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Abstract

Future air traffic management (ATM) systems are expected to handle the in-
creasingly heavy demand on air traffic, especially in the highly constrained terminal
area (TeA). However, the realizable capacity of current TeA is a challenge for future
air transportation development. This is due to the limitations in accommodating
safe and efficient travel under the highly limited airspace configuration strategies
and pre-defined terminal trajectories. Therefore, making the TeA resources flexible
and available corresponding to different traffic scenarios is the key to enhance the
practical ATM efficiency in future TeAs.

Improving the TeA airspace configuration to balance capacity and demand is
a challenging task, since a TeA system inherently involves high uncertainties and
multiple interactions among many different components. The inherent complexity
of the TeA necessitates a system-level analysis approach, in which each component
is investigated through modelling the complex interactions among other parts of
the environment in which it operates. Hence, the process of understanding (through
modelling), evaluating and dynamically designing TeA airspace configurations, while
considering dynamic constrained ground resources, is becoming crucial for enhancing
the practical ATM efficiency in future TeAs.

In this thesis, an air traffic simulation system with a novel representation of an in-
tegrated TeA that considers the air-ground collaboration and arrival-departure coop-
eration is presented for system-level modelling of TeA concepts. Then a simulation-
based co-evolutionary computational environment – Co-evolutionary Computational
Red Teaming (CCRT) – is developed for evaluating advanced TeA airspace concepts
and understanding the TeA system-level vulnerabilities. The interactions between
traffic distributions and constrained ground resources (including runways, taxiways
and gates) are co-evolved with each other and considered from the perspective of
identifying inefficiencies, with the integration of arrival and departure operations.
By evaluating these interactions, we are able to reveal ”improvement opportunities”
in the implementation of future TeA airspace concepts and, thereby, understand
major bottlenecks which cause system inefficiencies.

A multi-objective co-operative co-evolutionary methodology is then proposed as
a new optimization search engine of the CCRT framework, in order to solve complex
TeA problems with multiple conflicting objectives.
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A novel TeA airspace design concept for capacity-demand balancing including
a measure of collision risks derived from the probabilistic nature of aircraft’s per-
formance is proposed. Then, an air traffic simulator, originally representing the
novel TeA airspace design concept while considering the interactions among dy-
namic ground events, is presented. The multi-objective CCRT is applied to gen-
erate scenario-specific TeA airspace design strategies that are able to cope better
with ground events/uncertainties and produce dynamic trajectories while maintain-
ing ATM efficiency and aircraft safety. The multi-objective CCRT also provides an
analyst with the trade-off between these two air traffic control priorities - efficiency
and safety; thus solutions can be selected based on the criticality level of meeting
the demand.

In summary, the contributions of this thesis are:

• A methodology to evaluate advanced TeA airspace concepts and understand
TeA system vulnerabilities.

• A multi-objective co-operative co-evolutionary methodology proposed for co-
evolving solutions towards the efficient set of trade-offs effectively, while main-
taining diversity of the solution set.

• A methodology to generate scenario-specific TeA airspace design strategies
that are able to cope better with ground events/uncertainties and produce
prior trajectories to distribute demand while maintaining aircraft safety.

ii



keywords

Terminal Area, Future Airspace Design, Collision Risk, Ground-air Network,
Arrival-Departure Integration, Co-evolutionary Algorithms, Multi-objective Opti-
mization, Computational Red Teaming

iii



iv



Acknowledgement

No words of gratitude are enough to thank my supervisor Prof. Hussein A. Ab-
bass, whose untiring support, motivation, supervision and guidance in all aspects of
my work provide me great help on various topics.

I also wish to acknowledge my co-supervisor, Dr. Axel Bender (DSTO) and Dr.
Sameer Alam, for their guidance and support throughout my thesis. I owe my
sincere thanks to my colleagues at the Computational Intelligence, Modelling, and
Cognition Lab. (CIMC), Dr. Lam T. Bui, Dr. Jiangjun Tang, Prof. Jing Liu, Dr.
Weicai Zhong, Fan Qi, Van Viet Pham, Shir Li Wang, Amr Ghoneim, George Leu,
whom I enjoyed my research collaboration. I am also grateful to my dear colleagues
and friends: Qiang Li, Theam Foo Ng, Nizami Jafarov.

I would like to extend my hearty appreciation to the anonymous reviewers for my
journal and conference papers whose valuable suggestions were instrumental in im-
proving the research work.

I would like to acknowledge, with gratitude and appreciation, financial support
from the China Scholarship Council and the University of New South Wales at the
Australian Defense Force Academy, Canberra.

Finally, to my mother Xiaobo Wang and father Juquan Zhao, for their constant
encouragement, support and love during this endeavor.

Wenjing Zhao
Australia, 2012

v



vi



Certificate of Originality

I hereby declare that this submission is my own work and that, to the best of
my knowledge and belief, it contains no material previously published or written by
another person, nor material which to a substantial extent has been accepted for the
award of any other degree or diploma at UNSW or any other educational institution,
except where due acknowledgement is made in the thesis. Any contribution made to
the research by colleagues, with whom I have worked at UNSW or elsewhere, during
my candidature, is fully acknowledged.

I also declare that the intellectual content of this thesis is the product of my own
work, except to the extent that assistance from others in the project’s design and
conception or in style, presentation and linguistic expression is acknowledged.

Wenjing Zhao

vii



viii



Contents

Abstract i

Keywords iii

Acknowledgements v

Declaration vii

Table of Contents ix

List of Figures xv

List of Tables xix

List of Acronyms xxi

List of Publications xxv

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research Question and Hypothesis . . . . . . . . . . . . . . . . . . . 7

1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ix



2 Background 15

2.1 Capacity-Demand Balance . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 TeA System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 TeA System Complexity . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Air-ground Collaboration . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Arrival-departure Co-operation . . . . . . . . . . . . . . . . . 28

2.3 TeA Airspace Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Computational Red Teaming . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Co-operative Co-evolutionary Algorithm . . . . . . . . . . . . . . . . 40

2.5.1 Single-objective Co-operative Co-evolutionary Algorithms . . . 40

2.5.2 Multi-objective Co-operative Co-evolutionary Algorithms . . . 45

2.5.3 Evolution of the Reviewed Literature . . . . . . . . . . . . . . 51

3 Proposed Integrated TeA System 55

3.1 Overview of the Proposed Integrated TeA System . . . . . . . . . . . 56

3.2 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Air Resources Model . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Ground Resources Model . . . . . . . . . . . . . . . . . . . . . 65

3.3.3 Air Resources Records . . . . . . . . . . . . . . . . . . . . . . 68

3.3.4 Ground Resources Records . . . . . . . . . . . . . . . . . . . . 68

3.4 Integrated TeA Simulation . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Integrated TeA System Design . . . . . . . . . . . . . . . . . . 70

3.4.2 Architecture of the Integrated TeA Simulation . . . . . . . . 71

3.4.3 Queue Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.4 Occupancy Time . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.5 Parameter Source . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



3.4.6 Arrival Manager . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.7 Departure Manager . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.8 Arrival-Departure Integration . . . . . . . . . . . . . . . . . . 83

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Co-Evolutionary Computational Red Teaming 87

4.1 Overview of the Co-Operative Co-Evolutionary Red Teaming . . . . . 88

4.2 Co-Evolutionary Computational Red Teaming Framework . . . . . . 89

4.2.1 Search Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.2 Scenario Generation . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.3 Fitness Function Design . . . . . . . . . . . . . . . . . . . . . 96

4.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Experimental Scenarios and Parameters . . . . . . . . . . . . 98

4.3.2 Measures and Metrics . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.1 Worst Case Analysis . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.2 Efficiency of Dynamic CDA Model . . . . . . . . . . . . . . . 102

4.4.3 Major Air Traffic Flow Constraints . . . . . . . . . . . . . . . 107

4.4.4 Scenario Patterns with Higher Delays . . . . . . . . . . . . . . 118

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Multi-Objective Co-Operative Co-Evolution 125

5.1 Multi-Objective Co-Operative Co-Evolution Algorithm . . . . . . . . 126

5.1.1 Overview of CCEA by KC Tan . . . . . . . . . . . . . . . . . 126

5.1.2 Fitness Assignment . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1.3 Niching Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2 Investigation I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xi



5.2.2 Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.3 Metrics of Performance . . . . . . . . . . . . . . . . . . . . . . 140

5.2.4 Simulation Results and Discussions . . . . . . . . . . . . . . . 142

5.3 Investigation II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 148

5.3.2 Simulation Results and Discussions . . . . . . . . . . . . . . . 149

5.4 Proposed Multi-Objective Co-Operative Co-Evolution . . . . . . . . . 153

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 TeA Airspace Design 159

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3 Air Traffic Scenario Generation . . . . . . . . . . . . . . . . . . . . . 163

6.4 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4.1 Air Resources Modelling . . . . . . . . . . . . . . . . . . . . . 166

6.4.2 Air Resources Records . . . . . . . . . . . . . . . . . . . . . . 168

6.5 Collision Risk Calculation Methodology . . . . . . . . . . . . . . . . . 169

6.6 TeA System for Airspace Design . . . . . . . . . . . . . . . . . . . . . 173

6.6.1 Architecture of TeA System for Airspace Design . . . . . . . . 173

6.6.2 Arrival Manager . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.7 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.7.1 Population Design of TA Design Scenarios . . . . . . . . . . . 178

6.7.2 Population Design of Ground Event Scenarios . . . . . . . . . 180

6.7.3 Fitness Function Design . . . . . . . . . . . . . . . . . . . . . 181

6.8 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.8.1 Experimental Scenarios and Parameters . . . . . . . . . . . . 182

6.9 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

xii



6.10 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7 Conclusion 213

7.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Appendix 217

Bibliography 219

xiii



xiv



List of Figures

2.1 Phases of a Typical Flight Trip . . . . . . . . . . . . . . . . . . . . . 20

2.2 Components Influencing TeA system’s State and Complexity . . . . . 22

2.3 TeA system’s Complexity . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Different Integration Levels in a TeA system . . . . . . . . . . . . . . 25

2.5 Evolution of the Reviewed Literature (Part I) . . . . . . . . . . . . . 52

2.6 Evolution of the Reviewed Literature (Part II) . . . . . . . . . . . . . 53

3.1 Conceptual representation of transition airspace . . . . . . . . . . . . 60

3.2 STAR example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 SID example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 The Fixed STARs network for Sydney Airport . . . . . . . . . . . . 64

3.5 The Fixed SIDs network for Sydney Airport . . . . . . . . . . . . . . 64

3.6 Ground arrival network for Sydney Airport . . . . . . . . . . . . . . 65

3.7 Ground departure network for Sydney Airport . . . . . . . . . . . . 66

3.8 TeA-ATOMS simulation scope . . . . . . . . . . . . . . . . . . . . . . 70

3.9 Architecture Design of Integrated TeA Simulation . . . . . . . . . . . 72

3.10 Arrival Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.11 Departure Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.12 Architecture for Arrival-Departure Integration Concept . . . . . . . . 84

3.13 Information Exchange between the Connected Components . . . . . . 84

4.1 Co-operative Co-evolutionary flowchart . . . . . . . . . . . . . . . . 90

xv



4.2 Traffic chromosome design . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Event chromosome design . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Delays induced by best individuals for Arrivals Only in each genera-
tion averaged over 30 seeds. . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Delays induced by best individuals for Mixed Traffic in each genera-
tion averaged over 30 seeds. . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Delays induced by best individuals for Departures Only in each gen-
eration averaged over 30 seeds. . . . . . . . . . . . . . . . . . . . . . . 105

4.7 Total flight delays caused by individual ground resources in best so-
lutions averaged over all seeds for Arrivals Only . . . . . . . . . . . . 107

4.8 Total flight delays caused by individual ground resources in best so-
lutions averaged over all seeds for Mixed Traffic . . . . . . . . . . . . 108

4.9 Total flight delays caused by individual ground resources in best so-
lutions averaged over all seeds for Departures Only . . . . . . . . . . 109

4.10 Holding delays caused by each air-side and ground-side resource in
best solutions averaged over all seeds for Arrivals Only . . . . . . . . 111

4.11 Holding delays caused by each air-side and ground-side resource in
best solutions averaged over all seeds for Mixed Traffic . . . . . . . . 112

4.12 Holding delays caused by each air-side and ground-side resource in
best solutions averaged over all seeds for Departures Only . . . . . . . 113

4.13 Summarized delays caused by each sub-system: runways, taxiways
and gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.14 Summarized delays caused by each sub-system: runways, taxiways,
gates and TeA airspace . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.15 The temporal distribution parameter of best solutions in last gener-
ations of each scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.16 The spatial distribution parameter of best solutions in last genera-
tions of each scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.17 Events in best solutions at end of co-evolutionary runs . . . . . . . . 121

5.1 Box plots for ZDT1, ZDT2 and ZDT3 in Experiment I . . . . . . . . 144

5.2 Box plots for ZDT4, ZDT5 and ZDT6 in Experiment I . . . . . . . . 145

5.3 Box plots for FON, KUR and DTLZ2 in Experiment I . . . . . . . . 146

xvi



5.4 Box plots for ZDT1, ZDT2 and ZDT3 in Experiment II . . . . . . . . 150

5.5 Box plots for ZDT4, ZDT5 and ZDT6 in Experiment II . . . . . . . . 151

5.6 Box plots for FON, KUR and DTLZ2 in Experiment II . . . . . . . . 152

6.1 Arrival Traffic Coming from Diverse Directions . . . . . . . . . . . . . 164

6.2 TeA Airspace model for TeA Airspace Design . . . . . . . . . . . . . 166

6.3 The Possible Collision Risk for A Potential Way Point . . . . . . . . 171

6.4 ATOMS/TeA Simulator System Flow Chart . . . . . . . . . . . . . . 174

6.5 Arrival Manager Flow Chart . . . . . . . . . . . . . . . . . . . . . . . 176

6.6 TA chromosome design . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.7 Event chromosome design . . . . . . . . . . . . . . . . . . . . . . . . 181

6.8 All solutions as obtained after 200 generation . . . . . . . . . . . . . 185

6.9 The objective values of extreme points evolved over time for Scenario
1Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.10 The objective values of extreme points evolved over time for Scenario
2Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.11 The objective values of extreme points evolved over time for Scenario
2Q/opo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.12 The objective values of extreme points evolved over time for Scenario
3Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.13 The objective values of extreme points evolved over time for Scenario
4Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.14 The extreme points generated in one run for Scenario 80/1Q . . . . . 194

6.15 The extreme points generated in one run for Scenario 100/1Q . . . . 195

6.16 The extreme points generated in one run for Scenario 120/1Q . . . . 196

6.17 The extreme points generated in one run for Scenario 80/2Q . . . . . 197

6.18 The extreme points generated in one run for Scenario 100/2Q . . . . 198

6.19 The extreme points generated in one run for Scenario 120/2Q . . . . 199

6.20 The extreme points generated in one run for Scenario 80/2Q/opo . . 200

xvii



6.21 The extreme points generated in one run for Scenario 100/2Q/opo . 201

6.22 The extreme points generated in one run for Scenario 120/2Q/opo . 202

6.23 The extreme points generated in one run for Scenario 80/3Q . . . . . 203

6.24 The extreme points generated in one run for Scenario 100/3Q . . . . 204

6.25 The extreme points generated in one run for Scenario 120/3Q . . . . 205

6.26 The extreme points generated in one run for Scenario 80/4Q . . . . . 206

6.27 The extreme points generated in one run for Scenario 100/4Q . . . . 207

6.28 The extreme points generated in one run for Scenario 120/4Q . . . . 208

6.29 The fixed TeA airspace configuration for Sydney airport . . . . . . . 209

xviii



List of Tables

2.1 Multi-objective Co-operative Co-evolutions Comparison . . . . . . . . 54

3.1 Time window for different aircraft category . . . . . . . . . . . . . . . 76

4.1 Event-Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Top three constrained resources from total delay analysis . . . . . . . 114

4.4 Top three constrained resources from holding delay analysis . . . . . 114

6.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.2 Objective Values (Delay;CR) of Points with Best Performance on
Safety Objective (Collision Risk) . . . . . . . . . . . . . . . . . . . . 192

6.3 Objective Values (Delay;CR) of Points with Best Performance on
Efficiency Objective (Delay) . . . . . . . . . . . . . . . . . . . . . . . 192

6.4 Most Frequent Event Type according to Points with Best Perfor-
mance on Safety Objective (Collision Risk) . . . . . . . . . . . . . . 193

6.5 Most Frequent Event Type according to Points with Best Perfor-
mance on Efficiency Objective (Delay) . . . . . . . . . . . . . . . . . 210

xix



xx



xxi



List of Acronyms

ACE Automated Co-Evolution
ADI Arrival-Departure Integration
ART Automated Red Teaming
ATA Actual Time of Arrival
ATC Air Traffic Control
ATD Actual Time of Departure
ATFM Air Traffic Flow Management
ATOMS Air Traffic Operations & Management Simulator
ATM Air Traffic Management
BADA Eurocontrol’s Aircraft Database
BI Best Individual
CAD Continuous Ascent Departure
CC Competitive Co-evolution
CCEA Co-operative Co-evolutionary Algorithm
CCGAs Co-operative Co-evolutionary Genetic Algorithms
CCMOEA Multi-objective Co-operative Co-evolutionary Algorithms
CCRT Co-operative Co-evolutionary Red Teaming
CDA Continuous Descent Approach
CEA Co-Evolutionary Algorithm
CeC Co-evolutionary Computation
CoC Co-operative Co-evolution
CoCA Co-operative Co-evolutionary Algorithm
CLOU Cooperative Local Resource Planner
CP Choosing Pool
CR Collision Risk
CRT Computational Red Teaming
DAC Dynamic Airspace Configuration
EA Evolutionary Algorithm
EC Evolutionary Computation
ETA Estimated Time of Arrival
ETE Estimated Time of Execution
ETD Estimated Time of Departure
FAA Federal Aviation Adminstration
FAF Final Arrival Fix
FCFA First Come First Assigned
FMS Flight Management System

xxii



GAs Genetic algorithms
GD Generation Distance
IAF Initial Arrival Fixe
IFR Instrument Flying Rules
ILS Instrument Landing System
JPDO Joint Planning and Development Office
MAS Multi-Agent Systems
MEBRA Multi-objective Based Risk Assessment
MO Multi-Objective
MOBNET Multi-objective Co-operative Networks
MOCCA Multi-Objective Co-operative Co-evolutionary Algorithm
MOEA Multi-Objective Evolutionary Algorithm
MS Maximum Spread
NASA National Aeronautics and Space Administration
NextGen Next Generation Air Transportation System
NPGA Niched Pareto Genetic Algorithm
NSCCGA Non-dominated Sorting Co-operative Co-evolutionary Algo-

rithm
NSGAII Non-dominated Sorting Genetic Algorithm II
OM Outer Marker
OPDs Optimized Profile Descents
POS Set of Pareto-Optimal Solutions
RNAV Terminal Area Navigation
RNP Required Navigation Performance
RI Random Individual
RT Red Teaming
SDO Super-Density Operations
SEBRA Single-objective Based Risk Assessment
SESAR Single European Sky ATM Research
SID Standard Instrument Departure Procedure
SO Single-Objective
SPEA2 Strength Pareto Evolutionary Algorithm 2
STAR Standard Terminal Arrival Route
SUA Special Use Airspace
TA Terminal Airspace
TAPSS Terminal Area Precision Scheduling and Spacing System
TAR Transition Airspace Radius
TARGETS Terminal Area Route Generation, Evaluation, and Traffic

Simulation Tool
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TeA Terminal Area
TOC Top of Climb
TOD Top of Decent
TOOWiLD Trajectory-Oriented Operations with Limited Delegation

xxiii



xxiv



List of Publications

Peer-reviewed publications arising from research work conducted in this thesis
are listed chronologically below (latest to earliest):

Journal Publications

1. W. Zhao, S. Alam, H. A. Abbass, “Evaluating Ground-Air Network Vulnerabil-
ity in an Integrated Terminal Maneuvering Area using Co-evolutionary Com-
putational Red Teaming”, Transportation Research Part C, Elsevier, (Condi-
tionally Accepted) 2012.

2. S. Alam, W. Zhao, J. Tang, C. Lokan, H. A. Abbass, M. Ellejmi, S. Kirby,
“Discovering Delay Patterns in Arrival Traffic with Dynamic Continuous De-
scent Approaches using Co-Evolutionary Red Teaming”, Air Traffic Control
Quarterly, Air Traffic Control Association Institute, Inc., vol. 20, no. 1, pp.47-
72, 2012.

3. W. Zhao, S. Alam, H. A. Abbass, “S-MOCCA: A Systemic Multi-objective Co-
operative Co-evolutionary Algorithm”, submitted to Applied Soft Computing,
2012.

4. W. Zhao, S. Alam, M. Ellejmi, H. A. Abbass, “Computational Red Teaming
for Dynamic Airspace Design to Reduce Delays and Risk”, submitted to AIAA
Journal of Aircraft, 2012.

Conference Publications

1. W. Zhao, J. Tang, S. Alam, A. Bender, H. A. Abbass, “Evolutionary-Computation
Based Risk Assessment of Aircraft Landing Sequencing Algorithms”, The
World Computer Congress, Brisbane, Australia, Sep, 2010.

2. W. Zhao, J. Liu, H. A. Abbass and A. Bender, “A Multi-objective Risk-Based
Approach for Airlift Task Scheduling Using Stochastic Bin Packing”, IEEE
Congress on Evolutionary Computation (IEEE-CEC), Barcelona, Spain, Jul,
2010.

xxv



xxvi



Chapter 1

Introduction

1.1 Overview

Air transport demand continues to grow faster than the available system ca-

pacity, leading to a gradual increase of the number of flight delays in the global air

transportation system (Nolan, 2004). Future air traffic management (ATM) requires

maximizing potential air traffic capacity to alleviate the growing capacity/demand

imbalance, especially in the highly constrained terminal area TeA. However, the

realizable capacity of a current TeA is ultimately limited to its capability to accom-

modate safe and efficient travel under current highly limited airspace configuration

strategies and pre-defined terminal trajectories. Therefore, designing safe and effi-

cient TeA airspace configuration strategies given different traffic scenarios is the key

to solve the practical ATM issues in future TeAs.

A typical TeA naturally involves multiple interactions among many different

components – such as the inherent uncertainty of the availability of ground re-

sources (including runways, taxiways and gates), interactions between air traffic

distributions (spatial and temporal) and constrained ground events, incoming ar-

rivals and outgoing departures concurrently passing through the TeA airspace, and

an airport competing for the same resources (e.g., runways and taxiways). To date,

the majority of work has focused on solving the ATM problem in a TeA in a highly
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isolated manner, in which each component is investigated without modelling the

complex interactions among other parts of the environment in which it operates.

Little discussion has been dedicated to the role of systematic approaches, an impor-

tant factor that directly affects ATM performance. The inherent complexity of a

TeA necessitates a system-level analysis to understand its overall system behavior

and vulnerabilities, in order to facilitate effective design of efficient and safe TeA

configuration strategies, in the presence of dynamic constrained ground resources.

This thesis first considers a TeA system which integrates arrival and departure

operations and combines air and ground resources. This system-level modelling of a

TeA helps us to understand the behavior and complexity of the entire TeA system.

It paves a way for discovering major bottlenecks which cause system inefficiencies

and evaluating advanced TeA airspace concepts. Furthermore, a concept of dynamic

airspace design for TeA airspace is also introduced in this thesis. A major component

of this concept is to optimize the scenario-specific TeA airspace design strategies to

maximize the TeA efficiency and safety, given the interdependencies from dynamic

constrained ground resources. A novel way to measure the collision risk, which

is derived from the probabilistic nature of aircraft’s performance, is presented and

implemented in the proposed concept of TeA airspace design.

The scenario space of an integrated TeA comprises interweaving scenarios which

are correlated in time and space. As a result, causes and effects are networked and

the dynamics of system’s components become complex. This level of complexity ne-

cessitates a simulation-based approach and requires more sophisticated quantitative

approaches capable of analyzing the network of interdependencies and evaluating

system-level vulnerability (Abbass et al., 2009).

Computational Red Teaming (CRT) (Abbass et al., 2011), is a computational

environment that integrates computational intelligence techniques and multi-agent

systems. It offers the means to search massive spaces of possibilities governed by

uncertainty and complex networked dynamics quickly and find possible and relevant

solutions in these spaces. The basic philosophy of CRT is to provide a computational

environment in which competition between the system under investigation and sce-
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narios representing situations of risk or uncertainty can be modelled, and superior

strategies can be identified (Abbass et al., 2011). CRT has been used successfully

to evaluate risk in safety-critical operations (Abbass et al., 2011).

In an integrated TeA system, the air-side and ground-side subcomponents are

highly co-adapted as each subcomponent itself is changing and evolving. A perfor-

mance evaluation of each subcomponent depends on the reciprocal interactions with

other components in the system and any change in context can be well captured by

a co-evolutionary algorithm (CEA) which is a biologically-inspired population-based

search technique. Because a CEA provides an effective means of handling large and

complex problems via problem decomposition, it seems natural to use it in a prob-

lem domain in which solutions can be evolved through interactions of co-adapted

subcomponents, rather than by hand tuning or pre-scripting how scenarios should

change.

A simulation-based co-evolutionary computational environment – Co-evolutionary

Computational Red Teaming (CCRT) – is developed for evaluating advanced TeA

airspace concepts and understanding the TeA system vulnerabilities. Interactions

between traffic distributions and constrained ground resources (including runways,

taxiways and gates) are co-evolved with each other and considered from the per-

spective of identifying inefficiencies, with the integration of arrival and departure

operations. By evaluating these interactions, we are able to reveal “improvement

opportunities” in the implementation of future TeA airspace concepts and, thereby,

understand major bottlenecks which cause system inefficiencies.

Although the proposed CCRT was originally designed for single objective prob-

lems, most ATM problems naturally involve multiple conflicting objectives, such

as efficiency versus safety. Contrary to a single-objective CEA, the multi-objective

co-operative co-evolutionary algorithm (MOCCA) does not have a single solution

that optimizes all criteria concerned, but a set of trade-off solutions, known as

Pareto-optimal solutions. Any Pareto-optimal solution is optimal in the sense that

no improvement can be made in one criterion without degradation of at least an-

other criterion. Since none of the solutions in the Pareto-optimal set is absolutely
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better than any other, anyone of them is an acceptable solution. Which solution

should be chosen depends on the decision-makers, preferences and various problem-

related factors. Hence, a decision-maker is typically interested in knowing as many

Pareto-optimal solutions as possible (Deb and Kalyanmoy, 2001).

A MOCCA is proposed in this thesis to co-evolve individuals toward the true

global Pareto front effectively and maintain a high diversity of the solution set. The

multi-objective CCRT is applied to generate scenario-specific TeA airspace design

strategies that are able to cope better with ground events/uncertainties and produce

prior trajectories to distribute demand while maintaining aircraft safety. The multi-

objective CCRT also provides an analyst of the trade-off between these two ATC

priorities - efficiency and safety; thus solutions can be selected based on the criticality

level of meeting the demand.

The Air Traffic Operations and Management Simulator (ATOMS) (Alam et al.,

2008) provides a high-fidelity simulation and modelling environment for the explo-

ration, development and evaluation of advanced ATM concepts. In this thesis,

ATOMS is modified and extended in two ways. Firstly, the function of integrating

arrivals and departures using a shared ground-air network, which can implement

different TeA airspace models, such as the present day’s arrival and departure pro-

cedure models (STARs and SIDs) and an advanced ATM concept known as dynamic

Continuous Descent Approaches (CDA) (Alam et al., 2010a) are included. Secondly,

the execution of a novel TeA airspace design concept considering the dynamic ground

events for given arrival traffic scenarios is embedded into ATOMs. As a case study,

an assumed airport model inspired by Sydney’s Kingsford-Smith Airport (hereafter

referred to as Sydney Airport) is used for the analysis conducted in this paper.

In this thesis, the uncertainties in ATM are captured from three main perspec-

tives: 1) The initial air traffic demand data is generated based on space and time

uncertainties (as Section 6.3), the space uncertainty is modeled as Gaussian distri-

bution, while the time uncertainty as Poisson process. 2) The route followed by a

flight may differ from the desired or ideal route due to a variety of reasons such

as uncertainty in aircraft performance, navigation system error or flight technical
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error. To capture this type of uncertainty, the probabilistic nature of an aircraft’s

position is modeled by a Normal distribution (as Section 6.5). 3) The unexpected

disruptions to the ground resources on the airport are also considered in this thesis.

Event type, activation time and duration are assumed as uniform distributions (as

Section 6.7.2). Above uncertainties are major restrictions for system-level capac-

ity in a terminal area. The situation where aircrafts appear suddenly is normally

considered in more practical situation. For simplification, it is not included in the

problem scope of this thesis.

In particular, we are interested in determining how to achieve dynamic capacity-

demand balance in a TeA while considering ground events/uncertainties. We be-

lieve that the resultant methodology will be a benchmark methodology for decision-

making in future ATM research.

1.2 Motivation

As the critical interface between a relatively ‘unconstrained’ en route airspace

and high density airport complex, TeAs are expected to handle an increasingly higher

volume of air traffic in the future (Eurocontrol, 2010). However, the realizable ca-

pacity of a current TeA is ultimately limited to its capability to accommodate safe

and efficient travel under highly limited airspace design strategies and pre-defined

terminal trajectories. Thus, future ATM will require safe and effective TeA airspace

configuration strategies to maximize potential TeA capacities, and to facilitate alle-

viation of the growing capacity/demand imbalance.

A TeA system inherently involves high uncertainties and multiple interactions

among many different components. The complexity determines that a TeA sys-

tem is very sensitive to any changes in traffic, procedures or meteorological factors.

Changes to any element, whether static or dynamic, can influence the state of the

system which is naturally dynamic.

To handle such a complex TeA system, current ATM manages air traffic in a
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highly distributed manner, with arrival traffic in TeA airspace, departure traffic in

TeA airspace, arrival ground movements and departure ground operations controlled

independently by corresponding air traffic controllers with different responsibilities

and objectives. From a system perspective, most of these objectives are local (com-

pared with the global objective of the entire system) and could have adverse effects

upon each other. As a result, it is difficult to achieve truly high efficiency for air

transportation under current ATM operations which targets at local-optima.

In addition, most work on new ATM procedural developments has typically

been accomplished without considering the complex interactions among all parts of

the operational environment; for example, the studies in (Kuster and Jannach, 2006;

Green and Vivona, 2001; Barmore et al., 2004) focus on one specific TeA element

through which they are able to improve efficiency in their own functional component.

However, they potentially fail to support a systematic approach towards modelling

dynamical behavior over time by not taking into account the complex interactions

of a highly distributed ATM.

Our motivation for this thesis stems from the fact that the process of under-

standing, evaluating and dynamically designing TeA airspace configurations in a

systematic manner is primarily to maximize a TeA’s potential capacity, and to facil-

itate alleviation of the growing capacity/demand imbalance. A better understanding

of the behavior and vulnerability of a TeA system considering the interactions be-

tween both arrivals and departures and shared air-ground resources, can pave the

way towards achieving the potential benefits of advanced TeA airspace configura-

tions as well as gaining additional ATM system capacity. Making the TeA resources

flexible and available to correspond to different traffic scenarios and dynamic con-

strained ground resources is the key to enhancing the practical ATM efficiency in

future TeAs.
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1.3 Research Question and Hypothesis

The TeA is a complex and adaptive system in which it is difficult to achieve truly

high efficiency for air transportation under current ATM operations which target at

local-optima. However, the challenge lies in how to accomplish system-optimization

considering the complex interactions among all parts of the operational environment.

This thesis argues that a systematic approach of understanding, through modelling,

and unraveling the congestion in a TeA is primary to alleviating the growing capac-

ity/demand imbalance in future ATM. These are the focal points of the research

reported in this thesis, that is, it aims to address the following question.

How to understand, evaluate and dynamically design TeA airspace

configurations in a systematic manner?

Our hypothesis is that a simulation-based co-evolutionary computational envi-

ronment will be suitable for understanding, evaluating and resolving ATM issues in a

highly constrained TeA, especially when considering coupled arrivals and departures

with shared ground-air resources. Hence, our main research objective is to prove

or disprove the proposal that a co-evolutionary computational environment based

on simulation can search massive spaces of possibilities governed by uncertainty

and complex networked dynamics quickly, leading to the identification of system

vulnerability as well as the evaluation and design of an advanced TeA concept.

To address this question we build a simulation environment which combines air

and ground subsystems and provide a proper operational environment for process-

ing arrivals and/or departures. We then develop a co-evolutionary computational

environment – CCRT – to evaluate advanced TeA concepts and identify system-level

risks in a TeA. Afterwards, a multi-objective co-operative co-evolutionary method-

ology is proposed as a new optimization search engine of the CCRT framework,

in order to solve complex TeA problems with multiple conflicting objectives. A

novel TeA airspace design concept for capacity-demand balancing including a mea-

sure of collision risks derived from the probabilistic nature of aircraft’s performance

is proposed. Then, an air traffic simulator, originally representing the novel TeA
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airspace design concept while considering the interactions among dynamic ground

events is presented. Subsequently by applying the multi-objective CCRT, we design

and investigate scenario-specific TeA airspace design strategies, which can effectively

and safely make TeA resources flexible and available while considering the ground

events/uncertainties.

In order to answer the main research question, the following related sub-questions

also need to be investigated.

1. How to evaluate advanced TeA airspace concepts in the integrated

TeA system and understand system-level vulnerabilities ?

To design new airspace configuration in a TeA, we naturally start from analysis

of the newly developed TeA airspace concepts which are expected to enhance

ATM efficiency. However, most advanced TeA concepts (such as dynamic CDA

(Alam et al., 2010a)) were developed and evaluated in a traditional manner,

where complex interactions among other parts of the environment in which

they operate are not considered. Hence, evaluating advanced TeA concepts in

an integrated TeA, which involves interactions between system components,

paves the way to design airspace configuration in a TeA. By evaluating these

interactions, which are considered from the perspective of identifying ineffi-

ciencies, we will be able to reveal “improvement opportunities” in the imple-

mentation of future TeA airspace concepts and, thereby, it may significantly

improve understanding and decision-making as well as help achieving system-

level objectives.

