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Abstract 

We introduce a model of the active fund management industry (AFMI), and 

study the effect of a continuum of exogenous market concentration levels on the 

AFMI’s performance (net alphas), AFMI size, and AFMI direct benefits (differences 

between performance benefits and costs of efforts exerted to produce them). Risk-

neutral managers compete for many risk-averse investors’ investments by optimally 

choosing costly effort and fees to deliver net alphas. Our model predicts that AFMI 

performance, size, and direct benefits increase (decrease) with market concentration if 

and only if gains from better investment opportunities due to higher concentration 

exceed (fall behind) the consequences of higher managerial costs. We then model 

endogenous concentration levels to fit empirical concentration measures. We 

empirically study the U.S. equity AFMI and find that, on average, AFMI net alphas and 

size increase with market concentration. Under current U.S. equity AFMI’s low market 

concentration, and with no change in managerial productivity/effort opportunity costs, 

increasing market concentration is likely to increase the AFMI’s net alphas, size, and 

direct benefits. 

We extend our model to global settings. Higher foreign market concentration, 

implying more unexplored investment opportunities, makes managerial effort more 

productive, attracting efforts. Consequently, unexplored investment opportunities in 

local markets rise, increasing local effort productivity. However, higher foreign market 

concentration allows foreign managers to demand higher compensation, driving up 

local managers’ reservation salaries, thus, effort costs. In equilibrium, higher foreign 

market concentration levels induce higher local net alphas, AFMI size, and the sum of 

direct benefits of managerial efforts spent in local and foreign markets if and only if 

gains from higher gross alpha production exceed consequences of higher managerial 

costs. Again, to fit data, we specialize our international model to an endogenous 

concentration framework and empirically study the effect of U.S. equity AFMI 

concentration on 30 global equity AFMIs. We find that 17 (5) markets’ AFMI net 

alphas and 9 (2) markets’ AFMI size, on average, are significantly negatively 

(positively) associated with U.S. equity AFMI concentration. Under no change in 

managerial productivity/effort costs, the current low, and probably decreasing, U.S. 

equity AFMI concentration would benefit a large proportion of global equity AFMIs.  
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 Chapter 1:  Introduction 

The global active fund management industry (AFMI) has controlled a large 

proportion of social wealth and is becoming more and more important in the global 

economy. Economic theories tell us that the level of competition (or concentration1) of 

an industry affects its efficiency. Thus, we want to ask how, and by which mechanism, 

does an AFMI’ market competition (concentration) level affect its characteristics, such 

as performance, size, managerial effort, and fees. Extensive literature on the AFMI has 

focused on studying the economic forces that can explain fund manager compensation, 

their ability to generate value, and the exponential growth of an industry where 

identifying economic value added seems elusive.2 However, the study of the relations 

between AFMI market concentration and its other characteristics is limited, and to our 

best knowledge, our topic is a new to the literature. 

In Chapter 2, we define market concentration to reflect the market 

competitiveness level and introduce a model of AFMI concentration, effort3, fees, size, 

and performance. Two hypotheses about the effect of market concentration prevail in 

the banking literature:  the efficient-structure hypothesis, which suggests a positive 

relation between market concentration and firm efficiency, and the structure-conduct-

performance hypothesis, which asserts a positive relation between market concentration 

and firms’ performance due to extractions of monopolistic rents. We note that these two 

hypotheses are not necessarily mutually exclusive.4 Following these hypotheses, we 

expect higher market concentration to 

1) leave more unexplored investment opportunities5 and allow fund managers to 

more efficiently use industry resources, such as human capital, inducing higher 

marginal effort efficiency; and 

                                                 
1 We use concentration and competition as opposites. 
2 See, for example, Jensen (1968), Daniel, Grinblatt, Titman and Wermers (1997), Wermers (2000), Berk 
and Green (2004), Chan, Covrig and Ng (2005), Khorana, Servaes and Tufano (2005), Khorana, Servaes 
and Tufano (2008), Pastor and Stambaugh (2012), Ferreira, Keswani, Miguel and Ramos (2012a) and 
(2012b), and Berk and Binsbergen (2015). 
3 The effort in our model may be regarded as an effort-skill combination. 
4 These hypotheses and some related hypotheses, such as relative market power hypothesis, are discussed 
and tested, for example, in Berger and Hannan (1989), Berger (1995), and Goldberg and Rai (1996). 
5 An example for increasing productivity with concentration is as follows. Suppose that gold has been 
found and a handful of diggers yield high returns with little effort. As the number of diggers increases, 
the area available to each digger decreases, and with it diggers’ “productivity”, even under optimal effort. 
Fund managers are like the gold diggers; they seek net alpha, but as their number increases, unexplored 
opportunities decline concomitant with their productivity. 
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2) facilitate an increase in the opportunity cost of effort, inducing fund managers to 

require more compensation for effort. 

Pastor and Stambaugh (2012), (PS), studied a framework with decreasing 

returns to scale (i.e., decreasing active managers’ marginal ability to outperform passive 

benchmarks), where interactions between active fund managers and investors determine 

expected net alphas (net of management fees). Within their world, we model a 

continuum of market concentration levels and allow active fund managers to (optimally) 

exert costly effort when competing over investment funds by producing net alphas. We 

study equilibria with four types of investors:  a single risk-neutral investor, infinitely 

many risk-neutral investors, a single risk-averse investor, and infinitely many risk-

averse investors.6 

We define the AFMI’s direct benefit (function) as the (equilibrium) increase in 

gross alpha induced by (optimal) efforts level minus the cost of these efforts, for given 

market concentration levels.7,8 We show that equilibrium fund expected net alphas and 

AFMI size increase (decrease) with market concentration if and only if the AFMI’s 

direct benefits increase (decrease) with market concentration. Also, we find that if 

equilibrium fund expected net alphas are concave in market concentration, then the 

AFMI’s direct benefits are concave in market concentration. Consequently, equilibrium 

AFMI size is also concave in market concentration. On the other hand,9 if equilibrium 

AFMI size is convex in market concentration, then the AFMI’s direct benefits are 

convex in market concentration and, consequently, equilibrium expected fund net 

alphas are convex in market concentration. 

We specialize our model to allow endogenous concentration levels. We argue 

that this endogenous framework befits empirical market concentration measures 

                                                 
6 Each of these cases fits particular economies. The cases where investors are risk-neutral are consistent 
with the situation where households employ private banks or other financial institutions to manage their 
wealth. These institutions then invest in active funds. Acting as intermediaries, they mainly care about 
funds’ expected returns so may be regarded as risk-neutral investors. The cases where there is a single 
investor in the market is consistent with the situation where the societal wealth is centrally managed by 
the government, which determines the allocation of investments to active funds and other securities. 
7 For brevity and simplicity, we use the term benefits in the general sense allowing for negative benefits. 
8 The AFMI, however, may have indirect benefits that we do not model here. For example, monitoring, 
studying, and analyzing firms might incentivize managements to improve governance and productivity, 
and to reduce agency costs. Also, active fund management may induce transfer of wealth from less 
productive firms/investors to more productive ones and, even within endowment economies, may 
increase investors’ derived utilities by improving information processing and/or risk sharing. 
9 Please note that the order of statements of this argument is different from that in the previous one, for 
reasons explained below. 
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because empirically we usually use market concentration measures that are calculated 

based on endogenous fund sizes. 

In Chapter 3, we empirically test the implications of our model developed in 

Chapter 2, by using U.S. data. In particular, we define the U.S. active equity mutual 

fund industry as the AFMI that we focus on, and study how its fund net alphas and size 

change with market concentration. We analyze the AFMI market concentration-net 

alpha relation, using Pastor, Stambaugh, and Taylor’s (2015) (PST) recursive-

demeaning estimator to address endogeneity and omitted-variable-related issues. We 

study the AFMI market concentration-AFMI size relation using vector auto-regression 

(VAR) techniques to account for simultaneity in the determination of AFMI size and 

market concentration. We control for survival bias by using the Morningstar U.S. 

mutual fund database, which contains both surviving and terminated funds. 

We find that both fund net alphas and AFMI size, on average, increase with 

market concentration. Moreover, both fund net alphas and AFMI size are concave in 

concentration. Our empirical results are robust to the use of alternative methods and 

measures. Our empirical findings are consistent with our model’s theoretical 

implications under plausible parameter values, and have policy implications. Given the 

low market concentration in the current AFMI, and assuming no change in the tradeoff 

of managerial productivity and effort cost, increasing market concentration is likely to 

increase both fund net alphas and AFMI size; under plausible parameter values, the 

AFMI’s direct benefits also increase. The literature has shown multiple ways to increase 

fund market concentration. For example, Massa (2003) suggested that mutual fund 

families allow investors to move money across family funds of different categories at 

low costs, lowering effective fees and reducing competition among funds. Under our 

findings, the formation of fund families in such markets might generate benefits in 

terms of higher net alphas and larger AFMI size. 

In Chapter 4, we extend our study, and pose questions under an international 

context:  how, and by which mechanism, does a foreign fund market’s concentration 

level affect a local fund market’s characteristics, such as performance, size, managerial 

efforts and fees. To answer, we introduce a model of international active fund 

management industries (IAFMI) equilibria where performance, size, managerial efforts 

and fees, are endogenously determined under continua of exogenous local and foreign 

market concentration levels. 
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For simplicity, we consider a two-country international model. In each country, 

there is an AFMI with competing fund managers who are risk-neutral and who invest 

their portfolios in both local and foreign stocks, and with infinitely many investors who 

are mean-variance risk-averse and who allocate their wealth across a passive 

international benchmark portfolio (which includes both domestic and foreign stocks) 

and local active funds. We deem this framework realistic because, in reality, due to high 

transaction costs in foreign countries, investors prefer local funds to foreign funds, 

whereas fund managers, facing low transaction costs, choose securities across countries. 

As before, we assume decreasing returns to scale in producing gross alphas at the fund 

and industry levels.  

Our model allows fund managers, competing in net alpha productions, to spend 

two types of efforts:  exploring investment opportunities in the local stock market and 

exploring investment opportunities in the foreign stock market. We expect gross alpha 

production and costs of managerial efforts to depend on concentration levels. In 

particular, we expect that higher local AFMI market concentration implies more 

unexplored investment opportunities in the local stock market, making effort spent in 

the local stock market more productive; at the same time, it allows local fund managers 

to ask for higher compensation for efforts spent in both the local and the foreign stock 

markets, increasing foreign managers’ reservation prices of efforts spent in both stock 

markets, and thus increasing effort costs. Moreover, although higher local AFMI market 

concentration does not directly affect the productivity of effort spent in the foreign 

stock market, in equilibrium, it attracts managerial efforts to the local stock market, 

which has more unexplored investment opportunities. As a result, it leaves more 

unexplored opportunities in the foreign stock market, making effort spent in the foreign 

stock market more productive. Similarly, higher foreign AFMI market concentration 

implies more unexplored investment opportunities in the foreign stock market, making 

effort spent in the foreign stock market more productive. At the same time, it allows 

foreign fund managers to ask for higher compensation for efforts, increasing local 

managers’ reservation prices of efforts and making efforts spent in both the local stock 

and the foreign stock markets more costly. Although higher foreign AFMI market 

concentration does not directly affect the productivity of effort spent in the local market, 

in equilibrium, it attracts managerial efforts to the foreign stock market, which has more 
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unexplored investment opportunities. Thus it leaves more unexplored opportunities in 

the local stock market, making effort spent in the local stock market more productive. 

We call the improvements in gross alpha production due to efforts minus the 

costs of the efforts, as AFMI direct benefits of efforts. We show that, in equilibrium, if 

and only if higher local AFMI market concentration exerts stronger (weaker) effects on 

gross alpha production due to efforts spent in the local and the foreign stock markets 

than on costs of these two types of efforts, i.e., if the sum of changes in direct benefits 

of these two types of efforts is positive (negative), then it induces higher (lower) local 

AFMI fund expected net alphas and AFMI size. Similarly, in equilibrium, if and only if 

higher foreign AFMI market concentration exerts stronger (weaker) effects on gross 

alpha production of these two types of efforts than on costs of them, i.e., if the sum of 

changes in direct benefits of these two types of efforts is positive (negative), it induces 

higher (lower) local AFMI fund expected net alphas and AFMI size. 

To befit empirical market concentration measures, we specialize our model to 

allow endogenous concentration levels. We show that in equilibrium, although the 

relation between local AFMI market concentration and local fund expected net alphas, 

and the relation between local AFMI market concentration and local AFMI size are 

more complex, we still conclude that local AFMI fund expected net alphas and AFMI 

size move in the same direction with foreign AFMI market concentration. 

Using similar methodologies as those in Chapter 3, we study 30 active equity 

mutual fund markets (which we define as AFMIs) and analyze how these markets’ fund 

net alphas and AFMI size change with the local and the U.S. AFMI market 

concentrations. We find that, 17 (5) markets’ fund net alphas, on average, are 

significantly negatively (positively) associated with the U.S. AFMI market 

concentration. while 9 (13) markets’ fund net alphas, on average, are significantly 

negatively (positively) associated with the local AFMI market concentration. Also, we 

find that only 9 (2) markets’ AFMI size, on average, are significantly negatively 

(positively) associated with the U.S. AFMI market concentration while only 7 (7) 

markets’ AFMI size, on average, are significantly negatively (positively) associated 

with the local one. More importantly, we find that 15 (5) markets’ fund net alphas and 

AFMI size are both, on average, negatively (positively) associated with the U.S. AFMI 

market concentration, and among them, 7 (1) markets’ fund net alphas and AFMI size 

are both significantly negatively (positively) associated with it. When pooling all the 
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markets’ data together, we find that, on average, fund net alphas and AFMI size are 

both significantly negatively associated with the U.S. AFMI market concentration, but 

are insignificantly associated with the local AFMI market concentration. The fact that 

global fund markets’ fund net alphas and AFMI size tend to move in the same direction 

with the U.S. AFMI market concentration is consistent with our theoretical implications. 

Our findings in this chapter provide relevant implications for fund managers, 

investors, and regulators:  the current low and probably decreasing market concentration 

in the U.S. AFMI, given the trade-off of higher U.S. AFMI market concentration is not 

changed, would benefit (harm) the global AFMI markets whose fund net alphas and 

AFMI size are, on average, negatively (positively) associated with the U.S. AFMI 

market concentration. Our results show that a large proportion of the global AFMI 

markets in our sample would benefit from that. 

Overall, this thesis theoretically and empirically studies how local and foreign 

AFMI market concentrations affect relevant AFMI characteristics, such as fund net 

alphas and AFMI size. The rest of this thesis is organized as follows. Chapter 2 

introduces a model of AFMI. Chapter 3 studies the implications of this model using U.S. 

active mutual fund data. Chapter 4 extends our study and develops a model of IAFMI, 

and uses data of 30 global active mutual fund markets to empirically test the model’s 

implications. Chapter 5 concludes and discusses future research. 
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 Chapter 2:  A Model of Market Concentration and the Active Fund 

Management Industry 

2.1. Introduction 

Two central underpinnings of free market economics are 1) competition leads to 

better outcomes and 2) agents earn economic rents if and only if they have a 

competitive advantage. Because the incentives of earning future economic rents are 

crucial in motivating people to act and because people need an environment where a 

competitive advantage can be created so they can earn future economic rents, it is 

natural to try to understand whether the level of competition (or concentration10) in a 

given industry is optimal. This question is at the core of a central financial economic 

issue:  the efficiency of the active fund management industry (AFMI) equilibrium. 

Extensive literature on the AFMI has focused on trying to understand the economic 

forces that can explain fund manager compensation, their ability to generate value, and 

the exponential growth of an industry where identifying economic value added seems 

elusive.11 

We introduce a model of AFMI competition, effort12, size, and performance. 

Specifically, we note that competition among asset management firms has grown 

dramatically over the past few decades with advancements in financial products and 

technology (see, for example, Gruber (1996) and Philippon and Reshef, (2012)). 

Worldwide, vast numbers of active fund managers are estimating the value of assets 

each day. These highly trained experts act to exploit any perceived differential—

however small—between price and estimated asset value, hoping to be compensated for 

their efforts. This phenomenon raises important questions. Clearly, one needs some 

active management to ensure that security prices properly reflect relevant information, 

but do market concentration levels in the AFMI optimally balance opportunities and 

costs of gross alpha production? Our model provides economic insights regarding two 

opposing forces that influence economic outcomes when the concentration level of 

AFMI changes:  available gross alpha-production opportunities and the corresponding 

                                                 
10 We use concentration and competition as opposites. 
11 See, for example, Jensen (1968), Daniel, Grinblatt, Titman and Wermers (1997), Wermers (2000), Berk 
and Green (2004), Chan, Covrig and Ng (2005), Khorana, Servaes and Tufano (2005), Khorana, Servaes 
and Tufano (2008), Pastor and Stambaugh (2012), Ferreira, Keswani, Miguel and Ramos (2012a) and 
(2012b), and Berk and Binsbergen (2015). 
12 The “effort” in our model may be regarded as an effort-skill combination. 
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effort costs.13 

We define market concentration to reflect the market competitiveness level.14 

Two hypotheses about the effects of market concentration prevail in the banking 

literature:  the efficient-structure hypothesis, which suggests a positive relation between 

market concentration and firm efficiency, and the structure-conduct-performance 

hypothesis, which asserts a positive relation between market concentration and firms’ 

performance due to extractions of monopolistic rents. We note that these two 

hypotheses are not necessarily mutually exclusive.15 Following these hypotheses, we 

expect higher market concentration to 

1) leave more unexplored investment opportunities16 and allow fund managers to 

more efficiently use industry resources, such as human capital, inducing higher 

marginal effort efficiency; and 

2) facilitate an increase in the opportunity cost of effort, inducing fund managers to 

require more compensation for effort. 

Our model allows incorporating these effects of market concentration, 

calibrating parameters with real-world data, and ascertaining which implications are 

consistent with market equilibrium. 

Pastor and Stambaugh (2012), (PS), studied a framework with decreasing 

returns to scale (i.e., decreasing active managers’ marginal ability to outperform passive 

benchmarks), where interactions between active fund managers and investors determine 

expected net alphas (net of management fees). Within their world, we model a 

continuum of market concentration levels and allow active fund managers to (optimally) 

exert costly effort when competing over investment funds by producing net alphas.17 

We study equilibria with four types of investors:  a single risk-neutral investor, 

infinitely many risk-neutral investors, a single risk-averse investor, and infinitely many 

                                                 
13 Managers’ efforts’ cost levels may be viewed, of course, as reflections of their skills. 
14 Our results hold for any 𝑀𝑀, 𝑀𝑀 > 1. Determining  𝑀𝑀 endogenously would not change our results. 
15  These hypotheses and some related hypotheses, such as relative market power hypothesis, are 
discussed and tested, for example, in Berger and Hannan (1989), Berger (1995), and Goldberg and Rai 
(1996). 
16 An example for increasing productivity with concentration is as follows. Suppose that gold has been 
found and a handful of diggers yield high returns with little effort. As the number of diggers increases, 
the area available to each digger, and with it diggers’ “productivity,” decreases, even under optimal effort. 
Fund managers are like gold diggers; they seek net alpha, but as their number increases, unexplored 
opportunities decline concomitant with their productivity. 
17  In the literature, market concentration levels are exogenous, or endogenous (see, for example, 
Aguerrevere (2009) and Ambrose, Diop, and Yoshida (2014)); but, here, assuming exogenous 
concentration helps put a focus on what we study. 
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risk-averse investors.18 

Within an AFMI equilibrium, we study the impact of changes in market 

concentration on endogenous managerial costly effort, endogenous net alpha production, 

and endogenous AFMI size. As in PS, and for simplicity, we fix the number of funds 

and define AFMI size as the ratio of assets under active management to total wealth. 

We show that with infinitely many mean-variance risk-averse investors, the effects of 

higher market concentration depend on a tradeoff. Higher market concentration not only 

increases opportunities in gross alpha production (the marginal efficiency of managerial 

effort in producing gross alpha) but also increases managerial effort costs due to 

increase in opportunity costs. We further show that if the former effect dominates (is 

dominated by) the latter one, higher market concentration induces higher (lower) 

equilibrium fund expected net alphas and larger (smaller) AFMI size. 

We define the AFMI’s direct benefit (function) as the (equilibrium) increase in 

gross alpha induced by (optimal) efforts level minus the cost of these efforts, for given 

market concentration levels.19,20 We show that equilibrium fund expected net alphas 

and AFMI size increase (decrease) with market concentration if and only if the AFMI’s 

direct benefits increase (decrease) with market concentration. Also, we find that if 

equilibrium fund expected net alphas are concave in market concentration, then the 

AFMI’s direct benefits are concave in market concentration. Consequently, equilibrium 

AFMI size is also concave in market concentration. On the other hand,21 if equilibrium 

AFMI size is convex in market concentration, then the AFMI’s direct benefits are 

convex in market concentration and, consequently, equilibrium expected fund net 

alphas are convex in market concentration. Here, as in the literature, by construction, 

aggregate net alphas are zero-sum as they shift wealth between subsets of investors; see, 

                                                 
18 Each of these cases fits particular economies. The cases where investors are risk-neutral are consistent 
with the situation where households employ private banks or other financial institutions to manage their 
wealth. These institutions then invest in active funds. Acting as intermediaries, they mainly care about 
funds’ expected returns so may be regarded as risk-neutral investors. The cases where there is a single 
investor in the market is consistent with the situation where the societal wealth is centrally managed by 
the government, which determines the allocation of investments to active funds and other securities. 
19 For brevity and simplicity, we use the term benefits in the general sense allowing for negative benefits. 
20 The AFMI, however, may have indirect benefits which we do not model here. For example, monitoring, 
studying, and analyzing firms might incentivize managements to improve governance and productivity, 
and to reduce agency costs. Also, active fund management may induce transfer of wealth from less 
productive firms/investors to more productive ones, and even within endowment economies, may 
increase investors’ derived utilities by improving information processing and/or risk sharing. 
21 Please note that the order of statements of this argument is different from that in the previous one, for 
reasons explained below. 
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for example, discussion in PS.22,23 

Then, we specialize our model to allow endogenous concentration levels. This 

framework befits empirical market concentration measures which are calculated based 

on endogenous fund sizes. We test the implications of our model using empirical data in 

the next chapter. 

In addition to the above topics we study the agency benefits due to market 

concentration, and look at equilibria with colluding fund managers. 

Section 2.2 develops a model of AFMI concentration, performance, size, 

managerial efforts and fees. Section 2.3 presents a numerical example. Section 2.4 

studies the agency benefits due to market concentration. Section 2.5 analyzes a 

framework with endogenous market concentration levels, and Section 2.6 concludes. 

2.2. Theoretical Framework 

We first develop a theoretical framework for modeling the effect of market 

concentration on fund managers’ effort, fund fees, fund performance, AFMI size, and 

potential benefits. 

For brevity and parsimonious notation, we assume that variables and functions 

are real, continuous, and twice differentiable. Within a one-period market, there are two 

types of agents:  fund managers of M , 1M >  funds and N , 1N ≥ , investors. Acting 

competitively, each manager, conditional on fund size and market concentration level, 

sets a proportional management fee and chooses an effort level to maximize the fund 

expected net alpha to attract investments.24 In Case I, risk-neutral investors allocate 

investments among the M  actively managed funds and a passive benchmark index 

fund to maximize their portfolios’ expected returns. In Case II, mean-variance risk-

averse investors allocate their investments to maximize their portfolios’ Sharpe ratios. 

Following PS, Fr , a vector of M  funds’ returns in excess of the riskless rate 

that investors receive, follows the regression model 

 pr= + +Fr α β u , (2.1) 

                                                 
22 Pages 748-750, including footnote 6, and references therein. As in PS, we do not model the “other” 
investors, who facilitate the zero-sum. 
23 We note that this is also true at non-zero AFMI’s direct and/or indirect benefits, as we measure net 
alphas ex-post under the equilibrium active fund management level. 
24 In our framework, the competition among managers is Bertrand competition, where the number of 
competitors is 𝑀𝑀 , and the “prices” offered by managers in competition are fund net alphas net of 
management fees. 
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where Fr  is an 1M ×  vector with elements , , 1, ,F ir i M=  . 

The benchmark-adjusted returns on the M  funds that investors receive is 

 +r α u . (2.2) 

The variables β , r , α , and u  are 1M ×  vectors. α  is the vector of fund net alphas 

received by investors, and β  is the vector of fund betas. Funds hold fully diversified 

portfolios and, thus, have unit betas; therefore, β  is a unit vector. The scalar pr  is the 

excess return on the passive benchmark portfolio, with mean pµ  and variance 2
pσ ; u  is 

the residual vector, with elements that follow 

 , 1, ,i iu x i Mε= + =  , (2.3) 

where iε ’s are mean zero and variance 2
εσ  idiosyncratic risks, and are uncorrelated 

with each other, with x , and with pr . The common factor x  has mean zero, variance of 

2
xσ , and is uncorrelated with pr . The values of pµ , 2

pσ , 2
εσ , and 2

xσ  are constants 

that are common knowledge of both investors and managers. 

Each element in α  has the following structure: 

 ( ; )i i i
Sa b A e H f

W
a = − + − , (2.4) 

where S  is the aggregate size of the active management industry and is equal to the 

sum of all the funds’ sizes (i.e., 
1

M

i
i

S s
=

=∑ ); W  is equal to S  plus the amount invested in 

the passive benchmark; a  and b  are positive, unknown scalar parameters; a  is the 

expected return on an initial small fraction of wealth invested in active management, net 

of any costs; and b  is the absolute magnitude of the decreasing returns to scale at 

industry level. The first and second conditional moments of a  and b  are 

 


E
a a

D
b b

 
  
 

  
  

    




, (2.5) 
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2
var a ab

ab b

a
D

b
σ σ

σ σ

  


 
  
 

 
    

 , (2.6) 

where D  is investors’ information set. As we do not focus on abσ ’s effects on the 

equilibrium, we assume that 0abσ = . In other words, conditional on current information, 
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we assume that how a  deviates from a  is unrelated to how b  deviates from b . Our

reasoning is that  a  and b  are parameters requiring different estimation methods and 

abσ  tends to be small in comparison to 2
aσ  and 2

bσ ; thus, the assumption of 0abσ =  is 

reasonable. Finally, with if  being a proportional management fee charged by manager 

i , manager i ’s fund expected net alpha is25 

 ˆ| ) ( ; )E( i ii
SD a b A e H f
W

a = − + − . (2.7) 

Our model follows and builds on that of PS. In this partial equilibrium, the 

passive benchmark portfolio’s returns are exogenously given and are unaffected by 

interactions between investors and managers. Managers’ outperformance of the passive 

benchmark portfolio (i.e., net alphas), may come at the expense of “other investors,” 

who may be noise traders, liquidity seekers, misinformed, or irrational.26 

We allow manager i  to spend a non-negative amount of proportional effort ie

(i.e., [0, )ie ∈ ∞ ) to increase gross alpha (i.e., the alpha before subtracting the fee) by 

( ; )iA e H  under market concentration level H . Industrial organization theory suggests 

that market concentration not only depends on the number of incumbents, but also on 

threats of entry activity-limiting regulation and the competitiveness of related 

industries.27 We assume that H  is an exogenous constant because it depends mainly on 

some exogenous factors mentioned above.28 It belongs to [0,1) . If 0H = , there are 

infinitely many small funds in the market, and the market is fully competitive. If 1H = , 

the market is monopolistic. If the fund managers are competing with each other, H  

belongs to [0,1) , and this is H ’s domain in our framework. ( ; )iA e H  is the same across 

funds and has the following functional characteristics: 

25 Investors observe the passive benchmark and the AFMI funds’ returns. The difference between these 
returns comes from three components:  net alphas, the common risk factor, and idiosyncratic risks. As the 
distributions of the common risk and idiosyncratic risk are common knowledge, investors know the 
likelihood function of the net alphas. Given prior beliefs of net alphas, they form posteriors and update 
their beliefs. In our one-period model, there is no dynamic Bayesian updating, but we suggest that 
investors reached a fixed-point equilibrium. Further, because investors observe 𝑓𝑓𝑖𝑖 ,𝐻𝐻, 𝑆𝑆 and 𝑊𝑊, they can 
also infer 𝐴𝐴(𝑒𝑒𝑖𝑖 ,𝐻𝐻). Here, where equilibrium optimal effort levels of all managers are same, the estimate 
𝐴̂𝐴(𝑒𝑒𝑖𝑖 ,𝐻𝐻) could be subsumed in 𝑎𝑎�; and in an equilibria where managers’ optimal effort levels differ, the 
estimates 𝐴̂𝐴𝑖𝑖(𝑒𝑒𝑖𝑖 ,𝐻𝐻), could be subsumed in 𝑓𝑓𝑖𝑖 . For simplicity and brevity, we depress the notation of 
𝐴̂𝐴(𝑒𝑒𝑖𝑖 ,𝐻𝐻) in favor of 𝐴𝐴(𝑒𝑒𝑖𝑖 ,𝐻𝐻) and follow PS formulation, Equations (2.5) and (2.6). 
26 Please see the detailed discussion in PS, pp. 748–750. 
27 Please see the discussion by Claessens and Laeven (2003). 
28 In Section 2.5, we examine endogenous concentration. 
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• non-negative, i.e., ( ; ) 0, 0,i iA e H e H> ∀ > , (0; ) 0,A H H= ∀ ,

• increasing and concave in effort, i.e., ( ; ) ( ; ) / 0, ,
ie i i i iA e H A e H e e H∂ ∂ > ∀ , 

and 2 2
, ( ; ) ( ; ) / 0, ,

i ie e i i i iA e H A e H e e H∂ ∂ < ∀ , 

• increasing in market concentration, i.e.,

( ; ) ( ; ) / 0, 0,H i i iA e H A e H H e H∂ ∂ > ∀ > , 

• positive cross-partial derivatives with respect to effort and market concentration,

i.e., 2
, ,( ; ) ( ; ) ( ; ) / 0, ,

i ie H i H e i i i iA e H A e H A e H H e e H= ∂ ∂ ∂ > ∀ . 

The economic sense of the structure of ( ; )iA e H  is as follows. A particular positive 

level of effort has a positive impact on gross alpha production. If managers spend no 

effort, the increment in gross alpha due to their effort is zero (i.e., ( ; ) 0, ,i iA e H e H≥ ∀

and (0; ) 0,A H H≥ ∀ ). Under a particular market concentration level H , an increase in 

effort ie  may increase gross alpha, but the marginal increment is decreasing (i.e., 

( ; ) 0
ie iA e H >  and , ( ; ) 0, ,

i ie e i iA e H e H< ∀ ). The more concentrated the AFMI is, the 

relatively more investment opportunities there are, and the more marginally efficient is 

the use of industry resources.29 Thus, managers can generate a higher increment in 

gross alpha for a given effort level ie  (i.e., ( ; ) 0H iA e H > ), and the marginal impact of 

ie  on gross alpha is also larger (i.e., , ,( ; ) ( ; ) 0, ,
i ie H i H e i iA e H A e H e H= > ∀ ). These two 

assumptions of the partial derivatives are consistent with Hoberg, Kumar and Prabhala 

(2015), who found that a higher competition level limits managers’ skills to create gross 

alpha persistently. 

Managers’ Cost 

For simplicity and to focus on modelling decreasing returns to scale in gross 

alpha production, we assume that funds’ fixed costs are zero. 30 This assumption is 

realistic because fixed costs to develop funds, such as registration fees and equipment 

29 In a more concentrated market, if a fund manager controls most of the industry resources and develops 
advanced strategies to produce gross alphas, other funds can mimic this fund’s strategy and produce 
higher gross alphas given a particular effort level, so this assumption is still valid when a dominant fund 
in the market controls the majority of the resources. 
30 A non-zero fixed cost and decreasing returns to scale in gross alpha production (i.e., a cost component 
that is increasing and convex in fund size) would induce an average cost function that is U-shape in fund 
size (thus under some cases there is increasing returns to scale in gross alpha production). To focus on the 
decreasing returns to scale in gross alpha production, we ignore the fixed cost component in this model. 
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expenditure, are usually small (although not trivial) compared to variable costs related 

to employees’ salaries and managers’ compensation. We assume that average cost 

functions, ( , ; )i
i iC e s H , contain three independent positive components:  0, ic , the 

average cost for fund i  to operate in the market before receiving investment and before 

manager i  spends effort; 1, i ic s , the average cost related to fund size; and 2, ( ; )i ic e H , the 

average cost of  managerial effort under a particular market concentration.31 That is, 

 0, 1, 2,( , ; ) ( ; )i
i i i i i i iC e s H c c s c e H= + + . (2.8) 

To simplify our model, we let 0, ic , and the function 2, ( ; )i ic e H  be the same 

across funds (we, thus, drop the subscript i  from now on), but let 1, ic  be different 

across funds. We discuss the effects of similarities and differences in these parameters 

across funds later. The function 2 ( ; )ic e H  has the following characteristics: 

• non-negative, i.e., 2 ( ; ) 0, 0,i ic e H e H> ∀ >  and 2 (0; ) 0,c H H= ∀ , 

• increasing and convex in effort, i.e., 2 2( ; ) ( ; ) / 0, ,
ie i i i ic e H c e H e e H∂ ∂ > ∀  and 

2 2
2 , 2( ; ) ( ; ) / 0, ,

i ie e i i i ic e H c e H e e H∂ ∂ > ∀ , 

• increasing in market concentration, i.e., 

2 2( ; ) ( ; ) / 0, 0,H i i ic e H c e H H e H∂ ∂ > ∀ > , 

• positive cross-partial derivatives with respect to effort and market concentration, 

i.e., 2
2 , 2 , 2( ; ) ( ; ) ( ; ) / 0, ,

i ie H i H e i i i ic e H c e H c e H H e e H= ∂ ∂ ∂ > ∀ . 

The average cost function implies that if fund size is  increases, manger i ’s 

average cost increases because the larger trades are associated with larger price impacts 

and higher execution costs and because of other factors that create diseconomies of 

scale in operation. 1, ic  is the average cost sensitivity to fund size is . Also, the cost of 

the fund is related to the incentive scheme that offers increasing and convex bonuses for 

employees’ performance. Thus, the average cost function is increasing and convex in 

effort ie  ( 2 ( ; ) 0
ie ic e H >  and 2 , ( ; ) 0, ,

i ie e i ic e H e H> ∀ ). In addition, in markets that are 

                                                 
31 To simplify our model, we assume there is no interaction between effort and size in the average cost 
function because it is unlikely that fund size affects managers’ per dollar effort. We also assume that 
there is no interaction between concentration and size in the average cost function because it is unlikely 
that concentration affects managers’ average cost sensitivities to fund sizes. Nevertheless, even if these 
interacting effects exist, they tend to be small in comparison to effects of other terms in the average cost 
function. 
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more concentrated, it is more costly to incentivize managerial efforts because market 

compensation levels for effort are higher, and/or because managers are less industrious. 

Thus, if markets are more concentrated, average costs due to effort are higher 

( 2 ( ; ) 0, ,H i ic e H e H> ∀ ), and marginal costs due to effort are higher as well 

( 2 , 2 ,( ; ) ( ; ) 0, ,
i ie H i H e i ic e H c e H e H= > ∀ ). 

The total cost function of manager i  is Equation (2.8) times fund size is , so 

manager i ’s total cost function is convex in is . Therefore, our fund cost model is 

consistent with that of Berk and Green (2004), who assumed decreasing returns to scale 

at fund level. Empirically, PST also reported evidence consistent with fund-level 

decreasing returns to scale. 

We define AFMI’s direct benefit function of manager i ’s net alpha production 

as 

 2( ; ) ( ; ) ( ; )i i iB e H A e H c e H− . (2.9) 

( ; )iB e H  captures the direct benefit from effort exerted in active fund 

management, in terms of increase in gross alpha production minus the effort cost. We 

note that AFMI’s active search for net alphas might have indirect effects that we do not 

model here. It might drive security prices toward their true values; it might induce firms 

to improve governance and performance, and reduce agency costs. It might induce 

transfer of wealth from less productive firms/investors to more productive ones. We 

note that we should interpret benefits generally, allowing them to be positive or negative. 

Whether the AFMI’s direct and or indirect benefits are non-zero or zero, here, as 

in the literature, gross alphas are zero-sum, because we measure gross alphas ex-post in 

the AFMI’s equilibrium,. (See for example PS, pp. 748-750, including footnote 6, and 

references therein.) 

Fund Managers’ Problem 

Manager i ’s economic profit is 

 ( )( , ; )i
i i i is f C e s H− , (2.10) 

and for the fund i  to survive, 

 ( , ; ) 0i
i i if C e s H− ≥ . (2.11) 

Manager i ’s problem can be written as 
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 ( )
,

Max ( , ; )
i i

i
i i i ie f

s f C e s H−  (2.12) 

subject to 

0ie ≥ , 

0if ≥ .32 

Risk-neutral investors would invest only in funds that generate the highest 

expected net alphas. For mean-variance risk-averse investors, we assume that the 

benefit of diversification across funds approaches zero because funds are well 

diversified and because the uncertainty of the parameters x , a  and b  are likely to be 

much larger than the uncertainty of iε . Also, real-world investors tend not to invest in 

many funds and do not diversify across funds. Thus, it is likely that not only are total 

diversification benefits zero, but also likely that marginal diversification benefits are 

trivial. Thus, our risk-averse investors invest only in funds that generate the highest 

expected net alphas and managers have to compete over net alphas. Manager i ’s 

problem can be transformed as, 

 
,

Eax )(M |
i ie if

Da  (2.13) 

subject to ( , ; ) 0i
i i if C e s H− ≥ , 0ie ≥     and     0if ≥ . 

Proof. See the Appendix. 

The proof intuition is as follows. Under competition, funds that offer higher 

expected net alphas draw (all) investments. Thus, in equilibrium funds offer similar 

expected net alphas. The possibility that other managers increase fund profits by 

improving expected net alphas, and their fund sizes, induces managers to maximize 

expected net alphas in order to “survive.” We note that this aspect of the equilibrium is 

similar to that in PS, but in addition to their result, we show that it holds also in the case 

of finite number of managers, under Bertrand competition. 

The following propositions provide results of fund managers’ equilibrium 

optimal effort levels and fees. 

PROPOSITION 1. For manager i , 1, 2,...,i M= , if initial effort inputs generate non-

                                                 
32 For simplicity and brevity, we omit the condition in Equation (2.11) from the problem statement as it is 
implied by the optimization and, thus, is not binding. 
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positive AFMI’s direct benefits of net alpha production (i.e., (0; ) 0,
ieB H H≤ ∀ ), 

equilibrium optimal proportional effort levels *
ie  are zero (i.e., * 0ie = ) and the optimal 

proportional fee *
if  equals the average cost of operating funds 0 1, i ic c s+  (i.e., 

*
0, 1,i i i if c c s= + ). 

COROLLARY to PROPOSITION 1. Under the case of Proposition 1, the equilibrium is 

similar to that in PS. The managerial effort is not modeled, and managers optimally 

choose not to charge fees above opportunity costs. 

PROPOSITION 2. For manager i , 1, 2,...,i M= , if initial effort inputs generate positive 

AFMI’s direct benefits of net alpha production (i.e., (0; ) 0,
ieB H H> ∀ ), equilibrium 

optimal effort-fee combinations * *( , )i ie f  satisfy the following. 

1) ** ( , ; ) 0i
iiif seC H− =  (optimal fees are set to be equal to costs). 

2) *
2

* *( ; ) ( ; ) ( ; ) 0
i i ii ie e e ie e eA H c H B H− = =  (the impact of marginal efforts on gross 

alpha is set to be equal to the marginal average costs of effort, thus marginal 

AFMI’s direct benefits of net alpha production under the optimal effort level are 

zero). 

3) * '( ) 0( 0)i He ≥ <  iff *
, 2 ,

*( ; ) ( ; ) 0( 0)
i i ie H i e HA H c He e− ≥ < , where * *'( ) /i ie deH dH  

(where concentration is higher, equilibrium optimal efforts are higher (lower) if 

and only if higher concentration induces a larger (smaller) marginal effort 

impact on gross alphas than on costs). 

4) The signs of * *'( ) /i if dfH dH  depend on the signs of ( / ) /d S W dH  and 

* '( )ie H  (whether higher concentrations induce higher equilibrium optimal fees 

depends on whether they induce an increase in equilibrium industry sizes and 

whether they induce an increase in equilibrium optimal efforts). 

5) *'( ; ) 0( 0)iB He ≥ <  iff * *
2( ; ) ( ; ) 0( 0)H i H iA H He ec− ≥ < , where 

* *'( ; ) ( ; ) /i iB H dB e H He d  (where concentrations are higher, equilibrium 

AFMI’s direct benefits of net alpha production are higher (lower) if and only if 

higher concentrations induce a larger (smaller) impact on gross alphas than on 

costs). 
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6) E( E(| ) | ), ,i jD D i jαα = ∀  (in equilibrium, managers offer market competitive 

net alphas). 

7) , , , ,| ) / | ) | ) / | ), ,E( Var( E( Var(jF i F F ji Fr r rD D D Dr i j= ∀  (in equilibrium, 

managers offer market competitive Sharpe ratios). 

Proofs of Proposition 1 and 2, and corollary. See the Appendix. 

The proof intuition is as follows. While competing for investments, managers 

maximize fund expected net alphas by choosing optimal efforts and fees, earning zero 

economic profits (break-even fees) in equilibrium. If higher concentration levels induce 

a higher (lower) marginal effort impact on gross alphas than a marginal effort impact on 

costs, managers optimally choose higher (lower) effort levels in producing fund net 

alphas. Also, concentration affects managers’ costs by increasing levels of cost due to 

effort and by influencing levels of optimal (costly) efforts. If higher concentrations 

induce higher equilibrium optimal efforts, managers’ costs are driven higher, resulting 

in higher break-even fees. Otherwise, where concentrations are higher, increases in cost 

levels due to effort are cancelled out by decreases in optimal effort levels. In this case, 

negative relations between break-even fees, which are equal to costs, and concentration 

indicate negative relations between equilibrium optimal effort levels and concentration. 

In addition, higher concentrations have two effects on the AFMI’s direct benefits of net 

alpha production:  directly increasing the levels of gross alphas and costs due to effort 

levels, and changing equilibrium optimal effort levels, consequently changing gross 

alphas and costs. In equilibrium, the latter effect is zero because the marginal effort 

impact on gross alphas is equal to the marginal effort impact on costs and the effect of 

higher concentration through effort on gross alphas is cancelled out by its effects 

through effort on costs. Therefore, if higher concentrations induce a higher direct 

impact on gross alphas than on costs, AFMI’s direct benefits of net alpha production are 

higher. 

Also, as there are no diversification benefits across funds, managers who 

provide higher expected net alphas dominate, attracting investments. Consequently, 

their fund costs increase, inducing higher (break-even) fees and lowering expected net 

alphas. Thus, in equilibrium, allocation of investments, or fund sizes, set expected net 

alphas to be equal across funds. If fund managers cannot produce the AFMI highest 

expected net alpha, even for an infinitesimal fund size, their funds go out of the market. 
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In addition, as funds have the same expected net alphas, they have the same expected 

returns. As the source of fund returns’ variance is the same across funds, the fund return 

variance is the same across funds. Therefore, managers offer the same competitive 

Sharpe ratio. 

The following proposition identifies the relation of different managers’ 

equilibrium optimal effort levels, fees, benefits of effort, and AFMI share. 

PROPOSITION 3. Under the same 0c  and the same functional form of 2 ( ; )ic e H  but 

different 1, ic ’s across funds, 

1) * *
i je e=  and * *, ,i jf f i j= ∀  (equilibrium efforts and fees are the same across 

funds). 

2) Therefore, * *( ; ) ( ; ), ,i je eB H B H i j= ∀  (equilibrium AFMI’s direct benefits of net 

alpha production are the same across funds). 

3) Fund sizes relate as 1, 1,/ / , ,i j j is s c c i j= ∀ . 

4) AFMI shares, /is S ’s are 

( )
1

1
1, 1,

1
,

M
i

i j
j

s c c i
S

−

−

=

 
= ∀ 
 
∑ . 

Proof of Proposition 3. See the Appendix. 

The third point of Proposition 3 shows that managers’ different costs of 

producing gross alphas, induce different fund sizes in equilibrium. The fourth point of 

Proposition 3 implies that funds’ market shares are deterministic functions of 1, ic ’s and 

are, thus, unaffected by the AFMI weight in total wealth, /S W . In other words, how 

investors weight the funds inside the AFMI is unaffected by how investors weight the 

AFMI as a whole relative to the passive benchmark. This property facilitates later 

results. 

Proposition 3 is driven by the fact that 0c  and the functional form of 2 ( ; )ic e H  

are the same across funds but 1, ic ’s are different across funds. In contrast, Proposition 1 

and 2 are valid even without this assumption. In fact, from Proposition 2, we can see 

that if 0, ic , 1, ic  and the functional form of 2, ( ; )i ic e H  are different across funds, 

managers end up with different levels of effort, different fees, and different fund sizes in 
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equilibrium. If all fund managers have the same 0c , 1c , and functional form of 

2 ( ; )ic e H , they end up with the same equilibrium levels of effort, fees, and fund sizes. 

