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their critical and constructive comments regarding the results presented in this

thesis. I would like to express my gratitude to the staffs of the School of Engineer-

ing and Information Technology, Research and Research Training Office, Student

Administrative Services (especially, Ms. Christa Cordes), Information Communi-

cation and Technology Services, and Academy Library at the UNSW@ADFA for

providing continuous support throughout my PhD candidature.

I have also benefited from the companionship of my friends and colleagues:

Dr. S. Z. Sayed Hassen, Xilin Yang, Dr. Md. Jahangir Hossain, Dr. Aline I.

Maalouf, Obaid Ur Rehman, Ouyang Hua, Ning Chuang, Dr. Abhijit G. Kallapur,

Dr. Daoyi Dong, Dr. Igor G. Vladimirov, Ms. Ida Nurhayati, Sheila Tobing,

Windraty Siallagan, Robertus Purwoko and many other student fellows studying

at the UNSW@ADFA. Their presence has enriched my knowledge and made my

v



time on campus enjoyable. I am also greatly indebted to my Christian fellows:

the Supomo family, the Matsay family, the ICC in Canberra, the ANU Catholic

Society, the MGL brothers, Fr. Joseph Neonbasu MGL, Fr. Laurie Foote OP,

Fr. Peter Hoang OP, Sudi Mungkasi, Asti D. Kusumawati, Angelia M. Hartono,

Francisca Handoko, Br. Yohanes B. Hernawan OFM, Victor H. Wibisono, Samuel

Fernandes, and other brethren, whom I cannot mention one by one. They have

been so kind and generous that my days in Australia are much more memorable.

Finally, I would like to sincerely acknowledge and thank the most important

people in my life. They are my parents: Sutidjo Harno† and Ng Tjhai Ngin; and

my younger brothers: Budiyanto Harno and Hermanto Harno. Their understand-

ing, unconditional love and moral support have become my inspiration to achieve

my dream, sustained my spirit through every highs and lows, and transformed

myself to whom I am.

Canberra, 8 April 2011

Hendra Gunawan Harno

vi



Abstract

In this thesis, we present new systematic methods to synthesize non-decentralized

and decentralized robust feedback control systems for classical and quantum dy-

namical systems. For the decentralized case, we assume that the interconnections

between subsystems are known and thus, we do not treat them as uncertainties.

We employ a differential evolution (DE) algorithm to solve nonconvex nonlin-

ear constrained optimization problems arising in the feedback control syntheses

for those systems. As a class of evolutionary algorithms, the DE algorithm is

equipped with variation operators: mutation and recombination, and selection

operator. In addition, we also apply a penalty-based fitness test procedure as

a link between the DE algorithm and the particular controller design algorithm

being considered.

Regarding classical systems, we are concerned with robust H∞ control for a

class of nonlinear uncertain systems via a stable nonlinear output feedback con-

troller. Structured uncertainties and nonlinearities in the system are required

to satisfy integral quadratic constraints and global Lipschitz conditions, respec-

tively. Applying this controller, we aim to achieve closed loop absolute stability

with a specified disturbance attenuation level. The controller is constructed us-

ing stabilizing solutions to algebraic Riccati equations parameterized by scaling

constants associated with the uncertainties and nonlinearities. A decentralized

version of this control problem is also considered.

For quantum systems, we deal with coherent quantum feedback control for

a class of quantum systems represented in terms of linear quantum stochastic

differential equations. Synthesis algorithms are provided to construct physically

realizable quantum controllers, which are used to solve quantum entanglement

and quantum robust H∞ control problems. In particular, we are interested in

synthesizing a strict bounded real quantum robust H∞ controller for an uncertain

vii



quantum system. This quantum controller is applied to obtain a strict bounded

real closed loop quantum system with a specified disturbance attenuation level.

The controller matrices are formed using stabilizing solutions to complex alge-

braic Riccati equations parameterized by scaling constants corresponding to all

uncertainties in the quantum system. The same type of quantum controller is

used to solve a decentralized quantum robust H∞ control problem.

viii
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Chapter 1

Introduction

This chapter is intended not only to describe the background and motivation for

all topics discussed in this thesis, but also to highlight the main contributions of

our research. That is, we aim to present new systematic methods to synthesize

non-decentralized and decentralized robust feedback control systems for both

classical and quantum dynamical systems. An introduction to the notions of

feedback control considered is thus briefly provided in Section 1.1. Then, a short

discussion on evolutionary optimization methods is presented in Section 1.2 where

we also describe our motivation for applying this method to solve our control

problems. Moreover, specific considerations and features of our main results from

Chapter 3 to Chapter 8 are presented in separate sub-sections within Section 1.3.

1.1 Feedback Control

In this section, we present a brief overview of the basic concepts of feedback

control. Our purpose is to provide a general understanding of what we are con-

cerned with in our research to develop algorithms to synthesize robust feedback

controllers for both classical and quantum dynamical systems.

1.1.1 Basic concepts

Feedback control is a common strategy used to ensure stability and performance

when a dynamical system is performing certain tasks. This strategy is imple-

mented in a closed loop scheme as shown in Figure 1.1, where the system being
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Figure 1.1: Closed loop feedback control; see [1].

controlled (plant) is interconnected and interacts with other systems so that the

plant behaves as intended. In this case, sensors are used to fully or partially cap-

ture information about the plant dynamics, but unfortunately, the sensor outputs

are usually contaminated by noise. We then feed back the acquired information

through a filter with which noise effects are removed considerably. Having the

filter outputs as controller inputs, we employ an algorithm to generate control

commands, which drive the plant via actuators to compensate any deviation from

a desired operating point with particular properties.

Often, we can make the plant work well by only applying an open loop control

without feedback. This approach, however, is at times unrealistic and risky

because the plant may be unstable and is not free from perturbations such as

exogenous disturbances, a changing environment and undesirable noise. Another

concern is that, due to incomplete knowledge of the plant dynamics and modeling

errors, we often have an uncertain plant model based on which a controller is

designed. Thus, it is essential to synthesize a feedback control mechanism, which

not only achieves prescribed control objectives effectively and efficiently, but also

is robust against the uncertainties and perturbations.

Applying feedback control is certainly beneficial to cope with the concerns

mentioned above, but we should also be mindful of its potential drawbacks; e.g.,

see [1, 9]. As shown in Figure 1.1, feedback control usually requires additional

components: sensors and filters, which in turn augment the dimensionality and

complexity of the closed loop system. It is also inevitable that sensors are accom-

panied with noise, which reduces measurement accuracy. Moreover, a carelessly

designed feedback system may give rise to oscillations and instability. All these
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issues indicate that feedback cannot be realized arbitrarily and is not merely

about having a closing loop. Thus, appropriate systematic methods are neces-

sary to design feedback control systems, which are capable of providing robust

stability and performance; e.g., see [10].

1.1.2 Classical feedback control

The idea to build feedback control systems originated for more than twenty cen-

turies ago; e.g., see [11, 12]. One of the first significant inventions in industrial

era was a flyball governor, which was successfully used to control the speed of a

James Watt’s steam engine in the 18th century. Feedback control applications

at the present time are much more pervasive and ubiquitous in various techno-

logical artifacts such as computers, automobiles, aircraft, robots, telescopes and

chemical processes. We can even find feedback control applied to non-engineering

systems such as biological systems, ecosystems and economics; e.g., see [1]. We

thus could say that feedback control has become an indispensable aspect in tech-

nology development; e.g., see [13].

Along with the above applications, feedback control theory has also achieved

great advancements, which provide various mathematical methods to rigorously

analyze and synthesize feedback control systems. Among others, several well-

known controller design methods are proportional-integral-derivative (PID) con-

trol, linear quadratic Gaussian (LQG) control and H∞ control; e.g., see [14–17].

These methods were in fact developed to design feedback controllers for dynami-

cal systems governed by the principles of non-quantum physics. In this sense, we

thus consider them as classical feedback control methods.

In this thesis, we apply a linear robust H∞ control method as described in [2]

to synthesize a controller, which absolutely stabilizes an uncertain system with

a specified disturbance attenuation level (see Chapter 3 – Chapter 5). The class

of uncertain systems being considered is illustrated in Figure 1.2. This model is

referred to as a linear fractional transformation (LFT), where a nominal plant

is separated from all uncertainties φ1(·), φ2(·), . . . , φk(·) in feedback interconnec-

tions; e.g., see [18]. In order to be admissible, each uncertainty φj(·) (for all

j = 1, 2, . . . , k) is required to satisfy an integral quadratic constraint (IQC):

∫ ∞

0

‖ξj(t)‖2 dt ≤
∫ ∞

0

‖ζj(t)‖2 dt+ dj, dj ≥ 0 (1.1)
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Figure 1.2: An uncertain system with structured uncertainties; see [2].

provided these integrals exist; see [2]. Note that ‖·‖ is the Euclidean norm.

Characterizing the structured uncertainties in terms of IQCs, we can include

not only time-varying, norm bounded uncertainties, but also dynamic nonlinear

uncertainties, which may appear due to unmodeled dynamics. In this case, the

class of uncertainties satisfying IQCs of the form (1.1) is richer than that of un-

certainties satisfying only norm bound conditions. Moreover, a natural stability

notion for an uncertain system satisfying IQCs is referred to as absolute stability,

which directly ensures the stability of the system trajectories and also implies

asymptotic stability; see [2].

From a game viewpoint, a robust H∞ controller can be view as a minimizing

player, which provides absolute stability and maintains the closed loop system

at a specified performance level in the presence of uncertainties. In contrast,

each uncertainty in the plant can be considered as a maximizing player, which

tends to impair the performance of the closed loop system; see [16]. This per-

spective allows us to treat the robust control problem as a constrained minimax

optimization problem. Moreover, using S-procedure results, we can convert the

given constrained optimization problem into an unconstrained optimization pro-

blem by applying scaling constants corresponding to the IQCs; see [2]. In this

case, the S-procedure is indeed analogous to a Lagrange multiplier method in
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convex optimization; e.g., see [19]. However, the scaling constants used in the

S-procedure are such that there exist stabilizing solutions to algebraic Riccati

equations parameterized by the constants. Riccati equations are involved because

the unconstrained optimization problem is treated as an H∞ control problem cor-

responding to a scaled system. In this regard, the absolute stabilization problem

is thus related to the H∞ control problem; see [2].

An optimal H∞ controller is the one that minimizes an induced norm ‖Twz‖∞
of a linear map from the disturbance input w(t) to the controlled output z(t) of

the closed loop system with zero initial condition (see Figure 1.2). Here, ‖Twz‖∞
is defined as

‖Twz‖∞ := sup
w(·)∈L2[0,∞),‖w(·)‖2 6=0

‖z(·)‖2

‖w(·)‖2

(1.2)

where ‖·‖2 is the L2-norm. Despite its optimality, finding this controller is often

difficult and expensive from a numerical perspective; e.g., see [18]. Thus, in

practice, we are usually more interested in having a suboptimal controller, which

guarantees a certain performance level

‖Twz‖∞ < γ, γ > 0 (1.3)

of the closed loop system; e.g., see [2, 18].

1.1.3 Quantum feedback control

Rigorous theoretical studies on the topic of quantum control started about three

decades ago and were documented in some initial publications e.g., [20–22]. These

results serve as important references in the quantum control literature and form

the foundation for later investigations. Although quantum control is a relatively

young discipline, it has set a path for quantum mechanics to move from abstract

scientific concepts into real applications. This allows us to employ quantum

mechanics as a fundamental framework not only to explain quantum phenomena

in our physical world, but also to govern future quantum technology development.

Currently, the need for comprehensive theoretical and experimental research on

quantum control systems grows rapidly and becomes more compelling. This

rising interest is particularly driven by recent advancements in high-precision

and nanoscale engineering, which undoubtedly lead us into quantum realm; e.g.,
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see [23,24].

Quantum feedback control has been acknowledged as a key factor, which will

play a significant role in the development of quantum technology and quantum

information. Potential applications of quantum control can be found in many

areas such as quantum metrology, quantum computation, quantum communica-

tion, quantum optical interferometry and quantum electronics; e.g., see [23–26].

Such pervasive applications pose immense challenges to the quantum control dis-

cipline to build a unified framework, which can be used in analysis and synthesis

of quantum control systems; e.g., see [27–29]. In particular, there has been sig-

nificant interest in focusing research on developing mathematical models and

feedback control methods for linear quantum systems; e.g., see [30–34]. This par-

ticular quantum system is commonly found in the field of quantum optics (e.g.,

see [35–37]), which widely appears in the above applications.

Keeping up with this situation, many researchers have exploited knowledge

of classical control theory to formulate systematic methods to analyze and syn-

thesize quantum control systems; e.g., see [38]. In particular, the development of

quantum control theory has greatly benefited from the well-established classical

stochastic control theory; e.g., see [39]. It has also been found that experience

in the classical domain appears to provide a better comprehension of the nature

of quantum mechanical problems; e.g., see [24, 40–42]. Although the classical

stochastic control is a sensible starting point, it should be noted that this ap-

proach is based on classical probability theory, which is considered as a special

case of noncommutative or quantum probability theory; e.g., see [43–46].

Unlike a classical stochastic system, the physical variables in a quantum sys-

tem do not commute. This feature prevents us from having effective and accurate

simultaneous observation of a quantum system due to the limitations imposed

by Heisenberg’s uncertainty principle; e.g., see [41]. Thus, the non-commutative

property presents a challenging obstacle if we want to regulate a quantum plant

using closed loop feedback control and classical measurements. Also, we cannot

perform classical measurements without disturbing the quantum plant and de-

stroying quantum information; e.g., see [25, 40, 47]. Such delicate circumstances

then motivate the emergence of quantum measurement and filtering theory, which

becomes an essential foundation for developing quantum feedback control meth-

ods; e.g., see [33,46,48–53].
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Despite the fact that a quantum system is non-commutative, the inclusion

of classical measurement devices in a quantum feedback control system is often

useful as we can still partially observe the dynamics of a quantum plant. Ap-

plying classical measurement indeed allows us to exploit the state-of-the-art of

the classical control methods to stabilize and provide good performance to the

closed loop quantum system; e.g., see [24,40–42,47,54–61]. In this case, the mea-

surement outputs are processed and fed into a classical controller, which can be

built using analog or digital electronics. The controller outputs are then applied

to the quantum plant through actuators. This approach, in particular, forms an

important class of linear quantum control systems involving classical feedback

loop; e.g., see [33,34,62–65].

To circumvent the quantum mechanical limitations of the system being con-

trolled, we can avoid applying classical measurement to the quantum plant and

allow the controller to be a quantum system instead. This approach gives rise

to another type of quantum control methods referred to as coherent quantum

feedback control. In this case, the quantum controller is directly interconnected

with the quantum plant; e.g., see [30, 31, 66–73]. The use of coherent quantum

feedback control can be more appealing than classical feedback control in some

applications due to its ease of implementation. Also, a coherent quantum con-

troller operates on higher speed and potentially provides better performance than

a classical controller; e.g., see [34]. These promising features have raised our inter-

est in developing systematic methods to synthesize two classes of linear quantum

controllers. In the first class, we are concerned with constructing a quantum con-

troller, which has the same structure as the quantum LQG controller presented

in [72] (see Chapter 6). Then, in the second class, we aim to build a robust quan-

tum controller, which is capable of attenuating exogenous disturbance inputs in

the presence of uncertainties in the quantum plant, via an H∞ control approach

as described in [70,73] (see Chapter 7 and Chapter 8).

To apply the coherent quantum feedback control strategy, physical realiz-

ability of the quantum controller is an important concern. This is because the

quantum controller is required to exhibit meaningful dynamics at all times ac-

cording to the principles of quantum mechanics. Thus, the representation of the

quantum controller cannot be arbitrary and is not as flexible as that of a classical

controller, but has to satisfy physical realizability conditions; e.g., see [70,72,73].
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Recently, the results in [74–76] provide a systematic method to physically con-

struct a linear quantum controller using serial connections of optical devices such

as optical cavities, optical amplifiers, optical squeezers, beam splitters and phase

shifters. To apply the method in [74], the quantum controller should be rep-

resented by linear quantum stochastic differential equations (QSDEs), which is

decomposed into real and complex quadratures as considered in [70,72]. This im-

plies that the linear QSDEs of the quantum controller will have real coefficients

and the order of the quantum controller will be twice that of the quantum plant.

Another approach is given by [77] to physically construct a linear quantum

controller using only passive optical elements such as optical cavities, beam split-

ters and phase shifters. The parameters of such a quantum controller can be

synthesized using the method in [73]. Even though the method in [77] is simpler

than that in [74], the former is only applicable to a particular class of quantum

systems represented by linear QSDEs with complex coefficients and in terms only

of annihilation operators; see [73]. Further generalization of the physical realiz-

ability conditions in [73] is given by [78], which provides necessary and sufficient

conditions for the physical realizability of the linear complex QSDEs written in

terms of annihilation and creation operators. These conditions can be related to

those in [70] via unitary transformation.

1.2 Evolutionary Method

In this section, we briefly describe the circumstances which lead to the emergence

of evolutionary methods as numerical problem solvers. We then discuss general

properties of evolutionary algorithms and particular applications of evolutionary

methods in feedback control systems for both classical and quantum dynamical

systems. Moreover, we also explain our motivation for applying an evolutionary

approach in our research.

1.2.1 Background

There has been a long history of numerical method development in order to solve

various real-world optimization problems found in, for example, the economy, the

environment, transportation, communications and manufacturing industry. As

scientific knowledge progresses, we become more able to improve existing methods
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and to create new computational tool in software and hardware. This increases

our opportunity to obtain better solutions with more efficient methods. Also, the

introduction of more powerful computers continuously speeds up and increases

our capacity for problem solving using optimization methods; e.g., see [79].

Alongside this advancement, real-world optimization problems have escalated

in scale and complexity during the last century. This undoubtedly lifts the

demand on experts to deliver problem solvers (algorithms) with more reliable,

efficient and versatile features. The primary goal is to obtain a good quality so-

lution within a reasonable time frame so as to achieve optimality for the problem

being considered. Moreover, parallelism also becomes a rising trend in both the

problem and methodology domains. Ultimately, these scenarios pose immense

challenges to mathematicians, computer scientists and engineers to yield high

performing optimization algorithms; e.g., see [79,80].

We are hardly able to keep up with the rapid growth in the need for sound

problem-specific optimization algorithms because of the time it takes to con-

duct comprehensive studies; e.g., see [79]. Despite these limitations, a promising

breakthrough was offered by the so-called evolutionary algorithm (EA) when its

first prototypes appeared in the late 1950s; e.g., see [81, 82]. This algorithm is

commonly referred to as a numerical algorithm inspired by the notions of survival

of the fittest and genetic evolution in biological science; e.g., see [79,80,83–85].

Historically, there were four main streams in the course of early EA devel-

opment, namely evolutionary programming (EP; see [86]), evolution strategies

(ES; see [87,88]), genetic algorithms (GA; see [89,90]) and genetic programming

(GP; see [91]). A more complete overview of early EA history can be found in

e.g., see [85, 92] and the references therein. Despite the differences among these

EAs, they have common operators, namely mutation, recombination and selec-

tion, which then become the basic ingredients of other variants of EA developed

later; e.g., see [79]. These EA operators are usually governed by certain stochastic

processes. Thus, EA can be classified as a stochastic search method as shown in

Figure 1.3. In addition to those operators, EA also needs a routine to evaluate the

fitness of all candidate solutions to a problem under consideration. The outcome

of this routine is fitness information associated with each candidate solution and

is then exploited by the EA operators to perform their tasks.
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Figure 1.3: Search method classification; see [3].

1.2.2 EA properties

EA becomes attractive because of its favorable features, which may be absent

from many analytical and conventional numerical optimization solvers; e.g., see

[79,80,84,85,93]. In the following, we list some of advantageous EA properties:

1. EA accommodates many different types of data structure such as binary,

integer, real, symbolic or finite state values. This gives EA a large degree

of versatility and flexibility as a solver for various classes of optimization

problems.

2. EA works with a population of individuals, which serve as potential can-

didate solutions to a given problem. These individuals are generated ran-

domly and spread over a search space defined by boundary constraints on

the decision variables. This feature liberates EA from dependency on suit-

able initial points to start its evolution and also enables EA to cope with

a large and discontinuous search space. Moreover, operating on a popula-

tion, EA is then able to provide a set of feasible solutions in one run and is

compatible with parallel computing because each individual can be assessed

independently.

3. EA is equipped with variation operators: mutation and recombination,

which maintain population diversity at a high level. This makes EA much

less susceptible to stagnation and premature convergence, especially when

EA is used to solve nonconvex problems. Moreover, EA also brings about
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competition among candidate solutions, which is triggered by a selection

operator based on the fitness information of each individual in the popu-

lation. In the selection process, EA is allowed to capitalize on low fitness

and/or infeasible individuals to guide an evolutionary search toward a de-

sired global solution. This is also useful to increase population diversity,

especially at an early stage evolution.

4. EA yields Pareto-optimal solutions when it is used to handle constrained

multi-objective problems where there may be conflicting objectives. More-

over, EA can also be implemented together with other numerical methods

in order to enhance the performance of both sides as we can exploit good

properties of all parties. This will result in a hybrid EA.

In spite of the useful EA characteristics, it is wise not to take them for granted

when implementing EA. There are indeed some technical issues to which users

should pay attention because they may greatly affect EA behavior. Among other

things, these issues concern population diversity, constraint handling and param-

eter setting, which are left for discussion in Chapter 2. Furthermore, EA usually

takes a long computational time to accomplish a whole evolution cycle. This is

due to its stochastic evolutionary nature and the fact that all individuals in the

population have to undergo fitness evaluation in each cycle. In particular, this

concern is critical if EA is applied to real-time applications with fast dynamics.

An alternative way to speed up the computation process is by applying parallel

computing to which EA is adaptable; e.g., see [85,94].

1.2.3 Existing EA-based control applications

In the literature, we can find a multitude of EA applications in different fields,

including engineering; e.g., see [95–99]. In particular, automatic control engineer-

ing has benefited from EA development in the areas of single- and multi-objective

optimization; e.g., see [94, 100–103]. Here, we mention some controller synthesis

and analysis algorithms based on evolutionary methods as follows:

• Linear control such as PID, LQG and H∞ control: e.g., see [104–115];

• Nonlinear control such as Lyapunov’s direct method, sliding mode, nonlin-

ear dynamic inversion and nonlinear PD control: e.g., see [116–123];
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• Stochastic control such as Monte Carlo probabilistic and stochastic traffic

control: e.g., see [124–128];

• Adaptive control: e.g., see [129–131];

• Evolutionary control: e.g., see [132–135];

• Quantum control: e.g., see [136–139]

All of these control system algorithms are mainly constructed using ES, GA

and GP, which are part of the four major classes of EAs. The pervasive success

of EAs in control applications give further confirmation that EAs are reliable and

effective in dealing with difficult engineering problems. This obviously becomes

an impetus to enhance existing EAs and to find new evolutionary methods with

better performance and efficiency. As a result, one of the recent EAs to appear

is the differential evolution (DE) algorithm, which was initially designed to solve

real-valued problems; e.g., see [4, 140].

Since its first appearance, DE has drawn a lot of attention from EA experts

and users because it tends to outperform many preceding EAs. Hence, the DE

algorithm immediately became popular as it is also relatively simple and easy

to implement. When applied to continuous space optimization problems, DE is

a formidable competitor for ES and GA; e.g., see [4]. However, this is not to

suggest that DE is the most superior EA for any kind of problem (e.g., see [141])

because, according to no free lunch theorem, such an EA simply does not exist;

see [142]. A more detail discussion about DE and its components is presented in

Chapter 2.

Recently, DE has also been applied to various types of linear and nonlin-

ear control applications for both classical and quantum dynamical systems; e.g.,

see [143–151]. It is demonstrated in those references that the DE approach is

relatively more successful and efficient as compared to other EAs when searching

for an optimal real-valued solution. This fact indeed confirms previous empirical

studies about the performance of the DE algorithm in comparison with other EAs;

e.g., see [4]. Considering the capability of the DE algorithm, we are confident

to apply this algorithm to solve optimization problems arising in our research to

develop new methods for synthesizing robust feedback controllers.
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1.2.4 EA-based robust control methods

We wish to clarify our motivation to develop EA-based algorithms for construct-

ing robust feedback control systems. We begin with specifying the classes of

control problems being considered. In our research, we consider both classi-

cal (Chapter 3 – Chapter 5) and quantum (Chapter 6 – Chapter 8) dynamical

systems. We assume that each dynamical system has structured uncertainties,

except the quantum system in Chapter 6.

We refer to the robust H∞ control methods presented in [2] to synthesize

non-decentralized and decentralized robust H∞ controllers for classical uncertain

systems in Chapter 3 – Chapter 5. Using these controllers, we aim to absolutely

stabilize the closed loop uncertain system with a specified disturbance attenuation

level. In the controller synthesis algorithms, we assign a scaling constant to each

structured uncertainty in the uncertain system so that the constrained robust

H∞ control problems can be transformed into the unconstrained standard H∞

control problems. These formulations then lead to solutions, which are given in

terms of stabilizing solutions to algebraic Riccati equations parameterized by the

scaling constants.

In Chapter 6, we deal with a class of quantum systems with real coefficient

QSDEs as considered in [70, 72]. In this case, we are concerned with stabilizing

a closed loop quantum system with a physically realizable linear quantum con-

troller. The physical realizability condition for the quantum controller is then

represented by a complex algebraic Riccati equation. We also allow particular

control objectives to be incorporated in the quantum controller design algorithm

in addition to the closed loop stability and physically realizability requirements.

Meanwhile, in Chapter 7 and Chapter 8, we are concerned with a class of

uncertain quantum systems with complex coefficient QSDEs as considered in [73].

Here, we aim to synthesize non-decentralized and decentralized quantum H∞

controllers, which robustly stabilize the closed loop uncertain quantum systems

with a specified disturbance attenuation level. Here, the idea of introducing

scaling constants to the structured uncertainties is also applied when designing

the quantum controllers. This approach allows us to apply the results in [73] to

obtain solutions to the given quantum control problems. The quantum controllers

are then constructed in terms of stabilizing solutions to complex algebraic Riccati

equations parameterized by the scaling constants. Also, we require the resulting
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quantum controllers to be physically realizable.

In order to solve the controller design problems presented in Chapter 3 –

Chapter 8, we consider them as nonconvex nonlinear constrained optimization

problems. From a numerical computation perspective, it is difficult to obtain op-

timal solutions for such problems due to the functional nonsmoothness inherently

arising in our control problems. This issue has been discussed in e.g., [152–154]

with an observation that regular linear matrix inequality (LMI) and algebraic

Riccati equation techniques are often inapplicable to solve these problems. For

some cases, there have been numerical algorithms proposed by [72, 155–157] to

solve this type of controller design problems based on a rank constrained LMI

approach given in [158]. However, those algorithms tend to result in compli-

cated formulations and strongly depend on a suitable initial point in order to be

effective. Furthermore, it has also been shown in [153, 159] that numerous con-

ventional optimization methods based on, for example, quadratic programming

(e.g., see [160]), augmented Lagrangian (e.g., see [161, 162]), gradient sampling

(e.g., see [163]) and bilinear matrix inequality (e.g., see [164, 165]) techniques

often encounter numerical difficulties or even fail when used to handle particular

nonconvex H∞ synthesis problems.

In fact, when dealing with a nonconvex problem, a feasible initial point is

often difficult to obtain prior to numerical iteration. This is because we have

very little information about a numerical environment where the optimization

takes place. Unfortunately, there is no reliable systematic method to find such

an initial point that can efficiently direct an iteration process toward an optimal

solution. Also, in the approaches mentioned above, we can only evaluate one

point as a potential candidate solution in one iteration cycle. If the given point is

infeasible, it is immediately discarded and the iteration process is terminated. A

new initial point is then required to begin new iteration cycles. Even if a feasible

solution is found, premature convergence is likely to happen. In other words, it is

very unlikely to escape from a local optimum because the iteration process only

relies on information from the current search path. Hence, those approaches tend

to have low success rates and often lead to unsatisfactory solutions if they are

applied to solve difficult nonconvex problems.

Based on this observation, we are motivated to find another approach, which

allow us to solve the controller design problems above with less dependence on
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a particular initial point and in a more straightforward manner. Having these

concerns and considering the properties of EA discussed in sub-Section 1.2.2, we

then propose to apply an evolutionary optimization approach to design feedback

control systems as described in Chapter 3 – Chapter 8. In particular, we opt to

use the DE algorithm, that is drift-free DE/rand/1/either− or (see Chapter 2),

as it is simple and reliable in solving constrained optimization problems with real-

valued decision variables. Note that our approach can also be applied to other

related previous works in [2, 6, 8, 70, 73, 166] for which computational algorithms

have yet to be provided.

1.3 Thesis Organization

We now outline the organization of this thesis. In Chapter 2, we briefly discuss

general structure and technical issues associated with an EA and basic elements

of the DE algorithm. As mentioned previously, robust H∞ controller synthesis

algorithms for classical uncertain systems are presented in Chapter 3 – Chap-

ter 5. In Chapter 6, we discuss the construction of a physically realizable quan-

tum controller for a quantum system represented in terms of real and complex

quadratures. Then, in Chapter 7 and Chapter 8, we introduce algorithms for de-

signing physically realizable robust quantum H∞ controllers for linear complex

uncertain quantum systems. Conclusions and potential future work are given in

Chapter 9. Moreover, to emphasize the significance of our main results, we de-

scribe the background, main ideas and contributions from Chapter 3 to Chapter 8

in the following sub-sections.

1.3.1 Chapter 3: Nonlinear robust H∞ control

An unstable controller is not desirable in many applications because it is sensi-

tive to actuator and sensor failures and to plant uncertainties and nonlinearities.

It may also lead to implementation problems and impair the closed loop sys-

tem performance in tracking reference signals and rejecting disturbances; e.g.,

see [167–169]. These concerns have motivated many control system experts to

develop algorithms for constructing stable controllers. Such a control problem is

usually referred to as a strong stabilization problem.
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Here, we mention some relevant previous results which address this partic-

ular control problem. In the literature, there have been characterizations of

strong stabilizability for both single-input single-output (SISO) and multiple-

input multiple-output (MIMO) systems based on, for example, a parity interlac-

ing property (e.g., see [170,171]) and a notion of stable range (e.g., see [172,173]).

Also, the inclusion of a strong stabilization requirement into the H∞ control

framework has led to various parameterization techniques; e.g., see [167–169,174–

177]. However, they deal only with linear control problems and do not consider

robustness issues in controller design.

There is a similar interest in the use of a stable nonlinear controller for robust

stabilization of nonlinear uncertain systems. Although many nonlinear controller

synthesis methods are available in the literature such as [178–181], they do not

necessarily lead to a stable nonlinear controller. This fact has motivated us to

propose a new approach to solve a nonlinear robust H∞ control problem via a

stable nonlinear output feedback controller. A related discrete-time approach can

be found in [182] for the finite-time horizon case without a controller stability

requirement. Also, a method to construct a stable linear robust H∞ output

feedback controller has been presented in [7], but it requires that any known

nonlinearity in the system be treated as an uncertainty. In contrast to the latter

approach, we do not directly consider the known nonlinearity as an uncertainty in

order to obtain a stable nonlinear controller, which can provide better disturbance

attenuation performance; e.g., see [6].

In Chapter 3, we consider a class of nonlinear uncertain systems where ad-

missible uncertainties and nonlinearities are described by integral quadratic con-

straints (IQCs) and global Lipschitz conditions (GLCs), respectively. A system

of this type has also been considered in [6] for a guaranteed cost control problem,

but without a controller stability requirement. There are two main ideas under-

lying our approach to synthesize a stable nonlinear controller for this system.

Firstly, we modify a standard IQC approach to robust H∞ control by adding

a copy of each known plant nonlinearity to the controller so that it is able to

exploit the nonlinearity. This technique has also been used in the designs of li-

near parameter varying controllers (e.g., see [183]), fault detection systems (e.g.,

see [184]), nonlinear observers (e.g., see [185]) and nonlinear observer-based con-

trollers (e.g., see [186]). Secondly, all known nonlinearities and their copies are
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combined into the plant and characterized by extra IQCs derived from the GLCs.

Thus, we can apply the method in [187] to achieve an absolutely stable closed

loop system with a specified disturbance attenuation level.

In order to guarantee controller stability, we first solve a state feedback con-

trol problem and then introduce an additional uncertainty to form an artificial

uncertain system. For a certain value of the additional uncertainty, the artificial

uncertain system reduces to the original uncertain system. If a suitable controller

for the artificial uncertain system exists, then the same controller also solves the

absolute stabilization problem with a specified disturbance attenuation level for

the original uncertain system. Moreover, for another value of the additional un-

certainty, the artificial uncertain system reduces to a specific open loop system

such that any suitable controller must be stable. This approach, therefore, pro-

vides only sufficient conditions and gives rise to conservatism to some extent due

to the additional uncertainty; e.g., see [7].

Our algorithm to construct the stable nonlinear controller involves stabilizing

solutions to algebraic Riccati equations parameterized by scaling constants corre-

sponding to all IQCs. With this formulation, we introduce nonconvex nonlinear

constraints to the nonlinear H∞ controller synthesis problem. To find a solution

to this problem, we may apply the rank constrained LMI method, which was also

used in [157] to construct a stable linear H∞ controller. However, this approach

tends to be complicated and adds more constraints to the original controller de-

sign algorithm, which makes the problem even harder to solve. Thus, to obtain a

more straightforward solution and to avoid unnecessary complication, we trans-

form this problem into a constrained nonlinear optimization problem and then

solve it using an evolutionary optimization method, namely the DE algorithm as

given in Chapter 2.

1.3.2 Chapter 4: Decentralized state feedback robust H∞

control

In real-world control applications, one of the great challenges is how to control

a large-scale system efficiently. The large-scale system may have a particular

structure and limited communications between subsystems so that it is not al-

ways possible to share complete information with the entire control system. This

imposes constraints on the controller structure in order to accomplish a control
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task with a prescribed performance level; e.g., see [188]. A reasonable approach to

cope with this situation is to apply a decentralized robust control strategy, which

allows us to obtain a control system with reduced complexity. This approach is

advantageous from a computation and implementation perspectives. Neverthe-

less, we should also beware that a simple architecture usually leads to a loss of

performance because it relies only on limited (or even inaccurate) information;

see [189]. Another important aspect of these problems is to consider how easy

it is to implement a decentralized control system; e.g., see [190]. All of these

concerns make the problem of designing a decentralized robust controller for a

large-scale system an interesting research area.

It is very common to view a large-scale system as consisting of interconnected

subsystems and that their interactions are sometimes uncertain. Thus, in many

previous results (e.g., see [191–193]), the interconnections between subsystems are

considered as sources of uncertainties in addition to uncertainties in each subsys-

tem. Naturally, the main goal is to design a decentralized robust controller that

is also capable of alleviating interconnection effects when attaining a prescribed

performance level. To achieve this goal, one can take an approach that either

ignores or takes into account the interconnections in the controller design; e.g.,

see [194–196]. In both paradigms, the interconnections are seen as the parties

which contribute to the performance degradation of the overall system. A con-

trasting viewpoint to the previous one is that the interconnection structure may

have a positive contribution to the decentralized control system, especially when

the number of decentralized controllers is less than the number of subsystems;

e.g., see [197].

As the main contribution of Chapter 4, we present a new method for design-

ing a decentralized state feedback robust H∞ controller, which can exploit the

interconnections between subsystems. Here, we assume that the interconnections

are fully (or partially) known and hence, we do not treat them as uncertainties.

Instead, we neglect off-diagonal blocks in a full state feedback gain matrix and

consider them as uncertainties; e.g., see [198]. This approach yields a block-

diagonal state feedback control law, which is also robust against perturbations in

the controller itself. Thus, this idea is also related to non-fragile controller design

methods; e.g., see [199–201].

Here, we are concerned with a class of large-scale linear uncertain systems in
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which the uncertainties are described by IQCs. This uncertainty description is

more general than those in e.g., [202–206]. Thus, we wish to construct a decentra-

lized state feedback robust H∞ controller that is capable of absolutely stabilizing

the closed loop system while achieving a certain disturbance attenuation level.

This idea is based on the results in [187] and therefore, the resulting controller

design algorithm involves solving an algebraic Riccati equation parameterized by

scaling constants. A stabilizing solution to the Riccati equation is then used to

construct the decentralized state feedback controller.

The scaling constants are associated with the system uncertainties and norm

bounds on the size of the neglected off-diagonal blocks of the controller gain

matrix as in [156, 198] for a guaranteed cost control problem. This formulation

leads to a nonconvex nonlinear optimization problem, which is often difficult to

solve using regular optimization methods. In the approach of [156], a noncon-

vex optimization problem also arose and was solved using a rank constrained

LMI method; see [158]. However, in Chapter 4, we are solving an H∞ control

problem rather than a guaranteed cost control problem and it turns out that

the rank constrained LMI approach can no longer be easily applied. Moreover,

we may reformulate this optimization problem in terms of bilinear matrix in-

equality (BMI), which can be solved using an algorithm based on, for example,

homotopy methods (e.g., see [207]), cross decomposition (e.g., see, [208]), a sep-

aration procedure (e.g., see [209]) and cone complementarity linearization (e.g.,

see [160, 210]). However, like the rank constrained LMI algorithm, the success

of the BMI approach is dependent on feasible initial parameters, which is usu-

ally unknown beforehand, to determine a suitable path toward a desired optimal

solution. Considering these facts, we thus employ an evolutionary optimization

approach, namely the DE algorithm (see Chapter 2), to find an optimal solution

to the decentralized controller synthesis problem. In doing so, we need to satisfy

nonconvex nonlinear constraints related to the parameterized Riccati equation.

1.3.3 Chapter 5: Decentralized nonlinear robust H∞ con-

trol

There have been a great variety of algorithms proposed to synthesize decentra-

lized robust control systems, which provide sufficient margins of stability and

performance robustness for a large-scale dynamical system. The strategy used
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in each of these algorithms is very much dependent on the information structure

available for feedback, the control objective and also perturbations in the system

model. These conditions have led to either a linear or a nonlinear decentralized

controller design algorithm, which is only suitable to solve a robust control pro-

blem for a particular class of large-scale system. Thus, to confine the scope of our

discussion, we only focus on a decentralized nonlinear robust H∞ control problem

for a large-scale nonlinear uncertain system where admissible uncertainties and

nonlinearities satisfy IQCs and GLCs, respectively; e.g., see [6]. This particular

interest originates from what we have done in Chapter 3 and Chapter 4.

A brief survey about some relevant previous research on the topic of decen-

tralized control for large-scale nonlinear uncertain systems is given as follows.

Both nonlinear state feedback and output feedback decentralized controllers can

be constructed by applying methods such as Lyapunov-based nonlinear control

(e.g., see [211, 212]), nonlinear adaptive control (e.g., see [213–215]), nonlinear

H∞ (L2-gain) control (e.g., see [216,217]), observer-based nonlinear control (e.g.,

see [218–223]) and sliding mode control (e.g., see [224]). Apart from these non-

linear control techniques, there is also interest in applying linear feedback con-

trol to large-scale dynamical systems where the nonlinearities appear only in

the interconnections. This latter approach can be applied using methods such

as feedback domination with a growth condition (e.g., see [225, 226]), a Luen-

berger observer-controller synthesized using solutions to algebraic Riccati equa-

tions (e.g., see [227]) and LMIs (e.g., see [228,229]), and linear dynamic controllers

(e.g., see [230]).

In those references, interconnections between subsystems are mainly consid-

ered as uncertainties and assumed to induce performance degradation of the

large-scale system. This paradigm leads to a decentralized controller, which is

capable of mitigating interconnection effects while achieving a prescribed con-

trol objective. This approach is suitable for decentralized control problems with

unknown interconnections. Moreover, the stability of the decentralized dynamic

controller does not appear in the discussions of the references above and hence,

is not taken into account in the proposed controller design algorithms. This in-

dicates that the issue of the controller stability have been less important in the

decentralized nonlinear control literature. However, strong stabilization has been

considered in some decentralized linear control problems; e.g., see [166,231,232].
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These observations then inspire us to look at decentralized nonlinear control

problems from a different perspective. In this case, we believe that the intercon-

nections can be exploited for control purposes if we have sufficient knowledge of

how the subsystems are interconnected. This is beneficial whenever we can only

assign direct feedback control action to a limited number of subsystems. Adopt-

ing this idea in our approach, we thus do not consider the interconnections as

uncertainties, but rather as useful information to facilitate robust stabilization

with a certain performance level for the large-scale system (see Chapter 4). In

addition, we also include the requirement in Chapter 3 that the decentralized

nonlinear controllers must be stable.

Therefore, as the main contribution of Chapter 5, we present a new method

to solve a robust H∞ control problem for a large-scale nonlinear uncertain system

using a stable decentralized nonlinear output feedback controller. In this method,

the discrepancies between non-decentralized and decentralized controllers consti-

tute a set of nonlinear error systems, which are required to be absolutely stable

and considered as additional uncertainties; e.g., see [166]. Moreover, to guar-

antee the stability of the decentralized controllers, we first solve a state feed-

back H∞ control problem and then introduce another additional uncertainty to

form an artificial uncertain system. The latter system is used to synthesize an

artificial stable output feedback controller with which we construct the decentra-

lized nonlinear controllers. This approach, however, inherently gives rise to some

conservatism; e.g., see [7].

A solution to the decentralized nonlinear control problem is given in terms

of stabilizing solutions to algebraic Riccati equations, which are parameterized

by scaling constants corresponding to all of the uncertainties involved. This

brings nonconvexity into play when solving this problem. Thus, a numerical

algorithm used to compute the solution has to cope with the nonconvex nonlinear

constraints emerging in the proposed method. This motivates us to apply the

DE algorithm in Chapter 2 to find an optimal solution to a constrained nonlinear

optimization problem arising in our control problem.



22 Chapter 1. Introduction

1.3.4 Chapter 6: Coherent control of linear quantum sys-

tems

In Chapter 6, we are interested in developing a computational method to synthe-

size a linear coherent quantum feedback controller for a class of linear quantum

systems represented in terms of QSDEs with real coefficients; see [70, 72]. The

quantum controller has the same structure as a coherent quantum LQG controller

in [72] and is required to satisfy the algebraic physical realizability condition given

in [72]. Apparently, the coherent quantum control problem with such a constraint

is nonconvex. Solving this problem numerically is a challenging task because its

solution is often difficult to obtain using conventional optimization methods.

The authors of [72] propose to use a rank constrained LMI approach (see [158])

to synthesize a physically realizable coherent quantum LQG controller. This

approach, however, is applied only to solve a relaxed feasibility version of the

original quantum control problem. Therefore, the original quantum control pro-

blem, which is a nonconvex nonlinear optimization problem, remains to be solved.

Moreover, the success of the rank constrained LMI method is strongly dependent

on a suitable initial point, which is usually unknown, to begin a numerical itera-

tion. In addition, when dealing with higher order quantum systems, the approach

of [72] will lead to excessively complicated rank constrained LMI problems.

These concerns have motivated us to develop a more straightforward algorithm

to solve the linear coherent quantum control problem reliably. Thus, as the

main contribution of Chapter 6, we propose to use the DE algorithm described

in Chapter 2, under which the given quantum control problem is reformulated

as a constrained nonlinear optimization problem. In particular, the physically

realizable condition is transformed into a complex algebraic Riccati equation,

which serves as one of equality constraints. This optimization approach provides

us a framework to solve various linear quantum control problems, which include

the coherent quantum H∞ and LQG control as presented in [70, 72]. Thus, we

are quite flexible to determine a particular objective function to optimize and the

constraints involved.

To demonstrate our DE-based approach, we carry out a case study involv-

ing entanglement enhancement for a quantum optical network using a coherent

quantum controller. The quantum network consists of two optical parametric

amplifiers (OPAs), which are directly interconnected through an optical field and
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driven by quantum noise. An initial entanglement of this network is then en-

hanced by applying a coherent quantum controller in place of the optical field

interconnecting the two OPAs. This case study is motivated by the results in [233]

where the authors successfully increase and preserve the entanglement level of a

quantum optical network using both a homodyne detector and a classical feed-

back control gain. Also, we note the significance of entanglement as a unique

physical phenomenon in quantum mechanics, which becomes a fundamental re-

source required in quantum information processing.

Although the notion of quantum entanglement seems to be less than fully com-

prehended, it is true that entanglement is useful to increase speed and security

of some applications in, for example, quantum cryptography, quantum computa-

tion, quantum teleportation and quantum communication; e.g., see [25,234,235].

However, entanglement is susceptible to decoherence because of inevitable inter-

action between a quantum network and its environment. It is indeed a challenging

problem to prevent entanglement from decaying or disappearing so that we can

exploit entanglement for application purposes; e.g., see [236,237]. This has given

rise to the emergence of various control techniques to generate, preserve and

restore entanglement within a quantum network; e.g., see [61,233,238–244].

There are many ways to measure the entanglement level depending on prop-

erties of the quantum states; e.g., see [245, 246]. In our case, we have Gaussian

quantum states, and thus, the entanglement level can be measured in terms of

the logarithmic negativity as a function of the covariance matrix of the quantum

network; e.g., see [233, 247–249]. The covariance matrix can be obtained as a

solution of a Lyapunov equation associated with the quantum network. Then,

applying our DE-based algorithm to synthesize the coherent quantum controller,

we can consider the logarithmic negativity as an objective function to maximize

while satisfying an entanglement criterion. This in turn leads to a physically

realizable quantum controller, which is capable of stabilizing the quantum net-

work with an enhanced entanglement level. It should also be noted that the

logarithmic negativity is a nonconvex functional; see [250].

1.3.5 Chapter 7: Coherent quantum robust H∞ control

In practice, it is often assumed that a quantum system is subject to perturba-

tions generated by noises, exogenous disturbances and uncertainties (e.g., model
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mismatch and unknown dynamics). This situation imposes an essential task on a

quantum feedback controller to maintain sufficient margins of stability and per-

formance of the closed loop system in the presence of those perturbations. Thus,

as in the classical control theory, robustness against perturbations also becomes

a central issue in quantum control studies; e.g., see [64, 70, 251–255]. Taking

perturbations into account, we then represent them explicitly in a mathematical

model of the quantum system being controlled.

In Chapter 7, we consider coherent quantum robust H∞ control for a class of

linear complex quantum stochastic systems with norm-bounded structured uncer-

tainties. The dynamics of an uncertain quantum system in this class is determined

only by annihilation operators and described in terms of QSDEs with complex

coefficients; e.g., see [33,73]. The aim of applying coherent quantum robust H∞

control strategy is to achieve a strict bounded real closed loop uncertain quantum

system with a specified disturbance attenuation level. It is certainly possible to

solve this quantum control problem based on the quantum H∞ control methods

presented in [70, 73] by lumping all uncertainties in the quantum system into a

single unstructured uncertainty. However, these methods may result in a con-

servative quantum H∞ controller, which is not always stable and strict bounded

real. Hence, the quantum controller may not be physically realizable.

As the main contribution of Chapter 7, we thus propose a new method to con-

struct a stable and strict bounded real coherent quantum H∞ controller, which

is guaranteed to be physically realizable. The coherent quantum H∞ controller is

of the same order as that of the plant. The underlying main idea of our approach

is to introduce an additional uncertainty to form an artificial uncertain quantum

system, based on which the desired quantum controller is designed. This idea is

taken from the classical control approach in [8]. The additional uncertainty has

specific properties that for one particular uncertainty value, the artificial uncer-

tain quantum system reduces to the original uncertain quantum system and thus,

any suitable coherent quantum H∞ controller will also lead to the satisfaction of

the H∞ control objective for the original uncertain quantum system. Also, for

another uncertainty value, the artificial uncertain quantum system reduces to a

particular open loop configuration such that the coherent quantum H∞ controller

must be stable and strict bounded real, and hence, is physically realizable. Thus,

we only provide sufficient conditions to construct such a coherent quantum H∞
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controller. Also, it should be noted that the inclusion of the additional uncer-

tainty will introduce some extra conservatism in the quantum controller design

process.

To reduce controller conservatism, we introduce scaling parameters to exploit

the structure of the uncertainties. Along with the formulation in [73], this ap-

proach leads to a solution to the quantum robust H∞ control problem, which is

given in terms of stabilizing solutions to parameterized complex algebraic Riccati

equations. This implies that we have to deal with nonconvex nonlinear con-

straints, which are difficult to satisfy when solving the given quantum control

problem using conventional optimization methods. Thus, we apply the DE al-

gorithm in Chapter 2, which is a reliable way to find an optimal solution to a

difficult nonconvex optimization problem.

The class of quantum systems under consideration includes quantum opti-

cal systems with purely passive optical elements such as optical cavities, beam-

splitters and phase-shifters; e.g., see [73]. Thus, to demonstrate the efficacy of

our DE-based algorithm, we consider an example of stabilizing a quantum optical

system using a quantum H∞ controller, which cannot be solved using the method

in [73]. We also show that the resulting quantum controller can be physically con-

structed using an algorithm in [77] as a cascade of n generalized m-mirror cavities

using the passive optical components.

1.3.6 Chapter 8: Decentralized coherent quantum robust

H∞ control

Given the current progress of quantum technology development, we would expect

large-scale quantum systems in future applications of quantum information and

computation; e.g., see [23,234,256]. When a quantum system is of high dimension

and complexity, applying a non-decentralized coherent quantum controller may

not be feasible due to the high cost of computation and implementation. These

issues have also been considered in Chapter 4 and Chapter 5 for the classical

decentralized control system. Meanwhile, rigorous investigation on how to control

large-scale quantum systems in a decentralized manner is still in its infancy.

This situation provides us an opportunity to develop new methods to design a

decentralized coherent quantum control system.

In Chapter 8, we consider decentralized coherent quantum robust H∞ control
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for a class of large-scale linear complex quantum stochastic systems with norm-

bounded structured uncertainties. The dynamics of a quantum system in this

class is determined only by annihilation operators and represented in terms of

QSDEs with complex coefficients as in Chapter 7. Moreover, the H∞ control

objective is to obtain a closed loop uncertain quantum system, which is strict

bounded real with a specified disturbance attenuation level.

The underlying main idea to synthesize the decentralized quantum controller

is similar to that in Chapter 4 and Chapter 5. In this case, we view a large-

scale quantum system as consisting of interconnected quantum subsystems. We

then assume that interconnections between quantum subsystems are known and

hence, they are not treated as sources of uncertainties. Instead, we neglect the

off-diagonal parts of the transfer function matrix of a non-decentralized quantum

controller and consider them as additional uncertainties to the quantum plant;

e.g., see [166]. This implies that the non-decentralized quantum controller has

to be stable. Moreover, this approach also allows the decentralized quantum

controller to exploit the interconnections, which is very useful when the number

of controllers is less than that of the subsystems; e.g., see [197].

We then propose two systematic methods to synthesize decentralized quan-

tum controllers. A direct extension of the results in [73] lead to the first method,

but it does not immediately yield a physically realizable decentralized quantum

robust H∞ controller. Therefore, we must check the physical realizability of the

controller before it can be implemented. We are indeed able to guarantee the de-

centralized quantum controller to be physically realizable by applying the results

in Chapter 7. This approach then gives rise to the second method and hence,

yields a stable and strict bounded real decentralized quantum controller. How-

ever, the use of additional artificial uncertainty in the second method introduces

some extra conservatism to the controller design process. Also, we need more

constraints to ensure that the physical realizability condition is satisfied.

In both methods, we apply scaling constants to exploit the structure of the

uncertainties involved in the quantum system in order to reduce conservatism

of the resulting controller. Thus, solutions to the decentralized quantum con-

trol problem are given in terms of stabilizing solutions to parameterized complex

algebraic Riccati equations. This formulation leads to nonconvex nonlinear con-

straints, which are difficult to satisfy when we solve the given control problem.
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We then employ the DE algorithm in Chapter 2 to compute all scaling parameters

necessary for constructing the decentralized quantum controllers.

To demonstrate the DE-based controller design algorithms, we consider an

example of a quantum optical network for each method. We also show that

for a particular network, the first method fails to yield a physically realizable

decentralized quantum controller, whereas the second method succeeds in doing

so. Moreover, using an algorithm in [77], the resulting decentralized quantum

controller can be physically constructed as a cascade of n generalized m-mirror

cavities using passive optical components such as optical cavities, beam-splitters

and phase-shifters.
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Chapter 2

Differential Evolution

In this chapter, we present a brief description of the notion of evolutionary

algorithms together with some important technical issues. We then provide a

short discussion about a particular class of evolutionary algorithm, namely the

differential evolution algorithm. The latter is applied to solve various controller

design problems for both classical and quantum dynamical systems in subsequent

chapters. Moreover, along with the characterization of principal operators of the

differential evolution algorithm, we also touch on the issues of constraint handling

and parameter setting.

2.1 Evolutionary Algorithm

The evolutionary algorithm (EA) operates on a population of candidate solutions,

which is generated randomly according to a certain probability distribution func-

tion. Thus, the EA is considered as a population-based stochastic numerical

solver. An initial population with sufficient diversity is necessary to begin a nu-

merical evolution because it affects the success of the EA in returning a desirable

solution. In general, a candidate solution consists of decision variables, which

can be represented in various data formats such as a binary string, a real-valued

vector, a symbolic expression, a finite state machine and a tree structure; e.g.,

see [79, 80]. In some cases, it may also be a mixture of these possibilities; e.g.,

see [85,257]. It should be noted, however, that not all representations are suitable

for a particular EA.

Given a population of candidate solutions, it is natural that they may not fit
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Algorithm 2.1 Evolutionary Algorithm

1: Initialization: randomly generate an initial population
2: Fitness evaluation
3: while Termination criterion is not satisfied do

4: Parent selection
5: Recombination
6: Mutation
7: Fitness evaluation
8: Select the next generation candidate solutions
9: end while

10: Return

equally into the numerical environment defined by the constraints and/or objec-

tive function involved. An EA then requires an appropriate fitness assessment as

a routine to rate the quality of each candidate solution and as a link to a problem

under consideration. The fitness information is very important as it will affect

the quality of the new population formed through evolution and selection pro-

cesses. The higher the fitness of a candidate solution is, the more probable it is

chosen to propagate its genetic codes (parameter values) to the next generation.

A new candidate solution (offspring) is produced by recombining two or more

candidate solutions (parents) chosen from the current population. There are

many ways to choose the parents randomly such as fitness proportional selection,

ranking selection, tournament selection and stochastic universal sampling; e.g.,

see [79]. Due to the random selection, it is then possible that one of the par-

ents has a poor fitness. However, this is beneficial in the early stage evolution

as it keeps the population diversity high so as to avoid premature convergence.

Also, an offspring may undergo mutation where its genetic codes are perturbed

randomly. Both recombination and mutation follow particular probability distri-

bution functions. Having recombined and mutated the population, we also need

to assess the fitness of its members. It is logical to expect that the offspring

will have a better fitness rate as compared to their parents. Thus, recombination

and mutation is usually referred to as an adaptation process to match with the

environment; e.g., see [79]. Now, on the basis of their fitness quality, all members

in the parent population have to compete with those in the offspring population

in order to survive and be selected as members of a new population. The evo-

lution processes are repeated until a termination criterion is satisfied. A general
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pseudocode of EA is illustrated in Algorithm 2.1; e.g., see [79,258,259].

2.1.1 Evolutionary algorithm and optimization

One of the most popular EA applications is to solve an optimization problem with

constraints; e.g., see [258, 260–262]. In general, this problem can be formulated

as follows (e.g., see [19,263,264]): Find an optimal solution ϑ⋆ to solve

min
ϑ

f(ϑ) (2.1)

subject to

gj(ϑ) = 0, for j = 1, 2, . . . , a;

hk(ϑ) ≤ 0, for k = 1, 2, . . . , b (2.2)

where ϑ ∈ Cn; f : Cn → R is an objective function to be minimized; gj : Cn →
Cp×q is an equality constraint function; and hk : Cn → Cr×s is an inequality

constraint function. Here, a and b are the total number of equality and inequality

constraints, respectively. In practice, the optimization problem (2.1), (2.2) does

not always have nice properties from a numerical perspective so that this problem

is considered as a hard problem to solve.

The EA is widely used to solve various difficult optimization problems (from

a conventional perspective) with a satisfactory success rate. This is particu-

larly true when we are dealing with an optimization problem under unfavor-

able circumstances such as a non-differentiable and time-varying objective func-

tion, a disjoint and nonconvex feasible space, a multimodal and noisy landscape,

highly nonlinear and discontinuous constraints and an uncertain model; e.g.,

see [79, 80, 92, 94, 265, 266]. Although a rigorous mathematical analysis of EA is

difficult to obtain (e.g., see [79,85,267]), it is often empirically evident that the EA

is capable of delivering a good solution. This is often acceptable when obtaining

a global optimal solution is arduous and computationally difficult, if not impossi-

ble, using, for example, fixed-point methods, bracketing methods, gradient-based

methods or even stochastic direct search methods; e.g., see [79,80,261].

In real-world applications, the EA is recognized as a flexible and versatile

approach toward an optimization problem at hand (e.g., see [79, 80, 94]), which
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is also evident in our results from Chapter 3 to Chapter 8. These characteristics

are beneficial for practitioners who might have to deal with a complex problem

without an appropriate mathematical formulation and yet, a reasonably good

solution is required. Hence, the EA is a legitimate choice, especially when a

proven exact solver does not exist. On the other hand, if we are solving a convex

optimization problem and an efficient problem-specific method is available, then

applying an EA is not recommended as it is very unlikely for the EA to return a

better result; e.g., see [79].

