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Abstract

This thesis presents a representative spread of results from Ramsey Theory, most
particularly, Ramsey-type theorems concerning graphs, families of sets and the
integers.

This thesis consists of 8 chapters. In Chapter 1, we give a brief historical
introduction to Ramsey Theory. Then, we introduce some necessary notation and
definitions that will be consistently used throughout the thesis, including some basic
knowledge of Graph Theory which is particularly useful in Chapters 2 and 3.

We present Ramsey-type results about graphs Chapters 2 and 3. In Chapter 2,
we introduce the classical Ramsey’s Theorem which is the Ramsey-type theorem
on the colouring of the complete graph. We also introduce Ramsey numbers and
present some results on these, especially some upper and lower bounds. In Chapter
3, we look at Ramsey-type results for monochromatic tree graphs, cycle graphs and
bipartite graphs, respectively, occurring in arbitrary edge colourings of the complete
graph. Then, we present the bipartite version of Ramsey’s Theorem.

Chapters 4, 5 and 6 present other famous Ramsey-type theorems, for arithmetic
progressions and other, more general, structures. In Chapter 4, we introduce and
prove Van der Waerden’s Theorem and we also present some results on the bounds of
the Van der Waerden numbers. In Chapter 5, we present Schur’s Theorem and some
results relating to the Schur numbers. Then, we look into some generalisations of
Schur’s Theorem, including Rado’s Theorem and Folkman’s Theorem. In Chapter 6,
we prove the Hales-Jewett Theorem. We also construct a proof of Van der Waerden’s
Theorem by using the Hales-Jewett Theorem.

Before we end our studies, in Chapter 7, we include some applications of Ramsey
Theory to Graph Theory, Geometry and Number Theory. In Chapter 8, we conclude
our studies with overall comments on Ramsey Theory and possible future work in
this field.
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Chapter 1

Introduction

1.1 Historical Background and Introduction

Ramsey Theory is a beautiful but difficult subject that, generally speaking, shows
how, in certain orderly structures, patterns and order can never be completely
eradicated by randomness or disarray. A typical result in Ramsey Theory states
that if some mathematical structure is cut into pieces, then at least one of the parts
must have a given interesting property. There are many interesting applications of
Ramsey Theory, including the results in number theory, algebra, geometry, topology,
set theory, logic and set theory [86].

Ramsey Theory is named after the British mathematician and philosopher Frank
Plumpton Ramsey, who did seminal work in this area before his death at the age
of 26 in 1930. However, the theory was brought to public attention by Paul Erdős,
a Hungarian mathematician who made enormous contributions to the fields of
combinatorics and graph theory. He contributed much to Ramsey Theory, especially
on Ramsey’s Theorem for complete graphs which states that in any sufficiently large
finitely coloured complete graph, one can find some large monochromatic substructure.
In the language of graph theory, Ramsey number R(m,n) is the minimum number
of vertices to ensure that a simple undirected graph with that number of vertices
contains either a complete graph of order m or an independent set of size n. The first
lower bound on Ramsey numbers were obtained by Paul Erdős using probabilistic
methods [22]. Together with George Szekeres, Paul Erdős also found some upper
bounds on these numbers [25].

One of the key theorems of Ramsey Theory is a result on arithmetic progressions,
Van der Waerden’s Theorem from 1927. This theorem is named after the Dutch
mathematician Bartel Leendert Van der Waerden. Van der Waerden’s Theorem
states that for every positive integer k, there exists a positive integer n such that if
the set {1, 2, . . . , n} is partitioned into two subsets, then at least one of the subsets
must contain an arithmetic progression of length k [102]. This theorem is further
proven by Ron Graham and B. L. Rothschild [44]. Terence Tao also constructed a
topological proof of Van der Waerden’s Theorem in 2008 [101].

Another result that is similar to Van der Waerden’s Theorem is Schur’s Theorem
from 1916. This is a Ramsey-type result on integer solutions to equations and was
proved by Issai Schur. The theorem states that in any finite colouring of the natural
numbers, there must be a pair of integers x and y, such that x, y and x+y are all the
same colour [92]. This basic result was generalised by Richard Rado in 1933 to give
a characterisation of the homogeneous system in which a monochromatic solution
can be found in any finite colouring of the natural numbers [81]. The theorems of
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Schur, Rado, Ramsey and Van der Waerden are considered to be central results of
Ramsey Theory.

Another key theorem of Ramsey Theory is geometrical, namely the Hales-Jewett
Theorem. It is a fundamental combinatorial result of Ramsey Theory named after
Alfred W. Hales and Robert I. Jewett which states that for k, r ∈ N, if n is sufficiently
large, then for any r-colouring of a cube Cn

k = {(x1, . . . , xn) : xi ∈ [0, k − 1]}, there
is a monochromatic line [50]. Informally speaking, Hales-Jewett Theorem states
that for any positive integers n and c, there is a number H such that if the cells of
an H-dimensional n× n× · · · × n cube are coloured with c colours, there must be
one row, column, or certain diagonal of length n, all of whose cells are the same
colour. Hales and Jewett showed that if the dimension is large enough, then one can
always find an n-in-a-row tic-tac-toe that never ends in a tie [50].

1.2 Preliminaries and Definitions

In this section, we will introduce some definitions and theorems which will be
frequently referred to throughout this thesis.

1.2.1 Notation

N : The set of natural numbers {1, 2, . . .}.
[n] : The set {1, 2, . . . , n}.

[m,n] : The set {m,m+ 1, . . . , n}.(
X

k

)
: The family {Y ⊆ X : |Y | = k}.

|X| : The cardinality of X.

1.2.2 The Pigeonhole Principle

One of the basic tools used in Ramsey Theory is the Pigeonhole Principle. It was first
formulated in 1834, by the German mathematician Peter Gustav Lejeune Dirichlet.

Theorem 1.1 (The Pigeonhole Principle). [108] If n + 1 objects are put into n
boxes, then at least one box contains two or more of the objects.

Theorem 1.2 (Stronger Form of the Pigeonhole Principle). [108]
Let q1, q2, . . . , qn be positive integers. If q1 + q2 + · · ·+ qn− n+ 1 objects are put into
n boxes, then, for some i ∈ [n], there are at least qi objects in the ith box.

Proof. Suppose the contrary, namely that the ith box has at most i− 1 objects, for
each i = 1, 2, . . . , n. Then the total number of objects contained in the n boxes is
(q1 − 1) + (q2 − 1) + · · ·+ (qn − 1) = q1 + q2 + · · ·+ qn − n, which is less than the
number of objects allocated. This is a contradiction.

Corollary 1.3. [108] If n(r − 1) + 1 objects are put into n boxes, then at least one
of the boxes will contains r or more objects.

Proof. It follows from the stronger form of the Pigeonhole Principle for the special
case q1 = q2 = · · · = qn = r.

2



1.2.3 Graph Theory

In Chapters 2 and 3, we will present the graph theory results from Ramsey Theory.
Here, we introduce some graph theory definitions that will be used in those chapters.

Definition 1.4 (Graph). A graph G is a pair of sets (V (G), E(G)) where V (G) is
a finite non-empty set of elements called vertices and E(G) is a set of unordered
pairs of elements of V (G) called edges.

Figure 1.1 shows a graph G with the vertex set {s, t, u, v, w} and the edge set{
{s, t}, {t, u}, {t, w}, {u, v}, {v, w}

}
.

t

w

v

us

Figure 1.1: A graph G

Definition 1.5 (Complete graph). Two vertices u and v of the graph are said to
be adjacent if they are joined by an edge e. In this case, e is incident to u and v.
A graph in which every two vertices are adjacent to each other is called a complete
graph. A complete graph with n vertices is denoted by Kn.

Figure 1.2 shows some examples of complete graphs, namely K3, K4, and K5.

(a) K3 (b) K4 (c) K5

Figure 1.2: Complete graphs

Definition 1.6 (Degree of a vertex). The degree of a vertex in a graph is the number
of edges incident to it. A graph where all its vertices have the same degree is known
as a regular graph.

Figure 1.3 shows a graph with each of the vertices labelled by their degree.

3



3

2

2

21

0

Figure 1.3: Graph G with vertices labelled by their degree

Definition 1.7 (Subgraph). A graph H is a subgraph of G if V (S) ⊆ V (G) and
E(S) ⊆ E(G).

Figure 1.4 shows an example of a subgraph H of a graph G.

(a) G (b) H

Figure 1.4: H is a subgraph of G

Definition 1.8 (Complement of a graph). Let G be a graph with n vertices. The
complement of G, denoted by G, is the graph with vertices V (G) = V (G) and edges
E(G) = E(Kn)− E(G).

Figure 1.5 shows a graph G and its complement G.

(a) G (b) G

Figure 1.5: A graph G and its complement G

4



Definition 1.9 (Walks, paths and cycles). A walk in a graph G is an alternating
sequence of vertices and edges v0e1v1e2v2 . . . ekvk in which the ends of each edge ei
are vi−1 and vi for i ∈ [k]. It is closed if v0 = vk and is open otherwise. A walk in
which all vertices v0, v1, . . . , vk are distinct is called a path. A closed path is called a
cycle.

Definition 1.10 (Connected graph). A graph G is connected if there exists a walk
between each pair of vertices in G. If G is not connected, then it is disconnected.

Figure 1.6 shows a connected graph G and a disconnected graph H.

(a) G (b) H

Figure 1.6: A connected graph G and a disconnected graph H

Definition 1.11 (Trees). A tree is a connected graph which has no cycle subgraph.

Figure 1.7 shows some examples of trees.

(a) T4 (b) T5

Figure 1.7: Trees T4 and T5

5



Definition 1.12 (Cycle graphs). A cycle [graph] is a graph that consists of a single
cycle. A cycle with n vertices is denoted by Cn.

Figure 1.8 shows cycle graphs C3, C4, and C5.

(a) C3 (b) C4 (c) C5

Figure 1.8: Cycle graphs.

Definition 1.13 (Bipartite graph). A bipartite graph is a connected graph whose
the vertex set can be partition into two disjoint subsets so that each edge joins a
vertex from one subset to a vertex from the other subset. The vertices of a bipartite
graph can be coloured black and white according to the subset in which they belong.
A bipartite graph is complete if each vertex from one subset is adjacent to every
vertex from another subset. A complete bipartite graph is denoted by Kn1,n2 where
n1 and n2 are the numbers of vertices in each subset, respectively.

Figure 1.9 shows examples of bipartite graphs.

(a) A bipartite graph (b) A complete bipartite graph, K3,4

Figure 1.9: Bipartite graphs
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1.2.4 Main Theorems and Definitions

In this subsection, we list some of the main theorems and definitions that will be
discussed further in this thesis.

Definition 1.14 (Colouring). A colouring is a type of labelling, assigning “colours”
as the labels to elements of a mathematical structure such as a graph or some set
under certain constraints.

In this thesis, the mathematical structures that we colour are graphs (in Chapters 2
and 3) and various families defined via natural numbers (in Chapters 4, 5 and 6).

Example 1.15. As mentioned in Definition 1.14, there are various type of colouring.
Here, we give an example of the edge-colouring of a graph, which will be largely used
in Chapters 2 and 3.

Figure 1.10 shows an example of edge-colouring of a graph G. The edges {1, 5},
{1, 4} and {2, 3} are blue( ), whereas the edges {1, 2} and {3, 4} are red(−−−).
Note: The dashed lines are used to differentiate two colours for the black and white
printed version.

1

2

3

45

Figure 1.10: Graph G with blue-colour( ) and red-coloured(−−−) edges.

Definition 1.16 (Monochromatic). A mathematical structure is monochromatic if
all of its elements are of the same single colour.

Theorem 1.17 (Ramsey’s Theorem for 2-colouring of the Edges of the Graph). [82]
Let m1 and m2 ∈ N. There exists an integer N ∈ N such that in every edge-colouring
of KN with the colours c1 and c2, there is either a c1-monochromatic Km1 subgraph
or a c2-monochromatic Km2 subgraph. The least such N is known as the Ramsey
number R(m1,m2).

Example 1.18 (Party Problem). One of the typical results in Ramsey’s Theorem
is the Party Problem. In the Party Problem, we are asked to find the minimum
number of guests to be invited to ensure that at least m of them know each other or
at least n of them do not know each other. This problem is equivalent to Ramsey’s
Theorem for two colours.

Theorem 1.19 (Ramsey’s Theorem for r-colouring of the Edges of the Graph). [82]
If r,m ∈ N and n is sufficiently large, then each r-colouring of the edges of Kn gives
a complete subgraph Km with monochromatic edges.

7



Theorem 1.20 (Ramsey’s Theorem). [82] If m1,m2, . . . ,mr, k ∈ N and n is suffi-
ciently large, then for each colouring of

(
[n]
k

)
with colours c1, c2, . . . , cr, there is an

mi-subset S ⊆ [n] such that the subfamily
(
S
k

)
is coloured ci for some i ∈ [r]. The

least such n is denoted by Rk(m1,m2, . . . ,mr).

In Chapter 4, we will present Van der Waerden’s Theorem. Here, we introduce
some definitions that will be used.

Definition 1.21 (Arithmetic Progression). An arithmetic progression is a sequence
of numbers such that the differences between consecutive terms is constant.

Theorem 1.22 (Van der Waerden’s Theorem). [102] If k, r ∈ (N), and N is
sufficiently large, then each r-colouring of [N ] gives a monochromatic arithmetic
progression of length k. The least such N is known as the Van der Waerden number
W (k, r).

In Chapter 5, we will introduce Schur’s Theorem. Here, we give some main
theorems related to it that will be used in that chapter.

Theorem 1.23 (Schur’s Theorem). [92] Let r ∈ N. If N is r-coloured, then there
are some same-coloured a, b, c ∈ N such that a+ b = c.

Theorem 1.24 (Schur’s Theorem (finite)). [92] Let r ∈ N and N is sufficiently
large, then for any r-colouring of [N ], there are some same-coloured a, b, c ∈ [N ]
such that a+ b = c. The least such N is known as the Schur number S(r).

In Chapter 6, we will discuss the Hales-Jewett Theorem. Now, we introduce the
main definition and theorem that will be used in the chapter.

Definition 1.25 (n-cube over t elements). We define the n-cube over t elements by

Cn
k = {(x1, . . . , xn) : xi ∈ [0, t− 1]} .

Definition 1.26 (Line). A line in Cn
k is a set of points x0, . . . , xk−1, where xi =

(xi1, . . . , xin) so that in each coordinate j ∈ [n], either

x0j = · · · = xk−1,j

or
xsj = s , where s ∈ [0, k − 1] , for some j .

Theorem 1.27 (Hales-Jewett Theorem). [50] For all r, t ∈ N and N is sufficiently
large, if the vertices of CN

t are r-coloured, then there exists a monochromatic line.
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Chapter 2

Ramsey’s Theorem

In this chapter, we present the main theorem in Ramsey Theory, which is Ramsey’s
Theorem, first proved by Flank Plumpton Ramsey in 1930 [82]. In Section 2.1, we
will first present and prove a special case of it, namely that for the edge colouring of
complete graphs. In doing so, we introduce the Ramsey number terminology. In
Section 2.2, we then introduce and prove Ramsey’s Theorem in full. In Section 2.3,
we will also present some results and theorems on Ramsey numbers, including some
known Ramsey numbers and bounds on them in general.

2.1 Ramsey’s Theorem for Edge-Colouring a Graph

In this section, we state Ramsey’s Theorem on the edge-colouring of the complete
graph and we construct a proof of the theorem by induction. We also introduce the
Ramsey Number terminology which is particularly useful in the studies of Ramsey
Theory.

Theorem 2.1 (Ramsey’s Theorem for 2-colouring the Complete Graph). [82]
Let m1 and m2 ∈ N. There exists an integer N ∈ N such that in every edge-colouring
of KN with the colours c1 and c2, there is either a c1-monochromatic Km1 subgraph
or a c2-monochromatic Km2 subgraph.
The least such N is known as the Ramsey number R(m1,m2).

To prove Theorem 2.1, we first prove some auxiliary lemmas.

Lemma 2.2. [82]

(1) R(m, 1) = 1 = R(1,m)
(2) R(m, 2) = m = R(2,m)

Proof.
(1) The graph K1 which only has a single vertex is trivially monochromatic.
(2) Suppose we colour all of the edges of Km with the colours c1 and c2. Then either
there is a c1-coloured K2 (just a single edge) or else all the edges are c2-coloured,
forming Km, or vice versa.

Note that Theorem 2.1 is proven if we can show that the Ramsey Number
R(m1,m2) exists for all m1,m2 ∈ N. Such a result has been proven by P. Erdős and
G. Szekeres in 1935, as follows.

Lemma 2.3. [25] For all m1,m2 ≥ 2, R(m1,m2) ≤ R(m1− 1,m2) +R(m1,m2− 1).

Proof. Let v be any vertex of KR(m1−1,m2)+R(m1,m2−1). Partition the remaining
R(m1 − 1,m2) +R(m1,m2 − 1)− 1 vertices into two sets M1 and M2, in such the
way that for every vertex w, w is in M1 if the edge {v, w} is coloured with c1 and M2
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otherwise. Note that either |M1| ≥ R(m1− 1,m2) or |M2| ≥ R(m1,m2− 1) because
otherwise |M1|+ |M2| ≤ R(m1− 1,m2)− 1 +R(m1,m2− 1)− 1 which is impossible.

If |M1| ≥ R(m1 − 1,m2), then we either have a c1-coloured subgraph Km1−1 or
a c2-coloured Km2 . For the latter case, we are done. Suppose we have a c1-coloured
subgraph Km1−1. Then take the subgraph with the vertex v and all the c1-coloured
edges between them, we will get a c1-coloured subgraph Km1 .

Similarly, if |M2| ≥ R(m1,m2 − 1), then we either have a c1-coloured subgraph
Km1 , in which a case the theorem is proven, or else we have a c2-coloured subgraph
Km2−1. This subgraph together with the vertex v and all the c2-coloured edges
between them will form a c2-coloured subgraph Km2 . In all cases, we either have a
c1-coloured subgraph Km1 or a c2-coloured subgraph Km2 .

Example 2.4. Any 2-colouring of the complete graph K6 will give us a monochro-
matic K3 subgraph. Furthermore, if we colour the complete graph K5 as in Figure
2.2 (Section 2.3), then no monochromatic K3 subgraph can be found. Hence, we
can conclude that R(3, 3) = 6. A detailed proof of R(3, 3) = 6 will be given in
Section 2.3. Figure 2.1 shows an example of monochromatic K3 subgraph in a
c1( ) and c2(−−−) colouring of K6.

Figure 2.1: Monochromatic c2-coloured K3 in 2-colouring of K6

Theorem 2.5 (Ramsey’s Theorem for r-colouring of the Complete Graph). [82]
If r,m ∈ N, and n is sufficiently large, then each r-colouring of the edges of Kn

gives a complete subgraph Km with monochromatic edges.

Proof. We prove by induction on r.
For r = 1, it is clear that we can always take any n ≥ m and we can find a

complete subgraph Km with monochromatic edges. Suppose that the theorem is
valid for r − 1 colours. Now, we consider the r-colouring case. Colour each edge
of Kn in colours c1, c2, . . . , cr. Recolour each cr−1-coloured and cr-coloured edges
with a new colour cr−1′ . From the induction hypothesis, for a big enough n, we can
get a subgraph KR(m,m) with monochromatic edges. If the edges of this subgraph
KR(m,m) is coloured with ci for some i ∈ [r− 2], then we can always get a ci-coloured
Km subgraph, and we are done. Suppose that KR(m,m) is coloured with cr−1′ . Since
the edges of this subgraph is originally coloured with colour cr−1 and cr, thus, by
the definition of R(m,m), we can always get a cr−1-coloured or cr-coloured Km, in
which we are done in either case.

Hence by induction, the theorem is proven.
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Definition 2.6. The Ramsey Number R(m1,m2, . . . ,mr) is the least integer N
such that for all n ≥ N , if all the edges of Kn are r-coloured, then there is always a
monochromatic Kmi

, for some i ∈ [r].

2.2 Ramsey’s Theorem

In this section, we give the full version of Ramsey’s Theorem and construct a proof
for it.

Theorem 2.7 (Ramsey’s Theorem). [82]
If m1,m2, . . . ,mr, k ∈ N and n is sufficiently large, then for each colouring of

(
[n]
k

)
with colours c1, c2, . . . , cr, there is an mi-subset S ⊆ [n] such that the subfamily

(
S
k

)
is coloured ci for some i ∈ [r]. The least such n is denoted by Rk(m1,m2, . . . ,mr).

Proof. To prove the theorem, we first show that the theorem holds for 2 colours.
Then, by induction on r, we prove that the theorem is valid for any r-colouring. For
2-colouring, we need to show the existence of Rk(m1,m2), for all k,m1,m2 ∈ N. Note
that the case k = 2 is none other than Theorem 2.1. Further notice that, if mi = k,
for some i = 1, 2, Rk(m1,m2) = Rk(m2,m1) = k is trivial because in any 2-colouring
of
(
k
k

)
, we will have a k-subset S such that the subfamily

(
S
k

)
is monochromatic.

Now, suppose that Rk−1(m1,m2),Rk(m1 − 1,m2) and Rk(m1,m2 − 1) exist. We
want to show the existence of Rk(m1,m2).
Take N = Rk−1(Rk(m1 − 1,m2), Rk(m1,m2 − 1)) + 1 and consider the set

(
[N ]
k

)
.

Colour all the k-subsets with colours c1 and c2 and we denote this colouring as χ.
Now choose an element x and consider all (k − 1)-subsets not containing the

element x. We call this family S. Note that S is equivalent to the family
(
[N−1]
k−1

)
.