2. How to design an efficient multi-objective co-operative co-evolutionary

algorithm which can co-evolve solutions towards the efficient set of

trade-offs effectively, while maintaining diversity of the solution set?

Most real-world ATM issues naturally involve multiple conflicting objectives,

such as efficiency versus safety. Multi-objective optimization aims to optimize
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several components of a vector of objective functions simultaneously. Contrary

to single-objective optimization, the multi-objective problem usually does not

have a single solution that optimizes all criteria concerned, but a set of so-

lutions (known as Pareto-optimal solutions). None of the solutions in the

Pareto-optimal set is absolutely better than any other, thus anyone of them

is an acceptable solution. Which solution should be chosen depends on the

decision-makers, preferences and various problem-related factors. Hence, a

decision-maker is typically interested in knowing as many Pareto-optimal so-

lutions as possible (Deb and Kalyanmoy, 2001). A multi-objective co-operative

co-evolutionary algorithm, which can approximate the Pareto-front effectively,

will provide solutions representing a fine trade-off between different ATC pri-

orities - efficiency and safety; thus solutions can be selected based on the

criticality level of meeting the demand.

3. How to generate scenario-specific TeA airspace design strategies that

are able to cope better with ground events/uncertainties and pro-

duce prior trajectories to distribute demand while maintaining air-

craft safety?

The interactions from ground events and the uncertainties in the air traffic

performance are two main factors that affect the decision-making while iden-

tifying effective TeA airspace design strategies. Therefore, given a certain

set of arrival traffic, both efficiency and safety need to be considered when

judging on the quality of a candidate TeA airspace configuration. With more

thought given to the trade-off between efficiency and safety, TeA airspace de-

sign choices may significantly enhance the potential TeA capacity and facilitate

alleviation of the growing capacity/demand imbalance. Meanwhile, by involv-

ing the interdependencies between constrained ground resources and air traffic,

an airport and its TeA airspace are collaborated as a whole system; and the

output will be a fine trade off between different local objectives – ground and

air. The cooperation between ground and air manages to support a system-
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atic approach towards achieving system-level objectives while designing TeA

airspace configurations.

1.4 Organization of Thesis

This thesis has seven chapters and is organized as follows.

In Chapter 1, an introduction, which provides an overview of the research field, the

motivation for, and research questions raised by this study, an outline of the thesis

and the scientific contributions stemming from this research, are presented.

In Chapter 2, a background is provided for the research conducted into an in-

tegrated TeA system. First, a background to the integrated TeA system is provided

and the need for a system-level approach is emphasized. Existing TeA airspace de-

sign procedures are surveyed along with some advanced TeA concepts. A survey of

the literature on the computational red teaming methodology is reported. Also, a

summary of co-operative co-evolutionary algorithms is given. The multi-objective

co-operative co-evolutionary algorithms are then presented, with a discussion of

several research issues involved in implementing co-operative co-evolutionary algo-

rithms for multi-objective optimization problems.

In Chapter 3, the design and development of an integrated TeA simulation

system is explained. Firstly, a description of the simulation environment is given,

followed by the input and output to the simulator. The data structure issue of the

major components is discussed next. Then, the network representation for modelling

the ground-air resources is presented along with the modelling of a queue manager.

Both the advanced TeA airspace models derived from the dynamic CDA and the

conventional TeA model (fixed STARs and SIDs) are implemented in the simulator.

A thorough investigation of the results collected from various measures and met-

rics, which provide evidences of the improvement of the dynamic CDA model and

illustrate problem spaces where the TeA system is vulnerable in terms of efficiency,

is given. Then, the design principle and system architecture are provided, followed

by the procedures for the queue manager and safety separation. The arrival and
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departure managers are discussed next and, finally, the arrival-departure integration

principle is presented.

In Chapter 4, a CCRT methodology for identifying the TeA system vulnera-

bilities and evaluating advanced TeA airspace concepts is designed and presented.

A cooperative co-evolutionary search mechanism with a single objective is devel-

oped to search problem spaces of possibilities governed by uncertainty and complex

networked dynamics, induced by the air-ground integration and arrival-departure

combination. Air traffic scenarios and constrained ground event scenarios are au-

tomatically generated and co-evolved with each other under the co-evolutionary

pressure guided by the designed fitness function. The proposed methodology is then

validated for a variety of experimental parameters and scenarios. Finally, the re-

sults are analysed and discussed based on various measures and metrics such as

computational efficiency, efficiency in the dynamic CDA model, major air traffic

flow constraints in the TeA and scenario patterns with higher delays.

In Chapter 5, a multi-objective co-operative co-evolutionary algorithm (MOCCA)

is proposed and designed in order to tackle the TeA issues with multiple conflict-

ing objectives. Firstly, among existing co-operative co-evolutionary algorithms for

multi-objective optimization, the most competitive and robust one – CCEA which

is proposed by (Tan et al., 2006), is introduced as the basis and reference point, fol-

lowed by a discussion of three issues (fitness assignment mechanism, niching strategy

and archiving updating scheme) identified as potential weaknesses of CCEA. A sum-

mary of existing fitness assignment mechanisms and niching strategies available in

the multi-objective optimization research is then given. A variety of fitness assign-

ment strategies and niching strategies are proposed for potential use in the proposed

MOCCA. Two rounds of experiments are then carried out for evaluating the perfor-

mance of different algorithms – all candidate algorithms are examined on a variety

of benchmark test cases with different performance metrics. In the end, the results

distill the most competitive and robust algorithm, and the proposed MOCCA is

then presented.

In Chapter 6, we present and develop a TeA system for airspace design. The
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system environment is firstly described, followed by its input and output. A scenario

generation methodology for air traffic with different temporal and spatial distribu-

tions is explained. The data structure of the major components is discussed next.

Then the objective function design is presented, in which for the safety objective, we

break away from traditional methods of defining collision risk and introduce a novel

collision risk concept derived from the probabilistic nature of aircraft performance.

The architecture of the system is discussed next and, finally, the arrival manager is

presented.

Afterwards, the MOCCA proposed in Chapter 5 is employed as the new search

engine in the CCRT framework. The multi-objective CCRT is then applied to

investigate prior TeA airspace configuration strategies with less flight delays and

lower collision risks; which corresponds to dynamic constrained ground resources

given different traffic scenarios. For a specific traffic scenario, TeA airspace design

scenarios and constrained ground event scenarios are automatically generated and

co-evolved with each other using collaborative guidance from two objective functions.

Then, the proposed algorithm is validated for a variety of experimental parameters

and scenarios. Finally, the results demonstrate a resealable trade-off between two

ATC priorities: efficiency and safety; thus solutions can be selected based on the

criticality level of meeting the demand.

In Chapter 7, the main findings from this thesis are summarized. The chapter

concludes the thesis with a discussion of possible future research directions.

1.5 Original Contributions

A list of the scientific contributions arising from this thesis is given below.

• A simulation-based co-evolutionary computational environment (CCRT) is de-

veloped for evaluating advanced TeA airspace concepts and understanding the

TeA system vulnerabilities (Chapter 4). Compared with previous approaches

for assessing ATM concepts, which focused on using an isolated evaluation
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for each sub-system, a co-evolutionary computational environment that inte-

grates computational intelligence techniques and multi-agent systems offers

the means to search massive problem spaces of possibilities governed by un-

certainty and complex networked dynamics quickly, and find the spaces rep-

resenting system vulnerabilities. An air traffic simulation system with a novel

representation of an integrated TeA considering air-ground collaboration and

arrival-departure cooperation is presented for a system-level understanding of

TeA concepts (Chapter 3). The dynamic CDA model is evaluated against

the fixed STARs and SIDs model as comparison. A thorough investigation

into results collected from various measures and metrics is given, providing

evidence of the superior performance of the dynamic CDA model and illus-

trating the problem spaces in which the TeA system is vulnerable in terms of

efficiency. By co-evolving the air-side and ground-side subcomponents, eval-

uating and understanding advanced TeA airspace concepts in an integrated

manner may significantly improve understanding and decision-making as well

as help achieve system-level objectives.

• A multi-objective co-operative co-evolutionary algorithm (MOCCA), which

can co-evolve solutions towards the true global Pareto-front effectively and

maintaine a high diversity of the solution set, is proposed and designed for

solving the TeA issues with multiple conflicting objectives (Chapter 5). Al-

though the existing cooperative co-evolutionary algorithm (CCEA) for multi-

objective optimization proposed by (Tan et al., 2006) is the most competitive

and robust algorithm so far, three issues are identified as weaknesses of CCEA.

The MOCCA presented in this work involves an improved fitness assignment

strategy which effectively avoids the situation that individuals dominated by

same archive members have identical fitness values; an enhanced niching strat-

egy which requires no user-defined parameter and prevents boundary solutions

being removed during archive truncation process; and a new globalized scheme

for archive updating so that the solutions which resides in less populated re-

gions of the global Pareto front are saved. After being validated on various
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benchmark test cases on different performance metrics, results demonstrates

that the proposed approach is capable of evolving solutions towards the true

global Pareto-front more effectively while maintaining a higher diversity of the

solution set, comparing to CCEA.

• A simulation-based co-evolutionary computational environment for multiple

objectives is proposed, in order to generate scenario-specific TeA airspace de-

sign strategies that are able to cope better with ground events/uncertainties

and produce prior trajectories to distribute demand while maintaining aircraft

safety (Chapter 6). TeA airspace design, specially when considering its inter-

dependency with dynamic ground events, has always been a challenging area

given the inherent system uncertainty and complexity. An air traffic simula-

tor representing an original novel TeA airspace design concept for capacity-

demand balancing including a measure of collision risks derived from the prob-

abilistic nature of aircraft’s performance is proposed. With more thought given

to the balance between safety and efficiency, the TeA airspace design choices

in an air-ground integration level may significantly enhance the potential TeA

capacity and facilitate alleviation of the growing capacity/demand imbalance.

The advantage of this methodology is that it co-evolves air- and ground-side

subcomponents and, investigates superior TeA airspace configuration strate-

gies considering both efficiency and safety in an integrated manner. The multi-

objective approach also provides an analyst with the trade-off between these

two ATC priorities - efficiency and safety; thus solutions can be selected based

on the criticality level of meeting the demand. This highly accessible method

of capturing a TeA scenario’s complexity with multiple objectives may have

significant implications not only within the scope of the TeA domain but also

across the much wider spectrum of the ATM research field.
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Chapter 2

Background

2.1 Capacity-Demand Balance

In the ATM domain, the capacity of an airspace or airport normally represents

its ability to safely handle a number of aircrafts per unit of time. Capacity depends

on many factors, such as the configuration of an airspace, layout of airport ground

infrastructure, ATM operations and procedures, capability and availability of air

traffic control, and capacity and availability of element resources in the airspace

or airport. Some of these factors are inherently dynamic (e.g. disturbance to the

availability of an element resource in the airport due to adverse weather), and any

change in such factors can influence the capacity. Air traffic demand is normally

measured by the number of flights per unit of time serving an airspace or airport.

It is usually represented by the space and time information about the aircraft fleet

mix. Any variation in these factors can affect air traffic demand. When the amount

of aircrafts allocated to an airspace or airport mismatches the number of aircraft it

can safely handle, capacity and demand imbalance occurs.

In current operational concepts, as implemented in the United States and

Europe, air traffic flow management (ATFM) plays a central role in maintaining

capacity-demand balancing by adjusting traffic flows according to the “declared

capacity” of an airport or air traffic control sector. Current ATFM in the United
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States has focused mainly on congestion at major airports or in the terminal airspace

around them, whereas in Europe, ATFM has to deal with congestion in the en route

airspace as well, since European ATM system is composed of many different national

ATM systems and provides lower flexibility in handling en route traffic (Lulli and

Odoni, 2007).

Each airport and air traffic control sector declares its maximum capacity. When

the declared capacity is exceeded, ATFM approaches are taken to reduce the traffic

demand. There are two popular ATFM strategies: holding patterns and ground de-

lay programs. When an air traffic control unit reaches its capacity, arriving aircrafts

are directed towards holding patterns where they circle until their time to land.

Since this way of delaying a flight is inefficient and costly, delayed flights prefer to

stay with engines off on the ground of their departing airports, saving considerable

amounts of fuel. This is called a ground delay program. Although absorbing most

delays on the ground instead of in the air is economically efficient, it depends on pre-

cise calculations of flight time and traffic flow as a whole, which requires sophisticate

methodologies and techniques.

Odoni (1987) is the first to formulate the ground delay problem for a single air-

port in mathematical terms as a deterministic process. Richetta and Odoni (1993);

Ball et al. (2003) addressed this problem as a probabilistic process. Vranas et al.

(1994) studied the ground delay problem for a multi-airport scenario. Instead of

being focused on airports, some techniques were developed to deal with the whole

ATFM problem, including capacity restrictions of en route airspace. More ATFM

strategies were involved and formulated except for ground delay, such as airborne

holding (holding patterns), speed control and rerouting. Such ATFM problems have

been thoroughly studied in (Bertsimas and patterson, 1998; Bertsimas and Patter-

son, 2000; Sridhar et al., 2002; Lulli and Odoni, 2007; Myers and Kierstead, 2008;

Bertsimas et al., 2008; Rathinam et al., 2009; Bertsimas et al., 2011).

It is well known that the air transport demand has been experienced an enor-

mous growth (U.S. Department of Transporation, 2011; EUROCONTROL, 2012).

Although the continuous growth of air traffic demand is a major contributor to eco-
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nomic expansion, it has placed an enormous strain on the capacity of the air traffic

system (Bertsimas et al., 2011). In 2011, approximately 21% of all flights in the

United States were delayed on arrival, 19% on departure, and 3% were cancelled

(U.S. Department of Transporation, 2011). It has been estimated by Air Transport

Association (2011) that delays raised $7.7 billion in direct aircraft operating costs

for U.S. airlines in 2011. In addition, delayed flights also cost air travelers billions

of dollars in the form of lost productivity, wages and goodwill (Air Transport As-

sociation, 2011). By 2010, the average ATFM delays in Europe has reached 75620

minutes per day, and the ATFM delay per flight is 2.9 minutes on average for all

flights (EUROCONTROL, 2012).

This trend shows that current ATM systems in the United States and Europe

are already stretched to the limit and starting to get over-passed. Towards address-

ing capacity-demand imbalances, a large research effort is now underway to improve

ATM system’s efficiency while ensuring safety.

In U.S., the Next Generation Air Transportation System (NextGen) Concept

of Operations (ConOps) was developed by the Joint Planning and Development Of-

fice (JPDO) to modernize the U.S. air transportation system (Joint Planning and

Development Office, 2007). This future ATM system will be a trajectory based,

performance specified air traffic operating environment, which involves a robust,

automated and integrated digital system (Joint Planning and Development Office,

2011). The overall philosophy driving the delivery of the NextGen is to adjust ATM

system capability to satisfy forecast demand, rather than constraining demand to

match available capacity (Joint Planning and Development Office, 2011). A number

of ATM changes and capabilities are needed to be performed, such as collabora-

tive capacity, collaborative flow contingency, trajectory, and separation manage-

ment (Joint Planning and Development Office, 2011). These capabilities describe

at a high level vision for managing the anticipated growth in air traffic demand by

maximizing the use of available ATM resources (Joint Planning and Development

Office, 2011).

In NextGen (Joint Planning and Development Office, 2011), ATM resources
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are managed to maximize utility to flight operators, in order to address short-term

capacity-demand imbalances. For instance, the ATM system could adjust airspace

structure and boundaries, apply known procedures, or reallocate personnel to meet

forecasted demand. For expected long-term capacity-demand imbalances, the ATM

system may implement major changes to airspace design, significant airport infras-

tructure improvements, or develop new flight operational procedures and automation

systems. If the ATM system can not meet the resulting demand with its maximum

capacity, ATFM strategies are imposed to ensure that safe levels of traffic demand

are not exceeded when capacity limits are reached (Joint Planning and Development

Office, 2011).

As NextGen proceeds to be deployed, NASA (National Aeronautics and Space

Administration) is conducting a new operational paradigm for increasing airspace

flexibility and capacity – Dynamic Airspace Configuration (DAC) (Kopardekar et al.,

2007, 2008). It aims at migrating away from the current structured, static airspace

to a future airspace which is flexible, dynamic and capable of adapting to traffic de-

mand while meeting constraints of weather and equipage (Kopardekar et al., 2007).

There are three major components contained in DAC concept: 1) restructuring the

airspace to take advantage of advanced technologies, 2) adaptable airspace based on

fluctuating traffic demand, and 3) generic airspace promoting interchangeability of

controller resources within and across facilities.(Kopardekar et al., 2008)

In Europe, the SESAR (Single European Sky ATM Research) programme is

transforming the current European ATM into a more efficient and safer system

(SESAR Consortium, 2007). Like NextGen, this future ATM system will also be a

trajectory based, performance specified air traffic operating environment involving

advanced information sharing environment, automated tools, and improved surveil-

lance capabilities. The combination of the improved information serves with in-

creased automation will enable the ATM system to be managed in a collaborative

manner, in which the decision making among stakeholders will be shared and the

potential impacts of decisions will be better assessed. The collaboration in ATM

decisions is critical for increasing ATM capacity in order to address the expected
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capacity-demand imbalance.

Dynamic Demand Capacity Balancing (dDCB) is a SESAR project, which is

proposed to improve ATM safety and capacity through reducing traffic complexity

and streamlining air traffic controller workload (EUROCONTROL, 2011). Moti-

vated by avoiding systematically regulations when demand does not significantly

exceed available capacity, the dDCB concept targets at exploiting buffer of capacity

while managing the ATC workload and traffic complexity. With the help of accurate

prediction of air traffic demand, the dDCB helps to transform capacity management

to minute-based streamlined actions at sector level, from the current global hour-

based traffic limitations. Given a detected congestion, a set of short-term ATFM

measures (such as short ground delays, flight level caps or minor re-routing) are

implemented to reduce the demand to a safe level.

All the reviewed works were drove by the same overall philosophy to solve the

imbalance between capacity and demand – adjusting one of them by assuming the

other one is fixed. For instance, given a predicted capacity shortfall, ATM decision

makers decrease the demand to match the capacity by reducing/regulating traffic

flows; whereas given an anticipated level of demand, they increase the capacity

to meet the demand by using the current resource more efficient, designing new

airspace, or building new runways and/or airport. Without assuming either capacity

or demand is fixed or can be precisely forecasted, the dynamic capacity-demand

balance problem in this thesis is studied by involving uncertainties in both of them,

in order to improve the efficiency and safety in an ATM system.

2.2 TeA System

In the air traffic management (ATM) domain, a typical flight trip is partitioned

into a set of phases: pushing back from the gate, taxiing onto the runway, taking

off, following a departure route, cruising along an airway, following an approach

route, landing, taxiing off the runway and stopping at the gate (as demonstrated in

Figure 2.1). Each flight goes through these phases as it complete an air traffic task.
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Figure 2.1: Phases of a Typical Flight Trip

ATM operations in each individual phase impact the ATM efficiencies in both its

preceding and succeeding phases. Currently ATM is operated in a highly distributed

manner where different air traffic controllers are responsible for air traffic in different

phases; for instance, approach controllers in Terminal Control Areas are responsible

for inbound approaching traffic, departure controllers for outbound departing traffic,

and ground controllers in the air traffic control tower for ground movements in the

airport.

Except for the cruise phase, all other flight phases operate in an airport and

the TeA airspace in its vicinity (normally 20-30 nm around the airport). The TeA

airspace, which is also referred to as the terminal airspace (TA), is defined as the

en route airspace that transitions inbound and outbound flights to and from an

airport (Jani and Toi, 1982). It forms the critical interface between the relatively

‘unconstrained’ en route airspace and the high-density airport complex. A variety

of ATC procedural constraints (routes, altitudes and speeds) are needed to facili-

tate the safe and orderly monitoring of arrivals and departures. In addition, ATM

constraints related to airport capacity limitations (e.g., miles-in-trail or sequencing)

have a significant impact on air traffic efficiency in this environment (Nolan, 2004).

An airport is an essential element of an air transportation system as it is “either

an intermediate or terminal point of an aircraft on the air portion of a trip (Ashford

et al., 1997)”. Traditionally, its operations are divided into two parts: air-side and
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land-side functions. The former consist of all the ‘traffic’ operations on the airport’s

infrastructure (runways, taxiways and gates) while the latter include the handling of

passengers, processing of payload and crew, and servicing and maintaining aircraft

(Ashford et al., 1997). In this thesis, from ATM perspective, airport operations

refer to air-side operations. In any busy airport, even one with a fairly simple

airport topology, managing ground operations and dealing with all the incoming

and outgoing airport ground traffic can be a very challenging task since an airport

represents a highly dynamic and volatile environment with continuously changing

resources’ availabilities (Kuster and Jannach, 2006). Tower controllers are required

to provide ground operations for both arrivals and departures to facilitate safe and

smooth ground traffic flows within uncertain constrained ground events.

In this work, the TeA system is defined as an environment combining an air-

port’s ground transportation network (runways, taxiways and gates) and its TeA

airspace, as indicated by the dashed line in Figure 2.1. It is a highly tactical envi-

ronment involving a variety of ATM operations for accomplishing capacity-demand

balance and ATC restrictions which facilitate the safe and orderly handling of ar-

riving and departing aircraft. The complex interactions between arrivals and de-

partures with constrained air and ground resources using different ATM operations

have a significant impact on flight efficiency in this environment.

2.2.1 TeA System Complexity

A TeA system is a highly complicated environment involving different static

elements (such as current fixed airspace geometry and airport infrastructure) and

dynamic elements (such as air traffic and ground events). This complexity deter-

mines that a TeA system is very sensitive to any changes in traffic, procedures or

meteorological factors which, whether static or dynamic, can influence the state of

the system which is naturally dynamic. Recognizing the nature and state of each

element is a primary step towards attempting to understand the TeA system com-

plexity. Figure 2.2 captures a number of components which influence the state of a
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Figure 2.2: Components Influencing TeA system’s State and Complexity

TeA system and contribute to its complexity.

Air traffic in a TeA system usually has the following characteristics (Tosic and

Netjasov, 2003):

• arrival traffic converges from, and departure traffic diverges to, different direc-

tions;

• as traffic density during operational times is not constant, it requires the flex-

ible use of TeA resources; and

• as different aircraft of different sizes and velocities are mixed in a fleet, they

require appropriate separation rules.

Air traffic demand data refers to the space-time information about the aircraft fleet

mix servicing an airport within its TeA system. Since it embraces both a spatial- and

time-based nature, it is normally represented by the statistical characteristics of air

traffic’s spatial and temporal distributions (Netjasov et al., 2011). Regarding time,

a snapshot analysis of a number of traffic movements through a TeA system over a

certain time period is typically a feasible approach for understanding traffic density.
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From a space perspective, it is necessary to determine the spatial distribution of the

air traffic by identifying the traffic flows at the entry points to a TeA system.

Information about a TeA airspace includes its way points, the numbers and

lengths of arrival and departure trajectories, its special use airspace (SUA), and

the availability and capacity of its resources. Its ground configuration refers to its

airport air-side infrastructure (runways, taxiways and gates), and the capacity and

availability of each ground resource. ATM operations and procedures comprise ar-

rival, departure and surface movement operations, safe separation rules, and aircraft

sequencing and routing procedures.

A constrained ground event is a disruption to the availability of an airport’s

surface resources, including all its runways, taxiways and gates; for example, snow,

ice, slush or water on a runway can reduce aircraft braking and directional control

and increase runway occupancy time. An increase in runway occupancy time leads

to reductions in airport arrival and departure acceptance rates (throughput) due to

the need for increased inter-aircraft spacing, which are aggravated by the closure

of runways and certain runways being unusable. Also, disruptive airport ground

movements can propagate elsewhere in a TeA system (e.g., air traffic in the transition

airspace) and cause flight delays and system inefficiency. The inherent uncertainty

of ground events and their interactions with other TeA system components heavily

influence an airport’s capacity and raise the complexity of its TeA system.

A TeA is a complex and adaptive system, involving high uncertainties and mul-

tiple interactions among many different components which needs to respond quickly

to any changes. This high degree of variability and adaptation exists not only be-

tween its various components but within most of their elements. This interweaving-

component organization is summarized in Figure 2.3.

To handle such a complex TeA system, current ATM manages the air traffic in

a highly distributed manner, with arrival/departure traffic in the TeA airspace, and

arrival/departure ground operations controlled independently by their respective air

traffic controllers who have different responsibilities and objectives. From a system
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Figure 2.3: TeA system’s Complexity

perspective, most of these objectives are local (compared with a global objective of

the entire system) and could adversely affect each other. As a result, it is difficult

to achieve truly high efficiency for air transportation under current ATM operations

which targets local-optima.

2.2.2 Air-ground Collaboration

This section introduces historical research which has made an effort to achieve

collaboration between air- and ground-subsystems in a TeA.

Korn et al. (2006) introduced a concept for air-ground co-operation which con-

nects the on-ground arrival manager to the on-board flight management system, to

optimize approach trajectories by considering all present arrival aircraft and ground

constraints. This concept enables reductions in both flight times in the TeA and

controller workload providing a highly reliable data link is available. The discussed

technology level of the negotiations between ATC and arrival aircraft is primarily
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for the trajectory based traffic management.

Prevot et al. (2007) conducted an air/ground simulation based on a site-specific

implementation of the Trajectory-Oriented Operations with Limited Delegation

(TOOWiLD) concept. Their purpose is to assess the alignment between near-term

evolutionary progress and far-term potential transformation of an air traffic system.

The former’s major initiatives include airborne spacing, trajectory-oriented arrival

management, CDAs, decision support tools for ATC and controller-pilot data link

communication. However, although air/ground co-operation lies in the data connec-

tions between flight crews and controllers, runway scheduling is the only ground-side

operation they consider.

Haraldsdottir et al. (2007) took a near-term step towards transitioning to trajectory-

based operations in future ATM by proposing an operational concept of arrival

management which increases the capacity of a TeA by integrating advanced navi-

gation performance capabilities and ground-based decision support tools. However,

although this integration lies in the connection between its airborne and ground-side

automation tools, runway assignments and scheduling at runway thresholds are the

only ground operations considered.

Oberheid and Söffker (2008) presented a colored petri net model which sim-

ulates a future arrival planning process which includes co-operation between the

air and ground sides. It formally models co-operative arrival management processes

considering the combinatorial aspects of the sequence planning problem. This model

is designed to understand how the behaviors of individual aircraft within this co-

operative arrangement affect the planned arrival sequence. However, it places a

strong focus on co-operation between the information supplied by airborne arrival

aircraft and the ground-side ATC, but does not consider ground traffic situations or

trajectory generations.

The US NextGen (Next Generation Air Transportation System) presented an

operational concept referred to as Super-Density Operations (SDO), which envisions

the combination of advanced ground and flight deck automation, optimized 3D
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and/or 4D trajectory profiles and appropriate separation management to achieve

higher performances in terms of robust terminal airspace and airport utilization.

This leads to the increased safety, efficiency and reliability of future ATMs, as speci-

fied in the NextGen goals (Isaacson et al., 2010). However, the concern for air-ground

collaboration in SDO concept is limited to the air-ground information exchanging.

The operational domain on which SDO focuses is the TeA airspace while, airport

surface operations and configuration management are not considered.

Swenson et al. (2011) developed a terminal area precision scheduling and spac-

ing system (TAPSS), which is a strategic and tactical planning tool. It integrates

a set of trajectory-based automation tools, including 4-D trajectory prediction, ar-

rival runway balancing, aircraft scheduling with constrained separation, traffic flow

visualization and trajectory-based advisories. It is designed to provide air traffic

controllers with the capability to efficiently meter, sequence and space arrival traf-

fic. Nevertheless, except for runway constraints and allocations, changes in the

ground traffic situation and airport configuration in other part of the airport are

not considered.

Uebbing-Rumke and Temme (2011) developed a ground-based decision support

system for mixed approaching traffic combining a negotiated CDA and a conven-

tional approaching traffic method which is able to assist controllers in calculating

suitable landing sequences and times in mixed traffic scenarios. Its working princi-

ple is to take into account results from its own trajectory prediction engine, which

calculates possible profiles for conventional approaches, and the information about

CDA flights, the landing times of which are negotiated in an air-ground protocol.

Although this air-ground negotiation for a CDA is based on the implementation

of advanced air-ground communication concepts, no actual ground resources are

considered.

Most reviewed technologies are driven by considering how to match currently

under-utilized airborne and ground-side automation systems in order to minimize

investment risk and accomplish a smooth ATM transition from current operations

to an envisioned system. However, the air and ground subsystems in those work
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are not considered from a system-level perspective. For instance in (Korn et al.,

2006), approach trajectories are optimized with considering present arrival aircraft

and ground constraints, yet ground operations for the optimized arrival traffic are

not considered. In another words, the existing research on air-ground co-operation is

managing air traffic (in air or on ground) by considering constraints from other parts

of the environment, but still with the managed section’s own isolated objective.

Air-ground integration in our work is carried out from a system-level perspec-

tive. It manages air traffic operations in TeA by involving the interactions between

the air traffic and constrained ground resources of an entire air-side airport config-

uration, including – runways, taxiways and gates. All resources in its TeA airspace

and airport are included in an air-ground network which represents a complete model

of the TeA system, thereby providing the possibility of analysing system-level risks.

This level of co-operation treats the TeA as a whole system, and the output will be

a fine trade off between these local objectives: approach management and ground

control; or ground control and departure management.

2.2.3 Arrival-departure Co-operation

This section introduces historical research which has attempted to process ar-

rival and departure traffic in a TeA system in a co-operative manner.

Gilbo (1993) studied the estimation and optimization of an airport’s capacity.

His approach is not to consider each flight separately but, rather, to look at the

total number of arrivals and departures over periodic intervals and use optimization

to dynamically determine the capacities to be allocated to them over a time hori-

zon. Gilbo (1997) extended these results to a case in which an airport’s capacity is

stochastic.

Anderson et al. (2000) developed an integrated ground-operations model which

capture the dynamics of ground operations at congested hub airports. It consists of

an arrival model for the taxi-in process, a ground model for the taxi-out process and a

departure model for the turnaround process. This work also proposes an application
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of the integrated model to improve predictions of aircraft movement times on the

ground. The purpose of such predictive improvement is to identify anticipated

congestion periods based on the captured dynamics of the airport and, thereby,

improve overall airport efficiency. This integrated model may also be implemented

to evaluate decision support tools for alternative control strategies.

Mayer and Swancy (2005) compared and evaluated potential benefits of can-

didate procedures for arrivals and departures which have intersecting runway oper-

ations. All these operational procedures consider correlations between arrival and

departure traffic on the ground with respect to the simultaneous occupancy of the

runway system. An airport model is developed to quantify and visualize ground

operations for arrivals and departures. However, the major concern of this work

is to maximize the use of intersecting runways and the capacities of other ground

resources are not considered.

Bohme et al. (2007) presented a concept for coordinating arrival traffic in a TeA

with the departure situation on the ground which is based on fuzzy rules express-

ing expertise considering, in particular, operational and implementation issues. It

is generic for any arrival and departure managers which meet a set of well-defined

requirements. However, this concept is designed for evolutionary rather than revo-

lutionary changes in today’s ATM, which is currently organized in a de-centralized

manner, and the “priority of arrivals” is maintained. Therefore, coordination is fo-

cused more on inbound traffic than on arrivals and departure sharing TeA resources.

Delgado et al. (2009) imagined the future civil application of an Unmanned

Aerial System in an integrated TeA airspace covering arrival and departure opera-

tions. This application is assessed and its problems analyzed and potential solutions

proposed. However, as its focus is on the concept of actual operations based on pre-

designed trajectories, no future improvements in the integration between arrival and

departure operations is considered.

In (Rehwald et al., 2010), a prototype called the Co-operative Local Resource

Planner (CLOU) is viewed from flow management perspective. It is a pre-tactical
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local planning system which considers the interaction between in- and outbound

traffic at an airport. With the help of a holistic view of traffic processing at the

airport, CLOU provides suggestions for a runway-use strategy and assists in nego-

tiations between the tower and approach controllers regarding the prioritization of

arrival or departure traffic. Obviously in CLOU, the runway is the main resource

shared by arrival and departure traffic.

Although many efforts have been made to process arrival and departure traffic

in a more co-operated manner than current state, none of these research activities

consider the arrivals and departures as a whole system, and manage the air traffic

with system-level objectives such as TeA system efficiency. In this thesis, the arrival

and departure will be managed by competing for the same TeA system resources,

and the output will be a fine balance of conflicting metrics in a highly efficient TeA

system.

2.3 TeA Airspace Design

A TeA airspace represents the transitional airspace between the en route airspace

and the airport. Today’s TeA airspace has a fixed structure, such as way points,

navigational aids, pre-defined arrival and departure trajectories and SUA. The entry

points to, and exit points from, this airspace are defined by radio-navigational aids

(Netjasov et al., 2011), with inbound traffic following the arrival trajectories converg-

ing towards the airport and outbound traffic flying along the departure trajectories

diverging from it.

In current ATM, the following three categories of trajectories operate between

the high-altitude air routes and the airport surface.

• Terminal Radar vectoring routes: are a series of vectors consisting of course,

points and altitudes over specific way points, which are executing instructions

issued by a corresponding air traffic controllers.

• Standard Terminal Arrival Routes (STARs) and Standard Instrument Depar-
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ture routes (SIDs): are specified terminal routes defined by courses, distances

and altitude constraints between ground-based navigation aids.

• Terminal Area Navigation (RNAV) or Required Navigation Performance (RNP)

routes: are 2D (latitude and longitude), 3D (latitude, longitude and altitude)

or 4D (latitude, longitude, altitude and speed) trajectories defined by RNAV

(which is a navigation method enabling aircrafts flying point-to-point routes

based on a pre-programmed profile, without requiring a track directly to or

from any specific ground-based navigation aid (Nakamura, 2000; Becher and

Formosa, 2000)) or RNP (which is a RNAV operation permitting more com-

plex routes with on-board navigation performance monitoring and alerting

(Nakamura, 2000)) terminal procedures.