Considering recent advancements in computational technology (software and

hardware), we can further exploit the capabilities and properties of EA when

implemented through parallel computing for solving a large-scale optimization

problems with high complexity; e.g., see [3, 102, 268–271]. If such complex prob-

lems can be divided into several sub-problems and efficient exact methods are

available for some of them, it is possible to combine an EA with those methods

in order to obtain a better solution. This combination then leads to a hybrid EA;

e.g., see [272, 273]. Another celebrated application of EA is for solving multi-

objective optimization problems; e.g., see [269,271,274,275]. In practice, we may

find that one objective function is in conflict with other ones. In this case, the

EA will result in a so-called Pareto front, which is a set of all non-dominated

solutions defining the best trade-off among all objective functions.

2.1.2 Technical issues

Despite the favorable properties and versatility of EA, it has some technical issues

about which we need to be cautious. If we fail to anticipate their influence, EA

performance will be degraded. This indicates that EA implementation is by no

means trivial, although it is acknowledged as a generic numerical solver. Such

concerns are worth considering no matter which type of EA is used. Here, we

mention several critical aspects by which the performance of EA is affected:

1. It is important to ensure that the initial population has sufficient diversity,

which the recombination and mutation operators should maintain during

the numerical evolution. If the initial population lacks of this diversity, we

could find that the EA converges prematurely due to stagnation in a small

search space. Conversely, an overly large population size and/or search

space is used at the expense of computational time; e.g., see [80,257].



2.1. Evolutionary Algorithm 33

2. Since a priori information about a search space is often not available, we

should aim for a balance between exploration and exploitation. Otherwise,

the search process could either be too long due to an extensive exploration

over the search space or be trapped in a local optimum due to an intense

exploitation in the neighborhood of some good candidate solutions. Despite

their importance, it is not immediately clear which operators of an EA are

responsible for these tasks. However, in general, many users would agree

that exploration is done by the recombination and mutation operators,

while exploitation is done by the selection operator; e.g., see [85,276].

3. Regarding the stochastic nature of EA, defining suitable probability distri-

bution functions to generate an initial population and to govern the recom-

bination, mutation and selection operators is somewhat delicate. A careless

choice of these functions and their parameters can lead to a poor solution

or even no solution at all. Therefore, it is important to have an appropriate

representation of the distribution functions because the recombination and

mutation characteristics are related to the data structure of the candidate

solutions; e.g., see [80,84,277].

4. Many practical problems are inherently constrained. If an EA is applied to

solve such problems, it should be realized that the EA machinery does not

anticipate how to handle the constraints properly. This concern is crucial as

it determines how we examine the fitness of each candidate solution. Hence,

a large number of direct and indirect constraint handling techniques have

been proposed to restore and to improve EA capabilities in the presence of

the constraints; e.g., see [260,261,278,279].

5. The EA performance robustness may be sensitive to the choice of EA pa-

rameters such as the population size, the recombination probability, the

mutation probability and the number of iteration cycles. It is indeed a

time-consuming effort to find a proper set of parameters before starting

the numerical evolution. This has become an impetus to the emergence

of various parameter control techniques, which change the EA parameters

dynamically when the EA is running; e.g., see [280–282].

There are also reciprocal relationships among those issues so that it is nec-

essary to address them effectively at a minimum expense. As it is not easy to
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find a comprehensive solution to these problems, we need to be mindful regarding

the advantages and disadvantages of any technique proposed in the EA litera-

ture. In this regard, no free lunch principle is at work because no EA performs

equally well on every optimization problem; see [142]. However, this opens an

opportunity for EA enhancement and development.

2.2 Differential Evolution Algorithm

Solving a general global optimization problem with real-valued variables remains

a challenging topic, especially because the size and complexity of such a problem

are steadily increasing. We often find that this problem is extremely difficult to

solve using conventional optimization methods. In this situation, a direct search

approach often turns out to be a useful technique used to find a global optimal

solution. In particular, the EA has demonstrated its reliability as one type of

stochastic direct search methods.

Among early generation EAs, evolution strategies and genetic algorithms have

probably been the most widely used algorithms to solve the real-valued optimiza-

tion problems, often with remarkable success. Yet, a requirement for a simpler

and more powerful EA undoubtedly remains. Thus, in 1995, Kenneth V. Price

and Rainer M. Storn promoted a new EA referred to as the differential evolution

(DE) algorithm; e.g., see [140]. This invention was motivated by some require-

ments found in practical minimization tasks as follows:

1. Capable of dealing with ill-conditioned cost functionals;

2. Suitable for parallel computation to solve large problems on an affordable

time scale;

3. Only needs a small number of EA parameters, which are easy to choose;

4. Less sensitive to EA parameter variation;

5. Have a reliable convergence behavior.

The DE algorithm is a self-reliant EA as it only employs information from

within an initial population to start a numerical evolution. More precisely, it

does not rely on any prescribed probability distribution function to drive its
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machinery, namely the recombination, mutation and selection operators. The

DE algorithm only has three parameters, that is, the population size NP , the

mutation factor F and the recombination rate CR; e.g., see [140]. It is quite

simple to choose the values of those parameters and the inventors also claimed

that the DE algorithm has a good robustness against their variation. However,

later investigations showed that this claim is not accurate and there are indeed

some issues regarding their roles in driving the search process; e.g., see [283,284].

One way to assess the merit of DE is done by comparing its performance with

that of other stochastic algorithms, which are assigned to solve a given global

optimization problem. It has been reported in [140] that the DE algorithm out-

performs other stochastic global optimization methods (e.g., simulated annealing

(see [285]) and stochastic differential equations (see [286])) and EAs (e.g., breeder

genetic algorithm (see [287]) and an evolutionary algorithm with soft genetic op-

erators (see [288])) when solving some benchmark unconstrained optimization

problems. We may also find empirical results in e.g., [4, 289, 290] which show

that the DE algorithm exhibits higher success rate and more efficient, robust,

accurate and consistent as compared to, for instance, random search algorithm,

evolution strategies, particle swarm optimization and genetic algorithms.

Also, there have been investigations into the DE behavior when it is applied

to handle constrained optimization problems with nonlinear constraints, mixed-

variables and multiple objective cost functions; e.g, see [291–296]. The conclu-

sions are that the DE algorithm is reliable, competitive and more likely to return

better results in a consistent manner than those given by other EAs. However,

when the DE algorithm is applied to optimize noisy cost functionals, it does not

perform as well as a standard EA, which incorporates stochastic properties in

its design; e.g., see [141]. Also, many experiments have been done to compare

the performance of different DE variants; e.g., see [297–299]. These results offer

useful guidance for users to recognize the strengths and weaknesses of the DE

algorithm.

The structure of a standard DE algorithm is consistent with the one in Algo-

rithm 2.1. The core DE components, constraint handling and parameter setting

are briefly described in the following sub-sections. Moreover, a detailed account

on the DE algorithm and its applications can be found in [4].
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2.2.1 Population

A candidate solution ϑi,j is defined as a D-dimensional vector of real-valued

decision variables, which is modeled as follows:

ϑi,j :=
[
ϑi,j,1 ϑi,j,2 · · · ϑi,j,D

]T

(2.3)

where i is the population index (i = 1, 2, . . . , G) and j is the individual index

(j = 1, 2, . . . , NP ). The k-th element of ϑi,j in (2.3) is confined to an interval

Lk ≤ ϑi,j,k ≤ Uk, for k = 1, 2, . . . , D (2.4)

where Lk is a lower bound and Uk is an upper bound. An initial population of

size NP is generated randomly and distributed uniformly within a search space

defined by the lower and upper bounds on all decision variables. Thus, the k-th

element of an initial candidate solution ϑ1,j is given as

ϑ1,j,k = αj,k (Uk − Lk) + Lk, ∀j, k (2.5)

where αj,k is a uniformly distributed random number in [0, 1].

Each individual ϑi,j of the i-th population is referred to as a target vector.

Applying the mutation and recombination operators to a target population, the

DE algorithm produces a new potential candidate solution called the trial vector.

Both the target and trial vectors are then involved in a competition in order to

survive as a member of the next generation population. The competition is

determined by the selection operator based on the fitness of both vectors.

2.2.2 Mutation and recombination

The DE mutation and recombination on each individual ϑi,j can be carried out

element-wise. These operations depend on two parameters: the mutation factor

F ∈ [0, 1] and the recombination rate CR ∈ [0, 1]. Thus, a trial vector ξi,j is

formed according to the following rule:

ξi,j,k =

{
ϑi,a,k + F (ϑi,b,k − ϑi,c,k) , if βi,j,k ≤ CR or k = γi,j,k;

ϑi,j,k, otherwise
(2.6)
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where a, b, c are random indexes sampled from {1, 2, . . . , NP} and j 6= a 6= b 6= c;

βi,j,k is a uniformly distributed random number in [0, 1]; and γi,j,k is a random

index sampled from {1, 2, . . . , D}. It is possible that F > 1, but this tends to

reduce the convergence rate and result in a less reliable solution; see [4]. Moreover,

if ξi,j,k exceeds the lower bound Lk or the upper bound Uk, we regenerate ξi,j,k as

follows:

ξi,j,k =

{
ϑi,a,k + ζi,j,k (Uk − ϑi,a,k) , if ξi,j,k > Uk ;

ϑi,a,k + ζi,j,k (Lk − ϑi,a,k) , if ξi,j,k < Lk

(2.7)

where ζi,j,k is a uniformly distributed random number in [0, 1].

Figure 2.1: The DE mutation and recombination with two-dimensional ϑi,j result in

three potential trial vectors: ξ
(1)
i,j , ξ

(2)
i,j or ξ

(3)
i,j ; e.g., see [4].

In the rule (2.6), recombination occurs if βi,j,k ≤ CR or k = γi,j,k. That is,

the k-th element ξi,j,k of the j-th trial vector equals the k-th mutated element

[ϑi,a,k + F (ϑi,b,k − ϑi,c,k)]. In this case, ϑi,a,k is the k-th element of the a-th base

vector ϑi,a, which is perturbed by the scaled k-th element F (ϑi,b,k − ϑi,c,k) of the

difference vector (ϑi,b − ϑi,c). We introduce γi,j,k in (2.6) in order to prevent a

trial vector ξi,j from inheriting all elements of a target vector ϑi,j. Thus, at least

one element of ξi,j is different from those of ϑi,j. This process is illustrated in

Figure 2.1 for two-dimensional mutation and recombination.

The DE algorithm with the mutation and recombination scheme in (2.6) is

considered as a standard variant denoted byDE/rand/1/bin (see Algorithm 2.2).

In this variant, ’rand’ means that ϑi,a is chosen randomly; ’1’ means that only

one difference vector (ϑi,b − ϑi,c) is required for mutation; and ’bin’ means that
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Algorithm 2.2 Standard DE algorithm: DE/rand/1/bin

1: Parameter inputs: NP , F, CR, D,G, Lk, Uk

2: Initial population: ϑ1,j,k = αj,k (Uk − Lk) + Lk, ∀j, k
3: Fitness evaluation of the initial population
4: Population index: i = 1
5: while i ≤ G do

6: for j = 1 to NP do

7: Mutation & recombination:
8: for k = 1 to D do

9: Random sample: a, b, c ∈ {1, 2, . . . , NP} and j 6= a 6= b 6= c

10: ξi,j,k =

{
ϑi,a,k + F (ϑi,b,k − ϑi,c,k) , if βi,j,k ≤ CR or k = γi,j,k;
ϑi,j,k, otherwise

11: if ξi,j,k > Uk then

12: ϑi,a,k + ζi,j,k (Uk − ϑi,a,k)
13: end if

14: if ξi,j,k < Lk then

15: ϑi,a,k + ζi,j,k (Lk − ϑi,a,k)
16: end if

17: end for

18: Fitness evaluation of the i-th trial population
19: Select the next generation candidate solutions:

20: ϑi+1,j =

{
ξi,j, if f(ξi,j) ≤ f(ϑi,j)
ϑi,j, otherwise

21: end for

22: i = i+ 1
23: end while

24: Return

a binomial recombination is used. In general, this shorthand notation takes the

form of DE/x/y/z; see [140]. Here, x denotes how ϑi,a is chosen; y denotes the

number of difference vectors (ϑi,b − ϑi,c) required for mutation; and z denotes

which type of recombination is applied.

2.2.3 Selection

The standard DE algorithm in [140] only aims to handle an unconstrained op-

timization problem. Thus, a criterion to select the trial vector ξi,j in favor of

the target vector ϑi,j (or vice versa) to be a member ϑi+1,j of a next generation
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population is as follows:

ϑi+1,j =

{
ξi,j, if f(ξi,j) ≤ f(ϑi,j)

ϑi,j, otherwise
(2.8)

where f(·) is an objective function (to be minimized) of the optimization problem

being considered.

If the DE algorithm is applied to solve a constrained optimization problem

(e.g., see [292, 294–296, 300, 301]), we then select the trial vector ξi,j in favor of

the target vector ϑi,j whenever the following selection criteria are satisfied:

1. ξi,j is a feasible candidate solution, while ϑi,j is an infeasible one; or

2. f(ξi,j) ≤ f(ϑi,j), when both ξi,j and ϑi,j are feasible; or

3. ξi,j has a smaller number of constraint violations and/or a lower cost due

to the violations than ϑi,j does, when both ξi,j and ϑi,j are infeasible.

The feasibility of a candidate solution informs us about its fitness with respect

to all constraints involved in the optimization.

2.2.4 Constraint handling

When applying the DE algorithm to solve a constrained optimization problem, it

is important to pay attention to the constraint handling task as it is related to the

selection operator; e.g., see [292]. There are many ways to accomplish this task in

order to obtain one or more optimal solution(s); e.g., see [279,300,301]. Through

a constraint handling scheme, we acquire information about the fitness of each

candidate solution with respect to all constraints. For our controller synthesis

application, we employ an indirect constraint handling technique by counting the

number v of constraint violations and assigning a penalty function p(·) to an

infeasible candidate solution, where p : Cn → R. The function p(·) is associated

with a constraint gj(·) ≤ 0 or hk(·) = 0 in (2.2), which is directly violated by a

target vector ϑi,j or a trial vector ξi,j.

In particular, we apply a static penalty function, which has the following form:

p(σ) = (q(σ))s (2.9)
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where σ can be a target vector ϑi,j or a trial vector ξi,j; and s ≥ 1 is a power

constant; e.g., see [95, 259, 279]. The function q(·) is not necessarily the same as

gj(·) or hk(·), but it can be another function, which represents a desired property

of gj(·) or hk(·). In this case, q(·) can also be interpreted as a metric, which

penalizes the distance from an infeasible target vector ϑi,j or trial vector ξi,j to

the violated constraint. Moreover, if there is no constraint violation (v = 0), we

have

p(σ) = f(σ) (2.10)

where f(·) is the objective function in (2.1).

This penalty-based approach is simple, but it involves an extra parameter:

power constant s, which may affect the overall DE performance. Thus, in prac-

tice, we can take s = 2 or s = 3, because a large s may lead to a high pressure

selection process. This is not beneficial during early stage numerical evolution

since it tends to reduce population diversity and cause exploration-exploitation

imbalance. With these concerns in mind, we realize that there are always advan-

tages and disadvantages associated with each constraint handling technique; e.g.,

see [261,279]. Note that since the objective function f(σ) in (2.10) (see Chapter 3

– Chapter 8) may also involve power constants, we then have the same concern

about them as in the case of the power constant s for q(σ) in (2.9).

We also assume that a constraint violation at a lower level implies those at

the higher levels. This assumption is made in order to have an efficient fitness

test routine. In fact, the levels in this routine are introduced because we have

some technical assumptions to satisfy for each particular controller design method

presented in Chapter 3 – Chapter 8.

2.2.5 Drift-free mutation and recombination

As explained in [4, 5], DE/rand/1/bin with 0 < CR < 1 is not rotational invari-

ant because its performance is dependent on the orientation of the coordinate

system where the candidate solution ϑi,j is defined. Thus, the positions of some

potential trial vectors will be rotated when rotational misalignment occurs be-

tween the coordinate system of the candidate solution ϑi,j and that in which an

optimization problem is defined (see Figure 2.2). As a priori information about

the coordinate system orientation is generally unavailable, this drawback may
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Figure 2.2: For 0 < CR < 1, the potential trial vectors ξ
(2)
i,j and ξ

(3)
i,j are rotated due

to misalignment between the DE coordinates (ϑi,j,1, ϑi,j,2) and the problem coordinates
(ϑ′i,j,1, ϑ

′
i,j,2); e.g., see [5].

cause DE/rand/1/bin to drift and return a biased solution or no solution at all.

Considering the illustration in Figure 2.2, we notice that DE/rand/1/bin is

rotational invariant only when CR = 1, which implies that the numerical variation

is only determined by mutation without recombination. In this case, we only have

one potential trial vector ξ
(1)
i,j whose position does not change due to rotation.

Setting CR = 1, however, may degrade the performance of DE/rand/1/bin when

this algorithm is applied to solve a multimodal optimization problem; e.g., see [4].

Thus, a remedy to the shortcoming of DE/rand/1/bin is given by an alternative

DE algorithm: DE/rand/1/either− or, which is rotational invariant; see [4]. In

the latter algorithm, the standard mutation-binomial recombination scheme in

(2.6) is replaced by the mutation-arithmetic recombination scheme:

ξi,j =

{
ϑi,j + F1δb,c, if ηi,j ≤ CM ;

ϑi,j + F2 (δb,c − 2ϑi,j) , otherwise
(2.11)

where δb,c := ϑi,b − ϑi,c; F1, F2 ∈ [0, 1]; and ηi,j is a uniformly distributed random

number in [0, 1]. Note that the recombination rate CR in (2.6) is also replaced

by the mutation rate CM ∈ [0, 1] in (2.11).

Nevertheless, further investigation on DE/rand/1/either − or shows that

this algorithm does not have a center-symmetric distribution, which also causes
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Algorithm 2.3 Enhanced DE algorithm: Drift-Free DE/rand/1/either − or

1: Parameter inputs: NP , F, CM , D,G, Lk, Uk

2: Initial population: ϑ1,j,k = αj,k (Uk − Lk) + Lk, ∀j, k
3: Fitness evaluation of the initial population
4: Population index: i = 1
5: while i ≤ G do

6: for j = 1 to NP do

7: Mutation & recombination:
8: Random sample: a, b, c, d ∈ {1, 2, . . . , NP}, j 6= a 6= b and j 6= c 6= d

9: ξi,j =

{
ϑi,j + Fδb,c, if ηi,j ≤ CM ;

ϑi,j +
√
D (δb,c · εc,d) εc,d, otherwise

10: for k = 1 to D do

11: if ξi,j,k > Uk then

12: ϑi,a,k + ζi,j,k (Uk − ϑi,a,k)
13: end if

14: if ξi,j,k < Lk then

15: ϑi,a,k + ζi,j,k (Lk − ϑi,a,k)
16: end if

17: end for

18: Fitness evaluation of the i-th trial population
19: Select the next generation candidate solutions:

20: ϑi+1,j =

{
ξi,j, if f(ξi,j) ≤ f(ϑi,j)
ϑi,j, otherwise

21: end for

22: i = i+ 1
23: end while

24: Return

drift in the numerical variation; see [5]. To cope with this drawback, another

modification is done to the arithmetic recombination in (2.11). This results in a

drift-free DE/rand/1/either − or (see Algorithm 2.3) in which the trial vector

ξi,j is formed according to the following rule (see [5]):

ξi,j =

{
ϑi,j + Fδb,c, if ηi,j ≤ CM ;

ϑi,j +
√
D (δb,c · εc,d) εc,d, otherwise

(2.12)

where a, b, c, d are random indexes sampled from {1, 2, . . . , NP}; j 6= a 6= b;

j 6= c 6= d; and

εc,d :=
ϑi,c + ϑi,d − 2ϑi,j

‖ϑi,c + ϑi,d − 2ϑi,j‖
. (2.13)
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Note that (δb,c · εc,d) is a dot product of δb,c and εc,d. The scheme in (2.12) is

immune against drift bias due to coordinate rotation and a distribution, which is

not center-symmetric; see [5].

2.2.6 Parameter setting

The setting of the DE parameters (NP , F , CR or CM) is important because

it affects the robustness, efficiency and convergence rate of the DE algorithm.

Extensive studies on this issue have been conducted in e.g., [283,284,298,302,303].

An inappropriate choice of the DE parameters can lead to inadequate population

diversity, stagnation, premature (or slow) convergence and inaccuracy. These are

critical risks which may happen due to poor parameter setting. Many approaches,

therefore, have been proposed to facilitate DE parameter tuning and parameter

control; e.g., see [304–309]. They aims at reducing the occurrence probability of

those risks while maintaining high probability of success of the DE algorithm.

To set the DE parameter values for the drift-free DE/rand/1/either−or, we

follow a strategy proposed in [5]. That is,

F = 1; CM = 0.5; Np = k
[
(1 − CM)D2 + 2CMD

]
(2.14)

where k ∈ {2, 4, 8, . . . , D}. Note that the strategy in (2.14) is presented in [5] as

a result of empirical studies about how the variations of the DE parameters (NP ,

D, F , CM) affect the number of function evaluations per success. Applying this

strategy, we can start with a small k, and if the results of the numerical evolution

are not good enough, we can increase the value of k ≤ D. If this does not lead to

satisfactory results either, we can gradually reduce the value of CM and then F .

Also, we fix the number of iteration cycles G prior to running the DE algorithm

as a stopping criterion. Besides this procedure, it is also possible to determine

the values of those parameters adaptively as presented in e.g., see [305,307–310].

This approach allows the DE parameter values and stopping criterion to vary

dynamically according to the evolution progress of the population.
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Chapter 3

Nonlinear Robust H∞ Control

via a Stable Nonlinear Output

Feedback Controller

3.1 Introduction

This chapter aims to present a systematic method to design a stable nonlinear

robust H∞ output feedback controller for a class of nonlinear uncertain systems.

The admissible uncertainty and nonlinearity in the system are required to satisfy

an integral quadratic constraint and a global Lipschitz condition, respectively;

e.g., see [2,311]. Applying such controller, we aim to obtain an absolutely stable

closed loop nonlinear uncertain system with a specified disturbance attenuation

level.

There are two underlying main ideas in our method to solve this control

problem. Firstly, we include a copy of each known nonlinearity of the plant in the

controller in order to enable the controller to exploit the plant nonlinearity (see

[6]). Secondly, we use a state feedback gain matrix and introduce an additional

uncertainty used to form an artificial uncertain system (see [7]). The purpose

of this construction is to guarantee that any suitable output feedback controller

for the artificial uncertain system is always stable and also solves the original

absolute stabilization problem. The resulting controller matrices are given in

terms of the stabilizing solutions of parameterized algebraic Riccati equations.

We propose to apply an evolutionary optimization method, namely the dif-
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ferential evolution (DE) algorithm, to compute all required controller design pa-

rameters. This is motivated by the fact that our control problem is subject to a

set of both nonconvex and nonlinear constraints, which is often difficult to solve

using regular optimization methods.

3.2 Problem Statement

A nonlinear robust H∞ control problem is presented in this section, which begins

by describing a nonlinear uncertain system under consideration and the notions

of admissible uncertainty and absolute stabilizability. Additional notation is also

defined in order to transform the given nonlinear control problem into a standard

form based on the approach in [6].

3.2.1 System description and definitions

We are concerned with a class of nonlinear uncertain systems, which can be

represented as follows:

ẋ(t) = Ax(t) +B1w(t) +B2u(t) +

f∑

s=1

E1,sξs(t) +

g∑

i=1

E2,iµi(t);

z(t) = C1x(t) +D12u(t);

ζ1(t) = H1,1x(t) +G1,1u(t);

...

ζf (t) = H1,fx(t) +G1,fu(t);

ν1(t) = H2,1x(t) +G2,1u(t);

...

νg(t) = H2,gx(t) +G2,gu(t);

y(t) = C2x(t) +D21w(t) +

f∑

s=1

F1,sξs(t) +

g∑

i=1

F2,iµi(t). (3.1)

The variables involved in the state equations (3.1) are the state x ∈ Rn, the

control input u ∈ Rm, the disturbance input w ∈ Rp, the controlled output

z ∈ Rq, the measurement output y ∈ Rl, the uncertainty input ξs ∈ Rrs , the
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uncertainty output ζs ∈ Rhs (for s = 1, 2, . . . , f), the nonlinearity input µi ∈ R

and the nonlinearity output νi ∈ R (for i = 1, 2, . . . , g). All coefficient matrices

in (3.1) are assumed to have compatible dimensions with those of the signals.

The relation between each nonlinearity input µi(t) and nonlinearity output

νi(t) is given by the following scalar-valued nonlinear function ψi(·):

µi(t) = ψi (νi(t)) , ∀i = 1, 2, . . . , g (3.2)

where each nonlinear function ψi(·) is required to satisfy ψi(0) = 0. The nonlin-

ear function ψi(·) is assumed to be known and is required to satisfy the global

Lipschitz condition (GLC)

|ψi(ν(t)) − ψi(ν̃(t))| ≤ βi|ν(t) − ν̃(t)|, βi > 0 (3.3)

for all pairs of (ν(t), ν̃(t)) and i = 1, 2, . . . , g. Meanwhile, each structured uncer-

tainty in the system (3.1) is described as follows:

ξs(t) = φs (t, ζs(t)) , ∀s = 1, 2, . . . , f (3.4)

where φs(·) may be considered as a nonlinear time-varying and dynamic func-

tional; see [2]. A structured uncertainty is said to be admissible if it satisfies the

integral quadratic constraint (IQC) stated in the following definition:

Definition 3.1. (Integral Quadratic Constraint; e.g., see [2].) An uncertainty of

the form (3.4) is an admissible uncertainty for the system (3.1) if the following

conditions hold: Given any locally square integrable control input u(·) and locally

square integrable disturbance input w(·), and any corresponding solution to the

system (3.1), (3.2), (3.4), let (0, t⋆) be the interval on which the solution exists.

Then there exist constants d1,1 ≥ 0, . . . , d1,f ≥ 0 and a sequence {tk}∞k=1 such

that tk → t⋆, tk ≥ 0 and

∫ tk

0

‖ξs(t)‖2dt ≤
∫ tk

0

‖ζs(t)‖2dt+ d1,s (3.5)

for all k and for all s = 1, 2, . . . , f . Here, ‖ · ‖ denotes the standard Euclidean

norm and L2[0,∞) denotes the Hilbert space of square integrable vector valued

functions defined on [0,∞). Note that tk and t⋆ may be equal to infinity. The
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class of all such admissible uncertainties ξ(·) = [ξ1(·), . . . , ξf (·)] is denoted by Ξ.

Considering the nonlinear uncertain system (3.1), (3.2), (3.5), we are con-

cerned with solving a problem of absolute stabilization with a specified level

of disturbance attenuation in the presence of uncertainties and nonlinearities.

Besides closed loop system stability and performance, we are also interested in

achieving controller stability. This requirement is motivated by the fact that a

stable controller is preferable in many applications because it is much less suscep-

tible to sensor and actuator failures, and to system uncertainties and exogenous

disturbances when it is implemented in a real system; e.g., see [7,167–169]. This

particular control problem is often referred to as a strong stabilization problem.

Thus, to solve this control problem, we apply a stable nonlinear output feedback

controller, which can be represented as follows:

ẋc(t) = Acxc(t) +Bcy(t) +

g∑

i=1

Liµ̃i(t); xc(0) = xc0 ;

u(t) = Cc1xc(t);

ν̃1(t) = Cc2,1xc(t);

...

ν̃g(t) = Cc2,g
xc(t) (3.6)

where

µ̃i(t) = ψi (ν̃i(t)) , ∀i = 1, 2, . . . , g. (3.7)

The presence of (3.7) in the controller state equations (3.6) is to include a copy

of each known nonlinearity (3.2) into the controller as depicted in Figure 3.1(a).

This is to enable the controller to exploit each known nonlinearity of the nonlinear

uncertain system (3.1), (3.2), (3.5).

To solve the problem of constructing a stable nonlinear controller of the form

(3.6), (3.7) for the nonlinear uncertain system (3.1), (3.2), (3.5), we use the

approaches presented in [7] and [187]. Thus, we first need to reformulate the state

equations (3.1) by incorporating the nonlinearities (3.7) into the plant description

such that

ỹ(t) =

[
y(t)

µ̃(t)

]
; ũ(t) =

[
u(t)

ν̃(t)

]
; (3.8)
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(a) (b)

Figure 3.1: (a) Nonlinear uncertain system with nonlinear controller. (b) Nonlinear
uncertain system and linear controller with repeated nonlinearity. Here, ψ(·) is a known
nonlinearity and φ(·) is an uncertainty; see [6].

µ̃(t) =




µ̃1(t)
...

µ̃g(t)


 ; ν̃(t) =




ν̃1(t)
...

ν̃g(t)


 ; C̃c =




Cc1

Cc2,1

...

Cc2,g




;

B̃c =
[
Bc L1 · · · Lg

]
. (3.9)

and obtain a configuration as shown in Figure 3.1(b). Indeed, this step has also

been considered in the controller design method presented in [6] (but without

imposing the controller stability requirement). Then, using the expression in

(3.8) and (3.9), we can rewrite the controller state equations (3.6) as

ẋc(t) = Acxc(t) + B̃cỹ(t);

ũ(t) = C̃cxc(t). (3.10)

This indicates that the problem of controlling the nonlinear uncertain system

(3.1), (3.2), (3.5) using the nonlinear controller (3.6), (3.7) is transformed into

that of controlling the nonlinear uncertain system (3.1), (3.2), (3.5), (3.7) using

the linear controller (3.10). The purpose of applying such controller is to achieve
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an absolutely stable closed loop nonlinear uncertain system with a specified dis-

turbance attenuation level.

The notion of absolute stabilizability for the nonlinear uncertain system (3.1),

(3.2), (3.5) is defined as follows:

Definition 3.2. (Absolute stabilizability; e.g., see [2].) The nonlinear uncertain

system (3.1), (3.2), (3.5) is said to be absolutely stabilizable with disturbance

attenuation level γ > 0 via a stable nonlinear output feedback controller (3.6),

(3.7) if there exists constants c1 > 0 and c2 > 0 such that the following conditions

hold:

1. For any initial condition (x(0), xc(0)), any admissible uncertainty inputs

ξ1(·), . . . , ξf (·) and any disturbance input w(·) ∈ L2[0,∞), we have

[x(·), xc(·), u(·), ξ1(·), . . . , ξf (·)] ∈ L2[0,∞) (3.11)

(hence, t⋆ = ∞) and

‖x(·)‖2
2 + ‖xc(·)‖2

2 + ‖u(·)‖2
2 +

f∑

s=1

‖ξs(·)‖2
2

≤ c1

[
‖x(0)‖2 + ‖xc(0)‖2 + ‖w(·)‖2

2 +

f∑

s=1

d1,s

]
. (3.12)

2. The following H∞ norm bound condition is satisfied: If x(0) = 0 and

xc(0) = 0, then for w(·) ∈ L2[0,∞) and ξs(·) ∈ Ξ (for all s = 1, 2, . . . , f)

J := sup
w(·)

sup
ξs(·)

‖z(·)‖2
2 − c2

∑f
s=1 d1,s

‖w(·)‖2
2

< γ2. (3.13)

Here, ‖q(·)‖2 denotes the L2[0,∞) norm of a function q(·). That is, ‖q(·)‖2
2 :=∫ ∞

0
‖q(t)‖2dt.

3.2.2 Robust H∞ control

As we intend to apply the results of [7] and [187], the nonlinearities (3.2) and

their copies (3.7) need to be characterized using IQCs. For this purpose, we refer
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to the GLCs (3.3), which imply that

(µi(t) − µ̃i(t))
2 ≤ β2

i (νi(t) − ν̃i(t))
2 ;

(µi(t))
2 ≤ β2

i (νi(t))
2 ;

(µ̃i(t))
2 ≤ β2

i (ν̃i(t))
2 (3.14)

for all i = 1, 2, . . . , g. It then follows from (3.14) that we have the following IQCs

∫ tk

0

(µi(t) − µ̃i(t))
2 dt ≤

∫ tk

0

β2
i (νi(t) − ν̃i(t))

2 dt+ d2,i;

∫ tk

0

(µi(t))
2 dt ≤

∫ tk

0

β2
i (νi(t))

2 dt+ d3,i;

∫ tk

0

(µ̃i(t))
2 dt ≤

∫ tk

0

β2
i (ν̃i(t))

2 dt+ d4,i, (3.15)

which are to be satisfied for all i = 1, 2, . . . , g; and for all {tk ≥ 0}∞k=1. We

note that d2,i ≥ 0, d3,i ≥ 0 and d4,i ≥ 0. The extra IQCs (3.15) impose more

constraints in addition to those in (3.5). However, the description of the system

state equations (3.1) can be simplified as follows:

ẋ(t) = Ax(t) +B1w(t) + B̃2ũ(t) +

f̃∑

s=1

Ẽsξ̃s(t);

z(t) = C1x(t) + D̃12ũ(t);

ζ̃1(t) = H̃1x(t) + G̃1ũ(t);

...

ζ̃f̃ (t) = H̃f̃x(t) + G̃f̃ ũ(t);

ỹ(t) = C̃2x(t) + D̃21w(t) +

f̃∑

s=1

F̃sξ̃s(t) (3.16)

where f̃ = f + 2g; h =
∑f

s=1 hs;

ξ̃(t) =



ξ(t)

µ(t)

µ̃(t)


 ; ζ̃(t) =



ζ(t)

ν(t)

ν̃(t)


 ; ξ(t) =




ξ1(t)
...

ξf (t)


 ; ζ(t) =




ζ1(t)
...

ζf (t)


 ; (3.17)
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µ(t) =




µ1(t)
...

µg(t)


 ; ν(t) =




ν1(t)
...

νg(t)


 ; B̃2 =

[
B2 0n×g

]
; D̃12 =

[
D12 0q×g

]
;

Ẽ =
[
Ẽ1 . . . Ẽf̃

]
=

[
E1,1 · · · E1,f E2,1 · · · E2,g 0n×g

]
; C̃2 =

[
C2

0g×n

]
;

F̃ =
[
F̃1 . . . F̃f̃

]
=

[
F1,1 · · · F1,f F2,1 · · · F2,g 0l×g

0g×r1 · · · 0g×rf
0g×1 · · · 0g×1 Ig×g

]
;

H̃ =




H̃1

...

H̃f̃


 =



H1

H2

0g×n


 ; H1 =




H1,1

...

H1,f


 ; H2 =




H2,1

...

H2,g


 ; D̃21 =

[
D21

0g×p

]
;

G̃ =




G̃1

...

G̃f̃


 =



G1 0h×g

G2 0g×g

0g×m Ig×g


 ; G1 =




G1,1

...

G1,f


 ; G2 =




G2,1

...

G2,g


 . (3.18)

We now rewrite all IQCs in (3.5), (3.15) into the following form

∫ tk

0

ξ̃(t)TQj ξ̃(t) dt ≤
∫ tk

0

ζ̃(t)TRj ζ̃(t) dt+ dj, ∀ j = 1, 2, . . . , f̂ (3.19)

and for all {tk ≥ 0}∞k=1. Note that f̂ = f + 3g and dj ≥ 0. Also, the constants β2
i

corresponding to νi(t) and ν̃i(t) in (3.15) are accordingly included in Rj in (3.19).

The set of all admissible uncertainty inputs ξ̃(·) for the uncertain system (3.16),

(3.19) is defined in the same way as in Definition 3.1 and denoted by Ξ̃.

To solve the H∞ strong stabilization problem for the uncertain system (3.16),

(3.19) using the results of [7] and [187], we need to introduce a vector λ of scaling

constants λj ∈ R, λj ≥ 0 (see [187, Theorem 3.1])

λ :=
[
λ1 λ2 · · · λf̂

]T

(3.20)

so that we can define weighting matrices Q̃(λ) ≥ 0 and R̃(λ) ≥ 0, and a constant

d̃(λ) ≥ 0 as functions of λ. That is,

Q̃(λ) :=

f̂∑

j=1

λjQj; R̃(λ) :=

f̂∑

j=1

λjRj; d̃(λ) :=

f̂∑

j=1

λjdj (3.21)
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where λ belongs to the set

Λ :=
{
λ ∈ Rf̂ : λj ≥ 0, ∀j = 1, 2, . . . , f̂

}
. (3.22)

This implies that the IQCs (3.19) lead to the satisfaction of an IQC parameterized

by scaling constants defined in (3.20). Thus, it follows from (3.19) that

∫ tk

0

ξ̃(t)T Q̃(λ)ξ̃(t) dt ≤
∫ tk

0

ζ̃(t)T R̃(λ)ζ̃(t) dt+ d̄(λ) (3.23)

for all {tk ≥ 0}∞k=1. For our purposes, we only consider a subset Λ̃ ⊆ Λ such that

Q̃(λ) > 0. Then, for each λ ∈ Λ̃, the quantities defined in (3.21) can be written

as

Q̃(λ) = Q̄(λ)T Q̄(λ); R̃(λ) = R̄(λ)T R̄(λ) (3.24)

where Q̄(λ) = Q̄(λ)T = Q̃(λ)
1
2 > 0 and R̄(λ) is a rectangular matrix. For

convenience, R̄(λ) can be chosen as a square matrix such that R̄(λ) = R̄(λ)T =

R̃(λ)
1
2 > 0. Thus, using the notation in (3.24), the IQC (3.23) can be written in

a more compact form as

∫ tk

0

‖ξ̄(t)‖2 dt ≤
∫ tk

0

‖ζ̄(t)‖2 dt+ d̄(λ) (3.25)

for all {tk ≥ 0}∞k=1 with

ξ̄(t) := Q̄(λ)ξ̃(t); ζ̄(t) := R̄(λ)ζ̃(t); d̄(λ) := d̃(λ). (3.26)

Furthermore, using (3.26), (3.17) and (3.18), we can also represent the system

(3.16) as

ẋ(t) = Ax(t) +B1w(t) + B̃2ũ(t) + ẼQ̄(λ)−1ξ̄(t);

z(t) = C1x(t) + D̃12ũ(t);

ζ̄(t) = R̄(λ)H̃x(t) + R̄(λ)G̃ũ(t);

ỹ(t) = C̃2x(t) + D̃21w(t) + F̃ Q̄(λ)−1ξ̄(t) (3.27)

which satisfies the IQC (3.25). Thus, the desired stable nonlinear controller will

be constructed based on the uncertain system (3.27), (3.25).
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3.3 Stable Nonlinear Controller Design

In this section, we provide sufficient conditions under which a controller of the

form (3.10) not only achieves absolute stabilization with a specified disturbance

attenuation level γ > 0 when applied to the uncertain system (3.27), (3.25), but

also is stable. To meet this stability requirement, we introduce an additional

uncertainty term to form an artificial uncertain system, which is then employed

to synthesize the desired controller. Although the additional uncertainty is only

required to be an unknown constant uncertain parameter, this approach gives rise

to some degree of conservatism. However, this conservatism can be reduced by

applying scaling multipliers to exploit the structure of the additional uncertainty;

e.g., see [2, 7, 187].

Using a state feedback gain matrix obtained in a preliminary step, the artificial

uncertain system is constructed in such a way that for one particular value of

the additional uncertainty, the artificial uncertain system reduces to the original

nonlinear uncertain system (3.1), (3.2), (3.5). Therefore, if we can find a suitable

controller for the artificial uncertain system, this controller will also solve our

original problem of absolute stabilization with a specified disturbance attenuation

level γ > 0. Also, for another value of the additional uncertainty, the artificial

uncertain system reduces to a particular open loop configuration, which will

ensure that the same controller must be stable. Moreover, as we follow standard

results of H∞ control theory in [187], the solution to our nonlinear robust H∞

strong stabilization problem are obtained in terms of the stabilizing solutions to

a pair of parameterized algebraic Riccati equations. This approach results in a

controller which has the same order as that of the plant.

3.3.1 State feedback control problem

Solving a state feedback control problem for the uncertain system (3.27), (3.25) is

one of preliminary steps required in our approach to synthesize the required stable

output feedback controller. This approach aims to guarantee the stability of any

suitable controller of the form (3.10), which absolutely stabilizes the artificial

uncertain system with specified disturbance attenuation level γ > 0. Based on

S-procedure type results (see [187, Theorem 3.1 ]), we introduce a scaling constant

κ > 0 corresponding to the IQC (3.25) so that the state equations of the system
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(3.27) can be rewritten as

ẋ(t) = Ax(t) + B̃1w̃(t) + B̃2ũ(t);

z̃(t) = C̃1x(t) + D̄12ũ(t);

ỹ(t) = C̃2x(t) + D̄21w̃(t) (3.28)

where

w̃(t) =

[
γ w(t)
√
κ ξ̄(t)

]
; z̃(t) =

[
z(t)

√
κ ζ̄(t)

]
; B̃1 =

[
γ−1B1

√
κ
−1
ẼQ̄(λ)−1

]
;

C̃1 =

[
C1√

κ R̄(λ)H̃

]
; D̄12 =

[
D̃12√
κ R̄(λ)G̃

]
; D̄21 =

[
γ−1D̃21

√
κ
−1
F̃ Q̄(λ)−1

]
.

(3.29)

Using a vector λ = λ̃ ∈ Λ̃ and a scaling constant κ > 0 in (3.29), we exploit the

structure of the uncertainty in the uncertain system (3.27), (3.25) and transform

a constrained robust H∞ control problem into an unconstrained one such that it

can be solved using the results of standard H∞ control theory; e.g., see [187].

Assumption 3.1. Given a vector λ̃ ∈ Λ̃ and constants β1 ≥ 0, . . . , βg ≥ 0, κ > 0,

the uncertain system (3.27), (3.25) is assumed to be such that J = D̄T
12D̄12 > 0.

Lemma 3.1. Let a vector λ̃ ∈ Λ̃ and constants β1 ≥ 0, . . . , βg ≥ 0 be given.

Suppose that the uncertain system (3.27), (3.25) satisfies Assumption 3.1, and

is absolutely stabilizable with disturbance attenuation level γ > 0 via an output

feedback controller of the form (3.10) (but which is not necessarily stable). Then,

there exists a constant κ > 0 such that the algebraic Riccati equation

(
A− B̃2J

−1D̄T
12C̃1

)T

X +X
(
A− B̃2J

−1D̄T
12C̃1

)

+X
(
B̃1B̃

T
1 − B̃2J

−1B̃T
2

)
X + C̃T

1

(
I − D̄12J

−1D̄T
12

)
C̃1 = 0 (3.30)

has a stabilizing solution X ≥ 0. Moreover, if the condition (3.30) holds, the un-

certain system (3.27), (3.25) is absolutely stabilizable with disturbance attenuation

level γ > 0 via the state feedback controller

ũ(t) = Kx(t) (3.31)
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where

K =

[
Ku

Kν̃

]
= −J−1

(
B̃T

2 X + D̄T
12C̃1

)
. (3.32)

Proof. If the uncertain system (3.27), (3.25) satisfies Assumption 3.1, and is

absolutely stabilizable with disturbance attenuation level γ > 0 via an output

feedback controller of the form (3.10), it follows from the proof of Theorem 4.1

in [187] that there exists a constant κ > 0 such that the controller (3.10) solves

the H∞ control problem defined by the system (3.28) and the H∞ norm bound

condition

J̃ := sup
w̃(·)∈L2[0,∞),x(0)=0,xc(0)=0

‖z̃(·)‖2
2

‖w̃(·)‖2
2

< 1. (3.33)

Then, it follows from a standard result on H∞ control (e.g., see [312, Theorem

3.3]) that there exists a state feedback control law (3.31) that stabilizes the system

(3.28) and leads to the satisfaction of (3.33). Moreover, it follows from the H∞

control theory (e.g., see [312, Corollary 3.1]) that the Riccati equation (3.30) has

a stabilizing solution X ≥ 0 and that the state feedback control law (3.31), (3.32)

stabilizes the system (3.28) and leads to the satisfaction of (3.33). Then, using

similar arguments to those in the proof of [187, Theorem 4.1], it follows that

the state feedback control law (3.31), (3.32) absolutely stabilizes the uncertain

system (3.27), (3.25) with disturbance attenuation level γ > 0.

3.3.2 Artificial uncertain system

We now suppose that the vector λ̃ ∈ Λ̃ and constants β1 ≥ 0, . . . , βg ≥ 0, κ > 0

as stated in Lemma 3.1 are given. Then, the state feedback gain matrix K

defined in (3.32) can be constructed in terms of the stabilizing solution X ≥ 0

to the algebraic Riccati equation (3.30). Using the matrix K and introducing an

additional uncertainty, we form an artificial uncertain system as follows:

ẋ(t) = Āx(t) +B1w(t) + B̄2ũ(t) + Ē1ξ̄1(t) + Ē2ξ̄2(t);

z(t) = C̄1x(t) +M1ξ̄2(t) + Ď12ũ(t);

ζ̄1(t) = H̄1x(t) +M2ξ̄2(t) + Ḡ1ũ(t);

ζ̄2(t) = H̄2x(t) + Ḡ2ũ(t);

ỹ(t) = C̃2x(t) + D̃21w(t) + F̄1ξ̄1(t) + F̄2ξ̄2(t) (3.34)
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where

Ā = A+ 1
2
B2Ku; B̄2 =

[
1
2
B2 0n×g

]
; Ē1 = ẼQ̄(λ)−1; Ē2 = B2N

−1;

C̄1 = C1 + 1
2
D12Ku; M1 = D12N

−1; Ď12 =
[

1
2
D12 0q×g

]
;

H̄1 = R̄(λ)



H1 + 1

2
G1Ku

H2 + 1
2
G2Ku

0g×n


 ; M2 = R̄(λ)



G1

G2

0g×m


N−1;

Ḡ1 = R̄(λ)




1
2
G1 0h×g

1
2
G2 0g×g

0g×m Ig×g


 ; H̄2 = 1

2
NKu; Ḡ2 = −1

2
N

[
Im×m 0m×g

]
;

F̄1 = F̃ Q̄(λ)−1; F̄2 = 0(l+g)×m. (3.35)

Here, N is any m × m non-singular scaling matrix and λ = λ̄ ∈ Λ̃. Note that

the uncertainty input ξ̄1(t) and uncertainty output ζ̄1(t) are related according to

the IQC (3.25) with ξ̄(t) and ζ̄(t) replaced by ξ̄1(t) and ζ̄1(t), respectively. The

IQC (3.25) is also extended to include the additional uncertainty input ξ̄2(t) and

uncertainty output ζ̄2(t). That is,

∫ tk

0

‖ξ̄v(t)‖2 dt ≤
∫ tk

0

‖ζ̄v(t)‖2 dt+ d̄v(λ) (3.36)

with d̄v(λ) ≥ 0 for all v = 1, 2 and for all {tk ≥ 0}∞k=1, and ξ̄2(t), ζ̄2(t) ∈ Rm.

We consider two special cases of the uncertainty input ξ̄2(t) in order to show

that any suitable output feedback controller of the form (3.10) for the artificial

uncertain system (3.34), (3.36) is indeed stable and solves the original control

problem as stated in Section 3.2. In this case, the relation between ξ̄2(t) and

ζ̄2(t) is described as

ξ̄2(t) = ∆ ζ̄2(t) (3.37)

where ∆ ∈ R is an unknown constant uncertain parameter satisfying

|∆| ≤ 1. (3.38)

Special case I: ∆ = 1. In this case, we have that ξ̄2(t) ≡ ζ̄2(t) = 1
2
Kux(t) −

1
2
u(t). It is clear that this uncertainty input satisfies the IQC (3.36) and that
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with this ξ̄2(t), the state equation (3.34) becomes

ẋ(t) = (A+B2Ku)x(t) +B1w(t) + ẼQ̄(λ)−1ξ̄(t);

z(t) = (C1 +D12Ku)x(t);

ζ̄(t) = R̄(λ)(H̃ + G̃K)x(t);

ỹ(t) = C̃2x(t) + D̃21w(t) + F̃ Q̄(λ)−1ξ̄(t) (3.39)

where the IQC (3.25) is also satisfied. It then follows from (3.17), (3.18) and

(3.26) that we can further decompose the state equations (3.39) as

ẋ(t) = (A+B2Ku)x(t) +B1w(t) +

f∑

s=1

E1,s ξs(t) +

g∑

i=1

E2,i µi(t);

z(t) = (C1 +D12Ku)x(t);

ζ1(t) = (H1,1 +G1,1Ku)x(t);

...

ζf (t) = (H1,f +G1,fKu)x(t);

ν1(t) = (H2,1 +G2,1Ku)x(t);

...

νg(t) = (H2,g +G2,gKu)x(t);

y(t) = C2x(t) +D21w(t) +

f∑

s=1

F1,s ξs(t) +

g∑

i=1

F2,i µi(t). (3.40)

where the IQCs (3.5) and GLCs (3.3) are satisfied. The state equations (3.40)

represent the closed loop nonlinear uncertain system, which is obtained when

the state feedback controller (3.31), (3.32) is applied to the original nonlinear

uncertain system (3.1), (3.2), (3.5). Thus, it follows from the construction of the

matrix K and Lemma 3.1 that the closed loop nonlinear uncertain system (3.40),

(3.2), (3.5) is in fact absolutely stable with disturbance attenuation level γ > 0.

Through Special case I, we will show that the output feedback controller (3.10)

designed using our method is indeed stable. We now suppose that the artificial

uncertain system (3.34), (3.36) is absolutely stabilizable with disturbance atte-

nuation level γ > 0 via the application of any suitable output feedback controller

of the form (3.10), which may not be stable. It then follows from Special case
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(a) Special case I (b) Special case II

Figure 3.2: Block diagrams corresponding to Special case I and Special case II; see [7].

I that for this particular additional uncertainty input ξ̄2(t) and output ζ̄2(t), we

will obtain a closed loop system which has an open loop configuration as shown

in Figure 3.2(a). Moreover, we also notice that the system (3.40) is not affected

by the control input u(t), which is the output u(t) of the controller (3.6), (3.7).

Here, the block Σ̃x is the absolutely stable closed loop system (3.40) and the

block Σc is the output feedback controller (3.6). As we require the entire closed

loop system to be absolutely stable, then the output feedback controller (3.10)

must be stable.

Special case II: ∆ = −1. From this case, we have that ξ̄2(t) ≡ −ζ̄2(t) =

−1
2
Kux(t) + 1

2
u(t), which satisfies the IQC (3.36) and that the state equations

(3.34) becomes (3.27). Based on (3.17), (3.18) and (3.26), it is straightforward

to further decompose (3.27) into the system (3.1) with the IQCs (3.5) and GLCs

(3.3) satisfied. It is clear that the artificial uncertain system (3.34), (3.36) reduces

to the original nonlinear uncertain system (3.1), (3.2), (3.5).

Thus, it follows from this case that when the controller (3.10) is applied to

the artificial uncertain system (3.34), (3.36), the resulting closed loop system

is equivalent to the one obtained by applying the controller (3.6), (3.7) to the

nonlinear uncertain system (3.1), (3.2), (3.5) as shown in Figure 3.2(b). Here, the

block Σx is the original system (3.1) and the block Σc is the controller (3.6). This

implies that the controller (3.10) indeed solves the original problem of absolute

stabilization with disturbance attenuation level γ > 0.

As the additional uncertainty satisfying the IQCs (3.36) overbounds the scalar

uncertainty (3.37), (3.38), we conclude from both special cases that the controller
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(3.10) obtained by applying the method in [187] to the artificial uncertain system

(3.34), (3.36) is indeed a stable controller solving the original problem of absolute

stabilization with disturbance attenuation level γ > 0 for the nonlinear uncertain

system (3.1), (3.2), (3.5). This fact allows us to apply the method in [187] in order

to obtain our main result involving the stabilizing solutions to parameterized

algebraic Riccati equations.

3.3.3 Stable nonlinear H∞ controller

Introducing scaling constants τ1 > 0 and τ2 > 0 for the uncertainties satisfying

the IQCs (3.36), we can rewrite the state equations (3.34) as follows:

ẋ(t) = Āx(t) + B̂1w̄(t) + B̂2ũ(t);

z̄(t) = Ĉ1x(t) + D̂11w̄(t) + D̂12ũ(t);

ỹ(t) = C̃2x(t) + D̂21w̄(t) (3.41)

where r =
∑f

s=1 rs; r̃ = r + 2g; h̃ = h+ 2g;

w̄(t) =



γ w(t)

√
τ1 ξ̄1(t)√
τ2 ξ̄2(t)


 ; z̄(t) =




z(t)
√
τ1 ζ̄1(t)√
τ2 ζ̄2(t)


 ; B̂1 =

[
γ−1B1

√
τ1

−1Ē1
√
τ2

−1Ē2

]
;

B̂2 = B̄2; Ĉ1 =




C̄1√
τ1 H̄1√
τ2 H̄2


 ; D̂11 =




0q×p 0q×r̃
1√
τ2
M1

0h̃×p 0h̃×r̃

√
τ1
τ2
M2

0m×p 0m×r̃ 0m×m


 ;

D̂12 =




Ď12√
τ1 Ḡ1√
τ2 Ḡ2


 ; D̂21 =

[
γ−1D̃21

√
τ1

−1F̄1
√
τ2

−1F̄2

]
. (3.42)

Since a D̂11 term explicitly appears in (3.41), the standard H∞ control theory

cannot immediately be used to obtain a solution to our control problem. Thus,

it is necessary to apply a loop shifting transformation so that the D̂11 term can

be eliminated from (3.41). In order to achieve this, we first need to impose the

following assumption in order that our H∞ control problem is non-singular and

well-defined; e.g., see [16, Sections 4.5.1 and 5.5.1] and [18, Section 17.2].
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Assumption 3.2. Given a vector λ̄ ∈ Λ̃, constants β1 ≥ 0, . . . , βg ≥ 0, τ1 >

0, τ2 > 0 and any non-singular scaling matrix N , the artificial uncertain system

(3.34), (3.36) is assumed to be such that D̂11D̂
T
11 < I.

We can now define

Φ := I − D̂T
11D̂11 > 0; Φ̄ := I − D̂11D̂

T
11 > 0 (3.43)

and also

ŵ(t) := Φ
1
2 w̄(t) − Φ− 1

2 D̂T
11

(
Ĉ1x(t) + D̂12ũ(t)

)
;

ẑ(t) := Φ̄− 1
2

(
Ĉ1x(t) + D̂12ũ(t)

)
. (3.44)

From the relationships in (3.44), it is straightforward to show that

w̄(t) = Φ− 1
2 ŵ(t) + Φ−1D̂T

11

(
Ĉ1x(t) + D̂12ũ(t)

)
(3.45)

and

‖z̄(t)‖2
2 − ‖w̄(t)‖2

2 ≡ ‖ẑ(t)‖2
2 − ‖ŵ(t)‖2

2. (3.46)

Then, assuming Assumption 3.2 and substituting (3.45) into (3.41), we can

rewrite the state equations (3.41) as

ẋ(t) = Ăx(t) + B̆1ŵ(t) + B̆2ũ(t);

ẑ(t) = C̆1x(t) + D̆12ũ(t);

ỹ(t) = C̆2x(t) + D̆21ŵ(t) + D̆22ũ(t) (3.47)

where
Ă = Ā+ B̂1D̂

T
11Φ̄

−1Ĉ1; B̆1 = B̂1Φ
− 1

2 ;

B̆2 = B̂2 + B̂1D̂
T
11Φ̄

−1D̂12; C̆1 = Φ̄− 1
2 Ĉ1;

C̆2 = C̃2 + D̂21D̂
T
11Φ̄

−1Ĉ1; D̆12 = Φ̄− 1
2 D̂12;

D̆22 = D̂21D̂
T
11Φ̄

−1D̂12; D̆21 = D̂21Φ
− 1

2 ;

J̆1 = D̆T
12D̆12; J̆2 = D̆21D̆

T
21.

