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Abstract

The Monte Carlo method is one of the widely used numerical methods for simulating

probability distributions. Its convergence rate is independent of the dimension but

slow. Quasi-Monte Carlo methods, which can be seen as a deterministic version

of Monte Carlo methods, have been developed to improve the convergence rate to

achieve greater accuracy, which partially depends on generating samples with small

discrepancy. Putting the quasi-Monte Carlo idea into statistical sampling is a good

way to improve the convergence rate and widen practical applications.

In this thesis we focus on constructing low-discrepancy point sets with respect

to non-uniform target measures using the acceptance-rejection sampler. We con-

sider the acceptance-rejection samplers based on di↵erent driver sequences. The

driver sequence is chosen such that the discrepancy between the empirical distribu-

tion and the target distribution is small. Hence digital nets, stratified inputs and

lattice point sets are used for this purpose. The central contribution in this work

is the establishment of discrepancy bounds for samples generated by acceptance-

rejection samplers. Together with a Koksma-Hlawka type inequality, we obtain an

improvement of the numerical integration error for non-uniform measures.

Furthermore we introduce a quality criterion for measuring the goodness of

driver sequences in the acceptance-rejection method. Explicit constructions of driver

sequences yield a convergence order beyond plain Monte Carlo for samples generated

by the deterministic acceptance-rejection samplers in dimension one.

The proposed algorithms are numerically tested and compared with the stand-

ard acceptance-rejection algorithm using pseudo-random inputs. The empirical

evidence confirms that adapting low-discrepancy sequences in the acceptance-rejection



iv

sampler outperforms the original algorithm.
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Chapter 1

Introduction

1.1 Scope of research

Numerical integration is a common computational problem occurring in many areas

of science, such as statistics, financial mathematics and computational physics,

where one has to compute some integral, for instance an expectation value, which

cannot be done analytically. The Monte Carlo (MC) method is one of the widely

used numerical methods for simulating probability distributions. Although the con-

vergence rate of Monte Carlo integration is independent from the dimension, it

remains at N�1/2 for arbitrary dimension, assuming that the variance of the integ-

rand is bounded independent of the dimension. Note that although Monte Carlo

commonly assumes that true random numbers are used as inputs, in practice usually

one uses deterministic inputs, called pseudo-random numbers, which are designed

to mimic true random numbers.

Quasi-Monte Carlo (QMC) methods, which can be seen as a deterministic ver-

sion of Monte Carlo methods, have been developed to improve the convergence rate

to achieve greater accuracy. QMC techniques draw attention from both theoretical

and practical aspects. The tools used to develop and analyse quasi-Monte Carlo

methods are very di↵erent from those in plain Monte Carlo, but randomization

techniques applied to deterministic constructions in QMC, often known as random-
1
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ized quasi-Monte Carlo (RQMC) methods, allow us to combine the strengths of

these two methods [53, 56, 60]. In addition, Markov chain Monte Carlo (MCMC)

methods can be used if only partial information about the target density is available.

Thus MCMC can widen the applications where MC type sampling can be used [13,

54]. Therefore combining the methods of QMC or RQMC and MCMC might be a

good way to overcome the shortcomings of ordinary Monte Carlo sampling. We call

such a method Markov chain quasi-Monte Carlo (MCQMC).

The crucial part for doing numerical integration is determining the quadrature

points. Choosing them randomly leads to the Monte Carlo method, whereas de-

terministically designed points fall into the area of quasi-Monte Carlo rules. Our

interest is in deterministic constructions with the goal to obtain a better rate of

convergence. The quality measure used in the analysis of samples generated by

the MCQMC approach in this thesis is the so-called discrepancy. The concept of

discrepancy is introduced to measure the deviation of a sequence from the uniform

distribution [22, 23]. With a reasonable generalization, the definition of discrepancy

can be extended to arbitrary Borel measures. The aim is then to construct good

point sets which have small discrepancy with respect to certain measures.

The reason we are interested in the discrepancy of the samples can be explained

by considering numerical integration. The celebrated Koksma-Hlawka inequality

roughly states that if one uses the average of empirical function values at some

quadrature points to approximate an integral, then the integration error is bounded

by a product of two terms, namely, the discrepancy of the quadrature points and

the variation of the integrand. We can see that for a fixed integrand, the approx-

imation error depends on how small the discrepancy of the quadrature point set

is. Additionally, if we analyse the worst-case integration error, for a given function

space and norm, the worst-case error then only depends on the quadrature point

set. Further this worst-case error can be related to the discrepancy of the point set

for certain reproducing kernel Hilbert spaces [23, 40, 62].

Classical discrepancy theory deals with distributingN points in the s-dimensional

unit cube as evenly as possible. If the target distribution is the uniform distribu-
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tion in the unit cube [0, 1]s, then there are known constructions of low-discrepancy

sequences, such us digital nets and lattice methods [22, 23, 60]. But much less is

known for non-uniform measures, besides applying the inversion method and spe-

cial transformations for standard distributions to low-discrepancy point sets and

sequences with respect to the uniform distribution. Regarding sampling from non-

uniform distributions beyond the inversion method, there are classical principles

from statistics, namely acceptance-rejection, weighting and composition, which can

be used in conjunction with statistical samplers [18, 42].

Recently an existence result concerning low-discrepancy point sets regarding

non-uniform measures was given by Aistleitner and Dick in [3]. They proved that

there exists a sample set for arbitrary Borel measures whose discrepancy is of order

(logN)(3s+1)/2/N . This result is based on a probabilistic argument. However, in

general how to explicitly construct point sets which achieve a convergence rate for

discrepancy beyond N�1/s for non-uniform measures is not known. Motivated by

these facts, this thesis is concerned with constructing low-discrepancy point sets

with respect to non-uniform target measures. We use the discrepancy to measure

the quality of samples obtained by our statistical samplers, which are based on

explicit constructions of the initial samples. Precise details are given in the following

chapters.

1.2 Literature review

Using a deterministic point set as the driver sequence in the MCMC procedure,

known as Markov chain quasi-Monte Carlo (MCQMC) algorithm, shows potential

to improve the convergence rate. Recently several results in this direction have been

achieved, see for instance [15, 16, 79, 80] and references therein. We briefly review

some results.

Tribble and Owen [80] proved a consistency result for MCMC estimation for

finite state spaces. A construction of weakly completely uniformly distributed

(WCUD) sequences is also proposed. As a sequel to the work of Tribble, Chen
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[15] and Chen, Dick and Owen [16] demonstrated that MCQMC algorithms, using a

completely uniformly distributed sequence as the driver sequence, give a consistent

result under certain assumptions on the update function and Markov chain. Further,

Chen [15] also showed that MCQMC can achieve a convergence rate of O(N�1+�) for

any � > 0 under certain stronger assumptions, but he only showed the existence of

a driver sequence. More information on completely uniformly distributed sequences

can be found in [15, 16].

In a di↵erent direction, L’Ecuyer, Lécot and Tu�n [50, 51] proposed a random-

ized quasi-Monte Carlo method, namely the so-called array-RQMC method, which

simulates multiple Markov chains in parallel, then applies a suitable permutation

to provide a more accurate approximation of the target distribution. It gives an

unbiased estimator to the mean and variance and also achieves good empirical per-

formance when randomization is applied to Korobov lattices and Sobol0 point sets.

Gerber and Chopin in [30] adapted low-discrepancy point sets instead of ran-

dom numbers in the particle filtering framework. They derived a QMC version of

particle filtering known as sequential quasi-Monte Carlo (SQMC) methods. They

proved consistency and stochastic bounds based on randomized QMC point sets for

this algorithm. Numerical evidence confirms that SQMC significantly improves the

performance in practice by using Owen scrambled Sobol0 sequences as developed in

[66, 67, 68]. The SQMC algorithm developed in this paper can be seen as an exten-

sion of array-RQMC to a particle filtering framework. In particular, the essential

idea is to generate one QMC point set at each step of the simulation process. Addi-

tionally, the convergence results obtained for SQMC also apply to the array-RQMC

algorithm proposed in [50] provided the state space is ordered through the Hilbert

space-filling curve.

In our work [25], jointly done with Dick and Rudolf, we proved upper bounds on

the discrepancy under the assumptions that the Markov chain is uniformly ergodic

and the driver sequence is deterministic rather than independent uniformly distrib-

uted random variables. In particular, we showed the existence of driver sequences for

which the discrepancy of the Markov chain from the target distribution with respect
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to certain test sets converges with (almost) the usual Monte Carlo rate of N�1/2.

In [24], Dick and Rudolf substantially extended the results of [25] to Markov chains

which satisfy a much weaker convergence condition. Therein they considered upper

bounds on the discrepancy under the assumption that the Markov chain is variance

bounding and the driver sequence is deterministic. In particular, they proved a

better existence result, showing a discrepancy bound having a rate of convergence

of almost N�1 under a stronger assumption on the update function, the so-called

anywhere-to-anywhere condition. Roughly, variance bounding is a weaker prop-

erty than geometric ergodicity for reversible chains. It was introduced by Roberts

and Rosenthal in [71], who also proved relations among variance bounding, central

limit theorems and Peskun ordering, which indicated that variance bounding is a

reasonable and convenient property to study for MCMC algorithms.

The copula model is widely used for modelling distributions in financial math-

ematics by employing the standard uniform univariate margins. The copula-induced

discrepancy was introduced by Cambou et al. in [14] and the use of low-discrepancy

sequences for copula sampling has been considered. They used randomized low-

discrepancy sequences to generate observations from copula models, which yielded

good empirical results on financial examples.

The acceptance-rejection algorithm is a widely used technique for sampling

from a distribution when direct simulation is not possible or expensive [42]. The

basic idea of this method is to find an alternative distribution, often known as

proposal distribution, from which we already have an e�cient algorithm for gener-

ating samples (for instance, the inversion transformation). Then we generate points

from the proposal distribution and accept some samples, satisfying a certain con-

dition, as samples of our target distribution. The acceptance-rejection algorithm

with deterministic driver sequences is one special class of MCQMC. The determ-

inistic acceptance-rejection algorithm has also been discussed by Moskowitz and

Caflisch [56] and Wang [83, 84]. The Halton sequence [33] and Sobol0 sequence [77]

were used as the low-discrepancy driver sequences. In [83, 84] a smoothing technique

was introduced to improve the numerical performance of the acceptance-rejection
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algorithm. Wang [83] gave a heuristic argument to indicate a convergence rate of

order N� s+2

2(s+1) . This argument assumed that the points in elementary intervals are

uniformly distributed. Thus this reasoning is not fully deterministic. The numerical

experiments in [83] also indicated an improvement using a well chosen deterministic

driver sequence (in this case the so-called Halton sequence [33]) compared to a

random driver sequence.

Nguyen and Ökten in [57] presented a consistency result of an acceptance-

rejection algorithm for low-discrepancy sequences. This algorithm yielded good

numerical performances on standard deviation and e�ciency. This algorithm, em-

ploying random-start Halton sequences, was used to generate samples from the beta

distribution and the gamma distribution, and was also applied in a variance gamma

model for option pricing (a generalization of the classical Black-Scholes model for

the dynamics of stock prices). However, proving an explicit convergence rate of

the discrepancy for this algorithm is still an open problem. See also [56, 57] for

numerical experiments using quasi-Monte Carlo point sets for the related problem

of integrating indicator functions.

1.3 Our contribution

It is worth noticing that all results regarding deterministic acceptance-rejection

samplers given in previous work are empirical evidence and the discrepancy of the

generated samples is not directly investigated. Our work focuses on discrepancy

properties of points produced by the acceptance-rejection methods, where we con-

sider the construction of driver sequences by digital nets and lattice rules. The

combination with the reduced acceptance-rejection sampler for density functions

with special structure provides further evidence of the good performance of the

deterministic method. We also investigate the discrepancy of samples obtained us-

ing the acceptance-rejection algorithm based on stratified inputs. Our algorithm

here may also be combined with similar algorithms like the acceptance-complement

method. The main contribution in this thesis is the establishment of discrepancy
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bounds of samples generated by the acceptance-rejection samplers.

Motivated by previous results, in [92] done with Dick, we consider an acceptance-

rejection sampler based on a deterministic driver sequence. The deterministic se-

quence is chosen such that the discrepancy between the empirical distribution and

the target distribution is small. So-called (t,m, s)-nets and (t, s)-sequences con-

structed based on Sobol0 points are used for this purpose. The empirical evidence

shows convergence rates beyond the crude Monte Carlo rate of N�1/2. We prove that

the discrepancy of samples generated by the QMC acceptance-rejection sampler is

bounded from above by N�1/s. For a general density, whose domain is the real state

space Rs�1, the inverse Rosenblatt transformation can be used to convert samples

from the (s� 1)-dimensional cube to Rs�1. This way, under certain conditions, the

same convergence rate can be achieved for acceptance-rejection samplers on Rs�1.

In [93], we present an improved convergence rate for a deterministic acceptance-

rejection algorithm using (t,m, s)�nets as driver sequence. We prove a convergence

rate of order N�↵ for 1/s  ↵ < 1, where ↵ depends on the target density, more

explicitly, where the value of ↵ here depends on how well the graph of the target

density can be covered by certain rectangles. Some of the results have appeared in

the following paper, more details are presented in Chapter 3:

• H. Zhu and J. Dick. Discrepancy bounds for deterministic acceptance-rejection

samplers. Electronic Journal of Statistics, 8, 678-707, 2014.

In [93] we propose an acceptance-rejection sampler using stratified inputs as

driver sequences. We estimate the discrepancy of the N -point set in (s � 1)-

dimensions generated by this algorithm. First we show an upper bound on the star-

discrepancy of order N�1/2�1/(2s) for samples generated with respect to the target

density. Further we prove an upper bound on the q-th moment of the Lq-discrepancy

(E[N qLq
q,N ])

1/q for 2  q  1, which is of order N (1�1/s)(1�1/q). Unfortunately, our

arguments do not yield an improvement for the case 1 < q < 2.

From our numerical experiments we can see that, adapting stratified inputs in

the acceptance-rejection sampler outperforms the original algorithm. The numerical
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results are roughly in agreement with the upper bounds in the theory. The advantage

of considering stratified inputs is that it allows us to use probabilistic arguments

and consider the average case instead of the worst-case setting. The essential results

on this topic are available in the following paper and also Chapter 4 in this thesis.

• H. Zhu and J. Dick. Discrepancy estimations for acceptance-rejection samplers

using stratified inputs. Proceedings of the MCQMC 2014 conference, Belgium,

R. Cools and D. Nuyens (Eds.), Springer, 599-619, 2016.

We prove a lower bound on the star-discrepancy with respect to a concave dens-

ity function in [92]. The lower bound states that for every driver sequence there

is a concave density function such that the convergence rate is at most of order

N�2/(s+1) on [0, 1]s�1, in terms of N points for a density function defined in [0, 1]s�1.

It is natural to ask whether the lower bound is achievable, i.e., can we construct a

driver sequence which yields a convergence rate of (almost) N�2/(s+1). To answer

this question in dimension one, we propose two types of deterministic constructions

in dimension one in [91], where the discrepancy with respect to point sets gener-

ated by the deterministic acceptance-rejection sampler is bounded by N�2/3 logN

and N�2/3 respectively. The construction of driver sequences is explicit and easily

implementable, see Chapter 5 for details.

More generally, in [91] we introduce a criterion for measuring the goodness

of driver sequences. This criterion has a strong connection with the discrepancy

measure. In a nutshell, from the general Erdős-Turán inequality, it can be seen

that point sets for which this criterion is small can be used in acceptance-rejection

samplers to yield point sets with small discrepancy with respect to the target density

measure. A more specific discussion of these results is also available in the following

manuscript.

• H. Zhu and J. Dick. A discrepancy bound for deterministic acceptance-

rejection samplers beyond N�1/2 in dimension 1. Statistics and Computing,

doi:10.1007/s11222-016-9661-2, 2016.
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We also studied the discrepancy in the more general setting for uniformly er-

godic Markov chains in [25]. This part is not included in this thesis, for details we

refer to our original paper.

• J. Dick, D. Rudolf and H. Zhu. Discrepancy bounds for uniformly ergodic

Markov chain quasi-Monte Carlo. Accepted for publication in The Annals of

Applied Probability, available at arxiv.org/abs/1303.2423, 2016.

The structure of this thesis is as follows. In Chapter 2 we introduce the

concept of discrepancy and briefly review the classical low-discrepancy sequences

and sampling methods. Chapter 3 gives a detailed discussion of deterministic

acceptance-rejection samplers based on digital nets and sequences. In Chapter 4

we consider the acceptance-rejection algorithm with stratified inputs. The explicit

constructions achieving a convergence rate beyond N�1/2 is presented in Chapter 5.

We wrap up this thesis with short concluding remarks and an outlook on future

work.





Chapter 2

Preliminaries

2.1 The concept of discrepancy

The concept of discrepancy is introduced to measure the deviation of a sequence

from the uniform distribution. For a given point set in the s-dimensional unit cube,

the star-discrepancy measures the di↵erence between the proportion of points in a

subinterval of [0, 1]s and the Lebesgue measure of this subinterval. Now we give

the definition of the so-called local discrepancy which enables us to distinguish the

quality of point sets with respect to the uniform distribution, and subsequently we

introduce the well-known star-discrepancy and Lq-discrepancy.

Definition 2.1.1. (local discrepancy). Let PN = {x
0

,x
1

, . . . ,xN�1

} be a point set

in [0, 1)s. Define the local discrepancy function as follows:

�PN
(t) =

1

N

N�1

X

n=0

1
[0,t)(xn)� �([0, t)), t = (t

1

, . . . , ts) 2 [0, 1)s,

where 1
[0,t)(xn) stands for the indicator function, which is 1 if xn is in the interval

[0, t) =
Qs

j=1

[0, tj), and 0 if xn /2 [0, t), and �(·) is the Lebesgue measure.

Figure 2.1 illustrates the local discrepancy of points in a rectangle for a given

point set. The local discrepancy of a point set is just the proportion of points in the

rectangle [0, t
1

)⇥ [0, t
2

) minus the area of the rectangle [0, t
1

)⇥ [0, t
2

) (the indicated

region in Figure 2.1).
11



12 2.1 The concept of discrepancy

0 1

1

t1

t2

Figure 2.1: Local discrepancy of points in the rectangle [0, t
1

)⇥ [0, t
2

).

We have �PN
(t

1

, t
2

) = 4/16� t
1

t
2

in this figure.

The Lq-discrepancy is then the Lq-norm of the local discrepancy function. For

q = 1, with the obvious modification of the norm, the L1-discrepancy is known as

star-discrepancy.

Definition 2.1.2. (star-discrepancy). Let PN = {x
0

,x
1

, . . . ,xN�1

} be a point set

in [0, 1)s. The star-discrepancy D⇤
N is defined by

D⇤
N(PN) = sup

t2[0,1]s
|�PN

(t)|,

where the supremum is taken over all t 2 [0, 1]s. For an infinite sequence the star-

discrepancy is the star-discrepancy of the first N elements of the sequence.

See Figure 2.1 for an illustration of the concept of the star-discrepancy in

the unit square. Note that in one-dimension, the star-discrepancy reduces to the

Kolmogorov-Smirnov test for the di↵erence between the empirical distribution of

the point set {x
0

, x
1

, . . . , xN�1

} and the uniform distribution.

The Lq-discrepancy is defined as the Lq average of the local discrepancy.
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.2: The discrepancy measures the di↵erence between the pro-

portion of points in each rectangle J which is anchored at the origin

and the Lebesgue measure of J . The star-discrepancy is defined by the

supremum of the local discrepancy function over all anchored rectangles

J . If we change J to be all rectangles [a, b), we obtain the so-called

extreme discrepancy.

Definition 2.1.3. (Lq-discrepancy). Let PN = {x
0

,x
1

, . . . ,xN�1

} be a point set

in [0, 1)s. The Lq-discrepancy is defined by

Lq(PN) =
⇣

Z

[0,1]s

�

��PN
(t)

�

�

q
dt
⌘

1/q

.

Very often one uses a slightly stronger version of the star-discrepancy which is

commonly known as the extreme discrepancy. Here the definition is extended to all

rectangles J of the form [a, b) =
Qs

j=1

[aj, bj) ✓ [0, 1)s instead of the ones that are

anchored at the origin. That is, for a point set PN = {x
0

,x
1

, . . . ,xN�1

} in [0, 1)s,

the extreme discrepancy DN(PN) of this point set is defined as

DN(PN) = sup
J✓[0,1]s

�

�

�

1

N

N�1

X

n=0

1J(xn)� �(J)
�

�

�

,

where J is of the form [a, b) ✓ [0, 1)s.
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From these definitions we can conclude a relation between the star-discrepancy

and the extreme discrepancy, namely, for any N -element point set PN in [0, 1)s, the

following inequalities hold (see [48, Theorem 1.3, pp. 91])

D⇤
N(PN)  DN(PN)  2sD⇤

N(PN).

Note that the discrepancy cannot converge to zero arbitrarily fast, since for any

sequence PN we have
1

N
 DN(PN)  1.

For a detailed discussion of the extreme discrepancy we refer to, for instance, [48,

60, 23]. We mainly consider the star-discrepancy instead of the extreme discrepancy

in the following discussions.

In the estimate of discrepancy, the following triangle inequality for the discrep-

ancy is very useful to obtain an upper bound on the star-discrepancy if the sequence

can be decomposed into a number of small point sets.

Proposition 2.1.4. ([48, pp. 115, Theorem 2.6] Triangle inequality for the dis-

crepancy) For 1  i  k, let Pi be point sets in [0, 1]s consisting Ni points with

star-discrepancy D⇤
Ni
(Pi). Let P be a superposition of P

1

, . . . , Pk obtained by listing

in some order the points of the set Pi, with cardinality N = N
1

+ . . . + Nk. Then

we have

D⇤
N(P ) 

k
X

i=1

Ni

N
D⇤

Ni
(Pi).

The same result holds for the extreme discrepancy with the obvious modification of

the notation.

2.2 Construction of low-discrepancy sequences

The discrepancy of certain point sets has been intensively studied and many precise

results are known. We now briefly review some explicit construction of point sets

which yield small discrepancy. The digital construction of point sets and sequences

in quasi-Monte Carlo are well-known.
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i i in base 2 �
2

(i) decimal form

0 0 0.000 0
1 1 0.100 0.5
2 10 0.010 0.25
3 11 0.110 0.75
4 100 0.001 0.125
5 101 0.101 0.625
6 110 0.011 0.375
7 111 0.111 0.875

Table 2.1: Radical-inverse function in base 2: �
2

(i) for i = 0, 1, . . . , 7.

The radical-inverse function is commonly used in the construction of low-

discrepancy sequences, such as the van der Corput sequence [81] and Halton se-

quence [33].

Definition 2.2.1. (radical-inverse function). For integers i � 0 and b � 2, the

radical-inverse function �b(i) is defined by

�b(i) =
1
X

a=0

ia
ba
,

if i has a digital expansion

i =
1
X

a=0

iab
a,

where ia 2 Zb = {0, 1, · · · , b� 1}.

For instance, let b = 2, then the corresponding radical inverse function �
2

(i)

and the corresponding decimal form for i = 0, 1, . . . 7 are presented in Table 2.2.

The basic idea of constructing the van der Corput sequence is based on the

radical-inverse function.

Definition 2.2.2. (van der Corput sequence). The van der Corput sequence in base

b is the sequence

�b(0),�b(1),�b(2), · · · .
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Take b = 2 for example. To obtain the corresponding van der Corput sequence,

first we write down 0, 1, 2, 3, · · · in base 2, which are

0, 1
2

, 10
2

, 11
2

, 100
2

, 101
2

, 110
2

, . . . ,

Then by applying the radical-inverse function �
2

to each number we have

0, 0.1
2

, 0.01
2

, 0.11
2

, 0.001
2

, 0.101
2

, 0.011
2

, . . . .

In decimal form, it is the sequence

0, 0.5, 0.25, 0.75, 0.125, 0.625, 0.375, . . . .

The van der Corput sequence achieves a convergence rate of order O(N�1 logN)

for the star-discrepancy, see [81]. A generalization of the van der Corput sequence

to higher dimension is known as Halton sequence from [33], which achieves a star-

discrepancy of the first N elements of order O(N�1(logN)s) for an s-dimensional

Halton sequence which is constructed as follows.