Let S be 2-coloured by a c1 and c2, by a colouring χ∗ induced in such a way that
χ∗(T ) = χ(T ∪ x), for all T ∈ S. By the induction hypothesis, we are guaranteed
one of the following cases:

(1) S has a subset M , where |M | = Rk(m1 − 1,m2) and all the (k − 1)-subset of
M is c1-coloured.

(2) S has a subset N , where |N | = Rk(m1,m2 − 1) and all the (k − 1)-subset of
N is c2-coloured.

Suppose that Case 1 holds. Then by induction hypothesis, we assume that
Rk(m1 − 1,m2) exists. Therefore, M has either a subset M1 with m1 − 1 elements
where all k-subset of M1 are c1-coloured or a subset M2 with m2 elements where
all k-subset of M2 are c2-coloured. For the latter, we are done. Suppose that there
is such a subset M1, and consider M∗ = M1 ∪ x, |M∗| = m1. Take k-subset of M∗

if the k-subset contains element x. Then it is c1-coloured by the induced colour of
(k− 1)-subset of M . On the other hand, if the k-subset does not contain the element
x, then it is actually a k-subset of M which is then c1-coloured. Either way, we are
done.

On the other hand, suppose that Case 2 holds. From the induction hypothesis, we
assume that Rk(m1,m2 − 1) exists. Thus N has either subset N1 with m1 elements
where all k-subset of N1 are c1-coloured, where we are done; or else, subset N2 with
m2 − 1 elements which all k-subset of N2 are c2-coloured. Suppose the latter, and
consider N∗ = N1 ∪ x, |N∗| = m2. Take k-subset of M∗. If the k-subset contains
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the element x, then it is c2-coloured by the induced colouring of (k− 1)-subset of N .
If the k-subset does not contain the element x, then it is actually the c2-coloured
k-subset of N . Then, we are done.

Now, we have shown Rk(m1,m2) exists for all m1,m2 ∈ N. By induction
on r, we want to show the theorem holds for any r-colouring. Assume that
Rk(m1,m2, . . . ,mr−1) exists. Since the theorem holds for 2 colours, Rk(mr−1,mr)
exists. We take N = Rk(m1,m2, . . . ,mr−2, Rk(mr−1,mr)). By the induction hypoth-
esis, we either have a mi-subset S of

(
[N ]
k

)
in which all k-subsets of S are ci-coloured,

for some i ∈ [r − 2], in which we are done. Otherwise, we have a (Rk(mr−1,mr))-
subset S of

(
[N ]
k

)
in which all k-subset of S are cr−1-coloured or cr-coloured. By the

definition of Rk(mr−1,mr), we have a set S1 ⊆ S in which all the k-subset of S1 are
cr−1-coloured or a set S2 ⊆ S where all the k-subset of S2 are cr-coloured. In either
case, we are done.

Hence by induction, Ramsey’s Theorem holds for all m1,m2, . . . ,mr, k, r ∈ N.

2.3 Ramsey Numbers

In this section, we present some known results, from old to recent, of the Ramsey
numbers.

Example 2.8. In any group of 6 people, there are either 3 mutual friends or 3
mutual strangers.

This example is equivalent to the following statements:

(1) In any 2-colouring of K6, there is a monochromatic K3 subgraph.
(2) R(3, 3) ≤ 6.

Proof. Let A be one of the groups of six. The remaining 5 people fall into one of
the two classes: F , a set of friends of A and S, a set of strangers to A. Now by the
Pigeonhole Principle, one of the classes must have at least 3 people.

Case (i) : |F | ≥ 3.
If F has 3 mutual strangers, then we are done. Otherwise, F has a pair of friends.
This pair of friends together with A will form a group of 3 mutual friends.

Case (ii): |S| ≥ 3.
If S has 3 mutual friends, then we are done. Otherwise, S has a pair of strangers.
This pair of strangers together with A will form a group of 3 mutual strangers.

In all cases, we either have 3 mutual friends or else 3 mutual strangers.

From Example 2.8, we have shown that R(3, 3) ≤ 6. We need to show that
R(3, 3) ≥ 6 to prove R(3, 3) = 6. In doing so, we give a counterexample. Suppose it
is possible to colour the edges of the graph Kn with the colour c1 and c2 so that Kn

contains neither c1-coloured Km1 nor c2-coloured Km2 . Then we can conclude that
R(m1,m2) > n.

Example 2.9. The figure below shows an example of K5 coloured with colours
c1( ) and c2(−−−) in such a way that there is no monochromatic K3 subgraph.

With the construction of K5 as shown in Figure 2.2, we have shown that
R(3, 3) > 5. Since R(3, 3) must be an integer, we can deduce that R(3, 3) ≥ 6.

Thus, we have shown that R(3, 3) = 6.
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Figure 2.2: R(3, 3) > 5

Theorem 2.10. [25] R(m1,m2) ≤
(
m1+m2−2
m1−1

)
.

Proof. We prove the theorem by induction. Note that R(1, 1) = 1 ≤
(
1+1−2
1−1

)
. For

the induction hypothesis, assume that the theorem holds for R(m1 − 1,m2) and
R(m1,m2 − 1). Now, we have R(m1 − 1,m2) =

(
m1+m2−3
m1−2

)
and R(m1,m2 − 1) =(

m1+m2−3
m1−1

)
. By Lemma 2.3, we have R(m1,m2) ≤ R(m1− 1,m2) +R(m1,m2− 1) ≤(

m1+m2−3
m1−2

)
+
(
m1+m2−3
m1−1

)
. By the recursive formula of the binomial coefficient, we get

R(m1,m2) ≤
(
m1+m2−2
m1−1

)
. Then, by induction, we are done.

Under certain circumstances, Lemma 2.3 has been improved by R.E. Greenwood
and A.M. Gleason in 1955, as follows.

Theorem 2.11. [48] If both R(m1 − 1,m2) and R(m1,m2 − 1) are even, then
R(m1,m2) ≤ R(m1 − 1,m2) +R(m1,m2 − 1)− 1.

Proof. Set N := R(m1 − 1,m2) + R(m1,m2 − 1) − 1 and colour the edges of KN

with colours c1 and c2. Select a vertex v and partition the remaining N − 1 vertices
into two sets M1 and M2 in such the way that, for every vertex w, w is in M1 if
{v, w} is coloured with c1 and w is in M2 otherwise. Then, one of the following
cases will hold:

(1) |M1| = R(m1 − 1,m2)− 1 and |M2| = R(m1,m2 − 1)− 1
(2) |M1| ≥ R(m1 − 1,m2)
(3) |M2| ≥ R(m1,m2 − 1)

Assume that (1) is true for all vertices in KN . Then, the c1-coloured subgraph
will contain c := 1

2
N(R(m1 − 1,m2) − 1) c1-coloured edges, a contradiction since

since c is not an integer. Thus, (1) is not always true and we can therefore always
choose a vertex v, so that either (2) or (3) holds.

Now, suppose that (2) holds. We have either a c1-coloured subgraph Km1−1
or a c2-coloured Km2 . For the latter, we are done. Suppose there is a c1-coloured
subgraph Km1−1. Then the subgraph Km1−1 together with the vertex v, and all the
c1-coloured edges incident to them will form a c1-coloured Km1 .

Suppose that (3) holds. We have either a c1-coloured subgraph Km1 or a c2-
coloured Km2−1. If there is c1-coloured subgraph Km1 , we are done. Suppose the
latter. Then the subgraph Km2−1 together with the vertex v and all the c2-coloured
edges incident to them will form a c2-coloured Km2 .
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Example 2.12. Note that R(2, 4) = 4 and R(3, 3) = 6 are both even; therefore,
Theorem 2.11 implies that R(3, 4) ≤ R(2, 4) + R(3, 3) = 9. Figure 2.3 shows a
(c1, c2)-colouring of K8 without a c1-coloured ( ) K3 or a c2-coloured (−−−)
K4 as subgraph. We thus have R(3, 4) ≥ 9. Hence, R(3, 4) = 9.

Figure 2.3: R(3, 4) > 9.

Theorem 2.13. R(m1,m2) = R(m2,m1).

Proof. By the definition of R(m2,m1), R(m2,m1) is the minimum number of vertices
in the complete graph, such that in any edge-colouring of the complete graph
KR(m2,m1) with colours c′1 and c′2, there is either a c′1-coloured Km2 or c′2-coloured
Km1 . Now, consider that we recoloured every edges of the graph in such a way
that colour c′1 will be replaced by colour c2 and the colour c′2 will be replaced by
colour c1. Then, R(m2,m1) will be indeed the minimum number of vertices in the
complete graph, such that in any edge-colouring of the complete graph KR(m2,m1)

with colours c1 and c2, there is either a c1-coloured Km1 or c2-coloured Km2 . Hence,
R(m1,m2) = R(m2,m1).

Example 2.14. In Example 2.12, we have shown R(3, 4) = 9. By Theorem 2.13,
we get that R(4, 3) = 9.

Theorem 2.15. [48]

(1) R(3, 5) = 14.
(2) R(4, 4) = 18.

Proof.

(1) We have R(3, 4) = 9 by Example 2.12, and R(2, 5) = 5 by Lemma 2.2. Hence
by Lemma 2.3, we have R(3, 5) ≤ 14. Now, by the colouring of the complete
graph K13 as shown in Figure 2.4, we get R(3, 5) > 13, and hence, we can
conclude that R(3, 5) = 14.

(2) We have R(3, 4) = 9 by Example 2.12. By Lemma 2.3, we have R(4, 4) ≤ 18.
Now, by the colouring of the complete graph K17 shown in Figure 2.5, we get
R(4, 4) > 17, and hence, we can conclude that R(4, 4) = 18.
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Figure 2.4: R(3, 5) > 13.

Figure 2.5: R(4, 4) > 18.

Table 2.1 shows some of the known Ramsey numbers, with the references as
cited in the table and previous discussion.

(m1,m2) 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9
3 1 3 6 9 14 18 [47] 23 [59] 28 [73] 36 [49]
4 1 4 9 18 25 [74]
5 1 5 14 25
6 1 6 18
7 1 7 23
8 1 8 28
9 1 9 36

Table 2.1: Known Ramsey numbers

These are some of the presently known Ramsey numbers. Finding bounds on
Ramsey-type numbers is a major area of research in Ramsey Theory. We now prove
some bounds on Ramsey numbers that we were able to find independently, and could
not be found in previous literature, namely the bounds given in Theorems 2.16–2.20
below.

Theorem 2.16. R(3,m) ≤ (m)(m+1)
2

.

15



Proof. By Lemma 2.3, we have

R(3,m) ≤ R(2,m) +R(3,m− 1)

≤ R(2,m) +R(2,m− 1) +R(3,m− 2)

...

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 2) +R(3, 1)

= m+ (m− 1) + (m− 2) + · · ·+ 4 + 3 + 2 + 1

=
m(m+ 1)

2
. 2

In fact, since m(m+1)
2

= m(m+1)(m−1)!
2(m−1)! = (m+1)!

2![(m+1)−2]! =
(
m+1
2

)
, Theorem 2.16

coincides with Theorem 2.10. Further notice that,

m(m+ 1)

2
=
m2 +m

2

=
2m+m2 −m

2

= m+
m2 −m

2

= m+
m(m− 1)

2
= |V (Km)|+ |E(Km)|

where |V (Km)| and |E(Km)| are the number of vertices and edges in Km, respectively.
This makes Theorem 2.16 a special case of a conjecture by Sidorenko [93]. Note
also that R(3, 3), R(2, 4), R(3, 5), R(2, 6), R(3, 9) and R(2, 10) are all even, so by
Theorem 2.11, we can further improve Theorem 2.16.

Theorem 2.17.

(1) For m ≥ 4, R(3,m) ≤ (m)(m+1)
2

− 1.

(2) For m ≥ 6, R(3,m) ≤ (m)(m+1)
2

− 2.

(3) For m ≥ 10, R(3,m) ≤ (m)(m+1)
2

− 3.

Proof.

(1) R(3,m) ≤ R(2,m) +R(3,m− 1)

≤ R(2,m) +R(2,m− 1) +R(3,m− 2)

...

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 4)

+R(3, 3)− 1

≤ m+ (m− 1) + (m− 2) + · · ·+R(2, 4) +R(2, 3) +R(2, 3)− 1

= m+ (m− 1) + (m− 2) + · · ·+ 4 + 3 + 2 + 1− 1

=
m(m+ 1)

2
− 1 .
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(2) R(3,m) ≤ R(2,m) +R(3,m− 1)

≤ R(2,m) +R(2,m− 1) +R(3,m− 2)

...

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 7) +R(3, 6)

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 7) +R(2, 6)

+R(3, 5)− 1

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 5) +R(3, 4)− 1

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 5) +R(2, 4)

+R(3, 3)− 1− 1

≤ m+ (m− 1) + (m− 2) + · · ·+R(2, 4) +R(2, 3) +R(2, 3)− 2

= m+ (m− 1) + (m− 2) + · · ·+ 4 + 3 + 3− 2

= m+ (m− 1) + (m− 2) + · · ·+ 4 + 3 + 2 + 1− 2

=
m(m+ 1)

2
− 2 .

(3)

R(3,m) ≤ R(2,m) +R(3,m− 1)

≤ R(2,m) +R(2,m− 1) +R(3,m− 2)

...

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 11) +R(3, 10)

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 11) +R(2, 10)

+R(3, 9)− 1

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 7) +R(3, 6)− 1

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 7) +R(2, 6)

+R(3, 5)− 1− 1

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 5) +R(3, 4)− 2

≤ R(2,m) +R(2,m− 1) +R(2,m− 2) + · · ·+R(2, 5) +R(2, 4)

+R(3, 3)− 1− 2

≤ m+ (m− 1) + (m− 2) + · · ·+R(2, 4) +R(2, 3) +R(2, 3)− 3

= m+ (m− 1) + (m− 2) + · · ·+ 4 + 3 + 3− 3

= m+ (m− 1) + (m− 2) + · · ·+ 4 + 3 + 2 + 1− 3

=
m(m+ 1)

2
− 3 .
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Theorem 2.18. R(4,m) ≤ m(m+1)(m+2)
6

.

Furthermore, for m ≥ 5, R(4,m) ≤ m(m+1)(m+2)
6

− 1.

Proof. By Lemma 2.3, we have

R(4,m) ≤ R(3,m) +R(4,m− 1)

≤ R(3,m) +R(3,m− 1) +R(4,m− 2)

...

≤ R(3,m) +R(3,m− 1) +R(3,m− 2) + · · ·+R(3, 2) +R(4, 1)

≤ (m)(m+ 1)

2
+

(m− 1)(m)

2
+ · · ·+ (4)(5)

2
+

(3)(4)

2
+

(2)(3)

2
+ 1

≤ (m)(m+ 1)

2
+

(m− 1)(m)

2
+ · · ·+ (4)(5)

2
+

(3)(4)

2
+

(2)(3)

2
+

(1)(2)

2

=
m(m+ 1)(m+ 2)

6
.

Now, note that R(3, 5) and R(4, 4) are both even. Then, for m ≥ 5, by Theorem 2.11,
we have

R(4,m) ≤ R(3,m) +R(4,m− 1)

≤ R(3,m) +R(3,m− 1) +R(4,m− 2)

...

≤ R(3,m) +R(3,m− 1) +R(3,m− 2) + · · ·+R(4, 5)

≤ R(3,m) +R(3,m− 1) + · · ·+R(3, 5) +R(4, 4)− 1

≤ R(3,m) +R(3,m− 1) + · · ·+R(3, 5) +R(3, 4) +R(4, 3)− 1

≤ (m)(m+ 1)

2
+

(m− 1)(m)

2
+ · · ·+ (4)(5)

2
+

(4)(5)

2
− 1

=
(m)(m+ 1)

2
+

(m− 1)(m)

2
+ · · ·+ (4)(5)

2

+
(3)(4)

2
+

(2)(3)

2
+

(1)(2)

2
− 1

=
m(m+ 1)(m+ 2)

6
− 1 .

Theorem 2.19. For m ≥ 3,

R(4,m) ≤ m(m+ 1)(m+ 2)

6
− 3 max{0,m− 9}

− 2 max{0,min{m, 9} − 5} −max{0,min{m, 5} − 3} − 1 .

Proof. We use Theorem 2.17. First, divide the value of m into 3 cases.
Case (i) : 3 ≤ m ≤ 5.
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Note that both max{0,m − 9} and max{0,min{m, 9} − 5} are equal to 0 and
max{0,min{m, 5} − 3} = m− 3. Hence, Theorem 2.19 will become

R(4,m) ≤ m(m+ 1)(m+ 2)

6
− (m− 3)− 1 .

m = 3 : R(4, 3) ≤ R(3, 3) +R(4, 2)− 1

≤ R(3, 3) +R(3, 2) +R(4, 1)− 1

≤ 3(4)

2
+

2(3)

2
+

1(2)

2
− 1

=
3(4)(5)

6
− 1.

m = 4 : R(4, 4) ≤ R(3, 4) +R(4, 3)

= 2R(4, 3)

≤ 2[
3(4)(5)

6
− 1]

=
2(3)(4)(5)

6
− 2

=
4(5)(6)

6
− 1− 1.

m = 5 : R(4, 5) ≤ R(3, 5) +R(4, 4)

≤ (5)(6)

2
− 1 +

(4)(5)(6)

6
− 1− 1

=
(3)(5)(6)

6
− 1 +

(4)(5)(6)

6
− 1− 1

=
5(6)(7)

6
− 2− 1

Case (ii) : 6 ≤ m ≤ 9.
Note that max{0,m − 9} = 0, that max{0,min{m, 9} − 5} = m − 5 and that
max{0,min{m, 5} − 3} = 2. Hence, Theorem 2.19 will reduce to

R(4,m) ≤ m(m+ 1)(m+ 2)

6
− 2(m− 5)− 3 .

Hence,
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m = 6 : R(4, 6) ≤ R(3, 6) +R(4, 5)

≤ 6(7)

2
− 2 +

5(6)(7)

6
− 2− 1

=
3(6)(7)

6
− 2 +

5(6)(7)

6
− 2− 1

=
6(7)(8)

6
− 2− 3 .

m = 7 : R(4, 7) ≤ R(3, 7) +R(4, 6)

≤ 7(8)

2
− 2 +

6(7)(8)

6
− 2− 3

=
3(7)(8)

6
− 2 +

6(7)(8)

6
− 2− 3

=
7(8)(9)

6
− 2(2)− 3 .

m = 8 : R(4, 8) ≤ R(3, 8) +R(4, 7)

≤ 8(9)

2
− 2 +

7(8)(9)

6
− 2(2)− 3

=
3(8)(9)

6
− 2 +

7(8)(9)

6
− 2(2)− 1

=
8(9)(10)

6
− 2(3)− 3.

m = 9 : R(4, 9) ≤ R(3, 9) +R(4, 8)

≤ 9(10)

2
− 2 +

8(9)(10)

6
− 2(3)− 3

=
3(9)(10)

6
− 2 +

8(9)(10)

6
− 2(3)− 3

=
9(10)(11)

6
− 2(4)− 3 .

Case (iii) : m ≥ 10.
Note that max{0,m − 9} = m − 9, that max{0,min{m, 9} − 5} = 4 and that
max{0,min{m, 5} − 3} = 2. Hence, Theorem 2.19 reduces to

R(4,m) ≤ m(m+ 1)(m+ 2)

6
− 3(m− 9)− 11 .
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We prove this case by induction.

m = 10 : R(4, 10) ≤ R(3, 10) +R(4, 9)

≤ 10(11)

2
− 3 +

9(10)(11)

6
− 2(4)− 3

=
3(10)(11)

6
− 3 +

9(10)(11)

6
− 11

=
10(11)(12)

6
− 3− 11 .

Now, assume that the theorem valid for R(4,m1−1) for some m1−1 ≥ 10. We want
to show that the theorem also valid for R(4,m1). Notice that, by the assumption,

we have R(4,m1 − 1) ≤ m1(m1−1)(m1+1)
6

− 3[(m1 − 1)− 9]− 11.

R(4,m1) ≤ R(3,m1) +R(4,m1 − 1)

≤ m1(m1 + 1)

2
− 3 +

m1(m1 − 1)(m1 + 1)

6
− 3(m1 − 10)− 11

=
3(m1)(m1 + 1)

6
− 3 +

m1(m1 − 1)(m1 + 1)

6
− 3(m1 − 10)− 11

=
m1(m1 + 1)(m1 + 2)

6
− 3(m1 − 9)− 11 .

Hence by induction, the theorem is valid for any m ≥ 10.

Theorem 2.20. For m ≥ 4, R(5,m) ≤ m(m+1)(m+2)(m+3)
24

− 1.

Proof. By Lemma 2.3, we have

R(5,m) ≤ R(4,m) +R(5,m− 1)

≤ R(4,m) +R(4,m− 1) +R(5,m− 2)

...

≤ R(4,m) +R(4,m− 1) + · · ·+R(4, 5) +R(5, 4)

≤ R(4,m) +R(4,m− 1) + · · ·+R(4, 5) +R(4, 4) +R(5, 3)− 1

since both R(4, 4) and R(5, 3) are even

≤ R(4,m) +R(4,m− 1) + · · ·+R(4, 3) +R(4, 2) +R(5, 1)− 1

≤ (m)(m+ 1)(m+ 2)

6
+

(m− 1)(m)(m+ 1)

6
+ · · ·+ (3)(4)(5)

6

+
(2)(3)(4)

6
+ 1− 1

≤ (m)(m+ 1)(m+ 2)

6
+

(m− 1)(m)(m+ 1)

6
+ · · ·+ (3)(4)(5)

6

+
(2)(3)(4)

6
+

(1)(2)(3)

6
− 1

=
m(m+ 1)(m+ 2)(m+ 3)

24
− 1 . 2
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A more general result on the upper bound of the Ramsey numbers was established
by Ajtai, Komlós and Szemerédi [2], who showed that

R(m1,m2) ≤
cm1m

m1−1
2

(lnm2)(m1 − 2)
, for some constant ck > 0.