(3.48)

Furthermore, we also define

ȳ(t) := ỹ(t) − D̆22ũ(t) (3.49)



62 Chapter 3. Nonlinear Robust H∞ Control

to eliminate the D̆22 term from (3.47). Hence, the state equations (3.47) can be

rewritten as

ẋ(t) = Ăx(t) + B̆1ŵ(t) + B̆2ũ(t);

ẑ(t) = C̆1x(t) + D̆12ũ(t);

ȳ(t) = C̆2x(t) + D̆21ŵ(t). (3.50)

Then, the output feedback controller for the system (3.50) is of the form

ẋc(t) = Ăcxc(t) + B̃cȳ(t);

ũ(t) = C̃cxc(t). (3.51)

If we interconnect the controller (3.51) to the system (3.50), the resulting closed

loop system is required to satisfy the following H∞ norm bound condition

Ĵ := sup
ŵ(·)∈L2[0,∞),x(0)=0,xc(0)=0

‖ẑ(·)‖2
2

‖ŵ(·)‖2
2

< 1. (3.52)

A solution to this standard H∞ control problem is given in terms of solutions

to the parameterized algebraic Riccati equations:

(
Ă− B̆2J̆

−1
1 D̆T

12C̆1

)T

X̆ + X̆
(
Ă− B̆2J̆

−1
1 D̆T

12C̆1

)

+ X̆
(
B̆1B̆

T
1 − B̆2J̆

−1
1 B̆T

2

)
X̆ + C̆T

1

(
I − D̆12J̆

−1
1 D̆T

12

)
C̆1 = 0; (3.53)

(
Ă− B̆1D̆

T
21J̆

−1
2 C̆2

)
Y̆ + Y̆

(
Ă− B̆1D̆

T
21J̆

−1
2 C̆2

)T

+ Y̆
(
C̆T

1 C̆1 − C̆T
2 J̆

−1
2 C̆2

)
Y̆ + B̆1

(
I − D̆T

21J̆
−1
2 D̆21

)
B̆T

1 = 0 (3.54)

such that

1. Ă− B̆2J̆
−1
1 D̆T

12C̆1 +
(
B̆1B̆

T
1 − B̆2J̆

−1
1 B̆T

2

)
X̆ is Hurwitz;

2. Ă− B̆1D̆
T
21J̆

−1
2 C̆2 + Y̆

(
C̆T

1 C̆1 − C̆T
2 J̆

−1
2 C̆2

)
is Hurwitz;

3. The spectral radius ρ(X̆Y̆ ) of the product X̂Ŷ is strictly less than one.

The Riccati equations (3.53) and (3.54) are solvable if J̆1 and J̆2 are non-singular

matrices. Thus, we need to impose the following assumption; e.g., see [187,312].
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Assumption 3.3. Given a vector λ̄ ∈ Λ̃, constants β1 ≥ 0, . . . , βg ≥ 0, τ1 >

0, τ2 > 0 and any non-singular scaling matrix N , the artificial uncertain system

(3.34), (3.36) is assumed to be such that J̆1 > 0 and J̆2 > 0.

Theorem 3.1. Let vectors λ̃, λ̄ ∈ Λ̃ and constants β1 ≥ 0, . . . , βg ≥ 0 be given.

Suppose that there exists a constant κ > 0 such that the uncertain system (3.27),

(3.25) satisfies Assumption 3.1 and the algebraic Riccati equation (3.30) has a

stabilizing solution X ≥ 0, and let

K = −J−1
(
B̃T

2 X + D̄T
12C̃1

)
.

Also, suppose that there exist a non-singular scaling matrix N and constants

τ1 > 0 and τ2 > 0 such that the artificial uncertain system (3.34), (3.36) satisfies

Assumptions 3.2 and 3.3 and that both Riccati equations (3.53) and (3.54) have

stabilizing solutions X̆ ≥ 0 and Y̆ ≥ 0, and the spectral radius of the product

X̆Y̆ satisfies ρ(X̆Y̆ ) < 1. Then the nonlinear uncertain system (3.1), (3.2), (3.5)

is absolutely stabilizable with disturbance attenuation γ > 0 via a stable nonlin-

ear output feedback controller of the form (3.6), (3.7). Moreover, the controller

matrices are given as follows

Ac = Ăc − B̃cD̆22C̃c;

Ăc = Ă+ B̆2C̃c − B̃cC̆2 +
(
B̆1 − B̃cD̆21

)
B̆T

1 X̆;

B̃c =
(
I − Y̆ X̆

)−1 (
Y̆ C̆T

2 + B̆1D̆
T
21

)
J̆−1

2 ;

C̃c = −J̆−1
1

(
B̆T

2 X̆ + D̆T
12C̆1

)
. (3.55)

Proof. It follows using similar arguments to those in the proof of Theorem 4.1

in [187] that the artificial uncertain system (3.34), (3.36) is absolutely stabilizable

with disturbance attenuation level γ > 0 via a controller of the form (3.10) if

and only if there exist constants τ1 > 0 and τ2 > 0 such that the controller

(3.51) solves the H∞ control problem defined by (3.50) and (3.52). Moreover,

it follows from the results of H∞ control theory (e.g., see [18, 312]) that the

H∞ control problem defined by (3.50) and (3.52) has a solution if and only if the

algebraic Riccati equations (3.53) and (3.54) have stabilizing solutions X̆ ≥ 0 and

Y̆ ≥ 0, respectively, such that the spectral radius of the product X̆Y̆ satisfies

ρ(X̆Y̆ ) < 1. Moreover, if all conditions of the theorem hold, the controller
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(3.51), (3.55) will absolutely stabilize the uncertain system (3.34), (3.36) with

disturbance attenuation level γ > 0. Then, using arguments for the two special

cases discussed above, it follows that the controller (3.51), (3.55) is indeed stable

and absolutely stabilizes the nonlinear uncertain system (3.1), (3.2), (3.5) with

disturbance attenuation level γ > 0.

3.4 A Differential Evolution Approach

The stable nonlinear controller design method presented in Section 3.3 involves

several design parameters, which constitute a vector of decision variables

ϑ :=
[
γ κ τ1 τ2 λ̃T λ̄T

]T

(3.56)

where ϑ ∈ Rf̄ , f̄ = 2(f + 3g) + 4; and λ̃, λ̄ are as defined in (3.20). All elements

of ϑ are positive real numbers. As ϑ may have a large dimension, we need to

apply an optimization method to determine the value of each element of ϑ in

order to satisfy all constraints arising in the controller design algorithm. This

condition leads us to formulate our controller design problem as a constrained

nonlinear optimization problem stated as follows: Find an optimal vector ϑ⋆ of

design parameters to solve

min
ϑ

f(θ) (3.57)

subject to

gj(ϑ) = 0; hk(ϑ) ≤ 0 (3.58)

for j = 1, 2, . . . , a and k = 1, 2, . . . , b. Here, f(ϑ) is an objective function to

be minimized; and gj(ϑ) and hk(ϑ) are the equality and inequality constraints,

respectively.

Considering the controller design algorithm presented in Section 3.3, we in

fact deal with an optimization problem that is subject to both nonconvex and

nonlinear constraints. To find an optimal solution ϑ⋆ to such a problem, we

apply the differential evolution (DE) algorithm as described in Chapter 2. Since

we are concerned with an H∞ control problem, a suitable cost function f(ϑ) to

be minimized is chosen as

f(ϑ) = γn (3.59)
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where n ≥ 1 is a power constant used to help the DE algorithm to return an

optimal γ > 0. Moreover, the equality constraints are

g1(ϑ) =
(
A− B̃2J

−1D̄T
12C̃1

)T

X +X
(
A− B̃2J

−1D̄T
12C̃1

)

+X
(
B̃1B̃

T
1 − B̃2J

−1B̃T
2

)
X + C̃T

1

(
I − D̄12J

−1D̄T
12

)
C̃1 = 0;

g2(ϑ) =
(
Ă− B̆2J̆

−1
1 D̆T

12C̆1

)T

X̆ + X̆
(
Ă− B̆2J̆

−1
1 D̆T

12C̆1

)

+ X̆
(
B̆1B̆

T
1 − B̆2J̆

−1
1 B̆T

2

)
X̆ + C̆T

1

(
I − D̆12J̆

−1
1 D̆T

12

)
C̆1 = 0;

g3(ϑ) =
(
Ă− B̆1D̆

T
21J̆

−1
2 C̆2

)
Y̆ + Y̆

(
Ă− B̆1D̆

T
21J̆

−1
2 C̆2

)T

+ Y̆
(
C̆T

1 C̆1 − C̆T
2 J̆

−1
2 C̆2

)
Y̆ + B̆1

(
I − D̆T

21J̆
−1
2 D̆21

)
B̆T

1 = 0 (3.60)

and the inequality constraints are

h1(ϑ) = −Q̃(λ̃) < 0; h2(ϑ) = −R̃(λ̃) < 0;

h3(ϑ) = −J < 0; h4(ϑ) = −X < 0;

h5(θ) = −Q̃(λ̄) < 0; h6(θ) = −R̃(λ̄) < 0;

h7(ϑ) = D̂11D̂
T
11 − I < 0; h8(ϑ) = −J̆1 < 0;

h9(ϑ) = −J̆2 < 0; h10(ϑ) = −X̆ < 0;

h11(ϑ) = −Y̆ < 0; h12(ϑ) = ρ(X̆Y̆ ) − 1 < 0;

h13(ϑ) = emax,r (AX) < 0; h14(ϑ) = emax,r(ĂX) < 0;

h15(ϑ) = emax,r(ĂY ) < 0

(3.61)

where ρ(M) and emax,r(M) denote the spectral radius and the largest real part

of the eigenvalues of the matrix M, respectively; and

AX := A− B̃2J
−1D̄T

12C̃1 +
(
B̃1B̃

T
1 − B̃2J

−1B̃T
2

)
X;

ĂX := Ă− B̆2J̆
−1
1 D̆T

12C̆1 +
(
B̆1B̆

T
1 − B̆2J̆

−1
1 B̆T

2

)
X̆;

ĂY := Ă− B̆1D̆
T
21J̆

−1
2 C̆2 + Y̆

(
C̆T

1 C̆1 − C̆T
2 J̆

−1
2 C̆2

)
. (3.62)

The constraints in (3.60) and (3.61) are used to evaluate the fitness of each

candidate solution in a population. For a given ϑ, the fitness test proceeds

according to the following steps:

1. Compute the eigenvalues of Q̃(λ̃), R̃(λ̃) and J in order to check if the
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constraints h1(ϑ), h2(ϑ) and h3(ϑ) are satisfied.

2. Use the constraint g1(ϑ) to obtain a solution X to the Riccati equation

(3.30).

3. If the Riccati equation (3.30) has a solution X, we need to verify whether

it is a positive definite stabilizing solution through the evaluation of the

constraints h4(ϑ) and h13(ϑ).

4. Compute the eigenvalues of Q̃(λ̄), R̃(λ̄), (D̂11D̂
T
11 − I), J̆1 and J̆2 in order

to check if the constraints h5(θ), h6(θ), h7(θ), h8(θ) and h9(θ) are satisfied.

5. Use the constraints g2(ϑ) and g3(ϑ) to obtain solutions X̆ and Y̆ to the

Riccati equations (3.53) and (3.54).

6. If the Riccati equations (3.53) and (3.54) have solutions X̆ and Y̆ , we need

to verify whether they are positive definite stabilizing solutions through the

evaluation of the constraints h10(θ), h11(θ), h12(θ), h14(θ) and h15(θ).

7. Compute the spectral radius of the product X̆Y̆ to verify if the constraint

h10(ϑ) is satisfied.

8. Compute the value of the objective function f(ϑ) in (3.59).

Through the fitness test routine above, we acquire information above how

many constraints have been violated by a candidate solution and how much

penalty is incurred. Thus, from the constraints in (3.60) and (3.61), we can

derive a set of penalty functions corresponding to those constraints. That is,

p1(ϑ) = |emin(Q̃(λ̃))|s1 ; p2(ϑ) = |emin(R̃(λ̃))|s2 ;
p3(ϑ) = |emin(J)|s3 ; p4(ϑ) = ρ(CX)s4 ;

p5(ϑ) = |emin(X)|s5 ; p6(ϑ) = emax,r(AX)s6 ;

p7(θ) = |emin(Q̃(λ̄))|s7 ; p8(θ) = |emin(R̃(λ̄))|s8 ;
p9(ϑ) = emax(D̂11D̂

T
11 − I)s9 ; p10(ϑ) = |emin(J̆1)|s10 ;

p11(ϑ) = |emin(J̆2)|s11 ; p12(ϑ) = ρ(CX̆)s12 ;

p13(ϑ) = ρ(CY̆ )s13 ; p14(ϑ) = |emin(X̆)|s14 ;
p15(ϑ) = |emin(Y̆ )|s15 ; p16(ϑ) = emax,r(AX̆)s16 ;

p17(ϑ) = emax,r(AY̆ )s17 ; p18(ϑ) = (ρ(X̆Y̆ ) − 1)s18 ;

p19(ϑ) = f(ϑ)

(3.63)



3.5. Illustrative Examples 67

where sr ≥ 1 for r = 1, 2, . . . , 18. Here, emin(M) and emax(M) denote the small-

est and the largest eigenvalue of the symmetric matrix M, respectively. If the

matrix M is required to be positive definite, we assign |emin(M)|sr as a penalty

because when this requirement is violated, the matrix M can be either negative

(semi)definite or indefinite. Moreover, CX , CX̆ and CY̆ are defined as

CX := C̃T
1

(
I − D̄12J

−1D̄T
12

)
C̃1;

CX̆ := C̆T
1

(
I − D̆12J̆

−1
1 D̆T

12

)
C̆1;

CY̆ := B̆1

(
I − D̆T

21J̆
−1
2 D̆21

)
B̆T

1 . (3.64)

3.5 Illustrative Examples

In this section, we consider two examples to demonstrate the stable nonlinear

controller design method presented in Section 3.3. Through these examples, we

will show that if a continuous time version of the method in [182] is applied to the

problem under consideration, the resulting nonlinear controller is not necessarily

stable. Furthermore, we also show that our stable nonlinear controller allows for

better disturbance attenuation performance as compared to its linear counterpart

which can be synthesized using the method in [7]. Thus, in order to fit into

our nonlinear robust H∞ control framework, we modify the nominal models of

both examples by adding several terms corresponding to disturbance input w(t),

controlled output z(t), uncertainty input ξ(t) and output ζ(t), and nonlinearity

input µ(t) and output ν(t). All parameters required in the controller design are

computed using the DE method as described in Section 3.4.

Example 3.1. The nominal model of the following example taken from [175] is

also considered as a benchmark problem in [177]. This example is defined by the

following matrices:

A =

[
−2 1.7321

1.7321 0

]
; B1 =

[
0.1 −0.1

−0.5 0.5

]
; B2 =

[
1

0

]
; E1,1 =

[
1 0

0 0

]
;

E2,1 =

[
0

1.7

]
; C1 =

[
0.2 −1

0 0

]
; D12 =

[
0

1

]
; H1,1 =

[
0 1

]
; H2,1 =

[
0 1

]
;

C2 =
[
10 11.5470

]
; D21 =

[
0.7071 0.7071

]
; F1,1 =

[
0 1

]
. (3.65)
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The uncertainty and nonlinearity of the nonlinear uncertain system are respec-

tively described as follows:

ξ(t) =

[
ξ1(t)

ξ2(t)

]
=

[
∆1

∆2

]
ζ(t);

µ(t) = ψ(ν(t)) = sin ν(t). (3.66)

Thus, the IQC corresponding to the uncertainty is given by

∫ ∞

0

(
ξ2
1(t) + ξ2

2(t)
)
dt ≤

∫ ∞

0

ζ2(t) dt+ d1, d1 ≥ 0 (3.67)

and the GLC corresponding to the known nonlinearity ψ(·) is given by

|sin ν(t) − sin ν̃(t)| ≤ β|ν(t) − ν̃(t)|. (3.68)

From the first derivative of the nonlinear function ψ(ν(·)) with respect to ν(·),
we obtain ∣∣∣∣

d sin ν(·)
dν(·)

∣∣∣∣ = |cos ν(·)| ≤ 1, ∀ν(·) ∈ R (3.69)

which implies that β = 1. Moreover, the corresponding IQCs derived from the

GLC (3.68) are as follows:

∫ ∞

0

(sin ν(t) − sin ν̃(t))2 dt ≤
∫ ∞

0

(ν(t) − ν̃(t))2 dt+ d2;

∫ ∞

0

(sin ν(t))2 dt ≤
∫ ∞

0

ν2(t) dt+ d3;

∫ ∞

0

(sin ν̃(t))2 dt ≤
∫ ∞

0

ν̃2(t) dt+ d4 (3.70)

where d2, d3, d4 ≥ 0. Note that µ̃(t) = sin ν̃(t) represents the copy of the known

nonlinearity ψ(·) included in the controller (3.6).

We first solve the nonlinear H∞ control problem for this system using the

continuous time version of [182] to show that this method may not lead to a

stable controller. In this case, the required parameters are obtained as

γ = 3.1375; κ = 0.1035; λ1 = 208.4058;

λ2 = 981.5735; λ3 = 207.1877; λ4 = 498.0892
(3.71)
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with λ1, . . . , λ4 are respectively corresponding to the IQCs (3.67) and (3.70).

Then, the resulting controller matrices are

Ac = 105 ×
[

0.3249 0.4270

−3.9584 −5.2037

]
;

B̃c = 104 ×
[
−0.2939 −0.4896

3.5792 5.9622

]
;

C̃c =

[
−12.6141 −31.3799

0 0.6634

]
. (3.72)

Since the plant nonlinearity (3.66) is represented by a sine function, the stability

of the corresponding nonlinear controller (3.6) can be investigated through linea-

rization around the equilibrium point x∗c = 0, that is when µ̃(t) ≈ ν̃(t). In this

case, the linearized controller matrix Āc is obtained as follows:

Āc := Ac +

g∑

i=1

LiCc2,i
= 105 ×

[
0.3249 0.3945

−3.9584 −4.8081

]
. (3.73)

The eigenvalues of Āc are e1 = 9.9399 and e2 = −4.4833×105, which implies that

Āc is unstable. Thus, the corresponding nonlinear controller is also unstable.

We now apply our main result in Theorem 3.1 to construct a stable nonlin-

ear output feedback controller for the nonlinear uncertain system (3.65), (3.66),

(3.67). The required parameters obtained using the DE method are

γ = 34.7286; κ = 0.0806; τ1 = 0.4314; τ2 = 1.0057;

λ1 = 117.9752; λ2 = 928.1436; λ3 = 216.6302; λ4 = 743.8695
(3.74)

where λ = λ̃ = λ̄. Thus, the resulting controller matrices are obtained as

Ac = 106 ×
[
−1.3780 −1.5946

−0.0842 −0.0974

]
;

B̃c =

[
1.3769 × 105 1.1773 × 104

8.4136 × 103 721.3153

]
;

C̃c =

[
−9.0971 −34.3064

0 0.5551

]
(3.75)
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and the corresponding linearized controller matrix Āc is

Āc = 106 ×
[
−1.3780 −1.5881

−0.0842 −0.0970

]
(3.76)

with eigenvalues e1 = −0.2862 and e2 = −1.4750 × 106. This indicates that the

controller is at least locally stable around the equilibrium point x∗c = 0.

In order to verify that the controller is globally asymptotically stable, we will

check the stability of Ac and theH∞ norm ‖Tµ̃ν̃(s)‖∞ of the transfer function from

the nonlinearity input µ̃(t) to the nonlinearity output ν̃(t). The eigenvalues of Ac

are e1 = −1.3075 and e2 = −1.4754×106, and the H∞ norm ‖Tµ̃ν̃(s)‖∞ = 0.7812.

Thus, using the small gain theorem (e.g., see [18, Section 9.2]), we conclude that

the nonlinear controller (3.75) is indeed stable.

Figure 3.3: The controlled output z1(t) for different values of ∆1 and ∆2.

The performance of the stable nonlinear controller (3.75) is demonstrated

through a closed loop simulation using Simulink for several values of ∆1 ∈
{−1,−0.5, 0, 0.5, 1} and ∆2 is set to be equal to ∆1. The initial conditions of the

system and the controller are set to be zero. The closed loop system is perturbed

by an exogenous unit step function w1(t), while w2(t) = 0. The response of the

corresponding controlled output z1(t) is shown in Figure 3.3 and indicates that

the stable nonlinear controller (3.75) absolutely stabilizes the closed loop system

with a sufficient attenuation against the disturbance input w1(t).

Example 3.2. In this example, we solve a problem of designing a stable nonlinear

controller for a flexible link robot. The nominal model of this system is taken

from [313], which has also been considered in [186], and is defined by the following
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matrices:

A =




0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

19.5 0 −19.5 0




; B1 =




0

0

0

1




; B2 =




0

21.6

0

0




; E1,1 =




0

1

0

0




;

E2,1 =




0

0

0

−3.33




; C1 =

[
0 0 1 0

0 0 0 0

]
; D12 =

[
0

1

]
; H1,1 =

[
0 1 0 0

]
;

H2,1 =
[
0 0 1 0

]
; C2 =

[
1 0 0 0

0 1 0 0

]
; D21 =

[
0.1

0

]
; F1,1 =

[
0

0.1

]
(3.77)

where the uncertainty and nonlinearity of the system (3.77) are similarly de-

scribed as in the Example 3.1. Applying the DE approach presented in Section

3.4, we obtain all parameters required for controller design as follows:

γ = 0.1866; κ = 0.0116; τ1 = 0.0116; τ2 = 2.9542;

λ1 = 14.7055; λ2 = 1925.5322; λ3 = 74.0920; λ4 = 38.3448
(3.78)

where λ = λ̃ = λ̄. Thus, the nonlinear controller matrices are given as

Ac =




−185.6621 9.8266 44.0019 −54.9750

974.2362 −134.3833 −169.6195 300.7635

797.5493 −16.6491 −189.7179 237.3781

−945.3289 −85.1382 210.8858 −283.8434




;

B̃c =




11.4628 −23.9149 −3.1943

−101.2022 203.8707 30.6886

−47.8036 81.8149 14.0482

60.9064 5.4548 −208754




;

C̃c =

[
−30.1101 −3.0441 8.2684 −9.0469

0 0 0.9807 0

]
. (3.79)

Through the same analysis as in the Example 3.1, the nonlinear controller (3.79)

is at least locally stable around the equilibrium point x∗c = 0 since the eigenvalues
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of Āc are

e1 = −614.2753; e2 = −0.9460;

e3 = −133.6701; e4 = −30.9376. (3.80)

Moreover, Ac in (3.79) is also Hurwitz with eigenvalues

e1 = −630.5257; e2 = −0.9175;

e3 = −136.7811; e4 = −25.3824 (3.81)

and the H∞ norm ‖Tµ̃ν̃(s)‖∞ = 0.5636. Thus, using the small gain theorem

(e.g., see [18, Section 9.2]), we conclude that the nonlinear controller (3.79) is

globally asymptotically stable. The performance of the closed loop system is

then simulated using Simulink under similar conditions as in the Example 3.1.

That is, we assume that ξ(t) = ∆ζ(t), where ∆ ∈ {−1,−0.5, 0, 0.5, 1}. The

response of the controlled output z1(t) is shown in Figure 3.4.

Figure 3.4: The controlled output z1(t) for different values of ∆.

If we apply the linear controller design method in [7] to this example, the

required parameters are obtained as

γ = 0.2352; τ1 = 0.2112; τ2 = 2.0932;

τ̃1 = 0.1669; τ̃2 = 2.9655; τ̃3 = 4.3449 (3.82)
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and the corresponding controller is defined by the matrices as follows:

Ac = 104 ×




0.1142 0.0486 0.0041 0.0268

−0.4892 −0.2076 −0.0098 −0.1141

−0.8237 −0.3503 −0.0295 −0.1929

−3.0739 −1.3049 −0.1121 −0.7206




;

Bc = 104 ×




−0.0406 −0.0420

0.1676 0.1785

0.2925 0.3032

1.0932 1.1289




;

Cc =
[
−5.4683 −0.8526 0.7404 −1.5737

]
. (3.83)

The eigenvalues of Ac in (3.83) are

e1 = −8.3973 × 103; e2 = −0.5988;

e3 = −18.1361 + i17.1584; e4 = −18.1361 − i17.1584
(3.84)

and therefore, the controller is stable. Comparing the value of γ = 0.1866 ob-

tained with the nonlinear controller (3.79) to that of γ = 0.2352 obtained with

the linear controller (3.83), we notice that the nonlinear controller (3.79) allows

for a significant improvement in disturbance attenuation performance.

3.6 Conclusions

We have presented a systematic methodology to design a stable nonlinear robust

H∞ output feedback controller for a class of nonlinear uncertain systems. All

admissible uncertainties of the systems are described in terms of IQCs and each

known nonlinearity of the systems has to satisfy a GLC. The underlying main idea

of our method is to add a copy of each known plant nonlinearity to the linear part

of the controller. We then characterize the nonlinearities and their copies with

extra IQCs derived from the GLCs. The nonlinear controller is synthesized based

on existing results of robust H∞ control theory applied to an artificial uncertain

system, which is formed using a state feedback gain matrix and an additional

uncertainty. This approach is used to guarantee that the resulting controller is

stable and achieves absolute stability of the closed loop system with a specified
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disturbance attenuation level. The solution to this control problem involves the

stabilizing solutions to algebraic Riccati equations, which are dependent on a set

of scaling parameters. We then reformulate the absolute stabilization problem

into an optimization problem with those parameters as decision variables and

subjected to nonconvex nonlinear constraints. This latter problem is solved using

an evolutionary optimization method, namely the DE algorithm.

To demonstrate the merit of the proposed nonlinear controller design method,

we have also shown through Example 3.1 that our method indeed results in a sta-

ble nonlinear output feedback controller. Such a controller may not be achievable

if we apply the nonlinear robust control method in [182] because controller sta-

bility is not required. Moreover, as shown in Example 3.2, the stable nonlinear

controller synthesized using our method may have better disturbance attenua-

tion performance than that synthesized using the method presented in [7]. This

is because we do not directly treat known nonlinearities of the system as un-

certainties, but rather exploit them as useful information for control purposes.

Despite beneficial features of our method, we note that introducing additional

artificial uncertainty to impose controller stability may give rise to some degree

of conservatism in the controller design process.



Chapter 4

Decentralized State Feedback

Robust H∞ Control

4.1 Introduction

The main contribution of this chapter is to present a new method for designing

a decentralized state feedback robust H∞ controller for a large-scale linear un-

certain system, which consists of interconnected subsystems. In this case, the

interconnections between subsystems are not treated as uncertainties. Instead,

we neglect the off-diagonal blocks in the controller gain matrix and consider them

as uncertainties; e.g., see [156,198], which also use this approach for a guaranteed

cost control problem. This approach thus yields a block-diagonal state feedback

controller, which is able to exploit the interconnections between subsystems and

is also robust against perturbations in the controller itself.

We are concerned with a class of linear uncertain systems in which the uncer-

tainties are described by the integral quadratic constraints. For these systems,

we aim to construct a decentralized state feedback robust H∞ controller that

is capable of absolutely stabilizing the corresponding closed loop system while

achieving a certain disturbance attenuation level. The solution to this control

problem is given in terms of a stabilizing solution to an algebraic Riccati equa-

tion parameterized by a set of scaling constants.

The required scaling constants are associated with the system uncertainties

and norm bounds on the size of the neglected off-diagonal blocks of the controller

gain matrix. This formulation leads to a nonconvex nonlinear optimization pro-
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blem which is often difficult to solve using regular optimization methods. Thus,

we employ an evolutionary optimization approach, namely the differential evo-

lution (DE) algorithm (see Chapter 2), which is a population-based stochastic

optimization method. The DE approach is used to find an optimal solution to a

suitable objective function for the decentralized controller synthesis problem.

4.2 Problem Statement

We consider a decentralized state feedback robustH∞ control problem for a large-

scale linear uncertain system of the type described in [187]. The state equations

of this system are given as follows:

ẋ(t) = Ax(t) +B1w(t) +B2u(t) +
k∑

s=1

B3,sξs(t);

z(t) = C1x(t) +D12u(t);

ζ1(t) = F1x(t) +G1u(t);

...

ζk(t) = Fkx(t) +Gku(t) (4.1)

where x(t) ∈ Rn is the state, w(t) ∈ Rg is the disturbance input, u(t) ∈ Rm is

the control input, z(t) ∈ Rq is the controlled output, ζ1(t) ∈ Rh1 , . . . , ζk(t) ∈ Rhk

are the uncertainty outputs and ξ1(t) ∈ Rr1 , . . . , ξk(t) ∈ Rrk are the uncertainty

inputs.

All of the uncertainties in this system are described by a set of equations of

the form

ξs(t) = φs

(
t, ζs(·)|t0

)
, for s = 1, 2, . . . , k (4.2)

where φ(·) is a nonlinear time-varying and dynamic functional; see [2]. Those un-

certainties are said to be admissible if they satisfy the following integral quadratic

constraints (IQCs).

Definition 4.1. (Integral Quadratic Constraint; e.g., see [2]) An uncertainty of

the form (4.2) is an admissible uncertainty for the system (4.1) if the following

conditions hold: Given any locally square integrable control input u(·) and locally

square integrable disturbance input w(·), and any corresponding solution to the
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system (4.1), (4.2), let (0, t⋆) be the interval on which the solution exists. Then

there exist constants d1 ≥ 0, . . . , dk ≥ 0 and a sequence {tj}∞j=1 such that tj → t⋆,

tj ≥ 0 and ∫ tj

0

‖ξs(t)‖2dt ≤
∫ tj

0

‖ζs(t)‖2dt+ ds (4.3)

for s = 1, . . . , k and ∀j. Note that tj and t⋆ may be equal to infinity. The class

of all such admissible uncertainties ξ(·) = [ξ1(·), . . . , ξk(·)] is denoted by Ξ.

We assume that the large-scale system (4.1) comprises p interconnected sub-

systems. Thus, the state vector x(t) ∈ Rn can be partitioned into p components

as follows:

x(t) =




x1(t)

x2(t)
...

xp(t)




(4.4)

where xi(t) ∈ Rni and n =
∑p

i=1 ni. If the large-scale uncertain system (4.1),

(4.3) is to be controlled using a decentralized state feedback controller, then the

decentralized control input ũ(t) ∈ Rm also has p components as follows:

ũ(t) =




ũ1(t)

ũ2(t)
...

ũp(t)




(4.5)

where ũi(t) ∈ Rmi and m =
∑p

i=1mi. Each component ũi(t) is dependent only

on the corresponding state component xi(t) although no assumptions are made

concerning the structure of the system matrices A and B2. Thus, each local

controller ũi(t) can be written as

ũi(t) = Kiixi(t), for i = 1, 2, . . . , p (4.6)

where Kii is the i-th diagonal block of the state feedback gain matrix K. Indeed,

the decentralized control input (4.5) can also be considered as a special case of

the non-decentralized state feedback control input of the form

u(t) = Kx(t) (4.7)
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such that the matrix K has a block-diagonal structure.

Moreover, when constructing the decentralized state feedback controller (4.5),

(4.6), we do not treat interconnections between subsystems as uncertainties. This

approach then allows us to exploit any useful structural information of the large-

scale uncertain system (4.1), (4.3); e.g., see [197, 229]. The purpose of applying

the decentralized state feedback controller (4.5), (4.6) is to achieve an absolutely

stable closed loop system with a specified disturbance attenuation level.

Definition 4.2. (Absolute stabilizability; e.g., see [2]) The large-scale uncertain

system (4.1), (4.3) is said to be absolutely stabilizable with disturbance attenua-

tion level γ > 0 via the state feedback controller (4.7) if there exists constants

ε1 > 0 and ε2 > 0 such that the following conditions hold:

1. For any initial condition x(0), any admissible uncertainty inputs

ξ1(·), . . . , ξk(·) and any disturbance input w(·) ∈ L2[0,∞), we have

[x(·), ξ1(·), . . . , ξk(·)] ∈ L2[0,∞) (hence, t⋆ = ∞) and

‖x(·)‖2
2 +

k∑

s=1

‖ξs(·)‖2
2 ≤ ε1

[
‖x(0)‖2 + ‖w(·)‖2

2 +
k∑

s=1

ds

]
. (4.8)

2. The following H∞ norm bound condition is satisfied: If x(0) = 0, then for

w(·) ∈ L2[0,∞) and ξs(·) ∈ Ξ (for all s = 1, 2, . . . , k)

J := sup
w(·)

sup
ξs(·)

‖z(·)‖2
2 − ε2

∑k
s=1 ds

‖w(·)‖2
2

< γ2. (4.9)

4.3 Decentralized Controller Design

In this section, we present a systematic procedure to synthesize a decentralized

state feedback controller (4.5), (4.6) for the large-scale uncertain system (4.1),

(4.3). The key idea of our approach is to partition a non-decentralized state

feedback gain matrix K according to the partition of x(t) in (4.4) and ũ(t) in

(4.5). That is,

K =




K11 K12 . . . K1p

K21 K22 . . . K2p

...
...

. . .
...

Kp1 Kp2 . . . Kpp



. (4.10)
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The off-diagonal blocks of matrix K are then neglected and treated as additional

uncertainties, which are added to the uncertainties in the original uncertain sys-

tem (4.1), (4.3). This implies that the decentralized state feedback gain matrix

K̃ is constructed by taking only diagonal blocks of the matrix K. That is,

K̃ =




K11 0 . . . 0

0 K22 . . . 0
...

...
. . .

...

0 0 . . . Kpp



. (4.11)

Accordingly, a sequence of uncertainty matrices is then obtained from the

off-diagonal blocks of the matrix K in (4.10) as follows:

∆u
1 :=

[
K12 K13 K14 . . . K1p

]
;

∆u
2 :=

[
K21 K23 K24 . . . K2p

]
;

∆u
3 :=

[
K31 K32 K34 . . . K3p

]
;

...

∆u
p :=

[
Kp1 Kp2 Kp3 . . . Kp(p−1)

]
. (4.12)

Also, we define an additional uncertainty input ξu
i (t) and uncertainty output ζu

i (t)

corresponding to each ∆u
i in (4.12) as

ξu
i (t) := −∆u

i ζ
u
i (t); ζu

i (t) := F u
i x(t) (4.13)

for i = 1, 2, . . . , p. The matrices F u
1 , F

u
2 , . . . , F

u
p are expressed as follows:

F u
1 =

[
0ñ1×n1 Iñ1×ñ1

]
;

F u
l =

[
In̄l−1×n̄l−1

0n̄l−1×nl
0n̄l−1×ñl

0ñl×n̄l−1
0ñl×nl

Iñl×ñl

]
;

F u
p =

[
In̄p−1×n̄p−1 0n̄p−1×np

]
(4.14)

for l = 2, . . . , p − 1. Here, n̄i =
∑i

k=1 nk and ñi = n − n̄i. Then, using the

construction of the matrix K̃ in (4.11), we can use the relationships in (4.7) and
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(4.13) to express the decentralized control input (4.5) as

ũ(t) = K̃x(t) = Kx(t) +

p∑

i=1

Ju
i ξ

u
i (t) (4.15)

where

Ju
1 =

[
Im1×m1

0m̃1×m1

]
; Ju

l =




0m̄l−1×ml

Iml×ml

0m̃l×ml


 ; Ju

p =

[
0m̄p−1×mp

Imp×mp

]
(4.16)

for l = 2, . . . , p− 1. Here m̄i =
∑i

k=1mk and m̃i = m− m̄i.

Now, it follows from the above formulation that if we apply the decentralized

state feedback controller (4.15) to the large-scale uncertain system (4.1), (4.3),

we will obtain the same closed loop system as if we apply the non-decentralized

state feedback controller (4.7) to the following uncertain system:

ẋ(t) = Ax(t) +B1w(t) +B2u(t) +

p∑

i=1

B2J
u
i ξ

u
i (t) +

k∑

s=1

B3,sξs(t);

z(t) = C1x(t) +D12u(t) +

p∑

i=1

D12J
u
i ξ

u
i (t);

ζ1(t) = F1x(t) +G1u(t) +

p∑

i=1

G1J
u
i ξ

u
i (t);

...

ζk(t) = Fkx(t) +Gku(t) +

p∑

i=1

GkJ
u
i ξ

u
i (t);

ζu
1 (t) = F u

1 x(t);

...

ζu
p (t) = F u

p x(t). (4.17)

Also, for a given matrix K, we define constant βi > 0 to bound the size of each

additional uncertainty ∆u
i defined in (4.12). That is,

‖∆u
i ‖2 ≤ βi, for i = 1, 2, . . . , p. (4.18)
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Here, ‖ · ‖ denotes the induced matrix norm and each ∆u
i is defined as in (4.12).

From (4.18), it follows that the uncertainty input ξu
i (t) and output ζu

i (t) will

satisfy an IQC of the form

∫ tj

0

‖ξu
i (t)‖2dt ≤

∫ tj

0

βi‖ζu
i (t)‖2dt+ du

i (4.19)

with du
i ≥ 0 for all {tj ≥ 0}∞j=1 and for all i = 1, 2, . . . , p.

In order to construct a state feedback controller for the uncertain system

(4.17), (4.3), (4.19) based on the state feedback interpretation of Theorem 4.1

in [187], we first apply S-procedure type results (see [187, Theorem 3.1]) by

introducing scaling constants τ1 > 0, . . . , τk+p > 0 corresponding to the IQCs

(4.3), (4.19) so that the state equations (4.17) can be represented as

ẋ(t) = Ax(t) + B̃1w̃(t) + B̃2u(t);

z̃(t) = C̃1x(t) + D̃11w̃(t) + D̃12u(t) (4.20)

where

B̃1 =
[
γ−1B1 B̃3 B̃u

2

]
; B̃2 = B2;

B̃3 =
[ √

τ1
−1B3,1 . . .

√
τk

−1B3,k

]
;

B̃u
2 =

[ √
τk+1

−1B2J
u
1 . . .

√
τk+p

−1B2J
u
p

]
;

C̃1 =




C1√
τ1 F1

...
√
τk Fk√

β1τk+1 F
u
1

...√
βpτk+p F

u
p




; D̃11 =




0q×g 0q×r D̃u
12

0h×g 0h×r G̃u

0n̆×g 0n̆×r 0n̆×m


 ; D̃12 =




D12√
τ1G1

...
√
τk Gk

0n̆×m




;

D̃u
12 =

[ √
τk+1

−1D12J
u
1 . . .

√
τk+p

−1D12J
u
p

]
;

G̃u =




√
τ1

τk+1
G1J

u
1 . . .

√
τ1

τk+p
G1J

u
p

...
...

...√
τk

τk+1
GkJ

u
1 . . .

√
τk

τk+p
GkJ

u
p


 ; (4.21)
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w̃(t) =




γ w(t)
√
τ1 ξ1(t)

...
√
τk ξk(t)√
τk+1 ξ

u
1 (t)

...
√
τk+p ξ

u
p (t)




; z̃(t) =




z(t)
√
τ1 ζ1(t)

...
√
τk ζk(t)√

β1τk+1 ζ
u
1 (t)

...√
βpτk+p ζ

u
p (t)




. (4.22)

Here, h =
∑k

s=1 hs, r =
∑k

s=1 rs, n̆ =
∑p

i=1 ñi + n̄i−1 (n̄0 = 0 and ñp = 0).

As a D̃11 term appears in (4.20), we cannot immediately apply the state

feedback results of [187] to synthesize a state feedback controller of the form

(4.7) for the system (4.20). To eliminate the D̃11 term, it is necessary to impose

the following assumption:

Assumption 4.1. Given constants τ1 > 0, . . . , τk+p > 0, β1 > 0, . . . , βp > 0, the

uncertain system (4.17), (4.3), (4.19) is assumed to be such that D̃11D̃
T
11 < I.

Now, we are able to apply a loop shifting transformation (e.g., see [16, Sections

4.5.1 and 5.5.1] and [18, Section 17.2]) to the system (4.20) by first defining

Φ := I − D̃T
11D̃11 > 0;

Φ̄ := I − D̃11D̃
T
11 > 0;

w̄(t) := Φ
1
2 w̃(t) − Φ− 1

2 D̃T
11

(
C̃1x(t) + D̃12u(t)

)
;

z̄(t) := Φ̄− 1
2

(
C̃1x(t) + D̃12u(t)

)
. (4.23)

From (4.23), it is straightforward to verify that

w̃(t) = Φ− 1
2 w̄(t) + Φ−1D̃T

11

(
C̃1x(t) + D̃12u(t)

)
(4.24)

and

‖z̃(t)‖2
2 − ‖w̃(t)‖2

2 ≡ ‖z̄(t)‖2
2 − ‖w̄(t)‖2

2. (4.25)

Hence, the state equations (4.20) can now be rewritten as

ẋ(t) = Āx(t) + B̄1w̄(t) + B̄2u(t);

z̄(t) = C̄1x(t) + D̄12u(t) (4.26)



4.3. Decentralized Controller Design 83

where

Ā = A+ B̃1D̃
T
11Φ̄

−1C̃1;

B̄1 = B̃1Φ
− 1

2 ;

B̄2 = B̃2 + B̃1D̃
T
11Φ̄

−1D̃12;

C̄1 = Φ̄− 1
2 C̃1;

D̄12 = Φ̄− 1
2 D̃12. (4.27)

The results of [187] involve solving an H∞ control problem corresponding to the

system (4.26) and the H∞ norm bound condition

J̄ := sup
w̄(·)∈L2[0,∞),x(0)=0

‖z̄(·)‖2
2

‖w̄(·)‖2
2

< 1. (4.28)

The solution to the H∞ control problem defined by (4.26), (4.28) is then given in

terms of the stabilizing solution to the parameterized algebraic Riccati equation

defined as follows: Let τ1 > 0, . . . , τk+p > 0, β1 > 0, . . . , βp > 0 be given constants.

The Riccati equation is then written as (e.g., see [187])

(Ā− B̄2E
−1D̄T

12C̄1)
TX +X(Ā− B̄2E

−1D̄T
12C̄1)

+X
(
B̄1B̄

T
1 − B̄2E

−1B̄T
2

)
X + C̄T

1 (I − D̄12E
−1D̄T

12)C̄1 = 0 (4.29)

where E := D̄T
12D̄12.

We now present our main results relating the Riccati equation (4.29) to the

problem of absolute stabilization with a specified disturbance attenuation level

via a state feedback controller. Here, we only provide sufficient conditions for

absolute stabilization via a decentralized state feedback controller because the

main results only hold for a specific realization of the additional uncertainties

defined by (4.12), (4.13). To solve the Riccati equation (4.29), we need to impose

the following assumption; e.g., see [187,312].

Assumption 4.2. Given constants τ1 > 0, . . . , τk+p > 0, β1 > 0, . . . , βp > 0, the

uncertain system (4.17), (4.3), (4.19) is assumed to be such that D̄T
12D̄12 > 0.

Theorem 4.1. Suppose β1 > 0, . . . , βp > 0 are given constants such that the

uncertain system (4.17), (4.3), (4.19) is absolutely stabilizable with a specified
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disturbance attenuation level γ > 0 via a controller of the form (4.7)

u(t) = Kx(t).

Then there exists τ1 > 0, . . . , τk+p > 0 such that conditions in Assumption 4.1 and

Assumption 4.2 hold, and the Riccati equation (4.29) has a stabilizing solution

X ≥ 0. Moreover, if these conditions hold, then the state feedback gain matrix K

given by

K = −E−1(B̄T
2 X + D̄T

12C̄1) (4.30)

is such that the resulting closed loop system is absolutely stable with disturbance

attenuation γ > 0.

Proof. If all conditions of the theorem hold, then it follows from the proof of

Theorem 4.1 in [187] that there exist constants τ1 > 0, . . . , τk+p > 0 such that

conditions in Assumption 4.1 and Assumption 4.2 hold, and the controller (4.7)

solves the H∞ control problem defined by the system (4.26) and the H∞ norm

bound condition (4.28). Also, standard results on H∞ control (e.g., see Theorem

3.3 and Corollary 3.1 in [312]) confirm the existence of a stabilizing solution

X ≥ 0 to the Riccati equation (4.29). Moreover, if the Riccati equation (4.29)

has a stabilizing solution X ≥ 0, then the state feedback control law (4.7), (4.30)

absolutely stabilizes the uncertain system (4.17), (4.3), (4.19) with disturbance

attenuation level γ > 0 (see the proof of Theorem 4.1 in [187]).

Theorem 4.2. Let τ1 > 0, . . . , τk+p > 0, β1 > 0, . . . , βp > 0 be given constants

such that Assumption 4.1 and Assumption 4.2 hold, and the Riccati equation

(4.29) has a stabilizing solution X ≥ 0. Also, suppose that the state feedback

controller gain matrix K defined by (4.30) is such that the neglected off-diagonal

blocks of K defined by (4.12) satisfy the bounds (4.18). Then the uncertain system

(4.1), (4.3) is absolutely stabilizable with a specified disturbance attenuation level

γ > 0 via a decentralized state feedback controller of the form (4.15)

ũ(t) = K̃x(t)

where K̃ is the decentralized state feedback gain matrix of the form (4.11) with

block diagonal elements of the full state feedback gain matrix K given by (4.30).

Proof. If all conditions of the theorem hold, then it follows from Theorem 4.1
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that the uncertain system (4.17), (4.3), (4.19) is absolutely stabilizable with dis-

turbance attenuation level γ > 0 via the state feedback controller of the form

(4.7), (4.30). Also, if the full state feedback gain matrix K defined by (4.30)

is such that the neglected off-diagonal blocks of K defined by (4.12) satisfy the

bounds (4.18), then the uncertainties (4.13) satisfy the IQCs (4.19). Moreover,

from the construction of the uncertain system (4.17), (4.3), (4.19), the closed loop

system obtained by applying the decentralized controller (4.15) to the original

uncertain system (4.1), (4.3) is identical to the closed loop system obtained by

applying the controller (4.7) to the uncertain system (4.17), (4.3), (4.19) when

the uncertainties (4.13) are applied. Therefore, it follows that the original un-

certain system (4.1), (4.3) is absolutely stabilized with a specified disturbance

attenuation level γ > 0 via a decentralized state feedback controller (4.15).

4.4 A Differential Evolution Approach

From the decentralized controller synthesis method presented in Section 4.3, we

can reformulate the decentralized state feedback control problem stated in Section

4.2 as a nonlinear optimization problem with nonconvex constraints. It involves

a decision variable

ϑ :=
[
γ τ1 τ2 . . . τk+p β1 β2 . . . βp

]T

. (4.31)

where the dimension of ϑ is k + 2p + 1. All elements of ϑ are positive real

numbers and they correspond to the parameterized algebraic Riccati equation

(4.29). To compute their values, we then propose apply an evolutionary opti-

mization method, namely the differential evolution (DE) algorithm, as described

in Chapter 2. Thus, we aim to find an optimal vector ϑ⋆ of design parameters to

solve

min
ϑ

f(ϑ) (4.32)

that is subject to

gj(ϑ) = 0; hk(ϑ) ≤ 0 (4.33)

for j = 1, 2, . . . , a and k = 1, 2, . . . , b. Here, f(ϑ) is an objective function to

be minimized, and gj(ϑ) and hk(ϑ) are the equality and inequality constraints,

respectively.
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As we are concerned with a decentralized robust H∞ control problem as for-

mulated in Section 4.2 and Section 4.3, a suitable objective function to be mini-

mized is

f(ϑ) = η0γ
κ0 +

p∑

i=1

ηiβ
κi

i . (4.34)

This objective function f(ϑ) is defined in order to obtain a decentralized state

feedback controller that absolutely stabilizes the closed loop system with a spe-

cified disturbance attenuation level γ > 0. Here, η0, ηi ≥ 1 are weighting factors

used to set priority between γ and each βi term in (4.34). The
∑p

i=1 ηiβ
κi

i term is

used to force the DE algorithm to produce a state feedback gain matrix K such

that each of its off-diagonal blocks are small. Moreover, the power constants

κ0, κi ≥ 1 are chosen such that the numerical iteration evolves toward an optimal

solution ϑ⋆ at a considerable rate.

In addition to the objective function f(ϑ) in (4.34), we also define a set of

constraints parameterized by ϑ, which are defined using the assumptions and

main results in Section 4.3. In this case, the equality constraint is

g1(ϑ) = (Ā− B̄2E
−1D̄T

12C̄1)
TX +X(Ā− B̄2E

−1D̄T
12C̄1)

+X
(
B̄1B̄

T
1 − B̄2E

−1B̄T
2

)
X + C̄T

1 (I − D̄12E
−1D̄T

12)C̄1 = 0 (4.35)

and the inequality constraints are

h1(ϑ) = D̃11D̃
T
11 − I < 0; h2(ϑ) = −E < 0;

h3(ϑ) = −X < 0; h4(ϑ) = emax,r(A) < 0;

h5,i(ϑ) = ‖∆u
i ‖2 − βi ≤ 0

(4.36)

for i = 1, 2, . . . , p. Here, emax,r(A) denotes the largest real part of the eigenvalues

of the matrix A defined as follows:

A := Ā− B̄2E
−1D̄T

12C̄1 +
(
B̄1B̄

T
1 − B̄2E

−1B̄T
2

)
X. (4.37)

Based on the constraints (4.35), (4.36), we then form a penalty-based fitness test

procedure through which all candidate solutions in the population are evaluated.

Thus, the fitness test proceeds as follows:

1. Compute the eigenvalues of (D̃11D̃
T
11 − I) and E in order to examine if the
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constraints h1(ϑ) and h2(ϑ) hold.

2. Compute the solution of the Riccati equation (4.29) using the constraint

g1(ϑ) in (4.35).

3. Evaluate the constraints h3(ϑ) and h4(ϑ) in (4.36) to check if the solution

X to the Riccati equation (4.29) is a stabilizing positive definite solution;

4. Evaluate the constraints h5,i(ϑ) (for i = 1, 2, . . . , p) in (4.36) to check if the

i-th off-diagonal block of the matrix K satisfies the norm bound condition

in (4.18).

5. Calculate the value of the objective function f(ϑ) in (4.34).

Through this routine, we acquire information about how many constraints have

been violated by each candidate solution and the accompanying violation cost or

the value of the objective function if no constraint violation has occurred. We

also assume that a constraint violation in a lower level implies the one(s) in the

higher level.

The penalty functions corresponding to the violation of each constraint in

(4.35), (4.36) are as follows:

p1(ϑ) = emax(D̃11D̃
T
11 − I)n1 ; p2(ϑ) = |emin(E)|n2 ;

p3(ϑ) = ρ(C)n3 ; p4(ϑ) = |emin(X)|n4 ;

p5(ϑ) = emax,r(A)n5 ; p6(ϑ) =
∑p

i=1 Dmi

i ;

p7(ϑ) = f(ϑ)

(4.38)

for nj,mi ≥ 1 for j = 1, 2, . . . , 5 and i = 1, 2, . . . , p. Here, ρ(M) denotes the

spectral radius of the matrix M; emin(M) and emax(M) denote the smallest and

the largest eigenvalue of the symmetric matrix M, respectively. If the matrix M
is required to be positive definite, we assign |emin(M)|nj as a penalty for the case

when this requirement is violated. Here, the matrix M can be either negative

(semi)definite or indefinite. Moreover, C and Di in (4.38) are defined as follows:

C := C̄T
1

(
I − D̄12E

−1D̄T
12

)
C̄1;

Di :=

{
‖∆u

i ‖2, if h5,i(ϑ) is violated;

0, otherwise.
(4.39)
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Each penalty function in (4.38) has a positive value and is evaluated only when

a violation occurs.

4.5 An Illustrative Example

To demonstrate the controller design method in Section 4.3, we consider a decen-

tralized robust H∞ control problem for two inverted pendulums interconnected

by a spring. The linearized and normalized model of this system is adjusted from

that in [230] and is given as follows:

ẋ(t) =




0 1 0 0

0.1 0 0.9 0

0 0 0 1

0.9 0 0.1 0



x(t) +




1 0

0 0

0 1

0 0



w(t) +




0 0

1 0

0 0

0 1



u(t) +




0 0

0.1 0

0 0

0 0.1



ξ(t);

z(t) =

[
1 0 0 0

0 0 1 0

]
x(t) +

[
0.2 0

0 0.2

]
u(t);

ζ(t) =

[
1 0 0 0

0 0 1 0

]
x(t). (4.40)

Since the system (4.40) consists of two interconnected subsystems, both the state

x(t) and the control input u(t) are partitioned into two components (p = 2) so

that ni = 2 and mi = 1 for i = 1, 2. The interconnection between subsystems is

assumed to consist of 90% known linear part and 10% unknown nonlinear part.

The latter is then considered as uncertainty in the system. The relationship

between the uncertainty input ξ(t) and the uncertainty output ζ(t) in the system

(4.40) is represented as

ξ(t) = ∆(µ) ζ(t), ∆(µ) := µ

[
−1 1

1 −1

]
, for − 0.5 ≤ µ ≤ 0.5 (4.41)

with ‖∆(µ)‖2 ≤ 1 such that the following IQC is satisfied. That is,

∫ ∞

0

‖ξ(t)‖2 dt ≤
∫ ∞

0

‖ζ(t)‖2 dt+ d, ∀ d ≥ 0. (4.42)

Applying Theorem 4.1 and the DE approach to this problem, we obtain the
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disturbance attenuation level γ = 0.5181 and other constants as follows:

τ =
[
0.0200 0.0153 0.0400 0.0401

]
; β =

[
0.0536 0.0903

]
. (4.43)

Given these parameters, we solve the Riccati equation (4.29) and use its stabi-

lizing solution X ≥ 0 to construct the non-decentralized and decentralized state

feedback gain matrices K and K̃, respectively. That is,

K =

[
−5.3744 −0.9078 0.1178 0.1985

0.2255 0.1985 −5.4123 −0.9461

]
;

K̃ =

[
−5.3744 −0.9078 0 0

0 0 −5.4123 −0.9461

]
(4.44)

where ‖∆u
1‖2 ≤ 0.0536 and ‖∆u

2‖2 ≤ 0.0903. It thus follows from Theorem 4.2

that the decentralized state feedback controller ũ(t) = K̃x(t) absolutely stabilizes

the uncertain system (4.40), (4.42).

For comparison purpose, we apply the method in [191] to synthesize a decen-

tralized state feedback robust H∞ controller for the same interconnected pen-

dulums as in (4.40). Here, we consider the interconnection between the two

subsystems as uncertainty. Thus, the linearized model of this uncertain system

is written as follows:

ẋ(t) =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



x(t) +




1 0

0 0

0 1

0 0



w(t) +




0 0

1 0

0 0

0 1



u(t)

+




0 0

−1 0

0 0

0 −1



ξ(t) +




0 0

1 0

0 0

0 1



η(t);

z(t) =

[
1 0 0 0

0 0 1 0

]
x(t) +

[
0.2 0

0 0.2

]
u(t);

ζ(t) =

[
1 0 0 0

0 0 1 0

]
x(t) (4.45)
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where η(t) is an uncertainty input due to interconnection effect on each subsys-

tem. From [191, 230], the uncertainty inputs ξ(t) and η(t), and the uncertainty

output ζ(t) in (4.45) are related according to

ξ(t) = ∆ ζ(t); η(t) = ∆ ζ(t); for 0 ≤ ∆ ≤ 1. (4.46)

Thus, the following IQCs

∫ ∞

0

‖ξ(t)‖2 dt ≤
∫ ∞

0

‖ζ(t)‖2 dt+ d1;

∫ ∞

0

‖η(t)‖2 dt ≤
∫ ∞

0

‖ζ(t)‖2 dt+ d2 (4.47)

are satisfied for any d1, d2 ≥ 0. Note that the paper [191] does not provide

a numerical algorithm for computing the required parameters. Thus, in this

example, we also apply the DE method to this problem and obtain

γ = 0.5308; τ =
[
0.3609 0.3526

]
; θ̄ =

[
0.3427 0.3592

]
(4.48)

where θ̄ is a vector of scaling constants associated with uncertainty due to in-

terconnection. Given the constants in (4.48), we then use them to compute

stabilizing solutions to two Riccati equations of the form (4.29) corresponding

to the two inverted pendulums in (4.45). Thus, the decentralized state feedback

gain matrices are obtained as follows:

K̃ = 103 ×
[
−8.9995 −3.8592 0 0

0 0 −6.8909 −2.9499

]
. (4.49)

Having the numerical outcomes above, we notice that our method results in

a smaller disturbance attenuation level γ than that given by the method in [191].

This fact confirms that our knowledge about the interconnection between sub-

systems is useful to improve the disturbance attenuation level γ and to reduce

conservatism of the resulting decentralized controller. Moreover, the decentra-

lized state feedback gains in (4.44) are much smaller those in (4.49). This is

a consequence of our method which involves reducing the size of the neglected

off-diagonal blocks of the non-decentralized state feedback gain matrix K. Small

decentralized state feedback gains are indeed preferable in practice because they



4.5. An Illustrative Example 91

are less likely to cause control input saturation, noise amplification and instability

due to unmodeled dynamics.
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Figure 4.1: Controlled outputs z1(t) and z2(t).

To demonstrate the performance of the decentralized state feedback controller

K̃ in (4.44), we simulate the resulting decentralized control system using Simulink

for different ∆(µ) as defined in (4.41). The closed loop system is only perturbed

by an initial condition

x(0) =
[
1 0 1 0

]T

. (4.50)

The trajectories of both controlled outputs z1(t) and z2(t) are then shown in

Figure 4.1. Moreover, the H∞ norms of the closed loop transfer function matrix

Twz(s) from w(t) to z(t) for different values of µ are obtained as follows:

µ −0.5 −0.2 0 0.2 0.5

‖Twz(s)‖∞ 0.4776 0.4801 0.4818 0.4834 0.4859
(4.51)

and the maximum singular values σmax of the closed loop system are shown

in Figure 4.2. It is evident from (4.51) that the decentralized state feedback

controller K̃ in (4.44) results in the closed loop H∞ norms which are less than

the specified value of γ = 0.5181. These results show that the closed loop system

is absolutely stable and the decentralized controller is capable of maintaining good

disturbance attenuation performance of the closed loop system in the presence of

uncertainties.

Remark 4.1. We compare our method with that in [191] because the latter

also applies an IQC-based framework to solve the decentralized state feedback
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Figure 4.2: Maximum singular value σmax.

robust H∞ control problem. Here, we show that the (partially) known inter-

connections between subsystems can be exploited to improve the performance

of the decentralized controller. Moreover, when there is an unstable subsystem

which cannot be controlled directly, our method still can be used to synthesize

an absolutely stabilizing decentralized controller provided the interconnections

are known. However, this latter case is not solvable using the method in [191]

since the interconnections are considered as uncertainties rather than as useful

structural information which can be exploited for control purposes.