We define the equilibrium optimal expected net alphas of an initial marginal 

investment in the AFMI as *,( )iX e H . Quantitatively, 

 

* *
0 2

*, ( ; )) ( ; )( ii ia A H ce e ecX HH  + − +  . (2.14) 

For the AFMI to exist, we must have positive net alphas for initial infinitesimal 

investments into the AFMI: 

 *, 0( )ieX H > . (2.15) 

If Inequality (2.15) is violated, investors receive negative or zero net alpha from the 

AFMI and invest all their wealth in the passive benchmark. Also, to offer meaningful 

results, we assume that initial marginal allocations of effort generate positive AFMI’s 

direct benefits, that is, 

 , 0,(0 ) ,
ieB H i H> ∀ ∀ , (2.16) 

such that the optimal effort *
ie  is positive, finite, and attainable, i.e., 

* *, 0,( ) ,,
i i ieB He HKe i= ∀ ∀<  for some constant K . We focus on the case under 

Proposition 2 in the following analyses. 

Investors’ Problem 

Let jδ  denote the 1M ×  vector of weights that investor j  places on the M  

funds, with elements , , 1, ,j i i Mδ = 
. Thus, investor j ’s excess return is 

 (1 )j pr r= + −T T
j F j Mδ r δ ι , (2.17) 

where Mι  is an 1M ×  vector with elements equal to 1. Assuming all funds have beta 

loadings on the benchmark equal to 1 (i.e., Mβ = ι ), based on (2.1) and (2.17), we have 

 ( )j pr r= + +j
T α uδ . (2.18) 

Further, we have 



* *| ) ( ; ) ,E( | ) E(p p i ij
SD a b A e fr D H j

W
µ µ  + = + − + − ∀  

= M
T

j j
Tδ δ ια  . (2.19) 

Equation (2.19) is valid because the fund expected net alphas are the same across funds 

in equilibrium as implied by Proposition 2. Also, 
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( ) ( )
2

22 2 2 2 2Va )|r( ,p aj x b W
r S jD εσ σ σ σ σ

  = + + + + ∀  
   

jj
T

j
T

M δδ ι δ . (2.20) 

We characterize equilibria in the cases where 1) there are infinitely many small 

risk-neutral investors, 2) there is a single large risk-neutral investor, 3) there are 

infinitely many small mean-variance risk-averse investors, and 4) there is a single large 

mean-variance risk-averse investor. Here, infinitely many small investors means N →∞  

investors have finite wealth, and their choices cannot affect fund sizes. A single large 

investor means 1N = , a single investor who controls all market wealth, and his or her 

choices determine fund sizes. In the following analyses, we focus on cases 3 and 4, 

whereas cases 1 and 2 are discussed in the Appendix. 

Mean-Variance Risk-Averse (RA) Investors 

If there are infinitely many (i.e., N →∞ ) small mean-variance risk-averse 

investors, none of them can affect fund sizes. Also, investors’ investment in the AFMI 

dilutes funds’ expected returns due to decreasing returns to scale in funds. In addition, 

mean-variance risk-averse investors face risk-return tradeoffs in marginal allocations. 

Investor j ’s objective is to maximize the portfolio’s Sharpe ratio by choosing portfolio 

weights, , 1,j M=jδ  . This investor’s problem is 



( ) ( )
2

22 2

*

2 2 2

*
E( | )

(

( ( ; ) )
Max Max

V r )|a

p

p a

j
i

x

j

i

b

er D
r

Sa b A H f
W

S
W

D
e

µ

σ σ σ σ σ

 
 

+ − + −  =  
   + + + +   

     

j j

j M

δ δ

j

T

T T
j jM

δ ι

δ ι δ δ



, (2.21) 

subject to 

 1≤T
j Mδ ι , (2.22) 

 , 0,j i iδ ≥ ∀ , (2.23) 

 * *( , ; ) 0,i
i ii if C s He− = ∀ , (2.24) 

 * * *
2( ; ) ( ; ) ( ; ) 0,

i i ii ie e ieA H c H B ie He e− = = ∀ . (2.25) 

Condition (2.22) is a form of wealth constraint, saying that investors cannot 

borrow from the passive benchmark to invest in the AFMI. Condition (2.23) says that 

there is no short sale of funds. Conditions (2.24) and (2.25) reflect managers’ 

equilibrium optimal choices. Also, as we assume that there are no marginal 
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diversification benefits across funds, we set the term ( )2
εσ jj

Tδ δ  to zero when solving 

the optimization problem (2.21). Because the equilibrium is symmetric, we have 

 /S W=M
*T
jδ ι . (2.26) 

Where there is a single (i.e., 1N = ) large investor, he or she determines is , 

1,...,i M= , thus, /S W , to maximize the portfolio’s Sharpe ratio. The investor not only 

faces a tradeoff between allocating additional dollars to funds, taking advantage of fund 

net alphas, and diluting returns on wealth already in funds, but also faces a risk-return 

tradeoff. The problem is 



( ) ( ) ( )

1

1 1

2 22 2 2 2 2
1

1

1

*

1

*

1 1

E( |Max
Var )

( ( ; ) )
Max

)
( |

p i i

p a x b

a b A H f

r D
r D

e

e

µ

σ σ σ σ σ

 
 + − + − =  

  + + + +    
j

δ

M M

δ

M M

T T

T T T

δ δ ι ι

δδ ι δ ι δ



 (2.27) 

subject to Conditions (2.22) – (2.25). We also set the term ( )2
εσ

T
1 1δ δ  to zero and also 

have /S W=M
*T
1δ ι . Because of the analytical complexity of this case, 1N = , we rely on 

a numerical solution. 

The next proposition describes the equilibrium in the N →∞  case. 

PROPOSITION RA1, Unique Nash Equilibrium. 

Where N →∞ , 

1) there exists a unique Nash equilibrium, { }, ,* * *e f δ , where 

*e  is an 1M ×  vector with managers’ optimal effort allocations, *
ie , 

*f  is an 1M ×  vector with managers’ optimal fee allocations, *
if , and 

*δ  is an M N×  matrix with vectors of investors’ optimal wealth weights 

allocations to funds, *
jδ ; 

2) in this equilibrium, managers produce the same expected net alpha, which drives 

their economic profits to zero, by charging only break-even fees; and investors 

allocate the same wealth proportions to each of the funds. 

Proof of Proposition RA1. See the Appendix. 

The following proposition identifies equilibrium properties. 
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PROPOSITION RA2, Equilibrium by Optimal Allocations. 

For 1,2,...,i M= , we have 
{ }|E( | ) 0i Dα >* * *e , f , δ

; and where N →∞ , the equilibrium 

optimal /S W  is either 1 or a real positive solution of the (constrained embedded) first-

order condition of the investors’ problem (a cubic equation) substituting /S W=M
*T
jδ ι , 

( )
3 1

2 2 2 1
1,

*
1

( , ) 0M
b a x ii i

S Sb eW Xc
W W

Hγσ γσ γσ
−

−
=

   − − + + + + =     
∑ , 

where  2/p pγ µ σ . 

Where 1N = , numerical solutions are required. 

The intuition of Proposition RA2 is as follows. Whether N →∞  or 1N = , 

investors allocate investments to funds based on their risk-return tradeoffs. Investing too 

much wealth in the AFMI increases portfolio risk, so they choose to limit those 

investments, leaving 
{ }|E( | ) 0i Dα >* * *e , f , δ

. Where N →∞ , the properties of the cubic 

equation guarantee at least one real positive root. The solution of /S W  is the largest or 

the smallest real positive root of the cubic equation or 1, depending on which 

maximizes (2.21). 

COROLLARY to PROPOSITION RA2. Where N →∞ , for large enough W , such that 

/ 1S W < , we have 

( )

( )
2 1

2 2 2 1
1,1

*( ; )
3

/ 1 0
Mi

b a x ii

H S b c W
W

d S W
dX e

γ σ σ σ
−

−
=

   + + + +  
  

= >

 
∑

, and 

( )
( )

( )
1 2 11 2 2 2 1

1,1 1,1

/( / ) 0
3

M M
ii b a x ii

S Wd S W
Sd b c W b c W
W

γ σ σ σ
− −− −

= =

−
= <

    + + + + +         
∑ ∑



. 

That is, higher initial marginal fund expected net alphas induce a larger equilibrium 

AFMI size relative to total wealth, whereas a stronger decreasing returns to scale effect 

in the AFMI induces a smaller equilibrium AFMI size relative to total wealth. 

The intuition of this corollary is as follows. Where / 1S W < , an increase 

(decrease) in *,( )iX e H  shifts up (down) the cubic function in Proposition RA2, 

inducing a larger (smaller) /S W  as the maximizer of investors’ objective function. The 

economic sense is that a higher level of equilibrium optimal expected net alpha of an 
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initial marginal investment, *( ; )iX e H , attracts more investments to the AFMI. Also, we 

can see that b  is the expected decreasing returns to scale at the industry level, based on 

current information, whereas ( ) 1
1

1,1

M
ii

c W
−

−
=∑  may be regarded as the equilibrium 

decreasing returns to scale factor at the fund level because it is calculated by all the fund 

average cost sensitivities to size, 1, ic . Thus, the factor ( ) 1
1

1,1

M
ii

b c W
−

−
=

+ ∑  may be 

regarded as the combined decreasing returns to scale factor. Investors invest less in 

funds if the effect of decreasing returns to scale is stronger in the AFMI. The following 

proposition offers the comparative statics. 

PROPOSITION RA3 AFMI Size Sensitivity to Concentration. 

1) Where N →∞  and / 1S W < , we have 

a. ( ) ( ) *
* 2

*(
/

; ) (
/

; )
( ; ) H i H i

i

A H c
d S W d S W

dH dX
He

H
e

e
=  −   

( )/ / 0( 0)d S W dH ≥ <  iff * *
2( ; ) ( ; ) 0( 0)H i H iA H He ec− ≥ <  (where 

concentration is higher, equilibrium industry size is larger (smaller) if and only 

if the higher concentration induces a larger (smaller) impact on gross alphas than 

on costs). 

b. 

( ) ( )

( )

*

*

* *
*

2 2

2 2

3
2 2

2

/ /

/
6

( ; )
( ; )

( ; ) ( ; )
( ; )

.

i

i

H ii
i

b H

d S W d S W d B
dH dX dH

d S WS
W dX

e
e

e e
e

H
H

A H c H
H

γσ  −

=

 
− 
 

 

If 2 2* 0( ) /;i Hd dHeB ≤ , then ( )2 2/ / 0d S W dH ≤  (the fact that *( ; )iB e H  is 

concave in H  indicates that /S W  is concave in H ), and if 

( )2 2/ / 0d S W dH ≥ , then 2 2* 0( ) /;i Hd dHeB ≥  (the fact that /S W  is convex 

in H  indicates that *( ; )iB e H  is convex in H ). 

2) Where N →∞  and / 1S W = , /S W  is unrelated to market concentration. 

3) Where 1N =  and / 1S W < , numerical solutions are required to analyze the 

signs of ( )/ /d S W dH  and ( )2 2/ /d S W dH . 

4) Where 1N =  and / 1S W = , /S W  is unrelated to market concentration. 

The intuition is as follows. Where N →∞ , a higher H  affects industry size 
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/S W  through the equilibrium optimal expected net alpha of an initial marginal 

investment, *( ; )iX e H . If a higher H  induces a larger (smaller) impact on gross alphas 

than on costs, then it creates a larger (smaller) *( ; )iX e H  and, consequently, attracts 

more (less) investments in the AFMI—if investors have additional wealth to allocate to 

funds (i.e., / 1S W < ). From Proposition 2, we see that 
* *

2
*'( ; ) ( ; ) ( ; )H ii H iB H A H c e He e= − ; thus, in this case, a higher H  induces a larger 

/S W  if and only if it induces a higher *( ; )iB e H . Regarding the second-order 

derivative ( )2 2/ /d S W dH  where N →∞  and / 1S W < , if investors are risk-neutral 

(see Proposition RN3 in the Appendix), ( )2 2/ /d S W dH  is positively proportional to 

*2 2( ; ) /ied HB dH . That is, as H  changes, the change of marginal /S W  depends on the 

change of marginal *( ; )iB e H  because investors share all AFMI’s direct benefits of net 

alpha production in a market with competing managers. However, mean-variance risk-

averse investors face, in addition, a risk-return tradeoff. Holding other parameters the 

same, if investors’ marginal portfolio risks are higher, they optimally invest less in 

funds, so higher H  induces smaller marginal /S W  in equilibrium. Thus, 

( )2 2/ /d S W dH  in the risk-averse case is reduced by an adjustment term for risk (the 

second component in the expression of ( )2 2/ /d S W dH  in the first point of Proposition 

RA3). We can see that if *,( )iB e H  is concave in H , /S W  must be concave in H ; if 

/S W  is convex in H , *( ; )iB e H  must be convex in H . Where 1N = , the situation is 

more complex because the single investor internalizes the whole market and, further, 

faces an additional tradeoff between allocating additional wealth to funds to increase 

returns and diluting returns on wealth already in funds. If investors have no additional 

wealth to allocate to funds (i.e., / 1S W = ), the market is at a corner solution and H  

has no effect on /S W . 

PROPOSITION RA4, Net Alpha Sensitivity to Concentration. 

1) Where N →∞  and / 1S W < , we have 
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a. 
{ }

( ) ( )

2

1
1

, *1

* *

1

| ) ( ; ) ( ; )

1 .
( ; )

E

/

( i
iH i H

M
ii

i

d D A H c H
dH

b c W
d H
d S W
X

e e

e

α

−
−

=

 = − 

  − +    
∑

* * *e , f , δ



{ }| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ
 iff * *

2( ; ) ( ; ) 0( 0)H i H iA H He ec− ≥ <  (where 

concentration is higher, the equilibrium optimal expected net alphas are 

larger (smaller) if and only if this higher concentration induces a larger 

(smaller) impact on gross alphas than on costs). 

b. 

{ }
( )

( )
( )

2 1
1

1,2 1

1
1

1

*

*

* *
*

2

2
,1

2

2

2

3

| ) ( ; ) ( / )1
( ; )

/

6

( ; ) ( ;
( )

.)
;

E( Mi
ii

i

M
ii

H

b

i

H
i

ii

d D H d S Wb c W
dH d H

b c W

d S W
A H c H

d

e
e

e

d B
dH X

S
W

X
e

e H

σ

α

γ

−
−

=

−
−

=

  = − +    

 + +  

 
 
 

 × − 

∑

∑

* * *e , f , δ



  

If { }
2 2

, ,
/ |( | )E 0id dHDα ≤* * *e f δ

, then 2 2* 0( ) /;i Hd dHeB ≤ , (the fact that 

{ }, ,
| )E |( i Dα * * *e f δ

 is concave in H  indicates that *( ; )iB e H  is concave in 

H ). If 2 2* 0( ) /;i Hd dHeB > , then { }
2 2

, ,
/ |( | )E 0id dHDα >* * *e f δ

 (the fact 

that *( ; )iB e H  is convex in H  indicates that 
{ }, ,

| )E |( i Dα * * *e f δ
 is convex in 

H ). 

2) Where N →∞  and / 1S W = , we have 

a. { }
* *

2| ) / | ( ;E( ) ( ; )i iH i Hed D dH A c eH Hα = −* * *e , f , δ
. 

{ }| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ
 iff * *

2( ; ) ( ; ) 0( 0)H i H iA H He ec− ≥ <  (where 

concentration is higher, the equilibrium optimal expected net alphas are larger 

(smaller) if and only if this higher concentration induces a larger (smaller) 

impact on gross alphas than on costs). 

b. { }
2 2 2 2*| ) / | ( ; /E( )i id D dH d B H dHeα =* * *e , f , δ

. 

{ }
2 2| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ

 iff *2 2( ; ) / 0( 0)id B e H dH ≥ <  
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( { }, ,
| )E |( i Dα * * *e f δ

 is convex (concave) in H  if and only if *( ; )iB e H  is convex 

(concave) in H ). 

3) Where 1N =  and / 1S W < , numerical solutions are required to analyze the 

signs of 
{ }| )( / |E id D dHα * * *e , f , δ

 and { }
2 2| ) / |E( id D dHα * * *e , f , δ

. 

4) Where 1N =  and / 1S W = , we have 

a. { }
* *

2| ) / | ( ;E( ) ( ; )i iH i Hed D dH A c eH Hα = −* * *e , f , δ
. 

{ }| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ
 iff * *

2( ; ) ( ; ) 0( 0)H i H iA H He ec− ≥ <  (where 

concentration is higher, the equilibrium optimal expected net alphas are larger 

(smaller) if and only if this higher concentration induces a larger (smaller) 

impact on gross alphas than on costs). 

b. { }
2 2 2 2*| ) / | ( ; /E( )i id D dH d B H dHeα =* * *e , f , δ

. 

{ }
2 2| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ

 iff *2 2( ; ) / 0( 0)id B e H dH ≥ <  

(
{ })E( | |i Dα * * *e , f , δ

 is convex (concave) in H  if and only if *( ; )iB e H  is convex 

(concave) in H . 

The intuition of Proposition RA4 is as follows. Where N →∞  and /S W , a 

higher H  influences { }, ,
| )E |( i Dα * * *e f δ

 at two stages. At the first stage, it changes 

managers’ ability to produce expected net alphas, which is represented by the first 

component of { }| )( / |E id D dHα * * *e , f , δ
. At the second stage, investors react to the 

changes in fund expected net alphas by adjusting the investment level to the funds, 

consequently affecting { })E( | |i Dα * * *e , f , δ
 under a decreasing returns to scale framework. 

This effect is represented by the second component of { }| )( / |E id D dHα * * *e , f , δ
. If 

investors are risk-neutral, they adjust their investment level merely based on the 

changes in fund expected net alphas, driving { })E( | |i Dα * * *e , f , δ
 to zero, so the second 

component of { }| )( / |E id D dHα * * *e , f , δ
 is zero (see Proposition RN4 in Appendix). 

However, if investors are risk-averse, their risk-return tradeoff makes their reaction to 

changes in fund expected net alphas less intense. That is, they subdue their additional 
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investments to funds when inferring higher fund expected net alphas and limit their 

reduction in investments to funds when observing lower fund expected net alphas, 

inducing a positive value in the second component of { }| )( / |E id D dHα * * *e , f , δ
 (i.e., 

( ) 1
1

11
*

,1 ( / ) / ( ; ) 0M
i ii

b c W d S W dX He
−

−
=

 − + >  
∑ ). Therefore, whether a higher H  

increases { })E( | |i Dα * * *e , f , δ
 depends on whether it has a larger impact on gross alphas 

than on costs (i.e., the sign of { }| )( / |E id D dHα * * *e , f , δ
 depends only on the sign of 

2
* *( ; ) ( ; )iH i HA H ce e H− ). As in equilibrium, * *

2
*'( ; ) ( ; ) ( ; )H ii H iB H A H c e He e= − , so 

whether a higher H  increases { })E( | |i Dα * * *e , f , δ
 depends on whether it increases 

*( ; )iB e H . Also, as H  changes, the change of marginal { })E( | |i Dα * * *e , f , δ
 (i.e., 

{ }
2 2| ) / |E( id D dHα * * *e , f , δ

) is positively proportional to the change of marginal *( ; )iB e H , 

i.e., *2 2( ; ) /ied HB dH  plus a positive adjustment term that captures the effects of risk. 

This adjustment term is positive because, holding all other parameters the same, if 

investors’ marginal portfolio risks of investing in funds are higher, investors optimally 

invest less in funds. In doing so, they exert a smaller impact on net alphas; thus, a 

higher H  induces a higher marginal { })E( | |i Dα * * *e , f , δ
. We can see that if 

*2 2( ; ) /ied HB dH  is positive, { }
2 2| ) / |E( id D dHα * * *e , f , δ

 must be positive, whereas if 

{ }
2 2| ) / |E( id D dHα * * *e , f , δ

 is negative, *2 2( ; ) /ied HB dH  must be negative. Where 

/ 1S W = , whether N →∞  or 1N = , { }| )( / |E id D dHα * * *e , f , δ
 is equal to 

2
* *( ; ) ( ; )iH i HA H ce e H− , and { }

2 2| ) / |E( id D dHα * * *e , f , δ
 is equal to *2 2( ; ) /ied HB dH . 

This is because investors have no additional wealth to allocate to funds, so they exert no 

impact on marginal { })E( | |i Dα * * *e , f , δ
, making the marginal equilibrium optimal 

expected net alphas depend only on the effect of H  on managers’ ability to produce net 

alphas. Where 1N =  and / 1S W < , the single investor faces an additional tradeoff 

between allocating additional dollars to funds to take advantage of fund net alphas and 

diluting returns on wealth already in funds. In this case, numerical solutions are 
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required to analyze the signs of 
{ }| )( / |E id D dHα * * *e , f , δ

 and { }
2 2| ) / |E( id D dHα * * *e , f , δ

. 

PROPOSITION RA5, Relation between Net Alpha and Market Share. 

Whether N →∞  or 1N = , an increase (decrease) in 1, ic , while 1, ,jc j i∀ ≠  are 

unchanged, induces a decrease (increase) in /is S , and an increase (decrease) in 

/ ,js S j i∀ ≠ . Also, 

1. Where N →∞  and / 1S W < , or / 1S W = , an increase (decrease) in 1, ic , while 

1, ,jc j i∀ ≠  are unchanged, induces a decrease (increase) in 
{ })E( | |i Dα * * *e , f , δ

; thus, 

{ })E( | |i Dα * * *e , f , δ
 and /is S  are positively related—internality effect; it induces a 

decrease (increase) in 
{ }|E( | ) ,j D j iα ∀ ≠* * *e , f , δ

; thus,  
{ })E( | |j Dα * * *e , f , δ

 and /js S  

are negatively related j i∀ ≠ —externality effect. 

2. Where 1N =  and / 1S W < , numerical solutions are required to analyze the relation 

between 
{ })E( | |i Dα * * *e , f , δ

 and /is S . 

3. Where 1N =  and / 1S W = , an increase (decrease) in 1, ic , while 1, ,jc j i∀ ≠  are 

unchanged, induces a decrease (increase) in 
{ })E( | |i Dα * * *e , f , δ

; thus, 

{ })E( | |i Dα * * *e , f , δ
 and /is S  are positively related—internality effect; it induces a 

decrease (increase) in 
{ }|E( | ) ,j D j iα ∀ ≠* * *e , f , δ

, thus 
{ })E( | |j Dα * * *e , f , δ

 and /js S  

are negatively related j i∀ ≠ —externality effect. 

The intuition of Proposition RA5 is as follows. Based on Proposition 3, we can 

see that any change in 1, ic , keeping 1, ,jc j i∀ ≠  unchanged, results in a change in /is S  

in the opposite direction and a change in / ,js S j i∀ ≠  in the same direction. Also, a 

higher 1, ic , affects 
{ })E( | |i Dα * * *e , f , δ

 at the two stages. At the first stage, it decreases 

manager i ’s average cost and, thus, induces higher fund expected net alphas. As 

manager i  offers a higher fund expected net alpha, investments shift into fund i  from 

other funds, making all those funds’ fund expected net alphas higher due to decreasing 

returns to scale at fund level. At the second stage, an increase in fund expected net 
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alphas attracts investments in the AFMI, which in turn drives down fund expected net 

alphas due to decreasing returns to scale at industry level. Where N →∞  and / 1S W < , 

as investors’ portfolio risks increase (decrease) when they invest more (less) in the 

funds. They subdue investments to funds when observing an increase in fund expected 

net alphas and limit investment reduction when observing a decrease in fund expected 

net alphas. Thus investors’ risk-aversion mitigates the countered effect at the second 

stage and makes the first stage’s effect dominant. Where / 1S W = , whether 1N =  or 

N →∞ , investors have no additional wealth to allocate to funds, so their investments 

have no impact on marginal equilibrium optimal expected net alphas, causing the first 

stage’s effect to dominate. In all these cases, we find { })E( | |i Dα * * *e , f , δ
’s are driven 

down by an increase in 1, ic , keeping 1, ,jc j i∀ ≠  unchanged; consequently, we have a 

positive relation between { })E( | |i Dα * * *e , f , δ
 and /is S  (internality effect) and a negative 

relation between { })E( | |j Dα * * *e , f , δ
 and / ,js S j i∀ ≠ (externality effect). Where 1N =  

and / 1S W < , the single investor faces an additional tradeoff between allocating 

additional dollars to funds to take advantage of fund expected net alphas and diluting 

returns on wealth already in funds. This situation is more complex, and we rely on a 

numerical solution to solve it. 

Proof of Proposition RA2, RA3, RA4, RA5 and the corresponding corollary. See the 

Appendix. 

2.3. Numerical Example 

We provide a numerical analysis of the AFMI under our framework and set the 

parameter values as follows: 100W = , 100M = , 0.05pµ = , 0.1pσ = , 0.05xσ = , 

 0.15a = , 0.3b = , 0.4aσ = , 0.4bσ = , and 0abσ = . 

To simplify the case, we assume the parameters in the average cost functions are 

the same across funds (thus we can drop the indicator i ); so, in equilibrium, funds have 

same levels of effort, fees, and sizes. We assume the functional form of ( ; )iA e H , for 

numerical analysis, is 0( ; ) ( ) ln(1 )i iA e H H A e= + + , where 0A  is a positive parameter. 

Also, the functional form of 2 ( ; )ic e H  is 1 2 2
2 2 2( ; ) ( )i ic e H c H c e= + . The parameters of 

( ; )A H  and ( , ; )iC H   are set as follows:  0 0.005c = , 1 0.1c = , 1
2 2.5c = , 2

2 0.01c = , 
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0 0.5A = . 

We choose 100 points evenly spread on [0, 0.999] to be the value of the market 

concentration level H  and study how equilibrium values change with H . 

Figure 2.1 illustrates the numerical results for the case of infinitely many mean-

variance risk-averse investors. We can see that *
ie  decreases with market concentration 

because our numerical calibration makes H ’s impact on marginal effort impact on 

costs larger than marginal effort impact on gross alphas, across the domain of H . Also, 
*

if  decreases with H  when H  is small and increase with H  when H  becomes large 

because managers’ costs decrease with H  first and then slightly increase with H . We 

also have /S W  increase with *,( )iX e H , as we expect in our model. Moreover, 

{ })E( | |i Dα * * *e , f , δ
 is always positive, consistent with our model. Also /S W , *( ; )iB e H  

and { })E( | |i Dα * * *e , f , δ
 first decrease with H  and then slightly increase with H  because 

the difference of H ’s impact on gross alphas and its impact on costs first decreases 

with H  and then slightly increases with H . In addition, /S W , *( ; )iB e H , and 

{ })E( | |i Dα * * *e , f , δ
 are convex at the same time, in our calibration. 

Figure 2.2 demonstrates the numerical results where there is a single mean-

variance risk-averse investor in the market. The results are similar except that /S W  is 

much smaller and { })E( | |i Dα * * *e , f , δ
 is much larger. The reason is that the single investor 

internalizes the AFMI, limiting the investments in the funds and maximizing his or her 

portfolio Sharpe ratio.  
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Figure 2.1. Infinitely Many Small Mean-Variance Risk-Averse Investors—
Comparative Statistics with Respect to Market Concentration 
This figure presents the numerical results for the case of infinitely many small mean-variance risk-averse 
investors. The two subplots on the top illustrate the equilibrium optimal management effort and 
management fees at each market concentration level. The two subplots in the middle report 𝐵𝐵(𝑒𝑒𝑖𝑖∗,𝐻𝐻) at 
each market concentration level and the equilibrium S/W ratio at each 𝑋𝑋(𝑒𝑒𝑖𝑖∗,𝐻𝐻) level. The two subplots at 
the bottom show the equilibrium S/W ratio and the equilibrium fund expected net alphas at each market 
concentration level. 
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Figure 2.2. A Single Large Mean-Variance Risk-Averse Investor—Comparative 
Statistics with Respect to Market Concentration 
This figure presents the numerical results for the case of a single large mean-variance risk-averse investor. 
The two subplots on the top illustrate the equilibrium optimal management effort and management fees at 
each market concentration level. The two subplots in the middle report 𝐵𝐵(𝑒𝑒𝑖𝑖∗,𝐻𝐻)  at each market 
concentration level and the equilibrium S/W ratio at each 𝑋𝑋(𝑒𝑒𝑖𝑖∗,𝐻𝐻) level. The two subplots at the bottom 
show the equilibrium S/W ratio and the equilibrium fund expected net alphas at each market concentration 
level. 
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2.4. Agency Benefits Due to Market Concentration 

A higher fund market concentration implies that fund managers may earn higher 

agency benefits and charge investors higher fees. Modeling that, we can decompose the 

management fee into two parts: 

 ( ) ,i if fa H fe i= + ∀ , (2.28) 

where ( )fa H  represents agency benefits, in terms of percentage fees, that managers 

(can) charge under a particular level of industry concentration H , and ife  is the 

endogenous component chosen by manager i . We assume that ( )fa H  is the same for 

all managers, and 

 ( ) 0,fa H H≥ ∀ , (2.29) 

 '( ) ( ) / 0,fa H dfa H dH H> ∀ , (2.30) 

 (1)fa < ∞ , and (2.31) 

 (0) 0fa = . (2.32) 

The rationale for these assumptions is as follows. Agency benefits are non-negative; the 

higher the market concentration is, the higher agency benefits are. Agency benefits are 

highest under monopolistic markets and are bounded from above; the agency costs on 

investors are zero if the AFMI is perfectly competitive with infinitely many small fund 

managers. 

Competing Managers 

In a market with managers competing for investments, ife  can be positive or 

negative. If it is positive, manager i  charges an additional fee on top of agency benefits; 

if it is negative, manager i  is subsidizes investors in order to increase investments in the 

fund. Let managers’ optimal fee be 

 * *( ) ,i if fa H fe i= + ∀ . (2.33) 

Our previous analysis demonstrated that in equilibrium, fund managers charge break-

even fees in order to compete for investments; so regardless of agency cost levels 

( )fa H , managers choose ife ’s such that *
if ’s are break-even fees. As managers 

charge break-even fees in equilibrium, *( ; )iB e H  is transferred to investors in its entirety. 

We call the dollar amount of agency costs faΨ ; thus, 
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 ( ) Sfa fa H W
W

Ψ = . (2.34) 

As ( )fa H  increases with H , we know that if /S W  increases with H , then faΨ  

increases with H . If /S W  decreases with H , then whether faΨ  increases with H  

depends on the rate that ( )fa H  increases with H  relative to the rate that /S W  

decreases with H . The curvature of faΨ  in H  is inconclusive. 

We call the dollar amount of AFMI’s direct benefits from managers’ optimal 

effort BΨ ; thus, 

 *( ; )ieB
W

B SH WΨ = . (2.35) 

Then, if 2
* *( ; ) ( ; )iH i HA H ce e H−  is positive (negative), *( ; )iB e H  and /S W  both increase 

(decrease) with H , inducing BΨ  to increase (decrease) with H . It is possible that 
*( ) ( ; )if ea H B H>  and fa BΨ > Ψ . That is, under particular levels of market 

concentration, managers’ agency costs surpass AFMI’s direct benefit from managers’ 

effort. Still, because of managers’ competition for investments in their funds, they 

would set *
ife  to be negative to subsidize investors’ investments such that managers are 

earning break-even fees. Investors, however, only care about and only observe *
if ; they 

do not observe *
if ’s components and cannot base their decisions on either ( )fa H  or 

*
ife . 

Colluding Managers 

Managers, may use market power to collude in charging fees higher than those 

that endogenously arise in the previous non-collusive equilibrium.33 We assume that 

their (market) power to charge higher fees is increasing with industry’s concentration 

level and that managers agree on a single collusive fee, ( )f H . Thus, we now have 

 ( ) ( ),if fa H f H i= = ∀ .34 (2.36) 

We consider the case where N →∞ . Conditional on the industry collusive fee 

rate, managers maximize their corresponding funds’ profits by exerting optimal effort 

levels, incorporating investors’ optimal reactions. We can concisely write the total 

                                                 
33 Under our functional assumptions, it is irrational for managers to collude in lowering fees. 
34 Please note that Equations (2.29) to (2.32) still hold. 
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industry profit function, Π , as a sum of the industry funds profit functions: 

{ } { }
( )

1 1

* * * *
1 2 1 2

1
( , , , ; ) Max ( , , , ; ) Max ( ) ( , ; )

M M
i ii i

M
i

M M i i i
e e i

e e e H e e e H s f H C e s H
= = =

Π Π = −∑   , (2.37) 

subject to 

 ( ) ( , ; ) 0, ,i
i if H C e s H i H− ≥ ∀ . (2.38) 

Optimal effort levels *
ie  are given by the first-order-condition 

( ) 1
1

1, 1, 21

2
2

* * *

1

*

2 2

( ; ) ( ) ( , ; ) ( ;
0

) ( ; )

3

i i i

Mi
e i i i e ei

b a x

M i i i

i

i
SA H f H C s H c c WA H c H

W
S b

W

e e e e

γ sss 
=

−
−

=

  − − +    
   + + +  

   

=
∑

∑


, (2.39) 

where /S W  is given by 

 
3

2 2 *2 ( ) ( 0),b a ix H f HS Sb
W

eA
W

γσ γσ γσ   − − + + + = 


− 
 , (2.40) 

if / 1S W < , and / 1S W =  otherwise. The second-order-condition is satisfied, so *
ie  is 

a maximum point. Also, in equilibrium, where / 1S W < , we have 

 ( ) *

2
2 2 2

* *( ; ) '( ) ( ; ) '/ ( )

3

ie i H

b x

i

a

iA H H A H f H

S

d S W
d

b
H

e e

W

e

γ σ σ σ

+ −

   + + +  
   

=


, (2.41) 

where '( ) ( ) /f H df H dH , and 

{ }
2

2 2 2

2
2 2 2

* * *

| )

3 ( ; ) '( ) ( ; ) '

E

( )

3

(

i

i

i ib a x e i H

b a x

e e

d D
dH

S A H H A H fe H
W

S b
W

γ σ σ σ

γ

a

σ σ σ

=

    + + + −       
   + + +  

   

* * *e , f , δ



. (2.42) 

Therefore, both ( )/ / 0( 0)d S W dH ≥ <  and { }| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ
 if and only 

if * * *( ; ) '( ) ( ; ) '( ) 0( 0)
ie i Hi iA H H A H f He e e+ − ≥ < . The economic sense is that if in 

equilibrium, a higher concentration increases fund gross alphas more than the 

exogenous fees, managers optimally choose efforts to produce higher fund expected net 
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alphas to attract investments that increase industry profits. Where / 1S W = , managers 

choose the minimum *
ie  to make / 1S W = . The reason is that if managers can 

optimally induce investors to invest all their wealth in funds, they choose the minimum 

effort to do so. In this case, both /S W  and { })E( | |i Dα * * *e , f , δ
 are unaffected by H , so 

 
( )/

0
d S W

dH
= , (2.43) 

 
{ }

| )(
0

E id D
dH
α

=
* * *e , f , δ

. (2.44) 

The results of ( )2 2/ /d S W dH  and { }
2 2| ) / |E( id D dHα * * *e , f , δ

 require numerical 

analysis. 

To choose the optimal collusion fee, a “collusion planner” would write a 

mapping from H  to ( )f H , where each point in the range is the one for which industry 

profits, *Π , are the highest. 

Discussion of Covariance between 𝒂𝒂� and 𝒃𝒃� 

We assume that 0abσ = , but we note that the value of abσ  affects the 

equilibrium results because it affects portfolio risks. If abσ  (in absolute value) is large 

relative to other risk sources, such as 2
aσ , 2

bσ , and 2
xσ , changes in investors’ wealth 

allocations to funds, would induce changes in their portfolio risks, affecting in turn their 

optimal demands. This would make our theoretical results in propositions RA3, RA4, 

RA5 and results in Section 2.5 more complex. We believe that consequences of such an 

analysis would not be directly material to the issues that we explore here and would 

obfuscate the analysis. We, thus, assume that precisions of estimates of a  and b , 

conditional on current information, are not closely related, making 0abσ → . 

2.5. Endogenous Market Concentration Level and Empirical Analysis 

Our model allows for an endogenous market concentration level. If we define 

H  as the Herfindahl-Hirschman index (HHI), which is the sum of market shares 
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squared, then for an M  firms’ market 𝐻𝐻 ∈ [1
𝑀𝑀

, 1). 35 Using funds’ equilibrium market 

share, as identified in Proposition 3, we can write the equilibrium market concentration 
*H  as 

 ( )
22

* 1
1, 1,

1 1 1

M M M
i

i j
i i j

sH c c
S

−

−

= = =

   =   
   

∑ ∑ ∑ . (2.45) 

We can see that *H  is determined by 1,ic ’s. Specifically, depending on the size of 1,ic  

relative to that 1, ,jc j i∀ ≠ , an increase in 1,ic , holding 1, ,jc j i∀ ≠  constant, increases or 

decreases *H . 

In the case where there are infinitely many risk-averse investors, an increase in 

1,ic  affects the equilibrium fund expected net alphas in two ways:  1) its direct impact 

leads to lower equilibrium fund expected net alphas (Proposition RA5), and 2) 

depending on fund i ’s size relative to rivals, it increases or decreases *H , which 

consequently increases (decreases) equilibrium fund expected net alphas if and only if 
** * *

2( ; ) ( ; ) ( )0H i H iH eA c He − ≥ <  (Proposition RA4). Similarly, an increase in 1,ic  affects 

the equilibrium AFMI size in two ways:  1) its direct impact leads to an (inverse 

direction) AFMI size change, and 2) it increases or decreases *H , which consequently 

increases (decreases) the equilibrium AFMI size if and only if 
** * *

2( ; ) ( ; ) ( )0H i H iH eA c He − ≥ < . Thus, in the endogenous market concentration case, 

the relation between the market concentration and the equilibrium fund expected net 

alphas and AFMI size is more complex.36 

In the next chapter, we proceed with an empirical analysis of the benefits and 

costs of changing market concentration levels of the AFMI using the version of our 

model with endogenous concentration. In this sense, this version of our model befits 
                                                 
35 In an 𝑀𝑀 AFMI, for example, the Herfindahl-Hirschman index could have values between the highest 
concentration, 1, where one of the funds captures practically all the market share, and the lowest 
concentration, 1/𝑀𝑀, where market shares are evenly divided. 
36 We believe that our cost function, Equation (2.8), is a concise one that essential effects within our 
model. To assure that all our functional form restrictions of the non-specialized model (exogenous 
concentration levels), which we deem basic and simple, hold in the specialized one (endogenous 
concentration levels); however, we need to impose additional, technical, “second order,” parameter 
restrictions. For brevity and simplicity, we do not impose these restrictions. We call the parameter values 
that make the specialized model abide by these restrictions plausible. We, later, confirm that the said 
technical restrictions are not empirically binding. That is, imposing these restrictions would not have 
changed our empirical results. In other words, the empirically estimated parameters fall within the 
plausible parameters range. 
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available data of empirical market concentration levels, such as the HHI. Popular 

empirical market concentration measures, such as HHI, are functions of rivals’ relative 

sizes. We expect that market characteristics, such as regulation, transaction costs, tax 

rates, and barriers to entry, affect funds’ cost sensitivity to size (i.e., 1,ic ’s). As a result, 

they affect relative fund sizes and, thus, the level of empirical market concentration 

measures. We use empirical techniques to control potential endogeneity of market 

concentration measures. 

Whether fund net alphas and AFMI size move in the same direction with market 

concentration and whether both are concave (convex) in it become empirical questions. 

Further, in cases where active fund management creates value, if fund net alphas and 

AFMI size increase (decrease) with market concentration, our model predicts positive 

(negative) benefits of marginal managerial effort, for plausible parameter values. We 

note that both signs of the benefits of changing concentration levels are plausible 

alternatives to a null hypothesis of no benefit of active fund manager effort. 

2.6. Conclusion 

We develop a theoretical model to analyze an AFMI equilibrium where we 

investigate performance, size, and managers’ costly (optimal) effort under a continuum 

of exogenous market concentration levels. We use Pastor and Stambaugh’s (2012) 

framework, where gross alpha production is of decreasing returns to scale at the 

industry level, and we similarly model the decreasing returns to scale effect at the fund 

level. Higher market concentration levels imply better utilization of industry resources 

and the existence of more unexplored investment opportunities, making managers’ 

efforts more productive. At the same time, however, higher market concentration levels 

allow managers to require higher compensation for effort, making effort costs higher. 

Our model’s comparative statistics characterize the association between fund net 

alphas and a continuum of exogenous market concentration levels, and that between 

AFMI size and market concentration. In particular, we consider the case of infinitely 

many mean-variance risk-averse investors whose portfolio risks increase with 

investments in funds. The funds’ expected net alphas increase with market 

concentration if and only if higher concentration induces a larger impact on gross alpha 

production than on the costs of effort (i.e., higher concentration induces higher AFMI’s 

direct benefits of net alpha production). Observing an increase in fund expected net 
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alphas, due to higher market concentration, mean-variance risk-averse investors 

increase their mutual fund holdings but reach optimum investment levels at higher 

expected net alphas than before. Thus, the equilibrium fund expected net alphas become 

positively associated with market concentration. In addition, the concavity of fund 

expected net alphas in market concentration indicates that the AFMI’s direct benefits of 

net alpha production are concave in market concentration. This further induces 

concavity of AFMI size in market concentration. 

We also study the consequences of increased agency costs under higher market 

concentration levels in a market where managers can collude to pursue agency benefits. 

In addition, we specialize our model to allow for endogenous market concentration 

levels, which befits empirical market concentration measures and enables us to study 

the model empirically in the next chapter. 
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 Chapter 3:  U.S. Active Fund Management Industry Market 

Concentration, Fund Net Alphas, and Industry Size 

3.1. Introduction 

We use the Herfindahl-Hirschman index (HHI) and other indices as market 

concentration measures, to empirically study the implications of our model developed in 

the last chapter. In particular, we study how the fund net alphas and size of the U.S. 

active equity mutual fund industry change with market concentration. 

Our empirical methodology uses Pastor, Stambaugh, and Taylor’s (2015) (PST) 

recursive-demeaning estimator to address endogeneity and omitted-variable-related 

issues, and uses vector auto-regression (VAR) techniques to account for simultaneity in 

determination of AFMI size and market concentration. We control for survival bias by 

using the Morningstar U.S. mutual fund database, which contains both surviving and 

terminated funds. 

We find that both fund net alphas and AFMI size, on average, increase with 

market concentration. Moreover, both fund net alphas and AFMI size are concave in 

concentration. Our empirical results are robust to the use of alternative methods and 

measures. 

Our empirical findings are consistent with our model’s theoretical implications 

under plausible parameter values, and have policy implications. Given the low market 

concentration in the current AFMI, and assuming no change in the tradeoff of 

managerial productivity and effort cost, increased market concentration is likely to 

increase both fund net alphas and AFMI size; under plausible parameter values, AFMI’s 

direct benefits also increase. The literature has shown multiple ways to increase fund 

market concentration. For example, Massa (2003) suggested that mutual fund families 

allow investors to move money across family funds of different categories at low costs, 

lowering effective fees and reducing competition among funds. Under our findings, 

formation of fund families in such markets might generate benefits in terms of higher 

net alphas and larger AFMI size. 

Section 3.2 presents our empirical methodology. Section 3.3 describes our data. 

Section 3.4 reports our empirical results. Section 3.5 concludes. 

3.2. Methodology 

Our goal is to analyze how the AFMI size and fund net alphas change with 
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market concentration of an AFMI. Next, we describe how we measure concentration, 

fund net alpha, and our econometric strategy to estimate the effect of changing 

concentration on net alpha and AFMI size, controlling for endogeneity and omitted-

variable bias-related issues. 

Measures of AFMI Concentration 

Following the literature, we measure competitiveness of an AFMI using three 

indices (see, for example, Berger and Hannan (1989), Geroski (1990), Berger (1995), 

Goldberg and Rai (1996), Nickell (1996), Berger, Bonime, Covitz and Hancock (1999), 

Cremers, Nair, and Peyer (2008), and Giroud and Mueller (2011)): 

1) the HHI: 

 2
,
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t i t
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H MS=∑ ; (3.1) 

2) the normalized Herfindahl-Hirschman index (NHHI): 
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3) the sum of the first five largest funds’ market shares (5-Fund-Index): 
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where ,i tMS  is the market share of fund i  at time t , measured by the fund’s assets under 

management at time t over the total assets under management in its market at time t, and 

tm  is the number of funds at time t . As the HHI is related to the number of funds, for a 

robustness check, we also use two measures not related to the number of funds to 

measure market concentration, the NHHI used by Cremers, Nair and Peyer (2008) and 

the 5-Fund-Index, one of the common measures of market concentration. 