Interested reader is referred to [2] for more details and proofs.

Next, we will discuss on the lower bound of the Ramsey numbers.

Theorem 2.21. [10] R(m1,m2) ≥ R(m1,m2 − 1) + 2m1 − 3.

Proof. Consider the graph G = KR(m1,m2−1)−1. By the definition of R(m1,m2 − 1),
there is a 2-colouring of the edges of the graph G which neither has a c1-coloured
Km1 subgraph nor a c2-coloured Km2−1 subgraph. Consider this colouring. Note
that G must contain a c1-coloured Km1−1 subgraph, for otherwise, if we add a new
vertex and join it to all the edges in G with c1-coloured edges, we get a colouring
of KR(m1,m2−1) without any monochromatic Km1 or Km2−1 subgraphs, violating the
definition of R(m1,m2 − 1). In fact, we only need to consider some c1-coloured
Km1−2 subgraph of G. Denote the vertices in this Km1−2 by u1, u2, . . . , um1−2.

Now, add m1 − 2 more vertices to G and denote them by v1, v2, . . . , vm1−2. For
each i ∈ [m1− 2], join the vertices ui and vi with a c2-coloured edge. Join the vertex
vi to each of the other vertices x in G with the edges in the same colour as the edges
joining ui to x. Let H = KR(m1,m2−1)+m1−3 be the resulting graph.

Note that in graph H, there is no c1-coloured Km1 . For suppose that there is one;
then ui and vi cannot both be in that Km1 . Since vi’s were added to the graph by
duplicating the ui’s, any vi involved in the Km1 is isomorphic to the Km1 obtained by
replacing vi with ui. However, this contradicts with the original colouring of graph G.
On the other hand, in the initial colouring of graph G, there is no c2-coloured Km2−1.
For graph H, the biggest degree of c2-coloured complete graph is m2 − 1 but any
c2-coloured Km2−1 must involve a pair of ui and vi and no other u and v.

We then adjoin m1 more vertices, denoting them by w1, w2, . . . , wm1 . Colour the
edges {wi, wj} with colour c1 for all i 6= j and the edges {wi, y} with colour c2 for
all y ∈ {u1, u2, . . . , um1−2, v1, v2, . . . , vm1−2, w1, w2, . . . , wm1}. For the edges {ui, wj},
colour with c1 if i ≥ j and c2 otherwise. For the edges {vi, wj}, we colour the other
way round: colour c2 if i ≥ j and c1 otherwise.

We first prove that KR(m1,m2−1)+2m1−4 contains no c1-coloured Km1 . Assume
the contrary. Since there is no such Km1 in H, the subgraph Km1 must involve
some wi. Hence, the subgraph Km1 must contain only vertices from the set
{u1, . . . , um1−2, v1, . . . , vm1−2, w1, . . . , wm1}. There are two cases to consider.
Case 1: Only one of the wi’s is involved, say wa. The vertices connected to wa with
c1-coloured edges are {v1, . . . , va−1, ua, . . . , um1−2}. Thus, the maximum degree of
the monochromatic c1-coloured complete subgraph is m1−1, which is a contradiction.
Case 2: There are two or more of the wi’s involved. Without loss of generality, we
may assume there are k of them, {wa1 , . . . , wak}. Note that k ≤ ak−a1. Further note
that the only vertices that are connected to all of them are {uak , . . . , um1−2, v1, va1−1}.
Thus, the maximum degree of the monochromatic c1-coloured complete subgraph is
k + (m1 − 2− ak + 1) + (a1 − 1 + 1) ≤ m1 − 1, which then is a contradiction.
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Now, we want to prove that the graph KR(m1,m2−1)+2m1−4 does not contain a
c2-coloured Km2 subgraph. Assume the contrary. Since there is no such Km2 in
graph H, again, the subgraph Km2 must involve some wi. Because the edges {wi, wj}
are coloured with c1 for all i 6= j, there is exactly one of the wi’s involved, say wb.
Hence, the Km2 must include Km2−1 in H, which must use exactly one pair ui, vi.
However, one of the edges {ui, wb} and {vi, wb} must be c1-coloured, depending on
the value of i and b, which is then a contradiction.

This colouring of KR(m1,m2−1)+2m1−4 does not contain a c1-coloured Km1 subgraph
or a c2-coloured Km2 subgraph, so the proof is complete.

Theorem 2.22.

(1) R(5, 5) ≤ 50.
(2) R(5, 5) ≥ 43. [27]

Proof.

(1) In [74], it is proven that R(4, 5) = 25. By Theorem 2.11, we have R(5, 5) ≤
R(4, 5) +R(5, 4) = 25 + 25 = 50.

(2) Figure 2.6 shows K42 with the edge-colouring with 2 colours c1( ) and
c2(−−−) as demonstrated by Exoo in [27] which contains no monochromatic
copies of K5 in the colouring. The interested reader is referred to [27] for more
details.

Hence, we have now proven that 43 ≤ R(5, 5) ≤ 50. However, in [3], by using a
technique of gluing induced subgraphs and verification by checking approximately two
trillion separate cases by computer, Angeltveit and McKay proved that R(5, 5) ≤ 48.
In fact, this is the best upper bound known for R(5, 5) today.
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(a) No c1-coloured K5

(b) No c2-coloured K5

Figure 2.6: R(5, 5) > 42
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Table 2.2 shows some known bounds of the Ramsey numbers, after compiling
the known results in the bounds of Ramsey numbers, with the references as cited,
and referring to the table compiled by Radziszowski in [83].

m1\m2 3 4 5 6

4 9 18 25 [36, 41][31, 75]

5 14 25 [43, 48][27, 3] [58, 87][29, 58]

6 18 [36,41] [58,87] [102, 165][60, 71]

7 23 [49, 61][28, 71] [80, 143][11, 95] [115, 298][34, 71]

8 28 [59, 84][34, 71] [101, 216][52, 95] [134, 495][34, 71]

9 36 [73, 115][83, 71] [133, 316][68, 71] [183, 780][68, 71]

10 [40, 42][32, 39] [92, 149][52, 71] [149, 442][34, 71] [204, 1171][68, 71]

11 [47, 50][30, 39] [102, 191][34, 95] [183, 633][68, 56] [256, 1804][68, 56]

12 [53, 59][64, 70] [128, 238][97, 95] [203, 848][68, 56] [294, 2566][68, 56]

13 [60, 68][64, 39] [138, 291][34, 95] [233, 1138][68, 56] [347, 3703][68, 56]

14 [67, 77][64, 39] [147, 349][34, 95] [267, 1461][68, 56] [326, 5033]Thm 2.21,[56]

15 [74, 87][64, 39] [155, 417][34, 95] [269, 1878][34, 56] [401, 6911][83, 56]

Table 2.2: Bounds for Ramsey number R(m1,m2) for m1 ≤ 6 and m2 ≤ 15

Let us introduce one very interesting special type of Ramsey numbers, known
as diagonal Ramsey number, R(m,m), or also denoted by R(m). Despite much
research on these numbers, R(3) = 6 and R(4) = 18 are the only known exact
diagonal Ramsey numbers. The first upper bound on the R(m) is a consequence of
the Erdős and Szekeres proof of Ramsey theorem in 1935 [25]:

R(m) ≤
(

2m− 2

m− 1

)
≤ 4m.

In 1968, Walker had established a recurrence result on R(m,m) [104], proved that

R(m,m) ≤ 4R(m,m− 2) + 2.

The best until now upper bound was provided by Conlon in 2009 [17]:

R(m+ 1) ≤
(

2m

m

)
m−C

logm
log logm , for some constant C .

On the other hand, the first lower bound of the diagonal Ramsey numbers
was provided by Erdős in 1947 [22], who gave a simple probabilistic proof of
R(m) ≥ cm2

m
2 , for some constant c. In 1975, Spencer [94] improved the result to

R(m) ≥ m2
m
2 [

√
2

e
+ o(1)].
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Before we end this chapter, we look at some results on the colouring of graph
edges with more than 2 colours.

Theorem 2.23. R(3, 3, 3) = 17

Proof. We first prove that R(3, 3, 3) ≤ 17. Let A be any vertex in K17. Then there
are 16 edges incident with it. By the Pigeonhole Principle, at least 6 of them must
be of the same colour, say c1. Among these 6 vertices, if there are two vertices whose
edge connecting them is c1-coloured, then we have a monochromatically c1-coloured
K3. Otherwise, all the edges in this K6 are coloured with the other 2 colours, c2
and c3. By Example 2.8, R(3, 3) = 6. Hence, we will get a monochromatic K3.
Therefore, R(3, 3, 3) ≤ 17.

Now, we need to prove that R(3, 3, 3) ≥ 17 > 16. To do so, we need to construct
a 3-colouring of edges of K16 which does not contain monochromatic K3. We first
label the vertices in K16 as u1, u2, . . . , u16. Define the following adjacency matrix:

M = {aij} =


0 , {ui, uj} /∈ E(K16);

1 , {ui, uj} is c1-coloured;

2 , {ui, uj} is c2-coloured;

3 , {ui, uj} is c3-coloured .

Now, consider a colouring of K16 defined by the following adjacency matrix [99].

M =



0 3 3 1 2 2 2 3 1 1 2 3 1 2 1 3
3 0 1 3 2 2 3 2 1 1 3 2 2 1 3 1
3 1 0 3 2 3 2 2 2 3 1 1 1 3 1 2
1 3 3 0 3 2 2 2 3 2 1 1 3 1 2 1
2 2 2 3 0 3 3 1 1 2 1 3 1 1 2 3
2 2 3 2 3 0 1 3 2 1 3 1 1 1 3 2
2 3 2 2 3 1 0 3 1 3 1 2 2 3 1 1
3 2 2 2 1 3 3 0 3 1 2 1 3 2 1 1
1 1 2 3 1 2 1 3 0 3 3 1 2 2 2 3
1 1 3 2 2 1 3 1 3 0 1 3 2 2 3 2
2 3 1 1 1 3 1 2 3 1 0 3 2 3 2 2
3 2 1 1 3 1 2 1 1 3 3 0 3 2 2 2
1 2 1 3 1 1 2 3 2 2 2 3 0 3 3 1
2 1 3 1 1 1 3 2 2 2 3 2 3 0 1 3
1 3 1 2 2 3 1 1 2 3 2 2 3 1 0 3
3 1 2 1 3 2 1 1 3 2 2 2 1 3 3 0


There is no monochromatic K3 in this colouring of K16. Thus, R(3, 3, 3) > 16 ≥ 17.
Therefore, we have R(3, 3, 3) = 17.

Let R(k; r) = R(k1, k2, . . . , kr), where k1 = k2 = · · · = kr = k. There is a result
regarding R(3; r) which has been proven by Wan in 1997 [106]. Here we state the
theorem; the interested reader is referred to [106] for the detailed proof.

Theorem 2.24. [106] For r ≥ 4, R(3; r) ≤ r!( e−e
−1+3
2

) + 1 ≈ 2.68r! + 1.
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Suppose that G1, G2, . . . , Gr are graphs. We can further extend the concept of
Ramsey numbers R(m1,m2, . . . ,mr) by defining R(G1, G2, . . . , Gr) to be the least
n such that if the edges of a complete graph Kn is r-coloured, then there is always
a monochromatic subgraph Gi, for some i ∈ [r]. In next chapter, we will present
some Ramsey results on certain types of graphs.
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Chapter 3

Ramsey-type Theorems for Graphs

In this chapter, we will introduce some graph analogues of Ramsey’s Theorem. In
Section 3.1, we will present some Ramsey-type results for general graphs. In Section
3.2, we will present some Ramsey-type results for tree graphs. In Section 3.3, we
will introduce some Ramsey-type results for cycle graphs. In Section 3.4, we will
look into Ramsey’s Theorem for bipartite graphs. In Section 3.5, we will present
more on the result of bipartite Ramsey Number.

3.1 Ramsey-type Results for General Graphs

Before presenting Ramsey-type results for more specific types of graphs in the later
subsections, we present some results that are valid for graphs in general. We first
introduce some definitions that will be useful in our discussion.

Definition 3.1 (Chromatic index). The chromatic index is the smallest number of
colours needed to colour the edges of a graph in such a way that no two edges incident
to the same vertex share the same colour. The chromatic index of the graph G is
denoted by χ(G).

Definition 3.2 (Connected component). A connected component of a graph is a
subgraph in which any two vertices of the subgraph are connected to each other. In
our study, c(G) denotes the largest size of a connected component of the graph G.

Example 3.3. Let G and H be graphs shown below.

(a) G (b) H

Figure 3.1: Graphs G and H.

Then χ(G) = 3, χ(H) = 2 and c(G) = 5, c(H) = 4.

Theorem 3.4. [16] Let G and H be any graphs. R(G,H) ≥ (c(G)−1)(χ(H)−1)+1.
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Proof. Consider the complete graph K(c(G)−1)(χ(H)−1). Note that we can find χ(H)−1
disjointed copies of Kc(G)−1 as subgraphs of K(c(G)−1)(χ(H)−1). Colour the edges of
these subgraphs with colour c1 and all the rest of the edges with colour c2. In this
way, we have no c1-coloured G as the largest size of the c1-coloured component
is c(G) − 1. On the other hand, the c2-coloured subgraph has the chromatic
index of χ(H) − 1 and hence it is impossible to have a c2-coloured H. Hence,
R(G,H) ≥ (c(G)− 1)(χ(H)− 1) + 1.

We discovered and proved the following improvement of Theorem 3.4.

Theorem 3.5. Let k ≥ 2 and R(G; k) be the least n such that k-colouring of the
complete graph Kn will give us a monochromatic subgraph G.
Then R(G; k) ≥ (χ(G)− 1)(R(G; k − 1)− 1) + 1.

Proof. Consider the complete graph K(χ(G)−1)(R(G;k−1)−1). Note that we can find
(χ(G) − 1) disjointed copies of KR(G;k−1)−1 as subgraphs of K(χ(G)−1)(R(G;k−1)−1).
Colour the edges of these subgraphs with colour ci for 1 ≤ i ≤ k − 1. By the
definition of R(G; k − 1), there is a colouring of these edges such that there is no
monochromatic G. On the other hand, we colour all the remaining edges with
colour ck. Since the ck-coloured subgraph has the chromatic index of χ(G) − 1
and hence it is impossible to have a ck-coloured G. Therefore, we have R(G; k) ≥
(χ(G)− 1)(R(G; k − 1)− 1) + 1.

3.2 Ramsey-type Results for Trees

In this section, we will present Ramsey-type results on tree graphs.

Theorem 3.6. [15] R(Tm, Kn) = (m− 1)(n− 1) + 1.

Proof. Note that c(Tm) = m and χ(Kn) = n − 1. By Theorem 3.4, we have
R(Tm, Kn) ≥ (c(Tm)−1)(χ(Kn)−1)+1 = (m−1)(n−1)+1. We now wish to prove
that R(Tm, Kn) ≤ (m−1)(n−1)+1. Note that R(T1, K1) = R(K1, K1) = R(1, 1) = 1
by Lemma 2.2. Assume that R(T ′m, K

′
n) ≤ (m′ − 1)(n′ − 1) + 1 for all values of m′

and n′ such that m′+n′ < m+n. Consider any colouring of K(m−1)(n−1)+1 with colour
c1 and c2. By the induction assumption, we have R(Tm−1, Kn) ≤ (m−2)(n−1)+1 <
(m − 1)(n − 1) + 1. Hence, in any colouring of K(m−1)(n−1)+1, we have either c1-
coloured Tm−1 or c2-coloured Kn. In latter case, we are done. Suppose that we
have a c1-coloured subgraph Tm−1 Remove this c1-coloured Tm−1 and all the edges
incident to it from the graph. Then, we will get a complete graph K(m−1)(n−2)+1. By
the induction assumption, we have R(Tm, Kn−1) ≤ (m− 1)(n− 2) + 1. Therefore,
in this resulting K(m−1)(n−2)+1, either we have some c1-coloured Tm, in which case
we are done by adding back the c1-coloured Tm−1 and the other removed edges, or
we have a c2-coloured subgraph Kn−1. Suppose the latter case and add back Tm−1
to K(m−1)(n−2)+1. Let u be any end vertex of Tm−1. Consider all the edges joining u
to K(m−1)(n−2)+1. If one of the edges is c1-coloured, then a c1-coloured Tm is formed
and we are done. Otherwise, all the edges will be c2-coloured including those joining
vertex u to the c2-coloured Kn−1 in K(m−1)(n−2)+1, which will give us a c2-coloured Kn.
Hence, in either way, we can find either a c1-coloured Tm subgraph or a c2-coloured
Kn subgraph in the colouring of K(m−1)(n−1)+1. Thus, R(Tm, Kn) ≤ (m−1)(n−1)+1.
Therefore, we have R(Tm, Kn) = (m− 1)(n− 1) + 1.
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Theorem 3.7. Let Tm be a tree graph with m vertices. Then m ≤ R(T3, Tm) ≤ m+1.

Proof. First, note that χ(T3) = 2 and c(Tm) = m. Hence by Theorem 3.4,
R(T3, Tm) = R(Tm, T3) ≥ (m− 1)(2− 1) + 1 = m. Now, consider any 2-colouring of
Km+1 and assume that there is no c1-coloured T3 in the colouring. Note that there
is a Tm as a subgraph in Km+1. If all edges in this subgraph Tm are c2-coloured,
then we are done. Suppose that is not the case. Then there is at least an edge, say
{u, v}, is c1-coloured. Now, let w be the vertex that not included in the Tm and let
a1, . . . , ai and b1, . . . , bj be the vertices adjacent to u and v respectively. Note that
the vertices u and v must be adjacent to all these vertices with c2-coloured edges,
or else we will have a c1-coloured T3, which is a contradiction. Consider the edges
connecting the vertex w and all the vertices a1, . . . , ai. If all are c2-coloured, then
replace the vertex u with the vertex w. If any of the edges is c1-coloured, then all
the edges connecting the vertex w and the vertices b1, . . . , bj must be c2-coloured,
so replace the vertex v with the vertex w. Now, we will get a new Tm. If all the
edges in this Tm are c2-coloured, then we are done, or else, repeat the process and
we can get one eventually. Hence, we have R(T3, Tm) ≤ m + 1. Thus, we have
m ≤ R(T3, Tm) ≤ m+ 1.

After finding and proving Theorem 3.7, we discovered that Chartrand, Gould and
Polimeni [12] had proved a more complete result on R(T3, Tm), below. Interested
readers are referred to [12] for a proof.

Theorem 3.8. [12] If Tm is any tree of order m ≥ 3, then

R(T3, Tm) =

{
m+ 1, if Tm is a complete bipartite graph K1,m−1 and m is even.

m, otherwise.

3.3 Ramsey-type Results for Cycles

In this section, we will present some Ramsey-type results for cycle graphs. We first
derive Ramsey number for small cycles.

Theorem 3.9. Let C3 and C4 be the cycle graph with 3 and 4 vertices, respectively.
Then R(C3, C3) = R(C4, C4) = 6.

Proof. Note that C3 is isomorphic to K3, so R(C3, C3) = R(K3, K3) = R(3, 3) = 6.
Now, we need to prove that R(C4, C4) = 6. We first prove that R(C4, C4) ≤ 6.
Suppose the contrary, that there is no monochromatic C4 in any 2-colouring of
the edges of the complete graph K6. As we have previously shown, there exists a
monochromatic K3 in any colouring of K6. Without loss of generality, let the edges
of the subgraph K3 be c1-coloured and denote the vertices of K3 by u1, u2 and u3.
Let the remaining vertices be denoted by v1, v2 and v3, respectively. For each vi,
there is at most one c1-coloured edge connecting vi to the c1-coloured K3 or else
some c1-coloured C4 is formed. This means, for each vi, that there are at least 2
c2-coloured edges to the subgraph K3.

Now suppose that one of the vertices vi, say v1, has no c1-coloured edge to the
subgraph K3. Then, there can be at most one c2-coloured edge from each v2 and
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v3 to the c1-coloured K3, or else a c2-coloured C4 will be formed, a contradiction.
Therefore, there is exactly one c1-coloured edge from each vi to the K3.

Now, suppose there is more than one c1-coloured edges from one of the ui’s, say
u1, to the some vj. Without loss of generality, we let the vertex u1 be joined to
v1 and v2 by c1-coloured edges. Then, both v1 and v2 are adjacent to u2 and u3
by c2-coloured edges, and this gives us a c2-coloured C4, a contradiction. Hence,
each vi is adjacent to a different vertex of the c1-coloured K3 by a c1-coloured edge.
Without loss of generality, let the vertex ui be joined to vi by a c1-coloured edge. If
any of the edges vivj is c1-coloured, then we will have a c1-coloured C4. If all the
edges vivj are c2-coloured, then we will get a c2-coloured C4. Either way, it will lead
us to a contradiction. Therefore, we have R(C4, C4) ≤ 6.

Now by Figure 3.2, R(C4, C4) > 5. Thus, we have R(C4, C4) = 6.

Figure 3.2: R(C4, C4) > 5.

We have looked at some Ramsey numbers on small cycles. Now, we present some
Ramsey-type results on cycles more generally. In order to do prove those results, we
will need the following useful proposition.

Proposition 3.10. [23] Suppose that G is a graph with n vertices and at least
1
2
[(c− 1)(n− 1) + 1] edges. Then G contains a cycle of length at least c.

Theorem 3.11. [8] Let m ≥ 5 be an odd integer. Then R(Cm, Cm) = 2m− 1.