4.6 Conclusions

We have presented a new method for constructing a decentralized state feedback

robust H∞ controller for a large-scale linear time-invariant uncertain system with

IQCs. The main idea is to treat the neglected off-diagonal blocks of the controller

gain matrix as uncertainties. This approach enables the controller to exploit

the interconnections between subsystems. Moreover, the decentralized controller

is required to provide an absolutely stable closed loop system with a specified

disturbance attenuation level.

We have also applied an evolutionary optimization approach, namely the DE

algorithm, to solve a nonconvex nonlinear optimization problem arising in the

proposed decentralized controller synthesis method. The decentralized controller

is then constructed using a stabilizing solution to an algebraic Riccati equation,

which is dependent on a set of scaling constants. These constants correspond to

the system uncertainties and norm bounds of the neglected off-diagonal blocks.
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An example with numerical and simulation results is presented in order to

demonstrate the efficacy of the proposed decentralized controller design method.

Through this example, we also provide a comparison with another relevant IQC-

based method as presented in [191]. It is evident that our decentralized state

feedback controller has better features as compared to that constructed using the

method in [191] whenever the interconnections between subsystems are (partially)

known and can be exploited for control purposes.
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Chapter 5

Decentralized Nonlinear Robust

H∞ Control

5.1 Introduction

Combining the ideas in Chapter 3 and Chapter 4, we propose a new method

to synthesize stable decentralized nonlinear robust H∞ controllers for a class of

large-scale nonlinear uncertain systems. The structured uncertainties and known

nonlinearities in the system are characterized in terms of integral quadratic con-

straints (IQCs) and global Lipschitz conditions (GLCs), respectively. It is com-

mon to view a large-scale system as consisting of interconnected subsystems. We

assume that the interconnections are well known and are therefore not treated as

uncertainties because they may provide useful structural information about the

large-scale system being controlled. On the basis of this perspective, we allow

the decentralized control system to exploit the interconnections while achieving

absolute stability with a specified disturbance attenuation level.

Each decentralized controller is assumed to be dependent only on the mea-

surement output of the corresponding local subsystem although no assumptions

are made regarding the structure of the large-scale system. However, we can-

not simply ignore the influence of the measurement outputs of other subsystems

as in the case of controlling a large-scale nonlinear system using a single non-

decentralized nonlinear controller of the same structure. This then results in

nonlinear error systems, which originate from the difference between the decen-

tralized and non-decentralized nonlinear controllers. Thus, in constructing the
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decentralized nonlinear controllers, we consider the nonlinear error system cor-

responding to each decentralized controller as an additional uncertainty for the

original nonlinear plant. Consequently, the decentralized nonlinear controllers

are required to be stable and robust against both the plant and additional un-

certainties. In fact, decentralized controllers with these features have also been

considered in [166] for a linear robust H∞ control problem.

(a) (b)

Figure 5.1: (a) Large-scale nonlinear uncertain system with decentralized nonlinear
controller. (b) Large-scale nonlinear uncertain system and decentralized linear con-
troller with repeated nonlinearity. Here, ψ(·) is a known nonlinearity and φ(·) is an
uncertainty; see [6].

A particular way to obtain our decentralized nonlinear controllers is through

the addition of a copy of the plant nonlinearity to the linear part of the con-

trollers as shown in Figure 5.1(a). The aim of this inclusion is to enable the

decentralized controllers to exploit the plant nonlinearity without directly treat-

ing it as uncertainty such that we can obtain decentralized nonlinear controllers

with better disturbance attenuation performance. As we use the results on linear

robust H∞ control in [187] to solve our decentralized control problem, the copy

of the nonlinearity is then incorporated into the plant (see Figure 5.1(b)) and it

is required to satisfy extra IQCs derived from the GLCs. Therefore, the solution

to the decentralized nonlinear control problem is given in terms of the stabilizing

solutions to algebraic Riccati equations, which are dependent on a set of scaling

parameters.
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This approach to designing decentralized nonlinear controllers only provides

us with sufficient conditions. Moreover, it also results in a numerical algorithm,

which involves parameterized nonconvex nonlinear constraints. We realize that

this type of numerical problem is often difficult to solve using regular optimization

methods. Thus, all design parameters are computed using an evolutionary opti-

mization method, namely the differential evolution (DE) algorithm as described

in Chapter 2.

5.2 Problem Statement

In this section, we introduce the nonlinear uncertain systems being considered

and formulate a corresponding decentralized nonlinear control problem. This

formulation includes all necessary notation and definitions, which closely follow

those in previous chapters.

5.2.1 System description and definitions

We are concerned with a decentralized nonlinear robust H∞ control problem for

a class of large-scale nonlinear uncertain systems represented as follows:

ẋ(t) = Ax(t) +B1w(t) +B2u(t) +

f∑

s=1

E1,sξs(t) +

g∑

i=1

E2,iµi(t), x(0) = x0;

z(t) = C1x(t) +D12u(t);

ζ1(t) = H1,1x(t) +G1,1u(t);

...

ζf (t) = H1,fx(t) +G1,fu(t);

ν1(t) = H2,1x(t) +G2,1u(t);

...

νg(t) = H2,gx(t) +G2,gu(t);

y(t) = C2x(t) +D21w(t) +

f∑

s=1

F1,sξs(t) +

g∑

i=1

F2,iµi(t) (5.1)
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where x ∈ Rn is the state, u ∈ Rm is the control input, w ∈ Rd is the disturbance

input, z ∈ Rq is the controlled output, y ∈ Rl is the measurement output,

ξ1 ∈ Rr1 , . . . , ξf ∈ Rrf are the uncertainty inputs, ζ1 ∈ Rh1 , . . . , ζf ∈ Rhf are

the uncertainty outputs, µ1 ∈ R, . . . , µg ∈ R are the nonlinearity inputs, and

ν1 ∈ R, . . . , νg ∈ R are the nonlinearity outputs. All coefficient matrices in (5.1)

have compatible dimensions with those of the signals.

The relationship between the nonlinearity input µi(t) and nonlinearity output

νi(t) in the system (5.1) is described as

µi(t) = ψi (νi(t)) , ∀i = 1, 2, . . . , g (5.2)

and satisfies condition ψi(0) = 0. Each nonlinear function ψi(·) is assumed to be

known and satisfies the global Lipschitz condition written as

|ψi(ν(t)) − ψi(ν̃(t))| ≤ βi|ν(t) − ν̃(t)|, ∀i = 1, 2, . . . , g (5.3)

for all (ν(t), ν̃(t)) and βi ≥ 0. Moreover, the uncertainty input ξs(t) and uncer-

tainty output ζs(t) in the system (5.1) are related as follows:

ξs(t) = φs

(
t, ζs(·)|t0

)
, ∀s = 1, 2, . . . , f. (5.4)

where φs(·) can be a nonlinear time-varying and dynamic functional; see [2]. The

uncertainty input ξs(t) is said to be admissible if it satisfies the integral quadratic

constraint defined as follows:

Definition 5.1. (Integral Quadratic Constraint; e.g., see [2]) An uncertainty of

the form (5.4) is an admissible uncertainty for the system (5.1) if the following

conditions hold: Given any locally square integrable control input u(·) and locally

square integrable disturbance input w(·), and any corresponding solution to the

system (5.1), (5.4), let (0, t⋆) be the interval on which the solution exists. Then

there exist constants d1,1 ≥ 0, . . . , d1,f ≥ 0 and a sequence {tk}∞k=1 such that

tk → t⋆, tk ≥ 0 and

∫ tk

0

‖ξs(t)‖2dt ≤
∫ tk

0

‖ζs(t)‖2dt+ d1,s (5.5)

for all k and for all s = 1, 2, . . . , f . Note that tk and t⋆ may be equal to infinity.



5.2. Problem Statement 99

The class of all admissible uncertainties ξ(·) = [ξ1(·), . . . , ξf (·)] is denoted by Ξ.

We wish to synthesize a stable decentralized nonlinear controller for the non-

linear uncertain system (5.1), (5.2), (5.5) based on the results in Chapter 3. In

this case, the general form of a nonlinear robust H∞ output feedback controller

is given as follows:

ẋc(t) = Nxc(t) +My(t) +

g∑

i=1

Liµ̃ci
(t); xc(0) = xc0 ;

u(t) = Kxc(t);

ν̃c1(t) = P1xc(t);

...

ν̃cg
(t) = Pgxc(t) (5.6)

where xc ∈ Rn and

µ̃ci
(t) = ψi (ν̃ci

(t)) for i = 1, 2, . . . , g. (5.7)

Indeed, the nonlinear controller (5.6), (5.7) is of n-th order and is constructed

by adding a copy of each nonlinearity (5.2) to the linear part of the controller.

The purpose of this inclusion is to enable the controller to exploit the plant

nonlinearity while achieving a desired control objective.

It is assumed that the large-scale nonlinear uncertain system (5.1), (5.2),

(5.5) consists of p interconnected subsystems. This structure then leads to a

decomposition of the measurement output y(t) ∈ Rl into p components as follows:

y(t) =




y1(t)

y2(t)
...

yp(t)




(5.8)

where the output yj(t) ∈ Rlj , for j = 1, 2, . . . , p, is only available to the controller

for the j-th subsystem. Therefore, an output feedback control input ũj(t) for j-th

subsystem is assumed to be dependent only on the measurement output yj(t).

This assumption leads to a decentralized control input ũ(t) ∈ Rm, which also has
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p components as follows:

ũ(t) =




ũ1(t)

ũ2(t)
...

ũp(t)




(5.9)

where ũj(t) ∈ Rmj for j = 1, 2, . . . , p. The assumption on the relation between

yj(t) and ũj(t) is made regardless of the structure of A, B2 and C2 in (5.1).

The structure of j-th decentralized nonlinear output feedback controller is the

same as that of the non-decentralized one as shown in (5.6), (5.7). Thus, each

decentralized controller can be viewed as a special case of its non-decentralized

counterpart. That is,

ẋdj
(t) = Nxdj

(t) +Mjyj(t) +

g∑

i=1

Liµ̃di
(t); xdj

(0) = xdj0

ũj(t) = Kjxdj
(t);

ν̃d1(t) = P1xdj
(t);

...

ν̃dg
(t) = Pgxdj

(t) (5.10)

where xdj
∈ Rn and

µ̃di
(t) = ψi (ν̃di

(t)) (5.11)

for j = 1, 2, . . . , p and i = 1, 2, . . . , g. The purpose of applying the decentrali-

zed controller (5.10), (5.11) to the large-scale nonlinear uncertain system (5.1),

(5.2), (5.5) is to obtain an absolutely stable closed loop system with a specified

disturbance attenuation level.

Definition 5.2. (Absolute Stabilizability; e.g., see [2]) The nonlinear uncertain

system (5.1), (5.2), (5.5) is said to be absolutely stabilizable with disturbance

attenuation level γ via the decentralized stable output feedback controller (5.10),

(5.11) if there exist constants c1 > 0 and c2 > 0 such that the following conditions

hold:

1. For any initial condition [x(0), xd1(0), . . . , xdp
(0)], any admissible uncer-

tainty inputs ξ1(·), . . . , ξf (·) and any disturbance input w(·) ∈ L2[0,∞),
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then
[
x(·), xd1(·), . . . , xdp

(·), u(·), ξ1(·), . . . , ξf (·)
]
∈ L2[0,∞) (hence, t⋆ =

∞) and

‖x(·)‖2
2+

p∑

j=1

‖xdj
(·)‖2

2 + ‖u(·)‖2
2 +

f∑

s=1

‖ξs(·)‖2
2

≤ c1

[
‖x(0)‖2 +

p∑

j=1

‖xdj
(0)‖2 + ‖w(·)‖2

2 +

f∑

s=1

d1,s

]
. (5.12)

2. The following H∞ norm bound condition is satisfied: If x(0) = 0 and

xd1(0) = . . . = xdp
(0) = 0, then for w(·) ∈ L2[0,∞) and ξs(·) ∈ Ξ (for all

s = 1, 2, . . . , f)

J := sup
w(·)

sup
ξs(·)

‖z(·)‖2
2 − c2

∑f
s=1 d1,s

‖w(·)‖2
2

< γ2. (5.13)

When constructing a decentralized control system, it is common to consider

the interconnections between subsystems as uncertainties in addition to those of

the plant under consideration; e.g., see [216, 219, 220, 224]. This is in contrast to

our approach where they are assumed to be known and hence, not considered as

additional sources of uncertainties for the whole large-scale system. The same

assumption has been introduced in Chapter 4. It is based on an observation

that in some applications, the interconnections may provide useful structural

information for the entire decentralized control system. This paradigm allows

the decentralized controllers to exploit the interconnections while achieving the

control objective. However, we need to take into account the influence of other

components of y(t) apart from yj(t) on j-th decentralized nonlinear controller.

Thus, they are considered to give rise additional uncertainties in the plant. Using

this approach, the resulting decentralized controller is expected to be robust

against uncertainties in itself and of the plant.

5.2.2 Nonlinear error system

Although the decentralized control input ũj(t) depends only on the measurement

output yj(t), the other components of y(t) may also affect the dynamics of j-

th decentralized controller as it is a nonlinear output feedback controller. This
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situation constitutes a difference between the non-decentralized control input

uj(t) and the decentralized control input ũj(t), which can be described as

∆uj(t) := uj(t) − ũj(t) = Kj

(
xc(t) − xdj

(t)
)

(5.14)

for j = 1, 2, . . . , p. The error signal ∆uj(t) is considered as an output of the j-th

nonlinear error system defined as follows:

[
ẋc(t)

ẋdj
(t)

]
= N

[
xc(t)

xdj
(t)

]
+ My(t) + L

[
µ̃c(t)

µ̃d(t)

]
;

∆uj(t) = K
[
xc(t)

xdj
(t)

]
;

[
ν̃c(t)

ν̃d(t)

]
= P

[
xc(t)

xdj
(t)

]
(5.15)

where

N =

[
N 0

0 N

]
; M =

[
M

MVj

]
; L =

[
L 0

0 L

]
; P =

[
P 0

0 P

]
;

K =
[
ZjK −ZjK

]
; M =

[
M1 · · · Mp

]
; L =

[
L1 · · · Lg

]
;

K =




K1

...

Kp


 ; P =




P1

...

Pg


 ; µ̃c(t) =




µc1(t)
...

µcg
(t)


 ; µ̃d(t) =




µd1(t)
...

µdg
(t)


 ;

ν̃c(t) =




νc1(t)
...

νcg
(t)


 ; ν̃d(t) =




νd1(t)
...

νdg
(t)


 ; V1 =

[
Il1×l1 0l1×l̃1

0l̃1×l1
0l̃1×l̃1

]
;

Vb =




0l̄b−1×l̄b−1
0l̄b−1×lb 0l̄b−1×l̃b

0lb×l̄b−1
Ilb×lb 0lb×l̃b

0l̃b×l̄b−1
0l̃b×lb

0l̃b×l̃b


 ; Vp =

[
0l̄p−1×l̄p−1

0l̄p−1×lp

0lp×l̄p−1
Ilp×lp

]
;

Z1 =
[
Im1×m1 0m1×m̃1

]
; Zb =

[
0mb×m̄b−1

Imb×mb
0mb×m̃b

]
;

Zp =
[
0mp×m̄p−1 Imp×mp

]
(5.16)
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for b = 2, 3, . . . , p − 1 and j = 1, 2, . . . , p. Note that l̄j =
∑j

k=1 lk; l̃j = l − l̄j;

m̄j =
∑j

k=1mk and m̃j = m− m̄j.

The nonlinearity input and output in (5.15) are represented as follows:

ρ(t) :=




ρ1(t)
...

ρḡ(t)


 =

[
µ̃c(t)

µ̃d(t)

]
; η(t) :=




η1(t)
...

ηḡ(t)


 =

[
ν̃c(t)

ν̃d(t)

]
(5.17)

with ḡ = 2g and therefore,

ρa(t) = ψa(ηa(t)), ψa(0) = 0, for a = 1, 2, . . . , ḡ. (5.18)

The nonlinear function ψa(·) in (5.18) is also required to satisfy the GLC as

follows:

|ψa(η) − ψa(η̃)| ≤ βa|η − η̃|, βa ≥ 0. (5.19)

Note that βi = βg+i for i = 1, 2, . . . , g. From the GLCs in (5.19), we can define

an additional set of IQCs as follows:

∫ tk

0

(ρa(t))
2 dt ≤

∫ tk

0

β2
a (ηa(t))

2 dt+ d5,a (5.20)

with d5,a ≥ 0, for all a = 1, 2, . . . , ḡ and for all {tk ≥ 0}∞k=1. The set of all

admissible uncertainty inputs ρa(·) is analogously defined as in the Definition 5.1

and denoted by Ξe.

Moreover, we define a constant δj > 0 associated with the j-th nonlinear error

system (5.15), (5.20) such that the following H∞ norm bound condition

Je,j := sup
y(·)∈L2[0,∞)

sup
ρa(·)∈Ξe

‖∆uj(·)‖2
2 − εj

∑ḡ
a=1 d5,a

‖y(·)‖2
2

< δ2
j (5.21)

is satisfied for all ρa(·) ∈ Ξe, a given constant εj > 0, xc(0) = 0 and xdj
(0) = 0.

The condition (5.21) then imposes an absolute stability constraint on the j-th

nonlinear error system (5.15), (5.20) and thus leads to the following lemma:

Lemma 5.1. Let β1 ≥ 0, . . . , βg ≥ 0, δj > 0 be given constants. Suppose that
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Aej
is stable and there exist constants θj,1 > 0, . . . , θj,ḡ > 0 such that

‖ Cej
(sI −Aej

)−1Bej
‖∞ < 1, for j = 1, 2, . . . , p (5.22)

where Aej
= N ;

Bej
=

[
δ−1
j M

√
θj,1

−1
L1 . . .

√
θj,g

−1
Lg 0 . . . 0

δ−1
j MVj 0 . . . 0

√
θj,g+1

−1
L1 . . .

√
θj,ḡ

−1
Lg

]
;

Cej
=




ZjK −ZjK

β1

√
θj,1 P1 0
...

...

βg

√
θj,g Pg 0

0 β1

√
θj,g+1 P1

...
...

0 βg

√
θj,ḡ Pg




. (5.23)

Then, the H∞ norm bound

J̃e,j := sup
ỹj(·)∈L2[0,∞),xc(0)=0,xdj

(0)=0

‖∆ũj(·)‖2
2

‖ỹj(·)‖2
2

< 1 (5.24)

is satisfied, where

ỹj(t) =




δjy(t)√
θj,1 ρ1(t)

...√
θj,ḡ ρḡ(t)




; ∆ũj =




∆uj

β1

√
θj,1 η1(t)
...

βḡ

√
θj,ḡ ηḡ(t)



. (5.25)

Moreover, if this condition holds, then the j-th nonlinear error system (5.15),

(5.20) is absolutely stable with disturbance attenuation level δj > 0. Hence, the

H∞ norm bound (5.21) is satisfied.

Remark 5.1. The proof of this lemma follows via the same arguments as the

sufficiency proof of Theorem 4.1 in [187]. Since the j-th nonlinear error system

(5.15), (5.20) is such that Aej
is stable, then we can always find a constant δj > 0

such that (5.22) is satisfied.
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5.2.3 Equivalent nonlinear uncertain system

To solve the decentralized nonlinear control problem described in sub-Section

5.2.1 using the stable nonlinear controller design method presented in Chapter 3,

we first need to form an equivalent nonlinear uncertain system. For this purpose,

we consider the error output ∆uj(t) in (5.15) as an additional uncertainty input

ξu
j (t) to the original nonlinear uncertain system (5.1), (5.2), (5.5). Then, referring

to (5.14), we can write ũj(t) as

ũj(t) = uj(t) + ξu
j (t) (5.26)

for j = 1, 2, . . . , p. According to (5.15), the additional uncertainty input ξu
j (t)

and uncertainty output ζu
j (t) can then be defined as follows:

ξu
j (t) := −∆uj(t);

ζu
j (t) := y(t) (5.27)

for j = 1, 2, . . . , p. Now, we can rewrite the decentralized control input ũ(t) as

ũ(t) = u(t) +

p∑

j=1

Ju
j ξ

u
j (t) (5.28)

where, for b = 2, 3, . . . , p− 1,

Ju
1 =

[
Im1×m1

0m̃1×m1

]
;

Ju
b =




0m̄b−1×mb

Imb×mb

0m̃b×mb


 ;

Ju
p =

[
0m̄p−1×mp

Imp×mp

]
. (5.29)

Applying the decentralized control input ũ(t) in (5.28) to the nonlinear un-

certain system (5.1), (5.2), (5.5), we obtain the same closed loop system as if we

apply a non-decentralized control input u(t) to an equivalent nonlinear uncertain
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system defined as follows:

ẋ(t) = Ax(t) +B1w(t) +B2u(t) +B2Juξu(t) + E1ξ(t) + E2µ(t);

z(t) = C1x(t) +D12u(t) +D12Juξu(t);

ζ(t) = H1x(t) +G1u(t) +G1Juξu(t);

ν(t) = H2x(t) +G2u(t) +G2Juξu(t);

ζu(t) = Ī [C2x(t) +D21w(t) + F1ξ(t) + F2µ(t)] ;

y(t) = C2x(t) +D21w(t) + F1ξ(t) + F2µ(t) (5.30)

where

ξ(t) =




ξ1(t)
...

ξf (t)


 ; ζ(t) =




ζ1(t)
...

ζf (t)


 ; µ(t) =




µ1(t)
...

µg(t)


 ;

ν(t) =




ν1(t)
...

νg(t)


 ; ξu(t) =




ξu
1 (t)
...

ξu
p (t)


 ; ζu(t) =




ζu
1 (t)
...

ζu
p (t)


 ;

Ju =
[
Ju

1 · · · Ju
p

]
; E1 =

[
E1,1 · · · E1,f

]
; E2 =

[
E2,1 · · · E2,g

]
;

H1 =




H1,1

...

H1,f


 ; H2 =




H2,1

...

H2,g


 ; G1 =




G1,1

...

G1,f


 ; G2 =




G2,1

...

G2,g


 ; Ī =




I1
...

Ip


 ;

F1 =
[
F1,1 · · · F1,f

]
; F2 =

[
F2,1 · · · F2,g

]
;

Ij = Il×l (5.31)

for all j = 1, 2, . . . , p. Note that l is the dimension of the measurement output

y. Each pair of additional uncertainty input ξu
j (t) and output ζu

j (t) as defined in

(5.27) has to satisfy an IQC of the form

∫ tk

0

‖ξu
j (t)‖2 dt ≤

∫ tk

0

δ2
j‖ζu

j (t)‖2 dt+ du
j (5.32)

with du
j ≥ 0, for all j = 1, 2, . . . , p and for all {tk ≥ 0}∞k=1. It then follows from

Definition 5.1 that an admissible uncertainty input ξu
j (t) belongs to a set Ξu.
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5.2.4 Robust H∞ control

Following from the construction in sub-Section 5.2.3, we transform the problem

of designing a stable decentralized nonlinear controller of the form (5.10), (5.11)

for the original nonlinear uncertain system (5.1), (5.2), (5.5) to that of designing

a stable non-decentralized nonlinear controller of the form (5.6), (5.7) for the

equivalent nonlinear uncertain system (5.30), (5.2), (5.5), (5.32). Then, in order

to construct the stable non-decentralized nonlinear controller (5.6), (5.7) using

the results in Chapter 3, we first incorporate all copies of the nonlinearities (5.7)

into the plant description (5.30). This step allows us to rewrite the nonlinear

controller (5.6), (5.7) as

ẋc(t) = Nxc(t) + M̃ȳ(t);

ū(t) = K̃xc(t) (5.33)

where

M̃ :=
[
M L

]
; K̃ :=

[
K

P

]
; ȳ(t) :=

[
y(t)

µ̃(t)

]
;

ū(t) :=

[
u(t)

ν̃(t)

]
; µ̃(t) =




µ̃1(t)
...

µ̃g(t)


 ; ν̃(t) =




ν̃1(t)
...

ν̃g(t)


 . (5.34)

Furthermore, referring to the GLCs (5.3), the nonlinearities (5.2) and their copies

(5.7) can be characterized in terms of the IQCs:

∫ tk

0

(µi(t) − µ̃i(t))
2 dt ≤

∫ tk

0

β2
i (νi(t) − ν̃i(t))

2 dt+ d2,i;

∫ tk

0

(µi(t))
2 dt ≤

∫ tk

0

β2
i (νi(t))

2 dt+ d3,i;

∫ tk

0

(µ̃i(t))
2 dt ≤

∫ tk

0

β2
i (ν̃i(t))

2 dt+ d4,i (5.35)

with d2,i ≥ 0, d3,i ≥ 0 and d4,i ≥ 0, and for all i = 1, 2, . . . , g and for all

{tk ≥ 0}∞k=1.

Using the expressions in (5.34) and (5.35), we can further simplify the equiva-

lent nonlinear uncertain system (5.30), (5.2), (5.5), (5.32) into a linear uncertain
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system as follows:

ẋ(t) = Ax(t) +B1w(t) + B̄2ū(t) + Ēξ̃(t);

z(t) = C1x(t) + D̄12ū(t) + D̄J
12ξ̃(t);

ζ̃(t) = H̄x(t) + Ḡww(t) + Ḡū(t) + ḠJ ξ̃(t);

ȳ(t) = C̄2x(t) + D̄21w(t) + F̄ ξ̃(t) (5.36)

where f̄ = f + ḡ + p; r =
∑f

s=1 rs; r̄ = r + ḡ; h =
∑f

s=1 hs; h̄ = h+ ḡ; and

ξ̃(t) =




ξ(t)

µ(t)

µ̃(t)

ξu(t)




; ζ̃(t) =




ζ(t)

ν(t)

ν̃(t)

ζu(t)




; B̄2 =
[
B2 0n×g

]
; Ē =

[
E1 E2 0n×g B2Ju

]
;

D̄12 =
[
D12 0q×g

]
; D̄J

12 =
[
0q×r̄ D12Ju

]
; Ḡw =

[
0h̄×d

ĪD21

]
;

H̄ =




H1

H2

0g×n

ĪC2




; Ḡ =




G1 0h×g

G2 0g×g

0g×m Ig×g

0pl×m 0pl×g




; ḠJ =




0h×r 0h×g 0h×g G1Ju

0g×r 0g×g 0g×g G2Ju

0g×r 0g×g 0g×g 0g×m

ĪF1 ĪF2 0pl×g 0pl×m




;

C̄2 =

[
C2

0g×n

]
; D̄21 =

[
D21

0g×d

]
; F̄ =

[
F1 F2 0l×g 0l×m

0g×r 0g×g Ig×g 0g×m

]
. (5.37)

The uncertainties of the system (5.36) are represented by rewriting all IQCs in

(5.5), (5.35), (5.32) in the following form:

∫ tk

0

ξ̃(t)TQαξ̃(t) dt ≤
∫ tk

0

ζ̃(t)TRαζ̃(t) dt+ dα (5.38)

with dα ≥ 0, for all α = 1, 2, . . . , f̂ and for all {tk ≥ 0}∞k=1. Note that f̂ =

f + 3g + p, and Qα and Rα are symmetric matrices. Also, the constants δ2
j in

(5.32) and β2
i in (5.35) are accordingly included in Rα in (5.38) corresponding

to ζu
j (t), νi(t) and ν̃i(t), respectively. The admissible uncertainty input ξ̃(·) is an

element of Ξ̃ as defined in Definition 5.1.

However, we notice that the IQCs (5.38) are not expressed in the standard

form as given in (5.5). Therefore, it is necessary to introduce scaling constants
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λα ≥ 0, λα ∈ R corresponding to each IQC in (5.38) as we use the results of [187]

to solve our control problem. This approach allows us to define weighting matrices

Q̃(λ) ≥ 0 and R̃(λ) ≥ 0, and a constant d̃(λ) ≥ 0 as functions of

λ :=
[
λ1 λ2 · · · λf̂

]T

. (5.39)

That is,

Q̃(λ) :=

f̂∑

α=1

λαQα; R̃(λ) :=

f̂∑

α=1

λαRα; d̃(λ) :=

f̂∑

α=1

λαdα (5.40)

where λ belongs to the set

Λ :=
{
λ ∈ Rf̂ : λα ≥ 0, ∀α = 1, 2, . . . , f̂

}
. (5.41)

This implies that the IQCs (5.38) lead to the satisfaction of an IQC parameterized

by scaling constants as defined in (5.39). It then follows from (5.38) that

∫ tk

0

ξ̃(t)T Q̃(λ)ξ̃(t) dt ≤
∫ tk

0

ζ̃(t)T R̃(λ)ζ̃(t) dt+ d̃(λ) (5.42)

for all {tk ≥ 0}∞k=1. Using this formulation, we are particularly interested in a

subset Λ̃ ⊆ Λ such that Q̃(λ) > 0. Then, for each λ ∈ Λ̃, the weighting matrices

defined in (5.40) can be written as

Q̃(λ) = Q̄(λ)T Q̄(λ);

R̃(λ) = R̄(λ)T R̄(λ) (5.43)

where Q̄(λ) = Q̄(λ)T = Q̃(λ)
1
2 > 0 and R̄(λ) is a rectangular matrix. However,

R̄(λ) can be chosen as a square matrix such that R̄(λ) = R̄(λ)T = R̃(λ)
1
2 > 0.

The IQC (5.42) can then be reformulated as

∫ tk

0

‖ξ̄(t)‖2 dt ≤
∫ tk

0

‖ζ̄(t)‖2 dt+ d̄(λ) (5.44)

for all {tk ≥ 0}∞k=1 with

ξ̄(t) := Q̄(λ)ξ̃(t); ζ̄(t) := R̄(λ)ζ̃(t); d̄(λ) := d̃(λ). (5.45)
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Using the expressions in (5.45), the state equations (5.36) can be rewritten as

ẋ(t) = Ax(t) +B1w(t) + B̄2ū(t) + ĒQ̄(λ)−1ξ̄(t);

z(t) = C1x(t) + D̄12ū(t) + D̄J
12Q̄(λ)−1ξ̄(t);

ζ̄(t) = R̄(λ)
[
H̄x(t) + Ḡww(t) + Ḡū(t) + ḠJQ̄(λ)−1ξ̄(t)

]
;

ȳ(t) = C̄2x(t) + D̄21w(t) + F̄ Q̄(λ)−1ξ̄(t). (5.46)

The stable decentralized nonlinear controller (5.10), (5.11) will then be con-

structed based on the uncertain system (5.46), (5.44).

5.3 Stable Decentralized Controller Synthesis

Based on the decentralized nonlinear control problem stated in Section 5.2, we

present an algorithm to synthesize a stable decentralized nonlinear controller

(5.10), (5.11) for the nonlinear uncertain system (5.1), (5.2), (5.5). For this

purpose, we apply the results in Chapter 3 where we first solve a state feed-

back control problem for the uncertain system (5.46), (5.44) using the approach

of [187]. The resulting state feedback gain matrix is then used to introduce an

additional uncertainty to the uncertain system (5.46), (5.44) in order to form an

artificial uncertain system. Any suitable output feedback controller for the arti-

ficial uncertain system is guaranteed to be stable and provides absolute stability

with a specified disturbance attenuation level for the closed loop system (see [7]).

5.3.1 State feedback control problem

Solving a state feedback control problem for the uncertain system (5.46), (5.44)

using the results of [187], we expect that the resulting closed loop system be

absolutely stable with a specified disturbance attenuation level γ > 0. To achieve

this goal, we first need to introduce a scaling constant κ > 0 corresponding to

the IQC (5.44). This allows us to rewrite the state equations (5.46) as follows:

ẋ(t) = Ax(t) + B̄1w̄(t) + B̄2ū(t);

z̄(t) = C̄1x(t) + D̄11w̄(t) + D̃12ū(t);

ȳ(t) = C̄2x(t) + D̃21w̄(t) (5.47)
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where

w̄(t) =

[
γ w(t)
√
κ ξ̄(t)

]
; z̄(t) =

[
z(t)

√
κ ζ̄(t)

]
; B̄1(t) =

[
γ−1B1

√
κ
−1
ĒQ̄(λ)−1

]
;

C̄1 =

[
C1√

κ R̄(λ)H̄

]
; D̄11 =

[
0q×d

√
κ
−1
D̄J

12Q̄(λ)−1

γ−1
√
κ R̄(λ)Ḡw R̄(λ)ḠJQ̄(λ)−1

]
;

D̃12 =

[
D̄12√
κ R̄(λ)Ḡ

]
; D̃21 =

[
γ−1D̄21

√
κ
−1
F̄ Q̄(λ)−1

]
. (5.48)

Note that λ = λ̃ ∈ Λ̃. In (5.47), a D̄11 term appears explicitly so that the results

of [187] cannot be applied immediately. However, this term can be eliminated via

a loop shifting transformation so that (5.47) can be written in a non-singular H∞

standard form; e.g., see [16, Sections 4.5.1 and 5.5.1] and [18, Section 17.2]. Thus,

to perform this transformation, we need to satisfy the following assumption.

Assumption 5.1. Given a vector λ̃ ∈ Λ̃ and constants β1 ≥ 0, . . . , βg ≥ 0,

δ1 > 0, . . . , δp > 0, κ > 0, the uncertain system (5.46), (5.44) is such that

D̄11D̄
T
11 < I.

On the basis of Assumption 5.1, we define

Θ := I − D̄T
11D̄11 > 0; Θ̄ := I − D̄11D̄

T
11 > 0;

w̌(t) := Θ
1
2 w̄(t) − Θ− 1

2 D̄T
11

(
C̄1x(t) + D̃12ū(t)

)
;

ž(t) := Θ̄− 1
2

(
C̄1x(t) + D̃12ū(t)

)
(5.49)

such that

w̄(t) = Θ− 1
2 w̌(t) + Θ−1D̄T

11

(
C̄1x(t) + D̃12ū(t)

)
;

‖z̄(t)‖2 − ‖w̄(t)‖2 ≡ ‖ž(t)‖2 − ‖w̌(t)‖2. (5.50)

Applying the relations in (5.49) and (5.50) to (5.47), we then obtain

ẋ(t) = Ǎx(t) + B̌1w̌(t) + B̌2ū(t);

ž(t) = Č1x(t) + Ď12ū(t);

ȳ(t) = Č2x(t) + Ď21w̌(t) + Ď22ū(t) (5.51)
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where
Ǎ = A+ B̄1D̄

T
11Θ̄

−1C̄1; B̌1 = B̄1Θ
− 1

2 ;

B̌2 = B̄2 + B̄1D̄
T
11Θ̄

−1D̃12; Č1 = Θ̄− 1
2 C̄1;

Č2 = C̄2 + D̃21D̄
T
11Θ̄

−1C̄1; Ď12 = Θ̄− 1
2 D̃12;

Ď22 = D̃21D̄
T
11Θ̄

−1D̃12; Ď21 = D̃21Θ
− 1

2 .

(5.52)

The solution to our state feedback control problem involves a stabilizing solution

to a parameterized algebraic Riccati equation, which is solvable if the following

assumption is satisfied; e.g., see [187,312].

Assumption 5.2. Given a vector λ̃ ∈ Λ̃ and constants β1 ≥ 0, . . . , βg ≥ 0,

δ1 > 0, . . . , δp > 0, κ > 0, the uncertain system (5.46), (5.44) is assumed to be

such that J = ĎT
12Ď12 > 0.

Lemma 5.2. Let a vector λ̃ ∈ Λ̃ and constants β1 ≥ 0, . . . , βg ≥ 0, δ1 >

0, . . . , δp > 0 be given. Also, suppose that the uncertain system (5.46), (5.44)

satisfies Assumption 5.2, and is absolutely stabilizable with disturbance attenua-

tion level γ > 0 via a controller of the form (5.33) (but which is not necessarily

stable). Then, there exists a constant κ > 0 satisfying Assumption 5.1 and such

that the algebraic Riccati equation

(
Ǎ− B̌2J

−1ĎT
12Č1

)T
X +X

(
Ǎ− B̌2J

−1ĎT
12Č1

)

+X
(
B̌1B̌

T
1 − B̌2J

−1B̌T
2

)
X + ČT

1

(
I − Ď12J

−1ĎT
12

)
Č1 = 0. (5.53)

has a stabilizing solution X ≥ 0 (see [187]). Moreover, the uncertain system

(5.46), (5.44) is absolutely stabilizable with disturbance attenuation level γ > 0

via the state feedback controller

ū(t) = K̄x(t) (5.54)

where

K̄ =

[
K̄u

K̄ν̃

]
= −J−1

(
B̌T

2 X + ĎT
12Č1

)
. (5.55)

Proof. The proof of this lemma follows similar arguments to those in the proof

of Lemma 3.1 in Chapter 3.
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5.3.2 Artificial uncertain system

Considering Lemma 5.2, we suppose that the vector λ ∈ Λ̃ and constants β1 ≥
0, . . . , βg ≥ 0, δ1 > 0, . . . , δp > 0, κ > 0 have been obtained such that As-

sumptions 5.1 and 5.2 are satisfied, and the algebraic Riccati equation (5.53)

has a stabilizing solution X ≥ 0. Then, using the state feedback gain matrix K̄

in (5.55) and adding an additional artificial uncertainty, an artificial uncertain

system is formed based on the uncertain system (5.46), (5.44) as follows:

ẋ(t) = Āx(t) +B1w(t) + B̃2ū(t) + Ẽ1ξ̄1(t) + Ẽ2ξ̄2(t);

z(t) = C̃1x(t) + D̃ūū(t) + D̃J ξ̄1(t) +W1ξ̄2(t);

ζ̄1(t) = H̃1x(t) + G̃ww(t) + G̃1ū(t) + G̃J ξ̄1(t) +W2ξ̄2(t);

ζ̄2(t) = H̃2x(t) + G̃2ū(t);

ȳ(t) = C̄2x(t) + D̄21w(t) + F̃1ξ̄1(t) + F̃2ξ̄2(t) (5.56)

where

Ā = A+ 1
2
B2K̄u; B̃2 =

[
1
2
B2 0n×g

]
; Ẽ1 = ĒQ̄(λ)−1; Ẽ2 = B2U

−1;

C̃1 = C1 + 1
2
D12K̄u; D̃ū =

[
1
2
D12 0q×g

]
; D̃J = D̄J

12Q̄(λ)−1; W1 = D12U
−1;

H̃1 = R̄(λ)




H1 + 1
2
G1K̄u

H2 + 1
2
G2K̄u

0g×n

ĪC2




; G̃1 = R̄(λ)




1
2
G1 0h×g

1
2
G2 0g×g

0g×m Ig×g

0pl×m 0pl×g




; G̃w = R̄(λ)Ḡw;

W2 = R̄(λ)




G1

G2

0g×m

0pl×m



U−1; G̃J = R̄(λ)ḠJQ̄(λ)−1; H̃2 = 1

2
UK̄u;

G̃2 = −1
2
U

[
Im×m 0m×g

]
; F̃1 = F̄ Q̄(λ)−1; F̃2 = 0(l+g)×m. (5.57)

Here, U is anym×m non-singular scaling matrix and λ = λ̄ ∈ Λ̃. The uncertainty

input ξ̄1(t) and uncertainty output ζ̄1(t) are related according to the IQC (5.44)

with ξ̄1(t) = ξ̄(t) and ζ̄1(t) = ζ̄(t). Moreover, the IQC (5.44) is also extended to

include the additional artificial uncertainty input ξ̄2(t) and uncertainty output
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ζ̄2(t). That is, ∫ tk

0

‖ξ̄v(t)‖2 dt ≤
∫ tk

0

‖ζ̄v(t)‖2 dt+ d̄v(λ) (5.58)

for all v = 1, 2 and for all {tk ≥ 0}∞k=1, and ξ̄2(t), ζ̄2(t) ∈ Rm. An output feedback

controller of the form (5.33) is then synthesized for the artificial uncertain system

(5.56), (5.58). We then consider two special cases to show that any absolutely

stabilizing output feedback controller for the artificial uncertain system (5.56),

(5.58) is indeed stable and solves the robust H∞ control problem for the equiv-

alent nonlinear uncertain system (5.30), (5.2), (5.5), (5.32). Thus, we suppose

that the relation between ξ̄2(t) and ζ̄2(t) is given by

ξ̄2(t) = ∆ζ̄2(t) (5.59)

where ∆ ∈ R is an unknown constant uncertain parameter satisfying

|∆| ≤ 1 (5.60)

such that the IQC (5.58) holds.

Special case I: ∆ = 1. In this case, we have that ξ̄2(t) = ζ̄2(t) = 1
2
K̄ux(t) −

1
2
u(t). Therefore, using the expressions in (5.36), (5.37) and (5.45), it follows that

the state equations (5.56) can be decomposed into

ẋ(t) =
(
A+B2K̄u

)
x(t) +B1w(t) + E1ξ(t) + E2µ(t) +B2Juξu(t);

z(t) =
(
C1 +D12K̄u

)
x(t) +D12Juξu(t);

ζ(t) =
(
H1 +G1K̄u

)
x(t) +G1Juξu(t);

ν(t) =
(
H2 +G2K̄u

)
x(t) +G2Juξu(t);

ζu(t) = Ī [C2x(t) +D21w(t) + F1ξ(t) + F2µ(t)] ;

y(t) = C2x(t) +D21w(t) + F1ξ(t) + F2µ(t) (5.61)

where the IQCs (5.5), (5.32) and the GLCs (5.2) are satisfied. We notice that in

fact, the state equations (5.61) represent the closed loop system when the state

feedback controller (5.54), (5.55) is applied to the uncertain system (5.46), (5.44).

Thus, it follows from the construction of the matrix K̄u in (5.55) and Lemma 5.2

that the system (5.61) is absolutely stable with the disturbance attenuation level

γ > 0.
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(a) Special case I (b) Special case II

Figure 5.2: Block diagrams corresponding to Special case I and Special case II; see [7].

Moreover, for Special case I, if we can find a suitable output feedback con-

troller of the form (5.33) for the artificial uncertain system (5.56), (5.58), the

resulting closed loop system will have an open loop configuration as shown in

Figure 5.2(a). Apparently, the output u(t) of the controller does not affect the

system to be controlled. Here, the block Σ̃x is the absolutely stable system (5.61)

and the block Σc is the output feedback controller (5.33). As we require that the

entire closed loop system to be absolutely stable with disturbance attenuation

level γ > 0, then the output feedback controller (5.33) must be stable.

Special case II: ∆ = −1. For this case, we have that ξ̄2(t) = −ζ̄2(t) =

−1
2
K̄ux(t) + 1

2
u(t) and the state equations (5.56) reduce to (5.46). Furthermore,

using (5.36), (5.37) and (5.45), we are able to decompose (5.46) into the equivalent

nonlinear uncertain system (5.30) with the IQCs (5.5), (5.32) and the GLCs (5.2).

Thus, if we can find an absolutely stabilizing output feedback controller Σc of

the form (5.33) for the artificial uncertain system (5.56), (5.58), then the same

controller will also absolutely stabilize the equivalent nonlinear uncertain system

(5.30), (5.2), (5.5), (5.32) with a specified disturbance attenuation level γ > 0.

The resulting closed loop system is as shown in Figure 5.2(b), where Σx denotes

the system (5.30).

Given the fact that the additional artificial uncertainty satisfying the IQC

(5.58) overbounds the scalar uncertainty (5.59), (5.60), we can infer from both

special cases that the nonlinear output feedback controller (5.6), (5.7) is indeed

stable and absolutely stabilize the equivalent nonlinear uncertain system (5.30),
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(5.2), (5.5), (5.32) with a specified disturbance attenuation level γ > 0. How-

ever, we should note that the additional artificial uncertainty may result in some

additional conservatism to the controller design process.

5.3.3 Stable output feedback controller

To construct the output feedback controller (5.33), we introduce scaling constants

τ1 > 0 and τ2 > 0 corresponding to the IQCs (5.58) and then rewrite the state

equations (5.56) as

ẋ(t) = Āx(t) + B̂1ŵ(t) + B̂2ū(t);

ẑ(t) = Ĉ1x(t) + D̂11ŵ(t) + D̂12ū(t);

ȳ(t) = C̄2x(t) + D̂21ŵ(t) (5.62)

where r̂ = r̄ +m;

ŵ(t) =



γ w(t)

√
τ1 ξ̄1(t)√
τ2 ξ̄2(t)


 ; ẑ(t) =




z(t)
√
τ1 ζ̄1(t)√
τ2 ζ̄2(t)


 ;

B̂1 =
[
γ−1B1

√
τ1

−1Ẽ1
√
τ2

−1Ẽ2

]
; B̂2 = B̃2;

Ĉ1 =




C̃1√
τ1 H̃1√
τ2 H̃2


 ; D̂11 =




0q×d
√
τ1

−1D̃J
√
τ2

−1W1

γ−1√τ1 G̃w G̃J

√
τ1
τ2
W2

0m×d 0m×r̂ 0m×m


 ;

D̂12 =




D̃ū√
τ1 G̃1√
τ2 G̃2


 ; D̂21 =

[
γ−1D̄21

√
τ1

−1F̃1
√
τ2

−1F̃2

]
. (5.63)

Moreover, we again apply a loop shifting transformation so that the D̂11 term

in (5.62) can be eliminated and the state equations (5.62) can be transformed

into a non-singular H∞ standard form; e.g., see [16, Sections 4.5.1 and 5.5.1]

and [18, Section 17.2].

Assumption 5.3. Given a vector λ̄ ∈ Λ̃, constants β1 ≥ 0, . . . , βg ≥ 0, δ1 >

0, . . . , δp > 0, τ1 > 0, τ2 > 0, and any non-singular scaling matrix U , the artificial

uncertain system (5.56), (5.58) is assumed to be such that D̂11D̂
T
11 < I.
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Assuming that Assumption 5.3 holds, we can define

Φ := I − D̂T
11D̂11 > 0;

Φ̄ := I − D̂11D̂
T
11 > 0;

w̆(t) := Φ
1
2 ŵ(t) − Φ− 1

2 D̂T
11

(
Ĉ1x(t) + D̂12ū(t)

)
;

z̆(t) := Φ̄− 1
2

(
Ĉ1x(t) + D̂12ū(t)

)
(5.64)

such that

ŵ(t) = Φ− 1
2 w̆(t) + Φ−1D̂T

11

(
Ĉ1x(t) + D̂12ū(t)

)
;

‖ẑ(t)‖2 − ‖ŵ(t)‖2 ≡ ‖z̆(t)‖2 − ‖w̆(t)‖2. (5.65)

Therefore, the state equations (5.62) can be rewritten as

ẋ(t) = Ăx(t) + B̆1w̆(t) + B̆2ū(t);

z̆(t) = C̆1x(t) + D̆12ū(t);

ȳ(t) = C̆2x(t) + D̆21w̆(t) + D̆22ū(t) (5.66)

where
Ă = Ā+ B̂1D̂

T
11Φ̄

−1Ĉ1 B̆1 = B̂1Φ
− 1

2 ;

B̆2 = B̂2 + B̂1D̂
T
11Φ̄

−1D̂12; C̆1 = Φ̄− 1
2 Ĉ1;

C̆2 = C̄2 + D̂21D̂
T
11Φ̄

−1Ĉ1; D̆12 = Φ̄− 1
2 D̂12;

D̆22 = D̂21D̂
T
11Φ̄

−1D̂12; D̆21 = D̂21Φ
− 1

2 ;

J̆1 = D̆T
12D̆12; J̆2 = D̆21D̆

T
21.

(5.67)

Furthermore, the D̆22 term in (5.66) is also eliminated by defining

y̆(t) := ȳ(t) − D̆22ū(t). (5.68)

Hence, the state equations (5.66) can be rewritten as

ẋ(t) = Ăx(t) + B̆1w̆(t) + B̆2ū(t);

z̆(t) = C̆1x(t) + D̆12ū(t);

y̆(t) = C̆2x(t) + D̆21w̆(t) (5.69)
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and the output feedback controller for (5.69) is of the form

ẋc(t) = N̆xc(t) + M̃y̆(t);

ū(t) = K̃xc(t). (5.70)

If the controller (5.70) is applied to the system (5.69), the resulting closed loop

system is required to satisfy the following H∞ norm bound condition

J̆ := sup
w̆(·)∈L2[0,∞),x(0)=0,xc(0)=0

‖z̆(·)‖2
2

‖w̆(·)‖2
2

< 1. (5.71)

The solution to this standard H∞ control problem is given in terms of the

solutions X̆ ≥ 0 and Y̆ ≥ 0 to the algebraic Riccati equations given as

(
Ă− B̆2J̆

−1
1 D̆T

12C̆1

)T

X̆ + X̆
(
Ă− B̆2J̆

−1
1 D̆T

12C̆1

)

+ X̆
(
B̆1B̆

T
1 − B̆2J̆

−1
1 B̆T

2

)
X̆ + C̆T

1

(
I − D̆12J̆

−1
1 D̆T

12

)
C̆1 = 0; (5.72)

(
Ă− B̆1D̆

T
21J̆

−1
2 C̆2

)
Y̆ + Y̆

(
Ă− B̆1D̆

T
21J̆

−1
2 C̆2

)T

+ Y̆
(
C̆T

1 C̆1 − C̆T
2 J̆

−1
2 C̆2

)
Y̆ + B̆1

(
I − D̆T

21J̆
−1
2 D̆21

)
B̆T

1 = 0 (5.73)

such that

1. Ă− B̆2J̆
−1
1 D̆T

12C̆1 +
(
B̆1B̆

T
1 − B̆2J̆

−1
1 B̆T

2

)
X̆ is Hurwitz;

2. Ă− B̆1D̆
T
21J̆

−1
2 C̆2 + Y̆

(
C̆T

1 C̆1 − C̆T
2 J̆

−1
2 C̆2

)
is Hurwitz;

3. The spectral radius ̺(X̆Y̆ ) of the product X̂Ŷ is strictly less than one.

To solve the Riccati equations (5.72) and (5.73), we require the following assump-

tion to be satisfied; e.g., see [187,312].

Assumption 5.4. Given a vector λ̄ ∈ Λ̃, constants β1 ≥ 0, . . . , βg ≥ 0, δ1 >

0, . . . , δp > 0, τ1 > 0, τ2 > 0, and any non-singular scaling matrix U , the artificial

uncertain system (5.56), (5.58) is assumed to be such that J̆1 > 0 and J̆2 > 0.

Theorem 5.1. Let vectors λ̃, λ̄ ∈ Λ̃ and constants β1 ≥ 0, . . . , βg ≥ 0, δ1 >

0, . . . , δp > 0 be given. Also, suppose that the uncertain system (5.46), (5.44) sat-

isfies Assumption 5.2 and that there exists a constant κ > 0 such that Assumption
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5.1 is satisfied and the Riccati equation (5.53) has a stabilizing solution X ≥ 0;

and let K̄ be given as in (5.55). Moreover, suppose that there exist constants

τ1 > 0 and τ2 > 0, and a non-singular scaling matrix U such that Assumption

5.3 and Assumption 5.4 are satisfied and the Riccati equations (5.72) and (5.73)

have stabilizing solutions X̆ ≥ 0 and Y̆ ≥ 0 such that the spectral radius of the

product X̆Y̆ satisfies ̺(X̆Y̆ ) < 1. Then the equivalent nonlinear uncertain system

(5.30), (5.2), (5.5), (5.32) is absolutely stabilizable with disturbance attenuation

level γ > 0 via a stable nonlinear output feedback controller (5.6), (5.7), where

the controller matrices are given as follows:

N = N̆ − M̃D̆22K̃;

N̆ = Ă+ B̆2K̃ − M̃C̆2 +
(
B̆1 − M̃D̆21

)
B̆T

1 X̆;

M̃ =
(
I − Y̆ X̆

)−1 (
Y̆ C̆T

2 + B̆1D̆
T
21

)
J̆−1

2 ;

K̃ = −J̆−1
1

(
B̆T

2 X̆ + D̆T
12C̆1

)
. (5.74)

Proof. It follows using similar arguments to those in the proof of Theorem 4.1

in [187] that the uncertain system (5.56), (5.58) is absolutely stablizable with

disturbance attenuation level γ > 0 via a controller of the form (5.33) if and only

if there exist constants τ1 > 0 and τ2 > 0 such that the controller (5.33) solves

the H∞ control problem defined by (5.62) and the H∞ norm bound condition

Ĵ := sup
ŵ(·)∈L2[0,∞),x(0)=0,xc(0)=0

‖ẑ(·)‖2
2

‖ŵ(·)‖2
2

< 1. (5.75)

Moreover, using a loop shifting transformation, the H∞ control problem defined

by (5.62), (5.75) has a solution if and only if the Riccati equations (5.72) and

(5.73) have stabilizing solutions X̆ ≥ 0 and Y̆ ≥ 0 such that the spectral radius

of the product X̆Y̆ satisfies ̺(X̆Y̆ ) < 1. Thus, a controller of the form (5.33)

solving the H∞ control problem (5.62), (5.75) is defined by (5.74).

If all the conditions of the theorem hold, the controller (5.33), (5.74) is abso-

lutely stabilizing with disturbance attenuation γ > 0 for the artificial uncertain

system (5.56), (5.58). Then, from the arguments in the two special cases given

above, it follows that the controller (5.33), (5.74), or equivalently (5.6), (5.7),

is indeed stable and absolutely stabilizing for the equivalent nonlinear uncertain
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system (5.30), (5.2), (5.5), (5.32) with disturbance attenuation γ > 0.

As described in Section 5.2, the equivalent nonlinear uncertain system (5.30),

(5.2), (5.5), (5.32) is formed such that if a stable nonlinear controller of the form

(5.6), (5.7) is absolutely stabilizing with disturbance attenuation γ > 0 and is such

that the nonlinear error systems (5.15), (5.20) satisfy the bound (5.21), the stable

decentralized nonlinear controller (5.10), (5.11) is also absolutely stabilizing with

disturbance attenuation γ > 0. This argument leads to the following theorem.

Theorem 5.2. Let vectors λ̃, λ̄ ∈ Λ̃ and constants β1 ≥ 0, . . . , βg ≥ 0, δ1 >

0, . . . , δp > 0 be given. Also, suppose that there exists a constant κ > 0 such that

Assumptions 5.1 and 5.2 are satisfied and the Riccati equation (5.53) has a stabi-

lizing solution X ≥ 0. Moreover, suppose there exist constants τ1 > 0 and τ2 > 0,

and a non-singular scaling matrix U such that Assumption 5.3 and Assumption

5.4 are satisfied and the Riccati equations (5.72) and (5.73) have stabilizing solu-

tions X̆ ≥ 0 and Y̆ ≥ 0 such that the spectral radius of the product X̆Y̆ satisfies

̺(X̆Y̆ ) < 1. Also, suppose that the stable nonlinear controller defined by (5.6),

(5.74) is such that the nonlinear error systems defined by (5.15), (5.20) satisfy the

bound (5.21) as guaranteed by Lemma 5.1. Then the corresponding stable decen-

tralized nonlinear output feedback controller defined by (5.10), (5.11) is absolutely

stabilizing with disturbance attenuation level γ > 0 for the large-scale nonlinear

uncertain system (5.1), (5.2), (5.5).

Proof. If the conditions of the theorem are satisfied, then it follows from Theo-

rem 5.1 that the equivalent nonlinear uncertain system (5.30), (5.2), (5.5), (5.32)

is absolutely stabilizable with disturbance attenuation level γ > 0 via a stable

nonlinear controller of the form (5.6), (5.7), (5.74). Moreover, if the controller is

such that the nonlinear error systems defined by (5.15), (5.20) satisfy the bound

(5.21) as guaranteed by Lemma 5.1, then it follows that the corresponding un-

certainties defined by (5.27) satisfy the IQCs (5.32). Also, as described in the

construction of the equivalent nonlinear uncertain system (5.30), (5.2), (5.5),

(5.32), the closed loop system obtained by applying the decentralized controller

(5.10), (5.11), (5.74) to the large-scale nonlinear uncertain system (5.1), (5.2),

(5.5) is equivalent to the closed loop system obtained by applying the controller

(5.6), (5.7), (5.74) to the equivalent nonlinear uncertain system (5.30), (5.2),

(5.5), (5.32) when the uncertainties defined by (5.27) are applied. Hence, it fol-

lows that the decentralized nonlinear output feedback controller (5.10), (5.11),
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(5.74) is stable and absolutely stabilizing for the large-scale nonlinear uncertain

system (5.1), (5.2), (5.5) with disturbance attenuation level γ > 0.

5.4 A Differential Evolution Approach

The decentralized nonlinear controller design method presented in Section 5.3

involves a set of design parameters corresponding to uncertainties, nonlinearities

and disturbance attenuation level. All of these parameters can be collected into

a single vector defined as

ϑ :=
[
γ κ τ1 τ2 λ̃T λ̄T δ

]T

(5.76)

where

δ =
[
δ1 δ2 . . . δp

]T

(5.77)

for j = 1, 2, . . . , p; and λ̃, λ̄ are as defined in (5.39). All elements of ϑ in (5.76) are

positive real numbers and the dimension of ϑ is 2(f +3g)+ 3p+4. To determine

the values of these parameters, we propose to apply an evolutionary optimization

method, namely the differential evolution (DE) algorithm, as described in Chap-

ter 2. This means that we consider the stable decentralized nonlinear controller

design problem as the following optimization problem subject to nonconvex non-

linear constraints: Find an optimal solution ϑ⋆ to solve

min
ϑ

f(ϑ) (5.78)

subject to

gj(ϑ) = 0; hk(ϑ) ≤ 0 (5.79)

for j = 1, 2, . . . , a and k = 1, 2, . . . , b. Here, a and b are the total number of

equality and inequality constraints, respectively.

