that Bk·k is ⌧ -metrisable, then

a linear mapping from (X1, k·k , ⌧) into a topological vector space X2 is continuous

if and only if it is sequentially continuous.

Lemma 6.2.17. If (Xi, k·ki , |·|i), i 2 {1, 2}, are Saks spaces then LS(X1, X2) ✓

L(X1, X2).

2
This terminology should cause no confusion in view of Proposition 6.2.14

3
Our approach here is based on [25, Chapter 1, Section 3.11] rather than on [26, Chapter 1,

Section 3.16], which is the equivalent section in the second edition.
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Proof. As A is continuous it maps �[k·k1 , |·|1]-bounded sets to �[k·k2 , |·|2]-bounded

sets. As Bk·k1
is �[k·k1 , |·|1]-bounded it follows that A(Bk·k1

) is �[k·k2 , |·|2]-bounded.

Proposition 6.2.10 says that the �[k·k2 , |·|2]-bounded sets are exactly the k·k2-

bounded sets, and so A(Bk·k1
) is k·k2-bounded. Thus A 2 L(X1, X2).

The proof of Proposition 6.2.15. Without loss of generality we may assume that

both X1 and X2 are normal Saks spaces. By Lemma 6.2.17 we have LS(X1, X2) ✓

L(X1, X2). Since |||·|||  k·k it follows that |||·||| is finite on LS(X1, X2), and that

Bk·k is |||·|||-bounded. It remains to verify one of the conditions from Lemma 6.2.1:

we will show that Bk·k is |||·|||-closed. Suppose that {An}n2Z+ ✓ Bk·k\LS(X1, X2) is

a |||·|||-convergent sequence with limit A 2 LS(X1, X2). For every ✏ > 0 there exists

f✏ 2 X1 with kf✏k1 = 1 such that kAk  kAf✏k2 + ✏. Since limn!1 |||An � A||| = 0

we have limn!1 |(An � A)f✏|2 = 0. Moreover, kAnf✏k2  1 for every n 2 Z+. Since

(X2, k·k2 , |·|2) satisfies each of the conditions in Lemma 6.2.1 we have kAf✏k2  1,

which implies that kAk  1 + ✏ for every ✏ > 0. Hence kAk  1 and so A 2 Bk·k

i.e. Bk·k is |||·|||-closed in LS(X1, X2). It follows that (LS(X1, X2), k·k , |||·|||) is a Saks

space, as claimed.

We note that LS(X1, X2) is not necessarily equal to L(X1, X2), although the

proof of Proposition 6.2.15 also implies that (L(X1, X2), k·k , |||·|||) is a Saks space.

The following proposition gives such a quantitative characterisation of LS(X1, X2),

as well as a characterisation of equicontinuous families of operators in LS(X1, X2).

Proposition 6.2.18. Suppose (Xi, k·ki , |·|i), i 2 {1, 2} are Saks spaces, that A is

an index set, and that for each ↵ 2 A there exists a linear map A↵ : X1 ! X2.

Then {A↵}↵2A is an equicontinuous subset of LS(X1, X2) if and only if {A↵}↵2A is

an equicontinuous subset of L(X1, X2) and for every ⌘ > 0 there exists C⌘ > 0 such

that for every ↵ 2 A and f 2 X1 we have

|A↵f |2  max{⌘ kfk1 , C⌘ |f |1}. (6.6)

The proof of Proposition 6.2.18 is quite long, and so we defer it to the end of

this section. Proposition 6.2.18 allows one to work with the inequality (6.6) in place

of open sets of the form in (6.5), which often leads to conceptully simpler proofs,

such as that of the following proposition.

Proposition 6.2.19. Suppose that (Xi, k·ki , |·|i), i 2 {1, 2} are Saks spaces. If

(X2, k·k2 , |·|2) is complete then LS(X1, X2) is complete.
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Proof. Suppose {An}n2Z+ ✓ LS(X1, X2) is k·k-bounded and |||·|||-Cauchy. Then

for every f 2 X1 the sequence {Anf}n2Z+ is k·k2-bounded and |·|2-Cauchy, and

so there exists g 2 X2 such that Anf ! g in �[k·k2 , |·|2]. Define A : X1 !

X2 by Af = limn!1 Anf , and note that |||A� An||| ! 0 due to the fact that

{An}n2Z+ ✓ LS(X1, X2) is |||·|||-Cauchy. We will use Proposition 6.2.18 to prove

that A 2 LS(X1, X2). Since k·k is lower-semicontinuous for |||·||| we have

sup
f2X1
kfk=1

kAfk  sup
f2X1
kfk=1

lim inf
n!1

kAnfk  sup
n2Z+

kAnk ,

and so A 2 L(X1, X2). Fix ⌘ > 0. For every f 2 X1 and n 2 Z+ we have

|Af |2  |Anf |2 + |||An � A||| kfk1 .

By Proposition 6.2.18 and as {An}n2Z+ ✓ LS(X1, X2), for each n 2 Z+ and  > 0

there exists D,n such that for every f 2 X1 we have |Anf |2   kfk1 + D,n |f |1.

Thus

|Af |2  (+ |||An � A|||) kfk1 +D,n |f |1 .

Suppose that n is large enough so that |||An � A|||  ⌘/4. Set  = ⌘/4 and C⌘ =

2D,n. Then

|Af |2 
⌘

2
kfk1 +D,n |f |1  2max

n⌘
2
kfk1 , D,n |f |1

o
= max{⌘ kfk1 , C⌘ |f |1}.

Hence A 2 LS(X1, X2) by Proposition 6.2.18.

We finish this section with some results on compact Saks spaces. Compact Saks

spaces frequently appear in dynamical systems literature due to their use in the

Ionescu-Tulcea–Marinescu Theorem, which is also known as Hennion’s Theorem

due to a later strengthening by Hennion.

Theorem 6.2.20 (A Saks space version of the Ionescu-Tulcea–Marinescu Theorem

[57]). Suppose that (X, k·k , |·|) is a (pre-)compact Saks space, and that A 2 L(X).

If there exist sequences of real numbers {rn}n2Z+ and {Rn}n2Z+ such that for each

n 2 Z+ and f 2 X we have

kAnfk  rn kfk+Rn |f | , (6.7)

then ⇢ess(A)  lim infn!1 r1/nn .
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Recall that an operator A 2 L(X) is said to be quasi-compact if ⇢ess(A) < ⇢(A).

One approach to studying the statistical properties of a dynamical system T : M !

M , whereM is some Riemannian manifold, is by finding a Banach spaceX on which

the Perron-Frobenius operator is quasi-compact and such that C
1(M) ,! X ,!

(C1(M))0. The typical route for proving quasi-compactness is via Theorem 6.2.20

i.e. by endowing X with the structure of a (pre-)compact Saks space and obtaining

an appropriate Lasota-Yorke inequality, as in (6.7). This connection prompts some

questions about Saks spaces with high relevancy to dynamical systems:

(Q1) What Banach spaces permit the structure of a compact Saks space?

(Q2) Given a Banach space that permits a compact Saks space structure, is this

structure unique in any sense?

(Q3) If (X, k·k , |·|) is a compact Saks space, to what extent does k·k determine |·|?

The first question has a very satisfactory answer: a Banach space may be made

into a compact Saks space if and only if it has a predual. We state the result for

the case where the Banach space permits the structure of a normed compact Saks

space and refrain from giving all the relevant definitions (see [26, Proposition 3.9]

and [26, Chapter 1] for more details).

Proposition 6.2.21 ([26, Proposition 3.9]). Let (X, k·k , ⌧) be a Saks space. Then

the following are equivalent:

1. Bk·k is compact and metrisable with respect to ⌧ .

2. X is the Saks space projective limit of a sequence of finite dimensional Banach

spaces.

3. X has the form (F ⇤, k·k , �(F ⇤, F )) for some separable Banach space F , where

�(F ⇤, F ) denotes the weak-⇤ topology on F ⇤.

4. Bk·k is compact and normable with respect to ⌧ i.e. there is a norm |·| on X

such that |·| and ⌧ are equivalent on Bk·k.

We answer (Q2) and (Q3) in the following two theorems.

Theorem 6.2.22. Suppose that (X, k·k) is a Banach space, ⌧ is a locally convex

topology on X such that (X, k·k , ⌧) is a compact Saks space and that D is a Haus-

dor↵ topological vector space such that (X, ⌧) ,! D. Then �[k·k , ⌧ ] is unique up

to D i.e. if ⌧ 0 is a locally convex topology on X such that (X, k·k , ⌧ 0) is a compact

Saks space with (X, ⌧ 0) ,! D then �[k·k , ⌧ ] = �[k·k , ⌧ 0].
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Proof. We will prove that the set of �[k·k , ⌧ ]-convergent nets coincides with the set

of �[k·k , ⌧ 0]-convergent nets. Suppose that {f↵}↵2A is a �[k·k , ⌧ ]-convergent net

and, for a contradiction, that {f↵}↵2A is not �[k·k , ⌧ 0]-convergent. By continuity,

{f↵}↵2A must be convergent in D. Since (X, k·k , ⌧ 0) is a compact Saks space and

sup
↵2A

kf↵k < 1 there exists a ⌧ 0-convergent sub-net {f↵}↵2A0 , which accumulates

away from the ⌧ -limit of {f↵}↵2A. But {f↵}↵2A0 can only accumulate in D at the

accumulation point of {f↵}↵2A, and so the two accumulation points must be the

same.

Theorem 6.2.23. For a bounded countable family of functionals � = {'n}n2Z+ 2

L(X,C) we set

kfk� = sup
'2�

|'(f)|

and

|f |� =
X

n2Z+

2�n
|'n(f)| .

If (X, k·k , |·|) is a compact Saks space then there exists � = {'n}n2Z+ 2 L(X,C)
such that k'nk = 1 for every n 2 Z+, k·k is equivalent to k·k�, and |·| is equivalent

to |·|� on k·k-bounded sets. In particular �[k·k , |·|] and �[k·k� , |·|�] are equivalent.

Proof. By Proposition 6.2.21 there exists a separable Banach space F such that

(X, k·k , |·|) = (F ⇤, k·k , �(F ⇤, F )). Specifically, �(F ⇤, F ) and |·| are equivalent on

Bk·k. Since both k·k
F ⇤ and k·k are stronger than �(F ⇤, F ), which is a Hausdor↵

topology on F ⇤, it follows from the closed graph theorem that k·k
F ⇤ and k·k are

equivalent (see [101, Proposition 1]). Since F is separable, there exists a k·k
F
-

bounded family � = {'n}n2Z+ ✓ F ⇤
\ F that is k·k

F
-dense in @Bk·kF

and so that

k·k
F ⇤ = k·k�. Thus k·k� and k·k are equivalent, so it only remains to prove that

|·| is equivalent to |·|� on Bk·k. Suppose that {fk}k2Z+ ✓ Bk·k is a |·|-convergent

sequence with limit f 2 Bk·k. Fix ✏ > 0. Since {fk}k2Z+ ✓ Bk·k there exists N such

that
1X

n=N+1

2�n
|'n(f � fk)|  ✏.

Hence

|f � fk|� =
1X

n=1

2�n
|'n(f � fk)| 

NX

n=1

2�n
|'n(f � fk)|+ ✏.

Viewing f � fk as an element of F ⇤, each 'n as an element of F , and using the

equivalence of �(F ⇤, F ) and |·| on Bk·k, we observe that lim sup
k!1

|f � fk|�  ✏.
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Thus, as ✏ is arbitrary, we have limk!1 |fk � f |� = 0. On the other hand, if

{fk}k2Z+ ✓ Bk·k is instead |·|�-convergent then we must have 'n(f � fk) ! 0 for

every n 2 Z+. Since � is k·k
F
-dense in @Bk·kF

, we have (f � fk)(x) ! 0 for every

x 2 F i.e. f ! fk in �(F ⇤, F ). Since �(F ⇤, F ) and |·| are equivalent on Bk·k, and

�(F ⇤, F ) is metrisable on Bk·k, it follows that f ! fk in |·|. Hence |·| and |·|� are

equivalent on Bk·k, as required. Thus, �[k·k , |·|] and �[k·k� , |·|�] are equivalent by

Proposition 6.2.11.

We finish this section with the proof of Proposition 6.2.18.

The proof of Proposition 6.2.18. We prove the reverse implication first i.e. that

for every �[k·k2 , |·|2]-open neighbourhood U of 0 there exists a �[k·k1 , |·|1]-open

neighbourhood V of 0 such that A↵(V ) ✓ U for every ↵ 2 A. If U is such a neigh-

bourhood then, after recalling the form of the neighbourhood basis for �[k·k2 , |·|2]

from (6.5), we observe that U contains a set of the form

1[

n=1

 
nX

k=1

2`kBo
|·|2

\ 2k�1Bk·k2

!

for some sequence {`i}1i=1 ✓ R, where Bo
|·|1

denotes the open unit |·|1-ball. By as-

sumption we have sup
↵
kA↵k < 1 and so there exists N � 0 such that A↵(Bk·k1

) ✓

2NBk·k2
for every ↵ 2 A. For the moment fix k > N , and let us suppose that

f 2 2⌫kBo
|·|1

\2k�N�1Bk·k1
for some ⌫k 2 R. Then A↵f 2 2k�N+N�1Bk·k2

= 2k�1Bk·k2

for every ↵ 2 A. In addition, by (6.6) we have for every ⌘ > 0 and ↵ 2 A that

|A↵f |2  max{⌘2k�N�1, C⌘2
⌫k},

so that if we set ⌘k = 2`k+N�k and take 2⌫k = C�1
2`k+N�k2`k�1 then |A↵f |2 < 2`k for

every ↵ 2 A. Thus for every ↵ 2 A and k � 1 we have

A↵(2
⌫kBo

|·|1
\ 2k�N�1Bk·k1

) ✓ 2`kBo
|·|1

\ 2k�1Bk·k2
.

Set

V =
1[

n=1

 
n+NX

k=N+1

2⌫kBo
|·|2

\ 2k�N�1Bk·k2

!
,
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and note that V is open per (6.5). Moreover, for every ↵ 2 A we have

A↵(V ) =
1[

n=1

 
n+NX

k=N+1

A↵(2
⌫kBo

|·|2
\ 2k�N�1Bk·k2

)

!

✓

1[

n=1

 
n+NX

k=N+1

2`kBo
|·|1

\ 2k�1Bk·k2

!
✓ U.

Thus {A↵}↵2A is equicontinuous in LS(X1, X2).

We now prove the opposite implication. Let U be a �[k·k2 , |·|2]-neighbourhood

of 0. Since {A↵}↵2A is equicontinuous in LS(X1, X2), by [95, 4.1] the set V =

\↵2AA�1
↵
(U) is �[k·k1 , |·|1]-open. As V is �[k·k1 , |·|1]-open and Bk·k1

is �[k·k1 , |·|1]-

bounded, there exists � > 0 such that Bk·k1
✓ �V . Hence A↵(Bk·k1

) ✓ �U for

every ↵ 2 A and so
S
↵2A

A↵(Bk·k1
) is �[k·k2 , |·|2]-bounded. By Proposition 6.2.10

it follows that
S
↵2A

A↵(Bk·k1
) is k·k2-bounded i.e. there exists M > 0 such that

A↵(Bk·k1
) ✓ MBk·k2

for every ↵ 2 A. Hence {A↵}↵2A is bounded in L(X1, X2),

which implies that {A↵}↵2A is equicontinuous as a subset of L(X1, X2).

It remains to prove (6.6). Fix ⌘ > 0. Since {A↵}↵2A is an equicontinuous

subset of LS(X1, X2) and |·|2 is �[k·k2 , |·|2]-continuous there exists a �[k·k1 , |·|1]-

neighbourhood of 0, say U⌘, such that if f 2 U⌘ and ↵ 2 A then |A↵(f)|2 < ⌘. By

construction U⌘ contains a set of the form 2`⌘Bo
|·|1

\Bk·k1
for some `⌘ 2 R. For any

non-zero f 2 X1 we have

f

max{2�`⌘+1 |f |1 , kfk1}
2 2`⌘Bo

|·|1
\ Bk·k1

,

and so for every ↵ 2 A we have

����A↵

✓
f

max{2�`⌘+1 |f |1 , kfk1}

◆����
2

< ⌘.

In particular, if we set C⌘ = ⌘2�`⌘+1 then for every f 2 X1 and ↵ 2 A we have

|A↵(f)|2 < max{⌘ kfk1 , C⌘ |f |1},

as required.
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Chapter 7

Saks space stability for hyperbolic splittings of

Lasota-Yorke cocycles

Our main result for this chapter, Theorem 7.1.7, concerns the stability of hyperbolic

splittings (Definition 7.1.1) for operator cocycles satisfying a Lasota-Yorke inequal-

ity (Definition 7.1.5) and certain Saks space equicontinuity conditions (Definition

7.1.2). In Section 7.1 we state the main definitions and results for the chapter.

Section 7.2 contains a number of basic results that are used throughout the proof

of Theorem 7.1.7, which is split over Sections 7.3, 7.4 and 7.5.

7.1 Definitions and main results

Let us fix some notation for this chapter. Let ⌦ be a set, and � : ⌦ ! ⌦ be

an invertible map. For each ! 2 ⌦ let (X!, k·k! , |·|!) be a normal Saks space,

with each (X!, k·k!) being a Banach space1. We will consider the vector space

bundle2 X =
F
!2⌦{!} ⇥ X!. Let ⇡ : X ! ⌦ denote the projection onto ⌦, and

for each ! 2 ⌦ let ⌧! : ⇡�1(!) ! X! be defined by ⌧!(!, f) = f . We say that

P : X ! X is a bounded linear endomorphism of X covering � if ⇡ � P = � � ⇡ and

if f 7! ⌧�(!)(P (!, f)) is in L(X!, X�(!)) for every ! 2 ⌦. We denote the set of all

bounded linear endomorphisms of X covering � by End(X, �). When n 2 N, ! 2 ⌦,

and P 2 End(X, �) we denote the map f 7! ⌧�(!)(P (!, f)) by P! and set

P n

!
=

8
<

:
P�n�1(!) � · · · � P! if n � 1,

Id if n = 0.

Clearly P n

!
2 L(X!, X�n(!)) for every n 2 N and ! 2 ⌦. Unless required we

will frequently drop the subscript ! from k·k
!
and |·|

!
. We denote the norm on

1
It will be important later that L(X!) is complete.

2
Note that we do not endow X with a topology.
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L(X!, X�(!)) by k·k, the norm on L((X!, |·|!), (X�(!), |·|�(!))) by |·|, and the norm

on L((X!, k·k!), (X�(!), |·|�(!))) by |||·|||.

Definition 7.1.1. Suppose that P 2 End(X, �), d 2 Z+, 0  µ < �, (E!)!2⌦ 2
Q

!2⌦ Gd(X!) and (F!)!2⌦ 2
Q

!2⌦ G
d(X!). We say that (E!)!2⌦ and (F!)!2⌦

form a (µ,�, d)-hyperbolic splitting for P , and that P has a hyperbolic splitting of

index d, if there exists constants C�, Cµ,⇥ > 0 such that:

(H1) For every ! 2 ⌦ we have E! � F! = X! and

max{
��⇧F! ||E!

�� ,
��⇧E! ||F!

��}  ⇥. (7.1)

(H2) For each ! 2 ⌦ we have P!E! = E�(!). Moreover, for every n 2 Z+ and

f 2 E! we have

kP n

!
fk � C��

n
kfk . (7.2)

(H3) For each ! 2 ⌦ we have P!F! ✓ F�(!) and for every n 2 Z+ we have

���P n

!

��
F!

���  Cµµ
n. (7.3)

We call (E!)!2⌦ and (F!)!2⌦ the equivariant fast and slow spaces for P , respec-

tively.

We now define the elements of End(X, �) that are ‘equicontinuous in the Saks

space sense’.

Definition 7.1.2 (Saks space continuous endomorphisms). We call P 2 End(X, �)
a Saks space equicontinuous endomorphism if sup

!2⌦ kP!k < 1 and if for each

⌘ > 0 there exists C⌘ > 0 such that for every ! 2 ⌦ and f 2 X! we have

|P!f |  ⌘ kfk+ C⌘ |f | . (7.4)

We denote the set of all Saks space equicontinuous endomorphisms in End(X, �) by
EndS(X, �).
Remark 7.1.3. Proposition 6.2.18 justifies the characterisation of the condition

in Definition 7.1.2 as an equicontinuity condition. Indeed, when all the spaces

(X!, k·k! , |·|!) are equal to a fixed space (X, k·k , |·|), then P 2 EndS(X, �) if and
only if {P!}!2⌦ is equicontinuous in LS(X).

Remark 7.1.4. EndS(X, �) admits an interesting alternative characterisation. For

(f!)!2⌦ 2
Q

!2⌦ X! let k(f!)!2⌦k1 = sup
!2⌦ kf!k! and |(f!)!2⌦|1 = sup

!2⌦ |f!|!.
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The set

X1 =

(
(f!)!2⌦ 2

Y

!2⌦

X! : k(f!)!2⌦k1 < 1

)

is a Banach space when equipped with k·k
1
, and a normal Saks space when given the

structure (X1, k·k
1
, |·|

1
). For P 2 End(X, �), one can show that P 2 EndS(X, �)

if and only if the map (f!)!2⌦ 7! (P!f!)!2⌦ is in LS(X1).

We will only consider endomorphisms that satisfy a uniform Lasota-Yorke in-

equality.

Definition 7.1.5 (Lasota-Yorke class). For C1, C2, r, R � 0 we let LY(C1, C2, r, R)

denote the set of P 2 End(X, �) such that for every ! 2 ⌦, f 2 X! and n 2 Z+ we

have

kP n

!
fk  C1r

n
kfk+ C2R

n
|f | . (7.5)

Remark 7.1.6. If P 2 LY(C1, C2, r, R) admits a (µ,�, d)-hyperbolic splitting with

µ > r and fast spaces fast spaces (E!)!2⌦ (as in Theorem 7.1.7) then for any ! 2 ⌦,

f 2 E! \ {0} and n 2 Z+ one has

C��
n
kfk  C1r

n
kfk+ C2R

n
kfk .

Since r < µ < �, by taking n ! 1 it follows that � < R Hence r < R, and so upon

setting where C3 = C1 + C2 we have for every ! 2 ⌦ and n 2 Z+ that

kP n

!
k  C1r

n + C2R
n
 C3R

n. (7.6)

Finally, if P 2 EndS(X, �) then for ✏ > 0 we set

O✏(P ) =

⇢
S 2 End(X, �) : sup

!2⌦
|||P! � S!||| < ✏

�
.

The main result of this chapter is the following.