Proof. Note that χ(Cm) = 3 for odd m and c(Cm) = m. By Theorem 3.4,
R(Cm, Cm) ≥ (χ(Cm) − 1)(c(Cm) − 1) + 1 = 2m − 1. Now, we need to prove
that R(Cm, Cm) ≤ 2m− 1. Note that K2m−1 has

(
2m−1

2

)
edges. By the Pigeonhole

Principle, at least 1
2

(
2m−1

2

)
= 1

4
(2m − 1)(2m − 2) > 1

2
[(m − 1)((2m − 1) − 1) + 1]

of the edges are of the same colour in any 2-colouring of the edges of K2m−1. By
Proposition 3.10, there is a monochromatic cycle of the length at least m. Now, if
we can show that the existence of a monochromatic Ck in the colouring will imply
the existence of a monochromatic Ck−1, then the theorem is proven.

Let (v0, . . . , vk−1, v0) be a monochromatic Ck in the edge colouring of K2m−1.
Without loss of generality, let Ck be c1-coloured. Suppose the contrary, that there
is no monochromatic Ck−1. Now, consider the indices modulo k. Note that the
edges of Ck, {vi, vi+1}, 0 ≤ i ≤ k − 1 are c1-coloured. Since there is no c1-coloured
Ck−1 = (v0, . . . , vi, vi+2, . . . , vk, v0), we have the edges {vi, vi+2}, 0 ≤ i ≤ k − 1 must
be c2-coloured. Since there is no c2-coloured Ck−1 = (vi, vi+4, vi+6, . . . , vi−2, vi),
we have the edges {vi, vi+4}, 0 ≤ i ≤ k − 1 must be c1-coloured. Now, since
there is no c1-coloured Ck−1 = (vi, vi+3, vi+4, . . . , vi−2, vi+2, vi+1, vi), we have the
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edges {vi, vi+3}, 0 ≤ i ≤ k − 1 must be c2-coloured. But this will give us a c2-
coloured Ck−1 = (v1, v3, . . . , vk−6, vk−3, vk−5, . . . , v2, vk−1, vk−4, vk−2, v1) if k is odd
or c2-coloured Ck−1, (v1, v3, . . . , vk−5, vk−2, vk−4, . . . , v2, vk, vk−3, vk−1, v1) if k is even.
In either case, we are done.

Hence by induction, we have a monochromatic cycle Cm of length m in any
edge-colouring of K2m−1 with 2 colours. Thus, R(Cm, Cm) ≤ 2m− 1.

Therefore, we have R(Cm, Cm) = 2m− 1.

Theorem 3.12. [85] Let m ≥ 6 be an even integer. Then R(Cm, Cm) = 3m
2
− 1.

Proof. Consider a c1-coloured complete graph Km−1. Note that the complete graph
does not contain Cm. Now, consider a c2-coloured complete graph Km

2
−1. Join both

complete graphs with c2-coloured edges and form the complete graph K 3m
2
−2. Clearly,

there is no monochromatic Cm. Thus, we have R(Cm, Cm) ≥ 3m
2
− 1 > 3m

2
− 2.

Now, we wish to show that R(Cm, Cm) ≤ 3m
2
−1. Let D be the largest monochro-

matic cycle with s vertices in the 2-colouring of K 3m
2
−1. Let G be c1-coloured

subgraph of K 3m
2
−1 and G be c2-coloured subgraph of K 3m

2
−1. Without loss of

generality, we let D be the subgraph of G.
If s < m, by Proposition 3.10, then the number of edges of G, |E(G)| is less than

1
2
((m− 1)(3m

2
− 1− 1) + 1). Then, we have the number of edges in G,

|E(G)| = |E(K 3m
2
−1| − |E(G)|

>
(3m

2
− 1)(3m

2
− 2)

2
− 1

2

(
(m− 1)

(3m

2
− 1− 1

)
+ 1
)

=
6m2 − 7m− 1

2

>
3m2

2
− 7m

2
+ 3

2

=
1

2

(
(m− 1)

(3m

2
− 1− 1

)
+ 1
)
.

By Proposition 3.10, G contains a cycle of length at least m > s, which is then
a contradiction since s is the largest size of monochromatic cycle in the colouring.
Therefore, we have s ≥ m.

Now, if s = m, then we are done. If s > m, then by the similar method of
construction in Theorem 3.11, it can be shown that either G or G will contains Cm
as the subgraph and we are done. Hence, we have R(Cm, Cm) ≤ 3m

2
− 1. Therefore,

R(Cm, Cm) = 3m
2
− 1, for m ≥ 6 is an even integer.

Theorem 3.13. [13] Let m ≥ 3,

R(C3, Cm) =

{
6 , if m = 3;

2m− 1 , otherwise.

Proof. The outline of this proof is found in [13]; we have filled in the explicit details.
From Theorem 3.9, it is known that R(C3, C3) = 6. Now for m ≥ 4, we first need to
prove that R(C3, Cm) ≤ 2m− 1. We use induction on m.
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Let m = 4. We have to show that R(C3, C4) ≤ 2(4) − 1 = 7. Suppose to
the contrary that there is neither c1-coloured C3 nor c2-coloured C4 in any 2-
colouring of K7. Note that R(C3, C3) = 6 < 7; hence, there is a monochromatic C3,
say (u1, u2, u3, u1) in the colouring of K7. Since there is no c1-coloured C3, the
monochromatic C3 must be c2-coloured. Let the remaining vertices in K7 be
v1, v2, v3 and v4. Consider the set of vertices {u2, u3, v1, v2, v3, v4}. Note that these
6 vertices form K6 as a subgraph of K7. Hence, there is a monochromatic C3 in
the subgraph K6 and the C3 must be c2-coloured. If both u2 and u3 are vertices
in the monochromatic C3, say (u2, u3, vi, u2) for some 1 ≤ i ≤ 4, then the vertices
{u2, u1, u3, vi} will form a c2-coloured C4, hence a contradiction. Now, suppose that
both u2 and u3 are not vertices in the monochromatic C3. Without the loss of
generality, assume that the c2-coloured C3 is (v1, v2, v3, v1). Consider the vertex v4.
Note that if there are two c2-coloured edges connecting v4 to the vertices {u1, u2, u3},
then there will be c2-coloured C4, a contradiction. Hence, at least two of the vertices
{u1, u2, u3}, say u1 and u2, are connected to v4 with c1-coloured edges. Similarly,
there at least two of the vertices {v1, v2, v3}, say v1 and v2, are connected to v4 with
c1-coloured edges. Now, look at the edges {u1, v1} and {u2, v2}. If either of the
edges is c1-coloured, then we will have a c1-coloured C3. If both of the edges are
c2-coloured, then we will have a c2-coloured C4. On the other hand, suppose that one
of the vertices u2 and u3, say u2, is a vertex in the monochromatic C3. Without loss
of generality, let the c2-coloured C3 be (u2, v1, v2, u2). Note that the edges {u1, v1},
{u1, v2}, {u3, v1} and {u3, v2} must be c1-coloured, or else we will have a c2-coloured
C4. Now, consider another subgraph K6, with the vertices {u1, u3, v1, v2, v3, v4}.
Note that there is a monochromatic C3 in this subgraph and must be c2-coloured
since there is no c1-coloured C3. Further note that only one of the vertices u1, u3, v1
and v2 will be involved in the c2-coloured C3, or else we will have a c2-coloured C4.
Without loss of generality, assume that the c2-coloured C3 is (u1, v3, v4, u1). Consider
these edges, {u3, v3} and {v2, v3}. If any of these edges is c2-coloured, then we will
have a c2-coloured C4. If both of the edges are c1-coloured, then we will have a
c1-coloured C3. Either way, it will lead us to a contradiction. Hence, R(C3, C4) ≤ 7.

Now, assume that R(C3, Cm) ≤ 2m− 1. We wish to show that R(C3, Cm+1) ≤
2(m + 1) − 1 = 2m + 1. Consider any 2-colouring of K2m+1 with colour c1 and
c2. Let G be a c1-coloured subgraph of K2m+1 and G be a c2-coloured subgraph
of K2m+1. Suppose there is no C3 in the subgraph G. We need to show there is a
Cm+1 in the subgraph G. Since R(C3, Cm) ≤ 2m− 1, therefore there must be a Cm,
say (u1, . . . , um, u1), in the subgraph G. Denote the remaining vertices of K2m+1

by v1, v2, . . . , vm, vm+1. Note that if any of the vi’s is connected to two consecutive
vertices in Cm in G, then we will have a Cm+1 in G. Suppose there is no such vi.
There are then two cases to be considered.

First, assume that there exist two alternate vertices of Cm, say uj and uj+2,
which are respectively adjacent in G to two distinct vi. Without loss of generality,
let uj be adjacent to v1 in G and uj+2 be adjacent to v2 in G. If v1 is adjacent to
v2 in G, then (u1, . . . , uj, v1, v2, uj+2, . . . , um, u1) will form a Cm+1 in G. If v1 and
v2 are adjacent in G, then consider the edges {v1, uj+1} and {v2, uj+1}. If either of
these two edges lies in G, then we will have Cm+1 in G. Otherwise, we will have a
C3 in G, which is a contradiction.
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On the other hand, suppose that there are no two alternate vertices of Cm
adjacent in G to distinct vi. Before we proceed to the case, note that since there is
no C3 in G, if there is a vertex in the Cm that is not adjacent to any vi in G and
hence adjacent to every single vi’s in G, then every vi’s must connect with each other
in G. However, this will form a Cm+1 (in fact a Km+1) in G. Hence, every vertices in
Cm must be adjacent to some vi in G. Without loss of the generality, suppose that uj
is adjacent to v1 in G. Then, uj+2 must also adjacent to v1 in G as we have assumed
that there are no two alternate vertices of Cm adjacent in G to distinct vi. Since
there is no vi connected to two consecutive vertices in Cm in G, v1 must be adjacent
to uj−1 and uj+1 in G. This will then force uj−1 and uj+1 to be adjacent to each other
in G. Then, (u1, . . . , uj−1, uj+1, uj, v1, uj+2, uj+3, . . . , um, u1) will form a Cm+1 in G.
In either case, we will have a Cm+1 in G. Thus, R(C3, Cm+1) ≤ 2m+1 = 2(m+1)−1.
By induction, we have R(C3, Cm) ≤ 2m− 1 for m ≥ 4.

Now, we need to prove that R(C3, Cm) ≥ 2m− 1 for m ≥ 4. Note that there is a
complete bipartite graph Km−1,m−1 as a subgraph of K2m−2. Colour the edges of this
subgraph in colour c1 and the remaining edges in colour c2. In this way, we will get a
c1-coloured Km−1,m−1 and c2-coloured Km−1 ∪Km−1. Hence, there is no c1-coloured
C3 and c2-coloured Cm in this colouring. Thus, we have R(C3, Cm) ≥ 2m−1 > 2m−2
for m ≥ 4.

Therefore, R(C3, Cm) = 2m− 1 for m ≥ 4. Thus, the theorem is valid.

Theorem 3.14. [13] Let m ≥ 4,

R(C4, Cm) =


6, if m = 4 ;

7, if m = 5 ;

m+ 1, otherwise .

Proof. The outline of this proof is found in [13]; we have filled in the explicit details.
By Theorem 3.9, it is known that R(C4, C4) = 6.
For m = 5, consider any 2-colouring of K7. Let s be the largest size of the

monochromatic cycle in the colouring. Let G be a c1-coloured subgraph of K7 and
G be a c2-coloured subgraph of K7. Suppose that s ≤ 3. Then the largest cycle
size in both G and G is at most 3. By Proposition 3.10, the number of edges of
G and G, |E(G)| and |E(G)|, are both less than 1

2
((3 − 1)(7 − 1) + 1) = 6.5 < 7.

Therefore, 21 = |E(K7|) = |E(G)|+ |E(G)| < 14, a contradiction. Hence, s ≥ 4. If
4 ≤ s ≤ 5, then we are done. If s ≥ 6, then by the similar method of construction
to that in Theorem 3.11, it can be shown that either G or G will contains C5

as the subgraph and we are done since R(C4, C5) = R(C5, C4). Hence, we have
R(C4, C5) ≤ 7. Furthermore, Figure 3.3 shows that R(C4, C5) ≥ 7 > 6. Hence, we
have R(C4, C5) = 7.

For m ≥ 6, note that there is a complete bipartite graph K1,m−1 as a subgraph
of Km. Colour the edges of this subgraph in colour c1 and the remaining edges in
colour c2. In this way, we will get a c1-coloured K1,m−1 and c2-coloured K1 ∪Km−1.
Hence, there is no c1-coloured C4 and c2-coloured Cm in this colouring. Thus for
m ≥ 6, we have R(C4, Cm) > m and so R(C4, Cm) ≥ m+ 1.

Now, we want to show that R(C4, Cm) ≤ m+ 1 for m ≥ 6. We will proceed with
induction on m. Let m = 6, consider any 2-colouring of K7. Since R(C4, C5) = 7,

34



we will have either a c1-coloured C4 or a c2-coloured C5. If there is a c1-coloured
C4, then we are done. Suppose that is not the case. Then we have a c2-coloured C5;
denote its vertices by u1, u2, u3, u4 and u5, respectively. Let the remaining vertices
be v1 and v2. If there are any consecutive vertices in C5 that are connected to a
same vertex, v1 or v2, by c2-coloured edges, then we are done. Suppose there is no
such vertex in C5. Then each of the v1 and v2 must be adjacent to at least three
of the vertices in C5 via c1-coloured edges. By the Pigeonhole Principle, one of the
vertices in C5, say u1, must be adjacent to both v1 and v2 via c1-coloured edges.
Note that if any other vertex of C5 join to both v1 and v2 by c1-coloured edges,
then we will have a c1-coloured C4. Assume that no such vertex exists. Every other
vertex in C5 must be adjacent to at least one of the v1 and v2 via a c2-coloured
edge. Without loss of generality, suppose that u2 is adjacent to v1 via a c2-coloured
edge. Then, u3 must be adjacent to v1 via a c1-coloured edge and must be adjacent
to v2 via a c2-coloured edge. Then, u2 and u4 must be both adjacent to v2 via
c1-coloured edges. This will force u4 to be adjacent to v1 via a c2-coloured edge.
Then, again, u5 must be connected to v1 by a c1-coloured edge and connected to
v2 by a c2-coloured edge. Then, the edge {v1, v2} must be c1-coloured, or else we
will have a c2-coloured C6. Now, look at the edge {u2, u5}. If the edge {u2, u5} is
c1-coloured, then (u2, u5, v1, v2, u2) will form a c1-coloured C4. If the edge {u2, u5} is
c2-coloured, then (u2, u5, v2, u3, u4, v1, u2) will form a c2-coloured C6. In either case,
we can conclude that R(C4, C6) ≤ 7.

Now, assume that R(C4, Cm) ≤ m+ 1 for some m ≥ 6. We need to show that
R(C4, Cm+1) ≤ (m+ 1) + 1 = m+ 2. Consider any 2-colouring of Km+2. Let H be a
c1-coloured subgraph of Km+1 and H be a c2-coloured subgraph of Km+2. Suppose
there is no C4 in H. Since R(C4, Cm) ≤ m+ 1 < m+ 2, there must be a Cm in H.
Label the vertices in Cm by u1, . . . , um. Let v1 and v2 be the two vertices that are
not in Cm. Note that if any of v1 and v2 is joined to two consecutive vertices of
Cm in H, then we will have a Cm in H and we are done. Suppose there is no such
vertex.

Then each of v1 and v2 are adjacent in H to at least m
2

vertices of Cm. If v1 and
v2 are mutually adjacent in H to two or more vertices in Cm, then H will contain C4.
Hence, there are only two cases to be considered. First, v1 and v2 are mutually
adjacent to no vertex of Cm in H. Without loss of generality, assume v1 is adjacent
to u1 in H. Then v2 must be adjacent to u1 in H, and hence adjacent to u2 and
um in H. In this case, v1 must be adjacent to u2 in H and u3 in H. Continuing
this process of reasoning, we notice that v1 will be adjacent to ui, where i is odd,
in H. If m is odd, then both v1 and v2 are adjacent to um in H, a contradiction.
Hence, this case can only occur when m is even, where v1 is adjacent to ui in H for
odd i and v2 is adjacent to ui in H for even i. Now, suppose m is even. Consider
these edges {u2, um} and {u2, u4}. If both edges are in H, then (u2, u4, v1, um, u2)
will form a C4 in H. Therefore, at least one of these two edges must be in H.
Then, we will have a Cm in H. For example, let the edges {u2, u4} in H. Then,
(u2, u4, u3, v1, u5, . . . , um, u1, u2) forms a Cm+1. On the other hand, v1 and v2 are
mutually adjacent to one vertex of Cm, say u1, in H. Then u2 must be adjacent to
one of the vertices v1 and v2 in H, without loss of generality, say v1. Then v1 must be
adjacent to u3 in H and v2 must be adjacent to u2 in H and u3 in H. Continuing in
this way, we see that v1 must be adjacent to ui for odd i in H and v2 must be adjacent
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to ui for even i and u1 in H. If um is odd, then (um, v2, u3, u2, v1, u4, . . . , um) will
form a Cm+1 in H. If um is even, then consider the edges {u1, um−1} and {u1, u3}.
Note that one of these two edges must exist in H, or else (u1, u3, v1, um−1, u1) will
form a C4 in H. Then, we will have a Cm in H. For example, if the edge {u1, um−1}
lies in H, then (v1, um, um−1, u1, u2, . . . , um−2, v1) will form a Cm+1 in H. In either
way, we will have a Cm in H. Hence, we have R(C4, Cm+1) ≤ m+ 2 = (m+ 1) + 1.
By induction, we have R(C4, Cm) ≤ m+ 1 for m ≥ 6.

Therefore, the theorem is valid.

Figure 3.3: R(C4, C5) > 6.

Theorem 3.15. [13] Let m ≥ 5, R(C5, Cm) = 2m− 1.

Proof. The outline of this proof is found in [13]; we have filled in the details.
First, we will show by induction on m that R(C5, Cm) ≤ 2m− 1 for m ≥ 5. For

m = 5, Theorem 3.11 implies that R(C5, C5) ≤ 2(5) + 1 = 10. Now, assume that
R(Cm, Cm) ≤ 2m− 1. We wish to show that R(C5, Cm+1) ≤ 2(m+ 1)− 1 = 2m+ 1.
Consider any colouring of K2m+1. Let L be the c1-coloured subgraph of K2m+1

and L be the c2-coloured subgraph of K2m+1. Suppose there is no C5 in L. Since
R(5,m) ≤ 2m− 1 < 2m+ 1, there must be a Cm in L. Denote the vertices in Cm
by u1, . . . , um and the remaining vertices by v1, . . . , vm, vm+1. Note that if any of
the vi’s is connected to two consecutive vertices in Cm in L, then we will have a
Cm+1 in L and we are done. Suppose there is no such vi. If all vertices v1, . . . , vn+1

are adjacent to each other in L and form Kn+1, then there is a Cm+1 in L and we
are done. Suppose that is not the case. Then two distinct vi, say v1 and v2, are
adjacent in L. Now, there are three cases to be considered.

Case 1. First, assume that there is a vertex from vis other than v1 and v2, say v3,
such that v1 and v3 are joined to a vertex ui of Cm in L, and v2 and v3 are joined
to a vertex uj of Cm in L. If i 6= j, then (v1, ui, v3, uj, v2, v1) forms a C5 in L. If
i = j, then v1, v2 and v3 are adjacent to a vertex ui, without loss of generality, say
u1 in L. Note that at least one of u2 and u3, say u2, must be adjacent to v3 in L.
Similarly, at least one of um and um−1, say um, must be adjacent to v3 in L. Then,
both u2 and um must be adjacent to v1 and v2 in L or else L will contain C5. This
will force both u3 and um−1 to be adjacent to v1 and v2 in L. Now, consider the
edge {u1, u3}. If it is in L, then (u1, u3, v2, v1, u1) will form C5 in L. If it is in L,
then (um, v1, u2, u1, u3, . . . , um) will form Cm in L.

Case 2. Next, assume that the first case does not hold, and there is some vertex
from vis, say v3, that is not adjacent in L to the vertex of Cm whichever is joined to

36



v1 or v2 in L. Note that one of the u1 and u2, say u1, must be adjacent to v1 in L.
Then, u1 must be adjacent to v3 in L and, hence, both um and u2 must be adjacent
to v3 in L. Based on our assumption, both um and u2 must be adjacent to v1 and v2
in L. Then, u1 must be adjacent to v2 in L and both um−1 and u3 must be adjacent
to v1 and v2 in L. By our assumption, both um−1 and u3 must be adjacent to v3
in L. Similarly, consider the edge {u1, u3}. If it is in L, then (u1, u3, v2, v1, u1) will
form C5 in L. If it is in L, then (um, v1, u2, u1, u3, . . . , um) will form Cm in L.