It follows from Section 5.2 that our control objectives are to achieve an ab-

solutely stable closed loop system with a specified disturbance attenuation level

γ > 0 and to bound the H∞ norm (5.21) of the nonlinear error systems (5.15),
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(5.20). Thus, a suitable objective function to be minimized is

f(ϑ) = c0γ
n0 +

p∑

j=1

cjδ
nj

j (5.80)

where cq ≥ 1 is a weighting factor and nq ≥ 1 is a power constant for q =

0, 1, 2, . . . , p. Moreover, the equality constraints are given by algebraic Riccati

equations as follows:

g1(ϑ) =
(
Ǎ− B̌2J

−1ĎT
12Č1

)T
X +X

(
Ǎ− B̌2J

−1ĎT
12Č1

)

+X
(
B̌1B̌

T
1 − B̌2J

−1B̌T
2

)
X + ČT

1

(
I − Ď12J

−1ĎT
12

)
Č1 = 0;

g2(ϑ) =
(
Ă− B̆2J̆

−1
1 D̆T

12C̆1

)T

X̆ + X̆
(
Ă− B̆2J̆

−1
1 D̆T

12C̆1

)

+ X̆
(
B̆1B̆

T
1 − B̆2J̆

−1
1 B̆T

2

)
X̆ + C̆T

1

(
I − D̆12J̆

−1
1 D̆T

12

)
C̆1 = 0;

g3(ϑ) =
(
Ă− B̆1D̆

T
21J̆

−1
2 C̆2

)
Y̆ + Y̆

(
Ă− B̆1D̆

T
21J̆

−1
2 C̆2

)T

+ Y̆
(
C̆T

1 C̆1 − C̆T
2 J̆

−1
2 C̆2

)
Y̆ + B̆1

(
I − D̆T

21J̆
−1
2 D̆21

)
B̆T

1 = 0. (5.81)

From all assumptions and conditions to be satisfied, we also obtain the inequality

constraints as follows:

h1(ϑ) = −Q̃(λ̃) < 0; h2(ϑ) = −R̃(λ̃) < 0;

h3(ϑ) = D̄11D̄
T
11 − I < 0; h4(ϑ) = −J < 0;

h5(ϑ) = −X < 0; h6(ϑ) = −Q̃(λ̄) < 0;

h7(ϑ) = −R̃(λ̄) < 0; h8(ϑ) = D̂11D̂
T
11 − I < 0;

h9(ϑ) = −J̆1 < 0; h10(ϑ) = −J̆2 < 0;

h11(ϑ) = −X̆ < 0; h12(ϑ) = −Y̆ < 0;

h13(ϑ) = ̺(X̆Y̆ ) − 1 < 0; h14(ϑ) = emax,r (AX) < 0;

h15(ϑ) = emax,r(ĂX) < 0; h16(ϑ) = emax,r(ĂY ) < 0

(5.82)

and

h17,j(ϑ) = ‖ Cej
(sI −Aej

)−1Bej
‖∞ − 1 < 0 (5.83)

for j = 1, 2, . . . , p. Here, we have

AX := Ǎ− B̌2J
−1ĎT

12Č1 +
(
B̌1B̌

T
1 − B̌2J

−1B̌T
2

)
X; (5.84)
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ĂX := Ă− B̆2J̆
−1
1 D̆T

12C̆1 +
(
B̆1B̆

T
1 − B̆2J̆

−1
1 B̆T

2

)
X̆;

ĂY := Ă− B̆1D̆
T
21J̆

−1
2 C̆2 + Y̆

(
C̆T

1 C̆1 − C̆T
2 J̆

−1
2 C̆2

)
(5.85)

and ̺(G) and emax,r(G) denote the spectral radius and the largest real part of the

eigenvalues of the matrix G, respectively.

All constraints in (5.81), (5.82) and (5.83) are included into a fitness test

procedure, which is used to evaluate the fitness of each candidate solution ϑ.

Thus, for a given ϑ, the fitness test proceeds as follows:

1. Compute the eigenvalues of Q̃(λ̃), R̃(λ̃), (D̄11D̄
T
11 − I) and J in order to

check if the constraints h1(ϑ), h2(ϑ), h3(ϑ) and h4(ϑ) are satisfied.

2. Evaluate the constraint g1(ϑ) to obtain a solution X to the Riccati equation

(5.53).

3. If the Riccati equation (5.53) has a solution X, we need to verify whether

it is a stabilizing positive definite solution through the evaluation of the

constraints h5(ϑ) and h14(ϑ).

4. Compute the eigenvalues of Q̃(λ̄), R̃(λ̄), (D̂11D̂
T
11−I), J̆1 and J̆2 in order to

check if the constraints h6(ϑ), h7(ϑ), h8(ϑ), h9(ϑ) and h10(ϑ) are satisfied.

5. Evaluate the constraints g2(ϑ) and g3(ϑ) to obtain solutions X̆ and Y̆ to

the Riccati equations (5.72) and (5.73).

6. If the Riccati equations (5.72) and (5.73) have solutions X̆ and Y̆ , we need

to verify whether they are stabilizing positive definite solutions through the

evaluation of the constraints h11(ϑ), h12(ϑ), h15(ϑ) and h16(ϑ).

7. Compute the spectral radius of the product X̆Y̆ to verify if the constraint

h13(θ) is satisfied.

8. Compute the decentralized controller matrices (5.74) and check if j-th non-

linear error system satisfies the constraint h17,j(ϑ).

9. Calculate the value of the objective function f(ϑ) in (5.80).

As a penalty-based fitness test is applied, we have to pay for a penalty incurred

for each constraint violation by a candidate solution. Referring to the fitness
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test procedure above, the penalty functions are then formed according to the

constraints in (5.81), (5.82) and (5.83). That is,

p1(ϑ) = |emin(Q̃(λ̃))|s1 ; p2(ϑ) = |emin(R̃(λ̃))|s2 ;
p3(ϑ) = emax(D̄11D̄

T
11 − I)s3 ; p4(ϑ) = |emin(J)|s4 ;

p5(ϑ) = ̺(CX)s5 ; p6(ϑ) = |emin(X)|s6 ;
p7(ϑ) = emax,r(AX)s7 ; p8(ϑ) = |emin(Q̃(λ̄))|s8 ;
p9(ϑ) = |emin(R̃(λ̄))|s9 ; p10(ϑ) = emax(D̂11D̂

T
11 − I)s10 ;

p11(ϑ) = |emin(J̆1)|s11 ; p12(ϑ) = |emin(J̆2)|s12 ;
p13(ϑ) = ̺(CX̆)s13 ; p14(ϑ) = ̺(CY̆ )s14 ;

p15(ϑ) = |emin(X̆)|s15 ; p16(ϑ) = |emin(Y̆ )|s16 ;
p17(ϑ) = emax,r(AX̆)s17 ; p18(ϑ) = emax,r(AY̆ )s18 ;

p19(ϑ) = (̺(X̆Y̆ ) − 1)s19 ; p20(ϑ) =
∑p

j=1 D
mj

j ;

p21(ϑ) = f(ϑ)

(5.86)

where sr,mj ≥ 1 for r = 1, 2, . . . , 19 and j = 1, 2, . . . , p. Here, emin(G) and

emax(G) denote the smallest and the largest eigenvalue of the symmetric matrix

G, respectively. If the matrix G is required to be positive definite, we assign

|emin(G)|sr as a penalty because when this requirement is violated, the matrix G
can be either negative (semi)definite or indefinite. Moreover, CX , CX̆ , CY̆ and Dj

are defined as follows:

CX := ČT
1

(
I − Ď12J

−1ĎT
12

)
Č1;

CX̆ := C̆T
1

(
I − D̆12J̆

−1
1 D̆T

12

)
C̆1;

CY̆ := B̆1

(
I − D̆T

21J̆
−1
2 D̆21

)
B̆T

1 ;

Dj :=

{
‖ Cej

(sI −Aej
)−1Bej

‖∞, if h15,j(ϑ) in (5.82) is violated;

0, otherwise.
(5.87)

5.5 An Illustrative Example

To demonstrate the decentralized stable nonlinear controller design method pre-

sented in Section 5.3, we consider an example of a nonlinear uncertain system

comprising of two inverted pendulums interconnected with a nonlinear spring.

This example is adapted from an example presented in [314]. In this case, the



5.5. An Illustrative Example 125

nonlinear uncertain system being considered has two subsystems and can be rep-

resented as follows:

ẋ(t) =




0 1 0 0

0.02 −0.1 −0.02 0

0 0 0 1

−0.02 0 0.02 −0.05



x(t) +




1 0

0 0

0 1

0 0



w(t) +




0 0

1 0

0 0

0 1



u(t)

+




0 0

0.2 0

0 0

0 0.2



ξ(t) +




0 0

0.98 0

0 0

0 0.98



µ(t);

z(t) =

[
1 0 0 0

0 0 1 0

]
x(t) +

[
0.1 0

0 0.1

]
u(t);

ζ(t) =

[
1 0 0 0

0 0 1 0

]
x(t);

ν(t) =

[
1 0 −1 0

−1 0 1 0

]
x(t);

y(t) =

[
1 0 0 0

0 0 1 0

]
x(t) +

[
0.1 0

0 0.1

]
w(t) (5.88)

The interconnection between the two pendulums consists of both linear and non-

linear parts, which are assumed to be known. The uncertainties in the system

(5.88) are modeled as follows:

ξ(t) =

[
∆1 0

0 ∆2

]
ζ(t) (5.89)

where ∆s ∈ R, |∆s| ≤ 1 for all s = 1, 2 and hence, the uncertainties (5.89) satisfy

the IQCs (5.5) for any d1,s ≥ 0. Moreover, the nonlinearities in the system (5.88)

are given as

µi(t) = ψi(νi(t)) = sin νi(t) (5.90)

and satisfy the following GLCs

|sin νi(t) − sin ν̃i(t)| ≤ βi |νi(t) − ν̃i(t)| (5.91)
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with βi ≥ 0 for i = 1, 2. From the first derivative of sin(νi(·)) with respect to

νi(·), we obtain

∣∣∣∣
d sin νi(·)
dνi(·)

∣∣∣∣ = |cos νi(·)| ≤ 1, ∀ν(·) ∈ R (5.92)

which implies that βi = 1. From the GLCs (5.91), the nonlinearities (5.90) and

their copies can be characterized in terms of IQCs as described in (5.35).

We now can synthesize two decentralized nonlinear controllers of the form

(5.10) for the nonlinear uncertain system (5.88), (5.89), (5.90) using the decen-

tralized controller design method developed in Section 5.3. The required design

parameters were computed using the DE approach presented in Section 5.4 and

are then given as follows:

γ = 0.4520; κ = 1.3951 × 10−4; τ1 = 1.4495 × 10−4; τ2 = 0.0194;

δ1 = 0.7245; δ2 = 0.6593; λ̃1 = 1603.5095; λ̃2 = 992.3272;

λ̃3 = 944.4646; λ̃4 = 1615.9850; λ̃5 = 142.0642; λ̃6 = 357.4983;

λ̃7 = 1746.6423; λ̃8 = 731.8955; λ̃9 = 1371.3715; λ̃10 = 745.8950;

λ̄1 = 1544.7904; λ̄2 = 701.6927; λ̄3 = 1877.8732; λ̄4 = 587.5819;

λ̄5 = 163.0875; λ̄6 = 400.8780; λ̄7 = 388.7251; λ̄8 = 71.1934;

λ̄9 = 1404.8656; λ̄10 = 1279.2498.

(5.93)

Note that (λ1, λ2), (λ3, . . . , λ8) and (λ9, λ10) correspond to the IQCs (5.5), (5.35)

and (5.32), respectively, for λ = λ̃ and λ = λ̄ in (5.93). Using these parameters,

we can compute coefficient matrices of both decentralized nonlinear controllers,

which are given as follows:

N =




−622.2520 −25.2206 12.7291 5.4402

−8026.0342 −347.0469 101.6167 70.1597

−59.7382 −1.3785 −157.9092 −3.5601

−1029.8417 −27.5612 −1938.9203 −61.1766




;M1 =




467.2367

5982.3974

49.7723

839.2038




;

M2 =




11.7370

207.0494

127.1357

1531.0732




; L1 =




8.0600

106.5139

0.8242

14.0880




; L2 =




−0.0306

0.1770

1.2636

17.1505




; (5.94)
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K1 =
[
−19.5962 −5.2182 2.1814 0.6503

]
;

K2 =
[
2.1615 0.6469 −17.6790 −4.6460

]
;

P1 =
[
0.8285 0 −0.8285 0

]
; P2 =

[
−0.8919 0 0.8919 0

]
. (5.95)

In order to show that both decentralized nonlinear controllers are stable, the

stability of their equilibrium points: x∗d1
= 0 and x∗d2

= 0 are examined by

following the same steps as those in Section 3.5. As the plant nonlinearities

are represented by sine functions, we have µ̃i(t) ≈ ν̃i(t) around the equilibrium

points. Therefore, we can have

N̄ := N +

g∑

i=1

LiPi (5.96)

where N̄ is the linearized controller system matrix around the equilibrium point

x∗d1
= x∗d2

= 0. The eigenvalues of the matrix N̄ are given as follows:

e1 = −938.0871; e2 = −213.8854; e3 = −14.4219; e4 = −14.8412 (5.97)

which indicate that both decentralized nonlinear controllers are locally stable

around the equilibrium points. Furthermore, to verify that they are globally

asymptotically stable, it is necessary to examine the stability of the matrix N

and the H∞ norm ‖Tµ̃j ν̃j
(s)‖∞ of the transfer function of the j-th decentralized

nonlinear controller from the nonlinearity input µ̃j(t) to the nonlinearity output

ν̃j(t) (for j = 1, 2). The eigenvalues of the matrix N are

e1 = −944.1716; e2 = −214.9509; e3 = −14.4212; e4 = −14.8411 (5.98)

and hence, the matrix N is Hurwitz. Meanwhile,

‖Tµ̃1ν̃1(s)‖∞ = 0.0064; ‖Tµ̃2ν̃2(s)‖∞ = 0.0049. (5.99)

Then, using the small gain theorem (e.g., see [18, Section 9.2]), we conclude that

both decentralized nonlinear controllers are globally asymptotically stable.

Interconnecting the nonlinear uncertain system (5.88), (5.89), (5.90) and the

decentralized nonlinear controllers (5.94), (5.95), we then simulated the resulting
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closed loop system using Simulink for different values of ∆1 and ∆2. In this

simulation, we take ∆1 = ∆2 = ∆ ∈ {−1, −0.5, 0, 0.5, 1}. The initial conditions

of both subsystems are set to be x1(0) = x2(0) =
[
−2 0

]T

and w(t) = 0 for all

t ≥ 0. The time responses of the controlled outputs z1(t) and z2(t) depicted in

Figure 5.3 show that the decentralized nonlinear controllers (5.94), (5.95) have a

good performance in the presence of perturbations.
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Figure 5.3: Time responses of z1(t) and z2(t) for different values of ∆1 and ∆2.

For comparison purpose, we apply the method in [166] to synthesize decen-

tralized stable linear robust H∞ controllers to absolutely stabilize the nonlinear

uncertain system (5.88), (5.89), (5.90). In this case, each nonlinearity ψi(·) in

the system is necessarily considered as an uncertainty and thus, we only need to

solve a linear robust H∞ control problem. This approach, however, may result in

decentralized linear controllers with a degraded performance in attenuating ex-

ogenous disturbances w(t) as compared to the performance of the decentralized

nonlinear controllers (5.94), (5.95). This is indicated by the disturbance atte-

nuation level γ = 0.4932 obtained using the method in [166] and it is apparently

larger than γ = 0.4520 obtained using our method.

5.6 Conclusions

In this chapter, we have proposed a new method to synthesis stable decentrali-

zed nonlinear robust H∞ controllers for a class of large-scale nonlinear uncertain

systems. The admissible uncertainties and nonlinearities in this system are char-

acterized by IQCs and GLCs, respectively. We assume that the large-scale non-
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linear system consists of interconnected subsystems and their interconnections

are well known. Thus, we do not consider the interconnections between subsys-

tems as uncertainties, but rather as useful structural information on the entire

large-scale system. With this approach, the decentralized nonlinear controllers

are able to exploit the interconnections although no assumption is made on how

all subsystems are interconnected.

TheH∞ control objective is to guarantee an absolute stability for the resulting

closed loop large-scale nonlinear uncertain system with a specified disturbance

attenuation level. Along with this objective, we require the decentralized non-

linear controllers to be stable. The controller stability requirement is imposed

because we consider all nonlinear error systems arising from the discrepancies

between the decentralized and the non-decentralized nonlinear controllers as ad-

ditional uncertainties. These error systems are also required to have bounded H∞

norms. Thus, the resulting decentralized nonlinear controllers have to be robust

against not only the plant uncertainties, but also the additional uncertainties due

to the nonlinear error systems.

To guarantee the controller stability, we first solve a state feedback control

problem for the given nonlinear uncertain system. Then, using the resulting state

feedback gain matrix and introducing an additional artificial uncertainty, we form

an artificial uncertain system for which a robust H∞ output feedback controller is

designed. If there exists a suitable controller for this latter system, we argue that

this controller must be stable and also solves the original decentralized nonlinear

control problem. Therefore, we only provide sufficient conditions for synthesizing

the stable decentralized nonlinear controllers as our approach involves particular

realization of nonlinear error systems and artificial uncertain system. However,

we should note that the additional artificial uncertainty may give rise to some

extra conservatism to the controller design process.

The solution to our control problem is then given in terms of the stabilizing

solutions to algebraic Riccati equations, which are dependent on a set of scal-

ing parameters. This formulation leads to a nonconvex decentralized nonlinear

control problem, which is generally difficult to solve using regular optimization

methods. We thus propose to use an evolutionary optimization method, namely

the DE algorithm, to compute the required design parameters.

Moreover, we have shown through an example that our method is capable of
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resulting in a decentralized nonlinear controller which allows for a better perfor-

mance in attenuating exogenous disturbances as compared to its linear counter-

part designed using the method in [166]. This is achievable because we do not

directly treat the admissible known nonlinearities in the system as uncertainties

so that we can exploit them for control purposes.



Chapter 6

Coherent Control of Linear

Quantum Systems

6.1 Introduction

This chapter presents a computational algorithm to solve a coherent quantum

feedback control problem for a class of non-commutative linear quantum stochas-

tic systems. It has been pointed out in [70,72,73] that a coherent quantum con-

troller must satisfy a physical realizability condition in order to exhibit meaning-

ful dynamic behavior according to quantum mechanical principles. This require-

ment in turn leads to a coherent quantum controller synthesis problem, which

involves a constraint that is naturally nonconvex and nonlinear. From numerical

perspective, it is often considered to be difficult to solve this problem. Thus,

inspired by the results of [72] on coherent quantum LQG control, we propose to

use an optimization approach to solve a coherent quantum feedback control pro-

blem. In particular, we apply an evolutionary optimization method, namely the

differential evolution (DE) algorithm, as presented in Chapter 2. The main ideas

of our approach are to obtain a straightforward and less complicated algorithm

and to avoid a critical dependence on a suitable initial point to start a numerical

iteration.

We then demonstrate our DE-based approach through a case study on the

problem of quantum network entanglement control. This problem has drawn a

lot of attention in the quantum information and computation literature. This is

due to the fact that entanglement is a fundamental property used in quantum
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information processing; e.g., see [25, 234, 235]. Thus, entanglement generation,

preservation and restoration have been extensively studied and many techniques

have been proposed to attain these goals; e.g., see [61, 233, 238–244]. For our

purposes, we consider a simple ideal quantum network consisting of two cascaded

optical parametric amplifiers interacting through an optical field. This quantum

network has been entangled, but we aim to increase its entanglement level using

a dynamic coherent quantum controller to replace the simple optical field con-

nection. Thus, the quantum controller is required not only to satisfy the physical

realizability condition (e.g., see [70,72]), but also to drive the controlled quantum

system so that an entanglement criterion is satisfied.

There are many ways to measure the entanglement level depending on prop-

erties of the quantum states; e.g., see [245, 246]. In our case, we have Gaussian

quantum states, and thus, the entanglement level can be measured in terms of

the logarithmic negativity as a function of the covariance matrix of the quantum

network; e.g., see [233, 247–249]. The covariance matrix can be obtained as a

solution of a Lyapunov equation associated with the quantum network. Thus,

applying our DE-based algorithm to synthesize the coherent quantum controller,

we can consider the logarithmic negativity as an objective function to maximize.

This in turn leads to a physically realizable quantum controller, which is ca-

pable of stabilizing the quantum network with an enhanced entanglement level.

Moreover, it should also be noted that the logarithmic negativity is a nonconvex

functional; see [250].

We use the following notation throughout this chapter. If M = [mjk] is a

p× q complex matrix, then M∗, MT and M † denote the operation of taking the

complex conjugate of each entry of M , the transpose of M , and the complex

conjugate transpose of M , respectively. That is, M∗ = [m∗
jk], M

T = [mkj] and

M † = [m∗
kj] = (M∗)T . Moreover, if M is an operator matrix, then M∗ denotes

the operation of taking the adjoint of each entry of M .

6.2 Linear Quantum Stochastic Systems

As a preliminary discussion, we recall a linear quantum stochastic system modeled

in terms of its real and imaginary quadratures, which has been described in

[70, 72] on the basis of quantum probability theory; e.g., see [46]. This model
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is used to represent a non-commutative quantum system, which may consist

of both quantum and non-quantum components. Moreover, we also define the

physical realizability of this quantum system in terms of the realization of an

open quantum harmonic oscillator.

6.2.1 Non-commutative model

The linear non-commutative quantum stochastic system under consideration is

described in terms of linear quantum stochastic differential equations (QSDEs)

as follows:

dx(t) = Ax(t) dt+B dw(t); x(0) = x0;

dy(t) = C x(t) dt+Ddw(t) (6.1)

where the matrices A,B,C and D are real matrices belonging to Rn×n, Rn×nw ,

Rny×n and Rny×nw , respectively. We assume that ny is even and nw ≥ ny; see [70].

Moreover, x(t) :=
[
x1(t) . . . xn(t)

]T

is an n × 1 vector of non-commutative

system variables whose initial condition x(0) satisfies the following commutation

relation

x(0)x(0)T − (x(0)x(0)T )T = 2iΘ (6.2)

where Θ is a real skew-symmetric canonical commutation matrix defined as

Θ := diag(J, J, . . . , J). (6.3)

Note that diag(·) denotes a block diagonal matrix; the zero matrix in (6.3) is an

m×m matrix with 0 < m ≤ n; and J is a real skew-symmetric matrix

J =

[
0 1

−1 0

]
. (6.4)

The linear quantum system (6.1) is driven by an nw×1 vector of input signals

w(t), which is assumed to be decomposed as follows (see [70,72,73]):

dw(t) = βw(t) dt+ dw̃(t). (6.5)

Here, βw(t) and w̃(t) are respectively the self-adjoint adapted process and quan-
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tum noise components of w(t). A rigorous description of the notion of adapted

process can be found in [43, 44, 46]. The adapted process βw(t) can be used to

represent variables of other systems interacting with the quantum system (6.1).

This leads to our assumption that βw(t) commutes with x(t) and w̃(t) for all

t ≥ 0 because they live in different Hilbert spaces; see [70,72].

The self-adjoint quantum noise w̃(t) is characterized by the Ito table

dw̃(t)dw̃(t)T = Fw̃ dt (6.6)

where the Ito matrix Fw̃ is a non-negative Hermitian matrix; e.g., see [44, 49].

It is also common to consider the quantum noise w̃(t) as a vector of self-adjoint

operators belonging to a particular Fock space; e.g., see [44,50,70]. The relation

in (6.6) leads to the following non-commutative relation

dw̃(t)dw̃(t)T −
(
dw̃(t)dw̃(t)T

)T
= 2Tw̃ dt (6.7)

where Tw̃ := 1
2

(
Fw̃ − F T

w̃

)
is a Hermitian commutation matrix. As in [70], we

assume that Fw̃ is canonical

Fw̃ := I + i diag(J, J, . . . , J) (6.8)

and hence, nw must be even.

Since the dynamics of the quantum system (6.1) is represented in terms of a

linear QSDE, the integral operation with respect to dw(t) is a quantum stochastic

integral. This operation then results in an evolution x(t) of the linear quantum

system (6.1), which depends only on the past input signal w(s) for 0 ≤ s ≤ t.

Thus, x(t) is also a quantum adapted process which commutes with the Ito

increment dw̃(t); see [70].

6.2.2 Physical realizability

In order to be physically realizable, the representation {A,B,C,D} of the quan-

tum system (6.1) cannot be arbitrary as it is subject to the requirement that it

has to preserve the canonical commutation relation

x(t)x(t)T − (x(t)x(t)T )T = 2iΘ, ∀t ≥ 0. (6.9)
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According to Theorem 2.1 in [70], the relation (6.9) is equivalent to

iAΘ + iΘAT +BTw̃B
T = 0. (6.10)

This property is well described by an open physical system unitarily evolving

for all time; e.g., see [36, 70]. Thus, we relate the physical realizability of the

quantum system (6.1) to the realization of an open quantum harmonic oscillator.

Definition 6.1. (Open quantum harmonic oscillator; see [70, Definition 3.1])

The quantum system (6.1) with βw(t) = 0 is said to be an open quantum

harmonic oscillator if Θ is canonical and there exists a quadratic Hamiltonian

H := 1
2
x(0)TRx(0) (R ∈ Rn×n is a symmetric Hamiltonian matrix) and a cou-

pling operator L := Λx(0) (Λ ∈ Cnw×n is a coupling matrix) such that

xk(t) = U(t)∗ xk(0)U(t), ∀k = 1, 2, . . . , n;

yl(t) = U(t)∗wl(t)U(t), ∀l = 1, 2, . . . , ny. (6.11)

Here, {U(t); t ≥ 0} is an adapted process of unitary operators satisfying the fol-

lowing QSDE

dU(t) =
(
−iH dt− 1

2
L†L+

[
−L† LT

]
Υ dw(t)

)
U(t), U(0) = I (6.12)

where

Υ := Pnw/2 diagnw/2(M);

M =
1

2

[
1 i

1 −i

]
(6.13)

and Pnw/2 is an nw × nw permutation matrix satisfying

Pnw/2

[
a1 . . . anw

]T

=
[
a1 a3 . . . anw−1 a2 a4 . . . anw

]T

. (6.14)

Thus, for the quantum system (6.1),

A = 2Θ
(
R + ℑ

(
Λ†Λ

))
; B = 2iΘ

[
−Λ† ΛT

]
Υ; (6.15)
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C = PT
ny/2 diag(Ξ,Ξ)

[
Λ + Λ∗

−iΛ + iΛ∗

]
; D =

[
Iny×ny

0ny×(nw−ny)

]
(6.16)

where Ξ :=
[
I(ny/2)×(ny/2) 0(ny/2)×((nw/2)−(ny/2))

]
and ℑ(·) denotes an imaginary

part of (·).

Definition 6.2. (Physical realizability; see [70, Definition 3.3]) The quantum

system (6.1) is said to be physically realizable if Θ is canonical and (6.1) represents

the dynamics of an open quantum harmonic oscillator.

Lemma 6.1. (see [70, Theorem 3.4] or [72, Theorem 1]) The quantum system

(6.1) is physically realizable if and only if

iAΘ + iΘAT +BTw̃B
T = 0;

B

[
Iny×ny

0(nw−ny)×ny

]
= ΘCT diagny/2(J); D =

[
Iny×ny

0ny×(nw−ny)

]
(6.17)

where Tw̃ := i diag(J, . . . , J). Moreover, if Θ is canonical, the Hamiltonian matrix

R and the coupling matrix Λ are uniquely given by

R =
1

4

(
−ΘA+ AT Θ

)
;

Λ = −1

2
i
[
0(nw/2)×(nw/2) I(nw/2)×(nw/2)

]
(Υ−1)TBT Θ. (6.18)

Remark 6.1. Considering a coherent quantum feedback control problem, we

do not include in this section a discussion about the degenerate canonical case,

which can be found in [70,72].

6.3 Quantum Feedback Control Problem

We consider a linear quantum system described by the following non-commutative

stochastic dynamic model in terms of QSDEs:

dx(t) = Ax(t) dt+B du(t) +Bw dw(t); x(0) = x0;

dy(t) = C x(t) dt+Dw dw(t) (6.19)
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where x(t) is a vector of non-commutative system variables; w(t) is a quantum

Wiener process; u(t) is a control input; and y(t) is a system output. The dimen-

sions of x(t), w(t), u(t) and y(t) are compatible with those of the plant coefficient

matrices whose entries are real numbers. That is, A ∈ Rn×n, B ∈ Rn×nu ,

Bw ∈ Rn×nw , C ∈ Rny×n and Dw ∈ Rny×nw . A detailed account of the linear

quantum stochastic system (6.19) can also be found in [70] and [72].

The control input u(t) of the quantum system (6.19) is modeled as

du(t) = βu(t) dt+ dũ(t) (6.20)

where βu(t) and ũ(t) denote signal and quantum noise components of u(t), re-

spectively. Moreover, βu(t) is considered as an adapted, self-adjoint process com-

muting with x(t) and therefore,

βu(t)x(t)
T − (x(t)βu(t)

T )T = 0. (6.21)

The quantum noise ũ(t) is independent of w(t) as they belong to different Fock

spaces. The corresponding Ito matrices Fũ and Fw are non-negative Hermitian

matrices. Moreover, it is also assumed that the initial condition x(0) of the

quantum system (6.19) is a non-commutative process satisfying (6.2).

For the quantum system (6.19), we intend to construct a dynamic coherent

quantum controller, which is also assumed to be a non-commutative quantum

stochastic system. Plant-controller coherency means that a closed loop quantum

system is formed without direct measurement of the system variables as in the

classical control case. A general dynamic quantum controller is written as

dxc(t) = AKxc(t)dt+
2∑

j=1

BKj
dwKj

(t) +BK3 dy(t); xc(0) = xc0 ;

du(t) = CKxc(t)dt+ dwK1(t) (6.22)

where xc(t) is a vector of self-adjoint operators (controller variables) and each

wKj
(t) (for j = 1, 2) is a non-commutative quantum Wiener process, which is

also independent of w(t). The quantum controller (6.22) is assumed to be of n-th

order, and hence AK ∈ Rn×n. Also, BK2 has the same dimension as AK , and BK1

has the same number of columns as the rows of CK . The initial condition xc(0) =
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xc0 of the quantum controller (6.22) is also assumed to be a non-commutative

process. Therefore,

xc(0)xc(0)T − (xc(0)xc(0)T )T = 2iΘK (6.23)

where ΘK is a real skew-symmetric commutation matrix of the quantum con-

troller (6.22). Moreover, we assume that there is no initial coupling between the

plant and the controller. That is,

x(0)xc(0)T − (xc(0)x(0)T )T = 0. (6.24)

Unlike its classical (non-quantum) controller counterpart, a quantum con-

troller of the form (6.22) has to be physically realizable as the representation

in (6.22) does not necessarily lead to a meaningful physical system governed by

quantum mechanics principles. This requires the canonical commutation relation

xc(t)xc(t)
T − (xc(t)xc(t)

T )T = 2iΘK (6.25)

to be preserved for all t ≥ 0; e.g., see [70, 72]. Thus, referring to the notion

of physical realizability of a quantum system as in Definition 6.2, the quantum

controller (6.22) is said to be physically realizable if it represents the dynamics

of an open quantum harmonic oscillator as defined in Definition 6.1.

Consequently, based on Lemma 6.1, the physical realizability condition of the

quantum controller (6.22) can be stated as follows:

Corollary 6.1. (see also [70,72]) Let ΘK be a given real skew-symmetric commu-

tation matrix. Then the coherent quantum controller (6.22) is physically realizable

if and only if its coefficient matrices: AK, BK1, BK2, BK3 and CK are such that

AKΘK + ΘKA
T
K +

3∑

j=1

BKj
ΓjB

T
Kj

= 0; (6.26)

BK1 = ΘKC
T
K diagnu/2(J) (6.27)

where Γj := diagnj/2(J) for j = 1, 2, 3; and nj is the dimension of wKj
with

wK3(t) ≡ y(t).

Remark 6.2. The physical realizability condition (6.26), (6.27) given in Corol-
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lary 6.1 can be derived from Lemma 6.1 with the following notation:

A = AK ; B =
[
BK1 BK2 BK3

]
; C = CK ;

D =
[
Inu×nu

0
]
; w =

[
wT

K1
wT

K2
yT

]T

. (6.28)

Remark 6.3. To construct a coherent quantum controller, we could require that

ΘK is a canonical commutation matrix, which implies that each of its diagonal

blocks is equal to J as in (6.3). However, in our approach, we allow ΘK to

be a general skew-symmetric matrix. A suitable similarity transformation can

then be applied to the quantum controller (6.22) to obtain ΘK in canonical or

degenerate canonical form; see also [72]. Moreover, the equality condition (6.26) is

a nonconvex nonlinear constraint, which poses difficulty if we solve the quantum

controller synthesis problem using a regular optimization method. It has also

been claimed in [72] that an analytical solution to this problem has not yet been

developed.

Interconnecting the quantum controller (6.22) with the open loop quantum

system (6.19), we obtain a closed loop quantum system written as

dη(t) = Aη(t)dt+ Bdω(t) (6.29)

where

η(t) =

[
x(t)

xc(t)

]
; ω(t) =



w(t)

wK1(t)

wK2(t)


 ;

A =

[
A BCK

BK3C AK

]
; B =

[
Bw B 0

BK3Dw BK1 BK2

]
. (6.30)

Here, βu(t) ≡ CKxc(t) and ũ(t) ≡ wK1(t). The closed loop quantum system

matrix A in (6.29) is required to be Hurwitz.

6.4 Coherent Quantum Controller Synthesis

In this section, we present a computational algorithm in order to systematically

obtain a solution to the coherent quantum control problem presented in Section
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6.3. This is a nonconvex nonlinear problem as the stabilizing coherent quantum

controller (6.22) is required to satisfy the physical realizability condition (6.26).

This characteristic has also been pointed out, for example, in [72], where a cohe-

rent quantum LQG control problem is addressed using the rank constrained LMI

algorithm (see [158]). However, this approach tends to become very complicated

if it is used to solve a higher dimension quantum control problem. Also, as with

many nonconvex problem solvers, the success of the rank constrained LMI ap-

proach is strongly dependent on the initial point from which a numerical iteration

is started. Then, as an immediate consequence, the numerical iteration tends to

become unreliable and less tractable.

Those concerns above have motivated us to propose an alternative method

to solve the coherent quantum controller synthesis problem using a population-

based stochastic optimization method, namely the differential evolution (DE)

algorithm, as described in Chapter 2. Interestingly, it is straightforward to adapt

the DE algorithm to the original coherent quantum control problem to be solved.

This fact indicates a potential application of DE-based methods to other classes

of coherent quantum control problem such as those presented in [70,72,73].

Based on the DE approach, we then reformulate the coherent quantum control

problem described in Section 6.3 as a constrained nonlinear optimization problem.

That is, we want to find an optimal solution K⋆ to solve

min
K

f(K) (6.31)

subject to

gk(K) = 0; hl(K) ≤ 0 (6.32)

for k = 1, 2, . . . , a and l = 1, 2, . . . , b, where a and b are the total number of equal-

ity and inequality constraints, respectively. In this case, f(K) is the objective

function to be minimized, which is a function of

K := (AK , BK1 , BK2 , BK3 , CK) . (6.33)

Moreover, applying the DE approach, we in fact have some flexibility to define

the objective function f(K) in accordance with a particular quantum control pro-

blem to be solved. Since the physical realizability condition (6.26) is an essential

property of the coherent quantum controller (6.22) and the closed loop quantum
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system (6.29) is required to be asymptotically stable, we then have

g1(K) = AKΘK + ΘKA
T
K +

3∑

j=1

BKj
ΓjB

T
Kj

= 0; (6.34)

h1(K) = emax,r(A) < 0 (6.35)

where emax,r(A) denotes the largest real part of the eigenvalues of A. The con-

straints (6.34) and (6.35) must always be taken into account and satisfied in the

synthesis of the quantum controller (6.22).

For a second order quantum system, we only need to solve a quadratic equa-

tion to obtain a solution ΘK to (6.34). However, for a higher order quantum

system, this is generally not the case. Hence, we transform (6.34) into a complex

algebraic Riccati equation in order to obtain a solution ΘK to (6.34). We first

substitute (6.27) into (6.34) and then multiply by i =
√
−1. This leads to a

complex algebraic Riccati equation

AKΣK + ΣKA
T
K + ΣKC

T
KΓ̃1CKΣK +BK2Γ̃2B

T
K2

+BK3Γ̃3B
T
K3

= 0 (6.36)

where

ΣK := iΘK ; Σ†
K = ΣK ; Γ̃j := iΓj; Γ̃†

j = Γ̃j (6.37)

for j = 1, 2, 3. Thus, we can replace the constraint (6.34) with (6.36). That is,

g1(K) = AKΣK +ΣKA
T
K +ΣKC

T
KΓ̃1CKΣK +BK2Γ̃2B

T
K2

+BK3Γ̃3B
T
K3

= 0. (6.38)

To compute the solution to the Riccati equation (6.38), we use an approach based

on an invariant subspace of a Hamiltonian matrix corresponding to (6.38), which

is defined as

H :=

[
AT

K CT
KΓ̃1CK

−
(
BK2Γ̃2B

T
K2

+BK3Γ̃3B
T
K3

)
−AK

]
. (6.39)

Thus, the existence of a solution to the Riccati equation (6.38) is characterized

in the following lemma.

Lemma 6.2. (see [18, Theorem 13.1 and Theorem 13.3]) Let V ⊂ C2n be an n-

dimensional invariant subspace of the Hamiltonian matrix (6.39) and let X ,Y ∈
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Cn×n be two complex matrices such that

V = Im

[
X
Y

]
. (6.40)

Then,

1. If X is invertible, then ΣK := YX−1 is a solution to the Riccati equation

(6.38) and σ(AT
K + CT

KΓ̃1CKΣK) = σ (H|V). Furthermore, the solution ΣK

is independent of a particular choice of bases of V.

2. If ek + e∗l 6= 0, ∀k, l = 1, 2, . . . , n, ek, el ∈ σ (H|V), then X ∗Y is Hermitian,

that is, X ∗Y = (X ∗Y)∗. Moreover, if X is nonsingular, then ΣK = YX−1

is Hermitian.

Here, Im(M) denotes the image of the matrix M ; and σ(M) denotes a set of

eigenvalues of the matrix M .

Remark 6.4. A particular choice for the bases of the H-invariant subspace V
can be taken as the (generalized) eigenvectors of the Hamiltonian matrix (6.39).

If the conditions in Lemma 6.2 hold, we are assured that there exists a Her-

mitian solution ΣK to (6.36) although it is not a unique solution. However, we

need to confirm that ΣK is a purely imaginary solution as defined in (6.37). The

following lemma and theorem provide conditions to obtain such a ΣK .

Lemma 6.3. (e.g., see [18, Lemma 2.7]) Consider the Lyapunov equation

AX +XA† = B (6.41)

where A,B ∈ Cn×n. There exists a unique solution X ∈ Cn×n to (6.41) if and

only if ek(A) + e∗l (A) 6= 0 for all k, l = 1, 2, . . . , n.

Theorem 6.1. Suppose that the complex Riccati equation (6.36) has a Hermitian

solution ΣK = ΦK + iΠK such that

ek(ÃK) + e∗l (ÃK) 6= 0, ∀k, l = 1, 2, . . . , n (6.42)

where ÃK := AK −ΠKC
T
KΓ1CK. Then, ΣK is indeed an imaginary solution, that

is ΣK = iΠK, which satisfies the physical realizability condition (6.26).
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Proof. Suppose that a Hermitian matrix ΣK = ΦK + iΠK satisfies (6.36), where

ΦK is a real symmetric matrix and ΠK is a real skew-symmetric matrix. Then,

substituting ΣK into (6.36), we obtain

(
AK − ΠKC

T
KΓ1CK

)
ΦK + ΦK

(
AK − ΠKC

T
KΓ1CK

)T
+ i

(
AKΠK + ΠKA

T
K

+ΦKC
T
KΓ1CKΦK − ΠKC

T
KΓ1CKΠK +BK2Γ2B

T
K2

+BK3Γ3B
T
K3

)
= 0. (6.43)

The left-hand side of (6.43) is equal to zero if and only if its real and imaginary

parts are equal to zero. That is,

(
AK − ΠKC

T
KΓ1CK

)
ΦK + ΦK

(
AK − ΠKC

T
KΓ1CK

)T
= 0; (6.44)

AKΠK + ΠKA
T
K + ΦKC

T
KΓ1CKΦK

− ΠKC
T
KΓ1CKΠK +BK2Γ2B

T
K2

+BK3Γ3B
T
K3

= 0. (6.45)

It follows from Lemma 6.3 that if condition (6.42) is satisfied, then ΦK must

equal to zero in order that the real part (6.44) holds. Therefore, ΣK is indeed an

imaginary solution, that is, ΣK = iΠK . Furthermore, the imaginary part (6.45)

will lead to the satisfaction of the physical realizability condition (6.26). That is,

ΘK = ΠK .

Note that ek(M) denotes the k-th eigenvalue of the matrix M and e∗l (M) denotes

the complex conjugate of the l-th eigenvalue of the matrix M .

Remark 6.5. Although a coherent quantum LQG control problem as described

in [72] is not particularly addressed in this chapter, we can also use the DE-based

approach to solve this quantum control problem. In this regard, when solving the

same example as in [72], our DE-method is capable of returning a cost function

value f(K⋆) = 4.0801, which is smaller than f(K⋆) = 4.1793 as given in [72].

These numerical results indicate that, apart from being more straightforward,

our DE-method is likely to outperform the rank constrained LMI method used

in [72]. This fact then becomes an impetus for us to demonstrate the efficacy of

our DE-method when it is used to design a coherent quantum controller of the

form (6.22) for solving a more general linear quantum control problem with a

higher dimension. Thus, in the next section, we apply the DE-method to solve a

quantum entanglement control problem, which is considered as one of essential

aspects in quantum technology development.
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6.5 Case Study: Entanglement Control

We utilize a dynamic coherent quantum controller designed using the method

developed in Section 6.4 to increase quantum entanglement level of two cascaded

optical parametric amplifiers (OPAs) (e.g., see [37]) interacting through an ideal

optical field as shown in Figure 6.1. This particular application is motivated

by [233] where the OPAs are referred to as damped optical cavities. The entangle-

ment control mechanism used in [233] is applied to avoid finite-time entanglement

sudden-death as well as to enhance entanglement level. It is attained through

direct measurement feedback from a homodyne detector to control the dynamic

behaviour of both OPAs using a static gain controller. This is in contrast to our

approach where we apply a coherent quantum controller without a feedback loop

to achieve enhanced entanglement as shown in Figure 6.2.

Figure 6.1: An ideal quantum network of two cascaded OPAs.

Figure 6.2: Dynamic entanglement control.

The dynamic model of the first OPA is described in terms of complex linear

QSDEs (e.g., see [78]):

dâ1(t) = χ1 â
∗
1(t)dt− κ1 â1(t)dt− i∆1 â1(t)dt+

√
2κ1 dŵ1(t);

dŷ1(t) = −
√

2κ1 â1(t)dt+ dŵ1(t) (6.46)

and that of the second OPA is

dâ2(t) = χ2 â
∗
2(t)dt− κ2 â2(t)dt− i∆2 â2(t)dt+

√
2κ2 dû2(t) (6.47)

where, for each OPA, â is an annihilation operator with â∗ as its corresponding

creation operator; ŵ and û are the input signals; ŷ is the output signal; χ := α+iβ

is a complex coupling constant; ∆ is a detuning parameter; and κ is the loss rate

of the OPA. The dynamic models (6.46) and (6.47) can also be found in [37].
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We can decompose the annihilation and creation operators, and the input

and output signals in (6.46) and (6.47) into amplitude and phase quadratures as

follows:

• Amplitude quadrature:

q1 := 1√
2
(â1 + â∗1); q2 := 1√

2
(â2 + â∗2); w11 := ŵ1 + ŵ∗

1;

y11 := ŷ1 + ŷ∗1; u21 := û2 + û∗2.
(6.48)

• Phase quadrature:

p1 := −i√
2
(â1 − â∗1); p2 := −i√

2
(â2 − â∗2); w12 := −i(ŵ1 − ŵ∗

1);

y12 := −i(ŷ1 − ŷ∗1); u22 := −i(û2 − û∗2).
(6.49)

Based on the expressions in (6.48) and (6.49), the dynamic models (6.46) and

(6.47) can then be written in the form of QSDEs (6.19) with the system matrices:

A =




−α1 − κ1 −β1 + ∆1 0 0

−β1 − ∆1 α1 − κ1 0 0

0 0 −α2 − κ2 −β2 + ∆2

0 0 −β2 − ∆2 α2 − κ2




; B =




0 0

0 0
√
κ2 0

0
√
κ2




;

Bw =




√
κ1 0

0
√
κ1

0 0

0 0




; C =

[
−2

√
κ1 0 0 0

0 −2
√
κ1 0 0

]
; Dw = I2×2 (6.50)

and the system variable vector x, control input vector u, quantum noise vector

w and output vector y are defined as follows:

x :=
[
qT
1 pT

1 qT
2 pT

2

]T

; u :=

[
u21

u22

]
; w :=

[
w11

w12

]
; y :=

[
y11

y12

]
. (6.51)

To consider the same example as in [233], we take the parameter values of the

quantum system (6.50) to be:

α = 0; β = −0.4; κ1 = 1; κ2 = 1; ∆1 = 0.6; ∆2 = 0.6. (6.52)
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6.5.1 Direct connection

We first examine the quantum entanglement level of two OPAs (6.50), which are

directly connected through an ideal optical field. That is, when the output y

of the first OPA becomes the control input u to the second OPA as depicted in

Figure 6.1, we obtain

dx(t) = Ā x(t) dt+ B̄ dw(t) (6.53)

where

Ā =




−α1 − κ1 −β1 + ∆1 0 0

−β1 − ∆1 α1 − κ1 0 0

−2
√
κ1κ2 0 −α2 − κ2 −β2 + ∆2

0 −2
√
κ1κ2 −β2 − ∆2 α2 − κ2




; B̄ =




√
κ1 0

0
√
κ1√

κ2 0

0
√
κ2



.

(6.54)

Definition 6.3. (Entanglement criterion) A quantum system

dx(t) = Ax(t) dt+B dw(t) (6.55)

is said to be entangled if there exists a complex vector dc = dr + idi such that

N := d†c M dc < 0 (6.56)

where

M := V +
i

2
Ω; M† = M; Ω :=

[
J 0

0 −J

]
(6.57)

and V is the solution to a Lyapunov equation

AV + V AT +BBT = 0. (6.58)

Remark 6.6. Since all eigenvalues of the Hermitian matrix M in (6.57) are

real numbers, the entanglement condition (6.56) implies that at least one of the

eigenvalues of M has to be a negative real number. In this case, the complex

vector dc can be taken as the corresponding eigenvector of M.

Since the system variable vector x in (6.53) is Gaussian, the entanglement

of the cascaded OPAs (6.53) can be measured in terms of logarithmic negativity



6.5. Case Study: Entanglement Control 147

(e.g., see [233,247–249]):

E := max{0, − ln(2ν)} (6.59)

where

V :=

[
V1 V2

V T
2 V3

]
; ν :=

1√
2

√
Ψ −

√
Ψ2 − 4 det(V ) ; (6.60)

Ψ := det(V1) + det(V3) − 2 det(V2). (6.61)

From (6.59), we infer that if the quantum system (6.53) is entangled, then E > 0.

Otherwise, E = 0. The logarithmic negativity (6.59) is defined as a function of

the covariance matrix V , which can be obtained as a solution to the following

Lyapunov equation (e.g., see [233])

ĀV + V ĀT + B̄B̄T = 0. (6.62)

Thus, for the cascaded OPAs (6.53), we need to choose suitable parameter values

such that Ā is Hurwitz, B̄B̄T ≥ 0 and therefore, the Lyapunov equation (6.62)

has a unique solution V > 0 as stated in the following lemma.

Lemma 6.4. (see [315, Lemma 12.1]) If Q ≥ 0 and A is stable, the linear

equation

ATP + PA+Q = 0 (6.63)

has a unique solution P ≥ 0.

With the parameter values in (6.52), the quantum system (6.53) directly

connected through the optical field is entangled with

N = −0.0892 ; E = 0.2256 (6.64)

and a corresponding complex vector dc in (6.56) is

[
−0.3084 + i0.4196 0.5410 − i0.2104 0.0827 − i0.2942 −0.5463

]T

. (6.65)
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6.5.2 Controlled entanglement

It is possible to increase the quantum entanglement level given in (6.64) by ap-

plying a coherent quantum controller (6.22) such that the controlled quantum

system has a configuration as shown in Figure 6.2. The problem of designing

this quantum controller can be considered as an optimization problem and then

solved using the DE algorithm described in Chapter 2. Thus, based on Definition

6.3, the objective function to be minimized is taken as

f(K) = ̺(M)n (6.66)

where ̺(M) is the smallest eigenvalue of the matrix M as in (6.57); and n ≥ 1

is a power constant. The constraints related to f(K) are (6.38), (6.35) and

g2(K) = AP + PAT + BBT = 0;

h2(K) = −P < 0;

g3(K) = ℜ(ΣK) = 0;

g4(K) = ΣK − Σ†
K = 0 (6.67)

where the matrices A and B are of the form (6.30); and

P =

[
P11 P12

P T
12 P22

]
; V = P11. (6.68)

Note that ℜ(ΣK) = ΦK is the real part of matrix ΣK as in Theorem 6.1.

Considering all constraints involved, we form a fitness test procedure to rate

the fitness of each candidate solution K as follows:

1. Evaluate the stability of the controlled quantum system A by referring to

h1(K) in (6.35);

2. Compute the solution ΣK to the Riccati equation represented by g1(K) in

(6.38);

3. Evaluate g3(K) and g4(K) in (6.67) to check if the solution ΣK is of imagi-

nary Hermitian;
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4. Compute the solution P of g2(K) in (6.67) and ensure that h2(K) in (6.67)

is satisfied;

5. Calculate the value of the objective function f(K) in (6.66).

Along with this fitness test routine, we also form a set of penalty functions, which

correspond to the violation of each constraint in (6.38), (6.35) and (6.67). That

is,

p1(K) = emax,r(AK)s1 ; p2(K) = |log (det(X ))|s2 ;

p3(K) = ℓmax (ℜ(ΣK))s3 ; p4(K) = ℓmax

(
ΣK − Σ†

K

)s4

;

p5(K) = emax

(
BBT

)s5 ; p6(K) = |emin(P )|s6 ;

p7(K) = f(K)

(6.69)

where sr ≥ 1 for r = 1, 2, . . . , 6. Here, emax,r(M) denotes the largest real part

of the eigenvalues of the matrix M ; emax(M) denotes the largest eigenvalue of a

symmetric matrix M ; and ℓmax(M) denotes the largest magnitude of all elements

of the matrix M . Moreover, we are particularly concerned with the penalty

function p2(K) in (6.69), which is applied whenever X is very close to singularity,

that is, 0 < |det(X )| ≤ ε < 1. In this case, ε is a sufficiently small real positive

number and X is as defined in Lemma 6.2.

We now can apply the DE algorithm solve the quantum entanglement problem

for the quantum system (6.50), (6.51), (6.52). The quantum controller matrices

are then obtained as follows:

AK =




−907.6167 −344.0940 −86.2280 −97.4048

236.9691 −963.4073 −377.8802 −78.7616

−145.2300 219.1872 −904.0325 392.0398

10.1165 −33.0976 −517.4231 −987.2990




;

BK1 =




−14.3498 −81.5469

−4.7526 28.2512

−5.7654 0.6262

−66.3267 −12.5105




; BK3 =




29.3006 −60.5369

−33.2270 28.8097

18.6475 4.8260

−28.5866 −54.1088




;

CK =

[
−3.3050 −1.9170 3.1872 17.3733

10.2118 −10.3368 −4.5259 −1.0752

]
; (6.70)
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BK2 =




−12.0745 −5.7322 −26.4841 −15.6115

−6.7239 −3.2510 −14.7481 −8.7313

−13.5743 −5.2675 −1.4916 −3.2254

−7.1492 −2.9682 −8.0450 −5.2909




;

ΘK =




0 −0.6382 −0.6076 −4.6528

0.6382 0 −0.0264 1.7524

0.6076 0.0264 0 0.1545

4.6528 −1.7524 −0.1545 0



. (6.71)

Alternatively, if BK2 is assumed to be zero, the quantum controller matrices are

obtained as:

AK =




−997.6993 −212.1764 −38.0295 −89.1340

24.6918 −903.4779 −181.4780 −129.7399

−55.2244 23.8663 −925.4836 −100.2914

−25.7120 40.2243 47.9460 −888.8602




;

BK1 =




−3.1086 10.7631

13.9274 −8.6766

13.3195 −3.1036

−9.8868 1.3991




; BK3 =




6.7045 −7.0180

−14.1398 −3.9128

−7.7089 −7.0357

7.3145 6.3358




;

CK =

[
−48.8473 −43.8428 −59.7859 −28.7381

−101.7984 3.2332 −83.3746 −75.7597

]
;

ΘK =




0 −0.1264 −0.1381 0.1055

0.1264 0 0.0746 −0.0681

0.1381 −0.0746 0 −0.0129

−0.1055 0.0681 0.0129 0



. (6.72)

The assumption that BK2 = 0 is based on the experience of [72] where BK2 has

very small entries. Therefore, it has an insignificant effect on the performance of

the controlled quantum system.

In our example, we also find that the entanglement levels of the controlled

quantum systems obtained by applying controllers (6.70), (6.71) and (6.72) are

the same. That is, in both cases, we obtain

N = −0.1237 ; E = 0.2944 (6.73)
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and the corresponding complex vectors dc are

[
−0.0669 + i0.4613 −0.4932 + i0.1997 −0.0010 + i0.4652 0.5322

]T

;
[
−0.0694 + i0.4609 −0.4921 + i0.2023 −0.0017 + i0.4655 0.5319

]T

(6.74)

for the quantum controllers (6.70), (6.71) and (6.72), respectively. In particular,

from (6.70) and (6.71), we notice that BK2 is not necessarily small or equal to

zero. However, this example does not show that any improvement in the objective

function can be obtained by using a nonzero BK2 . This is consistent with the

example presented in [72].

Another interesting aspect of this example is that we obtain approximately

30% entanglement improvement in terms of logarithmic negativity through the

application of a coherent quantum controller as opposed to the direct intercon-

nection of the two OPAs. This result is not surprising because it is hard to

drastically enhance the entanglement level of this type of quantum network as

reported in [233]. However, our method has shown a potential approach to im-

prove the entanglement level of a realistic quantum network using a dynamic

coherent quantum controller.

Remark 6.7. Besides the objective function in (6.66), another possible objective

function to be minimized is

f(K) = (ln(2ν))n (6.75)

which is subject to (6.38), (6.35), (6.67) and

h3(K) = emin(M) < 0 (6.76)

where emin(M) denotes the smallest eigenvalue of the Hermitian matrix M as

defined in (6.57). Having an additional constraint h3(K), we thus need to include

an additional step in the fitness test routine to ensure that the entanglement

criterion (6.56) holds before calculating the value of the objective function (6.75).

The penalty function corresponding to the violation of (6.76) is

p7(K) = emin(M)s7 (6.77)
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where s7 ≥ 1. Thus, if there is no constraint violation by a candidate solution

throughout the fitness test, the objective function (6.75) will be

p8(K) = f(K). (6.78)

Applying this algorithm to solve the same entanglement control problem as the

one discussed above, we obtain approximately the same amount of entanglement

level (with or without BK2), that is, E = 0.2954. This fact implies that both

algorithms have a comparable performance.

6.6 Conclusions

We have presented a new method to solve a linear coherent quantum control

problem based on a DE approach. The solution to this problem involves the

solution to a complex algebraic Riccati equation. As a case study, we consider

a quantum entanglement control problem for two cascaded OPAs. Applying a

suitable coherent quantum controller, we show that the entanglement level can

be increased. This result indicates that our method can have potential future

applications to realistic quantum networks. Interestingly, with or without the

BK2 term in the quantum controller, we obtain the same amount of entanglement

in terms of logarithmic negativity. This fact motivates a further investigation on

the significance of the inclusion of BK2 in the realization of a dynamic coherent

quantum controller.



Chapter 7

Coherent Quantum Robust H∞

Control via A Strict Bounded

Real Quantum Controller

7.1 Introduction

In this chapter, we consider coherent quantum robust H∞ control for a class

of linear complex quantum stochastic systems with norm-bounded structured

uncertainties. The corresponding quantum H∞ control objective is to achieve

a strict bounded real closed loop uncertain quantum system with a specified

disturbance attenuation level. It is possible to solve this quantum control problem

based on the quantum H∞ control methods presented in [70, 73] by lumping all

structured uncertainties into a single unstructured uncertainty. However, this

may lead to a conservative quantum H∞ controller and these methods do not

necessarily lead to a stable and strict bounded real quantum controller. Hence,

the resulting quantum H∞ controller may not be physically realizable.

