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a b s t r a c t

Water heating is one of the most energy intensive applications in households and domestic electric water
heating systems (DEWH) offer large thermal storage for moving electrical load across the day. This study
uses a unique dataset from 410 households and presents a comprehensive analysis of electricity con-
sumption and hot water draw of DEWH for the Australian context. Using the real-world data and thermal
energy modelling tool TRNSYS, the study analyses the potential of storing and using excess PV generation
in DEWH and investigates the impact of different daily hot water draw profiles, PV and DEWH size on the
potential for excess PV utilization. The results show that households on average use 6 kWh of energy for
DEWH and 142 L of hot water daily. Potential excess PV utilization is highly dependent on the house-
hold's daily hot water draw profile and is also affected by seasonality. On average, excess PV generation
from a 4.5 kW PV system can provide 48% of daily DEWH energy for a household with a typical working
family profile, which corresponds to a 28% increase in PV self-consumption.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Water heating is an essential residential energy service and it
accounts for around 23%, 14%, and 18% of the residential energy
consumption in Australia, European Union and United States
respectively [1,2]. Domestic electric water heating systems (DEWH)
have widespread installation globally [2]. The majority of DEWH
consist of immersive resistive heaters due to their relatively low
capital costs; although air-to water heat pumps have also become a
popular alternative thanks to their higher energy efficiency [3].
DEWH usually include large water storage tanks which offer large
thermal storage capacity.

With recent advancements in efficiency and reductions in
equipment costs, rooftop PV has become one of the cheapest forms
of electricity generation available for retail electricity consumers
[4], while installation rates of rooftop PV are forecasted to continue
to grow [5]. By using PV generationwithin the premises (behind the
nd Renewable Energy Engi-
, 2052, Australia.

iz).
meter), households can gain environmental benefits by using more
renewable energy and financial savings by reducing energy im-
ported from the grid. On the other hand, increasing levels of
distributed PV generation may also create challenges for electricity
grids, which were originally designed to support unidirectional
energy flow. One of the imminent challenges of integrating high
levels of distributed PV is the maintenance of safe voltage limits in
areas of the grid with high PV export rates [6]. Besides strategies
such as control and curtailment of PV generation [7], a more effi-
cient solution for reducing PV export rates, which also maximises
emissions abatement from PV, is to increase PV self-consumption
rates in households. One way to increase PV self-consumption is
to add energy storage behind the meter. However, recent studies
[8,9] show that residential battery energy storage systems are not
yet economically attractive for the majority of households. An
alternative solution is to use DEWH storage tanks to store excess PV
generation in the form of thermal energy. This can both reduce the
amount of grid energy imported for water heating and increase the
PV self-consumption rate. Considering the widespread installation
of DEHW and the much lower capital cost compared to battery
energy storage systems, DEWH can play an important global role in

mailto:baran.yildiz@unsw.edu.au
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Nomenclature

COP coefficient of performance
DEWH domestic electric water heating system
DNSP distribution network service provider
DSM demand side management
DTW Dynamic Time Warping
HWD hot water draw
NSW New South Wales

Symbols
A surface area of DEWH tank
Ck kth cluster
Cw specific heat of water
d day of the year
D distance metric between two time series
Eelec electrical energy input to DEWH
EHWD sensible energy for the hot water draw
Eheat loss energy loss to surroundings
Estorage cap energy storage capacity of DEWH
Estorage cap min minimum energy storage capacity of DEWH for

the tank power to turn on
Estorage cap max max energy storage capacity of DEWH before

running out of hot water
_mhouse hot water flow rate of the house
_mtw hot water flow rate from DEWH
_mmw cold water flow rate from mains

N number of fully mixed tank segments
PV photovoltaic
SA South Australia
SolA Solar Analytics
ToU Time of Use
TRNSYS Transient System Simulation Tool
QLD Queensland
WD/WE weekday/weekend
Pgrid power imported from grid
Phousehold load power used in the household
PPV gross PV power
PPVexcess

excess PV power
PPV DEWH excess PV power utilized on DEWH
Prated rated power of DEWH
t time stamp
tfull time required to fully charge DEWH
toptimal excess PV optimal excess PV window
Tto DEWH water outlet temperature
Tti DEWH water inlet/mains temperature
Tihw ideal household hot water temperature
Tts DEWH tank segment temperature
Tenv ambient air temperature
U heat loss coefficient
W minimum Euclidean distance path
h energy efficiency
g recursive optimization search space
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supporting the integration of increasing levels of distributed PV and
can also provide flexibility for integrating utility-scale variable
renewable energy at high penetrations.