Definition 2.2.3. (Halton sequence). Let p
1

, p
2

, · · · , ps be the first s prime numbers.

The Halton sequence t

0

, t
1

, t
2

, · · · in s dimension is given by

ti = (�p
1

(i),�p
2

(i), · · · ,�ps(i)), i = 0, 1, 2, . . . .

The procedure conducted in the construction of the Halton sequence proceeds

as follows. We write down 0, 1, 2, 3, · · · in base 2, 3, 5, · · · , ps respectively. Then

apply the radical-inverse function , which yields the Halton sequence, explicitly

given by

t

0

= (0, 0, 0, · · · , 0),

t

1

= (0, 1
2

, 0.1
3

, 0.1
5

, · · · , 0.1ps),

t

2

= (0.01
2

, 0.2
3

, 0.2
5

, · · · , 0.2ps),

t

3

= (0.11
2

, 0.01
3

, 0.3
5

, · · · , 0.3ps),
...
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Faure and Lemieux in [29] reviewed generalizations of the construction of the

original Halton sequence and bounds on the star-discrepancy of these sequences.

Another angle to look at the Halton sequence is as follows: The Halton sequence

is constructed based on the finer and finer prime-based divisions of sub-intervals of

the unit interval in each dimension (i.e. the idea behind the construction of the van

der Corput sequence). Then pair them up to obtain a sequence of points in higher

dimension.

In [34] Hammersley proposed a construction of an N -element set (known as

Hammersley point set) with

ti =
⇣ i

N
,�p

1

(i),�p
2

(i), · · · ,�ps�1

(i)
⌘

, i = 0, 1, 2, · · · , N � 1,

where the first component is evenly spaced and the remaining positions are filled

by components as in the Halton sequence. The star-discrepancy is improved, there

is one power less of logN compared with that of the Halton sequence, that is, it

converges with O(N�1(logN)s�1).

The Hammersley point set and Halton sequence represent two types of quasi-

Monte Carlo methods, which are the closed type and the open one. The closed type

methods use a finite point set, the construction depends on the number of points N .

Changing the number of points means that the point set will be changed. On the

contrary, the open type points are extensible in the number of sample points without

discarding the samples already used. In other words, increasing N will not change

the first N points for the open type construction, since it just take additional points

from an infinite sequence with the first N points remaining the same. Regarding the

comparison between the closed type and open type constructions and their impact

on the convergence analysis will be further discussed in Chapter 5.

The area of quasi-Monte Carlo methods has been enriched with the develop-

ment of digital nets and sequences as well as the theory of lattice rules. Explicit

constructions of (t, s)-sequences in base 2 have been found by Sobol0 [77], in prime

base b � s by Faure [28] and in prime-power base b by Niederreiter [59]. We here

present the explicit construction based on Sobol0 sequences only. More general prop-
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erties of digital nets are presented in Chapter 3.

Definition 2.2.4. (Sobol0 sequences). To generate the j-th component of the points

in a Sobol0 sequences, let pj be primitive polynomial over the finite field Z
2

for

j = 1, 2, · · · , s, of degree ej given by

pj(x) = xej + a
1,jx

ej�1 + a
2,jx

ej�2 + . . .+ aej�1,jx+ 1,

where the coe�cients a
1,j, a2,j, . . . , aej�1,j 2 Z

2

.

Define a sequence of positive odd numbers {m
1,j,m2,j, . . .mej ,j} such that mk,j <

2k for 1  k  ej, where mk,j is defined by the recurrence formula

mk,j = 2a
1,jmk�1,j � 222

2,jmk�2,j � . . .� 2ej�1aej�1

mk�ej+1,j � 2ejmk�ej ,j �mk�ej ,j,

where � is the bit-by-bit operator. The so-called direction numbers {v
1,j, v2,j, . . .}

are defined by

vk,j =
mk,j

2k
, for k � 1.

Then xi,j, the j-th component of the i-th point in a Sobol0 sequence, is given by

xi,j = i
0

v
1,j � i

1

v
2,j � . . .� ir�1

vr,j,

for i 2 N
0

with the dyadic expansion i = i
0

+ 2i
1

+ . . .+ 2r�1ir�1

.

Antonov and Saleev in [5] proposed a more e�cient Gray code implementation

of the Sobol0 sequence. Joe and Kuo in [43] have optimized the choice of the so-

called direction numbers mk,j of Sobol0 sequences using two-dimensional projections

as quality criterion.

Lattice rules provide a di↵erent mechanism for the construction of low-discrepancy

point sets. The simplest example is a rank one lattice. An N -element rank-1 lattice

is a quasi-Monte Carlo method with quadrature points

tj =
njz

N

o

, j = 0, 1, 2, . . . , N � 1,

where z is the generating vector having no factor in common with N , and the

bracket { } means to take the fractional part {x} = x � bxc, x 2 R, x � 0, of all

components.
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A good rank-1 lattice relies on the construction of a good generating vector. The

component-by-component algorithm proposed independently by [45, 46] by Sloan

and Reztsov [76] addresses this problem. The component-by-component algorithm

constructs the generating vector one component at a time, in each step minimizing

a certain error measure for the cubature rule and keeping all previously chosen

components fixed.

Let z = (z
1

, z
2

, . . . , zs) be the generating vector, the generic component-by-

component algorithm works in the following way to determine z:

• Set z
1

= 1.

• For k = 2, . . . , s, assume that we have found z
2

, . . . , zk�1

. Then we search for

zk by minimizing the error criterion (for example, the worst-case error defined

in Equation 2.3.1 below) as a function of zk.

Convergence analysis for the component-by-component construction has been

done. Korobov in [46, Theorem 18, pp. 120] proved the optimal convergence rate

of periodic function space. Kuo in [49] showed that those lattice rules constructed

by the component-by-component algorithm actually achieve the optimal rate of

convergence under appropriate conditions on the weights in weighted Korobov and

Sobolev spaces. Further improvement and convergence analysis has been made by

Dick [20] and Dick and Kuo in [19]. Furthermore the fast component-by-component

construction due to Nuyens and Cools [63] uses the fast Fourier transform.

If one chooses a generating vector z = (1, Fk) and N = Fk+1

with Fk the k-th

Fibonacci number, the corresponding lattice rule is known as a Fibonacci rule. We

will discuss the discrepancy properties of Fibonacci rules in more detail in Chapter 5.

A summary of lattice methods can be found in the monograph [75], more recent

development of lattice rules is reviewed in [22, Section 5].

Randomization of quasi-Monte Carlo point sets has also drawn a significant

amount of attention in this area. The idea is to introduce a random element into the

deterministic construction of the point set, which allows us to view them as variance

reduction techniques. There are a couple of benefits of randomization. Firstly it
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yields an unbiased estimator. Secondly, since there is a statistical error estimate,

one can use probabilistic arguments to analyse the errors involved in quasi-Monte

Carlo methods. Most importantly, the randomization preserve the good discrepancy

properties of the point set. Recent development of randomization of quasi-Monte

Carlo and application to many di↵erent problems are summarized in [52, 53].

Various randomization are known, the main randomization techniques used on

quasi-Monte Carlo methods include shifting and scrambling. For instance, we can

introduce a shift in lattice rules by choosing � 2 [0, 1]s uniformly distributed. The

shifted lattice rule is given by

tj =
njz

N
+�

o

, j = 0, 1, 2, . . . , N � 1.

Shifting can be done to sequences other than lattice point sets, randomly shifted

Halton sequences have been considered by Wang and Hickernell [82].

Scrambled sequences have been introduced by Owen in [66, 67, 68]. The idea

is to scramble the digits of special low-discrepancy sequences, the (t, s)-sequences

in base b by using random permutations of the digits so that the good discrepancy

properties of the original point set are retained. Further analysis of scrambling

algorithms are presented in [69, 87, 88], for details, we refer to the original papers.

Stratification is an e�cient variance reduction technique. It has a wide practical

utility due to a simple implementation [31, Chapter 4] and [55]. For the simplest

case where the integration domain D = [0, 1], the stratification technique first splits

[0, 1] to M subsets with equal length 1/M , i.e.

[0, 1] =
M�1

[

i=0

h i

M
,
i+ 1

M

i

,

then computes the integral in [0, 1] as follows

Z

[0,1]

f(x) dx =
M�1

X

i=0

Z

(i+1)/M

i/M

f(x) dx.

Each integral in the subset [i/M, (i + 1)/M ] is then approximated by the same

number of quadrature points uniformly distributed in [i/M, (i + 1)/M ] for i =

0, . . . ,M � 1.
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For the integration domain D = [0, 1]s, the grid-based stratified sampling is

conducted in the following way: Let

[0, 1]s =
M�1

[

i=0

Qi,

where each Qi is of volume 1/M . In order to construct a well distributed point

set in [0, 1]s, it is reasonable to have the same number of points in each subset Qi.

Stratified technique can also go beyond the equal-volume splitting, then the number

of points in each strata is determined according to the measure proportion of the

strata.

The e�ciency of stratified inputs for variance reduction has been studied in

[55, Section 4.4]. Compared with classical methods, stratification sampling has the

advantage to give an unbiased estimate along with the variance reduction. More

precisely, grid-based stratified sampling improves the root mean square error to

N�1/2�1/s for Monte Carlo. Combined with antithetic sampling it can further reduce

the variance. More generalized stratification technique include Latin hypercube

sampling and orthogonal array sampling, see for instance [65, Chapter 10]. For

other variance reduction techniques can refer to Lemieux [53, Chapter 4] where

the most commonly used techniques are reviewed. In Chapter 4 of this thesis, we

will employ stratified inputs for the acceptance-rejection algorithm to obtain good

samples for non-uniform target distributions.

Low-discrepancy point sets and sequences have also been considered for domains

other than intervals. For instance, the discrepancy in terms of the family of convex

sets is known as isotropic discrepancy introduced by Zaremba [89]. Schmidt in [74]

studied the irregularities of distribution for the special classes of convex sets such

as rectangles, balls and spherical caps.

The definition of discrepancy can also be extended to non-uniform distributions,

we defer the relevant discussion to the following chapters of this thesis. We will

use the acceptance-rejection technique to explicitly construct point sets for non-

uniform measures in Chapter 3–5, then analyse the discrepancy properties of the

corresponding samples.
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2.3 Numerical integration and the Koksma-Hlawka

inequality

One important application of discrepancy is in numerical integration. Suppose we

approximate the s-dimensional integrand
R

[0,1]s
f(x) dx by the equal weight quad-

rature rule
Z

[0,1]s
f(x) dx ⇡ 1

N

N�1

X

n=0

f(xn),

where {x
0

,x
1

, . . . ,xN�1

} is an N -element point set in [0, 1]s. To measure the quality

of the approximation, the Koksma–Hlawka inequality provides a tight error bound

on the approximation error of an integral by the sample average of integrand values

at some quadrature points.

Proposition 2.3.1. (Koksma-Hlawka inequality). Let f be a measurable function

on [0, 1]s which has bounded variation Vp(f) < 1. Let PN = {x
0

,x
1

, . . . ,xN�1

} be

a point set in [0, 1]s. Then

�

�

�

�

�

Z

[0,1]s
f(x) dx� 1

N

N�1

X

n=0

f(xn)

�

�

�

�

�

 Vp(f)Lq(PN),

where 1/p+ 1/q = 1, p, q � 1, and Vp(f) denotes the variation of f in the sense of

Hardy-Krause.

Note that there are di↵erent ways to define the variation, we follow the definition

in the sense of Hardy-Krause presented in Section 5.2.3 of this thesis. See also [60,

Chapter 2] and [21, Section 3.1].

For the simplest one-dimensional case, a special case of this inequality can be

deduced as follows. Let

f(x) = f(1)�
Z

1

0

f 0(t)1
[x,1)(t) dt,

then

Z

1

0

f(x) dx� 1

N

N�1

X

n=0

f(xn) =

Z

1

0

f 0(t)

"

1

N

N�1

X

n=0

1
[xn,1](t)�

Z

1

0

1
[x,1](t) dx

#

dt.
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Now use Hölder’s inequality,
�

�

�

�

�

Z

1

0

f(x) dx� 1

N

N�1

X

n=0

f(xn)

�

�

�

�

�


✓

Z

1

0

|f 0(t)|p dt
◆

1/p

Lq(PN),

to obtain a version of the Koksma-Hlawka inequality, where Lq(PN) is the discrep-

ancy of quadrature points, and the remaining part is the corresponding definition

of variation of the integrand in dimension one.

The classical Koksma-Hlawka inequality was first proved by Koksma [44] for

dimension s = 1. Hlawka [41] extended the result to arbitrary dimension s � 1.

This inequality has been developed for a larger function class where the integrand

is piecewise smooth in [12]. Note that currently the inequality in Proposition 2.3

is based on uniform distribution. This has been generalised to a non-uniform dis-

tribution by Aistleitner and Dick in [2]. We defer the discussion of this case to

Chapter 5. More variations of the Koksma-Hlawka type inequality are summarized

in [35]. For domains other than cubes, Zaremba [89] proved a similar Koksma-

Hlawka type inequality for a convex integration domain in terms of the isotropic

discrepancy.

The integration error depends on two quantities, namely, the quadrature points

and the integrand function. For a fixed integrand function class, the integration

error depends on the discrepancy properties of the quadrature points. That is part

of our motivation to move from Monte Carlo method to quasi-Monte Carlo method

to obtain better quadrature points and hence reduce the integration error.

Another useful principle used to measure the e�ciency of numerical integration

algorithms is the worst-case integration error which is defined by the worst-case

performance of integration over the unit ball of functions in some function class.

Let f belong to some function class H with norm k · k. The worst-case error is

denoted by

e(H, PN) = inf
kfk1,f2H

�

�

�

�

�

Z

[0,1]s
f(x) dx� 1

N

N�1

X

n=0

f(xn)

�

�

�

�

�

. (2.3.1)

If H is a reproducing kernel Hilbert space with reproducing kernel K(x,y), we

have an exact formula for the squared worst-case error given as
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e2(H, PN) =

Z

[0,1]2s
K(x,y) dx dy � 2

N

N�1

X

n=0

Z

[0,1]s
K(xn,y) dy +

1

N2

N�1

X

m,n=0

K(xn,xm).

(2.3.2)

For investigating the numerical integration error in a reproducing kernel Hilbert

spaceH, we only need to know the reproducing kernel for the function spaceH, then

we can derive the worst-case error. For equal weight cubature rules, the worst-case

error is just another kind of discrepancy.

With a special choice of reproducing kernel, one can derive an explicit for-

mula for the L
2

-discrepancy, see Proposition 4.1.2 or [23, Proposition 2.15] and the

relevant discussion therein.

2.4 Quick review of sampling methods

Sampling from a known or partially known distribution arises in many fields of

simulation, ranging from computer science, engineering and finance, to Bayesian

statistics. In this section, we present a quick review of sampling methods which are

of great interest to us. Regarding a complete discussion of Monte Carlo and quasi-

Monte Carlo sampling together with implementation and application to finance, see

[53]. For more details on non-uniform random variate generation we also refer to

the monographs [18, 42].

Let F be a continuous distribution function on R and let the inverse function

F�1 be defined by F�1(u) = inf{x : F (x) � u, u 2 [0, 1]}. If u is uniformly dis-

tributed in [0, 1], i.e. u s U([0, 1]), then F�1(u) has distribution F . Moreover, if

X has distribution F , F (X) consequently is uniformly distributed. Thus, based

on this property, in order to generate a random variable X according to the cu-

mulative distribution function F , it su�ces to generate a uniform random variable

in [0, 1], then apply the inverse transformation such that x = F�1(u) to get the

correct distribution. Note that the inverse transformation can be used to generate

random variables with distribution F provided that F�1 is explicitly known. In the
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framework of quasi-Monte Carlo methods, the inversion transform is also the first

choice when it is available due to the measure preserving property. We will explore

more in this direction in Chapter 3. Unfortunately many distributions do not have a

closed form CDF and computing the inverse CDF is often comparatively expensive,

for distributions such as normal, gamma and beta-distributions.

Besides the inversion principle, some transformations have been proposed for

sampling from certain distributions by using special properties of the distribution.

For instance, Box and Müller in [10] proposed a reliable and speedy method known

as Box-Müller transform to generate the bivariate Gaussian by realising that the

bivariate Gaussian variate are just two independent standard normal variates.

Let u
1

, u
2

be uniformly distributed in [0, 1]. The following transformation yields

that (X
1

, X
2

) has the standard normal distribution N (0, 1),

X
1

=
p

�2 log u
1

cos(2⇡u
2

),

X
2

=
p

�2 log u
1

sin(2⇡u
2

).

Furthermore, with an obvious modification of the transform, it can be used to

generate a variable (Z
1

, Z
2

) s N (µ, �) via

Z
1

= µ+ �
p

�2 log u
1

cos(2⇡u
2

),

Z
2

= µ+ �
p

�2 log u
1

sin(2⇡u
2

).

A quasi-Monte Carlo version of Box-Müller is considered by Ökten and Göncü in

[64]. They concluded that the Box-Müller method is a good alternative to the inverse

transformation method for generating low-discrepancy sequences from the normal

distribution. For functions having certain further properties, theoretical along with

numerical evidence suggests that Box-Müller outperforms the inversion method.

Unfortunately, this type of construction greatly depends on special properties

of the distribution, which are not applicable to large families of distributions. Now

we present a more universal sampling method, the so-called acceptance-rejection

algorithm. The basic idea of this algorithm is first to find a distribution from which

there is an e�cient way to sample, then apply the acceptance-rejection procedure

to obtain samples from the target distribution.
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We present the acceptance-rejection algorithm in more detail. Let  : D !
R

+

be our target density function, where D ✓ Rs�1 and R
+

= [0,1). Assume

that it is not possible or expensive to sample directly from the target distribution.

The following algorithm can be used to obtain samples with respect to the target

distribution  by choosing a proposal density H from which we can sample.

Algorithm 2.4.1. (Acceptance-rejection algorithm based on random inputs). Given

a target density  : D ! R
+

and a proposal density H : D ! R
+

. Assume that

there exists a constant L < 1 such that  (x) < LH(x) for all x in the domain

D. We introduce another random variable u having uniform distribution in the unit

interval, i.e. u s U([0, 1]). Then the acceptance-rejection algorithm is given by

1. Draw X s H and u s U([0, 1]).

2. Accept Y = X as a sample of  if u   (X)

LH(X)

, otherwise go back to step 1.

The following argument verifies the validity of the acceptance-rejection method.

Let the accepted sample set Y = {X accepted}. We just need to show that the

conditional distribution of Y given that u   (Y )

LH(Y )

is indeed the distribution with

respect to  , that is

P
✓

Y  y | u   (Y )

LH(Y )

◆

=

Z

(�1,y]

 (z) dz,

where (�1,y] =
Qs�1

j=1

(�1, yj) and Y  y means that Yj  yj for j = 1, . . . , s� 1

with Y = (Y
1

, . . . Ys�1

). This equation holds since

P
✓

Y  y | u   (Y )

LH(Y )

◆

=
P
⇣

Y  y, u   (Y )

LH(Y )

⌘

P
⇣

u   (Y )

LH(Y )

⌘

=
1

P
⇣

u   (Y )

LH(Y )

⌘

Z

(�1,y]

Z

⇥

0,
 (z)

LH(z)

⇤

H(z) du dz

=
1

P
⇣

u   (Y )

LH(Y )

⌘

Z

(�1,y]

 (z)

LH(z)
H(z) dz

=
1

P
⇣

u   (Y )

LH(Y )

⌘

Z

(�1,y]

 (z)

L
dz,
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0 1

1

Reject

Accept

Figure 2.3: Acceptance-rejection sampler with the proposal density

H(x) = 1.

and by realising P
⇣

u   (Y )

LH(Y )

⌘

= 1/L, we get the desired result.

The acceptance-rejection sampler works to sample from an unknown density

based on a proposal density (or hat function) through a rather simple procedure.

The toy problem in Figure 2.3 illustrates the basic idea of this algorithm where we

choose the uniform distribution as the proposal density, and hence propose points

randomly in the unit square. This algorithm works by only accepting points lying

under the target density curve. Once we project all accepted points onto the first

coordinate, these points in the interval [0, 1] have the desired distribution as the

indicated graph in the figure.

A way to optimize acceptance-rejection algorithms is by designing good pro-

posal densities. One can choose a proposal density from a large family by determ-

ining the value of parameters to control the acceptance rate and the constant L

involved in the algorithm. For a log-concave density, a generic adaptive acceptance-
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rejection method is quite e�cient, however it is beyond our interests for the discus-

sion of designing proposal densities. See [9], [18, Chapter 2] and [42, Chapter 4&5]

the references therein on this topic. We are more interested on the properties of

samples obtained from an acceptance-rejection sampler with respect to the discrep-

ancy measure based on a simple choice of proposal density. This leads us to consider

the role of samples having the proposal density (we call it driver sequence throughout

the thesis).

Let us revisit the toy problem illustrated in Figure 2.3 for a density defined

in [0, 1]. Figure 2.4 shows a comparison between di↵erent driver sequences for this

example: deterministic points (Sobol0 points) and pseudo-random points. The total

number of points in each case is 29 and the histograms are with respect to samples

we accepted. The acceptance-rejection sampler works by only accepting those points

under the target density curve. The di↵erence of driver sequences obviously a↵ects

the samples we obtain by the acceptance-rejection algorithm, hence the distribu-

tion properties of the points which were accepted will be influenced. The right

two figures in Figure 2.4 show the histograms of the points which we accepted in

both cases. Note that the number of accepted samples is roughly equal but the

deterministic samples better estimate the density function. Additionally, from the

superior distribution properties in terms of the discrepancy of the Sobol0 sequence,

one could expect an improvement in the discrepancy of the samples obtained from

the acceptance-rejection algorithm based on the Sobol0 sequence.

Acceptance-rejection sampling and importance sampling [70, Section 3] are

quite similar ideas. Both of them distort samples from a proposal distribution

in order to sample from another one. However, there is a di↵erence in the selection

of the constant L >  (x)/H(x) for x in the domain D. The acceptance-rejection

method does not work when sup
x2D  (x)/H(x) = 1, while importance sampling

is still available [65]. In this thesis, we only use the acceptance-rejection sampler

to get samples of a given target density, since we are interested in obtaining dis-

crepancy bounds for non-uniform distributions. The role of importance sampling in

quasi-Monte Carlo methods is left to future work.
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Figure 2.4: Di↵erent driver sequences: deterministic and pseudo-

random points.

More generally, Markov chains can be used to generate samples whose station-

ary distribution approximates a given target distribution. The Metropolis-Hastings

algorithm, Slice sampler and Gibbs sampler are of great interest in this area. The

corresponding quasi-Monte Carlo versions of those sampling methods have been

considered by Tribble [79] and Chen [15] by using completely uniformly distributed

sequences instead of pseudo-random sequences. An explicit construction of driver

sequences for these samplers which yield the optimal order of convergence is not yet

available.





Chapter 3

Discrepancy bounds for the

acceptance-rejection sampler using

(t,m, s)-nets

3.1 Background

In this chapter we consider the deterministic acceptance-rejection sampler based on

digital nets. We first establish some notation and some useful definitions and then

obtain preliminary theoretical results in Section 3.1. Section 3.2 presents an upper

bound and a lower bound for the star-discrepancy of samples generated with respect

to a target density function defined in the unit cube [0, 1]s�1 and real state space

Rs�1 respectively. An improved upper bound is also proved in this section for

target density functions with certain properties. Section 3.3 contains the discussion

of a quasi-Monte Carlo version of the reduced acceptance-rejection sampler. Using

the �-cover technique presented in Section 3.4, numerical experiments in Section 3.5

verify the e�ciency of the deterministic acceptance-rejection algorithms.

Now we first introduce the definition of (t,m, s)-nets and (t, s)-sequence which

we use as the driver sequence throughout this chapter. The following fundamental

definitions of elementary interval and fair sets are used to define a (t,m, s)-net and
31
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(t, s)-sequence in base b.

Definition 3.1.1. (b-adic elementary interval). Let b � 2 be an integer. An s-

dimensional b-adic elementary interval is an interval of the form

s
Y

i=1



ai
bdi

,
ai + 1

bdi

◆

,

with integers 0  ai < bdi and di � 0 for all 1  i  s. If d
1

, . . . , ds are such that

d
1

+ · · ·+ ds = k, then we say that the elementary interval is of order k.