This concern has motivated us to propose a systematic method to construct

a stable and strict bounded real coherent quantum H∞ controller, which is guar-

anteed to be physically realizable. The underlying main idea of our approach is

to introduce an additional uncertainty to form an artificial uncertain quantum

system, based on which our quantum controller is to be designed. A similar

idea has also been applied in [8] for the classical robust H∞ control problem.

The additional uncertainty has specific properties such that any suitable cohe-
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rent quantum H∞ controller solves the original quantum control problem and is

also stable and strict bounded real. The resulting quantum controller then must

be physically realizable and is of the same order as that of the quantum plant.

However, the additional uncertainty also introduces some extra conservatism to

this controller design method.

An algorithm to synthesize such a quantum robust H∞ controller involves

finding the stabilizing solutions to complex algebraic Riccati equations parame-

terized by a non-singular scaling matrix and scaling parameters; e.g., see [8]. The

Riccati equations then constitute nonconvex nonlinear constraints, which are of-

ten difficult to satisfy, in our quantum control problem. Therefore, to compute a

solution, we apply an evolutionary optimization method, namely the differential

evolution (DE) algorithm, as presented in Chapter 2.

As both complex and operator matrices are involved in this chapter, we then

use the following notation: M = [mjk], M
∗ = [m∗

jk], M
T = [mkj] and M † =

[m∗
kj] = (M∗)T to denote the same operations as those explained in Section 6.1.

7.2 Linear Complex Quantum Systems

In this section, we briefly recall some preliminary results on linear complex quan-

tum systems. Instead of the quadrature representation of a linear quantum sys-

tem presented in Chapter 6, we are concerned with a linear complex quantum

stochastic system modeled in terms of annihilation operators as presented in [73].

This formulation is described using quantum probability theory to characterize

the non-commutative nature of the quantum system; e.g., see [46]. Moreover, the

physical realizability condition for these quantum systems is presented in relation

to the realization of a complex open quantum harmonic oscillator.

7.2.1 Non-commutative model

We now consider a particular class of linear quantum stochastic systems described

in terms of linear quantum stochastic differential equations (QSDEs) as follows:

da(t) = F a(t) dt+Gdw(t); a(0) = a0;

dy(t) = H a(t) dt+ J dw(t) (7.1)
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where the matrices F , G, H and J are respectively complex matrices in Cn×n,

Cn×nw , Cny×n and Cny×nw . Moreover, a(t) :=
[
a1(t) . . . an(t)

]T

is an n × 1

vector of annihilation operators; and w(t) is an nw × 1 vector of input signals.

Here, we assume that nw is equal to ny. As described in Section 6.2, we also

assume that w(t) can be decomposed into two components as follows:

dw(t) = βw(t) dt+ dν(t) (7.2)

where βw(t) and ν(t) are respectively adapted process and quantum noise parts of

w(t). As the quantum system (7.1) may interact with other systems, the variables

of those systems determine the adapted process βw(t). Thus, we assume that

βw(t) commutes with a(t) and ν(t) for all t ≥ 0 because they are operating on

distinct Hilbert spaces; e.g., see [70, 72, 73]. The notion of an adapted process is

rigorously described in [43,44,46].

Moreover, the quantum noise ν(t) is a vector of operators on a Fock space,

which is characterized by the Ito table

dν(t)dν(t)† = Fν dt (7.3)

where the Ito matrix Fw̃ is a non-negative Hermitian matrix; e.g., see [44, 49].

This leads to a commutation relation of the form

dν(t)dν(t)† −
(
dν(t)∗dν(t)T

)T
= Tν dt (7.4)

where Tν is a Hermitian commutation matrix.

Since the dynamic equation of the quantum system (7.1) is expressed as a

linear quantum stochastic differential equation, integration with respect to dw(t)

is a quantum stochastic integral. Therefore, the evolution of a(t) in (7.1) depends

only on w(s) for 0 ≤ s ≤ t and is then adapted. Moreover, the annihilation

operator a(t) also commutes with the Ito increment dν(t); see [70].

7.2.2 Physical realizability

For a quantum system (7.1), the realization {F,G,H, J} cannot be arbitrary be-

cause it may not represent meaningful dynamics governed by quantum mechanical

principles. In order to be physically realizable, the quantum system (7.1) has to
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satisfy the following commutation relation

a(t)a(t)† −
(
a(t)∗a(t)T

)T
= Θ (7.5)

for all t ≥ 0, where Θ is a complex commutation matrix; see [70, 73]. Referring

to [73, Theorem 4.1], the commutation relation (7.5) is equivalent to

FΘ + ΘF † +GTνG
† = 0. (7.6)

This condition is satisfied by a complex open quantum harmonic oscillator evolv-

ing unitarily; e.g., see [36, 46, 70, 73]. Thus, the physical realizability of the

quantum system (7.1) is then defined in relation to the realization of a complex

open quantum harmonic oscillator.

If Θ is canonical, we have that Θ = I, Fν = I and Tν = I. In this case, the

commutation relation (7.5) holds if and only if

F + F † +GG† = 0. (7.7)

However, if Θ is generalized canonical, we have that Θ is a positive definite

Hermitian matrix, Fν = I and Tν = I. In this case, the commutation relation

(7.5) holds if and only if

FΘ + ΘF † +GG† = 0. (7.8)

For this latter case, we are always be able to find a similarity transformation

ā = Sa such that the transformed quantum system

F̄ = SFS−1; Ḡ = SG; H̄ = HS−1; J̄ = J (7.9)

satisfies (7.7) with Θ̄ = I, Fν = I and Tν = I; see [73].

A complex open quantum harmonic oscillator is characterized by a Hamil-

tonian operator H and a coupling operator C, which are respectively defined as

follows:

H := a†Ma; C := Λa. (7.10)

Here, M is an n × n complex Hermitian matrix; and Λ is an nw × n complex

coupling matrix. Using the quantum Langevin equation and Lindblad generator,
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the dynamical equations of a complex open quantum harmonic oscillator can be

written as follows (e.g., see [73,316,317]):

da(t) = −Θ
(
iM + 1

2
Λ†Λ

)
a(t) dt− ΘΛ† dw(t);

dy(t) = Λ a(t) dt+ dw(t). (7.11)

Therefore, matching (7.1) with (7.11), we obtain

F = −Θ
(
iM + 1

2
Λ†Λ

)
; G = −ΘΛ†; H = Λ; J = I. (7.12)

Definition 7.1. (Physical realizability; see [73, Definition 5.1 and Definition 5.2])

A linear complex quantum system (7.1) is said to be physically realizable if it sat-

isfies the commutation relation (7.5) for (generalized) canonical Θ and represents

the dynamics of a complex open quantum harmonic oscillator (7.11).

Lemma 7.1. (see [73, Theorem 5.1]) A linear complex quantum system (7.1) is

physically realizable if and only if there exists Θ = Θ† > 0 such that (7.8) and

(7.12) hold.

7.2.3 Bounded real property

We also need to consider the bounded real property of the linear complex quantum

system (7.1). This will enable us to relate the physical realizability condition

given in Definition 7.1 and Lemma 7.1 to the realization of a coherent quantum

H∞ controller discussed in subsequent sections.

Definition 7.2. (Dissipativity; see [70, Definition 4.1] and [73, Definition 6.1])

Given an operator-valued quadratic form

r(a, βw) =
1

2

[
a† β†

w

]
R

[
a

βw

]
+

1

2

[
aT βT

w

]
R

[
a∗

β∗
w

]
(7.13)

where

R =

[
R11 R12

R21 R22

]
(7.14)

is a given complex Hermitian matrix, we say that the quantum system (7.1) is

dissipative with supply rate r(a, βw) if there exists a positive operator-valued
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quadratic form

V(a) = 1
2
a†Xa+ 1

2
aTXa∗ (7.15)

(where X is a positive definite Hermitian matrix) and a constant λ > 0 such that

〈V (a (t))〉 +

∫ t

0

〈r(a(s), βw(s))〉 ds ≤ 〈V (a (0))〉 + λt, ∀t > 0 (7.16)

for all Gaussian state g for the initial variables a(0). Note that we use 〈·〉 to

denote a quantum expectation over all initial variables and noises. We say that

the quantum system (7.1) is strictly dissipative if there exists a constant ε > 0

such that the inequality (7.15) holds with the matrix R replaced by the matrix

R + εI.

Definition 7.3. (Bounded real; see [70, Definition 4.3] and [73, Definition 6.2])

The linear complex quantum system (7.1) is said to be bounded real with distur-

bance attenuation γ > 0 if the system (7.1) is dissipative with supply rate

r(a, βw) =
1

2

(
β†

zβz − γ2β†
wβw

)
+

1

2

(
βT

z β
∗
z − γ2βT

wβ
∗
w

)

=
1

2

[
a† β†

w

] [
H†H H†J

J†H J†J − γ2I

][
a

βw

]

+
1

2

[
aT βT

w

] [
HTH∗ HTJ∗

JTH∗ JTJ∗ − γ2I

][
a∗

β∗
w

]
(7.17)

where βz := H a(t) + J βw(t). Moreover, The linear complex quantum system

(7.1) is said to be strictly bounded real with disturbance attenuation γ > 0 if the

system (7.1) is strictly dissipative with the supply rate (7.17).

Definition 7.4. (Minimal realization; see [73, Definition 6.4] and [318]) The

quantum system (7.1) is said to be minimal if the following conditions hold:

1. Controllability: a†F = λ a† for some λ ∈ C and a†G = 0 implies that a = 0.

2. Observability: F a = λ a for some λ ∈ C and H a = 0 implies that a = 0.

Definition 7.5. (Lossless bounded real; see [73, Definition 6.3] and [319, Chapter

7]) The linear complex quantum system (7.1) is said to be lossless bounded real

if the following conditions hold:
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1. F is Hurwitz.

2. The transfer function matrix Q(s) := H(sI − F )−1G+ J satisfies

Q(iω)†Q(iω) = I, ∀ω ∈ R. (7.18)

Lemma 7.2. (see [73, Theorem 6.4 and Theorem 6.5] and [319, Theorem 6.4 and

Theorem 6.5]) Suppose that the quantum system (7.1) has a minimal realization

{F,G,H, J}. Then, it is lossless bounded real if and only if there exists X =

X† > 0 such that

XF + F †X +H†H = 0;

H†J = −XG;

J†J = I. (7.19)

Furthermore, the minimal realization {F,G,H, J} of the quantum system (7.1)

is physically realizable if and only if it is lossless bounded real with J = I.

Lemma 7.3. (Complex bounded real lemma I; see [73, Theorem 6.1]) The quan-

tum system (7.1) is bounded real with disturbance attenuation γ > 0 if and only

if there exists a Hermitian matrix X > 0 such that

[
F †X +XF +H†H G†X + J†H

XG+H†J J†J − γ2I

]
≤ 0. (7.20)

Lemma 7.4. (Complex bounded real lemma II; see [73, Theorem 6.2] and [319,

Chapter 7]) Suppose that the quantum system (7.1) has a minimal realization

{F,G,H, J} and satisfies γ2I−J†J > 0 for γ > 0. Then, the following statements

are equivalent:

1. The quantum system (7.1) is bounded real with disturbance attenuation γ.

2. F is Hurwitz and ‖H(sI − F )−1G+ J‖∞ ≤ γ.

3. The complex algebraic Riccati equation

F †X+XF+H†H+
(
XG+H†J

) (
γ2I − J†J

)−1 (
G†X + J†H

)
= 0 (7.21)

has a positive definite Hermitian solution X.
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Lemma 7.5. (Complex strict bounded real lemma I; see [73, Theorem 6.3]) The

quantum system (7.1) is strictly bounded real with disturbance attenuation γ > 0

if and only if γ2I−J†J > 0 and there exists a Hermitian matrix X > 0 such that

[
F †X +XF +H†H G†X + J†H

XG+H†J J†J − γ2I

]
< 0. (7.22)

Lemma 7.6. (Complex strict bounded real lemma II; see [73, Theorem 6.3 ], [312,

Theorem 2.1] and [320]) For the quantum system (7.1), the following statements

are equivalent:

1. The quantum system (7.1) is strictly bounded real with disturbance attenua-

tion γ > 0.

2. F is Hurwitz and ‖H(sI − F )−1G+ J‖∞ < γ.

3. γ2I − J†J > 0 and the complex algebraic Riccati inequality

F †X̃ + X̃F +H†H +
(
X̃G+H†J

) (
γ2I − J†J

)−1
(
G†X̃ + J†H

)
< 0

(7.23)

has a positive definite Hermitian solution X̃.

4. γ2I − J†J > 0 and the complex algebraic Riccati equation

F †X+XF+H†H+
(
XG+H†J

) (
γ2I − J†J

)−1 (
G†X + J†H

)
= 0 (7.24)

has a stabilizing solution X ≥ 0.

Furthermore, if these statements hold, then X < X̃.

7.3 Quantum Robust H∞ Control Problem

In this section, we describe the quantum robust H∞ control problem for a class

of linear uncertain complex quantum systems. Applying a coherent quantum

H∞ controller to solve this control problem, we require this quantum controller

to be physically realizable. Also, the resulting closed loop uncertain quantum

system has to satisfy an H∞ control objective. These issues are considered in the

following sub-sections.
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7.3.1 Linear uncertain complex quantum system

We consider a class of linear complex quantum stochastic systems with structured

uncertainties (see [70,72,73]):

da(t) = F a(t)dt+G0 dv(t) +G1 dw(t) +G2 du(t) +
k∑

j=1

G3,j dξj(t); a(0) = a0;

dz(t) = H1 a(t)dt+ J12 du(t);

dζ1(t) = L1 a(t)dt+M1 du(t);

...

dζk(t) = Lk a(t)dt+Mk du(t);

dy(t) = H2 a(t)dt+ J20 dv(t) + J21 dw(t) (7.25)

where a is an n×1 vector of the plant annihilation operators; v is an nv×1 vector

of quantum noises; w is an nw×1 vector of disturbance inputs; u is an nu×1 vector

of control inputs; ξj is an nqj
×1 vector of uncertainty inputs (for j = 1, 2, . . . , k);

ζj is an nsj
× 1 vector of uncertainty outputs (for j = 1, 2, . . . , k); z is an nz × 1

vector of controlled outputs; and y is an ny × 1 vector of ’measurement’ outputs.

All coefficient matrices in (7.25) are complex matrices, which have compatible

dimensions with those of the operators and signals in (7.25). Quantum systems

of this form, defined only in terms of annihilation operators, can be used to

represent interconnections of linear passive optical components such as optical

cavities, beam-splitters and phase-shifters; e.g., see [73,77].

The disturbance input w(t) and the control input u(t) in (7.25) are represented

respectively as

dw(t) = βw(t) dt+ dν(t); (7.26)

du(t) = βu(t) dt+ dµ(t) (7.27)

where βw(t) and βu(t) are adapted processes; and dν(t) and dµ(t) are the noise

parts of (7.26) and (7.27). Meanwhile, dv(t) represents an additional quantum

noise in the plant. The quantum noises dv(t), dν(t) and dµ(t) have corresponding

Hermitian Ito matrices Fv, Fν and Fµ, and Hermitian commutation matrices Tv,
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Tν and Tµ, which are assumed to be

Fv = Fν = Fµ = I; (7.28)

Tv = Tν = Tµ = I. (7.29)

The j-th structured uncertainty in (7.25) is modeled as an additional unknown

linear time-invariant complex quantum stochastic system:

dãj(t) = Aj ãj(t) dt+Bj dζj(t); ãj(0) = ã0,j;

dξj(t) = Cj ãj(t) dt+Dj dζj(t) (7.30)

with Aj Hurwitz and transfer function matrix

∆j(s) = Cj(sI − Aj)
−1Bj +Dj (7.31)

which is required to satisfy

‖∆j(s)‖∞ ≤ 1 (7.32)

for all j = 1, 2, . . . , k.

7.3.2 Coherent quantum H∞ controller

We aim to control the uncertain quantum system (7.25), (7.30), (7.31), (7.32)

using a coherent dynamic quantum H∞ controller, which is assumed to be a

non-commutative quantum stochastic system. A general form of this quantum

controller can be written as

dc(t) = Fc c(t)dt+Gc0 dwc0(t) +Gc1 dwc1(t) +Gc dy(t); c(0) = c0

du(t) = Hc c(t)dt+ dwc0(t) (7.33)

where c is an n × 1 vector of the controller annihilation operators; wc0 and wc1

are respectively nc0 × 1 and nc1 × 1 vectors of non-commutative quantum Wiener

processes. For the quantumH∞ controller (7.33), we assume that the Ito matrices

Fwc0
and Fwc1

, and commutation matrices Twc0
and Twc1

of wc0 and wc1 are
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respectively

Fwc0
= Fwc1

= I;

Twc0
= Twc1

= I. (7.34)

Also, at time t = 0, it is assumed that a(0) and ã(0) commute with c(0). More-

over, the quantumH∞ controller (7.33) is required to be stable and strict bounded

real, which will imply that it is physically realizable. Therefore, referring to [73],

we present a physical realizability condition for the quantum H∞ controller (7.33)

in terms of its bounded real property.

Definition 7.6. (Physical realizability of a quantum controller; see [73, Definition

7.1]) The realization {Fc, Gc, Hc} is said to define a physically realizable quantum

controller of the form (7.33) if there exist matrices Gc0 , Gc1 , Hc1 and Hc2 such

that

dc(t) =Fc c(t)dt+Gc0 dwc0(t) +Gc1 dwc1(t) +Gc dy(t); c(0) = c0;


du(t)

du1(t)

du2(t)


 =



Hc

Hc1

Hc2


 c(t)dt+



dwc0(t)

dwc1(t)

dy(t)


 (7.35)

is physically realizable according to Definition 7.1 when

Ty := J20TvJ
†
20 + J21TνJ

†
21 = I. (7.36)

Lemma 7.7. (see [73, Theorem 7.2]) Suppose that {Fc, Gc, Hc} is a minimal

realization of the quantum controller (7.33). Then, the quantum controller (7.33)

is physically realizable if and only if Fc is Hurwitz and

‖Hc(sI − Fc)
−1Gc‖∞ ≤ 1. (7.37)

This implies that the quantum controller (7.33) is bounded real.

Remark 7.1. (see [73, Theorem 7.2]) The matrices Gc1 and Hc1 can be set to

zero as the exogenous quantum noise dwc1 term is not needed in the realization of

the quantum controller (7.33). Moreover, an immediate consequence of Lemma
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7.7 is that a strict bounded real quantum H∞ controller of the form (7.33) must

always be physically realizable, where Fc is Hurwitz and ‖Hc(sI−Fc)
−1Gc‖∞ < 1.

7.3.3 H∞ control objective

Interconnecting the quantum controller (7.33) with the uncertain quantum sys-

tem (7.25), (7.32), we obtain the following closed loop uncertain quantum system



da(t)

dc(t)

dã(t)


 =




(F +G3DL) (G2Hc +G3DMHc) G3C

GcH2 Fc 0

BL BMHc A






a(t)

c(t)

ã(t)


 dt

+




G0 (G2 +G3DM) 0

GcJ20 Gc0 Gc1

0 BM 0






dv(t)

dwc0(t)

dwc1(t)


 +




G1

GcJ21

0


 dw(t);

dz(t) =
[
H1 J12Hc 0

]


a(t)

c(t)

ã(t)


 dt+

[
0 J12 0

]


dv(t)

dwc0(t)

dwc1(t)


 (7.38)

where

dã(t) :=




dã1(t)

dã2(t)
...

dãk(t)




; M :=




M1

M2

...

Mk




; L :=




L1

L2

...

Lk




;

A :=




A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak




; B :=




B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bk




;

C :=




C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · Ck




; D :=




D1 0 · · · 0

0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dk




;

G3 :=
[
G3,1 G3,2 · · · G3,k

]
. (7.39)
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We require the closed loop uncertain quantum system (7.38) to satisfy the fol-

lowing H∞ control objective

∫ t

0

〈
z(s)†z(s) + z(s)T z(s)∗ + ε

(
η(s)†η(s) + η(s)Tη(s)∗

)〉
ds

≤ (γ2 − ε2)

∫ t

0

〈
βw(s)†βw(s) + βw(s)Tβw(s)∗

〉
ds+ π1 + π2t (7.40)

where ε, π1, π2 > 0 are real constants and

dη(t) :=
[
da(t)T dc(t)T dã(t)T

]T

. (7.41)

This objective is attained if the closed loop quantum system (7.38) is strict

bounded real with a specified disturbance attenuation level γ > 0; see [70,73].

7.4 Quantum H∞ Controller Synthesis

An algorithm to construct a coherent quantum H∞ controller of the form (7.33)

has been provided in [70, 73]. However, these algorithms do not guarantee that

the resulting quantum controller is stable and strict bounded real, and hence, the

controller may not be physically realizable. Thus, we are motivated to provide a

new systematic method to synthesize a stable and strict bounded real quantum

H∞ controller based on the approach used in [8]. In this case, we force the

quantum H∞ controller to be physically realizable.

The main idea of our approach is to introduce an additional uncertainty to

form an artificial uncertain quantum system based on which the desired coherent

quantum H∞ controller is to be designed. Thus, this approach only provides a

sufficient condition such that any suitable quantum controller of the form (7.33)

will lead to a strict bounded real closed loop uncertain quantum system with

disturbance attenuation γ > 0 when applied to the original uncertain quantum

system (7.25), (7.32). Moreover, the same quantum controller must be stable

and strict bounded real when it is applied to a particular open loop uncertain

quantum system while achieving the closed loop H∞ control objective. These

properties hold even when the quantum controller is detached from the open

loop quantum system; see [8].

In order to apply this idea, we first consider the following uncertain quantum
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system:

da(t) = F a(t) dt+G0 dv(t) +G1 dw(t) +
k∑

j=1

G2,j dξj(t); a(0) = a0;

dz(t) = H1 a(t) dt+ J1 dw(t) +
k∑

j=1

J2,j dξj(t);

dζ1(t) = H2,1 a(t) dt+K1 dw(t) +
k∑

j=1

L1,j dξj(t);

...

dζk(t) = H2,k a(t) dt+Kk dw(t) +
k∑

j=1

L1,j dξj(t). (7.42)

Here, the j-th structured uncertainty in (7.42) is modeled as an unknown quan-

tum system:

dāj(t) = Ãj āj(t) dt+ B̃j dζj(t); āj(0) = ā0,j;

dξj(t) = C̃j āj(t) dt+ D̃j dζj(t) (7.43)

with Ãj Hurwitz and transfer function matrix

∆̃j(s) = C̃j(sI − Ãj)
−1B̃j + D̃j (7.44)

which is required to satisfy

‖∆̃j(s)‖∞ ≤ 1 (7.45)

for all j = 1, 2, . . . , k. Now, we present the following lemma, which is required in

subsequent sub-sections.

Lemma 7.8. Consider the uncertain quantum system (7.42), (7.43), (7.44),

(7.45) and let τ1 > 0, . . . , τk > 0 be given constants. Suppose that F in (7.42) is

Hurwitz and the scaled quantum system

da(t) = F a(t) dt+G0 dv(t) + Ğ1 dw̆(t);

dz̆(t) = H̆ a(t) dt+ J̆ dw̆(t) (7.46)
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where

Ğ1 =
[
γ−1G1

√
τ1

−1G2,1
√
τ2

−1G2,2 . . .
√
τk

−1G2,k

]
;

H̆ =




H1√
τ1H2,1√
τ2H2,2

...
√
τk H2,k




; dw̆(t) =




γ dw(t)
√
τ1 dξ1(t)√
τ2 dξ2(t)

...
√
τk dξk(t)




; dz̆(t) =




dz(t)
√
τ1 dζ1(t)√
τ2 dζ2(t)

...
√
τk dζk(t)




;

J̆ =




γ−1 J1
√
τ1

−1J2,1
√
τ2

−1J2,2 . . .
√
τk

−1J2,k

γ−1 √τ1K1 L1,1

√
τ1
τ2
L1,2 . . .

√
τ1
τk
L1,k

γ−1 √τ2K2

√
τ2
τ1
L2,1 L2,2 . . .

√
τ2
τk
L2,k

...
...

...
...

γ−1 √τkKk

√
τk

τ1
Lk,1

√
τk

τ2
Lk,2 . . . Lk,k




(7.47)

is such that J̆ J̆† < I and strict bounded real with

∥∥∥H̆(sI − F )−1Ğ1 + J̆
∥∥∥
∞
< 1. (7.48)

Then, the uncertain quantum system (7.42), (7.43), (7.44), (7.45) is strict bounded

real with disturbance attenuation γ > 0.

Proof. The proof of this lemma follows from the proofs of Proposition 8.6 ((i)

to (iii)) and Proposition 9.9 ((c) to (a)) in [321], and also from [73, Theorem 7.2]

(Lemma 7.6). That is, suppose that all conditions in the lemma are satisfied and

∥∥∥H̆(sI − F )−1Ğ1 + J̆
∥∥∥
∞

=
∥∥T̄

[
H̄(sI − F )−1Ḡ1 + J̄

]
T̄ −1

∥∥
∞ < 1 (7.49)

where

T̄ :=




I 0 · · · 0

0
√
τ1 · · · 0

...
...

. . .
...

0 0 · · · √
τk




; H̄ :=




H1

H2,1

...

H2,k




; J̄ :=




γ−1J1 J2,1 · · · J2,k

γ−1K1 L1,1 · · · L1,k

...
...

...

γ−1Kk Lk,1 · · · Kk,k




;

Ḡ1 :=
[
γ−1G1 G2,1 · · · G2,k

]
. (7.50)
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We also let P̄ : L2[0,∞) → L2[0,∞) be the time-invariant bounded operator

corresponding to the transfer function matrix H̄(sI − F )−1Ḡ1 + J̄ . That is, P̄
represents a classical linear time-invariant system

ẋ(t) = Fx(t) + Ḡ1w̄(t);

z̄(t) = H̄x(t) + J̄w̄(t) (7.51)

where

w̄(t) =




γ w(t)

ξ1(t)

ξ2(t)
...

ξk(t)




; z̄(t) =




z(t)

ζ1(t)

ζ2(t)
...

ζk(t)




; H̄ =




H1

H2,1

H2,2

...

H2,k




; J̄ =




γ−1 J1 J2,1 J2,2 . . . J2,k

γ−1K1 L1,1 L1,2 . . . L1,k

γ−1K2 L2,1 L2,2 . . . L2,k

...
...

...
...

γ−1Kk Lk,1 Lk,2 . . . Lk,k




Ḡ1 =
[
γ−1G1 G2,1 G2,2 . . . G2,k

]
. (7.52)

For the system (7.51), the relationship between the uncertainty input ξj(t) and

output ζj(t) are represented by an unknown linear system as follows:

ṗj(t) = Ajpj(t) + Bjζj(t);

ξj(t) = Cjpj(t) + Djζj(t) (7.53)

with Aj Hurwitz and transfer function matrix

Uj(s) = Cj (sI − Aj)
−1

Bj + Dj (7.54)

which is required to satisfy

‖Uj(s)‖∞ ≤ 1 (7.55)

for all j = 1, 2, . . . , k.

It then follows from (7.49) that

∥∥T̄ P̄T̄ −1φ(t)
∥∥2

2
≤ (1 − δ) ‖φ(t)‖2

2 (7.56)
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for any φ(t) ∈ L2[0,∞) and some δ > 0. Furthermore, we can rewite (7.56) as

∥∥T̄ P̄ψ(t)
∥∥2

2
≤ (1 − δ)

∥∥T̄ ψ(t)
∥∥2

2
(7.57)

or equivalently ∥∥T̄ P̄ψ(t)
∥∥2

2
−

∥∥T̄ ψ(t)
∥∥2

2
≤ −δ

∥∥T̄ ψ(t)
∥∥2

2
(7.58)

where ψ(t) := T̄ −1φ(t), ψ(t) ∈ L2[0,∞). From (7.58), we obtain that

〈
ψ(t),

(
P̄†T̄ †T̄ P̄ − T̄ †T̄

)
ψ(t)

〉
< 0 (7.59)

where 〈f, g〉 denotes the inner product
∫ ∞

0
f(t)†g(t) dt for f(·), g(·) ∈ L2[0,∞);

and thus,

P̄†T̄ †T̄ P̄ − T̄ †T̄ < 0. (7.60)

Now, we define

T̄ †T̄ :=

[
I 0

0 T

]
; T :=




τ1 · · · 0
...

. . .
...

0 · · · τk


 (7.61)

and for some ǫ > 0, (7.60) leads to

0 ≥ P̄†

[
I 0

0 T

]
P̄ −

[
(1 − ǫ)I 0

0 T

]
(7.62)

which implies that

0 ≥
〈[

γ w(t)

ξ(t)

]
, P̄†

[
I 0

0 T

]
P̄

[
γ w(t)

ξ(t)

]〉

−
〈[

γ w(t)

ξ(t)

]
,

[
(1 − ǫ)I 0

0 T

][
γ w(t)

ξ(t)

]〉

=

〈[
z(t)

ζ(t)

]
,

[
I 0

0 T

][
z(t)

ζ(t)

]〉
−

〈[
γ w(t)

ξ(t)

]
,

[
(1 − ǫ)I 0

0 T

][
γ w(t)

ξ(t)

]〉

= ‖z(t)‖2
2 + 〈ζ(t), T ζ(t)〉 − (1 − ǫ) ‖γ w(t)‖2

2 − 〈ξ(t), T ξ(t)〉

= ‖z(t)‖2
2 − γ2(1 − ǫ) ‖w(t)‖2

2 +
k∑

j=1

τj
(
‖ζ(t)‖2

2 − ‖ξ(t)‖2
2

)
(7.63)
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where

ξ(t) =




ξ1(t)
...

ξk(t)


 ; ζ(t) =




ζ1(t)
...

ζk(t)


 . (7.64)

Since (7.55) is satisfied, (7.63) results in

0 ≥ ‖z(t)‖2
2 − γ2(1 − ǫ) ‖w(t)‖2

2

> ‖z(t)‖2
2 − γ2 ‖w(t)‖2

2 (7.65)

which implies that ∥∥H1 (sI − F )−1G1 + J1

∥∥
∞ < 1. (7.66)

Using Lemma 7.6, we conclude that the uncertain quantum system (7.42), (7.43),

(7.44), (7.45) is strict bounded real with disturbance attenuation γ > 0.

7.4.1 Artificial uncertain quantum system

Prior to forming an artificial uncertain quantum system based on the original

uncertain quantum system (7.25), (7.30), (7.31), (7.32), we need to construct a

matrix K such that (F +G2K) is Hurwitz and the uncertain quantum system

da(t) = (F +G2K) a(t) dt+G0 dv(t) +G1 dw(t) +
k∑

j=1

G3,j dξj(t); a(0) = a0;

dz(t) = (H1 + J12K) a(t) dt;

dζ1(t) = (L1 +M1K) a(t) dt;

...

dζk(t) = (Lk +MkK) a(t) dt;

dy(t) = H2 a(t) dt+ J20 dv(t) + J21 dw(t) (7.67)

with (7.30), (7.31), (7.32) is strict bounded real with disturbance attenuation

γ > 0. This requirement is satisfied under a condition, which is dependent on

the existence of a solution to a parameterized algebraic Riccati equation defined

as follows: Let κ1 > 0, . . . , κk > 0 be given constants and consider a complex
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algebraic Riccati equation

(
F −G2E

−1
1 J̄†

12H̄1

)†
X +X

(
F −G2E

−1
1 J̄†

12H̄1

)

+X
(
Ḡ1Ḡ

†
1 −G2E

−1
1 G†

2

)
X + H̄†

1

(
I − J̄12E

−1
1 J̄†

12

)
H̄1 = 0 (7.68)

where

Ḡ1 =
[
γ−1G1

√
κ1

−1G3,1 · · · √
κk

−1G3,k

]
;

H̄1 =




H1√
κ1 L1

...
√
κk L1




; J̄12 =




J12√
κ1M1

...
√
κk Mk




; E1 = J̄†
12J̄12. (7.69)

Assumption 7.1. Given constants κ1 > 0, . . . , κk > 0, the uncertain quantum

system (7.25), (7.30), (7.31), (7.32) is assumed to be such that E1 > 0.

Lemma 7.9. Let κ1 > 0, . . . , κk > 0 be given constants. Suppose that the un-

certain quantum system (7.25), (7.30), (7.31), (7.32) is such that Assumption

7.1 is satisfied and the complex algebraic Riccati equation (7.68) has a stabilizing

solution X ≥ 0. Then, there exists a matrix K such that the uncertain quan-

tum system (7.67), (7.30), (7.31), (7.32) is strict bounded real with disturbance

attenuation γ > 0. That is, (F +G2K) is Hurwitz and

‖(H1 + J12K) (sI − (F +G2K))−1G1‖∞ < γ (7.70)

where

K = −E−1
1

(
G†

2X + J̄†
12H̄1

)
. (7.71)

Proof. Consider the uncertain quantum system (7.25), (7.30), (7.31), (7.32) and

let κ1 > 0, . . . , κk > 0 be given constants. Also, suppose that the scaled quantum

system

da(t) = F a(t)dt+G0 dv(t) + Ḡ1 dw̄(t) +G2 du(t);

dz̄(t) = H̄1 a(t)dt+ J̄12 du(t) (7.72)

is such that Assumption 7.1 is satisfied and the complex algebraic Riccati equation



172 Chapter 7. Coherent Quantum Robust H∞ Control

(7.68) has a stabilizing solution X ≥ 0. Then, we let K = −E−1
1 (G†

2X + J̄†
12H̄1)

be such that

da(t) = (F +G2K) a(t)dt+G0 dv(t) + Ḡ1 dw̄(t);

dz̄(t) = (H̄1 + J̄12K) a(t)dt (7.73)

is strict bounded real with (F +G2K) Hurwitz and

‖(H̄1 + J̄12K)(sI − (F +G2K))−1Ḡ1‖∞ < 1. (7.74)

Moreover, X ≥ 0 is also a stabilizing solution to the following complex algebraic

Riccati equation

(F+G2K)†X+X(F+G2K)+XG1G
†
1X+(H1+J12K)†(H1+J12K) = 0. (7.75)

It then follows from Lemma 7.6 that there exists a matrix P > 0 such that

(F +G2K)†P +P (F +G2K)+PG1G
†
1P +(H1 +J12K)†(H1 +J12K) < 0 (7.76)

where X < P . Thus, together with Lemma 7.8, we conclude that the uncer-

tain quantum system (7.67), (7.30), (7.31), (7.32) is strict bounded real with

disturbance attenuation γ > 0.

Using the matrix K as described in (7.71) and introducing additional un-

certainty input dξk+1(t) and uncertainty output dζk+1(t), we form an artificial

uncertain quantum system as follows: (see [8])

da(t) = F̃ a(t) dt+G0 dv(t) + G̃1 dw̃(t) + G̃2 du(t) +
k+1∑

j=1

G3,j dξj(t);

dz̃(t) = H̃1 a(t) dt+ J̃12 du(t) +N0 dξk+1(t);

dζ1(t) = L̃1 a(t) dt+ M̃1 du(t) +N1 dξk+1(t);

...

dζk(t) = L̃k a(t) dt+ M̃k du(t) +Nk dξk+1(t);

dζk+1(t) = L̃k+1 a(t) dt+ M̃k+1 du(t) + P dw̃(t);

dy(t) = H̃2 a(t) dt+ J20 dv(t) + J̃21 dw̃(t) +Nk+1 dξk+1(t) (7.77)
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where a(0) = a0; dw̃(t) = β̃w(t) dt+ dν̃(t);

dw̃(t) =

[
dw1(t)

dw2(t)

]
; dz̃(t) =

[
dz1(t)

dz2(t)

]
; F̃ = F + 1

2
G2K;

G̃1 =
[
G1 0

]
; G̃2 = 1

2
G2; G3,k+1 =

[
G2 0 0 0

]
R−1;

H̃1 = 1
2

[
H1

0

]
; J̃12 = 1

2

[
J12

γI

]
; N0 =

[
0 −I 0 0

0 0 I 0

]
R−1;

L̃1 = L1 + 1
2
M1K; M̃1 = 1

2
M1; N1 =

[
M1 0 0 0

]
R−1;

...
...

...

L̃k = Lk + 1
2
MkK; M̃k = 1

2
Mk; Nk =

[
Mk 0 0 0

]
R−1;

L̃k+1 = 1
2
R




K

H1

0

H2




; M̃k+1 = 1
2
R




−I
J12

γI

0




; P = 1
2
R




0 0

0 0

0 0

J21 −I




;

H̃2 = 1
2
H2; J̃21 = 1

2

[
J21 I

]
; Nk+1 =

[
0 0 0 −I

]
R−1. (7.78)

Note that R is any nr×nr non-singular scaling matrix, where nr = 2nu +nz +ny;

w2 and z2 have the same dimensions as those of y and u, respectively.

In (7.77), the uncertainty input dξj(t) is related to the uncertainty output

dζj(t) according to (7.30) for j = 1, 2, . . . , k. Also, the additional uncertainty

input dξk+1(t) is related to the additional uncertainty output dζk+1(t) according

to

dξk+1(t) = ∆k+1 dζk+1(t) (7.79)

where ∆k+1 ∈ R is a real unknown scalar uncertain parameter satisfying |∆k+1| ≤
1. Moreover, theH∞ control objective for the artificial uncertain quantum system

(7.77), (7.30), (7.31), (7.32), (7.79) is as follows:

∫ t

0

〈
z̃(s)†z̃(s) + z̃(s)T z̃(s)∗ + ε

(
η(s)†η(s) + η(s)Tη(s)∗

)〉
ds

≤ (1 − ε2)

∫ t

0

〈
β̃w(s)†β̃w(s) + β̃w(s)T β̃w(s)∗

〉
ds+ π1 + π2t (7.80)

where ε, π1, π2 > 0 are real constants.
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Now, we consider two special cases for ∆k+1 to verify that any suitable cohe-

rent quantum controller of the form (7.33) for the artificial uncertain quantum

system (7.77), (7.30), (7.31), (7.32), (7.79) is indeed stable and strict bounded

real, and solves the original quantum control problem.

Special case I: ∆k+1 = 1. With this value of ∆k+1, it immediately follows

that the QSDEs (7.77) become

da(t) = (F +G2K) a(t) dt+G0 dv(t) +G1 dw1(t) +
k∑

j=1

G3,j dξj(t); a(0) = a0;

dz1(t) = 0;

dz2(t) = γ du(t);

dζ1(t) = (L1 +M1K) a(t) dt;

...

dζk(t) = (Lk +MkK) a(t) dt;

dy(t) = J20 dv(t) + dw2(t) (7.81)

with (7.30), (7.31), (7.32). We notice that the uncertain quantum system (7.81),

(7.30), (7.31), (7.32) is the same as the uncertain quantum system (7.67), (7.30),

(7.31), (7.32). Hence, the uncertain quantum system (7.81), (7.30), (7.31), (7.32)

is strict bounded real with disturbance attenuation γ > 0 according to the con-

struction of the matrix K in (7.71) and Lemma 7.9. It is apparent from the

QSDEs (7.81) that the control input u(t) does not affect the quantum plant, but

only affects the controlled output z2(t). Also, the measurement output y(t) is

not affected by the quantum plant but is only affected by the disturbance in-

put w2(t) and the quantum noise v(t). This situation is shown in Figure 7.1(a)

where the coherent quantum controller Σc of the form (7.33) is detached from

the uncertain quantum system (Σ̃a,∆(·)) defined by (7.81), (7.30), (7.31), (7.32).

It thus follows from the block diagram in Figure 7.1(a) and the closed loop H∞

control objective (7.80) that the coherent quantum controller Σc must be stable

and strict bounded real.

Special case II: ∆k+1 = −1. It is straightforward to show that with this

value of ∆k+1, the QSDEs (7.77) reduce to the original QSDEs (7.25) with (7.30),

(7.31), (7.32). Thus, if the coherent quantum controller Σc of the form (7.33) is
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(a) (b)

Figure 7.1: Block diagrams corresponding to special cases I and II; see [8].

applied to the artificial uncertain quantum system (7.77), (7.30), (7.31), (7.32),

(7.79), we will obtain a closed loop uncertain quantum system as shown in Fig-

ure 7.1(b) where (Σa, ∆(·)) corresponds to the original uncertain quantum system

(7.25), (7.30), (7.31), (7.32). This implies that the coherent quantum controller

of the form (7.33) indeed solves the original quantum control problem where the

closed loop uncertain quantum system (7.38), (7.30), (7.31), (7.32) is required to

be strict bounded real with disturbance attenuation γ > 0.

From both cases, we conclude that if there exists a suitable coherent quantum

controller of the form (7.33), which stabilizes the artificial uncertain quantum

system (7.77), (7.30), (7.31), (7.32), (7.79) such that the resulting closed loop

uncertain quantum system is strict bounded real with disturbance attenuation

γ > 0, then this quantum controller also provides the same closed loop properties

when it is applied to the original uncertain quantum system (7.25), (7.30), (7.31),

(7.32). Also, the quantum controller itself must be stable and strict bounded real.

7.4.2 Strict bounded real quantum H∞ controller

Along with the results in [73], we use the approach of robust H∞ control theory

presented in [187] and Lemma 7.8 to synthesize a coherent quantum controller of

the form (7.33) for the artificial uncertain quantum system (7.77), (7.30), (7.31),

(7.32), (7.79). To proceed with this approach, we need to introduce scaling

constants τ1 > 0, . . . , τk+1 > 0 so that we can rewrite the QSDEs (7.77) of the
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artificial uncertain quantum system as follows:

da(t) = F̃ a(t) dt+G0 dv(t) + Ǧ1 dw̌(t) + G̃2 du(t); a(0) = a0;

dž(t) = Ȟ1 a(t) dt+ Ň dw̌(t) + J̌12 du(t);

dy(t) = H̃2 a(t) dt+ J20 dv(t) + J̌21 dw̌(t) (7.82)

where dw̌(t) = β̌w(t) dt+ dν̌(t);

Ǧ1 =
[
γ−1 G̃1

√
τ1

−1G3,1 · · · √
τk+1

−1G3,k+1

]
;

J̌21 =
[
γ−1 J̃21 0 · · · 0

√
τk+1

−1Nk+1

]
;

dw̌(t) =




γ dw̃(t)
√
τ1 dξ1(t)

...
√
τk+1 dξk+1(t)




; dž(t) =




dz̃(t)
√
τ1 dζ1(t)

...
√
τk+1 dζk+1(t)




; Ȟ1(t) =




H̃1√
τ1 L̃1

...
√
τk+1 L̃k+1




;

J̌12(t) =




J̃12√
τ1 M̃1

...
√
τk+1 M̃k+1




; Ň =




0 0 · · · 0
√
τk+1

−1N0

0 0 · · · 0
√

τ1
τk+1

N1

...
...

...
...

0 0 · · · 0
√

τk

τk+1
Nk

γ−1√τk+1 P 0 · · · 0 0




. (7.83)

The H∞ control objective corresponding to the quantum system (7.82) is

∫ t

0

〈
ž(s)†ž(s) + ž(s)T ž(s)∗ + ε

(
η(s)†η(s) + η(s)Tη(s)∗

)〉
ds

≤ (1 − ε2)

∫ t

0

〈
β̌w(s)†β̌w(s) + β̌w(s)T β̌w(s)∗

〉
ds+ π1 + π2t (7.84)

where ε, π1, π2 > 0 are real constants. Since an Ň -term in (7.82) leads to a

non-standard H∞ control problem, we apply a loop shifting transformation to

eliminate this term; e.g., see [16, Sections 4.5.1 and 5.5.1] and [18, Section 17.2].

This can be done by first imposing the following assumption:

Assumption 7.2. Given constants τ1 > 0, . . . , τk+1 > 0 and any non-singular

scaling matrix R, the uncertain quantum system (7.77), (7.30), (7.31), (7.32),

(7.79) is assumed to be such that ŇŇ † < I.
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Then, we can define

Φ := I − Ň †Ň > 0; Φ̌ := I − ŇŇ † > 0 (7.85)

and also

dŵ(t) := Φ
1
2dw̌(t) − Φ− 1

2 Ň † [
Ȟ1 a(t) dt+ J̌12 du(t)

]
;

dẑ(t) := Φ̌− 1
2

[
Ȟ1 a(t) dt+ J̌12 du(t)

]
. (7.86)

From (7.86), it is straightforward to verify that

dw̌(t) = Φ− 1
2dŵ(t) + Φ−1Ň † [

Ȟ1 a(t) dt+ J̌12 du(t)
]
;

‖w̌(t)‖2
2 − ‖ž(t)‖2

2 ≡ ‖ŵ(t)‖2
2 − ‖ẑ(t)‖2

2. (7.87)

Now, we can rewrite the QSDEs (7.82) as

da(t) = F̂ a(t)dt+G0 dv(t) + Ĝ1 dŵ(t) + Ĝ2 du(t); a(0) = a0;

dẑ(t) = Ĥ1 a(t)dt+ Ĵ12 du(t);

dy(t) = Ĥ2 a(t)dt+ J20 dv(t) + Ĵ21 dŵ(t) + Ĵ22 du(t) (7.88)

where dŵ(t) = β̂w(t)dt+ dν̂(t);

F̂ = F̃ + Ǧ1Ň
†Φ̌−1Ȟ1; Ĝ1 = Ǧ1Φ

− 1
2 ;

Ĝ2 = G̃2 + Ǧ1Ň
†Φ̌−1J̌12; Ĥ1 = Φ̌− 1

2 Ȟ1;

Ĥ2 = H̃2 + J̌21Ň
†Φ̌−1Ȟ1; Ĵ12 = Φ̌− 1

2 J̌12;

Ĵ22 = J̌21Ň
†Φ̌−1J̌12; Ĵ21 = J̌21Φ

− 1
2 .

(7.89)

Furthermore, we also define

dŷ(t) := dy(t) − Ĵ22 du(t) (7.90)

and substituting (7.90) into (7.88), we obtain

da(t) = F̂ a(t)dt+G0 dv(t) + Ĝ1 dŵ(t) + Ĝ2 du(t); a(0) = a0;

dẑ(t) = Ĥ1 a(t)dt+ Ĵ12 du(t);

dŷ(t) = Ĥ2 a(t)dt+ J20 dv(t) + Ĵ21 dŵ(t). (7.91)
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The H∞ control objective corresponding to the quantum system (7.91) is

∫ t

0

〈
ẑ(s)†ẑ(s) + ẑ(s)T ẑ(s)∗ + ε

(
η(s)†η(s) + η(s)Tη(s)∗

)〉
ds

≤ (1 − ε2)

∫ t

0

〈
β̂w(s)†β̂w(s) + β̂w(s)T β̂w(s)∗

〉
ds+ π1 + π2t (7.92)

where ε, π1, π2 > 0 are real constants.

The solution to the coherent quantum H∞ control problem for the linear

quantum system (7.91) is given in terms of solutions to the parameterized complex

algebraic Riccati equations:

(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)†
X̂ + X̂

(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)

+ X̂
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X̂ + Ĥ†

1

(
I − Ĵ12Ê

−1
1 Ĵ†

12

)
Ĥ1 = 0 ;

(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)
Ŷ + Ŷ

(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)†

+ Ŷ
(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
Ŷ + Ĝ1

(
I − Ĵ†

21Ê
−1
2 Ĵ21

)
Ĝ†

1 = 0 (7.93)

such that the following conditions hold:

1. F̂ − Ĝ2Ê
−1
1 Ĵ†

12Ĥ1 +
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X̂ is Hurwitz;

2. F̂ − Ĝ1Ĵ
†
21Ê

−1
2 Ĥ2 + Ŷ

(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
is Hurwitz;

3. The spectral radius ρ(X̂Ŷ ) of matrix X̂Ŷ is strictly less than one.

To obtain the solutions to the Riccati equations (7.93), we require the following

assumption to be satisfied.

Assumption 7.3. Given constants τ1 > 0, . . . , τk+1 > 0 and any non-singular

scaling matrix R, the uncertain quantum system (7.77), (7.30), (7.31), (7.32),

(7.79) is assumed to be such that

1. Ê1 = Ĵ†
12Ĵ12 > 0;

2. Ê2 = Ĵ21Ĵ
†
21 > 0.

Theorem 7.1. Suppose that there exist constants κ1 > 0, . . . , κk > 0 satisfying

Assumption 7.1 such that the complex algebraic Riccati equation (7.68) has a
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stabilizing solution X ≥ 0 and let

K = −E−1
1

(
G†

2X + J̄†
12H̄1

)
.

Also, suppose that there exist a non-singular scaling matrix R and constants

τ1 > 0, . . . , τk+1 > 0 satisfying Assumption 7.2 and Assumption 7.3 such that

the complex algebraic Riccati equations (7.93) have stabilizing solutions X̂ ≥ 0

and Ŷ ≥ 0 such that the spectral radius ρ(X̂Ŷ ) < 1. Then the closed loop uncer-

tain quantum system obtained by applying the coherent quantum controller (7.33)

with

Fc = F̂c −GcĴ22Hc;

F̂c = F̂ + Ĝ2Hc −GcĤ2 +
(
Ĝ1 −GcĴ21

)
Ĝ†

1X̂;

Gc =
(
I − Ŷ X̂

)−1 (
Ŷ Ĥ†

2 + Ĝ1Ĵ
†
21

)
Ê−1

2 ;

Hc = −Ê−1
1

(
Ĝ†

2X̂ + Ĵ†
12Ĥ1

)
(7.94)

to the uncertain quantum system (7.25), (7.30), (7.31), (7.32) is strict bounded

real with disturbance attenuation γ > 0.

Proof. It follows from loop shifting arguments in the classical H∞ control the-

ory (e.g., see [16, Sections 4.5.1 and 5.5.1] and [18, Section 17.2]) that the H∞

quantum control problem (7.82), (7.84) has a solution if and only if the complex

Riccati equations in (7.93) have stabilizing solutions X̂ ≥ 0 and Ŷ ≥ 0 such that

ρ(X̂Ŷ ) < 1. Moreover, a coherent quantum controller of the form (7.33) (but

not necessarily stable and strict bounded real), which solves the H∞ quantum

control problem (7.82), (7.84) is defined by (7.94).

Therefore, if the conditions of the theorem are satisfied, it follows from the ar-

guments in the proofs of Theorem 4.1 in [187] and of Theorem 7.1 in [73] that the

closed loop uncertain quantum system obtained by applying the coherent quan-

tum controller (7.33), (7.94) to the artificial uncertain quantum system (7.77),

(7.30), (7.31), (7.32), (7.79) is strict bounded real with disturbance attenuation

γ > 0. Moreover, it follows from the construction of the artificial uncertain quan-

tum system (7.77), (7.32), (7.79) that the coherent quantum controller (7.33),

(7.94) must be stable and satisfy condition (7.37). Thus, if this controller is ap-

plied to the original uncertain quantum system (7.25), (7.30), (7.31), (7.32), the
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resulting closed loop uncertain quantum system is also strict bounded real with

disturbance attenuation γ > 0.

Remark 7.2. Although the coherent quantum controller (7.33), (7.94) is guar-

anteed to be physically realizable, the additional uncertainty in the artificial

uncertain quantum system (7.77), (7.30), (7.31), (7.32), (7.79) introduces some

conservatism to the design process.

7.5 A Differential Evolution Approach

We recognize from Section 7.4 that the problem of designing a strict bounded real

quantum controller (7.33) involves several parameter dependent nonlinear con-

straints. To find a solution to this problem, we propose to apply an evolutionary

optimization method, namely the differential evolution (DE) algorithm, as given

in Chapter 2. Thus, we reformulate the quantum controller design problem into

an optimization problem, which is subject to nonconvex nonlinear constraints.

The required parameters form a vector of decision variables defined as

ϑ :=
[
γ κ1 · · · κk τ1 · · · τk+1

]T

(7.95)

where the dimension of ϑ is 2(k + 1) and each element of ϑ is a positive real

number. Then, the optimization problem can be stated as follows: Find an

optimal solution ϑ⋆ to solve

min
ϑ

f(ϑ) (7.96)

subject to

gj(ϑ) = 0; hk(ϑ) ≤ 0 (7.97)

for j = 1, 2, . . . , a and k = 1, 2, . . . , b. Here, a and b are the total number of

equality and inequality constraints, respectively; and f(ϑ) is an objective function

to be minimized.

Since we deal with an H∞ control problem, a suitable objective function is

f(ϑ) = γn (7.98)

where n ≥ 1 is a power constant. Referring to Section 7.4, we determine the
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equality constraints as

g1(ϑ) =
(
F −G2E

−1
1 J̄†

12H̄1

)†
X +X

(
F −G2E

−1
1 J̄†

12H̄1

)

+X
(
Ḡ1Ḡ

†
1 −G2E

−1
1 G†

2

)
X + H̄†

1

(
I − J̄12E

−1
1 J̄†

12

)
H̄1 = 0;

g2(ϑ) =
(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)†
X̂ + X̂

(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)

+ X̂
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X̂ + Ĥ†

1

(
I − Ĵ12Ê

−1
1 Ĵ†

12

)
Ĥ1 = 0;

g3(ϑ) =
(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)
Ŷ + Ŷ

(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)†

+ Ŷ
(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
Ŷ + Ĝ1

(
I − Ĵ†

21Ê
−1
2 Ĵ21

)
Ĝ†

1 = 0 (7.99)

and the inequality constraints as

h1(ϑ) = −E1 < 0; h2(ϑ) = −X < 0;

h3(ϑ) = ŇŇ † − I < 0; h4(ϑ) = −Ê1 < 0;

h5(ϑ) = −Ê2 < 0; h6(ϑ) = −X̂ < 0;

h7(ϑ) = −Ŷ < 0; h8(ϑ) = ρ
(
X̂Ŷ

)
− 1 < 0;

h9(ϑ) = emax,r (AX) < 0; h10(ϑ) = emax,r (AX̂) < 0;

h11(ϑ) = emax,r (AŶ ) < 0.

(7.100)

Note that ρ(M) and emax,r(M) denote the spectral radius and the largest real

part of the eigenvalues of the matrix M, respectively. Moreover, we define AX ,

AX̂ and AŶ as follows:

AX := F −G2E
−1
1 J̄†

12H̄1 +
(
Ḡ1Ḡ

†
1 −G2E

−1
1 G†

2

)
X;

AX̂ := F̂ − Ĝ2Ê
−1
1 Ĵ†

12Ĥ1 +
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X̂;

AŶ := F̂ − Ĝ1Ĵ
†
21Ê

−1
2 Ĥ2 + Ŷ

(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
. (7.101)

We employ the equality and inequality constraints defined in (7.99) and

(7.100) to examine the fitness of each candidate solution ϑ. Thus, the fitness

evaluation proceeds as follows:

1. Compute the eigenvalues of E1 to verify if h1(ϑ) is satisfied.

2. Evaluate g1(ϑ) to obtain a solution X to the Riccati equation in (7.68).
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3. Verify if X is a stabilizing positive definite solution through the evaluation

of h2(ϑ) and h9(ϑ).

4. Compute the eigenvalues of (ŇŇ † − I), Ê1 and Ê2 to verify if h3(ϑ), h4(ϑ)

and h5(ϑ) are satisfied.

5. Evaluate g2(ϑ) and g3(ϑ) to obtain solutions X̂ and Ŷ to the Riccati equa-

tions in (7.93).

6. Verify if X̂ and Ŷ are stabilizing positive definite solutions through the

evaluation of h6(ϑ), h7(ϑ), h10(ϑ) and h11(ϑ).

7. Compute the spectral radius of the product X̂Ŷ to verify if h8(ϑ) is satisfied.

8. Evaluate the objective function f(ϑ) in (7.98).

Having the fitness test routine above, we also define a set of penalty functions

corresponding to the violation of each constraint in (7.99) and (7.100). That is,

p1(ϑ) = |emin(E1)|s1 ; p2(ϑ) = ρ(CX)s2 ;

p3(ϑ) = |emin(X)|s3 ; p4(ϑ) = emax,r (AX)s4 ;

p5(ϑ) = emax(ŇŇ
† − I)s5 ; p6(ϑ) = |emin(Ê1)|s6 ;

p7(ϑ) = |emin(Ê2)|s7 ; p8(ϑ) = ρ(CX̂)s8 ;

p9(ϑ) = ρ(CŶ )s9 ; p10(ϑ) = |emin(X̂)|s10 ;
p11(ϑ) = |emin(Ŷ )|s11 ; p12(ϑ) = emax,r (AX̂)s12 ;

p13(ϑ) = emax,r (AŶ )s13 ; p14(ϑ) = (ρ(X̂Ŷ ) − 1)s14 ;

p15(ϑ) = f(ϑ)

(7.102)

where sr ≥ 1 for r = 1, 2, . . . , 14. Here, emin(M) and emax(M) denote the smallest

and the largest eigenvalue of a Hermitian matrix M, respectively. If the matrix

M is required to be positive definite, we assign |emin(M)|sr as a penalty. This is

because when this requirement is violated, the matrix M can be either negative

(semi)definite or indefinite. Moreover, we also define CX , CX̂ and CŶ as follows:

CX := H̄†
1

(
I − J̄12E

−1
1 J̄†

12

)
H̄1;

CX̂ := Ĥ†
1

(
I − Ĵ12Ê

−1
1 Ĵ†

12

)
Ĥ1;

CŶ := Ĝ1

(
I − Ĵ†

21Ê
−1
2 Ĵ21

)
Ĝ†

1. (7.103)
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7.6 An Illustrative Example

To demonstrate the coherent quantum controller design method presented in

Section 7.4, we consider an example of designing a strict bounded real coherent

quantum controller for a first order optical cavity; see [70] and [73]. That is,

da(t) = −g
2
a(t) dt−

√
k1 dv(t) −

√
k2 dw(t) −

√
k3 du(t);

dz(t) =
√
k3 a(t) dt+ du(t);

dy(t) =
√
k2 a(t) dt+ dw(t) (7.104)

where k1 = 2.25, k2 = 1.00, k3 = 1.00 and g = k1 + k2 + k3. We assume

that the optical cavity (7.104) does not have an uncertainty term. If we follow

the quantum controller design algorithms proposed in [70] and [73], we do not

necessarily obtain a stable and strict bounded real coherent quantum controller.