Choice of Benchmarks and Net Alpha Estimation 

Berk and Binsbergen (2015) argue that to measure the value added by a fund, its 

performance should be compared to the next-best investment opportunity available to 

investors. In our model, we assume that a single passive benchmark exists and is 

common knowledge to investors and managers. We make these assumptions because 

they keep our theoretical analysis parsimonious and relaxing them does not alter the key 

insights from our model. However, in our empirical section, we allow for multiple 
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benchmarks and match each active equity mutual fund to a set of tradable index funds 

that reasonably replicate passive alternatives available to an average mutual fund 

investor. Specifically, we assume the following return-generating process: 

 1 1 2 2
, , , , ,t t t t t t t

n n
i i i i i tR b F b F b Fα= ++ +…+ , (3.4) 

where the indices i and t represent the fund and time indices, whereas n indicates the 

number of tradable index funds in the market. , tiR  is the return net of management fee 

of a fund, and 1
tF  through n

tF  are the returns net of management fees of tradable index 

funds in different asset classes. We use net alpha (instead of gross alpha) in our 

empirical analyses because we are interested in aspects of market competition and 

investor benefits predicted by our model, where net alpha is the relevant quantity. We 

treat the index funds 1
tF  through n

tF as a basis fund set that may be used to replicate 

the returns on any passive benchmarks used by mutual fund investors.  

To perform our analysis, we first need to calculate fund net alphas ( ,tiα ). For 

each active fund in our sample, we calculate a set of weights on our basis fund set that 

sum to one and minimize the tracking error between the active fund return and a 

corresponding passive benchmark portfolio return (Sharpe (1992)). We note that our 

empirical design of identifying passive benchmarks, using matching tradable index 

funds, fits our theoretical structure, which assumes the appropriate passive benchmarks 

for each fund. 

We perform this analysis on a rolling basis, using returns from months (t - 60) to 

(t - 1) to avoid look-ahead bias. That is, we identify coefficients 1
,i tb  to ,

n
i tb  to minimize 

the variance of the residual. These coefficients are constrained to be between zero and 

one (we do not allow short selling), and their sum is constrained to be one. These 

coefficients identify the portfolio weights in our basis index fund set that provides the 

estimated minimum “tracking error” passive benchmark of a fund.   

Next, to calculate a fund’s net alphas in month t, we subtract the returns on the 

identified passive portfolio (the style benchmark) for month t from the active equity 

fund’s returns in month t and that of the style benchmark in month t. This provides us 

with fund net alphas in each month for each fund.  

To ensure the robustness of our results, we also use an alternative method to 

fund net alphas. Specifically, it is possible that traded index funds do not capture 
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unobservable risk factors that drive excess returns. Errors in our set of passive 

benchmarks or our matching strategy may result in net alphas that measure exposure to 

such unobservable risk factors instead of fund manager performance. Using the method 

developed by Connor and Korajczyk (1988), we estimate unobserved common factors 

in our estimated fund net alphas using the principal components of our estimated fund 

net alphas series. We use these estimated principal components to control for 

unobserved common factors in the fund net alphas. Specifically, we regress each fund’s 

fund net alphas on the first two principal components without a constant term. We refer 

to the residuals of these regressions as PC-adjusted fund net alphas and use them as the 

dependent variable for robustness checks. 

Controlling for Endogeneity and Omitted-Variable Bias 

Estimating the effect of market concentration on performance is a challenge 

because market concentration is determined endogenously. PST explain why a simple 

regression is likely to deliver biased estimates and introduce a recursive demeaning (RD) 

estimator to avoid the biases. In analyzing the relation between fund net alphas and 

market concentration, we use the RD estimation procedure of PST. We estimate the 

effects of size (𝛽𝛽1) and market concentration (𝛽𝛽2 and 𝛽𝛽3) on fund net alphas using the 

following panel regression: 

 2
, 1 , 1 2 1 3 1 ,i t i t t t i tMS H Hα β β β ε− − −= + + + . (3.5) 

The bar above the variables denotes forward-demeaned variables, defined below: 
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where iT  is the number of time-series observations of fund i . We run robustness checks 

by replacing tH  (HHI) with the NHHI and with the 5-Fund-Index. 

The RD method in Equation (3.5) can control for the fund fixed effect. We 
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include market share as a control, not only because the equilibrium market share 

provides information on a fund’s cost sensitivity to fund size (Proposition 3), but also 

because current empirical studies show a linear relation between changes in market 

share and fund performance (Spiegel and Zhang (2013)) and use it as a firm-level 

market power measure (e.g., Berger, Bonime, Covitz and Hancock (1999) and Nickell 

(1996)). There may be potential endogeneity (reverse causality) between AFMI shares 

and fund net alphas because when fund net alphas are higher, corresponding asset 

values increase and funds attract investments, both leading to a higher market share. 

This endogeneity issue may bias our results. We address this endogeneity issue using an 

instrumental variable method. In the first stage, we regress , 1i tMS −  (recursively 

forward-demeaned market share) on , 1i tMS −  (recursively backward-demeaned market 

share) without a constant term. In the second stage, we use the fitted value from the first 

stage to run Equation (3.5),37 where 
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To be a valid instrument of , 1i tMS − , , 1i tMS −  must satisfy the relevance and exclusion 

conditions. The relevance condition is likely to hold because both , 1i tMS −  and , 1i tMS −  

are derived from , 1i tMS −  and are, thus likely to be closely related. The exclusion 

condition is also likely to hold because the backward-looking information in , 1i tMS −  is 

unlikely to be helpful in predicting the forward-looking net alpha information in ,i tε , 

where ,i tε  is the residual in the RD method. 

On the other hand, there is no reason to believe that fund net alphas, as 

individual fund performance, are endogenous with the market concentration ratios as 

industry-level measures. In particular, there is no reason to believe that innovations in 

market concentration are correlated with the error term in the regression. Thus, we 

directly use the recursive forward-demeaned market concentration ratios in the model. 

In analyzing the relation between the AFMI size and market concentration, we 

use the vector auto-regression (VAR) method. Although theoretically we assume 

                                                 
37 We correct the second-stage standard error estimates of 𝛽𝛽1 by incorporating the estimation errors from 
the first-stage regression. 
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market concentration is exogenous, empirically this industry-level variable may be 

endogenous with another industry-level variable, the industry size. The VAR method 

can address this potential endogeneity issue, and our model is 
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, (3.11) 

where tIS  is AFMI size at time t  and ,a te , ,b te  and ,c te  are the residuals. 

3.3. Data 

We obtain our data from Morningstar Direct. Our sample contains 1,374 

actively managed U.S. equity mutual funds from January 1979 to December 2014. The 

Appendix supplements the data description below. 

We use keywords in Morningstar to identify U.S. mutual funds (both open-end 

and closed-end) and exclude index funds, enhanced index funds, funds of funds, and in-

house funds of funds. Also, we require funds to be classified as Equity in the Global 

Broad Category Group, and we further exclude international funds, real estate funds, 

and sector funds. Next, we use the Fund ID provided by Morningstar to aggregate fund 

share class-level information to fund-level information. Since we use a 5-year rolling 

window to estimate fund net alphas, we require each of our active equity mutual funds 

to have at least 10 years’ return observations. 38  Using these filters, we obtain our 

sample of 1,374 actively managed U.S. equity mutual funds. 

The index funds used in the style-matching model are also from Morningstar. 

We require index funds to have no missing observations in our sample period so that the 

style-matching model is consistent and stable. The factors used in the style-matching 

model include index funds with the Morningstar Institutional Categories of Small Core, 

Large Core and S&P 500 Tracking, and the CRSP Fama-French risk-free rate. All the 

fund returns are net of administrative and management fees and other costs taken out of 

fund assets. 

Table 3.1 reports the summary statistics. It shows that monthly fund returns are 

positive on average but vary a great deal, from smaller than -14% to more than 13%, 

with a standard deviation of more than 5%. Monthly fund net alphas are positive on 

                                                 
38 We also omit some rare cases where there is a gap with more than 5 years’ return observations missing. 
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average, also with a wide variation. We also report summary statistics of the fit of our 

passive benchmark-matching method using R-squared, which is measured as  

 ,
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( )
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Var R
a

= − , (3.12) 

where ,( )tiVar a  is the variance of the residuals of the regression, and ,( )tiVar R  is the 

variance of , tiR . The average R-squared in our style-matching model are quite high at 

0.86, and the variation around the mean is relatively small.  

To analyze robustness, we redo our analyses using fund net alphas adjusted by 

the first two principal components. The values of the monthly relative industry size 

(total funds’ net assets divided by stock market capitalization) and the monthly fund 

sizes in December 2014 dollars (funds’ net assets divided by stock market capitalization 

in the same month, multiplied by the stock market capitalization in December 2014) are 

similar to the sample in PST. 

The number of active equity mutual funds in our sample increases over time. 

The market concentration measures, such as the HHI, NHHI, and 5-Fund Index, with 

fluctuations, tend to decrease over time. Also, all three market concentration measures 

do not seem to perform with skewness.  
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Table 3.1. Summary Statistics 

Our sample period is from January 1979 to December 2014, and monthly data is used. Panel A reports the 
summary statistics for fund-level data, and Panel B reports those for industry-level data. Fund Net Return 
and Fund Net Alpha are in percentages, and both are net of administrative and management fees and 
other costs taken out of fund assets. The Style-Matching Model R-sqr, AFMI Share, HHI, NHHI, and 5-
Fund-Index are in decimals. Fund Size is measured in $100 millions and is equal to the fund’s total net 
assets under management, divided by the stock market capitalization in the same month, and multiplied 
by the stock market capitalization in December 2014. Industry Size is the sum of funds’ net assets under 
management divided by the stock market capitalization in the same month. Number of Funds is in units. 

 

 

Because our sample differs from PST, we check for any alarming systematic 

differences by evaluating the returns to scale relation in our sample. Table 3.2 reports 

the estimated relation of fund net alpha and fund size and fund industry size, using 

PST’s RD model. We find that fund net alpha is significantly negatively associated with 

lagged industry size and is insignificantly negatively associated with lagged fund size. 

In an unreported robustness check, we replace lagged fund size by lagged log of fund 

size and find consistent results. Thus, we find evidence of decreasing returns to scale at 

the industry level. These findings are consistent with PST’s. 

  

Variable Obs. Mean Std. 1st 25th 50th 75th 99th
Panel A: Fund-Level Data
Fund Net Return (%) 321456 0.8736 5.1508 -14.4922 -1.7976 1.2998 3.8907 13.0053
Fund Net Apha (%) 246553 0.0349 1.9499 -5.4465 -0.8570 0.0215 0.9156 5.5982
Style-Matching Model R-sqr (decimal) 246557 0.8607 0.1175 0.4223 0.8178 0.8953 0.9408 0.9894
Fund Size (in 100 Million of 2014 Dec Dollars) 314083 28.7796 95.3306 0.0399 1.3833 5.5718 20.1835 416.9203
Fund Market Share (decimal) 314083 0.0012 0.0041 0.0000 0.0000 0.0002 0.0007 0.0185

Panel B: Industry-Level Data
Industry Size (decimal) 432 0.0982 0.0591 0.0200 0.0389 0.1035 0.1638 0.1801
Number of Funds (No.) 432 850.2 659.5 86.0 249.0 677.5 1468.5 2126.0
HHI (decimal) 432 0.0191 0.0230 0.0061 0.0101 0.0157 0.0243 0.0382
NHHI (decimal) 432 0.0157 0.0139 0.0057 0.0094 0.0141 0.0201 0.0269
5-Fund-Index (decimal) 432 0.2166 0.0765 0.1240 0.1640 0.1986 0.2650 0.3438

Percentile
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Table 3.2. Sample Check for Decreasing Returns to Scale Assumption 

This table reports the results of RD panel regression model, following PST. Fund Net Alpha is the 
dependent variable. Fund Size is measured in $100 millions, and is equal to the fund’s total net assets 
under management, divided by the stock market capitalization in the same month, multiplied by the stock 
market capitalization in December 2014. Industry Size is the sum of AFMI’s net assets under 
management divided by the stock market capitalization in the same month. The unit of coefficients is 
percentage. Standard errors are clustered by fund and presented in parentheses. The symbols ***, **, and 
* represent the 1%, 5%, and 10% significant level in a two-tail t-test, respectively. 

 

  

Dependent Variable
(1) (2) (3)

Lagged Fund Size -0.0005 -0.0007
(0.0010) (0.0010)

Lagged Industry Size -1.0211*** -1.0388*
(0.1302) (0.5524)

Observations 239,537 245,178 239,537
R-Sqr 0.0000 0.0003 0.0003
Adjusted R-Sqr 0.0000 0.0003 0.0003

Fund Net Alpha
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3.4. Empirical Results 

In this section, we implement our theoretical model to empirically evaluate 

effects of market concentration levels on the U.S. mutual fund industry. 

Figure 3.1 shows the HHI value from January 1984 to December 2014. We can 

see that before 1990, the HHI value was relatively high, fluctuating from 0.02 to 0.03. 

After that, it continued decreasing; and in the current years, it has reached 0.006, which 

is around a quarter of the values before 1990. This figure shows that the concentration 

of the U.S. active equity mutual fund market decreased substantially. Alternative market 

concentration measures, such as NHHI and 5-Fund Index, show similar trends. 

 

Figure 3.1. HHI of the U.S. Active Equity Mutual Fund Market 

The HHI value is in decimals. The gray bars represent the recession periods. The sample period is from 
January 1984 to December 2014 

 
 

We first evaluate the relation between fund net alphas and market concentration. 

The results using the RD method are shown in Table 3.3. Panel A reports the results 

using fund net alpha as the dependent variable. In the first two columns, we find that the 

coefficient of the first-order term of lagged HHI is significantly positive, whereas the 

coefficient of the second-order term is significantly negative. This result is robust to 

including lagged market share and lagged industry size as controls. This suggests that 

the effect of concentration is distinct from the effect of decreasing returns to scale at the 
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fund and industry level. To control for the possibility of unaccounted common factors in 

the estimated net alphas, we also use principal component (PC)-adjusted fund net alphas 

as the dependent variable (Panel B) and find similar results. 

The main result of this table is that fund net alphas, on average, are increasing 

concave in fund market concentration. Our theoretical results, then, indicate that for 

plausible parameter values, higher levels of market concentration induce increases in 

gross alpha production opportunities that are higher than those in managers’ effort costs. 

 

Table 3.3. Market Concentration and Fund Net Alpha 

This table reports the results of our RD panel regression model. Panel A reports the results using the Fund 
Net Alpha as the dependent variable, whereas Panel B reports the results using the PC-Adjusted Fund Net 
Alpha (adjusted by the first two principal components of fund net alphas) as the dependent variable. 
Market Share is equal to a fund’s net assets under management divided by the sum of all funds’ net assets 
under management in the same month. Industry Size is the sum of AFMI’s net assets under management 
divided by the stock market capitalization in the same month. HHI is calculated as the sum of squares of 
each fund’s market share, and HHI^2 is the square of HHI. The unit of coefficients is percentage. 
Standard errors are clustered by fund and presented in parentheses. The symbols ***, **, and * represent 
the 1%, 5%, and 10% significant level in a two-tail t-test, respectively. 

  

Dependent Variable
(1) (2) (3) (4) (5) (6) (7) (8)

Lagged HHI 6.5277*** 40.0796*** 39.1271** 35.3591*** 34.8497** 2.5033*** 11.8816*** 9.4626**
(1.0362) (4.8085) (17.7560) (4.6913) (17.4796) (0.8485) (4.3336) (4.1665)

Lagged HHI^2 -1,110.4260*** -1,081.2070* -1,402.0231*** -1,394.8592** -310.3817** -459.8112***
(156.2080) (589.6182) (184.4615) (700.8128) (142.7130) (161.0837)

Lagged Market Share -12.0701 -15.1453
(23.6434) (24.8670)

Lagged Industry Size -1.8946*** -1.9440 -0.9709***
(0.3977) (1.4847) (0.2800)

Observations 245,178 245,178 239,537 245,178 239,537 245,179 245,179 245,179
R-Sqr 0.0002 0.0004 0.0004 0.0006 0.0006 0.0000 0.0001 0.0002
Adjusted R-Sqr 0.0002 0.0004 0.0004 0.0006 0.0006 0.0000 0.0001 0.0002

Fund Net Alpha PC-Adjusted Fund Net Alpha
Panel BPanel A
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We use a VAR to evaluate the relation between industry size and market 

concentration. The results are shown in Table 3.4. The first column of each model 

specification shows how AFMI size is associated with HHI. The result of interest in this 

table is that AFMI size is significantly positively associated with lagged HHI (model 

specification 1) and is significantly negatively associated with the second order of 

lagged HHI (model specification 2). If we further include a time trend or year dummies 

into the model, we find consistent results (model specifications 3 and 4). Thus, AFMI 

size is increasing concave in market concentration. The positive relation between 

industry size and market concentration indicates that, consistent with our previous tests,  

higher market concentration levels, on average, for plausible parameter values, increase 

gross alphas more than they increase managers’ effort costs. Also, we find concavity of 

both industry size and fund net alphas in concentration levels, again consistent with our 

model’s theoretical prediction. As an aside, we also note that in the second column, 

AFMI size has little effect on HHI: the magnitude of the coefficient of the lagged AFMI 

size is almost zero. 

 

Table 3.4. Market Concentration and AFMI Size 

This table reports the results of our VAR model. Industry Size is the sum of funds’ net assets under 
management divided by the stock market capitalization in the same month. HHI is calculated as the sum 
of the squares of each fund’s market share, and HHI^2 is the square of HHI. Time Trend is set to be one 
for January 1984 and to increase by one each month. Robust standard errors are used and presented in 
parentheses. The symbols ***, **, and * represent the 1%, 5%, and 10% significant level in a two-tail t-
test, respectively. 

 

  

Industry Size HHI Industry Size HHI HHI^2 Industry Size HHI HHI^2 Industry Size HHI HHI^2
Lagged Industry Size 1.0033*** -0.0001*** 1.0052*** -0.0000*** 0.9952*** -0.0000 0.8772*** -0.0000*

(0.0014) (0.0000) (0.0035) (0.0000) (0.0063) (0.0000) (0.0293) (0.0000)
Lagged HHI 28.7108*** 0.5227*** 49.1392* 0.9419*** 75.3866** 0.9305*** 934.1272*** 0.5642***

(3.7047) (0.0234) (27.8090) (0.0084) (31.0463) (0.0093) (112.5959) (0.0231)
Lagged HHI^2 -136.0583* 0.9290*** -204.4277** 0.9177*** -2,460.1055*** 0.5593***

(76.1298) (0.0085) (84.6050) (0.0094) (300.2898) (0.0227)
Time Trend 0.0058* 0.0000 0.0000

(0.0033) (0.0000) (0.0000)
Constant -0.4798** 0.0145*** -0.9431 0.0010 -0.0002 -1.3195 -0.0000 -0.0006* 15.4874*** 0.0056 0.0000

(0.1997) (0.0013) (0.8024) (0.0007) (0.0002) (0.8414) (0.0011) (0.0004) (5.4163) (0.0034) (0.0011)
Year Dummies No No No No No No No No Yes Yes Yes

Observations 431 431 431 431 431 431 431 431 431 431 431
R-Sqr 0.999 0.663 0.999 0.406 0.156 0.999 0.423 0.180 0.999 0.664 0.518

(1) (2) (3) (4)
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Robustness 

In addition to reported tables, we have examined the robustness of our main 

empirical results in various cases. We analyze the sensitivity of our results to various 

measures of market concentration such as the NHHI and 5-Fund Index. We find 

consistent results. We also analyze the sensitivity of the results in Table 3.2 and Table 

3.3 by using fund fixed-effect regressions instead of the RD method. Most of the results 

are consistent, except when regressing the PC-adjusted fund net alpha on market 

concentration measures; we find that the significance of market concentration measure 

is reduced. Furthermore, we analyze whether our results are driven by small funds. We 

redo our main analyses using observations after restricting our sample to funds with a 

net asset value above $15 million in any month of our sample period. Again, we find 

consistent results. 

To test whether our main results are stable across sub-samples, we redo our 

analyses in Table 3.3 for three sub-periods. We find a significantly positive relation 

between fund net alphas and lagged HHI in all three sub-periods. 

3.5. Conclusion 

In this chapter, we empirically study the implications of our model developed in 

the last chapter. We use Morningstar’s U.S. active equity mutual fund data. First, we 

find that on average, fund net alphas are negatively associated with fund size and AFMI 

size, confirming decreasing returns to scale at both fund and industry levels. More 

importantly, we also find that, on average, both fund net alphas and AFMI size are 

increasing concave with market concentration. 

Our findings have policy implications for the U.S. AFMI. Under the current, 

empirically identified, tradeoff between changes in managerial productivity and in 

effort costs due to changes in the AFMI concentration level, increases in concentration 

levels are likely to increase fund net alphas, AFMI size, and AFMI’s direct benefits of 

net alpha production. These implications support the efficiency of the prevailing real-

world AFMI structure of competing fund families, which is more concentrated than that 

of competing individual funds. 

In the next chapter, we extend our study under an international context, and 

analyze how a foreign AFMI’s market concentration as well as the local one, affects the 

local AFMI.   
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 Chapter 4:  A Model of the International Active Fund Management 

Industry, Theory and Empirical Tests 

4.1. Introduction 

Recent studies (see, for example, Pastor and Stambaugh (PS) (2012)) and the 

previous chapters of this thesis have shown that competition in the active fund 

management industry (AFMI) affects funds’ performance, size, fees, and other relevant 

characteristics. Here, we pose questions under an international context:  how, and by 

which mechanism, does a foreign fund market’s competition (concentration) level affect 

a local fund market’s characteristics, such as, performance, size, and fees. To answer, 

we introduce a model of international active fund management industries (IAFMI) 

equilibria where performance, size, fees, and managerial efforts are endogenously 

determined under a continuum of exogenous local and foreign market concentration 

levels. To fit empirical concentration measures, we then specialize the model to one 

where concentration levels are endogenously determined. 

For simplicity, we consider a two-country international model. In each country, 

there is an active fund management industry with competing fund managers, who invest 

their portfolios in both local and foreign stocks, and with infinitely many investors who 

are mean-variance risk-averse and who allocate their wealth across a passive 

international benchmark portfolio (which includes both domestic and foreign stocks) 

and local active funds. We deem this framework realistic because, in reality, due to 

transaction costs, investors prefer local funds to foreign funds, whereas fund managers, 

facing lower transaction costs, choose securities across countries. As in Chapter 2, we 

assume decreasing returns to scale in producing gross alphas at fund and industry levels 

(i.e., the larger the fund size or industry size, the more difficult it is for managers to 

produce gross alphas). 

Our model allows fund managers, competing in net alpha productions, to spend 

two types of efforts:  exploring investment opportunities in the local stock market and 

exploring investment opportunities in the foreign stock market. Following Chapter 2, 

we expect gross alpha production and costs of managerial efforts to depend on 

concentration levels. In particular, we expect that a higher local AFMI market 

concentration implies more unexplored investment opportunities in the local stock 

market, making effort spent in the local stock market more productive; at the same time, 
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it allows local fund managers to ask for higher compensation for effort spent in both the 

local and the foreign stock markets, increasing foreign managers’ reservation prices of 

efforts spent in both stock markets, and thus increasing effort costs. Moreover, although 

higher local AFMI market concentration does not directly affect the productivity of 

effort spent in the foreign stock market, in equilibrium, it attracts managerial efforts to 

the local stock market, which has more unexplored investment opportunities.  As a 

result, it leaves more unexplored opportunities in the foreign stock market, making 

effort spent in the foreign stock market more productive. Similarly, higher foreign 

AFMI market concentration implies more unexplored investment opportunities in the 

foreign stock market, making effort spent in the foreign stock market more productive. 

At the same time, it allows foreign fund managers to ask for higher compensation for 

efforts, increasing local managers’ reservation prices of efforts and making efforts spent 

in both the local and the foreign stock markets more costly. Although higher foreign 

AFMI market concentration does not directly affect the productivity of effort spent in 

the local stock market, in equilibrium, it attracts managerial efforts to the foreign stock 

market which has more unexplored investment opportunities. Thus it leaves more 

unexplored opportunities in the local stock market, making effort spent in the local 

stock market more productive. Different from Chapter 2, our two-country international 

model allows us to incorporate the effects of both local and foreign AFMI market 

concentration levels on market equilibria. 

As in Chapter 2, we set the number of funds in both the local and the foreign 

AFMI markets, and define a country’s AFMI size as the ratio of its assets under active 

fund management to its total wealth. We also call the improvements in gross alpha 

production due to efforts minus the costs of these efforts, as AFMI’s direct benefits. We 

show that, in equilibrium, if and only if higher local AFMI market concentration exerts 

stronger (weaker) effects on gross alpha production due to efforts spent in the local and 

the foreign stock markets than on costs of these two types of efforts, i.e., the sum of 

changes in direct benefits of these two types of efforts is positive (negative), then it 

induces higher (lower) local AFMI fund expected net alphas and AFMI size. Similarly, 

in equilibrium, if and only if higher foreign AFMI market concentration exerts stronger 

(weaker) effects on gross alpha production of these two types of efforts than on costs of 

them, i.e., the sum of changes in direct benefits of these two types of efforts is positive 
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(negative), it induces higher (lower) local AFMI fund expected net alphas and AFMI 

size. 

Besides the first-order relation between AFMI market concentrations and AFMI 

fund expected net alphas, and between AFMI market concentrations and AFMI size, we, 

also, provide their second-order relations. We show that in equilibrium, if local fund 

expected net alphas are concave in local (foreign) AFMI market concentration, then the 

sum of changes in direct benefits of these two types of efforts is concave in local 

(foreign) AFMI market concentration. Consequently, equilibrium local AFMI size is 

also concave in local (foreign) AFMI market concentration. On the other hand, if 

equilibrium local AFMI size is convex in local (foreign) AFMI market concentration, 

then the sum of changes in direct benefits is convex in local (foreign) AFMI market 

concentration and, consequently, local fund expected net alphas are convex in local 

(foreign) AFMI market concentration. 

We specialize our model to allow endogenous concentration levels. We show 

that in equilibrium, although the relation between local AFMI market concentration and 

local fund expected net alphas, and the relation between local AFMI market 

concentration and local AFMI size are more complex, we still conclude that local AFMI 

fund expected net alphas and AFMI size, move in the same direction with foreign 

AFMI market concentration. We believe that this endogenous concentration framework 

befits empirical concentration measures, which measures the relative fund size 

distribution in an industry with a given number of funds. 

Using the Normalized-Herfindahl-Hirschman index (NHHI) and other indices as 

concentration measures, we study our model empirically. We study 30 active equity 

mutual fund markets, and analyze how these markets’ fund net alphas and AFMI size 

change with the local and the U.S. equity AFMI market concentration. We find that, 17 

(5) markets’ fund net alphas, on average, are significantly negatively (positively) 

associated with the U.S. NHHI. while 9 (13) markets’ fund net alphas, on average, are 

significantly negatively (positively) associated with the local NHHI. Also, we find that 

only 9 (2) markets’ AFMI size, on average, are significantly negatively (positively) 

associated with the U.S. NHHI, while only 7 (7) markets’ AFMI size, on average, are 

significantly negatively (positively) associated with the local NHHI. More importantly, 

we find that 15 (5) markets’ fund net alphas and AFMI size are both, on average, 

negatively (positively) associated with the U.S. NHHI; among them, 7 (1) markets’ 
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fund net alphas and AFMI size are both significantly negatively (positively) associated 

with the U.S. NHHI. When pooling all the markets’ data together, we find that, on 

average, fund net alphas and AFMI size, are both significantly negatively associated 

with the U.S. NHHI, but are insignificantly associated with the local NHHI. The fact 

that global fund markets’ fund net alphas and AFMI size tend to move in the same 

direction with the U.S. AFMI concentration is consistent with our theoretical 

implications. 

We use Pastor, Stambaugh and Taylor’s (2015) (PST) recursive-demeaning 

estimator to address endogeneity and omitted-variable-related issues when studying the 

AFMI market concentrations-net alpha relation, and we use vector auto-regression 

(VAR) techniques to account for simultaneity in determination of local AFMI size and 

local AFMI market concentration when studying the AFMI market concentrations-

AFMI size relation. We control for survival bias by using Morningstar Direct’s global 

database, which contains both surviving and terminated funds. Our empirical results are 

robust to the use of alternative methods and measures. 

Our findings provide relevant implications for fund managers, investors, and 

regulators.  The current low and probably decreasing market concentration in the U.S. 

AFMI, given the trade-off of higher U.S. AFMI market concentration is not changed, 

would benefit (harm) the global AFMIs whose fund net alphas and AFMI size are, on 

average, negatively (positively) associated with the U.S. AFMI concentration. Our 

results show that a large proportion of the global AFMIs in our sample would benefit 

from that. 

Current international studies report how a fund market’s size, managerial fees, 

fund performance, flow-performance relationship, and portfolio choice differ with the 

fund market’s fundamental characteristics, such as regulation, transaction costs, stock 

market developments, and sophistication of investors. (See, for example, Khorana, 

Servaes and Tufano (2005), Khorana, Servaes and Tufano (2008), Ferreira, Keswani, 

Miguel and Ramos (2012a) and (2012b), and Chan, Covrig and Ng (2005).) Our paper 

complements the literature by showing that a foreign fund market’s characteristics, such 

as market concentration, may also affect the local fund market. 

Some international studies analyze how investment activities in one country 

facilitate the transmission of shocks to other countries and influence the portfolio 

returns there (See for example, Jotikasthira, Lundblad and Ramadorai (2012) and 
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Goldstein and Pauzner (2004)). Other international studies analyze how the regulation 

in one country affects funds’ investments in other countries (see for example, Defond, 

Hu, Hung and Li (2011) and Yu and Wahid (2014)). Similar to these papers’ rationale, 

our paper studies how foreign AFMI market concentration, which is affected by 

investment activities and regulations there, affects funds’ returns in the local market. 

However, we provide another mechanism to analyze cross-market relations. 

Section 4.2 develops the theoretical model, Section 4.3 presents the empirical 

methods and results, and Section 4.4 concludes. 

4.2. Theoretical Framework 

We begin by developing a theoretical framework for modelling the influence of 

local and foreign AFMI market concentration on local fund managers’ efforts, fees, 

fund performance, fund industry size, and direct benefits of managerial efforts. For 

simplicity, we consider a two-country international model. Each country has an active 

fund industry with competing fund managers who invest their portfolios in stocks, and 

has infinitely many investors who are mean-variance risk-averse and who choose to 

allocate their wealth across a passive benchmark portfolio and active funds. 

Let us consider three cases of how these two countries connect with each other. 

In Case One, investors in each country can invest in funds in both countries, and 

managers in each country can invest in stocks in both countries. In this case, these two 

countries’ fund industries, in practice, can be regarded as one fund market, and we can 

use the framework in the previous chapters to study it. In Case Two, investors in each 

country can only invest in domestic funds, and fund managers can only invest in 

domestic stocks. In this case, these two countries’ fund industries are, practically, 

treated as two independent fund markets, and we can use the framework in the previous 

chapters to study each market. In Case Three, due to transaction costs, investors in each 

country can only invest in domestic funds, whereas fund managers who face low 

transaction costs can invest in stocks in both countries. In this case, fund managers are 

competing for investments in the local country, but each country’s AFMI market 

concentration level affects the gross alpha production and effort cost in both countries. 

This case is our paper’s main focus, and we develop a model to study it. Figure 4.1 

illustrates all three cases.  
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Figure 4.1. Three Cases of a Two-Country Model 

This figure shows the three cases we consider in a two-country model. In Case One, investors can invest 
in funds of both countries, and managers can invest in stocks of both countries. In this case, these two 
countries’ fund markets, in practice, can be regarded as one fund market. In Case Two, investors can only 
invest in local funds, and fund managers can only invest in local stocks. In this case, these two countries’ 
fund markets are practically two independent fund markets. In Case Three, investors can only invest in 
local funds, whereas fund managers can invest in stocks of both countries. In this case, each country’s 
fund managers are competing for local investments, and each country’s AFMI market concentration level 
affects the gross alpha production and effort cost in both countries’ AFMIs. 

Case One 

 
Case Two 

 
Case Three 
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Setting 

Our model is a one-period model, containing two countries, Country 1 and 

Country 2, and we use superscript  𝑘𝑘, 𝑘𝑘 = 1,2, to denote the parameters in each country, 

respectively. For simplicity and without loss of generality, we assume the exchange rate 

of these two countries’ currencies is one. In Country  𝑘𝑘, there are two types of agents:  

𝑀𝑀𝑘𝑘 (𝑀𝑀𝑘𝑘 > 1) active fund managers and  𝑁𝑁𝑘𝑘 (𝑁𝑁𝑘𝑘 → ∞) investors. Fund managers can 

invest in stocks in both countries. They are risk-neutral, and they choose proportional 

management fees and efforts to maximize fund profits. On the other hand, investors are 

mean-variance risk-averse, and choose their allocation weights on a passive 

international benchmark portfolio (which includes both domestic and foreign stocks) 

and local funds to maximize their portfolio Sharpe ratios. Each investor is small, and 

each investor’s investment cannot affect fund sizes. 

Due to the symmetry of Country 1 and 2, we can focus on Country 1 only. 

Fund Managers’ Problem 

Manager  𝑖𝑖  in Country 1 maximizes his or her economic profit 

 max
𝑒𝑒𝑖𝑖
11,𝑒𝑒𝑖𝑖

12,𝑓𝑓𝑖𝑖
1
𝑠𝑠𝑖𝑖1[𝑓𝑓𝑖𝑖1 − 𝐶𝐶𝑖𝑖1(𝑒𝑒𝑖𝑖11, 𝑒𝑒𝑖𝑖12;  𝑠𝑠𝑖𝑖1,𝐻𝐻1,𝐻𝐻2)] (4.1) 

with the constraints 

 𝑓𝑓𝑖𝑖1 − 𝐶𝐶𝑖𝑖1(𝑒𝑒𝑖𝑖11, 𝑒𝑒𝑖𝑖12; 𝑠𝑠𝑖𝑖1,𝐻𝐻1,𝐻𝐻2) ≥ 0, (4.2) 

 𝑒𝑒𝑖𝑖11 ≥ 0, (4.3) 

 𝑒𝑒𝑖𝑖12 ≥ 0, (4.4) 

 𝑓𝑓𝑖𝑖1 ≥ 0. (4.5) 

 

Here  𝑠𝑠𝑖𝑖1, 𝑓𝑓𝑖𝑖1, 𝑒𝑒𝑖𝑖11, 𝑒𝑒𝑖𝑖12, and  𝐶𝐶𝑖𝑖1(𝑒𝑒𝑖𝑖11, 𝑒𝑒𝑖𝑖12;  𝑠𝑠𝑖𝑖1,𝐻𝐻1,𝐻𝐻2)  represent manager  𝑖𝑖’s fund size, 

(nonnegative) proportional management fee, (nonnegative) proportional effort spent in 

Country 1, (nonnegative) proportional effort spent in Country 2, and average cost 

function, where  𝐻𝐻1  and  𝐻𝐻2  represent Country 1’s and Country 2’s AFMI market 

concentration measures, respectively. We define the domain of  𝐻𝐻1  and  𝐻𝐻2  as  [0, 1), 

where 0 represents the fully competitive market situation, and 1 represents the 

monopoly market situation. This domain implies that managers are competing in the 

market. Also, inequality (4.2) shows that manager  𝑖𝑖’s profit rate should be nonnegative 

in order to survive. 
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Here we assume that the marginal diversification benefits of investing in an 

additional fund are trivial, such that managers have to compete for investments over net 

alphas. Under competition, manager  𝑖𝑖  has to maximize his or her fund expected net 

alpha given fund size and market concentration levels. Thus, manager  𝑖𝑖’s problem can 

be transformed to 

 max
𝑒𝑒𝑖𝑖
11,𝑒𝑒𝑖𝑖

12,𝑓𝑓𝑖𝑖
1

E(𝛼𝛼𝑖𝑖1�𝐷𝐷) (4.6) 

subject to constraints (4.2), (4.3), (4.4), and (4.5). Proof. See the Appendix. 

The proof intuition is as follows. Under competition, funds that offer higher 

expected net alphas draw (all) investments. Thus, in equilibrium, funds offer similar 

expected net alphas. The possibility that other managers increase fund profits by 

improving expected net alpha and their fund sizes induces managers to maximize 

expected net alphas in order to “survive.” We note that this aspect of the equilibrium is 

similar to that in PS; but in addition to their result, we show that it holds also in the case 

of finite number of managers under Bertrand competition.39 

Manager  𝑖𝑖’s average cost function has the following form:40 

 𝐶𝐶𝑖𝑖1(𝑒𝑒𝑖𝑖11, 𝑒𝑒𝑖𝑖12;  𝑠𝑠𝑖𝑖1,𝐻𝐻1,𝐻𝐻2) = 𝑐𝑐01 + 𝑐𝑐1,𝑖𝑖
1 𝑠𝑠𝑖𝑖1 + 𝑐𝑐211(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) 

+𝑐𝑐212(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2), 
(4.7) 

where  𝑐𝑐01  and  𝑐𝑐1,𝑖𝑖
1   are constants and  𝑐𝑐211(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  𝑐𝑐212(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  are 

costs due to  𝑒𝑒𝑖𝑖11   and  𝑒𝑒𝑖𝑖12 , respectively. Each fund’s operation cost is positive, so  

𝑐𝑐01 > 0. Also, we assume decreasing returns to scale at fund level, so fund average cost 

increases with fund size, i.e., 𝑐𝑐1,𝑖𝑖
1 > 0. Following Chapter 2, here we also assume the 

fixed costs of operating a fund is zero to simplify the model and focus on the decreasing 

returns to scale effect. 𝑐𝑐211(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  𝑐𝑐212(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  have the following 

functional characteristics: 

• nonnegative, i.e., 𝑐𝑐211(0; 𝐻𝐻1,𝐻𝐻2) = 0 , 𝑐𝑐212(0; 𝐻𝐻1,𝐻𝐻2) = 0 , ∀ 𝐻𝐻1,𝐻𝐻2 , 

𝑐𝑐211(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0 , ∀  𝑒𝑒𝑖𝑖11 > 0,𝐻𝐻1,𝐻𝐻2 , and 𝑐𝑐212(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0 , ∀  𝑒𝑒𝑖𝑖12 >

0,𝐻𝐻1,𝐻𝐻2; 
                                                 
39 In our model, competition among managers is Bertrand Competition, where the “prices” offered by 
managers are fund expected net alphas. 
40 To simplify our model, we assume there is no interaction between efforts and size in the average cost 
function because it is unlikely that fund size affects managers’ per dollar efforts. We also assume that 
there is no interaction between concentration and size in the average cost function because it is unlikely 
that concentration affects managers’ average cost sensitivity to fund sizes. Nevertheless, even if these 
interacting effects exist, they tend to be small in comparison to the effect of other terms in the average 
cost function. 
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• increasing convex in effort, as we assume increasing marginal cost for each unit of 

effort, i.e., 𝑐𝑐2 𝑒𝑒𝑖𝑖
11

11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0,  𝑐𝑐2 𝑒𝑒𝑖𝑖
11,𝑒𝑒𝑖𝑖

11
11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0, ∀  𝑒𝑒𝑖𝑖11,𝐻𝐻1,𝐻𝐻2, 

𝑐𝑐2 𝑒𝑒𝑖𝑖
12

12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0,  𝑐𝑐2 𝑒𝑒𝑖𝑖
12,𝑒𝑒𝑖𝑖

12
12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0,  ∀  𝑒𝑒𝑖𝑖12,𝐻𝐻1,𝐻𝐻2; 

• increasing with  𝐻𝐻1, and positive cross partial derivatives with respect to effort and  

𝐻𝐻1 , because higher local market concentration facilitates manager  𝑖𝑖   to ask for 

higher compensation for efforts, increasing effort costs, i.e., 𝑐𝑐2 𝐻𝐻1
11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0,  

𝑐𝑐2 𝑒𝑒𝑖𝑖
11,𝐻𝐻1

11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0 ,  ∀  𝑒𝑒𝑖𝑖11 > 0,𝐻𝐻1,𝐻𝐻2 ,  𝑐𝑐2 𝐻𝐻1
12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0 ,  

𝑐𝑐2 𝑒𝑒𝑖𝑖
12,𝐻𝐻1

12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0,  ∀  𝑒𝑒𝑖𝑖12 > 0,𝐻𝐻1,𝐻𝐻2; 

• increasing with  𝐻𝐻2, and positive cross partial derivatives with respect to effort and  

𝐻𝐻2, because higher foreign market concentration facilitates managers in the foreign 

market to ask for higher compensation for efforts, increasing manager  𝑖𝑖 ’s 

reservation price of efforts, thus increasing effort costs, i.e., 𝑐𝑐2 𝐻𝐻2
11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0,  

𝑐𝑐2 𝑒𝑒𝑖𝑖
11,𝐻𝐻2

11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0 ,  ∀  𝑒𝑒𝑖𝑖11 > 0,𝐻𝐻1,𝐻𝐻2 ,  𝑐𝑐2 𝐻𝐻2
12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0 ,  

𝑐𝑐2 𝑒𝑒𝑖𝑖
12,𝐻𝐻2

12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0,  ∀  𝑒𝑒𝑖𝑖12 > 0,𝐻𝐻1,𝐻𝐻2; 

• no cross partial effects of two countries’ concentration on costs of efforts, i.e., 

𝑐𝑐2 𝐻𝐻1,𝐻𝐻2
11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) = 0 ,  ∀  𝑒𝑒𝑖𝑖11,𝐻𝐻1,𝐻𝐻2 ,  𝑐𝑐2 𝐻𝐻1,𝐻𝐻2

12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) = 0 ,  

∀  𝑒𝑒𝑖𝑖12,𝐻𝐻1,𝐻𝐻2. 