Case 3. Lastly, assume that the previous two cases do not hold. Then, for
each vertex from vi, i 6= 1, 2, whenever the edges {v1, uj} and {vi, uj} are in L, the
edge {v2, uj} is in L, or whenever the edges {v2, uj} and {vi, uj} are in L, the edge
{v1, uj} is in L. For simplicity, we look at the vertex v3. Since Case 2 does not hold,
there is at least one vertex from Cm, say u1, that is adjacent to both v3 and one of v1
and v2, say v1, in L. Then, the edge {u1, v2} must be in L, based on our assumption.
This will force both um and u2 to be adjacent to v2 in L. Now, since Case 1 does not
hold, both u2 and um must be adjacent to v3 in L. Then, both u3 and um−1 must
be adjacent to v3 in L and v2 in L. Continuing this argument, v2 will be adjacent to
ui in L for all even i and v3 will be adjacent to ui in L for all odd i. Therefore, m
must be even for this case. Now, consider the vertices v4, . . . , vm+1. If any of them
are adjacent to ui in L for even i, then v1 must be adjacent to ui in L for odd i and
in L for even i. Then, the edge {v1, v3} must be in L, or else we will get a Cm+1

in L. Suppose that all of them are adjacent to ui in L for odd i. If all the edges
{v1, vk} are in L, where k 6= 1, 2, 3, then we have (um, u1, v4, v1, v5, u2, . . . , um) as a
Cm+1 in L. However, if there is an edge {v1, vk}, k 6= 1, 2, 3, that is in L, then we
will get (v3, u1, v1, vk, u3, v3) as a C5 in L. Therefore, this subcase cannot happen,
and we must have the edge {v1, v3} in L. Relabel the vertex v2 as v3 and v3 as v2.
Then, we will reach the condition in the second case where the result holds.

In each of these cases, the result holds. By induction, we have R(C5, Cm) ≤ 2m−1
for m ≥ 5.

Now, note that there is complete bipartite graph Km−1,m−1 as a subgraph of
K2m−2. Colour the edges of this subgraph in colour c1 and the remaining edges
in colour c2. In this way, we will get a c1-coloured Km−1,m−1 and c2-coloured
Km−1 ∪Km−1. Hence, there is neither a c1-coloured C5 nor a c2-coloured Cm in this
colouring. Thus, we have R(C5, Cm) ≥ 2m− 1 > 2m− 2 for m ≥ 5.

Therefore, R(C5, Cm) = 2m− 1 for m ≥ 5. Thus, the theorem is valid.

The complete theorem on R(Cm1 , Cm2) was given by Faudree and Schelp [35] and
Rosta [85] independently. However, these proofs are complicated. In 2001, a simpler
proof was provided by Károlyi and Rosta [61]. The theorem is mentioned below but
the interested reader is referred to the publications cited above for detailed proofs.

37



Theorem 3.16. [35, 61, 85]

R(Cm1 , Cm2) =



6 if m1 = m2 = 3 or 4;

2m2 − 1 if 3 ≤ m1 ≤ m2, m1 is odd

and (m1,m2) 6= (3, 3);

m2 − 1 + m1

2
if 4 ≤ m1 ≤ m2, (m1,m2) 6= (4, 4)

and m1 and m2 are both even;

max{m2 − 1 + m1

2
, 2m2 − 1} if 4 ≤ m1 < m2

and m1 is even and m2 is odd.

3.4 Ramsey-type Results for Bipartite Graphs

In this section, we present some Ramsey results on the bipartite graphs. We first
study the existence of the monochromatic bipartite graph in the edge-colouring of a
complete graph. Then, we will introduce the bipartite Ramsey theorem.

Definition 3.17. We define R(Kp1,p2 , Kq1,q2) as the least N such that, for every
edge-colouring of a complete graph KN with the colours c1 and c2, we can get either
a monochromatic c1-coloured Kp1,p2 or a monochromatic c2-coloured Kq1,q2.

Now, we will present some results on this type of Ramsey number.

Theorem 3.18. [51]

R(K1,m1 , K1,m2) =

{
m1 +m2, if m1 or m2 is odd.

m1 +m2 − 1, if both m1 and m2 are even.

Proof. First, suppose that m1 or m2 is odd. Consider any edge-colouring of Km1+m2

with the colours c1 and c2. For each vertex, there are m1 +m2 − 1 edges incident
to it. If at least m1 of them are c1-coloured, then we have a c1-coloured K1,m1 .
Suppose that this is not the case. Then there are at least m2 c2-coloured edges,
forming a c2-coloured K1,m2 . Hence, we have R(K1,m1 , K1,m2) ≤ m1 +m2. Now, we
need to show that R(K1,m1 , K1,m2) ≥ m1 +m2. Without loss of generality, suppose
m1 is odd. Then m1 − 1 must be even. Hence, in the complete graph Km1+m2−1,
there must exist a regular subgraph of degree m1 − 1. We call it subgraph G. Note
that the complement of G, G is a regular graph of degree m2 − 1. We colour the
complete graph Km1+m2−1 in such a way that the edges in G has colour c1 and
the edges in G have colour c2. In this way, we have neither a c1-coloured K1,m1

nor a c2-coloured K1,m2 . Hence, we have R(K1,m1 , K1,m2) ≥ m1 + m2. Therefore,
R(K1,m1 , K1,m2) = m1 +m2 if m1 or m2 is odd.

Now, suppose that m1 and m2 are both even. Consider any edge-colouring of
Km1+m2−1 with the colours c1 and c2. For each vertex, there are m1 +m2 − 2 edges
incident to it. Note that we cannot have exactly m1 − 1 of these edges coloured c1
for all vertices, because if that were the case, then we would have an odd number of
c1-coloured edges in a graph with an odd number of vertices, which is impossible.
Hence, there is at least one vertex v in Km1+m2−1 for which one of the following
conditions holds.
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(1) There are at least m1 c1-coloured edges incident to v. In this case, we have a
c1-coloured K1,m1 .

(2) There are at most m1− 2 c1-coloured edges incident to v. Then, we have more
than m2 c2-coloured edges incident to v, and so we have a c2-coloured K1,m2 .

Thus, we have R(K1,m1 , K1,m2) ≤ m1 + m2 − 1. However in the complete graph
Km1+m2−2, we can find a regular subgraph of degree m1 − 1 and its complementary
graph is a regular graph of degree m2 − 2. Thus, we have R(K1,m1 , K1,m2) ≥
m1 + m2 − 1. Therefore, R(K1,m1 , K1,m2) = m1 + m2 − 1 if both m1 and m2 are
even.

We have generalised the theorem above as follows.

Theorem 3.19.

R(K1,m1 , . . . , K1,mk
) ≤

{
m1 + · · ·+mk − (k − 1) + 1 if any of mi or k is odd;

m1 + · · ·+mk − (k − 1) if all mi and k are even .

Proof. Suppose that any of the integers m1, . . . ,mk, k is odd. Consider any edge-
colouring of Km1+m2+···+mk−(k−1)+1 with colours c1, c2, . . . , ck. For each vertex, there
are m1 +m2 + · · ·+mk− (k−1) edges incident to it. By the Pigeonhole Principle, at
least mi of these edges are ci-coloured. Then we have a ci-coloured K1,mi

and we are
done. Hence, we have R(K1,m1 , K1,m2 , . . . , K1,mk

) ≤ m1 +m2 + · · ·+mk− (k−1) + 1
if mi or k is odd.

Now, suppose that all of the integers m1, . . . ,mk, k are even. Consider any
edge-colouring of Km1+m2+···+mk−(k−1) with colours c1, c2, . . . , ck. For each vertex,
there are m1 +m2 + · · ·+mk − k edges incident to it. Note that we cannot have
exactly m1 − 1 of these edges coloured c1 for all vertices, because if that is the
case, then we have an odd number of c1-coloured edges in a graph with an odd
number of vertices, which is impossible. Hence, for there is at least one vertex v in
Km1+m2+···+mk−(k−1) for which one of the following conditions holds.

(1) There are at least m1 c1-coloured edges incident to v. In this case, we have a
c1-coloured K1,m1 .

(2) There are at most m1 − 2 c1-coloured edges incident to v. Then we have
at least m2 + m3 + · · · + mk − (k − 2) remaining edges incident to v. By
the Pigeonhole Principle, mi of them must be ci-coloured, for i = 2, 3, . . . , k.
Hence, we have a ci-coloured K1,mi

.

Thus, we have R(K1,m1 , K1,m2 , . . . , K1,mk
) ≤ m1 +m2 + · · ·+mk − (k − 1) if all mi

and k are even.

Theorem 3.20. R(K1,t, Km1,m2) ≤ m1 +m2 + t− 1.

Proof. Consider the complete graph Km1+m2+t−1. Suppose that we colour all of the
edges so that there is no c1-coloured K1,t. Then, for every vertex in Km1+m2+t−1,
there are at most t − 1 c1-coloured edges incident to it. Hence, we can find m1

vertices of Km1+m2+t−1 such that there are at most t− 1 of the remaining vertices
that are adjacent via a c1-coloured edge to any one of the m1 vertices. These
m1 vertices, together with the remaining m2 vertices, form a c2-coloured Km1,m2 .
Therefore, R(K1,t, Km1,m2) ≤ m1 +m2 + t− 1.
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Theorem 3.21. [53] R(K1,3, Km1,m2) = m1 +m2 + 2.

Proof. From Theorem 3.20, we get R(K1,3, Km1,m2) ≤ m1+m2+3−1 = m1+m2+2.
On the other hand, in the complete graph Km1+m2+1 there exists a cycle graph

Cm1+m2+1 as the subgraph. Suppose that we colour the complete graph Km1+m2+1

in such a way that the edges in Cm1+m2+1 are c1-coloured and the remaining edges
are c2-coloured. In this way, we have neither a c1-coloured K1,3 nor a c2-coloured
Km1,m2 . Therefore, we have R(K1,3, Km1,m2) ≥ m1 +m2 + 2.

Hence, R(K1,3, Km1,m2) = m1 +m2 + 2.

Previously, we were looking at the results on the existence of monochromatic,
complete bipartite graph in the edge-colouring of a complete graph. Now, we will
present a Ramsey-type result for edge-colourings of a complete bipartite graph.
However, we first introduce the theorem below.

Theorem 3.22. [45] Let m ∈ N and 0 < ε ≤ 1. There exists a sufficiently large n
such that if G is a subgraph of Kn,n with at least εn2 edges, then G has Km,m as a
subgraph.

Proof. The idea of the proof is from [45]; we have added missing proof details here.
We can take any n satisfying n

(
εn
m

)
≥ m

(
n
m

)
. Let U and V be disjoint sets of n

vertices in Kn,n. Let G be any subgraph of Kn,n with at least εn2 edges. For each

i ∈ U , we set Di = {j ∈ V : {i, j} ∈ G} and di = |Di|. Thus,
∑
i∈U

di ≥ εn2. Set

S = {(i,X) : X ⊂ V, |X| = m,X ⊂ Di}. For each i ∈ U , there are precisely
(
di
m

)
X’s such that (i,X) ∈ S. Therefore, we have

|S| =
∑
i∈U

(
di
m

)
≥ n

( 1
n

∑
i∈U

di

m

)
≥ n

(
εn2

n

m

)
= n

(
εn

m

)
≥ m

(
n

m

)
.

For X ⊆ V, |X| = m, we set TX = {i ∈ U : (i,X) ∈ S}. Then, we have |S| =
∑
|TX |.

Hence, there are
(
n
m

)
summands X such that |TX | ≥ |S|

(n
m)
≥ m(n

m)
(n
m)
≥ m. Let T ∗X ⊆ TX

with |T ∗X | = m. We have that T ∗X ∪ X, which is a subgraph of G, is a complete
bipartite graph Km,m.

Theorem 3.23 (Ramsey’s Theorem for Bipartite Graphs). Let r,m ∈ N. If n
is sufficiently large, then each r-colouring of the edges of Kn,n gives a complete
monochromatic subgraph Km,m. The least of such n is known as the bipartite Ramsey
Number, BR(Km,m; r).

Proof. Note that there are n2 edges in the complete bipartite graph Kn,n. By the
Pigeonhole Principle, in any r-colouring of the edges of Kn,n, there is at least one

colour, say ci (1 ≤ i ≤ r), such that at least n2

r
of the edges are ci-coloured. Now,

consider Theorem 3.22. Let ε = 1
r

and G be the subgraph of Kn,n which consists of

all the ci-coloured edges. Then, there are at least n2

r
= εn2 edges in the subgraph G.

By Theorem 3.22, G has some ci-coloured Km,m - which is monochromatic.
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Theorem 3.24. [87] BR(Km1,m2 ; r) ≥ (m1!m2!r
m1m2−1)

1
m1+m2 .

Proof. The outline of this proof is given in [87]; we have added some missing details.
Consider a r-colourings of the edges of Kn,n. First, note that there are rn

2

ways to colour the edges of Kn,n. Further note that there are rn
2−(m1m2−1) ways to

colour Km1,m2 in order to obtain a monochromatic Km1,m2 . It is clear that there
are

(
n
m1

)(
n
m2

)
copies of Km1,m2 in a complete graph Kn,n. Hence, there are at most(

n
m1

)(
n
m2

)
rn

2−(m1m2−1) colourings of Kn,n containing some monochromatic Km1,m2 .

Therefore, if we have
(
n
m1

)(
n
m2

)
rn

2−(m1m2−1) < rn
2
, then there is some r-colouring of

the edges of Kn,n which has no monochromatic Km1,m2 .
Now, suppose that we choose our n such that rm1m2−1 > (n

m1

m1!
)(n

m2

m2!
) or, equiva-

lently, n < (m1!m2!r
m1m2−1)

1
m1+m2 . Then we have

rm1m2−1 >
(nm1

m1!

)(nm2

m2!

)
>

(
n

m1

)(
n

m2

)
and thus

rn
2

>

(
n

m1

)(
n

m2

)
rn

2−(m1m2−1) .

Therefore, BR(Km1,m2 ; r) ≥ (m1!m2!r
m1m2−1)

1
m1+m2 .
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Chapter 4

Van der Waerden’s Theorem

In the previous chapters, we were mainly discussing Ramsey-type results on colourings
of the edges of graphs. Starting from this chapter, we will look into the Ramsey-type
results on colourings of the set of integers.

In this chapter, we focus on Ramsey-type results guaranteeing the existence of
monochromatic arithmetic progressions in colourings of integers. In Section 4.1,
we introduce Van der Waerden’s Theorem. In Section 4.2, we construct a proof
of the theorem. In Section 4.3, we also present the polynomial version of Van der
Waerden’s Theorem. Then, in Section 4.4, we discuss some bounds on the Van der
Waerden numbers.

4.1 Van der Waerden’s Theorem

In this section, we present Van der Waerden’s Theorem. Before doing so, we first
introduce some terminology.

Definition 4.1 (Arithmetic Progression). An arithmetic progression is a sequence
of numbers such that the differences between the consecutive terms is constant. An
arithmetic progression {a, a+ d, . . . , a+ (k − 1)d} is said to be projected from term
a with common difference d and length k.

Example 4.2. {3, 7, 11, 15} is an arithmetic progression projected from a = 3 and
with the common difference d = 4 and length k = 4. {1, 4, 7, 9} is not an arithmetic
progression since the difference is not constant as 7− 4 = 3 but 9− 7 = 2.

Theorem 4.3 (Van der Waerden’s Theorem). [102] Let k, r ∈ N. For sufficiently
large n, each r-colouring of [n] gives a monochromatic arithmetic progression of
length k. The least of such n is called the Van der Waerden number, denoted by
W (k, r).

Example 4.4. Consider a 2-colouring of [9] in the following way: 1, 4, 5 and 8
are c1-coloured and 2, 3, 6, 7 and 9 are c2-coloured. Note that the c2-coloured 3, 6
and 9 form a monochromatic arithmetic progression of length 3 with the common
difference of 3. In fact, W (3, 2) = 9; a detailed proof will be given in Section 4.4.

Before we proceed to the proof of Van der Waerden’s Theorem, we want to
introduce the density version of the theorem, which is also known as Szemerédi’s
Theorem.
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Theorem 4.5 (Szemerédi’s Theorem). [100] Let k ∈ N and S ⊂ N. Suppose S has
positive upper density, which means

lim sup
n→∞

|S ∪ [n]|
n

> 0,

then S contains infinitely many arithmetic progression of length k.

Szemerédi’s Theorem was first conjectured by Erdős and Turán in 1936 [26],
and proven by Szemerédi in 1975 [100]. We are not going to discuss the proof here,
interested reader is referred to [100].

4.2 Proof of Van der Waerden’s Theorem

In this section, we construct a proof of Van der Waerden’s Theorem. We first
introduce a lemma to help us.

Lemma 4.6. [37] Let k, r ∈ N. Suppose that the Van der Waerden number W (k −
1, r) exists for all r. Then for all c, there exists a number U(k − 1, r, c) such that if
[U(k − 1, r, c)] is r-coloured, then there exists a ∈ N for which one of the following
conditions hold.

(1) There are c monochromatic arithmetic progressions of length k − 1, all with
projected first term a, all of different colours, and different from a.

(2) There is a monochromatic arithmetic progression of length k.

Proof. This proof is from [37]. We prove it by induction on c. For c = 1, we can
take U(k − 1, r, 1) = 2W (k − 1, r). Let χ be any r-colouring of [U(k − 1, r, 1)].
Consider the colouring of the last half of [U(k − 1, r, 1)], which is of the size of
[W (k − 1, r)]. By the definition of W (k − 1, r), there exists a monochromatic
progression of length k − 1 in the r-colouring of [W (k − 1, r) + 1, 2W (k − 1, r)],
say {a, a + d, . . . , a + (k − 2)d}. Now, let a′ = a − d and d′ = d. Then we
will get {a′ + d′, a′ + 2d′, . . . , a′ + (k − 1)d′ ∈ [W (k − 1, r) + 1, 2W (k − 1, r)]}
such that χ(a′ + d′) = χ(a′ + 2d′) = · · · = χ(a′ + (k − 1)d′). Now, note that
a′ ∈ [W (k − 1, r] ∈ [U(k, r, 1)]. If χ(a′) 6= χ(a′ + d′), then the first condition in
Lemma 4.6 holds; otherwise, we have the second condition.

Now, assume that U(k − 1, r, c) exists, we want to show the existence of U(k −
1, r, c + 1). Take U(k − 1, r, c + 1) = 2U(k − 1, r, c)W (k − 1, rU(k−1,r,c)). Let χ
be any r-colouring of [U(k − 1, r, c + 1)]. Now, we divide [U(k − 1, r, c + 1)] into
U(k − 1, r, c)W (k − 1, rU(k−1,r,c)) numbers, followed by W (k − 1, rU(k−1,r,c)) blocks
of size U(k − 1, r, c). We denote these blocks by B1, B2, . . . , BW (k−1,rU(k−1,r,c)). By

the definition of W (k − 1, rU(k−1,r,c)), there exists a monochromatic arithmetic
progression of length k − 1 of blocks, say BA, BA+D, . . . , BA+(k−2)D, which means
that these blocks are identically coloured in the r-colouring of [U(k − 1, r, c + 1)].
Consider the block BA. Note that there are U(k − 1, r, c) terms in the block. If the
second condition of Lemma 4.6 holds, then we are done. Otherwise, we will have c
arithmetic progressions of length k − 1, all with projected first term a, all different
colours, and different from a. We need to find one more monochromatic set of an
arithmetic progression. Since BA, BA+D, . . . , BA+(k−2)D are identically coloured, the
terms a + D, a + 2D, . . . , a + (k − 2)D must be monochromatic. Note that this
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monochromatic progression of length k−1 is different from the previous c arithmetic
progressions as all these arithmetic progressions are coloured differently with a.
Hence, we have c+ 1 arithmetic progressions of length k − 1, all with projected first
term a, and all of different colours.

Thus, by induction, the lemma holds.

Now we prove the Van der Waerden’s Theorem (Theorem 4.3).

Proof. Note that to prove the theorem, we only need to show the existence of W (k, r)
for all k ≥ 1. We prove it by induction on k. First, notice that the case k = 1 is
trivial and that W (1, r) = r since we can take any term from r-coloured [r] and we
can get a monochromatic arithmetic progression of length 1. Now, suppose that
W (k − 1, r) exists. We wish to show that W (k, r) exists. Since Lemma 4.6 is valid
for all c, we consider the case when c = r. Hence, there exists n = U(k − 1, r, r)
such that if [n] is r-coloured, then there is a monochromatic arithmetic progression
of length k or r arithmetic progressions of length k − 1, all of different colours,
with projected term a whose colour differs from all of them. Now, note that there
are only r colours, so the latter case cannot happen. Therefore, we must have a
monochromatic arithmetic progression of length k. Hence, W (k, r) exists. Thus, by
induction, W (k, r) exists for all k ≥ 1 and the theorem is proven.

4.3 Polynomial Van der Waerden’s Theorem

In this section, we are going to introduce the polynomial Van der Waerden’s Theorem.
First, we introduce the following definition.

Definition 4.7 (Polynomial). A polynomial P (x) is defined as an expression built
from constants and variables by the means of addition, multiplication and exponential
to a non-negative power.

P (x) =
n∑
k=0

akx
n = anxn + an−1x

n−1 + · · ·+ a1x+ a0 ,

where ai are constants and x is the variable.

Theorem 4.8 (Polynomial Van der Waerden’s Theorem). [6]
Let k, r ∈ N and p1, . . . , pk ∈ Z[x] with pi(0) = 0. If n is sufficiently large, then any
r-colouring of [n] will give a monochromatic a, a+ p1(d), . . . , a+ pk(d).

We will not prove the theorem here. The interested reader is referred to [6, 105]
for combinatorial proofs.

4.4 Van der Waerden Numbers

In this section, we will present some results on the Van der Waerden numbers.

Theorem 4.9.

(1) W (k, 1) = k
(2) W (2, r) = r + 1.
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Proof.

(1) Note that if we colour the set [k] with a single colour, then the set [k] itself
will form a monochromatic arithmetic progression of length k with common
difference 1.

(2) Consider any r-colouring of [r + 1]. By the Pigeonhole Principle, at least two
of them are coloured with the same colour. These two same coloured terms
will form a monochromatic arithmetic progression of length 2.

Theorem 4.10. W (3, 2) = 9.

Proof. First, we need to show that W (3, 2) ≤ 9. We divide the 2-colouring of [9]
into two cases.