Previous DEWH studies have used a bottom-up approach and
Time of Use (ToU) surveys collected from households to model and
characterize the energy consumption of DEWH according the
spatial location, user profile and season [10e12]. More recently,
Atikol [13] presented a review of experimental findings on the
cooling behaviour of DEWH tanks and on that basis modelled
different demand side management strategies for Northern Cyprus
with the use of simple timers. Kazmi et al. [14] proposed a rein-
forcement learning-based method to improve the energy efficiency
of DEHW operation through taking occupancy behaviour into ac-
count. The method was applied in 32 households in the
Netherlands, showing that daily DEWH energy can be greatly
reduced through improved understanding of the occupancy
behaviour. Other studies focused on characterizing the hot water
draw (HWD) from DEWH used in households. Bagge et al. [15]
investigated the effect of different time resolutions used for
monitoring HWD in an apartment building, showing that peak flow
rates were significantly lower when measured over a longer tem-
poral resolution, such as hourly. The authors recommended the use
of higher temporal resolutions to increase the accuracy of DEWH
simulations. Lomet et al. [16] collected HWD and temperature data
from eight homes in France over a period of two years and showed
the impact of season, weekday/weekends and occupancy on the
daily HWD. Hirohisa et al. [17] collected detailed HWD and tem-
perature data for different end uses such as bath, shower, kitchen
and bathroom from four households in Japan. Using this data, the
authors built an HWD prediction model and used it in a mixed-
linear integer programming (MILP) algorithm to develop opti-
mum energy operations of DEWH. Bertrand et al. [18] characterized
HWD for different end use appliances for households, hotels and
nursing homes at an urban level by using data from previous
2

European surveys, and found that 80% of the HWD was attributed
to showers.

Many of these studies pointed out the difficulties of inferring the
HWD required to model DEWH operational strategies directly from
electricity consumption data. One study done by Paull et al. [19]
used pattern matching to extract DEWH consumption from total
household electricity and inferred daily hot water draw (HWD)
profiles. Although the method showed promise, the authors avoi-
ded modelling the impact of temperature stratification of the
DEWH tank, and the method assumed there was no HWD when
heating, reducing the accuracy and usefulness of the approach.
Studies that specifically investigated the impact of different HWD
profiles on the performance of solar-combi systems through
physical modelling tools [20e23] have emphasized the importance
of using realistic daily HWD profiles in energy simulations and
demonstrated that the use of simplistic and constant HWD profiles
could lead to misleading conclusions. Moreover, most of the real-
world HWD profiles reported in the literature were very similar
in shape to typical residential electricity consumption profiles, with
a morning and evening peak. However, some key differences were
also observed, including higher morning or evening consumption
and higher day time consumption on weekends and in households
with occupants working from home or retired. Due to the limited
availability of detailed HWD data, the findings of these previous
HWD research [1,21,24e27] are also used in this research for
creating various realistic daily HWD profiles from the inferred daily
HWD values.

In Australia, distribution network service providers (DNSPs)
offer cheaper tariff rates to households to participate in an aggre-
gate DEWH control scheme, often referred to as ‘off-peak’ or
‘controlled load’. The primary goal is to shift the aggregate DEWH
demand to network off-peak periods (i.e. 10pme 7am) through the
use of ‘ripple control’ (frequency signals) or simple mechanical
timers [28e30]. However, there are a significant number of
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households that do not currently participate in this type of scheme.
For example, Ausgrid, a DNSP operating in New SouthWales (NSW)
reports that approximately 45% of the DEWH in their network is not
controlled and these systems are on continuous connection with
access to electricity at all times [28]. Regardless of the DEWH's
control scheme, electricity rates for water heating, even on the
‘controlled load’ tariff are generally higher than PV feed in tariffs
[16]; therefore, households can gain financial savings by using
excess PV generation for water heating. Given that rooftop PV in-
stallations exceeded 25% of Australian freestanding houses [31] and
the majority of the households own a DEWH [32], Australia is a
useful case study for assessing the potential of DEWH to utilize
excess PV generation. Despite the significant opportunity, this has
not been assessed previously for the Australian context. Previous
Australian studies like [33,34] have focused on the modelling and
scheduling of aggregate DEWH electricity demand as a network
demand side management strategy to reduce peak demand and the
impact of tariff design on the effectiveness of load scheduling
strategies. Whaley et al. [24] monitored energy consumption and
HWD of 12 different types of water heating systems including
DEWH, gas heaters and solar-combis in South Australia (SA). The
study revealed the energy performance and HWD characteristics
for these systems through Transient-System-Simulation-Tool
TRNSYS [27] modelling. Vieira et al. [27] collected HWD data
from 27 households with different water heating systems and
different sizedwater tanks located in the greater region of Brisbane.
The study analysed and modelled the energy performance of the
different water heating systems and emphasized the importance of
HWD, tank size and electricity tariff selection in the optimization of
energy operations. A government initiative program, Residential
End Use Monitoring Program (REMP) [1] collected detailed HWD
data from five Victorian households and revealed annual, monthly
and typical daily HWD profiles for the studied households. Willis
et al. [35] used household survey information from 151 households
in the Gold Coast region to study the relationship between socio-
demographic factors and HWD. Nguyen et al. [36] collected
detailed HWD from 252 households located in South East
Queensland (QLD) and disaggregated water flow trace signatures
into end use categories such as shower, kitchen, washers etc.

Previous research on the assessment of the potential of DEWH
to utilize excess PV generation has also been limited in other parts
of the world. Although some European studies [37,38] focused this
subject, in the former, the model was only tested on a single unit
and results were only presented for a single day, and in the latter
[38] the model was based on DEWH with dynamic and remotely
controllable thermostat settings whereas a great majority of
installed DEWH have fixed thermostat settings. Considering the
identified gaps, the main contributions of this study can be listed as
below:

� The study uses a unique and recent real-world dataset at five
minutely resolution over a full calendar year from 410 house-
holds with rooftop PV and DEWH located in capital cities of
Sydney (NSW), Brisbane (QLD) and Adelaide (SA).

