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Abstract

For reasons of tractability, the airline scheduling problem has traditionally been se-

quentially decomposed into various stages (eg. schedule generation, fleet assignment,

aircraft routing, and crew pairing), with the decisions from one stage imposed upon

the decision making process in subsequent stages. Whilst this approach greatly sim-

plifies the solution process, it unfortunately fails to capture the many dependencies

between the various stages, most notably between those of aircraft routing and crew

pairing, and how these dependencies affect the propagation of delays through the

flight network. As delays are commonly transferred between late running aircraft

and crew, it is important that aircraft routing and crew pairing decisions are made

together. The propagated delay may then be accurately estimated to minimise the

overall propagated delay for the network and produce a robust solution for both air-

craft and crew.

In this thesis we introduce a new approach to accurately calculate and minimise

the cost of propagated delay, in a framework that integrates aircraft routing and crew

pairing. Additionally, we propose an extension on this model, in which we incorporate

scheduling decisions; allowing higher quality aircraft and crew assignments to be ob-

tained. Finally, we propose a new re-timing heuristic that may be used in conjunction

with an incumbent aircraft and crew assignment, capable of simultaneously re-timing

aircraft and crew whilst retaining the solution structure. We apply our approaches

on a real-world airline network and provide numerical results for a number of test

instances. Our results indicate that our new approaches perform very well on the test

instances and outperform a number of existing models in a number of areas.
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CHAPTER

ONE

Introduction

Since the dawn of flight, the airline industry has continually developed and expanded

internationally, with a vast array of large international carriers and small domestic car-

riers making it possible to travel to all major capital cities and even the most remote

locations of the world. The airline industry plays a pivotal role in not only shrink-

ing our world through tourism, but in driving economic and social progress through

both the transport of business passengers and the transport of freight. The world’s

airlines have provided access to global markets, allowing for the development of world

economies and have no doubt played a key role in enabling the rise of globalisation.

The enormity of this influence on the global economy was perhaps no more evident

than after the shut down of UK and European airspace throughout the eruption of

the Icelandic volcano, Eyjafjallajökull in 2010, with economies taking many months

to recover.

In order to capitalise on these opportunities, airlines must best position themselves

within the global arena. To achieve this, airlines have continually sought to gain

a competitive advantage over their rivals by servicing the most profitable markets,

competing for slot times at major hubs and reducing overall costs. With the onset

of deregulation in the late 1970s (most notably in the USA) and in the 1990s (for

Europe) competition between the major airlines has become increasingly fierce, with

established airlines having to compete with an increasing number of low-cost carriers.

Thus the traditional focus of airline schedule planners has been largely restricted to

cost-cutting and consequently the primary tenet of airline schedule planning has for

many years been one of maximising profit.
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Favouring such an approach however has come at a price, as the schedules gener-

ated using this approach do not perform well in an operational setting and are often

considered to be “over-optimised”. This stems from the fact that maximising profit

at the exclusion of other key factors has a tendency to generate schedules that are

very “tight”, with limited connection time between flights; since aircraft and crew are

most profitable whilst they are in the air. The resulting schedules are therefore highly

brittle in practice; that is, they have the capacity to perform well when all flights

depart and arrive as planned, but collapse rather dramatically when an unexpected

disruption occurs, allowing delays to propagate rapidly throughout the network. This

is evidenced by the recent statistics from the Bureau of Transportation Statistics

(BTS) [76] demonstrating that approximately 21.5% of flights in the U.S. between

the months of July 2010 and July 2011, were delayed and failed to meet On-Time

Performance (OTP) measures, with delay propagation between late-arriving aircraft

being the pre-dominant cause.

In recent years, this dramatic increase in schedule disruption has resulted in an

ever increasing discrepancy between planned costs and realised operational costs. As

aircraft networks continue to grow, this trend is set to continue with AhmadBeygi

et al. [4] reporting that in 2006, it was estimated that the US airline industry ex-

perienced a total of 116.5 million minutes of delay; translating into a $7.7 billion

increase in operating costs. Such large discrepancies have prompted airline schedule

planners to shift their focus from maximising profit to maximising expected profits

under uncertainty, by including various types of costs arising from unplanned events.

In 2010 the number of airlines worldwide totalled 1,629, with 27,271 aircraft and

29.6 million departures per year. Coupled with this, an increase in passenger numbers

in the last few years has resulted in approximately 2.8 billion passengers travelling

worldwide annually (IATA Fact Sheet, 2010) [49]. With passenger growth expected to

rise in the next 10 - 15 years, the effects of delay propagation and network robustness

can no longer be ignored. Moreover, there is a growing need for schedules to possess

the ability to recover quickly from disruptions.

The last few years have witnessed a growing body of research addressing the need

to capture uncertainty within the airline scheduling problem. In addition, attempts

to improve the robustness of airline schedules and their ability to recover quickly



1.1 Tactical Planning In The Airline Industry 3

from disruption is also an area of growing interest. A detailed summary of the recent

literature can be found in Chapter 2 and 3.

1.1 Tactical Planning In The Airline Industry

The airline scheduling problem in its entirety is incredibly complex as airlines are not

only required to construct schedules, that is a set of origin-destination flight pairs with

departure and arrival times for each flight (e.g. SYD→MEL, departing SYD at 0800

and arriving in MEL at 0930) but are additionally required to assign aircraft and crew

to cover each of these flight legs. This is complicated further by the fact that airlines

typically possess many aircraft of different fleet type (e.g. Boeing 767 or A380) with

different seating capacities and ranges; together with multiple crew groups that are

required to be utilised to their fullest extent with the restriction that they may only

be assigned to certain fleet type(s). Moreover, both aircraft and crew must satisfy

certain requirements for maintenance, the return of crew to their crew-base of origin

and numerous crewing restrictions1 predominantly relating to the maximum number

of flying hours in a given duty.

The aforementioned constraints are but a few of the real-world difficulties faced

by airlines in the process of constructing a feasible schedule; not to mention defining

an objective and eventually obtaining an optimal schedule (and assignment). Conse-

quently, in order to retain any degree of tractability, the airline scheduling problem

has been traditionally decomposed sequentially in the following manner (e.g. schedule

generation, fleet assignment, aircraft routing, and crew pairing), with the decisions

from one stage imposed upon the decision making process in subsequent stages. A

more detailed description of each of these stages and methods used to solve them is

covered in Chapter 2.

Whilst the sequential approach greatly simplifies the solution process, it unfor-

tunately fails to capture the many dependencies between the various stages, most

notably between those of aircraft routing and crew pairing, and how these depen-

dencies affect the propagation of delays through the flight network. As delays are

commonly transferred between late running aircraft and crew, it is important that

1Mutually agreed upon rules between an airline and its crew union(s).
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aircraft routing and crew pairing decisions are made together. The propagated delay

may then be accurately estimated to minimise the overall propagated delay for the

network and produce a robust solution for both aircraft and crew.

In this thesis we introduce new approaches for accurately calculating and minimis-

ing the cost of propagated delay, in an integrated aircraft routing and crew pairing

framework. Additionally we seek to ensure that we do not increase running costs

above that of the profit-maximisation case and attempt to achieve this by ensuring

that we use the same number of aircraft and crew as used in the profit-maximisation

case.

1.2 Causes Of Disruption

According to the Bureau of Transportation Statistics [76], approximately 21.5% of

all flight legs in the U.S. did not satisfy key On-Time Performance (OTP) measures

between the months of July 2010 and July 2011. A flight is classified as arriving

“on-time” if it does not arrive more than 15 minutes after its specified arrival time.

The various causes of disruption are listed in Figures 1.1 and 1.2 below.

Propagated delay transferred between late-arriving aircraft accounts for 7.21% of

delays, and approximately 2% of delays are the result of flight cancellations. It is also

clear that the National Aviation System accounts for a large proportion of the delays,

just over 6%; demonstrating that even the best laid plans for an individual airline

may be thwarted by the disruptions caused by other airlines in the airspace.

Figure 1.1: The Causes of Disruption [76].
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This may be the result of adverse weather such as fog or snow, congestion at busy

airports and aircraft (or computer) breakdowns to name a few. In Figure 1.2 below,

it may be observed that weather accounts for approximately 62.11% of delay for the

National Aviation System, with volume the second largest cause at 28.36%.

Figure 1.2: Cause of National Aviation System Delays [76].

This demonstrates that weather may have a significant effect in influencing de-

lays and although weather disruptions may be somewhat expected at certain times

of the year (e.g. throughout the northern Winter), other disruptions such as fog and

thunderstorms may not be as predictable. Therefore it may not be possible to pre-

pare for such disruptions during the long-term planning stages and thus it becomes

necessary to design schedules that are better equipped to quickly recover from un-

expected delays, in order to minimise the effect of delay propagation throughout the

network. Furthermore, as volume is the second largest factor contributing to delay for

the National Aviation System, reducing the effect of delay propagation will become

increasingly important as traffic volume continues to increase into the future.
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1.3 Outline Of Thesis

We now briefly outline the content of each Chapter and the contributions of this

Thesis.

Chapter 2: The Airline Scheduling Problem

In Chapter 2, we introduce the Airline Scheduling Problem and discuss each of the

individual planning stages that form the sequential solution approach to tactical plan-

ning. We also introduce and outline recent attempts at integrating the various stages.

Chapter 3: Capturing Uncertainty: Improving Robustness

In Chapter 3, we discuss recent approaches in the literature for including uncertainty

and improving the robustness of various aspects of the airline scheduling problem.

We briefly outline a number of current models that seek to produce robust, integrated

solutions.

Chapter 4: Minimising Propagated Delay In an Integrated Aircraft Rout-

ing and Crew Pairing Framework

In Chapter 4 we outline in detail our proposed model for minimising propagated

delay in an integrated aircraft routing and crew pairing framework. We discuss the

mathematical formulation behind our model and describe how this work improves

upon existing models in the field. We then obtain results for our model on data from

a real airline network and demonstrate that our model outperforms existing models

in a number of key areas.

Chapter 5: The Re-timing Heuristic

In Chapter 5 we explore the possibility of obtaining a potentially more operationally

robust solution by proposing a heuristic capable of simultaneously re-timing aircraft

and crew whilst attempting to minimise overall delay propagation in the network. We

demonstrate that, despite its simplicity, the heuristic performs very well on a number

of datasets.
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Chapter 6: Integration of Aircraft Routing and Crew Pairing with the

Re-timing Heuristic: Including Scenarios within the Subproblem and Re-

timing Heuristic

In Chapter 6, we propose two new methods of embedding delay scenarios within the

aircraft routing and crew pairing subproblems of the model proposed in Chapter 4

and additionally utilise these scenarios within the re-timing heuristic of Chapter 5.

We demonstrate that embedding each of these methods within the subproblem is

beneficial and when further combined with the improved re-timing heuristic, the solu-

tion obtained out-performs the solution obtained using the heuristic (based on mean

delays) of Chapter 5. Additionally we investigate whether it is possible to improve

upon this re-timed solution by re-solving each approach using the new departure times

obtained from the heuristic. We demonstrate that for certain delay instances this ap-

proach is highly effective and able to achieve significant improvements with relatively

short computation times.

Chapter 7: Integration of Aircraft Routing, Crew Pairing and Re-timing:

Using Scenarios in the Subproblem

Finally, In Chapter 7 we propose a fully integrated model that captures the aspects of

aircraft routing, crew pairing and re-timing without introducing any extra complexity

within the master problem. All three decisions are made simultaneously by allowing

re-timing decisions to be made within the aircraft routing subproblem. We demon-

strate that this proposed method improves the solution quality further and has the

capacity to achieve significant delay improvements; out-performing all others used in

the thesis.

Chapter 8: Summary of Contributions

Finally, In Chapter 8, we provide a summary of our contributions and some possible

areas for future research.



CHAPTER

TWO

The Airline Scheduling Problem

2.1 The Sequential Solution Approach

As mentioned in Chapter 1, in order to retain any degree of tractability, the Airline

Scheduling Problem has traditionally been decomposed into four broad stages; namely,

Schedule Generation (SG), Fleet Assignment (FA), Aircraft Routing (AR) and Crew

Pairing (CP). The need for such a decomposition stems directly from the fact that

the Airline Scheduling Problem in its entirety, is inherently very complex.

In the modern era of travel, airlines face an almost overwhelming task of meeting

all (sometimes conflicting) objectives. In particular, airlines must contend with the

rising cost of fuel, aircraft and crew costs, fluctuations in passenger numbers, compe-

tition with other airlines for established routes, airport congestion, brand loyalty and

the need to fulfill basic key performance indicators (such as On-Time-Performance

(OTP)). Such examples are but a few of the many obstacles placed before an airline,

even before an aircraft leaves the ground.

Moreover, building a mathematical model capable of capturing and accurately

expressing all desirable objectives would be incredibly difficult, if not intractable to

solve. For this reason, airline schedule planners have modelled the most necessary

aspects and sequentially decomposed the problem into the four stages mentioned

above, with the output from each stage providing the input for subsequent stages. A

general overview of the various stages is provided in the following papers [38, 43, 8, 54].
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In recent years, increases in computing power have enabled the partial integration

of two or more stages of the airline scheduling problem, allowing for higher quality

solutions and the elimination of potential incompatibilities. Indeed, research into the

improvement of integration techniques has been a significant area of growth in the last

few years, with results demonstrating that even partial integration of key components

can deliver solutions that are not only closer to cost-optimal but potentially more

operationally robust.

In this Chapter, we outline each of these stages and briefly mention some of the

ways in which various authors have addressed these problems. We then outline a

few attempts at integrating one or more of these stages to provide a better solution.

Finally, we conclude the Chapter by introducing the solution technique known as

column generation, a solution technique extensively used within the airline schedule

planning literature.

2.1.1 Schedule Generation

The first stage of the Airline Scheduling Process involves the design and generation

of the schedule. An airline schedule is typically generated several months prior to the

day of operations, and there often exists a separate summer and a winter schedule in

order to meet fluctuations in passenger demand and cater to specific origin-destination

flight pairs.

In planning a schedule, an airline must determine the markets it wishes to serve,

the frequency with which it serves these markets and lastly the specific departure and

arrival times of each flight leg (Lan et al. (2006) [57]). The choice of markets is crucial

as it determines the choice of origin-destination pairs and the resulting profit from

these pairs. The choice of markets to serve also depends on the fleet of aircraft the

airline has available and whether they intend to favour business travellers, domestic

or international flights, or compete with other airlines for established routes.

In practice, there are often many restrictions placed on the amount by which

the schedule may be changed from year-to-year as airlines prefer to purchase and

retain favourable slot times to ensure schedule saleability. Furthermore, slots may be

expensive to purchase at certain airports, or major hubs may be more congested at
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certain times of the day. A more comprehensive summary of restrictions is provided in

Ageeva (2000) [3]. As the schedule generation is performed first, it has the potential

to affect every subsequent operational decision, and as such, has the capacity to

dramatically affect the airlines profitability. The following paper by Feo and Bard

(1989) outlines a model used to construct flight schedules [39].

2.1.2 Fleet Assignment

Once an airline has determined a suitable schedule, the next task is to assign a specific

aircraft type to each flight leg in the schedule. The objective of the Fleet Assignment

problem is to determine an optimal assignment, so as to closely match the capac-

ity of each aircraft with the expected number of passengers for each flight, whilst

simultaneously keeping operational costs to a minimum.

Matching the expected passenger demand with seating capacity is of importance

to an airline, as operational costs associated with larger aircraft are typically much

greater than that for aircraft with smaller seating capacity. However, despite hav-

ing lower operational costs, smaller aircraft may incur larger passenger spill costs if

incorrectly assigned to a flight leg with high passenger demand.

Definition 2.1.1 (Spill Cost). Spill cost is defined as the amount of lost revenue

resulting from insufficient seating capacity.

Ageeva (2000) [3] states that a feasible assignment must satisfy multiple hard

constraints such as limits on aircraft fuel capacity, aircraft range (longest distance the

aircraft can travel) and limitations on gate availability and the number of aircraft on

ground at certain airports, to name a few.

The fleet assignment problem has been well studied, with detailed surveys con-

tained within the following papers [1, 46, 54, 89, 12, 10]. In the literature, the fleet

assignment problem is usually solved as a multi-commodity flow problem with side

constraints, where each aircraft may be considered to be a “commodity” that needs

to “flow” across the network in a minimal cost way, whilst maintaining aircraft bal-

ance (amongst different aircraft fleets) and ensuring that each flight leg is covered by

exactly one aircraft type (Sarmadi et al. (2004) [86]).
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An optimal fleet assignment may be non-trivial for an airline to achieve, as major

airlines typically possess multiple fleet types (e.g Boeing 767 or A380) and it may

additionally be difficult to accurately estimate the passenger demand for particular

flights many months prior to departure. For this reason, researchers have recently

attempted to incorporate elements of stochasticity into their models as a means of

better reflecting this uncertainty. Although this approach partially addresses the

problem of uncertainty, there is often an over-compensation in an attempt to minimise

passenger spill and consequently, such solutions may produce unfavourable solutions

involving assignments with large numbers of empty seats, representing lost revenue

for the airline. Additionally, in practice, airlines typically overbook flights in the

expectation that some passengers may cancel bookings before departure. The obvious

drawback of such an approach is the potential to cause passenger spill, as a result of

insufficient seating capacity.

In an attempt to avoid the lost revenue associated with such solutions, a relatively

new area of research involves the development of two-stage stochastic models in which

the fleet assignment problem is typically solved a few months prior to the day of oper-

ations and then re-solved once passenger demand information is known with greater

certainty a few days prior to the day of operations (Sherali et al. (2008) and Berge et

al. (2008) [90, 19]). The concept of two-stage stochastic programming models will be

discussed in greater detail in Chapter 3.

Another shortcoming of the traditional fleet assignment model is the use of sim-

plistic assumptions for computing the revenue and passenger spill cost for each flight

leg and consequently each route (or string of flights). Moreover, the basic fleet assign-

ment model does not take into account the dependency between different legs within

a string, nor the effect of spill and recapture from other parts of the network - both of

which are important factors in calculating spill costs. In an attempt to address these

issues Barnhart et al. (2000, 2008) [12, 11] proposed an Itinerary-based Fleet Assign-

ment Model (IFAM) and an enhanced revenue model in which they consider network

effects allowing them to more accurately assess the profitability of the fleet assign-

ments. In these papers, the authors embed the spill optimisation problem within the

fleet assignment problem. Various attempts to improve revenue management for the

fleet assignment problem will be discussed further in Chapter 3.
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Once a fleet type has been assigned to each of the flight legs, the flight legs are

then typically grouped by fleet type and the subsequent stages of Aircraft Routing and

Crew Pairing are solved within each fleet type. This approach not only reduces the

complexity of the aircraft routing and crew pairing problems, but has the additional

benefit of only requiring the enforcement of flow balance of aircraft and crew within

each fleet. This decomposition of flights legs by fleet type often occurs in practice, as

for example technical flight crew have restrictions1 placed on the specific fleet type(s)

on which they may fly. Therefore, such a decomposition has the additional benefit of

simplifying the crew pairing problem further.

2.1.3 Aircraft Routing

The Aircraft Routing problem consists of two parts, namely maintenance routing

and tail-assignment. Maintenance routing is performed a few weeks or months prior

to the day of operations and involves an assignment of aircraft to flight legs in a

minimal cost way; subject to satisfying relevant aircraft maintenance constraints. This

assignment is performed without reference to specific tail numbers and so is feasible

for any aircraft within the fleet. A few days prior to the day of operations, once more

detailed information about aircraft availability may be determined, airline schedule

planners specify an individual aircraft (along with its tail-number) to fly one of the

routes previously chosen by the maintenance routing problem. This process continues

until each of the aircraft routes determined by the maintenance routing problem have

been assigned a specific tail-number. The process of assigning a particular flight tail-

number to each aircraft route is known as tail-assignment. As this thesis is primarily

concerned with long-term planning, we will hereafter focus our attention solely on the

maintenance routing problem.

As the name suggests, maintenance routing requires the construction of a feasible

assignment of aircraft to flights legs for which each aircraft route (sequence of flight

legs) is maintenance feasible. As aircraft must be regularly maintained, there are

four types of maintenance checks that each aircraft must undergo, with some checks

occurring more frequently than others. These four checks are referred to as A-checks,

B-checks, C-checks and D-checks. Of these, the A-check occurs most frequently, per-

1Technical flight crew (pilots) can only be certified for one type of aircraft at any given time,

whilst cabin crew can hold multiple certifications for different aircraft types.
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formed every three to four days, with the aircraft out of service for between 10-20

hours (usually overnight), occurring at the end of a rotation. The remaining three

checks occur less frequently and involve a significant overhaul of the aircraft, with

the aircraft taken out of service for a longer period of time. As a consequence, the

maintenance routing problem typically only considers A-checks as part of the model.

Maintenance feasibility is difficult to model, with most formulations opting for “plane-

count constraints” and “ground arcs” to ensure the number of aircraft on the ground

overnight is sufficiently high to “approximately” model overnight maintenance. This

assumption is reasonable for major hubs for which the aircraft usually return to the

hub at the end of the day.

The aircraft routing problem has received significant attention in recent years and

the following papers provide a comprehensive summary: [26, 30, 42, 54, 25]. Clarke et

al. (1997) [26] construct a flight-based formulation to solve the aircraft maintenance

routing problem. They select a group of sub-tours that cover all flights, satisfy main-

tenance requirements and maximise through revenue. Gopalan and Talluri (1998) [43]

propose an alternative approach in which the aircraft maintenance routing problem

is modelled using graph theoretic techniques. The authors construct a directed graph

G = (V,E) where V denotes the set of stations/airports and E, the flying path. The

problem is solved by identifying Euler tours within this directed graph.

More recently, the aircraft maintenance routing problem has been posed as a con-

nection based model (or multi-commodity flow) (Cordeau et al. (2001) [29]) in which

the decision variables model the connections between various flight legs. However such

models may be prohibitively large to solve, containing thousands or even millions of

integer variables, each describing the decision to include or exclude the feasible con-

nection (feasible arc) from the solution. Moreover, many of these variables may be

fractional, requiring branch and bound, resulting in lengthy computation times. In an

attempt to “break the curse of dimensionality”, authors have recently begun to model

this problem as a set-partitioning problem for which the decision variables correspond

to different aircraft routes, commonly referred to as “strings”.

Definition 2.1.2 (Flight String). A flight string is a sequence of connected flights

that start and end at a maintenance station, satisfy flow balance and incorporate

maintenance requirements (such as maximum flying time between stations).
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This allows the problem to be solved via column generation for which the sub-

problem feeds ‘maintenance feasible’ strings into the master problem. This approach

has the advantage that complicated constraints (such as maintenance feasibility con-

straints) can be captured relatively easily within the subproblem; whereas, such con-

straints would be somewhat more difficult to capture using a leg-based formulation.

Moreover, although there may be many millions of feasible aircraft routes, only a

small selection of them will allow coverage of all flights in a minimal cost way. The

use of column generation allows the user to start with an initial feasible set of aircraft

routes and only generate beneficial (cost-reducing) routes until an optimal solution

is obtained. The reader is referred to Section 2.3 for a brief outline of the column

generation approach and its applicability to aircraft routing (and crew pairing).

The objective of the Aircraft Routing problem is to achieve a minimal cost as-

signment of aircraft to flight legs. For many years, the focus was one of maximising

through revenue. Through revenue is the revenue obtained by ensuring that passen-

gers remain on the same aircraft where they would normally be required to meet a

connecting aircraft. Until recently, this was considered an important aspect of plan-

ning, as passengers are sometimes willing to pay a premium to remain on the same

aircraft, rather than make a connection. However, in practice it has been found that

the increase in revenue is not overly significant (Lan et al. (2006) [57]), and “in real-

ity many of these planned through itineraries are broken in the operation phase as a

result of aircraft swapping” (Sarmadi (2004) [86]).

Recent increases in delay costs have prompted airline schedule planners to begin

to include robustness measures as part of the objective cost. Authors such as Lan et

al. (2006) [57] and Weide et al. (2007) [98] have proposed string based models that

attempt to incorporate delay propagation costs and a non-robustness measure respec-

tively. See Chapter 3 for a more detailed description of these and other approaches

for including robustness within the aircraft routing problem. In Chapter 4 we outline

our proposed integrated model for both aircraft routing and crew pairing that seeks

to minimise propagated delay.
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2.1.4 Crew Pairing

The last stage of the airline scheduling problem is that of crew pairing. The crew

pairing problem is to determine a set of crew itineraries (known as pairings) that

partition the flights in the network into disjoint sets so as to minimise crew cost,

whilst satisfying regulatory agency requirements and collective bargaining agreements

(Lan et al. (2006) [57]). As the crew are usually only allowed to be assigned to a

particular fleet, the solutions to the fleet assignment and aircraft routing problems

are used as input for this problem. As with the fleet assignment problem, the crew

pairing problem has been well studied. The reader is referred to the following papers

[97, 9, 56, 66, 55, 27], for a comprehensive survey.