Current ATC operations (Nolan, 2004) in a TeA airspace are based mainly on

controllers issuing vectoring instructions to facilitate the proper separation, merging

or spacing of aircrafts, especially in the terminal airspace without operational use

of published routes. These vectoring operations are able to provide controllers with

high levels of controllability and flexibility. However, this method can cause high

workloads for controllers due to numerous control interventions as well as pilots

inducing frequent controller-pilot communications. If an aircraft could follow a

predetermined route, the need for many specific instructions from the controllers

could be reduced, thus leading to reductions in their workload.

STARs and SIDs (Nolan, 2004) are commonly used ATM operations published

as typical ATC-coded procedures. They are fixed and defined standard terminal

routes usually involving a set of way points, each of which is designated with altitude

and speed restrictions that accommodate a wide variety of aircraft types across a

range of expected weather conditions. After an aircraft is cleared into a TeA airspace,

the terminal controller files it as having a standard route (STAR or SID) along which

it is guided so as to transition towards the next portion of its flight plan, following

exactly the turn radius and ground path of the coded procedures.

Since RNAV and RNP terminal procedures (Becher and Formosa, 2000; MITRE
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CAASD, 2007) allow navigation independent of the physical location of ground-

based navigation aids, RNAV routes can be designed in a more flexible manner.

The proposed RNAV and RNP routes are normally defined based on the overlays of

current STAR or SID routes and existing flight vectoring paths (statistical) derived

from historical aircraft tracking data, and subsequently developed and published

for public implementation (Becher and Formosa, 2000). Although some automa-

tion techniques have been developed to facilitate the definition of a route structure,

such as Terminal Area Route Generation, Evaluation, and Traffic Simulation Tool

(TARGETS) (Becher and Formosa, 2000; MITRE CAASD, 2007), the current pro-

cess of developing RNAV and RNP routes is mostly manual. Consequently, it can

be time-consuming, expensive and is usually limited by the quality, quantity and

availability of the collected data, and bounded by the experience and knowledge of

the participant planners.

Using current procedures, ATM in a transition airspace is a challenging task

for terminal controllers, especially under high workload conditions, for two reasons.

Firstly, as the amount of air traffic increases, terminal controllers are required to

issue headings, speeds and altitudes to guide more flights to track standard termi-

nal routes within a variety of ATM operational rules and restrictions. Secondly, a

controller’s ability to efficiently manage such situations is limited by the tactical

nature of current techniques for merging flights to standard routes and the lack of

supporting automation. In Central Flow Management Unit (2009), it is shown

that the proportion of delays related to the terminal area and airport has increased

significantly and now accounts for 40% of total delays.

Researchers have been evaluating ways of alleviating the consequences of con-

gestion by introducing many automated supports for ATC, such as ASAS 2 in EU-

ROCONTROL/FAA (2001), a spacing algorithm developed for integration in a flight

deck tool in Abbott (2002) and AMSTAR in Barmore et al. (2004). Although current

procedures may be supported by automation and yield some benefits, a fundamental

change is needed to significantly increase controller productivity and the accommo-

dation of user preferences (flexibility) (Green and Vivona, 2001). Continued growth
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in traffic congestion will require air traffic to be managed more dynamically than it

is today with fewer ATC restrictions.

On the other hand, according to current procedures, arriving aircrafts fly pow-

ered constant-altitude (level) segments through typical ‘dive and drive’ procedures

after their initial descent from an en route cruise altitude (RobinsonIII and Kamgar-

pour, 2010). This step-descent approach with level segments is generally inefficient

due to the increased fuel burn, noise pollution and greenhouse gas emissions. Efforts

to develop methods for increasing vertical profile efficiency are also considered as

one of the building blocks for SESAR and NextGen.

The CDA concept (EUROCONTROL, 2007) is one of such methods to boost

the aircraft’s vertical file efficiency. In CDAs, the aircraft descends without level

altitude segments from cruise to touchdown with engines at or near idle. The goal

of a CDA is to keep the aircraft at a high altitude for as long as possible and its

thrust as low as possible. Operationally, two types of CDA have been implemented:

Tailored Arrivals (TAs) (Coppenbarger et al., 2007) and Optimized Profile Descents

(OPDs) (IMG, 2010).

TAs can enable continuous descents under traffic or noise constrained airspace

conditions by integrating advanced air and ground automation through data links.

This is a procedure where trajectories are dynamically optimized for each aircraft

to permit a fuel-efficient, low-noise descent that will provide separation assistance

and meet arrival sequencing requirements and other airspace constraints. Although,

compared with a traditional arrival path, executing a CDA realizes a more efficient

fuel burn during the transition phase of a flight, its trajectory generation still relies

largely on the pre-defined terminal route structure. As a result, the application

of these CDA initiatives requires either periods of low traffic density or specialized

protocols that limit throughput.

OPDs are arrival procedures designed with altitude restrictions which allow

aircraft to descend continuously until interrupted by air traffic controllers. Although

an improvement on the vertical profile, OPDs are still statically defined and clearly
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published procedures developed based on STARs.

The point merge (Boursier et al., 2007; Ivanescu et al., 2009) is a centralized

mean for merging and spacing of arrival flows in a terminal area to facilitate more

efficient arrival sequences. Its principle is to integrate arrival flows into one sequence

with the desired separation by each aircraft flying on one of the vertically spaced

sequencing legs. This procedure is based on a pre-defined route structure consisting

of a merge point and a set of sequencing legs at iso-distance from the merge point.

As this type of route structure determines that the merging of arrival flows relies on

route modifications, it does not provide enough flexibility in heavy traffic situations.

The dynamic CDA concept (Alam et al., 2010a) is a methodology which can

generate aircraft-specific CDA routes that are both laterally and vertically optimized

in terms of given objectives (noise, emission and fuel) in real time. The use of a

real-time aircraft position and performance envelope leads to inherently safe CDA

routes. Any two arrivals in the same approach airspace can follow two different

trajectories, that is, there is no standard terminal arrival route. In practice, each

aircraft receives its dynamic CDA by a data link before starting its descent.

However, this approach has its challenges (Alam et al., 2011) because, on the

operational side, it may lead to reduced controller-pilot communications for level-

off segments, but may increase them in terms of speed constraints. To implement

the dynamic CDA, further co-ordination between the terminal and tower control,

especially in a traffic-constrained environment, will be a challenging task. Also, there

may be a lack of flexibility on the ATC side since clearance for an approach has to

be given well prior to an initial arrival fix (IAF). However, with increased onboard

computing power, advances in digital data transmission and a proposed real-time

data link between controllers and pilots, up-linking and down-linking of trajectories

is possible. This makes the realization of real-time CDA route generation a near

possibility. The development of dynamic CDA procedures is generally considered to

be a key step in the modernization of air traffic operations.

All the tactical techniques currently available to improve a TeA airspace’s ef-
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ficiency are based on its limited underlying graph structure and a set of clearly

pre-defined and predictable procedures (Krozel et al., 2004). As a result, air traf-

fic controllers have highly limited flexibility to reconfigure a TeA airspace, thereby

restricting their productivity in terms of airspace configuration strategies. The prob-

lem in this work is motivated by the desire to optimize the airspace configuration

strategies in a TeA system.

The concept of a dynamic TA design strives to remove current rigid structure of

navigation aids, pre-defined trajectories and SUA to provide traffic coordinators with

more flexibility to reconfigure it, in order to address the growing capacity/demand

imbalance and meet fluctuations in user demand. A major component of this concept

is to optimize the TeA airspace design strategies to maximize TeA efficiency and

safety, given the interdependencies from dynamically constrained ground resources.

2.4 Computational Red Teaming

Red Teaming (RT) is a vulnerability assessment tool, which assists in decision

making and understanding competition in military operational tactics (Yang et al.,

2006; Abbass et al., 2011). There are two teams formed - Red and Blue. The

motivations and interests of the defending force are represented by the Blue Team,

while opposing force are charged with challenging and attacking the defenses and

represented by the Red Teaming (Yang et al., 2006; Abbass et al., 2011). Although

RT is originated in the context of military conflict simulation or wargaming, it can

actually be applied to understand any entity that has the potential to influence a

system or organization and its decision making (Yang et al., 2006; Abbass et al.,

2011). In such case, the opposing force is an entity whose objectives compete with

the system’s and that takes actions impeding the system (Abbass et al., 2011). As

explained in Abbass et al. (2011): “The primary focus of RT is on ’Red’: how to

represent it and how to reproduce its behavioral patterns”.

Traditionally, RT has been performed manually and, typically, requires close

collaboration from a group of experts relevant to the targeted system and in charge
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of assessing the system’s vulnerability (Chua et al., 2008; Ranjeet et al., 2011).

However, this manually intensive process can be time-consuming, expensive and is

usually bounded by the perspectives of humans “thinking inside the box” (Chua

et al., 2008; Xu et al., 2009; Ranjeet et al., 2011), particularly when considering a

complicated system or organization with a multi-sided nature (Yang et al., 2006; Xu

et al., 2009). As a result of practical constraints, only a limited range of scenarios

can be explored. Hence, computer-based simulations have been used as a promising

solution to conquer the ‘human’ limitations inherent in manual RT (Yang et al.,

2006; Ranjeet et al., 2011; Hingston and Preuss, 2011).

For some simple RT scenarios which can be precisely described by a set of

equations, relatively little computational effort is required to obtain exact solutions

through traditional analytical optimization methods; however, many real-world sit-

uations require definitions or descriptions which can capture dynamic details and

interdependencies among various elements. An agent-based simulation system is

often a good choice to model such a complicated scenario as a whole system, where

many low-level interdependencies and correlations can lead to macro-phenomena

(Yang et al., 2006; Hingston and Preuss, 2011).

Since computer-based simulation (e.g., an agent-based simulation model) is

much cheaper and less time-consuming, by applying advanced computing technolo-

gies (such as search-based optimization methods and machine learning methods),

search mechanisms for RT become achievable. These methods are usually able to

expose surprises and shocks in a system or organization since they do not suffer from

‘blind spots’ as humans do (Upton and McDonald, 2003; Upton et al., 2004; Yang

et al., 2006; Hingston and Preuss, 2011). Evolutionary Computation (EC) is one

of such algorithms and is able to assist ART especially in decision support for two

reasons: firstly, as a population-based algorithm, it is capable of maintaining groups

of good strategies instead of one single best strategy, so the decision-maker can then

obtain an overview of all optional strategies and make a decision based on practical

bias not represented in the simulation; and secondly, it can handle multiple criteria

problems in a natural way by employing a multi-objective evolutionary mechanism.
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One example of the combination of agent-based simulation and EC optimization

methods is Automated Red Teaming (ART) (Upton and McDonald, 2003; Upton

et al., 2004; Yang et al., 2006; Choo et al., 2007; Xu et al., 2009). It is a concept which

complements the manual RT effort by analyzing a scenario through automatically

searching for critical weaknesses in the investigated system by simulation. In essence,

a typical ART task is to fix the Blue (targeted system) strategy, and then search

for a Red strategy which is able to exploit some weakness in the predetermined

Blue strategy and ‘defeat’ it; the system’s weakness found by RT can then be used

to either improve or assist the manual CR effort and improve the Blue’s strategy,

in a more focused way. The typical ART task described could be viewed as the

traditional ART task and the ART approaches applied in this situation could be

named as one-sided ART.

In a one-sided ART procedure (Upton and McDonald, 2003; Upton et al., 2004;

Choo et al., 2007), only the parameter values which define the behavior or capa-

bilities of the Red Team are evolved by EC algorithms, in order to optimize its

efficiency (in terms of evaluation metrics) against the Blue. Although the one-sided

ART promises to automatically uncover weaknesses in Blue, a manual analytical

process is still necessary so that these identified weaknesses are resolved and the

Blue’s strategy improved.

However in practice, a new weakness may arise during the process when a Blue

strategy is adjusting by taking account of a particular Red strategy, and it may need

to be investigated by some other Red strategy. In another word, the improvement

course, which is primary to fulfill a traditional ART task, is not guaranteed to con-

verge. To resolve the local optima issue, an alternative approach named Automated

Co-Evolution (ACE) is applied to search for good Red and Blue strategies simul-

taneously by co-evolving strategies for both in an agent-based simulation system

(Lauren et al., 2009; Seng et al., 2009; Hingston and Preuss, 2011).

The co-evolutionary search engine wrapped around the simulation environment

employs mainly an ‘All versus Best’ approach where all optimal strategies for Red

Team are evolved against the best Blue strategy, and vice versa (Abbass et al., 2011).
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The parameter values which define the behavior or capabilities of both Red and Blue

are co-evolved. The ACE approaches complement the one-sided ART in the manner

of automating the analytical course required to enhance the Blue’s strategy against

the corresponding Red (Decraene et al., 2010; Abbass et al., 2011). The extension

of one-sided ART to ACE increases the search spaces significantly, which permits

exploring more diverse simulation systems; whereby one could devise more effective

and strong defense plans against adaptive adversaries.

Although ACE is more advanced than the one-sided ART, it still has the same

limitation as the one-sided RT does: in any implementation of automated red team-

ing, the representation of Red’s behaviors or capabilities is a set of pre-defined

parameter values imposing considerable constraints on gaining a complete under-

standing of Red’s motivation, objective, attitudes and behavior in real world (Ab-

bass et al., 2011). For the case where Red Team has higher adaptability and system

complexity, and its behavior and capacity can not be easily captured in a elegant

set of parameter values, one needs more sophisticated model to define and represent

Red system. Since “Multi-Agent Systems (MAS) are a natural representation of

systems (Abbass et al., 2011)”, employing the MAS to define and model Red is a

promising approach.

Computational Red Teaming (CRT) (Abbass, 2009; Abbass et al., 2011), is

a computational environment that integrates computational intelligence techniques

and multi-agent systems. It offers the means to search massive spaces of possibilities

governed by uncertainty and complex networked dynamics quickly and find possible

and relevant solutions in these spaces. The basic philosophy of CRT is to provide a

computational environment in which competition between the system under inves-

tigation and scenarios representing situations of risk or uncertainty can be modeled,

and superior strategies can be identified (Abbass et al., 2011). In CRT framework,

“Multi-agent simulation systems use simulation as a computational device to re-

produce the range of behaviors that the underlying MAS exhibits (Abbass et al.,

2011)”. CRT has been used successfully to evaluate risk in safety-critical operations

(Abbass, 2009; Alam et al., 2009; Abbass et al., 2010b,a; Alam et al., 2010b; Abbass
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et al., 2011).

The principle of CRT is to develop a framework, such as a multi-objective

evolutionary-based risk assessment (MEBRA) (Abbass et al., 2009, 2011), where

we can identify and evaluate system-level risks in all sorts of situations that are of

concern to decision makers. The framework has four generic building blocks: sce-

nario representation, scenario generation, scenario evaluation and scenario mining.

Scenario representation is to appropriately design the chromosome representation

of scenarios which can be a high level description of the problem domain; scenario

generation is to automatically generate scenarios which represent a spectrum of

events that can affect the objectives; scenario evaluation is to identify risk patterns

in scenario space to quantify system-level risk assessments; scenario mining is to

mine through the common patterns and trends existing among scenarios to system

vulnerabilities by data-mining techniques (Abbass et al., 2009, 2011).

By iterating through these four building blocks, MEBRA offers a novel way

of modelling, identifying and understanding risks that are present in complex sys-

tems characterized by cause-effect networks and intricate interdependencies (Abbass

et al., 2009, 2011). In the blocks of scenario generation and scenario evaluation, it

utilizes a search engine to search over the problem space; whereby reciprocal inter-

actions between the blue and red systems are modeled. In ATM, blue is normally

the system under investigation and red the scenarios representing situations of risk

which create vulnerability in the system and throughout the search engine, their

populations play against each other. The framework of single-objective based risk

assessment (SEBRA) (Zhao et al., 2010; Abbass et al., 2011) is a special case of ME-

BRA. It is applied when the system has a single objective only – and not multiple

objectives as in the case of MEBRA.

So far, CRT has been mainly working in non-cooperative environment. Non-

cooperative CRT has been used successfully to evaluate risk in safety-critical oper-

ations. One of the most famous examples is the MEBRA.

CRT aims at seeking as much bottlenecks as possible in advance by exploring
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areas of vulnerability, thereby assists in the process of discovering the situations

which have not been encountered before and cuts down future damage recovery

treatment efforts. However, we have to accept that not all areas of vulnerability

can be found; after all, we only deal with models not with reality itself. In prac-

tice, many chromosomes - especially in the first generations - are not constrained

enough to generate many failures. Only as the evolution converges to better areas

of vulnerability, more bottlenecks appear in the scenario.

2.5 Co-operative Co-evolutionary Algorithm

2.5.1 Single-objective Co-operative Co-evolutionary Algo-

rithms

Genetic algorithms (GAs) are population-based evolution-guided stochastic search

techniques inspired by natural selection and natural genetics (Holland, 1975; Gold-

berg, 1989). They are highly simplified and abstract computational models which

evolves one homogeneous population of individuals representing a global solution.

In a GA, a pre-defined fitness function is applied to an individual, and individu-

als are evaluated immediately after their birth (Paredis, 1995). The reason that

GAs perform better than other traditional optimization and search techniques is

twofold: firstly, their searches for improvement are computationally simple yet pow-

erful; and secondly, restrictive assumptions about the search space are not necessary

(Goldberg, 1989). GAs have been successfully applied to many numerical and com-

binatorial optimization problems in recent years (Sarker et al., 2002).

However, as most real world problems originate from a complex environment,

which is not only influenced by an individual’s own actions but also by other individ-

uals interacting with each other, when applied to large and complex problems, clas-

sical GAs often lose their effectiveness and advantages (Paredis, 1995). In order to

tackle such problems where traditional GAs tend to be difficult to apply or perform

poorly, Paredis (1995) proposed a universal framework, named as co-evolutionary
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computation (CeC), to boost the performance of a genetic search through problem

decomposition.

Contrary to its traditional, non-coevolutionary counterpart, CeC evolves more

than one population (termed sub-populations), which represent specific parts of the

global solution (Paredis, 1995; Dorronsoro et al., 2011). All these sub-populations

evolve simultaneously and presumably improve the global solution. Also in CeC,

a more partial but continuous fitness evaluation is utilized, for adaptation to the

complex environment (Paredis, 1995). The fitness of an individual is evaluated in

collaboration with those of other individuals from other sub-populations. This col-

laboration can be either positive or negative, leading to co-operative or competitive

co-evolution respectively (Paredis, 1995).

The Competitive Co-evolution (CC) model is often compared to predator-prey

relations, where prey has a evolutionary pressure to defend themselves better, re-

sponding to that predators in future generations develop better attacking abilities

(Paredis, 1995). This idea can be summarized as arms races, where “success on

one side is felt by the other side as failure to which one must respond in order to

maintain one’s chances of survival” (Paredis, 1995). CC algorithms then apply this

idea into optimization problem. Usually, two sub-populations are evolved and the

fitness of an individual is determined by competitions with other individuals. The

losing sub-population adapts to compete the winning sub-population aiming to be-

come the new winner (Goh and Tan, 2009). Although a discussion about the CC

algorithm is beyond the scope of this work, there are many relevant works available

for the interested reader (Hillis, 1990; Angeline et al., 1993; Rosin and Belew, 1997;

Lohn et al., 2002).

The Co-operative Co-evolution (CoC) model is inspired by symbiotic interac-

tions where different species live together in a mutually beneficial relationship (Yang

et al., 2008a; Goh and Tan, 2009). It is regarded as an automatic approach to im-

plement the divide-and-conquer strategy: the objective system is decomposed into

many smaller modules, each of which is assigned to a species evolved mostly sepa-

rately, and then they are combined together to form the whole system (Yang et al.,
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2008a; Goh and Tan, 2009). Generally, a number of insolated sub-populations are

evolved co-operatively; whereby forming global solutions to solve complex compu-

tational problems. The fitness of an individual is determined by co-operations with

other individuals by utilizing a positive fitness feedback mechanism, where the win-

ning on one side enhances the survival possibility of the other (Yang et al., 2008a;

Goh and Tan, 2009).

Implementations of CoC algorithms can be classified into two basic categories

– single-level and two-level co-evolutions – based on the interactions between in-

dividuals and populations (Khare et al., 2004). In single-level co-evolution models

(Keerativuttitumrong et al., 2002; Maneeratana et al., 2004; Iorio and Li, 2004;

Tan et al., 2004; Dorronsoro et al., 2011), the sub-components are evolved in ge-

netically independent sub-populations, and the fitnesses of individuals are assigned

in collaboration with those of the individuals in the remaining sub-populations,

while, in two-level co-evolution models (Moriarty and Miikkulainen, 1997; Barbosa

and Barreto, 2001; Garcia Pedrajas et al., 2005), global solutions (systems) and

local-solutions (sub-components) are co-evolve simultaneously in the form of one

population evolving all sub-components and another evolving systems. The contri-

bution of one sub-component in the first population to different systems in the other

population is used to evaluate the sub-component. (Khare et al., 2004)

The three main basic ingredients consisted in a typical CoC algorithm are:

firstly, a decomposition method by which the complex system is divided into many

sub-components; secondly, a collaboration mechanism in which one individual from a

certain sub-population is evaluated in combination with individuals from the other

sub-populations; and thirdly, an optimization operation which includes crossover,

mutation, and other evolutionary operators designed for each sub-component evolv-

ing in its own sub-population (Chen et al., 2010). A conventional CoC framework

processes each sub-population is a round-robin fashion, where one sub-population

is being evolved while all the remaining sub-populations are held fixed (Sofge et al.,

2002). The optimization of all individuals in one separate sub-population is called a

phase, while one iteration over all sub-populations called a cycle. The CoC paradigm

Wenjing Zhao November 30, 2012



CHAPTER 2. BACKGROUND 43

was initially proposed for single-objective (SO) optimizations, the most prominent

of which are listed hereafter.

Potter and De Jong (1994) officially introduced the initial CoC model for func-

tion optimization, named co-operative co-evolutionary genetic algorithms (CCGAs).

Its idea is to evolve complex complete solutions in the form of interacting co-adapted

sub-components (Potter and De Jong, 1994). The main procedures the proposed

model are: firstly, the targeted problem is divided into sub-components based on the

decision variables (one-dimensional based strategy); secondly, each sub-population

evolves a part of sub-components using a standard GA; and thirdly, the complete

solutions are evaluated through exchanging individuals co-operatively among all

sub-populations. Although the CCGAs choose the GA as the method to evolve the

sub-populations, the authors also pointed out that any other evolutionary algorithm

(EA) could potentially be applied.

Potter and De Jong (2000b) later proposed a generalized architecture for evolv-

ing co-adapted sub-components without human involvement, which provides com-

putational extensions to their previous CoC model (Potter and De Jong, 1994).

Such extensions can enable the emergence of an appropriate number of interacting

sub-components, evolve them to a reasonable level of generality, and facilitate their

adaptation as other sub-components change over time (Potter and De Jong, 2000b).

Performance improvements brought by such dynamically evolutionary pressure are

demonstrated as this approach has the ability to scale up to larger and more complex

problems than is possible using standard EAs.

Wiegand et al. (2001) and Wiegand et al. (2002) made further efforts towards

selecting collaborators for individual’s evaluation. An empirical analysis of various

collaboration mechanisms are presented in (Wiegand et al., 2001), and advice about

how to choose an appropriate one for a particular problem are offered. The fore-

most lesson provided is that, generally, an optimistic approach is the best method

for collaboration credit assignment (Wiegand et al., 2001). Subsequently, a further

analysis of the effects of representational bias on collaboration mechanism choices

is provided in (Wiegand et al., 2002). The results demonstrate that the standard
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‘greedy’ collaboration method in which the single best individual is selected from

each of the other sub-populations, is reasonably robust across two kinds of repre-

sentational bias analyzed, in most situations.

Apart from implementing various collaboration mechanisms to improve the al-

gorithmic performance, Sofge et al. (2002) proposed a blended population approach

to change the search procedures in the existing CoC algorithms. The idea is to

combine the advantages of both CoC algorithms and traditional EAs, by allowing

individuals in sub-populations to shift to a common population during the evolution-

ary cycle. This procedure encourages greater mixing of sub-components to better

handle epistatic interactions between them as the evolution progresses.

There are also some studies on the problem decomposition strategies in the

numerical optimization domain (Yang et al., 2008b; Chen et al., 2010). These works

are motivated by the desire to tackle nonseparable problems which consist of tight

interacted decision variables. Yang et al. (2008b) first proposed a CoC-based algo-

rithm implementing a random grouping scheme and adaptive weighting for prob-

lem decomposition, and a differential evolutionary algorithm for optimizing each

sub-component. However, this algorithm needs a pre-defined problem-dependent

parameter – group size – which is difficult to determine in practice.

Yang et al. (2008b) later adopted a multilevel strategy to overcome this limita-

tion. Based on the problem under investigation and the stage of the evolution, a set

of group sizes are selected to construct a problem decomposer pool. Different decom-

posers indicate different group size, enabling the production of sub-components with

different interaction levels. Although this framework is able to self-adapt between

different group sizes according to their historical performance, the determination of

an appropriate decomposer pool is difficult due to the unknown relationships among

interacting variables (Chen et al., 2010).

Chen et al. (2010) then presented a new framework combining previous CoC

model with variable interaction learning mechanism. It is a two-step approach:

learning step and optimization step. The learning step is initially consider all vari-

Wenjing Zhao November 30, 2012



CHAPTER 2. BACKGROUND 45

ables as independent, each of which evolved in a sub-population. Such that interac-

tions among the decision variables are discovered iteratively. The second step is to

optimize these sub-populations with traditional CoC model.

All the above reviewed works have proven that co-operative co-evolution is a

promising area for identifying solutions for tackling large and complex problems.

2.5.2 Multi-objective Co-operative Co-evolutionary Algo-

rithms

Most real-world search and optimization problems naturally involve multiple

objectives. Multi-objective optimization aims to optimize several components of

a vector of objective functions simultaneously. Contrary to single-objective opti-

mization, the multi-objective problem usually does not have a single solution that

optimizes all criteria concerned, but a set of solutions, known as the POS — set

of Pareto-optimal solutions. Any Pareto-optimal solution is optimal in the sense

that no improvement can be made in one criterion without degradation of at least

another criterion. Since none of the solutions in the Pareto-optimal set is absolutely

better than any other, anyone of them is an acceptable solution. Which solution

should be chosen depends on the decision-makers, preferences and various problem-

related factors. Hence, a decision-maker is typically interested in knowing as many

Pareto-optimal solutions as possible (Deb and Kalyanmoy, 2001).

A straightforward way to solve multi-objective optimization problems is to take

the weighted sum of the objectives. The weighted sum approach transforms the

problem to a single objective problem; allowing the use of single objective opti-

mization methods. There are two profound drawbacks of this method. First, the

obtained solutions are highly sensitive to the weight vector. Second, the method

can only generate the whole non-dominated set — through repeated call of the opti-

mization algorithm with different weights — if the Pareto-front is convex; otherwise

many solutions will be missed.

Because a Evolutionary Algorithm (EA) deals with a population of candidate
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solutions, it seems natural to use it in multi-objective optimization problems to find

a group of Pareto-optimal solutions simultaneously. The main characteristic of EA,

which differs from traditional optimization techniques or heuristic methods such

as simulated annealing and tabu search, is the simultaneous evaluation of many

solutions. This enables a parallel search and potentially avoids convergence to a

local optimum that does not coincide with the global one.

In practice, a multi-objective (MO) optimization algorithm is expected to find

a set of non-dominated solutions, which belong to the optimal Pareto front or as

close as possible to it, spreading uniformly along it. Therefore, a MO algorithm

must achieve two primary goals: guiding the search towards the global Pareto front

and maintaining the population diversity throughout the Pareto front. Among the

most well-known and state-of-the-art MO evolutionary algorithms are the Niched

Pareto Genetic Algorithm (NPGA) (Horn et al., 1994), the strength Pareto evo-

lutionary algorithm 2 (SPEA2) (Zitzler et al., 2001), and non-dominated sorting

genetic algorithm II (NSGAII) (Deb et al., 2002).

The NPGA (Horn et al., 1994) works as a Pareto-based technique, which demon-

strates that MO evolutionary algorithm is able to approximate the optimal set in a

single simulation run. It employs a tournament selection, where a pair of randomly

selected individuals are compared with each other, to select individuals for repro-

duction. Then a niche count is calculated based on the fitness sharing procedure, in

order to measure the distance between two individuals in the objective space. How-

ever, the importance of elitism has not been recognized and incorporate explicitly

in NPGA.

The SPEA2 (Zitzler et al., 2001) is an elitist multi-objective evolutionary algo-

rithm. Its working principle is to employ an strength raw fitness assignment strategy

which provides a niching mechanism based on the Pareto dominance; while in the

case where most individuals do not dominate each other, a density estimation strat-

egy is incorporated to get the most promising solutions among those having identical

raw fitness values. The strength raw fitness and density estimation value are then

summarized to be assigned to each individual as its fitness value. The density esti-
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mation strategy is based on calculating the distances to the k-th nearest neighbor,

where boundary solutions are always retained.

The NSGA-II (Deb et al., 2002) is an elitism-based approach which is the most

well-known and referenced algorithm in the multi-objective literature (Dorronsoro

et al., 2011). It is characterized by its selection operators which preserves elitism

through fast-non-dominated-sort, and makes use of a new parameterless measure

of density of solutions during neighborhood search (crowding-distance-assignment).

The fast-non-dominated-sort strategy creates a mating pool by combining the parent

and offspring populations; then the individuals in the mating pool are sorted accord-

ing to their rank values, and best solutions are selected based on their fitness (rank

values) to create a new population. In addition, the crowding-distance-assignment

is used to discriminate between individuals having identical rank value, ensuring

diversity is maintained among non-dominated solutions.

Designing of co-operative co-evolutionary algorithms for MO optimization is

challenged with respect to many issues that are caused by the interaction with the

MO optimization, such as individual evaluation (representative selection), fitness

(credit) assignment, incorporation of various elitist, niching strategies and selection

mechanisms.

Individual evaluation and fitness assignment strategies affect the algorithmic

performance with respect to the accuracy and diversity (Zitzler et al., 2000; Goh

and Tan, 2009). In SO optimization, an individual in a sub-population is evalu-

ated by composing a complete solution with the best individuals from all the other

sub-populations, and the fitness assignment for the evaluated individual is straight-

forward; while in MO optimization, there will be more than one best individuals

in each sub-population and each individual is associated with more than one objec-

tive values. Therefore, appropriate representative selection and fitness assignment

mechanisms are necessary for identifying the solutions that approximate the true

Pareto-optimal front.

Elitism and niching strategies are two primary operators for converting a SO
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algorithm to a MO algorithm. Elitism is able to significantly speed up the algorith-

mic performance by enhancing the convergence properties and preventing the loss of

good solutions once they are found (Zitzler et al., 2000; Deb et al., 2002). Niching is

a significant diversity-preservation mechanism, which ensures diversity in a popula-

tion in order to maintain a wide variety of equivalent solutions. Under the effect of

niching, the population of solutions is dynamically stable under the selection pres-

sure (Mahfoud, 1995; Horn, 2003). Apart from elitist selection (elitism), there are

various other selection operations available in the literature, such as roulette-wheel

selection, stochastic universal sampling, truncation selection, tournament selection

(Back, 1994; Schmitt, 2004). Along with fitness assignment mechanism, selection

procedures guide the search towards the true global Pareto front.

Keerativuttitumrong et al. (2002) presented a Multi-objective Co-operative Co-

evolutionary Algorithm (MOCCGA), which integrates the co-operative co-evolutionary

effect in (Potter and De Jong, 1994) and the search mechanisms utilized in multi-

objective GA(Fonseca and Fleming, 1993). In each subpopulation, the objective

values for each individual evaluated twice in collaboration with either the best or a

random individual from the other sub-populations. The fitness value of each individ-

ual is assigned based on the rank in the local Pareto front in its own sub-population.

The selection operator is stochastic universal sampling method. However, the per-

formance of MOCCGA is limited due to the local Pareto optimality perception and

the lack of elitism.

Maneeratana et al. (2004) proposed an extension of the MOCCA by incorpo-

rating elitism in the form of a fixed size archive in each sub-population to store the

nondominated solutions. The individual is evaluated once in combination with the

Non-dominated individual with the best degree of crowding. The fitness value is

assigned based on the rank in its own sub-population. The niching strategy is based

on the crowding distance. However, like MOCCGA, the algorithm also suffers from

the limited performance due to the localized perception of nondominance.

Iorio and Li (2004) presented an extension of NSGAII (Deb et al., 2002) – non-

dominated sorting co-operative co-evolutionary algorithm (NSCCGA). Individuals
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are evaluated in collaboration with random individuals from the best non-dominated

set in the other sub-populations. The fitness of the individual is assigned based on

the non-dominated solutions set via non-dominated sorting. The elitist solutions

from the previous generation are reinserted into the subpopulations in the next

generation. Tournament selection based on the non-dominated level and crowding

distance value as in (Deb et al., 2002). The local non-dominance also limits the

performance of NSCCGA.

Tan et al. (2004) proposed the co-operative co-evolutionary algorithm (CCEA),

which makes use of the co-operative co-evolutionary mechanism specially designed

for multi-objective optimization problem. The individual is evaluated in the co-

operation with two individuals from each subpopulation, and the better one is kept

for the objective values. The fitness is assigned based on the individual’s rank against

the nondominated solutions stored in an external archive. Tournament selection is

based on the rank and niche count. This algorithm is the first co-operative co-

evolutionary approach that employs a globalized perception of elitist.

After being introduced in (Tan et al., 2004), CCEA was compared with various

MOEAs on more benchmark test problems, with respect to more performance in-

dicators in (Tan et al., 2006). It showed that the CCEA produced competitive and

robust results in finding the non-dominated solutions.

Contrary to the trend of developing multi-objective co-operative co-evolutionary

algorithms for a general problem domain, there are some efforts have been made to

some specific problem domain.

Garca-Pedrajas et al. (2002) proposed the multi-objective co-operative networks

(MOBNET), which is a multi-objective co-operative co-evolutionary algorithm for

artificial neural networks. The individual’s fitness is assigned based on the com-

petitive fitness paradigm as in (Ficici and Pollack, 2001). The best p% of each

sub-population is replicated in the next generation and individuals selected from

the best p% by roulette selection refill the rest 1− p% of each sub-population.