Definition 3.1.2. (fair sets). For a given set PN = {x
0

,x
1

, . . . ,xN�1

} consisting

of N points in [0, 1)s, we say for a subset J of [0, 1)s to be fair with respect to PN ,

if

1

N

N�1

X

n=0

1J(xn) = �(J),

where 1J(xn) is the indicator function of the set J and � is the Lebesgue measure.

The notation can also be used the other way around, namely, we can also say PN is

fair with respect to a subset J if the above equation holds.

Definition 3.1.3. ((t,m, s)-nets in base b). For a given dimension s � 1, an integer

base b � 2, a positive integer m and an integer t with 0  t  m, a point set Qm,s

of bm points in [0, 1)s is called a (t,m, s)-net in base b if the point set Qm,s is fair

with respect to all b-adic s-dimensional elementary intervals of order at most m� t.

Definition 3.1.4. ((t, s)-sequence). For a given dimension s � 1, an integer base

b � 2 and a positive integer t, a sequence {x
0

,x
1

, . . .} of points in [0, 1)s is called a

(t, s)-sequence in base b if for all integers m � t and k � 0, the point set consisting

of the points xkbm , . . . ,xkbm+bm�1

forms a (t,m, s)-net in base b.

To provide an intuitive understanding of the idea of digital nets, Figures 3.1

to 3.3 show the essential property of (t,m, s)-nets in base b. For simplicity, we

demonstrate digital nets in base 2 in two dimension.

For a two-point set to form a (0, 1, 2)-net in base 2 means that every elementary

interval (there are two types of elementary interval in this case) of volume one half
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Figure 3.1: (0, 1, 2)-nets in base 2.

contains exactly 20 = 1 point of the given point set. The property remains if we

increase the number of points and reduce the size of the elementary interval accord-

ingly. For instance, a 4-point set forms a (0, 2, 2)-net in base 2 means that every

elementary interval (there are three types of elementary intervals) of volume one

quarter contains exactly 1 point of the point set. See Figures 3.1 to 3.3 for the ele-

mentary intervals for (0, 1, 2)-net, (0, 2, 2)-net and (0, 3, 2)-net in base 2 respectively.

Explicit constructions of (t, s)-sequences in base 2 have been found by Sobol0 [77],

in prime base b � s by Faure [28] and in prime-power base b by Niederreiter [59]. In

all these constructions t depends only on s but not on m. The construction based

on Sobol0 is presented in Section 2.1. In practice, since the construction of digital

nets are included in the statistics toolbox of Matlab, this method is very easy to im-

plement. Readers seeking more discussion of construction methods can also consult

[23, Chapters 4&8].

Now we recall the definition of the star-discrepancy which enables us to dis-

tinguish the quality of point sets with respect to the uniform distribution. The

star-discrepancy D⇤
N with respect to a point set PN = {x

0

,x
1

, . . . ,xN�1

} in the

s-dimensional cube is defined by

D⇤
N(PN) = sup

J⇢[0,1)s

�

�

�

�

�

1

N

N�1

X

n=0

1J(xn)� �(J)

�

�

�

�

�

,

where the supremum is taken over all J =
Qs

i=1

[0, �i) ✓ [0, 1)s.
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Figure 3.2: (0, 2, 2)-nets in base 2.

We need various other types of discrepancies for our analysis. If we extend

the supremum in the star-discrepancy to all convex sets in [0, 1]s, we get another

interesting discrepancy introduced by Zaremba [89], the so-called isotropic discrep-

ancy. It is a measure of the distribution properties of point sets with respect to

convex sets. This quantity is instrumental for establishing e↵ective error bounds in

quasi-Monte Carlo integration over bounded convex sets, see [90].

Definition 3.1.5. (isotropic discrepancy). Let PN = {x
0

,x
1

, . . . ,xN�1

} be a point

set in [0, 1)s. The isotropic discrepancy JN is defined to be

JN(PN) = sup
J✓C

�

�

�

�

�

1

N

N�1

X

n=0

1J(xn)� �(J)

�

�

�

�

�

,
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Figure 3.3: (0, 3, 2)-nets in base 2.

where C is the family of all convex subsets of [0, 1)s.

The connection between isotropic discrepancy and extreme discrepancy is es-

tablished in [61] by Niederreiter and Wills. For any point set PN ✓ [0, 1]s, we always

have

DN(PN)  JN(PN)  4sDN(PN)
1/s.

For further reading about the definition and properties of isotropic discrepancy,

we refer for instance to [48, 60].

For our purposes here we need the definition of pseudo-convex sets which we

introduce in the following (see also [1, Definition 2]).

Definition 3.1.6. (pseudo-convex set). Let A be an open subset of [0, 1]s such that

there exists a collection of p convex subsets A
1

, . . . , Ap of [0, 1]s satisfying

1. Ai \ Aj = ; for i 6= j,
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Figure 3.4: A pseudo-convex set in the unit square given by the area

below graph of the density function and its admissible convex covering

Ai, i = 1, . . . , 5.

2. A ✓ (A
1

[ · · · [ Ap),

3. either Aj is a convex part of A (Aj ✓ A for j = 1, . . . , q) or the complement

of A with respect to Aj, A0
j = Aj\A is convex.

Then A is called a pseudo-convex set and A
1

, . . . , Ap is an admissible convex covering

for A with p parts and with q convex parts of A.

Figure 3.4 shows a pseudo-convex set in the unit square given by the area below

graph of the density function and its admissible convex covering. Let A be given by

the graph under the curve. Then Ai, i = 1, . . . , 5, is an admissible convex covering

of A, where A
1

, A
2

and A
3

are convex parts in A but A
4

and A
5

are rectangles

shadowed region covering the remaining part of A. The regions A
4

\A and A
5

\A are

convex.
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Remark. For convenience, we call a non-negative function pseudo-convex if and

only if the region below its graph is a pseudo-convex set.

Next we present a bound on the isotropic discrepancy of points generated by

(t,m, s)-nets. A detailed proof is given in Section 3.6.1.

Lemma 3.1.7. Let the point set Qm,s = {x
0

,x
1

, . . . ,xM�1

} ✓ [0, 1]s be a (t,m, s)-

net in base b where M = bm. For the isotropic discrepancy of Qm,s we have

JM(Qm,s)  2sbt/sM�1/s.

A slightly weaker result than Lemma 3.1.7 can also be obtained from [61, Korol-

lar 3].

Lemma 3.1.8. For any point set PN in [0, 1]s we have

JN(PN)  2s

✓

4s

s� 1

◆

(s�1)/s

(D⇤
N(PN))

1/s.

Further it is known from [47] that the star-discrepancy of a (t,m, s)-net Qm,s

in base b, where M = bm, satisfies

D⇤
M(Qm,s)  M�1bt(logM)s�1

bs

(b+ 1)2s(s� 1)!(log b)s�1

+ CsM
�1bt(logM)s�2,

for some constant Cs > 0. These two inequalities therefore yield a convergence rate

of order M�1/s(logM)1�1/s.

The following lemma will be used to get a discrepancy bound for a point set on

a pseudo-convex set. It is an extension of [1, Lemma 5] to the s-dimensional unit

cube.

Lemma 3.1.9. Let A be a pseudo-convex subset of [0, 1]s with admissible con-

vex covering of p parts with q convex parts of A. Then for any point set PN =

{x
0

,x
1

, . . . ,xN�1

} ✓ [0, 1]s we have

�

�

�

�

�

1

N

N�1

X

n=0

1A(xn)� �(A)

�

�

�

�

�

 (2p� q)JN(PN).
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3.2 Discrepancy bounds

The first result we get is a discrepancy bound with respect to the target density of

samples generated by the acceptance-rejection algorithm with deterministic driver

sequences. The star-discrepancy of points generated by the acceptance-rejection

algorithm with respect to the target density converges at the rate of N�1/s, where

N is the number of accepted samples. See Theorem 3.2.3 for details. The proof

uses a bound on the discrepancy of our driver sequence with respect to convex sets

(which is called isotropic discrepancy, see Definition 3.1.5 for details).

In order to investigate the discrepancy properties of samples obtained by the

deterministic acceptance-rejection sampler, we first need to extend the concept of

discrepancy to non-uniform distributions. The definition of the star-discrepancy of

a sample set with respect to a density function  is given as follows.

Definition 3.2.1. Let  : [0, 1]s�1 ! R
+

be an unnormalized target density with

C =
R

[0,1]s�1

 (z)dz > 0. Let Y (s�1)

N = {y
0

,y
1

, . . . ,yN�1

} be a point set in [0, 1]s�1.

The star-discrepancy of Y (s�1)

N with respect to the density  defined in [0, 1]s�1 is

defined by

D⇤
N, (Y

(s�1)

N ) = sup
t2[0,1]s�1

�

�

�

�

�

1

N

N�1

X

n=0

1
[0,t)(yn)�

1

C

Z

[0,t)

 (z)dz

�

�

�

�

�

,

where [0, t) =
s�1

Q

j=1

[0, tj).

Remark. Note that  /C is a probability density function on [0, 1]s�1. Thus the

discrepancy in the above Definition 3.2.1 measures the di↵erence between the dis-

tribution  /C and the empirical distribution of the sample points with respect to the

test sets [0, t) for t 2 [0, 1]s�1.

We consider now the induced star-discrepancy for the driver sequence from an

acceptance-rejection sampler. In Definition 3.2.1 we defined the star-discrepancy

with respect to th measure  /C. Assume that L is such that  (x)  L all x 2
[0, 1]s�1. We accept those points of the driver sequence {x

0

,x
1

, . . . ,xM�1

} ✓ [0, 1]s
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for which  (xn,1, . . . , xn,s�1

) � Lxn,s where xn = (xn,1, . . . , xn,s). Thus the test sets

for the driver sequence are of the form

{x 2 [0, 1]s : (x
1

, . . . , xs�1

) 2 [0, t),  (x
1

, . . . , xs�1

) � Lxs}.

See Figure 3.5 for an illustration for s = 2.

Compared with the classical definition of discrepancy, the test sets have changed

from rectangles to intersections of rectangles with the graph under the target density

which can be observed from Figure 3.5 If the target density is complicated in some

sense, the test sets will end up with more irregular shape, which increases the

di�culties for estimating the discrepancy. But under certain conditions, we can still

obtain an estimation of the discrepancy.

0 1

1

Figure 3.5: A test set in the local discrepancy with respect to a non-

uniform measure.
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3.2.1 Upper bound

Let an unnormalized density function  : [0, 1]s�1 ! R
+

be pseudo-convex, and
R

[0,1]s�1

 (z)dz > 0, but not necessarily 1. Assume that there exists a constant

L < 1 such that  (x)  L for all x 2 [0, 1]s�1. Let the subset under the graph of

 /L be defined as

A = {x 2 [0, 1]s :  (x
1

, . . . , xs�1

) � Lxs}, (3.2.1)

which is pseudo-convex in [0, 1]s as  is a pseudo-convex function. Assume that

there is an admissible convex covering of A with p parts and with q convex parts

of A. Without loss of generality, let A
1

, . . . , Aq be the convex subsets of A and

Aq+1

, . . . , Ap, such that A0
j = Aj\A is convex for q + 1  j  p.

We consider now the case where the target density is defined on [0, 1]s�1. The

following algorithm is a deterministic version of Algorithm 2.4.1. For the proofs

later, we need the technical assumption that the target density is pseudo-convex

(see the definition of pseudo-convexity in Definition 3.1.6).

Algorithm 3.2.2. (Deterministic acceptance-rejection algorithm in [0, 1]s based on

(t,m, s)-nets). Let the target density  : [0, 1]s�1 ! R
+

, where s � 2, be pseudo-

convex. Assume that there exists a constant L < 1 such that  (x)  L for all

x 2 [0, 1]s�1. Let A = {x 2 [0, 1]s :  (x
1

, . . . , xs�1

) � Lxs}. Suppose we aim to

obtain approximately N samples from  .

i) Let M = bm �
l

N/(
R

[0,1]s�1

 (x)/Ldx)
m

, where m 2 N is the smallest integer

satisfying this inequality. Generate a (t,m, s)-net Qm,s = {x
0

,x
1

, . . . ,xbm�1

}
in base b.

ii) Use the acceptance-rejection method for the points Qm,s with respect to the

density  , i.e. we accept the point xn if xn 2 A, otherwise reject. Let Y (s)
N =

A \Qm,s = {z
0

, z
1

, . . . , zN�1

} be the sample set we accept.
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iii) Project the points P (s)
N onto the first (s� 1) coordinates.

Let Y (s�1)

N = {y
0

,y
1

, . . . ,yN�1

} ✓ [0, 1]s�1 be the projections of the points

Y (s)
N .

iv) Return the point set Y (s�1)

N .

For the samples generated by this algorithm, we can prove the following upper

bound on the star-discrepancy.

Theorem 3.2.3. Let the unnormalized density function  : [0, 1]s�1 ! R
+

, with

s � 2, be pseudo-convex. Assume that there is an admissible convex covering of

A given by Equation (3.2.1) with p parts and with q convex parts of A. Then the

discrepancy of the point set Y (s�1)

N = {y
0

,y
1

, . . . ,yN�1

} ✓ [0, 1]s�1 generated by

Algorithm 3.2.2 using a (t, s)-sequence in base b, for large enough N , satisfies

D⇤
N, (Y

(s�1)

N )  8C�1Lsbt/s(2p� q)N�1/s,

where C =
R

[0,1]s�1

 (z)dz and  (x)  L for all x 2 [0, 1]s�1.

We postpone the proof of this theorem to Section 3.6.1.

3.2.2 Lower bound

In this section, we provide a lower bound on the star-discrepancy with respect to a

concave density function. The general idea is to find, for a given driver point set, a

density function satisfying a certain convergence rate.

Theorem 3.2.4. Let PM be an arbitrary point set in [0, 1]s. Then there exists a

concave density function  defined on [0, 1]s�1 such that, for N samples generated

by the acceptance-rejection algorithm with respect to PM and  , we have

D⇤
N, (PN) � csN

� 2

s+1 ,

where cs > 0 is independent of N and the driver sequence PM but depends on s.
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A detailed proof is provided in Section 3.6.2. We would like to point out that

the lower bound also limits the convergence rate which we can obtain in our current

approach via convex sets.

Additionally, note that [7] (in dimension s = 2) and [78] (for dimension s > 2)

showed the existence of points with discrepancy with respect to convex sets bounded

from above by N�2/(s+1)(logN)c(s) (where c(s) is a function of only s). This would

yield an improvement of our results from N�1/s to N�2/(s+1)(logN)c(s), however,

those constructions are not explicit and can therefore not be used in computation.

3.2.3 Generalization to real state space

We consider now the case where the target density is defined on Rs�1 with s � 2.

The aim is to show a discrepancy bound on samples generated by the determin-

istic acceptance-rejection method. The discrepancy with respect to a given density

function  : Rs�1 ! R
+

is defined as follows.

Definition 3.2.5. Let Y (s�1)

N = {y
0

,y
1

, . . . ,yN�1

} be a point set in Rs�1. Let

 : Rs�1 ! R
+

be an unnormalized probability density function. Then the star-

discrepancy D⇤
N, (Y

(s�1)

N ) is defined by

D⇤
N, (Y

(s�1)

N ) = sup
t2Rs�1

�

�

�

�

�

1

N

N�1

X

n=0

1
(�1,t](yn)�

1

C

Z

(�1,t]

 (z)dz

�

�

�

�

�

,

where C =
R

Rs�1

 (z)dz and (�1, t] =
Qs�1

j=1

(�1, tj] for t = (t
1

, . . . , ts�1

).

The inverse Rosenblatt transformation is used to generate samples from the

proposal density in the real state space Rs�1. Let F be the joint CDF of H and

Fj(zj|z1, . . . , zj�1

) be the conditional CDF of the proposal density for j = 1, . . . , s�
1. The transformation T is used to generate points in Rs�1 ⇥ R

+

from the unit

cube [0, 1]s, such that the projection of points onto the first s � 1 coordinates has
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distribution H. More precisely, let T : [0, 1]s ! Rs be the transformation given by

z = T (u) =

8

>

>

>

>

>

<

>

>

>

>

>

:

z
1

= F�1

1

(u
1

),

zj = F�1

j (uj|u1

, . . . , uj�1

), 2  j  s� 1,

zs = usH(z
1

, . . . , zs�1

).

(3.2.2)

The first s � 1 coordinates are produced by the inverse Rosenblatt transform-

ation which converts the points from the unit cube [0, 1]s�1 into Rs�1. The sth

coordinate is uniformly distributed on the line

n

(1� v)(z
1

, . . . , zs�1

, 0) + v(z
1

, . . . , zs�1

, H(z
1

, . . . , zs�1

)), 0  v  1
o

if us is uniformly distributed in [0, 1]. More details with respect to the Rosenblatt

transformation and extensions can be found in [17, 72].

With the Rosenblatt transformation, the deterministic acceptance-rejection al-

gorithm in Rs employing digital nets is conducted as follows.

Algorithm 3.2.6. (Deterministic acceptance-rejection algorithm in Rs based on

(t,m, s)-nets). Let an unnormalized target density function  : Rs�1 ! R
+

, where

s � 2, be given. Let H be a proposal density H : Rs�1 ! R
+

, such that there exists

a constant L < 1 such that  (z)  LH(z) for all z 2 Rs�1. Let A = {z 2 Rs :

 (z
1

, . . . , zs�1

) � LH(z
1

, . . . , zs�1

)zs}. Suppose we aim to obtain approximately N

samples from  .

i) Let M = bm �
l

N
R

[0,1]s�1

H(x)dx/(
R

[0,1]s�1

 (x)/Ldx)
m

, where m 2 N is

the smallest integer satisfying this inequality. Generate a (t,m, s)-net Qm,s =

{x
0

,x
1

, . . . ,xM�1

} in base b.

ii) Transform the points into Rs�1 ⇥ R
+

from [0, 1]s using the transformation T

given in (3.2.2) to obtain {T (x
0

), T (x
1

), . . . , T (xM�1

)}.

iii) Take the acceptance-rejection method for the sample T (xn) with respect to H

and  in Rs�1 ⇥ R
+

, i.e. accept the point T (xn) if T (xn) 2 A, otherwise

reject. Let Y (s)
N = A \ T (Qm,s) = {z

0

, z
1

, . . . , zN�1

}.
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iv) Project the points Y (s)
N we accepted onto the first (s � 1)-dimensional space.

Denote the point set obtained by projecting the accepted points onto the first

s� 1 coordinates by Y (s�1)

N = {y
0

,y
1

, . . . ,yN�1

} ✓ Rs�1.

v) Return the point set Y (s�1)

N .

We use the transformation T given in Equation (3.2.2) to generate samples of

H. For the sake of investigating the discrepancy, the following result is helpful. The

lemma shows that the transformation T and its inversion T�1 are both measure-

preserving. For the proofs later, we assume that the proposal density H is a product

measure, i.e. H =
Qs�1

j=1

Hj, where Hj is the marginal density with respect to zj. In

our numerical examples, the proposal density is not necessarily of product type.

Lemma 3.2.7. The transformation T from the s-dimensional unit cube to Rs�1⇥R
+

given in Equation (3.2.2) is measure-preserving, i.e. Volume(T (D)) = Volume(D)

holds for any measurable set D ✓ [0, 1]s. This is true for T�1 as well.

To prove a bound on the discrepancy of the samples generated by Algorithm 3.2.6,

the following assumption is needed.

Assumption 1. Let  be the target density and H be a product measure proposal

density function, which is chosen such that its inverse CDF can be computed. Let

A = {z 2 Rs :  (z
1

, . . . , zs�1

) � LzsH(z
1

, . . . , zs�1

)} and the transformation T�1

is defined as the inversion of the transform T . Then we assume that T�1(A) is

pseudo-convex.

As the mappings T and T�1 are measure preserving, and since there are the

same number of samples in an arbitrary subset D ✓ [0, 1]s and the corresponding

subset T (D) ✓ Rs�1⇥R
+

, we can consider the discrepancy in the unit cube instead

of that in Rs�1 ⇥ R
+

. Following similar arguments as for Theorem 3.2.3 and The-

orem 3.2.4, we obtain the same discrepancy bounds including an upper bound and

a lower bound for the general density  defined in the real state space Rs�1.
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Theorem 3.2.8. Let the unnormalized target density  : Rs�1 ! R
+

and the

proposal density H : Rs�1 ! R
+

satisfy Assumption 1. Then the discrepancy of the

point set Y (s�1)

N = {y
0

,y
1

, . . . ,yN�1

} ✓ Rs�1 generated by Algorithm 3.2.6 satisfies

D⇤
N, (Y

(s�1)

N )  8LC�1sbt/s(2p� q)N�1/s,

for N large enough, where C =
R

Rs�1

 (z)dz > 0 and L is such that  (x)  LH(x)

for all x 2 Rs�1.

Theorem 3.2.9. Let H be a product density function defined on Rs�1. Let T be the

transformation given in Equation (3.2.2) associated with H. Let PM be an arbitrary

point set in [0, 1]s, then T (PM) is a point set in Rs�1. Then there exists an unnormal-

ized density function  defined in Rs�1 satisfying the assumption in Theorem 3.2.8

such that the star-discrepancy of the points generated by the acceptance-rejection

sampler with respect to  and H satisfies

D⇤
N, (Y

(s�1)

N ) � csN
� 2

s+1 ,

where cs is independent of N and PM , but depends on s.

3.2.4 An improved upper bound

In this section we prove a convergence rate of order N�↵ for 1/s  ↵ < 1, where

↵ depends on the target density  . See Theorem 3.2.12 below for details. For this

result we use (t,m, s)-nets (see Definition 3.1.3 below) as inputs. The value of ↵

here depends on how well the graph of  can be covered by certain rectangles (see

Equation (3.2.3)). In practice this covering rate of order N�↵ is hard to determine

precisely, ↵ arbitrarily close to 1 can be achieved if  is constant. We also provide a

simple example in dimension s = 2 for which ↵ can take on the values ↵ = 1� `�1

for ` = 2, 3, . . . . See Example 3.2.13 for details.

We use the acceptance-rejection algorithm based on (t,m, s)-nets in base b as

driver sequence formalized in Algorithm 3.2.2. Let again Y (s�1)

N = {y
0

,y
1

, . . . ,yN�1

} ✓
[0, 1]s�1 be the accepted point set.
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In the following we show that an improvement of the discrepancy bound for the

deterministic acceptance-rejection sampler is possible in some special cases. Let an

unnormalized density function  : [0, 1]s�1 ! R
+

, with s � 2, be given. Let again

A = {z = (z
1

, . . . , zs) 2 [0, 1]s :  (z
1

, . . . , zs�1

) � Lzs}

and J⇤
t

= ([0, t)⇥ [0, 1])
T

A. Let @J⇤
t

denote the boundary of J⇤
t

and @[0, 1]s denote

the boundary of [0, 1]s. For k 2 N we define the covering number

�k( ) = sup
t2[0,1]s

min{v :9U
1

, . . . , Uv 2 Ek : (@J⇤
t

\ @[0, 1]s) ✓
v
[

i=1

Ui,

Ui \ Ui0 = ; for 1  i < i0  v}, (3.2.3)

where Ek is the family of elementary intervals of order k.

Lemma 3.2.10. Let  : [0, 1]s�1 ! [0, 1] be an unnormalized target density and

let the covering number �m�t( ) be given by (3.2.3). Then the discrepancy of the

point set Y (s�1)

N = {y
0

,y
1

, . . . ,yN�1

} ✓ [0, 1]s�1 generated by the deterministic

acceptance-rejection sampler using a (t,m, s)-net in base b, for large enough N ,

satisfies

D⇤
N, (Y

(s�1)

N )  4C�1bt�m�t( )N
�1,

where C =
R

[0,1]s�1

 (z)dz > 0.

We postpone the proof of Lemma 3.2.10 to Section 3.6.3. To obtain a bound

on the discrepancy, we need to further estimate the covering number. The covering

number �m�t( ) is di�cult to estimate in general, but can be estimated for special

cases. A known example is the following. Assume that  is constant. Since the

graph of  can be covered by just one elementary interval of order m� t, this is the

simplest possible case. The results from [59, Section 3] (see also [23, pp. 184–190]

for an exposition in dimensions s = 1, 2, 3) imply that �k( )  Csks�1 for some

constant Cs which depends only on s. This yields the convergence rate of order

(logN)s�1N�1 in Lemma 3.2.10.
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In order to prove an improved bound on the star discrepancy, for the require-

ment of our proof techniques, we assume that the set below the graph of the density

function admits a so-called Minkowski content.