The crew pairing problem, is often posed as set-partitioning problem in a similar

manner in that of the aircraft routing problem. One of the distinct differences between

the aircraft and the crew pairing problems is the requirement that crew must return to

the crew base at which they started their duty and must comply with restrictions on

working and flying time throughout their duty. These constraints are typically difficult

to capture within a leg-based model, but as for the aircraft routing problem, are

relatively simple to enforce within the subproblem of a column generation framework.

Definition 2.1.3 (Crew Base [85]). A crew base is a designated airport in the network

at which crews are stationed. A crew base is often a major hub for the airline.

Definition 2.1.4 (Duty [85]). A duty is a working day (or number of days) for a crew

and consists of a sequence of flights that return to the crew-base of origin. A duty is

subject to a number of regulatory and union rules (eg. Minimum/maximum sit-times

(connection times) between two successive flights, maximum flying time, time away

from base and elapsed time on duty).

In practice, there are many restrictions enforced on crew, depending on the airline,

the airline’s objective and individual union rules. The reader is referred to Barnhart et

al. (2003) [9] for a more detailed description of these rules and regulations. However,

the following constraints are often included within a simplified crew pairing model:

Namely, the maximum number of flying hours in a duty is 8 hours, with maximum

duration of a duty set to 10 hours. When an aircraft has an overnight, the minimum
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duration for a night rest is 10 hours. It is possible to extend the maximum duration

of a duty under certain circumstances, but we will make use of the aforementioned

rules in our models.

Crew costs contribute a large part of an airline’s expenses, and are second only to

fuel costs. “The cost of a duty is often expressed as the maximum of three quantities:

the flying time, a fraction of the elapsed time, and the minimum guaranteed pay”

(Sandu et al. (2007) [85]). In some countries, as crew costs are essentially fixed, the

objective is to minimise the number of crew pairings to cover all flights or additionally

to minimise reserve crew. In some cases it may also be favourable to minimise the

number of overnights (to minimise accommodation costs), or to avoid the requirement

of deadheads (crew that have to be re-routed to make a connecting flight, but fly as

passengers so as not to violate crew working hours). As with the aircraft routing

problem, we will seek to minimise delay propagation for the crew pairing problem,

see Chapter 4. In the next section we will outline attempts to integrate the various

stages of the airline scheduling problem.

2.2 Integrated Solution Approaches

As was mentioned earlier in the Chapter, one of the significant drawbacks of the se-

quential solution approach is the sub-optimality of the overall solution; as decisions

fixed earlier in the planning process limit the choices that can be made in the subse-

quent stages(s). In an attempt to rectify this problem, many authors have in recent

years begun to integrate two or more of the planning stages in order to better model

and integrate a variety of key decisions that should ideally be made simultaneously.

The growing interest in the integration of various planning stages has no doubt

been fuelled by the growing need to improve operational performance and increase

profit; as improvements as small as 1% in crew costs can translate into millions of

dollars in revenue for an airline. As early as 2001, Cordeau et al. (2001) [29] reported

that their integrated aircraft routing and crew pairing approach was capable of achiev-

ing a reduction in variable crew costs by 9.4% using data from a Canadian airline.

With such improvements to be made, research into various methods of integration has

been an area of significant growth in the last few years; aided in part by significant
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increases in computing power and improved solution techniques.

Integration of the various stages has occurred in a number of forms and began to

feature more prominently in the literature around the late 1990s; Lu [64] and Barn-

hart [13] are two such authors pioneering this early approach to integration. Limited

computing power made it necessary to avoid an explosion in size (both in terms of

the number of variables and number of constraints) of an integrated model. Conse-

quently, early authors adopted an approximate approach; opting for constraints that

approximately modelled one of the stages whilst maintaining the sequential solution

process.

In these papers, both Lu and Barnhart [64, 13] solved the fleet assignment aircraft

(maintenance) routing and crew planning problems sequentially, whilst calculating

the “approximate impact of crew scheduling on various fleetings” within the fleet as-

signment problem. This resulted in an approximate integrated model that still makes

use of the sequential solution process. We now outline a few of the different integrated

models that have been proposed in the last few years whilst briefly mentioning the

rationale behind each approach and relevant solution techniques.

2.2.1 Fleet Assignment, Aircraft Routing Or Crew Pairing

Combined With Schedule Generation

Recognising that schedule generation plays a key role in determining the feasibility of

subsequent aircraft and crew assignments, a fairly large number of authors have at-

tempted to combine (an approximation of) schedule generation with fleet assignment,

aircraft routing and crew pairing.

Under the assumption that the availability of take-off and landing slots (and thus

the schedule) does not vary significantly from year to year, authors have attempted

to incorporate more flexibility (and potentially improve operational robustness) via

the introduction of time windows. Time windows allow the departure time to fall

anywhere within a discretised window, usually extending 10-15 minutes either side of

the originally scheduled departure time. This is achieved by producing copies of the

flight that each correspond to a choice of possible departure time within the discretised

time window, along with corresponding connection arcs. Additionally, extra decision

variables are introduced, each with an extra index representing one of the possible
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departure times for a particular flight.

By allowing greater flexibility in departure time, the number of possible connec-

tions is increased, allowing for a potentially more profitable solution via a reduction

in the number of aircraft or crew required to cover all flights, or perhaps a potentially

more operationally robust solution that performs well under different operational sce-

narios. It should be noted however, that it is important to choose the size of the

time window carefully so as not to shift the departure time too significantly and po-

tentially mis-represent the demand for a particular flight; thus losing revenue from

under-utilisation or passenger spill. For example, an 8:00am flight between two cities

may have significantly different passenger demand than an 8:40 flight between the

same two cities.

Desaulniers et al. (1997) [30] introduce time windows on flight departures for

the fleet assignment problem. The problem is modelled as a multi-commodity flow

problem in which extra time variables are introduced. The authors solve this problem

using branch-and-bound and column generation in which “the column generator is a

time constrained shortest path problem”. Rexing et al. (2000) [77] incorporate time

windows within the fleet assignment problem, and the time windows are discretised

into 5 (and 1) minute intervals.

Klabjan et al. (2002) [56] address the problem of airline crew scheduling, incor-

porating time windows to allow more flexibility in the crew-pairing solution. Lan

et al. (2006) [57] attempt to incorporate robustness into the schedule by estimating

delays for each flight leg and minimising expected delay. The authors also use time

windows (referred to as re-timing) to address the issue of reducing missed connections

for passengers. As in the above, they introduce flight copies, and estimate the number

of disrupted passengers for each possible connection using a connection based model,

leaving the fleeting and routing solutions unchanged.

In [86], Samardi extends the passenger connection model of Lan (above) and

presents an integrated flight departure, re-timing and aircraft routing model that aims

to minimise the expected number of misconnecting passengers. This model assists in

providing any potential misconnecting passengers with alternative recovery options

(such as increasing the number of connection opportunities to assist in re-capturing

spilled passengers).
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Lohatepanont et al. (2004) [63] extend the itinerary-based fleet assignment model

(IFAM) of Barnhart et al. [12] to determine market service frequency, departure times

and fleet assignments simultaneously. The authors make use of a set of flight legs that

may be categorised an mandatory, and assess the worth of a particular itinerary and

re-adjust flight leg demand if a particular itinerary is removed, or if the schedule is

altered.

Belanger et al. (2006) [17], present an integrated model for fleet assignment with

time windows for which they assume the schedule is periodic. The authors penalise

short connections between flights and make use of profit estimations that integrate

and capture both departure time and aircraft type; resulting in a potentially more

profitable matching of fleet type with expected passenger demand.

2.2.2 Schedule Generation, Fleet Assignment Or Aircraft Rout-

ing Combined With Crew Pairing

Aside from fuel costs, crew costs are the second largest expense for an airline. Thus,

another area of research growth is that of integrating aspects of the aircraft planning

process with the crew pairing stage. Results have indicated that even relatively modest

improvements have the potential to improve revenue for an airline.

Barnhart et al. (1998b) [15] propose an integrated model for the fleet assignment

and crew pairing problems. The authors approximately integrate the fleet assignment

with the crew pairing, by including a relaxation of the crew scheduling problem within

the fleet assignment model. This relaxation is based on a duty network in Barnhart et

al. (1998) [14], and ensures that each flight leg is covered by an eligible crew without

imposing constraints on the maximum number of duties within a crew pairing, or the

maximum time away from the crew base.

Cordeau et al. (2001) [29] integrate aircraft routing with crew pairing, using link-

ing constraints to ensure that a crew does not swap aircraft if there is insufficient

connection time. The authors use a Benders decomposition, for which the Benders

master problem corresponds to the aircraft routing problem and the Benders sub-

problem corresponds to the crew pairing problem. The solution process then iterates

between the master and subproblem allowing information to be passed between the
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aircraft routing and crew pairing problems. According to the authors, short connec-

tions are fixed by the master problem and the subproblem constructs minimum cost

crew pairings using only the fixed set of short connections. The authors also make use

of a heuristic solution approach (based on branch and bound) in order to obtain inte-

ger solutions. Results indicate that the integrated model allows for an improvement

of 9.4% in variable crew costs.

Klabjan et al. (2002) [56] partially integrate aircraft routing with crew scheduling.

Solving the problem sequentially, the authors add plane-count constraints to the crew

scheduling model to allow a feasible aircraft routing problem to be obtained. The

authors also include time windows to allow more flexibility within the crew scheduling

problem.

Mercier et al. (2005) [68] improve upon the method proposed in Cordeau (2001)

[29], through the introduction of so-called restricted connections (i.e. Connections that

are longer than the minimum sit-time for crews but smaller than a given threshold).

The authors allow restricted connections, but apply a penalty if both legs are covered

in sequence by the same aircraft. The authors improve the speed of convergence by

reversing the order in which the problems are solved so that the crew pairing is instead

solved in the master problem.

Sandhu et al. (2007) [85] propose a model that integrates fleet assignment and

crew pairing whilst maintaining the possibility of feasible aircraft routings by way of

plane-count constraints. The author states that plane-count constraints are sufficient

to ensure maintenance feasibility, and thus maintenance constraints are not explicitly

modelled. The authors first solve the the crew-pairing problem, determining which

crew connections require the crew to remain on the same aircraft (known as a forced

turn). The authors state that “a set of forced turns can be extended into a plane-count

feasible rotation if and only if the number of planes on the ground at any time imposed

by the forces turns does not exceed the plane count constraints”. Each station has

n activities connected by ground arcs that are used to count the number of planes

on the ground for flow balance purposes. Wrap-around arcs are used to allow the

schedule to repeat daily.
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2.2.3 Three Stages Combined

Mercier et al. (2007) [69] propose a model that integrates three of the components in

the airline scheduling process, namely, re-timing, aircraft routing and crew pairing.

Extending the models of Cordeau et al. (2001) [29] and Mercier et al. (2005) [68], the

authors allow the departure times of flights to be chosen from within a certain time

window. As before, the linking constraints ensure that the same schedule is chosen

for the aircraft and crew pairings, preventing a crew from swapping aircraft if there

is insufficient connection time. The authors propose a compact formulation, using

Benders decomposition with dynamic constraint generation to obtain a solution.

An integrated model that incorporates these three stages is also addressed in

Papadakos (2007) [74], with the emphasis placed on improving convergence/ solution

times (see below).

Improving Convergence

The following three papers address computational techniques that may be used to

improve convergence of the integrated models that have been discussed thus far. Pa-

padakos (2007) [74], Haouari (2007) [47] and Mercier (2005) [68]. Papadakos [74] pro-

poses an improved Benders decomposition combined with a column generation that

may be accelerated using a termination heuristic to circumvent the so-called “tailing-

off effect”2 commonly experienced when solving with column generation. Papadakos

notes that retaining the crew scheduling problem within the Benders subproblem leads

to greater efficiency.

2.3 Multi-commodity Flow Problems, Set-partitioning

Problems And Column Generation

As mentioned earlier in this Chapter, the aircraft routing problem has been modelled

as a multi-commodity flow problem and more recently as a set-partitioning problem.

In this section we will outline the multi-commodity flow problem as it relates to

the aircraft routing problem and outline the corresponding set-partitioning problem.

2A term used to refer to the slow convergence experienced in many real-world column generation

problems (See [54], page 349).
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Finally, we will conclude by describing the column generation approach used to solve

set-partitioning problems.

The multi-commodity flow problem for aircraft routing

Let N denote the number of available aircraft that may be used to cover all flights

contained within the set F , where F = {1, 2, . . . , F}. Define the (directed) arc set A,

as the set consisting of all allowable flight pairs (i, j), for which (i, j) denotes a direct

connection between the flights i and j. For the nth aircraft, each decision variable

xn
ij ∈ {0, 1} corresponds to a connection and is defined as follows:

xn
ij =





1, if flight i connects with flight j,

0, otherwise.

The cost cnij, associated with each decision variable xn
ij , is assumed to be given (or

already calculated). Let so denote a “dummy” flight originating from the “source”

and t denote a flight whose destination is the “sink”; the optimisation problem may

be stated as follows:

Minimise:
N∑

n=1

∑

(i,j)∈A

cijx
n
ij (2.1)

Subject to:
N∑

n=1

∑

i∈F

xn
ij = 1 ∀ j ∈ F

∑

j∈F

xn
so,j ≤ 1 ∀ n ∈ {1, 2 . . . , N}

∑

i∈F

xn
i,t ≤ 1 ∀ n ∈ {1, 2, . . . , N}

∑

i∈F

xn
ik −

∑

j∈F

xn
kj = 0 ∀ k ∈ F , ∀ n.

The set-partitioning problem

In many practical problems, it may be more natural to cast the problem in terms of

paths or columns, for which the columns correspond to certain tasks, or describe the

order of certain processes. For example, in the traditional cutting stock problem which

involves the cutting of rolls from paper drums, each entry i of column j corresponds to
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the number of rolls of width wi produced by column j, and so the column (3, 1, 0, . . . , 0)

represents 3 rolls of width w1, 1 roll of width w2 and no rolls of any other width.

Similarly, for the aircraft routing and crew pairing problems, it is often more nat-

ural to describe the aircraft routes and crew pairings in terms of strings or columns

in which the entries of the columns aj correspond to flights (sorted into topological

order). The entries aij, then take the value 1 if the flight i is included in the string

j and 0 otherwise. For example, the column (1, 0, 1, 0, 0, 1, 1, 0, . . . , 0) represents the

flight string 1 → 3 → 6 → 7. Let I denote the set of all flights and J the set of all fea-

sible aircraft routes (assumed to satisfy flow balance and maintenance requirements).

Define the decision variable xj as follows:

xj =





1, route j is chosen in the optimal solution,

0, otherwise.

where cj represents the corresponding cost for column j. The set-partitioning problem

for aircraft routing may be written as:

Minimise:
∑

j∈J

cjxj (2.2)

Subject to:
∑

j∈J

aijxj = 1 ∀ i ∈ I

xj ∈ {0, 1} ∀ j ∈ J

The approach of simply writing down all the feasible columns may be relatively

easy to accomplish in small scale problems, but as was one of the criticisms mentioned

earlier, there may be many thousands or even millions of feasible columns correspond-

ing to aircraft routes or crew pairings. Moreover, in a complicated network, finding

feasible routes/pairings may itself be extremely difficult. In practice, although there

may be thousands of feasible routes/pairings, only a very small selection of those are

eventually chosen as optimal. Therefore, what we require is a method for generat-

ing beneficial feasible routes/pairings, without having to generate all possible feasible

columns. This leads us to the idea of Column Generation.
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Consider the following linear program for which the number of feasible columns

|J | is extremely large.:

Minimise:
∑

j∈J

cjxj (2.3)

Subject to:
∑

j∈J

aijxj = bi ∀ i ∈ I

xj ≥ 0 ∀ j ∈ J

The idea behind column generation is to start with an initial subset of columns

J0 ⊂ J to form a Restricted Master Problem (RMP), providing an initial basic fea-

sible solution. The approach is to then solve a subproblem (commonly referred to

as a pricing problem), using dual information from the master problem to produce

beneficial feasible columns (i.e. columns with negative reduced cost) that may then be

added into the master problem. The master problem is then re-solved to obtain new

dual information. This process is continued in an iterative manner, until no further

beneficial columns can be produced.

The subproblem is typically formulated as a path problem (such as a shortest path

problem (SSP), resource constrained shortest path problem (RCSPP)), or may consist

of several constraints that possess a special structure and are themselves well-solved

problems (such as a knapsack problem, or the Travelling Salesman Problem). The

objective in the subproblem is to obtain the column with the most negative reduced

cost using the dual values πi for each i ∈ I:

Minimise : cj −
∑

i∈I

πiaij ∀j ∈ J

The optimal column is then added into master problem, and the cost cj is added

to the objective for this new column. In some problems, the calculation of cj is

straightforward, or indeed, may be identical for all j. For example, if the objective

is to minimise the number of aircraft, then cj may be simply set to 1 for all j ∈

J . However, as we shall see in Chapter 4 in which cj represents delay propagation

cost, the calculation of cj is significantly more complicated and must be calculated

simultaneously with the column. To achieve this we propose a new label setting

algorithm capable of calculating both the optimal column and its corresponding delay

cost, simultaneously.
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THREE

Capturing Uncertainty: Improving Robustness

In the previous Chapter, we introduced the concept of integration and outlined the

manner in which authors have integrated the traditional planning stages. The driving

force behind this move toward integration is one of improving solution quality and

potentially providing a more profitable and operationally robust solution.

Almost all of the integrated models described in the previous Chapter are deter-

ministic. That is, there is no uncertainty in any of the parameters as it is assumed

that flights will depart and arrive as planned. However, experience demonstrates that

unforeseen events such as weather disruptions, delayed connecting resources (such as

passengers and crew) and the interaction of flights in an increasingly complicated

world network, mean that deterministic models have the tendency to become brittle

in real-world operations. They are often referred to as “over-optimised” and have a

tendency to collapse rather quickly, as delays propagate rapidly within such networks.

Consequently, in these times of increasing customer dissatisfaction with delays,

airlines wish to construct solutions that possess operational robustness whilst contin-

uing to deliver profitability. In an attempt to address this problem, researchers have

stated to shift their focus to one of maximising profit whilst accounting for real-world

uncertainty.
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3.1 Stochastic Approaches

Two-stage stochastic optimisation problems have proven popular with researchers in-

terested in both long-term and short-term planning, and increasingly airline recovery.

In such models, the airline initially makes a (first-stage) decision based on the informa-

tion currently known with certainty (such as number of available aircraft, expected

arrival and departure time of flights, expected passenger demand etc.). Once the

schedule has been implemented, the actual values associated with such parameters

are realised and are used as input to implement a (second-stage) or recourse (recov-

ery) decision - in which the objective is to determine the ‘optimal’ course of action

once these real-world values are known.

This type of modelling is particularly useful in the context of fleet assignment for

which fleet allocation decisions are required to be made several months prior to the

day of operations, when passenger demand forecasts for each flight leg may only be

approximately known. A few days prior to the day of operations, once an airline has

a reasonably accurate estimate of demand, they may solve the second stage recourse

decision problem to obtain an improved solution that better matches the fleet type

with the passenger demand. Such a analysis was performed by Sherali (2008) [91].

The author implemented a two-stage stochastic program to adjust fleet assignment in

the weeks leading up to the schedule’s implementation.

Authors such as Yen and Birge (2006) [104] have adapted the two-stage stochastic

programming model to assist in solving the crew pairing problem. In their model, the

authors use the recourse model to reflect the long-term and short-term interactions.

The authors capture interactions between crew schedules and use this to identify

robust solutions that are capable of withstanding flight disruptions. To solve their

problem, they propose a new branching algorithm capable of branching on multiple

variables simultaneously.

Rosenberger et al. (2002) [79] use a discrete event semi-Markov process to stochas-

tically model the daily operations of a domestic airline in a bid to evaluate crew

schedules and recovery plans that are subject to uncertainty.
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3.2 Robust Optimisation

Robust Optimisation is a branch of optimisation that seeks to achieve an optimal

solution for a problem in which there is an element of data/variable uncertainty or

for which problem information is not known a priori. Many of the results are based

on the assumption that the magnitude by which the parameters (or a subset of the

parameters) are allowed to vary lies within known uncertainty sets. The objective is

often to minimise the cost of the worst case scenario.

The area of Robust Optimisation has expanded very rapidly within the last few

years, with a number of authors such as Beyer (2007) [22], Janak (2007) [51], Bertsimas

(2007) [20] providing optimality conditions for optimisation problems in which the

data, resource vectors and cost coefficients are subject to uncertainty.

Marla et al. (2011) [67] propose two extensions of existing robust optimisation

models; namely the extreme-value based model of Bertsimas et al. (2003) [21] and

the probabilistic, chance-constrained model of Charnes et al. (1959) [24]. The au-

thors apply their extensions to the airline routing problem with their models having

the advantage that they can be solved in a single iteration with run-times comparable

to that of the basic models. The authors observe via simulation that the extended

extreme-value and probabilistic models have the potential to consistently lead to the

generation of more robust solutions; albeit with different performance characteristics.

The authors observed that the extreme-event model had the characteristic of being

driven by extreme values of delay and thus ignored probabilistic information in some

cases. This led to a large disparity in the performance of optimal solutions. The

probabilistic approach was contrasted with the tailored approach of Lan et al. (2006)

[57]; with both of these approaches performing in a similar fashion on defined robust-

ness measures. The authors conclude that the probabilistic approach and the tailored

approach capture more relevant information and focus on more likely delay events,

leading to solutions that better satisfy the robustness metrics of interest.

Yu et al. (2000) [105] reformulate a stochastic management problem as an efficient

robust optimisation model. The authors propose a method to transform the robust

model into a linear program requiring only n + m variables, where n represents the

number of scenarios and m represents the number of total control constraints; smaller
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than that of existing methods that require 2n+2m such variables. The authors apply

their new approach to various logistical management problems, including an aircraft

routing problem for the U.S. Military.

List et al. (2003) [61] propose a robust optimisation approach to fleet planning

under uncertainty for a general transportation problem. The authors propose a formu-

lation that focuses on two different sources of uncertainty; namely, the future demands

to be served by the vehicle fleet and the productivity of individual vehicles. Through

the use of robust optimisation, the authors are able to examine the tradeoff between

the level of fleet investment and the level of risk in the solution.

Qin et al. (2010) [75] propose a robust optimisation approach to the capacitated

hub and spoke airline network design problem. The authors seek to control the de-

viation between solutions under different scenarios to within a pre-set range. The

objective is to determine the optimal connection between different non-hub airports

to the hub in the case of uncertain demand and cost. The authors make use of an ant

colony algorithm to solve their model on different numerical examples.

Birbil et al. (2009) [23] propose a robust version of the standard and dynamic

single-leg seat allocation models. Their model seeks to improve upon existing models

that inaccurately estimate the probability distributions for the total demand for the

different fare classes. The authors demonstrate that the new approach results in

solutions with less variability in realised revenue.

3.3 Robust Methods

One of the potential difficulties involved with using the robust optimisation techniques

outlined in the previous section, is that it is first necessary to make assumptions on

the level of uncertainty of each variable or parameter. If the choice of uncertainty

set or type of distribution is not made appropriately, the solution quality may vary

significantly when applied to the real world. In an airline network, delays may interact

in a multitude of ways between aircraft, crew and passengers and consequently it may

be very difficult to determine precise delay information for certain parameters a priori.

To sidestep this problem, a number of authors have turned to robust methods in an

attempt to improve the way in which certain parts of the airline scheduling problem

are modelled.
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One of the key problems with trying to develop a robust solution is that there is

no general consensus or systematic way to define robustness (Lan et al. (2006) [57]).

A very natural definition of robustness is offered by Ahmed (2008) [6], which we will

also take as our definition:

Definition 3.3.1 (Robustness [6]). Robustness is a fast recovery from disruptions

with dampening; thereby limiting the growth of disruptions.

Despite the lack of consensus on the definition of robustness, there are a variety

of ways in which to improve the robustness of a solution. Primarily, the focus of

robust methods and within the literature itself is one of embedding robustness into

the model in the planning stage. One way is to take advantage of particular network

structure (eg. Hub connectivity, aircraft swap opportunities) and secondly to include

uncertainty in the initial model parameters to produce a solution that performs well

on average; either with respect to delay propagation, or another key performance in-

dicator (or combination thereof). Typical key performance indicators used by airlines

are [6]: percentage of flights cancelled, percentage of late arrivals, on-time perfor-

mance distribution of delays, number of delayed passengers/average passenger delay

and average delay per flight.