Theorem 7.1.7. Fix µ,�, C1, C2, R � 0, with 0  r < µ < �, d 2 Z+, (E!)!2⌦ 2
Q

!2⌦ Gd(X!) and (F!)!2⌦ 2
Q

!2⌦ G
d(X!). If P 2 EndS(X, �) \ LY(C1, C2, r, R)

has a (µ,�, d)-hyperbolic splitting composed of fast spaces (E!)!2⌦ and slow spaces

(F!)!2⌦. There exists ✏0 > 0 so that

1. If S 2 LY(C1, C2, r, R) \O✏0(P ) then S has a hyperbolic splitting of index d.
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2. If (ES

!
)!2⌦ 2

Q
!2⌦ Gd(X!) and (F S

!
)!2⌦ 2

Q
!2⌦ G

d(X!) denote the equivari-

ant fast and slow spaces for S then

sup
���⇧ES

! ||F
S
!

�� : ! 2 ⌦, S 2 LY(C1, C2, r, R) \O✏0(P )
 
< 1. (7.7)

Moreover, for every � 2 (0, (� � µ)/2) and � > 0 there exists ✏�,� 2 (0, ✏0) and

C� > 0 so that if S 2 LY(C1, C2, r, R) \O✏�,�
(P ) then

1. We have the estimates

sup
!2⌦

������⇧ES
! ||F

S
!
� ⇧E! ||F!

������  �, (7.8)

and

sup
!2⌦

dH(F
S

!
, F!)  �. (7.9)

2. The spaces (ES

!
)!2⌦ and (F S

!
)!2⌦ form a (µ+ �,�� �, d)-hyperbolic splitting

for S. More specifically, for every ! 2 ⌦ and n 2 Z+ we have

���Sn

!

��
FS
!

���  C�(µ+ �)n, (7.10)

and, for every v 2 ES

!
, that

kSn

!
vk � C�1

�
(�� �)n kvk . (7.11)

Remark 7.1.8. In principle one could compute explicit bounds on the various quan-

tities in the statement of Theorem 7.1.7, such as ✏�,� or the supremum in (7.7). We

opted not to pursue such bounds for the sake of simplicity.

Remark 7.1.9. It is possible to obtain an estimate on the distance between ES

!
and

E! in the Grassmannian distance on (X!, |·|!) from (7.8) by using [38, Proposition

2.4].

The strategy behind the proof of Theorem 7.1.7 is reminiscent of the usual

proof that the class of Anosov maps is open [21, Corollary 5.5.2], and is quite

similar to the overall strategy of [16]. We start by collecting some preliminary

estimates and results in Section 7.2. In Section 7.3 we construct invariant ‘fast’

cones of d-dimensional subspaces, defined in terms of the graph representation of

the hyperbolic splitting of P , and show that the forward graph transform induced

by an iterate of the perturbed cocycle is a contraction mapping on these cones.

We then prove that perturbed fast spaces approximate, in a Saks space sense, the
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unperturbed fast spaces. Once the fast spaces have been constructed we may use

similar arguments to construct and prove the stability of the slow spaces, which

is the subject of Section 7.4. In Section 7.5 we bring together the results of the

previous sections to complete the proof of Theorem 7.1.7.

Remark 7.1.10. For the remainder of this chapter P will refer to an element of

EndS(X, �) \ LY(C1, C2, r, R) which satisfies all the hypotheses of Theorem 7.1.7.

7.2 Preliminary estimates and lemmata

The following estimate forms the backbone of the proof of Theorem 7.1.7.

Proposition 7.2.1. For every � 2 (0, (� � µ)/2) there exists N� and for each

n > N� an ✏n,� > 0 so that if S 2 LY(C1, C2, r, R) \O✏n,�
(P ) and ! 2 ⌦ then

���Sn

!

��
F!

���  (µ+ �)n, (7.12)

and if v 2 E! then

���⇧E�n(!)||F�n(!)
Sn

!
v
��� � (�� �)n kvk . (7.13)

The proof of Proposition 7.2.1 is split over the following lemmas, all of which

are of independent interest.

Lemma 7.2.2. There exists K such that for every ! 2 ⌦ and v 2 X! we have

��⇧E! ||F!v
��  K

��⇧E! ||F!v
�� .

Proof. From (7.5) and (7.2) we have

C��
n
��⇧E! ||F!v

�� 
��P n

!
⇧E! ||F!v

��  C1r
n
��⇧E! ||F!v

��+ C2R
n
��⇧E! ||F!v

�� . (7.14)

Since � > r there exists N such that C��N � C1rN > 0, from which the claim

follows upon rearranging (7.14).

Lemma 7.2.3. For every ⌘ > 0 there exists C⌘ > 0 such that for every ! 2 ⌦ and

v 2 X! we have
��⇧E! ||F!v

��  ⌘ kvk+ C⌘ |v| .
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Proof. By (7.1), (7.2) and (7.5) we have

C��
n
��⇧E! ||F!v

�� 
��P n

!
⇧E! ||F!v

�� =
���⇧E�n(!)||F�n(!)

P n

!
v
���  ⇥C1r

n
kvk+⇥C2R

n
|v| .

Since � > r, by taking n large enough we may ensure that ⇥C1rn��n < ⌘, from

which the result follows upon rearranging.

Remark 7.2.4. Since |·|  k·k, by Lemma 7.2.3 and Proposition 6.2.18 we have

⇧E! ||F! ,⇧F! ||E! 2 LS(X!) for each !. It is interesting to note that we did not use

the fact that P 2 EndS(X, �) in the proof of Lemma 7.2.3.

The next lemma is an easy exercise.

Lemma 7.2.5. If R, S 2 EndS(X, �) then RS 2 EndS(X, �2). Hence if R 2

EndS(X, �) then Rn
2 EndS(X, �n) for every n 2 Z+.

Lemma 7.2.6. For every n 2 Z+ and ✏ > 0 there exists  > 0 so that if S 2

LY(C1, C2, r, R) \O(P ) then

sup
!2⌦

|||P n

!
� Sn

!
|||  ✏. (7.15)

Proof. For S 2 LY(C1, C2, r, R) we may write

P n

!
� Sn

!
=

n�1X

k=0

P n�k�1
�k+1(!)(P�k(!) � S�k(!))S

k

!
.

Since P 2 EndS(X, �), Lemma 7.2.5 and (7.6) imply that for every ⌘ > 0 there

exists C⌘ such that for every ! 2 ⌦ and S 2 LY(C1, C2, r, R) \O(P ) we have

|||P n

!
� Sn

!
||| 

n�1X

k=0

�
⌘
��P�k(!) � S�k(!)

��+ C⌘
������P�k(!) � S�k(!)

������� ��Sk

!

��

 C3

n�1X

k=0

(2C3R⌘ + C⌘)R
k
 nC3 (2C3R⌘ + C⌘)max{1, Rn

}.

We obtain (7.15) by choosing ⌘ so that n2C2
3R⌘max{1, Rn

} < ✏/2, and then taking

 small enough so that nC3C⌘max{1, Rn
} < ✏/2

The proof of Proposition 7.2.1. We prove (7.12) and (7.13) separately.
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The proof of (7.12). By telescoping we have

���Sn

!

��
F!

��� 

���P n

!

��
F!

���+
���(P n

!
� Sn

!
)
��
F!

���



���P n

!

��
F!

���+
n�1X

k=0

���Sn�k�1
�k+1(!)(P�k(!) � S�k(!))P

k

!

��
F!

��� .
(7.16)

Since S, P 2 LY(C1, C2, r, R), by (7.5) and (7.6) we get

���(P n

!
� Sn

!
)
��
F!

��� 

n�1X

k=0

�
2C1C3Rrn�k�1 + C2R

n�k�1
������P�k(!) � S�k(!)

�������
���P k

!

��
F!

��� .

(7.17)

Combining (7.16) and (7.17), and then applying (7.3) yields

���Sn

!

��
F!

��� Cµµ
n + Cµµ

n

n�1X

k=0

2C1C3R

µ

✓
r

µ

◆n�k�1

+ Cµµ
n

n�1X

k=0

C2

µ

✓
R

µ

◆n�k�1 ������P�k(!) � S�k(!)

������.

By Lemma 7.2.6 and as µ > r, for any n 2 Z+ there is a ✏n > 0 so that if

S 2 O✏n(P ) \ LY(C1, C2, r, R) then

n�1X

k=0

 
2C1C3R

µ

✓
r

µ

◆n�k�1

+
C2

µ

✓
R

µ

◆n�k�1 ������P�k(!) � S�k(!)

������
!


3C1C3R

µ� r
:= C 0.

Thus if S 2 O✏n(P ) \ LY(C1, C2, r, R) and ! 2 ⌦ then
���Sn

!

��
F!

���  Cµ(C 0 + 1)µn.

Setting N� = ln(CµC 0)/ ln(1 + �/µ), we therefore get (7.12) whenever n > N�,

S 2 O✏n(P ) \ LY(C1, C2, r, R) and ! 2 ⌦.

The proof of (7.13). As |·|  k·k, for each v 2 E! we have

���⇧E�n(!)||F�n(!)
Sn

!
v
��� �

���⇧E�n(!)||F�n(!)
P n

!
v
����
���⇧E�n(!)||F�n(!)

(P n

!
� Sn

!
)v
��� . (7.18)

Using Lemma 7.2.2, (7.2) and the fact that P n

!
v 2 E�n(!), we get

���⇧E�n(!)||F�n(!)
P n

!
v
��� � K�1

kP n

!
vk � K�1C��

n
kvk . (7.19)
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On the other hand, by Lemma 7.2.3 we have for every ⌘ > 0 that

���⇧E�n(!)||F�n(!)
(P n

!
� Sn

!
)v
���  (2⌘C3R

n + C⌘|||P
n

!
� Sn

!
|||) kvk . (7.20)

Applying (7.19) and (7.20) to (7.18) yields

���⇧E�n(!)||F�n(!)
Sn

!
v
��� �

�
K�1C��

n
� 2⌘C3R

n
� C⌘|||P

n

!
� Sn

!
|||
�
kvk .

For each n let ⌘ be small enough so that 2⌘C3KC�1
�

Rn < �n/4. By Lemma 7.2.6

there is a ✏n,� so that if S 2 O✏n,�
(P )\LY(C1, C2, r, R) then KC⌘C

�1
�

|||P n

!
� Sn

!
||| <

�n/4. Thus if S 2 O✏n,�
(P ) \ LY(C1, C2, r, R) then

���⇧E�n(!)||F�n(!)
Sn

!
v
��� � (2K)�1C��

n
kvk .

Setting N� = ln(2�1K�1C�)/ ln(1 � �/�), we observe that if n > N� and S 2

O✏n,�
(P ) \ LY(C1, C2, r, R) then (7.13) holds.

7.3 Stability of the fast spaces

In this section we will construct perturbed fast spaces (ES

!
)!2⌦ 2

Q
!2⌦ G

d(X!)

when S 2 LY(C1, C2, r, R) \O✏(P ), and then show that these spaces approximate

(E!)!2⌦ in a Saks space sense. We will construct (ES

!
)!2⌦ as the fixed point of the

forward graph transform of an iterate of S by applying the contraction mapping the-

orem on certain cones of subspaces. Specifically, for U = (U!)!2⌦ 2
Q

!2⌦ L(F!, E!)

such that ⇧E�n(!)||F�n(!)
Sn

!
(Id+U!)

���
E!

is invertible for every ! 2 ⌦ we define (Sn)⇤U

by

((Sn)⇤U)! = (Sn

��n(!))
⇤U��n(!),

where the forward graph transform has domain L(E��n(!), F��n(!)) and codomain

L(E!, F!). For each ! 2 ⌦ and a > 0 we define

C!,a = {U 2 L(E!, F!) : kUk  a},

and set the fast cone field to be Ca =
Q

!2⌦ C!,a. For each a > 0 the fast cone field

Ca is a complete metric space with the metric inherited from
Q

!2⌦ L(E!, F!). Our

first main result for this section is the following.
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Proposition 7.3.1. There are a0, ✏0 > 0, n0 2 Z+ so that if S 2 LY(C1, C2, r, R)\

O✏0(P ) then (Sn0)⇤Ca0 ✓ Ca0. Moreover, there exists c0 2 [0, 1) such that for every

U, V 2 Ca0 and ! 2 ⌦ we have

k(Sn0
!
)⇤(U!)� (Sn0

!
)⇤(V!)k  c0 kU! � V!k (7.21)

i.e. (Sn0
!
)⇤ is a contraction mapping on Ca0.

If S satisfies the hypotheses of Proposition 7.3.1 then we let US
2 Ca0 denote

the unique fixed point of (Sn0)⇤ and define ES

!
= ��1

E!�F!
(US

!
) = (Id+US

!
)(E!).

By Proposition 6.1.2 the sequence (ES

!
)!2⌦ 2

Q
!2⌦ N (F!) is fixed by Sn0 i.e.

Sn0
!
ES

!
= ES

�n0 (!) for every ! 2 ⌦. Our second main result for this section confirms

that if ✏ is su�ciently small then (ES

!
)!2⌦ satisfies the estimate (7.11) and that

(ES

!
)!2⌦ and (E!)!2⌦ are close in a Saks space sense.

Proposition 7.3.2. We have

sup
���⇧ES

! ||F!

�� : ! 2 ⌦, S 2 LY(C1, C2, r, R) \O✏0(P )
 
< 1. (7.22)

Moreover, for every � 2 (0, (�� µ)/2) and � > 0 there is ✏�,� 2 (0, ✏0) and C� > 0

such that if S 2 LY(C1, C2, r, R) \O✏�,�
(P ) then

sup
!2⌦

������⇧ES
! ||F!

� ⇧E! ||F!

������  �, (7.23)

and if, in addition, we have ! 2 ⌦, v 2 ES

!
and n 2 Z+ then

kSn

!
vk � C�1

�
(�� �)n kvk . (7.24)

We will focus on proving Proposition 7.3.1 first.

Lemma 7.3.3. Fix � 2 (0, (�� µ)/2) and a > 0. There exists constants M� and,

for each n > M�, ✏n,�,a > 0 such that if S 2 LY(C1, C2, r, R) \ O✏n,�,a
(P ), ! 2 ⌦

and U 2 C!,a then ⇧E�n(!)||F�n(!)
Sn

!
(Id+U) : E! ! E�n(!) is invertible with

�����

✓
⇧E�n(!)||F�n(!)

Sn

!
(Id+U)

���
E!

◆�1
�����  (�� �)�n. (7.25)
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Proof. By Proposition 7.2.1 there exists M� and, for each n > M�, ✏n,� > 0 such

that for all ! 2 ⌦ and S 2 LY(C1, C2, r, R) \O✏n,�
(P ) we have

�����

✓
⇧E�n(!)||F�n(!)

Sn

!

���
E!

◆�1
�����  2(�� �)�n. (7.26)

On the other hand, since ⇧E�n(!)||F�n(!)
P n

!
U = 0 and by Lemma 7.2.3 we have for

every ⌘ > 0 that

����⇧E�n(!)||F�n(!)
Sn

!
U
���
E!

���� =

����⇧E�n(!)||F�n(!)
(Sn

!
� P n

!
)U
���
E!

����

 2a⌘C3R
n + aC⌘|||S

n

!
� P n

!
|||.

(7.27)

By fixing ⌘ = (���)n

4aC3R
n and applying Lemma 7.2.6 we find ✏n,�,a 2 (0, ✏n,�) such that

if S 2 LY(C1, C2, r, R) \ O✏n,�,a
(P ) then aC⌘|||Sn

!
� P n

!
|||  (� � �)n/2. Applying

these bounds to (7.27) implies that if S 2 LY(C1, C2, r, R) \O✏n,�,a
(P ), ! 2 ⌦ and

U 2 C!,a then ����⇧E�n(!)||F�n(!)
Sn

!
U
���
E!

����  (�� �)n. (7.28)

By combining (7.26) and (7.28) we confirm that ⇧E�n(!)||F�n(!)
Sn

!
(Id+U)

���
E!

is in-

vertible, and that the estimate (7.25) holds.

Lemma 7.3.3 implies that for each a > 0 and n su�ciently large there exists

✏a,n > 0 such that if S 2 LY(C1, C2, r, R) \ O✏a,n(P ), ! 2 ⌦ and U 2 C!,a then

(Sn

!
)⇤U is well defined.

Lemma 7.3.4. For su�ciently large n there exists an, ✏n > 0 such that if S 2

LY(C1, C2, r, R) \O✏n(P ) and ! 2 ⌦ then (Sn

!
)⇤C!,an ✓ C�n(!),an.

Proof. Fix � 2 (0, (� � µ)/2). For a > 0 let M� and ✏n,�,a denote the constants

produced by Lemma 7.3.3. By Lemma 7.3.3, for every S 2 LY(C1, C2, r, R) \

O✏n,�,a
(P ), ! 2 ⌦ and U 2 C!,a we have (Sn

!
)⇤U 2 L(E�n(!), F�n(!)). By the

estimate (7.25) and the definition of (Sn

!
)⇤ we have

k(Sn

!
)⇤Uk 

���⇧F�n(!)||E�n(!)
Sn

!
(Id+U)

��� (�� �)�n.

Let N� and ✏n,� denote the constants produced by Proposition 7.2.1 and set ✏n =

min{✏n,�, ✏n,�,a}. Then for n > max{N�,M�}, S 2 LY(C1, C2, r, R) \ O✏n(P ) and
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U 2 C!,a we have

���⇧F�n(!)||E�n(!)
Sn

!
(Id+U)

���  ⇥
⇣
kSn

!
k+ a

���Sn

!

��
F!

���
⌘
 ⇥ (C3R

n + a(µ+ �)n) ,

and so

k(Sn

!
)⇤Uk  ⇥

✓
C3

✓
R

�� �

◆n

+ a

✓
µ+ �

�� �

◆n◆
. (7.29)

Since � 2 (0, (� � µ)/2), it follows from (7.29) that if n is large enough so that

⇥(µ + �)n < (� � �)n and we set an = ⇥C3Rn((� � �)n � ⇥(µ + �)n)�1 then

k(Sn

!
)⇤Uk  an for every U 2 C!,an and S 2 LY(C1, C2, r, R) \O✏n(P ).

Lemma 7.3.5. Suppose that n is large enough so that Lemma 7.3.4 may be applied,

and let an and ✏n denote the produced constants. For any such n there exists ✏0 2

(0, ✏n], k 2 Z+ and c 2 [0, 1) such that for every ! 2 ⌦, S 2 LY(C1, C2, r, R) \

O✏0(P ) and U1, U2 2 C!,an we have

��(Snk

!
)⇤(U1)� (Snk

!
)⇤(U2)

��  c kU1 � U2k .

Proof. For brevity we set ⌅! = ⇧F! ||E! and �! = ⇧E! ||F! . By the definition of

(Snk

!
)⇤ we have

(Snk

!
)⇤(U1)� (Snk

!
)⇤(U2) = ⌅�nk(!)S

nk

!
(U1 � U2)

⇣
��nk(!)S

nk

!
(Id+U1)

��
E!

⌘�1

+ ((Snk

!
)⇤U2)

�
��nk(!)S

nk

!
(U2 � U1)

� ⇣
��nk(!)S

nk

!
(Id+U1)

��
E!

⌘�1

.

(7.30)

Fix n large enough so that Lemma 7.3.4 may be applied. If S 2 LY(C1, C2, r, R) \

O✏n(P ) then for every k 2 Z+ we have (Snk

!
)⇤C!,an ✓ C�nk(!),an , and so ((Snk

!
)⇤U2) 

an. Thus, (7.30) becomes

����(S
nk

!
)⇤(U1)� (Snk

!
)⇤(U2)

����

 (1 + an)⇥
���Snk

!

��
F!

���
����
⇣
��nk(!)S

nk

!
(Id+U1)

��
E!

⌘�1
���� kU1 � U2k .

Fix � 2 (0, (��µ)/2). By Proposition 7.2.1 and Lemma 7.3.3 for every k su�ciently

large there exists ✏k > 0 such that if S 2 LY(C1, C2, r, R) \O✏nk,�,an
(P ) then

��(Snk

!
)⇤(U1)� (Snk

!
)⇤(U2)

��  ⇥(1 + an)

✓
µ+ �

�� �

◆nk

kU1 � U2k . (7.31)
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By taking k large enough we may ensure that c := ⇥(1+an)(µ+�nk)/(���)nk < 1,

and so we obtain the required inequality from (7.31) upon setting ✏0 = ✏k.

The proof of Proposition 7.3.1. Suppose that n is large enough so Lemmas 7.3.4

and 7.3.5 may be applied, and let an, ✏0, k, and c denote the produced constants. Set

a0 := an, n0 := nk, ✏0 := ✏0 and c0 := c. By Lemma 7.3.4 we have (Sn0)⇤Ca0 ✓ Ca0

for every S 2 LY(C1, C2, r, R)\O✏0(P ). The estimate (7.21) is exactly the content

of Lemma 7.3.5.

We turn to the proof of Proposition 7.3.2. Recall that US
2 Ca0 denotes the

unique fixed point of (Sn0)⇤, and that ES

!
= ��1

E!�F!
(US

!
) = (Id+US

!
)(E!).

Lemma 7.3.6. We have

sup
���⇧ES

! ||F!

�� : ! 2 ⌦, S 2 LY(C1, C2, r, R) \O✏0(P )
 
< 1.

Proof. By Proposition 6.1.2 we have ⇧ES
! ||F!

= (Id+US

!
)⇧E! ||F! . Hence, as US

!
2

Ca0 , it follows that
��⇧ES

! ||F!

�� 
��Id+US

!

�� ��⇧E! ||F!

��  (1 + a0)⇥.

Lemma 7.3.7. For every � > 0 there exists ✏� 2 (0, ✏0] so that for every S 2

LY(C1, C2, r, R) \O✏�
(P ) we have

sup
!2⌦

������⇧ES
! ||F!

� ⇧E! ||F!

������  �.

Proof. By Proposition 6.1.2 we have ⇧ES
! ||F!

= (Id+US

!
)⇧E! ||F! , and so

������⇧ES
! ||F!

� ⇧E! ||F!

������ 
������US

!

������ ��⇧E! ||F!

��  ⇥
������US

!

������. (7.32)

For any k 2 Z+ we have

������US

!

������ 
���
���
���(Sn0k

��n0k(!)
)⇤0
���
���
���+
���(Sn0k

��n0k(!)
)⇤US

��n0k(!) � (Sn0k

��n0k(!)
)⇤0
��� . (7.33)

By Proposition 7.3.1 we have

���(Sn0k

��n0k(!)
)⇤US

��n0k(!) � (Sn0k

��n0k(!)
)⇤0
���  ck0a0. (7.34)
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We fix k large enough so that ck0a0 < �/(3⇥). Since
⇣
P n0k

��n0k(!)

⌘⇤
0 = 0 and

⇧F! ||E!P
n0k

��n0k(!)
⇧E

��n0k(!)
||F

��n0k(!)
= 0, after a short calculation we find that

(Sn0k

��n0k(!)
)⇤0 = ⇧F! ||E!

