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iii Abstract 

 

Abstract 

 

Complex situations are very much context dependent, thus agents – whether human or 

artificial – need to attain an awareness based on their present situation. An essential part 

of that awareness is the accurate and effective perception and understanding of the set of 

knowledge, skills, and characteristics that are needed to allow an agent to perform a 

specific task with high performance, or what we would like to name, Competency 

Awareness. The development of this awareness is essential for any further development 

of an agent’s capabilities. This can be assisted by identifying the limitations in the so far 

developed expertise and consequently engaging in training processes that add the 

necessary knowledge to overcome those limitations. However, current approaches of 

competency and situation awareness rely on manual, lengthy, subjective, and intrusive 

techniques, rendering those approaches as extremely troublesome and ineffective when 

it comes to developing computerized agents within complex scenarios. Within the 

context of computer Go, which is currently a grand challenge to Artificial Intelligence, 

these issues have led to substantial bottlenecks that need to be addressed in order to 

achieve further improvements. Thus, the underlying principle of this work is that of the 

development of an automated, objective and non-intrusive methodology of Competency 

Assessment of decision-makers, which will practically aid in the understanding and 

provision of effective guidance to the development of improved decision-making 

capabilities, specifically within computer agents. 

In this study, we propose a framework whereby a computational environment is used to 

study and assess the competency of a decision maker. We use the game of GO to 

demonstrate this functionality in an environment in which hundreds of human-played 

GO games are analysed. In order to validate the proposed framework, a series of 

experiments on a wide range of problems have been conducted. These experiments 

automatically: (1) measure and monitor the competency of Human Go players, (2) 

reveal and monitor the dynamics of Neuro-Evolution, and (3) integrate strategic domain 

knowledge into evolutionary algorithms. The experimental results show that: (1) the 
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proposed framework is effective in measuring and monitoring the strategic 

competencies of human Go players and evolved Go neuro-players, and (2) is effective 

in guiding the development of improved Go neuro-players when compared to traditional 

approaches that lacked the integration of a strategic competency measurement. 
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1 Chapter 1: Introduction 

 

Chapter 1: Introduction 

The key to growth is the introduction of higher 

dimensions of consciousness into our awareness.  

–––Laozi (6th century BCE) 

1.1 Overview 

The process of Decision-Making has been widely studied across many different 

domains and perspectives. Decision-Making, which is practised by humans day after 

day, can be simply defined as the process of selecting a final action among several 

available alternatives (Raiffa, 1968; von Winterfeldt and Edwards, 1986). The intention 

is thereby to achieve a “more desirable” targeted situation given the current state of the 

system. Yet, to decide upon that action, this cognitive process involves numerous 

activities and skills; including: perceiving and recognizing the current situation, 

determining and prioritizing the desired objectives, as well as generating and evaluating 

the alternative actions. The complexity of the activities involved varies significantly, in 

accordance to the complexity of the situation to be managed, and the proficiency of the 

practised skills is derived from the experience of the decision-maker. 

In the real world, the decision-maker is usually confronted by complex 

scenarios; including, for instance, dynamic environments in which the decision-maker 

constantly – and perhaps rapidly – needs to adapt-to and consider a new situation. 

Complex scenarios also include environments with a large number of aspects that must 

be taken into account, environments with a large number of potential states that need to 

be evaluated, or environments that are difficult to define. Along with such 

environments, decision-makers practically need to make decisions under increasing 

time-pressure, uncertainty, intricacy, risk, and ambiguity. Yet, the complexity of the 

environment is only an element of the overall complexity, which contains also the 

structural complexity of the decision-making process itself (Bullen and Sacks, 2003). 
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This later complexity has been investigated from many perspectives, such as the 

multidisciplinary field of human factors (Cook et al., 2007). 

Complex situations are context dependant, and as a result, decision-makers need 

to achieve an awareness based on the current situation in order to develop the decisions 

that realize their desired objectives (Albers, 2005), (Padilla et al., 2007). Constructing 

this mental representation of a situation is fundamentally based on how the decision-

maker perceives the context. Therefore, the decision maker needs to maintain a 

complete and coherent situation representation, which is based on relevant existing 

knowledge, and is updated continuously with new information extracted from the 

environment. The development of this situation representation is coupled with the 

ability to both project the future states of the situation, and to also anticipate the results 

of the actions taken. 

Unsurprisingly, decision-making in complex situations has been the subject of 

active research from diverse perspectives. The aim of such research is to examine the 

many aspects of observed human decision-making along varying real-world scenarios. 

The ultimate aspiration is to equip decision-makers with the needed tools to perform 

effectively in complex situations by making decisions which are in their best interest. 

In the fifties, the limits of the human cognitive-resources that affect the 

reasoning of a decision-maker were investigated, giving rise to the term “Bounded 

Rationality” and to also the concept of satisficing as an alternative to optimizing 

(Simon, 1956). In the late nineties, the synthetic field of neuroeconomics (Glimcher et 

al., 2009) emerged in an attempt to explain human decision-making in light of the 

combined advances in – amongst others – neuroscience, behavioural economics, and 

cognitive psychology. Recent studies include, for instance, supporting the making of 

interconnected decisions that span multiple perspectives by developing a generic object-

oriented-based architecture for decision-making (Liew and Sundaram, 2005), outlining 

the potential progress in our understanding of Social Decision-Making as a result of 

coupling models of neuroeconomics and game-theory (Sanfey, 2007), and putting 
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forward a framework to explore the different aspects of decision-making from a 

neurobiological perspective (Rangel et al., 2008). 

At another level, a principal way of supporting decision-makers in this difficult 

cognitive process is by automating the complex system. As part of this, Artificial 

Intelligence (AI) has progressively been supporting decision-makers through a range of 

techniques (Phillips-Wren and Jain, 2006), including Machine Perception, Knowledge 

Acquisition and Representation, Reasoning, Planning, Logic, Computational 

Intelligence, Multi-Agent Systems, Cognitive Architectures, and Machine Learning. 

Through these techniques, AI supported the decision-making process by tackling the 

complexities associated with real-world scenarios. Namely, through 

simulating/modelling the considered system and investigating its dynamics, perceiving 

the system states and facilitating up-to-date information, reducing uncertainty and 

information overload, generating and exploring actions, and so on. 

Positioned at the core of AI, Computer Game-Playing (GP) provides an 

exceptional venue to develop automated agents that mimic – and frequently surpass – 

human performance.  That is because GP addresses fundamental questions, starting with 

search, learning, and knowledge representation and continuing towards planning, multi-

agent systems and opponent modelling. Board games specifically are abstract and 

relatively easier to represent, in addition, they possess straightforward limited rules that 

can be clearly applied (Luger and Stubblefield, 1998). Since its inception, GP explicitly 

aimed at providing suitably demanding environments for developing and testing 

techniques that are useful in attacking other problems of similar nature elsewhere 

(Shannon, 1950). 

Nevertheless, the role of games has always been manifold. An obvious aspect is 

in the increasing popularity of GP as an influential tool for learning and education 

(Malone, 1981; Akilli, 2011), as seen in the examples of (Squire, 2006; Tan and Biswas, 

2007; Iacovides, 2009; Pavlas et al., 2010; Clerveaux et al., 2010). However, a 

significant and influential role was – and continues to be – in attempting to understand 
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and reproduce human intelligence, or what is called Computational Psychology. 

Together with Computational Philosophy – i.e., producing the general superior form of 

computer-based intelligence – they represent the two principal motivations of AI 

(Shapiro, 1992; Ernandes, 2005). This capacity to explain human intelligence is due to 

the fact that computer games, in general, allow the relating or comparing of the 

“computational” intelligence of an automated agent to the “biological” intelligence of 

its human counterpart (Mayer and Maier, 2005). For that reason, GP is progressively 

considered as a major tool for genuine advances in AI (Ernandes, 2005). 

The contributions of games to our understanding of human decision-making 

through experience were mainly accomplished through Chess, of which a wide 

spectrum of studies exists in the literature. The evolution of Chess as a major area for 

studying expertise was started by de Groot’s (1946) “Thought and Choice in Chess” in 

which he investigated the processes of decision making and their variances in relation to 

expertise (Gobet, 2006). This study also pointed out a difference in how chess positions 

were perceived between experts and amateurs. Studies then moved along, mostly by 

statistically and interpretatively analysing verbal utterances that were gathered using 

think-aloud protocols from Chess players while they were deciding on their next move 

(Newell and Simon, 1972; Gobet, 2006; Connors et al., 2011). In addition, other studies 

frequently experimented with computer simulations to further understand human 

problem solving and expertise in chess. Varying psychological topics were investigated; 

for instance, perceptual and memory processes (Simon and Chase, 1973; Gobet, 2005) 

and intuition (Frantz, 2003; Linhares, 2005). The topics also include problem solving, 

decision making, and intelligence, and all of which can be found summarized in recent 

studies, were also either as investigations from an exclusively Chess perspective 

(Rasskin-Gutman, 2009), or from a broader board-games perspective (Gobet et al., 

2004). Similarly, De Groot’s (1946) earlier studies were recently replicated to examine 

the current arguments concerning expertise and its causal cognitive processes (Connors 

et al., 2011). 
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Up to the present time, Chess – and computer game playing in general – has 

been expected to play a vital role in understanding and explaining human intelligence 

(Ernandes, 2005; Linhares, 2005; Harré et al., 2011a). However, from the time when a 

Chess world champion (i.e., Kasparov) was defeated by a computer program (i.e., Deep 

Blue), the “research on computer chess seems to have gradually faded to the 

background” (Linhares, 2005). As an alternative, researchers have advocated 

considering other problems to be at the forefront of AI, such as automated story-telling 

(Bringsjoid, 1998). However, practically, “Go has emerged as a key testbed for 

research in [AI]” (Harré et al., 2011b). 

Go belongs to the category of “strategy-games” – which is also called “mind-

games” (Bouzy and Cazenave, 2001; Mańdziuk, 2007) – in which decision making 

skills are deeply employed, and where a game’s outcome is significantly determined by 

the players’ intellectual capacities; that is to say, victory is won by deeply employing 

skills such as abstraction, conceptualization, and reasoning. GP in strategy games 

addresses some vital high-level strategic elements, such as opponent modelling and 

managing uncertainty. 

In general, Strategy board-games – e.g., Chess, Checkers, and Go – are 

distinguished by their comparatively simple tools; typically a marked-board and 

movable pieces, uncomplicated predefined set-of-rules, and a strategic objective. The 

attractiveness and complexity of Go lies in the fact that it has very simple rules, but an 

extremely large and complex search space. This reasonably uncomplicated set-of-rules 

allows beginners to easily attain a basic-level of skill, while allowing experts to attain 

advanced-levels of skill. Nevertheless, Go’s reliance on a sequence of actions to 

generate patterns mimics the characteristics of many real-world problems; as in strategy 

design in government. The characteristics of Go, and other strategy games, also include 

the “generally symmetric nature of play”, the strategically-equal opening points, the 

concentration on strategic-decisions to achieve the goals of the game, and those goals 

which typically involve the “elimination of other players through simulated military 
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conflict” and/or “[dominating] most of the territories of the game” (Loh and Soon, 

2006; Sharma et al., 2007). 

Consequently, Go is both an ideal and a grand challenge to AI (Cai and Wunsch 

II, 2007; Rimmel et al., 2010; Hoock et al., 2010; Harré et al., 2011a). The differences 

between Go and other games – including Chess – in complexity measures is shown in 

(Figure 1.1), with the complexities of Go far larger than that of any of the other perfect-

information games. Hence, the complexity and combinatorics of Go have been explored 

by several studies (Lichtenstein and Sipser, 1980; Müller, 2000; Wolfe, 2002; Tromp 

and Farnebäck, 2007). The difference between Go and Chess were investigated in 

(Burmeister and Wiles, 1995) and include – among others – a higher branching factor, 

an increasingly far-sighted look-ahead, a more significant horizon-effect, and as a result, 

a more complicated overall board-evaluation. Those differences resulted in the 

remarkable failure of the classical search-based methods in solving Go. Consequently, 

computer Go has just achieved a professional level using a smaller 9×9 board 

(Enzenberger et al., 2010), which is considerably uncomplicated when compared to the 

standard 19×19 board.  However, unlike Chess and other mind-games, there are no Go 

programs that can challenge professional human players on the standard board (Harré et 

al., 2011a). 

Recently, this grand challenge has been attributed to a fundamental problem; the 

lack of relevant and practical research on understanding and explaining human 

intelligence and its development with experience (Ernandes, 2005; Harré et al., 2011a).  

As stated in (Harré et al., 2011a), the expertise in Go is “a crucially important indicator 

of the unique factors of human performance”. This is the heart of this study; 

investigating the ability to practically evaluate the competency of Go players. In the 

upcoming section, we will state the motivation for this work, in which we will introduce 

the current status of computer Go, its recent trends and shortcomings. Then, we will 

bring in the necessity for an advanced competency awareness that we see as an 

inherently essential component of an improved overall situation awareness, and as an 

approach for further advancement in computer Go. Section 1.3 will lay out the research 
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question and hypothesis of this thesis, followed by outlining the original contributions 

of this study (Section 1.4) and the organization of the thesis (Section 1.5). 

 

Figure 1.1. Estimated Game Complexities (After Allis, 1994). Game-tree and State-

Space complexities are explained in Section 2.2.1. Alternative definitions of a Game-

tree complexity, and consequently, of GO's estimated complexity exist; see for example: 

Tromp and Farnebäck (2007). 

1.2 Research Motivation 

Developments in computer Go can be generally characterized from two 

perspectives. From a computational perspective, computer Go can be considered on the 

basis of the approach employed, however – frequently – the resulting categories overlap 

in practice. The main approaches are: 

 Knowledge-Based (KB) Approaches; are among the first techniques 

employed in Computer Go, and in which domain knowledge is explicitly 
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integrated into computer players (i.e., the game engines). The knowledge 

is typically in the form of patterns’ datasets (Abramson and Wechsler, 

2003), as well as hand-tuned rules (Bouzy, 1996) that represent the 

varying useful concepts in the game. Independently, Knowledge-based 

approaches have so far been fairly successful. Moreover, domain-based 

patterns and rules constitute the typical means of integrating knowledge 

into Machine-Learning or Monte-Carlo based approaches. 

 Machine-Learning (ML) Approaches; are techniques of knowledge-

discovery in which the Go knowledge is not built-in by hand. These 

mostly use Neural Networks (Sutskever and Nair, 2008; Wu and Baldi, 

2008) or Neuro-Evolution (Mayer and Maier, 2005; Cai and Wunsch II, 

2007). ML-based approaches have so far achieved insubstantial 

outcomes, and – consequently – have received less attention than their 

Monte-Carlo based counterparts. 

 Monte-Carlo (MC) Approaches; are approaches based on randomly 

exploring the search-space, and are – by far – the most successful basis 

for developing computer Go players (Gelly and Silver, 2008; Lee et al., 

2010a; Rimmel et al., 2010). Similarly to ML-based approaches, no 

domain knowledge is directly integrated in the standard MC approach.  

However, practically, domain knowledge is increasingly being 

incorporated (Hoock et al., 2010). 

Besides the abovementioned categories, alternative less-popular approaches have 

been employed, including – but not limited to – adversarial planning and reasoning 

(Klinger, 2001; Willmott et al., 2001), combinatorial game theory (Müller, 1999), 

Markov networks (Raiko, 2005), and mathematical morphology (Bouzy, 2003). 

An alternative, less obvious perspective, is to focus on specific sub-problems in 

computer Go in order to reduce the overall complexity. This is achieved by breaking-

down the game into sub-games (Müller, 2003), the board into local areas (Stanley and 
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Miikkulainen, 2004), or the overall plan into individual strategies (Cai and Wunsch II, 

2007). As a result, those partial problems become sufficiently simpler to be tackled 

directly. 

In spite of recent advances in computer Go programs, which are now able to 

challenge professional players, substantial improvements are still required. 

Additionally, Go’s unusually complicated evaluation function remains a dilemma to 

encode, in spite of its simple rules, and in spite of the huge compilation of information 

that exists in literature and that covers in details the various strategies and tactics 

employed through it. The difficulty in encoding the evaluation function restricted the 

rate of improvements in the knowledge-based approaches; on the other hand, it 

endorsed the utilization of – the domain-independent – Machine Learning methods and 

Monte-Carlo simulations to learn and/or estimate this function. However, ML 

approaches are becoming stalled by the credit assignment problem. This is due to 

uncertainties – even among the most experienced players (Hoock et al., 2010) – in 

evaluating a best course of action, and the fact that feedback – in virtually all the 

automated systems – is received for the entire game rather than for each decision. 

Methods for indirect/implicit learning, such as evolutionary algorithms, were thus 

increasingly utilized. However, a lot of issues have arisen due to the inability to 

understand the nature of the learning process; in terms of: what type of play is being 

evolved, what is the effect an opponent would have on the evolved strategies, how to 

guide the evolution of higher-quality players, and more importantly, whether or not did 

the evolution process stagnate. These issues pose severe limitations to advancing ML-

based Go players. 

The application of Monte-Carlo tree search (MCTS) in Go, regardless of its 

unquestionable success, is also caught up by the domain-independent nature of the 

approach, and its lack of learning. MCTS in Go suffers, for instance, from many tactical 

limitations (Bouzy, 2005; Chaslot et al., 2010; Hoock et al., 2010; Rimmel et al., 2010). 

Lately, most research has progressively – and inescapably – incorporated expert-

knowledge; generally in terms of patterns and rules (Bouzy, 2005; Gelly et al., 2006), 
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knowledge-based heuristics (Chaslot et al., 2008), reinforcement learning (Gelly and 

Silver, 2007), and most recently, in terms of ontology-based fuzzy inference (Lee et al., 

2010b). 

 

Figure 1.2. Scalability of MCTS for the Game of Go – based on tabled estimations in 

Hoock et al. (2010). 

Across the above-mentioned approaches, we can observe two issues that deter 

the development of computer Go; namely, a knowledge-acquisition bottleneck (Wagner, 

2006; Hoppenbrouwers et al., 2009) and a training bottleneck (Hoffman, 1998; Ross, 

2006). Despite the available domain information, evidently some – and perhaps much – 

of the knowledge about human-specific methods are not properly acquired. Mańdziuk 

(2008) listed several of those methods; autonomous learning, pattern-based learning, 

intuition, knowledge discovery, abstraction, generalization, efficient position estimation 

… etc. Albeit such methods – which are fundamental characteristics of expertise – 

might be describable by Go experts, the challenges of acquiring this knowledge are yet 

to be overcome. 
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However, a much more significant issue is a training bottleneck. That is, of first 

highlighting the limitations in the so far developed expertise, and of then secondly 

adding the necessary knowledge to overcome those limitations (Hoffman, 1998). In 

other words, “what matters is not experience per se but “effortful study,” which entails 

continually tackling challenges that lie just beyond one’s competence” (Ross, 2006). 

This training bottleneck can be seen – to a degree – as a consequence of the inefficiency 

in extracting Go expertise; i.e., the knowledge-acquisition bottleneck, but given the 

considerable amount of Go information already extracted from experts, the training 

bottleneck is mainly the result of highly insufficient competency awareness. This ability 

to evaluate the skills and competency levels of a decision-maker is an inherently 

necessary component in the construction of situational awareness (Endsley and Garland, 

2000; Banbury and Tremblay, 2004), which is in turn an indispensable foundation for 

managing complex situations (Jakobson et al., 2007). 

In general, recent studies have expressed a similar overall view; Harré et al. 

(2011b) stated that “Artificial intelligence (AI) research is fast approaching, or perhaps 

has already reached, a bottleneck whereby further advancement towards practical 

human-like reasoning in complex tasks needs further quantified input from large studies 

of human decision-making.”  Studies on cognition and expertise in Go – which to date 

has received far less consideration than chess – are picking up, and in domains as far as 

studies that are devoted to assessing the suitability of Go as a research domain for 

Cognitive Sciences (Burmeister, 2000). In “The development of human expertise in a 

complex environment”, Harré et al. (2011a) utilized tools of information theory to 

understand and describe the growth of expertise and the associated changes among 

skilled-amateur and professional Go players. The authors achieved that by 

quantitatively exploring the uncertainties a Go player has in relation to their opponent’s 

following move. Progress has also been made by focusing on: the response times 

(Reitman, 1976), the utterances of Go terms “i.e., verbal reports” (Yoshikawa et al., 

1999), the memory performance (Burmeister et al., 2000), and the human computer 

interaction (Kim et al., 2009). 
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Finally, this research shares the same inspiration as various recent studies; that is 

of, understanding and mimicking the human approach to game playing, and decision-

making in general (Ernandes, 2005; Mańdziuk, 2008). As well as potentially affecting 

the future direction in other complex domains that share characteristics with the game of 

Go; such as Linguistic, War simulation, Social Sciences, and Economy (Bouzy and 

Cazenave, 1997). 

1.3 Research Question and Hypothesis 

Complex situations are very much context dependent. Complexity in this context 

can be defined as “the condition of a system, situation, or organization that is 

integrated with some degree of order, but has too many elements and relationships to 

understand in simple analytic or logical ways.” (Bennet and Bennet, 2008). Awareness 

of an agent’s competencies, which is principally the result of expertise and training, is 

imperative for the development of effective decision-making.  As a matter of consistent 

terminology, we would define this state of Competency Awareness as: 

Definition 1: the perception and understanding of the set of knowledge, skills, 

and characteristics needed to allow an agent to perform a specific task with 

high performance. 

Recent studies in the complex game of Go advocates – for any further 

improvements – the need for effectively discovering and understanding the exceptional 

features of human expertise and proficiency. However, currently, the methods described 

in the literature fail to measure the competency from an objective view, either by 

depending on manual approaches (Mirabile, 1997; Pew, 2000), or by using automated 

approaches that depend entirely on the degree to which the goals are achieved 

(Ghoneim et al., 2011a); i.e. the final outcome/score. The difference between manual 

and automated approaches can be précised as: “[the former approach] depends on the 

construction of models by hand (aided by tools), by individuals or teams [while an 

automated approach will use] knowledge discovery from data and machine learning 

techniques to derive models” (Hoppenbrouwers and Lucas, 2009). These are the 
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principal arguments of this research, or, in a more formal way, this study attempts to 

address the following question: 

Can the Competency Level of an agent within the complex situation of a Go 

game be assessed automatically and objectively, and if yes, can this assessment 

be used to guide learning in computer players? 

 

In order to answer this question, it is hypothesized that the state of competency 

awareness can be attained or enhanced by developing an objective/quantitative 

assessment; that will act as a well-accepted standard, and against which performance 

can be effectively measured, and – consequently – by which training and development 

can be effectively guided. In addition, it is also hypothesized that criteria, such as 

Situation Reasoning – Which can be defined as the processes of perceiving and 

understanding a situation, and the outcome of such processes as explanations and 

justifications (Tilley, 2004), correlates with the performance in Go, and thus, if 

satisfactorily estimated, can provide us with the desired competency assessment. 

However, to methodically investigate the hypothesis and address the research question, 

we need to address the following sub-questions:  

1. How can a selected competency get evaluated objectively, quantitatively, 

and passively? 

The current approaches to evaluate competencies have numerous disadvantages; 

such as the lengthy data-collection processes that are time-consuming, invasive 

and subjective in nature. Therefore, it is important to address those drawbacks in 

any proposed assessment framework. 

2. How does the selected competency assess – and consequently, characterize 

the development of expertise in human Go players? 

An improved understanding of the nature of expertise in Go has been 

emphasized by recent studies (Burmeister, 2000; Harré et al., 2011a). Therefore, 
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the results of an assessment need to serve as baseline, to which classical Go 

games – played by human players on 19 by 19 boards – can be measured. 

 

Figure 1.3. Summary of Research Question and Sub-Questions. 

3. How do the findings extend to evaluate computer Go players and smaller 

board sizes? 

Computer Go is a grand challenge to AI. Consequently, many of the 

computerized approaches utilize smaller board sizes because of the demanding 

computational effort associated with the standard 19 by 19 boards. It is thus 

crucial to investigate the findings in the light of games played by computer 

agents and using smaller board sizes. 
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4. How can the Competency Assessment method guide the development of 

Computer Go agents?  

An objective of the improved assessment will be to better guide the development 

and training of Go players, and specifically the computerized players. Therefore, 

it is essential to investigate the effects of employing the devised assessment 

method on developing Go agents. 

1.4 Original Contributions 

The main contribution of this thesis is to enforce the importance of developing 

automated methods for competency assessment that effectively improves the overall 

situational awareness. Such an objective quantitative assessment method will allow a 

more enhanced training method for computer Go, and an opportunity to improve our 

understanding of expertise in such a complex scenario. In more detail, the Original 

Contributions of the thesis can be listed as follows: 

 Presenting a passive, fully computerized methodology to examine how the 

player’s expertise is applied to a complex scenario, and to the skills and 

competency level of the strategic decision maker. 

 Showing quantitatively how human strategies employed during Go games can 

be categorized, and how those strategies evolve with experience. In addition to 

exploring the ability to automatically monitor a human/computer player’s skill 

and competency level. 

 Presenting a methodology to semantically unfold the evolution of Go Neuro-

Players, and to monitor the overall dynamics of the evolution process. 

 Presenting a methodology to guide the evolution of Go Neuro-Players, so as to 

lead to a better convergence. 

1.5 Organization of the Thesis 

The thesis is organized in 7 chapters: In Chapter 1, the introduction to the thesis is 

presented, including an overview of the domain, the motivations to carry out this 
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research, and the research question, hypothesis and sub-questions.  In addition, this 

chapter lists the original contributions of this study, and concludes with this outline.  

 

Figure 1.4. Thesis Organization. 

Chapter 2 introduces much of the necessary knowledge about the game of Go, 

followed by a timely review of the current status and the approaches in Computer Go. 
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In Chapter 3, the issues within computer Go are formalized, and a review of 

Competency, and its role in complex situation awareness and management is 

introduced. The chapter concludes by introducing connectivity-patterns and situational 

reasoning. 

Chapter 4 addresses the first and second sub-questions, by proposing a framework 

whereby a computational environment is used to study and assess the competency of a 

decision maker in Go. To this end, hundreds of human-played GO games are analysed 

in a computational environment. A combination of data mining and time-series analysis 

is developed to monitor and track the competency level of the human players. We then 

demonstrate that this methodology is successful in diagnosing problems for some 

players. Chapter 5 readdresses the same questions as in Chapter 4, by considering a 

modification to the proposed framework, in which an alternative approach to assess the 

competency of a decision-maker in Go is investigated.  

Chapter 6 addresses the third and fourth sub-questions. Firstly, by extending our 

proposed framework to address one of the disadvantages in neuro-evolving Go Players; 

by unfolding and monitoring the overall evolutionary dynamics of the neuro-evolution; 

therefore, observing any stagnation in the evolutionary process, and extracting the 

semantics of a neural networks’ behaviour. Secondly, by investigating the utilization of 

the approach for monitoring neuro-evolution to guide the process of neuro-evolution; 

therefore, affecting the development of neuro-Go players. Finally, the thesis is 

concluded in Chapter 7 by discussing the consequences and implications of the findings, 

and potential directions for future research. 
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Chapter 2: Computer Go – A Literature Review 

 

 

This chapter starts by introducing background knowledge about the game of Go, 

followed in Section 2.2 by a literature review of the varying approaches used in 

Computer-Go. 

2.1 The Game of Go: A Complex Situation 

A game of Go is symbolic of the gradual 

occupation of our planet by the human race. 

 –––Count Daniele Pecorini and Tong Shu, 

The Game of Wei-Chi (1929) 

This section introduces the history and characteristics of the game of Go, 

followed by the rules and a typical sequence of the game. The section establishes the Go 

terminologies and concepts necessary for understanding the remaining chapters. For a 

good straightforward introduction to go, the reader may refer to (Chikun, 1997). 

2.1.1 History and Characteristics 

The traditional oriental game of Go – Weichi / Weiqi in Chinese, Baduk in 

Korean, Igo in Japanese – is one of the oldest strategic board games in the world, and is 

also one of the most popular. It's generally agreed that it originated in China and is at 

least 3,000, and maybe as much as 4,000 years old (Chikun, 1997). Although the game 

is hard, the rules of the game are few and simple, easy to learn, and flexible enough to 

accommodate any board size, as well as the standard 19×19 board. Consequently, it is 

common to introduce beginners to a 9×9 board, instead of the standard 19×19 board; 

this greatly reduces learning time, because it's less complicated strategically, while it 

still applying the same rules and tactics. 
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This game of two players, who simply alternate placing stones on the 

intersections of the board, is theoretically in the same category as Chess. This is because 

both games are intellectually stimulating, require high-level strategic thinking, and give 

chances for players to apply their tactical skills (Chikun, 1997). In addition, 

Professional players in one of them are usually strong players in the other. Differences 

between Go and Chess include the initial state, game objective “[and] thus 

consequently, how the game ends”, object values, playing time and requirements, the 

status of the moves by the end of the game, and the handicap system. Also, a game’s 

complexity arises overtime while the players add more stones to the Go board, while on 

the other hand it gets less complicated while pieces are removed from the Chess board 

(Lai, 2004). The game objective also significantly affects evaluation functions in both 

games. Chess's sole objective of capturing the opponent's king is very clear when 

compared to Go's mutually dependent objectives of securing your own territory while 

capturing the opponent's stones (Mayer, 2007). In terms of game variables (Ernandes, 

2005), Go can be summarized as a game of 2-players that is: 

 Deterministic; doesn’t include any probabilistic events, thus a current 

board position is the sole result of the opponents’ previous choices. 

 Perfect Information; Both opponents have an inclusive view of the 

situation. 

 Discrete in both Time-Flow and Space; In terms of time-flow, moves are 

instantaneous and cannot overlap. In terms of space, the board represents 

an abstract space with a finite number of possible states. 

 Static Environment; the environment doesn’t change during the decision-

making phase. 

 Diachronic; opponents play independently, one at a time. 
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 Sequential; previous choices (moves) directly affect the current and 

future situations. 

 Closed-World; the knowledge required to play is finite and clearly 

defined. 

A game of Go starts on an empty board; a grid of intersecting lines. The 

standard board size is 19×19, and yet as indicated above other sizes are common for 

beginners, as well as for testing computer-Go methods, such as 5×5, 7×7, 9×9, and 

13×13. The game has two players, Black Player and White Player who alternate place 

black and white stones, respectively, on the intersections of the board. The Stones are 

coloured round objects, and usually there are 181 stones for black and 180 for white. 

The players are traditionally ranked using a kyu / dan rating systems (Figure 2.1). The 

ranking of the two players in a game affects the handicap stones; a number of stones 

equal to the difference in ranks between the opponents and given to offset this 

difference. If any handicap stones were given (normally to the black player), then the 

white player should start the game. Usually, a game starts with a black move, and to 

offset this advantage of playing first a komi – a compensation value, usually 6.5/7.5 

points – is given. The usual half-point in the komi value is used to avoid a tie. 

 

Figure 2.1. The Traditional Go Ranking System. 

2.1.2 Rules 

The rules of the game are simple (Figure 2.2), the two opponents alternate 

placing the stones on the intersections of the board with the goal of securing more 

territory; until usually all the intersections that are either surrounded or occupied by the 
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player. Although, in practice, a player may choose to pass his/her turn at any time. In 

order to achieve the goals of surrounding or occupying intersections, a player connects 

his/her stones, and thus forms chains or groups. Connectivity, in this context, is defined 

as stones of the same colour which are horizontally or vertically adjacent. Diagonal 

adjacencies and stones of different colours do not form chains. The stronger the group, 

the more Influence (that is, impact) it is has on the neighbouring area, eventually 

transforming it into a Moyo; an area where the influence of the player is large, and thus 

potentially one which might fall under the control of that player and become part of 

his/her territory. 

Before continuing further, it should be noted that there are a number of variant 

rule sets for Go. However, the practical effect of these different rule sets is small. Thus 

although the following describes typical rules of Go, some of the following are rules 

that are not strictly used in all the rule sets. 

A stone is not moved once played, it can only be captured. A stone or a chain is 

captured – i.e. removed from the board – iff it has no liberties. A liberty is an empty 

intersection – free space – directly adjacent to a stone or a chain, and if all the liberties – 

of a stone/chain – are occupied by the opponent, that stone/chain is dead. Therefore, for 

a chain to be considered alive, it needs to have at least two eyes or the possibility of 

creating at least two eyes. An eye – for a given chain – is an area of connected empty 

intersections that is entirely surrounded by that chain. A Suicide / Self-Capture is when 

a player fills in the last liberty of one of his/her own stones/chains, thus leading to the 

capture of this own stone/chain. Suicides are usually illegal in most rule-sets. 