We now outline a few different approaches for including robustness within the

planning stage.

3.3.1 Aircraft-Swap Opportunities: Incorporating Fault-Tolerant

Recovery Paths

Ageeva (2000) [3] proposes a model that assists in providing flexibility for airline

planners in the event of schedule recovery. By identifying and maximising the number

of times different aircraft routes ‘meet’ more than once, the author’s model provides

opportunities for the aircraft to swap routes and return to their original route the

next time the routes meet. This may be of assistance if the passenger demand on a

particular leg (or sequence of legs) changes, and may provide alternative routes that

both arrive at a particular destination.
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3.3.2 Robust Fleet Assignment: Hub Isolation And Short

Cycles

Rosenberger, Johnson and Nemhauser (2001) [78] propose a robust fleet assignment

and aircraft routing model developed to produce a solution that consists of a large

number of short cycles with low hub connectivity. The authors found that decreasing

hub connectivity assisted in producing larger numbers of short cycles. This may

be beneficial, as when airlines cancel flights they usually need to cancel a cycle (to

maintain flow balance). In this case, the cancellation of shorter cycles has less of an

impact on passengers.

3.3.3 Robust Crew Scheduling

Simulations

Schaefer et al. (2001) [87] propose a heuristic capable of generating robust crew sched-

ules. The authors achieve this by initially calculating an approximate expected cost

for each crew pairing, making assumptions on the possible crew recovery procedure

and utilising their simulation tool named SimAir. The authors use the approximate

crew costs to solve the deterministic crew pairing problem in order to find solutions

that perform well with respect to both planned costs and operational costs.

Move-Up Crews

Chebalov and Klabjan (2002) [88] also propose a model to improve the robustness

of crew pairings. To achieve this, the authors seek to maximise the number of op-

portunities for the crews to be swapped (moved-up) in operations. The authors use

Lagrangian relaxation to solve the model, but do not provide a measure of robustness

for their solution.

3.3.4 Degradable Airline Scheduling

Kang [52] proposes a methodology in which each of the required flights is partitioned

in such a way that each flight is assigned to a unique ‘layer’. These layers correspond to

different levels of ‘service’ from the airline, and are given different (recovery) priorities
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in the event of a disruption. To compensate for a different level of service, passengers

in the lowest priority layer pay the least amount for their ticket, whilst those in the

highest priority layer pay a premium for their level of service. By separating flights

into different layers, this model reduces the effect of propagation delay throughout

the network, as it is assumed that these layers do not interact with one another.

The author presents three different ways to incorporate degradability into the

scheduling process. The first is to include degradability between the flight scheduling

and fleet assignment (a degradable schedule partitioning model), the second within

the fleet assignment (degradable fleet assignment model) and the third and main focus

is within the aircraft routing (degradable aircraft routing model).

3.3.5 Robust Aircraft Routing

Lan et al. (2006) [57] develop a robust aircraft routing model to minimise the ex-

pected propagated delay along aircraft routes. The authors assume that the delays

along each leg are additive, and do not consider interactions between aircraft and crew

or delay effects from other parts of the network (eg. late running passengers from con-

necting flights are not considered). The authors use an approximate delay distribu-

tion to model propagation delay along each flight string and use a branch-and-bound

technique to used to solve their MIP. They authors also propose a connection-based

re-timing model to minimise the number of misconnecting passengers (as mentioned

previously).

3.3.6 Imposing Station Purity

Smith et al. (2006) [93] propose a model in which the number of different fleet

types that are allowed to serve each airport is limited - this is referred to by the

authors as imposing station purity. The authors demonstrate that imposing station

purity within the fleet assignment model leads to solutions that are more robust for

crew planning, maintenance planning and for operations in general. One potential

disadvantage of such an approach is the potential for excessive computational time

required to solve such a model. To address this problem, the authors develop a

“station decomposition” solution approach that takes advantage of network structure.
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The authors also propose a primal-dual method to improve solution quality and model

efficiency.

3.3.7 Bi-criteria Optimisation

Ehrgott et al. (2002) [36] and Bassy et al. (2007) [95] seek the multiple objectives

of minimising cost whilst maximising robustness for crew scheduling. This multi-

objective is addressed within the bi-criteria optimisation framework. The authors

develop a bi-criteria optimisation framework to generate Pareto optimal schedules.

Results indicate that for a small increase in cost, one may gain a significant increase

in robustness (as a result of an increase in overnights, leading to a reduction in the

number of aircraft changes).

3.3.8 Re-booking, Revenue Management And Stochastic Pas-

senger Demand

As mentioned at the beginning of this Chapter, two-stage stochastic programming

models have proven popular with researchers aiming to improve the way in which

fleet types are assigned to individual flights legs when passenger demand may be

uncertain. In this section, we outline a few additional improvements that can be

made to such a model.

According to Barnhart (2002) [12] and Jacobs (2008) [50], there are several disad-

vantages of traditional fleet assignment models. Firstly, spill and recapture are ignored

or modelled only approximately and estimates of recaptured revenue are achieved

without knowledge of capacity or passenger flow on the network. Secondly, such mod-

els consider only aggregate demand and average fares for different fare classes, leading

to an inaccurate representation of estimated spills and spill costs. Finally, the ma-

jority of traditional fleet assignment models assume that passenger demand is static

over time.

Several approaches to incorporating improved revenue management aspects into

the fleet assignment model have been investigated over the past 10 years. In Barn-

hart et al. (2002) [12] the authors develop a new fleet assignment model, termed an
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Itinerary-based Fleet Assignment Model (IFAM) capable of capturing network effects

and in particular, accurately estimating passenger spill and re-capture for revenue

management purposes. The authors achieve this by way of a proposed “passenger

mix model” used to determine optimal traffic and revenue when given as input, a

schedule with known flight capabilities and passenger demands with known fare. Ac-

cording to the authors, the passenger mix model allows for customer choice modelling

and recapture to be included. As there may exist many thousands of possible pas-

senger itineraries, the authors reduce the problem complexity by making use of key

paths, defined as the originally desired itinerary for each passenger; thus, alterna-

tive itineraries are only necessary in the case where passengers are spilled from their

desired itinerary.

In Jacobs (2008) [50] the author presents a model that addresses both network

effects and the stochastic nature of demand. The authors use Benders decomposition

to integrate the fleet assignment model with the origin and destination fleet assignment

revenue management model. The author refers to this proposed approach as “O and

D fleet assignment”. The model takes as input a given fleet assignment solution

and captures the O and D revenue management aspect within a subproblem. A

revenue function for the entire network is approximated in the fleet assignment master

problem using a series of Benders cuts, with each cut improving the accuracy of the

revenue approximation in the master problem. Once an approximation has been

obtained within the desired accuracy, the model is then solved as a MIP. The author

claims that this approach is appealing as it addresses both passenger flows within the

network and passenger demand uncertainty. Additionally, it also provides a method

of incorporating the passenger mix optimisation model used for revenue management

directly into the fleet assignment process.

A number of authors have addressed the problem of including passenger uncer-

tainty and improving revenue management techniques for fleet assignment. The reader

is referred to the following papers for a more comprehensive summary. Sherali et al.

(2008) [91] in which the authors construct a two-stage stochastic model for fleet assign-

ment. Dumas et al. (2008) [33] proposes a new passenger flow model capable of mod-

elling spill and recapture between itineraries and accounts for the inter-dependencies

between legs and the effect of this inter-dependency on revenue. The authors incor-



3.4 Integrated And Robust Methods 34

porate this passenger flow model into the model proposed in Dumas et al. (2008)

[32], in which they seek to improve the objective of the fleet assignment model. To

achieve this, the authors utilise their passenger flow model and incorporate it within

an iterative model. The objective function is iteratively improved via a process of

alternately generating fleet assignments and analysing their profit potential via the

(modified) passenger flow model.

Sandhu et al. (2006) [84] proposes a new fleet assignment model that incorporates

both passenger and cargo revenue. According to the authors, in the last few years,

a significant decrease in the number of business class passengers has resulted in a

decline in passenger revenue. This decline has prompted airlines to consider revenue

derived from the transportation of cargo to compensate for these losses. The authors

present a fleet assignment model that captures both cargo and passenger revenue,

making use of a cargo mix bid-price model that considers demand, weight and volume

constraints and assigns optimal cargo allocations to a given fleeting solution in order

to maximise cargo revenue. To account for passenger revenue, the authors utilise a

passenger mix bid-price model, commonly used in revenue management systems to

allocate passengers to each itinerary whilst maximising passenger revenue.

Barnhart et al. (2009) [11] seek to improve the revenue function for fleet assign-

ment problems stating that the standard assumptions placed on the standard revenue

function are too simplistic. The authors propose a new sub-network fleet assignment

model (SFAM) modelled as a mixed integer program for which composite decision

variables represent the simultaneous assignment of fleet types to subnetworks. The

authors construct local subnetwork fare structures and for each subnetwork, the lo-

cal fare of a given itinerary is computed as the sum of the fares allocated to the

constrained flight legs (where demand exceeds capacity) in that subnetwork. Fur-

thermore, it provides a good approximation to the Itinerary Based Fleet Assignment

model with the additional benefit of providing tighter LP bounds.

3.4 Integrated And Robust Methods

Up until fairly recently, the majority of authors have attempted to include robustness

within one aspect of the airline planning stages. In the last few years (since 2007)
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there has been significant growth in the area of integrated robustness; that is, including

robustness within a model that integrates two or more stages of the planning problem.

We briefly mention a few of these below.

3.4.1 Iterative Airline Scheduling

Weide et al. (2007) [98] propose an integrated aircraft routing and crew pairing model

for which the solution is obtained via an iterative process that passes information

between the aircraft routing and crew pairing problems. The authors note that solving

the aircraft routing and crew pairing problems individually may result in a sub-optimal

solution as the decisions made in the preceding stages may restrict the number of

feasible choices in subsequent stages.

To solve their model, the authors propose a non-robustness measure to keep track

of the number of restricted aircraft changes. The authors wish to reduce the num-

ber of restricted aircraft changes (for which crew change aircraft over a restricted

connection) in an attempt to minimise delay propagation resulting from insufficient

connection time. The objective is to keep the aircraft and crew together for as long as

possible over restricted connections, so as to minimise this effect. The authors achieve

this in their model by seeking to maximise the number of restricted connections con-

tained in aircraft solution that are operated in the current crew pairing solution, then

seeking to minimise the number of restricted aircraft changes. This process continues

iteratively, while increasing the crew penalty at each iteration and continues until the

non-robustness measure cannot be improved further.

The advantage of this approach is that the computational complexity is not in-

creased as for the other integrated models (as the original set-partitioning formulations

of both problems remain unchanged) - allowing the problem to be solved efficiently.

The authors extend this model to account for multiple crew groups.

3.4.2 Delay Propagation CalculationWith Propagation Trees

AhmadBeygi et al. (2008) [4] proposed both a single-layer model and a multi-layer

model to minimise delay propagation by re-timing flights in such a way that the slack

present in the network is re-allocated to where it is required most. The single layer

model considers the total delay propagated to a particular flight to be dependent
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only on the delay accumulated on the preceding leg, whereas the multi-layer model

takes into account the delay from all other legs that precede a particular flight. This

is accomplished by way of a propagation tree for which the nodes represent flight

legs and the branches, the flight connections. There are a number of disadvantages

associated with this model, namely that it not only overestimates (double counts)

delay in some cases, but underestimates the delay in others.

3.4.3 Integrated Aircraft Routing, Crew Pairing And Tail

Assignment

Ruther et al. (2011) [82] outline an integrated model for aircraft routing, crew pairing

and tail number assignment. The authors acknowledge that data available in the

traditional planning stages may be inaccurate, leading to frequent re-scheduling of

resources. Therefore, they wish to delay as many decisions for as long as possible

until accurate data becomes available. Using their model they are able to solve the

integrated model four days prior to the day of operations, allowing them to remove

the uncertainty that is usually present in the standard long-term planning process.

The authors claim that their model leads to less re-scheduling of resources, specific

routes for each aircraft and pairings for each crew with a planning horizon of one

week.

3.4.4 Minimising Delay Propagation In An Integrated Air-

craft Routing And Crew Pairing Framework

In the next Chapter we outline in detail the contributions of this Thesis. Our aim in

this work is to contribute to the emerging field of Integrated Robustness. Specifically,

we seek to minimise delay propagation within an integrated aircraft routing and crew

pairing framework. Secondly, we propose a heuristic re-timing algorithm that may

be used in conjunction with the integrated aircraft routing and crew pairing problem

to re-schedule aircraft and crew (within a limited time window) to further minimise

delay propagation costs for the network. Finally, we extend our integrated aircraft

routing and crew pairing model to include re-timing, so that all three decisions can

be made simultaneously.
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FOUR

Minimising Propagated Delay In An Integrated

Aircraft Routing And Crew Pairing Framework

In Chapter 1 we introduced the airline scheduling problem, highlighted its complexity

and the subsequent motivation of Airline Schedule Planners to sequentially decompose

the problem into manageable stages to retain any degree of tractability. In Chapter

2, we briefly outlined and explained the four broad stages of the the airline scheduling

problem, traditionally decomposed sequentially in the following manner (eg. schedule

generation, fleet assignment, aircraft routing, and crew pairing), with the decisions

from one stage imposed upon the decision making process in subsequent stages. Whilst

this approach greatly simplifies the solution process, it unfortunately fails to capture

the many dependencies between the various stages, most notably between those of

aircraft routing and crew pairing, and how these dependencies affect the propagation

of delays through the flight network. As delays are commonly transferred between

late running aircraft and crew, it is important that aircraft routing and crew pairing

decisions are made together. The propagated delay may then be accurately estimated

to minimise the overall propagated delay for the network and produce a robust solution

for both aircraft and crew. In this Chapter we introduce a new approach to accurately

calculate and minimise the cost of propagated delay, in a framework that integrates

aircraft routing and crew pairing. Most of the material in this Chapter is joint work

with Gary Froyland and Richard Wu at the University of New South Wales and

appeared in the paper Dunbar et al. (2012) [35].
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4.1 Motivation And Key Contributions

The airline scheduling problem involves the construction of timetables for an airline’s

major resources, namely aircraft and crew. Traditionally, this has been undertaken

with a view towards maximising an airline’s overall profit, often with limited consid-

eration given to the stability of such a schedule, or indeed its operational robustness.

Such an approach has a tendency to generate schedules that are highly brittle, per-

forming poorly in practice as delays propagate rapidly throughout the network. The

Bureau of Transportation Statistics [76] states that in 2009, approximately 23% of

flight legs operated by a major US airline were delayed – with late arrivals and can-

cellations combined accounting for more than 7.5% of this delay. In recent years,

this has resulted in an ever increasing discrepancy between planned costs and realised

operational costs. As aircraft networks continue to grow, this trend is set to continue

with AhmadBeygi et al. [4] reporting that in 2006, it was estimated that the US

airline industry experienced a total of 116.5 million minutes of delay; translating into

a $7.7 billion increase in operating costs. Such large discrepancies have prompted

airline schedule planners to shift their focus from maximising profit to maximising

expected profits under uncertainty, by including various types of costs arising from

unplanned events.

Lan et al. [57] develop a robust aircraft routing model to minimise the expected

propagated delay along aircraft routes. They use an approximate delay distribution to

model the delay propagation along each string and use a branch and bound technique

to solve their MIP. Lan et al. calculate propagated delay along individual strings

when determining costs for the restricted master problem, but omit considerations

of delay when solving the subproblem. The effect of connecting resources (such as

crew and passengers) are not considered. Instead of estimating delay propagation,

Wu [100] used a simulation model to calculate random ground operational delays and

airborne delays in an airline network. Wu [100, 103] shows that delays are inherent

in airline operations due to stochastic delay causes, e.g. passenger connections and

late baggage loading. By adjusting flight times without changing aircraft routing,

Wu [103] revealed that significant delay (cost) savings can be achieved via robust

scheduling. Weide et al. [98] propose an integrated aircraft routing model for which
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the solution is obtained iteratively. The authors propose a non-robustness measure

and initially solve the crew pairing problem without taking into account an aircraft

routing solution. Their model then seeks to maximise the number of restricted con-

nections contained in the aircraft solution that are also operated in the current crew

pairing solution. Once this solution has been obtained, they minimise the number

of restricted aircraft changes. This process continues iteratively, increasing the crew

penalty at each iteration until the non-robustness measure cannot be improved fur-

ther. The advantage of this approach is that the computational complexity is not

increased as in other integrated models. AhmadBeygi et al. [4] make use of a propa-

gation tree to minimise delay propagation due to flights and crew pairs in an existing

routing and crew pairing solution, by re-timing flights so that the slack present in

the network is re-allocated to where it is required most. Their approach is limited to

re-timing and both under and overestimates the delay propagation in certain cases.

Key Contributions Of Our Model

Our aim is to improve upon the following shortcomings of AhmadBeygi et al. [4], Lan

et al. [57] andWeide et al. [98]. Firstly, while Lan et al. correctly calculate propagated

delay of aircraft strings in their master problem, the selection of these new columns is

carried out more crudely: new columns are generated within the subproblem without

considering the delay cost of the new column. The authors only make use of the dual

variables from the master problem when determining the minimal cost column. Once

a column has been generated they then calculate the propagated delay cost along the

string and decide whether to add it to the restricted master problem. Furthermore,

they ignore the effect of connecting resources such as crew and passengers. Secondly,

while AhmadBeygi et al. [4] consider (in a re-timing setting) the combined delay

effects from crew and from aircraft, their approach imperfectly calculates how delays

are propagated, resulting in possible under or overestimates of the true propagated

delay. Their improvements are also limited to those achievable by re-timing.

Finally, Weide et al. [98] treat the interactions of crew and aircraft in an itera-

tive fashion, optimising a robustness measure, which is an indirect means of assessing

the true cost due to total propagated delays of aircraft and crew. The model in [98]
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attempts to keep aircraft and crew together over restricted connections, to try to

minimise the number of restricted aircraft changes. Although [98] takes into account

the connection time, penalising shorter restricted aircraft changes more severely, the

Weide et al. model penalties are time-of-day independent, independent of historical

information for the network, and do not quantitatively assess the propagated delay

from the interactive connectivity of the routing and crewing networks. For example,

there may be relatively predictable large primary delays over certain connections or

at certain times of the day, or the effects of delays for some connections are much

worse in a propagated sense than for other connections, depending on the interac-

tive network topology. Our approach explicitly utilises time-of-day historical primary

delays and explicitly calculates and minimises the downstream effect of delay in the

combined routing and crewing network. Solutions developed from our approach may

(for example) mismatch aircraft and crew on a restricted connection if later connec-

tions have ample slack to absorb delays. This mismatch may free up the possibility

to match crew and aircraft on a critical connection that has tight connections further

downstream. We provide a quantitative comparison of our approach and the approach

of [98] in Section 4.5.

The key ingredients of our approach are (i) the accurate calculation of the combined

effects of propagation of delay along aircraft routing strings and crew pairing strings

and (ii) the use of this information for both the calculation of the cost of columns and

the dynamic selection of optimal columns. In Sections 4.2 and 4.3 we briefly outline

standard column generation approaches to finding minimum cost aircraft routings and

crew pairings, respectively. In Section 4.4 we describe our approach for accurately

calculating the propagated delay of routing and crewing strings and in section 4.4.2

we describe the setup of our pricing problems. Sections 4.4.3 and 4.4.4 describe

our numerical approaches for solving the master and pricing problems, respectively.

Computational results are presented in Section 4.5 and we conclude with suggestions

for future work in Section 4.6.

In this Section we describe our formulation for the integrated aircraft routing and

crew pairing problem; the objective is to minimise the total cost associated with prop-

agated delay. We first outline the mathematical formulation of the aircraft routing

and crew pairing problems individually and then discuss estimation of propagated



4.2 The Aircraft Routing Problem 41

delay and the corresponding pricing problem. We concentrate solely on costs due to

delays with the understanding that in practice, the additional costs due to unplanned

delays can form part of an overall model of cost for the airline. We thus view our pro-

posed methodology as a potential add-on to existing connection-based optimisation

models to better reflect planned costs under uncertainty.

4.2 The Aircraft Routing Problem

The aircraft routing problem is performed separately for each specific fleet type. We

seek a minimal cost assignment of aircraft to flights where each flight is covered

exactly once by exactly one aircraft. The costs will represent the cost of the total

delay incurred by the aircraft over a 24 hour period.

In the following routing model, we calculate a one day schedule where each aircraft

begins and ends its day at a maintenance base. Maintenance feasible routings are

represented as columns of an m × nR binary matrix AR, where m is the number of

flights and nR is the total number of feasible routings. The (i, j)th element of AR

takes the value 1 if flight i is contained in routing j and 0 otherwise. In practice there

may be an extremely large number of feasible columns, so column generation is used

to generate only the beneficial columns. For each flight (node) we assign a dollar cost

per unit of delay arriving at that flight, and the cost cRj of column j is the sum of

the costs of the delays along string j. The decision variable xR
j takes the value 1 if

routing j is included in the optimal solution and 0 otherwise. There is also an upper

bound on the number of aircraft N . Thus we may state the aircraft routing problem

as follows:

minimise: (cR)TxR (4.1)

Subject to: ARxR = e
nR∑

i=1

xR
i ≤ N

xR ∈ {0, 1}nR

where e is an m-dimensional column vector of 1s.
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4.3 The Crew Pairing Problem

The crew pairing problem is also performed separately for each fleet type, as crew

typically may only fly on board a specific fleet. The objective of crew pairing is to

find a minimal cost assignment of crew to flights. As in the routing problem, the costs

will represent the dollar cost of the total propagated delay incurred by the crew. The

airline from which we source our data uses both pay-and-credits (for cabin crew) and

flying hours (for pilots) as crew payment bases. For the purposes of this paper we use

the flying-hour based crew costing model, which simplifies our crew costing model. A

feasible set of crew pairings must satisfy union regulations (such as the 8-in-24 rule)

and ensure each flight is covered exactly once by exactly one crew group (cabin crew,

pilots etc.). In the following crew pairing model, we assume a one day schedule where

the crew are restricted to flying a total of less than eight hours in each pairing (8-in-24

rule) and ensure that at the end of its duty, each crew pairing returns to the crew

base at which it started. This modified 8-in-24 assumption for a one-day schedule

simplifies our crew pairing model. One could relax this assumption and expand the

schedule to one week during implementation. As for the aircraft routing problem, the

pairings may be represented as columns of an m × nP matrix AP , where m is the

number of flights and nP is the total number of feasible crew pairings. We use column

generation to generate the most beneficial columns. The element cPj denotes the cost

of column j and is defined as in the aircraft routing problem above. Thus, we may

state the crew pairing problem as follows:

minimise: (cP )TxP (4.2)

Subject to: APxP = e
nP∑

i=1

xP
i ≤ M

xP ∈ {0, 1}nP

where e is an m-dimensional column vector of 1s. There is typically no upper bound

placed on the number of crews in the standard crew pairing problem and we therefore

do not include this constraint in our model.
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4.4 Estimation Of Propagated Delay

The calculation of total propagated delay along an aircraft string in an aircraft con-

nection network or along a crew string in a crew connection network is non-trivial.

The model of delay propagation we use for individual strings is based on a simplified

version of Wu [100, 103] and is similar to the calculation of delay cost in individual

strings used by Lan et al. We outline our modelling approach for calculation of prop-

agated delay in the isolated routing and crewing networks before describing how to

calculate propagated delay in a combined network in the next subsection.

Let G = (N ,A) be a directed acyclic graph with a single source node so, and a

single terminal node t. The source and terminal nodes are dummy nodes that link to

both the morning and evening flights, respectively. In this graph, nodes correspond

to flights and arcs correspond to possible feasible connections between flight nodes.

For simplicity of exposition, we use the same connection network for both aircraft and

crews, although one may use different arc sets if necessary.

Each connection (i, j) ∈ A, will have associated with it two primary delays. The

primary delay for aircraft connection (i, j) is denoted pRij and is the sum of the expected

en-route delay for flight i (estimated from historical data), and expected primary

delays during aircraft turnaround operations, such as passenger connection delay,

and ground handling delay. Note pRjt = 0 for all (j, t) ∈ A. The primary delay for

crew connection (i, j) is denoted pPij and is the the sum of the expected en-route

delay for flight i, and other crew related expected primary delays during aircraft

turnaround time, such as late crew boarding and crewing procedures. En-route delays

and turnaround delays occur for a variety of reasons such as weather conditions, air

traffic flow management, passenger delays, equipment failure, and so on. These delays

and their causes are documented by airlines by using the IATA delay coding system

or its in-house variant [48]. Note pPjt = 0 for all (j, t) ∈ A.