� The study presents a comprehensive analysis of the electricity
consumption of DEWH and reveals the impact of different DNSP
control schemes, location and seasons and determines typical
daily seasonal and weekday/weekend profiles. Due to the large
number of households and high-resolution DEWH data, this
makes a significant contribution to the existing DEWH charac-
terization literature in Australia as well as globally.

� The study analyses the potential of utilizing excess PV genera-
tion as thermal storage in DEWH and shows the impact of
different daily HWD profiles, PV and DEWH size on the potential
of excess PV utilization. To the author's knowledge this is the
3

first comprehensive study assessing this potential, especially for
the Australian context.

� The findings of research can inform DNSPs and energy com-
panies in Australia and other parts of the world in developing
effective demand side management strategies using DEWH and
PV.

The remainder of the paper is organized as follows: Section 2
presents the dataset and methodology. Section 3 presents the re-
sults and provides important discussions. Section 4 concludes the
paper.
2. Methodology & dataset

This section is divided in three parts. The first part describes the
methods used for analysing the DEWH electricity consumption. The
second part describes the methods used for inferring daily HWD
and creating HWD profiles. The third part describes the assessment
of excess PV utilization on DEWH. Fig. 1 outlines the methodology
steps and sections containing the detailed methods and results.
2.1. Dataset

The dataset consists of 410 households located in Australia with
100 households in Sydney, 250 households in Brisbane and 60
households in Adelaide. The data for these households was pro-
vided by Solar Analytics Pty. Ltd., an Australian company special-
ized in automatedmonitoring and energy management services for
solar households [39]. The metering equipment measures gross PV
generation and household electricity load, as well as any other
appliances that have dedicated sub-circuits (i.e., DEWH). Data from
each household consists of one complete year between 10/18/2018
and 10/17/2019 in 5 minutely resolution. Each household's data-set
is accompanied by temperature data collected from the nearest
Bureau ofMeteorology (BOM)weather station [40]. 273 households
have DEWH on a continuous connection and the remaining 137 are
on off-peak connection, controlled by the network operator.
Descriptive statistics for the complete household fleet are shown in
Fig. 2. The DEWHs with power rating lower than 1.8 kW are heat
pumps (~10%) and the remaining 90% are standard immersive
resistive type.
2.2. Analysis of DEWH electricity consumption

Firstly, the average daily electricity consumption of each 5-
minutely interval is found across the year by location and
connection type as shown in Eqn. (1). Further analysis is carried out
to investigate the distributions of daily DEWH electricity con-
sumption across months in relation to the regional temperature.

for

8<
:

type : continuous; off � peak
location : Adelaide;Brisbane; Sydney
day : 1…365

9=
;

: EDEWHtype;location;day
avgt¼1…288

¼
XNtype&location&day

i

EDEWHi t¼1…288
(1)

To discover typical daily electricity profiles of DEWH, K-means
clustering is applied whose optimization objective is given in Eqn.
(2) [41]. The clustering analyses is applied separately for each
connection type, season, and weekday (WD) and weekend (WE)
profiles.



Fig. 1. Steps of the methodology.

Fig. 2. Histograms of a) average daily total household consumption (kWh), b) average daily PV generation (kWh), c) average daily DEWH consumption (kWh), d) average daily
excess PV generation (kWh), e) DEWH power rating (kW), f) PV system rater power (kW).
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minimizeC1;…Ck

8<
:

XK
k¼1

1
jCkj

X
i;i02Ck

XN
j¼1

ðDÞ2
9=
; (2)

where, K is the number of clusters, Ck is the kth cluster, |Ck | is the
number of daily DEWH electricity profiles in the kth cluster, N is the
number of points contained in the daily DEWH electricity load
profile (i.e. 288 for 5-minutely data), j is the time step (i.e. 1 to 288
for 5-minutely daily profile), i is the normalized daily DEWH
electricity load profiles that are assigned to one of the clusters Ck
and D is the distance metric used to measure the distance between
two daily electricity profiles. As previously demonstrated by
4

Refs. [42,43] and validated by clustering experiments, Dynamic
Time Warping (DTW) is highly effective for measuring the simi-
larity between electricity load profiles, with mathematical
description given in Eqns. (3)e(5):

Q ¼ Q1;Q2;…Qn
R ¼ R1;R2;…Rn

(3)

wk ¼
�
Qi � Rj

�2
W ¼ w1;w2;…wk

(4)
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W*¼ argminw

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
k¼1

wk

vuut
1
A (5)

where Q and R are two independent time series objects with the
same length n, wk is the squared Euclidean distance between the
ith and jth elements of Q and R respectively. Considering n time
steps of each time series, there are a total of n x n distance points
between the two time series objects which are represented by wk.
W corresponds to a specific path of the distances consisting of n
number of wk. Therefore, W* is the path where the cumulative
Euclidean distance of the W path is minimised. The optimal dis-
tance path W* is found using dynamic programming with the
recursive function given in (6).

gði; jÞ¼d
�
qi; rj

�þminðgði�1; j�1Þ;gði�1; jÞ;gði; j�1Þ� (6)

where dðqi; rjÞ is the Euclidean distance between the ith and jth

timesteps of the time series objects and g represents the recursive
search space where the minimum distance is searched amongst the
surrounding times steps of i and j. An important criterion for the K-
means technique is that the user needs to specify the number of
clusters. To determine the optimum number of clusters, a clustering
validity index, Davies Bouldin metric [44] was used, alongside vi-
sual inspection of the clustering outcomes as recommended by
Ref. [45]. Through experimentation with a range of clusters be-
tween two to ten, five clusters was found to be the optimum
number for the daily DEWH electricity profiles.