Xing et al. (2006) presented a multi-objective co-operative co-evolutionary al-
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gorithm to construct fuzzy classification system. A single scalar fitness function is

used to combine three objectives. The individual is evaluated in collaboration with

the best and another two random individuals from the other sub-populations, and

the minimum value is assigned as the fitness to the evaluated individual. The best

individual in each sub-population is reinserted into the next generation. Tournament

selection is used as the selection operator. However, the co-operative co-evolutionary

mechanism is actually suitable for single objective problem and no non-dominated

solutions is considered and stored.

Xing et al. (2007) later introduced a non-dominated sorting collaboration mech-

anism based on the NSGAII (Deb et al., 2002). The non-dominated set with respect

to all the search space is selected and stored for next generation. The selection is

based on the non-dominated level and crowding distance sorting. Although this

algorithm is advanced regarding to the globalized perception of non-dominance, the

weighted objective function, which transfers the multiple objectives to a single ob-

jective, is not a good indicator for optimality.

Dorronsoro et al. (2011) proposed three multi-objective co-operative co-evolutionary

algorithms (CCMOEA) for continuous and combinatorial optimization based on NS-

GAII (Deb et al., 2002), SPEA2 (Zitzler et al., 2001) and MOCell (Nebro et al.,

2007). The main contributions in this paper are threefold: firstly, a generic frame-

work is presented, allowing building different CCMOEAs; secondly, distributed

archive management in the form of one archive per sub-population is introduced

and a global non-dominance is generated at the final process; finally, the individual

is evaluated in co-operation with a set of randomly selected non-dominated solutions

from the other sub-populations.

Table 2.1 demonstrates the comparison of different strategies which have been

employed in historical research on multi-objective co-operative co-evolutionary al-

gorithms. The strategies we are interested in are fitness assignment, evaluation

mechanism, selection method, elitism strategy, niching Strategy.

All the Multi-objective Co-operative Co-evolutionary Algorithms reviewed in
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this section have two common features with the one proposed in this thesis: firstly,

the problem is manually decomposed into various sub-components as a priori (static

population management); secondly, each sub-component is represented by a geneti-

cally isolated sub-population (single-level co-evolution).

2.5.3 Evolution of the Reviewed Literature

To better understand previous works and their relationships with this thesis,

we synthesize an overall picture of how the reviewed literature evolved until now

(see Figure 2.5 and 2.6).
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Table 2.1: Multi-objective Co-operative Co-evolutions Comparison

Historical
Work

Fitness
Assign-
ment

Evaluation
Mecha-
nism

Selection
Method

Elitism
Strategy

Niching
Strategy

Keerativu-
ttitumrong
et al.
(2002)

Rank-based
Fitness
Assignment

Maxi{with
1 best, with
1 random}

Stochastic
Universal
Sampling

N/A Fitness
Sharing in
Objective
Space

Garca-
Pedrajas
et al.
(2002)

Rank-based
Fitness
Assignment

With Best Roulette Se-
lection

Best P%
in sub-
populations

Competitive
Fitness
Paradigm

Manee-
ratana et
al. (2004)

Rank-based
Fitness
Assignment

With Best Stochastic
Universal
Sampling

Non-
dominated
Set in Sub-
populations

Crowding
Distance

Iorio and
Li (2004)

Rank-based
Fitness
Assignment

With 1 Ran-
domly from
Best Non-
dominated
Set

Tournament
Selection
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dominated
Set in Sub-
populations
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Tan et al.
(2004)
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Tan et al.
(2006)
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1 best, with
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dominated
Set in
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Space

Xing et al.
(2006)

Equals
Min{with 1
best, with
1 random,
with 1
random}

Minwith 1
best, with
1 random,
with 1
random

Elite Selec-
tion; Tour-
nament Se-
lection

Best Ind
in Sub-
populations

N/A

Xing et al.
(2007)

Weighted
Objectives

With Best
& Random
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Selection
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Archive
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Dorron-
soroet al.
(2011)

Objectives With a
set of ran-
domly se-
lected non-
dominated
set

Binary
Tour-
nament
Selection
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dominated
Set in Sub-
populations

Crowding
Distance
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Chapter 3

Proposed Integrated TeA System

To evaluate TeA airspace concepts in an integrated TeA system and understand

their vulnerabilities, a systematic modelling of system behaviors and interactions

among subcomponents is needed. In this chapter, we introduce a TeA system model

which integrates arrival and departure operations and combines air- and ground-side

resources. It is developed as a part of this thesis to evaluate advanced TeA airspace

concepts and discover system-level vulnerabilities through a simulation-based com-

putational environment. Although other air traffic simulation systems are presented

in the literature, no study to our knowledge has attempted to model an integrated

TeA system in a systematic manner in which the interdependency between traffic dis-

tributions and the dynamics of ground resources are modelled, and arrival-departure

cooperation can be implemented in a fast-time simulation environment. This sys-

tem is also designed to be able to model and implement different types of ATM

procedures: the present day’s arrival and departure procedures (STARs and SIDs)

and an advanced ATM concept known as dynamic CDA. The objective is to provide

more insight into the complex interactions of various TeA subsystems and pave the

way for later investigations into TeA airspace configuration design. This chapter

describes the proposed integrated TeA system in details: input and output, data

structure, design, functionality and how to achieve the arrival-departure integration.
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3.1 Overview of the Proposed Integrated TeA Sys-

tem

The fundamental goal underlying the proposed integrated TeA system is to de-

velop a simulation and modelling environment where the arrivals and departures are

integrated, while considering the interdependencies between the traffic distributions

and the dynamics of ground resources. The main simulation engine of the inte-

grated TeA system embraces an arrival manager and a departure manager which

models the basic air traffic and ATM operational features on the airport surface

and the transition airspace surrounding it (e.g. TeA airspace, waypoints, aircrafts

and trajectory generation) that are essential for evaluating any air traffic concept.

Other modules which implement queue management, air-ground resources models

and arrival-departure cooperation are built around the core engine.

The integrated TeA system is defined as an environment combining the airport’s

ground transportation network (runways, taxiways and gates) and its surrounding

transition airspace, whose radius is set to 25 nm in this work. Hence the modelling

domain for the integrated TeA system is comprised of the air (transition airspace)

resources model and the ground resources model. However, in the simulation, a

larger simulating scope is necessary as the kernel generating the flights needs certain

time to be processed. Therefore, an extra 225 nm flying distance is given to inbound

traffic before they start to execute the transition air routes and ground routes; while

extra 1 minute time window is designed for outbound traffic prior to their departure.

In any busy airport, even with a fairly simple airport layout, managing ground

operations and dealing with all incoming and outgoing airport ground traffic can be

a very challenging task. An airport represents a highly dynamic environment with

continuously changing resources (Kuster and Jannach, 2006). Tower controllers are

required to provide ground operations for both arrivals and departures to facilitate

safe and smooth ground traffic flows within uncertain constrained ground events.

A constrained ground event is a disruption to the availability of surface resources,

including all runways, taxiways and gates, in the airport. These include snow, ice,
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slush or water on a runway, which can reduce aircraft braking and directional control

and increase runway occupancy time. An increase in runway occupancy time leads to

a reduction in airport arrival and departure acceptance rates (throughput) due to the

need for increased inter-aircraft spacing. This reduction is aggravated by the closure

of runways and certain runways being unusable. Disruptive ground movements could

propagate elsewhere in a TeA system (e.g., air traffic in the transition airspace) and

cause flight delays and system inefficiency. Thus, the inherent uncertainty of ground

events and their interactions with other TeA system components heavily influence

airport capacity and potentially cause a rise in the complexity of a TeA system.

The Air Traffic Operations and Management Simulator (ATOMS) Alam et al.

(2008) provides a high-fidelity simulation and modelling environment for exploration,

development and evaluation of advanced ATM concepts. The integrated TeA system

presented here will be blended in ATOMS, in order to implement the integration

of arrivals and departures using a shared ground-air network. As a case study,

an assumed airport model inspired by Sydney’s Kingsford-Smith Airport (hereafter

referred to as Sydney Airport) is used for designing the air-ground resource models.

It is noted that there are some assumptions in abstracting or representing the

integrated TeA system, which might lead to errors in the absolute results which

should be as small as possible. Although the abstraction of the real world TeA

system operations may not faithfully reflect all details in reality, it is argued that

the simulation system model developed in this chapter comprises the key features

which are necessary to reveal arising macro-phenomena at the system level which

are typical of an integrated TeA system in the real world (Decraene et al., 2010).

Therefore, the developed model of a TeA system can expose the emerging behavior

or phenomena of interest without the burden of simulating unnecessary detailed fea-

tures. In addition, in the following chapter the focus and objective of implementing

the simulation is on relative investigation and evaluation on different scenarios and

the absolute results are less important.
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3.2 Input/Output

The input to the integrated TeA system consists of both static and random

factors. The static factors include TeA air resource model, ground resource model

and capacity for each resource. The dynamic factors contain the time and space

context of arrival flight plans, departure flight plans and ground events. The human

factors such as ATC controller is excluded from explicit consideration. The detailed

information that each item contains is listed as follows.

• TeA Air Resource Model: there are two types of air networks representing ei-

ther the fixed STARs and SIDs configurationS or the dynamic CDA structure;

• Ground Resource Model: there are two ground networks representing the air-

port ground resources (runways, taxiways and gates), one for arrival and the

other for departure. The interdependencies arising from overlapping resources

are captured by the ground resource record;

• Resource Capacity: this is a user defined factor and in this work, it is assumed

that each resource has a capacity of 1;

• Arrival Flight Plan: Aircraft Name, Aircraft Type, Estimated Time of Acti-

vation, Activation Point, Outer Marker Point, Designated Runway, Array of

Designated Taxiways and Designated Gate;

• Departure Flight Plan: Aircraft Name, Aircraft Type, Estimated Time of

Activated, Designated Gate, Array of Designated Taxiways and Designated

Runway; and

• Ground Event: Event Location, Event Name, Start Time and Duration.

The output from the integrated TeA system is modified arrival (or departure)

flight plans and a total flight delay value, listed as follows:

Wenjing Zhao November 30, 2012



CHAPTER 3. PROPOSED INTEGRATED TEA SYSTEM 59

• Modified Arrival Flight Plan: Aircraft Name, Aircraft Type, Estimated Time

of Activated, Activation Point, Outer Marker Point, Modified Runway, Modi-

fied Array of Taxiways and Modified Gate;

• Modified Departure Flight Plan: Aircraft Name, Aircraft Type, Estimated

Time of Activated, Designated Gate, Modified Array of Taxiways and Modified

Runway;

• Total flight delay for an arrival: The difference between the ETA of an arrival

flight from its OM to the requested gate and its actual time of arrival (ATA)

at the actual gate from its respective OM; and

• Total flight delay for a departure: The difference between the ETA of a de-

parture flight from its requested gate to the OM and its ATA to the assigned

OM from its respective gate.

3.3 Data Structure

This section discusses the major data structure of the integrated TeA system

including air resources models (dynamic CDA and fixed STARs & SIDs models),

ground resources model, air resources records and ground resources records.

3.3.1 Air Resources Model

3.3.1.1 Dynamic CDA

Finding dynamic CDA trajectories in the transition airspace can be modelled

as a problem of path planning in three dimensions. In ATM, this problem takes on

unique dimensions due to aircraft performance constraints that are imposed on it

in the approach phase, such as limited maneuverability (low thrust), speed restric-

tions and altitude constraints. Apart from the hard safety constraints, the other

competing objectives are to minimize noise, emissions and fuel consumption. For
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Figure 3.1: Conceptual representation of transition airspace divided into concentric
circles and wedges acting as trajectory change points for dynamic CDA trajectory
generation Alam et al. (2010a).

details of the dynamic CDA procedures, please refer to paper Alam et al. (2011).

In this section, we present only the transition airspace model used in this work and

its implementation for arrivals and extension to departures.

As demonstrated in Alam et al. (2011), the problem search space (transition

airspace) is equally divided with a 5 nm safety separation defined as a set of five

concentric cylinders with a runway (touchdown point) at the center, as illustrated

in Figure 3.1. The height of the transition airspace is set to 10,000 ft and the radius

to 25 nm (transition airspace radius (TAR)). The outermost cylinder (denoted as

Ring 4) has a radius of 25 nm and the inner cylinders (Rings 3, 2, 1 and 0) radii

of 20, 15, 10 and 5 nm respectively, as calculated by Equation 3.1. The outermost

cylinder’s height is 10,000 ft which corresponds to the starting altitude of the CDA

and the inner cylinders have heights of 8000, 6000, 4000 and 2000 ft respectively.

Thus, the transition airspace is divided into 5 levels, with each level divided into

2000 ft to give a typical jet aircraft sufficient vertical height to maneuver given a

low thrust setting.
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RingRadius =
TAR× (Ring Number + 1)

5
(3.1)

Each cylinder has wedges which represent transition points from one level to

another and are spaced 1.5 nm apart to provide safe separations between approach-

ing aircraft (Spence, 2003). The number of wedges for a given cylinder is calculated

as:

Number of Wedges =
2π ×Ring Radius
SeparationDistance

(3.2)

The angle between the wedges is calculated as:

WedgeAngle =
2π

Number of Wedges
(3.3)

A transition airspace radius of 25 nm and a separation distance of 1.5 nm give

the number of wedge points as 104, 83, 62, 41 and 20 for Rings 4, 3, 2, 1 and 0

respectively. As such, the transition airspace is discretely partitioned into concentric

cylinders with artificial waypoints, so that CDA trajectories are generated from one

waypoint to another to identify all possible air routes.

The cylindrical airspace model comes from the fact that the typical Termi-

nal airspace is cylindrical in shape. The distance between five rings is considered

for safe maneuverability vertically and that between wedges provides safe separa-

tion between approaching aircraft. This simplified modelling helps in assigning and

reserving the shared resources in a simpler fashion. The radius of the cylinder rep-

resent the typical IAF distance for an aircraft at approximately 10,000 ft and the

FAF distance (5 nm from runway) is a typical representation of the same in an

operational environment.

For the purpose of implementing interactions between arrivals and departures,

the modelling designed in the dynamic CDA is also used for departures in this

chapter. More precisely, the artificial trajectory points (also referred to as wedge

points) modeled in Figure 3.1 are implemented with sufficient generality to allow for

arrivals and departures passing concurrently through the transition airspace with
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shared resources (concentric cylinders with artificial waypoints) rather than being

restricted to only arrivals. By searching in the same problem search space, ‘CDA-

like’ routes are generated in a similar way as they are in the CDA. They are computed

in real-time and both laterally and vertically optimized for given objectives. Any

two departures in the same departure airspace can follow two different trajectories:

there is no standard ascent departure route. The major difference is that air routes

for departures are generated from the innermost cylinder (final approach fix) to the

outermost cylinder (initial approach fix) instead of in the opposite direction as they

are in CDA. For distinction, in this chapter, we refer to this departure procedure as

the dynamic continuous ascent departure (CAD) and the air routes for departures

obtained from it as CAD routes.

It is assumed that the capacity of each wedge point is 1, which means each

wedge point can only be used by the single aircraft to which it is assigned for a

certain duration. For instance, if an arrival is in a wedge point for a particular

duration, this point is blocked and cannot be used by any other arrival or departure

during that time window.

3.3.1.2 Fixed STARs and SIDs

Current ATM operations are implemented by filing an aircraft’s standard route

(STAR or SID) after it is cleared into a TeA airspace. Using the current STAR

and SID procedures, the arrival and departure flows are processed separately in the

TeA airspace around Sydney Airport. Figure 3.2 shows a typical STAR chart –

GALGA SIX ARRIVAL for Sydney Airport (Air Services Australia, 2012), while

Figure 3.3 demonstrates a typical SID chart – RWY 16L KEVIN THREE (Air

Services Australia, 2012).

There are 5 STAR and 14 SID routes serving Sydney Airport. To capture the

bottlenecks in a TeA system, we model all STAR or SID way points which could

affect its capacity as a network. The interconnections among all way points, and how

one leads to another, are modeled as networks shown in Figure 3.4 and Figure 3.5
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Figure 3.2: STAR example: GALGA SIX ARRIVAL for Sydney’s Kingsford-Smith
Airport, Air Services Australia (2012)

Figure 3.3: SID example: RWY 16L KEVIN THREE for Sydney’s Kingsford-Smith
Airport, Air Services Australia (2012)
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Figure 3.6: Ground arrival network for Sydney Airport

and store all possible STAR and SID routes. It is assumed that the capacity of each

resource is 1, which means each STAR (or SID) way point can only be used by the

arrival (or departure) to which it is assigned for a certain duration. An arrival (or

departure) is assigned a STAR (or SID) route at the time of air route computation

based on resource availability. The START and END points in Figures 3.4 and 3.5

represent the starting and ending points of the STAR or SID route computational

procedure.

3.3.2 Ground Resources Model

For the sake of simplicity, only the domestic section of the Sydney Airport’s

terminal area is used to design the ground model which contains medium-spaced

parallel runways in the north-south (16/34) direction (3,962m and 2,438m) and an

intersecting/cross runway in the east-west (07/25) direction (2,530m). In total,

there are 6 runways, 16 taxiways and 23 gates. Each runway is treated separately,

i.e., runway 16 and runway 34 are independent of each other. The interconnections

between these resources, and how one leads to another, is modeled as two networks

- arrival and departure ground models, as shown in Figure 3.6 and Figure 3.7. The
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former network data structure stores all possible connections from the runways to

different taxiways, and from the taxiways to different gates. The latter stores all

connections from the gates to different taxiways, and from the taxiways to different

runways; for example an arriving aircraft is assigned a particular gate, the network

stores the links for the various networks available to route the aircraft to that gate.

The data structure for each ground point in the ground resource network consist

of: ID, Capacity, Aircraft Types, Latitude, Longitude, Altitude and Speed, each of

which is explained as follows.

• ID: is the name of the ground point;

• Capacity: is the number of aircrafts this ground point can handle simultane-

ously;

• Aircraft Type: represents which types of aircraft this ground point can handle;

• Latitude: is the latitude value of this ground point;

• Longitude: is the longitude value of this ground point;

• Altitude: is the altitude value of this ground point; and
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• Speed: is the speed constraint for the ground point.

As the air resources model does, it is assumed that the capacity of each ground

point is 1 and each ground resource can only be used by an aircraft (either arrival

or departure) to which it is assigned for a certain duration.

An arrival (or departure) aircraft is assigned its runway, taxiway and allocated

gate at the arrival (or departure) airport when its initial flight plan, which is used as

an input to the simulator, is generated. However, this may change at the time of its

ground route computation depending on resource availability and/or other ground

events, such as snow on the runway, gate closure, etc. The flight ground route

modification process works in the following manner. If an aircraft is assigned a new

runway/taxiway/gate due to the unavailability of a certain resource, the aim is to

meet the scheduled surface route while minimizing changes to the existing route.

If there is no possible way of leading an aircraft from its assigned runway to its

assigned gate, an alternative gate is selected. If the runway is completely closed, the

search is performed using the next available runway and the aircraft ground route

is updated accordingly.

The START and END points in figures 3.6 and 3.7 represent the starting and

ending points of the ground route computational procedure. When combining the

TeA airspace procedures with the ground procedures, the END of the STARs net-

work is connected to the START of the the ground arrival network, while the END

of the ground departure network is connected to the START of the SIDs network.

For arrivals, when the air route computational process starts, the on-computing

arrival aircraft is at the START point in Figure 3.4. Once a proper STAR route

is chosen for this arrival by going through all possible STAR routes stored in the

STARs network, it comes to the END point in Figure 3.4. Thereafter, the arrival

moves to the START point in Figure 3.6 which means its ground route computation

starts. When an acceptable ground route is chosen for this arrival, it moves forward

to the END point in Figure 3.6. Departures start the ground route computation

by standing at the START point in Figure 3.7. After searching through the ground
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departure network, the departure obtains a proper ground route which satisfies all

constraints and moves to the END point in Figure 3.7. Then, it goes to the START

point in Figure 3.5 to begin the SID route computation and moves to the END point

in Figure 3.5 after being assigned an acceptable SID route.

3.3.3 Air Resources Records

To accomplish the integration of arrivals and departures using share air-ground

resources and assess the impact of dynamic ground events on arrival and departure

traffic distributions, a data structure which records the occupancies of air resources

is necessary. As a result, an array named Transition Airspace Resources Records is

designed, whose elements are presented as follows.

• Resource Name: represents the name of the air resource;

• Start Time: represents the time when the aircraft starts to occupy the air

resource;

• Duration: represents how long the aircraft will occupy the air resource; and

• Aircraft Type: the category of the aircraft – heavy, large or small.

When an aircraft is assigned an appropriate air route (as in Section 3.4.6 and

Section 3.4.7), any way point (air resource) in this route is recorded in the Transition

Airspace Resources Records, along with its name, time window for the aircraft to

stay and the aircraft’s type.

3.3.4 Ground Resources Records

As can be seen, the arrival and departure ground models share a large pro-

portion of ground resources, such as runways, gates and most of the taxiways. To

integrate the arrivals and departures, a data structure which records the occupan-

cies of ground resources is designed. It is an array named Ground Resources Records

whose elements are presented as follows.
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• Resource Name: represents the name of the ground resource;

• Start Time: represents the time when the aircraft starts to occupy the ground

resource;

• Duration: represents how long the aircraft will occupy the ground resource;

and

• Aircraft Type: the category of the aircraft – heavy, large or small.

When an aircraft is assigned an appropriate ground route (as in Section 3.4.6

and Section 3.4.7), any way point (ground resource) in this route is recorded in the

Ground Resources Records, along with its name, time window for the aircraft to stay

and the aircraft’s type. When computing the ground route for an aircraft, we check

the possible ground resource availability by searching through the record table; for

example, if an arrival is about to be assigned to gate 40 at time T, but that gate

is occupied by another aircraft (arrival or departure) at the same time according to

the record table, then gate 40 is not available for this new arrival at that time.

In addition, the Ground Resources Records has to include another type of oc-

cupancy – the ground events. When a ground event is about to occur in a ground

resource, the name of the resource, the start time and duration of the event and

what type of aircraft the event will effect will be recorded in the Ground Resources

Records.

3.4 Integrated TeA Simulation

This section discusses the architecture and design principles of the integrated

TeA system including queue manager, arrival manager, departure manager and

arrival-departure integration.
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Figure 3.8: TeA-ATOMS simulation scope

3.4.1 Integrated TeA System Design

The overall simulation scope in the TeA-ATOMS simulation is larger then the

integrated TeA system, as depicted in Figure 3.8. It is a region of radius of 250 nm

around an airport, comprised of part of the en route airspace, the transition airspace

and the airport. The starting points (104 in number) for arrivals are set to 150 nm

from the outer marker (OM) (consisting 104 way points as well). The circular grid

is divided into 4 equal regions of 90 degrees each which we call quadrants, each of

which contains 26 starting points. The OM is 75 nm away from the initial approach

fix which is the entry to the transition airspace, the radius of which is 25 nm. Arrival

aircraft come from their designated starting points based on the traffic distribution.

The transition airspace resources model for dynamic CDA or fixed SIDs and STARs

(Section 3.3.1) lies between the Initial Approach Fix Points circle and the Final

Approach Fix Points circle. The ground resources model (Section 3.3.2) is in the

airport.

Any inbound aircraft gets activated at a Flight Activation Waypoint, and flies

directly to an OM point based on the aircraft’s performance data. An aircraft’s
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activation waypoint and OM point are pre-defined in its flight plan as input and

present which direction the aircraft comes from. The simulator calculates a Top of

Decent (TOD) point for this aircraft according its initialized flight plan and aircraft’s

performance data. This TOD point is then inserted into the flight plan as part of

the flight route. Before OM point, the arrival is positioned in a conceptual queue

(Section 3.4.3) according to its time to reach the OM point. The transition airspace

and ground route calculation (Section 3.4.6) for the arrival starts when it reaches

the OM point. An entry point to the transition air space model is selected based on

the closest distance and minimum variability in heading from the aircraft’s current

position. Once the arrival is filed a transition air route and a ground route, the

way points in these routes will be added to the initialized flight plan. After the

arrival reaches the last way point in transition air route, we assumed there is a

direct descent to its runway. Then the arrival passes along the airport according to

assigned the ground route. When it reaches the gate, the simulation of the arrival

flight terminates.

On the other hand, a departure gets activated one minute before being ready

to be pushed back from its assigned gate. It then is positioned in the conceptual

queue (Section 3.4.3) based on its time to departure from its designated gate. The

ground route and transition airspace calculation (in Section 3.4.7) is followed by the

modification of the initialized flight plan. When the departure is at the end of its

runway, it is assumed there is a direct ascent to the first way point in its transition

airspace route. When the departure reaches the last way point in the air route, a

OM point is assigned to it based on the closest distance and minimum variability

in heading from the aircraft’s current position. After it reaches its OM point, the

simulation of the departure is finished.

3.4.2 Architecture of the Integrated TeA Simulation

The architecture of integrated TeA simulation consists of the following key

components (see Figure 3.9):
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Figure 3.9: Architecture Design of Integrated TeA Simulation

This architecture was designed to be modular and flexible enough to incorporate

new air-ground network and ATM operational constraints. Starting from the top:

Given a set of flight plans, we separate them into two conceptual waiting queues

– one for arrival and the other for departure – based on their activation time. Once

an arrival reaches 75nm before the TeA (OM point), or a departure is one minute

prior to being ready to be pushed back from the gate, it becomes active. All active

aircraft (arrivals and departures) are processed by a Queue Manager in which they

are positioned in a conceptual queue according to their times to be at the OM (for the

arrival) or gate (for the departure). Based on the first come first assigned principle,

the first aircraft (arrival or departure) is selected to go through the optimization

process of the Arrival Manager or Departure Manager accordingly. These managers

interact with each other by sharing the same information about the availability of

air-side and ground-side resources. If the optimized route for an aircraft is found,

the result is output and recorded, otherwise the delayed aircraft is positioned back

to the Queue Manager to wait for another optimization process. The procedural
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details of the Queue, Arrival and Departure Managers are described in the following

subsections. After all flights are scheduled, the total number of delays for all flights

and delays caused by each potential resource bottleneck are calculated and recorded.

For the sake of simplicity, it is assumed that any Flight Activation Waypoint

and OM point is able to handle any type of arriving or departing flight, as long as

it is operationally allowed according to the aircraft’s performance data. Thereby,

any aircraft can fly from one way point directly to another based on the flight route

in the flight plan and the aircraft’s performance data. Additionally, any way point

at the end of air resources modelling (see Section 3.3.1) has a direct descent line to

any runway, and vice versa.

Algorithm 3.1 demonstrates the procedure of the integrated TeA simulation:

3.4.3 Queue Manager

Given a set of flight plans, the objective of the queue manager is to sequence

the flight plans, and output a set of sequenced flight plans. The data structure of

the flight queue is represented by an variable-length array which is comprised by a

number of Flight-Element. Each Flight-Element contains: the sequencing number

of the flight, the Estimated Time of Arrival (ETA) of the flight at the OM (for the

arrival) or gate (for the departure), name of the flight, aircraft type, the OM point,

the designated runway, the array of designated taxiways and the designated gate.

First Come First Served (FCFS) is a prominent scheduling algorithm in Se-

quencing Theory (Pinedo, 2002). It is the most straightforward and commonly used

sequencing algorithm that generates efficient aircraft processing sequences. The ba-

sis of this method is the ETA of aircraft at the OM (for the arrival) or gate (for

the departure). In FCFS, the aircraft’s flight plans get optimized in order of their

scheduled arrival times. FCFS is straightforward and favoured by airlines for its

fairness and by ATC for its simplicity that puts little demands on ATC workloads.

Note that contrary to the typical aircraft landing algorithm, the minimum time

separation between two landing aircrafts for safety purpose is not considered in
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Algorithm 3.1 Pseudo Code of Arrival-Departure Integration in TeA-ATOMS Sim-
ulation

ArrivalFlightPlans; DepartureFlightPlans; GroundEvents; AirRecords;
GroundRecords; FlightQueue;

FlightPlans = ArrivalFlightPlans
⋃

DepartureFlightPlans;

t = 0;

while (FlightPlans
⋃

FlightQueue is not empty) do

for each flight in FlightPlans do
if flight is active then

FlightPlans = FlightPlans - flight;
FlightQueue = FlightQueue + flight;

end if
end for

FlightQueue = Sorting( FlightQueue);

firstflight = QueueManager( FlightQueue);

if ETA(firstflight) <= t then
if firstflight is arrival then

firstflight = ArrivalManager (firstflight);
else

firstflight = DepartureManager (firstflight);
end if
if RouteLocked (firstflight) then

Update (AirRecords);
Update (GroundRecords);
FlightQueue = FlightQueue - firstflight;

else
UpdateETA (firstflight);
FlightQueue = Sorting (FlightQueue);

end if
end if

t ++;

end while
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the FCFS algorithm. The reason are twofold: firstly, to integrate the arrival and

departure traffic, the Queue Manager has to produce a combined sequence of both

arrival and departure flights; secondly, different flights will pass through different

resources (OM points for arrivals and gates for departures). This safety separation

issue will be taken care of in the following section (3.4.4).

3.4.4 Occupancy Time

As one of those elements in a piece of Air Resource Record or Ground Resource

Record, the occupancy time indicates how long it takes for an arrival or departure

aircraft to pass through a resource. A time window is employed to block the resource

for a specific time interval so as to no other aircraft can access to the same resource.

For the simplicity, it is assumed that the occupancy time for aircraft staying at

each resource is solely based on the type of the aircraft and has same value for air

resources as well as ground ones.

The FAA divides aircraft into three weight classes, based on the maximum

take-off weight capability. These classes are:

1. Heavy Aircraft are capable of having a maximum takeoff weight of 255,000 lbs

or more.

2. Large Aircraft can have more than 41,000 lbs and up to 255,000 lbs maximum

takeoff weight.

3. Small Aircraft are incapable of carrying more than 41,000 lbs takeoff weight.

A matrix of the minimum time window is shown in Table 3.1, based on the three

category system utilized in todays system.

3.4.5 Parameter Source

The parameters used during the modelling process are discussed below:

Wenjing Zhao November 30, 2012



CHAPTER 3. PROPOSED INTEGRATED TEA SYSTEM 76

Table 3.1: Time window for different aircraft category

Aircraft Category Time Window (sec)

Heavy 120
Large 90
Small 60

• Arrival Ground Network, Domestic section of Sydney Airport, Departure Ground

Network, Domestic section of Sydney Airport, STARs Network, All STAR way

points, SIDs Network, and All SID way points are from Air Services Australia

(2004).

• STAR or SID Way Point Occupancy Capacity is 1. A natural value since two

aircraft cannot pass through the same STAR or SID node at the same time.

• Runway Occupancy Capacity is 1. A typical value used in the literature (Got-

teland et al., 2001).

• Taxiway Occupancy Capacity is 1. Different values used in the literature such

as “One aircraft per Taxiway”, “many aircraft per Taxiway separated by 60

m”, and “One aircraft per Taxiway segment”.

• Gate Occupancy Capacity is 1. A natural value since two aircrafts cannot

dock at the same gate at the same time.

• Occupancy Time of Runway is 120, 90, and 60 sec for heavy, medium and light

aircraft respectively. The occupancy time of runway depends on the length of

runway and several other factors. This is a user-defined parameter which can

be adopted to different values. One example of values used in the literaturep

Gotteland et al. (2001) is: 180, 120, and 60 sec for heavy, medium and light

aircraft respectively.

• Hold Pattern is 60 secs. There are four types of typical hold patterns:

1. Full Circle (360 degrees turn): With 3 deg/sec rate of turn (source: Eu-

rocontrol’s Aircraft Database) aircraft takes 120 secs.
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2. One Half Circle Turn (180 degree turn): With 3 deg/sec rate of turn

(source: Eurocontrol’s Aircraft Database) aircraft takes 60 secs.

3. Two Half Circle Turns (180 deg + 180 deg): With 3 deg/sec rate of turn

(source: Eurocontrol’s Aircraft Database) aircraft takes 120 secs.

4. Path Extension (ATC Manoeuvres): Depends upon the path elongation

(can be from 20 secs (metering time matching) in terminal areas to 2 hrs

enroute (bad weather)).

• Connection between FAFs and Runway in Dynamic CDA Procedure assumes

that any FAF point has access to any runway similar to Alam et al. (2011).

• The error between aircraft leaving the gate and arriving at the runway is not

considered in this thesis.

• Connection between Exit Points of STARs Network and Runway in Fixed

STARs Procedure assumes that any exit points of STARs network has access to

any runway. Every STAR may have a specific runway assigned to it. However,

if the STAR route is designated as RNAV (area navigation) route. Then that

means after last point in STAR route, ATC can vector the aircraft to any

runway. Therefore, we have made the assumption: any exit points of STARs

network has access to any runway.

• Minimum Time Separation between Landing or Departing Aircrafts is taken

as the same value for Occupancy Time of Taxiway and Occupancy Time of

Gate as a natural way to stress-test the system. Normally time at a Gate

is large but with Stands and Aprons, the flow is larger than the number of

available gates.