By spending efforts, manager 𝑖𝑖 improves his or her fund net alpha. Manager 𝑖𝑖’s 

net alpha has the following form: 

 𝛼𝛼𝑖𝑖1 = 𝑎𝑎1 − 𝑏𝑏1 𝑆𝑆1

𝑊𝑊1 + 𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) + 𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) − 𝑓𝑓𝑖𝑖1, (4.8) 

where  𝑎𝑎1  and  𝑏𝑏1  are positive constants, with conditional mean and variance 

E �𝑎𝑎
1

𝑏𝑏1
�𝐷𝐷� ≜ �𝑎𝑎

1�
𝑏𝑏1�
�,    Var �𝑎𝑎

1

𝑏𝑏1
�𝐷𝐷� ≜ �

𝜎𝜎𝑎𝑎1
2 𝜎𝜎𝑎𝑎1𝑏𝑏1

𝜎𝜎𝑎𝑎1𝑏𝑏1 𝜎𝜎𝑏𝑏1
2 �, 

where  𝐷𝐷  is the information set of investors. For simplicity, we assume  𝜎𝜎𝑎𝑎1𝑏𝑏1 = 0. 𝑆𝑆1  

and  𝑊𝑊1   are the fund industry size and total wealth (controlled by investors), 

respectively, in Country 1. We define  𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  as the 

impact of  𝑒𝑒𝑖𝑖11  and  𝑒𝑒𝑖𝑖12, respectively, on fund  𝑖𝑖’s  gross alpha. 𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  

𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  have the following functional characteristics: 
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• nonnegative, i.e., 𝐴𝐴11(0; 𝐻𝐻1,𝐻𝐻2) = 0 ,  𝐴𝐴12(0; 𝐻𝐻1,𝐻𝐻2) = 0 ,  ∀  𝐻𝐻1,𝐻𝐻2 ,  

𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0 ,  ∀  𝑒𝑒𝑖𝑖11 > 0,𝐻𝐻1,𝐻𝐻2 ,  𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0 ,  ∀  𝑒𝑒𝑖𝑖12 >

0,𝐻𝐻1,𝐻𝐻2; 

• increasing concave in effort, as we assume marginal productivity of efforts is 

decreasing, i.e., 𝐴𝐴𝑒𝑒𝑖𝑖11
11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0,  𝐴𝐴𝑒𝑒𝑖𝑖11,𝑒𝑒𝑖𝑖

11
11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) < 0, ∀  𝑒𝑒𝑖𝑖11,𝐻𝐻1,𝐻𝐻2 

𝐴𝐴𝑒𝑒𝑖𝑖12
12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0,  𝐴𝐴𝑒𝑒𝑖𝑖12,𝑒𝑒𝑖𝑖

12
12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) < 0,  ∀  𝑒𝑒𝑖𝑖12,𝐻𝐻1,𝐻𝐻2; 

• 𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  increases with  𝐻𝐻1 and has positive cross partial derivatives with 

respect to  𝐻𝐻1   and  𝑒𝑒𝑖𝑖11 , as higher  𝐻𝐻1   implies more unexplored investment 

opportunities and higher efficiency in using fund industry resources in Country 1, 

i.e., 𝐴𝐴𝐻𝐻1
11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0,  𝐴𝐴𝑒𝑒𝑖𝑖11,𝐻𝐻1

11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) > 0,  ∀  𝑒𝑒𝑖𝑖11 > 0,𝐻𝐻1,𝐻𝐻2; 

• 𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  is unaffected by  𝐻𝐻2, but at equilibrium value  𝑒𝑒𝑖𝑖11
∗, it increases 

with  𝐻𝐻2 because a higher  𝐻𝐻2  implies more unexplored opportunities in Country 2, 

attracting managerial efforts, leaving more unexplored opportunities in Country 1 in 

equilibrium (substitution effect) and improving effort productivity, i.e., 

𝐴𝐴𝐻𝐻2
11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) = 0 ,  ∀  𝑒𝑒𝑖𝑖11 ≠ 𝑒𝑒𝑖𝑖11

∗,𝐻𝐻1,𝐻𝐻2 ,  𝐴𝐴𝐻𝐻2
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� > 0 ,  

𝐴𝐴𝑒𝑒𝑖𝑖11,𝐻𝐻2
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� > 0,  ∀  𝑒𝑒𝑖𝑖11
∗ > 0,𝐻𝐻1,𝐻𝐻2; 

•  𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  increases with  𝐻𝐻2 and has positive cross partial derivatives with 

respect to  𝐻𝐻2   and  𝑒𝑒𝑖𝑖12 , as higher  𝐻𝐻2   implies more unexplored investment 

opportunities in Country 2, i.e., 𝐴𝐴𝐻𝐻2
12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0,  𝐴𝐴𝑒𝑒𝑖𝑖12,𝐻𝐻2

12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) > 0,  

∀  𝑒𝑒𝑖𝑖12 > 0,𝐻𝐻1,𝐻𝐻2; 

• 𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  is unaffected by  𝐻𝐻1, but at equilibrium value  𝑒𝑒𝑖𝑖12
∗, it increases 

with  𝐻𝐻1 because a higher  𝐻𝐻1  implies more unexplored opportunities in Country 1, 

attracting managerial efforts, leaving more unexplored opportunities in Country 2 in 

equilibrium (substitution effect) and improving effort productivity, i.e., 

𝐴𝐴𝐻𝐻1
12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) = 0 ,  ∀  𝑒𝑒𝑖𝑖12 ≠ 𝑒𝑒𝑖𝑖12

∗,𝐻𝐻1,𝐻𝐻2 ,  𝐴𝐴𝐻𝐻1
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� > 0 ,  

𝐴𝐴𝑒𝑒𝑖𝑖12,𝐻𝐻2
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� > 0,  ∀  𝑒𝑒𝑖𝑖12
∗ > 0,𝐻𝐻1,𝐻𝐻2; 

• No cross partial effects of two markets’ concentration on effort impacts, i.e., 

𝐴𝐴𝐻𝐻1,𝐻𝐻2
11 (𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) = 0,  ∀  𝑒𝑒𝑖𝑖11,𝐻𝐻1,𝐻𝐻2,  𝐴𝐴𝐻𝐻1,𝐻𝐻2

12 (𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) = 0,  ∀  𝑒𝑒𝑖𝑖12,𝐻𝐻1,𝐻𝐻2. 
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Thus, manager  𝑖𝑖’s fund expected net alpha is41 

 
E(𝛼𝛼𝑖𝑖1�𝐷𝐷) = 𝑎𝑎1� − 𝑏𝑏1�

𝑆𝑆1

𝑊𝑊1 + 𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) + 𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)

− 𝑓𝑓𝑖𝑖1. 
(4.9) 

Define the direct benefits of  𝑒𝑒𝑖𝑖11  and  𝑒𝑒𝑖𝑖12  as follows: 

 𝐵𝐵11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) ≜ 𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) − 𝑐𝑐211(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2), (4.10) 

 𝐵𝐵12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) ≜ 𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) − 𝑐𝑐212(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2). (4.11) 

These two terms are important for social planners and policy makers, as they capture 

the direct benefits of  𝑒𝑒𝑖𝑖11  and  𝑒𝑒𝑖𝑖12, respectively,  in terms of increase in gross alpha 

production minus the corresponding effort costs. 

Investors’ Problem 

There are infinitely many mean-variance risk-averse investors in Country 1. 

Define the  𝑀𝑀1   funds’ returns in excess of the risk-free rate earned by investor 𝑗𝑗 , 

𝑗𝑗 = 1,2 …, as  𝐫𝐫𝐅𝐅𝟏𝟏, a  𝑀𝑀1 × 1  vector with elements  𝑟𝑟𝐹𝐹,𝑖𝑖
1 , 𝑖𝑖 = 1, … ,𝑀𝑀1. Returns follow a 

regression model: 

 𝐫𝐫𝐅𝐅𝟏𝟏 = 𝛂𝛂𝟏𝟏 + 𝛃𝛃𝟏𝟏𝑟𝑟𝑝𝑝 + 𝑥𝑥1𝛊𝛊𝐌𝐌 + 𝛆𝛆𝟏𝟏, (4.12) 

where  𝛂𝛂𝟏𝟏  is a  𝑀𝑀1 × 1  vector of fund net alphas in Country 1, with each element as  

𝛼𝛼𝑖𝑖1, 𝑖𝑖 = 1, … ,𝑀𝑀1. 𝛃𝛃𝟏𝟏  is the beta loading of each fund to an international benchmark 

portfolio. To simplify the framework, we assume each fund has beta loading equal to 

one to the international benchmark portfolio42 so that  𝛃𝛃𝟏𝟏  is the same as the  𝑀𝑀1 × 1  

unit vector  𝛊𝛊𝐌𝐌𝟏𝟏. 𝑟𝑟𝑝𝑝  is the international benchmark’s return in excess of the risk-free rate, 

with mean  𝜇𝜇𝑝𝑝, 𝜇𝜇𝑝𝑝 > 0  and variance  𝜎𝜎𝑝𝑝2, 𝜎𝜎𝑝𝑝2 > 0. 𝑥𝑥1  is the common risk factor of fund 

returns in Country 1, with mean 0 and variance  𝜎𝜎𝑥𝑥2, 𝜎𝜎𝑥𝑥2 > 0. 𝛆𝛆𝟏𝟏  is a  𝑀𝑀1 × 1  vector of 

fund idiosyncratic risk factors in Country 1, and each of its elements is  𝜀𝜀𝑖𝑖1 , 𝑖𝑖 =

                                                 
41 Investors observe the passive benchmark and the AFMI funds’ returns. The difference between these 
returns comes from three components:  net alphas, the common risk factor, and idiosyncratic risks. As the 
distributions of the common risk and idiosyncratic risk are common knowledge, investors know the 
likelihood function of the net alphas. Given prior beliefs of net alphas, they form posteriors and update 
their beliefs. In our one-period model, there is no dynamic Bayesian updating, but we suggest that 
investors reached a fixed-point equilibrium. Further, because investors observe fees, fund sizes, and 
industry size, they can also infer  𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2). For simplicity and brevity, 
we depress the notation of  𝐴̂𝐴11(𝑒𝑒𝑖𝑖11; 𝐻𝐻1,𝐻𝐻2)  and  𝐴̂𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  in favor of  𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  
𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2),  as these two functions are deterministic. 
42 This is a common assumption, as active funds usually have diversified portfolios. See the discussion in 
Pastor and Stambaugh (2012). 
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1, … ,𝑀𝑀1,  which has mean 0 and variance  𝜎𝜎𝜀𝜀2, 𝜎𝜎𝜀𝜀2 > 0. The parameters  𝜇𝜇𝑝𝑝, 𝜎𝜎𝑝𝑝2, 𝜎𝜎𝑥𝑥2, and  

𝜎𝜎𝜀𝜀2  are known to both investors and managers. 

Investor  𝑗𝑗’s portfolio return (in excess of risk-free rate) is 

 𝑟𝑟𝑗𝑗1 = 𝛅𝛅𝐣𝐣𝟏𝟏
𝐓𝐓𝐫𝐫𝐅𝐅𝟏𝟏 + (1 − 𝛅𝛅𝐣𝐣𝟏𝟏

𝐓𝐓𝛊𝛊𝐌𝐌𝟏𝟏)𝑟𝑟𝑝𝑝 = 𝑟𝑟𝑝𝑝 + 𝛅𝛅𝐣𝐣𝟏𝟏
𝐓𝐓(𝛂𝛂𝟏𝟏 + 𝑥𝑥1𝛊𝛊𝐌𝐌𝟏𝟏 + 𝛆𝛆𝟏𝟏), (4.13) 

where  𝛅𝛅𝐣𝐣𝟏𝟏  is a  𝑀𝑀1 × 1  vector of weights that investor  𝑗𝑗  allocates to the  𝑀𝑀1  funds, 

with each element as  𝛿𝛿𝑗𝑗,𝑖𝑖
1 . Investor  𝑗𝑗’s problem is 

 
max
𝛅𝛅𝐣𝐣
𝟏𝟏

E�𝑟𝑟𝑗𝑗1�𝐷𝐷�

�Var�𝑟𝑟𝑗𝑗1�𝐷𝐷�
 (4.14) 

subject to 

 𝛿𝛿𝑗𝑗,𝑖𝑖
1 ≥ 0, ∀𝑖𝑖, (4.15) 

 𝛅𝛅𝐣𝐣𝟏𝟏
𝐓𝐓𝛊𝛊𝐌𝐌𝟏𝟏 ≤ 1. (4.16) 

Constraints (4.15) and (4.16) tell us that investors cannot short sell funds, or short sell 

the international benchmark portfolio. To simplify our analysis, we assume that in 

equilibrium, all investors have the same weights allocated to funds (i.e., an symmetric 

equilibrium), such that  

 𝛅𝛅𝐣𝐣𝟏𝟏
∗ = 𝛅𝛅𝐤𝐤𝟏𝟏

∗, ∀𝑗𝑗 ≠ 𝑘𝑘. (4.17) 

In this case, in equilibrium, the fund industry size in Country 1 is  

 𝑆𝑆1

𝑊𝑊1

∗
= 𝛅𝛅𝐣𝐣𝟏𝟏

∗𝐓𝐓𝛊𝛊𝐌𝐌𝟏𝟏 , ∀𝑗𝑗. (4.18) 

Proposition I1, Unique Nash Equilibrium 

i. There exists a unique Nash equilibrium, �𝐞𝐞𝟏𝟏𝟏𝟏∗, 𝐞𝐞𝟏𝟏𝟏𝟏∗, 𝐟𝐟𝟏𝟏∗,𝛅𝛅𝟏𝟏∗�, where 

𝐞𝐞𝟏𝟏𝟏𝟏∗   is a  𝑀𝑀1 × 1  vector which aggregates Country 1 individual managers’ 

optimal effort allocated to Country 1’s stock market,  𝑒𝑒𝑖𝑖11
∗; 

𝐞𝐞𝟏𝟏𝟏𝟏∗   is a  𝑀𝑀1 × 1  vector which aggregates Country 1 individual managers’ 

optimal effort allocated to Country 2’s stock market,  𝑒𝑒𝑖𝑖12
∗; 

𝐟𝐟𝟏𝟏∗   is a  𝑀𝑀1 × 1   vector which aggregates Country 1 individual managers’ 

optimal fee,  𝑓𝑓𝑖𝑖1
∗; 

𝛅𝛅𝟏𝟏∗  is a  𝑀𝑀1 × 𝑁𝑁1   vector which aggregates Country 1 individual investors’ 

wealth weights allocations to funds,  𝛅𝛅𝐣𝐣𝟏𝟏
∗. 
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ii. In this equilibrium, managers produce the same expected net alpha (thus the same 

Sharpe ratio) that drives their economic profits to zero, by charging only break-even 

fees, and investors allocate the same wealth proportions to each of the funds. 

The intuition of the equilibrium is the same as that offered by Chapter 2. As 

there are no diversification benefits across funds, managers providing higher expected 

net alphas dominate, attracting investments. Consequently, their fund costs increase 

inducing higher (breakeven) fees and lowering expected net alphas. Given other 

managers’ net alphas, if a fund manager cannot produce the AFMI highest expected net 

alpha, even for an infinitesimal fund size, investments continue to shift out of his or her 

fund, lowering the fund costs and allowing the manager to charge a lower fee to 

improve net alpha. Thus, in equilibrium, managers will choose efforts and fees to 

maximize fund net alphas, and the allocation of investments, or fund sizes, sets 

expected net alphas to be equal across funds. In addition, as funds have the same 

expected net alphas, they have the same expected returns. The source of fund returns’ 

variance is the same across funds, so the fund return variance is the same across funds. 

Therefore, all managers offer the same competitive Sharpe ratio. 

Proposition I2, Levels of Equilibrium Optimal Efforts, Fees and Fund Market 

Share 

For  𝑖𝑖, 𝑖𝑖 = 1, … ,𝑀𝑀1  and  𝑗𝑗, 𝑗𝑗 = 1, … ,𝑀𝑀1, with  𝑖𝑖 ≠ 𝑗𝑗 

i. 𝑒𝑒𝑖𝑖11
∗ = 𝑒𝑒𝑗𝑗11

∗ , 𝑒𝑒𝑖𝑖12
∗ = 𝑒𝑒𝑗𝑗12

∗ , and  𝑓𝑓𝑖𝑖1
∗ = 𝑓𝑓𝑗𝑗1

∗ , ∀𝑖𝑖, 𝑗𝑗  (equilibrium optimal efforts and 

fees are the same across funds). 

ii. Therefore,  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� = 𝐵𝐵11�𝑒𝑒𝑗𝑗11

∗;  𝐻𝐻1,𝐻𝐻2�   and  𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� =

𝐵𝐵12�𝑒𝑒𝑗𝑗12
∗;  𝐻𝐻1,𝐻𝐻2�, ∀𝑖𝑖, 𝑗𝑗  (equilibrium direct benefits of efforts are the same across 

funds). 

iii. Fund sizes relate as 𝑠𝑠𝑖𝑖1
∗/𝑠𝑠𝑗𝑗1

∗ = 𝑐𝑐1,𝑗𝑗
1 /𝑐𝑐1,𝑖𝑖

1 ,  ∀𝑖𝑖, 𝑗𝑗 , where  𝑠𝑠𝑖𝑖1
∗   is the fund size in 

equilibrium for fund  𝑖𝑖, ∀𝑖𝑖. 

iv. AFMI equilibrium market shares, (𝑠𝑠𝑖𝑖1/𝑆𝑆1)∗’s are, (𝑠𝑠𝑖𝑖1/𝑆𝑆1)∗ = �𝑐𝑐1,𝑖𝑖
1 ∑ �𝑐𝑐1,𝑖𝑖

1 �−1𝑀𝑀1
𝑗𝑗=1 �

−1
, 

∀𝑖𝑖. 

The intuitions of Proposition I2 is similar to those of the Proposition 2 in 

Chapter 2. Because the functional form of  𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  𝑐𝑐211(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  

are the same across funds, based on the first-order condition  𝐴𝐴𝑒𝑒𝑖𝑖11
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� −



67 
 

𝑐𝑐2 𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� = 0, 𝑒𝑒𝑖𝑖11

∗’s  are the same across funds thus  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�’s  

are the same across funds. Similarly, 𝑒𝑒𝑖𝑖12
∗’s  and  𝐵𝐵12�𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�’s  are the same 

across funds. In equilibrium, as fund expected net alphas are the same and efforts are 

the same, 𝑓𝑓𝑖𝑖1
∗’s are the same across funds. Consequently, we have  𝑐𝑐1,𝑖𝑖

1 𝑠𝑠𝑖𝑖1
∗’s  the same 

across funds, and the other results follow. This proposition shows that managers’ 

different costs, 𝑐𝑐1,𝑖𝑖
1 ’s, in producing gross alphas, induce different fund sizes in 

equilibrium. In particular, if fund  𝑖𝑖’s  decreasing return-to-scale effect at the fund level 

is stronger (i.e., 𝑐𝑐1,𝑖𝑖
1   is larger); then in equilibrium, it ends up with smaller size. Also, 

funds’ market shares are deterministic functions of  𝑐𝑐1,𝑖𝑖
1 ’s  and are, thus, unaffected by 

the AFMI weight in total wealth  (𝑠𝑠𝑖𝑖1/𝑆𝑆1)∗ . In other words, in equilibrium, how 

investors allocate weights across funds is unaffected by how they weight the whole fund 

industry relative to the passive international benchmark. 

Proposition I3, Equilibrium Optimal Efforts, Fees, Direct Benefits of Efforts, and 

Concentrations 

For manager  𝑖𝑖, 𝑖𝑖 = 1, … ,𝑀𝑀1, 

i. if the initial effort input allocated to Country 1 (2) generates non-positive direct 

benefit, i.e., 𝐵𝐵𝑒𝑒𝑖𝑖11
11 (0; 𝐻𝐻1,𝐻𝐻2) ≤ 0   (𝐵𝐵𝑒𝑒𝑖𝑖12

12 (0; 𝐻𝐻1,𝐻𝐻2) ≤ 0 ), the equilibrium effort 

level 𝑒𝑒𝑖𝑖11
∗ = 0  (𝑒𝑒𝑖𝑖12

∗ = 0). 

ii. If the initial effort input allocated to Country 1 (2) generates positive direct benefit, 

i.e., 𝐵𝐵𝑒𝑒𝑖𝑖11
11 (0; 𝐻𝐻1,𝐻𝐻2) > 0   ( 𝐵𝐵𝑒𝑒𝑖𝑖12

12 (0; 𝐻𝐻1,𝐻𝐻2) > 0 ), the equilibrium effort level 

𝑒𝑒𝑖𝑖11
∗ > 0  (𝑒𝑒𝑖𝑖12

∗ > 0). Also, the equilibrium optimal efforts and fees satisfies the 

following: 

a. 𝐴𝐴𝑒𝑒𝑖𝑖11
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� = 𝐵𝐵𝑒𝑒𝑖𝑖11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� = 0   (impact 

of marginal effort spent in Country 1’s stock market is equal to marginal cost of 

this effort, thus marginal direct benefit of  𝑒𝑒𝑖𝑖11
∗  is zero). 

𝐴𝐴𝑒𝑒𝑖𝑖12
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖
12

12 �𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� = 𝐵𝐵𝑒𝑒𝑖𝑖12

12 �𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� = 0   (impact 

of marginal effort spent in Country 2’s stock market is equal to marginal cost of 

this effort, thus marginal direct benefit of  𝑒𝑒𝑖𝑖12
∗  is zero). 

b. 𝑑𝑑𝑒𝑒𝑖𝑖11
∗/𝑑𝑑𝐻𝐻1 ≥ 0(< 0)  iff  𝐴𝐴𝑒𝑒𝑖𝑖11,𝐻𝐻1

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖

11,𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� ≥

0(< 0) , 𝑑𝑑𝑒𝑒𝑖𝑖12
∗/𝑑𝑑𝐻𝐻1 ≥ 0(< 0)  iff  
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𝐴𝐴𝑒𝑒𝑖𝑖12,𝐻𝐻1
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖
12,𝐻𝐻1

12 �𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� ≥ 0(< 0)  (equilibrium 

optimal effort spent in Country 1’s (2’s) stock market increases with  𝐻𝐻1  if and 

only if higher  𝐻𝐻1  induces larger marginal impact of  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗) on gross alpha 

than on marginal cost of  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗.). 

c. 𝑑𝑑𝑒𝑒𝑖𝑖11
∗/𝑑𝑑𝐻𝐻2 ≥ 0(< 0)  iff  𝐴𝐴𝑒𝑒𝑖𝑖11,𝐻𝐻2

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖

11,𝐻𝐻2
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� ≥

0(< 0) , 𝑑𝑑𝑒𝑒𝑖𝑖12
∗/𝑑𝑑𝐻𝐻2 ≥ 0(< 0)  iff  

𝐴𝐴𝑒𝑒𝑖𝑖12,𝐻𝐻2
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖
12,𝐻𝐻2

12 �𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� ≥ 0(< 0)  (equilibrium 

optimal effort spent in Country 1’s (2’s) stock market increases with  𝐻𝐻2  if and 

only if higher  𝐻𝐻2  induces larger marginal impact of  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗) on gross alpha 

than marginal cost of  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗)); 

d. 
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 ≥ 0 (< 0)  iff  𝐴𝐴𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� ≥

0 (< 0) , 
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 ≥ 0 (< 0)  iff  

𝐴𝐴𝐻𝐻1
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝐻𝐻1
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� ≥ 0 (< 0)  (direct benefit of  𝑒𝑒𝑖𝑖11
∗ 

(𝑒𝑒𝑖𝑖12
∗) increases with  𝐻𝐻1  if and only if higher  𝐻𝐻1  induces larger impact of  

𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗) on gross alpha than cost of  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗)). 

e. 
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 ≥ 0 (< 0)  iff  𝐴𝐴𝐻𝐻2
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝐻𝐻2
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� ≥

0 (< 0) , 
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 ≥ 0 (< 0)  iff  

𝐴𝐴𝐻𝐻2
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝐻𝐻2
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� ≥ 0 (< 0)  (direct benefit of  𝑒𝑒𝑖𝑖11
∗ 

(𝑒𝑒𝑖𝑖12
∗) increases with  𝐻𝐻2  if and only if higher  𝐻𝐻2  induces larger impact of  

𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗) on gross alpha than cost of  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗).) 

f. The sign of  𝑑𝑑𝑓𝑓𝑖𝑖1
∗/𝑑𝑑𝐻𝐻1  depends on the signs of  𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗/𝑑𝑑𝐻𝐻1, 𝑑𝑑𝑒𝑒𝑖𝑖11

∗/𝑑𝑑𝐻𝐻1, 

and 𝑑𝑑𝑒𝑒𝑖𝑖12
∗/𝑑𝑑𝐻𝐻1, and the sign of  𝑑𝑑𝑓𝑓𝑖𝑖1

∗/𝑑𝑑𝐻𝐻2  depends on the signs of  𝑑𝑑(𝑆𝑆1/

𝑊𝑊1)∗/𝑑𝑑𝐻𝐻2, 𝑑𝑑𝑒𝑒𝑖𝑖11
∗/𝑑𝑑𝐻𝐻2, and  𝑑𝑑𝑒𝑒𝑖𝑖12

∗/𝑑𝑑𝐻𝐻2 (whether a higher  𝐻𝐻1  (𝐻𝐻2) induces 

higher equilibrium optimal fees, depends on whether it increases equilibrium 

industry size, and whether it increases  𝑒𝑒𝑖𝑖11
∗  and  𝑒𝑒𝑖𝑖12

∗.) 

The intuition of this proposition is as follows. Managers’ efforts increase both 

the gross alpha productions and fund costs at the same time, and the net effect of these 

two decreases with effort amounts. As managers have to maximize fund net alphas to 
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compete for investments, where the first unit of  𝑒𝑒𝑖𝑖11 (𝑒𝑒𝑖𝑖12) generates non-positive net 

alphas, they will optimally choose to spend no  𝑒𝑒𝑖𝑖11 (𝑒𝑒𝑖𝑖12) in equilibrium; otherwise, 

their equilibrium optimal effort  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗) is positive. To provide economic insight, 

we focus on the cases where equilibrium optimal efforts are positive in the following 

analyses. In this case, managers will choose  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗) such that its marginal impact 

on net alpha production is zero to maximize fund net alphas when competing for 

investments. Also, if a higher  𝐻𝐻1 (𝐻𝐻2) induces higher marginal impact of  𝑒𝑒𝑖𝑖12 (𝑒𝑒𝑖𝑖11) on 

gross alpha than on costs, managers optimally choose a higher (lower) effort level in 

producing fund net alphas. In addition, higher  𝐻𝐻1  ( 𝐻𝐻2 )  has two effects on 

𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� (𝐵𝐵11�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�):  directly increasing the levels of gross alphas 

and costs due to  𝑒𝑒𝑖𝑖12
∗ (𝑒𝑒𝑖𝑖11

∗), and changing the levels of  𝑒𝑒𝑖𝑖12
∗ (𝑒𝑒𝑖𝑖11

∗), consequently 

changing the gross alphas and costs. In equilibrium, the latter effect is zero, because the 

marginal impact of  𝑒𝑒𝑖𝑖12
∗ (𝑒𝑒𝑖𝑖11

∗) on gross alphas equal to its marginal impact on costs, 

and the effect of higher  𝐻𝐻1 (𝐻𝐻2)  through  𝑒𝑒𝑖𝑖12
∗ (𝑒𝑒𝑖𝑖11

∗) on gross alphas is cancelled out 

by its effect through effort on costs. Therefore, if higher  𝐻𝐻1 (𝐻𝐻2)  induces a higher 

direct impact on gross alphas than on costs, direct benefits of equilibrium efforts, 

𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� (𝐵𝐵11�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�), measured as the net of gross alpha production 

due to efforts minus costs due to efforts, are higher. In addition, higher  𝐻𝐻1  (𝐻𝐻2 ) 

influences managers’ costs in equilibrium by changing the equilibrium Country 1 AFMI 

size and, thus, fund sizes, by increasing the level of costs due to efforts, and by 

changing the level of  𝑒𝑒𝑖𝑖12
∗  and  𝑒𝑒𝑖𝑖11

∗. Consequently, managers’ equilibrium (break-

even) fees are affected. 

We define the equilibrium optimal expected net alpha of an initial marginal 

investment in AFMI as 

 𝑋𝑋�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� = 𝑎𝑎1� + 𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2) + 𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) 

−𝑐𝑐01 − 𝑐𝑐211(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)

− 𝑐𝑐212(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2) 

(4.19) 

For AFMI to exist, this variable should be positive to attract investments from investors. 

To provide economic insight, we assume 

 𝑋𝑋�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� > 0, ∀ 𝐻𝐻1,𝐻𝐻2. (4.20) 

Proposition I4, Equilibrium by Optimal Allocations 
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For manager  𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑀𝑀1 , in equilibrium, we have E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

> 0, 

and the optimal AFMI size  𝑆𝑆
1

𝑊𝑊1

∗
  is either 1 or a real positive solution of the (constrained 

embedded) first-order condition of investors’ problem, substituting  𝑆𝑆
1

𝑊𝑊1

∗
= 𝛅𝛅𝐣𝐣𝟏𝟏

∗𝐓𝐓𝛊𝛊𝐌𝐌𝟏𝟏, 

−𝛾𝛾𝜎𝜎𝑏𝑏1
2 � 𝑆𝑆

1

𝑊𝑊1

∗
�
3
− �𝛾𝛾𝜎𝜎𝑎𝑎1

2 + 𝛾𝛾𝜎𝜎𝑥𝑥2 + 𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑆𝑆

1

𝑊𝑊1

∗
+

𝑋𝑋�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� = 0, where  𝛾𝛾 ≜ 𝜇𝜇𝑝𝑝/𝜎𝜎𝑝𝑝2. Also,  

𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
= 1

𝛾𝛾�3𝜎𝜎𝑏𝑏1
2 � 𝑆𝑆

1

𝑊𝑊1

∗
�
2
+𝜎𝜎𝑎𝑎1

2 +𝜎𝜎𝑥𝑥2�+𝑏𝑏1�+�∑ �𝑐𝑐1,𝑖𝑖
1 �

−1𝑀𝑀1
𝑗𝑗=1 �

−1
𝑊𝑊1

> 0, and  

𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑�𝑏𝑏1�+�∑ �𝑐𝑐1,𝑖𝑖
1 �

−1𝑀𝑀1
𝑗𝑗=1 �

−1
𝑊𝑊1�

= −�𝑆𝑆1/𝑊𝑊1�∗

𝛾𝛾�3𝜎𝜎𝑏𝑏1
2 � 𝑆𝑆

1

𝑊𝑊1

∗
�
2
+𝜎𝜎𝑎𝑎1

2 +𝜎𝜎𝑥𝑥2�+𝑏𝑏1�+�∑ �𝑐𝑐1,𝑖𝑖
1 �

−1𝑀𝑀1
𝑗𝑗=1 �

−1
𝑊𝑊1

< 0. 

The intuition of Proposition I4 is the same as that of Proposition RA2. 

Proposition I5, Equilibrium AFMI Size Sensitivity to Concentrations 

i. Where  𝑆𝑆
1

𝑊𝑊1

∗
< 1, we have 

a. 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻1 = 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 �, 

so  𝑑𝑑�𝑆𝑆
1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻1 ≥ 0 (< 0)  iff  
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 ≥ 0 (< 0)  

(where  𝐻𝐻1  is higher, the equilibrium AFMI size is larger (smaller) if and only 

if higher  𝐻𝐻1  induces a larger (smaller) sum of direct benefits of  𝑒𝑒𝑖𝑖11
∗  and  

𝑒𝑒𝑖𝑖12
∗.) 

b. 𝑑𝑑2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻12 = 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 � −

6𝛾𝛾1𝜎𝜎𝑏𝑏1
2 𝑆𝑆1

𝑊𝑊1

∗
�
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 �
2

� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
3

, 

so if  
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 ≤ 0   then  𝑑𝑑
2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻12 ≤ 0 , and if  

𝑑𝑑2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻12 ≥ 0, then  
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 ≥ 0. 

(The fact that the sum of the second-order derivatives of  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�  

and  𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�   with respect to  𝐻𝐻1   is negative indicates that 

equilibrium AFMI size is concave in  𝐻𝐻1. The fact that equilibrium AFMI size is 
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convex in  𝐻𝐻1   indicates that the sum of the second-order derivatives of  

𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�  and  𝐵𝐵12�𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�  with respect to  𝐻𝐻1  is positive.) 

c. 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻2 = 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 �, 

so  𝑑𝑑�𝑆𝑆
1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻2 ≥ 0 (< 0)  iff  
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 ≥ 0 (< 0). 

(Where  𝐻𝐻1  is higher, the equilibrium AFMI size is larger (smaller) if and only 

if higher  𝐻𝐻2  induces a larger (smaller) sum of direct benefits of  𝑒𝑒𝑖𝑖11
∗  and  

𝑒𝑒𝑖𝑖12
∗.) 

d. 𝑑𝑑2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻22 = 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 � −

6𝛾𝛾1𝜎𝜎𝑏𝑏1
2 𝑆𝑆1

𝑊𝑊1

∗
�
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 �
2

� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
3

, 

so if  
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 ≤ 0   then  𝑑𝑑
2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻22 ≤ 0 , and if  

𝑑𝑑2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻22 ≥ 0, then  
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 ≥ 0. 

(The fact that the sum of the second-order derivatives of  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�  

and  𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�   with respect to  𝐻𝐻2   is negative indicates that  

equilibrium AFMI size is concave in  𝐻𝐻2. The fact that equilibrium AFMI size is 

convex in  𝐻𝐻2   indicates that the sum of the second-order derivatives of  

𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�  and  𝐵𝐵12�𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�  with respect to  𝐻𝐻2  is positive.) 

e. 𝑑𝑑2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 = 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 � −

6𝛾𝛾1𝜎𝜎𝑏𝑏1
2 𝑆𝑆1

𝑊𝑊1

∗
�
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 � �
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +

𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖
12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 � � 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
3

， 

so the sign of the cross partial derivative of  (𝑆𝑆1/𝑊𝑊1)∗  with respect to  𝐻𝐻1  and  

𝐻𝐻2   depends on the signs and magnitudes of  

𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 , 
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 , and  

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 . 



72 
 

ii. Where  𝑆𝑆
1

𝑊𝑊1

∗
= 1, 𝑆𝑆

1

𝑊𝑊1

∗
  does not depend on  𝐻𝐻1  or  𝐻𝐻2. 

Proposition I6, Equilibrium Expected Net Alpha Sensitivity to Concentrations 

i. Where  𝑆𝑆
1

𝑊𝑊1

∗
< 1, we have 

a. 𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻1 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

= �
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 � �1 −

�𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�, 

so  𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻1 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≥ 0 (< 0)  iff  

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 ≥

0 (< 0). 

(Where  𝐻𝐻1  is higher, the equilibrium fund expected net alpha is larger (smaller) 

if and only if higher  𝐻𝐻1  induces a larger (smaller) sum of direct benefits of  

𝑒𝑒𝑖𝑖11
∗  and  𝑒𝑒𝑖𝑖12

∗.) 

b. 𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻12 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

= �
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 � �1 −

�𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
� + 6𝛾𝛾𝜎𝜎𝑏𝑏1

2 𝑆𝑆1

𝑊𝑊1

∗
�𝑏𝑏1� +

�∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� �

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 �
2

� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
3

, 

so if  𝑑𝑑
2E�𝛼𝛼𝑖𝑖

1�𝐷𝐷�
𝑑𝑑𝐻𝐻12 �

�𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≤ 0, then  

𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 ≤

0 , and if   
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 ≥ 0 , then  

𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻12 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≥ 0. 

(The fact that the equilibrium expected net alpha is concave in  𝐻𝐻1  indicates 

that the sum of the second-order derivatives of  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�   and  

𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�  with respect to  𝐻𝐻1  is negative. The fact that the sum of the 

second-order derivatives of  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�  and  𝐵𝐵12�𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�  with 

respect to  𝐻𝐻1  is positive indicates that the equilibrium expected net alpha is 

convex in  𝐻𝐻1.) 
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c. 𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻2 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

= �
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 � �1 −

�𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�, 

so  𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻2 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≥ 0 (< 0)  iff  

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 ≥

0 (< 0). 

(Where  𝐻𝐻2  is higher, the equilibrium fund expected net alpha is larger (smaller) 

if and only if higher  𝐻𝐻2  induces a larger (smaller) sum of direct benefits of  

𝑒𝑒𝑖𝑖11
∗  and  𝑒𝑒𝑖𝑖12

∗.) 

d. 𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻22 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

= �
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 � �1 −

�𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
� + 6𝛾𝛾𝜎𝜎𝑏𝑏1

2 𝑆𝑆1

𝑊𝑊1

∗
�𝑏𝑏1� +

�∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� �

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 �
2

� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
3

, 

so if  𝑑𝑑
2E�𝛼𝛼𝑖𝑖

1�𝐷𝐷�
𝑑𝑑𝐻𝐻22 �

�𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≤ 0, then  

𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 ≤

0 , and if   
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 ≥ 0 , then  

𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻22 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≥ 0. 

(The fact that the equilibrium expected net alpha is concave in  𝐻𝐻2  indicates 

that the sum of the second-order derivatives of  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�   and  

𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�  with respect to  𝐻𝐻2  is negative. The fact that the sum of the 

second-order derivatives of  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�  and  𝐵𝐵12�𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�  with 

respect to  𝐻𝐻2  is positive indicates that equilibrium expected net alpha is convex 

in  𝐻𝐻2.) 

e. 𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 ��𝐞𝐞𝟏𝟏𝟏𝟏∗,𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

= �
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 � �1 −

�𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
� + 6𝛾𝛾𝜎𝜎𝑏𝑏1

2 𝑆𝑆1

𝑊𝑊1

∗
�𝑏𝑏1� +
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�∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� �

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 � �
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +

𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖
12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 � � 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
3

, 

so the sign of  𝑑𝑑
2E�𝛼𝛼𝑖𝑖

1�𝐷𝐷�
𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 ��𝐞𝐞𝟏𝟏𝟏𝟏∗,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  depends on the signs and magnitudes of  

𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 , 
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 , and  

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 . 

ii. Where  𝑆𝑆
1

𝑊𝑊1

∗
= 1, we have 

a. 𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻1 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

=
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 , 

so  𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻1 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≥ 0 (< 0)  iff  

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 ≥

0 (< 0). 

(Where  𝐻𝐻1  is higher, equilibrium fund expected net alpha is larger (smaller) if 

and only if higher  𝐻𝐻1  induces a larger (smaller) sum of direct benefits of  𝑒𝑒𝑖𝑖11
∗  

and  𝑒𝑒𝑖𝑖12
∗.) 

b. 𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻12 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

=
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 , 

so  𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻12 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≤ 0 (< 0) , iff  

𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 ≤ 0 (< 0). 

(The equilibrium expected net alpha is concave (convex) in  𝐻𝐻1  if and only if 

the sum of the second-order derivatives of  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�   and  

𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�  with respect to  𝐻𝐻1  is negative (positive).) 

c. 𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻2 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

=
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 , 

so  𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻2 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≥ 0 (< 0)  iff  

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2 ≥

0 (< 0). 
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(Where  𝐻𝐻2  is higher, the equilibrium fund expected net alpha is larger (smaller) 

if and only if higher  𝐻𝐻2  induces a larger (smaller) sum of direct benefits of  

𝑒𝑒𝑖𝑖11
∗  and  𝑒𝑒𝑖𝑖12

∗.) 

d. 𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻22 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

=
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 , 

so  𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻22 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≤ 0 (< 0)   iff  

𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻22 ≤ 0 (< 0). 

(The equilibrium expected net alpha is concave (convex) in  𝐻𝐻2  if and only if 

the sum of the second-order derivatives of  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�   and  

𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�  with respect to  𝐻𝐻2  is negative (positive).) 

e. 𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 ��𝐞𝐞𝟏𝟏𝟏𝟏∗,𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

=
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 , 

so the sign of  𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 ��𝐞𝐞𝟏𝟏𝟏𝟏∗,𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

  depends on the sign of  

𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 . 

If we combine Proposition I6 and I7, we can see that  𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗/𝑑𝑑𝐻𝐻1  and  

𝑑𝑑E(𝛼𝛼𝑖𝑖1�𝐷𝐷)/𝑑𝑑𝐻𝐻1�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  always have the same signs. The intuition is as follows. 

Higher  𝐻𝐻1  influences  E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  at two stages. At the first stage, it 

changes the effort impact on gross alpha and effort costs. If it increases effort impact on 

gross alpha more (less) than it increases effort costs, i.e., 𝐴𝐴𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� +

𝐴𝐴𝐻𝐻1
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝐻𝐻1
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� =
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +

𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖
12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 ≥ 0 (< 0), then it increases (decreases) fund expected net alphas. In 

this case, the sum of changes in direct benefits of  𝑒𝑒𝑖𝑖11
∗  and  𝑒𝑒𝑖𝑖12

∗  is positive (negative). 

At the second stage, higher (lower) fund expected net alphas attracts (discourage) 

investors to invest in funds, which consequently pushes down (up) fund expected net 

alphas, due to decreasing returns to scale effects. In our model investors are risk-averse, 

and their portfolio risks increase with wealth allocated to the funds. Thus, their risk 

consideration makes their reactions to changes in fund expected net alphas less 

intensive (i.e., they subdue their additional investments in AFMI when inferring higher 
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fund expected net alphas, and limit their reduction in investments AFMI when inferring 

lower fund expected net alphas), mitigating the second-stage effect and allowing the 

first-stage effect to dominate. Therefore, in equilibrium, if higher  𝐻𝐻1  increases effort 

impact on gross alpha more (less) than it increases effort costs (i.e., the sum of changes 

in direct benefits of  𝑒𝑒𝑖𝑖11
∗  and  𝑒𝑒𝑖𝑖12

∗  is positive (negative)), then it increases (decreases)  

E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
,  and  (𝑆𝑆1/𝑊𝑊1)∗  also increases (decreases). The difference 

between our model’s results and those of Chapter 2, is that in our model, higher  𝐻𝐻1  

changes the impacts of both  𝑒𝑒𝑖𝑖11
∗  and  𝑒𝑒𝑖𝑖12

∗ (manager efforts spent in local and foreign 

stock markets), whereas in Chapter 2 where there is only one market, higher market 

concentration affects only the impact of manager effort spent in local market. We can 

also see that  𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗/𝑑𝑑𝐻𝐻2  and  𝑑𝑑E(𝛼𝛼𝑖𝑖1�𝐷𝐷)/𝑑𝑑𝐻𝐻2�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  always have the 

same signs: in equilibrium, if higher  𝐻𝐻2  increases effort impacts on gross alpha more 

(less) than it increases effort costs (i.e., the sum of changes in direct benefits of  𝑒𝑒𝑖𝑖11
∗  

and  𝑒𝑒𝑖𝑖12
∗  is positive (negative)), it increases (decreases)  E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�

�𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
,  and  

(𝑆𝑆1/𝑊𝑊1)∗  also increases (decreases). The intuition is similar as above. 

Proposition I7, Relation Between Equilibrium Expected Net Alpha and Market 

Share 

An increase in  𝑐𝑐1,𝑖𝑖
1 , while  𝑐𝑐1,𝑗𝑗

1 , ∀𝑗𝑗 ≠ 𝑖𝑖  are unchanged, induces a decrease (increase) in  

𝑠𝑠𝑖𝑖1/𝑆𝑆1 and an increase (decrease) in  𝑠𝑠𝑗𝑗1/𝑆𝑆1, ∀𝑗𝑗 ≠ 𝑖𝑖. Also, it induces a decrease (increase) 

in  E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
; thus  E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�

�𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  and  𝑠𝑠𝑖𝑖1/𝑆𝑆1  are positively 

related—internality effect. It induces a decrease (increase) in  E�𝛼𝛼𝑗𝑗1�𝐷𝐷���𝐞𝐞𝟏𝟏𝟏𝟏∗,𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐟𝐟𝟏𝟏
∗
,𝛅𝛅𝟏𝟏

∗
�
; 

thus  E�𝛼𝛼𝑗𝑗1�𝐷𝐷���𝐞𝐞𝟏𝟏𝟏𝟏∗,𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  and  𝑠𝑠𝑗𝑗1/𝑆𝑆1  are negatively related—externality effect. 

The proof intuition is the same as that of Proposition RA5. 

Proofs of all the Propositions. See the Appendix. 

Numerical Results 

We provide a numerical analysis for our model, and set the following parameter 

values:  𝑊𝑊1 = 100, 𝑀𝑀1 = 100, 𝜇𝜇𝑝𝑝 = 0.05, 𝜎𝜎𝑝𝑝 = 0.1, 𝜎𝜎𝑥𝑥1 = 0.05, 𝑎𝑎1� = 0.15, 𝑏𝑏1� = 0.3, 

𝜎𝜎𝑎𝑎1 = 0.4, 𝜎𝜎𝑏𝑏1 = 0.4. 
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To simplify the case, we assume that fund managers in Country 1 have the same 

average cost functions, such that funds have the same size in equilibrium. We set the 

parameters of the average cost functions as  𝑐𝑐01 = 0.005, 𝑐𝑐11 = 0.1, and the functions  

𝑐𝑐211(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  𝑐𝑐212(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  as  2(0.1 + 𝐻𝐻1 + 𝐻𝐻2)𝑒𝑒𝑖𝑖11  and  2(0.1 + 𝐻𝐻1 +

𝐻𝐻2)𝑒𝑒𝑖𝑖12 , respectively. Also, we set the functions  𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)   and  

𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  as  (0.5 + 𝐻𝐻1 + 𝐻𝐻2)ln (𝑒𝑒𝑖𝑖11 + 1)  and  (0.5 + 𝐻𝐻1 + 𝐻𝐻2)ln (𝑒𝑒𝑖𝑖12 + 1), 

respectively. We choose 100 points evenly spread on  [0, 0.999]  to be the values of the 

market concentrations  𝐻𝐻1  and  𝐻𝐻2. 

Figure 4.2 illustrates the numerical results of the relevant variables in 

equilibrium. As  𝑐𝑐211(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  𝑐𝑐212(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  have the same functional 

forms, and  𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  𝐴𝐴12(𝑒𝑒𝑖𝑖12;  𝐻𝐻1,𝐻𝐻2)  have the same functional forms, 

in equilibrium, 𝑒𝑒𝑖𝑖11
∗ = 𝑒𝑒𝑖𝑖12

∗   and  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� = 𝐵𝐵12�𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�   for  

∀ 𝐻𝐻1,𝐻𝐻2 . Due to the parameter assumptions, higher  𝐻𝐻1   and  𝐻𝐻2   induce smaller 

marginal impact of  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗) on gross alpha than marginal cost of  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗); thus,  

𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗)  decrease with  𝐻𝐻1  and  𝐻𝐻2, and they achieve the highest value at  𝐻𝐻1 =

𝐻𝐻2 = 0. On the other hand, as higher  𝐻𝐻1  and  𝐻𝐻2  induces larger impact of  𝑒𝑒𝑖𝑖11
∗ (𝑒𝑒𝑖𝑖12

∗) 

on gross alpha than cost of  𝑒𝑒𝑖𝑖11
∗  ( 𝑒𝑒𝑖𝑖12

∗ ) where  𝐻𝐻1   and  𝐻𝐻2   are above 0.2, 

𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� (𝐵𝐵12�𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�) increases with  𝐻𝐻1  and  𝐻𝐻2  after this point, 

and achieve the highest value at  𝐻𝐻1 = 𝐻𝐻2 = 0.999. Moreover, because higher  𝐻𝐻1  and  

𝐻𝐻2  induce a positive (negative) sum of direct benefits of  𝑒𝑒𝑖𝑖11
∗  and  𝑒𝑒𝑖𝑖12

∗  where  𝐻𝐻1  

and  𝐻𝐻2   are high (low), 𝑋𝑋�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� , (𝑆𝑆1/𝑊𝑊1)∗ ,  and  

E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  increase (decrease) with  𝐻𝐻1  and  𝐻𝐻2  where  𝐻𝐻1  and  𝐻𝐻2  are 

high (low). We can also observe that  (𝑆𝑆1/𝑊𝑊1)∗   and  E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  are 

convex in  𝐻𝐻1  and  𝐻𝐻2, and the cross partial derivatives of  𝑋𝑋�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�, 

(𝑆𝑆1/𝑊𝑊1)∗,  and  E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  with respect to  𝐻𝐻1  and  𝐻𝐻2  are positive. In 

addition, due to our parameter values, 𝑓𝑓𝑖𝑖∗  increases with  𝐻𝐻1  and  𝐻𝐻2. 
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Figure 4.2. Numerical Results 

This figure shows the numerical results in equilibrium given the parameter values above. For each of the 

graphs, the x-axis and y-axis are the values of  𝐻𝐻1  and  𝐻𝐻2, respectively, and the z-axis shows the 

equilibrium values of, from the left-top to the right-bottom, 𝑒𝑒𝑖𝑖11
∗ , 𝑒𝑒𝑖𝑖12

∗ , 𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗; 𝐻𝐻1,𝐻𝐻2� , 

𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗; 𝐻𝐻1,𝐻𝐻2�, 𝑋𝑋�𝑒𝑒𝑖𝑖11

∗, 𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�, 𝑓𝑓𝑖𝑖∗, (𝑆𝑆1/𝑊𝑊1)∗, E(𝛼𝛼𝑖𝑖1|𝐷𝐷)|�𝐞𝐞𝟏𝟏𝟏𝟏∗,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�, respectively. 
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Endogenous Market Concentrations 

If we define  𝐻𝐻1  and  𝐻𝐻2  as the Herfindahl-Hirschman index (HHI) and allow 

it to be endogenous, then the equilibrium HHI’s of Country 1 and Country 2 are, 

following Proposition I2, 

 
𝐻𝐻1∗ ≜ ∑ �𝑠𝑠𝑖𝑖

1

𝑆𝑆1
�
2

𝑀𝑀1
𝑖𝑖=1 = ∑ �𝑐𝑐1,𝑖𝑖

1 ∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−2

𝑀𝑀1
𝑖𝑖=1 . (4.21) 

 
𝐻𝐻2∗ ≜ ∑ �𝑠𝑠𝑖𝑖

2

𝑆𝑆2
�
2

𝑀𝑀2
𝑖𝑖=1 = ∑ �𝑐𝑐1,𝑖𝑖

2 ∑ �𝑐𝑐1,𝑖𝑖
2 �−1𝑀𝑀2

𝑗𝑗=1 �
−2

𝑀𝑀2
𝑖𝑖=1 . 