2.3. Inferring daily hot water use (l/day)

The dataset did not include the actual HWD, which is very rarely
metered in DEWH installations. However, HWD is needed for
calculating the available thermal storage capacity of a DEWH tank
throughout the day, which in turn is needed to calculate the po-
tential utilization of excess PV generation. As discussed in Section 1,
using DEWH electricity consumption to infer the exact timing of
HWD can be challenging, especially at an intra-daily temporal
resolution like 5-minutely or hourly. However, at the daily level, the
impact of the transient effects become less significant, and it is
more feasible to infer daily HWD from electricity data. For this
reason, firstly, daily HWD (l/day) is estimated for each household.

To accurately model the temperature stratification, energy dy-
namics and associated tank losses from the tank, TRNSYS [46] is
used. The analysis is carried out for each household separately ac-
cording to their DEWH electricity data. Eqns. (7)e(11) [47] describe
the energy modelling of the DEWH for inferring the daily HWD.

Eelec �h ¼ EHWD þ Eheat loss (7)

EHWD ¼ _mtwCwðTto � TtiÞ (8)

_mhouse¼ _mtw þ _mmw (9)

_mtwðTto � TihwÞ¼ _mmwðTihw � TtiÞ (10)

Eheat loss ¼
XN
s¼1

U AtsðTts � TenvÞ (11)

where Eelec , EHWD, Eheat loss are the rates of electrical energy input
to the tank, sensible energy provided for HWD and heat loss to the
environment respectively. h is the energy efficiency of the DEWH
which is assumed equal to 1 for the resistive element, while for heat
5

pumps a coefficient of performance (COP) between 2 and 5 was
used based on the ambient temperature [48]. _mhouse , _mtw , _mmw are
the water mass flow rate for; HWD used in the house, HWD from
the tank, and cold water used from the mains in themixing valve to
obtain the hot water temperature used in the household, respec-
tively. Tto; Tti, Tihw, Tts and Tenv are tank hot water outlet temper-
ature, cold water temperature from the mains at the inlet of the
tank and the mixing valve, ideal hot water temperature used in the
house, tank's different segment temperatures, and ambient air
temperature respectively. Cw is the specific heat of thewater. N, U, A
are the number of fully mixed tank segments, heat loss coefficient
between the tank and its environment per unit area and tank
segment's area, respectively. As the studied data-set largely con-
sists of freestanding households occupied by families, a standard
hot water tank size of 315 L was chosen as it is the most commonly
used DEWH tank size for Australian households [49]. The ambient
temperatures for the studied regions were taken from the respec-
tive BOMweather stations and cold water temperatureswere taken
from relevant Australian Standards [25]. These and other DEWH
modelling parameters are summarized in Table 1. In the next step,
inferred daily HWD values are turned into daily HWD profiles with
the aid of previous findings of HWD literature.
2.4. Daily HWD profile scenarios

In the absence of real monitored HWD data, we create scenarios
representing a wide range of possible HWD profiles to assess the
impact of different HWD behaviors on the potential for excess PV
utilization. To create daily HWD profile scenarios, the shape of
profiles from previous studies which collected real HWD data are
scaled to match the daily aggregate HWD results (l/day) found in
Section 3.3. Thirty typical daily HWD profiles were collected from
Refs. [1,21,24e27] and grouped into six typical daily HWD profile
groups as shown in Fig. 3, by the clustering method described in
Section 2.2, assessed by both Davies Bouldin metric and visual in-
spection to give awide range habitual HWD profiles. The average of
each of the six HWD profile groups were normalized and expressed
as a percentage of total daily HWD value. Among the 30 typical
daily HWD profiles, 3 profiles were clustered in Fig. 3a and f and the
remaining 24 typical daily HWD profiles were distributed evenly
across the remaining 4 groups (Fig. 3b, c, d and e). Fig. 3b and
d shows high similarity with some of the typical working family
HWD profiles presented in Ref. [2] for UK and European countries
however, some other HWD profiles presented in Ref. [2] show the
evening peak consumption later in the night which reflects the
differences of lifestyle and consumption habits between European
and Australian households. Apart from the typical working family
HWD profiles, Fig. 3c and f also resembles the HWD profiles pre-
viously presented for Finnish and Canadian households presented
in Refs. [22,50] respectively. Each of the six normalized HWD pro-
files were multiplied by each of the daily HWD values found in
Section 2.3 to create six daily HWD profiles for each household.
2.5. Assessment of excess PV utilization on DEWH

To assess potential utilization of excess PV generation, simula-
tions are run for each household by using each daily HWD profile
presented in Fig. 3, inferred daily hot water use found in Section 2.3
and household's year worth of monitored real PV generation and
electricity load data. The assessment of excess PV utilization is
focused on a typical PV generation window from 7 a.m. to 5 p.m.
and outside 7 a.m. to 5 p.m. window, the DEWH tank operated
normally according to its default thermostat control. At the time of
the latest recorded daily DEWH heating before 7 a.m., the tank is



Table 1
TRNSYS modelling parameters.