3.4.6 Arrival Manager

Figure 6.5 presents the procedural flowchart for the Arrival Manager for which

the operational details of implementing the dynamic CDA or fixed STARs & SIDs

are as follows.
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Figure 3.10: Arrival Manager
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The Arrival Manager starts from generating the air route for arrivals in transi-

tion airspace. Firstly, an entry point of the air route which is closest to the aircraft’s

current physical position and needs minimum variability in its heading is chosen for

the arrival. Then the estimated time of arrival (ETA) to this entry point is computed

to check whether it is open or closed at the ETA according to the Airspace Resource

Records. If yes, a full enumeration of the search space is performed to generate all

possible routes from this entry point to the final point of the air route according

to the airspace model, followed by eliminating those links that violate the aircraft

performance constraints derived from Eurocontrol’s Aircraft Database (BADA); if

no, the next entry point which meets the objectives (closest distance and minimum

variability in heading) is selected, followed by computing the ETA, checking whether

the entry point is available at the ETA according to the Airspace Resource Records

and generating all possible routes again. After searching, if there is no available

entry point, the arrival has to be delayed (delay process), either by putting it into a

HOLD pattern (adding a delay of 60 seconds) or reducing its speed by 20 knots if the

aircraft’s performance allows. Considering the ATC priority (by calculating the fuel

and distance values) for each air route, we identify a set of non-dominated solution

air routes based on the air model. (The concept of ”set of non-dominated solutions”

is generally used to describe a set of solutions of which any solution is optimal in

the sense that no improvement can be made on an objective without degradation of

at least another objective. None of the solutions in the set is absolutely better than

any other; thereby anyone of them is not dominated by any other.) By updating

the ETA in the air route, we check whether all the way points in the air route are

available at their ETA times by checking the Airspace Resource Records. The first

approved air route is selected and all the way points in this route are blocked for

a time window based on the aircraft type (as shown in Table 3.1), and their ETAs

and occupancy times are recorded in the Airspace Resource Records. This ensures

that no two flights (arrivals or departures) occupy the same way point in a given

time window. If no air route is approved, the arrival needs to find a next available

entry point which meets the objectives. Now, we start to process the ground route
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which is pre-defined in the flight plan. The ETA is updated for each way point on

the ground according to the designated ground route. In line with the events table

and Ground Resource Records Table, if any ground way point (runway, taxiway or

gate) is unavailable due to a certain ground event or is simply occupied by another

aircraft, the aim is to meet the designated ground route while minimizing changes

to the existing route. If there is no possible way of leading an arrival from its as-

signed runway to its assigned gate, an alternative gate is selected. If the runway is

completely closed, the search is performed using the next available runway and the

aircraft’s ground route is reassigned (if there is another possible ground route) by

searching through the ground resource network as shown in Figure 3.6. The ETA

for each ground resource is updated, each resource is blocked for a time window

based on the aircraft type (as shown in Table 3.1) and the Ground Resource Records

Table is updated accordingly. However, if there is no available ground route, the

arrival aircraft has to find a next available entry point to the TeA which meets the

objectives and the last record in the Airspace Resource Records is removed. In the

end, the available air and ground routes are combined as the full arrival route for

this flight.

The difference between dynamic CDA and fixed STARs operations lies mainly

in the air-route generation part. The dynamic CDA trajectory generation is based

on the transition airspace model in Figure 3.1, while STAR route is generated by

searching through the STARs network in Figure 3.4. It is assumed that ends of all

air routes (final approach fixes) have accesses to any runway.

3.4.7 Departure Manager

Figure 3.11 presents the procedural flowchart for the Departure Manager for

which the operational details implementing the dynamic CAD or fixed STARs &

SIDs are as follows.

The Departure Manager starts from generating the ground route for departures

in the airport. Firstly, we analyze the ground route which is pre-defined in the
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Figure 3.11: Departure Manager
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flight plan and update the ETA for each way point on the ground according to

the scheduled ground route. In line with the events table and Ground Resource

Records Table, if any ground way point is unavailable due to a certain ground event

or is simply occupied by another aircraft, the aim is to meet the scheduled ground

route while minimizing changes to the existing route. If there is no possible way

leading a departure from its assigned gate to its assigned runway, an alternative

runway is selected and the aircraft ground route is reassigned (if there is another

possible ground route) by searching through the ground resource network as shown

in Figure 3.7. The ETA for each ground resource is updated, each resource is

blocked for a time window based on the aircraft type (as shown in Table 3.1) and

the Ground Resource Records Table is updated accordingly. However, if there is no

available ground route, the departure aircraft has to be delayed by waiting at the

gate for 60 seconds (delay process). Then, the air route in the transition airspace is

processed. An entry point which is closest to the aircraft’s taking-off point is chosen

for the departure. The ETA to this entry point is computed to check whether it is

open or closed at the ETA according to the Airspace Resource Records. If yes, a full

enumeration of the search space is performed to generate all possible routes from

this entry point to the final point of the air route, followed by eliminating those

routes that violate the aircraft performance constraints derived from BADA; if no,

the next entry point which meets the objective (closest distance) is selected and is

followed by computing the ETA, checking whether the entry point is available at the

ETA according to the Airspace Resource Records and generating all possible routes

again. After searching, if there is no available entry point, the departure needs to

find another possible ground route. Considering the ATC priority (by calculating

the fuel and distance values) for each route, we identify a set of non-dominated

solution CAD routes based on the transition airspace model. By updating the ETA

in the air route, we check if all the way points in this air route are available at

their ETA times by checking the Airspace Resource Records. The first approved

CAD route is selected and all the way points in this route are blocked for a time

duration based on the aircraft type (as shown in Table 3.1), and their ETAs and

Wenjing Zhao November 30, 2012



CHAPTER 3. PROPOSED INTEGRATED TEA SYSTEM 83

occupancy times are recorded in the Airspace Resource Records. This ensures that

no two flights (arrivals or departures) occupy the same way point in a given time

window. If no air route is approved, the departure needs to find another possible

ground route. Finally, the available ground and air routes are combined as the full

departure route for this flight.

For Departure Manager, the dynamic CDA and fixed STARs operations differ

with each other mainly in the air-route generation part. The dynamic CDA trajec-

tory generation is based on the transition airspace model in Figure 3.1, while SID

route is generated by searching through the SIDs network in Figure 3.5.

The delay time (60 seconds) in Section 3.4.6 and 3.4.7 for a delay process is a

user defined parameter and can be experimented with different values. A different

delay time will not affect our relative analysis to different scenarios in the following

Chapter (4).

3.4.8 Arrival-Departure Integration

When applying mixed mode operations at an airport, an appropriate arrival-

departure integration (ADI) concept must consider the overall traffic situation. Thus

the concept must provide a good compromise between the needs of air and ground

resources for the arrival traffic on one hand and those for departure traffic on the

other.

The coordination concept developed here (as Figure 3.12) takes into account

both the arrival traffic situation and the departure situation in the TeA airspace and

on the ground. The management of the arrival-departure integration is organized

in a centralized manner. With the help of the shared information about the air and

ground resources availability, the ADI concept allows the dynamic coordination of an

arbitrary arrival and departure manager. For the need of the coordination, the ADI

must provide sufficient and timely information exchange and the communication

between the connected components is demonstrated in Figure 3.13.

Wenjing Zhao November 30, 2012



CHAPTER 3. PROPOSED INTEGRATED TEA SYSTEM 84

Arrival

Manager

Departure

Manager

Queue Manager

Airspace

Resource

Records

Ground

Resource 

Records

Figure 3.12: Architecture for Arrival-Departure Integration Concept

Airspace 

Resource 

Records

Ground 

Resource

Records

Queue Manager

Departure 

Manager
Arrival

Manager

Departure
flight plan

Delayed
departure

flight plan
Arri

val fli
ght pla

n

Dela
yed

arri
val fli

ght pla
n

Planed way point in TMA 

airspace and estimated time 

to reach it

Availability of planed 

way point in TMA airspace 

and modified  estimated time

Availability of planed 

way point in TMA airspace 

and modified  estimated time

Planed way point in TMA 

airspace and estimated time 

to reach it

Planed way point on ground 

and estimated time to reach it

Availability of planed 

way point on ground 

and modified  estimated time

Availability of planed 

way point on ground 

and modified  estimated time

Planed way point on ground 

and estimated time to reach it

Figure 3.13: Information Exchange between the Connected Components

Wenjing Zhao November 30, 2012



CHAPTER 3. PROPOSED INTEGRATED TEA SYSTEM 85

3.5 Chapter Summary

In this chapter, an air traffic simulation system with a novel representation of an

integrated TeA, considering air-ground collaboration and arrival-departure coopera-

tion, is presented for a system-level understanding of integrated TeA concepts. This

simulation environment provides more insight into complex interactions of various

TeA subsystems and pave the way for developing a simulation-based computational

environment, in order to evaluate advanced TeA airspace concepts and understand

TeA system vulnerabilities in the next chapter.

To be specific, in this chapter we have presented the design, architecture and

various functionalities of the integrated TeA system. The inputs and outputs of

this system are also shown. Air- and ground-side resources modelling is explained

and validated. Arrivals and departures integration is illustrated. Two types of

ATM procedures: the present day’s arrival and departure procedures (STARs and

SIDs) and an advanced ATM concept known as dynamic CDA are modeled and

implemented. Finally queue manager, arrival manager and departure manager for

flight management in the integrated TeA are presented.
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Chapter 4

Co-Evolutionary Computational

Red Teaming

The research question that needs to be resolved in this chapter is: How to eval-

uate advanced TeA airspace concepts in the integrated TeA system and understand

system-level vulnerabilities? In the previous chapter, we developed an integrated

TeA system which can provide a simulation environment for co-operating the arrivals

and departures, while considering the interdependency between the traffic distribu-

tion and the dynamics of ground resources. Two TeA airspace models – dynamic

CDA and fixed STARs/SIDs – were embedded in the simulator. In this chapter,

the first objective is to provide quantitative evidences that, when implemented in

the integrated TeA, dynamic CDA model is advanced than fixed STARs and SIDs

model, and the second objective is to understand system-level vulnerabilities in the

integrated TeA.

We propose a methodology using the Computational Red Teaming (CRT)

framework to identify ground-air network bottlenecks by exploring areas of vulner-

ability in the integrated TeA. The search engine in CRT relies on single-objective

co-operative co-evolutionary search which evolves reciprocal interaction of traffic

distributions and ground events (including runways, taxiways and gates). These

interactions are considered from the perspective of identifying inefficiencies, while
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considering the integration of arrival and departure operations. By evaluating these

interactions, we are also able to identify “improvement opportunities” in the im-

plementation of two different TeA airspace concepts and, thereby, understand and

work-around major bottlenecks which cause system inefficiencies. The advancement

of the dynamic CDA model over the fixed STARs and SIDs model in the worst

case can be captured quantitatively; thus facilitating later investigations into TeA

airspace configuration design based on the dynamic CDA model.

4.1 Overview of the Co-Operative Co-Evolutionary

Red Teaming

The scenario space of an integrated TeA comprises interweaving scenarios which

are correlated in time and space. As a result, causes and effects are networked and

the dynamics of system components become complex. This level of complexity ne-

cessitates a simulation-based approach and requires more sophisticated quantitative

approaches capable of analyzing the network of interdependencies and evaluating

system-level vulnerabilities (Abbass et al., 2009).

Traffic distributions (spatial and temporal) and constrained ground resources

(including runways, taxiways and gates) are two main entities which can significantly

influence the efficiency of the integrated TeA system. In order to identify the system-

level bottlenecks, it is primary to understand the interdependency between these two

elements. In addition, the air-side and ground-side subcomponents are highly co-

adapted as each subcomponent itself is changing and evolving, in an incorporated

TeA system. The performance evaluation of each subcomponent depends on the

reciprocal interactions with other components in the system. The change of context

can be well captured by a Co-evolutionary algorithm (CEA), which is a biologically-

inspired population-based search technique. Because CEA provides an effective

means of handling large and complex problems via problem decomposition, it seems

natural to use CEA in the problem domain where solutions can be evolved through
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co-adapted subcomponents interactions, rather than by hand tuning or pre-scripting

how scenarios should change.

The Co-evolutionary Computational Red Teaming (CCRT) proposed here is to

break a way from the classical approach of evolving one population of integrated TeA

scenarios in which the interactions between air traffic and ground events are already

pre-scripted as a simple CRT would do, and use Co-operative Co-evolutionary algo-

rithm (CoC) instead to separate them into two populations and make them co-evolve

with each other. Thus, the objective of the CoC algorithm in the CCRT framework

is to co-evolve increasingly complex air traffic and ground events scenarios so that

the integrated TeA can incur maximum failure (in terms of the evaluation metric –

total flight delay here).

4.2 Co-Evolutionary Computational Red Team-

ing Framework

When implementing the CCRT framework to understand system-level vulner-

abilities and evaluate advanced ATC concepts in the integrated TeA system, the

Blue Team is evidently the developed TeA simulation system under investigation,

representing the system’s objectives and interests. There are two teams: traffic

distributions (spatial and temporal) and constrained ground resources (including

runways, taxiways and gates), representing situations of risk which create vulnera-

bility in the system. Throughout the search method, their populations co-evolved

with each other, and their behavioral patterns are reproduced, towards the areas of

higher vulnerability.

We should note that, what matters in the CCRT is the characteristics of air

and ground event scenarios in the area of high vulnerability and how they interact.

As such, we are not interested in optimising per se. Our main interest is to use

co-evolutionary algorithm as a population-based method, guided by an appropriate

fitness function, to explore as many areas of bottlenecks as possible.
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Figure 4.1: Co-operative Co-evolutionary flowchart

4.2.1 Search Mechanism

The search engine employed in the CCRT is co-operative co-evolution tech-

nique. One of the simplest approaches for applying co-operative co-evolutionary

algorithms (CCAs) is to identify a natural decomposition of the environment (prob-

lem to be solved) into two components. Each component involves a species, such

that individuals in a given species represent potential components of the environ-

ment. Each species is evolved simultaneously in its own population, in isolation

from each other, and adapts to the environment through the repeated application

of EAs. To evaluate individuals from one species, collaborators are selected with

representatives (best individuals from each species) from each of the other species

to form a complete solution.

In our problem, there are two naturally decomposed species: air events (flight

traffic) and ground events (dynamically constrained ground resources). The chal-

lenge lies in how to identify and represent each species, provide an environment in

which they can interact and co-adapt, and apportion credit to them for their contri-

butions to the problem-solving activity such that their evolutions proceed without
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human involvement Potter and De Jong (2000a).

Figure 4.1 illustrates the co-operative co-evolutionary framework in which the

following two populations of partial solutions evolve together:

• flight traffic scenarios; and

• ground events scenarios.

Firstly, each population (flight and event) is initialized and random flight and

event scenarios are generated and encoded in the chromosome representation. Each

population is processed by selecting each individual and combining it with a ran-

domly selected member of the other population. These two-combined individuals

form a set of complete candidate solutions for a new population.

Secondly, each new population is evaluated in TeA-ATOMS one by one and the

fitness value is calculated and assigned back to the individual undergoing evaluation.

Once the entire population has been evaluated, the best individual(s) is selected

to be used in evaluating the individuals in the other population. Evolutionary

operators (mutation and crossover) are then applied to produce a new generation of

this population.

Thirdly, the entire process is repeated for the pre-determined number of gener-

ations, which is one of the parameters of the co-evolutionary algorithm.

4.2.2 Scenario Generation

Since our methodology focus on searching on problem spaces rather than so-

lution spaces, the problem chromosome is supposed to describe a circumstance or

a scenario that might actually occur. Therefore the scenario generation is primary

to automatically generate scenarios which represent a spectrum of events that can

affect the objectives. The initialized populations are realistic but not real data.

The chromosome representations of the traffic and ground scenarios are high level

descriptions of the problems domain; hence they could understand and capture the

impact of uncertainty in the problem space on objectives.
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Figure 4.2: Traffic chromosome design showing genomes which encode spatial and
temporal distributions for flight in scenarios.

4.2.2.1 Population Design of Flight Traffic Scenarios

To implement the interaction between arrivals and departures, we design a

2-dimensional chromosome to represent an individual in the flight population. In-

formation about the temporal and spatial distributions of flights in the airspace, the

aircraft type (light, medium, heavy) and the designated runway at the destination

airport are encoded in one chromosome. As shown in Figure 6.6, there are 12 genes

in each chromosome, with each gene containing two independent numbers, one for

arrivals and the other for departures. The gene values are represented as follows.

• Time (T) is the parameter for the inter-aircraft time distribution which varies

in a pre-defined time interval.

• σGA represents the selection probability of a flight activation point on the OM,

the value of which is selected uniformly from the interval [0, 1] and is not used

in departures.

• µ controls the distribution around the flight activation point [0, N] and is not

used in departures.

• (An) represents the three genes that determine the aircraft type (light, medium,

heavy) and it is uniformly selected from the interval [0, 1].

• Rn represents the six genes that determine the runway selection probability

and is uniformly selected from the interval [0, 1].
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T controls the activation time (temporal dimension) of a flight. The flight

activation times for two successive flights are based on the inter-aircraft time distri-

bution which is generated using a Poisson process with the value of T being derived

from a uniform random number generator in a pre-defined time interval ([45, 120]).

An inter-aircraft time distribution of 50 implies the next flight activation time is

Poisson-distributed with a mean of 50 seconds.

µ and σGA are the parameters which control the flight activation point (spa-

tial dimension). Activation point σ is a normal random variable constructed by a

standard normal random variable Z (as in Equation 4.2) with a specific mean µ

and variance σ2
db (as in Equation 4.3). µ is derived from a uniform random num-

ber generator among all activation points on the outermost circle (see Figure 3.8).

Based on the ‘3-sigma rule’, the standard deviation σdb is obtained from the selection

probability σGA and the mean µ (as in Equation 4.1). If N represents the maximum

number of activation points on the outer most circle, which is 103 in this work (see

Figure 3.8), the activation point σ of a flight is generated by the following equations.

σdb =
σGA ×min{N − µ, µ}

3
(4.1)

Z = Gaussian[0 1] (4.2)

σ = σdb × Z + µ (4.3)

We use the fitness proportionate selection (roulette-wheel) to select the aircraft

type and runway, according to An and Rn respectively. To evaluate this chromosome,

each representation needs to be transformed into a desired number (100 in this work)

of flight plans, representing a set of valid real-world inputs to a simulation environ-

ment. This is done in a decoder through the use of aircraft performance parameters,

the structure and characteristics of the airspace, and the airport configuration to

generate flight plans in a traffic scenario.
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Since we are studying a snapshot of the traffic situation in the integrated TeA

system, the statistical nature (temporal and spatial distribution) of the arrival and

departure traffic is modeled separately. Algorithm 4.1 demonstrates the procedure

of the decoder for arrival flights and algorithm 4.2 demonstrates that for departure

flights.

Algorithm 4.1 Pseudo Code of Decoder for Arrival Flights

Input:
T ; σGA; µ; Rn; An; ArrivalNetwork ;
Num: is the desired number for arrival flights;

ActivationTime = 60;

n = 0;

while (n < Num) do

ActivationTime = ActivationTime + Poisson(T );

while (σ < 0 or σ > 103 ) do

σdb = σGA×min{N−µ,µ}
3

Z = Gaussian[0 1]
ActivationPoint = σdb × Z + µ

end while

FlightType = RouletteSelection(An);
FlightRunway = RouletteSelection(Rn);
FlightTaxiway = AssignPath(ArrivalNetwork,FlightRunway);
FlightGate = AssignPath(ArrivalNetwork,FlightRunway);

n ++;

end while

4.2.2.2 Population Design of Ground Event Scenarios

An event population represents a set of event scenarios. Each scenario contains

10 constrained ground events. To encode an event scenario into a chromosome,

we first develop an ‘Event-Table’ data structure. All the ground resources (runway,

taxiway and gate) along with all the possible events that can be associated with them

are included as illustrated in Table 4.1. Each combination of a surface resource with

an event is given a unique event ID. For each resource, there are the following six
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Algorithm 4.2 Pseudo Code of Decoder for Departure Flights

Input:
T ; σGA; µ; Rn; An; DepartureNetwork ;
Num: is the desired number for departure flights;

ActivationTime = 60;

n = 0;

while (n < Num) do

ActivationTime = ActivationTime + Poisson(T );

FlightType = RouletteSelection(An);
FlightRunway = RouletteSelection(Rn);
FlightTaxiway = AssignPath(ArrivalNetwork,FlightRunway);
FlightGate = AssignPath(ArrivalNetwork,FlightRunway);

n ++;

end while

Table 4.1: Event-Table

Event ID Event Location Event Name
1 Runway 16R E1
2 Runway 16R E2
3 Runway 16R E3
... ... ...

377 Gate 40 E5
378 Gate 40 E6

possible events:

• E1: Resource unavailable for heavy and medium aircraft;

• E2: Resource unavailable for heavy and light aircraft;

• E3: Resource unavailable for heavy aircraft;

• E4: Resource unavailable for light aircraft;

• E5: Resource unavailable for medium aircraft; and

• E6: Resource unavailable for medium and light aircraft.
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Figure 4.3: Event chromosome design showing genomes which encode event ID,
event activation time and duration

Each individual (scenario) in the event population has 10 chromosome-blocks

each representing for 1 event, and each chromosome-block has 3 genes as illustrated

in Figure 4.3. The first gene in the chromosome-block is the event-ID which is

randomly sampled in the interval [0, 1]. Its value is then used in the decoding

process to select the event-ID value from the event table. The second gene is the

event-start-time which represents the activation time of this event. The third gene

is event-duration-time which is a duration for which the event will be active. The

event-start-time and event-duration-time are both randomly sampled in the interval

[0, 1] and then be used in the decoder to assign a real value in a pre-defined time

interval. Algorithm 4.3 demonstrates the procedure of the decoder for ground events.

As being illustrated in Figure 4.1, each event individual and each flight indi-

vidual has to be integrated to be a combined individual. This individual is then

decoded to 10 events and 100 flight plans which will be feed into the simulator

for evaluation. Thus for any flight scenario (100 flights) decoded from one flight

individual is related with one event scenario (10 events) decoded from one event

individual.

4.2.3 Fitness Function Design

The individual evaluation is based on the total number of delays for all flights,

both arrivals and departures which is a measure of the induced delay due to the

unavailability of air and ground resources. Since we attempt to discover the vul-

nerability of a TeA system, the co-evolutionary process seeks to maximize the total
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Algorithm 4.3 Pseudo Code of Decoder for Ground Events

Input:
Num: is the number of chromosome blocks;
ID : is the value of the event-ID gene;
ST : is the value of the event-start-time gene;
IntervalST : is the pre-defined time interval for event-start-time;
DT : is the value of the event-duration-time gene;
IntervalDT : is the pre-defined time interval for event-duration-time;
Event-Table: contains event ID, event location and event name;

n = 0;

while (n < Num) do

Length = LengthOfEvent-Table;
Index = ID × Length;
EventLocation = Event-Table(Index);
EventName = Event-Table(Index);
EventStartTime = ST × IntervalST ;
EventDurationTime = DT × IntervalDT ;

n ++;

end while

number of delays in the system by evolving combinations of air traffic distribution

and ground events which rank more highly (generated a higher number of delays)

in the co-evolutionary process.

A total arrival flight delay in a TeA system is defined as: the difference between

the ETA of a flight from its OM to the requested gate and its actual time of arrival

(ATA) at the actual gate from its respective OM (as in Equation 4.4).

A total departure flight delay in a TeA system is defined as: the difference

between the ETA of a flight from its requested gate to the OM and its ATA to the

assigned OM from its respective gate (see Equation 4.5).

The objective - flight delay is then calculated by averaging the summation of

the total numbers of arrival and departure flight delays by the number of flights in

a given scenario (see Equation 4.6).

TotalArrivalF lightDelay = [ΣM
i=1(ATAi − ETAi)]OMG (4.4)
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TotalDepartureF lightDelay = [ΣN
i=1(ATAi − ETAi)]GOM (4.5)

Delay =
αTotalArrivalF lightDelay + (1− α)TotalDepartureF lightDelay

M +N
(4.6)

where

• M = number of arrivals;

• N = number of departures;

• ATA = actual time of arrival;

• ETA = estimated time of arrival;

• OM = outer marker;

• G = gate; and

• α = weight factor used for arrival- and departure-related delays α ∈ (0, 1); in

this work, we make α = 0.5.

4.3 Experimental Design

4.3.1 Experimental Scenarios and Parameters

Though we use the Sydney airport as the base for site-model, our methodology

will be able to evaluate any advanced ATM concepts in the TeA. To accomplish the

purpose of identifying the vulnerability of the integrated TeA system and compare

the performance of dynamic CDA operations over fixed STARs and SIDs, we de-

signed the 2x3 repeated-measures Table 6.1 which yields the following six different

experimental scenarios.
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Table 4.2: Experimental Design

Fixed STARs & SIDs Dynamic CDA
Arrivals Only Fixed Arrivals dCDA Arrivals

Arrivals & Departures Fixed Mixed dCDA Mixed
Departures Only Fixed Departures dCDA Departures

• Scenario Fixed Arrivals consists of 100 arrival flights with fixed STARs as

there are no departures.

• Scenario Fixed Departures consists of 100 departure flights with fixed SIDs

as there are no arrivals.

• Scenario Fixed Mixed consists of 50 arrival flights and 50 departure flights

with fixed STARs and SIDs.

• Scenario dCDA Arrivals consists of 100 arrival flights using the dynamic

CDA as there are no departures.

• Scenario dCDA Departures consists of 100 departure flights using dynamic

CAD (derived from the dynamic CDA) as there are no arrivals.

• Scenario dCDA Mixed consists of 50 arrival flights using the dynamic CDA

and 50 departure flights using the dynamic CAD (derived from dynamic CDA).

The two populations (traffic scenarios and event scenarios) co-evolve co-operatively

and are represented by fixed-length real-valued genomes. The traffic scenario pop-

ulation size is 24. Each scenario consists of 100 flights in a time window of about 3

hours, either landing at, or taking off from, Sydney Airport. The pre-defined time

interval for activation-time-control (temporal distribution) parameter, T, is [45, 120]

seconds which means that all 100 flights are processed in about 3 hours. Parameter

µ, which controls the flight’s spatial distribution, is uniformly initialized around all

activation points on the outermost circle (as shown in Figure 3.8) which implies

that flights can come from any direction. The event scenario population size is

also 24 and each scenario consists of 10 events. The pre-defined time interval for
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the event-Start-Time is [0, 12000] seconds and that for the event-duration-time is

[0, 1800] which means each event can be encountered by all 100 flights and solved in

30 minutes.

We run each of the 6 experimental scenarios 30 times using different seeds and

apply tournament selection by elitism, single-point crossover with a probability of

1.0 and uniform mutation with a probability of 0.3. These parameters are chosen

carefully after a number of sample runs to make sure the methodology work well

and the best solutions do not change significantly in a reasonable time. We allow

a sufficient number of objective evaluations in each run for its evolution to become

stable (the best solution does not change significantly).

4.3.2 Measures and Metrics

4.3.2.1 Worst Case Analysis

Co-operative co-evolution is used as the search methodology for evolving com-

plex scenarios through incremental feedback from the simulation system. Firstly,

we evaluate whether this evolution procedure works efficiently. To explore the sys-

tem’s vulnerability, our approach is to analyze the scenarios according to the worst

case, that is, those with the highest delays. After ranking the fitness values of all

individuals in each population, we record the fitness data of the individual which

has the most significant overall delay. Then, we analyze the evolutionary progress

of this individual over all generations.

4.3.2.2 Efficiency of Dynamic CDA Model

As an advanced ATM procedure, the dynamic CDA is supposed to benefit the

TeA system through better management, sustained and improved system capacity

and minimized delays. However, if this new procedure is developed and assessed

focusing on only the transition airspace without considering its interaction with

ground resources/events, one cannot be sure the TeA system will derive maximum
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benefits from it in the real-world. By analyzing the highest total number of flight

delays at the end of an evolution (the same data recorded from the previous metric),

we determine how much real improvement can be achieved through implementing

the dynamic CDA in the worst case.

4.3.2.3 Air Traffic Flow Constraints

To evaluate the ground-air network vulnerability, system flow constraints and

their causalities in the arrival and departure processes, which are primarily respon-

sible for generating TeA system inefficiencies and delays, need to be identified.

First, we look at how the dynamics of constrained ground resources can affect

system capacity by causing higher number of flight delays (total delay analysis).

The goal of this analysis is to identify the airport ground component’s bottlenecks

which could cause higher TeA system delays. We record the number of total flight

delays by combining the TeA airspace and ground delays induced by dynamic ground

events happening at each ground resource.

Since the complex TeA system is characterized by being highly structured with

variations and involving multiple interactions among many different components, the

major delays and inefficiencies observed due to some downstream resources probably

propagate back and block the traffic flow at some upstream resources. For this

purpose, we analyze all the system’s resources, including those of the TeA airspace

and ground, to ascertain the frequencies of holding delays caused by each (holding

delay analysis).

In the above two analyses, the reason for a total delay/holding delay may be the

unavailability of a set of resources; for example, if we assume an aircraft is about to

be assigned to ‘Runway 07, Taxiway G, Taxiway B2, Gate 3 ’ at time ‘T1, T2, T3,

T4 ’, but Taxiway B2 and Gate 3 are blocked at T3 and T4, to avoid overstating

system delays, in this work, we record only the first resource – Taxiway B2 – as

being the one which induces the delay.
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4.3.2.4 Scenario Patterns with Higher Delays

In order to derive maximum benefits from the advanced dynamic CDA pro-

cedures and balance the capacity-demand of flight traffic with constrained surface

operations, we use a heuristic methodology to search in a large scenario’s search

space to find complex traffic patterns and constrained ground events which can

cause higher number of TeA delays in the presence of the advanced ATM proce-

dures. This analysis aims to demonstrate the relationships implicit in the scenario

patterns that lead to the higher delays.

Firstly, we look at how the spatial and temporal distributions affect the system’s

capacity by analyzing the spatial and temporal distribution parameters of the best

solutions in the last generations of each experimental scenario. Then, we calculate

the frequencies of each event appearing in the best solutions for each trial to look

at the constrained ground events which can cause higher TeA delays.

4.4 Results and Discussion

4.4.1 Worst Case Analysis

Figure 4.4, 4.5 and 4.6 show the progress in the total delays induced by the

best rerouting solutions over 100 generations averaged over all seeds. Despite some

fluctuations due to the inherent stochastic nature of EAs and the problem, the

fitness of the best solution does not change significantly. These figures reveal that,

for all experimental scenarios, co-operative co-evolution is capable of evolving ground

events for resources which can maximize delays.

4.4.2 Efficiency of Dynamic CDA Model

In Figure 4.4, 4.5 and 4.6, we can see the fitness values of the best individuals

which have the highest total number of delays at the end of the evolutions for

all experimental scenarios. We note that scenarios with mixed traffic (50 arrivals
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Figure 4.4: Delays induced by best individuals for Arrivals Only in each generation
averaged over 30 seeds (The figure on top for fixed STARs/SIDs and that on bottom
for dynamic CDA)
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and 50 departures) have lower flight delays than those with arrivals only (100) or

departures only (100). The reason is that, given the same time interval, ‘arrivals

only’ or ‘departures only’ over-stress the arrival or departure sub-systems compared

with ‘mixed traffic’ which can make use of the integration between them. However

in the dynamic CDA approach, arrivals and departures sharing the same airspace

model makes stress on this sub-system unreasonable. Our hypothesis is that different

scenarios cause different bottlenecks in the sub-systems of TeA system. Hence the

stress on airspace model in dynamic CDA is stressing on different sets of bottlenecks.

This hypothesis will be inspected by results in next section.

As can be seen, the best fitness values (highest overall flight delays) for all

cases using the dynamic CDA are significantly lower than for all those using the

fixed STARs and SIDs. This reveals that, for those scenarios which involve the

dynamically constrained ground resources, the new procedures – the dynamic CDA

– have considerable advantage over the existing operations – the fixed STARs and

SIDs. The main reason for this advantage is that, despite using the same ground

model and dealing with the same ground events, air route computations for flights

in the dynamic CDA scenarios are processed by searching in a much larger space

(104 + 83 + 62 + 41 + 20 = 310 artificial way points, as shown in Figure 3.1) than

the STAR and SID way points in the fixed STARs and SIDs scenarios (18 +15 =

32 STAR and SID way points, as shown in figures 3.4 and 3.5). In other words, the

greater flexibility of the dynamic CDA procedures is capable of improving a TeA

system’s efficiency.

Overall, the results provide support for the shift from current operations of con-

trolling aircraft along fixed route structures towards the more dynamic and flexible

management of flight trajectories with fewer ATC restrictions – the dynamic CDA.

It could address the local demand-capacity imbalance by providing the flexibility in

adjusting traffic flows in response to changing conditions and enable an air traffic

system to cope more effectively with local disruptions, such as constrained ground

events caused by unexpected bad weather.
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4.4.3 Major Air Traffic Flow Constraints
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Figure 4.7: Total flight delays caused by individual ground resources in best solutions
(individuals in last generation) for Arrivals Only averaged over all seeds (The figure
on top for fixed STARs/SIDs and that on bottom for dynamic CDA )

The total number of flight delays combining TeA airspace delays and ground

delays induced by dynamic ground events are recorded and presented in Figure

4.7, 4.8 and 4.9. The network on the surface represents the ground model used in

each experimental scenario; for instance, as the top graph in Figure 4.7 presents

results from the ‘fixed arrivals’ scenario, the network on its surface is the arrival

ground model. The data is collected from the best solutions (individuals in the last
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generation) averaged over all seeds. It can be seen that the ground resources which

encounter disturbance and contribute to the highest total number of flight delays

vary from trial to trial, which proves our earlier hypothesis in Section 4.4.2: different

scenarios cause different bottlenecks in the sub-systems of TeA system.

In the fixed STARs and SIDs case, the bottlenecks with ‘arrivals only’ are

taxiways B and G, and runway 07, with ‘mixed traffic’ taxiways B and B4 and

runway 34L, and with ‘departures only’ runways 16R and 34L and taxiway B1. For

the dynamic CDA case, the bottlenecks with ‘arrivals only’ are taxiways B, G and

C, with ‘mixed traffic’ taxiways B, C and B4, and with ‘departures only’ runways

16R and 34L and taxiway B10. These bottlenecks represent vulnerabilities of the

airport ground component. Disturbances occurring in these resources are more likely

to cause TeA system congestion and affect its efficiency. We note that taxiway B

contributes a large number of delays in most experimental scenarios due mainly to

it being a critical node resource in both the arrival and departure ground model

networks (Figure 3.6 and 3.7 respectively).

Figure 4.10, 4.11 and 4.12 show the holding delays caused by each resource of

individuals in the last (100th) generation. Apart from the ground resource model,

the air-side model (CDA model, STAR network, SID network) used in each experi-

mental scenario is projected on the surface; for instance, as the top graph in Figure

4.10 presents results from the ‘fixed arrivals’ scenario, the network on its surface

is the STAR and arrival ground network model. We can see that the bottleneck

resources contributing to the highest number of holding delays are different from

those obtained when we focused on the constrained ground resources independently

as shown in Figure 4.7, 4.8 and 4.9.