(4.22) 

Depending on the size of  𝑐𝑐1,𝑖𝑖
1  relative to  𝑐𝑐1,𝑗𝑗

1 , ∀𝑗𝑗 ≠ 𝑖𝑖, an increase in  𝑐𝑐1,𝑖𝑖
1 , holding  𝑐𝑐1,𝑗𝑗

1 , 

∀𝑗𝑗 ≠ 𝑖𝑖  unchanged, increases or decreases  𝐻𝐻1∗. The corresponding results in Country 2 

are similar. 

Similar to the endogenous framework in Chapter 2, an increase in  𝑐𝑐1,𝑖𝑖
1   affects 

Country 1’s equilibrium fund expected net alphas in two ways:  1) its direct impact 

leads to lower equilibrium fund expected net alphas (Proposition I7), and 2) depending 

on fund 𝑖𝑖’s size relative to rivals’, it increases or decreases  𝐻𝐻1∗, which consequently 

increases (decreases) equilibrium fund expected net alphas if and only if  

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1∗,𝐻𝐻2∗�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1∗ ,𝐻𝐻2∗�

𝑑𝑑𝐻𝐻1 ≥ 0 (< 0) (Proposition I6). Also, an increase in  

𝑐𝑐1,𝑖𝑖
1   affects Country 1’s equilibrium AFMI size in two ways:  1) its direct impact leads 

to smaller AFMI size because its direct impact leads to lower equilibrium fund expected 

net alphas which discourages investments, and 2) depending on fund 𝑖𝑖’s size relative to 

that of rivals, it increases or decreases  𝐻𝐻1∗, which consequently increases (decreases) 

equilibrium AFMI size if and only if  
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1∗,𝐻𝐻2∗�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1∗,𝐻𝐻2∗�

𝑑𝑑𝐻𝐻1 ≥ 0 (< 0) 

(Proposition I5). The second-order relationships between Country 1’s concentration and 

its equilibrium fund expected net alphas, and between Country 1’s concentration and its 

AFMI size, are more complicated. 

On the other hand, an increase in  𝑐𝑐1,𝑖𝑖
2   affects Country 1’s equilibrium fund 

expected net alphas in the following way:  depending on fund 𝑖𝑖’s size relative to rivals’, 

it increases or decreases  𝐻𝐻2∗, which consequently increases (decreases) equilibrium 

fund expected net alphas if and only if  
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1∗,𝐻𝐻2∗�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1∗,𝐻𝐻2∗�

𝑑𝑑𝐻𝐻2 ≥ 0 (< 0) 

(Proposition I6). Also, an increase in  𝑐𝑐1,𝑖𝑖
2   affects Country 1’s equilibrium AFMI size in 

the following way:  depending on fund 𝑖𝑖 ’s size relative to rivals’, it increases or 



81 
 

decreases  𝐻𝐻2∗, which consequently increases (decreases) equilibrium AFMI size if and 

only if  
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1∗,𝐻𝐻2∗�

𝑑𝑑𝐻𝐻2 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1∗,𝐻𝐻2∗�

𝑑𝑑𝐻𝐻2 ≥ 0 (< 0) (Proposition I5). Notice that an 

increase in  𝑐𝑐1,𝑖𝑖
2   does not have direct impact as that of  𝑐𝑐1,𝑖𝑖

1   on Country 1’s fund 

expected net alphas and AFMI size. 

Thus, where the market concentration is endogenous, the relations between local 

market concentration and equilibrium local fund expected net alphas and AFMI size are 

more complex. On the other hand, the relations between foreign market concentration 

and the local market’s equilibrium fund expected net alphas and AFMI size are similar 

to those under the exogenous concentrations framework. 

Similarly to previous chapters, we now proceed with an empirical analysis of the 

benefits and costs of changing market concentration levels of the AFMI using the 

version of our model with endogenous concentration. In this sense, this version of our 

model befits available data of empirical market concentration levels, such as the HHI. 

Popular empirical market concentration measures, such as HHI, are functions of rivals’ 

relative fund sizes. We expect that market characteristics, such as regulation, transaction 

costs, tax rates, and barriers to entry, affect funds’ cost sensitivity to size (i.e., 𝑐𝑐1,𝑖𝑖
1 ’s and 

𝑐𝑐1,𝑖𝑖
2 ’s). As a result, they affect relative fund sizes and, thus, the level of empirical market 

concentration measures. We use empirical techniques to control potential endogeneity 

of market concentration measures. 

Whether local fund net alphas and AFMI size move in the same direction with 

local (foreign) market concentration and whether both are concave or convex in it 

become empirical questions. Further, in cases where active fund management creates 

value, if fund net alphas and AFMI size increase with local (foreign) market 

concentration, our model predicts positive marginal direct benefits of effort, for 

plausible parameter values. We note that both signs of the benefits of changing 

concentration levels are plausible alternatives to a null hypothesis of no benefit of active 

fund manager efforts. 

4.3. Empirical Study 

We now provide analysis of the market concentration-net alpha and market 

concentration-AFMI size relations using international data of active equity mutual funds. 

We regard the U.S. active equity mutual fund market as a foreign fund market, whose 

concentration levels might affect another market’s fund net alphas and AFMI size. This 
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is because U.S. has the largest active mutual fund market, which influences global fund 

markets. We analyze how local active equity mutual fund market concentration levels, 

and more importantly, how the U.S. active equity mutual fund market concentration 

levels influence a global AFMI market’s fund net alphas and AFMI size.  

Methodology 

We describe how we measure concentration, fund net alpha, and our 

econometric strategy to estimate the effects of changing local and foreign concentration 

levels on fund net alpha and AFMI size, controlling for endogeneity and omitted-

variable bias-related issues. 

Concentration Measure 

Following Chapter 3, and many other empirical papers, we use the following 

three indices to measure market concentration: 

1. HHI 

 
𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗,𝑡𝑡 = �𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗,𝑡𝑡

2

𝑀𝑀𝑗𝑗,𝑡𝑡

𝑖𝑖

 (4.23) 

2. normalized HHI (NHHI) 

 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗,𝑡𝑡 =

𝑀𝑀𝑗𝑗,𝑡𝑡 × 𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗,𝑡𝑡 − 1
𝑀𝑀𝑗𝑗,𝑡𝑡 − 1

 (4.24) 

3. sum of the first five largest funds’ market shares (5-Fund-Index) 

 
5_𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗,𝑡𝑡 = �𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗,𝑡𝑡

5

𝑖𝑖=1

 (4.25) 

The indices  𝑖𝑖, 𝑗𝑗, and  𝑡𝑡  represent the fund, fund market, and time indicators. 𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗,𝑡𝑡  is 

the market share of a fund, measured as the fund’s asset under management divided by 

the total assets under management in its market, and  𝑀𝑀𝑗𝑗,𝑡𝑡  is the number of funds in the 

corresponding market. As some markets tend to have a large number of funds whereas 

others tend to have a small number of funds, we mainly focus on the results of using 

NHHI as the market concentration measure, because it adjusts the effect of the number 

of funds on market concentration levels (Cremers, Nair and Peyer (2008)). For a 

robustness check, we redo the analyses using HHI and 5-Fund-Index.  
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Style-Matching Model and Net Alpha Estimation 

Following Chapter 3, we develop our style-matching model to estimate funds’ 

passive benchmarks and then calculate fund net alphas. We use the following return-

generating process: 

 𝑅𝑅𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝛼𝛼𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑡𝑡
1 𝐹𝐹𝑗𝑗,𝑡𝑡

1 + ⋯+ 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑛𝑛𝑗𝑗 𝐹𝐹𝑗𝑗,𝑡𝑡

𝑛𝑛𝑗𝑗 (4.26) 

where  𝑅𝑅𝑖𝑖,𝑗𝑗,𝑡𝑡  is the return net of management fee of an active fund, 𝛼𝛼𝑖𝑖,𝑗𝑗,𝑡𝑡 is fund net 

alpha, 𝐹𝐹𝑗𝑗,𝑡𝑡
1   through  𝐹𝐹𝑗𝑗,𝑡𝑡

𝑛𝑛𝑗𝑗   are returns net of management fees of local tradable index 

funds of different asset classes, a U.S. large-cap equity tradable index fund, and a local 

risk-free asset, 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑡𝑡
1   through  𝑏𝑏𝑖𝑖,𝑗𝑗,𝑡𝑡

𝑛𝑛𝑗𝑗   are the coefficients with respect to these factors, and  

𝑛𝑛𝑗𝑗  is the number of these factors in a particular market. In our algorithm, we minimize, 

in each fund market, the variance of the residual when projecting  𝑅𝑅𝑖𝑖,𝑗𝑗,𝑡𝑡  on  𝐹𝐹𝑗𝑗,𝑡𝑡
1   through  

𝐹𝐹𝑗𝑗,𝑡𝑡
𝑛𝑛𝑗𝑗, and we constrain the coefficients  𝑏𝑏�𝑖𝑖,𝑗𝑗,𝑡𝑡

1   through  𝑏𝑏�𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑛𝑛𝑗𝑗   to be positive and sum up to 

one (as we do not allow short selling). We use a rolling window, from months  𝑡𝑡 − 60  

to  𝑡𝑡 − 1, to estimate  𝑏𝑏�𝑖𝑖,𝑗𝑗,𝑡𝑡
1   through  𝑏𝑏�𝑖𝑖,𝑗𝑗,𝑡𝑡

𝑛𝑛𝑗𝑗 . The predicted value  𝑏𝑏�𝑖𝑖,𝑗𝑗,𝑡𝑡
1 𝐹𝐹𝑗𝑗,𝑡𝑡

1 + ⋯+ 𝑏𝑏�𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑛𝑛𝑗𝑗 𝐹𝐹𝑗𝑗,𝑡𝑡

𝑛𝑛𝑗𝑗  

is the passive benchmark at time 𝑡𝑡, and we estimate  𝛼𝛼𝑖𝑖,𝑗𝑗,𝑡𝑡  by subtracting  𝑅𝑅𝑖𝑖,𝑗𝑗,𝑡𝑡  from  

𝑏𝑏�𝑖𝑖,𝑗𝑗,𝑡𝑡
1 𝐹𝐹𝑗𝑗,𝑡𝑡

1 + ⋯+ 𝑏𝑏�𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑛𝑛𝑗𝑗 𝐹𝐹𝑗𝑗,𝑡𝑡

𝑛𝑛𝑗𝑗. 

Notice that this method is similar to the style-matching model developed by 

Sharpe (1992). Also, as our passive benchmark is tradable, our net alpha estimation is 

consistent with the argument of Berk and Binsbergen (2015) that to measure the value 

added by a fund, its performance should be compared to the next-best investment 

opportunity available to investors. Moreover, our style-matching passive benchmark is 

similar to the characteristic-based benchmark developed by Daniel, Grinblatt, Titman, 

and Wermers (1997). Our model is similar to the style-matching model of Chapter 3 

except that besides the local tradable index funds, it contains a U.S. large-cap equity 

tradable index fund. This is because we need to develop an international passive 

benchmark, and a U.S. large-cap equity tradable index fund can be a potential factor in 

this benchmark. 

Market Concentration-Net Alpha Relation 

Pastor, Stambaugh, and Taylor (2015) (PST) develop a recursive demeaning 

(RD) estimator to control endogeneity bias created in a simple demeaned model, and we 
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adopt their method here to analyze the market concentration-net alpha relation. The 

model we use is 

 𝛼𝛼𝚤𝚤,𝚥𝚥,𝑡𝑡������ = 𝛽𝛽1,𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝚥𝚥,𝑡𝑡−1
𝐿𝐿������������� + 𝛽𝛽2,𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝚥𝚥,𝑡𝑡−1

𝐿𝐿 2�������������� + 𝛽𝛽3,𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡−1𝑈𝑈𝑈𝑈������������

+ 𝛽𝛽4,𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡−1𝑈𝑈𝑈𝑈 2������������� + 𝛽𝛽5,𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝚥𝚥,𝑡𝑡−1
𝐿𝐿 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡−1𝑈𝑈𝑈𝑈��������������������������� + 𝜀𝜀𝚤𝚤,𝚥𝚥,𝑡𝑡����� 

(4.27) 

where the superscription “L” and “US” represent the local and the U.S. market 

concentration measures, respectively. The bar on top of the variables represents the 

forward-demeaning operator. The forward-demeaned value of a time-series variable  𝑋𝑋𝑡𝑡  

is 

 
𝑋𝑋𝑡𝑡��� = 𝑋𝑋𝑡𝑡 −

1
𝑇𝑇 − 𝑡𝑡 + 1

�𝑋𝑋𝑠𝑠

𝑇𝑇

𝑠𝑠=𝑡𝑡

 (4.28) 

where  𝑇𝑇  is the total number of observation of this time-series. 

This model is similar to the model of market concentration-net alpha relation in 

Chapter 3, except for two points:  1) this model includes the U.S. market concentration 

measure as explanatory variables, so it fits our international model and studies how U.S. 

market concentration is associated with the fund net alphas in market  𝑗𝑗; and 2) this 

model does not include the fund market share as a control, because in our unreported 

tests, we find that the fund market share is insignificant. We exclude this insignificant 

variable to reduce noise in the estimations. 

Market Concentration-AFMI Size Relation 

We use the vector auto-regression (VAR) method to study the market 

concentration-AFMI size relation because both market concentration measures and 

AFMI size are market-level time-series variables, and empirically, local market 

concentration and local AFMI size can be endogenous. The model is 

 

�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗,𝑡𝑡

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗,𝑡𝑡
𝐿𝐿

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗,𝑡𝑡
𝐿𝐿 2

� = �
𝑎𝑎0,𝑗𝑗
𝑏𝑏0,𝑗𝑗
𝑐𝑐0,𝑗𝑗

� + �
𝑎𝑎1,𝑗𝑗 𝑎𝑎2,𝑗𝑗 𝑎𝑎3,𝑗𝑗
𝑏𝑏1,𝑗𝑗 𝑏𝑏2,𝑗𝑗 0

0 0 𝑐𝑐3,𝑗𝑗

� �

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗,𝑡𝑡−1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗,𝑡𝑡−1
𝐿𝐿

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗,𝑡𝑡−1
𝐿𝐿 2

� 

+ �
𝑎𝑎4,𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡−1𝑈𝑈𝑈𝑈 + 𝑎𝑎5,𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡−1𝑈𝑈𝑈𝑈 2 + 𝑎𝑎6,𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡−1𝑈𝑈𝑈𝑈 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗,𝑡𝑡−1

𝐿𝐿

0
0

�

+ �
𝜖𝜖𝑎𝑎,𝑗𝑗,𝑡𝑡
𝜖𝜖𝑏𝑏,𝑗𝑗,𝑡𝑡
𝜖𝜖𝑐𝑐,𝑗𝑗,𝑡𝑡

�. 

(4.29) 
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This model is similar to the model of market concentration-AFMI size relation 

in Chapter 3, except that in the first equation, it includes the U.S. market concentration 

measure and its higher order terms in order to study the effect of the U.S. market 

concentration on in market  𝑗𝑗’s AFMI size. We regard the U.S. market concentration as 

an exogenous variable in this VAR system, because we believe empirically there is little 

causality between the local and the U.S. market concentration. In our analysis, we focus 

on the first equation, the equation studying how market concentration levels affect 

market  𝑗𝑗’s AFMI size. 

Data 

We obtain our data from the Global Databases of Morningstar Direct. Our 

sample contains 30 active equity mutual fund markets. Due to data availability, the 

sample periods of different markets are different. The sample periods of each market are 

reported in Table 4.1; most of them have sample periods starting from 1990s to the end 

of 2015. Our Appendix supplements the data description below.  
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Table 4.1. Sample Periods of the 30 Global Markets 

This table reports the sample period of the 30 global markets in our study. 

 
  

Global Market Starting Period Ending Period
Australia 1992/01 2015/12
Austria 1999/02 2001/02
Belgium 1999/02 2015/12
Brazil 1997/02 2015/12
Canada 1992/01 2015/12
Chile 2006/01 2015/12
China (Mainland) 2003/05 2015/12
Denmark 1992/01 2015/12
Finland 1999/02 2015/12
France 1999/02 2015/12
Germany 1999/02 2015/12
Greece 1999/02 2012/08
Hong Kong 1998/08 2015/12
India 1999/08 2015/12
Israel 2001/03 2015/12
Italy 1999/02 2015/12
Japan 1992/01 2015/12
Korea 2001/10 2015/12
Mexico 1999/11 2015/12
Netherlands 1999/02 2015/12
Norway 1992/01 2015/12
Portugal 1999/02 2015/09
Singapore 1997/01 2015/12
South Africa 1995/02 2015/12
Spain 1999/02 2015/12
Sweden 1992/01 2015/12
Switzerland 1992/01 2015/12
Taiwan 2004/10 2015/12
Thailand 1996/09 2015/12
United Kingdom 1997/11 2015/12
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We use keywords in Morningstar to identify active equity mutual funds. We 

require the mutual funds to be open-ended and non-restricted. In each mutual fund 

market dataset, we exclude index funds, enhanced index funds, funds of funds, and in-

house funds of funds. Also, we require funds to be classified as “Equity” in the Global 

Broad Category Group, and we further identify equity funds based on their Morningstar 

Category. Next, we use the Fund ID provided by Morningstar to aggregate fund share 

class-level information to fund-level information. Since we use a 5-year rolling window 

to estimate fund net alphas, when analyzing the market concentration-net alpha relation, 

we require each of our active equity mutual funds to have at least 10 years’ return 

observations.43 On the other hand, when analyzing the market concentration-net alpha 

relation, we use the data of all the active equity funds in our sample. 

The index funds used in the style-matching model are also from Morningstar. 

We require index funds to have no missing observations in our sample period so that the 

style-matching model is consistent and stable. The factors used in the style-matching 

model include the local equity index funds, a U.S. large cap index fund, and a local risk-

free asset. The information of the risk-free rate of each country is provided by the 

International Financial Statistics on the official website of International Monetary Fund 

(IMF). 

For each market, the AFMI size is calculated as total funds’ net assets under 

management divided by stock market capitalization, which is a relative size measure 

and which is consistent with Chapter 3 and PST. Each market’s fund net assets under 

management and stock market capitalization are also provided by the Global Databases 

of Morningstar Direct. 

All the fund returns are net of administrative and management fees and other 

costs taken out of fund assets; thus, the fund alphas we estimate are net alphas (net of 

fees). For comparison purpose and to be consistent with our international model, we 

measure the fund returns, risk-free returns, fund net assets under management, and 

stock market capitalization in U.S. dollar. 

Table 4.2 reports the summary statistics of these global active equity mutual 

fund markets. Panel A shows the summary statistics of market-level variables. It shows 

that the average AFMI size varies a lot across the global markets, from around 17% in 

Denmark to 0.015% in Germany. The market concentration level also varies a lot across 

                                                 
43 We also omit some rare cases where there is a gap with more than 5 years’ return observations missing. 



88 
 

the global markets. The average NHHI value ranges from around 0.49 in Austria to 

around 0.01 in Taiwan. Panel B shows the summary statistics of fund-level variables. 

First, the average R-squared of the style-matching model is quite high in each market 

(ranging from 97% in Chile to 83% in Mexico), with a low standard deviation in each 

market. This result shows that our style-matching benchmarks perform well in tracking 

the style of the active equity mutual funds, so it is unlikely that our style-matching 

models omit relevant factors in developing the passive benchmarks. Also, most markets’ 

average fund net alphas are positive with a large standard deviation. 
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Table 4.2. Summary Statistics 

Monthly data is used. Panel A reports the summary statistics for market-level data, and Panel B reports 
those for fund-level data. We report the number of observations, mean, and standard deviation of each 
variable. AFMI Size is the sum of funds’ net assets under management divided by the stock market 
capitalization in the same month. The Style-Matching Model R2, AFMI Share, NHHI, HHI, and 5-Fund-
Index are in decimals. Net Return and Net Alpha are in percentages, and both are net of administrative 
and management fees and other costs taken out of fund assets. 
 
Panel A 

 
  

Global Market Obs Mean Sd Obs Mean Sd Obs Mean Sd Obs Mean Sd
Australia 228 0.037 0.009 228 0.029 0.016 228 0.035 0.019 228 0.322 0.126
Austria 85 0.018 0.008 85 0.492 0.223 85 0.553 0.211 85 0.936 0.077
Belgium 143 0.002 0.002 143 0.122 0.120 143 0.173 0.138 143 0.689 0.166
Brazil 167 0.001 0.002 167 0.032 0.027 167 0.038 0.031 167 0.314 0.128
Canada 228 0.077 0.021 228 0.015 0.004 228 0.019 0.006 228 0.206 0.039
Chile 51 0.001 0.002 51 0.017 0.001 51 0.038 0.001 51 0.312 0.012
China (Mainland) 92 0.003 0.001 92 0.077 0.024 92 0.114 0.048 92 0.647 0.191
Denmark 192 0.170 0.646 228 0.100 0.070 228 0.136 0.085 228 0.623 0.165
Finland 143 0.008 0.005 143 0.102 0.050 143 0.180 0.090 143 0.718 0.212
France 143 0.011 0.003 143 0.025 0.010 143 0.028 0.010 143 0.290 0.048
Germany 143 0.000 0.000 143 0.062 0.032 143 0.072 0.035 143 0.522 0.099
Greece 103 0.019 0.007 103 0.180 0.270 103 0.230 0.261 103 0.754 0.130
Hong Kong 149 0.001 0.001 130 0.133 0.100 149 0.305 0.293 149 0.823 0.124
India 137 0.004 0.002 137 0.068 0.087 137 0.144 0.193 137 0.503 0.304
Israel 118 0.013 0.005 118 0.017 0.008 118 0.025 0.007 118 0.255 0.061
Italy 143 0.006 0.003 143 0.027 0.012 143 0.039 0.017 143 0.330 0.092
Japan 200 0.014 0.044 228 0.073 0.115 228 0.077 0.114 228 0.357 0.140
Korea 111 0.052 0.022 111 0.014 0.003 111 0.016 0.003 111 0.190 0.032
Mexico 134 0.000 0.000 134 0.125 0.086 134 0.156 0.100 134 0.640 0.126
Netherlands 143 0.002 0.004 143 0.084 0.076 143 0.145 0.097 143 0.706 0.150
Norway 192 0.031 0.019 228 0.082 0.043 228 0.129 0.080 228 0.644 0.215
Portugal 140 0.002 0.002 114 0.093 0.036 114 0.147 0.031 114 0.749 0.059
Singapore 168 0.001 0.001 145 0.180 0.108 168 0.396 0.291 168 0.859 0.113
South Africa 191 0.016 0.008 175 0.088 0.146 191 0.190 0.298 191 0.542 0.231
Spain 143 0.003 0.002 143 0.024 0.009 143 0.032 0.008 143 0.298 0.040
Sweden 192 0.015 0.012 228 0.123 0.164 228 0.230 0.255 228 0.622 0.342
Switzerland 205 0.008 0.008 228 0.115 0.134 228 0.140 0.156 228 0.500 0.295
Taiwan 75 0.010 0.003 75 0.010 0.001 75 0.016 0.001 75 0.186 0.009
Thailand 172 0.043 0.148 172 0.021 0.006 172 0.027 0.007 172 0.279 0.041
United Kingdom 158 0.007 0.006 158 0.071 0.113 158 0.085 0.135 158 0.407 0.279

AFMI Size HHI 5-Fund-IndexNHHI
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Panel B 

 
  

Global Market Obs Mean Sd Obs Mean Sd Obs Mean Sd
Australia 45,457 0.984 6.773 32,865 0.213 1.995 32,884 0.919 0.084
Austria 571      1.137 8.566 571      0.182 2.218 571      0.902 0.042
Belgium 2,774   0.770 6.118 2,690   0.227 1.896 2,690   0.896 0.080
Brazil 15,543 1.071 10.698 11,995 0.143 5.123 11,995 0.891 0.100
Canada 56,414 0.717 5.953 44,250 0.033 2.189 44,250 0.865 0.126
Chile 1,500   -1.236 6.092 1,500   -0.144 1.096 1,500   0.972 0.027
China (Mainland) 368      0.537 8.480 325      0.156 2.476 325      0.948 0.052
Denmark 4,526   1.089 6.048 3,670   0.086 1.465 3,670   0.907 0.123
Finland 3,716   0.867 6.939 3,356   0.049 1.703 3,356   0.929 0.075
France 24,210 0.567 6.158 22,324 0.127 1.982 22,324 0.875 0.121
Germany 11,305 0.794 6.734 10,630 0.107 2.059 10,633 0.907 0.102
Greece 1,709   -0.404 9.161 1,656   -0.033 2.028 1,656   0.941 0.046
Hong Kong 2,526   1.033 6.267 2,177   0.185 2.143 2,177   0.862 0.171
India 14,334 1.496 8.885 11,090 0.385 2.707 11,090 0.888 0.093
Israel 9,216   0.675 6.972 8,466   -0.162 2.984 8,466   0.829 0.135
Italy 5,894   0.322 6.831 5,601   0.124 1.296 5,601   0.955 0.057
Japan 56,454 0.379 5.738 39,763 0.095 2.437 39,763 0.849 0.148
Korea 22,019 0.620 8.274 16,819 0.013 1.885 16,823 0.949 0.041
Mexico 3,709   0.689 6.688 3,320   0.049 2.691 3,356   0.828 0.173
Netherlands 1,896   0.668 6.759 1,876   0.152 2.488 1,878   0.873 0.152
Norway 9,155   0.984 8.109 7,110   0.088 2.291 7,188   0.910 0.101
Portugal 2,220   0.240 7.157 2,206   0.075 1.968 2,206   0.930 0.024
Singapore 2,191   0.964 6.387 1,914   0.068 1.441 1,914   0.931 0.057
South Africa 13,193 1.015 7.267 9,973   0.145 2.269 9,973   0.910 0.074
Spain 10,605 0.550 6.959 9,962   0.002 1.296 9,962   0.956 0.076
Sweden 18,262 0.948 7.259 14,282 0.058 1.785 14,282 0.933 0.087
Switzerland 21,039 0.770 5.344 15,429 0.049 2.082 15,429 0.877 0.144
Taiwan 7,338   0.420 5.543 7,308   -0.130 2.483 7,308   0.836 0.067
Thailand 20,298 1.340 7.096 15,110 0.212 1.757 15,110 0.945 0.043
United Kingdom 60,169 0.837 5.364 52,583 0.013 1.545 52,589 0.916 0.083

Net Return (%) Net Alpha (%) Stlye-Matching Model R^2
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Figure 4.3 illustrates the monthly NHHI of the U.S. active equity mutual fund 

market from January 1992 to December 2015. It shows that the concentration level of 

this U.S. market decreased substantially from January 1992 to the end of 2003. It started 

to increase gradually, decreased again, and has reached the lowest point at the current 

time. 

 

Figure 4.3. NHHI of the U.S. Active Equity Mutual Fund Market 

The NHHI value is in decimals. The sample period is from January 1992 to December 2015. 

 
 

Empirical Results 

Table 4.3 reports the empirical results of the market concentration-net alpha 

relation for the 30 active equity mutual fund markets in our sample. Here we focus on 

how the fund net alphas are associated with the concentration of the U.S. active equity 

mutual fund market. Panel A reports the results of the model which contains only the 

first-order terms of the local market NHHI and the U.S. market NHHI. We can see that 

most markets’ fund net alphas, on average, are significantly associated with the U.S. 

NHHI after controlling for the local market NHHI. In particular, 17 (5) markets’ fund 

net alphas, on average, are significantly negatively (positively) associated with the U.S. 

NHHI. Also, most markets’ fund net alphas, on average, are significantly associated 
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with the local NHHI; in particular, 9 (13) markets’ fund net alphas, on average, are 

significantly negatively (positively) associated with the local NHHI. Interestingly, in 19 

markets, the sign of the coefficient of the U.S. NHHI is different from that of the local 

NHHI, and future research can explore the reason behind this phenomenon. 

Panel B shows the results of the model and contains both the first-order terms 

and second-order terms of the local market NHHI and the U.S. market NHHI. We can 

see that 14 (6) markets’ fund net alphas, on average, are concave (convex) in the U.S. 

NHHI, as the second-order term of the U.S. market NHHI is significantly negative 

(positive). On the other hand, 13 (7) markets’ fund net alphas, on average, are concave 

(convex) in the local NHHI. 

We pool the datasets of all markets together and run the model again. We 

present the results in Panel C. We find that on average, fund net alphas are significantly 

negatively associated with the U.S. NHHI, and concave in the U.S. NHHI. On the other 

hand, although fund net alphas are significantly negatively associated with the local 

NHHI in model specification 1, the coefficient of the local NHHI loses significance 

after we include the U.S. NHHI into the model (i.e., model specifications 2 to 4). 
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Table 4.3. Market Concentrations and Fund Net Alpha 

This table reports the results of our RD panel regression model for each market. The dependent variable 
is fund net alpha. Panel A reports the results of the model including only the first-order terms of the 
lagged value of the forward demeaning local NHHI and U.S. NHHI, whereas Panel B reports the results 
of the model including the first-order and second-order terms of lagged value of the forward demeaning 
local NHHI and U.S. NHHI. Panel C reports the results when pooling the datasets of all markets together. 
NHHI is the Normalized-Herfindahl-Hirschman index measured in decimal. The unit of coefficients is 
percentage. Standard errors are clustered by fund and presented in parentheses. The symbols ***, **, and 
* represent the 1%, 5%, and 10% significant level in a two-tail t-test, respectively. 

Panel A Result of Each Market, First-Order 

 
  

Global Market Coefficient S.E. Coefficient S.E.
Australia 1.2906 (1.1457) -75.5710*** (13.5934) 32,608 0.002 0.001
Austria 0.0897 (0.1684) -458.9187** (125.5158) 564 0.012 0.008
Belgium 0.4893** (0.2217) -25.8232 (22.2164) 2,668 0.001 0.000
Brazil -11.2486*** (2.4068) 322.5425*** (53.5838) 11,893 0.006 0.005
Canada 0.4756 (4.5740) -61.8306*** (12.1148) 43,949 0.001 0.001
Chile -11.8376 (10.5419) -215.6667*** (75.0880) 1,475 0.016 0.015
China (Mainland) -15.3670 (9.2375) 241.2103 (144.8966) 321 0.018 0.011
Denmark -0.0754 (0.7729) -75.4036** (28.7389) 3,646 0.003 0.002
Finland 3.4390*** (0.7475) -12.1600 (24.5917) 3,329 0.009 0.008
France 6.6353*** (1.2285) -50.3707*** (11.5293) 22,144 0.001 0.001
Germany 1.0358** (0.4296) -52.9686*** (12.4963) 10,541 0.001 0.001
Greece -0.7813*** (0.1655) -3.7675 (58.4727) 1,639 0.009 0.008
Hong Kong 0.7358*** (0.1301) 147.1041*** (33.2653) 2,159 0.011 0.011
India 2.5388*** (0.3792) -126.1794*** (25.7825) 10,981 0.006 0.005
Israel -20.3981*** (3.2614) -134.7909*** (28.6698) 8,384 0.002 0.002
Italy -0.4211 (1.1088) -21.7150 (18.0456) 5,554 0.000 0.000
Japan -0.7009*** (0.1262) -59.9246*** (14.0838) 39,445 0.003 0.003
Korea 83.9876*** (6.4067) -149.2417*** (17.1097) 16,609 0.009 0.009
Mexico 2.9666*** (0.9298) -235.7848*** (47.9464) 3,291 0.006 0.006
Netherlands -0.9892* (0.4906) 94.1368** (39.7610) 1,861 0.002 0.001
Norway -4.9509*** (0.7102) 38.1465* (20.9406) 7,065 0.005 0.005
Portugal -10.7860*** (2.0232) -594.4104*** (59.1839) 1,761 0.032 0.031
Singapore 0.4053 (0.2457) -44.1550 (30.5739) 1,900 0.008 0.007
South Africa -0.9647*** (0.2430) 24.1508 (25.5526) 9,895 0.005 0.005
Spain -17.9681*** (1.8727) -110.4906*** (14.7578) 9,877 0.014 0.013
Sweden 0.4302*** (0.1560) 21.8705 (16.4268) 14,186 0.001 0.001
Switzerland 0.4577** (0.2180) 56.2353*** (13.3695) 15,311 0.001 0.001
Taiwan 164.5697*** (40.6229) -96.5752*** (27.0815) 7,210 0.005 0.004
Thailand 22.3072*** (3.1148) -31.2096** (12.4564) 14,978 0.005 0.004
United Kingdom 0.2960*** (0.0762) -78.7195*** (7.7468) 52,156 0.003 0.003

Lagged Local NHHI Lagged U.S. NHHI
Obs R^2 Adj-R^2



94 
 

Panel B Result of Each Market, First-Order and Second-Order 

 
  

Global Market Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E.
Australia 12.1344 (15.0065) -620.8288*** (211.7154) 1,671.5690*** (220.4302) -140018.0767*** (17,983.1620) 3,848.2723** (1,910.1458) 32,608 0.007 0.006
Austria -13.4248 (10.7595) 1.2624 (2.5138) 15,469.9485*** (3,308.6370) -1.1498e+06*** (251,478.2428) 1,717.9306 (1,221.7965) 564 0.033 0.025
Belgium 14.9237*** (3.8047) -18.0470*** (2.7051) -919.5150 (568.4424) 70,365.0348 (45,487.0366) -881.2612* (474.4427) 2,668 0.007 0.005
Brazil -223.3929*** (73.4331) -172.3538 (137.7407) 8,235.7286*** (773.0714) -660744.6012*** (63,520.0179) 34,326.9545*** (10,002.9437) 11,893 0.014 0.014
Canada 95.7283 (58.2449) 24,143.0246*** (2,975.0089) 3,194.2467*** (225.4686) -130089.5009*** (15,966.0459) -118724.2097*** (16,624.3884) 43,949 0.012 0.012
Chile 1,231.5547*** (230.7132) 58,590.2686** (25,494.8691) -3,224.8274 (2,126.0537) 1266803.3425*** (322,320.2068) -602982.3203*** (179,010.7106) 1,475 0.037 0.034
China (Mainland) -53.5502 (70.2955) 434.4585 (322.7890) 299.2410 (1,784.1102) -10,881.0737 (209,526.1991) -1,111.8371 (17,053.1777) 321 0.025 0.010
Denmark -13.8217** (6.4208) -8.2598 (18.9726) 642.1270 (561.5610) -65,256.6056 (45,583.5397) 2,189.5172** (960.4949) 3,646 0.006 0.004
Finland -10.8887 (9.5915) -39.2853** (17.9864) 2,546.8754*** (546.7124) -224822.4020*** (50,069.7658) 3,499.5652* (1,920.1950) 3,329 0.015 0.013
France -440.0335*** (36.4607) -1,563.3112*** (148.4873) 632.5885*** (196.1863) -200861.7068*** (20,283.8866) 85,167.4164*** (6,495.1462) 22,144 0.013 0.013
Germany -294.6229*** (38.3071) -51.7654*** (9.2825) -1,612.6980*** (378.9749) -69,988.6949*** (20,751.7994) 46,490.7986*** (6,150.1818) 10,541 0.009 0.008
Greece 2.6161 (7.4420) 2.5538* (1.2781) 1,685.6667 (1,142.8328) -118750.0354 (82,244.9924) -934.2699 (1,042.7285) 1,639 0.011 0.008
Hong Kong 4.2212 (5.2975) -1.7773* (0.8884) 2,854.8654*** (589.8847) -206130.0127*** (42,669.0882) -297.9554 (700.5502) 2,159 0.018 0.016
India 124.6320*** (9.1950) -18.1484*** (3.6192) -4,525.2875*** (419.1960) 377,977.4446*** (32,533.0687) -16,823.5393*** (1,257.2852) 10,981 0.025 0.024
Israel 374.1449*** (56.5913) -8,319.4400*** (726.1704) -824.5578 (652.2047) 61,537.1866 (47,116.3854) -9,877.1457 (6,798.3432) 8,384 0.011 0.010
Italy -202.5231*** (74.5756) 254.9126 (165.9769) -409.9998 (466.6043) -18,096.3287 (27,326.8079) 27,405.4333*** (9,778.0061) 5,554 0.003 0.002
Japan -2.8400 (2.7628) 57.8573*** (4.8129) 938.3056** (445.0549) -70,039.0899** (35,105.6898) -2,648.6909*** (284.3859) 39,445 0.013 0.013
Korea 80.8340 (69.0326) 36,458.1654*** (3,376.2972) 1,733.9000*** (513.7604) 6,385.4397 (45,137.0800) -147980.9918*** (12,171.7114) 16,609 0.022 0.021
Mexico 44.7992*** (14.3663) -54.8955*** (6.3667) 1,717.8313 (1,092.1995) -148639.0269 (92,200.6805) -3,268.9933 (1,948.5128) 3,291 0.015 0.014
Netherlands 125.1996** (47.5393) -3.8764 (2.2596) -1,177.0623** (489.5913) 173,513.2144** (60,671.7974) -17,185.1809** (6,525.6993) 1,861 0.010 0.008
Norway -60.0770*** (22.2524) 6.1427 (44.2803) 2,499.4191*** (835.4820) -220908.8625*** (71,762.3241) 7,900.8989*** (2,570.0113) 7,065 0.011 0.010
Portugal 344.9390*** (79.2038) -625.9653*** (144.4188) 2,071.2786 (2,355.7691) 36,128.5548 (127,655.2587) -40,339.0456*** (8,351.0361) 1,761 0.069 0.067
Singapore -28.1398*** (9.2428) 3.9966*** (0.8335) -1,512.4202 (1,122.8143) 59,325.6407 (76,499.2671) 3,802.2678** (1,355.7160) 1,900 0.019 0.016
South Africa 16.7911*** (5.0119) -1.6189 (1.1140) 3,824.4959*** (504.0262) -285469.7106*** (38,524.3906) -2,443.4683*** (768.7778) 9,895 0.022 0.022
Spain 174.5518*** (33.7259) -1,199.7413*** (236.3992) 1,137.0467*** (266.6711) -60,279.1440*** (18,663.7125) -20,038.6924*** (3,929.2799) 9,877 0.020 0.019
Sweden 1.0919 (1.5475) -1.8420* (0.9988) -547.1235** (252.4415) 43,311.0509** (19,748.9973) 28.1569 (240.2488) 14,186 0.002 0.001
Switzerland -9.1391*** (1.8490) -10.7796*** (2.8832) 565.5256*** (207.9305) -43,742.3355*** (16,270.5384) 1,806.5763*** (371.0099) 15,311 0.004 0.003
Taiwan 4,456.9070*** (1,239.8500) -45,785.1589 (47,549.6937) -1,848.7771** (811.3109) 597,892.0507*** (37,756.4960) -581486.0656*** (78,407.1888) 7,210 0.019 0.018
Thailand 322.4031*** (35.4762) 1,990.5080*** (523.3670) -363.7719 (304.6007) 111,454.3335*** (24,155.8015) -57,209.8698*** (4,421.7657) 14,978 0.027 0.026
United Kingdom -2.6171 (2.2673) 0.0429 (0.3408) 383.2011*** (110.0330) -36,252.9033*** (8,528.5200) 432.5343 (351.8808) 52,156 0.004 0.003

R^2 Adj-R^2
Lagged Local NHHI (Lagged Local NHHI)^2 Lagged U.S. NHHI (Lagged U.S. NHHI)^2 (Lagged Local NHHI)*(Lagged U.S. NHHI)

Obs
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Panel C Result of Pooled Panel Data 

 
  

(1) (2) (3) (4)
Lagged Local NHHI -0.1420** -0.1002 0.6683

(0.0682) (0.0680) (0.6798)
(Lagged Local NHHI)^2 -0.1613

(0.2421)
Lagged U.S. NHHI -40.8668*** -40.2406*** 946.6345***

(4.2360) (4.2267) (83.7309)
(Lagged U.S. NHHI)^2 -75,422.6531***

(6,508.1317)
(Lagged Local NHHI)*(Lagged U.S. NHHI) -118.5105

(93.2153)

Obs 357,400 357,400 357,400 357,400
R^2 0.0000 0.0004 0.0004 0.0013
Adj-R^2 0.0000 0.0004 0.0004 0.0013
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Table 4.4 reports the empirical result of the market concentration-AFMI size 

relation for the 30 active equity mutual fund markets. Panel A reports the results of the 

model which contains only the first-order terms of the concentration measures. We can 

see that most markets’ AFMI sizes, on average, are not significantly associated with the 

U.S. NHHI, and instead, they are mainly explained by its lag values. In particular, we 

find that only 9 (2) markets’ AFMI sizes, on average, are significantly negatively 

(positively) associated with the U.S. NHHI. On the other hand, we find that only 7 (7) 

markets’ AFMI sizes, on average, are significantly negatively (positively) associated 

with the local NHHI. The insignificance of the coefficients of the U.S. NHHI and the 

local NHHI probably is due to the small sample periods of most of the global fund 

markets. 

Panel B reports the results of the model and contains both the first-order and 

second-order terms of the concentration measures. We find that only 3 (4) markets’ 

AFMI sizes, on average, are concave (convex) in the U.S. NHHI, as the second-order 

term of the U.S. market NHHI is significantly negative (positive). On the other hand, 

we find that only 3 (6) markets’ AFMI sizes, on average, are concave (convex) in the 

local NHHI. 

We pool the datasets of all markets together, run a panel VAR model and 

present the results in Panel C. Although panel VAR techniques become more and more 

popular, the algorithm of estimating a panel VAR is still under developed. Here, we use 

the most updated algorithm that we can find in STATA44, and it requires all variables in 

the panel VAR to be endogenous variables. Here, we include only AFMI size, the local 

NHHI, and the U.S. NHHI in the panel VAR. We find that on average, AFMI are 

significantly negatively associated with the U.S. NHHI, but not significantly associated 

with the local NHHI. As an aside, from the last two columns, we also note that on 

average, the U.S. NHHI and the local NHHI are not highly correlated with each other:  

the lagged U.S. NHHI is not statistically significantly associated with the local NHHI, 

and the lagged local NHHI is not economically significantly associated with the U.S. 

NHHI. 

  

                                                 
44 We use the “xtvar” function in STATA. 
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Table 4.4. Market Concentrations and AFMI Size 

This table reports the results of our VAR model. Panel A reports the results including only the first-order 
terms of local NHHI and U.S. NHHI in the model, whereas Panel B reports the results including the first-
order and second-order terms of these variables. Only the results of the first equation of our VAR model, 
i.e., the equation with AFMI size as the dependent variable, are reported in these two Panels. Panel C 
reports the result of a panel VAR model pooling all markets’ data together. AFMI size is the sum of funds’ 
net assets under management divided by the stock market capitalization in the same month, and its value 
is in decimal. NHHI is the Normalized-Herfindahl-Hirschman index measured in decimal. Lagged AFMI 
size, Time Trend and a constant term are also included in the model. Time Trend is included as an 
exogenous variable in the VAR, and is set to be one for the first month of the sample, and to increase by 
one each month. Small-sample adjusted statistics are used and presented. The symbols ***, **, and * 
represent the 1%, 5%, and 10% significant level in a two-tail t-test, respectively. 