In particular, for this example, we have that k1 > k2 +k3, but
√
k1 <

√
k2 +

√
k3.

This implies that the standard quantum H∞ controller will not be physically

realizable as has been pointed out in the example of [73].

Applying the DE approach to solve this control problem, we obtain γ = 0.9132

and τ1 = 1.6641 (corresponding to an additional artificial uncertainty). Then,

the coherent quantum controller is obtained as

Fc = −11.0014; Gc = −0.0118; Hc = −0.4566 (7.105)

with the corresponding H∞ norm

‖Hc(sI − Fc)
−1Gc‖∞ = 0.0005. (7.106)

Thus, it is clear that the coherent quantum controller (7.105) is physically reali-

zable because it is stable and strict bounded real.

From Lemma 7.4, we know that there exists Xc > 0 such that

F †
cXc +XcFc +XcGcG

†
cXc +H†

cHc = 0. (7.107)

That is, Xc = 0.0095, which can be used to determine Gc0 and Hc2 as in (7.35).
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Figure 7.2: Closed loop quantum system.

Thus, for the quantum controller (7.105), we have that

Gc0 := −X−1
c H†

c = 48.1908; Hc2 := −G†
cXc = 0.0001 (7.108)

such that the quantum controller is physically realizable (see Definition 7.6) and

the conditions in (7.19) hold for J = I. Meanwhile, we set Gc1 = 0 and Hc1 = 0

as they are not required in the realization of a coherent quantum controller; see

Remark 7.1.

Now, using (7.105) and (7.108), we can apply the algorithm presented in [77]

to physically construct our coherent quantum controller as a generalized 2-mirror

cavity because it has two inputs and two outputs. That is,

F̄c = −11.0014; Ḡc =
[
4.6907 −0.0011

]
; H̄c =

[
−4.6907

0.0011

]
(7.109)

which can be constructed using passive optical devices such as optical cavities,

beam-splitters and phase shifters; see [77]. Interconnecting the coherent quantum

controller (7.109) with the quantum system (7.104), we obtain a closed loop

quantum system as shown in Figure 7.2 with kc1 = (4.6907)2, kc2 = (0.0011)2

and F̄c = −1
2
(kc1 + kc2).
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7.7 Conclusions

We have presented a systematic method to synthesize a physically realizable

coherent quantum robust H∞ controller for a class of linear complex quantum

stochastic systems with norm-bounded structured uncertainties. The quantum

controller is required to be stable and strict bounded real. The main idea of

our approach is to introduce an additional uncertainty, which is a real unknown

scalar uncertain parameter, in order to form an artificial uncertain quantum

system, based on which the desired quantum controller is designed. However, the

additional uncertainty introduces some additional conservatism to the controller

design process.

As our method involves a particular additional uncertainty, we only provide

a sufficient condition, which guarantees the resulting quantum controller to be

physically realizable and solves the original quantum control problem. The aim of

applying such a quantum controller to the open loop uncertain quantum system

is to achieve a strict bounded real closed loop uncertain quantum system with

a specified disturbance attenuation level. The solution to this quantum control

problem is then given in terms of the stabilizing solutions to the parameterized

complex algebraic Riccati equations. Also, through an example involving the

control of a first order quantum optical cavity, we have shown that our method

effectively leads to a strict bounded real coherent quantum controller as required.
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Chapter 8

Decentralized Coherent Quantum

Robust H∞ Control

8.1 Introduction

Extending the ideas in Chapter 4 and Chapter 5 to quantum feedback control

systems, we present two systematic methods to synthesize decentralized quantum

robust H∞ controllers for a large-scale uncertain quantum system. The decen-

tralized quantum controllers are defined in terms of the stabilizing solutions to

complex algebraic Riccati equations. In these methods, the structure of the

quantum plant uncertainties is exploited by assigning a scaling constant for each

one of them. We assume that each structured uncertainty is an unknown linear

time-invariant complex quantum system, which satisfies a norm-bound condition.

Moreover, the H∞ control objective is to achieve a robustly stable closed loop

uncertain quantum system with a specified disturbance attenuation level.

A large-scale system in real-world applications is naturally comprised of in-

terconnected subsystems. To construct a decentralized feedback controller for

this system, we often find that the interconnections between subsystems are

simply considered as uncertainties in addition to the plant uncertainties; e.g.,

see [195, 212, 322]. However, in practice, we may have partial or full knowledge

on the interconnections, and hence, in our approach, we do not treat them as un-

certainties. This will allow us to exploit the interconnections in order to enhance

the performance of the decentralized controller; e.g., see [166].

The main idea of our approach is to treat as additional uncertainties, the ne-
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glected off-diagonal blocks of the transfer function matrix of a non-decentralized

linear coherent quantum H∞ controller; see [166]. To proceed with this idea, the

non-decentralized quantum controller is required to be stable, which is immedi-

ately satisfied if the quantum controller is physically realizable; e.g., see [70, 73].

Thus, the proposed methods lead to a physically realizable decentralized quan-

tum controller, which is robust against both quantum plant uncertainties and the

additional uncertainties.

Physical realizability is an essential concern when synthesizing a quantum con-

troller as it has to exhibit meaningful dynamics according to quantum mechanical

principles; e.g., see [70,72,73]. In the first method, we do not immediately obtain

a physically realizable decentralized quantum controller and the physical realiz-

ability of the controller must be checked before it can be implemented. This is

because a physical realizability condition is not directly included in the quan-

tum controller design algorithm. On the other hand, the second method always

leads to a physically realizable decentralized quantum controller as we force the

controller to be stable and strict bounded real using the approach in Chapter 7.

However, the latter method inevitably leads to a more conservative decentralized

quantum controller due to the use of an artificial uncertainty to ensure the phys-

ical realizability of the controller. This method then involves more constraints

and design parameters than the first method, and therefore, may need more

computational time to solve the quantum control problem being considered.

Since scaling constants are introduced for all uncertainties, the decentralized

quantum control problem we consider then involves nonconvex nonlinear con-

straints. It is often difficult to find an optimal solution to this problem in the

presence of such constraints. Thus, to determine the required design parameters,

we apply an evolutionary optimization method, namely the differential evolution

(DE) algorithm, as presented in Chapter 2. This approach has also been used

in the previous chapters. Two examples are presented to show that the DE ap-

proach is applicable to synthesize a decentralized quantum H∞ controller for a

quantum optical system. In these examples, we also apply an algorithm in [77] to

show that an n-th order decentralized quantum controller with m inputs can be

physically constructed as a cascade of n generalized first order m-mirror optical

cavities. This is an m-input-m-output interconnection, which consists only of

passive optical devices such as optical cavities, beam splitters and phase shifters.
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8.2 Problem Statement

In this section, we describe the decentralized quantum control problem under

consideration along with the quantum H∞ control objective. We also define the

notion of physical realizability for a decentralized quantum H∞ controller and

necessary notation for the controller synthesis algorithm presented in subsequent

sections. As both complex and operator matrices are involved in our derivations,

we then use the following notation: M = [mjk], M
∗ = [m∗

jk], M
T = [mkj] and

M † = [m∗
kj] = (M∗)T to denote the operations as explained in Section 6.1.

8.2.1 Uncertain linear complex quantum system

We are concerned with a class of large-scale linear complex quantum stochastic

systems with structured uncertainties, which are described in terms of linear

quantum stochastic differential equations (QSDEs) as follows:

da(t) = F a(t)dt+G0 dv(t) +G1 dw(t) +G2 du(t) +
k∑

l=1

G3,l dξl(t); a(0) = a0;

dz(t) = H1 a(t)dt+ J12 du(t);

dζ1(t) = P1 a(t)dt+Q1 du(t);

...

dζk(t) = Pk a(t)dt+Qk du(t);

dy(t) = H2 a(t)dt+ J20 dv(t) + J21 dw(t) (8.1)

where a is an n×1 vector of the plant annihilation operators; v is an nv×1 vector

of quantum noise; w is an nw×1 vector of disturbance inputs; u is an nu×1 vector

of control inputs; ξl is an nql
× 1 vector of uncertainty inputs (for l = 1, 2, . . . , k);

ζl is an nsl
× 1 vector of uncertainty outputs (for l = 1, 2, . . . , k); z is an nz × 1

vector of controlled outputs; and y is an ny × 1 vector of ’measurement’ outputs.

All the coefficient matrices in (8.1) are complex matrices, which have compatible

dimensions corresponding to the dimensions of the operators and signals in (8.1);

see [70,72,73].

The disturbance input w(t) and the control input u(t) in (8.1) are represented
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respectively as follows:

dw(t) = βw(t) dt+ dν(t); (8.2)

du(t) = βu(t) dt+ dµ(t) (8.3)

where βw(t) and βu(t) are adapted processes; and dν(t) and dµ(t) are the noise

parts of (8.2) and (8.3). Meanwhile, dv(t) represents an additional quantum

noise in the plant. The quantum noises dv(t), dν(t) and dµ(t) have corresponding

Hermitian Ito matrices Fv, Fν and Fµ, and Hermitian commutation matrices Tv,

Tν and Tµ, which are assumed to be

Fv = Fν = Fµ = I; (8.4)

Tv = Tν = Tµ = I. (8.5)

The l-th structured uncertainty in (8.1) is modeled as an additional unknown

linear time-invariant complex quantum stochastic system:

dãl(t) = Al ãl(t) dt+Bl dζl(t); ãl(0) = ã0,l;

dξl(t) = Cl ãl(t) dt+Dl dζl(t) (8.6)

with Al Hurwitz and transfer function matrix

∆l(s) = Cl(sI − Al)
−1Bl +Dl (8.7)

which is required to satisfy

‖∆l(s)‖∞ ≤ 1 (8.8)

for all l = 1, 2, . . . , k.

We assume that the large-scale quantum system (8.1) consists of p intercon-

nected linear quantum subsystems. Thus, the output dy(t) can also be decom-

posed into p components as follows:

dy(t) =




dy1(t)

dy2(t)
...

dyp(t)



. (8.9)
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If we wish to control the large-scale quantum system (8.1) with a decentralized

quantum controller, the decentralized control input dū(t) also has p components.

That is,

dū(t) =




dū1(t)

dū2(t)
...

dūp(t)



. (8.10)

Here, dūj(t) is an nuj
× 1 vector of control inputs, which is only dependent on

the corresponding dyj(t) for j = 1, 2, . . . , p. In this case, we do not make any

assumption on the structure of the quantum system matrices F , G2 and H2 in

(8.1). Thus, a decentralized quantum controller can be written as

dc̄j(t) = Fcj
c̄j(t)dt+Gwc0,j

dwc0,j
(t) +Gwc1,j

dwc1,j
(t) +Gcj

dyj(t); c̄j(0) = c̄0,j;

dūj(t) = Hcj
c̄j(t)dt+ dwc0,j

(t) (8.11)

where c̄j is an n× 1 vector of the annihilation operators, and wc0,j
and wc1,j

are

non-commutative quantum Wiener processes. The Ito matrices and commutation

matrices of wc0,j
and wc1,j

are respectively assumed to be

Fwc0,j
= Fwc1,j

= I;

Twc0,j
= Twc1,j

= I. (8.12)

At time t = 0, it is also assumed that a(0) and ã(0) commute with c̄j(0). More-

over, Fcj
is Hurwitz and the decentralized quantum controller (8.11) has a transfer

function matrix

Tjj(s) = Hcj
(sI − Fcj

)−1Gcj
. (8.13)

8.2.2 Physical realizability and the H∞ control objective

As mentioned in Chapter 7, the realization {Fcj
, Gcj

, Hcj
} of the decentralized

quantum controller (8.11) cannot be arbitrarily chosen because it does not neces-

sarily represent a physically realizable quantum dynamical system; see [70,72,73].

Thus, a physical realizability condition for the decentralized quantum controller

(8.11) is presented in the following definition and lemma.
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Definition 8.1. (Physical realizability of a decentralized quantum controller; see

[73, Definition 7.1]) The matrices Fcj
, Gcj

and Hcj
are said to define a physically

realizable controller of the form (8.11) if there exist matrices Gwc0,j
, Gwc1,j

, Hc1,j

and Hc2,j
such that

dc̄j(t) = Fcj
c̄j(t)dt+Gwc0,j

dwc0,j
(t) +Gwc1,j

dwc1,j
(t) +Gcj

dyj(t);


dūj(t)

dū1,j(t)

dū2,j(t)


 =



Hcj

Hc1,j

Hc2,j


 c̄j(t)dt+



dwc0,j

(t)

dwc1,j
(t)

dyj(t)


 ; c̄j(0) = c̄0,j (8.14)

is physically realizable according to Definition 7.1 when

Tyj
:= J20,jTvj

J†
20,j + J21,jTνj

J†
21,j = I (8.15)

for all j = 1, 2, . . . , p. Note that J20,j, J21,j, Tvj
and Tνj

are the j-th partition of

J20, J21, Tv and Tν , which follow the partition of dy(t) in (8.9).

Lemma 8.1. (see [73, Theorem 7.2]) Suppose that {Fcj
, Gcj

, Hcj
} is a minimal

realization of the decentralized quantum controller (8.11). Then, it is physically

realizable if and only if Fcj
is Hurwitz and ‖Tjj(s)‖∞ ≤ 1. This implies that the

decentralized quantum controller (8.11) is bounded real.

Remark 8.1. (see [73, Theorem 7.2]) The matrices Gwc1,j
and Hc1,j

can be set

to zero as the exogenous quantum noise dwc1,j
is not needed in the realization of

a decentralized quantum controller of the form (8.11).

Applying the decentralized quantum controller (8.11) to the large-scale un-

certain quantum system (8.1), (8.8), we obtain a closed loop uncertain quantum

system such that the H∞ control objective:

∫ t

0

〈
z(s)†z(s) + z(s)T z(s)∗ + ε

(
η̄(s)†η̄(s) + η̄(s)T η̄(s)∗

)〉
ds

≤ (γ2 − ε2)

∫ t

0

〈
βw(s)†βw(s) + βw(s)Tβw(s)∗

〉
ds+ π1 + π2t (8.16)

is satisfied for some real constants ε, π1, π2 > 0 with

dη̄(t) =
[
da(t)T dc̄1(t)

T · · · dc̄p(t)
T dã1(t)

T · · · dãk(t)
T
]T

. (8.17)
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8.2.3 A special case of quantum robust H∞ control

The decentralized quantum controller (8.11) can also be considered as a special

case of a non-decentralized quantum controller of the form

dc(t) = Fc c(t)dt+Gwc0
dwc0(t) +Gwc1

dwc1(t) +Gc dy(t); c(0) = c0;

du(t) = Hc c(t)dt+ dwc0(t) (8.18)

where Fc is Hurwitz and which has a transfer function matrix

T (s) = Hc(sI − Fc)
−1Gc (8.19)

with a block-diagonal structure. This special case motivates us to construct the

decentralized quantum controller (8.11) based on the general non-decentralized

quantum controller (8.18) designed using the algorithm in [73].

Suppose that the general non-decentralized quantum controller (8.18) has a

transfer function matrix T (s) as in (8.19) and T (s) is partitioned according to

the partition of dū(t) and dy(t) in (8.10) and (8.9):

T (s) =




T11(s) T12(s) . . . T1p(s)

T21(s) T22(s) . . . T2p(s)
...

...
. . .

...

Tp1(s) Tp2(s) . . . Tpp(s)



. (8.20)

Then, the transfer function matrix of the decentralized quantum controller (8.11)

can be formed by taking only the block-diagonal parts of T (s): (see [166])

T̄ (s) =




T11(s) 0 . . . 0

0 T22(s) . . . 0
...

...
. . .

...

0 0 . . . Tpp(s)



. (8.21)

As the off-diagonal blocks of T (s) are not included in T̄ (s), they are considered

as additional uncertainties in the large-scale uncertain quantum system (8.1),

(8.8). This is precisely the main idea of our approach where we do not treat

the interconnections between quantum subsystems as uncertainties, but rather
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the neglected off-diagonal blocks of T (s); e.g., see [166]. Thus, a sequence of

additional uncertainty transfer function matrices can be defined as follows:

∆̄1(s) :=
[
T12(s) T13(s) . . . T1p(s)

]
;

∆̄2(s) :=
[
T21(s) T23(s) . . . T2p(s)

]
;

...

∆̄p(s) :=
[
Tp1(s) Tp2(s) . . . Tp(p−1)(s)

]
. (8.22)

Note that ∆̄j(s) (j = 1, 2, . . . , p) is stable because Fc is Hurwitz. The j-th

additional uncertainty input dξ̄j(t) are then defined as

dāj(t) = Āj āj(t)dt+ B̄j dζ̄j(t);

dξ̄j(t) = −C̄j āj(t)dt (8.23)

where Āj = Fc, B̄j and C̄j are sub-matrices of Gc and Hc in (8.18), respectively,

for j = 1, 2, . . . , p. Also, the additional uncertainty output dζ̄j(t) are defined as

dζ̄1(t) =
[
dy2(t)

T dy3(t)
T · · · dyp(t)

T
]T

= M1a(t)dt+N20,1dv(t) +N21,1dw(t);

dζ̄2(t) =
[
dy1(t)

T dy3(t)
T · · · dyp(t)

T
]T

= M2a(t)dt+N20,2dv(t) +N21,2dw(t);

...

dζ̄p(t) =
[
dy1(t)

T dy2(t)
T · · · dy(p−1)(t)

T
]T

= Mpa(t)dt+N20,pdv(t) +N21,pdw(t). (8.24)

Here, M1,M2, . . . ,Mp are sub-matrices of matrix H2; N20,1, N20,2, . . . , N20,p are

sub-matrices of matrix J20; and N21,1, N21,2, . . . , N21,p are sub-matrices of matrix

J21. Then, we can rewrite the decentralized control input dū(t) in (8.10) as

dū(t) = du(t) +

p∑

j=1

Lj dξ̄j(t) (8.25)
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where

L1 =

[
Inu1×nu1

0ñu1×nu1

]
; Lj =




0n̄u(j−1)
×nuj

Inuj
×nuj

0ñuj
×nuj


 ; Lp =

[
0n̄u(p−1)

×nup

Inup×nup

]
(8.26)

for j = 2, 3, . . . , p − 1. Note that nu =
∑p

j=1 nuj
; n̄uj

=
∑j

d=1 nud
; and ñuj

=

nu − n̄uj
for j = 1, 2, . . . , p.

8.2.4 An equivalent uncertain linear quantum system

If we apply the decentralized control input dū(t) to the large-scale uncertain

quantum system (8.1), (8.8), we will obtain the same closed loop system as if

we apply the non-decentralized control input du(t) to the following equivalent

uncertain linear quantum system:

da(t) = Fa(t)dt+G0dv(t) +G1dw(t) +G2du(t) +
k∑

l=1

G3,ldξl(t) +

p∑

j=1

G2Ljdξ̄j(t);

dz(t) = H1 a(t)dt+ J12 du(t) +

p∑

j=1

J12Lj dξ̄j(t);

dζ1(t) = P1 a(t)dt+Q1 du(t) +

p∑

j=1

Q1Lj dξ̄j(t);

...

dζk(t) = Pk a(t)dt+Qk du(t) +

p∑

j=1

QkLj dξ̄j(t);

dy(t) = H2 a(t)dt+ J20 dv(t) + J21 dw(t) (8.27)

together with dζ̄1(t), . . . , dζ̄p(t) as defined in (8.24) and an initial condition a(0) =

a0. Moreover, for the j-th additional uncertainty ∆̄j(s) as given in (8.22), we

define a constant βj > 0 so that

‖∆̄j(s)‖2
∞ ≤ βj, ∀j = 1, 2, . . . , p. (8.28)

If we apply a coherent quantum robust H∞ controller of the form (8.18)
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to the equivalent uncertain quantum system (8.27), (8.24), (8.8), (8.28), the

corresponding H∞ control objective is then given as follows:

∫ t

0

〈
z(s)†z(s) + z(s)T z(s)∗ + ε

(
η̃(s)†η̃(s) + η̃(s)T η̃(s)∗

)〉
ds

≤ (γ2 − ε2)

∫ t

0

〈
βw(s)†βw(s) + βw(s)Tβw(s)∗

〉
ds+ π1 + π2t (8.29)

where ε, π1, π2 > 0 are real constants and

dη̃(t) =
[
da(t)T dc(t)T dã1(t)

T · · · dãk(t)
T dā1(t)

T · · · dāp(t)
T
]T

.

(8.30)

Here, āj(t) is a vector of the annihilation operators corresponding to the addi-

tional uncertainties defined in (8.23) for j = 1, 2, . . . , p.

8.3 Ordinary Decentralized Quantum H∞ Con-

troller

In this section, we present an algorithm to synthesize a decentralized quantum

H∞ controller as formulated in Section 8.2. Here, we only provide sufficient

conditions because particular additional uncertainties in (8.28) are involved in

our approach. To compute required design parameters, we apply an evolutionary

optimization method, namely the differential evolution (DE) algorithm. Also, an

example is considered to demonstrate the proposed algorithm.

8.3.1 Synthesis algorithm

Referring to Lemma 7.8, we then introduce two sets of scaling constants τ1 >

0, . . . , τk > 0 and δ1 > 0, . . . , δp > 0 corresponding to the structured uncertainties

(8.8) and the additional uncertainties (8.28), respectively. Thus, we can rewrite

the uncertain quantum system (8.27), (8.24), (8.8), (8.28) as

da(t) = F a(t)dt+G0 dv(t) + G̃1 dw̃(t) +G2 du(t); a(0) = a0;

dz̃(t) = H̃1 a(t)dt+ J̃10 dv(t) + J̃11 dw̃(t) + J̃12 du(t);

dy(t) = H2 a(t)dt+ J20 dv(t) + J̃21 dw̃(t) (8.31)
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where dw̃(t) = β̃w(t)dt+ dν̃(t);

dw̃(t) =




γ dw(t)
√
τ1 dξ1(t)

...
√
τk dξk(t)√
δ1 dξ̄1(t)

...√
δp dξ̄p(t)




; dz̃(t) =




dz(t)
√
τ1 dζ1(t)

...
√
τk dζk(t)√
δ1β1 dζ̄1(t)

...√
δpβp dζ̄p(t)




;

G̃1 =
[
γ−1G1

√
τ1

−1G3,1 · · · √
τk

−1G3,k

√
δ1

−1
G2L1 · · ·

√
δp

−1
G2Lp

]
;

H̃1 =




H1√
τ1 P1

...
√
τk Pk√
δ1β1M1

...√
δpβpMp




; J̃10 =




0

0
...

0√
δ1β1N20,1

...√
δpβpN20,p




; J̃12 =




J12√
τ1Q1

...
√
τk Qk

0
...

0




;

J̃11 =




0 0 · · · 0
√
δ1

−1
J12L1 · · ·

√
δp

−1
J12Lp

0 0 · · · 0
√
τ1/δ1Q1L1 · · ·

√
τ1/δpQ1Lp

...
...

...
...

...

0 0 · · · 0
√
τk/δ1QkL1 · · ·

√
τk/δpQkLp

γ−1
√
δ1β1N21,1 0 · · · 0 0 · · · 0

...
...

...
...

...

γ−1
√
δpβpN21,p 0 · · · 0 0 · · · 0




;

J̃21 =
[
γ−1J21 0 · · · 0 0 · · · 0

]
. (8.32)

If we apply a coherent quantum robust H∞ controller of the form (8.18) to

the quantum system (8.31), the corresponding H∞ control objective is

∫ t

0

〈
z̃(s)†z̃(s) + z̃(s)T z̃(s)∗ + ε

(
η̃(s)†η̃(s) + η̃(s)T η̃(s)∗

)〉
ds

≤ (1 − ε2)

∫ t

0

〈
β̃w(s)†β̃w(s) + β̃w(s)T β̃w(s)∗

〉
ds+ π1 + π2t (8.33)
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where ε, π1, π2 > 0 are real constants. Moreover, since the QSDEs (8.31) are not

in a standard H∞ form, we apply a loop shifting transformation to eliminate the

J̃11 term from (8.31); e.g., see [16, Sections 4.5.1 and 5.5.1] and [18, Section 17.2].

Thus, it is necessary to impose the following assumption:

Assumption 8.1. Given constants τ1 > 0, . . . , τk > 0, δ1 > 0, . . . , δp > 0,

β1 > 0, . . . , βp > 0, the uncertain quantum system (8.27), (8.24), (8.8), (8.28) is

assumed to be such that J̃11J̃
†
11 < I.

Now, we can define

Φ := I − J̃†
11J̃11 > 0; Φ̃ := I − J̃11J̃

†
11 > 0 (8.34)

and also

dŵ(t) := Φ
1
2dw̃(t) − Φ− 1

2 J̃†
11

[
H̃1 a(t) dt+ J̃12 du(t)

]
;

dẑ(t) := Φ̃− 1
2

[
H̃1 a(t) dt+ J̃12 du(t)

]
. (8.35)

Using (8.35), it is straightforward to verify that

dw̃(t) = Φ− 1
2dŵ(t) + Φ−1J̃†

11

[
H̃1 a(t) dt+ J̃12 du(t)

]
;

‖w̃(t)‖2
2 − ‖z̃(t)‖2

2 ≡ ‖ŵ(t)‖2
2 − ‖ẑ(t)‖2

2 . (8.36)

Therefore, we can rewrite the QSDEs (8.31) as

da(t) = F̂ a(t)dt+G0 dv(t) + Ĝ1 dŵ(t) + Ĝ2 du(t); a(0) = a0;

dẑ(t) = Ĥ1 a(t)dt+ Ĵ12 du(t);

dy(t) = Ĥ2 a(t)dt+ J20 dv(t) + Ĵ21 dŵ(t) + Ĵ22 du(t) (8.37)

where dŵ(t) = β̂w(t)dt+ dν̂(t);

F̂ = F + G̃1J̃
†
11Φ̃

−1H̃1; Ĝ1 = G̃1Φ
− 1

2 ;

Ĝ2 = G2 + G̃1J̃
†
11Φ̃

−1J̃12; Ĥ1 = Φ̃− 1
2 H̃1;

Ĥ2 = H2 + J̃21J̃
†
11Φ̃

−1H̃1; Ĵ12 = Φ̃− 1
2 J̃12;

Ĵ22 = J̃21J̃
†
11Φ̃

−1J̃12 Ĵ21 = J̃21Φ
− 1

2 .

(8.38)

Note that the J̃10 term is automatically eliminated when we apply the loop shift-
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ing transformation to the quantum system (8.31). Furthermore, defining

dŷ(t) := dy(t) − Ĵ22 du(t), (8.39)

we can rewrite (8.37) as

da(t) = F̂ a(t)dt+G0 dv(t) + Ĝ1 dŵ(t) + Ĝ2 du(t); a(0) = a0;

dẑ(t) = Ĥ1 a(t)dt+ Ĵ12 du(t);

dŷ(t) = Ĥ2 a(t)dt+ J20 dv(t) + Ĵ21 dŵ(t). (8.40)

The H∞ control objective corresponding to the quantum system (8.40) is as

follows:

∫ t

0

〈
ẑ(s)†ẑ(s) + ẑ(s)T ẑ(s)∗ + ε

(
η̃(s)†η̃(s) + η̃(s)T η̃(s)∗

)〉
ds

≤ (1 − ε2)

∫ t

0

〈
β̂w(s)†β̂w(s) + β̂w(s)T β̂w(s)∗

〉
ds+ π1 + π2t (8.41)

where ε, π1, π2 > 0 are real constants.

The solution to the coherent quantum H∞ control problem for the quan-

tum system (8.40) involves the solutions to the parameterized complex algebraic

Riccati equations:

(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)†
X +X

(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)

+X
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X + Ĥ†

1

(
I − Ĵ12Ê

−1
1 Ĵ†

12

)
Ĥ1 = 0 ;

(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)
Y + Y

(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)†

+ Y
(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
Y + Ĝ1

(
I − Ĵ†

21Ê
−1
2 Ĵ21

)
Ĝ†

1 = 0 (8.42)

such that the following conditions hold:

1. F̂ − Ĝ2Ê
−1
1 Ĵ†

12Ĥ1 +
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X is Hurwitz;

2. F̂ − Ĝ1Ĵ
†
21Ê

−1
2 Ĥ2 + Y

(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
is Hurwitz;

3. The spectral radius ρ(XY ) of matrix XY is strictly less than one.

To solve the Riccati equations (8.42), we impose the following assumption:
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Assumption 8.2. Given constants τ1 > 0, . . . , τk > 0, δ1 > 0, . . . , δp > 0,

β1 > 0, . . . , βp > 0, the equivalent uncertain quantum system (8.27), (8.24),

(8.8), (8.28) is assumed to be such that Ê1 = Ĵ†
12Ĵ12 > 0 and Ê2 = Ĵ21Ĵ

†
21 > 0.

Theorem 8.1. Let β1 > 0, . . . , βp > 0 be given constants and suppose that there

exist τ1 > 0, . . . , τk > 0, δ1 > 0, . . . , δp > 0 such that Assumption 8.1 and

Assumption 8.2 hold, and the complex algebraic Riccati equations (8.42) have

stabilizing solutions X ≥ 0 and Y ≥ 0 such that the spectral radius ρ(XY ) < 1.

Then, the closed loop uncertain quantum system obtained by applying the quantum

controller (8.18) with

Fc = F̂c −GcĴ22Hc;

F̂c = F̂ + Ĝ2Hc −GcĤ2 +
(
Ĝ1 −GcĴ21

)
Ĝ†

1X;

Gc = (I − Y X)−1
(
Y Ĥ†

2 + Ĝ1Ĵ
†
21

)
E−1

2 ;

Hc = −Ê−1
1

(
Ĝ†

2X + Ĵ†
12Ĥ1

)
(8.43)

to the equivalent uncertain quantum system (8.27), (8.24), (8.8), (8.28) is strictly

bounded real with disturbance attenuation γ > 0.

Proof. It follows from a loop shifting arguments in the classical H∞ control

theory (e.g., see [16, Sections 4.5.1 and 5.5.1] and [18, Section 17.2]) that the H∞

quantum control problem (8.31), (8.33) has a solution if and only if the complex

Riccati equations (8.42) have stabilizing solutions X ≥ 0 and Y ≥ 0 such that

ρ(XY ) < 1. Moreover, a coherent quantum controller of the form (8.18) solving

the H∞ quantum control problem (8.31), (8.33) is defined by (8.43). Thus, if the

conditions of the theorem are satisfied, it follows from the arguments in the proofs

of Theorem 4.1 in [187] and of Theorem 7.1 [73] (Lemma 7.6) that the closed loop

uncertain quantum system obtained by applying the quantum controller (8.18),

(8.43) to the equivalent uncertain quantum system (8.27), (8.24), (8.8), (8.28) is

strictly bounded real with disturbance attenuation γ > 0.

Theorem 8.2. Let β1 > 0, . . . , βp > 0 be given constants and suppose that there

exist τ1 > 0, . . . , τk > 0, δ1 > 0, . . . , δp > 0 such that Assumption 8.1 and Assump-

tion 8.2 hold, and the complex algebraic Riccati equations (8.42) have stabilizing

solutions X ≥ 0 and Y ≥ 0 such that the spectral radius ρ(XY ) < 1. Further-

more, suppose that the coherent quantum H∞ controller (8.18), (8.43) is such
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that the transfer function matrices in (8.22) satisfy the norm bounds in (8.28)

and each corresponding decentralized quantum controller (8.11) is physically rea-

lizable. Then, the closed loop uncertain quantum system obtain by applying the

decentralized coherent quantum controller (8.11) to the uncertain quantum system

(8.1), (8.8) is strictly bounded real with disturbance attenuation γ > 0.

Proof. If all conditions of the theorem are satisfied, it then follows from Theorem

8.1 that a closed loop uncertain quantum system obtained by applying the quan-

tum controller (8.18), (8.43) to the equivalent uncertain quantum system (8.27),

(8.24), (8.8), (8.28) is strictly bounded real with disturbance attenuation γ > 0.

We also assume that the quantum controller (8.18), (8.43) is such that the trans-

fer function matrices in (8.22) satisfy the norm bounds in (8.28). Furthermore,

as mentioned in the construction of the equivalent uncertain quantum system

(8.27), (8.24), (8.8), (8.28), a closed loop uncertain quantum system obtained by

applying the decentralized quantum controller (8.11) (for all j = 1, 2, . . . , p) to

the uncertain quantum system (8.1), (8.6) is identical to a closed loop uncertain

quantum system obtained by applying the quantum controller (8.18), (8.43) to

the equivalent uncertain quantum system (8.27), (8.24), (8.8), (8.28) when the

additional uncertainty inputs defined in (8.23) are applied. Hence, it follows that

the decentralized quantum controller (8.11) defined by (8.18), (8.43) is such that

the resulting closed loop uncertain quantum system is strictly bounded real with

disturbance attenuation γ > 0.

8.3.2 A differential evolution approach

The decentralized quantum H∞ controller synthesis algorithm described in sub-

Section 8.3.1 involves nonconvex nonlinear constraints, which are often difficult

to satisfy. Thus, we reformulate the decentralized controller design problem into

a constrained optimization problem, which is then solved using the differential

evolution (DE) algorithm as presented in Chapter 2.

The required design parameters form a vector of decision variables defined as

ϑ :=
[
γ τ1 · · · τk δ1 · · · δp β1 · · · βp

]T

(8.44)

where the dimension of ϑ is k + 2p + 1 and all element of ϑ are positive real

numbers. Then, we define the optimization problem in terms of ϑ as follows:
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Find an optimal solution ϑ⋆ to solve

min
ϑ

f(ϑ) (8.45)

subject to

gj(ϑ) = 0; hk(ϑ) ≤ 0 (8.46)

for j = 1, 2, . . . , a and k = 1, 2, . . . , b. Here, a and b are the total number of

equality and inequality constraints, respectively; and f(ϑ) is an objective function

to be minimized.

A suitable objective function in relation to the decentralized quantum H∞

controller design problem is

f(ϑ) = m0γ
n0 +

p∑

j=1

mjβ
nj

j (8.47)

where m0,mj ≥ 1 are weighting factors and n0, nj ≥ 1 are power constants.

Moreover, the equality constraints are

g1(ϑ) =
(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)†
X +X

(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)

+X
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X + Ĥ†

1

(
I − Ĵ12Ê

−1
1 Ĵ†

12

)
Ĥ1 = 0;

g2(ϑ) =
(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)
Y + Y

(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)†

+ Y
(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
Y + Ĝ1

(
I − Ĵ†

21Ê
−1
2 Ĵ21

)
Ĝ†

1 = 0 (8.48)

and the inequaltiy constraints are

h1(ϑ) = J̃11J̃
†
11 − I < 0; h2(ϑ) = −Ê1 < 0;

h3(ϑ) = −Ê2 < 0; h4(ϑ) = −X < 0;

h5(ϑ) = −Y < 0; h6(ϑ) = ρ (XY ) − 1 < 0;

h7(ϑ) = emax,r (AX) < 0; h8(ϑ) = emax,r (AY ) < 0;

h9(ϑ) = emax,r (Fc) < 0; h10,j(ϑ) = ‖∆̄j(s)‖2
∞ − βj ≤ 0;

h11,j(ϑ) = ‖Tjj(s)‖∞ − 1 ≤ 0

(8.49)

for j = 1, 2, . . . , p. Note that ρ(M) and emax,r(M) denote the spectral radius and

the largest real part of the eigenvalues of the matrix M, respectively. Moreover,
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we define AX and AY as follows:

AX := F̂ − Ĝ2Ê
−1
1 Ĵ†

12Ĥ1 +
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X;

AY := F̂ − Ĝ1Ĵ
†
21Ê

−1
2 Ĥ2 + Y

(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
. (8.50)

Having the equality and inequality constraints in (8.48) and (8.49), we now

develop a fitness test routine to rate the fitness of each candidate solution with

respect to those constraints. This routine proceeds as follows:

1. Compute the eigenvalues of (J̃11J̃
†
11 − I), Ê1 and Ê2 to verify if h1(ϑ), h2(ϑ)

and h3(ϑ) hold.

2. Evaluate g1(ϑ) and g2(ϑ) to obtain solutions X and Y to the Riccati equa-

tions in (8.42).

3. Verify if X and Y are stabilizing positive definite solutions through the

evaluation of h4(ϑ), h5(ϑ), h7(ϑ) and h8(ϑ).

4. Compute the spectral radius of the product XY to verify if h6(ϑ) holds.

5. Evaluate h9(ϑ) to check if Fc is Hurwitz.

6. Evaluate h10,j(ϑ) (for j = 1, 2, . . . , p) to check if the j-th off-diagonal block

of T (s) in (8.20) satisfies the norm bound condition in (8.28).

7. Verify if the H∞ norm ‖Tjj(s)‖∞ of the j-th diagonal block of T (s) is less

than or equal to one by evaluating h11,j(ϑ) (for j = 1, 2, . . . , p).

8. Evaluate the objective function f(ϑ) in (8.47).

Through the fitness test, we acquire information for each candidate solution

about how many constraint violations have occurred and how much penalty has

been incurred. Penalty functions corresponding to the violation of the equality

and inequality constraints in (8.48) and (8.49) are then defined as follows:

p1(ϑ) = emax(J̃11J̃
†
11 − I)s1 ; p2(ϑ) = |emin(Ê1)|s2 ;

p3(ϑ) = |emin(Ê2)|s3 ; p4(ϑ) = ρ(CX)s4 ;

p5(ϑ) = ρ(CY )s5 ; p6(ϑ) = |emin(X)|s6 ;
p7(ϑ) = |emin(Y )|s7 ; p8(ϑ) = emax,r (AX)s8 ;

(8.51)
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p9(ϑ) = emax,r (AY )s9 ; p10(ϑ) = (ρ(XY ) − 1)s10 ;

p11(ϑ) = emax,r (Fc)
s11 ; p12(ϑ) =

∑p
j=1 D

cj

j ;

p13(ϑ) =
∑p

j=1 S
dj

j ; p14(ϑ) = f(ϑ)

(8.52)

where sr ≥ 1 for r = 1, 2, . . . , 11 and cj, dj ≥ 1 for j = 1, 2, . . . , p. Note that

emin(M) and emax(M) denote the smallest and the largest eigenvalue of a Hermi-

tian matrix M, respectively. If the matrix M is required to be positive definite,

we assign |emin(M)|sr as a penalty. This is because when this requirement is vio-

lated, the matrix M can be either negative (semi)definite or indefinite. Moreover,

we define CX , CY , Dj and Sj as follows:

CX := Ĥ†
1

(
I − Ĵ12Ê

−1
1 Ĵ†

12

)
Ĥ1;

CY := Ĝ1

(
I − Ĵ†

21Ê
−1
2 Ĵ21

)
Ĝ†

1;

Dj :=

{
‖∆̄j(s)‖2

∞, if h10,j(ϑ) is violated;

0, otherwise;

Sj :=

{
‖Tjj(s)‖∞, if h11,j(ϑ) is violated;

0, otherwise.
(8.53)

8.3.3 An illustrative example

We present an example to demonstrate the decentralized quantum H∞ controller

design method presented in sub-Section 8.3.1. This example belongs to a class of

quantum optical systems, which only consist of passive elements; e.g., see [70,73].

In this case, we consider a decentralized quantum control problem for a cascaded

linear quantum system of two identical optical cavities as shown in Figure 8.1.

Figure 8.1: A cascaded linear quantum system of two identical optical cavities.
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This quantum system can be represented as

[
da1(t)

da2(t)

]
=

[
−g

2
0

−k1 −g
2

][
a1(t)

a2(t)

]
dt+

[
−
√
k1

−
√
k1

]
dv1(t) +

[
−
√
k2 0

0 −
√
k2

][
dw1(t)

dw2(t)

]

+

[
−
√
k3 0

0 −
√
k3

][
du1(t)

du2(t)

]
;

[
dz1(t)

dz2(t)

]
=

[√
k3 0

0
√
k3

] [
a1(t)

a2(t)

]
dt+

[
1 0

0 1

][
du1(t)

du2(t)

]
;

[
dy1(t)

dy2(t)

]
=

[√
k2 0

0
√
k2

] [
a1(t)

a2(t)

]
dt+

[
1 0

0 1

][
dw1(t)

dw2(t)

]
(8.54)

where k1 = 2.6, k2 = 0.2, k3 = 0.2 and g = k1 + k2 + k3. We assume that the

quantum plant (8.54) is known and hence, does not have uncertainty.

Applying the DE approach presented in sub-Section 8.3.2, we obtain

γ = 0.3381; δ1 = 862.7180; δ2 = 1.0011;

β1 = 0.0001; β2 = 0.1073
(8.55)

which are used to construct a non-decentralized coherent quantum robust H∞

controller defined by the following matrices:

Fc =

[
−1.1287 0.0004

−2.8850 −1.3929

]
; Gc =

[
−0.4472 0.0000

0.0009 −0.4464

]
;

Hc =

[
−0.3830 −0.0009

−0.0009 −0.3969

]
. (8.56)

The matrices Gc and Hc in (8.56) are such that the squared H∞ norm of the

additional uncertainties ∆̄1(s) and ∆̄2(s) (as defined in (8.22)):

‖∆̄1(s)‖2
∞ = 1.0501 × 10−7; ‖∆̄2(s)‖2

∞ = 0.1059 (8.57)

are indeed less than β1 and β2 in (8.55), respectively. Thus, the decentralized

quantum controllers are then defined by

Fc1 = Fc; Gc1 =

[
−0.4472

0.0009

]
; Hc1 =

[
−0.3830 −0.0009

]
; (8.58)
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Fc2 = Fc; Gc2 =

[
0.0000

−0.4464

]
; Hc2 =

[
−0.0009 −0.3969

]
. (8.59)

The decentralized quantum controllers (8.58) and (8.59) are physically realizable

because Fc is Hurwitz with eigenvalues: (see Lemma 8.1)

e1 = −1.1329; e2 = −1.3888 (8.60)

and they also have the H∞ norms as follows:

‖T11(s)‖∞ = 0.1509; ‖T22(s)‖∞ = 0.1271. (8.61)

Following the same steps as in (7.107) and (7.108), we are able to compute Gwc0,1
,

Gwc0,2
, Hc2,1 and Hc2,2 in order to physically realize the decentralized quantum

controllers in (8.58) and (8.59) (see Definition 8.1). That is,

Gwc0,1
=

[
−176.0655

81858.5874

]
; Hc2,1 =

[
0.0291 0.0001

]
;

Gwc0,2
=

[
4.9498

12.6664

]
; Hc2,2 =

[
−0.0290 0.0253

]
. (8.62)

Meanwhile, Gwc1,1
, Hc1,1 and Gwc1,2

, Hc1,2 are set to zero because we do not

need exogenous quantum noise dwc1,1 and dwc1,2 terms in the realization of the

decentralized quantum controllers in (8.58) and (8.59).

A particular physical realization of a class of linear quantum optical systems

has been discussed in [77]. It presents an algorithm to construct a physically rea-

lizable coherent linear quantum feedback controller using purely passive optical

devices such as optical cavities, beam-splitters and phase shifters. Applying the

algorithm in [77], we then obtain the first decentralized quantum controller as

F̄c1 =

[
−1.1329 0

2.5015 −1.3888

]
;

[
Ḡwc0,1

Ḡc1

]
=

[
−1.5052 −0.0115

1.6627 −0.1134

]
;

[
H̄c1

H̄c2,1

]
=

[
1.5052 −1.6627

0.0115 0.1134

]
(8.63)
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and the second decentralized quantum controller as

F̄c2 =

[
−1.1329 0

−2.5036 −1.3888

]
;

[
Ḡwc0,2

Ḡc2

]
=

[
1.5052 −0.0002

1.6632 −0.1064

]
;

[
H̄c2

H̄c2,2

]
=

[
−1.5052 −1.6632

0.0002 0.1064

]
. (8.64)

The realizations in (8.63) and (8.64) imply that each decentralized quantum con-

troller can be physically constructed as a cascade of two first order generalized

2-mirror optical cavities because it has two inputs and two outputs; see [77].

From (8.63), we obtain the parameters of the optical cavities corresponding

to the first decentralized quantum controller as follows:

kc11 = (1.5052)2; kc12 = (0.0115)2;

kc13 = (1.6627)2; kc14 = (0.1134)2
(8.65)

which are shown in Figure 8.2.

Figure 8.2: The first decentralized quantum H∞ controller.

Moreover, from (8.64), the parameters of the optical cavities corresponding

to the second decentralized quantum controller are as follows:

kc21 = (1.5052)2; kc22 = (0.0002)2;

kc23 = (1.6632)2; kc24 = (0.1064)2
(8.66)

which are also shown in Figure 8.3.

Remark 8.2. The physical realizability of the decentralized quantum controllers

(8.58) and (8.59) does not immediately follow from the controller design algo-

rithm in sub-Section 8.3.1. Thus, we always have to verify whether the resulting
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Figure 8.3: The second decentralized quantum H∞ controller.

controllers are physically realizable before they are implemented. In order to

show that this controller design algorithm indeed does not always guarantee the

physical realizability of the decentralized quantum controllers, we then consider

the following example:

Figure 8.4: A cascaded linear quantum system of two optical cavities.

This quantum system can be represented as

[
da1(t)

da2(t)

]
=

[
−g1

2
0

−
√
k1k4 −g2

2

][
a1(t)

a2(t)

]
dt+

[
−
√
k1

−
√
k4

]
dv1(t)

+

[
−
√
k2 0

0 −
√
k5

][
dw1(t)

dw2(t)

]
+

[
−
√
k3 0

0 −
√
k6

][
du1(t)

du2(t)

]
;

[
dz1(t)

dz2(t)

]
=

[√
k3 0

0
√
k6

][
a1(t)

a2(t)

]
dt+

[
1 0

0 1

] [
du1(t)

du2(t)

]
;

[
dy1(t)

dy2(t)

]
=

[√
k2 0

0
√
k5

][
a1(t)

a2(t)

]
dt+

[
1 0

0 1

] [
dw1(t)

dw2(t)

]
(8.67)
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where g1 = k1 + k2 + k3, g2 = k4 + k5 + k6 and the parameter values are

k1 = 2.25; k2 = 2.00; k3 = 4.50;

k4 = 5.50; k5 = 6.00; k6 = 7.50.
(8.68)

Applying the DE approach presented in sub-Section 8.3.2, we then obtain

γ = 0.7496; δ1 = 9.1311; δ2 = 1.0795;

β1 = 0.0613; β2 = 0.1123.
(8.69)

Given these parameters, we can construct a non-decentralized coherent quantum

robust H∞ controller as follows:

Fc =

[
−51.1302 −0.0794

5.8901 −1.8379

]
; Gc =

[
−3.2578 0.0147

0.7632 −2.3851

]
;

Hc =

[
9.2789 −0.0625

−0.0807 −1.2525

]
. (8.70)

The matrices Gc and Hc in (8.70) are such that the squared H∞ norm of the

additional uncertainties ∆̄1(s) and ∆̄2(s) (as defined in (8.22)):

‖∆̄1(s)‖2
∞ = 0.0104; ‖∆̄2(s)‖2

∞ = 0.0665 (8.71)

are less than β1 and β2 in (8.69), respectively. Hence, the decentralized quantum

controllers are as follows:

Fc1 = Fc; Gc1 =

[
−3.2578

0.7632

]
; Hc1 =

[
9.2789 −0.0625

]
;

Fc2 = Fc; Gc2 =

[
0.0147

−2.3851

]
; Hc2 =

[
−0.0807 −1.2525

]
(8.72)

which are stable because Fc is Hurwitz with eigenvalues:

e1 = −51.1207; e2 = −1.8474. (8.73)

Also, their H∞ norms are

‖T11(s)‖∞ = 0.6074; ‖T22(s)‖∞ = 1.6161. (8.74)
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However, {Fc2 , Gc2 , Hc2} is not physically realizable as it has the H∞ norm:

‖T22(s)‖∞ = 1.6161, which implies that it does not satisfy the physical real-

izability condition given in Lemma 8.1.

This observation motivates us to propose another method to synthesize the

decentralized quantum controllers, which are ensured to be physically realizable.

That is, the resulting quantum controllers are always stable and strict bounded

real. This method is then used to solve the same example to show that it is

indeed effective to secure the physical realizability of the quantum controllers.

8.4 Strict Bounded Real Decentralized Quan-

tum H∞ Controller

In Section 8.3, we have presented an algorithm to synthesize a decentralized

quantum H∞ controller. However, this algorithm may not result in a physically

realizable decentralized quantum controller because the physical realizability con-

dition given in Lemma 8.1 is not explicitly imposed on the controller design al-

gorithm. This concern has motivated us to apply the approach of Chapter 7 to

construct a strict bounded real decentralized quantumH∞ controller, which must

always be physically realizable. In this case, we employ an artificial uncertainty to

ensure the physical realizability of the resulting controller. This approach, how-

ever, may result in a more conservative decentralized quantum controller than

the one obtained using the controller design method in Section 8.3 due to the

fact that we introduce the additional artificial uncertainty.

8.4.1 Synthesis algorithm

We refer to Section 7.4 to synthesize a strict bounded real decentralized quantum

H∞ controller based on the equivalent uncertain quantum system (8.27), (8.24),

(8.8), (8.28). For this purpose, we follow the same steps as those in Section 7.4

where an artificial uncertain quantum system is used to obtain a strict bounded

real quantum controller. Thus, using Lemma 7.8, we introduce a set of scaling

constants κ1 > 0, . . . , κk > 0 and α1 > 0, . . . , αp > 0 corresponding to the struc-

tured uncertainties (8.8) and the additional uncertainties (8.28), respectively.
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Then, we can rewrite the QSDEs (8.27), (8.24) as follows:

da(t) = F a(t)dt+G0 dv(t) + Ḡ1 dw̄(t) +G2 du(t); a(0) = a0;

dz̄(t) = H̄1 a(t)dt+ J̄10 dv(t) + J̄11 dw̄(t) + J̄12 du(t);

dy(t) = H2 a(t)dt+ J20 dv(t) + J̄21 dw̄(t) (8.75)

where dw̄(t) = β̄w(t)dt+ dν̄(t);

dw̄ =




γ dw(t)
√
κ1 dξ1(t)

...
√
κk dξk(t)√
α1 dξ̄1(t)

...
√
αp dξ̄p(t)




; dz̄ =




dz(t)
√
κ1 dζ1(t)

...
√
κk dζk(t)√
α1β1 dζ̄1(t)

...√
αpβp dζ̄p(t)




;

Ḡ1 =
[
γ−1G1

√
κ1

−1G3,1 · · · √
κk

−1G3,k
√
α1

−1G2L1 · · · √
αp

−1G2Lp

]
;

H̄1 =




H1√
κ1 P1

...
√
κk Pk√
α1β1M1

...√
αpβpMp




; J̄10 =




0

0
...

0√
α1β1N20,1

...√
αpβpN20,p




; J̄12 =




J12√
κ1Q1

...
√
κk Qk

0
...

0




;

J̄11 =




0 0 · · · 0
√
α1

−1 J12L1 · · · √
αp

−1 J12Lp

0 0 · · · 0
√
κ1/α1Q1L1 · · ·

√
κ1/αpQ1Lp

...
...

...
...

...

0 0 · · · 0
√
κk/α1QkL1 · · ·

√
κk/αpQkLp

γ−1
√
α1β1N21,1 0 · · · 0 0 · · · 0

...
...

...
...

...

γ−1
√
αpβpN21,p 0 · · · 0 0 · · · 0




;

J̄21 =
[
γ−1J21 0 · · · 0 0 · · · 0

]
. (8.76)
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Since the J̄11 term in the quantum system (8.75) leads to a non-standard H∞

control problem, we need to apply a loop shifting transformation to eliminate

that term in (8.75); e.g., see [16, Sections 4.5.1 and 5.5.1] and [18, Section 17.2].

To carry out this transformation, we impose the following assumption:

Assumption 8.3. Given constants κ1 > 0, . . . , κk > 0, α1 > 0, . . . , αp > 0,

β1 > 0, . . . , βp > 0, the equivalent uncertain quantum system (8.27), (8.24),

(8.8), (8.28) is assumed to be such that J̄11J̄
†
11 < I.

Now, we can define

Θ := I − J̄†
11J̄11 > 0; Θ̄ := I − J̄11J̄

†
11 > 0 (8.77)

and also

dw̆(t) := Θ
1
2dw̄(t) − Θ− 1

2 J̄†
11

[
H̄1 a(t) dt+ J̄12 du(t)

]
;

dz̆(t) := Θ̄− 1
2

[
H̄1 a(t) dt+ J̄12 du(t)

]
. (8.78)

It then follows from (8.78) that

dw̄(t) = Θ− 1
2dw̆(t) + Θ−1J̄†

11

[
H̄1 a(t) dt+ J̄12 du(t)

]
;

‖w̄(t)‖2
2 − ‖z̄(t)‖2

2 ≡ ‖w̆(t)‖2
2 − ‖z̆(t)‖2

2 . (8.79)

Thus, using (8.78), we can rewrite the QSDEs (8.75) as

da(t) = F̆ a(t)dt+G0 dv(t) + Ğ1 dw̆(t) + Ğ2 du(t); a(0) = a0;

dz̆(t) = H̆1 a(t)dt+ J̆12 du(t);

dy(t) = H̆2 a(t)dt+ J20 dv(t) + J̆21 dw̆(t) + J̆22 du(t) (8.80)

where dw̆(t) = β̆w(t)dt+ dν̆(t);

F̆ = F + Ḡ1J̄
†
11Θ̄

−1H̄1; Ğ1 = Ḡ1Θ
− 1

2 ;

Ğ2 = G2 + Ḡ1J̄
†
11Θ̄

−1J̄12; H̆1 = Θ̄− 1
2 H̄1;

H̆2 = H2 + J̄21J̄
†
11Θ̄

−1H̄1; J̆12 = Θ̄− 1
2 J̄12;

J̆22 = J̄21J̄
†
11Θ̄

−1J̄12; J̆21 = J̄21Θ
− 1

2 .

(8.81)

Note that the J̄10 term is automatically eliminated when we apply the loop shift-
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ing transformation to the quantum system (8.75).

We now construct a matrix K based on the quantum system (8.80) such that

(F +G2K) is Hurwitz and the following uncertain quantum system

da(t) = (F +G2K) a(t) dt+G0 dv(t) +G1 dw(t) +
k∑

l=1

G3,l dξl(t) +

p∑

j=1

G2Lj dξ̄j;

dz(t) = (H1 + J12K) a(t) dt+

p∑

j=1

J12Lj dξ̄j;

dζ1(t) = (P1 +Q1K) a(t) dt+

p∑

j=1

Q1Lj dξ̄j;

...

dζk(t) = (Pk +QkK) a(t) dt+

p∑

j=1

QkLj dξ̄j;

dy(t) = H2 a(t) dt+ J20 dv(t) + J21 dw(t) (8.82)

together with dζ̄1(t), . . . , dζ̄p(t) as defined in (8.24) and an initial condition a(0) =

a0, is strict bounded real with disturbance attenuation γ > 0 while satisfying (8.8)

and (8.28). The satisfaction of this requirement is dependent on the existence

of a solution to a parameterized complex algebraic Riccati equation defined as

follows: Let κ1 > 0, . . . , κk > 0, α1 > 0, . . . , αp > 0, β1 > 0, . . . , βp > 0 be given

constants and consider a complex algebraic Riccati equation

(
F̆ − Ğ2Ĕ

−1
1 J̆†

12H̆1

)†
X̆ + X̆

(
F̆ − Ğ2Ĕ

−1
1 J̆†

12H̆1

)

+ X̆
(
Ğ1Ğ

†
1 − Ğ2Ĕ

−1
1 Ğ†

2

)
X̆ + H̆†

1

(
I − J̆12Ĕ

−1
1 J̆†

12

)
H̆1 = 0 (8.83)

where

Ĕ1 = J̆†
12J̆12. (8.84)

Assumption 8.4. Given constants κ1 > 0, . . . , κk > 0, α1 > 0, . . . , αp > 0,

β1 > 0, . . . , βp > 0, the equivalent uncertain quantum system (8.27), (8.24),

(8.8), (8.28) is assumed to be such that Ĕ1 > 0.

Lemma 8.2. Let κ1 > 0, . . . , κk > 0, α1 > 0, . . . , αp > 0, β1 > 0, . . . , βp > 0 be

given constants. Suppose that the equivalent uncertain quantum system (8.27),
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(8.24), (8.8), (8.28) is such that Assumption 8.3 and Assumption 8.4 are satisfied

and the complex algebraic Riccati equation (8.83) has a stabilizing solution X ≥ 0.