Another illegal move is any play – that is not a pass – that would lead to the 

recreation of a former board position. This situation typically occurs whenever there is a 

ko; a particular board position in which both opponents may infinitely alternate 

capturing the same stone. A typical move to re-take a ko is to first play a ko-threat; this 

is a threatening move in a different place on the board – thus altering the board position 

and tempting the opponent not to fill in the ko – before re-taking the ko. 
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Figure 2.2. The Rules of Go illustrated on a 15×15 board. A single white stone (A) is 

surrounded by three liberties (Liberty). One black chain/group (G1) has six liberties 

(L1) and one white group (G2) has eight liberties (L2). If black plays at (Capture), the 

white group (X) loses its final liberty, and thus would be captured. If white plays at 

(Suicide), his/her own group (D1) is killed, and would thus be a suicide. The white 

group (D1) is dead since it surrounds only the single eye (Suicide) and so black can 

capture the group whenever they wish. On the contrary, the bottom-right black group 

(A1) is alive since it has two eyes (Eye) and thus cannot be captured. A typical life-and-

death situation is Nakade where the white group has one large internal space, if black 

plays at (Nakade) white is killed, yet white can live by playing at the same point. At the 

top-left of the board, a capturing-race, i.e., Semeai; Four liberties () to four liberties 

(), whoever plays first wins this capturing race. Finally, if black just played at (B) 

capturing a white stone at (ko), the ko rule applies; white cannot immediately play at 

(ko) and re-take (B). 
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2.1.3 A Typical Sequence 

A typical Go game consists of three phases, an Opening (the first 10% to 20% of 

the game), the Middle-Game, and the End-of-the-Game. Numerous standard whole-

board opening patterns – Fuseki (Figure 2.3) – are available, usually starting with a play 

in a corner, followed by plays on the sides and then at the board’s centre. The corner 

positions are further developed through standard sequences, known as Joseki (Figure 

2.3). The large Middle-Game phase is spent in Attacking the opponent’s chains while 

Defending one’s chains, two fundamental strategies in Go. Plays that are specific to the 

End-of-the-Game phase are termed Yose. Many of those plays can be represented and 

learned as Shapes; patterns that describe the positional qualities of a group of stones of 

the same colour while taking into account the nearby opponent’s stones. Relevant to 

shapes is Suji – or lines of play – which can be used skilfully (that is, Tesuji) or crudely 

(that is, Anti-Suji). 

 

Figure 2.3. The Opening of a Go Game on a standard 19×19 board (After Chikun, 

1997). A Fuseki (moves from 1 to 14) including a standard Joseki (the sequence of 

moves from 7 up to 14). 
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A Fundamental concept in Go is life-and-death; determining whether the status 

of a specific group is alive or dead, that is, whether a specific group is going to remain 

forever on the board, or that it will eventually be captured. Determining in advance 

whether a group is alive, dead or unsettled is usually termed Reading. Specific problems 

based on life-and-death are termed Tsumego. 

A game traditionally ends with a consecutive pass from both players. The player 

with the highest score – taking the komi into account – wins the game. Given the fact 

that Go has slightly varying sets of rules (e.g., Chinese, Japanese, Korean, … etc.), 

there are two basic scoring systems (Figure 2.4) that mainly result in a slightly varying 

score value: 

 the Chinese scoring system; In which a player’s score equals the number 

of empty intersections surrounded by his/her stones in addition to the 

number of stones he/she has on the board), and … 

 the Japanese (also Korean) scoring system; In which a player’s score 

equals the number of empty intersections surrounded by his/her stones 

minus the number of stones he/she lost – by being captured – to the 

opponent. 

2.2 Computer Go 

Go programming must model human thought 

itself! Not only must a computer now act like a 

person, but it must also think like a person!                                                           

–––Marco Ernandes, AI & Games: Should 

Computational Psychology be Revalued (2005) 

This section surveys the varying techniques used in Computer Go, and offers the 

basis for understanding the remaining chapters. The section starts by reviewing the 

challenges to Computer-Go, followed by the major different approaches to Computer-

Go. The reviewed approaches are the Knowledge-Based approaches, the Monte-Carlo 
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based approaches, and finally the Machine-Learning approaches. After all that, we 

present in Subsection 2.2.5 some of the assumptions and rule modifications proposed to 

address the vague parts in the game rules. For more elaborate computer-Go surveys, the 

reader may refer to (Bouzy and Cazenave, 2001; Müller, 2001; Müller, 2002; Cai and 

Wunsch II, 2007; Chen et al., 2009). 

 

Figure 2.4. Counting the score of a 9×9 game of Go, given that the komi equals 6.5 and 

that 2 white stones were captured throughout the game. According to the Japanese 

scoring system, Black has 27 points (of area) while White has 28.5 (22 of area plus 6.5 

of komi minus 2 captured stones), so White wins by 1.5 points. According to the 

Chinese system, Black has 43 points (of territory) while White has 44.5 (38 of territory 

plus 6.5 of komi), so White wins by 1.5 points. 

2.2.1 Challenges of Computer-Go 

According to (Van der Werf, 2004) the first scientific paper published about the 

Go game is Remus's (1962) simulation of a learning machine for playing Go. In the 

1980's, the beginning of computer Go tournaments, and the release of various computer 
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Go programs founded this field (Burmeister and Wiles, 1997). Many dissertations were 

written considering the Game of Go, since as early as Zobrist's (1970) PhD dissertation, 

who's program was the first to defeat an absolute Go beginner (Van der Werf, 2004). 

Computer-Go is very challenging, and due to the structure of the game, a strong 

computer-Go player “emphasize[s] much more the human way of thinking” (Brügmann, 

1993), in contrast to the use of brute-force search based methods or other AI techniques 

that Go remains resistant to. To unravel this ultra-weakly solved game, an engine should 

think like a human rather than simply acting like one, thus “[modeling] human thought 

itself” (Ernandes, 2005). 

Although Go is of the same category, currently available Chess methodologies 

are not sufficient for, and cannot be translated into the Go domain (Burmeister and 

Wiles, 1997; Van der Werf, 2004). Therefore, unlike Chess, there are no Go programs 

that can challenge strong human players in standard games (Enzenberger et al., 2010; 

Hoock et al., 2010; Tan et al., 2010; Harré et al., 2011a), nor even – until recently – 

moderate human players (Cai and Wunsch II, 2007; Ernandes, 2005). Further, although 

the 9×9 Go boards have a complexity between that of Chess and Othello (Bouzy and 

Cazenave, 2001), Computer Go has just reached the top human level (Enzenberger et 

al., 2010). Therefore, occasionally, simpler versions of Go – that follow the same rules 

but have different goals – were used while developing a Computer Go engine, such as 

Capture-Go (Konidaris et al., 2002; Cai and Wunsch II, 2007).  

With Go as a remarkable exception, search-based methodologies were 

classically used in solving many games (Van der Werf et al., 2003), including Chess 

(Hsu, 2002). Searching a game-tree is a typical AI approach that is used to determine 

which move to play in a two player perfect-information game. The game-tree is a tree of 

nodes representing the status of various games, where those nodes represent the goal 

state(s) identified, the arches (edges) represents valid transitions between the nodes (i.e. 

available moves), in addition to the presence of an evaluation function determining the 
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value of each node (i.e. state) (Luger and Stubblefield, 1998). Searching the tree can be 

more efficient using different methods, e.g. the α-β pruning method. 

Allis (1994) defined the complexity of games in terms of both state-space 

complexity and game-tree complexity. The former was defined as “the number of legal 

game positions reachable from the initial position of the game”, while game-tree 

complexity was defined as “an estimate of the size of a minimax search tree which must 

be built to solve the game”. The differences between Go and other games (including 

Chess) in both complexity measures is obvious as is shown in (Figure 1.1), where the 

complexities of Go are shown as being far larger than that of any of the other perfect-

information games. Allis assumed Go's state-space complexity to be bounded by 10
172

, 

and its game-tree complexity (average branching factor of 250, & average game length 

of 150 ply) is nearly 10
360

, while that of Chess was assumed to be close to 10
50

 and 10
123

 

respectively (an average branching factor of 35, and an average game length of 80 ply). 

In other words, if playing with a very moderate tree depth of 4, the moves that must be 

considered by a computer Go program are nearly 10,000 times larger than those 

evaluated by a Chess program (Mayer and Maier, 2005). 

Beside the large branching factor, another unique feature of Go – compared to 

Chess – namely the more complicated positional evaluation, also hampers any 

knowledge-based evaluation function. In contrast, the different values of the pieces in 

Chess, and consequently, the easier evaluation of tactical struggles, makes the overall 

evaluation of a Chess situation much easier and straightforward when compared to Go 

(Cai and Wunsch II, 2007). 

To the best of our knowledge, the largest published search-based computer Go 

programs are (Sei and Kawashima, 2000) and (Van der Werf et al., 2003) for boards of 

size 4×4 and 5×5 respectively. Sei and Kawashima (2000) investigated a search-based 

program for Go boards of less than or equal to 4×4, and they showed the resulting 

game-tree of both the 2×2 and 3×3 boards (the later is about 500 nodes). Van der Werf 

et al. (2003) improved a standard α-β game-tree search for solving the 5×5 board, and 
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provided preliminary solutions for the 6×6 board. Their program MIGOS (MIni Go 

Solver) also confirmed Sei and Kawashima's 4×4 board solution but in fewer than 

700,000 nodes, compared to the 14,000,000 nodes originally required. MIGOS employed 

a five-goals heuristic function for evaluation; aiming at connecting stones, making eyes, 

avoiding edge moves, and the two goals of maximizing the number of stones and 

liberties. 

A large search space and a multifaceted positional evaluation are not the sole 

complexities affecting a computerized Go player, but also the vague parts in the game 

rules which are difficult to apply. In (2000), Sei and Kawashima have pointed out 

various problems in the Japanese rule set that need to be dealt with, such as the 

‘Judgement of Life and Death’, the ‘Definition of End’, and the ‘No Result’ cases. 

Assumptions and rule modifications are usually made to solve those situations; more 

details are found in Subsection 2.2.5. 

Computer Go methodologies can be roughly divided into two general 

approaches, knowledge-based methods and knowledge-free methods. The later includes 

both knowledge-discovery approaches via Machine Learning techniques, and methods 

that randomly explore the search space, that is, Monte-Carlo based approaches. Another 

prevalent – yet not distinct – approach is Divide-and-Conquer. Many varying 

approaches seem to follow Divide-and-Conquer, either by learning one strategy at a 

time using a Hybrid Evolutionary Algorithm (Cai and Wunsch II, 2007), or by focusing 

on a limited area of the board at a time using an Artificial Neural Network (Stanley and 

Miikkulainen, 2004), or by dividing a game into sub-games using Combinatorial Game 

Theory (Müller, 2003). 

2.2.2 Knowledge-Based Methods 

Without doubt, one of the most widely discussed of the knowledge-based 

methods is that of using domain-knowledge encoded into patterns (Figure 2.5), which is 

the mainstream technique of integrating domain-knowledge into Go engines (Coulom, 

2007). Abramson and Wechsler (2003) argued that since Go tactics are rooted in local 
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move patterns and its strategies based on evaluating a whole board, both (tactical and 

strategic concerns) are “difficult to integrate in a heuristic evaluation”. Thus many 

computer Go programs are based on databases of patterns and the values of their 

associated moves. Supporting the argument that Go is spatially defined, is the fact that – 

unlike Chess for instance – Go is “spatially structured” in terms of 1) unmovable 

homogenous stones, and also the “spatially defined concepts” of 2) capture and 3) 

territory (Harré et al., 2011a). 

    

Figure 2.5. Various Connecting Patterns for Black (After Müller, 2002). 

Bouzy (1996) also agreed that the complexity of Go is due to its spatial 

properties, and thus it requires the study of human's spatial representation and 

consequently it depends on spatial reasoning rather than the classical reasoning of 

“natural language”. The spatial reasoning of human players consists of an elementary 

level where patterns (of connectors, dividers, or contacts) are recognized by direct 

matching, and an iterative level where the previously recognized patterns are iteratively 

collected into objects (groups or fractions). The whole board is then evaluated by 

measuring the contribution of the groups in terms of the relationship between a group 

and its neighbours, and by then using operators such as closure, in, circling, proximity, 

and overlap. A C++ implementation of this cognitive model resulted in the INDIGO Go 

playing software (Bouzy, 1996). 

Most of the domain-dependent knowledge-based Go engines’ limitations lie in 

the weak global sense that results from dividing the whole problem into sub-problems 

(Bouzy, 2005), which in turn leads to an unusually complex evaluation function where 

human expertise cannot be straightforwardly encoded, and for which traditional 

knowledge-based methods do not have the ability to improve. In spite of these 
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limitations, domain-based patterns and rules are still the mainstream approaches of 

integrating knowledge, whether into Monte-Carlo based methods or into Machine-

Learning methods, both of which – principally – don’t incorporate any domain-specific 

knowledge. 

2.2.3 Monte-Carlo Methods 

Monte-Carlo Tree Search (MCTS) in Go (Coulom, 2006) – and generally in 

other complex scenarios – aims to tackle the complexity of the evaluation function by 

replacing it – i.e., the function – with a set of simulations that randomly explores the 

search space. MCTS belongs to the general class of Monte-Carlo (MC) computational 

methods that rely on repetitive random samplings for computing their results (Figure 

2.6). Therefore, traditional MCTS (Figure 2.7) – and its extensions; such as the Upper-

Confidence-Trees (UCT) (Kocsis and Szepesvári, 2006) – practically uses no expertise 

or learning. The algorithm depends entirely on performing several random simulations 

starting from a current situation s. For a given s, each different possible move m is 

generated and played randomly. Choosing a final move mchosen depends on the 

proportion of winning simulations; that is, the percentage of games won given that 

move mchosen was selected as the next move in the simulation. 

 

Figure 2.6. Basic Monte-Carlo Move Selection (Based on Coulom, 2009). 
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Figure 2.7. Outline of a Monte-Carlo Tree Search (After Chaslot et al., 2008). 

MCTS has achieved remarkable results, whether in Go, or in other games such 

as bridge (Ginsberg, 1999), scrabble (Sheppard, 2006), backgammon (Van Lishout et 

al., 2007) and poker (Van der Broeck et al., 2009), or in other domains such as planning 

(Silver and Veness, 2010). In (Brügmann, 1993), the first developed MC-based Go 

player GOBBLE had a playing strength of about 25 kyu on 9×9 boards. In (Bouzy and 

Helmstetter, 2003), OLGA and OLEG achieved a level comparable to that of the 

Knowledge-based engine INDIGO. Currently, MC-based Go engines outperform all other 

engines, including Knowledge-based engines and engines that employ Machine 

Learning techniques. Recognized MC-based engines include FUEGO (Enzenberger et al., 

2010), Crazy Stone, The Many Faces of Go, and MOGO (Gelly and Silver, 2007). 

MOGO, for instance, won a 19×19 game against a professional 8 dan in 2008 by 1.5 

points and with a handicap of 9 stones (Figure 2.8 (Left)). Soon after, in 2009, MOGO 

won a game against a professional 9 dan in a 9×9 game (Figure 2.8 (Right)). 
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Figure 2.8. The Final Positions of: [Left] The 19×19 Game Won by MOGO (as Black) in 

2008 against K.M. Wan (8p), [Right] The 9×9 Game Won by MOGO (as Black) in 2009 

against C.H. Chou (9P and winner of the LG Cup 2007). 

Yet, despite the undisputed success of MCTS in Go, its “strengths do not 

compensate for some big weaknesses when compared to human players” (Hoock et al., 

2010). Those limitations, which result from the domain-independent nature of this 

approach and its lack of learning, can be summed up as: 

 Limitations in Tactical Ability (Bouzy, 2005); since no detailed rules or 

knowledge can be incorporated or searched for specific local situations. 

 Limitations in handling – for instance – some special life-and-death situations 

such as Nakade (Chaslot et al., 2010); that is the result of MC simulations 

frequently failing to estimate the unsafe condition of a specific group, and 

consequently, failing to prevent the death of this group. 

 Limitations in Openings (Hoock et al., 2010); due to the fact that MCTS 

methods cannot learn from experience, and consequently, have no recorded 

memory of established opening formulations. 
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Recently, the surprising effects of those limitations, on the scalability of MCTS with 

increasing computational power, were investigated by Hoock et al. (2010), in which the 

results have shown a decline in scalability as the number of simulations increased 

(Table 2.1). 

Table 2.1. Scalability of MCTS for the Game of Go (Hoock et al., 2010); showing the 

effect of increasing the number of MCTS simulations on the success rates. 

N = 

Number of 

Simulations 

Success Rate of 2N 

Simulations Against N 

Simulations In 9×9 Go 

Success Rate of 2N 

Simulations Against N 

Simulations In 19×19 Go 

1,000 71.1 ± 0.1% 90.5 ± 0.3% 

4,000 68.7 ± 0.2% 84.5 ± 0.3% 

16,000 66.5 ± 0.9% 80.2 ± 0.4% 

256,000 61.0 ± 0.2% 58.5 ± 1.7% 

 

Traditionally, several domain-independent improvements have been proposed, 

such as combining MC-Go with Tree Search (Bouzy, 2004) or implementing a parallel 

implementation of MC-Go (Yoshimoto et al., 2006). However, recently there seems to 

have become a general agreement on the inescapability of coupling MCTS with expert 

knowledge as the way to overcome those limitations. Without doubt, one of the most 

widely discussed of these is augmenting the MC-based approach with pattern-based 

domain knowledge. 

An attempt to integrate both a MC-based approach and a domain-dependent 

knowledge-base has been investigated by Bouzy (2005). This supplementary knowledge 

was used to reduce the poor tactical moves being considered by the MC process, and 

also to provide it with a more considered evaluation. The type of knowledge that Bouzy 

(2005) utilized was a 3×3 pattern dataset, in addition to rules about chain capturing. 

Inspired by Bouzy (2005), Gelly et al. (2006) significantly improved MOGO by 

introducing 3×3 local patterns to create more reasonable sequences of moves. Those 
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local patterns were mapped only in the vicinity of the last played move, and thus created 

some interesting local pattern-sequences (Figure 2.9). MOGO has also been improved in 

(Gelly and Silver, 2007), by combing the UCT algorithm with value-based 

reinforcement-learning (Sutton, 1988). In a similar vein, Patterns learned through a 

supervised-learning algorithm from the game records of strong players significantly 

improved the MC-based engine CRAZY STONE (Coulom, 2007). Alternatively, the MC-

based approach has been integrated with ‘tactical’ search algorithms which searched for 

tactical goals; such as creating an eye, connecting/separating two chains, capturing a 

chain or saving it from being captured, in addition to life and death situations (Cazenave 

and Helmstetter, 2005). 

  

Figure 2.9. The First 30 Moves of One Random Game Simulated by: [Left] Pure 

Random Mode; Moves are sporadically played with little sense [Right] Pattern-based 

Random Mode; From moves 5 to 29 one complicated sequence is generated (After 

Gelly et al., 2006). 

Again, pattern matching (Bouzy and Chaslot, 2005), in addition to rules about 

stone(s) capturing/saving (Bouzy, 2005) and proximity of the investigated move(s) to 

the previous move, were combined to form a knowledge-based Heuristic-value to 

enhance MCTS (Chaslot et al., 2008). This enhancement noticeably improved MANGO’s 
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winning rate against GNUGO on board sizes 9×9, 13×13 and 19×19. In (2010), Chaslot 

et al. continued incorporating expert knowledge – in terms of patterns and rules – 

specifically to improve some of the known weaknesses in MC-Go; in particular life-

and-death situations including nakade (Figure 2.10). 

The limitations of MCTS were also addressed by Hoock et al. (2010), wherein 

manual comments by expert players on games lost by MOGO were used to construct a 

domain-knowledge ontology to represent and – as a result – improve Go openings. The 

experts’ comments in addition to fuzzy-sets were used to build an opening-book that 

contains improved opening sequences. Besides learning from past experience (i.e., game 

records), Hoock et al. (2010) also investigated learning in terms of dynamic adaptation 

during the game by presenting two generic MCTS modifications; poolRave and 

Contextual Monte-Carlo. 

 

Figure 2.10. A real game played and lost by MOGO; MOGO (white) without specific 

modification for nakade chose (); black plays () and the group containing the stone 

at F1 is dead (MOGO loses). The right move is (); this move was chosen by MOGO 

after the modification. (Chaslot et al., 2010) 
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2.2.4 Machine-Learning Methods 

So far, this review of the literature shows that for notable milestones in 

computer Go – and other mind-games, such as Chess – playing is based on the 

traditional ‘brute force’ methods. These methods employ approaches that are definitely 

not carried out by human players, and ignore certain human aspects, such as 

autonomous learning and knowledge discovery, and thus have brought about an 

engineering achievement rather than a scientific one (Linhares, 2005). It has also led to 

an interest in alternative ways of developing ‘thinking machines’ that are able to play 

based on soft-computing approaches, that is, Machines Learning (ML) and 

Computational Intelligence (CI) approaches. This idea was expressed by Mańdziuk 

(Mańdziuk, 2007) who concluded that the final objective of the CI approaches in mind-

game playing is the capacity to imitate human behaviour with all its key attributes. 

Consequently the techniques required to reach such a level should substitute the 

currently employed large databases of patterns, rule-based systems and hand tuned 

heuristics with good capabilities for learning, knowledge acquisition, and pattern-

transformation tasks, Neural Networks have always been a practical choice. Neural 

Networks (NNs) have been effectively applied to various mind-games (Mańdziuk, 

2007), and have accomplished outstanding playing in some cases, such as 

Neurogammon (Tesauro, 1989) for playing Backgammon. NNs are practical at pattern 

recognition tasks, and thus could be highly applicable to games that are largely based on 

shapes, such as Go. Classically, NNs can be trained to have a board state as an input, 

and then to map it to another board state that indicates the following move. Though 

straightforward, this approach is hindered by the credit assignment problem. That is, it 

is necessary beforehand to know the best move position given any board state. 

Alternatively, it is important to know which individual moves to reward – for 

contributing to a final win – and which moves – contributing to a final loss – to punish. 

Unfortunately, all that is actually available for some games is simply the final score. 

The most widely discussed solution for this problem is Neuro-Evolution; 

employing an Evolutionary Algorithm (EA) to search for effective networks. NNs are 
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evolved based on their performance in entire games – as their fitness – rather than 

rewarding/punishing the individual moves. Training NNs by EAs in mind-games has 

been successfully applied in Checkers (Chellapilla and Fogel, 1999), Chess (Fogel et 

al., 2004), Othello (Moriarty and Miikkulainen, 1995), and Backgammon (Pollack and 

Blair, 1998). 

Evolving neuro-players to play Go has been implemented in a number of 

studies. In (1998), Richards et al. evolved two populations, one of neurons and another 

of blue-prints “determining which neurons to combine into the network”, instead of 

evolving a complete NN (Figure 2.11). This algorithm was known as Symbiotic 

Adaptive Neuro-Evolution (SANE), and it will be employed in our experiments (see 

Section 6.2.1). The algorithm was applied, without any pre-programmed knowledge, to 

small boards; 5×5, 7×7, and 9×9. NNs able to defeat WALLY – a trivial computer 

player – were evolved in 20, 50, and 260 generations respectively. Although manually 

analysing the networks’ play revealed that the networks often took advantage of 

WALLY’s weaknesses, the networks also generally displayed some characteristics of 

common Go playing, such as playing a Fuseki near the centre of the board. 

 

Figure 2.11. Symbiotic Adaptive Neuro-Evolution (After Lubberts and Miikkulainen, 

2001). [Left] An individual from the neuron population. The genome (on the left) 

specifies which connections are to be made and what weight they have. [Right] An 

individual from the blueprint population. The genome (the bar) points to neurons in the 

neuron population of which the hidden layer is made up. 
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Evolving NNs for game playing naturally needs an opponent to evaluate the 

fitness of those evolved networks. Thus, since they do not rely on human expertise, 

evolved NNs may have playing behaviours beyond those of human players. However, 

this indispensable need for the presence of an opponent led to strong disadvantages, 

especially with the facts that 1) in some games the available computer programs are still 

immature, and 2) even any well-built opponent(s) will eventually be exhausted. This is a 

problem because the opponent is the only source of information the network has about 

the game. As a result, the NNs’ need for developing strategies is limited by what is 

required to defeat the opponent. In addition, the NNs have frequently evolved strategies 

that exploited the weaknesses of the opponent, instead of showing common high- 

quality playing capabilities (Richards et al., 1998). 

Several solutions have been proposed to overcome the previously mentioned 

drawbacks of evolving against a computer program: 

 Creating a nondeterministic aspect in the opponent’s play by adding a random 

factor (Richards et al., 1998), 

 Evolving against varying opponents (Richards et al., 1998), or the more 

established 

 Co-Evolution (Lubberts and Miikkulainen, 2001), (Mayer and Maier, 2005). 

In more details, Lubberts and Miikkulainen (2001) co-evolved two populations, one 

population that searches for optimal solutions and another population of “test cases” 

that challenges the former one (so-called competitive co-evolution). In addition, they 

used the Hall-of-Fame concept by examining the evolved solutions against the best of 

the previous generations to ensure a rising quality. When tested using 5×5 boards 

against networks evolved against the GNUGO computer program, their techniques were 

found to speed-up the evolution process and resulted in networks with better quality that 

was not limited to those of their opponents (Lubberts and Miikkulainen, 2001). 
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However, although the number-of-generations is the only theoretical limit to the 

quality in a co-evolution, a number of problems were still pointed out: 

 For instance, stagnation can affect the co-evolution when new players get 

defeated by weak ones as the latter get filtered out of the evolving 

populations, and this thus leads to cycles by which the system cannot 

converge to an ideal solution (Rosin and Belew, 1997). 

 Another prominent limitation to the application of neuro-evolution to 

some games is the computational cost. For instance, in the game of Go, 

the current practice is to evolve 9×9 boards at most, with most of the 

results reported on 5×5. 

 Finally, neuro-evolution may suffer from an evolutionary convergence to 

a local optima; widely known as stagnation. Stagnation is detected when 

evolution fails to improve on existing solutions as measured by the 

fitness function. In games, this in effect corresponds to a player that fails 

to improve its skills, and thus its performance remains constant. 

Considering those concerns about the stagnation of co-evolution, Mayer and 

Maier (Mayer and Maier, 2005) co-evolved NNs of a 5×5 configuration, while they 

dynamically grew a group of the master players that appeared throughout the evolution. 

This group thus gathers and saves the knowledge “culture” of the population (thus 

termed Cultural Co-evolution). The Elite – related to the Hall-of-Fame concept 

(Lubberts and Miikkulainen, 2001) – is a fixed group of players similar to those master 

players, also proposed as a co-evolutionary approach additional to the dynamically 

growing culture (Mayer and Maier, 2005). This method depended on a winning-rate, 

required up to 55,000 generations (20 days of run-time), and was tested against a 

Random Player, a Naïve Player, and JAGO (a Go program written in Java). 

Evolving Go players without any prior knowledge about the game holds a 

promising foundation for scaling up to full-scale ‘19×19’ Go (Richards et al., 1998). 
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For example, in (Stanley and Miikkulainen, 2004) the NN represented a scalable 

architecture, that used the roving eyes; each of which was a visual field that was more 

limited than the considered board but which could scan the board at will. The NNs were 

evolved on a 5×5 configuration against GNU Go using NEAT (Neuro-Evolution of 

Augmenting Topologies). The evolved roving eyes were then further evolved on a 7×7 

board, building upon the experience gained from playing on the 5×5 boards. When 

compared to 7×7 boards that were evolved against GNU Go from scratch, the roving 

eyes did lead to a better performance than learning directly on the larger board. 

Recent modifications to traditional neuro-evolution included a novel Particle 

Swarm Optimization enhanced Evolutionary Algorithm (PSO-EA) (Figure 2.12) and 

Pareto Archived Evolution Strategies (PAES), both of which were employed to train the 

NNs. The PSO-EA hybrid training (Cai and Wunsch II, 2007) was proposed to achieve 

a better diversity along with a rapid convergence. The technique was applied to 9×9 

Capture Go. PAES (Tan et al., 2010) was proposed to account for two objectives while 

evolving the Go playing NNs; namely, 1) maximizing the playing capabilities of the 

evolved networks, while 2) minimizing the complexity – in terms of the number of 

hidden-nodes – of those networks. PAES improved the performance of the evolved NNs 

playing against GNUGO-3.6 on 5×5 Go boards. 

Different board representations for a self-training ANN using 5×5 boards has 

been investigated by (Mayer, 2007). Besides the simple representation where each 

intersection is mapped directly to a single neuron, the author also tried capturing the 

neighbourhood information either by using the weighted sum of the values of the 

intersection and its 4 neighbours (liberties) or by using 3×3 overlapping squares 

positioned over the different intersections. On average, and using networks trained with 

temporal difference learning (Sutton and Barto, 1998), networks using the weighted 

sum of values representation outperformed those based on the other two representations. 

Another alternative learning approach included combining Reinforcement 

Learning (RL) with Learning Vector Quantization (LVQ) (Abramson and Wechsler, 
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2003), which represents with its codebook vectors generalized and compressed input-

patterns' templates. The concepts of RL and Patterns was also again used by Silver et al. 

(2007), where they based their RL approach on the linear evaluation of a large number 

of features based on local small-shape templates of the Go board, thus providing a 

quantitative estimate to those templates. By evaluating their program against computer 

opponents using 9×9 boards, they found that those translation-invariant small templates 

were effective. 

 

Figure 2.12. Flow chart of the hybrid PSO-EA method (After Cai and Wunsch II, 2007). 

The winners, which contain half of the population, are enhanced by PSO and kept in the 

population for the next generation. Those enhanced winners also work as the parents in 

EA to produce offspring. The offspring replace the discarded losers to keep a constant 

number of individuals in the population for the next generation. If the PSO block is 

removed, the hybrid algorithm is reduced to a conventional EA. 

A three-component human-like-reasoning architecture for the Go Game was 

proposed by Meiger and Koppelaar (2001). It does not employ game-specific 

knowledge, and so their learning architecture HUGO “HUman GO” can be useful to 
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other two-player perfect-information deterministic combinatorial games. Its three 

components are a well-defined sub-games selector, an initiative engine that selects the 

best move based on both the potential initiative and the sub-game value which is 

calculated by the third component, a fuzzy partial ordering based α-β search algorithm. 

A literature tree that provides a summary of the approaches to computer Go 

presented up to this point is shown in Figure 2.13. For more elaborate computer-Go 

surveys, the reader may refer to (Bouzy and Cazenave, 2001; Müller, 2001; Müller, 

2002; Cai and Wunsch II, 2007; Chen et al., 2009). 

2.2.5 Modifying the Game’s Rules 

In some instances, the rules of Go are changed to facilitate the proposed 

techniques for an automated computer player. In (Lubberts and Miikkulainen, 2001), it 

was assumed that all the stones remaining by the end of the game are alive, and hence 

that dead stones should be explicitly captured, thus eliminating the overhead of 

determining whether stones are alive or dead. In (Sei and Kawashima, 2000) the same 

assumption was adopted, but since “according to the Japanese rules (Kiin and Kiin, 

1989)” a big eyeless group of stones is considered alive if after being captured a new 

living group of the same colour can be made in the resulting space, Sei and Kawashima 

adopted another method that a “[c]omputer continues playing as long as there is a legal 

move”. Playing until the end and statically considering a group of remaining stones 

alive if it cannot be proved dead is the so-called static recognition of life and death (Van 

der Werf et al., 2003). 

Another vague rule is that of article 12 (Kiin and Kiin, 1989) that states that a 

game ends with ‘no result’ when an identical whole-board position recurs, if the players 

agree to consider it a repetition. This vagueness is usually associated with the case of a 

super-ko; a longer cycle when compared to the immediate repetition of a cycle of only 

two moves ‘basic-ko’. To overcome the ambiguity arising from the undefined ‘whole-

board position’, Sei and Kawashima (2000) describe it as when the “following five 

items are all the same: arrangement of stones, player to move, position of Ko, whether 



44 Chapter 2: Computer Go – A Literature Review 

 

the move immediately before is [a] pass or not and the difference in [the] number of 

prisoners.” This description of the ‘whole-board position’ can be called situational, 

when compared to positional ko-rules that detect repetitions based only on the 

arrangement of the stones (Van der Werf et al., 2003). 

 

 

Figure 2.13. A brief Literature Summary Tree for the Approaches to Computer Go. 
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In (Lubberts and Miikkulainen, 2001), instead of storing all previous 

configurations for the temporal comparisons required by the ko-rule, the current state is 

compared to only two configurations ago, thus still grasping most of the ko situations 

with much fewer computations. In addition, they also placed an upper bound on the 

number of moves to forbid the case of an infinite loop. 

Finally, according to the game rules, the end of the game is reached after 

successive passes of both opponents, and their agreement about the territory and life-

and-death of the stones (Kiin and Kiin, 1989). The same scenario occurs with computer 

Go players, where if the programs disagree, the developers and then a referee are 

responsible for deciding upon this conflict. On the other hand, this overhead of 

agreement is pointless in search-based approaches when one computer program 

represents both players (Sei and Kawashima, 2000). 

2.3 Summary 

This chapter started by providing a basic introduction to the game of Go, 

followed by providing a timely review of computer Go and the different approaches 

utilized within, and the corresponding difficulties. Instead of the classical search-based 

approaches that have been successfully utilized to other games, yet failed within the Go 

domain, the approaches to computer Go can be categorized to knowledge-based 

approaches and knowledge-free approaches. The latter category includes random 

searches using Monte-Carlo based simulations which to date achieved the best results, 

and knowledge discovery using Machine Learning techniques. The main difficulties to 

those approaches include: the impracticality of encoding human expertise into the 

knowledge-based methods, the lack of adequate training procedures in addition to the 

high computational requirements for the Machine Learning methods, and finally, the 

difficulty of integrating domain knowledge into the Monte-Carlo based approaches to 

overcome the currently identified limitations. 