Definition 3.2.11. (Minkowski content). For a set A ✓ Rs, let @A denote the

boundary of A and let

M(@A) = lim
"!0

�((@A)")

2"
,

where (@A)" = {x 2 Rs|kx � yk  " for y 2 @A} and k · k denotes the Euclidean

norm. If M(@A) (abbreviated as MA) exists and is finite, then @A is said to admit

an (s� 1)�dimensional Minkowski content.

For simplicity, we consider the Minkowski content associated with the boundary

of a given set, however one could define it in a more general sense. Ambrosio et al

[4] present a detailed discussion of general Minkowski content.

Following the above discussion, in general, there are constants cs, and Cs, 

depending only on s and  such that

cs, k
s�1  �k( )  Cs, b

(1�1/s)k, (3.2.4)

whenever the set @A admits an (s�1)�dimensional Minkowski content. This yields

a convergence rate in Lemma 3.2.10 of order N�↵ with 1/s  ↵ < 1, where the

precise value of ↵ depends on  . We obtain the following result.

Theorem 3.2.12. Let  : [0, 1]s�1 ! [0, 1] be an unnormalized target density and

let �k( ) be given by (3.2.3). Assume that there is a constant ⇥ > 0 such that

�k( )  ⇥b(1�↵)kk� for all k 2 N,

for some 1/s  ↵ < 1 and � � 0. Then there is a constant �s,t, > 0 which

depends only on s, t and  , such that the discrepancy of the point set Y (s�1)

N =

{y
0

,y
1

, . . . ,yN�1

} ✓ [0, 1]s�1 generated by the deterministic acceptance-rejection

sampler using a (t,m, s)-net in base b, for large enough N , satisfies

D⇤
N, (Y

(s�1)

N )  �s,t, N
�↵(logN)�.
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Remark. Note that a finite covering number �k( ) ensures the existence of (s�1)-

dimensional Minkowski content.

Example 3.2.13. To illustrate the bound in Theorem 3.2.12, we consider now an

example for which we can obtain an explicit bound on �k( ) of order bk(1�↵) for

1/2  ↵ < 1. For simplicity let s = 2 and ↵ = 1 � `�1 for some ` 2 N with ` � 2.

We define now a function  ` : [0, 1) ! [0, 1) in the following way: let x 2 [0, 1) have

b-adic expansion

x =
⇠
1

b
+
⇠
2

b2
+
⇠
3

b3
+ · · ·

where ⇠i 2 {0, 1, . . . , b � 1} and assume that infinitely many of the ⇠i are di↵erent

from b� 1. Then set

 `(x) =
⇠
1

bl�1

+
⇠
2

b2(l�1)

+
⇠
3

b3(l�1)

+ · · · .

Let t 2 [0, 1). In the following we define elementary intervals of order k 2 N which

cover @J⇤
t

\ @[0, 1]2. Assume first that k is a multiple of `, then let g = k/`. Then

we define the following elementary intervals of order k = g`:



a
1

b
+ · · ·+ ag�1

bg�1

+
ag
bg
,
a
1

b
+ · · ·+ ag�1

bg�1

+
ag + 1

bg

◆

⇥


a
1

b`�1

+ · · ·+ ag�1

b(g�1)(`�1)

+
ag

bg(`�1)

,
a
1

b`�1

+ · · ·+ ag�1

b(g�1)(`�1)

+
ag + 1

bg(`�1)

◆

, (3.2.5)

where a
1

, . . . , ag 2 {0, 1, . . . , b� 1} run through all possible choices such that

a
1

b
+ · · ·+ ag�1

bg�1

+
ag + 1

bg
 t.

The number of these choices for a
1

, . . . , ag is bounded by bg. Let

t =
t
1

b
+ · · ·+ tg

bg
+

tg+1

bg+1

+ · · · .

For integers 1  u  g(`� 1) and 0  cu < tg+u, we define the intervals



t
1

b
+ · · ·+ tg+u�1

bg+u�1

+
cu
bg+u

,
t
1

b
+ · · ·+ tg+u�1

bg+u�1

+
cu + 1

bg+u

◆

⇥


d
1

b
+ · · ·+ dg(`�1)�u

bg(`�1)�u
,
d
1

b
+ · · ·+ dg(`�1)�u

bg(`�1)�u
+

1

bg(`�1)�u

◆

, (3.2.6)
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where di = 0 if ` - i, di = ti/` if `|i and we set d
1

b
+ · · ·+ dg(`�1)�u

bg(`�1)�u = 0 if u = g(`� 1).

Further we define the interval



t
1

b
+ · · ·+ tg`

bg`
,
t
1

b
+ · · ·+ tg`

bg`
+

1

bg`

◆

⇥ [0, 1). (3.2.7)

The intervals defined in (3.2.5), (3.2.6) and (3.2.7) cover @J⇤
t \ @[0, 1]2. Thus we

have

�g`( `)  bg + bg(`� 1) + 1  `bg.

For arbitrary k 2 N we can use elementary intervals of order k which cover the

same area as the intervals (3.2.5), (3.2.6) and (3.2.7). Thus we have at most b`�1

times as many intervals and we therefore obtain

�k( `)  `bk/`+`�1.

Thus we obtain

sup
t2[0,1]

�

�

�

�

�

1

N

N�1

X

n=0

1
[0,t)(yn)�

1

C

Z t

0

 `(z) dz

�

�

�

�

�

 �s,t, N
�(1� 1

`
).

3.3 A deterministic reduced acceptance-rejection

sampler

In this section we consider an extension of the deterministic acceptance-rejection

sampler. The random version of this reduced method was recently introduced by

Barekat and Caflisch in [6], where a reduced acceptance-rejection algorithm is used

for kinetic simulation in which the rates are fluctuating in time and have singular

limits, as occurs for example in simulation of recombination interactions in a plasma.

The basic idea is that for a target density function  , we carefully select H such

that for  �H and H the inverse CDF can be computed. For the case  (x) > H(x),

we write  = ( �H)+H and get samples according to  �H and H respectively.

Figure 3.6 illustrates this method. The area under the graph of  can be

divided into three subsets, R
1,1, R1,2 and R

2,2, where samples with distribution ac-

cording to the upper bound of R
1,2 and R

2,2 can be directly generated by using
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the inverse CDF of H and  � H. The acceptance-rejection method is only used

for the region R
1,1. Compared with the ordinary acceptance-rejection sampler, one

obvious merit of this method is that we do not require  (x)  H(x) in the whole

domain. Also, this method might give better convergence rates since samples with

distribution according to the upper bound of R
1,2 and R

2,2 are obtained via inver-

sion transform and therefore have low discrepancy. Algorithm 3.3.1 gives a simple

version of the improved method. More discussion of a general version is available in

Algorithms 3.3.2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R2,2

R1,2 R1,1

Figure 3.6: The idea of the reduced acceptance-rejection sampler,

where the solid line represents the target density  and the dashed

line is the proposal density H.

3.3.1 Algorithm

Now we present the quasi-Monte Carlo version of the reduced acceptance-rejection

sampler for a simple case.
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Algorithm 3.3.1. (Deterministic reduced acceptance-rejection sampler based on

(t, s)-sequence) Let  : [0, 1] ! R
+

be a target density. Choose a proposal density

H such that  �H and H can be sampled directly. Let

S := {x 2 [0, 1] :  (x) < H(x)},

and

L := {x 2 [0, 1] :  (x) � H(x)}.

Assume that
R

S  (x)dx
R

[0,1]
 (x)dx

,

R

L H(x)dx
R

[0,1]
 (x)dx

and

R

L( �H)(x)dx
R

[0,1]
 (x)dx

can be calculated or estimated. Let F�1

H,S , F
�1

H,L be the inverse CDF of the proposal

density H in the domain S and L respectively and F�1

 �H,L be the inverse CDF with

respect to  �H in L. Suppose we aim to generate approximately N samples from

 . Let

N
1

=

&

N

R

S  (x)dx
R

[0,1]
 (x)dx

'

, N
2

=

&

N

R

L H(x)dx
R

[0,1]
 (x)dx

'

and N
3

=

&

N

R

L( �H)(x)dx
R

[0,1]
 (x)dx

'

.

i) Let {x
0

,x
1

,x
2

, . . .} ✓ [0, 1]2 be a (t, 2)-sequence in base b.

ii) Use the acceptance-rejection method with respect the target density  and the

proposal density H on the domain S with {x
0

,x
1

, . . . ,xM�1

} as driver se-

quence. Choose M such that N
1

points are accepted by the deterministic

acceptance-rejection algorithm. Compute F�1

H,S(xn) for n = 0, 1, 2, . . . ,M � 1.

Let Y
1,1 = {z

0

, z
1

, . . . , zN
1

�1

} be the accepted point set.

iii) Compute the points F�1

H,L(xn) for n = 0, 1, . . . , N
2

� 1. Let Y
1,2 = {F�1

H,L(xn) :

0  n < N
2

}.

iv) Compute the points F�1

 �H,L(xn) for n = 0, 1, . . . , N
3

�1. Let Y
2,2 = {F�1

 �H,L(xn) :

0  n < N
3

}.

v) Project the points in Y
1,1 [ Y

1,2 [ Y
2,2 onto the first coordinate to obtain the

sample set YN in [0, 1]. Return the point set YN .
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To provide a better understanding, we use a simple flow chart below to illustrate

the idea again for a target density  and the well-chosen proposal density H such

that the inverse cumulative distribution function (ICDF) of  �H and H are avail-

able in convenient forms, see also in [6]. Then deterministic acceptance-rejection

(DAR) algorithm is used only for sampling from region S.

Given  and H

Apply DAR Let  = ( �H) +H

ICDF on H ICDF on  �H

S L

Since the inverse transform is a measure-preserving transformation, it can preserve

the uniformities of the driver sequence. Thus samples generated in R
1,2 and R

2,2 are

low-discrepancy point sets. Example 3.5.3 verifies the e�ciency of the deterministic

acceptance-rejection algorithm. A theoretical result on the discrepancy properties

of samples obtained by this class of algorithms will be provided in Theorem 3.3.3

below.

Algorithm 3.3.1 can be extended to a more general case. Consider the target

density  (x) =
Pk

`=1

H`(x),x 2 D ✓ Rs. If it is possible to sample from H`(x)

individually and the expectations ofH` can be calculated or estimated with low cost,

then we can use an embedded deterministic reduced acceptance-rejection sampler

in each step. Let

S` = {x 2 D :  k�`+1

(x) < H`(x)},

and

L` = {x 2 D :  k�`+1

(x) � H`(x)},

(3.3.1)

where  k�`+1

(x) =
Pk

i=`Hi(x) for ` = 1, . . . , k � 1, and, in particular,  k is the

target density.
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Suppose we aim to sample N points from the target density  . The sample

set can be divided into two types, namely, points generated from the sets S`’s
and L`’s respectively. We apply a deterministic acceptance-rejection method given

in Algorithm 3.2.6 in each S` with respect to  k�`+1

and H`. Note that we get

dN
R

S`  k�`+1

(x)dx/
R

D
 k(x)dxe points from S` for ` = 1, . . . , k� 1. For sampling

from L`, the remaining samples come from applying the inverse transformation of

H` in L`. Then we obtain an additional dN
R

L` H`(x)dx/
R

D
 k(x)dxe points from

L` for ` = 1, . . . , k. We conduct the procedure inductively until we get samples from

Hk(x). We assume that
R

S`  k�`+1

(x)dx/
R

D
 k(x)dx and

R

L` H`(x)dx/
R

D
 k(x)dx

can be calculated or estimated.

The following algorithm is an extension of the simple algorithm, which sum-

marizes the embedding idea.

Algorithm 3.3.2. Let  (x) =
Pk

`=1

H`(x),x 2 D ⇢ Rs�1, be a target density we

aim to sample from. Define  k�`+1

(x) =
Pk

i=`Hi(x) for j = 1, . . . , k � 1. Let S`
and L` be as in Equation (3.3.1) and assume that

R

S`  k�`+1

(x)dx/
R

D
 (x)dx and

R

L` H`(x)dx/
R

D
 (x)dx can be calculated or estimated. Further assume that we

can sample from H` individually by applying the transformation TH`,S` and TH`,L`

given in Equation (3.2.2) in S` and L` respectively. Suppose we aim to generate N

samples from  . Let

N
1,` =

&

N

R

S`  k�`+1

(x)dx
R

D
 (x)dx

'

and N
2,j =

&

N

R

L` H`(x)dx
R

D
 (x)dx

'

.

For ` from 1 to k do:

i) Let {x
0

,x
1

,x
2

, . . .} ✓ [0, 1]s be a (t, s)-sequence in base b.

ii) Compute TH`,S`(xn) for n = 0, 1, 2, . . .. Use the acceptance-rejection method

with respect to  k�`+1

and H` on the domain S` using {x
0

,x
1

, . . . ,xM�1

}
as driver sequence. Choose M such that N

1,` points are accepted by the

acceptance-rejection algorithm. Let Y (s)
1,` = {z

0

, z
1

, . . . , zN
1,`�1

} be the accepted

points.
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iii) Compute TH`,L`(xn) for n = 0, 1, . . . , N
2,` � 1. Let Y (s)

2,` = {TH`,L`(xn) : 0 
n < N

2,`}.

Then let Y (s)
N =

Sk
`=1

(Y (s)
1,` [ Y (s)

2,` ) and let Y (s�1)

N denote the projection of Y (s)
N

onto the first s� 1 coordinates. Return the set Y (s�1)

N .

3.3.2 Discrepancy bounds for samples generated by the re-

duced acceptance-rejection sampler

Now we consider the discrepancy properties of sample points produced by this re-

duced acceptance-rejection algorithm. Note that the sample set of  =
Pk

`=1

H`

can be decomposed into several subsets with di↵erent star-discrepancy. Similarly to

the triangle inequality for the discrepancy presented in Proposition 2.1.4, we have

a triangle inequality for the star-discrepancy with respect to a density function.

Theorem 3.3.3. For a given target density  (x) =
Pk

`=1

H`(x),x 2 D ⇢ Rs�1,

let  k�`+1

(x) =
Pk

i=`Hi(x). Let S` and L` be given by (3.3.1). Let Y (s�1)

N be the

sample set generated by Algorithm 3.3.2, where

N
1,` =

⇠

N

Z

S`
 k�`+1

(x)dx/

Z

D

 k(x)dx

⇡

,

which is the number of points generated from S`, and

N
2,` =

⇠

N

Z

L`
H`(x)dx/

Z

D

 k(x)dx

⇡

,

which is the number of points generated from L` for ` = 1, . . . , k. Assume that N
1,`

and N
2,` can be calculated for the given target density  and N . Then we have

D⇤
N, (Y

(s�1)

N ) 
k�1

X

`=1

N
1,`

N
D⇤

S`, k�`+1

+
k
X

`=1

N
2,`

N
D⇤

L`,H` +
1

N
,

where D⇤
S`, k�`+1

and D⇤
L`,H` is the discrepancy of the samples in S` and L` respect-

ively.

The proof of Theorem 3.3.3 is given in Appendix 3.6.4. Note that this method

achieves an improved acceptance rate of points compared with the plain acceptance-

rejection algorithm for the target density  , since we are only rejecting points in a
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certain range. For the remaining domain, we get samples by applying the inverse

transform. To be more exact, all point sets from L` have low discrepancy since the

inverse transformation is directly applied with respect to H` for ` = 1, . . . , k. Now

we consider the star-discrepancy of points generated from S`.
The following result from [47] gives an improved upper bound of the star-

discrepancy on the first M terms of a (t, s)-sequence in base b with s � 2.

Lemma 3.3.4. The star-discrepancy of the first M terms QM of a (t, s)-sequence

in base b with s � 2 satisfies

D⇤
M(QM)  M�1bt(logM)s

bs(b� 1)

(b+ 1)2s+1(s!)(log b)s
+ CsM

�1bt(logM)s�1,

for some constant Cs > 0 only depending on s.

With the help of Lemma 3.1.8, we obtain a bound on the isotropic discrepancy

of the first M points of a (t, s)-sequence.

Lemma 3.3.5. Let the point set QM = {x
0

,x
1

, . . . ,xM�1

} ⇢ [0, 1]s be the first M

terms of a (t, s)-sequence. For the isotropic discrepancy of QM we have

JM(QM)  2s

✓

4s

s� 1

◆

(s�1)/s
0

@

bt/s
� bs(b�1)

(b+1)2

s+1

(s!)(log b)s

�

1/s
logM

M1/s
+

C 0
sb

t/s(logM)(s�1)/s

M1/s

1

A ,

for some constant C 0
s > 0 depending only on s.

Hence, for the star-discrepancy of Y
1,` for 1  ` < k, using a (t, s)-sequence

as a driver sequence in the acceptance-rejection algorithm we have a convergence

rate of order N�1/s
1,` logN

1,`. We omit a detailed proof since similar arguments as for

proving Theorem 3.2.3 can be used. The following corollary holds by substituting

the proper upper bounds and N
1,`, N2,` in terms of N .

Corollary 3.3.6. Suppose that the target density  (x) =
Pk

`=1

H`(x),x 2 D ⇢
Rs�1 satisfies all assumptions stated in Theorem 3.3.3. Let Y (s�1)

N be the sample set

generated by Algorithm 3.3.2. Then we have

D⇤
N, (Y

(s�1)

N ) 
k�1

X

j=1

CS`, k�`+1

↵1�1/s
j log(↵`N)

N1/s
+

k
X

`=1

CL`,H`(log �`N)s�1

N
+

1

N
,
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where

↵` =

R

S`  k�`+1

(x)dx
R

D
 (x)dx

and �` =

R

L` H`(x)dx
R

D
 (x)dx

,

and CS`, k�`+1

and CL`,H` are constants depending on S`, k�`+1

and L`, H` respect-

ively.

3.4 A �-cover to approximation of the star-discrepancy

Since it is computationally too expensive to compute the supremum in the definition

of the star-discrepancy exactly for dimensions larger than one, we use a so-called

�-cover to estimate this supremum.

Definition 3.4.1. Let (G,B(G), ) be a probability space where G ✓ Rs�1 and B(G)

is the Borel �-algebra defined on G. Let A ✓ B(G) be a set of test sets. A finite

subset �� ✓ A is called a �-cover of A with respect to  if for every A 2 A there

are sets C,D 2 �� such that

C ✓ A ✓ D

and

 (D \ C)  �.

The concept of �-cover is motivated by the following result from [26, Lemma 3.1]

and [38, Section 2.1]. Assume that �� is a �-cover of A with respect to the distri-

bution  . For all {z
0

, z
1

, . . . , zN�1

}, the following discrepancy inequality holds

sup
A2A

�

�

�

�

�

1

N

N�1

X

n=0

1
zn2A �  (A)

�

�

�

�

�

 max
C2��

�

�

�

�

�

1

N

N�1

X

n=0

1
zn2C �  (C)

�

�

�

�

�

+ �.

It can be verified as follows: Since �� is a �-cover of A with respect to  , for

any A 2 A , there are sets C,D 2 �� such that C ✓ A ✓ D and  (D \ C)  �.

Then we have

1

N

N�1

X

n=0

1
zn2C �  (C)� �  1

N

N�1

X

n=0

1
zn2A �  (A)  1

N

N�1

X

n=0

1
zn2D �  (D) + �.

The desired result follows by taking the absolute value of the middle term in the

above formula. In the experiments we choose A to be the set of intervals [0, t),
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where t runs through all points in the domain. For densities defined in [0, 1]s�1, we

set

�� =

(

s�1

Y

j=1

[0, aj2
�m) : aj 2 Z, 0  aj  2m

)

,

which means that the �-cover becomes finer as the number of samples increases,

thus it can yield a more accurate approximation of the star-discrepancy.

For densities defined in Rs�1, we choose �-covers with respect to m as

�� =

(

s�1

Y

j=1

(0, F�1

j (aj2
�m)) : aj 2 Z, 0  aj  2m

)

,

where F�1

j is the inverse marginal CDF with respect to the proposal density H.

Note that the approximation of the star-discrepancy is computationally expensive,

thus our experiments only go up to several thousand sample points. However, the

generation of samples using a (t,m, s)-net is fast.

3.5 Numerical experiments

In the following we present some numerical results. Since in general it is compu-

tationally too expensive to compute the supremum in the definition of the star-

discrepancy exactly, we use a so-called �-cover to estimate this supremum.

In the numerical discussion, the driver sequence is generated by a (t,m, s)-net

in base 2. Specifically, we always use a Sobol0 sequence [77] to generate (t,m, s)-

nets for our experiments. We consider now the case where the target density is

defined on [0, 1]s�1. The following test is a deterministic version of Algorithm 2.4.1.

For the proofs later, we need the technical assumption that the target density is

pseudo-convex.

The following example shows a better convergence rate when using a low-

discrepancy driver sequence rather than a random point set. The reported dis-

crepancy for the acceptance-rejection algorithm using a random driver sequence in

this section is the average of 10 independent runs. Note that numerical results in

figures are presented in a log-log scale, which is throughout the thesis.
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Example 3.5.1. In this example we consider a non-product target density in [0, 1]4.

Let the target density  be

 (x
1

, x
2

, x
3

, x
4

) =
1

4
(e�x

1 + e�x
2 + e�x

3 + e�x
4), (x

1

, x
2

, x
3

, x
4

) 2 [0, 1]4.

Figure 3.7 shows the discrepancy by using deterministic points and pseudo-

random points as driver sequence. For the plain acceptance-rejection algorithm, we

observe a convergence rate ofN�0.482, whereas the deterministic acceptance-rejection

algorithm using (t,m, s)-nets based on a Sobol0 sequence shows a convergence rate

of the discrepancy of order N�0.659.

100 101 102 103 104 105
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100

Number of points N
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cy
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1.251 N−0.659

andom 
1.230 N−0.482

Figure 3.7: Convergence order of the star-discrepancy of Example 3.5.1

for a target density defined in cube.

Next we provide an example to demonstrate the performance of Algorithm 3.2.6

for a target density with state space defined over the real numbers.
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Example 3.5.2. Let the target density function be given by

 (x
1

, x
2

) =

8

>

<

>

:

4

⇡
e�(x

1

+x
2

)(x
1

x
2

)1/2, x
1

, x
2

> 0,

0, else.

The proposal density function H, which we use to do the acceptance-rejection

to generate samples of  (x
1

, x
2

), is chosen as

H(x
1

, x
2

) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1

4
, 0  x

1

, x
2

 1,

1

4x2

2

, 0  x
1

 1, x
2

> 1,

1

4x2

1

, x
1

> 1, 0  x
2

 1,

1

4x2

1

x2

2

, x
1

, x
2

> 1,

0, else.

For this choice of H, we use the transform T defined in Equation (3.2.2) to obtain

samples from H. The samples (xj,1, xj,2) are given by the following transformation

xj,1 =

8

>

<

>

:

2uj,1, 0  uj,1  1/2,

1/2(1� uj,1), 1/2 < uj,1  1,

xj,2 =

8

>

<

>

:

2uj,2, 0  uj,2  1/2,

1/2(1� uj,2), 1/2 < uj,2  1,

where (uj,1, uj,2), 0  j  bm, is the driver point set given by a (t,m, 2)-net in base

b.

The order of convergence of the star-discrepancy is demonstrated in Figure 3.8,

where N is the number of accepted samples. The numerical experiments show that

the star-discrepancy converges at a rate of N�0.720 for this example using quasi-

Monte Carlo samples as proposal. The original acceptance-rejection algorithm con-

verges with order N�0.464. Again, the deterministic version sampler outperforms the

pseudo-random sampler.

Now we present an example for sampling from a target density function using

the reduced acceptance-rejection sampler.
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Figure 3.8: Convergence order of the star-discrepancy of Example 3.5.2

for a target density defined in real state space.

Example 3.5.3. Let  (x) = sin(4x) + x2 be the target density function defined on

[0, 1].

Instead of seeking a proposal density H such that  (x)  H(x), we notice that

inversion can be implied to sin(4x) and x2 independently. However, it can not work

for their sum. Choose H(x) = x2. We only do deterministic acceptance-rejection

with respect to the target density  and proposal density H in the subinterval S =

(⇡/4, 1]. In the remaining range L = [0, ⇡/4], we apply the inverse transformation

on H and  �H to obtain samples based on a deterministic driver sequence.