As shown in Figure 4.10, 4.11 and 4.12, when ATM operations in the TeA

airspace have insufficient flexibility using fixed terminal routes, taxiway B con-

tributes major delays when processing arrivals only since it is a critical node re-

source in the arrival ground model network (Figure 3.6). The majority of delays

are absorbed at the gates for both departures only and mixed traffic, one of the

main reasons being that a departing aircraft occupies its designated gate once it
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Figure 4.12: Holding delays caused by each air-side and ground-side resource in best
solutions (individuals in last generation) for Departures Only averaged over all seeds
(The figure on top for fixed STARs/SIDs and that on bottom for dynamic CDA)
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Table 4.3: Top three constrained resources from total delay analysis

Fixed STARs & SIDs Dynamic CDA

Arrivals Only B, G, 07 B, G, C

Arrivals & Departures B, 34L, B4 B, C, B4

Departures Only 16R, 34L, B1 16R, B10, 34L

Table 4.4: Top three constrained resources from holding delay analysis

Fixed STARs & SIDs Dynamic CDA

Arrivals Only B, MARLN, G (4, 22), (4, 19), (4, 20)

Arrivals & Departures G8, CORDO, G2 (4, 19), (4, 20), (4, 17)

Departures Only G31, G8, G54 (0, 8), (0, 7), G39

becomes active. Therefore, this gate remains unavailable until an acceptable ground

route starting from this gate is assigned to this aircraft. When the TeA airspace

has greater flexibility using the dynamic CDA, the air-side resources absorb more

delays than the ground resources and reduce system delays.

For comparison, a summary of the top three major constrained resources of

each experimental scenario in each analysis is presented in Table 4.3 and 4.4. One

interesting observation from these tables is that, when implementing interactions

between arrivals and departures, the ground bottleneck resources found previously

in the dynamic CDA case are taxiways B, C and B4 while those of their counter-

parts are wedge points (4,19), (4,20) and (4,17) which shift totally to resources in

the transition airspace. However, in the fixed STARs and SIDs case, the shifting is

not that thorough. The reason for this is that, under the STARs and SIDs proce-

dures, the arrival and departure paths are procedurally separated, unlike under the

dynamic CDA procedures in which arrivals and departures share and compete for

the same resources (the same set of artificial wedge points) in the transition airspace.

Therefore, heavy interactions between arrival and departure flows are also identified

in the terminal area in the dynamic CDA scenarios.

One of the main insights gained from the comparison of the above two analyses

Wenjing Zhao November 30, 2012



CHAPTER 4. CO-EVOLUTIONARY COMPUTATIONAL RED TEAMING 115

is the highly interactive nature of a TeA system’s components which indicates that,

when attempting to solve ATM issues, one cannot separate the air-side complex from

the ground-side complex, or divide the arrival process from the departure process.

Therefore, advanced ATM procedures should not be evaluated as stand-alone tools

that deal with each aspect without considering interactions from other parts of

the environment in which the system operates; this is one of the main problems

with current automation tools. Rather, newly developed technologies should be

integrated, in either a central or distributed fashion, in order to better manage,

sustain and improve a TeA system’s capacity and minimize delays.

Another interesting finding is that the shifting of major constrained resources

reveals the potential transfer of major delays in each system component – runways,

taxiway, gates, TeA airspace; for instance, gates are obviously a critical bottleneck

for the ‘fixed departures only’ scenario in the holding delay analysis since three major

constraint resources are gates G31, G8 and G54. However, in the ‘dCDA departures

only’ trial, only one of the top three major constraints is in the gates component

while wedge points in the TeA airspace tend to cause more constraints in the system.

To shed more light on this observation, we then look at the sources of constraints

in the TeA system’s components which could increase congestion. Figure 4.13 and

4.14 show the summarized number of total delays and holding delays for each system

component – runways, taxiways, gates and TeA airspace from all trials.

The summarized results from the total delay analysis explore how the dynam-

ics of constrained ground resources affect the total number of flight delays which

represent the TeA system’s efficiency. Figure 4.13 shows that, under either the fixed

STARs and SIDs or dynamic CDA conditions, the events happening in taxiways are

the major source of delays as long as the airport is not processing only the depar-

tures. For departures only, the gates contribute to the majority of total delays in

the TeA system under the dynamic CDA procedures while disturbances at the run-

ways cause major system congestion under the fixed STARs and SIDs procedures.

An observation gained from this comparison is that the current major congestion

in Sydney Airport’s TeA system (when arrivals and departures are processed con-
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Figure 4.13: Summarized delays caused by each sub-system: runways, taxiways and
gates (Figures depict data collected from Total Delay Analysis ; the figure on top
under the fixed STARs/SIDs condition and that on bottom under dynamic CDA
procedures)
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gates and TeA airspace (Figures depict data collected from Holding Delay Analysis ;
the figure on top under the fixed STARs/SIDs condition and that on bottom under
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currently) is caused by dynamic ground events existing in the taxiways which will

continue to be critically congested with the implementation of the dynamic CDA

procedures in the future. The main reason for this is that the taxiways component

contains some highly critical resources, as shown for taxiway B in Figure 4.7, 4.8

and 4.9.

The summarized results from the holding delay analysis explore the possible

bottlenecks in the entire TeA system which are the main contributors to system

congestion. Figure 4.14 reveals that, under the current TeA procedures, the gates

cause most of the holding delays either when processing departures only or handling

mixed traffic whereas, if there are only arrivals, the taxiways are the major contrib-

utors to holdings delays. On the other hand, under the dynamic CDA, of all the

airport components, the taxiways are the bottleneck contributing most to holding

delays when handling mixed traffic while the gates are the major constraint when

there are departing flights only. We can see that, using the current ATC procedures,

the traffic flow bottlenecks in Sydney Airport are the gates. However, if the dynamic

CDA is adopted in the future, the taxiways would become the major bottleneck in

terms of system capacity. We note that the dynamic CDA concepts will improve

the TeA system’s efficiency by absorbing delays from the airport’s ground resources

using a more flexible TeA airspace.

4.4.4 Scenario Patterns with Higher Delays

Figure 4.15 and 4.16 plot the spatial and temporal distribution parameters of

the best solutions in the last generations of each scenario. While the inter-arrival

times, activation points and distribution parameters are all uniformly initialized, at

the end of the co-evolutionary run, the population of rerouting strategies converges

to an inter-arrival time of [45, 65] seconds, and the activation points to 20±8 in the

‘dynamic CDA arrivals’ and ‘dynamic CDA mixed’ respectively. These parameter

values produce higher numbers of delays for the given traffic scenario and associ-

ated events than earlier generations. The results show that the flights which have
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Figure 4.15: The temporal distribution parameter of best solutions in last genera-
tions of each scenario (The figure on top plot temporal distribution parameter T for
Fixed scenario and the figure on bottom for dCDA scenario)
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Figure 4.16: The spatial distribution parameter of best solutions in last generations
of each scenario (The figure on top plot spatial distribution parameter µ for Fixed
scenario and the figure on bottom for dCDA scenario)
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average inter-arrival times of 50 seconds and which are spatially distributed around

the boundary between the I quadrant (north-east) and II quadrant (south-east) (see

Figure 3.8) of the search airspace can cause significant delays in the dynamic CDA

scenarios when processing either arrival traffic only or mixed traffic. However un-

der the current fixed STARs & SIDs operations, the inter-flight times of the best

solutions for ‘mixed traffic’ and ‘arrivals only’ trials are 110±10 seconds and the

activation points distributed mainly in the range of [0, 20] respectively (I quadrant

in Figure 3.8). Since spatial and temporal distribution parameters are not designed

to work in departure traffic (see Section 4.2.2.1), both parameters do not converge

for ‘departures only’ scenarios.
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Figure 4.17: Events in best solutions at end of co-evolutionary runs
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The calculated frequencies of each event appearing in the best solutions for

different trials are shown in Figure 4.17. It reveals that, although the events are

all uniformly initialized , at the end of the co-evolution, the population of rerouting

strategies encounters more E6 (resource unavailable for medium and light aircrafts)

in the ‘dCDA arrivals’ scenario, more E4 (resource unavailable for light aircraft) in

the ‘dCDA departures’ scenario, and more E6 and E4 in the ‘dCDA mixed’ scenario.

However, under the fixed STARs & SIDs procedures, E2 (resource unavailable for

heavy and light aircraft) and E4 appear more frequently in ‘arrivals only’, and E6

more frequently in both ‘mixed traffic’ and ‘departures only’. In short, events E6

and E4 are major contributors to delays under both ATM procedures.

4.5 Chapter Summary

In this chapter, a simulation-based co-evolutionary computational environment

is developed for evaluating advanced TeA airspace concepts and understanding the

TeA system vulnerabilities. A single-objective co-operative co-evolutionary algo-

rithm was used as the search engine to evolve the reciprocal interactions of arrivals

and departures using a shared ground-air network.

We conducted a series of computational experiments with different air traf-

fic distributions (both spatial and temporal), ground resource constraints and TeA

operational scenarios. The parameters impacting on the delay performances were co-

evolved with our synthetic model of a TeA system (TeA airspace, runways, taxiways

and gates). The results demonstrated the power of our methodology in evaluat-

ing vulnerabilities of the air-ground network with integrated arrival and departure

operations.

Our analysis identified the bottlenecks of the integrated TeA system and syn-

thesize an overall situational awareness picture that decision makers can utilize.

For instance, with the fixed STARs and SIDs model, the traffic flow bottlenecks in

Sydney Airport are the gates; however if the dynamic CDA model is adopted in the

future, the taxiways would become the major bottleneck in terms of system capacity;
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for mixed traffic with arrivals and departures, dynamic ground events which occur

in the taxiways can cause significant delays using either the fixed STARs and SIDs

or dynamic CDA concept. Our analysis suggested and demonstrated that, when

making effort to solve ATM issues, one cannot separate the air-side complex from

the ground-side complex, or divide the arrival process from the departure process.

The results indicated that, in the presence of constrained ground resources, the

dynamic CDA model was able to provide controller and airspace user benefits to

further improve the TeA system’s throughput capacity as well as to minimize flight

delays. The quantified performance evaluation increases decision maker’s confidence

to support this transition. The results also revealed that when the TeA airspace has

greater flexibility using the dynamic CDA, the air-side resources absorb more delays

than the ground resources and reduce system delays.

It is noted that some of conclusions are known, however their root causes are

not. The objective of this work is to provide a generic methodology for evaluation

and understanding, and while many conclusions may sound logical, the value of our

proposed methodology is to provide a set of quantitative evidences.
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Chapter 5

Multi-Objective Co-Operative

Co-Evolution

The research question that needs to be solved in this chapter is: How to design

an efficient multi-objective co-operative co-evolutionary algorithm which can co-

evolve solutions towards the efficient set of trade-offs effectively, while maintaining

diversity of the solution set? In the previous chapter, we presented a simulation-

based co-evolutionary computational environment (CRRT) in order to evaluate ad-

vanced TeA airspace concepts and understand the TeA system vulnerabilities. Al-

though the proposed CCRT was originally designed for single objective problem,

most ATM problems naturally involve multiple conflicting objectives, such as effi-

ciency versus safety.

Contrary to single-objective CEA, the multi-objective co-operative co-evolutionary

algorithm (MOCCA) does not have a single solution that optimizes all criteria con-

cerned, but a set of trade-off solutions, known as Pareto-optimal solutions. Since

none of the solutions in the Pareto-optimal set is absolutely better than any other,

anyone of them is an acceptable solution. Which solution should be chosen depends

on the decision-makers, preferences and various problem-related factors. Hence,

a decision-maker is typically interested in knowing as many Pareto-optimal solu-

tions as possible (Deb and Kalyanmoy, 2001). In this chapter, we propose a Multi-
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Objective Co-operative Co-evolutionary Algorithm (MOCCA) in order to tackle

multi-objective ATM issues. Two round of experiments are carried out to evaluate

the algorithm performance on benchmark test problems with respect to different

performance metrics. The results demonstrates that the proposed approach is ca-

pable of evolving solutions toward the true global Pareto-front more effectively and

maintaining a higher diversity of the solution set.

5.1 Multi-Objective Co-Operative Co-Evolution

Algorithm

The design of co-operative co-evolutionary algorithms for MO optimization is

challenged with respect to many issues that are caused by the interaction with the

MO optimization, such as individual evaluation (representative selection), fitness

(credit) assignment, incorporation of various elitist, niching strategies and selection

mechanisms.

5.1.1 Overview of CCEA by KC Tan

CCEA (Tan et al., 2004), an acronym for Co-operative Co-Evolutionary Al-

gorithm, is a kind of co-operative co-evolutionary algorithm particularly designed

for multi-objective optimization. It is the first CCEA approach that employs a

globalized perception of elitism: the non-dominated solutions found during the co-

evolution process, from any sub-population, are preserved in one external archive.

The global non-dominated archive helps the co-evolution mechanism work well in

multi-objective optimization. The external archive also serves as a comparison set in

the fitness assignment mechanism; and the second comparison indicator during the

tournament selection scheme. In addition, an extending operator was designed in

order to guide the co-evolutionary search to regions which were not explored enough.

After being introduced in (Tan et al., 2004), CCEA was compared with vari-
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ous MOEAs on more benchmark test problems, with respect to more performance

indicators in (Tan et al., 2006). It showed that the CCEA produced competitive

and robust results in finding the non-dominated solutions. As CCEA clearly out-

performed the other localized-elitism alternative methods, it is chosen as the basis

for the MOCCA that we are going to propose; and the point of reference in the

quantitative and qualitative performance evaluation that this work will carry out.

We give a brief summary of the algorithm here. The interested reader please

refer to (Tan et al., 2004, 2006) for a more detailed description.

CCEA assignm sub-populations form-parameter problem and each sub-population

optimizes only one parameter. Starting with m initialized sub-populations and an

empty external archive, the m sub-populations are evolved in a sequential way. The

following steps are performed in one evolution cycle. First, in order to evaluate an

individual in the evolving sub-population, the evaluated individual is combined with

representatives from other sub-populations to form a complete solution. Then, the

archive is updated based upon the evaluation results: if any member in the archive is

dominated by the evaluated individual, then the dominated member is replaced by

the evaluated solution. If the evaluated individual is non-dominated with all archive

members, it is added to the archive; when the size of the updated archive exceeds

a predefined limit, the archive member with the greatest niche count is replaced

by the evaluated solution. At the same time, the ranges of the objective space is

estimated from the renewed archive.

Afterwards, the evaluated individual will be assigned a rank and its niche count

in the normalized objective space will be obtained. The next step represents offspring

reproduction in sub-populations, by performing the genetic operations, consisting

of tournament selection (based on rank and niche count), uniform crossover, and

bit-flip mutation. Once an evolution cycle is completed, the least crowed archive

members are found and cloned to sub-populations. Until the terminate criterion is

met, the above steps are performed per iteration.

Although CCEA performed well due to the global archiving, dynamic sharing
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and extending operator, there is still room for improvement. In particular, we have

identified the following issues as potential weaknesses of CCEA:

Fitness assignment mechanism: The simple Pareto-based rank scheme applied

in CCEA levels an individual according to how many members in the external archive

dominating it. This mechanism leads to individuals dominated by the same archive

members have identical values for fitness. For instance in the case where all in-

dividuals in one sub-population are dominated by all solutions in the archive: all

sub-population members have the same rank regardless of the dominance relation

among themselves. As a consequence, the selective pressure decreases substantially

and in this particular case, we get too much exploration and not enough exploitation,

leading to reduce speed and efficiency of the stochastic search in the co-evolution.

Niching strategy : Although the dynamic fitness sharing method employed in

CCEA requires no prior knowledge of the optimal trade-off surface, it still involves

some user-defined parameters which can effect the efficiency of the algorithm. For

instance, as it will been seen in Section 5.2.1, the niche radius function in (Tan

et al., 2004) is different from the canonical dynamic sharing used in the author’s

subsequent work (Tan et al., 2006), leading to different results as shown in Figure

5.1, 5.2 and 5.3.

Archive updating scheme: The CCEA updates the external archive every time

after a solution is evaluated. However, until the whole population is evaluated and

the external archive is updated at the end of each evolution circle, the renewed

archive is only a subset of the global trade-off front. For instance, the archive

which is updated after the first sub-population is evaluated, does not cover the non-

dominated individuals which will be found in the other m−1 sub-populations; thus,

the most crowded archive member which has been eliminated in the first evolution

circle might turn out to be in a less populated region. It leads to a destructive loss of

valuable archive members. In addition, by using the dynamic sharing scheme, CCEA

can not guarantee the extreme solutions in the external archive are preserved, during

the archive truncation. The conservation of the extreme points in the updated non-

dominated set helps in obtaining a good spread of non-dominated solutions.
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5.1.2 Fitness Assignment

When an evolutionary algorithm is applied to multi-objective optimization, the

first issue needs to be addressed is: How to accomplish fitness assignment prop-

erly, in order to guide the search towards the Pareto-optimal front. Contrary to

single-objective optimization, multiobjective optimisation aims to optimize several

components of a vector of objective functions simultaneously. In CCEA, after a

complete solution is evaluated and mapped into an objective vector by the multiple

objective functions, this objective vector reflects how well the examined individual

co-operates with other subpopulations to produce good solutions. However, the

objective vector cannot be used as fitness in evolutionary algorithm directly, each

individual needs a single scalar fitness value so that reproduction operators can

proceed in the usual way.

Pareto-based fitness assignment proposed by Goldberg (1989) is the fist type

of fitness assignment method which explicitly uses Pareto dominance to determine

the reproduction probability of each individual. All non-dominated individuals are

assigned equal chance of reproduction (rank 1) and removed from contention. A

new set of non-dominated individuals from the remaining population are then found

and assigned rank 2, and so forth until the whole population is ranked.

Fonseca and Fleming (1993) proposed another popular Pareto-ranking scheme

where an individual’s rank is defined as the number of individuals in the population

by which it is dominated. Therefor, non-dominated individuals get the best rank

and dominated solutions are penalized based on the population density of the cor-

responding part of the trade-off surface. It is accepted that, comparing to the first

scheme, this method is easier to interpret and analyze mathematically (Fonseca and

Fleming, 1998).

Zitzler and Thiele (1999) improved Pareto-based approaches by introducing

an external archive, which is a separated, continuously updated population where

nondominated solutions are preserved externally. The archive is regarded as an

elitism mechanism and preserves the best solutions found so far. An individual’s
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fitness is then evaluated according to the number of solutions dominating it in the

external archive. This scheme results in the continuous improvement of quality of

the archive and ensures the convergence of evolutionary optimization.

As elaborated in (Zitzler et al., 2001), the truth that individuals which are

dominated by the same archive members have identical fitness values could decrease

the selection pressure substantially in some particular case. Therefor, Zitzler et al.

(2001) improved the fitness assignment in two ways: first, except for the number

of archive members dominating the evaluated individual, the number of population

members which dominate it is involved as well; second, they incorporated density

information by adopting the k-th nearest neighbor method. Comparing to their

previous work, this scheme distinguishes population solutions with different fitness

values more effectively.

5.1.3 Niching Strategy

Except for the selection pressure, there is another important issue in the evolu-

tion process that must be addressed: how to maintain population diversity so that

premature convergence can be prevented and an equally distributed trade-off front

can be achieved. It is related to the first issue: an increase in the selection pressure

possibly decreases the diversity of the population, and vice versa. It is important to

strike a balance between these two factors, especially in multi objective evolutionary

algorithm (MOEA) where a number of solutions with different trade-offs among the

multiple objectives need to be evolved simultaneously. Thus, a multiple-solution

preserving mechanism is required to avoid premature convergence, by maintaining

high quality diversity.

It has been widely accepted that a niching method in MOEA is able to form

and maintain multiple diverse solutions and preserve them for the entire duration

of the GA run. Niching induces restorative pressure (Horn et al., 1993) to balance

the convergence pressure of selection (Horn, 1997). Under the effect of niching, the

population of solutions is dynamically stable under the selection pressure.
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Fitness sharing was introduced by Goldberg and Richardson (1987) to prevent

genetic drift and to distribute the evolved population equally along the Pareto-

optimal front in the search space. The method creates sub-divisions in the objective

domain by degrading an individual fitness upon the existence of other individuals

in its neighborhood defined by a sharing distance. The niche count is calculated

by summing a sharing function over all members of the population, as defined in

Equation 5.1.

nci = ΣN
i=1sh(d(i, j)) (5.1)

where the distance d(i, j) represents the distance between individual i and j. The

sharing function is defined as

sh(d(i, j)) =

 1−
(
d(i,j)
σshare

)α
if d(i, j) < σshare

0 otherwise
(5.2)

where the parameter α is commonly set to 1 or 2.

As shown in Equation 5.2, the fitness sharing method involves a sharing pa-

rameter σshare, which specifies the neighborhood size in the objective space and

is named as niche radius. The parameter denotes the largest value of Euclidean

distance within which any two solutions share each others fitness. This parameter

is usually set by the user, although the size and shape of the objective landscape

cannot often be predefined.

Tan et al. (2003) propose a dynamic sharing method that is capable of adap-

tively computing the niche radius σshare to distribute the population evenly along

the Pareto-optimal front at each generation. As shown in Equation, the niche radius

is dynamically calculated based upon the population distribution at each generation.

σ
(n)
share = N1/(1−m) × d(n)

2
(5.3)

where σ
(n)
share is the niche radius at generation n in terms of the diameter d(n) and

the population size N . The diameter d(n) is the diameter of the hyper-sphere at

generation n and is often estimated by the average distance between the shortest
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and the longest possible diameter of the trade-off curve formed by the non-dominated

individuals in the objective space (Tan et al., 2003).

This method requires no prior knowledge of the optimal trade-off surface. More-

over, dynamically adopting the computation of niche radius is also more appropri-

ate and effective than the method of off-line estimation with pre-assumed objective

space, since the objective landscape may be changed any time along the evolution

process.

Deb et al. (2002) replace the fitness sharing method with a crowded-comparison

approach which does not require any user-defined parameter for maintaining diver-

sity along the nondominated front. Instead of niche count, this niching mechanism

requires the calculation of the average distance of two individuals on either side of

the interested individual in the objective space, in order to get an estimate of the

density of individuals surrounding the evaluated individual in the population. “The

crowding distance serves as an estimate of the perimeter of the cuboid formed by

using the nearest neighbors as the vertices. (Deb et al., 2002) ”

In the MOCC, a niching strategy is applied in two ways: for archive updating

to maintain the capacity and diversity of the archive; and for tournament selection

to break the tie in case two individuals have the same fitness values. When the

maximum archive size is reached, the most crowded archive members will be elim-

inated by a truncation method based on niche count. When two individuals are

compared in tournament selection, fitness values will be considered first followed by

niche count in order to break the tie, i.e. the one with less niche count wins in the

selection.
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5.2 Investigation I

5.2.1 Methods

In this section, the first round of investigation is designed to examine the po-

tential modifications of KC Tan’s CCEA from two aspects: the fitness assignment

mechanism and the niching strategy.

First, five fitness assignment methods are proposed to explore the potential

improvements of CCEA, which are described as follows.

1. F1: The fitness of each individual is assigned according to how many members

in the external archive dominate that individual, as implemented in (Tan et al.,

2004, 2006). The comparison set in the fitness assignment of individuals in

sub-populations is exclusively the updated external archive. This fitness value

partially reflects the distance between the objective vector of this individual

and the Pareto front.

F1i = Ni + 1 (5.4)

where Ni is the number of members in the external archive dominating the

individual i in the objective domain.

2. F2: The number of members in each sub-population dominate the evaluated

individual and those that are dominated by this individual are also considered

in the fitness assignment process. In this case, the comparison set is extended

to the combination of the updated external archive and the sub-population

that the evaluated individual comes from.

F2i = F1i + nia + nib (5.5)

where nia is the number of members in the sub-population dominating in-

dividual i in the objective space, and nib is those dominated by individual

i.
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3. F3: The individual fitness is defined exclusively based on number of members

in each sub-population dominating the evaluated individual and those that are

dominated by this individual. At this time, the comparison set is solely the

sub-population which the evaluated individual belongs to. This fitness value

reflects the dominance relationship between the evaluated individual and the

other members in its own sub-population.

F3i = nia + nib (5.6)

where nia is the number of members in the sub-population dominating the

individual i in the objective domain, and nib is that dominated by individual

i.

4. F4: The individual fitness is defined by the difference of the number of mem-

bers in the whole population and the archive dominating the examined individ-

ual and by those dominated by it. The comparison set for F4 is a combination

of the entire population and the updated external archive.

F4i = F1i +Nia +Nib (5.7)

where Nia is the number of members in the whole population dominating the

individual i in the objective domain, and Nib is that dominated by individual

i.

5. F5: The individual fitness is defined by the difference of the number of mem-

bers in the whole population dominating the examined individual and that of

those dominated by it. At this point, the comparison set is exclusively the

entire population.

F5i = Nia +Nib (5.8)

where Nia is the number of members in the whole population dominating the

individual i in the objective domain, and Nib is that dominated by individual

i.
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Then, we propose four niching strategies to investigate the possible improve-

ments of CCEA, which are described as follows.

1. N1: The first niching mechanism comes from Tan et al. (2004), where fitness

sharing is employed and the niche radius is dynamically estimated using the

archive at each generation, as in Equation 5.9.

σshare = 2/archive size (5.9)

The sharing function is defined as:

sh(d(i, j)) =


(

1− d(i,j)
σshare

)α
if d(i, j) < σshare

0 otherwise
(5.10)

where the parameter α is set to 2. And the niche count function is defined as

Equation 5.1.

2. N2: In dynamic sharing which is proposed by Tan et al. (2003), the sharing

radius is defined as in Equation 5.3 and the sharing function and niche count

function are calculated by Equation 5.2 and 5.1.

3. N3: Based on the dynamic sharing, the niche radius is defined as

σ
(n)
share = 2×N1/(1−m) × d(n) (5.11)

where σ
(n)
share is the niche radius at generation n in terms of the diameter d(n)

and the population size N . The diameter d(n) is calculated in the same way

as in dynamic sharing (Tan et al., 2003).

4. N4: In the crowding distance mechanism which is introduced by Deb et al.

(2002), all individuals are sorted according to each objective function value in

ascending order of magnitude. The boundary individuals (for each objective)

are always conserved by assigning them a maximum distance value. All the

other individuals are assigned a distance value equal to the absolute normalized
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difference in the objective values of nearest neighbors. Each objective function

is normalized before calculating the crowding distance.

To examine the effectiveness of each strategy on the CCEA from the above two

aspects, we design two sets of comparison experiment. The performance is compared

among strategies in each group. The first group is listed as follows.

1. P11: the CCEA algorithm with F1 and N1;

2. P21: the CCEA algorithm with F2 and N1;

3. P31: the CCEA algorithm with F3 and N1;

4. P41: the CCEA algorithm with F4 and N1;

5. P51: the CCEA algorithm with F5 and N1.

And the second group is listed as follows.

1. P11: the CCEA algorithm with F1 and N1;

2. P12: the CCEA algorithm with F1 and N2;

3. P13: the CCEA algorithm with F1 and N3;

4. P14: the CCEA algorithm with F1 and N4.

5.2.2 Test Problems

In order to assess the performance of the seven combined algorithms described

in the previous section, they will be validated by nine optimization test cases: the

test problems of ZDT1, ZDT2, ZDT3, ZDT4, ZDT5 and ZDT6 designed by (Zitzler

et al., 2000), and other test problems including FON (Fonseca and Fleming, 1995),

KUR (Kursawe, 1991) and DTLZ2 (Deb et al., 2002). These benchmark functions

are widely used in the MOEA community, such as (Zitzler et al., 2000; Garca-

Pedrajas et al., 2002; Iorio and Li, 2004; Dorronsoro et al., 2011). The reason of
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their popularity is that they involve characteristics which are required for examining

the performance of multi-objective optimization approaches in converging to the

Pareto front as well as maintaining population diversity. The features of the search

space in these functions are different from each other: e.g. ZDT1 involves a convex

Pareto front which is continuous and uniformly distributed, while ZDT4 has 219 local

Pareto fronts; instead of two objectives, the problem of DTLZ2 has high-dimensional

objective space (five is employed in this work). Mathematical definitions of these

test problems are listed as folows (Zitzler et al., 2000; Tan et al., 2006):

• ZDT1:

Minimize T (x) = (f1(x), f2(x)), where

f1(x) = x1

f2(x) = g(x2, ..., xm)h(f1(x), g(x2, ..., xm))

g(x2, ..., xm) = 1 + 9(Σm
i=2xi/(m− 1))

h(f1, g) = 1−

√
f1
g

subject to x = (x1, ..., xm),m = 30, xi ∈ [0, 1]. (5.12)

• ZDT2:

Minimize T (x) = (f1(x), f2(x)), where

f1(x) = x1

f2(x) = g(x2, ..., xm)h(f1(x), g(x2, ..., xm))

g(x2, ..., xm) = 1 + 9(Σm
i=2xi/(m− 1))

h(f1, g) = 1− (
f1
g

)2

subject to x = (x1, ..., xm),m = 30, xi ∈ [0, 1]. (5.13)
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• ZDT3:

Minimize T (x) = (f1(x), f2(x)), where

f1(x) = x1

f2(x) = g(x2, ..., xm)h(f1(x), g(x2, ..., xm))

g(x2, ..., xm) = 1 + 9(Σm
i=2xi/(m− 1))

h(f1, g) = 1−

√
f1
g
− (f1/g) sin(10πf1)

subject to x = (x1, ..., xm),m = 30, xi ∈ [0, 1]. (5.14)

• ZDT4:

Minimize T (x) = (f1(x), f2(x)), where

f1(x) = x1

f2(x) = g(x2, ..., xm)h(f1(x), g(x2, ..., xm))

g(x2, ..., xm) = 1 + 10(m− 1) + Σm
i=2(x

2
i − 10 cos(4πxi))

h(f1, g) = 1−

√
f1
g

subject to x = (x1, ..., xm),m = 10, xi ∈ [0, 1],

and x2, ..., xm ∈ [−5, 5]. (5.15)
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• ZDT5:

Minimize T (x) = (f1(x), f2(x)), where

f1(x) = 1 + u(x1)

f2(x) = g(x2, ..., xm)h(f1(x), g(x2, ..., xm))

g(x2, ..., xm) = Σm
i=2v(u(xi))

h(f1, g) = 1/f1

u(xi) gives the number of ones in the bit vector xi (unitation),

v(u(xi)) =

 2 + u(xi) if u(xi) < 5

1 if u(xi) = 5

subject to x = (x1, ..., xm),m = 11, x1 ∈ {0, 1}30 ,

and x2, ..., xm ∈ {0, 1}5 . (5.16)

• ZDT6:

Minimize T (x) = (f1(x), f2(x)), where

f1(x) = 1− exp(−4x1) sin6(6πx1)

f2(x) = g(x2, ..., xm)h(f1(x), g(x2, ..., xm))

g(x2, ..., xm) = 1 + 9((Σm
i=2xi)/(m− 1))0.25

h(f1, g) = 1− (
f1
g

)2

subject to x = (x1, ..., xm),m = 10, xi ∈ [0, 1]. (5.17)

• FON:

Minimize T (x) = (f1(x), f2(x)), where

f1(x) = 1− exp[−Σ8
i=1(xi − 1/

√
8)2]

f2(x) = 1− exp[−Σ8
i=1(xi + 1/

√
8)2]

subject to x = (x1, ..., x8), xi ∈ [−2, 2). (5.18)
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• KUR:

Minimize T (x) = (f1(x), f2(x)), where

f1(x) = Σ2
i=1[−10exp(−0.2

√
x2i + x2i+1)]

f2(x) = Σ3
i=1[|xi|0.8 + 5 sin(x3i )]

subject to x = (x1, x2, x3), xi ∈ [−5, 5]. (5.19)

• DTLZ2:

Minimize T (x) = (f1(x), f2(x), ..., fM(x)), where

f1(x) = (1 + g(xM)) cos(x1π/2) . . . cos(xM−1π/2)

f2(x) = (1 + g(xM)) cos(x1π/2) . . . sin(xM−1π/2)

...

fM(x) = (1 + g(xM)) sin(x1π/2)

g(xM) = Σxi∈xM (xi − 0.5)2

subject to xM = (xM , ..., xM+9),M = 5, xi ∈ [0, 1],

and i = 1, 2, ...,M + 9. (5.20)

5.2.3 Metrics of Performance

Unlike single-objective optimization problems, in multiobjective optimization

the evaluation of an algorithm has multiple dimensions. In general, we wish to

achieve closeness of the obtained non-dominated set to the Pareto-optimal front (we

call it convergence goal) and achieve reasonable level of spread in the obtained non-

dominated solutions (we call it diversity goal). Obviously, these two goals cannot be

measured adequately with one performance metric. Here, we use four quantitative

performance indicators, which are widely used in the MOEA literature.

The first metric is Generation Distance (GD), which is the average distance from

the resulting non-dominated solutions to the true Pareto-optimal front (Van Veld-
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huizen, 1999; Zitzler et al., 2000; Tan et al., 2004, 2006). Formally, it is defined

as in Equation (5.21), where n is the number of members in the obtained trade-off

solutions and di is the Euclidean distance (in objective space) between the ith solu-

tion and the nearest solution in the Pareto-optimal front. The smaller the value of

this metric, the better the convergence towards the Pareto-optimal front. When all

obtained solutions lie exactly on the Pareto-optimal front, this metric takes a value

of zero. GD reflects the exploitation ability of the MOEAs.

GD =

√∑n
i=1 di

2

n
(5.21)

The second metric Spacing (S) (Srinivas and Deb, 1994; Tan et al., 2004, 2006)

measures the solution distribution of achieved non-dominated solutions. Here, we

calculate the Euclidean distance di between consecutive solutions in the obtained

set of solutions. Thereafter, we calculate the average d̄ of these distances. Then we

use the following function to calculate the uniformity in the distribution:

S =

1
n

√∑n
i=1(di − d̄)2

d̄
(5.22)

where n is the number of members in the obtained trade-off solutions and d̄ =

1
n

∑n
i=1 di. The smaller the value of spacing is, the more evenly solutions in obtained

non-dominated solutions distribution. When all resulting solutions lie evenly long

the Pareto-optimal front, this metric takes a value of zero. Spacing reflects the

algorithm’s ability to maintain diversity.