The formalization and consequent implications of those difficulties will be 

investigated in the upcoming chapter (Section 3.1), including background knowledge on 
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the concept of Expertise. Following, is a review on the foundations of Competency, and 

its role in Situational Awareness and Management (Section 3.2). Subsequently, 

Situation Reasoning will be introduced in Section 3.3. 
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Chapter 3: Revolutionizing Competency Awareness 

 

 

This chapter starts by re-examining the drawbacks of computer Go, providing an 

explanation of those drawbacks in terms of knowledge-acquisition and training 

bottlenecks. The explanation will take account of the nature of expertise as the basis of 

the existing challenges, and will conclude with the need to reconsider the concept of 

competency and the prevailing approaches to its measurement. A timely review of 

competency, the different approaches for its assessment, and its support to an overall 

situation awareness and management will be discussed in Section 3.2, which will 

conclude with an investigation of the disadvantages of the contemporary competency 

assessment methods, specifically in computer Go. To address those disadvantages, the 

necessity of a computational approach to competency assessment – based on selected 

criteria; Patterns of Connectivity and Situation Reasoning – will be established  in 

Section 3.3. Consequently, Section 3.4 will provide a basic introduction to Patterns of 

Connectivity, followed by a basic introduction to Situation Reasoning in Section 3.5. 

3.1 Revisiting the Challenges to Computer Go 

No problem can be solved from the same level of 

consciousness that created it.  

  –––Albert Einstein (1879-1955) 

As can be noted from the previous review on the approaches to computer Go, in 

spite of the recent achievements, computer Go still constitutes a challenging task. The 

challenges to the existing approaches can be summarized in three core points: 

 Limitations of the Knowledge-based methods: these methods even 

though relying on operations which are – diversely – carried out by 
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human Go players (i.e., rule-based inference, generalization, pattern 

matching … etc.), have not adequately recognized and acquired those 

operations (Mańdziuk, 2008) or how they develop with experience 

(Harré et al., 2011a). In addition, the narrow scope and qualitative nature 

of the existing studies on Go expertise hinder further advancements 

towards surpassing human proficiency in computer Go (Harré et al., 

2011b). For some of those operations, such as intuition, the available 

studies are still at a basic stance (Linhares, 2005). For those reasons, 

knowledge-based methods have virtually ceased from being an explicitly 

pursued approach in recent studies. 

 Limitations of the Machine Learning methods: The view of Machine 

Learning approaches as an imitator of humans in their ability to learn 

from scratch without an explicitly incorporated knowledge-base has led 

to various attempts for developing “truly autonomous” computer Go 

players (Mańdziuk, 2007). Specially, in the light of the many successful 

applications of, artificial neural networks for instance, to many real-

world applications, including board games (Tesauro, 1989). However, 

the nature and limits of the studies on human behaviour patterns and 

performance measurements have affected the implementation of an 

adequate training process, whether for explicit training as in supervised 

learning algorithms, or for evaluating and monitoring unguided 

development as in evolutionary algorithms. 

 Limitations of the Monte-Carlo based methods: Driven by the 

disadvantages of utilizing both knowledge-based and Machine Learning 

approaches and their apparent limitations, present approaches in 

computer Go have mainly focused on Monte-Carlo based simulations, a 

process which is definitely not performed by human players. Although 

the research in this field has led to significant game-playing levels, a 

MC-based simulation by itself has fallen short of surpassing human Go 
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experts. Due to the unproductiveness of multiplying the number of 

simulations, up-to-date improvements have relied on augmenting MC-

based approaches with experts’ domain knowledge (Hoock et al., 2010; 

Rimmel et al., 2010). 

3.1.1 A knowledge-Acquisition Bottleneck? 

To further formalize those challenges, they can be expressed in terms of a 

knowledge-acquisition bottleneck (Murray, 1997; Wagner, 2006; Hoppenbrouwers and 

Lucas, 2009) and a training bottleneck (Hoffman, 1998; Ross, 2006). The knowledge-

acquisition bottleneck (KAB) traditionally refers to the challenge of capturing and 

maintaining the required knowledge, and is usually discussed in the literature from an 

Organizational or Educational perspective. This bottleneck was described (Wagner, 

2006) as: 1) the presence of constricted channels through which knowledge is acquired 

from its source, and which frequently lead to an 2) acquisition latency in which a delay 

exists between the creation and acquisition of knowledge, in addition to 3) inaccuracies 

that might result from experts and/or data-mining techniques, and finally, the 4) 

challenge of maintaining an acquired knowledge-base as it expands temporally. 

Obviously, though described from an organization-management perspective, the KAB 

characterizes several of the issues confronting computer Go. 

The challenge of maintaining a domain knowledge-base – in its typical rule-

based representation – is evident in virtually every knowledge-based Go approach. 

Besides issues such as the demanding number of patterns, and detailed tactical rules to 

be incorporated, the knowledge in those approaches is not well structured, and in 

frequent cases cannot be accurately explicated and formalized; as in the case of the Go-

board evaluation which up to now requires innovative knowledge engineering 

approaches. Unsurprisingly, this is expected, given the fact that domain experts – 

traditionally employed for capturing domain knowledge – are themselves challenged by 

explicating their knowledge (Figure 3.1). This view was stated by Hoppenbrouwers and 

Lucas (2009); “Although there are certainly many situations where knowledge 

discovery from data and machine learning can be very useful, the fact must be faced 
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that learning technology will not resolve the KAB for cases in which highly domain 

specific knowledge (ultimately kept in individuals’ minds) has to be made explicit and 

formalised.” 

 

Figure 3.1. Automaticity in Cognitive Processes (After Endsley, 2000). Automaticity 

can be described from a cognitive view, as an occurring characteristic of expertise, in 

which – with experience – “skills loses the quality of being conscious, effortful, 

deliberate, and linear, and takes on the quality of automatic pattern recognition” 

(Hoffman, 1998). 

Relying on experts also results in frequent inaccuracies and ambiguities, as is 

evident in recent Go studies (Hoock et al., 2010). This is due to the subjective 

qualitative nature of their understanding and assessments. The latter is caused by the 

dependence on think-aloud “verbal” procedures; which are pervasive for studying 

expertise in games (De Groot, 1946; Connors et al., 2011), and for the generic 

acquisition of knowledge (Wagner, 2006; Hoppenbrouwers and Lucas, 2009). 

3.1.2 A Training Bottleneck? 

However, and as we have previously mentioned in Section 1.2, a much more 

significant – yet relevant – challenge opposing the progress of computer Go is a 

training bottleneck. This concept is considerably discussed within the expertise 

literature (Klein and Hoffman, 1993; Hoffman, 1998; Ross, 2006), and its effect can be 

seen more on the Machine Learning based approaches to computer Go. The training 

bottleneck (TB) can be briefly defined as the challenge “of getting knowledge into 

novices” (Hoffman, 1998). In particular, it addresses the challenge of identifying the 
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limitations of an agent in performing a specific task with proficiency, and constructing 

corresponding procedures that would eliminate those limitations. Those procedures 

typically refer to training processes, but they can be simply extended to include 

knowledge that is explicitly added to knowledge-bases; ultimately, the aim is to 

augment an agent with a specific set of skills to overcome an identified drawback. 

The relationship of the TB to the domain knowledge is twofold. Partially, the TB 

can be considered as a result of the KAB. The facts that some Go domain knowledge is 

yet to be discovered and acquired or that some available knowledge is yet to be properly 

explicated and formalized definitely increases the TB. Explicitly, by preventing – 

respectively – the identification and the acquisition of any missing skills and/or 

knowledge essential for the development of expertise. 

Still, that is not the only reason for the TB; as there is still a substantial amount 

of Go knowledge available on many aspects of the game, from both current experts and 

historical games. Evidently, computer Go agents – specifically those based on Machine 

Learning approaches – are affected by the absence of suitable methodologies to perceive 

the missing set of knowledge, skills, and characteristics needed for the development of 

expertise. In other words, a major issue is the absence of competency assessments; 

methods that would identify and measure the competencies established within an agent 

against the set of competencies required for the proficient performance of a specific 

task. 

3.1.3 How can Expertise be Organized and Measured? 

So far, we have attempted to describe the challenges to computer Go from the 

training bottleneck point of view. Yet, a question remains, what are the reasons behind 

these issues? An answer is trifold, as it lies in the very nature of expertise, and 

consequently, in both the areas of the empirical studies on understanding expertise and 

the existing approaches to assess expertise. Expertise can be defined as what “can 

describe skills, knowledge and abilities in [a task]”, or, more from an AI perspective, it 

can be viewed as “a structure [or] a system comprising knowledge and the rules that 
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govern the relationships within a knowledge system” (Farrington-Darby and Wilson, 

2006). 

Several characteristics occur with expertise, and this thus can be used to 

characterise its existence and development. The development itself can be characterized 

by shifts in performance, and is theoretically accompanied by changes in knowledge 

organization – for instance, how concepts are represented, interrelated, abstracted, or 

generalised – and reasoning (Hoffman, 1998). The characteristics also include the 

advanced perception evidently exhibited by experts (Klein and Hoffman, 1993; Furse 

and Nicolson, 1993), which was one of the major conclusions from de Groot’s (1946) 

study using Chess. An example of a generic perceptual capability which experts possess 

is in the “ability to see typicality”; that is, the ability to identify a typical situation from 

an exception, and consequently to recognize the significant cues, goals and 

expectancies, which ultimately lead to a swift and effective decision (Klein and 

Hoffman, 1993). 

It is appropriate, in this context, to mention that experts can be categorized into 

epistemic and performative; respectively, those who are experts because of “what they 

know” and thus can provide strong justifications, and those who are experts because of 

“what they do” and thus can perform a skill with proficiency (Weinstein, 1993). 

Therefore, performative experts are not expected – and frequently do not have the 

capability – to describe how they perform a specific task with proficiency. This is 

analogous with an occurring characteristic of expertise, namely Automaticity (Figure 

3.1) which was also termed a “Declarative-to-Procedural Shift” by Hoffman (1998), 

which can also hinder experts from describing and explicating their knowledge.  

Nonetheless, studies about experience have frequently relied on verbal 

approaches; such as interviews, think-aloud protocols, or descriptions provided by 

direct observations. This is specifically evident in the many studies of expertise 

conducted using games, particularly Chess (de Groot, 1946; Newell and Simon, 1972; 

Gobet, 2006; Connors et al., 2011), which were based on qualitative and descriptive 
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results that were first gathered and then analysed statistically and/or interpretatively. 

Recently however, and using the game of Go, Harré et al. (2011a) introduced a 

technique based on information theory to better understand the progress of human 

expertise by measuring it quantitatively. The authors, utilizing data collected from 

skilled amateurs and professionals, quantified changes – developmental transitions – 

that occur as players’ skill-levels progress. 

In any case, measuring expertise can be categorized according to whether the 

foremost purpose is to identify the processes behind expertise or simply the outcome of 

those processes, or both. In the former case, the aim is to study, for instance, the 

processes of decision making or problem solving, while in the latter case, the studies are 

interested in performance-based clues to the dissimilarities between beginners and 

professionals by focusing of the outcomes, that is, the decisions and solutions per se 

(Farrington-Darby and Wilson, 2006). In view of performance measures, and 

considering the aforementioned portrayal of expertise by Farrington-Darby and Wilson 

(2006) – as “what can describe skills, knowledge and abilities in [a task]” – a 

competency assessment is an applied way to address this issue of assessing the set of 

knowledge and/or skills required for performing a particular task with expertise. 

As a final point to this section, Figure 3.2 summarizes the concept of expertise 

from different studies in the literature; it shows the variations in the associated 

characteristics as expertise develops, and the dynamic factors behind this development. 

For a review of the literature on expertise, the reader may refer to (Farrington-Darby 

and Wilson, 2006). Meanwhile, to achieve our objectives, we need to review the prior 

research on competency, which will be presented in the upcoming section. Competency 

awareness cannot be fully understood without acknowledging its link to Situation 

Awareness and Situation Management, both of which will be subsequently reviewed. 
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Figure 3.2. The Concept of Expertise. 

3.2 Competency 

To be conscious means not simply to be, but to be 

reported, known, to have awareness of one’s being 

added to that being.   

     –––William James (1842-1910) 

Competency is typically investigated in the terms of evaluating and developing 

the human resources of an organization, perhaps this is because the bulk of the research 

on this topic comes from the Management and Organizational Development literature. 
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In addition, considerable research has come from the educational literature, where there 

is a point of view that stresses on performance outcomes and creating educational 

strategies to develop that outcome (Shippmann et al., 2000). 

Therefore, many definitions for the term competency were formulated by this 

varying literature. Competency can be modestly defined as “the set of behaviour 

patterns which are needed to allow the incumbent to perform tasks and functions with 

competence” (Woodruffe, 1993). An overall competency is collectively established by 

component competencies, that is; skills, which refer to the learned capacities – whether 

general or domain-specific – that would be necessary or useful to carry out a particular 

job (Bassellier et al., 2001). Mirabile (1997) stated that competency is “a knowledge, 

skill, ability, or characteristic associated with high performance on a job, such as 

problem solving, analytical thinking, or leadership”, and that “[s]ome definitions of a 

competency include motives, beliefs, and values.” Parry (1996) added that competency 

“correlates with performance on [a] job” and thus it “can be measured against well-

accepted standards, and that [it] can be improved via training and development.” 

 The variations in defining the concept of competency reflect different 

formulations of the issues that are intended to be addressed by specifying the 

competency. Those variations lead to a range of models that have been provided to 

integrate all of the competency’s components. The foundation for competency 

modelling was laid by McClelland (1973); in which he criticized the use of traditional 

Intelligence tests as predictors of job success, and instead suggested analysing the actual 

components of proficiency in each particular job. Since then, a number of methods have 

been proposed for building competency models and assessing individual’s capabilities, 

mostly in the human resources field to clarify the qualities – i.e., success factors – of 

effective personnel and managers (Table 3.1). For instance, Munro et al. (1997) 

evaluated the personnel’s competences in using ‘end-user computing’ – such as specific 

software packages and tools – in terms of how many tools an individual was 

accustomed to, how deep was the individual’s knowledge with respect to each specific 

tool, and how creative was he/she in utilizing the tool. More complete mechanisms to 
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measure the ‘end-user computing’ competencies were investigated in (Torkzadeh and 

Lee, 2003; Yoon, 2009), in which the authors, using surveys and factor analysis, 

proposed 12-item and 17-item scales – respectively – for measuring those 

competencies. Some studies focused on a specific occupation, system, or perspective; 

such as exploring information technology competencies in Business Managers 

(Bassellier et al., 2001), examining the role of the human resource system in managing 

and developing competencies (Lado and Wilson, 1994), or focusing on managers’ and 

employees’ view of each other’s competencies (Stoker and Van der Heijden, 2001). 

Additional studies were committed to examine the impact of external – yet relevant – 

factors on the measured competencies, such as the end-user involvement and the tasks’ 

uncertainties (Blili at al., 1998). 

 Traditionally, competency models – exemplified by Table 3.2 – are constructed 

using Interviews, Focus groups, and Questionnaires/Surveys (Mirabile, 1997), in 

addition to psychological assessments (Graham et al., 2003; Groth-Marnat, 2009) and 

experts feed-back (McClelland, 1973). Those constructing methods typically involve 

direct observations, video-camera recordings, and/or personal judgements/ratings 

(Mirabile, 1997). In addition, different layouts are available for constructing 

competency models (Mirabile, 1997), for instance: 

 Models vary in their dependency on statistical data as opposed to behavioural 

descriptions. 

 Models vary in whether success factors are identified independently or clustered 

in broad categories, and consequently, in whether the behavioural descriptions 

are provided – individually – per factor or listed – collectively – under the 

categories. 

 Models also vary in whether or not proficiency-levels and/or criticality-ratings 

need to be established for each factor/cluster/description. 
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Table 3.1. A table relating a list of generic behavioural competencies to Roles (After 

Woodruffe, 1993). 

Competency 

Output (Roles) 
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Breadth of Awareness; to be well 

informed 
× × 

 
× 

   

Incisiveness; to have a clear 

understanding 
× × × × × 

  

Reasoning; to find ways forward × × × × × × × 

Organization; to work 

productively 

 
× 

 
× × × × 

Drive; to achieve results  × × × × × × 

Self-Confidence; to lead the way × × × × × × × 

Sensitivity; to identify others’ 

viewpoints 

 
× × × × × × 

Cooperativeness; to work with 

other people 

 
× × × × × 

 

Goal-Orientation; to win in the 

long term 
× 

 
× × × × 

 

 

Though these models were designed to spell-out the requirements for a 

particular task, a significance of those methods is in identifying the limitations in 

knowledge and skills, thus ensuring a more effective targeting of those limitations, by 

designing tailored training experiences. The training resources may also be directed 
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towards developing the skills with a key influence or the skills which are more valuable 

during a particular phase of expertise. 

Table 3.2. Part of “a Competency Model for a Systems Engineer” that identifies 

technical competencies and their corresponding potential proficiency levels (After 

Mirabile, 1997). 

A Competency Model for a Systems Engineer [Technical Cluster] 

Technical Cluster Corresponding Proficiency Ratings 

1. System Architecture 

Ability to design complex software 

applications, establish protocols, and create 

prototypes. 

0-Is not able to perform the basic tasks. 

1-Understands basic principles; can perform 

tasks with assistance or direction. 

2-Performs routine tasks with reliable results; 

works with minimal supervision. 

3-Performs complex and multiple tasks; can 

coach or teach others. 

4-Considered an expert in this task; can 

describe, teach, and lead others. 

2. Data Migration … 

3. Documentation … 

 

Those benefits, even though reported from a largely managerial point of view, 

correlate with key requirements in the generic training-experience and performance-

measure phases of Machine Learning algorithms. Modelling the human 

proficiency/behaviour directly affects many practical applications. Some recent 

applications vary from predicting navigation/driving behaviours and decisions (Ziebart 

et al., 2008), the behavioural cloning of human players to create interactive-video game-

playing agents (Fabian, 2008), and to learning tasks demonstrated by experts (i.e., 

Apprenticeship Learning) in order to recover an unknown reward function (Abbeel and 
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Ng, 2004). The latter application is currently perhaps the only hope in the case of an 

extremely complicated reward function, a significant issue especially with “outcome-

evaluation” as a major component in the naturally-pervasive value-based decision-

making model (Rangel et al., 2008). For this latter application, an outcome-evaluation 

component can simply correspond to a performance-measure of the system’s ability to 

learn the task demonstrated by experts, and thus the ability to choose the actions that 

maximizes—the possibly unknown—reward function. An improvement in the 

performance-measure will thereby reasonably indicate learning. 

In conclusion, Competency models define the requirements to perform a task 

effectively in terms of a specific combination of skills, expertise, and knowledge (Lucia 

and Lepsinger, 1999). Consequently, a competency model then provides the awareness 

of an agent’s capability of preforming a task, and the necessary tools for further training 

and development. Therefore, competency awareness serves the interests of decision 

makers by providing a needed factor for both genuine situation awareness, and 

accordingly more effective situation management. This role is underlined in the 

following section. 

3.2.1 Situation Awareness and Management 

Competency Awareness (CA) is thus a constituent of the overall Situation 

Awareness, which is an essential state for effectively accomplishing a task. The 

terminology Situation Awareness (SA) originated from aviation practitioners (i.e., 

aircraft piloting), where it is still a major objective (Durso and Sethumadhavan, 2008). 

In addition to other jobs which are highly cognitive – such as an air-traffic controller or 

an operator in power-plants – SA is used in constructing “interfaces, automation 

control, and training systems” (Endsley, 2000). Applications where SA is an objective 

are usually characterized by a flow of data that is changing swiftly. Amidst such 

environments, an information gap is present; that is, a gap between the genuine 

information required for decision making and the enormous collection of data which 

needs to be filtered, sorted and integrated within the dynamic functioning constraints 

(Endsley, 2000). Therefore, while designing automated systems, an objective is to 
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bridge this information gap by aiming for a more adequate SA and thereby assess to 

which degree that awareness is attained, and to also provide tools for maintaining that 

awareness. 

Due to its dependency on the context, the definition of SA frequently varies due 

to the incorporation of specifics and terms of context. Endsley (1995) provided a 

generic definition of SA that stated its primary components; “The [1] perception of the 

elements in the environment within the volume of time and space, the [2] 

comprehension of their meaning and the [3] projection of their status in the near 

future.” Thus, perceiving the relevant cues in the environment provides a basic level of 

SA, on which comprehending – integrating and interpreting – those cues conveys a 

more developed level, and finally, the capability of utilizing the current situation for 

anticipating future situations comprises the highest level of SA (Figure 3.3). Besides the 

primary components, there are factors that affect SA; these include time, limitations in 

the working memory, attention, and mental models, as well as the formulated goals and 

expectations (Endsley, 2000). 

 Current state of the system (including all the relevant variables). 

 Predicted state in the “near” future. 

 Information and knowledge required in support of the crew’s current activities. 

 Activity Phase. 

 Prioritized list of current goal(s). 

o Currently active goal, sub-goal, task. 

o Time. 

 Information and knowledge needed to support anticipated “near” future contexts. 

Figure 3.3. Elements of SA, given the situation (After Pew, 2000). 

Owing to the necessity of attaining an awareness that is based on the present 

situation to develop effective decisions, SA modelling became an imperative component 
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of decision support systems (Feng et al., 2009). Modelling SA can be attempted from 

two perspectives; 1) Descriptive Models: in which the actual SA process is described 

either as a series of processes or in terms of situational and/or mental representations, 

and 2) Prescriptive Models: which are formal representations of processes with 

computational, numeric or simulation-based features (Banbury and Tremblay, 2004). As 

for assessing the SA, Pew (2000) provided a taxonomy of SA measurement methods; 

which include 1) Direct System performance Measures, 2) Direct Experimental 

Techniques such as probes, 3) Verbal Protocols and 4) Subjective Measures. The 

system performance measures directly relate a system performance to the SA attained, 

yet for this approach to be appropriately utilized domain experts should confirm that the 

system’s performance is actually mostly determined by SA. The verbal protocols 

include think-aloud procedures and recording information, while the subjective 

measures include self-assessments, expert judgments, and ratings. Unsurprisingly, most 

of the SA assessment approaches can be effortlessly related to the previously mentioned 

methods for investigating expertise and for competency modelling/assessment. This can 

be attributed to the fact that attaining a proper SA is principally the result of expertise 

and training. 

Awareness, whether of the overall situation or limited to competency and skills, 

can be fully understood only when presented within a general procedure by which a 

situation is managed, controlled, and decided. Recently, the existing concepts and 

operations associated with controlling a situation were analysed and combined – mostly 

from a cognitive perspective – into an explicated discipline; Situation Management 

(Jakobson et al., 2005). Situation Management (SM) was defined as the “framework of 

concepts, models and enabling technologies for recognizing, reasoning about, affecting 

on, and predicting situations that are happening or might happen in dynamic systems 

during pre-defined operational time” (Jakobson et al., 2007). The core theories of SM 

are based upon Modelling, Recognizing, and Reasoning-about situations (Jakobson et 

al., 2007). Nevertheless, SA must be taken into account (Figure 3.4) in order to provide 

effective decision making models; currently, for applications such as Disaster 
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Management (Chandana and Leung, 2010) and Battlefield Operations Management 

(Buford et al., 2010). 

 

Figure 3.4. Situation Management – A General Process Loop (After Jakobson et al., 

2007). 

3.3 Awareness of Expertise in Go 

Virtually all of the methodologies utilized for both Competency modelling and 

Situation Awareness are manual, relying as abovementioned on interviewing, 

questionnaires, direct observations, self-assessments, probes, verbal ‘think-aloud’ 

protocols, peer ratings, and expert judgements. The disadvantages of such 

methodologies are noticeable; lengthy data-collection processes, time-consuming, 
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subjective nature, disruptive effect, in addition to several other detailed drawbacks 

(Mirabile, 1997; Pew, 2000). It is reasonable to assume that these disadvantages also 

appear in studies of expertise that rely on no different methodologies. 

The subjective nature of the Go knowledge that is explicated by human experts 

is evident in the recent computer Go research (Hoock et al., 2010). As for the disruptive 

effects of what can be called an “Active” or a “Direct” methodology (Figure 3.5), Pew 

(2000) for instance stated – in regards to SA – that these methodologies might “[place] 

the subject in an unrealistic setting and producing an unrealistic assessment” and/or 

“[change] the subjects’ behaviour.” A passive methodology, on the contrary, is where 

the observer is situated outside the system and thus does not influence – for instance – 

the interaction between a subject and its environment. 

 

Figure 3.5. The Difference between a Passive (Top) and an Active (Bottom) 

Methodology. Modules that are out of the proposed framework’s scope are in light grey. 

This notion of passiveness will be used throughout the thesis. 

Therefore, the need is critical for an automated, non-disruptive/passive/non-

intrusive methodology that objectively and quantitatively assesses the diverse skills and 

characteristics of the subjects’ decisions. Such a methodology can also address similar 
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requirements for any advancement in AI; that is, providing significant quantitatively 

measured information on human expertise and decision-making (Harré et al., 2011b). 

Unfortunately, in artificial systems, assessing the competency of an agent 

usually depends entirely on the degree to which the goals are achieved; that is, the final 

outcome. As in the domain of board-games, where ranking systems – whether online or 

offline – are practically the only objective approaches to evaluate the expertise of 

players. Consequently, existing automated methods lack many of the advantages of the 

manual ones; such as, obtaining a practical comprehensive picture, providing in-

depth/detailed data, and capturing infrequent behaviours (Mirabile, 1997). Furthermore, 

in reality relying on a final outcome is – in many occasions – not possible and also 

incorrect. Let us take as an example the defence strategic planning domain. For it, the 

timeframe for outcomes to materialize is beyond the decision maker’s lifetime. In 

addition, the quality of a decision depends on the information and circumstances 

surrounding the decision at the time it is made, not necessarily at the time outcomes 

become known. 

Nevertheless, an advantage of the ranking systems in games – the ELO System 

in Chess and the Kyu-Dan system for Go – is that they provide a quantitative definite 

distinction in skill-levels, thus setting performance standards and deciding how an agent 

is ranked. This advantage is particularly convenient to studies of expertise that utilize 

those games. It is worth mentioning that this type of ranking – used within games – is 

analogues to the “Paired-comparison ratings” used for ranking competencies and 

employees within a job (Mirabile, 1997). 

So, we hypothesize that we cannot anymore just rely on human experts or on the 

existing automated rating systems. The first step in order to realize and develop the 

desired competency assessment methodology – which is entirely automated and 

passive, and provides objective quantitative in-depth information that has a potential 

for characterizing an agent’s expertise and of differentiating between novices and 

professionals – is to select skill(s)/competence(s) that can be investigated and evaluated. 
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The chosen competence(s) will then act as a typical outline/profile against which an 

agent’s competency can be rated. In reality, and as in the Go domain, skills can 

exceptionally vary from noticeable to much less tangible and from simple to 

considerably complex. 

A possible capability that can be investigated is pattern-connectivity. In contrast 

with systematic analysis and declarative reasoning, experts develop – with experience – 

a more tacit and automatic type of structured knowledge (Klein and Hoffman, 1993; 

Ross, 2006) that can be examined by exploring the present forms of repetitive objects or 

events. In the game of Go, the role of patterns is more obvious, where due to the nature 

of the game, it requires an intensive reliance on patterns to efficiently recognize, 

evaluate, and decide upon specific situations (Bouzy and Cazenave, 2001; Müller, 

2002). 

An alternative perspective is that of investigating Reasoning. Reasoning 

strategies and processes are clearly a major and well-established aspect of defining and 

judging expertise (Klein and Hoffman, 1993; Hoffman, 1998). Analysing the reasoning 

of Go players is firmly in line with de Groot’s (1946) core investigational methodology 

for Chess; “to ask subjects to think aloud when thinking about their next move” (Gobet, 

2006). In consequence, de Groot’s proposed ‘Chess Player’s Thinking Process’ 

emphasized the role of reasoning, specifically in the latter stages where a more in-depth 

investigation of significant potential moves is carried out, followed by a proof stage that 

reviews and validates the analysis and arguments behind a selected course of action 

(Gobet, 2006). 

In conclusion, to finalize the conceptual background for this study, 

Connectivity-Patterns will be discussed in more details in the upcoming Section 3.4, 

followed by Situation Reasoning in Section 3.5. We will then discuss specifically 

Connectivity-Patterns within Go in addition to the proposed approach within Chapter 4. 

Situation Reasoning for Go, as a variation to the proposed approach, will be discussed 

within Chapter 5. 
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3.4 Patterns of Connectivity 

For there are two modes of acquiring knowledge, 

namely, by reasoning and experience. Reasoning 

draws a conclusion, but does not make the 

conclusion certain, unless the mind discovers it by 

the path of experience.          

  –––Roger Bacon, Opus Majus (1268) 

Patterns, a terminology used within varying contexts, can be generically defined 

as being “a compact and rich in semantics representation of raw data” (Catania et al., 

2005), or as “an abstraction from a concrete form which keeps recurring in specific 

non-arbitrary contexts” (Kumar, 2003). Patterns can thus act as templates or models to 

describe, predict, and/or generate this form – in terms of the constituent entities, 

relationships, and/or attributes – within the specific domain, mostly to address a 

problem within that – or a relevant – domain. 

Patterns characterize a main aspect of human expertise, by numerous 

psychologists, in which experienced decision-making is based upon an extensively 

developed collection of “patterns and actions conditioned upon them” (Harré et al., 

2011a). Within the wide existing spectrum of research on Chess, patterns within the 

game were investigated as a part of studying the players’ decision-making, perceptual, 

and memory processes (de Groot, 1946; Gobet, 2006; Ross, 2006; Connors et al., 2011). 

Human’s sophisticated skills of manipulating patterns have inspired – and still lead – 

the development of machines that can reliably perform these complex tasks of pattern 

recognition and classification (Duda et al., 2001). 

However, beside those relatively well established fields (such as Pattern 

Recognition), current studies include innovative approaches for analysing patterns. For 

instance, a recent study within the Go domain applied techniques of information theory 

to a selection of Go patterns in order to investigate the uncertainties that a Go player has 

when playing, and how those uncertainties develop with experience (Harré et al., 
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2011a). Currently, a more generic approach to investigate patterns is to recognize 

patterns of connectivity, and the nature of their occurrences. That is, within a network 

that represents a specific domain – or the dynamics of that domain – by connecting the 

related entities, to search for small local patterns of connection, and to investigate the 

representation of those patterns within that network. Identifying those local patterns of 

connectivity – termed Network Motifs – have demonstrated usefulness in understanding 

the dynamics of the system that corresponds to the network being analysed (Ghoneim et 

al., 2008; El-Fiqi et al., 2011; Beck et al., 2011). In Section 5.1.1, more details on 

pattern identification within the Go domain – in addition to network motifs – are 

presented. 

3.5 Situation Reasoning 

Reasoning, within a specific environment, can be defined as the ability to 

perceive and comprehend the environment and its components, to find, create and 

validate its facts, and to – consequently – rationalize and/or alter beliefs and actions. 

Hence, reasoning can refer to the thinking and rationalizing process itself, or to a – 

corresponding – output of that process; such as a proof, an explanation or an argument. 

In this context, the interest is in the latter perspective; where in dictionary form, a 

reasoning/reason is “a consideration which explains or justifies some event, 

phenomenon or behaviour”. 

As can be noted from the definition, and typically from a philosophical 

perspective, reasoning within that context is often classified as the reasons that justify 

why an event has to occur or what counts in favour of considering that an agent has to 

perform a particular action (and hence, they are called justifying or Normative 

Reasons), and reasons that explains why an event has occurred or what motivated an 

agent to perform a particular action (that is, Explanatory or Motivating Reasons) 

(Tilley, 2004). Obviously, we are interested in the latter view, which is echoed in the 

literature through other relevant terminologies; such as a cause, causal history or 
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knowledge (Kim, 1981; Lewis, 1986; Garcia-Retamero and Hoffrage, 2006), or an 

explanatory argumentation (Amgoud and Prade, 2005). 

As opposed to a cause, causal history is the set of causes that in association 

would lead to an unavoidable or – at least – a very much expected occurrence (Lewis, 

1986). An example of a causal model for effective project management can be found in 

(Loo, 2003); the model designates specific practices – in terms of technical and 

personnel skills – as causes for some desired organizational outputs. Nonetheless, it is 

noteworthy that there are opinions against considering “causes” as a synonym for 

“explanatory reasoning”, or at least the very simple causes. The presence, in a complex 

system, of “many intermediate steps that intervene between cause and effect, which 

may not be linear”, in addition to potential emergent properties, renders impractical any 

simple causal explanation of that system (Hmelo-Silver and Pfeffer, 2004). For that 

reason, it was argued that the concept of causality does not probably apply to nonlinear 

systems (Wagner, 1999). A critique of using causes as explanations can be found in 

(Kim, 1981). It is worth mentioning though that, in this work we are interested only in 

the immediate explanatory reason(s) of a particular action, not the chain of reasons – 

behind the sequence of decisions – that leads to the action under consideration. 