The discrepancy of the point set generated by Algorithm 3.3.1 converges at the

rate of N�0.929, which is significantly better than the N�0.501 convergence rate of a

random driver sequence, see Figure 3.9.
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Figure 3.9: Convergence order of the star-discrepancy of Example 3.5.3

using the reduced deterministic acceptance-rejection sampler.

3.6 Proofs

Before giving the proofs, we need some preparation.

Consider the following elementary intervals

Wk =
s
Y

j=1



cj
bk
,
cj + 1

bk

◆

, (3.6.1)

with 0  cj < bk (where cj is an integer) for j = 1, . . . , s. The diagonal of Wk has

length
p
s/bk and the volume is b�sk. Let J be an arbitrary convex set in [0, 1]s.

Let W o
k denote the union of cubes Wk fully contained in J ,

W o
k =

[

Wk✓J

Wk. (3.6.2)

Let W k denote the union of cubes Wk having non-empty intersection with J or its

boundary @(J),

W k =
[

Wk\(J[@(J)) 6=;
Wk. (3.6.3)
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Lemma 3.6.1. Let k 2 N. Let J be an arbitrary convex set in [0, 1]s. For the W o
k

and W k constructed by (3.6.2) and (3.6.3), we have

�(W k \ J)  2sb�k and �(J \W o
k )  2sb�k.

To illustrate the result we provide the following simple argument which yields

a slightly weaker result. Since the diagonal of Wk has length
p
s/bk we have

W k \ J ✓ B := {x 2 [0, 1]s \ J : kx� yk 
p
sb�k for some y 2 J},

where k · k is the Euclidean norm. Then

�(W k \ J)  �(B).

Note that the outer surface area of a convex set in [0, 1]s is bounded by the surface

area of the unit cube [0, 1]s, which is 2s. Thus the Lebesgue measure of the set B

is bounded by the outer surface area times the diameter. Therefore

�(W k \ J)  �(B)  2s
p
sb�k.

The result for �(J \W o
k ) follows by a similar discussion as the proof above.

Remark. Note that in [61] it was also shown that the constant 2s is best possible.

Now we extend the result in Lemma 3.6.1 to pseudo-convex sets.

Corollary 3.6.2. Let J be an arbitrary pseudo-convex set in [0, 1]s with admissible

convex covering of p parts with q convex parts of J . For W o
k and W k given by (3.6.2)

and (3.6.3) we have

�(W k \ J)  2psb�k and �(J \W o
k )  2psb�k.

Proof. Let A
1

, . . . , Ap be an admissible convex covering of J with p parts. Without

loss of generality, let A
1

, . . . , Aq be the convex subsets of J and Aq+1

, . . . , Ap be such

that A0
j = Aj\J is convex for q + 1  j  p. It follows that

J =
q
[

j=1

Aj [
p
[

j=q+1

(Aj\A0
j). (3.6.4)
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Therefore

W k \ J ✓
 

q
[

j=1

Bj [
p
[

j=q+1

B0
j

!

,

where

Bj =
�

y 2 [0, 1]s \ Aj : kx� yk 
p
sb�k for some x 2 Aj

 

, j = 1, . . . , q,

and

B0
j = {y 2 A0

j : kx� yk 
p
sb�k for some x 2 [0, 1]s \ A0

j}, j = q + 1, . . . , p.

Since Bj [ Aj for j = 1, . . . , q, and B0
j [ A0

j for j = q + 1, . . . , p are convex, using

Lemma 3.6.1, we obtain

�(W k \ J)  �
⇣

q
[

j=1

Bj

⌘

+ �
⇣

p
[

j=q+1

B0
j

⌘

 2psb�k.

The result for �(J \W o
k ) follows by a similar discussion.

Proof of Lemma 3.1.7. For the point set Qm,s = {x
0

,x
1

, . . . ,xM�1

} ✓ [0, 1]s gen-

erated by a (t,m, s)-net in base b with M = bm, let k =

�

m� t

s

⌫

. Let J be an

arbitrary convex set in [0, 1]s. Consider the elementary interval Wk given by Equa-

tion (3.6.1). For W o
k and W k given by (3.6.2) and (3.6.3), obviously, W o

k ✓ J ✓ W k.

The sets W o
k and W k are fair with respect to the net, that is

1

M

M�1

X

n=0

1Wk
(xn) = �(W k) and

1

M

M�1

X

n=0

1W o
k
(xn) = �(W o

k ).

Then

1

M

M�1

X

n=0

1J(xn)� �(J)  1

M

M�1

X

n=0

1Wk
(xn)� �(W k) + �(W k \ J)

=�(W k \ J),

and

1

M

M�1

X

n=0

1J(xn)� �(J) � 1

M

M�1

X

n=0

1W o
k
(xn)� �(W o

k )� �(J \W o
k )

=� �(J \W o
k ).
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By Lemma 3.6.1, we have

�(W k \ J)  2sb�k and �(J \W o
k )  2sb�k.

Thus we obtain
�

�

�

�

�

1

M

M�1

X

n=0

1J(xn)� �(J)

�

�

�

�

�

 2sb�k  2sbt/sM�1/s.

Since the bound holds for arbitrary convex sets, the proof is completed.

3.6.1 Proof of Theorem 3.2.3

Now we are ready to prove the upper bound.

Proof of Theorem 3.2.3. Let J⇤
t

= ([0, t) ⇥ [0, 1])
T

A, where t = (t
1

, . . . , ts�1

) and

A = {x 2 [0, 1]s :  (x
1

, , . . . , xs�1

) � Lxs}. Since yn consists of the first s � 1

coordinates of zn 2 A for n = 0, . . . , N � 1, we have

M�1

X

n=0

1J⇤
t
(xn) =

N�1

X

n=0

1J⇤
t
(zn) =

N�1

X

n=0

1
[0,t)(yn).

Therefore
�

�

�

�

�

1

N

N�1

X

n=0

1
[0,t)(yn)�

1

C

Z

[0,t)

 (z)dz

�

�

�

�

�

=

�

�

�

�

�

1

N

M�1

X

n=0

1J⇤
t
(xn)�

1

�(A)
�(J⇤

t

)

�

�

�

�

�

.

The right-hand side above is now bounded by

M

N

�

�

�

�

�

1

M

M�1

X

n=0

1J⇤
t
(xn)� �(J⇤

t

)

�

�

�

�

�

+

�

�

�

�

�(J⇤
t

)

✓

M

N
� 1

�(A)

◆

�

�

�

�

 M

N

 

�

�

�

�

�

1

M

M�1

X

n=0

1J⇤
t
(xn)� �(J⇤

t

)

�

�

�

�

�

+

�

�

�

�

�

�(A)� 1

M

M�1

X

n=0

1A(xn)

�

�

�

�

�

!

,

where we used the estimation �(J⇤
t

)  �(A) and the fact that N =
PM�1

n=0

1A(xn).

Since J⇤
t

is also pseudo-convex, it follows from Lemma 3.1.9 that we can bound the

above expression by

M

N
2(2p� q)JM(P (s)

M ).
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In addition, limM!1 N
M

= �(A), which means limM!1 N
M

=
R

[0,1]s�1

 (z)dz/L =

C/L. Hence there is an M
0

such that N
M

� C/(2L) for all M � M
0

. Thus M
N

 2L
C

for all M � M
0

. Further we have N  M . Using Lemma 3.1.7 we obtain the bound

M

N
2(2p� q)JM(P (s)

M )  8LC�1sbt/s(2p� q)N�1/s.

3.6.2 Proof of Theorem 3.2.4

The following lemma provides information about the packing number of the northern

hemisphere

Ss�1

north

:= {x 2 [0, 1]s, kx� 1/2k = 1/2, xs � 0},

where 1/2 = (1
2

, 1
2

, . . . , 1
2

) 2 [0, 1]s. The (closed) spherical cap C(y, ⇢) ✓ Ss�1

north

with

center y 2 Ss�1

north

and angular radius ⇢ 2 [0, ⇡] is defined by

C(y, ⇢) = {y 2 Ss�1

north

|x · y � cos ⇢

4
}.

The packing of Ss�1

north

considered here is constructed by identical spherical caps

which are non-overlapping, that is, C(yi, ⇢) and C(yj, ⇢) with i 6= j touch at most

at their boundaries.

Lemma 3.6.3. Let s � 1. For any n 2 N there exist Mn points y
1

, . . . ,yMn
on the

northern hemisphere Ss
north

✓ [0, 1]s+1 and an angular radius ⇢n, with

⇢n = c
1

(2n)�1/(s�1),

n  Mn  c
2

n,

such that the caps C(yi, ⇢n), i = 1, . . . ,Mn, form a packing of the northern hemi-

sphere. The positive constants c
1

, c
2

depend only on the dimension s.

The lemma is essentially well-known for spheres. The explicit proof is due to

Wyner [86] and Hesse gives a summary in [39, Lemma 1]. A similar argument can

be used for the hemisphere in our case.

Now we give the proof of Theorem 3.2.4 whose proof follows the argument from

the proof of [73, Theorem 1].



66 3.6 Proofs

Proof. We may suppose that s � 2. Let Ss�1

north

be the northern hemisphere defined

above contained in [0, 1]s, and let S be the surface of Ss�1

north

. Let C be a closed

spherical cap on S with spherical radius ⇢. The convex hull C of C is a solid

spherical cap. For 0 < ⇢ < ⇡/2, �(C) is a continuous function of ⇢ with

c
1

⇢s+1 < �(C) < c
2

⇢s+1. (3.6.5)

If N is su�ciently large, there is a positive real number ⇢
0

such that a cap C of

spherical radius ⇢
0

has

�(C) =
1

2N
.

In view of (3.6.5), 0 < ⇢
0

< c
3

N�1/(s+1). We now pick as many pairwise disjoint

caps with radius ⇢
0

as possible, say C
1

, . . . , CM . By Lemma 3.6.3, for large N and

hence small ⇢
0

we have M � c
4

⇢�(s�1)

0

, hence

M � c
5

N (s�1)/(s+1). (3.6.6)

Given a sequence of numbers �
1

, . . . , �M , with each �i either 1 or �1, let

B(�
1

, . . . , �M) consist of all x 2 Ss�1

north

which do not lie in a cap Ci with �i = �1.

In other words, B(�
1

, . . . , �M) is obtained from Ss�1

north

by removing the solid caps Ci

for which �i = �1.

Now the local discrepancy function �PN
(H) defined by

�PN
(H) =

N
X

i=1

1H(PN)�N�(H)

is additive, i.e. it satisfies

�PN
(H [H 0) = �PN

(H) +�PN
(H 0)

if H \H 0 = ;. It follows easily that

�PN
(B(�

1

, . . . , �M))��PN
(B(��

1

, . . . ,��M)) =
M
X

i=1

�i�PN
(Ci).

We have

�PN
(Ci) =

N
X

i=1

1Ci
(PN)�N�(Ci) =

N
X

i=1

1Ci
(PN)�

1

2
.
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Hence for every i, either �PN
(Ci) � 1

2

or �PN
(Ci) = �1

2

. Choose �i such that

�i�PN
(Ci) � 1/2 for 1  i  M . Then

�PN
(B(�

1

, . . . , �M))��PN
(B(��

1

, . . . ,��M)) � M/2,

and either J = B(�
1

, . . . , �M) or J = B(��
1

, . . . ,��M) has |�PN
(J)| � M/4. In

addition, J is a convex set due to its construction.

Thus by (3.6.6),

D⇤
N(�, J) �

1

4

M

N
� c

6

N�2/(s+1).

We take  as the boundary of J excluding the boundary of [0, 1]s, which completes

the proof.

3.6.3 Proof of Lemma 3.2.10

Now we prove Lemma 3.2.10 which plays an important role for obtaining the im-

proved upper bound.

Proof of Lemma 3.2.10. Let t 2 [0, 1]s be given. Let v = �m�t( ) and U
1

, . . . , Uv

be elementary intervals of order m� t such that U
1

[U
2

[ · · ·[Uv ◆ (@J⇤
t

\ @[0, 1]s)
and Ui \Ui0 = ; for 1  i < i0  v. Let V

1

, . . . , Vz 2 Em�t with Vi ✓ J⇤
t

, Vi \ Vi0 = ;
for all 1  i < i0  z and Vi \ Ui = ; such that J⇤

t

✓
Sz

i=1

Vi [
Sv

i=1

Ui. We define

W =
z
[

i=1

Vi [
v
[

i=1

Ui

and

W o =
z
[

i=1

Vi.

Then W and W o are fair with respect to the (t,m, s)-net, W o ✓ J⇤
t

✓ W and

�(W \ J⇤
t

),�(J⇤
t

\W o)  �(W \W o) =
v
X

i=1

�(Ui) =
v
X

i=1

b�m+t = b�m+t�m�t( ).

The proof of the desired result now follows by the same arguments as the proof

of Theorem 3.2.3 as presented in Section 3.6.1.
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3.6.4 Proof of Theorem 3.3.3

Now we give the proof of the upper bound on the discrepancy for samples generated

by the reduced acceptance-rejection sampler associated with one special class of

density function. In what follows we restrict our investigations to the case k = 2 for

simplicity, the general case can be proved by similar arguments.

Proof. Let  = H
1

+H
2

be the target density function. Assume that we can apply

the inverse CDF on H
1

and H
2

to generate samples. Let

S := {x 2 D ✓ Rs�1 :  (x) < H
1

(x)},

and

L := {x 2 D ✓ Rs�1 :  (x) � H
1

(x)}.

The final sample set Y (s�1)

N is a superposition of the three subsets, Y (s�1)

1,1 , Y (s�1)

1,2

and Y (s�1)

2,2 , see Figure 3.6. Define Y (s�1)

i,` = {x(i,`)
0

, x(i,`)
1

, . . . , x(i,`)
Ni,`�1

} for i, ` = 1, 2.

The number Ni,` of the points in each subset is given by

N
1,1 =

⇠

N

R

S  (x)dx
R

D
 (x)dx

⇡

,

N
1,2 =

⇠

N

R

L H1

(x)dx
R

D
 (x)dx

⇡

,

N
2,2 =

⇠

N

R

L H2

(x)dx
R

D
 (x)dx

⇡

.

Then there exists �i 2 [0, 1) for i = 1, 2, 3 such that

N
1,1 = N

R

S  (x)dx
R

D
 (x)dx

+ �
1

,

N
1,2 = N

R

L H1

(x)dx
R

D
 (x)dx

+ �
2

,

N
2,2 = N

R

L H2

(x)dx
R

D
 (x)dx

+ �
3

.
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Therefore, we have

�

�

�

�

�

1

N

N�1

X

n=0

1
(�1,t]\D(xn)�

R

(�1,t]\D  (x)dx
R

D
 (x)dx

�

�

�

�

�

=

�

�

�

�

�

1

N

N�1

X

n=0

1
(�1,t]\D(xn)�

R

(�1,t]\L H1

(x)dx+
R

(�1,t]\L H2

(x)dx+
R

(�1,t]\S  (x)dx
R

D
 (x)dx

�

�

�

�

�


�

�

�

�

�

1

N

N
1,1�1

X

n=0

1
(�1,t]\D(x(1,1)

n )�
R

(�1,t]\L H1

(x)dx
R

D
 (x)dx

�

�

�

�

�

+

�

�

�

�

�

1

N

N
1,2�1

X

n=0

1
(�1,t]\D(x(1,2)

n )�
R

(�1,t]\L H2

(x)dx
R

D
 (x)dx

�

�

�

�

�

+

�

�

�

�

�

1

N

N
2,2�1

X

n=0

1
(�1,t]\D(x(2,2)

n )�
R

(�1,t]\S  (x)dx
R

D
 (x)dx

�

�

�

�

�

=
N

1,1

N

�

�

�

�

�

1

N
1,1

N
1,1�1

X

n=0

1
(�1,t]\D(x(1,1)

n )� N

N
1,1

R

(�1,t]\S  (x)dx
R

D
 (x)dx

�

�

�

�

�

+
N

1,2

N

�

�

�

�

�

1

N
1,2

N
1,2�1

X

n=0

1
(�1,t]\D(x(1,2)

n )� N

N
1,2

R

(�1,t]\L H1

(x)dx
R

D
 (x)dx

�

�

�

�

�

+
N

2,2

N

�

�

�

�

�

1

N
2,2

N
2,2�1

X

n=0

1
(�1,t]\D(x(2,2)

n )� N

N
2,2

R

(�1,t]\L H2

(x)dx
R

D
 (x)dx

�

�

�

�

�

:=I
1

+ I
2

+ I
3

.
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I
1

=
N

1,1

N

"

�

�

�

�

�

1

N
1,1

N
1,1�1

X

n=0

1
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n )�
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(�1,t]\S  (x)dx
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�

�
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�

�

+
�
1

N
1,1

R

(�1,t]\S  (x)dx
R

S  (x)dx

#

,

I
2

=
N

1,2

N

"

�

�

�

�

�

1

N
2

N
1,2�1

X

n=0

1
(�1,t]\D(x(1,2)

n )�
R

(�1,t]\L H1

(x)dx
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�

�
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N
2,2

N
2,2�1

X

n=0

1
(�1,t]\D(x(2,2)

n )�
R

(�1,t]\L H2

(x)dx
R

L H2

(x)dx

�

�

�

�

�

+
�
3

N
2,2

R

(�1,t]\L H2

(x)dx
R

L H2

(x)dx

#

,



70 3.6 Proofs

then we obtain

I
1

+ I
2

+ I
3

N
1,1

N
D⇤

S, (Y
(s�1)

1,1 ) +
N

1,2

N
D⇤

L,H
1

(Y (s�1)

1,2 ) +
N

2,2

N
D⇤

L,H
2

(Y (s�1)

2,2 ) +
1

N

R

(�1,t]\D  (x)dx
R

D
 (x)dx

N
1,1

N
D⇤

S, (Y
(s�1)

1,1 ) +
N

1,2

N
D⇤

L,H
1

(Y (s�1)

1,2 ) +
N

2,2

N
D⇤

L,H
2

(Y (s�1)

2,2 ) +
1

N
,

where D⇤
S, is the star-discrepancy of sample points in S associated with  and the

same notation is also applied to D⇤
L,H

1

and D⇤
L,H

2

.

Since this result holds for arbitrary t, the desired result follows then immedi-

ately.



Chapter 4

Discrepancy estimates for the

acceptance-rejection sampler using

stratified inputs

4.1 Introduction

In this chapter, we propose an acceptance-rejection sampler using stratified inputs

as the driver sequence. We estimate the discrepancy of the N -point set in (s� 1)-

dimension generated by the proposed algorithm. First we show an upper bound on

the star-discrepancy of order N�1/2�1/(2s). Further we prove an upper bound on the

q-th moment of the Lq-discrepancy (E[N qLq
q,N ])

1/q for 2  q  1, which is of order

N (1�1/s)(1�1/q). The proposed approach is numerically tested and compared with

the standard acceptance-rejection algorithm using pseudo-random inputs. From our

numerical experiments we can see that, adapting stratified inputs in the acceptance-

rejection sampler outperforms the original algorithm. The numerical results are

roughly in agreement with the upper bounds in Theorems 4.2.6 and 4.2.7.

The chapter is organized as follows. In Section 4.1 we provide the needed

notation and background, and introduce the proposed acceptance-rejection sampler

using stratified inputs. Section 4.2 focuses on the theoretical results including an
71
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upper bound on the star-discrepancy and the Lq-discrepancy. Numerical tests are

presented in Section 4.3 together with a discussion of the results in comparison with

the theoretical bounds. For comparison purpose only, we do the numerical tests also

with pseudo-random inputs. The chapter ends with the proofs of our main results

and a short discussion.

4.1.1 Stratified sampling

Stratified sampling is one of the variance reduction methods used in Monte Carlo

sampling. This method first splits the domain into smaller subsets and then puts a

certain number of points in each smaller domain, see for instance [31, Chapter 4].

The use of stratified sampling depends on two aspects: working domain splitting

and generating samples in each strata. The e�ciency of stratified inputs has been

well studied. The convergence analysis can refer to for instance [65, Chapter 10].

Stratified inputs are good for generating a uniformly distributed point set. In

order to generate low-discrepancy samples with respect to non-uniform distribution,

we can use stratification through the acceptance-rejection.

4.1.2 Acceptance-rejection sampler with stratified inputs

We now present the acceptance-rejection algorithm using stratified inputs.

Algorithm 4.1.1. Let the target density  : [0, 1]s�1 ! R
+

, where s � 2, be given.

Assume that we know a constant L < 1 such that  (z)  L for all z 2 [0, 1]s�1.

Let A = {z 2 [0, 1]s :  (z
1

, . . . , zs�1

) � Lzs}.

i) Let M 2 N and let {Q
0

, . . . , QM�1

} be a disjoint covering of [0, 1)s with Qi of

the form
Qs

j=1

h

cj
M1/s ,

cj+1

M1/s

⌘

with 0  cj  dM1/se� 1. Then �(Qi) = 1/M for

all 0  i  M � 1. Generate a point set PM = {x
0

,x
1

. . . ,xM�1

} such that

xi 2 Qi is uniformly distributed in the sub-cube Qi for each i = 0, 1, . . . ,M�1.
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ii) Use the acceptance-rejection method for the points in PM with respect to the

density  , i.e. we accept the point xn if xn 2 A, otherwise reject. Let Y (s)
N =

A \ PM = {z
0

, z
1

. . . , zN�1

} be the sample set we accept.

iii) Project the points we accepted Y (s)
N onto the first (s � 1) coordinates. Let

Y (s�1)

N = {y
0

,y
1

. . . ,yN�1

} be the projections of the points Y (s)
N .

iv) Return the point set Y (s�1)

N .

Note that M1/s is not necessarily an integer in Algorithm 4.1.1 and hence the

sets Qi do not necessarily partition the unit cube [0, 1)s. The restriction that M1/s

is an integer forces one to choose M = Ks for some K 2 N, which grows fast for

large s. However, this restriction is not necessary and hence we do not assume here

that M1/s is an integer.

As the main goal of our research, we are interested in the discrepancy prop-

erties of points produced by the acceptance-rejection method with stratified in-

puts as driver sequence. We prove bounds on the Lq-discrepancy and the star-

discrepancy. In particular, in the numerical tests we calculate the L
2

-discrepancy

and star-discrepancy of the obtained samples.

By Definition 2.1.3, for a point set PN = {x
0

,x
1

, . . . ,xN�1

} in [0, 1]s, the

L
2

-discrepancy is given by

L
2

(PN) =

 

Z

[0,1]s

�

�

�

1

N

N�1

X

n=0

1
[0,t)(xn)� �([0, t))

�

�

�

2

dt

!

1/2

.

The reason we are particularly interested in the L
2

-discrepancy is because there is

a concise formula for the L
2

-discrepancy due to Warnock [85].

Proposition 4.1.2. For any point set PN = {x
0

,x
1

, . . . ,xN�1

} in [0, 1]s, we have

L2

2,N(PN) =
1

3s
� 2

N

N�1

X

n=0

s
Y

i=1

1� x2

n,i

2
+

1

N2

N�1

X

m,n=0

s
Y

i=1

min(1� xm,i, 1� xn,i),

where xn,i is the i-th component of the point xn.

Later we will present a closed formula for the L
2

-discrepancy of samples asso-

ciated with a density function.



74 4.1 Introduction

This proposition can be derived from Equation (2.3.2), the formula represent-

ing the worst-case error for a reproducing kernel Hilbert space, by choosing the

reproducing kernel K(x,y) =
Qs

j=1

min{1� xj, 1� yj}.
Now we extend the formula to the non-uniform case. Let  : [0, 1]s�1 ! R

+

be

a density function, let C =
R

[0,1]s�1

 (z) dz > 0 and s � 2. The L
2

-discrepancy of

samples Y (s�1)

N ⇢ [0, 1]s�1 with respect to  is given as follows,

L
2

(Y (s�1)

N , ) =
⇣

Z

[0,1]s�1

�

�

�

1

N

N�1

X

n=0

1
[0,t)(yn)�

1

C

Z

[0,t)

 (z)dz
�

�

�

2

dt
⌘

1/2

,

where t = (t
1

, . . . , ts�1

).