The flight schedule is the starting point for calculating slack for individual con-

nections. The slack sij for a connection (i, j) is the difference between the scheduled

arrival time of flight i and the scheduled departure time of flight j, minus the mean

turn-around time for the relevant aircraft type under the specific ground handling

procedure of the airline. The value of the mean turn-around time is determined by
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the standard aircraft ground operating procedures of a specific fleet by an airline. Air-

lines design aircraft turn-around time based on the mean turn-around time and buffer

allowance. For simplicity we have used the same turn-around time for all connections,

as all aircraft belong to the same fleet and operate on a domestic network. It is how-

ever, straightforward to specify specific turn-around times for individual connections

should this be required for an alternative network. All slacks sso,i = 0, (so, i) ∈ A,

and sjt = 0, (j, t) ∈ A.

We now come to the propagated delay at node i, denoted di. We fix the initial

delay at the source node dso = 0 and inductively apply the formulae below to calculate

propagated delay along a path in the aircraft connection network:

dRj = max
{
dRi − (sij − pRij), 0

}
, j 6= so, (4.3)

and in the crew connection network:

dPj = max
{
dPi − (sij − pPij), 0

}
, j 6= so. (4.4)

For computational tractability we assume (as in Lan et al. [57]) that the primary

delay is independent of the propagated delay.

4.4.1 Estimation Of Combined Propagated Delay

In the previous section we saw how to calculate propagated delay along a path from

the source node so. The delays along an aircraft string were only affected by aircraft

delays in that string and not by delays due to connecting crew. Similarly, delays

along a crew pairing were only affected by crew delays in that string and not delays

due to connecting aircraft.

Firstly, we consider the effects of crew delays on the aircraft connection network.

We assume that we are presented with a feasible set of crew strings and that prop-

agated delays due to the crew have been calculated (to initialise the procedure, we

will use (4.4) to calculate the dPi , i ∈ N ). To calculate the propagated delay along an

aircraft string, taking into account propagated delays from crew we inductively apply:

dRj = max
{
dRi − (sij − pRij), d

P
k − (skj − pPkj), 0

}
, j 6= so, (4.5)
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where the connection (i, j) is part of the aircraft string and the connection (k, j) is

part of the crew string that includes flight j.

Thus, if flight j uses the same aircraft as flight i and the same crew as flight k, the

delay propagated to flight j is the maximum of the delays of the aircraft and crew

(or zero, if both delays are negative); see Figure 4.1 for an example.

i

k

j

dRi

sij−pRij

dP
k

skj−pP
kj

dP
k
−(skj−pP

kj
)

dRj

Figure 4.1: Illustration of the requirement of the maximum in equation (4.5). Aircraft

and crew are denoted by blue and black boxes respectively. The bold red line denotes

the scheduled departure time for flight j. Dashed lines represent the amount by which

the aircraft and crew are delayed. Notice that although flight i is delayed, there is

enough slack between flights i and j to absorb this delay. However, there is not enough

slack between flights k and j for the crew on flight k to arrive in time for flight j.

Thus, dPk − (skj − pPkj) > 0 and dRj > 0.

Secondly, we consider the effects of aircraft delays on the crew connection network.

We assume that we are presented with a feasible set of aircraft strings and that

propagated delays due to the aircraft have been calculated (to initialise the procedure,

we will use (4.3) to calculate the dRi , i ∈ N ). As above, to calculate the propagated

delay along a crew string, taking into account propagated delays from aircraft we

inductively apply:

dPj = max
{
dPi − (sij − pPij), d

R
k − (skj − pRkj), 0

}
, j 6= so, (4.6)

where the connection (i, j) is part of the crew string and the connection (k, j) is part

of the aircraft string that includes flight j.
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4.4.2 The Pricing Problems

We now describe the pricing problems for the routing and crewing master problems.

When solving the routing subproblem the propagated routing delays dRi , i ∈ N will

be calculated dynamically as part of the subproblem, using fixed pre-calculated prop-

agated crewing delays dPi , i ∈ N . When solving the crewing subproblem, the reverse

is true; the propagated crewing delays dPi are dynamically calculated and the crewing

delays dRi are pre-calculated and fixed.

Each node i possesses a weight −wi, corresponding to the dual multiplier for

constraint i in the master problem; we denote by −wR
i the weights from the routing

master and by −wP
i the weights from the pairing master. We assume that for every

unit of time an aircraft (resp. crew) is late at node i, a dollar cost aRi > 0 (resp.

aPi > 0) is incurred. These costs are combinations of costs associated with excess

fuel consumption, overtime pay for crew, and costs associated with re-accommodating

misconnecting passengers [4].

Let π(i) denote an ordered collection of nodes in the aircraft path π, truncated

so that node i is the final node in the list. Additionally, we use the notation π−(i)

to denote the node prior to node i in path π. Similarly, we make use of the same

notation for a crew path ξ. Finally, for the route pricing (resp. crew pricing) we

add approximate reduced cost terms to represent the impact of inserting a particular

route (resp. crew string) on overall crew delay (resp. routing delay). We describe

these ideas for the routing pricing problem; the approach for the crew pricing problem

is completely analogous. Consider node i and suppose that our incumbent routing

solution has a connection (ℓ, i) and our incumbent crewing solution has a connection

(k, i). The combined propagated routing and crewing delays at node i are given by

dRπ(i) = max
{
dRπ(ℓ) − (sℓi − pRℓi), d

P
ξ(k) − (ski − pPki), 0

}
, (4.7)

dPξ(i) = max
{
dPξ(k) − (ski − pPki), d

R
π(ℓ) − (sℓi − pRℓi), 0

}
, (4.8)

Suppose that in the current routing pricing problem we consider replacing the

aircraft connection (ℓ, i) with (j, i). We calculate dRπ(i) along the routing string being

constructed using (4.5). If this potential replacement string is inserted into master

problem basis, there will be an impact on the crew delays. Using (4.6), at node i, the
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new (locally calculated) crew delay is given by

d̃Pi;π−(i) = max
{
dPξ(k) − (ski − pPki), d

R
π(j) − (sji − pRji), 0

}
; (4.9)

where the tilde is used to denote a temporary calculation local to node i, using the

information that j = π−(i) is the prior node. Additionally, π(j) denotes the approx-

imation for the aircraft delay at node j, using the previous aircraft routing solution.

We will use aPi (d̃
P
i;π−(i) − dPξ(i)) as an estimate of the reduced cost for crew delay at-

tributable to node i, for the routing string under construction.

Thus, for the aircraft routing pricing problem we wish to find a path π = {so, i1, i2, . . . , t}

from so to t that minimises

zR = min

{
∑

i∈π

(
aRi d

R
π(i) + wR

i + aPi (d̃
P
i;π−(i) − dPξ(i))

)
: π is a path from so to t

}
,

(4.10)

with the further restriction that the path π begins and ends at a maintenance base.

For the crew pricing problem, we analogously suppose that we consider replacing

the crew connection (k, i) with (j, i). We calculate dPξ(i) along the crew string being

constructed. We (locally calculate) the aircraft delay by using:

d̃Ri;ξ−(i) = max
{
dRπ(ℓ) − (sℓi − pRℓi), d

P
ξ(j) − (sji − pPji), 0

}
; (4.11)

We similarly use aRi (d̃
R
i;ξ−(i) − dRπ(i)) as an estimate of the reduced cost for the aircraft

delay attributable to node i for the crew string under construction. For the crew

pairing pricing problem, we impose the additional upper limit H on the number of

hours worked.

zP = min




∑

i∈ξ

(
aPi d

P
ξ(i) + wP

i + aRi (d̃
R
i;ξ−(i) − dRπ(i))

)
:

ξ is a path from so to t,

total hours worked ≤ H.



 ,

(4.12)

with the further restriction that the path ξ begins and ends at the same crew base.

Upon obtaining a solution to (4.10) (resp. (4.12)), the minimising path (or string)

forms a column Aj of the matrix AR (resp. AP ). A routing string is assigned a cost

of

cRj = zR −
∑

i∈π

wR
i ,

=
∑

i∈π

(
aRi d

R
π(i) + aPi (d̃

P
i;π−(i) − dPξ(i))

)
. (4.13)
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and a crew pairing string is assigned a cost of

cPj = zP −
∑

i∈π

wP
i ,

=
∑

i∈ξ

(
aPi d

P
ξ(i) + aRi (d̃

R
i;ξ−(i) − dRπ(i))

)
. (4.14)

In Section 4.4.4 the zR and zP - minimising paths are determined by a modified label

setting algorithm that simultaneously calculates both the reduced cost of the path

and the propagated delays.

In this section we describe our iterative approach for handling the two master

problems of aircraft routing and crew pairing, and our computational approach for

solving the pricing problem.

4.4.3 Integration Of Aircraft Routing And Crew Pairing

We seek a minimal propagated delay cost solution to the integrated aircraft routing

and crew pairing problem. It is well known (eg. [15, 98]) that both the aircraft

routing and crew pairing problems are individually NP-hard. To avoid any additional

complexity, we adopt the theme of modelling the interactions between the aircraft

and the crew in an iterative way from Weide et al. [98]. In the first version of our

approach, we solve the integrated problem iteratively, beginning with the aircraft

routing problem, linked to output from a crew pairing problem and then switching

to the crew pairing problem linked to new output from the aircraft routing problem,

and so on. We call this first approach Iterative Case A. This approach is not exact,

however we have carefully modelled the crew and aircraft delay interactions and expect

to obtain solutions of good quality. In Section 4.5 we demonstrate that we achieve

significant improvements over standard approaches and our solutions also compare

well against a rigorous lower bound. We also study Iterative Case B, where the initial

iteration begins with the crew pairing problem linked to output from an aircraft

routing problem, and then proceeds to iterate as in Case A. The pricing problem

solution approach is described in the next subsection.

We begin by introducing an updating algorithm (4.4.1) that ensures the (propa-

gated) delay for each node is updated with respect to the incumbent aircraft routing

and crew pairing solution.
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Algorithm 4.4.1: Propagated Delay Evaluation
Input: An incumbent aircraft routing and crew pairing solution. The delay and slack

information for each connection in the network

Output: The total propagated delay in the network.

begin

1. Perform a topological sorting of the flight nodes so that the flights are sorted from

earliest to latest.

2. Using the strings from the incumbent routing and crewing solution, update dRj and dPj

together by inductively applying equations (4.5) and (4.6) moving strictly forwards

throughout the day.

end

Algorithm 4.4.2: Iterative AR and CP (Case A)

1 INITIALISATION:

(a). Solve problems (4.1) and (4.2) respectively with the objective of determining the

minimum number of aircraft N and the minimum number of crew required M , to cover all

flights exactly once. We now have incumbent routing and crewing solutions.

(b). For each arc (i, j) ∈ A, assign expected primary delays pRij and pRij .

(c). Set dPk = 0, dRk = 0 for all k ∈ N and dRso = 0, dPso = 0. Set an iteration counter c = 0.

2 MINIMUM DELAY AIRCRAFT ROUTING:

(a). Apply Algorithm 4.4.1.

(b). Assign delay costs to strings using (4.13). Solve problem (4.1) via column generation to

produce a new incumbent routing solution.

3 MINIMUM DELAY CREW PAIRING:

(a). Apply Algorithm 4.4.1.

(b). Assign delay costs to strings using (4.14). Solve problem (4.2) via column generation to

produce a new incumbent crew pairing solution.

4 If either the aircraft routing or crew pairing solution has changed, increment iteration

counter c → c+ 1 and return to Step 2. Otherwise, goto Step 5.

5 Return
∑N

n=1

∑
i∈πR

n

aRi d
R
i +

∑M

m=1

∑
i∈πP

m

aPi d
P
i , where πR

n is the routing string for the nth

aircraft, n = 1, . . . , N and πP
m is the crew pairing string for the mth crew, m = 1, . . . ,M .

Algorithm 4.4.3: Iterative AR and CP (Case B)

As for Algorithm 4.4.2, interchanging Steps 2 and 3, replacing Step 1(c) with:

Set dRk = 0 for all k ∈ N and dPso = 0. Set an iteration counter c = 0.
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4.4.4 Solving The Pricing Problems

We describe the methodology to solve the pricing problem (4.10); the problem (4.12)

requires straight-forward modifications described at the conclusion of this section. For

each i ∈ N , we are given a dual multiplier −wR
i (−wR

so = −wR
t = 0), a per unit delay

cost aRi (aRso = aRt = 0), and propagated delays for crew pairings dPi . We wish to solve

(4.10), where the dRi are calculated via (4.5). Because the delay dRi is not a simple

sum of delays along the path from so to i, the problem (4.10) is not easily cast as a

minimum cost network flow. We propose a label setting algorithm, augmented by a

notion of label dominance, modified from related problems in Desrochers and Soumis

[31] and Dumitrescu et al. [34], that works efficiently in the cases tested.

Let π be a (full) path in G (an ordered collection of nodes {so, i1, i2, . . . , iq, t}

in N with (so, i1), (iq, t) ∈ A and (iℓ, iℓ+1) ∈ A for all ℓ = 1, . . . , q − 1). For

i ∈ π, let π(i) denote the ordered collection of nodes in the path π truncated so

that the final node in the list is i; we will also call π(i) a path. Define WR
π(i) =

∑
j∈π(i)

(
wR

j + aPj (d̃
P
j;π−(j) − dPξ(j))

)
. Denote by dRπ(i) the propagated expected routing

delay at node i, computed along path π(i) using (4.5), and defineAR
π(i) =

∑
j∈π(i) a

R
j d

R
π(j).

In this terminology, we may rewrite (4.10) as

zR = min
{
AR

π(t) +WR
π(t) : π is a path from so to t

}
. (4.15)

Because of the nonlinear nature of the propagated routing delay formula (4.5), our

labels must track both the accumulated cost AR
π(i) + WR

π(i) at node i along path π,

and the propagated delay dRπ(i). This motivates the following dominance conditions

for labels.

Definition 4.4.1. (Dominance condition)

The pair (or label) (AR
π(i) +WR

π(i), d
R
π(i)) dominates (AR

η(i) +WR
η(i), d

R
η(i)) if

AR
π(i) +WR

π(i) ≤ AR
η(i) +WR

η(i) and dRπ(i) ≤ dRη(i)

and the labels are not identical.

Lemma 4.4.2. Let ̟ be a path from i to j, where (i, j) ∈ A. If (AR
π(i) +WR

π(i), d
R
π(i))

dominates (AR
η(i)+WR

η(i), d
R
η(i)), then (AR

{π(i),̟}+WR
{π(i),̟}, d

R
{π(i),̟}) dominates (AR

{η(i),̟}+

WR
{η(i),̟}, d

R
{η(i),̟}).
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Proof : We show that this is true if i connects to j by a single arc (the path ̟ consists

of a single node {j}); the result then follows by induction. Recall we are given a fixed

set of crew pairing strings. Let ξ denote the crew pairing string that includes flight

node j and let k be the node in ξ preceding j. Thus,

dR{π(i),j} = max
{
dRπ(i) − (sij − pRij), d

P
ξ(k) − (skj − pPkj), 0

}
, and

dR{η(i),j} = max
{
dRη(i) − (sij − pRij), d

P
ξ(k) − (skj − pPkj), 0

}
.

Since dRπ(i) ≤ dRη(i), one has dR{π(i),j} ≤ dR{η(i),j}.

Now

AR
{π(i),j} +WR

{π(i),j} = AR
π(i) +WR

π(i) + aRj d
R
{π(i),j} + wR

j + aPj (d̃
P
j;π−(j) − dPξ(j)) and

AR
{η(i),j} +WR

{η(i),j} = AR
η(i) +WR

η(i) + aRj d
R
{η(i),j} + wR

j + aPj (d̃
P
j;π−(j) − dPξ(j)),

and we are done.

�

In particular, if ̟ terminates at t, the above lemma shows that AR
{π(i),̟} +

WR
{π(i),̟} ≤ AR

{η(i),̟} +WR
{η(i),̟}. In our labelling algorithm described below, we may

therefore at each node only create labels for those paths which are not dominated by

any other path at that node. We call such labels efficient.

Definition 4.4.3. A label (AR
π(i) +WR

π(i), d
R
π(i)) at node i is said to be efficient if it is

not dominated by any other label at node i. A path π(i) is said to be efficient if the

label it corresponds to at node i is efficient.

We now describe the label setting algorithm we use to solve the problem (4.15). At

a node i ∈ N , the current collection of labels are denoted Ii and the current collection

of treated labels we denote by Mi. Because the dominance condition does not allow

identical labels at a node i, each label in Ii will correspond to a unique path (say π(i))

from so to i. For brevity, we will therefore denote individual elements of Ii and Mi as

paths such as π(i).
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Algorithm 4.4.4: Label Setting Algorithm for the Aircraft Routing Problem

1. Initialisation:

Set Iso = {so} and Ii = ∅ for all i ∈ N\{so}.

Set Mi = ∅ for each i ∈ N .

2. Selection of the label to be treated:

if
⋃

i∈N (Ii\Mi) = ∅ then go to Step 4; all efficient labels have been generated.

else choose i ∈ N and π(i) ∈ Ii\Mi so that AR
π(i) +WR

π(i) is minimal.

3. Treatment of label (AR
π(i) +WR

π(i), d
R
π(i))

forall (i, j) ∈ A

if (AR
{π(i),j} +WR

{π(i),j}, d
R
{π(i),j}) is not dominated by (AR

η(j) +WR
η(j), d

R
η(j)) for

any η(j) ∈ Ij then

set Ij = Ij ∪ {π(i), j}

end do

Set Mi := Mi ∪ {π(i)}.

Go to Step 2.

4. Return argminπ(t)∈It A
R
π(t) +WR

π(t).

We now describe the modifications required to solve the corresponding problem

for the crew. Define Tπ(i) =
∑

j∈π(i) tj, where tj is the scheduled time that crew work

on flight j. We denote the allowed upper limit of continuous scheduled crew work

time by H. Equation (4.12) can be written as

zP = min
{
AP

π(t) +W P
π(t) : π is a path from so to t, Tπ(t) ≤ H

}
. (4.16)

Definition 4.4.4. (Dominance condition)

The pair (or label) (AR
π(i) +WR

π(i), d
R
π(i), Tπ(i)) dominates (AR

η(i) +WR
η(i), d

R
η(i), Tη(i)) if

AR
π(i) +WR

π(i) ≤ AR
η(i) +WR

η(i) and dRπ(i) ≤ dRη(i) and Tπ(i) ≤ Tη(i)

and the labels are not identical.

In Algorithm 4.4.5 we do not propagate paths to a node i if Tπ(i) > H.
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Algorithm 4.4.5: Label Setting Algorithm for the Crew Pairing Problem

As in Algorithm 4.4.4, replacing R superscripts by P superscripts throughout

and replacing the if clause in Step 3 with:

if T{π(i),j} ≤ H hours and (AP
{π(i),j} +W P

{π(i),j}, d
P
{π(i),j}, T{π(i),j}) is not

dominated by (AP
η(j) +W P

η(j), d
P
η(j), Tη(j)) for any η(j) ∈ Ij then

set Ij = Ij ∪ {π(i), j}

One could try to improve the efficiency of Algorithms 4.4.4 and 4.4.5, by for exam-

ple using ideas from [34] for Algorithm 4.4.5. We found the algorithms to be efficient

on the instances tested and therefore have not explored further possible improvements.
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4.5 Numerical Results

To evaluate the effectiveness of our proposed iterative approach, we apply Algorithm

4.4.2 to a short-haul, one-day (domestic) schedule on a real airline network consisting

of 54 flights and 128 feasible connections.

We determine that the minimum number of aircraft and crew pairs required to

cover this network are 10 and 16, respectively, by solving (4.1) and (4.2). For

simplicity we assume that all aircraft, crew and connections incur similar operating

costs, and thus the minimum number of aircraft and crew pairs solution represents

a cost minimisation without regard for costs due to unforeseen delays. We use the

corresponding aircraft routings and crew pairings to form our Base Case to which we

apply our iterative integrated approach to reduce total propagated delay. We use 10

aircraft and 16 crew pairs in all instances and all algorithms tested.

The mean primary aircraft and crew pairing delays pRij and pPij are randomly sam-

pled from four different probability distributions. In practice, primary aircraft and

crew pairing delays rarely correspond to a specific distribution, but are rather a com-

posite of several causes of delays with different individual distributions that may vary

throughout different times of the day [96, 102]. It is often difficult to extract bias

free, accurate historical data for the expected primary aircraft and crew delay over a

specific connection. Thus, precise delay distributions (and their means) for all connec-

tions are very difficult to determine analytically. We therefore sample a set of delays

and use the values obtained to represent a possible mean delay for each connection.

To capture the asymmetric nature of the aircraft and crew delays, we sample from

an exponential distribution E(λ) with mean 1/λ in minutes and a truncated normal

distribution (truncated to non-negative delays), denoted tN(µ, σ2) with mean µ and

variance σ2, both in minutes. We test our new computational approach on 12 random

instances: 3 instances from E(1/5), 3 from E(1/10), 3 from tN(5, 100), and 3 from

tN(10, 25). We use unit costs per unit delay for all connections.

We study two simplified approaches (SSD) and (SSP) in addition to our base case

(B) and proposed approach (IPD). We also compare our results with the method of

[98] (W) as well as a proposed improvement to the method of [98] (WI):
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1. Base (B):

- Step 1 of Algorithm 4.4.2, followed by Algorithm 4.4.1 and Step 5 of Algorithm

4.4.2.

2. Routing and Crewing Solved Sequentially, Simple Delay (SSD):

- Steps 1, 2, 3 of Algorithm 4.4.2, followed immediately by Algorithm 4.4.1

and Step 5 of Algorithm 4.4.2. In Algorithm 4.4.1, (4.5) is replaced with

dRj = dRi − (sij − pRij) and (4.6) is replaced with dPj = dRk − (skj − pRkj). In

Algorithm 4.4.2, (4.13) is replaced with cRj =
∑

i∈π a
R
i d

R
i and (4.14) is replaced

with cPj =
∑

i∈π a
P
i d

P
i .

3. Routing and Crewing Solved Sequentially, Propagated Delay (SPD):

- Steps 1, 2, 3 of Algorithm 4.4.2, followed immediately by Algorithm 4.4.1 and

Step 5 of Algorithm 4.4.2.

4. Routing and Crewing Integrated, Propagated Delay (IPD):

- Algorithm 4.4.2.

5. The Algorithm of Weide et al. [98] (W)

- The algorithm as described inWeide et al. In the absence of cost-differentiation

for different crew pairings, we set the crew pairing cost to zero.

6. An Improved version of the Algorithm of Weide et al. [98] (WI)

- The algorithm W, with an attempt to incorporate a “time-of-day” aspect

based on expected primary delay. We Compute restricted connections using the

scheduled slack minus the expected primary delay, instead of scheduled slack.

The SPD approach will demonstrate the value of calculating the more accurate,

nonlinear, propagated delay over the simpler, less accurate linear delay of the SSD

approach. Our proposed IPD approach will demonstrate the value of integrating

routing and crewing, rather than simply performing them sequentially as in the SPD

approach. The SPD approach may be viewed as an improvement over Lan et al. [57]

because we use the correct calculation of propagated delay in column selection and
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also model interaction of aircraft and crew (see discussion in Section 4.1). The IPD

approach is an improvement over AhmadBeygi et al. [4] as we correctly calculate the

combined propagated delay due to aircraft and crew; moreover, we develop routing

and crewing connections, rather than re-timing existing connections. We also view

IPD as an improvement over Weide et al. [98] as our objective is in terms of a dollar

cost, which can be easily added to other operating cost terms in a more sophisticated

cost model. We compare our IPD approach with the model of Weide et al. W and

also with the “improved” model WI.

For each instance and each of the approaches SSD, SPD, and IPD, we record in

minutes the aircraft delay, crew delay, total delay, and improvement in total delay

relative to the total delay incurred by the Base Case. In each approach we apply

the evaluation Algorithm 4.4.1 to provide a consistent means of comparison between

each of the approaches. Algorithm 4.4.2 takes between 3 and 16 iterations for the 12

instances tested, as indicated in the tables below.

We remark that we evaluated Algorithm 4.4.3 on the same 12 instances and pro-

duced solutions that were universally inferior to Algorithm 4.4.2. This is not unex-

pected, as the routing strings are larger and less flexible than the crewing strings, and

folklore suggests making decisions on less flexible items first often produces better

results. The results for Algorithm 4.4.3 are thus not reported.