Panel A Result of Each Market, First-Order 

   

Global Market Coefficient S.E. Coefficient S.E. Obs R^2
Australia -0.0711 (0.0518) -0.7225** (0.3367) 227 0.885
Austria 0.0065* (0.0038) -2.5065** (0.9665) 84 0.821
Belgium 0.0032** (0.0016) 0.0298 (0.0559) 142 0.884
Brazil 0.0068 (0.0050) 0.2356*** (0.0905) 166 0.894
Canada 0.3638* (0.1916) -0.1800 (0.2571) 227 0.979
Chile 0.0595 (0.0362) -0.1704 (0.2614) 59 0.982
China (Mainland) -0.0135*** (0.0046) -0.0300 (0.1638) 91 0.617
Denmark 0.7974 (0.6268) 14.5061 (18.7044) 191 0.911
Finland -0.0008 (0.0018) 0.1453 (0.1003) 142 0.981
France -0.0080 (0.0143) 0.0737 (0.1192) 142 0.927
Germany -0.0013*** (0.0004) -0.0048* (0.0025) 142 0.201
Greece -0.0059*** (0.0020) -1.4945*** (0.4690) 102 0.859
Hong Kong -0.0002** (0.0001) -0.0233** (0.0106) 129 0.988
India -0.0028** (0.0014) 0.0966 (0.1330) 136 0.914
Israel 0.0876* (0.0465) -0.4073 (0.5088) 117 0.745
Italy 0.0055 (0.0083) -0.0853 (0.1274) 142 0.942
Japan -0.0082 (0.0126) 1.8370 (1.8165) 199 0.801
Korea -0.1918 (0.3173) 2.7039* (1.4235) 110 0.903
Mexico -0.0002*** (0.0001) -0.0052* (0.0031) 133 0.975
Netherlands 0.0121 (0.0197) 0.0823 (0.0598) 142 0.005
Norway 0.0195 (0.0201) 0.0349 (0.5369) 191 0.903
Portugal 0.0260*** (0.0056) -0.2390*** (0.0829) 113 0.907
Singapore -0.0003 (0.0002) -0.0398 (0.0461) 144 0.960
South Africa -0.0020* (0.0010) 0.0933 (0.1306) 174 0.961
Spain 0.0047* (0.0027) -0.0746** (0.0309) 142 0.993
Sweden -0.0035 (0.0031) -0.0650 (0.1761) 191 0.976
Switzerland 0.0025 (0.0041) 0.3326 (0.2372) 204 0.924
Taiwan 0.1689* (0.0928) -0.0535 (0.1151) 74 0.979
Thailand 0.2471 (0.9116) -4.3840 (5.9990) 171 0.718
United Kingdom -0.0029 (0.0020) -0.7151*** (0.2317) 157 0.928
Lagged AFMI Size Yes

Time Trend Yes
Constant Yes

Lagged Local NHHI Lagged U.S. NHHI
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Panel B Result of Each Market, First-Order and Second-Order 

 
 

Global Market Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Obs R^2
Australia -0.2192 (0.2840) 4.9728 (3.6708) -1.4935 (5.0678) 92.0455 (393.0443) -35.7700 (24.9172) 227 0.887
Austria 0.0696* (0.0385) -0.0064 (0.0122) -11.5497 (15.8488) 777.1114 (1,083.7996) -7.5277* (3.9499) 84 0.818
Belgium -0.0133 (0.0115) 0.0031 (0.0064) -1.1532 (0.7169) 77.5717 (55.9782) 1.7651 (1.3490) 142 0.878
Brazil 0.1340 (0.0838) -0.0890 (0.1407) 0.7521 (1.3696) -12.0716 (102.1999) -18.4832 (11.5982) 166 0.896
Canada -1.3296* (0.7905) 233.3294*** (40.0376) -6.1615 (5.1675) 1,246.2961*** (453.4508) -839.6467*** (187.1214) 227 0.981
Chile -0.2491 (0.2917) 2.5488 (25.3728) 9.3029** (3.8543) -907.2576** (439.7056) 52.4162 (178.0283) 59 0.984
China (Mainland) -0.0263 (0.0215) 0.4428*** (0.1526) -0.3591 (0.9395) 58.0120 (71.3939) -7.3075 (4.7038) 91 0.648
Denmark -15.8950*** (5.9205) 15.5750 (11.4372) -35.5479 (359.1966) -4,480.4681 (27,826.2122) 1,876.3508* (1,015.3928) 191 0.916
Finland 0.0374 (0.0261) 0.0491 (0.0406) 0.8491 (1.6501) -0.6120 (143.3447) -7.0856 (4.8149) 142 0.982
France 0.1594 (0.2816) 2.8767*** (0.8947) 0.3133 (1.6465) 101.9600 (161.4764) -60.7448 (41.3272) 142 0.935
Germany -0.0024 (0.0027) -0.0014 (0.0011) 0.0063 (0.0387) -2.4138 (2.2264) 0.3915 (0.4211) 142 -0.160
Greece 0.0078 (0.0466) -0.0023 (0.0119) 5.0494 (6.7230) -442.6780 (493.9509) -1.4952 (6.4397) 102 0.860
Hong Kong 0.0015 (0.0012) -0.0005 (0.0004) 0.0598 (0.1265) -5.2909 (8.6571) -0.2030 (0.1565) 129 0.989
India -0.0254 (0.0202) 0.0274*** (0.0098) -1.4189 (1.0177) 97.3713 (75.1043) 1.5355 (2.5322) 136 0.922
Israel -3.3545*** (1.0891) 13.6453 (9.4577) 4.4281 (7.4120) -690.1643 (501.0213) 554.3161*** (141.8888) 117 0.764
Italy -0.0069 (0.1804) -0.7317 (0.5187) -1.3109 (1.4909) 71.3317 (89.7263) 10.5638 (23.6822) 142 0.946
Japan 0.2851 (0.2229) -0.2560 (0.3593) -127.6519*** (31.0744) 9,783.1203*** (2,345.5046) -26.3394 (27.0975) 199 0.817
Korea 9.3334* (4.8315) -506.5681*** (182.5274) -7.6466 (23.3194) -209.7097 (2,287.1588) 734.0478 (720.2526) 110 0.911
Mexico -0.0005 (0.0009) 0.0004 (0.0005) 0.0115 (0.0496) -1.3550 (4.1335) 0.0276 (0.1079) 133 0.975
Netherlands 0.0004 (0.0091) -0.0528*** (0.0074) 0.4010* (0.2131) -31.4706* (18.3690) 0.6027 (1.1448) 142 -0.050
Norway -1.1470*** (0.3237) 1.8692*** (0.6539) 8.6998 (10.3119) -1,054.8075 (843.4399) 123.0075*** (38.2893) 191 0.909
Portugal 0.0824 (0.0865) -0.0525 (0.1543) 2.5054 (2.6280) -157.5255 (142.0225) -7.2516 (9.0960) 113 0.910
Singapore -0.0093* (0.0050) -0.0006 (0.0013) -1.8129*** (0.6777) 120.4225*** (45.7049) 1.4151** (0.7050) 144 0.962
South Africa -0.0203 (0.0384) -0.0002 (0.0041) 3.8373* (2.2840) -291.7238* (167.3644) 2.8387 (6.3129) 174 0.962
Spain 0.0708* (0.0395) -0.5463** (0.2376) 0.6545 (0.5726) -48.0717 (45.9861) -4.7948 (5.4162) 142 0.993
Sweden -0.0275 (0.0649) 0.0265 (0.0671) 2.9276 (2.9221) -237.5882 (220.9121) 2.6127 (8.4581) 191 0.976
Switzerland -0.1467*** (0.0344) 0.0867 (0.0627) 2.9796 (3.4156) -251.8242 (254.1418) 18.9163*** (4.3578) 204 0.932
Taiwan -3.3007 (3.0760) 104.4763 (108.9223) -1.2560 (1.7921) -84.9171 (107.8926) 243.5878 (199.6846) 74 0.980
Thailand 0.3421 (11.9248) -52.0553 (114.9224) -74.1993 (126.7540) 4,766.8786 (9,451.4251) 365.4583 (1,382.0903) 171 0.719
United Kingdom -0.0488 (0.0494) 0.0155** (0.0078) -9.2242*** (3.1868) 589.7990*** (227.6833) 5.4561 (7.6308) 157 0.932
Lagged AFMI Size Yes

Time Trend Yes
Constant Yes

Lagged Local NHHI (Lagged Local NHHI)^2 Lagged U.S. NHHI (Lagged U.S. NHHI)^2 (Lagged Local NHHI)*(Lagged U.S. NHHI)
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Panel C Result of Panel VAR 

 
  

AFMI Size Local NHHI U.S. NHHI
Lagged AFMI Size 0.8777*** -0.0382 0.0001

(0.0066) (0.0470) (0.0003)
Lagged Local NHHI -0.0004 0.9590*** 0.0002***

(0.0007) (0.0046) (0.0000)
Lagged U.S. NHHI -0.0744*** -0.0783 0.9987***

(0.0262) (0.1852) (0.0011)
Constant Yes Yes Yes

Obs 3,210 3,210 3,210
R^2 0.9877 0.9713 0.9964
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Table 4.5 summaries the results in Table 4.3 and Table 4.4. It shows that global 

fund markets’ fund net alphas and AFMI size tend to move in the same direction with 

the U.S. AFMI concentration:  15 (5) markets’ fund net alphas and AFMI size are both 

on average, negatively (positively) associated with the U.S. NHHI; among them, 7 (1) 

markets’ fund net alphas and AFMI size are both significantly negatively (positively) 

associated with the U.S. NHHI. On the other hand, global fund markets’ fund net alphas 

and AFMI size do not tend to move in the same direction with the local AFMI 

concentration:  only 4 (6) markets’ fund net alphas and AFMI size are both on average, 

negatively (positively) associated with the local NHHI; among them, 2 (2) markets’ 

fund net alphas and AFMI size are both significantly negatively (positively) associated 

with the local NHHI. Also, from the Panel Cs of Table 4.3 and Table 4.4, we can see 

that when pooling all the markets’ data together, on average, fund net alphas and AFMI 

size, are both significantly negatively associated with the U.S. NHHI but are 

insignificantly associated with the local NHHI. 

The fact that global fund markets’ fund net alphas and AFMI size tend to move 

in the same direction with the U.S. AFMI concentration is consistent with the prediction 

of our theoretical model under both the exogenous concentration framework and the 

endogenous concentration framework. Our global fund market samples contain the 

funds that invest only in the local stock market. Based on our theoretical model, a 

higher U.S. AFMI concentration would affect these funds in two aspects: 1) it implies 

more unexplored opportunities in U.S. stock markets, which attracts local AFMI 

managerial efforts, leaves more unexplored opportunities in the local stock market in 

equilibrium (i.e., the substitution effect) and makes managerial effort spent in local 

stock market more efficient in producing gross alphas; 2) it implies that it is easier for 

U.S. managers to ask for higher salary, which consequently increases the reservation 

price of effort of local managers, thus increasing the costs of local managerial efforts. 

Therefore, in some markets, if both fund net alphas and AFMI size are both positively 

(negatively) associated with the U.S. AFMI concentration, then it implies that a higher 

U.S. AFMI concentration increases local AFMI managerial effort impacts on gross 

alpha production more (less) than it increases effort costs. 

The current low and probably decreasing concentration in the U.S. AFMI, given 

the trade-off of higher U.S. AFMI concentration is not changed, would benefit (harm) 

the global AFMIs whose fund net alphas and AFMI size are on average, negatively 
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(positively) associated with the U.S. NHHI. Our results show that half the global 

AFMIs in our sample are likely to benefit from that. 

Robustness Check 

We conduct the robustness checks on our empirical results. We analyze the 

sensitivity of our results to various measures of market concentration, by replacing the 

local (U.S.) NHHI by the local (U.S.) HHI or the local (U.S.) 5-Fund-Index and then 

redoing the analyses. We find consistent results. Also, we analyze the sensitivity of the 

results in Table 4.3 by using fund fixed-effect regressions instead of the RD method. 

We find consistent results. 
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Table 4.5. Summary of Results 

This table summarizes the results of the previous two tables and shows the number of markets that 
present the corresponding results. The numbers of positive or negative first-order relationships are 
counted from Panel A of the previous two tables, whereas the numbers of positive or negative second-
order relationships are counted from Panel B of the previous two tables. 

  

Positive 1st-order 8 Negative 1st-order 22
Significantly Positive 1st-order 5 Significantly Negative 1st-order 17

Positive 2nd-order 11 Negative 2nd-order 19
Significantly Positive 2nd-order 6 Significantly Negative 2nd-order 14

Positive 1st-order 12 Negative 1st-order 18
Significantly Positive 1st-order 2 Significantly Negative 1st-order 9

Positive 2nd-order 12 Negative 2nd-order 18
Significantly Positive 2nd-order 4 Significantly Negative 2nd-order 3

Both Positive 1st-order 5 Both Negative 1st-order 15
Both Significantly Positive 1st-order 1 Both Significantly Negative 1st-order 7

Both Positive 2nd-order 4 Both Negative 2nd-order 11
Both Significantly Positive 2nd-order 0 Both Significantly Negative 2nd-order 1

Positive 1st-order 17 Negative 1st-order 13
Significantly Positive 1st-order 13 Significantly Negative 1st-order 9

Positive 2nd-order 12 Negative 2nd-order 18
Significantly Positive 2nd-order 7 Significantly Negative 2nd-order 13

Positive 1st-order 15 Negative 1st-order 15
Significantly Positive 1st-order 7 Significantly Negative 1st-order 7

Positive 2nd-order 16 Negative 2nd-order 14
Significantly Positive 2nd-order 6 Significantly Negative 2nd-order 3

Both Positive 1st-order 6 Both Negative 1st-order 4
Both Significantly Positive 1st-order 2 Both Significantly Negative 1st-order 2

Both Positive 2nd-order 5 Both Negative 2nd-order 7
Both Significantly Positive 2nd-order 1 Both Significantly Negative 2nd-order 1

Local NHHI -- Net Alpha & AFMI Size

U.S. NHHI -- Net Alpha

U.S. NHHI -- AFMI Size

Local NHHI -- Net Alpha

Local NHHI -- AFMI Size

U.S. NHHI -- Net Alpha & AFMI Size
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4.4. Conclusion 

We introduce a theoretical model of an international AFMIs equilibrium, where 

we investigate how local and foreign AFMI market concentrations affect local AFMI 

performance, size, and managerial efforts. We extend Chapter 2’s AFMI model to a 

two-country framework, where in each country, investors can only invest in local AFMI 

funds due to transaction costs, while AFMI funds can invest in both local and foreign 

stock markets. Higher local market concentration levels imply more unexplored 

investment opportunities in the local stock market, making managers’ efforts spent in 

the local stock market more productive. In equilibrium, it also attracts managers in the 

foreign country to invest in the local stock market, leaving more unexplored investment 

opportunities in the foreign market and, consequently, making managers’ efforts spent 

in the foreign stock market more productive. At the same time, however, higher local 

market concentration levels allow local managers to require higher compensation for 

their efforts, making managerial efforts spent in both local and foreign stock markets 

more costly. On the other hand, higher foreign market concentration levels imply more 

unexplored investment opportunities in the foreign stock market, making managers’ 

efforts spent in the foreign stock market more productive. In equilibrium, it also attracts 

managers in the local market to invest in the foreign stock market, leaving more 

unexplored investment opportunities in the local market, and consequently making 

managers’ efforts spent in the local stock market more productive. At the same time, 

however, higher foreign market concentration levels allow foreign managers to require 

higher compensation for their efforts, increasing local managers’ reservation price of 

efforts and, consequently, making local managerial efforts more costly. 

Our model’s comparative statistics offer the market concentration-net alpha 

relations and market concentration-AFMI size relations. In particular, in equilibrium, if 

higher local (foreign) market concentration increases effort impacts on alpha production 

more than it increases effort costs, i.e., higher fund local (foreign) market concentration 

induces a larger sum of direct benefits of managerial efforts, then fund expected net 

alphas and AFMI size will both increase, and the opposite is also true. In addition, the 

concavity of fund expected net alphas in local (foreign) market concentration indicates 

that the sum of direct benefits of managerial efforts is concave in local (foreign) market 

concentration. This further induces concavity of AFMI size in local (foreign) market 

concentration. On the other hand, the convexity of AFMI size in local (foreign) market 
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concentration implies that the sum of direct benefits of managerial efforts is convex in 

local (foreign) market concentration, and this induces convexity of AFMI size in local 

(foreign) market concentration. 

We specialize our model to allow for endogenous market concentration levels, 

which befits empirical market concentration measures and facilitates empirical studies. 

Although the local market concentration-net alpha relation and the local market 

concentration-AFMI size relation become more complex in this framework, for the 

foreign counterparts, we are still able to conclude that fund expected net alphas and 

AFMI size, in equilibrium, move in the same direction with foreign market 

concentration. 

We use the data of 30 active equity mutual fund markets in Morningstar Direct 

to test our theoretical findings. We find that, 17 (5) markets’ fund net alphas, on average, 

are significantly negatively (positively) associated with the U.S. NHHI, while 9 (13) 

markets’ fund net alphas, on average, are significantly negatively (positively) associated 

with the local NHHI. Also, we find that only 9 (2) markets’ AFMI size, on average, are 

significantly negatively (positively) associated with the U.S. NHHI while only 7 (7) 

markets’ AFMI size, on average, is significantly negatively (positively) associated with 

the local NHHI. More importantly, we find that 15 (5) markets’ fund net alphas and 

AFMI size are both on average, negatively (positively) associated with the U.S. NHHI; 

among them, 7 (1) markets’ fund net alphas and AFMI size are both significantly 

negatively (positively) associated with the U.S. NHHI. If we pool all the markets’ data 

together and redo our analyses, we find that on average, fund net alphas and AFMI size 

are both significantly negatively associated with the U.S. NHHI but are insignificantly 

associated with the local NHHI. The fact that global fund markets’ fund net alphas and 

AFMI size tend to move in the same direction with the U.S. AFMI concentration is 

consistent with our theoretical implications. 

Our findings provide relevant implications for fund managers, investors, and 

regulators. If market parameters leading to the current equilibrium persist, the current 

low, and probably decreasing, concentration in the U.S. AFMI, would benefit (harm) 

the global AFMIs whose fund net alphas and AFMI size are on average, negatively 

(positively) associated with the U.S. NHHI. Our empirical results suggest that a large 

proportion of the global AFMIs would benefit from the declining U.S. AFMI 

concentration.
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 Chapter 5:  Conclusion 

This thesis studies how AFMI market concentration levels affect AFMI 

performance, size, managerial efforts, and fees. In Chapter 2, we develop a theoretical 

model to analyze an AFMI equilibrium where we investigate performance, size, 

managers’ costly (optimal) efforts and fees, under a continuum of exogenous market 

concentration levels. We provide comparative statistics that characterize the market 

concentration-net alpha relation and the market concentration-AFMI size relation. In 

particular, funds’ expected net alphas and AFMI size increase with market 

concentration if and only if higher concentration induces a larger impact on gross alpha 

production than on the costs of effort (i.e., higher concentration induces higher AFMI 

direct benefits of net alpha production). Then we specialize our model to allow for 

endogenous market concentration levels, which befits empirical market concentration 

measures and enables us to study the model empirically. 

In Chapter 3, we use Morningstar’s U.S. active equity mutual fund data to test 

the implications of our model developed in Chapter 2. We find that in the U.S. AFMI, 

on average, both fund net alphas and AFMI size are increasing concave with market 

concentration. 

In Chapter 4, we extend our study and introduce a theoretical model of an 

international AFMI equilibrium, where we investigate how local and foreign AFMI 

market concentrations affect local AFMI performance, size, managerial efforts and fees. 

We show that in equilibrium, if higher local (foreign) market concentration increases 

effort impacts on alpha production more than it increases effort costs, i.e., if higher fund 

local (foreign) market concentration induces a larger sum of direct benefits of 

managerial efforts, then fund expected net alphas and AFMI size will both increase, and 

the opposite is also true. We specialize our model to allow for endogenous market 

concentration levels to facilitate empirical studies. Although the local market 

concentration-net alpha relation and the local market concentration-AFMI size relation 

become more complex in this framework, we are still able to conclude that fund 

expected net alphas and AFMI size, in equilibrium, move in the same direction as 

foreign market concentration. 

We use data of 30 active equity mutual fund markets in Morningstar Direct to 

test our theoretical findings. We find that 17 (5) markets’ fund net alphas, on average, 

are significantly negatively (positively) associated with the U.S. AFMI market 
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concentration, while 9 (13) markets’ fund net alphas, on average, are significantly 

negatively (positively) associated with the local AFMI market concentration. Also, we 

find that only 9 (2) markets’ AFMI size, on average, are significantly negatively 

(positively) associated with the U.S. AFMI market concentration while only 7 (7) 

markets’ AFMI size, on average, are significantly negatively (positively) associated 

with the local AFMI market concentration. More importantly, we find that 15 (5) 

markets’ fund net alphas and AFMI size are both, on average, negatively (positively) 

associated with the U.S. AFMI market concentration, and among them, 7 (1) markets’ 

fund net alphas and AFMI size are both significantly negatively (positively) associated 

with the U.S. AFMI market concentration. If we pool all the markets’ data together, we 

find that on average, fund net alphas and AFMI size, are both significantly negatively 

associated with the U.S. AFMI market concentration, but they are insignificantly 

associated with the local AFMI market concentration. 

This thesis provides relevant implications for fund managers, investors, and 

regulators. Under the current, empirically identified, tradeoff between changes in 

managerial productivity and in effort costs due to changes in the U.S. AFMI market 

concentration level, the current low, and probably decreasing, U.S. AFMI market 

concentration is likely to decrease fund net alphas, AFMI size, and AFMI direct 

benefits of net alpha production in the U.S. AFMI. On the other hand, this low and 

probably decreasing U.S. AFMI market concentration is likely to benefit a large 

proportion of the global AFMI markets in terms of higher fund net alphas and larger 

AFMI size. 

The findings in this thesis motivate future studies. First, our empirical analysis 

can be extended to the pension fund industry and hedge fund industry, and it is 

interesting to check whether the difference in these fund industries’ regulations affect 

the AFMI market concentration-net alpha and the AFMI market concentration-AFMI 

size relations. Second, in Chapter 4, when we study how local and U.S. AFMI market 

concentrations affect fund net alphas, we find that in most of the markets, the sign of the 

coefficient of the U.S. AFMI market concentration is opposite to that of the local AFMI 

market concentration. Future research can explore the reason behind this phenomenon. 

In addition, as AFMI concentration is a relevant factor influencing AFMI net alphas and 

size, future research can study how it affects the flow-performance relation in fund 

markets.  
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Appendices 
A. Appendix of Chapter 2 

 
Proof of Equivalence of Managers’ Problems (2.12) and (2.13) 

 Due to competition, if funds offer higher (lower) expected net alphas, 

investments shift into (out of) it. Thus, in equilibrium all funds offer the same expected 

net alphas. We show in Proposition 2 and 3 that the equilibrium expected net alpha is 

the highest one that each manager can achieve at zero profit, and that equilibrium fund 

sizes are determined by manages costs (which can be viewed as a reflection of their 

skills). 

Suppose that the funds market expected net alpha is  𝛼𝛼�, where  𝛼𝛼�  is below the 

highest level of fund expected net alpha that mangers can produce (implying positive 

profits). While producing expected net alpha of  𝛼𝛼�, manager i maximizes profits by 

choosing optimal effort  𝑒𝑒𝑖𝑖∗  that maximizes fund expected net alpha (i.e., the conditions 

in Proposition 2 hold), and then charges a fee  𝑓𝑓𝑖𝑖  such that her fund expected net alpha 

becomes  𝛼𝛼�. Then, the managerial fee becomes 

 

*( ; )i i
Sf a b A e H
W

a= − + − . (A1) 

Define the profit rate of manager  𝑖𝑖, 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,  as  𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 ≜ 𝑓𝑓𝑖𝑖 − 𝐶𝐶𝑖𝑖(𝑒𝑒𝑖𝑖∗, 𝑠𝑠𝑖𝑖;𝐻𝐻).  Then, from 

the last definition and Equation (A1), we have 

 

* *
0, 1, 2,( ; ) ( ; )i i i i i i i

Sa b A e H pro c c s c e H
W

a = − + − − − − . (A2) 

As all managers produce the same level of expected net alphas, Equation (A2) implies 

an equilibrium condition, 

 1, 1, , ,i i i j j jpro c s pro c s i j+ = + ∀ . (A3) 

Next, we consider manager  𝑖𝑖’s profit function 

 *
0, 1, 2,[ ( ; )]i i i i i i is f c c s c e H− − − , (A4) 

and by the first-order condition, the optimal fund size given manager  𝑖𝑖’s profit level is 

 
*

0, 2,

1, 1,

( ; )
2 2 2

i i i iopt i i
i

i i

f c c e H pro ss
c c

− −
= = + . (A5) 
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The latter equality is useful in presenting the optimal size relative to current size. Note 

that if manager  𝑖𝑖  maximizes her fund’s expected net alpha, her profit rate  𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = 0, 

and the condition in Equation (A5), for 𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜, does not exist. For a particular manager  𝑗𝑗, 

𝑗𝑗 ≠ 𝑖𝑖 , it is possible that  𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗   so high that  𝑠𝑠𝑗𝑗 < 𝑠𝑠𝑗𝑗𝑜𝑜𝑝𝑝𝑝𝑝 . In other words, although 

manager  𝑖𝑖  does not observe other managers’ cost functions and profit rates, she knows 

that it is possible that some other manager(s) might have incentive to lower down the 

profit rate to attract investments, increase their fund size and increase their fund’s 

profits. 

Following this argument, we analyze a simple game between manager  𝑖𝑖  and 

other managers, grouped as an entity “−𝑖𝑖”. If manager  𝑖𝑖  improves her fund expected 

net alpha infinitesimally, then, other managers receive no investments and get zero 

profit, but her profits will be changed by an infinitesimal amount  𝜀𝜀𝑖𝑖. If, on the other 

hand, manager −𝑖𝑖 (any of the other managers) increases her fund’s expected net alpha 

infinitesimally, then manager  𝑖𝑖   receives no investment and earns zero profit, but 

manager −𝑖𝑖’s profit changes by  𝜀𝜀−𝑖𝑖. If all managers produce the same level of fund 

expected net alphas, then they can make profit. Note that  𝜀𝜀𝑖𝑖 (𝜀𝜀−𝑖𝑖) can be positive or 

negative, depending on whether manager  𝑖𝑖’s (−𝑖𝑖’s) fund size is below optimal level or 

above optimal level. Assume manager  −𝑖𝑖’s strategy is to improve the fund expected 

net alpha with probability  𝑝𝑝  and maintain  𝛼𝛼�  with probability  1 − 𝑝𝑝. This does not 

mean that manager  – 𝑖𝑖  randomly chooses her action. Instead, it means that manager  𝑖𝑖  

knows that it is possible that some other manager(s) improve fund expected net alpha to 

attract investments in order to improve fund profits, and this probability,  𝑝𝑝, is nontrivial. 

Suppose that manager  𝑖𝑖’s strategy is to improve her fund expected net alpha with 

probability  𝜃𝜃  and maintain  𝛼𝛼�  with probability  1 − 𝜃𝜃. The payoffs of the game are 

illustrated in the following table, with the row (column) representing manager 𝑖𝑖’s (−𝑖𝑖’s) 

action, and with manager  𝑖𝑖’s (−𝑖𝑖’s) payoffs are in the first (second) figures in the 

brackets. 

  Maintain  𝛼𝛼� Improve Infinitesimally 
  1 − 𝑝𝑝 𝑝𝑝 

Maintain  𝛼𝛼� 1 − 𝜃𝜃 (𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖 ,𝑝𝑝𝑝𝑝𝑝𝑝−𝑖𝑖𝑠𝑠−𝑖𝑖) (0,𝑝𝑝𝑝𝑝𝑝𝑝−𝑖𝑖𝑠𝑠−𝑖𝑖 + 𝜀𝜀−𝑖𝑖) 
Improve 

Infinitesimally 𝜃𝜃 (𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖 + 𝜀𝜀𝑖𝑖 , 0) (𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖 + 𝜀𝜀𝑖𝑖 , 𝑝𝑝𝑝𝑝𝑝𝑝−𝑖𝑖𝑠𝑠−𝑖𝑖 + 𝜀𝜀−𝑖𝑖) 

The expected payoff of manager  𝑖𝑖  is 
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 (1 )[(1 ) ( )] ( )i i i i i i i i ip pro s pro s p pro sp θ θ ε θ ε= − − + + + +  (A6) 

The first-order condition is 

 i
i i i

d p pro s
d
p ε
θ

= + ×  (A7) 

With  𝜀𝜀𝑖𝑖 → 0, 𝑑𝑑𝜋𝜋𝑖𝑖/𝑑𝑑𝑑𝑑 > 0. Thus, manager  𝑖𝑖  chooses  𝜃𝜃 = 1  to maximize  𝜋𝜋𝑖𝑖. Note 

that if  𝛼𝛼�  is the feasibly maximum fund expected net alpha, managers’ profit rates are 

zero, and  𝜀𝜀𝑖𝑖  and  𝜀𝜀−𝑖𝑖  are negative. Then, in this case, the unique Nash equilibrium is 

(Maintain  𝛼𝛼�, Maintain  𝛼𝛼�). 

Therefore, each manager will improve his or her fund expected net alpha as long 

as it is below the maximum fund expected net alpha, thus, managers’ problems of 

maximizing profits is equivalent to their maximizing funds’ expected net alphas. 

Theories for the Risk-Neutral Case 
Where there are infinitely many small risk-neutral investors (i.e., N →∞ ), 

each investor j ’s choice of jδ  has no effect on funds’ sizes, thus no effect on /S W ; 

but each of them imposes a negative externality on other investors:  as investors 

increase their investments in funds when they observe positive expected net alphas, the 

net alpha received by each investor diminishes because of the decreasing returns to 

scale at both the industry level and fund level. In other words, investors dilute each 

other’s returns, driving the expected net alphas on all active funds toward zero. A small 

investor j ’s problem is 

  

* *E( | )max max ( ; )j p i i
Sa b A H f

W
r D em  + − + −   

=
 j j

j Mδ

T

δ
δ ι  (A8) 

subject to 

 1≤T
j Mδ ι , (A9) 

 , 0,j i iδ ≥ ∀ , (A10) 

 * *( , ; ) 0,i
i ii if C s He− = ∀ , (A11) 

 * * *
2( ; ) ( ; ) ( ; ) 0,

i i ii ie e ieA H c H B ie He e− = = ∀ . (A12) 

These constraints are the same for their counterparts, investors who are mean-variance 

risk-averse. We assume a symmetric equilibrium such that each investor makes the 

same equilibrium optimal investment allocation (i.e., *
jδ  is the same for all j ), so we 

have 
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 /S W=M
*T
jδ ι . (A13) 

Where 1N = , the single large investor internalizes the whole market and can 

determine is , 1,...,i M=  and /S W  to maximize his or her expected portfolio return. In 

this case, the investor faces a tradeoff between allocating additional dollars to funds to 

take advantage of fund net alphas and diluting returns on wealth already in funds. 

Notice that this situation includes the case where there are N  investors and they 

collude to act as a single entity. The single investor’s problem is 

 { }
1 1

* *
1 1 1max maE( | x ( ; )) p i ir D ea b A H fm  + − + −=  

T
M Mδ δ

Tδ δ ι ι , (A14) 

subject to the conditions from (A9) to (A12). Similarly, we have 

 1 /S W=M
*Tδ ι . (A15) 

The next proposition defines the equilibrium in the risk-neutral case. 

PROPOSITION RN1, Unique Nash Equilibrium. 

Whether N →∞  or 1N = , 

1) There exists a unique Nash equilibrium, { }, ,* * *e f δ , where 

*e  is a 1M ×  vector that aggregates individual managers’ optimal effort allocations, 
*
ie ; 

*f  is a 1M ×  vector that aggregates individual managers’ optimal fee allocations, 
*

if ; and 

*δ  is a M N×  matrix that aggregates the vector of individual investors’ optimal 

wealth allocations to funds, *
jδ . 

2) In this equilibrium, managers produce the same expected net alpha that drives their 

economic profits to zero, by charging only break-even fees, and investors allocate 

the same wealth proportions to each of the funds. 

Proof of Proposition RN1. See the following sections in Appendix. 

The following proposition offers some equilibrium results. 

PROPOSITION RN2, Equilibrium by Optimal Allocations. 

1) N →∞ , 



114 
 

 ( ) 1
1

1,

*

1

( ) 1,/ min , ,i

M
ii

S W
b c W

X H je
−

−
=

 
 = =  




∀
+

 ∑
*T

Mjδ ι . 

Where / 1S W < , we have 
{ }|E( | ) 0i Dα =* * *e , f , δ

; 

where / 1S W = , we have { }
 ( )*

1
1

1,1
| ) | , 0)( (E M

iii iD b c WX Heα
−

−
=

−  = + ≥  
∑* * *e , f , δ

. 

2) 1N = , 

 ( )
*

1 1
1

1,1

,/ mi ,2n ( ) / 1
M

i

i

i

S W
b c W

X He
−

−
=

 
 = =  
 +
 ∑

*T
Mδ ι . 

Where / 1S W < , we have { }
*E | ) |( ,( ) / 2 0i iX HeDα = >* * *e , f , δ

; 

Where / 1S W = , we have { }
 ( )*

1
1

1,1
| ) | , 0)( (E M

iii iD b c WX Heα
−

−
=

−  = + >  
∑* * *e , f , δ

. 

Where N →∞ , small investors invest in the AFMI as long as they infer positive 

fund expected net alphas. If they have additional wealth to allocate (i.e., / 1S W < ), they 

drive equilibrium fund expected net alphas to zero. If they have no additional wealth to 

allocate (i.e., / 1S W = ), the equilibrium fund expected net alphas are not driven to 0. At 

this time, the equilibrium fund expected net alphas are higher if *,( )iX e H and the 

equilibrium optimal expected net alpha of an initial marginal investment in the AFMI is 

higher, whereas the equilibrium fund expected net alphas are lower if the decreasing 

returns to scale effect in the AFMI (represented by the factor ( ) 1
1

1,1

M
ii

b c W
−

−
=

+ ∑ ), is 

stronger. Where 1N = , the single investor internalizes the whole market; and to 

maximize the expected portfolio returns, he or she never allocates investments to drive 

the equilibrium fund expected net alphas to zero. When the investor has additional 

wealth to allocate, he or she allocates wealth to funds such that the effect of decreasing 

returns to scale in the market is eliminated. If the investor has no additional wealth to 

allocate, the equilibrium fund expected net alphas are similar to those where there are 

infinitely many risk-neutral investors. 

Also, we can see that if 1N = , the industry size is half as large as the 

counterpart in the setting with infinitely many small risk-neutral investors. The reason is 

that the single large investor can internalize the market, in the sense that his or her own 
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investment determines /S W . When observing positive fund expected net alphas, the 

investor chooses the optimal level of investment based on the tradeoff of increasing 

investment in funds (i.e., a larger amount investment captures higher expected returns 

from the AFMI, but the expected net alpha of each unit of investment reduces due to 

decreasing returns to scale). 

COROLLARY 1 to PROPOSITION RN2. Where 1N = , the equilibrium fund expected 

net alphas 
{ })E( | |i Dα * * *e , f , δ

 where / 1S W =  are higher than those where / 1S W < . 

That is, the equilibrium fund expected net alphas are higher when the single investor 

has no additional investments to allocate than those when he or she has additional 

wealth. 

The intuition is as follows. Suppose there is a threshold W  such that the 

equilibrium / 1
W W

S W
=

=  and /
W W

S W
=

 also achieves the internal solution. Any 

additional wealth above W  is optimally invested in the passive benchmark, making 

/ 1S W <  and not affecting the fund expected net alphas. All wealth is optimally 

invested in funds if the wealth level is below W , and at that time / 1S W = . Due to the 

decreasing returns to scale feature in our model, 
{ })E( | |i Dα * * *e , f , δ

 decreases with wealth 

invested in funds until W W=  and become unaffected by wealth after W W> . Thus, 

the equilibrium fund expected net alphas 
{ })E( | |i Dα * * *e , f , δ

 where / 1S W =  are higher 

than those where / 1S W < . 

COROLLARY 2 to PROPOSITION RN2. For (large enough) W  such that / 1S W < , 

whether N →∞  or 1N = , we have ( ) *(/ 0)/ ;ied dX HS W >  and 

( ) ( ) 1
1

1,1
/ / 0M

ii
d S W b c Wd

−
−

=

 + <  
∑ . That is, higher initial marginal fund expected 

net alphas, induce a larger equilibrium AFMI size relative to total wealth, whereas 

stronger decreasing returns to scale effect in the AFMI induces a smaller equilibrium 

AFMI size relative to total wealth. 

PROPOSITION RN3, AFMI Size Sensitivity to Concentration. 

Whether N →∞  or 1N = , 

1) where / 1S W < , we have 
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a. ( ) ( ) *
* 2

*(
/

; ) (
/

; )
( ; ) H i H i

i

A H c
d S W d S W

dH dX
He

H
e

e
=  −  . 

( )/ / 0( 0)d S W dH ≥ <  iff * *
2( ; ) ( ; ) 0( 0)H i H iA H He ec− ≥ <  (where 

concentration is higher, equilibrium industry size is larger (smaller) if and only 

if higher concentration induces a larger (smaller) impact on gross alphas than on 

costs.). 

b. ( ) ( )2 2

2

*

* 2

( )
(

/ ;/
; )

i

i

d S W d H
H

S W d B
dH X

e
ed dH

= . 

2 2( / ) / 0( 0)d S W dH ≥ <  iff *2 2( ; ) / 0( 0)id B e H dH ≥ <  ( /S W is concave 

(convex) in H  if and only if *( ; )iB e H  is concave (convex) in H ). 

2) Where / 1S W = , /S W  is unrelated to market concentration. 

The intuition is as follows. Whether N →∞  or 1N = , if an increase in H  

induces a higher (lower) impact on net alphas than on costs, the initial marginal fund 

expected net alpha, *,( )iX e H , is higher (lower). Consequently, this higher (lower) 

initial marginal fund expected net alpha attracts (discourages) investments if investors 

have additional wealth to allocate to funds (i.e., / 1S W < ). In this case, the change of 

the rate at which H  drives up /S W  is positively proportional to the change of the rate 

at which H  drives up *( ; )iB e H . If investors have no additional wealth to allocate to 

funds (i.e., / 1S W = ), the market is at a corner solution and H  has no effect on /S W . 

PROPOSITION RN4, Net alpha Sensitivity to Concentration. 

1) Where N →∞  and / 1S W < , we have 

a. 
{ }| ) / |E( 0id D dHα =* * *e , f , δ

, 

b. { }
2 2| ) / |E 0( id D dHα =* * *e , f , δ

. 

(Equilibrium fund expected net alphas are unrelated to H .) 

2) Where N →∞  and / 1S W = , we have 

a. { }
* *

2| ) / | ( ;E( ) ( ; )i iH i Hed D dH A c eH Hα = −* * *e , f , δ
. 

{ }| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ
 iff * *

2( ; ) ( ; ) 0( 0)H i H iA H He ec− ≥ <  (where 

concentration is higher, equilibrium optimal expected net alphas are larger 

(smaller) if and only if higher concentration induces a larger (smaller) impact on 
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gross alphas than on costs). 

b. { }
2 2 2 2*| ) / | ( ; /E( )i id D dH d B H dHeα =* * *e , f , δ

  

{ }
2 2| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ

 iff *2 2( ; ) / ( 0)id B H dHe ≥ <  

(
{ })E( | |i Dα * * *e , f , δ

 is convex (concave) in H  if and only if *( ; )iB e H is convex 

(concave) in H ). 

3) Where 1N =  and / 1S W < , we have 

a. { }
* *

2| ) / | 0.E( 5 ( ; ) ( ; )i iH i Hd D dH A e eH c Hα  = − * * *e , f , δ
  

{ }| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ
 iff * *

2( ; ) ( ; ) 0( 0)H i H iA H He ec− ≥ <  (where 

concentration is higher, equilibrium optimal expected net alphas are larger 

(smaller) if and only if higher concentration induces a larger (smaller) impact on 

gross alphas than on costs). 

b. { }
2 2 2 2*| ) / | 0.5 ( ; ) /E( i id D dH d B H dHeα =* * *e , f , δ

 

{ }
2 2| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ

 iff *2 2( ; ) / ( 0)id B H dHe ≥ <  

(
{ })E( | |i Dα * * *e , f , δ

 is convex (concave) in H  if and only if *( ; )iB e H  is convex 

(concave) in H ). 

4) Where 1N =  and / 1S W = , we have 

a. { }
* *

2| ) / | ( ;E( ) ( ; )i iH i Hed D dH A c eH Hα = −* * *e , f , δ
 

{ }| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ
 iff * *

2( ; ) ( ; ) 0( 0)H i H iA H He ec− ≥ <  (where 

concentration is higher, equilibrium optimal expected net alphas are larger 

(smaller) if and only if higher concentration induces a larger (smaller) impact on 

gross alphas than on costs). 

b. { }
2 2 2 2*| ) / | ( ; /E( )i id D dH d B H dHeα =* * *e , f , δ

 

{ }
2 2| ) / | 0( 0)E( id D dHα ≥ <* * *e , f , δ

 iff *2 2( ; ) / ( 0)id B H dHe ≥ <  

( { })E( | |i Dα * * *e , f , δ
 is convex (concave) in H  if and only if *( ; )iB e H  is convex 

(concave) in H ). 
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The intuition of Proposition RN4 is as follows. An increase in H  affects 

{ })E( | |i Dα * * *e , f , δ
 at two stages. At the first stage, an increase in H  changes managers’ 

ability to produce net alphas. At the second stage, investors react to the changes in fund 

expected net alphas by changing the investment level, consequently affecting 

{ })E( | |i Dα * * *e , f , δ
 under a decreasing returns to scale framework. Where N →∞  and 

/ 1S W < , investors adjust their investments to drive { })E( | |i Dα * * *e , f , δ
 to zero, so 

{ })E( | |i Dα * * *e , f , δ
 is unrelated to H . Where N →∞  and / 1S W = , investors have no 

additional wealth to allocate to funds even though funds’ expected net alphas are 

changed by a higher H . Thus, whether { })E( | |i Dα * * *e , f , δ
 increases depends on whether 

managers are able to produce higher net alphas under this higher concentration level 

(i.e., whether 2
* *( ; ) ( ; ) 0iH i HA ece H H− > ). Also, in this case, if H  is higher, the change 

of marginal 
{ })E( | |i Dα * * *e , f , δ

 depends on the change of marginal *( ; )iB e H . Where 

1N = , if the single investor observes an increase in fund expected net alphas due to a 

higher H , he or she would not allocate wealth to completely offset the increase in fund 

expected net alphas due to a tradeoff, if the single investor has additional wealth to 

allocate (i.e., / 1S W < ). If the investor has no additional wealth to allocate (i.e., 

/ 1S W = ), his or her choice does not affect the marginal { })E( | |i Dα * * *e , f , δ
 due to a 

higher H . In either situation, with a higher H , whether { })E( | |i Dα * * *e , f , δ
 increases 

depends on whether managers can produce higher net alphas, and the change of 

marginal 
{ })E( | |i Dα * * *e , f , δ

 depends on the change of marginal *( ; )iB e H . 

PROPOSITION RN5, Relation between Net Alpha and Market Share. 

Whether N →∞  or 1N = , an increase (decrease) in 1, ic , while 1, ,jc j i∀ ≠  are 

unchanged, induces a decrease (increase) in /is S  and an increase (decrease) in 

/ ,js S j i∀ ≠ . Also, 

1) Where / 1S W < , it induces no change in 
{ })E( | |i Dα * * *e , f , δ

 and 

{ }|E( | ) ,j D j iα ∀ ≠* * *e , f , δ
. Thus, 

{ })E( | |i Dα * * *e , f , δ
 is unrelated to / ,is S i∀ . 
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2) Where / 1S W = , it induces a decrease (increase) in 
{ })E( | |i Dα * * *e , f , δ

, thus 

{ })E( | |i Dα * * *e , f , δ
 and /is S  are positively related—an internality effect; it induces a 

decrease (increase) in 
{ }|E( | ) ,j D j iα ∀ ≠* * *e , f , δ

, thus 
{ })E( | |j Dα * * *e , f , δ

 and /js S  

are negatively related j i∀ ≠ —an externality effect. 