As for reasoning as an explanatory “argumentation”, though the terms are from 

time to time used interchangeably, dissimilarities between both terms have been widely 

discussed. From a philosophical perspective, reasoning consists of the foundation or 

evidence(s) in support of an argument which – on the other hand – is a tool of 

persuasion (Walton, 1990). In other words, as described in (Govier, 1989): “Reasoning 

is what you may do before you argue, and your argument expresses some of your (best) 

reasoning. But much of the reasoning is done before and outside the context of 

argument.” 

3.6 Summary 

To sum up, in this chapter, the challenges to computer Go were revisited, 

resulting in a characterization of those challenges in terms of Knowledge-Acquisition 
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and Training bottlenecks, and which led to an investigation of Expertise and how it can 

be identified and measured. From the investigation, the merits of reconsidering 

competency assessments were covered, and consequently, competency, how it is 

modelled and assessed, and its role in the overall awareness and management of a 

particular situation were reviewed. From which, it has been found that current 

methodologies for competency assessments have limited capabilities that need to be 

addressed for further advancements in computer Go. Finally, connectivity-patterns and 

situation reasoning were selected as potential competencies to be investigated and 

evaluated. Connectivity-Patterns within computer Go, an explicated problem statement, 

and the specifics of the proposed methodology will be presented in the next Chapter. 
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Chapter 4: Competency of Human Go Players in terms of 

Connectivity-Patterns 
 

To know means to record in one's memory; but to 

understand means to blend with the thing and to 

assimilate it oneself.              

–––Ancient Egypt – Luxor/Karnak Temples 

Complex; de Lubicz, Her-Bak: The Living Face of 

Ancient Egypt (1978) 

In this chapter, a novel approach is introduced for quantifying and monitoring 

the connectivity-patterns employed by the human Go players. The chapter starts by an 

overview of the problem to be tackled and its formal definition. In Section 4.2, the 

methodology proposed to attempt this problem is presented, including an overall 

framework, and a range of connectivity-patterns (i.e., network motifs) to be assessed. 

Section 4.3 investigates the potential of the assessed motifs to capture and reflect the 

competency of Go players using a selected training set and simple statistical methods. 

The statistical methods include measures of dispersion to characterize the changes in 

motifs-counts among a selection of varying performance-levels (i.e., rankings), 

followed by tests of significance on whether the calculated measures can reliably 

distinguish those between performance-levels. Once this discriminating capacity of the 

assessed motifs is established, the calculated measures are used as features to construct 

a proposed classifier (Section 4.4). The classifier is then used to monitor the 

competency of selected human Go players – a testing dataset – as their expertise 

develops with time. Section 4.4 also includes a discussion of the achieved results. The 

contributions in this chapter are summarized in Section 4.5. 

4.1 Overview 

As has been determined in the previous chapter, the objective is to present a 

computational framework that is capable of automatically assessing the competency of 
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Go players; which will attempt to answer the research sub-questions 1 and 2 (see 

Section 1.3). The automation of this task should reduce the need for invasive, 

subjective, and qualitative assessments by human experts. However, though automated, 

the framework is expected to provide relatively a more detailed assessment when 

compared to the existing automated approaches. In this chapter, the competency of Go 

players is to be assessed in terms of connectivity-patterns. 

4.1.1 Related Work 

Within the Go domain, patterns are widely utilized – whether augmenting other 

approaches, such as Monte-Carlo simulations, or less successfully on their own – to 

suggest a course of action, and as a way to overcome the complexity of formalizing a 

board-evaluation function (Müller, 2001; Abramson and Wechsler, 2003). Those 

connectivity-patterns exist in terms of datasets that are categorized according to specific 

functionalities; that is, Fuseki patterns, End-of-the-Game patterns … etc. Due to the 

nature of the game, each pattern exists in an explicitly-detailed manner, and is usually 

applied to a precise board-situation. However, and to the best of our knowledge, those 

patterns have not been employed in characterizing the performance of Go players. 

A remarkable alternative exists within the generic literature, in that many 

complex systems are represented via networks – “collections of points joined together 

in pairs by lines” (Newmann, 2010) – that are then more deeply analysed and 

understood through a Network Motifs count. Network motifs can be defined as “small 

recurring interconnections (subgraphs of three to five nodes) that appear more 

significantly in real networks than in randomly generated networks having the same 

single-node characteristics” (Ghoneim et al., 2008). Networks motifs have been 

successfully employed in understanding the dynamics of numerous varying complex-

systems; for instance: the dynamics within computational linguistics (El-Fiqi et al., 

2011), the dynamics of gene sequencing and regulation (Beck et al., 2011), and the 

characterization of the dynamics of two-player strategy games in game theory, such as 

the prisoner dilemma (Ghoneim et al., 2008). This understanding is based on the most 

significant consequences of a network motifs count, which are 1) the assumption that 
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those counted motifs are developed as a result of similar factors and consequently 

perform similar tasks within the complex system, and hence, 2) the capability of 

clustering the analysed networks into groups of related characteristics (Ghoneim, 2008). 

Section 5.2 provides details on the main types of connectivity-patterns, followed by our 

proposed reasoning assessment approach. 

4.1.2 Problem Statement 

The problem to be attempted in this chapter is: to automatically, passively, 

quantitatively, and objectively assess the competency of Go players by characterizing 

the decision-making performance of human Go players in terms of connectivity-patterns 

that represent existing board situations. The connectivity-patterns are determined using 

a network motif search; that is, given a board situation, each individual-player’s stones 

are represented by a network of nodes (representing the stones) and edges (representing 

the adjacency between the stones), which is then searched for sub-graphs of specific 

sizes and patterns. This procedure is performed using a fully computerized simulation, 

and is used to analyse a large cohort of games played by – Casual, Intermediate, and 

Advanced – human Go players. The results expected to be achieved are: 

 That given a set of Go “Games” performed by human players of varying 

“Expertise” levels, the difference in the expertise can be explained by a 

statistically-significant quantitatively-based difference in the frequencies of 

connectivity-patterns “MotifsExpertise” estimated from the corresponding 

“GamesExpertise” using the network motif search. 

 And consequently, that the quantitative measurements representing a specific 

“Expertise” level can be utilized to create a corresponding “Competency 

Model”. So that, given a set of Go “Games” played by a particular “Player” 

over a period of time, the “Competency Model” will reflect and monitor the 

changes in the performance of that specific “Player”. 
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4.2 Methodology 

To accomplish this, we present the computational framework in Figure 4.1. The 

cornerstone of this modified framework is a pattern assessment component (ACP), 

which will act as the external observer, and consequently, provide an assessment – in 

terms of network motifs – to the actions of the Go players. The ACP depends on a 

systematic search for specific sub-graphs within typical networks. Therefore, this 

component can act as an objective reference point by which the pattern-connectivity 

competency of different players can be compared. The fact that the ACP is fully 

automated ensures the objectiveness of the provided analysis. It also ensures the 

passivity and non-intrusive nature of the analysis, guaranteeing that it – that is, the 

analysis process – could not have an effect on the dynamics of the game being assessed. 

With the purpose of examining the effectiveness of the searched motifs in 

expressing the competency of Go players, and therefore in discriminating between the 

varying levels of performance, our methodology includes a preliminary phase that 

attempts to characterise those varying levels in terms of the network-motifs totalled. 

This phase – steps from 1 to 3 in Figure 4.1 – includes the selection of Go games’ 

records reflecting the different available levels of performance to constitute a training 

dataset. Those games are then analysed using the ACP, and simple statistical dispersion 

measures – the Median, and the Median Absolute Deviation – are then calculated, and 

are followed by tests of Statistical Significance. The purpose of applying the 

significance tests is to demonstrate the value of the motifs as features capable of 

describing and – accordingly – distinguishing the varying levels of performance in Go. 

Once this phase is realized, the features are then used to construct a classifier 

capable of learning the different recurring connectivity-patterns. The design of the 

classifier (Figure 4.5) is founded on the concept of Ensemble Learning (Kittler et al., 

1998), and is constructed using Random Forests (Breiman, 2001). The construction of 

the classifier begins the second phase of our proposed methodology – steps from 4 to 6 

in Figure 4.1 – which also includes the selection of a testing dataset; a selection of cases 

– human Go players – that will be used to monitor the competency as the players’ 
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experiences vary with time. Temporally-ordered games are compiled for each case, and 

are analysed by the ACP to generate the set of features to be classified. Finally, the votes 

from the trained classifier – a vote for each game – are plotted to show how the learning 

process is evolving, and to estimate the current overall competency/experience level for 

each selected player. A temporal plot of the features can present a more detailed skill 

assessment for the selected players. The remaining sections in the chapter describe – 

consecutively, as shown in Figure 4.1 – each step in the framework. Coming next are 

the definitions of the classes of motifs available in the game of Go. 

 

Figure 4.1. The Proposed Computational Framework. 
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4.2.1 Classes of Motifs 

As previously defined (Section 3.4), motifs are small connected sub-graphs – 

that is, sub-networks within a studied network – that are displayed in significantly 

higher frequencies within that network than would be expected for other random 

networks. Therefore, varying classes of motifs can be found, depending on the criteria 

of the network and sub-graphs; namely, the type of connectivity that exists between the 

nodes in a network and the size of the sub-networks/sub-graphs we are looking for.  

Table 4.1. Total number of Sub-graphs available. 

Nodes n per Sub-Graph 

 3 4 5 

Total number of connected Directed-graphs with n 

nodes 
13 199 9364 

Total number of connected Undirected-graphs 

with n nodes 
2 6 21 

Number of connected Undirected-graphs with n 

nodes available in trainDS 
2 6 15 

 

 

Table 4.1 lists the total number of sub-graphs available, when searching for sub-

graphs of sizes 3, 4, and 5 nodes ‘n’, and also when searching for directed sub-graphs in 

which each edge has a sense of direction from a node nsource to ndestination (usually 

expressed as an ordered-pair < nsource, ndestination >), as opposed to undirected sub-graphs 

in which the sense of direction does not exists (and thus, usually expressed as an 

unordered pair {nsource, ndestination}). The networks representing a game of Go are built for 

every step – move – in the game, and per opponent; that is, a game of Go with 300 

moves will results in 600 networks, thus for each action and after removing the 

dead/captured stones, the board is represented in 2 networks that express the White 

stones and the Black stones, individually. Hence, the stones of the same colour in a 

specific board situation constitute the nodes within the constructed network, while the 
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edges express the connectivity between those stones. In this context, connectivity is 

defined as stones – of the same colour – which are horizontally, vertically or diagonally 

adjacent. 

In this study, undirected sub-graphs of sizes 3, 4, and 5 will be investigated. In a 

preliminary experiment, and using the training-dataset ‘trainDS’ (described in 

Subsection 4.3.1), not all of the theoretically possible combinations of sub-graphs from 

the corresponding sizes (see Figure 4.2) were present in the networks representing the 

Go games. The last row in Table 4.1 shows the actual number of undirected sub-graphs 

found in trainDS. As a final point, the initial sets of sub-graphs to be investigated are: 

 Undirected Sub-Graphs of Size 3: { M3-1, M3-2 }.  

 Undirected Sub-Graphs of Size 4: { M4-1, M4-2, … M4-6 }. 

 Undirected Sub-Graphs of Size 5: { M5-1, M5-2, … M5-15 }. 

 

 

 

Figure 4.2 (a). Possible combinations of undirected sub-graphs of sizes 3 and 4 

respectively, and their corresponding designated IDs used throughout the chapter. 
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Figure 4.2 (b). Possible combinations of undirected sub-graphs of size 5, and their 

corresponding designated IDs used throughout the chapter. 

4.2.2 Nature of the Network-Motifs occurring in Go 

As mentioned earlier, for a sub-graph to be considered a Motif, its occurrence in 

the investigated network must be significantly higher than its frequency in randomized 

networks. Thus, allowing the assumption that those significantly recurring patterns 

perform necessary tasks within the domain reflected by that network. In order to extract 

what the motifs are, from a Go perspective, the frequencies found in trainDS should be 

statistically compared to those found in proportional randomized networks. By 

proportional networks, we mean randomized networks that share the same 
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characteristics as the real network; such as the number of nodes, and the degrees of 

those nodes. 

To do this, for each real network representing the stones of an individual 

opponent at a single step of a Go game, 500 proportional randomized networks were 

created. Then, the averages – and the corresponding standard-deviations – of the 

occurrences for each motif in all the random networks are calculated. In both Tables 4.2 

and 4.3, the numbers of occurrences in the real ‘Go’ networks are termed ‘N real’, while 

those of the randomized networks are termed ‘N rand’, and their corresponding standard 

deviations are termed as ‘SD’. Hence, statistical significance is represented in terms of 

the Z-Significance value, which can be calculated using the following equation 

(Ghoneim et al., 2008): 

 

Z-Significance = (N real – N rand) / SD    (Eq. 4.1) 

This process is usually done by publicly-available dedicated software, such as 

FANMOD (Wernicke and Rasche, 2006). The specified cut-off threshold for the Z 

significance value is set to ±1.96; that is, differences in the occurrences of a specific 

sub-graph – between the real and randomized networks – that yield a value of 

significance that are higher or lower than the selected threshold, are considered 

sufficiently significant for the corresponding sub-graph to be considered a Motif. This 

threshold corresponds to a confidence level of 95% (El-Fiqi et al., 2011). 

Table 4.2 presents the details – of this Motifs identification process – for 3 

games, each representing a level of expertise. On the other hand, Table 4.3 presents the 

final overall results of the Motifs identification process for all of the games included in 

trainDS; therefore, the values shown in the table are averages of 127 games per 

expertise-level. Using the calculated values of significance, and the selected threshold, 3 

sub-graphs – 1 of size 4, and 2 of the size 5 – were not found to be Motifs (shown in the 

Table in light grey cells). 
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Table 4.2. Motifs Identification Process; Details of 3 Representative Games. 
Sub-Graph 

Size 

Expertise-level of the 

Representative Game 

Motif 

ID 
N real N rand ± SD Z Significance Significant 

3 

Casual 1 251 420.5±4.5 -37.79 YES 
2 59 2.5±1.5 37.79 YES 

Intermediate 1 330 565.2±5.7 -41.55 YES 
2 82 3.6±1.9 41.55 YES 

Advanced 1 353 641.2±5.9 -49.26 YES 
2 100 3.9±2.0 49.26 YES 

4 

Casual 

1 51 268.4±9.1 -23.96 YES 
2 366 1010.6±26.1 -24.69 YES 
3 141 15.4±8.9 14.13 YES 
4 8 4.8±2.1 1.52 NO 
5 40 0.1±0.3 122.46 YES 
6 3 0.0±0.0 INF. YES 

Intermediate 

1 64 410.4±13.3 -26.07 YES 
2 486 1523.0±34.7 -29.90 YES 
3 215 24.2±13.0 14.69 YES 
4 13 7.7±2.7 1.95 NO 
5 68 0.2±0.4 152.23 YES 
6 5 0.0±0.0 INF. YES 

Advanced 

1 71 494.4±13.6 -31.05 YES 
2 523 1774.4±38.2 -32.78 YES 
3 251 27.2±13.3 16.87 YES 
4 9 8.5±2.8 0.19 NO 
5 84 0.2±0.5 176.41 YES 
6 8 0.0±0.0 INF. YES 

5 

Casual 

1 4 98.2±7.9 -12.00 YES 
2 218 1905.3±111.7 -15.10 YES 
3 14 10.4±7.5 0.48 NO 
4 525 2390.6±110.0 -16.96 YES 
5 98 27.1±19.9 3.56 YES 
6 39 36.5±17.2 0.14 NO 
7 34 0.3±0.9 35.70 YES 
8 204 33.7±22.0 7.74 YES 
9 88 0.3±1.2 74.98 YES 
10 4 0.0±0.0 INF. YES 
11 19 0.1±0.3 57.13 YES 
12 6 0.5±0.8 6.64 YES 
13 15 0.0±0.0 335.37 YES 
14 8 0.0±0.0 INF. YES 
15 3 0.0±0.0 INF. YES 

Intermediate 

1 2 161.4±11.7 -13.68 YES 
2 226 3236.4±158.2 -19.03 YES 
3 20 20.5±10.8 -0.05 NO 
4 706 4012.2±152.6 -21.67 YES 
5 143 55.5±30.2 2.89 YES 
6 49 65.8±23.8 -0.71 NO 
7 60 0.8±1.8 32.29 YES 
8 321 68.6±34.2 7.39 YES 
9 142 1.1±2.5 57.43 YES 
10 5 0.0±0.0 INF. YES 
11 20 0.2±0.5 37.14 YES 
12 20 1.1±1.3 14.96 YES 
13 39 0.0±0.1 617.20 YES 
14 16 0.0±0.0 INF. YES 
15 5 0.0±0.0 INF. YES 

Advanced 

1 6 222.0±13.9 -15.52 YES 
2 272 4003.4±171.1 -21.80 YES 
3 31 25.7±13.0 0.41 NO 
4 689 4793.3±163.5 -25.11 YES 
5 166 64.0±33.9 3.01 YES 
6 38 75.3±24.8 -1.50 NO 
7 75 1.0±2.0 36.90 YES 
8 372 77.4±36.7 8.02 YES 
9 172 1.3±2.5 67.10 YES 
10 14 0.0±0.0 INF. YES 
11 19 0.2±0.6 33.30 YES 
12 13 1.2±1.3 9.38 YES 
13 50 0.0±0.1 501.92 YES 
14 24 0.0±0.0 INF. YES 
15 6 0.0±0.0 INF. YES 
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Table 4.3. Motifs Identification Process; Final Overall Results. 
Sub-Graph 

Size 
Expertise-level Motif ID Significance at the Corresponding Game 

25% 50% 75% 100% 

3 Casual 1 80 100 100 100 
2 80 100 100 100 

Intermediate 1 90 100 100 100 
2 90 100 100 100 

Advanced 1 96.667 100 100 100 
2 96.667 100 100 100 

4 Casual 1 86.667 100 100 100 
2 76.667 100 100 100 
3 66.667 100 100 100 
4 10 3.3333 13.333 23.333 
5 83.333 100 100 100 
6 96.667 93.333 93.333 100 

Intermediate 1 90 100 100 100 
2 90 100 100 100 
3 56.667 100 100 100 
4 3.3333 10 20 13.333 
5 90 100 100 100 
6 90 96.667 100 100 

Advanced 1 100 100 100 100 
2 100 100 100 100 
3 90 100 100 100 
4 6.6667 20 30 10 
5 86.667 100 100 100 
6 86.667 100 96.667 100 

5 Casual 1 0 23.333 53.333 86.667 
2 60 96.667 100 100 
3 3.3333 3.3333 3.3333 0 
4 53.333 100 100 100 
5 10 33.333 80 93.333 
6 3.3333 0 0 10 
7 43.333 93.333 100 100 
8 23.333 96.667 100 100 
9 53.333 96.667 100 100 
10 0 10 40 96.667 
11 10 63.333 100 100 
12 10 40 66.667 86.667 
13 23.333 73.333 96.667 100 
14 3.3333 13.333 40 100 
15 10 23.333 46.667 83.333 

Intermediate 1 6.6667 46.667 83.333 96.667 
2 70 100 100 100 
3 3.3333 3.3333 3.3333 0 
4 80 100 100 100 
5 16.667 33.333 86.667 90 
6 0 0 3.3333 16.667 
7 50 96.667 100 100 
8 23.333 96.667 100 100 
9 76.667 100 100 100 
10 13.333 30 63.333 90 
11 20 86.667 96.667 100 
12 13.333 66.667 90 93.333 
13 43.333 90 100 100 
14 16.667 40 73.333 90 
15 23.333 50 83.333 96.667 

Advanced 1 20 46.667 73.333 93.333 
2 90 100 100 100 
3 10 3.3333 3.3333 0 
4 100 100 100 100 
5 16.667 63.333 93.333 100 
6 3.3333 0 0 0 
7 70 100 100 100 
8 33.333 100 100 100 
9 80 100 100 100 
10 0 20 56.667 100 
11 30 86.667 100 100 
12 40 73.333 96.667 100 
13 30 66.667 96.667 100 
14 10 30 66.667 100 
15 20 40 66.667 96.667 
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After explaining the classes of network motifs and the nature of their 

occurrences in Go – which constitute the recurring-patterns assessment component 

(ACP), Figure 4.3 describes the remaining processes of the proposed computational 

framework in relation to the basic steps of data-mining. Those remaining processes are 

detailed in the following Sections 4.3 and 4.4. 

 

Figure 4.3. An overall illustration of the basic processes for assessing the competency of 

Go players based on Connectivity-Patterns; detailed in Sections 4.3 and 4.4. 

4.3 Estimation of Competency Models 

This section presents the first phase of the methodology, in which we will run 

our system using the Training Dataset, which consists of games played by casual, 

intermediate, and advanced human opponents. ACP analysed the games and found the 

motifs within all of the moves, thus estimating the connectivity-patterns originally 

employed by its human players. An initial pre-processing step was then carried out by 

applying a cumulative frequency measurement. This measurement represents the final 

value that was generated for each game, and thus, the final features’ set for the entire 

games representing a level of expertise. This step was followed by the final statistical 

analysis in which measures of dispersion and tests of significance were used to examine 

the implications of the final features sets. 
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4.3.1 Training Dataset 

As previously discussed in Section 2.1, the game of Go traditionally uses the 

ranking (rating) system of kyu and dan ranks. In this thesis, players with ranks ranging 

from 30 to 20 kyu are collectively referred to as Beginners, ranks from 19 to 10 kyu are 

Casual players, 9 to 1 kyu are Intermediate players, and finally from 1 to 7 dan are 

Advanced players. Due to some ambiguities in defining the Professional dan ranks in 

the game records, we decided not to include those ranks in the analysis. This collective 

reference to the individual kyu-dan ranks assists in minimizing the overlapping between 

the investigated categories, and in utilizing the very small number of game records 

remaining after applying our strict conditions for selecting the training dataset. 

 For the experiments, game records in the text only smart game format (SGF) 

(Hollosi, 2009) were selected from an online NNGS Go Server game archive (Adam, 

2009). NNGS “No Name Go Server” was a real-time Go server where thousands of 

online games were played and eventually archived. The server was operating until mid-

2005. The cases ‘game records’ are selected from the years spanning from 1995 to 

2005. 

The training dataset (trainDS) is one of two datasets that were selected separately, 

the other being the testing dataset (testDS); from which we will select a set of Go 

players to observe and monitor their competency. While selecting trainDS, the 

following conditions were taken into consideration: 

1. Only standard game records were selected; records representing complete games 

(i.e., not stored problems) played using the standard 19×19 board (i.e., other 

board sizes were ignored). 

2. In order to simplify the analysis, only games where both players were from the 

same ranking range (e.g., Beginner, Casual … etc.) were selected. 

3. Only games where both players have an established rank are selected; if one or 

both players were unranked or had an unconfirmed rank, the game was ignored. 
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4. Only games without handicap were selected, so as not to affect—as much as 

possible—the application of the typical opening-patterns that are played at the 

beginning of the game (fuseki patterns). 

5. Since games with handicap were not selected, we only looked at relatively 

equitable games where the difference between the two players was less than 4 

stones. 

6. To assure—as much as possible—that games were played to the end, only 

games won by moku “i.e., points of territory” are selected; games won by 

resign, time, or forfeit are ignored. In addition, only games with results were 

selected; cases for a jigo “draw”, no result, suspended play, or unknown result 

were all ignored. 

7. A maximum of five games per registered-name was imposed to limit any 

personal influences. This rule was made under the assumption that a single 

player is not likely to be listed using more than a single registered-name. 

8. Games with a player’s registered-name implying a non-human player (i.e., an 

engine) were discarded; for instance, names such as robot, engine, Cshell, Gnu, 

manyfaces, etc. 

9. In order to minimize the ‘strategical’ overlapping between the different rank-

categories, only games with both players from the mid-range of a rank category 

were accepted. The mid-range intervals for the available categories are: 

Beginners [27, 23] kyu, Casual players [16, 13] kyu, Intermediate players [6, 4] 

kyu, and Advanced players [3, 5] dan. 

10. An equal number of games were selected for each rank-category. 

Due to these strict conditions, from more than 435,000 games, the final trainDS 

includes 381 games, with 127 games for each category (Casual, Intermediate, and 

Advanced players). The reason for why no ‘Beginner’ cases matched our criteria, is 

most likely that it usually takes time – and possibly a certain number of played games – 

for a player to have an established rank on a server, thus by that time, nearly every 

beginner would have already advanced to the casual players range. 
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4.3.2 Data Pre-processing 

ACP lists the counts of the motifs for each move per player per a game of Go. 

The main feature then calculated from this counts-list was the following measurement: 

o Motifs Cumulative Frequencies per Step (MCFS); for each motif, per 

player per game, the summation of its corresponding frequencies per 

step, for all the steps (i.e., moves) of that game. Given the set of all 

motifs M, MCFS is defined as: 
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(Eq. 4.2) 

 

where the function C returns the – non-negative integer – count of the 

motif Mj in the network generated at the step/move s by connecting the 

stones of the player k. Ngames and Nmotifs are respectively the total number 

of games and motifs available, while Nsteps is the number of moves per 

game. 

4.3.3 Statistical Analysis 

After defining the measure to be calculated, the final step is to analyse the 

grouped measurements – for the set of games representing a level of performance – 

using simple statistical measures (the Median and the Median Absolute Deviation 

‘MAD’), followed by statistical hypothesis testing. Given the set of experiences 

},,{ 21 neeeE  , let De denote a subset of the dataset of all games D, where the 

experience of both opponents is e. The median can be estimated as: 
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86 Chapter 4: Competency of Human Go Players in terms of Connectivity-Patterns 

 

where φ is the measurement function (i.e. denoting MCFS), Ms is the sth motif, |De| is 

the number of games in De, and 
eee DDD ::1

  are the order statistics of 
eD

 1 . 

Accordingly, MAD can be estimated as: 
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  (Eq. 4.4) 

Our main argument is that the medians of the different motifs-counts can model 

how the general strategy is decomposed into characterizing connectivity-patterns, in 

addition to demonstrating the variations in those patterns employed by the human Go 

players of different experiences. To confirm the potential hypotheses suggested by the 

data, both a two-sample T-test and a two-sided Wilcoxon rank sum test are used. 

The two-sample T-test tests a null hypothesis H0 that the two independent 

samples come from normal distributions with unknown variances and the same mean, 

against the alternative that the means are unequal. The test is two-tailed, and performed 

at a significance level α = 0.05, i.e. the probability of mistakenly rejecting H0 (Type I 

error) is no more than 5%. Alternatively, the Wilcoxon-test tests a null hypothesis H0 

that the two independent samples come from identical continuous distributions with the 

same median, against the alternative that the medians are unequal. The Wilcoxon-test is 

also performed at a significance level α = 0.05. By permuting the types of Motifs, the 

calculated measurement, and pairs of different experiences, the T-test and Wilcoxon-test 

will examine the null hypothesis that the data (i.e. the MCFS per game) are with equal 

means/medians ‘respectively’ against the alternative that the means/medians are not 

equal. 

4.3.4 Discussion 

In the first phase of the experiments, the system was run using the selected case-

base of games that were played by casual, intermediate, and advanced human players. 

The motifs were then counted for all of the moves, thus assessing the connectivity-
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patterns originally employed by the human players. The Motifs Cumulative Frequencies 

per Step (Eq. 4.2) were applied as measurements for grouping the counted motifs per 

game. Subsequently, and between each distinct pair of experiences, the Wilcoxon-test 

and a two-sample T-test were applied to statistically signify the ability of the calculated 

medians/means to differentiate between the corresponding distinct pair of experiences. 

Table 4.4 shows the medians (Eq. 4.3) and median absolute deviations (Eq. 4.4) among 

the 127 games per experience level. 

Almost half of the motifs failed in significantly differentiating between the 

expertise-levels; either by completely failing to differentiate between any pair of the 

expertise-levels, or differentiating between only one pair. Table 4.4 shows that, 11 

motifs – out of the 20 investigated – showed a statistical difference between at least 2 

pairs of expertise-levels. Mostly, the capability was to discriminate between 

casual/intermediate and casual/advanced human Go players, while failing to 

discriminate statistically between intermediate/advanced players. However, M4-2 was 

found capable of discriminating between all three pairs of expertise-levels, and M5-15 

was capable of discriminating between Intermediate players on one side, and both 

Casual and Advanced players on the other. The two latter observations had not been 

paralleled by any of the reasoning sub-sets investigated in Chapter 5. 

In general, the medians reported for the Intermediate players tend to be the 

highest, followed by the Advanced players, and finally the Casual players. On the other 

hand, the Causal players reported the highest Median Deviations, followed by the 

Intermediate players, while the Advanced players reported the lowest deviations. This 

latter observation shows that the Advanced-players’ playing capabilities are more 

conformed when compared to other performance levels, a conclusion that had also been 

supported by the future findings in Section 5.3.4. 

  Finally, from the analysis of the reported results, the detected connectivity-

patterns within the proposed methodology were adequately capable of characterizing 

particular differences in the expertise levels – of the human Go players – in an 
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automated and passive approach, the description of these differences was quantitatively-

represented and statistically-significant. However, only a subset of the investigated 

motifs was able to provide a significant discrimination. For an additional demonstration 

of those Motifs, Figure 4.4 will illustrate the 11 finally-selected Motifs through a 

representative Go game. 

 

Figure 4.4. The 11 Finally selected motifs illustrated through a representative Go game. 

The 2 motifs of size 3 are shown at the bottom of the figure. The 4 motifs of size 4 are 

shown at the right-hand side of the figure, while the 5 motifs of size 5 are shown at the 

left-hand side of the figure. 
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Table 4.4. The Medians and Median Absolute Deviations (MAD) of the Different 

Motifs among Diverse Experience Levels. 

 

Level of Expertise 

Casual Intermediate Advanced 

Sub-

Graph 

Size 

Motif 

ID 
Median MAD Median MAD Median MAD 

3 1
α
 131.62 33.6 157.7 32.884 144.77 31.418 

2
 α

 27.325 8.7859 32.486 8.3568 31.173 7.8946 

4 

1 15.395 7.5363 17.585 7.3493 17.275 6.5378 

2 
β
 151.96 49.894 183.08 49.093 164.94 46.069 

3
 α

 54.365 22.122 69.807 21.837 64.62 20.362 

5
 α

 13.845 6.5983 16.456 6.2237 15.604 6.025 

6
 α

 0 0.23486 0.028124 0.30052 0.027031 0.28119 

5 

1 0.42811 0.7384 0.56672 0.69504 0.63813 0.68844 

2 59.183 32.014 72.819 28.422 66.94 26.302 

4 193.39 77.875 230.86 72.563 209.49 67.04 

5
 α

 34.535 17.131 43.245 17.028 40.243 15.542 

7 12.105 6.8969 13.956 6.5749 13.417 5.9627 

8
 α

 79.722 35.032 93.683 33.722 88.6 32.045 

9 30.997 16.099 36.099 14.379 34.375 14.231 

10 0.69341 0.96935 0.82733 1.094 0.70041 0.98051 

11
 α

 4.8236 2.7678 5.8305 2.9316 5.7142 2.5667 

12
 α

 2.3781 2.1515 2.8842 2.1432 2.9095 2.0222 

13 6.6227 4.3188 8.0854 3.9196 7.5387 3.8733 

14 1.5888 2.3297 1.8693 2.1369 1.7353 2.2676 

15 
γ
 0.68753 0.79779 0.45382 0.60478 0.71075 0.67814 

All the values reported in this table are calculated using 127 games per each level of experience. 

Light grey rows represent motifs that fail to differentiate between at least 2 pairs of expertise-levels. 

α The rows where the motif can, in a statistically significant manner, differentiate between 

Casual/Intermediate and Casual/Advanced. 

β The rows where the motif can, in a statistically significant manner, differentiate between all three pairs 

of expertise-levels.  

γ The rows where the motif can, in a statistically significant manner, differentiate between 

Casual/Intermediate and Intermediate/Advanced. 
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4.4 A Case Study: Tracking the Motifs-Based Competency 

In the second and final phase of our experiments, we created our proposed 

classifier. Then, using testDS, the games of each player were temporally ordered and 

classified. The resulting classification probabilities have been cumulatively averaged to 

generate Monitoring-Curves to observe the learning activity per player. This leads to the 

final stage, in which this learning activity was diagnosed by temporally observing each 

of the motifs’ characteristics. 

4.4.1 Classifier Architecture 

An idea proposed in the literature since the late sixties, and matured in the early 

nineties, is of whether by combining a set of varying Machine Learning classifiers 

(classifier ensembles), can the overall performance be improved in comparison to a 

single classifier. Thus instead of relying on single classifiers to solve a specific domain-

related task, Ensemble Learning (EL) aims to aggregate a set of classifiers that vary in 

their nature, structure, or even their operational parameters, while exploiting the hope 

that “the sets of patterns misclassified by the different classifiers would not necessarily 

overlap” (Kittler et al., 1998). Since then, classifier ensembles have been applied to a 

wide range of domains, and various methods for combining classifiers have been 

investigated and evaluated in the literature. 