The third metric is Maximum Spread (MS) (Zitzler et al., 2000; Tan et al., 2004,

2006), which measures how well the true Pareto front is covered by the resulting

non-dominated solutions. It is defined as follows,

MS =

√√√√ 1

m

m∑
i=1

{
min(fmaxi , Fmax

i )−max(fmini , Fmin
i )

Fmax
i − Fmin

i

}2

(5.23)
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where m is the number of objectives, fmaxi and fmini are respectively the maximum

and minimum of the ith objective in resulting non-dominated set; and Fmax
i and

Fmin
i are respectively the maximum and minimum of the ith objective in the true

Pareto front. When the obtained trade-off set covers the entire true Pareto front,

this metric takes a value of one. MS mirrors the MOEAs’ ability to explore the

spread of the non-dominated solutions.

The last metric is a volume-based metric – Hypervolume Ratio (HVR) (Van Veld-

huizen, 1999; Tan et al., 2004, 2006) – which is a ratio of the hypervolume of the

resulted non-dominated set and that of the true Pareto front. It is defines as follws,

HV R =
volume(

⋃N
i=1 vi)

volume(
⋃trueN
j=1 vj)

(5.24)

where N is the number of solutions in the achieved nondominated set and trueN is

that of members in Pareto front. Mathematically, for each solution i in the evalu-

ated non-dominated set, a hypercube is constructed with a reference point W and

the solution i as the diagonal corners of the hypercube. Simply, a W point can be

found by constructing a vector of the worst objective function values. Thereafter,

the hypervolume of the evaluated non-dominated set is a union of all hypercubes

constructed by the non-dominated solutions and the point W . The HVR is consid-

ered as the most appropriate scalar indicator since it “combines both the distance

of solutions (towards some utopian trade-off surface) and the spread of solutions

(Zitzler et al., 2001)” and can reduce the bias because of the normalization.

All these measurement criteria are calculated from the objective vectors of the

obtained solutions. According to the definition, no correlation among the first three

metrics while HVR generally correlates to all the other three metrics.

5.2.4 Simulation Results and Discussions

The performance is compared among strategies in each group based upon the

test problems described in Section 5.2.2. In order to guarantee a fair comparison, all
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runs considered are implemented with the same binary coding scheme of 30-bit per

decision variable, tournament selection, uniform crossover, and bit-flip mutation.

An exception is made for the discrete problem of ZDT5, where the first variable

is a 30-bit string while the rest of the variables are of 5-bit string according to

the problem definition. In the simulation, 30 independent runs with random initial

populations of each implementation are performed on each of the test problems in

order to study the statistical performance, such as consistency and robustness of the

algorithms. The number of generations for each simulation run is fixed as 200.

Figure 5.1, 5.2 and 5.3 summarize the simulation results of the algorithms for

each test problem with respect to each performance metric. The distribution of

simulation data for the 30 independent runs is represented in the box plot format to

visualize the distribution of simulation data. Each box plot represents the distribu-

tion of a sample set where a thick horizontal line within the box encodes the median,

while the upper and lower ends of the box are the upper and lower quartiles. Dashed

appendages illustrate the spread and shape of distribution and dots represent the

outside values.

The problems of ZDT1, ZDT2 and ZDT3 are relatively easy to solve according

to their definition functions. As shown in Figure 5.1, all fitness assignment methods

perform well except for F1 for GD. In terms of solution distribution, F2 and F3 have

better performance than F4 and F5 on spacing. The results show that F1 performs

poorly for both metrics of GD and spacing. It reveals that the comparison set in

the fitness assignment exclusively depending on the updated external archive does

not benefit the CCEA’s exploitation ability.

Although F1 partially reflects the distance between the objective vector of the

evaluated individual and the Pareto front, it can not handle the situation where

most or all of the individuals are dominated by same number of archive members.

F2, F3, F4 and F5 reflect the domination relation between the interested individual

and other population members. They effectively distinguish the “good” individuals

from normal ones, thus improve the ability of exploitation. Since P12, P13 and

P14 employ the same fitness assignment funciton – F1, they suffer in identifying
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Figure 5.1: Box plots for test problems ZDT1, ZDT2 and ZDT3 in Experiment I
with respect to the metrics of generation distance (GD), spacing (SP), maximum
spread (MS) and hypervolume ratio (HVR).
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Figure 5.2: Box plots for test problems ZDT4, ZDT5 and ZDT6 in Experiment I
with respect to the metrics of generation distance (GD), spacing (SP), maximum
spread (MS) and hypervolume ratio (HVR).
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Figure 5.3: Box plots for test problems FON, KUR and DTLZ2 in Experiment I
with respect to the metrics of generation distance (GD), spacing (SP), maximum
spread (MS) and hypervolume ratio (HVR).
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the individuals that approximate the true Pareto optimal front, leading to poor

performance on metrics of MS and HVR.

The problem ZDT4 has 219 local Pareto front which challenge the algorithm’s

ability to escape from local optima. Figure 5.2 shows that all examined approaches

manage to find the global Pareto front of the problem of ZDT4. The results demon-

strate that all fitness assignment methods and niching strategies are able to evolve

individuals towards the global Pareto front effectively for ZDT4. It is noticed that

N4 (crowding distance) helps the algorithm to cover the entire global Pareto front

excellent.

ZDT5 is the only discrete problem in the test suite. It is deceptive, i.e. most

search methods lead to a local Pareto front while the global Pareto front is isolated.

Figure 5.2 shows that all examined approaches manage to escape from the local

Pareto front of the problem of ZDT5. It is observed that F2, F3, F4 and F5 perform

well on GD, but poorly on MS and HVR. It reveals that an effective fitness assign-

ment mechanism solely can not make sure the solution distribution and diversity –

an efficient niching strategy is necessary for multi-objective optimization.

ZDT6 is a difficult problem to tackle by most MOEAs since it involves nonuni-

form distributed solutions. The F2, F3, F4 and F5 again perform better than F1,

which illustrates that those fitness mechanisms are capable of evolving individuals

towards the global Pareto front effectively. On the other hand, all of those niching

strategies are trapped at local optima and suffer in convergence towards the optimal

Pareto front for problem ZDT6.

There is a high interaction among the variables in FON and KUR, and every

variable has a family of optima. For the problem FON, all the comparing strategies

have good performance for the metrics of GD and spacing. In terms of MS and

HVR, P11, P21, P31, P41 and P51 perform similarly on the ability of exploring the

spread of non-dominated individuals since they employ the same niching strategy –

N1. For the problem of KUR, F2 and F3 perform excellent on GD, but poorly on

MS and HVR, while P2, P3 and P4 perform poorly on GD, but good on metrics of
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spacing and MS.

There are five objectives to optimize for the problem DTLZ2, which is used to

evaluate the performance in producing adequate pressure for driving the evolution of

individuals toward the large Pareto front in the high-dimensional objective domain.

Figure 5.3 shows that CCEA scales well with F1 and F2, while F4 and F5 suffer in

covering the entire global Pareto front well. Niching strategies N2, N3 and N4 work

worse than N1 on GD, but excellent in terms of MS.

Generally, F2, F3, F4 and F5 produce excellent performance evolving indi-

viduals towards the global Pareto front effectively and escape from deceptive local

optima. For the metric of spacing, F2 shows a distinct advantage over other fitness

assignment functions, which demonstrates its capability of affecting the CCEA with

respect to the accuracy as well as diversity, i.e. effectively identifying the individ-

uals that approximate the true Pareto optimal front. For the metric of maximum

spread and hyper volume ratio, F2 performs competitively in exploring the spread

of nondominated individuals in most of the test problem (e.g. ZDT1, ZDT2, ZDT3,

ZDT6), as shown in Figure 5.1 and 5.2. In brief, F2 is strongly competitive with

other fitness assignment methods.

As for niching strategies, there is not an obviously outstanding one according

to the results, i.e. although N4 produce excellent ability in exploring the spread

of nondominated individuals in ZDT3, FON and DTLZ2, its competitors perform

better than it in other test problem. Since it can not be concluded which niching

strategy is the best choice, another set of experiment is necessary.

5.3 Investigation II

5.3.1 Experimental Design

In order to distinguish the effectiveness of each niching strategy on the CCEA,

we design another set of comparison experiment, each of which employs the same
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fitness assignment function – F2, which is the best fitness assignment function found

in previous section.

1. P21: the CCEA algorithm with F2 and N1;

2. P22: the CCEA algorithm with F2 and N2;

3. P23: the CCEA algorithm with F2 and N3;

4. P24: the CCEA algorithm with F2 and N4.

5.3.2 Simulation Results and Discussions

As the first round of the experiment, the second round simulation is also im-

plemented based upon the nine benchmark test problems described in Section 5.2.2.

All runs considered are implemented in the same way as the first one: chromosome

coding, selection, crossover and mutation. Also, the number of generations in each

run is fixed as 200. Each algorithm runs 30 times on each test function so as to

study the statistical performance.

The box plots in Figure 5.4, 5.5 and 5.6 summarize the simulation results of

each algorithm on each test problem with respect to the performance metrics, as

described in Section 5.2.3. As a reference point, the CCEA with P11 (as in Section

5.2.1) is plotted in the figures as well for comparison.

The results shows that for almost all the test problems, P24 has the best perfor-

mance in terms of MS and HVR, implying that P24 has a strong ability to explore

the spread of non-dominated individuals and cover entire global Pareto front well.

The reason is that crowding distance scheme is capable of conserving the extreme

points in the Pareto set, leading to a good spread of non-dominated solutions. For

the metrics of GD and spacing, P24 performs well in most of the test problems,

which reflects that it is capable of evolving individuals toward the true global Pareto

front effectively and maintaining a high diversity of the solution set. In brief, the

combination of F2 and N4 is strongly competitive with other groups of strategies.
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Figure 5.4: Box plots for test problems ZDT1, ZDT2 and ZDT3 in Experiment II
with respect to the metrics of generation distance (GD), spacing (SP), maximum
spread (MS) and hypervolume ratio (HVR).
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Figure 5.5: Box plots for test problems ZDT4, ZDT5 and ZDT6 in Experiment II
with respect to the metrics of generation distance (GD), spacing (SP), maximum
spread (MS) and hypervolume ratio (HVR).
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Figure 5.6: Box plots for test problems FON, KUR and DTLZ2 in Experiment II
with respect to the metrics of generation distance (GD), spacing (SP), maximum
spread (MS) and hypervolume ratio (HVR).
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5.4 Proposed Multi-Objective Co-Operative Co-

Evolution

In this section, we will describe the proposed MOCCA which addresses the is-

sues discussed in Section 5.1.1. As shown in Algorithm 5.1, 5.2, the overall MOCCA

co-evolves as follows.

Starting with M initialized sub-populations and an empty external archive, the

following steps are performed in one evolution cycle, where each sub-population

is performed in a sequential way. First, two individuals are chosen from the sub-

population: the best individual (BI), which has the lowest fitness value and resides

in a less populated region, and a random individual (RI). In order to evaluate an

individual in the evolving sub-population, two types of co-operation are implemented

to produce two combined solutions. The first co-operation combines the evaluated

individual with the best representative from every other sub-population, while the

second co-operation combines the individual with a random individual from every

other sub-population.

The two combined solutions are then evaluated and unless solution of the first

co-operation is dominated by the solution of second co-operation, it is retained in

the choosing pool (CP ). After the entire population is evaluated and according

combined solutions are preserved in the CP , the nondominated solutions of CP

are selected and saved in the external archive A. Then, the archive members are

assigned the crowding distance (based on N4 as in Section 5.2.1). If the archive size

exceeds the predefined size N̄ , the members with less crowding distance value will

be eliminated.

The archive member with highest crowding distance value is copied to the sub-

populations, where each part of this member is cloned into its corresponding sub-

population. A fitness value is assigned to each population solution based on F2 as

the Function 5.4, and a crowding distance value is calculated according to N2.

The next step represents offspring reproduction in sub-populations, by perform-
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Algorithm 5.1 Multi-Objective Co-Operative Co-evolutionary Algorithm

Input: M (subpopulation number)
N (subpopulation size)
N̄ (external archive size)
T (maximum number of generations)

Output: A (external archive)

MOCCA Main Loop:

t = 0 ;
A = ∅ ; BP = ∅ ; RP = ∅ ; CP = ∅ ;

for i = 1, 2toM do

Initialize subpopulation P (i)t ;
BP = BP ∪RandomIndividual(P (i)t) ;
RP = RP ∪RandomIndividual(P (i)t) ;

end for

for i = 1, 2toM do

for j = 1, 2toN do

BI is a complete individual which combines representative j in P (i)t with
the best representatives from the other M − 1 subpopulations in BP ;

RI is a complete individual which combines representative j in P (i)t with
the random representatives from the other M − 1 subpopulations in RP ;

Evaluate {BI,RI};
CP = CP ∪Better{BI,RI};

end for

end for

A = NondominatedSet(CP ∪ A);

A = CrowdingDistance(A);

if Size(A) > N̄ then

ArchiveTruncation(A);
EI = the individual with largest crowding distance in A;

end if

for i = 1, 2toM do

Pt = ExtendingOperator(P (i)t );
Pt = CalculateFitness(P (i)t );
Pt = CalculateCrowdingDistance(P (i)t );

end for
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Algorithm 5.2 Continued: Multi-Objective Co-Operative Co-evolutionary Algo-
rithm

while (t < T ) do

t = t+ 1;
BP = ∅; RP = ∅; CP = ∅ ;

for i = 1, 2toM do

BP = BP ∪BestIndividual(P (i)t);
RP = RP ∪RandomIndividual(P (i)t);
P (i)t = TournamentSelction(P (i)t);
P (i)t = UniformCrossover(P (i)t);
P (i)t = Mutation(P (i)t);

end for

for i = 1, 2toM do

for j = 1, 2toN do

BI is a complete individual which combines representative j in P (i)t with
the best representatives from the other M − 1 subpopulations in BP ;

RI is a complete individual which combines representative j in P (i)t with
the random representatives from the other M − 1 subpopulations in RP ;

Evaluate {BI,RI};
CP = CP ∪Better{BI,RI};

end for

end for

A = NondominatedSet(CP ∪ A);

A = CrowdingDistance(A);

if Size(A) > N̄ then

ArchiveTruncation(A);
EI = the individual with largest crowding distance in A;

end if

for i = 1, 2toM do

Pt = ExtendingOperator(P (i)t );
Pt = CalculateFitness(P (i)t );
Pt = CalculateCrowdingDistance(P (i)t );

end for

end while
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ing the genetic operations, consisting of tournament selection (based on fitness value

and crowding distance), uniform crossover, and bit-flip mutation. Once an evolu-

tion cycle is completed, the least crowed archive members are found and cloned to

sub-populations. Until the terminate criterion is met, the above steps are performed

per iteration.

In contrast to CCEA, MOCCA uses a fitness assignment (F2 in Section 5.2.1)

strategy which reflects not only the dominance relation between an evaluated indi-

vidual and archive members, but also its dominance relation with other solutions in

its sub-population. This difference effectively avoids the situation that individuals

dominated by same archive members have identical fitness values.

Furthermore, the dynamic sharing niche count has been replaced by an al-

ternative niching method – crowding distance (N4 in Section 5.2.1) – which was

implemented in NSGA II (Deb et al., 2002). This scheme improve the CCEA in

two respects: 1) it requires no user-defined parameter, and 2) it prevents boundary

solutions being removed during archive truncation process.

In addition, the external archive is updated in a more global perception: in-

stead of renewing the archive every time after a complete solution is evaluated, the

archive is updated after the whole population members are evaluated, i.e., the non-

dominated individuals with less crowed neighborhood in the whole population will

be preserved in the trade-off set. In this way, the solutions which resides in less

populated regions of the global Pareto front are saved and the boundary solutions

in the non-dominated set could be conserved during the archive truncation.

5.5 Chapter Summary

A multi-objective co-operative co-evolutionary algorithm (MOCCA), which can

co-evolve solutions towards the efficient set of trade-offs effectively while maintaining

diversity of the solution set, is proposed in this chapter. Comparing to the CCEA

proposed by Tan et al. (2006), which is the most competitive existing co-operative
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co-evolutionary algorithm for multi-objective optimization, the presented MOCCA

involves an improved fitness assignment strategy which effectively avoids the situ-

ation that individuals dominated by same archive members have identical fitness

values; an enhanced niching strategy which requires no user-defined parameter and

prevents boundary solutions being removed during archive truncation process; and a

new globalized scheme for archiving updating so that the solutions which resides in

less populated regions of the global Pareto front are saved. After being validated on

various benchmark test cases on different performance metrics, results demonstrate

that the proposed approach is capable of evolving solutions towards the true global

Pareto-front more effectively while maintaining a higher diversity of the solution set,

comparing to CCEA.

After examined on benchmark test problems which are well known in the liter-

ature, in next chapter we will apply the proposed approach on a real-world problem

to complete the study.

Wenjing Zhao November 30, 2012





Chapter 6

TeA Airspace Design

The research question that needs to be resolved in this chapter is: How to

generate scenario-specific TeA airspace design strategies that are able to cope bet-

ter with ground events/uncertainties and produce prior trajectories to distribute

demand while maintaining aircraft safety?

In the integrated TeA simulator developed in Chapter 3, the evaluated dynamic

CDA model that has been proven to be superior is fixed, and it is assumed that the

positions of approaching aircrafts passing through their designated transition points

are deterministic. However, the variability in an aircraft’s position which can be

caused by several factors, such as weather and an aircraft’s envelope, is a character-

istic of ATM problems. Therefore, to judge on the quality of the TeA airspace design

strategies, the probabilistic nature of an aircraft’s position necessitates the inclusion

of a measure of collision risk with other aircrafts passing the neighbourhood of that

aircraft at the same time. Since the fixed TeA airspace model in dynamic CDA can

not handle such complexity, we introduce here the concept of TeA airspace design

for capacity-demand balancing including a measure of collision risks derived from

the probabilistic nature of aircraft’s performance. We consider in this chapter the

case where an aircraft’s position is a stochastic normally distributed variable.

The MOCCA proposed in the previous chapter is employed as the new search

engine in the CCRT framework proposed in Chapter 4. The multi-objective CCRT
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is then applied to generate scenario-specific TeA airspace design strategies that are

able to cope better with ground events/uncertainties and produce prior trajectories

to distribute demand while maintaining aircraft safety. By involving the interdepen-

dencies between constrained ground resources and air traffic, the airport and its TeA

airspace are collaborated as a whole system; and the output will be a fine trade off

between different local objectives – ground and air. The cooperation between ground

and air supports a systematic approach towards achieving system-level objectives

while designing TeA airspace configurations.

The multi-objective CCRT will be applied to generate scenario-specific terminal

airspace design strategies that are able to cope better with ground events/uncertainties

and produce prior trajectories to distribute demand while maintaining aircraft safety.

The multi-objective CCRT will provide an analyst with the trade-off between these

two ATC priorities - efficiency and safety; thus solutions can be selected based on

the level of criticality for meeting the demand.

6.1 Overview

The fundamental goal underlying the integrated TeA system for TeA airspace

design is to develop a simulation and modelling environment where a TeA airspace

design concept involving the collision risk dimension can be modeled, while con-

sidering the interdependencies between the traffic distributions and the dynamics

of ground resources. The main simulation engine of the proposed TeA system em-

braces an arrival manager which models the basic air traffic and ATM operational

features on the airport surface and the transition airspace surrounding it (e.g. TeA

airspace, waypoints, aircrafts and trajectory generation) that are essential for eval-

uating any air traffic concept. Other modules which implement queue management,

safety separation control are built around the core engine.

In ideal conditions, dynamic CDA trajectories are generated based on a fixed

TeA airspace model which is a set of five concentric cylinders and each cylinder

has certain number of wedges that represent transition points from one level to
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another. It is assumed that the positions of approaching aircrafts passing through

their designated transition points are deterministic. However, the variation between

aircraft’s assigned route and actual trajectories is a characteristic of ATM problems.

The route followed by a flight differs from the desired or ideal route due to a variety

of reasons such as uncertainty in aircraft performance, navigation system error or

flight technical error (MITRE CAASD, 2007). Therefore, to judge on the quality

of the TeA airspace configuration strategy for a traffic scenario, the probabilistic

nature of an aircraft’s position necessitates the inclusion of a measure of collision

risk with other aircrafts passing the neighbourhood of that aircraft at the same

time. Since the fixed TA model in dynamic CDA is not designed to handle such

complexity, we introduce here the concept of dynamic airspace design for future

transition airspaces. We consider in this work the case where an aircraft’s position

is a stochastic normally distributed variable.

The idea of this dynamic design is to evolve a series of static designs that

meet different traffic distributions and allow for dynamic CDA. Each static design

can then be used to meet a specific set of circumstances; allowing the authority to

switch between slides based on demand to maximise system level efficiency while

minimising risk.

It is well noted that the airport capacity constraints are major restriction for

terminal airspace capacity (Leiden et al., 2007); thus a disturbance in the ground

resources could influences the air traffic efficiency in the TeA airspace. Constrained

ground events is a concept which involves disruptions to the availability of any

ground resources, including runways, taxiways and gates. The unexcepted disrup-

tions may be caused by convective weather or equipment break-down. For instance,

snow on a taxiway can lead to increased taxiway occupancy time or even temporary

taxiway closure; a broken lighting installation in the runway light systems will affect

the routine runway operations in the low visibility situations (Nolan, 2004). The

constrained ground operations potentially leads to surface congestion in the airport,

which could propagate elsewhere in the TeA environment and cause system-level

inefficiency. As a result, the complex interaction between constrained ground events
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and arrival traffic scenarios will affect the system capacity and arrival delays.

The integrated TeA simulator developed in Chapter 3 is modified and extended

to involve the TeA airspace design concept and collision risks calculation. There are

some overlaps of these two simulators: both of them share similar ground resource

modelling for arrivals, data structure for ground resource records and some proce-

dures: queue manager, occupancy time and safety separation. For simplicity, we

exclude those components which are alike with previous simulator.

Although in this chapter, we only implement the TeA airspace design concept

with given arrival traffic scenarios in an air-ground integration manner, and do

not analyze the coupling of arrival and departure; nonetheless, as demonstrated

in the previous simulator developed in Chapter 3, our simulation environment is

generic and easily applied to the problem of synthesizing arrival and departure traffic

simultaneously. The integration in this chapter is on the Ground-Air Collaboration

Level as in Figure 2.4 which is lower level, yet it can practically assist TeA terminal

routes designers who are currently working on defining and developing pre-defined

terminal arrival trajectories.

6.2 Input/Output

The input to the TeA System for airspace design consists of both static and

random factors. The static factors includes ground resource modelling and capacity

for each resource and the dynamic factors contains TeA airspace design strategy, the

time and space context of arrival flight plans and ground events. Human factors such

as load on ATC controller are excluded from explicit consideration. The detailed

information that each item contains is listed as follows.

• Ground Resource Modelling: is the ground network representing the airport

ground resources (runways, taxiways and gates) serving arrival traffic which is

the same model as in Figure 3.6;

• Resource Capacity: is a user defined factor and in this work, it is assumed

Wenjing Zhao November 30, 2012



CHAPTER 6. TEA AIRSPACE DESIGN 163

that each resource has the capacity of 1;

• TeA Airspace Design Strategy: is the TeA airspace model which is used to

generate terminal trajectories for arrivals;

• Arrival Flight Plan: consists of Aircraft Name, Aircraft Type, Estimated Time

of Activated, Activation Point, Outer Marker Point, Designated Runway, Ar-

ray of Designated Taxiways, Designated Gate;and

• Ground Event: consists of Event Location, Event Name, Start Time, Duration.

The output from the TeA System for airspace design is modified arrival flight

plans, total flight delay value and collision risk, explained as follows.

• Modified Arrival Flight Plan: contains Aircraft Name, Aircraft Type, Esti-

mated Time of Activated, Activation Point, Outer Marker Point, Modified

Runway, Modified Array of Taxiways, Modified Gate;

• Total Flight Delay : is calculated by averaging the differences between the

ETA of flights from their OM to requested gates and their actual time of

arrival (ATA) at actual gates from their respective OM; and

• Collision Risk: is calculated by averaging the collision risks of assigned CDA

trajectories in TeA airspace for all flights.

6.3 Air Traffic Scenario Generation

Air traffic demand data refer to the space-time information of the aircraft fleet

mix servicing an airport within the TeA system. Since it embraces both a spatial

based nature and time based nature, it is normally represented by the statistical

characteristics of air traffic’s spatial and temporal distributions (Netjasov et al.,

2011). As with regards to time, a snapshot analysis of a number of traffic movements

through the TeA system over a certain time period is typically a feasible approach to
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Figure 6.1: Arrival Traffic Coming from Diverse Directions

understand the traffic density. From a space perspective, it is necessary to determine

the spatial distribution of the air traffic through identifying the traffic flow at entry

points to the TeA system.

The flight traffic scenario generation method in Chapter 4 illustrates how to

generate arrival flights coming mostly from one direction determined by parameters

µ and σGA, during a specific time interval governed by factor T . The flight activation

points on the outer most circle (as in Figure 3.8) are assumed to be distributed with

normal distribution around the point µ. Parameter σGA is used to calculate the

standard deviation according to ’3-sigma rule’ as illustrated in equation 4.1. The

arriving flights are assumed to be activated at the outer marker circle in a Poisson

process. The inter-arrival time for a pair of successive flights has an exponential

distribution with parameter T , which is derived from a uniform random number

generator in a pre-defined time interval.

The work in this chapter requires a variation of traffic scenarios in terms of

both direction and density. Thus at this point, we explain how to extend the traffic

scenario generation method in Chapter 4 for arriving aircraft coming from two or

more directions with diverse traffic density.
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The activation circle contains N (N = 104) activation points in total and each

quadrant encloses N/4 points as illustrated in Figure 6.1. This circle can be seen as

a line segment which is uniformly divided into four shorter sections and each sec-

tion embraces N/4 activation points which are equally divided. It is assumed that

arriving flights are activated at points distributed normally. The mean value of this

normal distribution is µ and the standard deviation is represented by σ. According to

the ’3-sigma rule’, it is assumed σ = (µ−S)/3whereSisthestartpointoftheclustersmaple

at this time.

In extreme cases with µ = N/2 and σ = µ/3, arriving flights could be acti-

vated at any point on the whole circle, which means flights may originate from any

direction. Figure6.1 illustrates a variety of situations where flights come from. In

Case I, all flights originate from one direction (activated in consecutive quadrants)

with various sample width. For instance, with all aircrafts coming from Quadrant

I, µ equals N/8 and σ is equal to N/24. In Case II, flights originate from different

directions (activated in discrete quadrants). For example, when aircrafts come from

either Quadrant I or Quadrant III, all flights are generated randomly from two iso-

late normal distributions: in one case, µ equals N/8 and σ is equal to N/24, while

in the other, µ = 5N/8 and σ equals to N/24.

The aircrafts’ arriving process is normally considered as a stochastic process

in which a number of discrete arrivals occur in a certain time interval. It is a

continuous time process that is defined as Poisson process in probability theory.

The time between each pair of consecutive flights has an exponential distribution

with parameter T . The value of T is derived from a uniform random number in a pre-

defined time interval. An inter-aircraft time distribution of 50 implies the next flight

activation time is Poisson-distributed with a mean of 50 seconds. Traffic scenarios

with a variation of density differ with each other based on diverse time intervals

which are pre-defined and employed to generate the uniform random number T and

the number of the arrivals happened. For instance, an amount of 100 with a time

interval of T = [45, 120] can be used to generate 100 arriving flights in about 3

hours.
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Figure 6.2: TeA Airspace model for TeA Airspace Design

6.4 Data Structure

This section discusses the major data structures of the integrated TeA system

for TeA airspace design including air resources modelling and air resources records.

Since ground resources modelling and ground resources records are similar with

those for arrivals described in Chapter 3, we exclude explains for those components

in this section for simplicity.

6.4.1 Air Resources Modelling

RingRadius =
TAR× (Ring Number + 1)

5
(6.1)

As in dynamic CDA model (Alam et al., 2011), the transition airspace is equally

divided with a 5 nm safety separation defined as a set of five concentric cylinders

with a runway (touchdown point) at the center, as illustrated in Figure 6.2. The

height of the transition airspace is set to 10,000 ft and the radius to 25 nm (transition

airspace radius (TAR)). The outermost cylinder (denoted as Ring 4) has a radius
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of 25 nm and the inner cylinders (Rings 3, 2, 1 and 0) radii of 20, 15, 10 and 5 nm

respectively, as calculated by Equation 6.1. The outermost cylinder’s height is 10,000

ft which corresponds to the starting altitude of the CDA and the inner cylinders have

heights of 8000, 6000, 4000 and 2000 ft respectively. Thus, the transition airspace is

divided into 5 levels, with each level divided into 2000 ft to give a typical jet aircraft

sufficient vertical height to maneuver given a low thrust setting.

In this work, we divide each cylinder into 4 equal regions of 90 degrees each

of which we call a quadrant. Each quadrant on every cylinder has wedges which

represent transition points from one level to another. These wedges are supposed

to be spaced at least 1.5 nm apart to provide safe separations between approaching

aircraft (Spence, 2003). When design the dynamic TA, we define the separation

distance between two adjacent wedges varies from 1.5 nm to the length of the quad-

rant, to ensure the hard safety constraint. The maximum number of wedges for a

given quadrant is calculated as:

Number of Wedges =
0.5π ×Ring Radius
SeparationDistance

(6.2)

The data structure for each wedge point consist of: ID, Capacity, Aircraft

Types, Latitude, Longitude, Altitude and Speed, each of which is explained as

follows.

• ID: is the name of the wedge point which contains the ring number, the quad-

rant number and the wedge point number;

• Capacity: is the number of aircrafts this wedge point can handle at the same

time;

• Aircraft Type: represents which types of aircraft this wedge point can handle;

• Latitude: is the latitude value of this wedge point;

• Longitude: is the longitude value of this wedge point;

• Altitude: is the altitude value of this wedge point; and
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• Speed: is the speed constraint for the wedge point.

It is assumed that the capacity of each wedge point is 1, which means each

wedge point can only be used by the one aircraft to which it is assigned for a certain

duration. For instance, if an arrival is in a wedge point for a particular duration, this

point is blocked and cannot be used by any other arrival during that time window.

Each wedge point has access to any wedge point on the subsequent lower ring.

6.4.2 Air Resources Records

An array named Transition Airspace Resources Records is designed to record

occupancies of airspace resources , whose elements are presented as follows.

• Resource Name: represents the name of the air resource;

• Start Time: represents the time when the aircraft starts to occupy the air

resource;

• Duration: represents how long the aircraft will occupy the air resource; and

• Aircraft Type: the category of the aircraft – heavy, large or small.

When an aircraft is assigned an appropriate air route (as in Section 3.4.6),

any way point (air resource) in this route is recorded in the Transition Airspace

Resources Records, along with its name, time window for the aircraft to stay and

the aircraft’s type. When computing a terminal route for another aircraft, we check

the possible TeA airspace resource availability by searching through the record table;

for example, if an arrival is about to be assigned to wedge point (4, 4, 6) at time T,

but that wedge point is occupied by another aircraft at the same time according to

the record table, then wedge point (4, 4, 6) is not available for this new arrival at

that time.
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6.5 Collision Risk Calculation Methodology

Collision Risk (CR) is the most commonly objective representing safety in ATM

domain. Contrary to the traditional CR which is caused by a pair of conflict flights,

the CR here is a result of the probabilistic nature of an aircraft’s operational position

when it passes through a designated way point in the TeA airspace. It is assumed

that the possible position for a flight to go through one way point (Wi) is a random

variable which is distributed normally (N(µi, σi)). The position of this way point

is the mean value (µi), and the standard deviation (σi) equals the aircraft’s RNP

(Required Navigation Performance) value divided by 2. The RNP value for each

aircraft is derived from Eurocontrol’s Aircraft Database (BADA). It is also assumed

that any two arrivals are independent to each other to get the upper bound of the

collision risk as we target at worst case study.

Algorithm 6.1 Collision Risk Calculation for Each Aircraft

Input:
AC = {a1, a2, ..., aN};

Ring = {r1, r2, ...,r5};
i = 0;
j = 0;

while (i < N) do

while (j < 5) do

if within the aircrafts envelope then

PotentialWaypoins = {W1,W2, ...,W5};
CRij= min {CR1, CR2, ..., CR5};

end if

j ++;
end while

i ++;
end while

The collision risk is calculated by averaging the collision risks of assigned CDA

trajectories in TA airspace for all flights according to the following procedures (as in
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Algorithm 6.1): Given N aircrafts 5 rings (as in the airspace model in Figure 6.2),

5 way points, one on each ring, need to be assigned to each aircraft. As long as it is

allowed by the aircraft’s performance envelope (according to BADA), 5 way points

in a row on each ring will be considered as potential way points for this aircraft

based on the minimized distance from previously chosen way point. After their CRs

are calculated, the first one with the minimum CR is assigned to this aircraft. The

CR for a certain traffic scenario with M arriving flights is then calculate according

to equation 6.3. For each aircraft, its CR is summarized by five CR values one of

which is the CR at one of its assigned TeA airspace way points.

As illustrated in Figure 6.3, the CR at each potential way point for aircraft ACa

is calculated based in such way: firstly, search in left neighborhood of 8 way points

(which is the maximum number of wedges in 10 nm) of this way point Wij to get the

first (nearest one to the wedge Wij) wedge Wleft which is blocked by another flight

ACb at the same time Tij. The mean value for ACa is Wij and its standard deviation

is RNPa/2; while the mean value for ACb is Wleft and the standard deviation is

RNPb/2. If there is any overlap between this two probability density functions,

then assume the boundary of this overlap on Wij side is value Yij|left, then Yij|left is

calculate based on the equation 6.6. Since 3σj < µj−Yi < 4σj, to do the worst case

study and get the upper bound of the collision risk, we over estimate the overlap by

choosing 4. Similarly, the boundary of this overlap on Wleft side is value Yleft, then

Yleft is calculate based on the equation 6.7. Thus, the collision risk on the left side is

calculated based on equation 6.5 which is derived from the cumulative distribution

function. In the similar way, the CR on the right side is computed based on formula

6.8, 6.9 and 6.10. Then the CR values on both sides are summarized to obtain value

CRij according to equation 6.4 and its maximum value is 1.