⇣
Sn0k

��n0k(!)
� P n0k

��n0k(!)

⌘ 
⇧E! ||F!P

n0k

��n0k(!)

���
E
��n0k(!)

!�1

.

Hence, by Lemma 7.2.3, Remark 7.2.4 and (7.2), for every ⌘ > 0 there exists C⌘ > 0

such that

���
���
���(Snk

��n0k(!))
⇤0
���
���
��� C�1

�
��nk⌘

���Snk

��n0k(!) � P nk

��n0k(!)

���

+ C�1
�
��nkC⌘

���
���
���Snk

��n0k(!) � P nk

��n0k(!)

���
���
���

C�1
�
��nk

⇣
2⌘C3R

nk + C⌘
���
���
���Snk

��n0k(!) � P nk

��n0k(!)

���
���
���
⌘
.

Since k is fixed there exists ⌘ such that 2⌘C3C
�1
�

Rnk��nk < �/(3⇥). Then, by

Lemma 7.2.6, there exists ✏� 2 (0, ✏0] such that if S 2 LY(C1, C2, r, R) \ O✏�
(P )

then

C⌘C
�1
�
��nk

���
���
���Snk

��n0k(!) � P nk

��n0k(!)

���
���
��� 

�

3⇥
.

Thus, if S 2 LY(C1, C2, r, R) \ O✏�
(P ) then

���
���
���(Snk

��n0k(!)
)⇤0
���
���
���  2�/(3⇥), and so

������US

!

������  �/⇥ by (7.33). We obtain the required inequality upon recalling (7.32).

Lemma 7.3.8. For each � 2 (0, (� � µ)/2) there exists k� 2 Z+ and ✏� > 0 such

that for every S 2 LY(C1, C2, r, R)\O✏�
(P ), ! 2 ⌦, U 2 C!,a0 and v 2 ES

!
we have

���Sk�n0
! v

��� � (�� �)k�n0 kvk .

Proof. Since |·|  k·k we have

��Skn0
!

v
�� �

��Skn0
!

v
�� �

��P kn0
!
⇧E! ||F!v

���
���Skn0

!
� P kn0

!

�
⇧E! ||F!v

���
��Skn0

!
⇧F! ||E!v

�� .
(7.35)

Using Lemma 7.2.2 and (7.2) we find that

��P kn0
!
⇧E! ||F!v

�� � K�1C��
kn0
��⇧E! ||F!v

�� .
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Since v 2 ES

!
= (Id+U!)(E!) and U! 2 C!,✏0 we have

��⇧F! ||E!v
��  a0

��⇧E! ||F!v
��

and so (1 + a0)�1
kvk 

��⇧E! ||F!v
��. Hence (7.35) becomes

��Skn0
!

v
�� �

⇣
(1 + a0)

�1K�1C��
kn0 �⇥

������Skn0
!

� P kn0
!

�������⇥
���Skn0

!

��
F!

���
⌘
kvk .

(7.36)

Let k� := k be su�ciently large so that

(1 + a0)
�1K�1C��

k�n0 � 2(�� �)k�n0 , (7.37)

and so that Proposition 7.2.1 and Lemma 7.2.6 may be applied with n = k�n0 to

produce ✏� so that if S 2 LY(C1, C2, r, R) \O✏�
(P ) and ! 2 ⌦ then

����S
k�n0
!

���
F!

����  (µ+ �)k�n0 
(�� �)k�n0

2⇥
and

���
���
���P k�n0

! � S
k�n0
!

���
���
��� 

(�� �)k�n0

2⇥
.

(7.38)

Applying (7.37) and (7.38) to (7.36) yields the required inequality.

The proof of Proposition 7.3.2. The estimates (7.22) and (7.23) are proven in Lem-

mas 7.3.6 and 7.3.7, respectively. Thus to finish the proof it su�ces to demonstrate

(7.24).

For � 2 (0, (��µ)/2) let k� and ✏� be the constants produced by Lemma 7.3.8.

For n 2 Z+ write n = mn0k� + j where m 2 N and j 2 {0, . . . , n0k� � 1}. For any

! 2 ⌦, S 2 LY(C1, C2, r, R) \ O✏�
(P ) and v 2 ES

!
we have S

mn0k�
! v 2 ES

�
mn0k� (!)

and ES

�
mn0k� (!)

=
⇣
Id+US

�
mn0k� (!)

⌘
E
�
mn0k� (!). Hence, as US

�
mn0k� (!)

2 C
�
mn0k� (!),a0

,

by Lemma 7.3.8 we have

���S(m+1)n0k�
! v

��� =
���Sn0k�

�
mn0k� (!)

S
mn0k�
! v

��� � (�� �)n0k�

���Smn0k�
! v

��� .

By repeating this argument we deduce that
���S(m+1)n0k�

! v
��� � (� � �)(m+1)n0k� kvk.

Therefore, as R > �� �,

kSn

!
vk �

���Sn0k��j

�
mn0k�+j(!)

���
�1 ���S(m+1)n0k�

! v
��� � C�1

3

✓
�� �

R

◆n0k�

(�� �)n kvk ,

and so we obtain the required claim by setting C� = C3

⇣
R

���

⌘n0k�

.
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7.4 Stability of the slow spaces

In this section we will construct and characterise the perturbed slow spaces for

S 2 LY(C1, C2, r, R) \ O✏(P ) when ✏ is su�ciently small. These perturbed slow

spaces will be the fixed point of a backwards graph transform associated to S,

although our approach is slightly di↵erent to that of the previous section since we

may capitalise on the existence of fast spaces for S. Once constructed, we show

that the slow spaces are stable in the Grassmannian, and verify the estimate (7.10).

Let n0 and ✏0 be the constants produced by Proposition 7.3.1, and suppose that

S 2 LY(C1, C2, r, R) \ O✏0(P ). For V 2 L(F!, ES

!
) recall that (Sn0

��n0 (!)
)⇤V is

well-defined if (⇧ES
! ||F!

� V⇧F! ||E
S
!
)Sn0

��n0 (!)
: ES

��n0 (!) ! ES

!
is invertible. Since

Sn0

��n0 (!)
ES

��n0 (!) = ES

!
it follows that

(⇧ES
! ||F!

� V⇧F! ||E
S
!
)Sn0

��n0 (!)

���
E

S
��n0 (!)

= Sn0

��n0 (!)

���
E

S
��n0 (!)

,

which is always invertible. Hence (Sn0

��n0 (!)
)⇤ : L(F!, ES

!
) ! L(F��n0 (!), E

S

��n0 (!)) is

well defined and satisfies

(Sn0

��n0 (!)
)⇤V =

 
Sn0

��n0 (!)

���
E

S
��n0 (!)

!�1 �
V⇧F! ||E

S
!
� ⇧ES

! ||F!

�
Sn0

��n0 (!)
.

Finally, let Sn0
⇤

:
Q

!2⌦ L(F!, ES

!
) !

Q
!2⌦ L(F!, ES

!
) be defined by

(Sn0
⇤
V )! = (Sn0

!
)⇤V�n0 (!).

Proposition 7.4.1. There exists k 2 Z+, c 2 [0, 1) and ✏1 2 [0, ✏0) such that for

any S 2 LY(C1, C2, r, R) \O✏1(P ), ! 2 ⌦ and V1, V2 2 L(F!, ES

!
) we have

���(Sn0k

��n0k(!)
)⇤(V1)� (Sn0k

��n0k(!)
)⇤(V2)

���  c kV1 � V2k .

Hence Sn0k
⇤

is a contraction mapping on
Q

!2⌦ L(F!, ES

!
).

If S satisfies the hypotheses of Proposition 7.4.1 then we denote the unique fixed

point of Sn0k
⇤

by V S
2
Q

!2⌦ L(F!, ES

!
), and set F S

!
= ��1

F!�ES
!
(V S

!
) = (Id+V S

!
)(F!).

Note that, since Sn0
⇤

preserves
Q

!2⌦ L(F!, ES

!
), we must have Sn0

⇤
V S = V S. More-

over, by the definition of the graph representation we have F S

!
2 N (ES

!
), so

that X = F S

!
� ES

!
. Our second main result for this section confirms that the
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spaces (F S

!
)!2⌦ are equivariant slow spaces for Sn0k, and that (F S

!
)!2⌦ approxi-

mates (F!)!2⌦ in the Grassmannian.

Proposition 7.4.2. We have

sup
���⇧ES

! ||F
S
!

�� : ! 2 ⌦, S 2 LY(C1, C2, r, R) \O✏1(P )
 
< 1, (7.39)

and Sn0
!
F S

!
✓ F S

�n0 (!) for every ! 2 ⌦. Moreover, for every � 2 (0, (�� µ)/2) and

� > 0 there is ✏�,� 2 (0, ✏1] and C� > 0 such that if S 2 LY(C1, C2, r, R) \O✏�,�
(P )

then

sup
!2⌦

dH(F
S

!
, F!)  �, (7.40)

sup
!2⌦

������⇧FS
! ||ES

!
� ⇧F! ||E!

������  �, (7.41)

and if, in addition, we have ! 2 ⌦ and n 2 Z+ then

���Sn

!

��
FS
!

���  C�(µ+ �)n. (7.42)

To fix some notation, we let

M := sup
���⇧ES

! ||F!

�� : ! 2 ⌦, S 2 LY(C1, C2, r, R) \O✏0(P )
 
, (7.43)

which is finite by Proposition 7.3.2.

The proof of Proposition 7.4.1. Let � 2 (0, (� � µ)/2). By Proposition 7.3.2 there

exists ✏� 2 (0, ✏0) and C� > 0 so that for every S 2 LY(C1, C2, r, R) \O✏�
(P ) and

k 2 Z+ we have

������

 
Sn0k

��n0k(!)

���
E

S

��n0k(!)

!�1
������
 C�(�� �)�n0k. (7.44)

Fix k large enough so that c := C�(M+1)(µ+�)n0k/(���)n0k < 1. By Proposition

7.2.1 there exists ✏�,k 2 (0, ✏�) so that for S 2 LY(C1, C2, r, R) \O✏�,k
(P ) we have

�����S
n0k

��n0k(!)

���
F
��n0k(!)

�����  (µ+ �)n0k. (7.45)
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Set ✏1 := ✏�,k. By Proposition 6.1.5 we have for every k 2 Z+ that

(Sn0k

��n0k(!)
)⇤(V1)� (Sn0k

��n0k(!)
)⇤(V2)

=

 
Sn0k

��n0k(!)

���
E

S

��n0k(!)

!�1

(V1 � V2)⇧F! ||E
S
!
Sn0k

��n0k(!)

���
F
��n0k(!)

.

We obtain the required statement by applying (7.43), (7.44), and (7.45) to the

previous equality, and then recalling that c 2 [0, 1).

The proof of Proposition 7.4.2 is broken into a number of lemmas.

Lemma 7.4.3. For every ! 2 ⌦ and S 2 LY(C1, C2, r, R) \ O✏1(P ) we have

Sn0
!
F S

!
✓ F S

�n0 (!).

Proof. Since (Sn0
!
)⇤V S

�n0 (!) = V S

!
we have

Sn0
!
F S

!
= Sn0

!
(Id+V S

!
)(F!)

= Sn0
!
(Id+(Sn0

!
)⇤V

S

�n0 (!))(F!)

= Sn0
!

✓
Id+

⇣
Sn0
!

��
ES
!

⌘�1 ⇣
V S

�n0 (!)⇧F�n0 (!)||E
S
�n0 (!)

� ⇧E
S
�n0 (!)

||F�n0 (!)

⌘
Sn0
!

◆
F!

=
⇣⇣

Id�⇧E
S
�n0 (!)

||F�n0 (!)

⌘
+ V S

�n0 (!)⇧F�n0 (!)||E
S
�n0 (!)

⌘
Sn0
!
F!

= (Id+V S

�n0 (!))⇧F�n0 (!)||E
S
�n0 (!)

Sn0
!
(F!)

✓ (Id+V S

�n0 (!))(F�n0 (!)) = F S

�n0 (!).

Lemma 7.4.4. We have

sup
���⇧ES

! ||F
S
!

�� : ! 2 ⌦, S 2 LY(C1, C2, r, R) \O✏1(P )
 
< 1. (7.46)

Proof. By Proposition 6.1.2 we have ⇧FS
! ||ES

!
= (Id+V S

!
)⇧F! ||E

S
!
and so

��⇧FS
! ||ES

!

�� 

(1 +
��V S

!

��)
��⇧F! ||E

S
!

��. In view of (7.43) it therefore su�ces to bound
��V S

!

�� uni-

formly in ! and S. By Proposition 7.4.1 we have for every ! 2 ⌦ that

��V S

!

�� 

���(Sn0k
!

)⇤V
S

�n0k(!) � (Sn0k
!

)⇤(0)
���+
��(Sn0k

!
)⇤(0)

��  c
���V S

�n0k(!)

���+
��(Sn0k

!
)⇤(0)

�� ,

from which it follows that

sup
!2⌦

��V S

!

��  (1� c)�1 sup
!2⌦

��(Sn0k
!

)⇤(0)
�� .
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Since

(Sn0k
!

)⇤(0) = �

⇣
Sn0k
!

��
ES
!

⌘�1

⇧E
S

�n0k(!)
||F

�n0k(!)
Sn0k
!

,

the bounds used in the proof of Proposition 7.4.1 imply that

��(Sn0k
!

)⇤(0)
�� 

����
⇣
Sn0k
!

��
ES
!

⌘�1
����

����⇧E
S

�n0k(!)
||F

�n0k(!)

����
���Sn0k

!

��
F!

��� < c.

Hence for every S 2 LY(C1, C2, r, R) \O✏1(P ) we have sup
!2⌦

��V S

!

��  c(1� c)�1,

which completes the proof.

Lemma 7.4.5. For all � > 0 there is ✏� 2 (0, ✏1] so that if S 2 LY(C1, C2, r, R) \

O✏�
(P ) and ! 2 ⌦ then

��V S

!

��  �.

Proof. Since V S

!
= (Sn0km

!
)⇤V S

�n0km(!)
for every m 2 Z+, we have

V S

!
=
⇣
Sn0km
!

��
ES
!

⌘�1
✓
V S

�n0km(!)⇧F
�n0km(!)

||ES

�n0km(!)

� ⇧E
S

�n0km(!)
||F

�n0km(!)

◆
Sn0km
!

��
F!
.

(7.47)

Fix � 2 (0, (�� µ)/2). By Proposition 7.3.2 there exists ✏� 2 (0, ✏1] and C� so that

if S 2 LY(C1, C2, r, R) \O✏�
(P ) then for every m 2 Z+ we have

����
⇣
Sn0km
!

��
ES
!

⌘�1
����  C�(�� �)�n0km. (7.48)

Let N� be the constant produced by Proposition 7.2.1 and fix m > N�/(n0k) large

enough so that

C�

✓
c(1 +M)

1� c
+M

◆✓
µ+ �

�� �

◆n0km

 �. (7.49)

By Proposition 7.2.1 there is ✏� 2 (0, ✏�] such that if S 2 LY(C1, C2, r, R)\O✏�
(P )

then ���Sn0km
!

��
F!

���  (µ+ �)mn0k. (7.50)

Recalling from the proof of Lemma 7.4.4 that
��V S

!

��  c(1�c)�1, and then applying

(7.48), (7.49) and (7.49) to (7.47) yields the required inequality.

Lemma 7.4.6. For all � > 0 there is ✏� 2 (0, ✏1] so that if S 2 LY(C1, C2, r, R) \

O✏�
(P ) and ! 2 ⌦ then dH(F S

!
, F!)  �.
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Proof. Since �F!�ES
!
(F!) = 0, by Lemma 6.1.3 and (7.43) we have

dH(F
S

!
, F!)  2

��⇧F! ||E
S
!

�� ��V S

!
� �F!�ES

!
(F!)

��  2(M + 1)
��V S

!

�� ,

and so the required inequality follows immediately from Lemma 7.4.5.

Lemma 7.4.7. For every � > 0 there exists ✏� 2 (0, ✏1] such that for all S 2

LY(C1, C2, r, R) \O✏�
(P ) one has

sup
!2⌦

������⇧FS
! ||ES

!
� ⇧F! ||E!

������  �.

Proof. By the triangle inequality we get

������⇧FS
! ||ES

!
� ⇧F! ||E!

������ 
��⇧FS

! ||ES
!
� ⇧F! ||E

S
!

��+
������⇧ES

! ||F!
� ⇧E! ||F!

������. (7.51)

By Proposition 6.1.2 and (7.43) we have

��⇧FS
! ||ES

!
� ⇧F! ||E

S
!

�� 
��V S

!

�� ��⇧F! ||E
S
!

��  (M + 1)
��V S

!

�� .

Hence by Lemma 7.4.5 there exists ✏�,1 2 (0, ✏1] such that if S 2 LY(C1, C2, r, R) \

O✏�,1
(P ) then

sup
!2⌦

��⇧FS
! ||ES

!
� ⇧F! ||E

S
!

��  �/2. (7.52)

On the other hand, by Proposition 7.3.2 there exists ✏�,2 2 (0, ✏0] such that if

S 2 LY(C1, C2, r, R) \O✏�,2
(P ) then

sup
!2⌦

������⇧ES
! ||F!

� ⇧E! ||F!

������  �/2. (7.53)

Upon setting ✏� = min{✏�,1, ✏�,2} we may conclude by applying (7.52) and (7.53) to

(7.51).

Lemma 7.4.8. For � 2 (0, (� � µ)/2) there exists ✏� 2 (0, ✏1] and m 2 Z+ such

that if S 2 LY(C1, C2, r, R) \O✏�
(P ) and ! 2 ⌦ then

���Sn0km
!

��
FS
!

���  (µ+ �)n0km.

Proof. We have

���Sn0km
!

��
FS
!

��� 

���Sn0km
!

��
F!

���+
��Sn0km

!

�� dH(F!, F S

!
) 

���Sn0km
!

��
F!

���+C3R
n0kmdH(F!, F

S

!
).

(7.54)
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By Proposition 7.2.1 there exists ✏�,1 2 (0, ✏1) and m 2 Z+ such that if S 2

LY(C1, C2, r, R) \O✏�,1
(P ) and ! 2 ⌦ then

���Sn0km
!

��
F!

��� 
(µ+ �)n0km

2
. (7.55)

By Lemma 7.4.6 there exists ✏�,2 2 (0, ✏�) such that if S 2 LY(C1, C2, r, R) \

O✏�,2
(P ) then

sup
!2⌦

dH(F!, F
S

!
)  (2C3)

�1

✓
µ+ �

R

◆n0km

. (7.56)

We obtain the required inequality by setting ✏� = min{✏�,1, ✏�,2} and then applying

(7.55) and (7.56) to (7.54).

The proof of Proposition 7.4.2. Lemma 7.4.4 proves (7.39), while it follows from

Lemma 7.4.3 that Sn0
!
F S

!
✓ F S

�n0 (!) for every ! 2 ⌦. We get (7.40) and (7.41) from

Lemmas 7.4.6 and 7.4.7, respectively.

Thus it remains to prove (7.42), which we will do using Lemma 7.4.8. With

the notation of Lemma 7.4.8 set n1 = n0km. For n 2 Z+ write n = `n1 + j where

` 2 Z+ and j 2 {0, . . . , n1 � 1}. By Lemma 7.4.8 and the equivariance of (F S

!
)!2⌦

we have for S 2 LY(C1, C2, r, R) \O✏�
(P ) that

���S`n1
!

��
FS
!

��� 

`�1Y

i=0

�����S
n1

�(in1)(!)

���
F

S

�(in1)(!)

�����  (µ+ �)`n1 ,

and so ���Sn

!

��
FS
!

��� 

���Sj

�`n1 (!)

���
���S`n1

!

��
FS
!

���  C3

✓
R

µ+ �

◆j

(µ+ �)n.

Since µ+ �  R we obtain (7.42) upon setting C� = C3

⇣
R

µ+�

⌘n1�1

.

7.5 Completing the proof of Theorem 7.1.7

We have assembled most of the ingredients that are required to complete the proof

of Theorem 7.1.7. Indeed, all of the conclusions of Theorem 7.1.7 are verified by

Propositions 7.3.2 and 7.4.2, except for the following result.

Proposition 7.5.1. There exists ✏0 2 (0, ✏1) such that if S 2 LY(C1, C2, r, R) \

O✏0(P ) then the fast spaces (ES

!
)!2⌦ 2

Q
!2⌦ Gd(X!) and slow spaces (F S

!
)!2⌦ 2

Q
!2⌦ G

d(X!) produced by Propositions 7.3.1 and 7.4.1, respectively, form a hyper-

bolic splitting of index d for S.
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Proof. Fix � 2 (0, (� � µ)/2). By Propositions 7.3.2 and 7.4.2 there exists ✏0 > 0

and C� such that if S 2 LY(C1, C2, r, R) \O✏0(P ), n 2 Z+ and ! 2 ⌦ then

���Sn

!

��
FS
!

���  C�(µ+ �)n,

and if, in addition, v 2 ES

!
then

kSn

!
vk � C�1

�
(�� �)n.

Hence, it su�ces to prove that for every ! 2 ⌦ we have S!ES

!
= ES

�(!) and S!F S

!
✓

F S

�(!). We will prove these separately.

The equivariance of (F S

!
)!2⌦. If S!F S

!
6✓ F S

�(!) then there exists f 2 F S

!
such that

kfk = 1 and S!f /2 F S

�(!). Thus codim(F S

�(!) � span{S!f}) = d � 1, and so there

exists e 2 ES

�(!) \ (F S

�(!) � span{S!f}) with kek = 1. Write e = aS!f + f 0 where a

is a scalar and f 0
2 F S

�(!). For every n 2 Z+ we have

(�� �)n

C�

��Sm

�(!)e
��  |a|

��Sn+1
!

f
��+
��Sn

�(!)f
0
��  C�(µ+�)

n (|a| (µ+ �) kfk+ kf 0
k) .

Since �� � > µ+ � we obtain a contradiction by taking n ! 1.

The equivariance of (ES

!
)!2⌦. If S!ES

!
6= ES

�(!) then there exists e 2 ES

!
such

that kek = 1 and S!e /2 ES

�(!). Recall that for the constant n0 produced by

Propositions 7.3.1 we have Smn0

��mn0 (!)
ES

��mn0 (!) = ES

!
for every m 2 Z+. Hence,

for each m 2 Z+ there is a unique vector em 2 ES

��mn0 (!) satisfying Smn0

��mn0 (!)
em =

e. Since Smn0

��mn0+1(!)
ES

��mn0+1(!) = ES

�(!) we must have S��mn0 (!)em /2 ES

��mn0+1(!).