DEWH tank parameter Value DEWH tank parameter Value

CW (kJ/kg.K) 4.19 Heat loss coefficient U (kj/hr.m3.K) 3
Water density (kg/l) 1 Number of fully mixed segments 6
Tank diameter 0.32 m Tank height 1.8 m
Height of each node 0.3 m Initial water temperature of segments 60 �C (top) e 20 �C (bottom) in 10 �C degree increments
Node containing thermostat 1 (top) Node containing resistive heating element 6 (bottom)
Thermostat set point temperature (�C) 60 Dead-band temperature (�C) 10
Cold water temperature -Tti (�C) [25] 11e23 �C Household hot water temperature - Tihw (�C) [2] 45 �C

Fig. 3. Six HWD profiles found through clustering typical HWD profiles taken from Refs. [1,21,24,25]: a) Morning and evening only, b) Morning and evening with day time, c) Evenly
distributed, d) Morning, e) Evening, f) Late night.
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assumed to be thermally fully charged. Simulations used linear
programming (LP) [51] with the objective of maximizing the utili-
zation of daily excess PV generation for water heating as expressed
in Eqn. (12). The optimization had thermal storage and power flow
constraints to obtain the required power balance andmake sure the
DEWH tank had sufficient thermal energy for household's HWD as
described in the following Eqs. (13)e(19). DEWH tank's initial
temperature state, thermostat set point and thermal parameters
were presented in Table 1.

for d : 1…365 and t : 7am…5pm;

maximize
Xt¼ 5 pm

t¼7am

PPV DEWHd;t

(12)
6

Estorage capd;t ¼ Estorage cap d;t�1 þ
ðt

t�1

PHWDd;t
þ

ðt

t�1

Pheat lossd;t

�
ðt

t�1

Prated � DEWHstatusd;t

(13)

Estorage capd; 7am ¼
X7am

t¼tlatest heating

Eheat lossd;t (14)

Estorage capd;t � Estorage cap max (15)



Fig. 4. Average daily power (kW) across the year and time of day for different types of DEWH in different regions: a) Off-peak NSW, b) Off-peak SA, c) Off-peak QLD, d) Continuous
NSW, e) Continuous SA, f) Continuous QLD.
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DEWHstatusd;t ¼
1 if Estorage capd;t > Estorage cap min
0 if Estorage capd;t � Estorage cap min

(16)

PPVexcessd;t ¼maximum
�
PPVd;t

� Phousehold loadd;t
;0

�
(17)

PPV DEWHd;t
¼minimum

�
PPVexcessd;t ; Prated

�
� DEWHstatusd;t

(18)

Prated�DEWHstatusd;t ¼ PPV DEWHd;t
þ Pgridd;t

(19)

where, d is day of year, t is 5-minutely simulation time step be-
tween 7 a.m. & 5 p.m., PPV DEWHd;t

is the excess PV generation uti-
lized on DEWH tank, Estorage capd;t is the available thermal storage
capacity of DEWH tank, PHWDd;t

, Pheat lossd;t Prated are the power
spent for household's HWD, power lost to ambient and rated power
of DEWH tank respectively, DEWHstatusd;t is the binary (on/off) po-
wer state of the DEWH tank for each day and time-step.
Estorage cap max is the maximum thermal storage capacity of the
7

DEWH tank before causing run out of hot water (i.e., insufficient
water temperature), Estorage cap min is the minimum required ther-
mal storage capacity for DEWHstatusd;t to be ‘on’, based on the DEWH
tank's thermostat set-point and dead-band temperatures (Table 1).
PPVexcessd;t , PPVd;t

, Phousehold loadd;t
are the excess PV generation power,

gross PV generation power and household load respectively, for
each day and time-step. Finally, Pgridd;t

is the required imported
power from the grid during utilization of PPVexcessd;t whenever
available PPVexcessd;t is smaller than Prated. The studied linear opti-
mization gave the global maximum for the utilized excess PV
generation for each daily household simulation and studied HWD
profiles.
3. Results and discussion

3.1. Analysis of DEWH electricity consumption

Fig. 4 presents a heatmap of the average power (kW) of the 410
DEWH in each 5-minutely period of the year, according to
connection type and location. The highest average power drawn by



Fig. 5. Monthly distribution of daily DEWH electricity consumption (kWh/day) for
sites in: a) Adelaide, b) Brisbane, c) Sydney.
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off-peak DEWH is significantly greater than the continuous type for
all locations. This is unsurprising as the off-peak DEWH has a
restricted operationwindow (10pme 7am) to fully charge the tank.
Fig. 4 a) and c) show that the off-peak DEWH operation in Adelaide
and Sydney show a shift between summer and winter months. This
is because the hot water is operated according to daylight savings
time, which is not corrected for in the meter data. The off-peak
DEWH in Brisbane doesn't show this shift is because there is no
daylight savings in Brisbane (Fig. 4 b). For every region, most of the
off-peak heating occurs from 10 p.m. to 2 a.m., with some top-up
heating from 4 a.m. to 7 a.m. to compensate for the heat losses
throughout the night. In contrast to off-peak DEWH, the average
continuous DEWH power is more evenly distributed throughout
the day yet, it is relatively higher during the morning and evening
periods, which correlates with some of the HWD profiles shown in
Fig. 3.