A representation of the L
2

-discrepancy in terms of the non-uniform density  

can be obtained as follows. Let

� ,t =
�

�

�

1

N

N�1

X

n=0

1
[0,t)(yn)�

1

C

Z

[0,t)

 (z)dz
�

�

�

,

then

�2

 ,t =
�

�

�

1

N

N�1

X

n=0

1
[0,t)(yn)�

1

C

Z

[0,t)

 (z)dz
�

�

�

2

=
1

N2

N�1

X

m,n=0

s�1

Y

j=1

1
[0,tj)(max{ym,j, yn,j}) +

(
R

[0,t)  (z)dz)
2

C2

� 2

NC

N�1

X

i=0

s�1

Y

j=1

1
[0,tj)(yi,j)

Z

[0,t)

 (z)dz.

Therefore the squared L
2

-discrepancy associated with density  is given by

L
2

(Y (s�1)

N , )2

=

Z

[0,1]s�1

�2

 ,t dt

=
1

N2

N�1

X

m,n=0

s�1

Y

j=1

(1�max{ym,j, yn,j}) +
1

C2

Z

[0,1]s�1

⇣

Z

[0,t)

 (z)dz
⌘

2

dt

� 2

NC

Z

[0,1]s�1

Z

[0,t)

N�1

X

i=0

s�1

Y

j=1

1
[0,tj)(yi,j) (z)dz dt. (4.1.1)

In order to generate samples from the density function  , we employ the

acceptance-rejection algorithm. The acceptance-rejection algorithm accepts all points
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below the graph of the density function with a well-chosen but simple proposal dens-

ity.

For our proof, we again assume that the set below the graph of the density

function admits a so-called Minkowski content as we introduced in Section 3.2.4.

For completeness we recall the concept here, see also Definition 3.2.11. For a set

A ✓ Rs, let @A denote the boundary of A and let

M(@A) = lim
"!0

�((@A)")

2"
,

where (@A)" = {x 2 Rs|kx � yk  " for y 2 @A} and k · k denotes the Euclidean

norm. If M(@A) (abbreviated as MA) exists and is finite, then @A is said to admit

an (s� 1)�dimensional Minkowski content.

4.2 Discrepancy estimates

We present some results that we use to prove an upper bound for the star-discrepancy

with respect to points generated by the acceptance-rejection sampler using stratified

inputs.

The concept of �-cover is a very useful technique used in approximating the

star-discrepancy, see Section 3.4 for the definition and relevant discussion. The

following result on the size of the �-cover is obtained from [32, Theorem 1.15].

Lemma 4.2.1. For any s 2 N and � > 0 there exists a �-cover of the set of anchored

boxes [0, t) ✓ [0, 1)s which has cardinality at most (2e)s(��1 + 1)s.

By a simple generalization, the following result holds for our setting.

Lemma 4.2.2. Let  : [0, 1]s�1 ! R
+

, where s � 2, be a function. Assume that

there exists a constant L < 1 such that  (z)  L for all z 2 [0, 1]s�1. Let A = {z 2
[0, 1]s :  (z

1

, . . . , zs�1

) � Lzs} and J⇤
t

= ([0, t) ⇥ [0, 1]) \ A, for t 2 [0, 1]s�1. Let

(A,B(A),�) be a probability space where B(A) is the Borel �-algebra of A. Define

the set A ⇢ B(A) of test sets by

A = {J⇤
t

: t 2 [0, 1]s�1}.
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Then for any � > 0 there exists a �-cover �� of A with

|��|  (2e)s�1(��1 + 1)s�1.

Lemma 4.2.3. Let the unnormalized density function  : [0, 1]s�1 ! R
+

, with

s � 2, be given. Assume that there exists a constant L < 1 such that  (z)  L for

all z 2 [0, 1]s�1.

• Let M 2 N and let the subsets Q
0

, . . . , QM�1

be a disjoint covering of [0, 1)s of

the form
Qs

i=1

h

cj
M1/s ,

cj+1

M1/s

⌘

where 0  cj  dM1/se � 1. Each set Qi satisfies

�(Qi) = 1/M .

• Let

A = {z 2 [0, 1]s :  (z
1

, . . . , zs�1

) � Lzs}.

Assume that @A admits an (s� 1)�dimensional Minkowski content MA.

• Let J⇤
t

= ([0, t)⇥ [0, 1])
T

A, where t = (t
1

, . . . , ts�1

) 2 [0, 1]s�1.

Then there exists an M
0

2 N such that @J⇤
t

intersects at most with 3s1/2MAM1�1/s

subcubes Qi, for all M � M
0

.

This result can be obtained utilizing a similar proof as in [36, Theorem 4.3].

For the sake of completeness, we give the proof here.

Proof. Since @A admits an (s� 1)�dimensional Minkowski content, it follows that

MA = lim
"!0

�((@A)")

2"
< 1.

Thus by the definition of the limit, for any fixed # > 2, there exists "
0

> 0 such

that �((@A)")  #"MA whenever 0 < "  "
0

.

Based on the form of the subcube given by
Qs

i=1

h

cj
M1/s ,

cj+1

M1/s

⌘

, the largest di-

agonal length is
p
sM�1/s. We can assume that M > (

p
s/"

0

)s, then
p
sM�1/s =:

" < "
0

and
S

i2J Qi ✓ (@A)", where J is the index set for the sets Qi which satisfy

Qi \ @A 6= ;. Therefore

|J |  �((@A)")

�(Qi)
 #"MA

M�1

=
p
s#MAM

1�1/s.
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Without loss of generality, we can set # = 3. Note that the number of boxes Qi

which intersect @J⇤
t

is bounded by the number of boxes Qi which intersect @A, which

completes the proof.

Remark. Ambrosio et al. [4] found that for a closed set A ⇢ Rs, if A has a Lipschitz

boundary, then @A admits an (s�1)-dimensional Minkowski content. In particular,

a convex set A ⇢ [0, 1]s has an (s � 1)-dimensional Minkowski content. Note that

the surface area of a convex set in [0, 1]s is bounded by the surface area of the unit

cube [0, 1]s, which is 2s and it was also shown by Niederreiter and Wills [61] that 2s

is best possible. It follows that the Minkowski content MA  2s when A is a convex

set in [0, 1]s.

Lemma 4.2.4. Suppose that all the assumptions of Lemma 4.2.3 are satisfied. Let

N be the number of points accepted by Algorithm 4.1.1. Then we have

M(�(A)� 3s1/2MAM
�1/s)  N  M(�(A) + 3s1/2MAM

�1/s).

Proof. The number of points we accept in Algorithm 4.1.1 is a random number

since the driver sequence given by stratified inputs is random. Let E(N) be the

expectation of N . The number of Qi which have non-empty intersection with @A is

bounded by l = 3s1/2MAM1�1/s from Lemma 4.2.3. Thus

E[N ]� l  N  E[N ] + l. (4.2.1)

Further we have

E[N ] =
M�1

X

i=0

�(Qi \ A)

�(Qi)
= M�(A). (4.2.2)

Combining (4.2.1) and (4.2.2) and substituting l = 3s1/2MAM1�1/s, one obtains

the desired result.

Before we state the upper bound on the star-discrepancy, our proof method

requires the well-known Bernstein-Cherno↵ inequality.

Lemma 4.2.5. ([8, Lemma 2] ). Let ⌘
0

, . . . , ⌘l�1

be independent random variables

with E(⌘i) = 0 and |⌘i|  1 for all 0  i  l � 1. Denote by �2

i the variance of ⌘i,
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i.e. �2

i = E(⌘2i ). Set � = (
Pl�1

i=0

�2

i )
1/2. Then for any � > 0 we have

P
 

�

�

l�1

X

i=0

⌘i
�

� � �

!



8

>

<

>

:

2e��/4, if � � �2,

2e��
2/4�2

, if �  �2.

4.2.1 Existence result of samples with small star-discrepancy

The star-discrepancy of samples Y (s�1)

N obtained by Algorithm 4.1.1 with respect to

the target density  is given as follows,

D⇤
N, (Y

(s�1)

N ) = sup
t2[0,1]s�1

�

�

�

1

N

N�1

X

n=0

1
[0,t)(yn)�

1

C

Z

[0,t)

 (z)dz
�

�

�

,

where C =
R

[0,1]s�1

 (z) dz > 0 and s � 2.

We can prove the following result for samples generated by the acceptance-

rejection sampler with stratified inputs.

Theorem 4.2.6. Let an unnormalized density function  : [0, 1]s�1 ! R
+

, with

s � 2, be given. Assume that there exists a constant L < 1 such that  (z)  L for

all z 2 [0, 1]s�1. Let C =
R

[0,1]s�1

 (z) dz > 0 and let the graph under  be defined

as

A = {z 2 [0, 1]s :  (z
1

, . . . , zs�1

) � Lzs}.

Assume that @A admits an (s � 1)�dimensional Minkowski content MA. Then

for all large enough N , with positive probability, Algorithm 4.1.1 yields a point set

Y (s�1)

N ✓ [0, 1]s�1 such that

D⇤
N, (Y

(s�1)

N )  s
3

4

p
6MA

2
1

2s
� 1

2 (�(A))
1

2

� 1

2s

p
logN

N
1

2

+

1

2s

+
2�(A)

N
, (4.2.3)

where �(A) = C/L.

Roughly speaking, the stratified inputs combined with the acceptance-rejection

technique yields that the star-discrepancy of the corresponding samples is bounded

by N�1/2�1/2s, which is slightly better than the rate of plain Monte Carlo. The

proof of this upper bound on the star-discrepancy is presented in Section 4.4.1.
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4.2.2 Upper bound on the Lq-discrepancy

In this section we provide an upper bound on the expected value of the Lq-discrepancy

for 2  q  1. We establish an upper bound for
�

E[N qLq
q,N(Y

(s�1)

N )]
�

1/q
which is

given by

⇣

E
h

N qLq
q,N(Y

(s�1)

N )
i⌘

1/q

=

 

E
h

Z

[0,1)s�1

�

�

N�1

X

n=0

1
[0,t)(yn)�

N

C

Z

[0,t)

 (z) dz)
�

�

q
dt
i

!

1/q

,

where Y (s�1)

N is the sample set associated with the density function  .

Theorem 4.2.7. Let the unnormalized density function  : [0, 1]s�1 ! R
+

satisfy

all the assumptions stated in Theorem 4.2.6. Let Y (s�1)

N be the samples generated

by the acceptance-rejection sampler using stratified inputs in Algorithm 4.1.1. Then

we have for 2  q  1,

�

E[N qLq
q,N(Y

(s�1)

N )]
�

1/q  2(1�1/s)(1�1/q)(3s1/2MA)1�1/q

4
p
2C(�(A))(1�1/s)(1�1/q)

N (1�1/s)(1�1/q), (4.2.4)

where MA is the (s�1)-dimensional Minkowski content and the expectation is taken

with respect to the stratified inputs.

In this theorem we can see that (E[N qLq
q,N ])

1/q achieves an order of convergence

of N (1�1/s)(1�1/q) for 2  q  1. We defer the proof to Section 4.4.2. Basically we

prove upper bounds for L
2

-discrepancy and L1-discrepancy (i.e. star-discrepancy)

respectively, then use interpolation for the case 2 < q < 1. It would also be

interesting to find out whether (4.2.4) still holds for 1 < q < 2. See Heinrich [37]

for a possible proof technique. We leave it as an open problem.

4.3 Numerical results

We consider the discrepancy of samples generated by Algorithm 4.1.1 with respect

to the given density  defined by

 (x
1

, x
2

, x
3

, x
4

) =
1

4
(e�x

1 + e�x
2 + e�x

3 + e�x
4), (x

1

, x
2

, x
3

, x
4

) 2 [0, 1]4.
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To compute the star-discrepancy, we utilize the same technique as presented in

Section 3.4, a so-called �-cover, to estimate the supremum in the definition of the

star-discrepancy. We also calculate the L
2

-discrepancy of samples for this example.

The L
2

-discrepancy with respect to a density function is denoted by,

L
2

(Y (s�1)

N , ) =
⇣

Z

[0,1]s�1

�

�

�

1

N

N�1

X

n=0

1
[0,t)(yn)�

1

C

Z

[0,t)

 (z)dz
�

�

�

2

dt
⌘

1/2

, (4.3.1)

where C =
R

[0,1]s�1

 (z) dz > 0 and t = (t
1

, . . . , ts�1

). One can write down a precise

formula for the squared L
2

-discrepancy for a given  in this example according to

Equation 4.1.1, which is

L
2

(Y (s�1)

N , )2 =
1

N2

N�1

X

m,n=0

s�1

Y

j=1

(1�max{ym,j, yn,j}) +
1

4C2

⇣ 71

54e2
� 16

27e
+

7

108

⌘

� 1

16NC

N�1

X

i=0

4

X

j=1

(1 + e�1 � yi,j � e�yi,j)

Q

4

k=1

(1� y2i,k)

1� y2i,j
,

where C = 1� 1/e.

Theorem 4.2.6 shows that Algorithm 4.1.1 can yield a point set satisfying the

discrepancy bound (4.2.3). To test this result numerically and to compare it to

the acceptance-rejection algorithm using random inputs, we perform the following

numerical test. We generate 100 independent stratified inputs and 100 independent

pseudo-random inputs for the acceptance-rejection algorithm. From the sample sets

obtained from the acceptance-rejection algorithm we choose those samples which

yield the fastest rate of convergence for stratified inputs and also for pseudo-random

inputs. Note that the numerical results in the follows figures are presented in a log-

log scale.

Theorem 4.2.6 suggests a convergence rate of order N�1/2�1/(2s) = N�0.6 for

stratified inputs. The numerical results in this test shows an empirical convergence

of N�0.62, see Figure 4.1. In comparison, the same test carried out with the stratified

inputs replaced by pseudo-random inputs shows a convergence rate of order N�0.55.

As expected, stratified inputs outperform random inputs.

We also perform numerical experiments to test Theorem 4.2.7. For q = 1, the

left side in (4.2.4) is the infinite moment, i.e. the essential supremum, of the random
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2.03 N−0.62

Figure 4.1: Convergence order of the star-discrepancy with stratified

inputs.

variable NLq,N(Y
s�1

N ). Theorem 4.2.7 suggests a convergence rate of order N�1/s =

N�0.2. To compare this result with the numerical performance in our example, we

use again 100 independent runs, but now choose the one with the worst convergence

rate for each case. With stratified inputs, we get a convergence rate of orderN�0.55 in

this case (see Figure 4.1), which may suggest that Theorem 4.2.7 is too pessimistic.

Note that Theorem 4.2.7 only requires very weak smoothness assumptions on the

target density, whereas the density in our example is very smooth. This may explain

the di↵erence between the theoretical and numerical results.

We also test Theorem 4.2.7 for the case q = 2. In this case, the left side of (4.2.4)

is an L
2

average of NL
2,N(Y

s�1

N ). Theorem 4.2.7 with q = 2 suggests a convergence

rate of L
2,N(Y

s�1

N ) of order N�1/2�1/(2s) = N�0.6. The numerical experiment in

Figure 4.2 yields a convergence rate of order N�0.59, roughly in agreement with

Theorem 4.2.7 for q = 2. For random inputs we get a convergence rate of order
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Figure 4.2: Convergence order of the L
2

-discrepancy with stratified

inputs.

N�0.50, as one would expect.

4.4 Proofs

4.4.1 Proof of Theorem 4.2.6

Proof. Let J⇤
t

= ([0, t) ⇥ [0, 1])
T

A, where t = (t
1

, . . . , ts�1

). Using the notation

from Algorithm 4.1.1, let yn be the first s � 1 coordinates of zn 2 A, for n =

0, . . . , N � 1. We have
M�1

X

n=0

1J⇤
t
(xn) =

N�1

X

n=0

1
[0,t)(yn).

Therefore

�

�

�

1

N

N�1

X

n=0

1
[0,t)(yn)�

1

C

Z

[0,t)

 (z)dz
�

�

�

=
�

�

�

1

N

M�1

X

n=0

1J⇤
t
(xn)�

1

�(A)
�(J⇤

t

)
�

�

�

. (4.4.1)
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It is noted that

�

�

�

M�1

X

n=0

1J⇤
t
(xn)�

N

�(A)
�(J⇤

t

)
�

�

�


�

�

�

M�1

X

n=0

1J⇤
t
(xn)�M�(J⇤

t

)
�

�

�

+
�

�

�

�(J⇤
t

)
�

M � N

�(A)

�

�

�

�


�

�

�

M�1

X

n=0

1J⇤
t
(xn)�M�(J⇤

t

)
�

�

�

+
�

�

�

M�(A)�N
�

�

�


�

�

�

M�1

X

n=0

1J⇤
t
(xn)�M�(J⇤

t

)
�

�

�

+
�

�

�

M�(A)�
M�1

X

n=0

1A(xn)
�

�

�

 2 sup
t2[0,1]s

�

�

�

M�1

X

n=0

1J⇤
t
(xn)�M�(J⇤

t

)
�

�

�

. (4.4.2)

Let us associate with each Qi, random points xi 2 Qi with probability distribution

P(xi 2 V ) =
�(V )

�(Qi)
= M�(V ),

for all measurable sets V ✓ Qi.

It follows from Lemma 4.2.3 that @J⇤
t

intersects at most l := 3s1/2MAM1�1/s

sets Qi. Therefore, J⇤
t

is representable as the disjoint union of sets Qi entirely

contained in J⇤
t

and the union of at most l sets Qi for which Qi \ J⇤
t

6= ; and

Qi \ ([0, 1]s \ J⇤
t

) 6= ;, i.e.

J⇤
t

=
[

i2I
Qi [

[

i2J
(Qi \ J⇤

t

),

where the index-set J has cardinality at most d3s1/2MAM1�1/se. Since for every

Qi, �(Qi) = 1/M and xi 2 Qi for i = 0, 1, . . . ,M � 1, the discrepancy of
S

i2I Qi is

zero. Therefore, it remains to investigate the discrepancy of
S

i2J(Qi \ J⇤
t

).

Since �(A) = C/L and N � M(C/L � 3s1/2MAM�1/s) by Lemma 4.2.4, we

have M  2LN/C for all M > (6Ls1/2MA/C)s. Consequently,

l = 3s1/2MAM
1�1/s  3s1/2(2L)1�1/sC1/s�1MAN

1� 1

s = ⌦N1�1/s,

where ⌦ = 3s1/2(2L)1�1/sC1/s�1MA.

Let us define the random variable �i for 0  i  l � 1 as follows

�i =

8

<

:

1, if zi 2 Qi \ J⇤
t

,

0, if zi /2 Qi \ J⇤
t

.
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By definition,

�

�

�

M�1

X

n=0

1J⇤
t
(xn)�M�(J⇤

t

)
�

�

�

=
�

�

�

l�1

X

i=0

�i �M
l�1

X

i=0

�(Qi \ J⇤
t

)
�

�

�

. (4.4.3)

Because of P(�i = 1) = �(Qi \ J⇤
t

)/�(Qi) = M�(Qi \ J⇤
t

), we have

E�i = M�(Qi \ J⇤
t

), (4.4.4)

where E[·] denotes the expected value. By (4.4.3) and (4.4.4),

�N(J
⇤
t

; z
1

, . . . , zN) =
�

�

�

M�1

X

n=0

1J⇤
t
(xn)�M�(J⇤

t

)
�

�

�

=
�

�

�

l�1

X

i=0

(�i � E�i)
�

�

�

. (4.4.5)

Since the random variables �i for 0  i  l � 1 are independent of each other,

in order to estimate the sum
Pl�1

i=0

(�i � E�i) we are able to apply the classical

Bernstein-Cherno↵ inequality of large deviation type. Let �2

i = E[�i � E�i]2 and

set � = (
Pl

i=1

�2

i )
1/2. Let

� = ✓l1/2(logN)1/2,

where ✓ is a constant depending only on the dimension s which will be fixed later.

Without loss of generality, assume that N � 3.

Case 1: If �  �2, since �2  l  ⌦N1� 1

s , by Lemma 4.2.5 we obtain

P
�

�N(J
⇤
t

; z
1

, . . . , zN) � ✓l1/2(logN)1/2
�

= P
⇣

�

�

l
X

i=1

(�i � E�i)
�

� � �
⌘

 2e��
2/(4�2

)  2N�✓2/4. (4.4.6)

Though the class of axis-parallel boxes is uncountable, it su�ces to consider a

small subclass. Based on the argument in Lemma 4.2.2, there is an 1/M -cover of

cardinality (2e)s�1(M+1)s�1  (2e)s�1(2LN/C+1)s�1 for M > M
0

such that there

exist R
1

, R
2

2 �
1/M having the properties R

1

✓ J⇤
t

✓ R
2

and �(R
2

\ R
1

)  1/M .

From this it follows that

�N(J
⇤
t

; z
1

, . . . , zN)  max
i=1,2

�(Ri; z1

, . . . , zN) + 1,

see, for instance, [26, Lemma 3.1] and [38, Section 2.1]. This means that we can

restrict ourselves to the elements in �
1/M .
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In view of (4.4.6)

P
�

�(Ri; z1

, . . . , zN) � �
�

 |�
1/M |2N� ✓2

4  2N� ✓2

4 (2e)s�1

�2LN

C
+ 1

�s�1

< 1,

for ✓ = 2
p
2s and N � 8e

C
+ 2.

Case 2: On the other hand, if � � �2, then by Lemma 4.2.5 we obtain

P
⇣

�(J⇤
t

; z
1

, . . . , zN) � ✓l1/2(logN)1/2
⌘

= P
⇣

�

�

l
X

i=1

(�i � E�i)
�

� � �
⌘

 2e�
✓l1/2(logN)

1/2

4 . (4.4.7)

Similarly, using the 1/M -cover above, for ✓ = 2
p
2s and su�ciently large N we

have

P
�

�(Ri; z1

, . . . , zN) � �
�

 |�
1/M |2e�

✓l1/2(logN)

1/2

4

 2e�
✓l1/2(logN)

1/2

4 (2e)s�1

�2LN

C
+ 1

�s�1

< 1,

where the last equation is satisfied for all large enough N .

By (4.4.1) and (4.4.2), we obtain that, with positive probability, Algorithm 4.1.1

yields a point set Y (s�1)

N such that

D⇤
N, (Y

(s�1)

N ) 
p
2s⌦1/2N� 1

2

� 1

2s (logN)1/2 + 1/M.

By Lemma 4.2.1, we have 1/M  2C/(LN) for su�ciently large N . Thus the

proof of Theorem 4.2.6 is complete.

4.4.2 Proof of Theorem 4.2.7

Proof. Let J⇤
t

= ([0, t)⇥ [0, 1])
T

A, where t = (t
1

, . . . , ts�1

) 2 [0, 1]s�1. Let

⇠i(t) = 1Qi\J⇤
t
(xi)� �(Qi \ J⇤

t

)/�(Qi),

where Qi for 0  i  M �1 is a disjoint covering of [0, 1)s with �(Qi) = 1/M . Then

E[⇠i(t)] = 0 since we have E[1Qi\J⇤
t
(xi)] = M�(Qi\J⇤

t

). Hence for any t 2 [0, 1]s�1,

E[⇠2i (t)] = E[(1Qi\J⇤
t
(xi)�M�(Qi \ J⇤

t

))2]

= E[1Qi\J⇤
t
(xi)]� 2M�(Qi \ J⇤

t

)E[1Qi\J⇤
t
(xi)] +M2�2(Qi \ J⇤

t

)

= M�(Qi \ J⇤
t

)(1�M�(Qi \ J⇤
t

))  1/4.
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If Qi ✓ J⇤
t

or if Qi \ J⇤
t

= ;, we have ⇠i(t) = 0. We order the sets Qi such that

Q
0

, Q
1

, . . . , Qi
0

satisfy Qi \ J⇤
t

6= ; and Qi * J⇤
t

(i.e. Qi intersects the boundary of

J⇤
t

) and the remaining sets Qi either satisfy Qi \ J⇤
t

= ; or Qi ✓ J⇤
t

. If @A admits

an (s� 1)-dimensional Minkowski content, it follows from Lemma 4.2.3 that,

M�1

X

i=0

⇠2i (t) =
l�1

X

i=0

⇠2i (t)  l/4 for all t 2 [0, 1]s�1.