The IP was always solved at the root node by column generation and did not

require any further branching. As the network consisted of 54 flights, the master

problem consisted of 54 set partitioning constraints for both the aircraft routing and

crew pairing problems. Approximately 200 columns were generated in an aircraft

routing iteration and approximately 120 in a crew pairing iteration.

We also solved (4.1) and (4.2) separately to minimise the individual propagated

delay due to aircraft and crew, respectively. These values are tabulated below, along

with their sum, which represents a rigorous lower bound. This lower bound is unlikely

to be sharp as it completely ignores the additional delays due to the combination of

aircraft and crew delay; in some instances this combined effect can be substantial.

In most instances our IPD solution is close to this lower bound; given the lack of

sharpness of this bound, the IPD solutions appear to be of high quality. When running

the algorithms W and WI, we found that as our network consists of many restricted
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connections, we could not achieve a non-robustness measure (NRM) of zero; but rather

terminated when the NRM could not be improved further, as stipulated in [98]. For

each instance, there were 9 restricted aircraft changes in the final solution; 8 of these

may be classified as “less severe”, as the sit time exceeded the minimum sit time by

more than 15 minutes.

Our numerical results for Algorithm 4.4.2 are tabulated below. Individual results

are given for each instance, followed by a summary in Table 4.1, detailing the relative

improvements in delay between the algorithms SSD, SPD, IPD, W, and WI. All

experiments were done with CPLEX12.1 on a 2.4GHz PC with 4GB RAM.

Exponential Distribution With Mean λ = 5.

Instance 1:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 214 316 530 − 9.17

SSD 155 229 384 27.55 21.53

SPD 146 229 375 29.25 28.41

IPD (3 iter.) 132 229 361 31.89 47.19

Lower Bound 106 210 316 − −

W (10 iter.) 143 236 379 − 12.75

WI (8 iter.) 138 232 370 − 12.48

Instance 2:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 367 395 762 − 9.10

SSD 326 394 720 5.51 23.56

SPD 326 379 705 7.48 31.20

IPD (8 iter.) 321 347 668 12.34 68.01

Lower Bound 177 335 512 − −

W (10 iter.) 350 390 740 − 12.75

WI (9 iter.) 349 388 737 − 10.77
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Instance 3:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 158 316 474 − 10.15

SSD 164 295 459 3.16 23.41

SPD 160 297 457 3.59 28.55

IPD (7 iter.) 116 297 413 12.87 63.45

Lower Bound 104 275 379 − −

W (10. iter) 141 316 457 − 12.75

WI (10 iter.) 126 315 441 − 15.02

Exponential Distribution With Mean λ = 10.

Instance 4:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 341 544 885 − 8.12

SSD 312 501 813 8.14 24.21

SPD 267 478 745 15.82 29.50

IPD (4 iter.) 241 471 712 19.55 72.26

Lower Bound 185 468 653 − −

W (10 iter.) 312 501 813 − 12.75

WI (10 iter.) 304 485 789 − 16.00

Instance 5:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 999 1114 2113 − 15.53

SSD 826 1216 2042 3.36 26.22

SPD 856 1039 1895 10.32 28.16

IPD (16 iter.) 825 879 1704 19.36 214.19

Lower Bound 590 879 1469 − −

W (10 iter.) 895 1042 1937 − 12.75

WI (8 iter.) 890 1027 1917 − 11.78
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Instance 6:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 1217 1846 3063 − 14.51

SSD 1117 1653 2770 9.57 22.34

SPD 1108 1516 2624 14.33 23.19

IPD (4 iter.) 1032 1500 2532 17.34 92.35

Lower Bound 994 1456 2450 − −

W (10 iter.) 1070 1589 2659 − 12.75

WI (10 iter.) 1053 1573 2626 − 11.33

Truncated Normal Distribution With µ = 5, σ = 10.

Instance 7:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 438 665 1103 − 14.19

SSD 465 598 1063 3.63 22.10

SPD 441 598 1039 5.80 25.46

IPD (4 iter.) 387 573 960 12.96 39.44

Lower Bound 260 434 694 − −

W (10 iter.) 425 591 1016 − 12.75

WI (8 iter.) 416 582 998 − 10.80

Instance 8:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 536 650 1186 − 13.31

SSD 503 689 1192 −0.51 24.75

SPD 503 652 1155 2.61 25.91

IPD (7 iter.) 505 571 1076 9.27 168.74

Lower Bound 481 562 1043 − −

W (10 iter.) 526 647 1173 − 12.75

WI (9 iter.) 524 645 1169 − 12.56
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Instance 9:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 274 562 836 − 15.11

SSD 269 408 677 19.02 27.89

SPD 260 434 694 16.99 28.61

IPD (6 iter.) 227 408 635 24.04 57.98

Lower Bound 168 401 569 − −

W (10 iter.) 267 455 722 − 12.75

WI (10 iter.) 267 452 719 − 11.14

Truncated Normal Distribution With µ = 10, σ = 5.

Instance 10:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 482 799 1281 − 14.91

SSD 526 780 1306 −1.95 23.66

SPD 399 731 1130 11.79 25.11

IPD (4 iter.) 366 731 1097 14.36 53.35

Lower Bound 312 703 1015 − −

W (10 iter.) 470 792 1262 − 12.75

WI (7 iter.) 470 788 1258 − 10.16

Instance 11:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 895 1134 2029 − 14.70

SSD 804 1144 1948 3.99 24.18

SPD 825 1034 1859 8.38 25.67

IPD (5 iter.) 721 944 1665 17.94 61.72

Lower Bound 682 920 1602 − −

W (10 iter.) 757 1010 1767 − 12.75

WI (8 iter) 746 976 1722 − 9.98
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Instance 12:

Approach Aircraft Delay Crew Delay Total Delay % Improvement on B Time (s)

B 446 616 1062 − 15.04

SSD 437 604 1041 1.98 19.58

SPD 442 551 993 6.50 20.01

IPD (8 iter.) 380 544 924 12.99 72.97

Lower Bound 347 532 879 − −

W (10 iter.) 440 574 1014 − 12.75

WI (10 iter.) 440 562 1002 − 11.54

4.6 Discussion And Conclusions

Table 4.1: Relative improvements of the algorithm SPD over SSD, and IPD over SPD,

SSD, W, and WI.

Instance (SSD−SPD)
SSD

(SPD−IPD)
SPD

(SSD−IPD)
SSD

(W−IPD)
W

(WI−IPD)
WI

×100% ×100% ×100% ×100% ×100%

1 2.34 3.73 5.99 4.75 2.43

2 2.08 5.25 7.22 9.73 9.36

3 0.43 9.63 10.02 9.63 6.35

4 8.36 4.43 12.42 12.42 9.76

5 7.20 10.10 16.55 12.03 11.11

6 5.27 3.51 8.59 4.78 3.58

7 2.26 7.60 9.69 5.51 3.81

8 3.10 6.84 9.73 8.27 7.96

9 −2.51 8.50 6.20 12.05 11.68

10 13.48 2.92 16.00 13.07 12.80

11 4.57 10.44 14.53 5.77 3.31

12 4.61 6.95 11.24 8.88 7.78

Average 4.27 6.67 10.68 8.91 7.49
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Our iterative integrated methodology for minimising propagated delay in a com-

bined routing and crewing network has clear advantages over approaches that do not

explicitly calculate propagated delay or fail to properly integrate routing and crewing.

• The value of integrating routing and crewing, rather than sequentially minimis-

ing propagated delay in routing strings, then minimising propagated delay in

crew strings is clear from a comparison of IPD and SPD delays in our 12 in-

stances. There is universal improvement over all instances; on average our IPD

approach improves by 6.7% over the SPD approach.

• For the two sequential approaches tested, accurately calculating propagated

delay is an improvement over using a simpler additive delay; 11 out of the 12

instances showed an improvement. On average over the 12 instances, the SPD

approach improves over SSD by 4.3%.

• Finally, integrating routing and crew delays and accurately calculating the prop-

agated delays (our IPD approach) is a clear and universal improvement over SSD

with an average improvement of 10.7%.

When comparing our IPD approach with the methodology of [98] on average our

approach produced schedules with 8.91% less total delay (IPD vs. W) and 7.49% less

total delay (IPD vs. our “improved” version of [98] WI). The delay reductions over

Algorithms W and WI are comparable to those observed by (i) the correct propagated

delay was used in place of the simplified “summed” delay (SSD vs. SPD) and (ii)

iteration was used in place of sequential optimisation (SPD vs. IPD).

In this proof of concept work, we have limited our study to minimising expected

propagated delay, however, our methodology allows other extensions to mitigate delay

related risk. For example, it is straightforward to limit the maximum expected prop-

agated delay of any single flight. In Algorithm 4.4.4, one may disallow the creation of

a path with an unacceptably high single flight delay cost in the same way that crew

strings of duration greater than H hours are disallowed in Algorithm 4.4.5. Similarly,

it is easy to limit the total delay cost of either a routing or crew string.

Our new integrated framework is in principle extendable to a third aspect, such

as delays due to passengers and future work may explore this possibility.
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4.7 Performance On Different Delay Scenarios

The iterative scheme proposed in this Chapter works well for single delay instances

(i.e. one (mean) primary delay for each connection in the network). However, as

delays over certain connections may vary from day-to-day in operations, perhaps a

natural question to ask is: How well will the solution obtained using such an approach

perform on multiple sets of (different) delay scenarios? From a preliminary analysis,

it appears as though the solution obtained using this approach performs particularly

well (see Figure 4.3 below). It may be observed in Figure 4.3 (a) that the solution

obtained using the IPD approach performs universally better than that of the Base

Case. Similarly, in Figure 4.3 (b), with the exception of a few cases, the IPD approach

also outperforms the Base Case solution.

Example 4.7.1. Performance of each solution on different delay scenarios.
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(a) Truncated normal distribution

with µ = 10, σ = 5. (Instance 12).
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Figure 4.3: Performance of each solution on different delay scenarios.
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A similar analysis was performed to allow a comparison between the IPD approach

and the other approaches (namely SSD, SPD, W and WI). However for the sake of

brevity, we have not included this analysis here. However, it was observed (on average)

that the IPD approach outperformed the these other approaches over 1000 different

delay scenarios.

In Figure 4.4, we provide a box plot of the delay (in minutes) experienced at each

flight node (over 1000 scenarios), where the flights have been sorted into topological

order according to departure time. The dots correspond to the mean delay for each

flight node, calculated over all the scenarios, the box represents the variation in delay

for each flight node and the + symbols denote outliers. It may be seen that the IPD

solution partially assists in dampening the delay propagation towards the end of the

day, with all but 2 of the flights (after flight 34) arriving late less than 50% of the

time, whereas approximately 1/3 of flights for the Base Case arrive late more than

50% of the time. Moreover, the IPD case allows for some flights, such as flights 39,

48 and 49 to receive a dramatic reduction in delay.

However, it would be preferable if it were somehow possible to include the delay

scenarios within the aircraft routing and crew pairing subproblems of the iterative

scheme to allow for a potentially more robust solution. We explore this possibility in

more detail in Chapter 6.
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CHAPTER

FIVE

The Re-timing Heuristic

5.1 Rationale Behind The Re-timing Heuristic

In Chapter 4 and in [35] we proposed an integrated aircraft routing and crew pairing

model for obtaining a minimal (delay propagation) cost solution for the integrated

aircraft routing and crew pairing problem. In this model, we assumed a given set of

feasible connections, corresponding slack times and corresponding primary delays for

both aircraft and crew over each of these connections. However, an optimal solution to

this problem is the optimal assignment of aircraft and crew to flights, for the provided

(fixed) set of departure times and list of feasible connections.

In Chapter 4 we observed that the integrated algorithm had the potential to sig-

nificantly improve the delay propagation cost over that of existing models. A question

naturally arises as to whether one could improve the solution further, via the adjust-

ment of the flight departure times, so as to provide additional ‘slack’ over critical

connections and re-allocate excess slack from the remaining connections. Such an ad-

justment must reflect a real-world network and consequently, although it may be easy

to minimise delay propagation by indiscriminately padding every connection in the

schedule with additional slack; such a solution is expensive in practice, as resources

remaining idle represent lost revenue for the airline. Furthermore, in order to ensure

that the fleet assignment (completed prior to the aircraft routing and crew pairing)

remains feasible, it would be preferable if we could ensure such a re-timed schedule
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remains as close as possible to the original schedule.

In this chapter we address this question and propose a greedy heuristic algorithm

capable of re-timing an incumbent aircraft and crew assignment in order to minimise

the cost of delay propagation. The heuristic re-times flights without altering the

aircraft and crew assignments of the incumbent solution. The algorithm is greedy in

the sense that it moves forward in time throughout the day, starting with the very

first flight in each route (or pairing) and then moving on to the second and so on.

The algorithm proceeds forward in time, so that changes made later in the day do not

affect earlier changes made. We ensure that the algorithm accepts only improvements

in the overall delay and if no improvement can be made, we do not re-time the flight

under consideration.

5.2 Assumptions

In order for the re-timing heuristic to obtain a solution that reflects real-world require-

ments, we are required to make several key assumptions; specifically, these restrictions

are placed on the amount by which we can alter the departure times and therefore

the corresponding slack over certain connections and in the network as whole.

Firstly, as noted above, although it may seem beneficial to pad the schedule with

additional ‘slack’ to assist in the absorption of potential delays, this is not an optimal

solution in practice; as monetary factors relating to aircraft and crew costs (eg. costs

of obtaining new slot times or overtime costs for crew) make excess ground time

expensive and undesirable as idle resources represent lost revenue for the airline. As a

result, the associated costs of lost revenue may outweigh the benefits of the potential

for delay absorption. We thus, in our algorithm, ensure that we only make use of the

current slack present in the network. That is, the algorithm must only draw from the

slack already present in the network and attempt to place it where it is required the

most. Secondly, we seek to avoid significant changes to the publicised (incumbent)

timetable so as to ensure both the aircraft routing and crew pairing solutions remain

feasible and similarly the demand for each flight remains approximately the same, so

as to ensure the fleet assignment remains optimal. Moreover, we wish to limit the

potential for a flight re-timing to cause knock-on effects (such as the potential for

passengers to miss connecting flights) and wish to avoid unnecessarily delaying the
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last flights of the day beyond curfew. Therefore, we borrow the idea of restricting

the amount by which we can re-time each flight to within a time-window; an idea

successfully employed by a number of authors namely, Rexing et al. (2000), [77], Lan

et al. (2006) [57] and Mercier and Soumis (2007) [69] and Weide (2009) [99]. For

simplicity, we assume a time window of (t−10, t+10) around the originally scheduled

departure time t, discretised into 5 minute intervals. For simplicity we assume that

changes made to slack over a connection are the same for aircraft and crew. As a final

note, we conclude by mentioning that by moving a flight earlier we are effectively

reducing slack and moving a flight later increases the slack for that flight. Thus if we

add slack to a certain flight connection, we subtract the same amount of slack from

the next flight connection in the route (or pairing) as the first flight will arrive later

- thus our algorithm involves only a localised effect. Furthermore, slack is only taken

from within the same aircraft or crew route (or pairing). However, we note that this

can be extended to allow for slack to be taken from elsewhere in the network.

5.3 Description Of Key Contributions

We now outline the key contributions of the heuristic proposed in this Chapter. Our

proposed heuristic seeks to improve upon existing models in a number of key areas.

Firstly, many existing models that incorporate an element of re-timing do so for either

the aircraft or crew in isolation. For example, in the model of Klabjan et al. (2002)

[56] and Lan et al. (2006) [57], the authors seek to allow re-timing possibilities for

the aircraft routing solution (resp. crew pairing solution), but do not consider crew

pairing (resp. aircraft routing). More recently the models proposed by Papadakos

(2007) [74] and Mercier and Soumis (2007) [69] have sought to include re-timing

possibilities for both aircraft and crew; however neither of these approaches consider

the effects of delay propagation between aircraft and crew, and involve the addition

of extra decision variables within the master problem, potentially leading to lengthy

computation times.

Our proposed heuristic seeks to improve upon these approaches by simultaneously

re-timing the aircraft and crew whilst preserving the aircraft and crew assignments

of an incumbent solution. The simultaneous re-timing of aircraft and crew avoids
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complications arising from potential incompatibilities and allows for accurate delay

propagation calculation between aircraft and crew. This provides an accurate assess-

ment of the effects of delay propagation across certain connections and thus allows an

effective re-timing to be chosen. This approach additionally overcomes the difficulties

associated with the heuristic of AhmadBeygi (2008) [4] which both under-estimates

and over-estimates the effects of delay propagation in certain cases.

The primary advantage of preserving the assignments of the incumbent solution

is that it ensures that the re-timed solution for aircraft and crew does not differ

significantly from the original aircraft and crew assignment. This may be beneficial

for an airline that has aircraft routes or pairings that do not change substantially from

day-to-day. Additionally, this also allows the heuristic to either be used in conjunction

with a model such as the one proposed in Chapter 4 (and in Dunbar et al. (2011)

[35]), or as an ‘add-on’ to an existing model, allowing for a qualitative assessment of

potential areas for improvement within a given solution (e.g. bottlenecks at certain

points), which may allow schedule planners an insight into where improvements can

be made. The algorithm can be easily incorporated into the model of Dunbar et al.

(2011) [35] to allow for an iterative process between the aircraft routing, crew pairing

and re-timing without increasing the overall complexity. This possibility is discussed

in further detail in Section 6.5. Finally, if an airline wishes to specify particular

flights that it would prefer not to be re-scheduled (eg. First flights of the day),

such a restriction is easily included within the algorithm; whereas this would more

complicated to capture within an exact algorithm.

We propose two heuristics, the first in this Chapter and the second an extension

of the first, and investigate the relative merits of both. Both heuristics allow for an

airline to easily customise the choice of flights they wish to consider re-timing, as well

as the extent by which each flight may be re-timed, to suit their specific needs. The

first heuristic performs re-timing based on one set of primary (mean) delays for each

instance, whilst the second makes use of multiple sets of possible primary delays for

each instance to allow for a potentially more robust re-timing. The first heuristic is

outlined in the following section, and the second heuristic is outlined in Chapter 6.

Chapter 6 additionally includes two new approaches for including delay scenarios

within the the aircraft routing and crew pairing subproblems of Chapter 4 and within

the heuristic.
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5.4 The Algorithm

Algorithm 5.4.1: The re-timing heuristic using mean delays: (Re-timed IPD)

Input: An incumbent aircraft routing and crew pairing solution and a set of

primary delays with corresponding slack over each connection for the aircraft

and crew.

Output: An improved choice of slack for each feasible connection in the network.

1 Start AR

2 Set l := 1 (the first flight in each string) and set slackOptions = [−10,−5, 0, 5, 10].

3 for i from 1 to numberOfAircraft do

4 Pick flight string i.

5 for j from 1 to numSlackOptions do

6 - Set sopt :=slackOptions[j].

7 - Find the flight k, that precedes flight l in string i. (N.B: k = 0, if l = 1).

8 - Find the flight m that follows flight l in string i.

9 - Construct the temporary slack vectors ŝR := sR and ŝP := sP .

if (ŝRk,l + sopt) ≥ 0 and (ŝPk,l + sopt) ≥ 0 and (ŝRl,m − sopt) ≥ 0 and

(ŝPl,m − sopt) ≥ 0 then

10 - Set ŝRk,l := ŝRk,l + sopt. (resp. ŝPk,l := ŝPk,l + sopt)

11 - Set ŝRl,m := ŝRl,m − sopt. (resp. ŝPl,m := ŝPl,m − sopt)

12 - Run the evaluation algorithm (4.4.1) using the updated slack vectors ŝR

and ŝP and store the total delay.

end

end

13 - Choose the delay/slack option (s∗opt) corresponding to the smallest propagated

delay for the network and make the appropriate changes in the real slack vector.

That is,

14 - Set sRk,l := sRk,l + s∗opt. (resp. sPk,l := sPk,l + s∗opt)

15 - Set sRl,m := sRl,m − s∗opt. (resp. sPl,m := sPl,m − s∗opt)

16 - Set i := i+ 1.

end

(Continued on next page..)
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The re-timing heuristic using mean delays: Re-timed IPD (continued)

16 StartCP

17 for i from 1 to numberOfCrew do

18 Pick flight string i.

19 for j from 1 to numSlackOptions do

20 - Set sopt :=slackOptions[j].

21 - Find the flight k that precedes flight l in string i.

22 - Find the flight m that follows flight l in string i.

23 - Construct the temporary slack vectors ŝR := sR and ŝP := sP .

if (ŝRk,l + sopt) ≥ 0 and (ŝPk,l + sopt) ≥ 0 and (ŝRl,m − sopt) ≥ 0 and

(ŝPl,m − sopt) ≥ 0 then

24 - Set ŝPk,l := ŝPk,l + sopt. (resp. ŝRk,l := ŝRk,l + sopt)

25 - Set ŝPl,m := ŝPl,m − sopt. (resp. ŝRl,m := ŝRl,m − sopt)

26 - Run the evaluation algorithm (4.4.1) using the updated slack

vectors ŝR and ŝP and store the total delay.

end

end

27 - Choose the delay/ slack option (s∗opt) corresponding to the smallest

propagated delay for the network and make the appropriate changes in the

real slack vector. That is,

28 - Set sPk,l := sPk,l + s∗opt (resp. sRk,l := sRk,l + s∗opt)

29 - Set sPl,m := sPl,m − s∗opt (resp. sRl,m := sRl,m − s∗opt)

30 - Set i := i+ 1

end

31 -Set l := l + 1. (Move on to the next flight for each string)

32 Return to 1.
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5.4.1 Integration Of Aircraft Routing And Crew Pairing (Mean

Delay), Followed By Heuristic Re-timing (Mean Delay)

In the following Section, we implement the first re-timing heuristic and evaluate its

effectiveness on the 12 delay instances used in Chapter 4. Using this first re-timing

heuristic, we wish to determine whether it is possible to improve the IPD solution

further via the adjustment of slack and thus we analyse the improvements achieved

by applying the heuristic to the incumbent IPD solutions obtained in Chapter 4.

Algorithm 5.4.3 (below) outlines this approach.

Algorithm 5.4.3: Integrated AR, CP and re-timing (using mean delay values)

1 Solve the integrated aircraft routing and crew pairing problem using the

method in algorithm (4.4.2).

2 Apply the re-timing heuristic (5.4.1) to the incumbent AR and CP solutions.

3 Apply the propagated delay algorithm (4.4.1) to the new solution to obtain the

total delay.

5.5 Numerical Results

Our numerical results for Algorithm 5.4.1 are tabulated below. Aircraft routing

and crew pairing solutions were obtained using the IPD case (for each instance) in

Chapter 4 and were used as input for Algorithm 5.4.1. Additionally, we retain the

same network and slack information from Chapter 4 and to allow for a fair compari-

son, utilise the same number of aircraft and crew as in Chapter 4. The algorithm was

written in MATLAB (R2010b) using a 2.4GHz PC with 4GB RAM.

Individual results are provided for each instance and a summary is provided in

Table 5.1, detailing the relative improvements of the Re-timed IPD over the Base

Case, SSD, SPD and IPD.
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Exponential Distribution With Mean λ = 5.

Instance 1:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 214 316 530 − 9.17

IPD (3 iter.) 132 229 361 31.89 47.19

Re-timed IPD 105 215 320 39.62 47.19 + 2.51

Instance 2:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 367 395 762 − 9.10

IPD (8 iter.) 321 347 668 12.34 68.01

Re-timed IPD 262 209 471 38.20 68.01 + 2.60

Instance 3:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 158 316 474 − 10.15

IPD (7 iter.) 116 297 413 12.87 63.45

Re-timed IPD 104 196 300 36.71 63.45 + 3.09

Exponential Distribution With Mean λ = 10.

Instance 4:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 341 544 885 − 8.12

IPD (4 iter.) 241 471 712 19.55 72.26

Re-timed IPD 185 360 545 38.42 72.26 + 2.42

Instance 5:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 999 1114 2113 − 15.53

IPD (16 iter.) 825 879 1704 19.36 214.19

Re-timed IPD 565 751 1316 37.72 214.19 + 3.55
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Instance 6:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 1217 1846 3063 − 14.51

IPD (4 iter.) 1032 1500 2532 17.34 92.35

Re-timed IPD 998 1142 2140 30.13 92.35 + 2.06

Truncated Normal Distribution With µ = 5, σ = 10.

Instance 7:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 438 665 1103 − 14.19

IPD (4 iter.) 387 573 960 12.96 39.44

Re-timed IPD 260 428 688 37.62 39.44 + 2.55

Instance 8:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 536 650 1186 − 13.31

IPD (7 iter.) 505 571 1076 9.27 168.74

Re-timed IPD 505 341 846 28.67 168.74 + 2.87

Instance 9:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 274 562 836 − 15.11

IPD (6 iter.) 227 408 635 24.04 57.98

Re-timed IPD 172 374 546 34.69 57.98 + 2.23

Truncated Normal Distribution With µ = 10, σ = 5.