The accuracy of Random Forests, just as any other ensemble model, depends 

mainly on the individual-strengths and diversity of the base models. Therefore, 

ensembles are effective when applied to unstable classifiers (e.g., classification trees); 

in the case of which, any minor change in the operational parameters or the training set 

ends up with a noticeable change in the classifier’s prediction. Besides bagging 

“Bootstrap Aggregating” in which new training sets ‘bootstrap replicas’ are drawn 

with replacement from the original set, randomness is also introduced to the forests by 

random feature selection, whereby a random subset of features ‘input variables’ is used 

at each decision ‘node’ split. 
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Since bagging omits on average one third of the observations in each replica, 

those omitted (so-called out-of-bag) observations can be used to estimate the error in 

the bagged classifiers. This is done for each observation by averaging the predictions of 

all the ensemble’s trees in which this observation is out-of-bag. The out-of-bag estimate 

is unbiased, and is practically as accurate as using a testing set of a size similar to the 

training set (Breiman, 2001). Using random features makes the forests relatively more 

robust to noise and faster than bagging alone, characteristics that we may need when 

classifying features of which some are potentially irrelevant. For a detailed description 

of random forests, the reader may refer to (Breiman, 2001). 

 

Figure 4.5. The three-tier ensemble used to predict the class label of a game of Go. 

In this study, a three-tier ensemble (Figure 4.5) is used to predict the class label 

of a game of Go as Casual, Intermediate, or Advanced. The first-tier is based on 

Random Forests (RFs), which are ensembles of Classification Decision Trees (CDTs). 

In order to analyse the motifs counts, we are looking for a robust white-box model, 

which can handle data without requiring a lot of data preparation. These requirements 

suggest the use of CDTs. For this, each individual classifier (i.e., RF) is trained to 

classify a class and its complement; for example, a RF is trained to classify Casual 
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games versus Not-Casual (i.e., Intermediate and Advanced) games, and so on. Thus, 

each RF outputs two probabilities ‘Pr’; namely for the previous example, a probability 

that a given game is originating from the Casual class: Pr(C), and a probability that the 

same given game is originating from the Not-Casual class: Pr(¬C). The RF is created 

using a maximum number of decision trees (set to 1000 throughout this study), yet only 

the number of trees corresponding to the minimum cumulative misclassification 

probability—for out-of-bag observations in the training data—is used while testing 

(Figure 4.6). 

The second-tier creates an ensemble of RFs (i.e., a Forest of Random Forests) 

for each class which then averages their predicted probabilities over all RFs in the 

ensemble. For instance, the Casual Forest is an ensemble of n RFs which are each 

trained to classify Casual games versus Not-Casual. The resulting averaged 

probabilities are given as follows: 

nClassClass
n

i

jij 



1

)(Pr)Pr(      (Eq. 4.5) 

and 

nClassClass
n

i

jij 



1

)(Pr)Pr(      (Eq. 4.6) 

classesNjwith 1  

where Nclasses is the number of available classes (i.e., experience-levels). Throughout 

this study, n is set to 30. The third and final tier combines the results from the second-

tier forests using a final gate-function to create—for each observation (i.e., game)—a 

single probability ‘Prfinal’ per class. The final gate-function is given as follows: 
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Figure 4.6. The cumulative out-of-bag classification error for a 1000-tree RF trained to 

classify Casual versus Not-Casual games using the Reasons Frequencies per Step (FS). 

The minimum out-of-bag classification error is 0.2564, and the corresponding number 

of trees is 466. 

4.4.2 Testing Dataset: The Selection of Cases 

The testDS is used to select the cases to be monitored, thus the strict conditions 

used for selecting the trainDS should be relaxed in order to the allow for a bigger 

number of games having common players; in other words, allowing for players with 

sufficient history. So, the trainDS selecting-conditions numbered 2, 4, 7, 9, and 10 were 

discarded. 

Four hundred games were then selected for the testDS—to be comparable in size 

with the trainDS—with only 16 games found to be common between the two datasets. 

The 400 games were played by 246 distinct registered-names, thus—to select the final 
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cases—a threshold of 10 games at least was imposed, and this yielded a final set of 15 

players (Table 4.5). 

Table 4.5. The final testDS representing the 15 players to be observed. 
 

 
Registered 

Names 

Number of 

Games Played 

Number of Games 

that are Common 

between Both Datasets 

The Averaged
1
 Experience Range 

Covered by the Corresponding 

Player’s Games 

1 Ccwills 74 5 Upper-Beginner to Lower-Intermediate 

2 Giv 38 - Lower-Intermediate to Mid-

Intermediate 

3 Tarok 32 1 Mid-Intermediate 

4 Teto 46 5 Mid-Beginner to Mid-Casual 

5 Ggl 20 - Lower-Intermediate 

6 Bommeltk 16 2 Mid-Casual to Lower-Intermediate 

7 LordOfPi 35 5 Mid-Casual to Upper-Casual 

8 Gerula 13 - Mid-Casual to Upper-Casual 

9 YHH 36 - Upper-Intermediate 

10 Mattias 26 - Lower-Intermediate to Mid-

Intermediate 

11 Koisan 50 - Lower-Advanced 

12 Kouichi 11 - Lower-Advanced 

13 Shouhei 57 - Upper-Intermediate to Lower-

Advanced 

14 Faramund 10 - Mid-Intermediate 

15 Uly 34 - Lower-Intermediate to Mid-

Intermediate 

Total
2
 498 18  

 

                                                 
1 The Experience Range covered is an un-weighted cumulative moving average—of the corresponding player’s 

online rank—with a maximum window size of 50. See Section 6.3 for more details. 

2 Since there are games where both opponents are from the final selected players, the total values of both columns—

498, and 18—are respectively higher than the total number of games in testD (400) and the total number of games 

found to be common between both datasets (16). 
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4.4.3 Experimental Setup 

In the conducted experiments, RFs were used which had a maximum of 1000 

classification decision trees, and a minimum number of observations per tree leaf of 1, 

A forest’s attributes were determined according to the Error and Size measures. These 

are respectively, the minimum error (i.e., misclassification probability for the out-of-

bag observations) recorded during the process of adding up trees while creating the 

forest and the ensemble size (i.e., number of trees) corresponding to that minimum error 

value. Using trainDS, 30 random forests were trained to differentiate between each 

experience level and its complement. Those 30 random forests that were trained – per 

experience, and using MCFS as the measurement – have been combined to form the 

second-tier ensemble. 

4.4.4 Discussion 

The RFs training presented in the previous section have been employed to create 

the final proposed classifier (Figure 4.5). The 30 random forests trained – per 

experience, and using MCFS as the measurement – have been combined to form the 

second-tier ensemble. Using the testDS, the games for each player – among the 15 

finally selected – are temporally ordered and then analysed to count the motifs within. 

MCFS is then applied thus creating the final feature set for each game. The proposed 

classifier generates three final probabilities for each game, namely Prfinal(C), Prfinal(I), 

and Prfinal(A). Per player, three Monitoring-Curves have been plotted; each representing 

the ‘un-weighted’ Cumulative Moving Average (CMA) for an experience-level, with a 

maximum window size of 50 games. Given the number of available experience-levels as 

Nclasses, and the total number of games per single player as Ngames, the CMA – for the 

corresponding player – is computed as follows: 
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For the several forthcoming pages, a 2-D line graph with two y-axes – on both 

the left and right sides – is presented for each player. The y-axis on the left is labelled 

‘Player’s Experience Curves’ and displays the value of the three Monitoring-Curves, 

while the y-axis on the right is labelled ‘Ranks’ Categories’ and displays the Player’s 

Rank according to the online No Name Go Server archives. The Player’s Rank curve is 

also a CMA of the actual rank-values, and uses the same maximum window-size of 50. 

A label on the right y-axis represents the centre of the respective rank category. The x-

axis displays the game number, with imposed temporal frames for the corresponding 

dates (months/years). 

 

 

 

Figure 4.7 (a). The Competency-Level Monitoring Curve – Player #1; Based on the 

motifs identification of the individual player and the proposed three-tier classifier. 
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Figure 4.7 (b). The Competency-Level Monitoring Curve – Player #2; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 

 

Figure 4.7 (c). The Competency-Level Monitoring Curve – Player #3; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 
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Figure 4.7 (d). The Competency-Level Monitoring Curve – Player #4; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 

 

Figure 4.7 (e). The Competency-Level Monitoring Curve – Player #5; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 
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Figure 4.7 (f). The Competency-Level Monitoring Curve – Player #6; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 

 

Figure 4.7 (g). The Competency-Level Monitoring Curve – Player #7; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 
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Figure 4.7 (h). The Competency-Level Monitoring Curve – Player #8; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 

 

Figure 4.7 (i). The Competency-Level Monitoring Curve – Player #9; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 
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Figure 4.7 (j). The Competency-Level Monitoring Curve – Player #10; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 

 

Figure 4.7 (k). The Competency-Level Monitoring Curve – Player #11; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 
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Figure 4.7 (l). The Competency-Level Monitoring Curve – Player #12; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 

 

Figure 4.7 (m). The Competency-Level Monitoring Curve – Player #13; Based on the motifs 

identification of the individual player and the proposed three-tier classifier. 
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Figure 4.7 (n). The Competency-Level Monitoring Curve – Player #14; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 

 

Figure 4.7 (o). The Competency-Level Monitoring Curve – Player #15; Based on the motifs identification 

of the individual player and the proposed three-tier classifier. 
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In the majority of the figures – 10 out of the 15 players analysed – the resulting 

figures show an adequate consistency between the experience level of a player and their 

probabilities’ curves. For instance, “Player #1” advances from an Upper-Beginner to a 

Lower-Intermediate experience over the course of the 74 games selected. Concurrently, 

this player is classified as a Casual during the whole period. In addition, there is a trend 

in the curves that assures that – with more games – the player is going to be correctly 

classified as Intermediate.  

Similar to “Player #1”, the monitoring curve corresponding to the correct 

experience level is mostly higher than the other two curves for players 3, 4, 6, 7, and 11. 

However, not all the remaining players are entirely misclassified. For instance, the 

“Player #9” is one where the 36 games fall in the Upper-Intermediate experience level, 

and where starting from the 25
th

 game, the Advanced curve is slightly higher than the 

Intermediate. 

Those reported results demonstrate that the “Competency Model” developed 

using the quantitative measurements representing the motifs counts is capable – yet less 

successfully when compared to situational-reasoning in Chapter 5 – of somehow 

reflecting and monitoring the changes in the performance of a selected individual 

player. Additionally, as proposed, the monitoring approach is completely automated and 

passive. 

In order to provide a more quantitative interpretation of the competency-curves 

and their temporal trends with the changing level-of-expertise (i.e., rank), Table 4.6 will 

show the correlation between each competency-curve and the rank. Correlation is a 

statistical measure of dependence between two variables; that is, a measure of how 

strong the relationship between both variables is. Thus, correlation results in a value 

between +1 and -1 inclusive; the former implies a strong positive relationship while the 

later implies a strong negative relationship. A value of 0 implies the absence of any 

correlation between both variables. 
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The correlation is calculated as follows: Given the number of available 

experience-levels as Nclasses, the total number of games per single player as Ngames, the 

‘un-weighted’ Cumulative Moving Average (CMA) for monitoring an experience-level 

j as CMAj, and the experience-level for a specific player as Rank. The correlation 

coefficient ‘r’ for the corresponding player – per an experience level – is computed as 

follows: 
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     (Eq. 4.9) 

 

where ‘cov’ is the statistical covariance measure, defined as: 
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and where ‘σ’ is the standard-deviation, defined as: 
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Table 4.6 (Continued in the next page). The Correlation between the Selected Players’ 

Ranks and the Competency Monitoring Curves (Based on Connectivity-Patterns). 

P
la

y
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D

 

Correlation Coefficient: 

between the Experience 

Range and the … The Averaged 

Experience Range 

Covered by the 

Corresponding 

Player’s Games 

Observations 
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C
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1 0.03089 0.43643 0.13694 
Upper-Beginner to 

Lower-Intermediate 

A moderate correlation with the intermediate 

curve indicates the acquisition of 

intermediate skills, besides a slight 

acquisition of some Advanced skills, and no 

dependence with the causal curve. 

2 -0.40779 -0.56186 0.65999 
Lower-Intermediate 

to Mid-Intermediate 

A moderate positive correlation with 

Advanced skills, in addition to moderate 

negative correlations with both casual and 

intermediate skills. 

3 -0.22466 -0.19633 0.32477 Mid-Intermediate 

A weak negative correlation with both 

Casual and Intermediate Curves, and a 

moderate correlation with the Advanced 

curve even though the player’s rank is not 

progressing. 

4 -0.55909 0.6826 0.43884 
Mid-Beginner to 

Mid-Casual 

A moderate negative correlation with Casual 

curve, indicating that the player developing 

beyond that level. This is supported by 

positive moderate correlation with 

Intermediate curve. Yet, a positive moderate 

correlation with the Advanced curve exists 

too. 

5 

No Variation in the 

Experience-Level, thus no 

trend is obtainable. 

Lower-Intermediate Not Applicable 

6 -0.88227 0.85421 0.93664 
Mid-Casual to 

Lower-Intermediate 

The trend in the Experience Level is clearly 

shown by strong – respectively negative and 

positive – correlations with both Causal and 

Intermediate curves. However, a stronger 

positive correlation with the Advanced curve 

exists. 
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7 -0.64116 0.57293 0.06963 
Mid-Casual to 

Upper-Casual 

A moderate negative correlation with the 

Casual curve, accompanied with a moderate 

positive correlation with the Intermediate 

curve. 

8 -0.4615 -0.10242 0.568 
Mid-Casual to 

Upper-Casual 

A moderate positive correlation with the 

Advanced curve that is not mirrored by the 

experience levels. 

9 -0.43919 0.39556 -0.41796 Upper-Intermediate 

A moderate negative correlation with both 

Casual and Advanced curves, and a weak 

positive correlation with the Intermediate 

curve. 

10 0.53952 -0.57836 0.1028 
Lower-Intermediate 

to Mid-Intermediate 

The moderate positive correlation with the 

Casual curve and the moderate negative 

correlation with the Intermediate curve are 

clearly not reflecting the experience level. 

11 

No Variation in the 

Experience-Level, thus no 

trend is obtainable. 

Lower-Advanced Not Applicable 

12 0.58638 0.0748 -0.86803 Lower-Advanced 

A strong negative correlation with the 

Advanced curve and a moderate positive 

correlation with the Casual curve. Once 

more clearly not reflecting the experience 

level. 

13 -0.67977 0.55814 0.34507 
Upper-Intermediate 

to Lower-Advanced 

A moderate – respectively, negative and 

positive – correlations with both the Casual 

and Intermediate curves, accompanied by a 

weak correlation with Advanced curve.  

14 0.00446 -0.66334 0.35246 Mid-Intermediate 

The weak correlation with the Advanced 

curve and the strong negative correlation 

with the Intermediate curve are not reflecting 

the player’s ranks. 

15 -0.34864 -0.26389 0.37751 
Lower-Intermediate 

to Mid-Intermediate 

The advancement within the intermediate 

range is clearly not reflected by the weak 

negative correlation with the Intermediate 

curve. 

Table 4.6 (Continued). The Correlation between the Selected Players’ Ranks and the 

Competency Monitoring Curves (Based on Connectivity-Patterns). 
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4.4.5 Diagnosing the Learning Behaviour 

The previous subsection, demonstrated using ACP as an objective external-

observer to classify and monitor the experience and learning behaviour of human Go 

players. This subsection is considered the final stage of these results, in which the 

learning activity of human Go-players is diagnosed by temporally observing each of the 

motifs’ characteristics. The benefit of the following figures is the opportunity to realize 

how the connectivity-patterns of human Go-players is decomposed among the available 

motifs’, and how those patterns evolve temporally with experience. Other benefits of 

such results, is the ability to construct customized learning processes that consist of 

designed tasks that convey to a learner the missing bits of skill (which might, in this 

case, be inferred from the motifs counts), by which gaining experience might be assured 

and/or accelerated. 

The figures below show the un-weighted Cumulative Moving Average (CMA) – 

again with a maximum window size of 50 games – of the Motif Cumulative 

Frequencies per Step (MCFS), as directly measured from the games. To allow mutual 

comparisons, each figure is normalized by the corresponding highest averaged 

characteristic-value. Also, for the sake of simplicity, the upcoming results will be shown 

only for the five players with the highest number of game-records. Those five selected 

players also cover the whole available experience range in somewhat mutually-

exclusive sub-ranges. 
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Figure 4.8 (a). The Skills – Motifs Diagnosis – Monitoring Curves – Player #1. 
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Figure 4.8 (b). The Skills – Motifs Diagnosis – Monitoring Curves – Player #2. 
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Figure 4.8 (c). The Skills – Motifs Diagnosis – Monitoring Curves – Player #4. 
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Figure 4.8 (d). The Skills – Motifs Diagnosis – Monitoring Curves – Player #11. 
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Figure 4.8 (e). The Skills – Motifs Diagnosis – Monitoring Curves – Player #13. 
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4.5 Chapter Summary 

In this chapter, we have provided a methodology for an automatic and objective 

discovery of the properties of the human-players’ connectivity-patterns employed in the 

game of Go, and to explore the changes in the patterns as the players gain experience.  

In more details, we have presented a computational framework in which the 

cornerstone is a connectivity-patterns assessment component that provided an 

evaluation in terms of network motifs to the moves played by human Go players. 

Undirected motifs of three different sizes were investigated. The methodology 

successfully analysed a training dataset that is composed of hundreds of games that 

were suitably selected from an online server, and the results demonstrated a statistically-

significant capability in characterizing varying levels of expertise in Go.  

Based on the results of this analysis, statistical measures were applied to 

generate features upon which a competency model was developed. The model, 

developed as a three-tier ensemble-classifier based on random forests, was adequately 

capable of predicting the class label of a game of Go. This capability was demonstrated 

using a test dataset of 15 human players, whom which the proposed approach provided 

a temporal-monitoring for their overall expertise-level along with their specific skills-

levels.  
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Chapter 5: Reasoning Competency in Human Go Players 

 

When you can measure what you are speaking 

about, and express it in numbers, you know 

something about it; but when you cannot measure 

it, when you cannot express it in numbers, your 

knowledge is of a meager and unsatisfactory kind. 

–––William Thomson, Lord Kelvin (1824-1907) 

The work, reported in this chapter, has been partially published in following articles:
 Amr S. Ghoneim, Daryl L. Essam, and Hussein A. Abbass (2011). Competency 
Awareness in Strategic Decision Making. In Proceedings of the IEEE First 
International Multi-Disciplinary Conference on Cognitive Methods in Situation 
Awareness and Decision Support (CogSIMA), pp. 106-109, 22-24 Feb. 2011, Miami 
Beach, FL, USA. IEEE Press.      
 Amr S. Ghoneim, Daryl L. Essam, and Hussein A. Abbass (2011). On 
Computations and Strategies for Real and Artificial Systems. In Advances in Artificial 
Life, ECAL 2011: Proceedings of the Eleventh European Conference on the Synthesis 
and Simulation of Living Systems, edited by Tom Lenaerts, Mario Giacobini, Hugues 
Bersini, Paul Bourgine, Marco Dorigo and René Doursat, pp. 260-267, 8-12 August 
2011, Paris, France. MIT Press. 

In this chapter, we introduce an adaptation to the novel approach proposed in 

Chapter 4. The aim remains that of quantifying and monitoring the competency of 

human Go players, yet in terms of reasoning competency. The chapter starts in Section 

5.1 with an overview of the problem to be tackled and its formal definition. In Section 

5.2, the proposed adaptation – of the previously proposed methodology – to attempt this 

problem is presented, including a range of reasons to be assessed. Section 5.3 

investigates the potential of the assessed reasons to capture and reflect the competency 

of Go players using the formerly selected training set and simple statistical methods. 

Once more, the statistical methods include measures of dispersion to characterize the 

changes in reasoning among the selected levels of expertise, and are followed by tests of 

significance on whether the calculated measures can reliably distinguish between those 

with varying levels of expertise. In Section 5.4, and as beforehand, the new calculated 
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measures are used as features to construct the proposed classifier, which is then utilized 

to temporally monitor the competency of the cases in the testing dataset. The section 

concludes by a discussion of the achieved results, and by relating the reported 

performance and results to those of Chapter 4. Section 5.4 also includes additional 

investigations of the effects of changing particular experimental settings on the reported 

results. As a final point, the contributions in this chapter are summarized in Section 5.5. 

5.1 Overview 

As has been determined previously in Chapter 3, and as attempted in Chapter 4, 

the objective is to introduce a computational framework that automatically assesses the 

competency of Go players; so once more, to attempt to answer the research sub-

questions 1 and 2 (see Section 1.3). On the other hand, this chapter intends to address 

those sub-questions using situational reasoning, instead of connectivity-patterns. The 

objectives of the automation remain the same; that is, to provide a relatively detailed 

assessment when compared to the current automated approaches, while simultaneously 

reducing the need for assessments performed by human experts, which – in spite of their 

in-depth nature – are invasive, subjective, and qualitative. 

5.1.1 Related Work 

Situation reasoning, within the generic literature, is addressed using varying 

approaches and for numerous applications; by the standard ontology language OWL for 

mobile communication (Luther et al., 2005), by first-order logic for pervasive 

computing (Yau and Liu, 2006), and by time-series of sound information for situation 

recognition in humanoid robots (Tokutsu et al., 2009). Within the Go domain, reasoning 

– which is considered as a knowledge-based approach – depended mostly on patterns, 

which combine the basic concepts of the game (board intersection, stone, 

neighbourhood, liberty, connection, eye, and group) and thus constitutes the 

fundamental level on which any further spatial reasoning is based (Bouzy, 1996; Bouzy 

and Cazenave, 2001; Müller, 2002). Accordingly, a higher level of spatial reasoning is 

built iteratively, using additional patterns (connectors, dividers … etc.), morphological 
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operators, or propositional logic. Nonetheless, reasoning in Go has been far from trivial, 

and even attempts to automatically generate Go rules – in terms of patterns and 

particular associated conditions – for improving tactical reasoning have required high 

levels of computational effort for all of generation, storage, and utilization (Cazenave, 

2002). Section 4.2 provides details on the main categories of reasoning in Go, followed 

by the proposed adaptations to the assessment approach. 

5.1.2 Problem Statement 

The problem to be attempted is: To automatically, passively, quantitatively, and 

objectively assess the competency of Go players by characterizing the decision-making 

performance of human Go players in terms of explanatory in-depth situation reasoning 

that links a particular board situation to the consequent executed action (i.e. move). The 

reasoning is determined using a human-inspired procedure to the Go game; that is, 

given a board situation, how a player perceives the board and compiles its basic 

structures, and how he/she explores, investigates, analyses the moves and plans in order 

to decide upon a final action. As presented in Chapter 4, the procedure is performed 

using a fully computerized simulation, and is used to analyse a large cohort of games 

played by – novice, amateur, and skilled – human Go players. In other words, the results 

expected to be achieved – corresponding to those defined in Chapter 4 – are: 

 That given a set of Go “Games” performed by human players of varying 

“Expertise” levels, the difference in the expertise can be explained by a 

statistically-significant quantitatively-based difference in the sets of in-depth 

reasoning “ReasoningExpertise” estimated from the corresponding “GamesExpertise” 

using the proposed reasoning assessment. 

 And consequently, that the quantitative measurements representing a specific 

“Expertise” level can be utilized to create a corresponding “Competency 

Model”. So that, given a set of Go “Games” played by a particular “Player” 

over a period of time, the “Competency Model” will reflect and monitor the 

changes in the performance of that specific “Player”. 
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5.2 Methodology 

To accomplish this, we present an adaptation (Figure 5.1) to the computational 

framework previously shown in Figure 4.1. The cornerstone of this framework – instead 

of the pattern assessment component (ACP) – is a reasoning assessment component 

(ACR), which can be thought of as an external observer who provides an explanation – 

in terms of declarative reasons – to the moves played by the Go players. The ACR relies 

on specific definitions of the selected standard concepts used in the Go domain to 

justify the selected moves. As a result of this fully automated approach, and in line with 

the former ACP, the ACR can act as the reference point by which the reasoning 

competency of different players can be compared, assuring the objectiveness, passivity, 

and non-intrusive nature of the provided analysis. 

In order to investigate the usefulness of the estimated reasons in expressing the 

competency of Go players, and thus in discriminating between varying performance 

levels, we include – as beforehand in Section 4.2 – a preliminary phase that attempts to 

characterise those varying levels in terms of the estimated reasoning. This phase, 

corresponding to steps from 1 to 3 in Figure 5.1, includes: 1) reanalysing the training 

dataset (selected to reflect the different available levels of performance in Go) using the 

ACR, 2) calculating the statistical dispersion measures – the Median, and the Median 

Absolute Deviation, and finally 3) applying tests of Statistical Significance to 

demonstrate the effectiveness of the generated reasoning as features capable of 

describing and – accordingly – distinguishing the varying levels of performance in Go. 

Prior to applying the tests, a Multivariate Statistic will be applied to the features to 

detect the presence of any outliers. 

Once this phase is realized, the features are then used to construct the ensemble-

based classifier (proposed in Figure 4.5) capable of learning the different existing 

patterns of reasoning. The construction of the classifier begins the second phase of our 

proposed methodology – steps from 4 to 6 in Figure 5.1 – which includes the 

monitoring of the competencies as the players’ experiences vary with time. Temporally-

ordered games are compiled for each case, as in the previously selected testing dataset, 
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and are analysed by the ACR to generate the set of features to be classified. Finally, the 

votes from the trained classifier – a vote for each game – are plotted to show how the 

learning process is evolving, and to estimate the current overall competency/experience 

level for each selected player. A temporal plot of these features can be used to present a 

more detailed skill assessment for the selected players. The remaining sections in the 

chapter describe – consecutively; as shown in Figure 5.1 – each step in the framework. 

Coming next are the definitions of the main concepts of reasoning in the game of Go. 

 

Figure 5.1. The Proposed Adaptation to the Computational Framework formerly 

proposed in (Figure 4.1). 
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5.2.1 Concepts of Reasoning in Go 

The reasoning used to justify decisions in a game of Go considerably varies 

throughout the game, and undoubtedly depends on the current board situation. Yet, the 

reasoning can be captured in general useful concepts. Those concepts – which we have 

previously defined in Section 2.1 – are identified by observing human players and can 

be explicated by Go experts. The concepts can be defined by considering several 

factors; the current stage of the game, the level of look-ahead required, the required 

effect, and the scope – of the board – under consideration. The stage of the game leads 

to the concepts of End-of-the-Game and Opening, both of which are usually generated 

using databases of recommended patterns. The fact that numerous lines of play are 

recommended – through experience – gives rise to the concept of Anti-Suji; that is, 

unskilled moves. The majority of the moves in a game deal with creating and securing 

groups of stones, either by: 

 Attacking the opponent’s groups by, for instance, a Cutting move that 

prevents opposing stones/groups from being connected. 

 Defending one’s groups by, for instance, a Connecting move that 

maintains one’s stones/groups connectivity. 

 Reading or looking-ahead for determining in advance whether a specific 

group is indefinitely alive – and thus going to remain on the board – or 

dead – and thus will eventually be captured. 

 Immediate Capturing of opposing stones through tactical – i.e., local – 

moves, or of Invading the opponents territory by strategic – i.e., more 

global – moves that will expand one’s Territory and/or Influence. 

For an additional demonstration of those concepts, the following set of figures 

will illustrate through a famous Go game – known as the “Dosaku’s Masterpiece” – the 

reasoning behind selected moves. Honinbo Dosaku (1645–1702) was a professional 

Japanese Go player who is regarded by many as the greatest player of all time. Dosaku 
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played his masterpiece – on the 19th of November 1683 – as white, giving his opponent 

– Yasui Shunchi; one of the strongest Go players – 2 handicap stones, and yet managing 

to lose the game by only 1 point. The reader is reminded that a definition for each of the 

Go terms used in this section can be found in Section 2.1. 

Figure 5.2 (a)–(h). The Dosaku’s Masterpiece (the 4 upcoming pages): 

(a) The Black move at E17 – numbered 2 – Fuseki recommendation, expands Black’s 

territory and Moyo, and is considered a strategic attack on C16, (b) White answers by 

the move O17 – numbered 3 – in turn expands White’s territory and Moyo while 

strategically attacking  Q16. 

(c) White move at N4 – numbered 31 – connecting and defending both N3 and M4 

while cutting and attacking M3 and M5, (d) Black responds by a move at L3 – 

numbered 32 – that defends M3 and connects it to L4. 

(e) The Black move at F2 – move number 60 – captured E2 and thus connected and 

defended all the surrounding stones – D2, E1, and E3 – in addition to defending D4 and 

strategically defended the group centred at C6.  Consequently, the move severed the 

connections between the 3 surrounding white groups – (C3, D3), (D5, D6), and (F3, F4) 

– and therefore is considered a strategic attack on all of the three groups in addition to 

G2. (f) The White move at P12 – numbered 253 – defends the group while 

strengthening the connection towards both the groups including Q11 and the group 

containing O15. The move threatens O11 and cuts it from P13 and its surroundings. 

(g) The Black move at A13 – numbered 260 – attacks and captures A14, thus it expands 

Black’s territory, and defends the group (A15, A16) by connecting it to the group 

centred at B14. (h) The White move at M16 – numbered 273 – successfully attacks and 

captures the group (M17, N17) and thus defends the group by supporting its 

connections to the surrounding White groups (the group that includes L17 and the 

group that includes M18). The move thus strategically threatens many of the 

surrounding Black stones including O16 which will be captured 4 moves later. 
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(a)  

(b)  

Figure 5.2 (a)–(b). The Dosaku’s Masterpiece: (a) Black moves at E17 – numbered 2, 

(b) White answers by the move O17 – numbered 3. 
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(c)  

(d)  

Figure 5.2 (c)–(d). The Dosaku’s Masterpiece: (c) White moves at N4 – numbered 31, 

(d) Black responds by a move at L3 – numbered 32. 
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(e)  

(f)  

Figure 5.2 (e)–(f). The Dosaku’s Masterpiece: (e) The Black moves at F2 – move 

number 60, (f) The White moves at P12 – numbered 253. 
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(g)  

(h)  

Figure 5.2 (g)–(h). The Dosaku’s Masterpiece: (g) The Black moves at A13 – numbered 

260, (h) The White moves at M16 – numbered 273. 
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5.2.2 A Publicly-Available Reasoning Assessment Method 

In order to generate the Go reasoning, we propose extending the roles of the 

available engines (Computer-Go programs) to sub-serve in the analysis by acting as the 

ACR. That is, some of the available engines – whether commercial or publicly available 

– that model – with varying degrees – the functionality of Go players can be used as an 

alternative to constructing new models. The reasons for that are, first, a large investment 

has been put into many of those engines; financially and/or in terms of man-hours, but 

also, most importantly, a significant amount of patterns and/or rules based on Go 

masters/experts have been incorporated into them. Second, engines are primarily 

developed to play on online servers, therefore they (i.e., the engines) can be effectively 

used to set up any experiments that require interaction with other humans or Go 

engines. Finally, the tuning parameters available in most engines simplify any required 

tuning/adding to the integrated methods, rules, or datasets. 

GNU Go is one of the leading non-commercial computer-Go programs, and 

plays regularly on online Go servers and computer-Go tournaments (D. Bump et al., 

2009). The GNU Go program uses a multi-level approach for choosing its moves 

(Figure 5.3), culminating with a group of hand-tuned heuristic rules that combine a set 

of characteristic values and weights. That set of twelve characteristic values represent 

the program’s evaluation of the generated move reasons, while the weights are used to 

carefully combine those characteristic values depending on the style of the current move 

(a combination of the current score and the game status). The reasons for a move are 

assigned using the move generator, which relies primarily on a range of pattern 

matchers to decide which tactics each investigated move achieves. The move generator 

takes into consideration an estimated influence calculated for both players. Finally, all 

these modules rely on an internal representation of the board that must be initially 

compiled, and again this is partially dependent on the pattern matchers. The move 

generator may incorporate the output of a Monte Carlo module, which plays random 

games to the end, and that also generates its moves from a pattern database. The GNU 

Go engine comes with development and debugging options, such as –trace which 
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displays more detailed debugging information. Combining that with GNU Go’s ability 

to replay a game, we can estimate at each step (move) of the game what were the 

possible reasons behind it. 

 
 

Figure 5.3. Basic Computations involved in making choice (light gray) and the 

corresponding GNU Go computational modules. 

GNU Go, especially in its way of compiling the board representation and 

generating strategic reasons, can be following to an extent by a more human-inspired 

reasoning model, especially when compared to other available Go engines. Whether 

GNU Go is adopting a human-inspired model or not, and the extent of this ‘adoption’ 

will not be discussed here, it is appropriate to limit this adoption – if existing – to a 

semantic or knowledge level. In addition, it follows in its design one of the prevalent 

models of decision making, namely that of value-based decision-making (Rangel et al., 
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2008), which occurs whenever a decision is taken based on subjective-values placed 

upon the alternatives. Based on the various theoretical-models of value-based decision-

making that existed in several disciplines (i.e., computer science, economics, and 

psychology), Rangel et al. (2008) proposed the five-basic processes that were 

assumed—by the majority of models in the previously mentioned disciplines—to be 

performed whenever a value-based decision is made. Figure 5.3 shows the proposed 

five “basic computations involved in making choice” (Rangel et al., 2008) combined 

with the ‘virtually’ corresponding GNU Go computational modules. 