Again, E[N ] = M�(A) from Equation (4.2.2). Now for q = 2,

⇣

E
h

N2L2

2,N(Y
(s�1)

N )
i⌘

1/2

=
⇣

E
h

Z

[0,1)s�1

�

�

N�1

X

n=0

1
[0,t)(yn)�

N

C

Z

[0,t)

 (z) dz)
�

�

2

dt
i⌘

1/2

=
⇣

E
h

Z

[0,1)s�1

�

�

M�1

X

n=0

1J⇤
t
(xn)�

N�(J⇤
t

)

�(A)

�

�

2

dt
i⌘

1/2


⇣

E
h

Z

[0,1)s�1

⇣

�

�

M�1

X

n=0

1J⇤
t
(xn)�M�(J⇤

t

)
�

�+
�

�

E(N)�(J⇤
t

)

�(A)
� N�(J⇤

t

)

�(A)

�

�

⌘

2

dt
i⌘

1/2


p
2
⇣

E
h

Z

[0,1)s�1

�

�

M�1

X

n=0

1J⇤
t
(xn)�M�(J⇤

t

)
�

�

2

+
�

�

�(J⇤
t

)

�(A)
(E(N)�N)

�

�

2

dt
i⌘

1/2

,

where we used (a+ b)2  2(a2 + b2).

Then we have

⇣

E
h

N2L2

2,N(Y
(s�1)

N )
i⌘

1/2


p
2
⇣

E
h

Z

[0,1]s�1

�

�

M�1

X

i=0

⇠i(t)
�

�

2

dt+
1

(�(A))2
�

�E(N)�N
�

�

2

i⌘

1/2

=
p
2
⇣

Z

[0,1]s�1

E
h

M�1

X

i=0

⇠2i (t)
i

dt+
L2

C2

M�1

X

i=0

⇠2i (1)
⌘

1/2

=
p
2
⇣

Z

[0,1]s�1

l�1

X

i=0

E[⇠2i (t)] dt+
L2

C2

l�1

X

i=0

⇠2i (1)
⌘

1/2


p
2
⇣1

4
+

L2

C2

l

4

⌘

1/2

=
(L2 + C2)1/2p

2C
l1/2.

Since |⇠i(t)|  1, for q = 1, we have

sup
PM⇢[0,1]s

|ND⇤
N(Y

(s�1)

N )| = sup
PM⇢[0,1]s

sup
t2[0,1]s�1

�

�

M�1

X

i=0

⇠i(t)
�

� = sup
PM⇢[0,1]s

sup
t2[0,1]s�1

�

�

l�1

X

i=0

⇠i(t)
�

�

 sup
PM2[0,1]s

sup
t2[0,1]s�1

l�1

X

i=0

�

�⇠i(t)
�

�  l/4.
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Therefore, for 2  q  1,

�

E[N qLq
q,N(Y

(s�1)

N )]
�

1/q  (L2 + C2)1/2

4
p
2C

l1�1/q,

which is a consequence of the log-convexity of Lp-norms, i.e kfkp✓  kfk1�✓p
0

kfk✓p
1

,

where 1/p✓ = (1� ✓)/p
0

+ ✓/p
1

. In our case, p
0

= 2 and p
1

= 1.

Additionally, following from Lemma 4.2.4, we have M  2LN/C whenever

M > (6Ls1/2MA/C)s. Hence we obtain the desired result by substituting l =

3s1/2MAM1�1/s and replacing M in terms of N .

4.5 Remarks

Note that in some sense (t,m, s)-nets in base b are advanced stratified inputs where

every type of elementary interval provides one way to decompose the domain [0, 1]s,

and there are bt points in each strata (see Figures 3.1 to 3.3 for illustrations of the

corresponding decompositions of the unit square).

In Section 3.2.4, we proved a convergence rate of order N�↵ for 1/s  ↵ < 1

for samples generated by an acceptance-rejection sampler using (t,m, s)-nets as a

driver sequence, where ↵ depends on the target density  . One would expect an

improvement of the convergence rate for stratified sampling. In order to obtain

similar results for stratified inputs rather than (t,m, s)-nets, one would have to use

the elementary intervals U
1

, . . . , Uv of order k which yield a covering of @J⇤
t

\@[0, 1]s

for all t 2 [0, 1]s�1. From this covering one would then have to construct a covering

of @A \ @[0, 1]s and use this covering to obtain stratified inputs. In general, this

strategy does not work with stratified sampling, unless one knows the elementary

intervals explicitly. We did not pursue this approach further.





Chapter 5

Discrepancy bounds for

deterministic acceptance-rejection

samplers beyond N�1/2

5.1 Background

In this chapter we consider an acceptance-rejection sampler based on deterministic

driver sequences. We focus on the construction of good driver sequences which

yield a small discrepancy of the sample set generated by the acceptance-rejection

sampler.

We prove that the discrepancy of an N element sample set generated in this way

is bounded byO(N�2/3 logN), provided that the target density is twice continuously

di↵erentiable with non-vanishing curvature and the acceptance-rejection sampler

uses the driver sequence

KM = {xj = (j↵, j�) mod 1 for j = 1, . . . ,M},

where ↵, � are real algebraic numbers such that 1,↵, � is a basis of a number field

over Q of degree 3. For the driver sequence

Fk = {xj = (j/Fk, {jFk�1

/Fk}) for j = 1, . . . , Fk},
89
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where Fk is the k-th Fibonacci number, we can remove the log factor to improve the

convergence rate to O(N�2/3), where again N is the number of samples we accepted.

We introduce a criterion for measuring the goodness of driver sequences. The

proposed approach is numerically tested by calculating the star-discrepancy of samples

generated for some target densities using KM and Fk as driver sequences. These res-

ults confirm that achieving a convergence rate beyond N�1/2 is possible in practice

using KM and Fk as driver sequences in the acceptance-rejection sampler.

The layout of the chapter is as follows. We present the main theoretical results

in Section 5.2, followed by a discussion of a criterion of good driver sequences in

Section 5.3 and numerical experiments in Section 5.4. The desired bounds are proved

in Section 5.5.

5.2 Discrepancy bounds beyond N�1/2

5.2.1 Motivation

In [92], see also Chapter 3, we proposed a deterministic acceptance-rejection sampler

using low-discrepancy point sets as driver sequences. Therein we proved that the

star-discrepancy is of order N�1/s for target density functions defined in the (s �
1)-dimensional cube, using (t,m, s)-nets as driver sequences. However, numerical

results suggested a much better rate of convergence. Additionally, we proved a lower

bound on the star-discrepancy with respect to a concave density function. The lower

bound suggests a convergence rate of the form N� 2

s+1 for density functions defined

in [0, 1]s�1, see Theorem 3.2.4 for details.

It is natural to ask whether the above bound is achievable, i.e., can we construct

a driver sequence which yields a convergence rate of (almost) N�2/3 in dimension 1

(note that dimension 1 corresponds to s = 2 in Theorem 3.2.4). In this chapter we

present two types of constructions of driver sequences which yield a star-discrepancy

of order (almost)N�2/3 in one dimension. Here we present two types of constructions

of driver sequences for which this property holds for the class of twice continuously
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di↵erentiable target densities with non-vanishing curvature. It uses the notions of

non-vanishing curvature and number fields of degree 3, which we explain in the

following.

The curvature of a twice continuously di↵erentiable plane curve �(t) = (x(t), y(t))

used in this paper is defined as

(t) =
x0(t)y00(t)� y0(t)x00(t)
((x0(t))2 + (y0(t))2)3/2

,

where the parameterization is such that (x0(t))2+(y0(t))2 6= 0 for all t in the domain.

If the curve is given by a function �(t) = (t, f(t)), then this reduces to

(t) =
f 00(t)

(1 + (f 0(t))2)3/2
.

Recall that if f is concave, then   0 and if f is convex then  � 0. By the

assumption that the curve is twice continuously di↵erentiable we have that  is

continuous. The assumption that the curvature is non-vanishing implies therefore

that |(t)| � c > 0 for all t in the domain, and by the continuity of t,  is either

positive or negative everywhere. In particular, if the curve is given by a function,

this means that the function is either strictly concave or strictly convex everywhere.

For the construction of a suitable driver sequence we use algebraic number

fields over the set of rational numbers Q. An algebraic number field over Q is a

finite degree field extension of the field Q of rational numbers and its dimension as

a vector space over Q is called the degree of the number field. For instance, the

set Q(⇠, ⇠2) = {a + b⇠ + c⇠2 | a, b, c 2 Q}, where ⇠ is a real root of a third degree

irreducible polynomial over Z, is a (real) number field of degree 3. In this case,

{1, ⇠, ⇠2} is a basis of the number field.

5.2.2 Upper bounds on the star-discrepancy

Since in this chapter we are working on constructing good samples for densities in

one dimension, the following algorithm now is the generic form of the acceptance-

rejection algorithm based on a deterministic driver sequence for a density function

defined in [0, 1].
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Algorithm 5.2.1. Given a target density  : [0, 1] ! R
+

, assume that there exists

a constant L < 1 such that  (x) < L for all x 2 D. Let A = {x 2 [0, 1]2 :  (x
1

) �
Lx

2

}.

i) Generate a uniformly distributed point set GM = {x
1

,x
2

, . . . ,xM} in [0, 1]2.

ii) Use the acceptance-rejection method for the points GM with respect to the

density  , i.e. we accept the point xn if xn 2 A, otherwise reject. Let Y (2)

N =

A \GM = {z
0

, z
1

, . . . , zN�1

} be the accepted sample set in [0, 1]2.

iii) Project the points in Y (2)

N onto the first coordinate. Let YN(GM) = {y
0

, y
1

, . . . , yN�1

}
be the projections of the point set Y (2)

N .

iv) Return the point set YN(GM).

We estimate the star-discrepancy of samples generated by the acceptance-

rejection algorithm for di↵erent driver sequences. For the driver sequence KM ,

we prove the following upper bound.

Theorem 5.2.2. Let an unnormalized concave density function  : [0, 1] ! R
+

be

twice continuously di↵erentiable having non-vanishing curvature. Assume that there

exists a constant L < 1 such that  (x)  L for all x 2 [0, 1]. Let

KM = {xj = (j↵, j�) mod 1 for j = 1, . . . ,M},

where ↵, � are real algebraic numbers such that 1,↵, � is a basis of a number field

over Q of degree 3. Then the discrepancy of YN(KM) = {y
0

, y
1

, . . . , yN�1

} ✓ [0, 1],

generated by the acceptance-rejection sampler using KM as driver sequence satisfies

D⇤
N, (YN(KM))  C N

�2/3 logN,

where N = |YN(KM)| is the number of points we accepted, and C is a constant

depending on the target density  and the choice of ↵, �.

The proof of this result is presented in Section 5.5.1. This is an open-type

construction, i.e. we can keep proposing new samples until a certain number of
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points is accepted without changing the generated samples. In other words, the

point set does not depends on the number of points. Compared with the open-type

construction, closed-type constructions usually yield a better discrepancy bound in

quasi-Monte Carlo methods. We also prove the following result which improves the

previous bound by a factor of logN . Before we can state this result, we introduce

the following notation. Let Fk denote the k-th Fibonacci number given by

F
1

= F
2

= 1, Fk = Fk�1

+ Fk�2

for k � 3.

Let

{x} = x� bxc

denote the fractional part of the non-negative real number x.

Theorem 5.2.3. Let an unnormalized concave density function  : [0, 1] ! R
+

be

twice continuously di↵erentiable having non-vanishing curvature. Assume that there

exists a constant L < 1 such that  (x)  L for all x 2 [0, 1]. Let

Fk =
n

xj =
� j

Fk

,
�jFk�1

Fk

 �

for j = 1, . . . , Fk

o

.

Then the discrepancy of YN(Fk) = {y
0

, y
1

, . . . , yN�1

} ✓ [0, 1], generated by the

acceptance-rejection sampler using Fk as driver sequence, satisfies

D⇤
N, (YN(Fk))  C 0

 N
�2/3,

where N = |YN(Fk)| is the number of points we accepted, and C 0
 is a constant

depending only on the target density  .

The proof of Theorem 5.2.3 follows by a similar argument as Theorem 5.2.2,

with an additional estimation of a criterion of Fibonacci point sets (see Equa-

tion (5.3.1)) as discussed in Section 5.5.3.

In the driver sequence Fk, the first component is evenly spaced and the second

one is filled by taking the fractional part of jFk�1

/Fk. We can see that the con-

struction relies on the k-th Fibonacci number Fk. Changing the number of points

will provide a completely new point set. Thus Fk is a closed-type construction.



94 5.2 Discrepancy bounds beyond N�1/2

Lattice point sets of the form {( j
N
, {j g

N
}), j = 1, 2, . . . , N} have small star-

discrepancy with respect to rectangular boxes if the coe�cients in the continued

fraction expansion of g
N

are bounded independently of N , see [60, Theorem 5.17].

In particular, for Fibonacci lattice point sets these coe�cients are always 1. Nieder-

reiter [58] explicitly finds values of g for N of the form 2`, 3`, 5`, such that the

continued fraction coe�cients are at most 3 for 2` and 3`, and at most 4 for 5`. It

is reasonable to suggest that similar results to Theorem 5.2.3 and Corollary 5.2.5

below can also be obtained for lattice point sets based on the results in [58].

5.2.3 Integration errors

In [2], Aistleitner and Dick proved a generalized Koksma-Hlawka inequality for ar-

bitrary Borel measures which states that for any function having bounded variation

in the sense of Hardy and Krause (abbreviated as VHK), the integration error can

be bounded by a product of the variation of the integrand function times the dis-

crepancy of the quadrature points.

We follow the definition of the variation VHK from [2, Section 2]. Let f be

a function on [0, 1]s. Let B = [a, b] ✓ [0, 1]s where a = (a
1

, a
2

, . . . , as) and b =

(b
1

, b
2

, . . . , bs). Let �(s)(f,B) be a di↵erence operator depending on f and B given

by

�(s)(f,B) =
1

X

j
1

=0

. . .
1

X

js=0

(�1)j1+...+jsf(b
1

+ j
1

(a
1

� b
1

), . . . , bs + js(as � bs)).

For k = 1, . . . , s, let 0 = x(k)
0

< x(k)
1

< . . . < x(k)
mk = 1 and let

⇥

x(k)
l , x(k)

l+1

�

, l =

0, 1, . . . ,mk be a partition of [0, 1] and let P be the partition of [0, 1]s constructed

by

P =
n

⇥

x(1)

l
1

, x(1)

l
1

+1

�

⇥ · · ·⇥
⇥

x(s)
ls
, x(s)

ls+1

�

, lk = 0, . . .mk � 1, k = 1, . . . , s
o

.

Then the variation of f on [0, 1]s in the sense of Vitali is given by

V s(f ; [0, 1]s) = sup
P

X

A2P
|�(s)(f ;A)|,
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where the supremum is extended over all partitions of [0, 1]s into axis-parallel boxes

generated by s one-dimensional partitions of [0, 1], as defined in P . For 1  k  s

and 1  i
1

< · · · < ik  s, let V (k)(f ; i
1

, · · · , ik; [0, 1]s) denote the k-dimensional

variation in the sense of Vitali of the restriction of f to the face

U (i
1

,··· ,ik)
s = {(x

1

, · · · , xs) 2 [0, 1]s : xj = 1 for all j 6= i
1

, · · · , ik}

of [0, 1]s. Then the variation of f on [0, 1]s in the sense of Hardy and Krause anchored

at 1, abbreviated by VHK , is given by

VHK(f, [0, 1]
s) =

s
X

d=1

X

1i
1

<···<iks

V k(f ; i
1

, · · · , ik; [0, 1]s).

With the above definition of VHK , the corresponding Koksma-Hlawka type

inequality with respect to a normalized Borel measure is given as follows.

Proposition 5.2.4. Let f be a measurable function on [0, 1]s which has bounded

variation in the sense of Hardy and Krause, VHK(f) < 1. Let µ be a normalized

Borel measure on [0, 1]s, and let PN = {x
1

, . . . ,xN} be a point set in [0, 1]s. Then

�

�

�

1

N

N
X

n=1

f(xn)�
Z

[0,1]s
f(x) dµ(x)

�

�

�

 VHK(f)D
⇤
N,µ(PN).

In the following we use this result for dimension s = 1. In this case, if the

function f is absolutely continuous, then the variation in the sense of Hardy and

Krause can be written as VHK(f) =
R

1

0

|f 0(x)| dx. Theorems 5.2.2 and 5.2.3 and

Proposition 5.2.4 imply the following result.

Corollary 5.2.5. Let f : [0, 1] ! R have bounded variation VHK(f) < 1. Let  

be non-negative, concave and twice continuously di↵erentiable having non-vanishing

curvature. Let YN(KM) and YN(Fk) be the point set generated by the acceptance-

rejection sampler using KM and Fk as driver sequences respectively. Then we have

�

�

�

1

N

N
X

n=1

f(xn)�
1

C

Z

1

0

f(x) (x) dx
�

�

�



8

>

>

<

>

>

:

C VHK(f)N�2/3 logN, for YN(KM),

C 0
 VHK(f)N�2/3, for YN(Fk),

where N = |YN(KM)|, |YN(Fk)| is the number of points we accepted, C =
R

[0,1]
 (x) dx >

0 and where C and C 0
 are constants depending on  .
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5.3 A quality criterion for driver sequences

In acceptance-rejection sampling, the choice of driver sequence can have a significant

impact on the properties of the accepted samples. In this section, we will present a

criterion which can be used to measure the quality of driver sequences.

Let n = (n
1

, n
2

) 2 Z2 and let |n| = max{|n
1

|, |n
2

|}. For a collection of points

YN = {xj, j = 1, . . . , N} and R > 0, define the following quantity QR with respect

to YN as follows.

QR(YN) =
1

R
+

X

0<|n|<R
n2Z2\0

⇣ 1

|n|3/2 +
1

(1 + |n
1

|)(1 + |n
2

|)
⌘

�

�

�

1

N

N
X

j=1

e2⇡in·xj

�

�

�

. (5.3.1)

The general Erdős-Turán inequality [11, Theorem 3] provides an upper bound

on the discrepancy. We restate this result as a proposition in the following.

Proposition 5.3.1. There exists a positive function �(u) on [0,1) with rapid decay

at infinity such that for every collection of points {xj, j = 1, . . . , N} ✓ Rs, for every

bounded Borel set ⌦ ⇢ Rs, and for every R > 0,

�

�

�

1

N

N
X

j=1

X

m2Z2

1
⌦

(xj +m)� �(⌦)
�

�

�

 |ĤR(0)|+
X

n2Z2

0<|n|<R

(|1̂D(n)|+ |ĤR(n)|)
�

�

�

1

N

N
X

j=1

e2⇡in·xj

�

�

�

,

where HR(x) = �(R dist(x, @⌦)) with dist is the Euclidean distance in Rs, ĤR(0) is

the zeroth Fourier coe�cient of HR and 1̂
⌦

is the Fourier transform of the indicator

function along the boundary of ⌦.

Remark. Note that in [11] they define the positive function � as follows. Let (⇠)

be a smooth radial function supported in {⇠ 2 R2 : |⇠| < 1/2,
R

R2

2(⇠) d⇠ = 1} and

let

K(x) =

Z

R2

(1 + |⇠|2)�3/2( ⇤ )(⇠)e2⇡i⇠·x d⇠,

�(u) = e2⇡
⇣

Z

|y|1

K(y) dy
⌘�1

Z

{|y|�u}
K(y) dy,
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where ⇤ is the convolution operator.

Under certain smooth conditions on the boundary curve of ⌦, the quantity

criterionQR can be derived from the right side of Erdős-Turán inequality by working

out the corresponding Fourier coe�cient decay. More precisely, if the boundary

curve of ⌦ is twice continuously di↵erentiable having non-vanishing curvature, then

we have the formula for QR as shown in Equation 5.3.1.

The following theorem shows a connection between the criterion QR for the

driver sequence and the star-discrepancy of the samples obtained by the acceptance-

rejection algorithm using a deterministic driver sequence. In the following discus-

sion, the notation xN . yN means that there exists a positive constant ✓ such that

xN  ✓yN for all N .

Theorem 5.3.2. Let the unnormalized concave density function  : [0, 1] ! R
+

be twice continuously di↵erentiable having non-vanishing curvature. Assume that

there exists a constant L < 1 such that  (x)  L for all x 2 [0, 1]. Let YN(GM) =

{y
0

, y
1

, . . . , yN�1

} ✓ [0, 1] be generated by the acceptance-rejection sampler using the

point set GM of cardinality M as the driver sequence. Then we have

D⇤
N, (YN(GM)) . QR(GM).

The proof of Theorem 5.5.2 is presented in Section 5.5.2.

5.4 Numerical experiments

To demonstrate the performance of the deterministic acceptance-rejection samplers,

we consider two density functions defined on [0, 1] and calculate the star-discrepancy

of the samples generated by the proposed methods. For comparison purpose, the

convergence rate of the original algorithm using random points and regular grids as

driver sequence are also presented. Note that numerical results are presented in a

log-log scale.
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Example 5.4.1. Let the target density  : [0, 1] ! R+ be given by

 (x) =
3

16

⇣

4 sin
⇣⇡x

2

⌘

� x5/2 � x2

⌘

.

This density function satisfies all smoothness conditions in our theory. The nu-

merical results shown in Figure 5.1 suggest an empirical convergence rate of approx-

imately N�0.75 for samples of  obtained by the deterministic acceptance-rejection

sampler using the driver sequence

KM = {xj = (j↵, j�) mod 1 for j = 1, . . . ,M}.

In the test we choose the real root of the polynomial x3+2x+2. Eisenstein’s criterion

implies that this polynomial is irreducible over Z. The root ⇠ is approximated by

�0.770916997059248 and we set ↵ = ⇠ and � = ⇠2.

Similarly, using the Fibonacci lattice point set

Fk = {xj = (j/Fk, {jFk�1

/Fk}) for j = 1, . . . , Fk},

the numerical experiments show a convergence rate of approximately N�0.8. The

original acceptance-rejection sampler in the random setting produced samples whose

star-discrepancy converges at roughly N�1/2. A similar result is observed for the

regular grid BM given by

BM =

⇢

⇣ j

b
p
Mc

,
m

b
p
Mc

⌘

| j,m = 1, . . . , b
p
Mc

�

.

It is worth noticing that Fibonacci lattice points always provided the smallest value

of the discrepancy. The acceptance rate is roughly 69% for the first example.

Example 5.4.2. Consider the twice continuously di↵erentiable and strictly convex

target density function

 (x) =

8

>

<

>

:

�1

2

x4 � 1

6

x2 + 107

108

, x 2 [0, 1
3

),

�3

4

x4 � 2

27

x+ 1, x 2 [1
3

, 1].

We again observe much better results with deterministic driver sequences, Fk

and KM , compared with pseudo-random points and regular grids as shown in Fig-

ure 5.2. As observed in the first example, a Fibonacci lattice point set Fk yields a
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KM

1.007 N-0.754

Random
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Grid BM

0.602 N-0.487

Figure 5.1: Convergence order of the star-discrepancy with respect to dif-

ferent driver sequences for Example 5.4.1.

slightly better numerical result compared to the point set KM in this experiment.

The acceptance rate is around 80% for Example 5.4.2.

5.5 Proofs

5.5.1 Proof of Theorem 5.2.2

The proof of Theorem 5.2.2 is motivated by a recent paper due to Brandolini et al.

[11]. Therein they proved an upper bound for the following discrepancy associated

with a convex domain with smooth boundary. We recall the main results pertaining

to our discussion here.

Let ⌦ be a bounded convex domain in R2 such that the boundary curve is twice

continuously di↵erentiable having non-vanishing curvature. For t = (t
1

, t
2

) 2 (0, 1)2
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Figure 5.2: Convergence order of the star-discrepancy with respect to dif-

ferent driver sequences for Example 5.4.2.

and any x 2 R2, let

I(t,x) =
[

m2Z2

([0, t
1

]⇥ [0, t
2

] + x+m).

Consider the following discrepancy defined with respect to the set ⌦ and a point set

PN = {xj, j = 1, . . . , N} in R2,

D⇤
N(PN ,⌦) = sup

t2[0,1]2
x2R2

�

�

�

1

N

N
X

j=1

X

m2Z2

1I(t,x)\⌦(xj +m)� �(I(t,x) \ ⌦)
�

�

�

, (5.5.1)

where � denotes the Lebesgue measure.