Instance 10:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 482 799 1281 − 14.91

IPD (4 iter.) 366 731 1097 14.36 53.35

Re-timed IPD 300 648 948 26.00 53.35 + 2.40
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Instance 11:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 895 1134 2029 − 14.70

IPD (5 iter.) 721 944 1665 17.94 61.72

Re-timed IPD 517 698 1215 40.11 61.72 + 2.59

Instance 12:

Approach Aircraft Delay Crew Delay Total Delay % Improvement over B Time (s)

B 446 616 1062 − 15.04

IPD (8 iter.) 380 544 924 12.99 72.97

Re-timed IPD 312 483 795 25.14 72.97 + 3.41

Table 5.1: Relative improvements of the Re-timed IPD over B, SSD, SPD and IPD.

Instance (B−Re-timed IPD)
B

(SSD−Re-timed IPD)
SSD

(SPD−Re-timed IPD)
SPD

(IPD−Re-timed IPD)
IPD

×100% ×100% ×100% ×100%

1 39.62 16.67 14.67 11.35

2 38.20 34.58 33.19 29.49

3 36.71 34.64 34.35 27.36

4 38.42 32.96 26.84 23.46

5 37.72 35.55 30.55 22.76

6 30.13 22.74 18.44 15.48

7 37.62 35.28 33.78 28.33

8 28.67 29.02 26.75 21.38

9 34.69 19.35 21.32 14.02

10 26.00 27.41 16.11 13.58

11 40.11 37.63 34.64 27.03

12 25.14 23.63 19.94 13.96

Average 34.42 29.12 25.88 20.68
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Figure 5.1: Plot of the performance of each approach over the 12 delay instances.
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5.5.1 Example Solutions

Below we present two example solutions. In both of these examples, we evaluated the

performance of the re-timed aircraft and crew solution on 1000 delay scenarios drawn

from a distribution with the same mean and standard deviation as the relevant delay

instance. We compare the performance between the Re-timed IPD solution and the

Base Case, evaluated on the same delay scenarios (see Figure 5.2 below).

We provide a sample-by-sample difference between the Base Case and the Re-

timed IPD solutions. It may be observed that in a sample-by-sample comparison,

the Re-timed IPD performs universally better than the Base Case for the Truncated

normal distribution example, and with the exception of a few cases, performs in a

similar manner on the exponential distribution example.

Example 5.5.1. Performance of each re-timed solution on different delay

scenarios.
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(a) Truncated normal distribution

with µ = 10, σ = 5. (Instance 12).
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(b) Exponential distribution

with λ = 10. (Instance 5).
Figure 5.2:
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5.6 Discussion

From the analysis provided in the tables for each instance and further tabulated

in Table 5.1, it may be observed that the re-timing heuristic, used in combination

with each of the IPD solutions, out-performs the IPD approach and the alternative

approaches of Chapter 4. This may be visualised most clearly within Figure 5.1, for

which a significant improvement may be observed for a number of the delay instances;

namely instance numbers 6, 7, 8 and 11.

In particular, the Re-timed IPD displays a significant improvement over the Base

case, with an average improvement of 34.42%. An improvement of 29.12% is achieved

over the SSD case and an improvement of 25.88% over the SPD case. Finally, the Re-

timed IPD improves upon the IPD approach by an average of 20.68%. These results

indicate, that for these test instances, there is significant potential for improvement

in the reduction of delay propagation through the consideration of flight re-timing.

Furthermore, as the re-timing heuristic re-times each flight within a small window of

the originally scheduled departure time and retains the incumbent aircraft routing and

crew pairing solution, it appears as though significant improvements may be achieved

without drastic changes to the original schedule. The re-timed solutions also perform

well on different sets of delay data, as highlighted in Figure 5.2 above.

In the following chapter, we seek to extend this idea and examine whether it is

possible to improve upon the performance of these solutions further. We seek to

improve in two key areas; namely, the aircraft routing and crew pairing subproblems

and the heuristic via the inclusion of delay scenarios within the subproblems and

within the re-timing heuristic.



CHAPTER

SIX

Integration Of Aircraft Routing And Crew Pairing

With The Re-timing Heuristic: Including Scenarios

Within The Subproblem And Re-timing Heuristic

6.1 Two Approaches For Including Scenarios Within

The Subproblem

In Chapter 4 we proposed an Algorithm for minimising propagated delay in the inte-

grated aircraft routing and crew pairing framework. In Chapter 5 we motivated the

concept of re-timing within the context of airline scheduling and proposed a re-timing

heuristic that may be used in conjunction with the model proposed in Chapter 4.

While these two approaches delivered significant improvements in delay propagation

reduction, one of the drawbacks involves the assumption that the expected delay over

each connection is known prior to the assignment of aircraft and crew to flights, with

delay propagation calculations utilising the expected delay over each connection. In

practice, however, it may not be possible for an airline to possess this knowledge prior

to aircraft routing and crew pairing, or indeed have the information to a necessary

level of certainty. Moreover, given the number of sources of primary delay over a par-

ticular connection, an airline may prefer to model delay across individual connections

using a distribution (as mentioned in Wu (2005, 2007) [101, 100]) – perhaps derived
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from data from previous years, to represent a more complete range of delays observed.

With this in mind, we wish to investigate whether it is possible to achieve fur-

ther improvements on the results of both Chapter 4 and Chapter 5 by incorporating

additional stochastic delay information within Algorithms 4.4.4 and 4.4.5, and addi-

tionally, within the re-timing heuristic of the previous Chapter.

We propose to incorporate this information by prescribing 1000 potential primary

delay values for each connection in the network. These 1000 primary delay values

(1000 for each aircraft connection and 1000 for each crew connection) will be drawn

from an appropriate distribution (i.e. truncated normal or exponential distribution)

possessing the same mean as the original primary delay prescribed in the previous

Chapters. As mentioned in Chapter 4, the delay distribution across a particular con-

nection is usually the combination of multiple distributions (e.g. Truncated Normal,

log-normal, exponential distribution etc.), resulting from multiple interactions from

multiple resources. However in general, as discussed in Chapter 4, a truncated nor-

mal, or exponential distribution are reasonable approximations to the distributions

experienced in practice. Consequently, we will make use of both of these distribution

types in this Chapter.

We now outline two alternative approaches for the inclusion of multiple delay sce-

narios within the subproblem. The first approach, referred to as simSub1, is an exact

approach for which we enumerate every path in the subproblem and then calculate the

average delay propagation along each string, over all delay scenarios. Our numerical

results indicate that this approach, having the advantage of being exact, produces

very good results on our network, but may have the disadvantage of becoming com-

putationally expensive for larger networks. To overcome this, we propose a second

approach, referred to as simSub2, in which we at each step of the label setting algo-

rithm ((4.4.4) and (4.4.5)), calculate the average delay propagation arriving at each

node and then use this to decide which label(s) to propagate. This has the advan-

tage that potentially fewer labels and paths are produced, and we are not required to

enumerate all possible paths. Both approaches perform well and outperform the case

in which we simply use mean delays. We now formalise the above description and

outline each approach in more mathematical detail.
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6.1.1 An Exact Approach: simSub1

In this first approach, we enumerate every feasible path between the source node so,

and sink node t, and determine the average delay propagation along each path over

all scenarios. The algorithm then finds the path that minimises:

zR = min

{
1

|Ω|

∑

ω∈Ω

∑

i∈π

(
aRi d

R
i,ω + wR

i + aPi (d̃
P
i,ω;π−(i) − dPi,ω)

)
: π is a path from so to t

}
,

(6.1)

where ω ∈ Ω and Ω is the set of all delay scenarios.

For the crew pricing problem, a completely analogous procedure is used to con-

struct the reduced cost estimate aRj (d̃
R
j,ω;π−(j) − dRj,ω) for the routing delay, attributable

to node j, from the crew string under construction. For the crew pairing pricing prob-

lem, we impose the additional upper limit H on the number of hours worked.

zP = min





1

|Ω|

∑

ω∈Ω

∑

i∈ξ

(
aPi d

P
i,ω + wP

i + aRi (d̃
R
i,ω;ξ−(i) − dRi,ω)

)
:

ξ is a path from so to t,

total hours worked ≤ H.



 ,

(6.2)

with the further restriction that the path ξ begins and ends at the same crew base.

Upon obtaining a solution to problem 6.1 (resp. problem 6.2), the minimising path

forms a column Aj of the matrix AR (resp. AP ). A routing string is assigned a cost

of

cRj = zR −
∑

i∈π

wR
i ,

=
1

|Ω|

∑

ω∈Ω

∑

i∈π

(
aRi d

R
i,ω + aPi (d̃

P
i,ω;π−(i) − dPi,ω)

)
. (6.3)

and a crew pairing string is assigned a cost of

cPj = zP −
∑

i∈ξ

wP
i ,

=
1

|Ω|

∑

ω∈Ω

∑

i∈ξ

(
aPi d

P
i,ω + aRi (d̃

R
i,ω;ξ−(i) − dRi,ω)

)
. (6.4)

We now outline the algorithms for the aircraft routing and crew pairing subprob-

lems used in the simSub1 case:
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Algorithm 6.1.1: Algorithm for the Aircraft Routing Pricing Problem: simSub1

1 Generate all paths:

Consider the full directed graph G = (N ,A). Generate all distinct, directed

paths from the source node so, to the sink node t.

2 Record each path π in the set S of all paths.

3 For each path π ∈ S, calculate

1

|Ω|

∑

ω∈Ω

∑

i∈π

(
aRi d

R
i,ω + wR

i + aPi (d̃
P
i,ω;π−(i) − dPi,ω)

)
,

and return the path that minimises (over all paths π ∈ S):

zR = min

{
1

|Ω|

∑

ω∈Ω

∑

i∈π

(
aRi d

R
i,ω + wR

i + aPi (d̃
P
i,ω;π−(i) − dPi,ω)

)}
,

where π is a path from so to t.

Algorithm 6.1.2: Algorithm for the Crew Pairing Pricing Problem: simSub1

1 Generate all paths:

Consider the full directed graph G = (N ,A). Generate all distinct, directed

paths from the source node so, to the sink node t, that satisfy:

– The total number of hours worked ≤ H and,

– The last flight in the path returns to the crew-base at which the path began.

2 Record each path ξ in the set S of all paths.

3 For each path ξ ∈ S, calculate:

1

|Ω|

∑

ω∈Ω

∑

i∈ξ

(
aPi d

P
i,ω + wP

i + aRi (d̃
R
i,ω;ξ−(i) − dRi,ω)

)
,

and return the path that minimises (over all paths π ∈ S):

zP = min

{
1

|Ω|

∑

ω∈Ω

∑

i∈ξ

(
aPi d

P
i,ω + wP

i + aRi (d̃
R
i,ω;ξ−(i) − dRi,ω)

) }
,

where ξ is a path from so to t and total hours worked ≤ H.
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6.1.2 An Approximate Approach: simSub2

In this second approach, we make use of the label setting algorithm in Chapter 4.

We refer the reader to Algorithms 4.4.4 and 4.4.5 above for the background detail.

Unlike the modification used in the simSub1 pricing problem, we wish to incorporate

delay information from the scenarios within Step 3 of the label setting algorithm used

in the pricing problem. The motivation for including the scenario information within

this step is to allow the average delay propagation cost at each node to be calculated,

before the label is propagated further. Thus, through use of the dominance condition,

we encourage the propagation of labels whose corresponding (partial) path experiences

minimal delay propagation on average.

In this approach, we once again, make use of the scenarios consisting of 1000

primary delays, for each connection. We denote the primary delay for the aircraft

across connection (i, j) under scenario ω ∈ Ω by pRij,ω. Similarly, pPij,ω denotes the

primary delay for the crew across connection (i, j) under scenario ω. As flights from

the source so, and to the sink t, are ‘dummy’ flights, we set pRjt,ω = 0 and pPjt,ω = 0 for

all (j, t) ∈ A and ω ∈ Ω.

In this modification of the label setting Algorithms 4.4.4 and 4.4.5, we wish to

retain Steps 1 and 2, but modify Step 3 to allow for the average delay propagation

arriving at a particular node to be calculated. We thus use the notation d̂j to denote

the average delay arriving at node j and more specifically, d̂Rj for the average propa-

gated aircraft delay and d̂Pj for the average propagated crew delay. Since the source

node so, is a ‘dummy’ node, we fix d̂Rso = 0 and d̂Pso = 0 and for a general flight node

j 6= 0, we calculate the average propagated delay arriving at node j, denoted by d̂Rj

as follows:

d̂Rj = Eω

(
max{d̂Ri + (sij − pRij,ω) , d̂

P
k + (skj − pPkj,ω)}

)

=
1

|Ω|

∑

ω∈Ω

(
max{d̂Ri + (sij − pRij,ω) , d̂

P
k + (skj − pPkj,ω)}

)
(6.5)

Similarly, we calculate the average propagated crew delay arriving at node j, denoted

by d̂Pj as follows.

d̂Pj = Eω

(
max{d̂Ri + (sij − pRij,ω) , d̂

P
k + (skj − pPkj,ω)}

)

=
1

|Ω|

∑

ω∈Ω

(
max{d̂Ri + (sij − pRij,ω) , d̂

P
k + (skj − pPkj,ω)}

)
(6.6)
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The modified aircraft and crew label setting algorithms for the simSub2 approach

are outlined below. On the following page we specify how to include these label setting

algorithms within the iterative aircraft routing and crew pairing framework.

Algorithm 6.1.3: Label Setting Algorithm for the Aircraft Routing Problem:

simSub2

1. Initialisation:

Set Iso = {so} and Ii = ∅ for all i ∈ N\{so}.

Set Mi = ∅ for each i ∈ N .

2. Selection of the label to be treated:

if
⋃

i∈N (Ii\Mi) = ∅ then go to Step 4; all efficient labels have been generated.

else choose i ∈ N and π(i) ∈ Ii\Mi so that ÂR
π(i) +WR

π(i) is minimal.

3. Treatment of label (ÂR
π(i) +WR

π(i), d̂
R
π(i))

forall (i, j) ∈ A

Calculate the d̂Rj and d̂Pj using equations (6.5) and (6.6) over all scenarios.

if (ÂR
{π(i),j} +WR

{π(i),j}, d̂
R
{π(i),j}) is not dominated by (ÂR

η(j) +WR
η(j), d̂

R
η(j)) for

any η(j) ∈ Ij then

set Ij = Ij ∪ {π(i), j}

end do

Set Mi := Mi ∪ {π(i)}. Go to Step 2.

4. Return argminπ(t)∈It Â
R
π(t) +WR

π(t).

Algorithm 6.1.4: Label Setting Algorithm for the Crew Pairing Problem:

simSub2
As in Algorithm 6.1.3, replacing R superscripts by P superscripts throughout

and replacing the if clause in Step 3 with:

if T{π(i),j} ≤ H hours and (ÂP
{π(i),j} +W P

{π(i),j}, d̂
P
{π(i),j}, T{π(i),j}) is not

dominated by (ÂP
η(j) +W P

η(j), d̂
P
η(j), Tη(j)) for any η(j) ∈ Ij

then set Ij = Ij ∪ {π(i), j}
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We now outline how these modifications to the aircraft routing and crew pairing

subproblems may be included within the iterative integrated aircraft routing and

crew pairing framework of Chapter 4 to form the simSub1 and simSub2 approaches.

The following Algorithms specify the necessary changes to be made to the iterative

Algorithm 4.4.2.

Algorithm 6.1.5: Integrated AR and CP using simSub1 in each subproblem

1 Solve the integrated aircraft routing and crew pairing problem using the

Iterative Algorithm 4.4.2 outlined in Chapter 4, making the following changes:

(i) Solve aircraft routing problem (4.1) via column generation, using the simSub1

aircraft routing Algorithm 6.1.1.

(i) Solve the crew pairing problem (4.2) via column generation, using the simSub1

crew pairing Algorithm 6.1.2.

Algorithm 6.1.6: Integrated AR and CP using simSub2 in each subproblem

1 Solve the integrated aircraft routing and crew pairing problem using the

Iterative Algorithm 4.4.2 outlined in Chapter 4, making the following changes:

(i) Solve aircraft routing problem (4.1) via column generation, using the simSub2

Label Setting Algorithm 6.1.3.

(ii) Solve the crew pairing problem (4.2) via column generation, using the simSub2

Label Setting Algorithm 6.1.4.
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6.2 Numerical Results: Using simSub1 And sim-

Sub2

In this section we tabulate the results for the three different approaches and investigate

the significance of incorporating delay scenarios within the subproblem. As with the

previous Chapters, we retain the same network and slack information from Chapter

4 and to allow for a fair comparison, utilise the same number of aircraft and crew as

in the IPD solution. Average delays are calculated over 1000 different delay scenarios

drawn from the same distribution as the relevant instance. The algorithm was written

and solved in MATLAB (R2010b) using a 2.4GHz PC with 4GB RAM.

6.2.1 Exponential Distribution With λ = 5.

Instance 1

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 515 439 954 − 9.17

IPD (3 iter.) 430 381 811 15.00 47.19

simSub1 (3 iter.) 416 347 763 20.02 56.19

simSub2 (3 iter.) 430 363 793 16.88 50.00

Instance 2

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 473 478 951 − 9.10

IPD (8 iter.) 401 435 836 12.03 68.01

simSub1 (12 iter.) 403 391 794 16.51 75.58

simSub2 (10 iter.) 401 418 819 13.88 71.11
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Instance 3

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 519 550 1069 − 10.15

IPD (7 iter.) 477 532 1010 5.52 63.45

simSub1 (8 iter.) 459 464 923 13.66 69.12

simSub2 (5 iter.) 451 484 935 12.54 68.44

6.2.2 Exponential Distribution With λ = 10.

Instance 4

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 1056 1075 2131 − 8.12

IPD (4 iter.) 985 904 1889 11.35 72.26

simSub1 (4 iter.) 982 873 1855 12.95 80.47

simSub2 (3 iter.) 969 891 1860 12.72 79.20

Instance 5

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 954 1057 2011 − 15.53

IPD (16 iter.) 832 945 1776 11.69 214.19

simSub1 (14 iter.) 844 886 1730 13.97 228.89

simSub2 (12 iter.) 844 889 1733 13.82 220.29

Instance 6

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 1871 1890 3761 − 14.51

IPD (4 iter.) 1704 1660 3364 10.56 92.35

simSub1 (5 iter.) 1651 1697 3348 10.98 104.39

simSub2 (3 iter.) 1683 1669 3352 10.87 96.49
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6.2.3 Truncated Normal Distribution With µ = 5, σ = 10.

Instance 7

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 708 811 1519 − 14.19

IPD (4 iter.) 612 746 1358 10.60 39.44

simSub1 (4 iter.) 610 700 1310 13.76 48.18

simSub2 (4 iter.) 612 745 1358 10.60 40.86

Instance 8

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 576 504 1080 − 13.31

IPD (10 iter.) 527 423 950 12.04 168.74

simSub1 (9 iter.) 533 384 918 15.00 175.22

simSub2 (9 iter.) 533 400 933 13.61 172.35

Instance 9

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 723 803 1527 − 15.11

IPD (6 iter.) 667 641 1308 14.34 57.98

simSub1 (5 iter.) 656 619 1275 16.50 64.12

simSub2 (5 iter.) 656 619 1275 16.50 64.02
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6.2.4 Truncated Normal Distribution With µ = 10, σ = 5.

Instance 10

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 781 990 1771 − 14.91

IPD (4 iter.) 667 904 1571 11.29 53.35

simSub1 (4 iter.) 683 850 1532 13.50 61.64

simSub2 (6 iter.) 688 866 1554 12.25 54.12

Instance 11

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 827 1171 1999 − 14.70

IPD (5 iter.) 734 1042 1776 11.16 61.72

simSub1 (5 iter.) 713 1015 1728 13.57 65.35

simSub2 (6 iter.) 711 1030 1741 12.90 54.12

Instance 12

Approach Aircraft Delay Crew Delay Total Delay % Improv. over B Time(s)

Base (B) 894 1006 1901 − 15.04

IPD (8 iter.) 768 914 1682 11.52 72.97

simSub1 (8 iter.) 769 842 1611 15.26 82.66

simSub2 (4 iter.) 778 851 1629 14.31 79.53
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Table 6.1: Relative improvements of the simSub1 and simSub2 approach over the IPD

approach.

Instance (IPD−simSub1)
IPD

×100%
(IPD−simSub2)

IPD
×100%

1 5.98 2.22

2 5.02 2.03

3 8.61 7.43

4 1.80 1.53

5 2.59 2.42

6 0.48 0.36

7 3.53 0.00

8 3.37 1.79

9 2.52 2.52

10 2.48 1.08

11 2.70 1.97

12 4.22 3.15

Average 3.61 2.30

6.2.5 Discussion

From the data recorded in the tables for each instance and summarised in Table 6.1,

it may be observed that both the simSub1 and simSub2 approaches out-perform the

IPD approach when embedded within the iterative aircraft routing and crew pairing

approach proposed in Chapter 4. The simSub1 approach provides a 3.61% improve-

ment (on average) over the IPD approach and the simSub2 approach provides a 2.30%

improvement (on average) over the IPD approach. Both approaches universally im-

prove over the IPD approach, across all test instances, for which the simSub1 approach

consistently out-performs the simSub2 approach.

Figure 6.1 provides a plot of the percentage of time that each flight 1, 2, . . . , 54

would have been classified as “late” (i.e. arriving more than 15 minutes after the

scheduled arrival time) over all scenarios. N.B. The flights have been sorted into

topological order, according to the scheduled departure time. It may be observed

that the Base Case and the IPD case perform in a similar manner until around flight

number 33, after which the IPD case results in fewer flights classified as late.
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Similarly, Figure 6.1 on the following page compares the simSub1 and simSub2

approaches which improve upon both the Base and IPD approaches further, with

even fewer flights classified as late. Therefore, although the number of flights arriving

late is fairly similar at the beginning of the day, from the middle of the day onwards our

proposed approaches appear to assist in providing a “dampening effect”; as opposed

to the Base Case, for which there are a greater number of flights arriving late > 90%

of the time at the end of the day.

In this Chapter we have so far incorporated the 1000 primary delay scenarios within

each pricing subproblem using two different approaches; namely the subproblems

simSub1 and simSub2. We observed that both of these subproblems have the potential

to further reduce delay propagation and thus provide an improved solution. With

this in mind, a natural question to ask is whether it is possible incorporate or embed

these delays within the re-timing heuristic (Algorithm 5.4.1) and improve the solution

further. In the section that follows, we investigate such an approach by first specifying

an improved heuristic in Algorithm 6.3.1 that chooses a re-timing based on the average

delay performance over all scenarios. This improved algorithm is used extensively in

the remainder of the thesis and is also combined with simSub1 and simSub2. These

algorithms are outlined in detail in the following section.
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Figure 6.1: Percentage of the time that each flight arrives more than 15 minutes late (over all scenarios).



6.3 Incorporation Of Delay Scenarios Within The Heuristic 94

6.3 Incorporation Of Delay Scenarios Within The

Heuristic

Algorithm 6.3.1: The re-timing heuristic (H) using delay scenarios

Input: An incumbent aircraft routing and crew pairing solution and a set of primary

delays {pij}ij∈A, with corresponding slack {sij}ij∈A, over each connection for

the aircraft and crew.

Output: An improved choice of slack for each feasible connection in the network.

1 Start AR

2 Set l := 1 (the first flight in each string) and set slackOptions = [−10,−5, 0, 5, 10].

3 for i from 1 to numberOfAircraft do

4 Pick flight string i.

5 for j from 1 to numSlackOptions do

6 - Set sopt :=slackOptions[j]

7 - Find the flight k, that precedes flight l in string i. (N.B: k = 0, if l = 1)

8 - Find the flight m, that follows flight l in string i.

if (ŝRk,l + sopt) ≥ 0 and (ŝPk,l + sopt) ≥ 0 and (ŝRl,m − sopt) ≥ 0 and

(ŝPl,m − sopt) ≥ 0 then

9 - Set ŝRk,l := ŝRk,l + sopt. (resp. ŝPk,l := ŝPk,l + sopt)

10 - Set ŝRl,m := ŝRl,m − sopt. (resp. ŝPl,m := ŝPl,m − sopt)

11 forall the ω ∈ Ω do

Run the Evaluation Algorithm (4.4.1) using the updated slack vector

ŝ and store the corresponding total delay.

end

12 - Calculate the average delay over all the simulations and record this

average delay with its corresponding slack option.

end

end

13 - Choose the best delay/slack option (s∗opt) and make the appropriate changes in

the real slack vector. That is,

14 - Set sRk,l := sRk,l + s∗opt. (resp. sPk,l := sPk,l + s∗opt)

15 - Set sRl,m := sRl,m − s∗opt. (resp. sPl,m := sPl,m − s∗opt)

16 - Set i := i+ 1.

end

(continued on next page..)
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The re-timing heuristic (H) using scenarios (continued)

StartCP

17 for i from 1 to numberOfCrew do

18 Pick flight string i.

19 for j from 1 to numSlackOptions do

20 - Set sopt :=slackOptions[j].