Case 1: Both 1 and 2 are coloured with the same colour.
Without loss of generality, let both 1 and 2 be c1-coloured. To avoid having
monochromatic arithmetic progression of length 3, 3 must be c2-coloured. Suppose
that 4 is c1-coloured. Then, both 6 and 7 must be c2-coloured, or else {1, 4, 7} and
{2, 4, 6} will form c1-coloured arithmetic progressions of length 3. Then 5 must
be c1-coloured, or {5, 6, 7} will form a c2-coloured arithmetic progression. Now,
if 8 is c1-coloured, then {2, 5, 8} will form a c1-coloured arithmetic progression.
If 8 is c2-coloured, then {6, 7, 8} will form a c2-coloured arithmetic progression.
On the other hand, suppose that 4 is c2-coloured. Then 5 must be c1-coloured
or {3, 4, 5} will form a c2-coloured arithmetic progression. Then both 8 and 9
must be c2-coloured, or else {1, 5, 9} and {2, 5, 8} will form a c1-coloured arithmetic
progressions of length 3. Then 7 will then be forced to be c1-coloured to avoid
having monochromatic progression of length 3. Now if 6 is c1-coloured, then {5, 6, 7}
will form a c1-coloured arithmetic progression. If 6 is c2-coloured, then {4, 6, 8}
will form a c2-coloured arithmetic progression. Hence, in this case, we will get a
monochromatic arithmetic progression of length 3 no matter how we colour the
set [9].

Case 2: 1 and 2 are coloured with different colours.
Without loss of generality, we let 1 be c1-coloured and 2 be c2-coloured. Suppose that
3 is c1-coloured. Since 1 and 3 are both c1-coloured, 5 must be c2-coloured. Then 8
will be forced to be c1-coloured or else {2, 5, 8} will form a c2-coloured arithmetic
progression. If 4 is c1-coloured, then 7 must be c2-coloured or else {1, 4, 7} will form
a c1-coloured arithmetic progression. In this way, if 6 is c1-coloured, we will get
{4, 6, 8} as a c1-coloured arithmetic progression and if 6 is c2-coloured, then we will
get {5, 6, 7} as a c2-coloured arithmetic progression. Now, if 4 is c2-coloured, then 6
must be c1-coloured or else {2, 4, 6} will form a c2-coloured arithmetic progression.
This will force 7 to be c2-coloured or {6, 7, 8} will form a c1-coloured arithmetic
progression. In this way, if 9 is c1-coloured, then we will get {3, 6, 9} as a c1-coloured
arithmetic progression. If 9 is c2-coloured, then we will get {5, 7, 9} as a c2-coloured
arithmetic progression. On the other hand, suppose that 3 be c2-coloured. This will
force 4 to be c1-coloured or {2, 3, 4} will form a c2-coloured arithmetic progression.
Since 1 and 4 are both c1-coloured, 7 must be c2-coloured. Then, 5 must be c1-
coloured, or else {3, 5, 7} will form a c2-coloured arithmetic progression. This will
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force 6 to be c2-coloured to avoid getting c1-coloured arithmetic progression {4, 5, 6}.
Since both 6 and 7 are c2-coloured, we must colour 8 with c1. In this way, if 9 is c1-
coloured, {1, 5, 9} will form a c1-coloured arithmetic progression. If 9 is c2-coloured,
{3, 6, 9} will form a c2-coloured arithmetic progression. Hence, in this case, we will
get a monochromatic arithmetic progression of length 3 no matter how we colour
the set [9].

Thus, in both cases, we will get a monochromatic arithmetic progression of
length 3. Hence, W (3, 2) ≤ 9.

Now, we need to show that W (3, 2) ≥ 9. Consider the colouring of [8] in following
way: 1,2,5,6 are c1-coloured and 3,4,7,8 are c2-coloured. In this way, we have no
monochromatic arithmetic progression of length 3. Hence, W (3, 2) ≥ 9 > 8.

Therefore, we have W (3, 2) = 9.
Here, we state some famous results on the upper bound of the Van der Waerden

number by Gowers [41] with the proofs omitted.

Theorem 4.11. [41] For k ≥ 2, W (k, 2) ≤ 222
22

k+9

.

Theorem 4.12. [41] Let f(k, r) = r2
2k+9

. Then W (k, r) ≤ 22f(k,r).

In [57], Huang and Yang had claimed that the following theorem holds. The
interested reader is referred to [57] for the proof.

Theorem 4.13. [57] Let r > 5. Then W (3, r) < ( r
4
)3

r
.

We now extend the concept of Van der Waerden Number W (k, r) and define
W (k1, . . . , kr; r) to be the least n such that in each r-colouring of [n], there is
always a ci-coloured arithmetic progression of length ki, for some 1 ≤ i ≤ r.
Note that the existence of W (k1, . . . , kr; r) is guaranteed as W (k1, . . . , kr; r) ≤
W (max(k1, . . . , kr), r) because a monochromatic arithmetic progression of length
max(k1, . . . , kr) contains an arithmetic progression of length ki, for 1 ≤ i ≤ r.

Theorem 4.14.

(1) W (1, k; 2) = k.
(2) W (2, k; 2) = 2k, if k is odd.
(3) W (2, k; 2) = 2k − 1, if k is even.

Proof.

(1) In any 2-colouring of [k], we have that either all terms are c2-coloured, forming
an arithmetic progression of length k with common difference of 1, or at least
one c1-coloured term, forming an arithmetic progression of length 1.

(2) Consider any 2-colouring of [2k]. If there is none or at least 2 c1-coloured terms,
then we are done. Suppose there is only one c1-coloured term, say a. Now we
partition the remaining 2k−1 c2-coloured terms into two classes: those less than
a and those more than a. By the Pigeonhole Principle, one of the partitions
will have at least k terms, forming a c2-coloured arithmetic progression. Hence,
W (2, k; 2) ≤ 2k. Now, if we colour the [2k − 1] in such a way that k is
c1-coloured and the rest of the elements in [2k − 1] are c2-coloured, we will
have neither a c1-coloured arithmetic progression of length 2 nor a c2-coloured
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arithmetic progression of length k. Therefore, W (2, k; 2) ≥ 2k > 2k− 1. Thus,
we have W (2, k; 2) = 2k.

(3) Consider any 2-colouring of [2k − 1]. If there is none or at least 2 c1-coloured
terms, then we are done. Suppose that there is only one c1-coloured term, say
a. Now we partition the remaining 2k − 2 c2-coloured terms into two classes,
those less than a and those more than a. If either one of the partitions have at
least k terms, then we will get a c2-coloured arithmetic progression of length k.
Or else, a must be even and equal to k and both of the partitions must contain
k − 1 terms. In this way, 1, 3, 5, . . . , 2k − 1 will form a c2-coloured arithmetic
progression of length k. Hence, W (2, k; 2) ≤ 2k. Now, if we colour the [2k− 2]
in such a way that k is c1-coloured and the rest are c2-coloured, then we will
have neither a c1-coloured arithmetic progression of length 2 nor a c2-coloured
arithmetic progression of length k. Therefore, W (2, k; 2) ≥ 2k − 1 > 2k − 2.
Thus, we have W (2, k; 2) = 2k − 1.

Theorem 4.15.

W (k1, k2; 2) ≤ k2W (k1, k1, . . . , k1; 2k2) = k2W (k1, 2
k2) ≤ k22

22
k2

22
k1+9

.

Proof. Consider any 2-colouring of [k2W (k1, 2
k2)]. Now partition these k2W (k1, 2

k2)
terms into W (k1, 2

k2) blocks B1, B2, . . . , BW (k1,2k2 ) where

Bi = {(i− 1)k2 + 1, (i− 1)k2 + 2, . . . , (i− 1)k2 + k2} .

By the definition of W (k1, 2
k2), we have that Bj, Bj+d, Bj+2d, . . . , Bj+(k1−1)d have the

same colour. If any term in the block Bj is c1-coloured, say a, then a+k2d ∈ Bj+d, a+
2k2d ∈ Bj+2d, . . . , a+ (k1− 1)k2d ∈ Bj+(k1−1)d will also be c1-coloured and these will
form a c1-coloured arithmetic progression of length k1. Or else, all the k2 terms in
the block Bj are c2-coloured and these will form a c2-coloured arithmetic progression
of length k2. Thus, we have W (k1, k2; 2) ≤ k2W (k1, k1, . . . , k1; 2k2) = k2W (k1, 2

k2).

By Theorem 4.12, we have W (k1, 2
k2) ≤ 222

k2
22

k1+9

. Therefore, W (k1, k2; 2) ≤

k22
22

k2
22

k1+9

.

Theorem 4.16. Let k ≥ 3. Then W (3, k; 2) < k(232
k
(k−2)).

Proof. By Theorem 4.15, we have W (3, k; 2) ≤ kW (3, 2k). Now for k ≥ 3, we have

2k > 5. Hence, by Theorem 4.13, we have W (3, 2k) < (2
k

4
)3

2k

= 232
k
(k−2). Thus, we

have W (3, k; 2) ≤ kW (3, 2k) < k(232
k
(k−2)).
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To end this chapter, we tabulate some known exact Van der Waerden numbers
in the following tables, after compiling from various reference as cited respectively.

(k, r) 1 2 3 4

1 1 2 3 4

2 2 3 4 5

3 3 9 27[14] 76[5]

4 4 35[14] 293[66]

5 5 178[96]

6 6 1132[67]

Table 4.1: Van der Waerden number W (k, r).

(k1, k2) 3 4 5 6 7

3 9 18[14] 22[14] 32[14] 46[14]

4 18 35 55[14] 73[5] 109[4]

5 22 55 178 206[65] 260[1]

6 32 73 206 1132

7 46 109 260

Table 4.2: Van der Waerden number W (k1, k2, 2).
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Chapter 5

Schur’s Theorem

In this chapter, we introduce Schur’s Theorem, one of the Ramsey-type results
concerning equations. In Section 5.1, we present and prove Schur’s Theorem. Next,
in Section 5.2, we look at some results on Schur numbers. In Section 5.3, we discuss
generalisations of Schur’s Theorem, specifically looking at Rado’s Theorem and
Folkman’s Theorem.

5.1 Schur’s Theorem

In this section, we present and prove Schur’s Theorem. Schur’s Theorem was given
and proven by Issai Schur in his publication in 1916 [92].

Theorem 5.1 (Schur’s Theorem). [92] Let N, r ∈ N. If [N ] is r-coloured, then
there is some same-coloured a, b, c ∈ [N ], such that a+ b = c, where a and b are not
necessarily distinct. The least of such N is called the Schur number and is denoted
by S(r); furthermore, such a, b and c are called a Schur triple.

Proof. By Ramsey’s Theorem (Theorem 2.7), there exists N+1 = R(k1, k2, . . . , kr) =
R(3; r), where k1 = k2 = · · · = kr = 3 such that for any r-colouring KN+1, there
exists a monochromatic subgraph K3. Now, consider any r-colouring of [N ] and let
KN+1 be a complete graph with N + 1 vertices. Label each vertex of KN from 1 to
N + 1. Colour each edge with the colour corresponding to the positive difference
of the connecting vertices in the r-colouring of [N ]. For instance, colour the edge
connecting the vertices labelled 2 and 3 with colour 1 in the r-colouring of [N ].
By the definition of N + 1, there is a monochromatic triangle in KN+1, with three
labelled vertices, say i, j and k, for i < j < k. Since the edges {i, j}, {j, k} and
{i, k} are of the same colour, j − i, k − j, and k − i are of the same colour in the
r-colouring of [N ]. Let a = j − i, b = k − j and c = k − i, and note that a, b and c
are same-coloured and that a + b = (j − i) + (k − j) = k − i = c. Then, we have
proven that the theorem is valid.

Example 5.2. Let r = 2. Consider a 2-colouring of [5] in the following way: 1, 4
and 5 are c1-coloured and 2 and 3 are c2-coloured. Note that 1, 4 and 1 + 4 = 5 are
all c1-coloured. In fact, S(2) = 5; a detailed proof will be given in Section 5.2.

5.2 Schur’s Numbers

In this section, we present some results on Schur numbers, the first of which is, as
far as we can tell, new. We also independently prove that S(1) = 2, S(2) = 5 and
S(3) = 14 (see Theorems 5.4 and 5.7). These results are without doubt not new;
however, we could not find neither proofs nor original references to them in the
literature.
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Theorem 5.3. For r ≥ 1, S(r) ≤ R(3; r)− 1 ≤ r!( e−e
−1+3
2

) ≈ 2.68r!.

Proof. It follows from the proof of Theorem 5.1 that there is a monochromatic Schur
triple in the r-colouring of [N ], where N + 1 = R(3; r). Hence, S(r) ≤ R(3; r)− 1.
Now, by Theorem 2.24, we have S(r) ≤ R(3; r)− 1 ≤ r!( e−e

−1+3
2

) ≈ 2.68r! .

Theorem 5.4.

(1) S(1) = 2
(2) S(2) = 5.

Proof.

(1) It is clear that there is no monochromatic Schur triple in any colouring of [1],
since there is only one element in [1] and 1 + 1 6= 1. Therefore, S(1) ≥ 2 > 1.
Note that in any single-coloured [2], we can find a monochromatic Schur triple,
a+ b = c in the colouring where a = b = 1 and c = 2. Hence, S(1) ≤ 2. Thus,
we have S(1) = 2.

(2) Consider a colouring of [4] in such a way that 1 and 4 are c1-coloured and
2 and 3 are c2-coloured. Note that there is no monochromatic Schur triple
in this colouring. Therefore, S(2) ≥ 5 > 4. Now, by Theorem 5.3, S(2) ≤
R(3; 2)− 1 = 6− 1 = 5. Thus, we have S(2) = 5.

Now, we will look at some lower bounds on Schur numbers.

Theorem 5.5. [92] S(r + 1) ≥ 3S(r)− 1 > 3S(r)− 2.

Proof. The main idea of this proof is given in [92]; here, we have added some details.
Let S(r) = n. Then there is a r-colouring, say χ, of [n− 1] that does not contain

the monochromatic Schur triple. Now, let χ′ be a (r + 1)-colouring of [3n− 2] in
such a way that

χ′(x) =


χ(x) for x ∈ [1, n− 1] ;

cr+1 for x ∈ [n, 2n− 1] ;

χ(x− (2n− 1)) otherwise .

We claim that there is no monochromatic Schur triple in the χ′-colouring of [3n− 2].
Suppose to the contrary that there is one, say a, b, c, with a ≤ b < c. Consider the
colour cr+1. Since c = a+ b ≥ 2a ≥ 2n /∈ [n, 2n− 1], the Schur triple cannot be cr+1-
coloured. Now, consider the other colours. Since there is no monochromatic triple in
[1, n−1] as χ′ = χ for [1, n−1] and [n−1+1, 2(n−1)] = [n, 2n−2] is cr+1-coloured,
we see that a and b of the Schur triple cannot both be from the interval [1, n− 1].
Similarly, it is also impossible for both a and b to be from the interval [2n, 3n− 2]
because if that is the case, then c = a + b ≥ 2a ≥ 2(2n) > 3n − 2 /∈ [2n, 3n − 2].
Hence, we must have a ∈ [1, n − 1], b ∈ [2n, 3n − 2] and a + b = c ∈ [2n, 3n − 2]
with χ′(a) = χ′(b) = χ′(c) = χ(a). Now, let b′ = b − (2n − 1) ∈ [1, n − 1] and
c′ = c− (2n− 1) ∈ [1, n− 1]. Note that χ′(b) = χ(b′) = χ(a), χ′(c) = χ(c′) = χ(a)
and a+ b′ = a+ b− (2n− 1) = c− (2n− 1) = c′: we have a monochromatic Schur
triple in χ, a contradiction. Hence, there is no monochromatic Schur triple in χ′.
Thus, S(r + 1) > 3n− 2 = 3S(r)− 2. Therefore, we have S(r + 1) ≥ 3S(r)− 1.
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Theorem 5.6. [92] For r ≥ 1, S(r) ≥ 3r+1
2

.

Proof. We prove the theorem by induction on r. First, note that, by Theorem 5.4,
S(1) = 2 ≥ 31+1

2
. Now, assume that S(r) ≥ 3r+1

2
. We need to show that S(r + 1) ≥

3r+1+1
2

. By Theorem 5.5, S(r + 1) ≥ 3S(r) − 1 ≥ 3(3r+1
2

) − 1 = 3r+1+1
2

. Hence by
induction, we have S(r) ≥ 3r+1

2
for r ≥ 1.

Theorem 5.7. S(3) = 14.

Proof. By Theorem 5.6, S(3) ≥ 33+1
2

= 14. Now, we need to show that S(3) ≤ 14.
Suppose to the contrary that there is a 3-colouring of [14] that does not contain
any monochromatic Schur triple. Without loss of generality, we assume that 1
is c1-coloured. Since 1 + 1 = 2, 2 cannot be c1-coloured. Again, without loss of
generality, we let 2 be c2-coloured. Now, there are several cases to be considered.

Case A: 3 is c1-coloured.

Note that in this case, 4 must be c3-coloured. Now consider the colour of 5.
Case A1: 5 is c1-coloured.

Then, 8 must be c2-coloured. This will force 6 to be c3-coloured. Now, note
that in this case, no matter how 10 be coloured, we will get a monochromatic Schur
triple, hence a contradiction.

Case A2: 5 is c2-coloured.
Note that in this case, 6 can only be either c2-coloured or c3-coloured. We first

consider the case that 6 is c2-coloured. In this case, 8 must be c1-coloured. This
will force 7 to be c3-coloured. Now, no matter how 11 be coloured, we will obtain
a monochromatic Schur triple, thus a contradiction. On the other hand, if 6 is
c3-coloured, 10 must be c1-coloured. To avoid having monochromatic Schur triple, 7
must be c3-coloured, and hence 11 must be c2-coloured. Now, note that no matter
how 13 is coloured, we will get a monochromatic Schur triple, a contradiction.

Case A3: 5 is c3-coloured.
Similar to Case A2, 6 can only be either c2-coloured or c3-coloured. Suppose

that 6 is c2-coloured. 8 must be c1-coloured. Then, 9 must be c2-coloured and
this will force 11 to be c3-coloured. Now, consider the colour of 7. We will get a
monochromatic Schur triple no matter what colour is used, hence a contradiction.
Now, suppose that 6 is c3-coloured. Since 8 cannot be c3-coloured, there are two
subcases to be considered. First, 8 is c1-coloured. This will force 11 to be c2-coloured.
Then, no matter how 9 be coloured, we will get a monochromatic Schur triple, hence
a contradiction. Now, if 8 is c2-coloured, then 10 need to be c1-coloured. This will
cause 11 to be c2-coloured, and hence 13 must be c3-coloured. In this case, any
colouring of 9 will grant us a monochromatic Schur triple, thus a contradiction.

Case B: 3 is c2-coloured.

In this case, 4 cannot be c2-coloured. We consider the colour of 4.
Case B1: 4 is c1-coloured.

In this case, 5 must be c3-coloured. Since 6 cannot be c2-coloured, there are
two subcases to be considered. Suppose that 6 is c1-coloured. Then, 10 must be
c2-coloured. This will force 7 to be c3-coloured. In this case, no matter how we colour
12, we will get a monochromatic Schur triple, hence a contradiction. Now, suppose
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that 6 is c3-coloured. Note that 8 cannot be c1-coloured. If 8 is c2-coloured, then
both 10 and 11 cannot be coloured with c2 and c3, but this will yield a c1-coloured
Schur triple, thus a contradiction. On the other hand, suppose that 8 is c3-coloured.
In this subcase, 10, 11, 12, 13 and 14 cannot be c3-coloured. If 12 is c1-coloured,
then 11 and 13 must be c2-coloured and we will get a c2-coloured Schur triple. If 12
is c2-coloured, then 10 and 14 must be c1-coloured. This will give us a c1-coloured
Schur triple, thus a contradiction.

Case B2: 4 is c3-coloured.
In this case, 5 cannot be c2-coloured. There are two subcases to be considered

for the colouring of 5. Suppose that 5 is c1-coloured. Then, 6 must be c3-coloured.
This forces 10 to be c2-coloured; hence, 8 must be c1-coloured. Then, 13 must be
c3-coloured. Now, any colouring of 7 will give us a monochromatic Schur triple,
hence leads us to a contradiction. Now, suppose 5 is c3-coloured. Note that both 8
and 10 cannot be c3-coloured. Since 2 + 8 = 10, 8 and 10 cannot be both c2-coloured
and hence one of them must be c1-coloured. Then, 9 must be c2-coloured. Consider
the colouring of 6. Since 3 is c2-coloured, 6 cannot be c2-coloured. If 6 is c1-coloured,
then 7 must be c3-coloured. Then, no matter how 12 be coloured, we will obtain a
monochromatic Schur triple, thus gives us a contradiction. If 6 is c3-coloured, then
11 must be c1-coloured and hence 10 must be c2-coloured. Then, no matter how we
colour 12, we will have a monochromatic Schur triple, hence a contradiction.

Case C: 3 is c3-coloured.

Consider the colour of 4; it can only be c1 or c3.
Case C1: 4 is c1-coloured.

In this case, 8 cannot be c1-coloured. Therefore, there are two subcases to be
considered on the colouring of 8. First, suppose 8 is c2-coloured. Then, 6 must be
c1-coloured and hence 10 must be c3-coloured. This will force 5 to be c2-coloured and
13 to be c1-coloured. Now, no matter how we colour 7, we will get a monochromatic
Schur triple, hence leads us to a contradiction. Next, suppose 8 is c3-coloured. 5
must be c2-coloured. Note that 11 cannot be c3-coloured. If 11 is c1-coloured, then
7 must be c3-coloured. Whichever colour we use to colour 10, we will obtain a
monochromatic Schur triple, thus a contradiction. If 11 is c3-coloured, then 6 must
be c1-coloured and 10 must be c3-coloured. Then, any colouring of 7 will give us a
monochromatic Schur triple, hence again a contradiction.