The following result is [11, Theorem 2], which plays a crucial role in the proof

of Theorem 5.2.2.

Proposition 5.5.1. Suppose that ⌦ is a convex domain in R2 such that the boundary

curve is twice continuously di↵erentiable having non-vanishing curvature. Let 1,↵, �



Chapter 5 Discrepancy bounds for deterministic acceptance-rejection samplers
beyond N�1/2 101

be a basis of a number field over Q of degree 3. Let

KN = {xj = (j↵, j�) for j = 1, . . . , N}.

For the discrepancy defined in Equation (5.5.1), we have

D⇤
N(PN ,⌦)  cN�2/3 logN,

where the constant c depends on the minimum and maximum of the curvature of the

boundary of ⌦ and the length of the boundary, and on the numbers ↵ and �.

The proof of [11, Theorem 2] actually shows that a slightly more general state-

ment holds, which we describe in the following.

For given t and x, the set I(t,x) is the union of infinitely many rectangles of the

form [0, t
1

]⇥[0, t
2

]+x+m, wherem 2 Z2. LetK
1

, . . . , Kq denote all those rectangles

which have non-empty intersection with ⌦, i.e., Kr = [0, t
1

] ⇥ [0, t
2

] + x + mr for

suitable choices of mr 2 Z2 with Kr \ ⌦ 6= ;. Then

1

N

N
X

j=1

X

m2Z2

1I(t,x)\⌦(xj +m)� �(I(t,x) \ ⌦)

=
q
X

r=1

 

1

N

N
X

j=1

X

m2Z2

1Kr\⌦(xj +m)� �(Kr \ ⌦)

!

. (5.5.2)

In [11, pp. 10] the authors state that they prove their result by showing the upper

bound for a single piece Kr, i.e. they show the bound

sup
t2[0,1]2
x2R2

�

�

�

�

�

1

N

N
X

j=1

X

m2Z2

1Kr\⌦(xj +m)� �(Kr \ ⌦)

�

�

�

�

�

 c0sN
�2/3 logN. (5.5.3)

The bound on D⇤
N(K,⌦) then follows by the triangle inequality. We use (5.5.3)

rather than Proposition 5.5.1 in the following.

Note that we are only interested in sets Kr which are contained in the unit

square, i.e. Kr ⇢ [0, 1]2. In this case we have

1

N

N
X

j=1

X

m2Z2

1Kr\⌦(xj +m) =
1

N

N
X

j=1

1Kr\⌦(xj (mod 1)),
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for any point set {x
1

. . . ,xN} ⇢ R2. Thus we obtain from (5.5.3) that

sup
t2[0,1]2

�

�

�

�

�

1

N

N
X

j=1

1
[0,t]\⌦(xj (mod 1))� �([0, t] \ ⌦)

�

�

�

�

�

 c0sN
�2/3 logN. (5.5.4)

In order to be able apply this result in our setting, it remains to construct a

suitable convex set ⌦ in [0, 1]2 which has the graph of  L�1 as part of its boundary.

We define the boundary of the set ⌦ by extending the graph of  L�1 using a Bézier

curve such that the curve is twice continuously di↵erentiable. The Bézier curve

can be constructed using the derivative information of  L�1 at the boundary and

further control points to control the curvature of the curve. The set ⌦ enclosed

by this curve then satisfies the assumptions that its boundary is twice continuously

di↵erentiable with non-vanishing curvature. The details of the construction are left

to the reader (see [27, Chapter 6]).

With these settings, the desired discrepancy bound in Theorem 5.2.2 now fol-

lows from (5.5.4).

5.5.2 Proof of Theorem 5.3.2

Proof of Theorem 5.3.2. By the definition of the star-discrepancy with respect to a

density function, we have

D⇤
N, (YN(GM)) = sup

t2[0,1]

�

�

�

�

�

1

N

N�1

X

j=0

1
[0,t)(yj)�

1

C

Z

[0,t)

 (z) dz

�

�

�

�

�

.

Let A = {x = (x
1

, x
2

) 2 [0, 1]2 :  (x
1

) � Lx
2

} and J⇤
t = ([0, t)⇥ [0, 1))

T

A for

t 2 [0, 1].

Algorithm 5.2.1 implies that the points y
1

, . . . , yN are the first coordinates of

the points of the driver sequence x
1

, . . . ,xM which are in the set A. Hence we have

M
X

j=1

1J⇤
t
(xj) =

N
X

j=1

1
[0,t)(yj).
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Note that C =
R

1

0

 (z) dz = L�(A) and for any t 2 [0, 1] we have
R t

0

 (z) dz =

L�(J⇤
t ). Therefore,

�

�

�

1

N

N
X

j=1

1
[0,t)(yj)�

1

C

Z

[0,t)

 (z) dz
�

�

�

=
�

�

�

1

N

M
X

j=1

1J⇤
t
(xj)�

1

�(A)
�(J⇤

t )
�

�

�

 M

N

�

�

�

1

M

M
X

j=1

1J⇤
t
(xj)� �(J⇤

t )
�

�

�

+
�

�

�

�(J⇤
t )
⇣M

N
� 1

�(A)

⌘

�

�

�

 M

N

⇣

�

�

�

1

M

M
X

j=1

1J⇤
t
(xj)� �(J⇤

t )
�

�

�

+
�

�

�

�(A)
⇣

1� 1

�(A)

N

M

⌘

�

�

�

⌘

 M

N

⇣

�

�

�

1

M

M
X

j=1

1J⇤
t
(xj)� �(J⇤

t )
�

�

�

+
�

�

�

�(A)� 1

M

M
X

j=1

1JA(xj)
�

�

�

⌘

 2M

N
sup
t2[0,1]

�

�

�

�

�

1

M

M
X

j=1

1J⇤
t
(xj)� �(J⇤

t )

�

�

�

�

�

, (5.5.5)

where we used the estimation �(J⇤
t )  �(A) and the fact that N =

PM
j=1

1A(xj) is

the number of accepted points.

For the Borel set J⇤
t ⇢ [0, 1)2 we have

1

M

M
X

j=1

X

m2Z2

1J⇤
t
(xj +m) =

1

M

M
X

j=1

1J⇤
t
(xj (mod 1)).

Then by the general Erdős-Turán inequality in Proposition 5.3.1, we obtain, for

every R > 0,

�

�

�

1

M

M
X

j=1

1J⇤
t
(xj)� �(J⇤

t )
�

�

�

 |ĤR(0)|+
X

n2Z2

0<|n|<R

(|1̂J⇤
t
(n)|+ |ĤR(n)|)

�

�

�

1

M

M
X

j=1

e2⇡in·xj

�

�

�

.

Note that J⇤
t is the intersection of the convex set ⌦ whose boundary was con-

structed using a Bézier curve which is twice continuously di↵erentiable with non-

vanishing curvature (see the proof of Theorem 5.2.2), and the rectangle [0, t)⇥ [0, 1).
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Thus we can use the following estimations from [11, Lemma 10 & Lemma 11],

|ĤR(0)| . 1

R
,

|ĤR(n)| . 1

|n|3/2 +
1

(1 + |n
1

|)(1 + |n
2

|) ,

|1̂J⇤
t
(n)| . 1

|n|3/2 +
1

(1 + |n
1

|)(1 + |n
2

|) ,

the result now follows.

5.5.3 Proof of Theorem 5.2.3

Theorem 5.2.3 follows immediately from Theorem 5.3.2 and Lemma 5.5.2 below.

Lemma 5.5.2. Let Fk denote the k-th Fibonacci number, given by F
1

= 1, F
2

= 1

and Fk = Fk�1

+ Fk�2

for k � 3. Let

Fk =
n

xj =
� j

Fk

,
�jFk�1

Fk

 �

for j = 1, . . . Fk

o

,

where {x} denotes the fractional part of a non-negative number x, more precisely,

{x} = x� bxc. Then we have

QR(Fk) . F�2/3
k ,

for R = Fd2k/3e. The implied constant is independent of Fk.

Proof. First we have

�

�

�

1

Fk

Fk
X

j=1

e
2⇡in·

�

j
Fk

,
jFk�1

Fk

�

�

�

�

=
�

�

�

1

Fk

Fk
X

j=1

�

e2⇡in·(1,Fk�1

)/Fk
�j
�

�

�

=

8

>

<

>

:

1, if Fk|(n1

+ n
2

Fk�1

),

0, if Fk - (n1

+ n
2

Fk�1

),
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where Fk|(n1

+ n
2

Fk�1

) means that Fk divides (n
1

+ n
2

Fk�1

), which implies that

there is an ` 2 Z such that n
1

+ n
2

Fk�1

= `Fk. Hence

X

n2Z2

0<|n|<R

⇣ 1

|n|3/2 +
1

(1 + |n
1

|)(1 + |n
2

|)
⌘

�

�

�

1

Fk

Fk
X

j=1

e
2⇡in·

�

j
Fk

,
jFk�1

Fk

�

�

�

�

=
X

n2Z2

0<|n|<R
Fk|(n1

+n
2

Fk�1

)

⇣ 1

|n|3/2 +
1

(1 + |n
1

|)(1 + |n
2

|)
⌘

. (5.5.6)

From [60, Definition 5.4 & Equation (5.11) & Theorem 5.17] we obtain that

X

n

1

max{1, |n
1

|}max{1, |n
2

|} .(logFk)2

Fk

,

where the sum is over all n = (n
1

, n
2

) 6= (0, 0) with n
1

+ n
2

Fk�1

⌘ 0 (mod Fk) and

�Fk/2 < ni  Fk/2 for i = 1, 2. Hence

X

0<|n|<R
Fk|(n1

+n
2

Fk�1

)

1

(1 + |n
1

|)(1 + |n
2

|) 
X

0<|n|<R
Fk|(n1

+n
2

Fk�1

)

1

max{1, |n
1

|}max{1, |n
2

|}

. (logFk)2

Fk

.

Note that if n
1

= 0, then Fk|n2

Fk�1

which implies Fk|n2

since gcd(Fk, Fk�1

) = 1.

It further implies n
2

= 0 by realising that |n
2

|  R = Fd2k/3e < Fk for k � 3.

If n
2

= 0, then Fk|n1

, which implies that n
1

= 0 since |n
1

|  R = Fd2k/3e < Fk

for k � 3.

Since Fk|(n1

+ n
2

Fk�1

), there is an ` 2 Z such that n
1

+ n
2

Fk�1

= `Fk. For

given n
2

, there is at most one value ` 2 Z such that �R < n
1

= `Fk � n
2

Fk�1

< R.

Now we estimate the remaining term of Equation (5.5.6). We have

X

0<|n|<R
Fk|(n1

+n
2

Fk�1

)

1

|n|3/2 =
X

�R<n
2

<R
n
2

6=0

X

`2Z
�R<`Fk�n

2

Fk�1

<R

1

max{|n
2

|, |`Fk � n
2

Fk�1

|} 3

2

.

(5.5.7)

To bound this term we need some preliminary results on Fibonacci lattice point

sets Fk. The star-discrepancy with respect to uniform distribution of the Fibonacci
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point set Fk is bounded by

D⇤
Fk
(Fk)  c

0

logFk

Fk

,

see [60, pp. 124]. The star-discrepancy D⇤
Fk
(Fk) is defined with respect to rectangles

[0, t) = [0, t
1

)⇥ [0, t
2

) for all (t
1

, t
2

) 2 [0, 1]2. To switch to the discrepancy DFk
(Fk)

with respect to arbitrary rectangles [a, b) ✓ [0, 1]2, we use the inequality DFk
(Fk) 

4D⇤
Fk
(Fk), see [60, Proposition 2.4].

Consider a rectangle V of the following form,

V =
h a

Fk

,
a+ u

Fk

⌘

⇥
h b

Fk

,
b+ v

Fk

⌘

.

By the definition of the star-discrepancy, it follows that

�

�

�

|V \ Fk|
Fk

� uv

F 2

k

�

�

�

 DFk
(Fk)  4D⇤

Fk
(Fk)  4c

0

logFk

Fk

.

This implies that

|V \ Fk|  4c
0

logFk +
uv

Fk

. (5.5.8)

We now consider the double sum in Equation (5.5.7). We divide the range of

0 < |n
2

| < Fd2k/3e into

Fi  |n
2

| < Fi+1

for i = 2, 3, . . . ,
⌃2k

3

⌥

� 1.

Let a = Fi and u = Fi�1

, then a + u = Fi+1

. Similarly we divide the range of

0 < |n
1

| = |`Fk � n
2

Fk�1

| < Fd2k/3e into

Fm  |n
1

| < Fm+1

for m = 2, 3, . . . ,
⌃2k

3

⌥

� 1.

Let b = Fm and v = Fm�1

, then b+ v = Fm+1

. With those settings we have

a

Fk

 |n
2

|
Fk

<
a+ u

Fk

,

b

Fk


�

�

n
2

Fk�1

Fk

� `
�

� <
b+ v

Fk

.

By Equation (5.5.8), the number of Fibonacci points in the rectangle V , given

by |Fk \ V |, is therefore bounded by 4c
0

logFk +
Fi�1

Fm�1

Fk
. This is equivalent to the
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statement that the number of (n
1

, n
2

) with n
1

= `Fk � n
2

Fk�1

, a = Fi  |n
2

| <
Fi+1

= a + u, and b = Fm  |n
1

| < Fm+1

= b + v is bounded above by a constant

(which is independent of i, k,m) times

4c
0

logFk +
Fi�1

Fm�1

Fk

. (5.5.9)

This result can be obtained by considering the following four cases,

(i) a  n
2

< a+ u and b  n
2

Fk�1

� `Fk < b+ v,

(ii) a  �n
2

< a+ u and b  �(n
2

Fk�1

� `Fk) < b+ v,

(iii) a  n
2

< a+ u and b  �(n
2

Fk�1

� `Fk) < b+ v,

(iv) a  �n
2

< a+ u and b  n
2

Fk�1

� `Fk < b+ v.

More precisely, for case (iii) and (iv), we consider the point set

F 0
k =

n

� j

Fk

,
�

� jFk�1

Fk

 �

| j = 1, . . . Fk

o

=
n

� j

Fk

, 1�
�jFk�1

Fk

 �

| j = 1, . . . Fk

o

.

Then the star-discrepancy of F 0
k, D

⇤
Fk
(F 0

k) . logFk

Fk
by noting that x0

j is a reflection

of xj 2 Fk and the inequalities D⇤
Fk
(Fk)  DFk

(F 0
k)  4D⇤

Fk
(F 0

k).

On the other hand, for all 1  n
2

< Fi+1

and k > i, using the continued

fractions technique mentioned in [60, Appendix B] and a property of Fibonacci

numbers, we obtain

|n
1

| = |`Fk � n
2

Fk�1

| � |Fi�1

Fk � FiFk�1

| = Fk�i. (5.5.10)

Since |n
1

|  |n| < R = Fd2k/3e, there is no solution if k � i �
⌃

2k
3

⌥

, i.e. i  bk
3

c.
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Therefore

X

0<|n|<R
n2Z2

1

|n|3/2

=
X

�R<n
2

<R
n
2

6=0

X

`2Z
�R<`Fk�n

2

Fk�1

<R

1

max{|n
2

|, |`Fk � n
2

Fk�1

|}3/2

= 2
d2k/3e�1

X

i=bk/3c+1

Fi+1

�1

X

n
2

=Fi

b2k/3c�1

X

m=k�i

X

`2Z
Fm|`Fk�n

2

Fk�1

|<Fm+1

1

(max{|n
2

|, |`Fk � n
2

Fk�1

|})3/2 ,

(5.5.11)

where we used that for (n
1

, n
2

) 2 Z2 which satisfy 0 < max{|n
1

|, |n
2

|} < R and

Fk|(n1

+ n
2

Fk�1

), also (�n
1

,�n
2

) 2 Z2 satisfy these properties.

To further estimate the right-hand side of Equation (5.5.11), we use the follow-

ing inequalities. For Fi  |n
2

| < Fi+1

and Fm  |n
1

| < Fm+1

we have

max{|n
2

|, |`Fk � n
2

Fk�1

|} � max{Fi, Fm}.

For bk
3

c < i < dk
2

e and k � i  m < k, we have max{Fi, Fm} = Fm.

Applying the bound given in (5.5.9) in each case, we obtain from Equation (5.5.11)

that

X

0<|n|<R
n2Z2

1

|n|3/2  2
dk/2e�1

X

i=bk/3c+1

k
X

m=k�i

⇣4c
0

logFk

F 3/2
m

+
Fi�1

Fm�1

F 3/2
m Fk

⌘

+2
d2k/3e�1

X

i=dk/2e

b2k/3c�1

X

m=k�i

⇣ 4c
0

logFk

max{Fi, Fm}
3

2

+
Fi�1

Fm�1

max{Fi, Fm}
3

2Fk

⌘

.

It is well known that Fi = ['i/
p
5] with ' = (1 +

p
5)/2, where [·] denotes

the nearest integer function given by the integer [x] = � 2 Z which satisfies that
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� � 1

2

< x  � + 1

2

. Thus we have

dk/2e�1

X

i=bk/3c+1

b2k/3c�1

X

m=k�i

logFk

F 3/2
m

. logFk

dk/2e�1
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. logFk
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. logFk
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and
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With respect to the second summation,
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(5.5.14)
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Moreover, we obtain

d2k/3e�1

X

i=dk/2e
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X
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X
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2
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X
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2
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k + '� 2

3

k . 1
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Since (logFk)
2

F
3/4
k

converges faster to 0 than F�2/3
k , we obtain a convergence rate of

order F�2/3
k of the right-hand side of (5.5.6). By setting R = Fd2k/3e we obtain a

convergence rate of order F�2/3
k for QR(Fk), which completes the proof.

Remark. Note that choosing R di↵erently does not improve our result. Since Equa-

tion (5.3.1) contains the factor 1

R
, we need to choose F 2/3

k . R. Choosing R larger

than that can only increase the second term in (5.3.1). But for this second term we

proved a convergence of order F�2/3
k for R of order F 2/3

k . Hence we can not improve

our result using a larger value of R.

5.6 Remarks

To provide a better understanding of the criterion QR(YN) as defined in Equa-

tion (5.3.1), we give the following remarks.

Recall that QR with respect to a point set YN = {xj}Nj=1

and R > 0 is given

by

QR(YN) =
1

R
+

X

0<|n|<R
n2Z2\0

⇣ 1

|n|3/2 +
1

(1 + |n
1

|)(1 + |n
2

|)
⌘

�

�

�

1

N

N
X

j=1

e2⇡in·xj

�

�

�

,

where n = (n
1

, n
2

) 2 Z2 and |n| = max{|n
1

|, |n
2

|}.
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The quantity QR(YN) is derived from the Fourier coe�cient decay of the indic-

ator function for a set with smooth boundary, see [11] for more details. The main

term in this bound is |n|�3/2. In the following we illustrate this result by a simple

example. We consider the Fourier coe�cient decay of the indicator function for a

disk with radius t, Ct = {x 2 R2 : x2

1

+x2

2

 t2}, which is a convex set with constant

curvature.

The Fourier transform of the disk is given by

Î(n) =

ZZ

R2

1Ct(x)e
�2⇡ix·k dx.

To analyse the decay property of Î(n), let
8

>

<

>

:

x
1

= r cos ✓,

x
2

= r sin ✓,

and

8

>

<

>

:

k
1

= |n| cos',

k
2

= |n| sin',

with ✓ 2 [�⇡, ⇡],' 2 [�⇡, ⇡], r 2 [0, t], and |n| =
p

n2

1

+ n2

2

. Then we have

Î(n) =

Z ⇡

�⇡

Z t

0

re�2⇡i(r cos ✓,r sin ✓)·(|n| cos',|n| sin') dr d✓

=

Z ⇡

�⇡

Z t

0

re�2⇡ir|n| cos(✓�') dr d✓

=

Z ⇡

�⇡

Z t

0

re�2⇡ir|n| cos� dr d�

=

Z ⇡

�⇡

(2⇡i|n| cos�t+ 1)e�2⇡it|n| cos�t � 1

4⇡2|n|2 cos2 � d�.

We have

dÎ(n)

dt

=

Z ⇡

�⇡

2⇡i|k| cos�e�2⇡it|n| cos�t + (2⇡i|n| cos�t+ 1)(�2⇡i|n| cos�)e�2⇡it|n| cos�t

4⇡2|n|2 cos2 � d�

=

Z ⇡

�⇡
te�2⇡it|n| cos�t d�

= 2⇡t J
0

(2⇡|n|t) . J
0

(|n|),

where J
0

is the Bessel function of the first kind. By the identity

d

d|n|(|n|J1(|n|)) = |n|J
0

(|n|),
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we have

Î(n) . J
1

(|n|)
|n| .

Since the Bessel function decays proportionally to 1/|n|1/2, Î(n) thus decays pro-

portionally to 1/|n|3/2.
To generalize the criterion to higher dimension, we need to know the corres-

ponding Fourier coe�cient decay of the indicator function along the intersections of

rectangles with certain convex sets. Suppose we have an explicit formula for QR(YN)

in s dimensions. Then a similar idea to the component-by-component construction

discussed in Section 2.1 for lattice rules may be used for constructing good lattice

rules by minimizing the criterion QR. A good sample set YN = {x
0

,x
1

, . . . ,xN�1

}
in [0, 1]s can be generated by the following procedure:

• Set z
1

= 1.

• For k = 2, . . . , s, assume that we found z
2

, . . . zk�1

2 {1, . . . , N � 1}. Then we

search for zk by minimizing the criterion QR(YN(z1, . . . , zk�1

, z)) as a function

of z, where

YN(z1, . . . , zk�1

, z) =
�

{n(z
1

, . . . , zk�1

, z)/N}, n = 0, 1, . . . , N � 1
 

is the rank-1 lattice rule with the generating vector (z
1

, . . . , zk�1

, z).

However, the form of QR in higher dimensions is not clear at the moment. We

leave the study of the component-by-component construction usingQR as a criterion

for a good lattice point set for future work.



Chapter 6

Conclusion and outlook

In this thesis we studied the problem of constructing good point sets according

to non-uniform distributions by employing the acceptance-rejection samplers. We

proved discrepancy bounds for samples generated by the acceptance-rejection sampler

using di↵erent driver sequences, such as digital nets, stratified inputs and lattice

point sets. Explicit constructions of driver sequences which yield a convergence

order beyond N�1/2 for star-discrepancy in dimension one are proposed.

This topic can be further explored from both theoretical and practical aspects.

One may further pursue the construction and implementation of low-discrepancy

point sets with respect to non-uniform distributions in high dimension. Not many

results are available on this topic. As we discussed in Chapter 5, in [3], Aistleitner

and Dick proved an existence result of a low-discrepancy point set whose star-

discrepancy is of order (logN)(3s+1)/2/N for non-uniform measures defined in s-

dimension. We proposed explicit constructions of driver sequences which can be used

in acceptance-rejection samplers yielding a star-discrepancy of samples according to

certain non-uniform densities which converges with order N�2/3 in dimension one.

A criterion for measuring the goodness of driver sequences has also been introduced.

However, the generalization of the criterion to higher dimensions is not available yet.

To find a suitable quality criterion is of great interest since then the component-

by-component construction of a generating vector of lattice rule can be used to

construct good lattice point sets.
113
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In statistical physics and Bayesian statistics it is desirable to compute the mean

of a function associated with some partially known probability measure. How to

design good quasi-Monte Carlo algorithms for sampling from distributions where

the density is not known explicitly, is also interesting to explore. For instance, only

the characteristic function of the target distribution may be known. In the scope

of Monte Carlo, the acceptance-rejection algorithm can work for sampling from a

density function when its characteristic function is of special structure, for example

the Polya characteristic function. It is not clear at the moment whether quasi-Monte

Carlo methods bring any benefit for this problem.

Additionally, the combination of quasi-Monte Carlo and Markov chain Monte

Carlo has the potential for significant improvements in a large number of applica-

tions. Some numerical experiments indicate a substantial improvement in the com-

putational cost and accuracy. An essential part of my future research is to develop

the theory and the e�cient implementation of the MCQMC algorithms, which can

be used in various applications in the applied sciences and statistics. For instance,

the development and the e�cient use of quasi-Monte Carlo methods in applications,

like financial mathematics and statistical learning.
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konvexer und Jordanscher Mengen, Math. Z., 144 (1975), pp. 125–134.
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