Thus dim(ES

��mn0+1(!) � span{S��mn0 (!)em}) = d + 1, and so there exists fm 2

(ES

��mn0+1(!) � span{S��mn0 (!)em}) \ F S

��mn0+1(!) with kfmk = 1. Writing fm =

amS��mn0 (!)em + gm for some scalar am and gm 2 ES

��mn0+1(!), we have

C�(µ+�)
mn0�1

�

���Smn0�1
��mn0+1(!)

fm
���

=
���amSmn0

��mn0 (!)
em + Smn0�1

��mn0+1(!)
gm
���

� max

8
<

:

���Smn0�1
��mn0+1(!)

gm
���
���⇧E

S
�(!)|| span{S!e}

���
�1

,

|am|
���Smn0

��mn0 (!)
em
���
���⇧span{S!e}||ES

�(!)

���
�1

�
(�� �)mn0�1

2C�
max {|am| (�� �) kemk , kgmk}

���⇧span{S!e}||ES
�(!)

���
�1

.

165



Since fm = amS��mn0 (!)em + gm and kfmk = 1 we have 1  |am|C3R kemk+ kgmk,

and so

C�(µ+�)
mn0�1

�
(�� �)mn0�1

2C�
max

⇢
(�� �)

1� kgmk

C3R
, kgmk

����⇧span{S!e}||ES
�(!)

���
�1

.

For any value of kgmk we have

max

⇢
(�� �)

1� kgmk

C3R
, kgmk

�
�

�� �

C3R + �� �
.

Thus

C�(µ+ �)mn0�1
�

(�� �)mn0

2C�(C3R + �� �)

���⇧span{S!e}||ES
�(!)

���
�1

,

and so we obtain a contradiction by sending m ! 1.

166



Chapter 8

Application to random linear systems

In this chapter we will use Theorem 7.1.7 to prove the stability of the Oseledets

splitting and Lyapunov exponents of certain random linear systems. In Section

8.1 we recall some notions from multiplicative ergodic theory, discuss their relation

to the material of the previous chapter and then state this chapter’s main result,

Theorem 8.1.8. The proof of Theorem 8.1.8 is divided across Sections 8.2, 8.3 and

8.4. The main ideas of the proof are contained in the former two sections, while

Section 8.4 contains some miscellaneous results on the measurability of certain

intermediate constructions.

8.1 Definitions and main results

In order to properly formulate our results we need some language from [47] (although

we note the existence of alternatives, such as [15, 43]).

Definition 8.1.1. A separable strongly measurable random linear system is a tuple

Q = (⌦,F ,P, �, X,Q) such that (⌦,F ,P) is a Lebesgue space, � : ⌦ ! ⌦ is a

P-preserving transformation of (⌦,F ,P), X is a separable Banach space, and the

generator Q : ⌦ ! L(X) is strongly measurable i.e. for every x 2 X the map

! 7! Q!(x) is (F ,BX)-measurable where BX is the Borel �-algebra on X. We say

that Q has an ergodic invertible base if � is invertible and P-ergodic.
Remark 8.1.2. We will frequently use an alternative characterisation of strong mea-

surability from [47, Appendix A]: in the context of Definition 8.1.1 this condition

is equivalent to Q being (F ,S)-measurable, where S is the Borel �-algebra of the

strong operator topology on L(X).

Definition 8.1.3. Let Q = (⌦,F ,P, �, X,Q) be a separable strongly measurable

random linear system. Suppose that there exists kQ 2 Z+, constants �1,Q > �2,Q >
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· · · > �kQ,Q > µQ, a map FQ : ⌦ 7! G(X), and for each i 2 {1, . . . , kQ} a positive

integer di,Q and a map Ei,Q : ⌦! Gdi,Q(X), such that

1. For a.e. ! we have

X =

0

@
kQM

i=1

Ei,Q(!)

1

A� FQ(!), (8.1)

and each of the projections associated to the decomposition (8.1) is strongly

measurable.

2. For every i 2 {1, . . . , kQ} and a.e. ! 2 ⌦ we have Q!Ei,Q(!) = Ei,Q(�(!)),

and for each non-zero v 2 Ei,Q(!) one has

lim
n!1

1

n
ln kQn

!
vk = �i,Q. (8.2)

3. For a.e. ! 2 ⌦ one has Q!FQ(!) ✓ FQ(�(!)) and

lim
n!1

1

n
ln
���Qn

!

��
FQ(!)

���  µQ. (8.3)

Then we call (8.1) an Oseledets splitting for Q of dimension d =
PkQ

i=1 di,Q. The

numbers {�i,Q}
kQ

i=1 are called the exceptional Lyapunov exponents of Q, and we say

that di,Q is the multiplicity of �i,Q. The spaces Ei,Q(!) and FQ(!) are called Os-

eledets subspaces of Q. For convenience we set �kQ+1,Q = µQ. Finally, the Lyapunov

exponents of Q counted with multiplicities is the sequence

�1,Q, . . . ,�1,Q,�2,Q . . . ,�2,Q,�3,Q, . . . ,�kQ,Q, (8.4)

where each �i,Q occurs di,Q times. For ` 2 {1, . . . , d} we set �`,Q to be the `th

element of (8.4) (from left to right).

Remark 8.1.4. It follows from Lemma 8.4.2 that for every i 2 {1, . . . , kQ} the map

! 7! Ei,Q(!) is (F ,BG(X))-measurable. It is not clear if the same is true for the

slow space FQ(!).

Remark 8.1.5. The existence of an Oseledets splittings may be guaranteed by a mul-

tiplicative ergodic theorem. There are now a plethora of such theorems, starting

with [86] and being generalised in a number of directions, but for our desired appli-

cation we are only concerned with semi-invertible multiplicative ergodic theorems

on Banach spaces. The semi-invertibility of such a result refers to the requirement
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that � is invertible, but that no invertibility assumption is placed on the gener-

ator Q. In an infinite-dimensional Banach space there is also a requirement that

the random linear system being considered is quasi-compact, which, roughly speak-

ing, implies that the iterates of the cocycle become increasingly close to a compact

cocycle. We refer the reader to [47, 48, 15, 43] for precise statements of various semi-

invertible multiplicative ergodic theorems. Finally, we note that a semi-invertible

multiplicative ergodic theorem for compact cocycles on a continuous field of Banach

spaces was recently developed [105], in which case the Banach space is allowed to

vary fiber-wise. This setting is quite similar that of Chapter 7, and suggests the

possibility of generalising the results of this chapter to cocycles on Banach fields.

To a separable strongly measurable random linear system (⌦,F ,P, �, X,Q) we

may associate a canonical bounded linear endomorphism of X =
F
!2⌦{!} ⇥ X,

which we also denote by Q, that is defined by

Q(!, f) = (�(!), Q!f).

To apply Theorem 7.1.7 we require a hyperbolic splitting for Q when considered as

an element of End(X, �). The following definition makes precise this requirement

in the context of Oseledets splittings.

Definition 8.1.6. Suppose that Q = (⌦,F ,P, �, X,Q) is a separable strongly mea-

surable random linear system with an Oseledets splitting of dimension d as in Def-

inition 8.1.3. For each i 2 {1, . . . , kQ} let Ui,Q(!) =
L

ji
Ei,Q(!) and Vi,Q(!) =⇣L

j>i
Ej,Q(!)

⌘
� FQ(!). We say that Q has a hyperbolic Oseledets splitting up to

the dimension d if there exists a �-invariant set ⌦0
✓ ⌦ of full P-measure such that

for each i 2 {1, . . . , kQ} the families of subspaces {Ui,Q(!)}!2⌦0 and {Vi,Q(!)}!2⌦0

form the equivariant fast and slow spaces, respectively, for a hyperbolic splitting of

the restriction of Q to X0 =
F
!2⌦0{!}⇥X when Q is considered as an element of

End(X, �).
Remark 8.1.7. Unpacking the various requirements in Definition 8.1.6, we observe

that the Oseledets splitting of Q being hyperbolic is equivalent to the existence

of a �-invariant set ⌦0
✓ ⌦ of full P-measure, constants ⇥, C > 0 and ⌘ <

2�1 min1ikQ{�i,Q��i+1,Q} such that for every i 2 {1, . . . , kQ}, ! 2 ⌦0 and n 2 Z+

we have

max
���⇧Ui,Q(!)||Vi,Q(!)

�� ,
��⇧Vi,Q(!)||Ui,Q(!)

�� < ⇥, (8.5)
���Qn

!

��
Vi,Q(!)

���  Cen(�i+1,Q+⌘), (8.6)
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and ����
⇣
Qn

!

��
Ui,Q(!)

⌘�1
����  C�1e�n(�i,Q�⌘). (8.7)

Before stating our main result for this chapter we require some notation. Sup-

pose that Q = (⌦,F ,P, �, X,Q) is a separable strongly measurable random linear

system with Oseledets splitting of dimension d. Rather than indexing the projec-

tions onto Oseledets spaces with the index of their Lyapunov exponents, it will be

more convenient to state our perturbation results by indexing projections by collec-

tions of Lyapunov exponents. If I ✓ R is a open interval such that I ✓ (µQ,1) and

@I\{�i,Q : 1  i  kQ} = ; then we say that I separates the Lyapunov spectrum of

Q. When I separates the Lyapunov spectrum of Q we may define ⇧I,Q(!) 2 L(X)

to be the projection onto M

i:�i,Q2I

Ei,Q

according to the decomposition (8.1). Finally, if (X, k·k , |·|) is a Saks space and

✏ > 0 then, as in Chapter 7, we set

O✏(Q) =

⇢
P : ⌦ 7! L(X)

����P is strongly measurable with ess sup
!2⌦

|||Q! � P!||| < ✏

�
.

Our main result for this chapter is the following.

Theorem 8.1.8. Suppose that (X, k·k , |·|) is a Saks space, with (X, k·k) being a

Banach space, that Q = (⌦,F ,P, �, X,Q) is a separable strongly measurable random

linear system with ergodic invertible base and a hyperbolic Oseledets splitting of di-

mension d 2 Z+, and that Q 2 LY(C1, C2, r, R)\EndS(X, �) for some C1, C2, R > 0

and r 2 [0, eµQ). There exists ✏0 > 0 such that if P = (⌦,F ,P, �, X, P ) is a sepa-

rable strongly measurable random linear system with P 2 LY(C1, C2, r, R)\O✏0(Q)

then P also has an Oseledets splitting of dimension d. In addition, there exists c0 <

2�1 min1ikQ{�i,Q��i+1,Q} such that each Ii = (�i,Q�c0,max{�i,Q, ln(�1iR)}+c0),

i 2 {1, . . . , kQ}, separates the Lyapunov spectrum of P, and the corresponding pro-

jections satisfy

8i 2 {1, . . . , kQ}, a.e. ! 2 ⌦ rank(⇧Ii,P (!)) = di,Q, (8.8)

and

sup

⇢
ess sup
!2⌦

k⇧Ii,P (!)k : P 2 LY(C1, C2, r, R) \O✏0(Q), 1  i  kQ

�
< 1. (8.9)
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Moreover, for every ⌫ > 0 there exists ✏⌫ 2 (0, ✏0) so that if P 2 LY(C1, C2, r, R) \

O✏⌫ (Q) then

sup
1id

|�i,Q � �i,P |  ⌫, (8.10)

sup
1ikQ

ess sup
!2⌦

|||⇧Ii,Q(!)� ⇧Ii,P (!)|||  ⌫, (8.11)

and

ess sup
!2⌦

dH(FkQ,Q(!), FkP ,P (!))  ⌫. (8.12)

Remark 8.1.9. Contrary to what one might expect given Theorem 7.1.7, in Theorem

8.1.8 we cannot conclude that P possesses a hyperbolic Oseledets splitting. The

obstruction is the following: if Q has a Lyapunov exponent �j,Q with dj,Q > 1 then

after perturbing the cocycle one expects the exponent to immediately split into

dj,Q distinct exponents. None of the hypotheses of Theorem 8.1.8 may be used to

control the angle between the Oseledets spaces for these new Lyapunov exponents,

which prevents us from concluding these splittings are hyperbolic. All this is not

to say, however, that the Oseledets splitting for P exhibits no hyperbolicity at all.

For each i 2 {1, . . . , kQ} let

Ji = (�i,Q � c0, ln(R) + c0)

and set Ui,P (!) and Vi,P (!) to be the image and kernel, respectively, of ⇧Ji,P (!). In

the course of the proof of Theorem 8.1.8 it will be shown that for each i 2 {1, . . . , kQ}

there exists a �-invariant set ⌦0
✓ ⌦ of full P-measure such that {Ui,P (!)}!2⌦0 and

{Vi,P (!)}!2⌦0 are the equivariant fast and slow spaces, respectively, for a hyperbolic

splitting of P over ⌦0. This implies, in particular, that if every Lyapunov exponent

of Q has multiplicity 1 then the Oseledets splitting for P is hyperbolic.

Remark 8.1.10. Note that ⇧Ii,Q(!) is simply the projection onto Ei,Q(!) according

to the Oseledets splitting of Q.

Remark 8.1.11. By possibly rescaling |·|, without loss of generality we may assume

that the Saks space (X, k·k , |·|) in Theorem 8.1.8 is normal.

Remark 8.1.12. Theorem 7.1.7 may be considered a generalisation of Keller-Liverani

perturbation theory [71]. Indeed, in the case where ⌦ is a singleton we obtain a

version of the results of [71]. We note that one condition from [71] has been substan-

tially weakened, namely condition (2) from [71] is generalised to the requirement

that Q is a Saks space equicontinuous endomorphism (see Proposition 6.2.18, (7.4)

and Remark 7.1.3), which we only require for the unperturbed endomorphism Q,
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and not for any perturbation. In addition, the convergence of the slow spaces in

the Grassmannian as in (8.12) is new. We did not pursue Hölder bounds on the

|||·|||-error between the perturbed and unperturbed projections as in [71]. It is nat-

ural to conjecture that the conclusion of Theorem 8.1.8 (and Theorem 7.1.7) could

be strengthened to obtain Hölder error bounds in (8.10), (8.11) and (8.12) under

the additional assumption that ess sup
!2⌦ |Q!| < 1.

The proof of Theorem 8.1.8 is broken into a number of steps. In Section 8.2

we produce an Oseledets splitting of dimension d for P , and then we relate this

Oseledets splitting to various hyperbolic splittings produced by Theorem 7.1.7.

Once this is done, in Section 8.3 we characterise and then prove the stability of the

Lyapunov exponents.

However, before embarking on the proof of Theorem 8.1.8, we will discuss its

relation to the [16, Theorem 1.10], to which our result bares a strong resemblance.

The primary di↵erences are the following:

1. In [16] it is required that convergence in (8.2) and (8.3) is uniform in !, while

we only require the weaker bounds (8.6) and (8.7).

2. The perturbations in [16] are required to be asymptotically small: (i) each

iterate of the perturbed cocycle must converge uniformly in the strong opera-

tor topology to the corresponding iterate of the unperturbed cocycle, and (ii)

there exists s 2 (�kQ+1,Q,�kQ,Q) and N 2 Z+ such that for every n > N there

is ✏(n) so that for all ✏ 2 (0, ✏(n)) and a.e. ! 2 ⌦ one has

kQn

!
� P n

!
k
L(X)  ens.

We compare (i) to closeness in the Saks space sense in Proposition 8.1.13

and show that our hypotheses are weaker for pre-compact Saks spaces, which

is a common setting for Perron-Frobenius operator cocycles. On the other

hand, the condition (ii) is not directly comparable to any of our hypotheses,

although it is comparable ‘in spirit’ to our requirement that the perturbed

cocycle lies in a Lasota-Yorke class: the exponent s plays a similar role to the

r term in our Lasota-Yorke inequalities, in that one cannot conclude anything

about the stability of any Lyapunov exponents of modulus smaller than s in

[16], or ln r in Theorem 8.1.8.

3. Due to the weaker requirements of our result, our conclusions on the stability

of the Oseledets spaces are weaker than that of [16].
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4. We require the additional hypotheses that the unperturbed cocycle is a Saks

space equicontinuous endomorphism, which presupposes thatX admits a Saks

space structure. However, (pre-)compact Saks spaces are commonly used to

study the statistical properties of dynamical systems via Perron-Frobenius

operators, and so these hypotheses are natural for our primary application.

Proposition 8.1.13. Suppose that (X, k·k , |·|) is a (pre-)compact Saks space, and

that {Qn}n2Z+ ✓ LS(X) is an equicontinuous subset of LS(X) which converges in

the strong operator topology to Q 2 LS(X). Then Qn ! Q in (LS(X), k·k
L(X) , |||·|||).

Proof. That {Qn}n2Z+ is bounded in L(X) follows from Proposition 6.2.18. Let

G✏ ✓ Bk·k be a finite set such that infkfk=1 infg2G |f � g|  ✏. Then

|||Qn �Q|||  sup
g2G✏

k(Qn �Q)gk+ sup
kfk=1

inf
g2G✏

|(Qn �Q)(f � g)|

Since {Q} [ {Qn}n2Z+ is equicontinuous in LS(X), by Proposition 6.2.18 we have

for every  > 0 a C such that for every n 2 Z+

|||Qn �Q|||  sup
g2G✏

k(Qn �Q)gk+ 2+ C✏.

Sending n ! 1 yields

lim sup
n!1

|||Qn �Q|||  2+ C✏. (8.13)

By first choosing  to be very small, and then shrinking ✏ appropriately, we may

make the right side of (8.13) as small as we like. Hence limn!1 |||Qn �Q||| = 0.

8.2 Characterising the perturbed Oseledets splitting

Recall ⌘ and ⌦0 from Remark 8.1.7, and let �0 > 0 satisfy

⌘ + �0 < 2�1 min
1ikQ

�i,Q � �i+1,Q.

For each i 2 {1, . . . , kQ} we apply Theorem 7.1.7 to Q with respect to the hyperbolic

splitting composed of fast spaces {Ui,Q(!)}!2⌦0 and slow spaces {Vi,Q(!)}!2⌦0 to
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produce ✏0, C0,⇥0 > 0 so that if P 2 LY(C1, C2, r, R) is strongly measurable and

satisfies

sup
!2⌦0

|||Q! � P!||| < ✏0 (8.14)

then P has a hyperbolic splitting of index
P

ij
dj,Q (in the sense of Definition 7.1.1).

Moreover, if we denote the fast and slow spaces of these splittings by {Ui,P (!)}!2⌦0

and {Vi,P (!)}!2⌦0 , respectively, then for every n 2 Z+, i 2 {1, . . . , kQ} and ! 2 ⌦0

we have

max
���⇧Ui,P (!)||Vi,P (!)

�� ,
��⇧Vi,P (!)||Ui,P (!)

�� < ⇥0, (8.15)
���P n

!

��
Vi,P (!)

���  C0e
n(�i+1,Q+⌘+�0), (8.16)

and, for every v 2 Ui,P (!),

kP n

!
vk � C�1

0 en(�i,Q�⌘��0) kvk . (8.17)

Remark 8.2.1. If, rather than (8.14), we just have that P 2 O✏0(Q), then we may

instead consider the following construction. Let ⌦P 2 F have full P-measure and

satisfy

sup
!2⌦P

|||Q! � P!||| < ✏0.

By perhaps replacing ⌦P with
T

n2Z �
n(⌦P ) we may assume that ⌦P is �-invariant.

Let P̃ : ⌦ 7! L(X) be defined by

P̃! =

8
<

:
P! if ! 2 ⌦0

\ ⌦P ,

Q! otherwise.

Since P̃! = P! a.e. and (⌦,F ,P) is a complete measure space it follows that P̃ is

strongly measurable. By construction (8.14) holds with P̃ in place of P , and P̃ 2

LY(C1, C2, r, R) since ⌦0
\ ⌦P is �-invariant. Thus Theorem 7.1.7 may be applied

with P̃ , which produces fast spaces {U
i,P̃ (!)}!2⌦0 and slow spaces {V

i,P̃ (!)}!2⌦0 for

P̃ , which restrict to fast and slow spaces for P when considered on ⌦P . Moreover,

we obtain (8.15), (8.16) and (8.17) for P and ! 2 ⌦P (i.e. for a.e. ! 2 ⌦). We will

not discuss this technical point any further, and simply carry out of constructions

a.e. for P .
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For each i 2 {1, . . . , kQ} set

Gi,P (!) =

8
<

:
U1,P (!) i = 1,

Ui,P (!) \ Vi�1,P (!) 1 < i  kQ.

and

Hi,P (!) =

8
<

:
V1,P (!) i = 1,

Vi,P (!)� Ui�1,P (!) 1 < i  kQ.

Note that dim(Gi,P (!)) = codim(Hi,P (!)) = di,Q and X = Gi,P (!) � Hi,P (!) for

a.e. ! and each i 2 {1, . . . , kQ}. Moreover, for a.e. ! we have

X =

0

@
M

1ikQ

Gi,P (!)

1

A� VkQ,P (!). (8.18)

It is clear that Gi,Q(!) = Ei,Q(!), and so we will consider Gi,P (!) to be perturbation

of Ei,Q(!). Our first main result for this section makes this idea rigorous, and is

a straightforward application of Theorem 7.1.7. Later we will see that, in general,

Gi,P (!) is not an Oseledets space for P , but rather a direct sum of finitely many

Oseledets spaces of P .

Proposition 8.2.2. With ✏0 as at the beginning of this section, we have

sup

⇢
ess sup
!2⌦

��⇧Gi,P (!)||Hi,P (!)

�� : P2LY(C1,C2,r,R)\O✏0 (Q)
1ikQ

�
 ⇥2

0 < 1. (8.19)

Moreover, for every ⌫ > 0 there exists ✏⌫ 2 (0, ✏0) so that if P 2 LY(C1, C2, r, R) \

O✏⌫ (Q) and i 2 {1, . . . , kQ} then

ess sup
!2⌦

������⇧Ei,Q(!)||Hi,Q(!) � ⇧Gi,P (!)||Hi,P (!)

������  ⌫, (8.20)

and

ess sup
!2⌦

dH(VkQ,Q(!), VkQ,P (!))  ⌫. (8.21)

Proof. By (8.15) we have

sup

⇢
ess sup
!2⌦

��⇧Ui,P (!)||Vi,P (!)

�� : P 2 LY(C1, C2, r, R) \O✏0(Q), 1  i  kQ

�
 ⇥0.
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Since for 1 < i  kQ we have

⇧Gi,P (!)||Hi,P (!) = ⇧Ui,P (!)||Vi,P (!)⇧Vi�1,P (!)||Ui�1,P (!), (8.22)

we may therefore bound the left side of (8.19) by max{⇥0,⇥2
0} = ⇥2

0, since ⇥0 � 1

necessarily.

We will now prove (8.20), for which we note that it su�ces consider each

i 2 {1, . . . , kQ} separately. By Theorem 7.1.7 there exists ✏⌫ > 0 so that if

P 2 LY(C1, C2, r, R) \O✏⌫ (Q) then

ess sup
!2⌦

������⇧U1,Q(!)||V1,Q(!) � ⇧U1,P (!)||V1,P (!)