The intuition of Proposition RN5 is as follows. First, based on Proposition 3, we 

can see that any change in 1, ic , keeping 1, ,jc j i∀ ≠  unchanged, results in a change in 

/is S  in the opposite direction and a change in / ,js S j i∀ ≠  in the same direction. Also, 

an increase in 1, ic , affects 
{ })E( | |i Dα * * *e , f , δ

 at two stages. At the first stage, it increases 

manager i ’s average cost sensitivity to size and induces a decrease in fund expected net 

alphas. As manager i  offers a lower fund expected net alpha, investments shift from 

fund i  to other funds, making all other funds’ fund expected net alphas lower due to 

decreasing returns to scale at the fund level. At the second stage, a decrease in fund 

expected net alphas discourages investments in the AFMI, which in turn drives up fund 

expected net alphas due to the effect of decreasing returns to scale. Where / 1S W < , 

infinitely many small risk-neutral investors drive fund expected net alphas to zero, 

whereas a single large risk-neutral investor strategically allocates wealth to funds. In 

either case, the two stages’ effects of changes in 1, ic  on 
{ })E( | |i Dα * * *e , f , δ

’s are 

completely cancelled out; thus, for each fund i , 
{ })E( | |i Dα * * *e , f , δ

 is unrelated to 1, ic  

and, consequently, unrelated to /is S . Where / 1S W = , investors have no additional 

wealth to allocate, so the second stage’s effect does not exist, and we find 

{ })E( | |i Dα * * *e , f , δ
’s are driven down by an increase in 1, ic , keeping 1, ,jc j i∀ ≠  

unchanged. Consequently, we have a positive relation between 
{ })E( | |i Dα * * *e , f , δ

 and 

/is S , and a negative relation between 
{ })E( | |j Dα * * *e , f , δ

 and / ,js S j i∀ ≠ . In other 

words, in this case, any change in manager i ’s average cost sensitivity to size induces 

an internality effect, a positive relation between its market share and equilibrium fund 

expected net alphas, and induces an externality effect, a negative relation between other 

funds’ market shares and their equilibrium fund expected net alphas. 



120 
 

Proof of Proposition RN2, RN3, RN4, RN5 and the corresponding corollaries. See the 

following sections in Appendix. 

Figure A.1 and Figure A.2 illustrate the numerical results for the case of risk-

neutral investors using the same numerical parameters as the risk-averse case. The 

results of *
ie , *

if , and *( ; )iB e H  are the same as those in the risk-averse case, whether 

there are infinitely many small risk-neutral investors or there is a single large investor. 

Where there are infinitely many small risk-neutral investors, when H  is small, we have 

/ 1S W = , and { })E( | |i Dα * * *e , f , δ
 is positive and is decreasing with H . When H  

becomes larger, /S W  starts to decrease and slightly increase after it achieves the 

minimum point. In this case, /S W  increases with *( ; )iB e H , and we have 

{ })E( | |i Dα * * *e , f , δ
 equal to zero. This is because in our calibration, the difference of H ’s 

impact on gross alphas and on costs decreases with H  when H  is small and then 

slightly increases with H  when H  is large. In addition, the curvature of /S W  and 

{ })E( | |i Dα * * *e , f , δ
 in H  are convex. 

Where there is a single large investor in the market, the results are similar except 

that the levels of /S W  are much smaller than those where there are infinitely many 

risk-neutral investors, and { })E( | |i Dα * * *e , f , δ
’s are positive across the levels of H . This 

is because the single investor can internalize the AFMI, limiting the investments in the 

funds and maximizing portfolio expected returns.  
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Figure A.1. Infinitely Many Small Risk-Neutral Investors—Comparative Statistics 
with Respect to Market Concentration 

This figure presents the numerical results for the case of infinitely many small risk-neutral investors. The 
two subplots on the top illustrate the equilibrium optimal management effort and management fees at 
each market concentration level. The two subplots in the middle reports 𝐵𝐵(𝑒𝑒𝑖𝑖∗,𝐻𝐻)  at each market 
concentration level and the equilibrium S/W ratio at each 𝑋𝑋(𝑒𝑒𝑖𝑖∗,𝐻𝐻) level. The two subplots at the bottom 
show the equilibrium S/W ratio and the equilibrium fund expected net alphas at each market concentration 
level. 
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Figure A.2. A Single Large Risk-Neutral Investor—Comparative Statistics with 
Respect to Market Concentration 

This figure presents the numerical results for the case of a single large risk-neutral investor. The two 
subplots on the top illustrate the equilibrium optimal management effort and management fees at each 
market concentration level. The two subplots in the middle reports 𝐵𝐵(𝑒𝑒𝑖𝑖∗,𝐻𝐻) at each market concentration 
level and the equilibrium S/W ratio at each 𝑋𝑋(𝑒𝑒𝑖𝑖∗,𝐻𝐻) level. The two subplots at the bottom show the 
equilibrium S/W ratio and the equilibrium fund expected net alphas at each market concentration level. 
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Agency Benefits Due to Market Concentration 

We use the same settings as those in Section 2.4. We consider only the case 

where there are infinitely many risk-neutral investors. Managers are colluding to choose 

ie  to maximize their objective function (2.37), subject to the constraint (2.38). The 

first-order-condition gives 
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∑∑
∑

 (A16) 

The second-order condition with respect to ie  is satisfied, so *
ie  given by (A16) is a 

maximum point. Also, in equilibrium, where / 1S W < , we have 

 


*( ; ) ( )ia A H
W b

e f HS + −
=



, (A17) 

 
( ) * * *( ; ) '( ) ( ; )/ '( )

ie ii iHA H H A Hd S W
d

e e e f H
H b

+ −
=



, (A18) 

 
{ }

| )(
0

E id D
dH
α

=
* * *e , f , δ

. (A19) 

Thus, ( / ) / 0( 0)d S W dH ≥ <  if and only if 
* * *( ; ) '( ) ( ; ) '( ) 0( 0)

ie i Hi iA H H A H f He e e+ − ≥ < . In other words, if and only if higher 

concentration induces higher net alphas than agency benefits, investors are willing to 

invest more in funds, eventually driving equilibrium optimal expected net alphas to zero. 

Where / 1S W = , managers choose *
ie  such that 

 


*( ; ) ( )
1ia A H f H

W
eS

b
+ −

= =


, (A20) 

so 

 
( )/

0
d S W

dH
= , (A21) 

and (A19) still holds because if managers can optimally induce investors to invest all 

their wealth in funds, they choose the minimum effort to do so. In this case, both /S W  
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and { })E( | |i Dα * * *e , f , δ
 are unaffected by H . 

Mathematical Proof of Propositions and Corollaries 

Proof of Proposition 1 and 2, and the Corollary 

To maximize E( | )i Dα , manager i  chooses the breakeven management fee, 

 ** ( , ; ) 0i
iiif seC H− = . (A22) 

We substitute it into E( | )i Dα . If 2(0; ) (0; ) 0
i ie eA H c H− ≤ , managers’ optimal choice 

is to spend zero effort and to charge a proportional fee equal to 0 1, i ic c s+ ; in this case, 

our equilibrium will be similar to that in Pastor and Stambaugh (2012), where 

managerial effort is not modeled and managers do not charge fees above opportunity 

costs. 

If 2(0; ) (0; ) 0
i ie eA H c H− > , the first-order-condition to maximize E( | )i Dα  

becomes, 

 *
2

* *( ; ) ( ; ) ( ; ) 0
i i ii ie e e ie e eA H c H B H− = = . (A23) 

The second-order condition, *
, , ,

*
2

*( ; ) ( ; ) ( ; ) 0,
i i i i i ie e e e e ei i ie eA H c H B He− = <  is 

automatically satisfied, so *
ie  is a maximum point. Here we assume that *

ie  is finite and 

attainable. 

Next, we can see that both *
if  and *

ie  are functions of H , so 

 * *( )i ie e H= , and (A24) 

 * *( )i if f H= . (A25) 

Completing differentiation of (A23) gives 

 
* *

* , 2 ,

,
*

,
*

2

( ; ) ( ; )
'( )

( ; ) ( ; )
i i

i i i i

e H i e H
i

e e i e

i

e i

e eA
e

H c
e e

H
H

A H c H
−

= −
−

, (A26) 

and so we have if *
, 2 ,

*( ; ) ( ; ) 0( 0)
i i ie H i e HA H c He e− ≥ < , then * '( ) 0( 0)i He ≥ < . Also, 

based on 
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we have 

 ( )
1

* 1
1, 1, 1, 2 2

1

* * *( / )'( ) ( ; ) '( ) ( ; )
i

M

i i i j e i H
j

i i
d S Wf H c W c c c H H c H

d
e e

H
e

−

−

=

 
= + + 

 
∑ . (A28) 

Complete differentiation of *( ; )iB e H  with respect to H , gives 

2
* * * *

2
* * *'( ; ) ( ; ) '( ) ( ; ) ( ; ) ( ; ) ( ; )

ie i H i Hi i i i H iHB H B H H A H c He e e e e eA H c He= + − = − , (A29) 

so we have if * *
2( ; ) ( ; ) 0( 0)H i H iA H He ec− ≥ < , then *'( ; ) 0( 0)iB He ≥ < . In addition, we 

have 

 ,E( E| ) ( | )i i pFr D Dα µ= + . (A30) 

Because E( | )i Dα ’s are the same across funds, ,( | )E F ir D ’s are the same across funds. 

Moreover, we have 

 ,

2
2 2 2 2 2Va |( )r pF i a b x

SD
W

r εσ σ σ σ σ = + + + + 
 

. (A31) 

The source of fund returns’ variance is the same across funds, so we have that 

, |ar( )V F i Dr ’s are the same across funds. Combining (A30) and (A31), we have all 

managers offering the same market competitive Sharpe ratio. 

Q.E.D. 

Proof of Proposition 3 

The optimal manager effort *
ie  is determined only by the functions 2 ( ; )ic e H , 

and ( ; )iA e H , which are the same across funds. Thus, we have * *
i je e=  and 

* *( ; ) ( ; ), ,i je eB H B H i j= ∀ . Also, following the fifth point of Proposition 2, we have 

* *( ; ) iiA H fe −  for 1,...,i M=  the same across funds; thus, we have * *, ,i jf f i j= ∀ . In 

addition, by (A22), we further have * *( , ; ) ( , ; ), ,i j
i j jiC s H C s He e i j= ∀ ; therefore, we 

have the following relationship between different funds’ sizes, 1, 1, , ,i i j jc s c s i j= ∀ , 
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inducing 1, 1,/ / , ,i j j is s c c i j= ∀ . Then we can sum /i js s  with respect to i , 1,2,...,i M= , 

reverse the sum, and replace the subscript j  by i ; and we have the expression 

 ( )
1

1
1, 1,

1
,

M
i

i j
j

s c c i
S

−

−

=

 
= ∀ 
 
∑ . (A32) 

Q.E.D. 

Proof of Proposition RN1 

{ }, ,* * *e f δ  is a Nash equilibrium for the following reasons: 

1. Given other managers’ optimal choices, manager i  has no incentives to deviate from 
*
ie  and *

if . This is because increasing *
ie  or decreasing *

if  generates negative 

economic profits, whereas decreasing *
ie  or increasing *

if  lowers fund expected net 

alpha. Thus the manager receives no investments from investors. 

2. Given managers’ and other investors’ optimal choices, an investor has no incentive 

to deviate from *
jδ  because where N →∞ , changing allocations across funds or 

between the fund industry and the passive benchmark does not improve his or her 

portfolio’s expected net returns; where 1N = , changing allocation across funds does 

not improve the portfolio’s expected net returns, whereas shifting allocations 

between the fund industry and the passive benchmark lowers the portfolio’s 

expected net returns. 

{ }, ,* * *e f δ  is unique because 

1. *e  is unique because for each fund, ,( ) 0
ie iB e H =  is uniquely solved by *

ie ; 

2. *f  is unique because for each fund ** ( , ; ) 0i
iiif seC H− = , *( , ; )i

i
iC s He  is 

deterministic, and *
ie  is unique; 

3. *δ  is unique because allocations to funds maximize investor portfolios’ expected 

net returns, driving fund expected net alphas to the same values; the uniqueness of 
*e  and *f  makes equilibrium allocations unique. 

Q.E.D. 

Proof of Proposition RN2, RN3, RN4, RN5 and the Corresponding 

Corollaries 

Infinitely Many Small Risk-Neutral Investors 
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When observing positive fund expected net alphas, to maximize their portfolio 

expected net returns, investors will continue investing into funds if they have additional 

wealth, until fund expected net alphas are driven down to zero by their investments. In 

equilibrium, if investors have additional wealth to allocate but funds have exhausted the 

abilities to produce positive fund expected net alphas, then / 1S W <  and 

{ }
 ( ) **| ) | / ( 0,E( ; )i ii D a b S W A H f iea = − + − = ∀* * *e , f , δ
 . With conditions (A22), (A23) 

and (A32), we have 
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Note that *,( )iX e H ’s are equal across funds, as implied by equal *
ie  across funds. 

Based on (A33), we have 

 
( )

 ( ) 1
1

1,1

0
/ 1

M
ii

d S W
dX b c W

−
−

=
+

= >
∑

, (A34) 

 ( )

( ) ( )
21 11 1

1,

*

1 1,1

/
0( ),

M M
ii ii

ied

b c W b c

S W X

d W

H
− −− −

= =

−
=

 


<
 + +   

∑ ∑



, (A35) 

 
( ) ( ) ( )*

* *
2

/ / /, ( ;( ) ( ;) )H i
i

iHA H
d S W d S W d S WdX H

dH dX dH dX
c He e e= =  −  , and (A36) 

 

( ) ( ) ( )

( )

2
2 2

2 2

*
*

2

*

*

2

2

( ; )( ; ) ( ; )

( ; )

/ / /

/
.

H i
H ii H

i

d dA HA H c H
dX d

S W d S W d S W
dH d H

d B

ee e

e
X

d S W H
dX dH

 − + =

=

. (A37) 

As { }* * *e , f , δ
E | ) | 0( i Dα = , we have 

 
{ }

| )( 0E id D
dH
α

=
* * *e , f , δ

, (A38) 
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Also, 
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. (A40) 
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As for each fund i , /is S  and 1, ic  are negatively related to each other, { })E( | |i Dα * * *e , f , δ
 

is unrelated to /is S . 

In equilibrium, if investors have no additional wealth to allocate but funds are 

still able to produce positive fund expected net alphas, then / 1S W =  and 

 
( )/
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dX
= ,  (A41) 
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Differentiating (A45) with respect to H , gives 
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and 
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2 2
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dH dH

e e
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α
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In this case, managers will spend more effort to increase fund expected net alphas in a 

more concentrated market, making the fund expected net alphas higher; but because 

investors cannot further increase their investments in the fund industry to make the fund 

expected net alphas lower, equilibrium fund expected net alphas increase with market 

concentration. On the other hand, the fact that fund expected net alphas are concave 

(convex) in the market concentration level is a necessary and sufficient condition for the 

direct benefit (i.e., *( ; )iB e H ) to be concave (convex) in the market concentration level. 

Moreover, 
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As /is S  and 1, ic  are negatively related whereas / ,js S j i∀ ≠  and 1, ic  are positively 

related, based on (A32) we will find a positive relationship between { })E( | |i Dα * * *e , f , δ
 

and /is S , and a negative relationship between { })E( | |j Dα * * *e , f , δ
 and / ,js S j i∀ ≠ , 

holding 1, ,jc j i∀ ≠  unchanged. 

One Single Large Risk-Neutral Investor 

As fund expected net alphas are the same across funds in equilibrium, the weight 

of each fund relative to the fund industry is determined by (A32). Thus, the single 

investor just needs to determine the weight of the fund industry relative to the passive 

benchmark. In other words, he or she chooses /S W  to maximize expected net portfolio 

return, and his objective function becomes: 

 

* *
1/

E( | )max ( ( ; ) )p i is W

S Sa br
W

e f
W

D A Hm + −= − + , (A49) 

subject to 

 0 / 1S W≤ ≤  (A50) 

and conditions (A22) and (A23). To maximize (A49), the first-order condition generates 
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if / 1S W < , and / 1S W =  if (A51) is larger than or equal to 1. 

Where / 1S W < , based on (A51), we have 
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i

iHA H
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dH dX dH dX
c He e e= =  −  , and (A54) 
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Also, when we substitute (A51) into { })E( | |i Dα * * *e , f , δ
, we have 

 { }
*E | ) |( ,( ) / 2 0i iX HeDα = >* * *e , f , δ

; (A56) 

and complete differentiation of (A56) with respect to H  gives 
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and 
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Also, 
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) 0( |E

i
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α

=
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. (A59) 

As for each fund i , /is S  and 1,ic  are negatively related to each other, { })E( | |i Dα * * *e , f , δ
 

is unrelated to /is S . 

Where / 1S W = , then the results from (A41) to (A45) are still valid. Also, 

substituting / 1S W =  into { })E( | |i Dα * * *e , f , δ
 we have 
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. (A60) 

Let W  be a threshold such that 
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In other words, W  is a threshold where the internal solution of /S W  is achieved and  
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is equal to 1. Thus, at W  we have 
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Any additional wealth above W  is optimally allocated to the passive benchmark; thus, 

it does not directly affect the fund industry. Therefore, if W W> , / 1S W <  and 

 { }
*( )| ,( ) | 2E /

W W
i iX HeDα

>

=* * *e , f , δ
. (A63) 

Also, at wealth levels below W , all wealth is optimally invested in the fund industry. 

Quantitatively, if W W< , / 1S W = , and 
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 (A64) 

Thus, where / 1S W = , { })E( | |i Dα * * *e , f , δ
’s are higher than those where / 1S W < , 

except for a knife edge case W W= , where they are equal. Based on this result, we can 

see that because of (A56), expression (A60) is also larger than zero. Moreover, 

complete differentiation of (A60) with respect to H  gives the same results as in (A46) 

and (A47). In addition, complete differentiation of (A60) with respect to 1,ic , gives the 

same results as in (A48), and we have the same conclusion about the relationship 

between equilibrium funds’ expected net alphas and funds’ market shares. 

Q.E.D. 

Proof of Proposition RA1 

{ }, ,* * *e f δ  is a Nash equilibrium for the following reasons. 

1. Given other managers’ optimal choices, a manager has no incentive to deviate from 
*e  and *f , and the reasons are the same as those in the proof of Proposition RN1. 

2. Given managers’ and other investors’ optimal choices, an investor has no incentive 

to deviate from *
jδ  because, where N →∞ , changing allocations across funds does 
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not improve his or her portfolio’s Sharpe ratio, whereas changing allocations 

between the fund industry and the passive benchmark decreases the portfolio’s 

Sharpe ratio. 

{ }, ,* * *e f δ  is unique because 

1. *e  and *f  are unique for the same reason in the proof of Proposition RN1; 

2. *δ  is unique because allocations to funds maximize investor portfolios’ Sharpe 

ratios, driving fund expected net alphas to the same values; the uniqueness of *e  

and *f  makes equilibrium allocations unique. 

Q.E.D. 

Proof of Proposition RA2, RA3, RA4, RA5, and the Corresponding 

Corollaries 

Infinitely Many Small Mean-Variance Risk-Averse Investors 

In this case, each investor is trying to maximize their portfolio Sharpe ratio 

without affecting the fund size of each fund (i.e., is , 1,...,i M= ) and /S W , subject to 

the constraints described in the paper. When we take the first-order condition and 

substitute the constraints * *( , ; ) 0,i
i ii if C s He− = ∀  and 

* *( ; ) ( , ; ) 0,
i i

i
e e ii iA H C s He ie− = ∀  into the first-order condition. we have 
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 (A65) 

Substituting 2/p pγ µ σ  and /S W = T*
j Mδ ι , we have 
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−
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∑ .  (A66) 

If the constraint 1≤T
j Mδ ι  is not binding (i.e., / 1S W < ), the equilibrium optimal /S W  

is a real positive solution of this cubic equation. The condition *( ; ) 0,iX e H H> ∀  and 

the coefficient of the highest order term 2 0bγσ− <  guarantee that there is at least one 
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positive real solution for /S W . Also, as each investor cannot affect the value of /S W , 

(A65) shows that the solution for /S W=M
T*

jδ ι  is unique given the parameter values 

and the market /S W . Based on the characteristics of cubic equations, from (A66) we 

can see that there are three possibilities for the three roots of /S W , three real positive 

roots, one real positive root and two real negative roots, and one real positive root and 

two imaginary solutions. The way to determine which root is the solution of /S W  is 

described as follows. Define ( )/
s

S W  and ( )/
l

S W  as the smallest and the largest 

positive real solutions of (A65). Note that they can be equal to each other. If 

( )/ 1
l

S W < , the equilibrium /S W  is either ( )/
s

S W  or ( )/
l

S W , depending on which 

of them maximizes the portfolio Sharpe ratio. If ( ) ( )/ 1 /
s l

S W S W< ≤ , the equilibrium 

/S W  is either ( )/
s

S W  or 1, depending on which of them maximizes the portfolio’s 

Sharpe ratio. If ( )/ 1
s

S W ≥ , the equilibrium /S W  is 1. In one special case, both 

( )/ 1
s

S W <  and ( )/ 1
l

S W ≤  (when they are not equal to each other) attain the 

maximum value of the portfolio’s Sharpe ratio. Depending on the initial value of  /S W , 

the equilibrium /S W  will uniquely converge to either of them with a probability of one. 

Where the equilibrium optimal / 1S W < , complete differentiation of (A66) 

gives 
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Based on the positive parameter values, we know that 

 ( / ) 0d S W
dX

> . (A68) 

Also, complete differentiation of (A66) gives 
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Moreover, by chain rule, 
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In addition, 
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Based on the outcome of (A68), 2 2* 0( ; ) /i Hd dHeB <  implies 2 2( / ) / 0d S W dH < , 

whereas 2 2( / ) / 0d S W dH >  implies 2 2* 0( ; ) /i Hd dHeB > . 

In addition, where / 1S W < , we substitute 
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into (A66);  and after some simple transformation, we have 
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where 
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2 2 2Var( | ) b aj
SD

Wa aσ σ σ = + 
 

 . (A74) 

As all the terms of (A73) are positive, { })E( | |i Dα * * *e , f , δ
 is positive. The intuition is as 

follows. By investors’ portfolio variance formulas, we can easily see that a portfolio 

with allocations to both funds and the passive benchmark is always riskier than a 

portfolio with allocations only to the passive benchmark. If { }|E( | ) 0i Dα =* * *e , f , δ
, 

because of a sufficiently large amount of investment in funds, investors can always 

improve their portfolio Sharpe ratios (in particular, reduce their portfolio risks) by 

shifting wealth allocation from funds to the passive benchmark. Differentiating (A72) 

with respect to H , we have 
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and 
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Therefore, { }
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Also, complete differentiation of (A65) with respect to 1, ic  gives 

( )

( ) ( ){ }( )1 222 2 2 1 1 21,
1, 1, 1,1 1

/( / ) 0
3 / M Mi

b a x l l il l

S W Wd S W
dc S W b c W c cγ σ σ σ

−
− −

= =

−
= <

 + + + +  ∑ ∑

.(A77) 
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 (A78) 

Based on (A78), { }1,E | | 0( ) / iid D dcα <* * *e , f , δ
 and { }1,E | | 0( ) / ,ijd D d jc iα ∀ ≠<* * *e , f , δ

 

(found in a similar way). As /is S  and 1, ic  are negatively related whereas / ,js S j i∀ ≠  

and 1, ic  are positively related based on (A32), we will find a positive relationship 

between { })E( | |i Dα * * *e , f , δ
 and /is S , and a negative relationship between 

{ })E( | |j Dα * * *e , f , δ
 and / ,js S j i∀ ≠ .  
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Where / 1S W = , we also have 

{ } ( ) 1
1 *

1,1
| ) | ( ; ) 0E( M

i iii D b c W X e Hα
−

−
=

 = + + >  
∑* * *e , f , δ

 . The proof of all other results 

where there are infinitely many mean-variance risk-averse investors and / 1S W =  is 

the same as the proof of the results where there are infinitely many risk-neutral 

investors and / 1S W = . 

One Single Large Mean-Variance Risk-Averse Investor 

Where there is only one investor and / 1S W = , all the proof of results are the 

same as that of the results of the counterpart risk-neutral situation. Where there is a 

single investor and / 1S W < , we required numerical solutions. 

Q.E.D. 
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B. Appendix of Chapter 3 

U.S. Active Equity Mutual Funds from Morningstar 

We begin by downloading the U.S. mutual fund data from Morningstar. 

Morningstar provides fund share class level data. The datasets we download include 

“United States Mutual Funds” (30,782 share classes), “United States Closed-End Funds” 

(565 share class), and “Unit Investment Trust” (14,881 share classes). However, all 

funds in the “Unit Investment Trust” dataset have neither long enough lives nor records 

of net asset values, so they are screened out by the criteria in the later steps described in 

the next sections. Our sample period is from January 1979 to December 2014, and we 

use monthly observations. 

Secondly, we screen out share classes from funds of funds and index funds. We 

drop a fund share class if it has a value of “Yes” in any of the variables “Fund of 

Funds”, “In House FOF”, “Enhanced Index”, and “Index Fund”. 

Thirdly, to screen out share classes of non-equity funds, we drop the funds if 

their “Global Broad Category Group” value is not “Equity”. We classify the remaining 

funds in our sample based on their “Morningstar Category” into the following 

categories: 
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We only keep the funds in the “Equity Funds” category because these funds 

invest only in the domestic equity market. We do not need to use the “Primary 

Prospectus Benchmark” to screen out non-equity funds as do Pastor, Stambaugh and 

Taylor (2015) (PST hereafter) because the funds with a value of “Equity” in the “Global 

Broad Category Group” variable do not contain any keywords in “Primary Prospectus 

Benchmark” that would be defined as non-equity funds in PST. 

Fourthly, we aggregate share class level data to fund level data by using the fund 

identifier, the “Fund ID” variable. The first step is to fill in any missing fund net asset 

value observations (the variable “Net Asset Share Class (Monthly)” in Morningstar) by 

using the last available net asset value observation. A new variable “Fund Asset” is 

defined as the sum of the net asset values of share classes with the same “Fund ID” 

value in a particular month. If “Fund Asset” is zero, we regard it as missing. 

Equity Funds International Funds Real Estate Funds Sector Funds
US OE Small Blend US OE World Stock US CE Global Real Estate US OE Financial
US OE Mid-Cap Growth US OE Foreign Large Growth US CE Real Estate US OE Technology
US OE Small Growth US OE Diversified Emerging Mkts US OE Global Real Estate US OE Natural Resources
US OE Large Blend US OE Foreign Large Blend US OE Real Estate US OE Energy Limited Partnership
US OE Large Growth US OE Foreign Large Value US UIT Real Estate US OE Health
US OE Mid-Cap Value US OE Pacific/Asia ex-Japan Stk US UIT Global Real Estate US OE Equity Precious Metals
US OE Large Value US OE China Region US OE Utilities
US OE Small Value US OE Europe Stock US OE Equity Energy
EAA OE US Large-Cap Growth Equity US OE Foreign Small/Mid Growth US OE Communications
EAA OE US Mid-Cap Equity US OE Latin America Stock US OE Consumer Cyclical
US OE Mid-Cap Blend US OE Foreign Small/Mid Value US OE Consumer Defensive
US CE Large Blend US OE India Equity US OE Industrials
US CE Large Value US OE Foreign Small/Mid Blend US OE Miscellaneous Sector
US CE Mid-Cap Blend US OE Miscellaneous Region US CE Equity Energy
US CE Large Growth US OE Diversified Pacific/Asia US CE Equity Precious Metals
US CE Mid-Cap Growth US OE Japan Stock US CE Health
US CE Small Blend EAA OE Islamic Global Equity US CE Natural Resources
US UIT Mid-Cap Blend US CE Miscellaneous Region US CE Technology
US UIT Large Blend US CE Diversified Emerging Mkts US CE Utilities
US UIT Large Growth US CE China Region US CE Energy Limited Partnership
US UIT Large Value US CE Japan Stock US CE Financial
US UIT Mid-Cap Value US CE Latin America Stock US CE Industrials
US UIT Mid-Cap Growth US CE World Stock US UIT Industrials
US UIT Small Value US CE Pacific/Asia ex-Japan Stk US UIT Financial
US UIT Small Blend US CE Foreign Large Blend US UIT Energy Limited Partnership
US UIT Small Growth US CE Europe Stock US UIT Equity Energy

US CE Foreign Small/Mid Blend US UIT Natural Resources
US CE India Equity US UIT Equity Precious Metals
US CE Diversified Pacific/Asia US UIT Technology
US CE Foreign Small/Mid Value US UIT Health
US CE Foreign Large Value US UIT Utilities
US UIT Diversified Emerging Mkts US UIT Consumer Cyclical
US UIT Europe Stock US UIT Communications
US UIT World Stock US UIT Miscellaneous Sector
US UIT Foreign Large Value
US UIT Foreign Large Blend
US UIT Foreign Large Growth
US UIT Japan Stock
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All the monthly share class returns are net of administrative and management 

fees and other costs taken out of fund assets, and they are in percentage. To aggregate 

share class returns to fund returns, we use the net asset value weighted average share 

class return as the fund return. We use the following algorithm: 

1. define a variable “NA” equal to “Net Asset Share Class (Monthly)”; 

2. in each month, if the observation of the “Monthly Return” variable (share class 

return variable) is not missing, but “NA” is missing, then set “NA” to $1; 

3. in each month, if the observation of the “Monthly Return” variable is missing, set 

this month’s “NA” to missing; 

4. in each month, calculate a variable “Total Return” as the sum-product of “NA” and 

“Monthly Return” of share classes with the same “Fund ID” value; 

5. in each month calculate a variable “TA” as the sum of “NA” of share classes with 

the same “Fund ID” value; 

6. calculate the variable “Fund Return” as “Total Return” divided by “TA”. 

This algorithm can ensure the following:  in each month, if a share class’ return 

is missing, its net asset value is not used in calculating the asset value weighted average 

return. If for a fund, all share classes have return observations but all their net asset 

values are missing, the fund returns are equally weighted averages of all the share 

classes’ returns. If for a fund, all share classes have return observations but some have 

missing net asset values, then almost all the weights will be allocated to the share 

classes with net asset value observations. 

The fund data sample after this step is defined as our U.S. active equity fund 

sample.  
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Fund Market Concentration Measures 

We use all the fund net asset value data in our U.S. active equity fund sample to 

calculate fund market concentration measures. 

First, in each month, we calculate fund “Market Share” variable as the fund’s 

“Fund Asset”, divided by the sum of all the funds’ “Fund Asset” in this month. Next, in 

each month, we count the number of “Fund Asset” observations, and use it as the value 

of the variable “Number of Funds”. The fund market concentration measures are 

calculated as follows: 

1. in each month, “H Index” is calculated as the sum of all the funds’ “Market Share” 

squared; 

2. in each month, “Normalized H Index” is calculated as (“Number of Funds”×“H 

Index”-1)/(“Number of Funds”-1); 

3. in each month, “5 Fund Index” is calculated as the sum of the first five largest funds’ 

“Market Share”. 

We have 36 years, or 432 monthly observations of all these fund market concentration 

measures.  
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Fund Net Alphas and Principal Components Adjusted Fund Net Alphas 

We use our U.S. active equity fund sample, and further require a fund to include 

at least 10 years’ observations with missing observations in between no more than 5 

years. The reason is that in our recursive rolling window style-matching model, we use 

5 years (60 monthly observations) as our estimating window, so a fund with 10 years’ 

observations, with a gap of no more than 5 years of missing observations, will have 

reasonably large number of observations in fund net alphas, mitigating the measurement 

error issue. The funds in the “Unit Investment Trust” dataset are all screened out. In our 

sample, we have 1,374 funds’ net alphas. 

In choosing the factors in the style-matching model, we use index funds and 

risk-free return as our factors. We keep the share class observations with the value “Yes” 

in the “Index Fund” variable and drop the funds with a value “Yes” in any of the 

variables “Enhanced Index”, “Fund of Funds” and “In House FOF”. Then we aggregate 

the share class returns into fund returns following the same algorithm discussed in 

Section 2. We further require an index fund to have non-missing observations in our 

sample period to make our style-matching procedure meaning and stable. The index 

funds in our sample include 

1. Vanguard Small Cap Index, defined as “Small Core” in the “Morningstar 

Institutional Category” variable, 

2. Vanguard 500 Index, defined as “S&P 500 Tracking” in the “Morningstar 

Institutional Category” variable, and 

3. EQ/Common Stock Index Portfolio, defined as “Large Core” in the “Morningstar 

Institutional Category” variable. 

The monthly risk-free return is the Fama-French risk-free rate downloaded from the 

CRSP dataset, and it is transformed into percentage return. 

Our algorithm of running the style-matching model is as follows: 

1. use the data of the previous 60 months (from  𝑡𝑡 − 60  to  𝑡𝑡 − 1) to run the style-

matching model, minimizing the variance of the regression residuals and calculating 

the R-squared of the model as 1 minus variance of the residuals divided by the 

variance of the fund return; 

2. predict the fund return at month  𝑡𝑡; 
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3. in each month, calculate the variable “Fund Net Alpha” as the “Fund Net Return” 

minus the predicted value of fund return. 

As our style-matching model might miss some relevant but unobservable factors, 

we also calculate principal component adjusted fund net alphas (“PC-Adjusted Fund 

Net Alphas”) by using the following method. First, we follow Connor and Korajczyk 

(1988) (CK) to calculate principal components of fund net alphas. CK’s method is 

originally applied on balanced samples, samples without missing observations. As our 

sample of fund net alphas contains missing values, we need to do some adjustment. We 

define α  as a M T×  matrix of the fund net alphas in market, whose row indices 

represent funds and column indices represent time. Next, we calculate the T T×  cross-

product matrix Ω , with 
1

( , ) ( , ) ( , ) /
T

ij
t

i j i t j t m
=

= ×∑Ω α α , where ijm  is the number of 

non-missing terms of ( , ) ( , )i t j t×α α  at time t . We estimate the eigenvectors of Ω  and 

define it by G . Matlab automatically outputs the first 6 eigenvectors, so G  is a 6T ×  

matrix. Then we regress Tα  on G , with a constant term, and calculate the M M×  pair-

wise residual variance matrix V . We define the M M×  diagonal matrix DIAGV , 

whose diagonal elements are the same as those in V . After that, we calculate *Ω , with 

1

1
( , ) ( , ) ( , ) ( , ) /

T

ij
t

i j i t i j j t m−

=

= × ×∑*Ω α DIAGV α . Then we calculate the eigenvectors of 

*Ω  and define it as *G . Matlab automatically outputs the first 6 eigenvectors, so *G  is 

also a 6T ×  matrix, and each column in *G  is a principal component. We use the first 

two principal components to calculate the “PC-Adjusted Fund Net Alphas”. For each 

fund, we regress its time-series of fund net alphas on the first two principal components, 

without a constant term, and the estimated residuals are regarded as “PC-Adjusted Fund 

Net Alphas”.  
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Stock Market Capitalization, Fund Industry Size, and Fund Size 

We use the U.S. stock data in CRSP Monthly Stock File to do our analyses. We 

keep the stock observations with a share code “shrcd” equal to 10 or 11. For each stock 

in each month, the stock’s market capitalization is calculated as its share price “prc” 

multiplied by total shares outstanding “shrout” multiplied by 1,000, since the unit of the 

variable “shrout” is thousand shares. For each month, the stock market capitalization is 

the sum of each stock’s market capitalization in this month. 

The “Industry Size” variable in our analyses represents the active equity mutual 

fund industry size relative to stock market capitalization. For each month, “Industry 

Size” is equal to the sum of all the funds’ “Fund Asset” in our U.S. active equity fund 

sample, divided by the stock market capitalization. 

The “Fund Size” variable in our analyses represents each fund’s size in 

December 2014 dollars. For each month, “Fund Size” is equal to “Fund Asset” divided 

by stock market capitalization in this month, then multiplied by the stock market 

capitalization in December 2014. 
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C. Appendix of Chapter 4 

Proof of Equivalence of the Two Managers’ Problems 

Because of competition, if funds offer higher (lower) expected net alphas, 

investments shift into (out of) it. Thus, in equilibrium all funds offer the same expected 

net alphas. We show in Proposition 2 and 3 that the equilibrium expected net alpha is 

the highest one that each manager can achieve at zero profit, and that equilibrium fund 

sizes are determined by managers’ costs (which can be viewed as a reflection of their 

skills). 

Suppose that the market expected net alpha is  𝛼𝛼�, where  𝛼𝛼�  is below the highest 

level of fund expected net alpha that mangers can produce (implying positive profits). 

While producing expected net alpha of  𝛼𝛼�, manager  𝑖𝑖  maximizes profits by choosing 

optimal efforts  𝑒𝑒𝑖𝑖11
∗  and  𝑒𝑒𝑖𝑖12

∗  that maximize the fund expected net alpha (i.e., the 

condition in Proposition 3, ii.a holds), and then charges a fee  𝑓𝑓𝑖𝑖1  such that his or her 

fund expected net alpha is exactly  𝛼𝛼�. Then, the current managerial fee becomes 

 𝑓𝑓𝑖𝑖1 = 𝑎𝑎1� − 𝑏𝑏1� 𝑆𝑆1

𝑊𝑊1

∗
+ 𝐴𝐴11�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� + 𝐴𝐴12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� − 𝛼𝛼�. (C1) 

Define the profit rate of manager  𝑖𝑖,  𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1  as  𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1 ≜ 𝑓𝑓𝑖𝑖1 − 𝐶𝐶𝑖𝑖1�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝑠𝑠𝑖𝑖1,𝐻𝐻1,𝐻𝐻2�; 

then from the last definition and the equation above, we have 

 𝛼𝛼� = 𝑎𝑎1� − 𝑏𝑏1� 𝑆𝑆1

𝑊𝑊1

∗
+ 𝐴𝐴11�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� + 𝐴𝐴12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� −

𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1 − 𝑐𝑐01 − 𝑐𝑐1,𝑖𝑖
1 𝑠𝑠𝑖𝑖1 − 𝑐𝑐211�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐212�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�. 

(C2) 

As all managers produce the same level of expected net alphas, Equation (C2) implies 

an equilibrium condition,  

 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1 + 𝑐𝑐1,𝑖𝑖
1 𝑠𝑠𝑖𝑖1 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗1 + 𝑐𝑐1,𝑗𝑗

1 𝑠𝑠𝑗𝑗1, ∀𝑖𝑖, 𝑗𝑗. (C3) 

Next, we consider manager  𝑖𝑖’s profit function 

 𝑠𝑠𝑖𝑖1[𝑓𝑓𝑖𝑖1 − 𝑐𝑐01 − 𝑐𝑐1,𝑖𝑖
1 𝑠𝑠𝑖𝑖1 − 𝑐𝑐211�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐212�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�] (C4) 

and by the first-order condition, the optimal fund size given manager  𝑖𝑖’s profit level is 

 
𝑠𝑠𝑖𝑖1

𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑓𝑓𝑖𝑖1 − 𝑐𝑐01 − 𝑐𝑐211�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐212�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�

2𝑐𝑐1,𝑖𝑖
1

=
𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1

2𝑐𝑐1,𝑖𝑖
1 +

𝑠𝑠𝑖𝑖1

2
. 

(C5) 

The latter equality is useful in presenting the optimal size relative to current size. Note 

that if manager  𝑖𝑖   maximizes his or her fund’s expected net alpha, the profit rate  
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𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1 = 0, and the condition in (C5) for  𝑠𝑠𝑖𝑖1
𝑜𝑜𝑜𝑜𝑜𝑜  does not exist. For a particular manager  

𝑗𝑗, 𝑗𝑗 ≠ 𝑖𝑖, it is possible that  𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗1  is so high that  𝑠𝑠𝑗𝑗1 < 𝑠𝑠𝑗𝑗1
𝑜𝑜𝑜𝑜𝑜𝑜. In other words, although 

manager  𝑖𝑖  does not observe other managers’ cost functions and profit rates, he or she 

knows that it is possible that some other manager(s) might have incentive to lower 

down the profit rate to attract investments, increase their fund size, and increase their 

fund’s profits. 

Following this argument, we analyze a simple game between manager  𝑖𝑖  and 

other managers, grouped as an entity “−𝑖𝑖”. If manager  𝑖𝑖  improves his or her fund 

expected net alpha infinitesimally, then profit will also be changed by an infinitesimal 

amount  𝜀𝜀𝑖𝑖, and other managers will receive no investments and get zero profit. If any of 

the other managers increases fund expected net alpha infinitesimally, then this 

manager’s profit will be changed by  𝜀𝜀−𝑖𝑖, and manager  𝑖𝑖  will receive no investment 

and get zero profit. If all managers produce the same level of fund expected net alphas, 

then they can make profit. Notice that  𝜀𝜀𝑖𝑖 (𝜀𝜀−𝑖𝑖) can be positive or negative, depending 

on whether manager  𝑖𝑖’s (−𝑖𝑖’s) fund size is below or above optimal. Assume manager  

−𝑖𝑖’s strategy is to improve the fund expected net alpha infinitesimally with probability  

𝑝𝑝  and maintain  𝛼𝛼�   with probability  1 − 𝑝𝑝. This does not mean that manager  – 𝑖𝑖  

randomly chooses an action. Instead, it means that manager  𝑖𝑖  knows that it is possible 

that some other manager(s) want to improve fund expected net alpha to attract 

investments in order to improve fund profit, and this probability  𝑝𝑝   is nontrivial. 

Manager  𝑖𝑖’s strategy is to improve his or her fund expected net alpha infinitesimally 

with probability  𝜃𝜃  and maintain  𝛼𝛼�  with probability  1 − 𝜃𝜃. The payoffs of the game 

are illustrated in the following table, with the row (column) representing manager  𝑖𝑖’s 

(−𝑖𝑖’s) action, and with manager  𝑖𝑖’s (−𝑖𝑖’s) payoffs in the first (second) figures in the 

brackets. 

  Maintain  𝛼𝛼� Improve Infinitesimally 
  1 − 𝑝𝑝 𝑝𝑝 

Maintain  𝛼𝛼� 1 − 𝜃𝜃 (𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1𝑠𝑠𝑖𝑖1, 𝑝𝑝𝑝𝑝𝑝𝑝−𝑖𝑖1 𝑠𝑠−𝑖𝑖1 ) (0,𝑝𝑝𝑝𝑝𝑝𝑝−𝑖𝑖1 𝑠𝑠−𝑖𝑖1 + 𝜀𝜀−𝑖𝑖) 
Improve 

Infinitesimally 𝜃𝜃 (𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1𝑠𝑠𝑖𝑖1 + 𝜀𝜀𝑖𝑖 , 0) (𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1𝑠𝑠𝑖𝑖1 + 𝜀𝜀𝑖𝑖 ,𝑝𝑝𝑝𝑝𝑝𝑝−𝑖𝑖1 𝑠𝑠−𝑖𝑖1 + 𝜀𝜀−𝑖𝑖) 

The expected payoff of manager  𝑖𝑖  is 

 𝜋𝜋𝑖𝑖1 = (1 − 𝑝𝑝)[(1 − 𝜃𝜃)𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1𝑠𝑠𝑖𝑖1 + 𝜃𝜃(𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1𝑠𝑠𝑖𝑖1 + 𝜀𝜀𝑖𝑖)] + 𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1𝑠𝑠𝑖𝑖1 +

𝜀𝜀𝑖𝑖). 
(C6) 

The first-order condition is 
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 𝑑𝑑𝜋𝜋𝑖𝑖1

𝑑𝑑𝑑𝑑
= 𝜀𝜀𝑖𝑖 + 𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖1𝑠𝑠𝑖𝑖1 (C7) 

With  𝜀𝜀𝑖𝑖 → 0, 𝑑𝑑𝜋𝜋𝑖𝑖1/𝑑𝑑𝑑𝑑 > 0. Thus, manager  𝑖𝑖  chooses  𝜃𝜃 = 1  to maximize  𝜋𝜋𝑖𝑖1. Notice 

that if  𝛼𝛼�  is the maximum fund expected net alpha defined by Proposition I1, managers’ 

profit rates are zero, and  𝜀𝜀𝑖𝑖  and  𝜀𝜀−𝑖𝑖  are negative. Then, in this case, the unique Nash 

equilibrium is (Maintain  𝛼𝛼�, Maintain  𝛼𝛼�). 

Therefore, each manager will improve his or her fund expected net alpha as long 

as it is below the maximum fund expected net alpha, thus, managers’ problems of 

maximizing profits is equivalent to maximizing their funds’ expected net alphas. 

Proof of Proposition I1 

�𝐞𝐞𝟏𝟏𝟏𝟏∗, 𝐞𝐞𝟏𝟏𝟏𝟏∗, 𝐟𝐟𝟏𝟏∗,𝛅𝛅𝟏𝟏∗�  is a Nash Equilibrium because 

1. Managers have to maximize fund expected net alphas to attract investments, and they 

are earning zero economic profits in equilibrium. Given other Country 1 managers’ 

optimal choices, manager  𝑖𝑖  has no incentive to deviate from  𝐞𝐞𝟏𝟏𝟏𝟏∗, 𝐞𝐞𝟏𝟏𝟏𝟏∗, and  𝐟𝐟𝟏𝟏∗. This 

is because increasing  𝐞𝐞𝟏𝟏𝟏𝟏∗  and  𝐞𝐞𝟏𝟏𝟏𝟏∗  or decreasing  𝐟𝐟𝟏𝟏∗  generates negative economic 

profit, whereas decreasing  𝐞𝐞𝟏𝟏𝟏𝟏∗  and  𝐞𝐞𝟏𝟏𝟏𝟏∗  or increasing  𝐟𝐟𝟏𝟏∗  reduces fund expected 

net alpha; thus, this manager receives no investments from investors. 