Our main aim is to discover the key properties of the strategies employed. 

Therefore, grouping the reasons into a small number of sets according to their 

tactical/strategical similarities will notably assist in identifying the general strategies 

and observing any potential trends regarding the evolvement of those strategies with 

experience. Therefore, R can be defined as nsssR  21 , where sn is the nth 

subset. The aggregated sets of reasons proposed for this design are: 

1. Not recommended; includes reasons for moves that are deemed as unsafe 

from a strategical perspective. Anti-suji
3
 moves are included in this. 

2. Considered an Attack; includes all the moves that tactically capture a 

chain
4
 or a group

5
. The set generally consists of attacks, attack threats, 

multiple
6
 attacks, and moves which prevent a connection between two 

chains. 

3. Considered a Defence; includes reasons for all the moves that defend a 

chain or a group from being attacked. The set generally consists of 

defence moves, threats to defend, multiple defends, and moves which 

connect two chains. 

                                                 
3 Anti-suji are forbidden, crude, and/or locally-inferior moves. 

4 Chains are vertically and horizontally adjacent stones of the same colour. 

5 A Group is a set of amalgamated chains which are treated as a unit. 

6 Moves that attack/defend more than a single chain simultaneously. 
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4. Explicit Gains; includes reasons for tangible achievements, such as 

moves that directly capture something, invade the opponent’s territory, 

or increase one’s own territory and/or region of influence. 

5. Thoughtful; includes reasons dealing with life and death problems
7
. In 

GNU Go, these types of reasons are implemented by the “Optics With 

Limit-negotiation” (OWL) module which visualizes potential moves to 

determine the result of various moves. 

6. End of the Game; includes reasons for the typically small moves that 

occur late in the game. By approaching a reasonably stable territory, 

these moves typically expand one's own territory while reducing the 

opponent’s. 

7. All Reasons; is the universal set R that contains all conceivable reasons. 

However, for simplification, this set contains all the reasons that 

appeared at least once in the selected dataset, rather than all the reasons 

that might possibly be generated from the GNU Go engine.  

In a preliminary step, we found thirty-forty distinct reasons R that were 

generated by the GNU Go for all the moves in our selected dataset. The available 

reasons are categorized into the seven “overlapping” sets previously mentioned (See 

Table 5.1 for more details). It is worth mentioning that several of the reasons consider 

more than a single move forward. Thus, a short-term-based evaluation will not be 

produced by relying on the generated reasoning to analyse a Go game. 

After explaining the concepts of reasoning in Go and the reasoning assessment 

method – which constitute the reasoning assessment component (ACR), Figure 5.4 

describes the remaining processes of the proposed computational framework in relation 

to the basic steps of data-mining. Those remaining processes are detailed in the 

following Sections 5.3 and 5.4. 

                                                 
7 A fundamental concept in the game of Go that deals with whether the status of a distinct group is alive or dead, and 

requires deeper analysis in comparison to other problems. 
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Table 5.1. The Available Reasons and Their Corresponding Sets. 

The Reasons Available 

Reasons’ Sets 
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1 threatens to attack X                       

2 strategically or tactically unsafe          

3 expands territory                           

4 strategically defends X                     

5 defends X                                   

6 owl-defends X                               

7 connects X and X                            

8 attacks X                                   

9 owl-attacks X                               

10 cuts X and X                                

11 threatens to defend X                       

12 backfilling dame found for string X         

13 strategically attacks X                     

14 expands moyo                                

15 Fuseki player suggestion                    

16 defends against combination attack          

17 wins semeai for X                           

18 both defends X and defends X                

19 Endgame move                                

20 is an invasion                              

21 either attacks X or attacks X               

22 captures something                          

23 is a blunder, subtracting X                 

24 attacks X with bad ko                       

25 defends X with bad ko                       

26 owl-attacks X with bad ko                   

27 defends X with good ko                      

28 owl-defends X with good ko                  

29 attacks X with good ko                      

30 owl-attacks X with good ko                  

31 owl-defends X with bad ko                   

32 is an antisuji                              

33 attacks X (defenceless)                     

34 attacks X (defenceless) with good ko        
 

A light grey cell indicates the corresponding reason’s membership of one or more of the available sets. 

X represents an intersection point on the Go board (typically, a 19×19 Grid). 
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Figure 5.4. An overall illustration of the basic processes for assessing the competency of 

Go players based on Situational Reasoning; detailed in Sections 5.3 and 5.4. 

5.3 Estimation of Competency Models 

This section presents the first phase of the methodology, in which we ran our 

system using the Training Dataset, which consists of games played by casual, 

intermediate, and advanced human opponents. The ACR will replay the games and 

generate reasons for the majority of the moves, thus estimating the strategical reasoning 

originally employed by its human players. An initial pre-processing step is then carried 

out by applying 1) frequencies measurements and 2) an outliers’ detection algorithm. 

The frequencies measurements – which includes measuring the Frequencies ‘F’, 

Frequencies per Step ‘FS’, and the Percentages ‘P’ – of the aggregated subsets of the 

generated-reasons per game create the final set of measures that are generated for each 

game. This step is followed by the final statistical analysis in which measures of 

dispersion and tests of significance are used to examine the implications of the final 

features sets. 
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5.3.1 Training Dataset 

The dataset used for training in this chapter is trainDS, as previously discussed 

in Section 4.3.1, and based on the traditional kyu/dan ranking system of Go. The 381 

games were selected from the NNGS online server, and are played by human Go 

players on the standard 19×19 boards. The selected games represent three levels of 

performance – Casual, Intermediate, and Advanced – each with 127 games. 

5.3.2 Data Pre-processing 

The GNU Go move-generator lists – if available – a varying number of possible 

reasons for each move (occasionally, a move may have no reason from the engine’s 

perspective). The main features then calculated from the reasons list per game are the 

three following measurements: 

o Reasons Frequencies (F); the frequency of each reason per game. Given 

the set of all reasons R, F is defined as: 

reasonsgames

N

r

N

c

jij

NjNi

RcrIPF
rows cols

 1,1

),,(
1 1



  
   (Eq. 5.1) 

where the function IP returns 1 iff the reason Rj was generated for a 

move played at the Go-board’s Intersection Point IPrc, otherwise, IP 

returns zero. If the reason Rj was generated separately for more than a 

single move at IPrc, IP returns 1 for each such move. Ngames and Nreaons 

are respectively the total number of games and reasons available, while 

Nrows and Ncols are the number of rows and columns in a Go board. 

o Reasons Frequencies per Step (FS); the frequency of each reason per 

game divided by the total number of steps (i.e. moves) in the 

corresponding game, defined as: 

)(iNFFS stepsijij      (Eq. 5.2) 



133 Chapter 5: Reasoning Competency in Human Go Players 

 

where Nsteps(i) is the total number of moves in game i. 

o Reasons Percentages (P); the percentage of each reason (from the total 

number of reasons generated) per game, defined as: 





reasonsN

k

ikijij FFP
1

)100(     (Eq. 5.3) 

Prior to our statistical analysis, we detected outlying observations; that is, games 

in our dataset “which appear to be inconsistent with the remainder of that set of data” 

(Hawkins, 1980) therefore producing “suspicion that [those games were] generated by 

a different mechanism” (Johnson, 1992). In this study, outliers are not considered noise 

or error, rather they are assumed to carry important information that accounts 

particularly for any unaccounted for parameters when selecting the dataset (for example, 

the length—number of moves/steps—per game). Due to the multivariate nature of our 

observations (i.e., per game, different sets of reasons are estimated using ‘potentially’ 

various measurements), a multivariate statistic to determine the outliers—if any—is 

preferred over an univariate in order to decrease the effect of masking and/or swamping 

(Davies & Gather, 1993). 

The Minimum Covariance Determinant (MCD) is a multivariate estimator that 

may be simply defined as one that finds an optimal subset of h observations—from the 

total n observations—with the smallest covariance-matrix determinant, with n/2 < h < n. 

The MCD then estimates the location and scatter of the data as respectively the 

arithmetic mean and covariance matrix of this optimal subset. The MCD was introduced 

by Rousseeuw (1985) as a robust estimate that is not excessively influenced by outliers, 

even with the presence of many outliers in the data. 

This robustness can be given in terms of the Breakdown Point
8
 (BDP) which is 

related—in the case of MCD—to the size of the optimal subset h; the typical h  n/2 

                                                 
8 The Breakdown Point (BDP) is defined as “the minimal fraction of contamination which renders the estimation 

meaningless” (Fauconnier & Haesbroeck, 2009). 
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corresponds to the maximum BDP value of 50% (Fauconnier & Haesbroeck, 2009). The 

size of the optimal subset h is usually to an input, or rather it is determined using the 

input parameter α, where α  [1/2, 1]. Thus, given the default α = 0.5, h can be 

approximated as h  α*n, and the BDP = 1 - α. 

Nevertheless, this default value for α ensures the highest resistance to outliers by 

means of inefficiencies indicated by Type I errors; non-outliers tagged as outliers. 

Therefore, Fauconnier and Haesbroeck (2009) showed that a BDP of 25% (i.e., α = 

0.75) is a practical solution that balances robustness and efficiency. A fast-MCD 

algorithm with several time-saving techniques was proposed by Rousseeuw and Van 

Driessen (1999) and is used throughout this study. 

As we have just mentioned, the value of α = 0.75 can be considered a practical 

solution that maintains both the robustness and effectiveness of the MCD algorithm 

(Fauconnier & Haesbroeck, 2009). To facilitate our selection, the MCD is applied to 5 

different values of α starting at the default value of 0.5, and up to 0.9, with increments 

of 0.1. Table 5.2 shows the results of the different α-values in terms of the number of 

games that are tagged—as a result of both the corresponding α-value and the 

corresponding measurement—as outliers. 

The results in Table 5.2 clearly show that FS as a measurement appears to be 

less affected by the potentially different/varying mechanisms that are responsible for the 

presence of outliers. This holds except for the case of Casual games with an α-value of 

0.5, as using the FS measure results in no games being tagged as outliers. This α-value 

of 0.5 is convincingly inefficient—as expected—with the number of outlying games 

more than tripling in comparison to higher α-values. However, even when using higher 

α-values, the fact remains that the number of outlying games repeatedly fails to increase 

monotonically with the decreasing α-values which suggests masking and/or swamping 

effects (Davies & Gather, 1993). This may signify concerns if we relied on each of the 

available measurements ‘independently’ while detecting the outliers. Therefore, we 

added a fourth column per experience-level (i.e., F & P) which includes the number of 
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games tagged as outliers depending on the logical conjunction of the measurements F 

and P. That is, a game is tagged as an outlier iff it was considered an outlier using both 

F and P independently. FS is excluded from the conjunction due to its continuous 

inconclusiveness. The conjunction ‘F & P’ appears more reliable, and thus will be 

selected—along with the α-value of 0.7—as the concluding parameters of the outlier 

detection module. All the games tagged as outliers in line with both parameters are 

excluded from trainDS. 

Table 5.2. The number of games tagged as outliers (from a total of 127 games per 

experience), among the different measurements, and the corresponding MCD α-value. 

The finally selected α-value is highlighted in grey. 

MCD 

Alpha 

The Number of Games tagged as Outliers 

Casual Games Intermediate Games Advanced Games 

F FS P F & P F FS P F & P F FS P F & P 

0.5 56 56 56 56 21 0 19 14 22 0 12 9 

0.6 15 0 19 12 17 0 14 10 17 0 17 12 

0.7 12 0 22 10 17 0 11 9 13 0 11 8 

0.8 14 0 16 10 14 0 9 7 11 0 10 8 

0.9 8 0 11 5 8 0 7 6 9 0 10 8 

 

A final conclusion that can be drawn from Table 5.2 is the obvious advantage of 

FS—compared to F and P—when it comes to outliers. This can be partially explained 

by the fact that FS is the only measurement that ‘accurately’ takes into consideration the 

actual size/length of a game (i.e., the number of moves). The F simply counts the 

occurrences of the reasons and totally ignores the length of a game. On the other hand, 

P implicitly takes a game’s length into consideration by reporting the fractions of the 

total occurrences (namely percentages), and thus is proportional to the number of moves 
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per game. Still, the P measurement experiences an inconsistency due to the overlapping 

nature of the aggregated reasons subsets; as single reasons are frequently included in 

two subsets. For instance, since the reason ‘owl-attacks X’ attacks the board intersection 

X while using the owl module (See Section 5.2), this reason is included in both the 

‘Considered an Attack’ and the ‘Thoughtful’ subsets. To further investigate the 

possibility of the game’s length as a justification, Table 5.3 shows the statistics of the 

games’ length between the games tagged as outliers/not-outliers. The Median and the 

Median Absolute Deviation ‘MAD’ (Davies & Gather, 1993) are chosen as robust 

univariate measures in case the dataset is still contaminated by outliers. The columns ‘> 

Median’ and ‘< Median’ are the medians calculated for outlier games with a length 

respectively greater/smaller than the not-outliers median. Table 5.3 shows a significant 

difference in the medians for the lengths of the games tagged as outliers in comparison 

to those tagged as not-outliers, particularly for the Casual games. 

Table 5.3. The games’ lengths for the outliers/not-outliers, and across the varying 

experiences. 

Casual Games Intermediate Games Advanced Games 

Not Outliers Outliers Not Outliers Outliers Not Outliers Outliers 

Median MAD 
> 

Median 

< 

Median 
Median MAD 

> 

Median 

< 

Median 
Median MAD 

> 

Median 

< 

Median 

245 22 279 228 273 17 306 266 269 21 288 257.50 

 

5.3.3 Statistical Analysis 

After defining the measures to be calculated and the sets used to group those 

measurements, the final step is to analyse the grouped measurements using simple 

statistical measures (the Median and the Median Absolute Deviation ‘MAD’), followed 

by statistical hypothesis testing. The statistical measures, previously defined by 

Equations 4.3 and 4.4, will now be redefined according to the new features extracted. 

Given the set of experiences },,{ 21 neeeE  , let De denote a subset of the dataset of 
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all games D where the experience of both opponents is e. The median can be estimated 

as: 

      2/
,:12/,:2/1,,

seesee RDDRDDseMedian


    (Eq. 5.4) 

where φ is the measurement function (i.e. denoting F, FS, and P), Rs is the sth reasons 

subset, |De| is the number of games in De, and 
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  are the order statistics of 
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 1 . Accordingly, MAD can be estimated as: 
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  (Eq. 5.5) 

For a second time, our main argument is that the medians of the different 

reasons subsets can model how the general strategy is decomposed into characterizing 

sub-strategies, in addition to demonstrating the variations in the strategies employed by 

the human Go players of different experiences. To confirm the potential hypotheses 

suggested by the data, both a two-sample T-test and a two-sided Wilcoxon rank sum test 

were once more used. By permuting the reasons subsets, the calculated measurements, 

and pairs of different experiences, the T-test and Wilcoxon-test will examine the null 

hypothesis that the data (i.e. measurements per game) are with equal means/medians 

‘respectively’ against the alternative that the means/medians are not equal. 

5.3.4 Discussion 

In the first phase of the experiments, we have run our system using the selected 

case-base of games that were played by casual, intermediate, and advanced human 

players. GNU Go as our reference point, replayed the games and generated reasons for 

the majority of the moves, thus estimating the strategical reasoning originally employed 

by the human players. The Frequencies (Eq. 5.1), Frequencies per Step (Eq. 5.2), and 

the Percentages (Eq. 5.3), were applied as measurements for aggregated subsets of the 

generated reasons per game. Subsequently, and between each distinct pair of 
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experiences, the Wilcoxon-test and a two-sample T-test were applied to statistically 

signify the ability of the calculated medians/means to differentiate between the 

corresponding distinct pair of experiences. Table 5.4 shows the medians (Eq. 5.4) and 

median absolute deviations (Eq. 5.5) among the 127 games per experience level. 

Table 5.4. The Medians and Median Absolute Deviations (MAD) of the Different 

Subsets, Among Diverse Experiences, and Using Three Different Measurements. 

Measurements Reasons’ Subsets 
Casual Players Intermediate Players Advanced Players 

Median MAD Median MAD Median MAD 

Frequencies (F) 

Not Recommended 28 8 35 9 34 7 

Considered An 

Attack 

262 80 337 112 357 84 

Considered A 

Defence 

400 79 471 84 484 72 

Explicit Gains 123 13 138 13 139 14 

Thoughtful 134 40 175 47 189 44 

End of the Game 0 0 1 1 2 1 

All Reasons 840 174 1021 191 1053 163 

Percentages (P) 

Not Recommended 3.49345

0 

0.54313

92 

3.21782

2 

0.41675

58 

3.22291

9 

0.37645

55 
Considered An 

Attack 

30.8965

5 

3.54481

5 

33.2651

0 

3.89565

4 

33.6314

8 

2.68176

4 
Considered A 

Defence 

46.6437

2 

1.64371

8 

45.6499

5 

1.86296

7 

45.7627

1 

1.50347

5 
Explicit Gains 15.2370

2 

3.43873

3 

13.8358

8 

3.52675

9 

13.0590

3 

2.96051

2 
Thoughtful 15.5794

3 

1.64839

8 

16.9267

7 

1.55336

7 

17.6814

0 

1.46203

1 
End of the Game 0 0 0.11547

34 

0.11547

34 

0.15527

95 

0.09492

900 
All Reasons 100 0 100 0 100 0 

Frequencies Per Step 

(FS) 

Not Recommended 

α 

0.12062

26 

0.02429

229 

0.12758

62 

0.02576

802 

0.12692

31 

0.02250

541 Considered An 

Attack 

1.03902

4 

0.27431

85 

1.26164

9 

0.33599

82 

1.32222

2 

0.24774

37 
Considered A 

Defence 

1.62809

9 

0.19564

18 

1.73037

5 

0.22134

87 

1.80139

4 

0.17270

17 
Explicit Gains α 0.50889

68 

0.06054

765 

0.51528

38 

0.06837

375 

0.51546

39 

0.06208

771 
Thoughtful 0.55272

73 

0.12294

00 

0.65185

18 

0.14344

85 

0.70034

84 

0.12554

53 
End of the Game 0 0 0.00387

5969 

0.00387

5969 

0.00666

6667 

0.00361

7886 
All Reasons 3.41811

8 

0.46188

15 

3.81016

9 

0.57400

72 

3.94117

6 

0.46279

70 All the values reported in this table are calculated using 127 games per each level of experience. 

α The only rows where the subset and the applied measurement could not differentiate in a statistically 

significant manner was between the casual/intermediate and casual/advanced players. All other rows in this 

table show a case where a statistical significant difference in the medians and means between 

casual/intermediate and casual/advanced players was found (using the Wilcoxon-test and T-test respectively). 

None of the available medians/means show a statistically significant difference between intermediate and 

advanced players.  

 

As opposed to the connectivity-patterns presented in Chapter 4, almost all of the 

sets of reasoning succeeded in significantly differentiating between 2 pairs of expertise-

levels. Table 5.4 shows a statistical difference between casual/intermediate and 

casual/advanced human Go players, yet it fails to differentiate statistically between 
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intermediate/advanced players. The medians tend to get higher with experience 

considering both F and FS as measurements; the only exceptions are when the medians 

of the advanced are lower than or almost equal to the corresponding intermediate in 

both subsets Not Recommended and Explicit Gains. Though this apparent correlation 

between the F/FS medians and the growing experience is expected to some extent 

because more experienced players tend to play longer games, the two previously 

mentioned cases highlights the possibility that more experienced human players are less 

attracted by direct/instant gains and are more considerate when it comes to not 

recommended moves. This possibility is supported by medians reported for the 

measurement P, where the medians of both subsets almost consistently decrease with 

growing experience. 

Using P again, the medians of the subset Considered A Defence somewhat 

decreases with growing experience, suggesting that a more aggressive strategy is 

applied by well-experienced human players as opposed to a more defensive strategy by 

their less-experienced counterparts. The later suggestion is supported by the medians 

reported for the subset Considered An Attack which increase in correlation with 

growing experience in view of all of the three measurements. The medians reported for 

both subsets Thoughtful and End of the Game also increase in correlation with growing 

experience for all of the three measurements. 

Thus we can generally claim that, with rising experience, a human player’s 

strategy evolves to a more thoughtful and aggressive strategy, a strategy that cares more 

about the final steps and eludes the not recommended moves, and last but not least, a 

strategy that is less lured by direct gains. This claim is statistically supported for human 

players who progress from casual to both intermediate and advanced experiences. 

Though the inability to differentiate between experiences can be expected due to 

any inherent limits in an ACR, this inability can also be caused by the fact that strategies 

cannot be merely estimated by the reasons behind them; there are other facts such as the 

timing of when a good-reasoned move is played. However, the absolute deviations 
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presented in Table 5.4 can still provide us with an insight on the difference between 

intermediate and advanced players. In general, the absolute deviations between 

intermediate players are higher than both casual and advanced players. As for the 

advanced players, their deviations are in general slightly higher than casual players for 

F and FS measurements, yet they are constantly lower than casual players using P. This 

finding may suggest that progressing from casual to intermediate experiences leads to 

more varying personal style(s) which become more conformed while progressing to a 

more by the advanced level of experience. 

Finally, from the analysis of the reported results, the explanatory in-depth 

situation reasoning that was provided by the selected assessment component ACR is 

capable of linking a particular board position to the consequent executed action. 

Consequently, the proposed methodology successfully characterized the differences in 

the expertise levels – of the human Go players – in an automated and passive approach. 

In addition, the description of those differences was quantitatively-represented and 

statistically-significant. 

5.4 A Case Study: Tracking the Reasoning Competencies 

In the second and final phase of our experiments, we created our proposed 

classifier. Then, using the testDS, the games of each player were temporally ordered and 

classified. The resulting classification probabilities are then cumulatively averaged to 

generate Monitoring-Curves to observe the learning activity per player. This leads to the 

final stage, in which we diagnose this learning activity by temporally observing each of 

the strategies’ characteristics (i.e., the aggregated subsets of reasons). The testDS for 

this phase is the one that was proposed in Section 4.4.2. To recap: from the No Name 

Go Serve (NNGS), 400 games were initially selected, played by 246 distinct registered-

names. A threshold of at least 10 games was imposed to select the final cases, and this 

yielded a final set of 15 players (Table 4.5). 

The classifier architecture for this phase is also the one previously proposed (see 

Figure 4.5); a three-tier ensemble with the capability to predict the class label of a game 
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of Go as Casual, Intermediate, or Advanced. The first-tier is based on Random Forests 

(RFs), which are ensembles of Classification Decision Trees (CDTs). Each individual 

classifier (i.e., RF) is trained to classify a class and its complement, outputs two 

probabilities, and is created using a maximum number of decision trees (set to 1000 

throughout this study), yet only the number of trees corresponding to the minimum 

cumulative misclassification probability (Figure 4.6) is used while testing. The third and 

final tier combines the results from the two previous tiers, and using a final gate-

function it creates – for each game – a single probability per class (Eq. 4.7). 

5.4.1 Experimental Setup 

As in the previously conducted experiments, RFs were used which had a 

maximum of 1000 classification decision trees, and a minimum number of observations 

per tree leaf of 1, and a forest’s attributes were determined according to the Error and 

Size measures. In addition to the ensemble errors, True Positive (TP) and True Negative 

values — estimated using a five-fold cross-validation — were also calculated. Using the 

uncontaminated trainDS, 30 random forests were trained to differentiate between each 

experience level and its complement, employing the 3 measurements. Table 5.5 shows 

the out-of-bag misclassification probabilities, true positive and true negative values. 

The results are adequate to estimate the experience of a human Go player, 

especially — as in the next step — when combined using a gate-function and applied to 

a history of games. The results are comparable to our previous findings (Table 5.4), and 

still show a better capability for classification between Casual and Not-Casual games, 

then by Advanced and Not-Advanced. Classifying Intermediate versus Not-Intermediate 

games reported the lowest accuracies; the highest ensemble errors and the lowest true 

positive/negative values. 

Once more, Table 5.5 shows the competence of the measurement FS which 

clearly reports improved results when compared to P. Although the results of F are 

repeatedly better than those of FS, the differences there are not as significant as the case 

when FS’s results are better. Combined with its noticeable intrinsic ability to not be 
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affected by the mechanism(s) generating outlying observations, FS has been selected as 

the most reliable measurement to monitor the players’ learning behaviour. 

Table 5.5. The Ensemble Errors, Sizes, True Positives, and True Negatives of the 

random forests trained to classify between the experiences of human Go players. The 

lowest Ensemble Error and the highest True Positive and True Negative values for each 

experience and its complement are in bold. All the values reported are arithmetic means 

(averages) followed by standard deviations. 

  

Minimum 

Ensemble Error 

Corresponding 

Ensemble Size 

True Positive True Negative 

Casual Vs. Not 

Casual 

F 0.2382±0.0197 216.2667±239.8535 0.4852±0.1026 0.8562±0.0495 

FS 0.2476±0.0194 250.8000±262.8744 0.5370±0.0947 0.8494±0.0423 

P 0.2685±0.0140 201.6333±232.6311 0.4778±0.0844 0.8123±0.0543 

Intermediate Vs. 

Not Intermediate 

F 0.3596±0.0153 154.9000±261.6518 0.2593±0.1301 0.7426±0.0997 

FS 0.3733±0.0194 183.4000±317.9671 0.2469±0.1587 0.7049±0.1308 

P 0.3621±0.0150 141.1667±212.0786 0.2679±0.1432 0.7426±0.1140 

Advanced Vs. Not 

Advanced 

F 0.3328±0.0180 298.2333±313.6831 0.3494±0.0863 0.7679±0.0709 

FS 0.3215±0.0178 188.7667±242.4006 0.3951±0.0979 0.7889±0.0684 

P 0.3295±0.0148 185.0000±212.8007 0.3272±0.0779 0.7852±0.0799 

 

 

5.4.2 Discussion 

Using testDS, the games for each player – among the 15 finally selected – were 

temporally ordered and then replayed by the GNU Go engine to estimate the strategic 

reasoning behind the moves. FS was then applied – and combined according to the 

aggregated reasons’ subsets – thus creating the final feature set for each game. The 

proposed classifier generate three final probabilities for each game, namely Prfinal(C), 

Prfinal(I), and Prfinal(A). Per player, three Monitoring-Curves have been plotted; each 
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representing the ‘un-weighted’ Cumulative Moving Average (CMA) for an experience-

level, with a maximum window size of 50 games (Eq. 4.8). 

As in Chapter 4, for several pages a 2-D line graph is presented for each player. 

Each graph displays the value of the three ‘Player’s Experience Monitoring-Curves’, in 

addition to displaying the ‘Player’s Rank’, according to the online No Name Go Server 

archives. A label on the right y-axis represents the centre of the respective rank 

category. The x-axis displays the game number, with imposed temporal frames for the 

corresponding dates (months/years). 

 

Figure 5.5 (a). The Competency-Level Monitoring Curve – Player #1; Based on the 

situational reasoning of both opponents and the proposed three-tier classifier. 
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Figure 5.5 (b). The Competency-Level Monitoring Curve – Player #2; Based on the situational reasoning 

of both opponents and the proposed three-tier classifier. 

 

Figure 5.5 (c). The Competency-Level Monitoring Curve – Player #3; Based on the situational reasoning 

of both opponents and the proposed three-tier classifier. 
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Figure 5.5 (d). The Competency-Level Monitoring Curve – Player #4; Based on the situational reasoning 

of both opponents and the proposed three-tier classifier. 

 

Figure 5.5 (e). The Competency-Level Monitoring Curve – Player #5; Based on the situational reasoning 

of both opponents and the proposed three-tier classifier. 
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Figure 5.5 (f). The Competency-Level Monitoring Curve – Player #6; Based on the situational reasoning 

of both opponents and the proposed three-tier classifier. 

 

Figure 5.5 (g). The Competency-Level Monitoring Curve – Player #7; Based on the situational reasoning 

of both opponents and the proposed three-tier classifier. 
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Figure 5.5 (h). The Competency-Level Monitoring Curve – Player #8; Based on the situational reasoning 

of both opponents and the proposed three-tier classifier. 

 

Figure 5.5 (i). The Competency-Level Monitoring Curve – Player #9; Based on the situational reasoning 

of both opponents and the proposed three-tier classifier. 
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Figure 5.5 (j). The Competency-Level Monitoring Curve – Player #10; Based on the situational 

reasoning of both opponents and the proposed three-tier classifier. 

 

Figure 5.5 (k). The Competency-Level Monitoring Curve – Player #11; Based on the situational 

reasoning of both opponents and the proposed three-tier classifier. 
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Figure 5.5 (l). The Competency-Level Monitoring Curve – Player #12; Based on the situational 

reasoning of both opponents and the proposed three-tier classifier. 

 

Figure 5.5 (m). The Competency-Level Monitoring Curve – Player #13; Based on the situational 

reasoning of both opponents and the proposed three-tier classifier. 
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Figure 5.5 (n). The Competency-Level Monitoring Curve – Player #14; Based on the situational 

reasoning of both opponents and the proposed three-tier classifier. 

 

Figure 5.5 (o). The Competency-Level Monitoring Curve – Player #15; Based on the situational 

reasoning of both opponents and the proposed three-tier classifier. 
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 The monitoring-curves in all of the resulting figures show a clear consistency 

between the experience level of a player and his/her probabilities’ curves. That is, as the 

player ‘assumingly’ gains more experience with time, the probabilities’ curves reflect 

this learning activity by either declining or rising. For instance, “Player #1” advances 

from an Upper-Beginner to a Lower-Intermediate experience over the course of the 74 

games selected. Concurrently, the Causal-monitoring-curve of the mentioned player 

declines from 0.875 to around 0.5625, the Intermediate-curve also converges to around 

0.5625 rising from 0.4375, and the Advanced curve is also rising from 0.3750 to a little 

bit higher than 0.5. Although, on strict classification bases, this player is classified as a 

Causal during the whole period (since the Casual probability curve is higher than both 

the Intermediate and Advanced curves), the clear trend in the curves assures that—with 

more games—the player is going to be correctly classified as Intermediate. Obviously, 

classifying a Beginner player as a Casual in this context is considered accurate, since—

as we have mentioned in Subsection 4.3.1—no Beginner cases were included in the 

training dataset. 

In this context, we would like to point out that even though the classifiers are 

trained using cases only from the mid-range of an experience level—in order to 

minimize the ‘strategical’ overlapping between the different levels—this is not the only 

reason for misclassifying games from around the boundaries between ranks. Alongside 

the potential personal-influences, we also refer to the supposition that expecting from an 

expert—for instance—a consistent performance at a particular level in all subtasks can 

be a mistake (Klein and Hoffman, 1993). Thus, a player who advanced from being a 

Casual to the Intermediate level is not expected to show this level of Intermediate-like 

proficiency in all aspects of the game. In addition, the specific expertise this player may 

have acquired might not be reflected by the features used in classification (i.e., the GNU 

Go estimated reasons). However, we are not ruling out other reasons for such 

misclassification; such as the limitations of the GNU Go engine, and the possible 

inconsistencies in the ranking methodology used by the online game-server. 
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Similar to “Player #1”, the monitoring curve corresponding to the correct 

experience level is mostly higher than the other two curves for all of the players except 

players number 8, 9 and 14. The “Player #8” is a case where the player—in only 13 

games—is advancing from Mid-Casual to Upper-Casual, and for the last 6 games, the 

probability of being an Intermediate is somewhat higher than that of being a Casual. An 

identical case is that of “Player #9”, where the 36 games fall in the Upper-Intermediate 

experience level, and where starting from the 21
st
 game, the Advanced curve is slightly 

higher than the Intermediate. It is worth mentioning that both cases completely fall in 

the overlapping area between experience-levels, and that, in the case of “Player #8”, the 

Casual curve is showing—at the very last games—an inclination of rising beyond the 

Intermediate curve. For “Player #14”, the inclination of the Advanced curve to fall 

below the Intermediate curve can be observed from the beginning games. However, 

though the misclassification in cases number 8 and 14 can be attributed to the small 

number of games per player—13 and 10 games, respectively—this is not shared by all 

the players with a short record. For instance, “Player #12”, a Lower-Advanced player 

with a record of only 11 games, is in general correctly classified. Nevertheless, a 

considerable record of games notably leads to a more accurate monitoring, a fact 

demonstrated—in most of the figures—by the relatively sharp abrupt changes in the 

early-segments of the curves. 

Those reported results demonstrate that the “Competency Model” developed 

using the quantitative measurements representing the explanatory in-depth situation 

reasoning is successfully capable of reflecting and monitoring the changes in the 

performance of a selected individual player. Additionally, as proposed, the monitoring 

approach is completely automated and passive, yet provides in-depth – and declarative, 

due to the nature of the reasons – domain-specific assessment. 

Since a game of Go is an activity between two players—who even though our 

strict case-selecting conditions might have varying experience levels—we based the 

presented implementation on estimating the reasons behind the moves of both 

opponents in a game. However, an undeniable question would be: what if the 
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experiments are done using the estimated reasons behind the moves of only the selected 

player whom we are trying to monitor? That is, in all the games with a selected player 

in common, only the moves of this player are taken into account for creating the feature 

set. Certainly, this modification requires re-training the proposed classifier using only a 

single-player’s features, i.e., each instance in the training dataset trainDS will be split 

into two, this resulting in 762 training instances rather than the original 381 instances. 