Case C2: 4 is c3-coloured.
In this case, 6, 7 and 8 cannot be c3-coloured. If 7 is c1-coloured, then 6 and

8 must be c2-coloured. However, 2, 6 and 8 would form a c2-coloured Schur triple.
Hence, 7 must be c2-coloured. Now, consider the colour of 6. Suppose that 6 is
c1-coloured; then 5 must be c3-coloured and so 9 must be c1-coloured. This forces
both 8 and 10 to be c2-coloured but 2, 8 and 10 then form a c2-coloured Schur triple,
a contradiction. On the other hand, suppose that 6 is c2-coloured. Then 8 must be
c1-coloured and 9 must be c3-coloured. This causes 5 to be c1-coloured. However we
colour 13, we will have a monochromatic Schur triple, a contradiction.

All possible cases lead us to a contradiction. Therefore, in any colouring of [14],
we will have a monochromatic Schur triple. Hence, S(3) ≤ 14.

Thus, we have S(3) = 14.

52



To end this section, we list some known Schur numbers in the table below.

r S(r)

1 2

2 5

3 14

4 45[40]

Table 5.1: Known Schur numbers S(r)

5.3 Generalisations of Schur’s Theorem

In this section, we present some generalisations of Schur’s Theorem. Previously,
we have discussed the existence of monochromatic Schur triples a + b = c in
colourings of [N ] where N ∈ N. Now, we will look into the case with four terms,
which is a + b + c = d (Theorem 5.8), and then the case with k terms, namely
x1 +x2 + · · ·+xk−1 = xk (Theorem 5.9). We conceived of these results by looking at
the proof of Schur’s Theorem and wondering if Schur’s Theorem could be generalised
with respect to more terms, and it was possible to prove that it indeed was. Later,
however, we found that these results already existed in the literature; see [69].

Similarly, we independently discovered and proved a bound on k-term Schur
numbers S(k; r) (Theorem 5.10), proved that S(4; 2) = 11 (Theorem 5.11) and
proved an exact expression for S(k; 2) (Theorem 5.12). These and more general
results were also later found to already exist in the literature; see [69].

Theorem 5.8. Let N, r ∈ N. If [N ] is r-coloured, then there are same-coloured
a, b, c, d ∈ [N ] such that a+ b+ c = d. We denote the least of such N by S(4; r).

Proof. By Ramsey’s Theorem (Theorem 2.7), there exists N+1 = R(k1, k2, . . . , kr) =
R(4; r), where k1 = k2 = · · · = kr = 4 such that there is a monochromatic K4 in
any r-colouring of KN+1, . Now, consider any r-colouring of [N ]. Let KN+1 be a
complete graph with N + 1 vertices. Label each of the vertices of KN from 1 to
N + 1. Colour each edge with the colour corresponding to the positive difference
of the end vertices in the r-colouring of [N ]. By the definition of N + 1, there
is a monochromatic K4 in KN+1, with four labelled vertices, say i, j, k and l, for
i < j < k < l. Since the edges {i, j}, {j, k}, {k, l} and {i, l} are of the same colour,
it follows that j − i, k − j, l − k and l − i are of the same colour in the r-colouring
of [N ]. Let a = j − i, b = k − j, c = l− k and d = l− i, and note that a, b, c and d
are of the same colour and that a+ b+ c = (j − i) + (k − j) + (l − k) = l − i = d.
Then, we have proven that the theorem is valid.

Theorem 5.9. Let N, r ∈ N and k ≥ 3 ∈ N. If [N ] is r-coloured, then there are
some same-coloured x1, x2, . . . , xk ∈ [N ] such that x1 + x2 + · · · + xk−1 = xk. We
denote the least of such N by S(k; r) where S(3; r) is the Schur number S(r), as
defined in Theorem 5.1.

53



Proof. By Ramsey’s Theorem (Theorem 2.7), there exists N+1 = R(k1, k2, . . . , kr) =
R(k; r), where k1 = k2 = · · · = kr = k such that for any r-colouring KN+1, there
exists a monochromatic Kk, where k ≥ 3 ∈ N. Now, consider any r-colouring of [N ].
Let KN+1 be a complete graph with N + 1 vertices and label these vertices from 1
to N + 1. Colour each edge with the colour corresponding to the positive difference
of the end vertices in the r-colouring of [N ]. By the definition of N + 1, there is
a monochromatic Kk in KN+1, with k labelled vertices, say v1, v2, . . . , vk, where
v1 < v2 < . . . < vk. Since the edges {v1, v2}, {v2, v3}, . . . , {vk−1, vk} and {v1, vk} are
of the same colour, it follows that v2 − v1, v3 − v2, . . . , vk − vk−1 and vk − v1 are of
the same colour in the r-colouring of [N ]. Let x1 = v2− v1, x2 = v3− v2, . . . , xk−1 =
vk − vk−1 and xk = vk − v1, and note that x1, x2, . . . , xk are same-coloured and that
we have x1 +x2 + · · ·+xk−1 = (v2− v1) + (v3− v2) + · · ·+ (vk− vk−1) = vk− v1 = xk.
Thus, the theorem is valid.

Theorem 5.10. For r ≥ 1 and k ≥ 3 ∈ N, S(k; r) ≤ R(k; r)− 1.

Proof. It follows from the proof of Theorem 5.9 that there are monochromatic
x1, x2, . . . , xk ∈ [N ], where x1 + x2 + · · · + xk−1 = xk in the r-colouring of [N ], in
which N + 1 = R(k; r). Hence, S(k; r) ≤ R(k; r)− 1.

Theorem 5.11. S(4; 2) = 11.

Proof. First, we need to show that S(4; 2) ≥ 11 > 10. Consider the following
colouring of [10]. Colour 1, 2, 9 and 10 with colour c1 and 3, 4, 5, 6, 7 and 8
with colour c2. In this colouring, we have no monochromatic set of four terms
that satisfy a + b + c = d. Hence, S(4; 2) ≥ 11 > 10. Next, we have to show that
S(4; 2) ≤ 11. Suppose to the contrary that there is no monochromatic set {a, b, c, d}
in the colouring of [11] with 2 colours. Without loss of generality, we assume that
1 is c1-coloured. Since 1 + 1 + 1 = 3, 3 must be c2-coloured. Then, 9 must be
c1-coloured as 3 + 3 + 3 = 9. This will force 7 and 11 to be c2-coloured because
1 + 1 + 7 = 9 and 1 + 1 + 9 = 11. Then, 5 must be c1-coloured because 3 + 3 + 5 = 11.
Now, no matter how 2 is coloured, we will have either c1-coloured 1 + 2 + 2 = 5 or
c2-coloured 7 + 2 + 2 = 11. Hence, S(4; 2) ≤ 11. Thus, we have S(4; 2) = 11.

Theorem 5.12. For k ≥ 3, S(k; 2) = (k − 1)2 + (k − 2).

Proof. First, we need to show that S(k; 2) ≥ (k − 1)2 + (k − 2). Let N = (k − 1)2 +
(k − 2)− 1 = (k − 1)2 + (k − 3). Let χ be the colouring of [N ] with two colours in
the following way:

χ(x) =

{
c1, for x ∈ [k − 1, (k − 1)2 − 1];

c2, otherwise.

Consider all c1-coloured elements. Note that the smallest c1-coloured element is k−1.
Hence, the smallest possible sum of k c1-coloured numbers is (k−1)+ · · ·+(k−1) =
(k−1)(k−1) = (k−1)2 which is strictly greater than (k−1)2−1 which is the largest
c1-coloured element. Thus, it is impossible to have monochromatically c1-coloured
x1, x2, . . . , xk ∈ [N ], where x1 + x2 + · · ·+ xk−1 = xk. Now, consider all c2-coloured
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elements. Divide them into two partitions, [1, k−2] and [(k−1)2, (k−1)2+(k−3)]. For
the numbers in the first partition, all the possible sums are from 1+1+ · · ·+1 = k−1
to (k− 2) + · · ·+ (k− 2) = (k− 1)(k− 2), which are all c1-coloured. Therefore, there
is no monochromatic solution for x1 + x2 + · · ·+ xk−1 = xk within the elements from
the first partition. Similarly, in the second partition, the minimum possible sum is
(k − 1)2 + · · ·+ (k − 1)2 = (k − 1)3 > (k − 1)2 + (k − 3) = N . Therefore, there is
no monochromatic solution for x1 + x2 + · · ·+ xk−1 = xk within the elements from
the second partition. Now, consider summations involving both partitions. The
minimum possible sum is

1 + · · ·+ 1 + (k − 1)2 = (k − 1)2 + (k − 2) > (k − 1)2 + (k − 3) = N .

Thus, there is impossible to have a monochromatically c2-coloured solution to
x1 + x2 + · · ·+ xk−1 = xk. Hence, there is no monochromatic solution to x1 + x2 +
· · ·+xk−1 = xk in this 2-colouring of [N ]. Therefore, we get S(k; 2) ≥ (k−1)2+(k−2).

Next, we want to show that S(k; 2) ≤ (k − 1)2 + (k − 2). Let M = (k −
1)2 + (k − 2). Suppose to the contrary that there is no monochromatic solution to
x1 + x2 + · · · + xk−1 = xk in some 2-colouring of [M ]. Without loss of generality,
we assume that 1 is c1-coloured. Since 1 + 1 + · · · + 1 = k − 1, k − 1 must be
c2-coloured. Then (k− 1)2 must be c1-coloured as (k− 1) + (k− 1) + · · ·+ (k− 1) =
(k − 1)(k − 1) = (k − 1)2. Since 1 + 1 + · · · + 1 + (k − 1)2 − (k − 2) = (k − 1)2

and 1 + 1 + · · · + 1 + (k − 1)2 = (k − 1)2 + (k − 2), both (k − 1)2 − (k − 2) and
(k−1)2+(k−2) must be c2-coloured. This will force (k−2)+(k−1) to be c1-coloured
because (k − 1) + (k − 1) + · · ·+ (k − 1) + [(k − 2) + (k − 1)] = (k − 1)2 + k − 2.
Now, consider the colouring of k − 2. If k − 2 is c1-coloured, then we have a
monochromatic solution: (k − 2) + (k − 2) + · · ·+ (k − 2) + [(k − 2) + (k − 1)] =
(k − 1)2. If k − 2 is c2-coloured, then we also have a monochromatic solution:
(k − 2) + (k − 2) + · · · + (k − 2) + (k − 1) = (k − 1)2 − (k − 2). Either way, we
have a contradiction. Hence, in any 2-colouring of [(k − 1)2 + (k − 2)], there is
a monochromatic solution to the equation x1 + x2 + · · · + xk−1 = xk. Therefore,
S(k; 2) ≤ (k − 1)2 + (k − 2). Thus, we have S(k; 2) = (k − 1)2 + (k − 2).

Next, we look at the Rado’s Theorem which was proved by a student of Schur’s,
Richard Rado, in the 1933 paper [81]. While Schur’s Theorem concerns the equation
a+ b− c = 0, Rado’s Theorem addresses the equation a1x1 + · · ·+ akxk = 0.

Theorem 5.13 (Rado’s Theorem). [81] Let k ≥ 2 and ci ∈ Z for 1 ≤ i ≤ k. Then,
for any finite colouring of N, c1x1 + · · ·+ ckxk = 0 has a monochromatic solution
x1, . . . , xk ∈ N if and only∑

i∈I

ai = 0 for some nonempty subset I ⊆ [k].

Proof. The following proof follows the general outline of the proof in [63] but we
have adapted it so as to provide better clarity of argument and notation.
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We first prove that if there is any finite colouring of N such that a1x1+· · ·+akxk =
0 has a monochromatic solution x1, . . . , xk ∈ N, then there exists a nonempty subset
I ⊆ [k] such that ∑

i∈I

ai = 0 .

We prove the contrapositive. Assume that there exist a1, . . . , ak such that no
nonempty subset I ⊆ [k] satisfies

∑
i∈I ai = 0. We need to show that for some r,

there is an r-colouring of N without monochromatic solutions to a1x1+· · ·+akxk = 0.
First, we choose a prime number p that does not divide

∑
j∈J aj for any J ⊆ [k].

Since there are only finitely many choices for J , we can always do so. Now, for
n ∈ N, let s be the largest integer such that ps|n, so n = psm where m 6≡ 0 (mod p).
We define χ as a (p− 1)-colouring of N in such a way that χ(n) = m (mod p) with
the colours c1, . . . , cp−1. We wish to show that in χ, there is no monochromatic
solution to a1x1 + · · ·+ akxk = 0. Suppose to the contrary that we have one. Let
{y1, . . . , yk} be a monochromatic solution under χ with the colour cb. Then, we have
1 ≤ b ≤ p− 1, and since yi ∈ N, for each yi, there are numbers si and ki such that
yi = psi(pki + b). Let s = min{s1, . . . , sk}. We have

0 =
k∑
i=1

aiyi =
k∑
i=1

aip
si(pki + b) = ps

k∑
i=1

aip
si−s(pki + b) .

Note that s = si and s− si = 0, for some i. Hence, modulo p, we will get

0 ≡ b
k∑
i=1

psi−sai (mod p) .

Since p is prime and p does not divide b, we have that p divides
∑

i∈{1,k};si=s ai. This

gives a contradiction since p is chosen such that p does not divide
∑

j∈J aj. Hence,
the result holds.

Now we need to show that if there is a nonempty subset I ⊆ [k] such that∑
i∈I

ai = 0 ,

then, for any r-colouring of N, a1x1 + · · ·+ akxk = 0 has a monochromatic solution
x1, . . . , xk ∈ N. Suppose that

∑
i∈I ai = 0. If I = [k], then we have

k∑
i=1

ai = 0 .

Then, choosing x1 to be any integer and setting xi = x1 for all 2 ≤ i ≤ k, we
will have a monochromatic solution for a1x1 + · · ·+ akxk = 0. Now, suppose that
I ⊂ [k] and assume without the loss of generality that a1 > 0 and I = [m] where
m < k. Let s = am+1 + am+2 + · · · + ak. We take x2 = x3 = · · · = xm and
xm+1 = xm+2 = · · · = xk. Then, the equation a1x1 + · · · + akxk = 0 will become
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a1x1+x2(a2+a3+ · · ·+am)+xm+1(am+1+am+2)+ · · ·+ak = 0. Since a1+ · · ·+am =∑
i∈I ai = 0 and s = am+1 + am+2 + · · ·+ ak, we have a1(x1 − x2) + sxm+1 = 0.
Now, we use induction on r. Suppose that r = 1. Then we can choose x1 and

x2 so that x2 − x1 = s and xm+1 = a1. Suppose that r ≥ 2 and assume that the
result holds for r − 1. Let b =

∑k
i=1 |ai|. Now, consider χ to be any r-colouring

of [W (n + 1, r)b] where W (n + 1, r) is the Van der Waerden number defined in
Theorem 4.3 and n is the least positive integer such that in any (r − 1)-colouring of
[n], there is a monochromatic solution for a1(x1−x2)+sxm+1 = 0. Such n exists from
the induction hypothesis. We want to show that, in χ, we will get a monochromatic
solution for a1(x1 − x2) + sxm+1 = 0. Since 0 6= s = am+1 + am+2 + · · · + ak and
b =

∑k
i=1 |ai|, we have 1 ≤ |s| < b. For 1 ≤ l ≤ b, we define χl to be the colouring of

[W(n+1,r)] so that χl(i) = χ(li). Then for each l, we will have a χl-monochromatic
set {a, a+ d, . . . , a+ nd} ⊆ [W (n+ 1, r)]. Hence, under the colouring of χ, we have
a monochromatic set {la, la+ ld, . . . , la+ lnd} ⊆ [W (n+ 1, r)l] ⊆ [W (n+ 1, r)b].

Now, we let l = |s| and a′ = la. Then we will have a monochromatic set
{a′, a′ + |s|d, . . . , a′ + n|s|d} ⊆ [W (n + 1, r)b] for some d ≥ 1 under the colouring
of χ. Consider this subset {a1d, 2a1d, . . . , na1d} ⊆ [W (n + 1, r)b] ⊂ N under the
colouring of χ.

If χ(ja1d) = χ(a′) for some j ∈ [1, n], then consider the following cases. First,
if s < 0, then we can take x2 = a′, x1 = a′ + jd|s| and xm+1 = ja1d: we then
get a1(x1 − x2) + sxm+1 = a1(a

′ + jd|s| − a′) + sja1d = 0. If s ≥ 0, then we take
x2 = a′ + jd|s|, x1 = a′ and xm+1 = ja1d: we thereby get a1(x1 − x2) + sxm+1 =
a1(a

′ − a′jd|s|) + sja1d = 0. In both cases, we have a monochromatic solution to
a1(x1 − x2) + sxm+1 = 0.

On the other hand, if χ(ja1d) 6= χ(a′) for all j ∈ [1, n], then the elements of the
set {a1d, 2a1d, . . . , na1d} ⊆ [W (n+1, r)b] ⊂ N are coloured with r−1 colours. By the
induction hypothesis, we have a monochromatic solution for a1(x1−x2)+sxm+1 = 0.

Thus, in all cases, we have a monochromatic solution for a1(x1−x2) +sxm+1 = 0.
Hence, by the induction, the result holds.

Therefore, the theorem is valid.

Example 5.14. Consider the equation

x1 + x2 − x3 = 0 .

In this equation, a1 = 1, a2 = 1 and a3 = −1. Note that {a1, a3} ⊂ {a1, a2, a3} and
a1 + a3 = 0. By Theorem 5.13, x1 + x2 − x3 = 0 has monochromatic solution. This
is affirmed by Schur’s Theorem (Theorem 5.1) as x1 + x2 − x3 = 0 can be rewritten
as x1 + x2 = x3.

We now turn out attention to others generalisation of Schur’s Theorem, now
involving sum sets and product sets. We first introduce these notions, as well as a
useful lemma.

Definition 5.15 (Sum set). For any set S ⊆ N, the sum set, denoted by
∑

(S), is
the set of all finite sums of the elements of S.
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Definition 5.16 (Product set). For any set S ⊆ N, a product set, denoted by∏
(S), is the set of all finite products of the elements of S.

Example 5.17. Let S = {1, 2, 5, 8}. Then∑
(S) = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16}

and
∏

(S) = {1, 2, 5, 8, 10, 16, 40, 80} .

Lemma 5.18. For all k, r ≥ 1, there is an integer N = N(k; r) such that for any
r-colouring of [N ], there exists x1 < x2 < · · · < xk ∈ [N ] with

∑k
i=1 xi < N where

St = {
∑
r∈R

xr : R ⊆ [k],max
r∈R

r = t}

is monochromatic for t = 1, 2, . . . , k.

Proof. The following proof is provided in [69]. We prove it by induction on k. For
k = 1, the result is immediate. Now, let r be arbitrary and assume that N(k; r) exists.
We wish to show that N(k + 1; r) exists and that N(k + 1; r) ≤ 2W (N(k; r) + 2, r),
where W (N(k; r)+2, r) is the Van der Waerden number defined in Theorem 4.3. Let
m = 2W (N(k; r) + 2, r). Consider an arbitrary r-colouring of [m]. By the definition
of W (N(k; r) + 2, r), there is a monochromatic arithmetic progression

A = {a, a+ d, . . . , a+ (N(k; r) + 1)d} ⊆ [
m

2
,m] .

Now, consider the set D = {d, 2d, . . . , N(k; r)d}. By the induction hypothesis, there
exist x1 < x2 < · · · < xk ∈ D ⊆ [m] such that the associated sets S1, S2, . . . Sk
are each monochromatic. Now, we wish to find an xk+1 so that Sk+1 is also
monochromatic. Take xk+1 = a+ d. Note that a > m

2
and a+N(k; r)d < m; hence

N(k; r)d < m
2

. Therefore, we have xk+1 = a + d > N(k; r)d ≥ xk. For Sk+1, note
that Sk+1 ⊆ (a + d) + D ⊆ A. Hence, Sk+1 is monochromatic. Thus, N(k + 1; r)
exists.

By induction, the result holds.

Theorem 5.19 (Folkman’s theorem). [90] If r, k ∈ N and M ∈ N is sufficiently
large, then for any r-colouring of N, there is a k-subset S ⊆ [M ] with monochromatic∑

(S).

Proof. The proof generally follows that of [69]. We will prove that M = N((k −
1)r + 1; r) will satisfy the conditions of the theorem, where N((k − 1)r + 1; r) is
defined in Lemma 5.18. Let x1 < x2 < · · · < x(k−1)r+1 satisfy Lemma 5.18 and
consider the associated sets S1, S2, . . . , S(k−1)r+1. By the Pigeonhole Principle, k of
them must be same-coloured, say Si1 , . . . , Sik . Let S = {i1, . . . , ik} ⊆ [M ]. Then, by
Lemma 5.18,

∑
(S) is monochromatic. Hence, the theorem is valid.
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Example 5.20. Consider the case k = 2 in Folkman’s Theorem (Theorem 5.19).
We can take M = S(r) where S(r) is the Schur number as defined in Theorem 5.1.
Then, for each r-colouring of [M ], there are integers a, b and c such that the set
{a, b, c = a+ b} is monochromatic.

Theorem 5.21. If r, k ∈ N and M ∈ N is sufficiently large, then for any r-colouring
of N, there is a k-subset S ⊆ [M ] with monochromatic

∏
(S).