21 - Find the flight k that precedes flight l in string i.

22 - Find the flight m that follows flight l in string i.

if (ŝRk,l + sopt) ≥ 0 and (ŝPk,l + sopt) ≥ 0 and (ŝRl,m − sopt) ≥ 0 and

(ŝPl,m − sopt) ≥ 0 then

23 - Set ŝPk,l := ŝPk,l + sopt. (resp. ŝRk,l := ŝRk,l + sopt)

24 - Set ŝPl,m := ŝPl,m − sopt. (resp. ŝRl,m := ŝRl,m − sopt)

25 forall the ω ∈ Ω do

Run the Evaluation Algorithm (4.4.1) using the updated slack

vector ŝ and store the corresponding total delay.

end

26 - Calculate the average delay over all the simulations and record this

average delay with its corresponding slack option.

end

end

27 - Choose the best delay/ slack option (s∗opt) and make the appropriate

changes in the real slack vector. That is,

28 -sPk,l := sPk,l + s∗opt (resp. sRk,l := sRk,l + s∗opt)

29 -sPl,m := sPl,m − s∗opt (resp. sRl,m := sRl,m − s∗opt)

30 -Set i := i+ 1

end

31 -Set l := l + 1. (Move on to the next flight for each string)

32 Return to 1.
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6.4 Iterative Algorithms Utilising simSub1, simSub2

And The Improved Heuristic (H)

We now outline the three algorithmic approaches that will be compared in this Chap-

ter: the IPD approach (i.e. the approach outlined in Chapter 4) that uses mean delays

combined with re-timing, the integrated aircraft routing and crew pairing simSub1 ap-

proach combined with re-timing and the integrated aircraft routing and crew pairing

simSub2 approach combined with re-timing as outlined below. Note that we will use

the improved re-timing algorithm referred to as (H) in all three cases.

Algorithm 6.4.1: Integrated AR, CP and re-timing: (IPD + H).

1 Solve the integrated aircraft routing and crew pairing problem using the

approach outlined in Algorithm 4.4.2.

2 Apply the re-timing heuristic (H), algorithm (6.3.1) to the incumbent AR and

CP solutions.

3 Apply the propagated delay algorithm (4.4.1) to the new solution to obtain the

total delay.

Algorithm 6.4.2: Integrated AR, CP and re-timing: (simSub1 + H).

1 Solve the integrated aircraft routing and crew pairing problem using the

simSub1 approach in each subproblem; as outlined in Algorithm 6.1.5.

2 Apply the re-timing heuristic (H), algorithm (6.3.1) to the incumbent AR and

CP solutions.

3 Apply the propagated delay algorithm (4.4.1) to the new solution to obtain the

total delay.

Algorithm 6.4.3: Integrated AR, CP and re-timing: (simSub2 + H).

1 Solve the integrated aircraft routing and crew pairing problem using the

simSub1 approach in each subproblem; as outlined in Algorithm 6.1.6.

2 Apply the re-timing heuristic (H), algorithm (6.3.1) to the incumbent AR and

CP solutions.

3 Apply the propagated delay algorithm (4.4.1) to the new solution to obtain the

total delay.
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6.4.1 Example Solutions

In Section 6.5 we outline a further improvement on the algorithms presented on the

previous page and for ease of comparison, tabulate the results together with this

further improvement in Section 6.6. Below we present a few example solutions that

illustrate the effectiveness of Algorithms 6.4.1, 6.4.2 and 6.4.3. In each figure, we eval-

uated the performance of each re-timing approach over 1000 different delay scenarios

drawn from the same distribution as the particular instance. It may be observed that

the re-timed solution not only experiences less total delay, but additionally appears

to possess less variability in the solution. This is particularly evident in Figure 6.2

below. In Section 6.6 we will confirm that on the test instances used, the re-timed

solution appears to result in less variability over the 1000 delay scenarios used.

Truncated Normal Distribution With µ = 10, σ = 5 (Instance 12).
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Figure 6.2: The envelope of the total delay histogram for each approach over the

1000 delay scenarios.
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Figure 6.3: The Base Case and the IPD case, prior to re-timing and after re-timing.
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Figure 6.4: The Base Case and the simSub1 case, prior to re-timing and after re-

timing.
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Figure 6.5: The Base Case and the simSub2 case, prior to re-timing and after re-

timing.

Exponential Distribution With λ = 10 (Instance 5).
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Figure 6.6: The envelope of the total delay histogram for each approach over the 1000

delay scenarios
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Figure 6.7: The Base Case and the IPD case, prior to re-timing and after re-timing
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Figure 6.8: The Base Case and the simSub1 case, prior to re-timing and after re-timing
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Figure 6.9: The simSub2 and the IPD case, prior to re-timing and after re-timing
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Instances.
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6.5 Further Improvements: Re-solving The Inte-

grated Aircraft Routing And Crew Pairing Prob-

lem Using The New Departure Times

In this Chapter we have observed that it is possible to improve upon the performance

of both the integrated aircraft routing and crew pairing problems and the heuristic

via the inclusion of multiple delay scenarios. As was mentioned in Section 6.1, one

advantage of the heuristic is that it does not introduce extra complexity within the

problem and may be easily embedded within an iterative scheme; in which one iterates

between the integrated aircraft routing and crew pairing model of Chapter 4, re-

times using the heuristic and then re-solves the integrated aircraft routing and crew

pairing problem using the new departure times (as determined by the heuristic). If

desired, this process may be extended further, until a specified level of improvement

is obtained.

In this Section we outline a simple iterative scheme that incorporates the inte-

grated aircraft routing and crew pairing problem outlined in Chapter 4 and utilises

the improved heuristic outlined in Section 6.3 above, in an attempt to achieve further

improvements using these two solution techniques. Since the results above indicate

that the simSub1 approach and simSub2 approach have the capacity to outperform the

IPD approach, we will additionally investigate the performance of these approaches

when used within such an iterative scheme. Thus we investigate three alternative

iterative schemes.

We outline the iterative schemes and list the results for each delay instance below.

We will denote the use of the improved heuristic by (H) and the re-solving of the

integrated aircraft routing and crew pairing model, with modified departure times,

by (R). Thus the notation:

Approach +H : Denotes the specified approach, re-timed using the improved

heuristic.

Approach +H +R : Denotes the specified approach, re-timed using the improved

heuristic and re-solved using the modified departure times

from the heuristic.
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Algorithm 6.5.1: Integrated AR, CP and re-timing: (IPD + H + R).

1 Solve the integrated aircraft routing and crew pairing problem using the IPD

approach as outlined in Algorithm 4.4.2.

2 Apply the re-timing heuristic (H) (6.3.1) to the incumbent AR and CP

solutions.

3 Apply the Propagated delay algorithm (4.4.1) to the new solution to obtain the

total delay.

4 Re-solve (R) the integrated aircraft routing and crew pairing problem with the

new re-timing for each flight. Use the standard approach in each subproblem;

as outlined in Algorithm 4.4.2.

5 Apply the propagated delay algorithm (4.4.1) to the new solution to obtain the

total delay.

Algorithm 6.5.2: Integrated AR, CP and re-timing: (simSub1 + H + R).

1 Solve the integrated aircraft routing and crew pairing problem using the

simSub1 approach in each subproblem; as outlined in Algorithm 6.1.5.

2 Apply the re-timing heuristic (H) (6.3.1) to the incumbent AR and CP

solutions.

3 Apply the Propagated delay algorithm (4.4.1) to the new solution to obtain the

total delay.

4 Re-solve (R) the integrated aircraft routing and crew pairing problem with the

new re-timing for each flight. Use the simSub1 approach in each subproblem as

outlined in Algorithm 6.1.5.

5 Apply the propagated delay algorithm (4.4.1) to the new solution to obtain the

total delay.
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Algorithm 6.5.3: Integrated AR, CP and re-timing: (simSub2 + H + R).

1 Solve the integrated aircraft routing and crew pairing problem using the

simSub2 approach in each subproblem; as outlined in Algorithm 6.1.6.

2 Apply the re-timing heuristic (H) (6.3.1) to the incumbent AR and CP

solutions.

3 Apply the propagated delay algorithm (4.4.1) to the new solution to obtain the

total delay.

4 Re-solve (R) the integrated aircraft routing and crew pairing problem with the

new re-timing for each flight. Use the simSub2 approach in each subproblem as

outlined in Algorithm 6.1.6.

5 Apply the Propagated delay algorithm (4.4.1) to the new solution to obtain the

total delay.

6.6 Numerical Results

In this section we tabulate the results for each of the approaches discussed thus far.

Each table compares the Base Case with each Approach + H and Approach + H + R.

Additionally, for ease of comparison, we provide results for our final approach outlined

in the final chapter (Chapter 7). Our final approach involves the integration of all

three components solved simultaneously, (i.e. aircraft routing, crew pairing and re-

timing simultaneously performed within one model) and we use the acronym ARCPR

to refer to the Aircraft Routing, Crew Pairing and Retiming approach. In each table

we provide the time taken to solve each approach (in seconds) and for approach, we

specify the breakdown of time for each component explicitly.
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6.6.1 Exponential Distribution With λ = 5.

Instance 1

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 515 439 954 − 9.17

Base + H. 466 354 820 14.05 9.17 + 15.11

IPD + H. 370 283 653 31.55 47.19 + 17.06

simSub1 + H. 350 243 593 37.84 56.19 + 17.05

simSub2 + H. 365 260 625 34.50 50.00 + 17.05

IPD + H + R. 329 276 605 36.58 47.19 + 17.06 + 44.22

simSub1 + H + R. 350 243 593 37.84 56.19 + 17.05 + 53.25

simSub2 + H + R. 365 260 625 32.50 50.00 + 17.05 + 50.12

ARCPR (3 iter.) 218 206 424 55.56 7280

Instance 2

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 473 478 951 − 9.10

Base + H. 353 381 734 22.82 9.10 + 16.19

IPD + H. 336 410 746 21.56 68.01 + 19.54

simSub1 + H. 312 323 635 33.23 75.58 + 20.00

simSub2 + H. 308 335 643 32.39 71.11 + 19.00

IPD + H + R. 317 336 653 31.33 68.01 + 19.54 + 70.00

simSub1 + H + R. 312 323 635 33.23 75.58 + 20.00 + 76.22

simSub2 + H + R. 308 335 643 32.39 71.11 + 19.00 + 70.34

ARCPR (3 iter.) 321 243 564 40.69 7560
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Instance 3

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 519 550 1069 − 10.15

Base + H. 444 427 871 18.52 10.15 + 16.01

IPD + H. 411 423 834 21.98 63.45 + 17.55

simSub1 + H. 398 370 768 28.16 69.12 + 18.39

simSub2 + H. 460 472 932 12.82 68.44 + 17.20

IPD + H + R. 287 322 609 43.03 63.45 + 17.55 + 66.37

simSub1 + H + R. 331 324 654 38.82 69.12 + 18.39 + 72.23

simSub2 + H + R. 287 322 609 43.03 68.44 + 17.20 + 70.09

ARCPR (2 iter.) 280 241 521 51.26 7200

6.6.2 Exponential Distribution With λ = 10

Instance 4

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 1056 1075 2131 − 8.12

Base + H. 929 889 1818 14.70 8.12 + 15.48

IPD + H. 868 752 1620 23.98 72.26 + 16.58

simSub1 + H. 874 727 1601 24.87 80.47 + 18.03

simSub2 + H. 872 754 1626 23.70 79.20 + 18.00

IPD + H + R. 775 685 1460 31.49 72.26 + 16.58 + 73.09

simSub1 + H + R. 806 719 1525 28.44 80.47 + 18.03 + 82.27

simSub2 + H + R. 811 767 1579 25.90 79.20 + 18.00 + 81.36

ARCPR (4 iter.) 529 563 1092 48.76 8460
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Instance 5

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 954 1057 2011 − 15.53

Base + H. 867 918 1784 11.29 15.53 + 15.03

IPD + H. 755 811 1566 22.13 214.19 + 16.24

simSub1 + H. 746 724 1471 26.85 228.65 + 18.41

simSub2 + H. 766 761 1527 24.07 220.29 + 17.54

IPD + H + R. 712 768 1480 26.40 214.19 + 16 + 182.17

simSub1 + H + R. 746 724 1471 26.85 228.65 + 18.41 + 210.00

simSub2 + H + R. 722 777 1498 25.51 220.29 + 17.54 + 188.63

ARCPR (2 iter.) 494 575 1069 48.84 7380

Instance 6

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 1871 1890 3761 − 14.51

Base + H. 1836 1784 3620 3.75 14.51 + 16.04

IPD + H. 1710 1587 3297 12.34 92.35 + 18.25

simSub1 + H. 1578 1412 2990 20.50 104.39 + 18.50

simSub2 + H. 1538 1417 2955 21.43 96.49 + 18.25

IPD + H + R. 1605 1602 3208 14.70 92.35 + 18.25 + 90.89

simSub1 + H + R. 1512 1458 2970 21.03 104.39 + 18.50 + 102.06

simSub2 + H + R. 1538 1417 2955 21.43 96.49 + 18.25 + 95.88

ARCPR (3 iter.) 1107 1206 2313 38.50 9720
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6.6.3 Truncated Normal Distribution With µ = 5, σ = 10

Instance 7

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 708 811 1519 − 14.19

Base + H. 593 520 1113 26.73 14.19 + 16.48

IPD + H. 509 451 960 36.80 39.44 + 17.78

simSub1 + H. 514 426 940 38.12 48.18 + 18.34

simSub2 + H. 524 465 989 34.89 40.86 + 18.12

IPD + H + R. 398 444 843 44.50 39.44 + 17.78 + 38.30

simSub1 + H + R. 431 456 886 41.67 48.18 + 18.34 + 50.01

simSub2 + H + R. 413 457 870 42.73 40.86 + 18.12 + 40.00

ARCPR (2 iter.) 412 308 720 52.60 8424

Instance 8

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 576 504 1080 − 13.31

Base + H. 569 422 991 8.24 13.31 + 15.87

IPD + H. 416 218 634 41.30 168.74 + 18.23

simSub1 + H. 548 335 883 18.24 175.22 + 18.82

simSub2 + H. 571 377 948 13.61 172.35 + 17.43

IPD + H + R. 416 218 634 41.30 168.74 + 18.23 + 168

simSub1 + H + R. 414 331 746 30.93 172.35 + 17.43 + 173

simSub2 + H + R. 413 347 760 29.63 172.35 + 17.43 + 170

ARCPR (3 iter.) 356 265 621 42.50 9396
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Instance 9

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 723 803 1527 − 15.11

Base + H. 574 511 1085 28.95 15.11 + 16.29

IPD + H. 549 393 942 38.31 57.98 + 16.00

simSub1 + H. 523 365 888 41.85 64.12 + 17.53

simSub2 + H. 523 365 888 41.85 64.02 + 17.07

IPD + H + R. 443 446 889 41.78 57.98 + 16.00 + 52.83

simSub1 + H + R. 523 365 888 41.85 64.12 + 17.53 + 60.46

simSub2 + H + R. 523 365 888 41.85 64.02 + 17.07 + 62.68

ARCPR (3 iter.) 370 321 691 54.75 10296

6.6.4 Truncated Normal Distribution With µ = 10, σ = 5

Instance 10

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 781 990 1771 − 14.91

Base + H. 622 717 1339 24.39 14.91 + 16.45

IPD + H. 468 605 1073 39.41 53.35 + 18.26

simSub1 + H. 516 561 1077 39.19 61.64 + 18.02

simSub2 + H. 525 578 1103 37.72 54.12 + 18.45

IPD + H + R. 475 550 1025 42.12 53.35 + 18.26 + 55.28

simSub1 + H + R. 451 542 993 43.93 61.64 + 18.02 + 60.69

simSub2 + H + R. 425 447 873 50.71 54.12 + 18.45 + 53.06

ARCPR (3 iter.) 486 515 1001 43.48 6840
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Instance 11

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 827 1171 1999 − 14.70

Base + H. 751 960 1711 14.40 14.70 + 16.71

IPD + H. 572 716 1288 35.57 61.72 + 18.22

simSub1 + H. 532 711 1243 37.82 65.35 + 17.48

simSub2 + H. 558 735 1293 35.32 62.23 + 17.30

IPD + H + R. 520 647 1167 41.62 61.72 + 18.22 + 66.19

simSub1 + H + R. 532 711 1243 37.82 65.35 + 17.48 + 65.00

simSub2 + H + R. 534 674 1208 39.57 62.23 + 17.30 + 60.64

ARCPR (2 iter.) 535 660 1195 40.22 4320

Instance 12

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 894 1006 1901 − 15.04

Base + H. 814 816 1630 14.26 15.04 + 17.37

IPD + H. 622 614 1236 34.98 72.97 + 16.54

simSub1 + H. 639 577 1216 36.03 82.66 + 17.30

simSub2 + H. 646 568 1214 36.13 74.22 + 16.54

IPD + H + R. 541 576 1117 41.24 72.97 + 16.54 + 76.80

simSub1 + H + R. 573 553 1126 40.77 82.66 + 17.30 + 85.77

simSub2 + H + R. 542 541 1083 43.03 74.22 + 16.54 + 70.32

ARCPR (4 iter.) 547 662 1209 36.40 10440
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Table 6.2: Relative improvements of each [Approach + H] over Approach.

Instance (B−[B+H])
B

×100%
(IPD−[IPD+H])

IPD
×100%

(simSub1−[simSub1+H])
simSub1

×100%
(simSub2−[simSub2+H])

simSub2
×100%

1 14.04 19.48 22.28 21.18

2 22.82 10.77 20.03 21.49

3 18.52 17.43 16.79 0.32

4 14.69 14.24 13.69 12.58

5 11.29 11.82 14.97 11.88

6 3.75 1.99 10.69 11.84

7 26.72 29.73 28.24 27.17

8 8.24 33.26 3.81 0.00

9 28.95 27.98 30.35 30.35

10 24.39 31.70 29.70 29.02

11 14.41 27.48 28.07 25.73

12 14.26 26.52 24.52 25.48

Average 16.84 21.03 20.26 18.09

Table 6.3: Relative improvements of each [Approach + H + R] over [Approach + H].

Instance ([IPD+H]−[IPD+H+R])
IPD+H

×100%
([simSub1+H]−[simSub1+H+R])

simSub1+H
×100%

([simSub2+H]−[simSub2+H+R])
simSub2+H

×100%

1 7.35 0.00 0.00

2 12.47 0.00 0.00

3 26.98 14.84 34.65

4 8.64 8.11 7.87

5 5.49 0.00 1.90

6 2.70 0.67 0.00

7 12.19 5.74 12.03

8 0.00 15.52 19.83

9 5.62 0.00 0.00

10 4.47 7.80 20.85

11 9.39 0.00 6.57

12 9.63 7.40 10.79

Average 8.74 5.01 9.54
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Table 6.4: Relative improvements in standard deviation for each [Approach + H] over [Approach].

Instance ([IPD+H]−[IPD+H+R])
IPD+H

×100%
([simSub1+H]−[simSub1+H+R])

simSub1+H
×100%

([simSub2+H]−[simSub2+H+R])
simSub2+H

×100%

1 12.06 13.38 12.19

2 28.05 14.36 23.40

3 11.78 9.90 11.14

4 7.06 5.44 5.57

5 5.25 8.18 5.98

6 4.15 4.09 4.66

7 24.56 23.64 25.00

8 27.08 28.26 33.33

9 24.50 27.03 27.08

10 27.84 26.25 25.61

11 20.55 21.62 22.67

12 23.36 24.32 25.97

Average 18.02 17.21 18.55

6.6.5 Discussion

In Table 6.2 we record the relative improvement of each Approach + H over each

corresponding Approach to gain an insight into the effectiveness of the improved re-

timing heuristic. The results indicate that over the 12 test instances, each of the

approaches: B, IPD, simSub1 and simSub2 benefit significantly from the improved

heuristic re-timing algorithm. The Base + H approach achieves a 16.84% improvement

over the Base approach and the simSub2 + H approach the next largest improvement

of 18.09% over the simSub2 approach.

The IPD + H and simSub1 + H approaches appear to perform (almost) equally well,

with the IPD + H approach achieving a 21.03% improvement over the IPD approach

and the simSub1 + H slightly lower, with a 20.26% improvement over the simSub1

approach. However, this is not a universal improvement over all test instances, as it

may be seen from the table that for different instances the simSub1 + H approach

out-performs the IPD + H approach and vice versa. This may be due to the fact that

the heuristic preserves the incumbent aircraft and crew assignments, and therefore
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individual aircraft routes or crew pairings in the IPD approach may allow for greater

improvements once the flight departure times are allowed to be adjusted.

It may be observed in Table 6.4 that using the improved heuristic in conjunc-

tion with each of the three approaches appears to produce solutions with not only

smaller average total delay, but with less variance when exposed to 1000 different

delay scenarios. This may be seen particularly clearly in Figure 6.2 of section 6.4.1.

The re-timing produces an average improvement of 18.02% for the IPD approach, and

improvement of 17.21% for the simSub1 approach and an improvement of 18.55% for

the simSub2 approach.

Table 6.3 records the relative improvement of each Approach + H + R over

Approach + H to determine the effectiveness of re-solving after heuristic re-timing.

From the table, it may be observed that re-solving has the potential to be very effec-

tive. In particular, for instance 3, the IPD + H, simSub1 + H and simSub2 + H expe-

rience an improvement of 26.98%, 14.84% and 34.65% respectively. The simSub2 + H

approach appears to benefit most from the re-timing with an average improvement

of 9.54%, closely followed by the IPD + H approach, with an improvement of 8.74%.

The simSub1 + H approach received the least benefit, with an average improvement

of 5.01%. This stems from the fact that it had the most number of solutions that

could not be improved further through re-solving; however, in 4/5 cases for which

this occurred, the solution using simSub1 + H either equalled or out-performed the

solution obtained using simSub2 + H + R.

It is interesting to note that for a few delay instances, the Approach + H + R only

improves slightly upon, or equals the Approach + H results. This may be perhaps

due to the particular delay instance(s) chosen. An additional set of experiments were

run using 20 “batches” of 1000 delay scenarios for each instance, to provide a more

statistically significant set of results. From these experiments (See Appendix), it may

be be observed that the Approach + H + R consistently outperforms Approach +

H. Thus for larger sample sizes, we would expect the Approach+H+R approach to

out-perform the Approach + H approach on average.

A natural question is: How well do these methods scale as the network size in-

creases? We explore this question briefly in the Appendix. We provide results for one

delay instance for a network consisting of 320 flights with 818 feasible connections and
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assume a one-day schedule. We determine that the minimum number of aircraft and

crew pairs required to cover this network are 64 and 102 crew, respectively. It may be

observed that although each the algorithms take quite a bit longer to solve, the solu-

tions are nonetheless consistent with the results achieved in this Chapter. Each of the

Approach + H methods achieve approximately 23 − 28% improvement over the Base

Case and the Approach + H + R methods improving further still with approximately

a 42− 44% improvement over the Base Case. Finally, The ARCPR approach outper-

forms all others with an improvement of 48.69%. However, the ARCPR method was

also the slowest - with around 12.5 hours required to solve this problem; whereas the

Approach + H + R methods solved in just under an hour. Thus, if it is preferable to

obtain a solution quickly, these approaches provide a relatively favourable trade-off

between solution quality and time required for solution.



CHAPTER

SEVEN

Integration Of Aircraft Routing, Crew Pairing And

Re-timing: Using Scenarios In The Subproblem

7.1 Introduction And Motivation

In the previous Chapters, we outlined two different approaches for including scheduling

decisions in the planning process. We observed in Chapters 4, 5 and 6, that these

algorithms deliver a marked improvement over the standard sequential approaches,

and their primary advantage, computationally, is that they do not introduce any

additional complexity to the problem. That is, the integrated problem proposed

above, scales as a standard aircraft routing or crew pairing problem. One of the

drawbacks however, is that the algorithm only re-times a fixed aircraft and crew

assignment, and so it may be possible to obtain better quality solutions by integrating

this scheduling process directly with the integrated aircraft routing and crew pairing

problem. That is, include all three decisions – aircraft routing, crew pairing and

re-timing – within one problem and solve them simultaneously.