������  ⌫,

which yields (8.20) for i = 1. Now assume that 1 < i  kQ. If P 2 LY(C1, C2, r, R)\

O✏0(Q) and 1 < i  kQ then by (8.22) we have for a.e. ! that

������⇧Ei,Q(!)||Hi,Q(!) � ⇧Gi,P (!)||Hi,P (!)

������


������⇧Ui,Q(!)||Vi,Q(!)

�
⇧Vi�1,Q(!)||Ui�1,Q(!) � ⇧Vi�1,P (!)||Ui�1,P (!)

�������

+
�������⇧Ui,Q(!)||Vi,Q(!) � ⇧Ui,P (!)||Vi,P (!)

�
⇧Vi�1,P (!)||Ui�1,P (!)

������.
(8.23)

Lemma 7.2.3 implies that for every  > 0 there exists C such that

������⇧Ui,Q(!)||Vi,Q(!)

�
⇧Vi�1,Q(!)||Ui�1,Q(!) � ⇧Vi�1,P (!)||Ui�1,P (!)

� ������


��⇧Vi�1,Q(!)||Ui�1,Q(!) � ⇧Vi�1,P (!)||Ui�1,P (!)

��

+ C
������⇧Vi�1,Q(!)||Ui�1,Q(!) � ⇧Vi�1,P (!)||Ui�1,P (!)

������

2⇥0 + C
������⇧Vi�1,Q(!)||Ui�1,Q(!) � ⇧Vi�1,P (!)||Ui�1,P (!)

������.

Thus from (8.23) we obtain

������⇧Ei,Q(!)||Hi,Q(!) � ⇧Gi,P (!)||Hi,P (!)

������

2⇥0 + C
������⇧Vi�1,Q(!)||Ui�1,Q(!) � ⇧Vi�1,P (!)||Ui�1,P (!)

������

+⇥0

������⇧Ui,Q(!)||Vi,Q(!) � ⇧Ui,P (!)||Vi,P (!)

������.

(8.24)

Fix  = ⌫

4⇥0
. By Theorem 7.1.7, there is ✏⌫ 2 (0, ✏0) so that if P 2 LY(C1, C2, r, R)\

O✏⌫ (Q) and i 2 {1, . . . , kQ} then

ess sup
!2⌦

������⇧Ui,Q(!)||Vi,Q(!) � ⇧Ui,P (!)||Vi,P (!)

������  ⌫

2(C +⇥0)
. (8.25)
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Thus by applying (8.25) to (8.24) we obtain (8.20). Finally, we obtain (8.21) due

to our application of Theorem 7.1.7 with respect to the hyperbolic splitting of X

into equivariant fast spaces {UkQ,Q(!)}!2⌦0 and slow spaces {VkQ,Q(!)}!2⌦0 .

The second main result of this section confirms that the perturbed cocycle P

has an Oseledets splitting, and that this Oseledets splitting refines the splitting in

(8.18).

Proposition 8.2.3. With ✏0 as in Proposition 8.2.2, if P 2 LY(C1, C2, r, R) \

O✏0(Q) then P has an Oseledets splitting of dimension d and if for each i 2

{1, . . . , kQ} we set

S(i) =

(
j :
X

1`<i

d`,Q <
X

1`j

d`,P 

X

1`i

d`,Q

)

then for a.e. ! we have

Gi,P (!) =
M

j2S(i)

Ej,P (!), (8.26)

and FP (!) = VkQ,P (!).

The idea behind the proof of Proposition 8.2.3 is rather simple: since each

family {Gi,P (!)}!2⌦ consists of di,Q-dimensional subspaces and is invariant under

the action of P we are essentially in the setting of the classical multiplicative ergodic

theorem of Oseledets [86]. Unfortunately, actualising this idea requires the strong

measurability of several constructions, the proofs of which are rather tedious. As

such, many of the purely technical proofs have been deferred to Section 8.4.

Lemma 8.2.4. For every i 2 {1, . . . , kQ} the map ! 7! ⇧Ui,P (!)||Vi,P (!) is strongly

measurable.

Proof. From the construction of {Ui,P (!)}!2⌦ in Proposition 7.3.1 and by Proposi-

tion 6.1.2 there is n0 2 Z+ such that almost uniformly we have

⇧Ui,P (!)||Vi,Q(!) = lim
m!1

⇣
Id+(Pmn0

��mn0 (!)
)⇤(0)

⌘
⇧Ui,Q(!)||Vi,Q(!),

where the graph transform (Pmn0

��mn0 (!)
)⇤ maps L(Ui,Q(��mn0(!)), Vi,Q(��mn0(!))) to

L(Ui,Q(!), Vi,Q(!)). By [47, Lemma A.5] the map ! 7! Pmn0

��mn0 (!)
is strongly measur-

able for each m. Hence, as ! 7! ⇧Ui,Q(��mn0 (!))||Vi,Q(��mn0 (!)) and ! 7! ⇧Ui,Q(!)||Vi,Q(!)
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are strongly measurable, by Proposition 8.4.1 the map

! 7!

⇣
Id+(Pmn0

��mn0 (!)
)⇤(0)

⌘
⇧Ui,Q(!)||Vi,Q(!)

is strongly measurable for every m 2 Z+. By Proposition 7.3.2 we have

ess sup
!2⌦

��⇧Ui,P (!)||Vi,Q(!)

�� < 1,

and so Lemma 8.4.7 implies that ! 7! ⇧Ui,P (!)||Vi,Q(!) is strongly measurable.

From the construction of {Vi,P (!)}!2⌦ in Proposition 7.4.1 and by Proposition

6.1.2 there exists n1 2 Z+ such that almost uniformly we have

⇧Ui,P (!)||Vi,P (!) = lim
m!1

�
⇧Ui,P (!)||Vi,Q(!) � (Pmn1

!
)⇤(0)⇧Vi,Q(!)||Ui,P (!)

�
,

where the backwards graph transform (Pmn1
!

)⇤ maps L(Vi,Q(�mn1(!)), Ui,P (�mn1(!)))

to L(Vi,Q(!), Ui,P (!)). As ! 7! ⇧Ui,P (�mn1 (!))||Vi,Q(�mn1 (!)) and ! 7! ⇧Ui,P (!)||Vi,Q(!)

are strongly measurable, by Proposition 8.4.1 the map

! 7! ⇧Ui,P (!)||Vi,Q(!) � (Pmn1
!

)⇤(0)⇧Vi,Q(!)||Ui,P (!)

is strongly measurable for all m. By (8.15) we have ess sup
!2⌦

��⇧Ui,P (!)||Vi,P (!)

�� <

1, and so ! 7! ⇧Ui,P (!)||Vi,P (!) is strongly measurable by Lemma 8.4.7.

Lemma 8.2.5. For each i 2 {1, . . . , kQ} the map ! 7! ⇧Gi,P (!)||Hi,P (!) is strongly

measurable.

Proof. The cases where i = 1 is covered by Lemma 8.2.4. For 1 < i  kQ we have

⇧Gi,P (!)||Hi,P (!) = ⇧Ui,P (!)||Vi,P (!)⇧Vi�1,P (!)||Ui�1,P (!), (8.27)

and so ! 7! ⇧Gi,P (!)||Hi,P (!) is strongly measurable by Lemma 8.2.4 and [47, Lemma

A.5].

A key tool in the proof of Proposition 8.2.3 is the following result on the existence

of measurable change of basis maps;a similar construction is carried out in [76,

Chapter 7]. We defer the proof to Section 8.4.

Lemma 8.2.6. If (⌦,F ,P) is a Lebesgue space, X is a separable Banach space,

d 2 Z+ and ! 7! ⇧! is a strongly measurable map such that each ⇧! is rank-d
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projection and ess sup
!2⌦ k⇧!k < 1 then for every ✏ > 0 there exists a strongly

measurable map A : ⌦ ! L(X,Cd) such that A!

��
⇧!(X)

: ⇧!(X) ! Cd is a bijec-

tion, ker(A!) = ker(⇧!) for a.e. !, and the map ! 7!

⇣
A!

��
⇧!(X)

⌘�1

is strongly

measurable. Moreover,

ess sup
!2⌦

���A!

��
⇧!(X)

��� 

✓
2

1� ✏

◆d�1

, and ess sup
!2⌦

����
⇣
A!

��
⇧!(X)

⌘�1
���� 

p

d. (8.28)

The proof of Proposition 8.2.3. For each i 2 {1, . . . , kQ} let Ai,! denote the map

produced by applying Lemma 8.2.6 to ! 7! ⇧Gi,P (!)||Hi,P (!) with ✏ very small, and

set

Pi,! = Ai,�(!)P!
⇣
Ai,!

��
Gi,P (!)

⌘�1

.

Then Pi = (⌦,F ,P, �,Cdi,Q ,! 7! Pi,!) is a separable strongly measurable random

linear system with an ergodic invertible base. Moreover, by (8.17) and the estimates

in Lemma 8.2.6 for every n 2 Z+ and i 2 {1, . . . , kQ} we have

���
�
P n

i,!

��1
���  kAi,!k

����
⇣
P n

!

��
Gi,P (!)

⌘�1
����

����
⇣
Ai,�n(!)

��
Gi,P (�n(!))

⌘�1
����

 C0

p

d

✓
2

1� ✏

◆d�1

e�n(�i,Q�⌘��0).

(8.29)

On the other hand, by (8.16) and the estimates in Lemma 8.2.6 for every n 2 Z+

and 1 < i  kQ we have

��P n

i,!

�� 
��Ai,�n(!)

��
���P n

!

��
Gi,P (!)

���
����
⇣
Ai,!

��
Gi,P (!)

⌘�1
����

 C0

p

d

✓
2

1� ✏

◆d�1

en(�i,Q+⌘+�0),

(8.30)

while for i = 1 we have

��P n

i,!

��  C0C3

p

d

✓
2

1� ✏

◆d�1

Rn. (8.31)

Thus ln+
��P±1

i,!

�� 2 L1(⌦,F ,P), and so by Oseledets’ Multiplicative Ergodic Theo-

rem [86], each Pi has an Oseledets splitting of dimension di,Q given by

Cd =

kPiM

j=1

Ej,Pi(!). (8.32)
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By pulling back these Oseledets spaces to X we obtain for each i 2 {1, . . . , kQ} and

a.e. ! the splitting

Gi,P (!) =

kPiM

j=1

⇣
Ai,!

��
Gi,P (!)

⌘�1

Ej,Pi(!),

and so in view of (8.18) we have

X =

0

@
kQM

i=1

0

@
kPiM

j=1

⇣
Ai,!

��
Gi,P (!)

⌘�1

Ej,Pi(!)

1

A

1

A� VkQ,P (!). (8.33)

Let kP =
PkQ

i=1 kPi . For 1  `  kP set h(`) = max{
P

t

i=1 kPi :
P

t

i=1 kPi  `},

g(`) = `� h(`) and

E`,P (!) =
⇣
Ah(`),!

��
Gh(`),P (!)

⌘�1

Eg(`),Ph(`)
(!).

If we set FP (!) = VkQ,P (!) then we may rewrite (8.33) as

X =

 
kPM

`=1

E`,P (!)

!
� FP (!). (8.34)

We claim that (8.34) is an Oseledets splitting for P of dimension d.

The strong measurability of the Oseledets projections. The projection onto FP (!)

according to (8.34) is strongly measurable by Lemma 8.2.4. The projection onto

each E`,P (!) according to the decomposition (8.33) is given by

⇣
Ah(`),!

��
Gh(`),P (!)

⌘�1

⇧g(`),h(`),!Ah(`),!⇧Gh(`),P (!)||Hh(`),P (!),

where ⇧g(`),h(`),! denotes the projection onto Eg(`),Ph(`)
(!) according to the splitting

in (8.32). Thus the projection onto E`,P (!) according to the decomposition (8.34),

being the composition of strongly measurable maps, is strongly measurable by [47,

Lemma A.5].
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The properties of the fast Oseledets spaces. It is easily checked that for any ` 2

{1, . . . , kP} and a.e. ! we have

P n

!
(E`,P (!)) = P n

!

✓⇣
Ah(`),!

��
Gh(`),P (!)

⌘�1

Eg(`),Ph(`)
(!)

◆

=
⇣
Ah(`),�n(!)

��
Gh(`),P (�n(!))

⌘�1

Eg(`),Ph(`)
(�n(!)) = E`,P (�

n(!)).

In addition, due to the bounds (8.28) we have for a.e. ! and every non-zero v 2

E`,P (!) that Ah(`),!v 2 Eg(`),Ph(`)
(!) and so

lim
n!1

1

n
ln kP n

!
vk

= lim
n!1

1

n
ln

����
⇣
Ah(`),�n(!)

��
Gh(`),P (�n(!))

⌘�1
✓
P n

h(`),!

��
Eg(`),Ph(`)

(!)

◆
Ah(`),!v

����

= �g(`),Ph(`)
.

The ordering of the Lyapunov exponents. For every ` 2 {1, . . . , kP} we set �`,P =

�g(`),Ph(`)
so that �`,P is the Lyapunov exponent associated to {E`,P (!)}!2⌦. Clearly

�`1,P < �`2,P whenever `1 > `2 and h(`1) = h(`2), since then g(`1) > g(`2) and

so �`1,P = �g(`1),Ph(`1)
< �g(`2),Ph(`2)

= �`2,P . On the other hand, if `1 > `2 and

h(`1) 6= h(`2) then since ⌘ + �0 < 2�1 min1ikQ{�i,Q � �i+1,Q} we may use (8.29)

and (8.30) to conclude that

�`1,P  �h(`1),Q + ⌘ + �0 < �h(`2),Q � ⌘ � �0  �`2,P .

Thus �1,P > �2,P > · · · > �k,P .

The properties of the slow Oseledets spaces. That P!FP (!) ✓ F (�(!)) a.e. follows

from our application of Theorem 7.1.7 in the construction of VkQ,P (!). By (8.30)

we have a.e. that

lim
n!1

1

n
ln

����P
n

!

��
VkQ,P (!)

���� := µP  �kQ+1,Q + ⌘ + �0. (8.35)

By (8.29) we get �kP ,P > �kQ,Q�⌘��0. Since ⌘+�0 < 2�1 min1ikQ{�i,Q��i+1,Q}

it follows that µP < �kP ,P .
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The identity (8.26). If we set s(i) =
P

i�1
t=1 kPt then

Gi,P (!) =

kPiM

j=1

Ej+s(i),P (!). (8.36)

Then for j 2 {1, . . . , kPi} we have

X

1`j+s(i)

d`,P =

0

@
X

1`s(i)

d`,P

1

A+

 
X

1`j

ds(i)+`,P

!

=

0

@
X

1t<i

X

1mkPt

ds(t)+m,P

1

A+

 
X

1`j

ds(i)+`,P

!
.

(8.37)

Since ds(t)+m,P = dm,Pt we get

X

1t<i

X

1mkPt

ds(t)+m,P =
X

1t<i

dt,Q, and 0 <
X

1`j

ds(i)+`,P < di,Q. (8.38)

Thus by combining (8.37) and (8.38) we see that j + s(i) 2 S(i). Running our

argument in reverse, we observe that if ` 2 S(i) then h(`) = s(i) and so ` =

g(`)+s(i) with g(`) 2 {1, . . . , kPi}. Thus we obtain (8.26) by re-indexing the direct

sum (8.36).

The first part of the proof of Theorem 8.1.8. If P 2 LY(C1, C2, r, R)\O✏0(Q) then,

as per Proposition 8.2.3, P has an Oseledets splitting of dimension d. Set c0 = �0+⌘.

From the proof of Proposition 8.2.3, and in particular the estimates (8.29), (8.30)

and (8.31), we have for every i 2 {1, . . . , kQ} that

{�j,P : j 2 S(i)} ✓ Ii = (�i,Q � c0,max{�i,Q, ln(�i1R)}+ c0). (8.39)

Moreover, by (8.35) and the ensuing discussion, we have Ii ✓ (µP ,1) for each i.

Thus, @Ii1\@Ii2 = ; whenever i1 6= i2. As for every j 2 {1, . . . , kP} we have j 2 S(i)

for some i 2 {1, . . . , kQ}, it follows that @Ii \ {�j,P : 1  j  kP} = ; for every

i. Hence each Ii separates the Lyapunov spectrum of P . In view of Proposition

8.2.3 we therefore have ⇧Ii,P (!) = ⇧Gi,P (!)||Hi,P (!), and so we obtain (8.8) upon

recalling that dim(Gi,P (!)) = di,Q for a.e. ! 2 ⌦. We get (8.9) and (8.11) from

(8.19) and (8.20), respectively, in Proposition 8.2.2. Finally, as VkQ,Q(!) = FQ(!)

and VkP ,P = FP (!) we obtain (8.12) from (8.21) in Proposition 8.2.2.
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8.3 Convergence of the Lyapunov exponents

In this section we focus on the proving the estimate (8.10). A key tool in our proof

will be a generalisation of the determinant to operators on Banach spaces, which

we will use to access the Lyapunov exponents of P . When E 2 G(X) is finite

dimensional we denote by mE the Haar measure on E, normalised so that mE(BE)

has the measure of the dim(E)-dimensional Euclidean unit ball. For each d 2 Z+

we define a map det : L(X)⇥ Gd(X) ! R by

det(A,E) := det(A|E) =
mAE(A(BE))

mE(BE)
. (8.40)

We refer the reader to [15, Section 2.2] for an overview of the basic properties of

the determinant.

Lemma 8.3.1. Recall ✏0 from Proposition 8.2.2. If P 2 LY(C1, C2, r, R)\O✏0(Q),

n 2 Z+ and ` 2 {1, . . . , kP} then the maps

! 7! ln det(P n

!
|E`,P (!)), ! 7! ln

���P n

!

��
E`,P (!)

��� and ! 7! ln

����
⇣
P n

!

��
E`,P (!)

⌘�1
����
�1

are (F ,BR)-measurable and in L1(⌦,F ,P).

Proof. Fix n and `. Define  : ⌦! L(X)⇥Gd`,P
(X) by  (!) = (P n

!
, E`,P (!)). The

map ! 7! P n

!
is strongly measurable by [47, Lemma A.5]. On the other hand, the

projection onto E`,P (!) is strongly measurable since it is an Oseledets space, and so

! 7! E`,P (!) is (F ,BG(X))-measurable by Lemma 8.4.2. Thus  is (F ,S ⇥ BG(X))-

measurable. That ! 7! ln det( (!)) is (F ,BR)-measurable follows from Proposition

8.4.8, while the (F ,BR)-measurability of ! 7! ln
���P n

!

��
E`,P (!)

��� is a consequence of

[47, Lemma B.16]. To see that ! 7! ln

����
⇣
P n

!

��
E`,P (!)

⌘�1
���� is measurable we note that

����
⇣
P n

!

��
E`,P (!)

⌘�1
���� =

�����

⇣
⇧E`,P (�n(!))P

n

!

��
E`,P (!)

⌘�1

⇧E`,P (�n(!))

����
E`,P (�n(!))

����� , (8.41)

where ⇧E`,P (�n(!)) denotes the projection onto E`,P (�n(!)) according to the Os-

eledets decomposition for P . The map ! 7!

⇣
⇧E`,P (�n(!))P n

!

��
E`,P (!)

⌘�1

⇧E`,P (�n(!))

is (F ,BR)-measurable by Proposition 8.4.6. Hence the right side of (8.41) is (F ,BR)-

measurable by [47, Lemma B.16], which of course implies that the left side of (8.41)

is (F ,BR)-measurable.
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Since

����
⇣
P n

!

��
E`,P (!)

⌘�1
����
�1

BE`,P (�n(!)) ✓ P n

!
BE`,P (!) ✓

���P n

!

��
E`,P (!)

���BE`,P (�n(!)),

we have

ln

����
⇣
P n

!

��
E`,P (!)

⌘�1
����
�1


1

d`,P
ln det(P n

!
|E`,P (!))  ln

���P n

!

��
E`,P (!)

��� . (8.42)

By (8.17) and Proposition 8.2.3 we have

C�1
0 en(�kQ,Q�⌘��0)



����
⇣
P n

!

��
E`,P (!)

⌘�1
����
�1

. (8.43)

On the other hand, since P 2 LY(C1, C2, r, R) we have

���P n

!

��
E`,P (!)

���  C3R
n. (8.44)

As (⌦,F ,P) is a probability space, by combining (8.42), (8.43) and (8.44) we get

that ! 7! ln det(P n

!
|E`,P (!)), ! 7! ln

���P n

!

��
E`,P (!)

��� and ! 7! ln

����
⇣
P n

!

��
E`,P (!)

⌘�1
����
�1

are all contained in L1(⌦,F ,P).

Proposition 8.3.2. Recall ✏0 from Proposition 8.2.2. For all P 2 LY(C1, C2, r, R)\

O✏0(Q), n 2 Z+ and ` 2 {1, . . . , kP} we have

�`,P =
1

nd`,P

Z

⌦

ln det(P n

!
|E`,P (!)) dP, (8.45)

= lim
m!1

1

m

Z

⌦

ln
���Pm

!

��
E`,P (!)

��� dP, (8.46)

= lim
m!1

1

m

Z

⌦

ln

����
⇣
Pm

!

��
E`,P (!)

⌘�1
����
�1

dP. (8.47)

Proof. Recalling (8.42) from the proof of Lemma 8.3.1, we have for every j 2 Z+

that

Z
ln

����
⇣
P nj

!

��
E`,P (!)

⌘�1
����
�1

dP 

R
ln det(P nj

!
|E`,P (!)) dP

d`,P


Z
ln
���P nj

!

��
E`,P (!)

��� dP.
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Hence it su�ces to prove that

lim sup
m!1

1

m

Z

⌦

ln
���Pm

!

��
E`,P (!)

��� dP  �`,P  lim inf
m!1

1

m

Z

⌦

ln

����
⇣
Pm

!

��
E`,P (!)

⌘�1
����
�1

dP,

(8.48)

and that

1

njd`,P

Z
ln det(P nj

!
|E`,P (!)) dP =

1

nd`,P

Z

⌦

ln det(P n

!
|E`,P (!)) dP. (8.49)

The identity (8.49). Since the determinant is multiplicative [15, Proposition 2.13]

we have

Z
ln det(P nj

!
|E`,P (!)) dP =

j�1X

i=0

Z
ln det(P n

�ni(!)|E`,P (�
ni(!))) dP. (8.50)

Since P is �-invariant, for i 2 {0, . . . , j � 1} we have

Z
ln det(P n

�ni(!)|E`,P (�
ni(!))) dP =

Z
ln det(P n

!
|E`,P (!)) dP. (8.51)

Combining (8.50) and (8.51) yields (8.49).