Proof. Note that by Theorem 5.19, there exists an M ′ such that for any r-colouring
of N, there is a k-subset S ′ ⊆ [M ′] with monochromatic

∑
(S ′). Now, we take

M = 2M
′
. Let χ be any r-colouring of [M ] and χ′ be the r-colouring of [M ′] defined

by χ′(i) = χ(2i) for 1 ≤ i ≤ M ′. By Theorem 5.19, there is a k-subset S ′ ⊆ [M ′],
say {s1, . . . , sk} with monochromatic

∑
(S ′). By the definition of χ′, there is a set

S = {2s1 , . . . , 2sk} which is monochromatic under χ colouring. Note that∏
r∈R

2sr = 2
∑

r∈R sr

for any R ⊆ S ′. Hence,
∏

(S) is monochromatic.
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Chapter 6

The Hales-Jewett Theorem

In this chapter, we present another key theorem in Ramsey Theory, the Hales-Jewett
Theorem. In Section 6.1, we present this theorem and prove it. We will also mention
the density version of the theorem. In Section 6.2, we present the another proof of
Van der Waerden’s Theorem by using the Hales-Jewett Theorem.

6.1 The Hales-Jewett Theorem

In this section, we will present the Hales-Jewett Theorem and prove it. Hales-Jewett
Theorem is a fundamental theorem in Ramsey Theory with a geometric focus, and
was proven by Alfred W. Hales and Robert I. Jewett in 1963 [50]. Before looking
into the theorem, we introduce some notation and definitions required.

Definition 6.1 (n-cube over k elements). We define the n-cube over k elements by

Cn
k = {(x1, . . . , xn) : xi ∈ [0, k − 1]} .

Definition 6.2 (Line). A line in Cn
k is a set of points x0, . . . , xk−1, where xi =

(xi1, . . . , xin) so that in each coordinate j ∈ [n], either

x0j = · · · = xk−1,j

or
xsj = s, where s ∈ [0, k − 1], for some j .

Example 6.3. For k = 5, n = 4, {0130, 1131, 2132, 3133, 4134} forms a line in Cn
k .

For clarity purpose, the parentheses and commas may be omitted when k is small.

Definition 6.4 (Equivalence class). There is a collection of n+1 equivalence classes
on Cn

k = [0, k − 1]n in such a way that i-th equivalence class is the set of all points
where k − 1 appears in the i rightmost positions, for 0 ≤ i ≤ n.

Example 6.5. Consider C2
4 = [0, 3]2. There are 3 equivalence classes of C2

4 : the 0th
equivalence class is {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}; the
first equivalence class is {(0, 3), (1, 3), (2, 3)} and the second equivalence class is
{(3, 3)}.

Definition 6.6 (Layered c-dimensional subspace). A c-dimensional subspace of Cn
k

is a c-dimensional cube. A c-dimensional subspace of Cn
k is said to be layered if

there is a line where the first k − 1 points are monochromatic. The mentioned line
is also known as a layered line.
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Theorem 6.7 (Hales-Jewett Theorem). [50] Let k, r ∈ N. If n is sufficiently large,
then for any r-colouring of the cube Cn

k = {(x1, . . . , xn) : xi ∈ [0, k − 1]}, there is a
monochromatic line. The least of such n is known as the Hales-Jewett Number and
is denoted by HJ(r, k).

Before we prove the theorem, we introduce the following lemma to help us.

Lemma 6.8. [45] Let k, r ∈ N. Suppose that HJ(r, k) exists for all r. Then for all
c ∈ N, there exists a number LHJ(r, k, c) so that for n ≥ LHJ(r, k, c), if Cn

k+1 is
r-coloured, then there exists a layered c-dimensional subspace.

Proof. The proof is mainly from [45]. We use induction on c. Letting c = 1,
we can take LHJ(r, k, 1) = HJ(r, k). Consider any r-colouring of Cn

k+1 for n ≥
LHJ(r, k, 1) = HJ(r, k). Note that there is Cn

k in Cn
k+1. By definition of HJ(r, k),

there is a monochromatic line in Cn
k and this line is also a layered line in the

1-dimensional subspace.
Now, suppose that LHJ(r, k, c) exists. We need to show that LHJ(r, k, c+ 1)

also exists. Let m = LHJ(r, k, c) and s = r(k+1)m . Since LHJ(r, k, 1) exists for all
r, m′ = LHJ(s, k, 1) = HJ(s, k) must exist. We intend to show that we can take
LHJ(r, k, c+ 1) = m′ +m.

Let χ be an r-colouring on Cm′+m
k+1 . Now, consider x ∈ Cm′

k+1 and y ∈ Cm
k+1. We let

xy ∈ Cm′+m
k+1 = Cm′

k+1×Cm
k+1 denote their concatenation. Consider χ′ be a s-colouring

of Cm′

k+1 in such a way that

χ′(x) = χ′(x′) if and only if χ(xy) = χ(x′y) for all y ∈ Cm
k+1 .

Since there are only s colours, there exists a layered line x0, x1, . . . , xt ∈ Cm′

k+1

under χ′. Now, we colour Cm
k+1 by χ′′, where

χ′′(y) = χ(xiy), for 0 ≤ i ≤ k − 1 ,

in which the xi’s are the points in the layered line. Note that there are r colours
in χ′′ and that m = LHJ(r, k, c), so there is a layered c-dimensional subspace, say
S ⊆ Cm

k+1 under the colouring of χ′′.

Now, let T = {xis : 0 ≤ i ≤ k, s ∈ S} ⊆ Cm′+m
k+1 . Suppose that S has equivalence

classes S0, . . . , Sc. Then T has equivalence classes Tj = {xis : 0 ≤ i ≤ k, s ∈ Sj}, for
0 ≤ j ≤ c, and Tc+1 which consists of a single point beginning with xk. Note that
for xis, xis′ ∈ Tj, where 0 ≤ j ≤ c, we have

χ(xis) = χ′′(s) = χ′′(s′) = χ(xis′) .

Hence, T is our layered (c+ 1)-dimensional subspace. Thus, LHJ(r, k, c+ 1) exists.
By induction, the result holds.

Now, we proceed to the proof of Hales-Jewett Theorem (Theorem 6.7).

Proof. The proof mainly follows that given in [45]. We use induction on k. If k = 1,
we can just take n = 1 and the result is trivial. Suppose that the theorem holds for k.
We need to show that the result also holds for the case k + 1. Since HJ(r, k) exists
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by the induction hypothesis, Lemma 6.8 that LHJ(r, k, c) exists for all c ∈ N. Take
c = r and n = LHJ(r, k, r). By the definition of LHJ(r, k, r), if Cn

k+1 is r-coloured,
then there exists a layered r-dimensional subspace. Now, let Cr

k+1 be the layered
subspace and consider these r + 1 points xi for 0 ≤ i ≤ r:

xi = (xi1, . . . , xir), xij =

{
k, if j ≤ i ;

0, if j > i .

Since there are only r colours, the Pigeonhole Principle implies that xu and xv are
of the same colour, say c1, for some u < v. Then, the points y0, . . . , yk in which

ys = (ys1, . . . , ysr), ysi =


k, if i ≤ u ;

s, if u < i ≤ v ;

0, if v < i.

will also be c1-coloured and form the monochromatic line. Hence by induction, the
theorem holds.

Now, we will introduce the density version of Hales-Jewett Theorem. In this
strengthened version, instead of colouring the entire Cn

k with r colours, we colour

an arbitrary subset, say A ⊂ Cn
k , with density 0 < δ < 1, where δ = |A|

kn
.

Theorem 6.9 (Density version of Hales-Jewett Theorem). [36]
Let k, r ∈ N and 0 < δ < 1 ∈ R. If n is sufficiently large, then for any r-colouring
of A ⊂ Cn

k with density δ, there is a monochromatic line.

The proof of this theorem is rather technical so we are not going to prove it here.
The interested reader is referred to [19, 36, 80].

6.2 Proof of Van der Waerden’s Theorem by Hales-Jewett Theorem

In this section, we present another proof of Van der Waerden’s Theorem (Theorem 4.3)
by using the Hales-Jewett Theorem (Theorem 6.7). Van der Waerden’s Theorem
may indeed be proven as a corollary of the Hales-Jewett Theorem.

Let k, r ∈ N. Recall that Van der Waerden’s Theorem states that, for sufficiently
large n, each r-colouring of [n] gives a monochromatic arithmetic progression of
length k. Recall that the Van der Waerden number W (k, r) is the least such n.

Proof. This proof mainly follows that of [45]. We want to show that W (k, r) ≤
kHJ(r,k) where HJ(r, k) is defined as in the Hales-Jewett Theorem (Theorem 6.7).
We represent each number a ∈ [kHJ(r,k)] as HJ(r, k)-tuples (a1, . . . , aHJ(r,k)) by

translating a into base-k expression a =
∑i=1

HJ(r,k) aik
i−1, where 0 ≤ ai < k. Now,

note that the r-colouring of [kHJ(r,k)] induces an r-colouring of C
HJ(r,k)
k . By Theo-

rem 6.7, there is a monochromatic line of length k. Note that, in this monochromatic
line, the coordinate of each point is either constant or increasing by one each time.
Hence, by translating back every point of the monochromatic line, we will get a
monochromatic progression of length k, with the common difference in the form kα

where α ∈ N. Then, we are done.
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Chapter 7

Applications of Ramsey Theory

To highlight the significance of Ramsey Theory, we include some of the applications
of Ramsey Theory in this chapter. In Section 7.1, we consider the application of
Ramsey Theory to Graph Theory. Next, in Section 7.2, we will show a geometric
application of Ramsey Theory. Finally, in Section 7.3, we will apply Ramsey Theory
to Number Theory.

7.1 Applications to Graph Theory

In this section, we will present some applications of Ramsey Theory to Graph Theory.
The first application is to prove Mantel’s Theorem.

Theorem 7.1 (Mantel’s Theorem). [72] Let G be a simple graph with n ≥ 3 vertices.
If the number of edges of G is |E(G)| > n2

4
, then G has at least one triangle.

Proof. The proof mainly follows that of [103]. We use induction on n. Suppose
that n = 3. If |E(G)| > 32

4
= 9

4
≥ 3, then |E(G)| = 3 and G is itself a triangle K3.

Now, suppose that the theorem holds for the case n − 1. We wish to show that
the theorem is also true for n. Let G be a simple graph with |E(G)| > n2

4
and let

{u, v} be an edge of G. Let H be the subgraph of G obtained by deleting both

vertices u and v and each edge incident to them. If |E(H)| > (n−2)2
4

, then the
subgraph H has at least one triangle and, hence, G must also contain a triangle. If

|E(H)| ≤ (n−2)2
4

, then the number of edges between H and the vertices u and v will

be |E(G) − {u, v}| − |E(H)| > n2

4
− 1 − (n−2)2

4
= n − 2. Hence, there are at least

n − 1 edges between H and the vertices u and v. Note that there are only n − 2
vertices in H. By the Pigeonhole Principle, some vertex in H must be joined to both
u and v. Thus, G has a triangle. By induction, the theorem holds for all n ≥ 3.

Before we go to the next application, there is a definition that we here introduce.

Definition 7.2 (Strong product of two graphs). The strong product of two graphs
G and H, denoted by G�H, is the graph whose vertex set is the Cartesian product
V (G) × V (H) and whose edges are given as follows: {(a, b), (c, d)} is an edge in
G�H if and only if one of the following conditions holds:

(1) {a, c} ∈ E(G) and {b, d} ∈ E(H),
(2) a = c and {b, d} ∈ E(H),
(3) b = d and {a, c} ∈ E(G).

Example 7.3. Figure 7.1 shows the graphs G and H and their normal product
G�H.
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a b c

(a) G

x y z

(b) H

(a, x)

(b, x)

(c, x)

(a, y)

(b, y)

(c, y)

(a, z)

(b, z)

(c, z)

(c) G�H

Figure 7.1: The normal product of graph G and H, G�H.

Definition 7.4. A set of vertices in a graph is independent if no two of these vertices
are adjacent. For each graph G, let α(G) be the largest size of an independent set
in G.

Theorem 7.5. [54] If G and H are graphs, then α(G�H) ≤ R(α(G) + 1, α(H) +
1)−1, where R(α(G)+1, α(H)+1) is the Ramsey number as defined in Theorem 2.1.

Proof. This proof is provided in [84]. Let N = R(α(G) + 1, α(H) + 1). Suppose to
the contrary that α(G�H) ≥ N . Let I be an independent set of G�H with N
vertices. Let (a, b) and (c, d) are two distinct vertices in I. Since I is independent,
then one of the following conditions holds:

(1) a 6= c and {a, c} /∈ E(G),
(2) b 6= d and {b, d} /∈ E(H).

Now, consider a 2-colouring of the complete graph KN . Label each of the vertex of
KN as in I. Colour the edge {(a, b), (c, d)} with c1 if (1) holds and c2 otherwise. By
the definition of N , there is either a c1-coloured Kα(G)+1 or a c2-coloured Kα(H)+1.
Suppose that there is a c1-coloured Kα(G)+1. Since (1) holds for this subgraph, {a :
a ∈ V (G) and {a, b} ∈ Kα(G)+1 for some b} is an independent set of G with α(G)+1
vertices, which is a contradiction since α(G) is the largest size of an independent set
in G. On the other hand, suppose that there is some c2-coloured Kα(H)+1. Since
(2) holds for this subgraph, {b : b ∈ V (H) and {a, b} ∈ Kα(H)+1 for some a} is an
independent set of H with α(H) + 1 vertices, which is a contradiction. Thus, we
have α(G�H) ≤ N − 1 = R(α(G) + 1, α(H) + 1)− 1.
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7.2 Application to Geometry

In this section, we will present a geometric application of Ramsey Theory.

Theorem 7.6. [25] Let k ∈ N. If n is sufficiently large, then among any n points in
the plane with no three points collinear, there are k of the points that form a convex
polygon.

Proof. The proof mainly follows that which is outlined in [25]. We will show that
we can take n = R3(k, k), where R3(k, k) is the Ramsey number as defined in
Theorem 2.7. Let Kn be a complete graph with n vertices. Label each of the n
points with 1, 2, . . . , n respectively in any order. Colour every triple {i, j, l} with
colour c1 if i < j < l is clockwise orientated and c2 otherwise. By the definition of
R3(k, k), there are k points whose triples are monochromatic. Then, each triangle
among these k points is same-orientated, and hence these k points will form a convex
polygon.

Many study on such a minimum integer n in Theorem 7.6, denoted by ES(k), has
been conducted over the past several decades. The most recent result is contributed

by Suk, who proved that SE(k) ≤ 2k+6k
2
3 log2 n [98].

7.3 Applications to Number Theory

In this section, we present applications of Ramsey Theory to Number Theory. The
first application to be presented is on the multiplicative representation of integers,
proposed by Erdős in 1964.

Theorem 7.7. [21] Let A ⊆ N where, for each n ∈ N, there are a, b ∈ A such that
n = ab. For each k ∈ N, there is some integer n ∈ N such that the equation n = ab
has at least k solutions with a, b ∈ A.

Proof. The proof mainly follows that in [77] in the form in which it was reproduced
and modified in [76]. Note that A must contain all prime numbers; hence it is
sufficient for us to consider the integers n that are products of distinct primes only.
Let M(n) be the set of prime factors of n. Whenever we have any partition of
M(n) = M1 ∪M2 for which a =

∏
M1, b =

∏
M2 and n = ab, the definition of A

implies that a, b ∈ A. Now, by Ramsey’s Theorem (Theorem 2.7), for a sufficiently
large n and |M |, we can have one of the partitions, without loss of generality, say
M1, have at least k elements of M . Hence, there are at least k ways to partition M .
Thus, n = ab have at least k solutions in A.

Next, we are going to present an application of the Pigeonhole Principle to
Number Theory, namely to prove Proizvolov’s Identity, proposed by Vyacheslav
Proizvolov after the 1985 All-Union Olympiad [91].

Theorem 7.8 (Proizvolov’s Identity). [91]
If [2n] is biparted into sets A = {a1 > · · · > an} and B = {b1 < · · · < bn}, then

n∑
i=1

|ai − bi| = n2 .
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Proof. This proof follows that provided in [7]. Consider the pairs ai and bi. We wish
to show that one of them must be in [n] and the other one must be in [n+ 1, 2n].
First, assume the contrary that both ai and bi are in [n] for some i. Then, at least
n − i + 1 ajs and i bjs are in [n]. Therefore, at least n − i + 1 + i = n + 1 of
the aj’s and bj’s lie in [n]. By the Pigeonhole Principle, at least two of these are
identical, which is a contradiction since A ∩ B = ∅. Hence, ai and bi cannot be
both in [n]. Next, we assume that both ai and bi are in [n+ 1, 2n]. Then, at least i
ajs and n− i+ 1 bjs lie in [n+ 1, 2n]. This means that there are in total at least
i+ n− i+ 1 = n+ 1 ajs and bjs in [n+ 1, 2n]. Again, by the Pigeonhole Principle,
at least two of them are identical, which is a contradiction. Hence, ai and bi cannot
be both in [n+ 1, 2n]. Then, we have shown that one of them must be in [n] and
the other one must be in [n+ 1, 2n]. Thus, we have

n∑
i=1

|ai − bi| = [(n+ 1) + · · ·+ 2n]− (1 + · · ·+ n) = n2 .

There are many other applications of Ramsey Theory, particularly in Information
Theory, information retrieval, design of packet switched networks, Games Theory
and many other applications. The interested reader is referred to the overviews
given by F.S. Roberts [84, 86] and V. Rosta [86].
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Chapter 8

Conclusion

In conclusion, Ramsey Theory is a rapidly developing field of mathematics. In the
thesis, we have studied several different types of Ramsey-type results, including re-
sults pertaining to edge-colourings of the complete graph, monochromatic arithmetic
progressions and Schur triple a + b = c in colourings of integers, monochromatic
lines in cube colourings. We have also presented bounds on the various types of
Ramsey numbers. However, there are still many Ramsey-type topics that have not
been included in this thesis. We hope that through this thesis, the reader might
have found interest and appreciation for Ramsey Theory, as Ramsey Theory has
become an important and active area of research. More importantly, there is still
room for advancement in this field of knowledge, such as the study of the various
bounds and the relationships between Ramsey Theory and the other fields of study.
We look forward to conducting more such research. Before ending our thesis, we list
some of the interesting open problems and conjectures in the field.

Conjecture 8.1. [22] Let R(k, k) denote the kth diagonal Ramsey number. Then,

lim
k→∞

R(k, k)
1
k

exists.

Question 8.2. [22] What is the limit in the Conjecture 8.1 if such a limit exists?

Conjecture 8.3. [20] Let W (k; 2) be the Van der Waerden number. Then,

lim
k→∞

W (k; 2)

2k
=∞

and
lim
k→∞

W (k; 2)
1
k =∞.

Conjecture 8.4. [62] Let k ≥ l > 2. Then,

W (k, l; 2) ≥ W (k + 1, l − 1) ≥ W (k + 2, l − 2) ≥ · · · .

Question 8.5. [55] Suppose that r ∈ N and N is r-coloured. Must there be a
arbitrarily large finite set S ⊆ N such that

∑
(S) ∪

∏
(S) is monochromatic?
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[10] S.A. Burr, P. Erdős, R.J. Faudree and R.H. Schelp, On the difference between

consecutive Ramsey numbers, Util. Math. 35 (1989), 115–118.
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[14] V. Chvátal, Some unknown Van der Waerden numbers, in 1970 Combinatorial

Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta.,
1969), pp. 31–33, Gordon and Breach, New York.
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[61] G. Károlyi and V. Rosta, Generalized and geometric Ramsey numbers for
cycles, Theoret. Comput. Sci. 263 (2001), 87–98.

[62] A. Khodkar and B. Landman, Recent progress in Ramsey theory on the integers,
Electronic Journal of Combinatorial Number Theory 7 (2007), #A20, 10 pages.

[63] S.L. Kisner, Schur’s Theorem and Related Topics in Ramsey Theory, Master
thesis, Boise State University, 2013.

[64] M. Kolodyazhny, New lower bounds for Ramsey numbers [in Russian], Aluarium
(2016), retrieved 25 May 2017 from http://aluarium.net/forum/wiki-article-
17.html.

70



[65] M. Kouril, A Backtracking Framework For Beowulf Clusters With An Extension
To Multi-Cluster Computational And SAT Benchmark Problem Implementation,
Electronic Thesis or Dissertation (2006), retrieved 14 December 2016, from
https://etd.ohiolink.edu/.

[66] M. Kouril, Computing the Van der Waerden number W (3, 4) = 293, Integers 12
(2012), Paper A46.

[67] M. Kouril and J. L. Paul, The Van der Waerden number W (2, 6) is 1132,
Experiment. Math. 17 (2008), 53–61.

[68] E. Kuznetsov, Computational lower limits on small Ramsey numbers, arXiv
preprint arXiv:1505.07186v5 (2016).

[69] B.M. Landman and A. Robertson, Ramsey Theory On The Integers, American
Mathematical Society, Provident, RI, 2004.

[70] A. Lesser, Theoretical and computational aspects of Ramsey Theory, Exam-
ensarbeten i Matematik, Matematiska Institutionen, Stockholms Universitet,
2001.

[71] J. Mackey, Combinatorial Remedies, Ph.D. thesis, University of Hawaii, 1994.
[72] W. Mantel, Problem 28, Wiskundige Opgaven 10 (1907), 60–61.
[73] B.D. McKay and Z.K. Min, The value of the Ramsey number R(3, 8), J. Graph

Theory 16 (1992), 99–105.
[74] B.D. Mckay and S.P. Radziszowski, R(4, 5) = 25, J. Graph Theory 19 (1995),

309–322.
[75] B.D. Mckay and S.P. Radziszowski, Subgraph counting identities and Ramsey

numbers, J. Combin. Theory, Ser. B 69 (1995), 193–209.
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