2. Given Country 1 managers’ and other Country 1 investors’ optimal choices, a 

Country 1 investor has no incentive to deviate from  𝛅𝛅𝟏𝟏∗, changing allocations across 

funds or between the fund industry and the international passive benchmark does not 

improve his portfolio’s expected net returns. 

�𝐞𝐞𝟏𝟏𝟏𝟏∗, 𝐞𝐞𝟏𝟏𝟏𝟏∗, 𝐟𝐟𝟏𝟏∗,𝛅𝛅𝟏𝟏∗� is unique because 

1. 𝐞𝐞𝟏𝟏𝟏𝟏∗  is unique as for each fund, 𝐵𝐵𝑒𝑒𝑖𝑖11
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� = 0 is uniquely solved by  𝑒𝑒𝑖𝑖11
∗; 

2. 𝐞𝐞𝟏𝟏𝟏𝟏∗  is unique as for each fund, 𝐵𝐵𝑒𝑒𝑖𝑖12
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� = 0 is uniquely solved by  𝑒𝑒𝑖𝑖12
∗; 

3. 𝐟𝐟𝟏𝟏∗   is unique as for each fund, as for each fund, fees are break-even fees, i.e., 

𝑓𝑓𝑖𝑖1
∗ − 𝐶𝐶𝑖𝑖1�𝑒𝑒𝑖𝑖11

∗, 𝑒𝑒𝑖𝑖12
∗;  𝑠𝑠𝑖𝑖1

∗,𝐻𝐻1,𝐻𝐻2� = 0 , 𝐶𝐶𝑖𝑖1�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝑠𝑠𝑖𝑖1
∗,𝐻𝐻1,𝐻𝐻2�   is  deterministic, 

and  𝐞𝐞𝟏𝟏𝟏𝟏∗  and  𝐞𝐞𝟏𝟏𝟏𝟏∗  are unique; 

4. 𝛅𝛅𝟏𝟏∗  is unique as allocations to funds maximize investor portfolios’ Sharpe ratios, 

driving fund expected net alphas to the same values; the uniqueness of  𝐞𝐞𝟏𝟏𝟏𝟏∗, 𝐞𝐞𝟏𝟏𝟏𝟏∗  and  

𝐟𝐟𝟏𝟏∗  makes  𝛅𝛅𝟏𝟏∗  unique. 
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In equilibrium, all funds’ expected net alphas are the same, i.e., 

E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  is the same across for all funds. This is because, given other 

managers’ alphas, if a fund manager cannot produce the AFMI highest expected net 

alpha, even for an infinitesimal fund size, investments continue to shift out of his or her 

fund. It lowers the fund costs due to decreasing returns to scale, and allows the manager 

to charge lower fee to improve alpha. Consequently, fund expected net returns  

E�𝑟𝑟𝐹𝐹,𝑖𝑖
1 �𝐷𝐷��

�𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

= E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

+ 𝜇𝜇𝑝𝑝  are the same in equilibrium. 

In addition, as funds have the same expected net alphas, they have the same expected 

net returns. The source of fund returns’ variance is the same across funds, and  

Var�𝑟𝑟𝐹𝐹,𝑖𝑖
1 �𝐷𝐷��

�𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

= 𝜎𝜎𝑝𝑝2 + 𝜎𝜎𝑎𝑎1
2 + � 𝑆𝑆

1

𝑊𝑊1

∗
�
2
𝜎𝜎𝑏𝑏1
2 + 𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝜀𝜀2, ∀𝑖𝑖. That is, the fund 

return variance is the same across funds. Combining these results, we conclude that all 

managers offer the same competitive Sharpe ratio. 

Q.E.D. 

Proof of Proposition I2 and I3. 

To maximize fund net alphas, manager  𝑖𝑖   chooses optimal fees such that  

𝑓𝑓𝑖𝑖1
∗ − 𝐶𝐶𝑖𝑖1�𝑒𝑒𝑖𝑖11

∗, 𝑒𝑒𝑖𝑖12
∗;  𝑠𝑠𝑖𝑖1

∗,𝐻𝐻1,𝐻𝐻2� = 0. Substitute this in to  E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
, 

regard  � 𝑆𝑆
1

𝑊𝑊1

∗
�
2

  and  𝑠𝑠𝑖𝑖1
∗   as given, and take the first-order condition on  

E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  with respect to  𝑒𝑒𝑖𝑖11. We, then, have 

 𝐴𝐴𝑒𝑒𝑖𝑖11
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� = 𝐵𝐵𝑒𝑒𝑖𝑖11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� =

0. 
(C8) 

Here if  𝐴𝐴𝑒𝑒𝑖𝑖11
11 (0; 𝐻𝐻1,𝐻𝐻2) − 𝑐𝑐2 𝑒𝑒𝑖𝑖

11
11 (0; 𝐻𝐻1,𝐻𝐻2) ≤ 0, or  𝑒𝑒𝑖𝑖11

∗ ≤ 0, manager  𝑖𝑖  chooses  

𝑒𝑒𝑖𝑖11
∗ = 0. The second-order condition is satisfied by our functional assumptions. 

 𝐴𝐴𝑒𝑒𝑖𝑖11,𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖

11,𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� < 0. (C9) 

Here we assume that  𝑒𝑒𝑖𝑖11
∗   is finite and attainable. Since the functional form of  

𝐴𝐴11(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  and  𝑐𝑐211(𝑒𝑒𝑖𝑖11;  𝐻𝐻1,𝐻𝐻2)  are the same across funds, based on (C8), 

𝑒𝑒𝑖𝑖11
∗  is the same across funds. Fully differentiating (C8) with respect to  𝐻𝐻1  and  𝐻𝐻2, 

we have 
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 𝑑𝑑𝑒𝑒𝑖𝑖11
∗

𝑑𝑑𝐻𝐻1 = −
𝐴𝐴𝑒𝑒𝑖𝑖11,𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖
11,𝐻𝐻1

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�

𝐴𝐴𝑒𝑒𝑖𝑖11,𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖

11,𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�

 (C10) 

 𝑑𝑑𝑒𝑒𝑖𝑖11
∗

𝑑𝑑𝐻𝐻2 = −
𝐴𝐴𝑒𝑒𝑖𝑖11,𝐻𝐻2
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖
11,𝐻𝐻2

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�

𝐴𝐴𝑒𝑒𝑖𝑖11,𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖

11,𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�

 
(C11) 

Thus, the sign of  𝑑𝑑𝑒𝑒𝑖𝑖11
∗/𝑑𝑑𝐻𝐻1   ( 𝑑𝑑𝑒𝑒𝑖𝑖11

∗/𝑑𝑑𝐻𝐻2 ) depends on the sign of  

𝐴𝐴𝑒𝑒𝑖𝑖11,𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖
11,𝐻𝐻1

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�   ( 𝐴𝐴𝑒𝑒𝑖𝑖11,𝐻𝐻2

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� −

𝑐𝑐2 𝑒𝑒𝑖𝑖
11,𝐻𝐻2

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�). 

Also, as  𝑒𝑒𝑖𝑖11
∗   is the same across funds, 

𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� ≜ 𝐴𝐴11�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐211�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�  is the same across funds. 

Fully differentiate  𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�  with respect to  𝐻𝐻1  and  𝐻𝐻2, and we have 

 𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1

= 𝐵𝐵𝑒𝑒𝑖𝑖11
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�
𝑑𝑑𝑒𝑒𝑖𝑖11

∗

𝑑𝑑𝐻𝐻1 + 𝐴𝐴𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�

− 𝑐𝑐2 𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�

= 𝐴𝐴𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� 

(C12) 

and 

 𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻2

= 𝐵𝐵𝑒𝑒𝑖𝑖11
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�
𝑑𝑑𝑒𝑒𝑖𝑖11

∗

𝑑𝑑𝐻𝐻2 + 𝐴𝐴𝐻𝐻2
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�

− 𝑐𝑐2 𝐻𝐻2
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�

= 𝐴𝐴𝐻𝐻2
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝐻𝐻2
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� 

(C13) 

The proof of the results regarding  𝑒𝑒𝑖𝑖12
∗  is similar to the proof above. 

As  𝑒𝑒𝑖𝑖11
∗ , 𝑒𝑒𝑖𝑖12

∗ , and  E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  are the same across funds, we 

have  𝑐𝑐1,𝑖𝑖
1 𝑠𝑠𝑖𝑖1

∗ = 𝑐𝑐1,𝑗𝑗
1 𝑠𝑠𝑗𝑗1

∗ ,  ∀𝑖𝑖, 𝑗𝑗 , thus 𝑠𝑠𝑖𝑖1
∗/𝑠𝑠𝑗𝑗1

∗ = 𝑐𝑐1,𝑗𝑗
1 /𝑐𝑐1,𝑖𝑖

1 ,  ∀𝑖𝑖, 𝑗𝑗 . Using the fact that  

𝑆𝑆1∗ = ∑ 𝑠𝑠𝑖𝑖1
∗𝑀𝑀1

𝑖𝑖=1 , we have  (𝑠𝑠𝑖𝑖1/𝑆𝑆1)∗ = �𝑐𝑐1,𝑖𝑖
1 ∑ �𝑐𝑐1,𝑖𝑖

1 �−1𝑀𝑀1
𝑗𝑗=1 �

−1
, ∀𝑖𝑖. 

Moreover, in equilibrium, we have 
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 𝑓𝑓𝑖𝑖1
∗ = 𝐶𝐶𝑖𝑖1�𝑒𝑒𝑖𝑖11

∗, 𝑒𝑒𝑖𝑖12
∗;  𝑠𝑠𝑖𝑖1

∗,𝐻𝐻1,𝐻𝐻2� 

= 𝑐𝑐01 + 𝑐𝑐1,𝑖𝑖
1 𝑠𝑠𝑖𝑖1

∗ + 𝑐𝑐211�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� + 𝑐𝑐212�𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� 

= 𝑐𝑐01 + 𝑐𝑐1,𝑖𝑖
1 �

𝑠𝑠𝑖𝑖1

𝑆𝑆1
�
∗

�
𝑆𝑆1

𝑊𝑊1

∗

�𝑊𝑊1 + 𝑐𝑐211�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�

+ 𝑐𝑐212�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� 

= 𝑐𝑐01 + ���𝑐𝑐1,𝑖𝑖
1 �−1

𝑀𝑀1

𝑗𝑗=1

�

−1

𝑊𝑊1 �
𝑆𝑆1

𝑊𝑊1

∗

� + 𝑐𝑐211�𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�

+ 𝑐𝑐212�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�. 

(C14) 

Fully differentiate  𝑓𝑓𝑖𝑖1
∗  with respect to  𝐻𝐻1  and  𝐻𝐻2, and we have 

 
𝑑𝑑𝑓𝑓𝑖𝑖1

∗

𝑑𝑑𝐻𝐻1 = ���𝑐𝑐1,𝑖𝑖
1 �−1

𝑀𝑀1

𝑗𝑗=1

�

−1

𝑊𝑊1 𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗

𝑑𝑑𝐻𝐻1

+ 𝑐𝑐2 𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝑒𝑒𝑖𝑖11
∗

𝑑𝑑𝐻𝐻1

+ 𝑐𝑐2 𝑒𝑒𝑖𝑖
12

12 �𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝑒𝑒𝑖𝑖12
∗

𝑑𝑑𝐻𝐻1  

(C15) 

 
𝑑𝑑𝑓𝑓𝑖𝑖1

∗

𝑑𝑑𝐻𝐻2 = ���𝑐𝑐1,𝑖𝑖
1 �−1

𝑀𝑀1

𝑗𝑗=1

�

−1

𝑊𝑊1 𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗

𝑑𝑑𝐻𝐻2

+ 𝑐𝑐2 𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝑒𝑒𝑖𝑖11
∗

𝑑𝑑𝐻𝐻2

+ 𝑐𝑐2 𝑒𝑒𝑖𝑖
12

12 �𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝑒𝑒𝑖𝑖12
∗

𝑑𝑑𝐻𝐻2 . 

(C16) 

Thus, the sign of  𝑑𝑑𝑓𝑓𝑖𝑖1
∗/𝑑𝑑𝐻𝐻1  depends on the signs of  𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗/𝑑𝑑𝐻𝐻1, 𝑑𝑑𝑒𝑒𝑖𝑖11

∗/𝑑𝑑𝐻𝐻1, 

and 𝑑𝑑𝑒𝑒𝑖𝑖12
∗/𝑑𝑑𝐻𝐻1; and the sign of  𝑑𝑑𝑓𝑓𝑖𝑖1

∗/𝑑𝑑𝐻𝐻2  depends on the signs of  𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗/𝑑𝑑𝐻𝐻2, 

𝑑𝑑𝑒𝑒𝑖𝑖11
∗/𝑑𝑑𝐻𝐻2, and  𝑑𝑑𝑒𝑒𝑖𝑖12

∗/𝑑𝑑𝐻𝐻2 

Q.E.D. 

Proof of Proposition I4 to I7. 

Investor  𝑗𝑗’s portfolio Sharpe ratio is 
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E�𝑟𝑟𝑗𝑗1�𝐷𝐷�

�Var�𝑟𝑟𝑗𝑗1�𝐷𝐷�

=
𝜇𝜇𝑝𝑝 + 𝛅𝛅𝐣𝐣𝟏𝟏

𝐓𝐓𝛊𝛊𝐌𝐌𝟏𝟏 �𝑎𝑎1� − 𝑏𝑏1� 𝑆𝑆1
𝑊𝑊1

∗
+ 𝐴𝐴11�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� + 𝐴𝐴12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� − 𝑓𝑓𝑖𝑖1

∗�

�𝜎𝜎𝑝𝑝2 + �𝜎𝜎𝑎𝑎1
2 + 𝜎𝜎𝑥𝑥2 + � 𝑆𝑆

1

𝑊𝑊1

∗
�
2

𝜎𝜎𝑏𝑏1
2 � �𝛅𝛅𝐣𝐣𝟏𝟏

𝐓𝐓𝛊𝛊𝐌𝐌𝟏𝟏�
2

+ 𝜎𝜎𝜀𝜀2 �𝛅𝛅𝐣𝐣𝟏𝟏
𝐓𝐓𝛅𝛅𝐣𝐣𝟏𝟏�

=
𝜇𝜇𝑝𝑝 + 𝛅𝛅𝐣𝐣𝟏𝟏

𝐓𝐓𝛊𝛊𝐌𝐌𝟏𝟏 �𝑎𝑎1� − 𝑆𝑆1
𝑊𝑊1

∗
��∑ �𝑐𝑐1,𝑖𝑖

1 �−1𝑀𝑀1
𝑗𝑗=1 �

−1
𝑊𝑊1 + 𝑏𝑏1�� + 𝑋𝑋�𝑒𝑒𝑖𝑖11

∗, 𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2��

�𝜎𝜎𝑝𝑝2 + �𝜎𝜎𝑎𝑎1
2 + 𝜎𝜎𝑥𝑥2 + � 𝑆𝑆

1

𝑊𝑊1

∗
�
2

𝜎𝜎𝑏𝑏1
2 � �𝛅𝛅𝐣𝐣𝟏𝟏

𝐓𝐓𝛊𝛊𝐌𝐌𝟏𝟏�
2

+ 𝜎𝜎𝜀𝜀2 �𝛅𝛅𝐣𝐣𝟏𝟏
𝐓𝐓𝛅𝛅𝐣𝐣𝟏𝟏�

 

(C17) 

We assume that the marginal diversification benefits of investing in one more fund is 

trivial, so we set  𝜎𝜎𝜀𝜀2 �𝛅𝛅𝐣𝐣𝟏𝟏
𝐓𝐓𝛅𝛅𝐣𝐣𝟏𝟏� → ∞  when solving the problem. When maximizing 

investor  𝑗𝑗 ’s portfolio Sharpe ratio, we substitute  

𝐴𝐴𝑒𝑒𝑖𝑖11
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖
11

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� = 0 , 

𝐴𝐴𝑒𝑒𝑖𝑖12
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝑒𝑒𝑖𝑖
12

12 �𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� = 0 , and  

𝑓𝑓𝑖𝑖1
∗ − 𝐶𝐶𝑖𝑖1�𝑒𝑒𝑖𝑖11

∗, 𝑒𝑒𝑖𝑖12
∗;  𝑠𝑠𝑖𝑖1

∗,𝐻𝐻1,𝐻𝐻2� = 0 into (4.14). Taking the first-order condition with 

respect to  𝛅𝛅𝐣𝐣𝟏𝟏, we have 

 𝜇𝜇𝑝𝑝
𝜎𝜎𝑝𝑝2
�𝜎𝜎𝑎𝑎1

2 + 𝜎𝜎𝑏𝑏1
2 � 𝑆𝑆

1

𝑊𝑊1

∗
�
2

+ 𝜎𝜎𝑥𝑥2� 𝛅𝛅𝐣𝐣𝟏𝟏
∗𝐓𝐓𝛊𝛊𝐌𝐌𝟏𝟏 − ��∑ �𝑐𝑐1,𝑖𝑖

1 �−1𝑀𝑀1
𝑗𝑗=1 �

−1
𝑊𝑊1 +

𝑏𝑏1�� 𝑆𝑆
1

𝑊𝑊1

∗
+ 𝑋𝑋�𝑒𝑒𝑖𝑖11

∗, 𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2� = 0. 

(C18) 

Notice small investors regard  (𝑆𝑆1/𝑊𝑊1)∗  as given, since each of them cannot affect this 

ratio. Substitute  𝛾𝛾 ≜ 𝜇𝜇𝑝𝑝/𝜎𝜎𝑝𝑝2 , (𝛾𝛾 > 0 )  and symmetric equilibrium condition  (𝑆𝑆1/

𝑊𝑊1)∗ = 𝛅𝛅𝐣𝐣𝟏𝟏
∗𝐓𝐓𝛊𝛊𝐌𝐌𝟏𝟏  into  (C18), and we have 

 
−𝛾𝛾𝜎𝜎𝑏𝑏1

2 � 𝑆𝑆
1

𝑊𝑊1

∗
�
3
− �𝛾𝛾𝜎𝜎𝑎𝑎1

2 + 𝛾𝛾𝜎𝜎𝑥𝑥2 + 𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑆𝑆

1

𝑊𝑊1

∗
+

𝑋𝑋�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� = 0. 
(C19) 

The assumption that  𝑋𝑋�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2� > 0, ∀ 𝐻𝐻1,𝐻𝐻2  and the coefficient of the 

third-order term  −𝛾𝛾𝜎𝜎𝑏𝑏1
2 < 0  together guarantee that this cubic equation of  (𝑆𝑆1/𝑊𝑊1)∗  

has at least one real positive solution (there are three cases: three real positive roots, one 

real positive root and two real negative roots, and one real positive root and two 
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imaginary solutions). Notice that if the solution of (C19) (𝑆𝑆1/𝑊𝑊1)∗ > 1, then  (𝑆𝑆1/

𝑊𝑊1)∗ = 1  and there is a corner solution in this case. There is one special case where 

there are two different solutions of  (𝑆𝑆1/𝑊𝑊1)∗  that are both smaller than one and both 

maximize (4.14). As each small investor regards  (𝑆𝑆1/𝑊𝑊1)∗  as given when solving 

(C18), the market will end up with one of these two solutions with probability one. 

Where  (𝑆𝑆1/𝑊𝑊1)∗ < 1 , fully differentiate  (C19)  with respect to  

𝑋𝑋�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�  and  𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1, and we have 

 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
= 1

𝛾𝛾�3𝜎𝜎𝑏𝑏1
2 � 𝑆𝑆

1

𝑊𝑊1

∗
�
2
+𝜎𝜎𝑎𝑎1

2 +𝜎𝜎𝑥𝑥2�+𝑏𝑏1�+�∑ �𝑐𝑐1,𝑖𝑖
1 �

−1𝑀𝑀1
𝑗𝑗=1 �

−1
𝑊𝑊1

> 0, (C20) 

 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑�𝑏𝑏1�+�∑ �𝑐𝑐1,𝑖𝑖
1 �

−1𝑀𝑀1
𝑗𝑗=1 �

−1
𝑊𝑊1�

= −�𝑆𝑆1/𝑊𝑊1�∗

𝛾𝛾�3𝜎𝜎𝑏𝑏1
2 � 𝑆𝑆

1

𝑊𝑊1

∗
�
2
+𝜎𝜎𝑎𝑎1

2 +𝜎𝜎𝑥𝑥2�+𝑏𝑏1�+�∑ �𝑐𝑐1,𝑖𝑖
1 �

−1𝑀𝑀1
𝑗𝑗=1 �

−1
𝑊𝑊1

<

0. 

(C21) 

Also, where  (𝑆𝑆1/𝑊𝑊1)∗ < 1, fully differentiate  (C19)  with respect to  𝐻𝐻1, and 

we have 

 𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗

𝑑𝑑𝐻𝐻1 =
𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�
𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖11

∗, 𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1  

=
𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�
�𝐴𝐴𝐻𝐻1

11 �𝑒𝑒𝑖𝑖11
∗;  𝐻𝐻1,𝐻𝐻2� + 𝐴𝐴𝐻𝐻1

12 �𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�

− 𝑐𝑐2 𝐻𝐻1
11 �𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2� − 𝑐𝑐2 𝐻𝐻1
12 �𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�� 

=
𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�
�
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�
𝑑𝑑𝐻𝐻1

+
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�
𝑑𝑑𝐻𝐻1 �. 

(C22) 

We know that  𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
> 0. Thus, we know that  𝑑𝑑�𝑆𝑆

1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻1 ≥ 0 (< 0)  if and 

only if  
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 ≥ 0 (< 0). Fully differentiate it with respect 

to  𝐻𝐻1  again, and we have 

 𝑑𝑑2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻12 =

𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 � +
(C23) 
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𝑑𝑑2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
2 �

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 �  

= 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 � −

6𝛾𝛾𝜎𝜎𝑏𝑏1
2 𝑆𝑆1

𝑊𝑊1

∗
�
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 �
2

� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
3

. 

As  6𝛾𝛾1𝜎𝜎𝑏𝑏1
2 (𝑆𝑆1/𝑊𝑊1)∗ > 0 , if  

𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 ≤ 0   then  

𝑑𝑑2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻12 ≤ 0, and if  𝑑𝑑
2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻12 ≥ 0, then  
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 ≥ 0. 

Similarly, we can prove the results of  𝑑𝑑�𝑆𝑆
1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻2 , 𝑑𝑑
2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻22   and  𝑑𝑑
2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2   where(𝑆𝑆1/

𝑊𝑊1)∗ < 1  . Where  (𝑆𝑆1/𝑊𝑊1)∗ = 1, (𝑆𝑆1/𝑊𝑊1)∗  does not depend on  𝐻𝐻1  or  𝐻𝐻2. 

Moreover, we know that 

 E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

= 𝑎𝑎1� − 𝑆𝑆1

𝑊𝑊1

∗
��∑ �𝑐𝑐1,𝑖𝑖

1 �−1𝑀𝑀1
𝑗𝑗=1 �

−1
𝑊𝑊1 + 𝑏𝑏1�� +

𝑋𝑋�𝑒𝑒𝑖𝑖11
∗, 𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�. 
(C24) 

We know that  E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

> 0. This is because  

 
Var(𝛼𝛼𝑖𝑖1�𝐷𝐷)�

�𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

= 𝜎𝜎𝑎𝑎1
2 + 𝜎𝜎𝑥𝑥2 + � 𝑆𝑆

1

𝑊𝑊1

∗
�
2
𝜎𝜎𝑏𝑏1
2 , (C25) 

so  Var(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  increases with  (𝑆𝑆1/𝑊𝑊1)∗ . Thus, a portfolio with 

allocations to both funds and the passive benchmark is always riskier than a portfolio 

with allocations only to the passive benchmark, and we should have  

E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

> 0  to induce investments to funds. 

Where  (𝑆𝑆1/𝑊𝑊1)∗ < 1, fully differentiate (C24) with respect to  𝐻𝐻1, and we 

have 

 𝑑𝑑E(𝛼𝛼𝑖𝑖1�𝐷𝐷)
𝑑𝑑𝐻𝐻1 �

�𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐟𝐟𝟏𝟏
∗
,𝛅𝛅𝟏𝟏

∗
�

= −
𝑑𝑑(𝑆𝑆1/𝑊𝑊1)∗

𝑑𝑑𝐻𝐻1 ����𝑐𝑐1,𝑖𝑖
1 �−1

𝑀𝑀1

𝑗𝑗=1

�

−1

𝑊𝑊1 + 𝑏𝑏1��

+ �
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�
𝑑𝑑𝐻𝐻1 +

𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 � 

(C26) 
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=

�
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 � �1 −

�𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�. 

We know that based on (C21) and the parameter assumptions such that  

𝛾𝛾 �3𝜎𝜎𝑏𝑏1
2 � 𝑆𝑆

1

𝑊𝑊1

∗
�
2

+ 𝜎𝜎𝑎𝑎1
2 + 𝜎𝜎𝑥𝑥2� > 0 , then  

�𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
< 1 . Thus, 𝑑𝑑E�𝛼𝛼𝑖𝑖

1�𝐷𝐷�
𝑑𝑑𝐻𝐻1 �

�𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≥

0 (< 0)  if and only if  
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 ≥ 0 (< 0). Also, 

 𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻12 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

=

�
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 � �1 −

�𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
� − �

𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +

𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖
12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 � �𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑2�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
2  

=

�
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 � �1 −

�𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
� +

6𝛾𝛾𝜎𝜎𝑏𝑏1
2 𝑆𝑆1

𝑊𝑊1

∗
�
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 +
𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1 �
2

� 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑑𝑑�𝑒𝑒𝑖𝑖
11∗,𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�
�
3

.  

(C27) 

As  6𝛾𝛾𝜎𝜎𝑏𝑏1
2 (𝑆𝑆1/𝑊𝑊1)∗ > 0 , if  𝑑𝑑

2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻12 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≤ 0 , then  

𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖
11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +

𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖
12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 ≤ 0 , and if   
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖

11∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 +
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖

12∗; 𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻12 ≥ 0 , then  

𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻12 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
≥ 0. 

Where  (𝑆𝑆1/𝑊𝑊1)∗ = 1, fully differentiate (C24) with respect to  𝐻𝐻1, and we have 
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 𝑑𝑑E(𝛼𝛼𝑖𝑖1�𝐷𝐷)
𝑑𝑑𝐻𝐻1 �

�𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

=
𝑑𝑑𝐵𝐵11�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�
𝑑𝑑𝐻𝐻1 +

𝑑𝑑𝐵𝐵12�𝑒𝑒𝑖𝑖12
∗;  𝐻𝐻1,𝐻𝐻2�

𝑑𝑑𝐻𝐻1  

(C28) 

and 

 𝑑𝑑2E(𝛼𝛼𝑖𝑖1�𝐷𝐷)
𝑑𝑑𝐻𝐻12

�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

=
𝑑𝑑2𝐵𝐵11�𝑒𝑒𝑖𝑖11

∗;  𝐻𝐻1,𝐻𝐻2�
𝑑𝑑𝐻𝐻12

+
𝑑𝑑2𝐵𝐵12�𝑒𝑒𝑖𝑖12

∗;  𝐻𝐻1,𝐻𝐻2�
𝑑𝑑𝐻𝐻12

. 

(C29) 

Similarly, we can prove the results of  𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻2 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�

, 

𝑑𝑑2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻22 �
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
, and  𝑑𝑑

2E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝐻𝐻1𝑑𝑑𝐻𝐻2 ��𝐞𝐞𝟏𝟏𝟏𝟏∗,𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐟𝐟𝟏𝟏
∗
,𝛅𝛅𝟏𝟏

∗
�
. 

In addition, where  (𝑆𝑆1/𝑊𝑊1)∗ < 1, if we fully differentiate  (𝑆𝑆1/𝑊𝑊1)∗   with 

respect to  𝑐𝑐1,𝑖𝑖
1 , we have 

 𝑑𝑑�𝑆𝑆1/𝑊𝑊1�∗

𝑑𝑑𝑐𝑐1,𝑖𝑖
1 =

−�𝑆𝑆1/𝑊𝑊1�∗𝑊𝑊1

�𝛾𝛾�3𝜎𝜎𝑏𝑏1
2 � 𝑆𝑆

1

𝑊𝑊1

∗
�
2
+𝜎𝜎𝑎𝑎1

2 +𝜎𝜎𝑥𝑥2�+𝑏𝑏1�+�∑ �𝑐𝑐1,𝑖𝑖
1 �

−1𝑀𝑀1
𝑗𝑗=1 �

−1
𝑊𝑊1��∑ �𝑐𝑐1,𝑖𝑖

1 �
−1𝑀𝑀1

𝑗𝑗=1 �
2
�𝑐𝑐1,𝑖𝑖
1 �

2
< 0. 

(C30) 

Also, if we fully differentiate  E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  with respect to  𝑐𝑐1,𝑖𝑖

1 , we have 

 𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝑐𝑐1,𝑖𝑖
1 �

�𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐟𝐟𝟏𝟏
∗
,𝛅𝛅𝟏𝟏

∗
�

= −�𝑏𝑏1� + �∑ �𝑐𝑐1,𝑖𝑖
1 �−1𝑀𝑀1

𝑗𝑗=1 �
−1
𝑊𝑊1� 𝑑𝑑�𝑆𝑆

1/𝑊𝑊1�∗

𝑑𝑑𝑐𝑐1,𝑖𝑖
1 −

−�𝑆𝑆1/𝑊𝑊1�∗𝑊𝑊1

�∑ �𝑐𝑐1,𝑖𝑖
1 �

−1𝑀𝑀1
𝑗𝑗=1 �

2
�𝑐𝑐1,𝑖𝑖
1 �

2 < 0. 
(C31) 

Where  (𝑆𝑆1/𝑊𝑊1)∗ = 1, 𝑑𝑑�𝑆𝑆
1/𝑊𝑊1�∗

𝑑𝑑𝑐𝑐1,𝑖𝑖
1 = 0, and 

 𝑑𝑑E�𝛼𝛼𝑖𝑖
1�𝐷𝐷�

𝑑𝑑𝑐𝑐1,𝑖𝑖
1 �

�𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐞𝐞𝟏𝟏𝟏𝟏
∗

,𝐟𝐟𝟏𝟏
∗
,𝛅𝛅𝟏𝟏

∗
�

= − −�𝑆𝑆1/𝑊𝑊1�∗𝑊𝑊1

�∑ �𝑐𝑐1,𝑖𝑖
1 �

−1𝑀𝑀1
𝑗𝑗=1 �

2
�𝑐𝑐1,𝑖𝑖
1 �

2 < 0. (C32) 

The result of  
𝑑𝑑E�𝛼𝛼𝑗𝑗

1�𝐷𝐷�

𝑑𝑑𝑐𝑐1,𝑖𝑖
1 �

�𝐞𝐞𝟏𝟏𝟏𝟏
∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
, ∀𝑗𝑗 ≠ 𝑖𝑖  are similar. Thus, we can see that both  

E(𝛼𝛼𝑖𝑖1�𝐷𝐷)�
�𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
  and  E�𝛼𝛼𝑗𝑗1�𝐷𝐷���𝐞𝐞𝟏𝟏𝟏𝟏∗,𝐞𝐞𝟏𝟏𝟏𝟏

∗
,𝐟𝐟𝟏𝟏

∗
,𝛅𝛅𝟏𝟏

∗
�
, ∀𝑗𝑗 ≠ 𝑖𝑖  are negatively related 

to  𝑐𝑐1,𝑖𝑖
1 , whether  (𝑆𝑆1/𝑊𝑊1)∗ < 1  or  (𝑆𝑆1/𝑊𝑊1)∗ = 1. We also know that  (𝑠𝑠𝑖𝑖1/𝑆𝑆1)∗  and  
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𝑐𝑐1,𝑖𝑖
1   are negatively related, whereas  �𝑠𝑠𝑗𝑗1/𝑆𝑆1�∗, ∀𝑗𝑗 ≠ 𝑖𝑖  and  𝑐𝑐1,𝑖𝑖

1   are positively related. 

Then we have the results in Proposition I7. 

Q.E.D. 
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Data Set Development 

Global Active Equity Mutual Funds from Morningstar 

We begin by downloading the global mutual fund data from the Global 

Databases of Morningstar Direct. Morningstar provides fund share class level data. Due 

to data availability, we download the data from 30 global markets and the U.S. market. 

We do not include any data of restricted funds in our sample. All the fund returns and 

asset under management values are in U.S. dollar. 

Secondly, in each market, we screen out share classes from funds of funds and 

index funds. We drop a fund share class if it has a value of “Yes” in any of the variables 

“Fund of Funds”, “In House FOF”, “Enhanced Index”, and “Index Fund” where these 

indicators are available. 

Thirdly, in each market, to screen out share classes of non-equity funds, we drop 

the funds if their “Global Broad Category Group” value is not “Equity”. We classify the 

remaining funds in our sample as “Active Equity funds”, based on their “Morningstar 

Category”. We only keep the funds in the “Active Equity Funds” category as these 

funds invest only in the domestic equity market. In each market, the Morningstar 

Category values that we use to define “Active Equity Funds” are shown in the following 

table. 
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Fourthly, in each market, we aggregate share class level data to fund level data 

by using the fund identifier, the “Fund ID” variable. The first step is to fill in any 

Global Market Morningstar Category Global Market Morningstar Category
Australia Australia OE Equity Australia Large Blend Korea EAA OE Korea Equity

Australia OE Equity Australia Large Geared Korea OE Korea Large-Cap Equity
Australia OE Equity Australia Large Growth Korea OE Korea Small/Mid-Cap Equity
Australia OE Equity Australia Large Value
Australia OE Equity Australia Mid/Small Blend Mexico Mexico OE Mexico Equity
Australia OE Equity Australia Mid/Small Growth Mexico OE Small/Mid-Cap Equity
Australia OE Equity Australia Mid/Small Value
Australia OE Equity Australia Other Netherlands EAA OE Netherlands Equity

Austria EAA OE Austria Equity Norway EAA OE Norway Equity

Belgium EAA OE Belgium Equity Portugal EAA OE Portugal Equity

Brazil Brazil OE Brazil All Cap Equity Singapore EAA OE Singapore Equity
Brazil OE Brazil Large-Cap Equity
Brazil OE Brazil Mid & Small Cap Equity South Africa EAA OE South Africa & Namibia Equity
Brazil OE Other Equity EAA OE South Africa & Namibia Small-Cap Equity

Canada Canada Canadian Focused Small/Mid Cap Equity Spain EAA OE Spain Equity
Canada Canadian Equity
Canada Canadian Focused Equity Sweden EAA OE Sweden Large-Cap Equity
Canada Canadian Small/Mid Cap Equity EAA OE Sweden Small/Mid-Cap Equity
Canada Canadian Dividend & Income Equity

Switzerland EAA OE Switzerland Large-Cap Equity
Chile Chile OE Chile Equity EAA OE Switzerland Small/Mid-Cap Equity

China (Mainland) China OE QDII Greater China Equity Taiwan EAA OE Taiwan Large-Cap Equity
EAA OE China Equity EAA OE Taiwan Small/Mid-Cap Equity

Denmark EAA OE Denmark Equity Thailand Thailand OE Equity Fix Term
Thailand OE Equity Large-Cap

Finland EAA OE Finland Equity Thailand OE Equity Small/Mid-Cap

France EAA OE France Large-Cap Equity United Kingdom EAA OE UK Equity Income
EAA OE France Small/Mid-Cap Equity EAA OE UK Flex-Cap Equity

EAA OE UK Large-Cap Blend Equity
Germany EAA OE Germany Large-Cap Equity EAA OE UK Large-Cap Growth Equity

EAA OE Germany Small/Mid-Cap Equity EAA OE UK Large-Cap Value Equity
EAA OE UK Mid-Cap Equity

Greece EAA OE Greece Equity EAA OE UK Small-Cap Equity

Hong Kong EAA OE Hong Kong Equity United States EAA OE US Large-Cap Blend Equity
EAA OE US Large-Cap Growth Equity

India India OE Flexicap EAA OE US Mid-Cap Equity
India OE Large-Cap EAA OE US Small-Cap Equity
India OE Small/Mid-Cap US OE Large Blend

US OE Large Growth
Israel EAA OE Israel Small-Cap Equity US OE Large Value

EAA OE Israel Large/Mid-Cap Equity US OE Mid-Cap Blend
US OE Mid-Cap Growth

Italy EAA OE Italy Equity US OE Mid-Cap Value
US OE Small Blend

Japan EAA OE Japan Equity - Currency Hedged US OE Small Growth
EAA OE Japan Large-Cap Equity US OE Small Value
EAA OE Japan Small/Mid-Cap Equity
Japan OE Japan Equity Large-Cap Blend
Japan OE Japan Equity Large-Cap Growth
Japan OE Japan Equity Large-Cap Value
Japan OE Japan Equity Mid-Cap Blend
Japan OE Japan Equity Mid-Cap Growth
Japan OE Japan Equity Mid-Cap Value
Japan OE Japan Equity Small-Cap Blend
Japan OE Japan Equity Small-Cap Growth
Japan OE Japan Equity Small-Cap Value
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missing fund net asset value observations (the variable “Net Asset Share Class 

(Monthly)” in Morningstar) by using the last available net asset value observation. A 

new variable “Fund Asset” is defined as the sum of the net asset values of share classes 

with the same “Fund ID” value in a particular month. If “Fund Asset” is zero, we regard 

it as missing. 

All the monthly share class returns are net of administrative and management 

fees and other costs taken out of fund assets, and they are in percentage. To aggregate 

share class returns to fund returns, we use the net asset value weighted average share 

class return as the fund return. We use the following algorithm: 

7. define a variable “NA” equal to “Net Asset Share Class (Monthly)”; 

8. in each month, if the observation of the “Monthly Return” variable (share class 

return variable) is not missing, but “NA” is missing, then set “NA” to $1; 

9. in each month, if the observation of the “Monthly Return” variable is missing, set 

this month’s “NA” to missing; 

10. in each month, calculate a variable “Total Return” as the sum-product of “NA” and 

“Monthly Return” of share classes with the same “Fund ID” value; 

11. in each month calculate a variable “TA” as the sum of “NA” of share classes with 

the same “Fund ID” value; 

12. calculate the variable “Fund Return” as “Total Return” divided by “TA”. 

This algorithm can ensure the following:  in each month, if a share class’ return 

is missing, its net asset value is not used in calculating the asset value weighted average 

return. If for a fund, all share classes have return observations but all their net asset 

values are missing, the fund returns are equally weighted averages of all the share 

classes’ returns. If for a fund, all share classes have return observations but some have 

missing net asset values, then almost all the weights will be allocated to the share 

classes with net asset value observations. 
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Fund Market Concentration Measures 

In each market, we use all the fund level data in our “Active Equity Funds” 

sample to calculate fund market concentration measures. 

First, in each market, in each month, we calculate fund “Market Share” variable 

as the fund’s “Fund Asset”, divided by the sum of all the funds’ “Fund Asset” in this 

month. Next, in each month, we count the number of “Fund Asset” observations, and 

use it as the value of the variable “Number of Funds”. The fund market concentration 

measures are calculated as follows: 

4. in each month, HHI is calculated as the sum of all the funds’ “Market Share” 

squared; 

5. in each month, NHHI is calculated as (“Number of Funds”×HHI-1)/(“Number of 

Funds”-1); 

6. in each month, “5-Fund-Index” is calculated as the sum of the first five largest funds’ 

“Market Share”. 
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Fund Net Alphas 

In each global market, we use our “Active Equity Funds” sample, and further 

require a fund to include at least 10 years’ observations with missing observations in 

between no more than 5 years. The reason is that in our recursive rolling window style-

matching model, we use 5 years (60 monthly observations) as our estimating window, 

so a fund with 10 years’ observations, with a gap of no more than 5 years of missing 

observations, will have reasonably large number of observations in fund net alphas, 

mitigating the measurement error issue. 

In choosing the factors in the style-matching model, we use local index fund 

returns, a U.S. large-cap index fund return, and risk-free return as factors. We keep the 

share class observations with the value “Yes” in the “Index Fund” variable and drop the 

funds with a value “Yes” in any of the variables “Enhanced Index”, “Fund of Funds” 

and “In House FOF”. We also require their “Global Broad Category Group” value is 

“Equity”. Then we aggregate the share class returns into fund returns following the 

same algorithm discussed in Section 2. We further require an index fund to have non-

missing observations in our sample period to make our style-matching procedure 

meaning and stable. The name and “Morningstar Category” of the index funds in each 

market are shown in the following table. Notice that in Chile and Italy, there is no 

equity index funds that have return data for the whole sample period of these countries, 

so we combine two index funds into one: use the first index fund data return, and after 

its data terminates, then use the second index fund return data. 

The monthly risk-free returns of the 30 Global markets are from the 

International Financial Statistics on the official website of International Monetary Fund 

(IMF). We use the Treasury Bill Rate in each market to proxy the risk-free return. If 

Treasury Bill Rate is not available, we use Money Market Rate of the market. We adjust 

all the risk-free returns into U.S. Dollar returns using the Exchange Rate information 

from this website. Some markets, such as mainland China, Taiwan and India, do not 

have Treasury Bill Rate or Money Market Rate information on this website. Then I 

collect the term deposit rates of mainland China and India from the official website of 

the major banks and transform them into U.S. dollar returns. I collect the T-bill rate and 

exchange rate of the Taiwan market from Datastream. 
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Global Market Morningstar Category Name
Australia Australia OE Equity Australia Large Blend BlackRock Australian Share

Austria EAA OE Austria Equity EMIF-Austria Index

Belgium EAA OE Belgium Equity KBC Multi Track Belgium

Brazil Brazil OE Brazil All Cap Equity Itaú Timing FIA

Canada Canada Canadian Equity TD Canadian Index

Chile Chile OE Chile Equity Security Index Fund Chile
Im Trust Acciones Índice Chile

China (Mainland) China OE Equity Funds Wanjia 180 Index Fd

Denmark EAA OE Denmark Equity Danske Invest Danmark Indeks

Finland EAA OE Finland Equity Seligson & Co Finland Index

France EAA OE France Large-Cap Equity BNP Paribas Indice France

Germany EAA OE Germany Large-Cap Equity Pioneer Inv Akt Deutschland

Greece EAA OE Greece Equity ALPHA Athens Index

Hong Kong EAA OE Hong Kong Equity Hang Seng Index

India India OE Large-Cap Principal Index Nifty Div

Israel EAA OE Israel Large/Mid-Cap Equity I.B.I Tel Aviv 25 Basket

Italy EAA OE Italy Equity SSgA Italy Index Equity Fund
Eurizon EasyFund Eq Italy LTE

Japan Japan OE Japan Equity Large-Cap Growth Nikko Index Fund 225
Japan OE Japan Equity Large-Cap Blend Nomura TOPIX Index Open

Korea Korea OE Korea Large-Cap Equity Samsung Index Premium Equity-Deriv

Mexico Mexico OE Mexico Equity GBMIPC

Netherlands EAA OE Netherlands Equity BNP Paribas AEX Index

Norway EAA OE Norway Equity Carnegie Norge Indeks

Portugal EAA OE Portugal Equity BBVA PPA Índice PSI 20 FIMAA

Singapore EAA OE Singapore Equity Singapore Index

South Africa EAA OE South Africa & Namibia Equity STANLIB Index

Spain EAA OE Spain Equity BBVA Bolsa Índice FI

Sweden EAA OE Sweden Large-Cap Equity Handelsbanken Sverigefond Index

Switzerland EAA OE Switzerland Large-Cap Equity UBS 100 Index-Switzerland

Taiwan EAA OE Taiwan Large-Cap Equity Yuanta/P-shares TAIEX Index Fund

Thailand Thailand OE Equity Large-Cap SCB SET Index

United Kingdom EAA OE UK Large-Cap Blend Equity L&G UK Index
EAA OE UK Mid-Cap Equity HSBC FTSE 250 Index

United States US OE Large Blend Vanguard 500 Index
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Our algorithm of running the style-matching model is as follows: 

4. use the data of the previous 60 months (from  𝑡𝑡 − 60  to  𝑡𝑡 − 1) to run the style-

matching model, minimizing the variance of the regression residuals and calculating 

the R-squared of the model as 1 minus variance of the residuals divided by the 

variance of the fund return; 

5. predict the fund return at month  𝑡𝑡; 

6. in each month, calculate the variable “Fund Net Alpha” as the “Fund Net Return” 

minus the predicted value of fund return. 

 

Stock Market Capitalization and AFMI Size 

We use the global stock data in Global Databases of Morningstar Direct to do 

our analyses. We use “Exchange Country” in the database to define the stock of a 

particular market. Then we screen out the observations with a “Security Type” that is 

not equal to “Common Stock”. For each month, the stock market capitalization is the 

sum of each stock’s market capitalization in this month. All the market capitalization 

values are in U.S. dollar. 

The “AFMI Size” variable in our analyses represents the active equity mutual 

fund industry size relative to stock market capitalization. For each month, “Industry 

Size” is equal to the sum of all the funds’ “Fund Asset” in our “Active Equity Funds” 

sample, divided by the stock market capitalization. 
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