The first inequality in (8.48). By Lemma 8.3.1 we have

n
! 7! ln

���Pm

!

��
E`,P (!)

���
o

m2Z+
✓ L1(⌦,F ,P).

Since
n
! 7! ln

���Pm

!

��
E`,P (!)

���
o

m2Z+
is subadditive with respect to � and as � is P-

ergodic, by Kingman’s subadditive ergodic theorem we have for a.e. ! that

lim
m!1

1

m
ln
���Pm

!

��
E`,P (!)

��� = lim
m!1

1

m

Z

⌦

ln
���Pm

!

��
E`,P (!)

��� dP. (8.52)

Fix a normalised Auerbach basis {vi}
d`,P

i=1 for E`,P (!), and for each m let vm 2

E`,P (!) satisfy kwmk = 1 and
���Pm

!

��
E`,P (!)

��� = kPm

!
wmk. If we write wm =

Pd`,P

i=1 ai,mvi then

���Pm

!

��
E`,P (!)

��� 

✓
max

i2{1,...,d`,P }

kPm

!
vik

◆ d`,PX

i=1

|ai,m| .
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Since {vi}
d`,P

i=1 is Auerbach, by [87, Corollary A.7] we have
Pd`,P

i=1 |ai,m|  d`,P , and

so

lim
m!1

1

m
ln
���Pm

!

��
E`,P (!)

���  max
i2{1,...,d`,P }

✓
lim sup
m!1

1

m
ln (kPm

!
vik)

◆
= �`,P ,

which, in view of (8.52), yields the first inequality in (8.48).

The second inequality in (8.48). The proof is very similar to the one in the previous

paragraph. By Lemma 8.3.1 we have

⇢
! 7! ln

����
⇣
Pm

!

��
E`,P (!)

⌘�1
����

�

m2Z+

✓ L1(⌦,F ,P).

Since

⇢
! 7! ln

����
⇣
Pm

!

��
E`,P (!)

⌘�1
����

�

m2Z+

is subadditive with respect to �, and as �

is invertible and P-ergodic, by Kingman’s subadditive ergodic theorem we have for

a.e. ! that

lim
m!1

1

m
ln

�����

✓
Pm

��m(!)

���
E`,P (��m(!))

◆�1
����� = lim

m!1

1

m

Z
ln

����
⇣
Pm

!

��
E`,P (!)

⌘�1
���� dP.

(8.53)

Fix a normalised Auerbach basis {vi}
d`,P

i=1 for E`,P (!), and for each m let wm 2

E`,P (!) satisfy kwmk = 1 and

�����

✓
Pm

��m(!)

���
E`,P (��m(!))

◆�1
����� =

�����

✓
Pm

��m(!)

���
E`,P (��m(!))

◆�1

wm

����� .

If we write wm =
Pd`,P

i=1 ai,mvi then

�����

✓
Pm

��m(!)

���
E`,P (��m(!))

◆�1
����� 

 
max

i2{1,...,d`,P }

�����

✓
Pm

��m(!)

���
E`,P (��m(!))

◆�1

vi

�����

!
d`,PX

i=1

|ai,m| .

Since {vi}
d`,P

i=1 is Auerbach, by [87, Corollary A.7] we have
Pd`,P

i=1 |ai,m|  d`,P , and

so

lim
m!1

1

m
ln

�����

✓
Pm

��m(!)

���
E`,P (��m(!))

◆�1
�����

 max
i2{1,...,d`,P }

lim sup
m!1

1

m
ln

 �����

✓
Pm

��m(!)

���
E`,P (��m(!))

◆�1

vi

�����

!

= ��`,P ,
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which, in view of (8.53), yields the second inequality in (8.48).

Throughout the proof of Theorem 8.1.8 we will use the following corollary of

Lemma 7.2.2, which is obtained by applying Lemma 7.2.2 to P 2 LY(C1, C2, r, R)\

O✏0(Q) with the hyperbolic splitting consisting of fast spaces {UkQ,P (!)}!2⌦ and

slow spaces {VkQ,P (!)}!2⌦.

Lemma 8.3.3. Recall ✏0 from Proposition 8.2.2. There exists K > 0 so that for

every P 2 LY(C1, C2, r, R) \ O✏0(Q), a.e. ! and every v 2
L

kP

i=1 Ei,P (!) we have

kvk  K |v|.

We may now finish the proof of Theorem 8.1.8. For the sake of brevity, through-

out the proof we use ⇧Ei,Q(!) to denote the projection onto Ei,Q(!) according to

the Oseledets splitting of Q, and ⇧Gi,P (!) to denote the projection onto Gi,P (!)

according to the splitting in (8.18).

The second part of the proof of Theorem 8.1.8. It remains to prove (8.10). Let ` 2

{1, . . . , d} and note that it su�ces to produce for each ⌫ > 0 a ✏⌫,` such that if

P 2 LY(C1, C2, r, R) \ O✏⌫,`
(Q) then |�`,P � �`,Q|  ⌫. By Proposition 8.2.3 we

have �`,Q = �i,Q for some i 2 {1, . . . , kQ} and �`,P = �j,P for some j 2 S(i).

Recalling (8.42) from the proof of Lemma 8.3.1 we have for each n 2 Z+ and a.e.

! that

1

n
ln

����
⇣
P n

!

��
Ej,P (!)

⌘�1
����
�1


1

ndj,P
ln det(P n

!
|Ej,P (!)) 

1

n
ln
���P n

!

��
Ej,P (!)

��� .

Since |·|  k·k and by Lemma 8.3.3, we get

ln

0

@ inf
v2Ej,P (!)

kvk1

|P n

!
v|

1

A  d�1
j,P

det(P n

!
|Ej,P (!))  lnK+ln

0

B@ sup
v2Ej,P (!)

kvk1

|P n

!
v|

1

CA . (8.54)

The rest of the proof will run as follows: we will first pursue some technical bounds,

which we will then use to obtain lower and upper bounds in terms of �i,Q for the

left-most and right-most terms, respectively, in (8.54).
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Some technical bounds. For every v 2 Ej,P (!) \Bk·k we have

�����

��Qn

!
⇧Ei,Q(!)v

��
|P n
!
v|

� 1

����� = |P n

!
v|�1

����Qn

!
⇧Ei,Q(!)v

��� |P n

!
v|
��



���
���
���Qn

!
(Id�⇧Ei,Q(!))

��
Ej,P (!)

���
���
���+ |||Qn

!
� P n

!
|||

|P n
!
v|

.

(8.55)

By (8.17), Lemma 8.3.3, and as ⌘ + �0 < 2�1 min1ikQ{�i,Q � �i+1,Q}, we have

|P n

!
v|�1

 K kP n

!
vk�1

 KC0e
�n�kQ+1,Q . (8.56)

By Lemma 7.2.5 we have Qn
2 EndS(X, �), and so for every n 2 Z+ and  > 0

there exists C,n such that

���
���
���Qn

!
(Id�⇧Ei,Q(!))

��
Ej,P (!)

���
���
��� =
������Qn

!
(⇧Gi,P (!) � ⇧Ei,Q(!))

������


��⇧Gi,P (!) � ⇧Ei,Q(!)

��

+ C,n
������⇧Gi,P (!) � ⇧Ei,Q(!)

������,

(8.57)

where we also used the fact that ⇧Gi,P (!)

��
Ej,P (!)

= Id
��
Ej,P (!)

. From the proof of

Proposition 8.2.2 we have
��⇧Gi,P (!) � ⇧Ei,Q(!)

��  2⇥2
0. Thus, by applying (8.56),

(8.57) to (8.55) we obtain

�����

��Qn

!
⇧Ei,Q(!)v

��
|P n
!
v|

� 1

�����  KC0e
�n�kQ+1,Q

�
2⇥2

0 + C,n
������⇧Gi,P (!) � ⇧Ei,Q(!)

������+ |||Qn

!
� P n

!
|||
�
.

Fix � > 0 and take  = �K�1en�kQ+1,Q/(4⇥2
0C0). By Propositions 7.2.6 and 8.2.2,

for every n 2 Z+ there exists ✏�,n > 0 so that if P 2 LY(C1, C2, r, R) \ O✏�,n(Q)

then

KC0e
�n�kQ+1,Q

�
C,n

������⇧Gi,P (!) � ⇧Ei,Q(!)

������+ |||Qn

!
� P n

!
|||
�

�

2
,

and so �����

��Qn

!
⇧Ei,Q(!)v

��
|P n
!
v|

� 1

�����  �.

Hence

��ln (|P n

!
v|)� ln

���Qn

!
⇧Ei,Q(!)v

�����  max {ln(1 + �),� ln(1� �)} := e(�). (8.58)
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We finish this part of the proof by deriving a lower bound for
��⇧Ei,Q(!)v

�� when

v 2 Ej,P (!) \Bk·k. By Lemma 8.3.3 and as Ej,P (!) ✓ Gi,P (!) we have

��⇧Ei,Q(!)v
�� �

��⇧Ei,Q(!)v
�� �

��⇧Gi,P (!)v
���
������⇧Gi,P (!) � ⇧Ei,Q(!)

������

� K�1
�
������⇧Gi,P (!) � ⇧Ei,Q(!)

������.

Thus by Proposition 8.2.2 there exists some ✏0 such that if P 2 LY(C1, C2, r, R) \

O✏0(Q) then
��⇧Ei,Q(!)v

�� � 1/(2K). We assume that ✏�,n  ✏0 without loss of

generality.

An upper bound for the right side of (8.54). From (8.58), Proposition 8.2.2, and

as
��⇧Ei,Q(!)v

�� 6= 0 for v 2 Ej,P \ Bk·k, we get

ln

0

B@ sup
v2Ej,P (!)

kvk1

|P n

!
v|

1

CA  sup
v2Ej,P (!)

kvk1

 
ln

 ��Qn

!
⇧Ei,Q(!)v

��
��⇧Ei,Q(!)v

��

!
+ ln

���⇧Ei,Q(!)v
���
!

+ e(�)

 ln
⇣���Qn

!

��
Ei,Q

���
⌘
+ ln(⇥2

0) + e(�).

From (8.54) we deduce that if P 2 LY(C1, C2, r, R) \O✏�,n(Q) then

1

ndj,P

Z
det(P n

!
|Ej,P (!)) dP 

1

n

Z
ln
⇣���Qn

!

��
Ei,Q

���
⌘
dP+

1

n

�
ln(K⇥2

0) + e(�)
�
.

Applying Proposition 8.3.2 we see that for every ⌫ we may take n to be very

large and � su�ciently small to produce ✏⌫1 (depending on � and n) so that if

P 2 LY(C1, C2, r, R) \O⌫1(Q) then

�j,P =
1

ndj,P

Z
det(P n

!
|Ej,P (!)) dP  �i,Q + ⌫.

Hence

�`,P � �`,Q = �j,P � �i,Q  ⌫. (8.59)
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A lower bound for the left side of (8.54). From (8.58), Lemma 8.3.3, and as
��⇧Ei,Q(!)v

�� � 1/(2K) we get

ln

0

@ inf
v2Ej,P (!)

kvk1

|P n

!
v|

1

A � inf
v2Ej,P (!)

kvk1

 
ln

 ��Qn

!
⇧Ei,Q(!)v

��
��⇧Ei,Q(!)v

��

!
+ ln

���⇧Ei,Q(!)v
���
!

� e(�)

� ln

 ����
⇣
Qn

!

��
Ei,Q(!)

⌘�1
����
�1
!

� ln(K)� ln(2K)� e(�).

Thus by (8.54) for P 2 LY(C1, C2, r, R) \O✏�,n(Q) we have

1

ndj,P

Z
det(P n

!
|Ej,P (!)) dP �

1

n

Z
ln

 ����
⇣
Qn

!

��
Ei,Q(!)

⌘�1
����
�1
!

dP�
ln(2K2) + e(�)

n
.

Applying Proposition 8.3.2 as in the previous step, we see that for every ⌫ > 0 we

may take n to be very large and � su�ciently small to produce ✏⌫2 (depending on

� and n) so that if P 2 LY(C1, C2, r, R) \O✏⌫2
(Q) then �j,P � �i,P � ⌫. Hence

�`,Q � �`,P = �i,Q � �`,P  ⌫. (8.60)

Setting ⌫ = min{⌫1, ⌫2}, and then combining (8.59) and (8.60) yields |�`,P � �`,Q| 

⌫ for P 2 LY(C1, C2, r, R) \ O✏⌫ (Q). As discussed at the beginning of the proof,

this su�ces to prove (8.10), which completes the proof of Theorem 8.1.8.

8.4 Technical proofs for Sections 8.2 and 8.3

In this section we prove some technical results on the existence, continuity and

measurability of certain maps used in the proof of Theorem 8.1.8.

Throughout this section (X, k·k) will denote a separable Banach space. Note

that, as X is separable, when restricted to the bounded sets of L(X) the strong

operator topology is metrisable. In addition, the map (S, T ) 7! S � T is continuous

with respect to this restricted topology. We will use this fact frequently throughout

this section. Let �d = {A 2 L(X) : A2 = A and rank(A) = d} denote the space of

bounded d-dimensional projections on X, and set

⇤d =
n
(A,⇧1,⇧2) 2 L(X)⇥�d ⇥�d | ⇧2A

��
⇧1(X)

: ⇧1(X) ! ⇧2(X) is invertible
o
.
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Let �⇤ : ⇤d ! �d be defined by

�⇤(A,⇧1,⇧2) = (Id+A⇤(0))⇧2,

where A⇤ is understood as the forward graph transform from L(⇧1(X), ker(⇧1)) to

L(⇧2(X), ker(⇧2)), and let �⇤ : ⇤d ! �d be defined by

�⇤(A,⇧1,⇧2) = ⇧1 � A⇤(0)(Id�⇧1),

where A⇤ is understood as the backward graph transform from L(ker(⇧2),⇧2(X))

to L(ker(⇧1),⇧1(X)).

The first result we will focus on proving is the following.

Proposition 8.4.1. Suppose that (⌦,F ,P) is a Lebesgue space, X is a separable

Banach space, and Y : ⌦ 7! L(X)3 is a (F ,S3)-measurable map with Y (⌦) ✓ ⇤d.

Then �⇤
� Y and �⇤ � Y are (F ,S)-measurable.

We require a number of intermediary lemmas before proving Proposition 8.4.1.

Lemma 8.4.2. The map  : �d ! Gd(X) defined by  (⇧) = ⇧(X) is continuous

with respect to the strong operator topology on �d.

Proof. Fix a normalised Auerbach basis {vi}di=1 for  (⇧) i.e. a normalised basis

such that

8i 2 {1, . . . , d} dist(vi, span{vj : j 6= i}) = 1.

For ⌘ > 0 set

S⌘ := �d \

 
d\

i=1

{⇧0
2 L(X) : k(⇧� ⇧0)vik < ⌘}

!
,

and note that each S⌘ is open in the strong operator topology. Set ✏ = 2�d�2 and

let NB✏

d
(X) denote the set of ✏-nice bases for d-dimensional subspaces of X (see

[47, Definition 2] for the relevant definition). Note that {vi}di=1 2 NB✏

d
(X). By [47,

Lemma B.8] there exists ⌘ > 0 so that if {wi}
d

i=1 satisfies sup
i
kvi � wik < ⌘0 then

{wi}
d

i=1 2 NB✏

d
(X) too. Hence if ⇧0

2 S⌘ then {⇧0vi}di=1 is a ✏-nice basis for ⇧
0(X).

Moreover, the map ⇧0
7! {⇧0vi}di=1 is continuous from S⌘ to NB✏

d
(X). Thus by

[47, Corollary B.6] the map ⇧0
7! span{⇧0vi}di=1 = ⇧(X) is continuous from S⌘ to

Gd(X).
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Lemma 8.4.3. For every s > 0 the set ⇤d \ (sBL(X))3 is open in the restriction of

the strong operator topology to (sBL(X))3.

Proof. It su�ces to prove that if {(A✏,⇧1,✏,⇧2,✏)}✏>0 ✓ (sBL(X))3 converges strongly

to (A0,⇧1,0,⇧2,0) 2 ⇤d \ (sBL(X))3 then

lim sup
✏!0

����
⇣
⇧2,✏A✏

��
⇧1,✏(X)

⌘�1
���� 

����
⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1
���� . (8.61)

By definition, for each v 2 ⇧1,✏(X) with kvk = 1 there exists w 2 ⇧1,0(X) with

kwk = 1 such that kv � wk  dH(⇧1,✏(X),⇧1,0(X)). Hence, for every such v and

w,

k⇧2,✏A✏vk � k⇧2,✏A✏wk � k⇧2,✏A✏(v � w)k

� k⇧2,✏A✏wk � s2dH(⇧1,✏(X),⇧1,0(X)).
(8.62)

Focusing on the first term yields

k⇧2,✏A✏wk �

����
⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1
����
�1

� k(⇧2,0A0 � ⇧2,✏A✏)⇧1,0k . (8.63)

Hence k(⇧2,0A0 � ⇧2,✏A✏)⇧1,0k ! 0, since ⇧1,0(X) is finite-dimensional and there-

fore has a compact unit ball. Combining this fact with (8.62) and (8.63) yields

a lower bound for k⇧2,✏A✏vk that is uniform in v 2 ⇧1,✏(X) with kvk = 1. By

applying Lemma 8.4.2 we see that lim✏!0⇧1,✏(X) = ⇧1,0(X) in Gd(X), and so this

lower bound converges to

����
⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1
����
�1

as ✏! 0.

Lemma 8.4.4. Let ⌅ : ⇤d ! L(X) be defined by

⌅(A,⇧1,⇧2) =
⇣
⇧2A

��
⇧1(X)

⌘�1

⇧2.

For each s > 0 the restriction of ⌅ to ⇤d \ (sBL(X))3 is continuous in the strong

operator topology.

Proof. Fix (A0,⇧1,0,⇧2,0) 2 ⇤d\(sBL(X))3. By (8.61) there exists a neighbourhood

U ✓ ⇤d \ (sBL(X))3 of (A0,⇧1,0,⇧2,0) that is open in the strong operator topology

and such that

sup {k⌅(A,⇧1,⇧2)k : (A,⇧1,⇧2) 2 U} < 1. (8.64)
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Thus ⌅(U) is bounded in L(X), and L(X) is therefore metrisable on ⌅(U). Hence,

to prove that ⌅ is continuous at (A0,⇧1,0,⇧2,0) it is su�cient to show that if

{(A✏,⇧1,✏,⇧2,✏)}✏>0 ✓ ⇤d \ (sBL(X))3 converges to (A0,⇧1,0,⇧2,0) 2 ⇤d \ (sBL(X))3

then ⌅(A✏,⇧1,✏,⇧2,✏) ! ⌅(A0,⇧1,0,⇧2,0). Fix v 2 X with kvk = 1. We have

k⌅(A0,⇧1,0,⇧2,0)v � ⌅(A✏,⇧1,✏,⇧2,✏)vk



����⇧1,✏

⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1

⇧2,0v �
⇣
⇧2,✏A✏

��
⇧1,✏(X)

⌘�1

⇧2,✏v

����

+

����(Id�⇧1,✏)⇧1,0

⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1

⇧2,0v

���� .

(8.65)

We of course have

lim
✏!0

����(Id�⇧1,✏)⇧1,0

⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1

⇧2,0v

����

=

����(Id�⇧1,0)⇧1,0

⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1

⇧2,0v

���� = 0.

(8.66)

On the other hand we have

⇧1,✏

⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1

⇧2,0v �
⇣
⇧2,✏A✏

��
⇧1,✏(X)

⌘�1

⇧2,✏v

= ⌅(A✏,⇧1,✏,⇧2,✏) ((⇧2,✏A✏⇧1,✏ � ⇧2,0A0⇧1,0)⌅(A0,⇧1,0,⇧2,0)� ⇧2,✏(Id�⇧2,0)) v.

Hence, as

lim sup
✏!0

k((⇧2,✏A✏⇧1,✏ � ⇧2,0A0⇧1,0)⌅(A0,⇧1,0,⇧2,0)� ⇧2,✏(Id�⇧2,0)) vk = 0,

by applying (8.61) from the proof of Lemma 8.4.3 we have

lim sup
✏!0

����⇧1,✏

⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1

⇧2,0v �
⇣
⇧2,✏A✏

��
⇧1,✏(X)

⌘�1

⇧2,✏v

���� = 0 (8.67)

We obtain the required claim by applying (8.66) and (8.67) to (8.65).

Lemma 8.4.5. For every s > 0 the maps �⇤
��
(sBL(X))3

and �⇤

��
(sBL(X))3

are continuous

with respect to the strong operator topology.

Proof. We will just prove that �⇤
��
(sBL(X))3

is continuous, since essentially the same

proof applies to �⇤

��
(sBL(X))3

. Fix (A0,⇧1,0,⇧2,0) 2 (sBL(X))3. An argument simi-

lar to that at the beginning of Lemma 8.4.4 shows that there is a neighbourhood
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U ✓ ⇤d \ (sBL(X))3 of (A0,⇧1,0,⇧2,0) that is open in the strong operator topol-

ogy and such that �⇤(U) is bounded. Therefore, to show that �⇤ is continuous

at (A0,⇧1,0,⇧2,0) it su�ces to prove that if {(A✏,⇧1,✏,⇧2,✏)}✏>0 ✓ ⇤d \ (sBL(X))3

converges to (A0,⇧1,0,⇧2,0) then �⇤(A✏,⇧1,✏,⇧2,✏) ! �⇤(A0,⇧1,0,⇧2,0). By the def-

inition of the forward graph transform we have

�⇤(A✏,⇧1,✏,⇧2,✏)� �
⇤(A0,⇧1,0,⇧2,0) = ⇧2,✏ + (Id�⇧2,✏)A✏

⇣
⇧2,✏A✏

��
⇧1,✏(X)

⌘�1

⇧2,✏

� ⇧2,0 � (Id�⇧2,0)A0

⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1

⇧2,0.

Applying Lemmas 8.4.3 and 8.4.4, and (8.61) yields

(Id�⇧2,✏)A✏

⇣
⇧2,✏A✏

��
⇧1,✏(X)

⌘�1

⇧2,✏ ! (Id�⇧2,0)A0

⇣
⇧2,0A0

��
⇧1,0(X)

⌘�1

⇧2,0

in the strong operator topology, which completes the proof.

The proof of Proposition 8.4.1. We will just prove that �⇤
�Y is (F ,S)-measurable,

since the same proof works for �⇤�Y . Let U ✓ L(X) be open in the strong operator

topology. Then

(�⇤
� Y )�1(U) = Y �1

 
[

n2Z+

(nBL(X))
3
\ (�⇤)�1(U)

!

= Y �1

 
[

n2Z+

⇣
�⇤
��
(nBL(X))3

⌘�1

(U)

!
.