Another compelling issue is about the computational effort wasted for creating 

the second-tier in the proposed classifier, i.e., the forest of RFs. Would it not be much 

simpler and computational effective if only the single best RF—the RF with the 

minimum out-of-bag classification error—is selected? Both questions are respectively 

answered in the following subsections. 

5.4.3 Applicability to Analysing Players 

The following figures show the results of using the estimated reasons behind the 

moves of sole players as features—for both training the classifier and monitoring the 

players’ strategic-learning—rather than using the reasons behind the moves of both 

players (i.e., the whole games) as features as in the previously shown results. The 

monitoring-curves in all of the resulting figures show further uncertainty when 

compared to the previous results of considering the whole games in the creation of the 

features set. Commenting on the five players with the highest number of game-records 

(previously selected in subsection 4.4.5): “Player #1” still shows a decline in the Casual-

monitoring-curve accompanied by a rise in both Intermediate and Advanced curves. 

However, the quantities of declination/rising exhibited are significantly lower than 

before. Using the games’ features, this player showed an almost overlapping pattern 

between the Casual and Intermediate games starting from the 66
th

 game, while using the 

player’s features the gap between both curves by the 74
th

 game remained considerable. 

Evidently, much more games are required for this player to be correctly classified as an 

Intermediate. Confusion can be also found in both players number 2 and 4, with almost 

the entire temporal-frames of “Player #2’ misclassified as an Advanced. “Player #4” 
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shows a misclassification between the games 11 to 14 — where the Advanced curve is 

higher than the Casual — that was not previously present. 

In “Player #13”, a visible distinction between the Casual and Intermediate 

curves can be seen in the beginning games, which can be thought of as an improvement 

when compared to the previous results. Conversely, for the latter games, the 

overlapping between the Intermediate and Advanced curves goes for a significantly 

longer period when compared to the previous results, an apparent disadvantage. “Player 

#11” is the only case where no substantial difference between using both features sets 

can be found, except for a noticeable overlap between the Intermediate and Advanced 

curves at game number 4. 

As in Chapter 4, and in order to provide a more quantitative interpretation of the 

competency-curves and their temporal trends with the changing rank, Table 5.6 will 

show the correlation between each competency-curve (Eq. 4.9) and the rank. 

 

Figure 5.6 (a). The Competency-Level Monitoring Curve – Player #1; Based on the situational reasoning 

of the individual player and the proposed three-tier classifier. 



155 Chapter 5: Reasoning Competency in Human Go Players 

 

 

Figure 5.6 (b). The Competency-Level Monitoring Curve – Player #2; Based on the situational reasoning 

of the individual player and the proposed three-tier classifier. 

 

Figure 5.6 (c). The Competency-Level Monitoring Curve – Player #3; Based on the situational reasoning 

of the individual player and the proposed three-tier classifier. 
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Figure 5.6 (d). The Competency-Level Monitoring Curve – Player #4; Based on the situational reasoning 

of the individual player and the proposed three-tier classifier. 

 

Figure 5.6 (e). The Competency-Level Monitoring Curve – Player #5; Based on the situational reasoning 

of the individual player and the proposed three-tier classifier. 
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Figure 5.6 (f). The Competency-Level Monitoring Curve – Player #6; Based on the situational reasoning 

of the individual player and the proposed three-tier classifier. 

 

Figure 5.6 (g). The Competency-Level Monitoring Curve – Player #7; Based on the situational reasoning 

of the individual player and the proposed three-tier classifier. 
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Figure 5.6 (h). The Competency-Level Monitoring Curve – Player #8; Based on the situational reasoning 

of the individual player and the proposed three-tier classifier. 

 

Figure 5.6 (i). The Competency-Level Monitoring Curve – Player #9; Based on the situational reasoning 

of the individual player and the proposed three-tier classifier. 
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Figure 5.6 (j). The Competency-Level Monitoring Curve – Player #10; Based on the situational 

reasoning of the individual player and the proposed three-tier classifier. 

 

Figure 5.6 (k). The Competency-Level Monitoring Curve – Player #11; Based on the situational 

reasoning of the individual player and the proposed three-tier classifier. 



160 Chapter 5: Reasoning Competency in Human Go Players 

 

 

Figure 5.6 (l). The Competency-Level Monitoring Curve – Player #12; Based on the situational 

reasoning of the individual player and the proposed three-tier classifier. 

 

Figure 5.6 (m). The Competency-Level Monitoring Curve – Player #13; Based on the situational 

reasoning of the individual player and the proposed three-tier classifier. 
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Figure 5.6 (n). The Competency-Level Monitoring Curve – Player #14; Based on the situational 

reasoning of the individual player and the proposed three-tier classifier. 

 

Figure 5.6 (o). The Competency-Level Monitoring Curve – Player #15; Based on the situational 

reasoning of the individual player and the proposed three-tier classifier. 
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Table 5.6 (Continued in the next page). The Correlation between the Selected Players’ 

Ranks and the Competency Monitoring Curves (Based on Situation Reasoning). 
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1 
-0.57823 0.73832 0.24422 Upper-Beginner to 

Lower-Intermediate 

A moderate negative correlation with the 

Casual curve accompanied by a Strong 

positive correlation with the Intermediate 

curve clearly indicates the acquisition of 

intermediate skills, and clearly reflects the 

expertise curve of the player. 

2 
0.54517 -0.6899 0.04977 Lower-Intermediate 

to Mid-Intermediate 

The advancement within the intermediate 

range is not reflected by the positive 

moderate correlation with the Casual curve. 

However, it can be reflected by the moderate 

to strong negative correlation with the 

Intermediate curve. 

3 
-0.15879 0.49503 -0.43733 

Mid-Intermediate 

A moderate negative correlation with the 

Advanced curve and a moderate positive 

correlation with the Intermediate curve 

clearly indicate that the player is not 

improving. 

4 
-0.02841 0.62311 -0.15193 Mid-Beginner to 

Mid-Casual 

The positive moderate correlation with 

Intermediate curves indicates the player’s 

advancement towards the intermediate range. 

5 

No Variation in the 

Experience-Level, thus no 

trend is obtainable. 

Lower-Intermediate Not Applicable 

6 
-0.86608 0.86316 0.7959 Mid-Casual to 

Lower-Intermediate 

The trend in the Experience Level is clearly 

shown by strong – respectively negative and 

positive – correlations with both Causal and 

Intermediate curves. A moderate to strong 

positive correlation with the Advanced curve 

exists. 
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7 
-0.44773 -0.38765 0.79946 Mid-Casual to 

Upper-Casual 

A moderate negative correlation with the 

Casual curve, accompanied with a low 

negative correlation with the Intermediate 

curve. A moderate to strong positive 

correlation with the Advanced curve exists. 

8 
-0.38135 0.1518 0.33005 Mid-Casual to 

Upper-Casual 

A moderate negative correlation with Casual 

curve accompanied with a small correlation 

with the Intermediate curve reflect the 

expertise trend. 

9 
-0.53924 0.60584 -0.30341 

Upper-Intermediate 

A moderate – and weak, respectively – 

negative correlations with both Casual and 

Advanced curves, and a moderate positive 

correlation with the Intermediate curve. 

10 
-0.4239 0.07733 0.41045 Lower-Intermediate 

to Mid-Intermediate 

The moderate negative correlation with the 

Casual curve and the moderate positive 

correlation with the Advanced curve are 

reflecting the experience trend. 

11 

No Variation in the 

Experience-Level, thus no 

trend is obtainable. 

Lower-Advanced Not Applicable 

12 
-0.86262 -0.72567 0.86867 

Lower-Advanced 

A strong positive correlation with the 

Advanced curve and strong negative 

correlations with both the Casual and 

Intermediate curves are clearly reflecting the 

experience level. 

13 
-0.40682 -0.72372 0.66887 Upper-Intermediate 

to Lower-Advanced 

Moderate and high – respectively – negative 

correlations with both the Casual and 

Intermediate curves, accompanied by a 

moderate correlation with Advanced curve; 

clearly reflecting the experience level.  

14 
-0.32679 0.41054 0.0433 

Mid-Intermediate 

The weak negative correlation with the 

Casual curve and the moderate positive 

correlation with the Intermediate curve are 

reflecting the player’s ranks. 

15 
0.49636 0.27864 -0.66489 Lower-Intermediate 

to Mid-Intermediate 

The advancement within the intermediate 

range is somehow reflected by the weak 

positive correlation with the Intermediate 

curve. However, moderate correlations exist 

with both Casual and Advanced curves.  

Table 5.6 (Continued). The Correlation between the Selected Players’ Ranks and the 

Competency Monitoring Curves (Based on Situation Reasoning). 
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5.4.4 Diagnosing Strategic-Learning 

In the previous subsection, we have successfully demonstrated using an ACR as 

an objective external-observer to estimate the strategic reasons behind the moves of 

human Go-players, those reasons were subsequently used in classifying the experience 

of the players and monitoring their strategic learning behaviour. In this subsection we 

reach the final stage of our results, in which we diagnose the learning activity of human 

Go-players by temporally observing each of the strategies’ characteristics (i.e., the 

aggregated subsets of reasons). A benefit of the following figures is the distinctive 

opportunity to realize how the strategic reasoning of human Go-players is decomposed 

among the available strategies’ characteristics, and how those characteristics evolve 

temporally with experience. The figures below show the un-weighted Cumulative 

Moving Average (CMA) — again with a maximum window size of 50 games — of the 

Reasons Frequencies per Step (FS), as directly measured from the games. The FS 

calculated only from the reasons behind the — corresponding — selected player’s 

moves. To allow mutual comparisons, each figure is normalized by the corresponding 

highest averaged characteristic-value. 

As we have mentioned, the five finally-selected players were found to cover the 

whole available experience range. In fact, they tend to cover the whole experience range 

in somewhat mutually-exclusive sub-ranges. Therefore, a possible scenario to visualize 

and hypothesize-about the overall strategic-learning process is by linking them 

successively with a simple underlying storyline. As a Go-player progresses from being a 

Beginner to lower-Intermediate—through being a Casual—the categories ‘All Reasons’, 

‘Considered an Attack’, ‘Considered a Defence’, and ‘Thoughtful’ seem—in general—

to decline slightly with experience. The ‘Explicit Gains’ appears to be the only curve 

that rises during the Beginner to lower-Intermediate progression. On the contrary, 

progressing from the Intermediate to Advanced shows precisely the opposite behaviour. 

As the player progresses through the Intermediate rank towards the Advanced rank, the 

characteristics ‘All Reasons’, ‘Considered an Attack’, ‘Considered a Defence’, and 

‘Thoughtful’ unevenly increase with experience. Unsurprisingly, the ‘Explicit Gains’ is 
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the only curve that declines during the Intermediate to Advanced progression. However, 

both categories the ‘Not Recommended’ and the ‘End of the Game’ show very subtle 

variations throughout the entire experience range. 

In Subsection 5.3.4, and in order to investigate the differences in the Go-

strategies’ characteristics, statistical analysis methods were applied to measurements 

from the mid-range games of Casual, Intermediate, and Advanced expertise. The 

findings, then, implied that as a player progresses from Casual to Advanced, the 

strategies employed become more thoughtful, with a tendency to attack rather than 

being defensive, and of also being less attracted by instant (explicit) gains. These earlier 

findings seem to agree with only half of the hypothesized storyline, that is, the changes 

occurring as a player progresses through the Intermediate rank and to being an 

Advanced. This apparent disagreement—where the categories ‘All Reasons’, 

‘Considered an Attack’, ‘Considered a Defence’, and ‘Thoughtful’ seem to decline as a 

player advances from being a Beginner to a lower-Intermediate—can be attributed to 

two associated reasons. To begin with, in Subsection 5.3.4, no Beginner games matched 

the selection criteria, and therefore, the progression from Beginner to Casual was not 

investigated. That leads us to the second reason; the window size of 50 games employed 

in the CMA considers this ‘history’ of being a Beginner when the player has already 

advanced onto being a Casual, thus affecting the curves for an additional period—as in 

both players number 1 and 4. 

An alternative — yet vital — approach is to read the results by considering each 

figure as a way to monitor a personalized strategic-learning activity. Each figure 

characterizes how the corresponding player is evolving with the experience he/she is 

gaining. The plain benefits of such results, is the ability to construct customized — 

whether to a specific personality or to a level of expertise — learning processes, 

consisting of designed tasks that convey to a learner the missing bits of 

knowledge/skill/understanding, by which gaining experience might be assured and/or 

accelerated. Another potential benefit is the ability to clone a person/level-of-expertise, 

possibly for constructing an automated instructor. 
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Figure 5.7 (a). The Skills – Reasoning Diagnosis – Monitoring Curves – Player #1. 

 

Figure 5.7 (b). The Skills – Reasoning Diagnosis – Monitoring Curves – Player #2. 
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Figure 5.7 (c). The Skills – Reasoning Diagnosis – Monitoring Curves – Player #4. 

 

Figure 5.7 (d). The Skills – Reasoning Diagnosis – Monitoring Curves – Player #11. 
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Figure 5.7 (e). The Skills – Reasoning Diagnosis – Monitoring Curves – Player #13. 

5.4.5 Effect of Changing the Classifiers' Architecture 

Although the classifier’s second-tier — composed of a forest of 30 RFs — is not 

based upon RFs that are trained using randomly-drawn subsets of the training dataset, it 

can be considered a form of bagging in the sense that it is in fact composed of RFs with 

minor changes in their operational parameters. That is, those RFs are varying in the 

number of classification trees they consist of, in addition to the randomness existing in 

the constituting trees due to both operators — i.e., bagging and random feature selection 

— used while generating each single RF. 

In order to investigate if combining those RFs would lead to an improved overall 

performance, we will only select the single best RF and re-run the whole experiment, 

instead of using all the 30 RFs as previously demonstrated. The resulting figures of the 

finally-selected five players are shown below. 
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In general, the figures show that combining the relatively weaker RFs to form an 

ensemble indeed created the hypothesized improved performance. In “Player #1”, 

besides a misclassification during the very early 2 games, the last dozen games are 

misclassified as Advanced rather than Casual as before. While both classifications are 

— in a very strict sense — incorrect, Casual is more appropriate considering that the 

actual ranks are a ‘lower’ Intermediate. The lower performance can also be 

demonstrated in “Player #2”, where the entire Advanced curve is erroneously higher 

than the Intermediate curve. Also, Player #4 is correctly classified as a Casual, yet the 

monitoring curves show an abrupt rising of the Advanced curve above the Intermediate. 

Similar relatively-abrupt changes can be seen in the beginning games of both player 

number 11 and 13, although — in both players — the rest of the temporal frames are 

correctly classified. In fact, the monitoring curves of the “Player #13” show an 

improved classification, in which the Intermediate curve falls below the Advanced 

curve starting from the game number 18, instead of 34, as in the previous results. 

 

Figure 5.8 (a). The Competency-Level Monitoring Curve – Player #1; Based on the situational reasoning 

of both opponents and an alternative architecture for the classifier. 
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Figure 5.8 (b). The Competency-Level Monitoring Curve – Player #2; Based on the situational reasoning 

of both opponents and an alternative architecture for the classifier. 

 

Figure 5.8 (c). The Competency-Level Monitoring Curve – Player #4; Based on the situational reasoning 

of both opponents and an alternative architecture for the classifier. 
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Figure 5.8 (d). The Competency-Level Monitoring Curve – Player #11; Based on the situational 

reasoning of both opponents and an alternative architecture for the classifier. 

 

Figure 5.8 (e). The Competency-Level Monitoring Curve – Player #13; Based on the situational 

reasoning of both opponents and an alternative architecture for the classifier. 



172 Chapter 5: Reasoning Competency in Human Go Players 

 

5.5 Chapter Summary 

In this chapter, a methodology was provided for an automatic and objective 

discovery of the properties of the strategies employed by human-players’ in the game of 

Go, and explored the changes in the strategies as the players gain experience. We view 

this work as a step towards creating an explanatory link between the human mind and 

machine, and of reproducing human intelligence. 

In more details, the previously presented computational framework was adapted, 

so that the connectivity-patterns assessment component that provided an evaluation in 

terms of network motifs was replaced by a reasoning assessment component that 

provided declarative reasons as explanations, to the moves played by human Go 

players. That component have been realised using a publicly available engine which is 

capable of providing the required explanations. The explanations covered the key 

concepts of reasoning within the Go domain; namely, the concepts of attacking, 

defending, looking-ahead, and capturing. The engine was successful in analysing a 

training dataset that is composed of hundreds of games suitably selected from an online 

server, and the results demonstrated a statistically-significant capability in 

characterizing varying levels of expertise in Go. 

As in Chapter 5, statistical measures were applied to the results of this analysis, 

in order to generate features upon which a competency model was developed. The 

model, developed as a three-tier ensemble-classifier based on random forests, was 

more-successful in predicting the class label of a game of Go when compared to the 

connectivity-patterns based classifier. This capability was demonstrated using a test 

dataset of 15 human players, whom which the proposed approach successfully provided 

a temporal-monitoring for their overall expertise-level along with their specific skills-

levels. In addition, this chapter investigated alternative factors within the approach’s 

operational framework, in which analysing individual players rather than games and a 

modified architecture for the proposed classifier were examined. 
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The results represent a distinctive opportunity to realize and monitor how the 

strategic reasoning of human players is decomposed among the available strategic 

characteristics, and how those characteristics evolve temporally with experience. The 

findings are seen as advancement towards a more customized learning processes, and as 

an innovative tool in the field of computational psychology for the modelling—and 

potentially the imitation/reproducing—of human behaviour. 
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The work, reported in this chapter, has been partially published in following articles:
 Amr S. Ghoneim, and Daryl L. Essam (2012). A Methodology for Revealing 
and Monitoring the Strategies Played by Neural Networks in Mind Games. Accepted 
by the 2012 International Joint Conference on Neural Networks (IJCNN), at the 2012 
IEEE World Congress on Computational Intelligence (WCCI 2012), Brisbane – 
Australia, June 10-15.        
 Amr S. Ghoneim, Daryl L. Essam, and Hussein A. Abbass (2011). On 
Computations and Strategies for Real and Artificial Systems. In Advances in Artificial 
Life, ECAL 2011: Proceedings of the Eleventh European Conference on the Synthesis 
and Simulation of Living Systems, edited by Tom Lenaerts, Mario Giacobini, Hugues 
Bersini, Paul Bourgine, Marco Dorigo and René Doursat, pp. 260-267, 8-12 August 
2011, Paris, France. MIT Press. 

 

In Chapter 4, an automated competency assessment environment was proposed, 

and developed, to monitor human Go players on 19×19 boards. In Chapter 5, through 

utilizing situation reasoning, the proposed environment achieved its objective by 

providing an effective competency-monitoring of the human Go players. However, to 

effectively support the development of computer Go players, two issues should be 

addressed. 

To begin with, the proposed methodology should be used to assess computer Go 

players, and to be capable of assessing their performance on smaller board sizes. As we 

have mentioned, smaller board sizes – which are less complex than the 19×19 board, 

yet complex enough to represent a challenge for novice human players and computer 

Go – are widely exploited, in particular the 9×9 variant. However, a measure of 

competency is not effective without consequent actions. Thus, in order to effectively 

support the development of computer Go players, the second issue is to actually utilize 

the methodology to effectively guide and train selected computer Go agents. In this 

chapter we address both issues, which correspond to the third and fourth sub-questions 

(see Section 1.3). 
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This chapter starts by extending our proposed framework – and our findings in 

Chapter 5 – to target one of the disadvantages in neuro-evolving Go Players; That is, by 

semantically unfolding the evolution of Go neuro-players, and monitoring the overall 

dynamics of the evolution process. Thus it will be possible to observe any stagnation in 

the evolutionary processes, and to extracting the semantics of a neural networks’ 

behaviour. 

Then, later in this chapter, we address the issue of recommending a follow-up 

action that would support an improved development of computer Go agents, thus 

practically addressing the fourth sub-question within this study (see Section 1.3). That 

is, to investigate the value an automated competency assessment, leading to an 

enhanced awareness, would bring to the advancement of computer Go agents. The 

hypothesis is that improved competency assessment will positively affect computer Go, 

by driving the development of better Go-playing capabilities in the agents. Thus, this 

chapter proposes extending our framework to develop a strategically-aware fitness 

function to guide the neuro-evolution, and investigates how this proposed function 

would affect – in comparison to the traditional fitness function – the development of 

improved competencies within the evolved Go agents.  

The first part of this chapter starts with a timely review – in Section 6.1 – of the 

challenges to the application of neuro-evolution within the Go domain, and thus the 

need to unfold the dynamics of the evolutionary process. Section 6.2 presents the 

approach proposed to semantically monitor the neuro-evolution of Go players, including 

an experimental setup. Section 6.3 follows by a discussion of the results. The second 

part of this chapter starts in Section 6.4 by overviewing the background knowledge 

concerning the incorporation of domain knowledge into the evolutionary process, and 

its anticipated rewards on the neuro-evolution of Go players, followed by describing the 

proposed fitness function and the experimental setup in Section 6.5. A comparative 

study of both fitness functions – the proposed versus the traditional – is presented in 

Section 6.6. Finally, the chapter and its findings are summarized in Section 6.7. 
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6.1 The Need to Unfold the Neuro-Evolution 

To become different from what we are, 
we must have some awareness of what 
we are.    
 –––Eric Hoffer (1902 – 1983) 

Computational Intelligence (CI) has been successfully applied to various 

applications, including mind-games, where its intention is to achieve high-quality 

human-like game playing capabilities. Due to their ability to learn autonomously and to 

effectively recognize and transform patterns, Neural Networks have been successfully 

applied to various mind-games (Mańdziuk, 2007). Neuro-Evolution is an approach to 

train neural networks using an evolutionary algorithm (Richards et al., 1998). For it, the 

evolutionary approach searches for the network parameters that maximize its 

performance in learning a specific task. However, despite its advantages when 

compared to the traditional ‘supervised’ training methods, neuro-evolution may suffer 

from drawbacks; for instance, evolutionary convergence to a local optima that is widely 

known as stagnation. From the previous review on Machine-Learning approaches to 

computer Go, and in particular neuro-evolution (see Section 2.2.4), the proposed 

methodologies dealt with issues that inherently revolved around two main concerns: 

 The nature of the game-playing strategies evolved  (What type of strategies 

are evolved?), and 

 The dynamics of the game-playing strategies evolution (Are there any 

strategies evolving?). 

Neuro-evolving against an opponent leads to types of strategies that are limited 

in quality to the strength of that opponent. Evolving against varying opponents is 

fundamentally about evolving varying types of strategies to achieve good play, and is 

based on figuring out how much diversity in the types of strategies is needed to achieve 

good play. Co-evolution, and the subsequent cultural co-evolution, attempts to eliminate 

this limitation to the nature of the strategies evolved; as well as assuring a continuous 
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progress, without stagnation. When scalability was the concern, it was about evolving 

the right type of strategies that could be valuable on a different scale. To sum up, in 

order to realize the full potential of neuro-evolution in games, unfolding the evolution 

of neural game players is important, if not mandatory. 

Stagnation is superficially detected when evolution fails to improve on existing 

solutions, as measured by its fitness function. In mind-games, this in effect corresponds 

to a player that fails to improve its skills – thus its performance remains constant. 

However, if during evolution we see a plateau in the fitness function, it does not 

necessarily mean that evolution has stagnated. Sometimes it takes time to re-construct 

building blocks, where this area of perceived stagnation is followed by a sudden jump in 

fitness. Similarly, a continuous increase in fitness does not mean that the neuro-players 

are improving their skills. Sometimes they exploit a weak player or niche, where the 

continuous increase in fitness is a false indicator of any improvements. 

Therefore, one can imagine that the use of a proper mechanism to assess the skill 

of an evolving player can provide one way to reveal evolutionary dynamics. That is, the 

types of strategies evolved within a neural network can be measured, and thus the 

dynamics of the neuro-evolution process itself can be monitored. This challenging issue 

is traditionally answered through rule-extraction techniques (Andrews et al., 1995). 

However, due to the compactness of NNs, the acquired knowledge is represented 

numerically and never explicitly declared. This numerical representation, besides the 

architecture and the weighted connections, affects the expressive power of the extracted 

rules. Most rule-extraction methodologies express the mined rules in the conventional 

Boolean/Propositional Logic, or in the less usual Fuzzy Logic with membership 

functions. In both cases, the if … then … else form is widespread. We call this 

representation a syntactical representation of the network. The reason for this, is that it 

captures the internal representation as a function of the neurons’ activities, without 

necessarily representing the meaning of the behaviour of the network as a whole. The 

latter is what is known as a strategy within a mind-game. 
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In other words, due to the nature of NNs and of the extraction techniques, the 

extracted rules do not have the necessary expressiveness to explain game-playing 

strategies.  However, in practice, the neuro-evolution approaches need to discover the 

semantics of the network’s behaviour; the general strategies and reasoning that maps the 

goal(s) of the game into actions. Therefore, the conventional ‘Boolean’ representation 

lacks the expressiveness needed to describe such strategies. 

The first question addressed by this chapter, is of how to describe the types of 

strategies that evolve in a neural game-player across a given number of generations. As 

well as of how to detect whether the evolved networks are improving towards the 

required objective, or if the evolution has stagnated, and thus if the networks are not 

developing new strategies. Thus, we present an attempt to answer these questions by 

extending the role of the proposed competency assessment approach to provide domain-

specific semantics to the moves played by the evolved neural-players. It is hypothesized 

that the selected situation reasoning is capable of addressing these questions by 

correlating with – and consequently, assessing – the performance and competency of the 

evolved neuro-Go players. 

6.2 Proposed Methodology: Semantically Monitoring the Neuro-

Evolution of Computer Go Players 
 

Our proposition (Figure 6.1), is that the established computational framework 

(see Chapter 5) can unfold the evolution of a NN player by providing the strategies and 

reasoning behind the moves played by the network. The explanatory/analysing 

component can replay a game, providing an explanation from its own perspective – i.e., 

depending on its internal structure and dependencies – to the moves played in that 

game. Thus, by replaying the games played by a NN at different stages – generations – 

of an evolution, we can understand the dynamics of the evolution; whether the networks 

are evolving any strategies or are idle. We can also discover and estimate the types of 

game-playing strategies evolved. In addition, the generated explanations can be 
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combined with a data-mining technique to provide the probability for the evolution 

process to converge, and consequently to potentially notice stagnation. 

 

 

Figure 6.1. Conceptual Diagram of the Proposed Methodology. Solid Arrows represent 

the Neuro-Evolution Process of a Game-Player, Dashed Arrows represent the Process of 

Analysing the Type of Strategies Evolved, while the Dotted Arrows represent the 

Process of Analysing the Evolution’s Overall Dynamics. 
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To realize our proposition, the Go neuro-players were evolved using SANE; a 

methodology which has been repeatedly utilized within the Machine-Learning 

approaches to computer Go (Richards et al., 1998). GNU Go (Bump et al., 2009) was 

selected as the analysing engine (as in the preceding “Chapter 5” settings), as well as 

the opponent in the evolution process. Finally, Random Forests (Breiman, 2001) were 

selected – also as in the previous setting – as the data-mining technique. Details of the 

SANE methodology and the experimental setup are presented in the following section. 

6.2.1 Symbiotic Adaptive Neuro-Evolution 

SANE (Moriarty and Miikkulainen, 1997) is a different approach to neuro-

evolution. Instead of evolving a complete network as a potential solution, two separate 

populations are evolved simultaneously, network blueprints and neurons. The neurons 

act as local solutions that explicitly decompose the search space, while the blueprints 

search for a solution to the best combinations of neurons (instead of building the 

networks out of randomly selected neurons). This methodology was also applied to 

another mind game, Othello (Moriarty and Miikkulainen, 1995). SANE traditionally 

evolves neurons for a single hidden layer, thus in fact evolving a three-tier feed-forward 

network. 

Each board intersection has two input nodes (one for each player), and a single 

output node. For an intersection, the first representative input node is activated iff the 

intersection is occupied by a white stone, and vice versa if the intersection is occupied 

by a black stone, the second input node is activated. Therefore, an empty intersection is 

indicated by deactivating both input nodes, and it is illegal to activate both. The output 

node has a sigmoid activation function; the next move is represented by the highest 

value (a larger value corresponds to a better move). If all values are below 0.5, the 

network passes. If the selected move is illegal, the move corresponding to the next 

highest activation is selected. Each neuron defines a fixed number of weighted 

connections that are randomly assigned to both input- and output-layer nodes. 
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In the evaluation phase, a network plays a game of Go against an opponent, the 

fitness value is merely the game’s final score. As for each neuron, its fitness value is the 

normalized summation of the fitness values of the networks in which it participated. 

Single point crossover is then applied on mates selected from the elite one third of the 

networks, and 25% of the neurons, thereby creating two offspring that replace the worst 

individuals. Mutation is then applied conservatively to the neuron population, and more 

aggressively to the blueprints (to maintain high diversity among the network). Table 6.1 

clarifies the application of SANE to evolve neuro Go players. 

6.2.2 Experimental Setup 

SANE is used to evolve networks playing on 9×9, which is the current limit in 

the neuro-evolution literature. Table 6.1 highlights the network, and the evolution 

parameters. GNU Go version 3.6 is used throughout the experiments. The engine’s level 

was set to 1, the default is 10. Chinese rules were used to score the Go games. The 

networks are always evolved to play White, thus never making the first move. The komi 

value – which is necessary to avoid a tie – was set to 0.5, and no handicap stones were 

given to the networks. An upper bound of 200 moves per game was placed, to ensure 

that unreasonably long move-sequences that are probably suggested by the untrained 

networks are not pursued. 

The actual score of the game is used as the fitness value. There is not a separate 

output value for pass, thus a network passes whenever the highest output value is less 

than a threshold – 0.5 in this study – signalling that no good moves can be found. In 

general, the parameters in the experiments are based on those found effective in 

(Richards et al., 1998). A single run consists of 350 generations, and 10 different runs 

were evolved. The 350 generations are about 100 generations more than that required by 

SANE to evolve a network capable of defeating Wally (Richards et al., 1998). However, 

GNU Go – even when playing at level 1 – is much more developed than Wally. 

Therefore, we do not expect to evolve a NN that is capable of defeating GNU Go, but 

rather a network that develops enough strategies to explore. 
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Table 6.1. Pseudo-code of SANE Applied to Evolving Neuro-GO Players. 

STEP 1: Generate Population 

Generate an initial random population Pn of 4000 neurons 

… per neuron: 12 weighted connections 

Generate an initial random population Pb of 200 blueprints 

… per blueprint: 162 input nodes, 81 output nodes, 500 hidden nodes 

 

For each generation gen of 350 generations 

    STEP 2: Evaluate Population 

    For each neuron n in population Pn 

 n.fitness ← 0 

 n.participation ← 0 

    For each blueprint neuralnet in population Pb 

 neuralnet.fitness ← game-score( neuralnet vs. GNU Go ) 

 For each neuron n in neuralnet 

  n.fitness ← n.fitness + neuralnet.fitness 

  n.participation ← n.participation + 1 

    For each neuron n in population Pn 

 n.fitness ← n.fitness / n.participation 

 

    STEP 3: Sort Population and Select Mating Individuals 

    sort( Pn , Quick-Sort ) 

    Eliten ← Best 1000 neurons that are allowed to breed 

    sort( Pb , Insertion-Sort ) 

    Eliteb ← Best 67 networks that are allowed to breed 

 

    STEP 4: Apply Evolutionary Operators 

    crossover( Pn , Eliten , One-Point-Crossover ) 

    mutate( Pn , Mutation-Rate: 0.1 ) 

    crossover( Pb , One-Point-Crossover ) 

    mutate( Pb , Eliteb , Mutation-Rate: 0.1 ) 
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As in the prior setup (Chapter 5), the generated reasons are grouped into a small 

number of sets (Table 5.1) according to tactical/strategical similarities to facilitate 

identifying the general strategies and observing any potential trend; those groups are: 

‘Not Recommended’, ‘Offensive’, ‘Defensive’, ‘Direct/Explicit Gains’, ‘Thoughtful’, 

‘End-of-Game’, and ‘All Reasons’. The main feature that was then calculated from the 

reasons list per game was the following measurement: 

 The Reasons Frequencies per Move (Eq. 5.2) which correspond to the 

frequency of each reason per game divided by the total number of moves in 

the corresponding game. 

This feature is the input to the Random Forest (RF) – which is once more 

selected as the data mining technique – that was trained to classify a game as either 

immature (i.e., untrained) or mature (i.e., fully trained). The RF is trained using two 

databases (Figure 6.1) of features, each containing 150 profiles. The profiles of the 

immature games are created from 150 games played by the networks evolved in the 

very first 3 generations, thus virtually having no game-playing capabilities. As for the 

mature game, the profiles are created from games played by a GNU Go tournament; 

since GNU Go is the only source of information the networks have, the strategies found 

in GNU Go played games can be considered the highest level the networks are trying to 

achieve. The RF is then trained to generate a probability of being immature or not. In all 

the forthcoming figures, a cumulative moving average spanning 50 generations is used. 