CollisionRisk =
ΣM
i=1(Σ

N
j=1CRij)

M
(6.3)

CRij = min{(CRij|left + CRij|right), 1} (6.4)
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Figure 6.3: The Possible Collision Risk for A Potential Way Point

CRij|left =
1

2
[1− erf(

Yleft − µleft√
2σleft

)][1 + erf(
Yij|left − µij√

2σij
)] (6.5)

Yleft = µij − 4σij (6.6)

Yij|left = µleft + 4σleft (6.7)

CRij|right =
1

2
[1− erf(

Yij|right − µij√
2σij

)][1 + erf(
Yright − µright√

2σright
)] (6.8)

Yright = µij + 4σij (6.9)

Yij|right = µright − 4σright (6.10)

where
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• M = number of arrival aircrafts;

• N = number of way points in one CDA trajectory route(N=5);

• CRij = collision risk of aircraft i at way point j (Wij);

• CRij|left = collision risk of aircraft i at way point j (Wij) caused by another

aircraft occupying of another way point (Wleft) on its left neighbourhood;

• CRij|right = collision risk of aircraft i at way point j (Wij) caused by another

aircraft occupying of another way point (Wright) on its right neighbourhood;

• Yleft = value of the boundary point of the overlap between two probability

density functions of standard normal distribution on Wleft side, which leads

to upper bound of CR by over estimating the overlap based on ‘3-sigma rule’

(worst case study);

• Yij|left = value of the boundary point of the overlap between two probabil-

ity density functions of standard normal distribution on Wij side (worst case

study);

• µij = mean value of the normal distribution of aircraft i at way point j (Wij);

• σij = standard deviation of the normal distribution of aircraft i at way point

j (Wij), which equals half the value of the RNP of the aircraft taking this way

point;

• µleft = mean value of the normal distribution of way point Wleft;

• σleft = standard deviation of the normal distribution of way point Wleft, which

equals half the value of the RNP of the aircraft taking this way point;

• Yright = value of the boundary point of the overlap between two probability

density functions of standard normal distribution on Wright side (worst case

study);
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• Yij|right = value of the boundary point of the overlap between two probabil-

ity density functions of standard normal distribution on Wij side (worst case

study);

• µright = mean value of the normal distribution of way point Wright; and

• σright = standard deviation of the normal distribution of way point Wright,

which equals half the value of the required navigation performance of the

aircraft taking this way point.

The collision risk in this thesis is a result of the probabilistic nature of an

aircraft’s operational position when it passes through a designated way point in

the terminal airspace. As described in Section 6.5, it is assumed that the possible

position for a flight to go through one way point is a random variable which is

distributed normally. However, Algorithm 6.1 and Equation 6.3, 6.4 are generic. As

long as the overlapping area in Figure 6.3 can be calculated, the methodology in

this thesis can be adapted to other probabilistic descriptions of uncertainty.

6.6 TeA System for Airspace Design

This section discusses the architecture and design principles of the integrated

TeA system as well as simulation engine arrival manager. Since queue manager,

occupancy time and safety separation are similar with those for arrivals described in

Chapter 3, we exclude explains for those components in this section for simplicity.

6.6.1 Architecture of TeA System for Airspace Design

The architecture of integrated TeA simulation consists of the following key

components (see Figure 6.4):

This architecture was designed to be modular and flexible enough to incorporate

new air-ground network and ATM operational constraints. Starting from the top:
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Figure 6.4: ATOMS/TeA Simulator System Flow Chart
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Given a set of arrival flight plans, we put them into a conceptual waiting queues

based on their activation time. Once an arrival reaches 75nm before the TeA, it

becomes active. All active arrivals are processed by a Queue Manager in which

they are positioned in a queue according to the activation times. Based on the first

come first assigned principle, the first arrival is selected to go through the opti-

mization process of the Arrival Manager. Arrival Manager calculates appropriate

flight plans (including CDA trajectory and ground route) for each arrival with high

ATC priority, according to decoded TeA airspace design model which represents

air-side resources (as in Figure 6.2), the ground network (as in Figure 3.6) repre-

senting ground-side resources and decoded ground events. The ATC priority refers

to those two objectives: safety (lower collision risk) and efficiency (less delay). If

the optimized route for an aircraft is found, values of objectives are output and the

TeA airspace design strategy and ground event features are recorded, otherwise the

delayed aircraft is sent back to the Queue Manager to wait for another optimization

process. The subsection 6.6.2 describes the procedural details of the Arrival Man-

ager. After all flights are scheduled, we calculate the averaged delays and collision

risks for all flights.

6.6.2 Arrival Manager

Figure 6.5 presents the procedural flowchart for the Arrival Manager of which

the operational details are as follows.

Arrival management of an arrival starts from selecting 5 potential TeA entry

points which are closest to the aircraft’s current position and need minimum vari-

ability in their headings. Then the estimated time of arrival (ETA) to each point

and collision risk of the arrival at this point are calculated. The one with minimum

CR is chosen as the TeA entry point (IAF). Check whether the CR of the IAF is

less than 1. If yes, a full enumeration of the search space is performed to generate

all possible routes from the IAF to the final arrival fix FAF (which are CDA routes),

followed by eliminating those links that violate the aircraft performance constraints
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Figure 6.5: Arrival Manager Flow Chart
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derived from Eurocontrol’s Aircraft Database (BADA); if no, the next 5 poten-

tial TeA entry points which meet the constraints (closest distance and minimum

variability in heading) are selected, followed by computing the ETA, the CR, and

checking whether the CR is less than 1, then generating all possible routes again.

After searching, if there is no available potential TeA entry point, the arrival has to

be delayed (delay process), either by putting it into a HOLD pattern (adding a delay

of 60 seconds) or reducing its speed by 20 knots if the aircraft’s performance allows.

After update the ETA for each way point, we calculate the CR and distance from

previous way point, then identify a set of non-dominated solution CDA routes with

shorter distance and lower CR. If one way point is occupied by another aircraft at

its ETA according to the Airspace Resource Records, its CR is then defined as 1 and

this way point will be eliminated. The first approved CDA route is selected and all

the wedge points in this route are blocked for a time window based on the aircraft

type (as shown in Table 3.1), and their ETAs and occupancy times are recorded in

the Airspace Resource Records. This ensures that no two arrivals occupy the same

wedge point in a given time window. If no CDA route is approved, the arrival needs

to find next set of TeA entry points which meet the objectives.

We start to process the ground route which is pre-defined in the flight plan. The

ETA is updated for each way point on the ground according to the designated ground

route. In line with the events table and Ground Resource Records Table, if any

ground way point (runway, taxiway or gate) is unavailable due to a certain ground

event or is simply occupied by another aircraft, the aim is to meet the designated

ground route while minimizing changes to the existing route. If there is no possible

way of leading an arrival from its assigned runway to its assigned gate, an alternative

gate is selected. If the runway is completely closed, the search is performed using

the next available runway and the aircraft’s ground route is reassigned (if there is

another possible ground route) by searching through the ground resource network

as shown in Figure 3.6. The ETA for each ground resource is updated, each resource

is blocked for a time window based on the aircraft type (as shown in Table 3.1) and

the Ground Resource Records Table is updated accordingly. However, if there is no
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available ground route, the arrival aircraft has to find next set of available TeA entry

points and the last record in the Airspace Resource Records is removed. In the end,

the available CDA and ground routes are combined as the full arrival route for this

flight which is locked and updated to the FMS.

6.7 Methodology

Given the same set of approaching flights, the more separation distance between

artificial way points in the TA model, the lower level of collision risk could be caused.

Increasing separation distance leads to reducing the number of way points in TA,

causing loss of throughput and growth of delay. Therefore, the problem here becomes

a multi-objective problem with at least two objectives that are in conflict. The two

objectives are: minimizing flight delay and minimizing collision risk. The one with

smallest flight delay is the one with highest collision risk. This conflict between the

two objectives makes a multi-objective representation of the problem a natural way

to solve it.

The multi-objective co-operative co-evolutionary algorithm proposed in Chap-

ter 5 is used in the framework developed in Chapter 4, the following two populations

of partial solutions evolve together:

• TA design scenarios; and

• ground events scenarios.

This section, the population design of above two populations will be discussed

and an appropriate fitness function will be designed for our problem.

6.7.1 Population Design of TA Design Scenarios

Therefore, when encode the TA design into a chromosome, the number of wedges

for a given quadrant varies from 1 to the maximum number of wedges for it. A
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Figure 6.6: TA chromosome design showing genomes which encode TA model in
scenarios.

transition airspace radius of 25 nm and a minimum separation distance of 1.5 nm

gives the maximum number of wedge points as 26, 20, 15, 10 and 5 for each quadrant

on Rings 4, 3, 2, 1 and 0 respectively.

Each individual in the TA design population is represented by a chromosome,

which has a set of values (genes) characterizing the number of wedges in each quad-

rant of each ring in the TA airspace. As shown in Figure 6.6, there are 20 genes in

each chromosome. The gene values are encoded as follows.

• N4i is the number of wedge points in each quadrant on ring 4, the value of

which is selected randomly from the interval [1, 26], i ∈ {1, 2, 3, 4}.

• N3i is the number of wedge points in each quadrant on ring 3, the value of

which is selected randomly from the interval [1, 20], i ∈ {1, 2, 3, 4}.

• N2i is the number of wedge points in each quadrant on ring 2, the value of

which is selected randomly from the interval [1, 15], i ∈ {1, 2, 3, 4}.

• N1i is the number of wedge points in each quadrant on ring 1, the value of

which is selected randomly from the interval [1, 10], i ∈ {1, 2, 3, 4}.

• N0i is the number of wedge points in each quadrant on ring 0, the value of

which is selected randomly from the interval [1, 5], i ∈ {1, 2, 3, 4}.

Then the total number of wedge points on each ring is the summarization

of 4 quadrants. To evaluate this chromosome, each representation needs to be
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transformed into a TA model, representing the structure and characteristics of the

TA airspace. In the simulator environment, the dynamic CDA trajectories for input

flight plans are calculated according to this decoded TA model, with the help of

aircraft performance parameters, and the airport configuration. The calculation

process uses aircraft aerodynamic data and airspace configuration data to generate

flight plans with less delay and smaller collision risk for arriving flights in a traffic

scenario.

6.7.2 Population Design of Ground Event Scenarios

An event population represents a set of constrained ground events. To encode

this into a chromosome, we first develop an ‘event-table’ data structure which con-

tains all the ground resources (runway, taxiway and gate) along with all the possible

events that can be associated with them. As illustrated in Figure 6.7, each com-

bination of a surface resource with an event is given a unique event ID. For each

resource, there are the following seven possible events:

• E0: Resource unavailable for heavy and medium aircraft;

• E1: Resource unavailable for heavy and light aircraft;

• E2: Resource unavailable for heavy aircraft;

• E3: Resource unavailable for light aircraft;

• E4: Resource unavailable for medium aircraft;

• E5: Resource unavailable for medium and light aircraft; and

• E6: Resource unavailable for heavy, medium and light aircraft.

Each individual in the event population has 10 chromosomes each representing

for 1 event, and each chromosome has 3 genes. The first gene in the chromosome is

the event-ID, randomly sampled in the interval [0, 1] and its value is then used to

select the event-ID value from the event table in the decoding process.
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Figure 6.7: Event chromosome design showing genomes which encode event ID,
event activation time and duration

Every event is also assigned an activation time and a duration for which it will

be active. As illustrated in Figure 6.7, the second gene in each event chromosome is

the event-start-time and the third is event-duration-time which are both randomly

sampled in a pre-defined time interval. This chromosome is then translated into 10

events for a given TA design individual.

6.7.3 Fitness Function Design

With target at both efficiency and safety, the TeA airspace design evaluation is

based on two objectives: averaged arrival delays for all flights, which is a measure of

the induced delay due to the unavailability of air and ground resources; and averaged

collision risk for all flights, which is a measure of the collision risk due to previous

flights occupying wedges in their neighourhood.

Since we attempt to identify the TA design which is able to cope better with

ground events, the co-evolutionary process seeks to minimize values of both objec-

tives in the system by evolving combinations of TA design and ground events which

rank more lowly (generated a lower number of delays and smaller chance of collision)

in the co-evolutionary process.

Efficiency objective – flight delay is calculated by averaging the differences

between the ETA of flights from their OM to requested gates and their actual time

of arrival (ATA) at actual gates from their respective OM (as in Equation 6.11).

Wenjing Zhao November 30, 2012



CHAPTER 6. TEA AIRSPACE DESIGN 182

ArrivalF lightDelay =
[ΣM

i=1(ATAi − ETAi)]OMG
M

(6.11)

where

• M = number of arrivals;

• ATA = actual time of arrival;

• ETA = estimated time of arrival;

• OM = outer marker; and

• G = gate.

The safety objective is represented by collision risk which is calculated by aver-

aging the collision risks of assigned CDA trajectories in TA airspace for all arriving

flights. The definition and calculation method of collision risk was explained in

details in Section 6.5 of Chapter 5.

6.8 Experiment Design

6.8.1 Experimental Scenarios and Parameters

To get variation in arrival traffic distribution in terms of both density and

direction, we designed the 3 × 5 repeated-measures (as Table 6.1) which yields the

following 15 different experiment scenarios.

• Scenario 80/1Q consists of 80 arrivals in 3 hours coming from 1 quadrant.

• Scenario 100/1Q consists of 100 arrivals in 3 hours coming from 1 quad-

rant.

• Scenario 120/1Q consists of 120 arrivals in 3 hours coming from 1 quad-

rant.
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Table 6.1: Experimental Design

80 Arrivals in
3h

100 Arrivals in
3h

120 Arrivals in
3h

From 1 Quadrant Scenario
80/1Q

Scenario
100/1Q

Scenario
120/1Q

From 2 Adjacent
Quadrants

Scenario
80/2Q

Scenario
100/2Q

Scenario
120/2Q

From 2 Opposite
Quadrants

Scenario
80/2Q/opo

Scenario
100/2Q/opo

Scenario
120/2Q/opo

From 3 Quadrants Scenario
80/3Q

Scenario
100/3Q

Scenario
120/3Q

From 4 Quadrants Scenario
80/4Q

Scenario
100/4Q

Scenario
120/4Q

• Scenario 80/2Q consists of 80 arrivals in 3 hours coming from 2 adjacent

quadrants.

• Scenario 100/2Q consists of 100 arrivals in 3 hours coming from 2 adjacent

quadrants.

• Scenario 120/2Q consists of 120 arrivals in 3 hours coming from 2 adjacent

quadrants.

• Scenario 80/2Q/opo consists of 80 arrivals in 3 hours coming from 2

opposite quadrants.

• Scenario 100/2Q/opo consists of 100 arrivals in 3 hours coming from 2

opposite quadrants.

• Scenario 120/2Q/opo consists of 120 arrivals in 3 hours coming from 2

opposite quadrants.

• Scenario 80/3Q consists of 80 arrivals in 3 hours coming from 3 quadrants.

• Scenario 100/3Q consists of 100 arrivals in 3 hours coming from 3 quad-

rants.
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• Scenario 120/3Q consists of 120 arrivals in 3 hours coming from 3 quad-

rants.

• Scenario 80/4Q consists of 80 arrivals in 3 hours coming from 4 quadrants.

• Scenario 100/4Q consists of 100 arrivals in 3 hours coming from 4 quad-

rants.

• Scenario 120/4Q consists of 120 arrivals in 3 hours coming from 4 quad-

rants.

These traffic distributions are generated using a probability distribution func-

tion. The two populations (TA design scenarios and event scenarios) co-evolve co-

operatively and are represented by fixed-length real-valued genomes. The TA design

scenario population size is 25. Each scenario constructs a TA model with certain

number of way points on each quadrant of every ring in transition airspace. The

dynamic CDA trajectories of input arrivals are generated based on this TA model.

The event scenario population size is also 25 and each scenario consists of 10 events.

The pre-defined time interval for the event-Start-Time is [0, 12000] seconds and that

for the event-duration-time is [0, 1800] which means each event can be encountered

by all flights in 3 hours and solved in 30 minutes. We run the experimental scenario

10 times using different seeds and apply tournament selection by elitism, single-point

crossover with a probability of 1.0 and uniform mutation with a probability of 0.3.

These parameters are chosen carefully after a number of sample runs. We allow a

sufficient number of objective evaluations in each run for its evolution to become

stable (the best solution does not change significantly).

6.9 Results & Discussion

Multi-objective cooperative co-evolution is used as the search methodology for

evolving complex scenarios through incremental feedback from the simulation sys-

tem. Firstly, we evaluate the performance of this methodology. The non-dominated
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Figure 6.8: All solutions as obtained after 100 generation. The fifteen panels show
results for fifteen different experimental scenarios. From left to right and top to
bottom these problems are Scenario 80/1Q, Scenario 100/1Q, Scenario 120/1Q,
Scenario 80/2Q, Scenario 100/2Q, Scenario 120/2Q, Scenario 80/2Q/opo, Scenario
100/2Q/opo, Scenario 120/2Q/opo, Scenario 80/3Q, Scenario 100/3Q, Scenario
120/3Q, Scenario 80/4Q, Scenario 100/4Q, Scenario 120/4Q,.
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solutions of a sample run after 200 generations for each of the fifteen experimental

scenarios are plotted in Figure 6.8. Despite some fluctuations due to the inherent

stochastic nature of EAs and the problem, the obtained non-dominated solutions

converged well and achieved a reasonable level of spread. This figure demonstrates

the spread of solutions obtained in each scenario and effectiveness of our methodol-

ogy to evolve ground events with better dynamic TA design to produce higher level

of efficiency and safety under certain scenario. Since there is a compromise between

the delay and the collision risk criticality, our multi-objective approach provides an

analyst of the trade off between these two ATC priority – efficiency and safety; thus

solutions can be selected based on the criticality level of meeting the demand.

In Figure 6.9, 6.10, 6.11, 6.12 and 6.13, we plot the objective values of the

extreme points of the non-dominated set at each generation. These figures demon-

strate how the evolutionary pressure in our algorithm works on the solutions over

time. It is shown that the proposed methodology has the power to drive both safety

and efficiency of solutions to a higher level.

It is also noticed that, for most cases, the solutions converged to a safer and

more efficient level when the traffic density in time is lower. For instance, in Figure

6.9, the solutions for the scenario, which involves 80 arrivals in 3 hours coming

from 1 quadrant, reached and maintained around 600 seconds delay before 120

generations, while those for another scenario (involving 120 arrivals in 3 hours from

1 quadrant) still suffered 800 seconds delay after 200 generations. On the other

hand, the solutions, for a set of traffic coming from a narrower direction, converged

to a less safe and efficient level. Take Figure 6.9 and 6.10 for example, the solutions

for Scenario 80/1Q had more than 600 seconds delay after 200 generations; while

those for Scenario 80/2Q had less than 600 seconds delay before 100 generations.

We then analyze the solutions at the extreme points (points corresponding

to the best performance on each objective function) of each set of non-dominated

solutions after 200 generations. Table 6.2 shows objective values of points with

best performance on safety objective (collision risk) while Table 6.3 shows those

of points with best performance on efficiency objective (delay). It is noted that
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Figure 6.9: Two figures corresponding to each of extreme points evolved over time
for Scenario 1Q (The figure on top is extreme points with best performance on safety
objective (lowest collision risk) and the one on bottom is with best performance on
efficiency objective (lowest delay))

Wenjing Zhao November 30, 2012



CHAPTER 6. TEA AIRSPACE DESIGN 188

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Generation

R
is

k
 (

fo
r 

E
tr

e
m

e
 P

o
it

 w
it

h
 B

e
s
t 

R
is

k
) 

2Q/80

2Q/100

2Q/120

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5
x 10

−18

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

Generation

D
e
la

y
 (

fo
r 

E
tr

e
m

e
 P

o
it

 w
it

h
 B

e
s
t 

D
e
la

y
) 

2Q/80

2Q/100

2Q/120

Figure 6.10: Two figures corresponding to each of extreme points evolved over time
for Scenario 2Q (The figure on top is extreme points with best performance on safety
objective (lowest collision risk) and the one on bottom is with best performance on
efficiency objective (lowest delay))
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Figure 6.11: Two figures corresponding to each of extreme points evolved over time
for Scenario 2Q/opo (The figure on top is extreme points with best performance on
safety objective (lowest collision risk) and the one on bottom is with best perfor-
mance on efficiency objective (lowest delay))
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Figure 6.12: Two figures corresponding to each of extreme points evolved over time
for Scenario 3Q (The figure on top is extreme points with best performance on safety
objective (lowest collision risk) and the one on bottom is with best performance on
efficiency objective (lowest delay))
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Figure 6.13: Two figures corresponding to each of extreme points evolved over time
for Scenario 4Q (The figure on top is extreme points with best performance on safety
objective (lowest collision risk) and the one on bottom is with best performance on
efficiency objective (lowest delay))
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Table 6.2: Objective Values (Delay;CR) of Points with Best Performance on Safety
Objective (Collision Risk)

(Delay;CR) 80 Arrivals in
3h

100 Arrivals in
3h

120 Arrivals in
3h

From 1 Quadrant (939.79; 3.99E−
43)

(906.99; 1.81E−
40)

(1157.76; 1.72E−
04)

From 2 Adjacent
Quadrants

(626.58; 2.16E−
45)

(954.38; 1.04E−
44)

(865.29; 6.57E−
20)

From 2 Opposite
Quadrants

(607.78; 5.88E−
47)

(723.01; 1.35E−
44)

(780.8; 7.6E −
44)

From 3 Quadrants (684.48; 6.5E −
49)

(729.99; 8.2E −
45)

(688.65; 1.16E−
17)

From 4 Quadrants (658.8; 7.59E −
46)

(636.4; 3.92E −
45)

(585.76; 1.34E−
23)

Table 6.3: Objective Values (Delay;CR) of Points with Best Performance on Effi-
ciency Objective (Delay)

(Delay;CR) 80 Arrivals in
3h

100 Arrivals in
3h

120 Arrivals in
3h

From 1 Quadrant (627.45; 1.78E−
02)

(736.1; 4.01E −
02)

(793.73; 6.51E−
02)

From 2 Adjacent
Quadrants

(574.16; 1.07E−
13)

(637.36; 6.38E−
03)

(673.94; 1.54E−
02)

From 2 Opposite
Quadrants

(465.72; 4.4E −
03)

(491.36; 6.4E −
03)

(527.51; 4.5E −
03)

From 3 Quadrants (492.26; 9.23E−
04)

(470.76; 7.62E−
03)

(528.52; 2.28E−
02)

From 4 Quadrants (469.83; 1.2E −
02)

(423.4; 3.47E −
03)

(489.94; 1.02E−
02)

traffic scenarios with various arrival traffic distribution in terms of both density

and direction have different solutions, which proves that an appropriate TA design

strategy should be considered with a specific traffic scenario. Traffic scenarios with

higher density experienced heavier delays (or higher collision risks) than those with

lower density. This is straightforward. Traffic scenarios with narrower direction
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experienced heavier delays (or higher collision risks) than those with wider direction.

This is also self-evident. The results also illustrate that the traffic scenario from 2

adjacent quadrants experienced heavier delays and higher collision risks than that

from 2 opposite quadrants. Therefore for the sake of efficiency and safety, air traffic

controllers should prioritize the TA design strategy with 2 opposite quadrants over

the one with 2 adjacent quadrants.

From Figure 6.14 to Figure 6.28, the two TeA airspace design configurations

corresponding to two extreme points, after 200 generations, for 15 scenarios are visu-

alized. The red stars in each diagram represent the valid wedges which are actually

used in aircrafts’ trajectories; while the invalid wedges in black circle represent the

wedge points which are never used by any aircraft. Based on the fixed STARs cur-

rently serving Sydney airport as shown in Figure 6.29, the proposed configuration

diagrams can practically assist TeA terminal routes designers who are currently

working on defining and developing pre-defined terminal arrival trajectories.

Table 6.4: Most Frequent Event Type according to Points with Best Performance
on Safety Objective (Collision Risk)

(EventType) 80 Arrivals in
3h

100 Arrivals in
3h

120 Arrivals in
3h

From 1 Quadrant Gate Taxiway Taxiway and
Gate

From 2 Adjacent
Quadrants

Gate Taxiway Taxiway

From 2 Opposite
Quadrants

Taxiway Taxiway Taxiway

From 3 Quadrants Taxiway and
Gate

Taxiway Taxiway and
Gate

From 4 Quadrants Taxiway Gate Taxiway

To better understand the TeA airspace design configuration proposed above,

we then have a look at their corresponding ground events scenario. Table 6.4 and

6.5 show the most frequent event type happened according to the extreme points

of each set of non-dominated solutions after 200 generations. According to the
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Figure 6.14: Two figures corresponding to each of the extreme points generated
in one run for Scenario 80/1Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.15: Two figures corresponding to each of the extreme points generated in
one run for Scenario 100/1Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.16: Two figures corresponding to each of the extreme points generated in
one run for Scenario 120/1Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.17: Two figures corresponding to each of the extreme points generated
in one run for Scenario 80/2Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.18: Two figures corresponding to each of the extreme points generated in
one run for Scenario 100/2Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.19: Two figures corresponding to each of the extreme points generated in
one run for Scenario 120/2Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.20: Two figures corresponding to each of the extreme points generated
in one run for Scenario 80/2Q/opo (The figure on top is the TeA airspace design
configuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.21: Two figures corresponding to each of the extreme points generated
in one run for Scenario 100/2Q/opo (The figure on top is the TeA airspace design
configuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.22: Two figures corresponding to each of the extreme points generated
in one run for Scenario 120/2Q/opo (The figure on top is the TeA airspace design
configuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.23: Two figures corresponding to each of the extreme points generated
in one run for Scenario 80/3Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.24: Two figures corresponding to each of the extreme points generated in
one run for Scenario 100/3Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.25: Two figures corresponding to each of the extreme points generated in
one run for Scenario 120/3Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.26: Two figures corresponding to each of the extreme points generated
in one run for Scenario 80/4Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.27: Two figures corresponding to each of the extreme points generated in
one run for Scenario 100/4Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.28: Two figures corresponding to each of the extreme points generated in
one run for Scenario 120/4Q (The figure on top is the TeA airspace design con-
figuration with highest safety and the one on bottom is the TeA airspace design
configuration with highest efficiency)
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Figure 6.29: The fixed TeA airspace configuration for Sydney airport
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Table 6.5: Most Frequent Event Type according to Points with Best Performance
on Efficiency Objective (Delay)

(EventType) 80 Arrivals in
3h

100 Arrivals in
3h

120 Arrivals in
3h

From 1 Quadrant Gate Taxiway Gate

From 2 Adjacent
Quadrants

Taxiway Taxiway Gate

From 2 Opposite
Quadrants

Taxiway and
Gate

Taxiway Taxiway

From 3 Quadrants Taxiway Taxiway Taxiway

From 4 Quadrants Runway and
Gate

Taxiway and
Gate

Runway and
Taxiway

design of the event table (as in Table 4.1), the proportions among runway, taxiway

and gate are 6 : 34 : 23. Since taxiways are the most frequent resources, it is

not surprising that most of the scenarios encounter ground events on taxiways.

However, as shown in the ground network model (see Figure 3.6), there are some

critical bottleneck resources, such as taxiway G and B, heavily constrain capacity

of the ground network. Therefore, the solutions which have least delay encounter

less ground events on taxiways as shown in Table 6.5.

6.10 Chapter Summary

In this chapter, a simulation-based co-evolutionary computational red teaming

environment for multiple objectives – multi-objective CCRT – is proposed, in order

to generate the scenario-specific TeA airspace design strategies that are able to cope

better with ground events/uncertainties and produce prior trajectories to distribute

demand while maintaining aircraft safety.

An air traffic simulation system with a novel representation of a TeA airspace

design concept considering the interactions from dynamic ground events is presented

for system-level modelling of integrated TeA concepts. This simulation environment
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is inspired by the dynamic CDA model presented in a previous chapter and extend

that concept to a flexible TeA airspace model which involves a novel way of defining

a collision risk metric, which is derived from the probabilistic nature of an aircraft’s

operational position.

The multi-objective co-operative co-evolution algorithm, developed and tested

in a previous chapter, was used as the optimization search engine to takes into

account the impact of the dynamically constrained ground resources, in order to

accomplish the ground-air integration.

We conducted a series of computational experiments with different air traffic

density and direction scenarios. The parameters impacting on the delay and collision

risk performances were co-evolved with our synthetic model of a TeA system for

airspace design (TeA airspace, runways, taxiways and gates). Our methodology

demonstrated traffic scenarios with various arrival traffic distributions in terms of

both density and direction have different solutions, which proves that an appropriate

TeA airspace design strategy should be considered with a specific traffic scenario.

The results also reveal that traffic scenarios from two adjacent quadrants expe-

rienced heavier delays and higher collision risks than that from two opposite quad-

rants. Therefore for the sake of efficiency and safety, air traffic controllers should

prioritize the TA design strategy with two opposite quadrants over the one with two

adjacent quadrants.

The proposed multi-objective approach also provide an analyst with the trade-

off between these two ATC priorities efficiency and safety; thus solutions can be

selected based on the criticality for meeting the demand with an acceptable risk

level.
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Chapter 7

Conclusion

7.1 Summary of Results

This thesis presented a systematic study of understanding (through modeling),

evaluating and dynamically designing TeA airspace, in order to alleviate the grow-

ing capacity/demand imbalance in future ATM. An integrated air traffic simulation

system with a novel representation of an integrated TeA was presented for system-

level modeling of current and future TeA concepts. This simulator combines the air

and ground subsystems and provide a proper operational environment for process-

ing arrivals and/or departures. A simulation-based co-evolutionary computational

environment, named as CCRT, was developed for evaluating advanced TeA airspace

concepts and understanding the TeA system vulnerabilities. The interactions be-

tween traffic distributions and constrained ground resources (including runways,

taxiways and gates) are co-evolved with each other and considered from the per-

spective of identifying inefficiencies, with the integration of arrival and departure

operations. By evaluating these interactions, we are able to reveal “improvement

opportunities” in the implementation of future TeA airspace concepts and, thereby,

understand major bottlenecks which cause system inefficiencies.

A multi-objective co-operative co-evolutionary methodology was proposed as

another search engine of the CCRT framework, in order to solve complex TeA
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problems with multiple conflicting objectives. An air traffic simulator represent-

ing an original novel TeA airspace design concept, while considering the interactions

from dynamic ground events, was presented. The proposed TeA airspace concept

involves a measure of collision risks derived from the probabilistic nature of air-

craft’s performance. The multi-objective CCRT was applied to generate scenario-

specific TeA airspace design strategies, that were able to cope better with ground

events/uncertainties and produce prior trajectories to distribute demand while main-

taining aircraft safety. The multi-objective CCRT also provided an analyst with the

trade-off between two ATC priority: efficiency and safety, so that solutions can be

selected based on the criticality level of meeting the demand.

Overall, the main findings of the research introduced in the thesis can be sum-

marized as follows:

• The proposed CCRT framework was proven to successfully evaluate advanced

TeA airspace concepts and discover TeA system vulnerabilities, by evolving

the reciprocal interactions of arrivals and departures using a shared ground-air

network. The results demonstrated the power of this methodology in objec-

tively evaluating TeA concepts in the integrated TeA system and synthesizing

an overall situational awareness picture that decision makers can utilize.

• Our analysis suggested and demonstrated that, when making efforts to improve

ATM performance on a system level, one cannot separate the air-side complex

from the ground-side complex, or divide the arrival process from the departure

process.

• In the presence of constrained ground resources, the dynamic CDA model

was able to provide controllers and airspace users benefits to further improve

the TeA system’s throughput capacity as well as to minimize flight delays.

The quantified performance evaluation increases decision maker’s confidence to

support this transition. The results also revealed that when the TeA airspace

has greater flexibility using the dynamic CDA, the air-side resources absorb

more delays than the ground resources and reduce system delays.
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• The proposed multi-objective cooperative co-evolutionary algorithm is shown

to be able to co-evolve solutions towards the true global Pareto-front effec-

tively while maintaining a high diversity of the solution set. The advanced

fitness assignment scheme increased the selection pressure while the modified

archiving updating mechanism and niching strategy help a fine spread of the

non-dominated solutions.

• The proposed multi-objective CCRT was successfully applied for identifying

the scenario-specific TeA airspace design strategies that are able to cope better

with ground events/uncertainties and produce prior trajectories to distribute

demand while maintaining aircraft safety. It provides an analyst with the

trade-off between these two ATC priority efficiency and safety; thus solutions

can be selected based on the criticality level of meeting the demand.

• Traffic scenarios with various arrival traffic distribution in terms of both den-

sity and direction have different solutions which proves that an appropriate

TeA airspace design strategy should be considered with a specific traffic sce-

nario.

• Traffic scenarios from two adjacent quadrants experienced heavier delays and

higher collision risks than that from two opposite quadrants. Therefore for

the sake of efficiency and safety, air traffic controllers should prioritize the TA

design strategy with two opposite quadrants over the one with two adjacent

quadrants.

7.2 Future Work

There are several possibilities to extend the research on the integrated TeA

system presented in this thesis.

• Multiple airport scenarios: More than one airport can be incorporated in the

scenarios, so that the vulnerabilities of a flight traffic flow system can be
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discovered and evaluated on a state level, given its ground and air constraints

at a higher air traffic system level.

• Adding more concerns in the TeA airspace design problem: Efficiency and

safety are the two priorities considered in this work, other ATM concerns, e.g.

fuel consumption and human factors, can be incorporated in the model.

• Evaluation of other advanced ATM concepts: The efficiency of the dynamic

CDA is evaluated in the integrated TeA system, other new developed ATM

concepts can be examined in our methodology before real-world utilization.

• New co-evolutionary algorithm for CCRT: The thesis has shown a great deal

of advantage to use cooperative co-evolution for searching massive spaces of

possibilities governed by uncertainty and complex networked dynamics. There

are still possibilities to extend the framework by combining competitive co-

evolution with cooperative co-evolutionary techniques.
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