(8.68)

By Lemma 8.4.5, the map �⇤
��
(nBL(X))3

is continuous in the strong operator topology

for every n 2 Z+, and so
⇣
�⇤
��
(nBL(X))3

⌘�1

(U) = Un \ ⇤d \ (nBL(X))3 for some

Un 2 B3
L(X) that is open in the strong operator topology. Since Y (⌦) ✓ ⇤d we have

Y �1(Un \ ⇤d \ (nBL(X))
3) = Y �1(Un \ (nBL(X))

3). (8.69)

Since (nBL(X))3 is a separable metric space, for each n 2 Z+ there exists countably

many rectangles {Ri,n ⇥ Pi,n ⇥ Qi,n}i2Z+ ✓ (BL(X))3 such that Ri,n, Pi,n, and Qi,n

are open in the strong operator topology on BL(X) and so that

Un \ (nBL(X))
3 =

[

i2Z+

(Ri,n \ nBL(X))⇥ (Pi,nnBL(X))⇥ (Qi,n \ nBL(X)). (8.70)
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By [47, Lemma A.2] we have nBL(X) 2 S, and so Un \ (nBL(X))3 2 S
3, being

the countable union of sets in S
3 by (8.70). Since Y is (F ,S3)-measurable, by

(8.68), (8.69) and (8.70) we may conclude that (�⇤
� Y )�1(U) 2 F i.e �⇤

� Y is

(F ,S)-measurable.

By arguing in the same way, we can deduce the measurability of the map ⌅ from

Lemma 8.4.4.

Proposition 8.4.6. Suppose that (⌦,F ,P) is a Lebesgue space, X is a separable

Banach space, and that Y : ⌦ 7! L(X)3 is (F ,S3)-measurable with Y (⌦) ✓ ⇤d.

Then ⌅ � Y is (F ,S)-measurable.

Proof. The proof is identical to that of Proposition 8.4.1, but with Lemma 8.4.4

used in place of Lemma 8.4.5.

Lemma 8.4.7. Suppose that (⌦,F ,P) is a Lebesgue space, X is a separable Banach

space, that {fn}n2Z+ is a sequence of strongly (F ,S)-measurable functions, and that

f : ⌦ ! L(X) with fn ! f almost uniformly and ess sup
!2⌦ kfk < 1. Then f is

(F ,S)-measurable.

Proof. Let r > ess sup
!2⌦ kfk. By changing each fn on a set of measure 0 we may

assume that lim sup
n!1

sup
!2⌦ kfn(!)k  r and that there exists g : ⌦ ! rBL(X)

with f = g a.e. and such that fn ! g uniformly. Since fn ! g uniformly there

exists N > 0 such that fn(⌦) ✓ rBL(X) for every n > N . By [47, Lemma A.2]

we have rBL(X) 2 S and so fn is (F ,Sr)-measurable for n > N , where Sr denotes

the Borel �-algebra associated to the restriction of the strong operator topology to

rBL(X). Since X is separable, the strong operator topology on rBL(X) is metrisable.

Thus g is (F ,Sr)-measurable, being the pointwise limit of measurable functions

with values in a metric space. For U ✓ L(X) that is open in the strong operator

topology we have U \ rBL(X) 2 Sr, and so g�1(U) = g�1(U \ rBL(X)) 2 F . Thus g

is (F ,S)-measurable. Since f = g a.e. we have that f is (F ,S)-measurable too.

We now prove the Lemma 8.2.6, which concerned the existence of measurable

change-of-basis maps with controlled distortion.

The proof of Lemma 8.2.6. By Lemma 8.4.2 the map ! 7! ⇧!(X) is measurable.

By [76, Corollary 39] for every ✏ > 0 there exists measurable maps ei : ⌦ ! X,
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1  i  d such that span{e1(!), . . . , ed(!)} = ⇧!(X) and for each 1  i  d� 1 we

have kei(!)k = 1 and

dist(ei(!), span{ej(!) : j > i}) � 1� ✏.

Let {⌫i(!)}di=1 denote the dual basis to {ei(!)}di=1 in ⇧!(X). For every ! we have

⌫i(!)ej(!) = �ij and so each ! 7! ⌫i(!)ej(!) is measurable. For (a1, . . . , ad) 2

Qd + iQd set  (a1, . . . , ad)(!) =
P

d

i=1 aiei(!). We of course have

k⌫i(!)k = sup
(a1,...,ad)2Qd+iQd

(a1,...,ad) 6=(0,...,0)

|⌫i(!)( (a1, . . . , ad)(!))|

| (a1, . . . ad)(!)|
,

and that each of the maps

! 7!
|⌫i(!)( (a1, . . . , ad)(!))|

| (a1, . . . , ad)(!)|

is measurable. Hence ! 7! k⌫i(!)k is measurable, being the supremum of countably

many measurable maps. By [76, Proposition 40], each ⌫i may be extended to a

strongly measurable map ⌫i : ⌦ ! L(X,C) without increasing k⌫i(!)k. Define

�! : X ! Cd by

�!v = (⌫1(!)(v), . . . , ⌫d(!)(v)),

and set A! = �!⇧!. We clearly have ker(A!) = ker(⇧!), and that A!

��
⇧!(X)

is a

bijection. The map ! 7! �! is strongly measurable as each of component maps

! 7! ⌫i(!) is strongly measurable, and so ! 7! A! is strongly measurable, due to

it being the composition of strongly measurable maps [47, Lemma A.5]. Moreover,

we have
⇣
A!

��
⇧!(X)

⌘�1

(a1, . . . , ad) =
dX

i=1

aiei(!),

which implies that
⇣
A!

��
⇧!(X)

⌘�1

is strongly measurable.

We may now prove the estimates in (8.28). For the second estimate we simply

note that if v 2 ⇧! then

kvk 

dX

i=1

|⌫i(!)v| 
p

d

 
dX

i=1

|⌫i(!)v|
2

!1/2

=
p

d kA!vk .
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Obtaining the first estimate in (8.28) is more involved. For every v 2 ⇧!(X) one

has

kvk � max
1id

n��⇧span{ei(!)}|| span{ej(!):j 6=i}v
�� ��⇧span{ei(!)}|| span{ej(!):j 6=i}

���1
o
. (8.71)

For each i 2 {1, . . . , d} set ⇧i,! = ⇧span{ei(!)}|| span{ej(!):j>i} and �i,! = Id�⇧i,!.

Note that

⇧span{ei(!)}|| span{ej(!):j 6=i} = ⇧i,!

 
i�1Y

j=1

�i�j,!

!
,

and so
��⇧span{ei(!)}|| span{ej(!):j 6=i}

��  2i�1
Q

i

j=1 k⇧j,!k. In addition we have for each

i 2 {1, . . . , d� 1} that

k⇧i,!k = sup
v2span{ej(!):j�i}

k⇧i,!(v)k

kvk
= sup

v02span{ej(!):j>i}

kei(!)k

kei(!)� v0k

= dist(ei(!), span{ej(!) : j > i})�1
 (1� ✏)�1,

while it is clear that k⇧d,!k = 1. Thus, for every i 2 {1, . . . , d} we have

��⇧span{ei(!)}|| span{ej(!):j 6=i}

��  2d�1(1� ✏)�d+1.

Since ⇧span{ei(!)}|| span{ej(!):j 6=i}v = ⌫i(!)(v), from (8.71) we obtain

kvk �

✓
2

1� ✏

◆d�1

max {⌫i(!)(v) : 1  i  d} �

✓
2

1� ✏

◆d�1

kA!vk .

Our final main result for this appendix concerns the measurability of the deter-

minant map, which is crucial for the proof of stability of Lyapunov exponents in

Section 8.3. We refer the reader to [15, Section 2.2] for an overview of the basic

properties of the determinant.

Proposition 8.4.8. Suppose that (⌦,F ,P) is a Lebesgue space, X is a separable

Banach space, and that Y : ⌦ 7! L(X) ⇥ Gd(X) is a (F ,S ⇥ BGd(X))-measurable

map. Then ! 7! det(Y (!)) is (F ,BR)-measurable.

Lemma 8.4.9. Suppose that X is a separable Banach space. For every d 2 Z+

and s > 0 the map det : L(X) ⇥ Gd(X) ! R is continuous with respect to strong

operator topology and the usual Grassmannian topology on Gd(X) when restricted

to sBL(X) ⇥ Gd(X).
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Proof. It su�ces to prove that if {(An, En)}n2Z+ ✓ sBL(X) ⇥ Gd(X) converges to

(A,E) then det(An|En) ! det(A|E). Let F 2 G
d(X) be such that E � F = X.

Since En ! E and N (F ) is open in Gd(X), without loss of generality we may

assume that En � F = X for every n. Moreover, by Proposition 6.1.2 we have

⇧En||F ! ⇧E||F in the operator norm topology. Since {An}n2Z+ is bounded in

L(X) it follows that An⇧En||F ! A in the strong operator topology.

The case where det(A|E) = 0. If det(An|E) = 0 eventually holds for all large

n 2 Z+ then we are done. Otherwise we may pass to a subsequence such that

lim sup
n!1

det(An|En) is unchanged and det(An|E) 6= 0 for every n 2 Z+. In

particular, we may assume that An

��
En

is injective for every n. Since det(A|E) = 0

there exists f 2 ker(A
��
E
) \ {0}. Let G be a complementary subspace for span{f}

in E. Let fn = ⇧En||Ff and Gn = ⇧En||FG. As En, E 2 F by Lemma 6.1.1 we have

that ⇧En||F

��
E
is invertible. Thus En = span{fn}�Gn and

⇧span{fn}||Gn = ⇧En||F⇧span{f}||G

�
⇧En||F

��
E

��1
.

Hence as En ! E we have lim sup
n!1

��⇧span{fn}||Gn

�� 
��⇧span{f}||G

�� < 1. Since

each An is injective, by [15, Lemma 2.15] there exists Cd > 0 such that

det(An|En)  Cd det(An| span{fn}) det(An|Gn)
��⇧span{fn}||Gn

�� . (8.72)

On one hand we have det(An| span{fn}) 
��An⇧En||Ff

��! 0, while on the other we

have det(An|Gn)  kAnk
d�1. Thus by (8.72) we have det(An|En) ! 0 = det(A|E),

as required.

The convergence of AnEn to AE. Henceforth we shall assume that det(A|E) 6= 0,

and so A
��
E
has trivial kernel. A quickly calculation verifies that

sup
f2E

kAfk=1

dist(Af,AnEn) 
��(A� An⇧En||F )

��
E

��
���
�
A
��
E

��1
��� .

It follows that limn!1

��(A� An⇧En||F )
��
E

�� = 0 since E is finite-dimensional and

therefore has compact unit ball. Hence limn!1 Gap(AE,AnEn) = 0. By [65, IV §2,
Corollary 2.6] it follows that dim(AE)  dim(AnEn) for su�ciently large n. Since

A
��
E
has trivial kernel we have dim(AE) = dim(E) = dim(En) � dim(AnEn) and so

dim(AE) = dim(AnEn). By [15, Lemma 2.6] we therefore have Gap(AnEn, AE) !

0, and so AnEn ! AE in Gd(X) by (6.1).
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The case where det(A|E) 6= 0. Let F 0
2 G

d(X) be such that AE � F 0 = X. Since

AnEn ! AE, without loss of generality we may assume that AnEn � F 0 = X

for every n and that ⇧AnEn||F
0 ! ⇧AE||F 0 . By Lemma 6.1.1 the map ⇧AnEn||F

0
��
AE

is invertible, and so the pushforward of mAE under ⇧AnEn||F
0 is a well defined,

translation invariant measure on AnEn. Since the Haar is unique up to scaling we

get

mAnEn =
mAnEn(BAnEn)

mAE(
�
⇧AnEn||F

0
��
AE

��1
(BAnEn))

(mAE �
�
⇧AnEn||F

0
��
AE

��1
).

For notational convenience we set �n =
�
⇧AnEn||F

0
��
AE

��1
. By (8.40) one has

|mE(BE)| |det(A|E)� det(An|En)|

=

����mAE(ABE)�
mAnEn(BAnEn)

mAE(�nBAnEn)

mAE(�nAn(BEn))

mAE(�nAn⇧En||FBE)
mAE(�nAn⇧En||FBE)

���� .

(8.73)

As
��⇧AnEn||F

0
��
AE

���1
BAE ✓ �n(BAnEn) ✓ k�nkBAE we have

��⇧AnEn||F
0
��
AE

���d

mAE(BAE)  mAE(�n(BAnEn)))  k�nk
d mAE(BAE). (8.74)

Since AnEn ! AE we have k�n � Idk ! 0 by Proposition 6.1.2 and the defini-

tion of the graph representation of N (F 0). Applying the facts that mAE(BAE) =

mAnEn(BAnEn),
��⇧AnEn||F

0
��
AE

��! 1, and k�nk ! 1 to (8.74) yields

lim
n!1

mAnEn(BAnEn)

mAE(�n(BAnEn))
= 1. (8.75)

By a similar argument we find that

lim
n!1

mAE(�nAn⇧En||FBE)

mAE(�nAnBEn)
= 1. (8.76)

Note that

��mAE(A(BE))�mAE(�nAn⇧En||F (BE))
��

|mE(BE)|
=
��det(A|E)� det(�nAn⇧En||F |E)

�� .
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Since �nAn⇧En||F

��
E

2 L(E,AE) for every n, we have �nAn⇧En||F

��
E

! A in the

operator norm on L(E,AE). Hence by [15, Lemma 2.20] we have

lim
n!1

det(�nAn⇧En||F |E) = det(A|E).

Combining this with (8.73), (8.75) and (8.76) completes the proof.

The proof of Proposition 8.4.8. The proof is similar to that of Proposition 8.4.1,

but we include it for completeness. For every open U 2 R we have

{! : det(Y (!)) 2 U} = Y �1

 
[

n2Z+

�
(A,E) 2 nBL(X) ⇥ Gd(X) : det(A|E) 2 U

 
!
.

(8.77)

By Lemma 8.4.9 for each n 2 Z+ there exists a set Un 2 nBL(X) ⇥ Gd(X) that is

open in the product of the relative strong operator topology and the Grassmannian

topology, and such that

Un =
�
(A,E) 2 nBL(X) ⇥ Gd(X) : det(A|E) 2 U

 
.

Since nBL(X) and Gd(X) are both are separable metric spaces (for the later claim see

[47, Lemma B.11]) we may write Un \ (nBL(X) ⇥ Gd(X)) as the union of countably

many rectangles {(Rn,i \ nBL(X)) ⇥ Qn,i}i2Z+ , where Rn,i is open in the strong

operator topology on L(X) and Qn,i is open in the Grassmannian topology. We

have nBL(X) 2 S by [47, Lemma A.2], and so Rn,i 2 S for every i, n 2 Z+. It follows

that each Un is a countable union of sets in S ⇥ BGd(X), and so Un 2 S ⇥ BGd(X)

for every n. Thus
S

n2Z+ Un 2 S ⇥ BGd(X). Since Y is (F ,S ⇥ BGd(X))-measurable,

it follows that the left side (8.77) must be in F . Thus ! 7! det(Y (!)) is (F ,BR)-

measurable, as required.
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Chapter 9

Application to random dynamical systems

In this chapter we demonstrate the application of Theorems 7.1.7 and 8.1.8 to

cocycles of Perron-Frobenius operators associated to random dynamical systems

consisting of Ck expanding maps on S1, with k � 2. We will consider two types

of perturbations to such maps: fiber-wise ‘deterministic’ perturbations to the ran-

dom dynamics1, and perturbations that arise via numerical approximations of the

Perron-Frobenius cocycle. Section 9.1 contains the main definitions and results for

this chapter, while the proofs of our main results are deferred to Section 9.2.

9.1 Definitions and main results

Fix a Lebesgue probability space (⌦,F ,P), and an invertible, P-ergodic map � :

⌦! ⌦. We will consider random dynamical systems taking values in the following

sets.

Definition 9.1.1. For k � 2, ↵ 2 (0, 1) and K > 0 we set

LYk(↵, K) =
�
T 2 C

k(S1, S1) : inf |T 0
| � ↵�1 and dCk(T, 0)  K

 
.

We say that T : ⌦! LYk(↵, K) is measurable if it is measurable with respect to F

and the Borel �-algebra on C
k(S1, S1).

Suppose k � 2, ↵ 2 (0, 1), and K > 0. A measurable map T : ⌦ ! LYk(↵, K)

induces a random dynamical system (RDS) over � whose trajectories are of the

form

x, T!(x), T
2
!
(x), . . . , T n

!
(x), . . .

1
In this rather unfortunate oxymoron, a fiber-wise ‘deterministic’ perturbation simply means

that the random maps are fiber-wise perturbed to nearby maps.
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where T! := T (!) and T
n

!
:= T�n(!) � · · · � T!. To study the statistical properties of

such a RDS one is lead to study the associated Perron-Frobenius operator cocycle.

If T 2 LYk(↵, K) then we denote by LT : L1(S1) ! L1(S1) the associated Perron-

Frobenius operator, which is defined by duality via

Z
LTf · g dLeb =

Z
f · g � T dLeb 8f 2 L1(S1), g 2 L1(S1). (9.1)

In a slight abuse of notation, whenever T : ⌦ ! LYk(↵, K) is measurable, we

denote by LT : ⌦ ! L(L1) the map defined by LT (!) = LT (!). The Perron-

Frobenius operator cocycle associated to T is given by:

(n,!) 2 N⇥ ⌦ 7! L�n(!) � · · · � L! 2 L(L1(S1)).

As one might expect given the deterministic case, studying the Perron-Frobenius

cocycle on L1(S1) yields little information about the quenched statistical properties

of the RDS. Instead, the regularity of maps in LYk(↵, K) suggests that we should

consider how their Perron-Frobenius operators act on objects with some smoothness

rather than on L1(S1). For k 2 N the Sobolev space W k,1(S1) is defined by

W k,1(S1) =

(
f 2 Lp(S1) :

f (`) exists in the weak sense and
��f (`)

��
L1 < 1 for each 0  `  k

)
.

Each W k,1(S1) becomes a Banach space when equipped with the norm

kfk
Wk,1 = kfk

L1 +
��f (k)

��
L1 .

For each k � 1 the embedding of W k,1(S1) into W k�1,1(S1) is compact by the

Rellich–Kondrachov Theorem. Moreover,
��f (k)

��
L1 = Var(f (k�1)) and so by follow-

ing the arguments in Examples 6.2.12 and 6.2.13 we conclude that k·k
Wk,1 is upper-

semicontinuous with respect to k·k
Wk�1,1 . Thus (W k,1(S1), k·k

Wk,1 , k·kWk�1,1) is a

pre-compact Saks space, and therfore compatible with the perturbation theory de-

veloped in Chapters 7 and 8. We remind the reader that each W k,1(S1) is separable

as a Banach space.

Proposition 9.1.2. If T : ⌦! LYk(↵, K) is measurable for k � 2, ↵ 2 (0, 1) and

K > 0, then (⌦,F ,P, �,W k�1,1(S1),LT ) is a separable strongly measurable random

linear system with ergodic invertible base. Moreover (⌦,F ,P, �,W k�1,1(S1),LT ) has

an Oseledets splitting of dimension d � 1 with �1,T = 0.
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We will now make precise our first type of perturbation. For measurable maps

S, T : ⌦! LYk(↵, K) we set

dk�1(S, T ) = ess sup
!2⌦

dCk�1(S(!), T (!)).

For ✏ > 0 and measurable T : ⌦! LYk(↵, K) we set

O✏,k,↵,K(T ) =

⇢
S : ⌦! LYk(↵, K)

����S is measurable with dk�1(T ,S)  ✏

�
.

The next result concerns the stability of the Oseledets splitting and Lyapunov

exponents of cocycles of Perron-Frobenius operator associated to maps in LYk(↵, K)

under perturbations which are small in the dk�1 metric. We adopt the notation of

Chapter 8, aside from frequently replacing LT (resp. LS) with T (resp. S) in

various subscripts.

Theorem 9.1.3. Fix k � 2, ↵ 2 (0, 1) and K > 0, and suppose that T : ⌦ !

LYk(↵, K) is measurable, and that (⌦,F ,P, �,W k�1,1(S1),LT ) admits a hyperbolic

Oseledets splitting of dimension d with (k � 1) ln↵ < µLT . There exists ✏ > 0 such

that if S 2 O✏,k,↵,K(T ) then (⌦,F ,P, �,W k�1,1(S1),LS) has an Oseledets splitting

of dimension d. In addition, there exists c0, R0 > 0 such that each Ii = (�i,T �

c0,max{�i,T , ln(�1iR0)} + c0), i 2 {1, . . . , kT }, separates the Lyapunov spectrum of

(⌦,F ,P, �,W k�1,1(S1),LS), and the corresponding projections satisfy

8i 2 {1, . . . , kT }, a.e. ! 2 ⌦ rank(⇧Ii,S(!)) = di,T ,

and

sup

⇢
ess sup
!2⌦

k⇧Ii,S(!)kL(Wk�1,1)

����S 2 O✏,k,↵,K(T ), 1  i  kT

�
< 1.

Moreover, for every � > 0 there exists ✏� > 0 so that if S 2 O✏� ,k,↵,K
(T ) then

sup
1id

|�i,T � �i,S |  �,

sup
1ikT

ess sup
!2⌦

k⇧Ii,T (!)� ⇧Ii,S(!)kL(Wk�1,1,Wk�2,1)  �,

and

ess sup
!2⌦

dH(FT (!), FS(!))  �.
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Our second application concerns the numerical approximation of the Oseledets

splitting and Lyapunov exponents associated to a Perron-Frobenius operator cocy-

cle. For each n 2 Z+ the nth Fejér kernel Jn : S1
! C is defined by

Jn(t) =
nX

k=�n

✓
1�

|k|

n+ 1

◆
e2⇡ikt.

Convolution with the nth Fejér kernel corresponds to taking the Cesàro average of

the first n+ 1 partial Fourier series, so that for each f 2 L1(S1) one has

(Jn ⇤ f)(x) =
1

n+ 1

nX

`=0

 
`X

j=�`

f̂(j)e2⇡ijx
!

=
nX

`=�n

✓
1�

|k|

n+ 1

◆
f̂(`)e2⇡i`x,

where f̂(`) =
R
f(x)e�2⇡i`x dLeb. The following proposition, which is well-known,

summarises the relevant properties of the Fejér kernel in our setting.

Proposition 9.1.4. For n 2 Z+ let Jn : L1(S1) ! L1(S1) denote the operator

defined by

Jn(f) = Jn ⇤ f.

For every n, k 2 Z+ the operator Jn is Markov2 and restricts to a contraction in

L(W k,1(S1)). In addition, if k � 1 then

lim
n!1

kJn � Idk
L(Wk,1,Wk�1,1) = 0. (9.2)

When T : ⌦ ! LYk(↵, K) is measurable and n 2 Z+ we define LT ,n : ⌦ !