Fig. 5 presents the distribution of daily DEWH electricity con-
sumption (kWh/day) across the year for the three locations,
together with the average monthly temperature. The distributions
follow similar patterns in all locations relative to the temperature.
Daily DEWH electricity consumption is highest during winter and
lowest during summer. DEWHs in Adelaide have a slightly higher
daily average consumption of 6.4 kWh followed by Sydney with
6.3 kWh and Brisbane with 5.6 kWh. The lower consumption in
Brisbane is due to higher regional temperatures. The daily average
8

DEWH electricity consumption results fall under the medium load
case according to European Standards [2] and low load case ac-
cording to the Australian and New Zealand Standards [25]. It is
important to emphasize that around 10% of the DEWH systems in
this study are heat-pumps and therefore the reported results would
be slightly higher if all systems were standard immersive resistive
type.

The typical daily electricity profiles of DEWH are presented in
Fig. 6, where sub-figures a to p) show five cluster centroids (C1 to
C5) for each season, weekday (WD)/weekend (WE) and connection
types. For each of the continuous DEWH shown in Fig. 6 a-h), at
least one of the profiles corresponds to the typical working family
electricity profile, with morning and evening peaks such as C3, C1
and C2 in Fig. 6 d), f) and h) respectively. Furthermore, one of the
typical profiles shows minimal electricity consumption of DEWH
throughout the day representing household's unoccupied days
with no HWD as confirmed by the households' respective daily
electricity consumption. Typical profiles such as C5 and C2 in Fig. 6
a) and h) have long uninterrupted operation with consistent power
output. These profiles represent daily heat-pump profiles with
relatively low and continuous output. These results clearly show
the high variability of typical daily electricity profiles across
different continuous DEWH systems especially compared to the
reference average daily profiles presented in relevant standards
[25]. The resultant typical working family electricity profiles show
high similarities with the profiles presented in previous Australian
[27] and European studies [12,15] but some of the profiles pre-
sented in this study has day time loads that are more equally
distributed across the day compared to profiles with morning and
evening peaks. It is important to note the alignment between some
of the typical profiles and the studied HWD profiles given in Fig. 3.
For example, the morning dominant HWD of Fig. 3 e) corresponds
to profiles such as C3 in Fig. 6 c), d), and f). Night and late night
dominant HWD given in Fig. 3 e) and f) shows similarity to C2 in
Fig. 6 b), g). Although some typical profiles vary in magnitude and
shape between weekday and weekends, others show high simi-
larities such as C2 and C3 in Fig. 6 c) and d) and C1 in Fig. 6 e) and f).

In contrast to the continuous DEWH, typical profiles for off-peak
connection show highly similar characteristics for all seasons and
weekdays/weekends. Although there are slight time differences,
the peak heating occurs between 10 p.m. and 2 a.m. with a tail end
towards 7 a.m. reflecting the supplementary heating to off-set the
heat losses. The similarity between typical daily profiles of off-peak
DEWH is due to control by DNSPs and household behaviour has less
of an impact on the shape and magnitude of these profiles. The
presented typical daily off-peak profile shapes show similarities to
the annual average off-peak profiles reported in Ref. [27] however,
the profiles presented here capture the tail end of the late night
heating by the help of the studied clustering method compared to
using simple averaging.

3.2. Inferring daily hot water draw

The distribution of the resultant HWD (l/day) is presented in
Fig. 7 with histograms alongside respective means shown with
vertical lines. Fig. 7 a) shows the distribution of the daily HWD for
continuous and off-peak connections. Both distributions are
skewed to the right and the average daily HWD is 140 l/day and
136 l/day for continuous and off-peak DEWH, respectively. Fig. 7 b)
presents the distribution of daily HWD across Adelaide, Brisbane,
and Sydney. All distributions show a similar right skew, and on
average the HWD is lowest in Brisbane with 130 l/day followed by
147 l/day in Adelaide and 153 l/day in Sydney. The distribution of
HWD in Adelaide shows similarities with the results of a previous
study which monitored HWD from 12 households from the same



Fig. 6. Normalized seasonal weekday (WD) and weekend (WE) cluster centroids of daily DEWH electricity profiles for continuous and off-peak connections.
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region [24]. The average daily HWD results for Brisbane (130 l/day)
is lower compared to a previous for the nearby Gold Coast region
(157 l/day) [35]. The HWD results reported in this study falls under
small to medium category according to figures reported in
Australian and New Zealand standards [25]. Fig. 7 c) shows the
distribution and averages of daily HWD across months. The distri-
butions follow a similar trend as that shown in Fig. 5, which sup-
ports previous findings [2,24] that households habitually use more
hot water in colder months. This would also explain why HWD is
lower in Brisbanewith year-round higher temperature compared to
Adelaide and Sydney. Fig. 7 d) presents the distribution and aver-
ages of daily HWD grouped by weekdays, which shows little vari-
ance of HWD between different days of the week, and more
importantly, no clear difference is found between the amount of
daily HWD on weekdays and weekends. It is important to
emphasize that the inferred daily HWD results in this study had
significantly larger number of households than previous studies
carried out in the same locations.
3.3. Assessment of excess PV utilization on DEWH