6.3 Results and Discussion 

We have run our system using SANE for 350 generations. Figure 6.2 shows the 

average score of the game – which cannot go below -80.5 given our settings – as the 

networks evolve. The average of the 10 runs and the 200 networks show a clear 

improvement for the first 100 generations, after which both curves enter “an almost flat” 

plateau. An initial and very simple demonstration of the usefulness of using generated 

explanatory reasoning is to track the evolution as shown in Figure 6.3. As the networks 

evolves, the number of reasonless moves drops from an average of 24 per game to 
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around 19. That is a clear trend that indicates the development of some game-playing 

strategies/reasoning with evolution. 

 

Figure 6.2.  Evolving Neuro-Go Players. 

6.3.1 Types of Strategies Evolved 

To investigate the types of the strategies evolved, Figure 6.4 shows the curves 

for the aggregated sets of reasons. Although, practically, the results sharply vary on an 

individual level, the smoothed curves show a trend for the first 100 to 150 generations. 

The average moves with a Not Recommended strategy decrease by almost 2 per game, 

and most importantly, the average number of moves with a Direct/Explicit Gain 

strategy rises from 1 to about 4 per game. The average moves with an Offensive, 

Thoughtful and End-of-Game strategies did not vary significantly with evolution. All 

these findings were expected. Being Thoughtful, Offensive rather than Defensive, and 

aware of the End-of-Game patterns are practiced by relatively more mature players. In 
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addition, avoiding some Not Recommended moves, and – more importantly – being 

attracted by Direct/Explicit Gains are commonly the strategies adopted by untrained 

players, besides being more Defensive. Therefore, finding that Defensive moves 

decreased by almost 2 moves per game was interesting. The reason being that the 

Defensive moves – rather than being lost to Offensives – are being misplayed instead to 

capture a stone or to expand its territory – which are part of the Direct/Explicit Gain 

moves – by the immature networks. Thus, suggesting that being Defensive is a 

capability that is yet to be developed in the players. 

 

Figure 6.3.  Number of “White” Moves without any Reasons per Game. 

Figure 6.5 shows a more detailed – close-up – on the Direct/Explicit Gain 

strategy which showed the largest variation – increase – in terms of moves. The curves 

that represent each constituent reasoning in that category are displayed. It is obvious 

from that figure, that the networks quickly evolve the “expand territory” strategy. 

However, these expansion attempts were done without any real increase to its “expands 

moyo”, “is an invasion” or “captures something” strategies. 
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Figure 6.4.  Aggregated Sets of Reasoning; The Overall Strategies. 

 

Figure 6.5.  A Close-Up on the Direct/Explicit Gain Moves’ Constituent Reasoning. 
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Overall, the reported figures provided a semantic monitoring of the neuro-Go 

players during evolution by explicating the strategies and reasoning behind the moves 

played by the network. This demonstrates our initial proposition that the established 

computational framework can unfold the evolution of a NN player. The next section put 

the last touches on this demonstration by combining those generated reasoning with a 

data-mining technique to provide a probability for the evolution process to converge. 

This probability will offer an alternative indication of possible stagnations. 

6.3.2 Dynamics of the Neuro-Evolution 

The trend of the evolution process can be – more or less – noticed from Figures 

6.3, 6.4, and 6.5. The reason why we need to separately judge the dynamics of the 

neuro-evolution – rather than depending merely on the results in Figure 6.2 – is that 

even though the performance criteria is not improving, the networks might still be in the 

middle of adopting new strategies that are not yet reflected in the performance. In such a 

case, the strategies that are being adopted would need more evolution to become 

established and effective. 

Therefore, from Figures 6.3, 6.4, and 6.5, a relatively flat curve – plateau – can 

be noticed for the generations beyond 150. However, we can use the RF trained to 

classify immature versus mature games to describe the overall neuro-evolution 

dynamics. Figure 6.6 shows the results for 17500 games, representing 5 games played 

by the best network in each of the 10 runs, and – temporally – for the 350 generations. 

The probability 1 indicates an extremely untrained – randomly playing – network, while 

0 indicates a network with game-playing strategies comparable to those of the opponent 

(i.e., GNU Go at level 1). The evolution trend noticed before is reflected by the 

probability curve. The curve drops by 0.07 in the first 8000 games – roughly 

corresponding to the 150 generations, and for the rest of the games, the probability 

drops by only 0.01. 
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Figure 6.6. The Probability of being an Immature (Untrained) Player. 

6.3.3 Hinton Boards 

Concurrent with the previous methodology, we used modified Hinton Diagrams 

for board games, as an independent validation approach for the neuro-evolutionary 

dynamics. In this section, we present Hinton Diagrams that provide a qualitative display 

of the evolving networks’ weights values. Hinton diagrams traditionally displays the 

weights of a network in terms of squares with sizes that are relative to the magnitude of 

each individual weight (Unluturk et al., 2011). 

Instead of the traditional Hinton Diagrams, in which the axes represent the 

connecting nodes, the values were added and organized in away corresponding to a Go 

board. Those Hinton Boards present the weight values of the connections from the 500 

node hidden layer to the 81 node output layer. Figures 6.7, 6.8 and 6.9 display the 

average of the best network in the 10 runs at generations number 0, 150, and 350, 

respectively. 
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The figures show how the weight values that connect to the output layer adapt 

with evolution. In Figure 6.7, the positive (light grey) and negative (dark grey) seem to 

be equally distributed throughout the board. By the 150
th

 generation (Figure 6.8), 

besides increasing in magnitude, the positive weights become concentrated in the centre 

area of the board, while the borderline is usually occupied by the negative weights. A 

trend that continued to develop – yet without the same initial momentum – until the 

350
th

 generation (Figure 6.9). 

The later statement may reflect the fact that by the 150
th

 generation, the 

performance enters a relatively flat plateau. The observation that the positive weight 

values are concentrated towards the inside of the board, clearly reflects a primitive 

approach to developing and increasing one’s own territory by playing towards the centre 

and of diminishing play at the borders of the board. 

 
 

Figure 6.7. Averaged Hinton Board for the output-connections weight-values, 

generation number 0. 
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Figure 6.8. Averaged Hinton Board for the output-connections weight-values, 

generation number 150. 

 

Figure 6.9. Averaged Hinton Board for the output-connections weight-values, 

generation number 350. 
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6.4 The Need to Integrate Semantic Knowledge into the Neuro-

Evolution 

What is necessary to change a person is 
to change his awareness of himself.
               
–––Abraham H. Maslow (1908 – 1970) 

Integrating domain and expert knowledge, human preferences, and other forms 

of priori knowledge into evolutionary algorithms (EAs) has been widely investigated in 

recent years (Jin, 2004; Bonissone et al., 2006; Kim and Cho, 2007). Bonissone et al. 

(2006) discussed the implicit (e.g., Data Structures, Encodings, and Constraints) and 

explicit (e.g., controlling the EAs parameters and Seeding Initial Populations) 

mechanisms for evolutionary computation, and the benefits of such mechanisms to real-

world optimization problems. In light of the No Free Lunch Theorem that states that an 

algorithm’s performance – and thus, its ability to outperform another – is limited by the 

degree of integrated knowledge that is related to the cost function (Wolpert and 

MacReady, 1997), and consequently, by the degree that the algorithm is focused on a 

particular problem (Ho and Pepyne, 2002). Bonissone et al. (2006) concluded that, by 

integrating domain knowledge, the application of EAs to solve complex real-world 

problems can be significantly improved. 

In this remaining part of this Chapter, we propose a novel methodology for the 

integration of domain knowledge into EAs for evolving a complex application; that is, 

in particular for Go players. As discussed before in Sections 2.2.4 and 6.2, neuro-

evolution when applied to board games – specifically Go – still suffers from 

considerable disadvantages. Beside the enormous computational cost that limits the 

sizes of the boards being evolved to 9×9 (with 5×5 as the typical size utilized in the 

literature), many of the evolved players lack common high-quality playing capabilities. 

Table 6.2 shows a summarization of the related-work in applying neuro-evolution to the 

game of Go. 
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Table 6.2. Summarization of the Related-Work in Applying Neuro-Evolution to the 

Game of Go. 

Reference Approach Board Size 
Opponent 

(If Applicable) 

Number of 

Generations 
Output 

Richards et al. 

(1998) 

- Symbiotic Adaptive 

Neuro-Evolution 

(SANE); Evolving 

two populations, one 

of neurons and 

another of blue-

prints. 

5×5, 7×7,  

and 9×9 

Wally 

(a trivial 

computer player) 

20, 50, and 260 

generations 

respectively 

- Able to defeat 

Wally. 

- Took 

advantage of 

Wally’s 

weaknesses. 

- Displayed 

some 

characteristics of 

common Go 

playing. 

Lubberts and 

Miikkulainen 

(2001) 

- Competitive 

Coevolution; 

coevolving two 

populations, one of 

optimal solutions and 

another of test cases. 

5×5 - 
40 

generations 

- Better quality 

that was not 

limited by the 

opponents. 

Mayer and 

Maier (2005) 

- Cultural Co-

evolution; 

coevolving NNs 

while dynamically 

growing a group of 

the master players 

that gathers and 

saves the knowledge 

of the population. 

5×5 - 
Up to 55,000 

generations 

- Tested against 

a Random 

Player, a Naïve 

Player, and 

JaGo. 

Stanley and 

Miikkulainen 

(2004) 

- Roving Eye; a 

visual field more 

limited than the 

board but which 

could scan the board 

at will.  

- Using NEAT 

(Neuro-Evolution of 

Augmenting 

Topologies), Roving 

Eyes NNs were 

evolved on a 5×5 

board, then further 

evolved on a 7×7 

board. 

7×7 GNU Go 500 generations 

- Better 

performance 

than learning 

directly on the 

larger board. 

 

A step towards addressing this problem was accomplished by utilizing a 

computational approach to capture the nature of the strategies evolved. We propose to 

evolve NNs with high-quality playing capabilities by integrating domain knowledge 

about playing strategies into the fitness function. Currently, in the Go literature, fitness 

is calculated depending entirely on the final outcome of the games played during the 

evaluation phase, i.e., the games’ scores. Recently, using Checkers and Othello board-
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games, domain knowledge has been added to EAs (Kim and Cho, 2007). In next 

section, we propose a multi-objective fitness measure that adds a strategically-aware 

component to the traditional score. 

6.5 Proposed Methodology: Guiding the Neuro-Evolution of 

Computer Go Players 
 

Our basic neuro-evolution algorithm, and how it can be applied to evolving Go 

players, was defined in Section 6.2.1. In addition, we need to clearly state the concerns 

we are trying to address. This section starts by defining the problem, and then describes 

how a strategic knowledge component can be achieved, followed by how this 

component can be added to the traditional fitness function. This section ends with the 

experimental setup. 

6.5.1 Problem Description: A Strategically Aware Fitness Measurement 

From the previous literature review, one can conclude that the neuro-evolution 

of Go players currently has three ‘conflicting’ objectives/Concerns; namely, decreasing 

the computational cost, evolving better strategies and avoiding stagnation. Our goal is to 

investigate the significance of a strategically-aware fitness function in achieving those 

objectives. 

To accomplish this goal, SANE was used to evolve 9×9 neuro-Go players using 

both the traditional exclusively score-dependent fitness function, and the proposed 

strategically-aware fitness function. It is noteworthy that evolving a standard 19×19 

capable worthy player is estimated to cost tens of thousands of generations with a 

probable CPU time of up to a year (Richards et al., 1998). The networks will be evolved 

against GNU Go as an opponent. To compensate for the additional computational cost 

of estimating the strategies in the Go games, 50 blueprints are evolved instead of the 

200 suggested by (Richards et al., 1998). Due to the nature of the problem in which a 

network is evaluated by playing a game, and in spite of using elitism, the fitness values 
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– across the generations – are expected to fluctuate due to the varying performance – of 

a single network – in different games. 

6.5.2 The Domain (Strategic) Knowledge Component 

The strategic competent corresponds to the output of a Random Forest (RF) that 

is trained to classify a game of Go as either immature/untrained or mature/fully-trained, 

via a ‘Trained Probability’ (TP). For this, an untrained network shows no Go playing 

strategies, while a fully-trained network shows considerable strategical capabilities. The 

value of the TP is 0 if the investigated network is untrained, and 1 if the network is fully 

trained. The input features to the RF are the ‘Reasons Frequencies’; the frequency of 

each reason per game. The Reasons Frequencies (Eq. 5.1) are calculated based only on 

the moves played by the Neuro-Go player being evaluated; that is, using only half of the 

game. The RF is trained using two databases (Figure 6.10) of features, each containing 

150 games. The untrained games were selected from 150 games played by NNs evolved 

in the very first 3 generations, therefore practically showing no game-playing 

capabilities. On the other hand, the fully-trained games were selected from games 

played by advanced players on the Computer Go Server (CGOS, 2011). 

After generating the Strategically-Aware component – i.e., the TP – the 

traditional score-based fitness function can be modified by simply adding the generated 

probably to the game score (Figure 6.10). The effect of the added term can be tuned by 

the coefficient α. The proposed fitness measure f for a Network is calculated as: 

 







GamesN

i Games

ii

Network
N

ScoreTP
f

1

)1( 
    (Eq. 6.1) 

 

where NGames is the number of games played by Network in the evaluation phase, Scorei 

is a value – in the range from 0 to 1 – representing the Network’s score in game i, while 

TPi is the Trained Probability generated by the RF for the game i. 
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Figure 6.10. The Traditional Score-Based Fitness Function Versus the Proposed 

Strategically-Aware Multi-Objective Function. 
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6.5.3 Experimental Setup 

To investigate the effect of the added TP, the coefficient α was varied, using 

three values; 1.0, 0.5, and 0.0. The first α value represent the case where the networks’ 

evaluation is based entirely on the Trained Probability, while α set to 0.0 represents the 

traditional score-based fitness function. 

In General, the parameters in the experiments are based on those found effective 

in (Richards et al., 1998), except – as mentioned before – for the number of blueprints 

which was reduced from 200 to 50. A single run consists of 50 generations, and 10 

different runs were evolved. With 5 games played per each fitness evaluation, the total 

number of games “being evolved for” is 2500. As in Section 6.2.2, instead of GNU 

Go’s default level of 10, its level was set to 1 throughout the conducted experiments, 

that is a difference of about 4 stones. 

The Go games were scored using Chinese rules. The networks were evolved to 

play both Black and White, thus frequently making the first move. To avoid a tie, a 

komi value was set to 0.5. No handicap stones were given to the neuro-players being 

evolved. The upper bound on the number of moves per game – required to discontinue 

any irrationally extended sequences of moves – was set to 81. In the conducted 

experiments, a RF is an ensemble of 1000 classification decision trees, and the 

minimum number of observations per tree leaf is 1. 

This experimental setup cost was up to a maximum of ≈10 days for a single run 

per an α value using a Sun Constellation Cluster. Details about the hardware 

specifications may be found at (NCI, 2011). 

6.6 Results and Discussion 

In order to investigate the effect of the proposed fitness function, three different 

types of analysis – to the neuro-evolution process – are shown and discussed. We start 

of by showing and discussing the convergence among the varying α values. Then a 

Playoff between the best players – at each run and generation – is held; from which the 
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dynamics of the strategies evolved are monitored. Finally, the results of the playoffs – 

in terms of the final score – are presented, including four representative games which 

are plotted. 

6.6.1 Convergence 

Figure 6.11 shows the convergence of the 50 blueprints and 2000 neurons 

evolved using SANE for 2500 games (50 generations). For each α value, the average 

fitness – of 10 different runs – for the 1) best network, and the 2) entire population are 

plotted. 

 

Figure 6.11. The Convergence of the Fitness Values among the 2500 Games, Averaged 

for the 10 Runs. 

The convergence of the fitness values of the best networks for an α value of 0.0 

seems to enter a relative plateau, starting from around generation number 45 (around 
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2200 games), as opposed to both α values of 1.0 and 0.5. On the contrary, the 

convergence of the entire populations seems to continue evolving. Notably, the 

‘relative’ difference between the best network and the population in terms of fitness 

values is largest for the α value of 1.0. A possible explanation is that while depending 

more on the TP component rather than the score, the evolving networks increasingly 

fluctuate between the generations. 

However, the results for the convergence of the fitness values of the best 

networks show an advantage for the TP component, when compared to the traditional 

score-based function, in reducing stagnation. The proposed component evidently, within 

the investigated generations, better forces the continuous evolution of the neuro-players 

by guiding the development of enhanced Go-playing strategies. The quality of those 

Go-playing capabilities developed will be further investigated in the next two 

subsections. 

6.6.2 Playing Capabilities: Analysing the Strategies of a Go Playoff 

The first step to investigate the playing capabilities evolved is by holding a 

playoff between illustrative players of the varying α values. A simple and 

straightforward criterion is used to select representative players for each of the varying 

α values; the networks achieving the overall best – for instance – ‘game score’ in each 

of the 10 runs and in each of the 50 generations. Between each two players, 2 matches 

were played with both players alternating being Black; that is, alternate starting the 

game. The komi value was set to 0.5 with no handicap stones, and the games were 

scored using Chinese rules. Figure 6.12 illustrates the details of the accomplished 

playoff. 

Figure 6.13 shows the overall number of reasons behind the moves played 

during this playoff, for the different fitness function, and as the networks evolved 

temporally. Figures 6.14 to 6.18 show the reasons as grouped into strategic categories 

(Table 5.1) for the corresponding players. 
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Figure 6.12. An illustrative diagram of the Playoff. 
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Figure 6.13. The Frequency of Reasoning Per Game – for All Reasons – among the 

2500 Games, Averaged for the 10 runs, and 2 matches per run. 

 

Figure 6.14. The Frequency of Reasoning Per Game – for Not-Recommended moves – 

among the 2500 Games, Averaged for the 10 runs, and 2 matches per run. 
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Figure 6.15. The Frequency of Reasoning Per Game – for Defensive moves – among the 

2500 Games, Averaged for the 10 runs, and 2 matches per run. 

 

Figure 6.16. The Frequency of Reasoning Per Game – for Offensive moves – among the 

2500 Games, Averaged for the 10 runs, and 2 matches per run. 
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Figure 6.17. The Frequency of Reasoning Per Game – for Thoughtful moves – among 

the 2500 Games, Averaged for the 10 runs, and 2 matches per run. 

 

Figure 6.18. The Frequency of Reasoning Per Game – for Explicit-Gains – among the 

2500 Games, Averaged for the 10 runs, and 2 matches per run. 
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 Figure 6.13 clearly shows that the overall number of reasons increased for the 

players evolved using the proposed fitness component, whether solely (i.e., for α = 1.0) 

or partially (i.e., for α = 0.5). As for the players evolved using the traditional scoring 

only (i.e., for α = 0.0), the overall reasoning did not change temporally, and by the end 

of the 50 generations evolved, it stood at ≈70% of the reasoning behind the moves 

played by its opponents. This is reflected in all of the subsequent figures, except for 

Figure 6.14 which represents the Not-Recommended Moves. As shown in that figure, 

the not-recommended reasoning reported for the played moves were lower when the 

strategically-aware component was included. As for the rest of the strategic categories – 

that is, Offensive, Defensive, Thoughtful, and Explicit Gains – the reported reasoning 

was higher when using the proposed component in comparison to the traditional 

function. It is worth mentioning though that in Figure 6.18, the difference between the 

varying α values is minimal, that is obviously due to the pressure exerted by the 

traditional fitness function on moves that tangibly/directly capture stones and/or invades 

and secures an opponent’s territory. The category ‘End-of-Game’ (Table 5.1) – 

representing small moves that occur late at the game – was omitted because virtually no 

substantial frequencies-of-reasons within this category were reported. This is a clear 

indication that those strategies are yet to be developed in later generations by the 

evolving neuro-players. 

 Those reported results demonstrate that the strategically-aware fitness function 

provided better assessment for the neuro-players, and consequently, led to the evolution 

of players with improved Go-playing capabilities. This improvement, when compared 

to the traditional score-based fitness, is evident in terms of the overall number of 

reasons behind the actions taken by the players within the game, and also in terms of the 

type strategies being deployed. Overall, this demonstrates a positive value of enhancing 

the competency awareness of the developed – i.e., evolved – playing agents, which is a 

direct consequence of the proposed automated competency assessment approach. These 

conclusions will be further demonstrated in the upcoming sub-section, in which the 

scores of the playoff will be presented. 



205 Chapter 6: Semantic Evolution of Neuro Go-Players 

 

6.6.3 Playing Capabilities: Analysing the Scores of a Go Playoff 

Figures 6.19 to 6.21 show the scores of the conducted playoff. Notably, the 

improved reasoning evolved within the players – of both α = 1.0 and 0.5 – is reflected 

temporally with relatively higher scores when playing against traditionally-evolved 

players (i.e., with an α = 0.0). Figures 6.22 to 6.27 show the details of four 

representative games from the playoff. For the middle run (Run # 5), Figures 6.22 and 

6.23 show – respectively – details of the largest win (+20.5) and lose (-11.5) for an α = 

1.0 player against a traditional α = 0.0 player. Followed by Figures 6.24 and 6.25 

presenting, from the same run, the results for the final 2 games (at the very last 

generation evolved) played by an α = 1.0 player against a traditional α = 0.0 player; as 

white (winning by 10.5) and as black (losing by 0.5). Finally, Figures 6.26 and 6.27 

illustrate selected interesting moves within the later 2 games. 

 

Figure 6.19. The Scores for α = 1.0 (networks evolved using the proposed fitness 

function) playing against α = 0.0 (networks evolved using the traditional fitness 

function). 
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Figure 6.20. The Scores for α = 0.5 playing against α = 0.0. 

 

Figure 6.21. The Scores for α = 1.0 playing against α = 0.5. 
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Figure 6.22. The largest win (20.5) of a player (playing as White) evolved (in 

Generations # 35, Run # 5) using α = 1.0 against α = 0.0. 

 

Figure 6.23. The largest win (11.5) of a player (playing as Black) evolved (in 

Generations # 24, Run # 5) using α = 0.0 against α = 1.0. 
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Figure 6.24. At the Final Evolved Generation (# 50); a player (playing as White) 

evolved (in the Run # 5) using α = 1.0 against α = 0.0 wins by (10.5). 

 

Figure 6.25. At the Final Evolved Generation (# 50); a player (playing as Black) 

evolved (in the Run # 5) using α = 1.0 against α = 0.0 loses by the komi value (0.5). 
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Figure 6.26. The White move at D4 – from Figure 7.14, numbered 28 – defends C5, 

connects E4 and C3, also connects C5 with both E4 and C3, and thus it is also 

considered an expansion to White's territory. 

 

Figure 6.27. The Black move at D4 – from Figure 7.15, numbered 31 – Connects the 

following stones to each other [B4, C3, C5, E4], strategically defends C5, and is an 

expansion of Black's territory. 
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6.7 Summary 

In this chapter, in order to address the third sub-question (Section 1.3), we 

presented a novel approach to address the disadvantages of neuro-evolution in mind-

games. Namely, the limited quality of the solutions that were evolved and stagnation. In 

comparison to the traditional rule-extraction techniques, instead the proposed 

framework was used as an explanatory model to capture the types of game-playing 

strategies evolved. Augmented with a data-mining technique (i.e., Random Forest), the 

proposed approach successfully captured the overall evolutionary dynamics. 

From the reported results, it was observed that the number of reasonless moves 

decreased as the neuro-players evolved. Thus, the types of strategies developing were 

observed, showing a decrease in the Not Recommended reasoning, and an increase in 

the Direct/Explicit Gain strategies in which a more detailed close-up demonstrated a 

quick development of an “expand territory” strategy. Generally, it was also observed 

that the remaining types of strategies did not vary significantly. Independently, the 

trained random forest was able to provide a probability curve that reflected the overall 

neuro-evolutionary dynamics. The results were independently validated using Hinton 

boards. Those results demonstrated our proposition that the proposed framework is 

capable of semantically unfolding the dynamics of evolving neuro-Go players. 

Based on the resulting observations, in order to address the fourth sub-question 

(Section 1.3), we introduced a strategically-aware multi-objective fitness function that 

integrates strategic domain knowledge in to the traditional score-based fitness. Using 

varying extents of this integration, we have presented experiments evolving Neuro-Go 

players using Symbiotic Adaptive Neuro-Evolution for 9×9 boards. The strategically-

aware component was measured using the previously proposed competency 

measurement approach (i.e., Estimated Reasoning coupled by a Random Forest trained 

to differentiate between strategically trained and untrained Neuro-Go players). When 

compared to the traditional fitness function, the proposed function proved effective in 

evolving Neuro-Go players with varying strategies that can 1) play more rational and 

practical moves and, 2) attain better performance against opponents evolved using the 
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traditional fitness evaluation, and most importantly 3) developed more mature game-

playing capabilities, instead of merely exploiting the weaknesses available in an 

opponent. 

The resulting observations have significant implications on future work in 

applying neuro-evolution to the game of Go, and mind-games in general. The 

semantically-monitoring approach can – for instance – be utilized in ‘temporally’ 

selecting the appropriate opponents to influence the strategies being evolved, or by 

adjusting the co-evolution parameters whenever stagnation is noticed. Consequently, 

this will assist in the efficient usage of the enormous computational cost usually 

required for such experiments. The findings are also seen as an advancement towards 

the creation a better integration of domain knowledge into EAs in general, and also as 

an improved Neuro-Evolution process for evolving Go players in particular. More 

importantly, the findings demonstrate the hypothesized value of an objective, 

quantitative, detailed and fully-automated competency assessment. Namely, attaining 

and enhancing the competency awareness of a decision-making agent – within the 

context of Go, and consequently, improving the training and development of those 

decision-making skills within that agent. 
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Chapter 7: Conclusion 

To tell a truly compelling story, a machine would 

need to understand the "inner lives" of its 

characters. And to do that, it would need not only 

to think mechanically in the sense of swift 

calculation, but experientially in the sense of 

having awareness.               

---Selmer Bringsjord, Chess Is Too Easy (1998) 

7.1 Summary of Results 

This thesis presented a systematic study of the role and value of an automated – 

computational – competency assessment of a decision-making agent in a complex 

scenario. A computational framework for competency evaluation and awareness was 

proposed to both investigate the development of expertise in agents and to also assess 

that development. For this investigation, the game of Go was selected, and the study 

was carried out using two board-sizes of the game (the standard 19×19, in addition to 

9×9), and two sorts of agents (Human Go players, in addition to Neuro-Evolved Go 

engines). During the study procedures, the actions/decisions within the Go space were 

divided into subsets that represent individual players and their corresponding level of 

expertise. The Go space was built using hundreds of publicly-available online games in 

addition to thousands of games generated by – accomplished – evolution-based 

processes and game playoffs among selected agents. To further ascertain the proposed 

methodology, the conventional approach of neuro-evolution – as applied to Go – was 

adapted using the computational model, and was compared with the previously-existing 

version of the approach. 

Overall, the main findings of the research introduced in this thesis can be 

summarized as follows: 
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1. The concepts of knowledge-acquisition and training bottlenecks were shown 

to be suitable for characterizing the challenges to computer Go. This 

representation led to the proposition of an automated approach to 

competency evaluation – in terms of a computational framework – for 

further advancements in computer Go. 

2. The computational framework offers an effective approach to assess 

competencies and to provide an enhanced role in the overall awareness and 

management of complex scenarios. The framework effectively addressed the 

limitations of the current methodologies for competency assessment. 

3. An effective monitoring of the expertise-level in Go can be obtained for 

human agents on the standard board-size using the proposed framework. The 

automated assessment of the selected competencies provided an alternative 

understanding of the nature of expertise in the Go domain. As a result, and 

augmented with techniques of machine and ensemble learning, the 

development of such an expertise was monitored across a variety of selected 

cases. The monitoring was effective for both, the overall level of 

competency, and for specific constituent skills. A comparison was made that 

showed the differences between considering the entire interaction between 

two opponents within a game, as opposed to analysing the actions of each 

agent individually. In addition, another comparison was made that showed 

the improved performance of the proposed architecture for the competency-

level classifier, as opposed to an alternative architecture that overlooks the 

concept of an ensemble-learning at its – i.e., the classifier’s – first tier. 

4. The proposed framework also showed a good ability when applied to 

computer agents and smaller board-sizes to effectively monitor their 

acquired expertise. This was accomplished by investigating neuro-players 

evolved to play on 9×9 boards, and thus attempting to address the 

difficulties of applying neuro-evolution in computer Go. The proposed 
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framework combined with a data-mining technique (i.e., Random Forests) 

has been shown to successfully capture the overall evolutionary dynamics. In 

addition to capturing the nature of the evolved game-playing strategies in 

more detail; it was contrasted with traditional approaches to representing the 

activities of neural networks, such as rule-extraction techniques. 

5. Based on the results of the proposed framework, guidance information can 

be provided to the neuro-evolution in terms of a strategically-aware multi-

objective fitness function. The proposed fitness function alters our awareness 

of the evolved neuro-players by integrating domain knowledge to the 

traditional score-based fitness value. A comparison was made between the 

traditional and the proposed fitness functions, showing the effectiveness of 

the later in evolving improved neuro-Go players; in terms of enhanced 

strategic reasoning that translated to a better performance against opponents. 

6. Through this study, the experimental results showed the significance of an 

automated competency evaluation, as well as situational reasoning, and – to 

a lower extent – connectivity-patterns, as competences capable of capturing 

the development of expertise. The study also showed the viability and 

practicability of extending the roles of available computer players – engines 

– to serve as models of situational reasoning.  

7.2 Future Directions 

There are several possibilities to extend the research presented in this thesis: 

 Investigating different approaches to address Situational Reasoning 

in the Go domain: As reviewed in Section 5.1.1, situational reasoning 

within the Go domain – and the generic literature – has been addressed 

by varying approaches. A future direction may include investigating 

those approaches (for instance, the automatic generation of Go rules 

(Cazenave, 2002)), and modifying some of the existing approaches 
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(including the potential of modifying the open-source publicly-available 

GNU Go engine which has been employed in this study). In addition to 

investigating these approaches, other modifications might include the 

provision of additional types of reasoning, covering more specific 

situations within the domain, and allowing varying degrees of generality 

and/or detail to the generated reasoning.  

 Addressing the Reduction of the Computational Effort required for 

Reasoning is a critical objective: For a more effective application of the 

proposed framework, especially when coupled with computationally-

expensive methodologies such as neuro-evolution, an imperative and 

pressing concern is the minimization of the computational effort required 

by the Assessment Component (ACR). Considering and tackling this 

issue would allow the proposed framework to be analysed more 

comprehensively, and also be applied more efficiently. One way might 

be by using - for instance - notions such as Simulated Annealing to link 

the results from analysing 9×9 boards to the standard 19×19 boards. 

 Considering Larger Sizes for the Motifs being investigated: As 

mentioned before, network motifs, according to definition, are small sub-

graphs that are over or under represented within a considered network 

when compared to randomized networks of the same characteristics. 

However, patterns of sizes bigger than the smaller ones frequently used 

in the motifs’ literature (usually from 3 to 5 nodes) can be considered. In 

a preliminary step, 51 and 173 motifs of sizes 6 and 7 respectively were 

found in the games of testDS, out of a total of 112 and 853 possible 

undirected sub-graphs for those sizes. 

 Considering Directed-Motifs instead of the Undirected Motifs: 

Within this study, only undirected motifs were considered. However, a 

significantly larger number of possible directed motifs exist and can 
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potentially be utilized (see Table 4.1). Considering directed motifs may 

add an interesting temporal component to the patterns being investigated, 

by considering the order by which the stones are laid on the board and 

reflecting this additional information by the directed edges of the motifs. 

 Considering an Agent’s Actions within Phases of the Game: In this 

study, the actions of a player (or the interactions between both players) 

were investigated within the entire span of the Game. However, as we 

have mentioned in Section 2.1.3, a typical game of Go consists of three 

phases, an Opening, the Middle-Game, and the End-of-the-Game, with 

specific types of patterns – and hence, strategies – suitably applied 

within each phase (for instance, Fuseki, Joseki, and Yose). Analysing an 

agent’s actions within each phase separately could shed more light on the 

level of the specific skills required within that phase. Thereby, improving 

the overall competency awareness, and allowing for a better training by 

targeting precise limitations. 

 Investigating different approaches to employ the proposed 

framework within the Go domain: The objective quantitative 

assessment provided by the fully automated competency assessment 

framework allows the utilization of domain knowledge in original ways. 

Specifically, within the Machine Learning approaches to computer Go, a 

major concern for the supervised training of classifiers (e.g., Neural 

Networks) has been the credit assignment problem (see Section 2.2.4); 

that is, the uncertainties in evaluating a best course of action upon which 

feedback is given for every course of action. This problem led to an 

increased application of alternative ways to train a classifier, such as 

neuro-evolution. However, rather than deciding on which actions are 

desirable or not – in order to reward or punish, a classifier using the 

proposed approach might be efficiently trained, for instance, to learn the 

actions that normally result from the application of a specific skill. This 
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classifier might then be used to augment the capabilities of an existing 

decision-making entity. Or otherwise, a group of classifiers, each trained 

to learn a specific individual skill, can be assembled in an ensemble to 

establish a decision-making entity. 
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