With this idea in mind, it would be preferable if it were somehow possible to

embed the scheduling decisions within the integrated aircraft routing and crew pairing

problem of Dunbar et al. (2011) [35], without increasing the complexity unnecessarily.

In this Chapter, we outline a new model capable of embedding the scheduling

decisions within the iterative, integrated framework of [35] whilst retaining the simple
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form of the aircraft routing and crew pairing formulations. We propose to do this

via an expanded network consisting of flight copies that represent different flight

departure time choices. This expanded network exists only within the subproblem,

and so does not increase the dimension (or complexity) of either the aircraft routing

or crew pairing master problems. A more detailed description on how this is achieved

can be found in the Sections that follow. We now outline a few key assumptions.

7.2 Notes And Assumptions

Firstly, to ensure that our model reflects real world restrictions on slot times and

that the original fleet assignment remains feasible, we only attempt to re-time flights

to within a 10 minute window [t − 10, t + 10] either side of the scheduled departure

time, t. We create for each flight i, five duplicate flight nodes i1, i2, i3, i4, i5 that lie

within this discretised minute window. For example, as we have 54 flights we will

now have 54× 5 = 270 (+2 corresponding to the source and sink) flight nodes in our

subproblem.

As mentioned in the introduction, this process of duplicating flight nodes is per-

formed only within the subproblem, so as to ensure that we do not increase the

complexity of the integrated iterative aircraft routing and crew pairing master prob-

lems. The process of duplication is done within a pre-processing step, and does not

need to be repeated with each call to the subproblem. Moreover, we only perform

this duplication within the aircraft routing subproblem, and assume that the sched-

ule (departure times) chosen is also followed by the crew; thus eliminating potential

conflicts between the aircraft and crew schedules. If one was to additionally allow

for this duplication in the crew subproblem, an additional constraint would need to

be introduced into the master problem to check for potential conflicts. To ensure

a fair comparison with the model in [35], we do not wish to introduce any “new”

arcs into the network. Rather, we only allow connections between flights nodes that

correspond to connections in the original network. More specifically, if connection

(i, j) was a feasible connection in the original network, we must allow all connection

possible pairs (im, jn) for i = 1, . . . , 5, j = 1, . . . , 5 in the new network (provided the

slack across the connection is non-negative). To construct all the possible connections
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in the expanded network from the original set of connections, we make use of the

following pre-processing algorithm:

7.3 The Pre-processing Algorithm

Algorithm 7.3.1: Pre-processing algorithm for the aircraft routing subproblem

1 Label the flight copies for flight i as i1,i2,i3,i4,i5 where i3 corresponds to the original

flight i.

2 Label the flight copies for flight j as j1,j2,j3,j4,j5 where j3 corresponds to the

original flight j.

Suppose connection (i, j) in the original network has primary delay pij and slack sij .

Let A be the original arc set and A∗ be the new (expanded) arc set.

3 Set A∗ = ∅ initially.

forall the (i, j) ∈ A do

for m from 1 to numFlightCopies do

for n from 1 to numFlightCopies do

if (i, j) ∈ A and (im, jn) has non-negative slack then

A∗ := A∗ ∪ (im, jn).

end

end

end

end

As an illustration, consider the original connection (i, j) below:

Airport 2

Airport 1

Airport 3

i

j

Figure 7.1: The connection (i, j) denoted by the green arc.

For each flight copy i1, i2, . . . , i5, we check whether we can connect to each of

the flight copies j1, j2, . . . , j5. For example, it may be feasible to connect flight
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copy i3 to any of j1, j2, . . . , j5, in which case we include the feasible connections

(i3, j1), (i3, j2), . . . , (i3, j5) in our network.

Airport 3

Airport 2

Airport 1
i1 i2 i3 i4 i5

j1 j2 j3 j4 j5

Figure 7.2: Possible outbound connections from flight i3.

In some cases, it may be possible to form the complete, directed, bi-partite graph in

Figure 7.3.

Airport 2

i1 i2 i3 i4 i5

j1 j2 j3 j4 j5

Figure 7.3: Possible connections between the flight copies for i and j at an airport.

For each of these new connections (im, jn), we assume the primary delay pij, is the

same as for the original connection (i, j). Similarly, we assume that each flight copy

i1, i2, . . . , i5 inherits the dual value wi as for flight i in the original network. Once the

above pre-processing algorithm has been performed, along with the modifications to

the primary delays and dual values, the aircraft routing subproblem is solved over this

larger network using the label setting algorithm discussed in the previous sections.
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The solution to the subproblem (an aircraft string) is of length 54 × 5 = 270,

which is converted back into the appropriate length of 54 for the master problem

using Algorithm 7.3.2 below. Note that in the conversion process, we label the choice

of departure time and store this in a vector for future reference. We use the following

labels [1, 2, 3, 4, 5] to refer to the choices T := [−10,−5, 0, 5, 10] respectively. We then

keep track of the chosen departure times and use this to update the slack over the

relevant connections. This new slack information, along with the chosen departure

times, is then fed into the crew pairing problem. This is achieved as follows:

Algorithm 7.3.2: Subproblem solution conversion
Input: The expanded subproblem solution xold and the departure time choices vector, T .

Output: The aircraft string for the master problem and a corresponding string containing

the choice of flight departure time

1 Set numFlightsExpanded := numFlights× numFlightCopies

2 Create the vectors xnew and z, each of length numFlights, corresponding to the subproblem

solution (aircraft string) and the chosen departure times.

3 for i from 1 to numFlightsExpanded do

j = ⌊ (i−1)
numFlightCopies

⌋+ 1.

if (xold[i] = 1) then

xnew[j] = 1. /* Store solution */

if i ≡ 0 mod (numFlightCopies) then

rpos = numFlightCopies.

z[j] = rpos. /* Label is equal to numFlightCopies */

forall the (i, j) and (j, k) ∈ A do

sRi,j := sRi,j + 10 and sPi,j := sPi,j + 10.

sRj,k := sRj,k − 10 and sPj,k := sPj,k − 10.

end

else

rpos = i mod (numFlightCopies).

z[j] = rpos. /* Labels: 1 to numFlightCopies-1 */

forall the (i, j) and (j, k) ∈ A do

sRi,j := sRi,j + T [rpos] and sPi,j := sPi,j + T [rpos].

sRj,k := sRj,k − T [rpos] and sPj,k := sPj,k − T [rpos].

end

end

end

end
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Example 7.3.1. For example, the solution:

(0, 1, 0, 0, 0, 0, 0, 0, 0, 1, · · · , 1, 0, 0, 0, 0)T1×270

becomes: 


1

1
...

1




54×1

with chosen departure times:




2

5
...

1




54×1

Additionally, we wish to keep the chosen schedule as close as possible to the original

schedule, so as to remain attractive to the airline – as extra costs may be associated

with changes to the original schedule. We make the assumption that greater penalties

would be associated with greater changes to the original schedule. We keep track of

the changes to the schedule along each path in the label setting algorithm and penalise

each change as follows:

If 1 is the chosen departure time: penalty = 5

If 2 is the chosen departure time: penalty = 1

If 3 is the chosen departure time: penalty = 0

If 4 is the chosen departure time: penalty = 1

If 5 is the chosen departure time: penalty = 5

We keep track of the penalty sum along each path (in a similar manner to the way

in which we kept track of the weights wi). We set an upper bound on the penalty sum

of maxPenaltySum, and use this to help reduce the number of labels produced at each

node in the label setting algorithm (in the same way as for the maximum crew time

limits). We experimented with three different values for maxPenaltySum, namely 15,

25 and 30, with the time taken to solve the problem increasing with each value. The

best results were achieved by setting the upper bound to be 30 and results for this

choice of setting are listed in the Results Section below.
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7.4 The Integrated Aircraft Routing, Crew Pair-

ing And Re-timing Algorithm

In Section 6.3 we discovered that it was possible to improve the solution quality of

our aircraft and crew solutions by incorporating simulations within the subproblem.

In particular, simSub1 and simSub2 were two such proposed approaches. However,

as our aircraft routing subproblem is now significantly larger than the original and we

wish to solve the problem as quickly as possible, we make use of the simSub2 approach

in both the aircraft routing and crew pairing subproblems to avoid generating every

possible path. Furthermore, we observed in Chapter 6 that the percentage improve-

ment obtained by the simSub2 approach was not significantly smaller than that of the

simSub1 approach.

Algorithm 7.4.1: Integrated AR and CP using simSub2 in each subproblem

(ARCPR)

1 Solve the integrated aircraft routing and crew pairing problem using the Iterative

Algorithm 4.4.2 outlined in Chapter 4, making the following changes:

(i) Solve the aircraft routing problem (4.1) on the expanded flight network via column

generation, using the simSub2 Label Setting Algorithm 6.1.3.

(ii) Use Algorithm 7.3.2 to convert the solution to the aircraft routing subproblem into a

form compatible with the master problem and update the slack information and

departure times according to the choices made in the aircraft routing subproblem.

(iii) Solve the crew pairing problem (4.2) on the original flight network via column

generation, using the simSub2 Label Setting Algorithm 6.1.4.

7.5 Numerical Results

In this section we tabulate the results for the ARCPR approach, calculating the

improvement this approach provides over all other approaches discussed in this thesis.

For the specific delay improvements, the reader is referred to Table 6.2 and 6.3 in

Section 6.6.
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Table 7.1: Relative improvements of the ARCPR approach over each Approach + H.

Instance ([IPD+H]−[ARCPR])
IPD+H

×100%
([simSub1+H]−[ARCPR])

simSub1+H
×100%

([simSub2+H]−[ARCPR])
simSub2+H

×100%

1 35.07 28.50 32.16

2 24.40 11.18 12.29

3 37.53 32.16 44.10

4 32.59 31.79 32.84

5 31.74 27.33 30.00

6 29.85 22.64 21.73

7 25.00 23.40 27.20

8 2.05 29.67 34.49

9 26.65 22.18 22.18

10 6.71 7.06 9.25

11 7.22 3.86 7.58

12 2.18 0.58 0.42

Average 21.75 20.03 22.85

Table 7.2: Relative improvements of the ARCPR approach over each Approach + H + R.

Instance ([IPD+H+R]−[ARCPR])
IPD+H+R

×100%
([simSub1+H+R]−[ARCPR])

simSub1+H+R
×100%

([simSub2+H+R]−[ARCPR])
simSub2+H+R

×100%

1 29.91 28.50 32.16

2 13.63 11.18 12.29

3 14.45 20.34 14.45

4 25.21 28.39 30.84

5 27.77 27.33 28.64

6 29.85 22.64 21.73

7 14.59 18.74 17.24

8 2.05 16.76 18.30

9 22.27 22.18 22.18

10 2.34 −0.80 −14.66

11 −2.40 3.86 1.08

12 −8.23 −7.37 −11.63

Average 14.31 15.98 14.39
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Figure 7.4: Plot of the average performance of each approach over the 12 delay in-

stances.
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Figure 7.6: Plot of the average performance of each approach over the 12 delay in-

stances.

7.6 Discussion

In Table 7.1 it may be observed that the proposed integrated aircraft routing, crew

pairing and re-timing model achieves significant improvements over all other ap-

proaches discussed thus far. The ARCPR approach yields an impressive improvement

of 34.83% over the B+H approach, with an improvement of approximately 20− 23%

for the IPD+H, simSub1+H and simSub2+H approaches. These results, across all test

instances are captured more clearly in the figures above, with the performance of the

ARCPR approach also improving upon the results for the IPD+H+R, simSub1+H+R

approaches and almost all instances in the simSub2+H+R approach. One of the draw-

backs however, is the long computation time required for the ARCPR approach when

compared with the iterative aircraft routing and crew pairing model and the re-timing

heuristic. However, one advantage of all the approaches discussed thus far, is that the

user may examine the trade-off in solution quality vs time, and use the approach best

suited to their needs.



CHAPTER

EIGHT

Summary Of Contributions

In this thesis, we have proposed four different approaches for minimising propagated

delay in an integrated aircraft routing and crew pairing framework. We tested our ap-

proaches on data from a real airline network and discovered that all of our approaches

had the capacity to significantly minimise delay propagation in the network.

In Chapter 4 we proposed our first approach for minimising propagated delay in

an integrated aircraft routing and crew pairing framework. We discussed the math-

ematical formulation behind our model and described how this work improved upon

existing models in the field. We then obtained results for our model using data from a

real airline network and demonstrated that our model outperformed existing models

in a number of areas. Specifically, this model (i) accurately calculates the combined

effects of delay propagation between aircraft and crew and (ii) uses this information

for both the calculation of the cost of columns and the dynamic selection of optimal

columns. By solving the problem in an iterative manner we avoided introducing extra

complexity within the problem and achieved fast solution times over all test instances.

In Chapter 5 we proposed a re-timing heuristic that may be used in conjunction

with the model proposed in Chapter 4; allowing for the possibility of obtaining a po-

tentially more operationally robust solution. The proposed heuristic simultaneously

re-times aircraft and crew whilst attempting to minimise overall delay propagation

in the network. This heuristic preserves the aircraft and crew assignments whilst

simultaneously re-timing aircraft and crew; allowing for accurate assessment of de-
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lay propagation between aircraft and crew and an effective re-timing to be chosen.

We demonstrated that, despite its simplicity, the heuristic performed very well on a

number of test instances.

In Chapter 6, we proposed two new methods of embedding delay scenarios within

the aircraft routing and crew pairing subproblems of the model proposed in Chapter 4.

Additionally, we extended the re-timing heuristic of Chapter 5 to include delay scenar-

ios. We demonstrated that embedding each of these methods within the subproblem

is beneficial and when further combined with the improved re-timing heuristic, the

solution obtained out-performs the solution obtained using the heuristic (based on

mean values) of Chapter 5. Additionally we investigated whether it was possible to

improve upon this re-timed solution by re-solving each approach using the new de-

parture times obtained from the heuristic. The results obtained indicated that for

certain delay instances this approach was highly effective and able to achieve signifi-

cant improvements with relatively short computation times.

Finally, In Chapter 7 we proposed a fully integrated model that captured the

aspects of aircraft routing, crew pairing and re-timing without introducing any extra

complexity within the master problem. All three decisions were made simultaneously

by allowing re-timing decisions to be made within the aircraft routing subproblem.

The proposed method improved the solution further and we demonstrated that this

approach had the capacity to obtain significant delay improvements; out-performing

all others used in the thesis.

Possible areas for research may include an extension of the model in Chapter 4 to

a third aspect, such as passengers. Such an extension may investigate the effects of

delay propagation on passenger spill and may also allow for the integration of fleet

assignment, to assist in minimising passenger spill. The model may also be extended

to a planning period of several days (or a week) and incorporate more complex crew

rules for overnights etc. Finally, further computational investigation may allow for a

reduction in the time needed to solve the ARCPR approach proposed in Chapter 7.



Appendix

In this Appendix we include computational results for an additional set of experiments.

In the first section we list the results for the algorithms outlined in Chapters 4, 5, 6

and 7; in which we for each instance, record the results for 20 different “batches” of

1000 delay scenarios. In the second section we list the computational results for one

delay instance (one set of 1000 delay scenarios) using a larger flight network. A more

detailed discussion and analysis of each set of tests may be found in Chapter 6 and 7.

8.1 Additional Delay Scenarios

8.1.1 Exponential Distribution With λ = 5.

Instance 1

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 688 504 1192 − 9.17

Base + H. 536 472 1008 15.44 9.17 + 21.16

IPD + H. 428 377 805 32.47 47.19 + 24.22

simSub1 + H. 415 343 758 36.41 61.00 + 24.61

simSub2 + H. 428 359 787 33.98 58.98 + 24.33

IPD + H + R. 368 240 648 45.64 47.19 + 24.22 + 44.22

simSub1 + H + R. 352 241 593 50.25 61.00 + 24.61 + 60.21

simSub2 + H + R. 363 257 621 47.90 58.98 + 24.61 + 56.10

ARCPR (3 iter.) 310 226 536 55.03 9464
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Instance 2

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 501 612 1113 − 9.10

Base + H. 422 436 858 22.91 9.10 + 16.19

IPD + H. 402 471 873 21.56 71.02 + 22.33

simSub1 + H. 404 395 799 28.21 83.12 + 27.42

simSub2 + H. 402 423 825 25.88 76.04 + 26.40

IPD + H + R. 334 409 743 33.24 71.02 + 22.33 + 70.00

simSub1 + H + R. 310 322 632 43.22 83.12 + 27.42 + 83.10

simSub2 + H + R. 305 334 639 42.58 76.04 + 26.40 + 77.05

ARCPR (3 iter.) 288 312 600 46.09 9828

Instance 3

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 639 751 1390 − 10.15

Base + H. 512 620 1132 18.56 10.15 + 20.45

IPD + H. 313 333 646 53.53 63.45 + 20.55

simSub1 + H. 314 297 611 56.04 78.31 + 24.12

simSub2 + H. 305 305 610 56.11 72.44 + 23.00

IPD + H + R. 255 236 491 64.68 63.45 + 20.55 + 67.43

simSub1 + H + R. 251 205 456 67.19 78.31 + 24.12 + 80.31

simSub2 + H + R. 326 203 529 61.94 72.44 + 23.00 + 70.10

ARCPR (2 iter.) 310 200 510 63.31 8640
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8.1.2 Exponential Distribution With λ = 10

Instance 4

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 1381 1112 2493 − 8.12

Base + H. 993 902 1895 23.98 8.12 + 20.48

IPD + H. 991 912 1909 23.42 72.26 + 20.58

simSub1 + H. 986 889 1874 24.83 91.27 + 23.03

simSub2 + H. 972 908 1880 24.58 93.46 + 23.00

IPD + H + R. 878 770 1648 33.89 72.26 + 20.58 + 73.09

simSub1 + H + R. 884 747 1631 34.58 91.27 + 20.58 + 92.36

simSub2 + H + R. 874 768 1642 34.14 93.46 + 23.00 + 97.11

ARCPR (4 iter.) 836 646 1482 40.55 9475

Instance 5

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 1006 1105 2111 − 15.53

Base + H. 980 1036 2016 4.50 15.53 + 15.03

IPD + H. 824 948 1772 15.06 214.19 + 16.24

simSub1 + H. 835 881 1716 18.71 228.65 + 18.41

simSub2 + H. 835 886 1721 18.47 220.29 + 17.54

IPD + H + R. 745 811 1556 26.29 214.19 + 16 + 182.17

simSub1 + H + R. 739 720 1459 30.89 228.65 + 18.41 + 210.00

simSub2 + H + R. 759 755 1514 28.28 220.29 + 17.54 + 188.63

ARCPR (2 iter.) 620 706 1326 37.18 8118
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Instance 6

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 2002 2110 4112 − 15.21

Base + H. 2006 2012 4018 2.29 15.21 + 19.04

IPD + H. 1694 1666 3360 18.28 92.35 + 21.31

simSub1 + H. 1681 1661 3341 18.75 112.91 + 22.05

simSub2 + H. 1653 1685 3338 18.82 99.21 + 20.15

IPD + H + R. 1690 1595 3285 20.11 92.35 + 21.31 + 90.89

simSub1 + H + R. 1568 1413 2981 27.50 112.91 + 22.05 + 109.61

simSub2 + H + R. 1527 1421 2948 28.31 99.21 + 20.15 + 95.88

ARCPR (3 iter.) 1180 1322 2502 39.15 10011

8.1.3 Truncated Normal Distribution With µ = 5, σ = 10

Instance 7

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 946 952 1898 − 14.19

Base + H. 612 780 1392 26.65 14.19 + 18.22

IPD + H. 614 746 1360 28.35 168.74 + 19.41

simSub1 + H. 612 701 1313 30.82 217.43 + 27.61

simSub2 + H. 614 746 1360 28.35 201.22 + 25.87

IPD + H + R. 510 451 961 49.37 168.74 + 19.41 + 168.00

simSub1 + H + R. 515 426 941 50.42 217.43 + 27.61 + 200.17

simSub2 + H + R. 525 465 990 47.84 201.22 + 25.87 + 197.33

ARCPR (3 iter.) 388 412 800 57.85 12215
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Instance 8

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 548 673 1221 − 13.31

Base + H. 545 564 1109 9.17 13.31 + 16.17

IPD + H. 528 422 950 22.19 39.44 + 19.82

simSub1 + H. 533 384 917 24.89 61.10 + 25.00

simSub2 + H. 533 400 933 23.58 51.14 + 24.33

IPD + H + R. 420 254 674 44.80 39.44 + 19.82 + 39.00

simSub1 + H + R. 549 335 884 27.60 61.10 + 25.00 + 60.18

simSub2 + H + R. 571 278 849 30.47 51.14 + 24.33 + 49.27

ARCPR (2 iter.) 480 235 715 41.44 9967

Instance 9

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 837 842 1679 − 15.11

Base + H. 675 637 1312 21.85 15.11 + 16.29

IPD + H. 667 643 1310 21.97 62.32 + 17.21

simSub1 + H. 657 620 1277 23.94 71.12 + 17.98

simSub2 + H. 657 620 1277 23.94 70.77 + 18.65

IPD + H + R. 550 393 943 43.84 62.32 + 17.21 + 58.81

simSub1 + H + R. 523 364 888 47.11 71.12 + 17.98 + 69.14

simSub2 + H + R. 523 364 888 47.11 70.77 + 18.65 + 67.00

ARCPR (3 iter.) 418 295 713 57.53 10708
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8.1.4 Truncated Normal Distribution With µ = 10, σ = 5

Instance 10

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 781 990 1948 − 14.91

Base + H. 796 811 1607 17.50 14.91 + 16.45

IPD + H. 667 905 1572 19.30 53.35 + 18.26

simSub1 + H. 682 851 1533 21.30 67.45 + 21.44

simSub2 + H. 688 867 1555 20.17 59.16 + 19.08

IPD + H + R. 468 605 1077 44.71 53.35 + 18.26 + 55.28

simSub1 + H + R. 516 561 1073 44.91 67.45 + 21.44 + 62.91

simSub2 + H + R. 525 578 1103 43.38 59.16 + 19.08 + 57.12

ARCPR (3 iter.) 465 530 995 48.92 7114

Instance 11

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 967 1131 2098 − 14.70

Base + H. 899 1017 1916 8.67 14.70 + 16.71

IPD + H. 735 1044 1779 15.20 61.72 + 18.22

simSub1 + H. 714 1017 1730 17.54 74.38 + 20.54

simSub2 + H. 711 1032 1744 16.87 69.27 + 21.55

IPD + H + R. 572 716 1288 38.61 61.72 + 18.22 + 66.19

simSub1 + H + R. 533 711 1244 40.71 74.38 + 20.54 + 69.00

simSub2 + H + R. 560 735 1294 38.32 69.27 + 21.55 + 62.14

ARCPR (2 iter.) 527 653 1180 43.76 4752
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Instance 12

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 1020 1071 2091 − 15.04

Base + H. 901 973 1874 10.38 15.04 + 17.37

IPD + H. 769 914 1683 19.51 72.97 + 16.54

simSub1 + H. 769 842 1611 22.95 82.66 + 17.30

simSub2 + H. 778 851 1629 22.09 74.22 + 16.54

IPD + H + R. 622 616 1238 40.79 72.97 + 16.54 + 76.80

simSub1 + H + R. 638 578 1216 41.84 82.66 + 17.30 + 85.77

simSub2 + H + R. 646 569 1215 41.89 74.22 + 16.54 + 70.32

ARCPR (4 iter.) 512 614 1126 46.15 10440

8.2 Results for a Larger Network (One Instance)

In this section we include results for a larger flight network. Our results are obtained

for a network consisting of 320 flights with 818 feasible connections, assuming a one-

day schedule. We determine that the minimum number of aircraft and crew pairs

required to cover this network are 64 and 102 crew, respectively.

8.2.1 Exponential Distribution With λ = 10

Instance 4

Approach Aircraft Crew Total % Improvement Time (s)

Delay Delay Delay over B

Base (B) 2698 4166 6864 − 78.08

Base + H. 2219 3012 5231 23.79 78.08 + 146.00

IPD + H. 2004 3006 5010 27.01 498.32 + 151.06

simSub1 + H. 2132 2756 4888 28.78 746.11 + 187.45

simSub2 + H. 2007 2947 4954 27.83 640.04 + 179.10

IPD + H + R. 1856 2010 3866 43.68 498.32 + 151.06 + 500.00

simSub1 + H + R. 1726 2074 3800 44.64 746.11 + 187.45 + 815.32

simSub2 + H + R. 1986 2000 3986 41.93 640.04 + 179.10 + 700.50

ARCPR (3 iter.) 1572 1950 3522 48.69 45360
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