Fig. 8 presents daily examples of simulated DEWH control to
maximise the utilization of excess PV generation compared to
normal operation for selected off-peak (Fig. 8 a) and continuous
DEWH systems (Fig. 8 b). Both DEWH has 3.6 kW rated power and
the households have 4 kWand 3.6 kW PV systems, respectively. The
days are randomly chosen and have partially cloudy conditions. As
shown in Fig. 8 a), the simulation for the off-peak household shifts
9

around two-thirds of daily heating to the middle of the day to
utilize excess PV and the remaining heating is done between
4:00e5:00am to provide sufficient energy to meet morning HWD.
As a result of the shifted day time heating, some power is imported
from the grid, yet the majority (90%) is provided by excess PV. In
Fig. 8 b), the normal heating operations are scattered across the day
whereas as a result of the simulations 90% of the daily heating is
provided by utilizing excess PV generation without requiring grid
imports. The remaining heating is left at 5:00 a.m. to provide suf-
ficient energy to meet morning HWD. In each example, the total
daily energy spent on DEWH in the normal and simulated cases is
very similar. This is important because if utilizing excess PV gen-
eration results in higher energy use, it may not be beneficial for the
household.

One of the objectives of the simulations is to explore the impact
of the different HWD profiles shown in Fig. 3 on the potential uti-
lization of excess PV generation. Fig. 9 presents the distribution and
summary statistics of the average excess PV utilization for each of
the HWD profiles applied to all of the household daily DEWH
consumption, using violin plots. As shown in vertical distributions
of the violin plots, all HWD profiles show a right skewed distribu-
tion. The morning dominant HWD profile (Fig. 3 d) results in the
highest excess PV utilization, with an average of 3.3 kWh/day. This
is because the DEWH tank has the highest thermal storage capacity
during the PV generation window after the majority of the HWD
has been used in the morning. On the other hand, evening and late
night dominant HWD (Fig. 3 e and f) have the lowest excess PV
utilization with an average 1.8 kWh/day. This is because the



Fig. 7. Daily HWD characterization: a) Histogram of daily HWD for off-peak and continuous DEWH, b) histogram of daily HWD across three regions, c) box plots of daily HWD across
months shown with average daily HWD for three regions, d) box plots of daily HWD over weekdays shown with average daily HWD for three regions.
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majority of the HWD has been late at night period after which
DEWH thermostat triggers charging from the grid to provide suf-
ficient HWD to meet morning HWD. After the tank is fully charged
during night, there is less daytime HWD compared to other HWD
profiles, and as a result the DEWH tank has less thermal storage
capacity to soak up excess PV generation. The remaining three
types of HWD profiles (Fig. 3 a, b and c) show similar distributions
with an average of 2.6 kWh/day utilization where all types have
substantial morning and evening HWD, which is more typical of
working family households.

Fig. 10 shows the relationship between the average daily excess
PV utilization and PV rated power according to location and DEWH
rated power for the morning and evening dominant HWD type a).
Generally, having a larger PV system results in higher daily excess
PV utilization on DEWH. On average the daily excess PV utilization
is 2.9 kWh/day, 2.6 kWh/day and 2.5 kWh/day for Sydney, Adelaide
and Brisbane respectively. However, comparing the households
with the same PV and DEWH sizes in different regions does not
show any clear relationship between the region and the excess PV
generation used for DEWH. Further investigating the common PV
rated power of 3 kW and 5 kW, it is seen that there is a wide range
of excess PV utilization results. One important reason for this is the
different daily consumption habits across households impacting
the available excess PV generation for water heating. Moreover, the
DEWH rated power also impacts the results. Between households
with similar daily HWD (l/day), DEWH with smaller rated power
10
results in higher daily excess PV utilization, in fact, for heat pumps
and DEWH with 1.8 kW, excess PV generation provides the highest
percentage of daily DEWH energy. This is somewhat to be expected
as with smaller DEWH power, there is less imports required from
the grid andmost of the DEWH power can be provided by excess PV
generation during the day.

Another important parameter to assess is the required imported
energy during the optimal PV generationwindow. Fig. 11 shows the
average daily excess PV utilization on DEWH and corresponding
energy imported during the daytime for the 410 households, in
order of highest daily excess PV utilization. The figure also presents
the percentage of total daily DEWH consumption provided by
excess PV utilization. Around half of the households require im-
ports of less than 1/3rd of the energy provided during the solar
window , however some households with smaller PV systems and/
or higher day time loads have less available excess PV generation
and require significant imports during the day as seen with the red
spikes. The bottom 10% of households can provide less than 20% of
the DEWH via excess PV generation. Some of these households are
on off-peak connections with cheaper rates than the regular con-
sumption tariff that would apply for daytime imports and hence
may incur financial loss where significant grid imports occur
attempting to utilize excess PV on DEWH. On the other hand, for
the top 10% of households, excess PV is sufficient to provide at least
90% of daily DEWH consumption and there are significant financial
benefits in this strategy.



Fig. 8. Example daily simulation vs normal operation for two sites: a) Off-peak, b)
Continuous.