L(W k�1,1(S1)) by LT ,n(!) = JnLT (!). Note that each LT ,n(!) has finite rank

and preserves the span of {e2⇡i`x : �n  `  n}. Hence, by a constant change of

basis we may view (⌦,F ,P, �,W k�1,1(S1),LT ,n) as a matrix cocycle on C2n+1. One

could then use this matrix representation to approximate the Oseledets splitting

and Lyapunov exponents of the original cocycle by computing the singular value

decomposition of very large iterates of the matrix cocycle, as in [44] or [84]. While

a completely rigorous proof of convergence for such an algorithm is outside of the

scope of this thesis, we believe that the following theorem is a substantial step in

the direction of such a result.

Theorem 9.1.5. Fix k � 2, ↵ 2 (0, 1) and K > 0. If T : ⌦ ! LY(↵, K) is

measurable and (⌦,F ,P, �,W k�1,1(S1),LT ) admits a hyperbolic Oseledets splitting

2
That is, the positive cone in W k,1

(S1
) is invariant under Jn, and Jn preserves integrals.
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of dimension d with (k� 1) ln↵ < µLT , then there exists N such that if n > N then

(⌦,F ,P, �,W k�1,1(S1),LT ,n) admits an Oseledets splitting of dimension d. In addi-

tion, there exists c0, R0 > 0 such that each Ii = (�i,T �c0,max{�i,T , ln(�1iR0)}+c0),

i 2 {1, . . . , kT }, separates the Lyapunov spectrum of (⌦,F ,P, �,W 1,1(S1),LT ,n),

and the corresponding projections satisfy

8i 2 {1, . . . , kT }, a.e. ! 2 ⌦ rank(⇧Ii,LT ,n(!)) = di,T ,

and

sup

⇢
ess sup
!2⌦

��⇧Ii,LT ,n(!)
��
L(Wk�1,1)

����n > N, 1  i  kT

�
< 1.

In addition, for every � > 0, there exists N� > N such that if n > N� then

sup
1id

���i,LT � �i,LT ,n

��  �,

sup
1ikT

ess sup
!2⌦

��⇧Ii,LT (!)� ⇧Ii,LT ,n(!)
��
L(Wk�1,1,Wk�2,1)

 �,

and

ess sup
!2⌦

dH(FLT (!), FLT ,n(!))  �.

Before proving the results described thus far we describe some concrete settings

in which they may be applied. We note that the chief di�culty in applying The-

orems 9.1.3 and 9.1.5 is not proving the existence of an Oseledets splitting (recall

Proposition 9.1.2), but verifying that the splitting is hyperbolic.

Example 9.1.6. Fix k � 2, ↵ 2 (0, 1) and K > 0. For each T 2 LYk(↵, K) we

may consider the constant random dynamical system given by ! 7! T . In this case

the associated Perron-Frobenius operator LT is quasi-compact3 on W k�1,1(S1) with

⇢ess(LT )  ↵k�1 < ⇢(LT ) = 1. It follows that (⌦,F ,P, �,W k�1,1(S1),! 7! LT ) ad-

mits a hyperbolic Oseledets splitting with µ > ln↵k�1: for any such µ 2 (ln↵k�1, 0)

the fast Oseledets spaces are just direct sums of the eigenspaces of LT associ-

ated to eigenvalues of modulus greater than eµ (of which there are finitely many),

and the Lyapunov exponents are {ln |�| : � 2 �(LT ), |�| > lnµ}. We refer the

reader to [72] and [99] for examples of expanding maps on S1 with non-trivial

eigenvalues with modulus in (↵k�1, 1), and note that the di↵erent choice of Banach

3
We remind the reader of the proof. One bounds the essential spectral radius by using Theorem

6.2.20 and Proposition 9.2.3. Since LT preserves integrals we have ⇢(LT ) � 1. If ⇢(LT ) > 1 then

LT has an eigenvalue of modulus greater than 1 on W k�1,1
(S1

), which must also be an eigenvalue

for LT on L1
(S1

); but LT is a contraction on L1
(S1

) and so no such eigenvalue can exist.
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space in either paper is inconsequential due to [11, Section A.2]. We may there-

fore apply Theorem 9.1.3 to (⌦,F ,P, �,W k�1,1(S1),! 7! LT ) with perturbation

(⌦,F ,P, �,W k�1,1(S1),LS) whenever S : ⌦ 7! LYk(↵, K) is measurable and such

that ess sup
!2⌦ dCk�1(S(!), T ) is su�ciently small.

Example 9.1.7. If, in the setting of Example 9.1.6, there exists µ 2 (ln↵k�1, 0)

such that for every r > lnµ the set {� 2 �(LT ) : |�| = r} contains at most

a single element, then every Lyapunov exponent of (⌦,F ,P, �,W k�1,1(S1),! 7!

LT ) has multiplicity one. Thus, by Remark 8.1.9, it follows that if S : ⌦ 7!

LYk(↵, K) is measurable and ess sup
!2⌦ dCk�1(S(!), T ) is su�ciently small then the

Oseledets splitting for (⌦,F ,P, �,W k�1,1(S1),LS) that is produced by Theorem

9.1.3 is hyperbolic. Thus both Theorem 9.1.3 and Theorem 9.1.5 may be applied

to (⌦,F ,P, �,W k�1,1(S1),LS).

9.2 Proofs

We begin by pursuing the proof of Proposition 9.1.2, which requires some prepara-

tory results. Many of these results are well-known, but do not have full proofs in

a collected place and so we reproduce the details here. The next proposition sum-

marises the basic properties of Perron-Frobenius operators associated to maps in

LYk(↵, K).

Proposition 9.2.1. There exists Ck�1,↵,K > 0 such that for every T 2 LYk(↵, K)

and f 2 W k�1,1(S1) we have

kLTfkWk�1,1  ↵k�1
kfk

Wk�1,1 + Ck�1,↵,K kfk
Wk�2,1 . (9.3)

Hence {LT : T 2 LYk(↵, K)} is an equicontinuous subset of LS(W k�1,1), where

W k�1,1(S1) has the Saks space structure (W k�1,1(S1), k·k
Wk�1,1 , k·kWk�2,1).

To prove Proposition 9.2.1 we need the following lemma, whose’s proof is an

easy exercise and widely known (see e.g. [9, the proof of Theorem 2.5]).

Lemma 9.2.2. For every k 2 N there exists multinomials Gk,` : Rk
! R, ` 2

{0, . . . , k}, such that for every T 2 LYk(↵, K) and f 2 W k,1 we have

(LTf)
(k) = LT

 
(T 0)�2k

kX

`=0

Gk,`(T
0, . . . , T (k+1)) · f (`)

!
. (9.4)

Moreover Gk,k(x1, . . . , xk+1) = xk

1.
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The proof of Proposition 9.2.1. For brevity denote Gk�1,`(T 0, . . . , T (k)) by Gk�1,`,T .

By Lemma 9.2.2 and as LT is Markov we have

��(LTf)
(k�1)

��
L1 =

Z �����LT

 
(T 0)�2(k�1)

k�1X

`=0

Gk�1,`,T · f (`)

!����� dLeb



Z ��f (k�1)
��

|T 0|
k�1 dLeb+

k�2X

`=0

Z
|T 0

|
�2(k�1)

|Gk�1,`,T |
��f (`)

�� dLeb

 ↵k�1
kfk

Wk�1,1 +

 
k�1X

0=`

↵2(k�1)Dk�2,` kGk�1,`,TkL1

!
kfk

Wk�2,1 ,

where Dk�2,` denotes the norm of the embedding of W k�2,1(S1) into W `,1(S1). Let

Ck�1,↵,K = 1 + sup
T2LYk(↵,K)

 
k�1X

0=`

↵2(k�1)Dk�2,` kGk�1,`,TkL1

!
,

and note that Ck�1,↵,K < 1. Since LT is Markov on L1(S1) we therefore have

kLTfkWk�1,1 = kLTfkL1 +
��(LTf)

(k�1)
��
L1  ↵k�1

kfk
Wk�1,1 + Ck�1,↵,K kfk

Wk�2,1 ,

which yields (9.3). Since the embedding of W k�1,1(S1) into W k�2,1(S1) is bounded,

(9.3) also implies that {LT : T 2 LYk(↵, K)} is a bounded subset of L(W k�1,1(S1)).

For k > 2 the same argument shows that {LT : T 2 LYk(↵, K)} is a bounded

subset of L(W k�2,1(S1)), while if k = 2 then {LT : T 2 LYk(↵, K)} is bounded

in L(W k�2,1(S1)) since each LT is Markov on W k�2,1(S1) = L1(S1). That {LT :

T 2 LYk(↵, K)} is an equicontinuous subset of LS(W k�1,1(S1)) then follows from

Proposition 6.2.18.

Proposition 9.2.3. Let Wk�1 =
F
!2⌦{!} ⇥ W k�1,1. There exists Rk�1,↵,K �

1 and Ak�1,↵,K > 0 such that if T : ⌦ ! LYk(↵, K) is measurable then LT 2

LY(1, Ak�1,↵,K ,↵k�1, Rk�1,↵,K) \ EndS(Wk�1, �).

Proof. That LT 2 EndS(Wk�1, �) follows trivially from Proposition 9.2.1. Let

Rk�1,↵,K = max{1, sup{kLTkL(Wk�2,1) : T 2 LYk(↵, K)}},
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and note that Rk�1,↵,K is finite by Proposition 9.2.1. By Proposition 9.2.1, for every

f 2 W k�1,1(S1), ! 2 ⌦ and n 2 Z+ we have

��(LT (�n(!)) � · · · � LT (!))f
��
Wk�1,1 ↵

k�1
��(LT (�n�1(!)) � · · · � LT (!))f

��
Wk�1,1

+ Ck�1,↵,KR
n�1
k�1,↵,K kfk

Wk�2,1 .

Iterating the above inequality yields

����(LT (�n(!)) � · · · � LT (!))f

����
Wk�1,1

 ↵n(k�1)
kfk

Wk�1,1 +
Ck�1,↵,K

Rk�1,↵,K
Rn

k�1,↵,K

 
n�1X

j=0

✓
↵k�1

Rk�1,↵,K

◆j
!
kfk

Wk�2,1

 ↵n(k�1)
kfk

Wk�1,1 +
Ck�1,↵,KRn

k�1,↵,K

Rk�1,↵,K � ↵k�1
kfk

Wk�2,1 .

We obtain the claim upon setting Ak�1,↵,K = Ck�1,↵,K(Rk�1,↵,K � ↵k�1)�1.

The proof of Proposition 9.1.2. To show that (⌦,F ,P, �,W k�1,1(S1),LT ) is a sepa-

rable strongly measurable random linear system with ergodic invertible base it suf-

fices to the map � : LYk(↵, K) ! L(W k�1,1) defined by �(T ) = LT is measurable

with respect to the Borel �-algebras on C
2(S1, S1) and L(W k�1,1), where the later

space is equipped with the strong operator topology. We will do this by showing that

� is continuous: for every f 2 W k�1,1 we will show that k(LT � LS)fkWk�1,1 ! 0

as dCk(T, S) ! 0. By [10, (C1) of Lemma 2.4], for every g 2 C
k�1(S1) we have

k(LT � LS)fkCk�1 ! 0 as dCk(T, S) ! 0. Fix f 2 W k�1,1 and for each ✏ > 0 let

f✏ 2 C
k�1(S1) satisfy kf � f✏kWk�1,1  ✏. Then

k(LT � LS)fkWk�1,1  k(LT � LS)f✏kWk�1,1 + k(LT � LS)(f � f✏)kWk�1,1

 k(LT � LS)f✏kCk�1 + 2✏ sup
T2LYk(↵,K)

kLTkL(Wk�1,1)

! 2✏ sup
T2LYk(↵,K)

kLTkL(Wk�1,1) ,

as dC2(T, S) ! 0. The set {LT : T 2 LYk(↵, K)} is bounded in L(W k�1,1) by

Proposition 9.2.1, and so we obtain the required claim by sending ✏! 0.

We will sketch the proof that P = (⌦,F ,P, �,W k�1,1(S1),LT ) has an Os-

eledets splitting. We aim to verify the hypotheses of [47, Theorem 2.10] i.e. that

the index of compactness ⇤
P

of P is less than the maximal Lyapunov exponent
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�⇤
P

of P (see [47, Definition 2.3]). Our proof of this roughly follows the argu-

ment laid out in [47, Lemma 3.16]. Recall from Proposition 9.2.3 that LT 2

LY(1, Ak�1,↵,K ,↵k�1, Rk�1,↵,K). By [47, Lemma C.5], it follows that ⇤
P
 ln↵k�1 <

0. On the other hand, since each LT (!) is Markov, we have

��(LT (�n(!)) � · · · � LT (!))1
��
Wk�1,1 �

��(LT (�n(!)) � · · · � LT (!))1
��
L1 = 1,

and so �P � 0. Thus P has an Oseledets splitting with �1,T = �⇤
P
� 0 by [47, Theo-

rem 2.10]. We will now show that �1,T = 0. Let P 0 = (⌦,F ,P, �,W 1,1(S1),LT ), and

note that the arguments of the previous paragraph imply that P 0 has an Oseledets

splitting with ⇤
P 0  ln↵ < �⇤

P 0 and that �⇤
P 0 � 0. However, the Lasota-Yorke

inequality obtained for P 0 from Proposition 9.2.3 has Rk�1,↵,K = 1, and so

sup
n2Z+

sup
!2⌦

��(LT (�n(!)) � · · · � LT (!))
��
L(W 1,1)

< 1,

which implies that �⇤
P 0  0. Thus �⇤

P 0 = 0. In the language of [49, Appendix A], P

is a dense restriction of P 0. As �⇤
P 0 � max{⇤

P 0 ,⇤P} by [49, Theorem 37] we have

�⇤
P 0 = �⇤

P
= 0.

Proposition 9.2.4. There exists Qk,↵,K > 0 such that for every S, T 2 LYk(↵, K)

we have

kLT � LSkL(Wk�1,1,Wk�2,1)  Qk,↵,KdCk�1(S, T ).

Proof. The case where k = 2 is known: upon recalling from Example 6.2.13 that

kfkBV = kfk
W 1,1 for f 2 W 1,1, the result is given by [78, Example 3.1]. We therefore

focus on the case where k > 2, although we use the k = 2 case during our argument.

Let f 2 W k�2,1(S1) and g 2 L1(S1). For brevity, if R 2 LYk(↵, K) then we will

write Gk�2,`,R in place of Gk�2,`(R0, . . . , R(k�1)). By Lemma 9.2.2 we have

Z
(LTf � LSf)

(k�2)g dLeb

=

Z  
LT

 
k�2X

`=0

Gk�2,`,T · f (`)

(T 0)2(k�2)

!
� LS

 
k�2X

`=0

Gk�2,`,S · f (`)

(S 0)2(k�2)

!!
· g dLeb

=

Z
(LT � LS)

 
k�2X

`=0

Gk�2,`,T · f (`)

(T 0)2(k�2)

!
· g dLeb

+
k�2X

`=0

Z ✓
Gk�2,`,T

(T 0)2(k�2)
�

Gk�2,`,S

(S 0)2(k�2)

◆
· f (`)

· g � S dLeb .

(9.5)
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To bound the first term we apply the inequality for k = 2, which is valid since

dC1(S, T )  dCk�1(S, T ), yielding

Z
(LT � LS)

 
k�2X

`=0

Gk�2,`,T · f (`)

(T 0)2(k�2)

!
g dLeb

 Q2,↵,K kgk
L1

 
k�2X

`=0

����
Gk�2,`,T · f (`)

(T 0)2(k�2)

����
W 1,1

!
dCk�1(S, T ).

If we let Dk�1,` denote the norm of the embedding of W k�1,1(S1) into W `,1(S1) and

define Zk,`,↵,K := Z by

Z = sup
T2LYk(↵,K)

⇣
(Dk�1,` + ↵2(k � 2)K +Dk�1,`+1) kGk�2,`,TkL1 +Dk�1,`

��G0

k�2,`,T

��
L1

⌘
,

then by the product rule, the definition of k·k
W 1,1 and as ↵ < 1 we have

k�2X

`=0

����
Gk�2,`,T · f (`)

(T 0)2(k�2)

����
W 1,1



k�2X

`=0

Zk,`,↵,K kfk
Wk�1,1 .

Thus

Z
(LT � LS)

 
k�2X

`=0

Gk�2,`,T · f (`)

(T 0)2(k�2)

!
g dLeb

 Q2,↵,K

 
k�2X

`=0

Zk,`,↵,K

!
kgk

L1 kfk
Wk�1,1 dCk�1(S, T ).

(9.6)

On the other hand,

Z ✓
Gk�2,`,T

(T 0)2(k�2)
�

Gk�2,`,S

(S 0)2(k�2)

◆
· f (`)

· g � S dLeb

 Dk�1,` kgkL1 kfk
Wk�1,1

����

✓
Gk�2,`,T

(T 0)2(k�2)
�

Gk�2,`,S

(S 0)2(k�2)

◆����
L1

.

Since each of the multinomials Gk�2,` is Lipschitz on [�K,K]k�1 and Gk�2,`,T (resp.

Gk�2,`,S) only contains derivatives of T (resp. S) of order less than k � 1, for each

` 2 {0, . . . , k � 2} there exists Vk,` such that for every S, T 2 LYk(↵, K) we have

����

✓
Gk�2,`,T

(T 0)2(k�2)
�

Gk�2,`,S

(S 0)2(k�2)

◆����
L1

 Vk,`dCk�1(S, T ).
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It follows that

k�2X

`=0

Z ✓
Gk�2,`,T

(T 0)2(k�2)
�

Gk�2,`,S

(S 0)2(k�2)

◆
· f (`)

· g � S dLeb

 Dk�1,`

 
k�2X

`=0

Vk,`

!
kgk

L1 kfk
Wk�1,1 dCk�1(S, T ).

(9.7)

Applying (9.6) and (9.7) to (9.5), and then taking the supremum over g 2 L1(S1)

with kgk
L1 = 1 yields

��(LTf � LSf)
(k�2)

��
L1 

 
k�2X

`=0

Dk�1,`Vk,` +Q2,↵,KZk,`,↵,K

!
kfk

Wk�1,1 dCk�1(S, T ).

Thus, by using the case where k = 2 again, we obtain

kLT � LSkL(Wk�1,1,Wk�2,1)

 Q2,↵,KDk�1,1dCk�1(S, T ) +

 
k�2X

`=0

Dk�1,`Vk,` +Q2,↵,KZk,`,↵,K

!
dCk�1(S, T ),

as required.

The proof of Theorem 9.1.3. By assumption (⌦,F ,P, �,W k�1,1(S1),LT ) is a sepa-

rable strongly measurable random linear system with ergodic invertible base and

a hyperbolic Oseledets splitting of dimension d. We have LT 2 EndS(Wk�1, �) \

LY(1, Ak�1,↵,K ,↵k�1, Rk�1,↵,K) by Proposition 9.2.3, and so all the requirements

of Theorem 8.1.8 are verified for (⌦,F ,P, �,W k�1,1(S1),LT ). For measurable S :

⌦! LYk(↵, K) we get that (⌦,F ,P, �,W k�1,1(S1),LS) is also a separable strongly

measurable random linear system by Proposition 9.1.2 and by Proposition 9.2.3 we

have LS 2 LY(1, Ak�1,↵,K ,↵k�1, Rk�1,↵,K). For any ✏ > 0 we may ensure that

ess sup
!2⌦

��LT (!) � LS(!)

��
L(Wk�1,1,Wk�2,1)

 ✏,

by making dk�1(T ,S) small and then using Proposition 9.2.4. Thus, we obtain

the conclusion of Theorem 8.1.8 for the perturbation (⌦,F ,P, �,W k�1,1(S1),LS),

as required.

Proof of Proposition 9.1.4. It is well known that the Fejér kernels approximate the

identity [67, Section 2.2 and 2.5]. Thus Jn is Markov, as claimed. Since convolution
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and di↵erentiation commute, for each f 2 W k,1(S1) we have

kJnfkWk,1 = kJnfkL1 +
��Jn(f

(k))
��
L1  kfk

L1 +
��f (k)

��
L1 = kfk

Wk,1 ,

and so Jn restricts to a contraction in L(W k,1(S1)). For x, y 2 S1 define gx,y : S1
!

R by

gx,y =

8
<

:
�x�y,x y < x,

�x,x�y x < y.

Using Fubini-Tonelli and the fact that every f 2 W 1,1 is absolutely continuous, we

have

kJnf � fk
L1 =

Z Z
Jn(y) |f(x� y)� f(x)| dLeb(y) d Leb(x)



Z Z Z
Jn(y)gx,y(z) |f

0(z)| dLeb(z) d Leb(y) d Leb(x)

=

✓Z
Jn(y) |y| dLeb(y)

◆
kfk

W 1,1 .

Since {Jn}n2Z+ approximates the identity we have
R
Jn(y) |y| dLeb(y) ! 0 as n !

1, which yields (9.2) for k = 1. The claim for k > 1 follows from the case where

k = 1, the fact that di↵erentiation commutes with Jn, and the fact that W k,1(S1)

continuously embeds into W k�1,1(S1) and W 1,1(S1).

The proof of Theorem 9.1.5. The proof is very similar to that of Theorem 9.1.3. By

assumption (⌦,F ,P, �,W k�1,1(S1),LT ) is a separable strongly measurable random

linear system with ergodic invertible base and a hyperbolic Oseledets splitting of

dimension d 2 Z+. We have LT 2 EndS(Wk�1, �) \LY(1, Ak�1,↵,K ,↵k�1, Rk�1,↵,K)

by Proposition 9.2.3, and so all the requirements of Theorem 8.1.8 are verified for

(⌦,F ,P, �,W k�1,1(S1),LT ). Since the composition of strongly measurable maps is

strongly measurable ([47, Lemma A.5]), and the constant map ! 7! Jn is strongly

measurable, for each n 2 Z+ we have that (⌦,F ,P, �,W k�1,1(S1),LT ,n) is a separa-

ble strongly measurable random linear system. Since Jn is a contraction on W k�1,1,

from the Lasota-Yorke inequality (9.3) we have for every f 2 W k�1,1(S1), n 2 Z+

and ! 2 ⌦ that

��JnLT (!)f
��
Wk�1,1  ↵k�1

kfk
Wk�1,1 + Ck�1,↵,K kfk

Wk�2,1 .
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By using the fact that Jn is a contraction onW k�2,1(S1) and repeating the argument

made in Proposition 9.2.3, we deduce that LT ,n 2 LY(1, Ak�1,↵,K ,↵k�1, Rk�1,↵,K)

for every n 2 Z+. Thus, after using (9.2) from Proposition 9.1.4 we obtain the

conclusion of Theorem 8.1.8 for the perturbation (⌦,F ,P, �,W 1,1(S1),LT ,n), as

required.
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