Then, there exists a matrix K such that the uncertain quantum system (8.82),

(8.8), (8.28) is strict bounded real with disturbance attenuation γ > 0. That is,

(F +G2K) is Hurwitz and

∥∥(H1 + J12K) (sI − (F +G2K))−1G1

∥∥
∞ < γ (8.85)

where

K = −Ĕ−1
1

(
Ğ†

2X̆ + J̆†
12H̆1

)
. (8.86)

Proof. The proof of this lemma follows the same arguments as those in the proof

of Lemma 7.9.

Using the matrix K in (8.86) and introducing an additional uncertainty input

dξk+1(t) and output dζk+1(t), we form an artificial uncertain quantum system as

follows: (see [8])

da(t) = F̃ a(t) dt+G0 dv(t) + G̃1 dw̃(t) + G̃2 du(t) +

p∑

j=1

G2Lj dξ̄j(t)

+
k+1∑

l=1

G3,l dξl(t); a(0) = a0;

dz̃(t) = H̃1 a(t) dt+ J̃12 du(t) +

p∑

j=1

J̃L
12,j dξ̄j(t) + S0 dξk+1(t);

dζ1(t) = P̃1 a(t) dt+ Q̃1 du(t) +

p∑

j=1

Q1Lj dξ̄j(t) + S1 dξk+1(t);

...

dζk(t) = P̃k a(t) dt+ Q̃k du(t) +

p∑

j=1

QkLj dξ̄j(t) + Sk dξk+1(t);

dζk+1(t) = P̃k+1 a(t) dt+ Q̃k+1 du(t) + V1 dw̃(t) +

p∑

j=1

V2,j dξ̄j(t);

dζ̄1(t) = M1 a(t) dt+N20,1 dv(t) + Ñ21,1 dw̃(t);

...

dζ̄p(t) = Mp a(t) dt+N20,p dv(t) + Ñ21,p dw̃(t);

dy(t) = H̃2 a(t) dt+ J20 dv(t) + J̃21 dw̃(t) + Sk+1 dξk+1(t) (8.87)
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where dw̃(t) = β̃w(t)dt+ dν̃(t);

dw̃(t) =

[
dw1(t)

dw2(t)

]
; dz̃(t) =

[
dz1(t)

dz2(t)

]
; F̃ = F + 1

2
G2K; G̃1 =

[
G1 0

]
;

G̃2 = 1
2
G2; G3,k+1 =

[
G2 0 0 0

]
R−1; J̃L

12,j = 1
2

[
J12Lj

0

]
;

H̃1 = 1
2

[
H1

0

]
; J̃12 = 1

2

[
J12

γI

]
; S0 =

[
0 −I 0 0

0 0 I 0

]
R−1;

P̃l = Pl + 1
2
QlK; Q̃l = 1

2
Ql; Sl =

[
Ql 0 0 0

]
R−1; Ñ21,j =

[
N21,j 0

]
;

P̃k+1 =
R

2




K

H1

0

H2




; Q̃k+1 =
R

2




−I
J12

γI

0




; V1 =
R

2




0 0

0 0

0 0

J21 −I




; V2,j =
R

2




0

J12Lj

0

0




;

H̃2 = 1
2
H2; J̃21 = 1

2

[
J21 I

]
; Sk+1 =

[
0 0 0 −I

]
R−1 (8.88)

for l = 1, 2, . . . , k and j = 1, 2, . . . , p. Note that R is any nr × nr non-singular

scaling matrix, where nr = 2nu + nz + ny; w2 and z2 have the same dimensions

as those of y and u, respectively.

In (8.87), the additional uncertainty input dξk+1(t) is related to the additional

uncertainty output dζk+1(t) as follows:

dξk+1(t) = ∆k+1 dζk+1(t) (8.89)

where ∆k+1 ∈ R is a real unknown scalar uncertain parameter satisfying |∆k+1| ≤
1. The H∞ control objective for the artificial uncertain quantum system (8.87),

(8.8), (8.28), (8.89) is as follows:

∫ t

0

〈
z̃(s)†z̃(s) + z̃(s)T z̃(s)∗ + ε

(
η̃(s)†η̃(s) + η̃(s)T η̃(s)∗

)〉
ds

≤ (1 − ε2)

∫ t

0

〈
β̃w(s)†β̃w(s) + β̃w(s)T β̃w(s)∗

〉
ds+ π1 + π2t (8.90)

where ε, π1, π2 > 0 are real constants. Moreover, we consider two special cases

for ∆k+1 as in Section 7.4 to verify that any suitable coherent quantum H∞ con-

troller of the form (8.18) for the artificial uncertain quantum system (8.87), (8.8),
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(8.28), (8.89) is indeed stable and strict bounded real, and solves the original de-

centralized quantum control problem.

(a) (b)

Figure 8.5: Block diagrams corresponding to special cases I and II; see [8].

Special cese I: ∆k+1 = 1. Using this ∆k+1, it follows from (8.87) that

da(t) = (F +G2K) a(t) dt+G0 dv(t) +G1 dw1(t) +
k∑

j=1

G2Lj dξ̄j(t) +G3 dξ1(t);

dz1(t) = 0;

dz2(t) = γ du(t);

dζ1(t) = (P1 +Q1K) a(t) dt+
k∑

j=1

Q1Lj dξ̄j(t);

dζ̄1(t) = M1 a(t) dt+N20,1 dv(t) +N21,1 dw(t);

...

dζ̄k(t) = Mk a(t) dt+N20,k dv(t) +N21,k dw(t);

dy(t) = J20 dv(t) + dw2(t) (8.91)

where a(0) = a0, and conditions (8.8) and (8.28) are satisfied. Here, we recog-

nize that the uncertain quantum system (8.91), (8.8), (8.28) is the same as the

uncertain quantum system (8.82), (8.8), (8.28). Thus, the uncertain quantum

system (8.91), (8.8), (8.28) is strict bounded real with disturbance attenuation

γ > 0 according to the construction of the matrix K in (8.86) and Lemma 8.2.

It is also apparent from the QSDEs (8.91) that the control input u(t) does not

affect the quantum plant, but only affects the controlled output z2(t). Moreover,
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the measurement output y(t) is not affected by the quantum plant but is only

affected by the disturbance input w2(t) and the quantum noise v(t). This situa-

tion is shown in Figure 8.5(a) where the coherent quantum controller Σc of the

form (8.18) is detached from the uncertain quantum system (Σ̃a,∆(·)) defined by

(8.91), (8.8), (8.28). It thus follows from the block diagram in Figure 8.5(a) and

the closed loop H∞ control objective (8.90) that the coherent quantum controller

Σc must be stable and strict bounded real.

Special cese II: ∆k+1 = −1. It is straightforward to show that using this

value of ∆k+1, we again obtain the equivalent uncertain quantum system (8.27),

(8.24), (8.8), (8.28). Thus, if we can find a suitable coherent quantum H∞

controller Σc of the form (8.18) for the artificial uncertain quantum system (8.87),

(8.8), (8.28), (8.89), then the same quantum controller Σc is also suitable for the

equivalent uncertain quantum system (8.27), (8.24), (8.8), (8.28) (corresponds to

(Σa, ∆(·)) in Figure 8.5(b)) such that the H∞ control objective (8.29) is satisfied.

This implies that the resulting closed loop uncertain quantum system as shown

in Figure 8.5(b) is strict bounded real with disturbance attenuation γ > 0.

From both special cases above, we conclude that if there exists a suitable

quantum controller of the form (8.18) for the artificial uncertain quantum system

(8.87), (8.8), (8.28), (8.89), then this quantum controller also achieves a strict

bounded real closed loop system with disturbance attenuation γ > 0 when it is

applied to the equivalent uncertain quantum system (8.27), (8.24), (8.8), (8.28).

Moreover, this quantum controller itself must be stable and strict bounded real.

We now apply the approach in sub-Section 7.4.2 or sub-Section 8.3.1 to syn-

thesize a strict bounded real quantum controller of the form (8.18). Thus, we

introduce scaling constants τ1 > 0, . . . , τk+1 > 0, δ1 > 0, . . . , δp > 0 so that we can

rewrite the QSDEs (8.87) of the artificial uncertain quantum system as follows:

da(t) = F̃ a(t) dt+G0 dv(t) + Ǧ1 dw̌(t) + G̃2 du(t); a(0) = a0;

dž(t) = Ȟ1 a(t) dt+ J̌10 dv(t) + J̌11 dw̌(t) + J̌12 du(t);

dy(t) = H̃2 a(t) dt+ J20 dv(t) + J̌21 dw̌(t) (8.92)

where dw̌(t) = β̌w(t) dt+ dν̌(t);

J̌21 =
[
γ−1J̃21 0 · · · 0

√
τk+1

−1 Sk+1 0 · · · 0
]
; (8.93)
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dw̌(t) =




γ dw̃(t)
√
τ1 dξ1(t)

...
√
τk+1 dξk+1(t)√
δ1 dξ̄1(t)

...√
δp dξ̄p(t)




; dž(t) =




dz̃(t)
√
τ1 dζ1(t)

...
√
τk+1 dζk+1(t)√
δ1β1 dζ̄1(t)

...√
δpβp dζ̄p(t)




;

Ǧ1 =
[
γ−1G̃1

√
τ1

−1G3,1 · · · √
τk+1

−1G3,k+1

√
δ1

−1
G2L1 · · ·

√
δp

−1
G2Lp

]
;

Ȟ1 =




H̃1√
τ1 P̃1

...
√
τk+1 P̃k+1√
δ1β1M1

...√
δpβpMp




; J̄10 =




0

0
...

0√
δ1β1N20,1

...√
δpβpN20,p




; J̄12 =




J12√
τ1 Q̃1

...
√
τk+1 Q̃k+1

0
...

0




;

J̌11 =




0 0 · · · 0
√

1
τk+1

S0

√
1
δ1
J̃L

12,1 · · ·
√

1
δp
J̃L

12,p

0 0 · · · 0
√

τ1
τk+1

S1

√
τ1
δ1
Q1L1 · · ·

√
τ1
δp
Q1Lp

...
...

...
...

...
...

0 0 · · · 0
√

τk

τk+1
Sk

√
τk

δ1
QkL1 · · ·

√
τk

δp
QkLp

γ−1√τk+1 V1 0 · · · 0 0
√

τk+1

δ1
V2,1 · · ·

√
τk+1

δp
V2,p

γ−1
√
δ1β1N21,1 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

γ−1
√
δpβpN21,p 0 · · · 0 0 0 · · · 0




. (8.94)

The H∞ control objective for the quantum system (8.92) is as follows:

∫ t

0

〈
ž(s)†ž(s) + ž(s)T ž(s)∗ + ε

(
η̃(s)†η̃(s) + η̃(s)T η̃(s)∗

)〉
ds

≤ (1 − ε2)

∫ t

0

〈
β̌w(s)†β̌w(s) + β̌w(s)T β̌w(s)∗

〉
ds+ π1 + π2t (8.95)

Moreover, we also have a J̌11 term in (8.92), which leads to a non-standard

H∞ control problem. Thus, to eliminate this term, we impose the following
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assumption and then apply a loop shifting transformation with respect to (8.92);

e.g., see [16, Sections 4.5.1 and 5.5.1] and [18, Section 17.2].

Assumption 8.5. Given constants τ1 > 0, . . . , τk+1 > 0, δ1 > 0, . . . , δp > 0,

β1 > 0, . . . , βp > 0 and any non-singular scaling matrix R, the artificial uncertain

quantum system (8.87), (8.8), (8.28), (8.89) is assumed to be such that J̌11J̌
†
11 < I.

Satisfying Assumption 8.5, we now define

Φ := I − J̌†
11J̌11 > 0; Φ̌ := I − J̌11J̌

†
11 > 0 (8.96)

and also

dŵ(t) := Φ
1
2dw̌(t) − Φ− 1

2 J̌†
11

[
Ȟ1 a(t) dt+ J̌12 du(t)

]
;

dẑ(t) := Φ̌− 1
2

[
Ȟ1 a(t) dt+ J̌12 du(t)

]
. (8.97)

It then follows from (8.97) that

dw̌(t) = Φ− 1
2dŵ(t) + Φ−1J̌†

11

[
Ȟ1 a(t) dt+ J̌12 du(t)

]
;

‖w̌(t)‖2
2 − ‖ž(t)‖2

2 ≡ ‖ŵ(t)‖2
2 − ‖ẑ(t)‖2

2. (8.98)

Now, the QSDEs (8.92) can be written as

da(t) = F̂ a(t)dt+G0 dv(t) + Ĝ1 dŵ(t) + Ĝ2 du(t); a(0) = a0;

dẑ(t) = Ĥ1 a(t)dt+ Ĵ12 du(t);

dy(t) = Ĥ2 a(t)dt+ J20 dv(t) + Ĵ21 dŵ(t) + Ĵ22 du(t) (8.99)

where dŵ(t) = β̂w(t)dt+ dν̂(t);

F̂ = F̃ + Ǧ1J̌
†
11Φ̌

−1Ȟ1; Ĝ1 = Ǧ1Φ
− 1

2 ;

Ĝ2 = G̃2 + Ǧ1J̌
†
11Φ̌

−1J̌12; Ĥ1 = Φ̌− 1
2 Ȟ1;

Ĥ2 = H̃2 + J̌21J̌
†
11Φ̌

−1Ȟ1; Ĵ12 = Φ̌− 1
2 J̌12;

Ĵ22 = J̌21J̌
†
11Φ̌

−1J̌12; Ĵ21 = J̌21Φ
− 1

2 .

(8.100)

Note that the J̌10 term in (8.92) is automatically eliminated when the loop shifting



220 Chapter 8. Decentralized Coherent Quantum Robust H∞ Control

transformation is carried out. Furthermore, we also define

dŷ(t) := dy(t) − Ĵ22 du(t). (8.101)

Substituting (8.101) to (8.99), we obtain

da(t) = F̂ a(t)dt+G0 dv(t) + Ĝ1 dŵ(t) + Ĝ2 du(t); a(0) = a0;

dẑ(t) = Ĥ1 a(t)dt+ Ĵ12 du(t);

dŷ(t) = Ĥ2 a(t)dt+ J20 dv(t) + Ĵ21 dŵ(t). (8.102)

The H∞ control objective corresponding to the quantum system (8.102) is

∫ t

0

〈
ẑ(s)†ẑ(s) + ẑ(s)T ẑ(s)∗ + ε

(
η̃(s)†η̃(s) + η̃(s)T η̃(s)∗

)〉
ds

≤ (1 − ε2)

∫ t

0

〈
β̂w(s)†β̂w(s) + β̂w(s)T β̂w(s)∗

〉
ds+ π1 + π2t (8.103)

where ε, π1, π2 > 0 are real constants.

The solution to the coherent quantum H∞ control problem for the quantum

system (8.102) is given in terms of the solutions to the complex algebraic Riccati

equations

(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)†
X̂ + X̂

(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)

+ X̂
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X̂ + Ĥ†

1

(
I − Ĵ12Ê

−1
1 Ĵ†

12

)
Ĥ1 = 0 ;

(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)
Ŷ + Ŷ

(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)†

+ Ŷ
(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
Ŷ + Ĝ1

(
I − Ĵ†

21Ê
−1
2 Ĵ21

)
Ĝ†

1 = 0 (8.104)

such that the following conditions hold:

1. F̂ − Ĝ2Ê
−1
1 Ĵ†

12Ĥ1 +
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X̂ is Hurwitz;

2. F̂ − Ĝ1Ĵ
†
21Ê

−1
2 Ĥ2 + Ŷ

(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
is Hurwitz;

3. The spectral radius ρ(X̂Ŷ ) of matrix X̂Ŷ is strictly less than one.

To compute the solutions to the Riccati equations (8.104), we need to satisfy the

following assumption:
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Assumption 8.6. Given constants τ1 > 0, . . . , τk+1 > 0, δ1 > 0, . . . , δp > 0,

β1 > 0, . . . , βp > 0 and any non-singular scaling matrix R, the artificial uncertain

quantum system (8.87), (8.8), (8.28), (8.89) is assumed to be such that Ê1 =

Ĵ†
12Ĵ12 > 0 and Ê2 = Ĵ21Ĵ

†
21 > 0.

Theorem 8.3. Let β1 > 0, . . . , βp > 0 be given constants and suppose that there

exist constants κ1 > 0, . . . , κk > 0, α1 > 0, . . . , αp > 0 satisfying Assumption 8.3

and Assumption 8.4 such that the complex algebraic Riccati equation (8.83) has

a stabilizing solution X ≥ 0; and let

K = −Ĕ−1
1

(
Ğ†

2X̆ + J̆†
12H̆1

)
.

Also, suppose that there exist a non-singular scaling matrix R and constants τ1 >

0, . . . , τk+1 > 0, δ1 > 0, . . . , δp > 0 satisfying Assumption 8.5 and Assumption 8.6

such that the complex algebraic Riccati equations (8.104) have stabilizing solutions

X̂ ≥ 0 and Ŷ ≥ 0 such that the spectral radius ρ(X̂Ŷ ) < 1. Then the closed loop

uncertain quantum system obtained by applying the coherent quantum controller

of the form (8.18) with

Fc = F̂c −GcĴ22Hc;

F̂c = F̂ + Ĝ2Hc −GcĤ2 +
(
Ĝ1 −GcĴ21

)
Ĝ†

1X̂;

Gc =
(
I − Ŷ X̂

)−1 (
Ŷ Ĥ†

2 + Ĝ1Ĵ
†
21

)
E−1

2 ;

Hc = −Ê−1
1

(
Ĝ†

2X̂ + Ĵ†
12Ĥ1

)
(8.105)

to the equivalent uncertain quantum system (8.27), (8.24), (8.8), (8.28) is strict

bounded real with disturbance attenuation γ > 0.

Proof. It follows from a loop shifting arguments in the classical H∞ control

theory (e.g., see [16, Sections 4.5.1 and 5.5.1] and [18, Section 17.2]) that the H∞

quantum control problem (8.92), (8.95) has a solution if and only if the complex

Riccati equations in (8.104) have stabilizing solutions X̂ ≥ 0 and Ŷ ≥ 0 such that

ρ(X̂Ŷ ) < 1. Moreover, a coherent quantum controller of the form (8.18) (but

not necessarily stable and strict bounded real), which solves the H∞ quantum

control problem (8.92), (8.95) is defined by (8.105).

Therefore, if the conditions of the theorem are satisfied, it follows from the
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arguments in the proofs of Theorem 4.1 in [187] and of Theorem 7.1 in [73] that

the closed loop uncertain quantum system obtained by applying the coherent

quantum controller (8.18), (8.105) to the artificial uncertain quantum system

(8.87), (8.8), (8.28), (8.89) is strict bounded real with disturbance attenuation

γ > 0. Moreover, it follows from the construction of the artificial uncertain

quantum system (8.87), (8.8), (8.28), (8.89) that the coherent quantum controller

(8.18), (8.105) must be stable, strict bounded real and satisfy the condition in

Lemma 8.1. Thus, if this controller is applied to the equivalent uncertain quantum

system (8.27), (8.24), (8.8), (8.28), the resulting closed loop uncertain quantum

system is strict bounded real with disturbance attenuation γ > 0.

Theorem 8.4. Let β1 > 0, . . . , βp > 0 be given constants and suppose that there

exist constants κ1 > 0, . . . , κk > 0, α1 > 0, . . . , αp > 0 satisfying Assumption

8.3 and Assumption 8.4 such that the complex algebraic Riccati equation (8.83)

has a stabilizing solution X ≥ 0. Also, suppose that there exist a non-singular

scaling matrix R and constants τ1 > 0, . . . , τk+1 > 0, δ1 > 0, . . . , δp > 0 such

that Assumption 8.5 and Assumption 8.6 hold, and the complex algebraic Riccati

equations (8.104) have stabilizing solutions X̂ ≥ 0 and Ŷ ≥ 0 such that the

spectral radius ρ(X̂Ŷ ) < 1. Furthermore, suppose that the coherent quantum H∞

controller (8.18), (8.105) is such that the transfer function matrices in (8.22)

satisfy the norm bounds in (8.28) and each corresponding decentralized quantum

controller (8.11) is physically realizable. Then, the uncertain closed loop quantum

system obtain by applying the decentralized coherent quantum controller (8.11) to

the uncertain quantum system (8.1), (8.8) is strict bounded real with disturbance

attenuation γ > 0.

Proof. If all conditions of the theorem are satisfied, it then follows from Theorem

8.3 that a closed loop uncertain quantum system obtained by applying the quan-

tum controller (8.18), (8.105) to the equivalent uncertain quantum system (8.27),

(8.24), (8.8), (8.28) is strictly bounded real with disturbance attenuation γ > 0.

We also assume that the quantum controller (8.18), (8.105) is such that the trans-

fer function matrices in (8.22) satisfy the norm bounds in (8.28). Furthermore,

as mentioned in the construction of the equivalent uncertain quantum system

(8.27), (8.24), (8.8), (8.28), a closed loop uncertain quantum system obtained by

applying the decentralized quantum controller (8.11) (for all j = 1, 2, . . . , p) to

the uncertain quantum system (8.1), (8.6) is identical to a closed loop uncertain
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quantum system obtained by applying the quantum controller (8.18), (8.105) to

the equivalent uncertain quantum system (8.27), (8.24), (8.8), (8.28) when the

additional uncertainty inputs defined in (8.23) are applied. Hence, it follows that

the decentralized quantum controller (8.11) defined by (8.18), (8.105) is such that

the resulting closed loop uncertain quantum system is strict bounded real with

disturbance attenuation γ > 0.

8.4.2 A differential evolution approach

Likewise in sub-Section 8.3.2, we also provide a numerical algorithm so that the

strict bounded real decentralized quantumH∞ controller synthesis algorithm pre-

sented in sub-Section 8.4.1 is applicable. Since nonconvex nonlinear constraints

are involved in the synthesis algorithm, we also apply the DE algorithm to find an

optimal solution to the decentralized quantum control problem being considered.

In this case, we need to reformulate the given control problem as a constrained

optimization problem as stated in (8.45) and (8.46).

We now define a vector of decision variables as follows:

ϑ :=
[
γ κ α τ δ β

]T

(8.106)

where

κ :=
[
κ1 · · · κk

]
; α :=

[
α1 · · · αp

]
; τ :=

[
τ1 · · · τk+1

]
;

δ :=
[
δ1 · · · δp

]
; β :=

[
β1 · · · βp

]
. (8.107)

The dimension of ϑ is 2k+3p+2 and all elements of ϑ are positive real numbers.

An objective function and all constraints are then defined in terms of ϑ. Since

we are solving a decentralized quantum H∞ control problem, a suitable objective

function f(ϑ) to be minimized is as follows:

f(ϑ) = m0γ
n0 +

p∑

j=1

mjβ
nj

j (8.108)

where m0,mj ≥ 1 are weighting factors and n0, nj ≥ 1 are power constants.
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Moreover, the equality constraints are

g1(ϑ) =
(
F̆ − Ğ2Ĕ

−1
1 J̆†

12H̆1

)†
X̆ + X̆

(
F̆ − Ğ2Ĕ

−1
1 J̆†

12H̆1

)

+ X̆
(
Ğ1Ğ

†
1 − Ğ2Ĕ

−1
1 Ğ†

2

)
X̆ + H̆†

1

(
I − J̆12Ĕ

−1
1 J̆†

12

)
H̆1 = 0;

g2(ϑ) =
(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)†
X̂ + X̂

(
F̂ − Ĝ2Ê

−1
1 Ĵ†

12Ĥ1

)

+ X̂
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X̂ + Ĥ†

1

(
I − Ĵ12Ê

−1
1 Ĵ†

12

)
Ĥ1 = 0;

g3(ϑ) =
(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)
Ŷ + Ŷ

(
F̂ − Ĝ1Ĵ

†
21Ê

−1
2 Ĥ2

)†

+ Ŷ
(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
Ŷ + Ĝ1

(
I − Ĵ†

21Ê
−1
2 Ĵ21

)
Ĝ†

1 = 0 (8.109)

and the inequality constraints are

h1(ϑ) = J̄11J̄
†
11 − I < 0; h2(ϑ) = −Ĕ1 < 0;

h3(ϑ) = −X̆ < 0; h4(ϑ) = J̌11J̌
†
11 − I < 0;

h5(ϑ) = −Ê1 < 0; h6(ϑ) = −Ê2 < 0;

h7(ϑ) = −X̂ < 0; h8(ϑ) = −Ŷ < 0;

h9(ϑ) = ρ
(
X̂Ŷ

)
− 1 < 0; h10(ϑ) = emax,r (AX̆) < 0;

h11(ϑ) = emax,r (AX̂) < 0; h12(ϑ) = emax,r (AŶ ) < 0;

h13,j(ϑ) = ‖∆̄j(s)‖2
∞ − βj ≤ 0; h14,j(ϑ) = ‖Tjj(s)‖∞ − 1 ≤ 0

(8.110)

for j = 1, 2, . . . , p. Also, we define AX̆ , AX̂ and AŶ as follows:

AX := F̆ − Ğ2Ĕ
−1
1 J̆†

12H̆1 +
(
Ğ1Ğ

†
1 − Ğ2Ĕ

−1
1 Ğ†

2

)
X̆;

AX̂ := F̂ − Ĝ2Ê
−1
1 Ĵ†

12Ĥ1 +
(
Ĝ1Ĝ

†
1 − Ĝ2Ê

−1
1 Ĝ†

2

)
X̂;

AŶ := F̂ − Ĝ1Ĵ
†
21Ê

−1
2 Ĥ2 + Ŷ

(
Ĥ†

1Ĥ1 − Ĥ†
2Ê

−1
2 Ĥ2

)
. (8.111)

To examine the fitness of a candidate solution with respect to all equality and

inequality constraints in (8.109) and (8.110), we form a fitness test routine, which

proceeds through the following steps:

1. Compute the eigenvalues of (J̄11J̄
†
11 − I) and Ĕ1 to verify if h1(ϑ) and h2(ϑ)

are satisfied.

2. Evaluate g1(ϑ) to obtain a solution X̆ to the Riccati equation in (8.83).
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3. Verify if X̆ is a stabilizing positive definite solution by evaluating h3(ϑ) and

h10(ϑ).

4. Compute the eigenvalues of (J̌11J̌
†
11 − I), Ê1 and Ê2 to verify if h4(ϑ), h5(ϑ)

and h6(ϑ) hold.

5. Evaluate g2(ϑ) and g3(ϑ) to obtain solutions X̂ and Ŷ to the Riccati equa-

tions in (8.104).

6. Verify if X̂ and Ŷ are stabilizing positive definite solutions by evaluating

h7(ϑ), h8(ϑ), h11(ϑ) and h12(ϑ).

7. Compute the spectral radius of the product X̂Ŷ to verify if h9(ϑ) holds.

8. Evaluate h13,j(ϑ) (for j = 1, 2, . . . , p) to check if the j-th off-diagonal block

of T (s) in (8.20) satisfies the norm bound condition in (8.28).

9. Verify if the H∞ norm ‖Tjj(s)‖∞ of the j-th diagonal block of T (s) is less

than or equal to one by evaluating h14,j(ϑ) (for j = 1, 2, . . . , p).

10. Evaluate the objective function f(ϑ) in (8.108).

A violation of each constraint in (8.109) and (8.110) is penalized. Thus, we

need to define penalty functions, which are then accommodated in the fitness test

routine. That is,

p1(ϑ) = emax(J̄11J̄
†
11 − I)s1 ; p2(ϑ) = |emin(Ĕ1)|s2 ;

p3(ϑ) = ρ(CX̆)s3 ; p4(ϑ) = |emin(X̆)|s4 ;
p5(ϑ) = emax,r (AX̆)s5 ; p6(ϑ) = emax(J̌11J̌

†
11 − I)s6 ;

p7(ϑ) = |emin(Ê1)|s7 ; p8(ϑ) = |emin(Ê2)|s8 ;
p9(ϑ) = ρ(CX̂)s9 ; p10(ϑ) = ρ(CŶ )s10 ;

p11(ϑ) = |emin(X̂)|s11 ; p12(ϑ) = |emin(Ŷ )|s12 ;
p13(ϑ) = emax,r (AX̂)s13 ; p14(ϑ) = emax,r (AŶ )s14 ;

p15(ϑ) = (ρ(X̂Ŷ ) − 1)s15 ; p16(ϑ) =
∑p

j=1 D
cj

j ;

p17(ϑ) =
∑p

j=1 S
dj

j ; p18(ϑ) = f(ϑ)

(8.112)

where sr ≥ 1 for r = 1, 2, . . . , 15 and cj, dj ≥ 1 for j = 1, 2, . . . , p. Moreover, we
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also define

CX̆ := H̆†
1

(
I − J̆12Ĕ

−1
1 J̆†

12

)
H̆1;

CX̂ := Ĥ†
1

(
I − Ĵ12Ê

−1
1 Ĵ†

12

)
Ĥ1;

CŶ := Ĝ1

(
I − Ĵ†

21Ê
−1
2 Ĵ21

)
Ĝ†

1;

Dj :=

{
‖∆̄j(s)‖2

∞, if h13,j(ϑ) is violated;

0, otherwise;

Sj :=

{
‖Tjj(s)‖∞, if h14,j(ϑ) is violated;

0, otherwise.
(8.113)

8.4.3 Illustrative examples

We now present two examples of designing strict bound real decentralized quan-

tum H∞ controllers using the synthesis algorithm described in sub-Section 8.4.1.

The quantum systems under consideration belong to a class of quantum optical

systems with only passive components; e.g., see [70, 73]. Moreover, we can use

the same approach as in sub-Section 8.3.3 to build the decentralized quantum

controllers using passive components such as optical cavities, beam splitters and

phase shifters; see [77].

Example 1: Cascaded two optical cavities

As the first example, we aim to construct strict bounded real decentralized quan-

tum H∞ controllers for the quantum system (8.67) as shown in Figure 8.4. Using

the DE-based algorithm in sub-Section 8.4.2, we obtain

γ = 1.1652; α1 = 1110.4129; α2 = 1051.0836; τ1 = 2.5962;

δ1 = 15.3329; δ2 = 18.1159; β1 = 0.0012; β2 = 0.0013.
(8.114)

Note that τ1 corresponds to the artificial uncertainty, which is added to guaran-

tee the stability and strict bounded real property of the decentralized quantum

controller while achieving the closed loop H∞ control objective.

We then use the parameters in (8.114) to construct a non-decentralized quan-
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tum H∞ controller, which is given as follows:

Fc =

[
−3.5313 −3.2273

−13.0894 −21.1233

]
; Gc =

[
−0.5870 −0.5541

0.0305 −0.3741

]
;

Hc =

[
−0.1320 −0.0564

−0.0715 −0.2619

]
. (8.115)

For this controller, the additional uncertainties ∆̄1(s) and ∆̄2(s) as defined in

(8.22) have the squared H∞ norm:

‖∆̄1(s)‖2
∞ = 0.0011; ‖∆̄2(s)‖2

∞ = 0.0013. (8.116)

It is clear that ‖∆̄1(s)‖2
∞ ≤ β1 and ‖∆̄2(s)‖2

∞ ≤ β2. Thus, we can form the

decentralized quantum H∞ controllers for the quantum system (8.67) as follows:

Fc1 = Fc; Gc1 =

[
−0.5870

0.0305

]
; Hc1 =

[
−0.1320 −0.0564

]
;

Fc2 = Fc; Gc2 =

[
−0.5541

−0.3741

]
; Hc2 =

[
−0.0715 −0.2619

]
. (8.117)

The eigenvalues of Fc are e1 = −1.3905 and e2 = −23.2640 and hence, Fc is

Hurwitz. The H∞ norms of the controllers in (8.117) are

‖T11(s)‖∞ = 0.0374; ‖T22(s)‖∞ = 0.0248. (8.118)

Thus, according to Lemma 8.1, {Fc1 , Gc1 , Hc1} and {Fc2 , Gc2 , Hc2} in (8.117) are

strict bounded real and physically realizable. Moreover, we proceed along the

same steps as in (7.107) and (7.108) to compute Gwc0,1
, Gwc0,2

, Hc2,1 and Hc2,2 :

Gwc0,1
=

[
76.8941

694.7391

]
; Hc2,1 =

[
0.0018 −0.0001

]
;

Gwc0,2
=

[
62.0070

171.3056

]
; Hc2,2 =

[
0.0012 0.0004

]
. (8.119)

so that the decentralized quantum controllers (8.117) are physically realizable

according to Definition 8.1.
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Figure 8.6: The first decentralized quantum H∞ controller.

Using the algorithm in [77], we apply similarity transformation to the decen-

tralized quantum controllers (8.117), (8.119). This results in equivalent realiza-

tions, which can be physically constructed using only passive optical elements

such as optical cavities, beam splitters and phase shifters. Thus, the equivalent

realization for the first decentralized quantum controller is

F̄c1 =

[
−1.3905 0

11.3733 −23.2640

]
;

[
Ḡwc0,1

Ḡc1

]
=

[
−1.6674 −0.0269

6.8211 −0.0177

]
;

[
H̄c1

H̄c2,1

]
=

[
1.6674 −6.8211

0.0269 0.0177

]
(8.120)

and that for the second decentralized quantum controller is

F̄c2 =

[
−1.3905 0

−11.3744 −23.2640

]
;

[
Ḡwc0,2

Ḡc2

]
=

[
1.6675 −0.0242

6.8211 −0.0143

]
;

[
H̄c2

H̄c2,2

]
=

[
−1.6675 −6.8211

0.0242 0.0143

]
. (8.121)

The realizations (8.120) and (8.121) imply that each decentralized quantum con-

troller can be built as a cascade of two first order generalized 2-mirror optical

cavities because it has two inputs and two outputs; see [77].

The first decentralized quantum controller (8.120) is depicted in Figure 8.6



8.4. Strict Bounded Real Decentralized Quantum H∞ Controller 229

Figure 8.7: The second decentralized quantum H∞ controller.

with the parameters:

kc11 = (1.6674)2; kc12 = (0.0269)2;

kc13 = (6.8211)2; kc14 = (0.0177)2.
(8.122)

Also, the second decentralized quantum controller (8.121) is depicted in Figure 8.7

with the parameters:

kc21 = (1.6675)2; kc22 = (0.0242)2;

kc23 = (6.8211)2; kc24 = (0.0143)2.
(8.123)

These results show that for the quantum system (8.67), we are indeed able to

obtain the decentralized quantum H∞ controllers, which are physically realizable,

using the controller design algorithm in sub-Section 8.4.1.

Remark 8.3. We notice that the value of γ in (8.114) is larger than that in

(8.69). This is reasonable because we force the decentralized quantum controllers

in (8.117) to be physical realizable when applying the synthesis algorithm pre-

sented in sub-Section 8.4.1. Conversely, although it yields a smaller γ, the syn-

thesis algorithm in sub-Section 8.3.1 results in a second decentralized quantum

controller in (8.72), which is not physically realizable.

Example 2: Cascaded three optical cavities

We now consider a quantum system consisting of three interconnected subsys-

tems, but which only have two control inputs as shown in Figure 8.8. Using this

example, we show that our method can also be used to design a decentralized

control system for a large-scale quantum system where the number of subsystems

is more than the number of decentralized controllers. This is possible because
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Figure 8.8: A cascaded linear quantum system of three optical cavities.

the interconnections between subsystems are known and thus, not treated as un-

certainties; e.g., see [197]. In our example, although we only have direct control

action on the first and the third subsystems, the second subsystem can also be

stabilized as its linear interconnection with the first subsystem is known.

The quantum optical network shown in Figure 8.8 can be represented as



da1(t)

da2(t)

da3(t)


 =




−g1

2
0 0

−
√
k1k4 −g2

2
0

0 −
√
k5k6 −g3

2






a1(t)

a2(t)

a3(t)


 dt+



−
√
k3 0

0 0

0 −
√
k8




[
du1(t)

du3(t)

]

+



−
√
k1 0 0

−
√
k4 −

√
k5 0

0 −
√
k6 −

√
k7






dv1(t)

dv2(t)

dv3(t)


 +



−
√
k2

0

0


 dw1(t);

[
dz1(t)

dz3(t)

]
=

[√
k3 0 0

0 0
√
k8

] 

a1(t)

a2(t)

a3(t)


 dt+

[
1 0

0 1

][
du1(t)

du3(t)

]
;

[
dy1(t)

dy3(t)

]
=

[√
k2 0 0

0 0
√
k7

]

a1(t)

a2(t)

a3(t)


 dt+

[
0 0 0

0 0 1

]

dv1(t)

dv2(t)

dv3(t)


+

[
1

0

]
dw1(t) (8.124)

where g1 = k1 + k2 + k3, g2 = k4 + k5 and g3 = k6 + k7 + k8. The parameters in

(8.124) have the values

k1 = 2.25; k2 = 1.00; k3 = 1.00; k4 = 1.00; (8.125)
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k5 = 0.50; k6 = 1.21; k7 = 0.50; k8 = 0.50. (8.126)

Here, we also assume that the quantum system (8.124) is known and therefore,

does not have any uncertainty terms in its model.

Using the DE approach in sub-Section 8.4.2, we obtain the values of all para-

meters required for the synthesis of the decentralized quantum controllers as

γ = 0.9294; α1 = 4966.6123; α2 = 4.6037; τ1 = 1.5146;

δ1 = 5.1056; δ2 = 3.3892; β1 = 0.0005; β2 = 0.0063.
(8.127)

The parameters in (8.127) are then used to construct a non-decentralized strict

bounded real quantum H∞ controller, which are defined by

Fc =



−2.1957 −0.4944 0.2830

−1.5075 −0.7530 0.0135

−0.0625 −0.6933 −1.0340


 ; Gc =



−0.3574 0.0582

0.0370 −0.1492

−0.0729 0.1097


 ;

Hc =

[
−0.4021 −0.1050 0.0688

0.0487 −0.0972 −0.2760

]
. (8.128)

The matrices Gc and Hc in (8.128) are such that the additional uncertainties

∆̄1(s) and ∆̄2(s) as defined in (8.22) have the following squared H∞ norm:

‖∆̄1(s)‖2
∞ = 8.1725 × 10−5; ‖∆̄2(s)‖2

∞ = 0.0057. (8.129)

Indeed, ‖∆̄1(s)‖2
∞ and ‖∆̄2(s)‖2

∞ are less than β1 and β2, respectively. Thus, we

can form the decentralized quantum H∞ controllers as follows:

Fc1 = Fc; Gc1 =



−0.3574

0.0370

−0.0729


 ; Hc1 =

[
−0.4021 −0.1050 0.0688

]
;

Fc2 = Fc; Gc2 =




0.0582

−0.1492

0.1097


 ; Hc2 =

[
0.0487 −0.0972 −0.2760

]
(8.130)

The eigenvalues of the matrix Fc are

e1 = −2.4940; e2 = −0.2126; e3 = −1.2761 (8.131)
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and thus, Fc is Hurwitz. Moreover, the H∞ norms of the decentralized quantum

controllers are

‖T11(s)‖∞ = 0.0500; ‖T22(s)‖∞ = 0.0742. (8.132)

Thus, according to Lemma 8.1, {Fc1 , Gc1 , Hc1} and {Fc2 , Gc2 , Hc2} are strict

bounded real and physically realizable.

Following (7.107) and (7.108), we can compute Gwc0,1
, Gwc0,2

, Hc2,1 and Hc2,2

(see Definition 8.1):

Gwc0,1
=




−58.5256

−129.4753

−655.8940


 ; Hc2,1 =

[
0.0103 0.0030 −0.0017

]
;

Gwc0,2
=




112.2091

79.9897

20.4744


 ; Hc2,2 =

[
−0.0004 0.0012 −0.0032

]
(8.133)

to physically realize the decentralized quantum controllers in (8.130). Further-

more, given the controller matrices in (8.128), (8.130) and (8.133), we can now

apply the algorithm in [77] so that both decentralized quantum controllers can

be constructed using passive optical components such as optical cavities, beam

splitters and phase shifters. Thus, the first decentralized quantum controller is

represented by

F̄c1 =



−2.4940 0 0

−1.4561 −0.2126 0

−3.5668 −1.0416 −1.2761


 ;

[
Ḡwc0,1

Ḡc1

]
=




2.2333 −0.0173

0.6519 −0.0145

1.5967 −0.0543


 ;

[
H̄c1

H̄c2,1

]
=

[
−2.2333 −0.6519 −1.5967

0.0173 0.0145 0.0543

]
(8.134)
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and the second decentralized quantum controller is represented by

F̄c2 =



−2.4940 0 0

1.4557 −0.2126 0

3.5679 −1.0409 −1.2761


 ;

[
Ḡwc0,2

Ḡc2

]
=



−2.2334 −0.0001

0.6518 −0.0180

1.5975 0.0153


 ;

[
H̄c2

H̄c2,2

]
=

[
2.2334 −0.6518 −1.5975

0.0001 0.0180 −0.0153

]
(8.135)

The realizations in (8.134) and (8.135) indicate that each controller is of third

order and has two inputs and two outputs. Hence, it can be built as a cascade

of three first order generalized 2-mirror optical cavities; see [77].

Figure 8.9: The first strict bounded real decentralized quantum H∞ controller.

The first decentralized quantum controller (8.134) is illustrated in Figure 8.9

with the parameters:

kc11 = (2.2333)2; kc12 = (0.0173)2; kc13 = (0.6519)2;

kc14 = (0.0145)2; kc15 = (1.5967)2; kc16 = (0.0543)2.
(8.136)

Also, the second decentralized quantum controller (8.135) has the following pa-

rameters:

kc21 = (2.2334)2; kc22 = (0.0001)2; kc23 = (0.6518)2;

kc24 = (0.0180)2; kc25 = (1.5975)2; kc26 = (0.0153)2.
(8.137)

and is shown in Figure 8.10.
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Figure 8.10: The second strict bounded real decentralized quantum H∞ controller.

8.5 Conclusions

We have presented two systematic methods to design a decentralized coherent

robust H∞ quantum controller for a class of large-scale uncertain linear complex

quantum stochastic systems with norm-bounded structured uncertainties. The

large-scale quantum system is comprised of interconnected quantum subsystems

where the interconnections are assumed to be partly or fully known and hence, not

treated as uncertainties. Instead, we consider the neglected off-diagonal blocks

of the transfer function matrix of the non-decentralized quantum controller as

additional uncertainties. Thus, the resulting decentralized coherent quantum

controller is robust against both the structured uncertainties in the quantum plant

model and those additional uncertainties. Moreover, the quantum controller is

also required to be physical realizable, which implies that the quantum controller

has to be stable and bounded real.

Applying the first method, we do not immediately obtain a physically reali-

zable decentralized quantum controller. This is because the physical realizability

condition is not directly included in the controller synthesis algorithm. Mean-

while, if we apply the second method, the resulting quantum controller must be

stable and strict bounded real, and hence, it is indeed physically realizable. This

is achieved by introducing an artificial uncertainty to the equivalent uncertain

quantum system for which a strict bounded real non-decentralized quantum con-

troller is designed. However, this approach may result in a more conservative

decentralized quantum controller than the one obtained using the first method

due to the use of the additional artificial uncertainty. Also, the second method

has more constraints and design parameters than the first method, and therefore,

may take longer computational time to solve a quantum control problem under

consideration.
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To deal with the nonconvex nonlinear constraints involved in both methods,

we apply the DE algorithm to compute all design parameters required for con-

troller synthesis. Thus, we reformulate the decentralized quantum control pro-

blem as a constrained nonlinear optimization problem. Moreover, two examples

of quantum optical systems are considered to demonstrate the proposed decen-

tralized quantum controller design methods using the DE apparoach. In these

examples, we have also applied the algorithm in [77] to show that an n-th order

decentralized quantum optical control system with m inputs can be physically

constructed using purely passive optical devices such as optical cavities, beam

splitters and phase shifters. This approach results in an m-input-m-output quan-

tum optical controller with a cascade interconnection of n first order generalized

m-mirror optical cavities.
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Chapter 9

Conclusions and Future Research

This chapter presents final conclusions of our research which develops new meth-

ods to synthesize non-decentralized and decentralized robust feedback control

systems for classical and quantum dynamical systems. In particular, the main

concerns and contributions of Chapter 3 – Chapter 8 are summarized in Sec-

tion 9.1. Potential future research areas are also described in Section 9.2 in order

to suggest possible extensions to what we have done in our research.

9.1 Conclusions

The main results of our research presented in this thesis consist of two parts:

Chapter 3 – Chapter 5 and Chapter 6 – Chapter 8, which are designated for clas-

sical and quantum dynamical systems, respectively. A common feature in both

parts is that we employ the DE algorithm given in Chapter 2 to solve nonconvex

nonlinear constrained optimization problems arising in feedback control syntheses

for those systems. A particular variant of the DE algorithm applied in this thesis

is drift-free DE/rand/1/either − or. As a class of evolutionary algorithms, the

DE algorithm is equipped with variation operators: mutation and recombination,

and a selection operator. These operators are used to explore and exploit a nu-

merical search space in which the optimization takes place. In addition, we also

apply a static penalty-based fitness test procedure, which serves as a link to the

particular controller design algorithm being considered. Each penalty function is

formed based on a constraint to satisfy during the fitness test and is only applied

when the constraint is violated by a candidate solution.
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Specific control problems and the main contributions of Chapter 3 – Chapter 8

are described as follows:

1. In Chapter 3, we present a systematic method to construct a stable nonlin-

ear robust H∞ output feedback controller for a class of nonlinear uncertain

systems. The admissible uncertainties and nonlinearities in the system be-

ing controlled are required to satisfy IQCs and GLCs, respectively. The H∞

control objective is to achieve closed loop absolute stability with a specified

disturbance attenuation level. Our approach to construct the nonlinear

controller is to add a copy of each nonlinearity to the linear part of the con-

troller. This is to enable the controller to exploit the system nonlinearities.

Applying a standard robust H∞ control method (see [187]) to derive the

controller design algorithm, we include all copies of the nonlinearities back

into the system and also characterize them with IQCs derived from GLCs.

To ensure stability of the controller, we first solve a corresponding state

feedback control problem and then introduce an additional uncertainty to

form an artificial uncertain system based on the original uncertain system.

Any suitable controller for the artificial uncertain system is guaranteed to

be stable and solves the original control problem. The controller matrices

are written in terms of stabilizing solutions to algebraic Riccati equations,

which are parameterized by scaling constants associated with all IQCs.

Note that the use of additional artificial uncertainty gives rise to extra

conservatism in the controller design method.

2. In Chapter 4, we are concerned with decentralized state feedback robustH∞

control for a class of large-scale linear uncertain systems. The uncertainties

in the system are required to satisfy IQCs in order to be admissible. The

closed loop control objective is to achieve absolute stability with a specified

disturbance attenuation level. Here, the large-scale system is composed of

interconnected subsystems. We assume that the interconnections between

subsystems are known and therefore, we do not treat them as uncertain-

ties, which may degrade the system performance. Instead, we neglect off-

diagonal blocks of a corresponding non-decentralized state feedback gain

matrix and consider them as additional uncertainties. The decentralized

controllers are then capable of exploiting the interconnections and are ro-
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bust against uncertainties in the systems and in themselves. This approach

is useful when the number of controllers is less than the number of subsys-

tems. The decentralized state feedback controllers are constructed using a

stabilizing solution to an algebraic Riccati equation, which is parameterized

by scaling constants associated with all IQCs.

3. We combine the ideas in Chapter 3 and Chapter 4 in order to derive the

controller design algorithm presented in Chapter 5. In this case, we are

interested in decentralized nonlinear robust H∞ output feedback control

for a class of large-scale nonlinear uncertain systems. The uncertainties

and nonlinearities in the large-scale system have to satisfy IQCs and GLCs,

respectively, in order to be admissible. The interconnections between sub-

systems are also not treated as uncertainties, but rather as useful structural

information on the entire system although we do not assume how the sub-

systems are interconnected. However, nonlinear error systems arising from

discrepancies between non-decentralized and decentralized controllers are

then considered as additional uncertainties. This implies that the decentra-

lized nonlinear controllers must be stable and are able to exploit the known

interconnections while absolutely stabilizing the resulting closed loop sys-

tem with a prescribed disturbance attenuation level.

Stable decentralized controllers are obtained using the same approach as

in Chapter 3, which involves solving a state feedback control problem and

forming an artificial uncertain system. The use of artificial uncertainty thus

introduces some additional conservatism to the controller design process.

Moreover, the decentralized controllers are constructed using stabilizing

solutions to algebraic Riccati equations parameterized by scaling constants

corresponding to all IQCs.

4. The main contribution of Chapter 6 is a DE-based algorithm to synthesize a

coherent quantum feedback controller for a class of linear quantum systems

represented in terms of linear QSDEs with real and complex quadratures.

The quantum controller must be physically realizable so that it exhibits

meaningful dynamics according to the laws of quantum mechanics. The

physical realizability condition for the quantum controller is converted into

a complex algebraic Riccati equation whose coefficients are the controller
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matrices. The Riccati equation is required to have an imaginary Hermitian

solution, which may not be unique, in order that the quantum controller

is physically realizable. We thus always include the Riccati equation as an

equality constraint when we solve the quantum controller synthesis problem

as a nonconvex nonlinear optimization problem using the DE-based algo-

rithm. In this case, we are quite flexible to determine an objective function

to optimize according to the particular control problem under considera-

tion. Therefore, our approach can also be adapted to solve the coherent

quantum H∞ and LQG control problems considered in [70,72].

The proposed DE-based algorithm is effectively used to solve an entangle-

ment enhancement problem for an ideal quantum optical network. Here,

we aim to construct a physically realizable quantum controller, which not

only stabilizes the quantum network, but also enhances an initial entan-

glement level of the quantum network. This example indicates potential

future application of a dynamic coherent quantum controller to preserve

and enhance the entanglement level of a real quantum network.

5. We present a new method in Chapter 7 to construct a coherent quan-

tum robust H∞ controller for a class of linear complex quantum systems

with norm-bounded structured uncertainties. The dynamics of an uncertain

quantum system in this class is determined only by annihilation operators

and is represented in terms of linear QSDEs with complex coefficients as

described in [73]. Moreover, the quantum controller is required to be sta-

ble and strict bounded real, and therefore, is guaranteed to be physically

realizable. The purpose of applying this quantum controller is to obtain a

strict bounded real closed loop quantum system with a specified disturbance

attenuation level.

The desired quantum controller can be synthesized using the method in [8],

which involves forming an artificial quantum uncertain system. Any suit-

able quantum controller for the artificial uncertain quantum system must

be stable and strict bounded real, and also solves the original quantum ro-

bust H∞ control problem. The quantum controller matrices are then con-

structed using stabilizing solutions to complex algebraic Riccati equations,

which are parameterized by scaling constants associated with all uncertain-
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ties. The use of artificial uncertainty in our approach, however, introduces

extra conservatism to the controller design method.

To demonstrate the proposed controller design algorithm, we consider an ex-

ample of designing a strict bounded real quantum controller for a quantum

optical system. This example cannot be solved using the method in [73].

We also show that the resulting quantum controller can be physically con-

structed using an algorithm in [77] with only passive optical elements such

as optical cavities, beam splitters and phase shifters.

6. In Chapter 8, we propose two systematic methods to design a decentralized

quantum robust H∞ control system for a class of large-scale linear com-

plex quantum systems with norm-bounded structured uncertainties. This

class of uncertain quantum systems is the same as that in Chapter 7. We

assume that the large-scale uncertain quantum system is composed of quan-

tum subsystems with known interconnections between them. Nevertheless,

we do not assume any structure on how the quantum subsystems are in-

terconnected. Applying the decentralized quantum controller, we want to

achieve a strict bounded real closed loop quantum system with a specified

disturbance attenuation level.

We follow the approach in [166] to derive both of the decentralized quan-

tum controller design methods. In this case, since the interconnections are

assumed to be known, they are not treated as uncertainties. Instead, we

neglect off-diagonal parts of the transfer function matrix of a correspond-

ing non-decentralized quantum controller. Those neglected parts are then

considered as additional uncertainties in the large-scale uncertain quan-

tum system. This approach then provides robustness to the decentralized

quantum controller against uncertainties in the quantum system and the

additional uncertainties.

Applying the first method, we do not immediately obtain a physically reali-

zable decentralized quantum control system. This is because we employ the

results in [73] to construct the decentralized quantum controller matrices

and the physically realizability condition is not directly imposed. Thus, we

must always check if the decentralized quantum control system is physically

realizable before it is implemented. This in turn motivates us to propose
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the second method, which is based on the results in Chapter 7. Using the

second method, we are then guaranteed to obtain a strict bounded real

decentralized quantum control system, which must be physically realizable.

However, the use of an artificial uncertainty in the second method may

introduce some extra conservatism in the controller design process. De-

spite the differences, both methods involve finding stabilizing solutions to

complex algebraic Riccati equations and those solutions are used to form

the controller matrices. The Riccati equations are parameterized by scaling

constants corresponding to all uncertainties in the quantum system.

The efficacy of both methods is demonstrated through examples of control-

ling quantum optical networks consisting of passive optical elements. The

resulting decentralized quantum controllers can be physically constructed

using the algorithm in [77] with only passive optical elements such as opti-

cal cavities, beam splitters and phase shifters. Moreover, we also show that

there is a case when the first method fails to provide a physically realizable

decentralized quantum controller. The same case, however, can be solved

using the second method.

9.2 Future Research

To extend the results of our research presented in this thesis, we suggest some

possible future research directions as follows:

1. Regarding the results in Chapter 3 and Chapter 5, it is possible to relax the

constraint on the nonlinearity from a local Lipschitz condition to consider

other types of nonlinearity satisfying conditions such as monotonicity and

restricted slope conditions; e.g., see [6, 185, 323]. Moreover, we can employ

the ideas in those chapters to construct a stable nonlinear guaranteed cost

controller for handling a worst-case-performance control problem; e.g., see

[2]. Also, we can apply a reduced order controller and take into account

time delays in the system, especially when dealing with a large-scale system

as presented in Chapter 4 and Chapter 5; e.g., see [18,324–326].

2. The quantum controller design algorithm presented in Chapter 6 is appli-

cable to solve entanglement control problems for more realistic quantum
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networks; e.g., see [61, 233]. Also, we may extend the ideas in Chapter 7

and Chapter 8 to solve quantum robust H∞ and guaranteed cost control

problems for a larger class of uncertain quantum systems driven by both

annihilation and creation operators; e.g., see [34]. In addition, ideas of con-

structing a reduced order quantum controller and considering time delays in

the quantum system are also of interest; e.g., see [327,328]. All these exten-

sions are potentially useful for investigating future applications of quantum

information flow control within quantum communication networks based

on network flow control theory for classical systems; e.g., see [329]. More-

over, to achieve better understanding about coherent linear quantum con-

trol systems, we may approximately simulate the examples in Chapter 6

– Chapter 8 within MATLAB environment using, for example, quantum

optics toolbox as described in [330, 331]. However, in general, simulating

quantum systems on classical computers remains a great challenge because

it requires enormous memory resources for quantum information storage;

e.g., see [332–334].

3. When applying DE-based algorithms to solve our control problems in Chap-

ter 3 – Chapter 8, it often takes a large amount of computation time to

obtain the desired solutions. Thus, to improve the performance of our

IQC-based algorithms, we may use parallel computation and/or combine

the DE approach with reliable problem-specific algorithms for (non)-convex

and/or nonsmooth optimization; e.g., see [102, 145, 159, 271, 273, 335–339].

Also, we can apply a self-adaptive strategy to determine the DE-parameter

settings and dynamic penalty functions to handle constraints involved in

particular control problems; e.g., see [279,281,307,340]. Moreover, it is also

important to investigate numerical issues corresponding to solution charac-

teristics (e.g., optimality, accuracy and sensitivity), convergence rate and

optimization landscapes when using the DE method for designing robust

control systems; e.g., see [341–343].
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[83] T. Bäck, Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, 1996.

[84] T. Bac̈k, D. B. Fogel, and Z. Michalewicz, Eds., Evolutionary Computation
1: Basic Algorithms and Operators. Institute of Physics Publishing, 2000.

[85] K. A. D. Jong, Evolutionary Computation: A Unified Approach. The MIT
Press, 2006.

[86] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence Through
Simulated Evolution. Chichester, UK: John Wiley & Sons, 1966.



252 References

[87] I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Stuttgart: Frommann-Holzboog,
1973.

[88] H.-P. Schwefel, Evolution and Optimum Seeking. New York, USA: Wiley-
Interscience, 1995.

[89] J. H. Holland, “Genetic algorithms and the optimal allocation of trials,”
SIAM Journal on Computing, vol. 2, no. 2, pp. 88–105, 1973.

[90] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

[91] J. R. Koza, Genetic Programming: On The Programming of Computers by
Means of Natural Selection. The MIT Press, 1992.
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[174] M. Zeren and H. Özbay, “On the strong stabilization and stable H∞-
controller design problems for MIMO systems,” Automatica, vol. 36, no. 11,
pp. 1675–1684, 2000.

[175] Y.-Y. Cao and J. Lam, “On simultaneous H∞ control and strong H∞ sta-
bilization,” Automatica, vol. 36, no. 6, pp. 859–865, 2000.



260 References

[176] D. U. Campos-Delgado and K. Zhou, “A parametric optimization approach
to H∞ and H2 strong stabilization,” Automatica, vol. 39, no. 7, pp. 1205–
1211, 2003.
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