Fig. 9. Distribution of average daily excess PV utilization on DEWH across different
daily HWD profiles.
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Table 2 provides further details on the seasonal breakdown of
the results. Due to the similarity of the obtained results, HWD type
a) is presented as representative of a), b) and c) and HWD type e) is
presented to represent e) and f).

Spring results in the highest excess PV utilization (kWh) for all
11
HWD profile types and overall, most of daytime heating comes
from excess PV (>75%). This is mainly because households have the
highest excess PV during spring and there is substantial hot water
demand as temperatures gradually increase. Winter has the second
highest excess PV utilization but also with a significantly greater
proportion of daytime imports. This is because excess PV genera-
tion is lowest during winter and DEWH consumption is highest
which results in a higher level of imported energy. Surprisingly,
Autumn and Summer have very similar excess PV utilization, yet
due to greater daily DEWH consumption, the proportion of DEWH
provided by excess PV is significantly smaller in Autumn. The
proportion of excess PV absorbed by DEWH (i.e., percentage PV
self-consumption improvement) is smallest in summer and great-
est during winter as households have smaller excess PV and greater
daily DEWH consumption in winter. For the typical working family
HWD profile type a), on average, 48% of daily DEWH consumption
can be provided by excess PV utilization. This corresponds to an
average daily PV self-consumption rate improvement of 28%. This
also indicates that there is still a significant amount of excess PV to
be utilized in other storage applications such as batteries or pre-
heating/pre-cooling applications.

The results of this study are promising, showing that excess PV
utilization can provide a substantial proportion of DEHW con-
sumption, resulting in a significant reduction in required grid im-
ports. It is important to remind that the studied simulations
considered household comfort by always keeping tank's thermal
energy state above the minimum threshold to prevent running out
of hot water. It was shown in a previous study [52] that if house-
holds were ok with occasional instances of running out of hot
water, the utilization of excess PV generation could provide up to
70% of daily DEWH energywhich is higher than the results reported
in this study. It is also important to note that potential operational
inefficiencies with PV and DEWH tank has not been considered
other than heat losses, which may have a further impact on the
obtained results. Moreover, there are more sophisticated power
modulation techniques (i.e., PV diverters) which could be used for
similar excess PV utilization purposes. Future research aims to test
different excess PV utilizationmethods on awide range of customer
groups in the field and further assess the performance and financial
implications.

4. Conclusion

Analysis of 410 domestic electric water heating (DEWH) systems
located in Adelaide, Brisbane and Sydney revealed average daily
electricity consumption is 6 kWh and for continuous DEWH occurs
mainly during morning and evening periods, with some daytime
consumption. For off-peak DEWH, consumption is focused between
10 p.m. and 2 a.m. with a tail before the cut off period of 7 a.m.
Using K-means clustering with dynamic time warping (DTW), five
typical daily electricity profiles were found for DEWH and exam-
ined in detail for each season and weekday/weekend. These typical
profiles can provide useful information for future DEWH research.
Using the electricity consumption data and TRNSYS modelling, the
study found that average daily hot water draw (HWD) is 130, 147
and 153 l/day for Brisbane, Sydney, and Adelaide regions. Daily
HWD is higher in colder months and there is no significant differ-
ence in hotwater use across different days of theweek. The inferred
daily HWD were mapped onto daily HWD profiles produced in
previous studies, which enabled the comprehensive assessment of
excess PV utilization on DEWH. The utilization of excess PV for
DEWH is highly dependent on the daily HWD profiles, and heavy
morning hot water use promises the highest potential, followed by
more regular morning & evening dominant types and evening/late
evening dominant types. Excess PV utilization also depends on the



Fig. 10. Scatter of PV rated power (kW) vs. average daily excess PV utilization on DEWH (kWh/day).

Fig. 11. Average daily excess PV utilization & imports for DEWH during excess PV utilization (kWh) and the percentage of daily DEWH provided by excess PV utilization.

Table 2
Excess PV utilization results for different seasons and HWD types.

HWD Type a) HWD Type d) HWD Type e)

Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring

Average daily excess PV utilization on DEWH (kWh) 2.4 2.4 2.8 3.2 2.9 2.9 3.4 4.0 1.8 1.7 1.9 2.3
Average daily imports during excess PV utilization (kWh) 0.9 1.2 1.9 1.0 1.1 1.7 2.6 1.4 0.6 0.8 1.2 0.7
Proportion of DEWH energy provided by excess PV utilization (%) 52.4 44.7 41.0 54.1 59.9 51.5 47.8 62.3 41.9 33.9 30.3 41.2
Proportion of excess PV utilized on DEWH (%) 21.2 28.1 37.2 25.1 25.3 33.7 44.7 30.7 15.7 20.2 26.1 17.5
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rated power of PV and DEWH. The results reveal that for the typical
working family HWD profile, on average 48% of daily HWD can be
provided via excess PV which corresponds to a 28% PV self-
consumption improvement. Still, there is a significant amount of
additional excess PV after supplying DEWH, implying further scope
12
for other battery and thermal storage applications. These results
demonstrate that there are significant potential benefits from the
utilization of excess PV for DEWH for solar households in reducing
their bills, while the reduction in daytime solar exports would have
benefits for network operation and can help to facilitate integration
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of higher penetrations of distributed PV. Future research aims to
validate the obtained results through field tests and implement
different excess PV utilization methods on different customer
groups.
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